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PREFACE 

In planning this book I have had particularly in mind the very 

limited mathematical attainments of many beginners, and especially 

in the earlier chapters much use is made of simple graphical 

calculation, which experience shows appeals strongly to young 
engineering students. On the other hand, the subject will generally 

form part of a systematic course of technical instruction, and some 

readers will be well prepared in this respect, so that in the later 
portions particularly, opportunities are given to the student to apply 

his elementary practical mathematics, and to v turn it to useful 

account. 
I am a firm believer in the value of numerical calculations as a 

means of teaching elementary mechanics, and as symbols may be 

formidable obstacles to some readers, simple numerical illustration 
generally precedes or replaces algebraic formulae. 

While the volume is not a laboratory manual, mechanical 

laboratory work is so valuable an agent of instruction that observa* 

tions obtained from experiments on simple apparatus illustrated 

and described are frequently used; most students will make similar 

observations for themselves from more or less similar apparatus, 

while readers, unable to avail themselves of such advantages, will 

not be precluded from understanding the conclusions drawn from 

such simple experiments. 

The ground covered is that indicated by the Board of Education 
for Stage I of the subject, and care has been taken not to make the 

work more difficult by going mucji outside those limits. Building 

students and others requiring a partial course on mechanics, may 

select Chapters I to X and XIV to XXI inclusive. 
Mr. Inchley has written parts of the text, most of the worked-out 
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examples, and all of those to be solved by the reader, which form so 
important a feature of the book; he is alM responsiUe for all of the 
diagrams, and any merit which the book may possess must be vmy 
hugely attributed to the way in which he has carried out his share 
of the work 

1. am indebted to my friend Prof. J.. H. Smith, D.Sc, for 
suggestions on the plan of this book; figs. 158 and X93 represent 
apparatus of his design. 

Our thanks are tendered to Messrs. Tangye. Ltd., of Birming¬ 
ham, for the blocks of Figs. 337 and 238. 

ARTHUR MORLEY. 
Nottinghau, 

Jan., 1911. 

PREFACE TO THIRD EDITION 
Several numerical and other errors have been corrected and 
thanks are given to teachers and others who have kindly pointed 
out any such inaccuracies. Since the issue of the first edition a 
set of laboratory instruction sheets suitable for this stage of the 
work has been published to meet the requirements of those 
numerous teachers who have not time and opportunity to prepare 
their own. 

WM. INCHLEY. 
North Shields, 

JJecmber, 1914. 
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ELEMENTARY APPLIED 
MECHANICS 

INTRODUCTION 

Some of the information given in the following pages of intro» 
duction will be known to all readers, while the whole of it may 
be already known to others. It is placed here for convenient 
reference, and will also provide suitable introductory exercises in 
laboratory work fora systematic course of mechanics. The beginner 
need not master the whole introduction before reading the book. 
Laboratory exercises should follow lecture work, and in many 
laboratories this is only possible by starting part of the class on the 
preliminary but instructive exercises on measurement. 

Rulea for the Calculation of Areas. 
Square.—Multiply the length of side (in inches) by the length 

of side (in inches); the result will l)e the area expressed in square 
inches. Or if j = length of side in inches, then area = s x s = 
square inches (Fig. i). 

Rectangle.—Multiply the length of one side by the length 
of i|^ adjacent side. If a and b are the sides (Fig. i), then 
area ^ ax b, 

. Triangle.—The area is equal to one-half the product of the 
length of the base and the height. If ^ = base and h = height, 
then area = x //. 

Parallelogram.—Multiply the length of one side by the 
perpendicular distance from that side to the opposite side. In 
Fig. I area si ax d. 

Trapezoid.—Multiply one*half the sum of the parallel sides by 

the perpendicular distance between them, or area** - x d 

(Fig. i). 
Cii^.—Multiply the square of the diameter by 3*14x6, and 

a 
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divide the product by 4; <v’, if </ s diameter, then area ss —^ idiero 

7C sa 31416. 
This may idso be written 07354//*, or irr* where r a radius of 

circle ■* -• 
2 

Bllipse.—Multiply the product of the two axes by «r, if/^ 

IT 

and /4 be the two axes (Fig. i), then area « -/^^ 

Irregular Area.—^An irregular area, such as is shown in 
Fig. 2, may be measured by the method of mean" ordinates. 
Divide the length of the figure into any number of equal parts 
as shown. Then measure the width of the figure at the middle of l 
each part The area is then taken as the sum of a number of ■ 
rectangles of equal width and varying length, i.e,— 

Area = (// x A,) + (// X + (</ X A,) 4- (</ X ^4) + etc. 
*= 4‘^4'^» + A4 + A» + A» + A, + Aj-i-^ + A,o). 

Note.—If all dimensions are in inches, the area is in square 
inches. 

Laboratory Exercise. 
Trace the area of an irregular-shaped piece of metal sheet, and / 



Introduction 3 

find its area by the above method, using a steel rule graduated in 
tenths of an inch, and reading it to hundredths of an inch by 
estimating the second place of decimals. Check the area so found 
b^ weighing the irregular piece of plate and also a square piece cut 
from me same sheet If a a area of square piece (which is 
known) and m is its weight, and W the weight of the irrmlar 

piece, then the area of the irregular piece a —— . 

Rules for the Measurement of Volumes. (See Fig. 
Cube, edge s; volume axxxxr = r*. 
Prism having its ends perpendicular to its axis; volume a 

of one end multiplied by the Iragth of the prism. 

Cylinder.—Diameter, d', length, /; volume a 

3.)’ 

area 

Pyramid, volume a area of base multiplied by one-third the 
perpendicular height (^). 

Cone.—A cone is a special case of the pyramid in which the 

base is a circle: volume a — y - . 
4 3 

Sphere, radius r; volume a |irr*, or, in terms of its 

diameter d, volume 
vd* 

6 ■ 

Note.—If the linear dimensions are in inches, the volume is 
expressed in cubic inches. 

Laboratory Exercises. 
(i) Measure the volume of a casting by calculation from its 
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dimensions. Calculate its weight when given the weight of e 
cubic foot of the metal, and check the result by weighing the 
casting. 

(s) Density.—Measure the volume of a sphere or cylinder. 
We^h it, and then calculate the weight of unit volume of the 
material, i.e. its density. 

Cube. Friim. 

Sphere, Fic. 3. 

Measurement of Angles.—Angles may be measured either 
in degrees or in radians. 

A right angle is divided into 90 degrees, written 90°, or a degree 
may be defined as the angle at the centre of a circle subtended by 
an arc of ^Jjth of the circumference (Fig. 4). 

A radian is the angle at the centre of a circle subtended by an 
arc equal in length to the radius of the circle (Fig. 4); it is equal 

to 57's9 degrees, />. 2v radians = 360°, hence t radian a, 

sre 
«57-a9®- Any angle * - radians. 

Trigonometrical Ratios of Angles. 
Let ABC (Fig. 5) be the angle, then— 
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Sine ABC » is usually written sin ABC 

Cosine ABC = ^and is usually written cos ABC 

A AC A 
Tangent ABC = •g^ and is usually written tan ABC 

For values of these ratios, see table on p. 367. 

Relation between the Sides and Angles of a Triangle. 
—In an acute-angled triangle (Fig. 6) we have the following 
relations:— 

rt® = ^ 4. — 2bc cos BAC 

-f c® — 2ac cos ABC 

= <1® -f- ^ - tab cos ACB 

B*.a,- 

Fio. Sinot coiin«^ and tangnat. Fic. 6* 
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If one of tbe angles of the triangle ie obtuse, the side opposite 
to the obtuse angle (Fig. 6) is ^ven by— 

<* = a* + + aab cos ACD 

If one of the angles of the triangle is 90**, the side opposite to 
the right angle is given by— 

We also have in any triangle (Fig. 6)— 

a _ b _ c 
rin BAC “ sin ABC sin ACB 

Use of Squared Paper.—^The use of squared paper in re¬ 
cording the results of experiments, etc., vnll be appreciated by the 
student on reading Chapters VII. and VIII. The method of plot¬ 
ting grains will be understood from the following simple example. 

It is found by experiment with a lifting tackle that an effort 
P lbs. is required to lift a weight of W lbs.; the values of P for 
different weights W being shown in the following table:— 

p . . B Q 50 S'9 7*6 9-6 105 

w . . B B B so *5 3$ 45 so 

Now, distances measured horizontally from the or^n O are 
called abscissae, and distances measured vertically from the origin 
are called ordinates. Suppose we plot W horizontally (abscissae), 
and P vertically (ordinates). Choose any convenient scale, and 
mark on the horizontal and vertical axes the various values of W 
and P, as shown in Fig. 7. Then, to plot the graph connecting 
W and P, proceed as follows: From the table we see that when 
W s= o, P s= i'5; hence, above the point, where W = o, i.e. at the 
origin (O) make a cross (-I-), corresponding to P = x'5 on the scale 
of ordinates. Repeat this for each value of W given in the table; 
and obtain the series of points shown. Now draw an average curve 
through these points. In this case the curve is found to be a straight 
line. It should be noticed that we do not join the points plotted by a 
series of strcdght Unes, but we draw an average line through the 
points, so that there are as many points on one side of the line as 
there are on the other side. 

If now we wish to see what effort will be required to lift a weight 
of 40 lbs., we find the point on the graph corresponding to W =: 40 
and see what the corresponding value of P is. Following the dotted 
lines in die figure we see that this value is 8*6 lbs. 
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Workshop and Ljiboratory Methods of Measurement. 
For turning and boring work in the workshop the standards of 

reference formerly consisted solely of the cylindrical, external, and 

internal gauges, one pair of which is shown in Fig. 8. These 
gauges are manufactured true to inch. The workman sets his 

Fig. S.—Intcrnal and external gauges. 

calipers (Fig. 9) to the standard gauge by his sense of touch, and 
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then tranters them to the work, the finished diameter of the work 
being estimated the same as the gauge by bis sense of toodi also. 

It will be easily seen that the 
accuracy of the work will depend 
upon the skill and experience of 
the workman, and that therefore 
the work cannot be guaranteed 
to any specified d^ree of ac¬ 
curacy. 

Limit Qaugeo.— Modem 
practice demands that machine 
parts shall be interchangeable, 
and this can only be obtained 
when the parts are machined to 

a definite degree of accuracy. To obtain this degree of accuracy 
gauges are used. Fig. lo shows an intc/nal limit gauge, one 

Fig. io.—'Internal limit gavge. 

end of which is made slightly smaller in diameter than the other, 
the difference in the diameters being determined by the degree of 

accuracy to which it is desired to 
work. The smaller end must go in 
the hole, but the larger end must 
not go in. By the use of these 
gauges any number of parts can be 
made to size within the limit of 
accuracy desired, very frequently 

inch. 
The external limit gauge (Fig. 

ii) is used in exactly the same 
way, being used for turning cylin¬ 
drical pieces. 

Micrometer Screw Gauge*— 
When great accuracy is required in 
measurement, a micrometer screw 
gauge is used (Fig. 12). In the 
gauge illustrated the pitch of th& 
screw is ^ inch, and the longi¬ 

tudinal scale A is graduated in tenths, each tenth being sub- 

IAtid« calipen. 
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divided into 4 parts. The screw is rotated by turning the 
sleeve B, die bevelled edge of which is divided into 35 equal 
parts. One revolution of the sleeve B therefore moves the 
screw forward ^ inch, coirespondine to one of the small divisions 
on the longitudinal scale, and ^ of a revolution moves it 
forward of namely inch. Hence, with this particular 
instrument it is possible to read definitely to inch. The 
object to be measured is placed between the stop C and the end of 
the screw. The diameter of the piece shown in Fig. za will be seen 
to be 

O'4” + H sfc* 0*4 + 0 025 + o‘oi6 = 0*441 inch. 
The stop C is screwed into the frame of the instrument, and 

may be moved longitudinally to adjust the zero of the instrument, 

I.A when the end of the screw is in contact with C the instrument 
should read zero; if it does not, then the zero error roust be corrected 
or allowed for in all measurements made. 

Verniers.—If a steel rule were graduated directly in, say, hun¬ 
dredths of an inch or hundredths of a centimetre, it would be prac¬ 
tically impossible to read off a length with the naked eye to one of 
these small divisions. Indeed, an experienced man would get more 
accurate results by using a rule graduated in tenths only, and esti¬ 
mating the second place of decimals. The use of a vernier enables 
an unskilled man to read definitely to a greater degree of accuracy. 
A vernier which reads accurately to tJu inch is i^own in Fig. 13. 
The main scale is graduated in tenths of an inch; the vernier con¬ 
sists of a sliding piece, which may be moved along the main sc^e. 
This sliding piece is also graduated. In the particular vernier 
illustrated, ten divisions on the vernier scale are made eqiul to 
nine divisions on the main scale, hence the difference between the 
lengths of a main scale and a vernier division is o*i — ^ X 0*9 » 

inch. In using the instrument, the object to be measured 
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(^own shaded in Fig. 13) is placed as shown, and the sliding 
l^eoe, or vernier, is brought into contact with it The second 
decinul {dace of the length of the object is then read off by look* 
ing along the vernier scale to find where one division on it coin¬ 
cides with a division on the nuiin scale, i^. the fourth in Fig. 13. 

Fig. i3.~Simple vernier. 

Hence, the length measured exceeds x inch by four times inch, 
and is 1*04 inches. 

Laboratory Exercise.—Construct a scale about 6 inches long 
on a strip of drawing-paper, dividing it into tenths of an inch. 
Then make a vernier scale, as above, on another short strip of 
paper. Use the vernier so constructed to measure a length of, say, 

10 cms., taken from a rule graduated in centimetres. From your 
result calculate the number of centimetres in a length of 1 inch. 

Vomtor Calipers.—Calipers for use in the worktop or labo¬ 
ratory are often fitted with verniers, such instruments bemg called 
vereiercaiipers. The one shown in Fig. 14 is graduated on one 
dde to read to ^ inch, and on the other side to ^ cm. In the 
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initniment shown it wiU be seen that the object being measuied 
has a length of 1*75 inches* The stop A is clamped to die tnain 
scale by means of the screw B. The movable scale is brought 
into contact with the object as shown, and the length read off as 
already described. If a number of finished pieces of work of the 
some size are to be tested, the vernier scale is set to the desired 
position and damj^ there by means of the screw C. To prevent 
the edge of the main scale from getting burred over by the continual 
setting in different positions, the end of the screw C bears on the 
&t spring D. This protects the edge of the scale and at the same 
time distributes the pressure over the length of the spring instead of 
concentrating it at the end of the screw C. 

^iboratory Exercise.—^To obtain practice in the use of the 
vernier calipers and the micrometer screw gauge, a series of balls 
(such as those used in ball bearings) of different diameters may be 
measured by both instruments and the results compared. Weig^ 
each ball and calculate the weight of the material In pounds per cubic 
foot, using the diameters obtained from the more accurate instru* 
ment Tabulate the results as follows :— 

Diameter of ball as measured by Volume from 
screw gauge 
measurement 

Weight of baU 
in pounds. 

Weii^ht of one 
cubic foot of 

materiaU Vernier calipers. Screw gauge. 

- 

Spherometer.—The spherometer is an instrument used chiefly 
for the measurement of the radius of curvature of different sur&ces. 
It consists of a horizontal circular plate H (Fig. 15) fitted with three 
vertical legs terminating in sharp points ABC. The points ABC form 
the comers of an equilateral triangle. The centre of the plate H 
is screwed and acts as a nut for a fine-threaded screw £ which 
terminates in a sharp point D. The point D lies above the centre 
of the equilateral triangle ABC (Fig. 16). The other end of the 
screw E carries a circular bevell^ msc F, the whole being rotated 
by turning the milled head K. To the plate H is attached a 
graduated scale G which just clears the bevelled edge of F. In the 
instrament illustrated the pitch of the screw £ is ^ inch, and each 
of the small divisions of G is inch. The bevelled disc F is 
divided into zoo equal parts, so that the instrument will read to 
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of ii, i.e. inch. A piece of plane plate glass is supplied 
with the instrament, fonning a plane surface. 

Method of Use.—Place the si^erometer on the plane glass 
plate and turn the head K (Fig. 15) until all four points ABCD 
bear equally on the glass. This adjustment is deddM by pushing 
one of the outer legs A, B, or C obliquely; if the instrument simply 
rotates, the centre point D is too prominent; if the instrument slides 
without rotation, the point D is too high. The adjustment being 
made, the readings of both scales G and on F are noted. Next, take 

Fig. 15.—Spberometer. 

a reading with the spherometer on the spherical surface whose 
radius of curvature is to be measured. 

Let a SB the difference of these two readings. 
Now measure the distance between each pair of the three points 

A, B, and C. this distance /. Then if R denotes the radius of 
curvature of the surface 

= ^ nearly when a is very small 

Prool—Let EHGK (Fig. 17) be a great circle of the spherical 
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toi&ce whose radius R is to be determined. Lei the points the 
three fixed legs of the sf^erometer touch the sur&ce in the plane 
perpendicular to that of the prater shown at EFG. 

Let HF » a, and FG in Fig. 17 or BD in Fig. 16 » r. 

Then HF x FK « FG X FG 
tf(3R -«)«>*.(») 

Let ABC (Fig. 16) be the equilateral triangle formed by the 
three fixed legs of the spherometer, the movable centre point being 
over the point D. 

Then BDa= 
AB 

a 
cos 30® 

AB _ AB 

r 
I 

Substituting this value of r in (t), 
P 

a(aR — «) as from which Rss ^ + - 

H 

Surface Plate,—A surface plate consists of a rigid plate of 
cast iron, usually having three feet on the under side, so that ite 
weight is always distributed on them in the same manner. By this 
means any tendency towards warping is minimized. The upper 
face is first planed, and then finished by scraping. If a standard 
surface {date is not available, three plates are made at the same 
time, and, after planing, are seraph, until on smearing a liUU 
•* raddle,” U. a mixture of oil and colouring matter, usually red le^, 
on any one plate, and then rubbing that plate on the other two, it is 
seen that the surfaces show contact over a large num^r of spots 
evenly distributed. All these spots will obviously be in the same 
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plane, and any one of the' three plates may then be used as a 
standard plate for the reproduction of others. 

Straight Edge.—A straight edge consists of a long strip of 
metal—usually mild steel—with one edge berelled. This edge is 
made as straight and as true as possible, being planed and finished 
by scraping exactly in the same way as the siu&ce plates above. 

Useful Constants. 
X inch n s’54 centimetres. 
I metre » 39*37 inches. 
5380 feet sa t mile. 
6 feet as I fathom. 
69 miles ss 60 nautical mOes. 
X knot SB X nautical mile per hour » 6080 feet per hour. 
X chain at 66 feet 
80 chains as i mile. 
I square inch a 6*45 square coitimetres. 
X cubic inch ss iS'jg cubic centimetres. 
I square metre as 1550 square inches. 
I cubic metre as 61,035 inches =* 35*31 cubic feet as 1*308 

cubic yards. 
X cubic foot of pure water at 63° F. weighs 63*3 lbs. 
X gallon of pure water at 63° F. weighs 10 lbs. 
I lb. avoirdupois as 7000 grains a: 453*6 grams. 
X kilogram as 1000 grams as 2*304 lbs. 

Greek Letters used in this Book. 

a Alpha) 
$ Theta | fm angles. 
4 Phi 1 

Mu .... for coeflScient of friction. 
•» Omegu ... for angular velocity. 



CHAPTER I 

FORCE 

Force.—It is osoal to define force as that which tends to produce 
or alter the motion of a body. To the beginner this probably 
conveys veiy little notion of the nature force, but the idea of a 
push or pun is for the present a sufficient conception 
of force. Familiar examples of forces are to be found 
in the puH of a horse on a cart, of a locomotive on a 
train, of a weight on a rope which supports it, and the 
push or thrust of the muscles on a bicycle tyre pump. 

Measurement of Force.—All bodies can exert 
vertically downwards the force of their own weight, 
and forces are usually measured in pounds. The 
weight of bodies results from the attraction of ffie 
earth upon them, and varies slightly in difierent parts 
of the world. We take the unit, a force of one 
pound, as equal to the weight of a standard pound 
mass in London; by standard pound mass we mean 
the quantity of matter in a certain piece of platinum 
carefully preserved by the Board of Trade. 

We can often arrange to measure a force by 
balancing it against the weight of a body or by some 
effect which it produces. 

Effects of a Force.—If a force acts on a body 
which is at rest it may set the body in motior; but 
if the force is balanced by another equal and opposite 
one, no motion results, but the body may be strained, 
that is, altered in shape or dimensions. Thus a pull 
may stretch a helical spring and the amount of the 
stretch may be used to measure the force. This is 
the principle of die spring balance (Fig. i8), which is 
sometimes used for measuring force. The spring . 
balance may be graduated by banging different known 
weights on it and roistering the amount of stretch of ^ 
the spring; its accuracy may also be tested by hanging standard 
weights on it. 
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Bodies such as strings, wires, chaiiu, bars, etc., when tansmitting 
a pulling force are said to be in tension, and the force is spoken of 
as a tension or a ttosile force. Similarly, bai^, pillars, columns, eta, 
which bear a thrust or push are said to be in compression, and the 
force is spoken of as a compressive force. 

Forces represented by Lines; Vectors.—Before we can 
deal with the effect of a particular force 'on 
a body we roust know— 

(a) The magnitude of the force—usually 
stated in pounds. 

(^) The point in the body at which the 
force is applied. 

(c) The direction of the force. 
These three things completely specify 

the force. 
Let P (Fig. 19) be the point of applies-, 

tion of a force, and PQ through P the direc¬ 
tion of the force as shown by the arrow. 
Put letters A and B on each side of die line 
PQ. Then we speak of the line PQ as the 
line of action of a force AB. We call all 
space to the left of PQ the space A, and all 
to the right of PQ the space B. Draw a line 

parallel to PQ, the line of action of the 
force AB and representing the magnitude of . 

the force to some convenient «»le. For example, if the force is 
zi lbs. and \ e us. a scale of 4 lbs. to the inch, the length of tl^e 
line wouk be -y- = af ins. The line is called a vutor\ it 
represents the iorce AB both in magnitude and direction. 

Triangfle of Forces. 

Experiment.—Attach 3 strings to a small ring, and by a weight 
and 3 spring balances, or by .weights and small freely moving guide 
pulleys as shown in Fig. 20, arrange that the strings are each pulled 
by a definite measured force and allow the little ring to come to rest. 
The 3 forces are then said to be balanced or in equilibrium. Three 
such forces acting on a body would not cause it to move; the body 
would remain at rest or in eguitibrium. In the particular experi¬ 
ment shown in Fig. 20 t. force AB was 2f lbs. hung over the 
pulley, BC was 1} lbs. hung over the pulley, and CA was 3 lbs. Mark 
the directions of the strings on a sheet of paper, which may be 
pinned to a vertical board supporting the pulleys, and note the pull in 
each string. Also put letters A, B, C in the spaces. Remove the paper, 
wd from any point a draw a vector ab to represent the force AB, that 
is parallel to the line AB, and represemiog the pounds of force in AB ta~ 
scale. From b draw the vector be parallel to BC, and representing the 

Q 

Fjg. 19.—Force represented 
by a line- 
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pounds of force in BC to the same scale as used before. If a vector 
from c be similady drawn to represent in magnitude and direction^ the 
force CA it will be found that it ends at the starting-point a, that is, if 
ca be joined it will be found that the line ca is parallel to the line of 
the force CA, and its length represents the pounds of force in CA. 

Pto. •o.—TrUngle of forces. 

This experiment, which may be repeated with any number of 
different weights, shows that if three forces acdng^ at a point are 
balanced or in equilibrium, theiflHree’ vectors may be put together 
©T(wm a triangle with its sides parallel to the three forces and their 
lengths proportional to the forces.) 

Addition ol Forces by Vectors.—We may put the result of the 
foregoing experiment in another way. We may say the forces AB 
and BC together are balanced by the downward force CA of 3 lbs. 
Now evidently an upward force, or force in direction ac (not cd), 
would be balanced by the downward force «t, so that the joint effect 
of AB and BC is the same as a force represented completely by the 
vector ac (that is, ca reversed in direction). We call the vector ac 
the resultant or vector sum of ab and be, and write— 

abbe = ac 

This is called geometric or vector addition, and is the rule for 
the addition of forces by drawing vectors. The vector ca (opposite 
to the resultant) is called the equilibrant of ab and be, and represents 
the force CA which with AB and BC is necessary for equilibrium or 
no unbalanced force. ' ^ j 

To find the resultant of two forces AB and BC <M 7 ‘M* aod 
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5 lbs. lespectiTely in the given directions (Fig. 9i)« vre AeMbre&st 
dioose ft scftle, say, ^ inch to t lb.; then dmw in vector ab ^ ^t is, 
t| inches lot^, parallel to AB; Mid then from i a vector ic 
parallel to BC and |, diat i^ inches long. Join ae» vdiidi is found 
to measure a\ inches, which represents af X 4 or ix lbs. The 

T 

Space diagram. Fora «r vtetor diagnim. 
Fig. ax.-^Retultant of two focott. 

direction of AC may be shown dotted on the original figure by 
drawing a line parallel to ac. The diagram to the left ofJFIgjuJi 
shows thejdirection and positions oTlhe^rce^^^ gtlled tl^ 
sfa^^d^dm / ’ the portion to the right is atfleiT the lorce "or vector 

diagram, whidr^shoWs 
I e magnitudes and 
\ y directions of the forces^ 

5 Example i.—A weight 
/\ 9 ef 50 lbs. is suspended 
^ \ a from two points, A and B, 

^ w o on a horizontal ceiling, A 
\ ^ being lo feet from B. 
\ The suspension cord from 
^ A is 12 leet long, and that 
c from B is 14 feet long. 

Find the pull or tension 
in the two cords. 

We first draw to a con* 
venient scale the space 
diagram. Choose a scale 
of, say, i inch to 1 foot, 
and make AB(Fig. 22) y, 

Frc. aa.—XensioiimcoRif. 2} inches long* With 
centre A and radius ^ 

m 3 inches draw an arc, and with centre B and radius ^ or 3| inches 
draw another arc. The intersection of these two arcs gives the point of 
application of the weight of 50 lbs. Placing the letters CDE in the 
spaces as shown, we can proem to draw the force or vector diagram. 
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Consider the point of application of the weight of 50 lbs. At this 
pdnt there are three forces acting, namely, the weight of 50 lbs. verti- 
cally doamwaxds (EC), the force in the cord CD, and the force in 
the cord DE. To draw the force diagram we proceed as follows:— 

Choose a convenient scale, say % inch to i lb., and draw in the 
vector ec M s 3} inches long, parallel to EC. Then from c draw vector 
ex paralld to C(»d CD, and from e draw vector ey parallel to cord ED, 
intersecti^ ex in point d. Then the vector cd represents the force in 
frte cord CD, and the vector de represents the force in the cord DE. 
Measure the lengths of cd and de. It will be found that cd measures 
1} inches, which represents x so s 37^ lbs., and that de measures 
} inch, which represents } x 20 s 15 lbs. 

The directions of the forces at the junction of the cord should be 
carefully noted. The force in CD given by cd acts from c to d, i-e. it is 
pulling at the junction; the force in DE given by acts from d to e, 
that is, it is also pulling at the junction, and both forces are tensile 
forces. 

Example a.—In a simple jib crane the length of the tie rod is 
10 feet, the length of the jib 14 feet, and the crane post $ feet. Find 
the forces in the jib and tie rcm when a weight of 8 tons is suspended 
from the crane h^. 

Choose a convenient scale and set out the space diagram as in 
Fig. 23, lettering the spaces A, fi and C. Now draw the vector diagram 

FiGi 93.<-Forcet at h«Ed of jib cnae. 

of forces acting on the hinge at the crane head to a scale say of inch 
to I ton. First dmw vector dc i*6 inches long* parallel to BC, from 
i draw a vector pvailel to BA, and from c draw another vector parallel 
to CA. Call the intersection of these two vectors the point a. Measure 
the length of 4^; it will be found to be 3*2 inches* which represents 
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3*3 X 5 as i6 tons. Measure the length of ea\ it win be found to be 
^'48 inches, which represents 4*48 x 5 = 22*4 tons. Hence the force 
in the tie rod is t6 tons, and the force ca in the jib is 32*4 tons. 

To find whether these Forces are Tensile or Compres¬ 
sive.—^The directions of the forces at the crane head are found from 
die force diagram as in Example i. Starting with the downward load 
be and following the forces continuously round the triangle ^ to 
^ to o, and a to b, it will be seen that in the tie rod the force acts 
from a to b, that is, it is pulling at the crane head, while in the jib 
the force acts from c to a, that is, it is thrusting or pushing at Ae 
crane head. Hence the force in the tie rod is tensile and equal to 
16 tons, and the force in the jib is a thrust or is compressive and 
equal to 33*4 tons. 

Polygon of Forces.—The resultant, or the equilibrant of 
several forces all acting at one point may be found by adding vectors 
just as in the case of two forces. 

To find the resultant of four forces, AB, BC, CD, and DE, 
shown in position and magnitude in Fig. 34, first draw a vector ab 

parallel to the line of action AB, choosing any convenient scale, 
say ^ inch to i lb., 'in which case ab would be inches long. 
From b draw the vector be 3 inches long (representing 6 lbs.), 
parallel to the force BC; then, as before, the vector eu represents 
a force through P, which is the resultant of AB and CB. To this 
resultant add the force CD by drawing a vector ei from c parallel 
to the line CD and 3*75 inches long (representing 7*5 lbs.). Then 
mf represents the resulunt of AB, CB, and CD, and is the vector 
sum of— 

ab-^ be-\-cd 



Force 21 CHAP. 1} 

Finally, to tfiif nesultant ad add the force DE by drawing a 
vector de from 4 parallel to the line DE and 3*4 inches long (repre¬ 
senting 6*8 Ibi.). Then ae represents the resultant of the four 
forces AB, CB, CD, and DE, the addition of vectors being— 

ab if cd dc — at 
It is not necessary to draw the dotted lines ac and ad, to 

draw the vectorpolygon of forces abcde. We simply draw in turn the 
vMtors representing each force in magnitude and direction, begin¬ 
ning each vector at the end of the previous one, namely, draw ab, 
be, cd, and de. This is shown in Fig. 25. 

Fig. as-—Polygon of forc«»» 

The direction of the resultant is from a to e, and it acts through 
P. An equal and opposite force through P (in the direction e to a) 
would be the equilibrant. If we draw the polygon for the fiue 
forces AB, BC, CD, DE, and EA instead of the previous four 
forces only, the last side of the polygon (m) ends at a. The 
resultant of these five forces is then nil, or, in other words, the five 
forces are in equilibrium. In this case the polygon of forces, 
drawn with each side representing a corresponding force, is a 
closed figure. Hence, when the vector polygon of forces for 
several forces acting at the same point forms a closed figure (starting 
and ending at the same point), the forces represented are in equi¬ 
librium, or balanced, and if they alone act on a body they keep it 
at rest. 

Also, when any number of forces, acting through 
body, keep it at rest, the vector polygon drawn in tl 
various forces always forms a closed figure, ending a 
point 
/ Experiment.—The polygon of forces may be verified by direct 
' cjqterunent by the apparatus shown in Fig. 26. Arrange that the five 

one point of a 
lis way for the 
t the starting- 
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strings are each pulled by a definite measured force, and allow the little 
ring to come to rest The five forces are then in equilibrium. In the 
particular experiment shown by Fig. 26 the force AB was 2^ lbs, 
BC was i'^ lbs., CD was DE was f lb., and £A lb. 

Fig. 36.—Experiment on polygon of ibrcet. 

Mark the directions of the five strings on a sheet of paper in the same 
way as in the experiment on the triangle of forces previously described. 
Now choose a suitable scale and draw the vector polygon as described 
above. Starting from point a, we draw ai^ ie, at, de, and finally ea 
which bring us back to the starting-point a. 

If in any particular experiment it is found that the force or 
polygon is not quite dosed, the error is due to the fact that 

the pulleys do not work f eely enough. 
This experimmit theretme. jfoows that if ^ve forces acting at a 

pdnt are in eqmlibriuoi, thdr. five vectors, may be put togefiier to 
fonn a polygon, with its sides paialld to tte forces, and their 
lengths ^o^rdonal to the forces. 

Example 1.—-Five bars of a sted roof-frame, all in one plane, meet 
at a point; one is a horizontal tie-bar carrying a tension of 40 tons; 
the next is also a rie-bar inclined 60^ to the horizontal tie-bar and sustain- 
ing a pull of 30 tons; the next (in continuous order) is vertical and mns 
iqpward from the joint and carriesathmst of 5 tons; and the remaining 
two in the same order radiate at angles of 135° and aio^to the first bar. 
Find the forces in the last two bars and state whether they are in 
tension or compression, that is, whether they pull or push at the 
common Jdnt. 

First draw die space diiupnm as-shown in Fig. ay. Letter the 
spaces A, B, C, D and £. Then the first horizontal tie-bar is AB. 
AB and BC are in teOSiot^ and therefore are pulling at the common 
joiBt. CD is in compressum, and dierefore pushes at the common 
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joint Place arrows on AB, BQ and CD, showing the directions of 
these forces at the common joint as shown. We are required to find 
the magnitude and direction t>f the forces in DE and EA. 

^hoose a convenient scale, say, ^ inch to x ton, and draw the vector^ 
diii^axti as follows :— 

Ihrst draw the vector ab parallel to AB, » 4 Inches long. From 
b draw vector be 3 inches long (representing 30 tons) parallel to BC. 
From c draw cd ^ inch long (representing $ tons) parallel to CO and in 
the same direction, viz. downwards. Through d draw a vector df 

parallel to DE, and through the starting-point a draw a vector ag 
parallel to E A Call the point of intersection of the two vectors df and 
ag^ the point e. Now the five forces acting at the common joint in the 
space diagram are in equilibrium, therefore the force or vector polygon 
must close. Hence, the vector diagram is abcdcy and ea^ which 
measures 5*56 inches, which represents 5*56 x 10 = 55*6 tons, repre¬ 
sents the rorce in the member EA; whilst de^ which measures 0*96 
inch, corresponding to 0*96 x 10 = 9*6 tons, represents the force in 
the member DE. 

To find whether these are tensile or compressive forces, following 
the arrows round the force diagram in order, we see that the force 
de acts from d to and is therefore pulling at the common joint; 
the force ea acts from e to a, and is therefore pul&ng at the common 
joint also. Hence, the member DE is in tension with a force of 
9*6 tons, and the member £A is in tension to the extent of 55*6 
tons. 

Examples I. 

Two forces of 10 and 15 lbs. respectively act at a point. If the angle 
between the lines of action of the forces be 30^, find their resultant. 

a. A pnsh of 18 lbs. acts at a point, and inclined to it at an angle of 135^ 
a pull of 3S lbs. acts on the same pomt. Find the resultant of the two forces. 
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3. If the forces in problem % are inclined at an angle of 135^, find the 
magnitude and direction of their resultant. 

^ A weight of 3$ lbs* is suspended from two points A and B on a horisontsl 
ceiling, A being S feet from B. The suspension cord from A is 6 feet longi and 
that from B is 4 feet long. Find the pull or tension in the cords. 
V 5, A machine 3 tons in weight is supported by two chains attached to the 

same point on the machine; one of these chains goes to an eye«bolt in a wall 
and is inclined 36^ to the horisontal; the other goes to a hook in the ceiling 
and is inclined 45^ to the horisontal. Find the tensions in the chains. 

6. In a simple jib crane, the vertical crane post is 8 feet high, the jib b 13 
feet long, and the ae b 7 feet long. Find the forces on the jib wad tie>rod when 
a weight of 2h tons b supported at the crane head. ' 

7. The following four forces act at a point:—a force of 16 lbs. in a direction 
due East, ao lbs. das North, 30 lbs. in a direction North*West, and la lbs. in 
a direction 30^ South of West. Find the magnitude and direction of theb 
resultant. 

Four forces acting at a point are in equilibrium, the magnitude and 
direction of three of them are: 8 lbs. actiim due South, 15 lbs. acting in a 
direction North-East, and 18 lbs. acting in a direction 30^ East of South. Find 
the mi^tude and direction of the fourth force. 

90^ 9. Five forces In e^ilibrium act at a point, the magnitude and direction of 
three of them bring: One force of 90 lbs. in a dbection due West, one force of 
50 lbs. in a directs South-East, and one force of 35 lbs. in direction 30^ West 

South. The remaining two forces act in directions North-West^ and 60^ 
East of North respectively. What are thrir magnitudes ? 

At a certain joint in a roof truss five bars meet; one is vertical and 
carries a thrust of 15 tons ; the next carries a thrust of iS tons and runs upwards 
from the joint at an angle of 45^ to the vertical; the next (in continuous order) 
carries a tension of 35 tons and runs downwards from the joint at an angle of 
130^ to the first bar; and the remaining two In the same order radiate at angles 
of 240^ and 315^ to the first bar. Find the forces in the last two bars, and state 
whether they are in tension or compressioiu 



CHAPTER II 

MOMENTS 

Moment of a Force.—The effect of a force on a body does not 
only depend upon its magnitude and direction; the position or point 
of application of the force to the body is also important. For 
example, to move a hinged body such as a door, a much smaller 
force will suffice if it is applied at a considerable distance from the 
hinge than if applied close to the hinge. The effect of a push, on 
a door will be greater the further it is from the hinge: the turning 
effect about the hinge is called the moment of the force about the 
hinge, and this moment depends entirely 
on the amount of the force and its per¬ 
pendicular distance from the hinge. 

Suppose AB (Fig. 28) is tbe line of 
action of a force of 8 lbs., what is its 
moment tUbtmi P? Draw a line PN from 
P on to AB such that PN is at right 
angles to AB. Suppose PN measures 
3 feet, then— 

the moment of the force about P 
=r 3 X 8 3= 24 pound-feet 

To find the moment, in pound-feet, 
of a force about any point, multiply the 
amount of the force in poimds by its 
perpendicular distance from tbe point 
in feet. If we use inch units of length 
with pound units of force we obtain the 
moment in pound-inches; or, if F is the ^ 
amount of a force in pounds and r feet its perpendiotlar distance 
from any point O, its moment about O is— 

F X r pound-feet 

Two Kinds of Moments.—The turning effect or moment ^ 

p 

Fig. a8.—Clockwise moment of n 
force. 
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the force of 8 lbs. about P in Fig. aS is in the dircction of the hands 
of a clodc thus— 

This is called a clockanse moment of 34 pound-4reet 
Fig. 39 Shows two 

cases where a force of 
8 lbs. 3 feet from P has 
a turning effect in the 
contrary direction to that 
of the hands of a clock, 
thus— 

This is therefore 
called a contra^lockwise 
moment of 34 pound- 
feet 

Effects of Opposite Moments.—In Fig. 30 two forces are 
shown having opposing moments about P. There is a— 

Clockwise moment of 7 lbs, x 3 feet = ai poimd-feet 
Contra-clockwise moment of 4 lbs. X I'S feet = 6 

pound-feet 
Of the 31 pound-feet clockwise moment 6 are neutral¬ 

ized or balanced by 6 pound-feet contra-clockwise moment, 
leaving 15 pound-feet effective clockwise moment about P 
as the net result of the two moments. We could arrive at 

Fig. a9.*--Contra-cIockwise momcnu. 

the 

ifpoanegs 

Fig. 30.—Resultant of two moments. 

result by same 
another method. 

Find the resultant 
of the forces of 7 and 
4 lbs. of Fig. 30 by 
vectors as in Chapter 
I. That is, produce 
their lines of action 
to meet at a, Fig. 31; 
set off 7 units long 
in the direction of the 
7 lbs. force, and ie 
parallel to the 4 lbs. 
force and 4 units 
long, then ac repre¬ 

sents the resultant to scale; it measures 8‘88 pounds. Produce 
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a( and measure its perpendicular distance PM from P; it scales off 
as 1*69 feet. 

The resultant moment is 8*88 lbs. x 1*69 feet s 15 pound-feet 

I 
# 

clockwise as before. Thus we find that the moment of the resultant 
of the two forces is equal to the resultant moment of the two forces. 

Moment on a Body at Rest. 

—Take a very thin piece of sheet metal and arrange so 
that it hangs vertically under the action of a number of forces of known 
magnitude in its plane, as shown in Fig. 32. In the figure are shown 
four forces appliea by means of thin strings passing over freely moving 
pulleys, and a fifth mrce produced by hanging a weight by a string 
directly. Allow the sheet to come to rest under the action of these 
forces. In a particular experiment the forces were (Fig. 32) pounds, 
S pounds, 32 pounds, 2} pounds, and 8^ pounds respectively. Draw on 
the sheet the lines of action of the forces in the same way as in the 
experiment on the Polygon of Forces shown in Fig. 36. Now choose 
any point O and measure the perpendicular distances from that point 
on to the lines of action of the five forces ; these distances are found to 
be 1*3 inches, 1*57 inches, r86 inches, 1*5 inches, and 3*26 inches respec- 
tively. Taking the moments of the forces about O, we find— 

^ Resultant 

^tfdlSS^riment. 
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Clockwise moments are— 
(6-75 i'3) + (5 X i’S7) + (37S x r86) + (275 x 1-5) 

= 877 + 7*85 + 6*97 + 4-13 = 277 pound-inches 
Contra-clockwise moments are— 

8*5 X 3-26 = 277 pound-inches 

Fic. 33.—Experimont showing equality of opposite moments. 

This experiment ^ows, therefore, that the total clockwise 
moment about the point O is equal to the total contra-clockwise 
moment about O. 

If another pointi P, be taken, and the perpendicular distances 
measured in the same way, we find— 

Clockwise moments are— 

(3*75 X 0*75) + (*’75 X 377) -f (8*5 x o*8o) 
■■ s'8i -f 7*63 4- 6’8o * 17*33 pound-inches 
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Contra-clodcwise moments are— 
(675 X i*a4) + (5 X 178) SB 8'36 + 8*90 =17*26 pound-inches 
Similarlyi it will be found that about any point in the plane of the 

forces the total clockwise moment is equal to the total contra-clock- 
wise moment j or, in other words, if we write clockwise moments 
positive and contra-clockwise moments negative, the sum of all the 
moments of the forces about any point in their plane is equal to 
zero, or ^(moments) = o, the Greek letter 2 standing for the 
words “ summation of.” 

Principle of Moments.—^The above experiment illustrates 
the principle of moments for forces in one plane, namely; If a body 
is at rest under the action of several forces in the same plane, 
the total moment (say clockwise) of all the force!’ about every point 
in the plane is zero; that is, the contra-clockwise moments are equal 
to the clockwise moments. 

This principle is of great use in finding the amount and direction 
of some unknown force on a body which is at rest 

Example.—A light horizontal rod AB, 10 feet long (of negligible 
weight), is pivoted at A (Fig. 33), and a weight of 7 lbs. is hung at 

C 8 feet from A. The end B is supported by a cord inclined 30® to 
the horizontal and fisstened to a point above A. Find the tension in 
the cor^ 

The only forces acting on the rod are (i) the weight at C ; (2) the 
pull of the cord at B ; (3) the force exerted by the hinge at A. We do 
not know this last force, but as its distance from the point A is zwo its 
moment about A is zero. Then the clockwise moment of the weight at 
C about A must balance the contra-clockwise moment of the pull (W 
tension T of the string at B about A. 

T X AN at 7 lbs. X 8 feet = $6 pound-feet. 





Moments 3* CHAP, tl] 

The moment of the weight 2 lbs. about B is 
2 X 3 s 6 contra-clockwise. 

Further trial with one or more weights hung at different points on 
theTod will show that the moment of the upward supjforting force or 
reaction at B about A is equal to the moment of the weight or weights 
about A, or, with the letters shown on Fig. 34— 

I X supporting force at B = W x 
and similarly / x supporting force at A " W x d 

or, if the reaction or supporting force at A is caLc^ and that at B 
called Rb— 

/ X R, = W X or Rb = w X 2 

/ X Rb = W X or Ra = W X ^ 

The supporting forces are inversely proportional to their distance 
from the we^ht, and their sum is equal to the weight. The sup¬ 
porting forces act upwards, and, of course, the downward pressure on 
the supports at A and B is just equal in amount to tiie upward 
supporting force at the same point Notice that the downward force 
W is the equiUbrant of the upward forces Ra. !tnd Rb > resultant 
of Rb and Rb upward would be an upward force equsd to W acting 
at the same point C. 

We may further verify the principle of moments for parallel 
forces by the arrangement shown in Fig. 35. A rod AB supported 

by a compression spring balance at C, loaded with weights to the 
right of C, and the left end A held down by a spring balance so as 
to keep AB horizontal. 

For moments about A we should find— 
R<, X AC = Wi X AD -I- W* X AE 

and for moments about C 
Pb X AC = Wi X CD -I- W* X CE 

Hence, Ro may be called the eqmUbrant of Pb, W, and W» 
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Rules for Parallel Forces.—We can, from the above, state 
the rules for the resultant R (and equal and opposite equilibrant) 
of two parallel forces P and Q at any distance apart as follows. If 
P'and Q are hlike in direction (Fig. 35A), 

R = P+Q 
and if AB is any line perpendicular to the forces, R acts through C 
on AB so that 

R X AC = Q X AB 

or AC = ^ X AB = X AB 

and similarly— 

BC = |.AB = ^;~ X AB 

and ^_Q 
BC“ P 

which is expressed by saying that the distances of C from the ends 

Fig. 3SA.—Resulunt of parallel forces. Fig. 3511.—Resultant of unlike parallel forces. 

of AB are inversely proportional to the forces at the ends. The line 
of action of R is called the centre of the parallel forces P and Q. 

If P and Q act in opposite directions to each other, and P is the 
greater force (Fig. 35B), 

R = P - Q 
and R X AC = Q x AB 

or AC = ^ X A.B = 

and similarly— 

and 

BC = J X AB 

^_s 
BC~ P 

Q 
P-Q 

P 
P-Q 

X 

X 

AB 

AB 

That is, as before, the distances of C from the ends of AB are 
mversely proportional to the forces at the en^ but C is outside AB 
beyond iha greater force. The line of action of R is again the 
centre aC<the parallel forces P and Q. 



Moments CHAP. II] 33 

Couples.—When P and Q are equal and opposite R « Oibut 
the moment of the forces is equal to P x AB about every point in 
the plane of the two forces. Two such forces are said to form 
a coupk^ and AB is called the arm of the couple. A couple has 
then a definite moment, but no resultant force in any direction; it 
has no centre. If Q is nearly equal to P, AC (Fig. 35B) is very 
greatpbut if Q s P we may say that AC is ^finitely great. 

Moment of the Weight of a B^y.—In reckoning the 
moments of all the forces acting on a body we ought to include 
the moment of the weight of the body, unless the weight is 
very small in comparison with the forces, as was the case in the 
experiment described on p. 28. The resultant force of the weight 
acts through a point in the body which we call its centre of gravity ; 
we defer the general consideration of the centre of gravity until 
Chap. XIV., but the reader will see that if the weight acts through 
the centre of gravity, the moment of the weight of a body about its 
centre of gravity will be zero. The centre of gravity of a straight 
uniform rod is at the centre of its length, and the weight of the rod 
may be taken as a vertical force acting there, which is sufficient for 
our present purpx>se. 

Reactions or Supporting Forces of a Horizontal Beam. 

Example.—A uniform horizontal beam lo feet long (Fig. 36), rests 
on two supports A and B 7 feet apart, one, A, being at one end of the 

Fig. 36, 

4^-^ 
lO B 

. - - 7 * 
130 lb- ^ 

50 lb. 

beam. The beam weighs 50 lbs., and a weight of 130 lbs. hangs from 
a point 4 feet from the supported end. Find the supporting forces at 
A and B. 

Taking the weight as 50 lbs. weight at the middle of the beam. i.e. 
5 feet from A, by moments about A we have— 

Rb X 7 (contra-clockwise) = 130 x 4 -f 50 x 5 
= 770 pound-feet (clockwise) 

Rb = = 110 lbs. 
I'otal upward force Rb + Ra = 130 + 50 = 180 lbs. 

.’. Ra = 180 - no = 70 lbs. 
checking this by taking moments about B— 

Ra X 7 (clockwise) s 50 x 2 + 130 x 3 
= 490 pound-feet (contra-clockwi^ 

Ra = o « 70 lbs. 

C 
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Note on tiie application of the Princi|rie of Moments.— 
In finding two or more unknown forces acting <« a body at rest by 
the principle of moments, we may reckon the equal and opposite 
clockwise and contra-clockwise moments about any point in tlM 
plane of the forces, but we shall generally simplify a problem by 
taking the moments about a point in the line of action of one 
unknown force. The moment of tlus force about such a point is 
zoo, and so we get a simpler problem. 

Levers.—lever is sim^y a rigid rod or bar capable of 
turning about a fixed point which is called the fnlcrom; the lever 
may be straight or curved, and the forces exerted on or by the lever 
may be pai^dlel or may be inclined to one another. The principle 
of the lever is practically the prindple of moments. 

Figure 37 shows three arrangements of a straight horizontal 
lever which can be turned by a force P (called the ^orf) about a 

fixed fulcrum F, against a resistance or weight W. In case^ 
equating clockwise and crmtraclodcwise moments about F, 

P X AF * W K BF 

or P 
BF 
AF 

•W 

-gjl^ently, if F can be taken very near to W, the ratio H can be 

small, that ^ a small' force, P, can thos be used 
to overcdiisfia great resistance, W; (a) and (^) Fig. 37 show 
sudi arrangdhents, while (e) shows a huge efibrt, P, oveicoming 
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only a small lesistance, W; this anangoDent gives W a lane 
movement ft>r a small movement of die eBbrt P. Note that Ae 
above forces are diose exerted on the lever; the force tf 
die lever on the resisnuice is of magnitude W, and in thc^ oppomte 
direction to those shorn in Kg. 37. The perpoidicolar distances 
(AF and BF) of the fmces from the fulcrum F are called the arms 
of the lever, and sometimes the ratio of the arm of P (the effort) to 
the arm of W (the resistance) is called the Uvervge. The value of 
P, cakulated above, is for equilibrium ; but this value is suffidem 
to Aaianee W, diat is, to bring the lever just to the point of motion. 
The slightest excess over this value will be sufficient to 
motion. 

Reactton at the Pttlcraiii.->At (a), Fig. 37, evidently the 
supporting force R, « P + W, or, by taki^ moments about A, 

W X AB XT R, X AF 
AB AF + BF / BF\ 

- AF X•"=('+AF> = " + 

Similarly at (1), Fig. 37— 

W«P + R, orR, = W- P 

and at (r). Fig. 37— 

R, + W = P, or R, = P - W 

The values of Rr shown are the pressures exerted ly the fulcrum 
on the lever; the pressure on the fulcrum is equal and opposite. 

Example 1.—A crowbar 8 feet long rests on a fixed fulcrum 3 inches 
from one end. What weight at the near end of the bar may lifted 
by an effort of 100 lbs. at the other end ? 

The arm of the ioo>lb. force is (8 x 12) — 3 = 93 inches. 
The arm of the weight W is 3 inches. Taking moments about the 

fulcrum— 
W X 3 = 100 X Q3 pound-inches 

W = =■ 3100 lbs. 

Example a.—If the fulcrum is at the end of the bar, what weigh* 
3 inches firom that end would the 100 lbs. at the other end move? 

Taking moments about the fulcrum— 
W X 3 = 100 X 96 pound-inches 

W * = 3200 lbs. 

Example 3.—Forces of 10 lbs. and 35 lbs. are to be in balance at 
die end of a lever 10 feet long. How far must the fulcrum be placed 
from the end at which the 10 lbs. hang ? 

Let X inches be the distance required. Then the arm of the 35- 
lb. force (F^. 38) is lao — x- inches. 
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Taking moments about the fulcrum— 
lo X X = 3S(i20 — jr) = 4200 — 352r 

452: = 4200 
, .r = = 93*33 inches 

and the distance from the other end = 120 - 93*33 - 26*67 inches. 

10 Fig 3«. 

Cranked Levers.—If a lever is of some such shape as shown 
in Fig. 39 (a bell-crank lever), the principle of moments is still 
applicable. To find the pull at B in the direction shown at Q, due 

to a force P at ^ it is only necessary to find, by drawing a dceleton 
or centre-line diagram to scale, the perpendicular distances FN and 
FM of the force lines from the centre of the fulcrum, or pivot, at F; 
then, by equating moments about F— 

Q X FM = P X FN 
FN 

or Q = 

Example.—In the lever shown in Fig. 39, the length of AF is 
.3*6 inches, FB is 1*94 inches, and the angle ArB is 73^ The force P 
is 10 lbs. and its perpendicular distance FN is 1*93 inches. If the 
perpendictdar distance of Q from F is 1*43 inches, find the pull Q acting 
atB. 

Q = Px 13*4 lbs. 
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If a great leverage ia required for any purpose, that is, if a large 
resbtance is to be overcome by a small effort, it will be seen by 
reference to Fig. 37 (a) or (^) that the ann of the effort P must be 
very much greater than the arm of the resistance W. To obtain a 
great leverage without the use of excessively long pieces of material, 
compound levers are used. Fig. 40 shows a simple case of a com¬ 

pound lever made up of three straight pieces. The lever on which 
the effort P is applied is pivoted about the fulcrum Fi. One end of 
the second piece, or link, is attached by means of a pin-joint, C, to 
the first lever, as shown, the other end being attached to the third 
piece by a pin-joint at D. The third piece is a lever pivoted about 
the fulcrum F« and the resistance W is applied at B. The leverage 
in the case illustrated is— 

df; 
CF, ^ BFg 

■o that if CFi and BFg are made very small, the leverage is con¬ 
siderable, an effort P pounds being able to overcome a resistance 
Wof— 

^ CFi ^ BF, 
Instead of having a number of jointed levers, oell-cranked 

levers may be used. Fig. 41 shows a compound lever consisting of 
three pieces: a straight lever AC pivoted about the fixed fulcrum 
Fi and Jointed to the link CD. A cranked lever DF|E is jointed 
to the link at D, and turns about thefulcrum F,; the resistance 
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to be overcome is applied at E. In the position illustrated the 
angles FiCD, CDF9, DF9E1 and F^ES are all right angles^ ud 
the leverage is— 

Note that in general the leverage of compound levers is leverage 
of first X leverage of second x leverage of thirdt so on. 

Examples II. 

/ I. The csmiecti]^ rod of a steam engine is 6 Ceet long, and the length of 
the crank i foot 6 inches. The thmst in the connecting rod is 2500 lbs. 

If the rod and crank are in the posidons shown, find the tnniiiig moment about 
/ the crank shaft O. 

2. Two forces act as in the figure; P is of 14 lbs. in a direcdon 10^ 
of North, and Q is 18 lbs. in a direction North-West. Find the resulting 
nsomeht about point A. 

/S, The three given forces keep a bodv at rest. A point A is on the line 
of action of force P, and its popendicufar distance firom the 7-lb. force Is 
2 indies. What must be the moment of Q about A? Measare theperpendicalar 
distance of the line of acdon of Q horn A and hence calcolate Q. The point B 
is on Q and i) inches from the line of action of the 7-lh. force. What must be 
the moment of P about B ? Measure perpendicular distance of B from line of 

* liction of P and ^ce calcolate F. Check your lesolt hf dsawiog a vector 
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diasmm withiidMpanllel^Bd propoctional to 7 Ibfc P and Q McakoUted, aad 
■eong if It fomis a doeed tr&nm. 

S|o A lig^t bar 6 feet long is 
hiii|^ at one end and held in 
boniBoatal positioii bf a rope 
attached to the free end aM 
making an ai^le of 4$^ with the 
rod. A weight of 1 cwt. is 
hung at a distance of 4 feet from 
the ntnge. Find the tendon of 
theatring. 

"5. If the bar In the previous 
question is of uniform thickness 
iod wdj^ 50 IbSo, 6nd the ten- 
,don in string. 

^ 6. The figm represents a 
pomp handle to which a force of 
50 tbs. isamdied in a line 3 feet 
iromthepmorfiiicnim. Find the 
vertical Iming force F exerted on 
the pomp bodcet Ire the handle. 

v^7« A horisontaf beam 12 feet long is sapported at the ends and carries two 
loadSf one of 2| cwt. 3 feet from the Idt-hand end, and another of 6 cwt. 
7} feet from the lefr*hai^ end. Neglecting the weight of the beam, calculate 
the reactions or nparard forces of the snpports. 

>/8. A mtiform horizontal beam 25 feet long is supported at the ends and 
carries the foUowing loads: Two tons 4 feet from Im-hand support, 8 tons 

Qnestioo 1. 

/ 

13 foet from the right-hand support, and 6) tons 22 feet from the left-hand 
sOMport. If the bean weighs 10 cwt., caknUtc the reactions of the supports. 

A uniform horisontal beam AC of weight 8$ lbs. is 35 feet long, and 
reds on two snpports A and B 27 foet iqnurt, A being at one of the beam. 
It carries the feilowing loads: 5 cwt ^feet from A, 7 cwt 20 feet from A, and 
^ cwt. at C. Calcnlate die reactions ci the snpports. 

y A uniform horisontal beam AC 2S feet loire is carried on two supports 
P and £, D being 4 foet from A and £ 7 foet nom C. If the beam weighs 
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70 lbs. and carries the following loads: 75 lbs. at A, 120 lbs. between D and £ 
and 1} feet from D, 186 lbs. between D and E and 4 feet from E, and 29 lbs. 
at C; find the reactions of the supports D and E. 

N/ti. A light horizontal lever AB of length 45 inches is pivoted about the 
fulcrum F, 5 inches from B. An effort of 25 lbs. is applied vertically at the 
end A : find the pressure at F and the resistance (W) overcome at BA: W and 
F change places, find the pressure at F and the resistance (W) overcome. 
^12. A lever is 36 inches long and is pivoted about a point inches from 

one end. What weight must be hung at the end nearest to the fulcrum in order 
to keep the lever horizontal, if the weight of the lever is 15 lbs. ? 

' Nri3. A lever of weight 9 lbs. is 28 inches long. At one end is hung a wei|;ht 
of 6 lbs. and at the other end is hung a weight of 17 lbs. Find the pmition 
of the fulcrum so that the lever vdll rest in equilibrium in a horizontal position. 

14. In the bell-crank lever shown P is equal to 40 lbs. at right angles to AF« 
If W is at right angles to BF, calculate its magnitude. 

^5. If P and W act on the bell-crank lever in the directions shown in the 
figure and P is 28 lbs., find W. 

16. In the compooind lever shown in Fig. 40, AF is ii inches, CF is 1 inch, 
CD 6^ inches, DB 13* inches, and BF, Z ii^. If P is equal to 56 lbs., what is 
the value of W? 

J7. In the compound lever shown in Fig. 41, AF|= 18 inches, F|C 
inches, link CD = 6 inches, DF^ =: 9*75 in^es, F^E = 3 inches, angle 

CDF, =1 90^. In the position shown AC is horisontal; CD and F,E are 
verdcal} DF, and ES are horizontal. What effort P vertically downwards will 
overcome a resistance W of 5 cwt. ? 



CHAPTER. Ill 

PRACTICAL APPLICATIONS 

The Steelyard.—The common, or Roman, steelyard is a machine 
for weighing bodies, and consists of a lever AB (Fig. 42) which 

toms about a fixed fulcrum F. The body to be weighed is hung from 
the end A nearest the fulcrum, and on the arm FB slides a move* 
able weight P. The point at which P must be ^aced, in order 
that the lever may rest freely in a horizontal position, determines 
the weight of the body. The arm FB has numbers engraved oa 
it at different points of its length, so that the number at which the 
weight P rests gives the weight of the body. 

To Graduate the Steelyard.—Let w be the weight of the 
steelyard, and let G be the point of the lever through which w acts. 
The lever is usually constructed so that G lies in the shorter arm 
AF. When there is no weight hung at A let o be the point at 
which P must be placed to balance w. 

Taking moments about the fulcrum F, we have— 

w X GF = P X oF.(i) 

or oF = pr X GF 

This equation fixes the position of the point o; tcf, P and GF 
being known. 

Now hang a known weight W at A, and let C be the point at 
ca 
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which P must be placed so that the lever rests ui a horizontal 
position. Taking moments about F again, we have— 

W X AF + w X GF = P X FC . . . (a) 
Subtracting equation (i) from equation (a), we have— 

(W X AF + *f? X GF) - w X GF = P x FC — P x oF 
or W X AF = P(FC-oF) 

W X AF = P X oC 
^ W 

oC = p X AF 

/' This equation fixes the point C; W, P and AF being known. 
‘ Suf^xMe the movable weight P is i lb. and W is i lb., then 
oi — AF, and the point C is mariced widi the number i. If, now, 
a weight W of a lbs. be placed at A, then the distance of P from o 
will be f X AF or a x AF. Similarly, a weight of 3 lbs. at A 
requires P to be 3 x AF from F, and its position is marked with 
the number 3, and so on. It will be seen, therefore, that if P 
is I lb. the distances between the successive graduations on the 
arm FB ate all equal to AF. By a suitable choice of the distance 
AF and of the movable weight P, the steelyard may be graduated 
in whatever units are desired. 

Example.—X common steelyard weighs 10 lbs.; the weight is 
suspended frQin a point 3 inches from the fulcrum, and the centre 
of gravity of the strayard is li inches from the fulcrum, and on the 
same side of it. Hie movable weight is 10 lbs. Where should the 
graduation corremnding to 1 cwt be situated ? 

Referring to Fig. 43, we have— 
AF s 3 mches; Gr m inches; w s 10 lbs.; W s: i is lbs.; and 

P s 10 lbs. Taking moments about F gives— 
113 X 3 -h 10 X I’S s 10 X FC 

336 + 15 *s 10 FC 
FC = ^ « 35*1 inches 

Hence the graduatfam com^osdiiq; to i cwt should be 35*1 inches 
,fioni the fidcrum. 
I ^ 

i/ Lever Safety Valve.—^The safety valve consists of a lever 
' FB (Fig. 43) pivoted at the end F. The valve is attached to the 
lever at some point V close to F. The centre of gravity of the 
lever is at point G, and the valve is held on its seat against 
the upward steam pressure by the weight W hung from some point 
A on the lever. The weight W and ^stance AF are so adjusted 
that when the steam pressure acting upwards on the valve reaches 
a certain value, it overcomes the downward force exerted on the 
valve by the weight W. The remit is, the valve opens and steam 
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escapes until its pi!<essttre falls to the working value and the valve 
doses again. 

Fig. 43.—Lever nfety velve. 

Bnmpkw t«—The safety valve in Fig. 43 is 2 inches in diameter, 
and is just on the point of blowing off steam. The lever weighs 
4 ibs., and its centre of gravity is at G. If the weight of the valve is 
i| Ib&, and the weight on the lever is 50 lbs., what is the pressure in 
the boiler? 

Let p = steam pressure in pounds per sauare inch above atmg^ 
spheric pressure. Then area of valve on which the steam pressure 

V square inches. Then total upward pressure on valve 

K V X ^ pounds. The forces acting are, x / pounds upwards at 
V, the weight of the valve ij lbs. downwards at V, the weight of 50 
lbs. downwards at A, and the weight of the lever 4 lbs. downwards 
at G. 

Taking equal contra*clockwise and clockwise moments about F--w 
V/ X FV = 1-5 X FV -f W X FA 4- 4 X FG 

v?»X3=rsx3+5ox3o + 4X7 
V X 3> = 4*5 + 1500 -h 28 = iS32'5 

ISBN’S X 7 
22 X 3 162-5 lbs. per square inch. 

x/ Example a.—A safety valve is just on the point of blowing off 
steam at a pressure of 180 lbs. per square inch above atmospheric. Thb 
valve is 3 inches diameter and weighs 2 lbs., being attached to the 
lever 4 inches from the fulcrum. The weight of the lever is 6 lbs., 
and its centre of gravity is 10 inches from the fulcrum. What 
weight must be hung on the lever 36 inches from the fulcrum ? 

Taking moments about the fulcrum— 

X 3* X i8o^x 4 = 3X4 + 6xio + Wx36 

*X9X 180 = 8 + 60 + 36W 
5091 = 68 + 36W 

A 36W a: 5091 ■“ 68 = 5023 
A W = igp = 139 lbs. 

Body acted upon by Three Forces—Important.—If three 
forces alone keep a body at rest they must either (i) be all parallel 
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or (a) act along lines which all meet in one point lo realue this 
clearly the reader should sketch a number of cases of three straight 
lines showing the lines of action of the forces. If they are not all 
parallel (Fig. 44), suppose two, A6 and BC, meet at P, then their 

resultant is a force passing through F and 
across the space B. Obviously, this resultant 

^ cannot balance the force CA unless the force 
CA is in the same straight line, in wMch case 
it passes through the point P, and all tiiuree 
forces pass through the point P. This will 

I be found true for all possible cases except that 
of three parallel forces. We may also put the 

Fifl. 44. matter in this way. The forces AB and BC 
evidently have no moment about P, hence by 

the principle of moments the moment of CA about P must be zero, 
so that CA must also pass through P. 

This important fact is very useful in showing the true direction 
of unknown forces, and when all the lines of action of the three 
forces are found we can use the triangle of forces. We shall illus* 
trate the usefulness of this fact by some examples. 

Fig. 45 shows the cranked lever problem already solved in 

Fig* 45* 

Chap. IL, p. 36, and Fig. 39. The force P is given as 10 lbs., and 
it is required to find the. pull Q at B in the direction shown. 

Produce the lines of action of P and Q to meet in O. The 
third force on the lever is the force exerted by the fulcrum on the 
lever, and since P and Q pass through O, the third force must also 
pau throt^h O, so that a line joining the centre of F to O gives 
Ibe line of acdon of the tlurd force. Drawing the triangle of forces 
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we find the magnitude of Q to be 13*4 lbs., thus confirming the 
previous result. 

Hanfing: Chain.—A chain of total weight iso lbs. hangs 
from two supports in such a manner that the inclination of 
its ends is 30° and 45° respectively. Find the tension of the chain 
at the ends. 

Produce the lines of inclination of the ends to meet in some 
point P (Fig. 46). Then there are three forces acting at P, the 

weight of the chain vertically downwards, and the tension at each 
end of the chain. Drawing the triangle of forces abc^ we find the 
tension be at the right-hand end is 102’5 lbs., and the tension ab at 
the left-hand end is 83*5 lbs. These results may be obtained by 
taking moments gbout R and Q or other points in the hnes PR 

and PQ. . 1 j 1 - 
Foundry Crane.—In a foundry crane the load runs along a 

horizontal rail PQ (Fig. 47) of which the end P is hinged to a waU, 
and the outer end Q is supported by a tie-rod QR attached to me 
wall s feet above P. When a load of 1000 lbs. hangs from a POint 

S on PQ 6 feet from P, find the pull or tension in the tie-rod, and 
the pressure on the hinge P, the length of PQ being 10 feet ^ 

There are three forces acting on the rail PQ:—(1} the weight 
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of xooo Ibt. at S, (s) the pull of the tie-rod at Q» (3^ the ptnnire 
of the hinge at P. The lines of acdon of the first two intersect at T, 
diesefore die durd force nuist pass through T, and its line of acdon 
molt be FT. 

Place letters A, B and C m the spaces as shown on the centre 
line diagram in Fig. 47, and draw the triangle of forces for the 
point T. Choose any convenient scale and draw ab parallel to 
AB^ die fbcoe of xooo lbs.; from^ draw A parallel to BQ and fiom 
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a draw ae parallel to AC. The intersectioo of these two vectors 
gives the point and be. which scales 1350 lbs., is the pull in 
die tie-rod RQ, whilst, ns, which scales 1275 lbs., is the j^ssure 
exerted by the hinge P. 

Note.—ea acts from n to a, and is the direction of the force 
exerted by the hinge to maintain equilibrium. The pressure m the 
hinge is 1275 aXae^ that is, towards the hinge. 

An alternative method of solving this problem is by tbe prin- 
dple of moments. The perpendicular distance from P on to RQ 
is found by measurement to be 4*43 feet. Taking moments about 
P we have— 

be X 4‘43 = 1000 X 6 
, 6000 ,, 
be = — = 1353 lbs. 

4 43 
Tbe perpendicular distance from Q on to the line of action of PT 

is found by measurement to be 3'i3 f®®^* Taking moments about 
Q we have— 

ac X 3*13 = 1000 X 4 
4000 

= 1*77 lbs. 

Another Case.—Suppose tbe same crane as in the previous 
example to carry a second load of 800 lbs. 3 feet from F (see Fig. 
47 a) ; find the pull in the tie-rod and the pressure on the hinge P. 

In this case there is an additional force, making four forces 
altc^ether on PQ. We may, however, reduce these to three forces 
by finding the resultant of the two forces of 800 and 1000 lbs. in 
the way shown in Chap. II., and then consider tbe problem as if 
there were only three forces. Proceeding in this way, we find the 
resultant of the forces 800 and 1000 lbs. to be 1800 lbs. at a dis¬ 
tance of if feet from the 800-lb. force. Drawing the triangle of 
forces in the same way as in the previous problem, we find be the 
pull in the rod to be 1900 lbs., and ac the pressure on the hinge to 
be 1915 lbs. 

This problem may also be solved by the principle of moments 
as follows: The perpendicular distance from P to RQ is 4*43 feet 
as before, whilst the distance of Q from PT is found by measure¬ 
ment to be 5 feet. 

Taking moments about P we have— 

be X 4'43 = 800 X 3 -1- 1000 X 6 
=: 2400 -f 6000 SS 8400 

be - ^ = 1896 lbs. 
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Taking moments about Q we have— 
OCX 5- 800 X 7 + looo X 4 

= 5^^^ "i" 400b = 9600 
9600 

'Of as ss 1920 lbs. 

a 

Togrtfle Joint.—^Tbis well-known arrangement is applied in 
many machines, and its principle is shown in Fig. 48. A moderate 
force P acting at the junction X of two rods or links causes a large 
thrust in the two links which is transmitted by them to their attach¬ 
ments at Z and Y. For simplicity let Z be a fixed'pin and Y a pin 
in a block working between vertical smooth guides, P being hori¬ 
zontal and equal to 50 lbs. Suppose each link ZX and XY is 10 
inches long and inclined, say, xo*’ to the vertical. On the pin X 
tihere are three forces acting: (i) the force P of 50 lbs.; (a) the 
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thrust of the link ZX; (3) the thrust of the link YX, and the tri¬ 
angle of forces may be drawn by setting off ab horizontally to 
represent 50 lbs. to scale, and drawing be parallel to the force BC 
in XY, and ae parallel to the link ZX or the force AC to meet be in 
r. Then be represents the thrust of link XY on X, and cb represents 
the thrust of the link on Y. The pin Y is kept at rest by the 
thrust of the link XY the vertical resistance W, and the horizontal 

reaction DC of the vertical slide. Set off the vector be again, and 
draw a vertical db and a horizontal vector de intersecting at d. 
Then the vector bd gives the magnitude of the resistance VV over¬ 
come by the force P of 50 lbs.; the resistance W is scaled off to 
be 1417 lbs. ... r .V 1- 1 

Now repeat the example with different inclinations of the links 
to the vertical, and we find the following results ;— 

Aasle of links to the vertical. Resistance W in pounds. 
eo 286 

10® *417 
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The results show how great W becomes as the links becbne 
more nearly in line with one another.^. The value of W is shown 
plotted for different angles^! the links''m Fig. 49. 

Examples III. 

A common steelyard weighs 12 lbs., and its centre of gravity is 2 inches 
from the fulcrum and on the same side of the fulcrum as the weight. The 
movable weight or rider is 14 lbs., and the graduation corresponding to ij cwts. 
is 3 feet 4 inches from the fulcrum. How far horizontally is the weight from 
the fulcrum ? 

^ 2. The lever of a common steelyard weighs 8 lbs., and its weight acts 3 inches 
to the left of the fulcrum. The hook and links which carry the load weigh 3 
lbs. and are attached 3 inches to the left of the fulcrum. If the graduation 
mark 3 feet from the fulcrum reads 112 lbs., find the weight of the rider. How 
far is the zero graduation from the fulcrum, and how much does the rider move 
per pound kA graduation ? 

-^3. A safe^ valve is 2| inches diameter and is just on the point of blowing 
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off steun. If the weight of the valve Is 2 lbs. and the weight on the lever is 60 
lbs. 28 inches from the hilcnim, what is the pressure of the steam in the bmler? 
The weight of the lever is 8 lbs. and acts 2 inches from the fslcnim towards the 
weight m 60 lbs., and the valve s0em is pivoted 3) inches from the fulcram. 

^ 4. The lever of a safety valve weighs 8 Ibs^ and the disUnce between the 
frdcrnm and the end of the valve spindle is 3 indies. If the length of the lever 
b 25 inches, and its centre of gravity 8 inches from the valve spindle, what weight 
mnst be pnt on the end of the lever so that steam will blow off at 150 lbs. per 
sonare tra? The we^ht of the valve and its spindle b 2| Ihs., and the 
dimeter of the valve 3 inches. 
^ 5. A nniform balk of timber b 20 feet long and weighs 500 lbs. One end 

b nused by meaiu of a rope inclined backwards over the ball^ the other end of 
the balk remaining on the ground. When the inclination of the balk b 20^ to 
the horisontaly ana that of the rope 40^ to the horisontal, find the tension in the 
rope and the pressure on the ground in magiutude and direction. 
^, 6. The fnme carrying the given loads b supported at P and Q. The re¬ 

action at Q b vertkaL the other reaction at P b not vertical but passes through 
a hinge at P. Find the reactions. 

QueftioDfi- 



CHAPTER IV 

SIMPLE FRAMES 

Frames.—By Jr antes or braced structures or trusses we understand 
structures consisting of rods, bars, pillars, chains, etc., hinged to¬ 
gether to form a rigid whole. Frames generally consist of a num¬ 
ber of braced triangles, and we shall apply the principles of Chap. 
I. and Chap. II. to find the stresses in the members of some simple 
examples. Braced structures are loaded at their joints only and 
the individual members are either in tension or compression. Even 
when the members are not actually hinged together we employ the 
same means to find the stresses in them approximately. 

Jib Cranes.—We have already had a simple example of this 
in Chap. 1., p. 19, and now consider some other arrangements of 
the rope or chain. 

Example 1.—In the jib crane shown in Fig. 50 a weight of 4 

tons is supported by a rope passing over a pulley at the crane head C. 
The rope is then taken from the pulley to a drum or lifting winch, 
its direction being inclined 60° to the vertical, as shown. Find the 
stresses in the tie-rod AC and in the jib BC. 
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There are four forces acting at C, (i) the weight of 4 tons verti¬ 
cally downwards, (2) the pull of the rope equal to 4 tons in the 
direction from C to D, <3) the force or stress in the tie-rod, (4) the 
stress in the jib. The polygon of forces for the point C is drawn aa 
follows. Choose any convenient scale, say, i inch to 1 ton, and draw 
the vertical vector ef 2 inches long to represent the weight of 4 tons ; 
next draw^2 inches long parallel to the rope CD ; from g draw the 
vector gh parallel to the jib BC, and liom e draw eh parallel to 
the tie-rod AC. Then gh represents the stress in the jib, and he 
the stress in the tie-rod. Measuring these lengths, we find gh is 
4*8 inches long representing 9*6 tons, and he is 172 inches long 
representing 3*44 tons. 

It should be noted that if the tensions in the two parts of the 
rope CD and CE were replaced by their resultant egy the problem 
would reduce to one on the triangle of forces, the vector diagram 
then consisting only of the triangle egh. 

Example a.—The crane of the previous example carries the 

weight of 4 tons by means of the snatch block shown at {b) in Fig. 51. 
Find the stress in the jib and tie-rod. 

In this case the forces acting at C are shown at (a), Fig. 51, the 
tension in the rope being half the load, namely 2 tons. Draw a verti¬ 
cal vector ef to represent 4 tons as shown at (£), thenj^ 
CD to represent 2 tons, then^A parallel to the jib, and eh parallel to 
ihe tie-rod ; he represents the stress in the tie-rod and scales 4*34 
tons, whilst represents the stress in the jib and scales 8*5 tons. 
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Sinqrf* ttoot Frame or Truss. 
Bnunpls 3.—A simple triangular roof truss PQR (Fig. 52) has 

a spaa (PQ) of 20 feet, and a rise of 5 feet above the supports. It 
carries a load of 3000 lbs. at its apex. Find the stress in each 
member. 

First find the reacrions Rp and at P and Q; thejr will en* 
dently be equal or each 1500 lbs., which we could find by taking 
moments about P and Q of the external forces 3000 lbs., Rp and R^ 
on the frame. Letter the space diagram ABCD as s^wn. Now 
draw the triangle of force for the point P, taking a scale of, say, joo lbs. 

Fjc. 5a.—Force poljrfMu and atreat diagram for a aimple roof. 

to I inch as shown at (i). Set off ca upwards vertically to represent 
the force CA (or R,) s 1500 lbs. to scale. Draw ad parallel to AD 
(or PRX and dc pa^el to DC (or PQ) to meet it in d. Then tad 
is the trianidc of forces required, and the direction of the vectors is 
c\oa,a to ^ and d toe. The force ad scales 3354 lbs. and its direo 
tion is from u to if (or R to P); the force dc scales 3000 lbs. and acts 
from,d to r (or P to Q). Hence the force in AD or RP thrusts at 
P, that is^ RP is in compression, and the force in DC or PQ pulls at 
P, that is, PQ is in tension. 

Similarly, (2) Fig. 52 is the triangle of forces for the three Yorces 
at Q. It ka^ to the same conclusion with resMct to PQ« namely, 
tbal’it is in 3000 lbs. tension, and also shows RQ to be in 3354 lbs. 
compression. 

We now draw the triangle of forces for the three forces meeting 
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** ** 5*- TWs gives 3354 lbs. compresskm in PR 
^ 3JS4 lbs. compression in RQ, tints checking the prevuws value* 
founpior those members and completing the sohition ottbt proUem. 

Strees Diagrams.—If we pot the diagrams (r) and (a) (Fig. 
5a) together, the side de of diagi^ (1) fitlling on the side ed of (a), 
we get the diagram (4). This mdndes (3), and shows in a single 
diagram all the external forces AB, BC, and CA and all the stresses 
in the members BD, DC, and DA, and is called a s/nss diagram. 
When we want to find the stresses in all the members of a structure, 
instead of drawing the separate polygons for each joint we draw 
simidy the stress diagram. For example, in the above case we first 

Fig. 53.«-Foi€n in tlm nwmbtrt of n lotf. 

draw ei doimwards to represent AB (3000 lbs. downwards) and 
then divide it equaDy at r so tiiat be and ca each represent 1500 Iba 
upwards. Then on ca complete the triangle of forces cad for the 
pomt P, and then draw the triangle of forces for either point R or 
point Q, and we find that the vector diagram (4) contains the 
triangles for both the points R and Q. 

li^en drawing a single closed polygon of forces we may show 
the direction of each vector by arrows placed on the sides of the 
polygon, as in (i) (a) and (3), Fig. 53. But in a stress diagram 
sudi as (4), Rg. 58, each line represents two opposite forces; for 
example, the line joining ato d represents the thrust ad on P, and 
also the thrust da on R. We therdbre place arrows on the mem* 
bers of the frame on tim space diagram as tiiown in Fig. 53. 
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Checking: by Moments.—Since the three forces meeting 
at P, Fig. 53, are in equilibrium, we may apply the principle of 
moments thus: Taking moments about, say, R (in pounds-feet)— 

1500 X 10 (clockwise) = force in PQ x 5 (contra-clockwise) 

force m PQ = —-= 3000 lbs. 
0 

and to give a contra-clockwise moment about K. it must pull at P| 
showing the stress in PQ is a tension. 

Similarly, the force in PR may be found by moments about, 
say, Q, if the perpendicular distance of Q from PR be measured 
and the stress in RQ may be found by taking moments about P. 

Experiment.—The calculated stresses in the above form of roof 
truss may be verified by experiment as follows :—An experimental 
form of the roof truss is shown in Fig. $4. Compression spring 

D 

balances S, and measure the thrust in AD and BD, whilst the 
tension in the tie AB is measured by means of the tension balance 
S3. The end P is hinged to the wooden base PQ, and Q is free to 
move on the rollers shown. In a particular experiment a weight of 

lbs. was hung from D, and the lengths of AB, AD and BD were 
found to be 38!, 25} and 25^ inches, respectively. The readings of 
the spring talances were ; §1 — 5| lbs., = <| lbs., Ss = 4f lbs. 
By setting out the space diagram to scale ana drawing the stress 
diagram from it as described above, the stresses in the members 
were found to be in AD and BD 5*8 lbs» and in DC 4*4 lbs., agreeing 
very closely with the observed readings of the spring balances. 

Another Roof Truss.—Another form of roof truss is shown 
in Fig. 55, carrying 5000 lbs. at the apex. The stress diagram con¬ 
tains the following polygon of forces. For joint P, cad; for joint 
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C^.hte\ for joint R abed', and for joint S The stresses in the 
different members are shown in the table below— 

Member. Strees (pounds). 
PR or AD 7150 coix^ressive 
RQ or BE 7150 „ 
PS or DC 6250 tensile 
SO or EC 6250 „ 
RS or D£ 2200 n 

Other Frames.—Fig. 56 shows a braced support carrying a 
load of 800 lbs. at 10 feet from a wall. When the triangle abc for 
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joint P has been diamif by drawing « to ^ to r, and a to we 
know diat die force exerted by PQ on P is m a 1130 lbs., hence 
the force exerted by PQ on Q is the equal and ofqionte force ar, 
and this being known we can draw die triangle aed finr joint Q. 
The stresses in the diffisrent monbers are— 

>/si 

AC 
CD 
BC 
DA 

Stmt (poMdi). 

1130 oompmsiiFe 
1130 tensile 
800 „ 

1600 oompfCMiTe 

. Simple Braced Qlrdera.—^Fig. 57 shows a Warren girder coo¬ 
usting of three equilateral triangles. It is sui^KMted at the ends 

Fic. 37. 

P and Q, and carries a load of sooo lbs. at the joint R. Find die 
stresses in the diderent members. 

The reactions at the suf^iorts are evidendy 00 at P and Ar at Q, 
bodi being of magnitude zooo lbs. Choosing any convenient scale, 
draw ab paralldi to AB to represent sooo lbs. and bisect it in f. 
Starting at die joint P or ADC, we draw ai parallel to AD, and 
from e draw cd parallel to CD; then from d draw de parallel to 
DE, and from c ce paralld to CE; from e draw rf parallel to EF, 
from t, {^parallel to CF, and from b draw paralld to BF. The 
last three vectors should all meet in die common pdnt/ The 
stresses in the detent members i 

llMibn. 
AD 
BF 
DE 
EP 
DC 
EC 
rc 

On— (pcmuA»). 
57S coBopTcarive 
57f 

i>5£ h 

1156 tmik 
tis* « 
aij6 „ 
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58 ahows die Wanen giider in the abovte examide inserted. 

C 

and carrying the load of aooo lbs. at 
R as b^oie. The stress diagram is 
drawn in the same way as before. It 
will be seen that although the stresses.' 
in the different memben are of the 
same nu^itude as before, those mem¬ 
bers which were in compression are 
now in tension and via versd, namely, 
the stresses in AD, SF, are now ea<^ 
578 lbs. tensile, in DE and EF 1156 lbs. 
tennk, and the stresses in DC, EC and 
FC are now 1x56 lbs. compressive. 

Fig. 59 shows the Warren girder of 
Fig. 58 wi^ two vertical members added;, 
it is loaded as shown: find the stress in 
eadi iponber. The stress diagram may 
be drawn as fcdlows:—First draw the 
load Hne ad, mafcing at to represent AB 
(500 lbs.), Ar to represent BC (1000 lbs.), 
and td to represent CD (500 lbs.). The 
reactions at the ends are evidently equal, 
hence bisecting dcfx ad im we have the 
reactidu represent^ by dt and or. Now 
draw the triangle of forces etff for the 
point EAF, so that af is parallel to AF 
and pandlel to EF. From / dra.w fg parall^ to FG and 
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from hf hg parallel to BG. From g draw gh parallel to GH and 
from e, eh parallel to EH. This completes one half of the stress 
diagram; the other half may be drawn in a similar manner. 

The stresses in the members are found to be— 
Member. 

AF, BG,CK, DL 
FG and KL 
GH and HK 

EH 
£F and EL 

Streu (pounds). 

578 tensile 
500 

867 compressive 
1156 „ 

Examples IV. 

I. A crane jib measures 14 feet, the tie-rod 10 feet^ and the vertical post 
S feet A load of ^5^ ^hs. is attached to a chain which passes over a single 

pulley at* toe crane head and 
then parallel to the tie. Find 
the stresses in the tie-rod and iih. 

2. Solvo Example 1, when 
the chain runs from the crane 
head in a direction parallel to 
the jib. 

The crane of Example i 
carries the load of 3500 lbs. 
suspended from a snatch block 
as in Fig. 51. Find the stresses 
in the tie-rod and jib (1) when 
the chain runs parallel to the 
tie-rod, (2) parallel to the jib, 
(3) in a direction inclined down¬ 
wards from the crane head at an 
angle of 37^ to the vertical. 

4* The simple roof Uuss shown carries a load of 44 cwt. at the apex. Find 
the stresses in the members. 

Qumdond. 
/ 

The roof *hown in Pig. 55 cuiiM a kwd 0(3800 lbs. at the apex, 
^od the itniMs ia the members. 
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6. The given roof truss is loaded as shown. Estimate the stresses in the 
different members. 

7. The braced support shown in the figure is loaded as shown. What are the 
stresses in the different members ? 

8. The Warren girder shown in Fig. 58 carries a load of 4^ tons at the 
joint R. Find the stresses in the memTOrs. 

C 

9. The Warren girder ahown in the figure carries a load of 8 Ions at the joint 
shown. Draw the stress diagram and determine the stresses in die meml^rs. 

10. The truss shown in the figure has a span of 24 feet, divided into 4 equal 
pjuiels each 8 feet high. The truss carries a load of 8000 lbs. at mid-^ian* 
Find the stresses in the different members. 

c 



CHAPTER V 

WORK 

'Whim a force acts on a body and causes it to move against a 
resistance the force is said to do worir. If the force does not vary 
in magnitude and is in the direction of the modem, the amount 
work done is equal to the product of the force and dm distance 
moved, or— 

Woric s force X distance. 
^ Uidt «f Work.—If a force of i lb. acts duroogh a distance of 

I foot, dm amount of wodc dorm is — 
I foot X I lb. s= I foot-pound 

and one foot-pound is called the unit of work. If a weight of i lb. 
is lifted tbrot^ a vertical distance of i foot, i foot-pound of work 

done. If a weight of, say, 7 lbs. is lift^ through a vertical 
height of 9 feet, the work spent in lifting is— 

9 X 7 = 63 foot-pounds. 
Other Units of Work.—Occasionally other units are used, 

for instance, the product of a force in tons and a distance in inches 
give indi-tons of work; amilarly, tons and feet give foot-t<ms, 
pounds and inches give inefahpoun^ and so on, but &e foot-pound 
is the usual unit. 

Example 1.—A horse pulUng a cart exerts a steady horuontal pull 
of 80 lbs., and walks at the rate of 4 miles an hour. How much work 
does it do in 10 minutes ? 

Distance travelled in 60 minutes ~ 4 x 5280 = 21,120 feet 
21 120 

„ „ 10 minutes = —= 35*0 feet 

Work done s 3520 x 80 = 281,600 foot-pounds. 
Bxaatple a.—How much work is done in raising 4 tons of -coal 

from a mine 200 yards deep? 
Height throi^h which coal is raised is aoo x 3 = 600 feet 

Work done in foot-tom ■=■ 600 x 4 s 3400 foot-tons, 
lifbiq; force in pounds « 4 x 3240 = Spfo lbs. 

Wmk doM in foot-pounds a> 600 x 8960 s 5476,000 foot-pounds. 
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Bxanple 3.—If a horse is doing 33,000 foot-pounds of work in 
I minute when pulling a rope at a spe^ of 3. miles an hour, what piA 
must it exert ? 

Distance moved in i hour = 3 x 5280 = 15,840 feet, 

»• « I minute = = 264 feet 

Work done in minute— 
264 X pull = 33,000 foot-pounds, 

= 125 lbs. 

Work done in Rotation.—Suppose a force 7 lbs. (Fig. 60) 
is applied at right angles to a handle 2 feet long, or at the circum¬ 
ference oi a pulley 2 feet radius, to turn a spintUe at the other end 

/ 

/ 
I 

1- 

I 
\ 
\ 
\ 
\ 

N 

of the handle or at the centre of the pulley; in one revolution the 
work done would be— 

Force X distance » force x circumference s 7 x 2 x aw 
SB 28x = 88 foot-pounds. 

The moment of the force about the axis of rotation is— 
7X2 pound-feet = 14 pound-feet, 

so that the wwk done may be written— 
14 X aw ss moment X ai^le in radians =s 88 foot-pounds, 

and for anyamount of rotation either more or less than one revolu¬ 
tion die same relation would be true, or— 

work done « moment of force X angle turned through in radians. 
This form is sometimes more convenient dian the product of force 
and in considering motion of rotation. Tlie moment ai 
the turning-force is smnetimes called the torfue; so we may state- 

work done SE torque X angle 
(foot-poiaids) (pound-feet) (radiansT: 
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Example i.—How much work is done in 300 revolutions of an 
electric motor it the torque on its shaft is 800 pound-feet ? 

X 300 - .885 
Total work done = 800 x 1885 = 1,508,000 foot-pounds. 

Example a.—If a motor does 99,000 foot-pounds of work in one 
minute during which it makes 600 revolutions, what is the torque or 
turning moment on the motor shaft ? 
Total angle in one minute = 600 x 2ir = 1200 x ir radians, 

Torque x 1200 x r = 99,000 loot-pounds, 

Torque = 
99,000 

1200 x » 
-5 -,,. 9^,^???—- ~ 26*23 Ib.-fect. 

1200 x 31416 ^ 

done by a uniform force acting through 

f 

SOtb. 

Work represented by an Area.—The amount of work 
a distance in its own 
direction may be repre¬ 
sented by a rectangular 
area or diagram of 
work, one side of which 
is proportional to the 
force and the other 
proportional to the dis¬ 
placement. For ex¬ 
ample (Fig. 61), if we 
represent a force of 
50 lbs. by a length of 
say 3*5 inches, and a 
distance of 8 feet by 4 
inches, the area 2*5 x 4 

Fic. 61—Work represented by an area. 

or 10 square inches represents the work done. 

Work done » 50 x 8 = 400 foot-pounds 
Area = 4 X a’S = 10 square inches. 

So that the scale is ^ = 40 foot-pounds per square inch of area. 
The scale of work may best be found as follows: The force scale is 

I uich to — = ao lbs.; the distance scale is f = a feet to i inch, 

hence, 'a square of i inch side represents a x 20 as 40, or the work 
scale is 40 foot pounds to i square inch area. 

If the force is not constant, but varies uniformly with the 
distance through which it acts, the diagram of work is not a 
rectdngle, bu» a trapezoid, such as is shown in Fig. 6 a; the area 
in Fig. 62 represents the work done by a force, which increases 
uniformly from ao lbs. to 45 lbs. during a displacement of 10 feet 
in its own direction; the scale is to be found as explained above. 
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The area is equal to the base multiplied by the mean or average 
height. The average height is equal , to the height £F, midway 
between the extremes AB and CD. Note that— 

Length EF = 
AB + CD 

Area *■ AD x EF. 

Fig. 6a.—Work done by a fotca which varies uniformly. 

Similarly, we might calculate the work done by multiplying the 
distance by the average" force. 

20 *1** 

Work done = 10 feet x-^—- = 10 x 32*5 = 325 foot-pounds. 

In cases where the force varies uniformly from zero to a 
maximum value, or falls uniformly from a maximum to zero, the 

Fig. 62A.—Work done by a force which is proportional to distance. 

same method may be adopted, the diagram of work being as 
shown in Fig. 63A, where the work is— 

5 X —= S X 70 X ^ = 175 foot-pounds. 
a 

D 
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Xn all cases wheie ibe force varies tmifonnljr to or from zero 
with distance the rule for finding the work done is— 

Work 8 distance x mean force 8 distance x i greatest fince. 

Example i —A spring originally not stretched is extended 4 inches. 
Find the work done in stretching the firing if the loroe reqmred 
increases 5 lbs. per inch of stretch. 

Maximum force required s: 5 x 4 = ad^lbs^ 
Average foroe ^ ^ ~ 10 Ibs.^ 

Worit done = 4"(inches) x 10 (lbs.) ts 40 inch-pounds. 
Eximipie a.—How much work is required to stretch the above 

spring the last 1*5 inches ? 
Force requir^ to stretch the last i‘S inches after the sprii^ is 

stretched 2-5 Whes, is 2‘5 x 5 = 12*5 lbs. 
^ + 12*5 

Average force required in last i*S inches =--- = 16*25 lbs. 

Woik done = i6^S ^ **5 = 24*375 inchJb*. 

The work required for the first rs inches = ^ x 2*1 

= iSiSas inch-pounds. And since 40 inch-pounds were required tor 
4 inches, the work in the last i*$ inches most be— 

40 — iS'fias = 24*375 inch-pounds as above. 

Bxaniple 3.—A chain weighing 10 lbs. per foot, and 80 feet kn^ 
hangs vertically, and is then wound up on a drum at the top. Find the 
work done. How much work is done in winding up the fim to feet ? 

Total weig^ of chain =: 10 x 80 = 8m lbs. 
Pull requited at first = 800 lbs. 
, „ atend = o 

800 o 
Average pull =---= Ibs- 

Wqrk done — 400 x 80 =: 32,000 ft>ot>lbs. 

Also after winding the first 20 feet— 
Pull required = (80 20} x 10 = 600 lbs. 

6oq 
Average poll in first 20’feet =---= 700 lbs. 

Worir done = 700 x 20 = 14,000 foot-lbs* 

Chech.—^Thc work done in the last 60 fcct = x 60 = 18,000 
2 

feet'pounds. Work in first 20 feet = 32,000 — 18,000 = 14,000 fioot- 
pounds as above. 

Work done in Mactainen tuiMl far Liftiag;—^Tbere ue many 
lifting madiines, such as winches or ctahs and poUey blodta of 
rations sorts to be described and explained lata*, bar in each a 
comparatively small force called the (P) is to ovcramie 
a larger force (the weight lifted) called the load (W) Woilt is 
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die 
load 

on die imriiiHC bjf die cfibft meviiig duoanjh e 
is dooe liT die "***•***»?* in lifdut dy» neater load, 

it diroit^ a shorter dwtance. In all actosl madunes some 
slancfs, called frictioe^ in the hnl hi 
Mlcms «e are going to pot dn askfe 

Waffle applied to a MiichiBe.—^In all madiines 
bjr die cflbit is cqnal to die naefiil woifc done on die 

the aanie tim^ pins the woefc done in overconung the 
in the aandiincs. This k called die 

If we ooold nake a madune to woric so fiedf that its fikdonal 
to nMNioD aeie nodiinf^ die woih done Iqr die ^fort 

vonld be jost equal to the mnk dooe on the had. No madune is 
so perfect as t&, but some ample madiines such as a wbed 
and ade on ball bearingi approadi closdy to it When the lesiat- 
ances m so small as to be negligible and die motion is steady «e 
may write for any given interval ot tim*— 

WoA done by ettoit — woric d<me on had, 
or, m a given time— 

effiwt X motimi of effint s had x motion of had 
(in pounds) (in feet) (in pounds) (in fetlt) 

Dtvidii^ by die efibrt and by die motion of the had, this may 
be pot— 

motion of effint ^ had (in pounds) W 
motion of had effort (in pounds) P 
mntwwi of eflbti 

The latio-jjjg^^-^fj^jjjdenotedbyVis called the 

of the machiiw!, bebig the latio of the effOTfs motion to the bad’s 
motion in die same tim& 

ICMUl 
The ratiomay be called the mtthtpucal adponiatgt m force 

latio of the madwnv., SO that the above equation for an ideal perfect 
machine may be written— 

W 
^ (focoe ratio or mechanicai advantage) s y (velodqr ratio) or— 

force ratio _ W 
velocity ratio PV “ ** 

To iHustiate by numbers, if in mder to lift the load i foot die 
effort has to move 15 feet, die vdodty ratio or— 

cflfosfs motion . 
loafs motion ** 

Then, if diere were no ftfctional resistance, an effort of i ftiw 
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would lift a load of 15 lbs., an effort of a lbs. would lift 30 lbs., an 
ttffhif of 7 lbs. would lift 7 X IS or 105 lbs., and so on. The force 

or advantage would also be— 

W _ i^_ 3? £5 

P 7 2 I ‘ 

Experimental Illustrations.—Fig. 63 shows a wheel and axle. 
The wheel A and the drum B are keyed to the same spindle C; the 
spindle is mounted on ball bearings in order that the frictional 
resistance may be reduced to a minimum. The effort P is applied 

by means of the cord F pusing round the circumference of the 
wheel, and the load W is raised by another cord E coiled round the 
axle or drum, as shown. 

First find the velocity ratio as follows;—Hang weights on the 
cords F and E so that they just balance, then move the effort 
weight P on cord F downwards, and measure the distance through 
which it must be moved in order to raise the load W on cord E 
through any convenient distance. In a particular experiment, in 
order to lift the load i foot, the effort bad to be moved through 
3 feet, hence the velocity ratio is 3. In another determination it 
was found that to lift the load 10 inches the effort had to move 
30 inches, which gives a velocity ratio of = 3 as before, the two 
determinations i^reeing. 

Different losi^ woe then hung on the cord E, and' the 
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corresponding effort applied by weights on the cord F, so that when 
just started downward the resulting motion was steady. The 
results obtained are shown in the following table :— 

Lomd W (Ibt.). Effort P (lbs.). Ratio-'Y. 
P 

[ 

5 1*68 —^ = 2*08 
r68 ^ 

15 5-01 

as 8*34 

It will be seen that in each case the mechanical advantage or 
W 

force ratio-p-is practically equal to the velocity ratio (V = 3). 

Fig. 64 shows a bicycle mechanism arranged to show that t' e 

mechanical advantage is nearly equal to the velocity ratio. The 
effort P is applied by hanging a weight on the string passing round 
the back wheel of the bicycle from which the tyre hu been 
removed. The pedals are replaced by the pulley A, rou.’id the 
circumference of which is coil^ another string on which the weight 
W is hung. In order to lift W 6 inches it was found that P 
had to be moved 5 r inches, hence the velocity ratio is ^ as 8*5. 
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This value was checked by another determination which gave the 
same result, namely, to lift W 9 inches P had to move 76*5 indict 

giving a velocity ratio of = 8-5 as before. 

The following results were obtained for the mechanical advan^ 
tage at different loads; it should be noticed how closely they agree 
with the velocity ratio 8*5 

The above principle is also verified experimentally by means 

of the inclined plane shown in Fig. 65. The plane can be fixed at 
any angle to the horizontal, as shown; on the plane rests a sheet of 
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|date glass A. The carrier B is mounted on freely moving wheels, 
and is anang^ to be pul^ up die sheet of glass by means of the 
efoft of a wog^ phoed in die scale pan shown. In all the experi¬ 
ments made; die efibrt tm the carrier was arranged to be parallel to 
die plane. To move die carrier (load W) from the bottom to the 
t(^ tri* the plane dirot^ a verii^ height h it is evident that the 
eff<Ht P mu^ move through a distance equal to the length of 
die plane Z Hence the velocity ratio of vertical motion is equal 

/ 
tOjj. 

The length / of the plane and its height h were measured for 
die coirespon^ng values of W and P, the results obtained beiii^ 
tabulated below. 

LoAdWCoo.) 
(weti^ht of 
earner). 

EflbrtP(aa.) 
ioclttdiiig 
•cale pan. P 

RcUii k Leof^ / 
(i]icbes>. 

Velocity ratio 

ayso 3*91 9-7S 28*5 2-92 
68*s jo’so a-14 13*90 28*5 2*20 

36as 1-89 15-*S 38*5 1*86 
68-5 40-75 1*68 17*10 28*5 1*66 
68*5 44-50 *54 1875 28*5 1*52 
«8*5 4Sx» 1-42 ao'oo *8-5 1*42 

Again it is seen how closely the mechanical advantage -jp agrees 

with the vriocity rado^ of vertical motion. 

Work lost in Actnal Machines.—In most cases a considerable 
part the work pot into a machine is lost in frictional resistances, 
so that the useful work gut out of a machine, or done on the load, 
is not neatly equal to the work done by the effort. It is still 
however true that— 

work done by effort = work done on load + work lost in friction 

or— 

work lost in friction = work done by effort — useful work done on 
load. 

Efficiency.—^The fraction— 

Useful work (done on the load) 

Work expended (by the effort) 

is called the ^aauy. This |nx>portion varies with different loads 
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on the machine, as we shall find latei on. In a perfect frictionless 
machine the efficiency would be unity, that is— 

useful work » work expended. 

In actual machines— 
. _ useful work _ load’s motion X load 

ciency expended efibrt’s motion x effort 
_ mechanical advantage 

”” velocity ratio 
Or again— 

•otc. • W 
ciency — ^ velocity ratio "" PV 

which is most simply understood as the useful work for i foot lift 
divided by work expended in the corresponding V-feet motion of 
the effort. The efficiency is always a proper fraction, and is usually 
multiplied by loo, and stated as so many per cetit. 

W 
The velocity ratio V is fixed, but the mechanical advantage p 

varies with the load. 

Example i.—If in a machine the effort moves i2‘; times as fast as 
the load, and a weight of t cwt. is lifted by an effort of 20 lbs., find the 
mechanical advantage and the efficiency of the machine at this load. 

,, , . , , load 112 lbs. 
Mechanical advantage = = 5-6 

W 112 
Efficiency * p --y = - ^ = 0*448, or multiplying 

by 100 
Efficiency = 0*448 x 100 =44*8 per cent 

Example a.—What load may be lifted by an effort of 25 lbs., if 
the velocity ratio is 18*5, and the efficiency is 55 per cent. ? 

For a frictionless machine the load would be 25 x 18*5 = 462*5 lbs., 
but actually it is of this, or— 

0*55 ^ 462*5 = 254*4 lbs. 
Example 3*—If a lifting niachine, having a velocity ratio of 23, lifts 

a load of 350 lbs. with an efficiency of 74 per cent., what effort would be 
required? What would be the mechanical advantage ? 

Useful work per foot of lift = 350 foot-pounds, 
Work done by effort P per foot of lift = P x 23 foot-pounds. 

TfViy or 074 of this being usefully applied, 
^ X P X 23 = 350 

p =r ^ X ^ = 20*6 lbs. 

Mechanical advantage = -25? = ly© 
20 O 

Or mechanical advantage as velocity ratio x efficiency 
« 1% X 23 = I7x>. 
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Examples V. 

I. («) A force of 27 lbs. acts through a distance of 5 feet 3 inches. Find 
the work ddbe in foot-pounds. 

(p) A force of 800 lbs, does 1700 foot-pounds of work. Through what 
distance does it inove ? 

(r) What force in pounds acting through a dbtance of 3 feet 9 inches will do 
2 foot-tons of work ? 

v/ (2) (u) Through what distance in feet must a force of 1800 lbs. move in 
order to perform <0 inch-tons of work ? 

v(^) It 25,000 ioot-pounds of work arc done in lifting 2 tons of coal, through 
what height is it lifted in inches ? 

The average pull exerted by a locomotive on a train is 175 tons. How 
many foot-pounds of work are done per mile ? 

4* Fina the work done in lifting 50,000 gallons of water from a lake to a 
tank which is 190 feet above the level of the water in the lake. 

^ 5. A steam en^ne cylinder is 15 inches diameter, and the mean pressure of 
the steam in ilLdicing a stroke is 40 lbs. per square inch. If the lengm of stroke 
is 18 inches, nnd^the work done in one stroke. 

6. A force pump has to deliver water at a uniform pressure of 750 lbs. per 
square inch. If the diameter of the pump cylinder is 4} inches, and the stroke 7 
inches, how much work is done per stroke ? 

■ 7. A man in turning a winch exerts a constant force of 50 lbs. at right 
angles to a handle 14 in^es long. Find the work done in 25 revolutions of tLj 
handle. 

. 8. A force of 85 lbs. is exerted at the circumference of a pulley 3 feet dia¬ 
meter which rotates at a uniform speed of 250 revolutions per minute. Find the 
wqrk done per minute. 

' 9. Find the force that must be applied at the circumfertnce of a pulley 2 
feet in diameter in order to do 220,000 foot-pounds of work in 70 revolutions. 

V 10. If a motor does 156,000 foot-pounds of work in one minute when run- 
at a speed of 860 revolutions per minute, what is the torque on the motor 

^ ^tl. A spiral spring when unstretched is 8 inches long. Its stiffness is such 
that the force required to stretch it is 10 lbs. per inch of stretch. Find the 
work done in stretching the spring to a length of 10*5 inches. How much work 
is done in stretching the .spring the last { inch ? 

^ ^ 12. A spiral spring lo inches long is to be compressed to a length of 7 
inches, a force of 15 lbs. being required per inch of compression. How much 
work must be done, and what work will be done in compressing the spring from 
a length of 9 inches to a length of 7*5 inches ? 

13. Cfldculate the work done in emptying a well 12 feet diameter and 25 feet 
deep, the weight of a cubic foot of water being 62*5 pounds. 
^ 14. A chain weighing 12 lbs. per foot of its length is 180 feet long, and hangs 
vertically; what work is done in winding up the chain on to a drum ? 

15. if the chain in Question 14 is used to lift a weight of J a ton, what will 
DC the total work done in raising this weight 170 feet by winding the chain on to 
a drum at the top ? 
i 16. A weight of 56 lbs. is to be lifted from the ground on to a table 3 feet 

tiLDQve the ground by means of an elastic cord whiim stretches i foot for each 
30 lbs. What will be the total amount of work done ? 

17. A lifting machine has a velocity ratio of 16, and a weight ot 60 lbs. is 
lifted by an. effort of 11'5 lbs. Find the mechanical advantage aiKl efficiency of 
the machine at this load. 

D 2 
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1& What load may be lifted by an effort of ao Ibe^ if the lelocity ratio is 
115*5 ^ efficiency is 34*6 cent.? 

19. If a lifting machine having a velocity ratio of 25 lifts a load of 40 lbs. 
with an efficiency of 53*8 per cent., what eftort would be ieqiiii|d and what 
be the mechanical advantage ? W 
- 2a A man working at the rale of ) H.P. is raking a wd^t of ^ a ton by 

means of a single rope system of pnlley blocks. If the velocity ratio is 30 and 
the efficiency when lifting this load 25 per cent., what poll is the man ezertmn^ 
and at what rate is he drawing the rope in? 



CHAPTER VI 

FRICTION AND LUBRICATION 

Flictioil.—When a body moves over another body its motion it 
opposed by a restsuooe along the surface of contact of the two 
bodies. Hiis resistii^ fence is called frietkm. Its amount 
depends upon the matmuls which constitute the sur&ces in contact, 
and upon whtther they are lou^ or smooth. 

When (me body rests upem another one, and a force is applied 
to make one dide over the other, frictitm opposes and prevents the 
rnotiem, provided the force a{^^ is not large enough to overcome 
the fnetum. This iriction is called UaHc fricHon or the friction v f 
rest, and its greatest amount when motion is about to b^in is 
called the limit of static friction. The limiting value of static 
fridiem is ^nerally greater than the sliding friction, or the frictiem 
of motitm tdutdi opposes motion when slu^g has begun. 

Witiiin certain Wits the sliding friction between two surfaces 
in contact follows four simple rules fx laws— 

I. The magnitude of the friction is {woportional to the total 
ptessure between the two surfrures. 
^ a. It dqrends upon the roughness of the surfaces and upon the 
matmial which the surfaces are made. 

^ 3. It is independent of the areas of the snifaces, 
' 4. It is independent of the speed of sliding. 

Although it is easy to prove that these laws are true within the 
pressures and speeds probable in ample laboratory apparatus, they 
are not actiudly true at very great speras and pressures. 

Experiment on the first Law of Friction.—The simple appa¬ 
ratus drawn in Fig. 66 may be used. The board A is set m a hori¬ 
zontal ^x>sition by means « a spirit level, and the slider B is pulled 
by a horizontal rarce applied by weights* placed in the scale pan C, 
the force being transmitted frum the scale pan by mews of a s^ng 
Ain string passing over a freely moving pulley D. Difonrent weights 
may be placed on the slider B in order to vary the pressure between 
Ae surfoces of the dider smd board. 

Let W be the total load (inducting Ae weight of the slid^) or 
vertical pressure between Ae mifiices, and P'Ae horizontaT pull exmed 
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on the slider, so that when motion is started by giving a downward 
jerk to the scale pan, the slider continues moving with uniform 
speed. It will be found that P varies proportionally to W, that is 

W 

Fig. 66.—Experiment on friction. 

to say, if W be doubled, P must be doubled, if W be increased three 
times, then P must be increased three times, and so on. In a par¬ 
ticular experiment, using a brass slider and a truly planed oak board, 
both surfaces being dry^ the following results were obtained— 

Total load W (lbs.) 
(including weight 

of slider). 

1 

Horizontal effort 
P (lbs ) = friction. Ratio 

' 
2'0 0-405 0*203 
2S 0*500 0*200 
3-0 0*594 0*198 
35 0*694 0*198 
4*0 0*810 0*205 
4*5 0*900 0*200 
50 0*980 0196 

The above values of W and P should be plotted on squared paper as 
in Fig. 66a. Starting at the bottom left-hand corner, place the figure o 

.and using any convenient scale write the figures i, 2, 3, 4, 5, etc. 
on OX to represent different values of the load W, In a similar 
manner write the figures o’l, 0*2, 0*3, 0*4, etc. on OY to represent 
the corresponding values of P. Now plot the values of W and P of 
the above table in the way described in the introduction (p. 6), 
and draw the best straight line which lies among the points. The 
fact that these points lie on a straight line which passes through O 
shows that the total friction P is proportional to W, or in other 
words, the friction P is equal to W multiplied by a constant. This 
constant is called the coefficient of sliding friction^ and its value for 
the above pair of surfaces is found as follows; — 

Take any two points A and B on the straight line some distance 
apart, then for the change in W represented by AC the correspond¬ 
ing change in P is represented by BC, and the coefficient of friction 
. force represented by BC ^ 
“ f^'r^esented 
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AC s= 2*25 lbs., BC s= o’45 lbs., so that the coefficient of friction is 

0 I 2 3 4 5 X 
Load ^ [lb.) 

Fig. 66A.--Coefficicnt of friction from experiment with slider. 

In exactly the same way the coefficient (which is generally 
denoted by the Greek letter /u) for different pairs of surfaces maybe 
found by using sliders and tracks of different materials. 

The following list gives average values of the coefficient of fric¬ 
tion for various pairs of dry surfaces 

Wood on wood o'25-o’5o 
Metal on wood O’20-0*60 
Metal on metal 0’I5-0’30 
Leather on wood o-25-o*50 
Leather on metal 0*30-0*60 
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Rcsiiltaat Foive on a SIkfins Bodtp.—If, nj, a Uock of 
wood is resting on a horizootal table (Fig. 67) die foioes ke^n^ 
it at rest are— 

I. Its wdght W acting veitkaliy downwards. 
z. The mticsl upward pressure R of the table on the we^jhl^ 

srfak^ pressure most be just equal to IV. R u distributed over the 
surface, but its resultant must be in the same line as the weigbf^ that 
is, through the centre oT gravity the blodc. 

If. now, a horizontal force P is a{q>Ued in the directioo tbown, 
die block is kept at rest by the friction between the block and tbe 
table, providing of course that P is not huge enou^ to cause 
motion. The force exerted on tbe block by the t^te u now the 
resultant the vertical upward jnessure R and the ftkiion say. 

equal and opposite to F. This resultant is found by the tnual 
method of adding forces as shown in tbe vector triangle aAr, tbe 
resulUnt being parallel and proportional to to. As P from 
zero the resultant upward pressure K will move to die right so that 
the contiaclockwise moment of W and R balances the clockwise 
moment of P and F. 

Angle of Friction.—If the horizontal pull P is increased till 
the limit of friction is reached, R reinai'ning cunsiant, and increas¬ 
ing up to its greatest value, say, F, the resultant becomes more 
inclined to R. Its maximum inclination to the vertical is called 
the angle of friction. It is shown on the right-hand side of Fig. 67 

as tbe angle BCA, generally denoted by the Greek letter 
A Ti P -p 

Now, tangent ^ {see Introduction, p. 5) = ^ or ^ = ^ 

SO that we have the important relation— 

-s-tjcr]#* of friclion coeflident of friction. 
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The firiction falls off wbeo motion starts, so that just as we have 
two eoefficients of friction we shall have two somewhat different 
angles of friction; one, the maximum angle which the resultant 
force between the two surfaces at rest makes with the perpendicular 
to the surface of contact, and the other the constant which the 
resultant makes with this perpendicular during sliding motion. 

Body sliding: down a Plane. 
SmaU Slope.—^Vhen a body is at rest on a plane less steep 

than the ai^le of friction (see (dr). Fig. 68) it is kept in equilibrium 

by three forces, namely, its weight W vertically downwards, • the 
perpendkotar reaction or pressure of the plane R, and the friction 
f which is less than the limit of friction F. These forces are shown 
on the triai^le of foices xyz. 

Critical Slope.—If the inclination of the plane to the horizontal 
is increased up to the angle of friction (see (^), Fig. 68) the whole 
available frictioD F will broi^ht into play, and there will be no 
resoltantToroe actii^ down the plane; the bixly can remain at rest 
on the plane, or, if started downwards it will not gain speed if the 
slope is equal to the angle of sliding friction. The forces are 
diown m ite triangle of forces xyz (Fig. 68, {b)). 

Steep Slope.—If the slope is steeper thw the angle of friction 
the three foices W, R and F (Fig. 68, (r)) do not form a closed 
triai^le but have a resultant, xm, down the plane, so that the body 
cannot remain at rest bnt slides down at an increasing speed. 

Angle of Repose.—The angle of friction is also called the 
ai^le of repose, ijt. the steepest angle to the horizontal at which 
one of a pair of bodies can remain unsupported without diding on 
the other. 

Expcrimeiit*—To find the angle of friction and the coefficient 
of frictiofi. U»Dg the apparatus 5iown in Fig. 65, place a ^der qp 
the plane board or metal track, and then tili the plane until its incli- 
nation to the horizontal is such that on just starting the slider it 
continues moving down the plane at uniform speed. Read off the 
angle of inclination ^ of the plane to the horizontal, and from a 
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table of tangents look up the value of tan Then tan ^ is equal 
to ^ the coefficient of friction between the slider and the track. 

In a particular experiment, using the same oak board and the 
same brass slider, the following result was obtained 

tan 
11*25° 0*199 
11*40° 0*202 
I1‘25® 0*199 
11*40° 0*202 

Average . . 0*200 

The average value of obtained by this method agrees with the 
value 0*200 found in the previous experiment described on p. 76. 

Example.—A body weighing 112 lbs. is pulled along a horizontal 
surface at a steady speed by a horizontal force of 30 lbs. Find the 
work done in a distance of 10 feet Also find the coefficient of fric¬ 
tion between the body and the surface and the slope down which 
the body would just slide without assistance. 

Work done = 30 x 10 = 300 foot-pounds. 

Coefficient of friction /i = ^ =r 0*268 
W 112 

Let ^ be the angle of inclinacion of the plane to the horizontal, 
then tan ^ = 0*268. From the tables we see that ^ =t 15®. 

Lubrication.—The sliding friction between two solid bodies 
may often be considerably reduced by arranging that their two 
surfaces shall not actually be in contact, but separated by a thin 
layer of a fluid or semi-fluid substance called a lubricant. Various 
kinds of oils are perhaps the best known lubricants, but grease of 
various degrees of stiffness is also used, the quality of the lubricant 
depending upon the pressure, speed and other circumstances. For 
heavy pressures thick grease is sometimes employed, but with high 
speeds oil is usually supplied to bearings under pressure from a 
pump to ensure a steady supply between the rubbing surfaces; 
such a system is called one of “ forced lubrication.” 

In performing the above simple experiments on sliding friction, 
erratic results may be obtained due to the presence of a thin film 
of grease or moisture over part of one of the surfaces which are 
supposed to be dry. Even an imprisoned film of air may tempo¬ 
rarily have a considerable effect. A repetition of the experiments 
with oiled surfaces will show lower coefficients of friction. 

The resistances of liquids to motion are quite unlike those 
between solid surfaces, as they increase greatly with increase of 
speed, with increase of the area of surfaces in contact, and are 
independent of the pressure. 

The total resistance to sliding between two solids separated 
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incompletely by a film of lubricant will not follow the simple laws 
stated for dry solid surfaces, for the resistance is partly that of a 
fluid and partly that of solids; its amount will depend upon the 
quantity and quality of the lubricant used and whether or not it 
gets squeezed out from between the surfaces. It may be well to 
point out that the frictional resistance of journal bearings between 
two curved (cylindrical) surfaces, such as a shaft in its bearing, does 
not materially differ from that between the flat slider and its track 
in the above explanations and experiments. 

Heat gfenerated at Bearingfs.—The work done against 
frictional resistances is converted into heat, and in bearings this 
Ijeat represents a loss of work. In the imperfect conditions of 
lubrication present in the beatings of most machines for moderate 
speeds and pressures, the amount of friction follows fairly well the 
simple laws for sliding friction between dry solids, and if we know 
the suitable coeflScient of friction we can calculate the work lost. 

Example.—The pressure on a shaft or journal bearing 5 inches 
diameter is 3 tons, and the shaft makes 80 revolutions per minute. 
How much work is lost per minute in friction if the coefficient of 
friction is o'o^ ? 

Total frictional force at the circumference of the shaft is— , 

2 X 2240 X 0'03 = 134’4 lbs. 

The circumference of the shaft = ] 2 ^ 

Distance travelled per minute = x ■■ x 80 = 1047 feet 

Work lost per minute = 1047 x 134*4 
= 14,071 foot-pounds. 

Resistance to Rolling.—It is well known that the resistance 
offered to rolling a cylinder, a ball, or a wheel is often much less 
than the resistance to sliding them along a similar track. The 
resistance to rolling a very hard wheel or ball on a very hard track 
is very small, and on softer or more yielding tracks it is greater. 
The resistance to rolling between two bodies is not perfectly 
understood, but it results from the indenting of the bodies by one 
another; there is a certain amount of sliding motion when the two 
bodies are in contact If both bodies are hard the area in contact 
will be very small, but if one or both yield considerably there will 
be a greater area of contact and more sliding motion and greater 
resistance to rolling. 

Traction.—The resistances experienced when rolling trucks, 
carriages, etc., on tracks of various kinds are usually stated in 
pounds per ton. For instance, in the case of a train on the railroad. 
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A weight of 20 lbs. is resting on a horizontal table and can just be moved 
,b'<> ^ honzontal force of 4**) lbs ; find the coefficient of friction ana the direction 
t!j\d magnirnde of the resultant reaction of the tao'e 
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6. A metal planing machine, the table of which weighs a cwts., makes 7 
backward and 7 forward strokes in a minute. If the length of each stroke is 3 
feet and the coefficient of friction between the sliding surfaces is 0*06, how many 
foot-pounds of work are done per minute on moving the table ? 

7. The crank of an engine is 9 inches long, and the connecting-rod 3 feet 
long. When the crank is at right angle to the line of stroke the total force on 
the piston is 8000 lbs. If the coefficient of friction between the crosshead 
stopper and guides is 0*05, find the frictional force opposing die sliding of the 
crosshead in this position. 

S. A lathe spindle 3 inches diameter runs at 90 revolutions per minute. The 
load on the spindle is 5 cwts., and the coefficient of friction between the spindle 
and Its bearings is 0*02. How many foot-pounds of work are wasted in friction 
per minute ? 

9. A body just slides down an inclined plane which is inclined to the hori¬ 
zontal at an angle of 15^. What is the coefficient of friction between the body 
and the plane? 

10. if the body in Question 9 weighs 30 lbs. and the plane is tilted up until 
its slope is 40^ to the horizontal, find the force acting down the plane on the 
body making it move. 

11. A weight of 50 lbs. rests on an inclined plane whose slope is 20®, If the 
coefficient of triction between the weight and the plane is 0*45, find the force 
which, acting parallel to the plane, will just make the weight move up. 

12. Find tne force which, acting parallel to the plane in Question ii, will 
just make the weight of 50 lbs. move down the plane. 

13. The pressure on a horizontal shaft or journal bearing 8 inches in diameter 
is 5 tons, and the shaft makes 100 revolutions per minute. How man^ British 
thermal units of heat are generated per minute by friction if the coefneient of 
friction is o 02, and 778 foot-pounds are equivalent to one British thermal unit ? 

14. A horse pulls a cart which weighs 10 cwts. and is loaded with i ton at a 
uniform speed of 3 miles an hour. If the resistance is 40 lbs. per ton, what 
force does the horse exert on the level in hauling the cart, and how much work 
does he do in 5 minutes ? 

15. The weight on the driving wheels of a locomotive is 25 tons, and the 
coefficient of friction between the wheels and the rails is 0*09. Find the weight 
of the heaviest train it can draw on the level, and the work done per minute 
against frictional resistance when moving at a speed of 40 miles an nour if the 
tractive resistance is 12 lbs. per ton. 

16. Find the work done in one minute against friction in pulling a train of 
£50 tons weight at a speed of 60 miles an hour if the tractive resistance is 
.constant and equal to 12 lbs. per ton. 



CHAPTER VII 

SOME SIMPLE MACHINES 

Hitherto we have only considered ideal frictionless machines or 
machines in which the frictionless resistance was very small. In 
most actual practical machines used by engineers, the friction is 
a very considerable amount, and makes the amount of useful work 
done by the machine very much less than that spent by the effort 
in driving it. The friction occurs whenever one part of a machine 
moves over another, with which it is in contact; but at present we 
are going to consider its general effects on all classes of machines 
without inquiring as to exactly where it occurs. 

On a particular lifting machine, the velocity ratio of which was 
16 (that is, the effort moves through i6 feet in order to lift the 
load I foot) the efforts required to lift various loads were found to 
be as follows:— 

Load W (lbs.). Actual effort P(Ibs.)L 

0 IS 

s 2*4 
10 3*0 
IS 4-2 

20 50 

as 5'9 
30 7-0 

35 7-6 
40 90 

The effort plotted as ordinates on a base line of loads is shown 
by the line (a) Fig. 72. It should be noticed that the points thus 
showing the efforts determined by experiment lie fairly evenly on a 
straight line. This is found to be the case with all simple machines 
in good working order. If there were no friction, the work done 
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br the elKxt voold be eooal lo that nmt in Mine the load, or for 
a lift of I foot— 

Effiwt X i6 SB load X I 
or edbn (without frictioa) = X load 

Fic. 73.—Relation of effort to load. 

The smaller ideal effort found by dividing the load by the 
velocity ratio 16 for the same loads would be as follows 

Load W (IbsO- 

Ideal effort with no 

friction =s ? Iba. 
(6 

0 0 

5 0'$12 

10 0*625 

15 0*937 
20 1*250 

25 r|62 

30 I-Sis 

35 2*187 

40 1 2*500 
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This ideal efifoit is abown |dotted bj the biie in 72. 
The distance between the actual cffoit and die ideal effort is shown 
bj die Tertical be^ of the Hoe {a) above tte Ime (^>, and zepre- 
scnts the amount of the actual e^rt irtiich n lost in ovexcoom^ 
fricdcm in die machine. A glance at Fig. 72 will show diat for low 
loads the amount lost is nearly all the actu^ effort, while fiar higher 
loads the proportion of lost effort decreases. If P is the effort in 
pounds, W the load in pounds, and V the velocity ratio, the ideal 

W 
effort ibr a fiirtionless marhino bemg; ^, the effort wasted is— 

We nug^t also look upon die e^ct of frktkm as a decrease of load 
lifted with any given effort. In the table given above an artnal 

effmt cS 5 load of 20 lbs., but in a perfectly ftkrtimless 
machine it would Hft 5 x 16 = 80 lbs., so that the effect of ftictkai 
is to diminiidi die load lifted by— 

80 — 20 = 60 lbs. 

Or, fm atqr cflbrt, tfie effect of frictko in diminUhmg dte load lifted 

PV-W 

For die above machine die effect of ftictioD may be tabulated as 
ftdlows:— 

1 
; PC^> 

L 

Q »‘5 

( . 

r Xi'O 
5 ^4 ^•4 

ta J'O 38-0 

»5 4*» 
ao 5-0 60*0 

*5 5-9 69-4 

3s> 7'o 

35 r* 1 

40 9^ 104*0 

dns is dkiwn pJolted ora a load base in Fig. js- canrc drawn 
ftom the icsi^ of czpetimeot will not genoaSy diow as goods 
straight Une as the effort curve (0) kt F^ 72, because ^ dis> 
crepancics will be exr^geiated after subtractii^ the actual toad 
(W) from the idyal kad (FV) a ftictioBlcss madhinc. 
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Bffidency of Machines.—We have seen that some proportion 
of the work done on a machine by the effort is wasted in frictioa 

Loadmib.) 
Fig. 73.-MRelaiion of frictional loss to load. 

The proportion usefully employed is called the mechanical efficiency 
of the machine, so that— 

. __useful work done_ 
ciency spent by effort in doing it 

Taking i foot lift of the load W (lbs.) by an effort P (lbs.)— 

W X I W 
Efficiency p ^ yglocity ratio PV 

Efficiency = 
mechanical advantage-p 

velocity ratio V 

This may also be stated as the proportion which the actual load 
lifted (W) bears to the ideal load (PV), without friction, lifted by 
the effort P. Or, again, as the proportion which the ideal effort 



CHAP. Vii] Sonu Single Machines 89 
w 
— (without friction) beats to the actual effort P required to lift a 

load W. The efficiency is always a proper fraction, and is often 
multiplied by 100 and stated as a percentage. The following 

W 
are the efficiencies for the loads and efforts given in the preced* 

ing tables;— 

Load W. Sffort P. 

0 1-5 0 =0 per cent. 
5 2*4 0130=13*0 

10 3-0 0*208 = 20*8 ,, 
>5 4*2 0*224 = 22*4 „ 
20 50 0*250 = 25*0 „ 
25 S‘9 0*265 = 26*5 » 

30 7*0 0*268 = 26*8 ,» 
35 7-6 0-287 = 28-7 „ 
40 9-0 0-278=27-8 „ 

This is shown plotted on a load base in Fig. 74. It should be 

20 30 40 
liOCuA^flbA 

Fig. 74>-'ReIaUon of mechanical efficiency to load* 
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noted how low the eflidency is at small loads, and that as die load 
increases the efficiency increases also, but at a slower rate; in 
otter wmds, the effide^ curre gets flaiter (W less steep as the load 
increases. 

Experiments oo Sbopi^ Madiliies.—To investigate byexpmment 
the etect of friction on tte efficiency of any iifting machtne, the first 
thing to do is to find the velocity ratio ; then, starting with the load 
(W) = 0^ find theefibrt (P) required so that when once set in motion the 
load W is lifted at a uniform speed. Repeat tte experiment with 
different loads, taking regular increments of, say, 5 or 10 lbs. up to the 
fill! load for which the machine is designed. Tabulate the results, work¬ 

ing out tte etect of tnction (P V — W) and the efficiency ^ 

plained above. 

Simple Screw Jack.—Fig. 75 shows at (a) the screw jack as 
frequently used in practice for raising and holding up heavy pieces 

w 

Fic. 75. 

of machinery, etc. The effort is applied at the end of the lever, 
and tte wei^t lifted directly by &e tead of tte screw. For 
convoiience in experimenting, the lever is replaced by a pulley, 
roiuid which posses a strings to which |the effort is applied. The 
arrangement will readily be understood from Fig. 75 at (i). When 
experimenting with a particular machine it was found that tte 
pif^ of the screw (single thread) was 5 inch, and the effective 
circumference of &e pulley was 38*5 inches. Consider one 
revolutitm of the screw, and therefore of the pulley since the two 
rotate together. The effort will move a distance equal to the 
circumference of the pulley, whilst the load will be lifted a distance 
equal fo the pitxdi of the screw; hence the velocity ratio will be— 

droumferenoe of effort circle 38*5 
--j- = 3»5X3 = i.5-5. 

Starting with a loaff W :sr o, and increasing by regular increments 
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of 5 It»>i die fiDOomog nsidls woe (ditained, die cfixt F mdo^ng 
^ tfie mii^ of the scale pan:— 

In the above table sevcfal blanks aie left in tbe thud and fomdi 
cobmuiA The student is advised to fiS them in himself for 
pnctke. The comfdeted lesnlts are shown plotted on the same 
toad base in Fig. 76. 

a 
O 10 ts 20 2S903S4O«S 

Frc. 76.—Resiihs <d test of simple screw jack 
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Wheel and Axle.—Fig. 63 shows this machine, which has 
already been referred to in Chap. V. The following are the 
results obtained with a wheel and ^axle mounted on ordinary plain 
bearings. The effective circumference of the larger pulley or 
wheel was 42 inches, and that of the smaller drum or axle was 
21 inches. Hence the velocity ratio V = ^ = 2. 

The velocity ratio might also be found by the principle of the 
lever, for by taking moments about the axis of rotation, we have— 

_ D </ 
p X — = W X — 

,W 
D W 

P 
or 

p 
d 

Now, the mechanical advantage is equal to the velocity ratio 
for a frictionless machine, hence— 

4^ 

vel. ratio V=? = iL = —= 2 
d 21 21 

Load ^ (Iba.). Effort P (Ib*.). Friction PV -W(lbs.). 
Efficiency per cent. 

0 0-8 1-60 0 

5 4-30 3‘6o 58-2 
10 714 4*28 70-1 

15 991 4*82 757 
20 I2’8t 5-62 78-0 

25 15-63 6-26 80-0 
30 18-50 7'oo 81 *2 

35 21-50 8*00 81-4 
40 ^•45 8-90 81-8 

Fig. 77 shows the above results plotted on a load base. 
Rope Pulleys.—Fig. 78 shows at («) {b) and (r) sets of rope 

pulleys the results of experiments on which are here given. In 
the set illustrated in Fig, 78 (a) there are two pulleys in the bottom 
block with four plies of rope running from it. Now, if the load be 
lifted one foot, each of the four lengths of rope shortens one foot, 
and therefore four feet of rope must be pulled off by the effort, 
since the same rope passes round all the pulleys in the top and 
bottom blocks. The velocity ratio of this set is therefore 4. 

The results obtained are tabulated below and plotted on a load 
base in Fig. 79. 
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■iiiiiiiiniiiinni IHBUli!-- ennin 

2^0^ nr n^.p 
Fig. 7>--*Sc9aii9«fteit«fniVt^prik7liaciBk 

Vklocctt Ratio 4. Fig, 78 ^4- 

nBrtPc«>.x 

r 

\ TAAm Fr-W0kiL). 

1 .. 

<P94 1 3T^ a 

3*0 : 45’^^ 
5'5 

1 r* 
; lo-a :;3 WP 

61'3 
1 \%r% 
\ »4'5 

*r* 
*rs ^4 

1 17^ 24V 65^ 

! *97 
*5-5 

jAx» 

40^ 
1 yro 

i_ 

4ra C3*4 

Tlie set Atm Aagmnmaticallf fat 78 bas a velod^ 
Mfip of 5, and die foUoiriiig fcsiths woe obcaiaed;— 
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LoiidW<ibs.). safoxtrcft*.). FxictunFV-WQlK.). 
FV 

O 4S0 22*5 0 

s 6'ao 26x> 16*1 
lo rso 27-5 267 

>s 9*0 30*0 33*3 
ao 10*62 33* 375 
*S 12*0 41*6 
30 13*37 36-85 45*0 
35 15*0 40*0 467 
40 16*50 1 4a‘S 4«-5 
45 *77 ♦li 

50-9 

1? 19-37 46'ls 5**5 
fiD 22*25 S>*S 53*0 
70 24-87 

_1 
54-3S 56-0 

The above results are sbown plotted oo a load ba 
Fig. 8o. 
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The set shown in Fig. 78 at {c) has a velocity ratio of 6, and 
the following results were obtained:— 

Load W (lbs.). Effott P (lbs.). Friction PV - W (ibn ). 
Efficiency 
W ^ 

tfUSL 

SPHaanaa 
iiriiTi IIISIT 



CHAP. Vll] Some Simple Machines 97 

When measuring the circumference of a pulley on a machine, 
as for example in the simple screw jack and the wheel and axle 
described above, the quickest and simplest way is to wrap the 
string or cord once round the pulley, unwind the string and 
measure its length. This will give the effective circumference 
of the pulley, i.e» the circumference of a circle the diameter of which 
is equal to the diameter of the pulley plus the diameter of the string. 
If the cord is of appreciable thickness its diameter (or circumference) 
must be measured as well as the diameter of the pulley. Let d = 
diameter of cord, D = diameter of pulley, then the effective 
diameter of the pulley will be D + and the effective circumference 
^(D + The diameter of the cord was taken into consideration 
in obtaining the velocity ratios of the simple screw jack and wheel 
and axle described above. 

Examples VI I. 

1. In a liftii^ machine the effort moves 120 feet for each foot the load is 
lifted. What effort will be required to lift a load of i ton if the efficiency at 
this load is 45 per cent. ? 

2. In a simple screw jack the pitch of the screw is i inch and the length of 
the lever at the end of which the effort is applied is 18 inches. What is the 
velocity ratio? If an effort of 9 lbs. applied at the end of the lever lifts a 
load of i ton, what is the efficiency ? 

3. In a wheel and axle the diameter of the wheel is 22^ inches and the dia¬ 
meter of the axle or drum is 7f inches. The thickness of the cord on the wheel 
is 1 inch, and that on the drum is { inch : find the velocity ratio of the machine. ^ 
If the efficiency when lifting a load of 3 cwt. with a velocity of 1 foot per second 
is 78 per cent., how many toot-pounds of work must be supplied to the machine 
per minute ? 

4. The following results were obtained from an experiment with a certain 
lifting machine whose velocity ratio is 24*9 :— 

Load W lbs. 0 5 10 15 20 *5 30 35 40 

Effort P lbs. 0094 0*45 o‘8x I-X7 1-53 1*88 2'25 2*61 2*97 

1- 

Find the effidenqr of the machine when lifting loads of la) 8 lbs., (d) 18*5 lbs., 
Ic) 26 Ihs. 

5. What will be the effect of frictioii in reducing the load lifted on the 
nuumine in Question 4 when lifting loads of {a) 12*5 Ib^, (^) 38 lbs. 

6. A crane similar to that shown in Fig. 50 is driven by an electric motor, 
pd has to lift a load of 10 tons at a uniform speed of 2 feet per second. Aborn¬ 
ing the efficiency of the motor to be 85 per cent, and the efficiency of the lifting 
mechanism 6$ per cent., what horse-power must be supplied to the motor ? 



CHAPTER VIII 

THE LINEAR LAW 

In the previous chapter we saw that when the curve of effort 
required to drive a simple machine is plotted on a base line show* 
ing the loads lifted, the points on the curve all lie in a straight line. 
The effort is then said to follow a linear law, and this linear or 
straight Une relation between two quantities is so common that it is 
worth while considering it further. 

At the beginning of Chap. VI. we saw that the effort P required 
to draw a weight W along a horizontal surface was proportional to 
the weight W, or, that the value of P was equal to the value of W 
multiplied by a constant Referring to the table on p. 76 or to the 
results plotted in Fig. 66a, it was foimd in that case that f&r all 
values of the weight W— 

P = o'ao X W. 

This is the relation between P and W for the straight line in 
Fig. 66a ; evidently, when W s o, P also is zero, so that the line 
passes through the origin O. The curve showing the relation 
between two quantities proportional to each other will always be 
a straight line passing through the origin or intersection of the 
axes on which the curve is plotted. Also the relation between two 
quantities which when plotted give a straight line passing through 
the origin is, that one is proportional to the other, that is, equal to the 
other multiplied by a constant The constant 0*20 in the equation— 

P = o*2oW 

expresses the number of pounds in P per pound of W. Similarly, if 
X is taken horizontally (instead of W) andj' vertically, and— 

y sz mx 

when m is a constant, the curve of on a base a; is a straight line 
through the origin O, and the constant m is simply the number of 
units of yper unit of *, or the value of y when * = 1. 

For a given plotted straight line passing through the origin Q 
the value of m in the equation such as / = mx is found by dividing 
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any value of y on the line by the value of x for the same point, 
for— 

_ number represented by any vertical ordinate 
number represented by the corresponding horizonial distance 

The quantity m is evidently proportional to the gradient or 
steepness of the straight line, or, in other words, to the‘tangent of the 
angle which it makes with the horizontal. 

Example i.—The following results were obtained by hanging a 
series of weights W on the free end of a spiral spring and thereby 
stretching it:— 

Load W 
Obs). 

Leniph of spring 
Xtnehes). 

Stretch of spring (/) 
(inches). 

0 5*0 0 
1 5*2 0*2 

3 54 0*4 

3 5-6 0*6 

4 5*8 0*8 

\ 6*0 ro 
6-2 1*2 

7 64 1*4 
8 66 1*6 

9 6*8 r8 
10 7 0 1 2*0 

Find ,tbe law connecting the load W on the spring and the 
stretch /. 

Plotting the load W vertically and the stretch I horizontally, we 
find the curve is a straight line passing through the origin o, as shown 
in Fig. 82. Hence W is proportional to /, or — 

W = ml 
where la is a constant. 

W 
Now, = j , and taking the value of W = 5 lbs., for which / = i inch, 

we sec that— 

jw = - = 5, and the law is 

W = 5/ 

or for every inch the‘spring is stretched the load required is 5 lbs., in 
other words, the stiffness of the spring is 5 lbs. pull per inch of stretch. 

Example a.—A tramcar is found to travel the distance in x 
seconds, the distance moved in different times being measured and 
found to be— 
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Distance r 
(feet). 

Tuuex 
rseconds)i 

0 0 

7*5 I 

13*0 2 

20‘0 

27*0, 4 
34*0 5 
42*0 0 

49*5 
57*5 1 

Find the relation between and x. 

The above quantities are shown plotted in Fig. 83. Now take any 
^o pomes on the straight line some distance apart, as at A and B. 
Draw the horizontal line AC and the vertical line BC. Then during 
the time represented by the length AC the tramcar has moved the 
distance rejn-esented by the length BC. The equation to the curve is^ 

y = mx 
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therefore the law Is-* 

The Linear Law tOl 

and we see that when 
jr = I second y = 7*22 
feet, or the car moves a 
distance of 7*22 feet per 
second. 

We next consider 
straight lines which 
do not pass through 
the origin. For ex¬ 
ample, the effort-load 
curve plotted in Fig. 
72 from the table at 
the beginning of Chap 
VIL cuts the vertical 
axis at a point repre¬ 
senting I s lbs. effort, 
which is the effort re¬ 
quired at no load. If 
we measure the efforts 
from this level, that is, 
in excess of i’5 lbs,, 
we get the following 
result which is shown 
plotted in Fig. 84 :— 

y = 7'22Jr 
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LoadW Actual eiTort P 
Ubs.). 

Exccm over 
x'slbi. 

0 1 »*s 0 
5 2-4 0-9 

10 3*0 *•5 
15 27 
20 5*0 3*5 

5*9 4*4 
30 70 5*5 
35 7-6 61 
40 90 

i- 
7*5 

It is simply the curve {a) Fig. 72 lowered by I’S lbs. Taking 
points on the straight line (not from the above table), we find the 
vertical ordinates are proportional to W, thus— 
For W=! 15 lbs. excess of P over t'S = 27 lbs. 

= ~ of I5ss:0'i8XI5=078W 

For Wss 20 lbs. excess of P over 1-5 as j*6 Iba 
36 , 

= of 20ssO‘i8 X 20a=0*j8W 

ForWsB38 lbs. excess of Pover i’5 = 6*9 lbs. 
6*0 

= of 38=078 X38=o i8W 

and so on for every point exactly on the line in Fig. 84. The in¬ 
crease in the effort for every 1 lb. increase in W is 018 lb., and— 

Excess of effort P over 1-5 lbs. = 078 x load W (pounds) 
or P - 15 = 078W 
and effort P (pounds) = 1*5 -f 078W. 

This is always the relation between the two quantities which when 
plotted give a straight line. It is— 

effort = a constant -f load x uniform increase per pound of load 
or P = <■ + wW. 

The constait c represents the effort for no load, and the con- 
stont quMtity m ineans the regular increase of P per unit increase 

, * .P^ornny given plotted straight line we find rby reading off 
at the intersection of the straight line and the vertical axis (prp- 
ducing the line if necessary); we firul m by taking any effort and 
subtracting c from it and then dividing the result by the corre* 
spending value of W. We may put this— 

P - r 
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The effort per unit of load 

diminishes as W increases. 

Thus for W = 15 lbs., 

for W = 38 lbs., 

here not constant, but 

P 4*2 „ 
^=—=0=8 

P _8-4 
W- 38 -0221 

Example i •—What is the law for the effort in Fig. 76 ? 
The straight line meets the vertical axis (where W = o) at P = 

0*172 lb., hence r = 0*172. Taking the point on the line where P = 
0*9 lb., we see that the corresponding value of W is 35*5 lbs., hence— 

m 
0*9 - 0*172 

35S 

0*728 
— =o«os 

the increase in P per pound of W ; therefore the law is P (pounds) = 
0*172 -f o*o2o5W (pounds). 

Example a.—What is the law of the friction curve in Fig. 73 ? 
The straight line drawn meets the vertical axis at F = 22 lbs. 

([note that we use 22 lbs* from the stiaight line, and not 24 lbs. as given 
in the table and shown by a cross near the line), hence = 22. Re¬ 
ferring again to the line in Fig. 73 (not to the table), at W = 40 lbs. 
F = 100 lbs.; hence the difference in level between W = o and W = 40 
is 100 22, 

and m = 
100 - 22 78 

= — =r 1*95 
40 40 

and the law F - c h mW becomes 
F = 22 + r95W 

or-^Friaion (lbs.) = 22 -f 1*95 x (load in lbs.). 

We might check the values of the constants by other points thus, 
reading from the plotted line— 

For W = 30, F = 81 
and for W = 10, F = 42 

For the difference of (30 - 10) or 20 lbs. in W the difference in F is 
81 — 42 = 39, hence— 

difference in F ^ 39 _ 
^ “ difference in W 20 

Then substituting in the general relation— 

F = r + Iff W 
for W « say, 30 lbs. and F = 81 

81 = r + 1*95 X 39 = + 5**5 
= 81 - 58-5 

22*5 
which agrees approximately with 22, the value previously found. 

Similarly for any quantity y the values of which when plotted 
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vertically on a horizontal base scaling values tA x give a straight line, 
the equation is— 

y ^ c->tr mx 
vrhere c is the value of y at the intersection of the line with the vertical 
axis, and m is the increase of the vertical valuey per unit increase of the 
horizontal value x. The reader should practise plotting such straight 
lines as are represented by = 5 + 3X', = 1*5 + a-ax, and similar 
equations by calculating y for, say, any three values of ar, and then testing 
the above rule for the constants. If the line cuts the vertical axis below 
the origin O, ^ is a negative quantity. 

Further Examples ot the Linear Law.—In a certain class 
of steam engine it is found that by conducting a series of trials at 

Fig. 85.—Typical example of straight line law. 

different loads, and measuring the indicated horse-power (LH.P.) 
and the wei^t of steam used by the engine per hour at each of the 
difierent loads, and then plotting these two quantities, the curve so 
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obtained is a straight line. For example, on such a series of tests 
with a small engine the following results were obtained :— 

0*56 1-35 r^o 
1 

^•57 i 3-68 5*70 
Steam (lbs.) pm hoar W 75 75 

-1 

86 105 1 

,_i 
130 

1 

*75 

Plotting these values the straight line shown in Fig. S5 is 
obtained. 

The line crosses the vertical axis at the point where W s 45 ; 
considering any point such as A, we see that an increase in the I.H.P. 
of 3 corresponds to an increase of W equal to 114 — 45 = 69 lbs. 

The law is W a /r + OT X I.H.P. 
and hence « a ^ a 33 

and the law is— 
W (lbs.) a 45 + 33 X I.H.P. 

If a series of tests similar to the above be carried on on a gas 
engine, and a curve plotted connecting the “ Brake horse-power," 
and the number of cubic feet of gas ” used per hour, that curve 
will in many instances be found to be a straight line. 

Also the curve connecting the “ Brake horse-power ” and the 
“ oil used per hour ” for an oil ehgine will usually be a straight line, 
particulars from such a series of tests being given in Question 9 at 
the end of this chapter. 

Examples VIII. 

1. The following results were obtained from experiments on the coefficient 
of friction for various dry surfaces:— 

W CIbi.). 
t for Meel on oak F for oak on oak 

Oba-X 
F for brass on steel 

ribs.). 

*5 0*45 0*47 I‘20 0*40 

5*0 0*80 0'9o 2-50 0*75 

7*5 1*25 — 3*65 1*10 
lO'O 170 1*80 

r° 
1*50 

13-5 2-0$ 2*20 6*30 1*70 
15*0 2*40 270 774 2*25 

*7-5 285 3*10 8*77 2*10 
30*0 3*30 3*6o 10*05 3-05 

Plot the four sets of valdes of F on the same load base W and state the equatioa 



I06 Elementary Applied Mechanics [CHAP. Vlli 

for each set of values of F. What is the value of the coefficient of friction for 
each of the four pairs of surfaces? 

2. The following values of the length of a simple pendulum (/) and the time 
of one complete vibration (/) were obtained experimentally. Plot the curve con¬ 
necting / and and find l^e constant c in the relation r* = 

/(inches) . 5 8 10 13 *9^ 
22 *5. 

t (seconds) 071S 0904 1*011 I’iSo I'338 1*398 1*50 1*598 

3. In the following table f = pressure in pounds per square inch, w = weight 
in pounds per cubic foot of air at pressure p and temperature 32*^ F. Plot p and 
V) and find the law connecting them (m == / x a constant). 

p lbs. perl 
sq. in. / 1470 

1- 

30 ■ 70 90 no 130 ISO 

w pounds 
1 

0*0807 0*1647 m 0*3844 0*4941 0*6040 0*7137 0*8335 

4. Plot the equations («) y = — i'5 + 2*&je; (^) P = 18 + 2*4W. 
5. Find the laws of the Effort and Friction curves shown in Fig. 77. 
6. The results shown in the table were obtained experimentally from a lifting 

machine. Plot the two curves connecting P and W and F and W, and find 
their laws. 

Load W (lbs.). Effort P(Ibs.> 

1- 
Friction 

F=5(PV-W)(lbs.)L 

0 0*094 2*34 

5 6*33 
10 0*81 10*31 

*5 1*17 *5*2 
30 **53 18*28 

rB 22*26 

30 ^ 2*25 26*25 

35 2*61 30*24 
40 3*97 34ai 

7. The following figures show the total heat H (British thermal units) in one 
ound of steam at temperature ^ F. Plot the curve and find the approximate 
LW for H at any value of /. 

1146 1158*3 1167*6 PI 1179*6 1184*0 1192*8 BSu 1201 
212 350*3 380*9 ■ 320*1 3346 363*3 390*1 

8. From a series of tests on a steam engine the following values of the weight 
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(W) of steam used per hour and the indicated horse-power (LH.P.) were 
obtained:— 

I.H.P. . . 210 290 334 405 
W(lbs.). . 4020 5800 6650 8200 

600 650 
12,100 13.500 

Plot the curve and find the law for W. 
9. From a series of tests on an oil engine the following values of the weight 

of oil used per hour (W) and the brake horse-power (B.H.P.) were obtained ;— 

B.H.P. . 1*0 2*1 30 4*2 470 5*3 
W (lbs.) . 1*07 2*16 a-8s 3‘9i 4*40 4*90 

Plot the curve and find the law for W. 



CHAPTER IX 

POWER 

Power is the rate of doing work, or the work done per unit of time. 
A large amount of work can be done by a small engine or motor 
in a long time, but only a powerful engine or motor can do a large 
amount of work in a small time. Power is measured by the amount 
of work done per second or per minute, and the unit employed is 
550 foot-pounds per secortd, or 550 x 60 = 33,000 foot-pounds per 
minute, which is called one horse-power. The work done in lifting, 
say, 330 lbs. 100 feet would be 330 x 100 = 33,000 foot-pounds, 
and this would be the same in whatever time the operation occupied 
—an amount of work has no reference to time. If the operation 
takes one minute, the power required would be one horse-power; 
if it takes only half a minute, the work per minute is 33,000 -t- ^ 
= 66,000 Xoot-pounds per minute, which is two horse-power. If 
the operation takes 5 minutes, the work per minute would be 
i X 33,000, and the power would be J of a itorse-power. 

To find the horse-power spent in any operation, we divide the 
work done in foot-pounds per minute by 33,000, or the work done 
in foot-pounds per second by 550. 

Example 1.—What power would be spent in lifting 30 tons through 
a vertical height of 40 feet in 15 minutes f 

Total work done in i J minutes = 30 x 2240 x 40 s 2,688,000 ft.-lbs. 
Work done per minute = = 179,200 ft.-lbs. 

= S«h<.™.po.„,whiehU 

usually written 5*43 H,P. 
Example a.—How many ibot^tons of work are done by an engine 

of 200 horse-power m 5 hours ? 

Work done in i minute = 200 x 33,000 6,600,000 foot-pounds 
Work done in 5 hours = 6,600,000 x 60 x 5 foot-pounds 

6,600,000 x6oxs 00 o p 
~ — Ta4d-^ “ 883,928 foot-tons. 

Example 3.—Find the horse-power required to drive a lift when 
raising a weight of 2 tons at a speed of 5 feet per second, if the efficiency 
of the machinery is 70 per cent. 
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Usefiil work per second s 3 x 2240 x e n 22.400 foot-pounds. 
Useful H.P. = 

But this is only ^ of the power required, the remainder being wasted, 
hence— 

^ X H.P. required = 
horse-power * ^ x = 58-2 H.P, 

Example 4*—A locomotive draws a train of total weight 250 tons 
along a level track at a speed of 40 miles an hour. If the tractive 
resistance is constant, and equal to 12 lbs- per ton, what h<me-power 
must be developed in the engine cylinders if the efficiency of the 
machinery is 75 per cent.? 

40 miles an hour = feet per second. 

Total resistance = 12 x 250 = 3000 pounds. 
Useful work per second = 3000 x = 176,000 foot-pounds. 
Useful horse-power = J-y/yo = 320 H.P. 

But this is only of the horse-power required; 
horse-power required = 320 x ^ «= 426*6 H.P. 

Power of Engfinea and Pumps.—The indicated horse-power 
of an engine is the actual power developed in the engine cylinder 
by the .steam in the case of a steam engine, by the combustion of 
the gas in a gas engine, and by the combustion of the oil in an oil 
engine. In the case of a.pump it is the actual power attended in 
the pump cylinder in pumping the water. The information required 
for the calculation of the indicated horse-power is: (i) The mean 
effective pressure on the engine piston during the stroke. (2) The 
area of the piston. (3) Length of stroke. (4) Number of working 
strokes per minute. 

Mean or Average Effective Pressure.—This is found 
from the indicator (hagrarn as follows:— 

Let Fig. 86 be the indicator diagram, representing the pressure 
(in pounds per square inch) on one side of the piston during the 
stroke. Divide the diagram into, 
say, to strips of equal width, then 
draw vertical lines through the 
middle of each strip, as shown. 
Measure the length of each of 
these lines with a steel rule. 
Then the mean height of the 
diagram is the mean of these 
lengths. Adding up these lengths 
and dividing by the number of 
them give the mean height If Fio. 86.-M«n dtective .team-pre^ure. 

h is the mean height, then— 

h = x5(^i + ^* + ^» + ^« + A# + ^ ^ + ^8 + ^ 
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The mean eflTectiye pressure P is found by multiplying the mean 
height h by the scale of the diagram. If x-inch vertical height on 
the diagtam represents, say, 40 lbs. per square inch on the engine 
piston, and the mean height h works out to be, say, o'po inch, then 
mean effective pressure (P)=0*90x40 = 36 lbs, per square ineh. 

The area of the piston in square inches A = , where d is the 
4 

diameter in inches, and the length* of stroke (L) in feet is 
measured. 

The number of working strokes per minute (^^) depends on the 
typ9 of engine. If the engine is a single-acting steam engine, that 
is, the steam acts on one side of the piston only, N = the number of 
revolutions per minute of the engine crank shaft; if double-actftig, 
N ss twice the revolutions per minute, and the mean effective 
pressure is required on each side of the piston, there being two 
working strokes per revolution. For a gas or oil engine working 
on the common Otto cycle at full load, there is only one working 
stroke every two revolutions; hence, N = half the revolutions per 
minute. 

Now, since P =: mean effective pressure in pounds per square 
inch, and A = area in square inches, we have— 

Mean force on the piston during 
the stroke 

Work done per stroke 
Work done per minute 

Indicated horse-power (I.H.P.) 

= P X A pounds. 

= P X A X L foot-pounds. 
= P,XAxLxN foot-pounds. 

P X A X L X N 
33000 ’ 

} 

which is usually written in the easily remembered form— 

I.H.P. 
PLAN 
33000 

Example 1.—A single-cylinder single-acting steam engine running 
at 200 revolutions per minute has a cybnder 10 inches diameter and a 
stroke of i foot If the mean effective pressure is 40 lbs. per square 
inch, what is the indicated horse-power ? 

Area of piston A = ^ a square inches. 

T n _ 40 X I X 78*54 X 200.. , „ „ 
I.M.P.-*904 I.H.P. 

Example a.—A single-cylinder double-acting steam engine running 
at 250 revolutions per minute has a Cylinder 10 inches diameter, stroke 
18 inches, and the diameter of the piston rod 2 inches. The mean 
effective pressure on the back end of the piston is 36 lbs. per square 
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What is the inch, and on the crank end 40 lbs. per square inch, 
indicated horse-power ? 

Effective area of piston (back end) s x 16* = 78*54 square inches. 
4 

Stroke - 18 inches = ^ =: 1*5 feet 

I.H.P. from back end = ^ 5 ^ = 32*13 H.P. 

Effective area of piston (crank end) s area of cylinder—area of piston rod 

= ,8-s4-£!4!Sx,* 
4 

^ 75*40 square inches (practically^ 
I.H.P. from crank end = _ 34-27 h.P. 

33000 

Hence total indicated horse-power = 32*13 -f 34*27 
= 66*40 I.H.P. 

The indicated horse-power could also be found as follows 
Average mean nressure on "1 _ 36 -f 40 

both sides of piston / lbs. per sq. inch 

= V = 38 lbs. per sq. inch. 

both sides of piston 
Average effective area of| :u + 7540 

_ I5.y.94 _ square inches. 

Working strokes per minute = 250 x 2 = 500 
I.H.P. = X 500 ^ p 

Mechanical Efficiency.—All the \.H.P is not available for 
useful purposes, because some fraction of it is lost in overcoming 
the friction in the engine itself. The quantity 

I.H.P — horse-power lost in engine friction 
is called the Brake or Effective horse-power of the engine. The 

Mechanical Efficiency of 

the engine and is always a proper fraction less than unity, being 
often expressed as a percentage thus— 

B H P 
Mechanical Efficiency = yij'p' X 100 per cent. 

In the case of a pump the efficiency is — 
Useful horse-power done in pumping water 

Actual horse-power expended in driving the pump 
or— 

Useful work done by the pump on the water 
Actual work expended in driving the pump * 
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Exampte f.—A single-cylinder gas engine has a cylinder 9'5 inches 
diameter, stroke 19 inches, mean effective pressure 106 lbs. per square 
inch, number of explosions per minute 77* mechanical efficiency 
of the engine is 864 per cent., what is the brake horse-power? 

Area of piston = — = 3-141^-21-211—2J — 71 square inches, 
4 4 

Stroke = } j feet, 

. I H.p. ^ X M X 7I..2LZ7 ^ ^8-03 h.P. 
33000 

86*4 
Brake horse-power = 28 03 x — = 24*22 B-H.P. 

Example a.—A pump delivers 1000 gallons of water to a height of 
100 feet every minute. If its efficiency is 70 per cent., what horse-power 
will be required to drive it ? (A gallon of water weighs 10 lbs.) 

“ ““ } = .oco K .0 X .0. .«.t.p.u.ds, 

Useful horse-power done in pumping = 
1000 X 10 X 100 

= 30*3 
33000 ^ 

But this is only of that required to drive the pump ; 
horse-power required to drive pump = 30*3 x 

= 43*23 
Example 3.—An engine working at 5 brake horse-power drives 

a pump which delivers 30,000 gallons of water per hour to a height of 
24^ feet. What is the efficiency of the pump ? 

Water delivered per minute = = 500 gallons 
= 500 X 10 or 5000 lbs. 

Useful work done bv pump \ ^ , 
per minute,' = 5000 x 24*5 = 122,500 foot-pounds, 

Useful horse-power of pump = VaWc? = 37* 

Hence, efficiency of pump = Useful horse-power in pumping 
^ Actual horse-power expended 

- 37i _ = 0*742 or 74*2 per cent. 

Cylinder Volumes and Power. 
We have seen (page xio) that the work done per stroke is— 

P X A X L foot-pounds 

Suppose P == mean pressure in pounds per sqtiarc foot, 
A = area of piston in sq^tare feet^ 
L = length of stroke in feet as before. 

Now, the product A x L is equal to the volume swept out by 
the piston per stroke; let this be equal to V, then we see that work 
done per stroke P x V foot-pounds = PV foot-pounds, where P 
is the mean pressure in pounds per square foot, and V the volume 
swept out by the piston in cubic feet 
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Consider, now, an engine supplied with water under the constant 
pressure P pounds per square foot, and suppose trie volume (V 
cubic feet) swept out by the piston is equal to i cubic foot, we have 
the result that the work done by i cubic foot of water is equal to 
P foot-pounds, and generally, the work done by V cubic feet Of 
water is equal to— 

PV foot-pounds 

or, in other words, the energy stored up in V cubic feet at a pressure 
of P pounds per square foot is equal to—^ 

PV foot-pounds. 

Example i.—What will be the brake horse-power of a hydraulic 
engine which uses 2000 gallons of water per hour at a pressure of 700 
lbs. per square inch, the mechanical efificicftcy being 72 per cent. 

Since i gallon of water weighs 10 lbs., and i cubic foot of water 
weighs 62*5 lbs., we have— 

Number of gallons in i cubic foot = = 6*25, and 

Number of cubic feet of water 1 
used per hour / 

Number of cubic feet of wate; 1 
used per minute / 

Pressure per square font 
Work supplied per minute to the engine 

2000 

6*25 

2000 
cubic feet 

6 25 X 60 
= 700 X 144 lbs. 
= PV foot-pounds 

= 700X144X 
2000 

6 25 X 60 ft.-lbs. 

= 537,600 foot-lbs. 
Hence, horse-power supplied = - 16*29 ^-P* 

But of this only 75 per cent, or is available, the remainder being 
wasted. 

Hence, brake horse-power = 16*29 x = 12*2 B.H.P. 

Example a.—A hydraulic company supply water at a pressure of 
700 lbs. per square inch. If they charge i.f. td, per 1000 gallons, what 
will be the cost of one horse-power for one hour ? 

Number of cubic feet in 1000 gallons = 
1000 

6*25 
160 cubic feet 

Work stored in 1000 gallons or \ 
160 cubic feet } = 700 X 144 X 160 foot-pounds 

Now, one horse-power for one hour = 33,000 x 60 foot-pounds 
Hence, the number of thousands 1 33000 x 60 

of gallons required per hour > = —= o‘i22, and 
per horse-power j 7oo X 144 x lOO 

Cost of one horse-power per hour = 0*122 x 18 
- 2*196 pence. 
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Brake Horse-Power and its Measurement.—We have 
already seen that the B.H.P. = I.H.P. minus horse-power lost ia 
friction, and is the useful power obtained from the engine, or the 
actual power which can be taken from the crank shaft. 

In order to measure the brake horse-power an apparatus 
called a Dynamometer is used. There are two forms of dynamo¬ 
meters in common use, namely, Absorption Dynamometers and 
Transmission Dynamometers. 

Absorption Dynamometers.—In this type all the brake 
horse power is absorbed by the dynamometer or brake, the work 

being wasted in friction. If the engine is of moderate size a very 
common and effective arrangement is to put a rope brake on the 
fly-wheel of the engine, as shown in Fig.^ 87. The brake consists of 
two or more ropes (depending on the power to be absorbed) of equal 
length which pass once round the fly-wheel, one end being attached 
to a spring balance, and on the other end is hung a weight W. The 
ropes are prevented from slipping off the wheel by means of the 
wood blocks shown. The directing of rotation being as shown by 
the arrow, it will be seen that W opposes rotation, but the pull of the 
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spring balance S is in the direction of rotation. Hence, the 
effective frictional load on the rim of the wheel opposiog rotation 
is W — S pounds. 

Let D = diameter of wheel in feet 
d = diameter of rope in feet 

W SB dead load in pounds 
S = reading of spring balance in pounds 

N ss revolutions per minute made by the wheeL 

In one revolution the work absorbed in Incti’on between the 
ropes and the rim of the wheel in foot-poumb is— 

Nett load (pounds) x Effective circumference of brake (feet) 
= (VV — S) X ir(D + d) foot-pounds. 

-S)x.KD+.0xN foo.-po«nd. 

Brake horse-power .s MB + .<) X N j p 
33000 

or stated in words— 

g jj p as Nett load X speed in feet per minute 

33000 

In carrying out a test there is no need to measure the diameters 
of the wheel and rope. The effective circumference w(D + d) is 
best found by passing a steel tape round the wheel and measuring 
its circumference in feet, then measure the circumference of the 
rope in the same way and add the two together; this will give 
wD(circumference of wheel) -I- ird(circumference of rope) or 
7r(D ^ d) feet. 

Prony Brake.—^Another form of the absorption dynamometer 
is the Prony brake, the principle of which will be understood from 
Fig. 88. A pulley on the shaft of the engine or motor is fitted 
with two brake blodu which can be pres^ on to the pullqr as 
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hard as may be required by the thumb screws shown. A weight W 
can be placed at a convenient point on the lever. When making a 
test, the pressure of the blocks on the pulley is adjusted by the 
thumb screws so that the lever carrying the weight W rests horizon* 
tally. To balance the weight of the lever itself a counterpoise is 
sometimes fitted; if the counterpoise is not fitted then an allowance 
must be made for the weight of the lever when calculating the brake 
horse-power. 

Since the lever rests in equilibrium in a horizontal position the 
turning moment on the shaft in a contra-clockwise direction in 
Fig. 88 must be balanced by the moment of the frictional resistance 
of the blocks on the pulley in a clockwise direction. The moment 
of the friction resistance is— 

W X L pound-feet 
or— 

F X R 
where F s frictional resistance in pounds, and R s the radius of 
the pulley in feet. 

Hence the torque (p. 63) or turning moment on the shaft is— 
W X L pound-feet. 

Work d<me in one revolution a torque x angle in radians (p. 63) 
5= WL X Sir foot-pounds. 

Work done per minute = WL x sirN foo^pounds 

where N = revolutions per minute ; 

^ . WL X awN 
Brake horse-power =- 

33.000 
or stating it in words— 

„ T. torque (in pound-feet) x radians per minute 
33.000 

Heating: of the Brake.—^The energy absorbed by the brake 
due to friction is transformed into beat, resulting therefore in a rise 
in temperature. For engines that have to run on the brake for a 
considerable length of time a special brake pulley is usually fitted. 
This pulley has a hollow rim which is kept full of water, and 
prevents the temperature rising to a dangerous value. 

Transmission Dynamometer.—In this type of dynamometer 
the energy is not wasted in friction, but is used for doing work in 
the usual way, the apparatus forming a connection between the 
engine, motor, or driving shaft and the machines it may be driving. 
The energy is transmitted through the dynamometer from the 
source of power to the machines, and the brake horse-power can 
he measured whilst being utilized for useful purposes. 
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Fig. 89 shows the Froude or Thomeycroft dynamometer. The 
pulley A on the engine shaft drives the pulley D on the machine 
by a belt which passes also round the two pulleys Band C as shown. 
The pulleys B and C are on the frame BCF which is pivoted at E. 
The tension or pull Tj in the tight side of the belt is greater than 
the tension T, on the slack side; hence the total force 2T1 acting 
at B is greater than aT, acting at C. This then would cause move* 
ment of the frame BCF about E in a contra-clockwise direction, any 
rotation is, however, prevented by a weight W hung at a point on 
the lever EF at a distance L feet from E. Hence, we see that when 
the frame BCF is in equilibrium, neglecting friction the turning 
moment on it in a contra-clockwise direction due to the unequal 

Fig« 89.<-*Transmusion dynamometer. 

forces 3T, and sT,, is balanced by the moment in a clockwise 
direction due to the weight W. 

The contra-clockwise moment = 2T, X BE — aT* x EC, and if 
BE is the same length as EC, T, and Ta being measured in pounds 
and BE in feet, we have— 

Contra-clockwise moment = aT, x BE — aT* x BE pound-feet 
= 2BE(Tx — Tg) pound-feet. 

Clockwise moment = W x L pound-feet, and these are equal— 

hence 3BE(Tx - T.) = W x L 
' ^ W X L 

and Ti — Tg — ^ ^ ^^Ibs. 

Let D s diameter of pulley A in feet, and N = revolutions of 
A per minute. 

Then work done in one revolution = 
Work done in one minute = 

Brake horse-power = 

(Tj -- Tg) X wD foot-pounds 
(Ti — Tg) wDN foot-pounds 
(T, -- TgKDN W.L.W.D.N 

33,000 BE X (id,000 

Actually the brake horse-power transmitted to the machine 
would differ from this amount because of the friction in the joints. 
The true values of T^ — Tg for various weights W can be found by 
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applying an absorption dynamometer to pulley D. If a few values 
of Ti - Ta are found, and a curve plotted on a base of loads W, 
other values of Tx — Ta for intermediate values of W can be foiind 
from the curve. 

Example i.—The following data was obtained in a test on an engine 
with the rope brake shown in Fig. 87. Circumference of brake wheel 
117*875 inches, of rope 2*375 inches, dead load W = 520 lbs. ; reading 
of spring balance S = 234 lbs., average speed 252 revolutions per minute; 
find the brake horse-power. 
Effective circumference of brake = 117*875 4- 2*375 

= 120*25 inches 

= !^=,0-03 feet. 
12 

Net load on brake (W — S) = 520 - 234 = 286 lbs. 
• t. 286 X 10*02 X 252 ^ 

Brake horse-power =--— = 21*88 B.H.P. 33.000 

Example a.—In a test with a Prony brake similar to Fig. 88, but 
without a counterpoise, the following particulars were obtained : The 
weight of the brake is equivalent to 7 lbs. on the lever at a distance of 
4*3; feet from the engine shaft. The load W was 20 lbs., distance L 
was 4*35 feet, average speed of engine 170 revolutions per minute. Find 
the brake horse-power. 

Total torque « 2ex4*35 + 7 ^4*35 
= 4*35 X 27 =5 117*40 pound-feet. 

r, 1 torque x 2xN 
Brake horse-power = —- 

^ 33,000 
« L!714j ^y^4L6jL»?o.^ 3.80 B.H.P. 

Example 3.—The Froude transmission dynamometer shown in Fig. 
89 has BE — EC = i foot, EF = 6 feet, diameter of pulley A = 3 feet, 
speed of A = 250 revolutions per minute ; W = 50 lbs. What is the 
horse-power transmitted ? v 

Using the equation deduced on page 117, 

-r -r_WxL_50X6 _ 
~ 2 X BE TlTi ~ *5° 

Work done in i revolution = i5ox»x3 = 450x3*1416 foot-pounds 
Horse-power = 45? x 3-14.6 x 250 ^ ^ p 

33,000 

Electrical Power.—Many modern machine tools are driven 
directly by electric motors, and in order to estimate the power 
supplied to the motor (which corresponds to the indicated horse* 
power of an engine) we must have a voltmeter which registers the 
pressure of supply in “ veils," and an ammeter which registers the 
current in "■ ampires." The electrical engineer’s unit of work is 
the joule" which is the work done when one ampere flows for one 
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second under e pressure of one volit it is numerically equal to 
07373 foot-pound The electrical unit of power is the 
which is'the rate of working when a steady current of one amfire 
flows under a pressure of one volt^ and is equal to one joule per second. 
For exafaaple, if a motor takesA current of 100 ampbres at a pres¬ 
sure of 200 volts, the watts supplied = xoo x 200 = 20,000 watts, 
or— 

Watts 3S amperes x volts. 
It should be carefully remembered that the product of empires 

and volts gives power, that is,.die rate of doing work in joules per 
second, whereas the product of pounds and feet in mechanical 
units gives foot-pounds—being independent of time as already 
explained (p. 108). 

Electrical Horse-power.—^There are 746 watts in one horse¬ 
power,.'' ao' that in order to convert watts into horse-power, we 
divide tile number of watts by 740 thus— 

Electrical horse-power (usually written E.H.P) = watts 

„ „ „ ampbres x volts 
or— JS.ll.Jr, s=--“2- 

The Kilowatt.—In estimating a large power the watt is an 
inconveniently small unit, and the practical unit for such purposes 
is 1000 watts, being called one kilowatt (K.W.), so that— 

watts ampbres x volts 
Kilowatts =- = —---- 1000 1000 

The relation between the kilowatt and the horse-power is rather 
important, and is— 

One kilowatt s= == i’34 H.P. 

Board of Trade Unit.—The Board of Trade unit of electric 
supply is one kilowatt for one hour or one kilowatt hour, which is 
a quantit/ of work. 

Example 1.—What is the equivalent in watts of the power spent in 
lifting 30 tons through a vertical height of 40 feet in 15 minutes ? 

We have seen in Example 1, p. 108, that the rate of working is 5*43 

Hence the equivalent in watts « 5-43 x 746 =s 4050 watts. 
Example a.—How many joules are done by a motor of 200 H.P. 

in 5 hours? 
Turning to Example 2, p. 108, we see that the work done in 5 hours is 

6,600^000 X 60 X 5 foot-pounds. 
Hence the equivalent in joules = 6,600,000 x 60 x 5 

« 2,686^000,000joules. 
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Exraiple 3*—A train of total weight 2^0 tons is dntwn by an 
electric locomotive along a level track at a speed of 40 miles an hour. 
If the tractive resistance is constant and equid to 12 Iba per ton, what 
will be the cost of running the train for one hour if the efficiency of the 
motors is 75 per cent., and the price of 1 Board of Trade unit is ? 

Turning to Example 4, 109, we see that the horse-power supplied 
to the motors (corresponding to the indicated horsenpower in that 
example) must be 426 6 E.H.P., and this is equal to-— 

426*6 X 746 watts 

or kilowatts. 
1000 

Hence, in running for one houi^ the number of Idlowatt-bours or 
Board of Trade units will be— 

436-6 X 746 ^ 3,8.^ 
1000 

and the cost at lid. per unit will be— 
318*24 X 1*5 pence = jfi 19s. gd. 

Exemple 4.—In Example 3, what will be the current taken by the 
motors if the pressure of supply is 500 volts ? 

the watts supplied ~ 426*6 x 746 
and watts volts x aiimi^res 

hence amp^s = 4s 636*4 amperes. 

Example 5.—An engine delivering 250 B.H.P, drives a dynamo 
whicJH generates 890 amperes at a pressure of 200 volts; what is the 
efficiency of the dynamo? 

Watts given out by the dynamo = 890 x 200 watts 
Watts supplied to drive the dynamo ^5= 250 x 746 watts 

efficiency of dynamo « 
' ’ watts supplied 250 x 746 

s= 0*95 or 95 per cent. 
The problem might also be solved as follows 

E.H.P. of dynamo = 

H,P. supplied to drive it s 250 
. 8qo X 200 

efficiency = - = 0-95 as before. 

Example 6.—A pump driven by an electric motor delivers too 
gnlfons of water to a height of 100 feet every minute. If the efficiency 
ef the pump is 70 per cent,, and the motor takes 19 amperes, the 
jpressure of supply being 200 volts, what is the efficiency of the motor? 

Work done by the pump on the water per minute = too x 10 x too 
foot-pounds. ^ 

Useful horse-power done in pumping » *** ^ -- 3.03 h.P. 
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But this is only ^ Of that required to drive the pump; 

/. horse-power required to drive the pumj^ 
tWt is, the B.H.P.'i «. ^ = 4*3^ B.H.E. 
of the motor J 

Power supplied to the motor = 19 x 200 watts 

- - 5-09 E.H.P. 
746 

__ , output _ B.H.P. _ 4*3« 
Efficiency of motor = ^ 

s 0*848 or 84*8 per cent. 

131 

Examples IX. 

1« What power would be spent in lifting 20 tons through a vertical height of 
so feet in 5 minutes ? 

A man weighs 168 lbs., and carries a cycle of weight 28 Ihs. up a flight 
ef steps 25 feet high in i minute; at what horse-power does he work ? 

3* How many foot-tons of work are done by an engine of 115 horse-power 
in 2I hours ? 

4. A motor car weighs 2 tons. What must be the indicated horse-power of the 
engine when moving on the level at 50 miles an hour, the tractive resistance 
being 30 lbs. per ton and the mechanical e65ciency of the engine 78 per cent. ? 

1/^5. A single-cylinder gas engine has a cylinder 7 inches diameter, stroke 12 
inches. The number ot e^cplosions per minute is 80, and the mean effective 
pressure is 6^ lbs. per square inch. Find the indicated horse-power. 

6. The diameter of a steam engine ^linder is 40 inches, and of the piston- 
roa 5 inches, and the stroke is 5 feet. The mean effective pressure on the back 
end of the pistou is 40 lbs. per square inch, and on the cvank end 42 lbs. per 
square inch. If the speed of the engine is 120 revolutions per minute, what is 
the indicated horse-power ? 

7. A single-cylinder oil engine has a cylinder 7 indies in diameter, stroke 
13 inches, mean effective pressure 41 lbs. per square inch, number of explosions 
per minute 90, calculate the brake horse-power if the mechanical eflicxency of 
thp engine is 85*4 per cent. 

8. A pump empties a shaft 10 feet in diameter and 250 feet deep which is 
full of water in 60 minutes. If the efficiency of the pump is 70 per cent., what 
horse^power will be required to drive it ? 

^ 9. A pump delivers 5000 gallons of jrater to a height of 150 feet every 5 
minutes. If its effidency is 75 per cent., what horse-power will be required to 
drive it ? 

y 10. An engine of 120 I.H.P. and efficiency 85 per cent, drives a pump 
which delivers 2000 gallons of water per minute to a height of 120 feet; what is 
the efficiency of the pump ? 

v, ii. A hydraulic motor develops 25 B. H. P. with a mechanical efficiency of 
75 per cent. It is supplied with water under a pretsufe of 700 lbs. per square 
inch. How many gallons will it require per minute ? 

^.12. What will be the cost of running the motor in Question 11 for i hour if 
the price of xooo gallons is 6^ ? 

v^3. The following data was obtained in a test on an engine with tlm rope 
brake shown in Fig. 57 : Circumference of brake wheel 14 feet i| inches, of rope 
2 inches; dead load W a ^ lbs.; reading of spring balance lo lbs.; spef d iflS 
revolutions per minute, what is the brake horse-power ? 
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14. In n B.H.P. test the drcnmfmnce of the pulley is 20 feet* nod of the 
rope 2*4 inches. The effective load on the brake (W — S) was 795*4 lbs.; 
average speed 209*5 revolutions per minute. Find the B.H.P. 

‘^15. In a test with a Prony brake« the weight of the brake is equivalent to 7 
lbs. 52*2 inches from the engine shaft. The load W on the lever was 55 Ib^ 
4*35 feet from the engine shaft. Find the brake horse-power if the speed is 
2QO revolutions per minute. 

'h6. What is the equivalent in watts of the power spent lifting 10 tons through 
a vertical height of 15 feet in 2 minutes ? 

17. Express in joules the work done by a motor of 5 H.P. in one hour. 
18. An electric tram car weighs 5 tons, the tractive resistance being la lbs. 

per ton on the level. If the efficiency of the motors and gearin|; is 65 per cent., 
what current will be taken at a spe^ of 15 miles an hour if the pressure of 
supply IS 500 volts ? What will be the cost of running the car a distance of 
one mile if the price is \d, per Board of Trade unit ? 

^19. The output of a dynamo is 250 umpires at 210 volts. The dynamo is^ 
driven directly by means of a steam engine whose efficiency is 85 per cent. If 
the efficiency of the djmamo is 93 per cent*, what must be the indieated horse¬ 
power of the engine 

J20. A pump is driven by an electric motor taking 25 amperes at 210 volts, 
aim whose efficiency is 85 per cent. If the efficiency of the pump is 70 per 
cent., how many gallons ot water will it deliver per minute to a height of 50 
feet? 



CHAPTER X 

TXANSM/SSION OF MOTION AND POWER 

Belt-driving.—One of the commonest methods of driving a shaft 
or machine from a parallel shaft at a moderate distance away is by 
means of a flat belt, or strap, running over pulleys. Belts are made 
of leather and various special compositions. 

Fig. 90 illustrates an open-belt drive, in which a pulley A, called 
the driver, drives another pulley B, called the driven pulley, or fol¬ 
lower, in the same direction. In tHe crossed-belt drive, shown in 

Fig. 90.—Opcn-l>eU drive. 

Fig. 91, the driver A drives the driven pulley B in the opposite 
direction to its own motion. The grip between the pulleys and 
the belt is obtained by the friction which arises from me pressure 
between the belt and the pulleys. The pressure is increased by 
tightening the belt, and this increases the frictional grip. 

Velocity Ratio.—If the driver A has a diameter of, say, 15 
inches, and the driven pulley B has a diameter of 9 inches, and if 
there is no flipping, during one revolution of tjhe driver its circum¬ 
ference and the belt move through 157 inches. If there is no slip¬ 
ping at the driven end carrying the follower B, this most also move 
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I5«- inches. But 9ir inches of B is one revolution, so that the revo> 
lutions made by B while A makes one revolution are— 

That is— 

iS^ —. 15 —. 5 
— V "" 

or I *66. 

speed of pulley B 

speed of pulley A 
1*6 = velocity ratio of B to A. 

If the diameter of A is called D, and that of B is called and 
the revolutions of A per minute are called N, the revolutions of B 
being called n per minute— 

Fig. 9z«*—Crosfed'belt drive. 

Then for one revolution of A the belt moves w x D, 
for each revolution of.B the belt moves v x d, 

and for each revolution of A the revolutions of d are x 
vd d 

While A makes N revolutions (in i minute), B makes ^ times 

as many. That is— 

« = N X 
D 
d 

N _ £ 

« “ D 
or 
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or, in words, the velocity ratio— 

revolutions per minute of follower _ diameter of driver 

revolutions per minute of driver diameter of follower 

Unless the belt is very thin compared with the diameters of the 
pulleys, the effective diameters of the pulleys should be reckoned 
to tte centre of the thickness of the belt. 

SHpirintr of Belts.—When, a belt is transmitting power the 
frictional grip may prove insufficient, and some^slmping forwati pf 
the drivtf may take place^ without cs^xyio^Ibe pelt witb.it; and 
SDthe'ikirppihjf f»rwarS~SC^b belt over the follower may also take 
place. Apart from this slipping, there is a small, but continuous 
“creeping” of the belt on the pulleys, due-to unequal stretching. 
A belt and pulley, then, do not gite yrhac is called a “positive”! 
drive, such as is obtained from'chaini, which cannot slip; and belts] 
should never be employed when an exact velocity ratio is of] 
importance. 

Example i.—An engine drives a line of shafting by means of a 
belt. The diameter of the pulley on the engine shaft is 54 inches, and 
that on the shafting is 33 inches. If the speed of the engine is 140 revo¬ 
lutions per minute, what will be the speed of the shafting ? 

In this example the driving pulley is 54 inches diameter, and the fol¬ 
lower is 33 inches diameter. Hence, for each revolution of the driver 
the follower makes revolutions, and the speed of the follower is— 

140 X H s 329 revolutions per minute. 
Example a.—It is required to drive a shaft A at 620 revolutions 

^ minute by means of a belt from a parallel shaft having a pulley B 
30 inches diameter on it, and running at 240 revolutions per minute. 
What sixdd wlley will be required on the shaft A ? 

Let d B diameter of pulley required. Then for one revolution of B, 

A will make ^ revolutions, and the speed of A will be ^ x 240; and 

this is equal to 620 revolutions per minute. 

Hence = fab 

d — — ^ f 1*6 inches. 

Power tnuumitted by Belts.—The follower B, Fig. 93, is 
pulled round by the frictional grip tff the belt, because the pull of 
the belt on one side is greater t^a that on the other side. The 
turning moment exerted on the follower by the belt in one direc¬ 
tion is greater than that in the other, hence work is done. 

Let Ti = tension in the tight side of the belt in pounds, 
T) SB tension in the slack side of the belt in pounds. 
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The effective turning force at the circumference of the follower 
is the difference of the forward and backward tensions, or the dif> 
fetence of the tensions in the tight and slack sides of the belt 
The effective turning moment is the difference of the tensions mul¬ 
tiplied by the radius of the follower. 

In 1 foot motion of the belt the work done at the circumter- 
ence of the following or driven pulley is— 

difference of tensions in pounds x i foot-pound. 

And if the belt moves V feet in i minute, the work done in one 
ndnute is— 

difference of tensions x V foot-pounds. 

Now Ti is the greater tension on the “ tight ” side, and Ts the 

smaller tension on the “ slack ” side, the difference of tensions is 
(Tx — Ti) pounds, and the work transmitted per minute is— 

(Tj — T2)V foot-pounds. 

Similarly, the driver A does this amount of work per minute on 
the belt. 

The horse-power V transmitted, then, is— 

Ziooo 

Example i«—The tensions in the two sides of a belt are 120 lbs. 
and 59 ll>s* respectively. If the speed of the driver is 240 revolutions ger minute, and its diameter is 4 feet, what horse-power is transmitted 
y the belt ? 

Circumference of driver « 4 x v = 4ir feet. 
_/circumfercnce of driver x revolutions of Speed of belt -1 

^ 4w X 240 feet per minute. 

H.P. = ^ 7ox_4v_x,4 ^ g jj.p, 
33000 SSo 
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Example a.—The speed of a belt is 25<^ feet per minute, and it 
transmits horse-power. Find the difference of the tensions in the 
two sides of the belt. Also, if the tension in the tight side is 2^ times 
the tension in the slack side, find the two tensions and the width of belt 
required if the maxiitium tension is not to exceed 80 lbs. per inch width 
ofbclt. 

H.P. 
^(T,-T^)V 

33000 

Substituting for the horse-power and V, we have— 

g- — Tg)25oo 
^ 33000 

^ 85 X 33000 S; X 66 
T, -Tj = —- — = -= 1122 lbs. 

* * 2500 5 

Now, the tension in the tight side Tj is to be 2^ times the tension 
Ta in the slack side, that is Tj = 

Hence a'ST, - = 1122 
fSTg = 1122 

Tj = = 748 lbs. in the slack side 

and Tj = 748 x 2*5 = 1870 lbs. in the tight side. 

Now, the maximum tension allowed is 80 lbs. per inch width of belt 

so that width of belt = = 23*4 inches. 

Example 3.—The width of a belt is 6 inches, and the maximum 
tension per inch width is not to exceed $0 lbs. The ratio of tensions on 
the two sides is 2J, the diameter of the driver 3 feet 6 inches, and it 
makes 220 revolutions per minute, find the horse-power that can be 
transmitted. 

The maximum tension in the belt (Tj) So x 6.= 480 lbs., and 

since ^ = 2*25, Tjj = = 213 lbs. 

Difference of tensions (Tj - T,) = 480 - 213 = 267 lbs. 

Speed of belt V = | 

V = 3*5 X IT X 220 feet per minute 

h.p.=LTuzJ:x)v 
33000 

^ ?l7.iL3-5T.xjjp ^ 6 H.P. 
lyyoo 

per 

Speed Cones are pulleys havi^ several steps of different 
diameters 6n which a belt may run. iMg. 93 shows two speed cones, 
their object being to secure a velocity ratio which may be varied 
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between desired limits, and in this manner drive the machine at the 
particular speed which is necessary for the work it is doing. 

Pulleys with Belts connecting Non-Parallel Shafts.— 
Shafts which are not parallel, and which do not intersect may be 
connected by an endless belt, provided that the pulleys are correctly 
placed. Fig. 94 shows the arrangement applied to two shafts at 
right angles which always rotate in one direction. The only con¬ 
dition that the belt may run properly is that the point at which the 
belt leaves either pulley must be in the plane of the other pulley, 
that is, in a plane through the centre of the other pulley. An 

inspection of Fig. 94 shows that this condition holds for the 
arrangement there shown. 

Guide Pulleys.—Shafts which are not parallel, and which may 
or may not intersect, may be connected by a single endless belt if 
guide pulleys are used. Fig; 95 shows a plan and elevation of an 
arrangement of pulleys and guide pulleys, and explains itself. 
The belt will run equally well in either direction, and the guide 
pulleys do not affect the velocity ratio between the shafts A and B. 

Guide pulleys are also used when the two shafts to be connected 
are close together, and by properly placing the guide pulleys it 
is possible to make the belt run equally well in both directions. 
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Fig. 96 shows two shafts A and B which are perpendicular and very 
dose together, connected by an endless belt passing over the two 
guide p^eys which run loosely on the spindle C. Whatever the 
direction of motion, the plane through the centre of each pulley 
passes through the point of delivery of the pulley from which the 
belt is received and the condition of proper running is maintained. 

Belt ptdleys are usually rounded on the face because the 
tendency of the belt when running is to climb to the highest part 

FiG«r 94,-—Belt drive for perpendicular shaftii 

of the rim; the belt will therefore keep its place on the {mlley, any 
chance for it to run off the pulley being reduced to a minimum. 

Fast and Loose Pulley.—When a machine has to be fre* 
quently started and stopped it can be driven by a belt in the 
following manner:—The arrangement usually adopted for driving 
a lathe or other machine tool is shown in Fig. 97. A pulley J on 
the main shaft which rotates continuously, drives the pulley F, 
which is keyed on the countershaft K. The pulley L rides loosely 
on the countershaft and is therefore called the loose pulley, while F 
is called the fast pulley. The sliding piece S has fixed to it a fork 
M, and is moved by palling the chains H, which are attached to 

r 
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ends of a lever carried by the spindle A. The ^indle A can 
in bearings suspended by the bracket G| and carries an arm E. 

Fig. 95.—Use of guide pulleys. Fic. 96. 

which is slotted at the end to receive a pin attached to S. The 
countershaft rotates in bearings carried by the hangers B fixed to 

Kyutt £levalion End Eltuvdien 

Xio. of Ant and looie puHeirs. 
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the ceiling. The breadth of the pulley J on the mainshaft ia 
sightly greater than the sum the breadths of F and L, and the 
width of the belt is slightly less than either F or L. The fork M 
presses on the side of the belt advancing to F or L, and by pulling 
H the belt is moved on to either pulley. If the belt is moved on 
to L the countershaft remains at rest, L rotating loosely on it. If 
the belt is moved on to F the coumershaft rotates since F is 
keyed to it, and the lathe is driven by the speed cones as shown. 
The sliding piece S together with the spindle A and arm £ is 
called the striking gear. 

Reveraing^ Motion by Belting.—A reversing motion may 
be given to a machine by an arrangement of open and crossed 
belts as shown in Fig. 98. The driver A is mounted on the shaft 

Fio. 98.—Belt xevermg motion. 

from which the machine is driven, and always rotates in the same 
direction. The machine shaft carries three pullevs B, C and D, of 
which B and D are loose and run idly on the shaft whilst the 
middle pulley C is keyed to the shaft and therefore rotates with it 
F is an open belt, and G a crossed belt If the belts are in the 
positions shown in Fig. 98, the crossed beH G being on the loose 
pulley B and the open belt F on the fttss pulley C, then the 
noachine shaft will be driven from A by the open belt F in a clock¬ 
wise direction. If now the sliding bar £ canyrng fhe belt forks 
H and K be pulled over so that the open belt is moved on to the 
loose pulley D and the crossed belt on to tne fast pulley C, then 
the machine shaft will be driven from A by the crossed belt in a 
contra-clockwise direction. The first pulley C is made narrower 
than B and D in order that when desir^, the crossed belt may be 
on B and the open belt on D, in which case the machine remainp 
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at rett. In an ordinaty planing machine the sliding bar £ is 
moved by projections on the table of the machine itself, and the 
machine is self-acting in its reversal. 

Ropes and Pulleys.—Ropes are often used instead of belts 
for transmitting power, especially when the shafts are a long dis* 
tance apart. Cotton ropes are the best on account of their flexibility, 
but maniia and hemp ropes are also used, although they are less 
flexible than cotton ones. The use of ropes necessitates special 
pulleys with grooves cut in the face as shown in Fig. 99. The 
efiect of the groove is to increase the frictional grip of the rope 
on the pulley and thus reduce the tendency to slip. When a 
large amount of power is to be transmitted to a great distance, wire 
ropes are used. The V groove shown iii Fig. 99 is not suitable for 
wire ropes, because the lateral crushing which occurs between the 
rope and the sides of the V injures the rope; the form of groove 

Fig. 99.—Rope driving pulley. Fig. ioo.--Wirc rope driving puHey. 

used is shown in Fig. 100, the rope resting on the rounded bottom 
of the groove. The bottom of the groove consists of wood, gutta¬ 
percha, or leather, leather being found to answer best in practice. 

Driving Chains.—Chains are frequently used instead of belts 
or ropes for transmitting power in cases where the tensimi is very 
great, or when slif^ing is to be avoided. Fig. lor shows a very 
common form of chain and wheel’. The cogs or teeth on the wheel 
fit in the spaces between the links of the chain, and the power is 
transmitted without any slipping. The chief drawback to the use 

this duiin is the stretching of the links which takes place after a 
time, due to wear of the pins and their bearings. 

Plrktion Gearing.—If the outside of one wheel A (Fig. 103) 
be pressed against the outside of another wheel B on a parallel 
shaft, the motion .may be transmitted from one (the driver A) to 
the other (the follower B) if the surfaces of the two wheels are 
suffidendy rough and the resistance of the driven wheel B is not 
too great. Tlw two wheels have the same speed at their circum- 
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ferences, and the speed of B would be calculated from that of A 
exactly as if they were connected by a crossed belt, that is, the 
velocity ratio— 

revolutions per minute of follower B diameter of driver A 

revolutions per minute of driver A diameter of follower £ 

Fig. iox.—Chain driving. 

As in a belt drive, slipping may occur if the power to be trans* 
mhted is too great for the frictional grip between the surfaces; and 
friction wheels do not give a positive drive. 

Toothed Wheels or Spur Oearingr.—If, instead of trust¬ 
ing to the frictional grip between the curved surfaces of two wheels, 
teeth are cut in each wheel which 
engage in spaces in the other wheel 
so that no slipping in the direction 
of the circumference is possible, the 
drive becomes positive and the ve¬ 
locity ratio is quite definite. Toothed 
or spur wheel geariM is capable of 
transmitting a considerable amount 
of force, and is a very important 
means of transmission of motion and 
power. 

It is convenient to think of the teeth and spaces as being formed 
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above and below the curved sur&ces of the wheels or cylinders, 
which, when working together on two parallel shafts, would give the 
same velocity ratio as is required of the actual toothed wheels. 
Such cylindrical surfaces are called the piUh surpaas, and are 
shown in Fig. 103 by the dotted piteh circles. Pitch circles are, 
then, circles cratred at the spur-wheel cratres, and havmg the 
same radii as those of correspondiitg friction wheels to give the 
same velocity ratio. If a wheel has, say, fifteen teeth, and fifteen 
spaces between diem, a tooth and adjoining space must together 
occult one-fifteenth of the circumference of the pitch circle. This 
amount is called the circular pitch of the teeth, that is, the distance 
measured along the circumference of the pitch circle from a point 

prwer 

on one tooth across the intervening space to the corresponding 
point on the next tooth, or the length on the circumference of the 
pitch circle occuiaed by one tooth and one space, as diown at 
Fig. 103. 

If a wheel of diameter d inches has n teeth—- 

1 •. t- • • L ^ circnroference of pitch circle -ed 
circular futch m m^es za p ---~ —- 

ft ft 

or number of teeth « = — 
f 

The number of teeth and spaces must evidently be a whole 
number, so ^t the pitch p must divide exactly into the circumfer¬ 
ence -ndy giving a whole number «. Hence we have the following 
relations 

a « 
P 

d 
IT 
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DUimetnd ntclk—A length whidi is the suae fraction of the 
diameter of ttie pitch drde as ^ circular pitch is ot the drcumfer- 
ence is called the diametral jjdtch^ or— 

.. ...... diameter of pitch cirde d 
diametral pitch in indies s ----- - 

and drcular pitch p » diametral pitch r x «*. It has nnfortunately 
become common to call i/x, the number of teeth per inch diameter, 
the diametral pitch. This is illogical, since pitch is ncnmally a length. 

In dealing arheds it is often more convenient to use the 
diametral pitch than the circular pitch, because the dianieters of 
wheels will be rational numbers if a series of simple values are 
chosen for the diametral pitches instead of for the circular pitches. 

Example.—A spur wheel having a diametral pitch of ^ inch (J.e. 
two teeth per inch of diameter, called 2’s pitch) has its pitch circle 
20 inches diameter. How many teeth wilt it have, and what will be the 
circular pitch ? 

Diametral mtch j = - or« = ~= x= 4o teeth 
ft s ^ 

Circular pitch p = ^ = w x s = 3'i4i6 x | = i'57o8 inch. 

Velocity Ratio.—^The velocity ratio of a wheel A (Fig. 10$) 
driving a wheel B may be found as for die friction wb^ls, whi^ 
might replace the pitch surfaces— 

revolutions per minute of follower B 

revolutions per minute of driver A 

_ diameter pf pitoh drcle of driver A 
~~ diameter of pitch drcle of follower B 

But since the diameters of the pitch drcles are proportional to the 
circumferences, and the wheels A and B, to work logger, must 
have the same pitch, the circumferences are proportional to the 
number of teeth in die wheels^— 

revolutions per minute of follower B 
revolutions per minute of driver A 

_ number of teeth in driver A 

^ number of teeth in follower B 

Without reference to the corresponding friction wheels, we might 
calculate the velocity ratio thua. If the driver A has, say, thirty- 
aix teeth of ^inch pitch, and the follower B has twenty^bur teeth of 
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l-inch pitch, in one revolution of A both wheels turn together 
through 36 X ^ — 9 inches at the pitch circle circumference; but 
for one revolution of B the distance turned thro^h is 24 x 4 = 6 
inches, hence the number of turns made by B during one revoTutioa 
of A is— 

or 

36 X 1 ^ 
24 X i 6 "■ 5 

number of revolutions of B 36 
number of revolutions of A 24 ^ 

Qencval Rule for Velocity Ratio. 
If Abas T teeth, 

B has t teeth, 
N a: number of revolutions of A in any given time (say, 

I minute), 
n K aandier of revolutions of B in the same time, 

n T 
Velocity ratio of follower to driver = ^ ^ 

T 
and revolutions of follower B, e = X N 

Idle Wheel.—If instead of gearing with the follower B the 
driver A. Fig. 104, drives a wheel C, and C drives B, the only effect 
of C is to make the wheel B turn in the same direction as A, instead 
of in the opposite direction which it did in Fig. 103. For, if A 
makes one tom, all points on the circumference of C turn through 
a distance eqiud to the circumference of A, and all points on the 
circumference of B are driven through the same distance, namely, a 
length equal to the circumference of A just as .before; and B makes 
the same number of turns as before, but in the opposite direction. 
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To put it otherwise, if A makes N turns, and C has f teeth, 
using the previous rule— 

C makes N x p turns 

And again applying the rule, B makes ~ times as many turns as 

C, that is— 

T t T 
revolutions ofB = Nx^X^s=NX'y 

just as before, when C was not there; the number of teeth (/') in C 
is immaterial, for / cancels out. 

Example —Three spur wheels, A, B, and C, are on parallel shafts, 
and are in gear—A with B, and B withal. A has 45 teeth, and runs at 
240 revolutions per minute, and C has 105 teeth. What will be the 
speed of C ? 

Applying the above rule— 

Speed of C = 240 X 3^ = « loaf revolutions per miaute 

in the same direction as A. 

Example a.—Motion is to be transmitted by means of two spur 
wheels on parallel shafts with a velocity ratio of driven to driver of 
12. The driven shaft has to rotate at 1130 revolutions per minute, and 
the wheel on it has 20 teeth. How many teeth must the driver have, 
and with what speed must it rotate ? 

Number of revolutions of driven wheel _ number of teeth in driver _ 12 
Number of revolutions of driver number of teeth in driven ^ i 

Hence number of teeth in driver = 12 x teeth in driven wheel 
= 12 X 20 = ^o 

Speed of driver = = 94J revolutions per minute. 

Trains ol Wheels.—A large velocity ratio cannot be obtained 
by the use of two spur wheels without one of them being incon¬ 
veniently large. In such cases a train of wheels is used as shown 
diagrammaticaily in Fig. 105. the motion being transmitted from 
the driver A on shaft i, through wheels B and C keyed on shaft 2, 
then through wheels D and E keyed on shaft 3 to the follower F 
keyed on shaft 4. The wheels B and C, or the wheels D and E, 
instead of being keyed separately on to the shaft 2 or 3, may be 
all in one casting, in #hich case it is called a compound wheel. 

Suppose in Fig. 105, A has 40 teeth and makes 60 revolutions 
per minute, B 25 teeth, C 105 teeth, D ao teeth, E 150 teeth, and 
F 30 teeth, then— 
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revolattoQS of shaft 2 afevolations of shaft x x|S .= 60 x 
n »» 3“ » »» 
.» » 4= ,, „ 3XW='S04XW=*5»o 

Hence, we see that by this tiain of wheels the follower F makes 
2520 revolutions per minute, whilst the driver makes only 60 
revolutions per minute. 

General Rule for Velocity Ratio of a Train of Wheels. 
—Referring again to Fig. 105, let A, B, C, D, E, F represent the 
number of teeth in each wheel, then if shaft i makes i revolution— 

revolutions of shaft 2 = revolutions of shaft x X ^ = | » 

c /A> 1 c 
»• >» 3 » (b> 

E , C\ 
99 If 4 ~ >j x

 
»
i| II 

^d) 
hence, the velocity ratio or revolutions of last shaft per revolution 
of first shaft, or— 

revolutions of last shaft _A^C^E^^AxCxE 
revdlutions of first shaft ‘“B^D^F^^’^BxDxF. 

__ product of numbers of teeth in drivers 

“ product of numbers of teedi in followers 

ttan^le l.‘»In a trun of wheels the drivers have 40^ 60^ 80, and 
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120 teeth; the followers have a$, 50^ 30^ aod 70 teeth. If the first 
driver makes 80 revolutions per minute, what will be the speed of the 
last follower ? 

Applying the above rule—• 

.., . product of numbers of teeth in drivers 
e oci y ra to — j^gduct of numbers of teeth in followers' 

40 X 60 X 80 X 120 ^ «_ 
3$ X 50 X 30 X 70 " 

Speed of last follower = 80 x 877 = 701*6 revolutions per minute 

Example a.—In the .train of wheels shown in F^. 105, A has to 
teeth, B has 30 teeth, C i3o teeth, E 95 teeth, F 3$ teeth. A makes 
30, and F 456, revolutions per minute: how many teeth must the 
wheel D have? 

Velocity ratio * *= ^ 

Applying the above rule— 

76_AxCxE_20 X 130 X 95 
5 ~ B X D X F “ 30 X D X 25 

76 4 X 4 X 95 

5 D X S 
5 X 76D = 5 X 4 X 4 X 95 

j, ^ SJ^x^S ^ 4X^ „ 30 teeth 
5 X 76 76 

Power traiumitted by Spur Qearlnx.—Nt^lecting friction, 
the power transmitted may be found by the principle of work as 
follows:— 

The work put into the train by the first driver must be equal to 
the woric obtained from the last follower, since there is no loss by 
friction, and this must equal the work transmitted. 

Let P = tangential pressure in pounds at the pitch cdteles 
between the teeth of any two wheels in gear, and i (in ieet) the 
diameter of the pitch circle of one of them (the driver). 

Then work transmitted— 
ss effort applied to driver x distance moved by the effort 
= pressure between the teeth of two wheels which gear x 

distance moved along die pitch circle 
— P X wi/ per revolution 

and if the driver of the two wheels makes N revolutions per 
minute, work transmitted per minute P X wifN foot-pounds j and 

IP ^ 
Horse*power transmitted H.P. --- or 

33000 
33000 X H.P. 

irrfx N 
lbs. 
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The power transmitted may be expressed in words thus— 

H p between teeth (lbs.) x speedof pitchcircle(ft.permin ) 
33.000 

Example l.—Two spur wheels in gear are transmitting 5 H.P. The 
driver has 40 teeth, and the pitch is t inch. If the driver makes 200 
revolutions per minute, What will be the tangential pressure between 
the teeth ? 

p 33 OOP X H.P. 
X N 

The circumference of the pitch circle of the driver is 40 x i inches 
or feet. 

.’. P = 
33,000 X 5 _ 33,000 X 60 

X 200 40 X 200 
= 247'S lbs. 

Example a.—2$ H.P. is to be transmitted with a pressure between 
the teeth not greater than 500 lbs. What must be the speed of the pitch 
circle ? And if the driven wheel has too teeth of inch pitch, at what 
speed will it rotate ? 

Speed of pitch circle =-^3?ooo—^ minute 
pressure between teeth ^ 
as X 33,000 . , 

= -=—-= 1650 feet per minute. 

Circumference of pitch circle - — feet 

.*. speed of driven wheel = x 12 = 132 revolutions per minute. 

Example 3.—In the train of wheels shown in Fig. 105, F has 30 
teeth of f inch pitch. If the train transmits 2 H.P., F making 25a revo¬ 
lutions per minute, what will be the pressure between the teeth of wheels 
E and F ? 

Circumference of F = 30 X } inches = feet 
X 12 O 

P = H^_33,ooo ^ 2 X 33,000 xj ^ 
V X 252 15 X 252 

Rack and nnion.—A rack is a spur wheel of infinitely large 
duimeter, and the {utch surface is a plane. Fig. 106 shows a sa^ 
and spur srtieel or pinion in gear. \^en the pinion is rotated tm 
a fixed shaft it moves the rack along as shown by the arrows in 
Fig. 106. If the rack is fixed, then the pinion rolls along it. 

Example.—A pinion gearing with a rack has 20 teeth of } inch 
pitch, and rotates at 100 revolutions per minute. The rack is fixed to 
the table of a planing machine. At what speed will the table be 
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driven? If the pressure between the teeth of the reck and pinion is 500 
pounds, what is the horse-power transmitted ? 

Circumference of pitch circle of pinion = 20 x ^ = 10 inches s } feet 
Speed of pitch circle = speed of rack = f x 100 feet per minute 

sr 63| feet per minute 
Work transmitted per minute = pressure between teeth x speed 

= 500 X ^ foot-pounds 

H P- transmitted = ^ = fat H.P. 

Examples X. 

I. An engine drives a line of shafting by means of a belt. The driving rillev on the engine shaft is 6 feet diameter, and that on the shafting is 3 feet 
inches diameter. If the engine runs at 120 revolutions per minute, what will 

be the speed of the shafting (<;) if there is no slip, and (^) if the slip of the belt 
is 3 per cent. ? 

2. A pulley of 36 inches diameter running at 250 revolutions per minute 
drives another pulley, A, at 360 revolutions per minute : what is the diameter 
of A? 

3. A pulley, A, 42 inches diameter running at 200 revolutions per minute 
drives a pulley, B, of 30 inches diameter by means of a belt. On the same shaft 
as pulley B is keyed another pulley, C, ol 36 inches diameter, which drives a 
machine having a pulley of 15 inches diameter on its shaft. What will be the 
speed of B, and what will be the speed of the machine spindle ? 

4. The tensions on the two sides of a belt are 250 lbs. and 100 lbs. respec¬ 
tively. The diameter of one pulley is 2 feet 6 inches, and it runs at 300 revolu¬ 
tions per minute. What horse-powor w transmitted by the belt ? 

5. A belt running at a speed of 2400 feet per minute has a difference of 
300 lbs. between the pulls on the tight and slack sides: what horse-power is 
being transmitted ? 

6. The speed of a belt is 2000 feet per minute, and it transmits 100 H.P.: 
find the difference of tensions in the two sides of the belt. Also, if the tension 
in the tight side is 2{ times that in the slack side, find the two tensions and the 
width of the belt required if the maximum tension is not to exceed 80 lbs. per 
inch width of belt. 
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7. The teniion on the tight side of a belt is 3) times that on the slack side ; 
it runs at 2300 feet per minute, an^ transmits 120 H.P. The thickness of the 
belt is I inch, and the maximum tension is to be 3 Jo lbs. per square inch of cross* 
section of the belt. What must be the width of the belt ? 

8. The width of a belt is 10 inches, and the maximum tension per inch width 
of belt is not to exceed 80 lbs. The ratio of tensions on the two sides is 2); the 
diameter of the follower is 2 feet 6 inches, and it makes 240 revolutions per 
minnte. What horse*power can be transmitted ? 
^ 9. The diameter of the pitch circle of a spur wheel is 18 inches, and its 
diametral pitch is ] inch: how many teeth will it have, and what will be the 
circular pitch? 

10. Two spur wheels, A and B, on parallel shafts are in gear. A has 40 
teeth, and rotates at 250 revolutions per minute, whilst B is to make 100 revolu¬ 
tions per minute. How many teeth must B have ? 

11. Five WDVn wheels. A, B, C, D, £, are in near. A has 50 teeth, and runs 
at 300 revottttions per minute, B has 80 teeth, C has 60 teeth, D 40 teeth, and 
£ 120 teeth. What will be tl^ speed of (a) B, (^) C, (^) E ? 

^ 12. In the train of wheels shown in Fig. 105, A has 20 teeth, B has 30 teeth, 
E 95 teeth, D 20 teeth,«F 45 teeth. A makes 30 revolutions per minute, and F 
456 revolutions per minute. How many teeth must the. wheel C have? 

13. Two spur wheels in gear are transmitting 10 H.^P. Tte driver runs at 
240 revolutions per minnte, and has So teeth of f inch pitch. Neglecting friction, 
find the pressure between the teeth. 

14. A train of wheels transmits 5 H.P. One of the wheels has 60 teeth of 
1 inch pitch. How many revolutions per minute must it make if the pressure 
between the teeth is not to exceed 140 lbs. ? 

15. A planing machine is driven by a pinion which gears into a rack fixed 
to the undmide of the table of the machine. The pinion has 14 teeth of l-inch 
pl^ gad makes 20 revolutions per minute. At what speed will the table be 

16. The p owct taken to drive the planing machine in Qneation 15 is 2*5 H.P. 
:tioD, what will be the pressure between the teeth of die rack and 

fnaioQ? 



CHAPTER XI 

THE INCLINED PLANE AND SCREW 

By means of an inclined plane a body may be raised by an effort 
much smaller than the weight of the b^y; the less the slope, the 
smaller the effort required. Suppose the effort P (Fig. -loy) is 

appli^ parallel to the slope and we neglect friction. When the 
body is on the point of moving up the slope, it is in equilibrium 
under the action of three forces, namely its weight W downwards, 
the reaction R (perpendicular to the plane if the friction is zero), 
and the effort P. P may be found by drawing the triangle of 
forces ^ for W, R, and P. Set off ef lo represent W, then draw 
^ line ^ p^lel to R, and fjt parallel to P; jg-and^Y intersect 
ingi and gif gives the force P to scale. 

P may be found graphically as just described, or it may be 
calculated. For since ^ is perpendicular to AC, and fg per¬ 

pendicular to AB, the angle ^ between rf and is the 
same (a) as that between AB and AC. Also ge is parallel to P, 

and therefore perpendicular to R and to to that angle ^ is 
a right angle, hence— 

sin. 

or P as W nn . 
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That is, the effort required to draw any load up a slope inclined a 
to the horizontal is equal to the load multiplied by the sine of the 
angle of slope. 

We might also find the same result by the principle of work, for 
idiile P acts through a distance, AB, in its own direction, W is lifted 
through a distance, BC, in its own direction, hence, if there is no 
friction, 

P X AB = W X BC 

or P = W X ^ = W sin a 
A Jj 

« >4 iir V height of plane 
orP = Wx-7orWx r - 

length of plane 

Experiment.—The above may be verified experimentally by the 
apparatus shown in 65 a^nd described on p. The values of 
W, P, and /, found by experiment, are here reproduced, and it will be 

seen how closely the value of P calculated from P := W sin o, or W x -j 

j^rees with the value actually observed. 

LoadW 
(OM.). 

— 

Actual P 
(ozs.;» 

Height 
(incheO* 

Length 1 
(inches). 

Sin tt or ^ 

Calculated 

PssWXy 

(Olfc). 

685 23-50 975 28-5 0*342 23*4 

30-50 r2‘90 *8-5 0*452 30*9 
36-25 28-5 0*535 36*5 

S'S 40-75 17*10 28-5 o’6oo 41*1 
44-50 1S75 28-5 0-657 450 

68-5 48*00 20 00 28-5 

u, . —. .. ^ 

0-701 48 0 

F19. toS.-^Iacllii«d sUm with horuonul effort. 

Horizontal Force. 
—If the effort P required 
to raise the body is ap¬ 
plied horizontally (Fig. 
108), instead of parallel 
to the plane, we proceed 
to find P as before by 
setting off i/ vertically 
to represent W, drawing 

and from k horiw^ally (parallel to ilrom / a line parallel to R, 
P) meeting the line from / in air. The line mk in the triangle 
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of forc^ ilm then represents P to scale, and evidently in this 
case— 

P _ fnA 

W ~ ^17 “ * 

P = Wtana, orWx orWx 
height of plane 

horizontal base of plane 

Experiment.—Usini^ the inclined plane shown in Fig. 65 and 
applying the effort P horiaontaliy, the following data was obtained :— 

Load W 
(oes.). 

muH 
HHH 

Tan a or^ 
Calculated 

P = WKf 

68 s 24*66 97S 27*10 
-1 

036 24*60 
68*5 27*45 9*20 as'SO 0’40 ' 27*40 !!‘5 34*75 12*90 as *40 0507 3472 
68-5 43*55 15*25 24*00 0635 43 50 
68 s 51*40 17*10 22‘8o 0*75 51*30 ^■5 i8‘7S 21*50 0*87 5960 
68-s 68SS 20 20 roo 

1 
68*50 

It will be seen how closely the actual value of P measured experi¬ 

mentally agrees with the calculated value P = W tan « or W Xj. 

Force at any Ang:Ie.—If the effort P is applied at any 
angle, as in Fig. 109, it can be found graphically, as before, by 
a triangle of forces, 
namely, set off np verti¬ 
cally to represent W, 
draw a line parallel to 
R (or perpendicular to 
AB), and a line through 
n parallel to P to meet 
the previous line in q. 
Then qn gives theamount 
of the effort P to scale. 

Example i.—The slope of an inclined plane is such that it rises 
I foot for each 5 feet of its length. A body weighing 100 lbs. rests 
on the plane ; find graphically (neglecting friction) the effort reauired 
to draw the body up the plane if the effort makes an angle of 30^ with 
the plane. 

out the plane ABC (Fig. no) to any convenient scale. For 
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example, make 6C i inch lone, and AB 5 inches. Draw the line of 
action ot P making 30^ with AB as^shown. Next draw the triangle of 

^ forces npg as described above. 
Choosing a scale of 1 inch to 
20 lbs., is s inches long, 
representing 100 lbs., and gu 

w is found to measure 1*2 inches, 
representing 1*2 x 20 or 24 
lbs. Hence, the effort required 
is 34 lbs. 

» Example a.—An inclined 
plane rises i foot for each 8 
feet of its length. Find the 

effort required (neglectiM friction) to draw a body weighing 3 cwt. up 
the plane, (a) when the effort is horizontal; (t) when the effort is parallel 
to the ^ane. 

The lei^h of the base of the plane (AC in Fig. 109 or 110) is 
calculated froui— 

AB* = AC® ^ BC* 
hence aC® aB®j- BC® == 8* - i» = 64 - i = 63 
and AC ^63“= 7‘937 ttei. 

(a) Effort P a W X = 3 x iia x = 43*3 lbs. 

li>) Effort P * W X = 3x112x^ = 420 lbs. 

From this exampile it will be seen that for a slope of i in 8 (which is 
greater than most hUls met with on roads) it makes very little difference 
whether we take the force to be horizontal or parallel to the plane. 
The less the slope of the plane the smaller will be the error made. 

Example 3.—^A train weighs 350 tons, and the tractive resistance 
on the level is 12 lbs. per ton. What horse-power will be required 
to draw the^ train a uniform speed of 30 miles an hour (a) up an 
incline of i in 200 ; (d) on the level; (c) down an incline of i in 200, 
the incline to be reckoned (as is usual) as 1 foot rise for every 10a feet 
length? 

3000 lbs. 

: 2800 lbs. 

(a) The effort requured to over-\ _ 
come tractive resistance / ^ ^ ** 

The effort required to lifti 

the tnuii, P « W x j “ *5° ^ 

-Iff X “40' 
Total eflfort required to draw tnun up the ioeline 

m eflbit to overcome tractive resistance+cflbrt to lift train up the incline 
m 5000 -f 3800 = Ihs. 

30 X sate 
do V 60 ' 

5800 X 44 
550 

Now 30 miles an hour : 

Hor8e*power 

: 44 feet per second 

1464 H.P. 
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iff) Effort required on the level « effort to overcome tractive resistance 
= 3000 lbs. 

Horse^power »=* ""^50 ~ 

(c) In drawing the train dewn the slope, the force of 2800 lbs. 
kelps motion, and the force of 30cx> opposes motion; hence, the force 
required dawn the plane will be 3000 - 2800 s 200 lbs., and 

Horse-power = *6 H.P. 

An alternative metnod of solution for (a) is as follows:— 

Distance moved In one minute ss 44 x 60 =: 2640 feet. 

Distance lifted in one minute == — = 13*2 feet. 
200 

Work done in one minute 
=: tractive resistance x distance + weight x lift 
= 3000 X 2640 + 350 X 2240 X 13*2 
= 7,920,000 + 7,392,000 
= 15,312,000 foot-pounds 

Horse-power = = 464 H.P. (as before) 

The Screw.—screw is formed from a solid cylinder of 
material by cutting a continuous groove in it, successive turns of 
the groove being separated by the remaining solid material, called 
the thread of the screw. The path of the thread and the groove is 
not only round the cylinder, but also along it in the direction of 
the axis; it is a heRcal path, that is, the shape of a helix. A helix 
may be drawn on a cylinder by rotating the cylinder at a constant 
rate and pressing against its curved surface a pencil or a marker of 
some kind which is moving along parallel to the axis of the cylinder 
at a steady rate. Suppose the cylinder (Fig. irt) to be covered 
with paper and a helix traced on the paper by a pencil moving 
at a steady rate along AB while the cylinder turns about its axis at a 
constant rate. The left-hand side of Fig. 111 shows the curved line 
of the helix. If now the paper is unwrapped and straightened out, 
the helix will be found to be the straight line AF, idiown at the 
right-hand side of Fig. iti, and if more than the line AB is drawn, 
the straight lines from A' and B parallel to AF, will also be found 
on the paper, the points A and A', and Ae points B and B', etc., 
falling together when the paper is wrapped on the cylinder mth the 
joint parallel to the axis. The distance, BB', is equal to the cir¬ 
cumference of the cylinder s diameter x « « w^. 

The distance AB which the pencil moves along parallel to the 
axis during one turn of the cylinder is called ^e pitch of the 
helix = p. 

If the cylinder be placed with its axis vertical the helix makes 
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a constant angle with the horizontal; this angle a or AB'fi is shown 
on the right-hand side of Fig. in, and— 

tan a s: 
AB _ / 

BB^ ird 

If instead of merely tracing a line on the cylinder a helical 
groove of definite shape is cut in it by a tool in the same way the 

cylinder becomes a screw. The form of groove differs considerably 
according to the purpose for which the screw is to be used. 

Fig. ix3.~Square*thr«aded screw. 

Forms of Screw Threads. 
Square Thread.—If a helical groove of square cross section 

and width equal to half the pitch of the screw is cut in a cylinto. 
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as shown in Fig. iia, the result is « square-threaded screw This 
. is the type of thread generally used'in the transmission of power, 
the amount of friction being-less than in other forms. 

Vee Thread.—A stronger thread (but having more friction) is 
the V thread shown in section in Fig. 113, which illustrates the 
Whitworth form of V. which has 
been adopted as the standard in 
engineering work in Great Britain 
for all sizes from |-inch diameter 

upwards. It is easier to make and is stronger thkn the square 
thread, but is less efficient and therefore gives a smaller thrust along 
the axis for a given torque or twisting moment applied to it. It is 
the form commonly adopted for studs ahd bolts. 

Seiler^s Thread.—This torm of V thtead is adopted in the 
United States of America and is shown in Pig. ri4. 

Nlita.—A nut is formed by cutting a helical groove in a 
cylindrical hole in a piece of solid material; the groove is of the 
same cross sectional form as the thread of tlie sorew with which 
the nut is intended to work. The 6on>mon hexagortal and square 
nuts used with V thread bolts for holding purposes will be familiar 
to the reader. If the screw in gear with a put is held fast and the 
nut rotated, the nut travels along the serew. If the nut is held fast 
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and the screw rotated the screw travels in the direction of its own 
axis. We have an example of this in the simple screw-jack (fig. 75), * 
in which A is the fixed nut forming part of the frame. If the screw 
rotates -but is prevented from moving along in the direction of its 
axis, a nut in gear with it and free to travel along will be driven 
in the direction of the axis of the screw. The student will observe 
examples of this arrangement in driving the tool of a screw-cutting 
lathe and ih driving planing machines, etc. 

Right-hand and Left-hand llireads.—If, looking at the 
end of a screw, when you turn a screw in a clockwise direction O) 
it advances from you into its nut beyond, it is called a ngsiZ-hand 
screw. If it moves out of its nut toward you it is called a 
hand screw. The two kinds are shown in Fig. 115. If the screws 

are as shown and are rotating so that the upper curved surface is 
approaching the reader, the right-hand helix R would be traced 
by a point moving along the sorfkce from right to left, and die left- 
hand helix L by a point moving from left to right 

Right- and Left-handed Screws.—h. common anangement 
used for tightening up a rope or tie bar is to make a joint in which 
one end of the bar ^ cut on it a right-handed screw thread and 
the other end a left-handed thread. Eadi screw thread works in a 
separate nut, the nuts being fixed together or are part of the same 
piece of material. Fig. 1x6 shown a common arrangement in 
whidi, when the nut A is rotated in one direction the two ends 
B and C of die bar are drawn together, and when rotated in the 
opposite direction they are pushed apart. The reader will notice 
a similar anraiwement used in the couplings for railway carriages. 

Multiple Threeds.—If a screw of given diameter is required 
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to have a lather laiger pitch in order to give a larger movemait to 
a not for each turn of the screw, 

•an ordinary single square thread 
may make the screw too weak, for 
the width and depth of the thread 
being half the pitch, the diameter of 
the screw at the bottom of the thread 
will be^fasD — — /, 
so that the diameter and the strength 
of the screw diminish with increase of 
jntch. When the pitch is large a 
double thread may be used, that is, 
two threads each of the required 
pitch running side by side as shown 
in Fig. 117, where the parts marked 
A form one thread of pitch p, and 
those marked B form another sepa¬ 
rate thread of pitch p. The width 
and depth of the threads in this case 
will be \p instead of \p. Similarly 
three threads each of depth \p and 
pitch p might be used as in a triple- 
threaded screw, and so on with more 
threads in one pitch. The pitch of 
a screw is, then, the distance mea¬ 
sured along the screw between any 
point on a thread and the corresponding point on the next turn of 
the sa$ne thread, or it is the distance measured along the screw 

which its nut moves when the nut makes one revolution, the screw 
beipg Iteld fixcxli.^ :Thia is also called the " lead ” of the screw. 

ight Hand. 

Fic. 1x6.—Right* and left-handea 
screw* 
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‘ Velocity Ratio of Screw and Nut.—If R inches is the radius 
at which the effort P is applied to a handle or pulley (see Fig. 75), 
and p inches is the pitch of the screw, during one revolution of the 
screw P moves 2irR inches and the screw moves a distance p inches 
against a resistance such as a load W. Hence the velocity ratio— 

y _ distance P moves _ awR 

distance W moves p 

And neglecting friction, the mechanical advantage— 

W 

P 
^,of W = P X ^.and P = W x 
P P 

P 
2wR 

Actually, the load lifted will be considerably less, as we have 
seen in the results given in Chap. VII. p. 91. 

Referring to Fig. ni, we might also regard the vertical screw 
as an inclined plane corresponding to Fig. 108 with the effort 
horizontal at the mean radius of the threads. Then the effort— 

The value of P previously obtained agrees, then, if the effort is 

applied at a radius R = -, that is, at, say, the mean radius of the 
2 

thread. If P is applied at a greater radius, then the effort P is 
proportionately reduced. 

Example i.—A screw-jack similar to that shown in Fig. 75 has 
a double thread of J-inch pitch. The effort is applied at the end of 
a lever 18 inches long. What effort will be required to lift a load of S 
tons, the efficiency at this load being taken as 40 per cent. ? 

From the above we have— 

velocity ratio V = 

Hence for t foot lift of the load— 

2irR 2ir X 18 

\ 

Work done on the load = 5 x 2240 x i foot-pounds, 

and this is equal to ^ of that done by the effort. 

Hence P x —5— x ^ = 5 x 2240 

“ 5X«4oxioox}^ 
2ir X 18 X 40 ’ 
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The same result might also be found by the method explained in 
Chapter VII., namely— 

W 
efficiency = 

. „ 5 X 2240 X f X 100 - 
-. P =  -— Q — — = 185 lbs. as before 

2ir X 18 X 40 ^ 

Example twisting moment of 3000 pound-inches is applied to 
a screw of | inch pitch and produces a thrust on the screw of 6 tons. 
Find the efficiency of the screw. 

Consider one revolution of the screw^ then the thrust of 6 tons acts 
through a distance equal to the pitch of i inch, and 

Work got out or useful work done = 6 x 2240 x i pound-inches 

Wo* expondod by .h. .«<« . { 

= 3000 X 2ir pound-inches? 
Hence— 

Efficiency = 
useful work done 

work expended 

3 X 2240 
3000 X 2n 

= 0 356 or 35’6 per cent. 

Fig. 118.—Worm and worm wheel. 

Worm and Worm Wheel. —In this combination the thrust of 
a screw is employed directly from its threads to drive the teeth of 
a wheel without the use of a nut. The threads of the screw or 
worm M (Fig. 118) have a cross section similar in shape to that of 
a spur wheel tooth and gear with the teeth of the worm wheel W 
The worm is attached to a spindle S, at right angles to the axis of 
the wheels and is prevented by Us bearings from moving in thfs 
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direcdon of its own axis, and die teedi of the wheel ate inclined to 
die axis of the wheel at the angle a of die worm. When the woniii( 
is rotated by a handle or pulley, a whole circumference of the worm 
diread between and B comes during the rotation into contact 
with, say, the right-hand side of the tooth T on the worm wheel and 
so carries it forward by one pitch of the worm, which is the same as 
one pitch of the worm wheel if the worm is single threaded. 
Suppose the worm wheel has 40 teeth; one revolution of the worm 
carria the wheel round ^ of a revolution, and to carry the wheel 
round one revolution will require 40 revolutions of the worm, or— 

Velocity ratio V = 
revolutions of worm 

revolutions of wheel 1 

For any single-threaded worm gearing with a wheel of n teeth 
the velocity ratio will be 

y __ solutions of worm __ 

”” revolutions of wheel ~ 

Thus very large velocity ratios are attained by the use of one 
worm and wheel. 

If the worm is double threaded one revolution of the worm will 
advance the worm by one pitch of the helix of the screw in which 
lie two complete threads, and the worm wheel will be advanced by 
two teeth, the pitch of the wheel teeth being half the pitch of the 
worm. In this case, for a wheel of n teeth the velod^ ratio will 
be— 

Y _ revolutions of worm _ n 
~ revolutions of wheel ~ 2 

Similarl]^ multiple-threaded wonns of large pitch having several 
threads in each pitch are frequently used, and in this case less than 
one complete turn or pitch of each thread (and therefore of the 
worm) may be necessary to drive the wheel. A comnum example 
of this is to be found in the gearing which drives the side shaft of a 
gas or oil engine. If there are m threads per pitch of the screw 

and n teeth in the wheel, the velocity ratio is —. Such gears are 

also used to connect pairs of shafts which are not at right angles to 
eadi other by giving the teeth suitable inclinations, and are called 
skew ^rs or spiral gears. 

Bmcienc^ of Worm CkarUiar.—In the contact of worm gears 
tiiere is considerable sUdibg friction, as well as some where the 
bearing prevents motioa of the worm along its axis, and in these 
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cases when high velocity ratios are obtained the efficiency is not 
usually high. 

Worm-driven Pulley Blocks.—Fig. 119 illustrates an example 
of this, type of pulley block. The driving chain A passes roun J the 
pulley B, on tlw spindle of which is keyed a 
worm (not shown) which gears with the worm 
wheel C. An enmess chain, D, is attached to 
the frame of the machine at £, and passes 
round a drum which is fixed to the same 
spindle as C and then round the snatch block 
G back to tlie frame at F as shown. The 
weight to be lifted is slung on the hook under 
the snatch block G, and the effort applied by 
a man pulling the chain A; 

Compound Screw Jack.—This lifting 
machine is a compound machine consisting of 
a worm and wheel and a screw working in a 
nut In Fig xao, which for simplicity shows 
the machine with all bearings removed, A is a 
pulley,, at the circumference of which the effort 
is api^ied, fixed to the spindle B which has the 
worm C attadied to it. The worm C gears 
with the worm wheel D attached to the screw 
£, by a feather or sliding key. The screw E 
works in the nut F, which is part of the frame f>c. 119.—orm>geared 

df the machine. On the top of the screw E puiiey blocks, 

there is a platform, G, which carries the load to be lifted. The 
motion is,froth the pulley (or handle) A through the worm and 
wheeL The screw E rotates with the wheel D, and in so doing 
advances through the nut F, lifting the load W. 

Efficiency of Combing Machines.—The efficiency of a com¬ 
bined machine is the product of the efficiencies of each part. For 
example, if 100 foot-pounds of work are done by the effort in a 
mechanism of 70 per cent, efficiency, the work transmitted is— 

zoo X ^ aa 70 foot-pounds 

If this amount of work is then supplied to another mechanism of 
60 per cent efiSciency, the work transmitted by this second 
mechanism is— 

70 X ^ =3 43 foot-pounds. 

The combined efficiency is or 43 per cent, or 0-43, tlrat Is, 
the product— 

X ^ ®’43. or 4* per cent 
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Similarijr if there are more than two mechanisms in a compound 
machine, the efficiencies of each being, Ej, E,, and E„ etc, the com-' 
bined efficiency will be— 

E = El X Eg X Eg X E4 X etc. 

Id the compound screw-jack shown in Fig. 120, the effective 
circumference of pulley A was 42 -5 inches, number of teeth in worm 
wheel D 38, pitch of screw E ^ inch. For one revolution of A the 1 

P 
Fig. 130.—Compound screw*Uick. 

effort moves 42 '5 inches, and the worm wheel and screw makes 
of a revolution. Hence the load is lifted ^ X ^ inch, and the 
velocity ratio V is— 

distance moved by P 42*5 ^ , 
distance moved by W ~ ^ x i ~ ^ ^ ~ 3*3® 

The following results were obtained in a test of this machine :— 
— 

LoudW 
(lu.). 

Effort P 
Uba.). 

Friction (PV-W) 
Gbs.). 

Efficiency per cent. 
W 

X too 

0 0*187 004 0 
5 0-20} 650 0*76 

10 0*215 ^4 
*5 0234 740 1-98 
20 0-249 784 2*48 
as 0*265 f3i 2*92 
30 0*281 877 3*30 
35 0*295 918 3-67 
40 0*313 970 39^ 
45 0*329 1017 4a3 
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These results are shown graphically on a load base in 
.Fig. I2X. The maximum load of 45 lbs, is much below the lifting 
capacity of the machine, and so the efficiency curve does not 
become nearly horizontal, like those shown in Chap. VII. The 
reader will find it instructive to produce the effort line, and esti¬ 
mate the probable efficiency for, say, W = 150 lbs. 

10 IS 20 25 30 35 40 45 Sd 
Load W (lb.) 

Fig. 131.—^Tcst of compound screw-jadc. 

Examples XI. 

I. An inclined plane ri^s l foot for each lo feet of its leoj^h. Neglecting 
friction^ find the effort required to draw a body weighing loo lbs. up the plane, 
(a) when the effort it parallel to the plane, (^) when the effort is horuontal. 

3. The slope ol an inclined plane is 30^ to the horisontal. A body weighing 
3 cwt. rests on the plane. What force inclined 15^ to the plane will be necessary 
to draw the body up the plane? 

'•^3. A tramcar weighs 6 tons, the tractive resistance on the level being 20 lbs. 
per ton. Wluit horse-power will be reauired to propel the car at a uniform 
speed of 13 miles an hour, (a) up an incline of i in 15, (^) on the level. Take 
the efficiency of the motors and drive as 70 per cent. 
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^ The indicated horse«power of a locomotive is 786*2. The toul weight of 
enguse and train is 200 tons, the tractive resistance bong X2 pounds per ton. If 
the train is ascending a slope at a uniform speed of 30 miles an hour, find the 
slope, the mechanic^ efiiciency of the eiteine being 70 per cent. 

The table of a planing machine is dnven by a screw of {-inch pitch. How 
many revolutions per minute must the screw make in order that the q>eed of the 
table may be 18 feet per minute? 

6. A screw-jack has a thread of f-ineh pitch. What effort applied at the end 
of a handle 15 inches long will be requirea to lift a load of 2 tons, the efficiency 
at this load being 45 per cent. ? 
^ 7. A screw-jack hM a double thread, the thickness of the thread bdng ) inch. 
I^Aelever is 20 inches long, what is the velocity ratio? 

8. The table of a planing machine is driven by a screw of 2 inches pitch. 
The driving pulley on the screw is 20 inches diameter and the difference of tensions 
of ^e belt on it is 350 lbs. The coefficient of friction between the table and its 
guides is 0*20 and the efficiency of the screw is 40 per cent.: find the total weight 
of the table and the work on it. 

9. The efficiency of a screw Is 55 per cent, and its ^tch 3 inches. What 
will be the axial thrust of the screw when a twisting moment of 4 tons-inches xs 
appUed to the screw? 

Vio. In a right- and left-handed screw coupling for railway carriages the 
pitch of the two screws is 1 inch. Tne lever attached to the nut is 18 inches 
long and a force of 40 lbs. is exerted on the end of it. With what force will the 
two carriimes be drawn together? 
^^It, Wnat must be the speed In .-evolutions per minute of a single-threaded 

worm driving a worm wheel of 45 teeth at a speed of 150 revolutions per 
minute? 

Solve Question ii if the worm Is double threaded. 
.13, The worm shown in Fig. Xi8 is used as a lifting machine. The handle 

H is 15 inches long, the worm meel W has 80 teeth, and the drum D is 6 inches 
diameter. A rope { inch diameter is coiled round the drum and carries a load of 
) ton. What effort must be applied at the end of the handle to raise this load if 
thf efficiency is 40 per cent. ? 
/ 14. In the worm-driven pulley block shown In Fig. IIQ the effective diameter 
of the pulley B is 8 inches. The worm wheel C has 72 teeth and the effective 
diameter of the drum to which it is fixed is 5 Inches. It is found that an effort 
of 58 pounds is required to lift a load of 3 tons. What is the efficiency of the 
machine ? 
^'15. In a compound screw-jack the handle driving the worm is 13*5 inches 

long, the number of teeth on the worm wheel is 38 and the pitch of the screw 
is 1 mch. In order to lift a load of 180 lbs., it is found that an effort of I $16 
lbs. IS required. What la the efficiency of the machine ? 

^ 16. A compound screw-jack has the following dimensions: Length of 
handle 18 inches, number of teeth on the worm wheel 84, pitch of screw f inch. 
If the worm is single-threaded, what load will be lifted by an effort ot 30 lbs. if 
the efficieoffir is 10 per cent, ? 



CHAPTER XII 

VARIOUS MACHINES 

The Wheel and Differential Axle.—Tikis lifting machine is 
shown in Fig. las. It includes a drum or axle, consisting of two 

Fio* xtSiP—Wheel and differential axle. 

parts, A and B, of different diameters. A rope or chain is wound 
on A, as shown, then passes round the snatch block D to the part 
B. On the two parts A and B the rope is differentially wou^; 
that is, when the axle is turning and winding the rope m to Ae part 
B, rope is also being unwound from A. TIm efibit is applied by a 
cord or rope at the circumference of the pulley or wbed Q which 
is fixed to the compound axle, and timefore rotates with it. The 
load W to be lifted is carried by the^snatch blodc D. 

The velocity ratio is calculated as follows: Oon^er one 
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revolution of the wheel C of diameter d. i the effort P moves a 
distance Wi. The axle also mtdres one revolution, and we have-— 

Length of rope wound on to B as 
Length of rope unwound from A as W, 
Shortening of rope between A and B = w/fa — as ir(dg — 

Hence, on account of the snatch block, the load is lifted 

- ^8) 

distance P moves 
Velocity ratio V =s -rr=- 

^ distance W moves 
vdi 

7r(^fl — dsj — d^ 

It should be noticed that d^y d^ 4 are the diameters measured 
to the centre of the rope, or are equal to the diameter of wheel or 
axle + diameter of rope. 

Experimental Results.—In a test with such a machine, the 
following results were obtained : Diameter of wheel =137 inches, 
diameters of axle 5*4 and 4*3 inches respectively. Hence— 

S«-4'3 ■■■ 

These results are shown plotted on a load base in Fig. 
Weston Differential Pulley Block.—This machine is ^own 

in ordinary use on the left of Fig. 124, and on the right is shown a 
diagrammatic sketch. An endless chain parses round the two 
pulleys A and B and the snatch block C in the following manner: 
Referring to the right of Fig. 134, the chain passes round A, then 
round the snatch block C, and then round B. The pulleys A and 
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B Me of different diameteis, and both run on the same s^nnAe. 
Suppose the pulleys make i revolution, then an amount of chain 
equal to the circumference of A is pulled over by the effort, and at 
the same time an amount equal to the circumference of B passes 

10 IS to ts so SS 40 4S SO 
Load W (lb.) 

Fig. 123.—Test of wheel and diflferantial axle. 

over R Hence, the chain connecting A and B with the snatch 
block shcnrtens by an amount equal to the difference of the circum* 
ferences of the two pulleys, and the load is lifted half this amount. 
The velocity ratio is therefore— 

o 
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_ Circumference of larger pulley A _ 
(difference of circumferences of A and B) 

The puli^ have recesses cut in them for the links of the chain 
to fit into; hence the actual circumferences could not be measured 
with certainty. The best way is to count the number of flats on 

each pulley; that number being, of course, a measure of the mr* 
cumference. 

In an actual experiment it was found that the pulleys A and B 
had 8 and 7 flats respectively j hence— 

Velocity ratio V 

This value was checked experimentally, when it was found that, 
in order to lift the load 6 inches, 96 inches of chain bad to be pulled 
off" the larger pulley; hence, V a: ^ = 16 as before. 

llie results obtained are shown in the following table, and are 
{dotted on a load base in Fig. 125. 



CHAP. XII] Various Machines 163 

Ulting Crab or Winch.—This machine is used for lifting 
comparatively heavy loads by means of a small effort such as can 
be exerted by hand. It is used when a greater velocity ratio and 
also mechanical advantage is required than can be conveniently 
obtained by a wheel and axle, in which convenient length of handle 
is limited by the range of a man’s arm, knd the diameter of the 
drum by the consideration of holding alt the rope necessary for a 
given lift The greater velocity ratio is obtained by the introduction 
of a pair or pairs of spur wheels between the axles of the handle 
and drum. 

The Single‘Purchase Crab is shown on the right of Fig. 126 
in perspective, and on the left is a diagrammatic end view. It 
consists of two standards. A, and A,, connected rigidly together by 
the three stays, B,, Bg, and ^ and having bearings for the spindle 
C and the drum D. On the spindle C is keyed the pinion E, which 
gears with and drives the large spur wheel F on the drum D. The 
ends of C are squared to receive handles H, on the ends of which 
the effort is applied, a man workiiTg at eadt handle if necessary. 
The load is lifted by a rope which is coiled round the drum D. if 
the crab is placed directly over the hole through which the load is 
lifted, the lift is said to be direct. If this is impossible the crab may 
be placed in any convenient position, and the rope taken from the 
drum over a pulley placed directly above the hole forming an 
inclined lift from the crab. 

Velocity Ratio.—Let the length of the handle H be 18 inches, 
the diameter of the drum D 6 inches, the n*'uiber of teeth in the 
pinion E 20, and in the spur wheel F 240, then in 6ne revolution of 
the handle we have— 
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Motion of effort = air x i8 = 36ir inches. 
Motion of pitch circle of pinion s i revolution 

^ 20/ (/ = pitch). 
Motion of pitch citcle of wheel *= ao/ 

Angular motion of wheel = revolution 

Motion of load = ^ X circumference of drum 

= TT X o = —inches. 
12 2 

C § € 
.3? .2 ^ 

UJ Ll ui 

Em 
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IS 
ggiiiaiB 
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Hence the velocity ratio— 

^ motion of effort _ X 2 _ 
“ motion of load *• 

Or in general terms, if R = radius or length of handle, T, = number 
of teeth in pinion, T, = number of teeth in wheel, r = radius of 
drum, then in one revolution of the handle we have— 

Motion of effort = zirR; 
Motion of pitch circle of pinion = i revolution = ; 

T ^ T 
Angular motion of pitch circle of wheel = ^ revolution; 

T 
Motion of load = ^ of awr. 

•*a 

Hence— 

Velodty ratio V = 
awR 

tt 
7fr X 2irr 
*2 

= ^x- 
T. 

Fig. i36.~Sing]e>|Mirch»sc crab. 

which is the product of the velocity ratios of a wheel and axle of 
the same sizes as the handle and drum, and a pair of spur wheels of 
given numbers of teeth. 

Pressure between the Teeth.—Consider the crab with the 
dimensions taken above, then neglecting friction, in i revolution of 
the handle we have— 

Motion of effort = air x i8 = 36ir inches, 
Motion of pitch circle of pinion = i revolution ss 20/, 
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Hence by the principle of work, neglecting the friction— 

P X 36*- * F X 20/ 

where P as effort applied at end of handle, and F the pressure 
between the teeth. Suppose the pitch of the teeth is i inch and an 
effort P of 80 lbs. is applied, then— 

F = P X s= 80 X — = I44ir = 452-5 lbs. 
20/ 20 ^ 

Or in general terms, in one revolution of the handle— 

Motion of effort = avR 
Motion of pitch circle of pinion = i circumference = T,/. 

Hence by the principle of work— 

P X 2JrR = F X T,/ 
a:rR 

Ti/ 

Actually, the pressure (F) between the teeth would be less than this 
amount because of friction. 

Again, taking F as the effort at the circumference of the pitch 
circle of the wheel fixed to the drum— 

F = P X 

Load lifted W = F x 
circumference of wheel _ __ jr y . . 
circumference of drum 2irr 

substituting for F its value found above— 

„ 27rR Ts/ „ R T. 
^ 'V ^ 27rr " ^ ^ f ^ T, 

/W\ R Ti 
and the mechanical advantage without friction j is— x .y, which 

checks, the value of V already found. 
We might also find the pressure F by the rules for levers taking 

the handle axle as fulcrum. The radius of the pitch circle of the 

pinion is —and taking moments about the axle of the handle we 
2ir 

get- 

F XP X R 
27r 

/. F =• P y as before. 
^1/ 

Example.—In a single-purchase crab the pinion has 2; teeth, the 
swr wheel 250 teeth, and the radius of the drum is 5 inches. A pulley 
of 2 feet diameter is on the axle of the pinion (instead of a handle), and 
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the effort is applied by a cord passing round this pulley. The following 
results were obtained:— 

LCMUlW(lbs.> Effort PClbf.). 

40 2*8 
80 5*0 

100 6*0 
150 8'4S 

Find the effect of friction when lifting the load of 100 lbs. 
The velocity ratio is— 

V = ¥ X = 24 
and the effect of friction is F = PV - W 

= 6 X 24 - 100 = 144 - 100 = 44 lbs. 
If we wanted to find the effort and friction for loads not given in the 

above short table (say, for 120 lbs. for example), we should plot the 
values of W and P from the above table, and W and F as described in 
Chapter VII. Having plotted these curves, the values of P and F can 
be read off for any load. 

Double-purchase Crab. 
—This machine is shown in 
diagrammatic form in Fig. 
127. The effort P is applied ^ 
at the pulley (or handle) A 
on the same axle of which is c -- ' . 
a pinion B gearing with the m 
wheel C. On the same axle E 
as C is another pinion D q C 
gearing with the wheel E ^ =: 
fixed to the drum F. The — T 
rope by which the load W @ 
is lifted is coiled round this ^ ^ 
drum. s fTT] H g 

Velocity Ratio.—Let R 
be the radius of the wheel MH ^ 
A and r the radius of the ^ T FH 
drum F, and let B, C, D, E H-- 
denote^the numbers of teeth g 
of pitch p in the pinions and 
wheels respectively, then in ^ w 
one revolution of the pulley ^ig. zaj.—Dlagnm oT double-purchase crab 
(or handle) A we have— 

Motion of effort = 27rR 
Motion of pitch circle of pinion B = i circumference = B/ 

B/^ B 
Motion of pitch circle of wheel C = ^or^s^ofa revolution 
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B 
Motion of pitch circle of pinion D — ^revolution 

Motion 
B D 

of pitch circle of wheel E = X tSt = ?; x \,p tp c E 
revolution 

B D 
Hence motion of load = gx gofcircumferenceofdrum 

B D „ 

. , . . motion of effort 
and Tdoat, nUK. V = ^ = 

awR 

X irXairr 

R C E 

“ r ^ B^ D 

C^E 

which is the product of the velocity ratios of a wheel and axle (~y 

(C E\ 
B ^ D/‘ 

Pressure between the Teeth.—The pressure between the 
teeth of B and C would be found exactly the same as for the single* 
purchase crab previously considered. To find the pressure between 
the teeth of the second pair of wheels D and E we proceed as 
follows :— 

In one revolution of the pulley A (or handle)— 

Motion of effort = awR. 
B B 

Motion of pitch circle of pinion ^ = q revolution or ^ X T)p. 

Hence by the principle of work- 

B 
P X awR = F X ^ X Dp. 

F s= P X' 
awR 

Actually the pressure (F) between the teeth of D and E would 
be less than this amount because of friction. 

Experiment.—The particulars of a double-purchase crab, like the 
one shown diagrammatically in Fig. 137, were: Effective circumference 
of wheel A = 41} inches, and of drum F 16 inches. Number of teeth 
on B - ao, C =s 40, D s 30, £ s 70. 'fhe results obtained in a series of 
tests are tabulated on p. 170, and are shown plotted on a load base ia 
pig. 128. 
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St>ur>2eared Pulley Blocks.—Fig. 129 snows one form of this 
type of pulley block designed for lifting 5 cwt., the right-hand side 

0 10 eo so 40 50 
Load W (lb.) 

Fig. ia8.->Tes{ of double-purchase crab. 
t 

being in diagrammatic form for dearness. On the same spindle as 
the chain wheel A, is the ratchet and clutch on which the pawl 
D is pressed by means of the small helical spring F, and the 
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pinion B. The piihon B gears with the spur wheel Ci on the »me 
spindle of which is keyed the chain drum G. The wheel A and 

tile wheel The lifting chain passes halfway round the drum G, 
and is attadied at one end to the frame of the machine at H; ^e 
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other end has a hook attached from which-, the load W is hung. 
When the load is being lifted, the ratchet £ passes under the 
pawl D, B rotating with A and so lifting the load, the drive being 
through B and C. When the effort is removed the pawl prevents 
the load running back again, and in this manner a highly efficient 
gear can be used without overhauling. In the machine shown, the 
wheel A has 12 cogs, and the drum G 5 cogs, while B has 6 teeth, 
and C 20 teeth. 

The velocity ratio is therefore— 

V f X f = 8. 

The results obtained in a series of tests are shown in the 

Screw Cutting:.—Fig. 130 shows a simple form of lathe 
arranged for screw cutting. A^ is the fast headstock, B is the 
loose headstock attached to the lathe bed C. Between the lathe 
spindle and the guide screw K, the change whwls F and G are 
carried on studs fixed to the banjo plate D, which can turn about 
the axis of the guide screw. The change wheel E is on the lathe 
spindle, and the change wheel H is on the guide screw. The 
wheels are put in gear by swinging D over until the wheel F 
gears with E, in which position D is locked by means of a nut 
not shown. To put the wheels out of gear, D is swung ove# 
in the opposite direction until F disengages with £, and then 
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locked as before. The saddle M carries a split nut underneath, in 
which the guide screw K works. When a screw is to be cut in the 
lathe, the proper change wheels are fitted in gear, and the split nut 
on M is put into gear with the guide screw K by means of the 
lever L. When this is done, any rotation of the guide screw causes 
the saddle M, and therefore tihe screw-cutting tool N, to travel 
along the bed, so cutting the screw on J. 

When cutting a right*handed screw the saddle moves from the 
loose headstock B towards the fast headstock, and if Uie guide 
screw is right-handed, it must rotate in the same direction as the 
screw to be cut If a left-handed screw is to be cut, the saddle 

Fig. 130. 

moves from the fast headstock to the loose headstock, the guide 
screw rotating in the opposite direction to the screw to be cut. 
This reversal of motion is obtained by adding another inter¬ 
mediate change wheel, either between £ and F, or between 
G and H. 

Calculation of Change Wheels.—The change wheel on the 
lathe spindle is the first driver, and that on the guide screw the last 
follower. Suppose the pitch of the guide screw is ^ inch (right- 
handed), and it is required to cut a right-handed screw of ^inch 
pitch, then the lathe spindle must rotate with 4 times the speed of 
the guide screw, and in the same direction, the velocity ratio of the 
lathe spindle to the guide screw being 4. Therefore, a wheel of 
30 teeth on the lathe spindle driving a iso wheel on the guide 
screw by any one intermediate idle wheel will cut the right-handed 
screw of |-inch pitch. The introduction of a second intermediate 
wheel in the simffie train would cause the guide screw to rotate in 
the opposite direction, and so cut a left-handed screw of |-inch 
pitch. In Fig. 131 (a) shhws the wheels for a right^nded screw, 
and if) for a left-handed screw. Any other conveniently sized 
wheels would do, providing that the velocity ratio is the same. 
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Thus^ we might have a 35 wheel on the spindle and 100 wheel on 
the guide screw, or a 35 wheel on the spindle and a 140 wheel on 
the guide screw, and so on. 

If a simple train with intermediate wheels is required we have 
the rule— 

pitch of screw to be cut _ number of teeth in driver 
pitch of guide screw ~ number of teeth in follower 

When a large velocity ratio between the lathe spindle and 
guide screw is required, as, for example, when cutting a screw 

Fig. X3Z.'^Diagram of change wheels for screw cutting. 

of fine pitch, a simple train is not practicable; in such cases a 
compound train is necessary, and we, as explained in Chap. X., 
have the rule— 

pitch of screw to be cut _ number of teeth in first driver 

pitch of guide screw number ofleetlTin first follower 
number of teeth in second driver^ 

^ number of teeth in second f^llowe^ 

Example.—Arrange a train of change wheels to cut a right-handed 
thread of inches pitch, the guide screw being right-handed and of 
pitch ^ inch. 

Applying the above rule we have— 

i 1 I 1 
We cspi arrange any wheels which have the above ratios, for 

instance-- 

1 X ^ — X S? (this train is shown in Fig. 132). 
I X 30 ao' 
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Or- 
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- X ^ = — X — and so on. 
I I 35 40 

Each screw-cutting lathe is supplied with a set of change wheels, 
the numbers of teeth in which range from 20 to about 140, increasing 

by S teeth from 20 to 80, and -Uien 
by 10 teeth. There are usually two 
wheels of 40 teeth. 

Lathe Back Gears.—In ad¬ 
dition to the speed cone on the 
lathe spindle, a further reduction 
of speed is obtained by using a 
back gear such as that shown in 
Fig. t33> where A is the speed 
cone which rides loosely on the 
lathe spindle B, and is driven by 
a belt from a similar cone on the 
counter-shaft, as in Fig. 97. To 

A is attached the pinion C, which gears with the wheel D. 
The wheel D is attached by a hollow sleeve to the pinion E, so 
that D and £ ride loosely on the spindle G, and F gears with the 
wheel F, which is keyed to the kthe spindle B. When arranged, 
as in Fig. 133, for each revolution of A the lathe spindle will make— 

C E 
X j; of a revolution 

where C, D E, F represent the numbers of teeth respectively in 
the wheels. > 

The wheels, C, D, E, and F, constitute the back gear, and to 
enable the lathe spindle to be driven at a higher speed without 
shifting the belt on A, the wheel F is rigidly attached to the cone 
A by means of a bolt, and D and F thrown out of gear with 
C and F. 

Example*—The speed cones on the countershaft and lathe have 
diameters 5, 6.^, and 10 inches, and in the back gear C has i; teeth 

^33)> C) 45, E 15, F ^5 teeth. It the'countershaft makes 120 
revolutions per minute,at wfiat speeds can the lathe spindle be driven? 

With back gear out we have— 

Highest speed (belt on $winch stepA _ 
on lathe) / — 120 x 240 revs, per minute 

8’" ’ 
With belt on 6|-inch step, speed = 120 x ■— =157 revs, per minute ' 

o‘5 

With belt on 8^-inch step, speed = 120 x “:| = 97’5 revs, per minute 

With belt on 10-inc^ step, speed s 120 x s 60 revs, per minttte 
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With hackgtar in we have— 

With belt on s-mch step, speed s 240 U x H = 26*6 levs. per fwinnte 
With belt on (Scinch step, speed = 157 x M x J* = 17*4 revs, per minute 
With belt on 8|<inch step, speed = 97*5 x W x M = io'8 revs, per minute 
With belt on lo-inch step, speed = 6ox^xff = 6*6 revs, per 

Fta t33.*-Baek gear of lathe. 

Examples XII. 

I. In a differential wheel and axle, the diameter of the large axle is 8 inches, 
and of the small axle 6 inches. The effort is applied at the end of a handle 15 
inches long. Find the velocity ratio. 

i 2. If, in Question 1, an effort of 30 lbs. lifts a load of 420 lbs., what is the 
effect of friction, and the efficiency of the machine at this load ? 

3. In a Weston pulley block there are 10 fiats on the larger pulley, and 9 on 
the smaller pulley. What load will be lifted by an effort of 50 lbs., the 
efficiency at this load being assumed to be 33 per cent ? 

4. A single-purchase crab has handles j5 inches long, drum 6 inches diameter, 
diameter of lifting rope } inch. Number of teeth on pinion 25, on wheel 130. 
Estimate the velocity ratio. 

In Question 4, what will be the pressure between the teeth when an effort 
of 40 lbs. is applied at the handle, (a) neglecting friction, (6) if the efficiency is 
80 per cent. ? Take the pitch of the teeth to be i inch. 

A double-purchase crab has the following dimensions ; Diameter of drum 
measured to centre of rope, 7 inches; length of handle, 14 inches; number of 
teeth in pinions,* 12 and 20; number of teeth in spur wheels, 78 and 95. It is 
found that an effort of 40 lbs. applied at the hanale will lift a load of 2 tons. 
What is the efficiency of the machine ? 

iry. The wheels and pinions in Question 6 have a pitch of i inch. What will 
be the pressure between the teeth of each pair of wheels (neglecting friction), 
when the effort exerted is 50 lbs. ? 

t^^8. What change wheels will be required to cut a right-handed screw of 6 
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inches pitch in a lathe whose guide sccew is right-handed and of jf-inch pitch ? 
Of the trains possible, take that in which the wheel on the lathe spindle has 80 
te^, and that on the guide screw 30 teeth. 

9. Give a train of change wheels which will cut a screw (left-handed) of 
^i^ch pitch in a lathe whose guide screw is right-handed and of ^ioch pitch* 

A back gear has pinions of ac teeth and 20 teeth, and wheels ot 60 and 
60 teeth. If the highest speed at which the lathe can be driven is 240 revolutions 
per minute, what will be tne highest speed with the back gear in ? 

11. The speed cones on the countershaft and lathe have diameters 4, 5,6, and 
8 inches, and in the back gear there are two wheels of 15 teeth, and two of 4$ 
teeth. If the countershaft makes 189 revolutions per minute, at what speeds can 
the lathe spindle be driven ? 



CHAPTER XIII 

RESULTANT AND COMPONENT FORCES * 

Forces may be added or compounded by drawing vectors to scale 
and finding the length of the resultant of the several vectors. This 
was the method used in Chap. I. We may, however, also cal¬ 
culate the resultant without actually drawing vectors to scale; in 
some cases the calculation may be very simple, and in others 
accurately drawing vec¬ 
tors may be more con¬ 
venient. We now illus¬ 
trate the method of cal¬ 
culation by a few simple 
cases. 

Resultant of Two 
Forces at Rigrht An« 
g:les.—Let P and Q(Fig. 
134) be the forces. If we add these forces vectorally by the method 
explained in Chapter I., P and Q being at right angles, we have the 
resultant R represented by AC. This resultant may be calculated 
as follows:— 

XT. 
PA P 

Fig. 134.—Resultant of two forces at right angles. 

AC^ =! AB* + BC* (see Introduction, p. 6) 
or R» = P® + Q2 

R = VP'* + Q"* 

Example —If forces of 8 lbs. and 5 lbs. act on a body at right 
angles, what force acting thrpugh the point of intersection of the two 
will keep the body at rest ? 

If Fig. 135 repreeotts a sketch only (not drawn to scale) of the 
triangle of forces wdand 5 lbs. at right angles, we have from the above 
method, if R is the tesultant— 

- 89 

A K 56 4/19 9^44 lbs. 

' An understanding of this Chapter, though desirable, is not absolutely neces¬ 
sary in order to follow tha-ceinalnaer of the book. 
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The direction of the resultant can be stated by the angle which it 
makes with, say, the 8 lbs. force, for in Fig. 135— 

BC c 
tan - g = 0*625 (see Introduction, p. $). 

Looking at the table of tangents we find that 0*652 is the tangent 
of 32^ nearly. Hence the resultant is 9*44 lbs., making an angle of 
32^ with the 8 lbs. force, and the force of 9*44 lbs. opposite to the re¬ 

sultant, that is, in the direction of the arrow X, is the equilibrant or 
force required to keep the body at rcst^ 

Resultant of Two Forces not at Right Angles.—Let P 
and Q (Fig. 136) be the forces making an acute angle with each 

A 

Fjc. 136.—Resultant of two oblique forces. 

Other. If we draw the triangle of forces, we have the resultant R 
represented by BA, which is calculated as follows 

BA* = BC" + CA® + 2 X BC X CA cos ACUD 

~ ACD (see Introduction, p. 6) 
or R* = P+Q*+2PQcostf ^ ^ 

where 9 is the angle between the forces P And Q. 
If the forces make an obtnse angle with each other we see from 

the triangle of forces (Fig. 137) that— 

R*=::P* + Q*~2PQcOsBCA, 
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Now, BCA is not 6 the angle between P and Q, bht is equal to 
180° -- that is, the supplement of 6, and we must take care 
when calculating the resultant of two forces making an odfuse angle 
with each other to use the angle 180 — d (or the supplement of $ 
the angle between the forces) and not 6 itself in the above equa¬ 
tion. The reader who has studied trigonometry will recognize that 
this is equivalent to using the angle d in the same formula as that 
previously used for two forces at an acute angle. 

A 

Example.—If forces of 8 lbs. and 5 lbs. act on a body at an angle 
of 60°, what will be their resultant ? 

R* = P* + O* -h 2P.Q cos 60° 
= 8*+5*+ 2x8x5 X o’so 
= 64 + 25 + 40 = 129 

.’. R = V139 = if35 lbs. 

Example a.—If forces of 8 ahd 5 lbs. act on a body at an 'angle of 
130°, what will be their resultant ? 

R* = p* + Q* — 2 + P.Q cos (180 - 120) 
= P* + Q* — 2.P.Q cos 60 
= 8® + 5*-2xSx5X 0-50 
= 64jf 25 - 40 = 49 

R = V49 = 7 lbs. 

The reader may check these results graphically. 
Resolution of Forces.—Let the vector ^ (Fig. 138) repre¬ 

sent a force P in magnitude and direction acting on a body; its 
effect in any direction such as AC inclined at an angle $’s known 
as the resolved part of P in the direction AC, or as the rectangular 
component AB in the direction AC. The magnitude of this com¬ 
ponent is obtained by drawing a perpendicular BC from B on to 
the direction AC. Then AC represents the component of P in the 
given direction, and may be calculated as follows:— 
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AC 
^ ss cos 6 (see Introduction, p. 5) 

AC = AB X cos ^ 
or component of P in direction AC » P cos B. 

Hence, to resolve a force in 
dicular directions making an an] 

Fig. x38*‘^oinponenu of a forca. 

direction perpendicular to AC, 

ae of any given pair of perpen- 
: $ with the line of action of the 
force we multiply the force by 
the cosine of this angle. To 
resolve P (Fig. 138) in the di¬ 
rection AD inclined 90° to AC 
we draw from B the perpendicu¬ 
lar BD on to AD, then AD 
represents the component of P 
in that direction. Now, BC is 
equal to AD since ADBC is a 
rectangle, hence BC also repre¬ 
sents the component of P in 

I we have— 

^ =sin $ (see Introduction, p. 5) 

BC = AB sin ^ = P sin 9. 

We see, then, that there is no need to draw BD hut only BC, 
and we have— 

Component of P along AC = AC -- P cos 9, and 
Component of P perpendicular to AC =* BC = P sin 9. 

Example.—If we'bave a body of weight W resting on an inclined 
plane inclined at an angle <r to the horizontal (Fig. 107), the resolved 
part of the weight W down the plane may be found as follows :— 

From the triangle of iorctsgtf we have the resolved part ofW down 
the plane P is represented by eg, and— 

or 

^=sin« 

P 
W 

sin a or P = W sin a (as before, p, 143). 

Also the component of W perpendicular to the plane, that is, the 
reaction R (Fig. 107), is given by— 

R s W cos Cb 

In Fig* 138 wc have resolved the force P into two forces or com¬ 
ponents AD and AC at right angles, which have the same effect as the 
single force P, in other words, P is the resultant of the two forces AD 
and AC. 
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Resolution of a Slnsrle Force in Two Directions not at 
Right Angles.—Let it be required to resolve the force P (repre¬ 
sented by AB) into two components along AC and AD respectively 
(see Fig. 139). We draw from B a line parallel to AD to meet 
AC, then AC represents the 
component of P along AC and 

. CB the component of P along 
AD. 

Resultant of a Number 
of Forces in the same Plane 
acting at a Point.—In Chap. 
1. we have seen how to find 
the resultant graphically by 
means of the polygon of forces; 
we now proceed to obtain the "J#- 
resultant by calculation. It will be instructive to take Example i 
(p. a a), which has been worked out graphically and compare the 
results obtained by the two methods. 

Take the four forces ED (which was found to be 9'6 tons tensile), 
DC, CB and BA. The resultant of these force? (equal and opposite 
to the equilibrant) should he 55’^ tons along EA. For conveni¬ 
ence the forces are reproduced in Fig. 140. 

We resolve the forces into any convenient two directions at 
right angles, say, parallel and perpendicular to the force AB. 

Let X be the total component all the forces in the direction 
parallel to the force AB reckon^ positive from left to right, and Y 
ihe total component perpendicular to the force AB reckoned 
positive if acting upwards. 

Then, using the tables on p. 367, we have— 

Component of AB in the direction of AB = -f 40 tons 
Component CB in the direction AB 

ar -I- 30 cos 60® as 30 X 0*50 » + IS tOM 
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Component of DC in the direction of AB 
— 5 cos 90° = 5 X o ss. o 

Component of ED in the direction of AB 
= — 9*6 cos 45“ = — 9'6 X 0707 = — 6787 tons 

X = + 40 -t 15 4- o - 6787 s= 48*213 tons. 
Component of AB in a direction perpendicular to AB 

= 40 cos 90 = o 
Component of CB in a direction perpendicular to AB 

=. + ^ sin 60 or 30 cos 30 = + 30 X o*866 
=. + 2 5'98 tons 

Component of DC in a upward direction perpendicular to 
AB = — 5 tons (downwards) 

('omponent of ED in a direction perpendicular to AB 
= 4- 9*6 cos 45 = 4- 9*6 X *0*707 = 6*787 tons 

.*. Y =r 4- 25*98 — 5 -f 6*787 = 4- 27*767 tons. 

We have now replaced the four forces by two forces X and Y 
at right angles shown on the right of Fig. 140; their resultant R is 
given by — 

R» = X 4- 
= (4S'2i3;“*f (27767)“ 
- *3?4 49+ 77i‘oi 
== 309SJ._ 

R s= V3095-5 ® 55’^ as before. 

Its inclination to X or AB is found as above described 

tan 0 ^ 
Y _ 27-767 

X“" 48-213 
= 0*576 

From the tables (p. 367) we see that 0 = 30® nearly, which 
agrees with Fig. 27, where the angle between EA and BA is 210^^ or 
(180 + 30). 

Example a.-—Find the resultant of the four forces shown in Fig. 141. 
Resolving parallel to and perpendicular to the force of 20 lbs., and 
reckoning forces acting from left to right positive, and forces acting 
upwards positive, wc have— 

X = 20 + 15 cos 40® — 30 cos 60® - 8 cos 45® 
=s ao + 15 X 0*766 -'^30 X 0-50 — 8 X 0-707 
= 20 + 11-49 - IS - 5-656 = 10-834 lbs. 

Y = o + 15 sin 40 + 30 sin 60 — 8 sin 45 
= o + 15 X 0-6428 + 30 X 0*866 — 8 X 0*707 
= o + 9IS42 + 25-98 — 5-656 
= 35-622 - 5 656 = 29-966 lbs. 

R* = X« + Y* 
= (‘0*834)* 4- (29’966)* 
= “7’37S 4- 897*961 
a ioi4‘336 

K *= V 1014*336 = 31*84 lbs. 
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Its direction is such that tan ^ ^ = --9 ^7 _ 
X, 10*834 

From the tables (p. 367) we see that « = 70*2° nearly. 
Hence the resultant is a force of 31 84 lbs., making an angle of 

70*2° with the 20 lbs. force as shown on the right of Fig. 141. 

Examples XIII. 

1. Calculate the resultant of two forces of 7 and 8 lbs., which arc inclined 
at^an angle of 60°. 

2. lAwo forces of 80 and 50 lbs. act at an angle of 135^, what is the magni¬ 
tude and direction of their resultant ? 

3. A body of weight 3 cwt. rests on an inclined plane making an angle of 
20^ to the horizontal: find the component of its weight down the plane, and also 
perpendicular to the plane. 

4. A simple roof truss like the one shown in Fig, 52, has a span PQ of 25 
feet, the inclination of the two rafters (angles R]PQ and RC^P) being 30®. It 
carries a single load of 2500 lbs. at the apex R: calculate the stress in each 
member. 

5. In a simple jib crane the jib is inclined at an angle of 60° to the horitzontal, 
and the tie-rod at an angle of 45°. A load of 5 tons is suspended from the crane 
head : calculate the forces in the jib and tie-rod respectively. 

6. The following four forces act at a pointa force of 16 lbs in a direction 
due East, 20 lbs. due Korth, 30 lbs. in a direction North-West, and 12 lbs. in 
a direction 3of South of West. Calculate the magnitude and direction of their 
resultant. 

7. Find the magnitude and direction of the resultant of the following forces 
acting at a point: a force of 80 lbs. due North, one of 20 lbs. North-East, 40 
lbs. due East, 60 lbs. in a direction inclined 30*^ East of South, and 70 lbs. in a 
direction inclined 60^ South of West. 



CHAPTER XIV 

CENTRE OF GRAVITY 

All bodies and every particle of them are attracted by practically 
parallel forces to the earth, by a force which we call their weight. 
In any position the resultant force of the weights of all the particles 
lies in a vertical line through a point called the centre of gravity 
of the body. To support the body^ a resultant upward force is 
required equal to the total weight of the body and passing through 
the centre of gravity (often written c.g.) of the body. The centre of 
gravity of many bodies of regular shape is easily found, being 
at their geometrical centres, and the principle of moments, 
explained in Chap. II., enables us to find the c.g. of many 
irregular bodies. The problem of finding the c.g. of different 
bodies is generally included in the study of theoretical mechanics, 
but we may notice the general principles employed, and a few 
simple applications, and state the results for some other causes. 

Centre of Gravity experimentally by Suspension. 
Cube.—If a cube be suspended from one comer by a fine thread, 
another comer diagonally opposite to it will be found to be 
vertically below it. The same applies to suspension from any 
comer of the cube, and as the c.g. must lie vertically below the 
point of suspension when the cube is supported by the single 
force of the pull of the suspension thread it must be in each 
diagonal of the cube. Hence the c.g. is at that point where the 
four diagonals of the cube intersect 

Sphere.—If a sphere is suspended by a thread from any point 
on its surface, a diameter of the sphere lies in the vertical line 
of suspension. Hence the c g. is at the point where all diameters 
intersect, at the centre of tbe sphere. 

Straigrht rod.—If a straight rod be placed on a knife-edge 
there will be found one position at which the rod will balance. 
The c.g., therefore, will lie in the rod immediately above the knife- 
edge, or point of balance. If tbe rod is uniform in cross-section, 
the c.g. will obviously be at the middle point of its length. 

Cylinder.—A cylinder is a unifonn rod of constant diameter. 
The &g.t therefore, will lie *at the middle point of (he axis of tbe 
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cylinder, ix. at the middle of the line joining the centies of the 
two ends. 

Two Bodies.—Fig. 14 a shows two spherical pieces of metal, of 
weights W and w, respectively, the distance between their centies 
being d. The result- —. 

©-!-@ 

♦ 
W 

ant of the two weights 
is W + w downwards 
at G, the eg. of the two 
combined, and by the 
principle of moments, 
taking moments about 
A, the c.g. of weight W, we have— 

(W -f w) X AG = w X <f, 

.'. AG = 
w 

W +w 

—i.« 

i 
W+*r 

Fig* 149. 

X d. 

Similarly— 

BG = 
W 

W -f w 
X d. 

Hence the c.g. G divides the distance between the centres of 
gravity of the two weights inversely as the magnitudes of the 
weights, or— 

AG _ w 
BG” W 

Solid Pyramids and Cones have their 
centres of gravity \ the way along a line from the 
centre of the base to the apex (Fig. 143}. 

A Solid Hemisphere has its centre of 
gravity on a line 
drawn from the cen¬ 
tre of the base circle 
and perpendicular to 
it distant f of the 
radius from the base 
(Fig. 143). 

Example i. —A 
body consists of a 
solid cylinder 8 inches 

Fic. t43.~Centrct of fravity of oono and homitphera. ^SUllCtWMd I 
lon^, /\C one ena is 

a solid cone 8 inches high. Find the position of the c.g* of the body. 
The centre of gravity of the cylinder is at A (Fig. 144)16 inches from 
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the base of the cone. The c.g. of the cone is at } of 8 or a inches 
from the base of the con$ \ and since the weight of each part is propor¬ 
tional to its volume, we have— 

Weight of cylinder acting at A is proportional to ir x (4)* X 12 = 192# 

Weight of cone acting at B is proportional to » x 4* x 

Hence, taking moments about A, we have— 

8 

3 

16 X 8w 

3 

I28w 

“ 3 

yi92ir + — ) X A(;r = - X 8 

(.,2 + if )AG • 

3 3 
128 X 8 . , 

AG = ——— = 1*45 inches 
704 

Hence the c.g. is on the axis of the body, and distant 6 + 1*45 or 
7*45 inches from the end of the cylinder, or 20— 7 ,15 = 12*55 inches 
from the apex of the cone. 

Example —If the body in the previous example is made of cast 
iron (the weight of i cubic inch being o'26 lb.), and rests with its 
base on a rough horizontal surface, what horizontal force applied at the 
apex of the cone will just turn it over ? 

The volume of the solid body (see Example i) is— 

i92ir + cubic inches 

Hence its weight ~ x 0*26 = 192 lbs. 

Let 1 be the required force ( Fig. 145), When the body is just on the 
point of overturning, the righting moment” due to its own weight wiD 
just be equal to the “ overturning moment ” due to the force P. 
' Hence, equating these moments (about C in Fig. 145), we have— 

Overturning moment = righting moment 
P X 20 = IQ2 X 4 

••P=—2b“= 38-4 lbs. 
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^ntre of Gravity of a Lamina by Suspension.—Suspend 
a thin plate or sheet of metal of irregular area by means of a thin 
cord from any point A, say, Fig. 146. The c.g. of the plate must 
lie vertically below A. Produce and mark the line of the cord 
below A on the lamina. Now suspend the plate from any other 

• point, B, say. The c.g. must lie vertically below B. Hence the c.g. 
must lie in point of G, where the two suspension lines cross. 

A surface is without thickness or weight, hence the above 
definition of the c.g. strictly has 110 application to it. The position 
of the c.g., or “ centroid,” as it is called, for an area may be found 

Fig. 14^.—Centre of gravity of lamina by suspension 

by cutting out its shape from a piece of stiff cardboard, and then 
proceeding as above (Fig. 146). 

Square and Rectanfcle-—The centroid lies at the intersection 
of the diagonals. 

Circle.—The centroid lies at the intersection uf any two 
diameters, ix, at the centre of the circle. 

Triangle.—The centroid will be found to be one-third the way 
along a line drawn from the centre of any side to the angle 
opi3osite (Fig, 147). The piosition of the c.g. of many areas may 
be easily calculated by the principle of moments as illustrated in the 
following examples:— 

Example 1.—Find the position of the c.g. of the area shown in 
Fig. 148. The area is symmetrical about the line AB ; hence the c.g. 
lies somewhere in this line. Let G be the c.g., distant r inches from A. 
Dividing the area into the two rectangles abed and and taking 
moments about the point A, we can find x as follows :— 
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Area of abed =6x2 s 12 sq. ins.; its c.g. is l in. from A ^ 
Area of efgk = 8 x 2J = 20 sq. ins.; its c.g. is 4 + 2 = 6 ins. firom A 

Area of comi^ete figure = 12 + 20 = 32 sq. ins. 

Fig. X47.—Centre of gravity of a triangle. Ftc. 148. 

Taking moments of the areas about the line we have— 
32X4r=I2 5<I+-20X6 

322- = 12 + 120 = 132 
X = ^ =r 4’i25 incheSs 

Hence the c.g. is 4| inches from A on the 
line AB. 

The student should check this by suspension. 

Example a«-;Find the c.g. of the area shown 
in Fig. 149. Dividing the area into the triangle 
ADE and the rectangle DCBE^ we proceed as 
follows :— 

To find the distance of the c.g. G from the 
side CB, we take moments about CB thus— 

Area of triangle ADEx AE x DEx 2 x 10 
s 10 square feet; 

and its c.g. is— 

J X AE, or 1 X 2 s I foot from DE, 
or I + f ^ feet from CB 

Area of rectangle DCBE = EB a DE = 1*5 x 10 
:= 15 square feet; 

and its c.g. is— 

i 

EB ^ I S 
2 2 

= o 75 foot from CB 

Total area = 10 + 15 = 25 square feet 
Taking* moments about CB, we have— 

25 X X = 10 X + 15 X 075 
= 21*66 -f 11*25 = 32*91 
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Similarly, taking moments about AB, we get the distance v of G 
from AB. 

DE , DE 
25 X / = to X — +15X — 

2iy =■ 10 X ^ + 15 X ^ = 33-33 + 75 = 108-33 

Hence the c.g. is i’3i feet from CB^ and 4*43 feet from AB, which 
the student should check by suspension. 

Centre of Gravity of a Quadrilateral Graphically.— 
Divide the area aicd (Fig. 150) into two triangles, adc and acd, by 
drawing the diagonal (U. Find Gi, the c.g. of triangle aic, and G*, 
the c.g. of triangle acd^ by construction. This is done by bisecting 

at then join and and 
make equal to one-third of 

and ^G2 one-third of ed. The c.g. of the quadrilateral must lie 
somewhere in the line GjGa. 

Now divide the figure into the triangles abd ^nd bed by drawing 
the diagonal bd^ and find the c.g. of each of these triangles in the 
same way, />. bisect bd in /, join fc and fa^ and make yGj eqiial to 
one-third of /c, and yGj equal to one-third of fa. Then the c.g. of 
the quadrilateral lies in the line GsG4 Hence the c.g, lies in the 
point of intersection of G1G9 and G3G4, namely, point G. 

^ Examples XIV. 

I. A solid body is made up of a cylinder 4 inches diameter and 6 inches long, 
with a cone on one end 4 inches high. Find the position of its centre of gravity, 
tho material being the me ttarou^out. 
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V. A uniform steel bar weighs 15 lbs. and is 3 feet long. A cast-iron ball 
7 inches diameter is fixed on the bar. with its centre 4 inches from one end; and 
another ball of cast iron 4 inches mameter is fixed on the bar, with its centre 
2 feet from the same end. Find the position of the centre of gravity of the 

system (i cubic inch of cast iron 
1^-^ weighs o‘26 lb.). 
I jjJy* '>3. Find the position of the 
‘ centroid*' of the area given in 

the figure. State its distance from 
the line AR 
\ '4. Find the distance of the cen¬ 

troid of the I section shown in the 
fi^re from the line AB. 

A lamina consists of a square 
^ of 3 inches side, on one side of 
I which is an equilateral triangle (see 

-10— 

Question 4 Question 5. 

figure). Find the position of the centroid, stating its distance from point A. 
y 6. A solid b^y is made up of a cylinder of 5 inches diameter and 8 inches 
long, and a hemisphere 2\ inches radius fitting one end of the cylinder. Find 
the position of its centre of gravity. 



CHAPTER XV 

THE ELASTIC LAW 

Elastic Stretchins:.—When a piece of indiarubber cord is 
stretched, say, by carrying a suspended weight, it may stretch a very 
visible amount. When the tension is removed um 
from the cord by removing the weight, the cord 
returns to its original length, provided that it has A 
not been stretched too much. This property of a pY 
material returning to its original dimensions, after I 
being deformed by the action of force, is called 
dastidty. That a rubber cord possesses this elas¬ 
ticity may be verified by the simple apparatus s ■ 
shown in Fig. 151, in which A and B are two 
needles stuck into a rubber cord, and move over : 
a steel rule or scale S, when the cord is stretched 
by a weight W placed in a scale pan. By measur- -4 6 
ing the distance apart of B and A before the weight 
W is put in the scale pan, and after it has been ^ 

' removed, we find that the cord recovers its original / ^ 
length between B and A, that is, the cord is per- / \\ 
fectly elastic, provided that it has not been stretched / \ \ 
more than a certain amount. / w \ \ 

Stretch of Wire,—We may also verify that ( * 
a steel wire is elastic by the apparatus shown in i<t.-EUitic 
Fig, 152, A steel wire will not stretch so much sirei^o^rubber 
for a given length as rubber, so we require a more ^ 
delicate means of measuring the stretch; this consists of a vernier 
clipped to the lower end of the wire, and moving over a scale. We 
also use as long a length of wire as is convement, in order to get a 
large amount of elongation or stretch with a moderate load. 

The following table gives the reading of the vernier in a par¬ 
ticular experiment when different loads were carried by the wire 
(which was 0*036 inch diameter). 
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~ 1 

Load. Reading of Vernier. 
diflerenM^ 

0 0*010 ■ - ■ 

5 0-050 0-04 

10 0*090 0*08 

*5 0*125 0*115 

20 0*165 0*155 

25 0*210 0*200 

30 0*250 0*240 

35 0*285 0*275 

0 0*010 I 0*000 

Vemiv 

After a total weight of 35 lbs. had been suspended, the 
whole load was removed, and the reading of the vernier was o’oi 

inch, the same as at the start, showing 
the wire had resumed its original length, 
or, in other words, was perfectly elastic. 

Relation between Stretch and 
Load.—If the stretch in the previous 
table is plotted to a large scale on a base 
of loads, as in Fig. 153, the result is a 
straight line passing through the origin 
or intersection of the axis. This means, 
as we have seen in Chap. VIIL, that 
the stretch is proportional to the load. 
Thus, reading from the curve, the stretch 
with a load of 30 lbs. is 0*34 inch, or at 
the mte of o‘oo8 inch per lb. of load. 
Thus, at 7 lbs. load the stretch is 7 x 
0-008 = 0*056 inch, which agrees with 
the amount read from the curve at 7 lbs. 
load. 

Stretch of a, Helical Spring.—As 
another example of elastic stretching, we 
may take a helical spring with its axis 
vertical, as shown in Fig. 154, and loaded 
by weights placed on a suitable hanger. 

_ m • . . u r The foUowing results were obtained from 
Ftc. i5i».-^Elasuc stretch of wire. T • i. ^ % 

a spnng of :^-inch diameter round steel 
wire, having 10 coils each 4 inches outside diameter. 
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Load (lbs.)* Reading of Vernier. Stretch (by di€er> 
ence) (inches). 

0 0*0 _ 
1 0*10 0*10 
2 0*20 0*20 

3 0*30 0*30 

4 0*40 0*40 

5 050 0 50 
6 0*60 o'6o 

7 0*70 0*70 
10 1 1*00 1*00 
12 1*20 1*20 

IS 1*50 I *50 

10 1*00 1*00 

5 0*50 0*50 
0 0*0 

_1 
0*0 

Ia this case the spring, as a whole, stretches, but the 
does not stretch; it twists about its helical axis. 

The removal of part or whole of the load 
shows amounts of stretch which are the same as 
before loading to 15 lbs., indicating that the 
material is quite elastic up to 15 lbs., or 1*5 
inches stretch. Fig. 155 shows the relation 

ZoadW.fto) 

l^tween the stretch of the spring and the load, and again it 
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evident thac the stretch is proportional to the stretching force, being 
at the rate of o*i inch per lb. of load. 

Compression of a Helical Sprlnjr.—As another example we 
may take a helical spring with its axis vertical, arranged to be pul. 
in compression, as shown in Fig. 156. The results shown in the table 
on the following page were obtained from 
a spring made of ^-inch square steel, TI 
having 12 coils, each 2J inches outside | [ 
diameter. 

The removal of part or whole of the 
load shows amounts of shortening which 
are the same before loading to 24 lbs., 
showing that the material is quite 
elastic up to 24 lbs. or 0*36 inch 
compression. 

SUdina Piece 

5 10 15 zo 
Looa^db.) 

Fig. 155.—Elastic stretch of a helical spring. Fjo, t56w—Compression of a helical spriof 

Fig. 157 shows the relation between the shortening of the spring 
and the load, and it is evident that the shortening is proportional 
to the compressive force, being at the rate of 0*015 ^*^ch per lb. of 
load. 

Elastic Betidititr*—^The elasticity of a material may also be 
shown in bending a rod or stick, called a heam^ placed on supports 
at its ends, and loading it with weights midway between the sup¬ 
ports. Fig. 158 shows a beam so bent, in a simple apparatus con¬ 
sisting of a frame, in which the beam rests with its ends on inverte 
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LoodWClbt.). RaaAtng of ifernier. Shortening Q>y 
difference.} 

0 073 0 

4 079 006 
S 0-85 0*12 

la 0*91 018 
16 0*96 0*23 
ao 103 0*30 

109 0*36 

t6 0*96 0'23 

8 0*85 0*12 

0 073 0 

V supports (called knife edges). The lowering or deflection of the 
beam at the load below the knife edges is read on the vernier. 
It is easy to verify with the apparatus that the beam returns to its 

original height when the load is removed, if too great a load is not 
used. The readings in the table on page 196 were taken for a beam 
of red deal of rectangular section i inch broad and ^ inch deep and 
30 inches between the supports. 

After loading the beam with 19*5 lbs., and then removing the 
load, the deflection entirely disappeared. Fig. 159 shows the plot¬ 
ting of the above deflections on a base of loads; and it is evident 
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that here again the deflection is proportional to the load, being 
at the rate of 0*0265 inch per lb. of load. 

Load. 
Reading of vernier Deflection 

(inches). (inches). 

0 1*330 0 

2 1*3^ 0*050 

6 >495 0*105 

11 1*620 0*290 
16 1745 

1-835 

0*415 
19S 0*505 

0 1*330 0 

Fig. beading of a beam. 

A further experiment may be made by firmly clamping one end 
of a rod horizontally (Fig. 160), loading the free end and measur- 
mg its vertical deflectioa Such a type of beam is called a canti¬ 
lever. It is easy to show that with certain moderate loads the rod 
is elastic, i.e. that it returns to its original position when the load 
on the free end is removed, and also that up to such loads the 
deflection is proportional to ^e load. 

Twisting.—The elasticity of a material may also be shown by 
twisting a rod or wire. An anangment applicable to long thin rods 
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is shown diagrammadcally in Fig. 161. The upper end of the rod 
or wire is firmly clamped in a vertical position, and the lower end 
is clamped to a pulley, to which a couple, having the wire as axis, 

O 6 10 15 20 
Loa<l (lb.) 

Fig. 159.—Elastic bending deflections of a beam. 

is applied by horizontal cords, passing over pulleys and carrying 
equ^ weights in scale pans. The fwist of the lower end of the 
wire may be measured by the mo'Vement past a fixed pointer of a 
graduated dial attached to the pulley, and to avoid the eflects of 

Fig. 160. ^ 

possible slipping in the top- clamp a horizontal pointer may be 
attached to the wire near the top. The movement of this pointer 
over a fixed dial, subtracted from the angular movement of the 
lower end, gives the angle of twist between the two points. 

The following readings were taken with a steel wire ^ inch 
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diameter and 9 feet long, the diameter of the pulley being 10 
inches: — 

Angle of Twist 
{degrees). 

O 

6 
12 
18 

24 
29 
36 

12 
O 

After loading with 6 lbs., and 
then removing the load, the twist en¬ 
tirely disappeared. Fig. 162 shows 
the plotting of the above angles of 
twist on a base of loads; and it is 
evident that the twist is proportional 
to the load, and therefore the torque 
(since the arm of the couple is con¬ 
stant and equal to the diameter of 
the pulley, 10 inches), being at the 
rate of 6*^ per lb. of load, or 6® for 
a torque ofvTo lbs.-inches, o-6® 
per I Ib.-inch of torque. 

Helical Spring.—Another ex¬ 
ample is taken in the form of a 

F.O. of a rod or ».r* S,>ring, SUbjcCtf^ tO twisting 
as shown diagrammatically in Fig. 

163. In this case the free end of the spring is subjected to an 
axial twist, in the same way as the wire in Fig. 160. In this case 
the spring as a whole twists. But the wire of which it is made does 
not twist; it be^ids. 

It is easy to show that, up to a certain load, the material of 
the spring is elastic, />. it returns to its original condition when 
the twisting moment on it is removed. 

The Elastic Law.—We have now described various simple 
experiments in which material has been strained by stretching, com¬ 
pressing, bending, and twisting, and has remained perfectly elastic, 
that is, it has returned to its original dimensions and shape when 
the straining force has been removed. For all loads for which this 
perfect elasticity remains we have seen that the deflection or defor¬ 
mation has been always proportioml to the load. This is the law 
of elasticity called Hooke's Law^ and is applicable to every kind of 
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elastic straining, including stretching, compression, bending, and 

0 12 3 4 5 6 

Load rib ) 
Fig, 169.—Elastic twist of a steel wire. 

twisting. It is to be remembered that it applies for loads which 
only strain the materials in such a way that they return to their 
original size and shape when 
freed from the load. Such 
loads for which the material is 
perfectly elastic are said to 
be within the elastic limit. The 
proportional deflections to 
which the elastic law refers are 
for loads within the elastic 
limit; for greater loads the 
elastic law does not hold. 

Fig. 163.—Twist of a helical spring. 



CHAPTER XVI 

STRENGTH AND STIFFNESS OF MATERIALS 

Stress.—When a piece of material is acted upon by a force it 
is said to be stressed or in a state of stress. 

Strain.—^When material is put in a state of stress it changes its 
size or shape. This change is called strain. Thus, when a rope 
is pulled it is stressed, and it stretches ; the stretch and not the pull 
is the strain of the rope. 

Tension.—A direct pull produces a very simple form of stress, 
and is called a tensile stress or a tension. 

If a bar AB (Fig. 164) called a tie-bar, or simply a tie, is 

Fig. x64.~Tcnsion on a tie-bar* 

pulled with forces P along its axis at its ends, the whole length is 
under a tension or pull P. Thus’ the piece CD is subjected to 
equal and opposite forces P at its ends. The pull at C i* exerted 
on CD by the adjoining length AC, and the pull at D on CD is 
exerted by the piece DB; across every imaginary section such as 
C equal and opposite pulls P are exerted by the two parts separated 
by the section. The total stress across any section of the tie-bar 
is P reckoned in pounds or tons. Stress is usually reckoned per 
square inch of area, and is then called intensity of stress or some¬ 
times the unit stress. If a tie-bar carries a total load of 6 tons, and 
its cross-section has an area square inches, the average intensity 
of stress is— 

6 tons „ ^ . 
—— -1—5— = 4*8 tons per square inch. 1*35 square inches ^ r' 'i 

This stress may or may not be uniformly distributed across the 
hrea of cross section. Thus one-half of the section may withstand 
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more pull than the other half, in which case the stress is unevoily 
distributed. If every part of the area of section carries the same 
pull as any equal portion of the area the stress is evenly distributed, 
and the stress is said to be a uniformly distributed one, ora uniform 
stress. In this case the pull at every cross section such as C or D 
(Fig. 164) may be looked upon as a number of parallel forces which 
have a resultant equal to the total pull acting along the axis. When 
the pull is not exactly along the axis of the bar the stress is not 
uniformly distributed. 

Tensile Strain.—When a piece of material such as a tie-bar, 
wire or rope is pulled, it stretches. The total stretch may be called 
the strain, but tensile strain is usually reckoned as a fraction of 
the length stretched, or the stretch per unit of length. Thus, if a 
bar 2 feet long stretches J of an inch the stretch per unit length, or 
the fractional strain is— 

i inch I 
tensile strain = i^^hei = 

and for any stretch 

increase of length 
tensile strain =-—n-nr“ original length 

the increase and original length 
being stated in the same units. 
The strain is then simply a frac¬ 
tion or ratio, and will be the same 
whether foot or inch units are em¬ 
ployed to measure the stretch and, 
whether reckoned on a long or a 
short length. 

Tensile Test of a Wire.— 
To examine the tensile strain of a 
wire for various stresses we may 
use the apparatus already referred 
to and shown in Fig. 152. The 
load is steadily increased from zero 
upwards until the wire breaks, by 
adding weights in a scale pan or 
on a hanger. The vernier is read 
to obtain the stretch after each 
addition to the load. The result 
of such a test on an iron wire 0*055 
inch diameter (0-00237 square 
inches cross sectional area), and 907 inches long from the fixed 

u a 
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end to the attachment of the vernier is shown in the following 
table;— 

Lo«d in lbs. Reading of vernier. 
Stretch in inches (by 

difference). 

0 0*10 0 
10 o-ii 0*01 
20 0'122 0*022 

30 o-i^s 0-035 
40 ois 005 

0*162 0*052 
0*175 0-075 
0*20 0*10 

to 0*30 0*20 

90 0*50 0*40 

100 0*85 0*75 
105 1*14 104 
110 1*39 I *25 
118 1*88 1*78 

128 2*28 2*18 

135 3*01 2*91 
144 4*37 4*27 
149 5*50 5*4 , . 
*54 7*10 7*0 (broke) 

The load and stretch are shown plotted in Fig. 165. 
The stretch up to a load of 60 lbs. is so small in comparison 

with the final stretch, that it is advisable to plot the first part of the 
table up to 60 lbs. on a larger scale of extensions as shown in 
Fig. 166. This shows by the straight line BA the stretch propor¬ 
tional to the load, according to the elastic law up to a load of 60 
lbs. A careful test with another piece of the same wire will 
show that up to this point, which is the elastic limit the stretch dis¬ 
appears if the load is removed. This is practically true for iron 
and steel and most common ductile metal. t>. metals which can be 
drawn out by tension to a considerable extent. At a load a little 
above 60 lbs. the table and Fig. 165 show a great increase in the 
stretch for little increase in load, and with further increase in the 
load much greater stretching occurs than before the elastic limit (A) 
was reached; but the stretch is not proportional to the load, for this 
part Of the curve is not a straight line. If the load is now removed 
very little of the considerable stretch will disappear; the wire is 
permanently strained, and this kind of inelastic stretching is called 
plastic strain. 

Modulus of Elasticity.—^We have seen that within the elastic 
lijoiut the strain is proportional to the load; if the area of section of 
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the wire were doubled and the load were also doubled (as if two 
wires and loads were used), the stretch would be the same as before; 
that is, the strain depends upon and is proportional to the intensity 
of stress, and not merely upon the total pull. As the stress and 
strain are proportional to each other, we may write— 

stress — strain x stress per unit of strain 
stress = strain X a constant, 

although the greatest stt]ain is much less than one unit. This 
constant is called the direct or stretch modulus of elasticity, or 

sometimes Young’s modulus of elasticity for the material of tho 
wire. Thus— 

Intensity of stress = strain x E, or stretch per unit length x E, 
and 

£ _ stress intensity _pull — area_ 
stretch per unit length extension -i-original length* 

The modulus of elasticity (E) is a measure of the resistance 
which a material offers to stretching; it may also be stated as the 
stress which would produce unit strain (or double the length of the 
wire), if it continued to stretch proportionally to the stress instead 
of reaching an elastic limit. 

We may best calculate E from an experiment such as that 
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described for a wire by selecting two points such as B and C (Fig. 
x66) on the straight line a long distance apart, and writing— 

load at C = 55 lbs. 
load at B = lo lbs. 

increase in load — 45 lbs. 
stretch at C =: 0*069 inch 
stretch at B =: o’oio inch 

increase in stretch 0*059 inch 

£ _ increase of stress intensity _ 45 4* 0*00237 
increase of stretch per inch 0*059 -i- 9°"7 

= 29,189,000 lbs.4)er square inch. 

If the plotted curve passes in a straight line through O, one 
point may be chosen at O instead of B, and then— 

_ stress intensity 
~ stretch per inch 

Errors due to a variety of causes frequently arise in the early 
part of the test, that is, with small loads ; in such cases, points such 
as B and C (Fig. 166) should be chosen where the plotted results 
give a good straight line so that any deviation near O does not 
affect the accuracy of the result. 

In order to show the profierties of the material without reference 
to the size of wire, it is advisable to restate the table on p. 202 thus— 

Load (lbs.)- 
Intensity of stress lbs. per 

, 1 load Stretch (inches). 
„ . stretch 
Strains —7-77- 

90*7' ^ 0*00237 

0 0 0 0 

10 4220 0*01 0*00011 

20 8440 0*022 0*00024 

30 126^ 003s 0*00038 

40 16880 0*05 0*00055 

50 21100 0*062 o*ooo68 

60 25320 0*075 000082 

70 29S40 O'lO 0*0011 

80 33760 0*20 0*0022 

90 37980 0 40 0*0044 

100 42200 075 0*0082 

105 443*0 1*04 p*oii4 

110 46420 1*29 0*0142 

118 49796 0*0195 

128 54016 2'18 0*0240 

135 56970 2*91 0*0320 

H4 6(yj66 4*27 0*0470 

in 1 

62878 5-40 0*0595 

64990 

1 
7-0 0*0771 
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The intensity of stress and the fractional strain may now be 
plotted as in Fig. 167, which is practically Fig. 165 plotted to a 
different scale. 

The reader should make tests himself on several different kinds 
of wire, plot for each the curves shown in Figs. 165, 166, and 
167, csdculate the value 
of E, and also calculate 
the following quantities 
now given for the above 
test:— 

Stress at elastic limit 
(see point A, Fig. 166) 
_60 lbs._ 
~ o'oo237 square inch 
=: 25320 lbs. per sq. inch. 

Tenacity or ultimate 
strength— 

_ breaking load 
~ area 
^ 154 

0-00237 
s 64990 lbs. per sq. inch. 

These being reckoned 
on the original area of 
section and not on the 
area after straining, which 
is continually becoming 
smaller as the length in¬ 
creases. 

Fig. 167.—Stress and strain in test, shown in 
Fig. 16$. 

Final elongation = X 100 = 77 per cent. 

This elongation of 7 inches may be measured by putting the 
broken parts of the wire together. It will be noted that a wire 
which stretches considerably also contracts to a smaller diameter 
at the place where fracture takes place; a material which behaves 
in this way is said to be ductile. 

Example.—A mild steel tie-bar if inch diameter and 5 feet long 
carries a load of 8 tons. Find the stress and also the stretch if E b 
13,000 tons per square inch. 

Area of cross section = 7 x (if)* « 1*48 square inches 
4 
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•tress = 
total load _ 8 = 5*4 tons per square inch. 

area 1*48 
_ intensity of stress 
^ = stretch inch 

, . ... , . V intensity of stress S’4 
stretch per inch {f.e. strain) --- 

total stretch.s: ^ --- x 5 x 12 = o'024q inch. 
13,000 ’ 

Pressure or Thrust and Compression.—short thick bar 
AB (Fig. 168) of material subject to thrusting or pushing forces P 

at its ends is said to be in 
compression or under compres¬ 
sive stress. Across every sec¬ 
tion, such as C or D, adjoining 
pieces of the bar exert equal 
and opposite thrusts P on each 
other. The average compres¬ 
sive stress across any section 

is equal to the total force P, divided by the area of cross-section, 
and may be stated in pounds per square inch, or tons per square 
inch. As with tension, the stress may be uniformly distributed, or it 
may be of varying intensity. 

Compressive strain or shortening is measured as a fraction of 
the original length, so that— 

, . decrease in length 
compressive strain =-r-:—r;—— 

^ original length 

Struts.—Any bar or part of a framework subjected to com¬ 
pressive stress is called a strut There is one striking difference 
between struts and tie rods. While a pull tends to straighten out 
any kinks or curvature in a long rod, a thrust tends to develop such 
imperfections and to buckle up the rod (Fig. 169). For this 

,_6_Q_ B 

□ 1 ^ ** 

Fig. x68.—Thrust and compression. 

Fig. 169.—Thrust on a strut 

reason the intensity of compressive stress, allowable in any but a 
very short rod, is much less than the tension which may be safely 
allowed* The calculation of the strength of long struts and 
columns or pillars involves various difficulties, but the reader may 
observe in any structural steelwork that the struts are not usually 
solid round bars, but are of some hollow or spread-out type of 
section such as shown in Fig. 170. For a given amount of 
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material and a given length such a strut is stiffer to resist buckling 
or bending than one of compact section such as a circle or square. 

Strength of a Thin Cylindrical Shell.—AVhen a thin 
circular cylinder or pipe contains fluid under pressure it is subjected 
to mtiform pressure normal or perpendicular to the walls, and this 

Fig. i7o.~Soine strut sections. 

causes two unequal tensile stresses in the material, one in a direction 
tangential to the perimeter of a cross-section, usually called the 
circumferential or hoop tension, and the other in a direction 
perpendicular to the cross-section, called the longitudinal stress. 

Circumferential or Hoop Tension* 

Let d = internal diameter of the thin shell in inches 
/ = thickness of plate 

p = internal pressure in pounds per square inch 
/} s circumferential or hoop stress in pounds per square inch* 

Fig. X71,—Hoop tension m a thin cylinder. 

The shell is acted upon by forces tending to pull it asunder 
along its length into two half cylinders. Consider the half cylinder 
ABC (Fig. 171). Across the diametral plane AC the total force 
due to the internal pressure tending to burst the shell would be— 

Pressure per square inch x area on which this pressure acts 
X X /) pounds. 
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The total resisting force offered by the material of the shell to 
bursting will be— 

Intensity of stress in material x area of material exposed to bursting 
=/, X 2tx 1. 

there being two strips of material each of thickness or width t and 
length /. The shell being in equilibrium under the action of these 
two forces, the bursting force must be equal to the resisting force. 
Equating the two we have— 

Bursting force = resisting force 
p X d X I 2f-,X t X I 

pd - 2/,/. or/i 

Lon^fitudinal Tension.—Across any cross-section AB (Fig. 
172) the bursting force due 
to the internal pressure 
is— 

Pressure per square inch 
X area on which this pres¬ 
sure acts 

=/ X — lbs. 
4 

I'he total resisting force 
offered by the material of 
the shell to bursting is— 

Intensity of stress in material x area of material exposed to bursting. 

Let^ = longitudinal stress in pounds per square inch on the 
ring-shaped section, the area of which is W X / square inches; then 
the resisting force is— 

y. t lbs. 

Equating the bursting and resisting forces, we have— 

Bursting force = resisting force 
Trip . , 

p X - =foXTrdXt 
4 

pd 
pd^Aj^, or/, = - 

Hence we see that the longitudinal stress is only half the circum¬ 
ferential or hoop stress; and in designing a shell to withstand 
internal pressurei we must use the expression/<f = 2//. 

dii 1 
P r 

1 
. 1 

^ j Q 
1 
1 
1 

n 
Fic. 172.—Longicudinal tension in a cylinder. 
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Example 1.—A cylindrical seamless shell 7 feet internal diameter 
has to stand an internal pressure of 200 lbs. per square inch, the plates 
being i inch thick. Find the hoop stress. 

/i = 
200 X 7 X 12 

2 X i 9600 lbs. per square inch. 

Example a.—What thickness of cast-iron pipe 10 inches internal 
diameter will be required to stand an internal pressure of 50 lbs. per 
square inch, if the stress in the pipe is not to exceed 1000 lbs. per 
square inch ? 

pd — 2ft 
50 X 10 = 2 X 1000 X / 

Shearingf.—Material is said to be under the action of shear 
stress when there is a force tending to make one portion slide past 
the adjoining portion. Thus a bolt or rivet (Fig. 173) connecting 

P 
< 

P 

Fig. X73.--Shearing: stress. 

two pieces of metal plate and opposing a force tending to separate 
the two pieces, as shown, is subjected to shear stress at the section 
shown by the dotted line. The tendency of the stress is to shear 
the bolt into the two parts A and B. The average shear stress in 
Fig. 173 would be— 

total shearing force (P) 

area of cross-section between A and B 

but the stress would not necessarily be at all uniformly distributed 
across the section between A and B. 

The following table gives the average ultimate strength and 
modulus of elasticity of a few common materials. 

Material. 
Ultimate stren^h in 
tons per square inch. 

— 

Shearing strength in 
tons per square inch. 

Young's Modulus in 
tons per square inch. 

Mild steel . • . 27 to 32 21 to 24 13,000 
Wrought iron . . 18 to 24 15 to iS 12,500 
Cast iron .... 7 to 10 9 to 11 6,000 
Brass . ^ . . . 8 8 5,000 
Cdpper (hard) . . 18 5,000 
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Riveted Joints.—Lap and Butt Joints.—In a lap joint one 
plate overlaps the other, the two plates being connected by one or 
more rows of rivets. If there is only one row of rivets, as in Fig. 
174, the joint is called a single-riveted lap joint. When two rows 

of rivets are used, the joint is 
called a double-riveted lap 
joint (see Fig. 175). In chain 
riveting the rivets in the two 
rows are opposite one another; 
in zigzag riveting the rivets in 
one TOW are opposite the spaces 
in the next row, as shown on 
the right in Fig. 175. 

In a butt joint the plates 
are < kept in the same plane, 
and the joint is covered on one 
or both .sides by a cover-plate 
which is riveted to the plates. 
Fig. 176 shows a single-riveted 
butt joint, and Fig. 177 a 
double-riveted butt joint. 

The pitch is the distance 
from centre to centre of the 
rivets in one row. 

In a lap joint the lap is the 
Fig. 174.—Single*nvefed lap joiot. 

distance, at right angles to the joint, between the edges of the two 
overlapping plates; in a buti joint the lap is the distance between 
the joint and the end of the cover-plate. 

A rivet is in singles hear shearing can take place only on one 
cross-section of the rivet, as in lap joints and in butt joints with one 
cover-plate (Figs. 174, 175,176). 

A rivet is in double shear when shearing must take place on two 
cross-sections of the rivet to sever the joint, as in butt joints with 
two cover-plates (Fig, 177). 

Strensrth of Rivet^ Joints.— 
Let / as thickness of plates in inches. 

d SK diameter of rivets in inches. 
p = pitch of rivets in inches. 
ft = tensile resistance of plates in tons per square inch. 
f ss= shearing resistance of rivets in tons j)er square inch. 

To fix the diameter of rivets, Professor Unwin gives the simple 
rule— 

d — vzy/t 
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In girder work the rivets are usually f inch and i inch diameter. 
Rivets which have to be riveted up by hand when the girder is in 
position should never exceed j inch diameter, on account oS the 
difficulty of driving tight rivets of larger size by hand. 

Consider a strip of a single-riveted lap joint of width equal to 
the pitch (Fig. 178). Such a joint may fail in four ways. 

FiG. 177.—Double-rivetted butt joints. 

(a) The rivet may shear (Fig. 178 (a)). The area-resisting shear 
. rrd* 
IS -' 

4 

The resistance to shear is/ x — tons. 
4 

(6) The plate may tear along the line of minimum section 
(Fig. 178 (6)). 

The area of either plate along this line is (p — d)/. 
The resistance to tension isf,xip — d)t tons. 
(c) The plates and rivet may be crushed (Fig. iyS(c)). and this 

would make the joint loose. The above rule (^ = i '2 y /) usually 
gives a diameter of rivet large enough to prevent crushing in this 
manner. 

^ (d) The plate may break away in front of the rivet (Fig. ij8(d)); 
Uiis would be due to the rivets being too close to the edge of ffie 
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plate. The minimum distance allowed in practice from the centre 
of the rivet hole to the edge of the plate is i^d + inch, and in 
girder work this is usually in¬ 
creased to 2d. 

In designing the joint it 
should be made so that the 
tendencies to rupture in each 
of the four ways are equal. The 
commonest method is to fix the 
diameter of the rivet first (this 
is rarely made less than ^ inch) 
then decide on the overlap 
making it ^; the pitch 
is then obtained by equating 
the shearing resistance (Fig. 
i78(<i1), and the tensile resist¬ 
ance (Fig. 178(6)). This gives— 

4 
1' 

\ 

Shearing 
resistance 

T 

Tensile 
resistance 

/. X 
}={ 

= /tip - 

O 

(O) 

f. 

In practice the minimum 
pitch allowed is 2d for boiler 
work, but in girder work the 
pitch is very rarely made less 
than 3^. 

Example.—Calculate the dia¬ 
meter and the pitch of the rivets 
for a single riveted lap joint, the 
thickness of the plates being J 
inch. Take/« = 6 and= 5 tons 
per square inch. 

Fig. 178.—Possible failures of lap joints. 

d = 1-2 y/ 
= 1*2 V^7S 5= 1*039 say I inch. 

Shearing resistance = Tensile resistance 

5 X ^ = 6Ci> - i)f 

^ = J X ^-1- I 

= 0*87 -I- I = i‘87 inches. 

iSli (the mioiimim vahie ^ 
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Percentage Strenj^h olJoint.—The strength of the joint, 
is less than the original plate, because the sectional area of plate 
along the centre line of the row of rivets has been reduced by 
drilling the rivet holes. Taking a width of joint e(}ual to the pitch, 
as in Fig. 178, we see that before drilling the sectional area of the 
plate is ^ X /, and after drilling it is — d)t^ hence— 

strength of joint _ {p — d)t __ p — d 

strength of seamless plate pt p 

In the previous example this will be— 

2 — 1 
-7-=0-5 

or the strength of the joint is 50 per cent, of the strength of the 
seamless plate, and its efficiency is 50 per cent. 

Thin Riveted Shells.—Steam boilers are not seamless tubes, 
but are made up of plates riveted together. 

Let e 
strength of joint 

strength of seamless plate 
or ^ = efficiency of joint. 

The hoop tension will be found as follows :— 

bursting force ^ p x d X I 
resisting force = 2/// X e 

Equating the two we have- 

pdl = 2ftle 
pd ==: 2/t X ^ 

pd 
' 2/ X ^ 

Example.—A boiler 8 feet diameter has to work at a pressure of 
160 lbs. per square inch. Calculate the thickness of plate required if 
the maximum tensile stress is not to exceed 5 tons per square inch, 
assuming the efficiency of the joint to be 70 per cent. 

pd s= 2fte 

I — — 160 X 96 
^ 10 X 2240 X 07 

= inch, say, i inch. 

Examples XVI. 

1. A tie*bar, i) inches in diameter, is under a tension of 6*5 tons ; what is the 
intensity of tensile stress ? 

'^‘2 A round bar of mild steel i inch diameter and zo inches long is subjected 
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to a tension of lo tons. Find the total stretch, and the fractional strain if 
E :^13120 tons per ^uare inch. 

A steel wire) inch diameter and lo feet long stretches o*o8 inch under a 
tension of 245*4 lbs. Calculate the stress and the modulus of elasticity. 

4. A copper wire of 0*05 inch in diameter and 907 inches long is subjected 
to increasing loads, the extension for each load being measured. The following 
results were obtained :— 

I^Ob..) . 0 5 10 *5 20 as 30 34 36*5 39 4**5 44 4^*5 50 55 
Scale (read¬ 

ing) mch . o'oi 0*025 0*04 
1 

0*055 0*07 0*15 0*35 1*13 i*8x 2*70 365 4*75 6*54 8*03 10*22 

Calculate the value of Young’s modulus for this sample of copper wire. 
5. What load in pounds must be hung to an iron wire 15 feet long and 0*1 

inch diameter to make it stretch} inch (£ = 29,000,060 lbs. per square inch) ? 
6. A hollow cast iron strut is 10 inches external and 8 inches internal 

diameter and 10 feet long. How much will it shorten under a load of 60 tons? 
Take £ as 8000 tons per square inch. 

7. A round tie-bar of mild steel, 18 feet long and inch diameter lengthens 
^ inch under a pull of 7 tons. Find the intensity of tensile stress in the bar, 
and the value of the modulus of elasticity. 

8. A cylindrical steam boiler is 6 feet internal diameter, and is made up of 
plates I inch thick. If the internal steam pressure is 150 lbs. per square inch, 
what is the intensity of hoop stress in the plates ? 

9. What thickness of cast iron pipe 16 inches internal diameter will be 
required to stand an internal pressure of 80 lbs. per square inch, if the intensity 
of stress in the material is not to exceed 1000 lbs. per square inch? 

10. Taking the shearing strength of wrought iron to be 16 tons per square 
inch, calculate the force necessary to punch a hole } inch diameter lu a {-iiich 
plate. 

11. Calculate the diameter and the pitch of the rivets for a single-riveted 
lap joint for plates g inch thick. Take= 6 and — tons per square inch, 

12. What will be the percentage strength of the joint in Question ii ? 
13. A boiler is 6 feet 6 inches in diameter and has to work under a steam 

pressure of lbs. per square inch. If the maximum stress in the plates is not 
to exceed j tons per square inch, what thickness of plate will be required? 
(Assume efficiency of joint to be 75 per cent.) 



CHAPTER XVII 

BENDING 

Two very simple forms of bending are illustrated in Fig. 179; 
(a) is a horizontal beam simply supported at its ends and carrying 

a load W midway between them; (^) is a form of beam called a 
eaniikver is fixed in a wall at one end and not supported 
elsewhere; it is shown carrying a load W at its free end. All parts 
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of structures which are acted upon by forces at right angles to their 
length are called beams; sometimes a beam may be simply a piece 
of timber, in other cases a piece of rolled steel of I section, or, again, 
a complex body built up of various pieces of steel riveted together. 
The latter forms are generally called girders. Actual steel beams 

.used by engineers bend very slightly, and to make clear to the 
student the kinds of strain in a bent beam it is advisable to use a 
beam of some more flexible substance such as indiarubber. Such 
a beam is illustrated at (e) Fig. 179, and has a number of equi¬ 
distant vertical lines ruled upon one side. After the beam is bent 
by hanging a weight W on the end the lines are no longer parallel 
to' one another; the upper ends are further apart and the lower 
ends closer together than previously. Careful measurement will 
show that the distances marked ab have stretched to a greater 
length dV and the lengths cd have shortened to rd, A line mid¬ 
way between ab and cd will remain of the same length after 
bending. From this it is evident that for the bending illustrated at 
{b) Fig. 179— 

1. The upper layers of the beam are stretched by tension. 
2. The lower layers are shortened by compression. 
3. Towards the middle layer the strain (and stress) diminishes. 
The layer of material which is neither stretched nor shortened 

is called the neutral surface of the beam. 
It is also possible to show by measurement that the strains at a 

given level are greater at the fixed or wall end, and diminish to the 
free or loaded end. 

For the loading shown at (a) Fig. 179, the upper layers are in 
compression and the lower ones in tension, and in any cases of 
bending a straight beam there will be a tension on the side which 
becomes convex and compression on the side which becomes 
concave. 

Bending: Stresses.—The stress produced in a beam by the 
forces which act upon it are not as in a tie-bar simply proportional 
to those loads or forces, but to the moment of those forces. 

The forces on such a portion of a beam as ABCD, Fig. 180, 
are— 

(1) The weight W at its free end. 
(2) The forces exerted by the material of the fixed end of the 

beam on the piece ABCD across the section AB. 
We may consider these internal forces as being divided into 

horizontal and vertical forces (components as in Chap. XIII.) 
The horizontal forces consist of the resultant T of the tensions in 
the upper layers and the resultant thrust T' of the lower layers. If 
ye imagine the vectors ab and be to represent T and W and th^ 
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complete polygon of forces for the piece’A BCD has to be closed 
(in accordance with Chap L) by another horizontal and a vertical 
side, it is quite evident that the sides must be dd! and dd as shown 
at dtldd and that— 

(1) The horizontal thiust T must be equal to the horizontal 
tension T. 

(2) The internal vertical force F, at AB, must be upward and 
equal to W. 

This vertical force (W) resisted by the internal force is called 
the shearing force at AB since it is the force tending to shear the 
beam vertically at AB. 

wt 
C' 

Fig. iSo —' Forces in a strained beam. 

Bending Moment.—Since the piece ABCD is in equilibrium 
under the action of the four forces W, F, T and T', from the 
principle of moments (Chap. II.) we see that the contra-clockwise 
moment T x ^ exerted by the pull and thrust ( F and T) must be 
of equal magnitude to the clockwise moment exerted by W and F, 
The moment exerted by W and F is called the bending moment on 
the beam at AB, and the equal and opposite moment Ty or T'y 
exerted by T and T' is called the moment of resistance of the beam 
at this section AB. The magnitude of the moment at AB is 
evidently — 

Tx>'^Wx^-Fxo = Wa: 

and for the piece ABCD it would be the same whatever point we 
select from which to calculate the moment of the two forces W 
and F distant x apart; but for the section at the fixed end, the 
bending moment w^ould be W x length of cantilever or W x /. 
For any beam we may state that bending moment at any section is 
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the resultant moment of all the external forces to either side of the 
section. (It is the same magnitude to eitiur side, but of opposite 
kind, since by the principle of moments the total moment of all the 
forces is zero, ijc. the contra-clockwise moment is equal to the 
clockwise moment.) 

Moment of Resistance at any section is the moment of the 
longitudinal tension and thrust induced by the bending moment, 
and is of magnitude equal to fhe bending moment. 

Shearing: Force at any section is the resultant external force 
perpendicular to the beam on atlur side of the section. 

Bending Moments and Shearing Forces in Simple 
Cases.—The table on pp. 222 and 223 shows the six standard cases 
of beams and explains itself. In the first four cases the student 
should work out for himself the bending moment and shearing force 
at different points along the length of the beam, and from ins calcu¬ 
lations draw the bending moment and shearing-foice diagrams. In 
the last two cases, where the beam is built in horizontally at both 
ends, the bending moment at the fixed end is opposite in sign to 
that in the middle of the beam. The effect of the bending moments 
at the ends is to make the beam convex up7vardsy whilst the opposite 
kind df bending moment in the middle makes the beam concave 
upwards. At each side of the middle of the span there is one point 
at which the beam is straight, and at which the bending moment is 
zero; these points are called points of contra-fiexvre. Further con¬ 
sideration of the bending moments and shearing forces for built in 
beams is too difficult for this stage of the subject. 

Example 1.—A cantilever 15 feet long carries three loads as 
follows :—5 tons at the free end, 4 tons 10 feet from the wall, and 8 tons 
4 feet from the wall. Calculate the bending moment and shearing 
force at the wall and at each of the loads, and draw the bending 
moment and shearing-force diagrams. 

Fig. 181 shows the beam loaded as in the question. 
Bending moment at the Wall (A), 

B.M. = 5x 15+ 4X10 4-8x4 
B.M. = 75 + 40 + 32 147 tons-feet. 

Shearing force at A = 5+ 4 + 8= 17 tons. 
Bending moment ^ = 5 x BD + 4 x BC 

= 5x 11+4x6 = 55+ 24 = 79 tons-feet. 
Shearing force .^ = 4+ 5 = 9 tons. 
Bending moment tf/C=5xCD = 5X5 = 25 tons-feet. 
Shearing force at C = 5 tons. 

q'he bending moment and shearing-force diagrams are shown drawn 
to scale in Fig. 181. 

Example 2:—Fig. 182 shows a beam simply supported at its ends 
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and carrying three loads. Calculate the bending moment at the middle 
of the span and at each load. 

The first thing to do is to find the reactions and at the points 
of support. 

Fig. i8i. 

Taking moments about the left-hand support D (contra-clockwise) 
eve get— 

Ra X 50 = 8 X CD 4- 12 X BD + 4 X AD 
50R2 = 8 X 38 -f 12 X 23 + 4 X 10 

= 304 + 276 4 40 
= 620 

_ 620 
Ra - 7 - = 12*4 tons. 
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The total load on the beam is 8 + 12 + 4 = 24 tons 

/. Rj = 24 - 12-4 = 11*6 tons. 

At mtd’Span (point X 25 feet from either support). Taking the 
forces on the right of X we have— 

Bending moment at mid-span = R.^ x EX - 8 x CX 
12*4 X 25 - 8 >013 

= 310 - 104 = 2ofetons-feet. 

At C. Taking the forces on the right of C — 

Bending moment = Rg x CE -= 12*4 x 12 = 148*0 tons-feet. 

At B. Taking the forces on the right of B— 

Bending moment = R^ x EB — 8 x CB 
= 12*4 X 27 - 8 X 15 
= 334*S - 120 = 214*8 tons-ieet. 

4- Tons J2 Tons 8 Tons 
^3‘-H 

-> E 

1 — 25'-> w 

\ 
^- 

Ri >1l'b/ons R 

Fio i8a. 

\Z‘^Tons 

We may check this figure by taking the forces to the left of B— 

Bending moment =R, xDB — 4X AB 
= 11*6 X 23 — 4 X 13 
= 266*8 — 52 = 214*8 tons feet as before. 

At A. Taking the forces to the left of A— 

Bending moment =: R^ x AD = ir6 x 10 = 116 tons-feet. 

We might also check this value by considering the forces to the 
right of A, 

Bending moment = Rg x AE — 8 x CA - 12 x BA 
= 12*4 X 40 — 8 X 28 - 12 X 13 
= 496 - 224 - 156 
= 496 — 38a = 11*6 tons-feet as before. 

Intensity of Bending: Stress.—In almost all simple forms 
of beams which are long in comparison with their width or depth, 
the most important stresses are the longitudinal tension on the 
convex side and the longitudinal compressive stress on the concave 
side, which give the resultant pull and thrust T and T' and exert 
the moment of resistance to bending Fig. 180. We will take the 
beam in Fig 180 to be of rectangular cross-section of breadth 
b inches and depth d inches, as shown at KLMN in Fig. 183. 
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Within the limits of elasticity, the tensile stress on the section 
AB (shown at KLMN) varies from a maximum intensity, KL, at 
the outside to zero at the dotted neutral plane through O. The 
intensity of tensile stress is represented by the lengths of the hori¬ 
zontal lines in the triangle KLO, and the intensity of compressive 
stress by the lengths of the horizontal lines in the triangle NMO. 
Consequently, the mean of the intensity of tensile stress, on the 
upper half of the rqgtqngular section is half the maximum intensity 
KL at the outside, and if f is the maximum intensity of stress at 
the edges KL and MN (tensile at KL and compressive at MN) of 
the section in pounds per square inch— 

T = T' = area {b (stress intensity at outside) 

T = \pJ X /pounds. 

The distance of T (and T') from O is | of the distance of the 
edge KL from O. (The reader may note that the stress on the 

upper half, varying uniformly in intensity from O to the outside, is 
equivalent to a uniform or unvarying stress of the maximum intensity 
(/), but acting only on the area KLO, so that T =/x area KLO 
= \ and that the position of the resultant T is similar to the 
position of the centroid of a triangular area KLO, which is evidently 

5 of - from KL (see Chapter XIV.), or^of^—^d from O.) Hence, 

the distance of T from T' is M, and the 

Moment of resistance = T x = T x |</ pound-inches 
= \/bd X §</ 
=/ X h^d"^ pound-inches. 

Hence, since the moment of resistance balances the bending 
moment, we may write for a beam of rectangular section— 

Bending moment = f\bd^ pound-inches 
, Bending moment in pound-inches , . , 

or/=-=-- pounds per square mch. 
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The intensity oT stress caused by a given bending moment is 
then inversely freperticnal to the breadth aful to the square of the depth 
of the beam. Or, to put it in another way, for a given safe intensity 
of stress, the bending moment which a beam will safely resist is pro- 
porHonal to the breadth and to the square of the depth. Thus we say, 
that the strength of a rectangular beam is proportional to the breadth 

s and to the square of the depth,. We have seen that, for any particular 
kind of support, the bending moment produced by a given load is 
proportional to the length of the beam ; hence the strength of any 
given type of beam is inversely proportional to its length. 

Example.—A timber beam ot rectangular cross-section has a 
breadth of 6 inches, and depth 10 inches. It is 15 feet long and sin>ply 
supported at the ends, and carries a load of 2 tons at the middle of the 
span. Find the greatest stress in the beam. 

The reaction at each end = i t*»n. 

The greatest bending movement is under the load at mid-span : it 
is equal to reaction x half the span. 

=:ix^xi2 = 9o tons-inches 
- bending moment in tons-inches 

Now,/ - 

= j X'6*^ 

Modulus of Section.—The moment of resistance f x for 
a rectangular section may be written — 

moment of resistance = f x modulus of section =fxZ 

the quantity ^bd^ being the modulus 0/ section Z for a rectangular 
beam section. For other sections the modulus of section will have 
other values. 

For example, for a solid round rod of diameter d inches 

Z = eP and 
3- 

moment of resistance = 
3- 

/ being the maximum intensity of stress. 
It is to be noted that the relation -- 

moment of resistance =/'* Z 

is only true for loads which do not strain tiie beam beyond the elastic 
limit. 

1 
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An Important Beam Section.—We have seen that the im¬ 
portant longitudinal stresses of tension and compression induced by 
bending reach their maximum intensity at the outer skin of the beam, 
and that the material inside bears a much smaller stress, and is 
therefore not very economically employed in resisting bending 
moments. In rolled steel beams, to use the material to the best 
advantage, an I section is used, as shown in Fig. 184, which approxi¬ 
mates in shape to two thin horizontal rectangular flanges, connected 
by a still thinner vertical rectangular web. In this way nearly all 
the material is at or near the outer edges of the section, and so gets 
almost the full maximum bending stress upon it. It is easy to 
estimate approximately the moment of resistance of such a section. 

fiolled Seel ion 
Fig. 184.—Steel beam sections. 

For if each flange has an area of A square inches, and gets the full 
maximum intensity of stress f pounds per square inch, the pull T 
(see Fig. 183) in the top flange, and the thrust T' in the bottom 
flange, are— 

T = T' =:/A pounds. 

And the distance {y) apart is practically equal to the full depth 
of the section ; the resisting moment— 

H ' y * d K* d pounds-inches, or— 

resisting moment maximum intensity of stress X area of one 
flange x depth; 

and the modulus of section is A x and if each flange is b inches 
wide and / inches thick A = ^ * /, or 

modulus of section =: b x t x d and 
resisting moment = fbtd pound-inches. 

We have supposed that the flanges bear all the pull and thrust 
T and T'. Actually the web carries a little, but its moment of 
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resistance is small compared to that of the flanges. The web 
carries piuch of the shearing force. ^ 

Example iT.—A rolled steel joist lo inches deep has flanges 
6 inches wide by ^-inch thick. Find the maximum intensity ol stress 
produced in it by a load of 5 tons at the middle of the span, which is 
14 feet. 

The reaction of each support is^ = 2*5 tons 
Maximumbendingmoment (at mid-span) = reaction x \ length of beam 

= 2*5 X 7 X 12 
= 210 tons-inches 

Moment of resistance = bending moment 
fbid =210 

f X 6 X ^ X 10 = 210 
- 210 X 4 , 
/ = 7-^ = 4*66 tons per square men. 
' 6 X 3 X 10 ^ ‘ ^ 

Example 2.—Find the maximum span which may be adopted with 
a beam of the same section as that m Example I., if the maximum 
intensity of stress is not to exceed 6 tons per square inch, and the 
beam carries a uniformly distributed load of li tons per loot ol Us 
lengths. 

Let / = span required in feet and = load per foot run. 
The maximum bending moment is at mid-span C fFig. 185). 

Ai 
, ( 

Liuul !1 Ion per ft run 

--> Q 
■ I? 

tvl 
'S' 

T 
7 —y 

Fk.. 185. 

Each reaction is half the total load on the beam ~ 2 ~ J/tons, 

Maximum bending moment (at C) 

= reaction x \ span - load on AC x A AC 

= tons-fcct = X 12/- tons-inches 

Moment of resistance = bending moment 

1*6 *2/* 
„ a X x-zP 

6 X 6 X X to - - 

4 X 3 X 12 

I = V120 - 11 feet. 
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Braced. Framed or Trussed Qlrders.—Laige girdeis of 
bridges and roofe are often made up of bars jointed together to form 
a frame-work. We may illustrate the principle by a model such 
that shown in Fig i86^ which consists of S cantilever, loaded at its 
free end. cut into two parts and joined by a horizontal string AB at 
th^ top and a horizontal strut, DC at the lower edge. If the strut DC 

has smooth, well-rounded ends with little friction, AB and CD will 
not support the load W, and the free end would shear off. A 
diagon^ string tie from A to C, however, will enable a wmg^t, W, to 
be supported on the free end. This arrangement illustrates the 
uses of the various parts of a cantilever truss. The top flange is a 
tie, snd carries the pull T similar to that in a solid beam (Fig. 183) 

the lower flange carries the thrust T*, and the dixigonal carries the 
shearing force, being itself in tension, and so pulling upwards 
at C. A complete cantilever truss is shown in Fig. 187, while 
Fig. 188 shows two forms of horizontal truss for spanning two 
supports. In these cases (Fig. 188) the lower flanges or booms 
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will be in tension, and the upper booms in compression, while the 
diagonals carry the shearing force. 

Stiffness and Deflection of Beams.—By stiiihess in a 
beam we understand, resistance to deflection, so that the relative 
stiffness of two beams is inversely proportional to their deflections 
under a given load. For all rectangular beams, the deflections are 
proportional to— 

W/» 

YM' 

where W is the total load on the beam, I the length, E Youths 
Modulus, b the breadth, and d the depth. The actual deflection is 

Fig- 188.—Braced girders. 

equal to the same quantity multiplied by some constant depending 
upon the method of loading and supporting the beam. The 
stiffness is then— 

(1) Proportional to the breadth {b) ; 
(2) Proportional to the aibe of the depth (</*) ; 
(3) Inversely proportional to the cube of the length (/*). 
For the cantilever loaded at the free end (line i in table on 

4W/® 
p. 222), the deflection is For the beam simply supported at 

W/* I 
Its end and loaded in the middle the deflection is or as 

much as in the previous case. 

Example i.—A beam of fir 2 inches broad, 3 inches deep and 4 feet 
between supports deflects oroS inch under a load of 2$o lbs. placed 
midway between the supports. Find the deflection of a baulk of the 
same timber 10 inches wide and 15 inches deepen supports 16 feet apart 
under a load of 5 tons placed midway between the supports* 
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The deflection is proportional to the load W, to and inversely 
proportional to b and to ^ 

5 X 2240 /i6\® 2 
Deflection = 0*08 x x-p^x(^~j 

224 I / I ^ ^ 

= o*o8 X X (4)'^ X 5 ^ 5 J 

^ 224 X 64 z-z • 1. 
= 0*08 X ---- 0*366 inch. 

S X 5 X s X 25 

Hxample 3.—Abeam of hr 16 inches square in section is carried by 
two supports with a span of 18 feet, and carries a load at the middle of 
the span of 15 tons. Find (i) The maximum intensity of stress pro¬ 
duced, (2) The deflection at the middle of the span. Take E as 700 
tons per square inch. 

(i) Modulus of section = J x 16 x 16 x 16 = 
Maximum bending moment \ j 

at mid-span f ^ 

15 18 X 12 o ^ 1. _ ^ X-= 810 tons-inches 
2 2 

Stress/-= ~ ri84tons per square inch, 

(2) Deflection -■= 

15 X (18 X la)® „ . . 

4 X 700 X 16 X (16)^ ^ 

Experiments on Beams.—The above laws may be proved 
experimentally by means of the simple apparatus shown in Fig. 189 

FIG. 189,—Strength and deflection of beams. 

The beam is carried on V supports near its ends, the supports rest¬ 
ing on a rigid cast iron bed. Loads are hung on the beam at mid¬ 
span by means of the hanger shown. The deflection is read off on 
the scale for different loads, the loads being increased till fracture 
occurs. For experiments within the elastic limit only the more accu¬ 
rate apparatus already explained in Chap. XV, Fig. 158, may be used. 

'I'he following are the results of experiments made on beams of 
red deal^ with the apparatus shown in Fig. 189 :— 
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The above results are shown plotted in 190. 
Consider the Three Beams C, D, JB.—^We have stated diat 

the deflection is for a given load proportional to and inveisel]r 
proportional to b and to iP. From the carves shown in Fig. igo, 

within the elastic limit we see that for a load of 1^ cwts. the deflee 
tions of these beams are— 

C D. R. 

Deflection. 0*09 0*13 0*185 

Appl)ring the above laws, we can calculate what the deflection 
should be for the beams D and E, from the deflection 0*00 inch 
ofC. 

Deflection of D should be 0*09 X f = 0*12 inch, which agrees 
with the observed deflection. 

Deflection of E should be o’o9 x (3)* = 0*09 x = 0*21 inch, 
which agrees fairly well with the observed deflection 0*185 inch. 

Th^ r^lts approximately illustrate experimentally that the 
deflection is inversely proportional to the breadth (D), and inversely 
proportional to the cube of the depth (E). 

Consider next the Beams A and B,—^Within the elastic 
limit for a load of i cwt. we see, from the carves in Fig. 190, that 
the deflection of A is 0*21 inch, and of B is 0*44 in«^h- 
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Now— 

span of Ais 13 indies, breadth of A is i inch, depth of A is ^ inch, 
span of B is 34 inches, breadth of B is ^ inch, depth of B is 1 inch. 

Applying the above laws, we can caliaiiate what the deflection 
should be for the beam B. from the deflection o‘3i inch of A 

Deflection of B should be 0*31 = (f|)* x f X (|)* = 0*21 x,3 
= 0*43 inch, which agrees fairly dosely with the observed value 
0*44 inch. 

Comparison of the Strengrths of the Beams.—We have 
seen that the strength of a beam is proportional to the breadth and 
to the square of the depth, and inversely proportional to the length. 
Applying these rules, we can estimate the breaking load for the 
besims D and E by calculation from the breaking load of beam C. 

For beam C. Span = 12 inches, breadth = i inch, depth = i 
inch, breaking load = cwt. 

For beam D. Span = 12 inches, breadth = f inch, depth = 
I inch. 

For beam K Span =12 inches, breadth = 1 inch, depth = 
£ inch. 

Breaking load of D should be 3*67 x f = 3*75 cwts. 
Breaking lokd of E should be 3*67 x = 2*07 cwts. 

which agree with the actual breaking loads (see Fig. 190 and 
Tables). 

Similarly, we can calculate the breaking load of beam B from 
that of A 

Beam A. Span = 12 inches, breadth = i inch, depth = ^ incl^ 
breaking load if cwts. 

Beam B. Span « 24 inches, breadth = ^ inch, depth = i inch. 
Breaking load of B should be if x i x (f)* X ^ = if cwt, 

which agrees with the actual breaking load. 
Modulus of Rupture.—It should be noted that, although the 

above experiments show that the breaking load is proportional to 
the breadth, square of the depth, and inversely proporuonal to the 
length, or, in other words, that the ultimate bending moment is 
proportional to the breadth and square of the depth, the formula— 

moment of resistance- 
, bending moment 

= —w- 

is only true within the elastic limit. The quantity— 

ultimate bending moment 

is called the Modulus of Rufiurt^ and is a useful constant to give 
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the ultimate load of beams of cast iron and timber. For a break¬ 
ing load W at the middle of the supports the ultimate bending 
moment is iW/, hence— 

modulus ot nipture = 
3 m 

\b(P^ ^ bd^ 

For example, the experiments given above for the beam E of 
red deal, of which the span is 12 inches, breadth i inch, depth 
f inch, and the breaking load 2 cwt., give— 

^ . ft 2 X 112 X 12 
modulus of rupture = f x-—3- ^ 

TC X f A i 

~ 7168 lbs. per square inch, 
or 3*2 tons per square inch. 

Example i.—If a cast iron beam i inch by i inch in section and i 
foot long, fixed at one end will just bear 330 lbs. at its other end before 
breaking, what load at the free end would be required to break a cast 
iron cantilever 2 inches wide and 3 inches deep and 3 feet long. Also, 
what would be the load at mid-span if the beam were supported at 
each end ? 

Bending moment in first case ~ 330 x 12 = 3960 pound-inches. 

For the 2 inch width this bending moment will be multiplied by 2, 
and for the 3 inch depth it will be multiplied by 3'^ or 9 ; hence the 
bending moment required to break the beam is— 

3960 X 2 X 9 = 71280 pound-inches 

And since the length of the cantilever is 36 inches, the bending 
moment (W/j is — 

Load in pounds x 36 = 71280 
and load = = 1980 lbs. 

If the beam were supported at each end the bending moment (J W/) 
would be— 

Load in pounds x = 71280 
Load = = 7920 lbs. 

Example 2.—A beam of red deal 4 Inch broad and i inch deep is 
carried on two supports 2 feet apart and just bears a load of 180 lbs. 
midway between the supports before breaking. What load could be 
safely carried at mid-span on a joist of the same limber, 12 inches broad, 
16 inches deep, spaa 20 feet. Take the safe load to be J of breaking 
load. 

Bending moment in first case = W/~ i(So x - 1080 pound- 
inches. 

For the 12 inches width this bending moment will be multiplied by 
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-^or 24 and for the 16 inches depth it will be multiplied by 16* or 256; 

hence the bending moment required to break the large beam is_ 

1080 X 24 X 256 pound-inches 

and since the span of the beam is 20 feet or 240 inches the bendin» 
moment ^iW/) will be— “ 

Load in pounds X = 1080 x 24 x 256 

load = X 24 X 2S6 
60 

and the safe load will be— 

110,592 lbs. 

13 824 lbs. 

Check.—This result might also be obtained more direct^. since the 
breaking load is proportional to the breadth, to the square of the depth, 
and inversely proportional to the length, hence— 

breaking load = 180 x 24 x 256 x == 110592 lbs. 

and the safe load will be— 

~ 13823 lbs., as before. 

Examples XVII. 

1. A cantilever 20 feet long carries three loads as follows : 2 tons at the free 
end, 6 tons 12 feet from the wall, 5 tons 6 feet from the wall. Calculate the 
bending moment and shearing force at the wall and at each of the loads, and 
draw' the bending moment and shearing force diagrams. 

2. A beam 24 feet long is simply supported at its ends and carries the 
following loads : 7 tons, 4 feet from the left-hand end, 2 tons ll feet from the 
left-hand end and lo tons 18 feet from the left-hand end Calculate the bending 
moment at the middle of the span and at each load. 

3. A cantilever 15 feet long carries a uniformly distributed load of ij tons 
per foot run over its entire length. Calculate the bending moment at a section 
of the beam 10 feet from the free end. 

4. A timber beam of rectangular cross-section has a breadth of 5 inches and 
depth 12 inches. It is 20 feet long and is simply supported at its ends, and 
carries a load of 3 ton* at the middle of the span. Find the greatest stress ih 
the beam. 

5. A beam of fir, breadth 16 inches, depth 16 inches, is carried by two supports 
with a span of l8 feet. It carries a load of 15 tons at the middle of the span. 
Find the maximum intensity of stress produced. 

6. A rolled steel joist 12 inches deep with flanges { inch thick and 6 inches 
wide carries on a span of 10 feet a load of 3 tons at the middle of the span. 
Find the maximum intensity of stress produced. 

7. If the joist in Question 6 carries a uniformly distributed load of 2 tons per 
foot run, what will be the maximum intensity of stress produced in it ? 

8. Find the maximum span which may be adopted with a rolled joist lo 
inches deep w'ith flanges 6 inches wide by J inch thick, if the maximim intensity 
of stress is not to exceed 6 tons per square inch and the beam carries a uniformly 
distributed load of i ton per foot run. 
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9. A timber beem of rectangular cross-section has a btcadtii of 4 inches and 
a depth of 9 inches. It is 12 feet long and is siinply supported at the ends. 
What load hung at the middle of the span will produce a dedection there of | 
inch ? £ =5 700 tons per square inch. 

10. A beam of fir ifi inraes square in section is earned by two supports with 
a span of 18 feet and deflects 0*823 inch under a load of 15 tons plai^ midway 
between the supports. Find the deflection of a beam of the same timber 4 inches 
broad and 8 inches deep on supports 6 feet apart under a load of 4 tons placed 
midway between the supports. 

11. A cantilever of breadth 5 inches and depth 10 indies is 8 feet long and 
carries a load of 1 ton at the free end. Calculate the deflection at the free end, 
assuming E = ^00 tons per square inch. 

12. A cast iron beam 1 inch broad and 2 inches deep will just break when a 
load of 6 cwt. is applied at the middle of a span of 9 feet. Calculate the 
modulus of rupture. 

23. If a cast iron beam 1 inch by i inch in cross-section and 2 feet long and 
fixed at one end will just bear 165 lbs. at its free end without breaking, what 
load at the free end would be required to break a cast iron cantilever inches 
wide and 3 inches deep and 4^ feet long ? Also what would be the load at 
mid-span if the beam were simply supported at each end ? 

14. A timber beam 1 inch brood and 1 inch deep is carried on two supports 
1 foot apart, and just bears a load of 720 lbs. midway between the supports 
before breaking. What load could be safely carried at mid-span on a joist of the 
same timber, 10 inches broad, 20 inches deep, and 24 feet between supports? 
Take the safe load to be } of the breaking looa. 



CHAPTER XVIII 

TORSION 

If a round rod of metal is firmly fixed at one end lo resist t\Fisting 
and a twisting moment or torque T = F x a: (Fig. 191) is supplied 
by means of a pulley or 
a handle to the other 
end, the rod twists, 
whether visibly or not. 
At any circular cross- 
section such as AB, 
every little bit of material 
is under shear stress^ 
which tends to drag the 
neighbouring material bn 
the other side of the 
section AB tangentially 
to a circle centred at the axis of the rod. The material to the 
right of AB (Fig, i9r) tends to turn the fixed end in a clock¬ 
wise direction, and that to the left AB exerts equal and oppo¬ 
site forces on the free end giving a contra-clockwise moment, 
the total effect being a resisting torque or moment equal and 
opposite to T. The torsional shear stress exerting this resisting 
torque varies in intensity from a maximum at the circumference to 
zero at the axis of the r^. If/, is the maximum intensity of stress 
in pounds per square inch at the outer skin, and d is the diameter 
of the rod or shaft in inches, the total resisting torque is— 

== T pound-inches, 

T 
and the maximum intensity of shear stress / = — pounds per 

16 

square inch. 
The torque T on a transmitting a given amount of power 
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has been explained in Chap, IX., and the above formula enables 
us to calculate the stress produced. 

Example.—What torque may be transmitted in a shaft 2 inches 
diameter with a maximum sheer stress of 7000 lbs. per square inch ; and 
if the shaft makes 80 revolutions per minute, what horse-power may 
be transmitted ? 

T = ^ = ^X2X2X2X 7000 

= 10995 pound-inches, 

=916 pound-feet. 

, Torque (pound feet) x radians per minute 
Now, horse-power =--i....-^- ’ * n nno 

916 X X 80 

33,000 
13-9 H.P. 

Flanged Shaft Couplings are largely used for connecting 
lengths 01 shafting together, particularly when the diameter of the 

shafting is not less tiian 3 inches. Fig. 192 shows one simple 

form of this coupling. If the line of shafting is to be in perfect 
alignment, great care is necessary in fitting the couplings. In the 
best practice they are either shrunk on or forced on to the shaft by 
hydraulic pressure, about | to inch length of shaft being arranged 

to project from one face to enter the other and keep the two in 
fX)sition when the shafts are the same diameter, keys are also 
fitted as shown in the figure. When the couplings are shrunk on, 

the keys need not fit tightly, but if, as is often the case, the coup¬ 
lings are not shrunk on, these keys must fit well. In cases where 
the shafts to be connected are of different diameters, a projection 
is turned on the face of one coupling which fits into a recess 

turned in the face of the other coupling. The two halves of the 
coupling are held firmly together by bolts which arc. subjected to 
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shear stress, and transmit the torque from one piece of shafting to 
the other. 

If the radius of the bolt circle is large compared with the dia¬ 
meter of the bolts, the shear stress on each may bo taken as 
uniform, say,y^ pounds per square inch, and— 

Total tangential force on each bolt = /, X 

. TT(P 
Torque due to each bolt = R x /.— 

4 
ird^ 

Total torque on coupling T = N x R/.— pound-inches 
4 

where N = number of bolts. 

Example.—In a shaft coupling the radius of ;he bolt circle is 
9 inches, and there are 8 bolts each i| inches diameter. Allowing a 
shear stress for the bolts of 4000 lbs. per square inch, what horse-power 
can be transmitted by the coupling at 120 revolutions per minute t 

We must first find the torque transmitted— 

Area of each bolt square inch 
4 4 o 

Force on each bolt =-* 4000 x i = 4000 lbs. 
Torque due to each bolt = 4000 x 9 = 36,000 pound-inches 

Total torque on coupling — 36,000 x 8 pound-inches 
36,000 '^8 j r . 

= -~ 24,000 pound-feet 

,, ^ , 24,000 27r X 120 
Horse-power transmitted = —^- 

33,ox> 
= 548*5 h.r 

Torsional Stiffness and Anf^Ie of Twist.—Torsional stiff¬ 
ness means resistance to twisting under the action of 1 torque or 
twisting moment. The torsional stiffness of a round rod is pro¬ 
portional to the fourth power of its diameter, and inversely ]jro- 
portional to the length which is subjected to torque. In othei 
words for a given torque the angle of twist produced is propor¬ 
tional to the length and inversely proportional to the fourth power 
of the diameter. This may be proved experimental!'' for wires or 
thin rods by the apparatus shown in Fig. 161. The diameter ot the 
pulley to which the torque was applied was 10 inches. 'Die follow¬ 
ing results were obtained from iron wires of difieient lengths and 
diameters— 
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Load in each 
scale pan includ> 

ing weight of 
scale pan 
(pouiMs)L 

Diameccr of wire 
(incliesy. 

Length of wire 
(mches). 

Angle of twist 
in degrees. 

I 1 36 2 
I * 72 4 
I i 108 6 
s i 10 

5 i 72 20 

s k 108 30 
I 36 32 
5 36 160 

It will be seen from the above results that for the i inch wire, 
increasing the length from 36 to 72 inches, doubled tBe angle of 
twist, also that the angle of twist for the 108 inches length was, 
in each case, three times that for the 36 inches length; hence, the 
angle of twist is pro])ortioniil to the length of the wire. Next 
consider the ^ inch wire. For a load of i lb. and length 36 inches 
the angle of twist is 32^ For the same load and length of the 
^ inch wire the angle of twist is 2”, that is, ^ of the angle in die 
case of the ^ inch wire. 

The ratio of the diameters is | = and (J/ = hence, we see 

that the angle of twist is inversely proportional to the foordi power 
of the diameter. 

For short pieces of stout wire or rods the simple apparatus 
shown in Fig. 193 is very convenient. The rod to be tested is 
fixed in the clip A at one end, and is held rigid at the other end by 
means of a cap and two set screws. The clip A is part of a spindle 
mounted in ball bearings, on the outer end of which is key^ the 
pulley B. An adjustable pulley C is clipped to the fixed rod D. 
On rotating the pulley B, the clip A and, therefore, that end of the 
rod is twisted, the other end being held fast. 

The graduated scale G can be moved along the rods E and F, 
on which it rests by two V notches and a straight edge, in order 
to read the angle between the two pointers P. In conducting 
an experiment the two pointers are clipped on to the rod. 
at a convenient distance apart, usually one of then^ at the fixed 
end of the rod under test and their readings tauten under the 
graduated scale. A pure torque is applied to the free end by the 
arrangement shown ; a weight W- is apfdied at the circumference of 
wheel B, and an equal and opposite force is appli^ at a pmnt on 
the ciroimference diametrically opposite thereby giving a pure 
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ooi^ite or torque witiioat any bending. The angle of twttt due to 
a certain torque can dwrefote be read off for any convenient length 
of rod tested. 

W 
Fig. i93.‘—Tomoo test of m wire or rod 

Examples XVIII. 

I. Find the twisdng moment which will produce a stress of 9000 Ihs. per 
square inch m a steel shaft 3 inches diameter. 

If a shaft 3 inches diameter transmits too H.P. at 150 revoladons per 
minute^ find the greatest intensitj of shear stress. 
\ 3. What H.P. maj be transmitted bj a shaft 4 inches diameter running at 

120 revolutions per minute if the maximum shear stress is 9000 lbs. per square 
inch? 

, 4. Find the diameter of shaft reqwed to transmit- 50 H.P. at 200 revolii- 
dbns per minute allowing a safe working shear stress 9000 lbs. per square 
indL 

V 5. In a shaft coupling the mdius of the bolt dide is 6 indies and there are 
S holts each i inch diameter. Allowing a shear stress for the bolts of 4000 lbs. 
per square tnefa, what H.P. can be transmitted by the coupling at 180 revolutions 
per minute? 
u/ d. Two lengths of shaft each 2 inches diameter are connected hw a danged 
ooopliiig udiose 4 bolts have their centres on a circle concentric widh the shaft 
centre and 8 inches diameter. AUowuig a shear stress of 9000 IhSi per square 
inch in the shaft, what twisting moment can be transmitti^ ? What must be 
the diameter of the bolts if the shear stress in them b limited to 5000 lbs. per 
square inch? 

7. If a steel wire 6 feet Ic^ and }4ncii dianirtrr twbts 18^ when a twbtii^ 
moment of 50 ponnd-indics b amdied, what twbtiqg momciit maul he applira 
to a steel icidjf-incdi diameter and 2 fisd tong in order to twbt k 5;^? 



CHAPTER XIX 

MATERIALS AND THEIR PROPERTIES 

Working Stresses.—By actually pulling pieces of metal until 
they break, we find the ultimate strength or tenacity of the material 
or the number of tons per square inch of section, which a bar of 
the metal would stand when the load is steadily applied. But 
when metal is used in machines and structures the conditions differ 
greatly from a steadily applied pull, A force may come upon a 
part of a machine suddenly, and by so doing produce much greater 
effects. This may be illustrated by hanging, say, a 5 lb, weight on 
a spring balance very steadily: the balance records 5 lbs. pull; 
now let the 5 lbs. weight come on quite suddenly, and the balance 
will record about 10 lbs. pull instantaneously, while if the weight is 
dropped on to the pan or hook of the balance the instantaneous 
force recorded may be much greater. A load more or less suddenly 
applied to a part of a machine or structure, and then removed from 
time to time and applied again is called a live load. A force which 
remains always the same and is never removed is called a dead 
load. It is found from experience in making and using machines, 
and also from special laboratory experiments, that under repeated 
fluctuating or live loads materials break w’ith only a fraction (such as 
I or of the stress which it takes to break them by a steady pull; the 
cause of such failure is sometimes called the fatigue of a material. In 
designing a jiart of a machine or structure we try to make it of such 
a size that the maximum stress shall not exceed a certain amount 
which is called the working stress. This working stress differs for 
the same material according to various conditions, and is always 
far below the ultimate strength of the material because of the effect 
of fatigue, because we do not wish to exceed the elastic limit and 
get permanent strains, because we may be unable to estimate reliably 
all the forces involved, and because we want to have a margin for 
safety. If we allow a working stress of, say, 6 tons per square inch 
on a steel tie-bar, and the ultimate strength is 30 tons per square 
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inch, or 5 times as much as the working stress, we say we are using 
a factor of safety of five. Thus— 

working stress = strejigth 
factor of safety 

or 

factor of safety = 
working stress 

The choice of a suitable factor of safety is a matter of 
experience, and varies greatly with different materials and 
conditions. 

Testing* of Materials.—When quantities of material are 
supplied under contracts it is usual to specify, among other things, 
that samples must, when tested to fracture, have a certain u.Limate 
strength, and a certain degree of ductility as shov. n by the ultimate 
extension when a piece is broken by tension. A complete tension 

Fig xc)4.—Diagram of te-'ting machine (for tension). 

rest of a wire was given in Chap. XVI., and commercial tension 
tests of material for machines and structures differ from this mainly 
in being made upon larger pieces for which hand power provides 
insufficient straining force. Testing machines with hydraulic or 
screw power for straining, and one or more levers for measuring 
the pull are used, and differ considerably in kind ; a diagrammatic 
representation of a simple form is shown in Fig. 194. The pull 
on the test piece T, is applied by a hydraulic cylinder C, and is 
weighed by the long lever L, on which a travelling weight P moves 
over a scale graduated in tons or other units. The test piece T, 
cut from a forging or casting, or it may be from a roHed bar is 
marked out with centre punch dots pitched one inch apart over a 
length usually of 8 inches, and held at its ends in suitable grips or 
sockets according to its form- The straining force is then gradu¬ 
ally applied at its lower end, and the counterpoise P is moved 
along the lever to keep it balanced between the two stops. If 
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measareoients of the elastic stretch are to be made on so short a 
length as 8 inches, some form of special multiplying instrument 
called an extensometer will be required. For foe later measure¬ 
ments of stretch beyond foe elastic limit a pair of dividers may be 
sufiBdent. The greatest load is carefolly noted, and foe extension 
of the marked lei^fo after fracture is not^. The following 
particulars refer to a sample oi mild steel tested in such a machine 
as that shown in Fig. 194. 

Section a inches by ^inch, ultimate load 30 tons. 
Original length between gauge points, 8 inches. 
Final length after fracture, 10*135 intfoes. 

Total stretch = 10*125—8 3*125 inches. 
2*12 C 

Per cent, eloi^^ation = —X 100 s= 26*5 per cent. 
O 

Ultimate strength or tenacity = = 30 tons per square inch. 
2 X 

Compression tests of metals in testing machines are also made, 
but are much less common than tensile tests, because the supporting 
material at the ends aSects the results greatly in short lengths, while 
longer lengths buckle up. Stone, bri<^, cement and concrete are 
frequently tested in compression. 

Production and Properties of Iron and Steel. 
Pig: Iron.—^This is produced by reducing iron ore at a high 

temperature with carbon contained in coal or coke in large furnaces 
call^ Out fumaceSy limestone being used to form a fusible slag 
with the ^rthy matters mixed with the ore. Pig iron which is the 
crudest form used in the production of other irons is classed as 
grey or white according to its appearance when fractured. 

Hie grey variety contains upwards of 2 per cent, of carbon 
separated from the iron as graphite, and is used for making castings. 
T^ white variety contains the carton combined with the iron, and 
is used mainly for producing wrought iron and mild steel. 

Cast Iron.—For mak^ castings iron is melted in furnaces 
called cupolas, various grades of pig iron being used in proportions 
found suitable from experience. Cast iron is brittle, breaking in 
tension with no measurable deration, and has an average tenacity 
of about 8 tons per square inch; it u; liable to be porous and there¬ 
fore not reliable without a high factor of safety. In compression 
it is very strong, breaking at about 40 to 50 tons per square inch. 
If a casting is rapidly cooled by being poured into a water-cooled 
metal mould a chilled casting of hard white iron is produced. 

Mslleable Castings are made by heating iron castings for long 
periods with red hematite (iron ore) in air-tight pots or boxes. The 
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hematite removes some of the carbon from the cast iron, and renders 
the casting stronger and much less brittle, 

W^rought Iron is a purified form of iron made from cast iron 
by the removal of carbon and other impurities which would cause 
brittleness. Pig iron is first melted, and the foreign elements 
oxidised by an air blast or by contact with iron oxides which pass 
into a slag. The iron forms a pasty and not a liquid mass, which 
has to be hammered to weld the particles of metal together and to 
expel the slag. Subsequent rolling, cutting up and rolling together 
again improves the quality and expels more slag, but the slag 
finally left in the metal can always be traced, and causes a fibrous 
appearance of the metal when fractured. 

Wrought iron has a tenacity of from 16 to 24 tons per square 
inch, is ductile, and can be easily welded, a property in which it is 
superior to steel and accounts for its continued use in various links, 
shackles, and connections. 

Steel is a name applied to a variety of combinations of iron 
with carbon and other elements. Mild Steels containing much less 
than \ per cent of carbon have to a large extent replaced vrrought 
iron and differ from it in being produced in a more liquid form. 
In the Siemefis Open Hearth process of making mild steel, pig iron 
is melted, and pure oxidised iron ores are then added to get rid of 
carbon and other elements. A sufficient amount of carbon is sub* 
sequendy introduced by adding a special alloy of manganese and 
iron containing carbon. The resulting product may have as little 
or less carbon than wrought iron, while it has greater tenacity and 
ductility. 

In the Bessemer Process the carbon and iron are burnt out of the 
molten pig iron in a special furnace called a Bessemer Converter, 
by a blast of air blowing through from underneath. The necessary 
amount of carbon is afterwards added by an alloy of iron and man¬ 
ganese as in the Siemen’s process. The Bessemer process is much 
quicker than the open hearth process, but in consequence is not 
under such good control in regard to producing sted of a given 
composition. 

Hard Steels.—Steel for cutlery, springs and tools is mostly 
made by the Cementation process. This consists in strongly heating 
very pure wrought iron bars with charcoal from which the iron 
takes up carbon. The charcoal and iron are packed in troughs in 
the furnace, and covered with the refuse from under grindstones 
consisting of iron rust and sand, a mixture which partially melts and 
excludes the air. The process takes several days, depending upon 
the quality of steel required, and the result is judged from the frac¬ 
ture of trial bars withdrawn as the heating proceed Hut resulting 
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product is called blista- steely and the bars are broken up and ham* 
mered till thoroughly welded, or they may be melted in crucibles 
to form a more uniform cast steel. 

The tenacity and ductility of steels vary greatly with the amount 
of carbon they contain. Mild steels have a tenacity of from 26 to 
36 tons per square inch with 20 to 30 per cent, elongation; hard 
steels run up to over 70 tons per square inch, and break with very 
little elongation. 

Hardening: and Tempering.—Steels containing more than 
about 5 per cent, of carbon are hardened by being heated to a 
cherry red colour, and then cooled rapidly by {dunging into cold 
water or oil. The brittleness produced by this treatment is then 
reduced by te?>2pering^ which consists of reheating the steel to a 
certain temperature depending upon the degree of hardness or 
temper required. 

Special Steels.—There are several other types of steel which 
differ from the above in bemg a combination of iron with elements 
other than carbon, such as tungsten, vanadium, nickel, etc. These 
steels are hardened by processes quite different from that used for 
ordinary steel and are used for special purposes. 

Case Hardening.—Mild steel and wrought iron cannot be 
hardened by the above method In cases where wrought iron or 
mild steel articles require to be hard on the surface only, the pro¬ 
cess called case hardening is employed. The operation is similar 
to the Cementation process, the articles being heated in contact 
with charcoal, leather or other articles containing carbon. The 
articles take up carbon forming a layer of steel at the surface whose 
depth varies with the time the process is allowed to continue (say, 
about ^ inch deep). In cases where the hardness is only required 
to be skin deep the iron article is heated and then rubbed over 
wuth ferrocyanide of potassium, which forms a very thin layer of 
hard steel on the surface. 

Timber,—The cross-section of a tree trunk consists of two 
parts, an inner and darker core of heartwood surrounded by sapwood. 
Trees which are felled in winter give more durable timber than 
those felled in other seasons, because the quantity of sap or juice 
present in the timber when felled is a minimum. The process of 
seasoning in drying the timber by natural or artificial means, 
and so removing the sap and moisture. The sapwood is not durable, 
is weak and unreliable, and should never be used for structural 
purposes ; well-seasoned heartwood should be used for all purposes. 

Timbers may be classified broadly into hard and soft woods. 
Hard woods include oak, ash, beech, elm, mahogany, greenbeart, 
teak, ebony ; soft woods include all pines and firs. The properties 
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of a timber decide whether* it is suitable for the purpose intended ; a 
detailed account of the different properties is beyond the scope of 
this book. 

Very wet (fresh cut) timber has about half its maximum 
strength, and in the process of drying its strength begins to rise 
.when the moisture present gets below 60 per cent, of the weight 
of dry timber, and rises steadily with decrease of moisture to the 
maximum strength when only about 4 per cent, of its own weight 
of moisture remains. For comparison of different woods it is 
therefore necessary to adopt a standard percentage of moisture; 
from 12 to 15 per cent, is usually chosen, this being the amount 
retained after good air drying. The following figures give some 
idea of the tenacity, and Young’s modulus of different woods along 
the grain. 

I Tenacity. j Young's mi‘diilus E*. 
Tons per Svj'i.sr»' inch. ! Tons per square inch. 

Oak (British) . . 4 to 8 650 
Ash. 2 to 7 700 
Elm. 2 to 6 500 
Teak. 2 to 7 iocx> 
Yellow pine . . l to 2 700 
Red pine ... 2 to 6 700 
Spruce .... 2 to 3 700 

Stone.—The strength of stone subjected to crushing stress, as 
it usually is in buildings, varies greatly with the character of the 
stone, granite often having a strength of 1500 tons per square foot, 
while sandstone and the weaker varieties of limestone may only 
have about a quarter or a fifth of this crushing strength. Except 
in very tall structures a building stone is generally chosen rather 
from considerations of durability and appearance than for its 
strength. 

Brick.—The strength of bricks varies greatly with the 
composition of the clay from which they are made, the method of 
manufacture and other causes. The average strength of a common 
brick is about 150 tons per square foot, and of blue Staffordshire 
bricks about 400 tons per square fool. 

Lime.—Lime is usually made by roasting, or calcining, lime¬ 
stone or chalk in a lime-kiln. The limestone consists of calcium 
carbonate, with some alumina (clay) and silica, and the process of 
calcining drives off the moisture and carbonic acid, leaving quicklime^ 
The quicklime, when sprinkled with water, breaks up into a powder 
called slaked lime, and heat is given out. 
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Mortar.—^AVhen lime is mixed to a paste with water and then 
left in the air it soon hardens or stts. The paste omisists chiefly 
of calcium hydrate which, ifriien left exposed to die air, absorbs the 
carbonic acid present, and forms calcium carbonate again. The 
lime used for mortar should be that formed from limestcme contain- 
ii^ some alumina which oiables it to set without contact widi air. 
limes of this kind are called hydraulic limes, and their action is 
similar to that of cement. mortar composed only of sudi litm> 
is called a quick-setting mortar. In practice die lime is usually 
mixed with a certain proportion of sand and water, die result being 
a mortar which sets more slowly; the greater the proportion of 
sand the slower the mortar is in settit^. Hence, by varying the 
proportion Of sand, a quick or a slowly setting mortar is produced, 
iiut increasing the amount of sand used weadcens the mortar 
considerably. 

Cements.—Roman cement is made by calcining nodules found 
in clay. It is known as a natural cement, and when mixed with 
water sets qiuckly, but is not very strong; in engineering work it 
has been largely superseded by Portland cement. 

Portland cement is largely used by the engineer and builder. It 
is manufactured by mixing about 3 parts of chalk and r of clay, 
the product being ^terwards roasted or calcined and then ground 
to a fine powder. The fineness of grinding b a very important 
item in the manufacture of this cament V^en mixed with water 
it combines chemically with a certam quantity and sets in a solid 
mjss impervious to water. Sand b often paixed with the cement; 
and, as in tiie case of mortar, the strength diminishes as the 
{Koportion of sand b increased. The cement which b intimately 
mixed with the sand when both dry and wet forms a binding 
material which, when it sets, unites the grains of -sand tt^etfaer; 
hence the finer the cement b ground the stronger the resulting 
product, because tiie fine particles of cement can fill up the very 
small spaces between the grains of sand. The strength of Portland 
cement gradually increases for several months a^ settmg has 
tidten pbce. 

Concrete is largely used for foimdations, walls, etc. It b made 
by. mixing together in suitable proportions, sand, broken bricks, 
gravel, cement and water. The cement binds die other ingredients 
togethtt, fonning a solid block resembling stone. 



CHAPTER XX 

MOTION 

Thb speed of a bodj is the rate at which it moves thToi]^h space. 
If it always moves over equal distances in the same length of time 
it is said to move at a nnifonn or constant speed. For example, if 
a train travels 30 miles in an hour its average speed is 30 miles per 
hour. 

or 
30 X SaSo 

60 
= 2640 feet per minute 

or ^51^^ = 44 feet per second. 

But unless it travels just 44 feet in eveiy second, or takes 
exactly i second for each 44 feet its speed is not constant Out 
variable. Thus, it might move 20 miles in the first 35 minutes and 
10 miles in the remaining 25 minutes, in which case its speed would 
not be constant, but still its average speed over the 30 miles would 
be 44 feet per second. The average speed of a body is simply the 
distance moved divided by the time taken, and is expressed in mUes 
per hour, feet per minute, feet per second, or any unit of distance 
per unit of time. 

If at any instant the speed of a train moving at a vaiyii^ rate 
is said to be 30 miles an hour or 44 feet per second, this means 
that if its spe^ ceased to change at that instant it would move 44 
feet in the pext second or 30 miles in the next hour, and so on. 
Actually it might move, say, 44‘6 feet in the next second or 22*15 
feet in the next half second—^an average speed of 22*15 ^ i or 
44*3 feet per second. But if the distance moved in a small fraction 
of a second could be accurately measured the speed would be at 
the average rate of 44 feet per second. 

Velocity.-^When the term velocity is used it goierally s^ifies 
speed in a ^rticular specihed direction; speed may be used as 
meaning /^e ■ rate of motion independent of direction. When 
motion is along a single straight line, speed and velocity will be 
the same. 

If a niotoy car moves at a uniform speed of 20 miles per hour. 



250 Elementary Applied Mechanics [CHAP. XX 

how many feet will it travel in 7 seconds, and how long will it take 
to travel 32 miles ? 

Distance travelled per hour = 20 x 5280 feet 

Distance travelled per second = ==^ or 29^ feet 

Distance traveled in 7 seconds = 295^ 7 =205- feet 
Time to travel 32 miles = 1*6 hour or i hour 36 minutes. 

In general terms we may say if ^ = distance travelled in feet at 
constant velocity or speed v feet per second in a time / seconds— 

s s 
7; = ; s == vt and / = - 

t^ V 

Speed-Time Diagrram.—Since for constant speed the dis¬ 
tance s moved is equal to the product of speed and time v y, 

may be represented by a 
rectangle, the sides of which 
are v and /. Thus, if we 
represent the constant 
speed in Fig. 195 by OM 
vertically and the time by 
ON horizontally the rect¬ 
angle OMQN represents 
the product of speed and 
time or the distance moved 
in that time. If the speed 
is plotted on a scale of x 
feet per second to i inch, 
and the time on a scale 
of^ second to i inch, then 
I square inch represents 

X y y leet. 
In the case of a variable speed the area under a curve showing 

the velocity on a time base still represents the distance travelled. 
Thus, if Fig. 196 represents the varying speed of a moving body the 
area under the curve and above the base represents the distance 
moved in starting from rest (time O) and coming to rest again at 
time F. 

A very simple case of a varying speed is that in which the speed 
varies uniformly, that is, increases or decreases by a constant 
amount in each second. Fig. 197 represents the varying speed of 
a body moving in this manner starting at time O with a velocity or 
speed u feet per second represented by OP, the speed increas- 
,ing, uniformly until after / seconds the speed is v feet per second 

Fig 195.—Graphical representation of speed, time, 
and distance. 
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lepresented by NM. The area under the line PM represents the 
distance travelled, namely— 

Of^ ON 

• or 
U + V 

s = X / 

, u -V 
Note that —^— is the mean or average velocity. 

Example i.—A body has its speed increased uniformly from 5 to 
12 feet per second in one minute. How far will it travel in this time ? 

Average speed = ^ feet per second 

<5 4-12 
distance moved s — --x 60 = 510 feet. 

2 

Example 2.—A body starting from rest has its speed increased 
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uniformly antil at the end of 2 mmiites it is mcfwmg^ at the rate of 
30 miles an hour. Find the distance travelled in this time. 

30 miles an hour = ^ 44 feet per second 

Average speed = = 22 feet per second. 

Note.—^When a body starts from rest (velocity = o) and its 
speed increases uniformly, the average speed is half the maximnnu 

Distance travelled = 22 x 2 X 60 = 2640 feet or i mile. 

Example 3.—^The table shosrs the distance a body is from its 
starting position at certain times. Cadculate the mean v^ocity in each 
10 seconds, and from a speed-time curve find the speed after SO 
seconds. 

Time / (seconds) . 0 10 20 B 40 so 60 

Distsace x (feet) 0 *35 4«3 917 1 *39* 17*9 1980 

Mean vekxity in ist 10 seconds = ^ 
= 13*5 feet second (take this as 

the velocity after 5 seconds). 

Mean velocity in and 10 seconds = —- ^ • 

32*8 feet per second at say 15 
seconds 

Mean velocity in 3rd 10 seconds = 

45*4 feet per second at say 25 
seconds 

Mean velocity in 4jdi 10 secoiids = 9^7 
10 

= 47*5 feet per second at say 35 
seconds 

Mean vdocity in 5th 10 seconds = — — 

= 33*7 feet per second at say 45 
seconds 

Mean velocity in 6th 10 seconds = "" ^7^ 

= 25*1 feet per second at say 5$ 
seconds. 

Ploltiiig these mean velocities and times we obtain the curve 
shown in Fig. 198, from whidi we see that at 50 seconds the 
velodly is ab!^ ag feet per second. * 
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Aoirular Velocity.—If a body moves in a circle its angular 
vdodty arfakdi may be constant or variable is the rate of.its angular 

movement about the centre of the circle. Angjular velocity is 
usually measured in radians per second, or in revolutions per 
minute or per second. If a point is moving in^a circle of radius, 
say 5 feet, at a uniform speed of 15 feet per second, it will travel 
over an arc of the circle 5 feet long io = I second, and this arc 
(see Introduction, p. 4) is the arc defining r radian angle at the 
centre, so that the point moves through i radian angle in y second 
and in i second it moves through » -r* i — 3 radians, or its angular 
velocity is 3 radians per second. 

If the point moves in a circle of radius r feet, with a uniform 
speed of v feet per second along the drcumference, and its angular 
velocity is m radians per second, in one second the arc moved over 
is V feet, and the correspondit^ angle (see Introduction, p. 4) 

at the centre is - radians <>r— 

p or the speed v — mo 
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And— 
angle traversed , ^ . 

to = ;- ; angle traversed •= w x time taken, and 
time taken ' ® ' 

angle traversed 
time = —-- 

o> 

relations which are exactly similar to those given above for linear 
speed. 

If a shaft makes N revolutions per minute, what is its angular 
velocity ? 

The number of radians moved by any point distant r from the 
centre of the shaft is— 

271/* , . , 1 ^ 
= 27r per revolution of the shaft 

or 27rN per minute 
27rN tt.N 
-r:— = radians per second. 
6o 30 ^ 

Example.—A pulley 3 feet diameter is keyed to a shaft which makes 
240 revolutions per minute. Find the linear and angular speed of the 
pulley rim. 

240 
240 revolutions pei minute “ or 4 revolutions per second 

Circumference of pulley — x 3 ~ 9*42 feet. 
Linear speed of rim — 9*42 x 4 = 37*68 feet per second 

A ltd- - 
Radians turned through ) ^ 

per revolution j - 27r 
Angular speed of pulley = 27r x 4 = 87r = 25* 13 radians per second 

Acceleration.—When the speed of a body increases it is said 
to have an acceleration, and w'hcn the speed decreases it is said 
to have a retardation 01 negative acceleration. An increase or 
decrease of speed may take place at a uniform rate, in which case 
the acceleration is said to be constant or uniform. For example, 
if a body is moving at a speed of 8 feet per second, and after 2 
seconds it is moving at 14 feet per second in the same direction, 
the total increase of speed during the two seconds is 14 — 8 = 6 feet 
per second. This is at the average rate of 3 feet per second 
increase of speed per second, or 3 feet per second per second. If 
the acceleration is nniforvt its velocity will be— 

after i second 8 + 3 = 11 feet per second 
after 2 seconds 11+3 or 8 +(3x2) =14 feet per second 
after 3 seconds 14 + 3 or8 + (3X3) = i7 feet per second 
after 4 seconds 17 + 3 or 8 + (3 X 4) = 2c feet per second 
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and so on. And if the acceleration is f feet per second per second 
in the direction of motion, the increase of speed in t seconds will 
be/ X t feet per second, so that a velocity « feet per second after / 
second becomes— 

. V ~ u -^ft feet per second 

We have seen that when speed varies uniformly, the average speed 
during any period is half the sum of the initial and final velocity, 
or— 

, . « + W + (k + ft) 
average velocity = - — = u A-\ft 

And distance travelled = 

s — average velocity x time = {u + \ff) x / or nt + \ jf 

Thus, in the above numerical case with initial vekcity 8 feet per 
Second, during 4 seconds the average speed is— 

8-1-20 
-=14 feet per second 

hence the distance travelled is— 

14 X 4 = 56 feet. 

When a body starts from rest and attains a speed v feet per second 

under a constant rate of increase, the average speed is - or ^ //, 

and the distance travelled is— 

i vt or \ft- 

The commonest case is tliat of a freely falling body which increases 
its downward speed at a rate of about 32'2 feet per second every 
second \ hence, after falling from rest for say 7 seconds, it attains 
a speed of— 

7 X 32*2 = 225*4 feet per second. 

Its average speed during the 7 seconds is— 

225*4 
—2— ~ 112*7 second. 

And hence it falls— 
112*7 X 7 = 788*9 feet. 

In any time / seconds it gets a final speed of 32*2 /, and hence an 
32*2 

average speed of = 16*1 / feet per second and falls 

16*1 / X / or i6‘i /‘^ feet. 

The acceleration of a body falling freely under the action of 
gravitation is generally written g which is about 32*2 feet p^r 
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second per second, so that the final velocitj after starting from 
rest i&^ feet per second, and the d^th of fall is— 

feet 
It is nseful to know the relation between the distance travelled s 
and the maximum velocity o'when a body starts from rest and 
has a uniform acceleration ^ in the direction of motion. We have 
seen that— 

V —ft and time / = 

heiK% V = fx 
s_^ 

V 
or »• = 2/s. 

ND 

a 

C !■ ^ I* 
II 

Va 

0 

£uflkr 
Fic* i99.'~'JLjcpef itticnt of imilbiiB 

siiTcd, the results being taibulaUed on page 

ExperUneD^— Expm- 
ments on bodies moving 
with imifonn acederation 
may be eadly carried out 
on the simple apparatus 
shown diagrammatically in 
Fig. 199 in which C is a 
heavy smoked plate which 
slides freely down the two 
rods D. A tuning fork A, 
which vibrates at a con¬ 
stant known speed, has a 
tracing point attached to 
one leg. The plate is 
allowed to fall freely, the 
tracing point on the fork 
tracing out a wavy line 
as shown on the right of 
^ig« 199* If ^ noticed 
that as the speed of the 
falUng plate increases, the 
les^h of the waves de- 
scribed on the plate in¬ 
creases also. Inapaiticular 
experiment the tuning fork 
drew 5 waves in each 
second, the length of suc¬ 
cessive 5 waves was mea- 

257- 

It will be seen from the table or p. 257 that the increase in the 
Imgth of successive 5 waves, and therefore the increase in the 
distance moved during the successive intervals of time taken to 
draw 5 waves (namely ^ second), is practically constant and equal 
to 0*02 foot. 
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Length of 5 waves, 
inches. 

Length of s waves, 
feet. 

Increase in length 
feet. 

Average velocity 
feet per second. 

First S waves 0-75 0*0625 _ 2*50 
Second 5 waves I’OO 0-0833 0*0208 3*332 
Third 5 waves . 1*23 0*1025 0*0192 4'IO 
Fourth 5 waves. 1*46 0*1216 0*0191 4-864 
Fifth 5 waves . I7I 0*1425 

0*1625 
0*0209 570 

^ixth S waves . 1*95 0*0200 6-50 
Seventh 5 waves 2*19 0*1825 0*020 730 
Eighth 5 waves. 2*44 0*2033 0*0208 8-133 
Ninth 5 waves . 2*67 0*2225 0*0192 8-9 
Tenth 5 waves . 2*91 0*2425 0*0200 97 

The mean velocity for each 5 waves (column 4) is increasing at 
the practically uniform rate of o-8 foot per second, i.e. o‘02 -f- ^; 
hence we see that the rate of increase of velocity is constant, or, in 
other words, the acceleration is constant. 

To find this aaeleration.—The time taken for each 5 waves is 
^ second, hence— 
increase in velocity 
= 0*8 foot per second in ^ second 

= ?|=3.fee.p„«co„di„. 
40 

second 
Or, the acceleration is 32 feet 

per second. 
Similar experiments on gravi¬ 

tational acceleration are made by 
partially counterbalancing the fall¬ 
ing load, to reduce the accelera¬ 
tion sufficiently so that the time 
of falling is longer, and can be 
measured by other means. Such 
an apparatus is called an Atwood’s 
machine. 

Another simple apparatus for 
finding the velocity of a falling 
body, and the acceleration due to 
gravity is shown diagrammatically 
in Fig. 300. A wooden lath 
swings like a pendulum on a knife 
edge at A. The time of swing may 
be varied by altering the position of the sliding weight B. An 
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angular weight W is suspended by the thread C, passing over 
pulleys D and E, the other end of the thread being tied to 
the lath. The pulley D has a screw adjustment and its position 
is adjusted so that when the lath hangs vertically, the comer 

the weight W just touches it To use the apparatus the 
weight W has its comer chalked, and a mark is made on the lath 
with it A lighted match is then applied to the thread at F, the 
weight falls and is strock by the swinging lath exactly one quarter 
of its periodic time from starting, and makes a second mark upon 
it The distance between the two chalk marks is the vertical 
distance the weight has fallen, and one quarter the complete swing 
period is the time taken for the weight to fall from which g is 
calculated. The period (T) is found by setting the lath swinging 
and counting the number (N) of complete (to and fro) oscillations 
it makes in, say, 2 minutes, then— 

T = seconds. 
N 

Let s be the distance in feet between the two chalk marks on 
the lath, then— 

s = hsf /■ = - 
4 

hence r = ^gll or g = ^ 

the velocity v of the weight after falling s feet, ue. when the lath 
strikes it, is found as follows— 

s = average velocity x ^ 
_o V T _ vT 

2 ^ 4 ~ 8 

hence v = ^ feet per second. 

The experiment should be repeated by clamping the sliding weight 
B in different positions on the lath, and the average value of g found. 

Example 1.—An electric train gets up a speed of 30 miles an hour 
in 20 seconds: find the average acceleration in feet per second per 
second. How far does it go before it gets up this speed if the accelera¬ 
tion is constant ? What retardation is necessary to bring it to rest in 
300 feet ? 

30 miles an hour = - 44 leet per second. 

In _2o seconds^ the gain of velocity is 44 feet per second; in i second 
the gain of velocity is ^ = a*2 feet per second ; hence, in each second 
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the velocity increases 2*2 feet per second, or the acceleration is 2*2 feet 
per second per second. 

Average speed = ^ = 22 feet per second 

hence, distance moved = average speed x time 
22 X 20 - 440 feet 

* When being brought to rest the average speed = 22 feet per second 
. distance moved 

as before, and time taken to come to rest =: --r 
’ average speed 

=: ^ ss 13*65 seconds. 
That is, in 13*63 seconds a velocity of 44 feet per second is destroyedt 

hence, in x second a velocity of — 3*22 feet per second is destroyed, 

or the retardation is 3*22 feet per second per second. 
Example 2.—With what velocity must a jet of water be projected 

vertically upwards in order to reach a height of 80 feet ? 
Let V be the velocity— 

Then v* = 2gs 
= 2 X 32*2 X 80 

.V V = >/64*4 X 80 = 72 feet per second. 

Example 3.—rifle bullet is fired vertically upwards with a velocity 
of 2000 feet per second. Neglecting air resistance, find tne height to 
which it will rise, and the time taken to reach the ground again. 

2? 
2000 X 2000 

= 62,110 feet. 
2 X 32 2 

The time taken for the bullet to rise will be equal to *^be time taken in 
falling s — \gt\ 

. /» _ - 2 X 62,110 
~ g ~_32-2 

i = /y/“i^i“ ” V3857 = 62*1 seconds 

Hence, total time from firing to reaching the groiind again— 
= 62*1 X 2 = I24'2 seconds. 

Chang^es of Velocity.—Changes of velocity may be changes 
in speed or changes in direction or both. So far we have only 
considered changes of speed or accelerations in the direction of 
motion. But a body moving in a straight line may have an accele¬ 
ration in some other direction, with a result that the body changes 
its direction of motion, generally by following a curved path, its 
^peed either remaining the same or changing according to the 
acceleration. Changes in direction of velocity are most con¬ 
veniently dealt with by vectors. Velocities, like forces, have the 
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two oharacteristics of magnitude and direction, and as in Chap. I. 
we represented forces by straight lines of deiinite length and direc* 
tion, so can we represent velocities. « 

Suppose a point in a body is at P (Fig. 201) moving with the 
velocity Vi feet per second, and after a time t seconds it is at Q, 

and moving with velocity 
Vg feet per second. If 
the vectors ac and be re¬ 
present completely the 
velocities Vg and re¬ 
spectively, then since in 
vectors— 

ab + be = ac 

ab represents the velocity 
V feet per second added 
to Vi (or be) to give the 

resultant velocity V* (or ae), that is, ab represents in magnitude 
and direction the change V in velocity during motion from P 
to Q. Note that the change is not in the direction of motion, 
and may be much larger numerically .tlian the actual velocity 
Vj at P or Vg at Q, and that there need not be any change in 
speed for Vj and may be equal The average acceleration 

during the interval occupied in moving from P to Q is ^ feet per 

second per second in the direction a to b. 

Example i.—A body is moving due north at 80 feet per second; 
after 0*3 second it is moving north-east at 60 feet per second : find the 
average acceleration during this time. 

The vectors ac and be (Fig. 202) represent completely the 
velocities 80 and 60 feet per second respectively to a scale of 20 
feet per second to i inch, then ba represents, the velocity added to 
cu in the 0*3 second. The length of ba is 2’84 inches which repre¬ 
sents 2*84 X 20 = 56'8 feet per second. Hence the average 

S6'8 
acceleration is = i89‘3 feet per second per second in the 

direction b to a. 

Example a.—k. body moves from a position A to a position B in 
^ second. These positions measured in feet from two perpendicular 
axes were found to be as follows— 

X y 
Position A . . . . 0*20$ 0*090 
Position B . . . . 0*420 0*185 
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Find the x and the y components of the mean velocity of the body, 
and also the resultant mean velocity. 

Fig. 203 shows the two positions of the body to scale. In moving 
from A to B the x component of the displacement is— 

o'42o - 0-205 =0-215 foot, 

I 

and since this takes place in second, the x component of the velocity 
is— 

0*215 ■+• = 2*15 feet per second from left to right on Fig. 203. 
The^ component of the displacement is— 

0*185 - 0*090 = 0*095 foot, 
and the component of the velocity is— 

0 095 4- = ^*95 P®** second upwards. 
The resultant mean velocity will be the resultant of the x and y 

component velocities at right angles, that is— 

4- 0*95^ = V4‘6225 -f 0*9025 = V5*525 = 2*35 feet per second. 
The resultant or actual mean velocity of the body in moving fiom A 

to B might also be found without finding the x and y component yeloci- 
ties. The body moves a distance AB (Fig. 203) which scales 0-235 fopt 
in ^ second, hence the mean velocity is— 

0*235 = 2*35 feet per second. 
Example 3.—A body is moving in such a manner that at a par¬ 

ticular instant its component velocity due east is 10 feet per second, 
and its component velocity due north is 12 feet per second. In J 
second afterwards its component velocities are 15 feet per second due 
east, and 40 feet per second due north. Find the mean component 
accelerations during this time, and also the resultant aceeleratiop. 

Increase in velocity in direction due cast = 15 — lo = 5 feet per 
second Hence, component acceleration due east = 5 4-J ,= 25 feet 
per secona per second. Increase in velocity in direction due north 

40 - 12 = 28 ftet pet second. Hence, component acceleration due 
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north 28 -h } 140 feet per second per second. Now, these two 
component accelerations are at right angles, hence— 

Resultant acceleration 

+ ^5 ~ V 3022$ = 142*2 feet per second per second. 

Check,—^The resultant acceleration may also be found graphically as 
follows : The actual initial velocity of the body is reptesented in magni¬ 
tude and direction by the vector ac (Fig. 204'! which scales 15*6 feet per 

second. The actual final velocity is represented completely by dj 
(Fig. 204) which scales 5427 feet per second. 

If now we draw the vectors gh and kh to represent completely the 
velocities of 15*6 feet per second^ or or, and 427 feet per second, or df^ 
we have in vectors— 

hg ^gh = kk 
kg represents the velocity in feet per second added to gh or ac to give 
tne resultant velocity AA or 427 feet per second ; kg sc^es 28’S feet per 
second, hence, since this velocity is added in } second, the average 
acceleration during this period is 28*5 -i- } = 142-5 feet per second pet 
second, which agrees very closely with the result found above. 

Relative Velocity.—^Thc velocity of a point A relative to a 
point B is the rate of change of position (or displacement per unit 
of time) of A with respect to B. 
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Let be die rdocity of A and u that of E 
If A remained stationary, its velocity relative to B would be 

- since, if an observer were station^ on B and therefore 
moving with B, A would appear to be moving in the opposite 
direction with velocity hence the minus sigm 

But as A has itself a velocity its total velocity relative to 
B is T' + (— </) or , the subtraction to be performed by vectors. 

Example.—To a person seated in a railway train the lelegrapn 
poles on the side of the track appear to be moving backwards with toe 
same velocity as the train is going forwards. 

If the direction of motion of A and B be in the same straight 
line then the subtraction can more readily be made arithmetically. 

Example 1.—Suppose A is moving in the same clire«.tion as B and 
in the same straight line, the velocity of A being 10 feet per second and 
that of B 30 feet per second, then the velocity of A relative to B will be 
10 — 30 = — 20 feet per second, that is, A appears to an observer on 
B to be moving away from him at 20 feet per second. 

If now the bodies A and B are moving in opposite directions, 
towards or away from each other, the velocity of A relative to B will be 
10 4- 30 = 40 feet per second. 

Example a.—Two railway lines intersect : on the first a train A is 
approaching the crossing and moving due east; on the second anothei 
train B is approaching the crossing coming from a direction 15® E. of N. 
Find the velocity of A relative to B. 

First set out the two line*? at the proper angles as in the left side of 
Fig. 205. Draw the vector ab par^lel to the velocity of A and cb 

Fig. 9oy 

parallel to the velocity of B to completely represent the velocity of A, 
and the velocity of B reversed in direction respectively, then the length 
of ac represerits the relative velocity of the two trains: it will be found 
to scale 72 miles an hour, and the velocity of A relative to B will be 72 
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mil€s an hour in the direction a to c, which is found to be in a direc¬ 
tion going 57j;° E. of N. The velocity of B relative to A will be 72 
miles an hour in the direction from c to a. 

Note.—In Chap. I. we added vectors. To find the relative 
velocity between‘two moving bodies we have to subtract vectors. 
To avoid confusion in subtracting vectors, reverse the direction ‘of 
the one to be subtracted and then ^d the two together. 

Examples XX. 

1. If a train moves at a uniform speed of 50 miles an hour, how many yards 
will it travel in half a minute, and how long will it take to travel 19 miles ? 

2. What is the average speed of a train which travels from Nottingham to 
King’s Cross a distance of 123 miles in ql\ hours ? 

3. A body starting from rest has its speed increased uniformly until at the 
end of i minute it is moving at the rate of 15 miles an hour : find the distance 
travelled in this time. 

4. A pulley is rotating at a speed of 250 revolutions per minute. What is 
its angular velocity in radians per second ? 

5. A locomotive is travelling at a speed of 60 miles an hour. The driving 
wheels are 7 feet diameter, and the stroke of the engine is 18 inches. Assuming 
that no slipping of the wheels on the rails takes place, find the angular velocity 
of the driving wheels, and the mean speed of the engine piston. 

6. A gas engine of 19 inches piston stroke runs at 225 revolutions per 
minute. What is the angular velocity of the flywheel in radians per second, 
and what is the mean piston speed of the engines ? 

7. If the diameter of the flywheel in Question 6 is 6 feet 6 inches, find the 
linear speed of the wheel rim. 

8. The velocity of a body changes from 10 feet per second to 50 feet per 
second in the same direction in half a minute. Find the acceleration. 

9. Express an acceleration of 30 miles per hour per minute in feet per 
second per .second. 

JO. A train starts from rest with a uniform acceleration, and in 1J minutes 
attains a speed of 60 miles an hour. Find (a) the acceleration, (It) the distance 
travelled in the first minute, (c) the distance travelled in the i J minutes, (d) the 
time taken to reach a speed of 50 miles an hour. 

11. A body is projected vertically upwards with a velocity of 250 feet per 
second: to what height will it travel ? 

12. A stone is dropped from the top of a lower 200 feet high : how long will 
it take to reach the ground ? 

13. A body is moving due west at 10 feet per second and 6 seconds later is 
moving due east at 8 feet per second. What has been its acceleration ? 

14. A wheel making 180 revolutions per minute has it^ speed increased to 
210 revolutions per minute in 10 seconds. Find, (a) the acceleration in 
revolutions per minute per second, (d) in radians per second per second. 

15* A body is moving due east at 40 feet per second ; after 0*6 second it 
is mdving north-west at 80 feet per second. Find the average acceleration during 
this time. 

16. The centre of gravity G of the crank balance weight of a gas engine 
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moves from position Gj to G, in second. These positions measured in feet 
from two perpendicular axes were tound to be as follows :— 

r 
1 

1— 

y 

G, 0-185 0-208 
0-516 0*405 

Find the x and thejy components of the mean velocity of the centre of gravity 
during the movement and also the resultant mean velocity. 

17. A body A is moving north at 15 feet per second, and a body B crosses 
its path south of A moving east at 20 feet per second. What is the velocity 
of A relative to B ? 

18. Two ships leave a port at the same time, the first steams north west at 
15 knots, and the second 30° south of west at 17 knots. VVhat is the speed of 
the second relative to the first ? 



CHAPTER XXI 

MOMENTUM, INERTIA, AND FORCE 

Mass and Inertia.—The mass of a body is the quantity 
matter in it. We might measure the mass of a body by its weight 
in pounds, for its weight b simply the gravitational force with which 
the earth attracts it; masses are acttially measured and compared 
by weighing. At the beginning of Chap. 1. we took unit force as 
the weight of i lb. of matter in London, and in engineers’ units we 
take the unit mass as— 

32’a lbs. or ^ lbs. 

33*2 being the uniform acceleration of a body falling freely in 
London. The weight of this quantity of matter varies a trifle at 
other parts of the earth’s surface, and likewise the acceleration due 
to gravity. 

Inertia is a property which all bodies possess, of inertness 
or sluggishness in getting into motion from rest when acted upon 
by a force, and of ceasing or decreasing motion when opposed by 

I a force. The measure of the inertia of a body is its Thus, 
if two bodies at rest weighing xo and 5 lbs. are each acted upon 
by a force of, say, 3 lbs., the heavier body will take twice as long as 
the lighter one to get up a speed of, say, 6 feet per second in the 
direction of the applied force; its acceleration will be only half as 
great, or, its inertia is twice as great. 

Momentum.—Momentum is sometimes called the quantity of 
motion of a body. It is proportional to the mass of the body and 
to its velocity. The engineers' unit of momentum is that unit 
mass (33*2 lbs.) moving at unit velocity (1 foot per second) so that 
for any moving body— ' 

Momentum = P?”? X velocity in feet pet second: 

Or, for a body of weight W lbs. moving at v feet per second— 
^ W W» 

momentum = — x or — 
3*'* S 
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As velocity has definite direction as well as magnitude so 
momentum, and it can be represented by a vector of length'pro* 
portional to the magnitude of the momentum in the direction of 
motion. 

.Bxanmie i.—A truck weighing 4 cwts. is<moving at 20 miles per 
hour. What is its momentum in engineers' units ? 

“ ~3Ta~ • = 60 X 60 = V f®«t per second 

Momentum = ^ 408 units. 
32*2 X 3 

Example a.—^Watar issues from a round nozxle 'i inch diameter at 
a speed of 30 feet per second. What wa?ht of water leaves per second 
ana what is its momentum ? Water wet^s 62^4 lbs. per cubic foot. 

Area of nozzle orifice = J square inch 

volume of water issuing per second = - x 30 x 12 cubic inches 
4 
» X 30 X 12 ,. . , 

"•Tx'i728 

= cubic feet 
1728 

weight of water issuing per second = x 62*4 = 10*2 lbs. 

10*2 
momentum of this water = —— x 30 9 5 units. 32'2 

Changfe of Momentum.—If a body changes its velocity due 
to the action of a force upon it, it changes its momentum by 4 
corresponding amount Thus, if a body i« moving at 20 feet per 

second, and it weighs 10 lbs, its momentum is-X 20 units, u & 322 
its speed increases to, say, 35 feet per second in the same direc¬ 

tion its momentum is then —X 35 units, and the increase in 
32'2 

momentum is—• 

— XJ5-5^X..or^-^x(35-ao) = ^X.5»ni» 

or, its increase of momentum is— 
mass X increase of velocity. 

If this increase cf velocity takes place in 3 seconds the average 
rate of increase of momentum is— 

- X 15 -i- 3 = or 1 '55 units per second 
32*2 ‘ 3**2 
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Momentum having direction as well as magnitude, changes in 
momentum when the motion is not all in the same straight line 
must be found by vectors as were changes of velocity. 

Example*—A body weighing 96*6 lbs. is moving at 20 feet per 
second due east. After 2 seconds it is moving south-east at 24 feet per 
second and after 2 more seconds it is moving due south at 21 feet 
per second. Find the changes of momentum during each 2 seconds 
and the total change during the 4 seconds. Also find the average 
change of momentum during each interval. 

First find the change of velocity during each interval by the method 
of Chap. XX. Thus, ab (Fig. 206) represents 20 feet per second-due 

east, cb 24 feet per second south-east, then ca which scales I7’8 feet per 
second represents completely the change of velocity during the nrst 
two seconds ; hence, for the first 2 seconds 

change of momentum = x 17-8 = 53*4 units, and 
32*2 

average change per second = = 267 units. 

Similarly, by drawingyj/ to represent 24 feet per second south-east, and 
ed 21 feet per second due south we have during the second two seconds 
the change of velocity ^ which scales 18 feet per second ; hence, for 
the second two seconds 

change of momentum = x i8 = 54 units, and 
32 2 

average change per second = ^ = 27 units. 

To find the total change of velocity during the 4 seconds we must now 
add the two changes vectorally thus, gh represents the change of 
18 feet per second (parallel to ef)^ and hk the change of 17*8 feet per 
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second (parallel to cd)^ hence gk which scales 29 feet per second repre* 
sents completely th^ total change in velocity, and 

total change of momentum _ 96*6 
32-2 X 29 = 87 units. 

The total change of momentum can also be found independently of 
intermediate conditions as follows : draw Im (Fig. 206) to represent the 
initial velocity of 20 feet per second due east, and nm to represent the 
final velocity of 21 feet per second due south ; then the difference nl 
which scales 29 feet per second represents the total change of velocity 
and 

total change of momentum = x 29 = 87 units as before. 
® 32 2 ^ 

The Law of Force and Motion.—The rate of change of 
momentum of a body in motion is proportional to the force applied, 
and is in the direction in which the force acts. This is known as 
Newton’s second law of motion. The engineers' unit of mass is 
so chosen that the rate of change of momentum (per second) is 
numerically equal to the applied force. If we do not know the 
instantaneous rate of change of momentum, but only the average 
rate over a given time, we can only calculate the average force 
during that time; we call such an average force the time average of 
force. 

Average force = average rate of change of momentum 
total change of momentum 

“ time taken to change 

Hence, also— 

Average force X time of action = total change of momentum. 

Example i.—A truck weighing 4 cwts. is moving at 6 miles per 
hour, and after lo seconds is moving at 21 miles per hour. What is 
the average force in the direction of motion, acting upon it during that 
time ? 

change of velocity = 21 - 6 = 15 miles per hour = 22 feet per 
second, 

a X 112 
change of momentum = -—;— X 22 = 306 units, 

32 2 

average force = 
32*2 

average change of momentuih per second 

= -- -20*6 lbs. 

Example a.—A jet of water issuing horizontally from a nozzle ij 
inches diameter strikes a vertical wall and is thereby diverted at right 
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angles, none splashing back. If the speed of the jet is 25 feet per 
second, find the force exerted on the wall by the Jet 

irolume of water striking widl per second = ^ x x 25 = 0-306 
4 *44 

cubic foot, 
weight of water striking wall per second = 0*306 x 62*4 lbs. 

force on wall =: change of momentum per 
second 

= ?32li^x25 = i4-8ll». 
32-2 ^ 

Example 3.—h car starting from rest is drawn by a varying force 
F pounds, which, after / seconds, is as shown in the following table— 

t uLSecanS& 
Fig. 207. 

If the frictional resistance is constant and equal to 500 lbs., what is 
the time average of the force acting during the 20 seconds ? What is 
the total gain of momentum ? If the car weighs 12 tons find its velocity 
at the end of the 20 seconds. 

The force to produce motion is F — 500; plot the curve F — 500 
and / as shown in Fig. 207. In that figure, shown here half size, the 
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force scale was 200 *lbs. to the inch, and time scale 4 seconds to the 
inch* Now find the area of this curve by counting the number of square 
inches, it will be found to be 11*93 square inches. Dividing the area by 
the base we get the average height— 

sr 2*382 inches, 

and since i inch represents 200 lbs., the average value of F — 500 is 
2*382 X 200 = 476*4 lbs. Hence the time average ot the force (F) 
acting during the 20 seconds is— 

500 4 476*4 = 976 4 lbs. 
The area of the curve also represents to scale the momentum pro¬ 

duced. Since x inch vertically represents 200 lbs., and x inch hori- 
zoxitally represeiits 4 seconds, 1 square inch represents 200 x 4 = 800 
units ol momeiitifm. 

Hence momentum of car at end of 20 seconds = 800 x 11*93 
c 9544 units 

and mass of car = 

hence velocity = 

12 X 2240 
units 

32*2 
momentum _ 9544 

mass 12 X 2240 
XI *4 feet per second. 

X 32*2 

The reader should plot Fig. 207 full size on squared paper. 

Force and Acceleration. — We have seen that force is 
numerically equal to the rate of change of momentum, but this 
ixiay be put another way which is useful for calculations on moving 
bodies. 
Rate of change of momentum = rate of change of (mass x velocity). 

But if the mass of a body remains constant this becomes— 
Rate of change of momentum = mass X rate of change of velocity 
or mass X acceleration 

So that« 
^ W . , . force ^ ^ 
Force = — x A and/» X g 

where f is the acceleration 
For instance, taking the first of the examples on p. 269. In the 

10 seconds the change of velocity was 22 feet per second. Hence— 

Average acceleration = “ =2*2 feet per second per second. 

Hence— 

Average force acting on truck = ^ ^ 2*2 = 30*6 lbs. as before. 

Acceleration, which is change of velocity per second, may, like 
change of velocity, be found by vectors when the direction of motion 
is changing. 
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Example truck weighs ^ ton^ and is pulled on a level line by 
a force of 40 lbs in excess of the frictional resistance. Find the accelera¬ 
tion of the truck. How far will it move in 20 seconds ? What horse* 
power is then being exerted ? 

Mass of truck = -^ = <4*8 units. 
32*2 

Acceleration = = i*IS feet per second per second. 
34 o 

Velocity after 20 seconds = 1*15 x 20 = 23 feet per second. 
Average velocity during the 20 seconds = ^ feet per second. 
Distance moved = ^ x 20 230 feet. 
Work being done per second = 23 feet per second x 40 lbs. 

= 920 foot-pounds per second. 
Horse-power - ffg 1-67 H.P. 

Example a.- -A train weighing 150 tons has a frictional resistance 
of 16 lbs. per ton. What average pull will be required to give it a 
speed of 30 miles per hour from rest in minutes on the level, and what 
horse-power would be required at the end of this time ? 

30 miles an hour = 44 feet per second. 

Average acceleration = — 0*489 foot per second per second. 

Average accelerating) _ 
force / 

60 X 1*5 
150 X 2240 

32*2 
X 0*489 = 5101 lbs. 

Force to overcome frictional resistance = 150 >< 16 se 2400 lbs. 
Total pull = 5101 -i- 2400 ~ 7501 lbs. 

Horse-power = ——= 600 H.P. 
550 

Example 3.—Part of a machine weighs 644 lbs. and is moving at 
a speed of 40 feet per second. After 0*25 second it is moving at 30 feet 

per second in the same plane, but in 
a direction inclined 60® to its former 
path. Find the mean acceleration 
during this time, and the average 
force acting upon it to produce this 
change in velocity. 

Let ab (Fig. 208) represent com¬ 
pletely the velocity of 40 feet per 
second, and cb the velocity of 30 feet 
per second, then the change of velocity 
is completely represented by which 
scales 36 feet per second. This cnange 

takes place in 0*25 second, hence— 

mean acceleration = = 144 feet per second per second. 

Average force = change of momentum per second 

= — X acceleration 

■ 32 2 
X 144 = 2880 lbs. 
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Acceleration of Gravity on Inclines.—We have seen that 
velocity, change of velocity, and change of velocity per second 
which is acceleration, are vector quantities, and therefore, like forces, 
can be resolved into components as in Chap. XIII. Thus for 
bodies acted upon by the force of gravity on a smooth slope we 
may resolve the vertical acceleration of about 32-2 feet per second 
per second into two components, one down the slope and the other 
perpendicular to it and resisted by the material of the slope. We 
have seen in Chap. XI. that the force up the plane required to just 
balance the pull of gravity on a body of weight W down a smooth 
plane inclined a to the horizontal is— 

W sin o or - W 
n 

where the slope is r vertically to n along the slope. Hence the 
unresisted pull of gravity down the slope would gi^ o ar acceleration 
of— 

Force W sin a 
Mass W * 

or 
O 

W J?* %2 3 
or— -;— = - or -— feet per second per second 

n g n n ^ ^ 

which is the acceleration required. 

Example i.—If the frictional resistance amounts to 15 ibs. per ton, 
how far will a train, starting from rest, travel down an incline of i in 
70 in 20 seconds ? If started up this incline at 30 miles an hour how 
fai would it go before coming to rest ? 

Effective force per ton 
down plane 

Acceleration down plane 

I = X 2240 - 15 = 32 - IS = 17 lbs. 

force. 2240 
= -- = 17 -t-— 

mass 32*2 
= 0*2446 feet per second per second. 

Average speed in 20 seconds = i maximum speed. 
= i X 20X 0*2446 = 2*446 feet per second. 

distance moved down incline in 20 seconds = 20 x 2*446 — 48*9 feet. ^ 
Total retarding force per ton uphill = 7^ x 2240 4-15 = 32 + 15^ 

47 lbs. 

Retardation = 47 + - o 676 feet per second per second. 
32*2 

Time to overcome speed of 30 miles an hour or 44 f^^l second 

= —= 65*2 seconds. 
0*676 

Distance travelled up incline at average speed of 22 feet per second 
= 65*2 X 22 = 1434 feet. 



274 Elementary Applied Mechanics [CHAP, xxi 

fixftiBple a.—^Find the H.P. required for a car weighing lo tons if 
it to attain a speed of miles an hour in 30 seconds from rest up 
an incline of i in 100, the mctional resistance being 20 lbs. per ton. 

Force to overcome friction = 20 x 10 = 200 lbs. 
Force to overcome gravity up to the plane = x to x 2240 

= 224 lbs. 
The acceleration is 30 miles an hour or 44 feet per second in 30 seconds 

s= feet per second per second, hence 

accelerating force = mass x acceleration = — 30 V"” ^ lbs. 

Hence total force required = 200 + 224 + 1020 = 1444 lbs. 
. , 1444 X 44 

and horse-powcr = ^ =• ii5'S H P. 

Action and Reaction in Motion.—We have seen in the 
early Chapters that for two bodies at rest the pull or push of each 
on the oiheT is equal. Although perhaps not quite so easy to 
realize, the same is true of bodies in motion. This is called 
Newton’s third law of motion and is often stated in the words; 

to every action there is an equal and opposite reaction.” Thus, 
the formrd pull of a horse on a cart is not greater than but just 
equal to, the backward pull of the cart upon the horse. Take, for 
example, the pull of a locomotive upon a moving train upon a level 
line. If this pull is just equal to the various frictional resistances, 
the train moves on without alteration of speed. If the pull exceeds 
the frictional resistances acceleration of the train takes place; in 
this case the eqiml backward pull of the train consists of two parts, 
the frictional resistance and the inertia forces or resistance to taking 
up speed. If the pull is less than the frictional resistances of the 
train, retardation takes place and the frictional resistances of the 
train are being overcome partly by the pull of the locomotive and 
partly by the (forwarc^ inertia forces of the txain which resist a 
change of speed. 

Example.—If a passenger lift has an upward accdcration of 2 feet 
per second per second, what force will a man weighing 140 Ibs.^ exert 
on the floor of the lift? Find*the force if the lift is descending with an 
acceleration of 2 feet per second per second. 

Here the downward pressifre of the man on the floor is exactly equal 
to the upward pressure of the floor on the man, so we can calculate the 
latter quantit}r. The upward pressure exceeds the man’s weight by an 
amount sufficient to give him an acceleration of 2 feet per second per 
second. Hence the total upward pressure is— 

140 + mass X acceleration = 140 ^ x 2 ^ 140 + 87 = 1487 lbs. 
32 2 

In descending, the upward pressure will be less than the man’s 
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weight by an amount taken to give the downward acceleration of 3 fiMt 
per second per second, namely— 

140 
*40 •“ X 2 = 140 - 87 = i3r3 lbs. 

3- 2 

When the lift is at rest, or moving with constant speed, the pressure 
will of coarse be 140 lbs. 

Impulsive Forces: Blows.—The forces acting in blows and 
collisions although they act for short periods of time cause con¬ 
siderable impulses or conges of momentum, and are called impul¬ 
sive forces. The time average of a force has already been explained 
as the total change of momentum divided by the time in which the 
chaqge takes place. The (time) average force of a blow is exactly 
the same except that in proportion to the mass of the body acted 
upon the change of momentum is considerable and the time short; 
hence die force is large. 

Example 1.—The head of a hand hammer weighs 4 lbs., and when 
moving at 25 feet per second is brought to rest in of a second. 
Find the average force of the blow. 

4 100 
Change of momentum = x 25 — = 3-10 units. 

Aven^ force = change of momentum per second. 
= -*• ltd = X 400 = 1240 lbs. 

Example a.—^The diameter oa^ the piston of a steam hammer is 30 
inches, total weight of hammer and piston 20 tons, effective steam 
pressure 40 lbs. per square inch. Find the acceleration with which the 
hanuner descends, and its velocity after falling 4 feet. If the hammer 
then comes in contact with the iron and is brought to rest in second, 
find the average force of the blow. 

The force producing acceleration of the hammer is equal to the sum 
of its weight, and the total steam pressure on the piston, namely— 

JP ■ 07854 X 36 X36X40 

2240 
= 20 + i8’2 = 38*2 tons. 

Acceleration rr = lo^x22^ X32-3=6r5 feet per second per second. 

Now ^zfs (Chap. XX.) 
= 2 X 6i*s X 4 = 492- 

V = = 22"2 feet per second. 

Cnxnge of momentum - ^ ^ units. 

Average force = change of momentum per second* 
20 X 2240 X 22-2 , „ 

= -^F2- 
20 X 22-2 

X 200 = 2760 tons. 
32*2 
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Momentum after Collision.—It follows from the law of 
equal action and reaction, that if two bodies collide, the rates of 
change of momentum being equal and opposite, the total gain 
of momentum by one body is just equal to the loss of momentum 
by the other, and therefore looking upon the two bodies as one 
system there is no gain or loss of momentum in the collision, that 
is, the total momentum of the two is the same after as it was before 
the impact. This is called the conservation of momentum. Thus, 
if a heavy hammer moving quickly strikes a nail driving it into a 
large immovable body the hammer and nail move forward to¬ 
gether with such a velocity that the total momentum of the two 
after the blow is equal to that of the hammer alone before the blow. 
If the hammer weighs say 3*22 lbs. and is moving at 25 feet per 
second, and the nail weighs 0*0322 lb.— 

Momentum before impact = 

Momentum after impact 

3*22 
32-2 ^ ^5 = 2*5 units 

= 2*5 units 

Velocity of hammer and nail =» 2‘5 ^ 
total mass 3*32 , 0-0322 

Tirr -r ——^ 

2**% 2*^ 
-- ^-s=—^ =: 24-75 feet per second, 

0*1 + o-ooT 0*101 ^ ^ ^ 

which is the velocity with which the nail starts to enter. 

Experiment on Momentum.—An experiment to find the velocity 
of a rifle bullet and involving the law of momentum may be performed 
by firing a rifle bullet into a heavy block of wood which is free to move 
and in which the bullet remains ii^ibeddcd. It will be necessary to know 
the initial velocity of the block of wood after impact, which could easily 
be found by having the block suspended and finding how far it rises. 
Suppose the block of wood weighs 25 lbs. and the bullet i ounce, and 
the block after being struck starts moving at 6 feet per second, what was 
the velocity of the bullet ? 

Momentum after impact = x 6 = ■■49.= 4*67 units 
^ 32*2 16 X 32-2 

This is also the momentum of the bullet before impact, hence— 

velocity of bullet = 4-67 4- (^ ,5 32-12^ ~ second. 

It may occur to the reader that the use of units of i ounce mass and 
feet per second would be simpler, thus— 

momentum = initial velocity x i = 401 x 6 = 2406 
hence, velocity of bullet =• 2406 feet per second. 
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Units ol Force.—^The reader having worked so far will now 
be able to see clearly why the engineers* unit of force being fixed 
at the weight of i lb. mass in London where the acceleration of 
gravity is approximately 32*2 feet per second per second, the unit 
of mass is chosen as 32*2 lbs. For if this mass is acted upon by a 
force of I lb. its acceleration is— 

force — mass = i -f- = i foot per second per second 
32 2 

and thus i lb. weight is the force which acting on unit mass 
(32*2 lbs.) gives it unit acceleration (i foot per second per second), 
or force is numerically equal to— ^ 

mass X acceleration or change of momentum per second 

In the C.G.S. (centimetre, gramme, second) system ot units the 
unit of force is the dyne. This is tlie force which acting on a mass 
of I gramme would give it an acceleration of i centimetre per 
second per second. The acceleration of gravity in London is 
about 981 centimetres per second per second, hence the weight of 
I gramme exerts a force of about 981 dynes. 

Rotation.—If the rim of a wheel of radius r is turning at a 
speed of v feet per second, we have seen that its angular velocity 

01 is - radians per second. The rate of increase of angular velocity 
r 

is called the angular acceleration. If a is the angular acceleration 
y j 

then a *= rate of increase of 01 = rate of increase of ~ - X rate 
r r 

of increase of 2/, or a = i x rate of increase of speed of rim in the 
r 

direction of motion. 

Example.—A wheel is turning at 40 revolutions per minute and 
after 20 seconds is turning at 70 revolutions per minute. Find the 
average acceleration. 

Average acceleration = =1*5 revolutions per minute per second 

= rq X ^ radians per second per second 
■^60 

= or 0*157 radians per second ger second 

We may regard a flywheel rim as so thin that the linear speed 
of all the parts of it are the same and equal to z' feet per second, 
and the force F necessary to get up speed as applied at the rim. 
Then the relation between the force, mass* and change of speed is 
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the same as if the rim moved in a straight line instead of a circulax 
path, and if W is the weight of the rim and r its radius— 

W W 
F = — X rate of change oiv — —or 

g ^ 
But the taming effect of the force F is proportional to its momeni 
about the centre of the axle wherever it is applied, or multiplTing 
by r— 

W W 
Fr = — X r X rate of change of » or — r*a 

g g 
that IS— 

Torque or moment of turning force for an angular acceleration 
fli is—~ 

g 
which is proportional to the mass, the square of the radius, and the 
angular acceleration. 

For other wheels when the rim is not thin and consequently all 
the material is not at the same radius r we write— 

W W 
Torque or turning moment = — or —. ^ X rate of change of v 

S S 
where k is called the radius of gyrations, a radius at which if all 
the mass were concentrated, the action of the wheel under torque 
would be unaltered, and v is the speed at that radius. 

Bxaniple i.—flywheel having a radius of gyration of J feet weighs 
4000 lbs ; if there is a driving torque of 600 pound*feet and a frictional 
or other resisting torque of 200 pound>feet, how long will it take to 
increase in speed from 20 to 70 revolutions minute ? 

Effective accelerating torque = 600 — 260 = 400 pound-feet. 

— i* « = torque 

Angular accetemrion . = 

= 0*358 radians per second per 
second. 

Total increase of speed 5= 70 — 20 = 50 revolutions per minute 
2v 

s= 50 X = 5*23 radians per second 

Time to increase = = *4*^ seconds 
0*358 

Rsaiinple a.—flywheel rim 10 feet mean diameter, 5 feet radius 
of gyration, wdftis 10 tons and is middng 80 revolutions per minute* 
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If it is disconnected from any other machinery and its axle subjectevHow 
a constant frictional torqne of 500 pound-feet, how many revolutions w.the 
it make before coming to rest, and how much work will it do against 
friction ? 

Resisting torque = 500 pound-feet 

* = —'zz:::— x x angular retardation 32 2 

angular retardation = —^ 3.?.?— 
® 2240 X 10 X 25 

= 0*0287 radians per second per second 
80 revolutions! 80 x 2x „ „ 

per minute/ = “65— radians pei second 

time to come to rest at 0*0287 radians i>er second reduction per second 
8*^8 

= = 292 seconds or 4 minutes 52 seconds 

Average angular speed = i maximum = 40 revolutions per minute 
-702 

Revolutions in coming to rest = 40 x ^ = 194*7 

Work done per revolution = torque x angle in radians 
~ 500 X 2x 

= 3142 foot-pounds 
Total work done = 3142 x 1947 

= 611,750 foot-pounds 
Expeiimenl—That a constant torque produces uniform angular 

acceleration may be shown experimentally by the app^atus shown in 
Fig. 209. A is a wheel mounted in ball bearmgs, to reduce the fnction 
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the ^ round the axle of which d. cord is coiled, to the free end 
which may be hung a convenient weight. A strip of paper is placed 

Pfightly round the rim of the wheel and the overlapping ends pasted 
together. The paper is then smgked until evenly coated with soot. A 
tuning fork B is provided with a tracing point and draws a curve in the 
same way as described for Fig. 199. A convenient weight having been 
attached to the cord the wheel A is released, and the tuning fork set in 
vibration. The weight descends causing rotation of the wheel, and the 
tracing point draws on the smoked paper a series of waves similar to that 
shown in Fig. 199. The increase in distance between successive waves 
will be found to be constant, and therefore the linear acceleration of the 
rim of the wheel is constant. The linear acceleration of the rim being 
constant, it follows that the angular acceleration of the wheel is constant, 
since we have already shown (p. 277) that— 

angular acceleration = ^ X rate of increase of speed of rim- 

Examples XXL 

1. A train weigning 100 tons is moving at 60 miles an hour. What is its 
momentum in engineers’ units? 

2. Water issues from a round nozzle ij inches diameter with a speed of 
40 feet per second. What weight of water leaves per second and what is its 
momentum ? (Water weighs 62*4 lbs. per cubic foot.) 

3. A lx)dy weighing 100 lbs. is moving at 30 feet per second due north. 
After 3 seconds it is moving south-west at 40 feet per second. Find the change 
of momentum, and the average change in momentum per second. 

4. A cat weighing i ton is moving at 8 miles an hour, and after 12 seconds 
is moving at 20 miles an hour. What is the average force acting on it in the 
direction of motion during that time ? 

5. A train weighing 250 tons is moving at 60 miles an hour. What retarding 
force will be required to bring it to rest in J minute? 

6. A jet of water issuing horizontally from a nozzle i inch diameter strikes 
a vertical wall and is thereby diverted at right angles, none splashing back. It 
exerts a force of 12 lbs. on the walL Find the speed of the jet. 

7. A jet of water delivering 50 gallons per second with a velocity of 20 feet 
per second impinges perpendicularly on a fixed plate. Find the pressure on 
the plate. 

8. A train starting from rest is drawn by a varying force F pounds which, 
after / seconds, is as shown in the following table :— 

/ (seconds) 

0
 

_
 B B 45 ss 60 

F (pounds) 4010 391S 3760 3370 3210 3000 

If the frictional resistance is constant and equal to 1200 lbs., what is the time- 
average of the force acting during the 60 seconds ? What is the total gain of 
momentum ? If the weight of the train is 300 tons, find its velocity at the end 
of the 60 seconds. 

9, A truck weighing 15 cwts. is pulled on a level line by a force of 60 lbs* 
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in excess of the frictional resistance. Find the acceleration of the track. How 
far will it move in } minute? What horse-power is then being exerted if the 
Crictional resistance is 14 lbs. ? 

10. A train weighing 200 tons has a frictional resistance of/12 lbs. per ton. 
What average pull will be required to give it a speed of 40 miles an hour m 
2 minutes from rest on the level, and what horse-power would be required at 
the end of this time ? 

11. A body weighs 483 lbs. and is moving at a speed of 20 feet per second. 
After J second it is moving at 30 feet per second in the same plane, but in a 
direction perpendicular to its former path. Find the mean acceleration during 
this lime, and the average force acUng upon it to produce ♦his change in 
velocity. 

12. A tramcar weighs 5 tons. Find the horse-power required if it has to 
attain a speed of 12 miles an hour in 15 seconds from rest up an incline of 1 in 
30, the frictional resistance being 15 lbs. per ton, 

13. How far will the car in Question 12 travel from rest down an incline 
of I in 80 in 1 minute? If started up this incl.ne at 12 miles an hour hv. .v far 
would it go before coming to rest ? 

14. A man weighing 180 lbs. is 111 a lift which descends with an 
acceleration of 2 feet per second per second. What force is exerted the 
man on the floor of the lift? What would be the force if the lift were ascending 
at (i) a uniform speed, and (2) with an acceleration of 2 feet per second per 
second. 

15. The head of a hammer weighs 10 lbs,, and when moving at 30 feet 
per second is brought to rest in ^ of a second. Find the average force of 
the blow. 

16. A chipping hammer weighs 2 lbs. The chisel edge is } inch long and 
^ inch wide. The hammer strikes the chisel with a velocity of 25 feet per 
second. What will be the pressure in pounds per square inch on the chisel 
edge if it is brought to rest in ^ second ? 

17. A steam hammer weighs 10 tons, the piston is 21 inches diameter and 
the effective steam pressure is 50 lbs, per square inch. Find (a) the acceleration 
w’ilh which the hammer comes down, (ii) velocity of hammer after descending 
3 feet, (c) the time then taken for the hammer to come to rest if the material is 
compressed J inch. 

18. A bullet weighing i ounce and moving at 1000 feet per second strikes 
and remains imbedded in a block of wood weighing 32 lbs. which is free 10 
move. With what velocity will the block start to move ? 

19. A pulley is running at 200 revolutions per minute and after half a 
minute is running at 250 revolutions per minute. Find the average angular 
acceleration. 

vV 20. A wheel is making 200 revolutions per minute and after 10 seconds 
its speed has fallen to 150 revolutions per minute. If the angular retardation 
be constant how many more revolutions will it make before coming to rest ? 

V 21. A wheel having a radius of gyration of 4 feet weighs 10,000 lbs. If 
there is a driving torque of 1200 pound-feet, and a frictional or other resisting ytorque of 300 pound-feet, how long will it take to increase in speed from 10 to 240 
revolutions per minute ? 

22. A flywheel having a mean dikmeter of 6 feet, radius ot gyration 
3 feet, weighs 2 tons, .ind is making 120 revolutions per minute. W’hat resisting 
torque must be applied in order to brix^ it to rest in 1 minute, and how much 
WOK will it do against the resistance ? 



CHAPTER XXII 

ENERGY 

A BODY is said to possess energy when on account of its condi* 
tion it is capable of doing work. Thus, in virtue of its position, 
velocity, high temperature, electrical pressure or chemical composi¬ 
tion a body may be capable of doing work and is said to possess 
energy. In addition to the various forms of mechanical energy 
the engineer has to deal particularly with heat energy and electrical 
energy. 

Relation between Heat and Mechanical Work,—When 
work is spent in overcoming friction, heat is produced, and for 
every foot-pound of work so spent a perfectly definite amount 
of heat is produced. Heat is measured by engineers in British 
thermal units written briefly B.Th.U. A British thermal unit 
is the amount of heat required to warm i lb. of water F. in 
temperature; to warm, say, 20 lbs. of water 8° F. would take 20 x 8 
= 160 B.Th.U. To produce i British thermal unit of heat by 
mechanical work would require about 778 foot-pounds. 

Example.—How many British Thermal Units are produced p^ 
hour in a bearing in which half a horse-power is being absorbed in 
friction ? 

Foot-pounds of work converted into heat per hour =s J x 33,000 x 60 
= 990,000 

Equivalent British Thermal Units = ~ B.Th.U. 

Although 778 foot-pounds of mechanical work can produce i B.Th.U. 
of heat it is not possible to produce 778 foot-pounds from i B.Th.U. of 
heat. The mechanical work obtainable from i unit of heat depends 
upon the temperature of the .available heat and the method of converting 
heat into work. The conversion of heat into work is studied in the 
subject of Heat Engines. 

Heat Energy in Fuels.—Heat energy for conversion into 
mechanical work is usually obtained by burning substances in 
furnaces or engine cylinders. It is interesting to see how much 
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beat energy is obtainable from Tarions snbstances. The following 
short table gives approzimate values:— 

Sabotaboe. 

BSiieni:7 in r lb- 

B.Th.U, Foot>potin(b. 

Good coal. 14,500 11,280,000 
Wood (ordinary) . . . 6,000 4,668,000 
Petroleum oil ... . 20,000 15,560,000 
Crude coal tar... . 16,000 , 13,538,000 
Petrol. 

j 

20^000 15,560,000 

Example i«—^An oil engine uses 07 lbs. of petroleum per horse¬ 
power per hour. What proportion of the available energy in the oil is 
converted into mechanic^ work ? 

One horse-power for 1 hour =: 33,000 x 6q foot-pounds 

-2i£^f^-=2545 B.TI>.U. 

Now, I lb. of petroleum contains 20,000 B.Th.U., hence— 

Proportion converted into mechanical work = r= 0*1817 
^ 20,000 X o'7 ' 

= 18*17 cent. 
Example a.—If a steam engine plant converts 8 per cent of the 

available energy in the coal into mechanical work, how many pounds 
of coal per hour will be required for a plant with an output of 700 H.P. ? 

700 H.P. for i hour = 700 x 33,000 x 60 foot-pounds 
= 700 X 33.o«> X 60 ^ ^ 

778 
and this is 8 per cent of the total energy in the coal, hence— 

. . . . . 700 X 33,000 X 60 
Total energy in the coal x yg® = -- 

Total energy in the coal = 7oo x_3^vow ^ B.xh. U. 

Assuming i lb. of coal to contain 14,000 B.Th.U., wc have— 
, • j 1. total energy 

coal required per hour =- 
^ 14,000 

= 700 X 33,0^ X 60 X 100^ 
778 X 8 X 14,000 

Relation of electrical and Mechanical Energy-—The 
electrical engineers’ unit of work is the joitU^ see Chap. JX., 
p. 118, and one joule per second is called the watt. For com¬ 
mercial purposes the unit of electrical energy is the Beard •of 
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Trade unity this being one kilowatt (or 1000 watts) for one hour, 
which is a quantity of work. Since i E.H.P. is equal to 746 watts, 
we have, as on p. 119, 

I kilowatts J5S^E.H.P. 
and I kilowatt hour or i Board of Trade unit= X 33,000 x 60 

= 2,654,150 foot-pounds. 

Example i.—An electric locomotive draws a train of gross weight 
$00 tons up an incline of i in a 100 at a steady speed of 15 miles an 
hour. If the frictional resistance is constant and equal to 15 lbs. per 
ton, what is the total pull and horse-power? If the voltage supply is 
500 volts, and 60 per cent, of the energy supplied is usefully employed, 
what current ia amperes is taken by the motors ? 

Frictional resistance = 500 x IJ == 7500 lbs. 
Force to draw train up incline = x 500 x 2240 = 11,200 lbs. 

Total pull required = 7500 + 11,200 = 18,700 lbs. 
Horse-power at 15 miles an hour or 22 feet per second 

— P^ll X distance moved per second 
~SSo 

S50 
Electrical horse-power supplied to motors = 748 x 

Watts supplied to motors = 748 x x 746. 
And since watts — amperes x volts, we have— 

^ , 748 X 100 X 746 
current supplied = -— 

60 X 500 
= i860 amperes. 

«Bxample J.—A countershaft driven by an electric motor drives a 
lathe by means of a belt. If the shaft and belt absorb 0*3 H.P., and 
the frictional resistance of the lathe absorbs 0*4 H.P., and 0*9 H.P. 
are expended in turning the work in the lathe, how many watts must 
be supplied to the motor, if its efficiency is 85 per cent. ? If the 
pressure of supply is 200 volts what current is taken ? 

Output of motor = o'3 -I- 0*4 4- 0*9 = i*6 H.P. = i'6 x 746 watts. 
Watts supplied to motor = i-6 x 746 x ^ = 1404 watts 

Current taken = = 7*02 amperes. 

Mechanical Energry. 
Potential Energ:y.—Mechanical energy takes various forms. 

If work is spent in lifting a body, the body is then said to possess 
potential energy or energy of position. Suppose a body weighing 
80 lbs. is lifted 20 feet above the ground, an amount of work— 

20 X 80 ss 1600 foot-pounds 

is spent in lifting it, and the body possesses 1600 foot-pounds of 
potential energy, and is capable of doing x6oo foot-pounds of work. 



CHAP. XXIl] Energy 28 

Thus it might be employed by means of pulley blocks to lift a 
heavier weight of, say, zoo lbs. through a smaller height than 20 feet. 
If there were no friction, the work spent in lifting the second weight 
would also be 1600 foot-pounds, so that the height lifted would be— 

If the mechanical efficiency of the lifting machine were, say, 70 per 
cent., the work available for lifting the 100 lbs. weight would be— 

1600 X =1120 foot-pounds 
and the height of lift would be— 

^ = 11-2 feet 
In this case if the remaining work were wasted in heat by friction, 
the heat produced would be— 

X 1600 or 1600 — 1120 ~ 480 foot-pounds 
^ = p-02 t.Th.U. 

Another form of potential energy is that of a strained spring. 
We have seen in Chap. V. that to stretch or compress a spring 
requires a certain amount of work, and the same holds good for 
spiral springs such as are used in clocks and watches. The work 
so spent is stored as strain energy in the spring, and can be 
employed to do useful work; clocks, watches, clockwork instru¬ 
ments and toys arc well-known examples in which work is stored 
as strain energy. 

Kinetic Energy.—Another very important form of mechanical 
energy is that possessed by a body in motion. We have seen that 
to put a body in motion requires force to overcome its inertia, and 
this force acting through the displacement of the body does work. 
This work is accumulated in the body and is called the kinetic 
energy {K.E.) or energy of motion of the body. 

Suppose a constant unresisted force of 10 lbs. acts for 5 seconds 
on a body originally at rest and weighing 40 lbs., how much kinetic 
energy will the body then have stored up in it ? 

A 1 j accelerating force 10 
Acceleration of the body = -= —— 

^ mass 
32*2 

sr 8*05 feet per second per second 
Final speed after 5 seconds = 5 X 8*05 = 40 25 feet per second 

Average speed = 4£-£5 20*125 feet per second 
2 

Distancettavelledin 5 seconds =: 20*135 x 5 = 100*635 feet 
Work spent = 10 x ioo'625 

a. 1006*25 foot-pounds 

which is the kinetid energy of the body. 



285 Elementary Applied Mechanics [CHAP, xxii 

Suppose the body treighed W pounds and was acted on by a 
constant force F pounds until it attained a speed of v feet per 
secmid in the dire<^on of the force, what would be its K.E. ? 

F 32‘2F 
Acceleration = ^ second per second 

Time to attain a velocity of V feet per second s-^—— s —^ 
acceleration 32*2 F 

Distance moved in this time at average velocity-feet per sectmd 

= - X time 
2 

— ^ Wp _ Wr^ 
2 ^ 32*2 F “ 64-4 F 

Workdone=distancexforce=;2^^^xF=s or ^^foot-pounds 
64*4 F 64-4 ^ 

Thus we see that die kinetic energy of the body depends only on 
its weight and on the sfoare of its speed, and not upon the force F 
which sets it in motion. It will be the same whether set in motion 
by a large force acting for a short time*only, or by a smaller force 
actii^ for a longer time. When a body of we^t W pounds has 
a velocity v feet per second its 

kinetic energy = or foot-pounds 

Example i.—A truck weighs lo cwt. and is running at 30 miles 
per hour. What is its K.E. in foot-pounds? If the resistance to 
motion on the level is 30 lbs. per ton, bow fiu: will it run before coming 
to rest? 
30 miles per hour = 44 feet per second. 

Kmetic energy = ~ --ix 3^—~ ~ 33.640 foot-pounds 

Total resistance to running = ^ x 30 = 1$ lbs. 
Work spent against resistance = 15 lbs. X distance run = the K.E. 

of 33,640 foot-pounds, 

distance run = 33*^? s= 2242 feet. 

Example a.—A projectile has 1,500,000 foot-pounds ot’ kinetie 
energy at a vdocity of 25U0 feet p« second. How much kinetic 
energy will it have lost when its velocity has fallen to 1500 feet per 
second ? 

Wt.* W W 
~ (2500)*^ 6,250,000foot-pounds. 
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and this is equal to 1,500,000 foot-pounds. Hence— 
w 
— X 6,250,000 =S 1.500,000 

ng 6,250,000 W 
at ^500 feet per second. 

W 
K.E. = — X (*500)* * X 2,250,000 = 540,000 foot-pounda 

Loss of K.E. = 1,500,000 — 540,000 960,000 foot-pounds. 
Example 3.—A bullrt weighing i ounce has a velocity of 1200 feet 

per second, what is its kine^'ic energy in foot-pounds? If it is fired into 
a freely suspended block of wood weighing i lb. in which it remains 
imbedded, how much kinetic energy is lost in the impact, and how many 
units of heat are generated ? 

K.E, of bullet = iV X ^ *200 x 1200 = 1397 for^-pounds. 

Since the momentum remains the same after impact, and the weight 
of the block and bullet is 17 ounces or 17 times as great as that of the 
bullet, the velocity is xV of 1200 feet per second, 

or = 70*6 feet per second. 

Kinetic energy of block and bullet=x x (70*6)® = 82 foot-pounds. 

Loss of kinetic energy = 1397 — 82 = 1315 foot-pounds. 
Equivalent heat generated = B.ThU. 

Example 4.—A train weighing 150 tons has a frictional resistance 
of 16 lbs. per ton. What average pull will be required to give it a speed 
of 30 miles an hour in minutes on the level ? 

The reader may note that this problem has already been solved on 
p. 27*^ and should note the different method adopted here. 

Kinetic energy at 30 miles per hour or 44 feet per second y 

~ X 44 X 10,100,869 foot-pounds. 
2 X 32 2 

Distance travelled in minutes at average speed of ^ or 22 feet 
per second = 90 x 22 = iqSo feet. 

— 10,100,869 _ 
Average force to do the above work in 1980 feet = = 5101 lbs. 

Force to overcome frictional resistance = 150 x 16 =: 2400 lbs- 
Total pull = 5101 -f 2400 = 7501 lbs. as on p. 272. 
Important. Example 5.—The motion of a body of weight 5200 lbs. 

is opposed by a constant frictional resistance of 2800 lbs. It starts 
from rest under the action of a force F pounds whose value It here 
given at the instants at which the body has passed x feet from rest;— 

.5200 4900 

5 10 
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What is the speed of the body when it has moved 2$ feet from rest ? 
Plot the curve connecting F and x as shown half size in Fig. 210 

where the scale of F is 1000 lbs. to i and that of jr is 5 feet to i inch, 
then the total area under the curve represents to scale the total work done 
during the 25 feet. Now draw the horizontal line AB across, representing 
the constant frictional resistance of 2800 lbs., then the area of the rect¬ 
angle ABC D below A B represents the work expended against the frictional 

iO 15 
JCfJFect) 

Fig. aio 

resistance of 2800 lbs., and the remaining area shown shaded ABGFE 
represents the remainder of the work done, and this must be stored up 
in the body as kinetic energy. Counting up the number of squares in 
the area ABGFE we find its area to be ii’2 square inches, and since 
the scale is 1 square inch, represents 1000 x 5 = 5000 foot-pounds, the 
kinetic energy of the body after it has moved 25 feet is— 

5000 X 11-2 = 56,000 foot-pounds. 

Let V be the velocity of the body in feet per second, then— 

K,E. 
2g 56,000 
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52001/* - 

^ _ 56.000 X 64 4 
5200 

,000 X 64*4 
5200 = 26*33 feet per second. 

Fly Press.—There are several machines for utilizing the 
kinetic energy of a moving body to overcome a resistance and to 
do useful work. A common example is the fly press shown in 
Fig. 211 used for stamping medals, etc., or for punching holes in 

metal plates. The frame of the machine consists of a casting A, 
provided with a nut in which the screw B works. To the top of 
the screw is fixed a lever, C, which has a heavy cast-iron ball D at 
each end, and to the lower end is attached a bar, E, which slides in 
a bearing in A. E is attached to the screw in such a manner that 
the screw can rotate independently of it. The punch is attached 
to E, and the die rests on the base of the press. The plate in which 
the hole is to be punched is placed on the top of the die, the screw 
is revolved by swinging the lever C round, and so forcing the punch 
down through the plate. The kinetic energy of the balls D is 
absorbed in overcoming the resistance offered by the plate to 
punching. 

L 
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Example.—In a fly press the weight of each ball is 50 lbs., and their 
velocity is 15 feet per second ; the die on the end of the screw moves 
through ^ inch in coming to rest. What average pressure is exerted on 
the metal subjected to stamping ? 

Kinetic energy of the balls 
100 X 15 X 

64*4 
^ = 349 foot-pounds. 

Pressure in pounds X distance in feet = 349 
Pressure x x ^ = 349 

Pressure = 349 x 16 x 
„ = 67,008 lbs. 

12 

Kinetic Energy of a Falling Weight.—If a body weigh¬ 
ing W pounds is lifted h feet above the ground, it has stored in it 
'W X h foot-pounds of energy. If it falls freely to the ground again 
through h feet this potential energy will all be converted into kinetic 
energy. If its velocity on reaching the ground is v feet per second— 

Potential energy WA = kinetic energy- 

This follows from Chap. XX., p. 256, for after falling a height h 
feet under the acceleration of gravity the velocity v is given by— 

_ ^ 
IT = 2gh ov V ^ 2gh or = — 

2^ 

and WA ~ — 

When the weight has fallen, say, ~ of the height h the K.E. will 
be equal to and the potential energy fW//, and in all positions 
the sum of the potential and the kinetic energy will be equal to \Nh, 
Note, then, when a body has fallen vertically through a height h its 
velocity 2; = V 2g/i whether it is moving vertically or in any other 

direction, and its K.E. is-or Vfh. 
2g 

Fly-wheels: Kinetic Energy of Rotation.—One of the 
most convenient and usual methods of storing energy is in the rim 
of a fly-wheel. Suppose the thin rim of a wheel weighs W pounds, 
and its linear speed (which is the same throughout) is v feet per 
second, the kinetic energy of the wheel is— 

-or 2— foot-pounds. 
2g 644 ^ 

Example.—The diameter of the rim of a fly-wheel is 10 feet and it 
weighs 8 tons: find its kinetic energy when rotating at 120 revolutions 
per minute. 

120 revolutions per minute*= 2 revolutions per second 
velocity of rim = loir x 2 = 62’83 feet per second 
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8 ^ 22id.O 
kinetic energy = 3 ^ 3^2 ^ ^ = 1,098,000 foot-pounds, 

or in foot-tons— 
g 

kinetic energy = x 62*83 x 62*63 = 490 foot-tons. 
.u X j3 2 

' If the radius of the rim of the fly-v/heel is r feet and it makes n 
revolutions per second— 

V = 27rr X n feet per second 

kinetic energy = x {2TrniV = 
<S O ■“ — 

Or, again, if the wheel makes N revoiudons per minu^e M = Son, 

27rrN 7rrN 
or 2/ = - . — = -— 

60 30 
, . , Wr- W Trr-N- 
kinetic energy =-= ,— X-= 0*00017 vV/'-N- 

2g 04*4 i)00 ' 

For a given wheel, W and r being fixed, its tC.lO. at any given 
speed of rotation (N revolutions per nnnute) is p>\portio7ial to the 
square of the angular speed. 'Fbus its K.E. at 100 revolutions per 
minute is four times its K.E. at 50 revolutions per minute. 

In the case of rotating wheels, all the material of which is not 
concentrated in a thin rim, different parts of the wheel are moving 
at different linear speeds, and in order to calculate the K.E. we must 
take the speed at the radius of gyration, d'his, as explained on 
page 278, is a radius at which, if the whole mass of the w'heel 
were concentrated, its effect would be unaltered. 

Thus, the kinetic energy of any wheel is— 

where v is the linear speed in feet per second at the radius of 
27rhn irkn 

gyration and at N revolutions per minute v = — ^ 

2g 2g ^ 900 
or 0*00017Wy(»"N“ 

Example 1.—A fly-wheel at rest In frictionicss ball bearings has a 
torque of 60 pounds-inches applied to it while it makes 5 revolutions. 
If the wheel weighs 200 lbs., what is then its linear speed at the radius 
of gyration? If the radius of gyration is 075 foot, what is the .peed of 
rotation of the wheel in revolutions per minute ? 

Work converted into K.E. = -feet X (S X 2Tr) radians 

= 5oir =r 157-1 foot-pounds 
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If V is the speed of the radius of gyration— 
_ ‘jOOTA ^ 

%g 64-4 5 
^ == ^57-1 X 64-4 ^ .g 

2CX> 

V = yy^5o*6 =7*11 feet per second 
Circnmfcrcnce at 0*75 foot radius = 2 x » x 075 — 471 feet 

7* 11 
Revolutions per second = -— 

471 
7*11 

Revolutions per minute = -— x 60 = 90*5 
471 

Example a.—A fly-wheel weighs i ton and has a radius of gyration 
of 2’5 feet. If it is running at 120 revolutions per minute and 75 foot¬ 
pounds are absorbed by friction per revolution, find the revolutions made 
m coming to rest. 

K.E. of .h«l = = 2® X 
2^ 644 V 60 / 

= X KXr X lOir = 34,320 foot-pounds 
04*4 

Revolutions made in coming to rest = = 457*6 

Example 3.—A fly-wheel weighs 6 tons, and has a radius of gyration 
of 4 feet 6 inches. How many foot-pounds of energy would be stored in 
it when it is making 120 revolutions per minute ? If it is supported in 
bearings 8 inches diameter, and the coefficient of friction is o*oi at all 
speeds, how much work would be spent in friction in i revolution, and 
how many revolutions would the wheel make before coming to rest ? 

Speed at radius of gyration = — = 56^55 feet per second. 

Kinetic energy stored = 4? x 56-55 x 56*55 =667,300 foot-pounds. 
o4’4 

Frictional force at circumference of shaft = 0*01 x 6 x 2240 = i34’4lbSs 

Circumference of shaft = 8ir inches = ~ feet = 2*004 feet. 

Work spent per revolution = 134*4 x 2 094 = 281*4 foot-pounds. 

Revolutions to absorb all the K.E. and bring the wheel to rest— 

= ^^32? — 2371 revolutions. 
ox T • /f 

Changfes in Speed and in Kinetic Energ^y.—Suppose a 
fly-wheel is rotating at N, revolutions per minute, and its linear 
speed at the radius of gyration is Vj feet per second; then, if it gives 
out energy to a machine, and is reduced in speed to N. revolutions 
per minute &nd velocity Vafeet per second at its radius of gyration— 
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Work given out = change in kinetic energy 
WV_^W. , 

“ IF “ S?'"■ - > 
or— 
«r I • . W^W*>S*N,» 
Work given out= — X- 

® ^g 900 -V X 
64‘4X qoo 

(N,*-N3«) 
2^ 900 

or = o‘oooi7W>J*(Ni^ — Ng®) 

The quantity o’oooiyW^ is the kinetic energy of the wheel 
when rotating at i revolution per mi mite. This quantity, often 
called the M of the wheel, when multiplied by the square of the 
number of revolutions per minute gives the K.E. of the wheel. 

Example i.—A fly-wheel making 120 revolutions per mip’^te has 
stored in it 8o,ocx> foot-pounds. What is its speed after it has given up 
30,000 foot-pounds of energy ? 

Let N be its speed in revolutions per niiaute, its K.E. is then 80,000 — 
30,000 = 50,000 foot-pounds. Then since the K.E. is proportional to the 
square of the speed— 

_ 50,000 . 
I2C>* 80,000 ^ ^ 

N* = f X 120 X 120 = 9000 
N = v^^ooo = 94*87 revolutions per minute. 

Example a.—The fly-wheel of a shearing machine weighs 4000 lbs., 
and has a radius of gyration of 3 feet. At the beginning of the cutting 
stroke its speed is 100 revolutions per minute, and at the end its speed 
is 90 revolutions per minute. How much energy has been given out, 
and if 80 per cqjit. of this is usefully employed on a 3-inch stroke, what 
average cutting force is exerted ? 
Kinetic energy at 100 revolutions per minute =0*00017 ^ 4«)o X 3® x 100* 

„ 90 „ =000017 X4000x3* X96* 
Energy given out = 0-00017 x 4000 x 9(100* — 90*) 

= 17 X 4 X 9 (10* — 9*> 
= 17 X 4 X 9 X 19 = 11,628 foot-pounds. 

Average force in pounds x feet = x 11,628 foot-pounds. 
Average lorce = 3*2 >c 11,628 = 37,210 lbs. 

Example 3.—The fly-wheel of a punching madime has stored in it 
80,000 toot-pounds of energy when making 120 revolutions minute. 
What reduction of kinetic energy takes place if after punching a hole 
the speed is reduced to 90 revolutions per minute? If the working 
stroke is J inch, and 75 per cent, of the energy is usefully employed in 
punching, what is the average force exerted ? 

Let M be the kinetic energy of the wheel at 1 revolttti6]| per minute, 
then, M X 120* = 80,000 foot-pounds 

M = 30*000 _ ^ 
14400"" * 

= 5f foot-pounds; and at 90 revolutions per minute. 
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Kinetic energy = M x 90^ = X 8100 = 45,000 foot-pounds 
Reduction in kinetic energy = 80,000 — 45,000 = 35>ooo foot-pounds 

Average force in pounds x x J = 35,000 x 
Average force = 12 x 35,000 = 420,000 pounds. 

We might have stated the reduction of kinetic energy thus— 
reduction of kinetic energy _ 120^ ^ 9^ - I44 81 ^ 63^ _ 7 

80,000 i2o‘^ 144 144 16 
hence, reduction of kinetic energy = x 80,000 

~ 35,000 foot-pounds. 

Experiments on the Kinetic Ener^ry of a Fly-wheel.— 
^(a) To find the Kinetic Energy when rotating at i revolution per 
minute,—Fig. 209 shows an experimental fly-wheel mounted in ball 
bearings to reduce the frictional resistance to a minimum. Round 
the axle of the wheel is coiled a cord to the free end of which a 
convenient weight is attached. The length of the cord is so 
arranged that when the weight is released it rotates the wheel dur¬ 
ing its descent, and on reaching the ground the cord is detached 
from the axle. The distance the weight falls is carefully measured, 
and the total number of revolutions the wheel makes from the 
instant the weight is released until the wheel comes to rest are 
counted. By means of a stop watch the time taken for the weight 
to reach the ground is measured, and also the total time from the 
instant the weight is released until the wheel comes to rest is measured. 

Let dhe the effective diameter of the axle, />. diameter of axle 
-j- diameter of cord in feet; / the time in seconds for the weight to 
reach the ground; T the total time in seconds until the wheel 
comes to rest; N the total number of revolutions made by the 
w'heel before it comes to rest; and h the distance the weight falls 
in feet, n = maximum speed of wheel in revolutions per minute, 
then— 

Effective circumference of axle = Trd feet 

Revolutions made by the wheel during the descent of the weight = 

The average speed of the wheel during the time / seconds 
h h 

t ^ ^ revolutions per second. 

ird 

Since the speed will be uniformly accelerated, 

Maximum speed of wheel at the instant the weight reaches 
the ground = twice the average speed 

= ^ revolutions per second ^ 
trdt 

n = X 60 revolutions per minute. 
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This maximum speed of the wheel should be checked from the 
total revolution made (N) and the total time T as follows :— 

N 
Average speed of wheel during T seconds = revolutions per sec 

2N 
Maximum speed == tjt revolutions per second 

or 
2N 

n = -7^ X 60 revolutions per minute. 

These two results will not generally agree if the ^vheel is 
mounted in plain journal bearings, but will for all practical pur¬ 
poses be the same for a wheel mounted in ball bearings, the friction 
of which is more uniform at various speeds. 

Tet V be the speed of the weight in feet per seronel when it 
reaches the ground, then— 

h 
average speed of weight = - feet per second 

and V X 2 feet per second 

Now, the total potential energy of the weight W pounds before 
it is released will be— 

W X /i foot-pounds. 

When the weight reaches the ground it is moving with velocity 
W^'- 

V feet per second and has K.E, equal to foot-pounds, the wheel 

will also at this instant have kinetic energy equal to^’oooi7Z6v^'/^ 
foot-pounds: hence, since the total energy remains constant, we 
have, neglecting friction— 

Potential energy of weight 
= kinetic energy of wheel -f kinetic energy of weight 

.> Wz/2 
W// = o'oooinw^fr -j- 

and 
Wr;” 

o'ooo\^wfi^n^ = W//-=rK.E.ofwheel at//revolutions per min. 

and 

W>4 - 

2^ 

foot-pounds o'ooo\*]w]S‘ = —- 
ft, 

where w = weight of wheel in pounds 

which is the kinetic energy of the wheel when making i revolution 
per minute. 
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Another method of measuring the maximum speed of the wheel 
is to use a timing fork to trace the vibration on the rim of the wheel 
as in Fig. 209. This enables the maximum linear speed of the rim 
to be found from which the maximum revolutions per minute is 
deduced. 

(b) Tff find the radius of ^-ation in feet.—Remove the wheel 
from its bearings and weigh it. Let w be its weight in pounds, 
then— 

hence 

o^ooo^^w/? = K.E. at i revolution per minute 
K.E. at I revolution per minute 

0*000170/ 

WA 

o’oooxTwr^ 

k = 

(c) To correct for friction.—The kinetic energy of the wheel 

will be less than WA-by the amount of work lost in friction 

during the time the weight is descending, and all the kinetic energy 
of the wheel is wasted in friction during the time T — / seconds, 
i.e. from the instant the weight reaches the ground until the wheel 
comes to rest. If the wheel makes, say, 5 revolutions while the 
weight is descending, and 100 more while it is coming to rest, 
work lost in frictidn per revolution if constant = ^ of kinetic 
energy of the wheel, loss due to friction during the fall of the 
weight = of kinetic energy of the wheel, hence— 

WA = o-oooi7a/AV + 1S5 X o*oooi7zt/A®«* + 

WA = ^ X o ooo17«-A*«* + ^ 

from which we find o*oooi7Z£/A® and k as before. 
If N is the total revolutions made by the wheel and Nj the 

number of revolutions made after the weight has reached the 
ground— 

N Wz/* 
WA = rr X o*oooi7a/A®«* H- 

N, • ^ 2g 

which gives 0*00017«e/A® the kinetic energy at i revolution per 
minute. 



297 CHAP. XXII] Energy 

Example i.—A fly-wheel is carried on a spindle 3 inches diameter. 
A string is wrapped round the spindle to which one end is loosely 
attached. The other end of the string carries a weight which starting 
from rest pulls the fly-wheel round and falls 2*5 feet to the ground in 
5 seconds. Find the speed of the weight and the speed of the wheel 
when the weight touches the ground. 

2* ? 
Average speed of tailing weight = ~ o*; feet per second 

Speed of weight on reaching ground = 2x0-5=: i foot per second. 
Revolutions made by the wheel while the weight descends 

— 2‘5 10 
y A 

Average speed of wheel = —- 
2 
* 

revolutions per second 

Speed when weight reaches the ground = ~ x 2 revolutions per second 

4 
IT 

X 60 = 76-5 revs, per min. 

Example 2.—A fly-wheel weighing 200 lbs. is carried on a spindle 
2*5 inches diameter. A string is wrapped round the spindle to which 
one end is loosely attached. The other end of the string carries a 
weight of 40 lbs., 4 lbs. of which is necessary to overcome the friction 
fassumed constant) between the spindle and its bearings. Starting 
from rest, the weight, pulling the fly-wheel round, falls vertically 
through 3 feet in 7 seconds. Find the energy stored in the wheel 
when it makes 100 revolutions per minute, and the radius of gyration 
of the wheel. 

Average speed of the falling weight = ^ second, the 
maximum velocity is 2 x ^ or If foot per second. 

The net work done by the falling weight, the whole work done 
minus that spent in overcoming friction, is— 

(40 — 4) X 3 = 10^. foot-pounds. 

The kinetic energy of the w’eight after falling 3 feet is — 

i X X = 0*456 foot-pouna. ^ 
32 2 

Revolutions made by wheel during descent of weigl^t 

TS^ 2-Sir 

12 

Average speed of wheel = 

Maximum speed = 

36 
2-5ir X 7 

36 
2-5*r X 7 

72 X 60 

i7-5» 

72 
X 2 = revolutions per second 

X / 

s 78*5 revolutions per minute 

L 2 
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Hence— 
K. E. of wheel + 0*456 = loift 

Q*ooo\*]wk^n^ = 108 — 0*456= 107*544 ft.-lbs. 

K.E. at I revolution per minute 0*00017= ^9^5.44 

= - = 0*0174 ft.-lb. 
78*5 X 78-5 

K.E. at 100 revolutions per minute = 00174 x 100* 
= 174 foot-pounds 

also since o'ocx>\Twk^ = 0*0174 
^ ^ 0*0174 ^ o‘oi74 

0*000170/ 0*00017 X 200 

. / 0-0174 . f _ 
0*00017 X 200 

= 0*716 foot or 8*6 inches. 

Example 3,—An engine in starting exerts on the crank-shaft for 
one minute a constant turning moment of 1000 pound-feet, and there is 
a uniform resisting moment of 800 pound-feet. The fly-wheel has a 
radius of gyration of 5 feet and weighs 2000 lbs. Neglecting the inertia 
of all parts except the fly-wheel, what speed will the engine attain after 
one minute from starting ? 

Let w = angular velocity required in radians per sec., then 

^ = average angular velocity. 

Total angle turned through in one minute = 60 x ^ = 3o« radians: 

Net work done in one minute = (1000 — 800)30^ 
= 200 x 30W = 6000W ft.-lbs. 

Velocity at radius of gyration = angular velocity x radius 
=: ctf X 5 = 5» feet per second 

r u 1 Wz/2 2000X(5«)2 . 
K.E. of wheel =-= — = 6ooo« 

2g 2 X 32*2 
2000 X 25ctf _ 

64*4 

^ ~ ^ ^ = 7*74 radians per second 
2000 X 25 

7,74 revolutions per minute 
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Examples XXII. 

1. A steam plant uses 2*5 lbs. of coal per horse-power per hour. What 
proportion of the available energy in the coal is converted into mechanical 
work ? Take the number of heat units in i lb. of the coal as 13,000 B.Th.U. 

2. An oil engine converts 18 per cent, of the available energy in the oil into 
^mechanical work, how many pounds of oil will be required per hour for an 
engine of 50 H.P. (i lb. of oil contains 20,000 B.Th.U.) ? 

3. An electric tramcar weighs 5 tons, and is driven up an incline of I in 50 
at a steady speed of 12 miles an hour. If the frictional resistance is constant 
and equal to 20 lbs. per ton, and the efficiency of the motors is 85 per cent., 
what E.H.P. is supplied to the motors? How many Board of Trade units will 
be consumed per hour, and if the voltage of supply is 500 volts, what current in 
amperes is taken by the motors ? 

4. If I lb. of coal contains 14,500 B.Th.U., how many pounds of coal contain 
the same energy as 100 Board of Trade units of electric supply ? 

5. Calculate the kinetic energy of a rifle bullet weighing i ounce when 
moving at a speed of 1000 feet per second. 

6. A tramcar weighs 3 tons, and is running at 15 miles an hour- What is 
its K.E. in foot-pounds? If the frictional resistance is constant and equal to 
20 lbs. per ton, how far will it run up an incline of i in 100 before coming 
to rest ? 

7. A body when moving at 88 feet per second has 8000 foot-pounds of 
kinetic energy. How much kinetic energy will it have lost when its velocity has 
fallen to 15 feet per second ? 

8. A projectile has 2,300,000 foot-pounds of kinetic energy at a velocity of 
2000 feet per second. What will be4ts velocity when its finetic energy has 
been reduced to 340,000 foot-pounds ? 

9. A hammer of weight 2 lbs, strikes a nail of weight I ounce with a velocity 
of 34 feet per second, and drives it i inch into a fixed block of wood ; find the 
average resistance offered by the wood. If the block be perfectly free to move 
and weighs 67 lbs., how far would the nail be driven ? 

10. The hammer of a pile driver weighs 5 cwts.; if it falls 5 feet on tO the 
head of a pile weighing 1 ton, and drives it 3 inches into the ground, what is the 
average resistance of the ground, and how much energy is lost in the impact ? 

11. A train weighing 200 tons has a frictional resistance of 12 lbs. per ton. 
An average pull of 7000 lbs. is exerted on it. Starting from rest, what will be 
its velocity in miles per hour at the end of i minute? 

12. The balls of a fly-press weigh 40 lbs., and are moving at 30 feet per 
second. What force will be exerted if the punch travels a distance of } inch ? 

13. The motion of a body of weight 6400 lbs. is opposed by a constant 
frictional resistance of 3400 lbs. It starts from rest under the action of a 
varying force F pounds, whose value is here given at the instants at which the 
body has passed x feet from rest— 

F . . 7100 7000 6900 6600 ^ 6500 6400 6500 6300 6200 

X . 0 5 10 20 2S 
1 

_J 

30 35 40 

What is the speed of the body after it has moved 40 feet, and also 20 feet 
from rest ? 
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I4« The diameter of the thin rim of a fly-wheel is 6 feet, and it weighs4 tons; 
find its kinetic energy when rotating at 240 rcTolutions per minute. 

15. A fly-wheel at rest in frictionlesahall bearings has a torque of 500 pound- 
feet applied to it while it makes 8 reTolutions. If the wheel weighs i ton, what 
is its linear speed at the radius of gyration ? If the radius of gyration is 3 feet, 
what is the speed of the wheel in revolutions per minute ? 

16. A fly-wheel weighs 10,000 lbs., and has a radius of gyration of 3*5 feet. 
It u running at 120 revolutions per minute, and makes 500 revolutions in coming 
to rest. How much work in foot-pounds is absorbed % friction per revolution ? 
/ 17. A fly-wheel weighs 5 tons, and has a radius of gyration of 4 feet. How 
manv foot**pounds of enerj^ would be stored in it when it is making 60 
revolutions per minute ? 1? it is supported in bearings 7 inches diameter, and 
the coefficient of friction is o'oi at all speeds, how much work would be spent 
in friction in 1 revolution, and how many revolutions would the wheel inake 
before coming to rest ? 

18. A fly-wheel making 90 revolutions per minute gives out 27,000 foot¬ 
pounds of energy while the speed falls to 85 revolutions per minute. If the 
radius of gyration of the wheel is 5 feet, what should be its weight ? 
d 19. The fly-wheel of a shearing machine has 180,000 foot-pounds of kinetic 
energy stored in it when its speed is 240 revolutions per minute. What energy 
does it part with during a r^uction of Speed to 200 revolutions per minute? 
If 80 per cent of this energy given out is imparted to the shears during a stroke 
of 2i inches, what is the average force due to this on the blade of the shears ? 

20. A machine stores 10,050 foot-pounds of kinetic energy when the speed 
of its driving pulley rises from 100 to loi revolutions per minute. How much 
kinetic energy would it have stored in it when its driving pulley is making 
100 revolutions per minute ? 

21. A fly-wheel weighing 212 lbs. is carried on a spindle 2 inches diameter. 
A string is wrapped round the spindle to which one end is loosely attached. 
The other end of the string carries a weight of 60 lbs. of which 8 lbs. are 
required to overcome the friction (assumed constant) of the bearings. Starting 
from rest, the weight, pulling the fly-wheel round, falls vertically through 3 feet 
in S seconds. Find the energy stored in the wheel when it makes 100 
revolutions per minute, and its radius of gyration. 

22. A fly-wheel of weight 200 lbs. is carried on a spindle 2 inches diameter. 
A string is wrapped round the spindle as in Question 21 and carries a weight 
of 50 lbs. on the free end. Starting from rest the weight falls vertically through 
3 feet in 6 seconds, and from the time of starting until the wheel stops again it 
makes 210 revolutions. Find the K.E. when making 100 revolutions per 
minute, and also the radius of gyration of the wheel. 
V 23. An engine in starting exerts on the crankshaft for one minute a constant 

turning momerxt of 1500 pound-feet, and there is a uniform resisting moment of 
900 pound-feet. The fly-wheel has a radius of gyration of 4 feet, and weighs 4000 
lbs. Neglecting the inertia of all parts except the fly-wheel, what speed will the 
engine attain after one mixiute from starting ? 



CHAPTER XXIII 

CIRCULAR MOTIONS AND SIMPLE VIBRATIONS 

In Chap. XX. we saw that when a body moved in a curved path 
its acceleration was not in the direction of its motion but was in- 
dined to it; also that the mean acceleration between two points 
on its path was to be found by dividing the change in velocity by 
the time taken, the change in velocity not being a mere arithmetic 
change in speed but the vector change found by drawing vectors to 
scale. 

Motion in a Circle.—A very important kind of motion is 
that of a body which moves in a circular path at constant speed v 
feet per second, and we wish to find its acceleration. Let r be the 
radius in feet of the circle in which its c.g. moves. The time taken 
for a complete circuit will be— 

distance iirr 
-j— = — seconds. 
speed V 

The time taken to travel through one radian of angle or r feet 

of arc will be - seconds and the angular velodty « will be— 

<i) = p radians per second. 

Let us find the change of velocity between two pomts P and Q 
(Fig. 212), say, 60° apart round the circle. Draw the vector qr to 
represent the velocity » at Q on a scale of v feet per second = 3 
inches j add to this the vector rp equal to the speed at P but m 
the opposite direction (this is subtracting the velocity at P from 
that at Q); the vector resultant is qp (from q towards /) and qp re* 
presents the change of velocity between P and Q, or qp represents— 

velocity at Q -• velocity at P. 

Now, measuring qp^ it will be found to be also 3 inches long 
{Pqr is an equilateral triangle) and represents a velocity of v feet 
per second. Hence the change of velocity between P and Q is 
feet per second in a direction qy or SO, where S is midway between 
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P and Q. The time / taken to move from P to Q 6o° apart is J of 
the time taken for a complete circuit or— 

I 27rr irr 
•7 X-= —seconds 
6 r; 32; 

Hence the magnitude of the average acceleration or change of 
velocity per second is— 
change of velocity v v 3 ir 
--i. = - = — — Id.0*056 fcct per scc. per sec. 

time t irr TT r ^ r r 

3^^ 

This is approximately the acceleiation at S midway between P 
and Q, and it is in the direction frojn S towards (9, that is, towards 
the centre of the circle. 

Now find the average acceleration in the same way between 
points P' and Q' (Fig. 213) 30'' apart. Taking v = say, 10 inches, 

an actual drawing (which the reader should make for himself) shows 
to be 5*17 inches representing 0*5172^ feet per second. The 

time taken is half as much as before or — X seconds. 
12 V 6 V 
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Hence the mean acceleration or the approximate acceleration 
at S' is— 

O'Kl'JV II® 
^ ^ = 0*988 — feet per second per second 

Z X - 6 V 

or rather more than in the previous case. If P and Q are taken 
closer together, the mean acceleration will be found slightly higher 
and approaching— 

Zl* 
— feet per second per second 

the nearer together P and Q are taken. 
The acceleraton may also be calculated, for in Fig. 213— 

W = sin ^ = sin 15° 

p'^ = 2f'r' sin 15° representing 211 .sin 15° 

and from the tables (p. 367), sin 15° = 0*2588. Hence— 

/y represents 2 X z' X 0*2588 = 0*517611 
TT r 

which when divided by the time ^ - gives 0*99-. 

The acceleration of a body moving in a circle with uniform 
speed is then at any point— 

^ feet per second per second 

or since v —mr the acceleration may also be written— 

^ feet per second per second. 

Example.—Find the acceleration of a point on the rim of a fly-wheel 
8 feet diameter rotating at 100 revolutions per minute. 

® = 100 X ^ — V*’' radians per second = 10*472 radians 

per second 
Acceleration = 

r_\ 4 

=r (-\ X 4 = 10-470 X 10*472 X 4 

= AX7 feet oer second 

Centrifugal Force.—^We have just seen that a body moving 
in a circle of radius r feet with constant speed v feet per second 

n® 
must have an acceleration — feet per second per second towards the 
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centre of the circle. To give it this acceleration we have seen in 
Chap. XXL that it must be acted upon by a force— 

, . W z;® Wz;* W , 
mass X acceleration = — X — or-or — pounds 

g r gr g ^ 

towards the centre of the circle when W is its weight in pounds and 
o> is its angular velocity in radians per second. This inward force 
acting on the body is called the centripetal force. The reader 
should notice that there is no outward force on the body. If a body 
on the end of a string is turned in a circle by the inward pull of 
the strings the body exerts an outward pull on the strings and the 
string pulls at the.centre of the circle; this outward pull is called 
the centrifugal force. It is not a force on the body although equal 
and opposite to the inward centripetal force on the body. 

The reader will readily appreciate the centrifugal force which a 
body exerts on whatever guides it in a circular path by whirling 
round by hand a stone or weight on the end of a string. If the 
stone becomes detached from the string it will not have acting on 
it the centripetal force to keep it moving in a circular path, and will 
travel along in the direction and at the speed which it had on be¬ 
coming detached; this is the principle of a sling. 

In calculating the centrifugal force — 

W 

g' ^ 

for a body of any shape it is important to notice that this speed v 
and radius r should^be taken as the values at the centre of gravity 
of the body. 

Example i.—A block of cast iron 4 inches by 3 inches by 4 inches 
is fastened to the arm of a wheel with its centre of gravity 3 feet frori 
the axis. The wheel makes 600 revolutions per minute. What is the 
force tending to fracture the fastening.? (One cubic inch of cast iron 
weighs 0*26 lb.) 

The weight W of the block = volume in cubic inches x 0*26 lb. 
= 4 X 3 X 4 X 0*26 
= 12*48 lbs. 

Force on fastening = centrifugal force =-- 

and z/ = 2ir X 3 X = 6o7r = i88*5 feet per second 
Wz/2 _ 12*48 X i88*5 X 188*$ 

hence 
gr 32*2 X 3 

= 4592 lbs. 

Example j.—A pulley is built up in two halves. Each half weighs 
;o lbs., and its centre of gravity is 1*5 feet from the centre of the wheel, 
rh^ two halves are held tc^ether by two bolts wlM)se centres are rs 
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feet from the axis of the wheel. Find the pull in the bolts when the 
pulley makes 360 revolutions per minute. 

Angular velocity » = 2ir x = i2ir = 37*7 radians per second 
W 

Centrifugal force = “ a>V 

= X 377 X 377 X I'S = 3310 lbs. 
32 2 

and this is the pull in the bolts. 
Example 3.—k, pulley weighs 5 cwt. and its centre of gravity is 

J inch from the centre of rotation. Find the pull on the shaft at 500 
revolutions per minute. 

and 

The radius = J X ^ foot, 
2ir X 500 lOOJT j. j 

ai =-7-= —-z— radians per second 
60 6 ^ 

^ ^ 5 X II2 (lQOv\% 
Pull on shaft = — ■ x J x ^ 

= 993 lbs. 

Balancin^r of Machines.—If any pulley or other body weigh¬ 
ing W pounds attached to a rotating shaft has not its centre of 
gravity in the axis of rotation, it will exert on the shaft a centrifugal 
force— 

W ^ 

g ^ r 

W 
or — wV pounds 

g 
where r is the distance of the centre of gravity from the axis in feet^ 
and V is the speed in feet per second of a point at this distance from 
the axis of rotation, or o) is the angular velocity of the shaft in 
radians per second. Such a rotating body is said to be out of 
balance^ and may cause troublesome vibrations. It may be balanced 
by adding other weights called balance weights, which will exert 
a centrifugal force equal and opposite to that of the unbalanced 
body. 

Example 1.—A body weighing i cwt. is bolted to the face plate of a 
lathe with its centre of gravity 18 inches from the axis of rotation. 
What weight placed diametrically opposite at a radius of 15 inches will 
give perfect balance at a speed of 60 revolutions per minute ? 

W 
Centrifugal force of weight out of balance = — 

Here « = x 2ir = 2ir radians per second, and r = = i*5 feet : 
hence— 

X3U T 7 “2 

— «V = —- x (air)* X 1*5 = 205-9 lbs. 
^ 32*2 ' 
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Now, the centrifugal force of the balance weight must be equal to 
205'9 lbs.; hence if W, is the weight required— 

W, „ 
—= 205-9 

W, 
X (2ir)* X — = 205-9 

32*2 ' 12 ^ ’ 

W, - 
_ 205-9 X 32-2 X 12 

(2ir)=* X 15 
= 134-4 lbs. 

Note.—Although in the above solution the centrifugal force has 
been actually calculated, it is really not necessary. Let W be the 
out of balance weight at a radius r feet, W, the balance weight 
required at a radius n feet; w the angular velocity, then since the 
centrifugal forces must be equal and opposite, we have— 

W 

i 
ou-’r'i 

S 
or Wri = which might also be obtained by taking moments 
about the axis of the weights taken perpendicular to the axis 

and Wj = W X —, being independent of the speed 
^2 

Applying this to the above example, we have— 
18 

Wi = ii2X — = 134*4 lbs, as before. 

Example A fly-wheel weighs 10 tons and is out of balance. It is 
balanced by placing a weight of 200 lbs. at 50 inches from the centre. 
How far was the c.g. of the fly-wheel from the axis ? 

Let n be the distance in inches. 
Taking moments about the axis we have— 

10 X 2240 'Ax — 200 X 50 

X 
200 X 50 
10 X 2240 

= 0-446 inch. 

Conical Pendulum .and Centrifug^al Governor.—If a 
weight at the end of a string is whirling in a horizontal circle the 
loaded end will lie below the fixed end of the string, and the string 
will move over a conical surface. If r is the rac^ius of the circle in 
feet, W the weight of the body in pounds, and v its constant speed 
in feet per second, the two forces keeping the body moving in its 
circular path are (Fig. 214)— 

(1) the pull of the string T pounds 
(2) the weight of the body W poimds. 

W 2^ 
The resultant of these must be a force —. — pounds towards the 

g 
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centre of the circle O. This resultant is shown by ac in the triangle 
of forces abc (Fig, 214), where— 

ab be = ac 

and comparing the triangle of forces with the triangle ABO showing 
tlie string, it is evident that— 

ab H e 

bc^^\V~ 'Bb h 

and— 
be BO 

~ AO 

or dividing by W, II 1 

hence— 

II 

. V 
or since the angular velocity w = - 

II 

The height is inversely proportional to the square of the angular 
velocity or to the square of the revolutions per minute. This is 
the principle of the centrifugal governor, in which the rising of a 
rotating ball (decrease of h) with increase of speed is made to 
control the speed of an engine by operating levers to check the 
supply of steam, gas, or 4>il as the case may be. 
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Example i.—Find the height of a governor of the above type when 
running at 120 revolutions per minute. 

120 
= 2ir X = 4» = 12*56 radians per second 

32*2 

= i2-56ir i2-56 = 

Example 3.—What must be the increase in speed of the above 
governor in order for h to decrease J inch ? 

Here h = 2*44 — 0*25 = 2*19 inches = 0*1825 ^oot. 

= 4 

u = = \/^o*^^25 “ radians per second 

_ H*9 X ^ 
2ir 

= 142*2 revolutions per minute, 
hence the speed must increase 142*2 — 120 = 22*2 revolutions per ^ 
minute. 

Reciprocating: Motion.—There is one kind of reciprocating 
or to and frp motion which is very common, specially simple and 
very important. It may be described as follows :— 

Suppose a point Q (Fig, 215) moves in a circular path of radius 
r feet with constant speed v feet per 
second, and another point P is always 
at the foot of the perpendicular PQ 
on the diameter AB. The motion of 
P is then called simple reciprocating 
motion, simple vibration, or simple 
harmonic motion. While Q makes 
one complete circuit P moves along 
the diameter from B to A and back 
again to B; this time is called the 
pefiod of a complete vibration i ^ 
seconds. Fio. 315. 

/ = 
circumference 27rr 

7^ 

or if - = Cl) the angular velocity of Q 

/ = 
27r 

The radius of the circle which is half the travel or stroke of the 



CHAP, xxill] Ctrctilar Motions and Simple Vibrations 309 

motion is called the amplitnde^ We have seen that the acceleration 

of Q moving in the circle would be along QO. If we represent 

this acceleration by the length QO as a vector, QO is equal to the 
sum of two vectors QP + PO, and the vector PO represents the 
horizontal acceleration of Q, which is also the acceleration of P, 
hence the acceleration of P is— 

OQ 
OP 

= X OP 

or «i>V X qq =r o)® X OP in the direction P to O 

when OP = i (foot) the acceleration is ^or feet per seco*.d per 

second, and the acceleration at any other displacei^ent OP feet 
from O is OP times as much. Hence a body having a simple 
vibration or reciprocation has an acceleration proportional to its. 
distance from the middle of its path and directed towards that 
point. 

*iP‘ 
To give a body of weight W pounds this acceleration ^ X OP 

a force— 
W 

mass X acceleration =-5 X OP 
9 ^ 

is necessary, and a body will have simple harmonic motion if the 
force acting upon it is proportional to its distance from the middle 
of its path. 

Notice that the time of vibration— 

27r 7) 
/ = - or 27r --- 

a) T 

and - p = /^acceleration per foot of displacement 

4o- 

/ = 
27r 

V acceleration per foot of displacement 

or since force = mass x acceleration, 

mass 
force per foot of displacement 

^ forei:^ per foot of displacem^t 
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If there are n vibrations per second the time of one vibration— 

t = or « = - 

Bodies attached to springs or elastic supports have a simple motion 
of vibration, and the recipro¬ 
cating motion of a steam 
engine piston is nearly of the 
same kind unless the con¬ 
necting rod is very short. 

Fig. 

, . 7/2 OP 
acceleration = - x —. 

r r 

Example i. — A crank 15 
inches long is driven by a 
piston and makes 140 revolu¬ 
tions per minute. Find the 
acceleration of the piston when 
it is 3^ inches from the end 
of its stroke, taking the motion 
as simple harmonic motion. 

Fig. 216 shows the position 
of the piston P 3J inches from 
one end of the stroke. The 
distance OP is 15 — = ujt 
inches and 

Mow 

and 

-37 m 2ir X -- X = 18*33 feet per second 
12 DO ^ 

OP 11*5 , 15 ^ c ^ 
— = —~ and r = — = 1*25 feet 
r 15 12 

acceleration = x —— = 206 feet per second per second. 
1*25 15 

Example 2.—A weight of 6 lbs. is suspended on the end of a spring 
which stretches i inch for each 10 lbs. of load. Find the number of 
vibrations it will make per minute when disturbed from rest. 

Force per foot of displacement = 12 x 10 = 120 lbs. 

/ = 27r 

Vibrations per minute = 

W 

force per loot ^ displacement 

_ 

—-- = 0*2475 sec* 
120 ^ 32*2 X 20 

0*2475 
= 242*4 
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Experiment.—Hang a certain weight on the free end of a spring 
like the one shown in Fig. 154, and observe the time taken to make, say, 
50 complete oscillations. One-fiftieth of this time will therefore be the 
time of one oscillation. Measure the force required to stretch the 
spring I foot as on p. 192, Chap. XV. Repeat the experiment for 
different weights hung on the spring, and compare the observed time of 
oscillation with the time calculated as above. The results obtained in 
a particular test are tabulated below. The force per foot of displace¬ 
ment was found to be 120 lbs., and it will be observed how closely the 
two values of the time of oscillation agree. 

Load (pounds). 
Observed time of one 
oscillation (seconds). 

Calculated time (seconds). 

/ 
/ = 2ir force per foot of displacement 

9 0*320 0*301 

II 0*330 0*337 
*3 0*360 0*364 

15 0*390 0*391 

17 0*420 0*417 

19 0*440 0*441 
21 0-465 0*464 

23 0-484 0*485 

25 0-500 0*505 > 

27 0-520 0*525 

The Pendulum*—If a small weight is suspended from O 

o 

(Fig, 217) by a long string OP, / feet long, and swings as a pendulum 
in a small arc PAF, its acceleration at P along PA is almost exactly 
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proportional to the distance AP from A. The forces acting on the 
small body are the pull of the string and its own weight, and we^ 
have seen that in travelling down a slope the acceleration of 
gravity is— 

^ X sin 0 
Now if 0 is small (for a long string and small movement it 

will be) 
AP \P 
^ or -- = sin 0 very nearly. 

AP 
Hence acceleration ^ g X approximately, at a distance AP 

which is ^ per foot of displacement from A, and the time of vibration— 

V acceleration per foot of displacement from A 
27r n 

'Vf 
Example.-rFind the length of a simple pendulum to beat seconds. 

One beat is half a vibration, hence the time of vibration will be 2 
seconds, and— 

7 . 2* X 32'2 _32’2 
♦ — , « — 1 »* 3*26 feet. 
^ “ 4 X IT* iri* 

Experiment.—Determine the periods of vibration corresponding to 
at least three different lengths of a simple pendulum. To do this 
accurately the time to make loo complete vibrations should be 
observed, the whole time taken being divided by loo to obtain the 
time of one complete vibration (/). Then plot a curve connecting 
and /, and using the relation— 

V ^ g 
determine the value ofin feet per second per second. The follow^ 
iag results were obtained with three different lengths of pendulum :— 

I’lO 1*21 32*6 

*•57 32*1 
1*93 3-M 32*2 

-- 
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The reader should plot and / and the curve will be found to 
be a straight line, showing that the square of the period is directly 
proportional to the length of the pendulum. 

Examples XXIII. 

1. The stroke of a steam engine is 2 feet 6 inches, and it runs at 120 
Tcvolutions per minute. Find the acceleration of the crank pin. 

2. A stone weighing 2 lbs. is whirled in a horizontal circle, making 60 
revolutions per minute, at the end of a string 3 feet long. Find the pull in the 
string. 

3. The ont-of-balance weight on an engine crankshaft is 100 lbs. at a radius 
of 9 inches. What will be the outward pull on the bearings due to centrifugal 
force when the engine makes 300 revolutions per minute ? 

4. A steam turbine makes 20,000 revolutions per minute. Each ulade 
weighs ^ lb. and its c.g. is 15 inches from the axis of rotation. Calculate the 
centrifugal force due to each blade. 

5. A fly-wheel weighs lo tons and its c.g. is ^ inch from the centre of the 
shaft. Find the pull on the shaft at 240 revolutions per minute. If the shaft 
is 6 inches diameter, and the coefficient of friction o*oi, how many II.P. will be 
wasted due to the wheel being out of balance ? 

6. A body weighing 56 lbs. is bolted to the face plate of a lathe with its c.g. 
8 inches from the axis of rotation. What weight placed diametrically opposite 
at a radius of 10 inches will give perfect balance at a speed of 100 revolutions 
per minute? 

7. What weight at a radius of 2 feet will be required to balance the fly-wheel 
of Question 5 ? 

8. Calculate the height of a common unloaded governor when making 60 
revolutions per minute. If the speed falls to 58 revolutions per minute, what 
will be the change in height ? 

9. Part of a machine has a simple reciprocating motion making 200 complete 
vibrations in one minute. Its stroke is 9 inches, find the acceleration when 
3 inches from mid stroke. 

10. The reciprocating parts of an engine of 2-feet stroke weigh 300 lbs. If 
the engine runs at 240 revolutions per minute, what is the accelerating force at 
the beginning of the stroke, the motion being simple harmonic ? 

11. A light helical spring is found to stretch 0*4 inch w'hen an axial load 
of 4 lbs. is hung on it. How many vibrations per minute will this spring make 
when carrying a weight of 15 lbs. ? 

12. How many complete vibrations per minute will be made by a pendulum 
3 feet long? 32-2. 

13. A pendulum makes 3000 beats per hour at the equator, and 30H per 
hour near the pole. Compare the values of^at the two places. 



CHAPTER XXIV 

VARIOUS MOTIONS 

Crank and Connectinj^ Rod.—The crank and cotwiecting rod is 
a simple link motion for converting a reciprocating movement into 
a rotary movement or vice versa. The crank OB (Fig. 218) rotates 
about the fixed centre O, and the end A of the connecting rod is 
constrained to move in guides backwards and forwards along the 
line AO. In the case of steam, gas or oil engines, the reciprocating 
motion of A is converted into the rotary motion of the crank OB; * 

in the shaping machine, and several forms of pumps, the crank OB 
derives its rotary motion from a source of power, and drives A 
through the connecting rod AB, and so produces the reciprocating 
motion of A. 

The end A of the connecting rod reciprocates along AO, while 
the other end B is constrained to move in a circle of radius OB 
known as the crank pin circle. The path traced out in space of 
any other point such as D in the connecting rod may easily be 
drawn as follows— 

Suppose the length of the connecting rod is three times the 
length of the crank, the crank being, say, i foot long and the point 
D is I foot from the end A. Draw in the crank pin circle to a 
scale of, say, i inch to 6 inches. Divide it into 12 equal parts as 
shown in Fig. 2x9, and draw in position the connecting rod for 
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each position of the crank, marking the point D in each case 2 
inches from the end A. Join the points so obtained and we have the 
oval shown. This is known as the locus of the point D. 

Curve of Piston Displacement.—The end A of the con¬ 
necting rod is attached to the piston and reciprocates with it, hence 

Fig. 219. 

if we have the position of A for each of the above positions of the 
crank, we also have the position of the piston from the end of the 
stroke. For instance, when the crank pin B is at o (Fig. 219), the 
piston is at the end of its stroke at A, when the crank has turned 
through 30° the piston is at i, when the crank angle is 90® the piston 
is at 3, and so on. If, then, we draw a base line CD (Fig. 220), to 

ao 90 K)***uo itfo p tio MO ooo aso mo 
«oo 

CnuihAngtt 

Fig. *20.—Piston displacement curve. 

represent the stroke of 2 feet and divide it into 6 equal parts corre¬ 
sponding to the crank angles of 30®, 60®, 90°, 120®, 150®, we can draw 
the curve of piston displacement on a crank angle base. Erect per¬ 
pendiculars from these points and mark off on them the distance the 
piston is from the end of the stroke, ix. on the perpendicular for 
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30® make the distance equal to length A i in Fig. 219, on that for 
60® mark off the distance A2, on that for 90®, mark off the distance 
A3>and so on, join these points by a smooth curve and we have the 

curve shown in Fig. 
220, whose ordinates 
represent the displace¬ 
ment of the piston from 
the end of its stroke 
for any crank angle 
from o® to 180®, />. 
half a revolution. Re¬ 
peat the construction 

for the other half of the revolution from 180® to 360®. If, now, 
we wish to find the position of the piston when the crank has turned 
through 105® we measure the ordinate at 105®; it will be found to 
be 1*4 feet from the end A of the stroke. 

The most usual way of drawing the curve of piston displacement 
is to plot the displacements from mid stroke as ordinates. Dividing < 
the crank pin circle into equal divisions of 30® we proceed as 
follows: Draw in the crank and connecting rod for, say, a crank 
angle of 60® (Fig 221). With centre A and radius AB (the length 
of the connecting rod) draw the arc BP to cut the line of stroke 
AO in point P. Then when the crank is at B the piston is OP 
from the middle of its stroke. Repeat this construction for each of 
the crank angles from o® to 360®. Then on a crank angle base 
plot the curve shown in Fig. 222, whose ordinates represent the 

Fig. aaa.x-Piston dUpUcement from mid-stroke. 

distance of the piston from mid^stroke. At 105® this distance will 
be found to be 0*4 foot or i’4 feet from the left-hand end of the 
stroke as above. 

Curve of Piston Velocity.—Suppose the above engine runs 
,at a speed of 100 revolutions per minute, then— 
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revolutions per second = 
" angle turned through per second = ^ X 360^ = 600® 

and to turn through an angle of 30° requires ^ second, or 15° in 
^ second. From the curve (Fig. 222) we find that while the crank 
moves 15°, from 30® to 45^ the piston moves ©•206 foot, hence the 
average velocity during this time is— 

o’2o6 
JL 
40 

8*24 feet per second at 37^°. the middle of the interval 

The velocity of the crank pin = 
circumference of circle 

time 

27r X 100 

60 
10*47 feet per second 

and the average velocity ratio of piston to crank pin from 30° to 45° 
is— 

8*24 

10*47 
0787 

When the crank turns from 75° to 90° the piston moves o’274 
foot, and the average velocity of the piston is— 

0774 
= io'96 feet per second (at 82^°) 

= I’04 

and the average velocity ratio of piston to crank pin is— 

io’96 
10-47 

When the crank turns from 120° to 135° the piston moves 
o-i66 foot, and its average velocity is— 

= 6*64 fefet per second (at 127^°) 

and the average velocity ratio of piston to crank pin is- 

6-64 
10-47 

= 0-635 

Proceeding in this way for equal intervals of 15° all round the 
prank pin circle the reader should plot for himself the piston 
velocity curve on a base of crank angles. 

The aver^^e velocity of the piston during a whole stroke, called 
in practice the piston speed of &e engine, will be— 

length of stroke 
time of stroke 
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Th^re are two strokes every revolution, hence the time per 
stroke is— 

6o 

TOO X 2 
= ©•3 second 

2 
hence piston speed = — = 6*66 feet per second 

® 3 ^ 

or 6*66 X 60 = 400 feet per minute. 

Quick Return Motion.—Fig. 223 shows a quick return 
motion known as the crank and slotted lever. The crank OC rotates 
with uniform speed, and the block C sliding in the slotted lever gives 

Fig. 223.—Quick return motion. 

to it an oscillating motion about the fixed centre A. A connecting 
rod attached to the end of the slotted lever drives the ram of, say, 
a shaping machine. The two extreme positions of the lever are 
ab and ac^ and the ram (carrying the cutting tool) of the machine 
makes a cutting stroke whilst the crank C travels round the arc bdc. 
The return stroke of the ram is made whilst the crank turns 
through the smaller arc ceb^ and since the angular velocity of the 
crank is uniform it will take longer to move through bdc than ceb. 
The return stroke therefore will be made ir less time than the 
cutting stroke. 

Fig. 223 is drawn for a mechanism in which the crank OC is 2 
inches long, and the distance OA between the centre of the crank 
shaft and fiilcrum of the oscillating* lever is 6 inches. The angle 
bbc measures 142®, therefore during the cutting stroke along the arc 
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bdc the crank turns through 360 — 142 = 218, and during the 
return stroke it turns through 142. Suppose the crank makes 60 
revolutions per minute, then it makes i revolution in i second. 

Fraction of a revolution during cutting stroke ^ 
and time of cutting stroke = X i == o*6t second. 

Fraction of a revolution during return stroke = ^ 
and time of return stroke =: ^ = 0*39 second, 

or, in other words, the average speed of the ram during the return 
stroke is or 1-57 times the 
speed during the cutting stroke, or 
the time of cutting is to the time of 
return as 1*57 is to i, ,00 

By drawing in the position of 
the crank and lever for, say, every 
30*^ displacement of the crank from vo 
mid position, we can measure the 
angular displacement of the lever 
from its mid position as in Fig. 
224. These values are tabulated 
below. 

The curve of angular displace¬ 
ment of lever is shown plotted on 
a crank angle base in Fig. 225, 

Since the crank makes 60 revo¬ 
lutions per minute, or turns 360® in 
I second, we can find approxi¬ 
mately the angular velocity of the 
lever when in mid stroke for both 
cutting and return. During the 
time the crank OC, Fig. 224, turns 
from 10® on one side to on the 
other side of the mid-stroke position, 
i.e. from 350° to 10®, it will be found that the lever swings about A 
through 2*25^ on each side of its mid position, or at the mid 
position during the cutting stroke the crank turns 20® while the 
lever turns 4*5 . 

Angular disi>Iaceincnt 
of crank. 

Angular displacement 
of lever. 

o* 30- 6o* 9® xao* 150* x8o" kio* 240* 970* 300* 330* 

0 7*5 13*8 x8*9 19*0 xs*8 0 12*8 X9*o x8^ S3*8 
1 

7’S 

Now, time for crank to turn 20° s= ^ sc ^ second 
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hence, angular velocity of lever in mid position = 4*5 x 18® per 
second 

= 4*5 X 18 X =1*41 radians per second approximately. 

Also in the return stroke during the time the crank turns from 
to 190° in Fig. 224, it will be found that the lever swings 

through 9*6^ about A; 
Hence, during the return stroke the angular velocity 

of the lever when in its mid position is about 

9*6 X 18° per second 

= 9-6 X 18 X ^ 

= 3*01 radians per second 

Fig. 22s.--Curve of an^cular displacements of slotted lever. 

Reversing and Quick Return Motion by Belting.—In 
Chap X., Fig. 98, the ordinary reversing motion by belting has 
been described. When a quick return is desired, the belt which 
gives the return motion works on a smaller pulley than that which 
gives the forward motion, as will be seen from Fig, 226. The 
machine shaft has four pulleys on it, the pulley C and D riding 
loosely on the shaft. When driving forward the belts are as shown 
in Fig, 226, the open belt being on the fixed pulley B and drives 
the machine shaft in a clockwise direction. The crossed belt runs 
on the loose pulley D. For the return stroke the open belt is 
pushed on to the loose pulley C by the fork K, and the crossed 
belt is pushed on to the pulley E by the fork H, The pulley E is 
keyed to the machine shaft, and therefore the machine is driven in 
a contra*clockwise direction at a higher speed. 

Toggle Joint.—This joint has already bien described in Chap. 
III., Fig. 48, It is reproduced diagrammatically in Fig, 227. 
Suppose the point A is movii)g in the direction of the arrow with 
uniform speed. Draw the mechanism in different positions so that 
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for each position of A we have the corresponding positions of B, 
taking care that the different positions of A are equal distances 
apart. In Fig. 227 motion commences with the links inclined 30® 
to the vertical, the links being each 4 inches long. The* positions 
of A are taken such that the inclination of the links decreases 5^ 
each time, being numbered i, 2, 3, etc., the corresponding positions 
of B having the same number. Fig. 228 shows the time displace¬ 
ment curve of A which is a straight line, the velocity being uniform. 
The other line shows the time-displacement of B, the* equal 
intervals of time between successive positions being taken as 

B 

Fig.' aa6.—Reversing and quick return by Veiling. 

second. It should be noticea that the movement of B during each 
interval of ^ second becomes less and less as the inclination of the 
links to the vertical decreases, or, in other words, if the velocity of 
A is untform, the velocity of B keeps decreasing as the inclination 
of the links to the vertical decreases, and the force exerted at B 
increases (see Fig. 49). 

Watt's Straight Line Motion.—In its simplest form this 
motion consists of two links, AB and DC (Fig. 229), of equal length, 
connected at B and C by another link in the middle of which a 
point P will move over an approximately straight line for a limited 
movement of AB and DC. The levers AB and DC turn about 
fixed centres at A and D respectively, and the reader should draw 
in the mechanism for all i>ossible positions of .the links, and plot the 
locus of the point P. It will be found to be a figure of eighty as in 

M 
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Fig. 229. When used in practice the motion has only a small 
movement of the levers AB and DC, so that the point P traces 
out an approximate straight line. 

Fig. 227.—Position diagram for Fig. 229.—Watt's straight-line motion, 
toggle joint. 

If the links AB and DC are unequal, the point P is so cliosen 
chat— 

PB ‘ DC 

in which case P moves in the best straight line for a limited move¬ 
ment of AB and DC. 
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Ratchets.—A continuous motion is transmitted from one shaft 
to another by gear wheels as shown in Chap. X. If an intermittent 
motion is required, ratchet wheels may be used. The ratchet wheel 
A shown in Fig. 230 is keyed to a spindle B, and is provided with 
saw-shaped teeth; the pawl C is pivoted at the end of a lever D, 
which rides loosely on the spindle B or on another which is parallel 
to the spindle B. The lever D has a vibrating motion imparted to 
it, and when it vibrates from, say, right to left, the pawl pushes the 
ratchet wheel through a certain angle in a contra-clockwise direc¬ 
tion. The pawl is kept in contact with the ratchet wheel either by 
its own weight or by springs. On the return of the lever D from 
left to right, the pawl slides over the teeth of the wheel, the wheel 

remaining at rest. To prevent the wheel reversing during the 
return stroke of the lever D a catch F turning on a fixed axis G is 
sometimes provided. During the forward stroke of the lever D 
from right to left, the ratchet wheel slides under the catch F. 

To obtain a reversal of the motion of the ratchet wheel, using 
a single pawl, the teeth of the wheel are made of ordinary shape 
(Fig. 231), and the pawl is thrown over to occupy the dotted posi¬ 
tion, in which position the direction of movement of the wheel 
would be clockwise. 

Example.—A ratchet wheel has 30 teeth, and the stroke of the lever 
carrying the pawl is such that the pawl moves over two teeth on its 
return stroke. The ratchet wheel is keyed to a screw of J inch pitch, 
which gives the feed motion to the tool in a lathe. How many strokes 
must the lever make to give a feed of inch to the tool ? 

One stroke of the lever moves the wheel forward 2 teeth = revo¬ 
lution. 
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To give a feed of J inch, the screw, and therefore the ratchet wheel, 
must make ^ -f- J = 2 revolutions. 

Hence, to turn the ratchet wheel through 2 revolutions the lever must 
make 

2 ^ = 30 forward strokes. 

Cams.—Cams are used in machines for converting a rotary 
motion into any desired reciprocating motion. The plate cam 

(Fig. 232) has a groove ot the required shape cut in one face of a 
plate, and as the plate rotates, a reciprocating motion is given to a 
hardened steel roller which works in the groove. In the edge cam 
the roller works on the curved edge of the cam (Fig. 233). We 
proceed to work out the correct shape of the groove or edge for 
one or two cases. 

Example t.—Design a plate cam to give a uniform reciprocating 
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motion of i’8 inches stroke^ the diameter of the roller being J inch, and 
the least distance between the centres of roller and camshaft i J inches. 

We first draw the centre of the groove (shown dotted in Fig. 232) as 
follows 

From A the centre of the camshaft mark off Ao equal to inches^ 
make 06 equal to the stroke reouired, namely 1*8 inches ; divide 06 into, 
say, six parts at i, 2, 2, 4, 5. With centre A and any convenient radius 
describe the dotted circle dividing it into I2 equal parts, 6 on each side 
of the line A6. Draw the radii Ai, A2, A3, etc., and produce them as 
shown. With centre A and radius Ai draw an arc to cut the radial line 

Fig. a33.—Edg« oun. 

Ai ; with the same centre and raditu Aa draw an arc to cut the line A2, 
and so on. Join the points so obtained by a smooth curve ; this curve 
(shown dott^) will he the centre line of the groove required. The 
width of the groove must be the same as the diameter of the roller which 
has'to work in it. Draw^ therefore, a series of circles of diameter equal 
to that of the roller, in this case i inch, with their centres on this curve ; 
parallel curves inside and outside the centre line and touching these 
circles will give the groove required. 

As the cam rotates at uniform speed about the centre A, the roller 
will reciprocate backwards and forwards along the line A6 with uniform 
speed. While the cam turns through 30®, e,e. the angle oAi, the roller 
moves a distance 01, for the next 30^ (angle 1A2) the ro^r moves 
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through 12, and so on, for equal angles, and therefore equal times, the 

roller moves equal distances, in this example ^ or 0*3 inch for every 

30° rotation of the cam. lii one-half of a revolution the roller moves 
one stroke from o to 6, and in the other half of the same revolution it 
returns to o again. 

Example a.—Design an edge cam to give a uniform rise of i inch 
during ^ of revolution, then a rest for of a revolution followed by a 
uniform fall of i inch during the remainder of the revolution. Take 
the diameter of the roller as i inch. 

With centre A and any convenient radius, draw a circle and divide 
it into 3 equal parts of 120® (Fig. 233). Set out the curve for the centre 
of the roller shown dotted, the construction lines lor which are shown 
in the figure, 08 being the lift of i inch. Then draw the shape of the 
cam as shown. While the cam turns through the angle oAB of a 
revolution) a uniform rise 08 (i inch) is given to the roller ; then follows 
a period of rest through the angle BAG (J of a revolution), and a 
uniform fall 80 (i inch) for the remaining \ ot the revolution. 

Examples XXIV. 

1. In the crank and connecting rod mechanism shown in Fig. 218, the crank 
is 9 inches long and the connecting rod 3 feet long. How far is the piston from 
the middle of its stroke when the crank angle is (i) 30® ; (2) 90®; (3) 135® ? 

2. If the crank in Question i is rotating at 120 revolutions per minute, what 
is the approximate velocity of the piston for each of the crank angles given ? 

3. In the quick return motion shown in Fig. 223, the crank OC is 4 inches 
long and the distance O A between the centre of the crank shaft and the fulcrum 
of the oscillating lever is 10 inches. The crank makes 120 revolutions per 
minute. How many times greater is the average speed of the ram during the 
return stroke than during the cutting stroke ? 

4. Find the angular velocity of the lever of Question 3 when in its mid 
position. 

5. A ratchet wheel has 36 teeth, and the stroke of the lever carrying the 
pawl is such that the pawl moves over 3 teeth on its return stroke. The ratchet 
wheel is keyed to a screw of J inch pitch which gives the feed motion to the 
tool in the lathe. How many strokes must the lever make to give a feed of 
1 inch to the tool ? 

6. Draw a cam groove to work with a roller j inch diameter, the rise and 
fall of the cam roller to be uniform. Take the minimum distance of the centre 
of the roller from the centre of rotation as 2 inches, and the maximum distance 
4} inches. 

7. Draw an edge cam to give a uniform rise of J in for J of a revolution, 
then a period of rest for \ revolution, followed by a uniform fall for the remainder 
of the revolution ; roller } inch diameter. 

8. Draw an edge cam to give a uniform rise of ij inches for J revolution 
followed by a imiform fall during the remainder of the revolution. 



CHAPTER XXV 

HYDRAULICS 

Fluids.—Matter may be divided into three kinds: (i) Solid; 
(2) Liquid; and (3) Gaseous (including vapours). Matte, in the 
and or 3rd state is called fluid. 'I'he great difference between a 
fluid and a solid is, that the particles of a solid body adhere to¬ 
gether, and are capable of offering considerable resistance to any 
change of shape of the body; particles of a fluid do not, but move 
freely over one another. Consequently, a quantity of fluid matter 
cannot maintain its shape, except by the help of a solid vessel to 
hold it. Liquids differ from gaseous matter in that the particles 
are in contact one with another, while the particles of a gas may be 
very much further apart. A gas allowed to enter an empty vessel 
expands throughout the vessel, Ailing it completely; while a liquid 
lies in the lower portion occupying the same volume which it did 
before entry. Our consideration at present is conAned to liquids, 
and mainly to water. 

Although liquids change shape easily, they do possess some resist¬ 
ance to rapid change of shape, and this property is called viscosity. 
This resistance is a tangential or shearing resistance, and is pro¬ 
portional to the speed of sliding motion of one particle over another. 
At zero speed the resistance to sliding is zero; that is, the force 
between two particles of a liquid at rest is entirely perpendicular to 
their surfaces in contact or wholly normal. Further, fluids cannot 
withstand tension, so the only kind of force which can be trans¬ 
mitted by the particles of a fluid at rest is a pressure perpendicular 
to the particles. Similarly, the only force which can exist between 
a liquid at rest and the walls of the vessel containing it, is perpen¬ 
dicular to the walls. 

Fluid Pressure.—The intensity of pressure within a fluid or 
against the walls of a containing vessel is measured in pounds per 
square inch or per square foot. 

At a given depth in a liquid at rest, the intensity of pressure is 
the same in all directions. This is not very easily showgi experi¬ 
mentally in a simple way j it is a most important propert^f liquids 
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(and gases), and may be proved to follow from the fact that the 
pressure is everywhere normal. We shall see shortly that there is 
a different pressure at different depths in a liquid, but in water under 
high pressure in hydraulic machinery this is negligible, and the 
pressure is practically the same in all directions and in all connected 
parts. The principle may be further explained diagrammatically as 
follows .*— 

If two frictionless water-tight pistons or plungers both com- 
mtmicate with the same vessel of water (Fig. 234), the force on each 
will be proportional to the area of section of the plungers; that is, 
the pressure per square inch is the same on each. Thus, if one 
plung«r is 40 square inches in area, and the total outward pressure 
or force on it is 20 tons, the pressure of the water is ^ ton per 

20T&n.9. 

VtG. 334. 

square inch. If the sectional area of the other plunger is 5 square 
inches, the total outward force on it will be 5 x = 2*5 tons. These 
forces are represented in Fig. 234 by the dead loads of 20 tons and 
5 tons, balanced by the water pressure. The difficulty of showing 
this point experimentally, as represented in Fig. 234, is that it is 
not possible to produce frictionless plungers. 

Hydraulic Pressure Machines.—Hydraulic power is trans¬ 
mitted by forcing water at high pressures along pipes from a central 
pumping station. It is particularly useful where the demand for 
power is intermittent (there being no loss of heat energy when the 
machinery is not working), and where great forces have to be 
exerted slowly, and through short distances. 

Hydraulic Press.—The construction of a hydraulic press is 
shown in Fig. 235, and the method of working is as follows■ 

On the upward stroke of the lever L the plunger A is raised. 
The valve B is raised, and water flows past it to follow the plunger. 
On the downward stroke of L, B closes, and water is forced out 
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along the pipe C into the ram cylinder D, pushing up the lam E. 
The top of the ram forms a platform, F, on which the material to 
be pressed is placed. Columns K carry another fixed jdatform G, 

J'lG. «35.—Hydraulic ptea&. 

and as F is forced upwards^ the material is compressed between F 
prevent water leaking out of the ram cylinder D, the 

leather ring H is inserted in an annular recess, as shown. The 
greater the pressure of the water (and therefore the upward force 

Fig. 336.>-<Packing for hydraulic prassura. 

on F), the tighter is the joint formed by H, as will be seen by 
referring to Fig. 236, which shows an enli^ed view of this water¬ 
tight joint. The cup leather H is placed in, a recess, R (Fig. 236), 
which is turned in the ram cylinder D in such a way that the water 

M 2 
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under pressure can pass into the annular space inside the leather. 
The result is, that the greater the water pressure, the tighter the 
leather is pressed against the ram E, and the better the joint. 

As the material is compressed more and more between F and G 
(Fig. 235), the pressure of the water rises, and to prevent damage 
to the machine, a safety-valve, M, is fitted. This valve (which is 
similar to the lever safety-valve already described in Chap. III.) 
opens when the pressure rises to a dangerous height, and allows 
water to escape, and so relieves the pressure. When the material 
is compressed as much as is desired, the ram E is allowed to return 
again by its own weight, by opening the valve at O, and so allowing 
water to escape. 

The base of the ram cylinder D is made hemispherical because 
that shape is the strongest to resist great internal pressures. 

Example i.—In a hydraulic press an effort of 40 lbs. is applied to 
the lever 28 inches from its fulcrum. The plunger is 2 inches from the 
fulcrum, and its diameter is i inch. The ram is 10 inches diameter. 
Find the pressure exerted on the ram if the efficiency of the machine at 
this load is 85 per cent. 

Force exerted on the plunger by the lever = 40 x = 560 lbs. 

Area of plunger = 
4 

= 07854 square inch. 

Area of ram = ^ x lo* = 78 54 square inches. 

Neglecting friction,! _ 5^ 
nressure of water] 0*78 

Ihc. __:_'L 

Total pressure on ram = this water pressure (pounds per square inch^ 
X area of ram (square inches) x efficiency, or 

^ 60 
Total pressure = x 78*54 x 0 85 = 47,600 lbs., or 21*25 tons. 

Example —In a hydraulic press the leverage of the handle is 12 
to I, and the diameter of the plunger is i inch. What must be the 
diameter of the ram if a force of 30 lbs. on the end of the lever will raise 
a load of 15 tons on the ram? Take the efficiency of the press as 90 
per cent. 

Let d = diametex of ram required. 

Neglecting friction, water pressure = plung^ _ jo x 12 
^ area of plunger 07854 

Load lifted = this water pressure x area of ram x efficiency 
s= 15 X 2240 lbs. 
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078^ ^ ^‘7^54 X ^ X = 15 X 2240 

324^ = 15 X 2240 

V 324 

Example 3.—A load of 8 tons is lifted by a hydraulic press when 
an effort of 15 lbs. is applied on the end of the handle whose leverage is 
14 to I. Assuming an efficiency of 90 per cent., find the proportion 
between the diameter of the ram and the plunger. 

Force on plunger = 15 x 14 = 210 lbs. 

Let d - diameter of plunger in inches, and D the diameter of the 
ram in inches. 

Water pressure neglecting friction = - lbs. pee square inch. 

Load lifted = this water pressure x area of ram x efficiency. 

^ 210 

^ ^ 07854D* X 0-9 

^ X 210 X 0 9 = 8 X 2240 

_ 3 X 2240 

^ 189 

97 
p _ /8 X 2240 

d ~ 'v 189 

the diameter of the ram must be 97 times the diameter of the 
plunger. 

Hydraulic Jack*—Fig. 237 shows a sectional view of a 
hydraulic jack made by Messrs. I'angye Ltd., of Birmingham. The 
ram O fitted with the ram leather N is stationary, whilst the cylinder 
M together with the remainder of the machine is raised with th^ 
load. The action of the machine is as follows : On iitting the 
pump plunger D by means of the hand lever R, after tightening 
the lowering screw L, water is drawn from the cistern G through 
the suction valve I, and on the return of 1) this water is forced out 
through the delivery valve J into the cylinder M above the ram and 
so raises the load which usually will be supported on the top of the 
cistern A. To lower the cylinder the lowering screw is slackened; 
the cylinder then descends by its own weight, the water above the 
ram leather N escaping back to the cistern G. The screw C is for 
charging the cistern with water, and B for admitting air into the 
space above the water in the cistern G- The load may also be 
lifted from the claw on the bottom of the cylinder M, but if this is 
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the case, the maximum load which can be lifted from A cannot be 

11 
11 lifted from the claw owing to the 
11 tendency to bend the ram of the 
11 jack caused by the load being on 
11 one side of the centre. 

Fig. 238 shows another type 
of hydraulic jack made by Messrs. 
Tangye, which is much shorter 
than the one illustrated in Fig. 
237. The method of working is 
the same as for the jack in Fig. 
237. The handle for working is 

I slipped on to the square end of 
I the shaft F and the water is forced 
\ down underneath the ram, so rais- 
\ ing the ram together with the 

p load. The ram leather N is held 
^ in position by the ram stopper S, 
p and with this exception all corre- 
p spending parts are marked with 
P the same letter as in Fig. 237. 
^ The Hydraulic Accumula* 
^ tor is a device used in connection 
i with hydraulic machines for the 
I storing of energy. It consists of 
I y** a long vertical cylinder A, Fig. 
m 239, provided with a ram, B, which 
^ is weighted with a number of cast- 
pj-Q iron weights C to give the re- 
^ quired pressure, usually from 700 

to 1000 lbs. per square inch. 
Pumps force water into the cylin- 

^ . , der through the pipe D, and raise 
Fig 237.—TaDgyes y rau xc i ingjac . against the resistance 

offered by the weights C. When the ram is at the top of its stroke 
the crosshead £, to which the weights C are attached by the bolts 
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XT 1 r • .L- ^ load on ram Neglecting friction, water pressure = -?- 
® ® » r ^Yea, of ram 

6o X 2240 ^ , 
= -:-= 700 lbs. per square inch. 

Hydraulic Lift.—Fig. 240 shows diagrammatically a common 
form of hydraulic lift. The cage C of the lift is fixed directly W 

the top of the ram B 
which works in the 
hydraulic cylinder A. 
Water entering thecylin- 
der A raises the ram and 
therefore the cage. In 
order that the water may 
only have to lift a load 
approximately equal to 
the contents of the cage, 
the weight of the cage is 
balanced by the weight 
E, a wire rope, D, being 
attached to the roof of 
the cage, as shown. 

When the ram is at 
the bottom of its stroke 
it is almost completely 
surrounded with water; 
but as it rises, less of it 
is immersed in the water 
and therefore the up¬ 
ward force exerted on 
the ram by the water is 
less (pp, 337 and 340). 
For instance, when the 
ram rises 34 feet, the 
lifting force on it will 
diminish by 147 lbs. per 

square inch. Hence in order to keep the lifting force on the ram 
constant the pressure of the water admitted to the cylinder should be 
increased at the rate of 147 lbs. per square inch for each 34 feet 
of lift. In actual practice the water is supplied at constant pressure, 
and to keep the lifting force as uniform as possible the balance 
weight E is fitted. The lower the water pressure the greater is the 
importance of the balance weight, and the higher the pressure the 
less is its importance, and in many cases it is omitted altogether. 
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Example.—Neglecting friction, what is the greatest load (in¬ 
cluding the weight of ram and cage) that can be lifted by a hydraulic 
lift whose ram is 5 inches diameter and greatest lift 68 feet, the pressure 
of the water supplied being 700 lbs. per square 
inch ? I 

Total lifting force on the 4 
ram when at the bottom j 4 ^ S’* ^ 7oc> '&■ i 

= 13,744 lbs. 

Loss of lifting force per square inch when the 
ram is raised 68 feet = 147 x || 

= 29*4 lbs. per square inch. 

Total loss 29*4 X “ X 5 

Greatest load lifted = 13,744 

: 52 r:. 57; lbs. 

577 = 13,167 lbs. 

N.B.—If the pressure of the water supply ^ 
were only 100 lbs. per square inch, the lifting 4 
force on the ram when at the bottom of its stroke ^ 
would be— 

- X 5* X 100 = 1963 lbs. 
4 

This would be reduced by the same p 
amount, viz. 577 lbs., when the ram is raised p 
68 feet, the proportionate reduction being veiy ^ 
much greater than in the previous case. 4 

Hydraulic Crane.—Fig. 241 shows 
one form of hydraulic crane, a section of die fig. 240.—Hydraulic lift 

hydraulic cylinder being shown on the left. 
To the bottom of the fixed cylinder A a pulley block B is mounted. 
Another pulley block C is mounted on the top of the ram D. The 
lifting rope or chain is fixed at one end to a lug E on the cylinder; 
it then passes round the pulleys in the blocks B and C to the load 
which is to be lifted as shown. In the crane shown there are three 
pulleys in each of the blocks B and C, therefore when the ram D is 
raised, say, i foot, the six lengths of rope each lengthen one foot, 
and the load W is lifted 6 feet, or, in other words, the load W is 
lifted with 6 times the speed of the ram. 

Example.—In the crane shown in Fig. 241, the diameter of the ram 
is 5 inches, water pressure 700 lbs. per square inch, and the efficiency 
is 90 per cent. What is the greatest lo.^d that can be lifted? 

Force on ram = t x 5® x 700 
4 



Elementary Applied Mechanics [chap, xxv 336 

Hence 

X 25 X 700 •)x I X 

4 100 o 

Pressure or Head at different depths in Liquids.—If we 
imagine a vertical cylindrical-shaped portion of a liquid at rest in 
a ta^ (Fig. 242), we can easily estimate the difference of pressure 
at the two ends of such a cylinder. For if A square feet is the area 
of cross-section of the cylinder and h its height in feet, p^ being 

Fig. 24z.—Hydniulic crane. 

the pressure i>er square foot at the top end and /• that at the 
bottom end, the upward force on the lower end is— 

A X A 

and the downward force on the top end is— 
A X A 

The horizontal pressures which- the surrounding liquid exerts on 
the vertical curved surface of the cylinder are in equilibrium among 
themselves, and being wholly horizontal, exert no vertical force 
The orrly other ^erticail force on the cylinder of liquid is its own 
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weight downwards; the volume of the cylinder of liquid is 
Ax A cubic feet, and if the liquid weighs w pounds per cubic foot, 
the total weight of the cylinder of water is— 

w X Ax h pounds 

which must balance the excess of pressure on the base of the 
cylinder over that on the 
upper end, or— 

p^A — piA = wAh 
or p\^ wh 

That is, the increase of 
pressure for a depth h feet 
is wh pounds per square 
foot, or w pounds per square 
foot for every foot increase 
of depth. 

If one end of the cylin¬ 
der is ill the surface we see 
that the upward pressure 
of the surrounding liquid 
is just equal to the weight 
of the cylinder of water. 
Reckoning from the surface of a liquid, the pressure at a depth h 
feet will exceed the atmospheric pressure at the surface by 

wh pounds per square foot 

and for pressures at considerable depths the atmospheric pressure 
may generally be neglected. 

In hydraulics the pressure of water is very frequently expressed 
in feet of water, not pounds per square foot. For instance, we 
should speak of pressure as a head of h feet, which would mean the 
pressure due to a head of h feet, wh pounds per square foot. 

Example.—If water at 40® F, weighs 62-4 lbs. per cubic foot, find 
the pressure at a depth of 100 feet. 

The pressure increases at the rate of 62*4 lbs. per square foot for 
each foot of depth, hence at loo^eet depth it Is— 

62-4 X 100 = 6240 lbs. per square foot 
or = 43 ibs. per square inch 

that is, o'43 lb. per square inch per foot of depth. 

Pressure on Horizontal Surfaces in Liquids.—Any hori¬ 
zontal surface at a depth h feet below the surface of a liquid 
weighing w pounds per cubic foot has upon it a pressure 
equal to— 

Area in square feet xwxh pounds. 
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Example-—Find the pressure on the base of a rectangular tank 
7 feet deep, 5 feet long, and 3 feet wide when the tank is full of water ; 
water weighs 62*4 lbs. per cubic foot. 

Area of base =5x3 = 15 square feet 
Total pressure or force on base = 15 x 62*4 x 7 — 6552 lbs. 

Note.—The total pressure on the base would be the same whether 
the sides of the tank were vertical, or whether they sloped inwards or 
outwards, it depending only on the area of the base and the depth of 
water. 

Pressure on Oblique Surfaces in Liquids.—It is not quite 
so simple a matter to estimate the total force exerted by hydraulic 
pressure on an inclined surface immersed in a liquid, as in the case 
of a horizontal surface, because the pressure per square foot is not 
the same all over it. The pressure varies proportionally to the 
depth below the surface of the liquid, so that unless all the surface 
is at the same depth (that is, horizontal) the pressure is different at 
different parts of the surface. In such cases the rule is that the 
average pressure per square foot on the surface is equal to that at the 
centroid^ or centre of gravity of the area} Or the total pressure in 
pounds is equal to the area in square feet multiplied by the pressure 
in pounds per square foot at the centroid, or to wh where h is the 
depth of the c.g. in feet, and w is the weight of the liquid in pounds 
per cubic foot. 

Example 1.—Find the total pressure on a dock gate whose width 
is 25 feet, when the depth of water is 10 feet. 

Depth of c.g. of wetted area = 5 feet 
Pressure at c.g. = 62’4 x 5 lbs, per square foot 

Area of wetted surface = 25 x 10 = 250 square feet 
Total pressure on gate = 62*4 x 5 x 250 

= 78,000 lbs. 

Example st.—A submerged vertical sluice gate is 3 feet long, and 
2 feet deep, the 3-feet sides being horizontal. The top side is 20 feet 
below the surface of the water. Find the total water pressure on the 
gate. 

Depth of c.g. of gate = 20 -f i = 21 feet. 
Pressure at c.g. = 62 4 x 21 lbs. per square foot. 
Total pressure = 62*4 x 21 x 6 = 7802 lbs. 

Centre of Pressure.—Vertical or other inclined plane surfaces 
immersed in a liquid are acted on by parallel forces, consisting of 
the pressures on its various parts. These may be combined by the 
rules for finding the amount and position of the resultant of a 
number of [larallel forces (Chap. II.) if the area be divided into 

‘ Centroid or c.g. Refer to Chap. XIV. for position in various shaped 
areas. 
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very small portions. The rule for finding the amount of the 
resultant is given in the previous paragraph. That for finding 
the position of the resultant is beyond the scope of this book. The 
point at which the resultant pressure acts on the surface is called 
the cmtrt of pressure. For a rectangular area having one side in 
the surface of the liquid, the vertical depth of the centre of pressure 
is I of the vertical depth of the rectangle. 

Example 1.—^The depth of water in a dock is 30 feet. Find (a) the 
pressure on the dock wall in tons per foot of its length j (6) the position 
of the centre of pressure ; (e) the overturning moment about the bottom 
of the wall in tons-feet per foot length, due to the water pressure. 
(Water weighs 62'4. lbs. per cubic foot.) 

(a) Depth of c.g. of wetted area = ^ ^ 15 feet 
Area wetted per foot length of wall = 30 square teet 

Total pressure on wall per foot length ~ --— - = 12 53 tons. 

(^) Depth of centre of pressure = f x 30 = 20 feet below the water surface 
(4 Moment about bottom of wall = 12*53 x ic = 125*3 tons-feet. 

Example 2,—A vertical rectanpjular sluice gate is 4 feet by 3 feet, 
and is submerged with the longer sides horizontal, the top side being 
2 feet below the surface of the water. Find the position of the centre 
of pressure. 

Total pressure on sluice gate BC (Fig. 243) 
= pressure at c.g. x area 
= 62*4 X (2 4- 1*5) ><(4x3) 
= 62*4 X 3*5 X 12 = 2621 los. 

Total pressure on area AB = pressure at c.g. x area ' 
= 62*4 x I X 4 X 2 = 500 lbs. 

The pressure on AB will act § x 2 ^ § feet from the surface of the water 
Total pressure on the area AC = pressure on AB + pressure on BC 

= 500 4- 2621 
= 3121 lbs. 

The pressure on AC will act § x 5 feet from the surface of the water 

Let X = depth of centre of pressure on the sluice gate BC. 
Taking moments about the surface of the water, we get— 

X X 2621 4- 500 X ^ = 3121 X ^ 
7863X 4- 2000 = 31210 

3I2IO — 2000 ^ 

*■ = tSST" “ 

Buoyancy. Floatings Bodies.—A solid body floating 
liquid is supported by the vertical upward pressures of the liquid 
upon it. This pressure .which acts on the submerged portion of 
the body is just as it would be on the same space if occupied by 
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the liquid, instead of by part of the floating body. But we have 
Men that in the case of a cylinder of liquid Ae net vertical force is 
just equal to the weight of the cylinder of liquid. The same is true 
of any other shaped body, for we could imagine it as consisting of 
a large number of small cylinders. Hence, we have the principle 
that the vertical upward liquid pressure which balances the weight 

of a floating body is just equal 
A Sur/hee oewkttr 
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Fig. 34^ 

to the weight of a volume of 
liquid equal to that of the 
submerged part of the body. 
In other words, the support¬ 
ing pressure is equal to the 
weight of the floating body, 
and also to the weight of 
liquid which it displaces in 
floating. 

Density and Specific 
Gravity.—The density of a 
substance is its weight per 
unit volume. Thus the den¬ 
sity of water is 62*4 lbs. per 
cubic foot at 40® F., and 
about 62 lbs. per cubic foot 
at TOO® F. The density of 
cast iron is about 450 lbs. per 
cubic foot or 0*26 lb. per 
cubic inch, and of wrought 

iron about 480 lbs. per cubic foot. 
The specific gravity of a substance is the ratio of the weight of 

any volume of the substance to the weight of an equal volume of 
water. For example— 

^ r weight of I cubic foot of cast iron 
Specific gravity of cast iron = il^ubic foot of^ater 

6-24- • 

The specific gravities of substances are to one another in the 
same ratios as their densities, and the density of any substance in 
pounds per cubic foot is about 

62*4 X specific gravity. 

Bxamirie i.—A cubical block of wood 2 feet edge of specific gravity 
0*45 floats in water. Find the volume of water it displaces, and the 
proporticHi of the volume displaced. 
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Weight of I cubic foot of wood a= 62*4 xo'45 lbs. 
Weight of water displaced = weight of block =2* x 62*4 x 0 45 ’bs. 

Volume of water displaced = - ^ ^ ^ = 3-6 cubic feet 
02*4 

• which is ^ = 0*45 of the volume of the block, 

i.e. volume displaced = specific gravity x volume of block. 

Example a.—A cast-iron body of weight 56 lbs. is suspended by a 
string and wholly immersed in water. Find the upward Lrce on the 
weight and the tension of the supporting string. (Specific gravity of cast 
iron 7*2.) 

Weight of I cubic foot of cast iron = 7*2 X 62*4 = 450 lbs. 
Volume occupied by 56 lbs. of cast iron = cubic foot. 

Weight of water displaced = x 62*4 lbs. 
Hence upward pressure on weight — weight of water displaced 

56 X 62*4 ,, 
777 lbs. 

4^0 
Tension of the string = 56 — 777 - 48 23 lbs. 

weight of body ^6 . r.t. • 
--=r the specihc gravity of the iron. 
upward pressure 777 ' » b j 

NotE.- 

Examples XXV. 

1. In a hydraulic press an elTort of 35 lbs. is exerted on the end of the 
lever whose leverage is 14. The diameter of the plunger is i| inch, and that of 
the ram 10 inches. If the efficiency of the press is 90 per cent., what pressure 
will be exerted on the ram ? 

2. In a hydraulic press the diameter of the plunger is i inch, and of the ram 
10 inches. The leverage of the handle is 12 to i. If the efficiency of the press 
is 90 per cent., what effect must be exerted on the handle m order to give a total 
pressure on the ram of 20 tons ? 

3. The diameter of the plunger of a hydraulic jack is I inch, and of the ram 
is 2 inches. The leverage of the handle is 15 to i. It is found that an effort of 
53 lbs. on the handle just raises a load of i ton. What is the efficiency of the 
machine at the load ? 

4* If the stroke of the plunger of the jack in Question 3 is J inch, how many 
working strokes must be made by the handle in order to lift the weight 3 inches ? 

5. A hydraulic accumulator has a ram 12 inches diameter, and is loaded with 
50 tons. The stroke of the ram is 6 feet. How much energy can be stored, and 
what is the water pressure in pounds per square inch ? 

6. Neglecting friction, what is the greatest load (including the weight of ram 
and cage) that can be raised by a hydraulic lift whose ram is S inches diameter 
if the water pressure is 700 lbs. per square inch, and the greatest lift is 50 feet ? 

7. The block on the ram of a hydraulic crane is fitted with four pulleys, and 
that on the cylinder has four pulleys; the diameter of the ram is 6 inches, and 
the water pressure is 700 lbs. per setuare incli. What is the greatest load that 
can be lifted if the efficiency is 85 per cent. ? 

8. At a pressure of 700 lbs. per square inch, what is the charge for 1000 
gallons of water at 2</. per horse-power per hour ? 

9. A hydraulic crane is supplied with water at a pressure of 700 lbs. per 
^uare inch, and uses 3 cubic feet of water in order to lift 8 tons Uiiougjb a height 
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of 9 feet. How much energy has been supplied to the crane, and what proportion 
of it has been converted into useful work ? 

10. The bottom of a rectangular water tank measures 8 feet by 3 feet 6 inches. 
When the tank contains 800 gallons of water, what will be the depth of the 
water, and what would be the total pressure on the bottom, on each side and on 
each end respectively? One gallon of water weighs 10 lbs., and i cubic foot 
weighs 62*4 lbs. 

11. A submerged vertical rectangular sluicegate 2 feet by i foot 6 inches has 
the 2-feet sides horizontal, the top side being 15 feet below the surface of the 
water. Find the total water pressure on the gate. 

12. The depth of sea water in a dock is 35 feet. Find {a) the pressure on 
the dock wall in tons per foot of its length; (b) the position of the centre of 
pressure ; (r) the overturning moment about the bottom of the wall in tons-feet 
per foot length (35 cubic feet of sea water weigh i ton). 

13. Find the position of the centre of pressure on the sluice gate in Ex¬ 
ample II, 

14. A spherical block of wood of specific gravity 0*42 and 3 feet diameter 
floats in water. Find the volume of water it displaces. 

15. A cast-iron body weighing 112 lbs. is suspended by a rope, and is wholly 
immersed in water. Find the upward force on ine body, and the tension of the 
rope. (Specific gravity of cast iron is 7*2.) 



CHAPTER XXVI 

RECIPROCATING PUMPS 

Suction or Lift Pump.—This pump consists of a cylindrical 
pump barrel B (Fig. 244) in which works an air-tight plunger or 
bucket A. This bucket 
has one or more valves C 
which can only open up¬ 
wards to allow water to 
pass through it to the top. 
A pipe, F is attached to 
the bottom of the pump 
barrel and leads down to 
the water in the well or 
other source from which 
the water is to be pumped. 
At the top of this pipe is 
a valve E which opens 
upwards to allow water to 
pass from the pipe F into 
the pump barrel B. 

When starting the 
pump for the first time 
the barrel and suction 
pipe F will be full of air 
at atmospheric pressure. 
Suppose the bucket A is 
at the top of its stroke. 
As the bucket moves 
downwards E is closed 
and the valves C open 
and so allow the air which 
was previously in the 
barrel beneath the bucket 
to pass through into the 
barrel above it. On the 
next upward stroke of the bucket 

Fig. 344.—Suction pump 

a partial vacuum is formed 
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underneath it, and the atmospheric pressure on the top oS. the 
bucket being greater than the reduced pressure of the air under 
it, the valves C are kept closed. Now, the pressure at the bottom 
of the pipe F is that due to the pressure of the atmosp^re oa the 
surface of the water; the result is that the valve E opens and 
some of the air in pipe F is forced through into the pump barrel 
beneath the bucket and water enters the pipe F to take its place 
until the pressure of the air inside together with that due to the 
water equals the atmospheric pressure. This process is repeated 
on successive strokes of the bucket until all the space beneath 
it is full of water. The next upward stroke of the bucket forms, 
as before, a partial vacuum under it, and the atmospheric pressure 
acting on the surface of the water in the well forces open the valve 
E and allows water to follow the bucket. When the bucket descends 
again, E closes, and the water under it flows through the valves C 
into thd barrel above, from which it is lifted by the bucket on its 
next upward stroke and delivered through the spout D. 

It will be seen, then, that the water is lifted from the well by the 
atmospheric pressure itself, and that the greatest height through 
which it can be lifted depends upon the atmospheric pressure. At 
standard atmospheric pressure 14*7 lbs. per s(|uare inch, or 
i4‘7 X 144 = 2ri6 lbs. per square foot, the maximum height h 
through which the water could be lifted will be— 

= I (see Chap. XXV., p. 337) 

r 4. 1 = = 34 feet, nearly. 
02 

Owing to imperfections in the pump (the bucket not being perfectly 
air-ught) and frictional resistances, the maximum height of the 
bottom of the bucket, when at the top of its stroke, above the 
surface of the water in the well seldom in practice exceeds about 26 
feet. The spout D, however, may be any height above the surface 
because the water above the bucket is simply lifted up by it and is 
independent of the atmospheric pressure. 

Example i.—Find the greatest vertical height at which the pump 
barrel could be fixed above the surface of the water in the well when the 
height of the mercury barometer is 28 inches. 

When the barometer stands at 30 inches the atmospheric pressure is 
that due to a head of 34 feet of water as shown above: hence at 28 
inches it is— 

34 X = 317 feet. 

Owing to the reasons mentioned above the height would be made 
much less than this. The pipe F (Fig. 244) may not be vertical, and may 
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be of considerable length ; the longer it is the greater is the loss due to 
frictional resistance between the water and the pipe, and consequently 
the less would be the height at yAdch the pump could work. 

Example a«-^The barrel of a lift pump is 5 inches diameter, and 
when the bucket is at the bottom of the stroke the height of the entrance 
of the spout to the pump barrel above the top of the bucket is 20 feet. 
What will be the greatest tension in the rod lifting the bucket, and if 
the stroke of the bucket is 4 inches, how many upward strokes must it 
make in order to deliver 100 giUlons of water? 

The tension in the rod will be equal to the weight of water above the 
bucket The volume of the water will be in cubic feet— 

area of barrel (in square feet) x 20 feet 
07854 X 5* u* r * -i- X 20 cubic feet 

144 

Hence tension in rod = x 20 x 62 4 — 171 lbs. 
144 

Volume of water lifted per stroke = ——^ x A 
^ 144 12 

= 0*0453 cubic foot. 
Now 100 gallons = 100 -4* 6*24 cubic feet; hence 

Strokes required =-— =354 
0*0453 X 6*24 

Force Pump.—Fig. 245 shows a force pump in diagrammatic 
form. The plunger A is solid without any valves, and on its 
upward stroke water enters the pump barrel B through the valve C 
just as in the case of the suction pump previously considered. 
During this stroke the valve D is kept closed by the head of 
water in the delivery pipe E. On the return stroke of the plunger 
the valve C is closed, and water under pressure is forced out of 
the pump barrel through the,valve D into the delivery pipe E. 
This type of pump is intermittent in its action, water only being 
delivered through the delivery pipe during the downward stroke 
of the plunger. In order to maintain a more continuous delivery 
of water with this type of pump an air vessel is attached to the 
delivery pipe. 

Fig. 246 shows a sectional view ot a single acting force pump 
fitted with an air vessel on the delivery side. On the upward 
stroke of the plunger A, water enters through the suction valve C; 
on the downward stroke the suction valve is closed and the water 
is forced through the delivery valve D against the pressure in the 
delivery pipe. The air in the air vessel E is compressed to a 
greater pressure than that corresponding to the head of water at the 
bottom of the delivery pipe, so that during the next upward stroke 
of the plunger the pressure of the air maintains the flow of water 
through the delivery pipe, thereby ensuring a more continuous flow 
of water. 
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Example 1.—A single acting force pump has to deliver water 
against a head of 240 feet. If the diameter of the plunger is 5 inches, 

what must be the average force exerted on the 
pump plunger during the delivery stroke if the 
efficiency of the pump is 85 per cent. ? 

~^tlivery. 

z--1 — Suction 

Fit;. 245.-—Single acting force pump. Ftc. 246.—Force pump with air vessel. 

The pressure due to a head of 240 feet 
= 240 X 62’4 lbs. per square foot 

240 X 62-4 

144 ^ 

= 104 lbs. per square inch 

Area of plunger - 07854 x 5^ = 19-63 square inches. 
Total force on plunger neglecting frictional losses = 104 x 19*63 lbs. 
Hence, allowing for the efficiency of 85 per cent 
Force required on plunger = 104 x 19*63 x ^ = 2400 lbs 
Example 3.—*If the stroke above the pump is 6 inches and it makes 

120 double strokes per minute, what horse-power will be required to 
drive it ? 

Work done per stroke = Force on plunger x stroke 
= 2400 X foot-pounds 

Work done per minute » 2400 x x 120 foot-pounds 
Horse-power = work done per minute in foot-pounds 

33,000 

= 2400 X 6 X 120 ^ g p 

12 X 33,000 
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Example 3.—If the slip of the pump in Example i is $ per centn 
how many gallons will it deliver per minute ? 

Volume swept out by pump plunger = area of plunger x stroke 
= 19*63 X 6 cubic inches 

^ cubic feet 
1728 

Owing to slip the pump does not deliver this volume of water per 
stroke, but only ^ of it. 

Hence, water delivered per stroke = x cubic feet. 
' ^ 1720 100 

Water delivered per minute = —^ ^ ^ 120 
^ 1728 100 

= 7*77 cubic feet 

= 777 X = 48*48 gallons. 

Double Acting: Force 
Pump.—In a double acting 
pump water is delivered every 
stroke, not every other stroke 
as is the case with the single 
acting pump. During the up' 
ward stroke of the plunger A 
(Fig. 247) water enters the 
pump barrel through the suc¬ 
tion valve B, and at the same 
time water is forced out from 
above the plunger through the 
delivery valve C into the de¬ 
livery pipe. On the downward 
stroke of the plunger the valves 
B and C are closed; water 
enters the pump barrel above 
the plunger through the suction 
valve E, and at the same time 
the water which was drawii in 
underneath the plunger during 
the previous upward stroke is 
forced out from below the 
plunger through the delivery 
valve D into the delivery pipe. 
By this means a continuous 
supply of water is delivered 
through the delivery pipe, and 
an air vessel is not required 
for this purpose. 
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In quick-mnning pumps or in cases where the delivery pipe is 
very long the accelerating force required on the pump pluiiger, and 
therefore on the water, causes a large increase in the stresses in the 
different parts of the pump, and gives under certain conditions 
separation of water in the pipe, and violent hammer actions may 
be set up. To reduce the effect of these inertia forces air vessels 
are usuaUy put on the delivery |>ipe of double acting pumps. For 
the same reasons, if the pump runs at a high speed and the suction 
pipe is long, an air vessel will be also required on the suction side. 

Example.—A double acting force pump of stroke 6 inches has to 
deliver water against a head of 125 feet If the diameter of the plunger 
is 5 inches, and it makes 180 double strokes per minute, what horse* 
power will be required to drive the pump if its efficiency is 85 per emit ? 
If it is direct driven by a continuous-current electric motor which works 
at 200 volts, what current must be supplied to thcT motor if its efficiency 
is 90 per cent ? 

r. t. 1 x62*4. Pressure m pump barrel = ——- 
•44 

= 54 lbs. per square inch 

Work done on the water per stroke = ^ x 5* x 54 x — ft.-lbs. 

Useful horse-powei expended m pumping =- 

— 578 H.P., and 

Horse-power required to drive the pump = ^ 

Electrical norse-power supnlied to motor = 0’8 x = 7’55 E.H.P. 

Volts X ampferes 
746 

Current in amperes = Z_iUl.Z4§ 
200 

7-55 

2816. 

Three«Throw Pump.—In cases where water is required under 
a comtant h^h pressure the three-throw pump is frequently used. 
In this pump the crank shaft has - three cranks arranged at 120°, 
each crank driving a (.ump plunger in its own cylinder. By this 
means large cylinders are avoid^, and if each pump cylinder is 
double acting there are two working strokes per revolution of the 
crank in each cylinder, making in all six working strokes per 
revolution. If the pump is single acting there will be three working 
strokes per revolution; by tliis means a continuous supply of water 
at fairly constant pressure is obtained without, using an air vessel. 

Examples XXVI. 

I. The barrel of a lift pump is 8 inches diameter, and when the backet is at 
^e bottom of its stroke me height of the entrance of the spout to the" pump 
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barrel is 8o feet What will be the greatest tension in the rod lifting the backet; 
and, if the stroke of the bucket is 1 foot, how many gallons will he lifted per 
stroke ? 

2. A nngle acting force pump has to deliver water ^inst a head of 250 
feet. If the diameter of the plunger is 4 inches, and the efficiency of the pump 

per cent., what must be the average force exerted on the pump plunger 
during the delivery stroke? 

3. If the stroke of the pump in Question 2 is 4 inches, and it makes 120 
delivery strokes per minute, what horse-power will be required to drive it ? If 
the slip is 5 per cent, how many gallons will it deliver per minute ? 

4. Find the horse-power required to raise 200 cubic feet of water per minute 
to a height of 100 feet by a pump whose efficiency is 70 per cent. 

5. A double acting force pump has a plunger 6 inches diameter and the 
len^ of the stroke is one foot. The total h^ is 300 feet, and the pump 
makes 40 double strokes per minute. Assuming no slip, find the discharge of 
the pump in gallons per minute. A steam engine drives this pump direct. 
Find the necessary diameter of the steam cylinder, assuming the mean effective 
steam pressure to be 80 lbs. per square inch, and the mechanical efficiency of 
engine and pump together 80 per cent. 

6. A pump is directly driven by an electric motor whose efficiency is 85 per 
cent., and delivers too gallons of water per minute under a head of 125 feet. 
The efficiency of the pump is 80 per cent., and the motor works at 200 volts. 
What current must be supplied to the motor ? If the price of a Board of Trade 
Unit is one penny, w^t will be the cost of running the pump for one hour ? 



CHAPTER XXVII 

WATER IN MOTION 

When water flows from a tank through a sharp>'edged orifice, the 
amount flowing in a given time depends upon the depth or head of 
water in the tank and the size of the orifice, and if these are known 
the flow is fairly definite, and an orifice can be used to measure 

Fig. 240. 

considerable quantities of water consumed at a steady rate. 
Orifices are often circular, but other shapes may also be employed. 
The stream on issuing contracts to a smaller cross-section than the 
area of the orifice as indicated in Fig. 248. The fraction which the 
sectional area at Sj or S, hears to the full area of the orifice is 
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called the coefficient of contraction of the orifice. If the level of 
still water is or Ag feet above the centre of an orifice (Fig. 248), 
the velocity of outflow is nearly that of a body falling freely through 
the height or as the case may be, namely V or V 2^Aa 
(see p. 256, Chap. XX.). The ratio which the actual velocity v at, 

say, Si bears to the velocity 2gh^ due to falling Aj feet is called 
the coefficient of velocity, and is generally about 0*97. 

The amount of water passing, say, per second, would be re¬ 
presented by a cylinder having a sectional area equal to the stream 
at Si and length or— 

Q =r dTj X = ^1 X 0*97 X •J 2gk^ 

where Q = discharge in cubic feet per second, = area of section 
of contracted stream in square feet = area of orifice in square feet 
multiplied by the coefficient of contraction. 

If = area of orifice in square feet, this may also be written 

Q = ^ X coefficient of contraction x 0-97 x 2gki 

^ a 2ghx X coefficient of discharge 
=: ka^ 2gh^ 

where k the coefficient of discharge is equal to the product of the 
coefficients f velocity and contraction. The value of k for circular 
orifices is about 0-62 and does not greatly differ for other shapes- 
The coefficient of contraction is about 0*64, so that— 

0*97 X 0*64 = o'62 

Experiment i. To verify that Q Is proportional to \/h.— 
The simple apparatus shown in Fig. 248 may be conveniently used for 
this purpose. A wrought-iron tank is fitted with a gauge consisting of 
a glass tube to which is attached a graduated scale. The level of the 
water in this tube will be the same as in the tank. An orifice is fitted 
to the side of the tank near the bottom as at Sj. The water-level is kept 
constant by allowing water to flow into the tank from the top at the 
same rate as water runs out through the orifice. The pipe which admits 
water into the tank has a baffle box on the end to still dowm whirling 
and eddies as far as possible, the idea being to keep the water in the 
tank at rest as far as possible. 

The following results were obtained in a particular experiment 
using a sharp-edged circular orifice. Keeping the head constant, water 
was allowed to flow through the orifice for i minute, the quantity W 
discharged in this time being collected and weighed ; the discharge for 
different heads is tabulated below. 

Plotting W* and A the straight line through the origin O shown in 
Fig. 249 is obtained, showing^ that W- is directly proportional to A or 

that W is proportional to VA. It should be noticed that there is no 
need to measure the area of the orifice for this experiment, because the 
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discharge Q cubic feet is represented by W pounds to another scale, 
and to show the proportionality between Q* and h the discharge Q 
may be expressed in any units. 

Discharge 
W Clbs.). 

Head 1 
h (feet). 

w*. 

10-97 30 120-34 
10-03 2-5 100-90 
8-95 2*0 80*10 
7-75 1*5 6o-o6 
6-30 1*0 

1 

39-69 

Experiment a. To find the Coefficient of Discharge of an 
Orifice.—Proceeding as in the above experiment the discharge for 
various heads is measured in pounds per second. Knowing the area of 

0 0-5 I 1-5 2 2*5 3 3 
/I iTt,) 

Fig* 949* 

the orifice^ the coefficient of discharge ma)' be calculated. The results 
obtained with different-shaped orinces are shown in the table on 
P- 353- 

Example i.—How many cdbic feet will be discharged per hour 
through a sharp-edged circular orifice \ inch diameter under a constant 
head of 4 feet, the coefficient of discharge being 0*62 ? 
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Areaoforilice = ^ =0*1963 square inch = 
0*1963 

144 square feet 

Q = V 'igh 

= 0*62 X X *J64*4 X 4 cubic feet per second 
144 

= 0*62 X X ^64*4 X 4 X '3600 cubic feet per hour 
144 

= 4^*73 cubic feet per hour. 

Discharge per second 

Orifice. Head. 
A feet. 

CocfiSicient of 
discharge. 

W lbs. 
Q cubic feet 

- ^ 
62*4 

0*183 0*00293 Circular 3*0 0*619 
0* 167 0*00268 orifice J inch 2*5 0*628 
0*149 0*00239 diameter 2*0 0*620 
o* 129 0*00207 = 0*000340 >5 0*619 
0*105 o*ooi68 square foot. 1‘0 0*614 

0*233 0*00374 Square 3*0 o*6i8 
0*213 000341 orifice 2*5 0*618 
0*190 0*00305 1 1 inch side 2*0 0*621 
0*165 0*00264 = 0000434 **5 0*619 
0*134 0*00215 square foot. 1*0 0*619 

Example a.—Find the diameter of a sharp-edged circular orifice to 
give a discharge of 600 gallons per hour under a constant head of lo 
feet. 

Discharge = 600 x g— cubic feet per hour 

hence 

= 600 X 2^ X = cubic feet per second 
62*4 yyx> ^ 

37-5 
cubic foot per second 

I 

37-5 
= 0*62 X a X V64*4 X 10 

= 0*62 X a X zS’ 
3TS 

_ _l_ 

~ 37‘5 ^ 0*^2 X 25*4 
= 0*001693 square foot 
a= 0*001693 X 144 = 0*244 square inch 

N 
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Head and Energy of Water.—Water may possess energy 
of two important kinds. For instance, if it is at a considerable 
height it possesses potential energy which may be converted into 
kinetic energy by allowing the water to fall freely. In Fig. 250 
one pound of water at A, the top of a tank being at a level h feet 
above the levels of B and C, possesses potential energy 

h X I = h foot-pounds. 

If the valve V is opened, neglecting any resistance to flow, the 
water issues at C with a velocity v = \^2gA, and its kinetic energy 
(sec p. 286, Chap. XXII.) per pound is— 

-- X 2/2 = =12 A foot-pounds 
2^ 2g ^ 

exactly the same as for the potential energy at A. 
If the valve V is closed, water at the lower level B is under a 

pressure corresponding to the head h of 
water, and may be employed in doing 
work such as driving a piston or plunger. 
If p is the pressure in pounds per square 
foot we have seen that (p. 337) 

p = wh = 62-4^ 

wlicre w is the weight of one cubic foot 
of water. 

The volume through which this one 
pound of water would displace a plunger 
is I \w cubic foot, and the work it could 
do is— 

^ X — = wh X ^ = h foot-pounds 
^ w w ^ 

Fig. 250. 

exactly the same energy as one pound at A. The energy thus 
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transmitted per pound of water imder a pressure of p pounds 
per square foot used is then— 

p 
^ foot-poimds. 

This quantity is spoken of as the “ pressure head ” of water, 
i.e. the niunber of feet of water required to produce the pressure p 
pounds per square foot. 

Similarly the quantity — is called the “ kinetic head ” of water 

moving with a velocity v. 
When potential or other energy is converted into kinetic energy 

work is done, and in a pipe fuU of flowing water the work done 
between two sections in accelerating the water is that of a higher 
pressure ^at one section pushing forward against a lower pressure 
at another where the velocity is higher. The total head in a pipe, 
if resistances *ire negligible, remains constant. Thus, if in Fig. 251 
water flows from a tank through a pipe of variable cross-section, so 
that the velocity v is different in different parts, namely, at section 
A, o, at section B, and Vc at section C, all in feet per second, and the 
pressures at^ A and B (pounds per square foot) are p^ and 
respwtively,'the total head of water is the same at A, B, C and D, 
but is made lip as follows :— 

Heads of Water (Fig. 251;. 

Section. 
Potential or 

gravitational 
' head. 

Pressure 
head. 

Kinetic 
head. Total head. 

D 
1 

h 0 0 h 

A w 62'4 
„ *'** 

2g " 64^ 
* 4..A. + i:iL_4 
** 62-4+64-4 

B K ^ or ^ w 62*4 ^ or *'•* 
® ^-4 

JL I /■ 1 _ a 

C 0 0 Vq* 
Sig 64'4 11 

or A = -f- v""" = + >—- ^ 
*^6a-4^64-4 •^6a-4^64-4 

Pm 

64*4 

Example 1.—^Water flows in a pipe of varying section from a reser¬ 
voir. the surfue of which is 50 feet above the outlet of the pipe into the 
air. Neglecting friction, find the velocity of the water leaving the open 
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end of the pipe and the pressure 20 feet above this outlet, if the velocity 

ot the water at this level is 18 feet per 
second. 

Let V be the velocity in feet per 
second, then— 
mS m .1 ■ —.. 

~ 50 or = V 64-4 X 50 = 56*6 
feet per second 

And at the level 20 feet above the 
outlet^ since the total head made up of 
(i) potential or gravitational head, (2) 
kinetic head, and (3) pressure head is 
equal to 50 feet, 

20 + --= CO 
64-4 62-4 ^ 

20 + 5-03 + ^ = 50 

p = 24*97 X 62*4 == 1557 lbs. per 
square foot 

Example a.—A pipe is running 
full of water and discharges 6 cubic 
feet per second. At a certain point 
A, the cross-section of the pipe is 

2 square feet, and at B 20 feet vertically below A the cross-section is 
0*5 square foot. Find the difference of pressure at A and B. The total 
head at A is equal to the total head at B. Equating these in feet, 

I - P* 
64-4 ‘ 62-4 * ~ 64-4 62-4 

= I = 3 feet per second, and = ~ =12 feet per second. 

hi, + 

{hi, — ^») -f* 
64-4 

20 + 3-X-a 
64-4 

0-5 

I A - A 

64-4^ 62-4 

12 X 12 - ■A 
64-4 62-4 

= 20*14 — 2*23 = 17*81 
62*4 

pt— P, — 17*81 X 62*4 
= iiii*3 lbs. per square foot. 

Flow of Water in Pipes.—^When •#ater flows with a fairly 
high velocity through pipes 'there is a considerable resistance to 
motion and considerable loss of head by the water, so that the 
assumption that the total head remains constant would not 
be correct. The loss of “ head ” of water due to resistances 
is approximately proportional to the square of the velocity 
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(unless the velocity is very small), and also depends upon the size 
and condition of the pipe. For round pipes the head lost in 
/ feet length of pipe is roughly— 

/ ^ 
, Loss of head (in feet) = ^’^3^ ^ ^ 

where d = diameter of pipe in feet, v = velocity in feet per second, 
32*2; but the coefficient varies considerably, and 0*03 is merely 

an average value. 

Example.—Find how much water will flow per hour through a water 
main 18 inches diameter, and one mile long from a reservoir 20 feet 
above the outlet of the pipe. 

^ o 03/2/* 

Here h — 20 feet, / = 5280 feet, d= i-; feet 
„ Ax 2srd 20 X 64*4 X rc 
—-— =: -1—1_r: — 12*2 

0*03 X / 0*03 X 5280 
2/ = v^i2*2 = 3‘5 feet per second 

Area of main = - x (1*5)^ = 1*767 square feet 
4" 

Discharge per second = 1767 x 3*5 cubic feet 
^ 1767 X 3*5 X 3600 
= 22,260 cubic feet per hour. 

Force of a Jet.—When a steady stream of water strikes an 
object it exerts a pressure upon it. Suppose a horizontal jet of 
water impinges on a vertical surface 
(Fig. 252), and the water flows off at 
right angles to its original direction, then 
the force exerted by the jet on the sur¬ 
face is equal and opposite to that 
exerted by the surface on the water. 
This force serves to change the direction 
of the water, and, in fact, to completely 
destroy its velocity and its momentum 
in the direction of the jet. We have 
seen in Chapter XXL that the force is 
equal to the change of momentum which 
it causes per second. Hence, if we 
know how many pounds of water strike 
the surface per second, and its velocity, we can calculate the total 
change of momentum per second, which is the force exerted by 
the jet on the surface. Thus, suppose the velocity of the jet is 
10 feet per second, and it carries 80 lbs. of water to the surface per 
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second, then the momentum of the water reaching the surface per 
second is— 

8o 
mass X velocity = —X lo = 24-8 units 

32 2 

and the change per second, or the force exerted is 24*8 lbs. 
In most forms of water motors, such as water wheels and water 

tuifcines, the flow of water against a blade or vane drives the 
machine, and the driving force exerted by the water is estimated by 
calculating the change of momentum of the water between entering 
and leaving the machine, but as the initial and final directions of 
the water are generally inclined to one another, the change of 
momentum is to be measured by vectors and not by an arithmetic 
difference. 

Example i.—A horizontal jet of water carrying 1000 lbs. of water per 
minute strikes a vertical wall with a velocity of 40 feet per second. What 
force will be exerted on the wall ? 

Weight of water per second = lbs. 
Force = momentum change per second 

1000 ^ „ 
— -V yin = ^0*7 lbs. 

Example 3.—A jet of water 2 inches diameter moving with a velocity 
of 80 feet per second impinges at right angles on a fixed plate. Calculate 
the momentum of the water striking the plate per second, and the force 
exerted on the plate. 

feet. 

Cross-sectional area of jet ~ x 2^ square inches = — square 

Volume of water reaching the plate per second = ^ 80 cubic feet. 

Weight of water reaching the plate per second = 
X 80 
144 

x62’4=io8’9 lbs. 

Momentum per second = x 80 = 270 units. 
• 3^ ^ 

Force exerted on the plate = momentum change per second 
= 270 lbs. 

Water Wheels.—Large wheels were formerly in considerable 
use to develop the power in streams for driving mills, and are still 
used to some extent, being of simple construction and easily kept 
in good working order. There are two principal types. 

(i) The Overshot Wheel (Fig. 253) on which the water 
flows at the highest level and from which it leaves near the lowest 
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level. The total fall is nearly equal to the diameter of the wheel, 
and the energy available for each pound of water flowing is 
nearly d foot-pounds where 
d is the diameter of the 
wheel in feet. 

Example. — The cross- 
section ot the stream supply¬ 
ing an overshot wheel is 4 
square feet, and its velocity 
of flow is 2*5 feet per second. 
The total height of fall is 20 
feet. If the efficiency of the 
wheel is 70 per cent., what 
will be its brake horse-power ? 

Volume of water supplied 
to wheel per second — 4 x 2*5 
= 10 cubic feet. 

Weight of water per second 
10 X 62’4 = 624 lbs. 

Energy given out by this 
weight in falling 20 feet 
= 20 X 624 = 12,480 foot- —Overshot water wheel. 
pounds. 

Horse-power given by water to the wheel = and the B.H.P. 
is 70 per cent, of this, hence— 

Brake horse-power of wheel = ^518^ ^ /iFo ~ *5’^ B.H.P. 

(2) Undershot Wheel (Fig. 254).—In this type the water is 
allowed to flow down and attain such a velocity that, impinging on 

Fig. flr54.—Undershot water wheel. 

the blades of the wheel near the bottom of the wheel, it exerts 
the driving force, converting its kinetic energy into available work 
on the driving-shaft This type of wheel is called an impulse wheel. 
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Example.—The cross-section of the stream supplying an undershot 
wheel is 3 square feet, and its velocity of flow is 2*5 feet per second. 
The level of the stream is 5 feet above the bottom of the wheel, and 
the efficiency of the wheel is 60 per cent. What will be the B.H.P. of 
the wheel ? 

Volume of water striking wheel per second = 3 x 2*5 = 7*5 cubic feet. 
Weight of water „ „ „ „ = 7*5 X 62*41=: 468 lbs. 

Work done on the wheel per second = 468 x 5 foot-pounds. 
The work available on the driving shaft per second is 60 per cent, of 

this, namely, x 468 x 5 foot-pounds. 

Brake horse-power of wheel = -5 = 2*55 B.H.P, 
^ loo X 550 

lOufM 

Fig. 255.—The Pclton wheel. 

The PeltiJh Wheel.—A modem form of impulse wheel, suit¬ 
able for high falls, is the Pelton wheel (Fig. 255) in which water, 

under the full available head, is led 
to a nozzle from which it issues in a 
jet of high velocity, and plays on the 
blades or buckets of the wheel which 
are shaped as shown in Fig. 256. 
The bucket (Fig. 256) is so shaped 
that if at rest it would as nearly as 
possible reverse the velocity of flow 
V, But, as the buckets are moving 
forward with a velocity which is 
generally about half that of the 
water (say, the velocity of the 
water relative to the wheel on 

striking the bucket is 7^ — ^,7^ = ^7^, and, on leaving, its relative 
velocity is still nearly \v reversed in direction, and its actual 
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velocity = o) is almost zero, the whole of its kinetic 
energy, except for losses, being given to the wheel. The principal 
losses are friction in the pipe, jet, and buckets, and those due to 
the fact that all the water cannot strike the successive buckets in 
the ideal position and direction. The efficiency of the wheel is 
often as high as 80 per cent. 

Example.—5 cubic feet of water are supplied per second to a Pelton 
wheel under a head of 125 feet. The area of the nozzle is o i square 
foot, and the B.H.P. of the wheel is 56; find (i) Velocity of the jet; 
(2) work available per second; (3) efficiency of the wheel, 

(i) Velocity of water x area = 5 cubic feet. 

v = ^ = 50 feet per second. 
0*1 ^ 

(2) Weight of water striking wheel per second = 3 x 62*4 = 312 lbs. 

Available energy = 312 x head 
= 312 X 125 foot-pounds 
== 39,000 foot-pounds. 

(3) 56 H.P. = 56 X 550 = 30,800 foot-pounds per second. 

Efficiency of wheel = 
useful work 

work supplied 
30,800 

= = 079 or 79 per cent. 39,ooc ^ ^ r 

Turbines.—Turbines are water wheels dealing with water at 
comparatively high velocity or pressure, or both. There are many 
varieties, but they are roughly classed as impulse or pressure (or 
reaction) machines, according as the available energy is, or is not, 
transformed wholly into kinetic energy before entering the wheel. 
The Pelton wheel may be classed as a water wheel or as an 
impulse water turbine. In pressure or reaction turbines, the wheel 
is enclosed in a case containing guides which direct the water on 
to the wheel blades, the pressure in this case being above 
atmospheric pressure. Thus the water entering the wheel has 
both pressure energy and kinetic energy; on leaving, it has no 
energy except the small amount of kinetic energy corresponding 
to the velocity with wHch it flows to waste. Fig. 257 shows 
the arrangement of guides and blades in a radial inward-flow 
pressure turbine. The water fills the casing C, and is directed by 
the guides G, obliquely on to the blades B, on which it exerts 
a pressure, turning the wheel in a contra-clockwise direction, in 
the figure. The water flows through the wheel, pressing it forward 
and being deflected itself in a backward direction so that on leaving 
the inside of the wheel it has a velocity relative to the wheel opposed 
to the direction of rotation, and an actual velocity which is radially 
inward; that is, it has no velocity in the direction of motion of 
the blade. The greater part of the energy of the water is thus 

N a 
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spent in driving the wheel. The blades, or vanes, are so shaped at 
A as to be in the direction of the velocity of the entering water 

Fru. —Inward flow pressure turbine. 

relative to the wheels lo that the water may enter smoothly without 
■shock. At D, similarly^ they are shaped so that they slope in the 

P 

direction of the velocity of the water relative to the wheel at exit. 
The angles of the blade tips may accordingly be determined by 

'wectors giving the velocity of the water relative to the wheel. 
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For example, if in Fig. 258 PQ represents the velocity, V, of 
the water at A (parallel to the guide vane) in magnitude and 
direction, and RQ represents the velocity, W, of the circumference 
of the wheel {i.e. the tips of the moving blades) at A, the velocity 
of’the water relative to the wheel is PR or X, for in vectors— 

X + W=V 
or X = V — W the velocity of the water relative to the wheel 

(see Chap. XX., p. 263). 
Hence the angle, PRS, or J, gives the proper angle for the vane 

at A, and this is shoum on the blade to the left of Fig. 258. 
The radial inward velocity of the water is represented by PS 

{i,e. the component XsinS) and the tangential velocity rela'ivc to 

P 

0 4 8 xzFt.^erSec. 

Fig. 259. 

the blade is represented by SR the component X cos fl). Some¬ 
times the vanes are radial at A, that is, 6 = 90^ 

Example 1.—If water enters a turbine wheel at a radial velocity of 
8 feet per second and the blades are inclined 7$^ to the circumference, 
find the velocity of the water relative to the blades and the tangential 
component of this relative velocity. 

Choosing a convenient scale, say, i inch to 2 feet per second, draw 
PS (Fig. 259) 4 inches long representing the radial velocity of 8 feet per 
second. Draw SR at right angles to PS, and from Pdraw PR inclined 
90 - 75 = 15® to PS, or 75° to SR. Then PR represents in magnitude 
and direction the velocity of the water relative to the blade ; it will be 
found to scale 4*14 inches, or 4*14 x 2 = 8*28 feet per second. The 
vector SR represents the tangential component of this relative velocity ; 
it scales 1*07 inches or V07 x 2 = 2-14 feet per second. These results 
may also be found by calculation, thus— 
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R.I«i.e ..locity PR = 
^ sm 75° 

g 

= —2— = 8*28 feet per second as before. 
0*9659 ^ 

Tangential component SR = radial velocity x tan 15° 
= 8 X 0*2678 
= 2*14 feet per second as before. 

Example j.—Water enters a turbine wheel at an angle of 30° to the 
circumference with a velocity of 65 feet per second. If the speed of the 
circumference of the wheel is 45 feet per second, find the velocity of 
the water relative to the wheel and the proper angle for the blades. 

Using a scale of 10 feet per second to i inch, draw RQ (Fig. 260) 

P 

4*5 inches long to r^resent the velocity of the circumference, namely 
45 feet per second. Draw QP 30® to RQ and 6*5 inches long to repre¬ 
sent the velocity of the water, namely 65 feet per second. Then PR 
which scales 3*44 or 34*4 feet per second is the velocity of the water 
relative to the wheel. The angle ® measures 71®, and this will be the 
angle which the tips of the blades must make with the circumference 
of the wheel. 

Centrifugral Pumps.—If water were led into the exhaust end 
of a turbine such as Fig. 257, and the turbine were driven in the 
reverse direction {i.e. clockwise) water would be pumped from the 
centre to the outside of the wheel, and would be forced from 
the casing C to a certain height. Such an arrangement is called 
a centrifugal pump, and with modifications of the blades to suit 
the various conditions of speed, such pumps are largely used for 
lifting water. 
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Example*—The radial velocity of water in a centrifugal pump is 
5 feet per second ; the vanes make an angle of 35® with the outer 
circumference. Wh,at is the velocity of the water relative to the wheel, 
and what is the tangential component of this velocity ? 

Using a scale of 2 feet per second to 1 inch^ draw SP 2\ inches 
long (Fig. 261) to represent the radial velocity of 5 feet per second. 

Fig. 261 

Draw SR at right angles to PS and^RP inclined 35° to SR to meet in R. 
Then RP which scales 4*35 inches, or 87 feet per second represents the 
required relative velocity, and RS, which scales 3*6 inches or 7*12 feet 
per second represents the tangential component of this velocity. 

This result may also be found by calculation as follows :— 

Relative velocity RP = > ^ sin 35 0*5736 

= 87 feet per second as above. 

Tangential component RS = ——5 = —^ 
^ tan 35® 0*700 

= 7*14 feet per second. 

Examples XXVII. 

1. How many cubic feet will be discharged per hour through a circular 
sharp-edged orifice i inch diameter under a constant head of 12 feet, the co- 
efiicicnt of discharge being 0*62 ? 

2. Find the diameter of a sharp-edged circular orifice to give a discharge of 
65*9 gallons per hour, under a head of 3 feet. 

3. A sharp-edged circular orifice, J-inch diameter, discharges 10*03 lbs. per 
minute of water under a constant head of 2*5 feet. Calculate the coefficient of 
discharge. 

4. Water flows in a pipe of varying section from a reservoir, the surface of 
which is 80 feet above the outlet of the pipe into the air. Neglecting firiction, 
find the velocity of the water leaving the open end of the pipe, and the pressure 
50 feet above the open end, if the velocity of the water at this level is 20 feet 
per second. 
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5* A pij)e is nmning full of water* and discharges 8 cubic feet per second. 
At a certain p<wt*. A* the cross-section is 4 square fee^ and at B* 10 feet 
wticallj below the cross-section is 2 square feet. Find the difference of 
pressure between A and B. 

6. A horixontal jupe* 1 foot diameter* is i mile lon^. The pipe discharges 
4 cubic feet ot water per second when running full. Fmd the loss of head in (oo3/p»\ 

k = 

7. A horizontal jet of water* 4 inches diameter* moving with a velocity of 
^ feet per second* strikes a vertiod wall. Calculate the force exerted by the 
jet on the wall. 

8. Find* from the. following data* the horse-power available in a given 
water fall I— 

Av )ilable height of fall* 120 feet; cross-section of the stream* 10 square 
fee*: velocity of the stream* 100 feet per minute. 

9. The cross-sectioa of a stream supp /ing an overshot whaler wheel is 
3 square fort and its velocitjr of flow is 2‘C feet per second. The total height 
^ fjul is 12 feet If the efficiency of the wned is 70 per cent.* what will be its 
brake horse-power ? 

10. The cross-section of a stream supplying an undershot water wheel is 
4 square feet* and its velocity of flow is 2 feet per second. The surface of the 
stream is 6 feet above the bottom of the wheel* and the efficiency of the wheel 
is 60 per cent. Calculate the B.H.P. of the wheel. 

11. Three cubic feet of water are supplied* per second to a Pelton wheel 
under a head of 250 feet. The area of tne nozzle is 0*1 square foot* and the 
RH.P. of the wheel is 68. Find (1) vdocity of the jet; (2) work available per 
second; (3) efficiency dL the wheel. 

12. Water enters a turbine wheel with a radial velocity of 7 feet per second* 
and the blades are inclined (xP to the circumference ; find the velocity of the 
water relative to the blades, and the tangential component of the velocity. 

13. Water enters a turbine wheel at an angle of 35® to the circumference* 
with a velocity of 80 feet per second. If the speed of the circumference of the 
whej^ is 60 feet per second* find the velocity of the water relative to the wheel, 
and the proper angle for the blades. 

14. llie radial velocity of water in a centrifugal pump is 6 feet per second; 
the vanes make an angle of 33® with the circumference. What is the velocity 
of the water relative to the wheel, and what is the tangential component of this 
velocity ? 

j%. The vanes of a centrifugal pump make an angle of 35° with the 
circumference. The velocity of Uie arcumferencc of the wheel is 65 feet per 
second* and the radial velocity of the water is 5 feet per second. Find (i) the 
velocity of the water relative to the vanes; (2) the actual velocity of the water 
leaving the wheel. 

16. Neglecting frictional losses, to what height may the water be lifted by 
the pump in Question 15? 
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Angle. 
Co. 

tangent. De* CiMMrd. Sine. Tangent. Coeine 
gfced. 

0 0 0 0 1 1*414 1*5708 90* 

1 *0175 •017 *0175 •0175 57*2900 •9998 1*402 1*5633 89 
a *0349 •035 *0349 ■0340 ‘28*6363 *9994 1*389 1*5359 88 
3 ‘0524 •052 *0523 *0524 19*0811 •99**e 1*377 1*5184 87 
'4 *0098 *070 *0698 *0699 14*3007 *9976 1*364 1*5010 86 

6 *0873 *087 •0872 *0875 11*4301 *9862 1*361 1*4835 85 

• •1047 *106 *1045 *1051 9*5144 *9945 1*338 i 4661 84 
t •1922 •123 *1210 ‘1228 8*1443 *9926 1*326 1-4480 83 
3 •1390 140 ■1392 '1405 7*1164 *9003 1*312 l*43ia 82 
9 '1671 •167 ‘1564 ‘1584 6*3138 •9877 1*299 1*4137 81 

10 •1745 •174 •1736 •1763 6*6713 ‘9848 1*286 1*3963 80 

11 •1990 -199 •1908 •1944 5*1446 *9816 1*272 l-37rt8 79 
la *3094 ‘209 *2079 *2126 4*7046 *9781 1 259 1 3614 78 
13 •3269 *926 ‘2250 •2309 4*3315 *9744 1*244 1*3439 77 
14 •2443 •244 *2419 *2493 4*0108 •9703 1*231 1-3265 70 

1» •2018 *261 *2588 •2679 3*7321 ! *9659 1*218 1 3090 75 

1« *2793 •978 •2766 *2867 3-4874 *9613 1*204 1*2915 74 
IT •2967 *206 •a024i *3057 3*2709 * *9563 1*190 1 *2741 73 
la *3149 *313 *3090^ *3249 3*0777 *9511 1*176 1**2566 72 
19 •3316 ‘330 '38^ ' *3443 2*8042 •9465 1*161 1*2392 71 

90 •3491 •347 •3490 •3640 9*7476 •9397 1*U7 1*221? 70 

31 
a 

*364 ‘3584 ‘3839 2*6061 '9336 1*133 1*2043 69 
39 *389 •6746 •4040 a*4751 •0272 1*118 1*1668 68 
93 *399 ‘3907 *4945 9*3659 •9205 1*104 1*1694 67 
24 •Il89 <>416 •4067 *4452 2*2460 •9135 1 1 080 1*1519 66 

90 *4363 *433 *4226 *4668 2*1446 *9063 1*075 1*1346 65 

90 *4538 •460 -4384 •4877 2*0503 ‘8988 1*060 1*1170 64 
2T •4719 •467 •4540 *5095 1*9626 •8910 1*016 l*('996 63 
98 •4887 -484 •4695 *5317 1 8807 •8829 1*030 1*0821 62 
99 •5061 *501 •4848 ‘5543 1*8040 •8746 1 015 1*0647 61 

30 •5230 *618 •5000 1 •5774 1*7321 *8660 1*000 1*0472 60 

31 •5411 •534 ' *5150 *6009 1*6643 *8572 *985 1 0297 69 
39 •5585 •561 r5399 ‘6249 1*6003 '8460 •870 1 0123 58 
SS *5760 ^668 *5446 *6494 1*5399 •8387 *954 *994 8 57 
34 *6934 •565 *5592 *6745 1*4826 *6290 •939 •9774 50 

35 *0109 *601 ‘5736 •7002 1*4281 *8192 *923 *9599 55 

SO •6983 *618 •6878 *7285 1*3764 *8090 ‘908 1 *9426 54 

37 ‘6458 *635 *6018 *7536 1*3270 *7986 *892 ‘9250 53 
38 *6639 *651 *6157 •7813 1*2799 '7880 •877 •9076 j 62 

38 •6807 •668 *6993 •8098 1*2349 •7771 *861 1 *8901 1 5L 

40 *6981 *684 *6498 *8391 *rc60 *845 } *8727 50 

41 •7166 •700 *6561 *8698 1*1504 *7647 •829 *8552 1 40 
49 •7330 *717 *6691 *9004 1*1106 *7431 •813 *8378 48 
43 •7505 •733 *8820 *9326 1‘0*«24 •7314 •797 *8208 4V 
44 ■7679 •749 •6947 ‘9667 1*0355 •7193 *781 ‘8029 40 

4tP *7854 *765 •7071 I'OOQO 1-0000 ■HQI •765 I •7864 45<» 

■ Oooine. 
Co- 

tangent. Tangent. Sinew diord. Radiana, De. 
groeA 

Hi Anglew 
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368 LOGARITHMS. 

1010000 

111 0414 

12j0792 

18|lI39 

1411461 

16|1761 

9|1 28 4|567$9 

4 9 13 17 21 26 30 34 38 
8 8 12 16 20 24 28 12 37 

|1004 1038 1072 1106 

1335 1367 1399 1430 

1644 1673 170S 1733 

1931 1959 1987 2014 

2201 2227 2253 2279 

2455 2480 2504 2529 

2695 2718 2742 2765 

2923 2945 2967 2989 

3139 3160 3181 3201 

2 4 7 9 11 

8 4 6 8 10 
2 4 6 8 10 
2 4 6 7 9 
2 4 6 7 9 

2 3 6 7 9 

2 3 5 7 
2 3 6 6 
2 8 6 6 
18 4 6 

13 16 18 20 
13 15 17 19 

13 15 17 19 

12 14 16 18 
12 14 15 17 
11 13 15 17 
11 12 14 16 

10 12 14 15 

5416 5428 

5539 5551 

5623 
574016752 16763 1 5775 
58651 5866 
59661 5977 

618016191 
6294 
6395 
6493 

1 8 4 6 

1 3 4 6 
1 3 4 5 
1 3 4 5 
1 S 4 5 

1 2 4 6] 

1 2 4 6 
1 3 8 5 
1 2 8 5 
1 2 8 4 

1 2 8 4 

10 11 13 15 
9 11 13 14 
9 11 12 14 
9 10 12 13 

9 10 11 13 

8 10 11 12 
8 9 11 12 
8 9 10 12 
8 9 10 11 

7 9 10 11 

2211 6542 6551 6561 IBI 6590 6599 6609 6618 

6 7 8 9 
3 7 8 9 
6 7 8 9 
6 7 8 9 

6 7 8 9 

6646 6656 6666 
6739 6749 6758 
6830 6839 6848 
6920 6928 6987 

6684 6693 6702 6712 1 2 8 4 
6776 6785 6794 6803 1 2 8 4 
6866 6876 6884 C898 1 2 8 4 
6955 6964 6972 6981 1 2 8 4 

13 8 8 



9112 9U7 9122 9128 913311 1 
91G5 9170 9175 9180 918611 1 
9217 9222 9227 9232 923811 1 
9269 9274 9279 9284 9289 [l 1 

9325 9330 9335 934011 1 2 2 

9370 9375 9380 9385 9390 1 1 2 2 
9420 9425 9430 9435 9410 0 1 1 2 
9469 9479 9479 9484 9489 0 1 1 2 
9618 9523 9528 9633 9638 0 1 1 2 

9571 9576 9681 958610 1 1 2 

9614 9ra9 9624 9628 9633 0 1 1 2 
9661 9666 9671 9675 9680 0 1 1 2 
9708 9713 9717 9722 9727 0 1 1 2 
9764 9759 9763 9768 9773 0 1 1 2 

9836 9841 9845 9850 
9881(0886 9890 9894 
9926 9930 9934 9939 
9969 9f74 8978 9983 

0 112 
0 112 
0 112 
0 112 

4 5 5 6 
4 5 5 6 
4 4 5 6 
4 4 5 6 

3 4 4 5 5 
3 4 4 5 5 
3 4 4 5 5 
3 4 4 5 5 

3 3 4 5 5 

3 3 4 5 ? 
S 3 4 4 5 
3 3 4 4 5 
3 3 4 4 5 

3 3 4 4 5 

3 3 4 4 5 
3 3 4 4 5 
3 3 4 4 5 
3 3 4 4 5 

3 4 4 5 
3 3 4 4 

3 3 4 4 
3 3 4 4 
3 3 4 4 
3 3 4 4 

2 3 3 4 4 
2 3 3 4 4 
2 3 3 4 4 
2 3 3 3 4 
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•06 1148 
•07 1175 
•06 1202 
•06 1230 

6 7 8 9 

•16 1445 
•17 1479 
•16 1514 
•16 1549 

1033 1035 1038 1040 1043 1045 
1057 1059 1063 1064 1067 1069 
1081 1084 1086 1089 1091 1094 
1107 1109 1113 1114 1117 1119 

1161 1164 1167 
1189 1191 1194 
1216 1219 1332 
1245 1347 1350 

459 1463 1466 
493 1496 1500 
538 1531 1535 
SCO 1567 1670 

E&3B3i3EESBS3 ESIGBSIBSi 

1315 0 111 
1346 0 1 1 1 
1377 0 1 1 1 

140611409 0 1 1 1 

1626 1639 1633 1637 
1663 1667 1671 1675 
1703 1706 1710 1714 
1743 1746 1750 1754 

3 3 3 3 

3 3 3 3 

1644 1648 1663 1656 0 1 1 3 
1683 1687 1690 1694 0 1 1 3 
1723 1726 1730 1734 0 1 1 3 
1703 1766 1770 1774 0 1 1 3 

•29 1830 1834 1838 1833 1837 1841 1845 1849 1864 1858 
•27 1863 1866 1871 1875 1379 1884 1888 1893 1897 1901 
•29 1906 1910 1914 1919 1933 1938 1933 1989 1941 1945 
•29 1960 1954 1959 1963 1968 1973 1977 1983 1086 1991 

3 3 3 
3 3 3 
3 3 4 

•a 3043 
•82 3089 
•39 3138 
•84 3183 

2051 2056 3061 2066 
2099 2104 2109 2113 
2148 2153 2158 2163 
2198 2203 2308 3313 

8396 3301 2307 
3850 3365 3360 
1404 3410 3415 
3460 3466 8473 

•41 3570 3576 3583 
•42 2630 8636 36421 3649 
•48 3693 3698 8704 37101 2716 
*44 3754 3761 3767 3773 3780 

3891 
3958 
303713034 
3097 3105 

3606 2612 2618 2624 113 3 
3667 8673 3679 3685 1 1 8 3 
3789 3735 2742 2748 1 1 3 3 
3793 3799 2806 2814 1 1 3 3 

3031 3938 
2999 3006 
3069 8076 
5141 8148 

12 8 
18 8 
12 8 
12 8 

C
4

b
l(
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C
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ANSWERS TO EXAMPLES 

Examples I. Page 23. 

(i) 24’i lbs, (2) 49*4 lbs. (3) 25‘6 lbs.; 30° 10 the 35 lb. force. 
(4) x lbs. and 22*5 lbs. (5) 2‘i9 tons ; 2*68 tons. 
(6) Jib 4*06 tons ; tic-rod 2*19 tons. (7) 38*5 lbs.; 66° north of west. 
(8) 23*4 lbs. ; 33*2° north of west. 
(9) 2rs lbs. north-west; toi*5 lbs.; 60° east of north. 

(10) I9‘8 tons compression ; 49 5 tons tension. 

Examples II. Page 38. 

(1) 3350 lb.-ft. (2) 45 lb.-ft. contra-clockwise. 
(3) 14 lb.-inches ; Q = 6*66 lbs. ; 10*5 Ib.-inches i P = 4*55p lbs. 
(4) I05*S ibf. (5) 140-9 Ibh. (6) 849 lbs, ' 
(7) 4|cwt,at R.H.; 4jcwt. at L.H. (8) 10*13 tons at R.H.; 6*87 tons at L.H. 
(9) 648 lbs. ; 1061 (lo) 199*5 at E ; 280*5 lbs. at D. 

(11) Rf = 225 lbs.; \V = 200 lbs. ; = 200 lbs. ; W = 225 lbs. 
(12) 165 lbs. (13) 9*18 Inches from the weight of 17 lbs. 
(14) S9‘I3lbs. (15) 2.'/38 1bs. (16) 10,120 lbs. {17) 23-9 lbs. 

Examples III. Page 50. 

(i) 3*19 inches.^ (2) 10*25 lbs. ; inches ; iiich. 
(31 99*1 Ibi. per square inch above atmospheric. (4) 123*4 lbs. 
(5) 27Llbs. ; 386 lbs. at 57^° to horizontal. (6) 252 lbs. at Q ; 496 lbs. at P. 

Examples IV. Page 60, 

(1) Tie-rod = 3500 lbs. ; jib = 9800 lbs. 
(2) Tie-rod = 7000 lbs. ; jib — 13,300 lbs. 
(3) (i) Tie = 5250 lbs. ; jib = 9800 lbs. 

(2) Tie = 7000 lbs. ; jib = ii,54o lbs. 
(3) Tie = 6x20 lbs. ; jib = 10,680 lbs, 

(4) AD = 22 cwt. comp.; BD = 38*1 cwt. comp.^; DC = J9*o5 cwt. tension. 
(5) AD s= BE = 5434 lbs- comp. ; DE = 1673 lbs. tension ; DC = EC 

= 4750 lbs. tension. 
(0) AD 5= BF = 7-16 tons comp. ; DC = FC =5 6*26 tons tension; EC 

= 5*32 toils tension ; DE = £F = 1*47 tons tension. 
(7) BC = 1385 lbs. tension; CA = 693 lbs. comp ; DC = 1385 lbs. comp. ; 

DB = 1385 lbs. tension. 
(8) AD = BF =r 2750 lbs. tension; DE = EF:f 5500 lbs. tension ; DC 

w EG sc FC 5500 lbs. comp. 
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(9) Members in tension:—DA = EA = 1*15 tons; EF = 2*31 tons; GIl 
= 8 tons ; GA = HB = 3'45 tons. Members in comp.:—DC = 2 31 
tons ; FG = CF = 2’3i tons ; HC = 6*93 tons. Stress in DE = o. 

(10) DE = FG = HK ~ LM = 5000 ibs. tension; FA = KB = 3000 lbs. 
tension; CD = EF = KL = MC = 4000 lbs. comp. ; CE = C L 
= 3CXX) lbs. comp.; CG = CH = 6000 lbs. comp.; DA = MB = GH = o. 

Examples V. Page 73. 

<i) (a) 14175 5 (^) 2' - ir ; W ii94§lbs. (2) {a) 5*i8feet; (b) 67 inches. 
(3) 20,697,600 ft.-lbs. (4) 95,000,000 ft.-lbs. (5) 10,603 ft.-lbs. 
(6) 6963 ft.-lbs. (7) 9163 ft.-lbs. (8) 200,277 ft.-lbs. 
(9) 500 lbs. (10) 28*8 lb.-ft. (ii) 3^*25 inch-lbs.; 15*94 inch-lbs. 

(12) 67*5 inch-lbs. ; 39*37 inchrlbs. (13) 2,208,937 ft.-lbs. (14) 194,400ft.-lbs. 
(15) 384,200 ft.-lbs. (10) 220*26 ft.-lbs. (17) 5*21; 32*6 per cent. 
(18) 799*26 lbs. (19) 2*97 lbs. ; 13*4 per cent. 
(20) 149} lbs. ; 0*613 ft. per second. 

Examples VI. Page 83. 

(I) 0*357. (2) 67*5 lbs. (3) 1674 lbs. (4) 192*8 lbs. 
(5) 0*225 ; 20*5 lbs. inclined 102^ 42' to the 4*5 lb. force. 
(6) 564*48 ft.-lbs. (7) 103*4 lbs. (8) 791*68. (9) 0*268. 

(10) 13*13 lbs. (II) 38*24 lbs. (12) 4*04 lbs. (13) 60*3. 
(14) 60lbs. ; 79,200ft.-lbs. (15) 420tons; 7920ft.-tons. (16) 9,504,000ft.-lbs. 

Examples VII. Page 97. 

(i) 41*5 lbs. (2) 226*2 ; 55 per cent. {3) 2*78 ; 25,846 ft.-lbs. 
(4) (a) 48 per cent. ; (b) 52 per cent.; (^‘) 53 per cent. 
(5) (a) 12 lbs. ; (b) 33 lbs. (6) 147*4 fe.H.P. 

Examples VIII. Page 105. 

(i) Steel on oak, F = o*i6W; brass on oak, F = o*i8W; oak on oak, 
F = o*5oW ; brass on steel, F = o*i5W ; cocflficicnts of friction, 0*16, 
0*18, 0*50, 0*15. 

<2) = 0*1022/. (3) w = 0*00549/. (5) P = 1*5 -f o*6iW ; F = 2*7-fo‘*i5VV. 
(6) P = 0*09 4- o*072W; F = 2*633 + o*789W. (7) H = 1082 -f 0*305/. 
(8) W = - 430 + 21-19 I.H.P. (9) W = 0*372 -f 0*828 B.H.P, 

Examples IX. Page 121. 

(I) 13*57 H.P. (2) 0*297 H.P, (3) 254,130. (4) 6*10. 
(5) 6*06. (6) 1858*5. (7) 3*98. (8) 110*4. 
(9) 60*6. (10) 72 per cent. (ii) 68*2. (12) 2r. oj^/. 

(13) 4-36. (14) 102*1. (15) 10*27. (16) 3798. 
(17) 13,428,000. (18) 5*5 amperes j 0*183 pence. (19) 89 02 I.H.P. 
(20) 276*34. 

Examples X. Page 141. 

(i) (a) 205*7 revs, per min. ; {b) 199*5 revs, per min. (2) 25 inches. 
(3) 280 revs, per min.; 672 revs, per mir. (4) 10*68. (5) 2l*8l. 
(6) 1650 lbs.; 2970 lbs. and 1320 lbs.; 37J inches, (7) 21*85 inches, 
(8) 25*4 (9) 24; 2*35 inches. (10) lOO. 

(11) (a) 187*5 ; {b) 250 ; {c) 125 revs, per min. (12) 2X6. 
(13) 275 lbs. (14) 235*7 revs, per min. (15) 33I feet per min. 

3535 lbs. 
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Examples XI. Page 157. 

(I) (tf) 10 lbs.; W io-o6Ibs. (2) 79‘3lbs. (3) (d) 46-5; (d) 5-4. 
(4) I in 100. (5) 288. (6) 39-6 lbs. (7) 1257. 
(8) 9*8 tons. (9) 4*6 tons. (10) 18,095 ^^>5. (ii) 6750 revs, per min. 

(12) 3375 revs, per min. (13) 7*87 lbs. (14) 50*3 per cent. 
(15) 2*13 per cent. (16) 33*9 tons. 

Examples XIL Page 175. 

(I) 30. (2) 480 lbs. ; 46*6 per cent. (3) 330 lbs. (4) 24. 
(5) M 302 lbs-; (^) 241*6 lbs. (6) 90 7 per cent. (7) 367 lbs.; 1430 lbs. 
(8) Drivers, 80 and 90 teeth; followers, 20 and 30 teeth. 
(9) Driver, 20; follower, 80. (lo) 26*6 revs, per min. 

(II) With back gear out.:—360, 216, 150, 90 revs, per min. 
With back gear in ;—^40^ 24, 10 revs, per iniii. 

Examples XIII. Page 183. 

(i) 13 lbs. (2) 56*94 lbs.; 387® to the 80 lb. force. (3) 114*9 lbs. ; 315*7 lbs. 
(4) Rafters, 2590 lbs. comp. ; tie, 2165 lbs. tension. 
(5) Tie, 9'^ tons tension ; jib, 13*65 tons comp. 
(6) 38*5 lbs. ; 66® north of west. (7) 52*5 lbs.; 20‘5® south of east. 

Examples XIV, Page 189. 

tl) 6*27 inches from apex of cone. {2) 5*44 inches from the 7-inch ball. 
(3) 3*46 inches. (4) 3*46 inches. (5) 3 38 inches. 
(6) 4*85 inches from the plane end of the cylinder. 

Examples XVI. Page 214. 

(i) 5*29 tons per sq. inch. (2) 0*0096 inch ; 0*00096. 
(3) 20,000 lbs. per sq. inch ; 30,000,000 lbs. per so. inch. 
(4) I5>300,ooo lbs. per sq. inch. (5) 15810$. (6) 0*0318 inch, 
(7) 3*^ inch. ; 13,700 tons per sq. inch. 
(8) 8640 lbs. per sq. indi. (9) 0*64 inch. (lo) 23*56 tons. 

(11) d = i inch ; / = 2 inches. ,(12) 50 per cent. (13) 0*8 inch. 

Examples XVII. Page 235. 

(1) Bending moments:—142,64,16, o tons-feet. Shearing forces:—13, 8, 2 tons. 
(2) 54*96, 37*68, 54*62, 57*48 tons-feet. (3) 75 tons-feet. 
(4) I *5 tons per sq. inch. (5) 1 *18 tons per sq. inch. (6) 1*42 tons per sq. inch. 
(7) 4*76 tons per sq. inch> (8) 13*4 feet. (9) 1*36 tons. (10) 0*26 inch, 

(ll) 1*01 inch. (12) ^X>5 tons per sq. inch. (13) 990 lbs. ; 3960 lbs. 
(14) 15,000 lbs. 

Examples XVIII. Page 241. 

(1) 47.750 Ib.-inchqs. (2) 7928 lbs. per sq. inch. (3) 216. (4) 2*07 inches. 
(5) 430*5* (6) 14# 137 lb.-inches; 0*47,8270*5 inch. (7) 666] Ib.-inchcs. 
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Examples XX. Page 264. 

(1) 733} yards ; 22 minutes 48 seconds. 
(2) 49*2 miles per hour, 72*16 feet per second. (3) 330 feet. 
(4) 26*18 radians per second. (5) 25*13 radians per second ; 720 feet per min. 
(6) 23*57 radians per second ; 712*5 feet per min. (7) 76*6 feet per second. 
(8) 1} feet per second per second. (9) 0*733 second per second. 

(10) (a) H foot per second per second ; (^) 1760 feet ; (c) 3960 feet; (tf) 75 secs. 
(11) 970*5 feet. (12) 3*52 seconds. 
(13) 3 feet per second per second due east. (14) (<i) 3; {&) 0*314. 
(15) 186*5 second per second in a direction 30*4® north of w?st. 
(16) 13*24 feet per second ; 7*88 feet per second ; 15*4 feet per second. 
(17) 25 feet per second in a Erection 37^ north of west. (18) 19*54 knots. 

Examples XXL Page 280. 

(i) 612,170 units. (2) 30*6 lbs ; 38*01 units. (3) 201 units ; 67 units. 
(4) 102 lbs. (5) 45*54 tons. (6) 33*7 feet per second. (7) 3x0*5 lbs. 
(8) 3597 lbs. ; 143,850 units ; 6*9 feet per second. 
(9) 1*15 feet per second per second ; 517*5 feet ; 4*64 H.P. 

(10) 9200 lbs. ; 981 H.P. (Il) 72*1 feet per second per second ; 1082 lbs. 
(12) 27*4. (13) 337icet j 25ofcet. (14) l68*81bs.; (i) 180 lbs.; (2) 191 *2lbs. 
dS) 3730 lbs. (16) 20,700. 
(*7) (<t) 57*09 feet per second per second ; (^) 18*50 feet per sec.; {c) 0*0045 sec. 
(18) 1*95 feet per second. {19) 0*175 radian per .second per second. 
(20) 37*5. (21) 133 seconds. (22) 262*3 lb.-feet ,* 98,885 foot-lbs. 

Examples XXII. Page 299. 

(2) 35*3lbs. (3) 12*19 E.H.P.; 9*094 units; l8*i8amps. 
(5) 970*4 footdbs. (6) 5o»504 foot-lba. ; 397 feet. 

(8) 769 feet per second. (9) 420 lbs.; 0*97 inch. 

d) 7*83percent. 
(4) 23*53 lbs. 
(7) 77^ foot-lbs. 

(10) 5040 lbs. ; 2240 foot-lbs. (il) 13*52. 
d3) 35*9 feet per second ; 26*2 feet per second. 
(15) 26*87 feet per second ; 85 2 revs, per min. 
(17) 109,670 foot-lbs. ; 205*3 toot-lbs,; 534 revs. 
(19) 55,000 foot-lbs. ; 211,200 lbs. 
(21) 81*8 foot-lbs.; 0*476 foot. (22) 
(23) 172 revolutions per minute. 

(12) 26,832 lbs. 

(14) 790,700 foot-lba. 
(16) 6to foot-lbs. 
(18) 7263 lbs. 
(20) 500,000 foot-lbs. 

110*9 ioot-lbs. ; 0*57 foot 

Examples XXIII. Page 313. 

(i) 197*4 feet per second per second. {2) 7*35 lbs. {3) 2298 lbs. 

(4) 6080 lbs. (5) 732 lbs.; 0*083 H.P, (6) 44*^ l^s- (7) !!>«• 
(8) 9*79 inches ; 0*69 inch. (9) 109*6 feet per second per second. 

(10) 5884 lbs. (II) 153*2. (12) 31*23. (13) I to 1*0073. 

Examples XXIV. Page 326. 

(x) (0 7*51 inches; (2) i*o8 inches; (3) 6*9 inches. 
(2) 5*71 feet per second ; 9*42 feet per second ; 5*47 feet per second. 
(3) n- (s) 48. 
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Examples JCXV Page 341. 

(1) 15*46 tons. (2) 41*4 lbs. (3) 70*4 per cent. (4) 24. 
(S) 300 foot-tons; 990 lbs. per square inch. (6) 15*22 tons. (7) 2100 lbs. 
(8) i6*3 pence. (9) 302,400 foot-lbs.; 0*533. 

(10) 4*57 feet; 8000 lbs. ; 5213 lbs. ; 2280 lbs. (11) 2948 lbs. 
(12) (a) 17*5 tons ; {d) 23J feet from surface of water ; (c) 204*1 tons-feet. 
O3) 15*762 feet from the surface. (14) 5*937 cubic feet. 
(15) 15*55 lbs.; 96*45 lbs. 

Examples XXVI. Page 348. 

(i) 1742 lbs. ; 2*18 gallons. (2) 1600 lbs. (3) 1*94 H.P.; 20*72 gallons. 
(4) 54 H.P. (S) 98*01; 8*54 inches. (6) 20*78 amps.; 4*156 pence. 

Examples XXVII. Page 365. 

(I) 338*4* (2) 0*25 inch. (3) 0*619. 
(4) 7*7 feet per second ; 1484*5 lbs. persq. foot. (5) 612*3 lbs. per sq. feet. 
(6) 63*7 feet (7) 422*8 lbs. (8) 226*9 H.P. (9) 7*15. (10) 3*26. 

(11) (i) 30 feet per second ; (2) 46,800 foot-lbs.; (3) 80 per cent. 
(12) 8 *08 feet per second ; 4 04 feet per second. 
(13) 46*2 feet per second ; 83^° to the circumference. 
(14) 11 *01 feet per second ; 9*23 feet per second. 
(15I (I) 8*7 feet per second; (2) 58 feet per second (16) 52 feet. 



INDEX 

A 

Absorption dynamometer, 114 
Acceleration, 254 
-j experiment on, 256, 257 
-of rotating body, 302, 303 
-of gravity, 255 
-, down incline, 273 
Accelerating force, 271 
Accumulator, hydraulic, 332 
-, energy stored in, 333 
Angles, measurement of. 4 
-, trigonometrical ratios of, 4, 367 
Angle of friction, 78 
-repose, 79 
-twist, 239 
Angular velocity, 253 
Areas, calculation of, 1 

B 

Balance, spring, 15 
Balancing of machines, 305 
Back gear for lathes, 174 
Ball bearings, 82 
Beams, 216 
-, experiments on, 230 
-, comparison of strength of, 233 
-, stiffness of, 232 
-, stiffness and deflection of, 229 
-, of I section, 226 
-, modulus of section of, 225 
-, moment of resistance of, 219 
Bearings, heat generated at, Si 
Belt driving, 12^ 128, 129 
Belts, guide pulleys for, 128 
-, power transmitted by, 125 
-, slipping of, 1.85 
Belting, reversing motion by, 131 
-, quick return by, 320 
Bending, elastic, 194 
-moment, 218 

B mding moment and shearing force, 
219 

-table of, 222, 223 
j Bending stresses, 217, 221 

Bessemer process, 245 
Blows, 275 

I Body acted on by 3 forces, 43 
j -sliding dovm a plane, 79 

Board of Trade Unit, 119 
Braced girders, 58, 228 
Brake Horse Power, measurement of, 

114 
Brake, Prony, 115 
-, rope, 114 
-, heating of, 116 
Bricks, 247 
British Thermal Unit, 2S2 
Buoyancy, 339 

C 

Calipers, 8 
-Vernier, 10 
Caros, 324 
Cast iron, 244 
-l)eams, 234 
--strength of, 244 
Case hardening, 246 
Castings, chilled, 244 
-malleable, 244 
-weight of, 3 
Cantilever, 216 
Cements, 248 
Cementiftion process, 245 

I Centre of gravity, 184 
-by calculation. 1S5 
-suspension, 1S7 
-graphically, 
Centre of parallel forces, 32 
-pressure, 338 
Centroid, 187 
Centrifugal force, 303 
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Centrifligal governor, 306 
-pumps, 364 
Chain drive, 132 
Change wheels, calculation of, 172 
Circle, motion in a, 301 
Coefficient of contraction, 351 
-discharge, 351 
-friction, 76 
-velocity, 351 
Columns, 206 
Collisions, momentum after, 276 
Components of a force, 179, 181 
Compound screw jack, 155 
Compression of helical spring, 194 
Compressive stress, 206 
Concrete, 248 
Connecting rod and crank, 38, 314 
Couples, 33 
Coupling, flanged shaft, 238 
Crab, 163, 167 
Crane, found^, 45 
-hydraulic, 33S 
-lib, 19, 52 
Crank and slotted lever, 318 
Cranked levers, 36 
Creeping of belts, 125 
Critical slope, 79 
Curve plotting, 6 
Cylinder volumes and power, 112 
Cylindrical shell, 207, 214 

D 

Deflection of beams, 229 
Density, 4, 340 
Displacement curve, 315 
Diametral pitch, 135 
Differential axle, 159 
-pulley bl<^, Weston*s, 160 
Discharge through an orifice, 352 
Dropping plate experiment, 256 
Ductility, 202 
Dynamometer, absorption, I14 
-transmission, 116 

E 

Edge, straight, 14 
Efficiency of an engine, mechanical, ill 
Efficiency of maemnes, 71, 88, 155 
Elastic biding, 194 
Elastic law, 191, 198 
-limit, 202 

f Elastic stretching, 191 
-twisting, 196 
Elasticity, mc^ulus of, 202 
Electriod Horse Power, 119 
Energy, change of, 292 
-electrical, 283 
-heat, 282 
-kinetic, 28$ 
-mechanical, 284 
-of water, 354 
-of a flywheel, 290, 294 
-potential, 284 
-stored in accumulator, 333 
-transformation of, 282, 283 
Equilihrant, 17, 178 

F 

Factor of safety, 243 
Falling body, 255 
Fast and loose pulley, 129 
Fatigue of materials, 242 
Floating body, 339 
Flow through orifices, 351 
-pipes, 356 
Fluid pressure, 327 
Fluids, properties of, 327 
Fly Press, 289 
Flywheel^ energy stored in, 290 
-, experiments on, 294 
Foot potmd, 62 
Force, 15 
-, accelerating, 271 
-, measurement of, 15, 271 
-, unit of, 277 
-, centrifiigal and centripetal, 304 
-, moment of a, 25 
-of a jet, 357 
-ratio, 67 
-represented by lines, 16 
-pump, 345, 347 
-shearing, 219 
Forces, addition by vectors, 17 
-, centre of parallel, 32 
-^ impulrive, 275 
-in members of structures, 54-60 
-f polygon of, 20 
-, resolution of, 179, 181 
-, triangle of, 16 
Foundry crane, 45 
Framed girder, 228 
Friction, 75 
—angle of, 78 
——, coefident of, 76 
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Friction, efifect of, on load lifted, 87 
-gearing, 132 
-, laws of, 75 
-, sliding, 76 
-, rolling, 81 
Friction of a belt, 125 
-— bearings, 81 
—,-dry surfaces, 76 
-on an inclined plane, 79 

G 

Gauges, limit, 8 
-, standard cylindrical, 7 
-, micrometer screw, 8 
Gear, lathe back, 174 
Gearing, spur, 133 
-, power transmitted by, 139 
-friction, 132 
-worm, 154 
Girders, framed, 228 
Governor, centrifugal, 306 
Gravity, specific, 340 
Guide pulleys, 128 

H 

Hard steels, 245 
Hardening and tempering, 246 
--case, 246 
Harmonic motion, simple, 308 
Head of water, 337 
Heat, unit of, 282 
-generated at bearings, 81 
-transformed into work, 283 
Heating of brake, 116 
Helix, 147 
Hoop tension in thin shell, 207 
Hooke’s Law, 198 
Horse Power, 108 
-— brake, 114 
-, electrical, 119 
-, indicated, no 
Hydraulic accumulator, 332 
-crane, 335 

-jack, 331, 332 
-lift, 334 
-press, 328 

I 

I beam section, 226 
Inclined plane, 143 
Indicated horse-power, no 
Inertia, 266 
Iron, cast, 244 
-pig, 244 
-, malleable cast, 244 
-, wrought, 245 
Irregular areas, measurement of, 2 

j 

Jet, force of a, 357 

K 

Kilowatt, 119 
Kinetic energy, 285, 290, 291, 294, 

355 

L 

Law of force and motion, 269 
Law, elastic, 198 
Law, linear, 98-105 
Laws of friction, 75 
Leather packing, 329, 332 
Left-handed screw, 150 
Levers, 34 
——, cranked and compound, 36 
Lever safety valve, 42 
Lift pump, 343 
Lime, 247 
Limestone, 247 
Live load, 242 
Load, alternating, 242 
-suddenly applied, 242 

M 

Machines, simple screw jack, 90 
-, compound „ „ 155 
-, bicycle, 69 
-, crab, 163, 167 
-rope pulleys, 92 
-, spur geared pulley block, 169 Idle wheel, 136 
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Machines, wheel and axle, 68, 92 
-, wheel anil differential axle, 159 
-, Weston’s pulley block, 160 
—, wnrin and wheel, 153 
-, worm driven pulley block, 155 
Malleable casting, 244 
Mass, 266 
Materials, testing of, 243 
Mechanical advantage, 67 
-efficiency, 71, 88, ill 
— energy, 284 
Mechanisms, crank and connecting-rod, 

314 
-, cams, 324 
-, crank and slotted lever, 318 
-, ratchets, 323 
-, Toggle joint, 320 
-, Watt’s straight line motion, 321 
Mensuration of areas, i 
-volumes, 3 
Micrometer screw gauge, 8 
Modulus of elasticity, 202 
-beam section, 225 
-rupture, 233 
Moment of a force, 25 
-bending, 218 
-of resistance, 219 
Moments, kinds of, 25 
-, principle of, 29, 34 
Momentum, 266 
-, after collisions, 276 
-, change of, 267 
Mortar, 248 
Motion in a circle, 301 
-reciprocating, 308 
Multiple screw threads, 150 

O 

Orifices, flow through, 350 
Open Hearth process, Siemen’s, 245 

r 

Parallel forces, 30 
-rules for, 32 
Pawl and Ratchet wheel, 323 
Pelton wheel, 360 
Pendulum, simple, 311 
-, conical, 306 

Pinion and rack, 140 
Pipes, flow of water in, 356 
-, change of pressure in, 356 
Piston velocity, curve of, 316 
Pitch circle, 134 
-circular, 134 
-diametral, 135 
-of thread, 147 
Plate, surface, 13 
Polygon of forces, 20 
Portland cement, 248 
Potential energy, 284 
Power, 108, 118, H9 
- measurement of, lio, U4, 115, 

Ii6 
-transmitted by belts, 125 
-gearing, 139 
Press, hydraulic, 328 
-Fly, 289 
Pressure energy, 354 
-between teeth of wheels, 165, 168 
-centre of, 338 
-in a liquid, 327, 336 
-on immersed surfaces, 337 
-mean effective, 109 
Principle of moments, 29 
-work, 67 
Pulley blocks, 92, 155, 160, 169 
Pulleys, l)elt, 123 
-, rope, 132 
Pumps, centrifugal, 364 
-, force, 345, 347 
-, lift, 343 
-, three-throw, 348 

Q 

Quick return motion, 318, 320 

R 

Rack and Pinion, 140 
Radian, 4 
Reaction of beam supports, 31, 33 
Reciprocating motion, 308 
Relation, sides and angles of a triangle, 

5 
Relative velocity, 262 
Repose, angle of, 79 
Resistance, tractive, 81 
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Resolution offerees, 179 
Resultant force. 17, 21, 177, 178, i8i 
-on sliding body, 78 
Reversing motion, 131, 320 
Riveted joints, 210-214 
Roof truss, 54, 56 
Roller bearings, 82 
Rolling, resistance to, 8l 
Roman cement, 248 
Rope (hiving, 132 
-pulleys, 92 
Rotation, woik done during, 63 

S 

Safely, factor of, 243 
- valve, lever, 42 
Screw threads, 147-151 
-jack, 90, 155 
-cutting, 171 
Shaft coupling, flanged, 23S 
Shaft, torsion of a, 237 
Shearing force, 219 
Shear stress, 209 
Specific gravity, 340 
Speed cones, 127 
Speed-time diagram, 250 
Spherometer, 11 
Springs, elastic extension of, 192 
-compression of, 194 
-twisting of, 198 
-vibration of, 309, 311 
Spur gearing, 133, 139 
Squared paper, use of, 6 
Static friction, 75 
Steel, 245, 246 
Steelyard, 41 
Stiffness of beams, 229 
-shafts and wires, 239 
Stone, 247 
Straight edge, 14 
-line motion. Watt's, 321 
Strain, 201, 2q6 
Stress diagrams, 55 
Stretch of a wire, 191 
Structures, forces in members of, 52-61 
Struts, 206 
Surface plate, 13 

T 

Table of .antilogarithms, 370 
--of logarithms, 368 

Table of strength of materials, 243 
-of trigonometrical ratios, 367 
Tempering, 246 
Tensile tests on wires, 201 
Tension at ends of hanging chain, 45 
Testing of materials, 243 
Thin shells, 207, 214 
Timber, 246 
Toggle joint, 48 
Torsion, 237 
Toothed wheels, 133 
Tirams of wheels, 137 
Tractive resistance, Si 
Transmission dynamometer, 116 
--of power, 123 
Triangle of foiccs, 16 
-— ratio of svlcs and angles of a, 5 
Trigonometric.'^^ ratios of angles, 4, 367 
Trussed girders, 228 
Turbines, 361 
Twisting, 196 

U 

Ultimate strength, 205, 243 
Useful constants, 14 

V 

Velocity, 249 
-change of, 259 
-ratio, 67, 135, 136, 163, 167 
-relative, 262 
Verniers, 9 
Vernier calipers, lo 
Vibrations of spring, 311 
- simple harmonic, 308 
Volumes, determination of, 3 

W 

Water hi motion, 350 
-flow in pipes of, 356 
-head and energy of, 3S4 
-pressure of, 336 
-wheels, 358 
Weston pulley block, 160 
Wheel and axle, 68, 
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Wheel and differential axle, 159 
Winch, lifting, 163 
Wires onder tension, 191, aoi 
.torsion, 196, 239 

Work, nnit of, 62 
-represented by an area, 64 
Work done in lifting machines, 66 
-lost in lifting machines, 71 

Work principle of, 67 
Worm and worm wlml, 153 
Worm driven policy bloclu, 155 

Y 

Young’s Modulus, 202 

THE END 
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