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PREFACE 

In the following book I have aimed in the first place at an 
exposition of dynamical principles which should be as sound 
as possible and at the same time suitable for beginners, 
especially those who have the intention of proceeding further. 

Consequently I have selected and constructed the examples to 
illustrate fundamental principles and to give extensive prac¬ 
tice in numerical applications. Few of the examples will be 
found to involve any great mathematical difficulties, but it is 
hoped that many will require careful attention to fundamental 
principles and to the correct use of units. 

As regards the work dealt with I may mention the following ; 
(1) A more extensive use than usual is made of the notation 

of limits, not only as the only satisfactory way of defining 
such quantities as velocity and accderation, but that, as the 
student learns his calculus he may recognise the identity of 
the ideas in the two subjects, and the utility of the calculus. 

(2) I have given a chapter on the elements of vector 
analysis. 

(3) I have taken simple harmonic motion before motion in 
a curve, and have treated it directly, as rectilinear motion 

under a given law of force. This makes the obtaining of the 
results more difficult than in the usual but unsatisfactory 
method of obtaining them from the consideration of the 
projection of uniform circular motion. It has, however, the 

advantage that the student is not led to imagine that some 
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special circle has to be thought of in connection with the 
motion, as is frequently the case in the common method. I 
have also dealt more fully with simple harmonic motion than 
usual, and have discussed some cases of systems with two 
independent coordinates, and also cases of forced oscillations. 

(4) I have also dealt more fully than usual with rigid 
dynamics. 

On the other hand I have omitted several special questions 
whore the student loses nothing by waiting until he has a 
fuller acquaintance with the calculus than he is likely to have 
in reading this book. Such are chords of quickest descent, 
motion on a cycloid, and non-circular central orbits. 

A number of the examples, particularly among those at the 
ends of the chapters, are taken from Melbourne University 
papers. Most of the others have been specially constructed by 
myself, but a few, which I am unable now to specify, may have 
come from other sources. I can only hope .that not many errors 
will be found in the answers given. 

I wish to express my gratitude to Prof. J. H. Michell, F.R.S., 
for his encouragement and suggestions. 

Duntroon, 
February IM, 1915. 

R. J. A. BARNARD. 

PREFACE TO THE THIRD EDITION 

In this edition, besides small corrections, I have added to the 
last Chapter some paragraphs on Angular Momentum, and a 
set of Examples on the motion of a body in a plane, and 1 
have also added an Index. 

1940. 

R. J. A B. 
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PART I 

DYNAMICS OF A PARTICLE, 

CHAPTER I. 

POSITION. VELOCITY. ACCELEEATION. 

The science of dynamics is concerned with questions about 

the motions of bodies. The idea of motion involves two other 

ideas, those of time and position. 

1. Time. 
No discussion will be entered upon as to the nature of time, 

but it is necessary to consider the measurement of time. The 

unit of time is derived from the rotation of the earth. The 

interval from the instant when the sun is due north (or due 

south) of us one day until he is due north (or south) the next 

day is called a solar day. The solar day varies in length slightly 

for reasons that need not be discussed here, but the average 

length of the solar day throughout the year is called a Mean 

Solar Day, and is divided into 86,400 (or 24 x 60 x 60) seconds. 

The second thus derived is the ordinary unit for the measure¬ 

ment of time. To keep account of the lapse of time, clocks or 

watches may be used, by which the number of seconds that 

elapse between two instants can be noted. 

It is usual in d}Tiamical questions to choose a definite 

instant as the origin or starting point to measure times from, 

and to speak of an event as happening at time r, meaning at 

the instant t seconds after the instant which has been selected 
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as the origin of times. For example, when a stone is thrown into 

the air from the ground, it is convenient to take the instant it 

leaves the hand as the origin of times, and we can then speak 

of its position at time i = 3, ^==5-82, or, in general, at time t, 

meaning that 3, 5 -82 or t seconds have elapsed since it left the 

hand. 

2. Position. 

In the determination of the position of a point it is necessary 

to express its position with respect to other points, or lines, or 

planes, and if its position changes with respect to these, we 

can speak of, and measure, its change of position or displace¬ 

ment relatively to these points, lines or planes. We cannot 

talk of displacement or motion of a body, unless we have other 

objects of some kind to define its position by, and then we can 

only speak of its change of position and motion relatively to 

those objects. For the present we will only consider the case 

where the position of a point P is referred to a single point O, 

and a single line Ox passing through O, on which line the point 

P always lies. The point P is then said to be moving in a straight 

line relatively to the reference point or origin O. 

The case is well illustrated by the case of a bicyclist riding 

along a straight road Ox. The mile-stones along the road show 

the distance from a certain point (O), and his position on the 

road at any time may be represented by the distance he is from 

O, as determined by the mile-stones. In this case the ro^wi 

along which the bicyclist is riding is itself in continual and 

rapid motion, on account of the motions of the earth on its 

axis, and around the sun, but this does not affect our idea of 

his motion along the road, and we speak of his motion along 

the road exactly as if there were no such thing as a motion of 

the earth. In other words, we are only concerned with the 

motion relative to the earth. It will be seen from this 

example that all motion that we are concerned with in dynamics 
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is motion relative to some body or bodies, whose motion we 

may or may not be concerned with. In most of the elementary 

dynamics the motions we deal with are motions relative to the 

earth, and the surrounding objects attached to the earth, 

the motion of the earth being neglected. Cases in which the 

results are affected by the motion of the earth will appear later. 

3. Motion in a Straight Line. Velocity. 
Suppose, then, that a point is moving along a straight line, 

and that at time the distance from a certain origin is Si feet, 

Pia. 1. 

• « S s 
and at a time the distance is feet, then the ratio ~—- is 

called the average velocity (in feet per second) during the 

interval This evidently agrees with the ordinary idea 

of velocity, for S2-S1 is the distance (in feet) travelled in 

seconds. 

We shall use the symbols ft./sec. and miles/hr. for feet per 

second and miles per hour respectively, in speaking of velocities. 

If we take the case of the cyclist or of a train, it is obvious 

that we shall generally get different results for the average 

velocity for different intervals. Thus, the velocity of the 

cyclist will be found to be less when he is going up hill than when 

he is going down. For example, if 

s == 10 miles when t — 2 hours, 

5 — 17 ,, i = 3 ,, 
5 = 30 „ „ ^ = 4 „ 

the average velocity during the first of these hours is 7 miles 

an hour, and during the second hour, 13 miles an hour, while 

for the two hours the average velocity is 10 miles an hour. 
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To get a more accurate idea of his velocity, we may take his 

position at intervals of 5 minutes, from which we could deduce 

his average velocity during each 5 minutes. Even then his 

velocity may vary during any 5 minutes, and to be still more 

accurate we take a shorter interval still, and though we still 

get only an average velocity during a short interval, we can 

form a much better idea of the way the cyclist has been 

travelling, than when we only knew the average velocity during 

each hour. Thus the shorter the intervals of time for which 

the velocity is calculated, the more accurate the knowledge of 

his motion, and we are thus led to the idea of taking an in¬ 

definitely short interval of time, and calling the velocity 

obtained then, the velocity at the particular instant, instead 

of the average velocity during the particular interval. Mathe¬ 

matically, we may put our definition in the following way ; 

Velocity at time = Lim 

meaning that we have to take the expression for the average 

velocity, and make approach indefinitely close to t^; in other 

words, make - h indefinitely small, in which case Sg - h 

becomes indefinitely small, and the ratio of the two indefinitely 

small quantities becomes ultimately (or in the limit) the 

velocity at time t^. 

The expression Lim J may be read—the limit as ig 
«2—t.^ ~ t^ 

approaches t^ of y-—- • 

Another notation frequently used to represent small quanti¬ 

ties such as occur here is Aa for a small change in s, and M 

for a small change in t. Aa is then a single symbol, and the 

average velocity during the short interval At is expressed by the 

fraction in which the A’s cannot be cancelled out, because 

they do not of themselves represent algebraical quantities. 
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Thus A^* represents the same thing as A-g - , except that As 

is almost always applied to small quantities. 
The velocity at an instant will then be represented by 

Lim In general, Lim will differ from bv a small 

quantity, say, is greater by some amount e which is small 

compared with ~ itself. 
As As 

Hence velocity at an instant = Lim ~ 4. e. 

4. Note on Limiting Values of Fractions. 
As limiting valuea of fractions are involved in the whole of 

dynamics, a little explanation may be given for the sake of 
the reader who is unfamiliar with the idea. Take the fraction 

^ This is equal to 1 for all values of x except .r==l. 

If x — L the numerator and denominator of the fraction are 
both zero, and the fraction ceases to have a meaning. The 
fraction, in fact, is not defined when a -l, yet we can find the 
value when x is nearly equal to 1, the fraction being then nearly 
equal to 2. 

Forif *=11, 1=21, 
x- i ’ 

.T = l 01, -, -2*01, 

.6=1001, = 2-001, 

and the nearer x gets to 1, the nearer the fraction approaches 
the value 2. Hence, though the fraction has no meaning when 

we can still talk of it having 2 as its limiting value as 
X approaches 1, and we write the fact thus : 

Lim = Lim (.r + 1) = 2. 
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All cases of calculation of velocity at a given instant from 
the distances travelled, or, as we shall see immediately, of 
acceleration from the velocities, are examples of limiting 
values of fractions, the numerators and denominators being 
both indefinitely small quantities whose ratio is required. 

When the denominator of a fraction approaches zero while 
the numerator remains finite, the fraction becomes bigger and 

bigger. Thus —5— is defined for all values of x except x—1, 
iC “*• 1 

and for that value the fraction has no meaning. But it is easy 
to see that the closer x approaches to 1, the bigger the fraction 
is, and we can make it as big as we like by choosing x near 
enough to 1. This is expressed by saying that the limiting 
value of the fraction when x approaches 1 is infinity, or 

Lim —% = 00. 
X-\ 

Example 1, Find the values of - when x— *9, *99, 11, 101. 
X -1 

2. Show that the fraction ~r— -^ is not defined for the values 
- 3a: + 2 

x—\, 2. Find its limiting values as x approaches these values. 
Find also its values when x= -99, 1*01, 1-99, 2 01. 

5. Acceleration. 
In a great series of experiments carried out in 1590, by 

dropping cannon balls from the Leaning Tower of Pisa, and 
again in 1612, Galileo investigated the motion of a body 
falling to the earth. He shewed for the first time that the 
velocity was continually increasing in such a way that it 
received equal increments each second, and was thus led to the 
idea of acceleration as rate of increase of velocity. 

If the velocity Vi at time given by the expression 

Lim , is found to be the same at all instants, it is 

said to be uniform or constant, if otherwise it is variable. When 
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the velocity is variable, we use the term acceleration to denote 

the rate of change of velocity. Mathematically, the accelera¬ 

tion is determined from the velocity in the same way that the 

velocity is determined from the distance ; thus, if 

^ the velocity at time f2 = the velocity at time U, 

the average acceleration during the interval to U is 

the acceleration at time = Lim ^ ^ • 

Vo - t\ 
and 

We speak of uniform and variable acceleration in the same 

way as of uniform and variable velocity. 

As an acceleration is the rate of change of velocity or change 

of velocity per second, it is common to express the acceleration 

as so many feet per second per second. Thus, if a body has 

a velocity at one instant of 5 feet per second, and 10 seconds 

later it has a velocity of 25 feet per second, we can say its 

average acceleration during that time was 2 feet per second 

per second, but we shall prefer to call it an acceleration of 

2 foot second units, or still better of 2 ft./sec'^. 

6. Graphical Representation. Position Time Graph. 
Suppose the position of a point moving in a straight line is 

represented by a graph giving the position at each instant. 

In the figure PM represents the distance from a fixed point 

at time QN represents the distance at time 4* PK is 
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parallel to MN, then 

QK = QN ~ PM 

PK - ON OM - 4 - ; 

therefore the average velocity during the interval 4 “■ h 

OK 
-—, and is equal to the gradient of the chord PQ. Taking 
P K 

the interval of time very short so that 4 approaches MN 

becomes indefinitely short, and Q approaches indefinitely 

close to P, and the chord PQ becomes ultimately the tangent 

at P. 

Hence the velocity at time 4 is represented by the gradient 

of the tangent at the point P on the graph. It does not matter 

what scales are used along the two axes, provided the gradient 

5 

15 

10 

5 

o 

is determined from the length of lines measured according to 

the two scales. Thus, in the figure, if PR is the tangent at P, 

the velocity, when ^ = 2, is the gradient of PR, or 

PM_8_40_r7 

7. Velocity-Time Graph. 
In exactly the same way, if we draw a graph representing 

the velocity in terms of the time, the average acceleration 

during any interval will be represented by the gradient of the 

chord joining the points on the graph corresponding to the 
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beginning and end of the interval. Also the acceleration at a 

particular instant will be represented by the gradient of the 

tangent at the corresponding point on the graph. 

Fig. 4. 

8. Positive and Negative Signs. 
It must be borne in mind throughout, that the ordinary 

conventions about positive and negative signs apply to all the 

above quantities—distance, velocity, and acceleration. From 

the origin O distances measured in one direction are positive, 

and in the other negative. If a point is moving in the direc¬ 

tion in which the positive distances are measured, its velocity 

is positive, and if at the same time its velocity is increasing, 

the acceleration is positive. If, while having a positive velo¬ 

city, this velocity is diminishing, the acceleration is negative. 

If it is moving in the opposite direction to the above, the 

velocity is negative. If, while having a negative velocity, this 

velocity is increasing numerically, the acceleration is negative, 

and so on. The expressions above and the graphical repre¬ 

sentations apply to all cases. Thus, if 

.9i = 20feet when t-2 secs, (^j), 

.92 = 10 „ „ « = 4 „ (y, 

the average velocity in the interval = ^—2 ~ ft./sec. 

If ^1= - 6, when ^ = 3 secs., 

2 ~ ^ —15 ,, 
4 / 0\ 

the average acceleration in the interval is ^6 ft./sec^. 
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9. Examples of the Preceding Results. 
To illustrate the use of the above, and to show how they are 

to be applied to experimental data, suppose we make an experi¬ 

ment of letting a marble roll down a slightly inclined board, 

say a long table raised a few inches at one end. We can 

determine the position at any time easily by marking with a 

chalk the position at each second, using the ticks of a clock or 

watch to note the seconds. We find, for example, the following 

results from experiment: 

t secs. 8 feet. 

0 . ! 0 
1 0*3 
2 1-3 
3 3 0 
4 5-3 

Representing these on a graph, we find the curve to be 

approximately a parabola, and notice that s= represents the 

results very closely. Let us calculate the velocity and accelera¬ 

tion on this supposition. 
0^1/2 , 
^2 *“ 

tn — 

= Lira ^ = Lira J (/^ + 
rj—n 

• * / _ / “ h h 

or the average acceleration in any interval whatever is |. 

the acceleration at each instant is |, shewing that the 
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marble moved with uniform acceleration. To carry out the 

work graphically, the graphs would be drawn as follows : 
First draw the space-time graph, and draw tangents at each 

second, as well as possible, by laying a straight edge along the 

s 

5 

4 

3 

2 

1 

O 1 2 3 4 / 

Fig. 5. 

curve. Calculate the gradient of each tangent. In the figure 

these gradients are 
0-6, 1-3, 1-87, 2*65. 

These therefore represent the velocities at each second. 

Next, draw a velocity-time graph to represent these velo¬ 

cities, and it is found that the points lie nearly on a straight 

line whose gradient is 0*65, shewing that the acceleration is 

nearly constant and equal to 0-65 approximately. 

The case when the distance s is expressed in the form 

at^ 4- ht -H c, where a, 6, c are constants, is very important, from 

its frequent occurrence in nature. Let us find the velocity and 

acceleration in this case. 

4* 6^2 + c, 
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*2 - s, = a - ti^) + f> (<2 - <i), 

(«2 - fii)l(h - ^i) =«(<2 + h) + b- 
Vi = Lim {a(«2 +«]) + 6} = 201^ + b, 

hence also = 2at2 + 6, v^-1\ = 2a(fg - <i), -—= 2a ; 
h ~ h 

the acceleration/= 2a— constant. 
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Hence, if in any case the distance from a fixed point is given 

in terms of the time hy the formula 

+ c, 
the acceleration is constant, and =2a, and the velocity is 

2a^4*6, or 

a —half the constant acceleration, 

fe = the velocity when ^ =0, usually called the initial velocity, 

c = the value of 8 when f==0, or the distance from the fixed 

point at the instant from which the times are measured. 

If c = 0, the particle is at a fixed point at the instant from 

which the times are measured, in other words, is at the origin 

#f distance at the origin of time. 
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Example 1. If 8 =ai® prove that v =3at^, f ~6at. 

2. If s-t^llO, find the velocities at times 0, 5, 10 secs., and the 
accelerations at the same times. Also find the average velocity for 
the interval to ^-10, and the velocity at the middle of the 
distance. 

10. The Inverse Problem. 
In the preceding sections we have shewn how the velocity 

is to be deduced from a knowledge of the distance travelled, 

and how again the acceleration is to bo deduced from the velo¬ 

city. We now come to the more difficult problems of deducing 

the change of velocity from a knowledge of the acceleration, 

and the distance travelled from a knowledge of the velocity. 

This is the inverse problem. Though it is often impossible to 

get a complete solution expressed in elementary form, we can 

always get a graphical representation which will give an 

approximate solution. 

To explain the principles to be followed, we will suppose 

a train travelling along for three minutes with a varying 
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velocity. The velocity being supposed known, we can draw 

a velocity-time graph. 

Suppose the velocities at intervals of a minute are 

given by the table: 

t mins. V (feet per sec.). 

0 10 0 
1 15 0 
2 18-2 
3 20 0 

Now to get an approximation to the distance travelled, we 

might calculate the distance that would have been travelled 

if the velocity remained 10 ft./sec. during the first minute, and 

then suddenly changed to 15-0 ft./sec. and remained at that 

for the next minute, at the end of which it again suddenly 

changed to 18*2, remaining at that for the third minute. The 

distance travelled under these circumstances would be 

60 X (10 + 15 + 18 *2) = 60 X 43 '2 = 2592 ft. 

As another approximation, we might calculate the distance 

that would have been travelled if the velocity was 15 ft./sec. 

for the whole of the first minute, and then suddenly changed 

to 18*2, remaining at that for the second minute, and 

then changed again to 20, at which it remained iox the 

third minute. According to this calculation, the distance 

travelled would be 

60 X (15 +18 -2 + 20) = 60 X 53 -2 = 3192 ft. 

Naturally neither of these is the true distance travelled by 

the train, but the true distance might be expected to be 

between the two. If we take the mean of the two 2892 ft., we 

would expect to be within 300 ft. of the correct value. 

We would get a closer approximation if, instead of taking 

the velocities at intervals of a minute, we took them at shorter 



POSITION. VELOCITY. ACCELERATION 15 

intervals, say 20 secs. We read ofi from the graph the 
following : 

t V t V 

0 10 I 1 min. 40 sec. 17-2 
20 sec. 11-6 ! 2 „ 18-2 
40 „ 13-3 1 2 „ 20 „ 18-9 
1 min. 160 ; 2 „ 40 „ 19-6 
1 min. 20 sec. 16-2 ! 3 20 0 

If we made an approximate calculation as before, assuming 
the velocity to remain constant during each 20 secs., and equal 
to the velocity at the beginning of that interval, and to suddenly 
change at the end of each interval as before, we should find the 
distance travelled to be 

20x(10 + ll-6 + 13-3 + 150 + 16-2 + 17-2 + 18*2 + 18'9 + 19-6) 

= 20x140 = 2800 ft. 

On the other hand, if we make the similar supposition, with 
the difierence, that the velocity during any 20 secs, is to be 
the same as that actually possessed by the train at the end of 
that 20 secs., the distance will be found to be 3000 ft. If we 
again take the mean of these, we get 2900 ft. as a closer 
approximation, and do not expect to be more than 100 ft. 
wrong. By taking the velocity at the end of 5 secs, intervals 
or 1 sec., we get still closer approximations. The last should 
give the distance within 5 ft. of the correct value. If we take 
still shorter intervals of fractions of a second, we will get still 
closer approximations. 

Now let us summarize what we have done up to the present. 
We have a body moving with a continually changing velocity. 
We suppose that we know what the velocity is at each instant. 
We make an approximate calculation of the distance travelled 
by supposing that the velocity can be treated as constant during 
ceftjain intervals, and then suddenly changing at the ends of 
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the intervals, instead of changing continuously. In doing this, 

we try to keep the velocities in the supposed case as near those 

in the actual case as possible, and the ^eater the number of 

intervals into which we divide the whole time, the more closely 

do the velocities in the true and supposed cases approximate 

to one another. 

We consequently assume that the larger we make the number 

of intervals (and consequently the smaller the intervals them¬ 

selves), the smaller will be the error made in the calculation of 

the distance travelled. 

Now let us see what this corresponds to on a velocity-time 
graph. 

Suppose PQRS represents the graph drawn to scale. OP is 

the initial velocity 10 ft./sec. The distance described in one 

minute with this velocity is 10 x 60, or is represented by the 

area OPKA. Similarly, the distance described in the next 

minute with velocity 15 ft./sec. is represented by the area 

AQLB, and the whole area OPKQLRMCO would represent the 

2592 ft. described on the first supposition. The second calcula¬ 

tion of 3192 ft. would be represented by the area OK'QL'RM'SCO, 
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and the mean of these is represented by the area bounded by 

the straight lines PQ, QR, RS, SC, CO, OP. 

In the same way, when the intervals were 20 secs, instead of 

a minute, the two calculations are represented by the areas 

OPK1P2K2P3 ... SCO and OK^'PgKg'... SCO, and the mean of 

these by the rectilinear area, whose vertices are OPP2P3 ... SCO. 

Now, evidently this area differs but little from the area 

bounded by the curve PQRS and the straight lines SC, CO, 

OP, and the larger the number of intervals or tlie shorter 

the chords PPg, ^2^3^ more closely will the areas 

bounded by the chords, and by the curve, approximate to 

one another. 

Hence we deduce that, in any case, when the velocity is 

represented by a velocity-time graph, the space described in 

any interval is represented by the area bounded by the graph, 

the axis of times, and the ordinates at the beginning and end of 

the interval. It evidently does not matter whether the begin¬ 

ning of the interval is denoted by the time or not. Thus 
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in Fig. 10, if PQ is the velocity-time graph, PABQ represents 

the space described in the interval of time represented by AB, 

In speaking of an area as representing a length, this must be 

understood in the following way. If an inch along the axis of 

time represents one minute, and an inch along the axis of v 

represents 20 ft. per sec., then a square inch represents 

60 X 20 = 1200 ft., or a square whose side is a tenth of an inch 

will represent 12 ft., and so on in other cases. 

Example 1. If v~6t where velocity in ft./sec. and ^==time in 
seconds, draw the v4 graph, and find from the graph the space 
described from rest in 4 secs. 

2. If V and t being in the same units as in question 1, find 
graphically the distance described in 4 secs, from rest. Work this 
also by approximate calculations, taking first the velocities at each 
second, and secondly, the velocities at the end of each half second. 

3. If v=10sin™, the angle being in circular measure, find the 

velocity at the end of each 5 secs, up to 30, and deduce approxi¬ 
mately the distance described in 30 secs. 

Draw the velocity-time graph and give the graphical representation 
of the calculations made. 

iVo^e.—Ex. 3 will shew that where the velocity is sometimes 

increasing, and sometimes diminishing, the true distance does 

not necessarily lie between the two distances calculated in the 

manner explained in this article. Explain graphically why this 

is so, and shew that it must lie between the two if the velocity 

is alwayis increasing, or if it is always diminishing. 
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BP travelled in the two directions. Of course, AP is the 

algebraic sum of AB, BP, treating BP as negative. 

The following examples will illustrate these points and the 

use of the equations. 

In all examples care should be taken to use a consistent set 

of units. Thus it will not do to leave a velocity in miles/hr., 

a distance in yds., and a time in seconds. It is best usually to 

express a velocity in feet per second, and then a distance 

must be expressed in feet, and time in seconds. 

Example 1. A train has its velocity increased from 20 to 30 
milea/hr. in going 1600 yds. What is the accele!*ation, supposed 
uniform, and how long does it take to travel the 1500 yds.? 

QQ 

Here it = 20 in./hr. ft./sec.. 

i;=30 m./hr. =44 ft./aec., 

5 = 1500 yds. =4500 ft. 
Using equation (3), 

2/x 4500 = 44*-/®|)‘=442 [l - 

= 44x44x|; 
y 

44x44x5 _ 968 
2x4500x9"" 8100 

=0-1195 ft/sec^ 

also the average velocity = 
1/-f V 

2 

=25 m./hr, 

25 .. , 110 , 
= ™ X 44 ft/sec. = — ft/sec.; 

time taken = 
distance 

average velocity 

=4500 Xy^= 122-7 secs. 

2. A particle starting with velocitv 16 ft./sec. and moving with 
uniform acceleration has a velocity of 9 ft /sec. at the end of 3 secs. 
Find how far it goes before it comes to rest, and the times and 
velocities when at 60 ft from the starting point. 



28 ELEMENTARY DYNAMICS 

Here the velocity is diminishing and the acceleration conse¬ 
quently negative; in fact, 

15 ft./sec. 
u=9 ft./sec. 
^=3 secs. 

-2 ft./sec*. 

The distance travelled from the start until it comes to rest is 
given by equation (3), when the final velocity is zero ; 

0=162h-2(-2)5, 

5=56] ft. 

The times at which it is 50 ft. from the starting point are given 
by equation (2): 60= 16« + J( -2)/*. 

<*-164+60=0, 
f = 5 or TO. 

The velocity there is given by equation (1): 
v=15-2< 
= 5 or - 5 ; 

or otherwise by equation (3): 
v®=152+2( -2)x50 

= 25, 
v=5 or -5. 

From the starting point the body travels for secs, with con¬ 
tinually decreasing velocity, coming to rest then and moving back 
Avith continually increasing negative velocity. 

3. If a train acquires a velocity of 30 miles/hr. in 1 minute from 
rest, find the acceleration, supposed uniform, and the distance 
travelled in the minute. 

4. A train moving at 10 miles an hour at one instant has a 
constant acceleration of 2 ft./sec*. What distance will it have 
travelled when the velocity is 20 miles/hr., and how long will it 
take to do it ? 

5. If a body travels 30 ft. in the first second it is observed, 
and 21 in the fourth, what is the acceleration, supposed uniform, 
and what is the distance travelled in the eighth second ? 

B, A body moving with uniform acceleration in a straight line 
has a velocity 10 ft./sec. at a distance of 6 ft. from a point O, and 
12 ft/sec. ot 17 ft. from O. Find the acceleration and the velocity 
atO. 
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7, A partiole starts with velocity 20 ^jraviSls 400 cms. 
in 30 secs. Find the acceleration, supposed uniform, and shew 
that it will come to rest in 45 secs. Find also the times at which 
it is 200 cms. from the starting point. 

y8. A body travels 20 ft. in 4 secs., and the next 20 ft. in the 
next 6 secs. If the acceleration is uniform, find tliis acceleration, 
and the further distance and time it will travel before coming to 
rest. 

A particle moving with uniform acceleration has a velocity 
10 miles/hr. at A, and ^ miles/hr. at B. Find the velocity midway 
between A and B. 

10. A body moving with uniform acceleration has a velocity u 
at A and v at B. Find the velocity midway between A and B, 
and shew that it is greater than the mean of the velocities at A 
and B. 

11. At three points, A, B, C, in a straight line such that AB= BC, 
the velocity of a partiole is found to be 8-6, 6*5, 3 5 ft./sec. Is this 
consistent with uniform acceleration ? 

If A8 = 6 ft., how much further will it go before coming to rest ? 

16. Falling Bodies. 
By a measurement of the distances travelled by a body 

falling from rest, in different times, it is found that any body 

let fall in a vacuum describes distances expressed by (2a), 

Art. 15, so that such a body is falling with uniform acceleration. 

Further, the acceleration of all bodies let fall in this way 

is the same at the same point of the earth’s surface, this 

acceleration being about 32*2 ft./sec*., or in the metric system 

981 cm./sec*. (980 is more nearly the actual value in any part 

of Australia). In the numerical examples we will generally 

put ^ = 32 ft./sec*. It seems certain that if we could carry 

experiments further we would always find that in a vacuum 

a body projected vertically upwards or downwards would 

move with this acceleration. This acceleration is called the 

acceleration due to gravity, and is always downwards, so that 

when a body is moving upwards the velocity is diminishing, 

when it is moving downwards the velocity is increasing. 

The equations (1), (2), (3) apply to all such cases, provided 
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care is taken to consistently regard all quantities measured in 

one direction as positive, and all quantities in the other as 

negative, whether they are distances, velocities or accelerations. 

When, instead of moving in a vacuum, a body is thrown up 

in the air, it is no longer true that the acceleration is uniform, 

for, as will be seen later, the effect of the air is to cause an 

additional acceleration in the direction opposite to the velocity, 

which is greater at greater speeds than at smaller. For low 

velocities, not greater, for example, than when a cricket ball 

is thrown into the air, the equations (1), (2), (3) hold approxi¬ 

mately for a heavy body, such as the cricket ball or a stone, 

but they quite fail to represent the facts when a rifle bullet is 

fired vertically. So also they fail for a body, such as a sheet of 

paper, which presents a large surface for its weight to the air. 

17. Body Projected Vertically Upwards. 
We will now obtain some results for the case of a body 

projected vertically upwards, as the work will illustrate the 

use of the positive and negative signs. 

Suppose the initial velocity to be upwards. We will take the 

upward direction as positive and the acceleration will be 

negative ; we will denote it by g thus being the accelera¬ 

tion due to gravity. It may be noted that when the velocity 

of a body is decreasing, it is said to be retarded. In this 

case, in going upwards, it may be said to have a retardation 

of g. 

Our equations are therefore 

v^u-gt, .(1) 

.(2) 
v^^u^-2gs,.(3) 

the velocity diminishes at first until v=0, and then 

u-gt-0, or t = ulg, 
u 

When t > y vis negative. 
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Hence the body moves upward with continuall}’’ decreasing 

velocity for ujg secs., and at the end of this time the velocity 

vanishes, or the body is instantaneously at rest, and afterwards 

moves downwards with a velocity increasing numerically, but 

negative. 

The s in the equations is the distance from the starting 

point, not the total distance upward and downward added 

together ; hence we find when the body strikes the ground 

again, by putting s = 0. 

This gives ut - \gt^ — 0 ; 

^=0, or 2i(lg. 

t — 0 refers to the start, and the other value ^ujg shews that 

the body takes ^ufg secs, to return to the starting point. This 

is called the time of flight. As we have seen that it takes ufg 

secs, to reach the highest point, we now see that it takes the 

same time in the descent as in the ascent. 

The maximum height reached can be obtained from the fact 

that it is at the highest point at the end of ujg secs., and is 

therefore at that time at height 

= M “ - \g = «2/29. 

But the maximum height can be more quickly obtained from 

equation (3), for when the body is at the maximum height, its 

velocity is zero ; putting ^ = 0, 

we get - 2gs — 0, 

s^%t^l2g. 

To get the velocity at any particular height we can use the 

equation v^^u^-2gs, 

and we see that for a given value of 5 we have two equal and 

opposite values of v, one representing the velocity in the 

upward motion, and the other in the downward. Thus we see 

that the whole motion in the downward direction is the exact 

reverse of that in the upward. 
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To find the time taken to reach a given height s we have the 

equation (2) s = ut-igfi, 

or 
ff 9 

a quadratic equation for i, giving in general two solutions, one 

of which gives the time taken to reach the point in the upward 

motion, and the other the whole time until it reaches the same 

point again in the descent. 

Exam.'ple 1. Find the oondition that the roots of this equation 
may be real, and interpret the condition. 

2. If a stone is thrown vertically upwards with velocity 80 ft. 
per sec., find the height to which it will rise, and the whole time of 
flight. (Take <7=32.) 

Draw the following graphs for the motion in this example (1) 
V, t; (2) 5, t; (3) r, 6’. 

EXAMPLES. 

1. A stone is thrown vertically upwards with velocity 6f ft./sec. 
from the top of a tower 128 ft. high. In what time will it reach 
the ground ? 

If we measure in the upward direction so that the initial velocity 
is positive, we have s = -128 when the body strikes the ground, 

hence we have ^ _ 128, - 4< - 8 = 0, 

^ = 2±2n/3 =5'46 secs. ; 

the negative solution not being applicable to the question. 

2. A stone let drop from the top of a tower reaches the ground 
in 2J secs. ; how high is the tower, and with what velocity does the 
stone strike the ground ? 

3. A body projected vertically upwards reaches a height of 50 
metres. Find the initial velocity and time of flight. 

4. With what velocity does a child throw a ball vertically in 
order to just reach a ceiling 12 feet above the point where the ball 
leaves the hands ? 

5. When a balloon is at a height of 644 ft. and rising, a bomb is 
released from it which reaches the ground in 7 secs. Find the 
velocity of the balloon at the time, and the velocity with which the 
bomb strikes the ground. 
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6. When a balloon in 200 metres above the ground, and rising 
vertically with a velocity of 6 m./sec., a stone is released from it. 
Wow long will it take to reach the ground ? 

If the balloon has an acceleration, does it affect the result ? 

7. A body thrown vertically upwards from the top of a tower 
reaches the ground in 5 secs. If throwm vertically downwards with 
the same velocity it reaches it in 3 sec?. Find the initial velocity 
and the height of the tower. 

8. A body projected vertically upwards from the top of a tower 
reaches the ground in secs. If projected vertically downwards 
with the same velocity, it reaches it in secs. Prove that if simply 

let drop it would reach the ground in secs. 

9. A body is projected vertically upwards with velocity 80 
ft./sec. Find the times at which it is at a height of 40 ft. Find 
also the time to travel from the height of 40 ft. to 60 ft. 

10. If the maximum height reached by a projectile moving verti- 
(^ally is h, find the interval of time between the two instants at 
which it is at a height kh, k being a propi'r fraction. 

11. If t is the time taken by a projectile to reach a height h, and 
t' the time from this point to the ground again, prove that 
h and the maximum height is g(t 

12. A person drops a stone into a well, and hears the splash at 
the end of 4 secs. What is the depth of the well, if sound travels 
at 1100 ft./sec. ? 

18. Relative Velocity and Acceleration of Two 
Bodies. 

We have seen that all motion is relative. If two bodies are 

moving in the same straight line, the relative velocity deter¬ 

mines the rate at which they are separating or approaching one 

another. 

Suppose that two cyclists are travelling along the same road, 

in the same direction, one at 10 miles/lir. and the other at 8 

miles/lir. The first is gaining at the rate of 2 miles/lir. from 

the second. This is the relative velocity of the first with 

respect to the second. 

If the second were moving in the opposite direction to the 

first, they would be receding from one another (or approaching 

one another) at 18 miles/hr. The relative velocity would be 
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18 miles/hr. We can express the facts thus : If A and B are 

moving in the same straight line through O, and if at any instant 

A has a velocity u relative to O, 

and B ,, ,, u' ,, O 

then A >> u- u „ B, 

and B „ A. 

In the same way, if 

A has an acceleration / relative to O, 

and B ,, ,, /' ,, O, 

then A „ „ „ B, 

and B „ „ f'^f „ A. 

With these velocities and accelerations the distance travelled 

by A in ^ secs, is ut-\- relative to O, 

and by B „ O; 

therefore the distance travelled by A relatively to B in ^ secs, is 

+ \ f'fi) = 

or they separate from one another (or approach one another) 

in exactly the same way as if B was at rest and A was moving 

with velocity u - ii' at a given instant, and with acceleration 

In the case of two bodies thrown vertically upwards, in the 

same straight hne, their accelerations are both g and the 

relative acceleration is zero. Consequently the relative velo¬ 

city is constant. If they are projected at the same instant with 

velocities u and u', then in t secs, they will be {u-u')t ft. 

apart, exactly the same as if neither was accelerated. 

Example 1, A body is projected vertically with velocity 80 
ft./sec., and 2 secs, after, a second body is projected vertically 
upwards from the same point, with velocity 64 ft. /sec. Find when 
and where they will meet. 

First Solution. At the end of t secs, from the instant the first 
starts, it is at height 80^ - -16^*, 

The second has then been moving for ^ - 2 secs., and its height is 

U{l-2)-\g(t-2)K 
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If they are together at this instant, 

80/ ~ 16/2=64(/ -2) _ -2)2 

= 64/-128-16/2+64/>-64; 
48/= 192, 

/ = 4. 

They meet 4 secs, after the first starts at a height of 

80x4-16x 16=64 ft. 

Second Solution. By relative velocity and acceleration. When 
the second starts the first is at a height of 

80x2 -16x4 = 96 ft., 

and has a velocity of 80 - 32 x 2 = 16 ft./sec. 
The second has a velocity relative to the first of 

64 - 16 = 48 ft./sec., 

and the relative velocity remains constant. 
The second catches up the 96 ft. in = 2 secs. 
The second has been moving for 2 sec-s., and the first for 4 secs. 
The position is found as before. 

2. A body is projected vertically upwards with velocity 72 ft./sec., 
and 2 secs, afterwards another is projected upwards from the same 

point with the same velocity. Find when and where they will 
meet. 

3. A particle is dropped from the top of a tower 144 ft. high, 
and at the same moment another particle is projected upwards from 
the bottom. With what velocity is the latter projected, if they 
meet J of the way down, and what is the velocity of each when they 
meet ? 

4. Two particles, started as in the last example from the to{) 
and bottom of a tower h feet high, meet when the upper one has 

described 1th of the distance; shew that the velocities when they 
n 

meet are in the ratio 2: n - 2, and that the initial velocity of the 

lower is 

5. A balloon is falling with a velocity of 20 ft,/sec. and a stone is 
thrown upwards with a velocity of 30 ft. /sec. relative to the balloon. 
What is the motion of the stone, (i) relative to the balloon, (ii) relative 
to the earth ? How far has the stone moved when the stone has 
returned to its starting point on the balloon, and what will be the 
velocity of the stone then, (i) relative to the balloon, (ii) relative to 
the earth ? 

6. Particles P and Q start from rest at points A and B 200 cms. 
apart at the same instant and in the same dire(*tion (A to B); if 
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the accelerations are 12, 10 cm./see.^ respectivel3% find when and 
where P will overtake Q. 

7. Particles P and Q start from two points A and B 200 cms. 
apart in opposite directions to meet one another. P has an initial 
velocity of 10 cm./sec. and acceleration 4 cni./sec^. Q, starts 3 
seconds after P, and has initial velocity 8 cm./sec. and acceleration 
6 cm./sec®. When and where will they meet ? 

8. A particle is let fall from rest at A. When it has been moving 
for J a second, a second is let fall from B, 16 ft. below A. Shew 
that the first will overtake the second at the end of another J sec. 

9. A particle is let fall from rest at A, and before it reaches a 
point B below it, another is let fall from B. Shew that the first 
necessarily overtakes the second. 

10. A particle P starts from O and moves with constant velocity 
10 ft./sec. ; at the same instant Q starts from rest at O and moves 
with constant acceleration J ft./sec®. Find when and where Q 
overtakes P. 

11. A body starts from rest at A and moves with constant accelera¬ 
tion / in a straight line. T secs, afterwards a second body starts 
from A and moves with uniform velocity u in the same line. Prove 
that the second overtakes the first if w>2/T, and shew that in this 
case the first overtakes the second again. 

12. A body moves from A with uniform velocity u in a straight 
line. T seconds afterwards a second body starts from rest at A and 
moves with constant acceleration/. Shew that the second necessarily 
overtakes the first, and that the two are together once only. 

13. A body starts from A with initial velocity «, and moves in a 
straight line with constant acceleration /. T seconds afterwards a 
second starts with velocity u' and acceleration /' in the same line. 

Prove that if f'>fthe second necessarily overtakes the first, but that 
if/>/' it cannot overtake it unless (u' - u)^ + ff'T^ >2T{fu' 

Verify that the result of No. 11 is a special case of this. 

19. Variable Acceleration. 
An important general result about variable acceleration can 

be deduced from the preceding results for uniform acceleration. 

If the acceleration varies we may still regard it as nearly 

constant during a very short interval, and hence the equation 

t?2 - -^2 _ 2/s, 

holds approximately for a short divstance, becoming more and 
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more nearly accurate the shorter the interval is. With the 

previous notation this would be expressed as 

1 r 2 - 12 
/,=Lim , 

where is the \ elocity at distance from the origin, etc. 

Hence, if we knov/ v in terms of ,9 we can draw a graph of 

and, as in the preceding work, the acceleration is the 

gradient of the graph so drawn. 

Fig. U. 

Also, if we have the acceleration-distance graph, an area 

on the graph between two ordinates represents the change in 

Example. If /= -l^s, prove that v^- u^— where u is the 

velocity when s—0. Prove also that v- 0 where s— ±y and describe 
the motion. 

20. Other Qraphical Representations. 
S — .9 

Further, since t’^ = Lim -f—'-h 

-i = Lim 

Hence, if a srraph. is drawn for ? in terms of s, an area on this 

graph gives the interval of time required to describe the 

distance. 



21. Hence, summing up the two chapters, we see that we 

can solve graphically any of the following problems : 

If 5 is given in terms of t, we can find r, 

„ „ t, „ ,, /and .9, 

„ / „ ,, t, „ ,, t?, and therefore 5, 

„ V (and therefore „ s, „ ,, /, 

•J ^ ( >» J5 “■) J) >> 
V 

,,/ is given in terms of 5, „ „ v*, and therefore v. 

In such a case as the last, we find t for each v, and then can 

go on to find s in terms of t. 
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Thus, finally we have the means of finding : 

V and /, if s is given in terms of 

^ y? j) it 

5j j> y* >? 

y* j» 

V „ ^„/ 

t „ 5, „/ 

ti 

Si 

s, 

shewing that any question in which one of the four s, v, /, t 

is given in terms of another, can be solved completely graphi¬ 

cally so as to find the other two. 

EXAMPLES. 

1. A train passes a station A at 30 miles an hour, and maintains 
this speed for 7 miles, and then is uniformly retarded, stopping at 
B, which is 8 miles from A. A second train starts from A at the 
instant the first passes, and being uniformly accelerated for part of 
the journey, and uniformly retarded for the rest, stops at B at the 
same time as the first. Find its greatest speed. 

2. Shew graphically or otherwise that if the acceleration of a 
particle moving in a straight line is always increasing, the average 
velocity is less than the mean of the initial and final velocities, and 
greater than the velocity at the middle of the interval. 

Give the values of these quantities for the interval from 0 to t 
when the distance travelled in time t is kf^, 

3. If the distance travelled in t secs, is represented by an expres¬ 
sion 

shew that the velocity vanishes when t=l and when f = and 
that the acceleration vanishes when t~2. 

Describe the motion. 

4. A particle is moving in a straight line, and its velocity at a 

distance x from the origin is k ^1-1. Find the acceleration, and 

describe the nature of the motion if the particle is initially at a 

point and is moving away from the origin. 

5. Two particles moving in the same straight line are at a cer¬ 
tain instant at points A, B, 10 ft. apart and moving in the same 
direction with velocities 9, 2 ft./sec. in the direction from A to B, 
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and continue to move with constant accelerations 4, G ft./seo^, in 
the same direction. Provo that A will overtake B and aftt^rwards 
B will overtake A, and find the times and positions at which the 
two pass one another. 

Shew that they are moving with the same velocity at the instant 
midway between the instants at which they are together. 

6. Two particles moving in the same straight line with constant 
accelerations /, f' in the positive direction have velocities u' at 
a certain instant, and are then at distances n, a' fn)rn the origin. 
Prove that they cannot pass one another more than twice, and 
that if they do so twice, the interval T between the two times of 
passing is given by 

_2(a ~a')(f-n 
Hence prove that they cannot pass one another either before or 

after the given instant if 

- u'f <2.{ci -f). 
Interpret the case when 

Compare with the numerical results in Question 5» 

7. Check the following calculus expressions for the acceleration 
in straight line motion 

dv dv , dv- d 

dt (Is " ds ds ^ “ 

8. Two points, P, Q, move along the rr-axis in such a way that 
their distances p, q, from a fixed origin are always connected by the 
relation, is constant. If P moves with uniform velocity, prove 
that the acceleration of Q varies as q~K 



CHAPTER III. 

FORCE AND MASS; MOTION IN A STRAIGHT LINE. 

22. So far we have been dealing with motion without 

consideration of the cause of it. Now we proceed to examine 

into causes, and we introduce the idea of Force. It does not 

seem possible to give a definition of force, any more than it 

is possible to give a definition of space or time. We can, 

however, learn something about the relations of force to other 

phenomena, and we can recognize the presence of forces by 

the effects which we find associated with them and which we 

regard as being produced by them, and we can deduce methods 

of measuring force, even though we can say nothing about 

the way in which force acts to produce those effects. 

We necessarily get our first ideas of force from our sense of 

muscular effort. Thus we speak of the force required to lift 

a weight from the ground. By the exertion of such a force 

we often see that we alter the motion of a body, as when we 

push the body along a table. At other times we feel that we 

are preventing motion, as when we hold a body above the 

ground ; or, again, we imagine we would produce motion in 

the body, if it were not that some other force opposed it, 

and prevented the motion, as when we press upon a table, 

and the table does not move because the floor exerts a force 

to stop it from moving. Hence we think of the force exerted 

by us as producing a change in the motion of the body, whether 

the body was originally at rest or not, or else as tending to 
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produce such a change, and we extend the idea of force to 

any case where similar results are observed. Thus, in the 

usual words— 

Force is any action that produces or tends to produce change 

in the state of rest or of motion of a body. 

In this statement it is understood that there is change in 

the motion of a body whenever the motion is not motion in 

a straight line with uniform velocity. We say, for example, 

that a falling body is acted on by a force because the velocity 

continually increases, and even if the body ceases to move, 

and rests on the ground, we think of it as still acted on by a 

force in the same way as before, though motion is prevented by 

a force exerted by the ground pressing up against the body. 

23. Measurement of Force. 
To obtain accurate ideas about force, we must find some 

way of measuring force independently of our muscular effort, 

which can only give rough ideas. One method is to examine, 

if possible, the weight that the force will support, or will 

balance on a chemical balance. Another is to examine the 

extent to which it will elongate a given spiral spring. That 

these two methods are at any rate approximately consistent 

with one another, and with the notions derived from muscular 

effort, may be seen from a number of experiments. Thus 

two weights that balance on a balance, whether of the same 

or of different materials, will produce the same elongation in 

a given spring, and again will produce, as far as we can judge, 

the same effect on the muscles. It takes, for example, the 

same muscular effort to raise a 20 lb. lump of iron as it does 

a 20 lb. block of wood. We find, further, that (conditions of 

temperature, etc., being unchanged) it will always take the 

same weight to elongate the spring the same amount. Further, 

we find that if we take two weights that elongate the spring 

the same amount separately, the two together would elongate 
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it twice as much, and so on. Hence we may take the elonga¬ 

tion of a spiral spring as giving a measure of any force that 

can be applied to the spring. 

Now suppose a little carriage made to run as freely as 

possible along a horizontal table, and that the carriage can 

be weighted with different weights. If a spiral spring is now 

attached to the carriage and pulled along, the force can be 

determined by the elongation of the spring. The force may be 

applied by attaching a string with a weight at the end to the 

spiral spring, and passing the string over a pulley, so that the 

string is horizontal. It may be measured, for the present, by 

the number of inches the spring is elongated. We can then 

determine the relations between the force exerted and the 

effect produced, and we find the following results : 

(1) If we keep the same force applied, that is, see that the 

spring is always stretched to the same extent, we find that 

the carriage moves with uniform acceleration. 

(2) If we make different experiments with different forces 

on the same carriage and weights, the acceleration is propor¬ 

tional to the force exerted. 

(3) If we keep the force the same in the different experi¬ 

ments, but vary the weight on the carriage, the acceleration is 

inversely proportional to the total weight of carriage and load. 

(4) If we vary the nature of the load, change, for example, 

iron to wood, but leave the weight the same, no alteration 

is produced in the acceleration, provided the force remains 

unchanged also. 

We can write these results as follows r 

let P = the force exerted, W =the weight of carriage and load ; 

from experiment (1), if a force P acts we get an acceleration /, 

„ ,, (2)/is proportional to P if W is constant, 

» » (3)/ „ „ „ ^ if P is constant; 

f^kP/W, 
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where A: is a constant depending only on the units used and 

by (4), not on the nature of the material used. 

Now any body drops to the earth with an acceleration g, 

shewing that it is acted on by some force. In numberless ex¬ 

periments on falling bodies the only things that remain common 

to all, as far as we can see, are the presence of the falling 

body and the earth. We say, therefore, that the earth attracts 

the body or exerts a force on it which we call the weight of 

the body. Weight is thus a force, and if we express the 

weight and the force in the same units, we have for the falling 

body that the equation 

f~kPj\N becomes g = k^NjSN ; 

k^g : /. /-^P/w, 
W 

P = .(i) 

This result is the fundaiiieutal equation of dynamics, and we 

suppose it to apply to all cases where force is acting on a 

body. It is only necessary to remember that in (i) P and W 

are measured in the same unit of any possible kind, and 
/, g are also measured in terms of one unit. 

The above experiments cannot be carried out very accur¬ 

ately, but the more carefully they are performed the more 

closely will they be found to hold. In many other experi¬ 

ments we find that the same results hold approximately, 

and we believe that if we could examine experimentally any 

case where only one force is acting on a body we should find 

the same results. In more complicated cases deductions from 

this equation agree with results found from observation 

and experiment. Hence we are led to believe it to be true 
universally. 

24. Now we find that the weight of a body varies from 

one place to another. A body as weighed by a delicate 

spring balance will wxigh slightly more, by about 0*4 per 

cent., at the poles than at the equator. If we go up a moun- 
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tain it weighs Jess, and if we go down a deep mine its weight 

increases at first (as Airy found), on account of the greater 

density of the interior of the earth, but further down diminishes 

towards the centre of the earth. If we could go towards the 

centre of the earth the weight would continually diminish 

as shewn by a spring balance, and we could fijid a place at or 

near the centre where the weight would be zero. If direct 

experiments could be accurately carried out, we should 

always find that for a given body W is always proportional 

to g, or W/^ is constant everywhere for a given body. 

It must, however, be noted that if two bodies balance on 

an ordinary balance at one place, they will balance at any 

other place, although the weight of each is actually different 

at the second place from what it was at the first. 

When proper units have been selected, the ratio W/g, which 

we have seen is constant for the same body everywhere, we 

will call the Mass, and denote by M. The mass depends on 

such things as the volume and constitution of the body, but 

does not depend on the position in the universe. A given 

body, if moved about without breakage or other loss, has its 

mass unchanged however much the weight may change. 

Mass is frequently defijied as quantity of matter, but this is 

unsatisfactory, as it only raises the question of how quantity of 

matter is to be estimated. Nevertheless quantity of matter may 

be used as a useful alternative name to mass. 

Putting . W/^ = IVI, 

equation (i) becomes P = *V1/, . 

and in this form we shall usually use the equation. 

25. Units. 
If the equations P = M/, 

and the special case W = 

are used as representing the laws of motion, the units in 

which force and mass are measured depend on one another. 
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It is best to take the unit of mass first. In the British system 

(or F.P.S. units, ft.-lb.-sec. units) it is the pound ; in the 

Metric (C.G.S. units, centimetre-gramme-second units) it is 

the gramme. Since the mass of a body is proportional to 

the weight, the number usually used in the British system 

to denote the weight may also be used to denote the mass 

in pounds. Thus the mass of a 10-lb. weight is 10 lbs. Simi¬ 

larly in the Metric system, the mass of a 10-gm. weight is 10 grns. 

If we first define the unit of mass, the unit of force will be 

defined by either of the equations 

P = M/ or W = M5r, 

for if W = 1, since g — ^2 ft./sec^. approximately, 

M lb.; 

or, the unit of force is the weight of a body whose mass is 

1 /32 lb., or about half an ounce. This force is called a poundal, 

and is called an absolute unit (in opposition to the gravita¬ 

tional unit, which we will come to later), because it depends 

only on the units of mass, length and time, and does not vary 

for any changes of position throughout the universe. 

A poundal, then, is the weight of about half an ounce. It 

may be defined as the force which will produce an acceleration 

of 1 ft./sec^. in a mass of a pound ; or, again, the force which, 

acting for 1 sec. on the mass of a pound, will generate in it a 

velocity of 1 ft./sec. 
W 

If we use the fundamental equation in the form P =—/, it 

does not matter what units are used for force, provided P 

and W are expressed in the same units, and the idea of mass 

does not appear at all. This is common with engineers, and 

they usually use the pound-weight as the unit of force. The 

pound-weight is simply the pressure exerted by a standard 

pound on a horizontal plane. On account of the rotation of 

the earth, this is not the same as the force with which the 

earth attracts the standard pound, but differs from it by a 
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small fraction of a pound-weight, as we shall see later. The 

pound-weight is called a gravitational unit because it depends 

on the action of gravitation ; it is slightly different at different 

points of the earth’s surface. 

A pound-weight is approximately 32 poundals. Of the two 

units, the poundal is the more convenient for accurate scientific 

purposes; though not much used now, because the British 

units are no longer used in this kind of work. For ordinary 

engineering purposes the pound-weight is used much more 

frequently; but we feel it is best in working a question in 

British units to express the forces in poundals, and if the 

result is a force, to change it afterwards into pounds-weight, 

and afterwards into tons-weight if required. 

Corresponding units will be used in the Metric system. 

Thus we have the corresponding units : 

Unit of British. Mo trie. Relation. 

Mass pound 
! ! 

gramme 1 lb. = 453*6 gms. 

Force poundal dyne 1 Ibl. = 13825 d ynes. 

)) lb.-weight grn.-weight 1 lb.- wt. = 453-6 grns.-wt. 

A dyne, for example, is the force which, acting for one 

second on a mass of a gramme, will generate in it a velocity 

of one centimetre per second. 

To get the relation between the dyne and the poundal we 

may proceed as follows : 

In 1 sec. a force of 1 dyne generates 1 cm./sec. in a mass 
of 1 gm. 

In 1 sec. a force of 30-48 dynes generates 1 ft./sec. in a 
mass of 1 gm. 

In 1 sec. 453-6 x 30-48 dynes generate 1 ft./sec. in a 
mass of 1 lb. 

1 Ibl. =453*6 X 30-48 = 13825 dynes (approx.); 

hence also a Ib.-wt. = 13825 x 32-18 dynes = 445000 dynes (ap.). 
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The distinction between mass and force must be carefully 
preserved. They are entirely different kinds of quantities, 
and cannot be measured in the same units. Masses are only 
measured in pounds or grammes or multiples or sub-rnultiples 
of these. Force cannot be measured in tliese. It is wrong 
to speak of a force of 10 lbs., though a force of 10 Ibs.-wt. is 
quite correct. It is, however, common among engineers to 
speak of a force of 10 lbs., but it must be understood as meaning 
10 Ibs.-wt., that is, a force equal to the weight of 10 lbs. 

26. Pacts about Force. 
To return now to the nature of force, we find in the first 

place, in all cases that we observe, that force is exerted by 
one body on another. The falling body we have spoken of 
is acted on by a force due to the presence of a second body, 
the earth. Again, we can only exert pressure with the hand 
by pressing against some other body. A motor-car cannot 
start moving without the friction between the wheel and the 
earth to help it, nor could an aeroplane fly in a vacuum, it 
cannot move without the exertion of pressure by the air. 
Thus we only find force exerted as an action of one body on 
another. 

27. Action and Reaction. 
Further, we find that in all cases, if one body exerts force 

on a second, the second exerts force on the first. When we 
hang a body on to a spring balance, the body pulls at the 
spring as well as the spring pulling at the body. When we 
press on the table with the hand, the table presses back, stop¬ 
ping the hand fiom moving. Even in the case of the falling 
body, though the effect is not observable, the body exerts 
an attraction on the earth, in the same way as the earth 
exerts an attraction on the body. When a horse pulls at a 
cart, the cart is obviously pulling at the horse, otherwise the 
horse would rapidly get up a greater velocity. 
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Further experiments shew that not only does the action 

of a force on one body by a second involve another force (or 

a reaction), exerted by the second on the first, but that 

these two forces are equal in magnitude and opposite in 

direction. 

It is, however, difficult to get simple experiments to shew 

the equality of action and reaction without bringing in other 

matters. Some of the simplest are those on the collision of 

two bodies, and explosion, as in the case of firing a gun, and 

both of these we will explain soon. If we attach two spiral 

springs to one another, and exert forces at the two ends, we 

find that the extensions of th'^ springs shew that the same 

forces are exerted on the two. That is to say, the force 

exerted by the first spring on the second is equal to that 

exerted by the second on the first. It should be noticed that 

the law of action and reaction has been already assumed in 

the experiments to illustrate the law P = M/, for the force 

exerted on the mass by the spiral spring is assumed to be 

measured by the stretching of the spring which really gives 

the force exerted by the mass on the spring, and an experi¬ 

ment in which two carriages are connected together by a 

spiral spring and started moving with any velocities in the 

line joining them can give no more information than we have 

already obtained. 

28. Laws of Motion. 
Summing up the progress so far made, we may say that 

we have the following laws: 

(I) P — Mf for the action of a force on a body, including as 

a special case the equation W =IV1^. 

(II) A force can only occur in conjunction with an equal 

and opposite one, or—To every action there is an equal and 

opposite reaction. 

Law (I) includes what are called Newton’s first and second 
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laws of motion, which may be expressed in present-day wording 

as follows : 

(i) Any body moves with uniform velocity in a straight line 

{or remains at rest), unless acted on by a force from out¬ 

side it. 

(ii) When an external force acts on a body, the rate of change of 

momentum is proportional to the force, and is in the same 

direction. 

Tn (ii) we have introduced the term momentum. This is 

dMned as the product of the mass of a body and the velocity 

with which it is moving. Up to the present we have only 

been taking examples from cases where the body is moving 

in a straight line, but these laws apply to motion in any case 

if velocity, acceleration, and momentum are properly inter¬ 

preted, as we shall see in a later chapter. 

With this definition of momentum, (ii) is equivalent to (I), 

for with the previous notation, if is the velocity at time t^ 

and ^2 ^he rate of change of momentum 

= Lim ■■ m X Lim ff 

(II) is Newton’s third law of motion. It may be added 

that in all dynamical cases the action and reaction, as well 

as being equal and opposite, are in the same straight line, 

but this is not always the case where forces due to electric 

actions come into play, though the law as stated in (II) still 

holds. 

29. The student frequently finds difficulties arising from 

his uncertainty about the units for measuring force, and a 

tendency to confuse the ideas of mass and weight arising 

from the nomenclature of the units, and we consequently 

give some simple examples where only one constant force 

is supposed to be acting in the direction of motion or the 

opposite. In this case, therefore, we have a constant accelera- 
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tion, and the equations of Chapter JJ. hold. As the accelera¬ 

tion is the connecting link between the dynamical equation, 

P = mf, 

and the kinematical equations, 

v — u-^ ft, 

s~ut + 

+ 2/5, 

the student will usually find it best to obtain the acceleration 

(if not given) as soon as possible. 

With regard to units, the essential thing to bear in mind 

is that in the equation P~rnf, if m is in lbs. and/in ft./sec^., 

P is in Ibis, and may be reduced to lbs. wt. by dividing by 

32. Similar remarks apply to the metric units. 

Example 1. A body of mass 5 lbs. is drawn along a smooth 
horizontal table by a constant force. It is found to travel 10 ft. 
from rest in 3 secs. What is the magnitude of the force ? 

Here / may be found from 

10=ix/x9, 

y— ft./sec'. 

20 
p = w/=r)x~-]M Ibis. 

=ii^=0-35 lb. wt. nearly- 

2. A bullet of mass 2 oz. is fired horizontally with a velocity of 
2000 ft./sec. and cuts a screen at a distance of 300 yds. at the end 
of 0*5 sec. Find the resistance of the air, supposed uniform. 

Here u — 2000 ft. /sec., 
.5=900 ft., 
/=0-5 sec., 

lb.; 
hence, using Equation (2), 

900= 2000x J + i/x h 
-100, 

/= - 800 ft./sec-.; 

the acceleration is negative, and consequently so also is the force; 
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that is to say, it is in tho opposite direction to the velocity which 
we have taken as positive. 

The magnitude of the resistance is 
Jx 800-100 Ibis. 

lbs. wt., 
or 25 times the weight of the bullet. 

EXAMPLES. 

1. A body of mass 10 lbs. acted on by a constant force attains 
a velocity of 20 ft./sec. from rest in half a minute. Find the force. 

2. A body of mass 4 lbs. is pulled along a smooth horizontal 
table, and is found to move with uniform acceleration, and to 
describe 9 ft. from rest in 6 secs. What force is exerted on it ? 

3. If a body acted on by a constant force of 2 lbs. wt. moves 10 ft. 
from rest in 5 seconds, what is the mass of the body ? 

4. A mass of 150 gms. is acted on by a force of 10,000 dynes. 
What distance will it travel in 20 secs, from rest, and what will bo 
its velocity then ? 

5. A force of 50 kgms. wt. is exeited on a carriage of mass 500 
kgms., capable of moving along horizontal rails without friction. 
How long will it take to travel 100 metros from rest ? 

6. A body of mass 10 lbs. is acted on by a force of 1 oz. wt. for 
1 minute. What distance will it have travelled from rest then, 
and what will be its velocity ? 

7. What frictional force wdll bring a train of mass 100 tons, 
travelling at 40 miles/hr., to rest in 200 yds. ? 

8. A train of weight 100 tons is running at 20 miles/hr., when 
steam is shut off, and a resistance of 1100 lbs. weight acts con¬ 
tinuously until it is brought to rest. Find the distance it travels 
after steam is shut off, and the time taken to come to rest. 

9. A bullet of mass J oz. moving horizontally has its velocity 
reduced from 2000 to 1500 ft./sec. in going 300 yds. Find the 
air resistance, supposed uniform. Find also the velocity at 150 yds. 

10. If, while the velocity of a rifle bullet falls from 1500 to 1200 
ft./sec., the average resistance is 20 times the weight, find how far 
it goes in the interval, regarding the bullet as travelling horizontally. 

11. A bullet of mass 1 oz., travelling at 1200 ft./sec., enters a log 
of wood and penetrates to a depth of 12 inches ; find the resistance, 
supposed uniform. 

If the log had been 8 inches thick, with what velocity would it 
have emerged ? 
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12. A railway truck weighing hall a ton is pulled along by a 
constant force, and travels 00 ft. from rest in 12 secs. What is th(i 
magnitude of the force ? 

13. A force of 8000 dynes acting on a body causes it to get up a 
velocity of 30 cm. jmc.. in 6 secs, from rest. What is the mass of the 
body ? Find, also, the ratio of the force to the weight of the body. 

14. A body of mass 10 lbs. is moving along a horizontal table, 
and its velocity is found to diminish from 12 ft./sec. to 4 ft./sec. in 
going 5 ft. What is the force acting on it ? 

30. Two or More Forces. 
In Law I it is also implied that if two forces act on a body, 

each produces an acceleration j)roportional 1o it and inde¬ 

pendent of the action of the others. We are at present con¬ 

cerned only with the case where the different forces act in 

one line, but in either the positive or negative direction. The 

effect of two forces in the same direction on a particle is the 

same as that of one force equal to the sum of the two, the 

effect of two forces in opposite directions is the same as that 

of a force ecjiial to the difference of the two and acting in the 

direction of the larger of the two. Thus, if a mass of 10 lbs 

is acted on by a force of 8 lbs. wt. pulling it in one direction, 

and 6 lbs. wt, pulling it in the other, 

10 11)8. 

6 lbs. wt. —Q—> 8 lbs. wt., 

Fio. 10. 

it will move with an acceleration given by 

p 8 - 6 ^ 2 lbs. wt. ^ 2 X 32 Ibis., 

ni = 10 ; 

P 04 
= ft./sec2 

711 10 

In working any example, however simple, with more than 

one force, the student should never omit to draw a diagram 

and mark clearly on it all the forces acting. Also, we advise 

the student, as a general rule, when he is working a question 
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involving numerical magnitudes of forces, to mark the numeri¬ 

cal values of the forces on the diagram. He must not mark 

accelerations or velocities on the same diagram and in the 

same manner as forces. If he finds it convenient to mark 

the acceleration, he may do so by an arrow by the side of 

the body dealt with, while the forces are marked by arrows 

passing through the body. 

31. Weight carried up by a Lift. 
Suppose that a lift moving with upward acceleration / 

carries a mass m, find the pressure on the floor of the lift. 

We cannot form the equation for the lift, since the weight 

of the lift and the force urging it on are not given, but we 

can deal with the mass carried. This is moving with upward 

acceleration /, and is acted on by two forces : 

(i) R, the pressure of the lift in poundals on the mass upwards 

(equal and opposite to the pressure of the mass on the lift) ; 

(ii) mg, the weight of the body. 

Hence we have 

R-mg — mfy 

R == 7n{g +/) mg 

Thus the pressure of the body on the floor 

of the lift is greater than its weight in the 
ratio 

1+ -^ : 1 
0 

If the acceleration is downwards, the pressure 

will be less than the weight in the ratio 

In each case it does not matter in which direction the lift 

is moving. That is to say, the effect is the same if the lift 

is ascending with increasing speed and acceleration / or de¬ 

scending with diminishing speed, but the same numerical 

acceleration for / is upwards in each case. 
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It is to be specially noticed that it is only the acceleration 

that affects the pressure, not the velocity. 

Example 1. A force of 240 gms. wt. is exerted vertically to raise 
a body of mass 200 gms. With what acceleration will it move, and 
what time will be taken in raising it 50 metres ? (Allow for the 
action of gravity.) 

2. A train of mass 120 tons is pulled with a constant force of 
2 tons weight, while there is a frictional resistance of J a ton weight. 
With what velocity will the train be moving at the end of I J mins, 
from rest, and how far will it have gone then ? 

3. A motor car weighing a ton gets up a speed of 20 miles/hr. from 
rest on a level road in going 110 yds. at constant acceleration. If 
the resistance is 40 lbs. wt., what is the driving force ? 

4. A motor of weight 2400 lbs. travels a distance of 880 yds., the 
resistance being always 40 lbs. wt. The velocity increases uniformly 
for the first 10 secs, and then reaches 18 miles/hr., and it runs at 
this speed till 44 yds. from its destination, where the petrol is cut off 
and brakes applied. Find 

(i) the force exerted by the engine in getting up speed, 
(ii) the force exerted by the brakes in bringing the motor to rest, 

(hi) the whole time taken. 

6. A train of mass 200 tons starts from rest, the engine exerting 
a constant force of 2 tons wt. The resistance is 10 lbs. wt. per ton. 
The train runs for 5 mins., and then steam is shut off. Find (1) the 
maximum velocity attained, (2) the time it runs without steam before 
coming to rest, (3) the whole distance travelled. 

6. A train of 120 tons starts from rest, and moves against a 
constant frictional resistance of 11 lbs. per ton, the engine 
exerting a constant force until steam is shut off. If the acceleration, 
while steam is on, is 014 ft./sec®., and the train is required to come 
to rest at the end of 3 miles (without brakes), find (1) the time 
taken on the journey, (2) the greatest velocity, (3) the distance 
travelled under steam. 

7. How is the reading of a spring balance in a balloon affected by 
the motion of the balloon ? 

A mass of 1 lb. is suspended from a spring balance in a balloon; 
if the pointer reads 1-1 lbs., what is the acceleration of the balloon ? 

8. A weight of 100 lbs. is on a lift moving downwards. The lift 
moves at first with acceleration 5 ft./sec®., then with constant 
velocity, and finally with retardation 5 ft./sec®. Find the pressure 
on the lift exerted by the body in each part of the motion. 

9. A string can just support a weight of 5 lbs. at rest. What is 
the greatest acceleration with which it can raise a weight of 4 lbs. ? 
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32. Air Resistance on a Falling Body. 
In tho case of a falling: body, we have acting besides the 

force of gravitation the resistance of the air, which is generally 

assumed to be (for low velocities) proportional to the square 

of the velocity ; hence the resistance can be written kv^ Ibis., 

where k is some factor depending on the volume and shape 

of the body and the density of the air, and not on the density 

of the body ; hence the equation for downward motion becomes 

^,^,2 ’^^9 - 

I .(i) 
I ni ^ ^ 

^ mg is here strictly the weight in air, not the true 

i weight in vacuo. It is less than the true weight by 

W = mg weight of the air displaced by the body. 

Fiu. 18. equation (i) gives the acceleration in terms 

of the velocity, an approximate solution can be obtained 

graphically, but an accurate solution cannot be found with(jut 

the integral calculus. The 
1 

/ 
, V graph is of the following shape : 

The area of this graph by Art. 20 will give the time taken 

to reach any velocity less than sfmgjk. 
It is important to notice that, as the body falls, the velocity 

increases and the acceleration diminishes and 4 increases, 
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until iiltiinateiy the v('locity approaches a limiting value 

given hv o 
» ' q - =:^ 0, 

which would make th(‘ acceleration zero and y infinite ; tin" 

body cannot, therefore, get up a higher velocity than 

for if the velocity became even slightly higher than this, the 

acceleration would become negative and the velocity would 

diminish, while if the velocity diminished belovr again, 

the acceleration would be positive, and the velocity would 

increase again. The longer the body falls, the more nearly 

will the velocity approach the limiting value This 
velocity is often called the terminal velocity. 

For example, if m — lO and A* = 0-05 in f.p.S. units, 

=. J32 x~\(ri 20 = n/6400 = 80 ft./sec., 

and the body could not get up a greater velocity, starting 

from rest, than 80 ft./sec., the same velocity that a body 

falling in vacuo would get up in 2| secs. 

Notice that for upward motion the equation is different, 

being mf= - mg - ki^ ; 

and the velocity continually diminishes till the 

maximum height is reached. 

A limiting velocity can be found if the resistance, instead 

of varying as the square of the velocity, varies as any other 

power of the velocity, such as the We would then have 

for the downward motion, 

f == g - and the limiting velocity = • 

A very important case of this is the fall of small drops of 
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water through the air. Consider two drops moving with the 

same velocity, but one having ten times the radius of the other. 

The weight of the smaller is one thousandth of the weight of the 

larger, while the resistance varying as the area is one hundredth 

of that of the larger. Thus for the smaller, mjk is one tenth of 

its value for the larger. Consequently the smaller the drop the 

smaller is tlie limiting velocity. Minute drops of water conse¬ 

quently fall with exceedingly small velocities, and in this case 

the resistance is approximately proportional to the velocity. 

For a small sphere of water, a(icording to Stokes, we have the 

r(\sistance = 67ra X 1-8 X 10“'*! 

in c.G.s. units if a is the radius, and as the mass is 7ra^ 

equation becomes 

4 4 
~ Tra?f^ - TTd^g - G-a X 1 - 8 X 10“^ e, 
o «.■> 

the 

^ X 1- X I X 10“^ e = 980 - 
81 X 10- 

V. 

The limiting velocity is therefore 

980a‘^ 

81 X 10-^ 
-12x lO^xaS. 

For example, if a= 001 cun. = mm. 
1 iK/ 

the terminal velocity is 1 -2 cm./sec., 

this result only applies if a is very small, as we have taken 

it here. These small limiting velocities account for the sus¬ 

pension of small drops of water and ice crystals in the air, 

in the form of cloud and fog, and of the minute dust particles 

which are always present in the air. 

33. Collision, Momentum, Impulse. 
Suppose that two bodies moving in the same straight line 

collide and separate from one another again ; for example, 

they may be balls on a horizontal table, such as billiard balls. 
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They exert force on one another for a very short time only, 

during which they are in contact, but this force may be very 

great. During the very short time they are acting on one 

another, the force between them may (certainly will) vary, 

but at any particular instant the force will be the same on 

both, according to the law of action and reaction. Hence 

again, the rate of change of momentum is the same for both 

at each instant ; hence also, the change of momentum in 

the interval is the same for both, but in opposite directions. 

Hence, let bg masses, 

?/, xt! be the velocities before collision (mea¬ 

sured in the same direction); 

X), X)' be the velocities after collision. 

We may represent the data conveniently thus 

m m' 

o o 
velocities before impact -> xi w', 

velocities after impact v v\ 

Fio. 21. 

We have mv - mu - - (mV - mV'); 

mv + m'v =- mu + m'xi\ 

or the total momentum is unchanged. 

As in all other cases, it must be remembered that velocity 

may have a positive or negative direction. Thus if two balls 

of masses 6 and 4 lbs. are moving towards one another with 

velocities 3 and 2 ft./sec. respectively, the total momentum is 

6x3 + 4x(-2) = 10. 

Many experiments may be made on collision of balls by 

hanging two balls by strings so that they hang in contact 

and in the same horizontal. On drawing them aside to any 

distance, and releasing them they will collide and rebound 

and their velocities just before and after the collision can be 
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measured, and the above equation verified. A fuller account 

of this experiment will be given later. 

The verification of the equation 

mv + m'v' = mu + m'u' 

for various values of the masses and velocities constitutes 

one of the simplest verifications of the law of action and 

reaction. 

34. Shot and Gun. 
An exactly similar case occurs when a gun is fired. Here 

we have the sudden generation of gases in the barrel, which 

produce a powerful pressure on th.e shot, and an equal and 

opposite pressure on the gun. As in collision, this pressure 

may be variable, but the total momentum produced in the 

shot is equal and opposite to the momentum of the gun. As 

i t i s usual 1 y express ed y _ 

the large letters referring to the gun and the small to the 

shot. 

(In this form of the equation, F and v are measured in 

opposite directions.) 

Both in collision and in explosion the force is very large, 

but acts for a very short time, and usually we have to do 

without a knowledge of the force. It is common in such 

cases to introduce the term impulse of the force, which is 

defined in the following way : 

fFhen a force is constant ^ the impulse is the ^product of the force 

into the time during which it acts. 

If the force is variable, the interval of time during which it 

acts must he divided up into shorter intervals so short that the 

force can he regarded as constant during each of the short intervals, 

and the products of the force into the time for exich of these 

are added together, and the sum. called the impulse of the 

force for the whole time. To get the accurate result, the 
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iittle intervals must be made indefinitely short, and conse¬ 

quently their number indefinitely great, and the total impulse 

will then be expressed in the similar notation to that which 

we have used before as 
r-^n 

Ci*^* ^j j 
a —► » 

where P,- is the force acting for the interval r,.. 

If we draw a force-time curve, it will follow that the impulse 

is represented on this diagram by the area bounded by the 

graph the axis of time, and the ordinates at the two instants, 

between which the impulse is required. 

In the figure the rectangle QMNK represents and the 

whole impulse between the instants and represented by 

A and B is represented by the area ACDB. 

The definition of Impulse can also be expressed thus : 

The impulse is equal to the average force multiplied by the 

time during which it acts. 

35. With these definitions the impulse of a force in any 

interval will be equal to the change of momentum produced 

by it. 
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For if the force is constant, the acceleration is constant, 

and we have with our usual notation 

v-u~ ft, 

mv - mu = yyift 

= Pt 

= impulse, 

hut mv - m,u is the change of momentum, hence the impulse 

— the change of momentum. 

If the force is variable, we can think, as before, of the time 

as divided up into the large number of little intervals, and 

Fio. 23. 

for each little interval we have that the impulse during the 

short time is equal to the change of momentum, hence adding 

up for the whole time it follows that the total impulse is 

equal to the total change of momentum. This can also be 

seen from the graph, for if we consider the acceleration-time 

graph we know that the area on this graph represents the 

change in velocity, and on the force-time graph the area 

represents the impulse. Now, since the force is equal to the 

mass multiplied by the acceleration, it follows that the ordi¬ 

nates of the force-time graph are all m times as great as the 

ordinates on the acceleration-time graph, and that therefore the 

whole area on the first curve is m times the area on the second. 

It follows that in the above casas of collision and explosion 

the impulse can be determined from a measurement of the 

masses and velocities. 
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From the above we see that the Newtonian law 

P^M/ 

is equivalent to the statement 

Impulse == change of momentum, 

or I m/v- mu where I stands for the Impulse. 

If the pressure in the shot and gun example is required, 

it is necessary to determine the time t taken by the shot to 

travel along the barrel as well as the muzzle velocity v, we 

then have I = mv, 

also I = P^, 

or the average pressure p = —. 

There is no generally recognized name for the unit of 

momentum or impulse in either the British or Metric system. 

We will therefore spe^k of an impulse in Ibl.-sec. units or 

Ib.-wt.-sec, units, or shortly lbl.~secs. or lb.-wt.-secs. A 

Ib.-wt.-sec. will be the impulse of a force of 1 lb. wt. acting 

for 1 sec., and similarly for a Ibl.-sec. A Ib.-wt.-sec. is equal 

to 32 Ibl.-secs. Momentum is measured in the same units as 

impulse. A body of mass 1 lb. moving with a velocity of 

1 ft./sec. will possess 1 Ibl.-sec. of momentum, or 

Ib.-wt.-sec. 

Example 1. Two balls of masses 10 and 5 lbs. moving in opposite 
directions with velocities 8 and 4 ft./sec. respectively, collide, and 
the smaller rebounds with a velocity of 5 ft./sec. What is the 
velocity of the larger after collision ? Also find the average force 
acting between them if they are in contact for 0 01 sec. 

Representing the velocities as above, 

® ® 
before collision 8 -> *<*-4, 

after v 5, 

Fio. 24. 

the momentum is unchanged by the collision. 

10?;-hr>x5=:10x8 + 5x( -4), 

5. 
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Tho change of momontum of the second (and tlierefore also ol 
the first) is, in magnitude, 

5x5-5x(-4) = 45. 

the impulse is 45 Ibl.-secs. = || Ib.-wt.-sec. 

The force is given by 
P/ = 45; 

P=: 45 X 100 Ibis. 

= 140-6 lbs. wt. 

2. A shot of 100 kgms. is fired with volocit}^ 500 metres/sec. from 
a gun of 6(X)0 kgms. What constant force would be required to 
stop the recoil of tho gun in 2 metres ? 

The velocity of recoil is given by 

or OOOOV^ 100 x 500. 

3 
motres/sec. — cm. /sec. 

If the gun stops in 2 m. or 200 cm., the acceleration (negative) 
is given by .o/s-. 

0= + 2/x 200, 

36 

The force required will be M/, 

or eOOOxlOOOx 
625(K) 

36 
dynes. 

= 104-2x 10^ dynes nearly 

10« gms. wt. 

= 1063xl(F 

= 1 063x lO'^ kgms. wt. 

^ 10,630 kgms. wt. nearly. 

3. An impulse of 40 Ib.-wt.-sec. units is applied to a mass of 12 lbs. 
at rest. With what velocity does it begin to move ? 

4. A stone of weight 2 lbs. lying on ice is struck a horizontal 
blow of impulse 10 Ib.-wt.-.sec. units. If the friction is J of the 
weight, how far will the stone go on the ice ? 
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5. A mass of 2 lbs. moving with velocity 18 ft./sec. overtakes a 
mass of 3 lbs. moving with velocity 12 ft./sec. If, after collision, 
the latter mass moves with a velocity of 16 ft./sec., find the velocity 
of the former and the imj)ulse between them. 

6. A mass of 2 lbs, moving with velocity 18 ft./sec. meets a mass 
of 3 lbs. moving with velo(jity 6 ft./sec. in the opposite direction. 
If the second reb(mnds with velocity 8 ft./sec., tind the velocity 
of the first after collision and the impulse between them. 

7. A steel ball of mass 1 lb. drops on a horizontal plate from a 
height of 10 feet and rebounds to a height of 5 feet. If the ball is 
in contact wit!) tlu^ plate for 0 01 sec., find the average pressure 
botw(H‘n the sj)}iere and plate while in contact. 

8. Two e(pial steel spheres moving in opposite directions 'with 
velocities 15 cm./sc^c. collide and rebound with vciocitic^s 10 cm./sec. 
The time during wdiidi they are in contact is 0 ()0015 sec. (V)mpare 
the average pressure between them with the weight of one sphere. 

9. If two balls of masses 7n and m' moving in the same straight 
line with velocities n and //' collide, and stick together after tlic^ 
collision, prove that thcj velocity after the collision is 

+ m'v! 

m i m' 

10. A shot of 180 lbs. is discharged from a 12 ton gun with velocity 
1260 ft./sec. Find the constant pressure which would be recjuirecl 
to stop the recoil of the gun in 6 ft. 

11. A shot of 6 lbs. is fired from a gun with velocity 18(K) ft./sec. 
If the barrel is 5 ft. long, find tlie average })ressure exerted on the 
shot. 

12. A (U’ic'ket ball of mass 5i oz. has a velocity of 60 ft./sec. 
before the batsman strikes it, and it is hit back in the same direction 
with a velocity of 80 ft./sec. What impulse did the batsman give 
to the ball ? 

13. Shots, each oz., travelling horizontally at 1500 ft./sec. 
strike a target at the rate of 50 per minute, and fall dead. 

What is the average pressure produced on the supports of the 
target ? 

Find the pressure if the shots rebound at 200 ft. /sec. 

36. Pressure of a Liquid Jet against a Wall. 
Suppose that a cylindrical jet of water of diameter d inches, 

and moving with a velocity of u ft./sec., impinges normally 

against a fixed vertical wall. 
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The volume of water arriving at the wall per second is 

ft. 

its mass is 
125 wdht ,1 

a cubic foot of water weighing 62 *5 lbs. 

Before striking the wall its momentum was 

125 triPu 
- X X u F.P.S. units. 

If the water does not rebound, this momentum is destroyed 
by the wall, and consequently an impulse of this magnitude 
is given to the wall every second. , 

But since I =- P/, 

125 22 
P = ,. X “1 X d'hP Ibis. 

Ilo2 7 

125 X 22 

'rT52 X 7 X :^2 
Ibs.-wt. 

- 0 0106 d'hp lbs.-wt. 

If the water rebounds, the change of momentum, impulse, 

and pressure will all be greater than this. 

Example. Find the })reHsure with the same notation, if the 
water rebounds from the wall with velocity v. 

37. Work. 
In the foregoing work we have been specially concerned 

with the force exerted on a body and the acceleration pro¬ 

duced in it; but the engineer in designing an engine for a 

railway or steamship is most concerned with such questions 

as the amount of fuel that will be consumed in a certain 

journey, or the rate at which the engine will consume the fuel, 

when going at full speed, and also what that full speed will 

be. To explain how such questions are to be answered it 

is necessary first to introduce some fresh ideas and definitions. 

Of these the first is Work. 
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When a body moves under the action of force, the force is 

said to do Work. Still keeping to the case where the body 

or particle on which the force acts moves in a straight line, 

and the force acts along the same straight line, we have the 

following definition : 

Wh£'ii a conMant force acts on a particle, and the point of appli¬ 

cation {the particle) moves, the force is said to do work, and the work 

is measured by the prodiwt of the force into the distance tJie point 

of application moves in the direction of the force. 

When the force acts on a body, tlie point of application 

of the force may be supposed to be any point in the line of 

action of the force. But as the body moves, the same point 

B A ’ 

Fio. 25. 

in the body must be preserved mentally as the point of appli¬ 

cation of the force. In other words, the body must actually 

move for work to be done : it is not sufficient for the point 

of application to be simply shifted in the body, such a shift 

would not cause work to be done. Thus if the body in the 

figure is being pulled along by a rope, it is quite indifferent 

whether we regard the force as acting at A or B, or any other 

point in the line of action of P, as far as the motion produced 

is concerned, but if we are estimating the work done, it is 

necessary to think of the same point preserved throughout 

as the point of application of the force ; whether we choose 

A or B is, however, still immaterial, since the distance moved 

by both points in the motions of translation that we are 

considering are the same. 

If the force, instead of being constant, varies, we have to 

use the same ideas as in the case of the varying velocity. 
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We would divide the distance the particle travels into a large 

niimher n of small distances, the force being supposed to 

remain constant in each of these short distances, and change 

suddenly at the end of each, taking, for example, throughout 

any of the short distances the value it actually has at the 

beginning of it ; we then add up the work done in each 

of the short distances, and the total when n is made, 

indefinitely large is called the total work done by the varying 

force. 

Mathematically, if dr is the length of the short distance, 

and Pr is the force at the beginning of this, the total work is 
r-=n 

Lim 2 ^rd, - 
n—►OD 

Again, by what we have seen, this is represented graphically 

by the area of the force-distance graph between two required 

ordinates. 

In the figure the shaded area represents the work done by 

the variable force as the ])article is displaced from the distance 

% to the distance 

The work may also be defined as the product of the average 

force into the whole distance. But it must be remembered 

exactly what is meant by the use of the term average. Im¬ 

pulse could be defined as the average force multiplied by the 

time, but the average force in that case had not the same 

meaning as the average force in the present. In the case 
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of the impulse, it is a time-average ; that is, the average 

could be found by adding the forces for n instants at equal 

intervals of time apart, and dividing by n afterwards, making 

n indefinitely large. In the case of work it is a space-average 

that is required ; that is, we have to add the forces for n 

different positions at equal distances apart, and proceed as 

before. 

Example 1. A body falls for 5 secs, from rest. It describes 
400 ft. The time-average of its velocity is 80 ft./sec. Find the 
space-average of the velocity by averaging the velocity at the 
distances 0, 100, 200, 300, 400 ft. from the starting point. Find 
the space-average in the same way by dividing the whole space into 
8 equal portions. 

2. If the force is represented by an expression 

a +bs, 

shew that the work done between the distances and is 

a(S2 ~^i) “'^1^)' 

Prove also that the space-average of the foice is the mean of the 
initial and final forces. 

38. The absolute unit of work in the British system is 

the work done by a force of a poundal when its point of appli¬ 

cation moves through one foot. This is called a Foot-poundal. 

There is a gravitational unit used by engineers called the 

Foot-pound, and defined as the work done when a force of 

a pound-weight moves its point of application through one 

foot. In other words, the work done when a eight of one 

pound is raised one foot against gravity. 

It must be noticed that the question of the time required 

to move the point of application does not come into the 

definition. Thus the amount of work done by a bricklayer 

in carrying a hod of bricks of 70 lbs. weight up a ladder 40 ft. 

high is 70 x 40 ft.-lbs. whether he takes a minute or five minutes 
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to do it. Oil tlio otJier hand, the rate at which the work is 

done is important in all questions dealing with trains and 

engines of all kinds. 

Since 1 lb.-wt. =32*2 Ibis., it also follows that 

1 ft.-lb.=32-2 ft.-lbls. 

The corresponding units in the metric system are the Erg, 

corresponding to the foot-poundal ; and the gramme-centi¬ 

metre, corresponding to the foot-pound. 

Thus an erg is the amount of work done when a force of 

a dyne moves its point of application through one centimetre ; 

and the gramme-centimetre is the work done in raising a 

weight of one gramme one centimetre against gravity. 

Hence 1 ft.-lb. = 453*6 x 30*48 gm.-cms. 

= 13820 gm.-cms. nearly. 

A ft.-lbl., being the work done by a force of a Ibl. acting 

through one foot, or 13820 dynes acting through 30*48 cms., 

= 13820x30-48 ergs 

= 4 *214 X 10'’ ergs 

and 1 ft.-lb. = 1 *356 x lO* ei gs. 

Another unit used especially in electrical work is the Joule, 

which is defined as 10” ergs. Hence 

1 joule -- 0*737 ft.-lb. 

39. Energy. 
Connected with Work, we have to introduce the term 

Energy, usually defined as the capacity for doing work. 

Whenever a force does work on a body, and so changes 

its state either of motion or position or shape, the body is 

said to have its energy increased by the amount of work 

done, and the work may frequently be done by the body in 

returning to its first state. Thus, suppose a body starting 

from rest is acted on by a constant force P in the line of motion, 

and after travelling a distance .s* has a velocity v. 
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Since the force is constant, the body has a constant accelera¬ 
tion given by = 2/9; 

hnv^ = hn.2fs 

— — Pa, 

but Ps is the work done by the force, 

the work done by the force = 

We therefore take as a measure of the energy possessec’ 

by a body of mass m moving with a velocity v. 

This is called the Kinetic Energy of the body. If we try 

to stop the body by exerting a resistance of any magnitude 

in the opposite direction to the motion, in exactly the same 

way work Imv^ will be done against the resistance, or the 

body will do this amount of work in coming to I’est. 

If a constant force P acting on a body changes the velocity 

from u to V, we have 
r- - W,2 = 2/9 ; 

~ infs ^ Ps, 

OT’ the change in kinetic energy is equal to the work done by 

the force. 

In the same way, if a force is exerted to raise a body of 

mass in (or weight mg) to a height //, the force required is 

mg or W, and the work done is mgh or Wh. Consequently, 

the body is then said to possess a quantity W/? of energy 

more than it did at first. The energy in this case is called 
Potential Energy. This energy can be recovered in the form 

ot work by letting the body drop. By the time it reaches its 

original position it has lost its Potential Energy but has gained 

Kinetic Energy of amount but 1:^ = 2g}i; 

this Kinetic Energy = or the amount of potential 

energy it started with. This kinetic energy can be trans¬ 

formed again into work done by the body as in the former 

case. 
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From the above examples we see that when tJiere are no 

resistances from outside, tlie potential energy of a body can 

be changed into an equal amount of kinetic energy, and con¬ 

versely kinetic energy into potential. This is a simple case 

of what is called the Conservation of Energy ; but it will 

be seen that as far as tliis simple case is concerned kinetic 

energy has been defined in such a way that the conservation 

of energy may hold. However, we find that with these 

definitions the conservation of energy is of much more far- 

reaching application, and that in all cases where we find 

change in energy taking place, we will find that corresponding 

to any loss of energy of one kind that we observe we will 

find a gain of the same amount of another kind. We will 

meet with other forms which energy may take, but in the 

elementary dynamics we are mainly concerned with Ihe 

kinetic and potential energy as defined above. 

The above results will be extended later to more general 

cases, and it will be found universally that when a body moves 

under the action of any forces, the gain in kinetic energy is 

equal to the work done by the forces. This statement may 

be regarded as the statement of the conservation of energy 

in its general form, so far as we are concerned with it in 

dynamics. 

Sometimes when a body is moving against a resistance 

energy is lost, or rather cannot be restored to its original 

amount. Thus if a bullet moving horizontally, with a high 

velocity, strikes a target and sticks in it, it loses all its kinetic 

energy. There is no change in the potential energy, since 

the bullet travels horizontally. But we find that the bullet 

and target were heated by the blow, and we say that the 

kinetic energy of the bullet has been changed into heat energy. 

It must be remembered that the expression for the 

kinetic energy gives the energy in foot-poundals if m is in 

pounds and v in feet per second, and in ergs if m is in grammes 
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and V in centimetres per second. To express in ft.'lbs. or 

gm.-cms. we must divide by 32 or 980 as the case may be. 

40. Positive and Negative Work. 
Positive and negative quantities are considered in work 

as in other physical quantities. If we exert a force W to 

raise a weight W to a height h, we can express the work done 

in one or two way.s. We can say the force has done WA units 

of work, or that \Nh units of work have been done against 

gravitation, or, again, that gravitation has done ~Wh units. 

The work done by a force will be positive when the point 

of application moves in the direction of the force and negative 

when it moves in the opposite direction. Kinetic energy 

involving is necessarily a positive quantity whether v is 

positive or negative. 

41. Power, Horse-power. 
In dealing with engines we usually want to know not only 

the total amount of work done, but also the rate at which 

it is being done. We therefore introduce the term Power 

to denote the rate of work of an engine or other agent. We 

speak of an engine being of such and such a power, meaning 

that it can do so much work per second. The term Activity 

is also used frequently in the same sense of rate of work. 

We can measure power in foot-poundals per second, or in 

foot-pounds per second, or in the corresponding C.o.s. units. 

The usual engineering unit is the Horse-power, which is the 

power of an agent which does 33000 ft.-lbs. per minute or 

550 ft.-lbs. per sec. 

In the metric system the Watt is used for a Joule per 

second, or 10^ ergs per second. Hence, by art. 38, 

1 kilowatts 1000 watts 

— 737 ft.-lbs./sec. 

—1*34 horse-power. 
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A quantity of work is sometimes expressed in horse-power- 

liours, a horse-power-hour being the amount of work done 

in one hour by an agent working at one horse-power, 

hence 

1 horse-power-hour — 550 x 60 x 60 ft.-lbs. 

= 884 ft.-tons nearly. 

If the force exerted is constant, the work done between 

two distances and ^2 is P(.V2 - .Si); 

the rate (jf work = Lim 

= P X Lim ^—y , 

si nee P is constant, = Pv. 

And even if the force is variable, to get the work done 

we have to divide the distanc(‘ into very short intervals to get 

the measure of the work, and from the short interval we still 

deduce the result that tin* rate of work at the instant is P^\ 

Example 1. A shot of 6 lbs. is 6rod from a gun of 5 cwt. with a 
velocity of 1400 ft./sec. Find the initial kinetic energy of shot and 
gun. 

The K.E. of the shot -= \mv^ 

= Jx 6x 1400X 1400 ft.-Ibis. 

3x1400x 1400 ^, „ 

_3x 1400x 1400 
.32x2240 

==82-03 ft.-tons. 

ft.-tons 

The velocity of the gun is given by 

5x 112x V=6x 1400, 

V= 15 ft./sec. 

Its K.E. = Jx 5x 112x 15X 15 ft.-Ibis. 

= 0*88 ft.-tons. 
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2. An engine is developing 2(K) ii.i'. and drawing a train at a 
uniform speed of 30 miles/hr. What is the resistance to the motion? 

Fig. *27. 

The forces are P exerted by the engine, and F thi^ friction. 
As it is moving at constant speed, there is no acceleration ; 

. . P-F = 0. 

Also as the velocity is 44 ft./sec. and the rate of work 

200x 550 ft.-lbs./sec., 

we have P x 44 = 200 x 550, 

P=2500 lbs. wt., 

P being in lbs. weight because we have loft tlie rate of work in 
ft.-lbs./sec. If we had put the rate of work in ft.-Ibis./sec., we 
would have got the force in Ibis. 

3. At a certain instant a train of 160 tons is travelling on a hori¬ 
zontal line at 20 miles an hour, and has an accelt*ration of J ft. /sec*. 
If the friction is 12*5 lbs. wt. ])er ton, find the force exerted by the 
engine and the horse-power at which it is working. Also find the 
greatest velocity it could have at the same horse-power and with 
the same friction. 

Here P and if m is put in lbs. and /in ft./sec*., P and F 
must be in Ibis. F- 12 r)X 160 lbs. wt. 

-20(Xlx32 Ibis. 

P - 2000 X 32 = 160 x 2240x i, 

P-2000X 32 + 40X 2240 Ibis. 

40 x 2240,, 
— 2000-1-lbs. wt. 

= 2000 + 2800 

= 48(X) lbs. wt. 

(Notice that it takes 2000 lbs. wt. to overcome friction, and would 
take 2800 lbs. wt. to produce the acceleration if there were no friction.) 

88 
Since the velocity =20 miles/hr. = -y ft./sec., 

the rate of work= Pv 
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When at the maximum velocity there is no acceleration, and the 
force exerted is required to overcome friction only. It will there¬ 
fore be 2000 lbs. wt. only, and the maximum velocity v' will be 
given by gc 

2000 xv'-4800 

«;'=^x 88 ft./sec. 
o 

= 48 miles/hr. 

4. A shot of mass 56 lbs. is projected with velocity 2000 ft./sec. 
Find its initial kinetic energy in foot-tons. 

6. A shot of mass 20 kgms. is projected with velocity 600 
metres/sec. Find its kinetic energy in (1) ergs, (2) kilogrammetres. 

6. An impulse of 20 kgm.-wt.-sec. units is applied to a mass of 
8 kgms. Fin^ the velocity with which it begins to move and the 
kinetic energy given to it by the blow. 

7. A ball of weight 8 ozs. is thrown vertically upwards with such 
a velocity that its kinetic energy is initially 32 ft.-lbs. Find the 
initial velocity and the height to which it will rise. 

8. A mass of 6 lbs. is thrown vertically upwards with velocity 
100 ft. per sec. Find its kinetic and potential energies siter sec. 

9. A body of mass 500 gms. is let fall from a height of 20 metres. 
What are its kinetic and potential energies at the end of 1 sec. ? 

10. A 25 ton gun discharges a shot of 56 lbs. at 1400 ft./sec. 
What is the velocity of recoil of the gun ? Find the kinetic energy 
of shot and gun. 

11. When a gun is discharged, shew that the kinetic energies of 
shot and gun are in the inverse ratio of the masses. 

12. A shot of mass m is discharged from a gun of mass M, and 
the relative velocity is u. Find the velocities of each, and shew that 
the total kinetic energy generated is 

“MTm 

13. What is the horse-power of an engine which can keep a train 
of 200 tons weight going at 45 miles an hour against a resistance 
of 13 Ibs.-wt. per ton. 

14. What is the greatest speed at which an engine of 270 h.p. 

can drag a train of mass 180 tons against a resistance of 11 *5 Ibs.-wt. 
per ton. 

15. Find the resistance if an engine of 120 h.p. drags a train 
of 100 tons at a maximum velocity of 50 miles/hr. on a level line. 
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16. Find the maximum velocity that an engine of 240 h.p. and 
weighing 30 tons can get up in a train weighing (without the engine) 
170 tons on a level line, when the resistance is 13-5 Ibs.-wt. per ton. 

Find also the maximum velocity when extra trucks weighing 
100 tons are added to the train. 

17. An engine gets up a velocity of 30 miles/hr. in a train of 
80 tons in 2 minutes from rest. If the resistance is 12 Ibs.-wt. per 
ton, and the force exerted by the engine constant, find this force, 
and the horse-power developed by the engine at the end of the 2 
minutes. 

If this horse-power is maintained, find the maximum velocity 
attained, assuming the resistance to remain constant. 

42. Change of Kinetic Energy due to an Impulse. 
If an impulse I in Ibl.-sec. units acts on a mass of m lbs., 

changing its velocity from u ft./sec. to v ft./sec., we have 

the work done ^ .. 

but I — 7nv - mu = m{v - u) ; 

The kinetic energy produced = Impulse x mean of the initial 

and final velocities. 

43. Loss of Kinetic Energy on Collision. 
Suppose that two bodies of masses m, m' are moving in the 

same line with velocities u and u' and stick together after 

the collision. 

Let us represent the facts thus : 

o 
in in 

velocities before impact -> n -> u 

,, after ,, -> ?’ -> v. 

The velocities are the same after the impact, since the 

bodies are supposed to stick together afterwards. 
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By the principle of momentum, 

mv + niv = mu + 7n'u\ 

V — {mu + m'u')l{m + ni). 

The loss of kinetic energy on collision is therefore 

^ 1 , /I . 1 , o\ 
= - mu- + ( o + o ) 

15 L \J 15 / 

1 f .> / r.> / /mw+ ???V\2) 
, mn- + m'u- - (m'\-m>)\ , ) y 

'2 [ ^ m + m J j 

=J{»« - ^ ruu^ -f '//i w. - 
m-a- 4- 27n7n'yiL + 

711 + m } 
1 mm (u^ + -- 2uu) 1 m7}i , 

= -- /--- =H  -Au- uY. 
'1 m + m 2 772 + ??i ^ ^ 

{71 - ti'Y being essentially a positive quantity, the loss of 

kinetic energy is necessarily positive, or kinetic energy is 

necessarily lost. We will see later that kinetic energy is 

always lost, even if the bodies separate after the collision. 

Example 1. A mass of 8 lbs. moving with velocity 5 ft./see. 
overtakes another of mass 6 lbs. moving with velocity 4 ft./sec. 
If the two stick together after the collision, find their common 
velocity, and also the total loss of kinetic energy. 

2. If the masses in Question I were moving in opposite directions 
before collision, find the common velocity afterwards, and the 
loss of kinetic energy, 

3. Two bodies moving with velocities 4 and 7 ft./sec. towards 
one another collide and separat-e from one another with velocities 
3, 4 ft./sec. Prove that the ma.sses are in the ratio II to 7, and that 
nearly 60 per cent, of the energy is lost in the collision. 

4. A nail of weight J oz. sticks hoiizontally into wood, and is 
struck by a hammer weighing 1 lb. and moving with velocity 20 
ft./sec., which drives the nail \ inch into the wood. Assuming no 
impulsive pressure (or impulse) between the wood and nail, and 
that the hammer does not rebound, find the velocity imme¬ 
diately after the blow, the total kinetic energy then, the resistance 
offered by the wood supposed uniform, and the time the nail 
is moving. 

5. A pile driver of weight 5 cwt. drops 15 ft. on a pile weighing 
1 ton. Assuming that the ground is so soft that there is no 
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impulsive f)ressure between the [)ile and the ground, find the initial 
velocity of the pile, and if it is driven 6 inches into the ground, 
find the average resistance to the pile. 

44. Kinetic Energy of Relative Motion. 
In applying the idea of energy to examples, we are using 

the equation, - \my?‘ = P.v, 

expressing that the change of kinetic energy is equal to the 

work done. It may seem strange that we arc able to use 

this equation so extensively as we do, seeing that the velocities 

are usually velocities relative to the earth, which body itself 

we regard as being in rapid motion, and if this velocity is 

taken into account, the change in kinetic energy is not the 

same as the change when calculated from the relative motion 

only. 

It is necessary, therefore, to examine how the calculations 

are affected, by a supposed motion of the origin from which 

we are measuring our distances. 

Suppose, then, that the origin O is moving with uniform 

velocity, relative to a second origin O', this velocity being 

V in the direction in which the initial and final velocities are 

measured, and suppose the acceleration relative to O to be 

constant. 

Let be the distance described relative to O in time t, so 

that according to the usual equations 

= 

ft = r-u. 

Now, if s' is the distance and /' the acceleration relative to 

O', since the velocities relative to O' are V + w, V + 

ft (V -f z;) - (V 4- w) = - w =//; /=/' 

2/V = (V -I- ~ (V 4- uf = 2V {v - u) 4-== 2V// 4- 2fs; 

.'. .s'-.s-4V/, 

and the distance described has simply been increased by Wt, 

which is the distance travelled by O relative to O' in the time. 
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The acceleration remains precisely the same as if O' were 

at rest. Hence the equation P = mf remains unchanged 

whichever origin we are measuiing from, and the equation 

P5 = \m(v^ - u^) 

is correct whether O is imagined to Ije at rest or moving with 

uniform velocity, but the total work done when 0 is moving, is 

P(s + V^) not Ps, 

and the change in kinetic energy is no longer 

but ’ m {(V + v)- - (V 4- n)^). 

We see, therefore, that as loilg as the origin is moving with 

uniform velocity only, this motion can be entirely neglected, 

and calculations in which the kinetic energy of the relative 

motion is used are valid. But if the motion of the origin 

is accelerated, or if the axes of reference are not moving with 

a motion of translation only, this has tf) be taken into account, 

for the acceleration, and therefore the expression for the force 

acting on the particle, is affected. 

45. Tension of a String. 
If the mass of a body is negligible so that we can put m-0, 

the equation P — mf shews that either P = 0 or/^cx). 

f' 

(i) ^-Q 

(ii) —Q 
772 ' 

Pio. 28. 

The latter alternative can usually be rejected, and we have, 

therefore, P = 0. 

Suppose we have an inexteiisible string whose mass and 

consequently also its weight can be neglected in comparison 
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with those of two bodies tied to the ends of the string, and 

suppose that the masses are moving in the same straight 

line with the string always stretched with any forces F, F' 

acting on the two masses. The laws of motion may be applied 

to the string itself as well as to each mass separately. 

The figures are intended to shew (i) the masses connected 

by the string, (ii) each mass separately, (iii) the string separ¬ 

ately, and the forces acting on each body and the string are 

marked in (ii) and (iii). 

The string is acted on by the pulls of the two bodies at 

the ends, say P and P'. Hence, since it has no mass, the 

equation for the string is 

P'-P=:() or P' = P 

(the alternative of an infinite acceleration is impossible, as 

the masses m, m' would also be moving with infinite accelera¬ 

tion, and would therefore be acted on by infinitely large 
forces). 

flence the pulls at the tw’o ends of the string are equal, 

and hence by the law of action and reaction the forces 

exerted by the string on w, m' are equal. Further, if we 

think of a portion of the string from the end A to any point 

C, we can likewise treat AC as a body acted on by the pull 

P at A, and a pull at C, by the portion CB of the string. And 

7n' m 

_J c L_ 
B A 

Fig. 29. 

for the same reasons as before these pulls will balance, hence 

the pull at C = P, and at any point of the string we can say 

that the two portions of the string on the two sides of the 

point may be regarded as pulling at one another with a force 

which is the same all along the string. This force we call 

the tension of the string. The same result that the tension 
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of the string is the same throughout, is true for any case 

where the weight of the string is neglected, and is true also 

for an elastic string (that is, a string which is not inextensible) 

or spring under the same conditions. It is still true that 

the tension is the same throughout, if the string, instead of 

being straight, passes round a smooth peg or pulley so that 

it can slide over the peg without friction. 

46. Two Particles connected by a String. 
Suppose that two particles are connected by a string, and 

moving in the line of the string under the action of two forces 

in the same line thus : 

nt’ m 

Fid. 30. 

Let w, m' be the masses, F, F' the forces acting in the direc¬ 

tions shewn ; then the string will remain stretched, and the 

velocity of the two particles will be the same at a given instant, 

and so also will be the accelerations. We have already shewn 

that the tension of the string supposed weightless is the same 

throughout ; hence, if /= acceleration of each (say to the 

right in the figure), we have the equations 

for m, F - T = ?7i/ 

for r?i', T - F' == m/ 

hence F - F' = (m + m')/ 

.(1) 
m-i-m ' ' 

- , F - F F ?/?. 4- Fm 
T = F -f m -= -, - 

7714- m rn + m (2) 

Notice that (1) shews that the acceleration is the same as 

if the two bodies formed one (of mass m + w'), and this single 

body were acted on by the two forces F and F'. 
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47. Two Particles connected by a String passing over 
a Smooth Peg, and acted on by Gravity only. 

As in the last example, regarding the string as weightless, 

the tension is the same throughout. The acceleration is the 

same for both, but upwards for one and down¬ 

wards for the other. 

Let / be the acceleration of m downwards or 

the acceleration of m' upwards. 

Then the equations of motion are 

form, 7ng-J^7nf, 

for m', T - m'g — ni'f; 

hence by addition, 

(m - m')^ = (m + m')/, 

- m - 711 
-> (f 
m + m 

2 mm 
m'q771 f = ‘ ,q. 

m + m • 

Pressure on the Peg. 
The peg over which the string passes may be 

thought of as pulled by the two portions of the 

string, in other words, it is pulled by a downward 

force of 2T and requires an equal force of 2T to support it. It 

will be found that this force is always less than the total load. 

tor mg + mg ~2J = mg -k-mg-^ , g 

m + m 
{(m -h m')2 - 4 mm'} = 

m + m 

{m - 7?/) 

m -F m' 0 

and this is necessarily positive ; hence mg 4- 7iig > 2T. 

Another way of expressing this is that if an Atwood’s 

machine (see Art. 48) is placed on a weighing machine it 

will weigh less than the total weight of the machine and weights, 

unless the latter are equal, and consequently moving without 

acceleration. 
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48. Atwood’s Machine. 
In Atwood’s machine two weights are connected as above 

by a string which passes over a pulley running with as little 

friction as possible. By means of a ring through which one 

weight passes, an additional weight may be caught off it in 

any position. The weights that start moving may be repre¬ 

sented as M + m on one side and M on the other. When 

M + m passes through the ring, m is caught off, and the moving 

weights are then equal and move on without acceleration, 

that is, with uniform velocity. This velocity can, therefore, 

readily be measured, as well as the distance travelled before 

the weight is caught off, and the time observed. 

Consequently the formulae for uniform acceleration starting 

from rest can be readily verified, namely. 

.C) 
s =  (2) 

»'”- = 2/s, .(3) 

for we can verify that for given weight and overweight in a 

number of experiments, 

e//. —constant, 

v'^js — constant. 

In the theory given above the peg is supposed to be per¬ 

fectly free from friction. When, as in Atwood’s machine, 

the peg is replaced by a pulley, there is usually sufficient 

friction between the string and the pulley to prevent the 

string from slipping on the pulley, and even though the pulley 

may rotate on practically friction less bearings, the tension 

will not be the same on the two sides of the pulley, and the 

result of the last paragraph is affected accordingly. This 

effect will be considered later (see Part IT. Chap. III.). In 

the following articles and examples the rotation of the pulleys 

13 neglected. 
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6. Two scale-pans each of mass 2 oz. are suspended from the ends 
of a string passing over a smooth peg, and weights 10 and 12 oz. 
are placed on the scale-pans. Find (1) the acceleration of the weights ; 
(2) the tension of the string ; (3) the pressure on each scale-pan. 

7. The string of an Atwood’s machine can just supjx)rt a weight 
of 2 lbs. at rest. If 1| lbs. hangs on one end of the string, while a 
heavier weight at the other end rests on a platform, find the maxi¬ 
mum weight this heavier one may have without the string breaking 
when the platform falls. 

8. A mass of 4 lbs. hanging vertically is connected by a string 
with a weight of 8 lbs. on a smooth horizontal table. Find the 
tension of the string and the acceleration of the weights. 

9. A string can just support a weight of 6 lbs. If it is attached 
to a weight of 12 lbs. on a smooth horizontal table, what is the 
greatest weight that can be hung at the other end of the string with¬ 
out breaking it ? 

10. The weight on one side of an Atwood's machine is 6 oz., and 
on the other side are two weights, the lower of 4 oz. hanging from the 
upper, which is 5 oz. Find the tension in each part of the string. 

51. Friction. 
The results of.the last experiment would agree approxi¬ 

mately with th(‘ calculated acceleration if the mass weie 

mounted on a smoothly running carriage But if the body 

slides along the table, they will ])e largely afiected by friction. 

Whenever one bod}' slides ovei’a .second, a force called friction 

is called into play which tends to stop the motion. Thus, 

if the mass can slide along and gradually increasing weights 

are hung to the string, at first there is no motion, shewing 

that the tension of the string is balanced by the friction 

brought into play and acting in the opposite direction, but 

if the weights m are still increased a stage will be reached 

when the bodies move, shewing that the friction is no longer 

able to balance the tension. Further, when the bodies once 

begin to move, they usually move with a finite acceleration, 

shewing that the friction when moving is less than the force 

that is required to start them moving; in other words, less 

than the friction when they were on the point of moving. 
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Hence we arrive at the results, confirmed by numerous 

experiments, that there is always a maximum value to the 

friction that can l)e brought into play in any particular case, 

nnd that the friction when the body is moving is a little less 

than this maximum friction. Further experiments in this 

and other cases shew that if we vary the load m' by placing 

other weights on toj) of it, the maximum friction is pro¬ 

portional to the normal reaction between the plane and 

the body, and that the ratio of the maximum friction to the 

normal reaction depends only on the nature of the substances 

in contact (including in nature the degree of polish), and 

not on the area or shape of the surfaces in contact. 

When the bodies move, the friction is, as has been said, 

rather less than the maximum friction, but the same relations 

hold, namely, that 

friction when moving F 
normal reaction R 

is a ratio which depends only on the nature of the surfaces 

in contact, and is nearly independent of the velocity with 

which the bodies are moving. 

We will, therefore, take as a closely approximate result 

that for sliding motion F/R = /^, where // is a constant for a 

given pair of bodies in contact, jn, will be called the co¬ 

efficient of frictioii. 

The value of ^ varies greatly for different pairs of materials. 

For smooth blocks of wood fx may lie between 0-25 and 0-50. 

For wood on glass from 0-20 to 0*40. But there is no limit to 

the values which [x may have in different cases ; it may have 

any value from zero upwards. 

Example. If we return to the body on the table, the forces act 
as shewn. Since the body does not move vertically, or there is no 
vertical acceleration, R -M^=0, 

or 
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hence if / is the acceleration, the equations are: 

for M, T - alAg — M/; for m, mg-1 ~ wf; 

(M+ ///)/-(m - 

m - /y,M __Mw(1-h/O 
M + w M + w 

Ti should be noticed that whatever the values of M and m, / can 
never be negative : in other words, the body only moves and the 
above equations hold only if 

If the maximum friction is not required to be brought 
into play to prevent motion, and consequently the friction will be 
less than fMg. 

Example 1. If in Question 8, Art. 50, the table is rough, and the 
coefficient of friction between the table and the weight is 0-4, find 
the acceleration and tension. 

2. A mass of 200 gms. hanging vertically drags a mass of 400 gms. 
along a horizontal table. If the coefficient of friction is 0-4 and 
the falling weight strikes the floor after moving 150 centimetres, 
how far will the mass on the table move afterwards ? 

3. A hanging weight of 200 gms. drags a mass of 500 gms. along 
a rough table 3 metres from rest in 3 secs. What is the coefficient, 
of friction ? 

4. Hanging weights of 4 and 2 oz. drag a body of weight 10 oz. 
along a horizontal table, the coefficient of friction being 0-4. After 
the weights have moved 8 ft. the 4 oz. weight is caught off. How 
much farther will the weights move before coming to rest ? 

B.K.D. o 
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62. Horse and Cart. 
The law of action and reaction when applied to such a 

case as a horse and cart states that the force with which the 

horse pulls the cart is exactly the same as the force with 

which the cart y)ulls the liorse. Beginners sometimes ask, 

How, then, can the liorse and cart progress ? The simple 

answer is that they could not, if there were no other forces 

but these two acting. If there were no friction between the 

horse’s feet and the ground, there would be no possibility 

of the horse getting along. The difficulty of progressing 

becomes very much greater on a level sheet of ice or frozen 

road, where the friction is very much less than on tlie ordinary 

ground. 

The horse in trying to progress pushes backwards with 

his feet, and the ground exerts the equal and opposite reaction 

on the horse, so that it is really this force, the friction acting 

forwards, which moves the horse on. Friction acts on the 

cart too, but in the opposite direction, tending to stop the 

motion of the cart, but this is much smaller, on account of 

the use of wheels, than the friction at the horse’s feet. There 

are thus two external forces acting on the horse and cart, 

forces, that is to say, from outside, and which alone can 

cause the horse and cart to move ; these are the friction for¬ 

wards at the horse’s feet and the friction backwards on the 

cart. The former of these is the greater, and therefore the 

horse and cart move forwards. 

53. Trains. 
It is quite similar with trains. The wheels on a train are 

of two kinds—the large driving wheels on the engine, them¬ 

selves driven by the piston and crank, and corresponding to 

the legs of the horse, and all the other wheels on the train, 

which are simply for diminishing the backward friction, and 

corraspond to the wheels of the cart. The driving wheels 



FORCE AND MASS 91 

being made to rotate by the mechanism, the friction, which 

necessarily tends to stop relative motion, will be found to 

act on them in the forward direction, and if there is insufficient 

friction the wheels skid and the train does not move. The 

other wheels are set in motion by the friction which will 

similarly be found to act backwards. Consequently the differ¬ 

ence between the friction on the driving wheels and on the 

rest of the wheels is the force which moves the train along. 

The frictional force exerted by the rails on the driving 

wheels is usually called the force exerted by the engine. The 

friction on the other wheels and the air resistance are generally 

classed together and called the frictional resistance, or simply 

friction or resistance. 

54. The quantities involved in questions concerning the 

motion of trains along a straight horizontal track are the 

following . P = force exerted by the engine, 

F = frictional resistance, 

/=acceleration, 

V = velocity, 

H = rate of work of the engine, 

m = mass of the train ; 

and the relations between them are 

P - F = mfy 

H-Py. 
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If the train is travelling at a uniform speed f -0, and 

/. P-F. 

This holds in particular when the train is going at its greatest 

speed, for then it can have no acceleration. For if it was 

being accelerated its velocity would be increasing, and tliere- 

fore could not be at a maximum ; and similarly, if it was 

being retarded the velocity would be diminishing, and it 

would have been greater previously. 

Hence, at the maximum speed, 

P = F, 

H = Pi; — Fv. 

When we speak of an engine having a horse power of 200 

we mean that it has been designed to work contiiiously at that 

rate. It may work sometimes at a higher rate, but cannot be 

expected to continue working long satisfactorily or economi¬ 

cally at the higher rate. 

In some of the examples on trains the engine is supposed 

to exert a constant force P, so that if the resistance R is 

constant the velocity i;, and rate of Pr, increase uniformly with 

the time. Actually an engine is not likely to behave in this 

way. In the first place R increases as the velocity increases, so 

that even if P is constant, v will not increase uniformly, but 

the acceleration / diminishes gradually till the maximum 

velocity is reached, the rate of work being proportional to the 

velocity. 

Further, it is unlikely that as v increases P will remain 

constant. It is more likely to diminish, and hence / will 

diminish more rapidly, and v and Pv increase less rapidl}^ 

than if P were constant. Also the rate of work will increase 

less rapidly than the velocity. 

Example 1. An engine gets up a velocity of 30 miles/hr. in 
1 min. 50 secs, from rest in a train of 200 tons weight on a level 
line. If the resistances are 14 lbs.-wt. per ton, and the velocity 
is uniformly accelerated, find the greatest horse-power the engine 
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is developing, and also the greatest velocity it can get up, if this 
horse-power is maintained. 

30 miles /hour=ft, /sec. = 44 ft. /sec., 

F= 14x 20(> lbs.-wt. = 2800 x 32 Ibis., 

P-F=m/; 

P = 2800 x 32 + 200 x 2240x1 
5 

= 28()0x 32+400 X 448 Ibis. 

— 2800+t00x 14 lb8.-wt. (dividing by 32) 

= 8400 Ibs.-wt. 

The rate of work in(3reases gradually from zero to 

8400 X 44 ft.-lbs./sec. ; 

t he horse-power required = 8400 x 44 x = 672. 

To find the maximum velocity possible we have only to use the 
same equations, with/=0. 

Tlie force exerted now is 2800 Ibs.-wt. only, and we have 

672x550 = 2800x1;, 

i;= 132 ft. /sec. = 90 miles/hr. 

The large result obtained shew^s that the friction has been under¬ 
estimated at the high velocities. While it is 2800 Ibs.-wt. at 30 
miles/hr., it would be considerably larger before the velocitv reached 
90 miles/hr. 

2. If an engine exerts a uniform force of 2 tons weight on a train 
of 150 tons, when there is a resistance of 14 Ibs.-wt. per ton, find 
the time required to get up a velocity of 20 miles per hr. from rest 
and the greatest horse-power developed in doing this. 

3. Shew that the maximum velocitv with wdiich a train of 100 
tons weight can be drawn by an engine of 80 h.p. against a resistance 
of 12*5 Ibs.-wt. per ton is 24 miles/hr. 

If the engine is working at this rate when the velocity is 
12 miles/hr., find the force exerted then and the acceleration. 

4. A train of 150 tons wt. gets up a velocity of 24 miles/hr. at a 
constant acceleration in 2J mins, from rest against a resistance of 
14 Ibs.-wtu per ton. Find the greatest horse-power at which the 
engine is working, and assuming the engine to continue working at 
this rate, and the resistance to remain constant, find the maximum 
velocity attained. 
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5. An engine exerting a uniform force gets up a velocity of v 
miles/hr. in a train of 7n tons in t secs, from rest. If the resistance 
is n Ibs.-wt. per ton, find the force exerted by the engine and the 
maximum horse-power developed. 

55. Extensible Strings. 
If an elastic string or wire is fixed at one end and a weight 

hung at the other, the string is found to increase in length, 

and the extension of the string is proportional to the weight 

applied, that is, to the tension of the string. The extension 

for different strings of the same material is also found to be 

proportional to the lengt-h of the string and inversely pro¬ 

portional to the cross section. 

PI 
Thus the extension is proportional to ^ , where P is the force 

applied, A the area of cross section, I the length when un¬ 

stretched. 

If we call s the extension, we can therefore write 

Pi 

'"'EA’ 

where E is a constant for the material, and is called Young’s 

modulus. 

Writing this 

we may also write it 

or 

where A. = EA, and is frequently called the modulus of the 

string, and A:==EA//. 

If we put A = 1 and s = l, we obtain P = E, or E is numerically 

equal to the force which will stretch a string of unit cross 

section to double its natural length. 

We have already seen that the extension of a spiral spring 

follows the same law in so far as it is proportional to the 

force applied, and if in this case we put 

P = Jes, 

k may be called the stiffness of the spring. 

P-A.S//, 

P = ks, 
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Example. A brass wire of length 1000 cms. and diameter 1 mm. 
is fomid to be extended 1 mm. by a weight of 6 kgms. Find Young’s 
modulus for the wire. 

(Note that the force P should be expressed in dynes in this example 
to give the result in absolute c.g.s. unite.) 

56. Work done in Stretching a String. 
Since the force acting when the string is elongated an 

amount s a]>ove its natural length is ks, if we draw the force- 

space diagram, the graph is a straight line, and the work done 
in stretching it to a length cS* where 

ON = s, 

AN 

is ’on .AN = Pi,’ 
Jj It 2i 

if P is the final tension, 

or we may write it y s- or ^ ‘ ^ 

This result applies to all cases of strings and also to springs, 

and in the latter case both for extension and compression of 

the spring, but in the spring k no longer denotes EA/Z. 

57. Impulsive Tension in a String. 
If, in an arrangement like Atwood’s machine, an extra 

weight is suddenly brought into motion, there is produced 

a sudden change in the velocity of the weights, and an accom¬ 

panying impulse exerted by the string. This is usually called 

an impulsive tension. 
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Experimentally we can produce the effect by making the 

ascending weight pass through a ring on which is placed an 

extra weight, to be cauglit up ; or a loose thread 

may be attached to the ascending weight, and 

to a weight placed at rest vertically under it. 

When the ascending weiglit rises to a sufficient 

height, the loose string suddenly tightens, and 

the extra weight is jerked into motion. The 

result is <he same in either arrangement. Thus 

let ni, m' be the two masses of which is 

ascending and m descending with velocity v at 

the instant the extra weight M is brought into 

motion, and let v' be the velocity immediately 

after M begins to move. 

There will be an impulse I in the u})per string 

(in the figure) which will be the same throughout, as in an 

ordinary tension. This impulse is equal to the change of 

momentum in each case. Hence the equations are : 

for HI and M together I = (M + m)v -m'v .(1) 

f0r /7i -l=^mv -mv.(2) 

The negative sign in the latter case comes from the fact 

that mv' -mv is the change of momentum reckoned down¬ 

wards while I is the impulse upwards. 

Adding (1) and (2), we have 

(M -f m' -}- 77?) V = (m + Hh) V.(3) 

, m -f- m! 
V = --V 

M -f m -f- 7)1 

, Mm 
I = --V. 

N\ +m + m 

The impulsive tension in the lower string 

= Mv' ^ 
M (?77 -f m') 

M + 77i + in! 



FORCE AND MASS 97 

Example 1. An Atwood’s machine has weights .4 and 6 lbs. 
on the two ends of the string. If the mass 6 strikes the ground 
and comes to rest after travelling 5 ft., find 

(J) how much farther the 4 lb. wt. will rise ; 

(2) the velocity with which it begins to raise the 6 lb. wt. again ; 

(3) the impulse in the string when it becomes taut. 

2. A mass P of 4 lbs. hanging over the edge of a table is attaclied 
by a string to a mass Q of 12 lbs. on the table, and the latter by 
anof/her string 4 ft. long to a mass R of 8 lbs. The coefficient of 
friction between the table and each weight is 0-3. I’lie weiglits 
Q and R are initially held at rest close together, and then Q is 
released. Find 

(1) the time until R begins to move ; 

(2) its initial velocity ; 

(3) the distance moved by R before coming to rest; 

(4) the impulsive tension in each string when R begins to move. 

3. An Atwoo<l machine has weights and 8^ lbs. on the ends of 
the string. After moving from rest through 4 ft., the ascending 
weight b(?gins to raise a mass of 1 lb. 
attached to it by a string. Find the 
impulse in the. two strings and the 
velocity immediately after the lower 
string becomes taut. 

58. System of Pulleys. 
The following example wdll illus¬ 

trate different methods of treat¬ 

ment of questions on pulleys : 

M, m are the “ Weight ” and 

“ Power ” in the system of fric¬ 

tionless pulleys shewn, and 

???2 are the masses of the pulleys. 

Find the accelerations of the 

bodies. 

First solution, by considering 

the forces acting. 

If M moves a distance x u])- 

wards, then moves a distance 
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2x, and m moves a distance ix downwards. The velocities 

of the bodies are in the same ratio, and so are the accelerations. 

Let /=the acceleration of M and nij upwards, 

then 2/= „ Wg upwards, 

and 4/= ,, ,, ,, m downwards 

Hence the equations are 

for m, -Tg = m X 4/, .(1) 

for mg, 2T2-T1-m2/7 = m2 X 2/, .(2) 

for M + mj, 2Ti - nijff - — (M + .(3) 

Multijdy (1) by 4, (2) by 2, and add the three equations 

4m.^ - ^ + M l v/q)/. 

Second solution^ by energy. 

As before, if M goes up a distance x and in so doing gets 

up a velocity then mg goes up a distance 2x and gets up a 

velocity 2v, and m goes down a distance 4x and gets 11 j) a 

velocity 4tJ; therefore the gain in potential energy is 

(M + + 2m2 - ^m)gx, 

and the gain in kinetic energy is 

m + m^ + 4m2 -f 

The gain in kinetic energy is equal to the loss of potential 

energy ; 

J (M -f mj -f- 4/?i2 + 16m)— (4m - 2mg - //q - M)gx. 

Comparing this with the equation for uniform acceleration, 

v^ = 2fx, 

where /is the acceleration of M, 

we see that /- 
4m - 27n^ - m. - M 
--i-n 

16m 4- 4m2 -f m^ + IVl' 

Example 1. A string passing round a smooth peg supports 
pulleys each of weight 20 gms., and strings pass roimd these and 
support weights of 120 and 100 at the ends of one, and 180 and 160 
at the ends of the other. Find the accelerations. 

2. In a system of pulleys (the second) in which there is one 
string passing round two blocks, there are three portions of the 
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string passing between ttie two blocks. A mass of 4 lbs. is hung 
to the movabhi block and 2 lbs. to the end of the string. Find the 
accelerations and the tension, neglecting the mass of the blocks. 

3. A string, fixed at one end at A, passes over a pulley B and a 
mass of 2 lbs. is attached to the other end. A mass of 5 lbs. can 
slide on the string between A and B. If all portions of the string 
are vertical, find the accjolorations and tension. 

4. A string passes over two pulleys close together, and hangs in 
a loop between. Masses 150 and 200 gins, are attached to the ends, 
and 300 gms. can slide freely on the loop. Find the accelerations 
and t/onsion. 

Explain the difference caused if the 300 gm. mass is tied to tlie 
string, and find the tensions and accelerations in this case. 

5. A string has a mass of 200 gms. attached to one end, and passes 
over a fixed pulley, and has its other end attached to a movable 
pulley over which passes a second string with a weight of 150 gms. 
at one end, and with the other end attached to a fixed point. If 
all the strings are vertical find the accelerations and tensions : 

(1) if the movable pulley is weightless ; 

(2) if it weighs 25 gms. 

59. Units and Dimensions. 
We have in the previous work used three units which may 

be called fundamental, namely, those of mass, length, and 

time. Any other dynamical quantity may be expressed in 

terms of these, and we have seen that when we have settled 

these units, such units as those of velocity and acceleration 

naturally follow, if we wish to make a consistent system. 

Thus, if the units of length and time are I foot and 1 sec. 

respectively, the unit of velocity will be 1 ft./sec. and of 

acceleration 1 ft./sec^. Thus again, force being the product 

of mass and acceleration, a force of a d}me may be written 

as 1 gm. xcrn./sec^., and so for any other quantities. 

If, consequently, we denote the units of length, mass, and 

time by L, M, T, the unit of velocity will be ^; 

unit of velocity L 
the umt of acceleration = — 

unit of time m 
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the unit of force ™ unit of masy x unit of acceleration 
ML 

- 

the unit of work = unit of force x unit of distance 
ML ML- 

- f2 • -p, • 

The unit of angle (the radian) is independent of the three 
units or is a number only, and consequently the unit of angular 
velocity (see Art. 115) I ^ 

unit of time T 

The unit of angular acceleration = and so on for other units. 

The above expressions are frequently called the dimensions 
of the physical quantity, thus the dimensions of force are 

said to be or frequently the dimensions are understood 

to mean the powers to which the units are raised, thus force is 
said to be of dimensions 1, 1, -2 in mass, length, and time 
respectively. 

Example. Write down the dimensions of Impulse, Rate of Work, 
Fluid Pressure (force per unit area), Volume, Density (mass per 
unit volume). 

It will be carefully noticed that dimensions only express 
the manner in which the unit of the quantity concerned 
depends on the three fundamental units. Thus the kinetic 
energy of a body is expressed by \mv^ and the dimensions of 

ML^ 
kinetic energy are , the factor J not appearing in the ex¬ 

pression for the dimensions, which only denote that the unit 
of kinetic energy (or the erg) can be thought of as a mass of 
1 gin. multiplied by the square of a velocity of 1 cm./sec. 
That a body of mass a gram moving with a velocity of 1 cm./sec. 
has kinetic energy of half this amount does not affect the 
idea of the dimensions. 
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60. There are two important uses of dimensions. 

First, In any physical expression or equation all terms 

must be of the same dimensions in the fundamental units. 

Just as it is impossible in ordinary arithmetic to add, say, 

an amount of money to a length, so it is impossible in any 

case to add two terms which are not of the same dimensions. 

Thus, taking as a simple case the equation, 

the dimensions of 5 are L, 

,, ut are = L, 

„ are T2 = L, 

SO that all terms are of the same dimensions, namely L. 

It is obvious that this may form a frequent check on the 

accuracy of a dynamical formula, but it must be noticed 

that the check is only useful if all the quantities are expressed 

algebraically. For example, if we write the equation for the 

falling body and put 

the check is no longer possible, for the acceleration with its 

dimensions has been replaced by a number which apparently 

has no dimensions. 

Secondly, The second important use of the dimensional 

formula is to change from one set of units to another. A 

couple of examples will be sufficient to show how this is done. 

Example. Find the number of dynes in a poundal. 

The dimensions of force are ; hence if there are x dynes in a Ibl., 

(1 gm.)x (1 cm.) (1 lb.)x (1 ft.) 

(1 sec.)* (1 sec.)* ’ 

a:=4-i^x:i^=453-6 x 30-48 
1 gm. 1 cm. 

= 13.820. 
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If one or both of the quantities are given in gravitational 

units, care must be taken to express them in absolute units 

before the transformation is made. 

Example. Find the number (:r) of ergs in a foot-pound. 

1 ft.-lb.-.32 17 ft.-Ibis. 

ML" 
and the dimensions of work are — ; 

. (I grn.jxd em.F 17, (1 !»>•)x (1 ft.)^ 
•* (rsec.')-” w X (1 sec.)^ 

1 lb. 
I gm. 

= 32-17 X 45:^6 X (30-48)2 

= l-3r)6x 10". 

32 -17 x X ( ^ ) 
fi. \1 cm./ 

Example. Find in this way the number of 

(1) ergs in a ft.-lbl, ; 

(2) watts in a horse-power (a watt= 10^ ergs per sec.); 

(3) horse-power in a watt. 

EXAMPLES. 

1. A tramcar starts from n^si, and the velocities at intervals of 
5 secs, are given as follow^s : 

Time in secs. - 0 5 10 15 20 25 30 

Velocity in I 
miles/hr. / 

0 8-1 11-8 14-6 16-3 17-7 10-0 

Find graphically the distance travelled in yards in the above time, 
also, if the car weighs 8 tons, find the effective pull exerted on the 
car at the end of 20 secs. 

2. An engine of 30 tons exerting a force of 14 tons-wt. draws 
three trucks of 10 tons each. If the resistance is 15 lbs.-weight per 
ton, find the acceleration of the train and the tension in each coupling. 

3. A hailstone acted on by a resistance ]:)roportional to the square 
of the velocity has a terminal velocity of 15 ft./sec. What will its 
acceleration be when moving with a velocity of 5 ft./sec , and what 
will the velocity l)e when the acceleration is g(2 ? 
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4. If an athlete weighing 160 lbs. runs 100 yds. in 10 secs., cal¬ 
culate his average rate of work if ho takes a stride of 6 ft. 6 ins. and 
during each stride he raises his centre of mass 2 inches, air resistance 
being neglected. 

5. A girl weighing 100 lbs. skips 40 times in half a minute, raising 
her centre of mass 4 inches at each jump. Find her average rate of 
work. 

6. A mass of rn lbs. is moving with a velocity of u ft./sec., and is 
brought to rest by a constant resistance in t secs. Find the work 
done against the force in ft.-lbs. and its initial rate of work in horse¬ 
power. 

7. Find the maximum horse-power at which a locomotive works 
in bringing a train of 300 tons weight to a velocity of .30 miles/hr. 
from rest in 90 secs., assuming the propelling force constant and the 
resistance 10 Ibs.-wt. per ton. 

8. A train running on the level at full speed of 40 miles/hr. slips 
a carriage weighing 20 tons, and the full speed increases to 45 
miles/hr. Find the horse-power and the mass of the train if the 
resistance due to friction is 15 lbs.-wt. per ton. 

9. The resistance to a train of M tons at any velocity is given to 
differ from the resistance when it is just moving by a quantity 
proportional to the square of the velocity. The resistance at the 
lowest velocity is 5 lbs.-wt. per ton, and at 30 miles/hr. is 10 lbs.-wt. 
per ton ; what is the total resistance in tons weight at v ft./sec. ? 

If M = 100 tons, and there is a constant driving force of 2 tons wt., 
find the maximum speed and the horse-power expended at that speed. 

10. By means of a chain, an engine working always at horse-power 
H is raising a weight of M lbs. vertically. Find 

(1) the maximum velocity v attainable by the weight; 

(2) the tension of the chain and the acceleration when the 
velocity is v'(<v), 

11. If the mass of a train is M tons, the engine works at horse¬ 
power H, and the resistance a-P6lbs.-wt. per ton, where v is given 
in miles per hour and a and h are constants, find the acceleration 
when the velocity is v miles per hour. 

12. A train of 200 tons weight is drawn by an engine of 300 h.p. 
If the resistance is 12 + 0 005^2 Ibs.-wt. per ton, where v is the velocity 
in ft./sec., shew that the maximum velocity is given by 

4-2400^-165,000 = 0. 

Shew that the maximum velocity is nearly 40 ft./sec., but if the 
resistance were constant (12 lbs.-wt. per ton) at all velocities, the 
maximum velocity would be about 68 ft./sec. 
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13 The resistance to a train of 200 tons wt. is a + hv^ Ibs.-wt. per 
ton, where v is given in ft./sec., and it is found that the horse-power 
developed is 240 when the train is travelling at a constant speed 
of 30 miles/hr., and is 426 at 45 miles/hr. Find a and 6. 

14. If 1 lb. of coal on being burnt gives out 10 million foot-pounds 
of energy, how much coal will be consumed per hour by an engine 
working at 200 horse-power if only one-t(‘nth of the energy derived 
from the coal is utilized ? 

15. If 1 lb. of coal on being burnt gives out 10 million foot-lbs. 
of energy, and an engine working at 1200 h.p. burns 1 ton of coal 
per hour, find the ratio of the work done by the engine to the energy 
supplied (that is, the efficiency of the engine). 

16. An engine of 5 h.p. is used for lifting a weight of J ton. If 
40 per cent, of the work done by the engine is wasted, what is the 
maximum velocity attainable by the weight ? 

If the engine is working at the same rate, and the velocity of the 
weight is 1 ft./sec. at a given instant, find the force exerted on the 
weight then, and its acceleration. 

17. A mass of M tons is to be raised and brought to rest at a 
height of h feet above its former position by a rop(^ whose tension 
is limited to M' tons wt. 

Shew that the shortest time in which the operation can be ])er- 
formed is M' h 

secs.. 

and that the rope exerts the force M' tons wt. for 

V, h 
' -M) 16 ' 

18. Prove that the shortest time from rest to rest in which a 
chain which can bear a stress of 5 cwt. can lift a weight of ,3 cwt. 
a vertical distance of 40 ft. is 2^ secs., and shew that the engine 
driving the chain must be capable of working at 32-6 h.p. 

19. A man falls down a lift well on to the top of a lift which is 
descending with uniform velocity v, and is at a distance h below 
him when he begins to fall. Shew that, as far as the shock is con¬ 
cerned, supposing it measured by the change of momentum, his 
fall is equivalent to a fall on a fixed object through a distance 

20. After a body of mass m lbs. has fallen through h feet, it is 
required to bring it to rest by a force not exceeding P Ibs.-wt. Shew 

that it must be exerted through a distance — at least. 
P/m -1 
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21. A shot of 66 lbs. is discharged from a gun of 4 tons with 
velocity 1800 ft./sec. Find the charge of powder required, sup¬ 
posing that the exY>losion of 1 lb. of powder releases 135,000 ft.-lbs. 
of energy. 

22. A gram of powder contains 45 kgm.-metres of cmergy; find 
the weight of the charge necessary to produce a velocity of 400 
metres per sec. in a projectile of 200 kgms., neglecting rotation of 
the shot and recoil of the gun. 

23. A weight of 46 oz. is dropped from a height of 2 ft. 3 in. on 
the head of a vertical nail weighing 2 oz. already driven some dis¬ 
tance into a board. Shew that if the nail is driven a further distance 
of J inch, the resistance of the board, supjiosed constant, is approxi¬ 
mately 152 lbs. wt. 

24. A shell of mass M travelling with velocity V suddenly breaks 
into two fragments m and M -m, which continue to travel in the 
same line. If the velocity of tn is v, find that of the other fragment, 
and the amount of energy generated by the explosion. 

25. A 100 lb- shell travelling at 1500 ft./see. bursts into two 
equal portions which continue to travel in the same line. If 200 
ft.-tons of energy are generated by the explosion, find the sub¬ 
sequent velocities. 

26. Find the energy in horse-power-hours required to propel a 
shot of 1 cwt. with a velocity of 2000 ft. /sec. 

27. A shot of mass m lbs. is fired horizontally from a gun of mass 
M lbs., and the kinetic energy due to the explosion is E ft.-lbs. Find 
the velocity of the shot and gun, the latter being supposed free to 
recoil. 

28. A gmi fires a shot weighing 1400 lbs. and possessing energy 
of 64,000 ft.-tons when it issues from the muzzle. 

What is the muzzle velocity of the shot ? 

29. A gun of mass M lbs. firing a shot of mass m lbs. recoils with 
velocity V ft./sec. Shew that if the mass of the shot is increased 
to 2//t, the kinetic energy of the explosion remaining the same, the 
velocity of recoil becomes 

y /2(M + m) 

> M4-2m 

30. A shell travelling with velocity V bursts into two pieces of 
masses mg, which continue to travel in the sai?ie fine. If the 
kinetic energy produced by this explosion is E, find the velocities 
immediately after the explosion. If the shell breaks into equal 
masses, and the kinetic energy generated is equal to the kinetic 
energy of the shell just before bursting, shew that one-half is brought 
to rest and the other moves with velocity 2V. 
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31. A shot of mass m is tired with velocity V ])oint blank at a 
target of thickness h and mass M, and emerges with velocity v. 
If the target is free to move, find its velocity, and the time taken 
by the shot to traverse it, supposing the resistance uniform, and 
that there is no impulse on striking the target. 

32. A bullet of mass m is fired into a block of wood of mass M 
whi(di is free to move on a smooth horizontal table, and penetrates 
it to a depth a. 

Shew that at the instant when the bullet comes to rest relatively 
to the block, the block has moved a distance 7nu/(M-f-m), the stress 
between the bullet and the block being assumed constant as long 
as there is relative motion. 

33. A train consists of an engine of mass M tons, and two carriages 
each of mass m tons. Initially the train is at rest, and the buffers 
are in contact, but when the coupling chains are tight the buffers 
are a feet apart. If the engine exerts 'a constant force of F tons-wt. 
and friction is neglected, prove that the velocity with which the 
second carriage starts is given by 

V2 = 2Ff/a(2IVI -h m) /(M + 2m)^ 

34. Rain falls uniformly so that 5 inches fall in 12 hrs. Find the 
pressure on the ground at any instant produced by the falling rain 
in tons-wt. per acre, assuming the drops indefinitely small and the 
terminal velocity to be 10 ft./sec. 

36, A target of 4 sq. metres in area is struck perpendicularly 
every second by 50 bullets, each weighing 20 gms. and travelling 
at a velocity of 500 metres per sec. Supposing the bullets not to 
rebound, find the steady pressure on the target that would produce 
the same average stress on the supports. 

If the bullets rebound with a velocity of 50 metres per sec., how 
would the equivalent pressure he affected ? 

36. A mass of 10 lbs. is at relative rest on the rough horizontal 
floor of a car moving at the instant with velocity 40 ft./sec. and 
with retardation 6 ft./sec^. Find the friction between the mass 
and the car, and infer a lower limit for the coefficient of friction 
between them. 

If the coefficient of friction is 0 3 and, when moving at the same 
velocity as before, the retardation is suddenly increased to 10 
ft./sec^, and continues so until the carriage is brought to rest, prove 
that relative motion ensues, and find how far the mass moves in the 
carriage before it is finally at rest. 

37. A man descends from a balloon by means of a parachute. 
If the resistance to the parachute is 2v^ lbs. wt. when the velocity 
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is V ft./sec., and the parachute and man together weigh 400 lbs., 

find the maximum velocity attainable. Draw a graph to give i 

in terms of v from v=0 to v~ 14 1. Deduce from it the time taken 
to get up a velocity of 10 ft./sec. 

Compare the latter time with the time taken when no resistance 
is acting. 

38. The weight of a train is 200 tons, the part of the weight 
of the engine supported by tlie driving wheels is 25 tons, and the 
coefficient of friction between driving wheels and rails is 018. Prove 
that at the end of 1 minute after starting on the level the velocity 
cannot be as great as 29miles/hr. 

39. Two masses w-i, are free to move in a horizontal line. 
They are projected towards each other witli velocities w, v, and 
there is a constant force F between them opposing the relative 
motion. Find the change of distance between them when the 
relative motion ceases, and the common velocity they then have. 

40. A hanging weight of 2 lbs. drags a weight of 6 lbs. along a 
table a distance of 6 ft. 6 in. in 4 secs. If the weights are changed 
to 5 and 13 lbs. respectively, the weights move 9 ft. in 3 secs. Find 
the coefficient of friction and the value of the coefficient of friction 
being the same in both cases. 

41. A weight Q hanging over the edge of a smooth table drags 
P a distance of a ft. on the table in / secs. If P hung and Q were 
on the table they would move 2a ft. in t secs. Shew P=2Q, and 
compare the tensions in the two cases. 

42. Shew that when P and Q are connected by a string over the 
edge of a smooth table the tension is the same whether P hangs 
and Q is on the table, or Q hangs and P is on the table. 

43. A weight of 2 lbs. hanging over the edge of a smooth table 
is attached by two strings to two weights of 1 and 3 lbs. on the 
table, the strings lying in the same vertical plane perpendicular to 
the edge of the table. Find the tension of each string and the 
acceleration of the weights. 

44. A particle of mass m. is attached by an inelastic string of 
length I to a particle of mass m'. From the point whe^e m' lies 

on the ground m is projected upwards with velocity v>>/2gL Find 
the height to which each rises, and the velocity with which each 
reaches the ground again. 

46. A string passes over two smooth pegs close together, and hangs 
in a loop between them. A mass m is tied to one end of the “tring 
and a mass M is slung on the loop (so that the string runs through 
a smooth ring on M). The other end of the string is pulled with an 
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acceleration /. Find the accelerations of the weights and the 
tension of the string. 

If M is tied to the string, find the accelerations of the masses and 
the tensions of the two parts of the string. 

46. A string passing over a smooth peg carries a mass m at one 
end and a frictionless piilley of mass M at the other. Over the 
latter another string passes, one end of which is fixed and the other 
carries a weight m'. Find the accelerations of the masses, and 
tensions of the strings. 

47. Two men of masses m, m' sitting on a smooth table hold the 
ends of a stretched rope. If at a certain instant the first is pulling 
the rope through his hands at a rate v ft. /sec. and acceleration /, 
find the motion of the men, and the tension of the rope. 

48. A mass of 6 lbs. can move on a smooth horizontal table. 
Two strings attached to it on opposite sides pass over pulleys at 
the two ends of the table, and weights of 8 and 4 lbs. hang from 
them respectively. Find the acceleration and the tensions of the 
two strings. 

If the 8 lbs. mass, after moving for 4 ft., comes to rest by striking 
the ground, how much further will the other masses move before 
coming to instantaneous rest ? 

49. Solve the same question as No. 48, supposing the table to 
be rough with coefficient of friction 0-25 between the weight and 
the table. 

60. If there are it portions of the string between the blocks in a 
system of pulleys of the second order, and a mass m is attached to 
the end of the string and M(>nm) to the block, find the tension 
and accelerations, assuming the block weightless. 

If M strikes the ground when moving with velocity v and remains 
at rest, find how long m will move before the string is stretched 
again, and find the impulsive tension in the string then, and the 
velocity of M immediately afterwards. 

61. In the system as in Ex. 60, if M < nm and M moves upwards 
for t secs., and at the end of that time a second mass IVI attached 
to the first by a string is suddenly brought into motion, find 

(1) the accelerations and tension before and after the second M 
begins to move; 

(2) the velocities just before and after the change ; 

(3) the impulsive tension in each string. 

62. A mass M of 5 lbs. hanging vertically drags a mass m of 8 lbs. 
along a rough horizontal table. A third mass m' of 4 lbs. is con¬ 
nected to m by a string 4 ft. long, and m and m' are held initially 
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close to om^ another. If the coefficients of friction between the 
masses and the table are each 0*5, find 

(1) the velocities just before and after m' begins to move ; 

(2) the impulses in the strings at the instant m' begins to move ; 

(3) the distance m' moves before coming to rest. 

63. On one end of a string of an At wood machine are weights of 
120 and 20 gins, and on the other 130 gms. After moving from 
rest for 3 secs., the descending weight passes through a ring and the 
20 gms. is caught off. How much further will the weights go before 
first coming to rest, and after what time will the first pass through 
the ring again ? 

64. The weights on an Atwood machine are 170 and 160 gms. 
When they have been moving from rest through 4 ft. the ascending 
weight passes through a ring and catches up a. weight of 40 gms. 

This weight is dropped again when the weight passes downwards 
through the ring, and so on. Find the time between the time 
the weight is caught up and the (w+l)^. and the whole distance 
(up and down) travelled in the interval. 

Find the whole time and whole distance travelled until they finally 
come to rest. 

66. The masses on an Atwood machine are P and Q(P>Q). 
They move a feet from rest, and then P strikes the ground and 
remains at rest. Afterwards P starts to move upwards and there 
is an impulsive tension in the string, and later P strikes the ground 
again, and so on. Find 

(1) the time between the and (a+1)*^ impacts that Q is 
moving by itself, and the time that both P and Q are 
moving; 

(2) the impulse in the string in the same interval; 

(3) the total time before the system comes to rest. 

66. Weights of 4 Ibe. and 10 lbs. hang by strings respectively, 
passing round a wheel and axle, the former of diameter 12 inches 
and latter 3 inches. If friction is neglected, and also the mass of 
the wheel and axle, prove, by writing down the kinetic and potential 
energy in any position, that the acceleration of the 4 lb. wt. is 

67. A weight of 6 lbs. hanging over the edge of a table draws 
along a weight of 10 lbs. on the table. If the coefficient of friction 
between the table and the weight is 0*3, find the acceleration and 
tension. 

If the string breaks after the masses have been moving for 
secs., find how far the 10 lb. mass moves altogether before coming 
to rest. 
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68. Three masses are such that M' + w>M>M'. M is hung at 
one end of a string passing over a smooth peg and at the 
other in such a way that m' can be detached as in Atwood’s machine 
when M' + w is moving down, and picked up again when M' is moving 
up. If the masses move a distance li from rest before m is caugJit 
off, find the next two positions in which the masses are instan¬ 
taneously at rest. 

69. A particle of mass m moves in a straight line, and is only 
acted on by a series of impulses at equal intervals of time t, the 

impulse being - Icrv^ where k is a constant and is the velocity 
just before the impulse. Prove that if is the initial velocity, 

where Xn is the distance described to the time of the impulse. 
Deduce that if a particle is moving in a straight line under a 

resistance kv, 
v~v^e~m 

k V 
where v and x are the velocity and distance described at time /. 

60. A number of masses are attached to a light string AB sus¬ 
pended at A over a table which is at a distance h below the lowest 
mass B. The end A being suddenly released, the masses are heard 
to hit the table at equal intervals of time r. Find the distances 
apart of the successive masses. 



CHAPTER IV. 

FORCES IN TWO DIMENSIONS. 

61. So far we have been dealing with motion of a point 

whose position was fixed relatively to a point of reference 

by a single measurement along a line passing Ihrough the 

jwint of reference. Now we have to consider the next case 

in order of difficulty, where we have two lines of reference 

Ox, Oy meeting in a point O, and the moving point P always 

lies in the plane determined by Ox and Oy, The plane of 

reference may be moving in any way. Thus the point P 

may be a point describing any path on a plane sheet of card 

on which straight lines Ox, Oy are drawn, while the piece of 

card itself may be moving in any way. The latter motion 

will be neglected for the present, and it is only the relative 

motion in the plane that we have to deal with. It is generally 

most convenient, though not necessary, to take the lines 

Ox, Oy at right angles, and we shall assume them to be so 

unless otherwise stated. 

The position of P in the plane is determined in one or other 

of two ways : 

(1) It may be determined by the lengths of the lines PM, 
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PN drawn parallel to the axes Ox, Oy and meeting Oy and Ox ; 

these are denoted by Xy y, thus : 

PM ~Xy PN = y. 

(2) It may be determined by the length OP and the angle 

POx ; these we denote thus : 

OP = r, POx = 6^. 

Obviously, when Ox, Oy are at right angles, 

x = rcos^, i/ = rsin^. 

62. Vectors and Scalars. 
In the second method the position is determined by the 

length and direction of a straight line, and if we want to repre¬ 

sent the position on a sheet of paper we can do so by taking a 

line O'x' on the paper and drawing a line O'P', representing OP 

on a certain chosen scale and making an angle P'O'x' equal to 

the angle POx. Any quantity which involves magnitude and 

direction in this way, and is hence capable of being represented 

by a straight line of a certain length and drawn in a certain 

direction, is called a vector quantity. Thus a velocity is a 

vector, for it is only determined completely when its direction 

as well as its magnitude is given. 

Quantities which do not involve direction, but only magni¬ 

tude, are called scalars. Of the quantities we have been 

dealing with it will be found that the following are: 

Scalar—mass, work and energy, power ; 

Vector—displacement, velocity, acceleration, force, mo¬ 

mentum, impulse. 

That kinetic energy (|m^) is a scalar while velocity (v) 

is a vector is suggested, though not proved, by the fact that 

kinetic energy cannot be negative, and that if v is changed 

into -V no change is made in the kinetic energy. 

63. In dealing with the rules relating to vectors it will 

be best to begin with the simplest—the vector denoting the 

distance of one point from another. 

Suppose, then, there are three towns O, P, Q, and we are 
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told that P is 3 miles north-east of O and Q 2 miles north 

of P. We can draw a figure 

to scale on paper and find the 

distance of Q from O. 
We may express the result 

more fully thus : 
// AB is drawn to represent 

in magnitude and direction the 

distance of P from O, and BC 
to represent on the same scale 

the distance of Q, from P, then 

the distance of Q, from O is represented by AC. 

AC is called the Vector Sum of the two vectors AB. BC. 

64. Change of Position or Displacement. 
We may imagine in Fig. 40 P is a moving point and Q a 

second position of P. Then the first position as measured 

from O is represented by OP as before (or AB) ; the second is 
represented by OQ (or AC), and PQ (or BC) may be called the 
change in position or displacement. 

Hence, if the position of a point relatively to O is repre¬ 
sented at one time by AB and at another by AC, the change 

of position is represented by BC. 

65. Composition of Displacements. 
The following law will now hold for displacements,— 
// AB represents the displacement in any time of P relative to 

O, and BC represents the displacement of Q relative to P in 0ie 
same time, then the displacement of Q relative to O is represented 

by AC. 
For, let O, P, Q represent the original positions of the 

points, and suppose P displaced to P', PP' (or AB) is the dis¬ 

placement of P relative to O. If Q were not displaced rela¬ 
tively to P, its distance from P' after the displacement would 
be the same in direction and magnitude as it was from P 

before the displacement, and the displacement of P would 
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have brought Q to where P'O.^ is equal and parallel to PQ. 

But now Q is displaced relatively to P' so that it conies to 

Q', and is the displacement relatively to P. BC is there¬ 

fore drawn to represent Q^Q'. Now the total displacement 

Fig. 41. A 

of Q, relative to O is represented by QQ', and this will be seen 

at once to be the same as AC, for AB, BC are equal and parallel 

to QQi, QiQ', and the law for the composition of displacements 

is therefore proved. 

66. Composition of Velocities. 
Velocities in like manner require direction as well as magni¬ 

tude to completely determine them. From the composition 

of displacements we can deduce at once the composition of 

velocities which should be stated in the following form : 

// AB represents in direction and magnitude the velocity of 

P relative to O, and BC represents the velocity of Q relative to P, 

then the velocity of Q, relative to O is represented hy AC. 

For it is only necessary to think of the displacements as 

taking place in a time t, and the average velocities during the 
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interval, of P relative to O, Q relative to P, and Q relative 

to O, are AB BC AC , 
j- respectively, 

V V Z 

and therefore the lines which represent the displacements, 

represent correctly, on some definite scale, the average velocities. 

Hence the parallelogram law applies to the average velocities, 

and therefore; also, by thinking of the interval as reduced 

indefinitely, to the velocities at an instant. 

The relative velocity of a point B with respect to A represents 

the rate, as a vector, at which the position of B with respect 

to A is changing. For example, if B is a man on board a ship, 

and A is a mark on the deck of the ship, tlie velocity of B 

relative to A is the velocity with which B walks across the deck. 

The velocities con(;erned here are the velocity of the ship 

relative to the (‘arth, the velocity of the man relative to the 

ship, and the velocity of the man relativ(; to the earth. The 

result in italics above may be expressed in this case by saying 

that the velocity of the man relative to the earth is the vector 

sum of the velocity of the man relative to the sliip, and of the 

ship relative to the earth. 

When the velocity of P relative to O is given by a vector AB, 

and the velocity of Q. relative to O by a vector AC, the velocity 

of P relative to Q is represented by CB, and may be called the 

vector difference of AC and AB. It is the velocity that has to be 

compounded with the velocity of Q relative to O to produce 

that of P relative to O. 

The velocity of P relative to Q may also be obtained, as may 

be seen by a diagram, by compounding the velocity of P 

relative to O, with a velocity equal and opposite to that of Q 

relative to O. 

Example 1. A train is travelling at 15 miles/hr. to the east, and 
drops of rain appear to a passenger to make an angle 30° with the verti¬ 
cal towards the west. When the velocity of the train is increased to 
30 miles an hour,the drops appear to make an angle 60° with the vorti¬ 
cal. Find the true velocity of the drops in direction and magnitude. 
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Graphical Solution. 

If OA represents tlie velo¬ 
city of 15 miles/hr. (or 22 
ft./sec.) of the train, and OB 
represents the true velocity 
of the drops, AB represents 
the velocity of the drops rela¬ 
tive to the train, and conse¬ 
quently we have 

OA =22 ft./sec., Fia. 42. 

^OAB=60°, 

but B is as yet not fixed, but if OC represents the velocity of the 
train in the second case, 

OCB -30° ; 

and since OC =20A, 

we have l ABC - 30° ; 

AB-AC-OA; 

OB=OA, 

and ^AOB=60°; 

the true velocity of the diops is 22 ft./sec., making 30° with 
the vertical and towards the cast. 

2. What velocity would the train have if the drops appear to 
come down vertically ? 

3. A bullet moving horizontally at right angles to a railway line 
passes through two opposite windows of a carriage, but the point of 
entry is 3 ins. nearer the engine than the point of exit. If the width 
of the carriage is 0 ft. and the train is travelling at 30 miles/hr., what 
is the velocity of the bullet ? 

4. Thi’ough a current setting from east to west a ship actually 
travels due north with speed v (relative to the land) equal to that 
of the current. If the ship passes out of the current into still water 
without altering the helm, in what direction and with what speed 
does it afterwards travel ? 

5. A ship is steaming north at 15 miles per hr., and the wind is 
blowing from the north-east at 20 miles per hour; find the direction 
in which a flag on the ship flies. 

67. Change of Velocity. 

In Fig. 41 OP, OP' represent the positions of a point relative 

to a given point at two instants, and PP' represents the change 
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of position. In exactly the same way, if OP, OP' represent 

velocities relative to a given point at two instants t secs, apart, 

PP' must he regarded as representing the change of velocity 

PP' 
in the interval, and will represent both in direction and 

t 

magnitude the average acceleration during the interval, from 

which the acceleration at any instant can be deduced by making 

the interval t indefinitely short. 

This may be regarded as a definition of change of velocity 

when the direction of the velocity is changing ; and the import¬ 

ance of regarding change of velocity in this way may be seen 

if we think of the relation being impulse and momentum. 
Impulse was equal to change of momentum in motion in a 

straight line, and the same thing will still be true in any motion 

if we understand change of momentum correctly. 

If a particle is moving at one instant with a velocity repre¬ 

sented by OP, and a blow is given to it which changes the 

magnitude and direction of the velocity, so that it becomes 

OP', the change in velocity is PP', and the change in momentum 

is m X PP', and the impulse given to the body to produce this 

change of momentum will be represented by m x PP' in magni¬ 

tude and must be parallel to PP'. 

In fact, if change of velocity is understood in this way and 

acceleration deduced from it as above, all the statements made 

in the last chapter about the relations between mass, accelera¬ 

tion, force, momentum and impulse will still hold for a particle 
moving in any way. 

Example. A mass of 2 lbs. is moving with a velocity of 10 ft./sec. 
to the north, and is given a blow which changes its velocity to 
10 ft./sec. to the east. Shew that the impulse must be 0*884 Ib.-wt.- 
secs, to the south-e.ast. 

68. Composition of Accelerations. 
In exactly the same way as the composition of velocities 

was deduced from that of displacements, so the composition 

of accelerations can be deduced from that of velocities, and 
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the statement of the composition of accelerations is the 
same as that of velocities with the substitution of the word 
acceleration for velocity throughout, thus : 

// AB represents in direction and magnitude the acceleration 

of P relative to O, and BC represents the acceleration of Q relative 
to P, then the acceleration of Q relative to O is represented by AC. 

This is often expressed by saying that the point Q has two 
independent accelerations AB, BC 

(one on account of the motion 

of P, the other on account of 

the motion relative to P), and 

that these two are equivalent to 

a single acceleration AC, and the 

composition of velocities is often 

expressed in a similar way. 

AC is called the resultant of the ^ 

two AB and BC, and AB, BC are 
called the components of AC. We will discuss these terms 

more fully in connection with forces. 

69. Forces. 
When we pass to the case of forces, a new idea comes in, 

namely, the Independence of forces. This may be supposed 

to be understood in the laws of motion, and may be expressly 

stated thus: 
If two or more forces act on a particle at the same time, each 

tends to produce an acceleration exactly as if it acted alone. 

Further, we must regard it as an experimental result that 

two accelerations produced by two forces may be compounded 

into a single acceleration by the same law as given above, 

and that the particle moves with the acceleration thus deter¬ 

mined. The efiect of the two forces is therefore to produce 

a definite acceleration, which again could be regarded as 

being produced by a single force, and this single force would 

therefore be equivalent in its action to the two forces acting 

separately. We are thus led to the idea of replacing two 
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forces by a single one which produces the same effect as the 

two, and we can prove that this single force can be found 

from the two original forces by a similar law, which is 

known as the 

Parallelogram of Forces. 
If two forces acting on a particle are represented in magnitude 

and direction hy two straight lines AB, AC, they are equivalent 

in their effect to a single force represented hy AD, the diagonal 
of the parallelogram of which AB, AC are adjacent sides. 

To prove this, let AB, AC represent the two forces whose 

magnitudes are P and Q, so that 

^ AB 

q"* AC’ 

Now, on the principle of the independence of forces, these 

will produce accelerations, say p, q, where 

m being the mass of the particle. 

If these accelerations are represented by ah, ac it will 

follow that ah P AB 

ac q Q AC’ 

and also the directions of AB, AC are the same as those of ah, ac. 

Therefore the parallelogram ahde is similar to the parallelo¬ 

gram A BDC, and 

ad ~~ ah “ ~ 

ad, 
and AD is in the same direction as ad. Now, by the com¬ 

position of accelerations ad is the acceleration equivalent to 



118b ELEMENTARY DYNAMICS 

the two accelerations p, </, or is the acceleration produced as 

the result of two forces. But we see that since 

AD — m. ad, 

a single force AD would produce the acceleration ad. 

the two forces represented by AB and AC are equivalent 

in their effect to the single force represented by AD. 

70. It will be seen that the parallelogram of forces is 

really an experimental law, and any supposed theoretical 

proof is based on other similar and equally unproved assump¬ 

tions. Its truth rests therefore on the agreement between 

the results deduced by calculation from the parallelogram 

law and the actual observed phenomena. 

When the body on which the forces act is in motion, direct 

experimental verification of the law is very difficult, but when 

it is at rest it may be simply verified in the following way. 

Fix three spring balances to points A, B, C in a plane, say to 

a sheet of paper pinned to a drawing board. Attach the 

other ends to a small ring O. AVhen the rings come to rest, 

mark off lengths OH, OK, OL, proportional to the farces P, Q, R, 
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shewn by the spring balances, and draw the parallelogram 

OHMK. Then it will be found that OM is in the same line as 

OL, and equal to OL. This shews that P and Q are balanced 

by a force equal and opposite to the vector sum of P and Q, 

or that P and Q together are equivalent to the single force which 

is their vector sum. 

71. It will now be unnecessary to prove the parallelogram 
law for other vectors. The student will find no difficulty in 

proving it for momenta or impulses. All other vectors which 

are used in this book will likewise obey the parallelogram 

law, though there are quantities of which angular displace¬ 

ment is the most important, which require magnitude and 

direction to express them, but which do not follow the parallelo¬ 

gram law. Such quantities are called vectors by some writers, 

though others refuse them the name. 

72. Resultant and Components. 
The force that is equivalent to two given forces is called 

the resultant of the two, and the two are called the components. 
From what has gone before it will be seen that if two forces 

are given, there is only one possible resultant; but if the 
resultant is given, it can be replaced by two components in 

an infinite number of ways. 

B C 

Thus if OC represents a force, it is only necessary to draw 

any two lines through O and parallels through C, and we get 
components OA, OB together equivalent to OC. 
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The most important case is where the components are at 

right angles, the components being then usually called resolved 

parts or resohctes of the force. 

Pig. 46. 

Let P be the magnitude of the resultant force, and suppose 

it is required to find the resolved parts when one of them 
makes an angle 6 with the resultant. 

Let Pj, Pg be the resolved parts. Drawing the parallelogram 

OACB, which is now a rectangle, we have 

OA 

OC 
cos 0, 

but OC represents P, and OA represents Pj; 

/. Pj = Pcos0, .(1) 

similarly, P2 = P sin 0, .(2) 

by squaring and adding (1) and (2), we have 

P2==Pi2 + P2^ .(3) 
and by dividing (2) by (1), 

tan0 = ^ .(4) 

(3) and (4) also follow at once geometrically. 

(1) and (2) give the resolved parts in two directions at 

right angles when the magnitude and direction of the resultant 

are given, (3) and (4) give the magnitude and direction of the 

resultant when the resolved parts in two directions at right 

angles are given. 

73. When the components make any angle a with 
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another, the equations are rather more complicated. Using 

the other letters as before, we have from the figure: 

B C 

p2 Pj2 ^ p^2 4. 2P^P^ cos (X .(5) 

. Pysince . . 

+ PjjCOS oc ' 

Psin((x-e) 

* sin a ’ 

.(«) 
sm a. 

all following from elementary trigonometry. They should be 

verified by the student. 

Eaximple. Shew that equations (5)-(8) reduce to (1)‘(4) if ol is a 
right angle. 

74. It is important to observe that the resolved part of 

a force in any direction is obtained by multiplying the force 

by the cosine of the angle between it and the given direction. 
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Also it follows i\mi—The. mm of the resolved parts of two forces 

in a given direction is equal to the resolved part of the resultant in 

the same direction. 
For in the figure OM is the resolved part in the direction 

Ox of Pj ; MN -=AK = OL and is the resolved part of P,; while 

ON is the resolved part of P in the same direction, and 

OM +MN=:ON. 

75. More than two Forces. 
When we consider the action of more than two forces we 

can proceed by steps. Thus, if OA, OB, OC represent three 

forces acting at a point, OA and OB can be combined into a 

single force OE, and then OE and OC into a single force OF, and 

evidently OF is equivalent in its action to (or is the resultant 

But the best way to deal with three or more forces is to 

extend the theorem of the last article. It will be easy to 

see that the following result must hold : 

The sum of the resolved parts in any direction of a mimher 

of forces or other vectors is equal to the resolved part, in the same 
direction, of their resultant. 

76. Application of the foregoing Principles. 
In applying the above to examples it is usually most con- 

venient to replace each force by its resolved parts in two 

chosen directions. 
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Thus, if we have a number of forces P making an angle ol 

with OXy Q, making an angle etc., these forces can be 
replaced by resolved parts : 

P cos a +0, cos fi + etc. along Ox, 

and P sin a + Q sin ^ + etc. along Oy, 

Under the influence of such forces a particle of mass m 
will have an acceleration whose components /i, along Ox 

and Oy are given by vp cos a = w/,, 

sin OL == 

Having obtained each component of the acceleration, the 
components of the velocity and the distances described in 
each of the two directions are to be obtained, if possible, by 

the methods of the previous chapters. 

In the following examples the particle moves in a straight 
line, and it is best to choose the directions for resolving the 

forces, one along the line and the other perpendicular to it. 

EXAMPLES. 

1. A body moves along a line of greatest slope of a smooth inclined 
plane under the action of 
gravity alone. Find the 
acceleration, and also the 
pressure on the plane. 

In this case the only forces 
are the weight mg acting 
vertically and the pressure R 
of the plane, which is perpen¬ 
dicular to the plane, since this 
is smooth. If the plane makes Fio. 61. 
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an angle ol with the horizontal, the force mg can be resolved into 

mg COB a perpendicular to the plane, and mg sin ol down the plane. 

Hence, if /== acceleration down the plane, 

mf—mg sin ol ; 

/=:gfsina. 

Also, taking the forces perpendicular to the plane, since there 
is no motion and therefore no acceleration in this direction, 

R — mg cos ol—0 ; 

R = W^C08 0L. 

2. Suppose in the previous example the plane is not smooth, 
and the coefficient of friction between the plane and particle is 
find the motion. 

The result will depend on whether the particle is moving up or 
down the plane, for in one case the friction is downwards and in 
the other upwards. 

The forces are consequently as marked in the Figs. 52 and 53. 
In 52 let/= acceleration down the plane, we have 

resolving along the plane, 

/xR + mgp sin ol= mf; 

perpendicular to the plane, 

H-mg cos ol=0 ; 

/. mf— cos ol+ sin a ; 

f— g sin cL + jjjg cos ol. 

In Fig. 53 in the same way the acceleration down the plane will be 

g sin OL- fjbg cos ol. 

3. A train of 160 tons weight is drawn from rest down an incline 
of 1 in 200 against a frictional resistance of 11-4 lb8.-wt. per ton, 
and gets up a velocity of 36 miles an hour in 2 mins. If the force 
exerted by the engine is constant, find the force and also the greatest 
horse-power developed. Find also what horse-power would be 
deveipped in drawing the same train up the incline with a constant 
velocity of 36 miles per hour. 
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An incline is said to be 1 in 200 when there is a rise of 1 ft. verti¬ 
cally for 200 travelled along the incline, thus the sine of the angle 
of inclination is 

The forces acting in the first (;ase are : 

(1) the weight 160 tons or 160 x 2240 x 32 Ibis., 

(2) the friction 160 x 114 lbs. wt. = 1824 x 32 Ibis., 

(3) the normal reaction R, 

(4) the force P exerted by the engine. 

There is a constant acceleration, and the velocity of 36 miles 

fjcr hour, or 36 xl^ ft. per sec., being generated in 120 secs., the 
acceleration is 

o/s 44 I 44 ^ „ 
36x^Xt2^=^ fr./sec-. 

30 

Hence, resolving the forces along the plane, 

1 
P+ 160 X 2240 X ^ X ^52- 1824 x 32 = 160X2240X 

44 

P= 16 X 224 X 44-f 1824 x 32 

16 x 224 x 44 

100 
1792x32 Ibis. 

32 

= 4928+1824- 

= 4960 lbs. wt. 

+ 1824-1792 lbs. wt. 

1792 

The horse-power will be greatest when the velocity is greatest, 
and then equals 44 ][ 
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If the train were travelling up the plane with constant velocity, 

the forces would be similar to the preceding, but if P' is the force 

up the plane, 

?"= 160 X 2240X 1824 lbs. wt. 

= 1792+ 1824= 3616 lbs. wt. 

ooin •‘16x44 1 , 
II.P. = 3016 X —- X - = :347 nearly. 

4. A body is projected up a smooth plane of inclination SO*" with 
velocity 16 ft./sec., how far up the plane will it go ? 

6. A body slides 12 ft. from rest down a smooth incline of 1 in 5. 
Find the time taken and the final velocity. (The incline rises 1 ft. 
in going 5 ft. along the plane.) 

6. A train runs from rest without steam for half a mile down 
an incline of 1 in 112. If the friction is 12 Ibs.-wt. per ton, find 
the velocity generated and the time taken. 

7. A body is projected up an incline of 30® with velocity 20 ft./sec. 
If the friction is always of the weight of the body, find the dis¬ 
tance the body will go up the plane, the velocity with which it returns 
to the starting point, and the time of siscent and descent. 

8. A body is projected up an incline of 20° with a velocity of 
30 ft./sec. If the coefficient of friction between the body and the 
plane is 0*25, find the distance it goes up the plane and the velocity 
with which it returns to the starting point. 

9. Particles slide down a series of smooth wires starting at the 
same point and ending in the same horizontal line. Shew that the 
time taken is proportional to the length of the wire, and the velocity 
generated is the same for all. 

10. Particles slide down a series of smooth wires starting at the 
same point and ending in the same vertical line. Find an expres¬ 
sion for the time taken and shew that it is least for the chord which 
makes an angle 45° with the vertical. 

11. A train runs from rest without steam down an incline of 1 in 
112 for half a mile and then comes to a level line. How far will it run 
on the level if the resistance is 15 Ibs.-wt. per ton throughout ? 

12. A train of 180 tons is travelling on an incline of 1 in 120 at 
40 miles/hr. What force will be required to stop it in 200 yds., 
(1) when the motion is uphill, (2) when it is downhill ? 

13. A train of 90 tons is drawn up an incline of 1 in 150 by an 
engine exerting a constant force of 2 tons weight, the frictional 
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resistance being 15 Ibs.-wt. per ton. After 3 minutes from rest 
steam is shut off. Find (1) the maximum velocity, (2) the time to 
come to rest, (3) the total distance travelled. 

14. A train runs from rest for a mile down an incline of 1 in 140, 
and then comes to an upward incline also of 1 in 140. How far 
will it run up this incline if the friction is 12 Ibs.-wt. per ton, steam 
being shut off the whole time ? 

15. A train of 240 tons weight is drawn up an incline of 1 in 100 
at the rate of 20 miles/hr. If the friction is 11*5 Ibs.-wt. per ton, 
what is the horse-power of the engine ? 

16. What is the maximum velocity with which a train of 180 
tons can be drawn up an incline of 1 in 160 if the horse-power of the 
engine is 225 and the friction 12*5 Ibs.-wt. per ton ? 

17. Compare the maximum velocity up and down an incline of 
1 in 200 when the friction is 14 Ibs.-wt. per ton and the horse power 
is given. 

18. If the maximum velocity of a train up an incline a is r, and 
up an incline nJ is ?/, prove that 

?/ _ 1 + ^ sin fx 
v~~ \ -\-n sin il ’ 

the friction being 1//? of the weight. 

19. If the maximum velocity for a train of 2(K) tons on the hori¬ 
zontal is 50 milcs/hr., and up an incline of 1 in 80 ip 15 miles an 
hour, find the horse-power and the resistance. 

20. A train of 200 tons wt. gets up a velocity of 30 miles per 
})our in 2 mins, from rest travelling down an incline of 1 in 280, 
and friction is 13 Ibs.-wt. per ton. If the force exerted is con¬ 
stant, find its magnitude. What would be the least horse-powei 
capable ot obtaining the above result ? 

21. A train of 240 tons weight running at a uniform speed of 
30 miles/hr. on a horizontal line comes to an incline of 1 in 144. If 
the force exerted by the engine is increased by 50 per cent, above 
what was required on the level, and remains constant, in what time 
will the velocity drop to 20 miles/hr., the frictional resistance being 
always 12-6 Ibs.-wt. per ton. 

22. If in question 21, instead of the force being increased by 50 per 
cent., the horse-power remains unaltered, find the acceleration on the 
incline initially and when the velocity has dropped to 20 miles/hr. 

23. If an engine can draw a train of 200 tons weight at a maximum 
velocity of 35 miles an hour on the level, at what rate would it 
draw it up an incline of 1 in 80, friction being 12 Ibs.-wt. per ton 
in each case ? 
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84. A train of in tons weight gets up a velocity v miles/hr. on 
an incline oc in t secs, from starting. If the friction is n Ibs.-wt. 
per ton, find the force exerted by the engine (supposed constant) 
and the horse-power developed at the end of the t secs. 

26. A train running at 40 miles/hr. comes to the foot of an incline 
of 1 in 160 with no steam on. If the resistance is II Ibs.-wt. per 
ton, find the distance it will ascend the incline, the velocity with 
which it returns to the foot of the plane, and the time of ascent 
and descent. 

26. A mass of 20 lbs. is drawn up a smooth plane of inclination 
20° by a mass of 15 lbs. hanging vertically and attached to the 
first by a string passing over the pulley at the top of the plane. 
Find the acceleration. 

27. A weight P hanging vertically draws Q up a smooth incline 
of 30° in half the time that Q hanging vertically would draw P 
up it. vShow that P -.]Q. 

28. A mass of 6 lbs. hanging vertically draws a mass of 9 lbs. 
up a rough plane of inclination 1 in 3. Find the acceleration if 
the coefficient of friction is 0*3. 

29. A mass of 10 lbs. is drawn up an inclined plane whose height 
and base are in the ratio 3 to 4 by a weight of 10 lbs. hanging verti¬ 
cally. If the mass moves 5 ft. in 2J secs, from rest, find the coefficient 
of friction. 

30. A mass of 10 lbs. is drawn up a rough incline of 30° by a 
weight of 9 lbs. hanging vertically. The coefficient of friction is 
0*4, and after the bodies have been moving for 3 secs, the string 
breaks. Find (1) the total distance travelled up the plane, (2) the 
time till the body comes to rest, (3) the time it takes to descend the 
plane again to the starting point. 

31. If P hanging vertically draws Q up a smooth incline of 15° 
with acceleration g/3, what will be the acceleration if the inclination 
is increased to 25° ? 

32. Two masses, 10 and 5 Ibs.-wt. respectively on smooth inclines 
of 30° and 45° placed back to back, are connected by a string passing 
over a pulley at the top of the planes. Find the acceleration. 

33. Two masses, 10 and 20 Ibs.-wt., are placed on two smooth 
planes back to back, the sines of whose inclinations are 0*6 and 
0*8 respectively. They are connected by a string passing over 
the intersection of the planes and perpendicular to it. Find the 
acceleration of the weights, and tension of the string. 

Find also the acceleration if there were friction and the coefficients 
of friction between the planes and weights were respectively 0*3 
and 0*4. 
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34. Two particles are connected by a string passing over a pulley 
at the top of two smooth inclined planes placed back to back. 

If the masses are m, w, and the inclinations of the planes a., 
find the acceleration of each. 

36. A particle of mass m slides from rest down the smooth face 
(of inclination ol) of a wedge of mass M resting on a smooth hori¬ 
zontal table. Find the motion of the particle and of the wedge. 

The forces on the particle are : 

(i) its weight mg vertical, * 
(ii) the pressure R of the wedge perpendicular to the face. 

The forces on the wedge are : 

(i) its weight M{/, 
(ii) the pressure R of the particle on the wedge, 

(iii) the pressure S of the table (vertical because the table 
is smooth). 

Let /= acceleration of the w^edge to the right, 

/'— „ „ „ imrticlc relative to the wedge. 

Then the acceleration of the particle is the resultant of / and /', 
and its components are /'—/cos a, along the face of the wedge 
downwards, and /sin a. perpendicular to the face ; therefore the 
equations for the particle are along the face 

m{f' —/cos cl) — mg sin a, ...(1) 

perpendicular to the face 

mf sin cL~mg cos ol— R.(2) 

For the wedge horizontally, 

IVl/= R sin OL.(3) 

From (1), /'-/cos OL—grsin OL...(4) 

From (2) and (3), eliminating R, 

/(M + m sin*a)=w^ sin ol cos ol ; .....(5) 

M 4" sin=^0L 

. M-fm 
/ =/cos OL 4- a sin OL = -. V - • g sin ol. 

^ IVI+msin^oL ^ 
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36. A wedge of mass M, whose faces are inclined at angles ol, ^ 
to the horizontal, moves on a smooth horizontal table. Two par¬ 
ticles of masses m, m' move on its smooth faces, being connected 
by a string passing over a light pulley at the top of the plane, and 
lying in a plane perpendicular to the line of intersection of the 
two faces. Find the motion of the particles and wedge. 

The forces acting arc as marked in the figure, 

(1) on m, niffy R, T ; 

(2) on m'y fu'gy R', T ; 

(3) on M, R, R' (the reactions to the above), 

T, T (reactions to the former T and T, 
and acting on the i)ulley, which may be considered as a part of 
the wedge. These forces are represented by the arrow-heads close 
to the pulley). 

Also Mr/ and S. 

Let /—acceleration of M to the right, 

f' „ „ 7n relative to the wedge down the first 
face ; 

„ m' relative to the wedge up the second 
face. 

the component accelerations of m are 

f'-f cos a along the first face do\^Tiwards, 

/sin a. perpendicular to the first face and towards the wedge ; 

the component accelerations of m' are 

/'— /cos P along the second face upwards, 

-/ sin P perpendicular to the second face towards the wedge. 

Hence the equations are : 

for m along the face. 

m if' -f cos a)=r/igf sin a - T ; (1) 
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jxTj)endicular to IIk' 

mf sin «. = mg cos oc- R; .(2) 

for m' along the face, 

m'(f'~fco&^)=T-m'gnn /9 ;.(3) 

perpendicular to the face, 

- mff sin p—rn'g cos ^ — R'.(4) 

For M, M/- R sin OL- R' sin (i+T cos ^ — T cos m.(5) 

Giving five equations for the five unknowns/,/', R, R', T, which 
can consequently all be found. 

37. A particle of mass 4 lbs. slides from rest down the smootli 
face of inclination siri ~^ of a wedge of mass 12 lbs. which can slide 
without friction on a horizontal table. Find the acciderations of 
the particle and wedge. 

77. Work. 
We have defined work done by a constant force as the 

product of the force into the distance the point of application 

moves in the direction of the force. Tliis definition is still 

complete in any case if we understand the distance the point 

of a^yplication ^noves to be the same as the resolved part, in the 

direction of the force, of the displacement of the point of apphadion. 

Thus, in the figure, if the point of application moves from 

A to B while the force kee])s its magnitude and direction 

unchanged, the work is estimated l)y the product 

P . AN-P . AB cos 0. 

This can also be ex¬ 

pressed as the displace¬ 

ment multiplied by the 

resolved part of the 

force in the direction 

of the displacement. 

Work, it should be noticed, is a scalar quantity not involving 

direction in its specification. This follows from the next 

article, which shows that simple addition and not composition 

by the parallelogram law is required in combining quantities 
of work. 

N > 

Fig. 68. 
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78. Case of several Forces. 
The work done by the resultant of two forces is the sum of 

the amounts of work done by each force separately. For if 
P, Q are two forces acting on a particle and the particle is 
displaced from A to B, the sum of the amounts of work done 

by P and Q is AB(P cos ol cos p). 

where a, ^ are the angles P and Q, make with AB. 

But Pcosoc+Qcos^ is the sum of the resolved parts of 

P and Q along AB, and therefore equals the resolved part 

of the resultant along AB (Art. 75); 

the above amount of work is equal to the work done 

by the resultant. 

The same result evidently holds for any number of forces. 

79. Similarly, if a force remains constant in magnitude 

and direction while the point of application undergoes two. 

successive displacements, the total work done is the same 
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as if the point of application had undergone a single displace¬ 

ment equal to the resultant of the two. 

For in the figure the work done by the force P in the dis¬ 

placement OA is P . OM, and in the displacement AC, P . MN ; 

the total work done is P . ON, which is the work done 

in the resultant displacement OC. 

The same result will follow if the point of application under¬ 

goes any number of successive displacements. It will still 

be true if we have an infinitely large number of infinitely 

small displacements so that the point of application may 

move in any curve, and we get the following result : 

The work done by a force, constant in magnitude and direction, 

as the point of application moves from one position to another, 

is itidependent of the path described by the point of application; 

or, in other words, depends only on the mitial and final positions 

of the point of application. 

In many cases besides that in which the force is constant 

in magnitude and direction, the work done depends only on 

the initial and final positions, and in such cases the forces 

are said to be conservative. In cases where the work done 

is different for different paths taken, as is usually the case 

when friction comes into play, the forces are said to be non¬ 

conservative. 

80, Work done by a varying Force. 
We will now examine the work done when the point of 

application moves in any path, and the force varies both 

in magnitude and direction. 

Suppose the point of application moves from A to B along 

any given path. It will be necessary to divide this path up 

into a large number of very short portions, so short that they 

may be considered straight, and of which Qr -1 Qr is taken 

as a type. During this short distance the force may be 

regarded as constant in magnitude and direction, being P^, 
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making an angle 6,. witJi then the work done from 

Qr-i to Q|.is P;.. cosO,. = P,.5,.cos6>., where 5r = Qr_iQr, 

and the total work for the whole path = 2p,.5;. cos 6r» 

A 
Pig. 01^ 

This becomes more and more accurate the larger the number 

of divisions in AB. If the number of parts like Qr-^Qr is n, 

the accurate expression for the work is 

Lim ^ P^.sv cos Of. 
// —»• or, 

There is no difficulty in representing this w^ork graphically. 

Draw a straight line OC representing the whole length AB, 

and take it as axis of x. At each point draw an ordinate 

FIG. 62. 

representing the resolved part of the force in the direction 

of the tangent (that is, P^ cos 6, ) at the corresponding point 

of the curve AB. We will thus get a graph, the area of which 

represents the work done between the extreme points. 
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Example 1. A man of 12 stone weight climbs a hill 220 ft. high 
in 7 mins. Find the amount of work he does and his average 
horse-power. 

2. If a body just slides down an incline without acceleration, 
shew that the work done by gravity is equal to the work done 
against friction. 

3. Find the work done in dragging a body of 40 kgms. 5 metres 
along an incline if the vertical height travelled is 3 metres and the 
coefficient of friction 0-4. 

81. Centre of Mass of a System of Particles. 
If two particles P, Q have masses Wo, the point which 

divides PQ in the ratio : % is called the centre of mass 

of the two. Thus, let the positions of two particles P, Q of 

O M K N 
Fig. 63. 

masses be given by the coordinates and 

and let the coordinates of G, their centre of mass, be a?, y. 
Draw from P, G, Q perpendiculars PM, GK, QN to the axis 

oix. Then OIVl=a-^, 

ON = Xi2, 

OK = a:, 

MK = iC“ ajj, 

PG , 

QQ 
. MK m^. 

** 

and since 
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Similarly, 

(;c - ^2 - .r); 

_ + 7n,/,y 

mj + r/Zg 

4- V//2 

If there is a third particle R of mass at and H 

is the centre of mass of a particle mi + m2 at G, and m3 at R, 

H is called the centre of mass of the three m^, mg, m3. 

The X coordinate of H is 

hiL + 7n,.) - -+ trioXo 
^ ^ 4- ^ 

(mj 4- mg) +* ^^3 

7?/.^ 4- WgiTg 4- 777 

771^ 4- 7??2 4- 7/^3 ^ 

and for any number of particles we may define the centre of 

mass as the point whose coordinates (which we shall denote 

in future by ;r, y) are 

- _ 7n^ 4- 7/72iTg 4- 4-... _ -7mr 

7//^ 4- 7)7.2 4- m3 4- . .. ^7/7 

^ 1'///// 

■’'= v„r 

82. If the particles are moving in any way, the centre of 

mass will also move (in general), and may be said to have a 

velocity and acceleration. 

Let Xj, iji be the coordinates of m^ at time t; 

T/j, Vi be the component velocities along Ox and Oy of 
mj at time t; 

fv 9i Ill® component accelerations of m^ at time t; 

Xy y be the coordinates of the centre of mass at time t; 

7^, V be the component velocities of the centre of mass 

at time t; 

/, g be the component accelerations of the centre of mass 

at time t; 



FORCES IN TWO DIMENSIONS 137 

and denote by dashed letters the corresponding quantities at 

time t\ Then 
X -x = 

'Emx' 

'Em 

Em(x - 

Em 

Emx 
Em 

-x) 

_ ^. X - X , . E7n(x -x) 1 
U ~ Lim -n 7- - Lim -^ -TT 7 

t - t Em t - t 

J . 1 x' -X 
= Lim ~ Em . -j 

Em t -1 

uEm=^Emu.(2) 

Now 2mti = the total momentum in the x direction of all 

the particles, and uEm is the momentum in the same direction 

which a particle of mass Em would have if moving with the 

velocity of the centre of mass. 

Hence the equation (2) expresses that the total momentum 

in the X direction of all the particles is the same as that of 

a particle equal to the total mass and moving with the velocity 

of the centre of mass. 

83. Similarly, 

/= Lim 
u - u 

= Lim 
/Emu' 

\ Em 

Emu\ 1 

Em / t' - t 

= Lim 
Em{u'-u) 1 

= Lim 
u 

7 

^rnf 

/Em = Emf. (3) 
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Now '^fuf is the sum of all the coin])oneiit.s of the forces 

actually acting on the separate particles. Hence equation 

(3) expresses the fact that the acceleration of the centre of 

mass in the a?-di recti on is the same as that of a mass equal 

to the total mass of the particles and acted on by the forces 

which actually act on the separate particles. 

'Ewf is the sum of all the components in the aj-direction of 

all the forces acting on all the particles, including forces due 

to the action between any pairs of the particles. But any 

forces that exist between a pair of particles are of equal magni¬ 

tude on the two and act in opposite directions on them, and 

hence in adding up the resolved parts these cancel one another. 

These actions and reactions (called internal) between different 

pairs of particles consequently disappear from the expression, 

and the only forces that need be considered are the external 

forces ; that is, those due to some external system. If Xj is 

the component in ihe ^r-direction of the external force acting 

on mi, we may write the above equations : 

xT>m — ^mXy 

u2m = 

and 2X is the sum of the x-components of all the external 

forces acting on the system. 

Also, I'm = total mass of the particles 

= M, say, 

and the equation m/==2x 

expresses that the acceleration of the centre of mass in the 

a;-direction is the same as that of a single particle whose mass 

is the total mass of the particles, and which is acted on by 

the x-components of the forces. 

As the same applies to the ^-components, it follows that 

the resultant acceleration of the centre of rnass is the same as 

that of a single j^artide whose mass is the total mass of the 
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particlesy and which is acted on by forces the same in direction 

and magnitude as those actually acting on the separate particles. 

A simple case of this has been used extensively already— 

namely, it has been possible to treat a train as a single particle, 

though the different forces acting on it may not necessarily 

act through one point. 

The effect of gravity on a body can always be regaided as 

a single force acting through the centre of mass, and con¬ 

sequently, if a body such as a stick is thrown into the air 

its centre of mass will move in exactly the same way as if it 

were a single particle, provided air resistance is neglected ; for 

example, rotation of the stick will not affect the velocit}' of 

the centre of mass. 

Even if a body, such as a shell, projected in vacuo explodes, 

the centre of mass of the body continues to move in exactly 

the same way as it would have done if the explosion had not 

taken place, for the impulses due to the explosion acting on 

the different parts of the shell counterbalance one another 

when taken together, and therefore the velocity of the centre 

of mass is unaltered by the explosion. 

84 If there are no external forces with resolved parts in 

the .x-direction, 2x — 0 ; 

/-O; 
7? = constant, 

or the x-component of the velocity of the centre of mass is 

constant. * also = constant, 

or the sum of the component momenta of the particles in this 

direction is constant. 

If there are no external forces at all, the centre of mass 

moves with uniform velocity in a straight line, and the sum 

of the momenta in any direction is constant. 

This result is generally called the principle of the conser¬ 

vation of momentum. 
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It will be noticed that nothing has been said about the 

manner in which the particles move among one another. In 

fact, the theorems are true whether the particles move about 

like the molecules of a gas, or like the sun and planets in the 

Solar System, or whether they preserve the same positions rela¬ 

tively to one another as in a heavy body thrown into the air. 

Example 1, Two particles of masses m, m' move in a vertical 
plane on the smooth faces of a double inclined plane, being con¬ 
nected by a string passing over the top. Find the acceleration of 
the centre of mass of the two. 

Fig. 64. 

The forces are as marked in the diagram. Let /—acceleration of 

m down the plane, mg am a.- T, 

m'f— T - m'g sin p, 

. m sinOL-m' sin 6 

The horizontal and vertical components of the acceleration of 

^ ^re f cos CL to the left, 

/ sin CL downwards, 

and of m', f cos p to the left, 

/ sin P upwards ; 

the components of the acceleration of the centre of mass are,— 

(i) horizontally to the left, 

mf cos OL-f m/cos P 

m+m' 

_{m cos CL-{-m' cos p){m sin cl-w! sin p) ^ _ 

(ii) vertically downwards, 

mf sir CL - m'f sin p 

m+m' 
_ (m sin cL-m' sin P)^ 

(m+my 
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2. Tho weights in an Atwood machine are m, m'. Find the 
acceleration of their centre of mass. 

3. Two masses of 3 and 2 Ibs.-wt. travel with uniform velocities 
5 and 10 ft./sec. along linos at right angles, find the velocity of their 
centre of mass in direction and magnitude. 

4. Two masses of 6 and 4 lbs. move along two straight lines 
00*, Oy at an angle 60° with one another, with constant velocities 
10 and 20 ft./sec. When the second is at O the first is 5 ft. from 
O. Find the direction and magnitude of the velocity of the centre 
of mass, and also the position of the line along which the centre 
of mass moves. 

EXAMPLES. 

1. A submarine leaves a point P and travels with uniform velocity 
10 miles/hr. south-west. At the same instant a destroyer leaves Q, 
which is 5 miles south of P. If the destroyer steams at 30 miles/hr., 
in what direction should it steer in order to ram the submarine, and 
how long after the start will they meet ? 

2. Two men A and B are at a distance 10 miles apart, and A is due 
north of B. A starts walking with velocity 4 miles/hr. south-east, 
and at the same time B starts walking 3 miles/hr. north-east. Find 
the time from the start when they are nearest one another, and their 
distance apart, at that time. 

3. A steamer can travel 12 miles an hour in still water. vShe 
apparently sails due east as shewn by the compass, but there exists 
a south-east current with a velocity of u miles an hour which causes 
her true course to bo 15° S. of E. Find u and the resultant velocity. 

4. A, B are two ships which steam at the same rate, and are 
initially at points P, Q at a distance a apart. A steams at right 
angles to PQ. Shew that if B steams so that the least distance 
between A and B may be ka-y its course will make an angle 2 sm~^k 
with PfSy and that if it steams so that it may get within a distance 
ka in as short a time as possible, its course will make an angle 2 tan“^ k 
with A’s. 

5. A point P moves with uniform velocity u along O.r, and Q 
moves with uniform velocity v along Oy. At one instant OP-au^ 
OQ ~bv. Shew that the least distance between P and Q is 

/ 1,. • /I 1 2 (a - 6) sm OL ( -.4- „-cos (x. , 
' ' \w* v® uv j 

where the angle aOy -n.. 

6. A particle of mass 20 lbs. on a smooth horizontal plane is 
pulled by two horizontal strings at an angle 60° with one another, 
with forces 3 and 4 Ibs.-wt. ; if the directions and tensions of the 
strings are kept constant, find the position and velocity of the 
weight at the end of 3 secs, from rest. 
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7. A particle P is moving at a certain instant in the direction 
PX with a velocity of 30 cm./sec. After 10 secs, it has moved 
4 metres along PX and 1 metre perpendicular to PX. If the accelera¬ 
tion is uniform, prove that it is 2-828 cm./sec^. at an angle 45° 
with PX, and the final velocity is 53*85 cm./sec. 

8. A particle of mass m describes a regular polygon of n sides 
with uniform speed v. Find the magnitude and direction of the 
impulse required to be given to it at each angular point. 

9. One particle slides down a smooth inclined plane of inclination 
30° and a second drops vertically, both starting together from the 
top of the plane. Find the relative velocity in direction and magni¬ 
tude at the end of 3 secs. 

10. Two points P and Q are describing concentric circles of radii 
a and h and centre O, with velocities u and v. Find the velocity 
of P relative to Q when the angle POQ is 9^ and find 9 when 

(i) the relative velocity is along PQ, 

(ii) the component relative velocity along PQ is greatest. 

11. An engine exerting a constant force draws a train of 50 tons 
weight up an incline of 1 in 100 and attains a velocity of 30 miles/hr. 
in 3 mins. If there is a frictional resistance of 10 lbs.-weight per 
to3i, what is the tension of the coupling of the locomotive ? 

Discuss the horse-power. 
v‘^ 

12. If the frictional resistance to a train is Ibs.-wt. f)er 

ton where v is the velocity in miles/hr., prove that if the train runs 
down an incline of 1 in 112 without steam on, the maximum velocity 
is 58 railea/hr. 

13. If the resistance is 6 +240’ ^ question, and a train 

of weight 160 tons is pulled up an incline of 1 in 200 by an engine 
of 360 H.P., shew that the maximum velocity is given by 

?;»+412817 = 202500, 

and shew that this gives a maximum velocity of 37 miles/hr. approxi¬ 
mately. 

Find also the maximum velocity down the plane. 

14. If the resistance is a+bv^ Ibs.-wt. per ton where v is the 
velocity in miles/hr., find the maximum velocity attained by a train 
running without steam down an incline of 1 in w. 

15. A mass of 20 lbs. moves down a rough inclined plane of 
elevation 45°, the coefficient of friction being 0-2. The air resistance 
varies as the square of the velocity, and is 1 Ib.-wt. when the velocity 
is 60 ft./sec. Shew that the terminal velocity is 168 ft./sec. nearly. 
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16. A body is projected with velocity w up a rough plane of 
inclination OL. If /ut(<tanoL) is the coefficient of friction between 
the body and the plane, find the distance the body goes up the 
plane, and the time until it returns to the starting point. 

17. Two masses of 4 and 6 lbs. moving with velocities 20 and 
30 ft./sec. respectively at an angle 60° with each other collide, and 
subsequently move as one body. 

Shew that the velocity of this body is 22-47 ft./sec. 

18. A shot of mass m is fired from a gun of mass M at rest on a 
horizontal plane. If the barrel is inclined at an angle a. to the 
horizon, and the explosion causes the velocity of the shot relative 
to the gun on leaving it to be w, find the initial horizontal and 
vertical components of the velocity of the shot, the velocity of the 
gun, and the energy due to the explosion. 

19. A shell travelling with velocity V breaks into two fragments 
one twice as heavy as the other. If the explosion adds an amount 
of kinetic energy equal to the original, and if the larger piece travels 
immediately after the explosion at an angle 45° with the previous 

direction of motion, shew that its velocity is V/v^ and that of the 

smaller VVB, and that the latter travels at an angle sin**^ l/\/5 
with the original direction. 

20. A shell travelling with velocity V breaks into two portions, 
one twice as heavy as the other. If the explosion adds an amount 
of energy equal to the original, and if the larger mass has a velocity 
V immediately after, prove that the velocity of the smaller becomes 

V2(3V* - v^), and that if the directions they make with the direction 
before explosion are a., a', 

cos OL =(V* +2t;2)/4Vv, cos =(5V* -2i;*‘)/2VV2(3V* - v*). 

21. A particle of mass m slides from rest down the rough face (of 
inclination ol) of a wedge of mass M capable of moving on a smooth 
horizontal plane. Find the distances moved by the particle and 
wedge in any time, taking the coefficient of friction to be p. 

y 
triangular prism of mass M rests with one face on a smooth 

horizontal table, the other two (smooth) faces are at right angles 
to each other. Two particles each of mass m are connected by a 
string passing over the middle of the upper edge of the prism. Shew 
that the acceleration of the prism is 

cos 2«./(2M sin 2a.), 

where a is the smaller acute angle of the prism. 

23. A rectangular block of mass m rests on a smooth horizontal 
table, and two particles each of mass m are attached to a string which 
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passes over one edge of the block, one of these hanging down, and the 
other moving on the smooth horizontal face of the block. 

If the system is allowed to move freely, find (1) the angle the hang¬ 
ing end of the string makes with the vertical, when this angle is 
constant, (2) the tension of the string, (3) the accelerations. 

24. A smooth prism of mass M moves with its edges horizontal 
down a plane of inclination i, the angles of the prism in contact 
with the plane being fx. and /3. A string passing over the upper edge 
of the prism carries masses m, m' at its ends which move on the 
smooth faces of the prism. Write down the equations of motion. 

25. A particle of mass m is in a rough inclined plane of inclination 
rx., the coefficient of friction being fx. A string from the particle 
passes over a smooth peg, and carries a mass M(<m) at the other 
end. Supp<.ising the peg is so far from m that the string can always 
be regarded as vertical, find the accelerations in motion up and down 
the plane. 

26. Two particles on smooth inclined planes of inclination ol, 13 
are simultaneously released from the same point on their line of 
intersection. Find the velocity and acceleration of the one relative 
to the other in direction and magnitude at any instant. 

27. Particles slide down a series of rough wires starting from one 
point and ending in the same vertical line, the coefficient of friction 
in all cases being /x ( = tan A); prove that the time taken is le^st down 

a chord which makes an angle - - with the vertical. 
4 2 

28. Particles slide down a series of smooth chords of a vertical 
circle starting from rest at the highest point. Shew that the times 
taken are the same, and the velocities generated are proportional 
to the length of the chords. 

29. A particle slides down a smooth wire from a point O to a 
line AB in the same vertical plane. Prove that if a is the distance 
of O from AB, and a. is the angle AB makes with the horizontal, and 
0 the angle the wire makes with the horizontal, the time taken is 

\^2alg sin ^ sin -fa). 

Hence shew that the least time from O to any point of AB is 

^^S0c ^ when the wire makes an angle ^ with the horizontal. 

30. Two equal weights slide down smooth wires in the same 
vertical plane, and start at the same instant from rest at the same 
point. If the weights are each 2 lbs., and the inclinations of the 
wires 15° and 75°, find the magnitude and direction of the accelera¬ 
tion of the centre of mass, and find the resultant momentum at the 
end of 3 secs. 



CHAPTER V. 

VECTOR METHODS. 

86. The work of the last chapter could be considerably 

shortened by a more extensive use of vector methods which 

are now so generally used in all the higher mathematics. In 

the present chapter we intend to give the simplest part of the 

vector work, and the rules relating to the algebra of vectors, 

deducing them from the laws obeyed by vectors relating to 

position. We shall repeat some of the previous chapter in 

this form, and the present chapter may be regarded as an 

alternative method of dealing with questions connected with 

parallelogram laws. 

Ordinary algebra, it will be noticed, deals entirely with 

scalars. 

Since we frequently want letters to denote the numerical 

magnitude of the vector only, we will use any of the following 

notations : 

Vector. Magnitude or Modulus 
of Vector. 

—> 
PP' ppr 

a, /i, etc. , |a.|, etc. 

A, V, etc. |A| or A, |v| or P, etc. 

In the notation PP' it is understood that the vector is to 
run in the direction from P to P'. 
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86. Two vectors are equal if the magnitudes are the same 

and their directions parallel. They need not be thought of 

as necessarily lying in the same line. 

87. Vector Sum. 
When three points O, A, P are in a straight line, if x is the dis¬ 

tance of P from A and x' the distance of A from O, then a; -f x' is 

the distance of P from O (with the usual convention of signs). 

P 

6 A P d 

Fig. 65. Fig. 66. 

In the same way if the position of P relatively to A is given 

by a vector /? and the position of A relatively to O by a vector 

a, we shall say that the position of P relatively to O is given 

by a vector (X4-/S. This consequently defines the meaning of 

the sum of two vectors. 
—>. —> —> 

OP is consequently called the vector sum of OA and AP. 

We can write this for shortness : 

OP = OA + AP 

using the sign for is equivalent to. 

Consequently, for any three points O, A, B, 

OA+AB=OB; 
-7-  y 

hence we say AB = OB-OA 

Similarly, BA=a - ^8. 

Of course, from the meaning of a vector, we know that 

AB- --BA. 
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Notice particularly the following resultn, which the .student 

can prove at once : a + /9=)3 + a, .(1) 

m (a 4- /5) = mrx + mp, .(2) 

where m is any scalar; for example, a number. 

88. If now P moves in the plane considered and comes 

from a position Pj, whose vector relative to O is (Xj to Pg, 

whose vector is 0.2, the displacement of P is Pjp2, which we 

o 
Fig. 67. 

have seen is denoted according to our rules by If 

the point is at Pj at time tj and at P.^ at time then the ratio 

P P OC CXm 
or -f is the average velocity of the point during 

k ~h h~h 
the interval (giving both its direction and magnitude). As 

in the previous work, we get a definite idea of the velocity 

at a given instant by taking the interval inde¬ 

finitely short, thus : 2 

j . (X^ CLj 
v, = Lim \ 

ts-ft, 

Vj being the vector representing the velocity. In 

the same way, if the velocity at time (2 is V2» 

the vector denoting the acceleration is 

''2 U 

If Vi, Vj are represented by OQj and OQg, Q1Q2 represents 
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89. Composition of Velocities. 
Now, returning to the case where the position of P is given 

at time by a vector jSj denoting its position relatively to 

Qj and the position of Qj relatively to O by a vector rxj, and 

similarly at time : 

OP] =ai+^, 

OP, = a2 + iS],; 

.-. P]P2-a.^ + /?.-(fXi + ft} 

= (X2-(Xi + /32-/?], 

t h ~ h 

= Lim = + 

using Newton’s notation of a dot to denote the rate of change 
of a quantity. 

Now di is the velocity of Q relative to O at time 
t 

jSj is the velocity of P relative to Q, at time 

Hence we have, that the velocity of P relative to O is the 
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vector sum of the velocity of P relative to Q and of Q relative 

to O. 

This result is the composition of velocities as given in 

Art. 66. 

It is obvious now that the same result applies to accelera¬ 

tions ; thus, if P has an acceleration relative to Q represented 

by a vector p, and Q has an acceleration relative to O repre¬ 

sented by rx, then the acceleration of P relative to O is repre¬ 

sented by the vector sum a -f ft. 
The vector sum is the same as the resultant of the two 

vectors. 

The above results can be extended to cases where any 

number of vectors occur. 

Thus, if OQ, QR, RS, SP represent four vectors, OP will 

denote their vector sum, for 

—> —> —> 

OR = OQi +QR, 

OS = OR + ^ 

™ OQ +QR + R8, 

OP-OS-hSP 

= OQ + QR + RS + SP. 
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Hence, also, 

if the velocity of P relative to S is repiesented by a vector d. 
If 9> ^ >» >> R If if i> »» Yf 

if fi >» >» Q if if if if f^i 

ff >> Q „ „ o 
then the velocity of P relative to O is represented by a vector 

rx. + /? + y + d. This result for any number of velocities is called 

the polygon of velocities. 

90. Composition of Forces. 
What we have called the Independence of forces states that 

if P and Q be two forces (as vectors) acting on a particle of 

mass m, and if they would separately produce accelerations 

(X and p (also vectors), then when they act at the same time the 

acceleration produced is the vector sum a 4-/8. 

Hence the effect is the same as that of a single force 

m (a 4-/8). 

If we call this force R, we have 

R = m(a4-/3) = ma-fm/8 = P4-Q; 

that is, B is the vector sum of P and Q. 

Hence, if two forces act on a particle at the same time 

they produce the same effect as (and can therefore be replaced 

by) their vector sum. 

This is the parallelogram of forces. 

91. Work. 
It will be remembered that the work done by a constant 

force is defined as the product of the force into the distance 

the point of application moves in the direction of the force. 

If the force P moves the point of application from A to B, 

the work done is P . AB cos 6, where 6 is the angle between 

P and AB. 

This is a scalar quantity. 
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If we denote the force as a vector by P, and the displacement 

as a vector by p, the quantity of work done is denoted by 

P . p, and P . p is called the scalar product of P and p. 

So, also, if we denote any two vectors by a and and the 

angle between them is 6, the scalar product of the two is 

written oc . /S, and is defined as 

|a| I jSI cos 6, 

where | a |, | ^ |, are the magnitudes of a and 

Thus the scalar product is the product of the magnitude of 

one of the vectors into the resolved part of the second in the direction 

of the first. 

It is to be remarked that this is a pure matter of definition, 

the scalar product being defined in this way because it is a 

quantity that frequently occurs in physical questions. It 

must not be called the product of the two vectors, because 

there is another quantity which is called the vector product 

of two vectors, and the product will have no meaning 

given to it. The scalar product should be read a dot 

92. The following are the principal laws obeyed by scalar 

products: 

(1) a . /? . a from the definition. 

(2) If oc, p, y are any three vectors in the same plane, 

r-(a.+^) = 7.o(. + 7./3. 
F B.E.D. 
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For in the figure LN = A K = OM ; 

y. (a + ^) = |7|ON-|y|(OL4-OM) 

= I y IOL4-1 y I OM 

= y - oc + y. jS. 

Proofs of the following, where required, can be supplied by 

the student. 

Fig. 73. 

(3) If m is a scalar, 

(>/iOc). /5 = m(a . ^). 

(4) (a + ^) . (y + d) ==a . y + a . d + . y+ . d. 

(5) If rx, P are at right angles, 

(JL,p=0. 

(6) Conversely, if a . ^ = 0, we have three alternatives : 

either [aj =0, 

or 1^1=0, 

or cos 0=0, 

i.e. OL and /? are at right angles. 

(7) The scalar product of a vector by itself is the square 

of its magnitude, thus : 

a. a = {|M.|}^ 



VECTOR METHODS 153 

(8) The scalar product is positive if the vectors include an 

acute angle, negative if they include an obtuse angle. Thus : 

B 

in the figure, if the displacement is from A to B, the work 

done by the force is negative, or work is done against the 

force. 

93. Several Forces. 
The work done by the resultant of two forces is equal to 

the sum of the works done by the two forces separately. 

This is an example of (2) above, for, if P, Q are the two forces 

as vectors, P + Q is the resultant, and if oc is the displacement, 

the work done by the resultant 

= (P + Q). a=P . a + Q . a 

= sum of works done by each force separately. 

The same result evidently holds for any number of forces. 

Similarly, if a force remains constant in magnitude and 

direction while the point of application undergoes two suc¬ 

cessive displacements, the total work done is the same as if 

the point of application had undergone a single displacement 

equal to the resultant of the two displacements. 

As before, if a, P are the two displacements as vectors and 

P the force, the total work is P . oc + P . /?==P . (^x. +^), which 

proves the result. 

The results of this paragraph should be examined in con¬ 

junction with Fig. 73. 

94. Centre of Mass of a System of Particles. 
We have defined the centre of mass of two particles P, Q 

of masses mg as the point which divides the line joining 
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PQ in the ratio to m^. Thus, if a2 are the vectors of 

P and Q, and G is their centre of mass, we have 

PQi = a^-€L^; 
Wo 

PG = PQ = 
Wo 

W^ + Wg ' Wj + ?Wo 

fV2 

(Oo ~ ai); 
rc2 

Wo 

OG = an+-^ -(ao-oc.) 
^ ?/«.j+Wo “ ^ 

Wj + Wg 

Similarly, we can prove (as in Chap IV.) that if there is any 

number of particles of masses w^, Wg ... whose position vectors 

at time t are ai, OLg ... , the vector to the centre of mass 

is Denoting this by a, so that 

_ Swa 
OL = -^^r—y 

2w 

and supposing that at time t' the positions have become 

oc'i, OL'g ... , 

the centre of mass has come to a' where 

—, 2wa' 
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Similarly, if v^, Vg ... denote the velocities as vectors and 

V the velocity of the centre of mass at time t, 

Imcx! - 
V— Lim 

fX - (X 

~f^T 
= Lim- 

{t -1) 2m 

= JL 
2m t -t 

Lim 2mv 
1 

2m 

~ 2m 

or v2m = 2mv.(1) 

Now nirVr is the momentum (as a vector) of the mass 

and 2mv is consequently the vector sum of the momenta of 

all the particles, or, as we may call it, the resultant momentum 

of the system, and hence this equation expresses that the 

resultant momentum of all particles is equal to the momentum 

of a particle whose mass is the total mass of the particles, 

and which is moving with the velocity v with which the centre 

of mass moves. 

With similar notation. 

Since 
_ 2mv 

2m 

at time i', 
2mv' 

V 
27a 

11 

f2?/^ = 2?rtf = 2P.(2) 

Where fr is the acceleration (as a vector) of 

f is the acceleration (as a vector) of the centre of 

mass, 

2P is the vector sum of all the forces that act on 

all the particles. 
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Hence (2) expresses the fact that the acceleration of the 

centre of mass is the same as that of a mass equal to the 

total mass of the particles and acted on by all the forces 

which actually act on the separate particles. 

This may be interpreted as in the last chapter. For example, 

if there are no external forces, 

1P=0; 

f=0; 

v = constant, 

or the centre of mass moves with uniform velocity in a straight 

line, and the resultant momentum is constant. 



CHAPTER VI. 

SIMPLE HARMONIC MOTION. 

95. A simple case of motion in a straight line, and one of 
very frequent occurrence in nature, is the case where the 
particle is moving under the action of a force directed towards 
a fixed point in the line of motion, the force being proportional 

to the distance from the fixed point. This motion is called 

Simple Harmonic Motion. 
„ ___l__!_ 

0 P 

Thus if P is the position of the particle of mass m at any 

time, the force acting is represented by ^. OP and always 
acts towards O. 

Taking 0 as origin and 

OP = x, 

the force = - kx, 

and the equation of motion is therefore 

w/= ~kx, .(1) 

k being a positive quantity. Motion of this nature, or closely 
approximating to it, occurs in the particles of air in a sound 
wave, the particles of water in a wave on water, the vibrations 
of a pendulum or of a weight attached to a spiral spring, 
rocking chairs and rocking stones, vibrating rods, and so on. 

Since the force is the work done in any change of 
position can be calculated from the force-distance curve, which 
is in this case a straight line. 
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Thus the work done against the force in the distance 

is the area of the quadrilateral PiP2Q,>fli in the figure, or 

OP2Q2 - OP1Q3 = JOP2 . P2Q2 “ lOPi. PA 

= lkx2^ - \kx^ 

Fig. 76. 

and the loss of kinetic energy, - v^) being the work 

done against the force, 

and hence for all values of x and v, 

+ ^ remains unaltered. 
m 

IF 
It will be seen in the following articles that ^ continually 

appears in the equations, and it is therefore frequently the 

k 
custom to replace — by n^. The acceleration will then be - n^x. 

]c ^ ^ 
Since remains unaltered, as x increases v diminishes, 

m 

and consequently, if the particle is moving from the centre 

with any velocity at one instant, sooner or later its velocity 

must vanish or it comes to rest and begins to move back. 
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If a is the distance from the origin when the velocity vanishes, 

we have therefore v = 0 when x = a ; 

m m 

m ^ ' 

.(2) 

96. Now draw a velocity position graph in which, however, 

the ordinate instead of representing v itself represents VI 
putting 

the gra[)h is 

or 

?/ = ± 

+ a circle. 

Draw ordinates at two adjacent points Pj and Pg, and let 

them meet the curve on the negative side of Ox in Qj and 

Qjj- Then, as P moves along the line Oa;, think of Q 

moving in the circle. While P describes the distance 
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PjPg, Q describes the distance QjQg-* Draw Q^K perpen¬ 

dicular to P|Q]. 

Then the velocity of x vel. of P. 

But since Q^Q,2 is ultimately perpendicular to OQ,2> 

and Q^K is perpendicular to OP^ 

similar to APgOQg ultimately ; 

. QjQio OQo 

Q^K “Pg^/ 

. Q1Q2_ ^^2 ■ 

P,Po“P2Q2' 

/. velocity of Q = 
Q|Q-> 

P.Po 
X vel. of P 

and is therefore a constant. 

as P moves along the diameter AOA' with simple har¬ 

monic motion, Q moves with uniform speed round the circle. 

This important property is frequently used as a definition 

of simple harmonic motion, thus: If a point Q moves with 

uniform speed in a circle, and perpendiculars QP are drawn 

from Q to a fixed line, P is said to describe a simple harmonic 

motion. 

Now the circumference being 27ra, Q takes a time 

VrV‘' = 2-\/ 
to get round the circle. 

Consequently, P takes a time to get from A to A' and 

back to A again. This is called a complete oscillation of the 

particle ; and the time is called the periodic time, and it is 
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to be specially noted that this time does not depend on a. 

For example, the particle might be released from any point 

A under the action of this force, and the time taken for a 

complete oscillation would be the same however far oil A was. 

Equation (2) shews that the velocity is the same at the same 

distance on each side of the origin (i.e. same at distance x 

as at -x). 

As the time taken by Q to describe the whole angle 27r is VTtl • • • / 7/V 
—, an angle 0 is described in secs., or in t secs, an 

angle ^ —tis described ; 
V in 

if we measure the times from the moment when P is 

at A, at the end of t secs. 

Z.QOA=./^<; 
V Vi 

OP = acos\ " L 
\ m 

97. Collecting the results, and writing instead of ^ , we 

have that, if in any case 

f=-n^x,  (1) 

then v-= .(2) 

and if the particle is initially at rest, 

x^aco^nt, .(3) 

and the periodic time = ^.(4) 

a is called the amplitude. 
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From these we have also 

V— -na sinnt, .(5) 

the negative sign here replaces the ambiguous one, for it will 

be seen that (5) agrees with the fact that 

TT 

V is negative from t = 0 to f 

{i.e. while P moves from A to A'), 

and positive from ^ - to ^ — 
n n 

(while P moves from A' to A). 

98. We can now describe the motion more fully. Starting 

from rest at A, the particle moves with acceleration towards 

O, and therefore increasing velocity till it reaches O, where 

its velocity is a maximum and equals na. After passing O 

the acceleration is in the opposite direction to the velocity, 

and the velocity diminishes tmtil the particle comes to rest 

at the same distance a on the other side of O. It then starts 

to return and moves in exactly the same way as before, com- 

2'Jr 
pleting the whole oscillation in — seconds, each quarter of 

the path from A to O, or O to A', etc., taking the same time 

TT 
2“ secs. Notice that at the centre of the path the velocity 

has its maximum value na, while the acceleration is zero ; 

at the extremity of the path the acceleration has its maximum 

value n^a, while the velocity is zero. 

Example 1.. A particle starting from rest and moving with s.h.m. 

of period 18 secs, travels 10 ins. in 3 secs. Find the amplitude, 
maximum velocity, and velocity at the end of 3 secs. 

Here, from the equation (4), we have 
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hence from (3), since ^ when < = 3 sec., 

10 o\ TT a 

20 

* * ^ ~12 

20 
Vmax =na =r X -^0 582 ft./sec., 

, , 20 10 10 
and when <-.3. '"l2 " 12 ="12* 

r = Ji<>/a* '\l—^~j— =0'504 ft./sec. 
9 ’ 144 

obviously the lengths could have been left in inches equally well. 

2. If the velocity of a particle moving in simple harmonic motion 
is 6 ft./sec. when at a distance of 4 ins. from the centre, and 8 ft./sec. 
when 3 ins. from the centre, find the amplitude, time of oscillation, 
and maximum velocity. 

3. Draw a velocity-space graph for simple harmonic motion o£ 
I)eriod 4 secs, and amplitude 12 ins. 

4. A particle moves in s.h.m. of amplitude 13 ins., and has a 
maximum velocity of 13 ft./sec. Find its velocity at 5 and at 
12 ins. from the centre. 

5. If the amplitude in a.u.M. is 10 inches and the period 4 secs., 
find the times taken to describe the successive inches of the path 
from rest. 

6. In the last example find the distances travelled in each tenth 
of a second in the first second from rest. 

7. A particle moves in s.h.m. of amplitude 10 ins. and period 
5 secs. Find the time taken to travel 6 ins. from rest, and the 
time to travel the next 5 inches. 

8. A particle moving in s.h.m. of period 27r secs, has velocities 
of 3 ft./sec. and 2 ft. /sec. at points 1 ft, apart. Find the positions 
of the centre and extremities of the motion, and the maximum 
velocity. 

9. At three points in a straight line at distances of 1 ft. from one 
another the velocities of a particle moving with s.h.m. are 
respectively 8, 7, 4 ft./sec. Find the centre and extremities of 
the motion, the time of oscillation, and maximum velocity. 
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10. A body of mass 2 lbs. moving with s.h.m. of period 4 secs, is, 
at a certain instant, 6 inches from the centre and has a velocity 
of 3 ft./sec. At this instant an impulse of 4 Ibl.-second units is 
given to it in the direction of the motion. P’ind the original and 
new amplitude. 

11. A boy weighing 6 stone standing on a plank oscillates verti¬ 
cally in S.H.M. of amplitude 6 inches and period 1 sec. Find the 
greatest and least pressures exerted on the plank. 

12. A shelf oscillates vertically with simple harmonic motion 
of period J sec. Shew that if the amplitude of the oscillation is 
2-5 inches, an object on the shelf will leave it when it is nearly at 
the highest point of its path. 

13. A particle vibrating in simple harmonic motion of period 
4 secs, is at a given instant at a distance 5 ins. from the centre and 
moving towards the centre with velocity 1 ft./sec. Find the ampli¬ 
tude and time to reach the centre. 

14. Shew that the average speed in simple harmonic motion is 
0*637 of the maximum, and that the average acceleration (in magni¬ 
tude) is 0*637 of the maximum acceleration, the averages being 
taken with respect to the time. 

16. An air particle makes 500 oscillations per second of ampli¬ 
tude 10“^ cm. Find the greatest velocity of the particle and its 
greatest acceleration. 

99. Other Results. 

If the force instead of being lex is given by an expression 

— the motion is still simple harmonic, for it 

is only necessary to mark a point O' at a distance from 

H-1- 
O P 

FlQ. 79. 

the origin and the force becomes jfcxO'P, and the motion 

will be simple harmonic about O' as centre. 

It may not be convenient to measure the time from the 

instant at which the particle is at its extreme position. If, 

for example, the origin of times is taken t secs, after the 
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moment at which it is at the extreme position, the position 

is given by x-o cos w(< + t), 

or X = a cos (7Ue).(5) 

where € = /it. 

The angle € thus introduced is usually called the epoch. It 

is evidently the angle 6 of Fig. 78 when ^ —0. The whole angle 

or 7it + e is called the phase. Hence the epoch can also be 

called the initial phase. 

The velocity will now be given by the expression : 

V ■-= - 7ia sin (yit + f).(6) 

These equations may also be conveniently written : 

X = A cos nt B sin nt, .(5a) 

where A -- a cos e, 

B == - a sin € 

and then v~ - nA sin iit + cos yU.(6a) 

For examine, if the particle is projected from a point C 

at a distance c from the origin and in the direction from the 

origin with velocity u, we can determine a and e, for we have, 

when t - 0, from (5) c - a cos e ) 

and from (6) -na sin e f V 
tan e - uicn. 

With the same initial conditions it will be seen that (5a) 

becomes u 
= c cos nt-^~ sin nt, 

n 

EXAMPLES OF SIMPLE HARMONIC MOTION. 

100. Spiral Spring:. 
The simplest case of simple harmonic motion, theoretically, 

is where a body is on a smooth horizontal table and attached 
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by a spring to a fixed point, and the body is released from 

any point when the spring is not at its natural length, or 

projected with any velocity in the direction of the length of 

the spring. 

6 
□ 
p 

FIG. 80. 

Let O be the fixed end of the spring, 

OA the natural length, 

P the position of the body at any time, 

m the mass, 

kP^x (taking A as origin). 

In the figure when x is positive the spring is elongated and 

therefore in tension, and a force kx acts on m towards A, 

or a negative force. 

When X is negative the spring is compressed, and therefore 

a force hx acts towards A in this case also, or a positive force. 

The equation of motion is therefore correctly put 

mf=- -kx, 

and the motion is simple harmonic with the period 27r 

An important example of this is when an engine or truck 

possessing bufiers runs against fixed supports at the dead 

end of a line, also provided with bufiers of the same stiffness. 

Here, after the bufiers meet, the two springs act as a single 
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one with one end fixed and the other attached to the engine 

or truck. 

Numerical Example. A spring of natural length 1 ft. has one 
end attached to a point O on a smooth horizontal table, and a 
mass of 8 lbs. is attached to the other end. The spring is pulled 
out to a length of 15 inches, and the weight is then started with 
velocity 12 ft./sec. in the direction away from O. If the spring 
is of such stiffness that it would bo elongated 1 in. by a weight of ^ 
5 lbs. hanging vertically, find the time of oscillation and the maximum 
length of the spring in the subsequent motion, and the maximum 
force, acceleration, and velocity. 

The stiffness k is given by the fact that a force of 5 lbs. wt. elon¬ 
gates it 1 inch, or 1 

5>c32=>t-xl, 

k— 60 X 32 in absolute units. 

The equation of motion is, therefore, 

8/= -60x32a;; 

/= - 240a:. 

The motion is therefore simple harmonic of period 

=0-406 sec. 
v/240 

The velocity in any position is given by 

v~n4a^-x^y 

and since initially a:=3 ins. =J ft. 

and i? = 12 ft./sec., 

“•-B> 
giving a =0-814 ft. =9-8 ins. 

This is the maximum extension of the spring, the maximum 
length being consequently 21-8 ins. 

The maximum force —ka 

=60 x 32 x 0-814 lbs. 

=48-8 lbs. wt. 

The maximum acceleration = — =240 x 0-814 
m 

= 196-3 ft./sec*. 

The maximum velocity (when a: =0) is wa 

=V^x 0-814 = 12-61 ft./8ec. 

we have 144 =240 ( 



168 ELEMENTARY DYNAMICS 

lOL Juinglng hy a JFeightless Sjnral Spring or Extensible 

String, 

Let OA be the natural length of the spring, then, as befoje, 

^ Q when the mass is at a point P at a distance x below A 

the forces are the tension = upwards and weight nig 

downwards, and the equation of motion is therefore 

7uf = m g - kx 

= - k(^.- 
mg\ 
Tr 

^ and by Art. 99 the motion is still simple harmonic with 

LJ ^ but the centre is at a distance ^ below A. 

T . . , 
This may otherwise be put in the following way, 

fiq. 82. being the natural length (say /), when a mass m is 

hung on it would rest at a point so that at B the 

tension would be equal to the weight, or 

h{V-l)^mg.(1) 

If now the mass is in any other position at a distance x 

from B, the tension is ; 4. x), 

and the resultant force downwards 

— mg-k{V-l + x) — k{V-l)-k{V-l-\-x)^ - kx,.(2) 

and hence the particle describes simple harmonic motion 

about B as centre and of period 27r vv 0)- 

The same results apply to an elastic string, with the excep¬ 

tion that the spring can exert pressure while the string cannot. 

Hence if the string in contracting reaches its natural length, 

it ceases to be stretched, and no force is exerted by it until 

the string is stretched again. 
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102. Determination of g hy a Spring Balance. 

The last example suggests a method of determining the 

value of g. 

Performing the experiment as above, we determine the 

time of oscillation T, and the elongation V -I produced by 

the mass m, when hanging at rest. 

ir^~i 

9 
or ,;^47r^(y_/)/T2 

Using the formula in the form 

Then • = 27r^i 

Vm 

V 
k may be conveniently determined by observing what extra 

elongation a is produced by any extra weight n added to m; 

then ng 

and 
ma 
ng 

103. Motion of Piston and Crank (kinematics). 

Let OB be a crank of a steam engine turning about O with 

uniform velocity. 

CD the piston rod moving in the line OCD, 

BC the connecting rod. 

B 

ON C D 
FlO. 83. 

Then, if BN is perpendicular to OC, N moves with simple 

Harmonic motion. 

If, further, the length of BC is much greater than OB, 

the angle BCN will always be comparatively small, and hence 
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NC will differ little from BC, or NC is nearly constant, and 

C or any point on CD moves in nearly tlie same way as N. 

In other words, the motion of the piston is nearly simple 

harmonic. 

Example 1. If OB is 6 ins. and BC is 60 ins., prove that the maxi¬ 
mum value of the angle BCN is about 0*1 radian and CN differs 
from CB by a maximum amount of about 0-3 ins. Hence prove 
that while C describes a path of length 12 ins., at the instant midway 
between the instants at which it is at its extreme positions, it is 
at 0 .3 ins. from the centre of the path. Also prove that it is at 
the mean position at an instant which differs from the mean instant 
by about 0 008 of the whole period. 

2. A particle moving in s.h.m. in which the acceleration is 
- pXy has a velocity v from the origin when at a distance c from the 

origin. Prove that the amplitude is \/c-+t;-//x, and that the time 

to the extremity of the oscillation is tan“^ and hence 
that the position at time t is given by > ^ 

tan-« ^). 

Shew also that this is equivalent to 

ccos >/at + -T^ sin at. 
v/x 

3. A mass of m lbs. is allachcd to one end of a spring, which is 
of natural length I ft., and is elongated a feet by a tension of T 
Ibs.-wt. The other end of the spring is attached to a point on a 
smooth horizontal table, and the mass is started with velocity u 
when the spring is stretched to a length V, Find the time of oscilla¬ 
tion, amplitude, maximum tension and maximum velocity. 

4. A mass of 6 lbs. is attached to one end of a spiral spring, the 
other end of which is fixed to a point on a smooth horizontal table. 
The spring is of natural length 6 inches, and would be elongated 
1 inch by a tension of 5 Ibs.-wt. If the body when in its position 
of equilibrium is struck a blow of impulse 40 Ibl.-sec. units in the 
direction of the length of the spring, find the time and amplitude 
of the consequent oscillation. 

5. A body of mass m is attached by two elastic strings, each of 
natural length I and modulus A., to two points A, B on a smooth 
horizontal table at a distance 2l'(>2l) apart. Find the maximum 
velocity with which the body can be started in the direction of AB 
from the position of equilibrium without either string becoming 
slack, and find the time of oscillation. 
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6. In Question 5, if the strings are of length 1 ft. each, and would 
be each elongated 3 inches by a tension of 1 lb. wt., and if the mass 
is 4 oz. and AB 3 ft., find the initial velocity and time of oscillation. 

If the initial velocity is greater than that found in this way, 
describe the ensuing motion. 

7. A ])article is attached by an elastic string of modulus A, and 
natural length I to a point O on a smooth horizontal table, and 
can move in a straight line through O. If the string is stretched 
to a length Z'(>^), and the particle released, describe the motion 
that ensues and find the time of a complete oscillation. 

8. A particle is attached to a spring as in Example 4, but the 
plane is rough with coefficient of friction between body and plane 
of J. Shew that the time of oscillation is unaltered, but the centre 
of oscillation is shifted at each reversal of the motion. If the 
mass starts from rest when the spring is of length 1 foot, find the 
subsequent positions of instantaneous rest and the position where 
it finally comes to rest. 

9. A spring of length 12 ins. would be elongated 4 inches by a 
tension of 1 Ib.-wt. A weight of J lb. is attached to it, and the 
spring is pulled down to a total length of 2 ft. and released. Find 
the time of oscillation and maximum velocity subsequently. 

104. Compositions of S.H.M.’s of the same Period 
in the same Straight Line. 

It. has been mentioned that when a sound travels through 

the air the particles of air undergo simple harmonic motion. 

If two sounds are travelling in the same direction, and each 

separately would produce s.ii. oscillations of the same period, 

each will produce its owui effect, and the actual motion of 

the air particles will be the resultant of the two, which we 

will shew to be also a simple harmonic oscillation. 

Another important case in nature is found in the tides. 

A tide may be regarded as a simple harmonic oscillation in 

a vertical line, of the surface of the ocean, having a period 

of 12 hrs. for the tide produced by the sun, and about 20 mins, 

longer for the moon. The actual tide observed is the resultant 

of these two tides (with other less important factors). 

Supposing, then, a particle acted on by two forces in the 

same straight line which would each produce separately a 
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2^ 

simple harmonic vibration of period ~ but of different 

amplitudes and phases, we can express the displacement due 

to one as 

and due to the other, 

n 

th( 

= cos {7it 4-ei), 

X2 = cos (nt + 

and the actual displacement under the action of the two 

forces will be given by 

x — x^ + x^^+ ^1) + <^2 + ^2) 

= cos nt (% cos cos 

- sin nt {tti sin -f ^2 sin ^2), 
and this can be written 

a: = a cos (n^ + e), .(6) 

if a cos e = % cos cos e^, .(6cr) 

a sin € = % sin €1 -f a2 sin €2 ; .(66) 

squaring and adding 

a2 2 ^ 2a^a,, (cos cos 63 + sin sin €^) 

= aj® + + 2a^a^ cos (e, - e^), .(7) 

and . .g) 

Now, we can always find a and e to satisfy these equations, 

for in (7) is the sum of the squares of the two quantities 

in (6a) and (66), and therefore is essentially positive, hence 
a can be found from (7). 

Also, whatever positive or negative value the right hand 

side of (8) may have, an angle 6 can be found (between 90" 

and — 90") whose tangent is equal to the expression. 

Hence the resultant motion is found in the form (6), which 

represents a simple harmonic motion of amplitude a and 
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From No. (7) it will be seen that for difierent values of 
amplitude a of the resultant vibration may 

take any value from ai + a2when to when 
ej - e2=-7r. 

When 6, =625 component oscillations are said to be in 
the same phase. 

When - ^2 = TT they are said to be in opposite phases. 

Graphical liepixmiiation of the above 

In the following diagrams three simple cases are repre¬ 
sented. The components are represeided by full lines, and 

Fiq. 84.—Composition of two simple harmonic oscillations in the same phase. 

resultant by a dotted line. In each case the amplitude of 
one component is double that of the other. In Fig. 84 the 
phases are the same, in Fig. 85 they are opposite or differ by 
ISC’, in Fig. 86 they differ by 90°. 

If the periods are different, the resultant of the two cannot 
be expressed in a single term of the form of (6), and is there¬ 
fore not a simple harmonic motion. We give one diagram 
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(Fig. 87) in which the amplitude and period of one oscillation 

are each double the amphtude and period of the other. 

Fio. 85.—Composition of two simple harmonic oscillations in opposite phases 

Fio. 86.—Composition of two simple harmonic oscillations in phases differing by 90*. 

106. Composition of Two Simple Harmonic Motions 
at Right Angles. 

If a body is acted on by two forces at right angles, each 

of which by itself would cause it to move with simple har¬ 

monic motion, the resultant motion may be found in a similar 

way. 
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We shall only consider the case when the periods are the 

same, and therefore the two vibrations may be represented by 

x — a^ cos + 

y ■= cos {nt + ^2)- 

Fio. 87.~Compo8ition of two simple harmonic motions of different periods. 

For any values of the constants, the path can be traced 

by first calculating the values of x and y for a number of 

different values of t. 

y 

N 
1 3 

y 

0 X ir, X 

Fig. 88. 

If t is eliminated between the equations, the relation found 

between x and y will give the path. We shall take a couple 

of the simplest cases : 

(1) If €1 = 62, X a. 
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Shewing that if the phases arc tiie same ^ is constant, or 

the resultant motion is along a straight line through O. 

(2) If ^2 ^ ^'1 “ ^2’ 

cos + 

sin + 61) ; 

Consequently, when the phases differ by a right angle and 

the amplitudes are equal, the resultant motion is circular. 

Also, since ^ = tan (nt + e), 

and in the figure, f- = tan 6 ; 

d = nt + €, 
or 6 increases uniformly with or the resultant circular 

motion is uniform. Conversely, a uniform circular motion 

can be resolved into two simple harmonic motions at right 

angles. 
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(3) In the general case if d is the diflerence of the phases, 

it can be shewn that 

cos<5 — 8in‘^d, 

the proof and interpretation of which we will leave to the 

student. 

Example, Prove that a s.h.m. can be resolved into two equal 
uniform circular motions in opposite directions. 

Various methods may be used for shewing the composition 

of two simple harmonic motions experimentally. Most of 

them depend on the fact that the bob of a pendulum, or any 

point rigidly connected with a pendulum, moves with a very 

close approximation to S.H.M., as we shall prove later. Con¬ 

sequently, a point can be jointed to two pendulums so that 

it moves with a motion which is the resultant of two simple 

harmonic motions. 

EXAMPLES OF MOTION OP PARTICLES CONNECTED 
BY SPRINGS. 

106. Two particles on a smooth table are connected by a 

spiral spring. The particles are pulled apart so that the spring 

is elongated and then released, examine the oscillations. 

Fig. 90. 

Let m, mf be the two masses, 

P, P' be their positions at time t. 

The particles being released from rest, the centre of mass 

is also initially at rest, and therefore by the conservation of 

momentum remains at rest. Now the centre of mass always 

divides the spring in the same ratio m': w, and hence the 
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same point of the spring is always at rest at the centre of 

mass. 

Let O be the centre of mass, 

a, a' the natural lengths of OP, OP', 

X, x' the elongations at time t, 
so that the total elongation is x + sc', and the tension (with 

the previous notation) 

T* = 1c{x -f" ic). 

Now ^ — 
m m 

„„d 
m m 

* ® ^ 
m' ”” mm + w' ^ 

.. T ~k(x-\-x) -r—x, 
^ ' m 

and the equation of motion for the mass m is 
- , m -f m' 

- , m + m' 
/= -k-— X. 
'' mm 

acceleration of m is proportional to its displacement 

from the mean position of the end of the spring ; 

the motion is simple harmonic with a period 

Hence the period is less than what it would be if the end 

A' were fixed, in the ratio 
I m' 

\ m + m' 

Example, Examine the result of making rn! very large compared 
rith m. 

It is to be noticed that the periods of both particles must 

be the same, the greatest displacements in opposite directions 

occurring at the same time. 
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If the particles were started with any velocities in the line 

joining them, the centre of mass would move with uniform 

velocity, but the motion of each relative to the centre of mass 

would be the same as before, the equations being exactly 

the same as before, since the acceleration of either particle 

is the same as its acceleration relative to the centre of mass, 

the latter having no acceleration. 

107. The following example, involving two periods of 

vibration, illustrates a very important method in higher 

dynamics. 

Two particles of equal mass on a smooth table are attached to two 

similar springs as in the diag7'am, one spring being attached^ to a 

fixed j)oint 0. Determine the oscillations^ in the line of the springs. 

Fig. 91. 

Let a be the natural length of each spring, x, x* the dis¬ 

placements to the right at time ^ of P, P' from their positions 

of rest. 

The elongations of the springs are, therefore, 

X* - X, 

and the tensions, T = kx, 

T — k{x* -x). 

If /, /' are the accelerations to the right, the equations of 

motion are k{x^ -x) -Jcx^h{x' .(1) 

in/== -k(x' -x) J .(2) 

Now we will try to find what possible oscillations can occur 

in which the period is the same for both particles. 
2^ 

If the period of each is —, we must have 

/= - .(3) 

/'= -nV.(4) 
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and (1) and (2) become 

(mn^ - 2h)x = ^ .(5) 

kx — {mn^-k)x' /.(6) 

, mn^ -2k -k 
hence —,-=—2—r J 

k mn^ - k 

- Smn^k + = 0 ; 

= , .(7) 

giving two possible periods 

2rrJf-^ and 

Calling, for shortness, the two values of given by (7) 

and 

l'=-mn/-2A . 

in other words, for the oscillation given by the ratio ^ is 

constant or the oscillations must be in the same (or opposite) 

phases, and similarly for the second possible oscillation. 

We will prove immediately that a combination of these 

two oscillations is likewise a possible motion, so that a more 

general solution of the equations may be written 

a; = ai cos {n^t + ) + ag cos (n^t + e^ .(9) 

x' = 61 cos + 61) + 62 (n^t + e2)> .(10) 

where the amplitudes are connected by the equation (7), 

that is 
®i -__ . (11) 
hi mni^-2k .^ ’ 

^_^ 

i+n/H’ 

.-o^) 

^_L_ = _ 
““‘"l-VS v/5-]’ 
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and the constants can be determined when the 

initial positions and velocities of both particles are given. 

The two initial positions and the two initial velocities being 

given, we get four equations for finding the four constants. 

Thus, if the initial values of x and x' are c and c\ and the 

initial velocities u and u\ we have the equations : 

c = Uj cos + a2 cos 62 .(13) 

c' = cos + 60 cos .(14) 

u— - sin - 712(1.2 sin 63 .(15) 

sin 61 -njj^ sin 63 .0^) 

these with the equations : 

^1/^1 ~ ~2h) .(11) 
-kl(mnj-2k) .(12) 

are six equations to give the six constants 6], ^2- 

They can be solved as follows. Substitute for and 63 

from (11) and (12) in (14), and (13) and (14) become two 

simultaneous simple equations for aj cos 6^ and rig cos 63. 

Similarly, from (15) and (16) we have two simultaneous 

equations for sin and a2 sin Cg. 

Having solved these, from the values of cos and sin 

we can deduce by squaring and adding, the value of and by 

division tan e,, and similarly for ag and Co. 

In the above we have found that simple harmonic motions 

2^ 2ir 
of periods —-, — are separately solutions of the question ; 

that a motion which is the sum of the two is also a solution, 

that is, that (9), (10), (11), (12) give a solution, may be shewn 

as follows : 

Let x-ai cos (71^1 + fj) + Ug cos (wg^ + fg) 

= Xi + a?2, 

x'=x\-\-x'2, 

/=T 712^X2 

/'= -niVi-t^gVg 

and 

and therefore 
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and substituting in (1) and (2), 

m( - == k{x\ + x\ - 2xi - 2x^ 

m( - n^x\ - n^x'^ = - k(x\ + x'g ^2) 

and these are satisfied because have been determined, 

so that . ,, , ^ ^ 
- -k(x j^-2xi), 

-mn2^X2=-k(x\-2x.^), 

- mn^x\ = - - Xj), 

- mn^x\ — - k{x\ - Xg). 

Taking the numerical values of (11) and (12), we see that 

and l\ are of opposite signs, shewing that the displacements 

given by x^, x^' are such that- the maximum displacements 

occur in opposite directions at the same moment, or the 

particles are vibrating in opposite phases ; this is the shorter 

of the two periods. On the other hand, in the longer of the 

two periods the phases are the same for both particles. 

Summing up the results, we see that we have proved the 

following : 

(1) There are two and only two distinct possible simple 

harmonic vibrations, and that one particle cannot vibrate in 

either of these periods without the other doing so also (for 

the amplitudes are connected by definite equations (11) and 

(12)). 

(2) The phases of the two particles in the corresponding 

vibrations are either the same or differ by tt. 

(3) A motion composed of a combination of the two simple 

harmonic motions is a possible form of the motion, and 

the amplitudes and phases depend on the initial circum¬ 

stances of the motion and can be calculated when the initial 

circumstances are known, while the periods depend only on 

the nature of the springs and the magnitudes of the masses. 

It follows that the motion found in this way satisfies all con¬ 

ditions, and, as it is impossible to imagine that two different 
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motions could arise under the same circumstances, we can 

call this solution—(9) and (10)—the complete solution of the 

question. 

It may be added, though the proof cannot be given here, 

that any periodic motion in a straight line, that is, one which 

repeats itself at regular intervals, can always be regarded as 

the resultant of a number of simple harmonic motions. 

Example. If one of the quantities or is zero and the other 
is not, then or oo, and one body oscillates in a certain 
period without the other doing so. Examine if this is possible 
for any value of k. 

108. A particle is attached to the middle point of an elastic 

string tightly stretched between two points on a smooth hm'izontal 

table, and is projected from the equilibrium position in a direction 

perpendicular to the string. Find the motion, supposing the greatest 

displacement small in comparison with the length of the string. 

OP = ic = displacement at time t, 

AP-x/FT*2 = l>y/l+|- = /(l+^) nearly, 

hence the string increases in length as the particle goes from 

O to P by an amount 

Now xjl is given as small, so that a?*/2Z can be neglected 

usually, hence the string can be regarded of constant length 

so long as squares of the small quantities may be neglected. 

Hence, also, the tension remains constant to the same 

degree of approximation. 
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Resolving the forces along OP, if /is the acceleration, 

X 2T 
mf — - 2 X T cos APO = - 2T. ~p = —^ x ; 

the motion is simple harmonic with a period ^tt 

The displacement will be given by 

a; = acos(^g< + e) 

and the velocity 

VS VS 
If the initial velocity is u, we have 

when l — O, x = 0, v== 

a cos 6 = 0 1 
> 

. TT .. € = 2, 

-u^ 
1^ 

V2f 

x~ -u 
Iml 

y^^cosi 

Iml . 1 

Note that the above is approximate only, but the smaller 

the oscillations the more closely do they approach the true 

simple harmonic motion. Notice, also, that the work would 

fail altogether if there were no tension in the string when 

straight, the force then would be due to the elongation when 

displaced, and would be approximately proportional to 
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109. '-t 'wo eqiuil particles are attached by three equal and smila7\ 

stretched, elastic strings to two points on a smooth table as in the 

figure. Find the possible oscillations in the line of the string. 

^ y f f[ ni' 

A P T, T, P'T3 H 

FlO. 03. 

Let a be the length of each string in the equilibrium position, 

T the tension of each in equilibrium. 

Let a + be the length of AP at time i, 

a + x' „ „ A'P' „ 

a-x-x'is „ PP' „ 

Let/,/' be the accelerations in the directions marked, then 

the tensions are 
T, =T 4-Axr, 

Tg = T + hx, 

= k{x^x), 

and the equations of motion are 

^w/=T2-Ti= -~A*(2x + x'n 

rrif' =T2 “ T3 = - k(2x' + x)/ 

putting /== “ 
/' = - nV, 

we have 
(-mn^-i-2k)x—- kx' .(1) 

hx == (mn^ -2k)x' ] .(2) 

mn^ -^k _ k 

* * k mn^ - 2k 

(mn^ - 2k)^ — k?, 

mn^ -2k = ±k, 

mn^ — 3k or k. 

Hence there are two possible periods of oscillation, 
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(i) When mn^=^3k by (1) x — x'; hence the particles are 

always symmetrically placed with regard to A and A', and 

the amplitudes are the same. 

(ii) When mn^^h, - x, and the length of the middle 

string does not vary, the two particles moving in the same 

direction at any instant, the amplitudes in this case are also 

equal. 

The complete solution of the equations will be 

a; = a cos 

x' — a cos 

and the values of a, &, e, e' will have to be found from the 

initial conditions. 

It should be noticed that the tension in the strings in the 

equilibrium position does not come into the result, which 

depends only on the changes in tension (involving k). 

The two vibrations may be illustrated by the following 

diagrams shewing their positions at the end of each quarter- 

period. 

KlG. 94. 

110. Two equal particles are cUiached to tightly stretched strings, 

as in the last example, and set mming perpendicular to the length 

of the string; find the motion, supposing the displacements small. 

Let x, x' be the displacements at time t. 

As the displacements are small the alterations in length 
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of the strings are negligible, as in Art. 108, and the tension 

can be regarded as constant. 

A / / /A' 

Fig. 95. 

The components of the tensions perpendicular to A A' are 

consequently X X - X X 

T/’ 

and the equations of motion, 

m/= T - T * = j (a;' - 2x), 

t, _a: -:r T , „ ,, 
m/ = - T —.-T ,- = -T (a: - 2a:); 

hence, putting 

I 'll 

/= -nH, 
^ - nH', 

( 2 2T\ T , 
( -mr? + -J- \ x = jx , 

( 2 2T\ , ; ^ I - nin‘’ + j-j X ; 

hence 
f , 2T\2 T* 
mn i) - j2 ’ 

2 2T T. 

2 . . — or |> 

and the possible periods are 

2jr and 2v 

In the first or shorter oscillation x— -x\ and the two 

particles are always on opposite sides of AA'. 



188 ELEMENTARY DYNAMICS 

In the second or longer x=x', and the particles are always 

on the same side of AA'; thus : 

Fig. 96. 

111. If we return to the case of one particle, as in Art. 

108, we have shewn that we can represent small vibrations 

at right angles to the line AA' by an equation 

y ^ h cos 

(we have for convenience changed x into y and a into h). 

Also, we can easily prove that for oscillation in the line of 

the string the period is 

and therefore the oscillation can be represented by 

<V!' X —a cos 

If the particle, instead of being started moving either 

along or perpendicular to the string, is started from any 

point near O, and in any direction with a small velocity, 

the motion will be compounded of these two fundamental 
oscillations. 

112. Free and Forced Oscillations. 
The above examples are illustrations of what are called 

free oscillations. In them the period of oscillation depends 

on the nature of the vibrating agent with its connections. 
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But we frequently have to deal with what called forced 

oscillations, which occur when an external force acts on the 

vibrating body and the force itself is periodic, with a period 

different from that of the free oscillation. 

For example, suppose a particle attached to the middle of 

a spiral spring attached at its ends to two points on a smooth 

horizontal table. The particle has a period of oscillation 

depending on its mass and the stiffness of the spring. Suppose 

this period isT, 

the acceleration is 
Itt- 
^2“ X displacement, and the restor¬ 

ing force due to the string is w 
4'7r‘^ 
-f2~^ displacement. 

Now suppose that an external force also acts on the particle 

in the line of the spring, and varying harmonically in period 

T' so that the force P can be expressed as 

27r 
wc cos 

where m is the mass and c a constant of the dimensions of 

acceleration. 
The equation of motion is now 

47r2 2irt 
- 7ti X + mo cos ; 

47r‘^ 27r^ 
. (1) 

This equation can be satisfied by a simple harmonic expres¬ 

sion for X of the form 
27r^ 

a^=ACOS 

for if X has this value, 
47r2 47r2 27rt / T It T H 

and (1) is satisfied if 

27rt 2Trt 27rt 
_ A I .1 
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or 

or 

-fc, 

cv-r^ 
==47r2(r2-T^) ^ 

1 T-^T'2 2Trt 

‘ ' ^ 4^2 T'- - T' ’ 

Thus we have a simple harmonic motion of the same period 

as the force P. 

Also, if T'>T the phase of the vibration is the same as that 

of the force, that is, x is positive when P is positive and x is 

negative when P is negative, but if T'<T the phase of the 

vibration is opf)osite to that of the force, for x is negative 

when P is positive, and x is positive when P is negative. We 

may express this in the following way : 

If the feriod of the force is greater than that of the free oscilla- 

tioriy the displacements follow the forccy the greatest displacement 

in the positive direction occurring when the greatest force is acting 

in that direction. 

On the other handy if the period of the force is less than that 

of the free oscillation, the displacement is greatest in the positive 

direction at the instatit when the force is greatest in the negative. 

If T=T', 

A = oo , 

which means that the oscillation, once started, would go on 

increasing till the amplitude became infinite. 

This would be prevented in any actual example either by 

frictional effects, or by a breakage of connections. 

A simple example of forced oscillations in the case of the 

pendulum will be given later. 



SIMPLE HARMONIC MOTION 191 

113. A very important case of forced oscillations occurs 

in the theory of the tides. To explain this, suppose the ocean 

to surround the earth to a uniform depth. The surface would 

have a definite period of free oscillation. That is to say, if 

the surface were deformed by heaping up the water at two 

opposite ends of a diameter and depressing it at points midway 

between, so that it took a spheroidal shape, and if it were then 

left to itself, the water surface would oscillate about the mean 

position with a certain period T. 

Now the moon exerts a force, as we shall see, to cause such 

displacements, and the force at any point depends on the 

position of the moon, and is approximately of simple harmonic 

nature whose period T' is about 24 hrs. 50 mins. 

There would consequently be high tide under the moon if 

T'>T, 

and low tide under the moon if 

T'<T. 

The latter actually holds for an ocean of existing depth 

on the earth ; but if the depth were more than 13 miles the 

reverse would apjdy. 

Of course, the tides are much complicated by the presence 

of the continents, so that there can, in the existing state of 

things, be no general rule as to whether high tide or low tide 

or any intermediate state occurs under the moon. 

EXAMPLES. 

1. Shew that if a body is acted on by a force kx towards the 
origin at a distance x and by a constant resistance, the motion is 
simple harmonic, and of the same period as if there were no resis¬ 
tance, but the centre of motion is displaced at each reversal of 
direction of motion. 

2. A mass M starting with velocity V after traversing a distance 
a impinges against a movable end of a buffer spring of stiffness K. 
A constant frictional resistance R opposes the motion of M through¬ 
out. Shew that the greatest compression of the spring is 

V{(R/K -- ay+ IVIV2/K - - R/K 
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and that there is a recoil if 

R/K < V ( M V73K+- a/3. 

3. A mass M is attached to a horizontal shelf making vertical 
simple harmonic oscillations of amplitude a and period T. Find 
the reaction between the msiss and the shelf in any position. 

If the mass gets loose, shew that the greatest height to which 
it can be projected by the shelf above the mean position is 

27r^a^{gT^+gVlS7rl 

4. A weight of 5 lbs. is attached to the end of an elastic string 
of natural length 6 feet and modulus 20 lbs. weight. The string 
is suspended from one end, and the weight is then pulled down 
1 ft. from the position of equilibrium and let go. Find 

(1) the period of oscillation, 

(2) the maximum velocity afterwards. 

6. An elastic string of natural length 2 ft. would require a force 
of 10 Ibs.-wt. to double its length. The ends are fixed at two points 
on a smooth horizontal plane 4 ft. apart, and a mass of 1 lb. is 
attached at the middle point of the string. 

Find the time of oscillation of the mass 

(1) when displaced in the direction of the string, 

(2) when displaced a short distance, perpendicular to the 
string. 

6. A particle of mass m can move on a plane of inclination a, and 
is attached by an elastic string of natural length I and modulus A 
to a fixed point O in the plane. If the plane is rough (coefficient //-) 
and the particle is held initially so that the string is just stretched 
and lies along the line of greatest slope, find the greatest distance 
to which it will descend, and find whether it will return up the 
plane, the inclination of the plane being greater than the angle 
of friction. 

Examine the case when 

m~10 1bs., A ~20 lbs,-wt., «.—30°, ^=3ft., ja=0-4. 

7. If the acceleration due to gravity instead of being assumed 
constant is represented by an expression ^(1 - xja) at height x, 
shew that an unresisted projectile, projected vertically upwards 

with velocity will reach a height a - a Vl ~ v^lga. 
Shew that this gives the result for the uniform acceleration by 

making a increase indefinitely, 

8. A ma.ss of 10 lbs. is attached to a helical spring, such that a 
compression of 1 inch requires a force of 20 Ibs.-wt. Shew that 
the period of oscillation is 0*227 secs. 
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9. A shock of the impact of a moving carriage against a rigid 
obstacle is diminished by a buffer spring of natural length /, the 

p 
thrust of which is proportional to its compression and is for a 

lUU 
compression of 1 per cent. Shew that, if the mass of the carriage is 
m, and its velocity when the spring comes into action is the 

greatest thrust on the obstacle is \^mv^PiL 

10. The lower end of an elastic vertical string just unstretcbed, 
and 4 ft. long, is attached to a heavy piirticle resting on a horizontal 
table. The upper end is then made to move vertically upwards 
with a constant velocity of 3 ft./sec., and the particle begins to 
rise after the upper end has risen 2 feet. Find the greatest velocity 
of the particle and its acceleration at any time. 

11. Two equal particles connected by an elastic string which 
is just taut lie on a smooth table, the string being such that the 
weight of either particle would produce in it an extension a. Prove 
that if one parti(;le is projected with velocity u directly away from 

the other, each will have travelled a distance 7ru\/olSg when the 
string first returns to its natural length. 

12. A mass of 10 lbs. is hung up by an elastic string of natural 
length 1 ft. and modulus 50 lbs. weight. A mass of 2 lbs. is let 
fall from the point of suspension of the string, and hitting the 
10 lbs. mass becomes fixed to it. Find 

(i) the initial velocity of the combined masses, 
(ii) the subsequent maximum elongation, 

(iii) the period of a vertical oscillation. 

13. Two masses /a, M slide on a smoofh horizontal bar, and a 
massless helical spring giving a thrust T at unit compression is 
interposed between the masses. The masses have velocities u, V 
towards one another before the spring comes into action. Find 
their velocities after the action ceases, and the time it lasts. 

14. Two springs AB, BP, whose tensions at unit extension are 
Ki, Ka, are connected at one end B of each, and lie along a straight 
line ABP. The end A is fixed at a point of a smooth horizontal 
table on which a mass M, fixed to the end P, moves in a straight 
line. Prove that the motion of M is simple harmonic of period 

15. Two springs AB, BC of stiffness K, K' are attached to fixed 
points A, C and to one another at B in the same line. A mass M 
is fixed to the springs at_ B. Shew that the period of oscillation in 

the line ABC is 27rN/M/(K + K')- 
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16. A mass M has two stretched elastic springs, eacJi of natural 
length a and modulus A, proceeding from it in opposite directions. 
The second end of one spring is fixed, that of the other is constrained 
to execute a simple harmonic motion cLBmpt in the line of the 
springs. 

Shew that M can execute a simple harmonic motion of the same 
period and phase, and of amplitude Aol/(2A^- Wip^a). 

17. A mass M is suspended from a point 0 by a helical spring 
of natural length I ft., whose tension is T Ibs.-wt. when its length 
is increased by a feet. The mass is released from a point at a dis¬ 
tance I below 0 and hits a fixed inelastic plate (so that the momen¬ 
tum of M is destroyed) b ft. lower. Find the velocity of the mass 
when it reaches the plate, and the time elapsed. Find also the 
time when the mass reaches the plate again, supposing it to leave 
it for an interval. 

Note to Chapter VI. 

S.H.M. can be simply treated by the calculus. Writing the 

dv^ 
acceleration as | , (Ex. 7, p. 40), and using the notation of 

Art. 97, we have = - n^x. 

V + C ; ~ x^), if =0 when x = a. 

Retaining the alternative sign and integrating we have, 

arcos - ±nt + € 
a 

or a;=a cos (+ e), which may be written 

a; = A cos nt+B sin nt; 

and A, B, can be found for any given initial conditions. 



CHAPTER VII. 

MOTION IN A PLANE CURVE. 

114. When a })articlc is moving in a plane curve it is 

usually necessary to find the compontmt accelerations in each 

of two directions, and it is most convenient usually to 

find the components along and perpendicular to the tangent 

of the path. Before obtaining expressions for these accelera¬ 

tions it will be necessary to explain some introductory results. 

115. Trigonometrical Limits. 
From elementary trigonometry we have 

sin 0** = 0, cos O'* = 1, 
or more accurately expressed, 

Lim sin 6-0 
^-►0 

Lim cos 6 1. 
e-*o 

Approximations to the values of sin 6 and cos 6 when 0 

is a small angle (which we will suppose given in circular 

measure) are also given in most books on trigonometry; we shall 

prove the following approximations : 

sin 6 = 6 nearly, when 6 is small, 
Q2 

COS 0 = 1 - ^ nearly, when 0 is small. 

Taking a small angle 0, then, from the diagram, 

0 = 
OP’ 

sin 0 = 
PN ^ 

OP’ 

, sin 0 PN 

• “T~"^pa’ 
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Now, obviously PN nearly coincides with PA, and the difference 

between PA and PN is small com pared with either of them, 

taken on the arc PA, P'A and P'N' coincide more nearly than 

did PA and PN, hence the nearer P comes to A the more nearly 

does ^ approach unity. 

TT r* 1 Hence, J^im-^—= 1, 
e ->o u 

and when 6 is small ^ nearly, 

or sin 0^0 nearly. 

Again, cos 0 == 1 - 2 sin- ^ 1 - 2 (~ ) nearly 

02 
=-1 - nearly when 0-4s small 

The importance of this last result lies in the fact that cos 6 

differs from unity by quantities which depend on the second 

and higher powers of 6, not on terms in 6 itself. 

116. Angular Velocity. 
If a point P describes any curve in a plane, and the line 

joining the point to a fixed point O turns through an angle 0 

in time t, ^ is called the average angular velocity of P about 

O, or the average angular velocity of the line OP during the 

interval t. Following the definition of velocity, if we make 
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t indefinitely short we get the definition of angular velocity 
at an instant, thus : 

angular velocity = Lim 

We will denote angular velocity by w or 12. 

The angles will always be supposed given in circular measure, 

and consequently angular velocities in radians per second. 

In the most important case where the point describes a 

circle, the angular velocity about the centre is related in a 
simple manner to the ordinary or linear velocity, thus : 

if s is the arc subtended by the angle 0, 

and r is the radius of the circle, 

.r. Q T- '5l ... Is It- s V 
w = Lim ™ — Lim — = Jjim = Lim . — - 

t r t r t r t r 

or v — tod, where v is the linear velocity. 

It is often convenient to speak of the number of revolutions, 

n, the point makes in a second. It will be seen at once that 

w ~ 2irn, 
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Similarly, we can define angular acceleration as rate of 
change of angular velocity. 

A line may be spoken of as having an angular velocity, 
even if it does not always pass through one point. Thus, 
if a point is moving along any curve, and at each position of 
the point we draw a tangent, then we can think of the tangent 

Fig. 100. 

moving and turning round. If the tangent at Pj makes an 
angle 6^ with a fixed straight line Ox at an instant and 
makes an angle Og with the same line at the instant fg? 
in the interval it has turned through an angle 
its average angular velocity during the interval is 

02-01 
/ _ y ’ t-o C-J 

^ ^ 0-0 and its angular velocity at time is Lim ^ 

117. Curvature of a Curve. 
0 - 0 If s denotes the arc PiPo, the Lim ^-i is called the curva- 

jr—>0 S 

ture of the curve at the point Pj : we will denote it by k. If 
the normals at Pj and Pg meet at C, 

K = Lim -=2—=r Lim ~ ~ = Lim , 
s CPj s CPj 
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and the limiting value of CPi or 1 is called the radius of curva¬ 

ture of the curve at ^ 
0,-0, 

i 1 y • Oo ~ Ot y • iiy (J) 

.-*0 s _^ V 

L-t[ 
or a) = Ki\ 

In the case of a circle 
V 

which may also be deduced directly from the definition. 

Example 1. A bicycle wheel makes 75 revolutions per minute. 
What is its angular velocity in radians per second ? 

2. A motor wheel is 2 ft. 6 in. in diameter, and the motor travels 
at 20 miles/hr. What is the angular velocity ? 

3. What is the angular velocity of the earth’s rotation on its 
axis ? 

4. What is the angular velocity of the earth’s revolution about 
the sun ? 

118. Acceleration of a Point moving with Uniform 
Speed in a Circle. 

The simplest and most important case of motion in a curve 

is uniform motion in a circle, and we shall discuss this first, and 

afterwards deal with the more general cases. 

Let a particle be moving round a circle of radius r with 

velocity v, and let it be at A at one instant and at B t secs, 

afterwards. 

At A the velocity is perpendicular to the radius OA, and at B 

perpendicular to OB. Represent these velocities by O'A' and 

O'B' so that 0'A'~0B', O' being any origin. Then A'B' 

A'B' 
represents the change of velocity in t secs. (Art. 67), and -j- 

is the average acceleration in the interval. 
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Now O'A', O'B', are perpendicular to OA and OB, and there- 

fore the angle A'0'B' = angle AOB. 

Also the two triangles are isosceles, and therefore they are 

similar to one another ; 
A'B' AB 

A'B' AB t 
O'A' “OA’ O'A' “OA 

Fig. lOi. 

To get the acceleration / at the instant when the particle is 

at A, we have to make the interval t indefinitely short, or B 

and A come indefinitely close to one another, and so do A' 

and B'. Also AB tends to coincidence with the arc and 
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/ is perpendicular to O'A' or along AO towards O. 

Hence finally the acceleration is constant in magnitude, being 

equal to -, but changes in direction being always directed to 

the centre O. 

119. The following method of obtaining the same result 

will illustrate further the idea of change of velocity in 

general. 

With the same figure and letters as before, take axes along 

and perpendicular to the bisector of the angle AOB. 

Let AOB = 20. 

The velocity at A makes an angle d with Oy, and its resolutea 

V sin 6 along Ox 

and V cos 0 along Oy. 

The resolutes of v at B are 

- V sin 0 along Ox, 

and V cos d along Oy. 

To get the change of velocity we subtract the former 

resolutes from the latter, and we have the resolutes 

- 2v sin 6 along Ox 

and 0 along Oy; 

the average acceleration in the interval is 

- 2v sin 6 1 ^ 
---along Ox 

2e sin 6 , 
or —^ along CO, 

if C is the middle point of the arc AB. 

arc AB r .26 
But 
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/. the average acceleration is 

2v sin 6 sin 6 

V 

To get the acceleration at the instant when the particle is 

at C, we diminish the interval of time, and consequently the 

angle 6, indefinitely. 

Hence /=Lim 
a->o 

sin 0 

r 0 

= - - towards O. 
r 

We have seen that in uniform motion in a circle 

v^rw; 

hence we write the expression for / in any of the forms 

2 - , (jov, or 

If a particle of mass m is moving with uniform speed in a 

circle of radius r, since the acceleration is —, it must be acted 
2 ^ 

on by a force — or towards the centre. This force is 
r 

often called consequently a centripetal force. 

Examples 1, Find the acceleration of a point on the circumfer¬ 
ence of the wheel in Question 2, Art. 117. 

2. Find the acceleration of a point on the earth’s surface in 
latitude A. due to the earth’s rotation. 

Uniform motion in a circle is approximately attained in 

nature in the motion of the earth relative to the sun, and of 

the moon relative to the earth, and other similar cases in 

astronomy. 
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3. Find the acceleration of the earth due to its motion about 
the sun, supposing it to describe a circle of radius 92,880,000 miles 
in 3651 days. 

From the result of this example it will be seen that the 

acceleration of the earth due to its motion round the sun is 

very small compared with the acceleration due to gravity, 

and consequently in questions involving accelerations com¬ 

parable with that due to gravity the earth can be treated as 

moving with uniform velocity ; in other words, the results 

are the same as if the motion about the sun did not exist. 

4. Find the acceleration of the moon relative to the earth, sup¬ 
posing it to describe relative to the earth a circle of radius 238,000 
miles in 27 4^2 days. 

This example is important from its historical interest. It 

shews that the acceleration of a body at the surface of the 

eartli is very nearly 3600 times as great as the acceleration 

of the moon. Now the moon's distance being very nearly 

60 times the radius of the earth, we see that the motion of 

the moon is accounted for by supposing it acted on by a 

force of attraction towards the earth similar to the force 

exerted on a falling body, but less in the ratio of the square 

of the distance from the centre of the earth. This numerical 

result was obtained by Newton, and was the first and most 

direct argument in favour of the Law of Universal 
Gravitation. 

120. The Law of Gravitation is as follows: “ Any two 

particles in the universe attract one another with a force 

which is directly proportional to the product of the masses 

and inversely proportional to the square of the distance 

between them.” 

In symbols, if two particles of masses m, m' are at a dis¬ 

tance r apart they attract one another with a force , 

A being a constant depending only on the system of units 
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chosen, and called the constant of gravitation. Thus, if m, m' 

are in grammes and r in centimetres, the force is given in 

dynes if A = 6*66 x 10*"®. 

The above formula still holds, as Newton shewed, if the 

particles are replaced by spheres either uniform or of density 

depending only on the distance from the centre. 

Thus if S, E are the masses of the sun and earth in grammes, 

R the distance apart of their centre, 

(jt) the angular velocity of the earth about the sun, 

T the time of revolution of earth about sun in seconds, 

according to the law of gravitation the force on the earth 

is —j but its acceleration is ; 

XSE 

R" 
Ea)2R, 

and 

47r‘-^R3 

T2 ' 

Example 1. Taking A 6*7 x 10 find the mass of the sun. 

The value of A is to be found experimentally by measuring 

the attraction acting between two bodies of measured 

masses and distance apart. This is an extremely delicate 

experiment, as the force is exceedingly small in any actual 

case. The principle of one method may, however, be easily 

explained. Suppose a metal sphere suspended from one arm 

of a balance and weighed, the weight being found to be 

M grammes. Then another sphere of weight M' grammes, 

usually much heavier than the first, is placed directly under 

it and close to it. As a consequence the weight of the first is 

increased by the attraction between the two. This increase 

in weight is observeni, say it is m grammes or mg dynes. The 

distance d cms. between the centres of the two spheres is also 
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determined, and the constant A may then be calculated from 

the equation IViivi' 
X ^2 

2. A spherical mass of 20 kgms. is attracted by another of 150 
kgms. with- a force of 0-23 milligrms.-weight when their centres 
are 30 cms. apart. Find the constant of gravitation. 

3. A body of mass m on the earth is attracted to the earth with 
a force=m5r nearly ; 

A if radius of earth 

XE =gdK 

Deduce the mass of the earth. 

4. If a particle acted on only by the gravitational attraction 
of a sphere revolves round the sphere close to its surface, shew 

that the time of revolution of the particle is where p is the 

density of the sphere. Thus the time depends on the density 
only and not on the size of the sphere. Find this time in the case 
of the earth, supposing it to be a uniform sphere of density 5*5. 

5. If two planets revolve round the sun in circles of radii r and 
r', and the times of revolution are T and T', prove that 

This result is the statement as far as circular motion is 

concerned of what is known as Kepler's Third Law. It was 

discovered empirically by Kepler in 1618, and was later shewn 

by Newton to follow from the law of gravitation. The law 

may be stated thus : 

The squares of the times of revolution of any two planets 

about the sun are in the ratio of the cubes of their mean distances, 

6, A marble of mass 1 oz, is made to run with velocity 20 ft./sec. 
round a horizontal circular groove of 16 ins. radius. Find the 
pressure on the side of the groove. 

7. A particle of mass J lb. is tied to a string 3 ft. long, and describes 
a horizontal circle on a smooth horizontal table about the other 
end of the string which is fixed. If it makes 6 revolutions a second^ 
what is the tension of the string ? 
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8. A string a metre long is attached at one end to a fixed point 
in a smooth horizontal table, and to the other end a weight of a 
kilogram is attached. If the weight makes 4 revolutions a second, 
find the tension. 

9. A string 3 feet long is attached at one end to affixed point 
in a rough horizontal table, and to the other a weight of 2 lbs. is 
attached. The weight is started with a velocity of 12 ft./sec. 
perpendicular to the string which is taut. If there is friction of 
a quarter of the weight, find the tension initially and when it has 
travelled through a right angle. 

10. A string 10 feet long can just support a weight of 2 lbs. ; 
what is the greatest velocity with which a particle of mass J lb. 
attached to one end can revolve about the other on a horizontal 
table without breaking the string ? 

11. A string I feet long can just support a weight of M lbs. What 
is the greatest number of revolutions per second that a mass of 
m lbs. tied to it can make without breaking the string ? 

12. Two particles of masses 50 and 100 gms. are attached to a 
string at distances 40 and 60 cms. from one end which is fixed. 
If the string rotates about the fixed end in a horizontal plane making 
5 revolutions per second, find the tension in each portion of the 
string. 

13. Two equal masses are attached to the two ends of a string 
which passes through a small hole in a smooth horizontal table. 
With what velocity should the one on the table be projected 
so that it should describe a circle of 50 cms. radius, the other 
hanging vertically, and how many revolutions per second will 
it make ? 

14. Two particles A, B of masses 50 and 100 gms. respectively 
are attached to the ends of a string passing through a small hole 
on a smooth horizontal table. If B hangs at rest and A describes 
a circle on the table, making 2 revolutions per second, what is the 
radius of the circle ? 

15. A string of length 10 ft., whose ends are fixed at A and B 
8 ft. apart, can bear a maximum tension of 5 Ibs.-wt. A mass 
of I lb. weight can slide freely on the string. Neglecting gravity, 
find the greatest number of revolutions per sec. that the string 
can make about AB without breaking. 

16. A particle of mass m can slide freely on a string ACB whose 
ends are fixed to points A, B. If AB=2/, and the length of the 
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string—2r, find the tension when the system makes n revolutions 
per second, neglecting gravity. 

17. A particle of mass m is tie^d to a string at ACB at C. The 
ends AB are fixed and the whole is made to rotate about AB with 
uniform angular velocity a>. Given the lengths of AB, BC, CA, 
and neglecting gravity, find the tensions of the strings. 

121. Conical Pendulum. 
Very often uniform motion in a circle is the result of the 

action of two or more forces whose resultant is along the 

radius of the circle described. The simplest case is the conical 

pendulum, where a heavy particle is attached by a weightless 

string to a fixed point. If the bob is drawn aside so that 

the string is inclined to the vertical, and if a blow is given 

to it so as to start it moving in a direction perpendicular to 

the plane containing the string and the vertical, and with 

the proper velocity (to be determined immediately), the bob 

may be made to revolve in a horizontal 

circle with uniform speed. 

Let fyi he the mass of the particle, 

I the length of the string, 

h the depth of the plane of 

the circle described below 

the fixed point C, 

r the radius of the circle de¬ 

scribed, the centre being O, 

0 the angle the string makes 

with the vertical. 

The only forces acting are T, the tension of the string, and 

7ng the weight of the body. These two forces then must be 

equivalent to a single force rrmh' along the radius PO. 

• Hence, resolving 

horizontally T sin 0 = wwo^r, 

vertically T cos 0 ~ ~ 0 ; 
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till! 0 — (jcrrig; 

. r _ ft) V 

** 

11 

t = period of revolution = — === 27r a /“ . 
o) M g .(1) 

also v~(jor = r^‘l. .(2) 

Example 1. Prove that 

. .(3) 

2. Prove that T = = .. .(4) 

The result (1) shews that the time of revolution at a given 

place depends only on the depth h of the plane of motion 

below C. Thus, suppose a number of conical pendulums 

attached to the same point, but with different lengths of 
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string, and suppose the bobs all revolv^e in the same plane, 

those describing the larger circles would require to have 

larger velocities given them, and they would all get round 

their circles in the same time. 

122. Governors. 
From equation (3) above we see that if W>y we get a 

definite value of 6 for a given angular velocity, and if the 

C 

FKJ. 104. 

velocity increases cos 6 diminishes and 6 increases. This fact 

is made use of in governors for governing the admission of 

steam to the cylinders of a steam engine. The principle of 

the governor will be seen from a diagrammatic sketch. 

AC, BC are two rods forming with the heavy bobs A and B 

a double conical pendulum. 

These rods arc hinged to a rotating shaft at C. Two other 

rods FD, ED hinged to BC and AB are also hinged to a collar 

D which can slide on the shaft. To D a lever is attached 

which can open or close a valve admitting steam to the 

cylinders. When the shaft revolves at a normal rate the 

steam enters the cylinders at its proper rate, but if the rotation 

becomes more rapid, CA and CB separate further, and D is 

raised. This moves a lever which operates so as cither to 
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contract the opening of the valve admitting steam, or to vary 

rhe point when steam is shut off. This will continue till the 

velocity has dropped again to its normal value. 

Example 1. In a conical pendulum prove that 

r —-1 \l\ 

2. A conical pendulum is 10 ft. long. The bob is of mass 10 lbs., 
and is held at rest at a distance of 6 ft. from the vertical through 
the point of support. Find the impulse to be given to the bob 
that it may continue moving in a horizontal circle, and find the 
time of a revolution. 

3. The string of a conical pendulum is 10 ft. long, and can just 
support a weight of 10 lbs. If the weight of the bob is 4 lbs., find 
the greatest velocity it can have without breaking the string, and 
find the radius of the circle described. 

4. It is required to keep a particle moving with given uniform 
velocity v in a horizontal circle of given radius r by means of a 
string attached to the particle and to a fixed point vertically above 
the centre. Shew that this point must be at a distance gr^lv^ 
above the circle. 

6. At what angle to the vertical must the string of a conical 
pendulum be held if it is 3 feet long and an initial velocity of 12 
ft./sec. causes it to describe a horizontal circle. Find also the 
time of revolution. 

6. If the velocity of the bob of a conical pendulum is v and the 
length ?, prove that the inclination to the vertical is given by 

sin^ ^/cos 
and shew that this equation has one and only one solution applicable 
to the question. 

123. Train on a Curved Level Line. 
If a railway carriage is moving on a curved horizontal track 

(the sleepers being laid horizontally), it must be acted on by 

a force exerted towards the centre of the curve. This force is 

the horizontal component of the pressure of the rails on the 

wheels. Resolve these pressures into their vertical and hori¬ 

zontal components, and let 

Fj - horizontal component acting on all the wheels on one 

side of the carriage, 
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Fg-horizontal component acting on all the wheels on the 

other side of the carriage, 

Rj —vertical component acting on all the wheels on first 

side of the carriage. 

R2 = vertical component acting on all the wheels on second 

side of the carriage, 

r = radius of curvature of the curve, 

V = velocity of train ; 
« • 

then since there is a horizontal acceleration — 
* r 

and since there is no vertical acceleration 

R^ H- Rg - mg = 0. 

The wheels exert pressures on the rails equal and opposite 

to those shewn. As and Fg act in the same line there is 

no possibility of separating them mathematically, and the 

amount of the total force Fj + F2 which acts on each rail depends 

on the shape of the wheels and inequalities in the track. If 

the flanges of the wheels are towards one another, that is, 

on the inner side of each wheel, the lateral pressure is practi¬ 

cally borne by the outer rail, that is, Fj«0 nearly. 

These lateral pressures (F^ and Fg) are very objectionable, 
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as they tend to rapidly destroy the track. To avoid them 

the sleepers are tilted up so that the plane of the track is 

normal to the resultant pressure. There will then be no 

lateral pressure, the centripetal force being supplied by the 

resolved part of the normal pressure itself. 

If the inclination of the sleepers is 6, and the resultant 

reactions and Sg, then resolving horizontally and vertically 

Si sin d 4- S., sin d = — 

Sj cos 0 + $2 cos 6 - mg ••= 0, 

or ($1 + Sg) sin 0 = —, 

(Si + cos d = mg; 

tan0=^— 
gr 

giving the angle at which the sleepers should be laid for a 

train travelling at a velocity v. Exactly the same results 

apply to a banked-up cycle or motor track. 

If various trains travel round the curve at different rates, 

it is impossible to get rid of the lateral pressure except for 

those of one particular speed, those travelling at a greater 

speed exerting lateral pressure outwards, and those travelling 
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at a smaller speed exerting lateral pressure inwards {i.e. down 

the slope). But it is best to tilt the sleepers to suit the faster 

trains, for, as will be seen from the following examples, if 

the angle of tilt is such as to suit trains at 30 miles an hour, 

a train at 45 miles an hour will produce a much greater lateral 

pressure than a train of the same weight at 15 miles an hour. 

Or, if the sleepers are tilted to suit a velocity of 30 miles an 

hour, the faster trains should slow down to that speed on 

approaching the curve, while the slower ones should increase 

their speed if possible. 

Example 1. Find the lateral pressure when an engine of 50 tons 
weight travels round an untilted track of 440 yards radius at 30 
miles an hour. 

2. Find the angle at which the track in Example 1 should be 
tilted to get rid of the lateral pressure. Find also tjie amount 
one rail should be raised above the other if the gauge is 5 ft. 3 ins. 

3. If the track is tilted at the angle required to avoid lateral 
pressure when the velocity is v ft./sec., prove that the lateral pres¬ 
sure outwards when an engine of mass m lbs. travels on the curve 
at velocity v' ft./sec. is 

mq Ibls. or m-nearly. 
slo^ r ^ 

4. At what angle should a motor racing track be banked if it 
is 300 yds. in diameter, and the motors are expected to travel at 
about 00 miles/hr. ? 

5. Find the lateral pressure when the track in Question 1 is 
tilted for a velocity of 30 miles an hour and the engine travels 

(1) at a speed of 45 miles an hour, 

(2) „ „ 15 „ „ 

8. Find the angle at which a motor track of 110 yards radius 
should be banked up for motors travelling at 45 miles an hour. 

124. When a motor turns a corner the case is again the 

same as the railway carriage on a level line. 

To calculate the values of and R2 it is necessary to intro¬ 

duce the idea of moments. A discussion of moments will 

be found in Part II., Chapter II. Using the first results of 
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that chapter (Art. 181), it is possible to find Rj and Rg as 

follows : 

We have, as before, 

Rj+R2 = m^.(1) 

Also, as the forces are equivalent to through the centre 

of mass, the sum of the moments of the forces about any 

point is the same as the moment of the . 

If we take moments about the point where the vertical 

through the centre of mass meets the ground, and if 

2a = distance between the wheels, 

A = height of centre of mass above the ground. 

R.,a — h, 
- 1 

From (1) and (2), 

Hence, the larger v is, the smaller is Rj, and if v — 

(2) 
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R, =0, or the wheels on the inside of the curve are not pressing 

on the ground at all. In other words, with a velocity > 

the motor will upset towards the outside of the curve. 

A tricycle upsets much more readily, principally on account 

of the smaller value of a. 

126. When a bicyclist rounds a corner he leans over 

towards the centre of curvature for similar reasons. If we 

represent the bicycle and rider diagrammatically by AB, G 

being the centre of mass, and m the total mass of man and 

machine, AG = ^, the forces are as in the figure. 

In order that the three forces may be equivalent to a single 

force through G, it is necessary that the resultant of F and 

R should act through G, that is, along AG, hence 

^ = tan d, 

but F = 

H = mg-, 

tan0== -. 

Example 1, A motor weighing IJ tons goes round the corner 
of a horizontal roadway at 15 miles/hr. describing a circle of 50 ft. 
radius. What friction is required to prevent side slipping ? 

B.E.D. ^ H 
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2. If the centre of mass of the motor in the last example is at 
a height 2 ft. 6 ins., and the distance between a pair of wheels 4 ft. 
G ins., find the total vertical pressure borne by the wheels on each 
side of the car. 

3. If a=2\ ft., ft., r=40 ft., m— \ ton, find the greatest 
velocity with which the car can turn the corner with all its wheels 
on the ground, and find the lateral pressure (friction) exerted at 
this speed. 

4. A motor track of radius r ft. is banked to an angle $y and a 
motor of mass m runs round it at a velocity v ft./sec. If the height 
of the centre of mass of the motor is h ft., and the distance between 
a pair of wheels 2a ft., shew that the total normal pressure on the 
wheels on the lower side is 

f ( »i ^ ^ cos +5r(c08 0^ sill I 

and find the velocity necessary to make the motor upset. 

126. Acceleration of a Point moving in any way in 
a Plane Curve. 

We now turn to the general case when the particle moves 

in any curve and the speed varies in any way. 

As in the special case we will give two proofs of the results, 

the first by the vector method, the second by finding the 

rcsolutes of the change of velocity. 

The results to be proved are the following : If the velocity 

along the curve is v, where the curvature is k, the accelerations 

are—along the tangent i) (the rate of change of r), and along 

the normal kv^. 

l5^ Method (vector method). Draw lines OQi, OQg repre¬ 

senting the velocities at the two moments, then QjQg is the 

change in velocity. 

From OQ2 cut of! OK=^OQi and join Q^K. 

Then the change in velocity is the resultant of Q^K and 

KQg. 
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Now KQ2 = V2“^’i’ ultimately (when Pg is close to Pj) 

along the tangent at Pj; 

the corresponding acceleration = Lim 
r-»- 0 t 

= i) along tangent at P. 

Also, QiK = OQj . 6 ultimately, 

and the corresponding acceleration along Q^K 

= Lim OQt ~ —Lim v^~ -^^v.k. 
t ^ s t 

and is ultimately in the direction perpendicular to OQj, that 

is, along the normal at Pj 

Since the expression for the acceleration along the 

normal may be written inv. 

2nd Method, depending on the principle that the resolved 

part of the acceleration in any direction is the time rate of 

change of the resolute of the velocity in that direction. 

Let Pj, Pg be adjacent points on the curve, and P^T, 

PjN be the tangent and normal at Pj; 

i\, ^2, the velocities at P^, Pg. 

0 = angle the tangent at Pg makes with P^T, 

t = time taken from Pj to ; 
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V2 can be resolved into 

V2 cos d parallel to P^T, 

i’2 sin 0 ,, ,, PjN ; 

change of velocity in going from P^ to Pg 

= cos 0 - parallel to P^T 

and ^2 sin 0 ,, ,, P^N ; 

/. at Pj the acceleration 

= along PjT 
t ~*0 t 

and Liin 
sin 6 
t 

P,H. 

Now 

= Lim 

V tp . 
for ~~ is negligible on account of having the square of the 

small quantity in the numerator and the first power in the 

denominator. 
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Again Lim 
^2 sin 0 

t 

T • '^^2^ T • ^ == Lim -1— = Lim is 
t ^ s 

s 
. K ,v 

Thus the results are : 

(1) the acceleration along the tangent is the rate of change 

of V, or is tlie same as if the path were not curved ; 

(2) the acceleration along the normal is kv^ or , which is the 
P 

same as if the speed was not varying, p being the radius of 

curvature. 

Since k = the normal component of the acceleration may 

be written as oiv. 

127. Varying Motion in a Circle. 

In a circle k = - and the acceleration f along the radius is 

—, the same as for uniform motion, but there is a tangential 

acceleration/' or i) in addition. 

The tangential acceleration can in this case be expressed 

otherwise thus ; 

/' = LimM 
f—..0 I 

=r X Lim ^ - -1 (since r is constant) 

=rA, 

if A is the angular acceleration of the radius to the moving 

point. 
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Example 1. A particle of mass 1 oz. is made to nm in *a hori¬ 
zontal circular groove of 10 ft. radius. If it started with a 
velocity of 20 ft./sec., and the friction is always one-tenth of the 
weight, find 

(1) the distance travelled before coming to rest, 

(2) the radial and tangential components of acceleration 
initially and when it has travelled half the distance to 
rest, 

(3) the resultant horizontal reaction in magnitude and 
direction at the same two points. 

2. A body having an initial velocity of 30 ft. per second describes 
a circle of 6 ft. radius with uniformly decreasing speed, coming 
to rest after exactly going round the circle, i^ind in magnitude 
and direction the resultant acceleration at each 120^ from the 
initial position. 

128. Motion of a Particle on a Smooth Curve in a 
Vertical Plane. 

By motion on a smooth curve we may' understand that 

(1) a small bead is threaded on a fine wire and is moving 

along the wire ; or (2) that a particle is moving along inside 

a fine tube ; or (3) it is moving along either the concave ot 

convex side of a strip of metal bent into a curve. In the 

first and second cases the particle necessarily keeps to one 

definite path, but in the third it may happen that the particle 

will leave the curve at some point. In the latter case it 

will only be necessary here to deal with the motion as long 

as the particle is in contact with the curve. The mathe¬ 

matical work is the same in all cases, the only difference 

lying in the fact that in the first and second cases the pressure 

of the curve on the particle may act at one time towards 

one side of the curve, and at another towards the other, but 

in the third case it can only act on the one side. 

When the curve is smooth, so that the reaction is per¬ 

pendicular to the curve, and gravity is the only other force 

acting, it is easy to get a relation between the velocities at 

different points by meN ns of the conservation of energy. For 
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if the reaction is always normal to the curve, no work can 

be done by or against this reaction as the particle moves 

along. Also, we have seen that the work done by gravity 

in any such case is mgh where h is the vertical distance the 

particle moves in the downward direction. Hence, the gain 

in kinetic energy being equal to the work done. 

Hence, if the velocity is known at one point it can be 

found by this equation at any other point. 

Knowing the velocity at any point, we can find the normal 

reaction there if we know the curvature of the curve, for the 

sum of the resolved parts of the forces along the normal is 

equal to ukv^ where k is the curvature. 

It is not usually possible by elementary methods to get 

an exact formula for the distance described in any time. 

129. Motion of a Bead on a Vertical Smooth Circular 
Wire. 

Suppose the bead projected from the lowest point of the 

circle with velocity u, then if the velocity is v when the radius 

makes an angle 6 with the vertical, the vertical distance 

travelled is 
AN = O A - ON = a ~ a cos 6 
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if a is the radius of the circle ; 

/. ^ 2ga(l - cos 6), 

v^ = u^-2ga(l - cos 6).(1) 

The normal reaction is given by 

R - ingcosd~~ 
a 

{n- - 2ga (1 ~ cos 6)} 

=.^-2nig{l-ooHd) 

'Ill'll^ 

R ■== + 3wg cos 0 - 2w(j.(2) 

Since equation (1) gives v in terms of 6, and therefore v 

in terms of 5, we can obtain t (the time to describe the distance 

s) for any value of s by the graphical methods given in Art. 20. 

Equation (1) shews that the velocity diminishes as 6 in¬ 

creases up to 180°, that is, till the particle reaches the highest 

point. 

can never become negative, and if it happens that v^^O 

at any point, the particle does not go any higher, but starts 

to return and oscillates on each side of the lowest point. 
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At the highest point 

cos 6 == - 1, 

hence the particle will reach the highest point if 

~ Aija. 

If u^<iga the particle will oscillate, the greatest angle 
reached being given by v~0 or cos0 ^ {2f/a - ii^-‘)j2ga. 

Equation (2) shews that the reaction diminishes as d 
increases, and when 0 — 180°, 

R - — - - bga\ 

consequently, if u^>bga the reaction will remain positive all 
round the circle. 

Writing the equations (1) and (2) in the form 

- u- - 2ga + 2ga cos 01 

~ = - 2ga -h 3qa cos 0, 

we obtain 3v^ _ _ Oga, .(3) 
vt ’ 

consequently, if R vanishes the value of v where R —0 is 
given by ^,2 ^ ^qa 

hence R can never vanish if u-<2ga, and if n->2ga, R^O 
'ifi ~ 2(7(Z 

where cos0=-. Since the velocity at the extremity 

of the horizontal diameter is vV - 2ga, if R vanishes, the 
velocity at the point where it vanishes is less than the velocity 
at the extremity of the horizontal diameter. Hence R can 
only vanish on the upper half of the circle. 

When bga>n^>2ga, the reaction vanishes somewhere in 
the upper half of the circle and changes sign, becoming negative, 
or, in other words, acts along the radius outwards. In other 
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words, the bead is pressing outwards on the circle in the 

lower part and inwards in the upper part. 

Equation (1) shews that the velocity is the same at the 

same height on the two sides of the vertical, and consequently, 

when the particle oscillates, the oscillations are symmetrical, 

and it reaches the same height on each side. 

130. Motion on the Inside of a Smooth Vertical Circle. 
If the circular wire is replaced by a strip of smooth material 

on the inside of which the particle is projected the equations 

are the same, but if R vanishes at any point the particle is 

then no longer pressing against the circle ; in other words, 

it begins to move in a free path leaving the circle altogether. 

Its subsequent motion belongs to the chapter on projectiles. 

In the same way the equations can be written down for 

the case when that particle moves from the highest point 

along the outside of a circular ring. 

Example 1. If a particle is placed at the highest point on the 
outside of a smooth vertical circle (or sphere) and just displaced, 

it continues to move down. Prove that its velocity is 2>/g^asin~ 

where 0 is the angle the radius at a point makes with the vertically 
upward radius. 

Prove also that it will run off the circle when cos 6— §. 

2. Prove that if started with any velocity u from the highest 
point it will leave the circle at once unless ga. 

131. Particle Tied to the End of a Weightless String. 
It will be noticed that if a particle is hanging from a fixed 

point by a light {i.e, weightless) string, and is given an initial 

horizontal velocity u of any magnitude, its motion will be 

exactly the same as the above case where the particle was 

caused to move on the inside of a vertical circle. The string 

can only exert a tension, and if the tension vanishes the 

string becomes slack and the particle ceases to describe the 

circle until the string becomes taut again. 
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Example 1. A bead slides down a smooth wire in the form of 
a parabola with its axis vertical and vertex upwards. If it starts 
from rest at the highest point, shew that its velocity at any point 
is proportional to its distance from the axis. 

2. A particle of mass \ ib. tied to a string of length 8 ft. describes 
a vertical circle about the other end of the string, which is fixed. 
Find the velocity at the highest point if the particle just goes round, 
and find the tension at the lowest point and at the extremity of 
the horizontal diameter. 

3. A particle moving on the inside of a vertical circle just reaches 
the horizontal diameter. Shew that the reaction at any point 
is proportional to the distance below the horizontal diameter. If 
it just goes round, shew that the reaction is proportional to the 
depth below the highest point. 

4. An aeroplanist describes a vertical circle of 200 yds. radius. 
If the velocity at the lowest point of the circle is 120 miles an hour, 
and the aeroplane is then upside down, what force is required to 
keep the man in his seat then, if his weight is 150 lbs. ? 

6. A particle attached to a string 10 ft. long is given a sufficient 
velocity to just make the complete revolutions. Find the velocity 
at every 30° of inclination, and deduce approximately the time 
of a complete revolution. 

6. A cyclist loops the loop on a track of 11 ft. radius. Calculate 
the least speed he must have when upside down at the highest 
point in order that the cycle may not leave the track. The mass 
of the machine and rider may be supposed concentrated at a point 
3 ft. from the track. 

7. A bead slides down a smooth circular wire in a vertical plane, 
starting from rest at the highest point. Find the horizontal and' 
vertical components of the acceleration at any point, and the resultant. 
Shew that the vertical component is greatest where cos 6— J and is 

there 0 being measured from the highest point. Shew also that 

the resultant acceleration is greatest at the lowest point. 

8. A particle moving on the inside of a smooth vertical circle 
of radius a is projected from the lowest point with velocity 
find the horizontal and vertical components of the acceleration 
in any position, and shew that if the resultant acceleration is /, 

f^gsllc^ -f 5 4- 4 (^ - 2) cos ^ -f 3 cos^ Q 

where B is the angle the radius to the point makes with the vertical 
downward radius. 



222 ELEMENTARY DYNAMICS 

Prove that if k =■ 5, f ^ g when 6=^180° ; 
if k~ 2, /= g when 9 — 90° ; 

and explain the meaning of these results. 
If fc—2, find where (i) the vertical, (ii) the horizontal, (iii) the 

resultant acceleration, is a maximum or minimum, and find the 
maximum and minimum values. 

132. Relative Rest on a Rotating Wire. 
If a bead is placed on a smooth wire or in a fine smooth 

tube in the form of a plane curve, which is caused to rotate 

with constant angular velocity a> about a vertical axis in its 

plane, the bead can in general take one or more definite 

positions of relative equilibrium, i.e. points where it will 

remain at rest relatively to the wire though describing a 

circle about the axis of rotation. 

If we take the case when the wire is circular and it rotates 

about a vertical diameter, the equations are the same as for 

the conical pendulum. 

Let a = radius of wire, 

,, circle described by particle, 

0 = angle radius to particle makes with the vertical. 

The acceleration of the particle is mV along PN in the figure, 

resolving vertically 

R cos 0 = wg; 

horizontally R sin 0 = 77^mV = mod^a sin 0. 
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These equations can be satisfied in two ways : 

(1) sin 0 = 0, R = 

(2) R = w<oX cos0 = -^^^ 
R 

9 
(jd*a 

The first solution gives the highest and lowest points on 

the circle as possible positions of equilibrium, the second 

gives an inclined position if 

(jj<ty^a<l, i.e. if (o> 

There is, however, a difference between these positions of 

equilibrium which we will state, though w^e will not prove 

the statement. When the inclined position of relative equi¬ 

librium exists, it is the only stable position. That is to say, 

if the particle is slightly displaced from the position it will 

return to it again and oscillate about the given position. 

But both the highest and the lowest positions are unstable; 

that is, if the particle is slightly disj)laced from one of them 

it will not return, but move farther from the point. 

If, however, (o< \ and therefore the equation cos0 = -\'( - 
M a ^ co^a 

has no solution, the highest and lowest points only are positions 

of the equilibrium, and of these the highest is unstable and 

the lowest stable. 

Example. A straight smooth tube inclined to the vertical at an 
angle a rotates with uniform angular velocity a> radians/sec. about a 
vertical axis intersecting it. Find the distance from the vertical 
axis of the point in the tube at which a small body can remain in 
relative equilibrium. 

133. Body on the Surface of the Earth. Effect of the 
Earth’s Rotation. 

It will be remembered we defined weight as the pressure 

a body exerts on a horizontal surface. This is, except at 

the poles, different from the force wuth which the earth attracts 

the body, as will be seen from the following considerations. 
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Take, first, a body of mass m at the equator. It is carried 

round by the earth in a circle of radius a (the radius of the 
2*7J’ 

earth or 3962 miles) with angular velocity 

period of rotation being not 24 hrs., but the sidereal day of 

23 hrs. 56 mins. 4 secs. 

Hence there must be a resultant force acting on it = mo)^a. 

Now, the forces acting on the particle are the pressure of 

the earth equal to the weight mg acting outwards, and the 

N 

attraction of the earth, which we will denote by mg', acting 

inwards. 

Hence, rng' - mg -= moo-a, 

g' -g^w^a. 

Now, putting in the values of (a and a, it will be found 

that 1 , 

hence. 

289 , 
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If there were no rotation g would be equal to g\ or the 

weight of the body would be equal to the attraction of 

the earth, but on account of the rotation the weight is 

diminished from this value by about of its amount. 

134. The above is the case at the equator, for other lati¬ 

tudes the effect is a little more complicated. We shall suppose 

the earth’s attraction the same as before, and towards the 

centre, as if the earth was a sphere. In latitude A the radius 

Fig. 11 r>. 

of the circle described by the particle is a cos A, and it will be 

seen at once that in order to have a resultant cos A along 

PM in the figure, the forces cannot both be along the radius; 

in fact, the reaction to the weight 7ng, and consequently the 

weight, cannot even pass through the centre of the earth. 

Suppose mg makes an angle 6 with the radius, it is most 

convenient to resolve the forces along the radius and tangent 

to the meridian, and we have 

along the radius mr/ - wg cos 9 = mw^a cos^ A,.(I) 

„ „ tangent mg sin 0 = mwH sin A cos A;(2) 

tau0^ 
sin A cos A 

g' - 0)% cos‘-^ A 
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Now is about 
fl 

1 
290' 

hence in the denominator we can neglect the term w^cos^A 

in comparison with g\ and we have 

, ^ erA/. sinXcosX i 
tanc/=^-—-nearly 

9 
1 

290 

1 
580 

sin X cos X 

sin 2X, 

the greatest value of tan 6 occurs consequently where 

X-45”, - 

and nearly 

=^6' nearly. 

Hence, the greatest angle the weight makes with the direction 

of the centre of the earth is 6'. The direction in which the 

weight acts is, of course, the direction of the plumb-line, and 

is also the direction of the normal to an unruffled liquid surface. 

Also, from (1), since 

cos 0=1 very nearly 

mg' - mg = cos*"' X very nearly, 

and the loss of weight on account of rotation is 

cos^ \ = 
mg 

cos^ X. 

At the poles evidently g' and there is no loss of weight. 

136. It must also be noticed that on account of the non- 

spherical shape of the earth the attraction exerted on a body 

at different parts of the earth’s surface varies, being greatest 
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at the pole and least at the equator. Both this effect and 

the effect of rotation tend therefore to make g diminish as 

one goes from the poles to the equator, and the value of g 

in any latitude at the sea-level may be very approximately 

expressed, in metric units, by 

^ = 9780(1 +-0053 sin^X), 

so that the variation from the equator to the pole is a little 

more than one-half per cent. 

136. Effect of Attraction of the Sun on the Weight 
of a Body. Tide-generating Forces. 

It is well known that the tides are due to a tendency of 

the oceans to heap up, at two extremities of the diameter 

Fig. 116 

of the earth, under the attraction of the moon and sun. We 

will be able to get an idea of how the effects are produced if 

we examine the effect of the attraction of these bodies in 

producing a minute alteration of the weight of a body on the 

surface of the earth. We will only examine the effects in 

the simplest possible case, namely, at a point on the equator 

at a time when the sun is directly overhead. And though 

the effect of the moon is greater than that of the sun, it will 

be more convenient to take the case of the latter on account 

of its much greater distance. 
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Following, then, the same method as in the case of the 

rotation of the earth, 

let mgy be the reaction to the weight, 

mg' ,, attraction of the earth, 

(0 ,, angular velocity of rotation of earth, 

12 ,, „ ,, revolution about sun, 

V „ velocity of earth in its orbit, 

a ,, radius of earth, 

R ,, radius of orbit of earth. 

Now the acceleration of the point is the resultant of its 

acceleration relative to the centre of the earth and the accelera¬ 

tion of the centre relative to the sun, and is therefore - 122r 

towards the centre of the earth. 

Hence, we have 

mg' - 7ng^ - mG^ — mi^wht -- 122R), 

or g' - <7, -*01 = - 122R. 

Now is the acceleration due to the sun at the surface 

of the earth [i.e. at distance R-a from the sun), and 12‘^R 

is the acceleration due to the sun at the centre of the earth 

(at distance R from the sun). 

Hence, by the law of gravitation, 

R2 “ (R - a)2’ 

Gi - 122R (R-;/)2 

= 122r very nearly, 

is very small; 

122R (1 + =:fo2a-122R : 

• • 9' ~ 9 \~ + 2al22. 
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Before examining the meaning of this result, let us take a 

point at the opposite side of the earth, and suppose there 

Gj is changed to Gg, 

the other quantities remaining as they were. 

We now have 

g + G^ - <7.2 -- -f 

G^ 

g - g,^ “ 4* .(2) 

as before. So that the effect is the same at both sides of the 

earth. 

The (jo'^a is the same term as before, shewing the diminution 

in weight due to the rotation of the earth ; and the 212% 

shews another diminution in weight of the same amount when 

the sun is on the meridian whether it is middap or midnight. 

It can be proved in the same way that at points like C and D 

in the figure, an increase in g of 12-a is produced, and hence 

the result is the same as if we had minute forces acting outwards 

at A and B and acting inwards at C and D. The result of these 

forces acting on the waters of the ocean is to cause the tendency 

of the waters to heap up under the sun and moon, and on the 

opposite sides of the eartli. 

It does not follow, however, that high water is always 

under the sun or moon ; on account of the rotation of the 

earth the high tide travels round the earth, and the time 

of high tide depends on the rate a wave can travel in the 

oceans of the earth, which again depends on the depth of the 

ocean and the presence of land. 

The acceleration 2rtl22 will be seen to be very small, having 
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only 2x^x^ 

earth. 

of the effect due to the rotation of the 

As we have seen (Art. 120), ■■ 
AS 

^ R3’ 
if A is the constant of 

gravitation and S the mass of the sun. 

This tide-raising force is therefore 
2ASa 

"r" ’ 

and consequently 

varies inversely as the cube of the distance, and directly as 

the mass, of the tide-raising body. It is on account of the 

cube of the distance coming into the matter that the effect 

of the moon is greater than the sun ; for, of course, the direct 

attraction of the sun on the earth is greater than that of the 

moon. 

Example, Compared with the mass of the earth as unity, that 
of the moon is 0 0123 and the sun’s is 3 16x10®. The distance 
of the moon is 2-38x10® miles and of the sun 9*2^x10^ miles. 
Compare the tide-raising forces of the moon and sun. 

137. Tension in a Rotating Band. 
Suppose a circular band, such as a leather belt or a metal 

wire, to rotate about an axis through its centre and perpen¬ 

dicular to its plane. There will be produced a tension in 

the band on account of the angular velocity. If we suppose 

the axis of rotation to be vertical, gravity will not come into 

the question. The tension will then be the same throughout. 

We will also suppose the dimensions of the cross section small 

compared with the radius of the band. We can think of a 

small arc ACB subtending a small angle 6 at O as moving in 

a circle under the action of the two tensions each T at the 

ends A and B. If, therefore, we resolve the forces along the 

normal at the middle points of the arc, since the tangent makes 

an angle ~ with each of the tensions, we have along the normal 

. e 
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where m is the mass per unit lengthy 

ad the length of the element AB, 

/. mad the mass „ „ „ 

FIG. 117. 

Now 0 being small . 0 d , 
sin - = - nearly ; 

2T. I = ma^w^d; 

'mv\ 

if V is the linear velocity of the band. 

If the angular velocity is great enough the band will break ; 

for, if T,„ax is tke maximum tension it can stand without 

breaking, it is only necessary to have 

ft)> 
max 

r 

or the maximum angular velocity allowable is 

VTniax 

This equation can conveniently be put into another form. 

If A is the area of cross section of the belt in square cms., and 

the ultimate tensile strength, or the maximum tension in 
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dynes per square centimetre wliicli the material will stand 

without breaking, and p the density of the material, 

T =T A ' max ' ()*^> 

m = pA; 

shewing that for a given material the maximum angular 

velocity is independent of the area of cross section, but 

depends on the radius of the circle, while the maximum 

linear velocity which equals is independent of every¬ 

thing but the nature of the material. 

Example 1. A east-iron fly-wheel of mean radius 12 ins. and 
cross section 4 square inches weighs 450 lbs. per cubic foot. Find 

(i) the total tension when it makes 100 revolutions per min., 
(ii) the maximum number of revolutions per minute possible, 

and the maximum linear velocity if the ultimate tensile 
strength is 7 -5 tons weight per sq. inch. 

2. Shew that if the tension in a rotating ring is limited to T Ibs.-wt. 

per sq. ft., the kinetic energy is hmited to ? ft.-lbs. per cubic foot. 
A 
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EXAMPLES. 

1. If a particle is moving in a circle with varying angular velocity, 
show that the x and y components of velocity at any instant arc 
- cal/, wx^ and of acceleration - co*x - A?/, - uy^y 4 kx^ where a*, i/, ca, A 
are the coordinates, angular velocity, and angular acceleration at 
the instant, and the centre of the circle is the origin. 

2. Prove that the force acting on a particle of mass m perpen- 
2/7? / / 

dicular to its direction of motion at the instant is — v here y 

is the deflection from that line of motion, when an infinitesimal 
distance x along it has been described. 

3. AB, BC are two rods of lengths a, 6 joined together at B and 
capable of rotating in a plane about the point A. If the angles 
AB, BC make with a fixed line AX increase uniformly at rates co, o', 
find the velocity and acceleration of C at time t in terms of co, co', 
a, 6, where f is the time measured from a moment at which the rods 
were in a straight line along AX. 

4. The radius of the earth is 6-4 x 10® cms., its density 5*5, the 
radius of its orbit round the sun 1 *5 x 10^® cms., the period of revolu^ 
tion round the sun 3*1 x 10’ secs., <7=980. From those data deduce 
(1) the mass of the earth, (2) the constant of gravitation, (3) the 
mass of the sun, (4) the attraction between the earth and sun. 

5. A particle slides down a smooth parabolic tube wliose axis 
is vertical and vertex upwards, starting from the highest point 
with any given velocity. Shew that the pleasure at any point is 

—, where c is the height above the directrix to which the velocity 

is due and p is the radius of curvature (see Art. 156). 

6. A bead slides on a smooth circular wire under the action of 
forces tending to the corners of a regular polygon concentric with 
the circle. The forces vary as the distance and are equal at equal 
distances. Prove that the pressure on the wire is constant. 

7. A particle of mass m is attached by a string of length a to a 
fixed point, and is moved in a vertical plane at a constant speed v 
by a force acting always at right angles to the string. Find in any 
position 

(i) the magnitude of the force, 

(ii) its rate of work, 

(iii) the tension of the string. 
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8. A mass m is in relative rest on the inside of a circular cylinder 
of radius r rotating about its horizontal axis with angular velocity 
CO. Find the force between the mass and the cylinder in any position, 
and shew that the coefficient of friction must not be less than 

Sf/s^co^r2 _-2; 

If fi,=glsJo>*r'^ shew that slipping is about to take place 
when the angle the radius to the point makes with the vertical 
downward radius is cos“^( -gjoi^r), 

9. A bead is placed on a circular wire of radius r which rotates 
about its centre with uniform angular velocity >j2g Ir in a vertical 
plane. Shew that in order that it may not slip the coefficient of 
friction must not be less than l/v^3, and that if it ==l/v^3, it is 
on the point of slipping at an angular distance of 120 ’ from the 
lowest point. 

10. A circular hoop of mass M rests with its plane vertical on 
a horizontal plane. Two small smooth rings each of mass m start 
together from rest at the highest j^int of the hoop and slide down 
it on opposite sides of the hoop. Hhew that the hoop will leave the 
plane when the angle 6 that the radius vector to a ring makes with 
the vertical is given by 

3 cos ^ 1 *h n/1 ~ 3M/27m. 

11. A smooth wire in the form of a parabola of latus rectum 4a, 
with its axis vertical and vertex downwards, rotates with angular 
velocity cj about its axis. Shew that if 

(o —>/gr/2a, 

a bead will remain at relative rest at any point of the wire. What 
happens if a> > or < s/g[2a ? 

12. A bicyclist going 12 miles an hour on a damp roadway 18 ft. 
wide comes to a turn at right angles in the road. 

What is the radius of the greatest circular arc on which ho can 
get round, and what is the coefficient of friction if he just gets 
round vdthout slide slip? (Neglect the dimensions of the man and 
bicycle.) 

13. A ring of mass m can slide on a smooth fixed circular wire in 
a horizontal plane, and is attached to a point A in the circumference 
by an elastic string of natural length equal to the radius a of the 
circle and of modulus A. If it is just displaced from equilibrium at 
the opposite end of the diameter through A, find the velocity and 
reaction at any point P so long as the string is stretched. 
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14. A heavy particle P can slide freely on a cord APB fixed at 
points A, B in the same vertical. The system rotates about AB 
with such a velocity that BP is horizontal. If the length of the 
cord is 18 ins. and of AB 6 ins., shew that the system makes G/tt 
revolutions per second. 

16. A particle P of mass m is attached to one end of a string 
of length the other end of which is tied at C to a string ACB whose 
ends A, B are fixed. If the whole rotates with uniform angular 
velocity co about AB, find the tensions of the three portions of 
the string. Assume the parts of the triangle ABC and neglect 
gravity. 

16. A particle of mass 100 gms. is attached to two strings of 
length 50 and 30 cms. respectively to two points in the same verti(;aJ 
at a distance of 40 cms. apart. What uniform velocity will be 
necessary to keep the lower string (the shorter) stretched ? 

If it makes three revolutions per second, what will be the tension 
in each string ? 

17. An elastic string has a natural lengtii I ft., anrl is stretched 
by an amount a ft. by a mass of m lbs. attached to it. 

Find the length of the string when, with the weight, it makes 
n revolutions per second as a conical pendulum. 

18. A mass m is attached to the middle point of an elastic cord 
of natural length 2^, w^hose ends are fixed at A, A', and the w hole rotates 
about AA' with uniform angular velocity w so that the mass describes 
a circle having its centre on AA'. Neglecting gravity, shew that the 
extended length of the string is 

where A is the modulus of the string. 

19. A particle C of mass m is attached by strings CA, CB to two 
fixed points A, B in the same vertical line, A being above B, and 
the whole rotates about AB. Shew that in order that the strings 
may be stretched to^ must be greater than gr/ftcosA, and if this 
holds, find the tensions. 

20. A bead C of mass m is capable of sliding on a string AB attached 
to two points A and B in the same vertical line, A being above B ; 
if the whole length of the string is prove that the string is vei-tical 

if oi^<2gll{P-c% 

and that if the string is not vertical gr//a/>co2=cos A - cos B, and 
BC is horizontal if =^2gPlc(l^ - c^). 
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21. A particle C of mass m is attached by strings AC and BC, 
each of length a, to a fixed point A, and to a ring of mass M sliding 
without friction on a vertical rod AB. If C rotates about AB, prove 
that the strings will be inclined to the rod if 

a m 

22. Two particles of masses m, m' are connected by an elastic 
string of modulus k and natural length c, and can move on a hori¬ 
zontal table. 

Prove that they can revolve in circles about a common centre 
with uniform angular velocity o> if 

c\m m J 

Explain what happens if is greater than this. 

23. A block of wood weighing 10 lbs. hangs by a light rope 
8 ft. long. A bullet of 2 oz. is fired horizontally into the block, 
remaining embedded in it, and the rope swings to an angle 60° with 
the vertical. Find the velocity of the bullet. (Treat the block as 
a particle.) 

24. Equal masses are attached to a weightless string at the corners 
of a regular polygon formed by it. 

If the system rotates in a horizontal plane with uniform angular 
velocity round the centre of the polygon, prove that the tension 
of the string is pv^ where 

_ total mass of particles 
^ total len^h of string ^ 

and V is the speed of each particle. 

25. If the string of a conical pendulum, whose bob is of mass m, 
passes up through a smooth ring of mass M, which can slide freely 
on a smooth vertical rod to which the upper end of the string is 
attached, prove that the angle of the pendulum is given by 

cos +m), 

and that m(siH = (^+^1)9^, 

if Hs the length of the inclined portion of the string. 

26. The bobs of two equal pendulums of length I are connected 
by a string of length 2a, and the whole rotates with angular velocity 
<i> about a vertical line bisecting the string. Find the tension of 
the string, assuming the velocity sufficient to tighten it. 
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27. A simple pendulum of length I and of mass m is attached 
to a block of mass M resting on a rough horizontal plane. The 
bob is projected from the lowest position with energy sufficient 
to raise it through an arc of 30'-'. Find the vekjcity of the bob 
and the tension when an angle B has been de8cril>ed, supposing 
the block not to shift, and shew that it will not shift if the coefficient 

of friction >W3/(4M+3^). 

Note on Use of Vectors. 

We will illustrate the use of vectors by applying them to 

find the acceleration of a particle moving in a circle. 

First consider the rate of change of a unit vector a as the 

direction of a changes. We can write a as i cos 0 + j sin Q where 

i, 3 are fixed unit vectors at right angles and Q is the angle 

between a and i. Then differentiating, 

d = - i sin 66 j cos 66=^6^ 

where is a unit vector making a positive right angle with Ot* 

Then $== ~(icos0 + jsin0)0= -Oi6. 

Now suppose a point to move round a circle of radius r. 
Its position vector r is given by t — tol; 

/. r = rd=r6p and r = r6^ + r6^ = - r6^0L 4- 

or the acceleration is made up of two components r6^ in the 

negative direction of the radius, and r6 along the tangent. 

If we allow r to vary we get the case of a particle describing 

any curve, and we find the radial acceleration is r - and 

that in the perpendicular direction rO + 2 f0. 



CHAPTER Vill. 

THE SIMPLE PENDULUM. 

138. Simple Harmonic Motion on a Curve. 
We have defined simple harmonic motion as a certain kind 

of motion in a straight line, but motion on a curve may also 

be spoken of as simple harmonic in the following sense. 

If a particle is moving along a curve AOB in such a way 

that the acceleration at P along the tangent is proportional 

to the distance, measured along the curve from a fixed point 

O, and is directed towards O, then the motion will have the 

same properties as the simple harmonic motion in a straight 

line, and can be called simple harmonic. For example, the 

period of oscillation will be independent of the amplitude of 

the oscillation. 

In the pendulum we have a case of motion on a curve 

which is not exactly simple harmonic, but which becomes 

more and more nearly simple harmonic the smaller the ampli¬ 

tude of the oscillation. 
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139. The simple pendulum consists of a heavy particle or 

bob attached to a fixed point by a weightless string and 

swinging only in a vertical plane. It is ^ 

thus a case of motion in a vertical circle 

which we have partly discussed already. 

We shall examine the motion a. little 

further in the case when the oscillations 

are small, that is, when the string always 

makes a small angle with the vertical, 

say not more than 5°. The maximum 

angle made by the string with the vertical 

will be called the angular amplitude, or. 

simply, the amplitude. 

Let I ~ length of string, 

^OCP = 0-angle it makes with ver 

tical at any time. 
arc OP = .s, 

so that 

— velocity at lowest point A, 

„ p; 
then we have 

— 7/2 _ O, \gl{\ 

: - ^gl sill' 

cos d) 

e 

- ^gl ~ nearly 

1/2 - gl p 

9 ' 
If this equation was exact, the motion would be strictly 

simple harmonic motion on the curve from a comparison 
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with the equation for S.H.M. giving the velocity in terms of 

the displacement, namely, 

- x^). 

As the equation is not exact, the motion is only approxi¬ 

mately simple harmonic, the period being 

S’rVf 
We can arrive at the result, also, easily, by considering the 

forces acting. These are the tension and the weight. If we 

resolve along the tangent at P and away from O, we get 

inf— - mg sin 6 ; 

/- -g^inO 

— - gO nearly 

Thus the acceleration along the curve is nearly proportional 

to the displacement from O, and therefore the motion is nearly 

simple harmonic with period 27r n 
140. This result is, of course, only true in the ideal cir¬ 

cumstances stated. In practice there are several points in 

which the experiments must differ from the theory. In the 

first place, no actual pendulum can agree with our definition 

of a simple pendulum, yet the error made when a bullet is 

attached to a long silk thread is very small. In the next 

place, the formula only applies to infinitely small amplitudes 

of swing, an accurate expression for finite amplitudes being 

where rx is the amplitude. 

sim 

Example, With this expression find the percentage increase in 
the period for amplitude 60° over that for infinitely small amplitude. 
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Thirdly, in ordinary experiments air resistance comes into 

play which slightly increases the period, and also causes the 

amplitude of oscillation to gradually decrease. 

141. Seconds’ Pendulum. 
It will be borne in mind that we have used the term period to 

denote the time of a complete oscillation from the extreme posi¬ 

tion on one side to the other and back to the starting point. 

Half this period, or the time from one extreme to the other, is 

often called the time of swing, and formerly it was more usual 

to speak of the time of the swing than of the time of a com¬ 

plete oscillation. Hence it is that a pendulum whose time 

of swing is 1 second, or time of a complete oscillation 2 seconds, 

is called a seconds’ pendulum. Thus the length of the seconds’ 

pendulum is given by 

142. Value of g. 
The pendulum gives much the easiest and most accurate 

method of finding the value of g, for, from the formula 

we have 

t=^27r \j—9 
^ 9 

In even the roughest experiment with a pendulum about 

6 feet long, t can be found to second or, say, to of the 

period by taking the total time of 100 oscillations, and I, 

likewise, is easy to measure to the same degree of accuracy, 

and the resulting value of g will be not more than 1 per cent, 

wrong. 
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Newton s Experiments. In consequence of the accuracy of 

determination of g, the pendulum affords the most convenient 

way of verifying the fact that g is the same for all bodies at 

the same place on the earth’s surface. 

Newton experimented by using pendulums with hollow bobs 

of the same size in which he could place various materials, 

and he found that the time of oscillation was the same in 

all cases for the same length of pendulum, and he consequently 

deduced that g was the same for all substances. More 

refined experiments of the same nature confirm Newton’s 

result. 

Compound pendulum. Any pendulum which is not a simple 

pendulum, and therefore any. pendulum actually used for 

experiment, is called a compound pendulum. We will discuss 

the compound pendulum later. 

143. Clock Rate. 
A pendulum-clock consists essentially of a pendulum with 

apparatus for keeping up and counting its oscillations. Tf 

at one time the clock is going correctly, and afterwards for 

any reason the time of oscillation is changed, the clock will 

gain or lose accordingly. 

Thus, if the period when going correctly is t secs., and it 

is increased to / + t, the number of oscillations in p secs, is 

diminished from 

^ ~ to n - V = —, 
t “I" T 

and tbo change i, = £ _ . 
t /-fT /(^4-t) 

We need only consider the case when ^ is very small, as it 

will be always in practice. 

XUr. 4-^.-- P'^ 1 



THE SIMPLE PENDULUM 24JI 

and the proportional loss in number of oscillations 

v pT I p T 

and as it loses r oscillations in so it loses v secs, in 7i secs. 

Thus, in one day the clock loses 

24 X 60 X 60 X ^ — 86400 x ^ secs. 
t t 

144. Effect of cha7ige in I or g. 

If the length I is increased by a quantity X, for example, 

by increase in temperature, or if g is increased by y, as when 

a clock is brought down towards sea-level from a height, the 

time of oscillation will be altered in either case. We may 

take the two effects separately, but it will be seen by taking 

the two at once that the total effect is the sum of the effects 

produced by each separately, an example of the general rule 

called the principle of the superposition of small effects. 

We have, then, at first, 

afterwards 

t-\-r—'l’7r \-= 27r 
^ g + y 

= (tT^) 
X/Z and y/g being always small fractions, 

T X y 

B.E.D. I 
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Thus, if there is only increase in length to consider, the 

percentage increase in the time of oscillation is half the per¬ 

centage increase in the length. 

When g changes but the length remains unchanged there 

is a percentage diminution in the time of oscillation equal to 

half the percentage increase in g. 

146. Change in g due to 'position. 

We have seen that g is affected by the rotation and shape 

of the earth, and is consequently different in different latitudes. 

Again, if a person climbs a hill of height h, g is diminished 

to g-y according to the law of gravitation, the attraction 

of the earth being (nearly) inversely proportional to the square 

of the distance from the centre'; thus, if R is the radius of 

the earth (in the same units as A), 

R2 (R + A)2 

or ^r2 = (V-7)(R + /02; 
y(R + A)^==^(2RA +/i2); 

. )/_A(2R + A) 

" g" (R + kf ' 

Now, A/R being very small, we can write this 
y _^h 

On the other hand, if a person descends a mine the value 

of g again changes. If the earth were of uniform density 

the attraction at an interior point would be proportional to 

the distance from the centre (as was proved by Newton), 

and we should have, if d is the depth, 

9 
R R-d' 

gR-^gd^gR-^yR, 

y — ^ or 
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The density of the earth, however, increases towards the 

centre, and it has been found that g increases at first in going 

down a mine. (See Poynting, Mean Density of the Earth, p. 32.) 

146. Forced Oscillations of a Simple Pendulum. 
As a simple example of a forced oscillation, suppose the 

point of support C of a simple pendulum of length I is caused 

(“ forced ”) to move horizontally with simple harmonic motion 

of amplitude c and period T'. 

Let T ^ = 27r= period of the free oscillation. The 

position of C is given by 
, 2'7rt 

X =CC08-^, 

if we measure times from an instant when C is at its extreme 

position. The acceleration of C is therefore 

4x2 2xf 
-^ccos-^,. 

‘ir 

The acceleration of P is the resultant of its acceleration 

relative to C and the acceleration of C. 
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If we call / the component acceleration perpendicular to 

CP of P relative to C, the total acceleration of P in this direction 

will be 47r^ 27r/ ^ 
/ - c cos - d. 

The component force perpendicular to CP is - mg sin 6 ; 

. . ni\f ~ Y'2 ^ j~ 0)—- 7ng m\u. 

If the oscillations are small, 6 is always small and cos 0 = 1, 

sin 0 = 0 nearly ; 
. r 4^2 27rt . ^ 

. . / - -:;pT c cos Y* — - 9 sm 0. 

If a; is the horizontal displacement of P relative to C, 

sin 0 = 

/- 
(7 4:7r^ 27r/ 
|^ + -y2 ccos— 

4x2 4x2 27rt 

Hence, if the forced oscillation is given by 

2x^ 
fr = acos 7-> 

/=- 

4x2 
—To-a cos 
T ^ 

2x2^. 

4x2 
y'2 

2irt 
a cos = r 

4x2 
a cos 

2x^ 
CC08 

2x/ ^ 
T"' 

1 

T'2 ^ T2 _ 
. . a — I ^ c -- ^,2 _ -p2 ^ i 

J2'j^2 

T2c 
' J'2 1. T2 ro COS 

2xJ 

r * 
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Therefore if T'>T, or the oscillation of C is slower than the 

natural oscillation of the pendulum, the phases of the pendulum 

oscillation and of C are the same, that is, P and C are at their 

maximum displacement in the same direction at the same 

time. 

But if the oscillation of C is faster than the natural oscillation 

of the pendulum P and C are at their maximum displacements 

in opposite directions at the same time, and will always be 

moving in opposite directions. 

It must be noticed that the free oscillation may exist in 

addition to the forced one. For example, besides the forced 

oscillation of period T', the pendulum above may have super¬ 

posed on this a free oscillation of period T. But it will be 

found in many cases that the free oscillation tends to die 

away, on account of friction of some kind, while the forced 

oscillation keeps up as long as the exciting cause remains. 

EXAMPLES. 

1. Find to three places of decimals the time of oscillation of a 
pendulum 6 ft. long if 0^=32 18 ft./sec^ 

2. Find the number of oscillations made in half an hour by a 
pendulum a metre long if ^=980. 

3. A pendulum 180 cm. long is found to make 223 oscillations 
in 10 minutes. Find the value of g, 

4. What change would be required in the length of the pendulum 
in Example 3 to alter the number of oscillations in 10 minutes 
to 225. 

6. A clock keeps correct time at 10® C., what will it lose per day 
when the average temperature is 25®, supposing the coefficient of 
expansion of the rod of the pendulum to be 0 000011 per 1® C. ? 

6. If a clock goes correctly at 0® C., what rise of temperature 
will cause it to lose at the rate of 10 secs, per day if the coefficient 
of expansion of the rod is 0 000008 1 

7. A clock with a seconds pendulum is gaining 2 dfinutes a day. 
What alteration should be made in the length of the pendulum 
to make it go correctly ? 
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8. Find the alteration in g due to going up a mountain a mile 
high if g is 980 cm./sec*, at the foot, and shew that a clock going 
correctly at the foot would lose almost 21*8 secs, per day at the 
top. 

9. A clock which was going correctly is taken to the top of a 
mountain and, at the same temperature, it is found that the pen¬ 
dulum has to be shortened by a two-thousandth of its length to 
keep it correct. Find the height of the momitain. 

10. The string of a simple pendulum is 1 metre long and will 
break with a tension of 2-5 kgms. weight. If the bob is 2 kgms., 
shew that the vertical motion of the bob must not be greater than 
J metre. 

11. A simple pendulum makes oscillations of amplitude 15®. 
Shew that the tension of the string when vertical is 1-07 times 
the weight of the bob nearly. 

12. A block of mass M rests on a smooth horizontal table and 
contaiiLs a smooth spherical cavity in which a particle of mass m 
rests. Starting from rest the block is kept moving with constant 
acceleration / by means of a horizontal force applied to it. Shew 
that the motion of the particle relative to the block is pendulum 
motion about a radius inclined at an angle a to the vertical where 
tan a.=//g^, and that the ratio of the horizontal forces in the highest 
and lowest positions is 



CHAPTER IX 

PROJECTILES. 

147. If a body is projected from the surface of the earth 

in any direction it is acted on by two forces, its weight, con¬ 

stant in magnitude and direction (the minute variation in 

this being negligible), and the air resistance. The latter 

follows a law which is not knowui accurately, being found 

experimentally to obey, apparently, different laws at different 

velocities, the law^s given varying from the first power of the 

velocity at very low velocities to the sixth power at 1100 feet 

a second, and again diminishing to lower powers at higher 

velocities, though, of course, the resistance increases con¬ 

tinuously from the lowest to the highest velocities. 

The results in the present chapter will be obtained on the 

supposition that the resistance is negligible. They can con¬ 

sequently only represent the truth approximately when the 

velocities are small, such as when a stone is thrown by hand. 

For velocities such as occur in modern bullets and cannon 

shot, they cannot be trusted even to give an approximation 

to the truth. Notwithstanding this, the results are of great 

interest historically and otherwise. 

148. Neglecting air resistance then, or, in other words, 

supposing the body to be projected in a vacuum, we have 

gravity only acting, and it is most convenient^to take hori¬ 

zontal and vertical components throughout. We then base 

the work as usual on the independence of the two components 
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of the motion. As there is only a vertical force (the weight), 

there is only a vertical acceleration g downwards. 

We shall use the following notation : 

V = initial velocity or velocity of projection, 

a = angle V makes with the horizontal or the angle of 

projection, 

V' = velocity at the end of t secs., 

a! = angle V' makes with the horizontal, 

X, y— the horizontal and vertical distances travelled in 

t secs. 

Now the initial horizontal velocity = V cos (X, 

and ,, ,, vertical „ upwards =:Vsin (x. 

The horizontal acceleration = 0, 

„ vertical „ = -g> 

The motion in the horizontal direction is consequently 

unaccelerated, while the vertical motion obeys the laws of 

uniform acceleration. 

Hence the component velocities at time t are : 

in the horizontal direction V cos a, and 

„ vertical „ Vsina-,^^. 

Also, the horizontal distance described in t secs, is 

V cos — 

and the vertical V sin fx . (- =y 
(1) 

(2) 
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The resultant velocity at time t is given in direction and 

magnitude by 
V' cos a' = V cos a, .(3) 

V' sin a' = V sin (X - .(4) 

squaring and adding, 

/. V'2 = v2-2V^^sina + ^2^^ .(5) 

and dividing, 

Vcosa ^ 

(5) can be written by the help of (2), 

V'2 = v2-2^^, .(7) 

which is the equation of energy, for the loss in kinetic energy 

= ImV^ - 

and the work done against gravity = ; 

- 4mV'2 = mgy ; 

• V2-v'2 = 2gi5/. 

149. Time of FHtjht uml Range. 

If the body is projected from a point in a horizontal plane, 

it strikes the plane again at a time T given by = 0, 

or V sin a. T - = 0, 

_ 2V since /ov 

This time is consequently called the time of flight. 

The distance from the point of projection to the point 

where it strikes the plane again is the Range, and is given 

by (1), ^ being the time of flight; 

9\/ cin fv 

or Range = R = —~—, V cos a 

2V2 sin OL cos fx V- sin 2rx /a\ 
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If the velocity of projection is given, the range is greatest 

when 8in2a=l, 

or 2a=90°, 

a=45°, 

the maximum range being 

V2 

/7 
.(10) 

To hit a given object on the horizontal plane with a given 

velocity of projection, we have R, a given value ; 

. V- sin 2a 

9 

sin 2a = 

R, 

V2* 

If ^.<1, in other words, if R< maximum range, there are 

two values for 2a, one acute and one obtuse, and if we call 

these 2ai and 2a2, 
2a2 = 180°-2ai; 

ai + a2 = 90°; 

/. Oil and 0.2 are complementary, or putting it in the form 

a2-45° = 45°-ai, 

the two directions of projection make equal angles with the 

direction giving the maximum range. 

160. Greatest Height Reached for given Velocity and Angle oj 

Projection. 

When the projectile is at the highest point it must be moving, 

at the instant, horizontally, or the vertical velocity is zero. 

Hence the time to the highest point is given by 

V sin a-^e=0 ;.by (4) 

j the time of flight. 
9 
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The maximum height is now given by (2), 

. Vsina , V^.sin'-^a. 
^iBax = V sill rx. — --Ig —— 

_ V‘-^sin‘^OL 

W"' 

and the horizontal distance at the maximum height is 

y- sin a cos (X 

0 " 

and this is half the range, by (9). 

161. Form of Path. 

Returning to equations (1) and (2), we have from (1): 

V cos CL 

and if we substitute in (2) 

y = V sin a 7 
Vcosoc cos2 a 

y^x tan a. - 
2V“Cos'^ac 

This equation, giving as a quadratic function of x, shews 

that the path is a parabola, but we will deduce more about 

the path in another way. 

162. Symmetry of Path. 

To find the horizontal distance from the point of projection 

when the particle is at a given height h, we have to solve 

equation (11), 
-o-tail a + A = 0, 

2V2cos2a 

2V‘^ cos^octan oc 2V2/? cos‘^<x ^ 
or X--X +-= 0. 

9 9 

This gives two values of x, and if we call them and x^. 

we have from the theory of quadratic equations 

2V2eos2atana 2V2 . 
x^-¥x^-- sin a cos a; 
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or 

= twice horizontal distance of the highest 

point, 

R R 

Hence the two points at a height h are equally distant 

horizontally from the highest point, hence the curve is sym¬ 

metrical about a line through the highest point. 

Fig. 122. 

Also, since the horizontal velocity is constant, the time 

from Pi to A is the same as from A to Pg at the same height 

as Pj. 

The time to a given height h may be deduced directly 

from (2) thus : 
- V sin a. ^ = 0 

. 2V 2h 
or -siiia./f + —=0, 

9 9 

and if ti and are the two solutions, 

t-t 4“ tn 1 .! g 

— twice the time to highest point. 

Shewing again that the time from height h to the highest 

point is the same as from the highest point to the height A. 

These results shew that the curve is symmetrical, and that 

the time taken in travelling along a portion of the upward 



PROJECTILES 255 

path is the same as that in travelling along the similar portion 

of the downward. In other words, the motion from the 

highest point to the ground is exactly the reverse of the 

motion from the ground to the highest point. 

163. To examine the nature of the curve more exactly, 

it is therefore sufficient to start from the highest point. At 

that point the horizontal velocity is V cos a and vertical 

Fig. 123. 

velocity 0. V secs, after the particle has passed the highest 

point the horizontal and vertical distances x\ y' from the 

highest point are given by 

X = V cos a. t\ 

?/'= 

• _ 

■■ sv^cos^a 

- -STOS "'*. 
This is the fundamental property of the parabola—the 

square of the ordinate is proportional to the abscissa. 

164. Note on Geometrical Properties of the Parabola, 

The parabola is generally defined as the locus of a point P, 

which moves so that its distance from a fixed point S is equal 

to its distance from a fixed line MX. 

8 is called the focus and MX tae directrix. 
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With this definition, in the figure, 

PS = PM, 

AS = AX, 
PN2 = PS2 - SN2 = PM^ - SN^ 

= XN^ ~ SN2 = (XN 4- NS)(XN - NS) 

= 2 AN . 2AS, 

or PN2 = 4AS. an.(13) 

If LSL', parallel to MX, is drawn through S, LL' is called 

the latus rectum, and the size of the parabola is determined 

by the length of LL'. 

Now LL' = 2SL == 2SX = 4S A. 

166. Comparing (13) with (12), we see that the projectile 

describes a parabola whose latus rectum is 

2V2cos2oc .... 
..(14) 

9 
The height of the focus=SN = AN - AS 

_ V^sin^a V^cos-oL _ V^cos 2a. 

and the focus is below the horizontal plane if a < 45®. 
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The height of the directrix = XN 

- AN + AX = 
V^sin^a V-^cos^oc 

' '^~ig 

y2 

‘i<j' 

hence the height of the directrix is the height from which a 

body would have to drop vertically to get up a velocity equal 

to the actual velocity in the path. This is often expressed 

by saying that the velocity at any point is that due to a fall 

from the directrix 

166. Curvature of a Parabola. 

The following results are proved in any book on 

geometrical conics. 

(1) The tangent PY bisects the angle between PS and 

PM. 

(2) If SY is perpendicular to PY, Y is on the tangent 

at A. 

(3) The triangles PSY, YSA are similar. 

Assuming these results, it is interesting to deduce from 

the dynamical results the curvature k of the parabola at 

any point. 

For, since the acceleration along the normal at P is 

and the normal makes an angle a with the vertical, 

/cV^ = g cos a, 

but PM = 2.(7. PS; 

. cos oc 
** 

Now, lSPY = ^MPY= - a: 

. SY AS /syT 
.. cos(X = s,n8PY = g-=-=^— 

ASi 

AS 

SY 

2.8P* 
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167. We may obtain an easy graphical representation of 

the velocity at any point. Let OA represent the initial velocity 

in direction and magnitude, and AB, BC, CD... each represent 

g on the same numerical scale as the velocity. Then it will 

be seen at once that OB, OC, OD ... represent the magnitude 

and direction of the velocity at the end of 1, 2, 3... secs. 

168. Direction of Projection to Hit a given Point. 

To hit a point Q whose horizontal and vertical distances 

from the point of projection are x, y, if the initial velocity is 

given, we have to solve (11) for a, that is. 

y = X tan a ■ 
gx^ 

2V2cos2a 

= xtana- —sec’^a 

= a: tan a -1^(1 + tan^a) 

tan^a - — tan rx + I + = 0, 
gx Qx^ ’ 
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giving a quadratic equation for tan fjc, and two possible direc¬ 

tions of projection if the roots are real, 

Le. if \/^>g^x^ + 2\/^gy, 

i.e. if (- gyY > g"^(x^ -f y^), 

i.e. if \/^>g(y + s/WT^). 

Therefore, if \/^ < g(y -h it is impossible to project 

the body to pass through the required point. 

Example 1. A stone is projected with a velocity of 100 ft./sec. 
at an elevation of 30° from a tower 150 ft. high. Find 

(i) the time of flight, 
(ii) the point where it strikes the horizontal through the 

foot of the tower, 

(iii) the magnitude and direction of the velocity on striking 
the ground. 

Here, if we measure upwards from the point of projection, the 
vertical distance described when it strikes the ground is — 1^ ft. 

The component initial velocities are 100 x J vertically and 100 x ^ 
horizontally; 2 

if t is the time of flight, 
50^- 16(2= - 160 ; 

^=5 or 

the negative solution not being applicable. 
The horizontal distance of the point where it strikes the ground 

from the tower is _ 

100x^x5=433 ft. 

The vertical velocity at the ground is 
50 - 32 x 6=-no. 

the horizontal velocity is 100-^= 86*6. 

The resultant velocity is 140 ft./sec., and the angle it makes 
with the horizontal is 
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2. A body is projected so that the components of the initial 
velocity are 110 ft./sec. horizontally and 75 ft./sec. vertically. 

Find the range, time of flight, and maximum height reached. 

3. A body is projected with velocity 65 ft./sec. at an angle tan 
with the horizontal; find its position, resultant-velocity, and direction 
of motion at the end of 3 secs. 

4. A body is projected with velocity 90 ft./sec. at an angle of 
60° with the horizontal. 

Find its position, resultant velocity, and direction of motion at 
the end of 3-5 secs. 

5. If a projectile has a range of 15 miles and remains 30 secs, 
in the air, find the initial velocity and angle of projection (on the 
supposition of no air resistance). 

6. If the maximum range of a gun is 18 miles, find (on the sup¬ 
position of no air resistance) the initial velocity and the maximum 
height reached. 

7. What is the greatest range ‘for a particle projected with a 
velocity of 80 ft./sec., and what would be the angle of projection 
to give half this range ? 

8. What is the least velocity with which a cricket ball can be 
thrown 100 yds. ? 

9. A body is projected with a velocity of 95 ft./sec. at an angle 
of 34°. Find the range and greatest height reached. 

10. A gun is fired horizontally at a height of 6 ft. above the ground. 
If the shot strikes the ground at a distance of 1200 ft., find its initial 
velocity. 

11. A stone is thrown with velocity 60 ft./sec. from a height of 
20 ft. above level ground, and at an elevation of 20°. Find where 
it strikes the ground, and the magnitude and direction of its velocity 
then. 

12. A stone is projected with velocity V at an elevation ol from 
a point at a height h above the horizontal plane. Prove that the 
range R on the horizontal plane is given by 

2V* . 2/^V* 
R2-R sxn CL cos CL-cos®a. =0, 

9 9 
and explain the meaning of the negative solution of the equation. 

13. If the range on the level is 250 feet, and the maximum height 
reached 31J feet, find the initial velocity and angle of projection. 

14. If t is the time from the point of projection to a point P at 
the height A, and t' is the time from P to the ground again, prove 
that h—\gU\ 

15. At what angle should a body be projected with veloci^ 
80 ft./sec. to hit a point on the horizontal at a distance of 120 ft. f 
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16. At what angle should a body be projected with velocity 
80 ft./sec. to just pass over a wall 12 ft. 6 ins. high at a distance 
of 100 ft. ? 

17. Find the velocity and direction required to throw a stone 
to just pass horizontally over a wall 8 ft. above the thrower’s shoulder 
and 60 ft. away. 

18. Will a stone thrown with velocity 70 ft./sec. at an elevation 
of 20° pass over a fence at a horizontal distance of 30 yds. and 
i feet higher than the point where it leaves the thrower’s hand ? 

19. A stone is thrown with a velocity of 80 ft./sec. at an elevation 
of 30° from the top of a vertical cliff 200 ft. high. Find where 
it would strike the water. 

Where would it strike the water if it was thrown at an angle of 
depression of 30° ? 

Find in each case the direction and magnitude of the velocity 
on striking the water. 

20. If a stone is projected with velocity V from height h to hit 
a point on the level at a horizontal distance R from the point of 
projection, shew that the angle of projection is given by 

2V2 2AV2 
R2tan2(x-—, Rtana-f R2~—~ = 0. 

ff 9 
Hence deduce that the maximum range on the level for this 

velocity is 

and that if R' is this maximum range and a the angle of projection 
to give the maximum ^an a.=V*/gR', 

tan 2ol= R'/^* 

21. If a body is projected with velocity V to hit a point Q at 
horizontal and vertical distances a*, y from the point of projection, 
and if +?/*), prove that there is one value of a. only. 

Shew that in this case if - = tan i, 

tan a.= sec i + tan i, 
and hence that the direction of projection bisects the angle between 

OQ and the vertical, or a=“4-7i- 
4 2 

When 
so that there are two values oli and a.,. 

prove that tan (aj + 04)=tan -h 

= tan 2ol. 
and therefore that the two directions of projection make equal 
angles with the vertical and OQ. 
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22. Find the velocity and direction with which a body must 
be projected to just pass over two parallel walls 20 feet apart, and 
each 6 feet higher than the point of projection if the nearer is 30 
feet from the point of projection. Find also the maximum height 
to which it will rise. 

23* Two walls are 40 ft. apart, and one is 6 ft. and the other 
10 ft. higher than the point of projection of a particle, projected 
from a point 20 feet from the lower wall so as to just pass over the 
two walls. Find the initial velocity and direction of projection. 

169. Errors Produced by a Small Error in the Elevation. 

To hit an object at a horizontal distance x and vertical 

height y above the point of projection the angle of elevation 

is determined by the equation 

7/ = ictana-- ^(1 d-tan^a). 

If a is determined correctly, but a small error d is made in 

projecting the body so that the angle of projection is a + 6 

where 6 is small, so that we can omit 6^, etc., then at a hori¬ 

zontal distance x the height of the projectile will be y-\-lc, 
say, where k is small (compared with x). We proceed to 

find h for a given d. If we suppose 6 given in circular measure, 

we have x c o 
tan0«=0, 

where « stands for, ‘ is nearly equal to ’; 

tan OL + tan d 
tan (oc + 6) = 

1 - tan a tan d 

tan g + 0 
1-0 tan oc 

«=^(tanoc + 0)(l -f 0tanrx) 

s^tan oc + 0 (1 + tan^a) 

«tana + 0sec2a; 

/. tan2 (a + 0) ^ (tan a + 0 sec^ aCf- 

—tan^a -f 20 tan a sec^ot. 
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Now, y-f A; = a:tan(oc + 0) - +tau-(a + 0)} 2v2 ’ 

:^cc(tana +Oseeva) 

- f^2(^ ^ tan-^a + 26 tan a sec^a); 

k^6(x8eG^OL-~^.2tgLnuLsec^a^ 

—6 sec^a^;^; - ^ tan . 

If 6 is measured in degrees, 

, 7r6 
180 

sec'^o.^.r - tan oc^. 

If the point aimed at is on the horizontal plane through 

the point of projection, x is the range, 

2V^ . 
X = — sm a cos a: 

g 

ird 
/. A;i=«~^xsec2a^l - — tanoc^ 

7r6 
180 '^' ^ * - tan a. 2 sin a cos (x) 

ttO 
Tm'^ 

ttO 

ra:sec2oc(l - 2 sin^cx) 

sec2a(cos2a - sin^a) 

7r6 

'180 
ir(l - tan^rx). 

This expression gives the height at which the projectile 

will pass over the object aimed at. It is positive if a<45^, 

but if a>46° (or the higher angle of projection to hit the 

point is chosen), the error causes the projectile to fall short 

of the object. 
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Results such as these will be seen to follow easily by calculus 

methods, for if, in the calculus notation, a is altered by an 

amount da, the consequent change in y (denoted by dy) is 

doi 
da. 

Hence, if y^x tan a - tan^a), 

6y==x sec^a da -2 tan a sec-^a dcx 

= a;sec‘^ada^l -‘Ptana^. 

da being measured in circular measure. 
Other questions may be treated in a similar way. 

Example 1. A projectile should be fired at an angle a to hit a 
point at a distance R on the horizontal plane. By what distance 
will it exceed or fall short of the object if a small error da is made 
in a ? 

-rr 2V2 
Here R = —sin a cos a = —sin 2a, 

9 9 
V/a 

fiR := — 2 COS 2a (Sa, 
9 

5R=R.2cot2a6a, 

= 2Rcot 2a Sou 

2. A stone is thrown with a velocity of 80 ft./sec. to hit an object 
on the horizontal plane at a distance of 100 feet. Prove that the 
angle of projection is 15° or 75°. If it is projected at an angle 
of 16°, at what height would it pass over the object and how far 
beyond it would it strike the ground ? 

160. Envelope of Paths for a Given Velocity. 
If a number of particles are projected in the same vertical 

plane with velocity V, the points which can just be reached 

are, from Art. 158, given by the equation 

+2\/^gy, 

V2 gx^ 
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which again gives a parabola. No point outside this parabola 

can be struck by a particle projected from the origin with 

Fig. 126. 

velocity V, while all points within it can be hit. This parabola 

is called the envelope of the paths, as it just encloses all the 

paths, for the given velocity. 

161. Motion Relative to an Inclined Plane. 

When the range on a plane inclined to the horizontal is 

required, it may be deduced at once from the equation to 

the path (11, Art. 151), 

Thus, if the plane is inclined at angle % and passes through 

the point of projection, x and y having the meanings as before, 

the range on the plane is a? sec t and y^x tan i. 
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Hence, substituting in (11), x is given by 

Xtail i^xtanOL-^ ,7^—h - ^ 
2 V^cos^a 

2V2cos2a,, . .V 
_ a; ----(tan a - tan ^); 

• i-u o 2V2cos2oc,. . .. 
.. the range = R —-^-(tan a ■ - tan i) sec % 

_ 2V2cos-a/ sin a sin i\ 1 

*" g \cosa cosV cost 

2V2cosa, . . . .V 
--^ (sin a cos t - cos oc sin t) 

g cos^t ^ 

2V2cos0c . , .. 
- — sm (a -1). 

g cos^t ^ 

To find the maximum range for a given velocity but different 

angles of projection, it is convenient to put this in the form 

. 

and the first term in the bracket being the only one that 

varies, R is greatest when 

2rx-t = 

and 

_V2(] --sint)_ 

^(1 -sin^i) ^ g{\ +sint)* 

The value of oc, which gives the maximum range, is given by 

2a-i = J, 

a + (a -1) ’ 
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shewing that the direction of projection makes an angle a - ^ 

with the vertical, and therefore bisects the angle between the 

vertical and the inclined plane. 

To hit a given point on the plane, in other words, to get a 

given range R, we have to solve the equation (13), or 

sin (2a - i) - sin i 
Rg cos^ i. 

V2 ' ’ 

• /rt -v • ‘ aRcos^y 
. . sm (2a - %) = sm i + ~ -^2 ““' 

giving two values of 2a-y (if R is less than Calling 

the two values of a, aj and aa, 

20.^ -i + 2cx^ ~i = 7r, 

a^ -f ay = ^ + i, 

or aj - y = -fJLy, 

which expresses the fact that the one direction is inclined 

to the plane at the same angle as the other is to the vertical. 

In the same way the range of an inclined plane not passing 

through the origin may be found. 

The maximum range on any inclined plane may also be 

found conveniently by finding the intersection of the plane 

with the envelope of the paths. 
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Examj^e. Find the maximum range on a plane of inclination i 
which meets the horizontal through the point of projection at 
distance a from the point of projection. 

162. The motion of a projectile relative to an inclined 

plane may often be conveniently dealt with by resolving the 

velocity and acceleration into’components along and perpen¬ 

dicular to the incline. 

Thus the initial velocity may be resolved into components : 

V cos (oL-i) parallel to the plane upwards, 

V sin (oL-i) perpendicular to the plane away from the 
plane. 

The components of acceleration are : 

-g sin i parallel to the plane, 

- g COB i perpendicular to the plane. 
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We have now uniform acceleration in each of the two 

directions, and the component velocities at time t are 

V cos (a - z) - ^ sin i . t, parallel to the plane ; 

and V sin ((X-i)-g cos i . t, perpendicular to the plane ; 

and the distances described are 

V cos {(iL -i) ,t - \g sin i . parallel to the plane ; 

V sin (oc - i). ^ cos i. perpendicular to the plane; 

from which any results can be deduced in the method first 

used in this chapter. 

lllmtrations of the foregoing theory, 

1. A body is projected with a velocity V from the foot of an 
inclined plane of inclination i. Find the direction of projection 
that it may strike the plane perpendicularly. 

With the notation of the last article, if t is the time mitil it strikes 
the plane, the velocity parallel to the plane is then zero, and the 
distance described perpendicular to the plane also zero. 

/. V cos fa - i) - g m\i . t—Oy 

and V sin (a - i)t-\g cos i . i'^=0 ; 

tan (a - i) = J cot i, 
giving a - i. 

Notice that the result does not depend on the initial velocity. 

2. A particle is projected from a point on a plane of inclination 
i at an angle 6 with the plane to hit an object on the plane. In 
artillery 6 is called the tangent elevation, 6-\-i is the quadrant 
elevation. The range (as we have seen in Art. 168) is 

R 
2V2 cos a 
g cos 7 

sin (a — i) 

2V^cos(6^ + 7)sin 0 
g cos^i 

Now the larger V is, the smaller is B, and for a small value of 

„ 2 V2 cos i. 0 
R — 0-7—, 

g oobH 

if 6 is in circular measure; 

^ qRcosi 
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Now if i is only a few degrees, cos i is nearly unity, and 0 is 
practically the same whether the line of sight is horizontal (i=0) 
or inclined at a small angle. For example, if i=10° the tangent 
elevation is only diminished by IJ per cent, of its value for the 
same horizontal range. 

3. A person in a boat throws a stone at elevation a and with 
velocity V relative to the boat, which is moving with velocity v in the 
direction of the object aimed at. Find the range. 

If the ratio v/V is small, find the alteration in the elevation neces¬ 
sary on account of the motion of the boat to hit a point at a given 
horizontal distance. 

The horizontal and vertical velocities of the stone are 

V cos oLi V, V sin a.; 

. .1 • 2Vsin a(Vcos oL-f v) .. the range is-1--1—i. 

To hit an object at horizontal range R, if cl is the elevation for 
a fixed point of projection, and ol-0 the elevation for the case 
of the moving boat, 

2V2siii a cos a. 2V sin (a - ^){V cos (a - 6^) -f v}. 
K—-—-I 

V sin OL cos a=V sin Ox — Q) cos (ex - + r sin 

si n 2fx - sin 2 (rx — sin (a - 

2 sin 0 cos (2(x - sin fa - 0). 

If ^ is small, 6 is small, and 

V 
6oob 2a = ^ sin a, 

0 being in circular measui’e ; 

"~Vcos2a* 

4. Stones are projected with a maximum velocity U ft./sec. over 
a wall of height k at a, horizontal distance h from the point of pro¬ 
jection. Prove that those that fall nearest to the wall are pro¬ 
jected at the highest angle and with the greatest velocity, and 
find the breadth of the zone of safety on the ground behind the 
wall. 
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If a stone projected with velocity V at an angle a just grazes the 
wall, 

A;—A tan OL — gh:^ . 
2V‘'^cos^a ’ (1) 

also the range R 
2V2 . 
— sin CL cos CL ; 

k^h tan cl — _iL 
COS^fJL 

sin oLCOsa 
p 

= k tan < 
h\ 

- -p tan (L ; 

A^tan CL 
A tan ol-A* 

The distance behind the wall of the point where it strikes the 
ground is 

= .(2) 
A tan cL-k 

and this (the breadth of the zone of safety) diminishes as a increases, 
or the smallest value is given by making a as large as possible. 

Putting the breadth of the zone of safety 

-R'=R-A; 

/. ktd,x\(L-k~~,; 
K 

tan CL = 

and substituting in (1), we have 

giving + .(3) 

This gives the two values of R' corresponding to the two values 
of the angle of projection to graze the wall, and the smaller value, 
(with the negative sign), corresponding to the higher elevation, has 
to be taken. 
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We can write this 

hk __ + _ 

g (A2+P) V2 - gk+\/( V!* - gkf - g Qfi+Ifi) 

^_ ghk .,4. 

V'*-5'A+n/(V^ - gky - g“ ()i‘+0) ’ 

and since is necessarily greater than gh, R' diminishes as V in¬ 
creases ; hence, if the maximum velocity is U, the breadth of the 
zone of safety is found by putting U for V in (3) or (4). 

5. Stones are projected with a maximum velocity of 60 ft./sec. 
at a boy who shelters himself behind a wall 10 ft. high and 60 ft. 
from the point of projection. Find the safe distance from the wall 
at the groimd and at 5 ft. above the ground. 

Here, substituting in the equation, 

y=.i; tan a. -1^(1 + tan^^a). 

We find tanot.=\^ or 

Taking the higher inclination the range is 63*2 ft. nearly, and 
the safe distance at the ground is 3*2 ft. To find the safe distance 
at a height of 5 ft. put y=5, and we have 

5=Jaj._ 

giving .tr=:61-6 nearly, 

or the safe distance =1-6 ft. 

6. A particle is projected with velocity 90 ft./sec. at an angle 
20® with a plane of inclination of 10®. 

Find its range on the plane when the projection is 

(1) up the plane, (2) down the plane. 

7. A body is projected from the foot of an inclined plane of 
elevation 30° with velocity 80 ft./sec. at an angle 60° with the 
horizontal. Find 

(1) the time of flight, 
(2) its greatest distance from the plane, 
(3) its range on the plane, 
(4) the velocity and direction of motion when it strikes the plane. 

Find the same quantities if the body is projected perpendicularly 
to the incline, which extends below the point of projection. 

8. If the maximum distance a person can throw a cricket ball 
on the level is 100 yds., what is the maximum distance on an upward 
slope of 1 in 5 ? 
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9i A body is projected with velocity V at the elevation required 
for maximum range on a plane of inclination i. Find the direction 
of motion when it strikes the plane, and prove that it is independent 
ofV. 

10. Shew that the greatest height which a projectile with initial 
velocity V can reach on a vertical wall at a distance a from the 
point of projection is 

y^l2g~ga^l2y\ 

EXAMPLES. 

1. Two bodies projected at the same time with the same velocity 
from a point O in different directions strike the same point A in 
the horizontal plane at the end of t, t' secs, respectively. Prove 
that Ok—\gti'. 

2. The path of an uniesisted projectile fired from O with velocity 
V at elevation a. intersects a straight line inclined at an angle i 
to the horizontal in points P and Q. Shew that the middle point 
of PQ is at a horizontal distance cos^ «.(tan a - tan i)lg from O, 
and find the distance from O of the parallel straight line which 
is grazed by the projectile. 

3. Of two bodies projected from O with the same velocity, one 
strikes the top of a pillar of height h in i secs, and the other the 
foot A (on the same horizontal as O) in secs.; prove that 

0A2 - {2h + gf^f} -1^)}. 

4. Material is to be projected over a horizontal ledge a direct 
distance I from A and a vertical depth h below it. 

Shew that the work required is at least ft.>lbs. per lb. of 

material. 

5. Two particles are projected from the same point O at an 
interval of time T with the same velocity in the same direction. 
The first is above the level of O when the second is projected. Shew 
that their shortest distance apart occurs when they are at the 
same level, and ='aT where u is the horizontal component of the 
velocity of projection. Find, also, the time at which this occurs. 

6. A railway carriage is traveUing at 60 km./hr. on a straight 
track. A small heavy body is thrown out horizontally with a 
velocity relative to the carriage of 10 m./eec. at right angles to 
its length. Neglecting the resistance of the air, find where the 
body reaches the level ground 3 m. below the point of projection. 
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7. Find the possible angles of projection for a stone to be thrown 
with velocity 80 ft./sec. from the top of a tower 100 ft. high to 
hit a point on the ground 200 ft. from the foot of the tower. 

8. A projectile is to have a range R on the horizontal, and to 
reach a maximum height h; find the time of flight, the initial 
velocity and elevation. 

9. A particle is projected with velocity v to hit a point at a hori¬ 
zontal distance x, and vertical distance y from the point of projection. 
Obtain an equation to find the time of flight, and deduce the con¬ 
dition that the point can be hit with the given initial velocity. 

10. From a gun placed on a horizontal plane which can fire a 

shell with velocity it is required to throw a shell over a wall 
of height hy and the elevation of the gun cannot exceed a. where 
ol<45°. Shew that this will be possible only if h<H sin^cx., and 
that if this condition is satisfied the gun must be fired from within 

a strip of the plane whose breadth is 4 cos olv/H(H sin^o. —A). 

11. A shot fired at a mark in a horizontal plane goes a feet beyond 
it. When a screen of thickness t is placed at the muzzle of the 
gun, and perpendicular to the length of the gun, the shot falls 
b feet short. Prove that the shot will hit the mark if the thickness 

of the screen is reduced to (Assume the velocity to be uni¬ 

formly retarded as it passes through the screen.) 

12. A gun fires a shot with velocity 800 ft./sec. to hit an object 
900 ft. above the point of projection, and at a horizontal distance 

9000^3 feet from it. At what elevation should the gun be pointed ? 
If the gun is pointed a quarter of a degree above the lower of 

the two possible elevations, at what height above the object will 
it pass, to the nearest foot ? 

13. A ball is projected from a given point with velocity V so 
as to strike a vertical wall above a height h. Prove that the points 
on the wall towards which the ball can be directly projected lie 

--a\ if a is the distance of the 

wall from the point of projection. 

14. A straight pipe of length a can be supported in any dii’ection, 
one end being attached to a given tap on the surface of the ground. 

Water issues from the free end with a constant velocity 
Prove that when the pipe is inclined at angle «. to the horizontal 
the range is given by 

R* - 2R(a cos oc-f- A sin a cos a) -f a* co8*a=0. 
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Deduce that the range is greatest when 

h cos 2(x.=2a sin®a, .(i) 

and that the greatest range is a cos a/cos 2ol, a being given by (i). 

16. The portion of a vertical wall that can be covered by a jet 
from a fire engine at a distance c from it is a parabola of height 

(W- c^)/44 and breadth 2sl4ih^~c^ if the velocity of the jet is 
sl2(jh. 

16. A projectile is to pass through a point ar, y and be there 
travelling in a direction making an angle with the horizontal; 
find the velocity and direction of projection. 

17. A projectile fired from a given point grazes a wall of height 
at a distance a, and reaches the ground at a distance R. Shew 

that the elevation is given by tan a —and find the velocity 

of projection. 

18. A small horizontal target is to be hit by a projectile fired 
from a point at a distance h vertically below and x horizontally 
from the target. Shew that the target can be hit either on the 
upper or the lower side if 

and on the upper side only if 

and >g{h-\‘slh^-]-.v^, 
while it cannot be hit at all if 

V2< 

19. A smooth sphere is fixed on a horizontal table, and a particle 
runs down it having been just displaced from rest at the highest 
point. Find where it hits the table. 

20. Oil is flying off a horizontal axle of radius r, which is rotating 
with angular velocity w. Shew that no drop reaches a height 
above the centre line of the axle greater than 

j2g -\r g 

21. AB is the horizontal line of intersection of two inclines of 
elevations A ball is to be thrown with given velocity V from 
the former so as to land as high as possible on the other. Shew 

that the projection must be from a point in AB unless + 

If this inequality is satisfied, shew that the distance from AB that can 
be reached is V*/2gr cos 0 sin (^+ and find the point of projection. 

B.E.D. fi. 
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22, A particle projected from the foot of an inclined plane strikes 
the plane at right angles at a distance d from the point of pro- 
jection. Shew that its greatest distance from the plane during 
the flight is Jd cot a., if a. is the inclination of the plane to the horizon. 

23. A particle is projected with velocity u from the top of a 
tower of height h on an inclined plane. Shew that the greatest 
distance from the foot of the tower that the particle can fall is 

if CL is the inclination of the plane. 

24. A particle is projected from a point whose perpendicular 
distance from an incline of elevation 60® is h. Prove that it cannot 
strike the plane at right angles if the square of the velocity of pro¬ 
jection 

25. If 13 is the inclination of an inclined plane to the vertical, 
and CL the angle between the direction of projection and the incline, 

shew that the range when a.:f ^ is less than the range when a=^ 

by 2\/hm^(cL-^^lg sin^^. 

26. A particle moving on the inside of a smooth vertical circle 

of radius a has a velocity of at the lowest point. Find where 

it will leave the circle, and find the position of the highest point 
reached afterwards. 



CHAPTER X. 

COLLISION. 

163, We have already given some of the simplest results 
relating to collision, and in the present chapter we wish to 
examine more fully into the actions which take place between 
the colliding bodies. 

When two bodies collide actions go on between them 
which, in general, involve forces which are large in comparison 
with the forces, such as gravity, to which the bodies are 
usually subject. This follows from the fact that the bodies 
are in contact for a very short time, usually a small fraction 
of a second, which interval, however, is sufficient to produce 
an appreciable, it may be large, change of momentum in 
each body. Hence the rate of change of momentum or the 
force acting must be large. 

On colliding the bodies undergo a deformation near the 
point of contact, and, in consequence, remain for a short time 
in contact with one another over a small area, and the bodies 
separate again as the deformation disappears. 

The deformation is shewn on a large scale when a wet 
rubber ball strikes a wooden floor. The ball leaves a mark 
of considerable area, shewing that it was deformed by the 
collision. 

We may imagine the time of contact to be divided into 
two parts, during the first of which the deformation increases 
gradually to a maximum, and during the second diminishes 

again till the bodies separate completely. The pressure 
between the two bodies alters correspondingly, increasing 
gradually, but rapidly, to a maximum, which occurs when the 
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deformation is a maximum, and then diminishing to zero as 

the bodies separate. 

The physical theory of collision was worked out by Hertz 

in 1882 for bodies colliding with small relative velocity, and he 

obtained the following results for two equal spheres of the same 

material and radius r colliding directly with relative velocity v: 

The time during which the spheres are in contact is arjv^. 

The radius of the circular areas that come into contact 

= hrv^*\ 

The total pressure at maximum deformation = 

The maximum pressure intensity = 

Where a, h, c, d are constants expressible in terms of the 

elastic properties of the material. 

Hertz gives the following results for two steel spheres of 

radii 2*5 cm. and relative velocity 1 cm./sec. : 

Time of impact = 0*00038 sec. 

Radius of circular area of contact = 0*013 cm. 

Total pressure at maximum deformation = 2470 gms. wt. 

Maximum pressure intensity (pressure per square centi¬ 

metre) = 7300 kgm./cm.2. 

Experiments have since been made on the time of contact, 

and have confirmed Hertz’s results. 
Example. Assuming Hertz’s results, find the corresponding 

quantities for two steel spheres of the size of the earth moving with 
relative velocity 40 km./sec. (The results would, however, be much 
affected in this case by gravitation.) 

164. Direct Impact of Two Spheres. 
Let us now examine into the relations between the velocities 

before and after the collision, taking first the case when the 

spheres are moving in the same line, and let us represent 

the velocities thus: 

->w./ 

before collision 

after collision 
Fro. 131. 
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Now if we consider the distance between the centres, at the 

time of the greatest compression this distance is a minimum, 

and therefore its rate of change is then zero, or the relative 

velocity of the centres is zero. Thus, at the instant of greatest 

compression the velocities of the two balls must be the same. 

Let this velocity be U. 

Now in whatever way the pressure may vary during the 

impact, it still holds as a result of the law of action and reaction 

that at any instant the pressure on is equal and opposite 

to the pressure on mg, and consequently the impulse in any 

time on m^ is equal and opposite to that on m^,, and hence again 

the change of momentum in any time on wq is equal and 

opposite to that on wig. Hence also the total momentum is 

unchanged. 

Putting these statements in symbols we have 

mj («!-«,')= 

or .(0 

The common velocity U at time of greatest compression 

is given by 

mjU + mgU r/qwj + 

IJ =. /.>s 

+ //q-hmg . 

166. To get a further relation between the velocities we 

have to return to experiments, and the great importance of 

the law of a<?tion and reaction in Newton’s theory led in his 

time to many investigations on its truth, in which experiments 

on impact formed an important part. For just as we have 

deduced the equality of the total momentum before and after 

impact from the equality of action and reaction, so we may 

deduce the latter from the former, measuring the momentum 

experimentally. 
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Newton himself made the most accurate and complete 

series of experiments at the time by a method which is briefly 

as follows: 

Two balls of the same or different materials and weights are 

hung up, each by two threads, so that they touch at 

the height of their centres when at rest, and can move 

in the same vertical plane. 

Fia, 13J. 

When drawn aside and released they move as pendulums, 

and if released at the same instant they reach the lowest point 

together, and rebound. The velocities before and after 

impact can be deduced at once from the height from which they 

fall and the height to which they rise afterwards. 

Let a, a' be the heights above the position of rest from which 

they fall, 

„ 6, 6' be the heights above the position of rest to which 

they rise afterwards, 

and suppose the velocities of both were reversed by the colli¬ 

sion ; then the velocities just before the collision were 

n/^o, n/2^ towards one another, 

and just after y/2^' away from one another. 
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By varying a, o! and the masses, Newton deduced his 

experimental law of impact that 

The relative velocity after impact hears a ratio to the relative 

velocity before impact which is independent of the inasses 

and velocities before impact^ and depends only on the 

nature of the balls. 

This may be expressed thus : 

Wg -• Wj = '-6{U2’~U^) .(3) 

and the factor e may be called the coefficient of restitution or 

coefficient of impact. 

The equation (3) can only be taken as an approximate 

experimental result. In other words, the equation is satisfied 

approximately for two given balls colliding with the small 

relative velocities occurring in the experiments. At higher 

velocities different coefficients might be required to represent 

the facts. 

It will be noted carefully that the relative velocity after 

impact is always in the opposite direction to the relative 

velocity before ; hence the minus sign in the above equation. 

The student should always subtract the velocities in the 

same order, and insert the minus sign. 

The value of e differs for different materials, and as examples 

of its magnitude may be quoted from Hodgkinson’s Report 

to the British Association, 1834, the following: 

For two balls of the same material 

Glass - 0-94 

Ivory - - - 0'81 

Cast iron > - - - 0-66 

Cork - - - - 0*65 

Lead - - - 0-20 

The coefficient of restitution can never be greater than unity. 

The two equations (1) and (3) are sufficient to find the 

velocities after impact when the velocities before, the masses, 

and coefficient of restitution are given. 
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Exumple. Two bodies of masses 6 and 4 lbs., and coeflSoient 
of restitution 0*5, are approaching one another with velocities 10 
and 8 feet per second, find the velocities after collision. 

. o o 
Masses 6 lbs. 4 lbs. 

Velocities before 10 ^8 
„ after V -► v\ 

Pio. 133. 

By momentum 6?; + 4v'=6x 10+4 x (— 8)=28. 
By Newton’s experimental law, 

whence t>=-0-8, ?;'=8 2. 

166. Impulse and E[inetic Energy. 
To help to get an idea of the actions going on during the time 

of contact, we will calculate the impulse and change in kinetic 

energy during each of the two parts of the interval, namely, 

from beginning up to the time of greatest compression, and 

secondly, from the time of greatest compression to the end. 

Let = the impulse in the first part 

and \ = the impulse in the second, 

then - m^U 

1 mi + m2 / 

+ rtL 

+ 7^2 

(Wj - Mj) 

l2 = WjU 

/OTjM/ 
+ m., 

=-i - ^ iu.y - u. ) 
+ 7^2 ^ ^ ^' 
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and the total impulse 

Let 

and 

and 

(1 -?/0. 
my + 

E^ —the loss of kinetic energy in the first part 

E2 = the loss in the second part. 

= l- + ’"aV - (% + ”*2) 

if o o / V4- 
= i - (w, + m,) - j i 

— ^ rriyU^- + - 
I 

4- 2 

•Mi^ 4- ~ 
Wij 4- iit.y 

2ni^7n,^u^n,^ 4- 

mi4-7??2 j 

_ 1 (n _ . Vi 

= |mjU2 4- ”■ 'h'^2^'P 

1 f/ . K/niyUy -hinoUo '^V f.j ,ol 
“ i {(»«. + >«-..) {-■-^rnr ) " ~ 7 

7»i +m^ 
(m/ - O'! 

, m^TTln O / \f) 
= « 1.-]—i_- ^2 

4- W2 

Thus in the first pai't kinetic energy is lost, being changed 

into energy of deformation and molecular energy, and is 

partly restored during the second part, but with a loss on the 

whole of 
77?,???., 

(l-fi2)E, or 
7ny 4- 

(l-e^)(Uy-u,Y. 

167. This result may also be obtained in the following way. 

illustrating former equations. 
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The change of kinetic energy due to an impulse I acting 

on a body whose velocity changes from w to v is 

i + v 
(Art. 42.) 

Now the total impulse 

and acts in the direction shewn. 

© 
Impulse ->.1 

Velocity before impact 

„ after W| —>• -^"2' 
Fio. 134. 

Thus loses kinetic energy = I 

and tTig gains 

.*. the total loss is 

hill 

2 {»!+<-%-<} 

= |K-W2-«(«1-W2)} 

= J 1(1 -«)(«!-«2) 

Considering this expression for the loss of energy, we see 

that each factor is necessarily positive for e<l, and 

is positive whether - Wg ^ positive or negative. If in any 

case e were > 1 kinetic energy would be gained at the collision, 

which seems impossible. Hence energy is always lost except 

in the two special cases 

(1) where and there is no true collision ; 

(2) wheng = l. 
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The latter case does not occur in any actual body, though 

e approaches unity in the case of glass spheres, but in the 

kinetic theory of gases, the molecules of a gas are usually 

regarded as spheres for which 6 = 1. Such spheres are fre¬ 

quently called perfectly clastic. 

An interesting case occurs when two equal and perfectly 

elastic spheres collide. Here 6 = 1 and hence the 

equation of momentum is 

H- 

% + 1^2 = % + ^2' .(1) 

and Newton’s experimental law gives 

- Mg' = - (Mj - Mg) 

= -^1 + ^2.(2) 
and from (1) and (2) u -uA 

U2 =Ujf 

or the two spheres interchange velocities. 

Example 1. Two spheres, A and B, of masses 2 and 3 lbs., moving 
in the same direction, in the same straight line, with velocities 
6 and 3 ft. /sec. respectively, collide. After the impact the velocity 
of B is 5 ft./sec.; find that of A, the coefficient of impact, and 
the loss of kinetic energy. 

2. Two spheres, A and B, of masses 4 and 8 lbs., moving with 
velocities 9 and 3 ft./sec, in opposite directions, collide. If A 
rebounds with velocity 1 ft./sec., find the velocity of B after the 
impact, the coefficient of impact, and the loss of kinetie energy. 

3. If two balls of equal mass and moving with velocities Wj, 
in the same straight line collide, prove that the velocities after 
collision are 

+J(l-f-e)Wa and Hl + «)%+1(1 

4. A and B are masses of 9 and 6 lbs. moving in the same direction 
with velocities 8 and 4 ft./sec. respectively. Prove that after the 
collision the velocity of B cannot be greater than 8-8, nor that 
of A smaller than 4*8 ft./sec. 

5. B is a mass of 10 lbs. moving with velocity 12 ft./sec., A is 
moving in the opposite direction with velocity 8 ft./sec. Shew 
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that, if the mass of A is greater than 40 lbs., it cannot possibly 
have its velocity reversed in direction, after the collision. 

Find the velocities after collision if 

(i) A is 20 lbs. and e=0*6, 

(ii) A is 40 lbs. and e=0*8. 

6. A sphere of mass m overtakes and impinges directly on a 
sphere of mass m\ the coefficient of impact being e. Shew that 
the former cannot have its velocity reversed if m>em\ 

7. A is a sphere of mass m moving with velocity u, and overtakes 
B, whoso mass is em where c is the coefficient of impact. Shew 
that the velocity of B after collision is and that of A is 

(1 — 

8. A, B, C are three balls of the same material in a straight line. 
A is projected towards B with velocity u, and B afterwards collides 
with C. Find the velocity of B after impact with C, and the final 
velocity of C. If the masses of A and C are given, shew that the 
greatest velocity will be given to C when the mass of B is a geometric 
mean between those of A and C. 

9. A ball is projected vertically upwards with velocity 80 ft./sec., 
and when it is at the highest point a similar ball is projected verti¬ 
cally upwards from the same point with the same velocity. If the 
coefficient of impact is 0-6, find when each reaches the ground again. 

10. Two equal balls impinge horizontally at a height 1i above 
the ground with relative velocity 2v. Shew that they reach the 

ground at a distance 2ev>j2hJg apart. 

11. Two bodies of masses m, m' are moving in such a way that 
the centre of mass of the two is at rest. On collision their velocities 
are reversed and a fraction k of their energy is destroyed. Shew 
from the equations of momentum and energy that the velocity of 

each body is reduced in the ratio VI - k. 

168. Oblique Impact of Two Smooth Spheres. 
Let us next consider the case where the colliding spheres 

are not moving in the line joining the centres. We will use 

the following notation : 

Let be the components of velocity of m, along and 

perpendicular to the line of centres just 

before impact. 
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Let U2, v,^ 

„ u.\ V, 2» ^2 

V„ V 2 

be corresponding components for m^- 

,, components for Wj^ just after impact. 

,, corresponding components for rwg. 

,, resultant velocities before impact. 

}. )) jy after ,, 

,, angles the resultant velocities make with the 

line of centres before impact. 

,, angles the resultant velocities make with the 

line of centres after impact. 

These can be conveniently represented on a diagram thus : 

a,, CLo 

a, , rxo 

Fig. 135. 

Component nnd rcBuUant velocities Componei^t and resultant velocities 
before imi>ac't. after impact. 

Wc will at first suppose the spheres are frictionless, that is, 

that the impulse between them is entirely along the line 

joining the centres. 

We then have 

(1) V2 are unaltered by the collision, for there is no 

impulse perpendicular to the line of centres 

or tJi'-t’, 1^2'=^^2* 

(2) The total momentum along the line of centres is un¬ 

changed 

or 2^2' = + ^2^2- 

(3) Newton’s experimental law hojds for the velocities along 

the line of impact 

or u^' ~ - e(wj - Wg). 
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These equations may, of course, be expressed in terms of 

Vi> Vg, Vj', Vg', aj, rxg, «.i', 0,29 but if the resultant velocities 

are given in direction and magnitude, they must always be 

resolved in the two directions as above to vrite down the 

equations. 

The total loss of kinetic energy 

= I (^^2 4- + v.^') 

~\m^(Wi'2 4 ~ \rrk^{u^'^ + ik^) 

== I 4- 

.1 ^1^2 
^ 4- 

by the same working as before. 

169. Oblique ImparCt of Rough Spheres. 
When two spheres in general collide, there is a frictional 

impulse perpendicular to the line of centres, and this impulse 

is usually assumed to be jjl times the normal impulse, where jx 

is the ordinary coefficient of friction between the two bodies. 

Assuming this, the equations will be formed in the following 

way : 

(i) The momentum in each direction is unchanged; 

mii/i' + m2W2'=m2% + m2W2 .(1) 
and + m2V2 — + m 2^’2.(2) 

(ii) Newton’s experimental law holds for the velocities in 

the line of centres; 

• • ^ ■” “^2 ~ .(^) 

(iii) If I is the impulse on either ball in the line of centres 

I = mi(wi - %') 

and the impulse at right angles to this is fxl or - u^); 

/. - v/) - fxmyi^u^ ~ <).(4) 

These four equations are sufficient to find the component 

velocities after impact, when the velocities before impact, 
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the masses, the coefficient of restitution, and coefficient of 

friction are given. 

170. Impact against a Fixed Plane. 
In the cases considered above, two spheres were colliding. 

If we suppose one of these spheres to increase indefinitely in 

size and mass, we reach ultimately the case of a sphere imping¬ 

ing against a fixed plane. In this case the equation of momen¬ 

tum will drop out, but Newton’s experimental equation will 

still hold for the velocity perpendicular to the plane. We 

need not, of course, deduce our equations from the former 

case, but will form them afresh in the same way. 

Let w, V be the components of velocity perpendicular and 

parallel to the plane before impact, and u', v' the components 

after impact. 

As u is necessarily towards the wall, and u' away from it, 

we will measure these components as positive when in opposite 

directions, so that we may represent the velocities thus : 

Fia. 186. 
i. Component and resultant velocities ii. After impact 

btjfoi*e impact. 

If there is no frictional impulse, v is unchanged by the 

impact, but u is reversed in direction and diminished in magni¬ 

tude so that v'^v 

u'« eu. 
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The relation between the angles of incidence (i) and of 

reflection (r) becomes therefore 

^ %i' eu 
cot r - =^e cot %. 

V V 

If there is friction, we must calculate the normal impulse 

by the help of the experimental law, and deduce the tangential 

impulse, which is /i times the normal. 

Thus with the same notation 

u' = eu .(1) 

normal impulse = w?+ w') = mn(l + e) ; 

tangential impulse = -i-e); 

-v') = iJLmu(\^e) 

...(2) 

and (1) and (2) give the solution of the problem. 

Example 1. If a sphere drops from a heiglit ^ on to a horizontal 
plane, and rebounds to a height nh where w is a proper fraction, 

prove that the coefficient of impact is sfn. 

2. A sphere drops from a height h on to a horizontal plane, and 
the coefficient of impact is e; if it is allowed to continue rebounding, 
prove the following results : 

(1) after the first impact it rises to a height he^, 

(2) between the 7ith and (w-f l)th impacts it rises to a height 
he^\ 

(3) the interval of time between the wth and n-h 1th impact 

is 
^ 9 

Hence shew that though it makes an infinite number of rebounds 
they occupy a total time from when it was first released of 

lYh 

and that it travels a total distance (up and down) of 

Find the whole time occupied to the end of the rebounding, 
and the whole distance travelled if the ball is dropped from a height 
of 16 ft. and e=0'6. 
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3, An elastic ball is let drop on to a horizontal plane. At a 
height of 9 ft. above the j)lane the velocity is 32 ft./sec, in falling 
and 18 ft./sec. on rising. Find the coefficient of impact, and prove 
that after the next impact it will not reach the height of 9 ft. 

4. A particle is projected from a point on a smooth horizontal 
plane with velocity V at an elevation a, and continues to rebound. 
Shew that the range between the nth and (n+l)th impacts is 
V*e”sin 2a/{7, and hence that the total horizontal distance travelled 
before rebounding ceases is V^sin 2«-/(7(l - e), and the time during 
which it is rebounding is 2V sin ol/^{1 - e). 

6. A particle after falling from rest through a distance h strikes 
a smooth plane inclined at an angle i to the horizontal. If the 
coefficient of impact is e, prove that the range between the first 
and second impacts is 4/ie(l -f e) sin i. 

6, A partic;lc after falling from rest through h feet strikes a smooth 
plane of inclination 30° and rebounds, striking the plane again 
h feet lower down ; prove that e=0 «37 nearly. 

7, A ball moving at angle of 45° with the normal to a rough 
])lane impinges on the plane and rebounds. If e—\ and ^ = 
shew that after the impact the direction of motion again makes 
the angle 45° with the normal and the velocity is half of what it 
was before the collision. 

8. Shew that if a body rebounds from a rough plane, making 
the angle of reflexion equal to the angle of incidence, these angles 
are each 

tan“‘ 

9. A ball is projected with velocity 48 ft./sec. at elevation 16°, 
and, after striking a smooth vertical wall at a distance of 12 feet, 
returns to the point of projection. Prove that c=0-5. 

10. A ball is projected with velocity V at an elevation a, and, 
after striking a smooth vertical wall at a distance a, returns to 
the point of piojoction. Prove that 

(/a (I + e) = eV* sin 2a. 

Shew that it will also return to the starting point if projected 
at the complementary elevation. 

11, A ball strikes a smooth plane. If the angles of incidence 
and reflection are 40° and 60°, find e. 
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EXAMPLES. 

1. A body A impinges directly on another B at rest. If the 
mass of B, the kinetic energy of A, and the coefficient of restitution 
are given, shew that the velocity of B after impact is greatest when 
the mass of A is equal to the mass of B. 

2. A cylinder of mass M fits a hole bored centrally in another 
cylinder of mass M' so that there is a constant resistance F to their 
relative motion. A mass m impinges axially on the end of M with 
velocity v. Assuming the initial motion of M is the same as if 
M' were not present, and taking a coefficient of restitution e, find 
the subsequent displacement of M relative to M' (which it is not 
supposed to leave). 

3. A mass impinges directly on a m€U3s mg at rest, the coefficient 
of restitution being e. Shew that after impact 

(i) mj continues to move ih the same direction if mj>cm2, 

(ii) the momentum of mj is the greater if mj >m2(l -f 2e), 

(iii) the kinetic energy of is the greater if 

2mi >m2{l + 4e + ^24. (1 + e) Vr+6eT?}, 

or 2mi<m2{l4-4e + e2--(l 4e)\/l-|-6e4c2|^ 

4. A ball is projected along a smooth horizontal table with velocity 
u normal to a wall, and impinges directly on a similar ball at rest 
between it and the wall. 

If the coefficient of restitution between the two balls, and also 
between the ball and the walls, are each e, prove that if the velocity 
of the first ball is never reversed, its velocities before successive 
impacts are given by 

2i4„+2~(1 

Hence prove that the velocity will not be reversed if 

1 “6e + e*>0. 

5. Three equal and similar bails A, B, C lie on a smooth table 
with their centres in a straight line. A is projected directly towards 
B, The final velocity of C is of the initial velocity of A. Shew 
that the coefficient of restitution is J. 

6. If two particles of masses m, m' moving with velocities v, v' 
impinge directly, prove that the condition that each loses the 
same amount of kinetic energy is 

(3 4 e) (mv 4 mV) 4 (1 - c) (mv^ 4 m'v) = 0. 
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7, A small ball hangs suspended by a string of length I and is 
in contact with a vertical wall. The ball is pulled back so that 
the string makes an angle 6 with the vertical in a plane normal 
to the wall and let go. Given that the coefficient of restitution 
is c, shew that the angular amplitude of the rebound after n impacts 

is 2sin~^^6”8in~^. 

8. Two balls of masses 1 and 3 lbs. are connected by an elastic 
string of modulus 10 lbs.-wt., and held apart, so that the length 
of the string is 1 ft. If the natural length of the string is 6 inches, 
find the velocities they possess when they collide, and, if the co¬ 
efficient of restitution is 0-8, find their velocities after impact, and 
the maximum length of string after the first impact. 

9. A small elastic sphere is projected with velocity V from the 
foot of a vertical wall, and strikes a second parallel wall at a distance 
a, and after rebounding strikes the first wall at P. Shew that 
the greatest height of P above the point of projection is 

1_ 
'^<J 

(i+g)WV 
e‘A/2 / 

10. A particle moving on a smooth horizontal table strikes 
alternately two smooth vertical walls inclined at an angle 45°. 
If the coefficient of restitution is e, and at the fourth impact the 
particle is moving perpendicularly to the wall then struck, shew 

that 1. 

11. A particle is projected from a point in an inclined plane, 
and at the rth impact strikes the plane perpendicularly, and at 
the wth is at the point of projection. 

Prove that e” - 2c*’ h 1 = 0. 

12. A sphere of mass m* on a horizontal table is tied to a fixed 
point by a stretched inelastic string. Another sphere of mass m 
impinges directly on it with velocity w in a direction making an 
angle a with the direction of the string (produced), and is reduced 
to rest by the collision. Prove that if v, w are the velocities of m' 
along the perpendicular to the line of impact after the collision, 

w=» 
^ m 

and shew that the kinetic energy after impact is equal to e times 
the kinetic energy before, (i&ume Newton’s experimental law 
to hold still.) 
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18. Two smooth Bphei*es of masses moving with velocities 
at right angles to one another collide. 

Prove that their directions of motion after impact are also at, 
right angles if the coefficient of restitution 

_ m^Ui 4- tan a. 
myin.^ (?4j + Wg 

where cl is the angle makes with the line of centres. 

14. Two balls each of mass 1 lb. are placed on a smooth horizontal 
plane and connected by a light elastic string of natural length 
6 ft. and modulus 12 lbs. weight. The balls are drawn apart to 
a distance of 8 ft. and released. Find the velocity of the balls 
when the string becomes slack, the velocity after impact, and the 
subsequent maximum elongation, the coefficient of impact being 0*6. 



PART IL 

DYNAMICS OF RIGID BODIES. 

CHAPTER 1. 

KINEMATICS. 

In all the previous work we have been dealing with the 

motion of bodies which were particles or could be treated 

as particles. That is to say, rotations of the body about any 

point or axis were not existent. We now proceed to examine 

some simple cases where such rotations do exist. We will 

confine ourselves to the case where the motion is in one plane, 

and the forces act in, or parallel to, this plane. 

171. The term rigid body is intended to denote a body which 

remains unchanged in shape and size however much it may 

move about. Thus, any two given points in the body always 

remain at the same distance from one another. 

172. A body is said to be moving in two dimensions or to 

be moving in one plane when a plane fixed in the body moves 

in a plane fixed in space. Different points of the body then 

move in parallel planes. For example, if a cube slides about on 

a horizontal table with the same face always in contact with 

the table it is said to be moving in one plane. In this case 

all points of the cube move in horizontal planes. In such 

a case all points in the body in a straight line perpendicular 

to the planes of motion are moving in the same way at the 

same instant, and therefore the motion of the whole body is 
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determined by the motion of the points in any one of these 

planes. 

If a body is only capable of motion in one plane, and two 

points of the body which are moving in the same plane are 

placed in fixed positions, the whole body is fixed ; if only one 

was placed in a fixed position the body would still be capable 

of rotation about an axis through that point. Hence if the 

displacements of two such points in the body are given it 

should be possible to deduce the displacement of every point. 

We shall shew immediately that this can be done graphically. 

173. Translation and Rotation. 
A translation is a displacement of a body in which every 

point moves through equal and parallel distances. 

Any displacement in one plane of a rigid body other than a 

translation can he prodded by the rotation of the body about 

some point. 

Fig. 137. 

To prove this let A, B be two points in the body in its first 

position, and A', B' the positions after the displacements. 
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We have seen that the position of the body is fixed completely 

by these two points. 

Bisect A A' and BB' at right angles by lines meeting in O. 

If O is at a finite distance the triangles OAB, OA'B' are con¬ 

gruent, and hence O is the same point relative to the body in 

the two positions ; that is to say, if O is in the body, it is the 

same point of the body in each position ; if O is outside the 

body, the body may be conceived as indefinitely extended, or 

O may be thought of as connected to the body by two wires, 

and when the body moves from one position to the other 

O remains fixed, and the body would be brought from the 

old position to the new by a rotation about O. Since the 

angles AOB, A'OB' are equal, so also are the angles AOA', BOB', 

or in such a rotation any two points such as A, B undergo the 

same angular displacement about O. 

If A A' and BB' are parallel, the perpendicular bisectors are 

either parallel or coincident, and two cases thus arise which 

In the first case O is at infinity and the displacements 

AA', BB' are themselves equal and parallel, and every other 

point will also move the same distance in the same direction. 

This is a motion of translation only. 

In the second case AA', BB' are parallel but not equal, 

and the intersection of AB and A'B' is the point satisfying 

the condition that a rotation of the body about it will bring 

AB into the position A'B', and therefore the whole body into 

its new position. 
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174. Combination of Translation and Rotation. 
The displacement of a rigid body may also he represented 

hy a rotation about any assumed point together with a translation 

of the body as a whole. 

For in Fig. 139, with the former letters, let C be a third point, 

and suppose it is required to represent the displacement by a 

translation of the whole together with the rotation about C, 

and let C' be the new position of C. 

Fig. 139. 

By a translation of the whole CAB comes to then 

since C'A' = C'A|, by a rotation about C', A^ caij be brought 

to A', and consequently the two points C and A having come 

into their positions, the whole body is now in its new 

position. 

Further, the angle of rotation about C' in this case is the 

same as the rotation about O in the previous representation. 

For in the rotation about O the lines OC, CA have come 

into the position OC', C'A', hence the rotation about O is 

measured by the angle COC', and since the angle OCA is 

equal to OC'A' it will be seen that the angle COC' is equal to 

the angle between CA and C'A'. 
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In the rotation about C', C'A^ comes to C'A'; therefore the 

angle of rotation is AjC'A', which is equal to the angle between 

CA and C'A'» Hence the angle of rotation is the same in both 

cases, and this angle may also be expressed as the angle 

through which any line in the body turns as the body passes 

from one position to the other. 

Consequently, it does not matter what point like C (or 

base-point as it is frequently termed), is selected as the centre 

of the rotation which combined with a translation gives the 

complete displacement, the angular rotation is the same for 

all such points. The magnitude and direction of the translation 

depend, on the other hand, on the base point selected. 

175. Instantaneous Centre. 
If we consider the angles described and the displacements 

effected in the above manner in a short time, we arrive at 

the result that any motion at any instant, except a motion of 

translation, may be thought of as an angular velocity about 

an instantaneous centre of rotation, or as an angular velocity 

about any assumed point combined with a velocity of transla¬ 

tion as a whole, and that, whatever the assumed point, the 

angular velocity in all such representations of the motion is 

the same, and may be called the angular velocity of the body. 

It is generally convenient in dynamical discussions, when 

treating the motion as a combination of translational and 

angular velocities, to take the centre of mass as the assumed 

point. The reason will be seen when we come to the con¬ 

sideration of the forces acting. 

176. When a body moves in a plane the instantaneous 

centre in general will also move in the plane, and also in 

the body, that is, fresh points of the body may become in¬ 

stantaneous centres from time to time. If the instantaneous 

centre remains fixed both in the body and space, the body is 

said to be rotating about a fixed point, as when a rod is hung 
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up by the end and oscillates like a pendulum in a vertical 

plane. 

But when a body does not continue to rotate about a fixed 

point, the position of the instantaneous centre changes both 

in the plane and in the body. 

Thus, let us take as example the motion of a wheel of radius a 

rolling along a plane with uniform velocity v. The motion 

Fig. 140. 

may be regarded as a combination of a velocity v of the whole 

with an angular velocity <u about the centre. Now the wheel 

goes a distance 2Tra in making a complete revolution, and 

hence takes — secs, to make the revolution, hence the angular 
V 

velocity about the centre is 

27r __ V 

27ra a 

V 

hence v = aw. 

If we consider the point A in contact with the ground its 

velocity is compounded of v (due to the translation and the 

same as for any other point in the body), towards the right 

and aw towards the left due to the angular velocity about C, 

and therefore the point has resultant velocity — v-au) = 0. 

Thus the point A is instantaneously at rest, or is the in¬ 

stantaneous centre, and the whole wheel can be regarded as 

turning about A at the instant. This is otherwise clear, for 
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if A had a component velocity in the horizontal direction it 

would be sliding along the road, and if it had a component 

vertical velocity it would leave the road. 

It is interesting, as illustrating the idea of the instantaneous 

centre, to compare the motion of the circle with that of a 

polygon of a large number of sides rolling on the plane. 

In the case of the wheel it will be seen that as the wheel 

rolls along the instantaneous centre takes all positions on 

the circumference of the wheel. This locus of the instantaneous 

centre in the body is called the Body Centrode. In the same 

way the instantaneous centre has a locus in space which is 

called the Sjxjuie Centrode; in the above example the space 

centrode is the line on which the wheel rolls. 

177. Determination of the Instantaneous Centre. 
The position of the instantaneous centre at any moment 

c.an in general be determined if the directions of the velocities 

O 

of two separate points are known. For if O is the instan¬ 

taneous centre, any point P must be moving at the instant 

perpendicular to OP. Conversely, as P is moving in the 

direction PT, the instantaneous centre must be on a line through 

P perpendicular to PT. If a second point P' is moving in the 

direction P'T', the instantaneous centre must be on a line 

through P' perpendicular to P'T'. The intersection of these 

two lines will give the instantaneous centre. 
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If the lines PO, P'O' in Fig. 142 are parallel, the instantaneous 

centre is at infinity, and the motion at the instant is one of 

pure translation. 

Fjg. J42. Fig. 143. 

If the lines PO, P'O coincide as in Fig. 143, the instantaneous 

centre cannot be deduced from the directions alone, but the 

direction of the motion of another point not on the line PP' 

will be required to determine the instantaneous centre ; or 

it can be determined from the velocities of P and P' alone if 

the magnitude of these velocities are given, for if v, v' are 

these velocities, and w is the angular velocity about the 

instantaneous centre O in PP' 

V- OP. (0 

v' — OP'w 

, giving the position of O. 

As an example, suppose a rod AB moves with its ends always 

constrained to slide along two straight lines at right angles. 

A 
Fig. 144. 
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Tlie instantaneous centre O is at the intersection of the per¬ 

pendiculars at A and B to the straight lines. 

178. As we have seen, the motion at any instant may he 

thought of as an angular velocity about any assumed base 

point combined with a velocity of translation of the body as a 

whole. Usually the centre of mass is chosen as the base point. 

Let u, V be the component velocities parallel to fixed axes 

Ox and Oy of G (the centre of mass), 
oi be the angular velocity, 

r be the distance of any other point P in the body from G, 

6 be the angle PG makes with Ox, , 

then the veiocity of P relative to G is ru> perpendicular to GP, 

and its components parallel to Ox and Oy are 

- no sin 0, no cos 0 ; 

/. the components of the velocity of P relative to O are 

u-rui sin 0, v -f ra> cos 0. 
If x\ y' are the coordinates of P relative to G, the component 

velocities can be written 
u - mf, V -f (ox\ 

The coordinates relative, to G of the instantaneous centre 

can therefore be found by putting these two velocities zero, or 

V^-iox'^Oj 

X* = -v/u) 

y[ =ufio. 
giving 
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Notice that the equations shew that there is one and only 

one point which is instantaneously at rest, the case when «> is 

zero being excepted. 

Example, A rod of length 2a slides with its ends on two straight 
lines at right angles, find the velocity of any point on the rod. 

Here the centre of mass describes a circle, and since the angles 
GAO, GOA are equal, if <u is the angular velocity of the rod, w is 
also the angular velocity (in the opposite sense) of OG, and the 
velocity of G is acu perpendicular to OG, hence its components 
along OA and OB are atu sin - acD cos B, 

the component velocities of P are 

a<u sin O-no sin 6— (a - r)to sin 0, 

and - aw cos rw cos 6= — (a + r) w cos 0. 

179. Acceleration of any Point in a Rigid Body. 
If a body is rotating about a fixed axis the acceleration of 

any point can readily be deduced. For since all points have 

the same angular velocity at a given instant, therefore the 

rate of change of angular velocity is the same for all at 
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the same instant, or the angular acceleration of all points 

about the axis is the same, and may be called the angular 

acceleration of the body. 

Let (0 = angular velocity at the instant, 

A== „ acceleration ,, 

A particle at distance r from the axis is describing a circle, 

and its accelerations are 

0^2/ along PO 

and kr perpendicular to PO. (See Art. 127.) 

If the body is moving freely in the plane it wiU be best to 

think of its velocity as made of a velocity of translation equal 

to that of the centre of mass, and a rotation about the centre 

of mass. The acceleration of any particle will be the resultant 

of the acceleration of the centre of mass, and the acceleration 

relative to the centre of mass. 

If Ox, Oy are fixed axes and G the centre of mass of the 

body, a point P has, relative to the centre of mass, accelerations 

ioh along PG, 

and Ar perpendicular to PG ; 

these are equivalent to 

~ coV cos 0 - Ar sin 6 along Ox, 

and ~ (A* sin 0 + Ar cos 0 along Oy; 

hence, if /, g are the accelerations parallel to Ox and Oy of the 
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centre of mass itself, the total acceleration of the point is 

equivalent to /- wV cos 0 ~ kr sin 6 along Ox^ 

and (j - wV sin 0 -f- Ar cos d along 0?y. 

These may be written 

ii)^x - ky\ 

and g - ayhj + kx\ 

if x\ y' are the coordinates of the point relative to the centre 

of mass. 

EXAMPLES. 

1. A circular disk of radius a is rolling along a straight line, 
and at a given instant the velocity of the centre is u and its accelera¬ 
tion /. Prove that there is a point in the disk whose acceleration 
is zero, and that if r is its distance from the centre and 6 the angle, 
the radius to it makes with the perpendicular to the straight line, 

tan 0= 

r = aYI a'* + =a cos 0. 
Shew that the acceleration of any other point is proportional 

to its distance from this one. 

2. A circular disk rolls with uniform velocity on the inside of 
a circle of centre O of twice the radius of the disk. If <o is the 
angular velocity of the centre of the disk about O, shew that the 
angular velocity of the disk about its centre is also w, and shew 
that any point on the circumference of the disk describes a straight 
line. 

3. A rod always touches a fixed circle, and one end moves along 
a fixed tangent to the circle, prove that the centrodes are both 
parabolas. 

4. A uniform stick is thrown into the air, and its centre of mass 
moves in a vortical line, while it rotates about the centre in a vertical 
plane with constant angular velocity a>. If the initial velocity 
of the centre of mass is % and the stick is initially vertical, find 
the velocity and acceleration at time t of the two points at distance 
r from the centre. 

6. Prove that there is one point in the body (Art. 179) whose 
acceleration is zero, and find its coordinates. 



CHAPTER IL 

ROTATION ABOUT A FIXED AXIS ; 
MOMENTS OF INERTIA. 

180. We now pass on to consider the effect of forces on the 

motion of a body rotating about a fixed axis, and we will 

suppose the forces to act in planes perpendicular to the axis. 

Let the body of any shape be capable of rotating about a 

fixed axis through C perpendicular to the plane of the paper, 

and let the forces acting be either in the plane of the paper or 

in parallel planes. 

To determine the motion it will be necessary in the first 

place to consider the motion of each particle of the body, 

treating it as obeying the laws of motion in the ordinary way. 

In discussing the effects of forces on a rigid body it is neces¬ 

sary to use the term moment frequently; we shall therefore 

define moment first and give one theorem relating to moments. 
B.E.D. n 
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181. The Moment or Torque of a force about a point X 

is the product P . XN of the force into the perpendicular from 

the point to the line of action of the force. 

In Fig. 150, 

P. XN=P. AX8in0 = Psin0 . AX. 

Now P sin 6 is the resolute of P perpendicular to AX. If, 

therefore, we replace P by its resolutes along and perpendicular 

to AX, the resolute along AX has no moment about X, while 

the resolute perpendicular to AX has the same moment as 

P itself. This may be regarded as a special case of the 

Principle of Moments, which may be stated in general in the 

following way : 

If two forces have a resultant, the moment of the resultant about 

any point is equal to the sum of the moments of the separate forces 

about the same point. 

Let P and Q be two forces meeting in A (Fig. 161), 

The sum of the moments of P and Q about X 

= P . AX sin a -f- Q . AX sin ^ 

= AX . (P sin a + Q sin /3) 
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= AX X sum of resolutes perpendicular to AX 

= AX X resolute of resultant perpendicular to AX 

— moment of resultant about X. 

We will see that the moment measures the tendency of a 

force to produce rotation in a rigid body about the point. 

The same result applies if the forces are parallel, but as 

we have not so far discussed parallel forces we will refer to 

Barnard’s Elementary Statics^ Art. 30, for the proof. 

Since this result is true for any two forces, by compounding 

forces continually we have the more general result: 

The sum of the moments about a point of any number of 

forces is equal to the momerd of the resultant {if they have one) 

about the point. 

In any case the sum of the moments is equal to the sum of 

the moments of any other system of forces obtained from 

the first by composition according to the parallelogram law or 

law for parallel forces. 

182. Returning now to the rotating body (Fig, 149), 

let w = angular velocity of the body at time t, 

A— ,, acceleration „ ,, ,, 

r — distance of a particle P of mass m from the axis, 

the acceleration of P will be rA perpendicular to CP and rw* 

along PC, and the forces acting on the particle at P are equiva¬ 

lent to mrA perpendicular to CP and along PC. 

Since these expressions are the exact equivalent of the 

forces acting on the particle, if X and Y are the components 

of the forces in the same directions it follows that the moment 

Xr==mr*A, and consequently if we add up for all the particles 

of the body, = 2Xr. 

Now, the forces on the particle having been replaced by X 

and Y in the given directions, Y has no moment about C, 

and, consequently, Xr is the total moment about C of all 
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the forces acting on m, and 2Xr is the total moment about 

C of all the forces on all the particles of the body. 

These forces include all the internal reactions between the 

different particles of the body, but if we consider the reactions 

between two particles P andQ, tlie action on P is equal, opposite, 

and in the same straight line as the reaction on Q. Hence, 

when we add the moments of these about C, the moments 

cancel one another, and we are left with the moments of the 

external forces only. The reaction of the axis, also, will not 

come into the equation as its moment about the axis is zero. 

Hence, if we denote by L the sum of the moments of the 

external forces, we have the equation : 

= L 

or - = L, 

since A is the same for all particles ; 

or lA = L, 

where I is written in place of 

In this and the following equations, in using British units 

I may be said to be in units, A in radian/sec.^, and 

L, which is the product of a force into a distance, is in Ibl.-ft. 

units. 

183. Kinetic Energy of the Body. 
We can get the kinetic energy of the rotating body im¬ 

mediately from the fact that the K.B. of the particle m at 

P is 1 

Since kinetic energy is a scalar quantity, the kinetic energies 

of the different particles simply add together, and the total 

kinetic energy of the body is 
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184. The quantity I or which thus comes into all 

questions concerning rotating bodies, is called the Moment 

of Inertia of the body. The Moment of Inertia will be 

different for different axes of rotation, and, consequently, in 

talking about the M.I. of the body, the axis about which it 

is taken has to be specified. 

186. The equations, 

moment of forces = lA.(1) 

kinetic energy = 7^1(02 .(2) 

are analogous to the equations for a single particle. 

Force == wf, 

kinetic energy = | 

moment of inertia replacing mass, moment of a force or torque 

replacing force, and angular velocity and acceleration replacing 

linear velocity and acceleration. 

In the same way other equations in the motion of a particle 

have their analogue in the rotating body; thus the equation 

impulse = m (y' - ?;), 
is replaced by 

moment of impulses = I (o)' - w), .(3) 

and lo) is called the angular momentum of the body just as 

mv is called the linear momentum of the particle. 

It will be seen that 

angular momentum = sum of moments of linear momen¬ 

tum of the separate particles, 

for this sum of the moments of momentum 

= 2mr(o. r = ^mr'u) 

~ — Ico, 

and the equation (3) follows in the same way as (1); for since 

the impulse on a particle 

~ - v) = m(rw - rw) 
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the sum of the moments of the impulses 

= - (*))r 

= (w' - ct)) = I (to' - to). 

If two bodies are rotating about the same axis, and collide 

or become suddenly united in any way, there is an impulse 

on each and an impulse at the axis. The moment of the 

impulse on either body is equal to its change of angular 

momentum. Thus, let 

Ip I2 be the moments of inertia of the two bodies 

about the axis; 

(0^, (02 their angular velocities before collision ; 

<0/, too' the angular velocities after collision ; 

Q the moment of the impulse ; 

then Q = I^((Uj'~ (D^), 

("i' - “1) + I2K' - “2) = 0; 
IjOl' + = IjWj + I„(1>2, 

or the total angular momentum is unchanged. 

This equation corresponds to the equation of momentum 

for two particles colliding, and is a special case of a more 

general principle called the conservation of angular momentum. 

186. Work done by a Torque. 
The expression for the work done by a force in a displace¬ 

ment likewise has its analogue in the expression for the work 

done in a rotation. 

For if a force acting on the rotating body be resolved into 

components R and T along and perpendicular to the radius 

to the point of application, the work done in a small rotation 

T.re = Tr.0 = L0, 

if L is the moment of the force about C. 
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For any displacement the total work done by the force 

is 2l0, corresponding to the total work 2Ps done by a varying 

force in the displacement of a particle. 

If the moment of the forces remains constant, this = L0 

where 6 is the total angle tiirned through. 

187. Having got the fundamental equations giving the 

angular acceleration in terms of the torque acting, the angular 

velocity and angle described have to be found by the same 

methods as in the case of the linear acceleration, velocity 

and distance. 

Thus the following equations hold for the case of uniform 

angular acceleration : 
ci>' = (0 -i- At, 

0 = tat + 

w2 = (i,2 + 2A0, 

where w = the initial angular velocity, 

and w' = „ angular velocity at time t, 

0 = „ angle described in t secs. 

A = „ constant angular acceleration. 

We have supposed the forces to act in directions perpen¬ 

dicular to the axis. The moment of a force in this case is 

obtained thus. Let AB be the axis and P a force acting on 

the body in a plane perpendicular to the axis, the plane cutting 

the axis at C, and let CN be the perpendicular from C on the 
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force. The moment of the force about the axis is P . CN, 

and the moments of difierent forces simply add together, 

paying attention to algebraic sign. 

188. Moments of Inertia. 
The most striking fact about the equations for rotating 

bodies is the appearance of the moment of inertia. 

This, as we have remarked, depends on the axis to which 

it refers, and we will consequently have to give some theorems 

on the relations between moments of inertia about different 

axes, and also some calculations of moments of inertia in 
special cases. 

189. Theorem of Parallel Axes. 
If the moment of inertia about an axis through the centre of 

mass is I^, the moment of inertia about a parallel axis at a 

distayice p from this is + Mp^ if M is the total mass. 

First take the case of a disk or lamina, and suppose that 

the axes about which the moments are taken lie in the plane 

y 
p. 

7n 

u 

Fio. ir>3. 

of the disk. Take the axis through the centre of mass G 

as the axis of y, and a line at right angles through G as axis 

of X, If we take another axis Oy' parallel to Qy and at a 

distance p from it, and is the moment of inertia about 

Oy\ we have to prove 
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Now, if X is the distance of a particle of mass w from Oy, 

its distance from Oy' is x-p; 

- 2^mxp 

= - 2p2mx 

- I,; + 

since by definition of the centre of mass, is the x 
zm 

coordinate of the centre of mass, and is therefore zero since 

the C.M. is the origin ; 

im 
==0; 

'^vix ^ 0. 

If the axes about which the moments of inertia are to be 

compared are perpendicular to the disk, and the new point 

O is at distances p, q from Oy, Ox, 

lo - 2mOP- - (x + (y - qy^} 

~ + y^) + ^m{p' + q-) - 2'^mxp - 2'lmyq 

— 'Im (x'^ -h y^) + (p^ + q^) 2m ~ 2p2mx - 2p2miy 

-2m.GP2 4-M(p2 + <^2) 

= I^ + M (/r 4-^2) ^ ^ IVi . oG2. 

Since as before 2?/w: =^0 = 2/y///. 

It is evident that tlic r<\sult applies to the case when the 

body is a cylinder with the axis parallel to the length of the 

cylinder. For the cylinder may be thought of as divided 

into a large number of equal thin laminae whose moments 

of inertia about the axis are equal and add together. 

In fact, the proof shews that the result holds for any body 

whatsoever, for if the axis runs through the centre of mass, 

the equations, - 0, 27??y = 0 

still hold, and, consequently, also the whole proof given. 
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190. The moment of inertia of a disk about a perpendicular 

to its plancy meting it in a point O, is the sum of the moments 

of inertia of the disk about any two axes at right angles in the 

disk and intersecting one another at O. 

For if OXy Oy are two axes at right angles in the plane of 

the disk, the moment of inertia about the axis through O 
perpendicular to the plane 

- 2//?OP2 = («2 4- y^) = + 2mf 

and ~ M.I. about Oy 

j about Ox, 

191. To find the relation between the M.I's of a disk aboiU 

different axes in the plane of the disk and drawn through the 
same point. 

Let Ox, Oy be two axes at right angles, another straight 

line making an angle d with Ox. The perpendicular ti from 
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P on is in the figure 

= PM-NH 

= PN cos 0 - ON sin $ 

= y cos 0 - a; sin 0 ; 

/. moment of inertia about 

^lm{y cos 0 - a; sin 0)^ 

= 2m (^2 (»Qg2 g 4. gjj^2 Q _ 2xy sin 0 cos 0) 

=008^ d^my^ + sin^ - 2 sin 0 cos d^mxy. 

This is generally written 

A cos^ 0 + B sin^ 0 ~ 2F sin 0 cos 0, 

where A = 2my2 ^ ]y[ j about Oa?, 

B==2ma^ = M.L about Oy, 

F = 'Imxy, 

and F is called the product of inertia with respect to Ox, Oy, 

Hence, if the M.I/s about two lines Ox, Oy, at right angles, 

are known, and also the product of inertia with respect to O 

and Oy, we can write down the M,I. about any line through 

O in the plane. 

If the disk is symmetrical with respect to either Ox or Oy, 

the product of inertia will evidently vanish ; for, if it is sym¬ 

metrical about Ox, corresponding to any term m^x^y^ in 2ma?y, 

there will be another m^x^( - and these two will cancel 

one another. 

192* If the disk is not symmetrical about either axis, it 

is still possible to find a pair of rectangular axes for which 

the product of inertia vanishes, for the product of inertia 

with respect to O^, Orj is 2m£j7. 

Now ^ = OK = OH+HK 

= 5ccos0-H^sin0; 
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'^ni^ri - 'Em. (x cos 6 + ^ sin d) {y cos S - x sin d) 

== cos 0 sin 6(Emy^ - Emx^) + (cos^ 0 - sin^ 0 )Emxy 

= (A - B) sin 0 cos 0 + F(cos^ 0 - sin^ 0) 

= J{(A - B) sin 20 4-2F cos 20), 

and this is zero if 
tan20 = 2F/(B~ A). 

Now, whatever the values of A, B, F, it is always possible 

to find one and only one value of 20 less than 180° which 

will satisfy this equation, and consequently make 

The axes for which the product of inertia vanishes are 

called principal axes of the disk. 

Hence, at any point in the disk a pair of rectan<^ular axes 

exist which are principal axes. If now we take these axes 

as the axes of x and y and call the moments about them A 

and B, supposing A>B, then the M.I. about any other line 

in the disk through O is 

A cos^ 0 + B sin^ 0. 

Now A cos^ 0 + B sin^ 0 = A - (A - B) sin^ 0, 

and since A > B, 

this expression < A. 

Also, A cos^ 0 + B sin^ 0 - (A - B) cos^ 0 + B, 

and is therefore > B ; 

A and B are the greatest and least moments of inertia 

about axes through O in the disk. They will be called the 

principal rrwments of inertia at A. 

From the above propositions it will be seen that, in the 

case of a disk, if the mass of the disk, the directions of the 

principal axes at the centre of mass G are known, and also the 

magnitudes of the principal moments of inertia, it is possible 

first to find the moment of inertia about any other axis through 

G in the plane, and then to find the moment of inertia about 

any parallel axis in the plane, and also to deduce the moment 

of inertia about any axis perpendicular to the disk. 
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193. Calculation of Moments of Inertia. 
The calculation of moments of inertia has usually to be 

performed by the integral calculus. We will give the calculus 
proofs for a few cases, and also give alternative proofs 
without the calculus and deduce other standard cases. 

194. A Thin Uniform Rod. 
To find the moment of inertia about an axis through the 

centre and perpendicular to the length. 
(A) By calculus. 

B 

J' 

O PP A 

Fig. 1.")6. 

Let AB be the rod, and let 

m. — mass of rod per unit length, 

2Z = whole length, 

M total mass = m . 21, 

PP' be an element of the rod, 

OP^x, 

PP'^dx ; 

mass of PP'=^mdx, 

M.I. of PP' about Oy = mdx . x^ ; 

total moment 

- 'Imdx. ^ 
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(B) By algebraic methods. 

Let the rod be divided into a large number 2n of equal bits 

each of mass 
M . 

2n' 
the nearer end of the from the centre is 

at a distance (? -1)- from the centre, and, consequently, its 

^ M f ZV 
moment of inertia about the centre is^j(r-l)-> nearly, 

taking the distance from the centre as the same as the distance 

of the nearer end from the centre. 

M.I. of all of one-half of the rod 

= .7^ (12 + 22 -f ... 4- n - 12) nearly 

_ (w - 1) 71 (271 - 1) 

“2^ 6 " 

__MZ2 

~ 12 

By making n infinite we get the true moment of inertia of 

half the rod ; this gives , 

The other half of the rod contributes the same moment of 

inertia. 
and the total M. I. = 

MZ2 

195. Other Moments of Inertia deduced from the 
above. 

(1) The M.L of the rod about an axis through one end 

perpendicular to the rod is (by Art. 189) 

72 4.72 

IVI--4 
o «> 

(2) M.I. of a rectangular lamina about an axis through the 

centre perpendicular to a pair of sides. 
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If the sides of the'lamina are 2a, 26, and we want the moment 

of inertia about the axis yOy' in the figure, we can divide the 

rectangle into strips parallel to xOx', and the M.I. of each strip 

— mass of strip x ; 
o 

total moment of inertia 

= total mass x ^ 
o 

12 
Similarly, the M.I. about aOx' is M . and by Art. 190 the 

M.I. about an axis through O perpendicular to the plane is 

+ 62 
M-g-. 

The axes Ox, Oy are axes of symmetry, and therefore for 

them F=0; 

.*. the moment of inertia about an axis through O lying 

in the plane of the disk, and making an angle d with Ox, is 

^(6*co8®0 + a*8in!*0). 

(3) M.I. of a rectangular paridlelepiped (or cuboid) 
about an axis through its centre perpendicular to a pair of 

faces. 
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If the lengths of the sides are 2a, "2b, 2c, and if the axis is 

perpendicular to the faces whose edtjes are 2h, 2c {Ox in the 

Fig. 158. 

figure), we can divide the parallelepiped into laminae by 

drawing planes parallel to these faces, and the M.I. of each 

of these laminae is its mass x ; 
o 

/. M.I. of whole parallelepiped 

- total mass x — 

= M 
+ 

Example 1. Prove that the M.I. of a rod about an axis through 

the centre and inclined at an angle 0 to the rod is ~^8in‘^6^, and 

deduce the M.I.’s of a parallelogram of sides 2a and 26, and angle 
0 about its sides. 

2. Shew that the moments of inertia about all lines through the 
centre of a uniform square lamina and in its plane are equal. 

3. Shew that for lines through a comer of a square in its plane 
the M.I. is least about the diagonal through the comer, and greatest 
about a line parallel to the other diagonal. Find these moments 
of inertia, and deduce the product of inertia relative to the two 
sides. 

4. The moments of inertia of a rectangular lamina about its 

edges are and M^-. 
U ' 
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6. Find the moment of inertia of a rectangular lamina about a 
diagonal. 

6. Find the M.I. of a cuboid about an axis through the centre 
of one face and parallel to an edge of that face. 

. 7. Find the M.I. about an edge of the cuboid. 

196. Moment of Inertia of a fine circular wire (or hoop) 

about an axis through its centre perpendicular to its plane, 

(or the axis of the circle). 

As all points arc equally distant from the centre, the 

M.I. — if a is the radius. 

Also, since the M.I.’s about any two diameters are equal, 

and the sum of the moments of inertia about two diameters 

at right angles is equal to the M.I. about a perpendicular 

to the plane of the wire through the point of intersection 

(Art 190), it follows that the M.I. about a diameter is M 

197. M.I. of circular lamina about its axis. 

(i) Calculus proof. 

Let a = the radius, 

m — mass per unit area, 

M = total mass 

=m. 7ra\ 

FiQ. 159. 
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Divide the disk into rings by concentric circles, and let r 

be the radius and dr the breadth of one of the rings, 

the area of the ring is 2'7rrdr ; 

its mass is m . 2xrdr ; 

by Art. 194 its M.I. about its axis is 2Trmrdr , r*; 

/. total M.I. of lamina 

= '^'lirnirdr. 

= 27r7?i I rHr 
Jo 

^ Tra^ 
= 27rm 7- = w -TT- 

4 2 

= M-^. 

(ii) Algebraical proof of same tlieorem. 

If we divide the disk into n rings of equal breadth the 

area of the from the centre is 

and its M.I. about the axis is 
r/2 

(2r-l), 

TTrt^ 
nearly; 

the total M.I. 
j . rmra^ »_=■" 

= Lim -- V (2r*-r*). 
n —> 00 

Now Lim ^.Liml"-i(S±i^ 
,.^00 »•* 4 n* 

2 
+ - 

n 

1 
4- 
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Also = 

= Lim^ -(l+-)(2+-) = 0; 
6n\ nj\ nj ^ 

total raotneiit of inertia 

-2 
mira^ 

'' 2 ' 

Ma2 . 
The M.I. about a diameter is consequently by the same 

argument as for the circular wire. 

198; Moment of inertia of a circular cylinder about its 

axis. 

Since the cylinder can be divided into circular disks, the 

moment of inertia of each of which about the axis is 

its mass X ; 
fj2 

/. the total moment of inertia will be M — if IVI is the 

total mass. 

199. Moment of inertia of a circular cylinder about a 

straight line through the centre perpendicular to the axis. 

]_ 
IIBI ■ 1 1 ^ 

r 
PlO. 160. 

Divide the cylinder into laminae by planes perpendicular to 

the axis. 
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Let 21 == length of cylinder. 

m = mass of a lamina, 

x = its distance from the axis Oy about which 

the M.I. is required. 
(X^ 

The M.I. of the lamina about a diameter = m -r ; 
4 

the M.I. about 0?y 

= m by Art. 187 ; 

the total M.I. of all the laminae 

= 4- 
4 

A *1^2 fji2 

now 2 ^ -j if M = total mass. 
4 4 

= moment of inertia of a uniform rod whose mass is 

the mass of the cylinder about an axis through the centre 

perpendicular to its length ; 
72 

o 

total moment of inertia 

Example 1, Find maximum and minimum moments of inertia 
for a circular disk about lines in its plane through a given point 
in the plane. 

2. Find the M.I. about its axis of a flat circular ring of radii 
a and h. 

3. Find the M.I. about the axis of a circular cylinder of internal 
and external radii 10 and 12 inches and weighing 100 lbs. 

4. Find the M.I. of a circular disk about a line perpendicular to 
its plane and passing through the circumference of the disk. 

6. Find the M.I. of a hollow cylinder about a line through its 
centre and perpendicular to its axis. 

200. Moment of inertia of a sphere about a diameter. 

Calculus proof. Divide the sphere into laminae by planes 



BODY BOTATING ABOUT A FIXED AXIS 327 

perpendicular to the diameter. A plane at a distance x from 

the centre cuts the sphere in a circle of radius 

Fig. 161. 

The mass of the lamina is, therefore, 

pTr{a^ - x^)dx^ 

where p is the mass per unit volume, or density. 

The M.I. of the lamina about Ox (the axis of the lamina) is, 

by Art. 197, , a^-x^ 
pTT (a^ - x^)dx ——; 

total M.I. 

— f /3 ^ ~ 2aV + x^) dx 

TtF 4 2a^x^ 

TT t 4a^ 2a^\ 
= Pa(2“ - ir^x) 

TT 1()G/' 

^^2 T5' 

_8_ 
15 

TT/oa® 

2a^ 
= M X 

5 

since the mass of a sphere is ~ Trpa^. 
5 
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Example 1. Find the M.T. of a sphere about a tangent line. 

2. Find the M.I. about a diameter of a hollow sphere of mass M 
and internal and external radii a and b. 

201. Results proved. 

Collecting the principal results proved above, we have the 

following table of moments of inertia: . 

Thin rod of length 2a about an axis through its centre 
^2 

perpendicular to its length M 

Rectangular lamina about an axis through its centre per¬ 

pendicular to the sides of length 2a M 
3 

Rectangular lamina of sides 2a, 2b about an axis through 

its centre perpendicular to its plane M 

Cuboid of edges 2a, 2b, 2c, about an axis through its centre 

parallel to the edges 2a M —5—. 

Thin circular hoop of radius a about its axis Ma*. 

Circular disk 

Circular cylinder 

a diameter M 

its axis 

2 
Ma^ 

2 

a diameter M 

the axis 

4 • 

Ma® 

~2"* 

Circular cylinder of radius a and length 21 about axis through 

-4- 

M 
5 * 

Sphere of radius a about a diameter 
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EXAMPLES. 

1. Find the moment of inertia, angular momentum, and kinetic 
energy of a circular disk of diameter 2 ft. and thickness 2 ins. made 
of iron weighing 477 lbs. per cubic foot and rotating about its axis 
150 times a minute. 

2. Find the kinetic energy and angular momentum of a sphere 
of mass 250 lbs. and diameter 1 ft. rotating about a diameter-50 
times a minute. 

3. How much kinetic energy does a fl3n;trheel give up while the 
number of rotations per minute drops from 150 to 90, if it consists 
of a uniform circular disk of radius 18 inches and mass 400 lbs. 

4. In a flywheel its mass of 120 lbs. may be regarded as con¬ 
centrated round its rim of circumference 66 inches. It is set spin¬ 
ning at 2,400 revolutions a minute, and by suitable gearing it is 
made to drive machinery that absorbs one horse power. For how 
long a period will the machinery be driven before the speed is reduced 
by one-half, assuming that no energy is lost in transmission. 

5. Shew that the M.I. of a uniform rectangular plate about any 
line in its plane is the same as that of four equal particles each of 
mass ^ of the whole at the angles, and a fifth of § of the whole 
mass at the centre. 

Shew, also, that the M.I. about any line perpendicular to the 
plane is the same for the disk and for these particles. 

6. Shew that in order that two disks may have equal moments 
of inertia about all axes in their plane it is sufficient that 

(1) their masses are equal, 
(2) their centres of mass coincide, 
(3) their principal axes at the centre of mass coincide, 
(4) their moments of inertia about these principal axes are 

respectively the same. 

7. Find the masses of a set of five particles, four at the middle 
points of the sides of a rectangular disk and the fifth at the centre, 
which will have the same moment of inertia as the disk about all 
lines in its plane. 



CHAPTER III. 

ROTATION ABOUT A FIXED AXIS; EXAMPLES. 

202. We proved the following dynamical equations for a 

body rotating about a fixed axis ; 

lA= L=: moment of the forces, 

I (u)' - (jd) = Q - moment of impulses, 

JI((ri'2 - (o2) = L0 = work done change in kinetic energy. 

We also have the following kineinatical results for uniform 

angular acceleration: 

u)' - (i> = 

0 = a>/+iA^2 

(U'2 =: (j>2 ^ 2A0 

We will now take some examples of motion of this kind. 

203. A body is capable of rotating about a horizontal axis 

through its centre of mass, and is acted on by the force due 

to a weight attached to a string wound round the axle and 

attached at one end to the axle. 

A useful arrangement of this kind for experiments on 

moments of inertia is shewn in the diagram, where a frame¬ 

work carries heavy weights which can be moved to different 

distances along the arms. 

If these weights are symmetrically placed on the arms, the 

centre of mass is on the axis, and the only force other than 

friction acting on the body and having a moment about the 



MOTION ABOUT A FIXED AXIS 331 

axis is the tension T of the string. Supposing friction non¬ 

existent or negligible, let 

mass of the hanging weight, 

I = M.I. of rotating system, 

r = radius of axle on which the string is wound, 

/= acceleration of hanging weight, 

and other letters as before. 

Then, for the hanging weight, 

fng-T = mf, .(1) 

and for the rotating body, 

Tr = lA,.(2) 

but /=^A; ...(3) 

for the velocity and acceleration of the weight are the same 

as the velocity and tangential acceleration of a point on the 

circumference of the axle, and the latter must = rA. 
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From (1) and (2), eliminating T, 

= IA -f mr f 

= IA + wf^A, 

^ mar 
A = ~—=—n- 

I 4* mr- 

The above result was arrived at on the supposition that 

there was no friction, but if friction exists it produces a 

torque about the axis which is practically constant whatever 

the velocity of the apparatus. This torque may first be 

balanced by a weight fx hung on the string, and the expression 

for the angular acceleration produced by the extra mass m 

will be yngr 

i + (wnr^)r2 ^ 

m-v IX being now the to al weight, for the equations would be 

Tr-F/ = lA, 

where F is the friction acting at a distance r' from the axis, 

r' being the radius of axle on which the apparatus turns and 

which is usually less than r ; whence 

mgr = {I + (m + //) A. 

If the extra weight m is caught off after a time by an arrange¬ 

ment as in Atwood’s machine the body will continue to rotate 

with uniform angular velocity, which may be readily measured 

by observing the time required for a number of revolutions. 

We can thus verify the kinematical equations, which will 

in this case take the form (initial velocity=0): 

to)= At, 

a>2«2A(?. 
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We can also vary the moment of inertia by shifting the 

weights along the arms, and the nearer the weights are to 

the extremities the greater the moment of inertia, and, con¬ 

sequently, the smaller the angle described in any time. 

If the same angle 0 is described under the action of the same 

weight m, in experiments with different moments of inertia, 

we have i mg&r _1 yngt^r 

214- (//i 4- fx)r^ ~ 2 T + 

where I' is the moment of inertia in the second experiment 

and t' the time taken ; 
• vn,g^t!^ - r^)r .. 

by subtracting numerators and denominators of the equal 

fractions; .(1) 
ingr ^ ' 

now the change I -1' in the moment of inertia depending 

only on the shift of the weights can be readily calculated 

from the results of the last chapter and the equation (1) 

verified. 

204. Effect of Inertia of the Wheel in Atwood’s 
Machine. 

Suppose a string passing over a pulley, as in Atwood’s 

machine. If the pulley turns with the string so that no 

slipping takes place, there is friction between string and 

pulley, and the tensions of the two portions of the string will 

not be the same. 

If the acceleration of each weight is /, the angular accelera¬ 

tion of the pulley is'^, and the equations of motion are 
V 

form mg-T = mf,.(1) 

» »»' V= .(2) 

„ pulley (T-T')r=I'^; .(3) 
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multiply (1) and (2) by r, and add the three equations 

9ng 
Fig. 163. 

shewing that the inertia of the wheel can be allowed for by 

a correction to the denominator of the expression — 
m + in. 

which would be the acceleration if the inertia of the wheel 

is neglected. 

If the pulley is a uniform disk of mass M, 

I _IVI 

7-2“ 2' 
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Example. Prove tliat 

T 
r" 

mm’ 
2r^ 

206. Second Method of TreMment of Attvood's Machme,—hy 

Energy. 

Supposing tlie apparatus to start from rest, after the weight 

has fallen a distance s let its velocity he the angular 

velocity of the wheel is then and the total kinetic energy 

\ mv^ + \ 4- 1-2 

the loss of potential energy is 

mgs - m'gs = (m - m')gs; 

I (^m + m/ + ^2^ V- = (m - w')gSj 

shewing that we get a relation of the form holding for uniform 

acceleration | ^,2 ^ 

and 

w 4* m' 4- ^2 

206. The Torsion Pendulum* 

If a bar AB hangs horizontally, supported by a wire at its 

middle point, it can oscillate in the horizontal plane if dis¬ 

placed from the position of equilibrium. The apparatus is 

consequently called a torsion pendulum. Weights C, D, can 

be moved along the bar to any position in order to alter the 

moment of inertia. 
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In a position of equilibrium there is no torsion (twist) in 

the wire, but if the bar is rotated in the horizontal plane, 

the wire is twisted and a couple is brought into action on 

Fia. 164. 

account of this twist which tends to restore the bar to its 

equilibrium position. This couple is found experimentally to 

be proportional to the angular displacement d ; we can 

therefore represent the couple by t6, where r is a constant 

depending on the nature, length, and diameter of the wire. 

The equation of motion is therefore 

IA= - re, 

where I = moment of inertia about the axis of the wire; 

We consequently have the angular acceleration proportional 

to the angular displacement and in the opposite direction, 

hence the equation corresponds exactly to the equation for 

simple harmonic motion, and we can say at once the solution 

is of exactly the same form, namely. 

0 = c cos 

and the oscillations have a period 
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If we make two experimeuts, in the second ot which the 

weights have been shifted a carefully observed amount so as 

to alter the moment of inertia to I' and the period to T', 

T = 27r 

T' = 27r/^^. 

t2 - -1 > 

and this gives a method of determining experimentally the 

moment of inertia of such a vibrating system, for the difference 

I' -1 is readily calculable from the previous results, if the 

movable weights are accurately made hollow cylinders. 

For example, if the moment of inertia of an irregular disk 

about an axis through its centre of mass and perpendicular 

to its plane is required, we could attach it horizontally with 

its centre of mass at the middle point of the rod, and determine 

in the above way the total moment of inertia of the system; 

we can also determine in the same way the moment of inertia 

with the disk removed, and the difference of the two will give 

the moment of inertia of the disk itself. 

207. Fly-wheels. 
The action of a fly-wheel may be explained as depending 

on the equation 

iI(<o'2~ w2) = change in energy. 

In the steam engine we have reciprocating motion of the 

piston transformed by means of the crank and connecting 

rod into a circular motion of the axle, and then by belts 

energy may be transmitted to the machines in which it is 

made use of. In the running of the engines there will always 

hence 

or 
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be im>gularity in the rate at which energy is supplied and 

used. For example, if the su[)ply of energy increased without 

a corresponding increase in the demand, the increase in the 

supply (if there were no fly-wheel) would cause all the moving 

parts to move much more rapidly, and so the machinery 

would run very unevenly. 'But if there is a big fly-wheel 

a large amount of the extra supply of energy will be taken 

up in making it rotate more rapidly, and if the moment of 

inertia is very big the change will be correspondingly 

small, and the smaller, the bigger is the moment of inertia. 

Hence a fly-wheel can be looked on as a part of the engine 

which acts as a reservoir of energy, storing it up when more 

than the average quantity is being supplied, and giving it 

out again when less is being supplied or more being used up. 

Another way of putting it is that sudden changes in the 

driving force or resistances are equivalent to impulses acting, 

which produce sudden changes in the velocity, including, of 

course, the angular velocity of the rotating parts. Now the 

moment of the impulses = I (w' - w) where a>' - w is the change 

in angular velocity. Hence for given impulses the change 

in angular velocity will be the smaller the bigger the moment 

of inertia of the fly-wheel, or the bigger the moment of inertia 

the more evenly will the machinery work. 

Jt will be remembered that energy is used up in the first 

place by the fly-wheel in getting up speed, but when once a 

uniform velocity is attained, no further energy is spent on 
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the fly-wheel except what is required to overcome the friction 

at the bearings of the axle. 

208. The Compound Pendulum. 
Any ordinary pendulum is called a compound pendulum in 

distinction from the simple pendulum, which, we have seen, 

is a purely ideal conception. If we take any rigid body and 

support it so that it can oscillate about a horizontal axis it 

will be called a compound pendulum. Let the figure repre¬ 

sent any compound pendulum, the axis passing through C 

and being perpendicular to the plane of the paper. Let G 

be the centre of mass, and let the plane of the paper contain G. 

The forces acting on the body are the weight through 

G, and a reaction at C which we can represent if required by 

components X, Y along and perpendicular to CG. 

Let CG==A, 

d = angle CQ makes with the vertical at any time, 

A = angular acceleration. 

The only moment about C is the moment of the weight, 

which ~ sin 0 ; 

IA= -lAgh sin 0. 
ii.E.n. M 
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If 0 is kept small always, 

IA= - 

and the angular acceleration is proportional to the angular 

displacement, and consequently the motion is simple har¬ 

monic with a period r~j~ 

Of course, the approximation to simple harmonic motion 
is exactly the same as in the simple pendulum. 

Now let the moment of inertia about the axis through G 

perpendicular to the plane of the figure be represented by W\1c^\ 
I-M(F + A2) 

T 9 

^2-f A,2 . 

h 
is called the length of the equivalent simple pendulum, 

for a simple pendulum of this length will have the same time 

of oscillation as the compound pendulum. 

Put then ^2 _j_ ;^2 

and suppose 

a 
k^ = h(l-h.), 

CO=^l; 

GO-=/-/*; 

P = CG. GO. 

If the pendulum was now dismounted and made to swing about 

an axis through O, the length of the equivalent simple pendulum 

would be + 

l~h l~h 

or the same as before. Thus the times about the axes through 

C and O are the same. 

O is called the Centre of Oscillation corresponding to the 

Centre of Sm'pension C. 
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Conversely, if we can find parallel axes such that the times 

of oscillation about them are the same, and that the centre of 

mass lies in the plane of the two axes between them and at 

unequal distances from them, then the distance between the 

parallel axes is the length of the equivalent simple pendulum 

for this time of oscillation. 

It is necessary to notice that the centre of mass must not 

be midway between the axes, for then the times of oscillation 

about them would be the same whatever distance the axes 

were apart. 

This fact (proved by Huygens) is made use of in Rater's 

pendulum for the accurate determination of g. 

A pendulum is made with two knife edges C and O on 

opposite sides of the centre of mass, a weight W can be moved 

FlO. 167. 

along the bar of the pendulum by a screw, and the experiment 

consists in adjusting the weight until the observed times of 

oscillation about C and O are the same. The distance CO 

is then the length of the equivalent simple pendulum for the 

observed time of oscillation. Hence, having found the length 

I and the time T, we have 

We need not discuss the details of the experiments, for 

which we will refer to Poynting and Thomson’s Properties 

of Matter^ p. 12. 

It is necessary to remark that when an ordinary pendulum 

is set swinging, the principal reason for its coming to rest 
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gradually is the air resistance, and this has to be allowed 

or the experiment has to be performed in vacuo, as it often 

is. There may be a minute frictional torque at the supports 

which also tends to stop it, but in a good pendulum with steel 

knife edges resting on agate planes this is evanescent. 

Example 1. Find the time of oscillation and length of equivalent 
simple pendulum for a thin rod 1 metre long swinging about a 
horizontal axis through one end. 

2. Find the same if the rod is a metre long and the section is 
a square whose side is 2 cms. 

3. Find the time of oscillation and the length of the equivalent 
simple pendulum for a pendulum consisting of a heavy sphere of 
radius 4 cms. supported by a string of negligible weight, the centre 
of the sphere being 1 metre below-the point of suspension. 

209. Reaction at the Axis, 

If the angular velocity at any moment is w, and angular 

acceleration A, the accelerations of the centre of mass are 

o)^k and Ah along and perpendicular to GC (see Fig. 166). 

Hence we have the following : 

along GC, Mcu% = X - cos 6 ; 

perpendicular to GC, MAh=^Y-Mff sin 6 ; 

giving X and Y when the angular velocity and acceleration 

are known. 

If the pendulum is started from rest with CG at any given 

angle a with the vertical, the angular velocity in any position 

can be determined by the principle of energy. For the loss 

of P.E. is Mffh(coa 6 - cos a), and the gain in K.E. 

= Mp^A(cos 6 - cos a), 

u,2 0 _ cosa), 

also we found that A sin 0, 
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210. Centre of Fevcussioii. 

If a pendulum is hanging at rest, and is struck a horizontal 

blow whose impulse is P at a distance x from the axis of sus¬ 

pension, there will be in general an impulsive 

reaction at the axis. 

If the pendulum begins to move with Wgular 

velocity w, and the impulse on the axis is Y 

(which must be horizontal), we have 

resultant impulse = p - Y = 

moment of impulse 

P-Y M/i 
I’ 

^hx\ 

P - Y = I 

= PX^ Ifa>, / 

Px FIG. 168. 

- = P( 

hence the reaction at the axis is zero, if 

x — ljlAK 

I _ 
IVlA"" mh 

Now 

= the length of the equivalent simple pendulum. 

Hence, if the line of action of the blow passes through the 

centre of oscillation of the pendulum there is no jar on the 

axis. 

The centre of oscillation has, therefore, also got the name 

of the centre of percussion. 

211. The Ballistic Pendulum. 
An important use has been made of a pendulum with a 

massive bob and considerable time of swing to determine the 

velocity of rifle bullets. The bob is sometimes made in the 

shape of a hollow iron cylinder closed at one end, and with 

a block of wood inserted in the hollow. Let a bullet of mass 

m moving with velocity v strike the pendulum in a horizontal 

line through the centre of oscillation and remain embedded 
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in it. The angular momentum remains unchanged; hence, 

if CO = I, ^1)1 —1(0. 

If the pendulum now swings through an angle a, we have, 

since the loss in K.E. is equal to the gain of 

^ * potential, 

^1(1)2= - cosoc). 

In these equations I is the moment of 

inertia of the pendulum including the em¬ 

bedded bullet, and M is the mass of pen¬ 

dulum and bullet : 

nwl ~ Ia>, 

|I(u2 = Mgh{l - cos a) 

= 2IVl^Asm2—j 

also, if the time T of oscillation is determined, 

T = 2x./-i_, 
^Iwigh’ 

“ 47r2 ’ 

mvl~^Mgh sin^. 

TMoh . a, 

2’ 

giving the velocity of the bullet. 

The angle a is usually measured by a piece of tape attached 

to the bottom of the pendulum, and wound on a reel so that 

the amount unwound can be measured and the amplitude of 

the oscillation determined. 
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In the above, M, I, and T may be taken as the quantities 

relating to the pendulum itself before the bullet is embedded 

in it, the errors so made being small. 

The ballistic pendulum method of determining the velocity 

of a bullet is no longer used, being replaced by chronograph 

methods giving the instants at which a bullet is at measured 

distances from the gun. 

EXAMPLES. 
1. A door 3 feet wide weighs 100 lbs. What constant force 

would have to be applied 30 inches from the line of hinges, and 
always perpendicular to the door, to turn it through a right angle 
in 2 secs, from rest ? Find, also, the angular velocity and kinetic 
energy at the end of the 2 secs, (neglect friction). 

2. A door 3 ft. wide weighs 120 lbs. What impulsive torque 
would start it moving with an angular velocity of 1 rad./sec. ? 
If, after being started with this velocity, a constant frictional 
torque brings it to rest in 3 secs., find the magnitude of this frictional 
torque and the angle described in the 3 secs. 

3. A wheel and axle have a moment of inertia of 20 lb.-ft®. A 
weight of 2 lbs. is tied to a string coiled round the axle which is 
horizontal and of diameter 6 ins. Find the angular acceleration 
of the wheel and the time taken to make 10 revolutions from rest, 
neglecting friction. 

4. A weight of 2 lbs. is attached to a string coiled round an axle 
which is horizontal and of diameter 6 ins. A constant frictional 
torque acte at the bearings. If the axle describes 5 revolutions 
in 10 secs, from rest, and the weight then reaches the ground, and 
the axle turns through one more revolution before coming to rest, 
find the frictional torque. 

6. A wheel and axle is capable of turning about a horizontal 
axis, and a mass is attached to a string wound round the axle. 
If the radius of the axle is », and the weight is found to fall ft. 
from rest in t secs., and when is replaced by mg a distance dg 
is fallen from rest in f secs., find the M.I. of the wheel and axle, 
supposing a constant frictional torque to act. 

6. An Atwood’s machine consists of a wheel of radius 3 ins., 
whose weight of 6 oz. may be supix)sed concentrated in its circum¬ 
ference. If weights of 12 and 16 oz. are attached to the string, 
find the acceleration of the weights 

(1) when friction at the axle is neglected, 
(2) if there is a constant frictional torque of oz. wt.-ft. units. 
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7. A mass M is attached to one end of a rod of length I and mass 
m per unit length, which iota tea with uniform angular velocity o) 
on a smooth horizontal plane about the other end, which is fixed. 
Prove that the tension of the rod at a distance r from the fixed 
end is J - r*). 

8. Two particles of masses 3 and 1 lb. are fixed at the ends A, B 
of a weightless rigid rod 3 feet long capable of turning freely about 
a point O between A and B. If AO=2 ft. and OB=l ft., and 
the rod is just disturbed from its position of unstable equilibrium, 
find the velocities of A and B when the rod is passing through the 
position of stable equilibrium. 

9. A uniform circular disk of mass M and radius r is loaded at 
one point of its circumference with a mass m, and can rotate about 
a frictionless horizontal axis through its centre. If displaced 
slightly from the position of equilibrium, find the time of a small 
oscillation. 

10. Find the time of oscillation and the length of the E.S. pen¬ 
dulum of a pendulum consisting of a weightless string 5 ft. long 
to which is attached an iron sphere 6 ins. diameter. (Take gr = 32 • 18.) 

11. Find the time of oscillation of a pendulum consisting of a 
uniform bar of length 100 cms. and cross section a square of side 
2 cms., the axis of suspension being through the centre of a section 
and parallel to an edge of the section, and at a distance of 10 cms. 
from the end. 

What would the calculated time be if the thickness of the rod 
were neglected ? (Take 9'= 980.) 

12. A heavy thin uniform rod of length 3 ft. and weight 10 lbs. 
can rotate about a horizontal axis through one end. If when hang¬ 
ing at rest it is struck a horizontal blow through the centre of 
oscillation which causes it to just make complete rev^olutions, find 
the initial angular velocity and the impulse of the blow. 

18. A pendulum consists of a thin uniform bar 4 ft. long and 
weighing 6 lbs., the axis of rotation being at one end. Find the 
horizontal impulse which must be given to it at the centre of per¬ 
cussion when at rest to make it just describe complete circles, 
neglecting friction. Find, also, the direction and magnitude of 
the reaction at the axis when it is 

(1) vertically downwards, 
(2) vertically upwards, 
(3) horizontal. 

14. The pendulum of the last question is struck a horizontal 
blow through the centre of mass to give it the same angular velocity 
as in that example. Find the magnitude of the impulse and the 
impulsive reaction at the axis of suspension. 
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15. The motion of a door is resisted by a constant friction couple, 
and it is found that a constant force of 4 ibs.-wt., perpendicular 
to the door, acting 2 feet from the line of hinges, causes it to describe 
a right angle in 2 secs., while, if applied at a distance of 3 ft., it 
causes it to describe a right angle in 1*8 secs. Find the moment 
of inertia of the door and the magnitude of the frictional torque. 

16. The mass of a wheel weighing 20 lbs. may be considered 
as concentrated in a circle of 18 ins. in diameter. What is its 
kinetic energy when rotating at 1 revolution per sec., and what 
impulsive torque would produce this velocity from rest ? 

With what pressure should a brake press on the axle whose 
radius is 2 ins. in order to stop the wheel in (1) 3 secs., (2) 3 revolu¬ 
tions, if the coefficient of friction is 0-3 ? 

17. A ballistic pendulum has a mass of 80 lbs. and moment of 
inertia 1000 lbs.-ft*, about its axis of suspension. Its time of 
oscillation is 2-2 secs. A bullet of mass 2 oz. is fired horizontally 
into it in a line through the centre of oscillation, and the pendulum 
swings through 16°. Find 

(1) the length of the equivalent simple pendulum, 
(2) the distance of the centre of mass from the axis of sus¬ 

pension, 
(3) the initial angular velocity of the pendulum, 
(4) the velocity of the bullet. 

18. A ballistic pendulum weighs 100 lbs., and the length of its 
equivalent simple pendulum is 7 *2 feet. A force of 50 lbs. applied 
horizontally at the centre of oscillation deflects it through an angle 
of 31° (tan 31° = 0*6). A shot of weight 2 oz., moving at 
2400 ft./sec., strikes it at the centre of oscillation and remains 
embedded in it. Find through what angle the pendulum will swing. 

19. A rod of weight 2 kgms. and length 60 cms., whose thickness 
may be neglected, is suspended by a wire through its centre, and 
can oscillate in a horizontal plane. If a torque of A of a kgm.-wt.- 
metre unit is required to turn it through 90°, find the time of a 
small oscillation. 

20. A thin uniform rod of length 21 and mass M can turn freely 
about a vertical axis through its centre and perpendicular to its 
length. To the ends are attached two horizontal string which 
pass in opposite directions over pulleys, and to which equal weights 
are attached. If the rod is displaced slightly from its position of 
equilibrium, find the time of oscillation, (.^ume the pulleys so 
far off that the strings are always in the same direction and the 
tension remains equal to the tension in the equilibrium position.) 

Obtain a numerical result when 
M = 61bs., m=21b8,, l=4'ft. 
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81. A framework OAB consists of weightless rods, and can rotate 
in its own plane about 0. Masses m, m' are fixed at A and B. 
A force F constant in magnitude is applied at A and acts at a con¬ 
stant angle a. with OA produced. 

If OA=a, OB = h, AB—c, prove that the angular acceleration 
A is given by (^^2+ m'b^)A= Fa sin a, 

and find the stresses in the three rods when the angular velocity 
of the framework is (u. 

28. A body turning about a fixed axis has kinetic energy T foot-lbs. 
when the angular velocity is w radians/sec. Find in lb.-wt.-foot 
units the uniform torque required to produce this angular velocity 
in t secs. 



CHAPTER 

MOTION OF A RIGID BODY IN A PLANE. 

212. When a rigid body is moving in any way iii a plane, 

we have seen how to obtain expressions for the acceleration 

of any point of the body in terms of the accelerations of the 

centre of mass, and the angular velocity and acceleration 

relative to the centre of mass. 

Thus, let X, y = the coordinates of the C.M. referred to some 
fixed axes in the plane, 

/, ^ = the components of acceleration of C.M., 

(0, A = the angular velocity and acceleration about 
the C.M., 

X, 2/ = the coordinates of a particle P of mass m 
relative to the C.M., 

r, 0 —the polar coordinates of the same point rela¬ 

tive to the C.M., 

0 being the angle r makes with the axis of x, 

X, Y the components of the force acting on P ; 

then x + r cos 0, y -f r sin 0 are the coordinates of P relative 

to the fixed axes. 

KlO. 170. 
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We have proved that the accelerations are 

/ - cos d-rk sin 0, 

igF ~ sin 0 + r A cos 0 ; 

X = m(/~rft)^cos 0-rA sin 0), .(1) 

Y = m(^-rw*sin 0r4-A cos 0).(2) 

The moment about O of the forces on m is 

L-Y.ON- X.PN = Y{a; + rcos0)- X(3/ + rsm0) 

— - w(y -f r sin 0) (/- rn^ cos 0 - rA sin 0) 

4* m (i + r cos 0) {g - sin 0 + rA cos 0).(3) 

Now, if we add up for the whole body, 

'^mr cos 0 = ^mx=0, 

since r cos 0 or a; is the coordinate of P relative to Q; 

also, 2mr sin 0== 0; 

hence, from (1), 2X = 2w^==/2m = M/, 

,, (2), 2Y = 27W^ = M5r. 

Note that in all the following summations x, y, /, g, which 

refer to the centre of mass, can be taken in front of the sum¬ 

mation sign. 

From (3), 2L= -2m(y+ rsin0)(/~r<u2cos0~rAsin 0) 

+ r cos 6)(g~n^ sin 0 + rA cos 0) 

= 2m (% - cos 0 sin 0 + r®A cos^ 0) 

- 2m (yf - cos 0 sin 0 ~ r^A sin* 0), 

the remaining terms vanishing. 

. •. 2L ~ 2m (% - y/) -f 2mr®A 

= (% - yf) 2m 4- A2mr* 

= M(®7-y/)+lA, 

where I is the M.I. about an axis through the C.M. perpen¬ 
dicular to the plane. 

Thus the equations are : 
M/=2X,'| .(4) 

M<7 = 2Y I .(5) 

M(^-y/)4-lA=:;L, j .(6) 
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as before (Art. 180) in 2X, -y, 2l only the external forces 

appear, the internal reactions cancelling one another. 

213. If we take O at the instantaneous position of the 

centre of mass, x, y are zero, and 

lA-^L; .(7) 
thus the equation for the angular acceleration about the 

centre of mass is independent of the motion of the centre 

of mass; in other words, the equation is the same as if the 

C.M. were a fixed point. 

The equations are now in their simplest form 

IVI/=:2:x, = IA = 1'L. 

Of these, (4) and (5) had been obtained before in Art. 81, 

and shew that in any case the centre of mass moves as if all the 

mass were collected there, and the forces were transferred to 

act at the centre of mass parallel to their original directions. 

214. Energy of a Rigid Body Moving in a Plane. 
Uf V are the components of the velocity of the centre of 

mass, the velocities of P are 

u-rto sin 6 parallel to Ox, v + rut cos 6 parallel to Oy; 

.the total kinetic energy is 

sin 6)2 + (t; + rw cos 0)^} 

= {(«* + V® -f - 2 (urto sin 0 - vru) cos 0)} 
= 12m (u* 4* 4-7^0)2) 

= JM + V*) 4“ JIw®, 
2mr sin 0 == 0 ~ 2mr cos 0 ; •ince 
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hence the kinetic energy may be regarded as composed of 

two parts: 

(i) which is the K.E. the body would have if 

collected at its centre of mass and moving with the velocity 

of the centre of mass. 

(ii) which is the K.E. which it Would have if rotating 

about the C.M. as a fixed point. 

These two parts of the kinetic energy are spoken of as the 

kinetic energy of translation and rotation respectively. 

Examples of Motion in a Plane. 

215. A reel has a weightless thread wound round it^ and the 

thread being held fixed at one end, the reel falls in a vertical 

plane, its axis remaining horizontal^ find the motion. 

The extremity of the horizontal diameter is the instan¬ 

taneous centre, and if the velocity of the C.M. is v at any 

moment, the angular velocity of the reel is -; hence, also, 
(X 

if/is the acceleration of the C.M., 
■( ^ 

is the angular acceleration. 
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The equations are : 

vertically, M/= - T ; 

moments about G, I : 
a 

M/tt + I-^=M(7a; 

^ Ma Ma* 
J-P~ Ma2 + I^- 

lAa-\- - 
a 

If the reel is a uniform cylinder, 

I - Ma2/2, 

/-m 
T-M((/~/) = M.(7/3. 

216. Find the acceleration of a circular disk (or ctjlinder) 

rolling down an inclined 'plane without sliding. 

Let cx. = inclination of plane to horizon, 

/= acceleration down plane, 

f 
angular acceleration about the C.M., 

R = the normal reaction, 

F = the friction. 

R 

Fig. 178. 
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The equations are : 

resolving along the plane, |VI/= sin a - F ;.(1) 

f 
moments about G, ..(2) 

€b 

. •. M/« += M^a sin a.; 

. Ma 
/==-^gmiKx 

Ma H— 
a 

Ma2 . 

= . 

For a circular disk or cylinder, 

I = IVIa2/2; 

/=|^sina. 

The friction and normal reaction can now be found. 

From (1), F = - M/ sin a = \ My sin OL 

Resolving perpendicular to the plane, 

R = My cos (JL; 

^ = itana. 
R ^ 

217. The body in the last example consequently rolls down 

if the coefficient of friction is as great as | tan a. If the 

coefficient of friction were less than this, the body would slide 

as well as rotate. 

If the body instead of being a cylinder is a sphere, the 

equations (1), (2), (3) hold, but 

I=M2a2/5, 

/=^ysina. 

If, in the case of the cylinder, the coefficient of friction is 

less than ^ tan a, the body will slide and rotate. There is 

now no connection between the angular and linear velocity. 
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but instead we have the relation between the friction and 

normal reaction ; thus, if the coefficient of friction is fjL, we 

have, forming the equations in the same way as before, 

M/= M^sina - /iR, 

0 = cos (X - R, 

= juRa; 

/=^(sina-/icosa), 

^ /LiMgacoBCL 
A- j 

and for the disk or cylinder, 

A = cos oc. 

R 

Example 1, Find the kinetic energy of (a) a uniform cylinder 
or disk, (6) a sphere, rolling along a horizontal plane, and determine 
the fraction of this which is 
rotational. 

2. The ends of a uniform rod 
move along two straight lines at 
right angles. If the angular velo¬ 
city of the rod at a given instant 
is ctt, find the velocity of the centre 
of mass and the kinetic energy of 
the rod. 

3. If in Example 2 the line Oy 
is vertical, and there is no friction 
(a rod sliding down with its ends 
on smooth horizontal and vertical 
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walls), find, by the principle of energy, the angular velocity of the 
rod when it makes an angle Q with the horizontal, supposing it to 
have started from rest at an angle a with the horizontal. 

4. A rod can move with its ends on a smooth circular vertical 
wire. Find the kinetic energy when the angular velocity is <0. 

Find w when the rod makes an angle B with the horizontal, sup¬ 
posing it started from rest at an angle ol. 

218. Impulsive Motion. 
We have seen how to obtain the initial velocity of a body 

capable of rotating about a fixed axis when it is acted on 

by an impulse. We can likewise deduce readily the equations 

which hold for impulses when the body is free. 

For just as the resultant force in any direction is equal to 

the mass multiplied by the acceleration of the centre of mass 

in that direction, and the impulse in any direction is equal 

to the mass multiplied by the change of velocity in that 

direction, so also, since we have the equation 

lA = sum of moments of forces about the centre of 

mass, 
we also have 

I(w' - w) =sum of moments of impulses about the centre 

of mass, 

I being the moment of inertia about the centre of mass. 

Exam'ples. 

219. A uniform rod of mass M and length 21 lying on a 

smooth horizontal table is struck a blow, whose impulse is P, at 

one endf and perpendicular to the rod, find the motion. 

t' 
Fig, 176. 

The motion can be represented by a linear velocity v of 

the C.M. perpendicular to the rod, and an angular velocity w 
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about the C.M. (There can be no component velocity along 

AB, as there is no impulse in that direction.) 

Hence P = My, 

giving V and w. Pi = I(o. 

Now the rod may be thought of as moving initially about 

some instantaneous centre which must be in the line AB, 

since Q is moving perpendicularly to AB. If the distance of 

this point from the centre towards B is x, then 

v-xui = 0 (being the velocity of the point); 

P Pi 

Or the instantaneous centre is the centre of oscillation 

corresponding to a centre of suspension at the end struck. 

220. A rod of length 21 has small rings attached to its two ends 

which slide on two smooth wires at right angles. If it makes an 

angle 6 with one of them and is struck a blow of impulse P, at its 

centre^ parallel to this wire, find the initial velocity. 

In this case, as the position is determined by a single co¬ 

ordinate, so the motion is determined by the angular velocity 

alone. 
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The centre of mass G describes a circle about O, and if w 

is the angular velocity of the rod (which is also the rate of 

change of 0), o> will also be the angular velocity of G about 

O, and the linear velocity of G is Zo) perpendicular to OG. In 

the figure the linear and angular velocities are marked on 

the supposition that 6 is increasing. Impulsive reactions 

R, S act at A, B perpendicular to Ox, Oy. 

The equations are : 

resolving along Ox, P + S = - fAlw sin 6,.(1) 

,, Oy, R = MZw cos 0, .(2) 

moments about G, Rl cos 0 - SZ sin 0 =*= - Iw;.(3) 

hence eliminating R and S, 

MZ^w cos- 0 -h (PZ sin 0 + sin^ 0) = - Iw, 

PZ sin 0 = - I(u - MZ^oj, 

0) = 
PZsin 0 PZsm0 -- 

M j + MZ2 

3 P . . 

The minus sign shewing that the rod begins to move in the 

opposite direction to that marked. 

Whence also R = ~ f P sin 0 cos 0, 

8- +fPsin20-P= -P(l-f sin20). 

221. AB, BC are two equal uniform rods smoothly jointed 

together and lying in the same straight line on a smooth horizontal 

table. The end A is struck by a blow, of impulse P, perpen¬ 

dicular to AB, find the initial motions. 

In this case there will be an impulse produced at the joint 

which we may express by two components in the directions 

marked. To shew the reactions clearly the rods are drawn 

with the ends at B separated, but it is to be remembered that 
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these ends remain in contact. It is easy to see that the 

component X vanishes. 

Y 

FIO. 178. 

V 

(jj 

u 

“A 

Tp 

However, we will form the equations as if X existed, and 

then the solution of these will shew that 

X=0. 

Let u, V, oj, u\ a>', be the linear and angular velocities of the 

two rods and 21 be the length of each. 

Then we have 

for AB along AB, X = IVIw j. (1) 

perpendicular to AB, P - Y = ; .(2) 

moments about C.M. of AB, 
72 

or P + Y = IVl|(..; .(3) 

similarly, for BC, X = - Mk',.(4) 

Y = .(6) 
Vi 

YZ = Ia»'=Mg<o', 

or Y = M|a>'.(6) 

So far we have six equations with six unknown velocities 

and two reactions, so that to solve them two more equations 

are wanted. These two are geometrical, expressing the fact 

that the ends of the rods at B remain together, and therefore 

have equal component velocities in the two directions. 
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Hence u^u\.(7) 

V-l(i) = v*; .(8) 

from (1), (4) and (7), 

u — 0 — u\ X=0. 

Then from (2) and (3), 

M(v-H=:P-Y-3(P + Y)= -2P- 4Y; 

from (5) and (6), 

M(i;' + 2o>') = Y + 3Y = 4Y; 

by (8), 
-2P-4Y = 4Y, 

by (2), 

CL 11 
5 P 

(3). 
1 3 

IVl30, = jP, 

(5). Mv'= - 
4 

^ 1 P. 
^ “ 4 

(6), 
; , 3 P 

The fact that Y and therefore v' and w' are negative might 

have been expected from the following considerations. If 

AB were free the impulse at A would make AB begin to rotate 

about a fixed point which is f of the distance from A to B, 

hence the end B of AB tends to move in the direction opposite 

to P, and it produces an impulse on BC in this direction, and 

the reaction on A B is in the direction of P. 

222. Angular Momentum. 
The term Angular Momentum has already been used in 

connection with the motion of a rigid body. We will now 

consider it more fully and apply it to several problems. 

If a particle of mass m is moving in any path and at a given 

instant has a velocity v, and the tangent to the path (or direction 

of motion) is at a distance p from a fixed point O, the product 
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mvj) of the momentum mv and the distance p is called the 

moment of momentum of the particle about 0. The term 

Angular Momentum is usually used instead of moment of 

momentum. 

223. We prove first the Principle of Angular Momentum for 

a single particle, namely : 

The Rate of Change of Angular Momentum, about a given 

point is equal to the Moment about the point of the Forces acting 

on the Particle. 

In the first place, just as in taking the moment of a force 

about a point, the moment of the resultant momentum must 

be equal to the sum of the moments of the component momenta 

(see Art. 181). 

In Fig. 179, AP is the path of the particle, AT is the tangent 

to the path at A, 0 is the point about which moments are to 

be taken. The velocity at A is v and at P it is v+hv, making 

an angle W with the tangent at A. The momentum m{^+8v) 

can be replaced by two components at T, 

m{v +8^;) cos h6 along AT 

m(v+8t;) sin 80 perpendicular to AT. and 
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The total moment of these about O is 

m{v -j-8v) cos hB . OM ■^m[v 4-8t;) sin 8^ . MT. 

Omitting terms involving products of small quantities we can 

write this as 

m {v +Sv)p + mv . 80 . y, (jo, q, as in the figure), 

since MT differs from 5' by a small quantity only. 

At A the angular momentum about O was mvp, therefore 

the change in angular momentum is 

mphv-\-mqvW, 

and the rate of change is 

dv dO 

Now the accelerations of the particle in the two directions are 

dv ^ dO 1 f dv dd 
and and the forces on it ^'^~dt ^ 

and the moment of the forces is therefore 

dv dB 

Hence the theorem is proved. 

224. The proof of this theorem by calculus is added here as 

it is very easy. 

Take the point about which moments are taken as the 

origin. 

Let a:, y be the coordinates of the particle, 

X, Y the components of the force on it, 

H, the angular momentum about the origin, 



RIGID BODY MOVING IN A PLANE 363 

dx dxj 
then arc the components of the velocity of the particle, 

acceleration, 
(Px d?y 

>> )> 

d^x 

''' dP' 

d^y 

dt^ " JJ J> force, 

and 
dH >

 (I . 

Then 
dy dx ( dy dx\ 

dH ( d^y d^x\ f <Py 
•• Ik 

other terms in the derivative cancelling. 

dH dPy dh' 
•• Tt 

= yx-Xy 

= the moment of the forces. 

225. A System of Particles. 

For a number of particles moving in one plane both the 

angular momenta and the moments of the forces add together, 

and it therefore follows that for any such system of particles, 

the rate of change of angular momentum is equal to the total 

moment of the forces on the particles. Ab in Article 182, the 

internal forces may be omitted, and we have the result 

that: 

The rate of change of angular momentum about any 'point for a 

system of particles (in particular for a rigid body) is equal to the 

moment of the external forces about the same point. 
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If the velocity of a particle P is resolved into two components 

w, V, along and perpendicular to the radius OP, its angular 

momentum about O is mvr or where to is its angular 

velocity about O. Hence for a rigid body rotating about a 

fixed axis the angular momentum about the axis is 

UrriT^w —ojUmr^ = Iw, 
and the principle of angular momentum gives 

or IA = L, 

where A is the angular acceleration. (Cf. Art. 182.) 

226. If a body is moving in any way in a plane, its motion 

can be represented by a motion of translation of the centre of 

mass and a rotation about the centre of mass (Art. 175). It 

will now be shewn that its angular momentum can be repre¬ 

sented as the sum of two parts, one the angular momentum 

about the centre of mass due to the rotation, and the other 

the angular momentum of a particle of mass equal to the mass 

of the body and moving with the centre of mass. 

Let X, y be the coordinates of the centre of mass, 

x\ y' be the coordinates relative to the centre of mass, 

of a particle of mass m, 

n, V the component velocities of the centre of mass. 
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Then the component velocities of the particle are 

u - y'o}y V + a?'a>, 

and its angular momentum about the origin is 

m\v + X (jj){x x') - m{u -- y'oj){y y') 

or m{xv - yu) + mx\v + xw) - my'{u + yoj) + m{x'^ + y'^). 

The total angular momentum is obtained by summing for all 

the particles. As in the previous work (Art. 189), 

Em {xv - yu) == M [xv - fu), 

Emx' {v-\-xa)) = (v + xoj)E7nx' ~ 0, 

Emy'(uyo)) =0, 

E7n -a)Em {x'^ + y'^) = Ia>, 

where I is the moment of inertia of the body about the centre 

of mass. Hence the total angular momentum is 

M (xv - yu) + Ia>. 

The first term is the angular momentum of a particle of mass 

M at the centre of mass, and moving with the velocity of the 

centre of mass. The second is the angular momentum of the 

body about the centre of mass taken as if the centre of mass 

were at rest. 

The following special cases may be deduced from the above 

or proved independently. 

1. If a body is rotating about its centre of mass, its angular 

momentum is the same about all points, being Ia>. 

2. If a body is rotating about a point O, its angular 

momentum about O is lo<o or (I^? + M . Here laoj is the 

angular momentum due to rotation about the centre of mass, 

and M . OG^eo the angular momentum of a particle of mass M 

moving with the centre of mass. 
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227» Example 1. A body is moving in a plane and its motion at 
an instant is given by components v of the velocity of the o.M. 

and to the angular velocity about the c.M. At this instant a point 
P, whose coordinates relative to the c.M. are x'y y\ is seized, and 
made to move with component velocities ity v. Find U, V, fi, the 
new velocities of, and about, the c.M. 

The seizure implies the action of an impulse at P, but as it passes 
through P it has no moment about P and the a.m. about P is un¬ 
altered. Hence we have 

1^12 + M (Vx' - Uy') = If.o) + M (ix' ~ Hy'). 

Also U - y'Q ~ u, 

V + x'il — v. 

These three equations give U, V, 12. The components X, Y of the 
impulse can now be found by the principle of linear momentum, 
thus : 

X=IVI(U-^), 

Y=M(V-v), 

2. A cube slides along a smooth horizontal plane, moving parallel 
to four of its edges with velocity V. It strikes a very small obstacle 
in the plane, at the middle of the lower edge and does not rebound. 
Find the initial angular velocity about the edge, and the least value 
of V that the cube may turn over. 

2a 

-! 

V 

A 
Fig. 181, 

An impulse acts through the point struck and the am, about 
this point is unchanged. 

Let 2a be the edge of the cube. 

The A.M. before the colligaon is MVa. 

Let to be the a.v. about A immediately after the collision. 
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Then Lio=MVa; 

(M<iV3 + M2o‘)to=MVa; 

/. u>=2Mna. 

In order that the cube may turn right over, it is only necessary 
that the c.M. should reach a point vertically above A. The condition 
that it may just reach this with zero velocity can be written down 
from the conservation of energy, thus : 

7Ma»(uV3 = 2M^a (V2 - 1); 

V» = ^|(V2-l)pa. 

If V® is greater than this, the cube will turn over. 

8. A hoop rolling with velocity V on a horizontal plane strikes a 
fixed rectangular block of height h, less than the radius r of the 
hoop. The impinging point remains in contact with the block. 
Find the a.v. about the point immediately after the impact. Will 
the block surmount the obstacle? 

4. A uniform rod AB of mass m is acted on by an impulse P per- 
jiendicular to the rod at a point C such that AC=a, CB—6. Shew 
that the initial a.v. of the rod is %P{a-b)lm(a + h)\ Find the 
position of the instantaneous centre, i^nd also the position of C 
if the instantaneous centre is at A. 

228. Central Orbits. 

If a particle is moving in a plane under the action of a 

force directed towards a fixed point, the force has no moment 

about the point, and therefore the angular momentum 

about the point is constant. Such a force is called a 

Central Force, and the path described by the particle is called 

a Central Orbit. 
In the following examples a certain amount of information 

is obtained from the equations expressing the constancy of 

angular momentum and of energy. 
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Example 1, Two particles A and B each of mass m can move on a 
smooth horizontal table and are connected by an inextensible 
string passing through a small fixed ring O on the table. Initially 
the string is straight and the particles are at distances a, h from the 
ring. If A receives a blow causing it to move initially with velocity 
V perpendicular to the string, find the velocity with which B reaches 
the ring. 

B b O ^ A B a-¥b-r O 
Fig. 182. 

Since the only force acting on the particles is the tension of the 
string, the a.m. of A about O is constant. 

mVa = ; 

a> = Va/r2. 

B moves in a straight line towards O, also the kinetic energy 
remains constant since the external forces on the system do no work. 
Also the velocity of B is the same as the radial velocity of A since 
the string is inextensible. Therefore the equation of energy is 

\m (?•* -f 

where r is the radial velocity of A. 

2/-2=:V2-rW 

r* ■ 

When r=a+h, }. 

2. A particle moves on a smooth horizontal table and is attached 
to an elastic string of natural length I and modulus X, which passes 
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through a hole in the table and whose other end is fixed at a distance 
I below the table. The particle is projected from a point at a distance 
a from the hole with velocity V at right angles to the string. Find 
its distance from the hole when the particle is next moving perpen¬ 
dicularly to the string. 

The force when the particle is at a distance r from the hole is 
Xrjlf and the energy of the stretched string is 

The equation of a.m. (for any position) is 

= constant = Va, .(1) 

and of energy 

-f- .(2) 

If h is the distance when the particle is next moving perpen¬ 
dicularly to the string, and V' the velocity, then 

and V'6 =:Va. 

b a ^jm}• 
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At any other distance the motion will not be perpendicular to 
the string, but in any position we have, from (1) and (2), 

•' V / * 
1 1 1 _ 1 

p2 a2 

giving a relation between p and r which is equivalent to the equation 
of the curve. The path is actually an ellipse with semi-axes a and 6. 

Otherwise. The motion in this case can be obtained completely 
by elementary methods as follows. 

If the force is along the radius towards the origin, the com¬ 
ponents of this along the axes are - yi,x and Hence the 
accelerations parallel to the axes are given by 

ft= 

Each of these equations represents a s.h.m., and we can write 
down the solution in the form 

a: = A sin 

y~B sin j5). 

Also the velocities parallel to the axes are given by 

n—Ai\/fjL COB + a.)y 

v^Bs/p cos -f-j8). 

The constants A, B, a, jS can be found from the initial conditions. 
If the particle is projected as before (Ex. 2), we have, when 0, 

x=ay y=0, u=0, i;=V, 

whence we find 

«=7r/2, A=a, ^=0, B*^=V; 

hence finally, putting V/\^=h, we have 

a;~aoos\^i, 

Bms/fU* 
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The path is given by eliminating and is therefore 

8. Two particles are connected as in Ex. 1, but the string passes 
through a hole in the table and B hangs vertically. K A is proiectedy 
as before, shew that the distance of A fix)m when it is n6xt moving 
perpendicularly to the string is , 

{V* + V(V* + 8V‘^fiFa)}/4sf. 

4. A particle is acted on by a force Jcjr^, {k constant), to a fixed 
point S. Shew (by calculus) that the work done in moving the 

particle from a distance a to r (r>a) is^^---). If the particle 

is projected from a point A at a distance a from 8 in a direction 
perpendicular to AS with a velocity 2A:/a, prove that in any position 
p^=ar, and hence that the path is a parabola, (p is the perpen¬ 
dicular from S to the tangent.) 

EXAMPLES. 

1. A uniform rod AB of length 2a is held vertically at rest with A 
on a rough horizontal plane. B is released and the rod falls. Shew 
that as long eis A does not move the potential energy may be taken 
as Mga cos 0 and the kinetic energy is M2a*a>*/3, where 0 is the 
inclination to the vertical and w the angular velocity at the instant. 
Using the equation of energy, prove that cu*=3sr(l - cos ^)/2a. 
Hence, or by taking moments, prove that the angular acceleration 
is sin 014a, and that the components of reaction at A are 

iM{7{6co8(9-3) 

along the rod, and sin 0 perpendicular to it. 

8. With similar data to Qi^tion 1 but with friction neglected, 
shew that the kinetic eneigy is sin* 0) and that 

1= ^ 1-OOB0 

^ a 1-f 3 sin* 

(Note that the centre of mass here falls vertically. When the 
inclination is 0, the height of the o.M. is a cos and its velocity, by 
differentiattng, is - ctia sin ^«) 
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2. One end of a rod of length 2a can slide by means of a small 
ring on a smooth horizontal wire. If the rod is held horizontal 
initially and released, find the angular velocity of the rod when it 
is vertical. (See note to Question 2 above.) 

4, Two equal uniform rods of length 2a smoothly jointed together 
one end of each can move in a vertical plane with their lower ends 

on a smooth horizontal table. If they are released from rest when 
making an angl^^ a with the vertical, find their angular velocities 
just before becoming horizontal. 

6. The ends E, F of a rod of length 2a can slide on two smooth 
fixed rods AB, AC, which slope upwards from A at angles 45*^ with 
the vertical. Shew that if EF is slightly disturbed from rest in the 
horizontal position it will move uiitil one end reaches A, and that 
the angular velocity just before this is given by oj*a/g ~3(s/2-l) 12^/2, 

(Find the instantaneous centre. The kinetic energy is if I is 
the M.i. about the instantaneous ^centre.) 

6. The ends of a uniform rod of length 2a are constrained by 
small rings to move on the circumference of a smooth vertical circle 
of radius a^/2. If it is moving with angular velocity a> when in the 
lower horizontal position, shew that it will make complete revolu¬ 
tions if a}*>3gla. 

If a)*<3gla, find the maximum angle the rod will make with the 
hoiizontaL 

7. A wheel whose mass can be treated as concentrated in a rim 
of radius R moves in a slot in a rough inclined plane of slope a on 
which its cylindrical axis of radius r rests at both ends, so that it is 
&ee to roll down the plane with its axis horizontal. Assuming 
slipping not to take place, shew that its acceleration is 

gr2sma/(Ra + r*). 

(Neglect the mass of the axle.) 

8. A reel of radius 6 can move with its axis horizontal down a 
smooth plane of inclination cu A thread, wound round the barrel 
(of radius a) of the wheel, leaves the banml at the point nearest to 
the plane, and runs upward parallel to the plane, the end being 
attached to a fixed point. Find the acceleration of the reel (Take 
the M.L as MA;‘). 

8. A uniform solid cylinder of mass M rolls on a rough horizontal 
plane. A light string attached to the cylinder is wound round the 
cylinder and then runs from the top of the cylinder, passes over a 
i^ed smooth peg and supports a fr^ly hanging patticle of mass pk 
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part of the string between the cylinder and the peg being hori- 
ssontal and perpendicular to the cylinder. Shew that when the 
cylinder moves a distance k the particle descends a distance 2A. If 
the system (cylinder and particle) starts from rest, find the kinetic 
energy of the system when the particle has moved a distance x, and 
hence shew that the particle descends with acceleration 

8m^/(8m-i-3M). 

10. A cylindrical shell of radius a, negligible thickness, and mass 
M, has an equal mass let into it along a generating line AB, It is 
placed on a smooth horizontal plane with AB uppermost and just 
displaced from this position. Describe the motion that ensues, find 
expressions for the kinetic and potential energies when the cylinder 
has turned through an angle and deduce that if oj is the angular 
velocity when AB is in contact with the table, a>^ = 8gr/3a. 

11. Follow out Question 10 with ever3d;hmg the same, except 
that the plane is rough enough to prevent shpping. Prove that the 
corresponding result is oj^=2gla. 

12. A uniform rod is held at rest with one quarter of its length 
on a rough table to the edge of which it is perpendicular. The rod 
being released, it turns at first about the edge of the table. Find 
the angular velocity and acceleration of the rod while moving in 
this way, and the components of reaction along and perpendicular 
to the rod. 

Shew that the rod will begin to slip off the table when tan ^=4/a/13. 
(/i=coefficient of friction, ^ = angle rod makes with horizontal.) 

18. A uniform sphere, under no forces, is rotating and contracting 
on account of fall of temperature. If its diameter decreases by 0-1 
per cent, in a certain time, find the percentage change in angular 
velocity and in kinetic energy. 

14. A rod of length 2a lying at rest on a horizontal table is struck 
a blow of impulse J in the direction perpendicular to the rod. If 
the point of application of the impulse is at a distance b from the 
centre, shew that the instantaneous centre is at a distance a®/36 on 
the other side of the centre of the rod, and that the kinetic energy 
generated is iJv where v is the initial velocity of the point struck. 
Find the velocities of the ends of the rod. 

15. If a plate at rest is struck by an impulse J acting in the plane 
of the plate, prove that the kinetic energy generated is i(Xtt+Yr), 
where X, Y are the resohites of J and w, v the resolutes in the same 

B.S.D. K 2 
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directions of the velocity of the point struck (or the k.e. is iJ . v 
where J is the vector impulse and v is the vector velocity of the 
point struck). 

16. Shew that if two impulses act on the body in Question 15 at 
the same time, the energy produced, wdth similar notation, is 

i(J. v + J'. v'). 

17. A rod is rotating with angular velocity w about its centre 
when one end is suddenly brought to rest, and the rod continues 
to rotate about this end. Shew that the angular velocity is 
then ct>/4. Find the impulse at the end. 

18. A circular disk is rotating about its centre when a point on 
its (urcumference is suddenly brought to rest and the disk continues 
to rotate about this point. Shew that the angular velocity is 
reduced to a third of its previous value. 

19. In the example of Art. 221 shew that the kinetic energy 
generated is 7P74IVI. 

20. A square plate of mass M, lying on a smooth horizontal table, 
is struck a blow of impulse J at one angle in a direction at right 
angles to the diagonal through that point. Find the instantaneous 
centre, and prove that the energy generated is 2J-7M. 

21. Three particles A, B, C, each of mass w, are rigidly connected 
by thin wires of equal length so as to form an equilateral triangle. 
This is placed on a smooth table and an impulse J is applied 
in the direction AB; prove that the kinetic energy generated 
is 5J^/24m. 

22. Two similar rods AB, CD, each of mass m and length 2u, are 
connected by a string BC of the same length and placed on a smooth 
horizontal table so as to form three sides of a square. An impulse J 
is given at A in the direction AD. Find the initial linear and angular 
velocities of the rods. Find the kinetic energy generated and verify 
that this is equal to half the product of the impulse and the velocity 
of the point struck. 

23. Two equal particles A, B, each of mass m, are connected by a 
weightless rod of length a and can move on a smooth horizontal 
table. When at rest an impulse mU acts on A perpendicular to the 
rod. Describe the subsequent motion, shewing that at the end of 
7ra/U secs. A is instantaneously at rest and B is moving with 
velocity U. 
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MISCELLANEOUS EXAMPLES. 

1. If the mile and hour are taken as units, what will be the measure 
of an acceleration of 32 ft./sec.^ v 

2. If the position at any time of a particle moving in a straight 
line is given by ^ x = ^-{-2t + 

find the average velocity in an interval following the end of the 

second second when the interval is (i) -r^ sec., (ii) sec., (iii) 
indefinitely short. 

3. If a particle moves along a straight line in such a way that its 
distance from a fixed point in the line is given by 

find (i) the velocity and acceleration at ea(*h instant at which it 
passes through the origin, (ii) its distance from the origin w'hen the 
velocity is zero, (iii) its distance from the origin when the acceleration 
is zero, (iv) its acceleration when the velocity is 2. 

4. The speed of a train increases at a rate of 10 miles/hr. every 
minute. Find the acceleration and the time reciuired to acejuire 
a speed of 45 miles/hr, from rest. 

6. A particle starting from O with velocity u has a forward 
acceleration of / for a time then an equal backward acceleration 
for a time f. If the particle is then again at O, prove that 

fV -+Jt 4- 

8. If in the interval of time subsequent to a cei tain instant the 
distance travelled is a*!, and in an interval from the same instant 
the distance is x^, shew that the acceleration if uniform is of 
magnitude 

^1^2 (^2 “ ^l) 

7. A stone is released from a balloon at a height of 400 ft. and 
reaches the ground in 6 seconds ; what is the vertical velocity of the 
balloon ? 

8. A stone is dropped into a well 100 ft. deep and the splash is 
heard at the end of 2-6 secs. ; find the velocity of sound. 
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9. A train is moving with uniform acceleration in a straight line, 
and points distant x^ from an origin on the train are observed 
to be moving with velocities when they pass points at 
distances ^2? yz forwards from a fixed origin. Shew that 

{(j/3 - 2/2) - (-^3 - ^2)} + ^2^ {(^1 - Vs) - (*1 - ^3)} 

i'3H(y2 - yi) - (^2 - x-i)} =0. 

10. A body starts from rest and moves with uniform acceleration 
for a time The acceleration then ceases, and it moves with 
uniform velocity for time U describing a distance a. It then moves 
with uniform retardation and comes to rest after a time fg. Prove 
that the whole space described is 

»( 1 + hJLh\ 
2k / 

11. What force would produce in 11 minutes a velocity of one 
mile per hour in the mass of one hundredweight ? 

12. A mass of 1000 kgms. is acted on for an hour by a force equal 
to the weight of 1 gra. Find the distance it will travel from rest 
in the time. 

13. A car passes a man at the rate of 8J ft./sec., and he mounts 
it as it passes. What is the instantaneous change in velocity if the 
man weighs 10 stone and the car 1 ton ? 

14. Four trucks each of mass 10 tons are dragged along by an 
engine. If the acceleration at a particular instant is J ft./sec.® and 
the resistance to each is 100 lbs., find the tension in each coupling. 

15. Find the pressure in pounds weight of a jet of water of section 
100 sq. ins. moving with a velocity of 100 ft./sec. (Suppose the water 
not to rebound and that a cub. ft. weighs 62*5 lbs.). 

16. A chain of weight w lbs. per foot and of length I is drawn 
over a rough horizontal plane by a force of W Ibs.-wt. applied at 
one end. The frictional resistance being fi times the weight, find 
the acceleration, and the tension at a distance x from the end at 
which the pull acts. 

17. A bullet passes through two planks in succession. Its original 
velocity is 1200 ft./sec., and it loses 200 ft./sec. in penetrating each 
plank. Find the ratio of their thicknesses, assuming that they 
offer the same average resistance. 

18. Find the normal length of a wire which measures 60 inches 
when it supports a weight of 20 lbs. and 59*8 inches when it supports 
12 lbs. 

19. A truck weighing IJ tons impinges on a buffer spring with a 
velocity of 4 ft./sec. and compresses it 6 ins. before being pulled up. 
What is the maximum thrust on the spring ? 
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20. A buffer spring is such that a force of P Ibs.-wt. is required 
to produce a compression of a inches. A mass of m lbs. impinges 
on the free end with velocity V ft./sec. Find the maximum com¬ 
pression and the maximum thrust. 

21. A horse pulls a waggon of 10 tons weight from rest against a 
constant resistance of 50 Ibs.-wt. If the pull exerted is initially 
2(K) Ibs.-wt. and decreases uniformly with the distance covered until 
it falls to 50 Ibs.-wt. at 168 ft. from the start, shew that the velocity 
is then 6 ft./sec. 

22. A bullet of mass rn and initial velocity v is shot through a 
block of mass nm free to move in the direction of v. The bullet 
experiences a constant resistance R and emerges after traversing 
a distance a of the block. Shew that the resulting velocity of 
the block is 

V - V- 2{n -f 1 )Ra//?m ^ 

n-f 1 

23. A mass of M lbs. moves from rest under a driving foice of 
F tons weight against a resistance of R tons weight. Find the horse¬ 
power of the driving force at the end of t seconds. 

24. An inextensible cord ABODE passes over two light frictionless 
pulleys at B, D, which are on the same lev^el and at a distance of 2a 
apart. Equal weights Wg are attached at A, E, and hang vertically 
below B, D. A third weight Wj is attached at C, which is always 
equidistant from B and D. The system moves under gravity from 
rest in the position in which C is in the line BD. Shew that the 
ratio of the velocities of A and C is sin CBD, and find the velocity of 
C when it has descended a distance h. (Use the principle of energy.) 

25. Two masses mg lie on a rough horizontal plane, and the 
coefficients of friction are /xj. They are connected by an inex¬ 
tensible string passing round a smooth peg in the plane. Initially 
the string is taut, and each mass is moving with velocity V in the 
direction of the string, 7n^ moving away from the peg. How far 
will they move before coming to rest ? 

26. A weightless pulley lies on a smooth horizontal table and is 
attached by a string to a mass M hanging over the edge. A string 
passing round the pulley has masses m^, attached to its ends. 
The strings on the table being parallel, find the accelerations and 
tensions. 

27. Two particles connected by an inextensible cord of length I 
are given velocities w, v, whose directions are in the same plane and 
make angles 0, </>, with the cord. Find the necessary relation 
between w, v, 0, if the cord remains taut initially, and find the 
initial angular velocity of the cord. 
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28. The direction of destination of an aeroplane makes an angle $ 
with the direction of the wind. If v is the velocity of the aeroplane 
relative to the air, and V (< y) is the velocity of the wind, shew that 
the effective velocity of the aeroplane is 

V cos 0 + Vv^ - sin^ 0, 

and give a formula for the course to be steered. 

29. A train is moving at 50 ft./sec., and a bullet strikes it in a 
direction making an angle sin “^{55 with the train. The shot 
enters a compartment 8 ft. long and 6 ft. wide at one corner and 
passes out at a point 3 ft. from the opposite corner. What is the 
velocity of the bullet ? 

30. Two particles are at A and B, 15 ft. apart and moving with 
uniform velocity. The former travels towards B at 5 ft. per second, 
the latter perpendicular to AB at 3 ft./sec. Find their relative 
velocity, their shortest distance apart, and the instant at which 
they are nearest. 

31. A particle is moving along a sti’aight line with velocity 

greater than V, the velocity of sound. Shew that the body is 

approaching an observer at distance p from the line with a velocity 

i^reater than that of sound until it gets within a distance - H ■ - 
of him. \ (1"C^) 

32. Two points P and Q are moving with velocities u, v, along two 
straight lines OP, OQ at an inclination $. Shew that when the 
points are closest the line PQ joining them makes an angle ^ with 
OP given by 

, , u-v cos 0 
tan cb--:—71— 

^ V sm 6^ 

33. Two rods move normally to themselves in a plane with 
velocities u and v respectively. Find the velocity of the point of 
intersection of the two rods. 

34. An endless cord consists of two portions of lengths 21, 2V 
respectively knotted together, their masses per unit length being 
m and m' respectively. It is placed in stable equilibrium over a 
smooth peg and then slightly displaced by pulling a small length 
over the peg. Find the time of a complete oscillation. 

35. A body is started with a given amount E of energy and moves 
with simple harmonic motion of period T; prove that the maximum 
acceleration is 

^/2E 27r 

V M • T* 
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36. A body of iinass m is moving with velocity v on a smooth 
horizontal plane and impinges directly on one end of a light helical 
spring of stiffness K. The other end B is frictionally held and moves 
back whenever the thrust on the spring is greater than a certain 
frictional resistance F. Find the least velocity of m for which B 
moves at all, and if this value is exceeded find the total displacement 
of B and the final velocity of recoil of w. 

37. A heavy particle is attached by an elastic string to a point 
from which the particle is allowed to fall freely. When the particle 
is at its lowest point the length of the string is twice the natural 
length. Prove that the modulus of the string is four times the 
weight of the particle, and find the time during which the stiing is 
extended beyond its natural length. 

38. A particle of mass w is attached to a fixed point on a smooth 
horizontal table by an elastic string of natural length I and modulus A. 
If the particle is describing with uniform speed a circle of radius V, 
how many revolutions does it make per second ? 

39. A particle is moving in a straight line with velocity v at time 1. 
Find the instantaneous angular velocity about a point at a distance p 
from the line and r from the particle. 

40. Two points A and B are moving in a plane with velocities 
Vi, Vj miles per hour respectively at inclinations 0^, 0^ to the line 
joining them, which is I miles long. Find in miles per hour the rate 
at which the distance between the two is increasing and the rate in 
radians per second at which the line joining them is rotating. 

41. If at any instant a particle has component velocities u and v 
and accelerations a., /5?, along axes Or, Oy, at right angles, find the 
normal acceleration, and deduce that the curvature of the path is 

(ul3 ~ VOL)/(ft^ + 

43. A particle moves down a fine tube in the form of a vertical 
circle, starting with negligible velocity at the highest i)oint. Shew 
that the maximum upward vertical component of the pressure of 
the particle on the tube is J of the weight, and occurs when the 
vertical descent is of the radius of the circle. 

43. A bead can slide on a smooth circular wire of radius a, which 
can rotate about a vertical diameter. The bead is prevented from 
approaching the lowest point w ithin an angle fx. by a projection on 
the ring. Find the least velocity cd of rotation that the ring may 
leave the projection, and if the velocity is w', less than o, find the 
pressure on the projection. 

44. Find the horse-power necessary to keep a shaft 9 inches in 
diameter turning at 75 revolutions per minute if there is a load on 
it of 12 tons and the coefficient of friction is 0’15. 
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45. The points P, Q, moving in a plane, are at a constant distance r 
apart. The instantaneous velocity of P is v at an inclination 6 
to PQ, and the angular velocity of the line PQ is <o. Find the 
resolved velocities of Q along and perpendicular to PQ. 

46. A smooth circular wire of radius a is fixed with its plane 
inclined to the vertical at an angle ol. Determine the period of 
oscillation of a bead describing a small arc on each side of the lowest 
point. 

47. If the initial velocity of a projectile is equal to that due to 
a fall from the height H, shew that the maximum horizontal distance 
that can be reached on a horizontal plane at the depth h below the 

point of projection is \/2H(H -\-h). 

48. Shew that if the velocity of projection V is given there are 
four points on a horizontal plane from which a projectile can be fired 
so as to pass through two given points, provided that V is greater 
than a certain value. 

49. A particle projected from O passes through two points P, Q 
whose coordinates referred to horizontal and vertical axes through 
O are a*, y ; x\ y'. Prove that the direction of projection is given by 

tan 
XX (x -x) 

60. If a particle moves with constant acceleration in a plane, the 
components being / and g and the components of the initial velocity 
u and V, shew that, taking the point of projection as the origin, the 
path is 

yifv - gnf = v{fv - gu){fy - gx) - ig{fy - gx)^, 

51. Two bodies are moving in a straight line so that their centre 
of mass is at rest, and come into direct collision, the coefficient of 
impact being e. Shew that the velocity of each is reversed and 
reduced in the ratio e : 1. 

59. Two masses mg, moving in opposite directions in the same 
line, collide, the coefficient of impact being e. Shew that the 
condition that the speed of should be increased by the collision is 
that the relative velocity before impact should be greater than 

Wj/(1 -f e), where Ui is the velocity of before collision. 

58. Two equal balls are suspended as in Fig. 132. One is drawn 
back and released. Ix the strings are so long that the vertical 
displacements are small compared with the horizontal, and if a: is 
the displacement before the collision, Xi, the maximum displace¬ 

ments after, prove that .r2=^-^x. 
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64. Two elastic bodies moving in the same line collide. Their 
velocities before collision were and after v^, (all measured 
in the same direction). Find the ratio of their masses and the 
coefficient of impact. 

55. If a circular hoop is rolling on any surface (plane or curved), 
prove that at any instant the direction of motion of every point passes 
through the point which is furthest from the point of contact. 

66. A triangle ABC is rotating in its plane about A with angular 
velocity co. Find the direction and magnitude of the velocity of B 
relative to C. 

67. A circle of radius r starts from rest and rolls along a straight 
line, the centre moving with a constant acceleration/. B is the point 
initially furthest from the straight line. Find the time taken to turn 
through an angle Q and the angular velocity and acceleration at that 
instant. Find the velocity and acceleration of B when the circle 
has turned through an angle of 90®. 

68. A fly-wheel is made up of a rim, which nmy be regarded as a 
circle of weight 8000 lbs. and diameter 20 ft., and twelve spokes, each 
of which may be regarded as a uniform straight line weighing 2(>0 lbs. 
If it rotates at 45 revs./min., find the kinetic energy of the wheel. 

59. A wire of length 4a is bent into a square. Find its moment 
of inertia about the side of the square, and deduce that about a 
parallel through the centre. 

60. Find (by integration) the moment of inertia of a triangular 
plate ABC about a line through A parallel to BC, and deduce the 
moment of inertia about a line through the centre of mass parallel 
to an edge. 

61. A homogeneous cylinder of radius r is placed horizontally 
so as to be in contact along its length with a horizontal plane (co¬ 
efficient of friction fi) and a vertical wall (coefficient p'). The 
cylinder is given an initial angular velocity co about its axis and in 
the sense required to maintain contact with the wall. Shew that it 

comes to rest in a time 1 . Explain the case when a = 0. 
2 g /Lt + /x/x ^ 

62. The moment of inertia of a rigid pendulum of mass M about 
its axis is MF, and the distance of the centre of mass from the axis 
is H. Find the alteration of the period caused by^ changing the 
distance from the axis of a particle of mass w from to in the 
plane containing the centre of mass and the axis. 

Obtain a simple approximation when m/M is small. 

63. Find the time of a small oscillation of a rigid pendulum con¬ 
sisting of a weightless rod to which are attached masses wig at 
distances below and above the axis of rotation of the pendulum. 
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64. A circular disk one foot in diameter is rotating about its axis, 
and it is stated that every ounce of its circumference requires a force 
of two tons weight to maintain it in its place. Find the number of 
revolutions per minute. 

65. A top whose moment of inertia about its axis is I ft.-lb. units 
is spun by pulling a string of length I wound round its axis. Supposing 
a uniform force of P lbs.-wt. is exerted in pulling the string, what will 
be the angular velocity of the top when the string is unwound ? 

66. A uniform rod of mass M and length 21 turns in a vertical plane 
under gravity about one end. The rod starts with negligible velocity 
from its highest position. Find the angular velocity and the reaction 
at the fixed axis when the rod is at an inclination $ to the vertical. 

67. A circular disk of radius a is suspended by a point in its rim- 
Find the length of the equivalent simple pendulum when the disk 
SAvings (i) in its own plane, (ii) at right angles to this plane. 

68. If ^1, \ are the distances of two parallel axes in a rigid pendulum 
from a parallel line through the.centre of mass, and Tj, Tg are the 
periods of oscillation about these axes, prove that 

69. A rod of length 2a oscillates about its axis perpendicular to its 
length and meeting it at a distance h from the centre. Find the 
length of the equivalent simple ])endulum, and prove that the time 
of oscillation is least when —rt/y'B. 

70. A uniform solid cylinder of radius r rolls without slipping on 
a rough horizontal plane under the action of a constant horizontal 
force P applied at the centre, and friction. Find the friction, the 
angular velocity after a time t seconds from rest, and the least 
coefficient of friction necessary to prevent slipping. 

71. Two planets A and B revolve round the sun S in circular 
orbits of radii a and h respectively (6>u), and the times of revolution 
are t, f. B is ‘ stationary ’ as seen from A when the relative velocity 
is in the direction of the line joining them. If 0 is the angle SA B 
when B is stationary, prove that 

tan2 0 — 
aH'^ - 
(b^ - a^ ) f 

Shew that, assuming Kepler’s third law, the equation becomes 

tan^ 0 ~h^ja(a -f b). 

Find the relative distances of Jupiter and the Earth from the Sun, 
given that 0 is approximately 116°. 

Explain what observations and calculations are required for 
determining the relative distances of the planets, without assuming 
Kepler’s law. 
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78. A warship is steaming at twenty miJes an hour and th(‘ 
muzzle velocity of its guns is 2(XK) ft./see. How must the guns he 
pointed so as to hit an object the direcHon of which is perpendicular 
to the ship’s motion? 

73. A man walking with speed v wishes to cross a road as far as 
{possible in front of a car which is approaching with a S])eed V(>r). 
What direction should he take? 

74. A boatman whose speed of rowing is u crosses a river of 
width b and velocity U to a point at a distance a upstream and 
returns. Find the time on the double journey, and find what point 
on the opposite bank he must aim for, so that this time may be a 
minimum, and find the minimum time. 

Compare with the time to row a distance^ b upstream and 
back. 

75. A battleship which can steam at u miles/hr. sights an 
enemy cruiser at a distance of a miles due east of her. If the 
cruiser steams due north at v miles/hr. (v>u). find how the 
battleship must steer in order to g(‘t as close to the cruiser 
as possible, and shew that when they are as (dose as possible 
the battleship will have travelled aujv miles relatively to the 
cruiser. 

76. To a person travelling due east the wind appears to come 
from a direction a west of north. When he travels due north at tlie 
same speed as before, the wind apparently comes from ^ west of 
north. Shew that the actual direction of the wind is 6 west of 
north, where tan ^(tan - 1) - tan i9(tan a - 1). 

77. An aeroplane has a range of action of R miles (out and home) 
in calm weather and a speed of v miles/hr. Prove that in a north 
wind of w miles/hr. its range of action in a direction 6 east of north 

is R(v^-w^)lvs/(v^ ~w^ d). For what direction is the range a 
maximum ? 

78. A tug leaves a port to intercept a liner which is proceeding 
with uniform speed u miles/hr. on a straight course, which at the 
nearest point is a miles from the port. The tug starts when the 
liner is b miles from the port and has not yet reached the 
nearest point. Prove that the least uniform speed the tug must 
have in order to intercept the liner is aw/6. Prove also that if the 
tug can go at v miles/hr. {u>v>aulb) the liner is on a part of its 

course in which the tug can intercept it for (b^v^ - a^u^)l (u'^ - v^) 
hours. 
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79. An aeroplane, whose speed in still air is travels round a 
square course of side a when a wind of speed w is blowing at an 
angle d with one of the sides. Find the time taken round the 
square. 

80. Two particles of masses m, m\ are on a smooth horizontal 
tabic and connected by a loose inelastic string. The particle ni' is 
at rest while m is moving with velocity U and at the instant the 
string becomes taut U makes an angle a with the direction of 
the string produced. Find the velocities immediately afterwards, the 
impulsive tension, and the loss of kinetic energy. 

If m=m' and a:=45°, shew that one quarter of the energy is lost 
at the impulse, 

81. Two particles of masses m, m' are connected by a straight 
inelastic string, and rest on a smooth table. The particle m is struck 
a blow of impulse J in the horizontal plane at an angle a with the 
string produced, so that the string remains taut. Find the initial 
velocities of the particles and the impulsive tension of the string. 
If m'>m prove that the initial k.e. of m' is greater than that of m 
if tan^ 0L<m(m' - -h m')^. 

82. Two particles each of mass m are connected as in Ex. 81. 
One is struck a blow which causes it to move with velocity u at an 
angle a with the string produced. Find the magnitude and direction 
of the impulse, and the impulsive tension. 

83. Three equal particles A, B, C, rest on a smooth horizontal 
table, comiected by two straight inelastic strings making an angle 
135° at B. An impulse J acts on A parallel to CB. Find the resulting 
velocities and the impulsive tensions. 

84. Three ecpal particles are placed as in Ex. 83, and an impulse 
acts on A causing it to move with velocity u parallel to CB. Find 
the initial velocities of B and C, the direction and magnitude of the 
impulse on A, and the impulsive tension. 

86. A, B, C, are three equal particles on a smooth table. B and C 
are at rest connected by a straight string. A is connected with B by 
a loose string and is moving parallel to CB with velocity V. At the 
instant that the string becomes taut the angle CBA is 120°. Find 
the velocities of A, B, C, immediately after the tightening of the 
string and the impulsive fusions. 

86. Examples 81-84 should be checked by showing that the k.e. 
generated in the system is J J-v in the notation of Ex. 15, p. 373. 



APPENDIX I 

ON THE HISTORY OF DYNAMICS. 

Though considerable progress was made in statics in ancient 

times, dynamics may be said to have been practically non¬ 

existent, and the most erroneous ideas were held regarding 

the fundamental facts, such as the velocity of a falling body 

or path of a projectile. 

Tn 1588 Galileo (1564-1642) started his ex})eriments on 
falling bodies by dropping cannon balls from different heights 
at Pisa, and these experiments form the first great and accurate 
experiments in dynamics, and their importance can hardly bo 
over-estimated. They shew Galileo in the light of a great 
modern investigator far more clearly than his work in 
astronomy, which is so much better known. 

In his work he was a powerful exponent of the modern 
view that all science must be based upon experiment To 
Galileo we owe the idea of acceleration and the constancy of 
the acceleration of falling bodies, a fact that was entirely 
opposed to the previously prevailing ideas. He obtained the 
laws for a body falling from rest, which we now write in the 
form 

v'^-2gs. 

He verified the same facts for bodies sliding down inclined 
planes; Iiq discovered the parabolic path of an unresisted 
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projectile ; and also discovered (his earliest discovery in 1583) 

the isochronism of the pendulum. 

Although Kepler’s (1571-1630) name appears in elementary 

dynamics in connection with motion in a circle, the laws he 

formulated were entirely empirical, and had no effect on the 

development of mechanics until in New^ton’s hands they helped 

to establish the law of gravitation. 

More important work in dynamics was done by Newton’s 

great contemporary Huygens (1629-1695), who was the first 

to prove (in 1673) the formula v^jr for the acceleration in 

uniform circular motion. He also, at the same time as Wren 

and Wallis in England, made important experiments on 

collision, and he further gave the theory of the compound 

pendulum, and proved the convertibility of the centres of 

suspension and oscillation. 

The parallelogram of forces had been stated for statical 

cases by various earlier writers. 

To Newton (1642-1727) is due an immense proportion of 

the elementary dynamics. He obtained wonderfully clear and 

definite ideas on the fundamental notions of dynamics, and 

expressed these in the laws of motion, which have almost 

universally served ever since with slight modification, as the 

most convenient basis for building up the science of dynamics. 

In the statement of these laws there are two great ideas 

which may be regarded as the leading ideas in Newton’s 

work, and specially due to him. They are the idea of mass 

and its connection with force, and the law of action and 

reaction. 

He carried out many experimental investigations, the ex¬ 

periments on collision alone shewing that he was a master 

in experimental work as well as in theoretical. Another very 

important series of experiments were those on the time of 

oscillation of pendulums of different materials, by which he 

shewed that g was the same for all bodies. The law of 
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gravitation was one of liis great discoveries, and the theory 

of simple harmonic motion was due to him. * 

The foundations of rigid dynamics, though deducible from 

Newton’s work, were not laid down till 1743 by d’Alembert 

(1717-1783), and the name “Moment of Inertia” was first 

used by Euler (1707-1783), who studied a number of cases 

of motion of a rigid body, and gave the equations of motion 

in the most general form. 

The laws of friction were obtained by Coulomb (1736-1806) 

in 1781. 

The idea of work done by a force is due to Lagrange (1736- 

1813). Most of his mechanics is based on the calculation of the 

work done in small displacements of the points of application 

of the forces. 

It is only necessary to add that the idea of the instantaneous 

centre is due to Chasles (1793-1880), and that the vector 

methods, of which the merest beginnings have been given 

in this book, are due to various mathematicians of the nine¬ 

teenth century, the notation used being that due to Gibbs. 



APPENDIX ir. 

1 metre 

1 inch 

1 ft. 
1 mile 

1 ft./sec. 

1 sq. in. 

1 cub. in. 

1 gm. 

1 lb. 

1 kgm. 

1 Ibl. 

1 Ib.-wt. 

1 ft.-lbl. 

1 ft.-lb. 

1 kgm.-metre = 

1 joule 

1 horse-power = 

1 watt 

1 kilo-watt 

1 gm./c.c, 

1 Ib./sq. in. 

1 ton/sq. in. 

UNITS. 

39*37 ins.-3*281 ft. 

2-540 cms. 

30*48 cms. 

1*609 X 10^ cms. = 1*609 kms. 

1*097 km./hr. 

6*452 sq. cms. 

16*39 c.c. 

15*43 grains. 

453*6 gras. 

2*205 lbs. 

1-382 X 10^ dynes. 

4*446 X 10® dynes. 

4-214 X 10® ergs. 

1-356 X 10’ ergs = 1*356 joules. 

1*382 X 10** gm.-cms. 

7*235 ft.-lbs. 

10’ ergs=0*7375 ft.-lb. 

7*460 X 10® ergs/sec. =746*0 watts. 

10’ ergs/sec. 

10^® ergs/sec. =737*5 ft.-lbs./sec. 

1*340 horse-power. 

62*43 Ibs./cub. ft 

70*30 gms./sq. cm. 

1*575 X 10’ gms./sq. cm. 
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CONSTANTS. 

.(7 = 978*0 (1 + 0*0053 sin^A), where A is the latitude. 

Polar radius of earth =6*357 x 10® cnis. 

Equatorial radius of earth =6*378 x 10® cnis. 

Angular velocity of rotation of earth = 7*29 x 10“^ rad./seci. 

Angular velocity of revolution of earth round sun 

= 1*99 X lO-*^ rad./sec. 

Acceleration of earth relative to sun =0*593 cm./sec.^ 

Mean distance of earth from sun = 1*50 x KP® crns. 

Mass of earth = 5*97 x lO^^ gms. 

Constant of gravitation = 6-66 x IQ-® c.G.s. units. 

Acceleration of point on equator due to rotation of earth 

= 3-39 cm./sec. 

Mean distance of moon from earth = 3-84 x 10^® cm. 

Mean angular velocity of moon relative to earth 

= 2-66 X 10-® rad./sec. 

Mean acceleration of moon relative to earth = 0-272 cm./sec.*-^. 



ANSWERS. 

CHAPTER I. 

p. 6. 1. -9, -99, 11 , 101. 2. 2, oc ) ; 1-990, 2 010, 101, -99. 

p. 13. 2. 0, 7-5, 30 ; 0, 3, 6 ; 10, 18-9. 

p. 18. 1. 48 ft. 2. True distance 64 ft. 3. True distance 191 ft. 

p. 19. y = 4/, s —72 ft. 

CHAPTER II. 

p. 28. 3. 0-73 ft./seo2 ^ , 1 mile. 4. 161 3 ft., 7-33 sees. 

5. ~3 ft./sec^., 9 ft. 6. 2 ft./sec-'., 8-72ft./8ec. 

p. 29. 7. - ^ cm./scc^. , 11'5, 78‘5 secs. 

8. ft./sec'-., 8^ ft., 7 see? 9. 22*4 iniles/hr. 

10. ;“)/•.'} 11. Yes, 2*45 ft. 

p. 32. 1. > 2(js. 2. 100ft., 5 secs. 
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p. 32. 2. 100 ft,, 80 ft./sec. 8. 31*3 m./se(;., 6*38 secs. 
4. 27-7 ft./ ec. 5. 20 ft./sec. 

p. 33. 6. 7-03 secs., No. 7. 32 ft./sc(j., 240 ft. 

9. 0-56, 4*44, 0-30 secs. 10. v/8//(l-A-)/.^. 12. 230 ft. 

p. 35. 2. J sec., 05 ft. 8. 96 ft./sec., 48 ft./sec. each. 

5. 37J ft., 30, 50 ft./sec. 6. 14*14 secs., 10 m. from B- 

p. 36. 7. 3*37 secs, after Q starts. 144*7 cm. from A. 

10. 40 secs., 400 ft. from O. 

p. 39. 1. 53.^ miles/hr. 2. ^Ikl-. 

4. ~k'^j2x\ 6. 2,5 secs. ; 26, 95 ft. from A. 

CHAPTER HI. 

p. 52. 1. 0*208 Ibs.-wt. 2. 0*0625 lbs.-wt. 
8. 80 lbs. 4. 133*3 ] metres, 13*33 metres/sec. 

5. 14*3 secs. 6. 360 ft., 12 ft./sec. 

7. 8*96 tons-wt. 8. 2738 ft., 186*7 secs. 
9. 0*95 Ibs.-wt., 1768 ft./sec. 10. 211 yds. 

11. 1406 Ibs.-wt., 693 ft. /sec. 12. 29*17 lbs.-wt. 

p. 53. 13. l*6kgms., 1/196. 14. 4 lbs.-wt. 

p* 55. 1. 196 cm./sec- , 7*14 secs. 2. 36 ft./sec., 540 yds. 

3. 131*3 Ibs.-wt. 4 k 238, 158 lbs.-wt. : 110 secs. 

5. 63 ] ft/sec., 372 secs., 5952 yds. 

6. 654 secs., 48-4 ft./sec.. 2792 yds. 

7. 3*2 ft./sec*^. upwards. 

8. 84*4, 100, 115*6 lbs.-wt. 9. 8ft./secA 

p. 61. 3. 100*7 ft./sec. 4. 800 yds. 

p. 65. 5. 12 ft./sec., 12 Ibl.-sec. 6. 3 ft./sec. back, 42 Ibl.-sec. 

7. 135 lbs.-wt. 8. 170 times the weieht. 

10. 2*22 tons-wt. 11. 27*1 tons-wt. 

12. 48*1 Ibl.-secs. 13. 1*22, 1 *38 lbs.-wt. 

p. 66. 0*0106d^(?^2 ^ur). 

p- 69. 1. 98*3, 102*5 ft. True space average is 106*7. 

p* 76. 4. 1562*5. 5. 3-6 X 10'*, 3-67 X 10*. 

6. 2450 cm./sec., 245 kgm.-metres. 

7. 64 ft./se'*., 64 ft. 8. 253-5, 684 ft.-lbs. 

9. 2*45, 7*55 kgm. metres. 

10. 1-4 ft./sec., 1-715x10*, 1715 ft.-lbs. 

12. Mw/(M -f m), mul{M 13. 312. 
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P« 76. 14. 48*9 miles/hr. 16. 900 Ibs.-wt. 

p. 77. 16. 33-3 miles/hr., 22*2 miles/hr. 
17. 3013 Ibs.-wt., 241-1, 94-2 miles/hr. 

p. 78. 1* 4*57 ft./sec., 0 054 ft.-lbs. 2. 1-14 ft./sec., 4-340 ft.-Iba 

4. 19-4 ft./sec., (3-06 ft.-lbs., 145-4 Ibs.-wt., 0*0043 sec. 
6. 6-20 ft./sec., 2-75 tons-wt. 

p. 86. 1. 1455-5, 291-1 ibs.-wt. 2. 250 cm., 100 cm./sec. 
8. 988 cm./sec2. 4. 4 ft./sec^., 7-875 Ibs.-wt. 

5. \{'m ~-m')gl2k\ 10 ft./sec. 

p. 87. 6. 2-46 ft./sec^., 12-9, 11-1, 10-8 oz.-wt. 7. 3 lbs. 
8. 10-7 ft./sec^., 2-67 Ibs.-wt. 9. 12 lbs. 10. 7-2, 3-2 oz.-wt. 

p. 89. 
p. 93. 

1. 
4. 

6. 

2-13 ft./sec^, 3-73 lbs.-wt. 2. 25 cm. 8. 0-305. 
129 -4 sec., 239 ii. p. 8. 0 * 179 ft. /sec®. 

292 H. p., 52 *2 miles/hr. * 
r308 p 

'13 t 
-\-n J-Ibs.-wt. ; 

mo f308 
375 {T 

1 

j 
H.P. 

4. 6 ft. 

p. 95. 7'49x1012c.g.s. 

p. 97. 1- 1 ft., 3*2 ft./see., 0*6 lb.-Ml. sec. 
2. 3*16 sec., 1-69 ft./sec., 0*53 ft., 0*105, 0*422 lb.-wt.-sec. 
8. 2, 3-765 Ibl-sec., 3*765 ft./sec. 

p. 98. 1. 0 0928s^, 0 31 Ifi^, 0*249<7, 0155<7. 
2. 2-91, 8-73 ft./sec®., 1*455 Ibs.-wt 

p. 99. 3. 2-31 lbs.-wt. 

4. 0'2(/, 0*067j7, 0 067.7, lOOgms.-wt., 0*0787, 138*5, 
184*6 gms.-wt. 

6. (1) 0 1257, 0*257, 2*25, 112*5 gms.-wt 

(2) 0*1527, 0*3037, 230*3, 104*5 gma.-wt. 

p. 102. (1) 4-214 X la’. (2) 745*8. (3) 0 00134. 

p* 102. 1. 187 yds., 254 Ibs.-wt. 
2. 0*586 ft./sec®. ; 1680, 11*20, 560 lbs. -wt. 
3. 28*4 ft./sec®., 10*6 ft./sec. 4. 0*224. 

p* 103. 6. 0*081. 6. wm®/27, mw®/17600/. 
7. 1061. 8. 288, 180 tx>ns. 

9. 
448 V 1936, 

y 124-1 ft./sec., 1011. 

10. ft./sec., 550H/v' lbs. -w t., ( ~ - 
-) 9- 
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p. 103. 11. 
p. 101. 14. 

16. 

p. 105. 21. 

p. 106. 31. 

P. 107. 39. 

75H/14Mi>-(rt+fc»>»)/70. 18. 12-8, 0 0011. 

396 lbs. 15. 0106. 

1-47 ft./spc., 1650 Ibs.-wt,., IS’l ft./8ec*. 

21-1 lbs. 22. 36-3 kgras. 24. (v-V)*. 
2 M - »i 

p. 108. 46. 

211 lbs. 22. 36-3 kgras. 24. * ' (t; - V)*. 
2 M - »i 

2036, 964 ft./sec, 26. 3-6t. 

\'2IVIE{//w(M I-to), «y2TOE(//MfM+to). 28. 2560 ft./sec. 

V i E/TOj (to, + ntj), V 4- >/2toj Ejm.^ («i 14 

TO(V- »0/M; 2/ty|v + w-’”(V-i;)|- 

0-00.37. 36. 51, 00 kgras.-wt. 

1 -56 lbs. wt., 0-16; 3-33 ft.37. 14-1 ft./seo., 0-39, 0-.31 sec 

(« I ),')72 (" J- + J- ) F ; (TOjW - m^v)l(nii + to^). 
\nii 

0-29. .32-9 ft./seci*. 41. Equal. 43. 1, A Ibs.-wt., .9/3. 

(i) {(4m-2M)gr-M/}/(IVI-f 4m) 

{(2771 - M4 2?7^}/(M 4-4m); IVlr/i(Sf/ +/)/(M f 4m). 

(ii) /, r)i{9-f)y (IVl4-7/i)/4-(M-m)r/. 

(2m' - 771+ M )gl{4m' + 77i + M), 

2{2nif - m + M)gl{4m' + m 4 M), 

2m (37/i' + IVI) g/{4m' + m 4- M), 

m'(3m- M)^/(4m' + m+ IVI). 

Velooitics 77i'vl{m-hm')t 77ivf{m + m'). 

Accelerations my’/(m + m'), 7?f/7(7/H m'), 

Telision 7ti7n'fl{m + m'). 

7*1 ft./sec2 ; 6*2, 4*9 lbs.-wt.; 2 2 ft. 

4’4 ft./sec^.; 6'9, 4*6 lb8.-wt.; 1*0 ft. 

lVl77i(l +7i)<7/(IVl +7fc2m), (M - 7im)p/(IVI +71^771), 

77 (M ~ nm) (jH M + 71*771); 2v vjg ; iim M»>/{M -f ?/.*m), 

77l77*e7/(M +7i*m). 

(ma-IVI)sr/(M+7i*m), 7i(m?i - IVI)f//(M+ 7a*770» 

M m (1 + 7l) (//( M + 7l*77i), 
afterwards same with M replaced by 2M. 

Velocities just after 

(m77 - IVI )5r//(2M + 17m*), 77 [mil - M) <;^/(2IVI + m7i*). 

Impulsive tensions, nmM(mn -M)^«/(M +mn®)(2M +77177*): 
IV1(77W -M)p#/(2M +m7i*). 

4-44, 3*39 ft./sec. ; 6-22, 13-57 Ibl-see. ; 3-06 ft. 
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p. 109. 68. J51 cms.; 5*55 secs. 

p. 110. 

65 

67. 

58. 

60. 

■ 'm 
•K 

sees., 17 

Q 
P hQ r-1 

s 
9 

2 Q 
r/P~Q 

ft. : 

/ Q 
VPTQ 

where ~ 2(P - Q) (fa/i P + Q). 

^P^Q.)_ 
7\)t,a,I time - 3 N./2a (P -f Q)/(P 

70 secs., 68 ft. 

\«-i 

Impnls(3-- P 

4-27 ft./sec^ , 4-33II»s.-wt., 19-26 ft. 

(M' 4 w - M){M ^ M') h below, and M + M 
M t w 4- m-T (M' + >a 1 IVI)(M - M') 

where the weight is caught otT. 

Between and n + t+ J(2v? ~ 

h above 

p. 116. 

p. 126. 

p. 127. 

p. 128. 

p. 131. 

p. 135. 

CHAPTER IV. 

2. 7*5 m./hr. 8. 1056 ft./sec. 

4. «s'2toN.E. 5. 30° 22'W. of S. 

4. 8 ft. 6. 1*94 sec., 12*39 ft./sec. B. 24*6 ft./sec., 214*9 secs. 
7. 8*33 ft., 11 *55^/860.; 0*833, 1*44 secs. 
8. 24*4 ft., 12*9ft./sec. 

10. siajg sin 26>, if 0 is the angle made with the vertical and 
a = distance of the starting point from the line. 

11. 880 ft. 12. 14*63, 17*63 tons-wd:. 
18. 51*03 ft./sec., 119*3 secs., 7637 ft. 

14. 251*4 yds. 16. 434. 16. 25*9 ft./sec. 17, 1 : 9. 
19. 320 H.i*. ; 12 Ibs.-wt. per ton. 

20. 6133 lb.s.-wt., 490*7 H.p. 21. 110*9 secs. 

22. 0*22, 0*13 ft./sec*. retardation. 28. 10*5 miles/hr. 

24. 7n ^2240 sin a 4- n + Ibs.-wt., 

375 (2240«>na + » + -3--j. 

26. 1606 yds., 13*9 miles/hr. ; 164, 474 secs. 

26. 7*46 ft./sec*. 28. 0*97 ft./sec*. 29. 0*375. 

80. 4*20 ft., 0*10 sec, after the string breaks, 1*30 secs. 

81. 0*246^^. 32. 3*12 ft./sec*. 

88. 10*67 ft./sec*., 9*33 Ibs.-wt., 2*99 ft./sec*. 
84. {m> sin a -n sin li)gHm+n). 

87. Wedge 4*57 ft./sec*., particle relative to wedge 22*9 ft./sec®. 

1. 36960 ft.-lbs., 0*16 ii.p. 8. 184 kgm.-metres. 
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p. 141. 2. 
8. 
4. 

p. 141. 1. 
2. 
6. 

p. 142. 8. 

9. 

10. 
11. 

p. 143. 16. 

18. 

21. 

p. 144. 25. 

26. 
30. 

p. 163. 2 
6. 

6. 
*r. 
8. 

9. 

p. 164. 10. 
13 

(m - -f w')®, 
5 ft./sec., making an angle 53° 8' with the first. 
12'17 ft./sec., making 34° 43' with Oa: and meeting 0« 

3 ft. from O. 
13° 38' west of north, 8*28 mins. 
1-98 hrs., 1-41 miles. 8. 6-21, l(h97 miles/hr. 
43-8 ft. from starting point; velocity 29-2 ft./sec. at 

34° 43' with force 3. 

2mv sin - towards the centre. 

83-1 ft./sec. peri)endicular to incline. 
, au +bv .a 

COS' ’ .-; COS' ^ ,. 
ou + av 0 

2475 lbs. -wt. 18. 66 miles/hr. 14. v^(2240 - na jjn6 

U‘^l2g{sm a 4- At cos a), 
u ( 1 ^ 1 \ 
f;' (sin a 4-m cos a s'sin^a - At^ costal 

Ma cos a/(M -f w), u sin a, mu cos a/(M + m), 
imu 2(M -f m silica )/(M -f m). 

^ , 1 ')ngt^ cos a (sin a - /t cos a) 
2 M+w sin a (sin a-g COS a)’ 

particle relative to wedge 

1 4-?w)(8iii a - At cos a) 
2 ' M -hm sin a (sin a - At cos a)* 

15° .33', 0*380^; block 0*278r/, weight relative to block 
0-658(/. 

(w - M)(8in a4r At cos a)(/ 
M sin a (sin a At cos aj 4 m* 
Acceleration g sin (a 4- at angle a. - fi with horizontal. 
17*9 ft./sec^.^t 63° 26' with horizontal, G-71 Ib.-wt.-sec. 

C FT AFTER VI. 

5 ins., 0*262 sec., 10 ft./sec. 4. 12, 5 ft./sec. 

0-287, 0*122, 0 097, 0*084 , 0 076, 0 071, 0 0158, 0 066, 
0*064, 0*064. 

0*12, 0*37, 0-60, 0-8*2, 1 02, M9, 1'34, 1*45, 1-53, 1-56. 

0-833, 0-416. 
Centre 2 ft. from first point, amplitude 3*6 ft., max. vel. 

3*6 ft./sec. 

4 ins. from first point, amplitude 2*69 ft., 2*0i) sees., 
8-06 ft./sec. 

1-97, 3-22 ft. 11, 135-8, 32-2 lbs. w t. 

0*76 ft,, 0*37 secs. 15, 0*0314 cm./sec., 98*7 cni./seo^. 
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p. 170. 

p. 171. 

p. 192. 

p. 193. 

p. 194. 

p. 199. 
p. 202. 
p. 203. 

p. 204. 
p. 205. 

p. 206. 

p. 207. 
p. 210. 

p. 213. 

215. 
217. 

ELEMENTARY DYNAMICS 

3. ^ws/maJTg, ^{(V - If + inaiffTgr} = c say, Tgcja, csJTglm(U 

4. 0*351 sec., 4*47 ins. 5. {t ~l)s/2Xfml, 2TsImlj2\, 

6. 0196 secs,, 16 ft./sec. 7. + 

8. Distances from fixed point yV> tI> f\ , etc.; final 
position iV 

9. 0*453 sec., 11 *55 ft./sec. 
f irr^ 1 

3. M where x is the height alxjve the mean 

position. 
4. 1*36 sec., 4*62 ft./sec. 6. 0*248, 0*351 sees. 
6. 2mf//(8in a - /x cos a)/\ ; moves up again if tan a > 3ja ; 

distance 0*462 ft; does not return. 

10. 6 ft./sec., 12sin4^ ft./soo^, 
12. 1*46 ft./sec., 0*373 ft., 0*544 sec. 

13. {M(/; f 2V)- mv}/(fVI -f {?^y + 2?0 - IVIVJ/(IVI +m) from 
one another ; irV/aM/(m,-f M)T. 

17. s/2gfr^'T¥^a ; ~ T/>)/IVIa ; 

2‘!rs/fAalTg. 

CHAPTER VII. 

1. 7-85. 2. 23 -47. 3. 7-29xlO-s. 4. 1-99 X 10'’. 

1, 688-4 ft./sec*. 2. 0-111 cos X. 

3. 0-0194 ft./sec*. =0-593 cm./sec*. 

4. =0-00890 : ft./sec*. = -(jr/3600 nearly. 

1. 1-98 X lO^** gm. 

2. 6-76 X 10-». 8, 5- 97 X lO*'' gm. 4. 1 84-5 mins. 

6. 0-59 Ibs.-wt. 7. 66-6 Ibs.-wt. 

8. 64-6 kgras.-wt. 9. 3, 1*43 lbs .-wt. 10. 35-8 ft./sec. 

11. g- \/Mglml 12. 8-05, 6-04 kgms.-wt. 

18. 221-4 cm./sec., 0-705. 14. 12-4 cm. 

15. 1-27. 16. 2mn^nH\ 

17. mw^ab cos B/c, mufab cos A/c. 

2. 3-75 Ib.-wt.-sec 3*14 secs. 

8. 25-9 ft./sec., 9- 17 ft. 5. 60°, 1-36 secs. 

1. 2-29 tons-wt. 2. 2° 37'. 2-89 ins. 

4. 28° 16'. 5. 2-86, 1-72 tons-wt. 6. 22 °26'. 

X. 1016 Ibs.-wt. 

2. 1115, 2245 lbs. -wt. 8. , 35-8 ft./sec. 

4. \/gr{h sin <9-fa cos &)l{h cos 0 - a sin 0). 
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p, 217c. 1. 62-5 ft. ; radial 40, 20 ft./sec^. ; tangential 3-2, 3-2 ft./sec*.; 
0*080, 0*040 lb.*wt. at angles 4® 34', 9° 4' with the 
radius. 

2. Angle with radius 4° 33', 6° 48', 13° 25', 90° ; magnitude 
150*5, 100*7, 51*4, 11*93 ft./sec«. 

p. 221. 2. 16 ft./s(x\ ; 3, 1*5 ll».s.-wL 4. 392 lbs. w t. 

5. 2-26 secs. 6. 16 ft./sec. 

7. f;(2sin ^-3sin ^cos^), ,9(1+2cos ^ - 3cos®6^), 
0s/{^ “ 8 cos 0 4 3 cos® 0). 

8. Horizontal g{{k - 2) .sin 0 4 3 sin 0 oos 0]^ 

vertical f/{(k - 2) cos 0^2cos®^ - .sin®^J; 
when k~2y horizontal max. when 0 = 45®, 

min. w licn ^ — 0° or 90°; 

vertical max. when ^ = 0°, 
min. wlien ^ = 90°; 

resultant max. wdien ^ = 0°, 

min. wlien ^ = 90°; 
max. and min. values respectisx ly 3f//2, 0, 2,9, 9, 2g, 9. 

p. 223. g oot o/ci)®. 

p. 230. 2 31. 

p. 232. 1. 42-8 Ibs.-wt., .3060, 414-7 ft./8w. 

p. 233. 8. 4- 4- 2ahu)U)' cos (w — a>') /}, 
4 h^u}'* 4- 2a6a;®a;'® cos (a; - oi') f j. 

4. 6*0 X 10®’ gins., 6*7 x 10~*,2*1 x 10®®gms., 3*7 x 10®’ dynes. 
•j// r® 

7. Ttirj sin By mgr sin 0y 7ng cos 0 4-. 
r 

p. 234. 12. 61*5 ft., 016. 

13. \l\r{2a - r)fmay \r(3r - 5a)/2a®, where AP=:?\ 

p. 236. 15. Ti = «iw®(/ + asin B), Tg^Tj cos A/sin C, 
Tj{=:Ti cos B/sin C. 

16. 148*5 cm./sec, ; 125, 917 gms.-wt. 17. g!jig - AttVo). 

19. m sin A(w®6 oos A - 9)/sin C, 
sin A cos B + 9 sin B)/sin C. 

p. 236. 23. 1296 ft./sec. 26. inoi^a ~ mgajs^f^ 

B.E.D. 2c2 
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p. 240. 

p. 2i7. 1 
5. 

p. 248. 8. 

p. 280. 2. 
8. 

5. 

7. 
9. 

11. 
18. 

p. 281. 16. 
19. 

p* 262. 22. 
p. 264. 2. 

p. 268. 

p. 272. 6. 
7. 

p. 273. 2. 
5. 

p. 274. 7. 
12. 

p. 275. 16. 

p. 276. 26. 

7 per cent. 

2-713 secs. 

7-1 sees. 

0-495. 

CHAPTER VTTl. 

2. 896-8. ! 

6. 28°-9 C. 

9. 5221 ft. 

8. 981-6. 

7. 0-28 cm. 

4. 3-23 cm. 

CHAPTER IX. 

515-6 ft., 4-7 sec., 87-9 ft. 

75 ft. horizontally, 36 ft. vertically, resultant vel. 43-8 
ft./sec. at tan'M-44 with horizontal downwards. 

157-5 ft. horizontally, 76-8 ft. vertically ; resultant vel. 
56-4 ft./sec. at 37° 8' with horizontal downwards. 

2683 ft,/sec., 10° 18'. 6. 1744 ft./sec., 4-5 miles. 

200 ft., 15° or 75°. 8. 98 ft./sec. 

261 5, 44-1 ft. 10. 1960 ft./sec. 

Horizontal distance 108-8 ft., 69-9 ft./sec. at 36° 11'. 

100 ft./sec., 26° 34'. 15. 18° 26' or 71° 34'. 

22° 44' or 74° 24'. 17. 87-8 ft./sec., 14° 56'. 18. No 

346-4, 173-2 ft. horizontally. Velocity 138-5 ft./sec. in 
each case at 60° with horizontal. 

66-4 ft./sec., 17° 45', 6-4 ft. 23. 73-8 ft./sec., 20° 8'. 

1*6 ft., 6*1 ft. 

V2 . . V2 . . ,_:__ 
- a sec i - tan t sec i-\— see'^f v 1 * oa sin 2//v'^. 

154*6, 175 8 a. 

2*89sec., 28*9 ft., 133*3 ft., 46*2 ft./sec. at 60“ with plane. 

250 ft. 9. 45® + with the plane, 

cos^a cos {(tan a - tan 

?7.7-T/2 after se^nond starts, whore v is the vertical 
velocity. 

Opposite the window at horizontal distance 7*82 m. from 
it, 13*04 m. in advance of the point where it was when 
proj(icted. 

0- or 63° 26'. 8. 2n/2%, N/f/(2/t+RVs'A), tan-’ 4A/R. 

30“ or 63° IS’, 49-9 ft. 

tan a =7 - tan /3, V®=2flr + aec^/S/- tan/3^|. 

V” 3: P { R2^2 + 0,2 ( R - rt)2}/2«ft ( R - O.). 

Distance from point of contact of sphere 1 •46a if a is 
the radius. 

Distances from centre Ssf^aJH horizontal, Ila/16 vertical. 
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CHAPTER X. 

p. 285. 

p. 286. 

p. 290. 

p. 292. 

p. 293. 

1. 3ft./sec., ()-67, 3ft.-H.ls. 

2. ‘2 0-26, 5-625 ft.-)l)8. 

6. (i) -2-67, 9-33; (ii) 0-8, 16-8. 

8. A(B-Ce)(l + e)tt/(A+B)(Bt C), 
AB(l + fiPH/(A + B)(B-t C). 

9. 1-54, 3-04 secs, after the eoUisioH. 

2. 4 secs., 34 ft. 3. 0-75. 

2 1 MM' 
2M+"M'‘ (M+to)* ■ F' 

8. 10-95, 3-65, 8-76, 2 92 ft./sec.; 0-9 ft. 

p. 291. 14. 8s^2 ft./sec., 7 ft. 

11 048 

PART II. 

CHAPTER I. 

p. 306. 4. Velocity vertical u-y/^raisin a><, 

horizontal ± ru cos u(. 

Acceleration vertical - gT u-r cos ut, 

horizontal ± (Ar sin w/. 

5. Coordinates relative to centre of mass 
{u.y- AgWu,* + Pfl], (A/i- + A»). 

CHAPTER II. 

p. 322. 1. Mf“%in2tf, M:*|:sin®#. 3. Mfi', mI|“, Ma' 

p. 323. 5. 6. 
3(a2 + 6“) 

M^-ti£!. 7 ivi 
”3 

p. 326. X. m(?“ tr*) and M 
.f 

-2- 11 C IS 
4 

the distance of the point 

from the centre. 

2. M“!^^ 8. 84'7 Ib.-ft" 

4. 6. 
2 1 4 \3/ 

p. 328. X, M^ 
5 

2. 
5 
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329. 

p* 342* 
2. 
3. 

p. 3^6. 1. 
2. 
3. 
5. 

6. 

p. 346. 9. 
11. 
13. 

14. 

p. 347. 15. 
16. 
17. 
18. 

p. 348. 21. 

p. 355. 1. 

2. 

p. 350. 4. 

124'9; 1962; 481*4 ft.-lbs. 2. 10 7 ft.-Ih.s., 130*9. 
1110 ft.-lbs. 4. 123*7 sees, 
M/6 at the mid-points of the sides, M/3 at the centre 

CHAPTER III. 

67 oms., 1 *64 secs. 

Greater tlmn in No. 1 by % and Yo respectively 

100*064 cms., 2*008 secs. 

2*95 lbs.-wt., 1*57 I ad./see., 11*6 ft.-lbs. 

11*25 gravitational units, 3*75 ditto, 1*5 radians. 
0*795 rad./see^., 12*6 secs. 4. 0*415 lb. wt.-ft. units. 

yori'^ (m^ - w.d/{-«, - ^*2) - - ^)- 
3*76, 3*29 ft-/sec* 8. 14*04, 7*02 ft./sec. 

27r\^r(M-t10. 63*06 ins., 2*539 sec. 
1*5655, 1*5654 secs. 12. 8 rad./sec., 3*75 lb.-wt. secs, 

2*60 lb.-wt.-secs.; 
(i) 24lb.-wt. vertically; (ii) 61b.-wt. veitically: 

(iii) 9*12 11).-wt. at 9° 28' with the horizontal. 

3*46, 0*866 lb.-wt.-secs. 

347*4 lb.l*471b.-wt.-ft. 

6*94 ft.-lbs., 2*21 gravit. units; 14*7, 7*4 Ibs.-wt. 
3*9*2, 3*19 ft., 0*795 rad./sec., 1623 ft./sec. 
13° 38'. 19. 1*949 8608. 20. *27r\^M//6wn/, 1*571 secs. 

In OA, 

In OB, 

In AB, 

m'abF sin a cos A 

(ma^ -f w'6”) sin B 

7n'abF sin a cos B 

(ma^-hm'6“) sin B 

m'abF sin a 

(m + m'b^) sin B 

F cos a - mu;^a. 

m'u%. 

CHAPTER IV. 

(a) jmi^, 3-; (6) 

/w, 3. w*=^3{/(sin a - sin <?)/2^. 

^ M ^ = g (cos $ - cos a)\ r'S*:! 
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p. 367. 8. V (r - h)j2r*. It will if V»>4{rr»/(r - h). 

4. At distance (a+bY'-f^ia-b) from the centre. a. = 2b, 

p. 372. 8. sJ^gja. 4. sfZg cos a/2a, 6. arcos * 

8. ffsina 

p. 373. 10. imaW(3 + sin* 6)f mga cos 9. 

11. ma^d^(2 + cos 0), nuja cos 0. 

12. .y sin 0, ™ cos 0, ^ mg sin 0, ^ mg cos 0. 

18. Gain in A V. 0*2 per cent., gain in K.E. 0*2 per cent. 

14. maoifi, 

p. 374. 20. At the point | of the way along the diagonal from the 
point struck. 

22. 5P. -1?. ?-P ? P ’f-.. 
4 m 4 m 4 ma, ’ 4 ma ’ 4 m 

MISCELLANEOUS EXAMPLES. 

P. 376. 1. 78546. 2. 6-1, 6 + , 6. 

8. (i) t,l,2 ; V, 0.1; f. -2, 4. (ii) 0, - ./j. (iii) 

(iv) ±2^7. 

4. -] j ft./sec.*, 270 secs. 7. 29 J ft./sec. upwards. 

8. 1000 ft./sec. 

p. 376. 11. 0*249 lb. 12. 6,3*5 metres. 18. | ft./sec. 

14. 1800, 1350, 900, 450 Ibs.-weight. 

15. 1*36 X ICP Ibs.-wt. 16. —<7* W • 

17. 11 ; 9. 18. 59*5 ins. 19. l|tons-wt. 

p. 377. 20. • 28. 9123 gt. 

84. (iWi + W,j =W,li - 2W, ( s/A^ - o). 

26 ”*!+"»« . ^. 
■ +/!,%■ 2? 
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P. 377. 26. Acceleration of M =jj-: 
’ M (wi, + TOj) -h 4r»imj' 

27. u cos 6=v cos {v sin <^ - a sin 9)11. 

p. 378. 28. arsin — with the direction of destination. 

29. 1300 ft./sec. 

80. 5-83 ft./sec., 7-72 a., 2*21 secs. 

88. V = cosec d^{u^ +v^+2uv cos 9) at angle &in~^ ^ with the 
first. ^ 

_ - i ml-+ mT .. _ , 
34. 277^/7-tt m>m . 

"V (m-m )<7 

P*37a.8e.vS.iT“-IW£- 

h^l¥?■ 89- 
40. V {- 2ViV2 cos {9, - 6I2)}, (Vi sin 9^ - sin 9^)11 

> 43. Vg'/a cos a, mg cos a - Wa>'% siii^ a. 44. 21*6. 

p. 380« 46. V cos 9, t; sin ^ + a>r. 46. 27Tslljg cos a. 

p. 381. 54. 
U2-V2 66. ffco perpendicular to BC. 

67. .^y > f at 45°, /V(a-1)«+T at tan-i(ff - 1) 

with the vertical. 

59. M|’. 68. 3 06 X 105 ft..ib8. 

np^ /pi 
60. M ^ ^ ^» where p is the perpendicular from A on BC. 

2. -277 
SfMH-mCAi-Ajj}' 

m T ^1-^2/i 
M *2 * H V /’ 

68. 277^y {(miZj® 4- mg/a®) /(mj/j - mg/g) 9^}. 
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P. 382. 64. 20463. 66. VsiP^ 

Vf "j sin ^, components (5 cos d-S) and | Mgr sin d. 

67. 
3a 5a 
"2 ’ 4 ' 

P 2 Pt _ 
3’ 3 Mr’ 3Mg^’ 

71. 5-2. 

p. 383. 72. At an angle arsin 0*147 with tlio perpendicular to the 
course of the ship, this angle being towards the stern. 

78. At angle arsin v/V with the ])erpendiciilar to the direction 
of the road. 

«=0; 

26/s/(m“ - U“) ; ratio ^1 - . 

76. ar.sin- north of eaHt. 77. 0^-90“. 
V 

p. 384. 79. -«(~ sin® d + si~w^ cos® 6). 
u- ^ nr 

80. Velocities of m, wU cos al{m + m'), U sin a ; 
of m\ toU cos a/(w m'), 0; inm'U cos a/(m + m ); 

cos®a/(»?+w'). 

81. Velocities of m, J cos al{m -hm'), J sin a/w ; 
of m', J cos alim + m'), 0; w'J cos a j{m + m'). 

82. musj( \ -{-3 cos® a) at angle artan (| tan a). 

83. A, 3J/7\/2W, J/N/2m ; B, 3J/7n/2w, - J/7V2w ; 
C (resultant) J/7m. 4J/7V2 j J/7. 

84. Impulse 7mw/3V2, mujsl^. Tensions 4mw/3\^2, wt'/3. 
Velocities B, ujsfiy u(3s/2 ; C (resultant) w/S. 

85. A, 7V/30, VV3/2; B, 7V/30, -VV3/30; 
C (resultant) V/15. 4mV/15, m\/jl6> 
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