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PREFACE 

This book is intended to be used as a text for students in 
physics and mathematics. It contains essentially the subject 
matter as presented in a three-hour course, extending throughout 
the year, to a class of junior and senior students in the University 
of California at Los Angeles. The material which is included 
has been selected because, in the opinion of the author, it is 
peculiarly fitted to serve the purpose of an introduction to the 
study of mechanics. A thorough knowledge of calculus and 
at least one elementary course in college physics have been 
prerequisites. 

The range of topics has been limited to those which are 
considered to be fundamental and which best serve the purpose 
of illustrating the methods and procedure vital in an introductory 
course. Vector methods have been used freely and parallel, 
in many cases, the analytical treatment. It is thought that 
such a method of presentation not only may make the subject 
more interesting but will enable the student to gain a more secure 
understanding of mechanics and at the same time prepare the 
way for advanced work in which vector methods are commonly 
used. 

The author has tried to teach the student to regard mathe¬ 
matical expressions as representations of physical relations 
rather than as aggregations of symbols which are to be manipu¬ 
lated according to prescribed rules. Each term of an equation 
should be examined so that the physical quantity represented is 
clearly recognized. In several types of expressions, such as 
those associated with simple harmonic motion, geometrical 
relations are used to give reality to the quantities represented. 
This viewpoint is essential to a mastery of the subject. 

The study of such a subject as mechanics has for one of its 
objectives the presentation of certain concepts and principles. 
The knowledge of such subject matter is in itself sufiiciently 
valuable to justify its acquisition. The student should be surb 
that his understanding of any process or principle is secu|^. 

y ^ V 



VI PREFACE 

It is particularly important to recognize the limitations or 
restricting conditions which have been prescribed in the deriva¬ 
tions of a particular principle and to realize that a fundamental 
equation may be applied to the whole or to only a part of some 
configuration. Consistency in the application of a principle is 
absolutely necessary. The author would like to suggest that 
facility in the use of applying the principles comes from keeping 
a knowledge of them in a state of suspension. 

The goal for every student should be to learn to think analyti¬ 
cally. Information is useful and necessary but the methods 
and means by which new information may be obtained are 
potent tools which make progress not only certain but rapid. 
The natural method of thinking, if there be such a thing, is an 
empirical one. Such a process is essentially a '‘cut and try^^ 
process. It is practiced extensively but seldom makes progress. 
To learn to think analytically requires real intelligent persistence. 

There are, fortunately, devices which are helpful. Practical 
suggestions and concrete illustrations of procedure are given 
in this text for the purpose of helping the student to achieve this 
objective. 

Progress toward this purpose may be obtained by a proper 
attitude of mind in the problem solving. After all it is not so 
much the answer to a particular problem that is important, but 
rather the knowledge of how to attain that answer. It is always 
an excellent procedure to look at the problem first from a more 
general point of view in order to lay out a plan and then to 
approach the details only when the proposed plan seems possible. 
This idea may be extended with advantage. Frequently the 
time element prevents one from cov^ering as much ground as he 
would like. In such cases it is recommended that the details 
of calculation or of integration may be omitted, if the student 
feels sufficiently sure of his ability to warrant such a procedure. 

The author wishes to express his appreciation of the criticisms 
and suggestions of Professor W. J. Raymond and Professor 
V. 0. Lenzen, both of the University of California at Berkeley. 
He also wishes to extend his cordial thanks to his students, 
particularly Mr, Reed Lawlor, who have contributed in various 
ways in the development of this work. 

Hiram W. Edwards. 
Los Angeles, California, 

May^ 1933. 
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ANALYTIC AND VECTOE 
MECHANICS 

CHAPTER I 

VELOCITY 

1-1. The Reference System.—In describing; the position or 
motion of a body it is necessary to select a definite reference 
system. Without a reference system it is impossible to specify 
just where that body is or how it may be moving. Positions and 
motions are relative matters. Whether a body is to be regarded 
as at rest or in motion depends entirely upon how the particular 
reference system is selected. Is there any body which is actually 
at rest? We may say that a person sitting in a street car is at 
rest. He is at rest with respect to the street car even though it 
may be in motion. While the car is in motion, the man is not at 
rest with respect to the ground. But even if the car had stopped, 
our statement of the condition of rest of the man must again be 
qualified if we are to include a consideration of the earth^s 
motion. Certainly he is not at rest with respect to the sun, for 
the earth is moving through space, relatively to the sun, with a 
speed of about eighteen miles per second. We may, therefore, 
say that a particle is ^^at resC^ if its coordinates with respect to a 
chosen reference system are not changing. 

To describe the motions of a body and the path along which the 
body moves, we are at liberty to select any frame of reference, but 
we must be careful to specify the exact location of this selected 
reference system. If we are concerned only with what happens 
in the street car and are at liberty to disregard external influences, 
then a frame of reference which is attached to the street car will 
best serve our purpose. If, however, we wish to describe this 
motion with reference to the surface of the earth, then our 
reference system must be fixed to that surface. It is inherent in 
the reference system that it is fixed to something which, as far as 

1 



2 ANALYTIC AND VECTOR MECHANICS [i.2 

we are concerned, is not moving, or at least whose motion is not 
a part of, or does not influence, the phenomena under consider¬ 
ation. Later we shall have occasion to use moving coordinate 
systems. Even though the moving coordinate system and the 
stationary reference systems are mechanically similar, in so far 
as each system may be represented by a set of three mutually 
perpendicular lines and both use coordinates which are expressed 
by similar letters of the alphabet, there is the described essential 
difference which has warranted this terminology. 

1-2. The Standard Reference System.—The standard ref¬ 
erence system may utilize any system of space representation 
which is commonly employed. Use will be made here of rec¬ 

tangular, spherical, and polar systems 
of coordinates. The rectangular sys¬ 
tem is most commonly used. Fre¬ 
quently the polar system of coordinates 
will be found convenient. It will be of 

-^ value to the student to have some drill 
in the use of the various systems of 
coordinates and in transforming expres¬ 
sions from one system to another. 
Work of this kind is given below. Fre¬ 

quently an aspect of a phenomenon is made prominent in one 
system where its expression in another leads to obscurity. 

The convention of signs which is to be used as standard in this 
work is partially expressed in the accompanying figure (Fig. 1). 
The axes, mutually perpendicular to each other, are OX, OF, 
and OZ, with origin at 0. Positive distances are measured 
outward from 0 along or parallel to an axis. Rotation of a line 
about the X-axis is positive if the line moves in or parallel to the 
YZ plane from OF toward OZ, as shown by the arrow R in the 
figure. Positive rotations about the F-axis would move points 
in the ZX plane from OZ toward OX. This may be expressed 
in another manner. Suppose that a standard right-handed 
thread be cut upon the X-axis and a nut be placed upon it. A 
positive rotation of the nut would make it advance in a positive 
linear direction along OX. 

1-3. Motion of a Point along a Line.—Consider a particle P 
which is moving along a definite path AB (Fig. 2). Suppose that 
the distance of P from A is measured by the coordinate s. Let 
the direction from A toward B be considered positive. At each 

Fig. 1. 
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instant of time, P occupies the position 8i at the time ti and .Sg 
at the time then the ratio — s\)/{t2 — t\) represents the 
average speed for either the time or space interval indicated. 

The ratio of distance to time which gives a value for the 
average speed in any particular case supplies only a limited 
amount of information. It may be necessary to know more 
about the behavior of the particle than could be learned from a 
knowledge of its average speed during a selected time interval. 

The speed of a particle may be varying continuously. This 
fact could be ascertained by determining the average speeds in a 
large number of consecutive and very small time intervals. The 
smaller the time interval selected, the more complete would the 
description of the motion of the particle be. This idea leads us 
to a conception of instantaneous speedy which may be defined in 
the following manner. Suppose in a particular interval of time 

the particle passes over a distance As, The ratio As/At will 

A g t _S2_? 
t, tz 

Fig. 2. 

approach a limiting value in any particular case if we let 
approach zero as a limit. In the language of calculus, if we write 

ds ,. As 
~jT = hm — 

ds/dt becomes the limiting value of the average speed over an 
extremely small time interval. We may therefore call ds/dt the 
instantaneous speed for the particular position, defined by the 
value of the coordinate or time instant. 

In a given case it may be possible to express the coordinate s 
as some definite function of the time. By differentiating this 
function with respect to the time, an equation is thereby obtained 
which expresses the instantaneous speed as a function of the time. 
By eliminating the time factor from the coordinate-time and 
speed-time relations, an equation may be obtained which 
expresses the instantaneous speed as a function of the coordinate. 
From these two relations, instantaneous speed expressed in terms 
of the time and in terms of the coordinate, a more complete 
description of the motion of the particle is obtained. 

The algebraic sign of ds/dt depends upon the sign of ds, for 
dt is always positive. If ds designates an increase of distance in 
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the positive direction of the path, the sign of ds is then positive. 
If ds represents a displacement along the path in the opposite 
direction, then the sign of ds is negative. The sign of the speed 
ds/dt is therefore positive when P moves in the direction assigned 
as positive. The selection of the point to be origin in no way 
affects the value of the speed, provided only that the point (the 
origin) be fixed. The speed may be constant or variable. If 
the speed is constant, then the magnitude and the sign of ds/dt 
must remain unchanged during the interval under consideration. 
The speed may be constant even though the direction of motion 
be changing. 

The units in which the speed is to be measured are given by 
the choice of units used in expressing the distance and time 
factors. The distance is usually expressed in centimeters, feet, 
or miles, with the time in seconds or hours. 

1-4. Determination of the Speed.—It is usually possible to 
express in terms of the time the distance a body or a particle 
moves along some assigned path. For example, in the case of a 
body falling from rest in a vacuum, the simple relation 5 = 
is valid for short distances, where s represents the distance, a is a 
constant (acceleration), and t expresses the time. The general 
expression for the speed may be found by differentiating this 
equation with respect to the time, which gives ds/dt = at. If the 
constant a is known, values of the speed, V — ds/dt, may be 
found for any particular instant by substituting the corresponding 
values of the time for t in this equation. Since the speed V is a 
function of the time, V is constantly changing and hence the 
values of V are instantaneous values. 

In other cases it may not be possible to express the speed in 
terms of the time by any simple relation. The instantaneous 
values of the speed may be determined graphically, however, if 
the distance-time relation for the motion of the body is known so 
that a plot may be made of these values. In such cases the slope 
of the tangent to the curve at the point for which the speed is 
desired may be measured from the plot. The value of the slope 
of the tangent gives the desired speed. 

Suppose that Pi and P2 are two points on the curve in Fig. 3 
and that they correspond to the two distances si and S2 and the 
instants h and ^2, respectively. Suppose also that these two 
points are very close together so that we may write As for 
$2 — 81 and At for h — ti. It is evident that the speed As/At is 
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given by the tangent of the angle which the line PiP^ makes with 
the time axis. The magnitude of the tangent of this angle is 
given by A.s/Ai. If P^ is made to approach Pi, then the line 
P1P2 becomes the tangent to the curve at the point Pi in the 
limiting position. The speed of the moving body or particle at 
any given time t is therefore found by the slope of the tangent 
drawn to the distance-time curve at the point on the curve 
corresponding to the given time L If the direction of the speed 
is desired, it is only necessary to observe whether the coordinate 
s is increasing or decreasing at the time point selected. As shown 
in the figure, s is increasing at the time hence the speed is 

Dis+ornce 

ti tz Time 

Fig. 3. 

positive. At some other point on the curve, such as P3, the 
speed is negative. 

Problems. 1. Plot the curves .s = for some selected value of a and 

determine the corresponding speed-time curve graphically and analytically. 

2. If the displacement of a body be expressed in terms of a sine function 

of the time, what would be the corresponding speed curve? 

1-6. Velocity a Vector.—The term velocity includes all that 
is implied by the term speed, with an additional element, viz., a 
direction, associated with it. Velocity is a directed quantity 
or, in other words, is a quantity that has both magnitude and 
direction. Such a quantity is a typical vector. Any quantity 
which requires both a direction and magnitude for its complete 
description is a vector. Force, momentum, acceleration, and 
force moment are vectors. Such quantities permit of a unique 
form of expression known as graphical representation, and for 
convenience in studying them a certain form of analysis has been 
devised which is called vector analysis. This system of expres¬ 
sion and manipulation is the same for any vector, but the physical 
interpretation of the results obtained depends upon the particular 
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physical vector employed. Some of the commoner processes used 
in vector analysis will be illustrated by the use of the velocity 

vector. 
When a particle is moving along a straight line, its velocity 

may be represented by a vector drawn parallel to that line. The 
convention for this representation may best be shown by means of 
a concrete example. Suppose that a certain particle has a speed 
of 60 cm. per second in a horizontal line and is moving due east. 
The magnitude of the speed is represented by the length of the 
vector. To do this, a suitable scale of representation must first 
be selected. We may, in this case, let 1 cm. of length along the 
vector represent a speed of 15 cm. per second; hence the vector AB 
(Fig. 4) is drawn 4 cm. long in order to represent the given speed 
^ ^ of 60 cm. per second. The direction of 

■ * the vector Ai? is parallel to the direction 
of the velocity (following the usual con¬ 

vention in representing geographical directions). 
If the particle is moving in a curved path, the vector repre¬ 

senting the velocity of the particle is parallel to the tangent 
drawn through that point of the path at which the velocity is to 
be represented. 

A velocity is constant only when both of its elements are 
constant. This implies that, when the velocity is constant, the 
motion is of constant speed in a direction which is not changing. 
A particle moving with a constant speed of 20 m.p.h. along a 
straight line has a constant velocity. The velocity of a particle 
moving along the circumference of a circle is not constant, even 
though its speed may be constant. 

1-6. Angular Velocity.—There are, in general, two kinds of 
motion: translation and rotation. In pure translational motion, 
any line fixed in the body will remain parallel to its original 
position during the course of the motion. In pure rotational 
motion, all points of the body, except those on the axis of rotation, 
describe paths which are circumferences of circles. Displace¬ 
ments and velocities in translation are analogous to angular 
displacements and angular velocities in rotation. The angle in 
rotation corresponds to the linear coordinate in translation. 
The position of a point on a line is given by its linear distance 
from some reference point in that line. Similiarly in rotation the 

position of a line is given by the angle through whi<?h the line hm 
rotated frem tbe reference position, 
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While angles are commonly measured in degrees, it has been 
found more convenient in the study of rotating bodies to use 
another unit, which has been called the radian. The radian is 
the angle subtended by an arc the length of which is equal to the 
radius of that arc. The value of the angle y (Fig. 5) is given in 
radians by the simple relation y = s/r, where s is the length of 
the arc included between the sides of the angle y and r is the radius 
of the arc. Hence, if s = r, the value of the angle 7 is 1 radian. 
If the above relation is put in the form 

s = ry (1-1) 

we obtain an expression for the length 
of the arc which is useful for transform¬ 
ing linear displacements in circular 
paths into the corresponding angular 
displacements or vice versa. 

The time derivative of the angle which 
specifies the position of a line gives the 
angular speed of that line. When a 
direction is associated with angular speed, the resulting quantity 
becomes an angular velocity. It is customary to represent the 
angular velocity by a vector drawn along the axis of rotation. 
The length of the vector represents, to some selected scale, the 
angular speed. The sense of the vector indicates the direction 
of rotation in accord with the convention described in Sec. 1-2 
above. 

If we differentiate Eq. (1-1) with respect to the time, assuming 
r to be constant, we obtain the expression 

ds __ dy 
dt ^ dt 

usually written 

7 - ra> (1-2) 

in which the symbol V is used for ds/dt and w for the angular 
speed dyfdt. This equation is useful for expressing the linear 
speed of a particle on the circumference of a circle of radius r 
in terms of the angular speed. 

1-7, Vector Additions.—The process of addition as applied 
to vectors is an extension of the idea from simple cases of arith¬ 
metical and algebraic processes to the case where the addition 
deals with quantities having directions as well as plus and 
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minus magnitudes. To illustrate this process, let us consider the 
case of a man rowing a boat directly across a river. The man 
can row with a definite velocity in still water. In a case of this 
sort, however, we are concerned with how the man actually 
moves—the path and the wspeed, both with respect to a reference 

system fixed to the ground. His 
velocity in the fixed reference system 
is made up of a combination (vector 
sum) of two velocities. The process 
of the vector addition of these two 
velocities gives the desired velocity. 

If AB (Fig. 6) represents the man’s velocity with respect to 
the water, a moving system, and AD the velocity of the stream 
with respect to the reference vsystem fixed to the ground, then 
AC represents the velocity of the man with respect to the fixed 
reference system, A definite scale of representation is to be used; 
1 cm. might represent 1 rn.p.h. The diagonal AC of the parallelo¬ 
gram drawn on AB and AD as sides gives the desired velocity. 

The process of adding two or more vectors may be regarded as 
that of drawing a broken line, each segment of which represents 

B 

0 

Fia. 7 

(to some selected scale) one of the vectors. The sum of these 
vectors is represented by the line which converts the broken line 
into a closed polygon, the direction of the closing line to be 
away from the starting point. In Fig. 7 such a sum is given in 
which A, B, C, and D are the vectors to be added and S is the 
vector representing their sum. In symbols this is written as 

follows: S = A + 5 + C + i). Notice the direction assigned 
to S in the diagram. The order in which the vectors are arranged 
is immaterial to the final result. If this fact is not obvious, the 
student should add the same vectors but take them in a different 
order. 

1-8. The Components of a Vector.—Any two or more vectors 
whose sum is equal to a given vector may be regarded as comr 

Fig. 6. 
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ponents of the given vector. For example) in Fig. 7, the vector S 
represents the sum of the vectors A, B, C, and D; hence A, B, C, 

and D are components of S. In Fig. 6, AD and AB are compo¬ 
nents of AC, 

The process of finding certain desired components of a given 
vector is spoken of as decomposing, or resolving, the vector into 
its components. 

The number of components into which a given vector is to be 
resolved is entirely an arbitrary matter. An inspection of the geo¬ 
metrical arrangement of the particular situation under considera¬ 
tion will usually be sufficient to indicate how many components 
will be needed and, what is more important, will show the direc¬ 
tions along which the components are to be taken. In those prob¬ 
lems in which all of the vectors are coplanar, it may be found that 
each vector should be resolved into two components which are 
respectively parallel to some selected reference axes. In prob¬ 
lems involving three dimensions, 
it is often desirable to resolve each 
vector into three mutually perpen¬ 
dicular components, each being 
parallel to one of the reference 
axes. 

For a given vector, the mag¬ 
nitude of a component in any 
selected direction is definite and is 
determined by the magnitude of the given vector, together with 
the angle between direction of the vector and that of the 

component. 
The graphical method for determining the magnitudes of a pair 

of components, which are to be taken along two given lines, con¬ 
sists in finding the intercepts formed on these lines by drawing 
two pairs of constructional lines; the lines of each pair are parallel 
to each other and to one of the given lines and pass through the 
ends of the given vector. The intercepts formed on the given 
lines are the desired components. The directions of the com¬ 
ponents are taken so that their vector sum gives the original 
vector. For example, it is desired to find the two components 
of a given vector AB (Fig. 8) and to have these components 
parallel to the lines OC and OD, respectively. The constructional 
lines AE and BF are drawn through the end points of the given 
vector as shown and are parallel to OD, The intercept on OC, 



10 ANALYTIC AND VECTOR MECHANICS [1-8 

viz,, EF, is the desired^omponent parallel to OC. The direction 
to be assigned to EF is shown by the arrow. The component 
parallel to OD, vi^,, MN, is found^ a similar manner. 

The trigonometric expressions which give the magnitudes of the 
components of a given vector 
along two lines not perpendicular 
to each other may be readily written 
by the use of the law of sines. 
Given the vector C (Fig. 9) and the 
lines OM and ON along which the 
components are to be found. If a 
and jS are the angles between the 
vector C and the lines ON and OM, 

respectively, then the magnitude of ^1, the component along OM, 
is given by the equation 

Fia. 9. 

A = 
C sin a 

sin (a + iS) (1-3) 

and, since the sin [tt — (a + ff)] = sin {a + P), similarly the 
magnitude of B, the component in the line ON, is 

C sin /3 
sin {a + 13) (1-4) 

Ordinarily a pair of mutually perpendicular components 
(orthogonal components) is found more convenient to use than a 
pair of oblique components. In 
many cases the nature of the prob¬ 
lem is such that only the com¬ 
ponent in some particular direction 
is needed. Unless specified to the 
contrary, that component is to be 
considered as one of a pair of 
orthogonal components. 

For example, we may be consider¬ 
ing the motion of a body which is sliding down an inclined plane 
and for this purpose need to know only that component of the 
weight of the body which is parallel to the inclined plane. Suppose 
PL (Fig. 10) is the inclined plane and AB represents the weight of 
the body. The component of AB parallel to thejplane PL is found 
by drawing a fine through A parallel to PL and then dropping a 
perpendicular from B to this line, thus locating point C. The 
segment AC gives the desired component. If a is the angle of 
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inclination of the plane, then the magnituite oi AC may also be 
found by the equation 

AC — AB sin a 

The other component in this particular case is, of course, per¬ 
pendicular to AC and its magnitude can be readily found. The 
fact that it is not needed in the particular problem should not 
lead one to assume its nonexistence. 

The advantage of studying the components of a vector, instead 
of the vector itself, may be illustrated by examining the com¬ 
ponents of the force used on a lawn mower. The push exerted 
upon the handle of the lawn mower does two things. In the first 
place, it is responsible for motion along the ground and it also 
pushes the mower down on the ground, thereby increasing the 
friction and lessening the chance of the wheels slipping. The 
two components here are perpendicular to each other: one is 
parallel to the ground and the other 
is perpendicular to the ground. By 
the process of resolving the applied 
force into the two components, we are 
able to assign to each component one 
of the functions of the applied force. 
Because of this analysis, the effect of 
each component may be expressed in terms of the applied 
force. The magnitude of each component is found by multiply¬ 
ing the magnitude of the applied force by the cosine of the angle 
between the direction of the applied force and the direction of 
the desired component. In Fig. 11, P stands for the applied 
force and H and V are the horizontal and vertical components, 
respectively. We may therefore write 

H — P QOS a and F == P cos iS == P sin a (1-5) 

1-9. Component Velocities.—Given any velocity F. It is 
required to express this vector in terms of its components along 
the coordinate axes in each of three systems of coordinates and to 
write the analytical relations for determining the speed and the 
direction of the velocity in terms of the various components. 
The systems of coordinates to be used are the rectangular, 

spherical, and the polar systems. 
a. The Rectangular Sy8tem,~lt V makes the angles a, /3, and y 

with the X-, F-, and Z-axes, respectively (Fig. 12), then 

F® F cos a, Fv = F cos /S, F, « F cos y (1-6) 

Fia. 11. 
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where Vyy and Vz are the components of V parallel to the 
F-, and Z-axes, respectively. 

To express the magnitude of V in terms of its components, we 
may square and add Eqs. (1-6), which gives the following desired 
equation: 

F2 = F.2 + F/ + F;^ (1-7) 

The direction of F may be found by Kqs. (1-6) or by any two 
of the following eciuations: 

tan a = 
+ V 

K. tan /3 = 
Vvj + vj 

a/V 2 _L_ Y 2 

tan 7 - (1-8) 

In case F lies in the XV plane, then y = 90°, Vz = 0, and 

F2 = F.2 + F„2 tan a = Lf 
X 

In the foregoing equations we are dealing with orthogonal 
projection. It should be understood that orthogonal projection 

is meant when the unqualified expression projections^ or 
component is used. 

It is important at this point to derive some general relations 
between the time derivatives of the coordinates and the velocity 
components. Let S (Fig. 13) be a line which makes an angle 8 
with F, the velocity of a particle at Q. Then the component of 
F in the line of >S, viz., F«, is expressed by the relation 

Fs = F cos 8 

We may also express F« in terms of F», Vy, and Vz. This 
expression is obtained by equating F« to the sum of the projec- 
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tions of the components Vy^ and F* into the line of S. The 
validity of this equation will be left to the student to substantiate. 
In symbols, then, we may write 

Vs = Fx cos a' + Vy cos + Fx cos 7' (1-9) 

where a', jS', and 7' are the direction angles of the line S, 
Let P be the projection of Q upon the line S, (The process 

of projecting a point upon a given line is one of drawing a line 
through the given point so that the constructional line intersects 
the given line perpendicularly. The point of intersection of the 
two lines is the desired projection of the given point.) Let s 
{RP in the diagram) be the distance of P from any other point 
P (^0, 2/0, sio), another point in aS. Designate the coordinates of 
P as Xj tjj and We may then exprcvss the distance 6* in terms of 
the coordinates of R and P and the direction angles of S as 
follows: 

8 = (.r — xq) cos a + (y — z/o) cos (3' {z — Zq) cos 7' (I-IO) 

The time derivative of s is ds/dt. The value of this derivative 
may be found by differentiating the right-hand member of 
Eq. (1-10). If ds/dt is to be equal to F^ as given by Eq. (1-9), 
the time derivatives of Xo, 2/0, Zqj cos a', cos and cos 7' must all 
be equal to zero. In order that all of these six derivatives may be 
equal to zero, bcjth the point R and the line S must be stationary 
in the X Y Z system. If the point It were moving along S or the 
line S were changing its position in the reference system, then 
either of such motions would, in effect, introduce a moving 
coordinate system. We should not expect, therefore, that 
ds/dtj which gives the velocity of P 
with respect to R in the line Sy 
would be equal to F.s, the com¬ 
ponent of F in Sy unless the S sys¬ 
tem were fixed in the X Y Z 
system. 

h. Spherical Coordinates.—I n 
the spherical system of coordi¬ 
nates we make use of three 
coordinates: a radius and two 
angles. The coordinates are designated by the symbols r, <Pj and 
6 and are measured from a fixed reference point, a reference line, 
and a reference plane, respectively. In order to describe the rela¬ 
tive positions of the reference point, line, and plane, it is convenient 
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to locate them in a standard rectangular coordinate system. 
Let X Y Z he the rectangular system with origin at 0 (Fig. 14).- 
Let P be any point whose coordinates are x, y, and z in the rec¬ 
tangular system and r, (py and 0 in the spherical system. 

The origin of the spherical system is taken at 0, which is the 
center of a sphere with radius r. The point P is therefore on the 
surface of the sphere. The linear coordinate of P in the spherical 
system is the distance of P from the reference point 0. The 
second coordinate (p is to be measured from a fixed reference 
line, which is to be a radius of the sphere (and, since its selection 
is arbitrary, we shall let it coincide with OY), to the radius r. 

The third coordinate 0 will measure the angle between the refer¬ 
ence plane, which we let coincide with the YZ plane, and the 
plane containing OY and r. 

The relations between the two sets of coordinates of P may 
be written as follows: 

a: = r sin sin 0 = .t“ + ?y“#+ 

y = r cos <p (1-11) cos (p == y(x^ + y/“ + ^0"^ (1-12) 
2 = r sin cos 0 sin 0 = x(x'^ + z-) 5 

Expressions for the component velocities in the X Y Z system 
Vxf Vyj and Vz in terms of variables in the spherical system may 
be found by differentiating Eqs. (1-11) with respect to the time. 
If we write <p for dip/dt and 6 for d0ldty we obtain the following 
equations: 

Vx = 

Vy = 

Vz - 

dr 
dt 
dr 
dt 
dr 
dt 

sin sin 0 + r<p cos (p sin 0 + r0 sin ^p cos 0 

cos ip — r<p sin (p 

sin ip cos 0 + Tip cos ip cos 0 — r0 sin <p sin 0 

The right-hand member of each of these equations is a sum of 
the projections of the three spherical components of the resultant 
velocity on to the Z-, F-, or Z-axis. Let us examine the first of 
these equations in order that we may identify both the magni¬ 
tudes and the directions of the spherical components. We must 
expect to find a velocity component in each term multiplied by 
the proper factor which projects it into that reference axis along 
which the orthogonal velocity component is being expressed. 

In the first term, dr/dt occurs. This quantity is the velocity 
component in the line of r, because, in the equation for 7®, 
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dr/dt occurs with the factors sin ^ sin 6 which collectively are 
equivalent to the cosine of the angle between r and X, The 
second term contains the spherical component r<p. This com¬ 
ponent may be regarded as being due to the angular velocity (p 
which, together with the factor r, gives a linear velocity in the 
YOP plane and perpendicular to r. The factors cos <p and sin $ 
project it into the line of A". 

The third component is r6 sin <p. This component is due to 
the angular velocity 6. Since 6 is always measured in the ZX 
plane, the Y-axis is the axis of rotation for 6, Since r sin ip is 
the perpendicular distance of P from the Y-axis, this component 
of the velocity is peri)endiciilar to the YOP plane. 

Th(i three spherical components of the velocity are mutually 
perpendicular to each other. The resultani, velocity of P may 
therefore be expressed by th<^ following relation; 

+ {rd nn (1-13) 

If the three components are known, then the magnitude of V 
may be obtained from the preceding relation. The direction 
of V may be determined from the 
relative magnitudes of the three 
components. 

c. The Polar-coordinate System ,— 
To find the relations between the 
velocity V and its components in a 
plane polar-coordinate system, it 
will be convenient to use a rectan¬ 
gular system as an auxiliary. Let 
this latter system be A"OY with 
origin at 0 (Fig. 15). Let OX be the reference line for the polar 
system, with the radius vector r drawn to any point Q, and making 
the angle y with OX, 

Let V be the velocity of the particle at Q with coordinates 
X and y in the rectangular system at the instant under considera¬ 
tion and let a be the angle which V makes with r. From geo¬ 
metrical relations, 

1-2 = 

tan 7 == ~ 
X 

(1-14) 

(1-15) 
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The component of the velocity parallel to r is Vr and is equal 
to V cos a, Vr may be expressed by the equation 

Vr = Vx cos 7 + Vy sin 7 

where Vx and Vy are the components of V parallel to OX and OT, 
respectively. This equation might have been derived by 
differentiating Eq. (1-14) with respect to the time, since the 
component of the velocity j)arallel to r is dr/dt. 

The velocity component perpendicular to r is called Vy. Its 
value is V sin a. It may also be expressed in terms of Vx and Vy 

by differentiating Eq. (1-15) with respect to the time. 

dy _ X Vy — y Vx 
dt 

Vx y 
r 

= Vy cos y — Vx sin y (1-16) 

This equation gives the velocity perpendicular to r even though 
r is moving, provided Q is contained on r. 

Since dy/dt is the time rate of change of an angle, it is called 
an angular velocity and is designated by the letter cx^. The 
angular velocity describes the rate of change of position of r and 
is expressed in terms of radians per second. 

It is instructive to observe also that 

F2 = Vr" + Vy^ tan a = 
y r 

Vx = Vr COS 7 — sin y (l-17a) 
Vy == Vr sin 7 + F^ cos 7 (1-176) 

In this section we have used two pairs of components of the 
velocity vector F. Either pair may be used, in studying the 
velocity, with equally valid results, but sometimes discrimi¬ 
nation in selection is to the students^ advantage. 

1-10. Change of Origin for Velocities in Translation.—Fre¬ 
quently the velocity of a particle may advantageously be described 
in terms of a geometric combination of its velocity in a moving 
coordinate system and the velocity of the moving system referred., 
to some fixed reference system. A general principle for this 
purpose will be developed. 

Let the fixed reference system be ZFZ and the moving system 
be XiYiZi (Fig. 16). The only limitation on the movement of 
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the moving system is that its axes shall always be parallel to 
those of the reference system. 

The coordinates of any point Q in the fixed reference system 
will be xyz and in the moving system xijjiZi. The coordinates 
of Oi in the fixed reference system will be called x^y^z^. The 
relations between these coordinates are expressed by the equations 

.r == ;ro + .ri, y = y^ + ?/i, and z == Zo + Zi 

If Q and Oj are both moving, then 

dx 
dt 

dx[) dxi 

IT m' 
dy ^ d}/0 , ^ 
(it (it dt' 

dz _ dzo , dzi . 
dt dt ^ '(ft 

If we take the vector sum of dx/diy dyldiy and dz/dty we obtain 
a vector which is (/s velocity in the 
reference system. We shall desig¬ 
nate this velocity by the symbol 
Vq{0), The vector sum of the com¬ 
ponents dxi]/dty dyo/dtj and dz^fdi 
gives a vector expressing the velocity 
of 0\ in the reference system. Wo 
shall call this velocity Vo^{()), 
Similarly the vector sum of the last 
terms in Eq. (1-18) gives the velocity of Q in the moving system. 
We shall designate this velocity by the symbol Vq(Oi), Com¬ 
bining these results into one equation gives 

^e(O) == ^e(Oi) + Vo^iO) (1-19) 

Which expresses the velocity of Q with respect to the reference 
system as equal to the velocity of Q in the moving system, plus 
the velocity of the moving system with respect to the reference 
system. 

This important equation is particularly convenient if we 
wish to determine any one of the three velocities when the two 
others are known. The technique of the graphical solution is not 
so obvious in those cases where one of the terms of the right-hand 
member is the unknown. Suppose that Eg(Oi) is to be deter¬ 
mined and that the two other vectors of p]q. (1-19) are known. 
Writing the equation so that it is explicit for Vq(Oi) gives 

Fkj. 16. 

V^iCh) = Fg(0) + [-Eo^(0)] 

The ordinary rules of vector addition may be applied to this 
equation but we must reverse the direction of Fo,(0) because it 
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appears with the minus sign. The vector addition is shown in 
Fig. 17. 

In a limited number of special cases it might be convenient 
to have two or more moving systems serve in expressing the 

velocity of a point. In such cases the 
restriction should again be made that 
the axes of the moving systems remain 
parallel to the axc^s of the reference 
system. The velocities of the origins 
of the moving systems are not other¬ 

wise limited. To each would be assigned the value which the 
nature of the particular problem indicated. The general 
equation is 

Fig. 17. 

Vm = + VoP^) + Fo/Oa) + . • • Vo^O) 

The polygon method of velocity addition would be applicable 
here. It must be obvious that a solution is always possible if 
all but one of the velocities are known. It will be shown in the 
section below that a solution may be obtained if not more than 
two quantities, a magnitude and a direction or two directions, 
are unknown. The same device which is shown above would 
serve here if the sign of one or more of the vectors is minus. The 
result obtained is independent of the order in which the elements 
are taken. 

1-11. How to Solve Problems.—The method which the student 
uses in solving problems is important. He should be distinctly 
conscious of the way he proceeds, so that t he solution is obtained 
as a logical step-by-step process rather than a haphazard one. 
The first step in any solution is to identify the known and the 
unknown quantities and to express the given quantities in a 
single set of consistent units. Next he should select the principle 
or principles which are pertinent to the problem. These should 
be written down together with a diagram and the data of the 
problem. In general, there will be required as many algebraic 
equations as there are unknown quantities. If, however, the 
solution of the problem is to be found by the use of vector 
equations, as in the illustrative problems given below, only one 
equation will be required for two unknowns, i.c., two magnitudes, 
a magnitude and a direction, or two directions. The solution 
of a vector equation is usually obtained by a vector diagram. 
Each vector equation may, however, be transformed into two 
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or three algebraic equations. The graphical or vector method 
of solution is more concise than the algebraic and is usually the 
easier method. 

The s(dution of a vector equation involves simply the geo¬ 
metrical construction of a triangle, where only three vectors 
are involved, or a polygon, if more than three vectors are involved. 
The details of the vector method of solving a problem are shown 
by two selected illustrations below; the first involves three 
vectors and the second requires four vectors. The student is 
urged to pay particular attention to the method shown in these 
two illustrations and then to use this,method in the solutions 
of the other problems given in this section. 

Problems.—1. A train is going due north with a speed of 
60 rn.p.h. A bandit near the track shoots due east at an object 
in the train. If the speed of the bullet with respect to the bandit 
is 1,000 ft. per second, find the velocity of the bullet with respect 
to the train. 

of 
Symbol 

Units 
Known 

qiuiii titles 
Given Consistent 

ehunents 

Velocity of train with 

rcspe(^t, to a system 

fixed to th(‘ ground. 

Vt{E) 60 mi. per hr. 88 ft. per sec. Magnitude 

direction 

Velocity of bullet 

with resjit'ct to fixed 

system. 

Vb{E) 
j 
1,000 ft. per sec. Magnitude 

direction 

Velocity of bullet 

with resi)ect to the 

train. 

Vh{T) ? None 

General principle applied to the particular problem: 

Vb{E) = Vs{T) + Vt{E) 

Solution,—Since we have only two unknowns, the magnitude 
and the direction of Vb{T)j the one vector equation is suflSicient 
to obtain the desired quantities. We must then construct a 
triangle with the two known vectors as sides and the angle 
between them equal to 90 deg. Rearranging the equation to 
make it explicit for the unknown vector gives 

Vb{T) - Vb{E) ~ v^m 
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In the diagram (Fig, 18) the vectors are not drawn to scale. 
Both magnitude and direction of Vb{T) would be correctly 
given if the diagram had been made to scale. The magnitude 
of Vb{T) should be expressed in the selected consistent units, 

viz., feet per second. 
^ ^ 2. Two automobiles, M and iV, are 

going in the same direction along 
parallel lines with speeds of 50 and 

-VtCe) 30 m.p.h., respectively. At the 
instant when a boy in N is directly 
opposite a man in M, the boy throws 
a ball (horizontally) at the man and 

hits him. If the speed of the ball with respect to the boy is 100 ft. 
per second, what is the direction of the velocity of the ball with 
respect to the boy in N? Find also the velocity of the ball with 
respect to the man in M and the velocity of the ball with respect 
to the ground. 

Vb(E) 

Fi(i. 18. 

! 1 Units 
Known Identification of 

Sym])ol 
quantities 

(.liven Consisten t 
elements 

Velocity of M with F.w(G) 50 mi. per hr. 73.3 ft. per sec. Magnitude 

respecit to a fixed 

system on the 

ground. 

direction 

Velocity of N with Vn(C) 30 mi. per hr. 44 ft. per sec. Magnitude 

respect to the fixed 

system. 

direction 

Velocity of M with 

respect to . Vm(N) None 

Velocity of the ball 

with respect to iV.. 100 ft, per sec. yB(N) Magnitude 

Velocity of the ball 

with respect to M.. 

Velocity of the ball 

Vb(M) Direction 

with respect to fixed 
system. . . ... Vb(C) None 

The general principle applied to this problem gives 

V^{G) = Vm{N) + V^{G) (a) 

Vs{G) = V^{M) + V„{N) + V^{G) ib) 

Vb(N) = VsiM) + Vm(.N) (c) 
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Solution.—Using Eq. (a), we may find VM{N)y since the two 
other vectors in this equation are known. In tliis case the vector 
solution degenerates into an algebraic equation because the two 
known vectors are parallel to each other. The magnitude of 
Vm{N) is found to be ecpial to 29.3 ft. per second and the direction 
is parallel to that of Vm{G). 

We may now use Eq. (r) and find the direction of Vn(N) and the 
magnitude of since in this equation these two quantities 
are the only unknowns. 1'here may be a doubt in the student’s 
mind that the direction of Va(M) is known, but h(^ must remember 
that the ball was thrown at the instant 
when the line drawn from the boy to the 
man was perpendicular to the velocities 
of the two automobiles, '^fo the man, the 
ball would appear to be coming directly 
toward him; hence the direction of Vji(M) 

is perpendicular to Vm(G). Tho vector 
diagram (Fig. 19), then, consists of a 
triangle with the lengths of two sides and 
an angle opposite one of the given sides 
known. This solution gives the mag¬ 
nitude of Vii{M) and the direction of 
V,(N). 

The velocity of the ball with respect to 
the ground, Vb{G), may now be found by using Eq. (h). All three 
velocities on the right-hand side of this equation are now known; 
hence the unknown Vji{G) may be found. 

Problems.—]. An automobile is going at a speed of 40 ft. per second. A 

man in the automobile throws a ball with a speed of 100 ft. per second witli 

respect to himself along a horizontal line at right angles to tlie velocity of 

the automobile. Find the velocity of the ball with nispect to the ground. 

2. A person on the ground throws a ball (80 ft. per second) at an auto¬ 

mobile which has a speed of 50 ft. per second. The horizontal direction of 

the ball makes an angle of 45 deg. with the velocity of the automobile. 

Find the velocity of the ball with respect to the automobile. 

3. An automobile is going at a speed of 75 ft. per second in a rain. The 

wind is blowing the rain in a direction parallel to the car's motion. The 

rain drops fall at an angle of 30 deg. with the vertical and at a rate of 25 

ft. per second. Find the velocity of the rain drops with respect to the 

automobile. 

4. A train is going due north at a speed of 80 ft. per second. The smoke 

from the train trails off in a Hne toward the southeast. What is the speed 

of the wind if its direction is toward the east? 
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o. An airplane has an air speed of 100 m.p.h. In what direction must the 

fuselage point if the plane is to go due south in a wind blowing 30 m.p.h. 

toward the west? 

6. A stream has a speed of 3 m.p.h. A man can row a boat 4 m.p.h. in 

still water. What direction must he point his boat if he is to go straight 

across? What would be his direction if he wishes to go across in the shortest 

time? 

7. A person walking east at a rate of 4 m.p.h. finds that the wind appears 

to be from the south. If he increases his pace to 6 m.p.h., he finds that the 

wind appears to come from the southeast. What is the velocity of the wind ? 

8. Two airplanes, A and B, arc flying horizontally in straight lines per¬ 

pendicular to each other at the same eh'vation and at the same spetnl of 100 

m.p.h. A crosses ITs line of flight when they are 500 ft. apart. B fires 

at A when he is 200 ft. from line of flight. If the speed of the bullet is 

2,000 ft. per second, what must be B's line of sight if he is to hit A ? Negk^ct 

gravitational effects. What would be the velocity of the bullet with 

respect to A ? 

1-12. Change of Origin for Velocities—Rotation.—One occa¬ 
sionally encounters motions in which a rotating coordinate 

system is a better auxiliary system 
for describing or analyzing the 
velocities than the system moving 
with translation. Although such 
cases are not numerous, the few 
encountered are so adequately 
handled by this type of moving 
system that it is worth while to 
develop the general expression. 
The velocity of any moving particle 

is to be expressed in terms of its velocity in a rotating system and 
the angular velocity of the moving system. 

Let the reference system be XOY (Fig. 20) and the moving 
system be X'OY' with its origin coincident with 0 of the fixed 
system and coplanar with XOY, Designate the angle XOX' 

by y. The coordinates of Q, any point at which the moving 
particle is situated, are xy and x'y' in the fixed and moving 
systems, respectively. It follows from these assignments that 

X = x/ cos 7 — sin 7 

2/ = a:' sin 7 + y' cos y (1-20) 

If we differentiate both of these equations with respect to the 
time, the component velocities are obtained directly. Writing 
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Vxi Vyj Vx'y and F/ for the derivatives dx/dt^ dy/dt, dx'Idtj and 
dy'Idtj respectively, and co for dy/dt gives 

Vx = Vx' cos 7 — a:'a) sin y — Vy' sin y — y'o) cos y 

Vy = Vx' sin 7 + x'o) cos y + Vy' cos y — y'w sin y (1-21) 

Substituting x and y from Eq. (1-20) for the coefficients of a? in 
Eq. (1-21) gives 

Vx = Vx' cos 7 — Fy' sin y — yw 

Vy = Vx' sin 7 + Fy' cos 7 + ^ro? (1-22) 

The two equations of Eq. (1-22) may be combined into a single 
equation which will be more useful. The vector sum of Vx and 
Fy is V, the resultant velocity of 
the particle at Q, referred to the 
reference system. We may call 
this velocity Vq{0) in harmony 
with the convention adopted 
above. The first two terms of 
the right-hand members may be 
similarly combined. The result¬ 
ant of these four terms gives the 
velocity of Q in the rotating sys¬ 
tem, which velocity may be called Fg(O'). The last terms of 
the two equations may also be combined. It will be observed 
(Fig. 21) that oix and —wy are linear velocities and that they are 
perpendicular to OX and OF, respectively. If these velocities 
are added geometrically, a linear velocity is obtained which is 
equal to co r [Eq. (1-2)] where r is the line drawn from 0 to Q. 
The direction of <0 r is perpendicular to r. 

It will be convenient to use the symbol cor, in this and the 
two following sections, to designate the velocity of the terminal 
point of a line segment, such as OQ (or r, Fig. 21), which is 
rotating about an axis through its initial point. In the next 
chapter a more conventional method of describing such a velocity 
is given. 

We may now express the velocity of Q in terms of its compo¬ 
nents as follows: 

Vq{0) - F<,(0') + cor (1-23) 

An interpretation of this equation leads us to see that the 
resultant velocity of Q as expressed in the fixed system is made 
up of two parts: the velocity of Q in the moving system and a 
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velocity which depends upon the anj^ular velocity of the moving 
system and the distance of Q from the origin. Ordinarily, w 
refers to the angular velocity of the radius vector r. It is to be 
noticed that here co expresses the angular velocity of the axes 
of the rotating syst(au about an axis drawn through 0 per¬ 
pendicular to the common plane of the two systems. The 
velocity vector which expresses the difference between the 
velocities of Q in the t wo systems is wr. 

An illustration of the use of the general formula will be given 
to show the type of problem to which it may be applied. It is 
required to determine the resultant velocity of a small particle 
at any instant as it moves with constant velocity outward along 
the radius of a wheel. The wheel is turning with a constant 

angular velocity about a fixed axis. 
^ Let (Fig. 22) be the fixed refer- 

a)r / Vo(o'> ence system with t he center of the wheel 
at 0, w t he angular v(docity of the wheel 

/ distance from 0 to the moving 

/ \ X 0- rotating 
I 4 system be fixed to the w^heel. The 

\ / velocity of Q in the rotating system 
will be directed outward along r, 

^ as shown in t he diagram. The velocity 
expressed by or is drawn perpendicular 

to r. The vector sum of these two velocities gives the desired 
velocity Vq{0). 

1-13. Uniplanar Motion.—A body is considered rigid if the 
line segments connecting any two pairs of points and the angles 
between these line segments remain constant when the body is 
under the influence of external forces. No body is perfectly 
rigid but there are many bodies in which the deformations which 
do occur are so small that they may be neglected. Bodies in 
which the deformations are large enough to be taken into con¬ 
sideration are classified as elastic bodies. 

A rigid body may have two types of motion: translation and 
rotation. In translational motion, all points of the rigid body 
describe equal and parallel curves. If a rigid body has any two 
of its points fixed, any motion which it may have is a rotation 
about the line passing through the two fixed points. The line 
in this case is called the axis of rotation. All points of a rigid 
body, except those on the axis, describe circular paths, the centers 
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of which lie on the axis and whose planes are perpendicular to 
the axis. 

Many cases of motions of rigid bodies are neither pure trans¬ 
lation nor pure rotation but are combinations of the two motions. 
Such motions are called uniplanar motions if the velocities of 
all points of the body are continuously parallel to a fixed plane, 
which is called the guide plane. The velocity of any point of a 
body, which is in uniplanar motion, may be expressed as a vector 
sum of two component velocities, one of which depends upon a 
rotation about an arbitrarily selected axis (perpendicular to the 
guide plane) and th(‘ other consists of the translational velocity 
of the selected axis with respect to the fixed reference system. 

Let Vp{0) represent the velocity of any point P of the body, 
the angular velocity of the body about the selected axis A, and 

AP the distance from P to A. The general expression for the 
velocity of P is 

Vp{0) = Vm + o)AF (1-24) 

in which Va{0) is the velocity of A in the reference system. 
The velocity of any point may be expressed by an indefinite 

number of such combinations, since the position of the axis is not 
limited. The angular velocity of the motion is instantaneously 
the same for all points of the body regardless of which line may 
be selected as the axis, but- the translational element will, in 
general, be dependent upon the position of the axis in the body. 
This statement is true even though the axis is not strictly a line 
of the body, for the axis may be considered as being attached to 
the body by a massless frame. 

In order to illustrate just how the velocity of any point of a 
body in uniplanar mot ion may be described in terms of a trans¬ 
lational element together with a rotational element, and also 
to show that the selection of the position of the axis of rotation 
is immaterial to the process of description or to the final result, 
let us express the velocity of a selected point of a body in uni¬ 
planar motion by using axes in two different positions. 

Let P be the selected point (Fig. 23) on the rim of a wheel of 
radius r which is rolling with its rim in contact with a straight line 
OX, The wheel is to roll with its plane always parallel to the 
guide plane XOY. Let w be the angular velocity of the wheel 
at the instant at which the velocity of P is to be described. We 
shall select R and C as the two points in the XOY plane through 
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which the two axes are to pass. Also, for the sake of simplicity, 
let C be the center of the wheel and R be on the rim of the wheel 
and in the line SCRy where S is the instantaneous point of 
contact between the wheel and the line OX. 

We shall first determine the velocity of P with respect to 
XOY by using the axis through C. The velocity of C with 
respect to XOF, Fc(0), is parallel to OX and equal to cor. The 
velocity of F with respect to C is perpendicular to CP and is also 
equal to cor. The vector sum of these two velocities gives the 
desired velocity of P, Fp(0), as shown in the diagram. 

In a similar manner we may find Vp{0) by using the axis 
through R. The velocity of R with respect to 0, Vjt(0)y is 

parallel to OX and equal to 2cor. The velocity of P with respect 
to Rj Vp{R)y is perpendicular to the line RP and is equal to co/?P. 

The vector sum of these two velocities again gives Fp(0), as may 
be verified by computation. 

1-14. The Fixed and Moving Centrodes.—The description of 
the velocity of any point of a body which is in uniplanar motion 
may usually be simplified by a judicious selection of the axis 
about which the rotational element is to be taken. It may be, 
at the instant at which the velocities of various points of the 
body are to be expressed, that there is a particular line of the 
body which is instantaneously at rest with respect to the fixed 
reference system. If this line is chosen to be the axis of the 
rotational element, then the translational term will be zero. 
The velocities of all points of the body could then be regarded 
as due to a pure rotational motion about the selected axis for 
that instant. Because of its importance, such an axis is called 
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the instantaneous axis of rotation. The instantaneous axis is 
always perpendicular to the guide plane. The point of its 
intersection with the guide plane is called the instantaneous 

center. 

The convenience of such a device for describing a uniplanar 
motion lies in the fact that the velocity of any point of the moving 
body may be expressed as the product of the angular velocity 
about the instantaneous axis and the distance of the point from 
that axis. The direction of the velocity is perpendicular to the 
radius vector drawn from the instantaneous center to the point 
whose velocity is to be expressed. 

To illustrate the use of the instantaneous axis in expressing 
the velocity of any point of the moving body, let us consider 
again the illustration given in the preceding section (Fig. 23). 
As the wheel is rolling along the line OX, the point S, on the rim 
of the wdieel, is instantaneously at rest in the position shown. If 
then we select S as the point in the XOY plane through which the 
instantaneous axis is to pass, i.e.y the instantaneous center, the 
magnitude of the velocity of any other point, say R, will be 
equal to the angular velocity o) multiplied by the distance SR, 

The direction of this velocity is given by the vector Vr{0). 

Similarly, the velocity of P is equal to cdSP and is perpendicular 

to SP, 

It must be borne in mind that the particular axis is only 
instantaneously at rest; hence the expressions for the velocities 
of the various points of the body are only true, in general, for 
that particular instant. For succeeding instants there will be 
other points which in turn may be regarded as the instantaneous 
centers of rotation. The aggregate of the series of instantaneous 
centers (points fixed in the reference system) is known as the 
fixed centrode. In the illustration used above (Fig. 23), OX is 
the fixed centrode. Corresponding to the fixed centrode, a locus 
fixed in the reference system, there is another locus of the 
instantaneous center. This latter locus is a curve fixed to the 
moving body and is called the moving centrode. In the rolling 
wheel of Fig. 23, the circumference of the wheel is the moving 
centrode. As the motion proceeds, the moving centrode rolls 
upon the fixed centrode in such a way that the particular point 
which is the instantaneous center for the given instant is the 
pair of points, one in each curve, which are instantaneously 

coincident. 
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If the velocities of any two points of the body are known, 
then the instantaneous axis may be located by drawing lines from 
the points respectively perpendicular to the velocities. The 
point of intersection of these two lines is the instantaneous 
center for that instant. The proof of this construction may be 
established in the following manner. Let P and R (Fig. 24) be 
any two points of the moving body whose velocities are known. 
Also let I be the instantaneous center, located by the intersection 
of the lines PI and RI drawn perpendicular to the velocities of 
^ P and Ry respectively. Making 

use of Kep (1-24), we may write 

F,,(/) = Vril) + i^PR (1-25) 

in which Vuil) and Vp{I) are the 
velocities of R and P, respectively, 
in the reference system XOY. 
This equation expresses the veloc- 

- ity of R in terms of the velocity 
of P in the reference system find 

the velocity of R relative to P due to a rotation about an axis 
through P. Now to prove that 

Vp(I) = G>/P and Vp{I) = o>/P 

Fig. 24. 

we may use the triangle IPR. Each of the velocities given 
in Eq. (1-25) is perpendicular to one of the sides of the triangle 
IPRy so that, by rotating all three of the velocity vectors through 
an angle of +90 deg., each velocity will then be parallel to one 
of the sides of the triangle; will be parallel to IR, Vp{I) 
will be parallel to /P, and oPP to PP, with the directions as 
indicated in the diagram. Since the velocity coPP is proportional 
to PRy then Vpil) and Vp{I) must be equal to c*>/P and co/P, 
respectively, because of the vector relation expressed in Eq. (1-25). 
This development may be extended to include any other point 
of the body and it may be shown that the velocity of the selected 
point will be equal to the product of the common instantaneous 
angular velocity by the distance of that point from the instan¬ 
taneous center. 

A special case is next to be considered in which the above 
scheme for determining the instantaneous center fails. If the 
two known velocities are parallel to each other, there will, 
obviously, be no point of intersection of the two lines drawn 
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through the points (whose velocities are given) perpendicular 
to the velocities. The instantaneous center may, however, be 
located by an algebraic solution. If both velocities are in the 
same sense, then (Fig. 25) 

Vn^i^IR and Fp - G) {IR + RP) 

where Vr and Vp are the velocities of the points R and P and co is 
t he instantaneous angular 
velocity. Hence 

IR 

IR + RP 

tv. 

Fid. 25. 

from which IR may be determined. 
If Vp = Vpy the motion is one of 
pure translation. liVp and Vr are 
in opposite sense, then 1 must lie 
bet ween P and R. In this case Vr/Vp == IR jJP, 

1-16. General Solution for the Equations of the Fixed and 
Moving Centrodes.—We have seen that uni planar motion of a 
body may be described in terms of two parts: a translational and 
a rotational part. It has also been shown that uniplanar motion 
may be described in terms of pure rotation about an instantaneous 

axis which is, in general, moving so 
that its point of intersection with 
the guide plane, the instantaneous 
center, describes a curve in space 
called the fixed centrode. An ex¬ 
pression is to be found which gives 
the equation of the fixed centrode 
(sometimes called the space cen¬ 
trode) and a similar equation for 
the moving (or body) centrode. 

Given a fixed reference system 

(Fig. 26) XOY and a system X'O'Y' which is attached to the mov¬ 
ing body. The coordinates of P, a point of the moving body, are 
xy and x/y' in the fixed and moving systems, respectively. The 
axis O'X' makes an angle y with OX. The coordinates of 0' are 

xoyo in the fixed system. 
The following equations express the relations among the 

coordinates: 

X — Xo + x' cos y — y^ sin y 

y — yo + x' siny + y' cos y (1-26) 

Fia. 26. 
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The velocity relations may now be found by differentiating these 
equations with respect to the time. We must remember that 
dx^jdt and dy* jdi are both equal to zero, for the moving system 
contains P as a point fixed in it. For brevity, co is written for 
d^jdt. Hence, 

dx 

Tt 

dxo 

It 
sin 7 + j/ cos 7*) 

dy ^?/o 
dt di 

+ cos 7 y' sin 7) (1-27) 

Even though no limitation is imposed upon the motion of the 
moving system, it is to be noticed that the velocity of P may 
be expressed in terms of two parts: a translation of the moving 
system and a rotation about an axis through O'. 

We may write Eq. (1-27) in another form if we replace the 
quantities in the parentheses by their equivalents y — yo and 
X — Jo, respectively. This gives 

dx 

di IJo) 

dt 

dyo 

dt 
+ 0){x — To) (1-28) 

An inspection of the figure will show the validity of these 
equivalences. 

If we had selected another point of the body as origin for the 
moving system, say Q in place of O', the resulting expressions 
for dx/dt and dy/dt would have been similar to those written in 
Eq. (1-28) and would have contained the same value of co. This 
means that the angular velocity of the body must be independent 
of the point through which the axis of rotation is supposed to pass, 
as indeed it should be, for the body is supposed to be rigid. 

If we put dx/dt and dy/dt both equal to zero in Eq. (1-27), we 
imply that the point P, whose coordinates are x and y in the 
reference system, is stationary. By this evaluation we cannot 
make any point stationary but we can obtain relations from 
Eq. (1-27) which express the locus of those points which will be 
stationary at some time in the motion of the body. The resulting 
expressions 

dxo 

dt 

^0 
dt 

b) {x' sin 7 + 2/^ 7) = 0 

-f- C4) (j' cos 7 — 2/' sin 7) = 0 (1-29) 
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which contain and y', give us the coordinates {x'y') of the 
instantaneous center of rotation referred to the moving system. 
For the purpose of distinguishing these coordinates of the 
instantaneous center in the moving system, let us write and 77' 
for a:' and y'^ respectively, and, if we make the equations explicit 
for these symbols, we obtain 

., 1 /dxo . dyo \ 

, 1 /dxo , dyo . X ,, 

These two equations may be combined by an elimination of the 
angle 7. Squaring both Eqs. (1-30), adding, and rearranging 
gives 

or 

(1-31) 

An interpretation of Eq. (1-31) affords an opportunity to check 
its validity. It will be readily observed that the right-hand 
member represents the velocity of the origin of the moving 
system. In the left-hand member the coefficient of w is the 
radius vector drawn from the origin of the moving system to 
the point which is instantaneously at rest, because and 77' are 
the coordinates of this stationary point. The left-hand member 
therefore also expresses the velocity of the origin of the moving 
system. This analysis of Eq. (1-31) gives confidence, perhaps, 
in accepting the fact that the point whose coordinates are 
and 77' in the moving system is instantaneously at rest. 

Equation (1-31) is the general expression of the locus of the 
instantaneous center referred to the moving system. Such a 
locus, i.e.j the moving centrode, must be independent of the 
angular velocity (w) and the linear velocity {dxo/dt and dy^/di) of 
the origin of the moving system. When the general equation is 
applied to any particular case, the information obtained from a 
selection of the particular moving system, together with other 
pertinent data, will supply the necessary relations for an elimina¬ 
tion of these velocities. An illustration of the procedure is given 
in the following section. 
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In a similar manner we may find the equations for the fixed 
centrode by putting; dx/di and dy/dt of Eqs. (1-28) equal to 
zero. The following expressions are then obtained: 

-d{ - 0 

^ ~ ® 

In order to avoid confusion, we may write f and rj for x and 
ijj respectively. Hence we have the following equations for the 
coordinates of the instantaneous center expressed in the fixed 
reference system. 

1 
dt 

t — 

V == //o 

CO 

+ i 
CO dt 

(1-32) 

As in the case of the moving centrode when data for a particular 
case are presented, other equations may be written which may be 
used with Kq. (1-32) in obtaining an expression for the locus of 
the instantaneous center in space, ?'.c., the fixed centrode. 

In any given case we are at liberty to select the positions 
of the fixed and moving systems so that the resulting analytical 
expressions may be simplified. The equations for the two 
centrodes are then obtained by expressing .To, .Vo, and y and their 

derivatives in terms of their values 
as determined by the character¬ 
istics of the problem. In order to 
make the details of the process of 
obtaining the centrodes clear, the 
following illustrations have been 
selected. 

1-16. The Centrodes of a Fall¬ 
ing Ladder.—To find the moving 
and fixed centrodes of a ladder as 

it falls, with its lower end sliding along the horizontal ground and 
its upper end in contact with a vertical wall. Let BO^ (Fig. 27) 
be the ladder, XOF the fixed reference system with OF the verti¬ 
cal wall and OX the ground, and let the moving system X'O' F' 
be fixed to the ladder with O' the foot of the ladder, O'F' along 
the ladder, and O'X' perpendicular to the ladder, as shown in the 

Fia. 27. 
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diagram. Let 7 be the angle which O'X' makes with OX, We 
may let O' (with coordinates and 7/0 in the fixed system) move 
along OX so that 

d£o 
(It 

and 
(It 

= 0 

where C is the speed of O' along OX. The positions of the cen- 
trodes, however, must be independent of the speed of falling; 
hence we should not expect the ecjuations of the centrodes 
to cont ain C. The speed C does not appear in the final equations 
as will be observed. If L is the length of the ladder, then 

.To 
Sin 7 = j 7 cos 7 and 

__iC_ 

(L cos 7) 
(1-33) 

If we substitute these values in Eq. (1-30), the following equa¬ 
tions are obtained: 

= L sin 7 cos 7 rj' = L cos^ 7 

Eliminating 7 gives 

r- + r?'- = Lr?' (1-34) 

which is the equation of the moving centrode referred to the 
moving axes. This centrode is obviously a circle constructed 
about the ladder as a diameter. 

By using Eq. (1-32) the fixed centrode may be determined. 
If we substitute in these equations the values of the quantities 
as indicated above [h]q. (1-33)], we obtain the expressions for 
the coordinates of the instantaneous center referred to the fixed 
axes. 

f = Xfl = L sin 7 7j = L cos 7 

Eliminating 7 gives 

e + = L- (1-35) 

which is a circle of diameter 2L constructed about the point 0 as 
center. This circle is the fixed centrode. It is interesting and 
instructive to observe how the moving centrode rolls upon the 
fixed centrode as the ladder falls. There is instantaneously 
only one point of contact between the two centrodes, viz.y the 
point of tangency (/ in Fig. 27) which is the instantaneous center. 
It is instructive for the student to determine the centrodes for 
the falling ladder by a completely graphical method. 
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1-17. The Centrode of a Connecting Rod—Problem.—^Let 
the connecting rod PO' (Fig. 28) be of fixed length L. Let 
the fixed reference system be XOY and the moving system be 
X'(yY\ as shown in the diagram. One end of the rod moves 
about the circle, of radius r and center at 0, with angular velocity 
dajdi. The other end 0' of the rod moves along OX. The line 
OP mak(‘s the angle a with OX^ and O'A^' makes the angle 7 

with OX, 
The details of the process of determining the two centrodes are 

left for the student to work out. The equations for the cen¬ 
trodes are given below [Eqs. (1-36) and (1-37)1, for the purpose 
of providing a check upon the results obtained. If desired, the 

two centrodes may be obtained by a purely graphical method. 
For the fixed centrode: 

t7(r - + r^) = - (r + Ty - r2)2]i (1-36) 

For the moving centrode: 

7^2 _j_ ^2 ^ jJ 
+ v^} - LW 

+ 1 (1-37) 

Problems.—1. A wheel rolls with angular velocity w along a straight line 

but the point of contact slips with a velocity V as the wheel rolls. The 

velocity of slip is oppositely directed with respect to the forward motion of 

the wheel. Find the instantaneous center. 

2. A circle of radius r rolls inside a larger circle of radius 2r. Prove that 

P, any point of the circumference of the smaller circle, moves along a 

straight line. 
3. If a point P moves along a straight line with a constant linear velocity, 

prove that its angular velocity about any fixed point Q which is not on the 

line of P*s motion varies inversely as iPQy. 
4. A rigid plane body containing the two points P and Q moves in such a 

manner that the two points P and Q are always guided by two intersecting 

straight lines, so that P is on one of the lines and Q is on the other. Prove 

that the centrodes are circles. 
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5. A plane figure rotates with constant angular velocity, while it moves 

in such a manner that one of its points is guided around a fixed circle with 

constant speed. Find the centrodes. 

6. The coordinates of a point in an orthogonal system are 4 and —15. 

Find its coordinates in a plane polar system. Also find its coordinates in 

an oblique system in which the angle between the A"- and F-axes is 70 deg. 

7. A boy (A) is riding in a power boat (speed in still water is 20 m.p.h.) 

and is headed directly across a stream (speed 10 m.p.h.). He throws a ball 

with a speed of 100 ft. per second at another boy (B) w'ho is running along 

the shore with a speed of 8 ft, per second. The ball is thrown at the instant 

when B is in a direct line with the keel of the boat and at that, instant A 
is 40 ft. from B. The ball arrives at the shore line 2 ft. behind B. Find the 

velocity of the ball with respect to the shore, the water, and the boat. 

8. A wheel 4 ft. in diameter is rolling in a vertical plane along level 

ground with a speed of 3 r.p.s. A pebble is at the highest point of the wheel. 

The velocity of the pebble is 10 ft. per second relative to the wheel and its 

direction makes an angle of 45 deg. (forward) with the radius drawn to the 

pebble. Find the velocity of the pel)ble with res])ect to the ground. 



CHAPTER II 

VECTORS 

2-1. Definitions.—In mathematical physics we are concerned 
with two classes of (quantities. The quantities of one class are 
characterized by the fact that the^^ possess magnitude only. A 
number together with a selected dimensional unit is sufficient to 
completely specify the magnitude of a quantity of this class. 
Such quantities are called scalar quantities. Some of the scalar 
quantities which are frequently encountered are time, mass, 
energy, work, temperature, potential, and moment of inertia. 
Manipulation of scalar quantities is conducted according to the 
laws of ordinary algebraic analysis. 

The other class of quantities with which we deal in physics 
requires a direction as well as a magnitude to describe them 
completely. Such quantities are called vedor quantities. The 
group of vector quantities includes displacement, velocity, force, 
acceleration, momentum, force moment, and angular velocity. 
Vector quantities are more complex than scalar quantities because 
they possess direction as an additional element. Except in a 
limited number of special cases, vector quantities are not subject 
to the rules of algebraic analysis but must be manipulated 
according to a different code of rules which is called vector analy¬ 
sis. Two of the processes of vector analysis, vector addition 
and projection of vectors, have been described in the preceding 
chapter. Because other processes of vector analysis are useful 
in the study of mechanics, descriptions and illustrations of 
them are introduced in this chapter. The principal advantage 
which vector descriptions have in comparison with algebraic 
descriptions is brevity. Two or more algebraic equations may 
be required to present a description which can be given by a 
single vector equation. 

Vector quantities are represented by vectors. A vector is 
a directed straight line segment. The length of the line segment 
is determined by the scale of representation selected, together 
with the magnitude of the quantity represented. The magnitude 

36 
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and direction of the vector correspond to the magnitude and 
direction of the vector quantity represented. 

There are, in general, two types of vectors: polar and axial 

vectors. 
Polar vectors are those having directions which are directly 

determined by the single direction of the quantity. p]xamples 
of the polar vectors are force, momentum, acceleration, and 
translational velocity. 

Axial vectors represent those vector quantities which are com¬ 
posite in nature, consisting of at least two elements, each of 
which requires a direction to determine its position. The direc¬ 
tion of the axial vector is conventional, but it is associated 
with a line or axis which is prominently connected with some 
ph3^sical aspect of the quantity, like the axis of rotation in the 
case of force moment. I^iXamples of this type are force moment, 
angular velocity, and moment of momentum. 

The processes used in vector anal}^sis may be applied alike to 
polar and axial vectors as long as the standard right-hand refer¬ 
ence system only is used. 

Because there is a direction associated with a magnitude in 
vector quantities, this group of physical quantities is con¬ 
veniently subject to gra]:)hical representation. Such a scheme 
of representation is exceedingly helpful to the student, for in the 
process of graphical representation a means of mentally visualiz¬ 
ing these quantities is at hand which is of valuable assistance 
in the better understanding of the physical relations that are 
fundamental to them. Because this is true and because of the 
brevity in expression, vectors and vector equations are too 
valuable as tools to neglect. In this work, therefore, use will 
be made of them, along with the more familiar analytical expres¬ 
sions. In the following pages vectors are expressed in bold¬ 
faced type in order to distinguish them from the scalar quantities 
which are printed in light-faced type. When writing vectors, 
the student should adopt some other scheme for distinguishing 
vectors from scalars such as drawing a bar above the letter, 

i.e.. A, 
2-2. The Unit Vector.—Since the vector consists of a magni¬ 

tude and a direction, we may express the vector in terms of these 
two parts. The direction may be expressed by a vector of unit 
length which has the same direction as the given vector. The 
directional part is spoken of as the unit vector. It will be written 
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by putting the subscript 1 after the letter standing for the vector. 
Thus, if the vector is V, its unit vector is Vi. We may then 
represent the vector 7 by VVi where V gives the magnitude and 
V\ the direction of the vector. 

2-3. The Rectangular Components of a Vector.—It is often 
convenient to express a vector in terms of its components, 
projected on the three axes of an XFZ' reference system. The 
relation employed for this purpose utilizes the unit vectors 
i, j, and k, which are always associated with the X-, F-, and 
Z-axes, respectively. Given the vector A (Fig. 29) in the 

orthogonal system A" FZ with a, /?, and 
7 the direction angles of A. The com- 

^ ponents of A upon the axes are A cos 
y/j a, A cos fiy and A cos 7. 
/ I The components are more con- 

^ / I ^^ veniently expressed by using the unit 
vectors ijk. If A^j Ayy A^ are the 
magnitudes of the components upon 
the axes and are therefore the scalar 
factors, we may write A^i, Ayj, Ask for 
the vector components of A and hence 

the following vector equation is valid: 

A = AJ. + Ayj -f Azk 

This equation represents a very important type of equation. It 
exhibits the link which connects vector algebra with the Cartesian 
relations. 

The vector sum of two (or more) vectors is expressed by the 
vector equation C = A + B or one similar. If 

A = A xi A" Ay j Azk 
B = Bxi + Byj + Bzk 

we may add these equations and obtain < ^ mressions 

C = A A" B = {Ax + Bx)i + {Ay + By)j i,/!* + Bz)k 
= Cxi + Cyj A" Czk 

This is a vector equation which indicates that the components of 
the vector C, which represents the vector sum of the two vectors 
A and B, may be found by adding algebraically the corresponding 
components of the given vectors. 

Fig. 29. 
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Example.—Find the vector sum of the three vectors graphically 
and also by adding the components by the method indicated 
above. 

^ = 5i - 3y + 4/St 
B = —2i -f“ 4y 4“ 3/t 
c = 32 - 2j 

2-4. The Multiplication of Vectors.—In the preceding section 
it was shown that a vector may be expressed in terms of the unit 
vectors which are associated with some assigned rectangular 
system of coordinates. We wish next to show the development 
of the two kinds of products of vectors, viz., the scalar and vector 
products of two vectors. This is to be done by first multiplying 
algebraically the three rectangular components of the two 
vectors together in the usual algebraic manner and then inter¬ 
preting the nine resulting terms. Given the two vectors A 
and B, expressed in terms of their components in some reference 
system. Let 

A = aii + .4“ ^3^ 
B == bi2 4“ 62^ 4" 

where the coefficients of the unit vectors are the ordinary com¬ 
ponents of the given vectors on the reference axes. Multiplying 
these two equations together in the ordinary algebraic manner 
gives 

AB = aibiii + a^hji 4- a^biki \ 
aib^ij 4- a2b2jj 4- ^ 
aib'Jk 4- azbjk +li^b^kk (2-1) 

In writing the terms of the right-hand member, the order of the 
factors in each term has been carefully preserved. In this 
expression there are three kinds of terms: those with similar unit 
vectors {ii, jj, kk), those with unit vectors which occur in the * 
cyclic order {ij, j\ iil/ and those with the inverse cyclic order 

{ji, kj, ik). . , 
In order to interpret tfee right-hand member of Eq. (2-1), let 

us first consider collectively those terms having similar unit 
vectors and then later the remaining six terms. The first group 
may be put into another form which is useful for our purpose if we ^ 
designate by Imini and Umzni the direction cosines of the vectors 
A and 5, respectively. 
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It is readily seen that 

All = Anil — Aui — 
Bh — hi Brno == 62 Bfh === 63 

If now we put the products and kk each equal to unity, an 
assumption which is not inconsistent with the results developed 
below, we may then write 

-|- (i^h^JJ ~h Chib^kk = AB (/1/2 “f“ niim^ “h ^1^2) 
== AB cos a (2-2) 

where a is the angle between A and B, 
We have then reduced t he three terms containing similar unit 

vectors to a simple expression which involves the magnitudes 
of the vectors A and B and the cosine of the angle between them. 
It is customary to use this result as a means for defining the 
so-called scalar 'product of two vectors. 

The scalar product, of any two vectors A and B is then defined 
by the following equation: 

A‘ B == A B cosa (2-3) 

in which the dot, written between the two vectors as shown, 
signifies that the product of A and B is to be a scalar product. 
Because of the use of the dot in this connection, this product is 
sometimes called the dot product. This expression is taken to 
be a scalar quantity because of the fact that in mechanics there 
are occasions when the product of two vector quantities yields 
a scalar quantity whose magnitude is given by the result obtained 
above. For example, in the case of the work done by a force 
F acting upon a body which has a displacement S even though S 
is not parallel to F, we may write in vector notation 

F • S = F S cos a 

where a is the angle between F and S. In this expression we have 
a general equation for the work done. Since work is a scalar 
quantity, the left-hand member of the equation must also be a 
scalar quantity, for it would be incorrect to equate a scalar 
quantity to a vector quantity. 

Consistent with this definition, the scalar product of two 
similar unit vectors, such as i • i, is equal to unity. The left- 
hand member of Eq. (2-2) is therefore a scalar quantity. A fur¬ 
ther description of the meaning and use of the scalar product 
will be reserved for a section below [Sec. (2-6)]. 
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It is next to be shown that the remaininj>; six terms may be 
reduced to another simple expression, to which the name vector 
product has been applied. The adjective ‘^vector’’ has been 
used here to indicate that the result obtained is a vector quantity 
instead of a scalar quantity. In order to carry out the develop¬ 
ment, it is necessary to interpnd. the meaning of the product 
of two unit vectors which are at right angles to each other. 
Consider the product ij as an illustration. By multiplying 
together two lengths which are perpendicular to each other, we 
obtain the area of a rectangle constructed upon these lengths 
as adjacent sides. Wo may use here the idea of the axial type 
of vector and represent this area by an axial vector drawn 
mutually perpendicular to the two elements of the product. 
In the case selected, the axial vector representing ij would 
therefore be directed along the ft-axis. Since i and J are both 
unit vectors, their product gives unit area and hence k is also 
of the proper magnitude to re[)resent this product. Whether k 
is to be taken in the positive or negative direction is a matter for 
convention. Consistent with our standard system, we should 
put 

k = i X j and —k=jXi 

The cross (X) is introduced to call attention to the fact that we 
intend this product to represent a vector product. It is in general 
use for this purpose. 

Returning now to the consideration of the six terms of Kq. (2-1), 
which contain unlike unit vectors, we may collect these terms 
into the following expression: 

• {aih2 — aohi) k + (uabs — U3?>2) i + {anbi ~ aib^) J 

If we now let X, ^ be the direction angles of the normal to the 
plane containing the vectors A and B, the following expressions 

may be written: 

cos X = 

cos M = 

171x112 — niiUi 

sin a 

n\l2 — 

sin m 

1x1712 — hTTli 
cos V ^ 

sin a 
(2-4) 
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Using the first of Eqs. (2-4) as a type and multiplying both 
sides by A B gives 

{AB sin a) cos X = AB {miu^ — m2n\) 

AB sin a is evidently an area which is projected upon the YZ 
plane when multiplied by cos X, since X is also the angle between 
the plane containing A and B and the YZ plane. 

We may represent the area ABimrn^ — m2ni), which is in the 
YZ plane, by an axial vector drawn along the X-axis. But 

AB (min2 — m-inO = — a^h2 

hence (a2&.3 a3b2)i is the vector along the vY-axis which repre¬ 
sents the component of the area AB sin a. In a similar manner 
it may be shown that 

(usbi — aib^y and (^162 — a2bi)k 

are the Y and Z components, respectively, of the vector which 
represents the area AB sin a. 

Hence we may regard the six terms of Eq. (2-1), which contain 
unlike unit vectors, as collectively representing the vector sum 
of the three component vectors, each component representing 
the projection of the area AB sin a upon the particular reference 
plane which is perpendicular to the axis along which the com¬ 
ponent is taken. 

This part of the general product is to be represented symboli¬ 
cally by the expression 

A X B = (AB sin a) 7ii (2-5) 

in which the left-hand member is to be called the vector 'product 
of the vectors A and B and is a vector quantity. The magnitude 
of the vector product is given by the expression A B sin a ancl 
the direction by the unit vector Hi, which is mutually perpen¬ 
dicular to both of the vectors A and 5. A more complete descrip¬ 
tion of this vector product and some of its applications are 
included in a section below. 

2-6. The Scalar Product of Two Vectors.—The scalar product 

of two vectors A and B gives a scalar quantity whose magnitude 
is AB cos a, where a is the angle between A and B. Either we 
may interpret this result fb mean that A is projected into the 
line of B through the angle a and the result then multiplied 
by B or we may regard B as the vector which is projected into 
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the line of A and is then multiplied by A, Either interpretation 
is valid. It must not be forgotten that the scalar product gives 
a scalar quantity even though it is obtained from two vectors. 

As a special case of this process we have A • S = 0 if a = 90 deg. 
If a = 0, as in the case of the square of a vector then A • A = 
The scalar products of the unit vectors may be written: 

i'i=j'j=k'k — 1 
— ki = 0 

Illustration.—It is required to find the simple trigonometric 
relation which exists between the squares of the sides of an oblique 
triangle. Any side of the triangle 
may be regarded as the vector sum 
of the two other sides; hence 
C — A + B, where A, B, and C are the 
sides of the triangle as shown in^ 
Fig. 30. The commutative and dis¬ 
tributive laws of ordinary algebra hold for scalar multiplication of 
vectors. The proofs for this statement will be left to the student. 
The validity of these laws being assumed, the following results are 
easy to obtain: 

C • C = (A + 5) • (A + B) 
^AA + 2AB + BB 

= A2 + 2Ai^ cos a: + 

Work^ a Scalar Quantity.—In the scalar quantity work, we 
find an application of the scalar product of two vectors. The 

Fig. 31. Fig. 32. 

work done by the force W in moving a body a distance S down 
an inclined plane (Fig. 31) is expressed by IF* •$ = TFS cos a. 
The scalar product takes care of the necessity for either projecting 
W into the line of S or vice versa. 

2-6. Other Illustrations of the Scalar Product.—It is desired 
to express the work done by a variable force F as it moves an 
object along a definite path, such as Q J? in Fig, 32. If s is a 
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coordinate measured along the path from Q, as origin, toward 
R and ds is a differential displacement in this path, then the 
element of work done by moving the object a distance da is 
F cos a dsj where a is the angle between F and ds. The total 
work done in moving the object from Q to R may then be expressed 
by the following integral: 

F cos a ds 
Q 

The form of the expression may be abbreviated by the use of the 
scalar product of the vectors F and ds; hence 

Work = Cf ■ ds (2-6) 
JQ 

The integral may be evaluated if the law of the variation of F 

with s is known. 
An integral of this type [J^]q. (2-6)] is called a line integral of 

the vector qinantity. It is used for 
determining several scalar quantities. 

To illustrate further the use of this 
~ integral, let us determine the potential, 
^ a scalar quantity, at a point P (Fig. 33) 

in an electric field due t o charge E which 
is, for simplicity, to be regarded as concentrated at one point. 
The field strength F at any point is a vector which gives the force 
exerted by the field on a unit positive charge placed at the point 
in question. The magnitude of the field is exprevssed by the 
relation 

where k is the specific inductive capacity of the medium, r is 
the distance from the charge +E to the point at which the field 
strength is expressed, and ri is the unit vector in the line of r 
and directed away from E. The potential at P is determined 
by the work done against the field force F in bringing a unit 
positive charge from infinity up to P. This is expressed by the 

integral 

Potential = • dx (2-7) 

which is to be taken from infinity to P, and in which the coordi¬ 
nate X is to be measured outward from P along the path over 

Fio. 33. 
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which the unit charge is moved. By introducing the value of F 
and expressing r in terms of x, the value of the potential may be 
determined. Attention is to be directed to the scalar product 
of the two vectors in the integrand. 

If the vector form of the expression had not been used, it 
would have been necessary to have used the component of F 
which is in the line of a*. 

2-7. The Surface Integral of a Vector.—A vector fidd is a 
region in which there is a definite value of some vector at every 
point of the field. In a moving fluid a velocity vector V may be 
used to express the velocity of each moving particle. In general, 
V will be variable. To each and every particle of the fluid there 
will be some definite value of V. The aggregate of these vectors, 
one assigned to each particle, is spoken of as a vector field. 

We are to imagine a closed surface, such as a spherical surface, 
surface of a cube, or the like, to be placed in a vector field. The 
presence of the imaginary surface in the field is in no way to 
produce any alteration of the vector field. At every point on the 
selected surface, the vector will have a determinate value. In 
general, however, the direction of the vector will not be per¬ 
pendicular to the surface element surrounding the particular 
point on the surface.’" If rii is the unit vector drawn outward and 
perpendicular to the surface element, then V ’ ni gives the 
magnitude of the component of V which is perpendicular to the 
surface element, and t he quantity V • Thda gives the volume of 
fluid going out through the elemental area ds in unit time. If 
we integrate the latter quantity over the entire closed surface, 
the result obtained gives the total volume of fluid passing out 
through the surface in unit time. In symbols this may be 
written as follows: 

Volume of fluid per second = f£ V • riids (2-8) 

The use of the double integration sign indicates that the 
integration is to be taken over a surface. The subscript S 
written to the right of the integration signs shows that the 
integration is to be extended over the entire closed surface. If 
the value of this part icular integration yields a positive quantity, 
the closed surface is said to contain a source.^' If, however, the 
result is negative, then the surface contains a ‘^sink.” A zero 
value for the integral indicates that there is neither source nor 
sink within the closed surface. 
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This type of integral [Eq. (2-8)], containing the scalar product 
of two vectors, is a scalar quantity. It has an extensive applica¬ 
tion and is used in determining the sources of electricity in 
electric fields, masses in gravitational fields, and sources of heat 
in regions of flowing heat. 

The following illustration shows how the details of evaluating 
a surface integral may be carried out. Let us suppose the vector 
field is one in which the vectors give ihe velocities of the particles 
of a moving fluid and that throughout the region under consider¬ 

ation the velocity is everywhere the same. 
We shall determine the surface integral of 
the velocity V over a spherical surface of 
radius r. Let an XYZ reference system, 
with origin at the center of the sphere, be 
placed with the X-axis parallel to V, and 
let P be any point on the surface of the 
sphere. We shall use the spherical 

coordinates r, v?? und 0, as shown in Fig. 34. 
Since r is everywhere perpendicular to the surface element 

ds to which it may be drawn, the unit vector Hi is always parallel 
to r and directed outward along r. The scalar product F • Hi in 
the integral of Eq. (2-8) is to be replaced by the component of V 
which is in the line of which is V sin d sin <p. The area ds in 
spherical coordinates is rdip • r sin dd. With these evaluations 
of the quantities, we may write the surface integral as follows: 

Fui. 34. 

It should be observed that the limits of integration for 6 are 
from 0 to 2x and for ^ are from 0 to tt. The zero result for the 
integral indicates that the amount of fluid flowing out of the sur¬ 
face in unit time is equal to that which enters. 

2-8. The Vector Product of Two Vectors.—Some physical 
quantities are measured by the product of two vectors and yet are 
vector quantities. Those quantities are adequately expressed by 
the vector product. Such a case is found in the quantity force 
moment, or ^Horque,” or in linear velocity when the linear 

sin 0 sin <p) r d(p r sin (p dS 

= V — cos sin V? + 

= 0 (2-9) 
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velocity is expressed in terms of an angular velocity and a radius 
vector. The vector product of the two vectors A and B is usually 
written as the cross (X) product A y, B and has for its magnitude 
the value AB sin a, where a is the angle between them. It is to 
be noticed that the presence of the sine of the angle projects one 
of the vectors into a line which is perpendicular to the other. 
It is immaterial which vector is considered as being projected. 
The direction of the vector which 
expresses the product is perpendic- ^ 
ular to the plane determined by the 
two vectors. In the illustration 
(Fig. 35) \i C — Ay By the direction 
of C would be drawn as shown in the 
diagram. This representation is in 
accord with the standard right-hand -c 
convention of signs. On the other 
hand, the product B y A would be 
represented by — C. Hence ^4 y B = —ByA, The magnitude 
of X B is represented by the area of the parallelogram formed 
upon A and B as sides. In a scalar product no such representa¬ 
tion is to be made. 

In the expression F = o> X r, the vector V expresses the 
linear velocity of a point which is at a distance given by the 

vector r from the rotation axis, 
and w is the angular velocity 
about the rotation axis. The 
vector G> is drawn along the rota¬ 
tion axis. 

In the diagram (Fig. 36), if g> 
is positive and is measured along 
the Z-axis and r is parallel to 
Xy then V is parallel to 7. 

Illustrations—The Unit Vector. 
From the statements already made, it should be obvious that 

iyi=jyj=kyk=o 
ixj = k; jyk = i; kyi=j 
y XI = -ft; ft Xy = -f; f x ft = -y (2-10) 

Product of Two Vectors in Terms of Their Components.—If any 
two vectors A and B are given in terms of their components 

/ 
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Axj Ay, Az and By, Bz along a set of rectangular axes OX, 

OY, and OZ, respectively, as, for example, 

A — Axi A- Ayj Azk 

B = Bxi + Byj -V Bzh 

we may expand the vector product of their components by 
observing the above relations for the vector products of the unit 

vectors; hence, 

A y, B = {AyBz — AzB,^i + {AzBx — AxBz)j + 
(AxBy-AyBx)k (2-11) 

The right-hand member represents the vector sum of the com¬ 
ponents of a new vector. The magnitude of the product A X B 

is the magnitude of the vector repre¬ 
sented by the right-hand member. 
This magnitude may be found by tak¬ 
ing the square root of the sum of the 
squares of its components. 

Parallel Vectors.—If any two vectors 
are parallel to each other, their vector product must be equal to 
zero. That this is true may be seen either from the fact that the 
sine of the angle between them is zero or from the fact that the 
coefficients of the unit vectors in the foregoing equation would 
separately vanish. In particular, the vector square of any 

vector is zero. 
The Moment of a Force.—One of the simplest illustrations of the 

use of the vector product is in the expression for the moment of 
force. In the analytical expression for the moment of a force, 
the lever arm must be perpendicular to the line of the force and 
is measured from the axis of rotation to the line of the force. 
If r, the radius vector (Fig. 37), is not perpendicular to F, the 
force, then it must be projected into a line which is perpendicular 
to F. This process is automatically taken care of when the 
moment is expressed as the vector product of r and F. Hence 
in the vector equation 

Moment = r X F (2-12) 

we have a simplified expression for the moment of the force F. 

2-9, The Angle between Two Vectors.—It is frequently 

necessary to determine the magnitude of the angle between two 
vectors when the components of the vectors along the axes of a 

Fig. 37. 
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given reference system are known. Two expressions are devel¬ 
oped in this section from which the desired angle may be found. 
One expression is obtained from the relations that hold for the 
vector product of two vectors and the other is based upon the 
scalar product of the two vectors. 

Given the vectors A and B with a the angle between them and 
measured from A to B, Let Ai and Bi be the unit vectors in the 
lines of A and B, respectively, and Ci the unit vector in the 
direction of the vector which reprcvsents the vector product of 
A and B, We may therefore write 

4 X i? = {AB)A, X Bx 
= {AB sin (x)Ci (2-13) 

Writing A and B in terms of their components along the lines 
of i, j, and k, we may express the vector product of A and B as 
was done in Kq. (2-11). The expression A X B in Eq. (2-11) may 
be replaced by its ecluivalent expression (AB sin a)Ci, If we 
now square both members of the resulting equation, we obtain 

{AB sin ay = (AyB, - AJ^yy + (AJ^ - A,B,y + 

{AxBy — AyBxy 

Hence 

sin a = ^^j^KAyBz — AzBy)- + {AzBx — AxBz)'^ + 

{AxBy - AyBxy]^ (2-14) 

If any two vectors are given in terms of their components, we 
may determine the angle between them by the use of the fore¬ 
going equation, for all of the quantities are known except the 
magnitudes A and B and those may be easily found by the simple 
relation 

.1- = Ay + Ay^ + Ay 

and by a similar expression for B, 

Another expression for the angle a may be found by using the 
scalar product of the given vectors. For example. 

Hence 

A ' B A B cos a 

= AxBx ~ir AyBy -f* AzBz 

cos a = 
AxBx *4“ AyBy -f- AzBz 

(2-15) 
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This expression is the simpler and hence is easier to evaluate 
than the relation given in Eq. (2-14). 

Problems,—1. Prove that the following vectors are perpendicular to each 
other: 4 == 9/ + 7 — 6/e and B = M — 6j + 5k, 

2. Find the angle between the vectors A = 3i if + 2k and B ~ 2i 
-f- 3y + k, 

3. Find the vector product of the vectors A ~ 2i A- j ~ k and B = Zi 
+ 2j + 2k and prove that the vector representing this j)roduct is pc'rpendic- 
ular to each of the given vectors. 

4. Prove that the following vectors are parallel: A = 7.5/ -f 3y -f h/e 
and B - 5/ + 2j -f 4^. 

5. What are the necessary relations between the components of any two 
vectors in order that they be parallel to (‘ach other? 

6. Find the area of the triangle which is bounded by the two vectors 
A = 2i — if and — 3/ — 2j, 

7. Find the area of the parallelogram determined by the two vectors 
A ~ 2i — 2j + 3/e and B ~ — 4/ + 5/ + k, 

8. Find the vector and also the scalar product of the diagonals of the 
parallelogram determined by the vectors A and B, 

2-10. The Product of Three Vectors.—There are three kinds 
of triple products of vectors which we wish to investigate: (a) 
A{B • C), the product of a vector into the scalar product of two 
other vectors, (5) ^4 • (5 X C), the scalar product of a vector into 
the vector product of two others, and (c) .4 X (5 X C), which is 
the vector product of a vector into the vector product of two 
other vectors. These three triple vector products will be dis¬ 
cussed below in the order given. 

Such triple vector products as have just been written may 
be evaluated; i.e,, they may be expressed as either a single 
vector quantity or a single scalar quantity. The value of a 
triple vector product will depend, in general, upon the order of 
the steps taken in the evaluating process. In order to avoid 
uncertainty as to the procedure in expanding a triple product of 
vectors, it is customary to enclose within the parenthesis that 
pair of vectors which are to be multiplied together first. The 
procedure to be followed in expanding a triple product of vectors 
is therefore to determine first the product (vector or scalar as 
indicated) of the two vectors within the parenthesis and then to 
multiply this result by the third (unenclosed) vector in the 
manner indicated by the dot or cross symbol. 

a, A {B • C),—In expanding this triple product, we must first 
determine the scalar product B • C. The product B * C yields 



2-10] VECTORS 51 

the scalar quantity BC cos 5c, where be is the angle between 
B and C (Fig. 38a). The next step is to multiply the vector A by 
the scalar quantity BC cos he. Such a product, that of a vector 
by a scalar quantity, yields a vector quantity, the direction of 
which is the same as the direction of the vector quantity, in this 
case A, and the magnitude is ABC cos be. Hence we may write 

A (B • C) = (ABC cos be) Ai (2-16) 

where Ai is the unit vector drawn in the direction of A. It is 
important to notice that, since 5 ■ C is a scalar quantity, it is 

Fi<}. .^s. 

incorrect to write a dot (or cross for that matter) immediately 
following A in the expression A (B • C), for there is only one way 
to multiply a vector by a scalar quantity. The expression 
A{B • C) may be written {B • C)A, A{C • J?), or (C • B)A without 
change in the meaning or value 
of the quantity. The vector 
expressed by the triple product acosoc] 
{A ' B) C is obviously not the 
same as (B * C) for the direc¬ 
tion of (A • B) C is that of C and 
its magnitude is ABC cos ab, 
where ab is the angle between 
A and B (Figs. 385 and SSe). 

5. A • {B X C).—In expand¬ 
ing this triple vector product, we 
must first obtain the vector product of B by C. The magnitude 
of B X C is BC sin 5c, where be is the angle between B and C. 
The direction of the vector representing B X C is perpendicular 
to the plane containing B and C (Fig. 39). The next step involves 
the scalar product of the vector A by the vector representing 
B X C. The resulting quantity is a scalar quantity, the magni- 

Fig. 39. 
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tude of which is ABC cos a sin be, where a is the angle between A 
and the vector representing B X C. Hence 

i4 • (J? X C) - ABC cos a sin he (2-17) 

It is profitable to examine the meaning of this triple product. 
The product B X C gives the area of the parallelogram deter¬ 

mined by B and C as sides. This area is represented by a vector 
perpendicular to the plane of B and C. Its scalar product with A 
may be taken to mean that the area BC sin he is multiplied by 
the component of A which is in the line of the vector representing 
B X C. We have then a product yielding a scalar quantity 
which expresses the volume of the parallelopiped constructed 
upon the three vectors as sides. Since this is the case, it is easy 
to see the following equalities: 

A^{BXC) ^ B-(CX A) {AX B) (2-18) 

If the order of the factors in any one of the vector products is 
changed, a negative sign must 
be introduced. The order of the 
factors expressed in the scalar 
product may be changed without 
changing the sign thus: 

A ^ {B X C) = {B X C) • A 

c. A X (B X C).—The vect or 
product of a vector by the vector 
product of two other vectors may 
be expanded in the following 
manner: the vector product of 
B and C is to be found first and 
then the resulting vector is to 
be multiplied by A, In order to 
simplify such an expression, we 
shall make use of the method of 

expansion, in which the vectors first are expressed in terms of 
their components and then are multiplied together according to 
the indicated processes. 

Let us put 

D == AX (BXC) and £ - B X C (2-19) 

If we now select an XYZ reference system (Fig. 40), we may 
write the components of E, Ed, Eyj, and Ezk in terms of the 
X, y, and z components of the vectors B and C as follows: 
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EJ = (ByC^. B£y)i 
E J = (B^Cr, - 

.‘ind 

E.k - (B,Cy - 

wliere Br, B,,y B, luul (o-, Cy^ C, are the components of B and C. 
If Ajcy Ay, and A^ are the components of A, then the x component 
of D may be (expressed in terms of the components of A, B, and C 
by the use of the following steps: 

B i = ( \ E“ — A -E 
= A,AB,C, - - A,{B.C, - BJ\)i 

If we add and subtract the term A^B^CJ and rearran.o;e the order 
of the terms, we ^^et 

DJ = Bx(AxCx + AyCy + AzCz)i — Cx{AxBx + AyBy + AzBz)i 
= BxiA • C)i - Cx{A • B)i 

In a similar manner, expressions may be obtained for Dyj and 
Dzk, the two other components of D. Adding? vectorially the 
three expressions for the components gives the following impor¬ 
tant relations: 

D = AX(BXC)=B (A • C) - C {A ‘ B) (2-20) 

in which the vector D, which is equivalent to the triple vector 
product, is expressed in terms of B and C each mult iplied by a 
scalar quantity. The riglit-hand member of Eq. (2-20) may be 
represented by a single vector D, which is equal to the vector 
sum of tavo vectors one of which is parallel to B and the other 
parallel to C, The vector D lies in the plane containing B and C 
and is perpendicular to A and also to E (Fig. 40). 

Using the formula of Kq. (2-20) for expanding the triple vector 
product, we may now see whether the changed grouping of factors 
in the expression A X {B X C) will alter the value of the expres¬ 
sion. If we use the following expression, in which the grouping 
of the factors is altered, and then expand this expression according 
to Eq. (2-20), we obtain 

{A X B) X C == -C X {A X B) 
- -A iC ^ B) + B {C • A) (2-21) 

The right-hand member of Eq. (2-21) is not equivalent to that 
in Eq. (2-20) except in the one special case in which B is per¬ 
pendicular to both C and A, That this is true may be seen by 
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applying the indicated limitation to both expressions of Eqs. 
(2-20) and (2-21). In this case the two triple products reduce 
to a common value, viz.y B (C * il), because the scalar products 
C • B and A • B are then both ecpial io zero. 

It is also to be noticed that the right-hand member of Eq. (2-20) 
reduces to zero if A is perpendicular to both C and B, This fact 
may be used in determining whether a vector is perpendicular to 
the plane determined by two other vectors. 

Problem.—Givcm the vectors ^ + 0.5y -h 0.5fe, B ~ i — j k, and 

C - i j — k. I'ind the vectors D and E by Eqs. (2-19) and chock tlie 

values of D by the use of E((. (2-20). Prove that B and C are perpendicular 

to E and that A and E are i)('riauulicular to 2>. Prove also that D, B, and 

C are in the sainci plane. (Jt is very instructive for the student to locate all 

of the above v(‘ctor.s in space by th(‘ us(^ of spacer reh^rence system. The 

latter may be improvised by three straight piec(;s of wire thrust into a cork. 

Other wires, each labeled, may be used to represent the vectors). 

2-11. The Differentiation of a Vector with Respect to a 
Scalar.—There are many occasions when it is desired to find the 
rate of change of a vector with respect to some scalar variable, as, 
for example, when expressing the velocity of a moving point in 
terms of the time rate of change of the radius vector drawn to 
that point. The expressions obtained from differentiating vec¬ 
tors arc more abbreviated in form than those obtained from 
differentiating scalar quantities and hence more care is required 
in an interpretation of them. 

a. Unit Vector.—Let Hi be any unit vector which is varying 

Fig, 41. 

with respect to some scalar quantity such as 
time, which we may represent by t. Also let 
Hi' be the new value of Hi after the small time 
interval A^. The time rate of change of Hi is 
therefore {rii — ni)/Aty or for brevity AHi/A^. 
The quantity Arii is that vector which ex¬ 
presses the change in Hi in the interval A^. 
We define the differential quotient driildt by 

the equation 

dfti _ lim Aril 

Since a unit vector can change only in direction, the vector Ani 
must be perpendicular to ni at the limit where At = 0. The 
direction of Ani/Ai, when f = 0, is represented by the unit 
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vector mi which is drawn parallel to A/ii. If we let Aa be the 
angle between rti and n/, then, since Hi is of unit length, Aa is 
equal to the scalar magnitude of Ani. Hence it follows that 

dn\ 
dt 

(2-22) 

in which w is written for Aa/Aly since the latter is an angular 
velocity. 

5. Ordinary Vector.—Let A be any ordi¬ 
nary vector, A' its value after a small 
time interval A^, and let AA be the change 
in A in the time At) hence AA A' — A 
(Fig. 42). We may regard AA as 
equivalent to two components, one of 
which is in the line of A and is equal to 
AAAi (Ail is to represent the magnitude 
change of A) and the other perpendicular to A and equal to ilAili 
{AAi gives the direction change of A). Using these symbols, we 
define dA/di by the following equations: 

^ = lim ^.4 
(It 

_ lim (: 
A(=o y 

A i 

at -aT 0 
dA . . dAi 
-£Tr (2-23) 

This equation conveniently expresses the time rate of change of a 
vector in terms of the time rates of change of its magnitude and 
its direction. 

If the vector A be expressed in terms of the unit vectors of 
some selected reference system, 

A = ilxl “h AyJ Azk 

then, applying the method used in obtaining Eqs. (2-22) and 
(2-23), we may write 

dA _ (L^y . dA;, 
It ~ ~dV ~di ^ di 

(2-24) 

Since the unit vectors i,j, and k are fixed in the reference system, 
their derivatives are zero and therefore do not appear in this 
equation. 
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c. Other' Fonnulas,—By using the relation given in Eq. (2-24) 

and expressing the vectors A and B in terms of their unit vectors, 

the following formulas may be easily established: 

d {A + B) 
dt 

d {A • B) 
dt 

d (A X B) 
dt 

dA dB 
di "dt 

(2-25) 

(2-26) 

X
 

+
 

X
 

11 (2-27) 

d. Illustration.—As an illustration of the use of Eq. (2-23), 

we shall express the velocity Vp of a moving particle P (Fig. 43) 

whose position in the n'ference sys- 

the rate of change of magnitud(‘ of r and is in the line of rj. This 

component of the velocity is V, . The first term of the right-hand 

member contains the derivative of the unit vector ri. The direc¬ 

tion in which this change takes place is in the line of yi, the unit 

vector perpendicular to Ti and making an angle of +90 deg. with 

ri. The magnitude of the rate of cliange of direction of ri is co, 

the angular velocity of r or rj. Hence 

T7 I Vp = co/’Yi + Ti 

= V, + Vr (2-29) 

where Vy is the component of Vp which is perpendicular to r. 

In the work which follows there will be occasions where it is 

necessary to take the second derivative of a unit vector. Using 

the unit vector ri in illustration, we may first write the derivative 

of Yi as it was just shown to be: 

dri 
(2-30) 
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'■J''he second derivative of ti gives 

57 

d’ri dw dfi 
7»= ■ rf/l'' + “ M 

d’he deriviilive of yi yields a result similar to that of dri/di. Its 

magnitude is again w and its direction makes an angle of +90 deg. 

with Yi, which is —Ti. Hence we may write 

do> 
,IP ' 

(241) 

Problems. 1. Provt^ Mini :ui angular (li.splaccnienl is not a vector. 

2. J^rovf! that A X (B X C) \ B X (C X A) i C X {A X B) ^ 0. 

3. Prove that (A X B) ^ {C X D) - (A • C){B • D) - {B • C){A - D). 

4. Prov(‘ lliat {A X B) X (C X D) --- B {C X D) ■ A ~ A {C X D) • B. 

5. A vf'ctor inakchs an angle of 40 (](‘g. willi tlu^ A’-axis and 60 deg. with 

the P-axis. Find the angh* it makes with th(' y^-<'ixis. 

6. Th(^ coordinatfhs of <he terminal points of a cf'rtain vector are 2, 3, 

and “4 and 5, (i, and ~S. Find the jnagnitmh' of the v(‘ctor and the angles 

it nuda^s with (*ach of th(‘ ax(‘s. 

7. A certain for(*(\ 3f F ^j • 2k Ih., push(‘s an oVjject a distance wliich is 

('xpressf'd hy th(' vector 2i ~ ‘Aj 4 5ft ft. Fijid the work doiu^ and tlie 

iiiagnilud(‘ of both forces and dis])lacfMn(mt. 4\'hat is the angh' Ixitween the 

t^ o VHH'tors? 

S. Find tlu' value of (A ~ B) X (A + B). lnt('rj)n‘t gf'ometrically. 

0. I'uid the value of {A ■ S) • {A f B), 
10, Hy vector nudhods prove that th(‘ diagonals of a ])arallelogram Insect 

f'ach other. 

11. Show ))y vector nudliods that t h(‘ diagonals of a j)arallelogram are not 

necessarily jK'rjKaidicular to each otla'r. 



CHAPTER III 

ANGULAR VELOCITY 

3-1, Angular Displacement.—It is often advantageous to 
study rotational quantities by comparing them with the more 
familiar translational quantities, and to observe the points of 
similarity and dissimilarity. In comparing a finite angular 
displacement with a finite linear displacement, one should observe 
that the former is not a vector quantity (in the ordinary sense), 

while the latter is. That a finite angular 
^ displacement is a scalar quantity is not 

obvious, for it has some of the charac- 
g --- teristics which might easily mislead one 

/ j into supposing that it could be regarded 
I as a vector of the axial type. This state- 

^-- meiit may be readily proved by showing 
// that a finite angular displacement fails to 

y meet one of the most fundamental re- 
Fio. 44. quirements of a vector. It is not subject 

to vector addition. A simple illustra¬ 
tion will prove this point. 

Suppose that an angular displacement of 7r/2 radians is made 
from OF to OZ (Fig. 44) and that this displacement could be 
represented by the line segment A along the Z-axis. Similarly, 
an angular displacement of equal magnitude could be made froin 
OZ to OX and it might be represented by B along OF. Now if 
A and B were vectors, their sum would be along the line C and 
would then have the value 0,7077r radian. An angular displace¬ 
ment of TT radians, however, is required to rotate the line OB into 
the final position OA about the axis OC. From this inconsistency 
it may be concluded that angular displacement is not a vector. 

Consistent with this result, it is to be seen that the time 
derivative of 7, the angular displacement, gives angular speed 
o), a scalar quantity. In order to convert dy/dt(oT co) into a 
vector quantity, it is therefore necessary to multiply it by the 
unit vector having the direction of w. 

58 
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3-2. Angular Velocity, a Vector.—Angular velocity is an 
axial type of vector as may be readily appreciated from the 
analysis given in this and the following sections. Let us imagine 
a body, such as a wheel, mounted so that it. may rotate on a fixed 
shaft and not slide along the shaft—in other words, so that 
the body has pure rotational motion (Sec. 1-6). The rate at 
which the body is rotating may be changing. If such is the 
case, the instantaneous angular spcc^d o) may be defined by the 
equation 

_ lirn ^ 
At^O At (3-1) 

if we let Ay be the angular displacement in the small time 
interval At. The average angular speed for a certain time inter- 

vaU2 — ^lisequalto the angular displacement (72 — 71) (through 
which the body rotates in the time ^2 — ^1), divided by the time, 
or in symbols 

a?(av.) 
72 — 7i 

I2 - ti' 
(3-2) 

Either quantity, instantaneous or average angular speed, may 
be converted into the corresponding 
velocity by multiplying that speed by 
the unit vector which is to designate 
its direction. The direction of an in¬ 
stantaneous angular velocity is to be 
taken in the proper sense along the axis 
of rotation. The convention selected 
for angular velocities is consistent with 
that described for angular displace¬ 
ments (Sec. 1-2). The ‘^right-hand 
rule'^ is a convenient one for identify¬ 
ing the proper sense along the axis. If one imagines the palm of 
the right hand to be placed on the axis with the fingers extending 
around the axis in the direction of motion, the thumb, placed 
along the axis, will point in the direction of the angular velocity. 

The vector equation for expressing the linear velocity of 
a point of a body in pure rotation is next to be develo|>ed. Let 
P be any point of the body (not on the rotation axis) and let its 
position be given by the vector r which is to be drawn from 0, 
selected as origin on the axis of rotation, to P. Also let a be 
tjhe angle between r and the axis. In Fig. 45 the dotted curve 
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is intended to represent P’s circular path and N is the center 
of this path. If the anp:ular velocity is <o at the instant under 
consideration, the linear speed (10 of P is cc{RP). The direction 
of the velocity (V') is continually changing; hence the scalar 
equation V = o){RP) is not particularly useful if one desires 
also to express the direction of V. Since HP = r sin a, then it 
follows that 

7 = o> X r (3-3) 

gives a more complete description of 7. It will be noticed that 
the magnitude of 7, as given by this equation, is cj/* sin a and 
also that the direction of 7 is per})endicular to the plane con¬ 
taining w and r and is consistent with the convention of signs 
for the quantities as indicated in the diagram. One must be 
careful, however, of the order in which the two factors co and r 
are written. In the particular illustration it would be incorrect 
to write r X w, although — r X is correct. 

3-3. The Components of Angular Velocity.—Given a body in 
a state of rotational motion about 
some axis whicli is fixed in an XYZ 
reference system selected so that, 
the origin is on the axis of rotation. 
If (i) is the instantaneous value of 

the angular velocity, then, since w 
is a vector quantity, 

(O = T" ^yj 4" (3-4) 
Fig. 46. 

where and o^zk are the com¬ 
ponents of the angular velocity along the A"-, 1"-, and Z-axis, 

respectively. 
Let P be any point of the body. The position of P in the 

reference system (Fig. 46) is to be given by the vector r. If 

the coordinates of P are j, y, and Zy then 

r = xi ~f yj -h zk (3-5) 

It is desired to obtain the relations which express the linear 
velocity of P in terms of the coordinates of P and the components 

of the angular velocity. 
If 7 is the linear velocity of P, then we may write 

7 = <0 X r (3-6) 
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Substituting the expressions written above for <0 and r and 
expanding the vector product gives 

V = + o^yj + oiji) X {xi + yj + zk) 
= {iOyZ “ oi^y)i + {oizX ~ oixZ)j + {^xV “ iOyx)k (3-7) 

This equation expresses the linear velocity of P in terms of 
the components of the angular velocity and the coordinates of P. 
The magnitudes of the components of V taken along the A^-, F-, 
and Z-axes of the reference system are given by the coefficients 
of the unit vectors i, j, and k, respectively. 

It is to be noliccxl that a component linear velocity parallel 
to an axis does not contain a component of the angular velocity 
which is parallel lo that axis, nor does it contain a coordinate 
parallel to that axis. Each component of the linear velocity is 
dependent upon two components of the angular velocity; for 
example, Vx is dependent upon Wy and w.. Both of the quantities 
oiyZ and — will produce linear velocities along the A'^-axis and 
hence their algebraic sum will give Vx. 

The contributions of each component of the angular velocity 
to the components of Ihe linear velocity are given in the following 

tables: 

t02 

Contril)utioii,s by 

! 
I CompoiK'nt v(‘]()(*itios in tlio lim' of 

A 
j 

r N
 

! 

. 

0 
0)„Z 

j 
' 0 — CO,j.V 

0 

The fact that the linear velocity of a particle may be expressed 
either in terms of the components of 
the angular velocity or in terms of the 
resultant angular velocity may be illus¬ 
trated by the following consideration. 
Suppose that a particle P (Fig. 47) 
with coordinates x and y is in the XY 
plane of a reference system and that it 
is moving parallel to the Z-axis with 
such a linear velocity as may be described as due to angular 
velocities 03x and coy about the X- and 7-axes, respectively. The 
resultant linear velocity of P, consists therefore of two com- 
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ponent linear velocities, the magnitude of one is equal to and 
of the other is equal to — o)yX, Both components arc parallel to 
the Z-axis. Hence 

Vp = (coxV (3-8) 

This equation may be established by a vector product. If 
the resultant angular velocity w = WxZ + and the vector 
r = xi + yj, which denotes the position of Pj are in the 
plane, then the linear velocity of P may be expressed in terms of 
the vector product as follows: 

= 0) X r 

= (coxi + coyj) X (xi + yj) 
= C0x2/ i XJ + OOyX j X i 
= {(^xy — o)yx)k (3-9) 

That this result agrees with the one given in Eq. (3-8) indicates 
the validity of either form of expression. 

3-4. Composition of Parallel Angular Velocities.—In the pre¬ 
ceding section we have seen that angular velocities, being vector 

quantities, are subject to the ordinary rules of vectors. When 
the resultant of two parallel angular velocities is to be found, 
vector methods are no longer necessary. The process of com¬ 
bining parallel vectors is an algebraic process. The magnitude 
of the resultant of two parallel angular velocities is equal to the 
algebraic sum of the two angular velocities. The position of 
the resultant is not so simply expressed but may be found by the 
method given below. There are two cases to be considered, one 
in which the directions of the two angular velocities are alike 
and the other in which the directions are opposite. The former 
will be considered first. 

Let the two parallel angular velocities, of magnitudes Oa and 
have directions which are perpendicular to the plane of the 
diagram (Fig. 48) and let the axes of the angular velocities pass 
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through the fixed points A and J5, respectively, of the diagram. 
The directions of rotation are, in this case, similar and are 
indicated by the arrows in the diagram. We are to determine the 
magnitude and position of the resultant of these two angular 
velocities. 

Let us consider the linear velocity of a particle P, in the plane 
of the diagram, as caused by the combination of the two angular 
velocities. Owing to the angular velocity Wa about the center 
Ay P will have a linear velocity which is perpendicular to the 
line AP. 

The linear velocity Vi of P due to rotation about B will be 
perpendicular to the line BP. The values of these two linear 
velocities are given by the equations 

Vn = Gia X a and Vi, = wb X b (3-10) 

where a and b are the vectors w^hich represent the position of P 
from the rotat ion axes passing through A and /i, respectively. 

The resultant of the two velocities Va and Vi is V, as shown 
in the diagram. The resultant linear velocity V may be regarded 
as due to an angular velocity w about the axis of the desired 
resultant angular velocity. The point in the plane of the 
diagram through which the axis of the resultant angular velocity 
passes must be somewhere in the line PC which is drawn perpen¬ 
dicular to V. The particular point of the line PC through which 
the axis of the resultant tungular velocity passes could be found 
graphically by first determining the resultant linear velocity F' 
of some other particle P' in the plane of the diagram and then by 
locating the point of intersection which a line passing through P' 
and perpendicular to V' would make with PC. 

In place of the suggested graphical solution, it is desired to 
locate the position of the axis of the resultant angular velocity 
by an examination of the point C, the intersection of .AP with 
PC. If C is not the center of the resultant angular velocity, then 
it (C) must have a linear velocity in the plane of the diagram. 
If C has a linear velocity, then it must have two component 
linear velocities, one due to coa and the other due to g>6. These 
linear velocities would be equal to <i>„ X 3 and o>6 X r if 3 and r 
are the vectors indicating the position of C with respect to A 
and By respectively. It is readily seen that it is only some point 
in the line AB that could possibly have no resultant linear veloc¬ 
ity due to rotations about A and B, because only points in the 
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line AB could have component linear velocities which are 
parallel to each other. The point C is therefore the desired 
center of the resultant angular velocity, for it satisfies both 
requirements, viz.^ of being in the lines PC and AB. The 
resultant angular velocity must therefore pass through C. 
Since the directions of cou and co/, are alike, the point C must lie 
between A and B. 

As a further consecpience of the foregoing consideration, wc 
may write 

to. X s - -to/, X r (3-11) 

The magnitude of the angular velocity to about the axis 
through C is next to be found. To find the expression for to in 
terms of to. and to/„ we may use a vector method. The resultant 
velocity of P is given by the following equations: 

F = F. + V, 
= tOa X c + <*>6 X h (3-12) 

By referring to the diagram, if we let c represent the line CP, 
it is readily seen that 

a = s + c and b = r + c (3-13) 

Substituting these vector relations in fCq. (3-12) and simplifying 
the resulting expression gives 

7 = toa X (5 + c) + to/, X (r + c) 

= (to. “f- t06) X c “h <*>a X 5 X r 
= (tOa + to/,) X c (3-14) 

The last step in the simplification is validated by the use of 
Eq. (3-11). 

The velocity V must be equal to to X c; hence it follows from 
Eq. (3-14) that 

to = to„ + <*>6 (3-15) 

Hence we may conclude that the magnitude of the resultant 
of two parallel angular velocities is equal to the algebraic sum 
of the two angular velocities [Eq. (3-15)] and the position of the 
axis of the resultant of two similarly directed component angular 

velocities is in the plane containing the two components and is 
at distances from the axis of the two components which are 

inversely proportional to the magnitude of the two components 
[Eq. (3-11)]. 
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In case the directions of the two given parallel angular velocities 
are oppositely directed, the results given above are still valid, 
but the point C would, obviously, lie outside the line segment AB 
and would be on the side of the greater angular velocity. 

If one of the angular velocities is equal but opposite in direction 
to the other, the equation F = w X c indicates that the position 
of C is at infinity, for, since coa + o>t == 0, 

F = 0 X c 

and c is obviously equal to infinity if F is finite. In this special 
case the motion of P is one of translation with the direction of 
motion perpendicular to the line 
AB. 

The magnitude of velocity 
in this special case may be deter¬ 
mined in the following manner. 
Since the velocity of P is perpen¬ 
dicular to ABy we may regard P 
as being at Q (Fig. 49). Writing 
the following scalar equations, 

Va = Vh = War 

where coa is the common magnitude of the two given angular 
velocities, since Va and Vh arc parallel, we have 

V - + Vh 
Hence, 

V — (j)aS + War 
= Wa (r + s) (3-16) 

From this it is seen that the magnitude of the velocity of 
P is ecpial to Wa(r + s) which is independent of the position 
of P. Therefore any point in the plane of the diagram which has 
straight-line motion may be considered as rotating about two 
points which are in a line perpendicular to the line of motion, 
the angular velocities about these two points being equal in 
magnitude but opposite in direction. This statement is proved 
geometrically in the following manner; 

Since 

Va = Watt 

”F6 — Wa5 

Vh b 
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It is easily seen that the two triangles BP A and PSR (Fig. 50) 
are similar, for ValVh = a/b and the angle BP A equals the angle 
PSR. Hence it follows that the angle RPS equals the angle PAB 
and therefore KP is perpendicular to AB. Since the triangles 

are similar, it follows that 

Va ^ 
V AB 

Then, 

V = ccnAB (3-17) 

The converse theorem is also 
true. Any translational mo¬ 
tion may be regarded as due to 

two rotations of equal magnitude but of opposite directions, the 
axes of rotation being selected so that their plane is perpendicular 
to the direction of the translation and Ihe distance between the 
axes being equal to the linear speed divided by the selected value 
for angular speed. 

3-6. Composition of Rotation and Translation.—When any 
rigid body is moving, regardless of the character of the motion, 
the motion of all of its points at any instant may be completely 
described as consisting of a linear velocity common to all points 
and an angular velocity about an axis through a selected point of 
the body. If Vp is the resultant 
velocity of a particular point 
P of the body and at the partic¬ 
ular instant there is a moving p 
coordinate system attached to 
the body with an axis, say OX, 
of the system as a rotation axis 
passing through the selected 
point P, then instantaneously all other points of the body may be 
considered as having angular motion about the axis OX in the mov¬ 
ing system. Hence the motion of any other point Q of the body, 
and therefore all points, may be described in terms of the linear 
velocity of the moving system (which is equal to the linear velocity 
of P) and an angular velocity <.> in the coordinate system. In 
symbols this may be expressed as follows: 

Vq=- Vp + i^XPQ (3-18) 

In vectors this is shown by the diagram of Fig. 51 (where the 

B A 
Fig. 50. 
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vectors g> and Vp need not be at right angles to each 
other). 

From the general relation [Eq. (3-18)] we may proceed to 
express another relation which describes the motion of a body 
in terms of a rotation about some axis PY (Fig. 52), together with 
a translation parallel to the axisPF. Select a coordinate system 
so that its origin is at the point P and so that Vp is in the Y plane. 
If the angle between Vp and e is not a right angle, we may resolve 
Vp into two components, Fj/ parallel to PY and Vp" i)erpendicular 
to PY and in the plane of Vp and PY. (Suppose this plane is the 
XY plane.) 

Let us imagine that the body has angular velocities of +w 
and — G> about some other axis 
OF', parallel to PF, which cuts 
the — PZ reference axis at some 
distance PC) from P. From the 
result obtained in the preceding 
section we may combine o) (about 
PY) with —6> (about OF') to give 
us a translational velocity which 
is perpendicular to PO. If we 
select PO of the proper magnitude, 
the value of the translational ^ 
velocity may be made equal to p 
— Vp", The pair of angular 
velocities (o) and —w) so selected 
will give the body a velocity which just neutralizes the part of Vp 
which is parallel to X (viz.y Vp"). We have left then Fp', which 
is the velocity parallel to PF, and the angular velocity w about OF'. 
This motion is sometimes called an instantaneous screw motion. 
In general, both to and Fp' will change as the motion progresses. 
The position of OF' will, in general, also change. 

A special case of this is of interest. If Fp is parallel to PX in 
the above diagram, then Fp' is equal to zero and obviously the 
resulting motion will be uniplanar. The axis OF' becomes the 
instantaneous axis of rotation, the locus of which gives the fixed 
and moving centrodes. The method just described may be used 
therefore as a device for locating the instantaneous velocity 
axis. 

It is also instructive to observe that the results of the foregoing 
analysis may be obtained by replacing the vector Fp" by its 
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equivalent rotor couple^’ (to and — o>). In this case we may 
regard Fp" as made up of — <*) about the axis PY and o) about OF', 
together with the proper spacing distance PO between the axes, 
so that the magnitudes are alike. The angular velocity —w 
about OF neutralizes +o) which leaves only Vp and w about OF' 

as before. 
An illustration will be of value 

in this connection. Let us con¬ 
sider the motion of a wheel (Fig- 
53) rolling along a straight, line. 
Ijet the angular velocity of the 
wheel be — w about an axis 
through it s center/^ and the linear 
velocity of P be V. The axis PI" 
will be perpendicular to the dia¬ 

gram through P. The second axis OF', which is to be the instan¬ 
taneous axis, will also be perpendicular to the plane of t he diagram 
and intersects the line PO, which is perpendicular to V, at 0. The 
vector — V, which is to neutralizes V, is then ecpiivalent to the rotor 
couple —ct) about PY and w about the axis through 0. From th(‘ 
relation — F = to X PO the magnitude of PO can be determined. 
It is easy to see that PO = r (the radius of the wheel), for 
F = 0) X r. It is also to be 
noticed that 0 is below P in the 
diagram and not above it. With ^ ' 
F neutralized by — F = o> X 
there remains —to about the axis 
through 0. This axis at 0 is 
therefore the instantaneous 
axis. 

Or, by the second method sug- Fig. 54. 

gested above, we may replace F by 
the proper rotor couple, which yields the same final result. 

Problems.—1. A rigid wheel is rotating about a fixed axis with an angular 
velocity of 10 r.p.s. Find the linear velocity of a point 1 ft. from the axis 
of rotation. 

2. A rigid body is in a steady state of rotation with an angular velocity 
which is expressed by the equation a> ~ 2i -f- 3/ — 4ft radians per second, 
referred to a selected reference system. The position of a certain point P 
is given by the vector r == 4/ — 2j -f- 6ft. Find the vector which expresses 
the linear velocity of P. 
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3. A rigid body has an angular velocity of (*> = 2i -V k radians per 

second in a giv(‘n reference system. If the linear velocity of a certain 

point of the body is V ~ -4/ + + 3/?, find the vector T which defines 

the position of the point, if ri - \i -V Ij - Ik, 
4. Find the resultant of the three following angular velocities: 

0)1 - 2f + 3y - K W‘2 - -3/ - 2j + 3/j, and 0)3 - 4/ - 2j + Ak. 

5. What are the necessary relations between the components of two 
angular velocities in order tliat they may be para 11(4 to each other? 

(). An automobile is going with a speed of 30 ni.p.h. The diameter of a 

wheel is 28 in. Idnd the linear vc'locity of tin; highest point of a wheel and 

also that of the i)oint whicli is foremost on the wliec'l. 

7. A ladder of length L stands on a horizontal floor and leans against a 

vertical wall. If the ladder slide's down with its ends in contact with the 

floor and wall, r(*spe(‘tively, the ensuing motion may be described as a 

uni])lanar motion ifi tcu’ius of the linear velocity of any selectcal point of the 

ladder and an angular velocity about an axis through that point and per- 

])endicular to th(‘ guide plain*. Assuming a .suitable linear velocity for any 

selected point of tin* ladder, find the corresponding angular v(*locity of the* 

ladder for that instant and the jiosition of the instantamious axis. Use one 

of the methods outlined in vSec. 3-6. Chock your result by using a second 

point. 



CHAPTER IV 

ACCELERATION 

4-1. Acceleration—a Vector Quantity.—The kinematical quan¬ 
tity velocity is a vector quantity. Constancy of a velocity 
therefore implies motion with unchanp:inp; speed in a straight 
line. On the other hand, a change in velocity may mean either 
a change in speed or a change in direction or a change in both 
Sliced and direction simultaneously. All changes in velocity 

may be collectively expressed by a single vector equation. If 
we let U and V be the velocities of a particle at the beginning 
and end, respectively, of a given time interval, then the change 
in velocity during this interval will be given by the vector expres¬ 

sion V — Uy in which no limitation is imposed upon the way in 
which the velocity may change. That this velocity change is a 
vector quantity is obvious. 

Acceleration has beem defined as the quantity which expresses 
the change in velocity in a unit interval of time. If we divide 
the vector V — U hy the time (a scalar quantity) in which this 
change occurred, we still have a vector which has the direction 
of the vector expressing the change of velocity but whose magni¬ 
tude has been changed, unless the particular value of the time 

interval happened to be unity. In general, then, we may define 
the average acceleration over a given time interval by the equation 

in which the vector J shall be used to represent the acceleration, 
and t the time interval. This equation is general and includes 
all possible changes of the velocity. The rate of change of the 
velocity need not be constant. This possibility necessitates the 

inclusion of the term average’^ in the above definition. It will 

be recalled that average velocity was defined in an analogous 
manner. 

When the variations in the acceleration are small or a knowl¬ 

edge of them is not germane to the particular consideration, 
average acceleration may supply all of the information which is 

70 
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needed. There are many considerations, however, which 
require a knowledge of the exact value of the acceleration at 
definite positions of the particle or at definite time instants. We 
shall use the term inaianianeom acceleration to describe the value 
of the acceleration at any given position or instant. Instantane¬ 
ous acceleration may be defined in the following manner. Let 
the change in the velocity during a small interval of time be 
expressed by the vector AT. The average rate of change of the 
velocity in the time interval is therefore AV/At. If the time 
interval approaches zero as a limit, the value of the ratio AVjAt 
at the limit will be the acceleration at the instant selected. 
Using the notation of calculus, we may express the instantaneous 
acceleration as follows: 

J = == liui 
dt At (4-1) 

4-2. Acceleration and the Reference System.—Let a particle 
P move in a fixed reference plane with a 
variable velocity (Fig. 55). Let OM be a 
fixed line in the reference system. If Q is 
the projection of P upon the line OM, 
then the component of velocity along 
this line is the velocity of Q. We shall 
designate the component velocity of P in ^ 
the line of OM by the symbol V^. The 
velocity Vm will also, in general, be variable. 

Let us designate the acceleration of P by J, the absence of the 
subscript indicating that it is a resultant acceleration. The 
acceleration of Q will be identified by in w^hich the subscript 
again indicates the line in which the component acceleration is 
to be taken. The sign of Jm will be positive if the additions to the 
velocity are positive. A decreasing value of the magnitude of 
— Vm indicates positive acceleration. Negative additions to the 
velocity give a negative acceleration regardless of the sign of the 
velocity. This is seen directly from a consideration of the signs 
of the numerator and denominator of dVmIdt, which is the 
diflferential form of the acceleration along OM. Since dt is 
always positive, the sign of the fraction depends only upon 
dVmy which represents the change in velocity in the time dt. 

It is sometimes convenient to express Jm in other equivalent 
forms. Obviously, 

Fig. 55. 
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J. - (4-2) 

in which m is ii coordinate which measures the displacement of 
Q in the line OM and mi is a unit vector in the line OM. Also, 

* m I ■ m 1 dm 
(4-3) 

where Vm — dm/dt^ the speed of Q in the line OM. 
In a similar manner we may express the acceleration along 

any line, OX, in the following three alternative forms: 

Jt - 
dv. 
17J (4-4) 

The acceleration in any fixed line OX may be exprc'ssed in 
terms of the resultant velocity V if the angle between the resul¬ 
tant velocity and OX be given. Let a be this angle. Then 
\\ - V cos a, and 

= IK- = /'(K 
r/f' V 

COS a 
, rd(x . \. 

V .n^ a ) (4-7)) 

Fig. 50. 

It is of interest to interpret this equation. All of the accelera¬ 
tion which expresses the rate of change 
of speed (dV/dt) is contained in the first 
term of the right-hand member. The 
direction of dV/dt is in the line of V 
(Fig, 56). It is projected into the line 
of OX by being multiplied by the cos a. 
The part of the acceleration which ex¬ 
presses t(he magnitude of the rate of 

change of direction of the velocity is V da/dt and is in a line 
which is perpendicular to V. It is projected into OX by the 
factor sin a. The sum of these two projections on OX gives 
the X component of the resultant acceleration. 

4-3. Tangential and Normal Acceleration.—It is frequently 
desirable to express the resultant acceleration in terms of two 
components, one of which is parallel to and the other perpendicu¬ 
lar to the resultant velocity. To obtain the acceleration parallel 
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to iJhe resultant velocity, Eq. (4-5) may be used if we put a = 0. 
This may be done, provided that we have the line OX fixed in 
the reference system. If V is continually changing in direction, 
it is obvious that OX may be regarded as fixed but only instan¬ 
taneously so. The vjilue of the result is not impaired by this 
limitation, for this selection may be repeatedly made for each 
point of the path. Putting « ~ 0 in Eq. (1-5) gives 

, dV. 

Sinc(^ this acceleration is always parallel to the resultant velocity 
and hence is in the tangent to the curve which P is describing, 
it is customary to cal] this component the tangential acceleration. 

Consistent with the foregoing use of the subscript, Jt may be 
written for the tangcmtial acceleration. The other forms of 
Jt are 

(W 

dt u = ■ 4:‘ m-' (4-6) 

where s is the coordinate whicli measures the displacement of P 
in its path, and t\ is a unit vector parallel to F. 

The acceleration perpendicular to the tangent may be found 
in a similar manner but by putting a = 90° in Eq. (4-5). This 
means that OX is to be successively selected in positions per- 
fXindicular to the resultant velocity. By this selection the 
velocity in OX is continually zero. Designating this component 
of the revSultant acceleration by and calling it the normal 
acceleration, we have 

rda^ 

Tt, Jn (- 4:)- (4-7) 

where Hi is the unit vector perpendicular to F. 
An inspection of this result leads us to see that the magnitude 

of the normal acceleration has for its value the product of the 
resultant speed by the rate of change of direction of the velocity. 
The normal acceleration will be zero when cither of its factors is 
zero. Any motion in which the velocity is not changing direc¬ 
tion is obviously rectilinear motion. There may, however, still 

be acceleration in the line of the velocity. It is to be noticed 
that Jn is the acceleration which measures the rate of the change 
of direction of motion. 
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The direction of Jn will depend upon the signs of both factors 
{V and da/dt) [Eq. (4-7)]. If one of the factors is negative, the 
sign of Jn is positive. If both are either negative or positive, 
then Jn will be negative. It is to be observed from the diagram 
(Fig. 57) that, if P is moving with a velocity +F, then w (written 
for da/dt) is also positive according to convention as indicated. 
In this case Jn is negative. If F has a velocity of — F, then w is 
also negative and is still negative. 

Considering the motion of P along the curve shown in Fig. 58, 
we observe that Jn is positive regardless of whether the velocity 
of P is positive or negative. As a general statement, then, we 
may say that the direction of Jn is always toward the concave 
side of the curve. 

Fig. 57. Fig. 58. 

As a special ca^se we may consider circular motion. The 
speed may remain constant, in which case Jt vanishes but Jn 
remains. Jn may be put into a more useful form for this purpose 
if we introduce the radius r of the circle in which the particle P 
is moving. In this case the radius is perpendicular to the 
resultant velocity and hence Jn is always parallel to r. Since 
F = r da/ctt, we may replace da/dt by F/r in Eq. (4-7) and 
obtain 

A = (4-8) 

The two components of the resultant acceleration (Jt and Jn) 
are usually more convenient to use than the resultant accelera¬ 
tion, for Jt and Jn are always parallel and perpendicular, respec¬ 
tively, to the resultant velocity. The resultant acceleration 
may be more easily found by combining these two rectangular 
components, for they are easily expressed in terms of F, w, and 
the time derivative of F. 
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Any other pair of rectangular components of J will not permit 
of expressions as simple as Jt and A. Considering any other 
such pair of components, as, for example, those along the coordi¬ 
nate axes A" and it is to be observed that the component 
accelerations Jx and Jy will each consist of two terms, viz.^ the 
projections of both Jt and Jn upon the axis along which the 
desired component is to be found. Such a component, ^.c., /x, 
will have one term which expresses the change of direction of V 
in the line of A^ (the projection of Jv) and the other which gives 
the rate of change of the magnitude of V in that line. 

4-4. The Three Pairs of Components of Acceleration.—In our 
study of acceleration we shall have occasion to use three different 
pairs of orthogonal components. 
One of these, the tangential and 
normal pair, was discussed in the 
preceding section. Of the re¬ 
maining two pairs, one consists 
of the components along the A"- 
and F-axos, and (he other consists 
of the components along the radius 
vector and a line perpendicular to 
it. The last pair of components is ® 
to be referred to as the r and y pair 
and will be studied in detail in Sec. 4-6. 

The vector sum of the two components forming any pair is 
obviously equal to the resultant acceleration. This is shown 
graphically in Fig. 59 and is written symbolically as follows: 

J == Jx + Jy — Jr + Jy — Jt + Jn (4-9) 

Any one pair of components may be expressed in terms of the 
components of any other pair by projecting both components of 
the one pair into the two lines of the other pair. For example, 
we may express Jx and Jy in terms of Jt and 7„ by projecting 
both Jt and Jn into the lines of X and Y. If a is the angle between 
Jn and X, then 

Jx = {Jn cos a -Y Jt sin a)i 
Jy = {Jn sin a-- Jt cos a)j (4-10) 

Similarly, if we wish to express Jt and Jn in terms of Jx and Jy, 
we must project both Jx and Jy into the lines of the tangent and 
its normal, which would give 
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Jn = {Jx COS a + Jy sin a)n] 
Ji - {Jy COS a- sin a)fj (4-11) 

Equations (4-11) might have been obtained analytically by 
first reducing ]^]qs. (4-10) to scalar equations and then simply 
solving for Jn and J/. 

4-6. Components Parallel and Perpendicular to the Radius 
Vector.—The device, introduced above, of using a, pair of 
orthogonal lines, whicli are instantaneously fixed and coincident 
with the tangent and the normal, will be used again here, except 
that in this case these reference lines are to be instantaneously 
coincident with the radius vector and the line perpendicular 
to it. In order to study the results of successive differentiation, 
we shall start with the coordinate relations and, by differentiation 

with respect to the time, obtain the 
components of the acceleration 
along the A"- and 1^-axes and then 
find the Jr and Jy components by 
projecting and Jy into the line 
of r and that of 7, perpendicular to 
r. Scalar equations will first be 
written in order to reveal all of the 
illuminating details, for the vector 

expressions are too condensed for present purposes. 
The coordinate relations are (Fig. GO) 

Fig. 00. 

and 

X = r cos 7 

y — r sin 7 

The magnitudes of r and 7 are both variable; hence the first 
derivative with respect to the time gives 

dx 
dt 

dr 
cos 7 — rco sin 7 

dy _ dr 
dt dt 

sin 7 + ra> cos 7 (4-12) 

in which w is written for dy/dt. Both of the foregoing equations, 
giving the component velocities along X and F, respectively, 
consist of the sums of the component velocities parallel and 
perpendicular to r, both projected into each of the lines of 
X and F. 
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Differentiating both equations of Eqs. (4-12) with respect to 
the lime gives 

r o\ - / dr do) . dr\ J. = cos 7 - rco-j - sin 7 

= sin 7 j + cos 7 + co|j (4-13) 

We may now write the expressions for J, and Jy by projecting 
both Jjr and J„ into each of the lines r and 7. 4die student should 
carry through the details of the process and simplify the resulting 
equations. The results are 

Jr == JX COS 7 +- Jy sill 7 

dh' 
■■ dC 

Jy ./,y COS 7 ~ Jj sin 7 

dr r/co 

(4-14) 

(4-15) 

These equations for and Jy may be combined into a single 
vector equation to give the resultant acceleration J by intro¬ 
ducing the unit vectors ri and yi which are in the lines of r and 7, 
respectively, giving 

} - (:!,) - +(24 + 
Equations (4-14) and (4-15) give the values of the magnitudes 

of Jr and Jy in terms of r and 7 and their derivatives. The direc¬ 
tion which the resultant acceleration makes with r is expressed 
by the angle whose tangent is Jy/J,. 

The expressions for J,. and Jy will bear further investigation. 
The signs of these accelerations obviously depend upon the signs 
and relative magnitude's of the terms of their right-hand members. 
The convention of signs gives a. positive direction of Jr outward 
along r and for Jy an angle of +90 deg. from r. Since r is always 
positive, — roi- will always be negative. The sign of dJrjdC 
will depend upon whether dridi is increasing or decreasing. 
Jr will be positive, therefore, only when dJrldC^ is positive and 
greater than The quantity codrldt will be positive when the 
signs of 03 and dr/dt are alike. The quantity r(do3/dt) will be 
positive or negative according to the sign of do3. 
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The magnitudes of the component velocities parallel and 
perpendicular to the radius vector are Vr — dr/dt and Vy - 
These components are always taken so that they are instan¬ 
taneously parallel and perpendicular to the radius vector. 
The expressions for the magnitudes of these component velocities 
remain unchanged. Their resultant must be the resultant 
velocity. It is legitimate to consider the resultant velocity 
as made up of two separate motions: circular motion and motion 
along the radius. 

While it is also correct to obtain the resultant acceleration by 
combining as vectors the two component accelerations Jr and 
Jy, still it is not correct to regard one component as being respon¬ 
sible for the rate of change of the radial velocity alone and the 
other as being responsible for the rate of change of the velocity 
perpendicular to the radius vector. The acceleration along r 
is made up of two parts: one part {dh/dt'") which represents the 
rate of change of magnitude of Vr and the other ( — rco^) which 
gives the rate of change of direction of Vy, 

Let us next consider the component perpendicular to /r, 
viz.^ Jy. If the general statement regarding the two parts of 
the component acceleration Jr is true, we should expect that 
the right-hand member of Eq. (4-15) would consist of two parts, 
of which one should express the rate of change of magnitude of 
the component velocity Vy and the other the rate of change of 
the direction of Vr. If Eq. (4-15) is arranged differently, this 
point is apparent. 

= coF. + ^coF. + 

(4-17) 

in which dVyjdi is the rate of change of magnitude of the velocity 
in the line of 7, since Vy = o;r. The other term coFr gives the 
rate of change of the direction of Vr. 

As a direct conclusion, we may say that, while the first time 
derivative of a coordinate does give the component velocity 
parallel to that line along which the coordinate is measured, the 
second time derivative of the coordinate does not give the 

component acceleration parallel to that line unless the line is 
permanently fixed, 
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Referring again to the expression for Jn [Eq. (4-7)], which 
gives the acceleration for the directional change of V, and com¬ 
paring the form of expression with the corresponding parts 
of Jr and 7^, we may see that in this type of acceleration (rate 
of directional change of a velocity) the magnitude is expressed 
by the product of a linear speed and an angular speed. The 
angular speed is the rate of change of the direction of the linear 
speed. The other type of acceleration has for its magnitude 
the rate of change of the magnitude of a velocity, and its direction 
is that of the velocity. 

The results of this analysis for Jr and Jy may be summarized 
in the following maimer : 

Symbol 
Change of Change of 
magnitude direction 

dVr/dt j 
dVy/dt 

— £0 t-V . 
T 

CoFr . 

4-6. Vector Determination of the Resultant Acceleration.— 
An expression for the resultant acceleration of a particle in terms 
of r and 7 (the polar coordinates of the particle) and their 
derivatives may be obtained by purely vector methods. If 
the position of the particle P is given by the radius vector r, 
then the resultant velocity of P as found by Kq. (2-28) is 

V 
dr , dll 
df' + ^-di 

Since the resultant acceleration is dVIdl, we may write for J: 

dh d-ri dr dri 
■'-dp'<+'W+^TlTl 

Substituting the values for dri/dt and dh\/(U} as given by Eqs. 
(2-30) and (2-31), respectively, gives 

■'-(£- +(^4+ 

which is identical with Eq. (4-16). It is obvious that the vector 
method of obtaining an expression for J is much briefer than the 
analytical method used above. 
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Problems.—1. Obtain a vector expression for the resultant acccloration in 
terms of the tangential and normal components by differentiating the 
equation V = V V]. 

2. Examine each term of E(is. (4-13) and identify tliose which (‘Xjiress a, 
rate of change of the magnitude of a velocity and also those which express a. 
rate of change of the direction of a velocity. 

4-7. Differential Equations in Accelerated Motion.—There 
are three important relations between the quantities acceleration 
(a), time (0, the initial velocity (T), the final velocity { V), and a 
coordinate (.v), which describe the motion of a, parti(de having 
some stipulated acceleration. These relations are usually of 
the following forms: 

y =fi{Uj a, 0) (L 0, iiiKi r a, .s) (4-19) 

It is important for the student to observe the ])rocednre 
used in deriving these equations in uniplanar motion. A genend 
method of solution is discusvsed in this section and is illustrated 
in each of the four following sections. 

The statement of the problem includes the so-called initial 
conditions, such as the initial velocity at some given position 
or at some instant of time (usually zero) and an expri'ssion 
describing the acceleration. This information, together with the 
alternative forms of the acceleration, conqirises the working 

material. 
The first step involves a decision as to whicli of the three 

pairs of acceleration components (the .r and ?/, the r and y, or 
the t and n pair) is to be used. Obviously the selection will 
depend upon the particular data presented. F<n* example, the 
acceleration of a particle may be given as varying inversely with 
the distance r of the particle from some given fixed point. In 
this case a polar coordinate system witli the origin at the fixed 
point seems to recommend itself as giving convenient service. 
The r and y pair of acceleration components is then to be used, 
for the resultant acceleration will, under such circumstances, 
always be along the line of r. 

The next step would be to write down the general expressions 
for the selected components of the acceleration and to put each 
equal to the particular value given by the data. Using the 
given example, we would write the following scalar relations: 
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where K is some constant. Even though one of the components 
is zero we must include the expression for it as above, for its 
solution will give a relation which is usually useful in eliminating 
one of the variables in the other equation. 

In order to integrate either equation, we must reduce the 
number of variables to two by some method or other. It is 
difficult to give a general rule for this procedure. In the illus¬ 
tration the second equation may be integrated if we replace F, 
by dr/(It and then multiply through by dl. This process would 
leave only two variables and the resulting equation could then 
be integrated. Using the result obtained by this integration, 
we may eliminate one of the variables (co, in this case) from 
the first equation and then, if we replace dVrjdt by F,.dF,./f/r, 
this equation may also be integrated. The constants could be 
determined by the use of the initial conditions. 

In nearly all cases the first equation obtained will express 
the velocity in terms of the time or a coordinate. In either 
case the next step is to express the velocity in its differential 
form and then substitute this expression in the equation which 
gives the velocity as a function of the time or coordinate. Inte¬ 
gration of the resulting equation would give the second desired 
expression. This equation will also contain constants of inte¬ 
gration which may be evahuited as before. The third desired 
relation may now be found by an algebraic elimination of one of 
the variables. 

The important thing to observe in this process is that, when 
the most convenient pair of acceleration components has been 
selected, such devices as are available are to be used in manipulat¬ 
ing the equations into integrable forms. The j)rocedure just 
described is general but should prove to be of value if carefully 
analyzed. 

4-8. Translational Motion of a Particle with Constant Acceler¬ 
ation.—The equations are now to be derived which express the 
motion of a particle subject to acceleration that is constant 
and which is always parallel to the resultant velocity. Such 
limitations restrict the motion of the particle to a straight line 
which is parallel to the direction of the acceleration. Since 
in this case the normal component of the acceleration is zero, 
the three alternative forms of the tangential component of 
acceleration [Eq. (4-6)] may serve as a starting point. Putting 
each of the three alternative forms of the acceleration equal 
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to the given value of the magnitude of the acceleration gives 
three differential equations whose integrations yield the desired 
expressions. Let a represent the given magnitude of the accel¬ 
eration and let the positive direction of all directed quantities 
be measured parallel to the positive direction of the acceleration. 
For initial conditions we may put 

t = 0, = 0, and V = U 

If we use the form dVjdt for the acceleration, the first differen¬ 
tial equation is 

dV 
dt ^ 

Integration of this equation gives 

V = at+ C 

The integration constant C is evaluated by the use of the initial 
conditions. Since V ~ U at the time t = 0, then C = U; hence 

F - a/ + r (4-20) 

which is the first of the desired equations. 
Using the second alternative form of the tangential accelera¬ 

tion gives the differential equation 

dP ^ 

Integration of this equation gives 

ds 
Tt 

at D 

Applying the values of the quantities at the initial position 
makes D — U. Making this substitution and integrating again 

gives 

s = ^ut + E 

Since s = 0 at the time ^ = 0, the value of E is seen to be zero. 
Hence 

8 = ^at^ + Ut 

The third differential equation is 

(4-21) 
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Separating and integrating gives the equation 

172 ^ + p 

in which F = ^ for V — U where s — 0; hence 

72 ^ ij2 2as (4-22) 

Equations (4-20), (4-21), and (4-22) give the three fundamental 
expressions for translational motion in which the acceleration is 
constant and the initial velocity is parallel to the acceleration. 

In gravitational fields of force the acceleration has a special 
value which is usually designated by the symbol g. Making 
this substitution for the value of the acceleration gives the 
following three equations for gravitational motion in a vacum: 

F = + gt 
s = rt+ IgP 72 = + 2gs (4-23) 

These equations are subject to the limitation stated above and 
hence apply only to vertical motion with positive values of the 
velocities, distance, and acceleration measured downward. 

4-9. Pure Rotational Motion with Constant Angular Acceler¬ 
ation.—If the motion of a particle is such that it moves con¬ 
stantly in a circular path, pure rotational motion results. When 
the angular acceleration is constant, the rotational motion may 
be conveniently described by three equations which are analogous 
to those derived above for translational motion. The procedure 
for obtaining these equations is similar to that used in the 
above section. Angular acceleration may be expressed by any 
one of the three alternative forms doildt, cFj/dtr^ and o)do:/dy. 
If we put each of these expressions equal to the constant A, 
which we may use to represent the value of the magnitude of 
the angular acceleration, and if we assume as initial conditions 
that at the time ^ = 0, 7 = 0, and w = wi, integration of the 
three equations gives the following scalar expressions: 

CO = Ai “b 
7 = + cjit 

0,2 = + 2A7 (4-24) 

These equations might have been obtained directly from those 
for translational motion by substituting in Eqs. (4-20), (4-21), 
and (4-22) those quantities in rotation which correspond to the 
quantities in translation. 
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4-10. Motion of a Particle with Constant Acceleration. 
Initial Velocity Making an Angle ai with the Acceleration.—When 
the linear acceleration is constant and makes an angle ai, not 
equal to zero, with the initial velocity, the resulting motion will 
be curvilinear, li is required to determine the scalar eciuations 
which express the coordinate .v (measurecl along the curved path) 
and the velocity V in terms of the time and Ihe initial condiiions. 
This problem is soHaal by making use of the expressions for the 

pair of rectangular components of 
accel(‘ration Jt and 

L(‘t the acceleration be of mag¬ 
nitudes and always directed parallel 
to OX (Fig. 61). Also let ai be the 
angle between the initial velocity U 
and a and a the angle between the 
velocity V in any ])osi1ion and a. 

The initial conditions are taken 
to be t == 0, s — 0 and V = Uy a — ai. The component acceler¬ 
ations are expressed as follows: 

, dV 
.7, = ^ = a cos a 

Jf n 
■VdoL 
dt 

= a sin a (4-25) 

Dividing the first equation by the second gives 

dV ^ , 
—y' — cot a da 

Integrating this equation gives 

log sin a + log V ~ C 
log (Fsina) == C (4-26) 

in which C is the constant of integration. C may be evaluated 
by putting 7 = [7, which gives C = log {U sin ai). Hence 

7 sin a = U sin ai (4-27) 

Examining this equation for its physical meaning, we see 
that the component of the velocity perpendicular to the line of a 
is a constant and has for its magnitude U sin ai. This result 

might have been anticipated, for there cannot be any change 
in the magnitude of the velocity component (7 sin a) in a line 
which is perpendicular to the acceleration. 
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From Eq. (4-27) we may evaluate sin a and hence find a 
value for cos a. Substituting this value for cos a in Eq. (4-25) 

gives 

Separating the variables and integrating gives 

\/— L'*^ sin- ai — a t + Cl 

where Ci is the constant of integration. From the initial condi¬ 
tions t “ 0, V — C, we find Ci = U cos ai. Hence we obtain 
one of the desired relations 

|/2 ^ 1^2 2 a t y cos ai + P (4-28) 

It is desired to find next the relation between s and t. As a 
starting point we may use Eq. (4-28). This may be written as 
follows: 

~ + 2 a ^ r cos ai 

Sei)Jirating the variables and integrating gives the desired equa¬ 
tion. 

at + r cos 
2a 

^^■\/K + -—log (\^K + at + U cos ai) 

+ Co (4-29) 

where K — aH- + t - + 2at U cos ai and C2 is the integration 
constant. 

From the initial conditions .s == 0 and ^ = 0 we may evaluate 
Cof which is 

Co = -^|^--[cos ai + sin- ai log (C + U cos aO] 

Problems.-' 1. Sturtiiig with Eq. (4-20), find an expression for V in terms 

of the Jingle a. 
2. Using the coordinate system indicated in Fig. 01, find the equation 

for the path of the moving point. What kind of a curve is this? Hint: 
Write the expression for the component accelerations along and F. 

3. Show that Eqs. (4-28) and (4-29) reduce to Eqs. (4-22) and (4-21), 

respectively, if ai is put equal to zero. 

4-11. Rectilinear Motion with Acceleration Not Constant.— 

There are several important cases of translational motion in 
which the acceleration is not constant. The following illustration 
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has been selected from the universal law of gravitation. Two 
equations are to be derived, one expressing the velocity in terms 
of the coordinate and the other giving the time as a function 
of the coordinate. 

A particle in space under the attraction of the earth alone 
will have an acceleration which is inversely proportional to the 
square of the distance from it to the center of the earth. 

Let there be a small particle at F 
(Fig. 62), whose distance from 0, the 

p reference point which is taken as the 
center of mass of the earth, is given 
by the coordinate s. Assuming for 

Fio. 62. initial conditions that t — 0, 8 — Sq, 
and V = Uy with U parallel to the 

line along which the coordinate s is measured, we may first 
find an expression for the velocity in terms of s. Since the 
resultant acceleration is in the line of s, and the magnitude of 
the acceleration is inversely proportional to the square of s, 
the differential equation is 

dF 
(4-30) 

where fc is a proportionality constant. 
The minus sign appears here because the direction of the 

acceleration is inward along s. To integrate this equation we 
may first multiply both sides by ds/dt, which gives 

ds d“6* __ ds 
dt dF dt 

Integration gives 

If we apply the initial conditions, we find the constant of integra¬ 

tion C: 
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Hence the final expression is 

- (;=) - /.(I - 1) (4-31) 

An examination of this equation shows that, if a particle 
moved from infinity, so that l/so = 0, and started from rest 

{[J = 0), the final velocity V would be equal to \/2k/s. Hence, 
as the particle approached the gravitating mass, s would decrease 
and V would increase. 

The limitations imposed upon this equation are those given 
by the initial conditions and an additional condition, which 
comes from the law of gravitation. The equation is valid only 
for values of s w^hich are greater than the radius of the earth, 
for when s is less than the radius of the earth the quantity k 
is no longer constant. This last condition is to be found 
in t he derivation of the expression for the value of the acceleration 
at points which are outside and also inside the gravitating body. 
We shall consider the case of the particle moving within the 
gravitating body in a later section. We cannot therefore put 
8 = 0 in Eq. (4-31) and assume that V w^ould become infinite 
at that point. 

Eciuation (4-31) reduces to the equation for of bodies falling 
in a vacuum at the surface of the earth if we put k = where 
g is the acceleration on the earth\s surface and R is the radius of 
the earth. Making this substitution we have 

BSq 

= 2gh (4-32) 

in which h = So — s, where h is small in comparison with either 
s or So, and we may also put sso = R^ as an approximation. 

Returning to the more general case, we shall proceed to 
obtain an equation expressing the time t as a function of s. 
By writing Eq. (4-31) explicit for V and putting V = ds/dt, we 
have 

B - " s) 
- --J*' + 7 



88 ANALYTIC AND VECTOR MECHANICS [4-12 

The minus sign is taken because we are interest ed in the motion 
of the particle F toward the gravitating body. For the sake of 

2k 
brevity, k' is written for -. Separating the variables, 

•'>*0 

writing C' for the constant of integration and integration gives 

'.<2A-+A-'s) , k , = - (V^+A:'.s.)+VF + + C” 
(4-33) 

in which it was assumed that // was positive. If, however, we 
assume that A/ is negative, then the integration would yield 

V«(2A- 4- A'',s) t _-Mn 
■A’'« - A- 

+ C' (4-d4) 

The constants C' and may be evaluated by the use of initial 

conditions. 

Problem.—Deteriiiino the numerical valm^ of the spe(‘(l whieli a Hinall 

meteorite would have on reaching the earth’s surface if it. stMrt(*<l from rest 

at an infiiiite distance. 

4-12. The Hodograph. “The hodograph is an auxiliary curve 
drawm to facilitate the identi¬ 
fication of the acceleration at 

^ v' point in the path of a mov¬ 
ing particle. An illustration 

. will serve the purpose of rnak- 
ing clear the details of con¬ 
struction of the auxiliary curve 
and of showing how the 

- acceleration vector may be 
obtained from it. 

Suppose that we consider the velocity of a particle P which 
is on the rim of a wheel (Fig. 63). The wheel rolls along a 
straight line in the plane of the diagram with a constant angular 
velocity w. At any instant the velocity of P may be expressed 
as the vector sum of two velocities, one the constant forward 
velocity V' of the center C of the wheel and the other F" which is 
the velocity of P relative to the center of the wheel. The magni¬ 
tude of F" will always be equal to that of F' and will remain 
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constant but tlio direction of F" will be constantly changing. 
The acceleration of P will therefore be perpendicular to F" and 
will be directed inward along the radius of the wheel r which is 
drawn to P and will be of magnitude — wV. The resultant 
velocit y of P {i.e., F/>) will always be perpendicular to the line PO 
connecting P to the point O of contact of the wheel to the guide 
line. The point 0 is the instantaneous center. 

Let us now draw from any point Q (Fig. 64) lines which shall 
respectively represent the velocities of P in its various positions, 
always drawing these lines parallel to Vp and of such lengths 
that they nuiy represent the velocity to some arbitrary scale. In 
the particular case selected for illustration, if we write L for PO, 
the magnitude of F^ is equal to o^L for any position and, since 
CO is constant, then the auxiliary lines will be proportional to L. 

If we measure the angle 7 (Fig. 63), 
through which the wdieel turns, from a 
line constantly vertical and passing 
t hrough Cj then 

L = 2r cos h (4-35) 

so that the length of the auxiliary lines 
in Fig. 64 will be proportional to 2r 
cos J7, and each line will be perpendic¬ 
ular to L for the particular position. 
Starting wuth 7 = 0 and L = 2r, we may draw Fi from any 
arbitrary point Q (Fig. 64) and proportional to 2r in length—and 
also perpendicular to L. 

As the wheel rolls through an angle 7, the line L and hence 
Vp will move through the angle a. It is readily seen that 
a = §7. The angle a is the constructional angle of Fig. 64. 
At the position 7 = 180° the constructional angle passes through 
a tangent and hence for values of 7 from 180 to 360 deg. 

a: = I7 + 180°. 

By selecting values for 7 the corresponding values of L and a 
may be found. A sufficient number of positions should be used 
in order that the resulting curve may be an accurate representa¬ 
tion of the relations. 

In further illustration of the constructional processes, we 
find for the position *7 = 45° that F2 must be drawn proportional 
to l,8r along a line making an angle of —22.5 deg. with Fi. 
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Similar constructions follow for other values. The curve passing 
through the ends of such constructional lines Ki, V2, etc., is 
the hodograph for the particular motion described. Since in 
this case the motion is cyclic, the single curve represeniod in 
the diagram as a circle would be duplicated for any other cycle. 
The value of the velocity for any position of F may be readily 
obtained from the hodograph. 

The acceleration of P is next to be expressed by using the 
hodograph. If the point R (Fig. 64) is constrained to move on 
the hodograph so that its position instantaneously gives QR as 
the proper vector for expressing the instantaneous velocity of 
P, then it may be shown that the tangent to the curve at R 
gives the direction of the acceleration of P, and tlie speed of 
R along the curve will give the magnilude of the acceleration of 
P. If we take any other point R' in llie hodograph (not shown 
in the diagram) which is close to P, then the velocity vector 
ARR' will be the vector which must be added to QR to give QR'. 
Jjei At be the time interval between the positions QR and QR'. 
The value of ARR'/At when At a])proaches zero will give the rate of 
change of QR which is the velocity of t he point R and is therefore 
the acceleration of P. It is to be observed that the direction of 
the velocity of R and hence the direction of the acccderation of 
P (Fig. 63) is always parallel to the radius of the wheel which 
connects P to the center of the wheel. 

In the particular case selected for illustration, it is interesting 
to show that the hodograph is a circle. To prove that this is 
true, we may use polar coordinates to advantage. If Q (Fig. 64) 
is the origin, then the magnitude of the velocity vector at any 
position represents the radius vector to the selected scale. Let 
p and a be the coordinates. Since the magnitude of is coL 
and L = 2r cos ^7, we may put 

p = K cos a (4-36) 

where K = 2o)r and a == ^7. This is the equation of a circle 
in polar coordinates where the origin is on the circumference 
and the diameter of the circle is K, 

Problem.—Find the hodograph for the motion of a particle 
P which moves so that the initial velocity U makes an angle ai 
with the direction of the constant acceleration a. 

The equations for the motion of P, with the limitations 
indicated, were derived above in Sec. 4-10. Equation (4-27) 
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expresses the magnitude of the velocity of the particle as 
follows: 

y _ sin ai 

sin a 

Fiu. 05. 

where o:, as above, is the angle between V and the acceleration a. 
We may determine the hodograph by calculating the value of 

V for different values of a and then draw the corresponding 
vectors from a common point Q in the manner indicated above or 
we may use polar coordinates and determine the equation of the 
hodograph which is 1 he locus of t he terminal point of the velocity 
vector. Selecting the latter method we see that we should take 
Q (Fig. 65) the origin of the polar coordinate system at the 
starting point of P and with tlie line of the direction of a as 
t he reference line. V then becomes 
t he radius vector p. The result ing .^ 
equation is 

U sin ai 
P = -:- 

Sin a 

which is the polar equation of a ® 
st.raight line. The line is evidently 
parallel to a and is situated at a distance of U sin ai from a. 
For the particular problem, only that portion of the line 
which extends from D, the terminal point of i7, to infinity 
is the hodograph. It is also evident that the velocity increases 
indefinitely and never becomes parallel to the line of a except 
at infinity. 

One would expect that the velocity of 22, the terminal point 
of V in the hodograph, would be constant, since the velocity 
of R is the acceleration of the particle P in the original motion 
and is constant and is equal to a. That this is true may be shown 
by expressing the velocity of R {i.e., Fr). For this purpose let 
us measure the distance SR by the coordinate s taken from S 
as reference point, where S is a point in the line DR and so 
situated that QS is perpendicular to DR. The magnitude of s 
is given by the equation s — V cos a. Hence, since Vr = ds/dt 
and CO = da/dij 

Vr — -TT cos a — Vw sin a di 

Substituting the values of dV/dt and as given respectively 
by the equations 
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gives 

dV 
dt 

a cos a — Fa? = a sin a 

Vn == a C()S“ a + a a 
~ a 

The velocity of R in the hodograph is therefore constant and 
has for its magnitude the acceleration of the point P. 

Problems.—1. By using the velocity components of R (Fig. 04) which 
are parallel and perpendicular to the tine Fi, show that the speed of R in 
the hodograph is a>V. 

2. By the use of the velocity components of R (Fig. 64) which an^ parallel 
and perpendicular to the line Q/i?, find the speed of R. 

3. Find th(^ hodograph for the falling motion of a small bead which is 
guided by a verti(^al wire loop Ixmt in the form of a circular arc. Disn'gard 
friction and assume that the bead starts from a position which is 45 deg. from 
the vertical. 

4-13. The Instantaneous Acceleration Center.—In a previous 
section it was shown that any body 
in uniplanar motion htis an instan¬ 
taneous center of rotation, aboiit 
which the velocity of any point of 
the body may be expressed. The 
magnitude of the velocity of any 

^ point of the body was shown to be 
equal to the product of the line seg¬ 
ment joining the point to the instan- 

common angular velocity. It is now 
an insiantaneons center of acceleration 

Fig. 6G. 

taneous center by the 
proposed to show that 
exists with which the acceleration of any point may be expressed. 

Let G (Fig. 66) be any point of a body having uniplanar motion 
and let :ri and yi be the coordinates of G in the reference system 
XOF. The point P, with coordinates x and y in the reference 
system, is any other point of the body situated at a distance 
r from G. The point G is to be the origin of a moving system 
X' GY' whose axes are always parallel to those of the reference 
system. Let y be the angle between GP and GX\ Then the 
coordinates of P may be expressed by the equations 

X ^ Xi + r cos y 
y — yi + r ^in y (4-37) 
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Since r is of constant magnitude, a differentiation of these 
equations with respect to the time gives 

dx 
dt 

dx\ 
-ji-rto sin y 
ctt 

dt 
dyi 
dt 

+ rw cos y (4-38) 

where is written for dyjdi. 
The position of the instantaneous velocity axis of rotation 

may be expressed analytically by using Eqs. (4-38) if we select P 
as the trace of this axis in the guide plane and then put the 
velocity of P equal to zero. Putting dxjdt and dyjdt of Eqs. 
(4-38) equal to zero gives 

dx\ 
dt 

ro) sin y 
dyi 
dt 

— rw cos y (4-39) 

The coordinates x and y of the instantaneous velocity center 
may pow be expressed by solving Eqs. (4-39) for r cos y and r 
sin y and substituting the resulting expressions for r cos y and 

r sin y in Eqs. (4-37), which gives 

x == Xi- 
(a at 

y - yi + 
1 d^ 

(j> dt 
(4-40) 

These equations [Eqs. (4-40)] may be used for determining the 
coordinates {x and y) of the instantaneous velocity center. 

Since w [and also r of Eqs. (4-39)] is unknown, it is necessary to 
know the positions of the two points (zi yi, and 0:22/2, say) of the 
body and their component velocities {dxifdty dyijdt and dx^jdty 
dy^ldi) in order to determine the coordinates of the instantaneous 
velocity center. With these data, in any given case, the unknown 
0) may be eliminated by using Eqs. (4-40) together with similar 
equations containing 0:22/2 and their derivatives. When the 
instantaneous velocity center has been determined, the instan¬ 
taneous velocities of all other points of the body may be deter¬ 
mined by the method described in a preceding chapter. 

Proceeding in a similar manner we may now determine whether 
there is an instantaneous center of acceleration and, if it exists, 
we may determine its position. By using the coordinate rela¬ 
tions which are given by Eqs. (4-37), the second time derivatives 
of X and y give the component accelerations of P as follows: 
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(i^x d'^Xi , do . 
= COST-81117 

d-ifi ^ . . doi /A A^\ 
W = ~d¥ - ^ + '^Tt ^ 

If P is to be a point with no acceleration, then d^/dt^^ and 
dhjjdP must both be equal to zero. By equating the right-hand 
members of ICqs. (4-41) to zero and then solving for r cos 7 and 
r sin 7, the coordinates of P in the moving system, the following 
equations are obtained: 

r sin 7 
co“jyi “b ca>1^i 

T cos 7 
r±i — a?j/] 

(j)^ -j- cb“ 
(4-42) 

in which Xi, ^1, and cb are written for d^xxjdP^ dryxldi-^ and 
doijdtj respectively. But r cos 7 and r sin 7 are respectively equal 
to x' and 2/', the coordinates of P in the moving system. Hence 
we have obtained a point P with definite coordinates which has 
no acceleration. There is therefore an acceleration center in 

the reference system. 
Let us designate the instantaneous acceleration center by 

the letter 1. The coordinates of I in the reference system may 
now be expressed as follows: 

X X\ + 
— (by I 

CO^ <b~ y ^ yi + 
+ (bXi 

0)^ + cb*' 
(4-43) 

These equations may be used for finding the coordinates x 
and y of the instantaneous 
acceleration center for any instan¬ 
taneous position of the body in 
uniplanar motion, provided that 

we know the coordinates and 
^ component accelerations of at least 

two points of the body. By sub¬ 
stituting the coordinates {xiyi and 

X2yz) and the acceleration components (xi, iji and X2, ^2) 
of any two selected points of the body, the unknown 
quantities co and cb may be eliminated and the coordinates of the 
instantaneous acceleration center determined. It is well to 
remember that co and cb are the instantaneous angular velocity 
and acceleration, respectively, of the line drawn from the instan¬ 
taneous center to any point of the body. 

Fio. 67. 



4-131 ACCELERATION 95 

In order to find expressions which are to give the acceleration 
of any point R (Fig. 67) of the body in terms of the distance Of 

R from 7, it will be convenient to select the point I as origin of 
a reference system XIY which is instantaneously at rest. The 
coordinate relations in the new system will be 

J = r cos 7 = r sin 7 

where ^ and rj are the coordinates of iJ, r is the distance of R 
from 7, and y is the angle between r and IX. Since r is of con¬ 

stant length, the second time derivatives of these equations 
give 

.> . . 

^ = ro) cos 7 — ro3^ sm 7 (4-44) 

If Jr is the resultant acceleration of ft, then 

Substituting the right-hand members of Eqs. (4-44) for the 
component accelerations in this equation gives, after simpli- 
ficjition, 

Jr - r (4-45) 

It is evident from this equation that the magnitude of the 
acceleration of any point ft of the body is proportional to its 
distappe from the instantaneous acceleration center, since the 
coefficient of r is common to all points of the body if the body is 
rigid. 

The direction of Jr is next to be determined. For this pur¬ 
pose, Eqs. (4-44) together with the general expressions of the 
components of Jr [Jr of Eq. (4-14) and Jy of Eq. (4-15)] may be 
used to advantage. In the case under consideration, r is instan¬ 
taneously of fixed magnitude; hence the first and second deriva¬ 
tives of r with respect to the time are zero. The following 

magnitude relations then hold: 

«7r = Jy == ro) 

If we now examine Eq. (4-44), w^may see that both component 

accelerations and dSIdt^ could be regarded as being 
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formed by the sum of the projections of Jr and Jy into the Hnes 
IX and /r. 

Let us designate the angle between Jr and r by ^ (Fig. 67). 
The direction of Jr may then be expressed as follows: 

tan 6 = ^ 
J r 

= 4 (4-46) 

From this expression it follows that 

2 * 

COS ^ ^ sin ^ = I (4^7) 

in which for brevity B is written for The component 
accelerations of R along the reference axes may then be expressed 

in different forms by substituting in Kq. (4-44) the values of 
and ci) given by Eqs. (4-47), which gives 

~ —5 r cos (7 — B) J, = —JS r sin (7 — 0) (4-48) 

Since Br is the acceleration Jr [see Eq. (4-45)], it is evident that 
the component accelerations along IX and lY could be obtained 
by projecting Jr into the axes of reference by multiplying Jr 

by cos (7 — 0) and sin (7 — ^), respectively. Hence 7 — 0 is 
the angle which the acceleration of R makes with the X-axis 
as is apparent from Fig. 67. Assuming that 7 is measured in 
the standard positive sense, then $ will be drawn as shown in 
Fig. 67. If, however, u) is negative, then B will be negative and 
Jr will be on the other side of the line r. 

As a special case in this connection, suppose that the angular 
acceleration of the body is zero. The angular velocity would, 
in this case, be constant and Jr would be equal to wV. The angle 
6 would also be zero. The acceleration of any point of the 
body would then be directed along the line which connects the 
point with the instantaneous acceleration center. 

The instantaneous acceleration center may be located by 
a graphical method when the positions and accelerations of any 
two points of the body are known. Given the two points A and 
B (Fig. 68) and their accelerations Ja and Jsy respectively. 
Suppose that the lines giving the directions of Ja and Js intersect 
in the point 0. Let I be the instantaneous acceleration center. 
The circle drawn through the three points A, 0, and B must pass 
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through /. That this is true may be readily seen from the 
geometry of the relations, since the angle B between and AI 
must be equal to the angle between Jb and BI as was shown 
above. 

To determine the particular position of I on the circle drawn 
through Aj 0, and JS, we have another relation to use. The 
ratio of AI to BI is equal to the ratio of Ja to Jb [Eq. (4-45)]. 
The locus of the point which moves so that the ratio of its 
distances to A and B (AI/BI) is constant is a circle which 
may be readily drawn. If we 
designate the ratio AljBI by n 
and the distance from A to jB by d, 
then it may be shown that the radius 
of this circle is equal to nd/(l — n^) 
and that the center of the circle is 
situated at a distance equal to 
n^dl(l — n^) from A on the line 
drawn through the points A and B. 
The center will be beyond A in the 
direction from to 4, if n is less 
than 1. The point of intersection of 
the two circles is the acceleration center for the particular instant 
under consideration. 

Since there is an instantaneous acceleration center, which 
is in general not fixed, there will be a locus of such points in the 
reference system. This locus is called the fixed acceleration 
centrode. The locus of the instantaneous acceleration center 
in a moving system attached to the body is the moving accelera¬ 
tion centrode. These centrodes are not to be confused with the 
velocity centrodes. In the case of the velocity centrodes it was 
shown that, during the motion of the body, the moving centrode 
rolls upon the fixed centrode in such a way that the instantaneous 
velocity center for any given position of the body is the pair of 
points, one from each centrode, which are instantaneously 
coincident. The velocity centrodes are tangent to each other 
at the point which is the instantaneous velocity center for that 
position. The instantaneous acceleration center is a point of 
intersection of the two acceleration centrodes. In general, there 
will be at least two points of intersection of the two acceleration 
centrodes and only one point of intersection can be the instan¬ 
taneous acceleration center for that position. It is not difficult 
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to determine which point of intersection is the acceleration 
center. If o) and w are known, then d [Eq. (4-46)] may be used 
in the decision. If the accelerations of any two points of the 
body are known, then the correct selection may be made, since 
the ratio of the accelerations of any two points of the body is 
equal to the ratio of the corresponding distances of these two 
point-s from the instantaneous acceleration center. 

Problems.—The solutions of the first two problems are 
included below in order to serve as guides in solving problems 
involving the instantaneous acceleration center. The student 
should attempt to obtain the solutions without referring to the 
text. After a reasonable effort the procedure given here should 
be consulted if the attempt was unsuccessful. The purpose of 

problem solving is to develop 
ability in t he successful application 
of the principles and to assist in 
the better understanding of the 
principles. 

1. Falling Disk.—A circular 
disk is rotating with constant 
angular velocity il about a hori¬ 
zontal axis and falls freely in a 

vertical line with a linear acceleration of its center equal to g. 
Find the instantaneous acceleration center for any position. 

We may determine the position of the instantaneous accelera¬ 
tion center by the use of Eq. (4-43). For this purpose let us 
select the two points Pi and P2 in the positions shown in Fig. 69. 
Let the reference system XOY be selected at an instant when 
the origin 0 coincides with the center of the disk and with axes 
horizontal and vertical. If the radius of the disk is a, then 

coordinates of Pi and P2 are 

^1 = a, 2/1 — 9, and ^2 = —«, 2/2 = 0 

The acceleration components of Pi and P2 are 

Xi == yi = and :r2 = ^2 = —g 

Substituting the values for the coordinates and acceleration 
components in Eq. (4-43) gives the following four equations: 

Pi: 
(j3^A — WO o)^g 4“ 6)A 

Fig. 09. 
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where B is written for co'* + and A for ail'K Eliminating 
6)/B and oi'^/B from these equations and then solving for x and 
7/, the coordinates of the instantaneous acceleration center, gives 

j = 0 

This point is obviously located on the vertical line through 
the center of the disk and at a distance — below the center 
of the disk. 

The values of cb and may also be found from Eqs. (4-49) 
and are 0 and 12^, respectively. These results might have been 
anticipated from the fact that any line of the body, and hence 
the line connecting Pi (or P2) to the instantaneous center, has 
instantaneously the same angular velocity and angular accelera¬ 
tion that any other line of the body 
has about the instantaneously fixed 
axis. 

Since cb is zero, then, and tan 
Q = cb/oj*^, the angle B is also equal 
to zero and hence the instantaneous 
acceleration center lies at the point of 
intersection of the lines of accelera¬ 
tion of any two points of the body. 

2. Sliding Ladder.—Suppose that 
a ladder of length L slides down 
between a vertical wall and a hori¬ 
zontal floor in such a manner that, if 
a is the acute angle which the upper end of the ladder makes 
with the wall, the motion is subject to the relation a = K sin a. 
Find the instantaneous acceleration center for any position of the 

ladder and also the acceleration centrodes. 
Let the reference system be XOY with OX the horizontal floor 

and OY the vertical wall. Let the terminal points of the ladder 
be Pi and P2, as shown in Fig. 70. The motion of Pi will be 
along the OF-axis and that of P2 will be along the OX-axis. 
In order to simplify the resulting expressions, we shall select Pi 
and P2 for the two points to be used in connection with Eqs. 
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(4«43) in determining the expressions for the instantaneous 
acceleration center. 

The coordinates of Pi and P2 are xiyi and X2y2f respectively; 
hence 

^1 = 0, = L cos a and x^ — L sin a, ^2 * 0 

The acceleration components of Pi and P2 are 

X\ = 0, = —L(a^ cos a + a sin a) 
y2 = 0, X2 = L( —sin a + d cos a) (4-50) 

The value of d^ may be found from the given relation 

d = iC sin a (4-51) 

provided that we replace d by its equivalent expression d dafda 
and then integrate the resulting equation. If we put a == 

when d = 0 (initial conditions), we find 

d^ = 2K (cos 3 — cos a) (4-52) 

Substituting the values of the coordinates and acceleration 
components of Pi and also the values of d-^ and d in Eqs. (4-43) 
gives the following expressions for the coordinates of the accelera¬ 
tion center: 

X = —p—(2 cos 3 cos a — 2 cos® a + sin® a) 
D 

2T 

y — L cos a ~ —(2 cos cos a — 2 cos® a + sin® a) (4-53) 

Two similar equations may be written by using the correspond¬ 

ing data for Pj: 

K 
z = Laina + —g—(3 sin a cos a — 2 cos jS sin a) 

y = -—^—(3 sin a cos a — 2 cos /3 sin a) (4-54) 

If we now eliminate u/B and from the four equations of 
Eqs. (4-53) and (4-54), the resulting expressions are: 

L sin a (2 COB cos g — 2 cos^ a -f- sin^ a) 
4(cos P — cos a)* + sin* a 

L sin* g (3 cos g — 2 cos 0) 
4(cos /3 — cos g)* -f- sin* o y (4-56) 
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From these equations the coordinates of the instantaneous 
acceleration center may be found for any position of the ladder, 
provided that the initial angle is known. 

The fixed acceleration centrode may be found by eliminating 
the angle a from Eqs. (4-55). It is easier, however, to obtain 
a graphical solution. Putting = 0 and using several values 
for a gives data for obtaining the fixed centrode. The dotted 
curve in Fig. 70 is the fixed centrode. 

The moving acceleration centrode is a circle drawn about 
the ladder P1P2 as a diameter. The proof for this statement will 
be left to the student. 

Problems.—1. A cylinder rolls down an inclined plane under the influence 

of gravity. Assuming that the acceleration of its center is kg sin a, where a 
is the angle which the plane makes with the horizontal, find the coordinates 

of the instantaneous acceleration center for any })osition of tlu* cylinder. 

2. A circular disk is rotating with constant angular acceleration about a 

fixed horizontal axis. Find the position of the instantaneous acceleration 

center. 

3. A crank is rotating about a fixed axis with constant angular velocity. 

One end of a connecting rod is attached to th(^ crank pin and the other is 

guided along a straight line which passes through the axis of rotation of the 

crank. Find the instantaneous acceleration center for any j)osition of the 

connecting rod. 

4. If the acceleration of a particle P is always directed toward a fixed 

point 0, show that the vector OP describes equal areas in efjual intervals of 

time (Kepler). 

5. Two bodies A and B are released at the same instant. B falls in a 

vertical line from rest. A has an initial velocity f/, the direction of which 

passes through the initial position of B and makes angle a with the hori¬ 

zontal line. Neglecting friction, prove that the two ])odies will meet. 

6. A cord is unwound at a (amstant rate from a fix(Hl circle. If kept tight 

constantly, find the velocity and the acceleration of its moving end. 

7. A particle is moving along a curved path. Its position in the path is 

given by a coordinate s measured from some fixed point in the curve. The 

coordinate-time relation is s = 2t^ + f + 5. Find the tangential 

acceleration when ^ = 4 sec. 

8. A particle is moving with constant acceleration along a straight line. 

At a certain instant its speed is + 1,500 cm. per second and 1 min. later its 

speed is —1,500 cm. per second. What is its acceleration? 

9. A particle has constant acceleration and moves in a straight line. Its 

speed is -}-l,000 cm. per second at a certain place, and “)~200 cm. farther on 

in the path its speed is 350 era. per second. Find its acceleration. 

10. A particle is being whirled in a circular path of constant radius with 

an angular acceleration. By differentiating the equation F = (*> X r with 

respect to the time, find expressions for Jr and /y. Is either of these com¬ 

ponents constant? 



102 ANALYTIC AND VECTOR MECHANICS [4-13 

11. Assuming that the period of the moon’s motion about the earth is 

27.3 days and that its distance from the earth is 240,000 miles, find the 

acceleration of the moon. 

12. A particle is moving along a straight line. Its position is given by the 

vector equation r = d -V h where r is the vector which defines the 

position of 1h(^ particle, d is a constant vector, a is a constant scalar, i is 

the time, and Si is a unit v(a!ior in the line of motion. Interpret the equa¬ 

tion geometricalFind the v(*locity and the acceleration of the particle. 

13. A projectile leaves tlu^ gun with a speed V, Prove that tlu^ angle 

which the direction of the velocity makes with the horizontal is 45 deg. for a 

maximum horizontal range. (Neglect friction.) 

14. A golf ball is driven from a tee with a speed of 200 ft. per second. 

The initial vt^locity of the ball makes an angle of 20 deg. with th(' Ijorizontal. 

The ground slopes down from the t(H' at an angle of 5 deg. from the hori¬ 

zontal plane. Find the distance from the tee to the point where the ball 

hits the ground. (Neglect friction and assume g - 32,2 ft. sec.) 

15. A wheel 4 ft. in diameter is rolling down an inclined plane which makes 

an angle of 30 deg. with the horizontal. Find the accehiration of a particl(‘ 

which is at the highest point on the wlieel 2 sec. after the wlua;! commenced 

to roll. 



CHAPTER V 

HARMONIC MOTION 

6-1. Definition of Simple Harmonic Motion.—In the preceding 

chapter we have developed the equations of motion for a number 

of cases in which the value of the acceleration was constant or 

was expressed as some simple function of a coordinate. Because 

of its relative importance, one such case has been reserved 

for special consideration. 

We find throughout the entire field of physics many arrange¬ 

ments in which bodies are so bound by elastic forces that, if a 

displacement is produced in some way or other, a vibratory 

motion follows. Forces of resistance, which are present, cause 

the initial endowment of energy to be gradually converted into 
heat, except for a portion of the energy which may be radiated 

in some form or other. The vibrations or oscillations take 

place about the equilibrium position as a mean position. Such 

motions are to be found in a’ vibrating tuning fork, a simple 

pendulum, a mass hung by a light spring, and in others of a 

similar nature. 
Th(' acceleration in such motions is not constant either in 

magnitude or in direction but changes in a cyclic manner as the 

motion progresses. The acceleration is expressible in terms of 

a coordinate, which measures the displacement of the body 

from the equilibrium position, together with a constant that 

includes inertia factors and quantities involving the elastic 
forces. The direction of the acceleration is always toward the 

equilibrium or rest position. 
If we let a; be a coordinate which measures the displacement 

of a body from its rest position, and let be a constant, then 

the acceleration Jx in the type of motion under consideration 

may be expressed as follows: 

Jx = -K^xxi (5-1) 

where Xi is a unit vector in the line of x, A motion in which 
103 
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the acceleration may be expressed by the foregoing equation is 
called simple harmonic motion. 

As found in nature, such motions are nearly always accom¬ 
panied by resistance factors which sooner or later bring the 
motion to rest. As a preliminary study to these more important 
cases the resistance effects are to be excluded from present 
considerations but they will be taken up at a more appropriate 
place later. This procedure will make the study of these motions 
less difficult. 

6-2. The Fundamental Equations in Simple Harmonic Motion. 
The simplest approach t(^ the study of simple harmonic motion is 
to be obtained from a consideration of the projection of the 

uniform motion of a particle, mov- 
\v ing in a circular path, upon a diam- 

- eter of the circle. Given the 
^ particle P (Fig. 71) which is mov- 
/ 1 \ ing along the circumference of a 

-n^ ' Q I ^ circle with constant linear speed F. 
y J We wish to prove that the motion 

of the projection of F, upon a diam- 
eter of this circle, viz., the motion 
of Q, is simple harmonic motion. 

The radius r connecting P to the center of the circle 0 will rotate 
with constant angular velocity a? about 0; hence V = o)r. The 
speed of (?(Fq) will be the projection of V upon the diameter DX 
along which Q moves. Hence the magnitude of Fq is ~ F sin 7, 
where 7 is the angle which r makes with OX, and its direction will 
always be parallel to OX. Obviously Vq will be negative if 7 lies 
between 0 and tt and positive if 7 has a value greater than x 
but less than 2x. 

The acceleration of Q{Jq) may be found by differentiating 
the expression for the speed of Q. Since F is constant, this 
gives —coF cos 7, where co is written for dy/dt. But the magni¬ 
tude of F is cur; hence 

Jq == — rcu^ cos 7 

Obviously this result could have been obtained by projecting 
the acceleration of P, the magnitude of which is — rw* and 
whose direction is inward along r, on to the line of OX. 

The magnitude of Jq changes with cos 7. It will be a maxi¬ 
mum when 7 = 0 or X, and a minimum for 7 « x/2 or 3x/2. 
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The direction of Jq will also depend upon the cos 7, since co^ 
and r are always positive. 

If the distance of Q from 0 is designated by x, then the equation 
for this motion is typified by the following form: 

= -K-^x (5-2) 

since x — r cos 7. This equation is a general expression and 
is the best and most concise definition of simple harmonic motion. 
The factor K is introduced here for the sake of generality although 
in the particular case it is equal to w. 

The equations for the velocity of the point Q in terms of 
X and for the displacement x in terms of the time may be obtained 
by integration of the general equation. The general solution of 
this type of differential equation is of the form 

X = A cos Kt -\- B sin Kt (5-3) 

since the second time derivative of this equation yields 

= {A cos Kt + B sin K() 

where A and B are constants of integration which may be deter¬ 
mined in any particular case by the use of the inil ial conditions. 

If at the time t — 0^ x = x% and 7® = where is the 
speed of Q in the line OXj we could evaluate A and B provided 
we had an equation expressing Vx as a function of t. Such an 
equation is obtained by a differentiation of Eq. (5-3) which gives 

Vx == —AK sin Kt + BK cos Kt 

From this equation together with Eq. (5-3) and the initial 
conditions, we find that 

A — x^ and ^ ~ ^ 

Hence 

x = 3;' cos Kt -I- sin Kt (5-4) 

F. = -x'K sin Kt+U cos Kt (5-5) 

Since the simple harmonic motion of Q may be regarded as 
the projection of the uniform circular motion of some particle 
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P upon a diameter of the circle, it is convenient to use the circular 
motion of P to interpret some of the constants of Eqs. (5-4) and 
(5-5). For the time ^ = 0 we may write 70 for the particular 
value of the angle 7. Hence we may put 

x' — r cos 7o 

from which it is seen that r not only is the radius of the circle but 
also is the amplitude of the motion of Q. The angle 70 is called 

the epoch angle. 
The other constant B = U/K may also be expressed in terms 

of r, the amplitude of Q, and the epoch angle. Since U is the 
velocity of Q at the time i — 0, then 

U = —oyr sin 70 (5-6) 

But oj is equal to K; hence we have 

U 
—r sm 7o 

Substituting the value of x' and of U/Kj as expressed in terms 
of r and the epoch angle 70, in Eq. (5-4) gives 

X = r cos 7o cos Kt — r sin 70 sin Kt (5-7) 
= r cos {Kt -f- 7o) (5-8) 

By making similar substitutions in Eq. (5-5), we obtain 

Fx = —rK sin {Kt + 70) (5-9) 

The angle {Kt + 70) is called the phase angle. Equation (5-8) 
again reveals the fact that x may vary from +r to — r. It is 
also to be noticed that Kt (which is equal to oyt) represents the 
angle 7 through which r turns in the time t. 

An equation which expresses Vx as a function of x is next 
to be obtained. This may be found by eliminating t from Eqs. 
(5-8) and (5-9) or it may be obtained by an integration of the 
general equation [Eq. (5-2)] in which we may substitute for 

its alternative from Vx dVxIdx. Making this substitu¬ 
tion gives 

Integrating this equation and evaluating the constant of inte¬ 
gration gives 

(r2 -- x^) (5-10) 
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This equation and Eqs. (5-8) and (5-9) are very useful in mathe¬ 
matical descriptions of simple harmonic motion. 

6-3. Geometrical Interpretation of the Fundamental Equa¬ 
tions.—It is important for the student in physics to learn to 
regard mathematical equations in physics as symbolic expressions 
for physical relations. There is always the tendency to look 
at such equations as mere algebraic expressions rather than to 
recognize in them a more important meaning. The habit of 
reading physical meaning into the equations where possible is 
one which affords a check up)on the validity or accuracy of the 
expressions. Errors in writing equations, especially in selecting 
incorrect signs for the quantities, are frequently avoided by 
keeping the physical picture constantly in mind. 

To illustrate the value of 
these statements, the material 
in the preceding section may be 
used to advantage. Consider 
Eq. (5-6) which expresses the 
velocity of Q at the position 

where y = 70. It is evident 
that cor is the velocity of the 
point P in its circular path a-s 
shown in the diagram (Fig. 72) at Po. The projection of this 
velocity into the line of OX gives the velocity V of Q, But it is 
possible to overlook the fact that the sign of V must be negative. 
Hence we see that 

V = —cor sin 70 

and it is to be noticed that the expression is correct for all possible 
values of 70. 

Next let us consider the geometrical meaning of Eq. (5-7); viz.^ 

X — r cos Kt cos 70 — r sin Kt sin 70 

This equation shows that x, the coordinate of Q, is made up of 
two parts, whose difference is equal to .r. Since this is a scalar 
equation, each term of the right-hand member must be in the 
line of OX, The first term of the right-hand member shows 
that r is projected twice, first into the line of OPq by multiplying 
by cos Kt and then the resulting line (OR in the diagram) is 
projected into the line of OX by multiplying by cos 70, which 
finally gives OS, Similarly the second term may be shown to 

Fig. 72. 
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be a projection of r, first into a line perpendicular to OPo, viz.^ 
PR, and then this line is projected into OX giving QS. Obviously 

:r (or OQ) = OS - QS 

In a similar manner the significance of F]qs. (5-8) and (5-9) 
may be made apparent. These will be left to the student as 
well as the equation 

Vx = —Kr (sin Kt cos 70 + co& Kt sin 70) 

from which Eq. (5-9) was derived. Equation (5-10) should also 
l)e examined for its geometrical meaning. 

6-4. An Illustration—the Simple Pendulum.—The simple 
pendulum consists of a heavy bob suspended by a light wire from 
a rigid support. The component of the acceleration, due to 

gravity (g), which is responsible for the 
motion is —gr sin a and is tangent to the 
circular path (Fig. 73) of the bob, where 
a is the angle of displacement of the bob 
from its rest position. The direction of 
— ^ sin a is always toward 0, the rest 
position. If the amplitude of the motion 
is small, sin a may be replaced by x/L, 
where x is the displacement in the cir¬ 
cular p)ath and is measured from 0, andL 
is the “length’^ of the simple pendulum. 

Fig. 73. 

The differential equation is therefore 

dP 
(5-11) 

Hence for the limitation imposed the motion is simple harmonic. 
The other equations which describe the motion, z.e,, those corre¬ 
sponding to Eqs. (5-8), (5-9), (5-10), may be readily found from 
assigned initial conditions by the methods illustrated in Sec. 6-2, 

6-6. The Period in Simple Harmonic Motion.—The period of 
motion of the kind under consideration is the time required for 
an entire cycle of the motion to be completed. This is the time 

required for Q (Fig. 71) to go from any given position back to 
its starting point after having traversed the entire path of 
its oscillation. The period of the motion may be determined by 

an examination of the expressions for x or 7®. For the sake of 
brevity let us assume that the epoch angle in these equations is 
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equal to zero. Equations (5-5) and (5-7) contain either cos {Kt) 
or sin {Kt). Since both of these functions of Kt are periodic and 
contain the same angle (A7), we may determine the period of the 
motion by an examination of only one of them. 

The sin {Kt) will have the same value when Kt is increased 
by 27r or any integral multiple of 27r, i.e., 2Trn. Hence 

sin Kt = sin {Kt + 27rn) 

= sin K{t + 

It is obvious that 2Tr/K is the increase of t necessary to effect 
a return of x or Vx to the same value. Hence the period T of 
the motion will be expressed by 

r = ~ (5-12) 

This result could have been obtained by an examination of 
P’s motion in the circle (Fig. 71), since the period of the motion 
of P is identical with that of Q. The period of P’s motion is the 
time required for it to go once around the circle; hence 

__ 
K 

since V = cor and co = K. 
6-6. Circular Harmonic Motion.—The motion of the particle 

Q of Sec. 6-2 was confined to a straight line DX and may be 
described therefore more completely by the term translational 
simple harmonic motion. Corresponding to the case of simple 
harmonic motion in t ranslation, we have in rotation an analogous 
motion in which the particle moves along a circular path with 
angular acceleration which is proportional to and oppositely 
directed to the angular displacement 7, measured from the rest 
position. This condition is appropriately expressed in differ¬ 
ential form by the equation 

$ . (5-13) 

in which K^, as before, is the proportionality factor. It is to be 
noticed that the magnitude of K^ is that of the angular accelera¬ 
tion at the position where the angle 7 is equal to 1 radian, 
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Motion of this sort is seen to exist in the torsional pendulum 
in which a disk is supported by a stiff spring steel wire so t hat the 
rotation may take place about an axis coincident with that of the 
wire. The upper end of the wire is clamped to some rigid 
support. 

The three equations which express the mot ion may be obt aiiied 
by direct integration of hk\. (5-18). The solution of this equation 
is of the form 

y = C cos Kt + D sin Kt (5-14) 

in which C and D arc constants of integration. 
The expression for the angular velocity co may be obtaineHi by 

differentiation of Fki. (5-14), which gives 

a; = ~CK sin Kt + DK cos Kl (5-15) 

The constants C and D may be evaluated by putting y - yu and 
CO = coq at the time t = 0, which gives 

(7 = 7() and D = ^ 

Substituting these values in the foregoing ecpiations gives 

y = 7() cos Kt + (5-16) 

CO = ~7o/v sin Kt + (Oo cos Kt (5-17) 

The third equation of the motion, ?.c., that which expresses 
the relation between y and co, may be obtained by eliminating the 
time from the two equations already obtained or by replacing 
(Py/df^ in Kq. (5-13) by its alternative form o^dwjdy and then 
integrating. Using the latter method gives 

dw 
-K^y (6-18) 

- K-^y-^ + 2E 
== W-' + - T^) (5-19) 

where E is a constant of integration and is evaluated by using 
initial conditions. 

6-7. Compound Harmonic Motion—Periods Alike.—Many of 
the periodic motions encountered in various fields of physics, 
especially in the wave motions found in the study of mechanics, 
sound, light, and electricity, are not simple harmonic motion 

but are related to simple harmonic motion in that they may be 
expressed in terms of two or more simple harmonic motions 
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combined in various ways. The study of wave motion par- 
ticuliirly is best approached by seeing just what sort of result is 
obtained when two linear simple harmonic motions are super¬ 
imposed. ^rhe directions of th(^ t wo components may be parallel 
to each other or may make any angle with (‘ach other. By 
commencing with the siniplest arrangements and then by making 
the combinations more general we may gain a better appreciation 
of the more complex periodic motions and their equivalent 
composition. 

A linear simple harmonic motion is completely described 
when th(i mnpliiude, period^ epoch angle^ and rest position are given 
together with the line along which the nujtion takes place. If 
two such motions an^ to be combined, we must specify all of these 
factors for each component in order to determine the resulting 
motion. It is not to be inferred that the motion obtained from 
any or all arrangements will 
necessarily produce a sim[)le 
harmonic motion, 'khe develop¬ 
ments given below ar(' selected to 
show what relations are necessary 
in order that linear harmonic mo¬ 
tion may result from the combina¬ 
tion of two component harmonic 
motions and also to show the conditions of combination which do 

not yield a resulting liarmonic motion. 
The first case selected is one in which there are two component 

linear simple harmonic motions and in which the periods, rOvSt 
positions, and lines of motion are alike but the amplitudes and 
epoch angles are different. In order to visualize the process of 
combination, let us select a moving coordinate system XiOiFi 
(Fig. 74) and assign to it a simple harmonic motion subject to the 
given characteristics of one of the two given components. The 
system XiOiYi must always be coplanar with the fixed reference 
system A^OF and must move so that one of its lines, say the 
OiAi-axis, shall be coincident with the OA"-axis of the fixed 
reference system. Since all points of the moving system will 
then have simple harmonic motion in the fixed reference system, 
we may select the origin 0\ to be the particular point upon which 
attention is directed, and let it have simple harmonic motion 
about the point 0 as center. Let us now select another point P 
and assign to it a simple harmonic motion in the moving system 

Fig. 74. 



112 ANALYTIC AND VECTOH MECHANICS 16-7 

subject to the values of the second component and have it move 
along the line OiXi with Oi as center. The motion of P referred 
to the fixed reference system will then represent the combination 
of the motions of the two components. 

To determine the nature of this motion, we may first express 
the coordinate x of P in the reference system in terms of xi, the 
coordinate of Oi in the reference system, and X2 the coordinate 
of P in the moving system. Obviously 

.T = 0*1 + X‘2 (5-20) 

Using Eq. (5-8) as a type form, we may express xi and X2 in 
terms of the amplitudes and epoch angles, which may be called 

ri, r2 and 71, 72, respectively. Hence 

Xi — ri cos (Kt + 7i) (5-21) 

X2 = r2 cos {Kt + 72) (5-22) 

in which 2Tr/K is the common period of the two motions. An 
expression for x may now be obtained by adding xi and X2, which 

gives 

X = ri cos {Kt + 7i) + r-i cos {Kt + 72) (5-23) 
= (ri cos 7i + r2 cos 72) cos Kt 

— {ri sin 7i + r2 sin 72) sin Kt (5-24) 

In order to simplify this equation it is best first to determine 
the meaning of the right-hand 
member. This information 
may be obtained by using the 
geometrical relations given by 
the auxiliary circular motions. 
The relations are shown in 

Fig. 75. In the reference sys¬ 
tem XOYy let Pi and P2 move 
with constant angular speed K 
in circular paths whose centers 

are both at 0 and whose radii are ri and r2, respectively. The 
auxiliary points Pi and P2 are shown in their positions for the time 

< == 0; hence 71 and 72 are the angles which ri and r2 make, respec¬ 
tively, with OX. If we put ^ == 0 in Eq. (5-23), it is readily seen 
that X is the projection upon OX of the diagonal OP of the paral¬ 

lelogram formed upon ri and r2 as sides. The length of the diag¬ 
onal is designated by the letter r in the figure. 
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The angular velocities of Pi and P2 about 0 are the same, 
viz,, K; hence the angle between ri and vo will remain constant 
during the entire motion. The line r will therefore be constant 

in length and will rotate about O with ri and r2 as though attached 
to them. If we write 70 for the angle which r makes with OX 
at the time ^ = 0, it is obvious that 

r cos 7o = ri cos 71 + r2 cos 72 (5-25) 

and is a constant. Similarly it is readily seen that 

r sin 7o == Ti sin 71 + ^2 sin 72 (5-26) 

and is the projection of r upon OF. 
By substituting these expressions for r cos 70 and r sin 70 in 

Eq. (5-24) the desired expression for x may be obtained. Hence 

X ■= r cos 7o cos Kt — r sin 70 sin Ki 

== r cos {Kt -f 70) (5-27) 

This result expresses x, the coordinate giving the sum of the 
coordinates of the two component simple harmonic motions, in a 
form which shows that the combination gives a resulting motion 
which, under the imposed limitations, is also simple harmonic. 
Since x is the projection of P upon OX and P moves in a circular 
path of radius r with an angplar velocity K, it is obvious from the 
geometrical relations alone that the motion given by Eq. (5-27) 
is simple harmonic. The period of this compound motion is 
2Tr/K, the same as that of the two components. 

As a general conclusion it may be seen that this result may be 
extended to include any number of components as long as their 
periods, rest positions, and lines of motion are the same. The 
amplitude of the motion of the resulting simple harmonic motion 
will be dependent upon the amplitudes and epoch angles of the 
several components. 

A further conclusion may be drawn. Any simple harmonic 
motion may be regarded as made up of several component simple 
harmonic motions, provided that the periods, rest positions, and 
lines of motion are the same as those of the given simple harmonic 
motion. The epoch angles and amplitudes of the components 
may be selected in so far as the selected values satisfy equations 
similar to Eqs. (5-25) and (5-26). 

Problems.—1. Under what circumstances would it be possible to combine 
two linear harmonic motions having the same periods, lines of motion, and 
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centers so that the resulting motion would have an amplitude which would 

be less than the amplitude of either component? 

2. Make diagrams indicating the geometrical relations shown by Eqs. 

(5-23) and (5-27). 

3. Express the A clocity of th(‘ j^rojection of point R (Eig. 75) in terms of 

the AM'locilies of tlie i)rojections of Pi and all of the projections being 

upon TEY. 

4. If th(‘ rest ])ositions of tlu^ two simple harmonic motions are not 

coincident ])ut th(' periods and lines of motion are tlie same, would the com¬ 

bination of these motions ]m‘ simple liarmonic? 

5. Find the amplitude of the harmonic motion which results from com¬ 

bining three simple harmotiic motions having th(^ same period (27r/AT = 10 

sec.) and th(‘ same line of motion but tln‘ amplitude's are 3, 4, 5 cm., respec¬ 

tively. Tlie phase' elifPe're'nere lu'twf'eai the first anel se‘e‘e>nd is 45 de^g. and 

that betweem the second and thirei is 30 de‘g. 

6. (riven a simple' liarme)nie‘ meition in which the' elisplacement is e'xpre^sseid 

by tlie eeiuation x = 5 e-os {Kl + 30'"). Find the' two components which 

when combiiH'd will satisfy the giveui eepiation if the phase difference is 

45 de^g. anel one' eif them has an epoch angle of 45 deg. 

6-8. Combination of Simple Harmonic Motions—Periods 
Unlike.—The motion resulting from the combination of two 

# 
simple harmonic motions having the same center and line of 
motion, but with different periods, epoch angles, and amplitudes, 
is to be expressed and its meaning examined. The general 
procedure is similar to lhaf used in»the preceding section. 

The displacements along the line of motion, measured from 
the rest position, may be expressed as follows: 

xi = ri cos {Kit + 7i); X2 = ^2 cos (K2t + 72) (5-28) 

in which the symbols are used as in Sec. 6-7 above and the 
selection of subscripts serves to identify the component to which 
the quantities belong. The resultant displacement x of the 
combination is 

X = ri cos (Kit + 7i) + 7*2 cos {K2t + T2) (5-29) 

Since the periods of the components are unlike, the lines ri 
and To of the auxiliary motions will rotate at different angular 
velocities and hence the angle between them, which we may 

call iS, is not constant. The apgle 0 gives the phase difference 
between the two motions. It may be expressed in terms of the 
epoch angles and the periods by the following equation; 

0 = iK2t - Kit) -j- (72 - 71) (5-30) 

By means of this equation we may^ eliminate from Eq. (5-29) 
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either phase angle. Since it makes no difference in the inter¬ 

pretation of the final result which is eliminated, we may write 

K4 + 72 = + (K^i + 7i) (5-31) 

and substitute this value in Va{. (5-29), which gives 

X = '/’i cos {K^l + 7i) + To cos (Kit + yi + P) (5-32) 

JOxpanding this expression and rearranging terms gives 

.r == (ri + ro cos (3) cos (Kit + 71) — 

ro sin 13 sin (Kit + 71) (5-33) 

In order to simplify this expression, we may use r to represent 

the diagonal of the parallelogram formed upon ri and as sides 

and express the angle between Vi and r by 70. We may therefore 

write 

ri + ro cos (3 — r cos 70 r2 sin = r sin 70 (5-34) 

Introducing these expressions into Eq. (5-33) gives 

X = r cos 7o cos (K]t + 71) — r sin 70 sin (Kit + 71) 

= r cos (Kxt -f 7i + 7n) (5-35) 

An examination of tliis equation shows that the resulting 

motion is not simple harmonic, motion. In order for the motion 

to be simple harmonic, it must satisfy the requirements expressed 

by the fundamental equation [Kq, (5-2)J. In the expression, 70 

is not a constant and hence its derivative will appear in the 

expression giving th(^ acceleration (Px/dP. Furthermore, r is not 

constant,, for its magnitude is the length of the diagonal of the 

parallelogram formed on ri and vo with the variable angle /3 

l)etween them. The shape of the parallelogram changes even 

though the lengths of the sides do not. 

Problems.—1. Assign vjihics to the arnpHtudes, i)eriods, and epoch angles 

for two simple haririonic motions and, using Eq. (5-29), make a plot of x 
as a function of the time. Is the motion periodic, and, if vso, what is the 

period ? 

2. Given two simple harmonic motions, one of whicrh has a period that is 

twic(i the other, with the cent(‘rs and lines of motion the same. Will the 

combination of the two be periodic? Assuming that the amplitudes are 

alike, what will be the; resulting wav(^ form (the curve giving the resultant 

displacement as a function of the time) if th(ur phase difference is 30 deg.? 

Determine also the wave form for phase differences of 45, 00, and 90 deg. 

6-9. Combination of Two Simple Harmonic Motions at Right 
Angles—Periods Alike.—The motion of a particle is to be 

investigated when obtained by combining two simple harmonic 
motions whose period and center are the same but whose lines 
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of motion are at right angles to each other and whose amplitudes 
are, in general, unlike. The instantaneous displacements of the 
particles Pi and P2, having the assigned simple harmonic motions, 
are to be combined vectorially. The chief interest in such a 
combination lies in the nature of the path of the point situated 
at the end of the vector resulting from the vector sum of the 
displacements of the two components. In order to make the 
consideration one of general interest, a phase difference between 
the components is to be assigned. It will not be necessary to 
assume an epoch angle for each component. 

Given the reference system 
XOY (Fig. 76) with 0 the cen¬ 
ter of the component simple 
harmonic motions. Let 

X — r cos Kt 
y s cos (Kt + /5) (5-36) 

express the displacements of the 
two perpendicular components 
along the axes OX and OF, re¬ 
spectively, with the common 

period 2rr/K and with r and s the amplitudes. Let be the epoch 
angle for the component along OF, and let the epoch angle for the 
component OX be zero. 

The coordinates of the point P, whose path is to be found, may 
be determined for any instant of time by a direct substitution 
of numerical values for the quantities in Eqs. (5-36) and from 
these values the path may be plotted. The character of the 
curve may be determined by finding the analytical expression 
for X and y. Such an analytical expression may be obtained by 
eliminating the time, or Kt, from the given equations [Eqs. (6-36)]. 
To do this we may solve the first equation for cos Kt and sub¬ 
stitute its value in the second equation after it has been expanded 
in terms of the functions of single angles. The following steps 
indicate the process: 

cos Kt - - 
r 

- *= cos ir< cos jS — sin Kt sin 
8 
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Rearranginj? the terms and squaring to remove the radical gives 

^ ^ ^ (5-37) 

The nature of tla^ curve represented by this equation is to be 
investigated. The fact that it contains no first-degree terms 
shows that the center of the curve is at the origin. The foiin 
alone does not indicate whether it is an ellipse or a hyperbola. 
The curve must be confined within a rectangle having its center 
at 0 and sides parallel to the axes and equal to 2r and 2^. This 
fact prohibits the curve from being a hyperbola. It must 
therefore be an ellipse. It is possible for the conditions to be such 
that the curve degenerates into a straight line. This case will 
be discussed below. 

An analytical proof that the curve under consideration is an 
ellipse is to be obtained. The presence of the term in xy indicates 
that the axes of the curve make some angle, say with the 
reference axis OX. From a well-known theorem in analytical 
geometry, if the ecpiation has the general form 

Ax' + 2h xy + R?/" = C 

the angle 6 may be expressed in terms of the coefficients by the 
following equation: 

tan 2e = (5-38) 

Hence for any particular case the angle 6 may be found. If 
now Eq. (5-37) is transformed to a new set of axes having the 
same origin but inclined to the given axis by an angle 6^ the term 
in xy will vanish. 

If the coefficients of x- and y- in the transformed equation are 
designated by A' and i?', respectively, then by means of the 
relations 

A' + B' A + B 
A'B' = AB - (5-39) 

the coefficients in the new equation may be obtained. If the 
coefficients of and in the new equation are both positive, 
the equation is an ellipse; if one of them is negative, the equation 
represents a hyperbola. The sign of the quantity is there¬ 

fore a criterion. From the equation for the curve under consider¬ 
ation (Eq. (5-37)] we may determine the sign of A*B^ by using the 
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relation given by Eq. (5-39). Substituting the values of the 
coefficients gives 

A'B' 
JL_cos^ 0 
r2^2 y.2^2 

sin^ P 
y.2^2 (6-40) 

which must always be positive and hence the equation is an 
ellipse, as was shown above by other considerations. If desired, 
the equation for the ellipse referred to the new axes could be 
determined but it would be a cumbersome equation to write and 
no particular advantage would accrue from an examination of it. 

Under the given conditions the resulting curve is an eUipse 
and therefore the motion resulting from the combination of the 
two component harmonic motions, which have the imposed 
limitations, is called elliptical harmonic motion. 

If the angle which denotes the phase difference between the 
components is zero, then, by referring to the diagram, it may be 
seen that the points Pi and P2 will be at their extreme positions 
at the same instant and will move toward 0 at such rates that 
the point P must move along a diagonal of the rectangle. That 
this is true may be shown analytically by observing that under 
this limitation the ratio of x/y will be constant and equal in 
magnitude to r/s [see Eqs. (5-36)]. 

Problems.—1. Using the notation of the preceding section, make a plot 
which will show the curves for the elliptical motion of a point when the 
amplitudes of the components are r = 3 and s = 2 and when the phase 
difference has the following values: 0, 30, 60, and 90 deg. Mnd the position 
for the axes of the ellipse in each case. 

2. Given two perpendicular simple harmonic motions with the same 
period and center but with different amplitudes and with a phase difference 
not zero. Express the path in polar coordinates, 

3. Under what conditions could the ellipse of the preceding section 
become a circle? 

4. How may the direction of motion of the point around the ellipse in 
elliptical harmonic motion be determined? 

5-10. Lissajous Curves.—A necessary limitation in elliptical 
harmonic motion is that the periods of the components must be 
the same. If two perpendicular component simple harmonic 
motions have the same center but their amplitudes, epoch angles, 
and period are not alike, the path of the point which is found 
from the vector combination of the displacements of the two 
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components is usually complicated. The curves formed by such 
combinations were first studied by Lissajous and have received 
his name as a consequence. 

A rather simple apparatus for producing these curves experi¬ 
mentally with but little error is the Blackburn's'' pendulum. 
The apparatus may be arranged as shown in the diagram (Fig. 
77). A rigid horizontal bar supports the heavy bob D by means 
of light wires AC and BC which are fastened to the bar at the 
points A and B, The wire CD is fastened to the wire ACB at C. 
The bob has a smooth vertical hole drilled in it so that some 
marking device such as a glass inking pen or soft-leaded pencil 
may slide in the hole with but little friction and thereby leave a 
trace of the motion upon a piece of paper 
placed horizontally below 

With this arrangement two simple har¬ 
monic motions at right angles to each other 
and with different periods may be compound¬ 
ed. One component is obtained by allowing 
the bob to swing in the plane of the diagram. 

Its period wiH'be 2Tr\/CDjg, Its amplitude 
may be varied but, if made too large, the 
motion is not simple harmonic. The other 
component is perpendicular to the plane of 
the diagram and has a period equal to 

2Tr\/DEIg. In addition to the fact that the 
motion of a pendulum is only approximately 
simple harmonic, as was shown in Sec. 6-4, there is a damping 
factor in the motion due to unavoidable resistance. This resist¬ 
ance shows its effect in the slowly decreasing amplitudes of 
both components and in the fact that the quadrilateral which 
encloses the curve is a distorted rectangle. Even with these 
defects, which are not serious, the resulting curves are very good 
illustrative material for a study of this sort of motion. 

The curve shown in Fig. 78 was drawn by a compound pendu¬ 
lum similar to the one described. In making this curve the 
lengths of the pendulums were 100 and 90 cm., which would make 
the periods 2.01 and 1.90 sec., respectively. 

From the curve itself it is not possible to determine the 
periods of the components. The ratio of the periods, however, 
may be found by a graphical method. This may be done in the 
fallowing manner. Any two points on the curve, such as N and 
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Mj are to be selected. These must not be too far apart or 
difficulties will be encountered. The lines AB and CD, which 
are perpendicular to each other and parallel to the lines of the 
component simple harmonic motions, are to be drawn as shown 
in the diagram. The line AB represents the diameter of the 
auxiliary circle (with center at Q) along which the point P moves 
subject to the characteristics of one component. The other line 

Fuj. 7S. 

CD is the diameter of the auxiliary circle (with center at G) with 
the point R describing the motion of the second component. 
E and F are the points in the auxiliary circles whose projections 
upon AB and CD^ respectively, are P and R. 

At the particular instant when the point describing the 
Lissajous curve is at the point the corresponding positions 
of the points in the four other paths CD, DFCj AB, and AEB are 
R^F, A, and A, respectively. While N is moving to M, R moves 
to C,F to C, A along AB to P, and A along the arc of its circle to 

The time interval required for each of the five displacements 
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is the same. Now, since the angular velocities of F and E are 
inversely proportional to the periods of the two components of 
Ihe simple harmonic motions, the ratio of the angles CGF and 
AQE must also be Ihe sfime as the inverse ratio of the periods. 
In the particular case these angles were found by measurement 
to be 121 and 128 deg., respectively. Their ratio is 0.95. The 
inverse ratio of the periods is likewise 0.95, which is a closer 
agreement, than one would expect, for the error in the measure¬ 
ment of the angles might very well be 1 or 2 per cent. 

If the ratio of the periods of the two components may be 
expressed as the ratio of two whole numbers, then the curve will 
be closed. If this ratio is assumed to be n/?/?, where n and m 
are prime to each other, then there will be n complete cycles of 
one component to ni complete cycles of the other. For example, 
if the two periods are 8 and 2 sec., then there will be one oscillation 
of the first to four of the second. 

Problems.- 1. DctiM-iniiK* Iho chararlor of the cairve made by combining 

two siniph^ liarmonic motions which arc cxpr(‘sscd by the equations — r 
(‘OS Ki in\d y — r cos 2/C/. 

2^ Devise a graphical method for ol)taining a Lissajoiis curve by using the 

auxiliary circular motions. 

6-11. Fourier Series.—A Fourier series is a sum of sine and 
cosine terms whose amplitudes and periods are of such values 
that the series accurately represents some periodic function. It 
was first shown by Fourier in 1822 that, if a periodic function is 
everywhere finite and continuous, or if not continuous at least 
has only finite discontinuities and is single valued, the function 
could be expressed in a series of sine and cosine terms. The terms 
were called harmonics because the series was used very largely in 
the study of sound waves find because the frequencies were such 
that the components were one, two, three, or more octaves above 
the fundamental frequency of the wave being studied. 

Any function is periodic if all of its values reoccur when the 
variable is increased by some constant (the period) or some 
integral multiple of the constant. Expressed symbolically, if 

f{x + nP) ^f{x) 

where n is any integer and P is a constant, then f{x) is a periodic 
function and P is its period. For example, 

sin {x + 2w n) ^ sin x 

hence sin a; is a periodic function of x. 
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The variable may be a displacement, time, or the like. In 
the case of vibrating bodies we are concerned with the variation 
of displacement with time. In dealing with stationary waves 
the amplitude of the wave is to be expressed as a function of 
some coordinate. In either case, periodicity implies an exact 
repetition of a complete cycle at regular intervals of some 
variable. 

If we had a number of tuning forks whose frequencies could 
be expressed in terms of n, 2/?, Sri, etc., and we should strike 
them all at once, the resulting sound would have a wave form 
which would be periodic and which would depend upon the 
number of tuning forks, their amplitudes, and frequencies, and 
phase differences. The resulting wave form may be expressed 
in terms of a series of simple harmonic motions, provided that the 
characteristics of the components are known. Now when we 
know the graphical form of a single period of a wave and know 
also its period and can express this wave form mathematically as a 
function of the time or of the abscissa, we may then analyze the 
function by the method outlined by Fourier and determine the 
component harmonics. 

Fourier expressed the general equation in the following terms; 

f(x) = ^0 + cos a? + ilo cos 2r + • • • + cos n j 
+ Bi sin X + B2 Bin 2x + * * • + Bn Bin n x (5-41) 

(5-42) 

An = - \ f{x) cos {nx) dx 
TT^ 10 

(5-43) 

1 
Bn — - \ f{x) sin {nx) dx (5-44) 

It will be noted that the periods of the trigonometric terms 
are 2ir, 2r/2, 27r/3, . . . 27r/n. In order to apply this series to 
any special case, the period of the given wave form must be 
made equal to 27r, if the compon<pnts or the terms of the series 
are to be harmonics of the furidamentah This presents no 
difficulty, for it is merely a matter of selecting a suitable scale 
factor for the variable. 

To show how the constants are evaluated, a concrete illustra- 
tioii will be used, Suppose the wave form consists of the 
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isosceles triangle as shown in Fig. 79. The single triangle 
represents a complete cycle and is repeated at regular intervals. 
Now we must put x = 2t at the point C, For the sake of 
simplicity in the illustration, let the angles opposite the equal 
sides in the triangle be 45 deg. This assignment makes the 
altitude of the triangle equal to t. From these relations it 
follows that from .r = 0 to x = tt, /(x) = x, and from x = t 
to X = 2wf f(x) = 27r — X. 

Because the expression for /(x) changes at the point x = ir, it 
will be necessary to replace the single integrals, used in the 
evaluation of the constants, by two integrals, one extending from 
0 to TT and the other from tt to 2x, each to be used with the 
corresponding value for /(x). The constants are determined 
by the following integrations: 

■ s/o * 

xdx + 1 
JttJ. ^ 

(2x — x) dx 

1 r 1 
In = -* I X cos ?^x dx + - I (2x — x) cos nx dx 

ttJo 

(and n can only be odd) 

1 T" 
?n - - I ^ sir 

^Jo 

1 
Bn — * I X sin nx dx + - I (27r — x) sin nx dx 

0 for all values of n 

If we substitute these values for the coefficients in Eq. (5-41), 
the resulting equation is 
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fix) 
TT 

2 
4 

-cos X — 
TT 

77“ COS 3x • 
9t 

4 
-COS nx 
TT/r 

(5-45) 

in which n may have only odd values of the integer. 
It is instructive to determine how closely the final equation 

represents the given function. This may be done in an illumi¬ 
nating fashion by plotting the terms find then adding the ordi¬ 
nates for several values of the abscissa and comparing the curve, 
drawn through these resulting summation points, with the 
original wave form. In Fig. 80, the first three terms are plotted 
but the summation points for four terms are indicated by the 
circles. It is evident that the series is rapidly convergent and, 

if a sufficient number of terms is taken, the function is accu¬ 
rately represented by the series. 

Problems.—1. Determine the constants for expressing (^ach of the follow¬ 
ing functions in a Fourier series. 

From X = 0 to x =* t Frorn x = tt to x = 27r 

a. f{x) = 5r/4 /(x) = -x/4 
6. f(x) = X 1 f(x) = X — 
c. II 

o
 1! 

2. Plot the first three terms of each of the scries obtained in the foregoing 
problem and compare the summation curves with the given functions. 

3. Draw curves which show the following relations in simple harmonic 
motion: 

a. Acceleration as a function of displacement from the rest position. 
h. Aooeleration as a function of time. 
c, Sjjeed as a function of displacement from the rest position. 
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4. A particle moving with simple harmonic motion has speed of 20 and 

10 cm. per second when having displacements of 6 and 12 cm., respectively. 

Find the period and amplitude of the motion. 

5. P"ind the maximum speed of a particle in simple harmonic motion if the 

amplitude is 2 ft. and the period 4 sec. 

6. If the period of a certain simple harmonic motion is 3 sec. and the 

amplitude is 25 cm., find the time required for the particle to go from the 

rest position to a position at which the displacement is 15 cm. 



CHAPTER VI 

INERTIA AND MASS 

6-1. Foundations of Mechanics.—The present-day student of 
mechanics can only with considerable study appreciate the 
darkness which enveloped the subject in the seventeenth century. 
Ideas and concepts, which are our common tools today, were 
then in a very nebulous stage. To become familiar with these 
early conceptions and to view the progress of their evolution, 
one should consult the historical literature. Prior to the seven¬ 
teenth century, contributions to mechanics dealt with the statics 
of solids and of fluids. The foundations of dynamics were laid 
by Galileo (1564-1642). Further contributions were made by 
Huyghens (1629-1695). To these two men may be given the 
credit for paving the way for the epoch-making formulations of 
Newton (1642-1726), 

Prior to the advent of Galileo, the Aristotelian idea of motion 
had been accepted for approximately two thousand years. 
Galileo quoted these doctrines and, it will be remembered, 
openly demonstrated to an incredulous group of Aristotelian 
disciples, who had assembled before the famous leaning tower of 
Pisa, that bodies dropped from a height arrived at the ground in 
(very nearly) equal times rather than with time intervals which 

were, according to Aristotle, proportional to their weights. 
Encouraged by the success of his experiment, Galileo proceeded 
to discover how bodies fall. Unlike his philosophical prede¬ 

cessors who were interested mainly in the why of things, Galileo's 
attitude was guided by a desire to obtain first an accurate 
description, the manner in which the phenomena occurred, and 
then to consider the probable reason for the occurrence. This 
attitude, at that time new in the scientific world, was continued 
by the men who followed Galileo, with the result that science has 

achieved successes which would have been utterly impossible 
with the older attitude of Aristotle. Progress in the search for 
the truth concerning the nature of things is more rapid when the 

experimental method of Galileo is combined with the philo¬ 
sophical attitude of Aristotle. 

126 
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Galileo introduction of the inclined plane as a means of 
'‘diluting^' gravity clearly shows his ingenuity. By having 
at his command motion in which the acceleration was sufficiently 
small to permit reasonably accurate observations, Galileo was 
able to give the world a new concept—acceleration—and at 
the same time to establish the fact that bodies, near the earth^s 
surface, fall with constant acceleration (neglecting friction). 
From this work, then, resulted two of the equations which 
describe the motion of a particle moving from rest with constant 
acceleration. In terms of the symbols familiar to us, these 
equations may be written as follows: 

V at s = aP 

Further experimentation with inclined planes led Galileo 
to observe that, if a body falls down an inclined plane through 
a definite vertical height, it would be able to return to approxi¬ 
mately the same height by means of a second inclined plane 
regardless of the angles of inclination of the planes. He also saw 
that a body, in falling through a certain vertical height (on an 
inclined plane), would acquire the same velocity as any other 
body falling the same vertical height. 

More important, perhaps, than these results was the obser¬ 
vation which he made concerning motion without acceleration. 
Measurements were made upon the horizontal motion of bodies 
moving with velocities acquired by falling down an inclined 
plane. As a conclusion from these observations, Galileo wrote 
in his “Discourses,‘‘but in the horizontal plane GH its [the 
moving body^s] equable motion, according to its velocity as 
acquired in the descent from A to B, will be continued ad 
infinitum.^^ In this statement we find the nucleus of the concept 
inertia. 

Other important contributions to mechanics by Galileo were 
the parallelogram of velocities, which led to a clearer idea of 
motion of projectiles, the possible use of a pendulum for time 
measurement, and the conception of force as the time rate of 
momentum. 

Huyghens took up the study of mechanics where Galileo left 
off. He undoubtedly had a better idea of the concept inertia 
than did Galileo. The following quotation from the “ Horologium 

Oscillatorium^^ (1673) clearly indicates his understanding of 
inertia, “If gravity did not exist, nor the atmosphere obstruct 
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the motions of bodies, a body would keep up forever the motion 
once impressed upon it, with equable velocity, in a straight 
line/’ Huyghens determined the length of the seconds pendu¬ 
lum, discovered the center of oscillation, invented the pendulum 
clock, and obtained a fairly accurate value (32.16 ft. per second 
squared) of g. He derived the third equation (F^ = 2 as) of 
motion for a particle moving from rest with constant acceleration, 
studied the uniform motion of a particle in a circular path, and 
shared with two other geometers” the honor of establishing the 
principle of the conservation of momentum. Apparently neither 
Huyghens nor Galileo understood the distinction to be made 
between mass and weight. It remained for Sir Isaac Newton to 
straighten out this tangle, and otherwise to render invaluable 
assistance to the progress of science by his clear enunciation 
of several fundamentally important concepts and by a careful 
formulation of the so-called “laws of motion.” 

6-2, Newton’s Contributions.—A great deal of credit is due 
Newton for the wonderfully clear and accurate expressions of the 
principles which to this day form the basis of the formal develof)- 
ment of mechanics and for the idea of universal gravitation and 
its concise formulation. Newton also gave us a number of 
definitions of fundamental quantities expressed in exquisitely 
clear language. 

It was he who was able to generalize from current views and to 
consolidate these ideas into concise principles and concepts. 
In order to do this, it was necessary for him to invent new 
mathematical processes, particularly the “inverse method of 
fluxions” or infinitesimal calculus, as we call it today. His 
own statement concerning his work (1714) is quoted here to give 
the student some idea of the volume and character of the work 
which he accomplished in a two-year period. 

In the beginning of the year 16651 found the method of approximating 
Series and the Rule for deducing any dignity of any Binomial into such 
a Series. The same year in May I found the method of tangents of 
Gregory and Slusius, and in November had the direct method of flux¬ 
ions, and in the next year in January had the Theory of Colours, and 
in May following I had intrance into ye inverse method of fluxions. 
And the same year I began to think of gravity extending to ye orb of 
the Moon, and having found out how to estimate the force with which 
[a] globe revolving within a sphere presses the surface of the sphere, 
from Kepler’s Rule of the periodical times of the Planets being in a 
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sesquialterate proportion of their distances from the centre of their 
Orbs, I deduced that the forces which keep the Planets in their Orbs 

must [be] reciprocally as the squares of their distances from the centres 

about which they revolve: and thereby compared the force requisite 
to keep the Moon in her Orb with the force of gravity at the surface of 

the earth, and found them answer pretty well. All this was in the two 

plague years of 1665 and 1666, for in those days I was in the prime of 
my age for invention, and minded Mathernaticks and Philosophy more 

than at any time since.^ 

The three laws of motion as given in the ^^Axiomata sive 
Leges Motus'^ are as follows: 

Law L Every body continues in its state of rest or of uniform 
motion in a straight line, except in so far as it may be compelled 
by impressed forces to change that state. 

Law IT. Change of motion is proportional to the impressed 
force and takes place in the direction of the straight line in which 
the force acts. 

Law III. To every action there is always an equal and 
contrary reaction; or, the mutual actions of any two bodies are 
always equal and oppositely directed. 

Some of Newton^s definitions as given in ^^Philosophiae 
Naturalis Principia Mathematical’ (1686) together with a few of 
his comments are given below: 

Definition 1. Quantity of matter is the measure of it arising from 

its density and bulk conjointly. 

This quantity of matter is, in what follows, sometimes called the 

body, or mass. It is known for each body by means of its weight; for 

it has been found, by very accurate experiments with pendulums, to 

be proportional to the weight. 

Definition 2. The quantity of motion of a body is the measure of 
it, arising from its velocity and the quantity of matter conjointly. 

Definition 3. The innate force of matter is its power of resisting, 

whereby every body, so far as depends on itself, perseveres in its state, 

either of rest, or of uniform motion in a straight line. 

This is always proportional to the body and differs in no respect from 

the inertia of the mass, except in the manner of viewing it. To the 

inertia of matter is due the difficulty of disturbing bodies from their 

state of rest or motion; on which account the innate force may be called 

by the very suggestive name, force of inertia. 

^ BncKLEY, Short History of Physics,'^ p. 33. 
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Definition 4. An impressed force is an action exerted on a body, 
tending to change its state either of rest or of uniform motion in a 

straight line. 

6-3. Inertia.—We cannot, at the present time at least, offer 
any better definition of inertia than that given by Newton in his 
third definition or as described in his first law of motion. Some 
familiar illustrations of this important property of bodies 
may serve to clarify this concept. 

It is a common observation that a heavily loaded automobile 
is not so readily brought up to a given speed as when empty, even 
though the conditions are otherwise alike. The greater inertia 
of the loaded automobile is perhaps more noticeable when it is 
desired to bring it to a stop. 

Through our experiences with objects which have different 
amounts of inertia we have learned that it is not easy, for example, 
to stop a rapidly rolling barrel which is filled with cast iron 
though we would not hesitate to make the attempt with an 
empty barrel. 

The hydraulic ram gives us a splendid illustration of a practical 
use of the inertia of a relatively large amount of moving water to 
lift a much smaller quantity to a desired position. 

Inertia effects are as important when bodies are in rotational 
motion as when they are in translation. The flywheel of an 
engine, when in rotation, tends to continue in rotation. Use is 
made of this fact to produce a steadier motion than would be 
obtainable without it. 

Another common effect of the property of inertia is to be found 
in the phenomena of directional changes in the motions of 
bodies. According to Newton every body continues in its 
state ... of uniform motion in a straight lihe^' unless acted 
upon by external forces so applied to the body that the direction 
of motion may be changed. Forces whose directions are 
perpendicular to the resultant velocity are needed to change the 
direction of motion of a body. This inertial tendency of a 
body to continue in a straight line is common observation. The 
occasional skidding of an automobile when attempting to round 
a corner, the tangential flying of mud or water from a rotating 
wheel, and other similar phenomena are illustrations of inertia. 

6-4. }4ass.—Inertia is a qualitative property of matter. 
This property has been made quantitative in mass. Mass ihay 
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properly be defined as the measure of inertia. The relative 
masses of two bodies may be determined by comparing, in some 
way, their inertias. There are several ways in which this may 
be done. 

One of the simplest pieces of apparatus which has been designed 
for comparing the relative masses of two bodies consists of a 
horizontal rod, or guide, upon which the masses may slide with 
negligible friction. A suitable spring may be placed between the 
two masses and held in a compressed state by a light cord which 
is to be tied to each of the two masses. When the string is cut 
the two masses, initially at rest, are acted upon by the spring 
which forces them apart. The force of the spring is variable, 
decreasing as the masses move apart. The spring will exert 
instantaneously equal, but oppositely directed, forces upon 
the two masses and will act upon both masses for the same length 
of time. An attachment is provided by means of which it is 
possible to measure the velocity of each mass at the instant at 
which the force of the spring becomes zero. 

The results of experiments performed with apparatus of this 
sort indicate very clearly that, when two masses of equal weights 
are used, the velocities given to the two masses are equal (within 
the limits of experimental error) and, when masses of unequal 
weights are used, the velocities produced are unequal with the 
lighter body receiving the greater velocity. 

With the apparatus arranged as described, a means is provided 
for comparing the inertias of two given bodies by measuring the 
velocities produced. We may use the experimental relation 
as a means for a quantitative evaluation of the mass of a body. 
The first step would be to select some particular body as a 
standard of mass (such as the standard kilogram or pound), and 
then to adopt the statement that the masses of two bodies are 
inversely proportional to the velocities produced in the inertia 
apparatus. If mi and m2 represent the masses of the two bodies 
and Vi and F2 are the velocities produced, then the equation 

miFi = or 
mi 

m2 
Yl 
Vi 

would serve to express this conception in terms of the symbols 
used. 

For purposes of establishing a logical foundation for the concept 
pf mass as a measure of inertia, the foregoing procedure is entirely 
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satisfactory but in practice the evaluation of mass by the process 
of weighing is experimentally easier to perform and is much more 
accurate. The validity of using the weighing process in place 
of the other more fundamental procedure has been repeatedly 
established by the fact that the two processes yield results which 
are identical within the limits of experimental error. 

Unfortunately, some confusion has arisen in the minds of 
students over the distinction between mass and weight because 
the process of weighing is used for determining mass. The two 
quantities mass and weight are fundamentally very different, 
mass being a measure of inertia which is independent of the 
earth’s attraction and weight is a gravitational force which 
changes from place to place, although on the earth’s surface the 
change is not large. The units in which these two quantities 
are expressed are dimensionally unlike. Mass may be expressed 
in grams or pounds, while, in the corresponding systems of units, 
weights are given as gram centimeters per second squared or 
pounds feet per second squared, respectively. The weight units 
are combinations of a mass unit and an acceleration unit. 

6-6. Mass a Function of Speed.—For a long time it was 
supposed that the mass of a particular body depended solely upon 
the amount of matter” of which the body is composed. Mov¬ 
ing the body to some remote corner of cosmic space was thought to 
have no effect upon the amount of its mass. Probably the posi¬ 
tion of the body does not affect its mass, but while being moved 
to some other place it does possess a different mass. That there 
is an increase in mass of a body when that body is in motion is a 
result of modern physics. 

Sir J. J. Thomson first showed that because of the probable 
electromagnetic nature of matter one should expect an increase 
of its mass with speed, especially if the speed is large. His 
hypothesis was later confirmed by experimental measurements of 
the ratio of the electric charge to a mass of an electron. These 
tests were made independently by Kaufman and Bucherer who 
experimented with high-speed electrons ejected from radioactive 
substances. As a development from the principle of relativity, 
it was shown that a measurable increase of mass was to he 
expected under conditions of high speeds. The quantitative 
formulation of this relation is 

mp 
-y/l Z (6-1) m = 
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where m is the mass of the body when in motion, is the ^^rest'^ 
mass, V the speed of the body, and c the speed of light. This 
expression is somewhat different from the one deduced by Thomp¬ 
son who used an electromagnetic hypothesis. 

Since the speed of light is very large, m will be nearly equal to 
mo for all ordinary velocities. It is only for speeds that are more 
than one-tenth of that of light that the correction need be made 
for ordinary accuracies. When y = 0.1 c, the increase in the 
mass is about one-half of 1 per cent. 

As a consequence of this relation, the speed of light becomes a 
limiting barrier beyond which the speeds of a material body may 
not pass. 

6-6. Moment of Mass.—For certain conveniences which will 
be apparent in a later section it is advisable to introduce at this 
point the phyvsical quantity moment of mass. This quantity 
is defined as the product of a mass by a distance. If a certain 
mass m be regarded as concentrated at a point which is at a 
distance L from an arbitrary reference point, then niL is the 
moment of that mass with reference to the selected point. A 
particle may be regarded as having a moment with reference to 
a given fixed line or plane and its value in these two cases would 
be rriLj as before, if L is the distance of the particle from the line 
or the i)lane. 

If the collective moment of several masses, each regarded as 
concentrated at a definite point, is desired, the magnitude of the 
moment of the group of particles is found by merely effecting an 
algebraic sum of the individual moments. Moment of mass is a 
scalar quantity. The algebraic sign to be used with a particular 
moment is entirely dependent upon the sign of L, the distance 
factor. In general, then 

ML == viiLi -f- VI2L2 "i" -]-••• (6-2) 

where M is sum of the masses and L is the distance from the 
reference line or plane to the point at which the total mass M 
may be regarded as being concentrated, and Li, L2, L3, etc., 
are the distances of the particles Mi, m2, m-3, etc., respectively, 
from the same reference line or plane. 

6-7. Center of Mass and Centroid.—The center of mass of a 
system of particles may be defined as that point at which the 
total mass may be regarded as being concentrated in order that 
the moments of the total mass with reference to the three planes 
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of a reference system may be equal, respectively, to the sums of 
the mass moments of the individual particles with respect to 
the same reference planes. The convenience of the center of 
mass is particularly noticeable in the description of the motion of 
a body or group of bodies under the influence of applied external 
forces. Center of mass is a very important conception, as will 
be prominently revealed in the work below. 

There are occasions when it is convenient to determine that 
point in a massless line, surface, or volume which corresponds to 
the center of mass. This point is called the centroid of the 
particular configuration. The centroid of a geometric volume 
is that point which would coincide with the center of mass if the 
given volume were filled with some material of uniform density. 
The centroid of a surface is the point which would coincide with 
the center of mass of a thin homogeneous sheet, bent if necessary 
to fit the given surface, when the thickness of the sheet is made 
to approach zero as a limiting value. A similar definition could 
be written for the centroid of a line. 

The method of determining the center of mass for a given 
distribution of particles consists in finding the coordinates of 
the center of mass by calculating the moment of the group of 
mass points with reference to each of the three planes of a given 
reference system. Dividing each of the sums of the moments of 
mass thus found by the total mass gives the desired coordinates 
of the center of mass. The process is made obvious by a con¬ 
sideration of the three following equations: 

Mx = ruixi + m2X2 + m^xz + • • • 
My = miyi + 7^22/2 + m^yz + • * • 
M2 = miZi + m2Z2 + + • • • (6-3) 

where niim2mz, etc., are the masses of the particles xiyiZij X2y2Z2, 
and xzyzZz coordinates respectively of the particles, M the total 
mass and x, z, the coordinates of the center of mass of the 
system of particles. 

Hence the coordinates of the center of mass are given by the 
equations 

.rriiXi 

M ir (6-4) 

In general, however, the individual mass points will not 
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separated but will be the constituent differential mass elements 
of which the body is composed. We must, therefore, replace the 
summation expressions of Eq. (6-4) by integrals which are written 
as follows: 

X X dm z 
_1 
M 

I z dm 
Jm 

(6-5) 

the integrations being taken over the entire mass M, The cen¬ 
troid for volumes, surfaces, and lines may be determined by 
equations similar to those of Eq. (6-5) except that volumes, 
surfaces, and lengths are introduced in place of the corresponding 
masses. 

The particular reference system selected will not affect the 
position of the center of mass in the body but discretion in its 
selection may make the details of the integration process easier. 
When the shape of a body of uniform density is such that the 
entire body may be regarded as being made up of pairs of equal 
mass particles so situated that a certain plane bisects perpen¬ 
dicularly the lines joining the particles of each pair, then such a 
plane is called a plane of symmetry and must contain the center 
of mass of the body. Suppose the YZ plane of a selected refer¬ 
ence system were such a plane of symmetry; then the integral 
fx dm taken over the entire body must be equal to zero and 
hence x = 0. In this case the integral consists of a sum of 
self-canceling pairs of mass moments. Usually planes of sym¬ 
metry may be found by inspection. If the nature of the body 
is such that there are two planes of symmetry, then the center 
of mass must lie in the line of intersection of these two planes. 
In determining the center of mass of a given body or configura¬ 
tion of bodies, therefore, it is advantageous to select a reference 
system so that one 04 two, if possible, of the reference planes may 
become planes of symmetry. For example, in determining the 
center of mass of a right circular cone of uniform density, it is 
to be observed that, if the reference system is so selected that 
the x-axis coincides with the geometrical axis of the cone, then 
the XY and the ZX planes are planes of symmetry; hence the 

center of mass of the cone must lie on the X-axis. 
After a reference system has been selected, the next consider¬ 

ation to receive attention should be the selection of a convenient 
mass element. It is not always necessary to use a mass element 
of which all three dimensions are of differential magnitude. In 
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some cases the differential mass may be of a rodlike shape with 
one dimension of finite length. In other cases it may be a thin 
section, sheetlike, of differential thickness. In all cases, however, 
all parts of the differential mass must be at ecpial distances from 
the reference plane from which the particular coordinate is 
measured. If the differential mass has three differential dimen¬ 
sions, then each mass integral is to be converted to a triple 
volume integral; viz., 

Ixdm = fff p X dx dy dz 

with the limits of the integrations to be determined by the 
nature of the configuration and the reference system. By an 
appropriate selection of the differential mass, then, one or two 
steps in the integration may be avoided in certain special cases. 

In the case of the right circular homogeneous cone the differ¬ 
ential mass may be a thin section taken perpendicular to the axis 
of the cone. This selection gives a differential mass having 
only one differential dimension and hence the evaluation of the 
mass integral is reduced to a single integration. 

To find the center of mass of a given body or group of bodies 
it is wise, therefore, to look first for planes of symmetry, next for a 
suitable reference system, and finally for a convenient differential 
mass. Simplicity in work of this character is obtained by skill 
in planning the procedure. 

A number of problems are given in the section below to 
illustrate the details of the process for determining the center 
of mass of typical cases. 

6-8. Determination of the Center of Mass—Problems.— 
1. Find the center of mass of a straight rod of length L having 
uniform cross-sectional area. The density^of the rod is to vary 
uniformly from zero at one end to a value K at the other. 

Since the rod has a uniform cross section, there are two planes 
of symmetry, and these planes are perpendicular to each other 
and intersect in the axis of the rod. The center of mass of the 
rod must therefore lie in the axis of the rod. The reference 
system may be taken with the YZ plane perpendicular to the 
rod, the X-axis being coincident with the axis of the rod and the 
origin at one end of the rod, say the end with the zero density. 
By thia selection two coordinates of the center of mass, y and z, 
are then known to be equal to zero. For the differential mass 
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we may select a thin section perpendicular to the axis of the rod 
and of t hickness dx. 

The density p of the rod at any point, which is at a distance x 
from the end of the rod having the zero density, is p = KxIL. 
Since the density varies uniformly from one end to the other, we 
may obtain the total mass M of the rod by multiplying the 
average density (K/2) by the volume, which gives M = K A Lf2 
if A is the cross-sectional area. The differential mass may now 
be expressed in terms of the symbols as follows: 

K A X- 

Using these values with the first equation of Kqs. (6-5) gives: 

2. Find the center of mass of a thin plane uniform sheet of 
metal which is in the form of the 
right-angle triangle having sides 3, 
4, and 5 cm. 

There is only one plane of sym¬ 
metry in this case and it is midway 
between the faces of the sheet. 
The center of mass must be in this 
plane; hence we need to integrate 
expressions for two coordinates 
only. If we select a reference 
system so that the axes OX 
and OY form two sides of the 

Fig. 81. 

triangle as shown in Fig. 81, then 2 = 0. 
It is convenient here to put, the differential mass dm = dxdy pi 

in which p is the density and t is the thickness of the sheet. The 
total mass M of the sheet is therefore Qpi. It is to be noticed 
in the details of the integration as given below that each integral 
becomes a double integral. In the expression for x we integrate 
first with respect to dx, while dy is treated as a constant. Geo¬ 
metrically this integration gives the moment of the area of a 
strip of width dy and of a length which depends upon the position 
of the strip and hence upon y. The upper limit of the variable 
X is determined by the slope of the hypotenuse of the triangle. 
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Since the equation of the hypotenuse is 4a: = 12 — ^y, then the 
upper limit to be used for x is 

X = H12 ~ 32/) 

The second step consists of an integration with respect to the 
variable y. This process, in reality, determines the sum of the 
moments of an infinite number of strips parallel to OX with 
respect to the YZ plane. The coordinates x and y of the center 
of mass are obtained by integration as shown in the following 
steps: 

X dm ■ihX' 
■ta X dy dx 

12-3v 

X dy dx 

6 
= 1 

(12 - 3?/)- 
32 

dy 

y = 

dy 

dx dy 

- 6^8 

= I 
3. Find the. center of mass of a solid homogeneous right 

pyramid having a square base. 
Let the altitude of the pyramid be /i, each edge of the base 6, 

and let the density be designated by p. Because there are two 
planes of symmetry perpendicular to each other, which intersect 
in the axis of the pyramid, the center of mass must lie in the axis. 
The reference system may be selected with the YZ plane parallel 
to and containing the base of the pyramid and with the X-axis 
coinciding with the axis of the pyramid. The x coordinate of the 

center of mass is all that remains to be found. 
If’we now select as a differential mass a thin section of the 

pyramid perpendicular to the X-axis, then 

dm p {h ^ xy j. 

since the section is a square with each edge equal to (h — x)b/h 
and of thickness dx. 

The mass M of the pyramid may be found by direct integration 

of the expression 
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Hence we may write 

xydn 

J^{h — xYdt 

h 
4 

Problems.—1. Find the center of mass of a system of three particles, 16, 
20, and 6 g. The particles are in a straight line with spacing distances of 
10 and 25 cm. between the first and second and between the second and third, 
respectively. 

2. Find the center of mass of the system of particles, 2, 3, 4, and 6 g., one 
placed at each of the corners of a 10-cm. square in the order given. 

3. Find the center of mass of the system of eight particles, 1, 2, 3, 4, 5, 6, 
7, and 8 g., one placed at each corner of a cube 10 cm. on each edge, in 
such a manner that, when the cube is placed with sides horizontal and 
vertical, the upper face contains the first four masses placed cyclically in 
numerical sequence and the lower face contains the other four masses with 
the 5-g. mass below the 1 g., the 6-g. mass below the 2-g. mass, etc. 

4. Locate the center of mass of a right circular cone having uniform 
density. 

5. Find the center of mass of a homogeneous hemisphere. 
6. Determine the centroid of a circular arc when the angle subtended at 

the center of the arc is 180, 90, and 40 deg. 
7. Locate the centroid of the sector of a circle w here a is the angle and r 

the radius. 
8. Find the center of mass of two homogeneous spheres, one of radius 6 

cm. and the other 8 cm., when the distance between the centers is 20 cm. 
and the density of the smaller sphere is twice that of the larger. 

9. Prove that the medians of a triangle intersect at the centroid. 
10. Find the center of mass of a thin circular disk which has a diameter 

of 10 cm. and which has a 2-cm. circular hole cut out. The center of the 
hole is 3 cm. from the center of the disk. 

11. Using the formula of Eq. (6-1), make a plot showing the variation of 
w/mo when expressed as a function of v/c, 

12. Express Eqs. (6-3), (6-4), and (6-6) as vector equations. 



CHAPTER VII 

THE FUNDAMENTAL EQUATIONS IN TRANSLATION 

7-1. Defimtions.—Up to this point in the study of mechanics 
we have been concerned with kinematical quantities, with the 
exception of the quantity mass which was discussed in the 
preceding chapter. In the present chapter we shall study some 
fundamental dynamical relations. As a preliminary to this study 
it is necessary to define the two quantities momentum and force. 

Momentum.—We have already defined the two quantities mass 
and velocity, both of which are included in the quantity momen¬ 
tum. We may, with Newton, define the momentum of a body 
as the ‘^quantity of motion^’ posscvssed by that body. 

It is measured by the product of the mass of the body by its 
velocity. The term quantity of motion^’ is not commonly 
used in this country. The French term for momentum, however, 
is quantile de mouvement, literally, quantity of motion. The 
momentum (of a body) is more commonly defined as the product 
of the mass by the velocity. 

Momentum is a vector quantity. It has both direction and 
magnitude. The direction of the momentum is that of the 
velocity factor. The magnitude is equal to the product of the 
mass by the speed. If m is the mass of a particle and V is its 
velocity, then the momentum of the particle may be expressed 
in terms of its components along the axes of some selected refer¬ 
ence system as follows: 

dx. . ay. . dz. 
mV = m~jTi + m-£j + m-jjk 

dt dt dt 

The units in which momentum may be expressed are combi¬ 
nations of the units used for mass and velocity, such as gram 
centimeter per second, pound foot per second, etc. 

Force.—The term force is in common usage and undoubtedly 
all students of physics have a correct conception of it, but for 
the sake of being explicit we may define force as that physical 
quantity which, when acting upon a particle that is free to move, 

140 
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will produce a change in the momentum of the particle and, 
quantitatively, the force is equal to the time rate of change of 
the momentum (see Newton^s second law of motion). Expressed 
in symbols, if F is the force acting upon a particle of mass w, we 
may write 

It is to be noticed this is a vector equation and therefore, to 
be valid, both sides of the equation must have the same direction 
as well as the same magnitude. This statement does not mean 
that the momentum must have the same direction as that of the 
force but rather that the direction of the quantity which expresses 
the time rate of change of the momentum must be that of the force. 

In nearly all of the problems which the student will study, 
the mass or masses of the bodies involved will be constant. In 
such cases it is legitimate to equate the force to the product of the 
mass by the acceleration of that mass. Because of the pre¬ 
dominance of such problems, the equations developed below are 
subject to this limitation. It is felt that no handicap will be 
imposed upon the student because of this limitation because it is 
not difficult to rewrite any of the equations to include the more 
general case if there be a need for so doing. 

The units in which force may be expressed are the dyne, 
poundal, gram weight, pound weight, etc. The dimensions of 
force are those of mass times acceleration, for example, gram 
centimeter per second squared. 

7-2. The Force Equation.—It has been demonstrated repeat¬ 
edly that, whenever a force acts upon a body which is unre¬ 
strained so that it responds freely to the force, the body experiences 
an acceleration. Within the limits of error due to measurement, 
such experiments show that for any given body with mass con¬ 
stant the magnitude of the acceleration is directly proportional 
to the force and inversely proportional to the mass of the body. 
This relation is expressed in the force equation. 

For purposes of obtaining a general relation we may imagine 
that the external force applied to a body is so distributed to all 
differential mass elements that each elemental mass has acting 
upon it the differential force which would independently produce 
the particular acceleration which it actually has when moving 
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with the body. If the differential force is taken parallel to some 
reference line, say OZ, then we may write 

df\ = (7-1) 

in which dF^ is the differential force, parallel to OA", acting on the 
differential mass element dm and the second derivative of x with 
respect to the time is the acceleration of that mass element. 

Tlie force equation for the entire body (mass = m) may be 
found by integration. If is the component of the resultant 
force acting on the body parallel to the A'^-axis, then 

where the integration is to extend over the entire body. 
It is possible to effect the integration even in this general 

expression if we make use of the first equation of Eqs. (6-5) 
which expresses the x coordinate of the center of mass of the body. 
This equation is rewritten here for the sake of convenience 
and is 

nijo 

If we multiply both sides of this equation by m and then differ¬ 
entiate twice with respect to the time, assuming that m is con¬ 
stant, we obtain 

d^x d^x 

'"W ■ Jo 

Substituting this value for the integral in Eq. (7-2) gives the 
desired expression 

Fa: = or Fa,I = (7-4) 

This equation shows that the effect of the external force Fx may 
be measured by the product of the mass of the body and the 
acceleration of the center of mass. This equation expresses an 
important general relation and is valid for any position of the 
force, i.e.f whether the line of the force actually passes through 
the center of mass or not. It will be shown later that, when the 
line of the force does not pass through the center of mass, an 
additional effect^ viz.^ rotational acceleration, is also produced, 
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but the acceleration of the center of mass remains as given by 
Eq. (7-4), 

l^]quation (7-4) is a vector equation. Since mass is always 
a scalar quantity and both force and acceleration are vectors, 
it follows that the acceleration is always parallel to the force 
which produces it. 

The relation expressed in Eq. (7-4) is an instantaneous one 
only. Whether the force remains constant or not in any particu¬ 
lar case is a matt er which is usually expressed in the given data. 
Two similar eciuations may be written for the component effects 
parallel to the two other axes of reference. The equation for 
the resultant force could be obtained from the three component 
equations by adding, as vectors, the members of both sides of 
the equal ions separately and then equating the results. Con¬ 
versely, if the equation for the resultant force were known and 
any or all three of the components were desired, these could be 
obtained in the usual manner by projection. 

In a previous chapter we learned that there were several types 
of acceleration, such as tangential, normal, and radial. For 
each type of acceleration we have a corresponding force which 
bears the same name as the type of acceleration for which it may 
be regarded as being directly responsible. 

7-3. The Impulse Equation.—Whenever a force is permitted 
to act on a body for a definite time and during that interval 
there is a freedom from constraints, then there is always a change 
in the velocity of the body. The quantity which measures the 
effect of the force upon the body, when this effect is accumulated 
over a period of time, is called change of momentum. The 
quantity which produces the change in momentum is called the 
impulse of the force. The magnitude of the impulse is the inte¬ 
grated sum of the particular values of the force (generally con¬ 
sidered as varying) multiplied by the corresponding time elements. 
If the force F, in a particular case, is constant and acts for a time t, 
then the impulse of the force is expressed by the product Ft, 

To derive the general form of the impulse equation, we may 
use the differential force equation (parallel to OX) as a starting 
point. In order to have the velocity factor prominent, we shall 
use dVtfi/dt as an alternative form of the acceleration, where Vx 

is the velocity parallel to the line OX, The starting point is then 

dF. = dm^ 
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This equation is readily converted into an impulse equation if 
we multiply through by the time dt. The impulse of the force 
dFx for a finite time t on a differential mass dm is then given as 
follows: 

X'""-- X'*” 
Since dm is a constant, we may put it outside the integration sign 
in the right-hand member. If and Vx^ be the velocities of dm 

at the times t and 0, respectively, then the equation becomes 

plF.dt = dm (K, - \\) (7-5) 

The equation shows that the effect of the impulse on dm is 
to change its momentum. Consistent with their vector 
nature, both quantities, impulse and change of momentum, are 
in the same direction along OX, The direction of the change of 
momentum depends upon the signs and relative magnitudes of 
both Vx and Vx . 

If the total impulse and total change of momentum parallel 
to OX are required, then it is necessary to integrate both quan¬ 
tities over the entire mass. This is expressed as follows: 

X"X''^''*-X"''”<'''- 
Since dt is common to all force elements, the first integration, 
i.e.j of dFx over the entire mass, is readily effected and gives 
Fx, the X component of the resultant force. 

The right-hand member may be reduced to a simpler fonn 
by introducing the velocities (parallel to OX) of the center of 
mass. If we differentiate the expressions for the x coordinate 
of the center of mass with respect to the time for the initial and 
final positions of the body corresponding to the times 0 and 
the following result is obtained: 

m (f. - V.) = fj'dm (F. - V.) (7-7) 

where Fx and F*^ are the velocities of the center of mass at the 

times t and 0, respectively. By substituting this result in Eq. 
(7-6) it follows that 

£f. d, - £-im (F. - V.) 

<7.8) 
This expression is the general form of the impulse equation. 
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If, in a particular case, Fx is not a function of the time but 
remains constant, then 

Fxt = m (F.- fx) (7-9) 

It is possible to effect such integrations as are indicated above 
even though the direction of the force is not constant. In the 
case of the impulse of the resultant force dF, Eq. (7-5) takes the 
following form 

£dF dt = dm (V - 7o) (7-10) 

where the velocities V and Fo of the differential mass are its 
resultant velocities at the instants of time corresponding to t 
and 0. Tlie single vector giving the change of momentum 
is not necessarily parallel to either velocity, initial or final, 
but is parallel to the force which produces the change of 
momentum. 

7-4. The Work Equation.—We may derive the elemental work 
equation from the differential force equation, provided that we 
select the alternative form of the acceleration which contains 
the expression for the coordinate rather than the time derivative. 
This selection gives the following form to the force equation for 
t he differential force dFx acting upon dm \ 

dFr = (7-11) 

where Fx is the velocity of dm, and dVx the change in Fx as dm 
is displaced a distance dr. Multiplying both sides of this equa¬ 
tion by dx gives 

dFx dx = dm Vx dVx (7-12) 

which is the work equation in its differential form. If the 
differential mass is displaced a distance measured from 0 to x and 
has velocities Fu and Fx at the beginning and end, respectively, 
of this displacement, then upon integrating Eq. (7-12) from 
0 to X we obtain 

j^'dF\ dx = § dm F.2 _ x (7-13) 

The left-hand member gives the work of the differential force 
over the displacement. The integral could be evaluated if the 
expression giving the variation of dFx with the displacement were 
known. The right-hand member is a characteristic expression 
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for the change of kinetic energy. Obviously and Vo^ of this 
member are positive regardless of the sign of the speed. 

Since work is a scalar quantity, the actual direction of the force 
is immaterial in the process of integration. So long as each 
element of the displacement is taken parallel to the force at the 
corresponding position in the path, it does not matter whether 
the direction of the force is changing or not. 

As an ilhistration of the work done by a force whose direction 
is continually changing, wo may write the work equation for the 
radial force. The force ecpiation for the force dFr in the line of r, 
the radius vector, is 

/ (yrdVr A 

where the quantity within the parenthesis is the component 
acceleration of drn in the line of r. 

This equation is converted into a work equation by multiplying 

both sides by dr. If the work is desired for a displacement which 
is expressed by a variation of the radius vector from 0 to r, then 
we may write 

pr ]72 _ y2 yr 

\ dFr dr == drn---^^-- I dm rcc‘^ dr (7-14) 

in which Vr and Vr^ are the velocities of dm in the line of r at the 

beginning and end of the displacement interval. If dm were 
restricted to move in a circular path, then the magnitude of r 

would remain constant and the force dFr would always be 
perpendicular to the resultant velocity. In this case the velocity 
along r must remain equal to zero and hence there could be no 
change of kinetic energy in this line. Furthermore, since dr 
would be equal to zero, there would be no work done in this line. 

The conclusion just drawn is always true for the normal 
force; since the normal force is permanently perpendicular to 
the resultant displacement, there is no component displacement 
in the line of the normal force and hence the normal force never 
does any work. 

The tangential force acting on a differential mass produces 
an acceleration which may be written in the form V dV/<kf 

where s is the coordinate measured along the path in which the 
particle move». 
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The work equation for the tangential force may then be 
written as follows: 

(IF, ds = dm V dV 

f^dFt ds = i dm {V^- Vo^) (7-15) 

Since the normal force does not work, one would expect as a 
conclusion from this fact that the 
tangential force must do all the 
work, that it does as much work as 
the resultant force. This is readily 
proved in the following manner. If 
dF (Fig. 82) is the resultant force on 
drriy and du the displacement in the 
line of dFf and if a is the angle 
between dF and the tangential force dFt^ then 

dFt = dF cos a 

for dFt is a component of dF in the line of the tangent. The 
resultant displacement ds, however, is in the line of the tangent, 
therefore 

du = ds cos a 

Hence if we multiply these two equations together so that the 
work of each force is expressed, we obtain the important result 
that 

dFt ds = dF du (7«16) 

From this we may conclude that the work of the tangential force 
is equal to the work of the resultant force. Since this is true, it 
follows that the normal force, the other component of the 
resultant force, can do no work. 

In the case of either the force or impulse equations, if the 
expressions for the effect of the components along the axes of any 
reference system be given and the equation for the resultant force 
or impulse is desired, a vector sum inust be made of the three 
equations. However, in the case of the work, expressed in terms 
of the X, y, and z components, a scalar sum must be taken if the 
work of the resultant force is to be obtained. That this is true 
follows from the fact that work and energy are scalar quantities. 
The statement may be proved, however, by writing the three 
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equations which express the work of the component forces along 
the three reference axes and showing that the algebraic (not 
vector) sum of the equations gives the proper result. If all of the 
components are acting on the same difiPereniial mass, then the 
following equations give the elements of work and corresponding 
changes of energy: 

dx = i- dm {VK - V\) 

JjdFy dy = I dm (F^ - V\) 

j‘dF. dz = \ dm {V^ - V\) 

Adding these equations algebraically gives 

f^dF, dx + fjdF, dy + £dF, dz = dm (F^ - F„2) 

= £dF, ds (7-17) 

Referring to Eq. (7-15) which expresses the equivalence between 
the change in kinetic energy, obtained here by the sum of the 
three equations giving the work of the component forces, and 
the work of the tangential force, we may conclude that the work 
of the resultant force may be found by adding algebraically the 
work of the component forces. 

It is of interest here to use the rule for the scalar product of two 
vectors and show that its result in this case is consistent with the 
results obtained above. The scalar product of the two vectors 
(force dF and displacement ds) is expressed as follows: 

dF • ds = (i dFx + j dFy + k dFz) * (i dx + j dy + k dz) 
= dFx dx + dFy dy + dFz dz (7-18) 

To determine the total work done by the force parallel to any 
line OX, it is necessary to integrate over the entire mass of which 

dm is a part. Hence 

f"£dF, dx = i f^dm (F^ - V\) (7-19) 

In order to integrate these expressions, we must know the law 
of distribution of the forces and velocities throughout the mass. 
In the general case all elements of mass may not have the same 
displacement. This is true in the case of motions which include 
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rotations but in the case of pure translation the displacement is 
common to all elements of mass if the body is rigid. 

7-6. The Three Fundamental Equations.—The three funda¬ 
mental equations of motion which have been developed above 
may be conveniently brought together for certain important con¬ 
siderations, They are written below in forms which will serve 
best our present purpose. 

Force: 

dFM = J I. (7-20) 

Impulse: 
II H

 ["dm (F, - V.) (7-21) 

Work: 

£dm (F^ - F^„) (7-22) 

In both the force and impulse equations we are concerned 
with vectors, while in the work equation the quantities are 
scalar. Because of this difference it is necessary to consider 
only external forces in the first two equations and hence the 
(e) is written after the force F to emphasize this fact. The 
reason for this emphasis is because in our development of these 
equations we have not imposed the condition that the mass was 
rigid. In a nonrigid body there may be displacement of one 
part of the body with respect to another part. If we were to 
include internal forces in an integral in which the vector character 
of the quantity was involved, the opposite signs connected with 
any pair of such internal vectors would cause the quantities to 
cancel each other in the sum and hence drop out of the final 
result. In the work equation we may have internal forces 
contributing to the total work if the parts of the mass, upon 
which these forces are acting, have relative displacement. 

To illustrate this point let us consider two small masses joined 

to each other by a stretched elastic mass- ^ mi 
less spring (Fig. 83). The spring exert<s 
internal forces +T and -T upon the ^ 
system taken as a whole and, while the 
masses may move relatively to each other because of the spring, 
the center of mass is not affected by it. In a consideration of the 
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acceleration of the center of mass of this system due to an external 
force, the force equation should not include the forces of the spring, 
for the acceleration of the center of mass of the system is not affected 
by + r and — T, In the force integral + T would cancel — T, 
Similarly in the impulse equation the impulse of +r, being a 
vector, would cancel the impulse of — T, In the work equation, 
however, the scalar quantities would not cancel each other, because 
both elements would be positive and hence would contribute to the 
final result. 

7-6. Position of the Force and Its Effect.—In the forms given 
in the preceding section for the three fundamental equations, 
the right-hand members of the force and impulse equations may 
be reduced to indicate the acceleration and momentum of the 
total mass in terms of the center of mass. This is not the case 
in the work equation. It is in the work equation that the effect 
of the position of the line of the force with respect to the center 
of mass becomes important. In the form in which the work 
equation is given above, this characteristic is not expressed but, 
by recasting the equation, prominence may be given to this 
difference between the three equations. By so doing we may 
express an important property of the center of mass and hence 
bring all three equations to such terms of similarity as involve 
the center of mass. 

We have seen in our study of the velocity that the resultant 
velocity of a point may be expressed in terms of its velocity 
relative to some moving system (here we shall use a moving 
system attached to the center of mass) and the velocity of the 
moving system with respect to the fixed system. This relation 
was expressed as follows: 

Vp (0) = Vp (Q) + (0) (7-23) 

If r be the velocity of dm in the reference system and U be 
its velocity with reference to the moving system connected to 
the center of mass and W be the velocity of the center of mass, 

then 
V ^V+W 

If a is the angle between W and U, then 

+ 2WU cos a + 

The kinetic energy of dm is therefore 

^ dm + dm WU cos a (7-24) 
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Since these quantities are scalar, we may integrate over the 
entire mass and have the following scalar sum: 

dm dm dm W + fj'dm WU cos a 

(7-25) 

In the last term, W is common to all elements and may therefore 
be put outside the integration sign, leaving 

J'^dm U cos a 
0 

This quantity is evidently the momentum parallel to W (at the 
particular instant) which is due to U. But the total momentum 
parallel to W is 

fj'dm {W +U cos a) 

and is equal to mW. Therefore the integral which expresses the 
momentum due to U must be equal to zero. 

That this is true may be seen from another point of view. For 
this purpose we may use the equation for one coordinate of the 
center of mass; m., 

— 1 dm xi 
nijo 

We wiir select a moving system with origin at the center of mass 
and with the A^i-axis parallel to W. Differentiating the equation 
for xi with respect to the time and assuming that the mass is 
constant gives 

dxi 1 dxi 

dt m Jo ^ dt 

Since 

dXl rr J A 
-57 = ?7 cos a and = 0 
dJt dt 

it follows that 

J^dm U cos a = 0 
0 

Equation (7-25) may then be written in the form 

J['"i dm i mW^ + 
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We may conclude from this result that the total kinetic energy 
of a body may be regarded as consisting of two parts, one, 
given by represents the kinetic energy of the entire mass 
moving v/ith a speed equal to that of the center of mass and the 
other, given by the last term, is the kinetic energy due to veloci¬ 
ties relative to the center of mass. In rigid bodies the first 
term gives the translational kinetic energy and the other term 
expresses the rotational kinetic energy. This division is a natural 
and convenient one from the standpoint of both mathematics 
and dynamics. 

With this analysis of the kinetic energy term, the work of the 
forces parallel to OX, a reference line, may now be expressed as 
follows: 

(7-27) 

In the equation the differential force dFx displaces the differ¬ 
ential mass dm from xq to x and changes its velocity from to 

Ux as measured in the moving system. The velocities 

and Wx are the initial and final velocities, respectively, of the 
center of mass. All velocities are component velocities parallel 
to the reference line OX. 

A similar analysis may be made for the left-hand member of 
the work equation. Using a coordinate system which is moving 
with its axes parallel to those of the reference system and which 
is attached to the center of mass of the body, so that the dis¬ 
placement dx of the differential mass is expressed in terms of the 
displacement of the moving system, we may write dx = dx + dx^ 
where dx is the displacement of the center of mass (parallel to OX) 
and dx^ is the displacement of the differential mass in the moving 
coordinate system, i.e,j relative to the center of mass. Sub¬ 
stituting the equivalent expression for dx in the left-hand member 
of the work equation [Eq. (7-27)] gives 

- rx>* ^ 

But M is common to all elements of the force; hence one step 
in the double integration of the first term of the right-hand mem¬ 
ber may be carried out, which gives the following equivalence: 
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A substitution of this expression together with that expressed in 
Eq. (7-28) in the general equation [Eq. (7-27)] gives 

= hrn{W\ - W\) + £idm(UK - U^) 

(7-29) 

It is easy to show that this equation may be regarded as a 
sum of two separate equations, which are 

dx==hm (W\ - W\) (7-30) 
•'^0 

fj'fJdF. dx' = dm {UK - UK) (7-31) 

This may be proved in the following manner. From the force 
equation we know that the resultant force may be regarded as 
acting on the center of mass and will produce an acceleration of 
the center of mass expressible in the following manner: 

m W, dW, 
dx 

Separating the variables and integrating gives 

£f, dx = I m (WK - WK) (7-32) 

This establishes the truth of the character of Eq. (7-29) by 
proving the validity of Eq. (7-30). From this consideration, 
Kq. (7-31) must be accepted. 

Since this equivalence may be similarly established for the 
work done parallel to each of the two other axes, it is correct to 
conclude that the work done by the force which is applied along 
a line which does not pass through the center of mass of a body 
may be regarded as a superposition of two independent processes. 
The off-center force does work expressed in terms of the dis¬ 
placement of the center of mass and measured by the change of 
energy of the whole mass moving with the speed of the center of 
mass and in addition does work measured by displacements and 
energy changes relative to the center of mass. Both work and 
energy are divided into two parts, n>., translational and rotational. 

In cases of pure translational motion Eq. (7-31) drops out and 
only the equation expressing the motion in terms of the center of 

mass remains. 
We are now able to see that all three fundamental equations 

of motion apply to the motion of the entire mass expressed in 
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terms of the motion of its center of mass, and also that the work 
equation alone is concerned with expressions dealing with motions 
relative to the center of mass. Furthermore, the conception of 
the idea of center of mass gains added meaning, for it carries 
with it the ideas of center of force and momentum as well. There 
are certain conveniences of description to be gained from the 
expressions which do not give any indication of the position of 
the force, but at the same time these same expressions fail to 
describe any but average values. The work equation alone can 
furnish us with a knowledge of the values of the accelerations or 
of the velocities of the different parts of the body. 

7-7* Conservation of Momentum.—In the present section we 
shall derive those equations which are fundamental to and 
descriptive of that group of phenomena known as collisions or 
impacts. A collision between two bodies takes place when the 
two bodies strike each other or come together in the course of 
their motion in such a way that their velocities are altered by the 
mutual effect of one body upon the other. In general, both 
bodies will have velocities, before and after the impact, which 
are different from zero, but there are many cases in which one 
body may have no velocity before the impact. The directions 
of the velocities need not be parallel to a fixed line. If the 
velocities are all parallel to a fixed line before and after impact, 
the case is a special one in which the term central impactis 
used for identification. 

In general, the duration of time during which the two bodies 
are in actual contact with each other is comparatively short. 
In fact in many cases the actual time is so short that it is difficult, 
if not impossible, to measure the stresses brought into action by 
the collision. During the collision the bodies are deformed by 
the internal stresses but they return to their original forms if the 
materials are elastic. If the materials are inelastic, the defor¬ 
mations will be permanent at least as far as the particular collision 
is concerned. We may regard the time interval during which 
the two bodies are in contact as embracing two periods, one in 
which the deformations are taking place and the other in which 
the bodies are returning to their final form. At the instant of 
time which separates the two intervals, the two bodies will 
have a common velocity. 

In a Consideration of a collision we exclude aU forces external 
to the system. The only forces which are to be included are 
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internal forces or those which are caused by the collision. In 
dealing with only two bodies, the forces occur as a pair of equal 
and oppositely directed forces. During the impact the magni¬ 
tudes of the forces increase from zero up to a maximum value and 
then decrease to zero as the terminal value. 

We may let +F represent the instantaneous value of one of 
the pair of stresses and —F will then be the other. The force +F 
acts on one body and —F upon the other. Let mi and m2 

represent the masses of the two bodies and let Ui, U2 and Viy V2 

be the velocities before and after the impact of mi and m2, 
respectively. If t is the time of contact of the two bodies, then 
the impulse of each force may be written as follows: 

£ -Fdt = mi(7i - Ui) J^Fdt = m^iV^ - U^) (7-33) 

The two equations are written in vector form. The right-hand 
members express the change of momentum of the masses. It is 
not necessary to assume that Ui is parallel to 7i or that U2 is 
parallel to V2* 

The impulses of the two forces may be eliminated by adding the 
two equations, which gives the following important result: 

miUi + m2t/2 = miVi + m2V2 (7-34) 

This equation gives rise to the expression conservation of momen¬ 
tum, The momentum of the system before impact is equal to 
the momentum of the system after impact. 

It will be convenient at this point to introduce and define the 
term coefficient of restitution. Attention was directed above to a 
division of the time of impact into two intervals. The impulse 
of either force during the interval of deformation is greater than 
the impulse of the force during the interval of reformation except 
in those cases where the constituent material is perfectly elastic. 
The ratio of the latter impulse to the former is called the coeffi¬ 
cient of restitution and is designed by the letter €. The numerical 
value of € varies from zero in the case of inelastic bodies to unity 
in the case of perfectly elastic bodies. 

Let V be the common velocity of the two bodies at the instant 
of maximum deformation. Since there are no external forces 
acting, the momentum of the system is constant [Eq. (7-34)]; 

hence we may write 

{mi ^ m^V = miVi + m^V^ (7-35) 
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But V must be the velocity of the center of mass of the system. 
Furthermore, the velocity (7) of the center of mass of the system 

must remain constant. 
We shall digress at this point to establish Eq. (7-35) by another 

mode of reasoning. Let x\ yi and be the coordinates of the 
centers of mass of the two bodies in a selected reference system. 
In a later chapter it will be shown that the motions of two bodies, 
such as we are now considering, are confined to one plane. We 
shall select the reference system to contain this plane of motion. 
Also let :r ^ be the coordinates of the center of mass of the 
system. By definition of center of mass it follows that 

(mi + m^2)x = 7niXi + m^xo (mi -f 7n2)y == miiji + m2y2 

Differentiating both of these equations with respect to the 
time (masses are constant) and writing in vector form gives 

(m, + m.) ^ = (m. ^ + m. ^^^) f 

Combining into a single vector equation, we obtain 

(mi + ^^^2) F = mil/i + mo[72 

which is identical with Eq. (7-35) above. 
Returning now to the development of the fundamental 

equations and more particularly to the writing of expressions 
which involve the coefficient of restitution e, we shall first 
introduce a limitation in order to simplify the work which is 
to follow. Up to this point the assigned velocities have been 
general but now we shall limit the velocities to parallelism with a 
fixed line—the case of central impact. The preceding equations 
are still valid but the quantities in them, such as impulse, 
momentum, and velocity, become ordinary scalar quantities 
under this restriction. 

We may equate the change of momentum of the mass mi during 
that part of the interval of impact which follows the instant 
of maximum deformation to e times the change of miS momentum 
during the time which precedes the instant of maximum deforma¬ 
tion. The validity of the equality is based upon the definition of 

€ and the impulse—momentum equation. In symbols for both 
mi and m® we may write 
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m,(Fi - V) = emi(V - Ui) m2(V2 - F) - em2(V - U2) 
(7-36) 

A relation between the velocities may now be obtained by 
canceling the mass factors in each equation and eliminating F. 
Hence 

Fi ^ F2 = (lA ~ U2) (7-37) 

From this equation, additional information may be obtained as 
to the meaning of the coefficient of restitution. This detail 
will be left to the student. It is also profitable to convert 
J<]q. (7-37) into one which shows that e is the ratio of the impulses 
as given in the definition. 

There are two other equations needed in order to complete 
the present development. These are equations expressing the 
velocities after impact in terms of the masses, coefficient of 
restitution and the velocities before impact. Substituting the 
value of F as given by Eq. (7-35) in Eqs. (7-36) and writing 
the resulting expressions so that they are explicit for the velocities 
after impact gives 

Fi - 

V2 = 

?niUi -h _ m^jUi — V2) 
nil + m2 mi m2 

miUi + — U2) 
mi + m2 mi + ni2 

(7-38) 

(7-39) 

7-8. Kinetic Energy Changes during Impact.—While there is 
no change of momentum during a collision, there is usually a 
change in the kinetic energy of the system. If the two bodies 
are not perfectly elastic, some of the kinetic energy which the 
system possesses before impact is converted into other forms 
of energy, such as heat, sound, and mechanical work. If Ei 
and E2 are used to express the kinetic energy of the system before 
and after impact, then 

El = ^ iTiiU-f- •2 1YI2U^ E2 = ^ miFi^ “f" “a 1TI2V2^ 

The change in kinetic energy is therefore 

El- E2^ ^ mi {Ui^ - FF) + i m2 {U2^ - Fs^) (7-40) 

In order to see just how the change in kinetic energy depends 
upon the coefficient of restitution, it is desirable to eliminate 
Fi and F2 from Eq. (7-40) by the use of Eqs. (7-34) and (7-37). 
The details of the algebraic process will be left to the student. 
Equation (7-34) should be written as a scalar equation, i.e,, for 
the case of a central impact, since Eq. (7-37) is written with this 

limitation. The final result is 
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An inspection of this equation will show that, if the bodies are 
perfectly elastic (e = 1), the right-hand member becomes 
equal to zero and hence we may conclude for this special case 
that there will be no change in the kinetic energy. In other 
words, no kinetic energy is converted into other forms of energy 
for collisions between perfectly elastic bodies. It is also to be 
noticed that, if the bodies are inelastic (e = 0), a maximum amount 
of kinetic energy will be converted into other forms of energy. 

Problems.—1. Two spheres of masses 50 and 100 g. arc moving parallel 
to a fixed line and toward each other with velocities of 30 and 20 cm. per 
second, respectively. If the coefficient of restitution is 0.6 and the impact 
is central, find the velocities after impact and the change in energy due to 
impact. 

2. Two bodies having masses of 2 and 5 lb. are moving with centers 
constantly in the same straight line. The larger mass is in front of the 
smaller and has a velocity of 10 ft. per second. The velocity of the smaller 
body is 15 ft. per second. The coefficient of restitution is 0.5. Find the 
velocities after impact and the change in kinetic energy. 

7-9. Consistent Units.—In using any of the three dynamical 
equations in the solution of numerical equations, it is necessary 
to express all of the symbols involved in units of a single con¬ 
sistent set. There are four consistent sets of units which are 
in common usage. In both the c. g. s. and English systems 
there are two sets of units—the absolute units and the weight 
units. Some of the units have received special names; others 
have not. The four sets of consistent units are listed in the 
table below. 

Table op Consistent Units 

Quantity 
C. g. s. English 

Absolute Weight Absolute Weight 

Displacement. . . . cm. cm. ft. ft. 
Velocity. cm./sec. cm./sec. ft./sec. ft./sec. 
Acceleration. cm./sec. ^ cm./sec.* ft.^ec.* ft./sec.* 
Force. dyne gram weight poundal pound weight 

(g-w.) (lb...) 
Mass.... g- g.w./(? (980) pound \h.„./g (32) 
Time. sec. sec. sec. sec. 
Momentum. g. cm./sec. g.w. cm./fir sec. lb. ft./sec. lb... tt./g ft. 
Energy. g. cm. g.w. cm.Vt7 sec.* lb. ft.*/sec*^ lb.».ft.‘/ff ft.* 
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In the foregoing table the symbol g is used to express the 
acceleration due to gravity and has a value which depends upon 
the particular place at which the weight forces are to be used. 
The given values, 980 cm. per second squared and 32 ft. per 
second squared, are approximate only. 

Problems.—Certain aspects of the use of the fundamental 
equations in translational motion may be illustrated by a few 
numerical problems. 

1. Two masses, 200 and 250 g., are hung, by means of a string, 
over a massless pulley. If the friction opposing the motion is 
constant and is equal to a 5-g. weight and acts only at the 
pulley, find the acceleration of the system and the tension of each 
cord. 

The two masses must move with the same acceleration because 
they are fastened together with the cord. The fact that the 
lighter body moves up and the heavier one goes down does not 
present any difficulties. We may select a convention of signs 
which will take care of this peculiarity. 

Let the signs of the forces, accelerations and velocities be 
taken positive when acting downward on the side of the heavier 
body and upward o*n the side of the lighter body. The assigned 
positive direction does not need to be in the actual direction 
of motion but it always seems easier to take it so. If a selection 
of positive direction is made and then after solving the equations 
for the acceleration, say, it turns out to be a negative quantity, 
this merely means that the acceleration is opposite to our assigned 

direction. 
To express the resultant force F in the given case, we must 

add all the existing forces which are in the line of motion. If we 
express the force in dynes, we may write 

F = 250g + T - T - 200g - 5g + T' - T' 

= 45g dynes 

where T and T' are the tensions in the cord between the heavier 
body and the pulley and between the lighter body and the pulley, 
respectively, and g is the gravitation constant. If there were 
no friction, then the tension in the cord would be the same on 
both sides of the pulley* In this case, however, the tensions 
must differ by 5 g. weight. We are at liberty to regard the 

cord on either side of the pulley as producing two tensions; 
e.jr., on the side of the heavier body, the cord pulls up with 
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a force of — T on the 250-g. mass and also pulls on the pulley 
with a force of +T, In such a case as this the tensions are 
internal forces in the system taken as a whole and therefore 
cannot affect the acceleration of the system as a whole. They 
cancel out in the expression for the resultant force as they should. 

The total mass of the system is the sum of the two masses. 
Since we now know two quantities of the force equation, the third 
may be determined. By expressing the force in dynes, the masses 
in grams, and the acceleration in centimeters per second squared, 
the units are consistent; hence 

M 

45 X 
980 
450 

= 98 cm. per second squared 

Having found the acceleration of the system and hence of 
either mass, we may now determine the tension in the cord on 
either side of the pulley. This may be done only by applying the 
force equation to a part of the system in such a way that the 
desired tension becomes an external force. If we now write 
the force equation for the 250-g. mass alone, the tension T 
becomes an external force and may therefore be determined. 
The resultant force on the 250-g. mass is 250(7 hence by 
substituting in the force equation, since the mass and acceleration 
are known, we have 

250^ - r = 250 X 98 
T = 220,500 dynes or 225 

In a similar manner the tension on the other side of the pulley 

may be found and it comes out to be 220 g.^. 
2. A variable force of magnitude (50 — 10 t) poundals is 

acting on a mass of 10 lb. for 5 sec. If the body is initially at 
rest, what will be its final velocity? 

In this problem the force, time, initial velocity, and mass 
are given and the final velocity is to be determined; hence the 
impulse equation may be used. Since the force is variable but 
is expressed as a function of the time, we may use the general 
expression 

dt - m(F - XJ) 
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Substituting the given values and integrating gives 

jr^(50 — 10t)dt = lOF or F = 12.5 ft. per second 

3. A variable force is acting upon a 320-lb. mass. The 
force is expressed by the equation F = (10 ~ 0.01 s) Ib.t,,., 
in which is a coordinate measured in feet and parallel to the 
direction of the force. If the body has an initial velocity of 
50 ft. per second in a direction parallel to the force, find the 
velocity which the body will have after it has moved 200 ft. 

The data given introduce those quantities which are contained 
in the work equation; hence it is to be used here. Since the 
force is variable but is expressed in terms of the displacement, 
the general equation to be used is 

£Fds = - U'^) 

Substituting the given quantities for the symbols, and converting 
the given mass unit to that consistent with the other quantities, 
t.e.j m = and then integrating gives 

jT'^dO - 0.01 s)ds = -I X -W - 50') V = 53.5 ft. per second 

Problems.—1. Two masses, 150 and 100 g., are supported by a light cord 
over a massless pulley. Find the acceleration of the system and the tension 
in the cord. 

2. A 50-g. mass is restricted to horizontal motion on a table. It is con¬ 
nected hy a cord to a 100-g. mass. The cord passes over a massless pulley 
at the edge of the table and supports the 100-g. mass at some point vertically 
below the pulley. If the friction is 1,000 dynes, find the acceleration and 
the tension in tlie cord. 

3. Three masses, 50, 100, and 75 lb., are arranged to move in the same 
vertical plane. The 100-lb. mass can move only on a smooth horizontal 
table top. Strings attached to the mass support the other masses over 
opposite edges of the table, so that vertical motion only of the 50- and 75-lb. 
masses is possible. Neglecting all friction and masses of pulleys, find the 
acceleration and tensions. 

4. A mass of 25 g. is made to rotate in a circular path having a radius of 
50 cm. at the rate of 2 r.p.s. What force is required to keep the mass in 
the path? 

5. A 100-g. mass, initially at rest, is subjected to a variable force for 
10 sec. The magnitude of the force is given by the expression 50\/7 dynes. 
A force of resistance expressed by (15 — t) dynes is also acting. What is 
the velocity at the end of 10 sec,? 

6. Two electrically charged bodies are arranged so that one of them is 
fixed and the other (mass, 2 g.) may move in a horizontal line without 
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friction. Initially they are 20 cm. apart and the force between them is one 
of attraction and is equal to 100 dynes. The force varies inversely as the 
square of the distance. Determine the velocity of the movable body after 
it has moved a distance of 15 cm. 

7. A 3,000-lb. automobile can be accelerated from 5 to 30 m.p.h. in 5 sec. 

What force is necessary? 
8. A 3,000-lb. automobile is moving at a speed of 30 m.p.h. What brak¬ 

ing force is required to stop the automobile in a distance of 40 ft.? 
9. A 1,000-lb. elevator starts upward with an acceleration of 5 ft. per sec.* 

Find the tension in the supporting cable. What would be the force exerted 
by the floor of the elevator upon a 100-lb. person standing in the elevator? 

10. A spring, which is normally 3 ft. long when in an unstretched position, 
has a stiffness such that a force of 10 lb. weight will stretch it a distance of 
1 ft. One end of the spring is attached to a rigid support and the other end 
is fastened to a 5-lb. mass, the arrangement being such that horizontal 
motion only is possible. If the spring is stretched so that its normal length 

is increased to 5 ft. and the ma.ss is initially at rest when the spring is released, 
what will be the velocity of the mass when the spring returns to its normal 
length? (Neglect the mass of the spring and friction and assume that the 

force exerted upon the 5-lb. mass is proportional to the elongation of the 

spring.) 
11. Two spheres of the same size but of unequal masses are dropped 

simultaneously from some point above the ground. Assuming that both 
are subjected to the same force of friction, prove that the heavier mass will 

reach the ground first. 
12. A mass of 200 g. is hung from a massless spring, the upper end of 

which is attached to a rigid support. If the stiffness of the spring is such 
that a load of 50 g, produces a displacement of 10 cm., what would be the 
period of the simple harmonic motion which will take place when the 200-g. 
mass is released from a small vertical displacement? (Assume g = 980 cm. 
per second squared.) 

13. Two masses, 200 and 250 g,, are suspended by a cord which passes 
over a massless pulley as in the Atwmod^s machine, An arrangement is 
provided so that the moving system picks up an additional mass of 60 g. 
(which is at rest before the impact) after the two masses have gone a distance 
of 40 cm. If the system is initially at rest, what will the velocities be just 
before and after impact? 

14. A flexible heavy chain is hung over a massless pulley. Its linear 
mass is 10 lb. per foot. It is at rest initially with one side slightly longer 
than the other. Write an expression for its acceleration in any position. 

16. A leaky bucket filled with water is held initially in a position of equi¬ 
librium by a cord which passes over a massless pulley to a counterpoise Qn 

the other side. If the leak is m g. per second, what is the acceleration in any 
position? 



CHAPTER VIII 

THE DYNAMIC EQUATIONS FOR PURE ROTATION 

8-1. Introduction.—In order to introduce the student to those 
dynamical quantities which are fundamental in rotational motion, 
we shall consider the effect which an external force will produce 
in the motion of a rigid body mounted on a fixed axis. Let us 
select a reference system with OZ the axis of rotation and 
perpendicular to the plane of the diagram (Fig. 84). An external 
force F is to be supplied to the body. For convenience, let F 

be in the XY plane and let it not intersect the Z-axis. Experi¬ 
ence teaches us that, under the assigned conditions, the body 
will have an angular acceleration. 

Now we may consider that the body consists of a large number 
of particles and that to each particle is allotted its particular 
share of the external force F. Let the components of the force, 

assigned to the particle of mass m at the point x 2/ 2, be E'x and 
Ey, In addition to the external force upon each particle there 

will be an internal force which, for the particle at x y 2, may be 
represented by the components Rz and Ry, The internal forces 

are supplied by cohesion. 
The force equations for the selected particles are 

= mg + = mg (8-1) 

163 
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We may sum up such equations as may be written for all particles 
of the body with the following results: 

<*-2) 

The sums of the internal forces S/4 and S/4 taken over the 
entire body must be zero. The proof for this statement is left 
to the student. 

Up to this point we have used only translational quantities. 
To introduce the rotational quantities let us examine the effect 
of changing the position of the external force F. Experience 
teaches us that not only does the magnitude of the force influence 
the motion of the body under consideration, but the perpendicular 
distance (the lever arm) from the axis of rotation to the line of 
the force is also important. A single quantity, the force moment 
or torque, has been designed to combine these two factors. We 
may define the force moment (M) by the vector equation 

M == r,XF (8-3) 

in which Tf is a vector which is drawn from the origin of the 
reference system to the point of application of the force F. 
The moment of force is a vector quantity whose direction is 
perpendicular to the plane containing Yf and F and whose mag¬ 
nitude is VfF sin a if a is the angle measured from Tf to F, The 
vector Yf becomes the so-called lever arm when a is a right angle. 
A more detailed discussion of the force moment is reserved for 
Sec. 8-13 (below). 

To introduce force moments into Eq. (8-2) and to obtain, 
thereby, equations which will serve to supply us with information 
about other rotational quantities, we shall multiply both members 
of the first equation hy —y and the second by x and then by add¬ 
ing obtain 

The left-hand member of this equation is equivalent to the 
moment of the external force F about the Z-axis. The right-hand 
member must therefore express the effect of the force moment 
upon the body as a whole. To effect the summation of this 
member some manipulation is necessary. The clue to the 
transformation is to be found in introducing the angular velocity 
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(co) of the body, since it is common to all particles of the body. 
This may be done by means of the relations between angular 
velocity and linear velocity, of the type form 7 = w X r, where 
r is the vector giving the position of the particle whose velocity 
is 7. 

Since the mass m of Eq. (8-4) is constant, we may write 

[ni(r X V)]^ 

(8-5) 

(8-6) 

In the vector expression r = ix + jy. The subscript z is used 
to indicate that we are using here only the z component of the 
more general quantity m (r X 7). 

We may put 7 = <o X r in Eq. (8-6) and then equate this 
expression to the first member of Eq. (8-4), which is in reality 
the z component of the force moment Jp X F, written here as 
[fp X F]:, 

[r, X f]. = X (co X r))]. (8-7) 

= I (/«»). (8-8) 

In obtaining the last expression we must remember that co is 
common to all particles (since the body is rigid) and we have put 

/ = 2;(mr2) (8-9) 

The student should carefully go over the derivation of Eq. (8-8) 
to make sure that he understands why the introduction of the 
z component in the vector expressions [Eq. (8-6) and following] 

is necessary. 
From Eq. (8-8) we may write the following more general 

expression 

M = r, X F = ^ (/<o) (8-10) 

in which M is the resultant force moment. 
The quantity / is a very important rotational quantity. As 

shown by the defining equation, it is obtained by summing up 
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the products formed by multiplying the mass of each particle 
by the square of its distance from the rotation axis. It is called 
the moment of inertia. In place of the summation sign we may 
use the integration symbol, which gives 

7 = f”‘rM7n (8-11) 

which means that each mass element dm is to be multiplied by the 
square of the distance of the element from a selected axis. The 
axis from which r is to be measured may be any line fixed in 
the body. In any particular case the position of the axis must 

be specified. 
Moment of inertia is a scalar quantity. It occupies a position 

in rotational motion which is analogous to mass in translational 
motion. It is a quantitative expression for what we may call 
rotational inertia, or a measure of the tendency of a body, which 
is rotating, to continue to rotate with no change in its angular 
velocity. 

Another rotation quantity is introduced by Eq. (8-10). This 
is the quantity /w which is called the rotational or angular 
momentum or sometimes moment of momentum. It is a vector 
quantity and the direction of it is that of the angular velocity. 

Equation (8-10) is one of the three important d3aiamical 
equations in rotational motion. It is called the force-moment 
equation. It expresses the import^ant fact that the effect of a 
force moment applied to a body is measured by the time rate 
of change of the rotational momentum of that body. In many of 
the cases encountered, the moment of inertia of the body is 
constant. In such a case the force-moment equation may be 
written 

(8-12) 

introducing the angular acceleration du>/dt, which is the time rate 
of change of the angular velocity. 

All of these rotational quantities are to be examined in more 
detail in the work which follows. 

8-2. The Moment of Inertia.—The particular value of the 
moment of inertia for any given case depends upon the distribu¬ 
tion of the mass of the body with reference to some given line 
about which the moment of inertia is desired. If the body is a 
regular solid or has a form which may permit an analsrtical expres- 
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sion of the distribution of its mass, then the moment of inertia 7 
may be determined by a direct integration of the formula 
(repeated here for convenience) 

I = (8-11) 

where r is the distance of the particle dm from the selected axis. 
This integral may be converted into a volume integral by 

replacing dm by its equivalent expression pdx dy dz, if p desig¬ 
nates the density and dx dy dz the volume of the differential 
particle. Now if p is constant throughout the entire volume, 
then it may be placed outside the integration sign. If, however, 
the density of the body is not constant but may be expressed as 
a function of the coordinates of dm referred to some reference 
system, then this function must be written for p. If the density 
cannot be expressed as a function of the coordinates of dm or if 
the body is too irregular to permit integration, then the only way 
in which the moment of inertia may be found is by the use of some 
experimental method, one of which is described later (Sec. 8-19). 

In general, the volume integral used for finding the moment of 
inertia involves a triple integration. In case one dimension of 
the body is small in comparison with the two others, as in the 
case of a sheetlike body, the integration may be simplified by 
confining it to two dimensions. If the body is essentially a 
one-dimensional solid, a single integration is usually sufficient to 
give a result which is accurate enough for practical purposes. 

Even though all the dimensions of the body must be taken into 
account, it is frequently possible to select a differential mass 
or volume in such a manner that one or two integrations may be 
eliminated. For a good working rule, applicable in many cases, 
it is best to select the mass element as large as possible, the 
selection being subject to one limitation, viz,, that all parts 
of the mass element must be situated at one common distance 
from the axis of rotation. This may be stated in another, 
perhaps clearer, way. The differential mass may be the locus of 
all mass points which are equally distant from the axis of rotation. 

Illustration.—a. Find the moment of inertia of a thin rod 
of length L and of uniform cross section, about an axis which 
p^tsses perpendicularly through one end. The density of the 
rod varies uniformly from zero at one end to a value K at the 
other. 
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Let the axis about which the moment of inertia is desired 
pass through the less dense end of the rod. Also let x (Fig, 85) 
be a coordinate measured along t he rod from the less dense end 0 
as the origin. The density at any point of the rod may therefore 

be written 
Kx 

p = - 

If A is the uniform area of cross 
section of the rod, then 

dm = p A dx 

= KA .r , (8-13) 
L 

Substituting this value in the general expression for the moment 
of inertia and replacing the mass limit by the limits for the 
coordinate gives 

- (8-14) 

KA L* 
L~ 4 

= 1 MU (8-15) 

in which M is the mass of the rod and is equal to | KLA. 
If the axis of rotation passes through the other end, then by 

the use of the same figure, the 
density would be (L — .r) K/L, 
With this change the details 
could be carried through as 
indicated above. The final 
result would be AfL^/6. 

fe. Find the moment of inertia 
of a homogeneous right circular 
cylinder about the longitudinal 
axis. 

In this case one might select pdx dy dt as the differential mass 
and, with a reference system having the origin situated at the 
center of mass as shown in Fig. 86, perform the triple integration 
indicated by the expression 

I » ///(^' + pdx dy dz (8-16) 

A much smpler method would be to select a larger mass element. 
%We may take a cylindrical shell concentric with the cylinder^ 
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having thickness dr, length L, and base of variable radius r, for 
the differential mass, because all parts of such a shell are at 
the same distance from the axis. If the radius of the cylinder is 
a, then the general expression and final result may be written as 
follows: 

/ = 27rr L dr 

= (8~17) 

c. Find the moment of inertia of a 
thin, uniform, circular lamina about a 
diameter. 

Let the selected axis be F' OF (Fig. 87) 
and let a be the radius of the disk. For 
the differential mass we may use a strip of width dx situated 
parallel to the axis F'OF and at a distance x from it. If we 
represent the thickness of the lamina by t, then the mass of the 
strip will be 

dm = 2pt'\/a^ — dx (8-18) 

The general expression then becomes 

I = a} — x*^ dx 

= IMa^ (8-19) 

d. Find the moment of inertia 
of a homogeneous rectangular 
parallelepiped about a diagonal. 

Let the dimensions of the 
parallelepiped be 2a, 2b, and 2c. 
Place the reference system as 
shown in the Fig. 88. In this 
case a triple volume integration 
will be necessary. The differen¬ 
tial mass is pdx dy dz and its 
coordinates are x, y, z. The 

distance r of this differential element from the axis OA, about 
which the moment of inertia is to be found, is given by the 
expression 

r2 =E a:® + 2/^ + + m^y^ + + 2lmxy + 2lnxz -f 
2mnyz) (8-20) 

in which I, m, and n are the direction cosines of the axis OA. 
The values of If m, and n are given by the equations 
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I = m = 
\/a2 + 

c 

” Va^-Fb^~+~c^ 

\/ + 6^ + 

(8-21) 

The expression for the moment of inertia about OA is then 

^ = (8-22) 

If we substitute in this equation the expression for and 
perform the integration, the following result is obtained: 

2M {aW- + + ¥c^) 
3 (a‘^"‘+ 52 + c2) 

(8-23) 

8-3. Radius of Gyration.—In the preceding section, formulas 
were developed which express the moments of inertia of a few 
selected bodies about certain specified axes in terms of the 
masses of the bodies and one or more of their dimensional quan¬ 
tities. It is sometimes more convenient to express the moment 
of inertia by the simple relation, 

I ^ MG^ 

in which / is the moment of inertia about a specified axis, M is the 
mass of the body, and G is the so-called radius of gyration. 

The quantity is simply a symbol for expressing collectively 
the geometrical elements (together with numerical factors) of 
the more fundamental expressions for the moment of inertia. 
For example, the moment of inertia of a homogeneous sphere of 
radius r and of mass M about a diameter is In this 
case the square of the radius of gyration is equal to (§)r^. 
For the rectangular parallelepiped with the diagonal as axis, 
the square of the radius of gyration is the coefficient of the 
mass M in the right-hand member of Eq. (8-23). 

8-4. Moment of Inertia about Parallel Axes.—A theorem is to 
be developed which expresses the moment of inertia of a body 
about any axis in terms of the moment of inertia about a parallel 

axis passing through the center of mass of the body. This 
relation is a very convenient one for simplifying some determina¬ 
tions which might otherwise be troublesome. 

Let a cross section of the body be represented as shown in 

Fig. 89 with 0 the center of mass of the body. The moment of 
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inertia is to be expressed for an axis which passes through any 
point P, and which is perpendicular to the plane of the diagram. 
Let dm be the differential mass situated at distances b and r from 
0 and P, respectively, and let R be the distance between 0 and P, 

The moment of inertia Ip of the 
body about the axis through P is 
expressed by the equation 

dm (8-24) 

If we replace by its value Fig. 89. 

7*2 = 52 _ 2hR cos a 

where a is the angle between the lines h and /?, the expression 
becomes 

/p = dm. -f dm - 2jr^(6/i cos ot}dm (8-25) 

The first integral of the right-hand member expresses the 
moment of inertia (/o) about an axis through 0, the center of 
mass, if the axis is perpendicular to the plane of the diagram. 
The second integral becomes MR^, where M is the mass of the 
body, since R is constant. 

The third integral reduces to zero. This is readily seen if R 
is placed outside the integration sign and the integration of the 
remaining quantity considered. If we select a reference system 
XOY in the plane of the diagram wiih the origin at 0, the center 
of mass, and with the axis OX coincident with OP, then it may be 
readily seen that 

b cos a dm ~ I ^ dm (8-26) 

which expresses the x coordinate of the center of mass in the 
selected reference system. Since O is the center of mass, the inte¬ 
gral must be equal to zero. Equation (8-25) therefore reduces to 

/p = /o + MR^ (8-27) 

By means of this equation we may determine the moment of 
inertia about an axis through any point, provided that we know 
the moment of inertia about a parallel axis which passes through 
the center of mass, the distance between the two axes, and the 
mass of the body. 
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In case the point 0 is not the center of mass, then the last 
integral in Eq. (8-25) is not equal to zero. In any such case 
the value of the third integral might be determined from a 
knowledge of the distribution of the mass of (he body. The 
general expression would then not reduce to the simple expression 
given by Eq. (8-27) and hence would probably be of little value. 
The moment of inertia Iq for any other line parallel to the 
selected axis through 0 and passing through some point Q could 
be expressed as follows: 

Iq = h + (8-28) 

if R' is the distance between the two axes. Combining this 
equation with Eq. (8-27) by eliminating lo gives 

Ir = /q + M(R'^ - R'^) (8-29) 

An examination of this equation shows that, if R = R', then 
Ip = Iq, We may conclude, 
therefore, that the moments 
of inertia about all axes, equally 
distant from the axis through 
the center of mass and parallel 

to it, are equal. 
If one returns to Eq. (8-27), 

it is to be noticed that, since 

all the terms of this equation are always positive, the moment of 
inertia about a given axis passing through the center of mass 
is a minimum for all moments of inertia of that body about axes 

which are parallel to the given axis. 
Illustration,—Find the moment of inertia of a homogeneous 

right circular cylinder about an axis passing through its center 

of mass and perpendicular to the geometric axis. 
Let the length of the cylinder be 2L, its mass M, its density p, 

and its radius a. 
Select the reference system as shown in the diagram (Fig. 90) 

with OY the axis about which the moment of inertia is to be found. 
We may imagine that the cylinder is made up of a very large 

number of thin circular disks all perpendicular to the OX axis. 
The moment of inertia of a thin disk about a diameter is given 
by Eq. (8-19). Using the theorem expressed by Eq. (8-27), 
we may write the moment of inertia, of any circular disk, about 

the axis OF as follows: 
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dl - die + dm X- (8-30) 

in which die is the moment of inertia of the disk about an axis 
which passes through its center of mass and is parallel to OF and 
X is the distance between the parallel axes. 

The moment of inertia of the cylinder may now be found 
by integrating the foregoing expression over the entire body. 
Hence 

I = 

= dx + TraV dx 

= ^(4' + (8-31) 

8-6. Perpendicular Axes and a Lamina.—The moment of 
inertia for a lamina about any axis 
which is perpendicular to the plane of 
the lamina is equal to the sum of the 
moments of inertia about two mutually 
perpendicular lines which are in the 
plane of the lamina and which intersect 
the perpendicular axis at a common 
point. This theorem may be proved 
in the following manner. 

Suppose that the lamina lies in the YZ plane (Fig. 91) of the 
reference system XYZ, It is desired to express the moments 
of inertia Ixf about the axis OX, in terms of the moments of 
inertia ly and /*, about OF and OZ, respectively. The coordi¬ 
nates of any differential particle may be taken as y and z. If dm 
is situated at a distance r from the axis OX and M is the mass 
of the lamina, then 

Since 

ix = 

^L + Iy (8-32) 

This relation is obviously also true for any other pair of axes, 

F' and in the YZ plane as long as they intersect at the point 

0. Hence we may write 
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ly Iz — ly' + (8-33) 

Illustraiion.—Find the moment of inertia of a homogeneous 
sphere of radius a about any diameter. 

Select a reference system XYZ with the origin at the center 
of the sphere and the axis OX about which the moment of inertia 
is to be found. 

We may imagine that the entire sphere is divided into a 
large number of circular disks each of differential thickness {dx) 
and all perpendicular to OX (Fig. 92). 

Since each disk is a circular lamina, the moment of inertia of a 
disk about any of its diameters is equal to \ dm where r is the 
radius of the disk. Applying the theorem expressed by Eq. 

(8-32), we may write the expression for 
the moment of inertia (dlx) of any disk 
of differential thickness dx about the OX- 
axis as follows, if dly' and d/*/ are the 

y differential moments of inertia of the 
disk about two mutually perpendicular 
axes which are in the plane of the di^ 
and the intersect on OA'-axis: 

dix ~ dly' dl z' 
- -I dm ^ (8-34) 

If r is the radius of any disk and p is the density, then 

dm = -rr^p dx 
— Tp{a^ — x^) dx 

We may substitute this value of dm in Eq. (8-34) and integrate 
over the entire mass because the axes of all such laminas coincide. 
Hence 

/* = ^(a^ -■ x^y dx 

^ 2Mo? 
5 

Problems.—Determine the moment of inertia for each of the following 
homogeneous bodies about the axis indicated: 

1. Sphere of radius a about a diameter, using the method which involves 
the theorem of parallel axes. 

2. Sphere of radius a about a tangent. 
3. Right circular cone of height k and radius of base a about the axis of 

tha figure* 
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4. Right circular cone of height h and radius of base a about a diameter 

of its base. 

5. Hollow circular cylinder, length L, external radius ri and internal 

radius about the geometrical axis. 

6. An ellipsoid having axes 2a, 2b, and 2c about the 2a-axis. 

7. Rectangular parallelepiped having sides a, b, and c about an axis 

through the center perpendicular to the face ab. 

8. Spherical shell, external radius ri and iiit(*rnal radius rz about a 

diameter. 

9. An elliptical lamina having axes 2a and 2b about a normal to the 

lamina and through the center. 

8-6, The Principal Axes of a Body.—It is to be seen in the 
foregoing theorems and problems that the lines through the center 
of mass are of peculiar value in 
expressing the transfer of moment 
of inertia from one line to a parallel 
line. By a judicious selection of 
three mutually perpendicular lines 
(the principal axes) which pass 
through the center of mass of the 
body, the moment of inertia about 
any other line through the center of mass may be expressed in 
terms of the moments of inertia about these three principal axes. 

Given the reference system XYZ (Fig. 93) with origin at 0, 
the center of mass, and any line OF having direction cosines 
Z, m, and n. Let a differential mass be located at Q (x y z) and 
let R he a point in OP situated so that QR is perpendicular to 
OP. If QR = r, then 

Fig. 93. 

= 0Q2 - OR^ 

== — (lx + my + nzy 

since OR is the projection of OQ upi^n OP. 
Since 

(8-36) 

P + = 1 

we may introduce it as a factor into the equation above and then 
rearrange the terms as shown. 

ss (/2 ^ ^2 ^ n^)(x^ + 2/^ + ■“ (8-37) 
sa (y2 ^ ^ ^2 (jg;2 ^ ^2) ^ ^2 (^2 y2^ _ 2lmxy — 

2mnyz — 2nlzx (8-38) 
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The moment of inertia of the body about the axis OP is 

therefore 

= + x‘^)dm -|- y^)dm 

i*M pM pM 
— 2mn I yzdrn — 2nZ I zx dm — 2lm I xydm 

= lU + mm + n^C ~ 2mnD ~ 2nlE ~ 2lmF (8-39) 

in which the letters A, Bj D, E, and F are used to designate 
the integrals in the right-hand members in the order in which 
they are written. 

The quantities A, B, and C are moments of inertia about the 
axes OXj OF, and OZ^ respectively. The quantities Z>, E, and 
F are spoken of as products of inertia. These are dimensionally 
similar to moments of inertia but possess the distinguishing 
characteristic of having a product of two different coordinates in 
place of the square of a single coordinate. 

If Ip is to be expressed in terms of A, By and C only, then it will 
be necessary to select the positions of the reference axes in 
the body in such a manner that the products of inertia are 
each equal to zero. This may be done by inspection if the 
solid possesses a sufficient degree of symmetry. If the XY 
plane is one of symmetry, then D and E will both be equal 
to zero, because each contains the coordinate z. If either of 
the two other principal planes is one of symmetry, then F will 
also be equal to zero. For any selection of the axes which makes 
two of the principal planes occupy symmetrical positions in 
the body, all three products of inertia reduce to zero and the 
three coordinate axes are then called principal axes of the body. 

Equation (8-39) is valid for a reference system situated any¬ 
where in the body and piay be used for determining the moment 
of inertia about any line, such as OP, which passes through the 
origin, provided that the direction cosines of OP, the moments 
of inertia A, B, and 0, and the products of inertia D, E, and F 
may be determined. 

Problem.—Using Eq. (8-39), determine the moment of inertia of a 
rectangular parallelepiped about a diagonal. The sides of the figure are 
to be taken equal to 2a, 2b, and 2c. Two methods are to be used, one making 
use of a reference system with origin at the center of mass and axes parallel 
to the edges of the body and the other with the origin at a vertex and axes 
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forining tlic sides of the solid. Obviously the results should be independent 

of the position of the axes. 

8-7. The Momental Ellipsoid.—From the foregoing results 
it is seen that the moment of inertia Ip about any line such as OP 
which passes through the point 0 may be expressed in terms of 
the six constants A, B, C, D, E, F and the direction cosines of 
the line OP referred to the axes of reference. For every line 
OP there is a definite value for Ip, If now we draw a radius 
vector along OP from 0 as origin and make the length such that 
its square is inversely proportional to Ip for the particular 
position, the locus of the end points of all such vectors drawn 
for all possible positions of OP will describe a surface which 
can be shown to be an ellipsoid for any particular body. This 
surface must be a closed surface, for Ip cannot be zero or infinite 
for any rigid body. 

Let the length of the radius vector be expressed by r. Since 
is to be inversely proportional to /,>, then we may write 

IpT^ = K (a constant) 

If we now multiply each term of Eq. (8-39) by r- and replace 
by etc., and r'^mn by yZj etc., where :r, y, z are the coordi¬ 

nates of the end point of the vector r, the equation becomes 

K = .4:r2 + Bi/ + Cz^^ - 2Dyz - 2Ezx - 2Fxy (8-40) 

The locus of the terminal point of the radius vector r is given 
by this equation which is a closed quadric and must be the 
surface of an ellipsoid. 

This ellipsoid is called the rnomerital ellipsoid. The center 
of the ellipsoid is the point 0. This point may be any point 
of the body, but it is usually taken at the center of mass for 
convenience. The axes of the ellipsoid are called the principal 
axes at the point 0. The quantities Ay B, and C are the principal 
moments of inertia at the point 0. If the geometrical axes 
of the ellipsoid are taken as the axes of the reference system, 
then the equation becomes simplified by that choice and reduces 
to 

K = Ax\+ By'^ + Cz^ (8-41) 

If the equation of the ellipsoid, referred to a coordinate system 
with origin at the center of the ellipsoid, is given, the positions 
of the axes of the ellipsoid may be determined by the following 
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process. Since each axis of the ellipsoid must be perpendicular 
to the surface of the ellipsoid at the point where it cuts the 
surface, the direction cosines of that axis must be proportional 
to the corresponding partial derivatives of the equation of 
the ellipsoid. Now if 7*1 is a radius vector which is one of the 
semi-axes, its direction cosines Zi, Wi, ni must be proportional 
to the corresponding partial derivatives. If F(x7jz) is the 
equation of the ellipsoid, then this condition may be expressed 
as follows* 

dF(xyz) dF(xyz) dF{xyz) 
dx dy _ dz 
h rii 

(8-42) 

UF {xy z) is the equation for the ellipsoid as given in Eq. (8-40), 
then taking the indicated partial derivatives and substituting 
in Eq. (8-42) gives 

Ax — Fy — Ez By — Dz — Fx 
h mi 

—-^- (8-43) 
ni 

Since x/vi = h; y/ri = mi; z/vi = ni, if w^e divide each member 
of Eq. (8-43) by ri. we may substitute these equivalents and 

thereby obtain 

All — Fmi — Eui __Bmi — Drii — Fli^Cni — Dmi — Eh /o 

Zi mi Hi ^ 

In anticipation of the value of these fractions, let us put each 
member equal to I and write 

III = Ah — Fmi — Erii 
Imi = Bmi — Dill — Fh 
Irii = Crii — Dmx — Eh (8-45) 

Multiplying the first of these equations by Zi, the second by 
mi, and the third by ni, adding, and collecting similar terms gives 

I = Ah^ + Bmi^ + Cni^ — 2Dmini — 2Ehni — 2Flmi (8-46) 

which shows that I is the moment of inertia for the line whose 
direction cosines are h mi Ui, and hence the suggested test is 
valid for determining the axes of the ellipsoid. The student must 

not qqnfuse the axes of the ellipsoid with the axes (XYZ) of the 
reference system. It is to be remembered here that A, B, and C 
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are moments of inertia about the XFZ-axes and Z), E, and F 
products of inertia for those axes. 

If the moment of inertia for an axis of the ellipsoid is to be 
determined in terms of A, B, C, /), and F, then Zi, mi, and ni, 
the direction cosines of that axis, must be eliminated from the 
three equations of lOqs. (8-45). These equations may be written 
again in the form which makes the use of the determinant easy 
to apply: 

(/ — ^) Zi + Frrii + Eui = 0 
Fh + (I - B) mi + Dni = 0 
Ell “f* Dthi -j- (/ — C) 72-1 = 0 

On eliminating Zi, mi, and rii we have 

I - A F E 
F I - B D =0 (8-47) 
E D I - C 

This gives a cubic equation in 7, the roots of which we may call 
/i, hj and hi, Thevse three values of 7 are the moments of 
inertia about the three axes of the ellipsoid. 

After obtaining a solution of Eq. (8-47), if the positions of 
these axes are desired, their direction cosines may be deter¬ 
mined by substituting 7i (or 72 and Iz) in Eq. (8-45) and solving 
for Zi, mi, and Ui. 

In general, these three moments of inertia will be all different. 
If two are alike, then the ellipsoid is one of revolution. If 
three are alike, the ellipsoid is a sphere, with the consequence 
that all lines through the center have equal moments of inertia. 

Problems,—1. Find the principal axes and the equation of the inomental 

ellipsoid for a rectangular parallelepiped, taking the center of the parallele¬ 

piped as the origin of the axis of reference, and 2a, 26, 2c the edges of the 

solid. Take reference axes perpendicular and parallel to the faces of the 

figure. 

2. Determine the inomental ellipsoid and the principal axes of a cube 

whose edge is a, taking the origin of the reference system at one vertex, and 

three intersecting edges of the cube as reference axes. 

3. Find the momental ellipsoid for a right circular cone of height h and 

radius of base a, taking the origin of the reference system at the center of 

mass, with the geometric axes of the cone one of the reference axes. 

S-S. The Principal Axes of a Thin Lamina.—Given a lamina 
with the reference axes OX and OY (Fig. 94) about which the 
moments of inertia /, and ly are known. Let a second pair of 
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axes X^OY\ also in the plane of the lamina with 0 the common 
origin, make an angle « with XOY- To find the relation between 

xf lyj ly'f nnd oi. 
Let the differential mass dm (or p dx dy) be situated at P with 

coordinates x and y. Draw the line PQ perpendicular to OX' 
with Q on the line OX'; then we may put 

PQ — y cos a — X sin a 

Using this relation, the value of 7i', may be expressed as 
follows: 

lx' = Jq^ (y ^ 
(*M 

= lx cos^ a Iy sin- a — 2 I xy sin a cos o: dm 

= Ix cos^ a + ly sin- a — F sin 2q: (8-48) 

where F is the product of inertia with respect to the axes OX and 
OY. 

TT 
By replacing a by a + 2? we may 

write the moment of inertia about 
OY'. Hence 

ly' = Ix sin^ a + 7y cos^ a + 
Fsina (8-49) 

Subtracting 7/ from h' gives 

Ix' — ly' = (Ix — ly) 2a — 2F sin 2a: (8-50) 

Obviously the lamina is a special case of a solid body, viz., 
one in which one of the dimensions is made very small. Both 
Eqs. (8-48) and (8-49) could have been found from the more 
general equation [Eq. (8-39)] by putting z, say, equal to zero and 
writing cos a for I, sin a for m, and zero for n. 

Equations (8-48) and (8-49) may be changed into slightly 
different forms by replacing the functions of a single a by ones 
containing 2a. The altered expressions are 

Ix' ~ h(Ix 4" 7j/) 4” 2(7^ — 7j/) cos 2a — F sin 2a (8-61) 

ly' = h(Ix 4- ly) - 2(1 X — ly) cos 2q: 4- E siu 2a (8-52) 

8-9. Maximum and Minimum Moments of Inertia of a 
Lamina.—It is sometimes necessary to find the axis for a lamina 

about which there is a maximum or a minimum value of the 
moment of inertia. By using the notation and figure of the 
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preceding section it may be seen that, since or Iy> varies with a, 

the first differential of these quantities with respect to a gives 
the value of a for which the corresponding moment of inertia is 
maximum or minimum. Differentiating Eq. (8-51) with respect 
to a gives 

= (/„ _ /^) sin 2a - 2F cos 2a 

If we designate by a the particular value which the angle has 
for a maximum or minimum position, then 

{ly — Ix) sin 2a' — 2F cos 2a' == 0 
2F 

tan 2a' = (8-53) 
Di/ I x) 

By substituting the values of 7^, Ixj and 2F in this equation 
the desired values of a are obtained. The two values of the 
angle which satisfy this equation are 2a' and 2a' + tt. The 
significance of the two values of a' is to be found in the fact 
that, when Ix' is a maximum, ly* is a minimum or vice versa, for 
Ix' + ly' = constant. From this it is obvious that, if Ig' is 
a maximum, then Iy> which is per- 
pendicular to OX' must be a 
minimum. 

Problems.—1. Find the position of the 2q 

axis for maximum and minimum moment 

of inertia of a riglit triangle whose sides are j 

5 and 10 cm. Find also the equation for 

the momental ellipse and determine the 

position of the axis. 

2. Find the momental ellipse of the unsymmetrical lamina given in the 

figure (Fig. 96). 

3. Show that the momental ellipse of any regular polygon is a circle. 

8-10. Theorem of the Product of Inertia of a Lamina and 
Center of Mass.—The theorem for product of inertia of a lamina 

is analogous to the theorem of parallel axes for moments of 
inertia. If the product of inertia for any two intersecting 
perpendicular axes in the plane of a uniform lamina is known, 
then the product of inertia for any other pair of perpendicular 
axes which are respectively parallel to the axes of the given 
pair may be determined. 

Given the axes OX and OY (Fig. 96) with origin at 0, the 
center of mass of the lamina, and the product of inertia F with 
reference to these axes. Let O'X' and O'Y' be any other pair 
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of axes parallel to OX and OF, respectively. Let the coordinates 
of 0 in the coordinate system X'O'Y' be p and q and let dm be 
any differential mass of the lamina. If F' is the product of 
inertia of the lamina with respect to the X'O'Y' system, and M is 
the mass of the lamina, then 

F' = + ^)iq + y) dm J^M (*M (*M /•Af 
dm + q \ X dm + p\ y dm + j xy dm, (8-54) 

0 •/o 

Since 0 is the center of mass of the lamina, then, because of 

Fia. 96. 

symmetry, the second and third 
integrals of the right-hand mem¬ 
ber are equal to zero, and hence 

F' = pq M + F (8-55^ 

The equation is similar to that 
for parallel axes in moments of 
inertia except that in place of the 
square of the distance between 
the parallel axes we have the prod¬ 
uct of the coordinates of the origin 
of the new axes. 

8-11. Rotational Momentum.—The quantity rotational 
momentum is equal to the product of the two fundamental 
quantities moment of inertia and angular velocity. If / is used 
to represent the moment of inertia and <i> the angular velocity, 
then the product /(*> expresses the rotational momentum. 

The term moment of momentum is frequently used to designate 
this quantity. The reason for using this name becomes apparent 
if we develop the expression /<*> for the rotational momentum. 
Suppose there is a rigid body in a state of rotation about some 
fixed axis. Each differential particle dm of the body will have 
a linear velocity (F) which may be expressed in terms of 
the angular velocity (w) of the body and the distance (r) of the 
particle from the axis of rotation by the relation V == ojr. The 
momentum of the particle is dmwr and its moment of momentum 
is dmwr^. To express the total moment of momentum of the 
body, it is necessary to integrate the expression for the moment 
of momentum of the particle over the entire body. This may be 
written as follows: 
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== /o) (8-56) 

The angular velocity co is common to all differential particles 
because the body is rigid and hence may be placed outside the 
integration sign. 

The term angular momentum may be applied to a nonrigid 
body. If the body is not rigid, the angular velocity of the differ¬ 
ential element would not be common to all other elements and 
hence in this case the simple expression lo) could not be used. 
The integral given in the left-hand member of the foregoing 
equation would, however, be the angular momentum of the body. 
The integration could not be effected unless co could be expressed 
in terms of the coordinates of a selected reference system. 

The units in which rotational momentum may be expressed 
are grams cent imeter squared per second or pounds foot squared 
per second. 

8-12. Rotational Kinetic Energy.—The kinetic energy of a 
body rotating about some axis may be expressed in terms of its 
moment of inertia and the square of its angular velocity. Using 
the symbols introduced above, we may write 

KE = ^/co2 (8-57) 

In this expression the angular velocity and moment of inertia 
are to be referred to the same axis. 

The validity of the expression given in Eq. (8-57) for the rota¬ 
tional kinetic energy may be established in a manner somewhat 
similar to that used in the preceding section. If we again con¬ 
sider a rigid body rotating about a fixed axis, the kinetic energy 
of a differential mass may be expressed in the form ^ dm or 
I dmr^o)'^. Since co is common to all differential elements of the 
body, the total rotational kinetic energy of the body is ^ /co^. 

The term rotational kinetic energy may also be applied to 
a nonrigid body, but the simple expression used above for the 
rotational kinetic energy would not be obtained. 

The units in which the kinetic energy is to be expressed will 
depend upon those of its constituent elements. Ordinarily, in 
the metric system, the moment of inertia is expressed in grams 
centimeter squared and angular velocity in radians per second. 
In this case the energy is expressed in grams centimeter squared 
per second squared or ergs. 
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8-13. The Force Moment.—A force moment consists of two 
elements, a force and a distance factor. If the force is designated 
by the symbol F and its point of application from some reference 
point is given by the radius vector r, then the moment of the 
force with respect to the reference point is r X F. The axis 
about which rotational effects might be produced is perpendicular 
to the plane determined by r and F. 

A force moment is a vector quantity of the axial type. Graph¬ 
ically, then, the moment of a force may be represented by a line 
segment, drawn to some convenient scale, which is perpendicular 
to the plane containing the force and the distance factor. Its 
direction is determined by the convention of signs for axial 
vectors. It is convenient to use the rotation axis for this pur¬ 
pose, provided that the rotation axis is perpendicular to the 
plane of the moment. There is a tendency for the student to 
forget that the moment of force is an axial vector and hence to 
confuse the direction of the force with that of its moment. 

In translational motion it is frequently desirable to express 
the motion of a body in terms of a component of the applied 
force, as in the case of a body sliding without frictif)n down an 
inclined plane under the influence of its weight. In such a case, 
owing to the constraint offered by the inclined plane, the motion 
is best determined by the component of the weight which is 
parallel to the inclined plane. So, also, in rotational motion a 
body may have a fixed rotational axis, and the moment may be 
applied to the body so that the direction of the moment is not 
parallel with the rotation axis. In such a case it would be 
convenient to project the moment into the rotation axis in order 
to determine the resulting motion of the body. The other com¬ 
ponent of the moment in this case is neutralized by moments 
exerted by the supporting frame which holds the bearings. 
This is entirely analogous to the fact that in the translational 
case the other component of the weight is neutralized by the 
inclined plane. 

8-14. The Couple.—It frequently happens that the total or 
resultant moment consists of several forces together with their 
respective lever arms. If there be but two forces and these arc 
equal in magnitude, parallel but not collinear, the sum of their 
mouients about an axis perpendicular to the plane containing 
the forees is constant as long as the distance between the two 
forces is constant. Because of this fact and because such cases 
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are frequently encountered, the name couple has been applied 
to the sum of the separate moments. The couple is then merely 
a special case of moments. 

The magnitude of the couple is the magnitude of either force 
multiplied by the perpendicular distance between the lines of the 
forces. If each force has a magnitude F and the distance between 
them is /i, then liF is the magnitude of the couple. 

There are three theorems describing the characteristics of a 
couple which are of use in some of the later work. The student 
should prove the validity of each. 

a. The moment of a couple is independent of the position of 
the axis of rotation as long as it is perpendicular to the plane of 
the couple. 

h. The moment of a couple is not altered by rotating the couple 
to some new position in its plane. 

c. The moment of a couple remains unchanged if the magnitude 
of the forces is changed and at the same time the distance between 
the lines of forces is also changed to such 
a value that the product hF remains 
constant. 

8-16. The Off-center Force.—We have 
seen in Sec. 7-6 of the preceding chapter 
that/ the effect of a force which is applied 
to a body along a line which does not pass 
through the center of mass of the body is 
to produce a resulting uniplanar motion which may be regarded 
as consisting of two distinct parts, one of which is translational 
and is described by the motion of the center of mass and the other 
is rotational and is motion relative to the center of mass. 

The double effect of an off-center force may be analyzed by the 
device of introducing a pair of forces which are each equal to the 
existing force, and parallel to it, oppositely directed to each 
other and acting through the center of mass. In the diagram 
(Fig. 97) F is the off-center force, C is the center of mass, and -fF' 
and —F' constitute the canceling pair of forces. This addition 
does not change the character of the motion, because the result¬ 
ant force and its position remain the same. The translational 
part of the motion may now be described in terms of the effects 
of -|-F'. Since +F' is applied to the center of mass, the transla¬ 
tional acceleration of the body will be exactly the same as though 
under the influence of F, for +F' cannot produce any rotational 
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efifects. The remaining forces F and — F' constitute a couple 
which produces the rotational acceleration of the body and noth¬ 
ing else. The magnitude of this couple, produced by F and —F', 
is equal to the moment of F about an axis drawn through C and 
perpendicular to the diagram. 

Using this device, we may determine the complete motion of 
the body by means of two separate sets of equations, the trans¬ 
lational equations developed in the preceding chapter and the 
rotational equations which are to be developed in this chapter. 
The two sets of equations may be applied independently of each 
other. In fact, we are at liberty to regard the motion as though 
the translational part took place first and then the rotational part 
followed it, or vice versa, 

8-16, Analogies in Dynamics.—In studying the dynamical 
quantities and their equations in rotational motions we are 
assisted by the similarities which exist between these quantities 
and the corresponding quantities and equations in translational 
dynamics. This correspondence has already been utilized in 
developing rotational kinematics from translational kinematics. 
Many of the expressions for rotational motion may be written 
directly by substituting in the translational equations the corre¬ 
sponding rotational factors. For example, we may write the 
force-moment equation by replacing the force (in the force 
equation) by the moment of force, the mass by moment of 
inertia, and the linear acceleration by its corresponding quantity, 
angular acceleration. This substitution would give the equation 

Force moment = moment of inertia X angular acceleration 

which is a proper expression for the rotational effect of a constant 
force moment upon a rigid body. 

While this procedure is a valuable short cut for remembering 
the fundamental equations in pure rotation, it is not sufficiently 
illuminating to reveal those characteristics which are essential to 
a complete understanding of the subject. The fundamental 
translational and rotational quantities are arranged in the follow¬ 
ing table so that the correspondence may be readily observed. 
The symbols used for these quantities are also introduced. 

Translation Rotation 
Force (F). Force moment (M) 
M$i«8 (M). Moment of inertia (/) 
Displacement (s). Angular displacement (7) 
Velocity (V or U). Angular velocity (« or <yo) 



8-17] THE DYNAMIC EQUATIONS FOR PURE ROTATION 187 

Translation Rotation 

Acceleration (/). Angular acceleration (doo/dt) 
Momentum (mV). Angular momentum (/o)) 

Kinetic energy . Rotational kinetic energy (^/w^) 

It is of interest to observe that all of the rotational quantities 
may be obtained from the corresponding translational quantities 
by some use of a distance factor. In other words we may express 
mathematically each translational quantity in terms of the 
corresponding rotational quantity by introducing a length 
usually designated by the symbol r. For example, as already 
shown, M = r X F and 1 = mG- where G is the radius of gyra¬ 
tion (Sec. 8-3). 

The physical basis for the relations between the two sets of 
quantities is to be found in the motion of a particle moving in a 
circular path. We may accurately describe such a motion from 
either viewpoint. It is well to observe that these equations, 
which we may speak of as transformation equations^ mathemati¬ 
cally depend upon the fact that the distance factor remains 
constant. This condition is expressed physically by stating 
that the path of the particle is a circle or the motion is pure 
rotational. The student is asked to write the transformation 
equations for the last five pairs of quantities listed above. 

8-17. The Impulse of the Force Moment.—The three dynam¬ 
ical equations in rotation and their corresponding equations in 
translation are 

Rotation Translation 

a. Force moment. Force 

h. Impulse of the force moment. Impulse 

c. Work of the force moment. Work 

The force-moment equation was derived in Sec. 8-1 above 
[see Eqs. (8-10) and (8-12)]. In this and the following section 
we shall develop the two other equations. 

The impulse of a force moment is a quantity which is measured 
by the product of the moment and the time during which it is 
acting. To obtain an expression for the effect of the impulse of 
the force moment, we may multiply Eq. (8-10) by the time dt. 
If we desire the effect of the resultant impulse M for any finite 
time tf the equation becomes 

(8-58) 
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If the moment remains constant during the time over which 
the integration is extended and if the body is rigid, the equation 
may be written in the form 

= / (o> - coo) (8-59) 

in which co and coo are respectively the final and initial values of 
the angular velocity. The left-hand member of Eq. (8-59) is 
the impulse of the resultant moment. The other member of the 
equation expresses the change in angular momentum. Both 
members of Eq. (8-59) are vector quantities and hence the direc¬ 
tion of Mi must be the same as that resulting from the vector 
sum of /ci> and —/coo. It is not necessary for the direction of the 
resultant moment to be parallel to either co or con. If the direction 
of M coincides with that of coo, then the direction of c*> will remain 
the same as that of coo. It is only when there is a component of 
M in a line which is perpendicular to c*)o that the direction of the 
angular velocity may change. 

8-18. The Work of the Force Moment.—The quantity in 
rotation which corresponds to displacement in translation is the 
angle. To obtain the work done by a moment of force, we must 
therefore multiply the moment of force by the angular displace¬ 
ment which it produces. 

In order to develop an expression for the work of the force 
moment we may use Eq. (8-10) as a starting point. 

For the sake of generality we may assume that the body is a 
particle, attached by a massless frame to a rotation axis. To 
extend the equations, obtained on the basis of this assumption, 
to the case of a body or system of particles, we may regard the 
particle as a differential mass element and then integrate over the 
entire system. With this interpretation of Eq. (8-10), in mind, 
we may regard I as constant and may introduce the alternative 
form for the angular acceleration doildt. After changing 
the altered equation to a scalar equation, we have 

M = / « ^ (8-60) 

Multiplying both sides by dy and indicating the integrations 
gives 

Cm dy « f"jw da (8-61) 

if we assume that w = «o and 7 = 70 in the initial position. 
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If the moment remains constant and the body is rigid, the 
equation may be written as follows: 

My = I / (o)^ ~ coo^) (8-62) 

This equation expresses the work done by the moment as it turns 

the body through the angle y and indicates a measure of the work 
in the change of rotational energy produced. 

8-19. The Torsional Pendulum.—For the sake of simplicity 

we may regard the torsional pendulum as consisting of a cylin¬ 
drical-shaped disk, hung by a steel wire from some rigid supix)rt. 
If the disk is turned from rest through an angle 7 by means of an 
external force moment acting about an axis containing the wire, 
the wire is twisted and will therefore exert a restoring moment 
or torque upon the disk. The value of the restoring moment will 
depend upon the angular displacement, the coefficient of elas¬ 
ticity, and the dimensions of the wire. If the wire is not twisted 
beyond its elastic limit, the restoring moment M may be put 
equal to some constant, say (\ times the angle of displacement; 
i.e.j M = —Cy. The minus sign must be included because the 
restoring moment tends to reduce the angle. From this equation 
it is obvious that C is the torque required to produce a displace¬ 
ment of 1 radian. 

If the disk is rotated through an angle and then released from 
the external moment, the elastic moment will produce an angular 
acceleration of the disk which is expressible as follows: 

Jlf = -Ct =/'ll (8-63) 

Under the conditions of no external force moment this equation 
shows that angular acceleration is proportional to the displace¬ 

ment angle 7. We have seen above [Fq. (5-13)] that under 

these conditions the motion will be simple harmonic. The 
condition for simple harmonic motion in pure rotation 

d^y 
-K^y 

is rewritten here for convenience. Evidently, in this case, 
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The period for the motion is therefore 

r = ^ = (8-64) 

We may use this equation as a means for determining the 
moment of inertia of any body. In such cases, where the inte¬ 
gration is difficult or impossible to effect, the torsional pendulum 
affords a way for an experimental determination of the moment 
of inertia. The procedure may be varied but the usual course 
is to attach some body like a homogeneous cylinder to a spring 
steel wire so that it may execute rotational simple harmonic 
motion about an axis for which the moment of inertia is known. 
If the period of the motion is determined, then the constant C 
may be calculated. The solid for which the moment of inertia 
is desired is then attached to the wire alone or together with the 
cylinder in such a way that the axis about which the moment of 
inertia is desired coincides with that of the wire. The period is 
again obtained by measurement and the moment of inertia may 
then be calculated. 

Problems.—1. State two consistent sets of units for each of the three 
fundamental equations [Eqs. (8-10), (8-50), and (8-62)] one of these in the 
c. g. s. system and the other in the Englisli system of units. 

2. A homogeneous right circular cylinder rolls down an inclined plane 
(angle 30 deg. with the horizontal) under the influence of its weight. The 
cylinder rolls without slipping. If the mass of the cylinder is 500 g. and 
the radius of its base is 5 cm., determine its linear acceleration and angular 
acceleration, If the center of mass moves a distance of 100 cm., starting 
from rest, what will be its linear velocity, angular velocity, and total kinetic 
energy? 

3. A flywheel, mounted to turn freely on its axis, is subjected to a force 
moment of 100 Ib.,^. ft. If the moment of inertia of the wheel is 500 lb. 
ft.® what will be the angular velocity at the end of 5 sec. if the wheel is 
initially at rest? 

4. A cylinder of mass 100 g. and radius 5 cm. is arranged to rotate about 
its geometric axis. A massless cord is wrapped around the cylinder, (a) 
If a constant force of 1,000 dynes is applied to the cord, what will be the 
angular acceleration of the cylinder? (6) If the force is variable and is 
expressed by the equation F - (1,000 -f 1000 dynes, where t is the time in 
seconds, find the angular velocity at the end of 10 sec., assuming that the 
cylinder is initially at rest, (c) If the force is expressed by the equation 
F = 100 X dynes, where a; is a coordinate measured in centimeters along 
the line of the force, find the angular velocity when the cylinder has turned 
through five complete revolutions. 
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6. A certain governor-like body (Fig. 98) consists of a cylinder (mass 

10 lb., radius of base 2 in.) and two 5-lb. balls (radium? 1 in.) which are 

attached by thin uniform rods (mass 1 lb. each). The rods, each 4 in. long, 

measured from surface of cylinder to surface of ball, are connected by hinges 

to points on opposite sides of the cylinder so that the balls and rods must 

move in a plane which contains the axis of rotation of the cylinder. 

Initially the rods make an angle of 90 deg. with the axis of the cylinder 

and the angular velocity of the V)ody is 47r radians per second. By some 

internal jnetihanism the l^alls are brought into contact with the surface of 

the cylinder without the application of any external force moment. P'ind 

the resulting angular velocity. (Hint: If no external force moment is 

applied, the angular momentum must remain constant.) 

6. A sphere of mass 150 g, and radius 3 cm. is supported by a wure which 

passes through its ('enter. The period of the simple harmonic motion pro¬ 

duced was found to be 5 sec. A second object 

attached to tin; sphere gav(5 harmonic motion 

with a period of 8 sec. Find the moment of 

inertia of the second body. What was the 

value of the constant C in this case? In what 

units is it expressed? 

7. A uniform meter stick (mass 80 g.) is 

clamped at one end in horizontal position in a 

vise. Five centimeters of its length are held 

in the vise. Horizontal motion in the direction 

of the smallest dimension only is to be con¬ 

sidered. A force of 100 g. w(ught applied per¬ 

pendicularly to the stick at its free end produces 

a displacement of 2 (mi. of that end from the rest position. J^ind the period 

of the simple harmonic motion which takes place when the free end of the 

stick is released from a small initial displacement. (Assume that Hooke’s 

law applies.) 

8. A rectangular block having a mass of 1,200 g. and dimensions 5 by 10 

by 30 cm. is hung, with its largest surfaces horizontal, by two paralUd strings 

5 m. long. The strings are 20 cm. apart, and are attached to symmetrically 

situated points on the upper surfaces. If the block is rotated through a 

small angle about a vertical axis which passes through the center of mass and 

is then released, is the motion strictly simple harmonic? What approxi¬ 

mations, if any, may be made in order to regard the motion as simple 

harmonic? What would the period of the motion be? 

9. A 50-g. mass is hung by a string which is wrapped several times around 

the rim of a wheel. The axis of the wheel is fixed in a horizontal position. 

If the moment of inertia of the wheel is 200 g. cm.^ and its radius of 5 cm., 

find the acceleration of wheel and of the falling mass and the tension of the 

string. 



CHAPTER IX 

STATICS 

9-1. Introduction.—We have already seen that the motion of 

a body may, in general, be described in terms of a combination of 
translational and rotational motions. Either type of motion may 

exist in a particular body without the other. A body may have 

translational motion only or it may be in a state of pure rota¬ 
tional motion. We have also learned that linear acceleration 

is produced by a force and that angular acceleration is produced 

by a force moment. If the resultant force, in a particular 
case, is zero, then the linear acceleration must be also zero; a 

corresponding statement may be made for the resultant force 

moment. 

There are many important relations which exist between those 

forces and force moments which may be applied to a body or 

system of bodies in those special cases where the resultant force 

and force moment are zero. These relations are presented in 

this chapter. 

9-2. Definitions.—There are a number of technical terms to 

be introduced in this chapter which, to avoid inaccurate concep¬ 

tions, require definition. 

The term statics is applied to that part of mechanics which 
deals with bodies at rest or in a state of motion with constant 

velocity. It is concerned with those relations which must 

exist between the forces or force moments or both quantities 

in order that the particular body or bodies may remain with no 

acceleration. The time factor does not enter into considerations 

dealing with statics. 

Equilibrium is a state in which a body exists if it has no acceler¬ 

ation. Consistent with this definition a body may be at rest 

or it may be moving with constant velocity. 

A body is said to be rigid if under the influence of applied 

forces, the relative distances between the various particles of 

which the body is composed remain unaltered. We do not 

know of any body which is perfectly rigid. If, however, the 
192 
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relative displacements of the particles of the body are small 
in comparison with other essential dimensions, we may say that 
ilie body is rigid. 

In statics as well as in dynamics we may be concerned with 
internal as well as external forces. When dealing with a system 
of bodies joined together in some way or other, a certain force 
may be internal as far as the system as a whole is concerned 
but at the same time it may be external to a given part of the 
system. Internal forces in a rigid body always occur in pairs 
of equal but oppositely directed forces. In studying the statics 
of rigid bodies, it is important for the student to distinguish 
between the two forces of a given pair which may be brought 
into existence at the point of contact of one body with another. 
If the interest is centered specifically upon one of the bodies, the 
particular force of the pair which acts upon that body is to be 
used and not its oppositely directed ^^twin.^’ 

9-3, Equilibrium of a Particle.—It is to be remembered that 
a particle is a body or part of a body the dimensions of which 
may be neglected in comparison with other dimensions or dis¬ 
tances which may be involved. When this limitation is imposed, 
all the forces applied are regarded as passing through a common 
point of the body usually considered to be the center of mass, 
or, in other words, the forces are concurrent. Under such 
circumstances, in order for a particle to be in equilibrium, 
the forces applied to the particles must be of such magnitudes 
and have such directions as are necessary to prevent linear 
(or translational) acceleration. 
а. Case of Two Forces.—When two forces are applied to a 

particle and the particle is in equilibrium, the only possible 
arrangement is that the two forces must be equal in magnitude 
and oppositely directed. Any other relation would give a 
resultant force which would produce an acceleration of the 
particles. 

б. Case of Three or More Forces,—In order for the particle 
to be in equilibrium, the acceleration must be zero; hence we 
may conclude that the vector sum of the applied forces must be 
zero. This is the one necessary and sufficient condition for the 
equilibrium of a single particle. 

Suppose that there are n forces acting upon the particles 

^1, Fh Fi , , , jF„. Symbolically, the condition for equilibrium 
may then be written 
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-P'l + ^’2+-f’3+ • • • +/’n=0 (9-1) 

This condition may be expressed in terms of the components of 
the several forces taken along the axis of any selected reference 
system. If the components of Fi are designated by the symbols 
Fixj Fiyy and Fix and a similar form of expression is used for the 
other forces, then we may write: 

{F\x + F^x + • • • F nx)i + {F ly + Foy + * • • F nu)j + 
{Fiz + F^z + • ' • F„z)k = 0 

In order for this equation to be satisfied it is necessary for the 
coefficients of the unit vectors to be separately equal to zero; 
hence 

X Fi, = 0, X (^-2) 
n n n 

In case there are only three forces acting upon the particles, 
a corollary may be deduced from the preceding relation. Sup¬ 
pose the plane determined by any two of the given forces is 
selected as the YZ plane of the reference system, then these 
two forces will have no components along the X-axis. The 
third force must therefore also lie in the YZ plane in order 
for the first of Eqs, (9-2) to be satisfied. From this we may 
conclude that, if there are three and only three forces acting upon 
a particle, the three forces must be coplanar. 

c. Lamias Theorem.—^Lami^s theorem includes the preceding 
corollary as well as the familiar trigonometric relation which 
exits between the three sides of a triangle and the sines of the 
opposite angles. Since the vector sum of the three forces is 
equal to zero, the graphical representation of the vector sum is 
a triangle, the sides of which represent the three given forces. 
If the magnitudes of the three forces are designated by the 
symbols 4, B, and C and the interior angles of triangle opposite 
the sides are expressed by the corresponding small letters, then 
we may write 

A _ B _ C 
sin a sin & sin c 

(9-3) 

9-4. Strings.—In mechanics it is frequently convenient to 
employ strings, ropes, or chains as a means of applying a-force 
to a particle or a body. A digression will be made at this point 
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in order to introduce some of the essentials characteristic of 
these mechanical tools. 

Ordinarily the weight of a string or rope is suflSciently small, 
in comparison with the other forces involved, to permit one to 
neglect it. Unless explicitly stated to the contrary we shall 
omit the weights of strings or ropes in the following considera¬ 
tions. The weights of chains, on the other hand, are not usually 
small enough to neglect. 

Strings, ropes, and chains are considered to be perfectly 
flexible; i.e.j they can be drawn around a pulley or some other 
similar object without requiring the application of a force to 
effect the change in linear form. This is not to be confused 
with the fact that tangential forces of resistances may be pro¬ 
duced when the strings are in contact with surfaces of pulleys 
and the like. 

If forces are applied to the ends of a string so that there is 
a tendency to stretch it, the string is in a state of tension. With 
strings of negligible weight the forces applied to the two ends 
are of equal magnitude but are oppositely directed. It is 
legitimate to consider the string to be made of a large number 
of particles joined together like links of a fine chain. Any 
single particle of the string, like a single link of the chain, is 
under the influence of a pair of equal and oppositely directed 
forces. In speaking of the tension of a string we refer to the 
magnitude of the force applied to either end of the string. 

Strings are usually classified as elastic (extensible) or inelastic 
(or inextensible). Elastic strings become elongated when 
subjected to tension. Inelastic strings do not have a change 
in length when in a state of tension. Perfectly inelastic strings 
do not exist but in many cases the elongation is small enough to 

neglect. 
If not stretched beyond their elastic limit, the elongations 

of strings may be expressed quantitatively by Hooke's law, which 
states that the strain is proportional to the stress. Strain is 
the increase of length per unit of length. Stress is the tension 
per unit of cross-sectional area. If F is the applied force, A 
the cross-sectional area, e the increase of length, and L the 
length of the unstretched string, then 

Strain = 
F 

Stress = -7 
A 
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Hookers law may then bo written 

[9-4 

Young’s modulus (E) 
stress _ F/A 
strain e/L 

In the case of strings, wires, etc., the terms tensile stress and 
tensile strain are frequently used. 

It may be readily shown that for any given string the ratio 
of the applied force (F) to the increase in length per unit length 
(e/L) is a constant within the elastic limit. It has been propos(‘d 
to call this ratio the modulus of stiffness, or in symbols, if we let 
X represent the modulus of stiffness, 

X 
FL 

e 
(9-4) 

Illustrations.—Two problems will be introduced in this 
section to show uses of the principles given above. One of these 

deals with inelastic strings and the 
other with elastic strings. 

a. Inelastic Strings.—A particle P 
of mass m is suspended by two 
inelastic strings which are attached 
to a rigid horizontal support at the 
points li and Q. Find the tensions 
of the strings. 

Let the distance from R to Q (Fig. 
99) heL and the lengths of the strings 
P It and P Qhe r and .s, respectively. 

The particle is in equilibrium under 
the influence of three forces, the 
weight of the particle W (m g) and 
the tensions of the two strings which 

we may call t and T taken along P R and P Q, respectively. The 
simplest way to solve such a problem is by a graphical method. If 
the distances L, r, and s are known, then the triangle P Q R may be 
laid off to a convenient scale. From this diagram the angles 
between any pair of forces may be measured. Since the particle 
is in equilibrium, the vector sum of the three forces is zero and 
hence we may construct a second triangle which we may call the 
force triangle. The angles of the force triangle are the angles be¬ 
tween the forces as found from the triangle PQR and the sides of 
the triangle are proportional (to a second selected scale) to the 
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magnitudes of the forces. The construction of the force triangle 
is possible because the length of one side and the two adjacent 
angles are known. The force triangle is shown in the diagram. 
The accuracy of the results obtained depends upon the skill 
involved in mechanical drawing. 

A trigonometric vsolution may be made by the use of Lamias 
theorem. The angles between any pair of forces in the force 
triangle are first to be determined from the data which give 
the lengths of the sides of the triangle P Q R. With this infor¬ 
mation available, Larni’s theorem may be used from which two 
trigonometric equations can be written. The solution of these 
questions will yield the values of the tensions. 

A third method of solution of this problem may be used. 
The procedure involved makes use of Eqs. (9-2). For this 
purpose we may introduce a reference system P Y with origin 
at P and with the P A"-axis vertically downward as shown in the 
diagram. 

With the angles of triangle P Q It determined, one may readily 
calculate the values of the angles a and 13 (see diagram). Using 
the principle expressed in Eqs. (9-2), we may write the following 
force relations: 

mg — T cos a — t cos (3 = 0 
T sin a — t sin ^ — 0 (9-5) 

Since these two equations contain the two only unknown 
quantities t and 7', the tensions may be found. 

b. Elastic SStrings.—In this problem we shall use the same 
arrangement as that given in the preceding problem but with 
elastic strings. Suppose that the unstretched lengths of the 
strings are r and s and that the modulus of stiffness X is known 
and is the same for both strings. We shall assume that a and 
are the angles, as shown in the diagram in the position of the 
equilibrium, between the strings P Q and P Rj respectively, 
and the line of the weight of the particle (i.e.j the vertical line). 
The problem is to find the tensions as before. The lengths 
of the strings (r and s) have been increased by the tensions to 
values which we shall call r' and s', respectively. There are 
now six unknown quantities t, T, a, |S, r' and s'. We shall need, 
therefore, six independent equations in order to find the ten¬ 
sions. We are at liberty to use two equations written by the 
use of Lamias theorem or two derived from the principle expressed 
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by Eqs. (9-2) but we cannot use all four equations, because 
the latter could be derived from Lami's theorem. We select 
those obtained from Eqs. (9-2) because they are already written 
[Eq. (9-5)]. The values of T, a, and of the present problem 
are obviously not those of the preceding problem. 

Two more equations may be written by the use of Eq. (9-4), 
which are 

T s = X (s' — s) and tr = \ (r' — r) (9-6) 

It is to be noticed that if the moduli of stiffness of the strings 
were not alike, this difference would modify one of the preceding 
equations. If both moduli are assumed to be known no difficulty 
is introduced, but if one were unknown the problem could not be 
solved. 

Two other equations may be written by using the trigonometric 
relations to be found from the triangle P Q R. These relations 
are 

s' cos a — r' cos and s' sin a = L — r' sin (9-7) 

By the use of the six equations of Eqs. (9-5), (9-6), and (9-7) it is 
possible to evaluate the tensions in any given problem. The 
algebraic details necessary to express the tensions in the general 
case are uninteresting and will be omitted. The method of 
analysis of the problems is our present interest. 

Problems.—1. Show that Eqs. (9-6) may be derived by using Lamias 

theorem. 

2. A 100-lb. shot is suspended by an inelastic cord which is 10 ft. long, 

i.e.y measured from the point of support to the surface of the shot. How 

large a horizontal force is needed to hold the shot so that the upper part of 

the cord makes an angle of 30 deg. with the vertical, if the horizontal force 

is applied at a point in the cord 9 ft. below the point of support? What 

particle of the system is in equilibrium under three forces? 

3. The following forces are applied to a single free particle: 

Fi = 3 I + 4y -f 5 Kt 

Fa = -2 I -f 5y - 6 ik 
Fa - 6 I ~ sy - 2 Ife 

What single force will produce equilibrium? 

4. A 500-g. particle is to be suspended vertically by an elastic cord which 

is 1 m. long when under no tension. If the modulus of stiffness of the cord 

is 10’ dynes, what will be the stretched length of the cord? 

What h<>rizontal force applied at the particle would be needed to produce 

ecjuilibrium with the cord making an angle of 20 de^. with the yerticf!<}? 
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9-6, Particle on a Plane.—When a particle is placed upon a 
horizontal plane and it remains at rest, two forces will act upon 
the particle. One of these forces is the weight of the particle 
acting vertically downward and the other is the reaction of 
the plane. Since the particle is in equilibrium, the two forces 
are equal in magnitude and oppositely directed. The reaction of 
the plane is therefore directed vertically upward. The origin 
of the force supplied by the plane is to be found in a deflection 
of the plane, although the deflection is usually very small. Such 
a deflection produces an upward force because of the elastic 
nature of the plane. 

If a third force, which is so directed that it has a horizontal 
component, is applied to the particle and the particle remains at 
rest, the direction of the force exerted by the plane must change 
in order to neutralize the horizontal component of the applied 
force. The vertical component of the plane’s reaction will also 
change to the extent which is necessitated by the introduction of 
an additional component in the vertical line. The value of the 
force exerted by the plane must be equal and opposite to the vector 
sum of the weight of the particle and the third force. This is, of 
course, consistent with the fundamental principle that the vector 
sum of the three forces must be zero in the case of equilibrium. 

The source of the horizontal component of the reaction of 
the plane is to be found in the friction between the two surfaces 
in contact with each other. If the surfaces were smooth,’^ 
i,e., with no friction, then equilibrium could not be produced with 
the introduction of a single force having a horizontal component. 
In those cases in which there is no friction between the particle 
and the plane, the reaction of the plane is always perpendicular 
to the plane, whether the plane is horizontal or not. The term 
smooth is usually used to indicate the absence of friction, while 
rough indicates that friction is present. 

Suppose a particle is in equilibrium on a horizontal plane 
and that a variable horizontal force (H) is introduced. If the 
magnitude of H is steadily increased from a zero value, simul¬ 
taneously with this increase the neutralizing friction {F) increases 
so that H ^ F continuously. There is, however, a limiting 
value of F in any particular case, the value of which depends 
upon the character of the two surfaces, such as degree of smooth¬ 
ness and nature of materials, and upon the magnitude of the 
force perpendicular to the plane, i.6., the vertical component 
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of the reaction of the plane. The ratio of the magnitude of the 
maximum value of friction {F) to the magnitude of the vertical 
component {N) of the planers reactions is approximately a con¬ 
stant and has been called the coefficient of friction. If we let ju 
represent the coefficient of frict ion, then 

Numerical values have been determined experimentally for 
combinations of surfaces of various materials. 

It must be remembered that, when a particle is in equilibrium 
on a horizontal plane and there is a horizf)ntal force applied to 
the particle, the term reaction {R) of tlie plane includes the 
friction (a force parallel to the plane) as well as the normal 
component. The direction which R makes with the normal to 
the plane is dependent upon the magnitudes of the twa) com¬ 
ponents of R. In those cases in which the friction F has its 
maximum or limiting value, the angle which R makes with the 
normal to the surface is a constant for any given pair of surfaces. 
The tangent of this angle, usually designated e, is equal to the 
coefficient of friction. 

If a particle is in equilibrium when on an inclined plane 
with no forces other than the weight of the particle and the 
reaction of the plane, then the reaction of the plane must be 
vertical. The component of R parallel to the plane (friction) 
is equal to the component of the weight in the same line but 
its direction is opposite. The component of R normal to the 
plane is equal and opposite to the component of the weight in 
this line. As the angle of inclination of the plane is increased, 
the component of the weight parallel to the plane increases, 
which requires a correspondingly larger value of the friction 
in order to preserve equilibrium. At the same time the normal 
component of the reaction of the plane decreasCvS, which reduces 
the limiting value of friction. It is evident that there is a limiting 
angle of inclination of the plane at which equilibrium will serve 
unless an additional force parallel to the plane is added. This 
is the angle e whose tangent equals the coefficient of friction. 
The fact just stated suggests a simple experimental method of 
determining the coefficient of friction. 

9-*6. Equilibrium of a Rigid Body.—While a particle may 
have translational acceleration only, a rigid body may move with 
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a combination of translational and rotational acceleration. To 
maintain a particle in a state of equilibrium, all that is necessary 
is to prevent translational acceleration. This may be done 
by properly applying a single force. Since a rigid body may 
have rotational as well as translational acceleration, a force 
moment as well as a force must be used to produce equilibrium. 
It is possible in some cases to have a single force supply both 
needs by selecting a proper magnitude, direction, and point of 
application for the force. This matter will be discussed in more 
detail below. 

From the preceding statements and the definition of equi¬ 
librium it follows that there are two general conditions which 
are necessary and sufficient to maintain a rigid body in a state 
of equilibrium. These conditions may be written as follows: 

First Condition.—The vector svm of the forces must be equal to 

zero. 

Second Condition.—The vector sum of the moments of the forces 

about any axis must be equal to zero. 

The first condition for equilibrium of a rigid body is identical 
with the only condition for the equilibrium of a particle. In 
the case of the particle, all forces were regarded as passing 
through its center of mass. In dealing with a rigid body the 
forces may or may not pass through the center of mass. Each 
force applied to a rigid body has what has been called a point of 
application. This is usually the particular point of the body 
at which some other body makes contact with the body under 
consideration, such as the point to which a cord may be attached 
to the body, or it may be the central point of an area of contact. 
As far as the first condition is concerned, it does not matter 
where the forces are applied to the body; if the vector sum 
remains equal to zero, translational acceleration is prevented. 

The second condition of equilibrium is used in connection with 
extensive bodies (not particles) only. 

In order that there may be no misunderstanding about this 
condition, there arc several aspects concerning the principle 
which will be described in detail. 

To determine the vector sum of the moments in any given 
problem, one is not at liberty to compute the sum of the moments 
about just one selected axis unless the case is a special one 
in which the body is constrained to rotate about some fixed axis 
and the selected axis is the fixed axis. At present we are inter- 
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ested in a more general case, that of a free body. In such cases 
it is necessary to determine the moments about any three 
mutually perpendicular axes, such as the axis of a reference 
system. It is immaterial where the reference system is located 
in the body, although the geometry of the arrangement may make 
one selection simpler to use than many others. The following 
development will indicate the validity of the indicated procedure. 

Give any reference system A" Y Z and M the moment of any 
force. M may be expressed in terms of its components along the 
reference axes as follows: 

M = MA + Myj + M,k (9-9) 

when Mxi My^ and are the components of M about the A-, 
7-, and Z-axis, respectively. If there are n moments and they 

are designated Mi, M2, Ms . . . Mn, and Mu, Miy, Mu etc., 
are their components, then the second condition of equilibrium 
may be written 

(Ml, + M2X + • • * Mnx)i + {Miy -|- M^y + • ’ * Mnv)j + 
{Mu + M2. + • • • Mm)k - 0 (9-10) 

For this equation to be satisfied it is necessary that the coefficients 
of the unit vectors be separately equal to zero. 

In place of expressing the moments with reference to axes 
it is sometimes more convenient to express them with reference 
to a selected point. It will be remembered that the moment of a 
force with reference to a point is given by the vector product 
of the radius vector, drawn from the reference point to the point 
of application of the force, by the applied force. If r is the radius 
vector, F the force, and Mthe moment, then 

M == r X F 

If the reference point is the origin of an A F Z reference 
system and x, y, and z are the coordinates of the point of applica¬ 

tion of the force, then 

M = {xi “h yj + zk) X {Fxi -Y Fyj Fgk) 
= (yFz - zFy)i + (zFx - xFg)j -f {xFy - yFx)k (9-11) 

Written in the determinant from this becomes 

X y 
Fx Fy 

k 
z 

Fz (9-12) 
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The components of M are the coefficients of the unit vectors; 
hence 

Mx = yFz — zFyy My = zFx — xF^j and Mz = xFy — yF^ 
(9-13) 

It is worth while to examine each of the preceding expressions 
for the components of M with 
the information given in Fig. 
100. The direction of M is per¬ 
pendicular to the plane deter¬ 
mined by r and F. 

Problem.—If r = Si + 7J -f bk 

and F — 3i -h 2k, find the 
direction and magnitude of M using 

Eq. (9-11). 

9-7. Shifting the Point of 
Application of Forces.—Con¬ 
sider a force F which is one of several forces applied to a body in 
equilibrium. We are to determine the extent to which the point 
of application of F may be moved wit hout destroying equilibrium. 
Obviously the direction of F <jould not be altered without produc¬ 
ing a change in the vector sum of the forces. If F is moved 
parallel to itself, then its moment with reference to any selected 

point would be changed and hence 
the second condition of equilibrium 
would not be satisfied. There re¬ 
mains only the possibility of mov¬ 
ing the point of application to some 
other point in the line of F, Such 
a shift would not alter the magni¬ 

tudes or signs of the components of F in any selected reference sys¬ 
tem and hence, by Eq. (9-2), would be allowable as far as the first 
condition of equilibrium is concerned. This conclusion may be 
obtained from another point of view. Suppose F (Fig. 101) is 
applied at the point P and it is desired to shift the point of 
application to Q, any other point in the line of F. We may 
introduce a pair of equal and opposite forces — F and 4-F at Q 
with both forces parallel to the given F. This addition could 
not affect the vector sum of the forces. We may now regard 
—F at 0 canceling F at P, which leaves -|-F at Q. 

Fig. 101. 



204 ANALYTIC AND VECTOH MECHANICS [9-8 

The shifting of F from P to Q will also produce no change 
in the moment of F with reference to any point 0. The moment 
of F (at P) is r X F, which is equal to I X F where I is the vector 
drawn from 0 perpendicular to the line Q P. Similarly the 
moment of F at Q is equal t o I X F, Hence we may conclude that 
shifting the point of application of a force to any other point in 
the line of that force does not affect the state of equilibrium. 

9-8. Rigid Body in Equilibrium with Three Forces.—Because 
of the fact that there are simjdifications made possible in the 
general condition for eciuilibrium by limiting the number of 
applied forces to three, special attention is to be directed to 
this case. 

a. The Three Forces Are Coplandr.—lliis fact is readily 
deduced from Eqs. (9-2). The proof is identical with that used 
in proving that three forces applied to a particle must be coplanar 
(Sec. 9-3) and will therefore be omitted. 

b. The Three Nonparallcl Forres Are Concurrent.—We may use 
the second condition for equilibrium to prove this statement. 
Since the forces are coplanar, the line of action of each force will 
intersect the lines of action of the two o1 hers. Imagine^ an axis to 
be drawn through the point of intersection of the lines of any two 
of the forces. Neither of the selected pair of forces will have 
a moment about this axis. The third force would have a moment 
about this axis if it did not pass through the point of intersection 
of the first two forces. But the moment of the third force about 
the selected axis must be zero; otherwise the second condition 
would not be satisfied. Hence we may conclude that the three 
forces must be concurrent. 

9-9. Bodies with Parallel Forces.—Problems dealing with 
bodies in equilibrium under the influence of parallel forces 
present cert^ain simplified procedures which warrant a separate 
treatment. Because of the fact that there are two conditions of 
equilibrium which must be satisfied it is possible to have two, 
but not more than two, unknown quantities. One of the 
unknowns must be a force, since the first condition is independent 
of the positions of the forces. The first step, then, is to ascertain 
that sufficient data are presented to make the solution possible. 

As an illustration, we may consider a uniform straight hori¬ 
zontal bar, of weight IT, in equilibrium under the influence 
of the four parallel forces F, Fi, F2, and Fs (Fig. 102) which 
with W make an angle B with the bar. Let the length of the bar 
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be 4 L, with Fi and Fz applied at the ends of the bar and F2 at a 
distance L from A. Find the magnitude and point of application 
of F if F is the only unknown force. 

Since the bar is uniform, W acts at a distance 2 L from A. 
Applying the first condition of equilibrium and letting the 
upward direction be positive gives 

-F, ~~ W - Fz + Fo + F = 0 (9-14) 

Since there are two unknown quantities, two equations will 
be needed. The second condition may be used to obtain the 
second equation. Before one 
attempts to apply this equation, 
it is necessary to select an axis 
about which the moments of the 
forces are to be taken. It is 
immaterial where the axis is to be 
placed but it must be specified in 
order to write the equation. Let 
the axis be taken through A, perpendicular to the plane of 
the forces. If the point of application of F is designated by the 
distance x from A, the equation is 

Fig. 102. 

{F2L + Fx - 2WL - 4FzL) sin ^ == 0 (9-15) 

Notice that the signs of the terms are written with positive 
moments taken counterclockwise. The sign of the F is also 
written plus even though we do not know its direction. The 
reason for this is to make the equation consistent with Eq. (9-14). 
With numerical values given for the known quantities, the two 
unknowns may be evaluated. 

If sin d is not zero, it may be taken out of the second equation. 
This fact indicates that the relation is independent of the par¬ 
ticular value of 6. If 6 were equal to zero, the forces would be 
parallel to the bar and, by writing sin 6 with each dist ance factor, 
it is apparent that the moment of each force would be zero. 
In this case the point of application of. F is immaterial to the 
equilibrium. 

The magnitude and direction (whether + or —) of F are 
obtained from Eq. (9-14). If it is found that F is negative, 
this means that F is directed downward. The distance factor x 
is then found from the second equation. If x turns out to be 
negative, then the position of F must be to the left of the point A. 
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Problems.—1. With the following values: = 500 g. weight, F2 = 200 g, 

weight, W ~ 1 kg. weiglit, - 150 g. weight, and 4 L = 100 cm., find 

F and x. 
2. Considering the lengths L, 2L, etc., as vectons from A, write Eq. (9-16) 

as a vector equation. 

3. Show how the position of the resultant of a system of parallel forces 

may be found from the preceding devclopnumt, 

9-10. Rigid Bodies with a Fixed Axis.—Motions of bodies 
constrained to move about a fixed axis are limited to pure rota¬ 
tion. Some of the common appliances which are to be included 
in this classification are levers, pulley mechanisms, wheel and 
axle, capstans, and others of like nature. Two illustrations will 
be given in order to show the details of the procedure. 

a. The Lever,—A straight 
uniform bar, weighing 10 lb. 
and 6 ft. long, is in equilibrium 
in a horizon! a 1 position with the 
fixed axis at B (Fig. 103), 2 ft. 
from one end. Besides the 
force which may be exerted by 
the axis, there are four other 
forces: 25 lb. vertically down¬ 

ward at A, the weight of the bar, 10 lb. at 0 the center of the bar, 
F, an unknown force at C 4 ft. from A and making an angle of 70 
deg. with the bar, and 30 lb. at X, the other end of the bar and 
making an angle of 60 deg. with the bar as shown in the diagram. 
All forces are coplanar. Find the magnitude of F and the direc¬ 
tion and magnitude of the force exerted by the axis upon the 
bar. 

The magnitude of F may'first be found by using the second 
condition of equilibrium. Taking moments about the fixed axis, 
since R is unknown and is thereby eliminated, we may write the 
following equation: 

2 X 25 - 1 X 10 + (2 sin 70) X F - (4 sin 60) X 30 = 0 
(9-16) 

The units used to express each moment are pound weight feet. 
Solving this equation, we find that F == 34 lb. 

The magnitude and direction of R may be determined by 
equating to zero the sum of the components of all forces taken 
along the axes of any selected reference system. Let the refer- 
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ence system be XOY with origin at the center of the bar and OX 
parallel to the bar. Also let 6 be the angle which R makes with 
the X-axis. By using the first condition of equilibrium, the 
following equations may he written: 

R cos 6 + 34 cos 70 — 30 cos 60 = 0 
-25 +R sin ^ - 10 + 34 sin 70 - 30 sin 60 = 0 (9-17) 

From this we find that 

R cos 6 = 3.40 and R sin 6 = 29.03 

The magnitude of R~ is readily found by adding the squares of 
the equations, from which we find that R — 29.2 lb. Divid¬ 
ing the second of the preceding ecjuations by the first gives 

. tan 6 = 8.55, from which 6 = 83° 20'. The direction of R makes 
an angle of 83° 20' wit h the X-axis, Attention should be called 
to the fact that, for the purpose of writing 
Eqs. (9-17), R was placed in the diagram with 
6 in the first quadrant, 

b. Bar Hinged at 0)ie End,—A uniform bar 
A Bj weighing 1,000 lb., is hinged at one end 
(A) to a rigid support (Fig. 104). The bar is 
held by a rope attached to the other end (B) ^ 
so that the bar makes an angle of 70 deg. with 
the vertical support. The angle between the 
rope and the support is 50 deg. Find the ten¬ 
sion (T) of the rope and the reaction (R) of the 

, Fkj. 104. 
support. 

The bar is under the influence of three forces. Since this is 
the case, the forces must be coplanar and concurrent. The 
latter fact establishes tbe direction of R, for R must pass through 
I>, the point of intersection of T and W. There remain but two 
unknowns, the magnitudes of T and R; hence the problem is 

solvable. 
The first step in the solution is to detennine the angle which 

R maikes with the vertical support. The geometric relations 
may be used for this purpose. If the length of the bar is taken 
as L, then the length of the rope C B may be found. From this 
point one may equate to zero the sum of the moments of W and T 
about an axis through A. The axis is taken through A in 
order to eliminate one unknown (/?). From the equation of 
moments the magnitude of T may be found. Then by writing 
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another equation of moments about an axis through B or 0, the 
magnitude of E is readily found. 

Another procedure is to introduce a reference system and 
write the two equations which express the sum of the components 
along the two axes, leather method is equally serviceable. The 
details of the solution will be left to the student. 

9-11. Center of Gravity.—The center of gravity of a body 
is a point of the body through which the resultant of the weights 
of the various particles, of which the body is composed, may 
be regarded as acting. The center of gravity of a body may 
be found by using the principles of eciuilibrium. A single 
illustration is given to show the method used. 

A square table, the length of each 
edge being L, weighs 5 lb. and carries 
four masses, one at each corner. The 
masses are 10, 15, 20, and 25 lb. and are 
placed in the order given around the 
table. Find the vert ical line which con¬ 
tains the center of gravity, assuming 
that the plane of the table is horizontal. 

Let us select a reference system VZ 
with origin at one corner, with the A"- 

and Z-axes taken along two edges of the table and with the masses 
placed as shown in the diagram (Fig. 105). The second condition 
of equilibrium may be used to find the posit ion (0) of the vertical 
force (E) which would produce equilibrium if the table were 
suspended by a cord attached at that point. Let the coordinates 

of C be X and z. 
The equations for the sum of the moments about the A"- and 

Z-axes are 

- 
‘c yi 

(4 TO./ 

1 1 i 
'5-Lbs 

Fig, 105. 

-Hz + 5| + 15L + 20L = 0 

Ht - 5J - 20L - 25L = 0 (9-18) 

Since the forces are all parallel to each other, the magnitude 
of H is 75 lb. Introducing this value for B and then solving 

the equations for x and z gives x — 0.6.34 L and z — 0.5 L. 
If the third coordinate of the center mass is desired, the 

procedure is readily extended by first rotating the arrangement 
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about the X-axis, say, through 90 deg. and then writing the sum 
of the moments about the F-axis. 

9-12. Illustrations.—The following problems have been 
selected as being typical of those problems in which a rigid body 
is in equilibrium under Ihe influence of three or more forces. 

a. Man on a Ladder.—A uniform ladder of length L and of 
weight yng is placed on a rough horizontal floor and leans against 
a smooth vertical wall so that it makes an angle a with the 
wall. A man of weight Mg stands on a rung of the ladder 
situated at a point fL from the lower end. Find \ he forces exertenl 
by the wall and floor upon the ladder. How does the position 
of the man affect the tendency of the foot of the ladder to 
slip? 

Given the ladder A B as shown in the diagram (Fig. 106). 
The two known forces nig and Mg are 
directed vertically downward and act 
through the points C and B which arc 
one-half and three-fourths of L, re- 
sr)ectively, from the foot of the ladder. 
The force F exerted by the wall upon 
the ladder must be along a line per¬ 
pendicular to the wall because the wall 
is assumed to be smooth (no friction). 
The magnitude of F is unknown. The 
react ion R of t he floor upon the ladder 
is completely unknown. 

The problem may be reduced to an equivalent problem in 
which there are but three forces, if we replace the two weights 
by a single equivalent force. If numerical values of the two 
weights were given, the magnitude and position of a single 
equivalent force could then be found. With only three forces to 
consider, the direction of R could be found, since it is known that 
three forces must be concurrent. The two remaining magni¬ 
tudes could then be readily found by the procedure indicated in a 
preceding illustration (Sec. 9-106). 

Another approach to the problem may be obtained by con¬ 
sidering the components of all forces along a vertical and a 
horizontal line. Let the vertical component of 7? be F and its 
horizontal component be H. Since the sum of all components 
along any line must be equal to zero, it follows that 

F — = 0 V — Mg — = 0 (9-19) 
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The second of these equations gives the magnitude of F. There 
remains only one unknown quantity. 

To find the magnitude of F, another equation is needed. 
Using the second condition of equilibrium, we may write a 
moment equation. Selecting the point B as axis for t he moments, 
we may write 

\MgL sin a + h'^ngL sin a — FL cos a = 0 (9-20) 

from which F and hence II may be determined. 
There still remains to be discussed the question of the effect 

of the position of the man upon the tendency of the foot of the 
ladder to slip. The answer to this question is to be found in 
the variation of the magnitude of II as the position of the man 
is altered. The component H is supplied by the friction between 
the foot of the ladder and the floor. An equation expressing II 
in terms of the position of the man is needcul. This could be 
obtained by replacing F in Eq. (9-20) by its equal quantity H 
but the equation so obtained, while mathematically correct, is 
not satisfactory from the standpoint of its physical meaning. 
Hence we choose to wTile a more suitable equation by expressing 
the moments about an axis through the point A. This equation 
is 

FL sin a — HL cos a — s MgL sin a — r/rngL sin a = 0 (9-21) 

in which the symbol .s is introduced (in the third term) to provide 
a means for expressing a variation of the position of the man. 
The factor ^ indicates, in terms of the fractional length of the 
ladder, the position of the man from the point A. For present 
purposes this equation contains only two variables // and s. 
To preserve the equality, if s increases, H must decrease and 
vice versa. Hence II will have its maximum value when s is 
minimum. We may conclude, therefore, that as the man climbs 
higher on the ladder the tendency to slip increases. 

6. Stepladder,—A uniform symmetrical stepladder is placed 
upon a smooth horizontal surface. The two equal halves of 
the ladder are hinged at the top and the feet are kept from 
slipping by a light inelastic rope which is attached at points 
which are one-third of the distance from the feet to the top of the 
ladder. The angle between the two parts of the ladder is a. 
Find the tension in the rope and the force exerted at the hinge 
by one side of the ladder against the other. 
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Let the arrangement be as shown in Fig. 107, with TF, the 
weight of either side of the ladder, acting vertically downward 
through the centers of the sides. 

In a problem of this sort, when it is necessary to find the 
forces which act upon a certain part of the mechanism, the stu¬ 
dent will find it a great help to draw a boundary line completely 
enclosing that part of the apparatus to which at tention is to be 
directed. Because of symmetry in the present problem we 
need consider only the side AC, By drawing a dotted line 
about this side we are to take account only of those forces 
which are acting upon it. This device makes the selection 

of the proper force of a given pair of forces less liable to be 
incorrect. For example, at the point A there is a pair of equal 
and opposite forces; one of this pair con¬ 
tributes to the group of forces needed to 
maintain the equilibrMim of the side ilC 
and the other (not shown on the dia¬ 
gram) is to be used when dealing with 
the equilibrium of the side AB, 

The forces applied to AC are to be 
identified. The weight W has already 
been mentioned. The tension T is hori- 
zont-al, is applied one-third of the dis¬ 

tance up on AC) and is directed as 
shown. Since the floor is smooth, the 
force P which the floor exerts at the foot of the ladder is directed 

vertically upward. The only remaining force is located at the 
upper end of the ladder and is horizontal. The latter fact may 
not be obvious. But when one remembers that the arrangement 
is symmetrical and that it is assumed that the hinge is 

frictionless, it is seen that no other direction can satisfy these 
conditions. 

There are apparently three unknown quantities and these 
are the magnitudes of F, T, and P. This number is readily 
reduced to one when it is observed that F and T are horizontal 
and W and P are vertical. Hence P = IF, and P = P, as far 

as the magnitudes of the forces are concerned. 
To evaluate T we may use the second condition of equilibrium. 

With the point 4 ^^xis of the moments the following equation 

may be written, if we let L represent the length of AC) 
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PL sin ~ - \WL sin | - |rL cos | = 0 (9-22) 

From this equaiion 1ho maf2:niliide of T may be found. 

Problem,- In tho cnse of the stojiladdcr arningeineiit of the preceding 

illustnition, discuss fh(‘ effect upon the results Iht're obtained if the two 

sid(vs of the stepladd(‘r w(‘re of un('C|ual lengtlis or of une(|ual weights. What 

change in tlie arrangennent would be inaa^ssary in order that the force F 
would not be horizontal? 

c. The Cube, with Concurrent Forces.—A cube has several 
forces applied to its vertices as shown in Fig. 108. llie direc¬ 
tions of the forces are all i)arallel and perpendicular to the sides 
of the cube. Find the single force necessary to produce equi- 

librium, and its position, 
^ It is immaterial to the method of 

the solution whether the forces are 
parallel to the edges of the cube or 
not.. If a given force were directed 
so that it was not eit her perpendicuku' 
or parallel to the edges meet ing at a 
vertex, then we could simply use the 
components of the force parallel to 
the three mutually perpendicular 

Fi.. 1(«. 
We shall first find the force needed 

to produce equilibrium. If we select a reference system with 
origin at one vertex and with axes parallel to the thn^ edges which 
meet at that vertex, we may find the resultant of the applied forces 
by finding the sums of the components along each of the three 
reference axes. If we let Rx^ Ry, and Rz be the components of 
the resultant force, then it is readily found that 

- -1 lb., Ry = -4 lb., and Rz == ~4 lb. 

and that 

R = —z — 4j — 4fe 

The force (F) needed to neutralize R is 

F = i + 4y + 4ft (9-23) 

In order to find the position of F it is necessary to find the 

resultant force moment M of the applied forces. If MMy, and 
Ms are the components of the resultant force moment about 
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the X-, F-, and iJ-axcs and if L is the length of pne edge of the 
cube, the values of the components are readily found to be 

M, = L - 2L - 5L + 6L = 0 
My = 3L - iL - L + 5L = 3L 
1/, = 4L ~ 3L + 2L - 6L = -SL 

Hence 
M = 3Lj - 3Lk 

The moment needed to neutralize M may be called N and is 

N = -3Lj + 3Lk (9-24) 

Whether this moment may be supplied by the force when F is 
properly positioned, depends upon the angle between F and N. 
If this angle, which we may call is 90 deg., then it is possible 
for F to serve the double function of neutralizing the applied 
forces for the prevention of translational acceleration and at 
the same time to supply the needed moment which is necessary 
to prevent rotational acceleration. If the angle 6 is not a right 
angle, then F may be used to supply only that component of N 
which is perpendicular to F. The component of N which is 
parallel to F must be supplied by the addition of a couple, the 
plane of which is perpendicular to F, 

In order to find the value of we may use the following 
theorem 

cos 6 = ai a2 + /?i + 7i 72 (9-25) 

in which 6 is the angle between two lines having the direction 
cosines ai y\ and a2 ^2 72. If we let a\ 71 be the direction 
cosines of F and ^2 02 72 be the direction cosines of N, then we 
find that 

o 4X3 . 4X3 . cos ^ X 0--H--7™ = 0 
\/33 a/33 Vis V33 Vis 

and 
6 = 90° 

We may, therefore, use F to supply the moment needed to prevent 
rotational acceleration. 

The position of F is next to be determined. Let us suppose 
that the point of application of F has the coordinates x, y, and z 
and that r = i x -f y z/ + ft Then we may put 

N - r X F 
- i (y Fz - z Fy) + j (zF:c - X Fz) + k {x Fy - y Fx) 
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The components of F are given by Eq. (9-23), and the components 
of N are expressed in Eq. (9-24); hence, if L is the length of an 
edge of the cube, 

iVx = 4^/ — 4^ = 0 
N, = z - 4x = -3L 
N, = 4:r - y = SL (9-26) 

From these equations we may determine the position of F 
by finding the coordinates of two points through which F passes. 
The first equation indicates that y — z for all points through 
which F passes and hence F must be in the plane containing 
the X-axis and making equal angles (45 deg.) with the F- and 
Z-axes. Since the three equations of Eq. (9-26) are not inde¬ 
pendent equations, because any point in the line of F will satisfy 
them, we may select one coordinate. Let us put y = L, then 
X = z = L. The line of F will, therefore, pass through the 
vertex C of the cube. In a similar manner it may be shown that 

F also passes through the point, x = 3L/4, y — z = Q, 
The line of action of F may be determined in another way. 

If, as above, we let r be the radius vector drawn from the origin 
to any point on the line of F, then all that is necessary to do 
is to find an expression for r. Since the terminal point of r 
may be any point in the line of F, the vector expression for r must 
contain one scalar variable. A vector solution of the equation 
iV = r X F for r is 

r = 
FXN 

+ s' F 

in which s' is the scalar variable. The validity of this equation 

may be established by multiplying each term by X F and then 
expanding the resulting expression. The details of the verifica¬ 
tion will be left to the student. 

Introducing the values of F and N [Eqs. (9-23) and (9-24)] 
and writing sL for s' gives 

r = ^ (24 I - 3 j - 3 fe) + sL (i + 4> + 4 k) 

= ^ [(8 + 11 8) i + (44 8 - 1) j + (44 8 - 1) ft] 

This is the desired expression for r. From it we may determine 
two points through which F passes by locating the terminal 



9-12] STATICS 215 

points for two positions of r. To secure the latter we may 
arbitrarily assign numerical values to s, since s may have any 
numerical values. If s is put equal to we find that 

r^Li+Lj+Lk 

Hence F passes through the point whose coordinates are LjLyL. 
Similarly if s = ^, we find that F passes through the point 

3L/4, 0, 0. 

Problem.—If two nonparallel and nonintersecting forces are applied to 

a rigid body, is it possible to obtain equilibrium by the use of a force alone 

(i.e.f without the use of a couple)? 

d. Cube mih Nonconcurrent Forces.—Given the cube with 
three nonconcurrent forces as shown 
in Fig. 109. Find the force and couple 
needed to produce equilibrium. 

Let the length of each edge of the 
cube be L ft. Also let the X Y Z ref¬ 
erence system be placed as shown in 
the diagram. 

The resultant of the forces acting 
is /? = —2 1 + 57 — 4 k, and the 
force F needed to produce transla¬ 
tional equilibrium is 

F==2f-5 7 + 4ft (9-27) 

The resultant moment of the applied forces is readily found 
to be 

M = -9Li-2Lj+bLk 

The moment N, which will prevent rotational acceleration, is 
therefore 

iV = 9Li + 2L7-6L* (9-28) 

Whether the force F may be so placed as to supply N or not 
may be determined by determining $, the angle between F and N. 
If, as in the preceding problem, we let ai 71 and a2 ^2 72 be 
the direction cosines of F and N, respectively, we find that 
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From this result we learn that N is not perpendicular to F and 

that the angle 6 is 99 deg. and 50 min. 
The next step is to find the components of N which are perpen¬ 

dicular and parallel to F. If we let S and T be the magnitudes 
of the components of N, perpendicular and parallel, respectively, 

to F, then, since the magnitude of N is \/llOLlb.„ ft., 

S = .V sin (? r = N cos 6 
= 10.31 L lb.,,, ft. = -1.79 L lb.„, ft. (9-29) 

The minus sign appearing in the magnitude of T indicates that 
the direction of T is opposite to that of F. 

By properly placing F, the moment S may be supplied by F. 
The force F, as given by Jiq. (9-27), is to be moved parallel to 
itself in a plane perpendicular to S and must be situated so that 
the perpendicular distance from the origin to the line of F is 
S/Fot 1.54 L ft. 

The other component T is to be supplied by a couple whose 
magnitude is —1.79 L Ib.^. ft. The plane containing this couple 

is perpendicular to F, The negative sign indicates the direc¬ 
tion of the couple. 

An alternative method for determining whether N is per¬ 
pendicular to F or not and of evaluating the vectors S and T is 
included for purposes of comparison and at the same time to 
provide a check on the results obtained above. This method 
employs the scalar product of two vectors. 

If two vectors are perpendicular to each other, their scalar 
product is zero. The scalar product of F and N is 

F • A = (2 X 9 ~ 5 X 2 - 4 X 5)L 
= -12L (9-30) 

Since this product is not zero, N is not perpendicular to F. 
In determining the angle between the two given vectors we 

may again use the scalar product. Since 

F ' N F N cos d 

it follows that cos 6 = —0.1707. 

To find the component (T) of N which is parallel to F we must 
determine the magnitude of T, In the scalar product of F and N 
we are at liberty to regard N as being projected into the line of F 
and then l^eing multiplied by F; hence it follows that 
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T = 

= = -1.79L (9-31) 
VT5 

Since the vector — T is parallel to F, the ratios of the coeffi¬ 
cients of the unit vectors must be equal to the ratio of the 
magnitudes of the two vectors. If we let a, by and c represent the 
coefficients, respectively, of the unit vectors of — T, then 

a ^ ^ L 

2 ~ 5 “ 4 ~ 

from which, a — 0.534 L, b = —1.333 L, and c = 1.067 L, 
Hence 

T = (-0.534 i + 1.333 j - 1.067 k)L (9-32) 

The other component (S) of N may be found by the following 
vector equation: 

S = N - T 
= (9.534 i + 0.667 j - 3.933 k)L (9-33) 

This vector (S) lies in the plane determined by N and F and 
is perpendicular to F as may readily be shown by expanding the 
scalar product of S • F, 

The position of the force F necessary to supply the moment S 
may now be found by the method used in the preceding illustra¬ 
tion [Eq. (9-26)]. If wc let x, ?/, and z be the coordinates of the 
jx)int of application of F and let r be the radius vector to that 
point, then the moment S must be equal to r X F. Putting 
r = xi + yj + zk, expanding the vector product, and putting 
the coefficients of the unit vectors equal to the corresponding 
magnitudes of the components of S gives 

= iy + dz = 9.534 L 

Sy = 2 z — 4 X = 0.667 L 
S, = -5 X - 2 y = -3.933L (9-34) 

From these three equations the ratios of the coordinates of the 
point of application of F may be found. 

Problem.—Find the force and couple needed to produce equilibrium an a 
cube upon which the following forces are applied (Fig. 109): 
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At Aj parallel to the A'-axis, —5. lb. 

At C, parallel to the F-axis, -fG. lb. 

At Fy parallel to the Z-axis, ~3. lb. 

e. Truss,—A simple horizontal bridge truss is made up of 
three equilateral triangles, all being of the same size (Fig. 110). 
If the truss carries a load of 1,000 lb. at its central point, find the 
stress in each member. The weights of the members of the tniss 
are to be neglected and all joints are to be regarded as freely 

hinged. 
The solution of a problem of this sort is obtained by applying 

the two conditions of equilibrium to each joint of the truss. In 
order to simplify the designa¬ 
tion of the forces at the various 
joints, we shall use the letters 
of the terminal points of the 
member as subscripts to the 
symbol F and let the sequence 

of the subscripts indicate the 
direction of the force at the 
point under consideration. 

For example, the force at A due to the stress in the member AB 
is parallel io A B and is directed from B toward A and will be 
designated as Fba- The force at B along the same member is to 

be written Fab- 
We shall first find the forces acting at the joint A. Since 

the load (1,000 lb.) is at the center of the truss and the weights 
of the members are to be neglected, the reaction (i?) of the pier 
at A is directed vertically upward and is equal to 500 lb. If 
desired, this value could readily be established by writing the 
moments of R and the 1,000-lb. weight about an axis through 
E. The two other forces acting at A are Fha and Since 
Fac is horizontal, the vertical component of Fba must neutralize 
R, therefore 

. a/ Fac 

~m fca 
Fia/ t 1.000 

w 
Fig. no. 

Fba cos 30® = 500 lb. and Fba == 577 lb. 

The horizontal component of Fba must be equal and opposite 

to Fac] hence 

Fao * Fba cos 60® * 288.5 lb. (9-36) 

Of the three forces acting at the point JS, the force Fab (equal 
and opposite to Fbj^ is completely known and the directions of 



9-13] STATICS 219 

the two others (Fdb and Fbc) are known. There are therefore 
only two unknowns. Analytically the simplest procedure is to 
put the sums of the horizontal and vertical components separately 
equal to zero. These two equations are 

'-Fj)B + Fab cos 60° + Fbc COS 60° = 0 
Fab sin 60° - Fbc sin 60° = 0 (9-36) 

From which we find the magnitudes to be 

Fbb ^ Fab = Fbc ~ 577 lb. 

This result is confirmed by observing that the three forces make 
equal angles with each other. 

We shall consider next the forces at the point C. There are 
five forces acting at this point. The directions of all five forces 
and the magnitudes of three are known. There remain as 
unknown quantities the magnitudes of Fcd and Fce. Since the 
arrangement is one of symmetry, it is readily seen that 

Fce ^ Fca and Fob ~ Fcd 

In a similar manner the forces at the points D and E may be 
found. Again by symmetry we may readily write the values for 
the forces at D and E from those already found. 

Problem.—Using the diagram of Fig. 110, assume that the angles BACy 
ACBy DCEy and CED are 45 deg. each and that the load (1,000 lb.) is 

midway between A and C. Find the stresses in the various members. 

9-13. Principle of Virtual Work.—The principle of virtual 
work played an important role in the development of the subject 
of statics. At the present time it is used but little in this branch 
of mechanics because the vector relations expressed in the two 
conditions of equilibrium are easier to understand and to apply 
in the solutions of problems. The student of mechanics should, 
however, be familiar with this principle. For a more detailed 
presentation he should consult the literature on this subject, for 
example, Appell, ^'M<5canique rationnelle'^; Lagrange, ^^M6cani- 
que analytique,’' Crew and Smith, Mechanics for Students of 
Physics and Engineering,^^ and others of similar nature. 

The credit for formulating the principle of virtual velocities is 
given to Stevinus (1548-1620). Galileo also used this principle 
in a theoretical consideration of some simple machines, but it was 
not until more than a century later (1717) that Jean Bernoulli 

was able to announce the general principle and its usefulness in 
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problems of statics. The earlier ideas about virtual velocities 
and their uses in statics were somewhat nebulous before Ber¬ 
noulli's efforts in this field. In a letter to Varignon he clearly 
explains the principle and gives illustrations of the application 
of it. 

a. Virtual Displacement.—Suppose that a particle which is in 
equilibrium has a force {F) applied io it and suppose that the 
force F causes the particle to have a very small displacement 
which we may call A^. The displacement is not to be a real 
displacement but a purely imaginary one. Such a displacement 
is called a virtual displacement to distinguish it from any actual 
displacement which the particle might have. 

b. Virtual Work.—The work NW produced by the force F in 
giving the particle the virtual displacement As is expressed by the 
equation 

AW = F-As (9-37) 

It may readily be shown that the virtual work of the resultant 
of the several forces which may be applied to the particle is equal 
to the sum of the virtual works of the component forces. 

c. Virtual Velocity.—If we let A^ be the element of time in 
which the virtual displacement As takes place, then the virt/Ual 
velocity is As/At. 

d. The Principle.—The ideas expressed by the virtual displace¬ 
ment and work of a part icle may readily be extended to a rigid 
body. We must remember that we are dealing with a body in 
equilibrium and, hence, there must be at least two forces acting 
on the body. A virtual displacement is to be associated with 
each force and is to express a very small displacement of the point 
of the body to which that force is applied. From this it may be 
seen that some, but not all, of the virtual displacements in a 
particular case may not be selected arbitrarily. The virtual 
work, in the case of a rigid body, done by any force is determined 
by that force and its associated virtual displacement by taking 
the scalar product of those two quantities. 

Let us consider a rigid body which is in equilibrium under 
the action of several forces applied to it and then imagine that 
one or more of the points of application of the forces are given 
virtual displacements. The principle of virtual work, or of 
virtual velocities as it was formerly called, as stated by Appell is 
as follows: 
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^^The necessary and sufficient condition needed for a system 
to be in equilibrium is that for any virtual displacement of the 
system, compatible with the liaisons, the sum of the virtual works 
of the applied forces shall be zero” 

In order to understand just what is meant by the phrase 
‘'compatible with the liaisons,” one must remember that, if the 
body is rij!;id and two or more forces are applied to it, the virtual 
displacements to be associated with the forces are not inde¬ 
pendent of each other but depend upon the positions of the 
forces relative to the body and to each other and also may 
depend upon any constraints to which the body is subject. For 
example, let us consider a simple a c B 

lever AB (Fig. Ill) which is in —_ 

equilibrium under the influence of 
the two forces W and F and , r 
which is constrained to rotational w 
motion by having a fixed axis 
at C, If we imagine that one end (B) of the lever has a virtual 
displacement As, then the other end (A) cannot have any 
arbitrary virtual displacement if the lever is regarded as rigid. 
The virtual displacement of A is determined by the structural 
arrangement—the liaisons. 

To make a further use of the illustration, let us apply the prin¬ 
ciple of virtual work in order to obtain a relation between the 
forces F and W. Let the virtual displacement of A be Ad. 
The sign of a virtual displacement is regarded as positive if it is 
supposed to take place in the positive direction of the corre¬ 
sponding force; otherwise it is negative. If we assume that As 
is positive, then the sum of the virtual works is 

F • As - IF • Ad = 0 (9-38) 

A second relation may be obtained from a knowledge of the 
positions of the two forces with respect to the fixed axis. This 
relation is one between the relative magnitudes of the virtual 
displacements and may be written as follows: 

A 

Fig. 111. 

Ad __ AC 
(9-39) 

From these two equations the ratio of the magnitudes of the two 
forces may be found, provided the directions of the forces are 

known. 
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//U/I// 

e. Illustration.—A single illustration will be given to show how 
the principle of virtual work may be used in a problem of statics. 

The radii of the two pulleys of a differential pulley are vi and 
It is required to find the ratio of the applied force to the weight 

of the object which may be lifted. 
Let W be the weight lifted, F the applied 

force with Ad and respectively, the virtual 
displacements (Fig. 112). Applying the prin¬ 
ciple of virtual work gives the following 
equation: 

F As - TF -Ad = 0 (9-40) 

To find the relation between the two virtual 
displacements, we may imagine that the virtual 
displacement of the fixed pulley is A^. Cor¬ 
responding to this virtual displacement, the 
chain A is pulled upward a distance r2A0. The 
chain B on the other side is lowered a distance 
riA^. Hence the virtual displacement of the 

I—^ weight W is 

—Ad = — ri)A0 
T W 

^ The virtual displacement As is equal to r2A0. 
If we substitute the values of Ad and As in 

rw 
Fia. 112. 

Eq. (9-40) and evaluate the scalar products, since the virtual 
displacements are parallel to the corresponding forces, we obtain 
the following desired relation: 

F 
W 

(Ti - ri) 
2r2 

(9-41) 

In the ordinary differential pulley, r2 — ri is small in comparison 
with r2 and hence, neglecting friction, a small force may be used 
to lift a comparatively large weight. 

f. The Work Principle.—The method described above for 
solving problems in statics by means of the .principle of virtual 
work is very similar to the principle frequently described as the 
work principle. It will be recalled that the work principle is 
used in the same type of problems and differs from the principle 
of virtual work only to the extent of assuming a real and 
finite displacement in place of the imaginary and very small 
displacement. The terms inpvi and output as used in the work 
principle might very well be employed in the principle of virtual 
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work. The indicated similarity will make an understanding of 
the principle of virtual work easy to acquire. 

9-14. Flexible Cables.—In this section we shall study the 
characteristics of equilibrium of a heavy flexible cable or rope 
when hanging between two fixed points. The diameter of the 
cable is considered to be small in comparison with its length. 
It is to be regarded as being perfectly flexible; in other words, it 
offers no elastic resistance to forces tending to bend it. The 
nature of the curve which the cable will assume when under 
the influence of gravity alone and the tension at any point of 
the cable are the two characteristics of chief interest. 

If the cable is uniform, its linear density is constant and its 
weight is therefore distributed evenly along its length. A 
uniform cable suspended by its extremities between two fixed 
points and carrying a load, distributed with linear uniformity, 
wiU assume a definite curve which is called the catenary. This 
curve is not a simple curve. Its derivation is given below. If 
we may assume that the load carried, including the weight of 
the cable, is uniform horizontally, the curve taken on by the cable 
is a parabola. Because the latter assumption yields the simpler 
curve, it will be considered first. 

a. Uniform Horizontal Distribution 
of the Load.—We are to determine 
the curve assumed by the cable 
under the limitation that the load is 
distributed uniformly along a hori¬ 
zontal line. 

Let the cable be suspended from the two points A and B which 
are in the same horizontal line (Fig. 113). The reference system 
Z 0 y is placed in the plane of the curve with the origin at the 
lowest point of the curve and with the X-axis horizontal. 

Let P (a: 2/) be any point on the curve. We may consider the 
portion 0 P of the chain. * It is in equilibrium under the influence 
of three forces, the horizontal force R which is acting at 0, the 
tension T which is tangent to the curve at P, and its weight W 
which is directed vertically downward at the center of the 
portion. Since the sums of the horizontal and vertical compo¬ 
nents of these three forces must be separately equal to zero, we 

have 
R -- T cos a = 0 and W — P sin a =. 0 (9-42) 

where a is the angle which T makes with the X-axis. 
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Since the horizontal distribution of the weight is assumed to 
be uniform, we may put W = nx where n is the weight per unit 
of horizontal length of the cable. Substituting this value for W 
in Eqs. (9-42) and eliminating T gives 

tan a = -^ (9-43) 

But tan a = dy/dx; hence on integrating and putting x = y — 0 
for initial conditions we find that 

y = 2/i (9-44) 

Since P is any point on the curve and n and R are constants, 
Eq. (9-44) is a parabola with origin at the lowest point of the 
curve and with the axis directed vertically upward. It follows, 
therefore, that under the imposed weight distribution the curve 
assumed by the cable is a parabola. 

The tension R in the cable at the point 0 will obviously 
depend upon the vertical distance of 0 below the points A and 
B and also the horizontal distance from A to B. If the former 
distance is called d and the distance between A and B is identified 
as 2a, then we may evaluate R by using Eq. (9-44), and the coordi¬ 
nates a and d of the point B. Hence we find that 

^ ^ (9-45) 

The value of the tension 7" at B (or at i4) is next to be found. 
The direction of T may be found from Eq. (9-43) which gives if 
we write a' for the particular value of d, 

tan a' = ~ = — (9-46) 
U d 

The magnitude of T may be determined by using Eqs. (9-42), 
Squaring both equations, writing T' for T, and introducing the 
values for R and W gives 

r = ^(4 + a2)» (9-47) 

The tension T at any point in the cable may be determined 
in a similar manner. 

6. Uniform Linear Distribution of the Load.—We shall next 
consider the conditions of equilibrium when the load is dis- 
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tributed uniformly along the cable. If we use the symbol m 
to represent the weight of a unit length of the cable and s to 
express the length of a segment of the cable such as OP (Fig. 113), 
the differential equation for the curve becomes 

tan a 
dy _ m s 

For the sake of convenience we may put R/m = c, a constant, 
which gives 

dx c 
(9-48) 

This equation may be recognized as belonging to the catenary. 
The origin of the curve is to be taken at a distance c below 0 
in the diagram. The constant c has the 
dimension of a length. The equation 
may be transformed into one which 
contains only two variables s and x by 
the use of identity 

1 
tan“ a 

COS" a 
- 1 Fig. 114. 

and by using the relation shown in Fig. 114. Since cos a = dxjdSj 
it follows that 

\dx) \dx) 

2 

- 1 (9-49) 

Eliminating dyjdx from Kqs. (9-48) and (9-49), we obtain the 
desired differential equation 

(9-50) 

Integrating this equation and writing log Z> for the constant of 
integration gives 

By selecting a: = 0 at s = 0 for the initial conditions, we find 

that log D = 0; hence we may write 

(9-61) 
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This equation may be manipulated so that it is explicit for s/c. 
By taking the reciprocal of both members of the equation and 
then simplifying, we obtain 

Subtracting this equation from Eq. (9-51) gives 

Hence 

X 

ec 

s . , a; 
- = sinh - 
c c 

(9-53) 

If this value of s/c is substituted in Eq. (9-48), a differential 
equation in x and y is obtained. This is 

dx 

Integration yields the following equation: 

^ = cosh - (9-54) 
c c 

The constant of integration is equal to zero. 
A useful relation between x and y may be obtained from the 

fact that 

cosh^ ~ — sinh^ - = 1 
c c 

Applying this relation to Eqs, (9-53) and (9-54) gives 

t/2 — == (9-56) 

The expression of Eq. (9-54) may be simplified if the constant c 
is large, or physically if the horizontal tension is large in com¬ 
parison with the hnear weight of the cable. By expanding 
the exponential terms of cosh x/Cy it may be shown that the 
series 

-- 1 ^ > e c = 1-f- 
2c» 6c» 

+ 

converge rapidly if c is large in comparison with x. 
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The approximate expression then becomes 

s = 2 + I (9-56) 

This approximate expression is a parabola. We may conclude, 
therefore, that when the horizontal tension is large the curve 
assumed by the cable is approximately a parabola. 

Problems.—1. A weight of 500 lb. is suspended by two massless cords 

which make angles of 30 and 50 deg. with the vertical. Find the tension 

in the cords. 

2. A uniform bar 10 ft. long and weighing 250 lb. is supported in a hori¬ 

zontal position by two vertical ropes which are placed 1 and 2 ft. from the 

ends of the bar. Find the tension of the ropes. 

3. A uniform bar 8 ft. long and weighing 25 lb. carries three weights, 

50, 75, and 125 lb., which are 1, 3, and 6 ft., respectively, from one end of the 
bar. Find the center of gravity. 

4. A uniform horizontal bar of mass m g. and of lengtli 2 L cm. is suspended 

by two parallel massless threads. The threads are 2 L cm, apart and are 

D cm. long. Find the couple needed to rotate the bar through an angle 6. 

(This arrangement is called the bifilar pendulum.) 

5. A bug is placed in a spherical-shaped bowl. If the coefficient of 

friction between the bug and the walls of the bowl is 0.4, how far up the side 

can the bug crawl before he slips back? 

6. Find the ratio of the applied force tu the force exerted by a wedge if 

the angle of the wedge is 2a, and the force exerted is perpendicular to the 

line of the applied force. Use the principle of virtual work. 

7. A ladder of length L and weight W is placed on a horizontal floor and 

leans against a vertical wall. If the coefficients of friction are similar and 

both are equal to /x, find the smallest angle which the ladder can make with 

the floor and not slip. 



CHAPTER X 

FORCES OF ATTRACTION AND POTENTIAL 

10-1. The Law of Gravitation.—The single contribution which 

made the greatest advance in the study of celestial mechanics 

was the law of gravitation, formulated by Newton in 1666. It 

is of interest to observe that, in stating the universal law of 

gravitation, Newton brought into coalescence many important 

ideas which were current prior to his time. The works of such 

men as Galileo, Copernicus, Huygens, Mersenne, and Kepler 

were milestones to the greater achievements of Newton. 

The law of gravitation was not the product of a few hours^ 

work. In order to achieve the final result, much time was 

required and new mathematical tools had to be invented. He 

published a description of this work in his ^^Mathematical 

Principles of Natural Philosophy^’— ^^a work which as an exhi¬ 

bition of individual intellectual effort is unsurpassed in the 

history of the human race.” 

Newton’s first great step was in guessing that the earth’s 
gravitation extended to the moon. Using some of Kepler’s 

ideas, he deduced that the forces which keep the planets in their 

orbits must be inversely proportional to the squares of their 

distances from the sun, and then he compared the centripetal 

force needed to hold the moon in its orbit with the force of gravity 

at the surface of the earth and '^found them answer pretty well.” 

Although Newton found that his gravitational force did 

'^answer pretty well” with the necessary centripetal force, the 

difference was, in his opinion, sufficiently large to warrant delay 

in publication. So he waited until 1672, at which time he was 

able to prove that for certain purposes the mass of the body 

could be regarded as being concentrated at its geometrical center. 

This fact together with new and more accurate data of the size 

of the earth enabled him to make a satisfactory substantiation 

of his theory. He published the results in his now famous 
'^Principia.” 

An interpretation of the law, as formulated by Newton, leads 

ys to the view that, when we are concerned with the gravitational 
228 
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attraction between two bodies, we are in reality dealing with 
resultants of groups of differential forces. Considering two 
differential masses dm and dm', the force dF exerted by dm on 
dm' is expressed by the relation 

dF = -K dnS^ (10-1) 
r- 

in which r is the distance from drn fo dm' and K is a constant 
which depends upon the system of units employed. The minus 
sign indicates that the force is one of attraction. 

The force dF acts mutually upon the two masses. It may be 
regarded as a tension between them, as though a stretched rubber 
band was attached to the two particles and was pulling them 
together. The direction of th(^ force is along the line joining the 
particles. The magnitude of the force decreases as increases 
and vice versa. As r approaches zero, the force approaches 
infinity. Obviously r cannot be made e(iual to zero. 

If we wish to determine the attraction between any two bodies, 
of mass m and m', we shall have to integrate the differential 
forces over both masses. Every differential particle of the one 
body will exert a differential force upon each differential particle 
of the other body. A double 
mass integration is therefore 
necessary to determine the re¬ 
sultant gravitational force be¬ 
tween the two masses. 

Illustraiion.—Given two thin 
homogeneous rods, of lengths 
2L and 2L', and of masses M and 
M', respectively. Let the rods 
be so placed that they are par¬ 
allel to each other and that the 
line joining their centers of mass 
is perpendicular to each of the 
rods. Let D be the distance between the centers of mass. Find 
an expression for the gravitational attraction of M for M'. 

Let dm and dm', the differential masses, be situated at the 
distances y and y' from t^ie centers of mass of M and M'^ respec¬ 
tively, with the reference system as shown in Fig. 115. If A is 
the common area of cross section and if p and p' are the densities 

of the rods, then the differential force between dm and dm' is 

dm 

Fig. 115. 
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dF '—KA^pp' dy (10-2) 

This force is directed along the line r which connects dm with 
dm\ We cannot integrate this expression over the two rods and 
obtain a correct expression for the resultant force because the 
directions of the differential forces in the integration will not all 
be the same. We may, however, project these differential forces 
into lines parallel to OX and to OY and then, by separate inte¬ 
grations, determine the components of the resultant force which 
are parallel to OX and to OY. 

The component parallel to OF is found by the following 
expression: 

f, - 

where a is the angle between r and the F-axis. Since 

cos a = ^ ^ and r = [{y' — 2/)"“’ + 

then it follows that 

Fy = ■KA^PP , r c' Mji 
Llj-lMv' — 

- y) dy dy' 
y)^ + D^V ^ 

The other component Fx is found by integrating the following 
expression: 

Fx 
D dy dy' 
~^yy^WY 

= “7^- WiU + LY + - ^/{U - LY + Z)“] 

= [V(L' + LY + - ViL' - LY + Z>=] 
(10-4) 

Since the component Fy is zero, the resultant force is parallel 
to the axis OX. This result does not prove that the resultant 
force passes through the centers of mass of the two bodies. In 
this case, however, because of the symmetry of the arrangement 
it is not difficult to see that such is the case. In general, it is not 
correct to say that the resultant force between two bodies does 
pass through the centers of mass. As an illustration of a case 
of an unsymmetrical arrangement in wTiich the resultant attrac¬ 
tion does not pass through the centers of mass, the following 

problem is given for the student to work out» 
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Problem.—Find the direction and magnitude of the attraction between a 

thin uniform rod, of length L, linear density p, and mass M, for a small 

dimensionless mass m situated at any point on a line which passes through 

one end of the rod and perpendicular to it. rrov(; that the direction of the 

force does not pass through the center of mass of the rod but bisects the 
angle formed at m by the two lines drawn to the extremities of the rod. 

To locate the position of the resultant force in either rod of 
Fig. 115, say ilf, it is necessary to determine the moment of the 
A" component of the force on M about some axis perpendicular 
to the diagram and passing through some point P of the rod. 
If the moment so determined is zero, then from that fact we 
should know that the resultant attraction passes through the 
point P. If the resultant moment were not zero, then dividing 
the moment by the resultant force would give the lever arm of 
the force necessary to produce that moment. The point of the 
body through which the resultant force passes will be at a dis¬ 
tance equal to the lever arm from the point selected as axis of 
moments. The sign of the moment will indicate on which side 
of the selected axis the line of the force passes. 

Let us select the point OinM (Fig. 115) as the axis of moments. 
The X component of the differential force (dP*) due to the 
attraction of the rod M' on any differential mass dm (0, y) of M 
is found as follows: 

dPx = KAp 
'“’'Lw 

Ddy' 
yY + 

KAp'drn^ L' — y 

-0 [Va - 2L'y + 2/2 Va + 2L'y + 

L' Yy 
(10-5) 

in which a = L'^ + Z)^. The sign is taken positive because the 
force is in the direction of a positive displacement along OX. 

According to our convention of signs, a positive moment about 
an axis through 0 would produce a counterclockwise rotation. 
The moment of the force dFs, about 0 is therefore —y dFx- If we 
multiply the foregoing expression for dP* by —y, replace dm 
by Apdy^ and then integrate from — L to L, the resultant moment 
M is found. Replacing the values of a, the expression for the 
moment may then be written as follows; 

^ iJ-Ly/D^ + iL'-yY 
+ y)dy 

-Ly/D^ + {L' + yY. 
(10-6) 
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The integration of this expression is more easily obtained if 
we make the following changes: 

First Integral Second Integral 
Let Let 

u — U — y V = L' + y 
dll = —dy dv ~ dy 
U + L Upper limits TJ — L 
U — L Lower limits U + L 

Making those substitutions and in the second integral reversing 
the limits and changing its sign gives 

^ VD-+ Jl'-lVJ^- + vA 
It is not even necessary to evaluate the integrals because 

it. may be seen that, since the limits are alike and the forms of 
expression identical, the final value must be equal to zero. We 
may therefore draw the conclusion that the result ant gravitation 
attraction of M' for M passes through the centers of mass of both 
bodies. 

10-2. The Gravitational Constant.—After Newton\s discovery 
of the law of gravitation, the attention of many scientists was 
directed to determining the value of the constant K. This 
problem was not an easy one, for, it must be remembered, the 
mass neither of the earth nor of any other ^‘heavenly body was 
known. The size of the earth had been determined; hence there 
were, in reality, two quantities, K and the density 8 of the earth, 
in the equation which had t-o be determined. 

The experiments for finding K and 8 are of two general types. 
In one class some natural mass is selected, usually a mountain 
whose slope and size were easy to measure. In some of these 
experiments measurements were made on the deflection of a 
plumb bob placed near the side of the mountain, and in the others 
the periods of a pendulum, placed on top and below the mountain, 
were determined. These experiments utilized the effect of a 
known mass (the mountain) upon the plumb bob or pendulum. 

The other type of experiment was designated to be done in the 
laboratory. A large and a small mass were selected, the masses 
of course, being known. Usually the small mass was suspended 
by a very fine quartz fiber and then the large mass was placed 
first on one side of the small mass and then on the other. The 
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displacement produced by the attraction was measured. The 
actual gravitation force between these two masses was compared 
with the weight of one of the masses. 

Our space here is too limited to describe all or any of these 
interesting experiments. The student should consult the litera¬ 
ture on this subject.^ Some of the milestones in the solution of 
this problem are given here. 

First Type of Experiment. 1. Bouyery 1740.—Bouger was the 
first to make any experiment intended to evaluate K. An 
account of his efforts on the slopes of Chimborazo in Peru is 
filled with many thrilling incidents. His results were not good 
numerically but did indicate ^Hhat the attraction of the mountain 
existed and that the earth, as a whole, is denser than the surface 
strata.’^ As he remarks, ^‘the experiments at any rate proved 
that the earth was not merely a hollow shell, as some had till then 
held; nor was it a globe full of water, as others had maintained.’’ 

2. Maskehpiej 1774.—Maskelyne made measurements on 
Schiehallion, a hill (3,547 ft. high) in Scotland. He used a plumb- 
bob method. His results indicated that d was 4.5 g. per cubic 
centimeter. 

3. Carlinij 1821.—Carlini used a pendulum at the Hospice on 
Mt. Cenis, about 6,000 ft. above sea level and found d = 4.5. 

4. Airj/j 1826 and 1854.—In these experiments the period of 
a pendulum was measured at the earth’s surface and also at the 
bottom of a coal mine. He found d = 6.5 g. per cubic centimeter. 

Second Type of Experiment. 1. Mitchell.—Credit should be 
given to Rev. John Mitchell for designing and completing 
laboratory apparatus for this purpose. Unfortunately, he died 
before doing the experiment. 

2. Cavendish j 1797-1798.—This famous experiment is probably 
well-known by all students of physics. An average of 29 results 
gave a mean value of 5 = 5.448 + 0.033. 

3. Reich, 1837, found values of 5.49 and 5.58 for 5. 
4. Bailey, 1841, results gave 8 = 5.674. 
5. Boys, 1895, used very fine apparatus and probably obtained 

the best results. His final values are G = 6.6576 X 10"“® and 
8 = 5.5270. 

The numerical value of K may be found from a knowledge of 
the weight of a body on the earth^s surface and the mass of the 

earth. This is left for the student to do. Assume that the 

i POYNTiNG and Thomson, Properties of Matter.” 
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average density of the earth is 5.53 g. per cubic centimeter, that 
the radius is 6.37 X 10® cm., and that the weight of 1 g. mass 
is 980 dynes. 

K is not merely a numerical constant used to make the magni¬ 
tudes agree on both sides of the equation. It has dimensions. 
These are easily found if we write Eq. (10-1) so that it is explicit 
for K. 

r^dF 

dm dm' 
(10-8) 

10-3. Gravitational-field Intensity.—It is customary in physics 
to speak of magnetic-field intensity at a point in a magnetic field 
as the magnetic force exerted by the magnetic field upon a unit 
(N) magnetic pole placed at that point. Similarly the electric- 
field intensity is defined as the electric force exerted by the elec¬ 
tric field upon a unit positive electric charge placed at the point 
in question. In both of these cases we think of the magnetic or 
electric field as a region of such a nature that there would be a 
force exerted upon any magnetic pole or electric charge if brought 
into the field. In a like manner we may regard the gravitational 
field as a region of gravitational influence in the space surrounding 
some mass or masses. Because of this similarity, gravitational- 
field intensity is defined in a manner analogous to that used in 
defining the magnetic- or electric-field intensities. Gravitational 
field intensity is the gravitational force exerted by the field upon a 
unit mass placed at the particular point at which the field 
intensity is to be expressed. It is the gravitational force per 
unit mass. If the force on a differential particle dm at a given 
point is dF, then dFfdm is the field intensity at that point. 
It is obvious that field intensity is of the same dimensions as 
acceleration. 

To determine a component of the field intensity G, at any 
point in the field of any given mass, we may replace dm in 
Eq. (10-1) by unit mass and, assuming the unit mass to be a 
dimensionless particle situated at the given point, evaluate the 
integral 

where a is the angle between r and OX. 
This equation gives only one component of the field intensity. 

The resultant field may be found by determining the three 
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components referred to a selected reference system. The position 
of the force in unsymmetrical bodies is determined by using the 
moments of the forces as shown in Sec. 10-1. A number of 
illustrations are given in the following sections to show the method 
of determining the field intensity. 

10-4. The Gravitational-field Intensity of a Homogeneous 
Sphere.—The problem of finding the field intensity due to a 
homogeneous spherical mass at some point outside the mass is an 
important one in astronomical calculations. There are several 
ways in which the general expression for the field intensit^^ may 
be determined. The method shown here involves three steps. 
Each step will, however, be complete in itself. The first step 
will be to find the field intensity at some point on the axis of a 
thin ring, the second will involve a determination of the intensity 
on the axis of a thin circular disk, and the last step will show the 
process of finding the intensity at some point outside the solid 
homogeneous sphere. In the second and third steps the results 
of the preceding step will be used. By this method the normal 
process of a triple integration over the volume of the solid is 
replaced by steps which reveal a physical meaning of the volume 
integral. 

a. Thin Ring,—To find dm 
the field intensity at some 
point on the axis of a thin 
ring. 

Let the radius of the ring 
be r (Fig. 116), its area of 
cross section A, and its 
density p. We are to find 
the field intensity at some point P, which is at a distance D from 
C, the center of the ring. If radii are drawn to the ends of a 
differential mass at Q and dy is the angle between them, then 

^ dm = A p r dy 

The common distance of all such differential masses from the 

point P is + r^. The field intensity at P, due to dm, is in 
the line PQ, We must therefore project this differential force 
into the line of PC by multiplying it by the cos a where a is the 

angle between PC and PQ, 
The general expression for the field intensity at P is 

(10-10) 
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Since 7 is the only variable, the limits of integration, which 
correspond to taking the integration over the entire mass, now 
are from zero to 27r. Hence 

G = jo 

KA p tD 27r 
{D- + 
KmD 

(2>2 + (10-11) 

in which m, the mass of the ring, is used to replace Ap2Trr. 
b. Thill Disk.—To find the 

intensity at a point on the axis of 
a thin disk. 

Let a be the radius of the disk 
(Fig. 117), C its center, t the 
thickness, and p the density. 
The field intensity is to be found 
at the point P which is on the 

axis of the disk and situated at a distance D from C, the center 
of the disk. 

We may use a thin ring, of radius r, and width dr in the plane 
of the disk and concentric with C, as the differential mass. This 
selection will permit us to use the results obtained above. It 
is to be noticed that in this case the field intensity of the differ¬ 
ential ring is in the line PC which must contain the resultant 
field intensity of the disk, and therefore no projection factor is 
necessary. The differential mass will be 

dm — 27r r t p dr 

The limits of integration will be from 0 to a, since r is the variable. 
The equation for the field intensity will therefore be 

G = -K2Trtp 
/: 

r D dr 
(Z)2 + 

D 
= -K2irtJi 1- 

K2m'\ 
Vd^ -t- 

[i--^=£=l 
L VD^ + a*J 

,(10-12) 

(10-13) 

in which m', the mass of the disk, is equal to ira'^pt. 
c. Solid Homogeneous Sphere.—To find the gravitational-field 

intensity at any point outside a solid homogeneous sphere. 
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Let the center of the sphere be C (Fig. 118), the density p, and 
the radius li. We are to find the field intensity at P which is at a 
distance S from C, 

We may utilize here the 
results just obtained for the 
intensity at a point on the 
axis of a disk, provided that 
we select the thin disk as the 
differential clement and place 
it as shown in the figure, perpendicular to PC. Let the disk 
be situated at a distance x from C as origin. The thickness of 
the disk is then dx. This selection will make x the variable and 
the integration limits will be from x — R to x = —R. 

Using the results given in Eq. (10-13) and replacing D by its 
equivalent S — j, and putting a- — R- — x'\ the expression for 
the field intensity will be 

G = -2t,K ■n- - 2Sx 
dx 

. 
KM 

(10-14) 

(10-15) 

This result expresses the field intensity at, P in terms of M the 
mass of the sphere and S the distance from P to the center of 
mass of the sphere. As long as the sphere is homogeneous, we 
may therefore regard the intensity at P as though it were due to 
the entire mass concentrated at the center of mass. This result 
is also true for spheres in which the density varies, provided that 
the density may be expressed in terms of the radius only. 

10-6. The Gravitational-field Intensity at a Point inside a 
Hollow Sphere.—The problem is to determine the field intensity 
at a point P which is inside of a hollow sphere. Let the sphere 
be of uniform density with R and B the outer and inner radii, 

respectively. 
It is convenient here to use a differential mass in the shape 

of a thin ring so situated that its plane is perpendicular to the 
line PO (Fig. 119) which joins the point P with the center of the 
sphere 0. To establish further the boundaries of the differential 
ring, let us select a spherical shell of radius r (shown in section 
in the diagram) and of thickness dr. If now we draw to this shell 
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two radii which make the angles 7 and 7 + ^7 with the line PO, 
and then imagine that the radii so drawn are rotated about PO, 
keeping the angle 7 constant, they will cut from the spherical 
shell the desired thin ring. The dimensions of the ring will be 
length, 2Tr sin 7, width r dy, and thickness dr. If p is the 

density, then the differential mass 
of the ring will be 

dm = 27rpr“ dr sin 7 dy (10-16) 

We have shown in the preced¬ 
ing section that the contribution 
of each differential length of the 
ring to the field intensity at a 
point P on the axis of the ring 
must be projected into the axis 
PO. This is done by introducing 

the cos a, in which a is the angle between PO and PQ, the line 
joining P to t he differential element at Q, 

To obtain the final expression a double integration appears 
to be necessary. First we may integrate over the spherical shell 
by letting the angle a vary from 0 to tt and then over the solid 
portion of the sphere by letting the radius of the shell vary from 
B to R. With these conditions in mind we may now write the 
expression for the resultant field intensity at P, which is 

G = -2irKp CrW cos « (10-17) 
Jb Jo ^ 

in which x is written for PQ, 
In order to evaluate the first integral we must either express x 

in terms of y or y in terms of x. In this case we choose to make 
the latter substitution. For this purpose we may utilize the 
following equations which are obtained from geometrical rela¬ 
tions. If s is written for the distance PO, then 

Fig. 119. 

cos a = 
$ — r cos 7 

^2 =: — 2rs cos 7 

Eliminating 7 from these two equations gives 

x^ — r^ + §2 

(10-18) 

cos a = 2x$ 
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Differentiating Eq. (10-18) gives 

230 

X 
sin y dy — ~ dx 

7'S 

The limits of integration for the new variable x will be from 
r — s to r + s. Substituting these equivalent expressions in 
Eq. (10-17) gives 

= 0 (10-19) 

In carrying out the details of integration for the first integral, 
the result is found to be zero. The conclusion to be drawn from 
this result is that the field intensity at any point inside a spherical 
shell is zero. It is true for all spherical shells of which the hollow 
sphere is composed, and therefore the intensity at any point 
inside the hollow of the sphere is zero. 

It also follows from the foregoing conclusion that, if the point 
P were located at any point inside a solid sphere, the field intensity 
at P would be due only to that portion of the sphere which lies 
within the spherical surface passing through P which has its 
center concentric with the given sphere. This result may be 
obtained by integration or it may be seen to be true from the 
following consideration. Suppose P is within the hollow of a 
hollow sphere, and concentric with this sphere there is another 
sphere with a radius less than P’s distance to the center. The 
field at P is then due only to the inner sphere. By increasing 
the inner sphere so that its surface approaches P and by decreas¬ 
ing the size of the hollow in the outer sphere, the space between 
the two may be reduced to zero. This result is true only for 
spheres the densities of which are uniform throughout or are 
functions of the radii. 

From these results it also follows that the force between two 
homogeneous spheres, of mass m and m', is 

r _ -IL^ (10.20) 

if r is the distance between their centers. 

Problems.—1. Determine the gravitational-field intensity at a point 
outside a homogeneous spherical shell. 
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2. Using the results of the preceding problem, determine the field intensity 
at a point outside a homogeneous sphere. 

3. Find the gravitational attraction between a homogeneous sphere and a 
thin homogeneous rod if the rod is jdaced so that the line connecting the 
centers of mass is perpendicular to it. 

4. Find the field intensity at a point outside a homogeneous cube if the 
point is situated on a line which passes through the center of mass of the 
cube and which is perpendicular to any two parallel faces. 

10-6. Conservative Forces.—Suppose we have a force field, 
such as a region surrounding a gravitational mass, and in this 
field we move a body from a point A to some other point B. In 
doing so, in general, a certain amount of work W would have to 
be done by the forces acting on the body. If the force is that 
of the field, the work is positive. If, however, work is done 
against the field, the work is negative. Now if the body is 
moved back from B to Ay and the work done is exactly the same 
in magnitude as that done in moving the body from A to 5, then 
the field is spoken of as a conservative field. In moving the body 
from A to B the work might have been done by the field forces. 
Suppose that this is the case. Then, in moving the body back 
to Ay the work would have to be done against the field forces. 
♦ In conservative fields there is no net work required to move 
a body from any point over any path of the field back to the 
same point, regardless of the path used in the displacement. 
There are fields, however, where forces of resistance are operative, 
in which there is a net work resulting from moving a body from 
any point over some path back to the starting point. Such a 
field is a nonconservative field. Fluid resistance is a typical 
nonconservative force. Work done against such forces is con¬ 
verted into heat energy manifested as kinetic energy of the 
molecules of the medium and of the body. 

10-7. The Force Function.—In a conservative-force field, such 
as a gravitational field in a vacuum, the force due to the field 
acting upon a particle placed in the field will be a function of 
the coordinates of the position of the particle. Suppose that 
the position of the particle is given by the vector r. For a 
very small displacement of the particle, such as dr, the element 
of work dW done by the force F will be given by the equation 

dW ^ F-dr (10-21) 

If we write the vectors F and dr in terms of their components 
in the reference system, 
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F — i Fx + jFy + kFz dr — i dx jdy + kdz 

then the total work done, expressed in terms of the components 
of the forces, is 

W = ^Fx dx + ^Fy dy + ^F^ dz (10-22) 

where the integration is to be taken over the entire path along 
which the particle is moved. 

The components of the force in a conservative system are 
single-valued functions of the coordinates. Now suppose that 
there exists a function U{xyz) such that 

Fx 
dx 

(10-23) 

then the function U is called the force function because from it 
the force may be obtained. 

One may also derive the force from another function which 
is called the potential and is usually designated by the symbol 
V, This is not to be confused with velocity, for which the same 
symbol is used. The context will indicate which is meant. 
The potential function V is closely related to the force function 
U. The relation is expressed by the equation F = — f/. If 
there is a potential function at a given point in a field, the 
potential energy of a particle placed at the given point in the 
field may be found by simply multiplying the potential by 
the mass of the particle. In other words, the potential is the 
potential energy per unit mass. 

It is obvious th?it the potential may be used for determining 
the force exerted by the field upon a unit mass placed at the 
point at which V is given. This is expressed symbolically as 
follows: 

Fx= - 
^F 
dx 

Fy 

dV 

dy 
F. 

dV^ 
dz 

If there is such a function F from which the components of 
F may be found, then the element of work dW done by the field 
forces in producing a differential displacement of a unit mass is 

dW = dx-^-f 
dx oy 

= -dV 

dy 
dV^ 

dz 
dz 

(10-24) 

If we assume that V is a single-valued function, then, since 
V is an exact differential under the given conditions, we may 
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integrate this expression from any point at which the value of V 
is F2 to any other point at which the value of F is Fi which 
would give 

W - -(F2 - Fi) (10-25) 

This result shows that the work done is independent of the 
path as it should be in a conservative field. 

The single condition which establishes the existence of a 
force function in a conservative system is that 

SFx __ SFy 
dy ~ dx' 

dFy ^ dFj^ 

dz dy ^ 
SK ^ dFx 
dx dz 

(10-26) 

If the force function were not a single-valued function of the 
coordinates in a given conservative system, then it would be 
possible to do work upon the system in moving a particle from 
some given point over an arbitrary path back to the starting 
point, for in so doing the force function might attain a second 
value. Now, because the forces are conservative, if the particle 
were then moved in the reverse direction around the selected 
path, work would be done by the field forces and hence the body 
would acquire energy. This could be repeated indefinitely and 
any amount of energy acquired. Such a procedure is contrary 
to the principle of the conservation of energy. Hence the force 
function must be a single-valued function. 

10-8. Potential Energy and Potential.—There are two kinds 

of energy: kinetic and potential. Kinetic energy is energy of 
motion and, as we have seen above, may be expressed in terms of 
the mass of the body and the speed of its center of mass in trans¬ 
lational motion or in terms of the moment of inertia of the body 
and its angular velocity in rotational motion. Potential energy 
is energy of position or of a strained condition. If a body is 
moved against the forces of some force field, it gains potential 
energy. If a body is stressed by forces, such that an elastic 
deformation occurs, as in the case of the stretching of a spring, 
it gains potential energy. In either case, whether a body gains 
kinetic energy or potential energy, work must be done upon the 
body in order that the body may obtain this energy. Work 
may be used as the measure of the energy, or, in other words, 
energy is the capacity for doing work. 

The total amount of potential energy which a body possesses 
by virtue of its position is entirely a relative matter. In case 
the gravitating body is the earth, we might say that the potential 
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energy which a mass possesses relative to the earth is equal to 
the work that must be done against the gravitational-field forces 
of the earth in moving the body from the center of the earth to 
the particular point at which the potential energy is to be 
expressed. This definition is, however, unsatisfactory. 

In electrostatics the forces are repulsive when the charges 
are similar; hence the potential energy which one charged body 
has when placed at some point in the field of another charged 
body is equal to the work done in moving the body from infinity 
to the point at which the potential energy is to be expressed. 
A similar definition may be given for the potential energy of 
magnetic poles in a magneiic field. 

The term potential is used in gravitational fields to express the 
potential energy of a unit mass. Potent ial in elect ric or magnetic 
fields has a similar meaning. In electric or magnetic fields, 
potential is frequently defined as the work done against the field 
forces in moving a unit charge or pole from infinity to the point 
at which the potential is expressed. The work done under these 
circumstances gives the potential energy; hence these two aspects 
are consistent with each other. In gravitational fields, however, 
the forces are attractive and not repulsive as they are in the elec¬ 
tric and magnetic fields (between like charges or poles); hence 
we do not desire to define potential in gravitational fields in 
terms of the work done against the field in bringing a unit mass 
from infinity to the point, nor do we wish to define it in terms of 
the work done in moving the unit mass from the center of mass 
of the attracting body to the point at which the potential is to 
be expressed. The difference of potential which exists between 
any two points in a gravitational field may be measured by the 
work done in moving a unit mass from one point to another. 

Now there is a certain convenience to be gained by ha\ing 
a single definition of potential which is applicable to all three 
fields. It is not easy to do this and use the conception of the 
work done against the field forces as a basis for the definition. 
A common basis for the definition is supplied, however, in the 
force function. As used in the preceding section, the force 
function was used to obtain the force on an indefinite mass 
particle. If the particle has a mass of unity, the forces then 
become field intensities. Let us therefore define potential as 
that force function from which the components of the field 
intensity may be obtained by taking the negative of the partial 
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derivatives with respect to the three coordinates of some reference 
system. If, then, G is the field intensity, the components of G 
will be 

Gr = Gy = ~ G. = ~ (10-27) 
dx dy dz 

and V is the potential. 
Even by this definition the potential still retains the char¬ 

acteristic of being potential energy for a unit mass. The only 
significant difference is that in the gravitational case the place 
at which the potential energy is zero is not given. Since poten¬ 
tial energy is a relative quantity anyway, this difference is of no 
importance. 

The method for finding the potential V at any point in a gravi¬ 
tational field due to a mass m is given by the following expression: 

in which r is the distance from the differential mass dm to the 
point at which the potential is to be expressed. The integration 
extends over the mass or masses involved. 

The validity of this expression may be est ablished by a direct 
application of Eqs. (10-27) to (10-28) after replacing r by its 
equivalent expression (x^ y‘^ + 

10-9. Problems.—1, Find the potential at a point on the 
axis of a thin ring. Determine also the field intensity from the 
potential. 

If we use the symbols of problem 1 in Sec. 10-4 and the 
diagram of Fig. 116, we may conveniently check our first result 
with that given for the field intensity in that problem. Since 
potential is a scalar quantity, no direction is involved; hence the 
potential is obtained in the following manner: 

-Ml. f "d. 
VD^ 4- rUo 
KAp 2Trr 

Km 
VD^ + 

(10-29) 

(10-30) 
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We may now determine the field intensity by taking the nega¬ 
tive partial derivative of this expression with respect to D, since 
the resultant field intensity is in the line of D. Hence 

_ dV 
G - 

= (10^1) 

This result is identical with that found in problem a of Sec. 10-4. 
2. Find the potential and field intensity at a point on the axis 

of a thin disk. 
We may again use the symbols and the diagram of Sec. 10-4 

and Fig. 117. The potential is found by evaluating the integral. 

F= -K2Hp f- 
Jo 

= —K 2Trip [\/Z>^ + — D] 
K 2m' r /- 

=-+ - D] (10-32) 

To determine the field intensity, we may differentiate this 
expression with respect to D and change the sign. This operation 
gives 

2gmJ^ _ 
a' [ VD^ + a\ 

(10-33) 

The result agrees with the one giving the field intensity for the 
thin disk which is given in problem b of Sec. 10-4. 

3. Find the potential and field intensity at any point outside 
a solid homogeneous sphere. 

We may use here the result obtained above for the thin disk 
and integrate over the entire mass. If we call dx the thickness 
of the disk and replace the radius of the disk by the expression 

\/i22 — 0*2, the potential for the thin disk becomes a differential 
quantity with x the variable. To obtain the potential for the 
sphere for the point P (Fig. 118), we must integrate this differ¬ 
ential expression over the entire mass. This is expressed as 
follows if we replace D by S — x: 

JR _ 
[VS^ + - 2Sx - (5 - x)]dx 

KM 
S 

(10-34) 
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This simple result shows that the potential at any point outside 
a sphere is proportional to the mass of the sphere and inversely 
proportional to the distance from the center of the sphere to the 
point at which the potential is to be expressed. 

The field intensitj^ may be readily found by taking the negative 
differential of the potential with respect to S, which yields the 
results given above in problem c of Sec. 10-4. 

4. Another illustration is introduced to emphasize the differ¬ 
ence in working with the differential mass in potential integrals 
as compared with handling the differential/orces in field-intensity 
integrals. The potential integral is a summation of scalar 
quantities, while the field-intensity integral represents a sum¬ 
mation of vector elements, each of which must be projected into 

the direction of the resultant 
field intensity at the point under 
consideration, if this direction is 
known. 

Given a thin rod of length 2L 
and linear mass p (Fig. 120). To 
find the potential and field inten¬ 
sity at a point P which is in a 
line perpendicular to the rod and 
at a distance D from it. Let the 
differential mass be p dy with the 
coordinate y measured from the 
center of the rod. We have here 

a purely scalar summation of elements Kpdy/r, The potential is 
therefore 

Y 

F = 

-Kp log 

dy _ 

+ L^ + L 
\/D^ + ij - L 

(10-35) 

The field intensity at P is found by summing vector elements 
whose magnitudes are represented by Kpdy/r'\ each one having a 
direction different from the others. It is easily seen that 
because of the symmetry the resultant field intensity at P is in 
the line of OX; hence each element of force must be projected into 
this line by multiplying by the proper cosine factor. The 
integral is therefore: 
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G = -K,l D dy 
l{D^ -1- v^)i 

2LpK 
DVD^ + L2 

(10-36) 

Problems.—]. Find the potential and field intensity at a point on the 

axis of a cylinder. 

2. Find the potential of a thin uniform rod, of length L, at any point P. 

3. Find the gravitational field at any point P near a uniform rod of 

length L. 

4. Find the gravitational potential and field intensity at any point on the 

axis of a homogeneous right circular cone (the point to be on either side of 

the cone). The density of the cone is 5 g. per cubic centimeter, the radius 

of its base is 3 cm., and its altitude is 10 cm. 

5. Two homogeneous spheres, whose ma.sses are 100 and 200 g., respec¬ 

tively, are situated with their centers of mass 30 cm. apart. What is the 

locus of a point so situated in the two gravitational fields that the resultant 

field intensity is zero? 

6. A straight hole is drilled through a large homogeneous sphere of mass M 
and passes through the center of the sphere. A particle of mass m is dropped 

from rest at the surface of the sphere into the hole. Under the mutual 

gravitational attraction between the two masses, the particle will oscillate 

in the hole. If friction is to be neglected, what will b(^ the motion of the 

particle? Find the general expression for the acceleration of the particle. 

How long will it take the particle to pass once through the larger mass? 

7. Three homogeneous spheres (mas.ses 100, 200, and 300 g.) are placed 

with their centers of mass, re.spectively, coinciding with the vertices of an 

equilateral triangle, each side of which is 10 cm. long. Find the point of 

zero gravitational-field intensity. 

8. Two homogeneous spheres (mas.ses 1,000 and 2,000 g., respectively) 

are placed with centers 1 m. apart and are initially at rest. Assuming 

that the gravitational constant (K) in the metric system is unity and that 

the radii of the spheres are 3 and 5 cm., respectively, find the position of 

the collision and the velocities just before impact. How long will it take the 

spheres to come together. What is the potential energy of the system in its 

initial position? Does all of this potential energy reappear as kinetic energy 

at the instant just before impact? 
9. Find the attraction between a small mass rn at any point on the axis 

of a thin uniform rod of length L and linear density p and situated at a 

distance s from the nearer end of the rod. Find also the attraction for the 

case in which the rod extends to infinity in the direction away from m. 

Ans. Km -crTTr-^^r'N’ S{S L) s 

10. Find the attraction between two thin rods, lengths L and L', linear 

densities p and p', lying in the same straight line with their nearer ends 

separated by the distance s. 
(L+S)iL' +S) 
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11. Find the attraction between a particle of unit mass and a thin circular 

disk of radius mass M, and surface density c when the particle is situated 

on the axis of the disk and at a distance s from the center of the disk. 

2 KM /, 
Ans. 

R^ 
1 

+ Ry 
What is the value of the attraction when the radius of the disk is infinite? 

12. Plot the field intensity for any point on a line passing through the 

center of a homogeneous sphere (mass i/, radius R). 
13. Find the field intensity at any point inside a sp)herical cavity which is 

within a homogeneous sphere. Assume that the density of the sphere is p 
and the distance between the center of the sphere and center of the cavity 

is 8. 
Ans. ITT Kps. 



CHAPTER XI 

CENTRAL FORCES 

11-1. Central Forces.—In a consideration of the motions of 

particles under the influence of central forces we are concerned 
with a certain type of motion which finds an application in 
astronomical fields and also in atomic physics. In these two 
fields we find two extreme cases as far as mass is involved. The 
motion of a planet about the sun and that of an electron about 
the nucleus of a hydrogen atom may be described equally well 
by the same set of equations. 

The system under consideration consists of only two bodies, 
one of which has a large mass in comparison with the other. If 
the difference in the masses of the two bodies is very large, then 
the larger body may be considered to be stationary. In such 
cases we are concerned with the motion of the smaller body. If 
the difference in mass is not large, the motions of both bodies are 
to be studied and, in this case, the motions are usually referred to 
the center of mass of the system. 

A central force is a force the direction of which always passes 
through a point fixed in a selected reference system. The 
fixed point is called the center of the motion and is usually 
the center of mass of the larger body. The force may be a force 
of attraction, as in the gravitational cases, or either attraction or 
repulsion, as found in the deflection of an alpha particle or an 
electron by the nucleus of a heavy atom. 

The central force is always expressible in terms of the distance 
between the two particles. It may be directly proportional 
to the first power of the distance between the particles as in 
those cases where the force is a harmonic force. In gravitational 
and electrostatic cases the central force is inversely proportional 
to the square of the distance between the particles. There are 
still other cases in which the force is a function of the time or 

some other variable as well as being a function of the distance 
between the particles. For our purposes we shall be concerned 
only with those motions in which the central force depends upon 

the distance between the particles. 
249 
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The use of particles in this consideration is made in order 
to exclude rotational motions of the bodies about axes through 
their centers. Rotational motions of this sort would introduce 
complications in the expressions, which are undesirable for an 
introductory study. It should be pointed out that a particle 
need not necessarily be a small l)ody. Any homogeneous 
spherical-shaped body, however large, may be considered as a 
particle (Sec. 10-4c). In such a case the mass of the particle 
is considered to be concentrated at the center of mass of the 
particle. 

It is to be noticed that, in some of the considerations which 
follow, two systems of coordinates are used. This plan is adopted 
for purposes of illustrating the relative merits of the two systems. 

11-2. The General Equations of Motion.—Given two particles 
of mass M and m, with r the distance between their centers of 
mass. Let us select a rectangular reference system with origin 
at the center of M. We are to consider the force, whatever its 
origin or nature, to act upon m. The force is always a mutual 
force, acting upon both particles. Let F be the force which acts 
upon m. The force F may be either attractive or repulsive. If 
attractive, the sign of F will be negative; if repulsive, it will 
be positive. Let the coordinates, which define the position of 
m, be X, ?/, and z. 

The components of F along the reference axes are found by 
multiplying F by the cosines of the angles between r and OX, 
OY, and OZ, respectively. Hence 

F. and F^ = F- 
r 

since F is directed along r, the radius vector giving the position 

of m. 
The equations of motion parallel to the reference axes are 

therefore 

F^ 
T 

, Fz d^z -V 
and - = m^ (11-1) 

It will be shown below that motion due to central forces is 
limited to a single plane. If we select the XY plane of the 
reference system to be the particular plane in which the motion 

is confined, then the Z component of F would be permanently 
equal to zero and the third of the foregoing equations may there¬ 
fore be disregarded. 
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If we select a plane polar-coordinate system with origin 
at the center of M, then the two comp'onents of F which are to 
be used for expressing the motion will be parallel and perpen¬ 
dicular to the radius vector r, respectively. The equations of 
motion in this system are therefore 

in which r and 7 are the coordinates of m, co — dy/dty and 
Vr = dr/dt. 

11-3. Constancy of Rotational Momentum.—The rotational 
momentum of referred to an axis through the center of the 
motion (z.c., through the center of M) and perpendicular to the 
plane of the nioti(m, is measured by the product of the moment 
of inertia of m with respect (o the selected axis, and the angular 
velocity of vi about the axis, which is the angular velocity of r. 
In polar coordinates the moment of inertia of rn is mr- and the 
angular velocity is w. Attention should be directed to the fact 
that in the general case, which we are considering, the resultant 
velocity of rn is not in the line of r. If the resultant velocity 
of ni were in the line of r, then a; would be zero. In the general 
case, w is not zero nor is it constant-. 

To find an expression for the rotational momentum, we may 
use the second of P]qs. (11-2). The equation may be simplified 
by writing it in the following manner: 

+’4)- 
Hence 

= 0 

Integration of this expression gives 

rn r- co = Z> (a constant) (11-4) 

The resulting equation expresses the fact that the rotational 
momentum is constant. 

The equations of motion expressed in rectangular coordinates 
may be used to obtain the same result, although the procedure 
is not so simple. Eliminating the quantity F/r from the thr^ 

equations of Eqs. (11-1) give§ 

(2»r, + (11-2) 
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/ dz dy\ , / dz dz\ „ 
’"{‘d -’^It) - 

where A, and C are the constants of integration. 
An inspection of these three expressions will show that each 

represents a component of the rotational momentum. If we use 
the expression moment of momentum in place of rotational 
momentum, the interpretation may become obvious. The first 
equation expresses the component of the rotational momentum 
parallel to the X-axis, the second expresses the component 
parallel to the F-axis, the third gives the component parallel to 
the 5/-axis. 

11-4. Motion Confined to a Plane.—In order to prove that 
the motion of the particle m is confined to one plane, use may be 
made of the general equations [P]qs. (11-6)] which express the 
components of the rotational momentum. All that is necessary 
to do is to eliminate the components of the velocity from these 
equations and obtain thereby an equation which contains the 
coordinates a*, y, and Zj of m. The resulting expression will 
indicate the character of the surface which must always con¬ 
tain m. 

If we multiply the first of Eqs. (11-6) by x, the second by y, 
and the third by 2, and then add the three equations so obtained, 
the result is 

Ax -V By + Cz ^ ^ (11-7) 

This equation is that of a plane which passes through the origin. 
The particular plane in any given case may be determined by 
the value of the constants of integration (A, 5, and C), Since 
A, By and C are constants of integration, they, in turn, depend 
upon the selected initial conditions, which must include the 
coordinates of m when at the initial position as well as the initial 
velocity of m. We may therefore conclude that the plane of 
motion is determined by the initial velocity and the central force 
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in the initial position. In other words, the plane of motion is 
determined by the ''center^’ of the motion and the initial velocity. 

The planarity of motion produced by central forces may be 
proved in a simpler manner. Since the acceleration of the 
satellite m is in the line of the force, i.c., in the line of r, there 
can be no change of the velocity along a line which is perpen¬ 
dicular to the plane determined by the initial velocity and r. 
The motion must therefore be confined to a single plane. 

11-6. Conservation of Energy.—Since no resistance is included 
in the fundamental equations .of motion, the forces which are 
responsible for the motion are conservative forces. In view of 
this fact we should expect the initial stock of energy to remain in 
the system as long as no external forces are introduced. Under 
the conditions of the present consideration the total energy must 
be made up partly of kinetic energy of tnuislation and partly of 
potential energy of position. 

In order to obtain an expression for the energy of m, the 
general equations [l^qs. (11-1)] may serve as a starting point. If 
we multiply the three equations by dx/dt, dy/dt, and dz/di^ 
respectively, in the order written, and add the resulting expres¬ 
sions, we obtain 

'dx , dy d^y . dz d'^z\ F/ dx , dy . dz\ 
dt dP + dT # + dt d^) - ?{^di ^dt) 

= 0 

(11-8) 

The coefficient of m in this equation is an exact differential, 
because 

dxd^x dy^ ^^ _ 1 ^ fI 
dt dV^ dt dP dt dt'^ 2 dt J \dt J yd/.J J 

Since 

and 

y,2 ~ 3.2 ^ ^2 

dr dx . dy , dz 
■a ■ + "a- + 

we may therefore write 

Now if F is a function of r only, the quantity F dr is also an 
exact differential. When F is a function of r only, there exists 
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a potential function P from which the field intensity G may be 
obtained by taking the first partial derivative of P with respect to 
r, as expressed in the following symbols [see Eq. (10-27)]: 

(? = - 
dr 

Multiplying the field intensity by the mass of the particle m 
gives the force F when one is dealing with gravitational fields. 

Hence 

F - (11-10) 

Writing this value for F in Eq. (11-9), integrating, and writing E 
for the constant of integration gives 

It will be readily seen that the kinetic energy of the particle m 
is given by the fiirst part of this expression. The quantity mP 
expresses the potential energy of m, since the potential P is the 
potential energy of a unit mass in the position of m. Hence 
Eq. (11-11) indicates that the sum of the kinetic and potential 
energies is a constant. The student must bear in mind that, 
in order for this generalization to be true, it is necessary for F 
to be expressible as a function of r alone. If the magnitude 
of F depended upon some other variable, the total energy of the 
particle would not, in general, be constant. 

We may also establish the validity of the conservation of 
energy in this restricted case by the use of the expressions for the 
force equations [Eqs. (11-2)] in polar coordinates. If we multi¬ 
ply the first of Eqs. (11-2) by dr/dt and the second by wr and 
then add the resulting expressions, we obtain 

m 
/dr d^r 

dP 
dr 2 

^dt"^ + 24“’ + ’" 
du\ 

4<-'> (11-12) 

The first part of this equation is an exact differential and may 
be written as follows: 

1 d 
2^dt 

+ w* 

Substituting this expression for its equivalent in Eq. (11-12), 
replacing F (dr/dt) by its value as given by Eq. (11-10), and then 
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integrating gives the following equation for the total energy of 
m: 

+ r^ = E (11-13) 

The first part of this equation gives the kinetic energy of m 
and the second part expresses the potential energy. 

11-6. The General Equation of the Orbit.—The general 
equation of the orbit of the particle is not easily obtained when 
rectangular coordinates are used but is readily expressed in polar 
coordinates. To find the path in polar coordinates, we may use 
Eq. (11-4) and the first of Kqs. (11-2). The procedure is one 
which has for its purpose the elimination of the time and the 
velocity component. The angular velocity w and dh/dt^^ must 
be expressed in terms of r and y or the derivative of r with respect 
to 7. 

If we put 

R = ~ and s = - 
m r 

then from p]q. (11-4) we find that 

0) = Rs^ 

If we differentiate the expression r = 1/s with respect to the 
coordinate 7, we obtain 

dr _ __ 1 ds 
d,y dy 

To express dr/di in terms of ds/dy, we may take the following 
steps: 

dr _ dr dy _ dr _ a? ds __ ^ds 
dt dy dt dy ^ s^ dy dy 

The second derivative of r with respect to the time is therefore 

Substituting the expressions for dh/dV- and co in the first 
equation of Eqs. (11-2) gives 

w 
(11-14) 

The right-hand member may be integrated directly if both sides 
of the equation are multiplied by the expression {2/s^){d8/dy). 
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The left-hand member may also be integrated if F is a function of 
r only. The final expression may be written 

s/"* ■ ?[(!)+(11-15) 

where L is a constant of integration, the value of which depends 
upon initial conditions. The equation as written is valid for any 
central force. In case F is expressible as some function of r 

only so that the fF dr could be evaluated, the resulting expres¬ 
sion would then give a relation between r and dr/dy. To obtain 
the equation of the orbit, still another integration would be 
necessary. The final equation should express r as some function 
of y. 

Problems.—1. Making use of Eq. (11-14), obtain an expression for the 

force F when it is known that the particle m moves along an elliptical path. 

The equation of the ellipse in polar coordinates with origin at the center is 

2 _ 
^ (1 — cos y) 

in which 6 is the minor axis and e the eccentricity. 

2. Using rectangular coordinates, prove that the particle moves in an 

elliptical path when the force F = —khnr. 
3. Using polar coordinates, prove that the particle m moves in an elliptical 

path when F = —khyir. 

11-7. Planetary Motion.—One of the most important cases of 
central motion is that of planetary motion. We have already 
shown that the force in gravitational attraction between homo¬ 
geneous spherical bodies is inversely proportional to the square 
of the distance between the centers of the masses. It is true that 
the densities of the sun and planets are not uniform throughout 
each body, but they are probably proportional to some power 
of the radius in each case and hence the inverse square law is 
applicable. We may therefore write the value of F, the attract¬ 

ing force, as follows: 

p = 
r2 

where k, in this case, includes the mass 
of the attracting or central body. 

In planetary motion we are particularly interested in the 
nature of the path of the satellite. Starting with the components 

Fig. 121. 
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of the acceleration taken along the X- and F-axes of a rectangular 
reference system (Fig. 121), we have the expressions 

d'^x k d"’-y k . /n 
_ = cos T, ^ sin-T (11-16) 

where y is the angle between r, the radius vector drawn to the 
particle m, and the X-axis. 

Using the value of r- as may be found from Eq. (11-4), which 
expresses the constancy of the rotational momentum, we may 
eliminate from each of the above equations. Hence if we put 
H = km^lDy then 

d^x 

dP 
— Hoi cos Y, 

dhf 
d^ 

— Hoj sin 7 

Since w = dyjdi^ the integration of each of these equations 
may be effected. If, at the position y ~ 0, the components of the 
initial velocity 11 are IJ^ and Uy, the results of the integration 
are 

- f' * = ™ J f^ (cos7-1) (11-17) 

In order to eliminate the time from this equation, we may 
make use of the value of the rotational momentum as expressed in 
rectangular components. The third equation of Eqs. (11-6) 
suggests the procedure. Since the motion, in the present case, is 
confined to the XY plane, the constant C of Eqs. (11-6) becomes 
equal to the total rotational momentum which we have desig¬ 
nated by the symbol D. If we multiply the first equation of 
Eqs. (11-17) by y and the second by x, subtract the first from the 
second, and then introduce D/m for its equivalent expression, we 
obtain 

x{H Uy) + UxV + ^ ~ H {x cos 7 + 2/ sin 7) 
TYb 

= f/ \/X- + y'^ 

This equation may be transformed into one which more readily 
indicates that it represents a conic section. If we divide both 

sides of the equation by the constant we 

obtain 

x{H - Uy) + U.y + ^ 
Jib HVx^ + y^ 

V(H - Uy)^ + U? 
(11-18) 

V(H - Uy)^ + 
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The left-hand member of this equation represents a straight 
line. It also represents the perpendicular distance of a point 
whose coordinates are x and y, i.e., rriy from the same straight 

line. The quantity y/expresses the distance of m from 
the origin. Therefore Eq. (11-18) represents a conic section 
because it expresses the fact that the given point m must move 
so that its distance from a given straight line is always pro¬ 
portional to the distance of m from a fixed point, a focus. The 
straight line is the directrix of the conic section. 

Whether the path of m will be an ellipse, a parabola, or a 
hyperbola depends upon the relative values of the constants. 
Mathematically, this condition may be expressed in terms of the 
absolute value of the ratio of the distance of m from the origin 
to the distance of m from the directrix. Physically, the character 
of the path depends upon the magnitude of the initial velocity. 

The ratio of the distances referred to above may be expressed 
as follows: 

~{{H - UyY + IJJ^] 

The conic will be an ellipse, a parabola, or a hyperbola accord¬ 
ing as the magnitude of this ratio is less than unity, equal to 
unity, or greater than unity, respectively. 

From the expression for the foregoing ratio of distances we may 
derive a criterion for the physical condition which determines 
the character of the orbit. Using the mathematical requirement, 
we may write 

(H - UyY + 17,2 I 

Hence 

+ t/v" I 2HUy (11-19) 

In order to simplify this expression, we have the following 
relations which are valid at the initial position: 

IT ^ rr H = To U = Uy 
O) ” 

where ro ia the particular value of r, the radius vector drawn to 
m, in the initial position. If we now multiply both sides of 
Eq. (11-19) by and introduce the given value of H, we obtain 
the final expression for the desired physical criterion. 

Km 
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The left-hand member expresses the original kinetic energy 
of the particle. The right-hand member gives a value for the 
potential energy of the particle in the initial position. The 
path of the particle is therefore an ellipse, a parabola, or a 
hyperbola according as the kinetic energy of the particle is less 
than, equal to, or greater than the potential energy of the particle 
in the initial position. 

11-8. Historical Development of Central Forces.—Every 
student of mechanics should be familiar with the historical devel¬ 
opment of this subject, particularly with the contributions of 
Copernicus, Brahe, Kepler, and Newton. A very interesting 
and lucid account of the efforts of these men to explain planetary 
motions is given in Buckley^s A Short History of Physics.^^ A 
brief summary of the contributions of these pioneers is all that 
may be needed for present considerations. 

The first to suggest the heliocentric theory was probably 
Aristarchus nearly two thousand years before Kepler^s time. 
The idea remained dormant until the first part of the sixteenth 
century, at which time Copernicus in his ^^De Revolutionibus 
Orbium Coelestium^’ (published in 1543) made the hypothesis 
that the apparent daily motion of the sun and stars from east to 
west was in reality due to a rotation of the earth about an axis 
of its own and that the earth and the other planets revolved 
about the sun. While this theory made possible a simplification 
of the description of planetary motion and received some support, 
objections were raised. Lack of sufficiently accurate astronom¬ 
ical apparatus needed to make conclusive observations was 
largely responsible for the nonacceptance of the heliocentric 
theory. Other factors, such as the attitude of the Church and 
reverence for the ^^authorities,” made men hesitate to accept the 

new ideas. 
Tycho Brahe, though hostile to the Copernican theory, was 

suflBciently open minded to realize that more data were needed to 
settle the question. For many years Brahe made careful 
measurements on the positions of the planets and stars. Con¬ 
sidering the quality of the instruments at his disposal, Brahe 
made remarkably accurate observations. 

Kepler, a student of Brahe's, favored the Copernican theory 
and, using the results of Brahe's work, was able to arrive at 
those important conclusions which have since borne his name, 

The laws may be stated as follows; 
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1. The orbits of the planets are ellipses with the sun at one of the 
foci. 

2. A straight line drawn from the sun to a planet describes equal 
areas m equal intervals of time. 

3. The squares of the periods of any two planets are proportional 
to the cubes of their mmn distances frotn the sun. 

With Kepler^s work as a basis for further progress, Newton 
was able to arrive at still more fundamental conclusions. Kepler’s 
first law in Newton’s hands contributed the fact that the attrac¬ 
tive force for each planet varies inversely as the square of the 
distance from the sun to the planet. From Kepler’s second law, 
Newton discovered that ihe force which holds a planet in its 
orbit is a central force with the sun at the center. The universal 
law of gravital ion was the result obtained by a coalescence of all 
three of Kepler’s laws. 

11-9. Kepler’s Second Law by Vector Methods.—It is of 
interest to develop two of Kepler’s laws by vector methods and 
to see, particularly for the second law, that this method is an 
easier one. Attention should be directed to the details of the 
procedure. 

In the particular problem it is not necessary to assume that 
the central force varies inversely as the square of the distance 
(r) between the two bodies (treated as particles). This fact is 
not obvious but may be proved to be true. It is necessary, 
however, to assume that the force is a central force and is expressi¬ 
ble as some function of r. Since the masses of the two bodies 
are assumed to be constant, the acceleration (dh/dt-) of the 
planet in a reference system fixed to the sun may be expressed 
as follows: 

5 = rJir) (11-20) 

in which r is the vector which gives the position of the planet 
with origin at the center of the sun, ri the unit vector in the 
positive direction of r, and /(r) is some scalar function of r. 
Note the omission of the minus sign which would have to be 
included if it were desired to specify a force of attraction. Multi¬ 
plying both sides of the equation by r X (thus obtaining a vector 
product on each side) gives 

r X = r X ri/(r) (11-21) 
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Since ri is parallel to r, the right-hand member is zero; hence 

r X g . 0 (11-22) 

This result may be more readily interpreted if we write it in 
the following form: 

By carrying out the indicated differentiation, the equivalence 
of this expression to that in Eq. (11-22) may be shown. Since 
the time derivative of the vector product in Eq. (11-23) is equal 
to zero, the vector product must be equal to a constant vector 
which we shall designate by A; hence 

r X I . J (11-24) 

The vector A is perpendicular to both r and dr/dt and therefore 
perpendicular to the plane of motion of the planet, since dr/dt is 
velocity of the planet. The velocity of the planet is always 
tangent to the orbit. Since the vector product of the two vectors 
is equal to twice the area of the triangle formed upon the two 
vectors as sides, and since A is constant, we may conclude that 
the area swept out in unit time by the radius vector, drawn from 
the sun to the planet, is constant. This conclusion is Kepler’s 
second law. 

It is of interest to observe that Kepler’s second law permits a 
wider application than in the more restricted planetary motion. 
In Eq. (11-20) the limitation imposed upon f{r) includes all 
cases in which the central force is any function of r only. Attrac¬ 
tive forces which vary inversely as the square of r represent only 
one type of force to which Kepler’s second law is applicable. We 
may include any force, attractive or repulsive, which is expressible 
as a function of r. 

Still another conclusion may be drawn from Eq. (11-24). 
Since the vector A is constant and is always perpendicular to 
dr/dt^ the velocity of the planet, it follows that the motion of the 
planet must be confined to a single plane. This conclusion was 
obtained from analyliical considerations above, in Sec. 11-4. 

11-10. Kepler’s First Law by Vector Methods.—In order to 
establish Kepler’s first law by vector methods, it will be necessary 
to utilize those vector expressions which are characteristic of 
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planetary motion, viz., Eqs. (11-20) and (11-24), and from them 
derive an expression for the orbit of the satellite. We may start 
with the following identity: 

which is true regardless of the meaning to be assigned to the 
vector r. If we choose to let r represent a radius vector as was 
done in the preceding section, then we may use Eq. (11-24) to 
replace the vector product in the right-hand member of Eq. 
(11-25), which gives: 

r. X I' . ^ (11-26) 

It would be possible to obtain an expression for r from this 
equation, but the result so obtained would be too general for our 
present purpose. It will be remembered that Eq. (11-24) was 
derived under the assumption that the central force could be 
either attractive or repulsive and could be any function of r. 
In this problem we must impose a further restriction, viz., that 
of the inverse square law which in vector form may be written 

_ k Yi 

dt^ 7^ 
(11-27) 

A little manipulation of Eq. (11-26) is necessary in order to 
make possible a substitution of this condition [Eq. (11-27)]. 
Multiplying both sides of Eq. (11-26) by kti X gives 

tr. X (r, X §) - (11-28) 

On expanding the triple vector product, the left-hand member is 
found to be equal to —k drifdt. Making this substitution and at 
the same time introducing in the right-hand member the accelera¬ 
tion as given by Eq. (11-27) leads to the expression 

(11.29) 

Integration of this equation yields the following result: 

^XA^krt+B 

iq ^Idoh ^ i? a cpnstqnt vectpT. 

(11-30) 
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Multiplying both sides by = 1/A) and expanding the 
triple vector product gives 

^ X (k ri + B) (11-31) 

This equation is an important one. It expresses the velocity of 
the planet in terms of the vector sum of two vectors. A discus¬ 
sion of this relation will be given in Sec. 11-12. 

To find the equation for the orbit, we may first multiply 
Eq. (11-31) by rX. Remembering Eq. (11-24), we then have 

A = /b r X (A-i X ri) + r X (A“i X B) 
= k A-h + A-i r • B (11-32) 

Multiplying by A • gives 

= fcr + r • B 

By solving this scalar equation for r, the desired expression for 
the orbit is obtained. 

A2 

In this equation, 7 is the angle between r and B measured from B. 
This equation, in the polar coordinates r and 7, represents a 
conic, the origin being at one of the foci, and the reference line 
is along the major axis, parallel to B. The eccentricity of the 
conic is B/fc, If the eccentricity is less than unity, the conic 
is an ellipse. Further data would be necessary before one could 
decide in the present problem whether or not the eccentricity is 
less than unity. The constant k is positive. Since the orbits of 
the planets are closed paths, we may conclude that the particular 
conic is an ellipse. The fact that the orbit is an ellipse and 
that the gravitating body is at the origin substantiates Kepler^s 
first law. 

11-11. Kepler’s Third Law.—It is required to prove that the 
square of the period of planetary motion is proportional to the 
cube of the major axis of the elliptical path. Now it may be 
shown that A^/k [Eq. (11-33)] is equal to the semi latus rectum. 
If a and h represent the major and minor axes, respectively, and 
e is the eccentricity of the ellipse, then we may write 

^ka (I - e^) (11-34) 
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With reference to Eq. (11-24), it will be seen that the scalar 
quantity 2A is the time rate at which the radius vector sweeps 
over area during the motion of the planet. If we put A = dS/dt 
where S is the area, then 

2^ = [/; a(l - e2)]i (11-35) 

Integrating this equation and assuming that, at the time t = 0, 
5 = 0, gives 

2S = [A<a (1 - e^)]H (11-36) 

The period of the motion {P) is the time required for the planet 
to make a complete cycle of its motion or for the radius vector to 
describe an area equal to that of the ellipse, viz.y tt ab. It follows 
therefore that 

2Tab = [k a (1 - e^)]^ P (11-37) 
Since 

b = a(l - c^)^ 

an expression for the period P in terms of the major axis alone 
may be obtained by eliminating b from Eq. (11-37); hence 

P2 ^ 

k 

It is interesting to observe the simplicity of the final result. 
11-12. The Hodograph for Planetary Motion.—In Sec. 11-10 

a vector equation [P]q. (11-31)] was derived which expresses the 
velocity of the planet in terms of two constant vectors and the 
unit vector ri. The equation referred to is rewritten here for 
the sake of convenience. 

^ = A-^XB + k A-^ X Ti (11-38) 

For simplicity in writing we shall designate dr/dt by V, and the 
vectors represented by the first and second terms of the right- 
hand member by the symbols C and D, respectively. It is 
instructive to identify each vector of Eq. (11-38) for a definite 
position of the satellite. 

Let the orbit be in the plane of the paper as shown in Fig. 122, 
with the planet at P and the sun at F. The velocity V will be 
tangent to the orbit at P. The vector A (not shown in the dia¬ 
gram) is perpendicular to the diagram and directed toward the 
reader and may be localized as passing through F. The vector B 
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is drawn along the major axis as shown. Since the focus is taken 
at the origin, r is drawn from F to P. 

The first term of the right-hand member of Eq. (11-38) is C, the 
vector product of A-^ and B. Since the direction of A~^ is 
the same as that of A, the vector C, which is perpendicular to both 
A~^ and B, will lie in the plane of the diagram and will be directed 
along the latus rectum as 
shown. C is constant in both 
direction and magnitude. 

The last term of the equa¬ 
tion is represented by the 
vector D in the diagram. It 
also is in the plane of the 
orbit because it is perpendi¬ 
cular to and ri. The 
magnitude of D is constant, 
although its direction is chang¬ 
ing as Ti changes. If the 
vector D is drawn from the 
terminal point of C, a constant vector, then the locus of the 
terminal point of Z) is a circle. 

With this analysis of the separate vectors in mind, a more 
general view of Eq. (11-38) shows that the velocity of the planet 
is the vector sum of the two vectors C and D and may be found 
for any position of the planet by drawing D from the center 
of the circle and at the same time perpendicular to 7% and termi¬ 
nating in the circle. The circle is therefore the hodograph of the 
planetary motion. It is of interest to study the variation of the 
velocity as the planet passes along its orbit. 

11-13. Deflection of an Alpha Particle by a Stationary Nucleus. 

One of the problems in modern physics is a determination of how 
close to the nucleus of a heavy atom an alpha particle may be 
made to go. Experimentally the procedure is to bombard a piece 
of thin metal foil with alpha particles and to observe the change 
in direction of the velocity of the alpha particle as it passes 
through the metal foil. The source of the alpha particles may 
be some radioactive matter. The initial speed of the particle 
is considered to be known. Accounts of these experiments and 
others of similar nature are intensely interesting. Every student 
should read some of the original articles or at least summaries of 
some of them. Mention may be made here of the method which 
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C. T. R, Wilson devised to make visible the tracks of alpha 
particles as they pass through a gas. It is indeed very remark¬ 
able that we may see, or photograph in perspective, the track of a 
single particle or of an electron. Some of these photographs 
reveal collisions of the particle with the nucleus of an atom. Sir 
William Crookes designed a simple little instrument, the spin- 
tharoscope, which makes visible the bombardment of a fluorescent 
screen by a particle. Another piece of apparatus is available, 
which is called the alpha-ray track apparatus. This ingenious 
and fascinating device shows the tracks of alpha particles in a 
gas according to Wilson^s methods. 

Fig. 123. 

It is proposed to develop equations from which the distance 
of nearest approach of the alpha particle to the nucleus may be 
calculated from the known factors together with the measured 
angle of deflection of the alpha particle. The problem may be 
solved by using some of the equations already developed in the 
study of central forces. 

The mass of the nucleus of the deflecting atom is supposed to 
be large in comparison with that of the alpha particle. The 
electric charge on the nucleus is where Z is the atomic 
number of the atom and e is the unit of electrostatic charge. 
The presence of the normal electrons about the nucleus is 
neglected—an assumption which could not be made unless the 
alpha particle goes very close to the nucleus. As a first approxi¬ 
mation we shall assume that the nucleus is stationary. The 

charge on the alpha particle is +2e. The mass of the alpha 

particle will be called m. 
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Let N, the nucleus (Fig. 123), be the origin of a system of 
polar coordinates r and 7, with NX the reference line. The plane 
containing the orbit of the alpha particle is the plane of the 
diagram. Initially, when the alpha particle is at a remote 
distance, the velocity of the alpha particle is U. The initial 
position of the alpha particle is at Q. The velocity U is in the 
line QO, 

The force acting upon the particle is a central force, always 
directed along the line drawn through the alpha particle and the 
nucleus N. The force F may be expressed as follows: 

F = 
2Ze^ 

(11-39) 

The force is repulsive and is therefore positive. 
Since the acceleration is always in the line of r, the component 

of the acceleration in the line of r, viz., is the resultant accelera¬ 
tion and Jy, the component of the acceleration perpendicular to 
r, is always zero. The two differential equations of motion are 
therefore 

^ 2Ze^ (dVr A 

7,-2„F, + r|-0 

(11-40) 

(11-41) 

where co and do)/dt are the first and second derivatives, respec¬ 
tively, of 7 with respect to the time. 

The second of these equations [Eq. (11-41)] has already been 
integrated [see Eq. (11-4)] and gives an expression for the 
constancy of the rotational momentum. 

The first of these equations has also been integrated [see Eq. 
(11-13)]. From this integration an expression for the total 
energy is obtained. In the present case the form of the expression 
for the potential energy must be changed, because the acting 
force is an electric force and not gravitational as was assumed 
in the derivation of Eq. (11-13). If, however, we insert the value 
of F as given by Eq. (11-39) in Eq. (11-12) and integrate the 
resulting equation, the following expression for the total energy 

is obtained; 

2Ze^ , 1 
-h 2^ E 

r 
(11-42) 
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The first term represents the potential energy and the remainder 
of the left side of the equation expresses the kinetic energy. 
The total energy remains constant during the motion. 

We shall use the energy equation [Eq. (11-42)] for determining 
the path of the particle, instead of the general equation of the 
path developed above [Kq. (11-15)]. The time factor may be 
eliminated from Eqs. (11-42) and (11-4) if we first substitute 
for dr/(it its equivalent {dy/dt) (dr/dy) and then use the value of 
(dy/dt)(co)j as given by Kq. (11-4). Rewriting Eq. (11-42) with 
the indicated substitution gives 

Since 
dy 
dt mr^ 

r 2mr'^\ 
ly^ r l/dA 

\ m r \fi‘ \^(iy j 

:)r (di 

(dfy ^ 2niE 
\dy) W 

+ 1 

Solving this expression for {dr/dy)'' gives 

4Ze'hn 
- — 

= E 

*3 -■ m2 

(11-43) 

(11-44) 

This equation represents a hyperbola with origin at the center 
of the acting force. The particular branch of the hyperbola 
which represents the orbit of the alpha particle is that branch 
which turns its convex side toward the attracting center. The 
nucleus is located at a focus of hyperbola. The equation 
contains two constants of integration, D and E, which may be 
evaluated by using the initial conditions. When the alpha 
particle is at a great distance from the nucleus, its potential 
energy will be zero and hence all of its energy is kinetic; hence 

E = (11-45) 

Since the rotational momentum may be expressed as the 
moment of the linear momentum, we may write 

D = m Us 

where s is the perpendicular distance from the nucleus N to the 
line of U, By substituting the values of E and D in Eq. (11-44), 
the path is fully determined. 

In the experimental case, however, we do not know the value 
of s. An expression from which s may be determined from the 
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change of the direction of the velocity of the alpha particle is 
next to be found. In order to express <p, the angle of deflection 
of the alpha particle, in terms of s, it will be convenient to use 
the standard form of expression for the hyperbola. This is 
usually written as follows: 

(dr\ _ 2 H ^ 
\rf7/ - 1) a{e^ - 1) ^ (11-46) 

where a is the distance OA in Fig. 123 and ae is equal to NO, 
The angle may be expressed in terms of e as follows: 

cot2 ^ - 1 

By comparing the coefficients of and in Eqs. (11-46) and 
(11-44), it follows that 

Hence we find that 

a 

cot^l 

From the last equation the value of s may be found from the 
experimentally measured value of ip. 

The distance of nearest approach of the alpha particle to the 
nucleus is of interest in the physical case. This distance NA 
is equal to a(€ + 1). From the foregoing equations it may be 
shown that 

NA = —A—(1 + Vl + cot^ ^ (11-50) 
COl 2 ^ 

Since s and <p may be found, the distance of nearest approach is 

readily calculated. 
11-14. Deflection of an Alpha Particle by a Movable Nucleus. 

In the preceding section it was assumed that the nucleus was 
stationary. We shall now consider the case of a movable nucleus 
and see to what extent the path of the alpha particle and its 
distance of nearest approach to the nucleus are affected by 
introducing this condition. Experimentally, the condition may 
be realized by bombarding a gas with alpha particles. 

In the particular problem under consideration the center of 
mass of the two bodies will be used as origin for the reference 

Ze^ 
E 
D^E 

'2ZH^m 

*2 - 1 

-I 

jy-E 
2ZH*m 
m U^s 
~2Z^ 

(11-48) 

(11-49) 
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system. The central force acting between the two particles 
is an internal force as far as the system of two particles is con¬ 
cerned and therefore cannot affect the motion of the center 
of mass of the two particles. Hence we may consider the center 

of mass to be stationary. 
Let N and Q (Fig. 124) 

be the nucleus and alpha 
particle, respectively. W e 
may take 0, the center of 
mass, as origin of a polar 
reference system with OX the 
reference line. Let r, 7 be 
the coordinates of Q and r', tt 
+ 7 the coordinates of N. 

To find the path of the alpha 
particle or of the nucleus, we 

may use the expressions for the rotational momentum and total 
energy of the system. The procedure is very similar to that 
employed in the preceding section. 

The total rotational momentum is constant (i)), since no 
external force is acting; hence 

D = M (11-51) 
(it dt 

Since 0 is the center of mass, 

mr = Mr' 

Eliminating r' from these two expressions gives 

The total kinetic energy {KE) of the system is next to be 
found. Omitting the details, the final expression may be written 
as follows: 

KE = (11-53) 

The potential energy {PE) of the system is the potential 
energy of m with respect to M, which is 

2Ze" 
PE = (11-54) 
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The total energy (E) of the system is the sum of the kinetic 
and potential energies. If we add the right-hand members of 
Eqs. (11-53) and (11-54), put the sum equal to E, and then solve 
for (dr/dy)^, we obtain 

2mE /. m\ 
-jyry + -m) r* 

4Zehn 
.3 __«2 (11-55) 

This equation is the desired expression for r in terms of 7 and 
therefore the path of m in the selected reference system. 

It may be readily seen that Eq. (11-55) is similar to Eq. (11-44) 
of the preceding section and could be reduced to Eq. (11-44) if 
we put m/M and r' equal to zero. 

Proceeding along the lines of development used above, the 
angle of deflection <p and the distance of nearest approach (OA) of 
the alpha particle to 0, the center of mass, may be found. The 
results are 

cot 

OA 

(11-56) 

(11-57) 

It will be noticed that s in the preceding equation is the 
perpendicular distance from 0, the center of mass, to the line 
of Uf the initial velocity. In order to find the distance of nearest 
approach of the alpha particle to the nucleus, we must add to OA 
the distance from the nucleus to 0. Since 0 is the center of 
mass, then, at the particular instant at which the alpha particle 
is at Ay the nucleus will be at B (Fig. 124). But 

bo.oa{b) 

Hence the distance from the nucleus to the alpha particle at the 
instant of nearest approach is 

ba.oa{i + ^) 

From this it follows that 

V' + 5») BA (11-58) 
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Some difficulty may be experienced by the student in realizing 
that the nucleus also moves toward the center of mass during the 
first half of the encounter in spite of the fact that the force is 
repulsive. A consideration of the situation, however, reveals 
the fact that we are dealing with relative motion. We assume 
that the nucleus is initially at rest in the selected reference 
system. If we had selected some other reference system which 
could reveal the motion of the center of mass, then we would 
have seen that center of mass moves with a constant velocity. 
The concept of the conservation of momentum is of help in this 
connection. Initially all of the momentum is possessed by the 
alpha particle. Since the total momentum is conserved, then, 
at any later time, if V is the velocity of the center of mass, we have 
the following relation: 

(m + M)V ^ m U 

The direction of V must be parallel to that of U and the magni¬ 
tude of V will remain constant. 

As the alpha particle approaches the nucleus, its velocity 
decreases and at the same time its direction changes. During 
this period of approach the magnitude of the velocity of the 
nucleus increases and the direction also changes. The vector 
sum of the momenta of the two particles remains equal to the 
constant momentum of the system i.c., in U. 

While the alpha particle is approaching the nucleus, the center 
of mass also approaches the nucleus. Hence when the motion 
of the nucleus is expressed in a reference system fixed to the 
center of mass, the nucleus will approach the center of mass. 

While the alpha particle is receding from the nucleus, the 
speed of the alpha particle is increasing as is also the speed 
of the nucleus. When the alpha particle has receded to a great 
distance, its speed approaches a limiting constant value, but the 
magnitude of this speed is not so large as its initial speed. A 
part of the initial momentum of the alpha particle has been 
imparted to the nucleus by the encounter. 

Problems.—1. Find the hodograph for planetary motion by analytical 
methods. 

2. Prove Kepler^s third law for a circular path from Newton^s law and the 
equation for centripetal force. 

3, Assume that a satellite is attracted by a large mass with a force which 
is proportional to — Find the orbit of the satellite. 
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4. If the central force exerted by the larger body is proportional to H-itV, 
find the orbit. 

5. A particle is attracted by two fixed masses with forces which are pro¬ 
portional to the distances of the particle from the attracting centers. Show 
that the motion of the particle is the same as it would be if there were only one 
center of force (located at the center of mass of the two attracting bodies) 
which attracted the particle with a force proportional to the distance of the 
particle from the mean center. 

6. What must be the initial velocity of a particle which is attracted by a 
fixed mass in order that the orlht may be a circle? Assume that the central 
forces is proportional to 

7. A satellite is attracted by a body with a force which is proportional to 
-*/cV. Show that the areal velocity (time rate at which the radius vector, 
drawn from the center to the particle, sweeps over the surface bounded by 
the orbit) is equal to kab, where a and h are the semi-axes of the orbit. 

8. Two ecpial masses are fixed with their c(‘nt(^rs separated by a distance 
L. One attracts a satellite and the other repels it with forces which are 
proportional to + kh where r is the distance from either fixed mass to the 
satellite. Find the orbit. 

9. Show that the sum of the kinetic and potential (mergies of a particle 
of mass m in any position of its orbit under the influence of the central force 

of magnitude —mkh is \mk^{a^ + ft^), where a and h are the semi-axes of 
the orbit. 



CHAPTER XII 

MOTION OF A PARTICLE IN FLUIDS WITH RESISTANCE 

12-1. Resistance of Fluids.—Various attempts have been 
made to derive a theoretical expression for the resistance offered 
by a fluid to the motion of a particle as it passes through the 
fluid. It is not difficult to point out what some of the con¬ 
tributory factors are that affect the magnitude of the resistance, 
but it is difficult to express these contributions in an accurately 
quantitative manner. Some of the factors which influence the 
resistance are the shape, size, and speed of the particle, the 
viscosity, density, pressure, and temperature of the fluid. 

As a particle moves through a fluid, some of the medium must 
be displaced. From the energy standpoint, energy is used to 
effect the displacement of the fluid. The necessary energy comes 
from the kinetic energy of the particle if the fluid resistance 

is the only external force. If, in addition to the fluid resistance, 
some other externally applied force is acting, then the energy 
may be supplied wholly or in part by the work done by the 

applied force. In either case, as a consequence of the energy 
acquired by the medium during the passage of the body through 

it, a force must be exerted by the fluid upon the moving body. 
Although the resistance definitely depends upon the speed of the 

particle, no simple, and at the same time accurate, expression 
for such a relation has been found, except, perhaps, in a few 

isolated cases. 
For any given body and fluid conditions the resistance is 

probably approximately proportional to some definite power of 

the speed for a given speed of the body. In many cases it is 
customary arbitrarily to assume that the friction is proportional 

to the square of the speed. Experimental data show that the 
relation between friction and speed is by no means so simple and 

also that the resistance is not proportional to the square of the 

speeds except within narrow limits of the speed. The range of 

speeds over which such a relation is even approximately valid is 
dependent upon the nature of the body and character of the 
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fluid. Because of the complications involved, theoretical con¬ 
siderations are exceedingly difficult. A considerable amount of 
experimental work, particularly in the field of ballistics, has been 
done in order to determine the effect of the speed of rotating 
projectiles upon the resistance. The following table is given to 
indicate the nature of the results obtained: 

Speed, 111./sec. 50 240 295 375 419 550 800 1,000 

Resistance. hv^ cv^ dv^ ev^ 

The table is written so that the force of resistance is expressed 
in terms of a constant (a, 6, c, etc.) times some power of the speed 
for the range of speeds indicated above it. For example, for the 
range of speeds varying from 240 to 295 in. per second the resistance 
may be expressed with approximate accuracy in terms of bv^, 

12-2. Resistance Proportional to the First Power of the 
Speed—Pure Translation.—Let us first assume that the resist¬ 
ance of a particle moving through a fluid is proportional to the 
first power of the speed and determine the three equations which 
describe the motion. In order to simplify the expressions, we 
shall assume that, if the particle has an initial velocity, that 
velocity is parallel to the applied force, in order that pure trans¬ 
lational motion may result. In the section immediately following 
we shall consider the case of motion with fluid resistance in which 
the initial velocity makes an angle, not equal to zero, with the 
applied force. 

If a particle of constant mass m is subject to a constant force F 
and if the fluid through which the particle moves offers a constant 
force of resistance (/cF), which is proportional to the first power of 
the speed F, then the force equation may be written as follows: 

F - kV = (12-1) 

Let s be the coordinate which measures the displacement of the 
body from a fixed reference point 0. For the initial conditions 
we may select s = 0, F = 1/ at the time ^ = 0. 

To find an expression for the velocity in terms of the time, we 
may first separate the variables in Eq. (12-1) and then integrate 

as shown: 
mdV 

kV -F 
= —dt 

J log (kV -F) = -t + C 
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where C is the constant of integration. Multiplying through by 
k/rn, putting kC/ni = log .4, and then writing in the exponential 
form gives 

kV - F = Ae (12-2) 

By utilizing the initial conditions, we find that the constant 
A = kU - F. 

Hence 

F 
(12-3) 

which is one of the desired equations. 
To express the displacement s in terms of the time, we may 

put V = ds/dt in Eq. (12-3); hence 

ds 
di =f 

Separating the variables and integrating gives 

Ft miF\ -- , D 
" + * 

Since s = 0 at the time f = 0, we find that 

Hence the second desired equation becomes 

(12-4) 

The third desired relation expresses the velocity in terms of the 
displacement. To obtain this equation, dV/di in Eq. (12-1) may 

be replaced by its alternative form VdV/ds, which gives 

F -kV 
V dV 

(12-5) 

Separating the variables and integrating gives 

kh 
kV -F log {F ^kV) + D 
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where D is the constant of integration. Putting F = f/ at the 
position where s == 0 gives the value of D. 

D = F - klJ - F log {F - klJ) 

Hence the relation between V and ,s* is 

= (12-6) 

Problems.—1. In what units must k be expressed when using the e.g.s. 

absolute system? 

2. If a lOO-g. spherical mass falls from rest in air which is of such a density 

that /; = 5, e.g.s. absolute units, find the velocity of the mass at the end of 

10 sec. liow far would it go in that time? Compare these results with the 

time and distance obtained under similar conditions but with the friction 

equal to zero. 

3. If a 5-lb. spherical mass is thrown vertically upward in air with a speed 

of 100 ft. per second and li k ~ 0.1, English absolute; units, how long will it 

take for it to rtuich its highest point and for i1 to return to the starting point? 

What will be the velocity on arriving at the starting point? 

12-3, Initial Velocity Not Parallel to the Applied Force.— 
When the initial velocity is not 
parallel to the applied force, the 
moving particle describes a cur¬ 
vilinear path. If the shape of the 
particle is such that the resistance 
of the medium ( — kV) is always 
parallel to the resultant velocity, 
then the body will remain in the 
plane which contains the applied ^ 
force and the initial velocity. If 
the applied force is the force due to gravity, the case under con¬ 
sideration is that of the motion of a projectile in a resisting 
medium. 

Let the moving particle, mass m, have an initial velocity U 
which makes an angle a with the X-axis (Fig. 125), Also let 
the constant force F be always parallel to the F-axis. For any 
position of the particle, subsequent to its initial position, let V 
represent the velocity and 6 the angle which V makes with OX, 

Since the resistance offered by the medium is to be taken 
proportional to the instantaneous value of the velocity V, we 
may write —kV for this force. The direction of the resistance 
is to be always parallel but opposite to V, 
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The desired equations may be obtained by solving the differ¬ 
ential force equations which express the motions parallel and 
perpendicular to OX. We may therefore write 

(iV 
-F - kVy = (parallel to OF) (12-7) 

-kV, = m^ (parallel to OX) (12-8) 

in which Vy and Vx are the components of V parallel to OF and 
OX, respectively. 

Since Eq. (12-7) is similar to Eq. (12-1), we may write the solu¬ 
tion of Eq. (12-7) immediately, if we replace F by —F in the 
solution; hence 

J log {kVy + F) = -t + C (12-9) 

If we put 

C = ^logB 

then, after rearranging, Eq. (12-9) becomes 

kVy+F ^ Be ^ (12-10) 

By the use of initial conditions—which may be selected as 
follows: t = 0, and Vy — U sin a—the value of B is found to be 

B = klJ sin a + F 

Hence the equation for Vy becomes 

Fv = + ama + (12-11) 

By putting Vy = dyjdi, integrating, and evaluating the con¬ 
stant of integration (putting ^ == 0 at i == 0), we obtain 

y = -y - f sin a + 0(e'- - l) (12-12) 

By integrating Eq. (12-8), it may be readily shown that 
_u 

F* = (C7 COB a) e »• (12-13) 

Beplacing F, by dx/dt, integrating, and evaluating the constant 
of integration by putting x = 0 at f = 0, we obtain an expression 

for X in terms of t: 

X * —^ (17 cos a)(e ™ — l) (12-14) 
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The magnitude of the resultant velocity V may now be found 
for any value of t from Eqs. (12-11) and (12-13) by extracting the 
square root of the sum of the squares of the right-hand members. 
The direction of V may be found by putting tan 6 = Fy/F*. 

Equations (12-12) and (12-14) give the position of the body at 
any time t. 

The third desired equation of motion, m,, that which expresses 
the velocity components in terms of the coordinates may be 
obtained by replacing the component accelerations dV^/dt and 
dVy/dt by the alternative forms Fx dVx/dx and Fy dVy/dy in 
Eqs. (12-7) and (12-8), respectively, and integrating the resulting 
expressions as shown in the preceding section. The details of 
this process will be left for the student. 

Problem.—A spherical mass (m = 100 g.) is projected with an initial 
velocity, of 400 m. per second, which makes an angle of 40 deg. with the 
liorizontal line. The resistance (—kV) varies with the first power of the 
speed and k is equal to 0.001 g. per second. Find the greatest height to 
which the projectile ascends, its range (horizontal distance on striking the 
horizontal line passing through the starting point), and velocity on striking 
the ground. Take g ~ 980 cm. per second squared. 

12-4. Resistance Proportional to the Square of the Speed.— 
The equations which express the motion of a particle, as it moves 
through a fluid with resistance proportional to the square of the 
speed under the influence of a constant force, are to be derived 
in this section. The particle is to have an initial velocity which 
is parallel to the applied force, although the initial velocity may 
be directed oppositely to the applied force. Under this limita¬ 
tion, translational motion will be obtained. The mass of the 
particle is to remain constant. 

If F is the constant force, m the mass of the particle, F the 
speed of the particle, and k a constant, the force equation may be 
written as follows: 

F -kV^ (12-15) 

Separating the variables and integrating gives 

m , VM -f A7 _ 
-_ log —7=-- t — C 
2 Vf]c VFk - kV 

For the sake of brevity we may put 

(12-16) 

2VFk 
m 

h = 
A/Ffc 

k ’ 
and log A = 

m 
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Substituting these values in Eq. (12-16), inverting, and writing 
in exponential form gives 

- -4 e- (12-17) 

The constant A may be evaluated by the use of the initial con¬ 
ditions t = 0, V = r, which gives 

(12-17) 

The desired equation, which expresses the velocity V in terms 
of the time, is therefore Eq. (12-17). We shall leave it as written 
in order to simplify the following expressions. 

In order to find the second equation of motion, viz., an expres¬ 
sion for the distance s in terms of the time, the velocity may be 
written in its differential form ds/dt. If we solve Eq. (12-17) for 
V and write ds/dt for T", we obtain 

ds _ h (1 - Ae-’^) - 
dt 1 + Ae->“ (12-18) 

Multiplying both sides of this equation by dt and integrating 

gives 

h, (1 + Ae-^^y . j. 
(12-19) 

The constant of integration (D) may be determined by using the 
initial conditions 6* = 0 at ^ = 0 and is found to be 

D = log (1 + A)2 

The third equation of motion may be obtained, in the usual 
manner, by putting dV/dt — V dV/ds in Eq. (12-16). Making 
this substitution, separating the variables, and integrating gives 

m , ('"-0 
where E is the integration constant. Since 5 = 0 when F = I/, 
we find that 

Hence 
c - 0 

_ m, km-F 
2k ^ kV^ - F 

s (12-20) 
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12-6. Terminal Velocity in Motions with Resistance.—In all 
cases of the motion of a particle, where a resistance is present 
and is proportional to some power of the velocity of the particle, 
there is terminal velocity^ i.e., a velocity of such a magnitude that 
the force of resistance becomes numerically equal to the applied 
constant force. The magnitude of the terminal velocity is 
dependent upon the resistance factor {k in the preceding sections) 
and the magnitude of the applied force. When the force of 
resist ance becomes equal to the applied force, the resultant force 
upon the particle is equal to zero. When this condition is 
obtained, the acceleration of the particle is equal to zero. Hence, 
to obtain the terminal velocity, we may put the acceleration, in 
the force equations, equal to zero and solve for the value of the 
velocity. 

For this purpose we may put the acceleration equal to zero 
in Eq. (12-5) and solve for the velocity, w^hich gives 

for those cases where the resistance is proportional to the first 
power of the speed. In a similar manner the terminal velocity 
in motions in which the resistance is proportional to the square of 
the speed is 

(12-21) 

With these results before us it is of interest to examine the 
three equations of motion developed in Sec. 12-2. 

The first of these equations [Eq. (12-3)] contains t in the 
quantity As t increases, the exponential quantity 
decreases and becomes zero when ^ = oo. At this value of the 

time, the velocity attains the terminal velocity F/k, although 
practically the terminal is attained in much shorter time. 

The second equation [Eq. (12-4)] contains t in two terms of the 
right-hand member. The first of these terms shows that a part 
of the displacement s increases uniformly with the time, while 
the second term contains t in an exponential quantity which 
changes more slowly with larger values of the time. The 
physical meaning of this relation is that, after the velocity 
becomes nearly equal to the terminal velocity, the displacement 
is nearly proportional to the time, as it should be in motions with 
no acceleration. 
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The third equation [Eq. (12-6)] expresses the relation between 
V and s. As the velocity approaches the terminal velocity 
(f/fc), the denominator of the fraction in the last term of the 
left-hand member approaches zero and hence the logarithm of 
the fraction approaches infinity. The distance increases indefi¬ 
nitely as the velocity approaches its limiting value. 

In a similar manner, interpretations may be obtained for 
Eqs. (12-17), (12-19), and (12-20) which describe the motion in 
which the resistance is proportional to the square of the speed. 
This matter will be left for the student. 

12-6. An Experimental Illustration.—In this section we shall 
present some accurate experimental data giving the time- 
distance relations of three balls, of different masses but of nearly 
equal sizes, falling from rest in air. It is proposed to apply the 
equations developed above to show the adequacy or inadequacy 
of their use in the description of the actual motion. 

The apparatus was set up in a stair well so that vertical 
distances up to about 40 ft. were available. There were no 
detectable air currents. A ping-pong ball, a wooden ball, and a 
golf ball were used. The times required to fall from rest over 
measured distances were determined by a special electrical clock 
which was started by the closing of an electric circuit and stopped 
by the opening of that circuit. The circuit was closed at the 
instant of releasing the ball and opened when the ball struck 
the bottom of the desired distance. The error in the measured 
time intervals was + 0.01 sec. The following data were 
recorded: 

Ping-pong 
baU 

Wooden 
ball 

Golf hall 
Distance, 

cm. 

Mass, g. 2.902 18.15 45.15 
Diameter, cm. 3.76 1 3.90 4.08 

/ 0.43 0.41 0.395 66.6 
/ 0.60 0.57 0.67 126.0 1 1 0.745 0.72 0.70 198.0 

lime, sec. 
) 1.01 0.95 0.94 354.0 

< 1.20 1.086 1.076 469.0 
) 1.61 1.34 1.32 696.0 

1 f 1.65 1.44 1.42 806.0 1 1 1.98 1.66 1.64 1,065.0 
' 2,106 1.74 i 1.72 1,163.0 
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Regarding the three sets of records from a general point of 
view, one readily notices that there is very little difference 
between the records for the wooden ball and the golf ball, in 
spite of the fact that the golf ball is more than twice as heavy 
as the wooden ball. It is also evident that for the ping-pong 
ball the velocity does not increase so rapidly as in the other 
cases. Hence the resultant force must decrease more rapidly. 
In other words the resisting force, in this case, approaches the 
weight of the ball more closely. Whether the resultant force is 
reduced to zero at, or near, the end of the greatest height is not 
apparent. A more detailed study is needed to decide this 
question. 

The student should plot the time-distance records for the 
ping-pong ball and golf ball. There is hardly sufficient difference 
between the records of the wooden and golf balls to make an 
inclusion of the graph of the former of any value. The two plots 
should be made in a single reference system. It is instructive to 
include a third graph, i.c., that of a body falling in a vacuum. 
A second set of graphs should also be made. This set should 
express the variation of speed with time for all three cases, 
ping-pong ball, golf ball, and that of a freely falling body. An 
interpretation of the results should be made. 

One observation which was made from the mathematical 
development of the equations of motion was the existence of the 
terminal velocity. It is interesting to see whether or not this 
appears in the limited range of distances used in the experimental 
cases. That a terminal velocity was reached by the ping-pong 
ball is obvious from the graphs. This means that the resultant 
force on the ping-pong ball became zero (or very nearly zero) at 
the maximum speed. Using the terminal speed, we may easily 
determine k of the equations. Data are thereby provided for 
checking the accuracy with which the equations describe the 
motion. Such tests may be made for the cases in which the 
resistance was assumed to be proportional to the first and also 
the second power of the speed. There are various ways in which 
a test may be carried out. One simple way is to compare the 
calculated distances, through which the ball fell in several time 
intervals, with the actual measured distances. The student is 

asked to carry out the details of the process. 
Another way of checking the equations is to calculate k by 

using several pairs of values of the speed (or distance) and the 
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corresponding times. The criterion, by this method, is whether 
or not k is constant for any single record. This method has one 
advantage, in that it is applicable to those cases in which the 
terminal velocity is not known. 

The results of such tests show, for example, that the values 
of s obtained from Eq. (12-4), when using data for the ping-pong 
ball may differ from the measured values by nearly 10 per cent. 
The same data, applied to Eq. (12-19), show even larger differ¬ 
ences. While the representation of the motion of the particular 
experimental case by the equations developed in the preceding 
sections is not all that could be desired, it is far better than a 
complete omission of the resistance. In the next section we 
shall present another method of representing an experimentally 
determined distance-time curve by which the accuracy may be 
materially increased. 

12-7. Representation by a Pol5moniial.—Let us consider a 
continuous single-valued relation such as the distance-time curve 
given for the ping-pong ball in the preceding section. Now it can 
be shown that such a relation may be expressed by a polynomial 
of the following form: 

s = CL ht ct^ “1“ dt^ ”{“ 6t^ -j- . . . (12-22) 

in which the letters a, 6, c, d, etc., are constants. The number 
of terms is to be finite. In general, the degree of accuracy with 
which this equation represents the particular relation to which 
it is applied will depend upon the number of terms used. By 
increasing the number of terms the accuracy of representation is 

increased. 
We shall not present here a rigid mathematical proof for the 

statements just made. A consideration of the case under dis¬ 
cussion will, however, show that such an equation might be 
expected to serve our purposes. If the acceleration were con¬ 
stant we know that the first three terms of the right-hand member 
would suffice to give an accurate expression of the relation. 
Suppose, however, that the acceleration were changing and that 
its time rate were constant. In this case, four terms would 
suffice. If the second time rate of acceleration were constant, 
five terms would be necessary and so on. The number of terms 
to be used depends upon which derivative, if it exists, is constant. 
If d^s/dt^ is constant, or is small enough to neglect, then n -f- 1 
terms will be needed» 
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It is interesting to apply the equation, using five terms, to 
the case of the ping-pong ball To do this we shall need to 

evaluate the constants by selecting any five pairs of values of 

and t. These have been selected from the graph (not shown 
here) as follows: 

6' = 0, 90, 346, 690, 1,085 

t = 0, 0.5, 1.0, 1.5, 2.0 

Using these values, we may write five simultaneous equations, 
from which we find 

a = 0 59.1 c — 563.2 d — —185 e = 26.9 

Inserting these values in Eq. (12-22), we obtain the desired 
equation. 

Now to check the validity of the equation, we may determine 

fi for various values of t and compare the results with the observed 
values. Two such results are as follows: 

t « (calculated) s (experimental) 

0.8 229 227 
1.75 884 885 

The differences in these selected cases are certainly within the 

limits of experimental error. 

The student should find an equation which will represent the 

corresponding curve for the golf ball and test its accuracy. 

Problems.—1. Derive the three equations of motion which describe the 
motion of a particle moving in a fluid offering resistance proportional to the 
square of the speed. Take the initial velocity along a line whicii makes an 

angle of ^ + a with the direction of the force. The procedure is similar to 

that given in Sec. 12-3. 
2. If two spherical bodies of equal sizes but of unequal masses are dropped 

simultaneously from equal distances above the ground and fall under the 
influence of their weights and resistances due to the air, which body will 
arrive at the ground fl^rst? 

3. Develop the equations of motion for a particle which is projected with 
an initial velocity U in a medium offering a resistance kV. No force, except 
the resistance, is to be included. How long would it take the particle to go 
a distance equal to U/k? 



CHAPTER XIII 

DAMPED HARMONIC MOTION 

13-1. Damped Motions.—The subject of simple harmonic 
motion was discussed in Chap. V. In that chapter the only force 
included was the restoring force, z.6., that force which is propor¬ 
tional to the displacement of the body and which acts in a 
direction that is always toward the neutral or rest position of 
the body. The motion was considered to take place without 
friction. Probably no such conditions actually exist in nature, 
because there is present a force of friction which will eventually 
bring the oscillating body to rest, provided no other external 
force is introduced to balance or neutralize the friction. 

Because work must be done against the friction, the energy of 
the moving body is dissipated into the surrounding fluid in the 
form of heat. This constant drain upon the original stock of 
energy, which was placed in the body previous to the beginning 
of the motion, must eventually reduce the supply of energy to 
zero if the body be left to itself. In this chapter we are to study 
harmonic motions with resistance. Such motions are called 
damped harmonic motions. 

13-2. Friction in Fluids.—The harmonic motions of bodies in 
nature, at least as far as ordinary motions are concerned, take 
place in some fluid, usually air, although in some cases the 
surrounding fluid may be much more dense, as in the case 
of water. 

Resi^ance to motions in water has been intensively studied, 
particularly because of the immediate applications in navigation 
and hydraulics. The results of this work may be briefly described 
in the few following general statements. Friction in liquids is 
subject to considerable range of variation. When the velocity 
is large, friction may be proportional to the second, third, or 
even higher power of the speed. It is approximately propor¬ 
tional to the first power of the speed when the body is moving 
slowly auid approaches zero as a limit value as the speed approaches 
zero. Pressure in a liquid does not appear to have any effect 

286 
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upon friction. In contrast with the friction between two solids, 
friction in liquids is dependent upon the area in contact with the 
fluid. The nature of the surface, as long as it is smooth, has very 
little effect upon the friction offered by liquids to bodies moving 
in them. 

13-3. Three Cases of Damped Harmoruc Motion.—It is now 
proposed to develop the differential equations of motion for three 
typical cases in which there is damped harmonic motion. It will 
then be shown that each of these equations may be readily 
converted into what might be called a standard or general form. 
The solution of the general equation will next be obtained and 
then interpretations of the solution will be given. 

The first case involves pure translational motion. For a 
concrete case we may consider a mass wdiich is suspended by a 
spring from a rigid support. When the hanging mass is dis¬ 
placed vertically in either direction from its rest position, the 
resulting motion will be subject to three forces, the weight of 
the body (and of the spring), the elastic force of the spring, and 
the resistance. The force of resistance produces a damping of the 
motion; f.6., the amplitudes of the motion as measured from 
the rest position become successively smaller and approach zero 
as a limit. The mass of the spring enters into the inertia of the 
moving system. It is not the entire mass of spring, however, 
which is to be included, for the various parts of it have velocities 
which differ from that of the suspended body. In the following 
section the effective mass of the spring in the illustration selected 

is determined. 
The second case consists of a weight pendulum. As shown 

above, the motion of the pendulum is not strictly harmonic. If 
the angular displacement is small, we may consider the motion 

to be approximately harmonic. 
The third illustration involves a magnetic pendulum. While 

any rotational or torsional pendulum would have served equally 
well, the selection of the magnetic pendulum is made because in 
addition to the magnetic couple there is an additional restoring 
moment, i.e., the moment of the suspending fiber. 

13-4. Effective Mass of the Spring.—In a case such as the 
first one under consideration, it is not correct to disregard the 
mass of the spring unless it is very small in comparison with 
the mass of the supported body. It is perhaps obvious that the 
entire mass of the spring cannot be added to that of the body 
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when considering the equations of motion. In order to determine 
the inertia contribution of the spring, the kinetic energy of the 
system as a whole is to be expressed for some definite position. 
It is immaterial which position is chosen as long as there is 
velocity in that position. 

The question might come up as to the reason for using a 
kinetic-energy expression for this purpose rather than one 
involving momentum, since the momentum also depends upon 
the mass and velocity. The answer to this is to be found in the 
fact that we are concerned here with the effect of the forces and 
the distances through which they act and not the forces and the 
corresponding time factors. The former combination gives the 
quantity work; the latter, impulse. Work, not momentum, is 
associated with the changes in energy. Hence in this situation 
the kinetic energy, alone, can be used for determining the effective 
mass of the spring. 

We take, therefore, an instantaneous position of the system 
and express the kinetic energy of the system for this selected 
position. Suppose for this position that V is the speed of the 
supported mass. To find the kinetic energy of the spring, we 
may first express the kinetic energy of a differential element of 
the spring in terms of V and then integrate over the entire spring. 
If p is the linear density of the spring, and dx the differential 
length, the mass of the differential element will be p dx. The 
speed of this element will be proportional to its distance from 
the point of support, so that at a distance x from the fixed 
point the speed of the clement of the spring will be Vx/s if s is the 
total length of the spring in the selected position. The kinetic 
energy of the differential element will therefore be 

The kinetic energy of the entire spring will be found by 
integrating the expression 

- liiy 
But pS is the mass of the spring; hence one-third of the mass 

of the spring is effective in the motion of the system. We 
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must therefore add one-third of the mass of the spring to that of 
the supported body in order to express accurately the entire 
effective mass of the system. 

Problem.— What would bo the effective mass of the spring if the problem 
were su(di that wc^ were coneerned with tiie moimmtum of the system? 
(Since the directions of the momenta of all differential particles of the 
spring are the same, the integration may be effected.) 

13-6. The Equation for Translational Damped Harmonic 
Motion.—The force equation may be used as the starting point 
for determining the motion of the mass suspended by a spring as 
shown in Fig. 126. The motion is to be restricted to linear 
motion by assuming a small initial displacement 
in a vertical line. With this limitation the 
acceleration of the mass will be expressed by 
fPx/cIP if we let x be the coordinate which meas¬ 
ures the displacement of the mass from the 
rest position. Let the upward vertical direction 
be selected as the positive direction for all vector 
quantities. 

The result ant force system will be made up of 
three separate forces, the weight of the mass 
(and one-third the weight of the spring), the 
upward pull of the spring, and friction. If rn 
represents the total effective mass, then — irig is 
the effective weight and is constant for all posi¬ 
tions. Since the pull of the spring in the rest position (from 
which :r is measured) is equal to the weight of the effective mass 
and since the spring is assumed to follow Hooke's law, the sum of 
the two forces weight and spring tension is proportional to the 
displacement and may be written as —F'x, One must remember 
that it is legitimate to consider the system as consisting of a 
massless spring and a body which has a mass equal to the mass of 
the suspended object plus the effective mass of the spring. 

The force due to resistance is taken proportional to the 
velocity dx/dt because the speed is assumed to be small. If we 
let R' he the proportionality constant, then the force of resistance 
may be written — ii' dxjdi. The minus sign is used because 
the resistance is always acting in a direction opposite to that 
of the velocity. If the body is moving upward, the velocity is 
positive and the resistance negative, and vice, versa. 

Fig. 12G. 
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With these specifications the force equation becomes 

-F'x 
, dx _ 

^ w- 
m 

d^ 
dH 

or, as it usually is written, 

If now we divide through by m and change the coefficients of 
X and its derivatives by writing 2R — R! jm and F = F' the 
equation becomes 

% + 2^1 + = 0 (13-3) 

which is the desired expression. 
13-6. The Equation for Rotational Damped Harmonic 

Motion.—In pure rotational motion an equation similar to Eq. 
(13-3) may be obtained. To illustrate this 
type of motion, the weight pendulum has 
been selected. This may consist simply of 
a spherical bob suspended by a wire from a 
rigid support or it may be a long rod mount¬ 
ed to oscillate about a fixed axis near one 
end. In either case suppose the axis is at 
0 (Fig. 127) and C the center of mass, with 
OC equal to r. Let I be the moment of 
inertia of the system with respect to the axis 
through 0 and perpendicular to the plane of 
motion. Also let m be the mass of the pen¬ 
dulum and 7 the angular displacement meas¬ 
ured from the rest position with positive 

values in the standard counter-clockwise direction. 
If we assume that the moment of the force of resistance is 

proportional to the first power of the angular velocity dy/dt 
and let JK' be a proportionality constant, then the moment of the 
resistance will be —JK' dy/dt. 

The moment of the weight will be —mgr sin 7. The student 
should verify the necessity for using the minus sign. 

The fundamental equation is the moment of force equation, 
since we are concerned with pure rotational motion. Combining 
the two force moments, the equation is then 

0 



13-7] DAMPED HARMONIC MOTION 291 

sin 7-«'§ = /§ (13-4) 

If we now divide each term of this equation by / and replace 
sin 7 by the angle 7, which we may do if we restrict the motion 
to small angles, the equation becomes 

g| + 2«|+F,-0 (13-5) 

where 2R = R/I and F = mgrJL 
Upon comparing this expression with p]q. (13-3), it will be 

observed that the two are similar and if 7 were to be replaced by 
X they would be identical. 

13-7. The Equation for the Magnetic Pendulum.—If a magnet 
is suspended by a fiber so that it may rotate about a vertical axis, 
it will be subject to a magnetic moment due to the horizontal 
component (//) of the earth’s magnetic field. If M is magnetic 
moment of the magnet, then the magnetic restoring couple due 
to //, for a positive angular displacement 7 from the rest position, 
will be —Mil sin 7. 

In addition to the magnetic couple there will be another 
force moment caused by a twist of the suspending fiber. If the 
fiber has zero twist when the magnet is in the rest position, the 
restoring moment due to the fiber may be expressed as — Tjj 
where T depends upon the elasticity of the material of which the 
fiber is made and also upon its dimensions. The quantity T is 
the torque per radian displacement of the magnet. 

If we designate the resistance proportionality factor by the 
letter B and assume that the resisting moment is proportional 
to the angular velocity and let I be the moment of inertia of the 
system about the axis of rotation, the force-moment equation 

may be written 

-MH sin y - Ty - (13-6) 

If we assume, as above, that the angular displacement is small, 
so that sin 7 may be replaced by 7, and divide through the 
equation by /, the expression reduces to the form 

^ + 2R^+Fy.O (13-7) 

in which 2R * B/I oadF = {MH -f T)/I. This equation also 
takes the standard form for damped harmonic motion. 
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Since the particular equation for each of the illustrations 
discussed above reduces to one general form, it will be readily 
seen that the general solution of this differential equation will 
apply equally well to all three cases. 

13-8, Solution of the General Equation.—We may select Eq. 
(13-3) as being typical of damped harmonic motion in which the 
resistance is proportional to the first power of the speed. There 
are several ways in which the general solution of this equation 
may be obtained. Two methods will be given. Attention 
should be directed to the fact that the general equation is a 
second-order linear differential equation (see any textbook on 
differential equations). Such equations possess two distinct 
particular solutions. The general solution of a second-order 
differential eciuation is a linear combination of the two separate 
solutions, each having a constant coefficient. For example, if 
Si and 6*2 are the particular solutions, the general solution, and 
A and B are constant, then 

5 = Asi + Bs2 

is the general solution. The constants A and B are in reality 
integration constants and are to be evaluated in the usual 
manner. 

a. In the first method of solution we shall first reduce the 
equation to one which does not have the term containing the 
velocity (dx/dt). This may be done by a change of variables. 
If we introduce a new variable y and put 

a: = y (13-8) 

and then evaluate the first and second derivatives of x with 
respect to the time and substitute these expressions in Eq. (13-3), 
we obtain the following differential equation: 

g + 2/ (F - li^) = 0 (13-9) 

It will be observed that by this change of variables the term 
containing the velocity has been suppressed. In order to afford 
an abbreviation in writing, let us put == f — The 
symbol <x> is selected because each term of the quantity F — is 
dimensionally that of the square of an angular velocity. That 
this is the case may be readily verified by referring to the original 
equation [Eq. (13-3)], in which each term has the dimeiisions of 
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linear acceleration. It is to be remembered that the dimension 
of angular velocity is simply sec~^. The quantity w is here a 
constant. With this change the equation becomes 

^ = 0 (13-10) 

As solutions for this equation we may try the pair of imaginary 

roots and in which i is written y/ — By taking the 
second derivative of each expression and substituting in the equa¬ 
tion, we find that the equation is satisfied. Introducing the 
two constants A and B and combining the particular solutions 
into a single solution gives the following expression: 

y - A + B (13-11) 

By substituting this value of y in Kq. (13-8) we obtain 

.r = 6-^' [Ae^^* 4* (13-12) 

If the constants A and B are conjugate imaginary quantities, 
then X is real. This equation may be put into a form which is 
more convenient for present purposes by replacing the expo¬ 

nential quantities by their trigonometric equivalents. The 
general solution may then be written as follows: 

X = e~^^^[(A + B) cos o)f + i(A — B) sin co^] (13-13) 

b. Another method for obtaining the general solution [Eq. 
(13-3)] is to assume that 

X == (13-14) 

and then take the first and second time derivatives of x and sub¬ 
stitute the resulting expressions in Eq, (13-3). This procedure 
gives 

+ 2Rk + F) - 0 

Hence 

k^ + 2Rk + F == 0 (13-15) 

By this substitution we may reduce the solution to one which 
is an ordinary quadratic in fc. The values of k are readily found 
to be 

k = -R± VB^ - F 

It will be observed that the quantity under the radical sign is 
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the negative of the quantity which was arbitrarily defined as 
co^. In order to reduce the solution to one which may be readily 

compared with that obtained above [Eq. (13-12)], we may first 
take from the radical the factor i. By introducing w, as defined 
above, the expression for k becomes 

fc = ± ICO (13-16) 

This gives two values for k. By substituting these values in the 
expression of Eq. (13-14), two solutions are obtained. The 
general solution is now obtained by multiplying the solution 
which contains the plus sign by the constant A and the other by 
By and by putting x equal to the sum of the resulting expressions. 
This equation is identical with Eq. (13-12) obtained above. 

An inspection of Eq. (13-13) will be useful here to afford a clue 
as to the physical meaning of the general solution. A critical 
factor in the physical solution is to be found in the relative 
magnitudes of F and R. This fact is more readily observed in 
the mathematical expression if we replace w in Eq. (13-13) by 
its value in terms of F and 22, which gives 

X = + B) cos (Vf - t) + 

i(A - B) sin (VF - RH) (13-17) 

There are, obviously, three cases to be considered, one in 
which F is greater than W, one in which F is equal to and 
the other in which F is less than B^. These cases are sufficiently 
important to justify Separate treatments. The three cases will 
be identified as follows: 

Small damping: 

F > 
Critical damping: 

F = R^ 
Large damping: 

F <R^ 

It will be shown below that vibratory motion exists in only 
the first case. The perio'd of the motion in this case will be 

discussed next. 
13-9. The Period in the Case of Small Damping.—Although 

the constants A and B of Eq. (13-17) have not as yet, in our 

development of the subject, been expressed in terms of initial 
conditions, we may use this equation for an evaluation of the 
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period of the motion. Neglecting the exponential factor for the 
present, we readily see that, \i F > periodic variation in x 
must be due to the periodic variation of the trigonometric 
functions. The period of this variation is called the period of 
the damped harmonic motion. The period depends only upon 
the coefficient of t in the cosine or sine factors. 

As we have shown above in connection with simple harmonic 
motion, the period may therefore be expressed as follows: 

T = (13-18) 
Vf - 

From this result we can see that the period increases as R 
increases, if F remains constant. 

13-10. Small Damping.—An interpretation of the solution of 
the general equation as given in Eq. (13-13) is made easier if the 

equation is put in a different form. This may be done by 
introducing two new constants (C and a) which are defined in 
terms of A and B by the equations 

A = 5 = 1 (13-19) 

With these defining relations A and B may be eliminated 
from Eq. (13-13). If follows from Eqs. (13-19) that 

A + B = C cos a z (A — 5) = — C sin a 

Substituting these values in Eq. (13-13) gives 

X = (cos a cos o)t — sin a sin o) t) 
= Ce-^^ cos + a) (13-20) 

This form has still two constants, one of which, viz.y a, is obviously 
an epoch angle. 

In order to evaluate C, initial conditions for the motion are 
to be selected. Let these be a* = a at < = 0 and dx/dt = 0. 
Putting t = 0 and a: = a in the foregoing equation gives 

(7 s= ^ 

cos a 

To eliminate a from this equation, it will be necessary to find 
another equation containing C and a. Such an equation may 

be found by differentiating Eq. (13-20) with respect to the time. 
We have therefore an equation for the speed: 

~ ss — cos {wi + a) --- sin {<d + a) 
at 
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Putting both t and dx/dt equal to zero gives 

, ~R 
tan a = - ~ 

CO 

Introducing the value of w as expressed in terms of F and we 
may find the value for cos a, which is 

cos a = 

Hence 

V'/'’ 

\/F 

Substituting these values for C in Eq. (13-20) gives 

aVF 
X = cos (o) t + a) (13-21) 

With this expression the value of the displacement may be 
found for any value of ^ in a given case where the constants are 
known. It is to be remembered that, while x is usually taken to 
mean a coordinate which measures a linear displacement, here it 
may also represent an angular coordinate, for this solution is 
valid for those physical cases which involve rotational motion as 
well as translational. 

An expression for the velocity is found by differentiating 
Eq. (13-21) with respect to the time. This gives 

J e-‘“[R cos (w < + a) + w sin (« < + a)] (13-22) 
(It CO 

The character of the variation of the displacement as a function 
of the time may be determined by an examination of Eq. (13-21). 
The right-hand member is a product of three factors: a constant 

(a \/E/co), an exponential, and a cosine factor. 
If the effect of the exponential factor may be disregarded 

for a first consideration, then the rest of the equation expresses 
the time variation of the amplitude in simple harmonic motion. 
The amplitude of the simple harmonic motion is the constant 

factor a y/Fjoi and the period of the motion is 2 tt/co. 

The exponential factor (6~^0 a negative exponent; hence, 
as the time increases from zero, the factor decreases logarith¬ 
mically from the value 1. When t is infinitely large, this factor 
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becomes equal to zero. It does not have any negative value for 
positive (or negative) values of the time. 

The complete expression for the displacement in damped 
harmonic motion may therefore be regarded as harmonic motion 
with an amplitude which decreases logarithmically with time. 

A graphical representation of the variation of the amplitude 
with time is shown in Fig. 128 (curve B), The curve was drawn 

X 

Frj. 128. 

from data obtaiiKMl by assuming certain values for the constants. 
These values are tabulated as follows: 

m = 100 g. 
F' = 4,000 g. per second squared 
W — 100 g. per second 

F' 
E = 40 sec.““ 

m 

R ^ = 0.5 sec.-i 
2?n 

CO = \^F - R‘^ = 6.3 sec.-‘ 

T = — = 0.997 see. 
CO 

tan a =-- = -0.0794 
CO 

a = -4° 32' 

a = 1 

The exponential factor is represented by curve A in the 
same figure. It is to be noticed that, with the value of the 
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constant a put equal to unity, the exponential curve is tangent 
to the displacement. This condition of tangency would not 
occur if the value of a were not unity. An inspection of Eq. 
(13-21) will show that with a = 1, whenever oit = 27r or any 
integral multiple of 27r, the displacement x will equal since 

cos a = cjo/\/F, These points of tangency will occur at the 
particular values of the time at which the speed of the particle 
is zero. That this is true may be seen by putting cot = 27rn, where 
n is any integer, in Eq. (13-22) which makes the quantity within 
the bracket become equal to zero, or 

K cos a + CO sin a = 0 
CO , . —R 

since cos a = and sin a = — 
Vf 

because a is a negative angle. 
The variation of the speed with time [Eq. (13-22)] is repre¬ 

sented by C of Fig. 128. An analysis of this curve may be made 
in a manner similar to that used above in examining the displace¬ 
ment equation. It is instructive to compare the simultaneous 
behavior of the displacement and speed and to picture mentally 
the physical relations. 

Problems.—1. Show that the time interval between successive transits 

of the body through the rest position is equal to one-half the period. 

2. Show that the time interval between any two successive positions of 

zero velocity is equal to one-half the period. 

3. Prove for an initial positive displacement of the body that the velocity 

is negative for the first half cycle. Assume that the body starts from rest. 

4. Prove that the positions of maximum speed do not occur at the 

instants of zero displacement. 

6. P'or the case of damped harmonic motion with small damping, obtain 

the third equation of motion, viz.y an expression containing x and dx/dt but 

without t. 

13*11. Critical Damping.—The imposed relation between the 
constants of the original differential equation is that F = R^, 
To find an expression for the displacement and the velocity in 
terms of the time, it is necessary to put F = 22^ in Eq. (13-9). 
This substitution gives 

g - 0 (13-23) 

Integration of this equation gives 

y = Dt + E 
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in which D and E are integration constants. Substituting this 
value for y in Eq. (13-8) gives 

x = e-«‘ {Dt + E) (13-24) 

The expression for the speed is readily determined from this 
relation by differentiation and is 

J = _e-«' [R (Dt + E) - D] (13-25) 

These two equations, giving displacement and speed in terms of 
the time, contain two constants. To evaluate these constants 
the initial conditions 

X = a < = 0 = 
dt 

which are the same as those given above in the case of small 
damping, are to be used. By substituting these values for the 

Fig. 129. 

variables in Eqs. (13-24) and (13-25), the constants are found to 

have the following values: 

D = Ra E ^ a (13-26) 

Hence the desired equations may be written as follows: 

X - {Rt + 1) (13-27) 

^ = -ae-«‘ {RH) (13-28) 
01 

It is of interest to plot both displacement and speed in terms 
of the time in order to reveal the character of their variation. 

The result is shown in Fig. 129 in which both quantities are 

plotted to the same time axis. 
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The displacement curve may be regarded, mathematically, as 
resulting from the product of a straight line, r = a + 1), by 
an exponential factor The effect of the exponential factor 
upon the displacement is clearly shown by the plotted curve. 
The speed curve may be similarly regarded. The speed reaches a 
maximum negative value at the instant when the displacement 
curve shows a point of inflection. 

The value of the time {t') at which the speed is a maximum 
is obtained by putting the acceleration equal to zero and solving 
for t'. Differentiating Eq. (13-28) with respect to the time gives 
the acceleration. 

= aRH'e-'“' - aW-e--«‘' = 0 (13-29) 

Hence 

Problems.—1. Make a plot which shows the variation of the acceleration 

with the time in the case of critical damping. 

2. Eliminate t from Eqs. (13-27) and (13-28) to obtain the tliird equation 

of motion for the ease of critical damping. 

13-12. Large Damping.—In order to derive a simplified equa¬ 
tion for the displacement in the case of large damping, it is 

convenient to replace w of Eq. (13-12) by its value \/F — R^, 
To make this radical real, since R^ is greater than F in the case of 
large damping, the factor — 1 is taken from the quantities under 
the radical. This factor becomes i when outside the square-root 

sign; hence 

\/F - m - F 

If we designate the second radical by the letter s and then 
substitute is for a? in Eq, (13-12), the equation becomes 

O’ = [Ae~^^ + Be^^] (13-30) 

By differentiating this equation, an expression for the speed is 

obtained. This is 

^ [Ae-’‘ {R + s) + {R - s)] (13-31) 

With the same initial conditions as given in the section above, 

the constants A and B are found to be 
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^ _ a (.s ■— /?) u _ ^ (K 4" s) 

^ 2s ^ 2s 

Introducing these values in the foregoing equations and combin¬ 
ing the exponential factors gives the desired expressions for the 
displacement and speed in terms of the time. 

^ [(s - + {Jt + (13-32) 

~is (13-33) 

In order to interpret these expressions, it is necessary to know 
the algebraic sign of each term. Since the primary condition 
required to be greater than it follows that R is greater than 

6‘. We may regard each of the quantities s — R s, — R^, 
and R'^ — s‘^ as single factors and the right-hand members of the 
equations for x and dx/dt as consisting of only two terms. In 

the expression for x, since s is positive, the first term is negative 
and the second one is positive. In the speed equation the 

reverse is true. 
All of the exponential quantities have negative exponents 

for all values of the time (from 0 to oo); hence these quantities 
will vary from +1 to zero as the time increases from zero to 

infinity. 
By considering first the displacement equation, it is obvious 

that the displacement at any instant is made up of the sum of 
two quantities, one of which is negative and the other positive. 
Plotting the two terms separately gives the curves, identified as 
I and II in Fig. 130, for the first and second terms, respectively. 

Because of the fact that the coefficient of the time factor 
in the first term is R + s and that in the second term is ft ~ s, 
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the negative curve (I) approaches the time axis more rapidly. 
The curve marked III is the resultant displacement. This curve 
has a point of inflection at the time marked t\ At this instant 
the speed has its maximum value. 

The speed curve may be determined in a similar manner. The 
results are plotted in Fig. 131. Curve I shows the contribution 
of the first term, curve II that from the second term, and III is 

the resultant speed. 
As in the case of critical damping, the speed curve shows a 

maximum negative value at some time which we may call The 

expression for t' is found in a manner described above and is as 
follows: 

13-13. The Logarithmic Decrement.—In this section a more 
detailed inspection of the decreasing amplitude of the displace¬ 
ment in the case of small damping is to be made. For this 
purpose Eq. (13-20) will be used. It is rewritten here for 
convenience. 

X = cos (cot + a) (13-20) 

Since the cosine factor can vary only from +1 to —1, the curve 
expressing the displacement x must always lie between the two 
logarithmic curves +Ce~^^ and This is shown in the 
Fig. 132. 

The values of the amplitudes at two successive positive maxima 
are next to be determined. At these positions the speed is 
zero. If, then, the values of the times, at which these maxima 
occur, are determined and substituted in the equation for the 
displacement, the corresponding displacements may be found. 
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The equation for the speed is found by differentiating Eq. (13-20); 
hence 

^ = —Ce [R cos (ctf < -f- a) -f- w sin (oj < -j- a)] (13-35) 

Putting the speed equal to zero and writing t' for the particular 
value of the time gives 

tan (co f + a) = -- (13-36) 
03 

This relation remains true when the angle w + a is increased 
by 2 TT n or when the time is increased by nT (where T is the 

period). 
Hence 

t' + nT = ^ -a-f tan-'(13-37) 

The times at which two particular successive maxima (xi and 
Xi) occur may be taken as ^' + T and f + 2T. Substituting 
these values separately in Eq. (13-20), equating the resulting 
expressions to xi and X2y respectively, and then dividing xi by X2 

gives 

RT = log - (13-38) 
X2 

The quantity RT is called the logarithmic decrement. This 
equation supplies the means for evaluating jB, the damping factor, 
from experimental observations. All that is necessary is a 
determination of the period and the ratio of any two successive 
maximum displacements taken in the same direction. 

In undamped harmonic motion the values of the time at which 
the maximum displacements occur are midway between the 
values of the time at which two consecutive displacements are 
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zero. In damped harmonic motion this is not the case. To prove 
the truth of this statement, we may determine the values of the 
time at which the displacements are zero and then, by referring 
to the values of the time at which the displacement maxima occur, 
the relative values of these times may be determined. Letting 
ti represent the value of the time when a: == 0 and putting x = 0 
in Eq. (13-20) gives 

0 = cos (cD + a) 

Since neither C nor is zero, cos ti + a) =0 and hence 

CO 
(2a/, + 1)1- a (13-39) 

in which ?i is any integer. 
If one-quarter of the period (Tr/2 co) is added to tbe value of ti, 

the resulting expression is not 
equal to t' [Eq. (13-37)], the 
value of the time at which the 
maximum displacements occur. 

13-14. Use of the Logarith¬ 
mic Spiral to Express Oscilla¬ 
tions in Damped Harmonic 
Motion.—In the chapter deal¬ 
ing with simple harmonic mo¬ 
tion it was shown that simple 
harmonic motion could be 

obtained by projecting the uniform circular motion of a 
particle on to the diameter of the circle. It is to be shown 
here that linear damped harmonic motion, in which the 
damping is small, may be described in a somewhat similar 
manner. In place of the circular path used in simple harmonic 
motion, we shall show that a logarithmic spiral may serve a 
similar function, 

A characteristic of the logarithmic spiral is that the angle 
between the radius vector drawn to the curve at any point and 

the tangent to the curve at that point is constant. Let 5 + a 
A 

be this angle (Fig. 133). 
Given the point P on the spiral with 0 the center of the spiral, 

OX the reference line, and r the radius vector drawn to P. A 
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particle at P is to move with a variable speed along the curve 
in such a manner that the angular velocity dy/dt of r shall be 
constant. 

It is to be shown that Q, the projection of P upon the reference 
line OXj moves with damped harmonic motion. 

The component of the velocity of P parallel to r is —dr/dt 
and the component perpendicular to r is r d'y /dt. Since the angle 
(a) between the resultant velocity V and r dy/dt is constant, 
it follows that 

dr 

1 dr 
T dy 

= — A (a constant) (13-40) 

Integrating this equation gives 

log r = —A y A- C 

with C the integration constant. 
By selecting the following initial conditions, r = ro, t = 0, and 

7 = 0, the constant C is found to be equal to log ro. Hence 

r = ro (13-41) 

is the equation which expresses the length of the radius vector in 
terms of y and the constants. 

If now we let x measure the displacement of Q from the center 
0 along the fixed line OA", the equation for the acceleration of 
Q may be expressed in terms of x and its derivatives. 

It is the form of the equation expressing the acceleration of 
Q in which we are particularly interested. The starting point is 
the expression for .r, which is 

X — r cos 7 

Differentiating this equation and putting dy/dt = w (constant) 

gives 

dx 
di 

dr 
^COST- r w sin 7 
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The value of dr/dt is found by differentiating Eq. (13-41) and 

IS 

dr 
Jt 

== —r oj A 

Substituting this value in the expression for dx/dt gives 

dx 
dt 

== —r 0) A cos 7 — r w sin 7 

= —X 0) A — raj sin y 

The second derivative of x is therefore 

dP 
dr 

(13-42) 

dx dr 
— *77 oj A —77 o) sin y — r 0)^ cos y 

dt dt 
dx . 

= -5"'* dt 
CO sm 7 — r (13-43) 

If now we multiply both sides of Eq. (13-42) by co A, we obtain 

dx 
dt 

A = —orco^A^ — rA co^ sin y 

A substitution of this value for the first term of the right-hand 

member of Eq. (13-43) gives 

d^ dr 
xoi^ (A^ — 1) + rAco^ sin 7 ^ T 

= .Tco^ (A^ ““ 1) + 2rAco2 sin y 
= —xw^ (1 + A^) + 2xui^A‘^ + 2rAco2 sin 7 

= (1 + A^) - 2aJ~ 

A rearrangement of the terms of this result yields the final 
expression for the acceleration of Q, which is 

+ 2^0, J + wHl + A^)x = 0 (13-44) 

The coefficients of dx/dt and x are both constant. If we write 
2R and F, respectively, for these coefficients, the equation 
takes the form of the general equation for damped harmonic 
motion. The projection of the motion of P in the logarithmic 
spiral, subject to the given limitations, may therefore be used to 
describe damped harmonic motion. 

It is profitable to interpret the equation for the displacement 

[Eq. (18-21)] and for the velocity [Eq. (13-22)] in terms of the 
auxiliary motion of P in the logarithmic spiral. 
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Let us first examine the angular velocity of P in the spiral. 
The period of JP's motion is 27r/co, which is also the period of the 
displacement and of the velocity. Since co is constant, it follows 
that the quantity co, as used in the equations of the damped 
harmonic motion, may be represented by the angular velocity of P 
in the spiral. 

The angle a in the equation for the damped harmonic motion 
is an epoch angle. This angle is represented in the spiral by the 
value which 7 has at the time t = 0. To show that this is the 
case, we may determine the position of the radius vector when 
/ == 0. Since, at this instant, the speed is zero, the position of r 
must be such that the velocity of P is perpendicular to the refer¬ 
ence line OX, The resultant velocity of P is always in the line 
of the tangent to the curve at the point P and makes an angle a 
with the perpendicular to r; hence at the time if = 0 the radius 
vector will lie below OX and make an angle —a with OX, A 
verification of this statement is to be obtained by comparing the 
value of a as found in the equations of the motion in the spiral 
with the value of a determined from the equations of the damped 
harmonic motion. In the case of the motion in the spiral, a may 
be found from the coefficient of 2(dx/dt) of Eq. (13-44) together 
with Eq. (13-40), which gives 

R == -\-A. 0) 

From which 

— A = tan a -- 
CO 

A similar value for a has already been found. 
It is also of interest to observe that the spiral shows that 

the maximum displacement does not occur at the instant when P 
crosses the reference line. 

Problems.—1. Devise a method for determining the value of the damping 

factor from a displacement curve in the case of critical damping or of large 

damping. 

2. Show how the damping factor might be determined by using values of 

the speed corresponding to the times when the displacement is zero. 

13-15. Forced Vibrations.—The harmonic vibrations of a 
particle, as described in the preceding sections, are known as 
‘^free^^ vibrations. In such motions, the elastic restoring force 

and fluid resistance are the only forces included. It is now 
proposed to study the effect of adding another force to the other 
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two. The nature of the additional force is to be restricted to a 
harmonic character; i.e.j the force is to be expressible in terms of 
the time by a cosine or sine term, such as b cos il t. When such a 
force is added to elastic restoring force and fluid resistance, the 
resulting vibrations of the particle are somewhat complex for a 
time. After an initial transient period, the length of which 
depends upon the constants (inertia, elastic force, and resistance), 
the vibrations settle down to a steady state and remain so as long 
as the applied harmonic force does not change. 

The equations derived in this section have been found useful 
in describing several important phenomena which occur in various 
fields of physics, particularly in sound, electricity, and light. 
One reference may be made to point out the fact that the funda¬ 
mental equation may be successfully used to explain the behavior 
of the very smallest of particles, ^^c., the electron. In the 
classical theory of light, use of these equations has been made 
to obtain expressions for the dispersion of light. It is inter¬ 
esting to observe that the same fundamental assumptions have to 
be made for the elastic forces which hold the bound electrons to 
the atoms of the dielectric and for the resistance offered to the 
motions of the electrons as have been made here in describing the 
forced vibrations of a particle. The experimental measurements 
validate the assumptions. 

The addition of an impressed harmonic force to the elastic 
force and fluid resistance gives the following differential equation: 

~ + 2R^ +Fx cos Q t (13-45) 

where b is the harmonic force per unit mass and 2t/ U is the period 
of variation of this force. 

To solve this equation, we may try 

X = D cos (U t - 

If this value for a* is a solution of Eq. (13-45), then, upon substi¬ 
tuting the first and second time derivatives of x, the given differ¬ 
ential equation should be satisfied. 

— DO sin (0^ — 

— DO® cos (Or — /3) 

Substituting in Eq. (13-45), expressing the sine and cosine func- 

dx 
dt 

d^x 

W 
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tions of the sum of two angles in terms of the corresponding 
functions of the single angles, and rearranging terms gives 

[h ~ D (F — ^2“) cos ^ ~ 2DIi it sin 13] cos U t 
— [D (F — sin f3 — 2DR i2 cos /3] sin 0^ = 0 (13-46) 

In order that this equation should be equal to zero, it is necessary 
for the coefficients of sin 12 t and cos 12 t to be separately equal 
to zero. If we put the coefficient of sin II t equal to zero, we 
find that 

tan /3 = (13-47) 

From this relation we may write 

_2RJI_ 

_F - U"- 

Equating the coefficient of cos 121 to zero gives 

j) = —^- 
{F — 0^) cos /S sin ^ 

sin /3 = 

cos /3 = 

Substituting the values of cos /3 and sin 0 as written above and 
simplifying yields the following value for D: 

D = 
_b_ 

(13-48) 

Using this value of D, we may now write 

X 
_b_ 

V(F - fi'O" + 
cos (Qt — 0) (13-49) 

which is a solution of Eq. (13-45). This solution, however, is a 
particular solution and not a complete solution, for it contains no 

arbitrary constants. 
The complete solution is obtained by adding to Eq. (13-49) the 

solution of Eq. (13-3), viz., Eq. (13-20), since the sum of the two 
expressions contains two arbitrary constants and satisfies the gen¬ 
eral differential equations. The complete solution is therefore 

X — C e~®‘ cos (wt -|- a) -f- 
b cos (Of — 0) 

ViF - 0^)2 + 4R2Q2 
(13-50) 

The constants may be evaluated by the use of initial conditions. 
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The displacement at any instant may be seen to be a sum of 

two displacements. The first term gives the “free” displacement 

and the second the “forced” displacement. We have seen above 

that the amplitude due to the first component approaches a zero 

value because of the damping factor. The second component 

contains no exponential factor and therefore its amplitude does 

not decrease. After a sufficient length of time the free vibrations 

may become small enough to neglect in comparison with the 

forced vibrations. 

In the present consideration we are interested only in the 

amplitude of the forced vibration. We shall therefore neglect 

the free vibration. 

The period of the forced vibration is readily seen to be that of the 

impressed harmonic force, viz.j 2 7r/i2. The vibration, however, 

lags behind the impressed force by an angle i8. 

The amplitude of the forced vibration is the coefficient of the 

cosine factor. 

It is of interest to see how the amplitude of the vibration 

varies with the frequency 0 of the impressed force. The con¬ 

ditions for obtaining a maximum amplitude may be found by 

differentiating the equation for D [Eq. (13-48)] with respect to 12 

and putting the resulting expression equal to zero. Performing 

the indicated operation gives the particular value of the frequency 

O': 

12' = (13-51) 

This value of the frequency is known as the resonance frequency. 

In order for 0' to have a real value, it is necessary for F to be 

greater than 2/2^ If F is less than 2fi“, the value of 0' is imagi¬ 

nary. The effect of increasing the resistance of the medium is to 

decrease the resonance frequency. 

Prolblems,—1. For given values of F, F, and h [Eq. (13-61)] find the 
character of the curve which expresses the dependence of D upon U, 

2. Show that the ratio of the amplitude of the motion, in the case of small 
damping, at any time, to the initial amplitude is proportional to the time. 

3. Derive the differential equation of motion of a particle, which executes 
simple hannonic vibrations, from the principle of the conservation of energy. 



CHAPTER XIV 

VECTOR FIELDS 

14-1. Nature of a Vector Field.—In Chap. X it was shown 
that in conservative fields there exists a scalar function, the 
potential, which is everywhere single valued and finite, and that 
from this scalar function the field intensity may be determined. 
At every point in the scalar field there exists a definite value 
of the potential and also a definite value of the field intensity. 
Field intensity, however, is a vector quantity. Hence from the 
scalar field a vector field may be established. A vector field 
is therefore a region to every point of which there corresponds 
some value of the vector quantity. 

The vector field may include all portions of space but it 
may be necessary to use two or more analytical expressions to 
define the vector throughout all portions of the space. For 
example, if the field is that of gravitational-field intensity due 
to a single continuous mass, one expression will be necessary 
for all points outside the boundaries of the gravitating mass 
and another expression for those points within the boundaries 
of the mass. If the field is due to three separate masses, then 
four expressions may be necessary. 

14-2. Gradient of Potential and Field Intensity.—Let us con¬ 
sider any scalar field, such as the potential field w’hich exists 
in the region surrounding a gravitating mass. We may select a 
reference system XYZ with F any point in the field. The value 
of the scalar function at F is dependent upon the coordinates of P. 
The function will, in general, change as we go a distance dx from 
P along a line which is parallel to the A^-axis, If the change in 
the scalar function is dV, then the rate of change in the direction 
of dx will be dVfdx, This quantity expresses the rate of 
change of the scalar function in a definite direction. We may 
write Ax for the vector which combines the direction with the 
magnitude; hence 

311 

(14-1) 
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in which i has its usual vector significance—that of the unit 
vector in the positive direction along the OX-axis. 

Similar expressions may be written for the components parallel 
to the two other reference axes. 

To find the maximum rate of change in the scalar function 
(for the particular point) and the direction of this maximum rate 
of change, we may determine the magnitude and direction of the 
vector A which represents the vector sum of the .r, ?/, and z 
components. Since 

the magnitude of A is equal to the square root of the sum of the 
squares of the coefficients of the unit vectors. The direction 
of A may be readily expressed in terms of its direction cosines 
Z, m, and n. It is readily seen that 

(d F\r/d fv , (d fv , (d fv*' 
\dx)\dx) \dy) ^ 

Similar expressions may be written for rn and n. 
The vector A is called the gradient of the scalar function F. 

The gradient of a scalar function expresses the direction and the 
magnitude of the greatest change of that function per unit 

distance. 
Because of the common use of the operation of finding the 

rate of change of scalar and also vector quantities, as indicated 
for the scalar function F in Eq. (14-2), it has been found con¬ 
venient to abbreviate the expression by introducing the symbol 
V (read del). It is expressed as follows: 

V = + /r-h 
d X d y d z 

(14-3) 

and may be treated as a vector quantity, v is frequently called 
an operator. 

In the particular case we may write 

A ^VV (14-4) 

and regard the right-hand member as a product of a vector and a 

scalar quantity, which, if expanded, would give the right-hand 
member of Eq. (14-2). 
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If V is to represent the potential in the region of a gravitating 
mass, the vector A as defined by Eq. (14-4) gives the negative 
of the field intensity. It follows, from Eq. (10-27) if we write G 
for the vector field intensity, that 

G = -^V (14-5) 

This result may be generalized. If there exists a scalar 
field in which there is a potential which is single valued, finite, 
and continuous, the negative gradient of the potential will give 
the field intensity. Applications of this process are to be found 
in gravitational, electrostatic, and magnetic fields. 

Illustration,—Find the field in¬ 
tensity at any point in the region 
near a thin rod, first by determin¬ 
ing the general expression for the 
potential and then by applying the 
operator v to the potential as indi¬ 
cated in Eq. (14-5). 

Let the rod bo of length L and of 
linear density p and, for convenience, 
let it be placed on the axis OX of the 
reference system with one end at 0. We are first to find the 
potential at any point P {x y z) as shown in Fig. 134. If ds is a 
differential length of the rod which is at a distance r from P, and 
at a distance s from 0, then the general expression for the 
potential at P is 

= [(-^ — s)2 + 2/2 + z^J-ids 

,, , \/x^ + y- + — 2xL + L~ + L — X 
-Kp log --- 

\/x' y- + z- — X 
(14-6) 

This result holds for any point P {x y z) in the field. To 
obtain a numerical value of the potential for any particular point, 
all that is necessary to do is to substitute the values of the 
coordinates of that point in the given expression. 

We may now find the general expression for the field intensity 
at any point P {xy z) by finding the negative of the gradient as is 
expressed by Eq. (14-5). The process is indicated as follows: 

.1 

— i 
sv , .dv , .dV 
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The results of the indicated differentiations are more readily 
obtained if we use the following abbreviations: 

A — \/x® + + 2“ — 2xL + + L — X 

B — \/x^ + y- + 2® — 2xL + 

C = Vx^ + - X 

Z) = -v/x- + + 2^ 

The final result may be then written: 

G = iKp 
x(AB - CD) + D (CL + BC + AB) 

A BCD + 

jKp 
y (AB 

A BCD 
CD) 

A BCD 
(14-7) 

This expression gives the field intensity in terms of the vector 
sum of the three components along the reference axes. If 
the intensity is desired at some definite point, it may be found 
by substituting the given coordinates of that point in Eq. (14-7). 
The square root of the sum of the squares of the coefficients of the 
unit vectors gives the magnitude of the intensity. 

14-3, The Divergence of a Vector.—We have seen how the 
operator V is applied to a scalar quantity in the determination of 
the gradient, and that a vector quantity, which expresses the 
direction and magnitude of the rate of greatest increase of the 
scalar, is obtained. In this section the same operator is to be 
applied to a vector quantity by forming the scalar product of V 
and the given vector. The result obtained from this operation 
is to be examined and its significance interpreted. 

If we let F represent the given vector, then the scalar product 
of V and F may be expanded as follows: 

’ ■ ^ - (t.+4+4) +‘ 
— 4. 4. 
~ ~dx 'ey Iz 

(14-8) 

Each tenn of the right-hand member is a scalar quantity. The 
quantity V • F is then a scalar quantity, as it should be, for we 

have formed a scalar product of two vectors. 
The significance of this result is to be determined. Before 

we do this, a digression is made to explain the term flux of field 
intensity. The meaning of the term flux of field intensity. 
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as used here, is similar to its meaning in electric or magnetic 
fields. If we imagine a uniform field (gravitational, electric, 
or magnetic) in which the field intensity has a value of unity, 
i.e,y 1 dyne per unit mass, positive charge or north pole, in the 
c.g.s. system, then this field intensity may be represented 
conventionally by assigning a single line of force to each unit 
area (square centimeter) of surface perpendicular to the fiedd. 
If the field intensity is of strength n, then n lines would be 
assigned to each unit surface which is perpendicular to the. field. 
This assignment is a purely conventional matter. As an exten¬ 
sion of this convention, irrK lines of force are assigned to each 
unit mass and lines to each unit charge or pole. The reason 
for this assignment is easy to see if we take the surface integral 
of the field intensity over the surface of a sphere of unit radius 
which encloses a unit spherical mass particle placed concentric 
with the spherical surface. With this arrangement the field 
intensity on the spherical surface is everywhere perpendicular to 
the spherical surface and has a constant value of over the 
entire surface. The total number of lines of force passing through 
the surface is called the flux and is found as follows: 

Flux = JJ — K (h 

= -47riv (14-9) 

in which ds is the differential clement of surface. Because the 
result of this integration yields 
47rX, it has been convenient to 
adopt the convention of assigning 
4irK lines to each unit mass. 
Since field intensity has a direc¬ 
tion, the convention goes a little 
further and states that in electric 
and magnetic fields the lines come 
out of positive charges and north 
poles and go into negative charges 
and south poles. In the gravita¬ 
tional case we cannot make this 
distinction, because there are only attractive forces. The 
minus sign in the preceding result is tn be understood as 
meaning that the flux is entering the surface. A positive result 
in electric and magnetic fields would indicate that the flux is 

leaving the surface, 
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Let us determine the excess of flux which comes out of a 
dilferential element of volume dot: dy dz (as shown in Fig. 135) 
over that which enters when placed in a gravitational field. 

The flux entering the face parallel to YZ nearer the origin is 
Fx dy dZy where Fx is the flux intensity or number of lines per 
square centimeter of surface perpendicular to Fx* 

The flux leaving the opposite face would be 

Fx + dy dz 

The excess of flux parallel to X would therefore be 

dy dz — Fx dy dz dx dy dz 

In a similar manner it may be shown that the excess of flux 
emanating from the two other pairs of surfaces would be 

(t) dx dy dz and dx dy dz 

Since these are all scalar quantities, the total excess of flux 
leaving the elemental volume over that entering is 

(dFx dFy 
\ dx '^'dy 

+ OF 
dz 

,r dy dz 

If we divide this expression by the volume of the element, viz.y 
dx dy dZy we obtain the excess of flux which would emanate from 
a unit volume at the point where the differential volume is 

situated. 
This quantity has been defined as the divergence of F (div. F) 

and may be written as follows: 

V • F = div. F 
dFx , dFy ^ 
dx dy dz 

(14-10) 

The divergence of the field intensity at a given point gives the 
excess amount of flux, or number of lines of force leaving the 
surface of a unit volume enclosing the given point over that 

entering. 
The process of finding the amount of mass in a given region 

in which the field intensity is known involves a determination 

of the divergence at any point in the region, multiplying this 
result by the differential volume surrounding the point, then 
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integrating over the entire region, and dividing the result by 
-47^A^ 

In the derivation just given fur obtaining the divergence of 
a vector, a reference system was selected with axes perpendicular 
and parallel to the edges of the differential parallelepiped 
(Fig. 135). The result obtained is not dependent upon the par¬ 
ticular reference system selected, as may be shown. The diver¬ 
gence of a vector is invariant to a change of the reference system. 
The proof for this statement may be established by a trans¬ 
formation of axes, but the det ails of the process are long and 
uninteresting. 

14-4. Applications of the Operator V.—For some of the work 
which follows, it will be convenient to evaluate some of the more 
commonly encountered expressions which contain V. The 
illustrations given will show the procedures to be followed in such 
expansions as well as to provide useful relations. We shall first 
evaluate some expressions in which v i« to differentiate a scalar 
quantity and then expand expressions in which v is applied to a 
vector. 

We have shown in Sec. 14-2 the use of V in determining the 
gradient of a scalar quantity, such as potential, and have seen that 
a vector quantity, which gives the direction and magnitude of the 
maximum space rate of change of the scalar as a function of the 
coordinates, is thereby obtained. In some of the present illus¬ 
trations we shall use the scalar quantity r which measures the dis¬ 
tance of any point from the origin of a selected reference system. 
The scalar quantity r may be expressed in terms of the coordinates 
(.r y z) of the particular point as follows: = .r- + 2/’ + ^ The 
vector quantity r is rr^ where ri is the unit vector in the direction 
of r and, in terms of the unit vector i,j, and k, may be written 

r = rri = ix + jy + kz 

The expansions in the following cases are written in detail 
in order that the procedure may be clear. 

(a) Vr: 

("I+4+»■+'’>' 
= + J y + 

(x^ + ^ 

_ r 
r 

= n (14-11) 
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(6) Vr”: 

+4+‘5)''+ 
— n {i X + j y + h z){x^ + 

== -JJ. X + j y + k z){x^ + 2/^ + 2=^)2”2 

= n ri or nr (14-12) 

vl = (i± +jf + kpjix^ + y^ + 
r \dx dy dz/ 

= — {i X -\- j y -{■ k z){x^ + y'^ + z^)-^ 

= or " (14-13) 

This result may also be obtained from Xb) by putting n = ~1. 
(d) V {A • B).—Notice that A and B are vectors, but their 

product -4 ‘ J? is a scalar quantity. Differentiation by V in this 
case follows the rules of ordinary differentiation, in that V is 
to operate upon each vector separately while the other remains 
constant. The procedure is indicated symbolically as follows: 

V(A-B) {A ^B), + ^ {A ^ B)j, 
= {B * V)A + {A • V)B 

In the first expression the subscripts to the right of the paren¬ 
theses indicate which vector is to remain constant. The vectors 

A and B may be expressed in terms of their components Awi Ay, An 
and Bz, By, Bz, respectively, as follows: 

A =* iAx jAy + kAz B = iBx jBy + kB» 

Introducing these values in the expression for V[A • B) gives 

.■(il ■ S) - + B,~ + S,0(iA. + JA, + HA.) 

+(^4+-*4+ 
A further reduction of this expression is not possible except in 

special cases. If Ax, A„, A, (or JB„, B,) are functions only of 
z, y and z respectively, then a simplification may be made. 
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(e) V • r: 

^ =('I+4 ^ 
== 1^ 4. ^ ^ ^ 

= 3 (14-15) 

(/) which r is a scalar function and -4 is a vector 
function of the coordinates. In this expression V is to differ¬ 
entiate each factor. 

V • {tA) = (Vr) • .4 + r (V ‘ A) 

\g) VTi 

v.,..v.(0 

(14-16) 

r 

_?± I 4-5 • 
r\ r 

-1 + 3^2 
r r r (14-17) 

(h) Other formulas which may be of use are written below 
without including the detailed proofs by expansion. In these 
expressions, a and b are scalar functions and A and B are vector 

functions. 

V(a + b) a + Vb (14-18) 
V. (4 + B) - V- ^ + V- 5 (14-19) 

V{ab) = a (Vb) + b{Va) (14-20) 

14-6. Illustration of a Use of Divergence.—In this section 
we shall make use of the divergence of G, to determine the 
mass of a body; in particular, the mass of a sphere. For this 
purpose we must assume that the field intensity at any point 

within the sphere is known. 
Suppose that the radius of the sphere is R and that the field 

intensity G at any point within the sphere is expressed by the 

relation 

G «= —ir M ir rHi 
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where K and /x are constants and r is distance of the point at 
which G is given from the center of the sphere. 

The procedure to be followed in a determination of the mass 
of the sphere consists of three steps: first, finding the divergence 
of G; second, integrating the divergence over the entire volume of 
the sphere; and, third, since the result of the volume integration 
of the divergence gives the total flux, dividing the flux by —4cTrK. 

The divergence of G is found by the following manner: 

Div. G = V (-KfjLTrr^r^ 
= -KfXTrV^ (r^rO 
= -AV[(Vr2) . n + 7-2 V- n] 

= —AKfxir r (14-21) 

This result gives the flux or number of lines per unit volume 
which enter a differential mass at the point at which G is given. 
Expressed differently, the divergence of G gives the flux entering 
a unit volume enclosing the point, if div. G were constant through¬ 
out the unit volume. But div. G is not constant over the region 
and we must multiply the result obtained above by dvj a differ¬ 
ential volume surrounding the point and integrate over the 
entire region. 

Since r is the only variable in the expression for div. G, we 
may use for dv a spherical shell which is of thickness dr and of 
radius r and whose center coincides with the center of the sphere. 
HeAce dv = iirf^dr. The total flux entering the sphere is found 
as follows: 

Flux = /// div. G dv 
volume 

= ~ 16 r^dr 

= (14-22) 

The mass of the sphere may now be readily determined by 
dividing the total flux by — 47rA, since lines have been 
assigned to a unit mass. If M is the mass of the sphere, 

This is the mass of a sphere of radius R in which the density 
is not uniform but is equal to as may be readily verified. 
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Problem.—Find the mass of a sphere in which the field intensity has the 

value —^Kpirr where K and p are constants and r is the radius vector from 

the cemter of the splu^re to the point at which G is given. 

14-6. The Gauss Integral.—There are two ways of determining 
the excess of flux which may enter or leave a given closed surface 
in a vector field and therefore, in the gravitational case, of 
determining the amount of mass which lies within the closed 
surface. One method makes use of the volume integral of the 
divergence over the entire region, as is expressed by Eq. (14-22) 
and the other depends upon a surface integral of the normal com¬ 
ponent of flux intensity over the entire surface. It is not 
necessary to go to the extent of introducing a rigid mathematical 
proof to establish the validity of equating these two integrals. 
For present purposes it is sufficient to say that it is certainly 
reasonable that the excess flux leaving or entering a closed surface 
completely surrounding a given region must be equal to the 
algebraic sum of the excesses of flux leaving or entering all of 
the infinitesimal elements of volume which completely fill the 
boundary surface. 

This relation is expressed by the following equation: 

JJni ■ F <h = fffdiv. F dv (14.24) 
surface volume 

where rii is a unit vector perpendicular to the surface element ds, 
F is the field intensity at that point, and dv is the differential 
volume. This equation is known as the Gauss theorem. 

As a simple illustration of the equality of the two integrals 
given in Eq. (14-24), let us put the vector F equal to the vector 
r which expresses the position of any point with reference to some 
fixed point as origin, and let the region be a sphere of radius R 
with its center at the origin. We shall evaluate each integral 
separately and by comparing the results so obtained test the 

validity of the equation. 

Since r = ix + jy + kz, we may write 

Div. r = {i§- +jly + 4) • ii^+jy + kz) 

dx dy dz 

= 3 (14-26) 
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Substituting this result in the volume integral gives 

///div.rdt; = 3///dr 
vdume volume 

= 4x72^ (14-26) 

If the surface integral is taken over the surface of the sphere, 
then r is everywhere perpendicular to the surface and of uniform 
magnitude all over the surface. Hence 

Hi • r ds = r 
surface 

= (14-27) 

which is equal to the result obtained for the volume integral. 

Problem.—Test the validity of the Gauss theorem by evaluating each 

integral of Eq. (14-24), in the case where the field intensity at any point in 

the interior or on the surface of a sphere of radius R is given by the relation 

G — —tKixir r^Ti 

14-7. Poisson’s and Laplace’s Equations.—The operator v 
has been applied to potential for the determination of the field 
intensity and has also been applied to field intensity to find the 
divergence. It follows therefore, since G = — VF, that 

Div. G = V G 
= -V. (VF) 
= -V^F 

. .bJI + i!? + !!!) (14-28) 
Vsi’ ^ as’ ^ dz'J 

In the gravitational case the divergence gives the number 
of lines or the flux per unit volume entering a diiferential volume 
at the point at which the divergence is expressed. We may 

connect this result with the mass in the unit volume and hence 
the density by writing — 47rifp for the number of lines coming to 
p g. of matter per unit volume. Hence 

Div. G = — 47rjK’p 

and 
VW = +47rKp 

or 
V^F - iwKp « 0 (14-29) 

which is Poisson^8 equation for gravitational fields. 
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In particular, if p = 0, we have 

=: 0 (14-30) 

which is Laplace^s equation. 
It is to be noticed that in the gravitational case the lines 

of flux enter the mass, an assumed characteristic of mass; con¬ 
sequently the sign of the result obtained by applying the diver¬ 
gence operation to gravitational fields will be negative. In the 
electrical or magnetic cases, however, the sign may be either 
positive or negative according to the sign of the charge or pole 
within the region to which the operation is applied. Hence in 
electric and magnetic fields Poisson^s equation is written 

VW + 47rp = 0 (14-31) 

In hydrodynamics or thermodynamics the flux may be a flow 
of fluid or heat out of the region or into it. 

If it is found that flux is leaving a given region, the region is 
said to contain a source.^’ If the flux enters a given region, 
then a ^^sink^^ is present in that region. 

Problems.—1, In free space outside a homogeneous sphere of mass AT, 

the potential at any point is — {KM/r) where r is the distance from the center 

of the sphere to the point. Show that VW = 0. 

2. Inside a particular sphere the potential may be expressed by the 

relation V = where K and /x are constants and r is the distance from 

the center of the sphere to the point at which the potential is given. Find 

the expression for the density of the sphere by the use of Poisson^s equation. 

14-8. The Curl of a Vector.—The curl of a vector is a function 
of the vector obtained also by applying the operator v to that 
vector. Unlike divergence, which is obtained by taking the 
scalar product of v and the given vector, curl is found from a 
vector product of the two vectors, one of which is v and the 
other is the vector to which the operator is applied. This 
operation gives a vector quantity, as is characteristic of the 
vector product of two vectors. The following equation may be 

used as a definition of the curl of a vector: 

Curl F - tX F 

Writing in terms of the components of the vectors gives 
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Curl F = {i F X + y -^1/ + hFz) 

i j k 
d d d 

dx dy dz 
Fx Fy Fz 

dFx\ 
dy ) 

(14-32) 

This equation expresses the curl F in terms of the three 
components of a vector, the components being parallel to the 
axes of a selected reference system. The magnitudes of the com¬ 
ponents are given by the coefficients of the unit vectors in the 
foregoing equation. Wliile the magnitudes of the components 
are individually affected by the particular reference system 
selected, the resultant vector is independent of this selection. 

An illustration is introduced to show something about the 
meaning of the curl of a vector. For this purpose let us deter¬ 
mine the curl of the velocity vector of any point of a rigid body 
which is moving with any general uni planar motion, i.e.y a 
combination of translational with rotational motion. To be 
explicit, let the body be a right circular cylinder and let it be 
rolling down an inclined plane. Now to every point of the body 
there is a definite assignable velocity. We may therefore regard 
the velocities of all points of the body collectively as building 
up a vector field. If the curl is applied to the velocity of any 
point in this field, i.e.y to a point of the body, the result will be 
some function of V. 

Let the reference system be selected so that the origin coin¬ 
cides, instantaneously, with the center of mass of the cylinder. 
The velocity V of any point P of the body may be expressed 
in terms of the vector sum of its velocity relative to the center 
of mass and the velocity of the center of mass of the cylinder 
in the fixed reference system [see Eq. 1-19)]. If the point P is at 
a distance r from the center of the cylinder and if o is the instan¬ 
taneous value of the angular velocity of the cylinder, then 

K = P + <0 X r (14-33) 

If the curl is taken of this equation, we may express the 
operation in terms of V as follows: 

^ Curl F- VX P+VX (b> X r) (14-34) 
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Each term of the right-hand member is to be evaluated separately. 
The first term v X C/ is equal to zero. In order to see that 
this is true, we may expand this vector product in terms of the 
components of the two vectors as indicated in Eq. (14-32) and 
thereby obtain 

Since each velocity component of V is not a function of either 
coordinate which is measured perpendicular to it, then each 
term of the foregoing expression must be equal to zero. For 
example, Ux is not a function of either y or Z] hence dUx/dy and 
dVx/dz must be zero. 

The conclusion that v X is zero may be reached from a 
different viewpoint. We must remember that the application of 
the operator V to a vector involves an operation which deter¬ 
mines, in a peculiar way, just how that vector varies with 
respect to the coordinates of a particular point of the body at 
which the curl is to be found. In the case under consideration 
the vector V is one component of the velocity of each point of 
the body and is common to all points of the body. Therefore, 
since U does not change from point to point in the body, V x £/ 

is zero. 
The second term of the right-hand member of Eq. (14-34) 

involves a triple vector product. Since V is one of the factors, 
the triple product may be expanded according to the general rule 
for such a product, provided we arrange for V to operate upon 
both of the vectors in each term of the expanded expression. 

Hence 

V X (w X r) = 0>(V • r) - r(V • w) 
= G>(V,. • r) + (r • VJg> 

-r(V,'o>) - (w V,)r (14-36) 

In the last expression, subscripts are written to indicate upon 
which vector V is to operate. In such expressions as appear 
in this equation in which V is to operate upon only one of the 
vectors, the other vector is not to be differentiated by V but 
is not necessarily constant. For example, in the expression 

• r), V differentiates r only but the vector <*) need not be a 
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constant vector. The validity of this expression may be 
established by expressing each vector in terms of its components 
and carrying out the details of the multiplication and subsequent 
simplification in the usual manner. 

In order to evaluate the expression, we shall examine each 
term and expand the indicated products where necessary. The 
first term may be written as follows: 

* r) = <i>^- 

== So) 

dx dy ~dz ^'1 

The second and third terms are both equal to zero because 
is to operate only upon o), and o) is not a function of the coordi¬ 

nates. The remaining term may be expanded in the following 
manner: 

(fa) • Vr)r = 

. dx . , dy , , dz 
= i Ciig-—h j o)y-—f- k 

dx dy dz 

Hence the final expression for the curl V may be written as 
follows: 

Curl K = 2 fa) (14-37) 

This result indicates that the curl V is simply a function of V, 
which, in this particular case, has the value 2fa). 

Let us determine the curl of the velocity of any point of the 
cylinder rolling down an inclined plane by expressing the motion 
in a different way. It has been shown that the velocity of every 
point of the cylinder, which is rolling down an inclined plane, 
may be expressed in terms of an angular velocity and the distance 
of the point from the instantaneous axis of rotation. The 
instantaneous axis, in this particular case, is the line of contact 
of the cylinder with the inclined plane. Let the origin of the 
reference system be on the instantaneous axis. If w be the 
angular velocity of the cylinder and r be the radius vector drawn 
from the origin to the particular point of the cylinder, then 
the instantaneous linear velocity V of the point is w X r. 

The curl V may be found by proceeding as indicated in Eq. 
(14-36). The rf^ult is 2 u as before, for the 0url m^st obviously 
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be independent of the manner in which the motion is described. 
Aside from the absence of U in the second method of describing 
the velocity of a point of the cylinder, the two cases differ only 
in the selection of the origin from which the vector r is to be 
measured. That this difference is immaterial in the particular 
illustration is indicated by the equivalence of the results. 

The vector field just described is typical of those vector fields 
which have a curl the value of which is not zero. 

In order to present a more complete view of the application 
of the operator vX to a vector, it will be helpful to discuss two 
aspects of the illustrations elected. We shall first make some 
comments regarding the selection of the reference system to 
be used in any given problem and then, by a special selection of 
the reference system, show analytically what the curl of a vector 
really expresses. 

The selection of a reference system is frequently as important 
in dealing with vectors which involve the operator v X as it is in 
writing analytical expressions. Although the curl of a vector 
is independent of the particular reference system selected, 
convenience may be gained by a judicious selection, often clearly 
indicated by the peculiarities- of the problem. In the case of the 
cylinder rolling down the inclined plane it was not necessary 
to select a reference system with the origin on the axis of the 
cylinder, but it was more convenient to do so. The reason for 
this selection is that the expression for the velocity of any point 
of the body includes a term (<*> X r) in which the factor r is to 
be measured from some point in the axis of the cylinder. If 
r is to be expressed as ix + jy + fe, as is necessary when applying 
VX to it, then the XYZ system in which these coordinates are 
to be measured must have its origin at the same point which is 
origin for r. We could not, in general, express r ^ ix + jy + kz 
in one reference system and then select another reference system 
in which the differentiations expressed by v are to be made. If 
two such reference systems are fixed relatively to each other, the 
results obtained by applying vX to r would be the same but the 
procedure is fundamentally incorrect. 

As an illustration of the changes in procedure made necessary 
when using another reference system in a determination .of curl V, 
we shall determine the curl of the velocity of any point of the 
cylinder by using a reference system so selected that the position 
of the point is defined by the vector 5 = j + r where q gives 
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the position of a point fixed in the axis of the cylinder and r 
is the position of the point with respect to a moving system whose 
axes are always parallel to the fixed system from which s is 
measured and whose origin is the terminal point of q. Equation 
(14-34) may be used provided that we substitute for r its value 
5 — g. Since v X is zero as before, we have only to consider 
Eq. (14-36) in which the new value is written for r. Wherever 
vis to operate upon r, it must now operate separately upon 5 and 
q; hence the first term of the right member of Eq. (14-36) may 
be written 

G)[v • (s - q)] = w[v« * (5 - g) + Vc • (5 - ^)] 
= 3<o (14-38) 

The last term of Eq. (14-36) may be handed in a similar manner 
with the final result for the curl V equal to 26> as before. 

An analytical discussion of the meaning of curl V may be 
given by using a special selection of the reference system. Sup¬ 
pose the reference system be placed so that its origin is in the 
axis of rotation of the cylinder and with the Z-axis parallel to 
the axis of rotation. Let us select a point P in the A"F plane and 
examine curl V for this point. 

We may write curl V as follows: 

(14-39) 

Since v X E is known to be 2<i>, then it follows that the i and j 
components are both zero and we need examine only the k 
component. 

The velocity V has only the two components Vx and both 
of which may be expressed in terms of the angular velocity co and 
the coordinates of the point P as follows: 

Vy = 0) X Vx — y 

We shall first examine the meaning of dVy/dx, If we let Vy 
represent the y component of the velocity of a point Q which has 

the same j/ coordinate as P and is situated at a distance dx from 
Py then we may write 

dx dx 
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This equation defines the partial differential quotient dVy/dx as 
the space rate of change in the y component of the velocity of P 
at P, taken along the X-axis. The other differential quotient 
may be described in an analogous manner. 

Since Vy — x and and w is not a function of 
either x or ?/, then 

dx 
dV, 
by 

2o) 

Hence the curl V may be written 

V X F = 2*0^ - 2<o (14-40) 

If the axis of rotation had not been selected parallel to the 
Z-axis, then the velocity components in the XY plane would 
have to be written 

Vy = o)^x Fx = —oizy 

and then the k component of the curl F would have been 2fta)^. 
In this case the two other components of curl F would not be zero 
but would be 2icox and 2joiy. Hence 

V X F = 2iooji, -f- 2j(j)y -f- 2k(j0z 
= 2ct) 

14-9. Illustration—Curl of Moment of Momentum of a Rigid 
Body.—As a further illustration of applying the curl operation to 
dynamical quantities we shall find the curl of the moment of 
momentum of a homogeneous rigid body which is in a state of 
general uniplanar motion. Let the body be in rotation with 
angular velocity <*> about some axis which is fixed in the body. 
Let r be a vector which expresses the position of any differential 
mass dm in a reference system which has its origin on the selected 
axis of rotation and V be the velocity of dm. The moment of 
momentum R is given by the following equation: 

P - fdm(rXV) (14-41) 
t/m 

in which the integration is to be extended over the entire mass. 
It is to be observed that we have used the term moment of 

momentum to describe the quantity expressed by the preceding 
expression. Ordinarily this term is used to describe the moment 
of momentum with reference to a line—the axis of rotation. In 
this case the quantity is written with reference to a point, which 
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is selected as origin. If the moment were referred to a line, the 
integral would be equal to /w. The quantity selected, however, 
is more suitable for the present situation. 

We shall determine curl R first by expanding the vectors and 
then by the shorter method of direct vector analysis. 

a. By Expansion of the Vectors,—If we write r and V in terms 
of their components, 

r = 2 j + jy + kz 
7- i\\+jVy+kV, 

and then expand the vector product, the magnitudes of the com¬ 
ponents of rotational momentum, taken along the reference axes, 
may be expressed as follows: 

Rx = f dm (yVz — zVy) 

^1/ = r — xVg) Jm 

R,= (dm {xVy - yV,) (14-42) 
Jm 

Each component of the linear velocity of dm may be expressed 
in terms of the components of the angular velocity and of r. 
In general, 

7 = Cl) X r = (iwx + j(Jiy + ko3z) X {ix + jy + kz) 

hence the magnitudes of the component velocities are 

Vx = ““ <^zy 
Vy == 0)zX — 0)3^ 

' Vz = Oixy - OiyX 

If we substitute these expressions in Eqs. (14-42), the com¬ 
ponents of the moment of momentum may be obtained. The x 

component only is written here because the two others are easily 
written by a cyclic interchange of the variables. 

Rx — I dm [y (wa-y — osyx) — z {oizX — Wa^)] 

We may now determine the curl of the moment of momentum. 
This is expressed in general terms as follows: 

Curl « V X i? 

" ('s+* s) 
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The X component of the curl may be written curia:!?. It is 
necessary to determine the value of only one component, for the 
two others may then be written by cyclic permutation. If we 
carry out the indicated partial differentiations by differentiating 
expressions for R» and Ry under the integral signs and remember 
that the components of the angular velocity are constant and that 
dm is not a function of the coordinates, since the body is homo¬ 
geneous, we may write 

Curl./! - 

= 11 dm[{2oyty — o^yZ) — {2iJiyZ — co*^/)] Jm 

= 11 Sdm(o)zy — o)yZ) 

= tf3dm(-V,) (14-44) 
Jm 

One of the limitations imposed in this problem was an assump¬ 
tion of rigidity of the body. It should be observed that the effect 
of this limitation is to make the components of <«> independent 
of the coordinates. The result just obtained is not true for a 
nonrigid body. 

Similarly, the values for the two other components of the curl 
are 

Curly!? = j f 3 dm (— Vy) 
J Ttl 

Curb!? = k f 8 dm ( — V”*) 

These three components may now be put together to give the 
final result, which is 

Curl R = ifj dm (-F,) + jfjdm(-VJ + kfjdm (-F.) 

= -3 f dm V or -3mU (14-45) 
Jm 

where m is the mass of the body and U is the velocity of its center 

of mass. 
This result indicates that the curl of the rotational momentum 

of the body may be expressed in terms of the linear momentum of 

the body. 
6. By Direct Vector Methods.—In order to determine the curl 

of the moment of momentum by direct vector methods, it will be 
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necessary to introduce two additional formulas which involve the 
operator v* If ^ be a scalar function of the coordinates and C 
and D be any two vectors which are also functions of the coordi¬ 
nates, then it may be shown that 

V X (aC) = {vo) X C + a V X C (14-46) 
V(C • D) = Vc(C • D) + Vd{C • D) (14-47) 

The curl of R, the moment of momentum of the body, may be 
written symbolically as follows: 

Curl R = f dm V X [r X (o> X r)] 
Jm 

Normally the operator vX should be placed outside the 
integration sign but in this particular case selected for illustration 
the body was assumed to be homogeneous and hence dm is 
not a function of the coordinates. In this case the introduction 
of V within the integration sign is valid. 

The triple vector product within the brackets may be expanded 
by the ordinary formula; hence 

(■url i? = f dm V X [oi — r • r)] 
Jm 

By the use of Eq. (14-46) the first term may be evaluated as 
follows: 

V X (<o = (v r^) X w -f- r-{v X w) 
= [v(x^ + + z'^)] X w 4- 0 
= 2rX<d or —2<.>Xr 

In applying v X to the second term, we regard u ■ r as a scalar 
and hence, using Eqs. (14-46) and (14-47), we obtain 

V X [r(w • r)] = [v(w • r)] X r -h u) • r(v X r) 
= V<.(« -r) Xr + Vr(w • r) X r -t- 0 

■ [(‘5+4+4X“-++“■)] ^' 
= W X r 

Hence 

Curl R = — f 3dm <o X r = — f 3dmV (14-48) 
Jn% Jm 

The integral in the right-hand member of this equation repre¬ 
sents the total linear momentum of the body. As a general 
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conclusion we may, therefore, say that the curl of the moment of 
momentum of a rigid homogeneous body in a state of uniplanar 
motion is equal to the negative of three times the linear momentum 

of the body. 

Problem,—If the body described above were rotating about a fixed axis, 

containing the center of mass, curl R would be z(‘ro. Which expression in 

the analytical or vector evaluation of curl R would indi(fate this fact? 

14-10. Stokes’s Theorem.—This theorem which involves the 
curl of a vector is analogous to the Gauss theorem which involves 
the divergence of a vector. Stokes’s theorem may be stated in the 
following manner: the line integral of a vector, say V, taken 
around any closed path is equal to the surface integral of the 
normal component of 1h(? curl of that vector over the surface 
which is bounded by that closed path. Symbolically it is 
expressed by the equation 

• curl V da (14-49) 

In the expression for the line integral, the scalar product of the 
vector and the element of length ds of the path is to be integrated 
over the entire closed path. In the surface integral the normal 
component of the curl of V is indicated by writing the scalar 
product of Hi, the unit vector drawn to the element of surface da, 
and curl V. In evaluating the surface integral the normal com¬ 
ponent of the curl of V is to be found. Then, by writing dx dy or 
an equivalent expression for da, the integral may be determined. 

One use of the theorem is to prove whether or not the curl of 
the vector is zero. Those fields in which the curl is zero are 
spoken of as curl-free fields. The value of the curl of a vector 
at a given point may also be determined by the use of the line 
integral. This is done by enclosing the point at which the curl 
is to be found by a very small path which includes a differential 
surface over which the curl may be regarded as being constant. 
If then the line integral of the vector is determined and its value 
is divided by the area of the differential surface, the component 
of the curl perpendicular to that surface is obtained. By using 
three such differential surface elements mutually perpendicular 
to each other, three rectangular components of the curl are found 
from which the resultant curl is easily obtained. In many cases 
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it is easy to determine by inspection in which direction the 
resultant curl lies and hence a single line integral may suffice. 

We shall illustrate the use of Stokes’s theorem as a means for 
finding the value of the curl of some vector at a given point. 
Let us select a disk which is rotating about an axis through its 
center but not necessarily perpendicular to the plane of the disk 
and determine the curl of the velocity of any point of the disk. 

We shall determine the curl of the velocity at the point P 
(Fig. 136). In order to make the determination of the line 
integral easy, we shall let the differential surface EBCD be 
bounded by two circular arcs ED and BC drawn with their centers 
coincident with the center of the disk and also bounded by por¬ 

tions of two radii, viz., EB and DC. 
Let the mean length of the two arcs 
be s and the length of the longer arc 
be s + 5i, and that of the shorter arc 
be 5 — 52. Let the length of the 
radius to the mean arc be r. Also 
let the radii to the two other arcs 
BC and DE be r + e and r — e, 
respectively. 

Let the origin of a reference sys¬ 
tem be placed at the center of the 
disk and let <») be the angular 
velocity of the disk. If Q is 

any point in arc BC and (r + €)ri is the radius vector drawn 
to Qy then <*> X (r + €)ri is the velocity of Q. Similarly the 
velocity of any point in the arc ED is w X (r — €)ri. 

The area of the differential surface, which we may call A, is 

^ + ^i)(^ + €) - I {s ~ 52) (r — €) (14-50) 

The integral of the velocity taken around the selected closed 
path may be divided into four parts, from E to B, from B to C, 
from C to D, and from D to E. In the line integral the compo¬ 
nent of the vector parallel to the element of the path is multiplied 
by the element of the path ds; hence the line integrals of the 
velocity along the fines EB and CD are equal to zero because the 
velocity of every point in these segments is perpendicular to 
corresponding elements of the path. There remain, then, but 
two integrals to be evaluated. If we let ds be the vector element 
pf the path and rii be the unit vector drawn normal to the disk, 
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the nonnal component of the curl of V may be expressed as 
follows: 

Hi • curl V = 
1 
A 

r -i“ c 

[u X (r + €)ri] 

j: 

-'f aJd 
[fa) X (r — e)ri] -ds 

(fa) X ri) • ds + 
r — e nE 

XTi) - ds 
B A 

(14-51) 

The triple vector product within each integral may be written 
6) • (fi X ds) [see Eq. (2-18)]. 

In the line integral taken from B to C, ds is positive and 
hence ri X ds = riids; but in the integral taken from D to ds 
is negative and therefore according to the convention of signs 
for a vector product ri X ds = — nids. The vectors &> and Ui 
are common to all elements of the paths in the two integrals and 
hence * rii may be placed outside the integration signs. The 
expression for Hi • curl V may then be evaluated as follows: 

rii • curl V = 
r + 

W * Hi /: ds ds 

= [(r + e)(s + 8^) - (r - e)(s - 5^)] 

== 2 a> • Hi (14-52) 

This expression gives the component of the curl V which is 
perpendicular to the selected differential area. Ordinarily it is 
necessary to determine the two other components of curl V, In 
the particular case the second and third components of curl V are 
both zero and hence we obtain curl K = 2o>. 

Problems.—1. Show that Laplace’s equation holds in the case of the 

gravitational potential at any point in the field of a sphere when the point 

at which the operation is applied lies outside the boundaries of the mass. 

2. At any point in a gravitational field at which the potential is given by 

the expression V == —KM/tj find the or, and z components of the field 

intensity and show that their vector sum is equal to —KMri/r^^ where as 

usual Ti is the unit vector in the line of r, 
3. Prove that the curl of the field intensity at any point in space outside 

the boundaries of any gravitating mass is zero. 

4. Prove that the curl of the gravitational field intensity at any point 

outside a homogeneous sphere is zero, 

6. Find the divergence of the rotational momentum of a rigid homo¬ 

geneous body at any point in the body. Formula; 

• V • (aC) = ya • C + aV • C 

6. What is the gradient of E « /(r) where /(r) is any function of r? 



CHAPTER XV 

PROBLEMS ILLUSTRATING THE FUNDAMENTAL 
PRINCIPLES 

16-1. Introduction.—In this chapter we have given a number 
of typical problems and their solutions. The primary purpose of 
presenting the material below is to provide the student with 
concrete subject matter which may be used in verifying the 
results of his own efforts. It is highly important for the student 
who desires to be analytical in his work to Icfirn to scrutinize 
his procedure. He must carefully examine the tools which 
are available and he must discriminate in his selection of the 
tools which are to be used. Too frequently the student, when 
confronted by a problem, abandons all thought of a logical or 
methodical procedure and attempts to find the required ^^answer 
by using the first suggestion which pops into his head. He may 
succeed and the average student will frequently succeed by this 
procedure as long as the problem contains no element which is 
essentially new to him. But such a student will, in all probabil¬ 
ity, be hopelessly lost in a mathematically uncharted region. 

The writer has expressed himself upon this subject several 
times before in preceding chapters. It is only because he feels 
that it is of utmost importance for the student to regard the 
material here presented as being given primarily for the purpose 
of guiding him in the formation of habits of mind which are 

intellectually progressive, that he has insisted upon keeping this 
viewpoint in the foreground. 

After reading the statement of a particular problem the 
student should give the text no further attention until he either 
has completed his solution or has found that, after a reasonable 
effort, he can make no headway. In the former case he should 

check his results with those given in the text. In the latter case 
he should read as much of the development given as may seem 
desirable before trying again. To facilitate a check of final 

results it is suggested that important physical or mathematical 
quantities be identified by those symbols used in the text. 

m 
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15-2. The Rolling Cylinder.—A uniform right circular cylinder 
is permitted to roll from rest, without slipping, down an inclined 
plane. The friction may be taken as constant and sufficient to 
prevent slipping. Find an expression for the linear velocity in 
terms of the linear displacement of the cylinder from its initial 
rest position. 

Let m and r be the mass and radius, respectively, of the 
cylinder and I the moment of inertia about the geometrical axis. 
Let a be the angle of inclination of the plane as shown in Fig. 137. 

The first step in obtaining a solution is to identify the known 
and unknown quantities. This step is facilitated by making a 
diagram of the arrangement and including all of the forces which 
act upon the cylinder. In this particular problem there are 
three forces, the weight of the cylinder (rr/^) acting vertically 
downward, the reaction (R) of the plane upon the cylinder, a 

force which is perpendicular t o the inclined plane, and the friction 
(F) which is parallel to the plane. It is apparent that the 
cylinder must move so that its center of mass will remain in a 
line which is parallel to the inclined plane. Since this is the 
case, we need concern ourselves only with those vector quantities 
which are parallel to the inclined plane. There are only two 
forces which may be regarded as being responsible for the motion, 
the component of w^eight {mg sin a) and friction (F). Since 
the resultant of these forces is parallel to the inclined plane, the 
acceleration of the center of mass is parallel to the inclined 
plane. 

There are two unknown quantities, the acceleration of the 
center of mass of the cylinder and the force F, We must, there¬ 
fore, write at least two fundamental equations. It is immaterial 
whether the quantity F is eliminated before or after integration 

of the fundamental equations. 
We may use the following tools: the force equation, the work 

equation, and the force-moment equation. For purposes of 
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illustration three solutions of the problem are given. Each solu¬ 
tion is identified by the equation which is most prominent. 

a. Force Equation,—Since the friction is assumed to be con¬ 
stant and just sufficient to prevent slipping, the force equation 
may then be written as follows: 

rng sin a — F = (15-1) 

in which dVjdi is the acceleration of the center of mass. 
This equation may be integrated directly. We may assume 

for initial conditions that, when i = 0, both Y and 6* are zero, 
where V is the velocity and s is the linear displacement of the 
center of mass of the cylinder. Positive quantities being 
measured down the incline, the first two equations of motion are 
found to be 

and 

V = (^g sin a - 0 (15-2) 

s = ^(g sin a - (15-3) 

Eliminating the time factor gives the third equation; i.e., 

72 = 2((7sin«-^)s (15-4) 

With the three equations of motion containing the unknown 
quantity F, it is impossible to find numerical values of V corre¬ 
sponding to selected values of s. It will be necessary, therefore, 
to evaluate F in terms of the other constants which are assumed 
to be known or measurable. The effect of F up)on the motion of 
the cylinder is to be examined. If R were equal to zero, the 
cylinder would slide down the inclined plane without rolling. If 
F is sufficient to prevent slipping, then F is responsible for the 
angular acceleration of the cylinder. The other force, mg sin a 
acts through the center of mass and hence cannot contribute to 
the angular acceleration. Using the force-moment equation, we 
may write, for the effect of F, the following expression: 
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in which 7 is the angle through which the cylinder rotates and w 
is the angular velocity. Integration gives 

rFy = H 

Since ry = s and F = co r, the value of F is found to be 

772 

F = ^1-. 
2sr2 

(15-5) 

Substituting this value of F in Eq. (15-4) gives 

F< - 2^g .in « - (IM) 

which is the desired expression for the velocity of the center of 
mass of the cylinder after moving a distance from s. 

If the cylinder is of uniform density, then its moment of 
inertia is Introducing this value for I in Eq. (15-6) gives 

— t 9^ (1^7) 

b. Work Equation.—To find an expression for V in terms 
of 5 and the known constants by means of the work equation, we 
must remember that, since the cylinder does not slide, the force 
F does no work. All of the work is done by the component of the 
weight of the cylinder which acts parallel to the displacement of 
the center of mass. Since the cylinder gains both translational 
and rotational kinetic energy, we may write 

mgs sin a = \mV‘^ + (15-8) 

assuming that the initial conditions are those given above. 
If we again put I = and replace by its equivalent 

expression this equation readily reduces to that written 
above [Eq. (15-7)]. From Eq. (15-8) one may readily find 
expressions for the velocity and the displacement in terms of the 
time, if these equations be desired. 

c. Pure Rotation.—The motion of the cylinder may be regarded 
as one of pure rotation and from this standpoint the three 
equations of motion may be found. In order to write an equation 
expressing the motion as one of pure rotation, we must regard the 
cylinder as rotating about the instantaneous axis and then equate 
the moment of the force or forces about that axis to the product 
of the moment of inertia and the angular acceleration, both of the 
latter quantities being expressed about the instantaneous axis. 
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The instantaneous axis of rotation is the line of contact 
between the cylinder and the inclined plane. In the present 
problem the force of friction acts through the line of contact 
and hence contributes nothing to the total force moment. The 
force moment is due to the weight of the cylinder, is equal to 
rng r sin o, and remains constant during the motion. The 
moment of inertia of the cylinder about the instantaneous axis (^f 
rotation is / + mr'\ If oj doo/dy is the angular acceleration, then 
the force-moment equation may be written as follows: 

mg r sin « = (/ + mf') 
do) 

(15-9) 

Integration of this equation gives 

mg r 7 sin a = (/ + mr^)^ (15-10) 

taking the initial condition as given above. This equation may 
be translated into the form given in Eq. (15-7) by substituting 

and V for their equivalent rot ational expressions. 

Problem.—If a cviindtir and a sphoro, both homogonoous, are released 
simultaneously from r(\st upon an inclined jilane, which will arrive at the 
bottom first if there is no slipping? 

Is it necessary to assign relative values to the mass(\s or radii or the two 
bodies? 

16-3. The Falling Rod.—One end of a thin uniform rod is 
attached by a hinge to a fixed point. It is initially at rest in a ver¬ 
tical position with the free end above the fixed end. It is allowed 

to fall through a vertical plane. Find 
an expression for the angular velocity 
in any position and also the reaction 
exerted by the support upon the 
hinged end. 

Let the plane of motion be that of 
the diagram of Fig. 138. We shall 

Fig. 138. select the reference system XOY with 
OX taken vertically and with the origin 0 at the hinged end of 
the rod. Let the length of the rod be 2r, the center of mass of 
the rod at C, and let 7 measure the angular displacement from OX. 

The forces acting upon the rod are to be identified. The 

weight acts vertically downward through C. We may con¬ 
sider the reaction of the support upon the rod to be made up of 
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two components (P and Q) which are perpendicular and parallel, 
respectively, to the rod and with directions as shown in the 
diagram. 

The acceleration of the point C may be advantageously 
described in terms of the radial and normal components. The 
motion of C may then be expressed by two equations, one of 
which expresses the acceleration of C parallel to the rod and the 
other contains those factors which are concerned with the compo* 
nent acceleration of C which is perpendicular to the rod. 

We shall consider first the normal component of acceleration. 
Since r is of constant length, one term—2w(dr/dt)—of the general 
expression for the normal component of acceleration is zero and 
hence the force equation for the part of the motion under immedi¬ 
ate consideration is 

mg sin 7 — P = mr 
d^y 

7fU 
(15-11) 

Another equation containing P is needed before this equation 
may be solved because P is evidently a function of 7. Such an 
equation is obtained by writing a force-moment equation. 
Selecting an axis passing through C and perpendicular to the plane 
of motion and remembering that the moment of inertia of the rod 
in this case is | the desired equation becomes 

Dividing through by r and then substituting the resulting 

value of P in Eq. (15-11) gives 

4 d^y 
mg sin 7 = (15-13) 

If we now replace the angular acceleration by its alternative 
expression co do^jdy and then integrate the altered equation 
between definite limits, i.e., from 0 to 7 and from 0 to w, the 

following result is obtained: 

mg{l — cos 7) = f (15-14) 

This result expresses the desired relation between the an^ilar 
velocity and the position of the rod. 

It is interesting to observe that the work equation might have 
been used in place of the force equation as a means of evaluating 
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the angular velocity. The force equation was selected because 
by its use attention is directed to the necessity for including the 
force P in the force equation [Eq. (15-11)] even though that part 
of the rod, upon which P is applied, does not move. An applica¬ 
tion of the work equation would not include P because P does no 
work even though it contributes to the acceleration. It is 
suggested that the student derive Eq. (15-14) by using the 
work equation. In the derivation it is immaterial whether the 
motion be regarded as a combination of translational and 
rotational motion or as pure rotational. Both treatments are 
suggested as being instructive. 

An evaluation of P, one component of the reaction exerted by 
the support-, is next to be obtained. The most direct procedure 
for this purpose is by an elimination of the angular acceleration 
d'^y/dt"^ from Eqs. (15-11) and (15-12). The result is 

P = {mg sin y (15-15) 

The other component (Q) of the reaction exerted by the sup¬ 
port upon the hinged end of the rod may be found by writing the 
force equation for those forces which are parallel to the rod. 
This equation is 

~vig cos y + Q = —mroo^ (15-16) 

If we eliminate from this equation by the use of Eq. (15-14), 
the desired evaluation of Q is obtained : 

Q == inig{5 cos r — 3) (15-17) 

The resultant reaction, which we may call P, may now be 
found by combining vectorially P and Q. The absolute magni¬ 
tude of T is 

T = \mg[\ sin^ y +(5 cos y 3)^]^ (15-18) 

The direction of T makes an angle (a) with the rod, the value 
of which is given by the equation 

tan a = ^ sin y{b cos y — S)"”* (15-19) 

in which a is measured in a clockwise direction from the rod. 

B^blezo*—Find expression for the angular velocity and for the angular 
displacement of the rod in terms of the time. 

It is of interest to solve the problem of the falling rod by vector 
methods. Using the terminology adopted above for the various 
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quantities and including T, the resultant reaction, in place of the 
two components P and Q, we may write the following two 
equations for the motion: 

(Pr 
— rngi A- T ^ m-^ (15-20) 

r X r = ~I^k (15-21) 

in which i is the unit vector parallel to the X-axis and k is the 
unit vector perpendicular to the plane of motion. The first 
of these equations is the force equation and the second equation 
expresses the effect of the force moment about an axis through 
the center of mass and perpendicular to the plane of the diagram. 

As in the analytic method, so here we must eliminate T from 
the two equations. This may be done by a direct substitution of 
the value of T, found by solving Eq. (15-20) for T, in p]q. (15-21), 
or one may multiply Eq. (15-20) by r X and then add the resulting 
equation to Eq. (15-21). In either case the following expression 
is obtained: 

r X t = mr X — + (1^-22) 

To simplify this equation, use may be made of the following 
relations, which the student should verify: 

r X I = —(r sin y)k 
d 

Introducing the right^-hand members of these two relations 
for their equivalent expressions in Eq. (15-22) and remembering 
the particular value of the moment of inertia leads to an equation 
which is identical with Eq. (15-13). From this point on, the 
solution is obtained by a single integration as shown above. 

We shall next evaluate the reaction T by vector methods. 
For this purpose Eqs. (15-20) and (15-21) will serve as a starting 
point. It will be convenient to eliminate the linear and angular 
acceleration factors in order to obtain an equation containing 
T without differential factors of the second order. The necessary 
relation between dh/dt^ and d^y/dP for this transformation may 
be obtained by writing dhjdP in terms of the acceleration 
components which are parallel and perpendicular to r. Using n 
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and Ti to represent the unit vectors which are parallel and 
perpendicular, respectively, to r, it follows that 

dt- 
T— 

di^ 
Ti — r oihi (15-23) 

Substituting this expression for the acceleration in Eq. (15-20) 

gives 

■7ng i + T — (15-24) 

Before solving Eq. (15-21) for d-y/dP, it is desirable to change 
the direction of the vectors in that equation from k to yi. This 
change may be effected by multiplying both sides of Eq. (15-21) 
by Ti X which gives (after interchanging the two members) 

/^Iy: = rx X (r X J) 

= r (fi • T) - Tr (15-25) 

Replacing {d‘^y/dt^)yi in p]q. (15-24) by its value as found from 
Eq. (15-25) and at the same time eliminating as expressed by 
Eq, (15-14), and introducing the value of /, gives the following 

equation : 

4T = mgi + 3ri(ri • T) — [lmg{l - cos y)]ri 

Multiplying by ri • to convert this expression into a scalar 
equation gives 

ri • T — I mg{b cos 7—8) (15-26) 

Hence 

T cos a = \ 7ag{b cos 7 — 3) 

where a is the angle between r and T. By using the relation 
between a and 7 [Eq. (15-19)] the final expression for T, as given 
in Eq. (15-18), may be readily found. 

Problem.—A uniform rod of length I and mass m stands vertically upright 

on a horizontal frictionless plane. If the rod, initially at rest, falls from its 

vertical position, find an expression for its angular velocity in terms of the 

angle through which it has rotated. Find also an expression for the reaction 

exerted by the floor upon the rod in terms of the angular displacement. 

Obtain solutions by analytical and vector methods. 

16-4. The Cylinder and the Falling Weight.—The apparatus 
is to be arranged as shown in Fig. 139. A weight of mass m is 
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susi)ended by a light massless cord which passes over a fixed 
frictionless pulley and is wrapped around a cylinder. The 
cylinder is supported by a horizontal plane and is placed with its 
axis perpendicular to the plane of the diagram. The cord is 
wrapped around the cylinder in such a manner that, as the 
weight falls, the cylinder is pulled toward the pulley. There is 
assumed to be sufficient friction between the cylinder and the 
horizontal plane to prevent slipping. It is required to find 
the equations of motion of the three bodies and the tensions in 
the cord. 

Let the mass of the cylinder be Af, its moment of inertia /, and 
its radius h. Also let the moment, of inertia of the pulley be P 
and its radius r. We shall 
designate the tension of the cord 
between the hanging weight and 
the pulley by T and between the 
cylinder and the pulley by as 
shown in the diagram. 

Assume that the system is 
inftially at rest. Let the positive 
direction of all vector quantities 
be taken parallel to the direction of the motion. 

By the indicated arrangement it is obvious that both the 
linear velocity and linear displacement of the cylinder will be 
instantaneously one-half of the corresponding velocity and dis¬ 
placement of the hanging weight. 

There are two methods of procedure which may be followed 
in obtaining the desired relations. We may begin by writing the 
force equations for the three bodies or w^e may use the work 
equation. The work equation presents the simpler mode of 
expressing the velocities in terms of the displacement but by 
writing the force equations a more complete analysis is immedi¬ 
ately obtained. If it were not desired to determine the 
tensions of the cord, the work equation would perhaps be the 
better to use for expressing the velocities in terms of the 
displacements. 

The forces acting on the hanging mass are mg and — T, the 
force moments applied to the pulley are rT and — rtj and the forces 
responsible for the motion of the cylinder are t and the friction 
—F. The force equations for the hanging mass and the cylinder 

are 

-t 
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mg - T ^ ma t - F = (15-27) 

where a is acceleration of the hanging weight. The two force- 
moment equations may be written as follows: 

r(T hit + F) = /g (15-28) 

where a and P are the angular displacements of the pulley and 
cylinder, respectively. 

Since all of the forces and force moments are constant, the 
accelerations, translational and rotational, are also constant. 
Both of the angular accelerations may be expressed in terms of 
the linear acceleration (a) of the hanging weight. These relations 
are 

d^ot _ a , _ a 
^ - r ^ 

The values of the angular accelerations given above may be 
substituted in Eqs. (15-28). We then have four equations with 
four unknowns: a, T, t, and F. From these four equations a 
single equation may be obtained which expresses the acceleration 
a in terms of the masses, the moments of inertia, and g. This 
equation may be written as follows: 

m g ^ a(m + ~ (15-29) 

If the masses (m and M) and the moments of inertia are known, 
then the acceleration of the hanging weight may be determined. 
This result leads readily to determinations of the linear accelera¬ 
tion of the cylinder and the angular accelerations of the pulley 
and cylinder. When the accelerations of the three bodies are 
known, the equations of motion may be written directly from 
the fundamental equations for uniformly accelerated bodies 
starting from a rest position. 

The tensions in the cord may be determined by substituting 
the known value of the acceleration in the force equations 
[Eqs. (15-27)]. 

Problem.—Derive Eq. (15-29) by using the work equation. 

15^. Ttub Sliding Mass on a Smooth Rigid Rod.—A rigid rod 
is arranged to rotate at a constant rate about a fixed axis which 
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passes through one end of the rod. A spherical mass with a 
cylindrical hole cut through its center is guided by the rod and 
may slide along the rod without friction. It is required to find 
the equations of motion and the path described by the sliding 
mass. 

This problem has been selected because it represents a type of 
motion in which the path described by the mass is determined 
by using an equation in which the acceleration is zero. Because of 
the absence of friction there is no force parallel to the rod. Even 
though the mass were initially at rest relatively to the rod, the 
mass moves parallel to the rod. It must be remembered that, 
in order to maintain a body in motion along a circular path, an 
inwardly directed radial force is re¬ 
quired. Absence of the radial force 
permits motion along the radius as will 
be seen in the following treatment of 
the problem. 

Let the reference line be OX (Fig. 
140) with 0 the origin of a system of 
polar coordinates. The position of the 
sliding mass upon the rod is indicated 
by the coordinate r and y gives the angular displacement of the 
rod. The rod rotates at the constant angular speed w. 

The components of the acceleration, perpendicular and parallel 
(Jr and Jy) to the rod, are in general 

Jy = 2i^Vr + r- 

But 0) is constant; hence if we let N represent the force exerted 
by the rod upon the sliding mass (of mass m), the force equation 
for motion perpendicular to the rod is 

iV = 2 m o) Fr (15-30) 

Since there is no force acting upon m which is parallel to 
the rod, the acceleration (Jr) of the mass in this direction is 

permanently equal to zero; hence 

g . r.. (IMl) 

The path described by the sliding mass may be found from this 
equation. If we replace d^/dt^ by its alternative expression 
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VrdVr/dr, the equation may be integrated. For initial conditions 
we shall put 

Vr = I'r r = S 7 = 0 ^ = 0 

With these initial values of the variables, integration of Eq. 
(15-31) gives the following result: 

7^2 _ ir^2 ^ ^2 (y.2 „ ^2) 

Hence 

^ = [Ur- + CO= (r^ - S2)]J 

Integration of this equation gives 

7 = = log 
[Ur^ + co^(r“ — H- cor 

r 
(15-32) 

which is the desired equation for the path of the sliding mass 
and may also be used for expressing the coordinates in terms of 
the time. 

The equation which expresses the velocity (F) of the mass in 
terms of the coordinates may be found by combining Vr and 
Vy == cur, the velocity perpendicular to r. 

The magnitude of the force N may be found for any position 
since Vr may be determined for any position. It is interesting 
to observe that the function of N is to accelerate the mass along 
a line perpendicular to r to that extent which is necessary for 
m to keep up with the rod. 

Problem.—A somewhat similar problem is left for the student to work 

out. The mass m is to slide without friction upon a second rod which is in 

the same plane as OX and r hut is fixed rigidly and at right angles to r at 

some distance d from O. Find the path of the sliding mass and the force N, 

16-6. Motion of the Center of Mass of Two Attracting Par¬ 
ticles.—Two particles in free space are in a state of mutual 
attraction. No external forces act upon the system. Prove that 
the center of mass has no acceleration. 

Let the two masses be mi and m2 with coordinates xiyi and 
X2y2f respectively, in a fixed reference system XOY, The plane 
of the reference system is to be the plane of motion of the two 
particles. Let a be the angle which the line joining the centers 

of the two bodies makes with the X-axis, 



16-61 PROBLEMS ILLUSTRATINO THE PRINCIPLES 349 

The mutual attraction between the two particles may be 
expressed by a force F acting on mi and —F upon m2, since the 
two forces are equal but oppositely 
directed. Both forces are parallel 
to the line joining the centers of 
mass of the two particles and there¬ 
fore each makes an angle a with the 
X-axis. Parenthetically it may be 
stated that the nature of the mutual 
force is immaterial to the solution 
of the problem under consideration. 
For that matter the forces need not 
be attractive. The force equations for the two masses, written 
for the components of F parallel to the .Y- and F-axes, respec¬ 
tively, are 

F cos « = sm a = mi 
dhji 
dt^ 

ry d'^X2 
—b COS a = —F sin a = Mo fyi 

di^ 

Eliminating F from each pair of equations gives 

d'h'i , d^X2 

Jji- + ’“’ W - 
0 

d-y - mr-g~ + = 0 (15-33) 

When regarded as vectors and combined into a single equation, 
Eqs. (15-33) indicate that the sum of the products of each mass 
by its acceleration is zero. 

Let the coordinates of the center of mass of the system by x and 
y. If M is the mass of the system, then 

Mx = niiXi + m2X2 My = rriiyi + m22/2 

If we differentiate each of these two equations twice with 
respect to the time, we obtain 

d^xi . d^X2 r. 

d^yi , d^y^ _ . 
^di^ dt^ "** dt^ ® 

Since the right-hand members of these equations are zero 
[Eq. (15-33)] it may be concluded that the acceleration of the 
center of mass of the system is zero. 

The results of this analysis may be extended to a system con¬ 
sisting of any number of particles which are under the influence 
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of mutually attractive (or repulsive) forces, each particle attract¬ 
ing (or repelling) each of the other particles. It is not necessary 
for the particles (if more than three) to be in the same plane. 
The details of the proof will be left for the student. 

15-7. Effects of a Change of Mass in a Planetary System of 
Two Particles.—Given a planetary system consisting of two 
particles moving under the influence of their mutual gravita¬ 
tional attraction. The mass of the primary particle is supposed 
to be increasing at a constant rate due to acquisition of meteoric 
material. It is to be assumed that the orbit of the satellite is 
circular. Find the effect of the alteration of the mass of the 
primary upon the period of the satellite and also the change in 
the orbit. 

If the masses of the primary and satellite are M and m, respec¬ 
tively, and r is the distance between their centers of mass, then 
the gravitational force F exerted by M upon m is 

The component of the acceleration of m in the line of r is — 
hence 

IcM 
— ^3^2 (15-34) 

The other component of the acceleration of m, ix., that per¬ 
pendicular to r, is zero. From this fact it follows [compare Eq. 
(13-4)] that 

r-03 = h (sL constant) (15-35) 

If we raise the exponents of both members of this equation to 

the three-half power and multiply both sides by c*>^, we obtain 

r’ 0)2 = h’J (15-36) 

Eliminating rW from this equation by the use of Eq. (15-34) 
gives 

kM = 

Taking the logarithm of both members and differentiating with 
respect to the time gives the following result: 

1 dM _ 1 do) 
M dt 2o) dt 

This equation indicates the effect of the change of mass of 
the primaiy particle upon the angular velocity of the satellite 
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and hence upon the period of the satellite. Since a? may be 
regarded as a positive quantity, it is readily seen that an increase 
in M will produce an increase in the angular velocity of the 
satellite and hence shorten its period. 

To determine the effect of an increase of M upon the orbit, 
it will be necessary to obtain an equation in which the only 
variables are M and r. Such an equation is obtained by elimi¬ 
nating 0) from Eqs. (15-34) and (15-35), which results in the 
following: 

k M r ^ h- 

Taking the logarithm of this equation and differentiating the 
resulting expression with respect to the time gives 

1 (IM dr 
M Jt ’’dt 

This equation shows that an increase in the mass of the primary 
gives the satellite a velocity component which is inward along 
the radius vector and hence decreases the size of the orbit. 

Problem.—The angular acceleration of the moon is thought to be 12 sec. 

per century. If this change is duo to an increase in the mass of the earth, 

what is the rate at which the earth accumulates mass? Assume that the 

density of the earth is 5.52 g. per cubic centimeter, its radius 6.37 X 10* cm., 

and the distance from the earth to the moon 3.84 X 10^® cm. 

16-8. Motion of a Mass Subject to a Double Constraint.—A 
vertical shaft is made to rotate at a constant rate. A horizontal 
tube is fixed rigidly to the shaft and carries a mass (n) which 
may slide along the axis of the tube without friction. An 
inelastic cord is fastened to the mass n and passes over a massless 
pulley at the axis of rotation to a second mass (m) which is 
constrained to slide without friction vertically upon the rotating 
shaft. Subject to this arrangement the two masses are kept 
at a constant distance apart, the distance being the length of the 
cord. It is required to find the equations of motion for the two 

bodies. 
Let the apparatus be arranged as indicated in Fig. 142. It 

is convenient in this problem to use a rotating reference system, 
with OX the axis of rotation and OF measured along the axis of 

the rotating tube. 
The mass n is subject to a double constraint. Its velocity 

along the F-axis must be equal to the velocity of m along the 



352 ANALYTIC AND VECTOR MECHANICS [16-8 

A^-axis, although opposite in sign. Furthermore the mass n is 
constrained to move with the rotating tube; hence its velocity 
perpendicular to OY must always be equal to product of the 
angular velocity (oj) of the tube by the distance (y) of n from the 
axis of rotation. The mass m is subject to a single constraint. 

Let the positions of m and n on the 
reference axes be designated by x and ?/, 
respectively. Let T be the tension of 
the cord. 

^ The force equation for the motion of 
m IS 

mg - 7’ = (15-37) 

Fig. 142. 
Two force equations will be needed 

to express the motion of n. If F is the 
force exerted by the rotating tube upon (and is therefore per¬ 
pendicular to the tube), we may write 

-T F = 71 2a^Fw (15-38) 

It is to be noticed that the accelerations of tn and n are not 
equal though the cord is attached to both. The effect of the 
cord is to make 

d'^x _ 

The velocity of m and hence the radial velocity of n may be 
found from Eq. (15-37) and the first equation of Eqs. (15-38). 
Eliminating T from these equations and substituting suitable 
alternative forms for the second derivatives of the coordinates 

gives 

/ I \ ^ vd I 1/ I 2 mg ==•— {m + n) — -Y-ny^xr 

For initial conditions we may put x = — yo, 

Vy = = Fo 

at the time t = 0. Multiplying the right-hand member of the 
foregoing equation by —dy and the left member by dx, for 

dx » —dy, and integrating gives 

mg(x -- xq) «= ^(m + n){Vy^ — Fo^) — - y^) (15-39) 
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In obtaining this equation some trouble may be experienced 
in establishing the sign of the last term as given. A realization 
of the physical relations may make this process easier. A positive 
displacement of m produces a negative displacement of n; 
hence r — xo = yo — y. The limits of integration of the term 
mgdx are taken from xo to .r. Corresponding to these limits we 
must integrate the other terms with limits from y to i/q. 

An interpretation of the work equation [Eq. (15-39)] is to be 
made. The left member gives the work done by the force mg for 
an assumed positive displacement. The first quantity of the 
right-hand member expresses the change in kinetic energy of rn 
and the kinetic energy change of ii for velocities along the ?/-axis. 
The last quantity shows that n has lost some of its kinetic 
energy, that which is due to its velocity perpendicular to the 
2/-axis. 

Equation (15-39) is one of the desired equations of motion, 
since it expresses the velocity of m and one component of the 
velocity of n in terms of the displacements. I'his equation may 
be made explicit for Vy and then, by replacing Vy by dy/dt and 
integrating, an expression for y (or x) in terms of the time could 
be obtained. This detail will be omitted. The third equation of 
motion, expressing the velocity of m or Vy for n, in terms of 
either coordinate x or ?/, could then be obtained if desired. The 
other component (Vy) of velocity for the mass n may readily be 
obtained for any position or time, since Vy = wy. 

We shall now turn our attention to the force F which acts 
upon n along a line which is always perpendicular to the F-axis. 
This force is required to supply n with the necessary acceleration 
which is needed to change the direction of the radial velocity 
of n and to change the magnitude of Vy. The force equation 
expressing this requirement is 

F = n 2co^ 
dt 

The energy changes produced by F may be expressed by multi¬ 
plying both sides of the force equation by the differential displace¬ 
ment in the direction of F and then integrating. This differential 
displacement is y dy yosdt where dy is the differential angular 
displacement. The differential work equation is 

dy 
Fyo)dt = 2no>y-^dy 

= 2nw^ydy 
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or 

J[V 2/ CO = « co2(2/2 - yo') (15-40) 

The left-hand member cannot be integrated unless F and y are 
expressed in terms of the time. 

The total work done by the forces on the system may now be 
found by adding Eqs. (15-39) and (15-40). For present purposes, 
since it is not convenient to evaluate the integral of Eq. (15-40), 
we shall add the right-hand member of Eq. (15-40) to both sides 
of Eq. (15-39) which results in the expression 

mg{x - Xo) + no;2(y2 _ ^ ^ y^2^ ^ 

It is interesting to examine the distribution of the work done 
by F when the mass m is removed from the system. Putting 
?n = 0 in the foregoing equation gives 

n - Fo“) = n (^2 _ ^/o^) 

The left-hand member gives the energy change for velocities 
parallel to y and the right-hand member expresses the energy 
changes for velocities perpendicular to y. The fact that the two 

expressions of energy are equal indicates 
that the work done by F, in the partic¬ 
ular case of m being zero, is equally 
divided by this selection of method of 
expression. 

16-9. The Sliding Sphere.—A solid 
homogeneous sphere of radius r is given 
an initial linear velocity U along a rough 
horizontal plane. At the same instant 

the sphere has an initial angular velocity wq about a horizontal 
axis which is perpendicular to the direction of the linear velocity. 
The direction of the angular velocity is opposite to that which it 
would have if it were rolling, without slipping, in the direction of 
f/. Find the character of the motion. 

Let the reference system XOY (Fig. 143) be fixed to the hori¬ 
zontal plane with OX parallel to U and F-axis perpendicular 
to the horizontal plane. For present consideration it is unneces¬ 
sary to assign the initial position of the sphere in the reference 
system. 
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The only force acting on the sphere is friction (F), the point 
of application of which is the point of contact between the 
sphere and the horizontal plane. The direction of i^^is negative. 

If m is the mass of the sphere and V is the velocity of the 
center of mass, the force equation will be 

-f. (iMi) 

If the moment of inertia of the sphere about its axis of rotation 
is represented by I and the angular velocity by w, the force- 
moment equation may be written as follows: 

(15-42) 

From these two equations it is readily seen that the linear 
and angular accelerations are both negative. 

It is instructive to see to what extent these equations arc 
applicable to the motion. There is always the danger of setting 
up equations which are adequate accurately to describe the 
motion of the body concerned for one phase of the motion and 
then, owing to some change which takes place at a later stage in 
the motion, to overlook the possibility that the equations may no 
longer be applicable. For example, in writing the force equation 
[Eq. (15-41)] for this problem, the friction is written with a 
negative sign. Since m is positive, the acceleration dVIdt^ is 
negative. In this particular problem, as will be shown later, 
owing to certain relative initial values of V and w, it is possible 
for V to reverse its direction. In such a case F would also reverse 
its sign at the instant at which V reverses. The force equation 
[Eq. (15-41)] would then no longer be correct. If applied as 
written to the motion after a reversal of V, we might be led to 
believe that the velocity would increase indefinitely in the 
negative direction. Physically such an increase would be 
impossible when friction is the only external force. The change 
in sign of V in this problem presents a sort of physical discontinu¬ 
ity at the instant or position where V is zero, beyond which a 

new relation is required. 
The force-moment equation [Eq. (15-42)] also has its limita¬ 

tions in this problem. The sign of do)/dt is negative, as the 
equation indicates, which is correct certainly for a first stage of 
the motion. Under certain initial conditions, which will be dis- 
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cussed later, a change will occur during the progress of the 
motion which makes a change in the force-moment equation 
necessary. ^ One must be careful, therefore, to inspect peculiari¬ 
ties which may occur during the progress of the motion with the 
view of ascertaining a need for modification in the equations 
already written. 

Returning to a development of the equations needed to 
describe the motion under consideration, we proceed to combine 
Eqs. (15-41) and (15-42) by eliminating the unknown quantity E 
and at the same time we may introduce the particular value of I. 
We obtain thereby 

dJT ^ 2 ^ 
'dt f di 

(15-43) 

a kinematical equation which shows that the motion is inde¬ 
pendent of the mass of the sphere. 

This equation may be integrated and yields the following 
relation: 

y — IJ =z ^ r (o) — coo) 

The relation expressed by the last equation is more readily 
interpreted if we rearrange the terms as follows: 

V ^ I rco = U - I ro>o (15-44) 

The right-hand member of the equation as now written is a con¬ 
stant; hence the variations of V and oj must be such as will be 
consistent with the expressed relation. There are two possibili¬ 
ties to be considered, one in which the right-hand member is 
positive and the other in which this quantity is negative. These 
two cases will be discussed separately. 

We shall consider first the case in which the left-hand member 
of Eq. (15-44) is positive. Since F, r, and w are initially positive 
quantities and the quantities V and | rc*> decrease at the same 
rate [Eq. (15-43)], it follows that w will become zero before V 
does. At the instant at which a? is zero, the sphere slides with¬ 
out rotation. After this instant, a? will continue to decrease 
positively by increasing negatively. This phase of the motion 
will continue until F == — rw, at which instant the motion reaches 
a critical point and the sphere will roll from then on without 
slipping. 

Beyond this critical point in the motion the validity of the 
equations is to be considered. An oxaminatipn of tb© foroe 
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equation does not reveal any necessity for making a change in it. 
The angular acceleration in the force-moment equation will 
evidently serve as a clue for recasting the force-moment equation. 
Two alternatives would seem to be possible: either the angular 
acceleration becomes a positive quantity or it becomes zero. 
The quantities r and / can be only positive. The force F cannot 
be positive so long as the linear velocity V be positive and the 
angular velocity co be negative and less in absolute magnitude 
than V/r. These facts show that the sign of dco/dt cannot be 
positive under the assigned limitations. The other alternative 
remains as the only possibility. We may therefore draw the 
conclusion that dw/dt is zero for the motion of the sphere, after 
the angular velocity becomes equal to —V/r. This conclusion 
requires that the force F must become zero at the critical point 
under consideration. From this it follows that neither V nor o) 
will change after the critical point has been reached and the 
sphere will roll on with constant linear and angular velocities 
indefinitely. 

The conclusions obtained above give us some light upon the 
behavior of the force F during the entire motion. Under the 
conditions of the problem the magnitude of F is dependent upon 
the relative values of V and co. So long as the sphere slides upon 
the horizontal plane, F is not zero and, when the sphere rolls 
without sliding, F is zero. 

The magnitude of F, for any selected value of V or co, cannot 
be determined in this particular problem without additional 
information. 

There remains for consideration, however, the case referred 
to above in which the right-hand member of Eq. (15-44) is 
negative. The analysis of this case will be left to the student. 

Problem.—If F — k (V A- r), where k is a, constant, derive the equations 

which express V as a function of the time and also as a function of the dis¬ 

placement of the center of mass of the sphere. 

16-10. The Skyrocket.—A skyrocket is to be projected ver¬ 
tically upward in a vacuum by means of the force exerted by 
gas issuing from an orifice centrally located in the lower end 
of the rocket. The gas is generated by burning powder within 
the rocket. The rate of generation of gas is assumed to be con¬ 
stant and the gas is to issue from the orifice at a constant velocity 
relative to the rocket. It is required to find the height to which 

the rocket will ascend, 
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We shall assume that the rocket is initially at rest and shall 
take the initial position of the rocket as origin for a reference 
system with positive quantities being measured vertically upward. 
Let m be the mass at any instant t and mo the initial mass of the 
rocket. Let n be the mass of gas issuing per second and --w the 
constant velocity of the gas as it leaves the rocket relative to 
the orifice. 

There are two forces acting upon the rocket, the weight of 
the rocket, which is — (mo — nt)gy and the upward force due to 
the reaction of the gas as it leaves the rocket. Both forces are 
parallel to the vertical line of motion. The force caused by the 
escaping gas is equal to the rate of change of momentum of the 
gas. Since the velocity of the gas relative to the rocket is — w; 
and n is the rate of generation of gas, this force is +nw. Since 
mo — nt is the mass of the rocket at the time the force equation 
may be written as follows: 

n w ^ (mo — nt)g = (mo — yit) 
dV 
dt 

(15-45) 

in which V is the velocity of the rocket. 
Since this equation contains only the two variables V and <, 

we may separate the variables and integrate. If V is zero at the 
time t = 0, the result of integration may be written 

This equation expresses the velocity of the rocket as a function 
of the time for any value of the time from zero up to the instant 

at which the powder is exhausted. 
If we let 8 be the coordinate which measures the upward dis¬ 

placement of the rocket from the initial position, then, since 
V == ds/diy we may replace V by ds/dt, separate the variables, 
and integrate the resulting expression to obtain an equation for 
the displacement. If s = 0 at the time < = 0, the expression for 

the displacement is 

« = + wi log ^ C - 1) + 

^(1 - log mo) (16-47) 
u 
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where C is written for mo — nt. This equation gives the height 
to which the rocket will ascend in any time tj provided that t is 
not greater than the time required for the powder to burn up. 
The particular time U at which the powder will be exhausted will 
be equal to the mass of the powder divided by n, the rate at which 
the powder is being used. If the total mass of the powder is 
known, the value of s which corresponds to t\ may be found. 

At the time ti the upward force, due to the reaction of the 
gas, becomes zero but the rocket will go still higher because of 
the kinetic energy which it possesses at that instant. The 
additional height, which we may call /?, may be found by applying 
the work equation. If mi is the residual mass of the rocket and 
VI is the velocity at the time ti, then 

— migh = ~\ niiVi^ 

The total height to which the rocket will ascend may now be 
readily found. 

16-11. The Water Stream and Bucket.—Apparatus is arranged 
whereby a horizontal stream of water, flowing at a constant rate, 
is caught in a bucket. The bucket, initially at rest and empty, 
may move along a smooth horizontal plane. Find the equations 
of motion and the total change of kinetic energy of the system for 
a given mass of water. 

We shall use the following assignment of symbols: 

w = rate of flow of the water in terms of mass per second. 
u = velocity of the water. 
P = mass of the empty bucket. 
V = velocity of the bucket and of the water which it may 

contain. 
M = mass of water in the bucket at any time i. 

This problem is somewhat similar to the preceding problem 
(Sec. 16-10) in that the force which accelerates the bucket and 
its contents has its origin in the reaction between the moving 
stream and the bucket. The procedure is to express the force 
and the mass of the bucket with its contents in terms of the given 
quantities and then, by using the force equation, to find the 

acceleration of the bucket and the water in it. 
If the stream of water were directed against some stationary 

object, the force exerted by the stream upon the stationary object 
would be constant. In the present problem the bucket is not 
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stationary but moves with an increasing velocity in the direction 
of the moving stream; hence the force accelerating the bucket will 
decrease. The velocity of the bucket will approach the velocity 
of the stream as a limit. The mass of the bucket together with 
the w^ater in it increases, although the rate of increase of mass 
will not be constant. From the fad tliat the accelerating force 
is decreasing and the total mass of the bucket is increasing, one 
may say definitely that the acceleration of the bucket will 
decrease. This preliminary analysis of the problem serves as a 
qualitative check upon the equations which may be written to 
describe the motion quantitatively. 

The mass of water per second flowing by any stationary point 
in pipe carrying the water is w — p A Uy if p is the density of 
the w’ater and A the area of cross section of the stream. The 
mass of water a/ entering the bucket per second is p A (u — V). 
Hence we may write 

^ - JO 
w p A u 

or 

, a) (a - TO 
u 

The force F exerted by the stream upon the bucket is equal 
to the rate of change of the momentum of the stream. Since 
u — F is the velocity of the stream relative to the moving bucket, 
we may express the force F as follows: 

F = 
XV {u - vy 

u 
(15-48) 

The quantity of water in the bucket at any time t may be 
expressed as follows: 

U. 
Jo u 

if the bucket is initially empty. We cannot at present evaluate 
this integral because we do not know the way in which V varies 
with the time. It is possible, however, to express the quantity 
of water in the bucket in terms of the mass of the bucket and the 
velocities u and V by using the principle of conservation of 
momentum. The momentum {Mu) of any given quantity of 
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water (Af) before it enters the bucket must be equal to the 
momentum of the bucket and the water at the instant this 

quantity of water is all in the bucket; hence 

Mu = {M + P)V 
or 

M . P-l^ ■ (1W9) 

We may now write the force equation, which is 

F = |[(M + P)F] 

with the values given by Eqs. (15-48) and (15-49) this becomes 

(w - TT ^ p _ dV 
n “ {u-Ty dt 

Rewriling this equation so that it is explicit for the accelera¬ 
tion gives 

dV ^ ^ - V)^ 
dt P 

(15-50) 

Since this equation contains only two variables, it may be 
readily integrated. It will be remembered that the initial con¬ 

ditions give V = 0 at / == 0; hence separating the variables and 
integrating yields one of the equations of motion, which is 

3''(m+ 3 (15-51) 

The second equation of motion, i.e.y that which expresses 
the displacement in terms of the time, may now be found. If the 

displacement of the bucket is measured from its initial position 
by the coordinate s, then, since V = ds/dt^ we have 

ds _ 3j—p— 

Integration of this equation gives 

s = ul 
2w 

[{3wt +P)i - P»] (15-52) 

The third equation of motion may be found by eliminating t 
from Eqs. (16-51) and (15-52), or, in the usual way, by sub- 
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stituting VdV/ds for dV/dt in Eq. (15-50). In either case the 
result is 

3 {u - 7p 2{u - Vy W Pt? 

There remains to be obtained an expression which will give 
the total change of kinetic energy of the system for a given mass 
of water. If we let M represent the given mass of water under 
consideration, the kinetic energy of this mass before entering 
the bucket will be ^Mu^. The velocity of the bucket together 
with the water in it is V; hence the change in the kinetic energy 
of the system (A KE) is 

ARE = i Mu^ - ^ {M + P)F2 

Using the relation given in Eq. (15-49), we may express the 
change in the energy in terms of the velocities and the mass of the 
pail. Making the indicated substitution gives 

ARE ^ i PuV 

Problems.—1. Using any of the equations written above, show that V 
cannot be greater than u. 

2. Find the mass of the water which enters the bucket in terms of the 

time. 

3. Show that the acceleration of the bucket approaches zero as a limit. 

16-12. The Two Rolling Cylinders.—A homogeneous right 
circular cylinder is arranged to roll upon a horizontal plane. A 
second similar cylinder is placed on top of the first cylinder with 
its axis parallel to and almost vertically above the axis of the 
lower cylinder. The surfaces of the two cylinders and of the 
plane are sufficiently rough to prevent any slipping. It is 
required to write the equations from which the equations of 
motion may be derived. 

We shall use capital letters to identify the quantities which 
are to be associated with the lower cylinder and small letters 
for the corresponding quantities of the upper cylinder. Hence we 
may use the symbols M and m for the masses, R and r for the 
radii, and 0 and w for the angular velocities. 

Let the reference system be XOY (Fig. 144) with its plane 
parallel to plane of motion of the two cylinders and with OX 
horizontal. Let the line of contact of the lower cylinder with 
the horizontal plane be as shown at D, The centers of the XY 
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sections of the cylinders are A and C for the lower and upper 
cylinders, respectively, and B is their point of contact. We shall 
let 7 be the angle which the line of centers AC makes with the 
F-axis. 

The forces which act upon the system and their points of 
application are to be identified. The weights of the cylinders 
are —Mg and —mg and act through A and C, respectively. 
The reaction {Q) of the horizontal plane upon the lower cylinder 
is at D and is directed vertically upward. Friction { — E) 
between the plane and the lower cylinder is horizontal and is 
directed along the negative direction of the .JT-axis if we assume 
that the lower cylinder rolls so that the linear velocity of its 
center (F) is positive along the A^-axis. The friction which 
prevents slipping of the upper 
cylinder upon the lower gives rise 
to a pair of equal and oppositely 
directed forces {F) which lie in the 
common tangent plane and are 
therefore perpendicular to the line 
AC, There is also another pair 
of equal and oppositely directed 
forces (P) between the two cylin¬ 
ders which are parallel to AC. 
There are therefore four unknown 
forces which must be either evaluated or eliminated in order to 
find expressions for the accelerations. 

The simplest procedure analytically is to write force equations 
for two mutually perpendicular directions for each of the two 
cylinders, making four force equations, and also write two force- 
moment equations, one for each cylinder. Each force-moment 
equation is to be written for the geometric axis of the particular 
cylinder. For the lower cylinder we shall write force equations 
for horizontal and vertical motion, and for the upper cylinder it 
is more convenient to use directions which are parallel and per¬ 
pendicular to the line AC. 

a. Force Equation for the Lower Cylinder, 

Horizontal motion: 

—E — P sin 7 + F cos y = (15-53) 

Vertical motion: 
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(15-54) Q — Mg — P cos 7 — F sin 7 =* 0 

b. Force Equation for the Upper Cylinder. 

Perpendicular to AC\ 

mg sin 7 — F rn (ii + r) + -J/ cos 7 
di 

(15-56) 

Parallel to AC: 

mg cos y — P — m (R + r) 
dV . 

(15-56) 

The sign of each term in the equations written above should 
be carefully examined. The student should remember that it is 
immaterial to the accuracy of the equation which direction along 
the selected line is to be considered as positive but it is necessary 

to be consistent. 
An explanation for the validity of the terms written in the 

right-hand members of the last two equations may be helpful. 
The quantities within the brackets in both equations represent 
the linear acceleration of m with respect to the fixed reference 
system along the direction indicated. These are written with 
the help of the theorem for the change of origin at A and with 
axes always parallel to the fixed X- and F-axes. 

The force-moment equation for the two cylinders (for axes 
through A and C) are 

c. For the Lower Cylinder, 

-rE - rF ^ ~ (15-57) 

d. For the Upper Cylinder. 

-rF = ~mr^~ (15-58) 

in which the particular values of the moments of inertia have been 
introduced. 

It is also of importance to verify the signs of the quantities 
written in these equations. Perhaps the best procedure for this 
purpose is to determine the sign of each force moment by the 
use of the convention of signs for rotational quantities and always 
write the sign of the angular acceleration positive. Whether the 
sign of the angular acceleration is positive or negative will be 
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determined by the resultant force moment. A common mistake 
made by students is to include a negative sign in the acceleration 
term when the force moment is negative and is expressed as a 
negative quantity. 

In the six equations written above there are eight unknown 
quantities: Ej F, P, Qj dilldty dwjdi^ dV/dt, and d'^yjdT^) hence 
t.wo more equations are needed in order to obtain the equations 
of motion of either cylinder. These may be found from a con¬ 
sideration of the kinemalical relations which must exist between 
the linear and angular velocities. 

One of these relations may be found by expressing the linear 
velocity of a point on the axis of the lower cylinder in terms of Q. 

If we consider the linear velocity V of A to be due to rotation 
about the instantaneous velocity center, f.c., the point P, then 
it follows that V = —Hi} and hence 

dV _ 
It “ 

(15-59) 

The other kinematical relation may be found by expressing the x 

component of the linear velocity Vx{B) of a point (P) in the 
line of contact between the two cylinders in terms of the linear 
velocity of that cylinder. These relations are 

e. For the Lower Cylinder. 

VAB) = F + PH cos 7 

/. For the Upper Cylinder. 

V,{B) = V + (R + r)^ cos y - no cos y 

Since these two expressions must be equal, we have 

RQ = {R + r) J - ro) (15-60) 

It is to be noted that in this section dy/dt is not equal to w. 
With the eight equations we have written it is possible to 

evaluate any one of the accelerations and hence obtain the 

equations of motion of either cylinder. 

Problem.—With the arrangement as given above, but with friction con¬ 
sidered to be zero, wTite the relations from which the equations of motion 

may be obtained. 
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16-13. The Swinging Bar.—A uniform bar is hung from a rigid 
support by a massless cord which is attached to one end of the 
bar. Initially the bar is at rest in a horizontal position with the 
cord vertical. 

Find the acceleration of the center of mass of the rod (a) by 
using the coordinate relations, and (6) by the use of the standard 
forms of components of acceleration Jr and Jy. (c) By means 
of the work equation write an equation which expresses the 
angular velocity of the rod in terms of the angular displacement. 
(d) Using the force and force-moment equations, express the 
angular acceleration of the rod in terms of the x and y compo¬ 
nents of acceleration of the center of mass and the angular 

displacements. 
Let the reference system 

(Fig. 145) be placed so that the 
XY plane is the vertical plane 
of motion, with the A-axis 
vertical, the F-axishorizontal, 
and the origin 0 at that point 
of the rigid support to which 
the cord is attached. Also let 
r be the length of the cord, 21 

the length of the bar, and y 

and a the angles which the X-axis makes with the cord and bar, 

respectively. 
It will be convenient to employ a moving coordinate system 

X'O'F' fixed to the bar, with axes parallel to the reference axes 
and with origin O' at one end of the bar. 

There are two forces acting upon the bar. The weight of 
the bar mg (where m is the mass of the bar) acts vertically down¬ 
ward through C, the center of mass of the bar. The cord exerts 
a force, which we may call T, upon one end (O') of the bar. The 
direction of T will always be toward 0, the point of support, 

a. The Coordinate Relations,—If the coordinates of the center 
of mass of the rod are x and y in the reference system, we may 
write the following relations for any position of the bar: 

X = r cos 7 + i cos a y r sin 7 + i sin a 

Differentiating these equations with respect to the time and 
writing ta for dy/dt and (I for da/di gives 
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dx 

dt 
— ro) sin y — IQ sin a 

dt 
no cos 7 + cos a (15-61) 

Differentiating again with respect to the time gives expressions 
for the components Jx and Jy of the acceleration of C: 

J. = 

Jy = 

9 -rfO . 

— rco^ cos 7 — sin y — UP cos a — sin a 

9 • I do) 1 r-\0 • I fd/^I 
— rco^ sin 7 + r tt cos 7 — sm a + l-jj- cos a 

(it dt 
(15-62) 

b. The r and 7 Components,—The acceleration of C may be 
expressed by applying the theorem of the change of origin for 
accelerations. We must express the acceleration of C with 
reference to the moving coordinate system X'O'Y' and the 
acceleration of the moving system in the fixed reference system. 
The vector sum of these two acceleralions gives the resultant 
acceleration of C. In place of writing the accelerations as vectors 
it is desired here to write them in terms of their components 
parallel to the two reference axes. The components of the accel¬ 
eration of C in the moving coordinate system, parallel to the 
A^'- and F'-axes, respectively, are 

7^9 « cos a — I u 
dt 

if'i'i ’ I idOi -UP sin a + cos a 
dt 

Similarly the components of the acceleration of 0' in the fixed 

reference system are 

— cos 7 — 
doi . 

r-jj sm 7, 
9 . .do) 

— rco“ sin 7 + cos 7 

The components Jx and Jy of the acceleration of C in the 
reference system may now be written by combining the foregoing 
expressions. The results of the combinations have already been 

written in Eqs. (15-62). 
c. The Work EqmUon,—The work done by the external forces 

in producing a displacement of the rod may be expressed in terms 
of the loss of potential energy of the rod. The change in the 
potential energy (A P.E.) is equal to the weight of the rod 
multiplied by the vertical displacement. With the initial posi¬ 
tion of the rod at 7 = 0 and a =. 90°, the loss of potential energy 

or the work done upon the rod is 

A P.E. = mg (1 oob a + r cos 7 — r) 
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Assuming the presence of conservative forces only, we may 
equate the loss of potential energy to the gain in kinetic energy, 
translational and rotational. Putting the moment of inertia of 
the rod about an axis Ihrougli the center of mass equal to mP 

and using the expressions given in Eqs. (15-61) for the com¬ 
ponents of the linear velocity of the center of mass, we may write 
the complete work equation as follows: 

ing(l cos a + r cos 7 — r) = — sin 7 — Z12 sin aY 

+ (ro) cos y + lil cos a)^) + ^ mCil- (15-63) 

d. The Force Equations.—The force equations for the motion 
of the rod may be written for forces parallel to the reference 

axes. These equations arc 

mg — T cos y — m J x 

— T sin 7 = m Jy (15-64) 

The force-moment equation for rotational motion about an 

axis through the center of mass is 

- T I sin (a - 7) = 1 m (15-65) 

Solving this equation for T and substituting in the force equations 
gives the desired expressions 

, ml cos 7 dQ 

ml sin 7 dQ 

3 sin (a — 7) dt 

= m Jx 

= m Jy (15-66) 

Problems.—1. Differentiate Eq. (15-63) with respect to the time and 
show that the resulting expression may be obtained from Eq. (15-66). 

2. An hourglass, with all of the sand in the lower glass, is accurately 
counterpoised on a balance. Determine whether or not a state of balance 
will be maintained when the glass is inverted and the sand is running. 
Write the necessary equation to prove your answer. 

3. One end of a massless thread, which is wrapped around a spool, is 
fastened to a rigid support. Initially, the spool is at rest with its center of 
mass in a vertical line which passes through the point of support and a 
length L of the thread, which is unwound, is stretched tight. If, after 
releasing the spool, the axis remains horizontal, find the acceleration of the 
spool and the tension of the thread in.any position, 

4. A dumb-bell with its axis horizontal is placed on an inclined plane 
which mates an angle a with a horizontal line. A thread is wrapped around 
the handle of the dumb-bell and passes up and parallel to the plane over a 
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pulley at the upper end of the plane. A weight hangs from the free end of 

the thread. If the system is initially at rest and the moment of inertia of 

the pulley is to be considered, find the acceleration of the dumb-bell and the 

hanging weight and also find the tensions in the thread. 

5. A circular groove is cut in the middle section of a cylinder so that the 

plane of the grooves is perpendicular to the axis of the cylinder. The depth 

of the groove is one-fourth of the diameter of the cylinder. A thread is 

wound around the bottom of the groove. The cylinder is placed upon a 

horizontal plane and a constant force is applied to the free end of the thread. 

If the coefficient of friction botwe^en the cylinder and the plane is 0.1 and the 

angle {d) which the thread makes with tlu^ plane is kept constant, in which 

direction will the cylinder roll? What effect will different values of 0 have 

upon direction of motion ? Consider values of 0 which vary from 0 to tt. 

6. A body of mass M has a cylindrical hole cut through it so that it may 

slide without friction upon a horizontal rod. One end of a massless thread 

of length L is atta,<rhed to the lower side of body and the other end is fastened 

to a particle of mass N. With both masses initially at rest and with the 

thread stretched tight and making an angle a 
with the rod, find the distance the body will 

slide along the rod while the thread is moving 

into a vertical position, upon releasing the two 

masses. (Use the principles of conservation of 

momentum and energy.) Also find expressions 

for the angular velocity of the thread and for 

the tension of the thread. 

7. A system of pulleys, two fixed and one 

movable, are arranged as shown in Fig. 140. i4g. 

A massless thread is placed as indicated, with 

the masses mi and attached to the free ends. The four portions of the 

thread, which are between the p\illeys or masses and pulleys, are vertical. 

The moments of inertia and radii of the three p\illeys are equal. The mass 

of the movable pulley is m2. If the system is initially at rest and is then 

set free to mov(*, find expressions for the a(‘celerations of the three masses 

and the tensions in the four vertical portions of the thread. 

8. An cm})t y bucket of mass M and a weight of cfiiial mass are hung by a 

long string over a fixed pulley whose moment of inertia is /. An arrange¬ 

ment is provided whereby a stream of water falling vertically may be caught 

by the bucket as it falls. Assume that the water leaves the supply tank 

at a speed of q cm. per sc^cond and at the rate of 71 g. per second. The 

bucket is of a cylindrical shape and has an internal diameter of D cm. If 

the bucket and its counterpoist^ are initially at rest and the bottom of the 

bucket is at a distance L cm. below the orifice in the supply tank, find an 

expression for the acceleration of the bucket. 

9. Two masses, m and 3/, are suspended by a string over a pulley whose 

moment of inorta is I and whose radius is r. The system is released from 

rest, the masses move a distance />, and then the larger mass (M) strikes an 

inelastic object. Assuming that the string does not slip on the pulley, find 

the velocity with wffiich M is jerked from the inelastic object. How far will 

the masses then move before coming to rest? 



CHAPTER XVI 

GENERAL MOTION OF A RIGID BODY 

16-1. Introduction.—In this chapter we shall present some 
of the fundamental equations which describe the motions of a 
system of particles and of a rigid body, using a different viewpoint 
from that used in the preceding chapters. The difference is 
largely in a more complete use of the vector form of expression. 
The student should have, at this Mage of his mastery of the sub¬ 
ject, a sufficiently secure command of the fundamental vector 
processes to appreciate the value of their application to such 
descriptions as are given, and at the same time to learn those 
methods which are commonly employed in an advanced treatise. 
We shall also derive Euler’s equations and show how they may 
be used to describe the motion of a rigid body with one fixed 
point. 

16-2. Motion of a System of Particles.—We start with a 
system of particles whose masses are mi, m2, . . . , m,, . . . , 
etc., and whose position vectors, referred to the origin of a fixed 
reference system, are, respectively, 7i, r2, . . . , r,:, . . . , etc. 
In general, there may be two systems of forces acting upon the 
particles, one system consists of the external forces Fi, F2, . . . , 
Ft, . . . , etc., and the other includes the internal forces, due to 
mutual interactions of the particles, Ri, Ro, . . . , Ri, . . . , etc. 
The force equation for the ith particle is 

Fi + Ri = (16-1) 

and for the entire system is 

XFi + XRi = (16-2) 
n n , n 

Since the R forces are due to mutual interactions, they will 
occur in pairs of equal and oppositely directed forces, and henct> 
the sura of such pairs over the entire system will be zero. This 
term, therefore, vanishes. 

370 
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We are og,rticularly interested in the motion of the system as a 
whole and therefore find it necessary to introduce the center of 
mass of the system if a simplification of Eq. (16-2) is to be 
obtained. The center of mass has been defined by Eq. (6-4). 
Here, however, we shall use a vector expression in place of that 
used above. If f p;ives the position of the center of mass and m 

is the mass of the system, it is readily seen that 

(16-3) 
n 

If we multiply both members by m and differentiate twice with 
respect to the time, we obtain 

m 
dhi 

A substitution of this equivalence in Eq. (16-2) gives 

n 

(16-4) 

This equation expresses the fact that the sum of the external 
forces, which is the resultant force upon the system, is equal to 
the mass of the system multiplied by the acceleration of the 
center of mass. Here, again, we see the significance of the center 
of mass in translational motion. A word of explanation should 
be included here regarding the present use of the 2 sign. As 
here employed, it indicates the vector sum of the quantities 
expressed. 

Problem.—Find the center of mass of the four particles whose masses 

are 2, 3, 4, and 5 g., and whose positions are given respectively by the 

vectors i + 2j + k, 2i A- j — K i -- 2j — k, and i — 2j -f 2fe. 

16-3. Translational Momentum of a System of Particles.— 
We may obtain the impulse equation for the system of particles 
by first multiplying each term of Eq. (16-2) by dt, which gives 

dt + '^R^dt = 
n n n 

and then integrating from 0 to t yields the following result: 

dt - '^niiVi - 
n n n 

(16-6) 
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in which Vi and Ui are the final and initial velociti^ of the tth 
particle. 

The first term of the right-hand member is the translational 
momentum of the system at the time t and the last term expresses 
the value of the same quantity at the time t = 0. The right- 
hand member represents the change in the translational 
momentum which occurs in the time interval t. This quantity 
may be represented by a single vector quantity. If we put 

G = G„ = and F = 2^.- (16-6) 
/? ri n 

Eq. (16-5) may be written as follows: 

J‘f (U=- G - Go (16-7) 

The left-hand member is the impulse of the resultant force acting 
on the system. This equation is the impulse equation for a 
system of particles. 

The quantity G (or Go), as defined by Eq. (16-6), is the vector 
quantity obtained by adding the momenta of the particles. 
G may also be expressed in terms of the velocity of the center of 
mass of the system. Again we return to the center of mass 
equation [Eq. (16-3)], which we may differentiate once with 
respect to the time with the result that 

^ 

Hence we may conclude [Eq. (16-7)] that the impulse of the result¬ 
ant force acting upon a system of particles for a given time 
interval is equal to the change of momentum of the system 
during that time interval, and that the momentum may be con¬ 
sidered as equivalent to the product of the entire mass of the 
system by the velocity of the center of mass. 

16-4. Rotational Momentum of a System of Particles.—In 
order to obtain the force-moment equation for the system of 
particles, we may conveniently use the force equation [Eq. 
(16-1)] as a starting point. The forces, which are acting upon 
the ith particle, may be converted to force moments by multi¬ 
plying them by r* X. I-^et us, therefore, multiply each term of 
Eq. (1^1) by X, which gives 



GENERAL MOTION OF A RIGID BODY 373 ie-4] 

r. X Fi + r.- XRi = m.- r< X — (16-9) 

The two force moments are written with respect to the origin (to 
which Yi is referred). The right-hand member is to be converted 
into an expression for moment of momentum, which means that 
we must introduce a first time derivative of r,- and at the same 
time remove its second derivative. This is readily done by using 
the following relation: 

(i^Y • 
= r.- X (16-10) 

The last term in the first expression drops out because the vector 
product of a vector by itself is zero. Introducing this equiva¬ 
lence in Eq. (16-9) gives 

r. X /'. + r. X Si = X ^ (16-11) 

This equation is the force-moment equation for a single particle. 
The corresponding equation for the system of particles may be 
obtained by taking the sum for the n particles. It may readily 
be seen that the sum of the quantities represented by the second 
term is zero, provided that the i?’s occur in pairs of equal and 
oppositely directed forces. There remains the following 
expression: 

X'"* ^ ^ it) (16-12) 

which is the force-moment equation for the system. 
The equation, which gives the impulse of the force moment for 

the system, is readily written by multiplying both members of 
Eq. (16-12) by dt and integrating from 0 to L Carrying out this 
procedure and introducing the symbol Li for Yi X Fi gives 

n n n 

It is to be noticed that the subscripts 0 and t, as used in the 
right member, are to identify the moments of momentum of the 
tth particle at the beginning and end of the time interval over 
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which the integration is extended. During this interval, in 
general, both r* and Vi change. It would be incorrect to write 

{ti X £/i) for the last term. 
n 

The moment of momentum or rotational momentum for the 
system may be designated by the symbol H, using the subscripts 
t and 0 (x.e., Ht and H^) to designate the final and initial values. 
The left member of Eq. (16-13) expresses the sum of the impulses 
of the force moments. We may call this sum the resultant 
rotational impulse and identify it by the symbol /. With these 
abbreviations the rotational impulse equation becomes 

J ^ Ht - H, (16-14) 

This equation is valid for any system of particles and therefore 
applies to a rigid body, since the latter may be regarded as a 
system of particles rigidly connected together. The rotational 
momentum {H) is not equal to /co (moment of inertia times 
angular velocity) because the r's, which are used in the definition 
of H, are measured from a point, while in moment of inertia the 

scalar r^s are measured from a line, 
the axis to which the moment of 
inertia is referred. A similar ob¬ 
servation may be made for I to dis¬ 
tinguish it from the moment of force 
{M) as used in some of the preceding 
chapters. 

16-6. Force-moment Equation for 
a Rigid Body.—In addition to devel¬ 
oping, in this section, the force- 
moment equation for a rigid body, we 

shall prove a very important theorem which extends the range of 
application of the fundamental equations. The theorem shows 
that the same general equation is valid whether the rotational 
quantities force moment and rate of change of rotational mo¬ 
mentum be referred to the center of mass of the rigid body or to 
any point in the reference system. The development also shows 
that we may include those cases of motion of a rigid body which 
have one point fixed, provided the fixed point be selected as origin 
for the vector quantities. Furthermore, the fixed point, in the 
latter case, need not be the center of mass. 
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We shall select a reference system XYZ with origin at 0. 
Let the center of mass of the rigid body be at Oi, the origin of a 
moving system fixed in the body. The position of 0i in the fixed 
rystem is given by the vector p (Fig. 147), and the position of 
Mi, any particle of the body, in the moving sy.stem is given by 
Ti. If we let Vi be the velocity of the particle rtii, referred to the 
fixed origin, then 

Vi = p + f. (16-15) 

in which p is the velocity of the center of mass, and f, is the 
velocity of mi with respect to the center of mass. 

The rotational momentum of the system (referred to the fixed 
system) may be identified by the symbol H' and may be evaluated 
in terms of p and ti in the following manner: 

H' = X ^ 
n 

= X X + ^•) 
n 

= ^mip XP + ^ mip Xfi-\-'^miTiXp-\- '^mifi X f,- 
n n n n 

(16-16) 

Since p and p are common to all particles, the first term of the 

right member may be simplified by writing m for ^ rrii. In 
n 

the third term p may be put outside the summation sign. This 

change leaves miTi which is zero, since r* is measured from the 
n 

center of mass. The second term is also zero as the student may 
readily see. The fourth term is the rotational momentum of the 

body with respect to the center of mass. We may use H to 
represent this quantity. By using these values Eq. (16-16) 

becomes 

H'^mpXp-\^H (16-17) 

If we let V be the resultant force moment (referred to the 
fixed system) and Fi, as above, be the force acting on the fth 

particle, then 

» X (> + r.) X Fi (16-18) 
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= 2 ^ X F.- + 2 ’'*• X 
n n 

= ^ X 2 F.- + I (16.19) 
n 

We have introduced the symbol L in the last term to express the 
sum of the force moments'with respect to the center of mass. It 
may be readily shown by using Eq. (16-12) that 

L' = ^ (16-20) 
at 

We may now eliminate H' and V from Eqs. (16-17) and (16-19) 

by using Eq. (16-20) which gives 

+ + (16-21) 

The first terms of the two sides of the equation are equal. This is 
not obvious but can be shown by the following considerations. 
First we may put 

n 

by referring to Eq. (16-4) and remembering that f of Eq. (16-4) 
is equivalent to p of the present equation. Hence 

The first term of the right member of Eq. (16-21) may be altered 
by carrying out the indicated differentiation, or 

d 

dt 
m P X p = m p X ^ + mp X P 

= rnpx^ 

since the last term is zero. Hence we see that the two terms are 
equal and may therefore be canceled from Eq. (16-21). The 

final result is 

(16-22) 

This simplified equation, obtained from equations in which the 
rotational quantities were referred to a fixed point as origin, show 
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that, as far as the rotational effects are concerned, we may express 
the vectors in a reference system which has the origin at the center 
of mass. The body must be rigid. The motion of the body may 
be of any character. No point of the body need be fixed. In 
case one point of a body is fixed, the equation is applicable, 
provided we select the fixed point as origin for the reference 
system. If no point of the body is fixed, the center of mass must 
be the origin to which the quantities are referred. 

16-6. The Inertial Constants and the General Equation.—For 
purposes of expression the single vector /f serves admirably; but 
when one has a concrete problem to solve, an expansion of H 

in terms of the inertial constants and components of angular 
velocity is necessary. In order to evaluate H we shall use either 
a fixed point of the body or the center of mass as origin of the 
reference system, which is attached to the body. The expression 
for H may be manipulated as follows: 

H X (16-23) 
n 

= mi Ti X (w X Ti) 
n 

We have put Ft = w X Ti in which co is the angular velocity of 
the rotating body measured by a nonrotating set of axes whose 
origin may be selected as instantaneously coincident with 
the origin of the set of axes fixed in the body. The vector Vi 

expresses the velocity of the ith. particle relative to this non¬ 
rotating system. If we expand the triple vector product, the 
result is 

= X ~ (16-24) 
n 

If we let the coordinates of nii be x, ?/, and z in the coordinate 
system fixed in the body, the rotational momentum may be 
expanded further by using the vector relations 

Ti = ix + jy + kz and g) = io3x + + ftco* 

We may substitute these values and carry out the details of the 
indicated scalar products. It is perhaps more convenient at this 
point to replace the summation by an integration and, of course, 
to write dm for mi. The details of the process of expansion are 
somewhat lengthy but offer no difficulty and may therefore be 
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left for the student to carry out. We may abbreviate the final 
result by introducing the six constants of inertia 5, C, D, Ej 

and F which are defined by Eqs. (8-39). The final result is 

H = l(-4wa: — Fo)y — Eo}^ + j(Bo)y — DoOg — FcJx) + 

k{C(^g - Do)y ~ Eoig) (16-25) 

Our next step is to substitute this value for H in the force- 
moment equation [Eq. (16-22)]. If we differentiate H with 
respect to the time, we must remember that, since the unit 
vectors are parallel to moving axes, i, j, and k are not constant. 
The time derivatives of the unit vectors are the rates of change of 
direction of the moving axes and consequently may be expressed 
in terms of the components of a>. The following equations express 
the desired relations 

di • dj . . 
- 0)xR and 

dk 

Jt ^ ^ 

(16-26) 

The details of working out these relations may be left for the 
student. He should remember that di/dt must be perpendicular 
to I and therefore may be expressed in the form aj + bk where a 

and b are to be evaluated. 
If we put 

H = Hxi + Hyj + Hgk 
then 

dH _ . dHx X Tj ^ X -dHy 
dt ~ *~dt +"4+‘f'’+"-§ 

The components of H are given by the coefficients of the unit 
vectors of Eq. (16-25). The inertial constants are not functions 
of the time but the components of u are; hence, to select one 
component as an illustration, we have 

^ = A<h^ - F6>y - Ewn (16-28) 

Corresponding equations may be written for the two other 
components. We may now write the general equation for the 
force-moment equation by using Eqs. (16-22), (16-27), and 
(16-28)- It Is more convenient to abbreviate the expression by 
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writing Hy, and Hz in place of their detailed values. The 
result is 

L = i{Hx — 0)zHy + UiyHz) + j{Hy + - 0) M z) + 

k{Hz + OixHy - 0>yHz) (16-29) 

This is an important general equation. In applying it to any 
particular problem one must remember the limitations used in its 
derivation. When applied to a given situation, simplifications 
may be introduced by a judicious selection of the position of the 
moving axes in the body. If the body possesses symmetry, the 
axes may be placed so that one or more of the products of inertia 
will be zero. In case there is a fixed axis, by placing the axes so 
that one of them will coincide with the fixed axis, two of the 
components of the angular velocity will be zero. One should 
look for possible simplifications in any application of the general 
equation. 

Problems.—1. Write the simplified expressions for H and L when the 

rigid body is rotating about a fixed axis. Put the A"-axis coincident with the 

rotation axis. 

2. Write the equations for H and L when there is a fixed axis and when the 

body is symmetrical with respect to the rotation axis. 

16-7. Euler’s Equation.—If the rigid body has only one fixed 
point, we shall take that point as the origin for our moving axes. 
The axes may usually be so oriented in the body that the products 
of inertia will be zero. This possibility depends upon the 
existence of sufficient symmetry. There are many cases to be 
studied in which these simplifications may be introduced. For 
such cases, the general equation reduces to the form given below. 

If the products of inertia (Z), J?, and F) are zero, then H 
becomes 

H = Ao)xi "f“ H(j)yj -j“ Co)zk (16-30) 

To evaluate L, we may differentiate this equation with respect to 
the time, but we must remember that the directions of the unit 
vectors are changing; hence the derivatives of i, j, and k are not 
zero. By using the values of the derivatives of the unit vectors 
as given by Eqs. (16-26) the expression for L is readily obtained. 

L = i\Aoix “h (fi — i5)wyWJ -f* j\Bwy *4- (A — C)w*(*)a] -f* 

+ (B ~ A)i^xO>y] (16-31) 

This is Euler’s equation. 
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The components of L may be equated to the corresponding 
components of the right member. One such equation is 

= + (C 

d(Ao)a) 

B)o)y(j0g 

dt 
+ CoOyCOg — BcOyO)^ 

(16-32) 

It is to be noticed that the first term of the right member is an 
expression for a time rate of change of a magnitude (Acoj). The 
second and third terms express the rates of change of the direc¬ 
tions of angular momenta. In these two types we recognize 
rotational quantities which correspond to magnitudinal and 
directional time rates of linear momentum. A more detailed 
study of the directional changes of angular momentum will be 
made in a following section. 

The chief advantage of Euler’s equation is to be found in the 
fact that, because the moving axes are fixed in the body, 
the moments and products of inertia are constant. Hence in 
the equation L = dH/dt the derivatives of these quantities 
are zero. The derivative of the unit vectors, however, are 
not constant. 

It is well to point out the fact that the components of the 
angular velocity and angular acceleration along the moving axes 
are instantaneously equal to the corresponding components taken 
along axes fixed in space, provided that the two sets of axes are 
coincident for that particular instant (see Routh, ^‘Dynamics”). 

16-8. Types of Motion.—The complete analogy which exists 
between translational and rotational quantities provides a tool 

Quantity 

Translation, changes in Rotation, changes in 

Magnitude Direction Magnitude Direction 

Velocity. dV/dt K, V dVJdt do)/dt Ci)i CO d4^i/dt 
Momentum. d{mV)ldt Vi mV dVi/dt d{I(a)ldt (i)i (/co) (R^i/dt 

-^F 

V 1 V —> Ci> 

which makes it easier to understand the less familiar quantities. 
We have studied the magnitudinal and directional changes of 
linear velocity and momentum. We have seen that pure trans¬ 

lational motion occurs when there is no change of the direction 
of the velocity, and that pure rotational motion takes place when 
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the velocity has only directional change. Corresponding to 
these types of motion in translation there are two types in rota¬ 
tional motion: uniform rotational motion and precessional motion. 
The table on page 380 is arranged to show these similarities. 

16-9. Precessional Motion.—In the study of linear accelera¬ 
tion we observed that the two types of changes of velocity could 
be obtained by differentiating the velocity V with respect to the 
time. 

dV _ d{VVi) _dV y dVi 

It dt dt ^ ' dt 

The magnitude of the quantity given by the last term of this 
equation has been expressed, in terms of the speed V and an 
angular velocity w, in the form Fco. The direction of this change 
is perpendicular to V. The form Fw is typical of the linear 
acceleration which expresses the directional time rate of change 
of the velocity. 

In a similar manner we may differentiate the angular velocity 
o> and obtain the resulting expression 

do) 

dt 

d(co<i)i) 

dt 

do) , di^i 
(16-33) 

in which wi is a unit vector in the line of w. The first term 
of the right member expresses the magnitude change of the 
angular velocity. The last term may be changed by putting 
0) di^i/dt = vi where U is an angular velocity and vi is a unit 
vector perpendicular to wi. The quantity wil is typical of an 
angular acceleration which expresses the directional rate of 
change of an angular velocity. The angular velocity Q is 
the time rate at which the direction of the angular velocity is 
changing. 

Motions in which there is a directional change of the angular 
velocity are called 'precessional motions, and 12 is the rate of 

precession. 
The relative directions of the angular velocity g>, the angular 

acceleration which we may designate by the symbol a, and the 
precessional angular velocity H may be shown advantageously 
by the use of a diagram (Fig. 148). If u and a are both positive 
and are represented along the X- and F-axes, then Q will be in 
the positive direction along the Z-axis. The vector equation 

a = X <*> 
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expresses the relation correctly, for this special case, as to both 
magnitude and direction. 

With this analysis of the kinematical relations in mind it is 
instructive to examine the dynamical relation. For this purpose 
we may use Euler^s equation. To avoid unnecessary complica¬ 
tion, we may select the special case in which the force moment L 

is perpendicular to the angular velocity g>. Let the moving 
system be placed so that w is parallel to the A^-axis and L parallel 

to Y (Fig. 149). With this limitation Euler's equation becomes 

L = [Aosx + (C — jB)co»cojy 

For the particular position selected, the i and k components of L 

are zero. Since L is perpendicular to w (or there can be no 
change in the magnitude of <*> and consequently the term Aw* is 
zero. The angular velocity becomes the processional rate and 
may be written 0. Hence the equation becomes 

I = [(C ~ B) Owjy (16-34) 

The quantities and JSOw are the rates of change of the 
directions of the rotational momenta about the Z- and F-axes, 
respectively. There is, of course, no change in the magnitude of 
the rotational momentum about the F-axis, because w has no 
component along that line. 

The equations written above express an instantaneous relation. 
If L and <a remain perpendicular and L is constant in magni¬ 
tude, then the motion is called steady precessional motion. The 
magnitudes of a> and ik will be constant under this limitation. 

16*10. Euler’s Angles.—The quantities contained in Euler's 
equations are referred to a set of axes fixed in the body and there¬ 
fore moving with the body. In order to observe the progress of 
the motion, it is desirable to express the position of the moving 
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coordinate system by means of three angular coordinates meas¬ 
ured with respect to a fixed reference system. These angular 
coordinates are usually selected according to the plan used by 
Euler and therefore are called Euler's angles. 

Let A^'oEoZo be the fixed system and XYZ the moving system 
both with origin at 0. To afford a means of expressing angular 
displacements, let us imagine a sphere of unit radius to be con¬ 
structed about 0 as center. In the diagram (Fig. 150) the use of 
the arcs of the great circles in which the reference planes intersect 
the spherical surface greatly 
assists us in visualizing the 
relations. Euler's angles are 
usually designated by 
and if. Imagine the two sys¬ 
tems initially coincident. 
The moving system is first 
rotated about OZq through an 
angle xj/ which brings OX up 
to ON, (This line is called 
the nodal line.) From this 
position it is turned about ON 

through Oj bringing OZ into 
its final position. The third 
angular displacement <p is 

about the OZ-axis. As shown in the diagram, aU displacements 
are taken in the positive sense. 

We shall next proceed to write equations which express the 
relations between the two sets of angular velocity components. 
The components of the resultant angular velocity <i> may be 
written i/', 6, and (p and are taken parallel to the axes about which 
the angular displacements are taken, viz,, OZq, ON, and OZ. 
We may now write coa,, and in terms of 6, and <p by 
projecting the latter set into the lines of the moving axes. Hence 

o)x — 6 cos (p + xf/ Bin B sin <p 

u)y — --6 sin <p + \[/ Bin 8 cos <p 

<j>z = <p + ^ cos 6 (16-35) 

These equations are useful in connection with Euler's equation to 
determine the motion of the moving system. In any given case 
we may substitute the values given here for w*, Wy, and w, in 
Euler's equation. The resulting vector equation may then bc 
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written as three scalar equations by equating the coefficients of 
similar unit vectors. This procedure gives three differential 
equations of the second order in B, and The solution of 
these equations supplies the desired information. 

Problem.—Solve Eqs. (16-35) for if/, 6, and <p. 

16-11. Precessional Motion of a Heavy Top.—Let us con¬ 
sider the motion of a symmetrical top in the fixed reference 
system XqYqZo (Fig. 151) in which the OZo-axis is vertical 
and the two others are in the horizontal plane. The moving 
axis OZ is taken along the axis of symmetry and makes the angle 6 

with OZq. The positions of the two other moving axes are to be 
indicated by values of the Euler 
angles ^ and 4^. The fixed point 
of the top is at the origin. The 
only two forces to be considered are 
the weight of the top and the reac¬ 
tion of the support upon the apex 
of the top. These two forces form 
a couple whose magnitude is mgr 

sin where m is the mass of the 
top and r is the distance from the 
origin to the center of mass. We 
shall assume that the top is spin¬ 

ning at a constant rate co; hence we may put = w. Since the 
moments of inertia (A and B) are equal, we may now write the 
three following scalar equations from Euler^s vector equation. 

mgr sin 6 cos (p == A(bx + (C — A) coyca 

--mgr sin ^ sin = Awy + (A — C) ww* 
0 = C(b (16-36) 

An expression for the kinetic energy may be obtained by 
multiplying the first equation by the second by Wy, and the 
third by w, adding the three altered equations and then integrat¬ 
ing. The final result is 

— mgr cos B == \A{(j)x^ -h w/) -f- -f- D (16-37) 

where D is the constant of integration. If ^ = tfo at the time 
when the kinetic energy of the system is To, then 

?7ipr(cos ^0 ~ cos |A(a),2 ^ ^ (16-38) 
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The equation expresses the equivalence between the work done 
by the couple and the change in kinetic energy. 

Since the only couple acting on the top is always perpendicular 
to the Zo-axis, the angular momentum about this axis is a 
constant which we may call h. ^Ne may write an expression for h 

by projecting the angular momentum about the A"'-, F-, and 
Z-axes in the line OZo, and equating the sum of these projections 
to h. This gives 

h = Ao)x sin ^ sin + Ao)y sin 0 cos (p + Co) cos 6 (16-39) 

By using the energy and momentum equations [Eqs. (16-38) 
and (16-39)], expressions containing only 6 and ij/ maybe obtained. 
A substitution of the values of cox and as given by Eq. (16-35), 
in Eq. (16-38) gives 

mgr{coH du — cos 6) + ICu)- — To = IA{6- + sin^ 6) (16-40) 

Similarly, by putting the values of o)x and u>y in Eq. (16-39), we 
obtain 

h — C CO cos $ — A \p sin^ 6 (16-41) 

This equation may be used to express \p in terms of constants and 
d. We may, therefore, eliminate xj/ from Eqs. (16-40) and 
(16-41) and obtain thereby an equation containing only 6 and 6y 

from which 0 could be found. The details of evaluating 6 are 
difficult and may be left for special cases in which the constants 
are known. If, in any particular problem, d has been found, 
then ^ may be determined from Eq. (16-41). This value with 
the known values of co and 6 could be substituted in the third 
of Eqs. (16-35) for a determination of tp. This information 
suffices to describe the movement of the A^FZ system and 
therefore that of the top. 

16-12. Axes Moving But Not Fixed in the Body.—The prob¬ 
lem of the top, which was taken up in the preceding section, may 
be solved by the use of a set of axes which are moving, but 
are not fixed in the body. The primary advantage of using 
axes which are fixed in the body, as was done in Sec. 16-11, lies 
in the fact that the inertial constants about those axes cannot be 
functions of the time. There are cases, such as that of the 
symmetrical top which we are now considering, in which the 
axes may not be fixed in the body and still there may be no 
change of the moment of inertia about these axes. 
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To use a different procedure in this illustration, we shall 
assume that the motion is steady precession and determine the 
necessary force moment for its maintenance. 

Let the X^YqZq system be fixed as in Sec. 16-11, with the 
apex of the top at 0. We may let the moving axis OZ always be 
coincident with the axis of the spinning top, OF is to move in the 
XqYo plane, and X is perpendicular to the OF and OZ. The top 
is to spin about OZ with a constant angular velocity n. The 
moving axes will rotate about OZq with the processional angular 

Fig. 152. 

velocity U which is not equal to 
n. With this arrangement the 
moments of inertia about OX 

and OF remain constant, since 
thetopissymmetrical about OZ. 

Now if oix, coy, and are the 
angular velocities of the top 
about the X-, F-, and Z-axes, 
respectively, and if coi, a>2 and ws 
are the angular velocities of the 
X-, F-, and Z-axes about their 
instantaneous position, we may 
write 

w-c = —12 sin 6 0)1 = — 0 sin d 

COy = 0 0)2 = 0 

0)* = n 0)3 = 12 cos d (16-42) 

It will be observed that these components are written by pro¬ 
jecting 12, which is along OZo, and n (along OZ) into the three 
moving axes. The significance of each component, however, 
must be kept in mind. 

If Hxy Hyj and be the components of the angular moments 
about the X-, F-, and Z-axes, the general values and also the 
particular values for the present problem are 

Hz = Aoix — Fo)y — Eujg = —A12 sin B 

Hy ~ Ba)y — F(»)x “ D0l)z = 0 
Hz *= Oo)* — Z)o)y — Eii)x == Cn 

The general and particular values for the components of the 
force moment, since B is constant if the motion is steady, are 

Lx ** Hx HyOJz *+• Hz032 = 0 
Ly ^ Ay — HzOJi + //xW3 = Cnl2 sin ^ — 412^ sin ^ cos B 

Lf » 6^ r H^^ + Hyo>i « 0 (16-43) 
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If we assume that Ly is caused by the weight moment of the top 
and IS equal to mgr sin 6, then the force-moment equation for 
the assigned motion is 

mgr sin d == CnQ. sin ^ sin ^ cos 6 (16-44) 

It is instructive to examine the precessional velocity U, If 
we solve the equation for 12, the result is 

Q, = 2A cos ^ ^~ ^Amgr cos 6) (16-45) 

There are, evidently, two values of 12 which may be obtained 
from the action of a given force moment. These values will 
both be real if the quantity under the radical is positive. There 
will be only one real value if 

= 4Amgr cos d (16-46) 

If the quantity under the radical is negative, 0 will be imaginary. 
In other words, there will be no precessional motion if n is less 
than that value which satisfies Eq. (16-46) for a given set of 
constants. 

One other important conclusion may be drawn from the results 
here obtained. If the force moment in Eq. (16-44) is put equal 
to zero, we may still have precessional motion. With this 
assignment the right member may be written 

Cnl2 = A12“ cos 6 

= 0 

or 

« = {A cos d) 

Experimentally this condition may be realized by providing a 
suitable weight on the side of the axis of the top opposite the 
fixed point. If the top spins with a given value n and the frame 
holding it is given an angular velocity 12, the precessional motion 
will continue even though no force moment is applied. This 
fact has been demonstrated experimentally. 

16-13. Precession of the Earth*—The subject of precessional 
motion is only the introduction to a rather difficult study. The 
student should consult the literature to learn more about this 
interesting part of mechanics. We can hardly bring this short 
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introduction to a close without mentioning one rather important 
application of the development given above. 

The earth may be regarded as a huge top spinning about its 
axis. Owing to the fact that it is not uniformly spherical in 
shape, we find, in its motion about the sun, the presence of 
precession. In fact, the term precession’^ was first applied 
to the progressively changing position of the equinoxes or ^^pre¬ 
cession of the equinoxes.” Because of the rapid spin about its 
axis, the balance between gravitational and centrifugal forces 
upon the more or less fluid-like matter of the earth has resulted 
in the production of a shape which may be called an oblate 
spheroid. For mathematical purposes, we could regard the 
shape of the earth to be that of an approximately spherical mass 
with an equatorial belt or girdle. 

The gravitational attraction of the sun upon the spherical 
portion (so considered) of the earth is to be regarded as acting 
through its center of mass and can therefore have no effect upon 
the rotational part of the motion. It could change only the 
velocity of the earth, regarded as a particle. The sun’s attraction 
upon the equatorial girdle produces a force moment because of 
the differences in the distances from the sun to the various por¬ 
tions of the girdle. When the earth is at perihelion or aphelion, 
because the attraction on the nearer half of the girdle is greater 
than that on the farther half, there is a resultant force moment 
which would tend to rotate the plane of the earth’s equator into 
coincidence with the plane of the ecliptic, provided there was 
no spin about the axis. The presence of this force moment 
produces a precessional motion of the earth in much the same 
way as the weight moment causes a precession of the top in the 
illustration given above. The combination of the spin about 
the axis and the force moment caused by the differential gravita¬ 
tional attractions does not tend to make the earth’s axis become 
perpendicular to the plane of the orbit but does cause it slowly to 
describe a cone about the line passing through the center and 
perpendicular to the plane of the orbit. 

The magnitude of the precessional motion of the earth has been 
calculated from a knowledge of the constants. The result 
obtained indicates that the length of time required for the axis 
completely to describe the cone is about twenty-six thousand 
years. Along with the conical motion the line of equinoxes 
rotates iu the plane of the orbit with the same period. 
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In the preceding discussion of the processional motion of the 
earth we have tried to simplify the presentation by omitting the 
part the moon plays in this phenomenon. As a matter of fact, 
the moon^s contribution is 2.4 greater than that of the sun. 
The reason for this difference is because the moon, though very 
much smaller, is considerably nearer to the earth. A considera¬ 

tion of the entire phenomenon is rather complicated. In the 
first place, the plane of the moon^s orbit is not parallel to the 
ecliptic nor does it make a constant angle with the ecliptic. 
One must also take account of the fact that the force moments 
due to*the sun and the moon are not constant but both have 
periodic variations with different periods. One result which 
accrues from the variation of the force moment is to produce 
variation in the precession which is called nutation (or nodding), 
that is to say, the angle of the precessional cone is not constant 

but increases and decreases from a mean value. Another effect 
of the irregularity of the combined force moments is to produce a 
movement of the axis of rotation in the earth itself. The whole 

subject is fascinating and should appeal to the student of 
mechanics for further study. 

Problems.—1. Consider a rigid body wJiich is rotating about a fixed 
point 0. How would you locate the instantaneous axis of rotation in the 
moving system as well as in the fixed? Derive the equations which describe 
its position. 

2. Consider a case of steady precessional motion. Find the locus of the 
instantaneous axis in the fixed and moving systems. 

3. Find an expression for the kinetic energy of a body for axes fixed in 
the body by using Euler's e(|nations. 

4. Express the time rate of change of the kinetic energy of a body referred 
to axes fixed in the body in terms of the components of the resultant force 
moment about the moving axes and the components of angular velocity. 

5. Express the resultant angular momentum in terms of the constants 
referred to a set of axes fixed in the body. 

6. If the resultant external force moment is zero, the resultant angular 
momentum remains constant in magnitude and direction. Is the direction 
of the resultant angular velocity constant? Does the magnitude of the 
resultant angular velocity change? 

7. Find an expression for the cosine of the angle between the instantaneous 
axis and the axis of the resultant angular momentum, when the external 
force moment is zero. 

8. If a body is rotating with one point fixed, show that the angular 
acceleration about an axis, the direction cosines of which are 2, nq and n with 
respect to the moving axes, is + moty + nCiz (Gray). 



CHAPTER XVII 

OTHER GENERAL PRINCIPLES 

17-1. D’Alembert’s Principle.—Before the publication of 

D’Alembert’s famous principle in his Traite de dynamique (1743), 
mathematicians of the time had solved numerous dynamical 
problems. The nature of the problems varied but generally 

they involved the interactions of several bodies which were 
connected together by various mechanical contraptions, levers, 
pulleys, etc. As a rule, the method of solution used was peculiar 

to the individual problem. Some of the solutions were ingenious 
but were usually very elaborate or, from our point of view today, 
were anything but direct. The reason for this procedure was 

simply because there were so few general principles which were 
known at that time. It is interesting to observe how the dis¬ 
covery of the general principles, many of which are in common 

use today, came about as a natural result of this interest in 
mechanical and other problems. Contributions to the advance¬ 
ment of mathematical physics were made, in this way, by a 

large number of men such as Bernoulli, Euler, and Huyghens. 
D’Alembert’s principle was one of the most useful at that time. 
Lagrange thought it sufficiently important to use it as a basis for 
his development of the entire subject of dynamics. 

D’Alembert’s principle is readily derived from the fundamental 
force and force-moment equations. Its uniqueness lies not so 
much in a novelty of form or in the introduction of new quantities 
as in a point of view. We shall first explain the principle as it is 
usually used and illustrate its use by a particular problem. 
In Sec. 17-6 (below) we shall discuss its application to problems 
involving constraints and show how the unknown reactions of 

the constraints may be eliminated. It is in this feature that 
D’Alembert’s principle is of special interest. 

Let us consider a system of n paHicles, upon any one of which 

there may be two kinds of external forces, those which have 

their origin in things that are external to the system and those 

which ai^ eaused by mutual interactions between the particles 
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of the system. We may designate, as before, the external 
force on the ith particle by Fi and the internal force on the same 
particle by Rx. If rrii is the mass of the particle and r< is the 
position vector of the particle referred to some arbitrarily selected 
reference system, then the force equation for this particle may 
be written as follows: 

Fx + Rx-^ ntx^ (174) 

Now the point of view which D^Alembert expressed was with 
regard to the right-hand member of this equation. Instead of 
the usual dynamical conception of nix {d%/dt^) as a measure or 
result of the applied forces Fx and i?^, he chose to consider the 
right member as a force—a reaction to the agency supplying 
the resultant external force (Fi + Rx), 

The quantity {dhx/di^) is, of course, dimensionally equiva¬ 
lent to a force. In fact, from this point of view, the quantity 
expressed by the product of the mass by the acceleration, or the 
time rate of change of the momentum, may be treated as a force. 
This quantity has been called the force of inertia or the effective 
force. We shall use the former term. 

D’Alembert observed that, if the force of inertia be reversed 
in direction and then combined with 
the ordinary applied forces, the vector 
sum of the entire system was zero. 
This conception is expressed by the 
following equation: 

- 0 (17-2) 

and graphically by the diagram of Fig. 
153. Mathematically all that has been done was to transpose the 
right-hand member of Eq. (17-1) to the left side and change its 
sign. 

The next step made by D’Alembert was a more important one. 
The form in which the equation appeared probably suggested 
to him the possibility of using the principles of statics to solve 
dynamical equations similar to the one written. Whether or 
not the conception was developed in this manner we cannot say, 
but the important thing is that he found that the idea was 
feasible and that problems expressed by such equations could 
be solved by the procedure used in statics. 
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A necessary and sufficient condition for equilibrium to exist 
between the forces acting upon the particle and the force of inertia 
is that the virtual work of these forces for any arbitrary virtual 
displacement, compatible with the liaisons, must be zero. If 
bTi is the virtual displacement for the ith particle, the virtual 
work for that particle is 

(Pi + Ri- = 0 (17-3) 

If we sum up such equations, from 0 to n, for the entire system 
of particles, since the sum of the Ri forces is zero, the result is 

It is instructive to write a similar equation for a single free 
particle of mass m upon which the components of the external 
resultant force are F*, Fy, and Fg. If the virtual displacements 

parallel to the reference axes are by^ and bZy the equation is 

{"'■ - ”•§) - "S) ’•>+("■ - 
Since the virtual displacements must be independent of each 
other, the coefficients of these quantities must be separately 
equal to zero which gives the necessary three equations for 
determining the motion of the free particle. 

17-2. D’Alembert’s Principle for Rigid Bodies.—We shall 
consider the system of rigid bodies to be made up of a system of 
particles. We may then write the equations for any particle 
and express the terms by a sum over the entire system. The 
introduction of rigid bodies into the consideration necessitates 
a use of the effects of the force moments in producing rotational 

motions. 
Let the mass of the fth particle be nti and let its coordinates be 

Xy yy and z in the selected reference system. If F*, Fy, and F* 
be the components of the impressed accelerating forces upon mt, 
then, by D’Alembert’s principle, these forces together with 
the forces of inertia upon this particle will be in equilibrium; 
hence, by the first condition for equilibrium in statics, 
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For rigid bodies, the second condition for equilibrium requires 
that the sum of the moments of the forces about each of the three 
axes must be zero. To apply this condition we must consider 
the moments of the inertia forces as well as the moments of the 
impressed forces; hence for the moments about the X-axis we 
may write 

,F.- .F. - J - #) - 0 (17-6) 

Similar equations may be written for the moments about the 
two other axes. 

The equations for the system may be written by taking the sum 
over the entire system, h'or the force equations it is perhaps 
preferable to write the time rate of the momentum in place of the 
mass acceleration; e.g.<, 

Similarly for the moment of mass acceleration we may write the 
time rate of angular momentum; e.g,, 

( dh dhj\ d\ ( dz 

Introducing these changes the six equations, which are necessary 

n 

ZFy) 

xF,) 

dt ■ 

d- 
dt ‘ 

dt 

dt^ 

n of the 1 system, are 

dx 
0 

A dy 
0 

■A dz 
0 (17-7) 

. / dz 
<^\ydt - 

dt) 
= 0 

/ dx dz\ 
^dt) 

= 0 

/ dy 
’^XTt 

dx\ 
-^di) 

= 0 (17-8) 

It will be left to the student to write these equations in the 
vector form of expression. 
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In the following section we shall give illustrations of the use of 
the principle in solving problems. 

17-3. Illustrations of the Use of Alembert’s Principle.—In 
this section we shall solve three simple problems by using 
D^Alembert^s principle. The problems involve translational 
motion, rotational motion, and a combination of the two types 
of motion. 

a. Translational Type.—A body slides down an inclined plane. 
Friction is assumed to be constant. Find the equation of motion. 

Let mg be the weight of the body, R the force of resistance, 
and P the normal reaction to the plane. If the reference system 
is selected as shown in the diagram (Fig. 154), then the equations, 

written by the use of D^Alembert^s 
principle, which express equilibrium 
between the forces along the Z- and 
F-axes, are 

d^x 
mg sin a -- R -- == 0 

mg 00^ a — P = 0 (17-9) 

These two equations, together with 
initial conditions, completely 
determine the motion. 

b. Rotational Type.—A massleSs 
rod is hung from a rigid support by 
means of a frictionless hinge so 
placed that the rod may move only 
in a vertical plane. Attached to the 
rod are two small bodies M and N 
whose masses are to be designated 

by m and n. The distances from M and N to the center of oscilla¬ 
tion 0 (Fig. 155) we shall call r and s, respectively. It is required" 
to find the differential equation of motion by using P^Alembert’a 
principle 

Fia. 156. 
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Since the motion is limited to pure rotation by the nature of 
the constraints, we may use Eqs. (17-8) for describing the 
motion. The second condition for equilibrium requires that the 
sum of the force moments about any axis be zero. A selection of 
0 for the axis of moments eliminates from consideration the 
reaction of the support at 0 as well as forces upon M and N which 
are parallel to the rod. 

In place of using rectangular coordinates, it is more convenient 
to use polar coordinates. The forces of inertia may, in this 
case, be expressed in terms of the component accelerations, which 
are parallel and perpendicular to the rod. However, only the 
inertia forces which are perpendicular to the rod contribute to 
the moment about 0. The moments of the inertia forces may 
readily be written by the use of the expression for the component 
of acceleration Jy [Eq. (4-15)] if it is remembered that r and s are 
constant. The moment equation by D’Alembert's principle is 
therefore 

mgr sin y + ngs sin 7 — mr^ ^ ^ ~ ® (17-10) 

or 
(i 

mgr sin 7 + ngs sin 7 ^ (nir^o) + ns^co) = 0 

This equation is the desired differentikl equation from which, 
together with the initial conditions, the motion may be deter¬ 
mined. The student should verify the signs used in this equa¬ 
tion. It is interesting to show that the equation may be converted 
into one the form of which is similar to that which describes the 
motion of a single particle. 

Problem.—Suppose that the rod carrying the two inasst's M and N, of 

the preceding illustration, is made to rotate about the vertical axis through 

0 and makes a constant angle with 

the vertical axis. Find an expres¬ 

sion for the angular velocity of the 

rod. 

c. Translational and Rota¬ 
tional Motion.—For this case we 
shall consider the motion of a 
cylinder rolling down an in¬ 
clined plane. 

Let the mass of the cylinder be m, its radius r, and the angle 
of inclination of the plane a. The forces upon the cylinder are 
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mgj the resistance R, and the reaction of the plane P. The 
reference system may be selected as shown in Fig. 156. Equilib¬ 
rium among the forces parallel and perpendicular to the plane 
{OX) is given by the equations 

d^x 
mg sin a — R — = 0 

mg cos a — P =0 (17-11) 

By taking moments about the axis of the cylinder, the balance 
between the force moments is given by the equation 

Rr - = 0 (17-12) 
2 dt 

Eliminating R from the first of Eqs. (17-11) and (17-12) gives 

1 dxc d^x ^ 
mg sm a — ^mr-^ — m =0 

2 dt dt- 

3 d^-x . 
sm a - = 0 

A solution of this equation may be readily obtained. 

(17-13) 

Problem.- Find tho differential equation of motion of a ladder whicdi falls 

with its ends in (Kintaet with a. rough horizontal floor and a smooth vertical 

wall, assuming that the friction is not sufficient to prevent slipping. 

17-4. D’Alembert’s Principle and Conservation of Energy.— 
We shall consider a system of n free particles and show how 
D’Alembert^s principle may be used to derive the principle of 
the conservation of energy. The system is to be regarded as 
free if there are no conditions imposed upon the way in which the 
coordinates of the particles may vary, e.g.^ such as the require¬ 
ment that the x coordinate of all or any of the particles must 
remain constant, which would restrict the motion to a single 
plane. We shall designate the external forces upon the ith 
particle by Px, Fy, and and the internal forces by Px, Ry, and 

Px. 
The virtual work of the forces, by D’Alembert’s principle, for 

any arbitrary displacement bs of the fth particle is zero and may 
be written as follows: 

+ Ry- m^yyy 

+ + P» ““ ® (17-14) 
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where hx, Sy, and 8z are the components of Ss in the selected 
reference system. Since the sums of the internal forces, for the 
entire system, must be zero, the preceding equation may be 
written in the form 

+ ^8y + = ^(Fjx + Fy5y + FM (17-15) 
n ' ' n 

We may replace the virtual displacements in this equation^ 
since they are arbitrary and the particles are free, by the actual 
displacements dxy dy^ and dz. With this change the equation 
may be integrated. If we write Vo and v for the initial and final 
velocities of Mi for the particular interval over which the integra¬ 
tion is to be extended, and let Sq and s be coordinates which 
designate the corresponding terminal positions of m,-, then the 
equation reduces to 

- Vij^) = dx + Fy dy + Fz dz) (17-16) 

The right-hand member may be expressed in terms of the 
potential energy V if the system is a conservative system. In 
such a case, there exists a force function IJ from which the forces 
may be found [see Eq. (10-23)]. Since 7 = — f/, 

(Ea dx Fydy + Fz dz) = —dV 

Hence the integration of the right-hand member of Eq. (17-16) 
may be carried out. If Vo and V represent the values of the 
potential energy in the initial and final configurations, and To and 

T stand for the kinetic energy in the corresponding positions, 
Eq. (17-16) may be written in the following abbreviated form 

T + F = 2"o + Fo (17-17) 

This equation expresses the important fact that in conserva¬ 
tive systems there is no change in the energy of the system. 
This principle is called the principle of the conservation of energy, 

17-6. System with Constraints.—Constraints are mechanisms 
or arrangements which influence or restrict the motions of 
particles or bodies in some definite manner. For example, a 
particle which is attached by an inelastic string of finite length 
to some fixed point is constrained to move within the sphere 
whose radius is equal to the length of the string. A door, 
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which is fastened by hinges to some rigid support, can have only 
rotational motion about a definite axis. Its motion is therefore 
subject to a certain constraint. The forces of constraint are 
those forces which are produced by the constraining mechanism 
and, in acting upon the body under consideration, modify the 
motion accordingly. 

In the case of a body or particle upon which there are con¬ 
straining forces, it is possible to regard the body or particle as 
free, provided we can include the forces of constraint along with 
the other existing forces. In the case of the simple pendulum 
the constraining force is the tension of the cord. If this tension 
could be expressed in suitable terms, we could write the dif¬ 
ferential equation of motion of the simple pendulum by introduc¬ 
ing, in the general equations for a free particle, the resultant force 
formed by adding the tension of the cord to the weight of the bob. 
Such a procedure depends upon being able to express the con¬ 
straining forces. 

If the constraining forces were unknown, the equations of 
motion might still be obtained by using D’Alembert^s principle. 
It is primarily in problems of this nature, where the forces of 
constraint are unknown, that D^Alembert^s principle is par¬ 
ticularly advantageous. The key to the procedure lies in being 
able to select the virtual displacements in equations such as 
Eq. (17-5) so that the virtual work of the unknown forces is 
zero, and hence such terms as may contain the constraining forces 
may be omitted. For example, suppose the tension in the cord 
of a simple pendulum were unknown. We could use spherical 
coordinates in place of the ordinary rectangular coordinates 
and, with the origin at the fixed point, the virtual displacement 
parallel to the cord would be zero. By a proper orientation of the 
reference lines a second virtual displacement may be made equal 
to zero, if the motion is still further restricted to a vertical plane. 
After zero is put for these two virtual displacements, the remain¬ 
ing terms in the general equation would suflBice completely to 
describe the motion, after the selection of initial conditions. 
It is a useful exercise for the student to follow the procedtire 
indicated in the case of the simple pendulum and derive the 
differential equation of the motioli. 

17-6, Constraints and the Work Equation.—We shall dijscuss, 
in this section, a general method by which the constraining 
forces niay be eliminated from the general equations of ndiotioa 
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for a system of n particles. Our treatment of the problem will 
be limited, however, to a system of particles in which the con¬ 
straints are expressible by means of equations containing the 
coordinates of the particles and the time, but not containing 
any time derivatives of the coordirfates. Such a system is called 
a holonomic system. 

In the system each particle may be subject to one or more 
constraints. Such a constraint may be expressed by an equation 
of the form 

^(^9 Vf t) = 0 (17-18) 

which in reality represents a surface, the nature of which is to 
be expressed by a particular equation. If, for example, the 
particle were constrained to move on the surface of a fixed sphere 
of radius r, then the equation 

(p(Xj y, z, i) ^ - 0 

could be used. The constraint might be such as would require 
a moving spherical surface. In such a case, terms containing 
the time would have to be included. 

If a single particle were subject to two constraints, then two 
equations, similar to that written in Eq. (17-18), would be needed. 
The interst^ction of the two fixed surfaces is, in general, a curved 
line upon which the particle would move. In our general case, 
however, the constraints include the time; hence for two con¬ 
straints the motion of the particle is restricted to a curve, the 
shape and position of which are changing. With the imposition 
of a third constraint, the position of the particle is determined 
by the instantaneous intersection of three surfaces. 

Suppose in the system of 7i particles that there are k con¬ 
straints for each particle, then there will be, in general, nk 
constraints altogether. Since three equations are required 
completely to describe the motion of a free particle, there will 
be 3n — fc independent equations of motion for the system with k 
constraints for each particle. 

Procedure for a Single Particle,—Before applying D^Alembert^s 
principle to the system of particles, it is better to simplify the 
procedure by considering how the forces of constraint are elim¬ 
inated when we are dealing with a single particle and only one 
constraint. Suppose the single particle is given a virtual dis¬ 
placement be along the surface of the constraint ^(x, i) « 0. 
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By such a selection the work of the constraining force, which is 
normal to the surface and therefore to 5s, is zero. Now if we 
can introduce, in the general equation, a limitation upon 5s 
so that it must remain in the surface of constraint at the time t, 
the forces of constraint will be eliminated. If the components 
of 5s along the reference axes are 5a:, by, and bz, and if bx, by, and 
bz satisfy the equation 

then 5s will be in the surface at the particular time t. It will 
be noticed that the partial derivatives are written with the 
assumption that t remains constant. 

Equations (17-19) and (17-5) together give the equations of 
motion for the particle on the constraining surface ip. One of 
the component virtual displacements may be eliminated from 
the two equations. The single equation resulting thereby would 
contain the two other virtual displacements. Since these 
components are purely arbitrary, the coefficients of these two 
components may be equated to zero, which [with Eq. (17-18)] 
give the three necessary equations of motion. 

Lagrange devised a rather clever way of eliminating one 
component of the virtual displacement and at the same time 
provided a form for writing the general equation which is instruc¬ 
tive. The device has been called the method of indeterminate 
multipliers. For the simple case of the single particle with one 
constraint, all we have to do is to multiply Eq. (17-19) by an 
arbitrary multiplier, which may be called X, and then adding the 
result to Eq. (17-5) we obtain 

(f. + xg _ 

+- ’^y -» 

Now X is arbitrary; hence we may assign a value to X such 
that the coefficient of 5a:, say, would be equal to zero, or 

m 
X = 

d^x 

dP 
d<p 
dx 

(17-21) 
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The coeflScients of 8y and 8z would also be zero; hence we obtain 
two equations from PJq. (17-20) which with the equation of the 
constraint is sufficient to determine the motion. 

Before returning to the general case of a system of n particles 
with several constraints, it is worth while to examine the terms 
in Eq. (17-20) which contain X. Each of these terms is a com¬ 
ponent of the force exerted by the constraint upon the particle. 
If we let R represent this force, or reaction as it is generally 
called, then 

R = 
dx dy dz 

and 

If the surface is fixed, the work done by R is zero, as may be 
readily seen by letting the virtual displacement at the time t be 
equal to the actual differential displacement. If the actual 
displacement is ds == dx i + dy j + dz k, then the work is found 
to be zero [see Eq. (17-19)]. 

If, however, the surface is not fixed, then in place of Eq. (17-19) 
we should have 

K*” + 5^*1' + + If “ - » 
and the right-hand member of Eq. (17-23) would not be zero. 
In the general case of a moving surface the work equation formed 
from Eq. (17-20) would contain terms expressing the work done 
by the forces exerted by the moving surface upon the particle. 

Case of a System of Particles.—For the holonomic system of n 
particles let the constraints for the fth particle be 

^Xi yi Zit) = 0 ^{xi yi Zi <) = 0 (17-25) 

and others of similar form if they be present. As in the case of a 
single particle, the displacement of the fth particle will lie in 
the oonstraining surfaces at the time t if 
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+ gto - 0 

(17-26) 

If there are k constraints for each particle, then there will be k 
equations similar to those written. By means of these equations, 
k of the virtual displacements for each particle may be eliminated 
from D’Alembert’s general equation for virtual work. Making 
use of Lagrange’s method of indeterminate multipliers, we may 
multiply each of Eqs. (17-26) by X*, etc., and then add the 
resulting expressions to the general equation for the system. The 
results are more conveniently written, however, if we equate each 
of the coefficients of the virtual displacements to zero and, for the 
sake of simplicity, omit the subscript i from the coordinates, 
indeterminate multipliers, and mass. Hence 

+ ’■s + >‘2 + ' ■ ) ■ S’"®! 
n N ' n 

in which values for X, /i, , . . may be arbitrarily selected for 
each particle so that a corresponding number of virtual displace¬ 
ments will vanish. The resulting equations, together with those 
for the constraints [Eq. (17-26)], are sufficient completely to 
determine the motion for the system of particles. 

Illustration.—We shall select for illustration a case in which a 
particle is constrained to move in a circular path under no 
applied forces. The only forces acting are to be those of the 
constraint which we shall assume to be unknown. It is to be 
noticed that these xmknown forces will be eliminated by the 
procedure described above. 

Let the particle of mass m move in a circle of radius r. We 
shall place the reference system so that the plane of the circle is 
intheXF reference plane with the center of the circle at the origin. 
There are therefore two constraints, one which keeps the particle 
ip the XY plane and the other requires that it move in a circular 
path. The equations for these two constraints are 

— r* ® 0 and ^ « 0 (17-28) 
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We may next find the partial derivatives of each of these functions 
with respect to the coordinates and then, by using equations of 
the type shown in Eq. (17-19), write in the requirement that the 
virtual displacement shall be in the two surfaces. These equa¬ 
tions are therefore 

X dx + y 8y + z 5z = 0 and 5;? = 0 (17-29) 

After multiplying the first of these equations by the indeterminate 
multiplier X and the second by /jl, we may write the D^Alembert 

equation for virtual work [see Eq. (17-20)]. Since Fx, Fy, and Fe 
are zero, the equation is 

(^\x - + (\y - + (X« + = 0 (17-30) 

We may select values for X and m so that the coefficients of two 
of the components (say 8x and dz) of the virtual displacements 
are zero. Hence 

_ md}x 
^ xW 

and fx —\z 

The coefficient of by must also be zero; hence upon substitution 
of the value for X in this coefficient we find that 

my cPx d^y 
= 0 (17-31) 

The form of this equation may be altered, after multiplying 
through by x, so that it may be more easily integrated. The 
revised form is 

Hence 

s(’"» 
dx 
~dt 

mxfj.O 

my 
dx 
dt 

mx 
dy _ 
dt 

= C (17-32) 

where C is a constant. The physical meaning of the equation is 
that the moment of the momentum, or the angular momentum, 
is constant. This equation, together with those for the con¬ 
straints, is sufficient for a determination of the motion. Since 
Eq. (17-32) does not contain the coordinate z, only the first 
equation of the constraints is needed. 
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The details of integration and of evaluating the constants of 
integration, of which there are two, may be omitted. 

Problems.—1. What are the forces exerted by the constraint in the illus¬ 
tration given above? 

2. Find the equations of motion for the particle of the preceding illus¬ 

tration (Sec. 17-6) by using the coefficients of By and bz for evaluating X 

and M- 
3. A particle of mass m slides down a smooth wire which is bent in the 

form of an ellipse. The major axis of the ellipse is vertical. The only 

applied force to consider is the weight of the particle. The reaction of the 

constraint is to be regarded as unknown. Find the equations of motion. 

17-7. Degrees of Freedom.—The phrase degrees of freedom is 
commonly used in connection with constrained motion of particles 
or rigid bodies to indicate the number of independent coordinates 
necessary completely to specify the position of the particle or 
rigid body. A free particle has three degrees of freedom because 
three independent coordinates are needed to give its position in a 
selected reference system. If, however, the particle is constrained 
to move on some fixed surface, it has two degrees of freedom. 
In the case where two constraints are present, the particle must 
move on the line of intersection of the two surfaces and has but 
one degree of freedom. 

A free rigid body has six degrees of freedom, for three coordi¬ 
nates are needed to specify the position of some point of the body, 
such as the center of mass, and three others are required to give 
its orientation with respect to a moving system, whose origin is 
at the selected point and whose axes are always parallel, say, to 
those of the fixed reference system. A rigid body with one fixed 
point has three constraints and three degrees of freedom. If the 
rigid body has a fixed axis, there is but one degree of freedom. 

17-8. Generalized Coordinates.—In many of the problems 
encountered in dynamics, particularly when constraints are 
introduced, it is often convenient to introduce certain parameters 
which may be useful in specifying the positions of a particle or of 
a rigid body in place of the ordinary coordinates. The number 
of such parameters is usually made equal to the number of 
degrees of freedom in order that all of the parameters may be 
independent of each other. For example, if a particle is con¬ 
strained to move upon a cylindrical surface, there are two degrees 
of freedom, and two parameters would be necessary. One 

parameter would be required to specify the position of the 
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particle along any element of the surface, and the other would be 
needed to give the angular position of that elgnent with respect 
to some reference plane. 

The term generalized coordinates has been introduced to 
describe these parameters. These are usually designated by the 
letter q with appropriate subscripts. If we wished to specify the 
position of a particle which has one constraint and two degrees 
of freedom, we should use the two generalized coordinates qi and 
^2. These two coordinates would be sufficient to locate the 
position of the particle upon the surface of the constraint. 

In general, it would be necessary, or at least convenient, to 
define the parameters in terms of the ordinary rectangular 
coordinates by what might be called transformation equations. 
Such equations may be written in the following general forms: 

^ q^) y = /2(gi q^) Z = fz{qi ^2) (17-33) 

Suppose that the generalized coordinates gi, q2 of a particle 
which has one constraint be given, and it is desired to find the 
equations of the constraining surface. It would be only necessary 
to eliminate the two parameters from these three equations to 
obtain the desired equation. 

Now the principal advantage of using generalized coordinates is 
to provide a means for removing the necessity of including the 
constraints. In this respect the use of generalized coordinates 
is similar to D’Alembert’s principle. The differences in the two 
procedures will appear in the consideration given below. To 
show how the equations for the constraints are removed by a 
suitable selection of the generalized coordinates, let us suppose 
we are concerned with a particle which is constrained to move on 
the surface of a sphere of radius r. The equation of the con¬ 
straint is 

^ == -f- = 0 

Since there are two degrees of freedom, we shall need two general¬ 
ized coordinates which we shall call qi and ^2. If we put 

X — r cos qi y ^ r sin qi cos q^ z — r sin q\ sin q^ (17-34) 

and substitute these values for the rectangular coordinates in the 
equation for the constraint, we find that it is identically satisfied. 
Hence the values of qi and g2, as defined by Eq. (17-34), are 

such that a use of them removes the necessity for including the 
constraint in the problem. 
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It will be instructive to write expressions for some of the 
familiar quanUi^s, using generalized coordinates. We shall 

again make i!8i^Ble simple case of a particle with one constraint 
and two degrees of freedom. In the general sense dqi and dq% 

are to be regarded as differential displacements. We can write 
directly relations between the differential displacements in the 
two systems of coordinates as follows: 

* - - Hf' +1;"” 

* - S'*’* + 

in which the coefficients of dqi and dq2 are to be regarded as 
cosine factors. For example, dx/dqi may be regarded as the 
cosine of the angle between dx and dqi and projects dqi into the 
line of dx. The relations for the component velocities in the two 
systems may be similarly written. These equations may be 
obtained directly from Eq. (17-35) by dividing each term of the 
equations by dt. To abbreviate the expressions, we shall use 
X for dxjdiy etc. The equations are 

bx . , bx . . by . by , 

* - 5?.«‘ + * + (17-36) 

The magnitude of the generalized velocity could be found from 
these three equations by taking the square root of the sum of the 
squares of the right-hand members. We shall omit the expres¬ 
sion. The components of the momentum may be^ written by 
multiplying each term of the three equations by m, the mass of 
the particle. 

The kinetic energy T of the particle ma/be expressed in the 
generalized coordinates and their time derivatives by squaring 
each equation of Eqs. (17-35), dividing throughout by (d0^ 
adding the three resulting equations, and introducing Jw on 
both sides. The final result is written below with abbreviations 
for the coefficients of the squares of the generalized velocity 

components. 

T — + 2Bqiq2 + Cq^^) 

in which 
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R = dy dy dz % 
dqi dqi dqi dq^ dqi dq^ 

C = (f,) + (ll) + (^)’ (1^-37) 
It will be observed that the kinetic energy in generalized coordi¬ 
nates is expressed as a homogeneous quadratic function of the 
generalized velocity components. The coefficients A, and C 
are functions of the generalized coordinates alone. 

17-9. Lagmnge’s Equations.—In deriving Lagrange^s general¬ 
ized equations, it is immaterial to the form of the final result 
whether we use the equations for a single particle or for a system 
of particles. The difference in the final equations is to be found 
only in an interpretation of the meaning of the symbols used. 
For the sake of simplicity in writing the details of the develop¬ 
ment we shall consider only the case of a single particle. I» fact, 
since we may select the generalized coordinates so as to eliminate 
the constraints, we may consider the particle to be free. 

We start with the ordinary equations of motion of the free 
particle which are 

Fx = m X, Fy = m ijj and Fz — m 'z (17-38) 

Each of these equations is to be projected into the line of the g^s 
by multiplying it by dx/dqi, dy/dqiy dzjdqiy and dx/dqz, 
dzjdq^j respectively, for each of the q coordinates. Again we may 
simplify the procedure by carrying out some of the details for 
only one coordinate, say gi. Adding the three equations after 
multipl3dng each by the proper factor gives 

dqi^^dq,^ dqj 
= F 

'Bqi 
+ F. 

dz 
Bqi 

(17-39) 

The right-hand member may be called the generalized force and is 
usually identified by the 83anbol Qu 

The left-hand member is to be expressed in terms of the 
generalized kinetic energy T. To do this requires some manipu¬ 
lation. The first term may be written in the following manner; 

(17-40) 
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With the same type of transformation applied to the two other 
terms, Eq. (17-39) takes the form 

df.dx , .dy , ,dz 
—r y-r~ + di\ dqi ^dqi dq 0 - 

1 -^y I -32 
dqi dq 0= 

Qi 

(17-41) 

Similar equations could be written for the other generalized 
coordinates, q^, q^y etc. 

Since the kinetic energy of the particle is 

T = + 2/^ + 

the second part of the left-hand member is evidently the partial 
derivative of the kinetic energy with respect to qi. We may 
leave this part of the analysis and examine the first part of the 
expression. 

The rectangular coordinates are all functions of the g’s and 
the tme t] hence [Eq. (17-36)] 

dx . , dx . , dx , 

with similar equations for y and z. Now, in general, x will be 
some function of the ^’s, g’s, and hence we differentiate the 
equation for x with respect to gi, q^y and qs with the following 
results: 

dx __ dx _ dx 
dqi dqi dq2 dq2 dq^ dqs 

(17-42) 

Similar equations may be written for y and i. With these rela¬ 
tions the first part of Eq. (17-41) may be transformed, thus: 

,dx , .dy , .dz^ .dx , .dy , .dz 
+ ^dqi ) 

(17-43) 

And again we must remember that terms (not written) containing 
derivatives with respect to qt and g» could be similarly trans¬ 
formed. Combining the results of these changes with the 
generali^d force equations for Qi, Qj, and Q», we may write 
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^ = n 
d<\3gi/ dqi 

d^dq^) dq2 

^(dT\ _ ^ 
dt\dqz/ dqz 

Qs (17-44) 

These are Lagrange^s equations of motion for the free particle. In 
these equations Qi, Q2, and are the generalized force com¬ 
ponents corresponding to the coordinates gi, ^2, and g^, respec¬ 
tively. The quantity T is the kinetic energy of the particle. 
Without going into the details of the derivation we could obtain 
equations similar to those written for a system of particles in 
which, however, T refers to the kinetic energy of the system of 
particles and Qi, Q2, and Qz are the components of the resultant 
generalized force. 

17-10. Lagrange Equations for a Conservative System.—If 
the forces are conservative forces, then there is a force function U 
from which the components of the force may be found, and 

F. = F - 
dz 

(17-45) 

The generalized force components may then be expressed by the 
following equal ion: 

Qi 

and, similarly. 

dx dqi dy dqi dz dqi dqi 
(17-46) 

If now we write for Qi its value in the first of Eqs. (17-44), we 
obtain 

d(^\ _ d{T + U) 
dt\dqi/ dqi 

(17-47) 

The force function 17 is a function of position and therefore a 
function of the coordinates alone. It may therefore be included 
in the first term of Eq. (17-47), gaining thereby a simpler form of 
expression. In place of —17 we may substitute 7, which we have 
used in Chap. X, to represent the potential. Here, however, we 
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use V to represent the potential energy of the mass whose kinetic 
energy is T, This substitution gives the quantity T — F which is 
designated by the single symbol L and has been called the kinetic 
potential. With this change the equation becomes 

which is one of the equations of motion for a conservative system. 
The others may be readily written. 

17-11. Constraints and Lagrange’s Equation.—We have seen 
above that for a particle the number of degrees of freedom plus 
the number of constraints must be equal to three, and for a rigid 
body this sum must be six. In using Lagrange’s equations only 
for the solution of a problem we need as many generalized 
coordinates as there are degrees of freedom. The Lagrangian 
function L must be expressed in terms of the independent 
generalized coordinates and their time derivatives, if we are to 
use only Lagrange’s equations. If we are considering the motion 
of a particle with two degrees of freedom and one constraint, we 
shall need two independent generalized coordinates, say qi and 
^2, and must be able to express L in terms of the ^1^2 and ^1^2. 

In some problems it is difficult to reduce the number of 
coordinates to that of the independent coordinates because of 
complicated geometrical relations. In such cases we may have 
L expressed in terms of more than the number of independent 
coordinates and use expressions giving the geometrical relations 
in conjunction with the Lagrangian equations. 

To show how to set up the equations, let us consider the case 
of a particle (in a conservative system) with two constraints. 
Ordinarily we would try to express L in terms of only one inde¬ 
pendent coordinate. Suppose that it is not easy to do so but 
that we can express L in terms of the three coordinates ^1, q^, and 
qz and their time derivatives. Suppose that the geometrical 
relations are expressed by the equations 

/i (^1 92 qz) =0 U ki qz) = 0 (17-49) 
Now applying the principle of virtual work to Lagrange’s 

equations, we may write 

/ddL dL\^ ^ /ddL aL\, , 
dgi \dt d4t dqt 

(If.-!>•-» 
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Two other equations which are derived from Eq. (17-49) are 

411 

= 0 dq\ 
df, 

dQi 

9/2. 

9qz 

(17-51) 

If the method of Lagrange's indeterminate multipliers is used, 
these two equations are to be multiplied by X and fi, respectively. 
The resulting expressions may be combined with Eq. (17-50) by 
adding the coefficients of the similar virtual displacements 
8qi, 5^2, and 8qs and equating these sums separately to zero. 
The results are 

d dj^ _ + 4^ + # = 0 
dt 9qi 9qi 9qi ^9qi 
d 91 dL 

+ + M— == 0 
dt 9q2 ~9q2 9q2 ‘^9q2 
d 
dt 

dL _ 

9qs 
- ^ 

9qi 
+ ^dq>i 

- 0 (17-52) 

These three equations together with the two geometrical equa¬ 
tions [Eqs. (17-49)] are sufficient to determine the three coordi¬ 
nates and the indeterminate multipliers. 

The method used above is a general one and may be used in 
cases involving more coordinates and one or more constraints. 

17-12. Illustrations of the Use 
a. Fallmg Particle Subject to Two 
Constraints.—A particle of mass m 
falls under the influence of its weight. 
It is constrained to move in a vertical 
circular path of radius r. Find the 
differential equation of motion. 

We shall select the reference system 
with the origin at the center of the 
constraining circle and with the AT- 
axis vertical, as shown in Fig. 157. 
Let y be the angle which the radius, 
drawn to m, makes with the X-axis. Since there are two con¬ 
straints, a single generalized coordinate only is necessary. We 
shall choose y to be this coordinate, since the kinetic potential is 
readily expressed in terms of 7. 

of Lagrange’s Equations. 
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The kinetic energy of m is or since F = w r. 
The potential energy, referred to the F-axis as a reference line, 
is mgr cos y. Hence the kinetic potential is 

L = T -- V ^ — mgr cos 7 (17-53) 

from tyhich 

d dL Ao) j dL 
T. T“ = ^lid -r- = sin 7 at 003 at D7 

Therefore the equation of motion becomes 

— mgr sin 7 = 0 (17-54) 

The validity of this equation may be checked by observing 
that it could be written from an application of the force-moment 
equation. An inspection of the equation shows that is the 

moment of inertia about the Z-axis and mgr sin 7 is 
the moment of the weight about the same axis. The 
moment of the force exerted by the constraint is 
zero. 

The solution of E]q. (17-54) involves an elliptical 
integral unless one restricts the motion to a small 
angle so that sin 7 may be replaced by the angle 7. 

If it is desired to obtain expressions for x and y in 
terms of the time, the equations of the constraints 
((jij = + 2/2 + 22 — = 0 and i = z = 0) may 
be used. 

6. System of Pulleys,—Two masses {m and 2m) are suspended 
over a movable pulley of mass m by a string of length p. The 
movable pulley is connected to another mass (4m) by a string of 
length I which passes over a fixed pulley. The system is to be 
regarded as conservative and the moments of inertia of the 
pulleys are to be neglected (Fig. 158). Find the acceleration of 
the various parts of the system. 

This problem is of interest because the application of Lagrange^s 
equations makes it possible to avoid the introduction of the 
unknown tensions which one would have to include in a solution 
by the ordinary dynamical methods. It also illustrates the use 
of two generalized coordinates. 

We shall let s and r represent the distances of the masses 4m 
and 2m below the fixed and the movable pulleys, respectively. 

m 

I Urn 
r 

□ 2m 
wCl 

Fig. 168. 
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Then it follows that the movable pulley — s below the fixed 
pulley and the mass m is p — r below the movable pulley. 

The kinetic energy of the system may be expressed in terms of 
s and r as follows: 

r = ^4m.s2 + ^ 2m (s — r)^ + | w {s + fy (17-55) 

The potential energy V is 

V = —imgs — mg{l — s) — 2mg (Z — s + r) — 
mg {1 — s + p — r) (17-56) 

These two expressions contain the two coordinates s and r and 
we shall therefore need two equations to determine the motion. 

The two general equations may be written thus: 

d dL dL_ d dL dL 
dt ds ds lit dr dr 

(17-57) 

Substituting the values of T and V in the equation L = T ^ V 
and taking the derivatives as indicated gives 

— = Sms — mr 
ds 

— = Zmr — ms 
dr 

d dL 
dt ds 

= 8ms — mr 
d dL 

dt dr 
= 3mr —• ms 

(17-58) 

Putting these results in the general equations of Eqs. (17-57), we 

may write 

8ms — mr = 0 3mr — ms -- mg = 0 
r = 8s 3f — s — g (17-59) 

From which we find 

and 

If the initial conditions were specified, the velocities and dis¬ 
placements of the several masses could be expressed as functions 
of the time by integrating these equations. 

c. Derivation of Euler^s Equations.—It is required to derive 
Euler^s equations by an application of Lagrange’s equations. 

We shall place the reference axes coincident with the principal 
axes of the body. The kinetic energy of the rigid body is expressed 

by the equation 

T = (17-60) 
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There are three degrees of freedom; consequently three equations 
will be needed. The selection of proper generalized coordinates 
is first to be considered. We cannot use and co« for this 
purpose because it is impossible to express the position of every 
point of the body in terms of these quantities without introducing 
differential coefficients. We may, however, use the Euler 
angles By v?, and yp for the generalized coordinates. 

The relations between the w^s and the generalized velocity 
components were written above [Eq. 16-35)] but are reproduced 
here for convenience. 

Wa: = 6 COS ^ ^ sin ^ sin (p 
ojy = — ^ sin + i/' sin 0 cos (p 

= (p + yp COS 6 (17-61) 

We shall derive but one of the three equations, viz., the one in 
which cp is the coordinate. The partial derivative of T with 
respect to <p is 

^ = Cco, and = Cd.. 
d<p dip at 

The partial derivative of 03g with respect to (p is unity, as may 
be found by differentiating the equation for given above. In 
a similar manner we may find dTfdip, The steps are as follows: 

dip 
= + B0)y 

dcoy 

dip 
= — 6 ein ip + yp sin 0 cos ip) + 

Bo)y(-‘6 cos ^ ^ sin ^ sin tp) 

= BoOyOJx (17-62) 

We have left to evaluate —dVfdip or dU/dip. We know, how¬ 
ever, that this quantity must yield the force moment about the 
2^-axis which we may call Mz. Hence, putting the parts of the 
equation together, we have 

Ci^z + (5 ~ A)wz^y = Mz (17-63) 

The two other equations may be found by a similar procedure. 
The details will be left for the student. 

Problems.—1. Two masses, 3w and 4?n, are hung by a string over a 
massless pulley. If the forces are conservative and the moment of inertia 
of the pulley is to be neglected, find the acceleration of the system by the use 
of Lagrang^^s equations. 
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2. Using Lagrange’s equations, derive the equations of motion for a 
particle without constraints, expressed in spherical coordinates. 

3. A ladder of length 2L and mass m is supported initially in a nearly 
vertical position by a smooth vertical wall and a smooth horizontal floor. 
It falls in a vertical plane. Find the differential equations of motion by 
using Lagrange’s method. 

17-13, Impulsive Forces.—In this section we shall show how 
the form of Lagrange’s equations is to be modified in order to 
express the effects of impulsive forces. We are to consider a 
particle, system of particles, or a rigid body which may be at 
rest or may have any motion at the instant at which the impulsive 
forces are applied. For simplicity in deriving the equations we 
shall consider the case of a single particle but the results may 
be readily applied to a system of particles or to a rigid body. 
The validity of this extension may be easily established. 

The impulsive forces are to act during a short time interval, 
say from f = /i to ^ = ^2. For each of the independent coordi¬ 
nates we shall have an equation of the form [Eq. (17-44)] 

This equation (and the others if they be present) is to be multi¬ 
plied by (it and integrated from ti to t2. This step is expressed 
as follows: 

(17-64) 

The first term is readily integrated, with the result given by 

the expression 

(17-65) 

in which the subscripts ti and ^2 are used to indicate that the 
particular value of the function corresponding to the times 

and <2 are to be used. The difference of the two quantities 
[right member, Eq. (17-65)] measures the change which is 
produced by the impulses in the small time interval — h. 

The second term of Eq. (17-64) is equal to zero if the time 
interval is very small,.because dT/dqi is finite. The final form of 

Eq. (17-64) is 

(susi-fy- (17-66)- 
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The right-hand member may be called the generalized impulse 
because of its similarity to the impulse of an ordinary force. 
The left-hand member represents a quantity which may be called 
the change in the generalized momentum. 

Illustration.—A uniform rod is rotating in a horizontal plane 
about a fixed axis through its center C with an angular velocity w. 
The axis at C is suddenly removed and at the same instant one 
end of the rod is fixed. Find the new value of the angular 
velocity and the impulse. 

In order to apply Kq. (17-66), it will be necessary to determine 
T just before and after the impulse is applied. To find such 

expressions, we shall need to obtain 
a relation between the angular 
velocities wi and W2 before and 
after the application of the 
impulse. Such a relation may be 
found by using the principle of the 
conservation of the rotational 
momentum about an axis through 
the point (say 0) in space at which 

5^ the end of the rod becomes fixed. 
Since the only force moment intro¬ 

duced is applied at 0, it cannot influence the value of the 
rotational momentum about an axis through that point. 

We digress for a moment to develop an expression for the 
rotational momentum about an axis through 0. The procedure 
will be simplified if we select 0 as origin of the reference system 
and limit the motion to the XY reference plane. Let r be the 
position vector of any point P of the body (Fig. 159), ro the 
position vector of the center of mass C, and 5 the vector from C 
to P. The velocity (F) of P may be expressed in terms of the 
v^elocity (Fo) of C and the velocity o) X 5 (if the body is rigid) 
of P relative to C by the equation 

F - Fo + io X 5 (17-67) 

The rotational momentum (ikf) of the body about an axis through 
0 and perpendicular to the XY plane is 

M = f r X V dm 
Jm 

= f (ro + s) X (7o + « X s)dm 
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= J^[ro X 7o + ro X (w X s) + s X Fo + s X (<*) X 5)]dm 

= m ro X Fo + f dm (o (17-68) Jm 

The steps used in obtaining the final expression will be left for 
the student to work out. The result indicates that the rotational 
momentum consists of two parts: the first gives the rotational 
momentum in terms of the velocity of the center of mass and the 
second part gives the rotational momentum relative to the center 
of mass and is equal to the moment of inertia about an axis 
through the center of mass multiplied by the angular velocity. 

Returning now to the par¬ 
ticular problem, we may select 
the reference system with origin 
at 0, the point in space at which 
the end of t he rotating rod is to 
be fixed, and the X-axis drawn 
through the center of mass of the 
rod as shown in Fig, 160. The 
first thing to do is to express the rotational momentum about 0 
for the conditions immediately before and after the point 0 
becomes fixed. If 21 is the length of the rod and m its mass, the 
moment of inertia about an axis through C is Iml^, The equation 
expressing the constancy of rotational momentum about 0 is 

niPct)2 + lmPo)2 = 

from which 

0)2 = 4^1 (17-69) 

We may now express the kinetic energy for the two positions 
which may be called T2 and Ti, 

T2 = ^ (I mP)o)2^ 
= mPo)l 

d/dT 
dt\do) 

4/m . W d^do)i J 
Substituting these values in Eq. (17-66) gives 

dt 

or 

= f ‘Q dt (17-70) 



418 ANALYTIC AND VECTOR MECHANICS [17-14 

The left-hand member gives the value of the impulse required 
to effect the prescribed change in the motion. The presence of 
the minus sign indicates that the direction of the impulse of Q 
is in the negative sense. 

Problems.—1. A thin circular lamina is rotating in its own plane about a 

fixed point on its circumference. This point is suddenly released and 

another point on the circumference, which is at a distance equal to a quarter 

of the circumference from the first point, is fixed. Show that the angular 

velocity after the application of the impulse is one-third of that before. 

2. A square lamina is rotating about a fixed axis coinciding with one of 

the diagonals of the square when suddenly one of the moving vertices of the 

square is fixed, while at the same time the axis is released. Find the changed 

angular velocity and the impulse. 

17-14. Hamilton’s Principle.—From a consideration of the 
use of virtual displacements in D’Alembert’s principle and their 
assistance in revealing the relations which exist between forces in 
problems of equilibrium, the idea was conceived to apply a 
similar device to a study of motions. This purely imaginative 
process in motions would suggest a comparison between the 
actual motion and one which is fictitious but infinitesimally close 
to it and which satisfies the prescribed conditions. With every 
point in the actual path is to be associated an adjacent point 
located by a very small variation of the coordinates of the given 
point. One assumption introduced is that the time shall be 
unaffected by the variation. 

This principle may be derived in several different ways. The 
details of the derivation are perhaps minimized by starting with 
either D’Alembert’s principle or Lagrange’s equations. One 
advantage of using Lagrange’s equations for a starting point is 
that it may be more obvious to the student that generalized 
coordinates may be employed in using Hamilton’s principle. 

Consider a situation in which there may be several degrees of 
freedom, for each of which a Lagrangian equation may be 
written. Each of these equations [Eq. (17-44)] is to be multiplied 
by a very small displacement dq and the element of time dt and 
then integrated between the time limits t and (q. All such 
equations may be combined by expressing the sum symbolically 
as follows: 

(17-71) 
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There is a so-called dynamical path which each particle of the 
system will take under the influence of the forces and con¬ 
straints. Since bq is arbitrary, the effect of introducing it into 
the equations is to take the particle from the dynamical path 
into an adjacent varied path. The dynamical path is consistent 
with the equations of motion but the varied path is not neces¬ 
sarily the same. We shall later impose a limitation upon varied 
paths to the effect that the terminal points of it must be the same 
as those of the dynamical path. 

The equation written above is to be manipulated into a form 
suitable for the present derivation. In order to understand the 
change that is to be made in the first term, let us consider the 
following relation: 

However, since 

(17-72) 

we may introduce the equivalence in the last term and then, after 
multiplying each term of Kq. (17-72) by dt and rearranging, we 
have 

(17-73) 

The left-hand member of this equation is the first term of Eq. 
(17-71). 

Before Eq. (17-71) is written with this alteration, it will be 
more convenient to show that the integral of the first term of 
Eq. (17-73) is zero. The integration of this term may be 
effected and is 

-^^q\ dq 

If the restriction be made that the terminal points of the varied 
path, over which bq is taken, coincide with the end points of the 
dynamical path, then bq vanishes at the limits and the particular 
integral is zero. Hence we may write Eq. (17-71) in the following 

form: 

(17-74) 
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Since T is some function of the g^s and g’s, then 

(.7 13 

bT = + ^hq 
dq dq 

and the first two terms may be replaced by bT. The third term 
SQ bq represents the work of the Q forces and may be replaced by 

bWy in the general case, or bUj if the forces are conservative. 
The equation, in the general case, reduces to 

&£{T + W)dt = Q (17-75) 

in which b is placed outside the integration sign because the 
variation is to be independent of the time. In a conservative 
system, the equation becomes 

j f (r + V) dt - 0 or sJ'l = 0 (17-76) 

These equations express Hamilton's principle in symbolic form. 
We may interpret these equations to mean that the time integral 
of the kinetic potential in a conservative system has a stationary 
value for the dynamical path of a particular system when com¬ 
pared with the time integral over varied paths which have the 
same termini, provided also that the varied paths are described 
in the same time as the dynamical path. The term stationary, 
as used here, means that the time integral for the dynamical path 
does not vary for closely adjacent paths. In some cases the value 
is a minimum and in others a maximum. 

Hamilton's principle is a very broad principle. From it 
all of the principles of dynamics may be derived. It is frequently 
used as a starting point for the derivation of Lagrange's equations, 
the principle of least action, the conservation of energy, and 
many others. 

17-16. Principle of Least Action.—The principle of least actioir 
was first proposed by Maupertius. He, however, did not make 
use of mathematics to establish this principle but advanced 
theological arguments in favor of it. He believed that one of 
the fundamental laws of nature was that phenomena in nature 
take place with the least action. Perhaps the easiest way to 
derive the principle of least action is from Hamilton's principle. 

In Hamilton's principle the fictitious varied path, very close 
to the dynamical path, is arbitrary except that it satisfies the 
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constraints. To obtain the principle of least action, it is neces¬ 
sary to prescribe the additional condition that the motion must 

take place in such a way that the total energy shall remain 
constant; f.e., 

T +V E or hT ^ -bV (17-77) 

where T and V are the kinetic and potential energies and E is the 
total energy. On the varied paths, if T and V' are the kinetic and 
potential energies at any instant, we should have T' + F' = E. 

The Lagrangian functions L and V in the dynamical and 
varied paths, respectively, may be expressed as follows: 

L ==2T - E L' = 2r~S 

The time integral of the Lagrangian function L, from t ^ ti to 
t = Uj is therefore 

£l dt = T - E)dl 

= £2 Tdt- E {U- U) (17-78) 

since is a constant. The last term is a constant. By Hamil¬ 
ton's principle the time integral of L must be a maximum or a 
minimum; therefore the integral of 2T must also be a maximum 
or a minimum. It is, however, usually a minimum and it is 
from this fact that the term least action has been applied. The 
integral 

p2 T dt 
Jti 

is called action. Hence the principle is called the principle of 
least action. This principle means that, of all the possible 
varied paths which satisfy the given restrictions, that one which 

is the dynamical path is the one in which the value of the time 
integral of twice the kinetic energy is a maximum or a minimum. 

Problems.—1. A particle of mass m is executing simple harmonic motion 
in a horizontal path in which the displacement may be expressed by the 
equation x — r cos w t, (a) Express the restoring force, the kinetic energy, 
and the potential energy, (b) Find the time integral of the kinetic potential 
in Hamilton's equation [Eq. (17-76)] from t = 0 to / == ir/o). (c) Using a 
varied path, which is expressed by the equation x - r (cos co t k cos 3«<) 

and which has the same termini as the path used in (b), find the value of the 
integral for the same limits and show that, if /c is very small, the variation 
of the time integral is zero. 
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2. A simple pendulum of varying length r is hung from a fixed point and 
oscillates in a vertical plane. If y is the angle which the string makes with 

a vertical line through the point of the support, find the equations of motion 

by the use of Lagrange*s equations. 

3. A particle of mass m is guided by a massless rod which is rotated at a 
constant angular velocity w about a fixed vertical axis. Considering the 

motion to be without friction, find the equations of motion by Lagrange^s 

equations. 
4. A particle moves without friction on the surface of a circular cylinder 

the axis of which is vertical. The radius of the cylinder is to increase 

uniformly with the time. Assuming that the particle has an initial angular 

velocity «o about the axis and that the vertical acceleration is constant, find 

the equations of motion by Lagrange^s equations. 

6. A uniform cylinder of radius r and of mass m has an inextensible string 

wrapped around its central section. One end of the string is fastened to the 

cylinder and the other to a fixed point. Initially the cylinder is at rest with 

its axis horizontal and a small portion of the string taut and in a vertical line. 
The cylinder is then released. Find the resulting motion. 

6. A particle is describing an orbit under a central force. The velocity 

of the particle varies inversely with the square of the length of the radius 
vector drawn from the center to the particle. Using the principle of least 

action, find the orbit and an expression for the force. 
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Composition, of parallel angular 
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D’Alembert’s principle, 398 

and conservation of energy, 396 

illustrations of use of, 394 

for a rigid body, 392 

Damped harmonic motion, 286 

critical damping, 298 

general equations in, 292 

large damping, 300 

magnetic pendulum, 291 

period in, 294 

in rotational motion, 290 

small damping, 295 

three casei of, 287 

Damped harmonic motion, in trans¬ 

lational motion, 289 

Decrement, logarithmic, 302 

Deflection of an alpha particle, 265, 

269 

Degrees of freedom, 404 

Del (an operator), 312 
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External forces, 163 

F 

Falling disk, 98 
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Field intensity, 311 

gravitational, 234 
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Force, 140 

off center, 185 

of inertia, 391 
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for rigid l)ody, 374 
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Foundations, historical, of mechan¬ 
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Fundamental equations in transla¬ 
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illustrations of, 159 
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Galileo^ 126, 219 

Gauss, integral, 321 

Generalized coordinates, 404 

impulse, 416 

kinetic energy, 406 

momentum, 416 

velocity, 406 

Geometrical interpretations of equa¬ 

tions, 107 

Gradient of potential, 311 

Gravitation, law of, 228 

Gravitational constant, 232 

Gravitational field intensity, 234 

of a disk, 236 

in a hollow sphere, 237 

of a ring, 235 

in a solid sphere, 239 

of a sphere, 235, 236 

Gravitational motion of a particle 

in a vacuum, 83 

Guide plane, 25 

Gyration, radius, 170 

H 

Hamilton^ principle, 418 

Harmonic force, 308 

Harmonic motion, damped, 286 

simple, 103 

Hodograph, 88, 91 

for planetary motion, 264 

Holonomic system, 399 

Hooke's law, 195 

'‘Horlogium Oscillatorium/' 127 

HuyghenSj 127 

I 

Impact, central, 154 

Impulse, 143 

equation, 143 

of force moment, 187 

Impulsive forces and Lagrange^s 

equation, 415 

Indeterminate multipliers, 400 

Inelastic strings, 195, 196 

Inertia, 127, 130 

moment of, 166 
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92, 96 

Instantaneous axis of rotation, 27, 28 

Instantaneous screen motion, 67 

Instantaneous velocity center, 27, 

29, 93 
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and work, 149 

K 

Kaufman^ change of mass with 

speed, 132 

Kepler^ 259 

KepIer^s laws, 260 

first law by vectors, 261 
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Kepler’s laws, second law by vectors, 

260 

^ third law, 263 

Kinetic energy, 146 

during an impact, 167 

rotational, 183 

rotational and translational, 162 

Kinetic potential, 410 

L 

Lagrange^ 390 

Lagrange’s equations, 407 

for a conservative system, 409 

and Euler’s equations, 413 

illustrations, 411 

and impulsive forces, 415 

Lagrange’s indeterminate multi¬ 

pliers, 400 

Lami’s theorem, 194 

Laplace’s equation, 322 

Large damping in harmonic motion, 

300 

Least action, principle of, 420 

Lever, 206 

Lever arm of force moment, 164 

Line integral of a vector, 44 

Lissajous cur\^es, 118 

Logarithmic decrement, 302 

Logarithmic spiral, 304 

M 

Magnetic pendulum, 291 

Mashelyne^ 233 

Mass, 130 

Method of indeterminate multi¬ 

pliers, 400 

Mitchelly 233 

Modulus of stiffness, 196 

Moment, of a couple, 186 

of a force, 48, 164, 184 

of inertia, 166 

of mass, 133 

of momentum, 182, 261 

Momental ellipsoid, 177 

Momentum, change of, 143 

linear, 140, 164 

Momentum, rotational, of a system 

of particles, 372 

translational, of a system of 

particles, 371 

Motion of a mass with double con¬ 

straint, 351 

Moving axes, 385 

Multiplication of vector, 39 

N 

NewioUy 126, 269 

Newton and law of gravitation, 228 

Newton’s contributions, 128 

definitions, 129 

three laws of motion, 129 

Nodal line, 383 

Non-conservative field, 240 
Normal acceleration, 72 

0 

Orbit, of alpha particle, 268, 271 

in planetary motion, 266 

P 

Parallel-axis theorem for moment 
of inertia, 170 

Particle on a plane, equilibrium of, 

199 

Pendulum, simple, 108 

torsional, 189 

Period in harmonic motions, 108, 

294 

Periodic function, 121 

Phase angle, 106 

Plane, smooth and rough, 199 

of symmetry, 135 

Planetary motion, 256 

Point of application of a force, 203 

Powson*s equation, 322 

Polar vector, 37 

Polynomial in motion with resist¬ 

ance, 284 

Position of a force and its effect, 166 

Potential, 44, 241, 242 

on axis of a disk, 246 

of a ring, 244 
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(, Potential, outside of a sphere, 246 

of a thin rod, 246 

Potential energy, 242 

Precession of the earth, 387 

Precessional motion, 381 

of a heavy top, 384 

steady, 382 

Principal axis, of a body, 175, 177 

of a lamina, 179 

Principle, of least action, 420' 

of virtual work, 219 

Product of inertia, 176 

of a lamina, 181 

Product of three vectors, 60 

Projection of a point upon a line, 13 

Pure rotational motion, 163 

Q 

Quantity of motion, 140 

R 

Radian, 7 

Radius of gyration, 170 

Rectilinear motion with acceleration 

constant, 85 

Reference system, 2 
standard, 2 

Reich, 233 

Resistance, of fluids, 274 
to motion, experimental illustra¬ 

tion, 282 

proportional to speed, 275, 277 

proportional to square of speed, 

279 

use of polynomial to express, 

284 

Resonance frequency, 310 

Restitution, coefficient of, 155 

Resultant force moment, 165 

Right-hand rule for vectors, 59 
Rigid body, 24, 192 

with one fixed point, 374 

Rolling cylinder, equation, 337 

Rolling cylinders, two, 362 

Rotational kinetic energy, 183 

.Rotational momentum, 166, 182 

under a centra! force, 251 

Rotational momentum, of a system 

of particles, 372 

Rotational motion, 6, 24 ^ 

with constant acceleration, 83 
equations for, 163 

Rotor couple, 68 

S 

Scalar product, of unit vectors, 43 

of vectors, 40, 43 

Scalar quantity, 36 

Simple harmonic motion, 103, 105 

fundamental equations, 104 

geometrical interpretation, 107 

period in, 108 

Simple pendulum, 108 

Sink of flux, 323 

Skyrocket, illustration, 357 

Sliding mass on a smooth rod, 346 

Sliding sphere, illustration, 354 

Small damping, 295 

Solution of problems, 18 

Source of flux, 46, 323 

Speed, average, 3 

constant, 4 

determination of, 4 

instantaneous, 3 

Spinthariscope, 266 

Statics, 192 

use in dynamical equations, 391 
Slevinus, 219 

Stokes’ theorem, 333 

Strain, 195 

Stress, 196 

Strings, 194 

Surface integral of a vector, 45 

Swinging bar, illustration, 366 

System, with constraints, 397 

of particles, motion of, 370 

T 

Tangential acceleration, 72 

Terminal velocity in motions with 

resistance, 281 

Thomson and Change of mass with 

speed, 132 

Top, motion of, 3 
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Torque, 164 

Torsional pendulum, 189 

Translational momentum of a sys¬ 

tem of particles, 371 

Translational motion, 6, 24 

of a particle with constant 

acceleration, 81 

Two rolling cylinders, 362 

Tycho Brahef 259 

U 

llniplanar motion, 25 

Unit vector, 37 

V 

Vector, 5, 36 

addition, 8, 38 

analysis, 4 

axial, 37 

components, 9, 38 

determination of acceleration, 79 

differentiation of, 54, 55 

field, 45, 311 

polar, 37 

unit, 37 

Vector multiplication, cross product, 

41, 47 

of parallel vectors, 48 

representation of cross product, 

42, 47 

Vector multiplication, scalar, 39, 40, 

42 

of three vectors, 50 

Vectors, angle between, 48 

Velocity, 5 

angular, 6, 16 

components, 11, 13, 15 

linear, in terms of angular 

velocity, 61 

as a vector product, 60 

in simple harmonic motion, 106 

in uniplanar motion, 25 

a vector, 5, 47 

Virtutil displacement, 219 

Virtual velocity, 219 

Virtual work, 219, 392 

W 

Water stream and bucket, illustra¬ 

tion, 359 

WihoTif C. T. R., alpha-ray tracks, 

266 

Work, of the force moment, 188 

a scalar quantity, 43, 44, 148 

of the tangential force, 147 

translational and rotational, 153 

Work equation, 145 

for the radial force, 146 

for the tangential force, 147 

Work principle, 222 








