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PREFACE 

In teaching heat transfer the authors have felt the need for a 

short, concise book suitable for the requirements of university 

students reading for degrees in various branches of engineering. 

Indeed, in the present state of knowledge there are many others 

to whom the more elaborate theoretical treatments of heat trans¬ 

fer are not essential. It is, therefore, hoped that this little book 

may be of some general interest, especially in industry. 

Thanks are due to Mr. J. E. Bacon, B.Sc. (Eng.), A.M.I.Mech.E., 

for general help in preparing the material, and to the British 

Iron and Steel Research Association for financial assistance. 

Mention should also be made of the late Professor C. H. Lander, 

whose steady interest did so much to further the study of heat 

transfer in this country. 

Our thanks are also due to Professor H. C. Hottel of the 

Massachusetts Institute of Technology for supplying the draw¬ 

ings from which Figs. 3, 4, 5, and 8 were made. In addition we 

make grateful acknowledgement to the following: A. Schack and 

Stahl und Eisen for Figs. 11, 12, 13, 14, 15, D. M. Smith and 

Engineering for Fig. 41, and 0. F. Bonilla and the American 

Institute of Chemical Engineers for Figs. 48 and 49 reproduced 

from Trans. Am. Inst. Chem. Eng. 1945, 41, 755. 
M. F. 

0. A. S. 
Imperial College of Science and Technology, 

South Kensington, S.W. 7 
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I 

RADIATION 

All matter constantly emits thermal radiation, the rate of 

emission and the wave-length distribution depending upon the 

nature and temperature of the matter. 

In general, when radiation falls on any body a fraction A is 
absorbed, a fraction R reflected, and a fraction T transmitted, 

so that R+A + T=l. (1) 

If the body is very thick, or nearly opaque, 

R+A = 1 and A = 1 — R, (2) 

the absorptivity being dependent only upon the reflectivity. 

Fortunately most industrial materials, such as metals, re¬ 

fractories, brickwork, wood, or even glass for long wave-length 

heat radiation, are opaque enough for the transmission to be 

practically negligible, even for very small thicknesses, so that 

absorptivity, and as will be seen later emissivity also, can be 

considered simply as surface effects. 

Reflectivity. When a surface is so smooth that its inequalities 

are small compared with the wave-length of the incident radia¬ 

tion, the angle of reflection is equal to the angle of incidence, 

i.e. the reflection is 'regular’, and the reflectivity depends only 

upon the nature of the material and the wave-length of the 

incident radiation. But rough surfaces reflect ‘diffusely’ at all 

angles (although there may still be some preferential reflection 

at an angle equal to the angle of incidence), and the reflectivity 

depends upon the degree of roughness as well as upon the nature 

of the material and the wave-length of the incident radiation. 

Reflectivity can thus be altered by roughening, scratching, 

painting, oxidizing, or by other surface treatment. 

The perfectly black body. In the limit, when a body reflects 

and transmits none of the incident radiation, whatever its wave¬ 

length, but absorbs it all, it is known as a perfectly black body, 

and its absorptivity is expressed as unity, the absorptivity of 

actual surfaces being expressed as a ratio to that of a black body. 
6145 x» 
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Now it is a well-established experimental fact, confirmed by 

theory, that the better an absorber of radiant energy a surface 

is, the better emitter it will also be, and a perfectly black body 

not only absorbs all the radiation falling upon it, whatever its 

wave-length, but it also, at any given temperature, emits in every 

wave-length the maximum possible radiation for that tempera¬ 

ture. For this reason a black body is taken as a standard with 

which the emission from other bodies is compared, the emissivity 

of any actual surface in any given wave-length being defined as 

the ratio of the radiation which it emits in that wave-length to the 

radiation emitted in the same wave-length by a black body at the 

same temperature. In engineering problems it is usually the total 

emission in all wave-lengths which is of interest, and in general 

the term ‘emissivity ’ is taken to mean the ratio of the total radia¬ 

tion emitted in all wave-lengths to the total radiation emitted in 

all wave-lengths by a black body at the same temperature. 

Kirchhoff’s law. According to Kirchhoff’s law, for any 

given wave-length the ratio of the emissivity E\ of any body to 

its absorptivity A\ is the same for all bodies, and is equal to the 

emissivity of a black body for the same wave-length. Thus 

f*=l and EX = AX. (3) 

It follows that the total emissivity E in all wave-lengths of any 

given surface at any given temperature is equal to its total 

absorptivity A in all wave-lengths for radiation from a black 

body at that temperature. 

Distribution of radiation among different wave-lengths. 
The total energy emitted by unit area of a black body in unit 

time depends only upon its temperature. Moreover, for any 

given temperature the distribution of the emitted radiation 

among the different wave-lengths is fixed. It will be seen from 

the curves in Fig. 1 that for any given temperature there is a 

peak in the distribution curve, corresponding to the wave¬ 

lengths emitted most strongly. As the temperature is increased, 

the radiation in every wave-length increases in intensity, but 

not in the same proportion. The peak shifts towards the region 
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of shorter wave-lengths and becomes sharper. Below about 

900° F. or 1,000° F. practically the whole of the emission is in 

waves too long to be recognized by the human eye as light. 

At about 1,000° F. the first visible red appears, and, as the 

Fia. 1. Variation of black body radiation with wave-length. 

temperature is further increased, the colour changes through 

dull red to cherry, orange, and white. A rough guess at the 

temperature of a body can be made from the colour and intensity 

of the radiation it emits, and experienced furnace workers can 

often make fairly reliable estimates in this way so long as the 

temperature is not too high. 

Wien’s law. Wien in 1896 found that the wave-length Amax 

corresponding to the peak of the distribution curve for a black 

emitter is inversely proportional to the absolute temperature T 
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of the emitting body. If the temperature is expressed in °F. Abs., 

Amax T = 0*52. If the temperature is in °C. Abs., Amax T = 0-29, 

the wave-length being in centimetres in both cases. 

Wien also found that the intensity of the emitted radiation at 

the peak wave-length is proportional to the fifth power of the 

absolute temperature of the emitting body. These laws can be 

applied to other wave-lengths, as well as to Amax, so that, given 

the complete black body distribution curve for any one tem¬ 

perature, the curves for other temperatures can be deduced. 

The Stefan-Boltzmann law. According to the well-known 

Stefan-Boltzmann law, the total rate at which energy is emitted 

in all wave-lengths by a black body is proportional to the fourth 

power of its absolute temperature. If the temperature is in °F. 

Abs., h = 1.73 x 10-9T4 B.Th.U./ft.2 hr. (4 a) 

If the temperature is in °C. Abs., 

H = 1*37 x 10~12T4 cal./cm.2 sec., (4b) 

the constant in these expressions being known as the Stefan- 

Boltzmann constant. For the purposes of heat transfer calcula¬ 

tions this is the most important fundamental law of radiation. 

Values of 1*73 X 10-9T4 for a range of t from 10° F. to 3,000° F. 

are given in Table XV. 

Emissivity and absorptivity of industrial surfaces. 
Perfect blackness is unattainable in practice, though certain 

substances such as platinum black and lampblack come very 

near it. In general the emission from any actual surface is not 

only less in every wave-length than that from a black body at 

the same temperature, but the ratio E\ varies with the wave¬ 

length. Actual surfaces are thus ‘selective’ emitters, and their 

emissivity, i.e. the ratio of the total energy emitted in all wave¬ 

lengths to the total energy emitted in all wave-lengths by a 

black body at the same temperature, varies with the tempera¬ 

ture. As we have already seen, the absorptivity A, of any sur¬ 

face, for radiation from a black body at any given temperature 

is equal to its emissivity at the same temperature. Absorptivity 

will thus vary with the temperature of the source from which the 

radiation is received. 
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Considering the almost unlimited variety of surfaces it is 

not surprising that measurements of emissivity are still very 

incomplete, but such results as are to be had are given in Table 

XVI. Some of these have been deduced from measurements of 

the diffuse reflectivity of surfaces for radiation in a narrow band 

of wave-lengths, and in such cases the values have been tabulated 

at the temperature for which the peak emission is in the wave¬ 

length band. Moreover, in determining emissivity, the radiation 

has, as a rule, been measured in a direction normal to the sur¬ 

face, and the assumption made that this gives the same result 

as if the total hemispherical radiation in all directions had been 

measured. But both E. Schmidt and Eckert [1] and Davisson 

and Weeks [2] found that the hemispherical emissivity of bright 

metals might be 18 to 20 per cent, above the normal emissivity, 

whereas for non-metallic surfaces it is usually slightly less than 

the normal emissivity. 

Again, in deducing absorptivity from emissivity, no account is 

taken of possible variations of absorptivity with the temperature 

of the absorbing surface; about this, however, little is known. 

For these and other reasons discretion must be used in apply¬ 

ing the values given in the table. For instance, the emissivity 

of a molten metal at any temperature would obviously not be 

correctly obtained by difference from the reflectivity of the 

solid metal for radiation of the same range; and the values 

tabulated for white paper or other materials above their ignition 

point can obviously be applied only to absorptivity or reflec¬ 

tivity, and not to emissivity. A further difficulty is that indus¬ 

trial surfaces cannot usually be exactly specified, say if they are 

scratched, oxidized, rough, or dirty. 

It should be noted that at temperatures below about 400° F. 

most non-metallic surfaces, whatever their colour, have emissivi- 

ties not far from 0*9, but that as the temperature is increased the 

emissivities of the lighter coloured surfaces as a rule decrease. 

Dead black surfaces, such as lampblack, platinum black, or 

camphor soot, are nearly black body emitters at all temperatures. 

The emissivity of most polished metal surfaces, on the other 

hand, is very low at all temperatures, having, according to the 
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electromagnetic theory, an inverse relation to their electrical 

conductivity, and increasing with temperature. Thus, note the 

relatively very high emissivity of polished bismuth, which has 

also a relatively very low electrical conductivity. 

Attention may also be drawn to the fact that admixture of a 

small percentage of a coloured oxide or pigment to a white one 

causes a quite disproportionate increase in the emissivity; and 

that even a very thin layer of oil or varnish greatly increases the 

emissivity of a poorly emitting surface, such as a bright metal. 

Formulae for Calculating Heat Transfer by Radiation 

For simplicity, in deriving formulae for calculating heat 

transfer by radiation, it is customary to take an imaginary ‘grey’ 

body which, although in every wave-length it emits less radiation 

than a black body, has its emissivity reduced in the same pro¬ 

portion for all wave-lengths and all temperatures. A grey body 

would thus have the same emissivity at all temperatures, and the 

same absorptivity, equal to its emissivity, whatever the tem¬ 

perature or wave-length distribution of the incident radiation. 

The simplest case of radiation is that of a grey body of emis¬ 

sivity Ex and absolute temperature Tx in black surroundings at 

absolute temperature T2 which, by definition, reflect back none 

of the grey body radiation. The grey body emits 1-73 X lO-9^ T\ 
B.Th.U./ft.2 hr. and receives from the surroundings a flux of 

radiation 1*73X 10~*T\ B.Th.U./ft.2 hr., of which, since for all 

temperatures Ex = Av it absorbs a fraction Ev The net radia¬ 

tion interchange H is thus given by 

H = 1-73x l^Ex{T\-T\) B.Th.U./ft.2 hr. (5) 

This expression is still applicable for surroundings that are 

not black, provided the radiating body is so small that it inter¬ 

cepts only a negligible proportion of the radiation reflected from 

the surroundings. 

For a selective emitter, the absorptivity AlTt of the surface 

at Tx for radiation from the surroundings at T2 will not be equal 

to E1Tl, its emissivity at Tv but to E1Tt, its emissivity at 5Ta* 
Hence (5) becomes 

H = 1*73 x 10~9(2?1Tl T\—Ext% T\) B.Th.U./ft.2 hr. (6) 
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At the other extreme, when all the radiation reflected from 

the surroundings is intercepted by the radiating body at Tv as 

in the case of parallel planes large compared with their distance 

apart, or of concentric cylinders or spheres when the inner 

surface of outer cylinder or sphere is a regular reflector, it can 

easily be shown [3] that the appropriate expression for grey 

surfaces of temperature Tx and T2i and corresponding emissi- 

vities E1 and E2, is 

H = 1-73x 10-» (Ti-T\) B.Th.U./ft.2 hr., (7) 
"IT -^2 "1 ^2 

or, for selective emitters, if A 1Tt is the absorptivity of the surface 

at Tx for radiation from the surface at T2, and A2Tx the absorp¬ 

tivity of the surface at T2 for radiation from the surface at Tx: 

))] 
P 714 (_AlTt_\1 B.Th.U. 

2Ti 2 . ft-2 hr. 
(8) 

If both surfaces are of the same material so that E1Tl — A2Tj 
and E2Tt = A1Tt, (8) reduces to 

H = 1-73X10-9 
^ITi) 

' - ,1 B.Th.U. 

■(2-E2Ta)\ ft.2 hr. ’ 

(9) 

or if E1Tl = A1Tj, and E2Ti = A2Ti, i.e. if the surfaces are grey, 

it reduces to (7). 

It can be proved [3] that for concentric cylinders, if the sur¬ 

faces are grey, and if the inner surface of the outer cylinder 

reflects diffusely, the net radiation per unit area of the smaller 

cylinder is given by 

H = l-73xl0-» 
E\ E2 

E2+E1(l-E2)(r1/r2) 
B.Th.U. 

ft.2 hr.' 
(10) 

where and r2 are the radii of the inner and outer cylinders 

respectively. For concentric spheres a similar expression holds, 

except that rjr2 must be replaced by r\\r\. 
It will be seen that as rjr2 decreases (10) tends to approach 

(6) so long as the outer cylinder or sphere is not too good a 
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reflector. As rx/r2 increases (10) approaches (7), the expression 

for plane parallel surfaces, in which it should be noted that Ex 
and E2 occur symmetrically. 

For concentric cylinders, if the surfaces are selective emitters, 

(10) becomes 

jj _ 1.73 x 10-» [ - gir,^2r, _ 
L-^ 2T1+1—■ A 2Tl) (r1/r2) 

EiTlAlT,n_1 B.Th.U. 

E2T,+AlT,l1—^2Ti)(rllr2)\ ft-2 hr- 

assuming that the absorptivity of surface 1 for its own radiation 

reflected from surface 2 is equal to ElTl\ and that the absorp¬ 

tivity of surface 1 for radiation from surface 2 is equal to Am, 

its absorptivity for radiation from a black body at 1\. Similarly 

for the absorptivities of surface 2. 

In general the grey body formulae can be used without much 

error, even for surfaces with a relatively rapid rate of variation 

of emissivity with temperature, unless the temperatures are 

high and the temperature difference small. For instance, take 

a white refractory with emissivity 0*40 at 2,000° F., 0-70 at 

1,000° F., and 0*90 at 100° F. At 2,000° F. in surroundings at 

1,900° F., (5) would give results about 75 per cent, higher than 

(6): in surroundings at 1,100° F. results about 20 per cent, 

higher. But at 1,000° F. in surroundings at 900° F. the results 

given by (5) would be only about 15 per cent, high ; in surround¬ 

ings at 100° F. they would be practically correct. 

For the parallel surfaces formulae (7) and (8) the differences 

are more complicated to work out, but if both the surfaces were 

of the same white refractory they would be very roughly twice 

those shown above. 

Intensity of normal radiation /. The radiation from a 

small plane surface is, of course, strongest in the normal direction, 

and the intensity of normal radiation / is defined as the radiation 

emitted per unit time per unit surface area, per unit solid angle, 

from a small surface dS within a small cone of solid angle da> 
with the normal as axis. 

The intensity defined in a similar manner emitted in any 
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oblique direction, making an angle <f> with the normal, is I cos <f>. 

The radiation from a small surface dS, 
through a small solid angle dto, making an 

angle </> with the normal is 

I dSdw cos <f>- (12) 

If two radial lines at angles </> and <f>-\-d<f> to 

the normal rotate about the normal, they 

describe a solid angle 2tt sin </> d(f>. The 

radiation through this solid angle will be 

I dS 2tt sin <f> d<f> cos <f> and the total radiation 

in all forward directions will be 

\TT 

2ttI dS J sin tf> cos </> d<f> 
o 

= 2Ttl dS[\ sin2^]*" = ttI dS B.Th.U./hr. (13) 

But if the emissivity of the surface is E and its temperature Tf 
the total radiation in all forward directions is also given by 

1*73 X 10“92£T4 dS B.Th.U./hr., and therefore 

1-73 Xl0~9 ET* 
B.Th.U./ft.2 hr. 

and the radiation through a small solid angle dto is 

i -7Q v 1 0~9 ET4 
— - —— X dSdto cos</> B.Th.U./hr. (15) 

77 

Heat transfer by radiation between two small surfaces. 
If a second small surface of area 

dS2, grey emissivity E2, and tem¬ 

perature T2 is situated at a dis¬ 

tance x from a surface of area 

dSv grey emissivity Ev and temperature Tly the normals to 

dSx and dS2 being inclined at angles <f>i and <f>2 t° fhc line joining 
their centres, the small solid angle dto which dS2 subtends at dSx is 

equal to dS2cos<^2/a;2; hence the radiation from dSx which is 

absorbed by dS2 is given by 

Ej21 dS^ dto cos t\ 1-73x10 ~9EX E2 dSt dS2 cos <f>\ cos <f>2 T\ 
7TX* 
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TKis expression is symmetrical in dSx and dS2, and their asso¬ 

ciated quantities, and therefore when Tx is replaced by T2 it 
represents the radiation emitted by dS2 and absorbed by dSv 

By subtraction, the net interchange of radiation between 

dSx and dS2 is therefore equal to 

~EXE2 dSxdS2coscf>xcosT\) B.Th.U./hr. (16) 

(16) refers only to the interchange of radiant energy between 

dSx and dS2. If other surfaces are present in the neighbourhood, 

they must be included in a similar manner in calculating the net 

radiation transfer to or from any particular surface. 

For example, suppose that dSx denotes the area of a small 

aperture in a furnace door and dS2 that of a thermopile designed 

to measure the intensity of radiation from the furnace. The net 

rate at which the thermopile receives radiant energy from the 

aperture is given by (16). The thermopile also loses energy to the 

surrounding walls of the room or enclosure in which it is situated, 

and the temperature which it attains is determined by the con¬ 

dition that rates of gain and loss of energy shall be equal. If the 

area dSx subtends only a small angle at dS2, the radiation from dS2 
to the surroundings at T3 is given by 1*73 X 10-*E2dS2(T\—T\) 
B.Th.U./hr., .or by twice this if both sides are exposed. By 

observing the temperature T2 attained by the thermopile, the 

furnace temperature Tx may be deduced, provided that the rela¬ 

tive sizes, positions, and emissivities of dSx and dS2 are known. 

For finite surfaces the interchange of radiation may be ob¬ 

tained by integration, provided the surfaces are assumed to be 

black, i.e. that no reflected radiation is received by either surface 

from the other, Ex and E2 in (16) both being equal to unity. The 

results are conveniently expressed in terms of a geometric or 

angle factor. 

Geometric factor. The geometric factor is defined as that 

fraction of the total radiation from a surface of area Sx which is 

intercepted by another surface of area S2, and depends only on 

the geometrical conditions. 

If both surfaces are black, the radiation intercepted by S2 
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from S1 at absolute temperature Tx will be F12SX x 1-73 x lO-®!1} 

B.Th.U./hr. Similarly, the radiation from»S'2 at absolute tempera¬ 

ture T2 intercepted by^ will be F21S2 x l-73x 10-9Tf B.Th.U./hr. 

The radiation interchange between the two surfaces will thus be 

F12Sxx 1-73 x 10-®7|—x 1-73 x 10-®T| B.Th.U./hr. 

If Tx = T2, the above expression will become equal to zero: hence 

-^12^1 = F21S2) and the interchange of radiation can be expressed 

in terms of one area and one geometric factor, being given by 

F12SX x 1-73 x 10-9(T}- T\) 

= F21S2x 1-73 x B.Th.U./hr. (17) 

If a number of surfaces, 1, 2, 3,..., n, form an enclosure, all the 

radiation from any one surface, say surface 1, will be intercepted 

by the other surfaces, so that Fu-\-F12+F13-\-...+Fln = 1, 

where *ii is the fraction of the radiation from surface 1 inter¬ 

cepted by itself, which is zero for a flat or convex surface. 

Calculation of geometric factors. The integrations in¬ 

volved in determining geometric factors are in general tedious, 

and the reader is referred elsewhere for solutions [4]. Only two 

simple cases will be considered here, to illustrate the method. 

Geometric factor for two black surfaces lying entirely 
on a sphere of radius r. Let Sx and S2 be the spherical areas of 

the two surfaces and dSx and dS2 elements 

of these surfaces at Px and P2 respectively. 

Let I be the uniform intensity of normal 

radiation from Sv The radiation from F> 

dSx which is intercepted by dS2 is given 

by I cos <f>x cos <f>2 dSx dS2/P1 P|, where <f>x 
and <f>2 denote the angles made with Px P2 

by the normals to the surface at Px and 

P2 respectively. Since coafa = cos<j>2 = PxP2l2r (see diagram), 

this becomes I dS^SJ^r2, and by integration the radiation 

from Sx intercepted by S2 is ZSf1S2/4r2. The total radiation from 

is 7tISv whence the proportion of the total radiation from Sx 
which is intercepted by S2y i.e. the geometric factor, 

Pi2=S2/47rr2, (18) 

is equal to the ratio of the area S2 to the total surface area 
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§es B 

of the sphere, and is independent of the positions of S± and S2; 
or, in other words, the radiation from Sl falls uniformly over the 

surface of the sphere. The surface Sx absorbs a proportion 

= SJ^Ttr2 of its own radiation. 

Geometric factor for two black disks circumscribed by 
a sphere. Let S[ and S2 bo the areas of the two disks, and r the 

radius of an imaginary circumscribing 

sphere, and let S1 and S2 be the areas 

of the spherical caps cut off by S[ and 

S2. The radiation from S\ will be 

equal to that which would escape 

from a black spherical surface Sx at 

the same temperature (see below), 

and, as shown above, will be uni¬ 

formly distributed over the remainder 

of the sphere. Hence the proportion 

of the radiation from S[ which is 

intercepted by S2 or S2 will be $2/(47rr2— Sx). If and f32 are 

the semi-vertical angles of cones subtended at the centre of the 

sphere by S'x and S2 (see diagram), it can be shown that 

F12 = = sin*| / cos’|. (19) 

1 

General case of radiation exchange between two sur¬ 
faces. Since actual surfaces are never truly black, the net 

exchange of radiation between any two surfaces would always 

be below that given by (17), owing to successive reflections and 

absorptions. For non-black surfaces large compared with their 

distance apart, calculations of radiation interchange are usually 

very complicated, but for surfaces so small compared with their 

distance apart that the cosine of the angle between the line 

joining their centres and the line joining the centre of either to 

the edge of the other does not differ appreciably from unity, 

(16) is applicable. 
Effect of indentations upon the radiation from a surface. 

A flat or convex surface emits radiation in proportion to its 

surface area. A concave surface, however, intercepts some of its 
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own radiation, which may suffer a number of successive reflec¬ 

tions, and consequent reductions in intensity, before it can escape: 

hence it emits less than a flat surface of the same total area. 

If the edge of an indentation is in a single plane, and the surface 

black, the emission from the mouth of the indentation will be 

the same as that from a plane surface with the same edge; that 

this is true is evident by considering the indentation and the 

plane surface closing its mouth as together forming a uniform 

temperature enclosure, each absorbing all the radiation falling 

Fig. 2. Effective emissivity of cavities forming part of sphere, E = 0*65. 

upon it from the other. If, however, the surface of the indenta¬ 

tion is not black, some of its own radiation will be intercepted 

and reflected, and the emission will be greater than that from 

a similar plane surface with the same edge. In the extreme case 

of an enclosure which is complete, but for a very small aperture, 

the emission from the aperture approaches closely that from 

a black surface equal in area to the aperture and at the same 

temperature as the enclosure. This provides a convenient method 

of obtaining black body radiation experimentally. 

In the special case of an indentation whose surface forms part 

of a sphere, the effective emissivity E' (i.e. the ratio of the emis¬ 

sion to that from a black surface of the same shape, size, and 

temperature) is given by 

E' = 
E 

x S(l-E)> 

4trr2 

(20) 

where S = area of curved surface, 

r — radius of curvature of surface, 

E = surface emissivity. 

Values of Ef for spherical caps, E = 0*65, are shown in Fig. 2. 
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Example 1 

A metal storage tank of external area 6 ft.2 containing water 
at 150° F. is in a large enclosure with walls at 50° F. The tank is 
painted dead black on the outside, so that its emissivity is 0*95. 
By how much would the heat loss from it be reduced if it were 
coated with aluminium paint of emissivity 0*55 ? 

Solution. Since the tank is small compared with its surround¬ 

ings, and is not at a high temperature, expression (5) holds. 

The heat loss from the black surface would thus be 

6X 1-73X 10-9X0-95[(150+460)4-(50+ 460)4] B.Th.U./hr. 

and from the bright surface 

6 X 1-73 X 10~9 X 0*55[(150-f 460)4—(50+460)4] B.Th.U./hr. 

The saving would thus be 

6 X 1-73 X 10-9 X (0-95—0*55)[(150 + 460)4 — (50+460)4] 

B.Th.U./hr., 
which, from Table XV, 

= 6 X 0-40 X (240—117) = 295 B.Th.U./hr. 

Example 2 

A metal rod of diameter \ in. runs along the axis of a cylindrical 
furnace of inner diameter 8 in., the inner surfaces of which are 
kept at 1,600° F. The absorptivity of the rod is 0*60, its density 
is 500 lb./ft.2, and its specific heat is 0-14 B.Th.U./lb. °F. How 
long would the rod take to heat from 800° F. to 850° F. ? 

Solution. Since the rod is small compared with its surround¬ 

ings, and the temperature difference comparatively large, the 

radiation it absorbs can be calculated from expression (5) and 

will be given by: 

(a) l-73xl0-9x0-60[(1600+460)4-(800+460)4] 

B.Th.U./ft.2 hr. at the beginning of the period. 

(b) 1*73 X 10~9X 0*60[(1600-f-460)4 —(850+460)4] 

B.Th.U./ft.2 hr. at the end of the period. 
From Table XV 

(a) = 0*6(31100-4360)== 16040 B.Th.U./ft.2 hr. 

(b) = 0*6(31100—5090) = 15610 B.Th.U./ft.2 hr. 
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These are so nearly the same that the mean value, 15800 B.Th.U./ 

ft.2 hr., can be taken. 

Surface area of rod per ft. length = 7r/24 ft.2 

.•. Heat absorbed per ft. length == 15800 Xv/24 

= 660v B.Th.U./hr. 

Heat capacity of rod per ft. length 
77 

48X48 

70t7 

48X48 

X 500X0-14 

B.Th.U./°F. 

50 X 707T 
Heat required to raise temp. 50 degrees == —— B.Th.U. 

Time required 
35 0077 

48X48X66077 

3500X60X60 

48X48X660 

48X48 

hours 

seconds = 8-3 seconds. 

Example 3 

A dead black cylinder of emissivity 0-95 is kept at 200° F. in 
a large enclosure at 50° F. Find the radiation lost per square 
foot of its surface. 

What would the radiation loss become if the cylinder were 
surrounded by a concentric cylinder with its inner surface of 
brightly polished metal, emissivity 0-10? 

Solution. For the freely exposed cylinder the radiation loss 

will be 

l-73xl0-9x0-95[(200+460)4—(50+460)4] B.Th.U./ft.2 hr. 

From Table XV this = 0-95(328-117) = 200 B.Th.U./ft.2 hr. 

For the concentric cylinders, since the inner surface of the outer 

cylinder is a regular reflector, the parallel planes formulae apply, 

and, since the absolute temperatures concerned are compara¬ 

tively low, the grey body formula (7) may be used. Hence the 

radiation loss will be: 

1-73X10-* x 
0-95x0-10 

0-95+0-10—(0-95 X 0-10) 
(328-117) 

= 0-10(328-117) = 21 B.Th.U./ft.2 hr. 

It will be noticed that in this case, where one of the surfaces 



16 RADIATION OH. I 

is nearly black, the effective emissivity is nearly equal to that of 

the other surface. 

Example 4 

In the above example, calculate the corresponding radiation 
losses for an inner cylinder of emissivity 0-10. 

Solution. For the freely exposed cylinder the radiation loss 

will now be 

0*10(328—117) = 21 B.Th.U./ft.2 hr., 

that is, it will be the same as for the black cylinder surrounded 

by a cylinder of emissivity 0* 10. When surrounded by a polished 

cylinder the radiation loss will become 

0*10x0*10 
1*73 X 10~9 x 

0*10+0*10-(0*10X0*10) 
(328-117) 

= 0*053(328-117) = 11 B.Th.U./ft.2 hr. 

which is very low, as in a Thermos flask. 

Example 5 

A white refractory material has emissivity 0*40 at 2,000° F. 
and 0*43 at 1,900° F. If a piece of the refractory at 1,900° F. 
were exposed to black furnace walls at 2,000° F., at what rate 
would it gain heat by radiation ? 

SolutionIn this case, since the absolute temperatures con¬ 

cerned are high, expression (6) must be used. It allows for the 

fact that the absorptivity of the white refractory for radiation 

from a black body at 2,000° F. is equal to the emissivity of the 

refractory at 2,000° F. Hence the radiation the white refractory 

gains will be 

l*73xl0~9x0*40(2000+460)4-0*43(1900+460)4 

which, from Table XV, B.Th.U./ft.2 hr. 

= (0-40x63300)-(0-43X53600) B.Th.U./ft.2 hr. 

= 25320-23050 = 2270 B.Th.U./ft.2 hr. 

If the grey body formula (5) had been used, an incorrect answer 

would have resulted: 

= 0-43(63300-63600) = 4170 B.Th.U./ft.2 hr., 

which is 84 per cent, too high. 
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Example 6 

A thin metal disk of diameter 6 in., blackened on both sides, 
is exposed to the radiation from a normally opposed parallel 
disk of the same size, 3 ft. away, maintained at 1,000° F. If 
the surroundings are otherwise at 60° F., find the equilibrium 
temperature of the blackened disk, for simplicity taking its 
emissivity as 1, and neglecting heat loss from it by convection. 
The emissivity of the hot disk is 0*8. 

Solution. The two disks may both be considered as ‘small’, 

in the sense that the angle subtended by either at the other is 

small. The radiation interchange between them will thus be 

given by (16), with cos^ and cos</>2 both equal to 1. 

If the equilibrium temperature of the black disk is T° F. Abs., 

its heat loss by radiation to the surroundings, remembering that 

it has two sides, will be 1-73 X 10~9 X 2S(T*—5204) B.Th.U./hr., 

where S is the surface area of one side of the disk. 

Hence, in equilibrium, when the heat it gains by radiation 

from the hot disk is just equal to the heat it loses by radiation to 

the surroundings: 

r4) 

73 X 10-9 X 2Sx (T4—5204), 

31 X 1010) X 2 X 9X 4>^4 

°*.8 

= 360(T4—7*31 X 1010) 

and J74 = 8-56 x 1010, whence T ~ 540° F. Abs. — 80° F. 

Actually, since the disk would lose heat to the surroundings by 

convection at about the same rate as by radiation, the real 

equilibrium temperature would be approximately 70° F. 

Example 7 

A blackened surface of area 1 ft.2 and emissivity 1 is parallel 
to a gas-fire and 12 ft. away from it in a direction at 45° to the 
plane of the fire. It absorbs radiation from the fire at the rate 
of 7 B.Th.U./hr. If the fire burns gas of calorific value 500 
B.Th.U./ft.3 at the rate of 30 ft.3/hr., and its effective area is 
| ft.2, what is its radiant efficiency ? 
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Solution. From expression (12) the radiation falling on the 

blackened surface will be 

I dsdwco8(f> = 7 B.Th.U./hr., 

where I is the intensity of normal radiation, ds is the effective 

area of the fire = § ft.2, dco the small solid angle subtended 

by the blackened surface at the gas-fire = cos<£/(12x 12), and 

cos <f> = cos 45° == 0-71. 

But the total radiation emitted by the fire, from expression (13), 

— ttI ds — lirjdcj cos <f> = 77rX 12 X 12/cos2<£ 

= 6340 B.Th.U./hr. 

The heat of the gas burned = 500x30 = 15000 B.Th.U./hr. 

Hence the radiant efficiency = 6340 x 100/15000 = 42-5 per cent. 

Gas Radiation 

Gases with symmetrical molecules, such as hydrogen, nitrogen, 

and oxygen, or mixtures of these gases such as air, do not radiate 

appreciably even at high temperatures; nor do they absorb 

radiation passing through them. But the heteropolar gases such 

as water vapour, carbon dioxide, carbon monoxide, sulphur 

dioxide, ammonia, hydrocarbons, etc., may radiate strongly in 

certain limited bands of wave-length, which are different for 

the different gases. Of these, the only ones that have been the 

subject of systematic investigation are water vapour and carbon 

dioxide, which, since they are found in considerable proportions 

in products of combustion, are of great industrial importance. 

Emissivity and absorptivity of partially transparent 

substances. In calculating the radiation from a gas layer, thick¬ 

ness as well as surface area must be taken into account. The degree 

to which a partially transparent material such as a gas absorbs 

radiation can be expressed in terms of its coefficient of absorp¬ 

tion, a, for that radiation, of which in passing through a thickness 

x of the material, a fraction (I—e-**) is absorbed and a fraction 

e-a* transmitted, where e is the base of the hyperbolic logarithms. 

Similarly it can be shown that a layer of gas of thickness x 

will emit (e/a)(l—-B)(l—e^35) per unit area, (21) 

where € is the coefficient of emission, i.e. the radiation emitted 
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by unit volume in unit time. The corresponding radiation 

emitted by a black body, which neither transmits nor reflects, 

would be €/a. Hence the emissivity of the layer, expressed as a 

ratio of black body emissivity, would be (I — I2)(l — e~ax). But 

this is evidently equal to the absorptivity, since when radiation 

falls upon the surface of the layer, of the fraction (I—-22) which 

penetrates it, a fraction (1—e~ax) is absorbed. Hence, for a 

partially transparent material, emissivity in any wave-length or 

at any temperature is, as for opaque substances, equal to absorp¬ 

tivity for the same wave-length or for radiation from a black 

body at the same temperature. 

According to the above, the radiation from a gas should 

increase exponentially with the number of radiating molecules 

in the thickness of the radiating layer, i.e. with pi where p is 

the partial pressure of the radiating gas and l the thickness of 

the gas layer. Knowing the bands of wave-length in which the 

gas radiates, and the corresponding coefficients of emission, it 

should thus be possible to calculate the emissivity. But attempts 

have shown that this is too complicated to be feasible, since not 

only must the radiation for the different characteristic bands be 

considered separately, but the coefficient of emission in any given 

band varies with the wave-length, and the wave-length limits 

of the bands are not exactly known. Moreover, in the case of a 

gas, the radiation may depend to some extent upon p and l 

separately as well as upon their product. It has also been found 

that the absorptivity of a gas may depend appreciably upon its 

own temperature as well as upon the temperature of the source 

of radiation. Hence for practical purposes the emissivity, and 

absorptivity, must be found experimentally. 

Measurements of emissivity and absorptivity of gases. 

During the past few years a number of measurements of emis¬ 

sivity have been made, mainly for carbon dioxide and water 

vapour. Hottel and Egbert [5] have recently reviewed the exist¬ 

ing data, from which they have deduced the best values. They 

consider that the error in the emissivity figures is less than 5 

per cent., but the measurements of absorptivity are less accurate. 

The emissivity, E, of a gas is usually given in a series of curves 
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in which E is plotted against the temperature of the radiating 

gas for different values of the product pi of the partial pressure 

p, and the thickness of the gas layer, Z, assumed the same in all 

directions. Actually, l is the same in all directions only for the 

artificial case of a hemisphere radiating to the mid-point of its 

base; for other shapes the radius of the hemisphere which would 

give the same emissivity has to be determined before values can 

be read from the curves. This has been calculated for a number 

of simple shapes, as shown in Table I. In the limit, as pi decreases, 

Table I. Equivalent Thickness l for Non-Luminous Gas Radia¬ 

tion Layers of Different Shapes 

Factor by which Z is to be 

multiplied to give equivalent l 

for hemispherical radiation 

Characteristic Calculated 

dimension by various 3-4 x 
Shape Z workers (volume/area) 

Sphere ..... Diameter 0-60 0-57 
Cube ..... 
Infinite cylinder radiating to 

Side 0-60 0*57 

walls ..... Diameter 090 085 
Ditto, radiating to centre of base 
Cylinder, height = diameter, 

Diameter 0-90 0*85 

radiating to whole surface Diameter 0-60 0*57 
Ditto, radiating to centre of base Diameter 0-77 0*57 
Space between-infinite parallel Distance 

planes .... 
Space outside infinite bank of 

apart 1-80 1*70 

tubes with centres on equi¬ 
lateral triangles, tube dia¬ 
meter = clearance Clearance 2-80 2*89 

Ditto, but tube diameter = 
one-half clearance 

Ditto, with tube centres on 
Clearance 080 3*78 

squares, and tube diameter — 
clearance .... Clearance 3-50 3*49 

Rectangular parallelepiped, 
1x2x6 radiating to: Shortest 

2x6 face edge 106 101 
1x6 face ,, 106 1*05 
1x2 face *» 106 101 
all faces .... 106 1*02 

Infinite cylinder of semicircular 
cross-section radiating to 
centre of flat side Diameter 063 052 
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l becomes equal to (4 x volume)/area. For practical cases, l can 

be taken as (3-4 x volume)/area which usually gives a sufficiently 

accurate result. 

Carbon dioxide and water vapour. Using the subscript c 

Fig. 3. Emissivity of carbon dioxide for total pressure 1 atmosphere. 

for carbon dioxide and w for water vapour, the variation of 

the emissivity, Eci with the partial pressure, pc, for any given 

value of pcl, is negligible, and emissivities for a total pressure 

of I atmosphere can be read off directly from the curves in 

Fig. 3. For water vapour, a correction must be applied for 

variation of the emissivity, Ew, with pw for a given value of 
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pwl. In this case the initial curves shown in Fig. 4 are plotted 

for the limiting case of pw = 0, and subsidiary curves are 

given in Fig. 5 for finding the factor by which the values of Ew 

read from Fig. 4 must be multiplied to obtain corrected values 

Fio. 4. Emi8sivity of water vapour for total pressure 1 atmosphere. 

for any actual partial pressure. In calculating pi, p is to be ex¬ 

pressed in atmospheres and l in feet. 

It will be seen from Figs. 3 and 4 that for carbon dioxide Ee 

goes through a maximum at a temperature between 600° F. and 

1,000° F. depending upon the value of pc l, while for water vapour 

Ew decreases with increasing temperature throughout the range. 
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Fig. 5. Ratio of emiasivity of water vapour for pw == pw 

to that for pw — 0. 

025 

0*2 

F 015 cc 

0*1 

0 05 

0 

Fig. 6. Variation of emiasivity of carbon dioxide with pi. 

In Figs. 6 and 7 the emissivities, as read from Figs. 3 and 4, 

are shown for the two gases separately against the product pi, 

for temperatures of 1,000° F., 2,000° F., and 3,000° F. Except 

for small values of pi the emissivity of water vapour is higher 
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than that of carbon dioxide; at 1,000° F., for pwl — 10 at. ft. 

it is more than one-half that of a black body. 

For a total pressure xy and a partial pressure p, atmospheres, 

E may be somewhat greater than for a total pressure 1 atmo¬ 

sphere, withpZ increased to xpl, i.e. for the same number of mole- 

Fio. 7. Variation of emissivity of water vapour with pL 

cules: but not enough is yet known about the effects of total 

pressure upon E to allow for reliable corrections. 

Since the emission bands of carbon dioxide and water vapour 

overlap, either gas is absorbent to radiation from the other. 

Thus, when both are present, the total radiation emitted is less 

than the sum of that due to the two gases separately. Hottel’s 

curves for correcting for this effect are given in Fig. 8. They 

show, for different values of pw/(pc+pw)> and for different values 

of (pcl+pwl), the amount which must be subtracted from 

(Ee+Ew) to give ECMo. 

Values of absorptivity for radiation from boundary surfaces, 

assumed black, at any given temperature, can be obtained 
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from the curves in a similar manner, provided that the gas is 

appreciably hotter than the enclosing surfaces and the absorp¬ 

tion term consequently of secondary importance. But if the 

reverse is the case, and greater accuracy is needed, the values 

of pcl and pwl should be multiplied by TJTg, where T8 and Tg 

are the surface and gas temperatures respectively, and the 

resulting products then used for finding Ec and Ew from 

Figs. 3 and 4. The emissivities thus obtained must then be 

Fio. 8. Emissivity correction for mixtures of carbon dioxide and water vapour. 

multiplied by (Tg/Ts)0'*5 for carbon dioxide and (Tg/T8)0‘A5 for 

water vapour. 

Radiation from carbon monoxide. Flue gases often con¬ 

tain a proportion of carbon monoxide, though its radiation is 

usually small compared with that from other constituents. 

Ullrich [6] found that the emissivity of carbon monoxide is a 
maximum around 1,600° F. Between 600° F. and 2,500° F. 

its emission for pi = 2 is about half, and for pi = 0*01 varies 

from about 40 to 90 per cent., that of carbon dioxide. 

Radiation from ammonia. The emissivity of ammonia gas, 

as measured by Port [7], is much higher than that of carbon 

dioxide or water vapour. In common with these gases it showrs 

a decreasing emissivity with increasing temperature. Between 

room temperature and 2,000° F. Port [7] found values that at 

pi = 2 varied from once to twice those for water vapour, at 
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pi = 0*01 from one-and-a-half to four times those for water 

vapour. 

Net radiation between a gas and its enclosure. In calcu- 

lating the net radiation interchange between a radiating gas at 

Tg and black bounding surfaces at Ta the expression is 

H = 1-73 X 10-9(^ T*-Ag T\) B.Th.U./ft.2 hr., (22) 

where Eg is the emissivity of the gas at Tg and Ag its 

absorptivity for radiation from a black body at Ts. 
If the emissivity of the boundaries is appreciably below 1, it 

must be taken into account, for in this case some of the gas 

radiation will be reflected at the boundaries, most of this passing 

unabsorbed through the gas and having a further opportunity of 

being absorbed at the boundaries. Similarly for the second and 

successive reflections. For most industrial applications a close 

enough approximation is given by introducing a factor 

E'8=(E3+1)/2 

into (22). Indeed, in many actual problems, owing to uncertain¬ 

ties in the shape factor, the gas composition and the emissivity 

of the boundaries, and to unknown temperature variations in the 

gas mass, it is often not worth putting in any corrections at all. 

When there is a continuous change in the temperatures of gas 

and surface along an interchanger, a good approximation is 

given by taking the arithmetic mean of the surface temperature 

and a gas temperature found by adding the logarithmic mean of 

the temperature differences 6x and 02 between gas and surface 

at the two ends to the mean surface temperature; that is, 

Tg = r.+ tfx-^/logA (23) 
“2 

Again, it is sometimes convenient to write (22) as 

H = 1-73 x 10~9E(T*- T\) B.Th.U./ft.2 hr., (24) 

where E is a ‘grey’ emissivity which gives the right result for H. 

It can be seen that E is equal to 

Eg-Aa(TJTB)* 

1 -(TO4 ' 
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Example 

Flue gases containing 10 per cent, of carbon dioxide and 20 
per cent, of water vapour enter a heavily insulated tube 3 ft. 
long and inner diameter 6 in. at 1,200° F. and leave at 1,000° F. 
The mean temperature of the tube wall is 900° F. and its emissi- 
vity 0-8. Neglecting convection, at what speed do the gases 
enter the tube ? Their specific heat at 1,200° F. may be taken as 
0 007 B.Th.U./ft.3 °F. 

Solution. The radius of hemisphere equivalent to a 6-in. 

tube 3 ft. long is given by: 

3*4 X volume __ 3*4X7trH __ l-lrl _ 1*7x3 __ ^ ^ 

area 27rrZ+27rr2 {l+r) 4x(13/4) 

Hence, for COPcl — 0*10x0*4 = 0*04 at. ft., 

for H20, pwl — 0*20x0*4 = 0*08 at. ft. 

Since the difference between inlet and outlet gas temperatures is 

not great the mean value may be taken as a close enough 

approximation, i.e. 1,100° F. 

From Fig. 3, for pcl = 0 04 at. ft., the emissivities of C02 at 

1,100° F. and 900° F. respectively are 0*057 and 0*055. 

From Fig. 4, for pwl = 0*08 at. ft., and pw = 0, the emissi¬ 

vities of H20 at 1,100° F. and 900° F. respectively are 0*061 and 

0*069. According to Fig. 5, for pw — 0*20, these need multiplying 

by 1*15, bringing them to 0*070 and 0*079 respectively. 

Thus Ec+W for 1,100° F. and 900° F. respectively is equal to 

0*127 and 0*134 respectively, since it will be seen from Fig. 8 

that the correction for mutual absorption at such low values of 

(Pcl+Pwl) is negligible. 
Hence the net radiation from the gas to the tube walls will be 

given by 

(°‘82+1) X 1-73 X 10~9(0-127 X 15604 — 0-134 X 13604) 

B.Th.U./ft.2 hr. 
which (see Table XV) is equal to 

0-9 X105(0-127X 1-02 - 0-134 x 0-59) = 454 B.Th.U./ft.2 hr. 

or, for the total area of the tube, to 

n X £ X 3 X 454 = 2140 B.Th.U./hr. 
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If v is the inlet velocity in ft./hr., the volume of gas flowing is 

irrH ft.3/hr. and its heat capacity 0-0077rr2t? B.Th.U./°F. hr. 

Hence v is given by 

2140 
200, 

whence v — 

0-007 XTrrhi 

2140x7x4x4 

200 X 0-007 X 22 X 60 X 60 
ft./sec. = 2-2 ft./sec. 

If instead of inlet and outlet gas temperatures the inlet 

temperature and gas volume were known, a preliminary shot at 

finding the exit gas temperature would have to be made, and 

from this a more accurate value determined. 

Suppose the gas throughout the tube were at 1,200° F., a 

calculation similar to the previous one shows that the heat 

transfer would be enough to drop the gas temperature by 334 

degrees. Obviously this is too great, but taking the mean of no 

temperature drop, and 334 degrees drop =167 degrees, we get a 

mean gas temperature of 1,200—(167/2) = 1,117° F. which 

would give enough heat transfer to cause a temperature drop of 

223 degrees. Again taking the mean, i.e. of 167 and 223, we arrive 

at a temperature drop of 195 degrees and a mean gas tempera¬ 

ture of 1,102° F. which is obviously near enough. 

In this case, however, the calculations could have been simpli¬ 

fied, and the same result obtained, by using (24) instead of (22), 

and assuming that over the possible range of gas temperature 

there was no appreciable variation in E. 

Gas radiation in a furnace. As a rule, it is not merely the 

direct radiation interchange between gas and boundary walls 

that is in question. In most furnace problems there is direct 

interchange of radiation between the combustion gases and the 

charge, between the combustion gases and the furnace walls, 

and between the furnace walls and the charge. And both solid 

radiation and gas radiation are reflected and re-reflected from all 

parts of the furnace walls and charge to other parts, being 

partially absorbed by the gas at every passage through it. Two 

types of problem occur in practice: in the first type steady flow 

conditions prevail, as in a boiler; in the second, conditions are 
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transient, as when a cold charge is introduced into a hot furnace. 

In either case it may generally be assumed that the furnace walls 

are heavily insulated, and the heat lost through them therefore 

relatively small. 

When flow conditions are steady, the walls take up an equili¬ 

brium temperature, between the temperatures of the hot gas and 

the heat-receiving surface. To get a heat balance between heat 

supplied and heat absorbed would involve methods of trial and 

error, due allowance being made for convection if necessary. 

But, if the heat loss through the walls is assumed to be roughly 

balanced by convection from the hot gases to the walls, radiation 

from the gases falling on the walls which is reflected or re¬ 

radiated will increase the heat transfer to the receiving surface 

or charge. The total heat transfer by gas radiation, to an ab¬ 

sorbing surface of area S, in the furnace, may then be considered 

as being equal to the heat transfer which would occur by direct 

gas radiation alone, to a surface of area S+xSR, where a; is a 

fraction and SR is the total area of refractory walls, from which it 

is assumed there is no external loss. If SR/S is large, x approaches 

zero, while if SR/S and AG are small, x approaches unity. For 

most practical cases, x will lie between 0-5 and 0-9 and generally 

a value of 0*7 gives a reasonable approximation.! 

When a cold charge is inserted in a hot furnace a quite different 

state of affairs exists. Prior to putting cold material into the 

furnace there will usually be little temperature difference 

between the combustion gases and the inner walls of the furnace. 

But the introduction of the cold material will cause a sudden 

chilling of the furnace walls owing to the large initial temperature 

difference, and a consequent high rate of heat transfer from walls 

to charge, which gas radiation and convection to the walls fail to 

counterbalance. As the charge warms up, the temperature of the 

walls will rise again, and during this stage the walls receive more 

heat from the gases than they re-radiate to the charge. In due 

course the charge will attain some final constant temperature, 

between that of the hot gases and the walls, and at this stage all 

the temperature differences will be small, the only heat loss 

f See McAdams, Heat Transmission (1942), p. 70. 
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"being that required to balance conduction losses. Over the whole 

warming-up period the total amount of heat absorbed by the 

walls from the gases will be equal to the heat radiated to the 

charge from the walls, although at any particular instant this is 

not so. 

Radiation from Clouds of Particles 

The radiation from hot suspended particles in a gas or flame 

depends essentially upon whether or not the particles are large 

enough to be opaque. Powdered coal flames contain particles 

varying in diameter from about 0*01 in. downwards, which may 

have any composition from nearly pure carbon to nearly pure ash. 

Many of them will be thick enough to be practically opaque. 

On the other hand, the particles suspended in luminous gas 

flames, which are caused by the decomposition of hydrocarbons, 

and consist of carbon or very heavy hydrocarbons, have an 

initial diameter of only about 0*00001 in. and transmit a con¬ 

siderable fraction of the radiation falling upon them. 

The radiation from a cloud of non-reflecting opaque carbon 

particles can be calculated if their size and number per unit 

volume are known, but when the particles are partially trans¬ 

parent the calculation is too complicated to be manageable. 

Radiation from a cloud of opaque particles. Rays from 

any single opaque particle in a cloud can escape only if they are 

not intercepted and absorbed by other particles. But, assuming 

a random distribution, the probability of the radiation from 

particles at different depths reaching the surface can be cal¬ 

culated, and the total radiation escaping found by summing the 

contributions from particles at different depths. This increases 

with the product nSd according to an exponential law, so that 

E = 1 —e~nSd, where d is the thickness of the cloud, n the number 

of particles per unit volume, and 8 the mean cross-sectional area 

of the particles, which are assumed to be all at the same tempera¬ 

ture. If the cloud is of such a shape that the length of path is 

different in different directions, the effective length for hemi¬ 

spherical radiation has to be determined as described previously 

for gas radiation. 
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Wohlenberg [8], Haslam and Hottel [9], and Lindmark [10], 
have given empirical expressions for the calculation of the 

radiation from pulverized coal flames of given type, but the 

validity of some of their assumptions is open to doubt. Sher¬ 

man [11] made direct measurements of the radiation from several 

pulverized coal flames for a thickness of about 3 ft. and found 

that the emissivity varied from about 0-65 at a distance of \ ft. 

from the burner to 0*4 at a distance of 11£ ft. from the burner, 

where much of the carbon had burned away. From the results 

he estimated the emissivities for greater thicknesses. For a 

flame thickness of 10 ft. he concluded that near the burner the 

emissivity would be almost 1, and that even 10 ft. or more from 

the burner it would still be above 0-8. For a flame thickness of 

20 ft. E would be practically 1 throughout; this would apply to 

modern pulverized coal installations, where the flames are usually 

very big. 

Sherman [11] found that the type of coal burned had more 

effect upon the radiation than the fineness, the quantity of excess 

air, or the rate of heat input. The importance of the radiation 

from the solid particles in a flame is shown by the fact that non- 

luminous gas flames in the same furnace gave emissivity about 

0*2 as against 0*7 to 0*3 for the pulverized coal flames, according 

to the distance from the burner. 

Radiation from a cloud of partially transparent par¬ 
ticles: luminous flames. The emission even from a non¬ 

reflecting partially transparent particle is less than black-body 

emission. The radiation from a cloud of such particles thus 

depends upon the sizes and absorption coefficients of the 

individual particles, as well as upon their concentration. Since 

the absorption coefficient, as for gas radiation, varies with the 

wave-length, the problem becomes very complicated. The most 

important practical case is that of the luminous gas flame, the 

carbon particles in which transmit roughly 95 per cent, and 
absorb 5 per cent, of the thermal radiation incident upon them. 

The absorptivity, or emissivity, decreases with increase of wave¬ 

length, so that a luminous flame which to the eye appears opaque 
may be far from opaque for long-wave-length thermal radiations. 
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The emissivity of luminous gas flames may be much higher 

than that of non-luminous flames of the same temperature. For 

an acetylene flame, for instance, Haslam and Boyer [12] were 

able to increase the radiation 400 per cent, by luminosity, and 

Lent [13] made a blast-furnace flame almost black by adding 

benzene, which caused the formation of soot. 

Sherman [14] measured the emissivity of natural gas burning 

in a furnace of diameter 3£ ft. as non-luminous, semi-luminous, 

and luminous flames, with little or no excess air. The rate of 

heat input, about 3 million B.Th.U./hr., was the same in all 

cases. The values obtained were respectively about 0*20, 0-25, 

and 0*60, but the corresponding differences in the radiation 

emitted were partially counterbalanced by the temperatures 

decreasing as the luminosity increased. The radiation from the 

semi-luminous flame was thus much the same as that from the 

non-luminous, but the fully luminous flame gave much more 

radiation. In an actual furnace, however, where the charge is 

receiving heat from the walls as well as from the gases, the 

absorption by the luminous gases of radiation from the furnace 

walls, which is thus cut off from the charge, may offset the 

greater radiation from the gases themselves. In Sherman’s 

furnace the radiation from flame and wall together was actually 

greater for the non-luminous than for the luminous flames, and 

he concluded that in furnaces where the roof and walls are at a 

higher temperature than the work to be heated the possibility 

of increasing the rate of heat transfer by increasing the luminosity 

of the flame is limited. But in boiler furnaces with water-cooled 

walls, where no high-temperature solid radiating surfaces are 

found, increasing the emissivity of the flame would have greater 

effect. 

‘Radiation efficiencyf of flames. A number of workers 

have measured the heat radiated from flames and expressed it 

as a percentage of the potential heat value of the gas or other 

fuel burned. This is a comparatively simple experiment as it is 

not necessary to know the temperature, thickness, shape, or 

surface area of the flame. For luminous flames of coal-gas in 

non-aerated burners or with very low air-gas ratio, radiation 
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efficiencies from about 16 to 18 per cent, have been found, 

increasing with increase of burner diameter. With theoretical 

air the corresponding values are about 10 to 15 per cent. 

At the Imperial College [ 15] it was found that, for given burner 

diameter, as the gas consumption was increased, the radiant 

efficiency of luminous gas flames remained nearly steady up to a 

certain critical point, corresponding to the onset of turbulence in 

the flame, at which it suddenly fell slightly, remaining constant 

at the new value with further increase of gas consumption. The 

results are given below in Table II. For the smallest burner 

turbulence was not reached. For the largest burner the flame 

flickered at the minimum gas consumption, namely, 30 ft.3/hr., 

and no change in the radiant efficiency was observed up to 

85 ft.3/hr. 

Table II. Radiation from Luminous Coal-gas Flames 

Burner diameter 

(in.) 

Qas consumption 

(ft-*lhr.) 

Radiation as % of potential 

heat of gas burned 

N on‘turbulent Turbulent 

0-035 3-9 11*8 
0-062 3 0- 9-5 16-6 10-0 
0-125 2-5-21-0 17-6 14-6 
0-266 3 0-640 18-2 17-2 
0-47 30-0-850 18-2 

Measurements were also made of the radiation from large, 

roughly plane, petrol flames, about 1 ft. thick, burning 4 to 8 

gal. of petrol per ft. length of burner per hr. For both non- 

luminous and luminous flames the percentage radiation increased 

slightly as the rate of consumption increased, from 18 to 22 per 

cent, for non-luminous and from 31 to 34 per cent, for luminous 

flames. 

For non-luminous flames the radiation should of course agree 

with that given by Figs. 3 and 4, but the size, shape, temperature, 

and composition of flame are usually known only very approxi¬ 

mately. 

5145 D 
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II 

THERMAL CONDUCTION 

Thermal conduction is a process by which heat is transmitted 

through solids, liquids, or gases, from the hotter to the cooler 

parts, the molecules with greater energy communicating some of 

it to neighbouring molecules with less energy. Unlike radiation, 

by which heat can be transmitted across a vacuum, conduction 

can take place only through continuous matter. It is the only 

means by which heat can be transferred through opaque solids. 

In liquids or gases conduction is usually modified by fluid motion 

and the heat transfer is then known as convection, which is dealt 

with in later chapters. 

Definition of thermal conductivity. The rate of heat flow, 

dQ/dr, by conduction across a surface of small area dS is, by the 

definition of thermal conductivity, k, of the medium, given by 

—k dS(dt/dx), where dt/dx denotes the temperature gradient 

in the direction x normal to the surface. The negative sign shows 

that the direction of heat flow is that of decreasing temperature. 

Applying the law to steady heat flow across a unit cube when 

two opposite faces are maintained at temperatures differing by 

one degree, the other faces being impervious to heat, the rate of 

heat flow equals k, and this is an alternative way of defining k. 

Considering the general case of heat conduction in a cube of 

small sides dx, dy, dz, the net rate of gain of heat by conduction 

into the cube is easily shown to be 

BH a*<\ 
\dx2 + dy2 + dz2) 

X dxdydZy 

and equating this to the rate of rise of heat content with time, 

cp —dxdydz, the differential equation of conduction 
or 

d*t 8H _cpdt 
dx* + dy* + dz? 1c dr 

is obtained. For steady flow dtjdr = 0 and t satisfies Laplace’s 

equation, as does the potential in an electrostatic field or in a 
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field of electric current flow through a conducting medium. It 

follows that, for similar boundary conditions, the shapes of 

isothermal surfaces and lines of heat flow in thermal conduction 

are identical with the shapes of equipotential surfaces and lines 

of electrostatic flux in electrostatics, and also with the equi¬ 

potential surfaces and lines of electric current flow in the con¬ 

duction of electricity. This analogy may be put to practical use 

(see p. 43). 

Units and dimensions of thermal conductivity. From 

the above definition it follows that the dimensions of k are 

—~== Qjlrt, Q denoting heat, r time, and t temperature. 
If u 

In the British system, k is the heat transfer in B.Th.U. 

per square foot per hour per degree Fahrenheit temperature 

difference through one foot thickness, and has dimensions 

B.Th.U./ft. hr. °FT-- 

Since in conduction the heat is transferred between molecules, 

k is lowest for gases, for which the molecules are most widely 

spaced. The range of variation is very wide. For gases at ex¬ 

tremely low pressure k is almost zero. For a natural copper 

crystal at —422° F. a value of 7,000 B.Th.U./ft. hr. °F. has 

been measured. 

Thermal conductivity of metals. Metals are outstandingly 

good thermal conductors; since they are also good electrical 

conductors, it is natural to suspect some relationship between 

thermal conductivity, k, and electrical conductivity, j. Thus k 

for silver or copper is of the order of 200 B.Th.U./ft. hr. °F., 

whereas for bismuth, which is a very poor electrical conductor, 

it is only about 5 B.Th.U./ft. hr. °F. Indeed, for most metals 

at ordinary temperatures, kjjT is constant (known as Lorenz’s 

constant), but this ceases to apply at temperatures below 

— 150° F. 

The thermal conductivity of an alloy cannot be calculated by 

simple proportion from the thermal conductivities of its con- 

constituents. Take bronze, for example, for which k is about 24, 

while for its constituents, 90 per cent, copper and 10 per cent, 

tin, k is 200 and 37 B.Th.U./ft. hr. °F. respectively. Moreover, 
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alloying a very small proportion of one metal with another may 

greatly reduce its thermal conductivity. Thus commercial 

copper does not conduct heat anything like so well as pure 

copper. 

For pure metals k decreases with increasing temperature, while 

for alloys it tends to increase. 

Thermal conductivity of non-metallic solids. For non- 

metallic solids A; is as a rule much less than for metals, but it 

varies over a wide range; thus, for ebonite, rubber, paraffin wax, 

dry wood, etc., it is of the order of 01, for graphite about 70 

B.Th.U./ft. hr. °F. 

Many solid insulating materials, such as wool, hair, down, 

granulated cork, asbestos wool, glass wool, etc., owe their low 

thermal conductivity to porosity. For, since air is a very poor 

conductor of heat, the air pockets formed by the pores may 

greatly reduce the conductivity of the material as a whole, 

although of course heat is transferred across them by radiation 

and, if they are big enough, by convection, as well as by conduc¬ 

tion. For such materials k as a rule depends a good deal on the 

pressure or density of packing. There is usually an optimum 

density of packing which gives a minimum value of k. With 

looser packing than this the air spaces are too big to give the best 

effect since they do not check convection. With tighter packing 

the reduction in volume of the air spaces causes an increase in k. 

Many porous or fibrous materials have thermal conductivities 

of 0-01 to 0-03 B.Th.U./ft. hr. °F. 

The thermal conductivity of non-metallic solids may either 

increase or decrease with temperature. For porous or fibrous 

materials it increases with increasing temperature, since both 

the conductivity of air and the radiation per degree temperature 

difference across the air pockets also increase with the absolute 

temperature. For homogeneous solids k in general decreases 

with increasing temperature. For crystals k is inversely pro¬ 

portional to the absolute temperature. 

Thermal conductivity of liquids. Water has the highest 

thermal conductivity of non-metallic liquids, rising from about 

0-33 to 0*39 B.Th.U./ft. hr. °F. as the temperature rises from 
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32° F. to 212° F. For most organic liquids k at ordinary tempera¬ 

tures is about 0*1. For ordinary oils it varies from about 0-07 to 

0-10. For most liquids k seems to decrease slightly with increase 

of temperature, but comparatively few reliable measurements 

have been made. 

Thermal conductivity of gases. It is difficult to measure 

Fig. 9. Variation of thermal conductivity of gases with molecular weight and 
temperature. 

the conductivity of a gas because of the necessity for suppressing 

convection currents. Methods have been devised, however, in 

which by working at very low pressures, or by using a thin film 

of gas heated from the top, convection has been reduced to 

negligible proportions. 

It is known that, for gases, Cfx/k is constant, and use can be 

made of this fact to deduce the values of k for different tempera¬ 

tures from the measured values, usually at 32° F. It will be seen 

from Fig. 9 that k increases with increasing temperature and 
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tends to decrease with increasing molecular weight. Values for a 

wider range of temperature, derived from the somewhat more 

complicated Eucken’s formula, are given in Table XVIII for 

air, carbon dioxide, hydrogen, and water vapour. 

Theoretically the thermal conductivity of a gas should be 

independent of its pressure or density, except when extremely 

low, but there is some evidence of an actual slight increase with 

pressure. Below about one-tenth of an atmosphere or less, k 
decreases in nearly direct proportion to the decrease of pressure. 

The critical pressure at which k begins to decrease is reached 

when the length of the mean free path of the molecules, which 

increases as the density is decreased, becomes comparable with 

the linear size of the enclosure. 

Steady and unsteady conduction. The flow of heat in a 

conducting body is said to be steady when the temperature at all 

points in the body remains constant with time, while heat is 

steadily transferred from the hotter to the cooler parts. 

The flow is said to be unsteady when the temperature at any 

point changes with time, either periodically, as in a wall exposed 

on the outside to night and day conditions, or continuously, as in 

the warming-up process which always precedes the steady state. 

Steady Conduction 

Conduction through plane slab. Consider a flat homo¬ 

geneous slab of thickness d and thermal conductivity k. Let 

opposite faces of the slab be maintained at 

temperatures tx and t2 as in the diagram. 

By the definition of k, 

H = —k(dt/dx). 

Since H must be the same for all sections 

parallel to the faces of the slab, if k is assumed 

constant dtjdx must be constant, i.e. the temperature gradient 

is a straight line, with slope —Iijk, and 

H - (k/d)(tx-t2) B.Th.U./ft.2 hr. (26) 

Isothermals are planes parallel to the faces of the slab, and 

lines of heat flow are perpendicular to the isothermals. 
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„ Conduction through two plane slabs in series. A common 

practical case of conduction is that through a wall composed of 

yt, two or more layers of material of different 

\ kl \/ k2/ conductivity, such, for example, as a metal 
ti ^/ wall lagged with insulating material, 

x / Consider first two layers, of conductivity 

\ ^ t3 kr and k2 and thickness dt and d2, as in the 

\ ^ diagram. If tx and t3 are the temperatures 

^ of the outer surfaces, and t2 the temperature 

of the interface, then, by (26), 

H = {k\ld\){tx t2) = (k2/d2)(t2 ^3) 

or Hdjh'i = tx—t2 and Hd2jk2 = t2—/3. 

By addition, H[(d1/k1)-\-(dz/k2)] = 

H = — -1 ■ — (27) 
(d1/kl)-\-(d2/k2) 

Surface heat transfer coefficient. The heat transfer H 
per unit area per unit time, between a surface and its surround¬ 

ings, may be expressed in terms of a surface heat transfer coeffi¬ 

cient oc — H/6. If 9, the temperature difference between surface 

and surroundings, is in degrees F. the units of a will be 

B.Th.U./ft.2 hr. °F. 

Heat transfer between two fluids separated by a com¬ 

posite wall. The result obtained above may be extended to 

include any number n of layers in series, and also the heat 

transfer coefficients at the boundary wall surfaces. If tv tn+l 
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are the surface temperatures of the successive layers of the wall, 

ta and tb the temperatures of the inner and outer surroundings, 

and ota and ocb the inner and outer surface coefficients of heat 

transfer, then H/ota = ta—tx and H/ocb = tn+l—tb. 
It follows that 

H & +F+F+F+-+ K1 ^2 *3 
r + ~) = ta-' kn <*bl 

b °r H = XJ(ta-tb), 

where = 1 + ^+t2+^ + ... + ^ + -1 k1 k 2 kn 
(28) 

U is called the overall heat transfer coefficient. 

It is sometimes convenient to refer to 1 /«a, djkv etc., as resis¬ 

tances to heat flow; 1/1/ is the overall resistance and is equal to 

the sum of the separate resistances. 

Conduction through a single cylindrical wall. When 

heat flows radially through a cylindrical wall, the heat-flow area 

at any radius is proportional to the 

radius, and therefore the temperature 

gradient is inversely proportional to the 

radius (see diagram). 

Let rx and r2, tx and t2 be the radii and 

temperatures of the inner and outer 

cylinder wall surfaces respectively. Con¬ 

sider the radial flow of heat through a 

thin cylindrical element of inner and 

outer radii and temperatures r and r-\-dr, t and t-\-dt respectively. 

It is convenient to express the heat flow in terms of unit length 

of cylinder; then 

Ht - —k2TTv(dt/dr) B.Th.U./ft. length hr., 

and since Hl is the same for all radii, we can write 

whence 

ri 
2 Trk(ti 

/*-«/ 
dl, 

^2) B.Th.U./ft. length hr. (29) 
logc(r2/ri) 

It follows from (29) that for given values of k and the 
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r&te of heat flow per unit length through a cylindrical wall, 

depends only upon the ratio r2/rv Alternatively the heat flow 

H per unit area of cylinder at any radius r is 

H = A = -i-T^f^B.Th.U./ft.2 hr., (30) 
2 nr r loge(r2/r1) 

H is usually calculated in terms of unit area of the inside or out¬ 

side wall surface, i.e. r — rv or r = r2. 

The heat flow through a cylindrical wall may be found 

approximately by considering the wall as a flat slab of area equal 

to the arithmetic mean of the cylinder wall surface area, and 

thickness equal to the wall thickness. For very small values of 

r2/rv the error involved in making this approximation is negli¬ 

gible, and even when r2/rx = 2, the error is only 4 per cent. 

Heat transfer between one fluid inside and another 

outside a composite cylindrical wall. Consider a composite 

cylindrical wall consisting of n layers; let kv k2,..., kn be the con¬ 

ductivities, rv r2,..., rn+1 the radii, ta and tb the temperatures of 

the surroundings on the inner and outer sides of the wall, and 

cxa and ocb the inner and outer surface heat transfer coefficients. 

It can be shown that 
JJ   27r{tb ta)_ 

1 | loge^/r,) lofctra/r,) lQfc(r,+1/r,) 1 

rl aa T n 11 ab 

B.Th.U./ft. length hr. (31) 

Steady conduction through bodies of complex shape. 

Mathematical analyses of heat conduction for a number of 

cases have been obtained, e.g. rectangular blocks, square plates, 

etc., and for these the reader is referred to text-books on this 

subject [1,2]. 
In all but the simplest geometrical cases, formal mathematical 

solution becomes very complex, or quite intractable, and other 

methods must be employed. 

The approximate methods of Langmuir, Adams, and Meikle 

(an account of which is given in the Dictionary of Applied 

Physics, vol. i, p. 463) are of practical interest, since they show 
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how to calculate the contribution of the edges and corners to the 

heat loss from a rectangular bar, a rectangular box, or a thin 

rectangular plate, covered on all sides by a layer of insulating 
material of uniform thickness. 

A graphical method of sketching isothermals and lines of flow, 

from which heat flow can be deduced, for two-dimensional 

flow in a solid of any shape, with given boundary conditions, 

has been described by Awbery and Schofield [3]. 

The relaxation methods developed by Southwell [4] may be 

used to plot a two-dimensional temperature field to any desired 

degree of accuracy. The method is a numerical one, in which the 

field is divided into a mesh or network. The first step in the 

solution is to guess the temperature at each junction in the net¬ 

work; these temperatures are then adjusted, step by step, by the 

relaxation procedure, until the correct final solution is ap¬ 

proached. 

Electrical analogies [3]. The laws of conduction of heat 

and electricity are essentially similar, lines of heat flow and iso¬ 

thermals corresponding to lines of electrical current flow and 

equipotentials. This analogy can conveniently be made use of 

to find the heat flow and temperatures in bodies of awkward 

shape. For example, if a model is constructed in which the iso¬ 

thermal boundaries are replaced by metallic surfaces, and the 

heat insulating medium by an electrolyte, and potential dif¬ 

ference is applied between the boundaries, the equipotentials, 

which can be found experimentally, coincide with the isother¬ 

mals in the corresponding heat-flow problem. 

The total heat flow is proportional to the reciprocal of the 

electrical resistance of the electrolytic model. Thus if a second 

model is made of a simple shape for which the heat flow can be 

calculated, the heat flow in the complicated shape can be deduced 

from the relative values of the electrolytic resistances of the two 

models. 

An alternative method suitable for problems of two-dimen¬ 

sional heat flow is to make the model of metal foil and to measure 

the resistance of the foil between two thick metal electrodes 

arranged in the form of the isothermal surfaces. 
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Example 1 

A rectangular tank containing water at 150° F. loses 200 
B.Th.U./ft.2 hr. to its surroundings. When it is insulated with 
2-in. material of k — 0*1 B.Th.U./ft. hr. °F. the outer surface 
of the insulation takes up a temperature of 80° F. Find the 
reduction in the heat loss. 

Solution. The rate of heat transfer through the insulation will 

b0 01 
(&/d)(150-80) = x 70 = 42 B.Th.U./ft.2 hr. 

The reduction is therefore (200 — 42) on 200, i.e. 79 per cent. 

Example 2 

A furnace wall consists of firebrick 6 in. thick for which 
k = 0*8. In the steady state the furnace side of the wall is at 
1,000° F. and the outer side 350° F. When 1 in. of a magnesia 
insulation of k = 0*05 is added, its outer surface takes up a 
temperature of 200° F. Assuming the furnace side of the wall to 
remain at 1,000° F., what reduction in the heat loss is brought 
about by the addition of the magnesia, and what is the tempera¬ 
ture at the interface of brick and magnesia ? 

Solution. The original heat loss is given by 

^(1000-350) = 1040 B.Th.U./ft.2 hr. 
1/2 

With the magnesia, the temperature t at the interface is given 

by A.Q 

yiwo-t)= 005 

1/12 

and // = 
0-8 

1/2 ( 

or 
0-05 

1/12 
(782-200) - 349 B.Th.U./ft.2 hr. 

The reduction in H is thus (1040—349) on 1040, i.e. 66 per cent. 

Example 3 

A steam pipe of outer diameter 1 in. is covered with two 
layers of insulation each 1 in. thick, the conductivity of one being 
five times that of the other. Prove that the insulation is about 
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13 per cent, more efficacious when the better insulating material 
is put on the inside than when it is put on the outside. 

Solution. The conduction through unit length of a pipe of 

inner and outer radii r1 and r2 is from (29) 27rfc0/loge(r2/r1.) 

The resistance to heat flow in the above problem with the 

better insulating material (a) on the inside and (b) on the outside 
is therefore: 

(a) log, 3 log„(5/3) 
2rrk 2nX3k 9 

(h) _!?&•!_ log,(5/3) 
2tt X 3k 2irk 

Since it is only the ratio of these which is required, 277 and k can 

be cancelled out and logs taken to the base 10, giving relative 

resistances: 

(«) 
log 3 log 1-67 

: 0-477 
0-223 

= 0-55, 

(b) 
——log^67 __ 0-477_j_0.223 = 0.4g 

3 1 3 

The apparent conductivity of the double layer in case (a) is 

thus seen to be less than that in case (b) by 100(0*55—0*48)/0*55 

per cent. = 13 per cent. 

Unsteady Conduction 

Since in unsteady conduction the temperature at any point in 

a body changes with time, it follows that heat is absorbed (or 

given up) by the body, and therefore its heat capacity, as w^ell as 

its conductivity, is involved in calculations; in this case the heat 

flow, given by expression (25), depends upon the ratio k/cp, which 

is called the thermal diffusivity, c being the specific heat per unit 

mass and p the density. 
Unsteady heat-flow calculations arise in connexion wTith a 

wide variety of industrial processes. In some cases it is required 

to find the temperature distribution throughout a body at any 

instant of time, to determine, for example, the temperature 

stresses set up in a hot mass of steel when it is quenched in a cold 
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fluid. In other cases the temperature variation with time at any 

point in a body may be required, for example, in food processing, 

manufacture of ceramics, etc., where it is required to bring the 

interior of a body to a given temperature and to maintain it for 

a suitable time. In gases heat is transferred to or from the 

surface of the body by convection or radiation or both. 

A case of unsteady conduction often met with is that of a 

solid at a uniform initial temperature t0, suddenly exposed to 

Fio. 10. Temperature variation with distance, and time, in an infinitely thick 
slab whose surface temperature is suddenly changed. 

surroundings at a uniform constant temperature tv It is con¬ 

venient to arrange the variables involved in four dimensionless 
groups, namely, 

where t is the temperature, at time r, at a point at distance x 

from some reference point, a is the surface heat transfer co¬ 

efficient, assumed constant, and l is a characteristic linear dimen¬ 

sion of the body. Mathematical solutions for a number of 

geometrically simple cases have been derived and plotted in the 

form of charts in terms of these groups. A simple case which does 

not involve the surface heat transfer coefficient is that of an 

infinitely thick slab, initially at a uniform temperature t0, whose 

surface is suddenly altered to and kept at a different temperature 

tv for which the temperature distribution can be obtained from 

Fig. 10, in which —<o) is plotted against x/2<J(kr/cp)9 
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where x is the distance from the surface. This can be applied 

without much error to a finite slab, until the temperature of 

the second surface has altered appreciably. After this stage the 

heat transfer between the second surface and its surroundings 

has to be taken into account. Similarly, from Fig. 11, in which 

Fig. 11. Temperature, fc, at the centre of bodies of various shapes, initially at 

a uniform temperature, <0, at time, r, after the surfaces have been suddenly 

altered to, and maintained at, temperature, tx. 

(1) Slab: d =* thickness; (2) Square bar: d = side; (3) Lons cylinder: d « diameter; (4) Cube: 
d = side; (5) Cylinder, length = diameter: d ** diameter; (6) Sphere: d = diameter. 

(h-tcWi-to) is plotted against 4krjcpd2, the temperature, tci 
at the mid-plane, axis, or centre of bodies of various shapes, 

when the surfaces, originally at t0> are suddenly altered to and 

maintained at tv can be obtained. 
Other cases have been dealt with by Gurney and Lurie [5], 

Hottel [6], Newman [7], Schack [8], etc. Figs. 12 and 13 are 

Schack’s charts for a slab of finite thickness d, but infinite 

extent, heated on both sides, l being taken as d/2. Fig. 12 gives 
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curves of —^)/(^i—^o) against ocd/21c, for various values of 

1c 4t 
— — for finding the surface temperature, t89 after different times. 
Cp dr 

Fig. 13 gives similar curves of {t\—tc)l{t1—t^) for finding the mid¬ 

plane temperatures, tc, after different times. The ratio xjl is a 

constant for each set of curves and is therefore not involved. 

Figs. 14 and 15 are the corresponding curves for an infinitely 

long cylinder, of diameter d. 

Since the charts are non-dimensional, any consistent system 

of units may be employed. 

The value of such charts has been widened by Newman, who 

has shown that they can also be used for two- or three-dimen¬ 

sional problems. Consider, for example, an infinitely long 

rectangular bar heated on all sides, with sides of length a and b 

in the direction of x and y axes respectively (Fig. 16). Put 

($i—0/(^i~^o) = Y, where t is the temperature at any instant at 

any point (x,y) in the cross-section; then it can be shown that 

Y = YaYb, where Ya is the dimensionless temperature ratio at 

the same instant for a plane at distance x from one face of a slab 

of thickness a, heated on both sides. Thus from Figs. 12 and 13 

the value of Y may be found at the axis, the edge, and the centre 

of each side, as shown in Fig. 17. 

Similarly, for a rectangular solid axfixc, Y at any point is 

given by 7axF^XYc for that point, and may be found at each 

corner, the mid-point of each edge, the centre of each face, and 

the centre of the body. 

If Yr gives the temperature in an infinitely long cylinder, then 

Y for a finite cylinder of length l is given by YrYt and may be 

found for points on the circumference, and at the centre of each 

end, and for points on the circumference, and at the centre of the 

mid-plane. 

General problem of unsteady conduction. The method 

outlined in the previous section, in which prepared charts are 

employed, is obviously limited to the particular shapes covered 

by the charts, and to the relatively simple cases in which the 

surface heat transfer coefficient and the diffusivity of the material 

remain constant. 
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In practical problems things are not usually of simple geo¬ 

metric form, and t1 and kjcp may vary. Formal mathematical 

solution then becomes intractable, and approximate solutions 

are resorted to. These are of two principal types, namely, 

numerical and analogical. Electric [9] and hydraulic [10] 

i i 
i 

Fig. 16. Temperature at any point in a long rectangular 

bar, heated on all sides. 
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r a 
ures in a long rectanguli 

sides, which may be found from Figs. 12 and 13. 

analogies have been described in the literature. In all the numeri¬ 

cal methods the conducting body is divided into a network in 

small but finite steps, in one, two, or three dimensions, and the 

temperature distribution at some instant is assumed to be 

known; then the temperature distribution after a small but 

finite interval of time is found by equating the heat flow by con¬ 

duction into each element of the network to the heat gained by 

that element. The space and time intervals may be chosen inde¬ 

pendently or may be related in such a way as to simplify the 
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ealculation. A well-known method of the latter type for one¬ 

dimensional flow, which is usually applied graphically, is de¬ 

scribed below. 

Graphical method of plotting temperature distribution 
curves in one-dimensional unsteady conduction. Suppose, 

for instance, given the initial temperature distribution through 

the thickness of a large plane slab, the subsequent temperature 

Fio. 18. Graphical method for unsteady conduction. 

distribution at any given time is required; the slab is divided 

up into a number of imaginary layers each of thickness x, by 

planes A A, BB, CC, etc., as in Fig. 18. Let PQR be the tem¬ 

perature distribution at any instant, tA, tB, tc, etc., being the 

temperatures at AA, BB, CC, etc. Let XX, YY, etc., be the 

mid-planes of the layers. Consider the rate at which heat is 

flowing into the layer between XX and YY. The temperature 

gradient at XX is, to a first approximation, equal to the slope 

of PQ\ i.e. to (^A~~hi)lx• Hence the rate of heat flow per unit 

area across XX is approximately 

of heat flow across YY is —— 

x 
Similarly the rate 

x 
, and the net rate at which the 

layer is gaining heat is thus —- ———, Since the volume of 
x 

the layer per unit surface area is x, the rate at which its tempera- 
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ture increases is -—and the temperature 

time r is ^^^^2 • By choosing a time increment r, equal 

to pcx2/2k, the temperature rise is — tB, and the new 
& 

temperature t'B is (tA-\-tc)j2, represented by Q\ the intersection 

of a straight line PR, with BB. The new temperatures tA and 

t'c can be obtained in a similar manner. 

Example 

A steel slab, 1 in. thick, initially at 50° F. throughout, is 
perfectly insulated on one face; the other face is suddenly 

A B C D E 

ABODE 

increased to and maintained at 450° F. Plot a curve showing 
the temperature variation, with time, of the insulated face, 
taking p — 480 lb./ft.3, A: — 26 B.Th.U./ft. hr. °F., c = 0-13 
B.Th.U./lb. °F., irrespective of temperature. 

Solution. Draw the slab as in the diagram, to a convenient 
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scale, EE being the insulated face, AA the opposite face. Draw 

BB, CC, DD, dividing the slab into four equal layers, making 

z = 1/48 ft. 
pcx*_ 480x0-13 

T ~~ 2k “ 2 X 26 X 48 X 48 
hr. = 1-875 sec. 

Choosing a suitable scale, draw the initial temperature distri¬ 

bution PQRSTU. Then, as shown in the previous section, the 

temperature at BB after time r is given by F, the intersection of 

PS, with BB, and the temperature at CC is given by S, the 

intersection of RT with CC, i.e. the temperature at CC is as yet 

unchanged. The new temperature distribution is therefore 

PVSTU. After a further time r, the temperature distribution 

will be PVWTU, and so on. It is convenient to regard the slab 

as one-half of a slab 2 in. thick, heated on both sides, in which 

there is no heat flow across the mid-plane; thus the graphical 

construction in the layer DDEE is done by visualizing a mirror 

image of this layer on the opposite side of EE. 

The numerals at points on the diagram represent time in units 

of r (1-875 sec.) to which the points correspond; it will be seen 

that the construction gives the same temperature at any point, 

for pairs of successive time intervals, this temperature actually 

corresponding to an intermediate time interval. This often 

occurs when Using this method, and then necessitates drawing 

smoothed curves of either temperature against distance for any 

instant, or temperature against time for any point. In this 

example a smoothed curve of temperature against time is draw n 

for the insulated face EE in the accompanying diagram, exact 

values being shown for comparison. 

The number of layers into which the body is divided must 

always be chosen to suit the requirements of the problem. In 

this case a reasonably accurate solution has been obtained by 

using only four layers, and there would be no sense in using more. 

If, however, the temperature variation near the surface during 

the early stages of heating were required, a smaller value of x 

would have to be chosen. It is sometimes convenient to use a 
small value of x for the early stages of heating, changing to a 
larger value for the later stages. 



Smoothed curve of temperature against time for the insulated 

face EE. 

The construction as used in the previous example can easily 

be extended to cases where the surface temperature varies with 

time in some specified manner. Usually, however, the surround¬ 

ing temperature tx and not the surface temperature is known, 

and the method must then be modified so that the temperature 

distribution in the slab can be found from tx and the surface 

coefficient of heat transfer, a. Suppose that at any instant the 

surface temperature is ts\ then the rate of heat flow through unit 

area of the surface is given by 

This must be equal to 

the rate at which heat is con¬ 

ducted into the surface of the slab, 

so that 

= --k(h-ts). 

"SSnce if in the graphical construc¬ 

tion a pole 0 is drawn as in the 
diagram at distance k/oc outside the surface, and at temperature 

tv a line joining 0 to t8 will have a gradient (dt/dx)xssQ and will be 

i.e. to —k 

dt\ 

dxjx^o 
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tangential, at the surface, to the temperature gradient in the 

solid. The space between 0 and the surface may be regarded as 

a layer of material of the same conductivity as the body, but 

having no heat capacity; the rate of heat conduction through 

such a layer would clearly be equal to a(^—ts). 

The subsequent graphical procedure to be adopted when a 

and tx are given depends on whether k/oc is less or greater than 

A B C D 

Fig. 19. Graphical method for unsteady conduction modified to include 
the surface coefficient a. Case when Jc/ct < xj2. 

x/2. Fig. 19 shows the procedure for k/oc less than x/2 where the 

body is divided as before. Suppose that QRST represents the 

initial uniform temperature distribution in the body, then a 

straight line OQ would be the initial temperature gradient in 

the imaginary surface layer. After time r = pcx2/2k, the tem¬ 

perature gradient would be given approximately by OWRST, 

where OWR is a straight line, with W at the surface giving the 

surface temperature. 

When kjd is greater than x/2, the construction is modified as 

in Fig. 20, the first layer between A A and BB being x/2, instead 

of x, in thickness and a construction line XX at x/2, outside the 
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surface, added. As before, suppose the initial temperature 

distribution to be OQRST, and let U be the intersection of OQ 
with XX. Then the temperature at BB after time r = pcx2l2k 

will be given by the intersection V of US with BB, and the new 

temperature distribution will be given by OWVST. 

Subsequent temperature gradients are indicated in Figs. 19 

and 20 by numerals. 

Fio. 20. Graphical method for unsteady conduction modified to include 
the surface coefficient a. Case when k/a, > x/2. 

The graphical method has been extended to composite walls, 

to cylinders, to spheres, to walls exposed to surroundings 

subject to periodic changes of temperature, etc. Sherwood and 

Reed [11] have suggested a modification to the construction to 

allow for the variation of diffusivity with temperature. 

Clearly the results of the graphical procedures described could 

be obtained by equivalent numerical operations, which would 

cut out graphical inaccuracies, but the graphical method has the 

advantage of providing a picture of the temperature changes 

taking place. Emmons [12] has given a numerical method 

for two-dimensional problems, in which the time and space 
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increments are related as in the graphical method, and Dusin- 

berre [13] a more general method for one-dimensional flow, in 

which the time and space increments are chosen independently, 

and thus greater accuracy is obtained. 

Example 

A slab of material 2 in. thick, of specific heat, c, 0*4 B.Th.U./ 
°F. lb., and density, p, 30 lb./ft.3, is clamped between two 
electrically heated plates, kept at 250° F. If the initial tempera¬ 
ture, t0i of the slab is 60° F., and the temperature, tc, at the mid¬ 
plane after 10 min., r, is 100° F., what is its thermal conduc¬ 
tivity ? 

Solution. Assuming the surface temperature, t8, of the slab 

immediately becomes 250° F., (/x—^c)/(^i—^o) = 0-79, and, from 

Fig. 11, 4krjcpd2 = 0-18, whence 

k = 
0*18X0*4X30X60 

4 X 6 X 6 X 10 
0 09 B.Th.U./ft. hr. °F. 
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Ill 

DIMENSIONAL ANALYSIS OF CONVECTION 

Calculations of heat transfer by convection are complicated 

by the large number of different variables involved. Fortu¬ 

nately in most applications these variables can be grouped 

together into relatively few ‘dimensionless groups’ or ‘dimen¬ 

sionless numbers’, thus reducing the number of effective 

variables to be dealt with experimentally. This grouping is done 

by dimensional analysis, which is now widely used in scientific 

work. Although much that has been written on the fundamentals 

of the method is hardly important to engineers, it is essential to 

understand the physical basis of the particular groupings of 

variables used for different problems, and the conditions in 

which the results are likely to hold good in practice. Some simple 

examples may best introduce the method. 

Motion under gravity. As a very elementary example, 

suppose it is required to find the height h to which a mass m 

would rise if projected vertically with velocity v in vacuo. It 

would be expected that h would depend upon v, m, and g. 

Further consideration suggests that the significant quantities 

are the initial kinetic energy and the final gain in potential energy 

due to rising a height h against gravity. If the former, which is 

proportional to mv2, were increased in any ratio, the latter, 

which is proportional to mgh, would be expected to increase in 

the same ratio. Hence mv2/mgh or v2/gh is constant, and h is 

proportional to v2jg. In this simple example from mechanics, 

insertion of the numerical constants shows that v2\gh = 2; but 

the method is applicable to problems where the numerical factors, 

or even the mathematical expressions for the quantities con¬ 

cerned, are not known, whether because of awkward two- or 

three-dimensional conditions or because the fundamental 

differential equations are too difficult to solve. 

Viscous flow. Consider another simple problem, this time 

less amenable to mathematical solution. Suppose a solid to be 

placed in a uniform stream of viscous fluid, velocity v, density p, 



CH. Ill DIMENSIONAL ANALYSIS OF CONVECTION 63 

and viscosity /z, and that it is required to find the pattern of 

flow, or distribution of velocity, around the solid. At first sight 

this would be expected to depend upon v, p, /z, and Z, where Z is any 

linear dimension of the solid, the shape of which is assumed fixed, 

so that all its dimensions are known when Z is known. Further 

consideration suggests that the essential physical process in¬ 

volved is the retarding of the fluid, as it flows past the solid, by 

the action of viscosity. The forces of viscous drag destroy a 

certain quantity of momentum per unit time. If, therefore, both 

the oncoming momentum and the viscous drag forces are altered 

in the same proportion, the effect should be to leave the flow 

pattern unchanged. Since the former is proportional to pv2 per 

unit area, and the latter to pLv/l per unit area, the ratio pvl/p, 

would be expected to determine the flow pattern. This is, of 

course, the well-known Reynolds number, Re. 

This argument needs a little further explanation in that the 

words ‘per unit area’ are used first to denote the area across which 

the oncoming fluid flows and secondly the area across which the 

viscous shear forces act. But if the shape remains the same, 

these areas are always in the same ratio. 

The scale effect and dimensional analysis. Since linear 

size is included among the variables, dimensional analysis can 

be used to find the effect of change in linear scale or size without 

change of shape or other variables. For example, in viscous flow 

a change of Z alters Re and therefore also alters the flow pattern. 

But if scale change is accompanied by changes in any or all of the 

other variables so as to keep the Reynolds number the same, the 

flow pattern will not be altered. Thus, for the same oncoming 

velocity the streamlines round a body in air at 45° F. are identical 

in shape with those round a similar body one-tenth the size in 

water also at 45° F., since at this temperature the kinematic 

viscosity (/x/p) of the water is one-tenth that of the air. 

Two systems of different size for which the physical proper¬ 

ties at corresponding points are in the same ratio are termed 

‘similar’ or sometimes ‘dynamically similar’, although the 

definition is not restricted to dynamics. The conditions for 

‘similarity’ are equality of the appropriate groups or parameters 
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and identical shape of all boundaries. For this reason the method 

of dimensions is sometimes called the Principle of Similarity or 

Principle of Similitude. The method of dimensions compares 

geometrically similar systems, showing how they are affected by 

changes of scale or of other variables. It cannot compare geo¬ 

metrically dissimilar systems, which would require detailed 

analysis of each case. 

Determining the arrangement of variables in groups: 
Method of indices. The appropriate groups governing any 

problem may be found as in the examples given above, but such 

methods require experience and insight of the physical processes 

involved. A more formal solution can be found by the method 

of indices, an algebraic device for arranging any given set of 

variables in all possible combinations to form similar quantities, 

such as energies, forces, heat fluxes, etc. Ratios of pairs of these 

then form the determining groups. The method of indices is 

based on the idea of ‘dimensions’, which must first be explained. 

All physical measurements are made in terms of units, which 

may be either fundamental or derived, according to whether they 

are defined independently or in terms of other simpler units. 

Length, mass, and time are examples of fundamental units; 

velocity, acceleration, and viscosity of derived units. The value 

of any derived unit changes when the fundamental units on which 

it is based are changed, and the power of a fundamental unit to 

which a derived unit is proportional is known as its ‘dimension’ 

in that unit. For example, acceleration has dimensions I in 

length and —2 in time, because it is directly proportional to the 

unit of length and inversely proportional to the square of the 

unit of time. 

To find the dimensions of a product the dimensions of each 

factor must clearly be added. For example, the dimensions of 

(density X velocity x length) are 1 in mass, —1 in length ( — 3 

from density, 1 from velocity, and 1 from length), and —1 in 

time. If any two combinations of variables represent the same 

kind of physical quantity they must obviously have the same 

total dimensions, and their ratio must be independent of funda¬ 

mental units, i.e. must have zero dimensions in all such units. 



oh. in 65 DIMENSIONAL ANALYSIS OF CONVECTION 

For example, any combination of variables representing energy 

must have total dimensions 1 in mass, 2 in length, and —2 in 

time, and the ratio of any two energies must be dimensionless 

in mass, length, and time. 
The problem of determining all possible arrangements of any 

given set of variables into dimensionless groups can be solved 

by assuming a general form of group with unknown indices of 

the variables, and solving for these unknowns by equations 

expressing the fact that the whole group is dimensionless in each 

fundamental unit. 

For example, in the case of viscous flow already considered 

the flow pattern may be assumed to depend on a group 

vXllXt px*p,XA, 

where xv x2, x3, x4 are unknown indices, at least one of which 

must obviously be negative. Since the dimensions of any 

quantity raised to a power x are x times the dimensions of the 

quantity itself, equating the overall dimensions to zero gives 

in length: x1-\-x2—3x3—x4 = 0 

in mass: #3+#4 = 0 

in time: — xx—x4 = 0. 

Thus are formed, in this case, three equations in four un¬ 

knowns, any three of which can be found in terms of the fourth. 

Solving in terms of x3 gives xx = x3, x2 = x3, and x4 = —x3, and 

the general form of the dimensionless group may be written 

(vpl/fi)00*. The expression inside the brackets is the dimensionless 

group required (Reynolds number), and all that can be deduced 

is that the flow pattern depends on this arrangement of variables, 

the values of the index x3 and also of any constant being un¬ 
determined. 

More detailed examination of the method of indices. 
Before applying dimensional methods to the study of convection 

it may be helpful to consider in more detail the method of indices, 

which, being merely algebra, can only yield physical information 

previously fed in. In the previous example of viscous flow the 
information peculiar to the problem is fed in by (a) selecting the 

5145 
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appropriate variables v, l9 p, and /z upon which the process is 

assumed to depend, and (6) selecting the units which are to be 

considered as fundamental in the system of units employed. 

Alternative assumptions in either (a) or (6) would give a different 

final result. 

For example, if viscosity were omitted, the remaining indices 

would reduce to zero, showing that it is impossible to form a 

dimensionless group in terms of v, p, and l alone, and that the 

flow pattern is independent of these variables. Such is the case 

in the flow of non-viscous fluids, the pattern being determined 

solely by the shape of the solid boundaries. 

Again, if fluid compressibility were included as a fifth variable, 

as would obviously be necessary if the speeds were so high that 

the effect of fluid pressure on density were considerable, a differ¬ 

ent result would ensue. Compressibility may conveniently be 

allowed for by introducing pressure, p9 in addition to density, p. 

Writing the general form of the dimensionless group as 

vxllXipx*pXipx* j 

the equations expressing zero dimensions in each fundamental 

unit become 

in length: x^x^—3x3—x4—x5 — 0 

in mass: ^3+^4+^s — 0 

in time: —x1—x4—2x5 = 0, 

remembering that pressure has dimensions 1 in mass, —1 in 

length, and —2 in time. Solving in terms of x4 and x5 gives 

xx = —x4—2xb 

xz = “Z4-Z5 

X2 = x4 

and the general dimensionless group becomes 

showing that the problem is now determined by two dimension¬ 

less groups, namely, the Reynolds number vpl/p and a new 

number pv2jp which is proportional to the square of v/v8i where 

v$ is the velocity of propagation of sound waves of small ampli- 
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tude in the gas {v8 = ^(yp/p)9 where y is a constant). The method 

of indices, of course, gives no clue to the way in which these two 

dimensionless groups of variables affect the problem or to the 

numerical constants concerned. The group v/va is known as the 

Mach number; only when compressibility is known to have negli¬ 

gible effect can it be left out. 

The selection of variables in any problem is a vital matter. 

The fewer the variables taken into account the smaller the 

resulting number of dimensionless groups and the more useful 

therefore the final answer. On the other hand, the omission of 

significant variables leads to over-simplification and to results 

which may not be valid. 

Since each fundamental unit yields an equation for the un¬ 

known indices, the number of dimensionless groups is a minimum 

when the maximum number of units are regarded as funda¬ 

mental. There is usually no difficulty in deciding whether a unit 

is fundamental or derived, but in some cases care is needed. In 

the viscous flow example quoted there was no doubt of velocity 

and density being derived units, but, to take an impossibly 

extreme case, if the speeds were high enough for the effects of 

relativity to be appreciable, mass could no longer be taken as 

fundamental since it would depend on velocity. A more impor¬ 

tant practical example arises in convection, where heat may 

legitimately be regarded as fundamental although it is in fact a 

form of energy. This is because convertibility between heat 

energy and mechanical or dynamic energy does not in general 

come into problems of convection as it would, for example, in 

problems where the heat generated by friction was significant. 

Shape as a variable. Only when the shape is fixed can a 

system be completely described geometrically by one linear 

dimension. Systems of different shapes can be regarded as 

having varying ratios of lengths in different directions and in 

some cases a series of shapes may be so dealt with by dimensional 

analysis. For example, the convection heat transfer from circular 

cylinders of different lengths depends on the dimensionless 

group length/diameter which may be included along with the 

other groups. 
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Itrwill be realized that in considering the flow pattern around 

the body the dependent variable is in fact the shape of the 

streamlines, etc., which is mathematically described in terms 

of dimensionless ratios of lengths which in this case form the 

dependent variable dimensionless groups. 

Dimensionless groups containing dependent variables. 
So far the only independent variables determining a problem 

have been considered. If it is required to find the relation 

between dependent and independent variables, each dependent 

variable must be arranged in a dimensionless group with inde¬ 

pendent variables. For example, if interest centres on the direct 

forces, F, upon a body in a stream of viscous fluid, dimensional 

analysis shows that F/pv2 is determined by the Reynolds number 

vpl/p. To arrive formally at the dependent variable group arrange¬ 

ment the method of indices is used as above, except that, instead 

of equating the dimensions of the general groups to zero, they are 

equated with those of the dependent variable, in this case F. 

Alternative forms of groups. New dimensionless groups 

can be formed by multiplying, dividing, inverting, etc., the 

original groups, and may be used in their place. For example, 

instead of vpl/p, and p/pv2 their product pl/pv and quotient 

v^pH/pp could be used. It is convenient that in each group there 

should be one variable peculiar to that group, i.e. not contained 

in any of the others, so that, to consider the effect of changing 

this variable, only one group need be considered. Different 

groups are given by the method of indices by solving the simul¬ 

taneous equations in terms of different indices, and, to obtain 

groups in which particular variables are confined each to one 

group, the corresponding indices must be chosen as the unknown 

in terms of which the remaining indices are expressed. For 

example, in the case of viscous flow treated above, solving in 

terms of x4 and x5 ensures that p occurs only in the first group 

and p only in the second. 

Application to Convection Heat Transfer 

Convection is the process by which heat is transferred between 

a surface and the fluid in which it is immersed; actually it is con- 
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duction in a fluid the parts of which are in relative motion. It is 

necessary to distinguish between ‘natural’ or ‘free’ convection, 

in which the fluid motion is caused solely by gravity forces due to 

differences of density between the hotter and cooler parts, and 

‘forced’ convection, in which the fluid motion is caused by 

forces independent of the temperature of the fluid, such as ex¬ 

ternally imposed differences of pressure. Actually, even when 

the convection is forced, buoyancy forces are always induced by 

the temperature differences, and tend to set up natural con¬ 

vection currents; but in many practical cases the forced motion 

of the fluid is so rapid that natural convection is negligible in 

comparison. A warm surface exposed to the practically still air 

of an ordinary room loses heat by natural convection, while a 

common example of forced convection heat transfer is that 

between the walls of a tube and a fluid at a different temperature 

flowing through it at a high speed. 

Consider the general problem of convection, including both 

forced and natural, and suppose the heat transfer H per unit 

surface area per unit time to depend on the quantities set out in 

Table III, which gives also the dimensions of these quantities in 

Table III. Dimensions of Quantities used in Heat Transfer 

Dimensions in terms of 

Length Mass Time Temp. Heat 

Quantity Symbol l m T t Q 

Forced velocity of fluid . V 1 0 -I 0 0 
Linear scale or size. 
Temperature difference 

l 1 0 0 0 0 

between surface and 
fluid .... e 0 0 0 1 0 

Viscosity of fluid 
Thermal conductivity of 

p- -1 1 -1 0 0 

fluid .... k -1 0 -1 -1 1 
Density of fluid 
Specific heat of fluid at 

p -3 1 0 0 0 

constant pressure 
Coefficient of thermal 

c 0 -1 0 -1 1 

expansion x acceleration 
due to gravity *9 1 0 -2 -1 0 

terms of the fundamental units of length l> mass m, time r, 

temperature t> and heat Q. The reasons for choosing these 
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particular variables and fundamental units will be more easily 

explained after the general analysis. Assuming H to be pro¬ 

portional to where xx to x8 are unknown 

indices, and equating dimensions in terms of fundamental units 

of length, mass, time, temperature, and heat respectively, gives 

in length: x1-\-x2—x4—x5—3x6-{-x8 = —2 

in mass: x^-\-x8—x7 = 0 

in time: -x1—xi—x5—2x8 — —1 

in temperature: x3—x5—x7—x8 = 0 

in heat: #5-f:r7 = 1. 

Solving in terms of xv x7, and x8, these particular three being 

chosen so as to obtain groups each containing one only of the 

variables v, c, and ag, using each equation in turn starting from 

the last gives: x5 = l—x7 

x3 = l+x8 

a?4 = — x1+x7—2x8 

*6 = *l + 2*8 

x2 = — I+x^Sxq. 

Hence H is proportional to 

k6 (vph*' fcp\Xl (agOl3p2\x* 

TIT"/ 1*7 ITw ’ 
and since xv x7, and x8 are unknown, all that can be deduced is 

that Hl/kd depends upon vpl/p,, c/x/t, and agdl3p2/p2. In any 

problem of convection, therefore, the heat transfer H is given by 

a relation between the dependent variable dimensionless group 

Hljkd, known as the Nusselt number, Nu, and the three indepen¬ 

dent variable dimensionless groups vpl/p, the Reynolds number, 

Re, cp/k the Prandtl number, Pr, and ag9l3p2/p2 the Grashof 

number, Or. The mathematical form of the relation and the 

numerical constants depend on the shapes of the surfaces bound¬ 

ing the convecting fluid, and cannot be found by dimensional 

analysis, but must be obtained either experimentally or by a 

complete mathematical analysis of the velocity, temperature, 

etc., of the fluid, which is rarely possible. 
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Convection in gases. The Prandtl number c/x/&, which con¬ 

tains only specific fluid properties, is nearly the same for all gases 

and over a wide range of temperature. It may, therefore, usually 

be disregarded as a variable group when considering any problem 

of convection in a gas, thus reducing the independent variable 

groups to two, Re and Gr. 

Natural convection. In cases of natural convection, the 

motion being entirely due to heat, the forced velocity v may be 

dropped out in the general analysis. The result, conveniently 

found by putting — 0, is to eliminate Re so that Nu becomes 

dependent upon Gr and Pr only, or for a gas, upon Gr only. 

Putting v = 0 does not, of coarse, mean that the fluid has 

no velocity, but only that the velocity is not an independent 

variable, since it is not controlled from outside the system; the 

fluid velocity at any point now becomes a dependent variable, 

and is given by a relation between Re as a dependent variable 

group, and Gr and Pr. 

Forced convection. With true forced convection, the effects 

of buoyancy being negligible, the variable ag may be dropped 

out, since gravity no longer affects the problem. Putting x3 = 0 

in the general analysis, the Grashof number is eliminated, and 

Nu becomes dependent upon Re and Pr only, or, in the case of a 

gas, upon Re only. 

Physical significance of groups. The Nusselt number, 

Hljkd, represents the ratio of the actual convection heat 

transfer, H, per unit surface area per unit time, to kQjl, which 

is proportional to the heat transfer by conduction in the fluid 

at rest. 

The Reynolds number, as already pointed out, may be re¬ 

garded as the ratio of the oncoming fluid momentum per unit 

area per unit time, pv2, to the viscous drag force per unit area 

pLv/l, against which it is balanced. It is the group which deter¬ 

mines the flow pattern or velocity distribution, when a solid body 

is placed in a stream of viscous fluid. 

The Prandtl number is the ratio of the kinematic viscosity, 

or momentum diffusivity, pi/p, to the thermal diffusivity kjcp. 

It represents the ratio of the fluid property governing the transfer 
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of momentum by viscous effects due to a gradient of velocity, 

to the fluid property governing the transfer of heat by thermal 

diffusion due to a gradient of temperature. It is, therefore, the 

group which determines the relation of the temperature distri¬ 

bution in a fluid to the velocity distribution, or more generally 

the relation of heat transfer to fluid motion. Thus in forced 

convection the fluid motion is fixed by Re, and the superposition 

of a temperature difference between the boundary surface and 

the fluid causes a temperature distribution in the fluid which is 

fixed by Pr, together with original fluid motion. In general, 

therefore, the temperature distribution, and the heat transfer, 

are determined by both Re and Pr. 

The Grashof number is more difficult to interpret simply. It 

is the ratio of the buoyancy force per unit aVea, agOpl,^ to the 

viscous drag force per unit area, fiv/l. This gives ag8pl2jfiv but, 

since the velocity v is a dependent variable and is determined by 

a relation between vpljp. and the appropriate independent 

variable groups, v may be taken as proportional to p,/pl, and 

agOpl2lp.v is thus proportional to ag6p2l3/pL2 (the Grashof number) 

which contains independent variables only and expresses the 

relative effects of buoyancy forces and viscous forces. 

Further explanation of selection of independent vari¬ 
ables and fundamental units. The variables selected require 

some explanation, remembering that the dimensional method 

yields most useful results by keeping the number a minimum. 

Hence only the difference between the surface and fluid tempera¬ 

tures is included, and not each separately, thus assuming that the 

heat transfer is not affected by change in absolute temperature. 

This appears justified because absolute temperature can only 

affect the problem through its effect upon the values of the fluid 

properties, k, /*, p, etc., which are already included as separate 

variables. These properties, although often called physical 

constants, all vary with temperature and, since their variation 

is not allowed for, mean values must be taken. Nusselt [4] 

t The buoyancy acceleration is proportional to ag and to the temperature 
difference $. The buoyancy force on a volume of linear dimension l is therefore 
proportional to agdpl*, and the force per unit area to agOpPjl*, or agBpl. 
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has shown how dimensional analysis can be extended to include 

the temperature variation of constants, obtaining as an extra 

dimensionless group the ratio of the absolute temperatures of 

surface and fluid. In certain applications, where the temperature 

difference between surface and fluid is big, Nusselt’s method is 

useful, but for many purposes it suffices to consider the physical 

properties as constant, but to reckon their values at a mean 

temperature, usually, but not always, the arithmetic mean 

between the surface and fluid temperatures. 

The specific heat c is taken at constant pressure, since the 

pressure differs in different parts of the fluid only because 

of variations in velocity and hydrostatic depth, and the 

effects of both of these are small compared with the absolute 

pressure. 

The coefficient of thermal expansion a is associated as a 

product with gravity acceleration g, because the buoyancy 

force on a unit volume of fluid, given by the difference between 

the weight of fluid at the bulk fluid temperature which it dis¬ 

places and its own weight, is p0g—pg. The coefficient of expan¬ 

sion a is defined by p0 = p(l-\-a6) so, substituting for p0, the 

acceleration becomes agd. Since 9 is already included as a 

variable, only ag need be included as a further variable. This 

simplification amounts to neglecting the effects of thermal 

expansion except in so far as it produces buoyancy forces, and 

neglects the effect on the flow pattern of change in volume due 

to temperature.t 
The choice of fundamental units needs no comment, except, 

as already pointed out, that heat is regarded as independent and 

not as a form of kinetic energy, which is only justified provided 

heat energy and mechanical energy are not interchanged. In 

most industrial heat transfer this is permissible, but in extreme 

cases it might not be. 

f An alternative, and perhaps better, form of the Grashof number is 
{(p0— p)gl*p*}lpfi*, since this gets over the difficulty of deciding at what tem¬ 
perature to take a when it varies appreciably over the range of temperature 
from the surface to the fluid. In subsequent pages ad may therefore be regarded 
as replaceable by (p0/p) ~ 1 • For natural convection in gases a is thus equal to 
1/T0, where TQ is the absolute temperature of the gas. 
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The final test of the validity of the various assumptions is 

whether the dimensionless groups arrived at are consistent with 

experimental measurements of heat transfer. 

Correlation of experimental data by dimensionless 
groups. Having applied dimensional analysis to find the appro¬ 

priate dependent and independent variable groups, the relation 

between them usually requires experiment. For example, for 

forced convection in a gas, dimensional analysis shows Hl/kd to 

depend only upon Re. By experiments measuring the heat trans¬ 

fer, say for different velocities, the numerical relation between 

Nu and Re may be found, and either plotted as a curve with Nu 

and Re as coordinates, or expressed mathematically. Such a 

curve once constructed may be used to read off the heat transfer 

under any given conditions within the range of Re studied. Its 

application is not limited to the conditions of the original experi¬ 

ments and it can, for example, be used for other gases of different 

viscosities and densities or for other sizes of body. The only 

condition is that Re should remain within the range for which the 

measurements were carried out and, of course, that the shape of 

the system should remain the same. Dimensionless groups thus 

greatly extend the usefulness of experimental results, since data 

for different sizes, different velocities, different temperatures, 

and different gases can all be brought together on a single curve. 

Separate curves must, however, be constructed for different 

geometrical arrangements. Cases of natural convection can of 

course be dealt with in a similar manner. 

One of the main advantages of the similarity method of cor¬ 

relation is that, whereas the experimental data available are not 

usually sufficiently complete for constructing curves showing the 

dependence of the heat transfer upon each of the variable factors 

individually, there are in many cases enough data for drawing a 

single curve showing the relation between the two appropriate 

similarity groups. Once obtained, such a curve may be used to 

calculate the heat transfer for values of the individual variables 

outside the ranges covered by actual experiments, provided only 

that the values of the groups fall within the range of the curve. 

Unfortunately the values of the physical constants associated 
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with convection, particularly thermal conductivity and vis¬ 

cosity, are not known accurately at extreme temperatures or 

extreme pressures. Moreover, for mixtures of fluids they cannot 

be obtained simply from a weighted mean. Such uncertainties 

obviously impose limits on the application of similarity methods 

of correlation. 

Choice of units. The groups, being dimensionless, have the 

same numerical values whatever the system of units employed, 

provided only that consistency is maintained. For example, 

v must not be measured in ft./min. if k is expressed as B.Th.U./ 

ft. hr. °F. But if the same fundamental units are adhered to 

throughout, either C.G.S. or British or any other consistent 

units can be used; in view of the multiplicity of different units 

encountered in technical publications, this property of the 

similarity method often simplifies calculations. 

Correlation of data for different shapes. Strictly speak¬ 

ing, dimensionless methods of correlation can be applied only 

to one shape of body at a time, and it is immaterial in which 

direction the linear dimension used is measured, so long as it is 

always measured in the same direction. There are, however, 

certain cases in which data for slightly different shapes can be 

correlated without much error. For example, in problems in¬ 

volving cylinders, although to maintain similarity of shape the 

ratio of djl should be kept constant, for long cylinders, provided 

that end effects can be neglected or allowed for, length may be 

left out of account, and diameter taken as the characteristic 

linear dimension. Such cases will be considered in more detail as 

they arise. 

Again, if a surface in contact with a fluid is rough, dimensional 

methods require that the magnitude of the surface irregularities 

should be in proportion to the sizes of body studied. In practice 

it is obviously not feasible, except in very artificial cases, to 

adhere to this requirement, and the effects of roughness upon 

heat transfer are usually expressed by ratio to the corresponding 

heat transfer for a smooth surface. 
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IV 

RELATION BETWEEN HEAT TRANSFER AND 

FRICTION 

There is a close relation between the temperature distribution 

(and therefore the heat, transfer) and the velocity distribution (and 

therefore the momentum transfer), near any surface over which a 

fluid at a different temperature is moving, particularly for flow 

through a pipe or over a plane surface. It is therefore important, 

before considering heat transfer by convection between surface 

and fluid, to know something of the mechanism of fluid flow. 

Most of the experiments on fluid flow have been carried out for 

isothermal conditions, but they can often be applied to cases 

where there is heat flow. 

Turbulent and streamline flow. The steady motion of a 

fluid as given by the solution of the fundamental equations of 

viscous motion for any given boundary conditions is known as 

streamline, viscous, or laminar flow. In practice when the velo¬ 

city exceeds a certain value, expressed as a critical value of a 

Reynolds number associated with the particular shapes of the 

fluid boundaries, the flow ceases to be steady and various flow 

phenomena occur associated with the formation of eddies or 

vortices which cause the general flow pattern to differ greatly 

from that of streamline flow. The term turbulent is applied to 

such flows generally, but there are many kinds of turbulence 

according to the size and intensity of the eddies and the general 

eddy distribution and degree of instability of the flow. In many 

instances conditions are attained where the average velocity at 

any point does not change with time, although the actual 

velocity fluctuates, and the flow pattern is one of ‘steady’ 

turbulent flow. It is not within the province of this book to 

consider the motion of fluids in any detail and the interested 

reader is referred to other works for such matters [1, 2]. Since, 

however, flow through a pipe is of special importance to en¬ 

gineers, it may be worth giving a short account of the elements 

of this particular flow. 
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The nature of the motion of a fluid flowing through a pipe 

depends essentially upon vpdjix, known as the Reynolds number, 

Re, already referred to in the chapter on dimensional analysis. 

When Re is below about 2,100, the motion is everywhere steady 

and is termed streamline, viscous, or laminar. When Re exceeds 

2,100, the motion becomes unsteady and the fluid, except very 

near the walls of the pipe, breaks into eddies or vortices, and 

eventually reaches a steady turbulent condition, usually when 

Re exceeds about 3,000. If the flow at the entrance to a long, 

(b) 

Fig. 21. Velocity distribution for flow through pipe: 
(a) streamline; (6) turbulent. 

smooth, straight pipe is turbulent, but Re is below the critical 

value, the flow a certain distance along the pipe will become 

laminar. On the other hand, if the flow at the entrance is laminar, 

but Re is above the critical value, the flow may not become tur¬ 

bulent unless there is some obstacle, change of direction, or the 

like, to upset it. Gibson [3], under careful conditions with a 

convergent pipe, was able to maintain laminar flow to Re 97,000. 

In short pipes there may not be length enough for the flow to 

change its character, when this at the inlet is not in accordance 

with Re, so that the flow may be turbulent throughout for Re 

less than 2,100, or streamline throughout for Re greater than 

3,000. 

The distribution of velocity along any pipe radius is not the 

same for streamline as for turbulent flow. The particles of fluid 

in contact with the pipe wall have zero velocity in both cases, and 

the flow extremely near a smooth pipe wall may also be taken as 

streamline in both cases, but for streamline flow across the 

entire pipe the velocity distribution curve is parabolic, whereas 

for fully turbulent flow the curve is steeper near the wall and 

flatter near the axis, as shown in Fig. 21. 

For the most common cases in which the main stream is in 
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turbulent motion the change in the type of flow from pipe wall 

to pipe axis is shown diagrammatically in Fig. 22. The space 

may be regarded as divided into three regions, although in prac¬ 

tice the boundaries between them are not discontinuities and 

there is a gradual transition between one region and the next, 

often with fluctuation. The fluid in immediate contact with the 

wall A A has zero velocity and very near the wall in the region 

between A A and BB is in streamline flow. The region between 

BB and CC has been termed the buffer layer; in it the motion is 

Fig. 22. Change from streamline to turbulent flow 

between pipe wall and axis. 

intermediate in character between the streamline region and the 

region between CC and the pipe axis, in which turbulence is 

always maintained. The thickness of the different zones of flow 

depends upon the velocity of the main fluid stream and the 

roughness of the pipe wall. 

Pressure drop along a pipe. Since energy is dissipated as 

heat when a viscous fluid is continuously sheared by passing it 

through a pipe, power must be supplied to maintain the flow even 

though the entrance and exit velocities are the same. This is 

apparent in the drop of pressure along the pipe, the frictional 

force being given by Ap x tt d2/4 = (F/g)X7rdl which, in dimen¬ 

sionless form, becomes 

Ap = S(F / pv2)(l/d)(pv2/2g) lb./ft.2 cross-section, (32) 

where v is expressed in ft./hr., g is the acceleration due to gravity, 

= 4*18 x 108 ft./hr.2, and F is the frictional force per sq. ft. of 

pipe surface, having units lb. X<7/ft.2 In industrial problems Ap 

is usually given in in. of water and must then be multiplied by 

62*4/12 to bring it to lb./ft.2 of cross-section before using expres¬ 

sion (32). 
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A slightly different method of expression is often used, known 

as the Fanning equation, namely: 

Ap = f(4l/d)(pv2/2g) lb./ft.2, (33) 

the friction factor /, in this equation obviously being equal to 

2 F/pv2. 

The dimensionless group, F/pv2, depends upon the Reynolds 

number and upon the surface roughness in relation to the pipe 

diameter, known as the ‘relative roughness'. It has been 

Re 

Fig. 23. Relation between Reynolds number and friction factor for flow of 
fluid through pipe. A, smooth ; B, steel; C, cast iron. 

determined experimentally by a number of workers for pipes of 

different diameters, different material, and different surface 

roughness, but there is wide variation in the results, and in any 

case it is not often possible to specify the condition of a surface 

with any accuracy. In Fig. 23, however, approximate values of 

F/pv2 are shown for a range of Re for different types of pipe. 

In the transition region between streamline and turbulent flow 

the shape of the curves is uncertain. 

For isothermal streamline flow, the pressure drop due to fric¬ 

tion in a straight circular pipe, was derived by Poiseuille on the 

assumption that there is no slip of the fluid at the pipe surface. 

The expression thus obtained, which has been confirmed by 

experiment, is Ap = 32pilv/gd2 lb./ft.2 (34) 

This, with (32) or (33), gives respectively F/pv2 = 8/Re, or 

/ = 161 Re. 
Pipes of non-circular cross-section. For pipes of rect- 
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angular, annular, or other cross-section the pressure drop for 

turbulent flow is given closely by that for a circular pipe of the 

same hydraulic diameter, that is (4 x area of cross-section)/ 

perimeter, except that for very flat pipes the friction may be 

abnormally high. The effect of roughness is also more marked 

for a channel that is very small in one dimension than for a cir¬ 

cular channel of the same hydraulic diameter. 

For streamline flow the expressions for non-circular channels 

are too complicated to be given here. 

The pressure drop for the important case of fluids flowing 

across pipe banks will be dealt with later in the chapter on forced 

convection. 

Relation between heat transfer and friction. Osborne 

Reynolds [4] in 1874 first drew attention to the similarity of the 

processes of heat transfer and friction between a surface and a 
fluid in turbulent motion. Suppose a fluid particle of mass m to 

move from the main fluid stream, having a velocity v, to the sur¬ 

face, at which it is reduced to rest. The momentum conveyed to 

the surface by the particle is mv. If the temperature difference 

between the main stream and the surface is 9, and assuming that 

the particle remains long enough in contact with the surface to 

attain the surface temperature, the heat transfer from fluid to 

surface is mc9. The ratio of the momentum transfer to the heat 

transfer is thus v/c9. Applying this argument to all the particles 

which move between the fluid and the surface in unit time, the 

ratio of the heat transfer per unit time to the friction drag force 

tangential to the surface (change of momentum parallel to the 

surface per unit time) is thus given by 

H_c9 

F ~ v ’ 
(35) 

In this equation H and F may refer to any area of surface and 

to unit area in particular. It is important to remember that F is 

force per unit area, i.e. lb. x gjft.2 = lb./ft. hr.2 Thus H becomes 

lb. v B.Th.U. w 0x hr. 

ft. hr.2* °F. lb. X ft. — 
B.Th.U./ft.2 hr., 

which is correct. 
5146 a 
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Equation (35) is known as Reynolds’s relation between heat 

transfer and friction, and is very useful for calculating heat 

transfer from friction values or vice versa. The above is a simple 

account of its derivation. For a more formal derivation in terms 

of turbulent motion theory see Modern Developments in Fluid 

Dynamics [1], vol. ii, pp. 649, 654. 

Taylor-Prandtl refinement of Reynolds’s relation. 
Reynolds’s formula takes no account of the thermal con¬ 

ductivity of the fluid, assuming the mechanism of heat transfer 

to be that of turbulent or eddying flow. In practice, as the sur¬ 

face is approached the turbulent motion at right angles to it 

must decrease, and the heat transfer across the layers of fluid 

nearest the surface is by thermal conduction. Hence Reynolds’s 

assumption that the particles of fluid reach the surface, at which 

they are reduced to rest, and attain the surface temperature is 

not fulfilled in practice. 

Later, Prandtl [5] in Germany and Taylor [6] in England 

pointed out that a closer approximation to the true state of 

affairs could be obtained by imagining the fluid to be divided 

into two regions, a ‘boundary layer’ between the surface and an 

imaginary plane parallel to it at a distance x away, in which the 

motion is'assumed streamline, and the region outside to which 

the Reynolds theory may then be applied with less risk of error. 

Across the boundary layer heat is transferred by thermal con¬ 

duction, and momentum by the normal process of viscous drag 

in a shearing fluid. 

Thus, assuming the velocity at the imaginary plane to be av, 
and the temperature 60, where a and 6 are both less than unity 

6 Turbulent region v 

Non - turbulent layer 

(see diagram), the Reynolds relation applied to the region outside 

and up to the imaginary plane gives 

H\F = c(6—bd)/(v-—av). (36) 
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The heat transfer across the boundary layer is kbd/x and the 

friction drag by viscosity, fxav/x, where p is the viscosity. Hence, 

since H and F are the same for either region, the conditions being 

steady, tf/JP = kbd/fMV. (37) 

Equating (36) and (37) gives 

(c/j./k)(l—b)a — 6(1—a) or b/a = Prj[l+a(Pr-l)\. (38) 

Substituting for b in (37) then gives 

H _cd 1 _ c9 1 

F~ v l+a{(cn/k)-l}~ v \-\-a{Pr-\Y 
(39) 

which is the Taylor-Prandtl equation, containing the unknown 

ratio and the ratio of the velocity at the imaginary plane between 

the turbulent and non-turbulent regions to the main stream 

velocity. Experiments show that a is usually between 0-4 and 

0-6. It will be noted that if Pr is unity, (39) reduces to the 

original Reynolds equation (35), and since for gases Pr varies 

only between 0-65 and 1, the difference between the two equa¬ 

tions is not very great. For liquids, however, Pr is much greater 

and the Taylor-Prandtl equation gives a much lower ratio of 

heat transfer to friction than the Reynolds equation. 

Limiting cases of streamline flow only and turbulent 
flow only. If a = 0, that is if the conditions at the imaginary 

plane are assumed the same as at the surface, (39) reduces to 

Reynolds’s original form, as would be expected. On the other 

hand, if a = 1, that is if the non-turbulent layer extends right 

across the stream to where the velocity is v, (39) becomes 

H_cd 

F v X Pr fiv9 
(40) 

which is the Reynolds relation adapted to purely streamline flow. 

Case of Pr = 1. When Pr — 1, expressions (40) for purely 

streamline flow and (35) for purely turbulent flow become 

identical. 

It may be noted from (38) that when Pr = 1,6 becomes equal 

to a, showing that the temperature difference across the bound¬ 

ary layer is the same proportion of the total temperature 
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difference as the velocity difference across the boundary layer 

is of the total velocity difference. This explains physically why 

the original Reynolds equation agrees well with experiment for 

gases, since the ratio of H to F is the same whether reckoned for 

the streamline boundary layer or for the outer turbulent zone, or 

for both in series. 

Many actual measurements of the temperature and velocity 

distribution have been made for air flowing through heated pipes 

and along heated plane surfaces, and it has been found that if 

vjvmax and 0/0max are plotted against distance from surface they 

both lie almost on the same curve. 

Other workers have introduced further refinements into the 

heat transfer-friction relation including allowance for a third or 

buffer layer, as in Fig. 22. Their expressions, though more 

complicated, are still not in close agreement with experiment, 

and the original Reynolds expression is in many cases accurate 

enough and more convenient for use for gases in heat transfer 

work. It follows from (35) that Fjpv2 = II/cOpv, the ‘Stanton’ 

number, St. Hence the friction curves of Fig. 23 can be used 

directly to predict the heat transfer for gases flowing through 

pipes. But it must be remembered that an increase in friction due 

to roughness is not necessarily accompanied by a proportional 

increase in heat transfer. This is because, whereas for smooth 

surfaces the whole of the pressure drop is balanced by skin 

friction, for rough surfaces some of the resistance to flow is 

caused by form drag. 

For liquids the Taylor-Prandtl refinement should be used 

because the higher values of Pr make the two expressions differ 

considerably. Note also from (38) that as Pr gets larger 6 becomes 

greater relative to a, until for very large Pr, 6 approaches unity, 

showing that the temperature of the imaginary plane approaches 

that of the main fluid. In other words, practically the whole 

temperature drop is taken up across the boundary layer, leaving 

only a small drop across the turbulent outer regions, as would be 

expected from the poor conductivity of liquids having high Pr 
values. 

Another difficulty with liquids is the temperature variation of 
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viscosity, and many formulae outside the scope of this book 

have been proposed to allow for this. 

Formulae in terms of pressure drop along a pipe. The 

pressure drop px—p2 between sections of a uniform pipe of 

cross-section S and perimeter P at distance l apart is related 

to the friction force F, assuming constant velocity, by 

(pl-p2)S = FPl, 

or, using the hydraulic mean diameter d, defined by d — (4S/P), 

Pl-p2 = ~F, (41) 

which gives F in terms of pressure drop. 

The temperature rise t2—tx of the fluid is related to the heat 

transfer by 
pvSe^ — ty) — HPl, (42) 

and putting P = 4 S/d, 

t2—ti 
4Z B_ 

d pvc 
(43) 

Dividing (43) by (41) and substituting for HjF from the Reynolds 

formula (35), 

P1-P2 

e_ 
pv2 

temperature difference surface to fluid 

dynamic head 
(44) 

Strictly speaking, (44) assumes the temperature rise {t2—t^) 

to be small compared with the temperature difference 6, other¬ 

wise 6 will vary along the pipe, which must then be divided into 

sections for calculation purposes. Equation (44) is, however, very 

convenient, showing that the ratio (t2—tl)/6> i.e. of temperature 

rise to temperature difference, is half the ratio (i>i~p2)/(iPv2)> 
i.e. half the ratio of pressure drop to dynamic head. 

The Taylor-Prandtl formula may similarly be written 

to tl e 
= —oX 

1 
(45) 

Px P2 Pv* l+^(Pr—1)# 

Yet another form of the heat transfer-friction relation is in 

terms of the drag coefficient defined in aerodynamics as equal to 
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Ffypv2, and the heat transfer factor or Stanton number 

H _ Nu 

cvdp (Re Pr) 

By (35) it easily follows that the Stanton number equals half the 

drag coefficient. 

Example 1 

Air at 300° F. enters a pipe of inner diameter 2 in. at 20 ft./sec., 
the drop of static pressure along the pipe being 0*02 in. water 
per foot length. If the surface of the pipe is kept at 80° F., 
calculate the temperature of the air 1 ft. along the pipe, using the 
Reynolds relation H/F = cdjv (see p. 81). The density of air at 
N.T.P. is 0*08 lb./ft.3 

Solution. Pressure drop for 1 ft. length of pipe = 0*02 in. 

* 0*02 x 62*4 2 , .. 2 
water ==---lb./ft.2 —, for cross-section ttt2, 

12 
0-02x62-4 

-12 X lb' 

lb./ft.2 —, for cross-section 7rr2, 

X ttt2 lb. 

Thus F\ the frictional force per foot length, 

0-02x62-4 2 , . 
=-—-x 7rr~g poundals. 

Hence H\ the heat transfer per foot length, 

_ 0-02 x 62-4 x 7rr2g _cx_0__ B.Th.U. 

~~ 12 X 20 X 60 X 60 ft. length hr. * 

Heat capacity of air 

= 20 X 60 X 60 X ttt2 X 0-08 x c x (492/760) B.Th.U./°F. hr. 

Hence, temperature drop of air, based on initial temperature 

difference of (300 — 80) = 220 F.°, 

0-02 X 62-4 X ttt2 X 32 X 604 X c X 220 X 760 

12 X 20 X 602 X 20 X 602 X rrr2 X 0-08 X C X 492 
34-3 degrees. 

A slight adjustment should now be made, since the mean 

temperature difference has been taken too high. If a mean 

temperature difference of 204 F.° is taken, the temperature drop 

of the air would be (204/220) X 34-3 = 31-8 F.° This would give 

a mean temperature difference of —— — 80 — 204 
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degrees, so evidently the correct answer is a temperature drop of 

32 degrees, giving an air temperature of (300—32) = 268° F. 

1 ft. along the pipe. 

Example 2 

It is required to heat 1,570 ft.3 of air per hour from 60° F. to 
100° F. by passing it through a pipe of inner diameter 1 in. 
maintained at 212° F. What length of pipe and pressure head in 
inches of water will be needed ? 

22 I 
Solution. Cross-section of pipe — — X-= 0*00545 ft.2 

11 7 24x24 

Velocity of air at 60° F. —---= 80 ft./sec. 
J 0-00545x60x60 ' 

From Fig. 34, coefficient of convection 

= 17-7 B.Th.U./ft.2 hr. °F. 

From Table XVIII, specific heat of air at 60° F. = 0-0184 

B.Th.U./ft.3 °F. 

Hence, working on a mean temperature difference of (212—80) 

* i oo p o it. e • , , 1570 X 40 X 0-0184 „ „ , 
= 132 h. , the area of pipe needed =-ft.2, and 

1 1 17-7 X 132 

, ., , • , , 1570X40X00184X7X12 
length of pipe needed =-=1-88 ft. 

6 17-7x132x22 

The frictional force for the whole pipe will be given by H'vjcQ 

lb. ft./hr.2, or H'v/cdg lb., where H' is the heat transfer per hour 

for the whole pipe, g is 32 x 604 ft./hr.2, and c is the specific heat 

of air in B.Th.U./lb. °F. = 0-24. 

Hence the frictional force in lb. per ft.2 cross-section 

= H'v/icegXTTr2) lb./ft.2 

length of pipe needed 

ft.2, and 

1-88 ft. 

H’vx 12 

c0gX7ir2x 62-4 
in. water 

1570 X 40 X 0-0184 X 80 X 60 X 60 X 12 X 7 X 24 X 24 

0-24 X 132 X 32 X 60 X 60 X 60 X 60 X 22 X 62^4 

= 0-88 in. water. 
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V 

NATURAL CONVECTION 

It has already been explained, in the chapter on dimensional 
analysis of convection, that natural convection is the term used 
to denote the heat transfer between a surface and a fluid, when 
the convective movements are brought about solely by differ¬ 
ences of density caused by differences of temperature. It was 
shown also that natural convection heat transfer can be expressed 
by relating Hl/kd, the Nusselt number (Nu)y to agdPp2/p2, the 
Grashof number (Gr), and c/x/fc, the Prandtl number (Pr). 

Theory indicates that, unless Pr is very small, only the pro¬ 
duct (Gr Pr) — ag9cPp2/kp need be considered provided the 
fluid currents are slow enough for the inertia stresses to be 
negligible compared with viscous stresses. It is in fact found that 
for streamline flow the results are well expressed in terms of 
(Gr Pr). Since for gases Pr varies only within very narrow limits, 
it could, if desired, be cut out of the correlations. Actually it is 
convenient to present the results for both gases and liquids in 
terms of (Gr Pr)\ except for liquid metals for which, owing to 
their high thermal conductivity and low specific heat, Pr is 
extremely low, the results for all fluids should then lie almost on 
the same curve. It will be seen later that they do in fact conform 
to this expectation. Experiments show also that the relation 
holds for gases at pressures above or below atmospheric, p of 
course, for a perfect gas, being directly proportional to the 

pressure. The coefficient of expansion, a, for a gas increases with 
increasing pressure, and there is also known to be a corresponding 
slight increase in the specific heat, c. The values of the thermal 
conductivity, k, and viscosity, p, at extreme pressures are very 
uncertain, but there is evidence that they also increase with 
increasing pressure, in such a way that cp/k remains nearly 
constant. The net effect upon the heat transfer by natural 
convection of variations in the physical constants other than p 

with pressure is, however, not rapid; for air at temperatures 
around 100° F., for instance, an increase of about 10 per cent, is 
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caused by an increase in pressure from 1 to 50 atmospheres. 

Provided the correct value is taken for p, therefore, sufficiently 

accurate estimates can often be obtained by taking the other 

quantities involved, i.e. a, c, k, and p at atmospheric pressure, as 

given in Table XVIII. 

When the convection currents become fully turbulent theory 

indicates that it should be permissible to omit the viscosity terms 

in the groups concerned and that Nu should be related to 

(Gr Pr2), i.e. to (Gr Pr) xPr — ag6c2l3p2/k2. Unfortunately few 

of the experiments have extended far into the turbulent region 

except for air; but, as will be seen later, results for vertical 

surfaces in air, water, and ethylene glycol, covering a range of 

Pr from about 0*7 to 118, indicate that for values of {Gr Pr) 

between 1010 and 1012 the appropriate power of Pr is between 1 

and 2. This is probably because, although turbulence for vertical 

surfaces in air is known to set in at (Gr Pr) about 109, even at 

values of 109 to 1012 it is still fully developed only at the upper 

parts of the surface. 

The temperature of the fluid in immediate contact with a 

warm surface is of course the same as that of the surface, but it 

decreases very sharply through the thin layer of nearly stagnant 

fluid found very near to the surface, which is known as the 

‘boundary layer’, through which the heat has to be transferred 

by conduction. It then decreases less quickly to the bulk tem¬ 

perature of the surrounding fluid. When reference is made to the 

temperature of a fluid it is always this bulk temperature which is 

meant unless otherwise stated. In determining 9, the tempera¬ 

ture difference between surface and fluid, the bulk temperature 

of the fluid well away from the surface must likewise be taken. 

In all cases of natural convection, whether for gases or liquids, 

the values of the physical constants c, p, k, and p are to be taken 

at the arithmetic mean temperature of surface and bulk fluid, 

usually known as the ‘film’ temperature, tf. For gases, the 

coefficient of expansion, a, as already explained on p. 73 is given 

by l/Tg. Liquids have a much smaller coefficient of expansion 

than gases, and the range of 9 is also much smaller. In general 

the coefficient of expansion of liquids increases with increase of 
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temperature, but, assuming a linear law of variation over the 

interval 6, a may be taken as ^ equal to — i ^ at the film 
V at p dt 

temperature. 

The only shapes that have been studied in any detail in both 

Log (Gr fV) - log(ag0cdy/kp) 

Fio. 24. Natural convection for horizontal cylinders. Os are experimental 
points for gasos, x s are experimental points for liquids. 

gases and liquids are horizontal cylinders and vertical plane 

surfaces. There are also some results for vertical cylinders, and 

for horizontal surfaces facing upwards and downwards, in air. 

Otherwise only very scattered information is available. The 

surfaces investigated were in all cases hotter than the surround¬ 

ing fluid. 

Long horizontal or vertical cylinders. Fig. 24, in which 
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log Nu is plotted against log(GJr Pr), shows the results for hori¬ 

zontal cylinders, long in the sense that the ratio of length to 

diameter is large, in gases and liquids. They extend, with 

diameter taken as the characteristic linear dimension, to (Or Pr) 

about 109. A few results for long vertical cylinders in gases, 

which, within the limits of experimental uncertainty, agree with 

those for horizontal cylinders, are included. The gases used were 

air, hydrogen, and carbon dioxide with cylinder diameters 

0-0015 to 10 in., temperature differences from a few degrees to 

nearly 3,000 F.° and pressures from a few inches of mercury to 

over 100 atmospheres. The points for liquids are for alcohol, 

aniline, carbon tetrachloride, glycerine, olive oil, and water, for 

diameters 0-0033 to 2 in., and temperature differences up to 

about 150 F.° 

It will be seen that the experimental points for gases and 

liquids fall well on the same curve, and, as has already been said, 

theory indicates that so long as the flow is streamline, that is, for 

horizontal cylinders, so long as (Gr Pr) does not exceed about 

108, they should not differ. When (Gr Pr) exceeds 108, turbulence 

is known to occur along the top of a horizontal cylinder, spreading 

downwards as (Gr Pr) increases. 

Vertical plane surfaces, or vertical cylinders of large 

diameter. Fig. 25 shows the corresponding curve for vertical 

surfaces in air, which extends to (Gr Pr) above 1011, the height 

of the surface being taken as the appropriate linear dimension 

in calculating Nu and Pr. For comparison, points for water, 

oil, and carbon tetrachloride for (Gr Pr) up to the limit of the 

streamline region, i.e. about 2 x 109, have been included, and fall 

on the same curve. The results for gases are all for air, the surface 

heights going up to 13 ft., the temperature differences to more 

than 1,000 F.°, and the pressures to 65 atmospheres. A few points 

for vertical cylinders of diameter above 2-5 in., for which the 

heat transfer is the same as for vertical planes, have been in¬ 

cluded. For liquids the heights extend only up to 1 ft. and the 

temperature differences to 15 F.° 

For full turbulence, as already mentioned, according to theory 

Nu for natural convection should correlate with (Gr Pr2), in 
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which the viscosity term disappears. Unfortunately there are 

few data at high values of (Gr Pr), but Saunders’s [1] results for 

a vertical plane surface in air and water, and Touloukian’s [2] 

Log (Gr Pr) - log (agflcllpz/kfi) 

Fig. 25. Natural convection for vertical surfaces. Os are experimental points 
for gases, X s are experimental points for liquids. 

for a vertical cylinder of diameter 3 in. in water and ethylene 

glycol, extend to values of (Gr Pr) of 1011 to 1012. This is con¬ 

siderably beyond the onset of turbulence, which Saunders found 

by an optical method to begin at (Or Pr) = 2 x 109. As would 

perhaps be expected, in the region between about 1010 and 1012 
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the results point to a relation of Nu with (Or Prn), where n is 

between 1 and 2. Saunders’s and Touloukian’s results cannot 

conveniently be shown on the same diagram as they differ con¬ 

siderably for water, but they are shown separately in Figs. 26 a 

and 266, in which log Nu is still plotted against log(Gr Pr). 

It will be seen that Saunders’s results for water and air are 

Log(Gr.Pr) Log(GrPr) 

(a} (b) 

Fig. 26. Natural convection from vertical surfaces to fluids at high values of 
(OrPr): (a) water and air; (b) ethylene glycol and water. 

coincident at (Gr Pr) of 109, but then diverge, the water results 

becoming about 50 per cent, higher than the air results for 

(Gr Pr) above 1010. In this region, for any given value of logiVw, 

log(C?r Pr) is about 0-5 less for water than for air. In the water 

experiments, Pr was about 7*4, in the air experiments about 

0*74, a ratio of 10:1. Hence, if logiV’w were plotted against 

log (Gr Pr1’5), instead of against log((7r Pr), the results for water 

and air would be brought on to the same curve. 

From Fig. 266 it will be seen that Touloukian’s results for 

ethylene glycol and water agree at (Gr Pr) of 109, but that above 

1010 the results for ethylene glycol are about 20 per cent, higher 

than those for water. His experiments covered a wider range of 

temperature than Saunders’s, so that Pr also varied considerably 
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for both liquids, but was higher for ethylene glycol, for which the 

top value was 118. The results for values of (Or Pr) above 1010 

were brought into coincidence by plotting log Nu against 

log(Gr Pr1*3). Results for taller surfaces, and consequently 

Fio. 27. Natural convection for horizontal plane surfaces in air. 
-facing upwards,.facing downwards. 

increased values of Gr, for which the appropriate power of Pr 

in the correlations should approach 2, would be of interest. 

For water in the turbulent region for (Gr Pr) above 2x 109 

Saunders’s results, which are probably the more reliable, are 

well expressed by 
Nu = 0-17((?r Pr)0*33. (46) 

Horizontal plane surface facing upwards. In Fig. 27 the 



9$ NATURAL CONVECTION oh. v 

experimental curve for natural convection is shown for warm 

horizontal plane surfaces facing upwards in cooler air, the only 

fluid for which there are yet results. In this case the characteris¬ 

tic linear dimension taken in Nu and Gr is the side length. In 

most of the experiments the surfaces used were square, or nearly 

square, but if they were rectangular a mean value was taken for 

the side length. The maximum size investigated is about 2 ft., 

with temperature differences between surface and air going up to 

over 1,000 F.° Turbulent conditions are found to begin in this 

case at lower values of (Gr Pr) than for the other shapes. 

Horizontal plane surfaces facing downwards. Fig. 27 

shows also the results for warm horizontal plane surfaces facing 

downwards in air. In this case, were it not for edge effects and 

slight irregularities of temperature over the plate surface, since 

the layer of warm air near the plate would be in equilibrium in a 

draught-free room, there would be no convection currents, 

although heat would of course still be lost from the plate by con¬ 

duction. Actually there is always some air movement, but the 

conditions are known to be streamline throughout the experi¬ 

mental range, which extends to values of (Gr Pr) above 1010. 

Discussion of curves. It will be noticed that the curves of 

log Nu against \og(Gr Pr) are all of nearly the same form, their 

slope gradually increasing as (Gr Pr) increases. For (Gr Pr) 

between 105 and 108 the slope is in all cases J, and when (Gr Pr) 

exceeds 108 or 109 it becomes about indicating that Nu is 

proportional to (Gr Pr)1/3, and therefore that, apart from any 

slight effect due to changes in the values of the physical con¬ 

stants with temperature, the heat transfer for any given tempera¬ 

ture difference should be independent of size, Z, since Hl/0 is 
proportional to (Z3)1/3, i.e. to Z. The warm horizontal surfaces 

facing downwards, for which turbulence is not reached, are an 
exception, and the slope of the log curves to the highest values of 

(Gr Pr) investigated, i.e. over 1010, is still in this case only about 

Except for small temperature differences, say below 10 F.°, 

(Gr Pr) for gases will exceed 105 for Z above about 2 in. and 

the regions of (Gr Pr) below this refer mainly to heat transfer 

from wires, or from larger surfaces in gases at low pressure. The 
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range of (Or Pr) from 105 to 108 corresponds to a range of l 

about 2 in. to 2 ft. in gases at atmospheric pressure, so that 

practically all the results for cylinders, with d as the characteris¬ 

tic linear dimension, are in the streamline range. For vertical 

surfaces, with results to heights of 13 ft., the curves extend well 

into the turbulent region. In liquids turbulence is reached at 

much smaller sizes, but the range of temperature difference en¬ 

countered is also much smaller; results for cylinders may thus 

still lie in the streamline range, but for the biggest size investi¬ 

gated, i.e. a cylinder of 2 in. diameter in water, (Gr Pr) exceeded 

108 when 0 exceeded roughly 20 F.° 

The equations to the curves for gases or liquids in the stream¬ 

line range of (Gr Pr) greater than 105 are 

Nu = C(Gr Pr)0'25, (47) 

and for gases in the turbulent range 

Nu = Cf(Gr Pr)0'33, (48) 

where C and C\ constants depending on the geometrical con¬ 

ditions, are given in Table IV. 

Table IV. Values of Constants for Expressions (47) and (48) 

C C' 

Horizontal or vertical cylinders: Characteristic 
linear dimension, diameter .... 0-47 010 

Vertical planes, or vertical cylinders of large dia¬ 
meter: Characteristic linear dimension, height . 0-56 012 

Horizontal planes facing upwards: Characteristic 
linear dimension, side ..... 0-54 014 

Horizontal planes facing downwards: Characteristic 
linear dimension, side ..... 0-25 

1 /3 slope not 
reached 

It is evident that the process of heat loss by natural convection 

from a horizontal plane surface facing upwards in a cooler fluid 

is, for the same temperature difference and the same film 

temperature, akin to that of heat gain from a similar surface 

facing downwards in a hotter fluid, except for the difference in 

the coefficient of expansion for gases, which is inversely propor¬ 

tional to the absolute temperature of the gas. The expressions 

for a hot surface facing upwards must therefore be used in 
6145 tt 
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calculating the heat transfer to a cool surface facing downwards, 

and the expressions for a hot surface facing downwards for the 

heat transfer to a cool surface facing upwards. 

Simplification of expressions for natural convection in 
air. In the streamline region for (Gr Pr) greater than 10B, since 

from (47), 

Hl/kd = C(ag9cPp2/kp)°'2b, H = Cx (ik/Z)(a^ZVW)o‘2501‘26- 

If this is evaluated for air, it is found that up to surface tempera¬ 

tures of 1,500° F. or more, H is nearly equal to 0*50(7 x (9l'25/l0'25) 

B.Th.U./ft.2 hr. Hence H/8, = a, the heat transfer coefficient, 

is equal to 0*50C(0/Z)025 B.Th.U./ft.2 hr. °F. 

In the turbulent region, since for gases from (48) 

Hl/k9 = C'(agOcPp*/kii)***, 

H = C' X k(agcp2/kp)0'3380’0891'25, 

which, on working out for air, is found for the same temperature 

range to be nearly equal to 2*5C"0125 B.Th.U./ft.2 hr. Hence 

Hjd, = a, the heat transfer coefficient, is equal to 2*5C"00 25. 

The resulting simplified expressions given below are applicable 

without significant error to carbon monoxide, nitrogen, oxygen, 

or flue gases as well as to air. For hydrogen, which has a very 

high thermal conductivity, the heat transfer for any given shape 

and temperature conditions would be much greater. 

Table V. Simplified Expressions for Natural Convection in Air 

Streamline region 
(Or Pr) > 104 or 106 

Turbulent region 
(Or Pr) > 10* or 10* 

n 
B.Th.U. 
ft* hr. 

Hie = a 

B.Th.U. 
ft* hr. °F. 

H 
B.Th.U. 
ft.* hr. 

Hie - a 

B.Th.U. 

ft> hr. °F. 

Horizontal or vertical cylinders 

(characteristic linear dimension 

diameter d). 

O240126 

" ' 
0-24j (i) 

^0-26 O-260126 0-250° *> 

Vertical planes or vertical cylinders 
of large diameter (characteristic 

linear dimension height l). 

O-2801" 
JO-26 0*28| (f) 

0-25 

' I 

O-3O01'25 0 300°*' 

Horizontal planes facing upwards 

(characteristic linear dimension 

side l). 

O*2701W 

J026 
0*27| (?) 

0-25 

' i 
! 

O-350125 0-350°u 

Horizontal planes facing downwards 

(characteristic linear dimension 

side l). 

o-i 20*** ; 
012| (?) 

026 
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Since the expressions above indicate that in the turbulent 

region natural convection from vertical surfaces is not far from 

the mean for horizontal surfaces facing upwards and downwards, 

it is usually good enough when dealing with complete bodies of 

linear dimensions above about a foot, whatever their shape, to 

take a mean value of O-3O01'25 B.Th.U./ft.2 hr. 

Curves showing values of 01*25 for a range of d from 0 to 2,000 

are given in Fig. 28. In Table XVII the heat transfer H and 

coefficients of heat transfer a, by natural convection and radia¬ 

tion together in surroundings at 65° F., are given for surfaces of 

different emissivities, as calculated from the expressions 

H = 0-30(<-65)125+l-73xl0-9JS(T4-5254)^^^:, (49) 
ft. hr. 

and « = H/9 = H/(t-6 (50) 

Natural Convection between Two Parallel Surfaces 

The transfer of heat across a layer of fluid from a hotter to a 

polder surface is an interesting particular case of natural con¬ 

vection, the most important shapes being parallel planes and 

concentric cylinders. It would be expected that the results 

would differ according to whether the layers were open or closed 

at the edges, but most of the experimental work has been for 

closed layers. 

Characteristic linear dimensions. For plane layers, the 

shape, strictly speaking, is determined by the ratios of the 

lengths of side of the plane l to the distance apart 8, and convec¬ 

tion would be expected to depend upon 1/8 as well as upon 8. 

Above a certain value, however, the effect of l dies out and, with 

8, the distance apart, taken as the characteristic linear dimension, 

Nu, — H8/kdy can be related simply to (Gr Pr), = ag6c83p2/kpiy 

as in the cases of natural convection previously dealt with. 

Most of the experimental work has, in fact, been done for layers 

large compared with 8, and 8 has been the variable. 

In this special case of heat transfer across layers of fluid the 

temperature difference, 0, to be taken in Nu and Gr is not, as for 

a single plane surface, that between surface and fluid, but the 
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full temperature difference between the two surfaces. And it 

should be noted that Nu, = Hh/kO, — H/Hk, where Hk is the heat 

which would be transmitted per unit area per unit time by pure 

conduction across the layer for a temperature difference d. 

For long cylindrical layers the shape is determined by the 

Fig. 29. Natural convection across a fluid layer between two parallel vertical 
plane surfaces, closed at the edges. 

ratio djdi of the outer and inner diameters; hence, taking dt as 

the characteristic linear dimension, Nu, = Hdjk6, should 

depend upon (Or Pr), — agdcd^p2lkfi, and d0!d 

Fluid layers between two parallel plane surfaces. Fig. 29 

shows, as an example, the mean curve for large vertical plane 

layers, with Nu, = HjHk, plotted against log (Or Pr). It will 

be seen that, until (Or Pr) exceeds 103, the heat transfer is the 

same as would be calculated on the basis of pure conduction. The 

meaning of this is, of course, that in this region of very narrow 

layers natural convection currents are suppressed. As (Or Pr) 
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increases above 103 they gradually become more active, and the 

heat transfer more and more exceeds that due to pure conduction. 

For (Or Pr) between about 104 and 106 the equation to the curve 

is Nu = H8/kd = H/Hk = 0-15(Gr Pr)0'25. (51) 

For still higher values of (Gr Pr) the slope of the curve becomes 

1/3, showing that the heat transfer has become independent of 

8; in other words, that the spacing has become so wide that the 

effect of either surface upon convection from the other has 

become negligible. In this region the equation to the mean curve 

is Nu = ffi/kO = H/Hk = 0-05(Gr Pr)0'33, (52) 

and the heat transfer should be the same as that calculated from 

(48) for natural convection from a single tall vertical surface, 

remembering that in (48) the temperature difference is that from 

surface to fluid. Neglecting slight differences in the heat transfer 

coefficients from the hot surface to the mid-fluid, and from the 

mid-fluid to the cold surface, due to the different absolute tem¬ 

peratures, the mid-fluid must be at a temperature midway 

between that of the two surfaces. Using expression (48), with a 

halved temperature difference for calculating the heat transfer, 

which is proportional to 01*33, 

Nu = ~(Gr Pr■)►» = 0-05(Gr Pr)0 33, 
21'33 

i.e. (52). 

From the results for vertical surfaces of height h with different 

h/8 ratios, Jakob [3] concluded that the heat transfer was pro¬ 

portional to (h/8)~119. Thus, assuming that the limiting value has 

been reached when h/8 exceeds about 25, which is in rough agree¬ 

ment with experiment, the expressions above would need 

multiplying by (258/A)1/9 for lower values of h/8. 

For horizontal layers with the cooler surface uppermost the 

heat transfer is, as would be expected, greater than for vertical 

layers, but the excess found by different workers varies widely, 

say from 30 to 60 per cent.; in the region of 0-33 slope, however, 

the difference should be the same as that between natural con¬ 

vection from a single vertical surface and a single horizontal 

surface, i.e. barely 20 per cent, (see Table IV). 
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Theoretically, a horizontal layer of fluid with the hotter surface 

uppermost should be stable, and heat transferred by conduction 

only, whatever the value of 8. But actually, edge effects and 

non-uniformity of surface temperature may cause circulation in 

wide layers, with consequent increase in heat transfer. 

It will be noticed that, for all the cases of heat transfer across 

plane fluid layers, so long as Nu is proportional to (Gr Pr)0'25, 

H/9 will vary with 1 /80'25. Hence, as 8 increases, H/0 will decrease 

until, when Nu becomes proportional to (Gr Pr)0'33, it reaches a 

final minimum value. This means that, although the thermal 

conductivity of air is very low, a single air layer would not usually 

be an effective insulator, because before it becomes an inch thick 

convection sets in and the heat transfer cannot be much further 

reduced. On the other hand, if the single air layer were divided 

by parallel surfaces into a series of layers each so thin that the 

heat transfer across them was by conduction only, the heat 

transfer for any given temperature difference between the two 

outside surfaces would continue to decrease indefinitely with 

jncrease of thickness; the exchange of heat by radiation would 

at the same time be greatly decreased. This is, of course, the 

secret of the very low conductivity of many fibrous and porous 

materials, and of metal-foil insulation of the Alfol type. 

Fluid layers between concentric horizontal or vertical 
cylinders. Kraussold [4] has shown that if HjHk, which for 

cylindrical fluid layers, if H is taken per unit area of inner cylin¬ 

der, equals Hdi\oge(dJdi)j2k6, is plotted against loga#0c83p2/fc/a, 

the results, both for liquids and gases, lie on the curve of Fig. 29 

provided djdi is not more than about 5. In this case 8 is taken as 

(d0—d{)l2. This agreement, however, could not be expected to 

hold for all sizes, since, at any given value of (Gr$ Pr) and 8, by 

making djdi very big, di becomes very small, and it is known 

that natural convection from a cylinder tends to pure conduction 

as the diameter becomes very small. Thus, for djdi approaching 

infinity, the curve of Fig. 29 for cylindrical layers should be a 

horizontal straight line, whatever the value of 8, and conse¬ 

quently of ((?r§Pr). Experiments extend only to d0/di about 8, 

but Beckmann [5] made extrapolations for higher values, taking 
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as the limit values calculated from the mean curve for natural 

convection from a single horizontal cylinder, for which he 

assumed a djdt ratio of 100. It should be noted that in this case 

the full temperature difference between the two surfaces is used 

Log(agtfcd;3/J2/ly/) 
Fig. 30. Natural convection across a layer of fluid between two concentric 

cylinders of outer and inner diameter d0 and d 

when obtaining values from the single cylinder curves, and not 

one-half the value as in the case of plane surfaces, since, owing 

to the outer cylinder having so much greater an area than the 

inner cylinder for d0ldi = 100, practically the whole of the 
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temperature drop is between inner cylinder and fluid. Fig. 30, 

in which Nu is plotted against (Grd{ Pr), with d{ as the character¬ 

istic linear dimension, and with 8 the temperature difference 

between the two surfaces, has been derived from Beckmann's 

curves. At high values of (GrdiPr) a series of parallel curves, 

each corresponding to a different value of djdiy is obtained. As 

(GrdiPr) decreases the curves become horizontal for gradually 

increasing values of djdiy and would ultimately become horizon¬ 

tal, showing that the heat transfer is by conduction only, how¬ 

ever big d0\dt. As djdi is decreased, Nu decreases for high values 

of (GrdiPr) and increases for low values. 

Example 1 

A large duct of polished metal (diameter more than 2 ft.) in 
surroundings at 65° F. carries hot air. If the metal is at 150° F., 
at what rate per square ft. will the duct lose heat (a) by con¬ 
vection, (b) by convection and radiation together? If the metal 
were painted white on the outside, what would be the rate of heat 
loss by convection and radiation together ? 

Solution. For so large a surface the heat loss by natural con¬ 

vection will be given closely enough by O-3O01'25 B.Th.U./ft.2 hr. 

irrespective of whether the duct is horizontal or vertical, or 

partly both (see p. 99). The heat loss will therefore be: 

0*30 X (150—65)5/4 = 0-30 X 855/4 = 0-30x258 

= 77 B.Th.U./ft.2 hr. 

Taking the emissivity of the polished surface as 0-10 (see 

Table XVI), the heat loss by radiation and convection is given by 

[0-30(150—65)5/4 +1-73 X 10"9 X 0-10(6104-5254)] 

= 77+11 - 88 B.Th.U./ft.2 hr. 

or, more simply, from Table XVII, by 

1*04(150-65) = 88 B.Th.U./ft.2 hr. 

For a white-painted surface at 150° F., E — 0-95 (see Tables 

XVI and XVII) the corresponding heat loss by radiation and 

convection would be 

2*11(150-65) = 179 B.Th.U./ft.2 hr. 

Actually, it can easily be seen that for air at any given 
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temperature flowing through a pipe at given velocity, the tem¬ 

perature of the metal when polished on the outside would be 

higher than when painted and the difference in the heat loss for 

the two surface conditions would thus be less than that worked 

out above on the assumption of equal surface temperatures. 

Example 2 

A painted panel 2 ft. square is kept at 140° F. by water circu¬ 
lating through pipes on its reverse surface. Neglecting con¬ 
duction through the back of the panel, how much heat w’ould it 
lose (a) when set flush with the ceiling, facing downwards, and 
(b) when set flush with the floor, facing upwards, in a room at 
60° F. ? 

Solution. (a) Convection for panel 

= 0 '128V25/l025 = ?11?2S(8-?J1-25 
• 20'25 

= (see Fig. 28)--j+239 = 24 B.Th.U./ft.2 hr. 

Radiation = l-73x 10-»x0-9(6004 - 5204) 

= (see Table XV) 0-9(224-126) = 88 

B.Th.U./ft.2 hr. 

Convection+radiation = 24+88 = 112 B.Th.U./ft.2 hr. 

(6) Since Gr Pr = 8*6 x 108 (see Table XVIII) 

Convection = O-3501’25 = 0*35x239 = 84 B.Th.U./ft.2 hr. 

Radiation, as before, = 88 B.Th.U./ft.2 hr. 

Convection+radiation = 84 + 88 = 172 B.Th.U./ft.2 hr. 

Example 3 

A bright platinum wire, diameter 0*01 in., is maintained at 
1,540° F. in still air at 60° F. Neglecting radiation, at what rate 
is heat being generated per ft. length of wire? 

Solution. Coefficient of expansion, a, — 1/(460+60) = 1/520. 

From Table XVIII, for air at mean temperature, tm, 800° F., 

gcp2lkn = 4*48 x 107, and k = 0*0286 B.Th.U./ft. hr. °F. 

Temperature difference, 0, from wire to air = 1,480 degs. F. 

Wire diameter = 1/1200 ft. 
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Hence 

(Gr Pr) = aq-C-?— = (4-48x 107x 1480)/(520x 12003) 
k\i 

and log (Gr Pr) — —1*3. —1 

Hence, from Fig. 24, 

log Nu = -0*13 = T-87 = log 0-74, 

and Hdjkd = 0*74. 

Heat production per foot length of wire — irdH — O-74X77X&0 

= 0-74 x 3-14 x 0-0286 x 1480 = 98 B.Th.U./hr. 

If, instead of the temperature of the wire, the heat input were 

given, and the temperature attained by the wire required, a 

preliminary guess would have to be made. 

Suppose a wire temperature of 1,140° F. were taken, giving 

9 - 1,080 F.° and tm 600° F. Then: 

(Gr Pr) = (8-0 X 107X 1080)/(520x 12003) 

whence log (Gr Pr) = 1-02 

^nd, from Fig. 24, 

log Nu = —0-11 = 1-89 = log 0-78. 

Heat loss per foot length = irHd = 7tX0-78A:<9 

= 3-14x0-78x0-025x 1080 

= 66 B.Th.U./hr. 

This is too small, so evidently the wire temperature has been 

guessed too low. Inspection of Fig. 24 shows that, in the region 

of the curve involved, the slope is about 0-15, indicating that H is 

nearly proportional to 01'15. 

Hence the true temperature difference 9 should be nearly 

given by (0/1O8O)115 = 98/66 

M5log(0/lO8O) = log(98/66) = 0-173 

log 9 = 0-15+3-033 = 3-183 

= log 1520. 

This gives a wire temperature of 1,580° F. which is much 

nearer the correct one, and, considering the scatter of the experi¬ 

mental points, about as good an estimate as the data are capable 
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of providing. It is, in fact, within 5 per cent, of the actual tem¬ 

perature. 
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VI 

FORCED CONVECTION 

Forced convection, as has already been explained in Chapter III, 

occurs when a fluid is in contact with a surface at a different 

temperature, the motion being due to pressures or velocities 

applied to the fluid, independently of the heat flow. Strictly 

speaking, natural convection effects are never entirely absent, 

but at high enough speeds of forced flow they can be neglected. 

Heat transfer by forced convection has been investigated more 

or less systematically for flow through and across pipes and flow 

over plane surfaces. Of these, the most important industrially 

are flow through pipes and flow over ‘banks’, or ‘nests’, of paral¬ 

lel pipes. With forced convection, since the flow requires power 

to maintain it, heat transfer must be considered in relation to 

pressure drop, the power available often being limited. Usually 

questions of the weight or size of plant also arise and a compro¬ 

mise is necessary in choosing design conditions. 

Turbulent Flow of Fluids through Pipes 

A great many measurements have been made of the heat 

transfer between the inner surfaces of pipes and gases or liquids 

flowing through them in turbulent flow. The gases include air, 

carbon dioxide, coal gas, combustion gases, hydrogen-nitrogen 

mixtures, and superheated steam. The experiments on super¬ 

heated steam, oxygen, air, and hydrogen-nitrogen mixtures went 

up to pressures of about 9, ^yj^nd 900 atmospheres respec¬ 

tively. For the other gases the experiments were carried out at 

atmospheric pressure. The liquids used include water, acetone, 

benzene, kerosene, and various oils and alcohols. Pipe diameters, 

df ranged from \ in. to nearly 6 in., and temperature differences, 

0, from a few degrees to 2,000 F.° For both gases and liquids the 

experimental range of Reynolds number extends to about 

5 x 105. 

It has been found, as shown in Fig. 31, that the data correlate 

fairly well by plotting log(Nw/iV'4) against log Re. Strictly, for 
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similarity, the ratio of pipe diameter to pipe length, d/l, should be 

included, or the results plotted for only one value of d/l at a time; 

but comparison of results for different values shows that the 

power of d/l involved is only about 0-05, so that for ratios of l to 

d above about 10 it can for practical purposes be neglected. 

In Fig. 31 the rings represent data for liquids, while the straight 

Log Re - log (v/>d///) 

Fio. 31. Forced convection for fluids flowing through pipes, ©s are experi 
mental points for liquids. Dotted line is mean curve for gases. 

line is the mean through the data for gases, the equation to 
which is ,T 

Nu = 0*023i?e08Pr0'4. (53) 

It will be seen that for gases this relation holds down to the 

critical value of Re = 2100 (log Re = 3-3); but it must be 

remembered that the majority of experiments were for pipe 

diameters of, at the most, an inch or two, and there is some 

evidence that for very low rates of flow in wider pipes natural 

convection currents may become appreciable, and divergencies 

from (53) consequently occur even for Re above 2100. In such 

cases the heat transfer might be expected to vary with the 
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inclination of the pipe. For liquids the slope of the curve 

gradually increases as Re decreases from 5000 to 2100 (i.e. as 

log Re decreases from 3*7 to 3-3), this being the transition region 

between full turbulence and streamline flow. At Re = 2100 

there is a sudden sharp decrease in the slope of the curve, which 

is now in the streamline region of Re. These non-turbulent 

regions will, in the case of liquids, be discussed more fully later, 

but the data have been included on the curve for turbulent flow 

in Fig. 31 to give a general picture over the whole range of Re, 

from streamline to fully turbulent. 

The gas data could, of course, have been plotted in terms of 

Nu only, since Pr varies very little either from gas to gas, or with 

temperature for any given gas. But it is convenient for compari¬ 

son to plot both gases and liquids in the same way. Substituting 

for the Pr term, however, the equation to the dotted straight 

line curve for gases becomes: 

Nu = 0*020jRe0'8. (54) 

, In calculating Nu, Pr, and Re for the points plotted in Fig. 31 

the physical constants k, fi, and c were taken at the mean bulk 

temperature of the fluid, i.e. at the mean of the inlet and outlet 

mixing temperatures. At what temperature v and p are taken 

makes no difference, so long as they are both taken at the same 

temperature, since vp is constant along a pipe, and equal to M, 

the mass velocity, or mass rate of flow per unit area of pipe cross- 

section. 

If the temperature differences, 0X and 02, between fluid and 

pipe wall at the beginning and end of the section considered are 

very different, the logarithmic mean temperature difference, 

which is given by (0l—d2)/loge(d1ld2), must be taken when cal¬ 

culating the heat transfer for the whole section, i.e. the heat 

transfer along the section must be integrated. If 0X and 02 do not 

differ much, their arithmetic mean may be taken without much 

error. The ratio of the logarithmic to the arithmetic mean tem¬ 

perature difference depends upon the ratio of 0X to 02, as is shown 

in Fig. 32, from which it will be seen that as 0J02 increases from 

1 to 20 the ratio of the log mean to the arithmetic mean 
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temperature difference decreases from 1-0 to 0*6. For 

below 3, less than 10 per cent, error is introduced by taking the 

arithmetic mean for 6, which is within the accuracy of the 

experimental data. 

Making use of the fact that, for gases, cp/k is nearly constant at 

about 0*75, expression (54) can be written in several alternative 

Fig. 32. Relation between logarithmic and arithmetic mean temperature 
difference. 

forms. For instance the viscosity term can be eliminated by 

substituting 0-75lc/c for p, giving 

Nu = 0*026(vpdc/k)08 = 0*026(Re Pr)08. (55) 

The dimensionless group vpdc/k, which is the product of Re and 

Pr, is known as the Peclet number, Pe, and has been used by 

several investigators for calculating heat transfer data for gases. 

Similarly k can be eliminated from (54) by substituting for it 
c/x/0-75, giving 

H/0 = ol = 0*027c(vp)°'8(p/d)°^ B.Th.U./ft.2 hr. °F. (56) 

Variation of heat transfer coefficient with temperature. 
It can be seen from (53) that for any given pipe diameter and any 

given mass velocity, vp, a varies with temperature in proportion 

to the variation of (k/p°,8)(cp/k)0i, or, for gases, of k/p08. For gases 

k and p both increase with increasing temperature and the rate of 
variation of k/p°'8 is comparatively slow. For air, as shown in the 
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correction curve to Fig. 33, a increases by 24, 43, and 50 per cent, 
as the temperature at which k and p are taken increases from 
60° F. to 1,000° F., 2,000° F., and 3,000° F. respectively. Un¬ 
fortunately this variation cannot be confirmed directly, since 
flue gases have been used for high temperature work, and there 
is then an uncertain correction for gas radiation, of the same 
order as the temperature correction. 

Variation of heat transfer coefficient with gas velocity 
and pipe diameter. Since Hd/lcd is proportional to (vpd/p)0'8, 
if the variation of k/p08 is neglected, H/9 becomes proportional 
to (vp)°'8/d°*2 and //,/#, the heat transfer coefficient per unit 
length of pipe, proportional to (vpd)0'8. 

Total length and total weight of tubing necessary for a 
fixed total mass flow and a fixed change in fluid tempera¬ 
ture between inlet and outlet. Suppose n tubes each of 
diameter d and length l are arranged in parallel. If the total mass 
flow is fixed, nd2v — constant, where v is the velocity. If also 
the change in fluid temperature from inlet to outlet is fixed, the 
total rate of heat transfer is fixed, that is nl(vd)0'8 = constant. 
Eliminating v from these two equations it follows that 

nl/(nd)os = constant. 

Hence the total length of tubing required, nl, is proportional to 
(nd)0’8, showing that if either the number of pipes or their dia¬ 
meter be reduced in any ratio x, the total length needed is re¬ 
duced in the ratio a;0*8. For constant pipe-wall thickness the 
total weight of metal tubing is proportional to nld, that is to 
ra°*8di*8, showing that the weight decreases in the ratio #0’8 when 
the number is reduced in ratio x, and in the ratio#1’8 when the 
diameter is reduced in ratio x. 

The length of the individual pipe, l, varies as d0 8/n°'2 and is 
therefore smaller using smaller diameters, but slightly bigger if 
smaller numbers are used. The overall shape of the pipe nest, 
which, for spacing between pipes proportional to d, may be 
expressed by the ratio of the individual pipe length to the nest 
diameter, Z/dVw, varies as l/(n°'7d0*2), showing that if the aim 
were for minimum total weight or volume, disregarding pressure 

6145 t 



114 FORCED CONVECTION CH. VI 

drop, it would be best to use a few long pipes of small diameter, 

through which the fluid moved with high velocity, but the result¬ 

ing nest might then become inconveniently long and narrow. 

Pressure drop, fan power, and ratio of fan work to total 
heat transferred. The previous section ignores considerations 

of pressure drop and fan power. Suppose that the total mass 

flow rate and total heat transfer rate are constant as before. 

For turbulence, the pressure drop may be taken as approxi¬ 

mately proportional to lv2/d (see p. 79). For fixed mass flow 

nd2v is constant, and for fixed heat transfer nl(vd)°'8 is constant. 

It follows that the pressure drop varies as l/(7i22d4'2). The fan 

work per unit time is given by the pressure drop multiplied by 

the volume flow rate, and since the latter is fixed the fan power 

also is proportional to l/(n2 2d4 2), or the ratio of total heat 

transferred to fan work proportional to n2'2d4’2. It should be 

noted, however, that in practice n and d are not independent, 

being governed largely by design considerations of size, weight, 

shape, etc. If, for instance, the design requirements were such 

that the total volume of the bank were fixed, so that ndH was 

constant, it would follow that nd3-5 = constant, and n2’2d4*2 pro¬ 

portional to l/d3‘5 or to n. In such a case the ratio of heat 

transfer to fan power would be best for a large number of short 

pipes of small diameter. There would, however, usually be 

practical limits to the reduction in d feasible, since in the extreme 

the bank would become very short, with large frontal area, so 

that its inconvenient shape might put it out of question. 

Other cases can be worked out in a similar manner. For 

instance, if a bank were of fixed cross-section, the ratio of heat 

transfer to pressure drop would be proportional to 1 /<20’2. 

Variation of heat transfer coefficient with pressure. 
Very few measurements of k and p, have been made for gases at 

high pressures, and these show serious discrepancies, although 

they agree in suggesting that both properties increase with 

pressure. It can, however, be deduced from indirect evidence 

that, until the critical point is approached, the effect of pressure 

upon the heat transfer is relatively small, except in so far as it 
affects p, and therefore the mass flow. Thus, provided the correct 
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mass velocity is taken, comparatively little error would be intro¬ 

duced by taking k and fi both at atmospheric pressure [1]. 

Simplified presentation of heat transfer coefficients. 

The heat transfer coefficients for different rates of air flow, and 

Fio. 33. Heat transfer coefficients for different weights of air per unit area of 
pipe cross-section per unit time flowing through pipes of different diameters, 

with k and fi taken at 60° F. 

different pipe diameters, can be read directly from Figs. 33 and 

34, which are based on expression (54) for turbulent flow with 

k and (jl taken at 60° F. In Fig. 33 the curves are for different 

mass velocities, i.e. mass rates of flow per unit area of pipe cross- 

section; in Fig. 34 they are for different linear velocities measured 

at 60° F. and 1 atmosphere. It should be noted that, for the 

lower velocities and smaller pipe diameters, the flow may not be 
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turbulent, and the curves therefore not applicable, except for 

low temperatures, at which the gas viscosity is relatively low. 

A correction curve is given which shows the factors by which 

the heat transfer coefficients should be multiplied when the air 

temperature is above 60° F., and in the case of Fig. 34, when the 

pressure is above 1 atmosphere. No pressure correction is 
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required for Fig. 33, which, since the flow is given in lb./ft.2 hr., 

automatically takes account of changes of p due to changes of 

pressure. Fig. 33 is applicable with no significant error to carbon 

monoxide, nitrogen, and oxygen for which k and p are nearly 

the same as for air. For carbon dioxide at 100° F. the heat trans¬ 

fer for any given mass velocity and pipe diameter is only about 

three-quarters that for air, but becomes equal to that for air at 

about 800° F.; for higher temperatures it is slightly greater than 

that for air. 

Hydrogen gives exceptionally high heat transfer because it 

has a high thermal conductivity and low viscosity. For the same 

mass velocity the coefficient for temperatures around 100° F. to 

200° F. is thirteen times, for higher temperatures twelve times, 

that for air. 

The heat transfer for methane is also high, although not 

nearly so high as for hydrogen; it varies from about twice that 

for air at 100° F. to nearly 3| times at 2,000° F. For ethane the 

corresponding factors are 1| and 3; for ethylene 1-3 and 2-5. 

• For superheated steam at atmospheric pressure there is some 

uncertainty about the values of k at the higher temperatures, but 

for the same mass velocity, the heat transfer according to (53) is, 

between 300° F. and 800° F., about 1*5 times that for air, rising 

to about twice that for air at 2,000° F. 

For high-pressure steam neither k nor p is known with any 

accuracy, but it seems that, for the same mass velocity, the ratios 

to air are much the same as at atmospheric pressure up to 250 

lb./sq. in., but for higher pressures, especially at the lower 

temperatures near the critical point, the heat transfer in relation 

to that for air becomes much greater. For instance, at 1,500 

lb./sq. in. and 600° F. it is about three times that for air. 

Heat transfer for liquids flowing through pipes. In 

comparing the rates of heat transfer for different liquids the 

variation of the Pr term in (53) must be taken into account, and 

it can be seen that the heat transfer for any given mass velocity 

and tube diameter depends upon (A://x08)(c/x/A:)0*4, i.e. upon 

(ko eco i)/ia0’4. Coefficients for water are given in Figs. 35 and 36 

for mass and linear velocities respectively again with k and p 
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Fig. 35. Heat transfer coefficients for different weights of water per unit area 
of pipe cross-section per unit time flowing through pipes of different diameters, 

with k and fx taken at 60° F. 

taken at 60° F. A subsidiary correction curve for fluid tempera¬ 

tures above 60° F. is given. This is applicable to both figures, 

provided the linear velocities are reduced to 60° F., before 
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Fio. 36. Heat transfer coefficients for water at 60° F. flowing through pipes of 
different diameter at different velocities. 

reading values from Fig. 36. Water has a higher thermal con¬ 

ductivity, and higher specific heat, than any other non-metallic 

liquid; it thus gives a relatively high rate of heat transfer. For 

liquids p. usually decreases quickly, and k decreases slowly, with 

increasing temperature, while c increases. The net effect is an 
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increase in Hjd with increasing temperature. For water the 

increase in H/0 is 85, 165, 295 per cent, as the temperature in¬ 

creases from 60° F. to 200° F., 400° F., 600° F. respectively. 

Comparing Figs. 35 and 36 with the corresponding Figs. 33 

and 34 for air, it will be seen that for the same mass velocity 

the heat transfer coefficients for water are about 2\ times those 

for air. For the same linear velocity the heat transfer coefficients 

for water are at 60° F. about 500 times, and at 200° F. about 

1,000 times, those for air. 

Some liquids, mainly because of their very high viscosity, but 

also because they have relatively low thermal conductivity and 

specific heat, give, in turbulent flow, very much lower heat 

transfer coefficients than water for the same mass velocity. Thus 

glycerol, even in turbulent flow, would at 60° F. give only about 

one-twentieth, and many other liquids only one-half to one- 

third the heat transfer of water. It must, however, be remem¬ 

bered that for the more viscous liquids the motion is often 

laminar, when (53) no longer applies. 

Effect of direction of temperature gradient. Actually, 

for liquids flowing through pipes, even when turbulent, the heat 

transfer coefficients depend to some extent upon whether the 

pipe is the hotter, and the liquid consequently being warmed, or 

the pipe the colder, and the liquid consequently being cooled. 

This is because of the variation of viscosity with temperature, 

which, when the pipe is hot, causes the viscosity /x8 of the liquid 

in contact with it to be lower, and when the pipe is cold to be 

higher, than the viscosity (i in the main stream. (53) may, 

however, be used without serious error either for warming or 

cooling except for liquids of high viscosity, for which closer 

results are given by 

Nu = 0*027(fx/fjL8)°'uBe°'9Pr0'33. (57) 

Streamline Flow of Fluids through Pipes 

When a fluid is in streamline flow through a pipe at a different 

temperature, the velocity distribution, which for isothermal 

flow is parabolic (see p. 78), will be distorted in a way depending 

upon whether the pipe is hotter or cooler than the fluid, and 



CH. VI FORCED CONVECTION 121 

whether the fluid is a liquid or a gas. For liquids, viscosity 

decreases with increasing temperature, and the velocity near 

the pipe wall will, for the same main stream velocity, be higher 

than that for isothermal flow when the pipe is the hotter; when 

the pipe is the colder, the velocity near it will be lower than that 

for isothermal flow. 

For gases, viscosity increases with increasing temperature, 

and these effects are reversed. 

Theoretical expressions for the heat transfer, which for pure 

streamline flow can take place only by radial conduction, have 

been worked out on the assumption of parabolic velocity distri¬ 

bution, but these would not be expected to apply accurately for 

large temperature differences, or for fluids whose physical pro¬ 

perties, particularly viscosity, vary rapidly with temperature. 

Theoretically Nu is related to (Re x Pr x djl) by a complicated 

expression involving infinite series. The theory, as developed by 

Graetz [2], Nusselt [3], Leveque [4], and others, indicates that 

the local heat transfer coefficient should be infinite at the pipe 

ijilet, decreasing with distance l along the pipe, until ultimately, 

whenl is large enough for (RexPrXdjl) to be less than about 17, 

it becomes constant, and equal to 3-65fc/d or 5-15fc/d, according 

to whether the temperature difference from pipe surface to fluid is 

based on the mean mixing temperature of the fluid, i.e. the mean 

temperature weighted according to the velocity, or on the 

unweighted mean temperature. For the special case in which 

the temperature along the pipe surface varies in such a way that 

the temperature difference between pipe and fluid remains 

constant the corresponding expressions become 4*36kjd and 

6-0 k/d. 

For shorter lengths corresponding to values of (Rex Prxdjl) 

above about 12, the theoretical curve for the mean heat transfer 

coefficient over the entire pipe length is expressed nearly by 

= 1'62[(J!e *>©]* - ““(!»)* = <68> 

In the above expression the temperature difference to be taken is 

[{ta—<2)]/2, where ts is the tube temperature, assumed 
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uniform, tx the inlet, and t2 the mean mixing outlet temperature, 

and w, == (7t/4) x vpd2, is the mass flow in lb./hr. The dimension¬ 

less group wc/kl is known as the Graetz number. 

For the special case of a pipe so long that the fluid has nearly 

reached the wall temperature, that is t8 — t2, 

[(^« ^i)+(^s h )]/2 — (^2 h )/2> 

and by equating the heat gained by the liquid to the heat transfer 

from the pipe, 

wc(t2—t^) = [7rdlx(H/6)x(t2—t1)]/2i 

or 
H _ 2 wc 

6 rrdl 
and Nu 

Hd 2wc 

kd rrkl 
(59) 

Experiments with viscous liquids give results respectively 

above or below those indicated by (58), according to whether 

the liquid is flowing through a hotter or colder pipe. Sieder and 

Tate [5], however, have shown that the results for heating and 

cooling can be brought into agreement by including a term 

(fjL/fjL8)0*u, their equation being 

Nu = 1-86Pr)(d/l)]* = ,0l(^p (60) 

This is the equation which should be used for the heating or 

cooling of viscous fluids flowing through pipes at Re less than 

2,100, when wc/kl is greater than 10. It is based on a range of d 

from 0-4 in. to 1*6 in., of l from 3 ft. to nearly 12 ft., and of p(fiB 

from 0*004 to 14. When wc/kl is less than 10, t2 becomes nearly 

equal to t89 and (59) applies. As 9 approaches zero, (/x//ag), and 

consequently also (/x//xa)014, approaches unity, and (60) would 

be expected to reduce to (58). Actually the two differ in the 

constants, 1*86 and 1*62. It may be that in some of the experi¬ 

ments the flow was not truly streamline, and the velocity distri¬ 

bution not quite parabolic. According to Boussinesq's [6] 
theory, even for isothermal flow at Re below 2,100, the parabolic 

distribution is not established until a minimum distance l along 

the pipe is reached, given by l/d — 0*065Re, so for Re = 2,000, 

Ijd = 130, or for Re = 1,000, l/d = 65. 
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Effect of natural convection. As already mentioned on 

p. 69, for forced convection at low Re the buoyancy forces due to 

differences in temperature may be appreciable in comparison 

with the forces independent of temperature. It may then be no 

longer permissible to neglect Gr (i.e. ag9d2p2/fj,2). Colburn [7] 

found that data for air, water, and petroleum oil were well 

expressed by 

Nu — HdjkO = 1*62 (£)*„+0.0.50,>](-)*, (61) 

where H/9 in Nu is the mean heat transfer coefficient based on a 

temperature difference calculated as for (58). Several observers, 

however, have found that the results given by (61) tend to be low. 

Since for viscous liquids in tubes of ordinary diameter Gr is 

small, expression (60) can safely be used even for low values of 

Re, except in very unusual cases. 

Transition between turbulence and streamline flow. 

By comparing (53) and (60) it is seen that for Re > 10,000, Nu, 

for liquids, is proportional to Re0 8 and independent of djl, while 

for Re < 2,100 it is proportional to Re0 33 and to (djl)0'33. Hence, 

in the transition range, as Re decreases below 10,000, Nu will 

depend upon a power of Re progressively decreasing from 0*8 

to 0*33, and upon a power of d/l progressively increasing from 

0 to 0-33. For gases, or for liquids of low viscosity, the results in 

this range of Re may be modified by natural convection effects. 

A number of experiments have been carried out, mainly for 

viscous liquids, and for more detailed results the reader is 

referred to McAdams’s Heat Transmission. 

Non-circular Pipes 

Cope [8] found that the heat transfer coefficients for water 

flowing through pipes of section varying from \ in. square to 

1 in. X J in. agreed well with values calculated from the circular 

pipe formula (53), provided that, in calculating Nu and Re> the 

hydraulic diameter of the non-circular pipe (i.e. 4 x cross- 

sectional area/perimeter) were taken. For any given value of Re, 

the friction factor for the very flat pipe was appreciably above 
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that for the others. Washington and Marks [9], with air flowing 

through heated rectangular passages of cross-section 5 in. by 

J in., I in., and in. respectively, found that for Re above 13,000 

the Nu-Re curves, if based on mean hydraulic diameter, followed 

those for circular pipes. For the lower values of Re the results 

for the wider ducts still agreed with those for circular pipes, but 

the heat transfer for the most elongated section was considerably 

below that for circular pipes. This was believed to be due to a 

damping of the free convection currents as the walls were brought 

closer together. 

Calculation of Outlet Temperature of Fluid 

FLOWING THROUGH A PlPE 

If the temperature, tv of a fluid at one cross-section of a pipe 

is known, and it is required to find the temperature, t2, at a cross- 

section l ft. farther along the pipe, an approximate heat transfer 

coefficient, oc, must first be worked out with the physical con¬ 

stants involved based on either the temperature, tv or on a 

mean fluid temperature deduced from a guessed value of t'2. 

By equating the heat transfer for the length Z, given by 

X 7tM, 

where t is the temperature of the pipe, assumed uniform, to the 

7T(Z2 
heat gained or lost by the fluid, given by Me x — where 

M is the mass velocity, an approximate value for t2 can be found. 

For turbulent flow of a gas through a pipe, a, for given values of 

M and d, is proportional to k/fx°'8, which changes only slowly with 

changing temperature. In this case the initial result is often near 

enough. But if the calculated value of t2 indicates that the values 

of the physical constants used in finding a need appreciable 

modification, a second and more accurate calculation must be 

made with the physical constants taken at a more correct 

temperature, i.e. at the mean of tx and t2 (calculated). The value 

of t2 must then be recalculated on the basis of the new a. The 

process can be repeated if necessary. 
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Example 1 

A pipe of inside diameter \ in. is kept at 400° F. Air flows 
through it at 10 lb./hr. What length of pipe is needed to warm the 
air from 50° F. to 250° F. ? 

Solution. From Table XVIII, for air at (50+250)/2 = 150° F., 

viscosity, /a, = 0-049 lb./ft. hr., thermal conductivity, k, 

= 0-0164 B.Th.U./ft. hr. °F., and specific heat, c, — 0-24 

B.Th.U./lb. °F. 

Mass velocity, M, per unit cross-section, = 10/nr2 lb./ft.2 hr. 

Hence 

Re = Md/ix = (10 X 2r)/nr2jx = (20x48)/0-049tt = 6-23 X 103. 

The flow will thus be turbulent, and the heat transfer given by 

(54), Nu = Hd/kd = 0-020Re0S = 0-020 X 1-085 x 103 = 21-7. 

The heat transfer for length l — 21-7 x k0X (ndl/d) 

= 21-7 x 0-0164x250x3-141 = 280? B.Th.U./hr. 

Heat required to warm air 200 F.° = 200 X 10x0-24 

= 480 B.Th.U./hr. 

Hence 280? = 480, and ? = 12/7 = 1-71 ft. 

Example 2 

With the same conditions as in Example 1 what mass of air per 
hour, w, would be warmed from 50° F. to 250° F. in a 1-71 ft. 
length of pipe, assuming turbulent flow ? 

Solution. Hd/kd = 0-020(6-23 X 102)°%>08, and heat transfer 

for length 1-71 ft. = 280 x 1-71 X (w/10)0'8 B.Th.U./hr. 

Heat required to warm air = 200x0-24xw = 48w B.Th.U./hr. 

Hence wQ2 = (280x l-71)/(6-31 X48) - 1-58, and w= 10 

lb. /hr. 

Example 3 

Suppose in Example 1 only the inlet air temperature, 50° F., 
had been given, and the problem were to determine the outlet 
temperature, ?, at a distance 1-71 ft. along the pipe. 

Solution. In this case, since t is not known, a rough guess at its 

value must be made for the purpose of finding the mean air 

temperature, ?m, at which to take k and fi. 
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- Suppose a bad guess of 150° F. is made, so that 

tm = (50+150)/2 = 100° F. 

From Table XVIII, 

k = 0-0154 B.Th.U./ft. hr. °F., /x = 0-046 lb./ft. hr. 

The new Re, which is different only in so far as p is different, will 

be 6-2 x 103 X (49/46) = 6-7 x 103, whence 

Pe0'8 — 1-15 X 103 and Hd/kS = 23-0, and Hjd — 23 k/d. 

Then 

23X0-0154X7rd 
-3- X 1-71 X 400 50+A 

2 / 
10x0-24(^-50), 

whence (750-A = 2-52(*-50) and t = 249° F. 

The effect of taking k and /x at 100° F. instead of at 150° F. 

is thus seen to be negligible. 

Example 4 

What length of pipe, internal diameter 1 in., maintained at 
200° F., is required to warm water flowing through it at 2,000 
lb./hr. from 50° F. to 100° F. ? 

Solution. From Table XVIII, for water at 75° F., 

fi — 2*24 lb./ft. hr., k = 0-35 B.Th.U./ft. hr. °F., 

Pr = 6*4, and c — 1-00 B.Th.U./lb. °F. 

Hence Re = (2000 x48)/(7tX 2-24) = 1-36 x 104 and (53) may 

be used. 

Re08 = 2-03 x 103, and Pr04 = 2*10. 

Hence Hd/kd = 0-023Pe0'8Pr0‘4 = 98. 

Heat transfer for length l 

= 98 X 0-35 X 125 X ttI = 10*8 X 103 X L 

Heat required to warm water = 2000 X 50 = 105 B.Th.U./hr. 

Hence l = 105/(l-08x 104) = 9*3 ft. 

Example 5 

In the above problem, what is the value of the heat transfer 
coefficient ? 

Solution. The heat transfer coefficient 

Hie = (k/d) X 0-023Re°'8Pro i 

= 0*35 X 12 X 98 = 412 B.Th.U./ft.2 hr. °F. 
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Alternatively the heat transfer coefficient for a mass flow per 

unit area of pipe cross-section = 2000/77T2 — 366000 lb./ft.2 hr. 

could have been estimated directly from Fig. 35, giving a value 

of about 385 B.Th.U./ft.2 hr. °F. for /x and k at 60° F., which 

needs multiplying by about 1*07 (see subsidiary curve on Fig. 

35) for (jl and k at 75° F., giving a corrected value practically the 

same as the calculated, i.e. 412 B.Th.U./ft.2 hr. °F. 

Example 6 

A thermocouple of diameter ^ in. and emissivity 0-5 is normal 
to an air stream flowing at 10 ft./sec. through a wide duct with 
inner walls at 1,200° F. If the thermocouple indicates an air 
temperature of 1,400° F., what is the true value ? For calculating 
convection between the thermocouple and the air take 

Nu = 0-8 Re0'™ 

with the diameter of the thermocouple as the characteristic linear 
dimension, and with k and /x taken at the mean film temperature. 

What would be the approximate reading of the thermocouple 
if the air velocity were doubled, other things remaining the same ? 

Solution. The thermocouple will take up an equilibrium 

temperature such that the heat it gains from the air by convec¬ 

tion is equal to the heat it loses to the walls by radiation. Evi¬ 

dently the true gas temperature, t, is above 1,400° F. As a guess, 

taking k and /x at 1,450° F. from Table XVIII, and assuming the 

true gas temperature to be about 1,500° F. so that p — 0*020 

lb./ft.3, 10x60x60x0-020 
Re = - = 24. 

25x12x0-10 

Hence Hd/kd = 0-8 x 24038 = 2-68, 
T> rpu TT 

and H/e = 0*039x25x 12x2*68 = 31*5 J. 
ft.2 hr. °F. 

Since the wire is small compared with its surroundings the 

emissivity of the surroundings can be taken as unity in calculat¬ 

ing the radiation from thermocouple to duct walls, and expres¬ 

sion (5) used. 

Hence 31*5(^1400) = 1*73 X 10~9X 0*5(18604-16604) 

= 0*5(20800-13100) (see Table XV). 

n.p; V 7700 
Whence t = 1400-1-^- = 1,522° F., which is so near the 
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preliminary guess of 1,500° F. that the temperatures at which 

k, (jl, and p have been taken are evidently near enough to involve 

no significant error. 

If the velocity were doubled the coefficient of convection 

would become approximately 

31*5x2°38 = 41 B.Th.U./ft.2 hr. °F., 

so, if t' is the temperature of the thermocouple, 

41(1522-0 = 1*73 X 10~9 X 0*5[(£' + 460)4—16604], 

from which, by a process of trial and error, it will be found that 

t' = 1,419° F. 

Example 7 

Oil at 140° F. enters a pipe of inner diameter J in. maintained 
uniformly at 80° F. Taking the viscosity of the oil as 5 centi- 
poises, its specific gravity as 0*9, specific heat as 0*5 B.Th.U./ 
lb. °F., and thermal conductivity as 0*80 B.Th.U./ft. hr. °F., 
what length of pipe would be required to cool 10 gals, per hour 
to 110° F.? 

Solution. From p. 200, 1 centipoise = 2*42 lb./ft. hr. 

Hence 
D 10X 10x0*9x4xd 360x7x48 
Re —-—- =-— 456. 

77 d2p 22X5X2*42 

The flow will therefore be streamline, and provided wc/kl is 

greater than 10, expression (58) will be applicable if the effect 

of the viscosity gradient in the boundary layer is neglected. 

Hence, Hd/kd = 1*75(wcjkl)*, where 9 — (60-f 30)/2 — 45 F.° 

Heat to be abstracted from the oil = wc(140—110) = 30wc 

B.Th.U./hr. 
30 ivc 

So the heat H to be abstracted per ft.2 of pipe surface = ——. 
ndl 

Hence 

or (wc/kl)* = 8-25 and %\og(wc/kl) = log 8-25 = 0-92, 

whence log (wc/kl) = 1-38 and wc/kl = 24. 

90X0-5 45 
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Flow across a Single Cylinder 

Many measurements have been made of heat transfer by forced 
convection for flow across isolated cylinders, ranging from fine 
wires to several inches diameter. In this case the heat transfer 

Fig. 37. Main curve for forced convection for a fluid flowing across an isolated 
cylinder. The full line shows the mean curve through the experimental points 

Qs for gases; the dotted line is the mean curve for liquids. 

coefficient varies along the perimeter of the cylinder, being bigger 

upstream and downstream than at the sides, and the correlations 

which follow are in terms of the mean heat transfer coefficient 

for the entire perimeter, which for practical purposes is what is 

usually required. The experimental range for air covers tempera¬ 

ture differences up to 1,000 F.°, velocities up to nearly 100 ft./sec., 

with Re from about 0-2 to 2x 105. There are a few results for 

liquids, mainly from Davis’s [10, 11] and Piret’s [12] experi¬ 

ments with wires, but the range of Re is only from about 0-1 to 2. 

If, however, log(Nu/Pr0 *) is plotted against log Re, as in Fig. 37, 
5145 v 
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the results for liquids, so far as they extend, are not far from 

those for gases. In calculating Nu, Pr, and Re, the physical 

constants are taken at the mean film temperature, i.e. one 

half the sum of the mean fluid temperature and the mean pipe 

surface temperature. It will be seen that the slope of the curve 

gradually increases as Re increases. Hilpert [13], who carried 

out a systematic series of experiments for cylinders of different 

diameters in air, found that his results could be expressed as 

Nu = C(Re)™. (62) 

The values of C and m for different ranges of Re are given in 

Table VI. 

Table VI. Values of Constants for Use in Expression (62) 

Re C m 

1-4 0-891 0-330 
4-40 0-821 0-385 

40-4,000 0-615 0-466 
4,000-40,000 0-174 0-618 

40,000-400,000 0-024 0-805 

Hilpert’s results agree very closely with the mean curve for 

gases in Fig. 37; but since between Re = 1,000 and 100,000 this 

curve is expressed almost within the limits of experimental error 

by Nu = O26Pe0'6Pr0'3, (63) 

or, for gases, by Nu = 0*24Re0'*, (64) 

it is simpler to use this overall equation. For values of Re 

outside the range to which (64) is applicable, Hilpert’s equations 

may be used. Coefficients of heat transfer calculated from (64) 

are given in Fig. 38 for mass velocities up to 30,000 lb./ft.2 hr. 

In calculating these k and p have been taken at a ‘film’ tem¬ 

perature, i.e. a mean temperature of cylinder and air, of 250° F. 

The factors by which they should be multiplied to correct them 

to film temperatures from 0° F. to 3,000° F. are shown in the 

subsidiary curve. It will be noticed that, as for flow through 

pipes, the heat transfer coefficient for any given mass flow and 

cylinder diameter increases with increase of temperature. 
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. Effect of inclination of cylinder to fluid stream. There is 

evidence that for an air stream striking a cylinder at an angle of 

45° the heat transfer is about three-quarters, and for flow 

parallel to the axis about one-half, that for flow at right angles 

to the axis. 

Flow across Banks or Nests of Pipes 

For flow across banks of pipes, whether these are ‘staggered’..or 

arranged ‘in line’, the experimental data agree well with the 

expression: Nu = 0.33 Cr jjco-e pro* (65) 

which, for air or diatomic gases, for which Pr — 0*74, reduces to 

Nu == 0-30(7# Re0'6. (66) 

The above expressions hold only for banks more than five or 

six rows in depth, i.e. banks containing more than five or six 

layers of pipes in the direction of flow, as they would in most 

commercial plant. This is because the heat transfer coefficient 

in the first few rows of a bank of pipes, for which the final flow 

pattern has not yet developed, is usually somewhat less than that 

for subsequent rows. 

The physical constants, k and /z, are, as for flow across a single 

pipe, to be evaluated at the mean film temperature, i.e. half the 

sum of the mean fluid temperature and the mean wall tempera¬ 

ture, and the characteristic linear dimension is the pipe diameter. 

Since the cross-section of a bank of pipes is not uniform, neither 

is the velocity of the gases flowing through it; and the linear velo- 

city, vmax, or mass velocity, ilfmax, used in calculating Re in (65) 

or (66), is to be based on the minimum flow area, i.e. on the area 

at the narrowest restriction. For in-line arrangements this is 

between adjacent pipes of any row, so that if X is the centre- 

to-centre distance between the rows of pipes in the direction of 

flow, and Y is the centre-to-centre distance between the pipes 

of any row at right angles to the direction of flow, vmax or .Afmax 

is YftY—d) times the oncoming, or free flow, velocity, v or Jf. 

For staggered arrangements the minimum free-flow area may be 

either between adjacent pipes of any row, when the velocity to 

be taken is, as above, Yvl(Y—d), or, if X/Y is so small that 
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^j(4:X2+Y2) < (Y+d)f between diagonally opposed pipes, when 

Y 
the velocity to be taken is x2+Y2)-2dV' 

The curves of Fig. 38 can be used to find the heat transfer 

coefficients for pipe banks. All that is necessary is to multiply 

0*30(7 
them by — ---- = 1*25(7#, of course using Mm&x in place of M. 

Values of C„ for the different arrangements shown in Figs. 

XsV25d X • 1*5d X * 2d X=3d 

Fig. 39. Diagram of in-line pipe bank arrangement. 

39 (in-line) and 40 (staggered), based on the work of Huge [14], 
Pierson [15], Grimison [16], Kuznetzoff and Lokshin [17], are 

given in Tables VII and VIII. It will be seen that for the in-line 

arrangements CH does not differ much from unity except when 

Re is small, and when also the distance Y between the pipes in 

any one row is more than l*5df, and the distance X between the 

rows is less than 2d. In the extreme case, when Re = 2,000, 

Y = 3d, and X — 1 *5d or less, CH may fall as low as 0*66. For the 

staggered arrangements, (7#, although again as a rule not far 

from unity, tends, in contradistinction to the in-line arrange¬ 

ments, to be above unity for low values of Re and close spacing, 
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rising to 1*26 in the most extreme case. Thus, for practical work, 

CH, especially in preliminary calculations, can often be assumed 

equal to 1. 
Comparison with flow across a single cylinder. It is 

interesting to compare the heat transfer, for the ranges in which 

CH can be taken as nearly unity, with that for flow across a single 

Arrangements of banks of pipes-staggered 

Y* 3d 
X -1 Z5d 

-OT-0- 
Y* 2d 

X-1-5d 
'0~r"O-r'O- 

• o • oT 
- o 

Y=3d 
X *-1 Sd 

0 c ) . o O—t O - 
1-0 i 0 . o • • 
o ■ d ) o 0-i-0' 
1-0 0 i - o - 
o-1 <! >: 0 O - : O 

Y- 3d Y*3d 
X- 2d X--3d 

Fig. 40. Diagram of staggered pipe bank arrangement. 

cylinder, for the same oncoming velocity. Thus, for Y = 1*25d, 

and X — 1*25d to 3d, the coefficient of heat transfer is, for a 
given oncoming velocity, about 3J times that for a single cylinder. 

For Y = l*6d, and X — 1*25d to 3d, it is about 2\ times. For 

Y = 2d, and X = 2d to 3d, or, at high Re, l-25c? to 3d, it is about 

1*9 times; and for Y = 3d, and similar ranges of X, about 1*6 

times. 

Pressure drop across banks of pipes. The pressure drop, 

Ap, indicating the fan power required to move the fluid across a 

bank of pipes, is often an important practical consideration. It 

can be expressed by 

Ap = Cfnpv^&T x 10“8 in. of water (67) 
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or 

Ajp == 5-2 Cftipv^j.x 10“3 lb. per ft.2 cross-section of bank, (68) 

where Cf is a friction factor depending upon the pipe arrange¬ 

ment, n the number of rows of pipes in the bank, and v is the 

velocity in ft./sec. through the minimum flow area. Values of Cf 

based on Grimison’s [16] correlations of Huge’s [14] and 

Pierson’s [15] work, covering a range of Re from 2,000 to 40,000, 

are given in Tables VII and VIII. These values, which are 

thought to be the most accurate available, agree fairly well over 

the greater part of the range with those of other investigators. 

Effect of pipe spacing upon heat transfer and pressure 

drop. It will be seen from Tables VII and VIII that with both 

in-line and staggered arrangements, for any given value of Y 

(distance between the tubes at right angles to the direction of 

flow), the ratio of the heat transfer factor, c„, to the friction 

factor, Cf, in general decreases as X is increased. This is par¬ 

ticularly noticeable for in-line arrangements, the rate of decrease 

becoming more rapid as Y increases. For staggered arrange¬ 

ments the decrease is appreciable for small values of Y, but as 

Y increases it becomes less marked, and for Y — 3d there is a 

slight increase. 

Since both heat transfer and pressure drop are directly pro¬ 

portional to the number of rows it is generally economical both 

in space and pressure drop to pack the rows of tubes as closely 

as practicable. 

The effect of altering the distance, Y, between the tubes at 

right angles to the direction of flow, is less simple to explain. 

To begin with, the velocity upon which (66) is based, for any 

given oncoming velocity varies with Y. 

Thus for either in-line or staggered arrangements, provided 

the narrowest restriction is between adjacent pipes of any row, 

the appropriate velocity or mass velocity for 

Y = l-25el; l-5i; 2d; 3d 

is respectively 5; 3; 2; 1*5 times the oncoming velocity or mass 

velocity. Hence the pressure drop, which is proportional to v2, 
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or Ma, will for given oncoming velocity be in the ratio of 

Cf:C,x 

the appropriate values for Cf being taken from the tables. 
Heat transfer: in-line arrangements. Banks of pipes are 

so commonly used in heat exchangers that average ratios of heat 
transfer and pressure drop, and of heat transfer to pressure drop, 
are worked out below for the experimental ranges of pipe arrange¬ 
ment and Re, i.e. the various combinations of X and Y = 1*25d, 
l-5d, 2d, and 3d for Re 2,000 to 40,000. 

The heat transfer per unit area of cross-section for in-line 
arrangements is, for given diameter, proportional to X Jf°-8 

or, assuming p not to vary, to Ch ^max> and to the surface area 
of the pipes in any row. 

For Y = 1-25d, 1*5d, 2d, 3d, v°^x is, for given oncoming 
velocity, in the ratio of 

2'63:1'93:1'52:1-28 

or 1:0-73:0-58:0-49 

The surface area per row is in the ratio of 

4/5:2/3:1/2:1/3 

or 1:0-83:0-625:0-42. 

Mean values of CH for Re 2,000 to 40,000 are from Table VII, 
for the different values of Y, seen to be: 

for X - 1-25d 

or 

for X = 1-5d 

or 

for X = 2d 

or 

for X = 3d 

or 

1-03, 0-96, 0-86, 0-85 

1:0-93:0-84:0-83 

1-03,0-90,0-86, 0-85 

1:0-93:0-84:0-83 

1-02,1-01,1-00,1-00 

1:0-99:0-98:0-98 

0-97, 0-99, 1-02,1*00 

1:1-02:1*05:1-03. 
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These ratios do not vary much, although they show slight 

increase with increasing X. Averaging them gives: 

1:0-97:0-93:0-92. 

Multiplying by the ratios and the area ratios leads finally 

to heat transfer per unit area of cross-section for the same 

oncoming velocity for 

Y = 1-25d, 1-5d, 2d, 3d 

in the ratio of 1:0-59:0-34:0-19. (69) 

Pressure drop: in-line arrangements. With X = l-25d, 

for the different values of Y, the pressure drop for the in-line 

arrangements is in the ratio: 

for Re = 2000 l-68:0-79xl^ 

or 1: 0170 

for Re = 8000 1 -68:0-83 X 
3\2 

or 1: 0179 

for Re = 20000 1-44:0-84 xg 

or 1: 0-210 

3\2 

for Re = 40000 1 -20:0- 74 x ^ 

or 1: 0-222 

3\2 

0-29x1- 
Pj 

0-028 

035 X©’ 

0-033 

°'38x©! 

0*042 

°-4ix©’ 

0*055 

0*006 

0-20 x(^)2 \ 5 / 
0-011 

0-22 x(^V 
\ 5 / 

0*014 

/I -5\2 
0*25 X {-—) 

\ 5 / 
0*019. 

This gives mean ratios for Re 2,000 to 20,000 

for X = b25d 1:0*195:0*040:0*012 

for X = l*5d 1: 0*213: 0*048:0 016 

for X = 2d 1: 0*223: 0*057: 0*020 

for X = 3d 1: 0*251: 0*070: 0*024. 

It will be noticed that, as for CH, there is a slight increase in 

the pressure-drop ratios with increase in the value of X. The 

average ratios for X 1*25 to 3c? for 

Y = l*25c?, 1 *5d, 2c?, 3d 

are 1:0*221:0*053:0*018. (70) 

(Heat transfer)/(pressure drop) is thus in the ratio of (69) to 

(70), i.e. 1:2-7:6-4:10-6. (71) 
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The heat transfer per unit area of cross-section for a given 

oncoming velocity, by (69), is about 5 times greater for Y = l-25d 

than for Y = 3d, but the pressure drop, by (70), is 55 times 

greater. Thus the conditions for high heat transfer per unit area 

of cross-section and for low pressure drop are opposed. If con¬ 

siderations of space are the more important, the heat exchanger 

can be made small, but the pressure drop will be high. If fan 

power is the more important, the pressure drop can be kept low, 

but the size of the exchanger will be bigger.f 

Heat transfer: staggered arrangements. For the stag¬ 

gered arrangements, if the ratios of heat transfer and pressure 

drop are worked out in a similar manner for the different values 

of X, it is found that for a given oncoming velocity the heat 

transfer per unit area of cross-section for the different values of 

r 18 in the ratio l:0-59:0-34:0 18, (72) 

almost the same as for the in-line arrangements. 

Pressure drop: staggered arrangements. The corre¬ 

sponding pressure drops are in the ratio of 

1:0-248:0-086:0-042 (73) 

and (heat transfer)/(pressure drop) in the ratio of (72) to (73), i.e., 

1: 2*4:4 0:4*3. (74) 

These increase less rapidly than for in-line arrangements, be¬ 

cause, although the heat transfer falls off at the same rate as for 

the in-line arrangements, the pressure drop falls off less rapidly. 

Comparison of in-line and staggered arrangements. 
It will be seen from Table IX, which gives the ratios of CH\Cf 
(in-line) to CHICf (staggered), that for the whole range of values 

of X and Y, CHICf (in-line) is bigger than CH/Cf (staggered), the 

ratio increasing as Y increases and X decreases. It varies from 

3-69 for Y = 3d and X — 1-25d, to approximately 1-10 for all 

values of X at Y = 1-25d. On the other hand, the actual values of 

t It is however interesting to note that if, as the tubes are packed closer 
together, the oncoming velocity is so reduced as to keep the total heat transfer 
per square foot of cross-section constant, the ratio of heat transfer to friction 
improves. But in this case only relatively small quantities of fluid can be dealt 
with unless the cross-sectional area of the exchanger is increased. 
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Table IX. Ratio of Mean Values of CHjCf in-line 
to CHjCf staggered. 

X - 1*25d X = 1*5d X = 2*0d X = 3*0 d 

Y - 1*25(2 
Y - l*5d 
Y - 2*0 d 
Y - 30d 

0*09/0*64 - 1*08 
1*20/0*87 = 1*38 
2*40/1*05 = 2*29 
4*42/1*20 = 3*69 

0*05/0*56 
1*04/0*81 
1*81/1*03 
2*99/1*24 

= ] *16 
= 1*28 
= 1*76 
- 2*41 

0*55/0*50 = M0 
0*89/0*71 = 1*25 
1*53/1*03 = 1*49 
2*47/1*31 = 1*89 

0*47/0*42 - 1*12 
0*68/0*64 = 1*06 
1*12/0*96 = 1*17 
1*81/1*34 - 1*35 

CH tend to be somewhat bigger for the staggered arrangement 

than for the in-line, especially for big values of Y and small 

values of X. It is once again the conflict between heat transfer 

and pressure drop for any given cross-section. Other things being 

the same, staggered arrangements are likely to give slightly 

greater heat transfer, but usually at a disproportionate increase 

in pressure drop. 

Effect of angle of impact of air upon heat transfer. 

Lokshin [18], and Omatski [19], independently, have investi¬ 

gated the heat transfer for banks of pipes in a stream of air 

striking at angles 15 to 90 degrees to the axes. A range of Re 
from 5,000 to 40,000 was covered for X = Y = 2d. 

For banks of more than about 5 rows, with the results ex¬ 

pressed as Nu — constant X Re0 Q, the constants for the different 

angles of impact were: 

Table X. Constants, C, in the Equation Nu = Cite06 for 
Oblique Flow of Air across Pipe Banks of X — Y = 2d. 

90° 80° 70° 60° 45° 

o
 75° 

In-line 0*29 0*29 0*28 0*27 024 020 0*12 
Staggered . 0*32 0*32 0*31 0*30 0*25 0*17 1 0*13 

Since, for both in-line and staggered arrangements with 

X = Y — 2d, CH over the range in Re 5,000 to 40,000 is nearly 1, 

it will be seen that the results for 90 degrees agree very closely 

with (66) in which the constant is 0*30CH. Until the angle of im¬ 

pact is below 60 degrees (66) can be used without much error, 

but at 45 degrees the heat transfer has decreased by roughly 20 

per cent., at 30 degrees by 40 per cent., and at 15 degrees by 60 

per cent. Both Lokshin and Ornatski found that the heat 

transfer in the first row of the in-line banks was about 30 per cent. 
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less than the average for the subsequent rows. This agrees with 

the previous American work, the difference, however, varying 

with the spacing. For staggered arrangements Lokshin found 

the heat transfer in the first row was about 12 per cent, less than 

in subsequent rows. 

General expressions for heat transfer, pressure drop, 
and their ratio. If Y is written as yd, the effective velocity 

except in very extreme cases, is vy/(y— 1), where v is the oncoming 

velocity, or the total volume flowing divided by the cross- 

sectional area of the bank (see p. 132). The area of the pipes per 

row, per unit area of cross-section, is n/y. 
Hence, HJO, the heat transfer coefficient per row, per unit 

area of bank cross-section, is proportional to 

MFirxJxwM3*- <75) 
Ap, the pressure drop per row, is proportional to 

c"’'’!^=rr)S- <76> 
as is also the fan power per row. 

From these two expressions the variation of HJO and Ap with 

v, d, and y can be worked out; and, if in vp only v varies while p 
remains constant, the ratio of HJO to Ap for different conditions 

can also be found, being proportional to 

1 1 
X-X-^r. 

y a04 
(77) 

For example, suppose that, in a bank of given d, X, and Y, 

across the pipes of which air is flowing, v is increased to av and it 

is desired to keep the difference between inlet and outlet air 

temperatures, A£, unchanged by altering the number of rows of 

pipes n. 
The heat transfer coefficient per row, per unit area of bank 

cross-section, HJO, which is proportional to C'Hvwill become 

(C'HICH) X a0*6 x HJO, where CH and C'H are the heat transfer 

factors for Re corresponding to vmax and (av)mekX respectively. 

If the number of rows of pipes is increased 6 times, the heat 

transfer coefficient per unit cross-section for the whole bank will 
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be increased {C'HjCH) x a0'6 x b times. But since the mass velocity 

has increased a times, to keep At unchanged 

(CfHICH) x a™ x 6 = a or b = (CH/CH) X a0’4. 

The ratio of heat transfer to pressure drop (i?'a/0)/Ap' for 

velocity av will, from (77), become 

(§xi x^)x(WP- 

Since fan power is proportional to Ap x v, the ratio of heat trans- 

C' C 1 
fer to fan power will become —- x X times its original value. 

Cf a2'4 

Again, suppose that in two banks consisting of pipes of the 

same diameter, but differently arranged (1) Y — yd, X = xd 
and (2) Y' = y'd, X' = x'd, it is desired to keep A£ the same for 

given oncoming velocity, i.e. for given mass flow per unit area of 

bank cross-section, by changing the number of rows from n to an. 

or 
_ CH{y'-\r 

C’H(y-ir 

where CH and C'H are the heat transfer factors corresponding to 

the two arrangements and the given mass velocity. 

The ratios of heat transfer to pressure drop (//a/0)/Ap': 

(HJ9)/Ap, or, since the volume flow per unit area of bank cross- 

section does not change, of heat transfer to fan power, will 

be in the ratio of 

Cf_ IW-1)]2 = Vh g//y'-i\11/yV4 
aC'f[y'(y-l)\ CH C'f\y-1) W) ’ 

The effects of other variations can be worked out in a similar 

way. 

Heat Transfer for Flow over Plane Surfaces 

For a plane surface the characteristic dimension upon which 

forced convection depends is the length of the plate in the direc¬ 

tion of flow. Most of the measurements have been made with a 

plate in alinement with one of the walls of a duct, or, if the plate 
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has been freely exposed, it has often had an unheated leading-in 

piece. In the latter case, some workers have correlated their 

results with the total length of plate and leading-in piece as the 

characteristic linear dimension in Nu and Re, introducing also a 

factor depending upon the ratio of plate length to leading-in 

piece length. 

Experiments on air [20,21] and water [22] agree well in the 

turbulent region, which in this case corresponds to Re above 

about 2x 104, with the expression 

Nu = 0-036Pe°,8Pr0'33. (78) 

For air, and other gases with similar Prandtl number, this 

becomes Nu = O032i?e08. (79) 

In the above equations, it is the length of the plate which is 

taken in calculating Nu and Re, with k and ^ taken at the mean 

film temperature. 

For streamline flow [21, 23] the corresponding expressions are 

Nu = 0-66Pe05Pr033, (80) 

or for gases, Nu = 0-60Pe°'5. (81) 

Heat Transfer for Flow over Sphere 

For a sphere in a current of air [24], for Re between 50 and 

150,000, Nu = o-34.Re0 6 (82) 

with the diameter of the sphere as the characteristic linear 

dimension, and with k and /z taken at the mean film temperature. 

It is interesting to note that in this case it can be shown 

theoretically that as v tends to zero Nu tends to a value of 2, or 

Hid to 2k/d. This, for a sphere in air, and a mean temperature 

of, say, 200° F., is equal to 0-035/d, which works out at 4-2, 0-42, 

and 0-042 B.Th.U./ft.2 hr. °F. for spheres of diameter 0-1 in., 

1 in., and 10 in. respectively. 

Determination of Mean Temperature Difference in 

Heat Exchangers 

In a heat exchanger the temperature difference between the 

two fluids flowing on opposite sides of the boundary wall usually 

varies with position; hence, to calculate the heat transfer, some 
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mean value must be decided upon, which in general depends upon 

the form of the heat exchanger. 

In parallel flow heat exchangers, one fluid flows through a 

series of pipes, usually parallel, and another fluid flows in the 

same direction over the outside of the pipes; in contra-flow 

exchangers the fluids inside and outside the pipes flow in opposite 

directions. For both these arrangements the temperature con¬ 

ditions are the same for all the pipes, and, if the overall heat 

transfer coefficient is assumed to be constant along the length 

of any one pipe, the logarithmic mean overall temperature 

difference 9m = (91—92)lloge(91/92) is to be taken, where 9X is the 

temperature difference between the two fluids at one end, 92 at 

the other. 

Provided the spacing is not very wide, the heat transfer 

coefficient on the outside of the pipes can be estimated from the 

usual formula for flow through a pipe, using the mean hydraulic 

diameter in calculating Nu and Re, but, of course, calculating 

the heat transfer on the actual pipe surface. If the pipes are very 

far apart the heat transfer would probably be obtained more 

closely by taking the value of the coefficient as one-half that for 

flow at the same velocity across a single isolated pipe of the same 

diameter (see p. 132). 

In cross-flow heat exchangers the two fluids flow in perpen¬ 

dicular directions, usually one through and one across a nest of 

pipes. If it is assumed that the fluid on the outside of the pipes 

becomes so well mixed that its temperature over any given cross- 

section of the exchanger is uniform, the temperature conditions 

will be the same for all the pipes in any one row, but will vary 

from row to row. For the fluid flowing through the pipes the 

temperature will also vary with length along the pipe. The 

computation of the mean temperature difference is thus in this 

case somewhat complicated, but it has been given by Smith [25], 

for a range of temperature difference ratios P, Q, and R, defined 

as P = (^i ^)/(^i ^i)’ Q “ (^2 ^i)/(^i ^i) and if — 9in/(ti 
where tx and t2 are the inlet and outlet temperatures of the fluid 

flowing across the pipes and t[ is the inlet temperature and t2 the 

mean outlet temperature of the fluid flowing through the pipes. 
6145 T. 
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Smith’s curves of constant values of P in coordinates of Q and R, 
and of constant values of R in coordinates of P and Q, are plotted 

in Fig. 41. 

In problems where (P-\-Q) is small, the arithmetic mean tem¬ 

perature difference, [(<,—t[)+(t2—f^J/2, may be used. When 

(P+<2) is less than 0-6 the error thus involved is less than 5 

Fig. 41. Mean temperature differences for cross flow. 

per cent.; when (P+0) is less than 0-7 the error is less than 10 
per cent. 

Use of Fins or Ribs 

The rate of heat transfer from a surface can be made greater by 

finning or ribbing it and so increasing the effective surface area. 

Ideally the fins should be at the same temperature as the original 

surface, so that, assuming the heat transfer coefficient not to 

alter, the heat transfer would be increased in the ratio of S'/S, 

where S' is the total area of the finned, S that of the unfinned, 

surface. Actually there is always a temperature gradient from 

base to tip of the fins, so that, although the heat transfer co¬ 

efficient may actually be bigger for the fins than for the original 

surface, the heat transfer is usually increased by less than S'/S 
times. Owing to the large increase in the surface area possible, 

however, substantial advantages can be gained. For instance, 

the surface area per foot length of a 1-in. pipe is 7r/12 ft.2 If fins 

projecting \ in. from the pipe are fixed along it at intervals of 

\ in. their area per foot length would be 677/12 ft.2, i.e. six times 
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the original area. Fins can be used with special advantage when 

the heat transfer coefficient is much smaller on one side of a 

partition than on the other, or where the maximum possible rate 

of heat transfer is desired from a limited base area. 

Unfortunately, formulae for heat transfer and fin efficiency 

cannot be reduced to simple forms, and their detailed considera¬ 

tion is beyond the scope of such a book as this. The interested 

reader is referred to a Symposium on Finned Surfaces held by 

the American Society of Mechanical Engineers [26]. 

Convection at Very High Gas Velocities 

In all the cases of forced convection so far considered, gases 

have been supposed to behave as incompressible. At very high 

flow rates this, as explained on p. 66, may no longer be justifiable 

[27]. The study of forced convection with substantial changes of 

density during flow has as yet received little experimental study, 

although it frequently occurs in practice, as in expansion nozzles 

and high-speed flow generally. For speeds given by Mach num¬ 

bers between 0*2 and 1-0, i.e. for velocities 0*2 to 1*0 times the 

velocity in the gas of sound waves of small amplitude, forced 

convection in a pipe follows the law 

Nu = 0-025f?e0’77, (83) 

where the temperature difference in Nu is the difference between 

the tube-wall temperature and the so-called adiabatic wall 

temperature, which is the temperature the wall would attain if 

there were no heat transfer, given in absolute degrees by 

[T+{rv*l2cgJ)}9 

where T is the absolute gas temperature, J the mechanical 

equivalent of heat, and r a so-called ‘recovery factor’ = 0*8-1-0. 

Example 1 

Air at 60° F. flows at 20 ft./sec. across the outside of a pipe. 
Air is also flowing through the pipe. If the temperature and 
velocity of the air inside the pipe are respectively 200° F. and 40 
ft./sec. at a given cross-section, what will the temperature be at 
a cross-section 2 ft. farther along the pipe ? For simplicity take 
either outer or inner pipe diameter as 1 in. 
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Solution. Calculation of outside coefficient of heat transfer, a0. 

Since the temperature of the pipe along the section under con¬ 

sideration is not known, neither is the mean film temperature 

at which to take p and k in calculating a0. Since, however, the 

variation of a0 with variation in the absolute temperature is 

not rapid, little error will be caused by assuming the mean film 

temperature on the outside of the pipe to be [60+(60+200)/2]/2 

= 95° F., say 100° F., i.e. by assuming the coefficients of heat 

transfer a0 and on the outside and inside of the pipe to be 

approximately equal. 

Then from Table XVIII, p = 0*046 lb./ft. hr., k = 0*0154 

B.Th.U./ft. hr. °F., and p at 60° F. = 0*077 lb./ft.3 

Hence 

Re = vpdlpu = (20x 60x 60x 0*077)/(12 x 0*046) = 104, 

and, from (64), 

ao = Hj9 = 0*24 x (k/d) x Re0Q = II I B.Th.U./ft.2 hr. °F. 

Alternatively a0 could have been read directly from Fig. 38 

for a mass velocity of 20x60x60x0*077 — 5,540 lb./ft.2 hr,, 

giving a value of 11*9 B.Th.U./ft.2 hr. °F. for fx and k taken at 

250° F., or a corrected value of 0*91 x 11*9 = 10-9 B.Th.U./ft.2 

hr. °F. for p and k taken at 100° F., which does not differ ap¬ 

preciably from the previous value. 

Calculation of inside coefficient of heat transfer, a*. Since the 

temperature drop along a 2-ft. length of pipe is not likely to be 

great, p and k for calculating may be taken at 200° F., i.e. 

p = 0*052 lb./ft. hr., k = 0 0174 B.Th.U./ft. hr. °F., 

p at 200° F. = 0*060 lb./ft.3 
Hence 

Re = (40 X 60 X 60 X 0*06)/(l 2 X 0*052) = 1*38 X 104. 

From (54) 

ai = Hid = 0*020 x (k/d) x Re'0 8 = 8*6 B.Th.U./ft.2 hr. °F. 

Alternatively oc{ could have been read directly from Fig. 33 

for a mass velocity of 40 x 60 X 60 X 0*06 = 8,640 lb./ft.2 hr. 

giving 8*3 B.Th.U./ft.2 hr. for p and k taken at 60° F. or 

1.03X8*3 = 8*55 B.Th.U./ft.2 hr. °F. 



CH. VI FORCED CONVECTION 149 

for fji and k taken at 200° F., which agrees with the calculated 

value. 

Actually these coefficients would indicate a tube temperature 

t given by 11*1 —60) — 8*6(200—/), where t = 120° F., so that 

the temperature at which p and k should have been taken in 

calculating a0 = (60+120)/2 = 90° F., instead of the 100° F. 

taken, but this would make no appreciable difference in a0. 

Hence the overall coefficient of heat transfer from inside air 

to outside air = l/[(l/a0) + (Vai)] = 4*85 B.Th.U./ft.2 hr. °F., 
and the required drop, A/, in the temperature of the inside air 

will be given by 

vp X nr2 X 0*24 x A/ = 4*85 X [(200—AZ/2) — 60] X 2irr X 2, 

where 0*24 is the specific heat of air, 

i.e. 40 X 60 X 60 X 0*06 X 0-24A* = 48 X 4*85 X (280-A/), 

whence A£ — 28 F.° 

Thus the mean temperature at which p and k should have been 

taken in calculating oq = (200 — 28/2) = 186° F., instead of the 

2*00° F. actually taken, but this would make no appreciable 

difference to cq. 

Example 2 

An oil cooler consists of a bank of 200 pipes of b in. outside 
diameter, 20 S.W.G. (0*036 in.) wall thickness, and 4 ft. length, 
surrounded by a shell of 10 in. inside diameter. Water flows 
through the pipes at the rate of 10,000 gal. per hour, while 1,500 
gal. of oil per hour flows along the outside of the pipes. The inlet 
water temperature is 64° F., the inlet oil temperature 190° F. 
Find the outlet oil temperature. 

Take the thermal conductivity, fc, of the oil as 0*10 B.Th.U./ 
ft. hr. °F., its specific heat, c, as 0*50 B.Th.U./lb. °F., its specific 
gravity as 0*93, and its viscosity, /z, in lb./ft. hr. as below: 

65° F. 90° F. 110° F. 130° F. 150° F. 170° F. 190° F. 

1,980 660 340 190 120 80 55 

Solution. Calculation of heat transfer coefficient, ocw, on water side. 

Inside pipe diameter = 0*50—0*072 = 0*428 in. 

200 7T 
Cross-sectional area — —- x - X 0*4282 = 0*200 ft.2 

144 4 
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For flow through a pipe, the physical properties of the fluid 

are taken at the mean bulk temperature, which is not known. 

As an approximation, taking k and (jl for water at 65° F. (see 

Table XVIII), but remembering that a slight adjustment may 

be required later if the water temperature is found to increase 

, D 10000x10x0*428 „ - . 
much, Re —-= 6950, since 1 gallon of water 

0*20x12x2*56 6 
weighs 10 lb. 

Hence the flow of the water is turbulent, and (53) is applicable, 

Le‘ Hd/lcd = 0-023 Re°*Pr0i, 

= 0-023(6950)°'8(7-41)0'4, 
0 12x0-346 v ’ v 

whence H/0 = 592 B.Th.U./ft.2 hr. °F.,t 

or, expressed per ft.2 of the outer surface of the pipe 

a* = 592 X (0*428/0*50) = 507 B.Th.U./ft.2 hr. °F. 

Calculation of heat transfer coefficient, a0, on oil side. Here the 

mean hydraulic diameter is to be taken in calculating Nu and Re. 

This == 4 x cross-sectional area/wetted perimeter 

/tt102 tt 200/1 \2\ //ttXIO 20077\ 

\4 144 4 4 \12/ jf \ 12 +12x2/ 
0*0378 ft. 

Again, the mean bulk temperature at which k and jjl should 

be taken is not known, but assuming an outlet oil temperature of 

170° F., and hence a mean bulk temperature of 180° F. 

Re 
1500X10X0*93X0*0378 

0*272x65 
29*8. 

The flow is therefore laminar and a0 will be given by (60), i.e. 

Hdjke = 1*86(fi//i8)°'u(Re Pr d/l)K 

The value of /x8 depends on the unknown pipe wall temperature 

t8. Since most of the thermal resistance is on the oil side, the 

t Alternatively the curves in Fig. 35 may be used to find Hid. For 
d = 0-428 in., M = 10000 x 10/0-2 = 500000 lb./ft.2 hr., and bulk tempera¬ 
ture 60° F., H/e - 580 B.Th.U./ft.2 hr. °F. For bulk temperature 05° F., 
H/6 must be multiplied by a correction factor of 1-03, found from the auxili¬ 
ary curve, giving a corrected value of 597 B.Th.U./ft.2 hr. °F. compared with 
the calculated value of 592. 
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temperature difference between the oil and the surface will be 

much greater than that between the water and the surface. 

The assumed mean temperature of the water was 65° F., and a 

mean value of 67° F. will be assumed for t8, making /z8 = 1,800 

lb./ft. hr. 

H 0-0378 

J 0-10 
= 1-86 

014 / 

2S 
ono 0-5X65 0-0378\ 
29-8 x-X-1 

0-14/ 

whence H/9 = ocQ == 13-9 B.Th.U./ft.2 hr. °F. 

The overall heat transfer coefficient 

1/«w+1/a o 
= 13-5 B.Th.U./ft.2 hr. °F. 

Mean temperature difference, oil to water 

= (180 — 65) = 115° F. 

Total surface area = 200 XttcU = ^ ^ _ 10£ 
2X12 

.*. Total heat transfer 

= 13-5x 115x105 = 164,000 B.Th.U./hr. 

Heat capacity of oil 

= 1500X10X0-93X0-5 B.Th.U./hr. °F. 

= 6,970 B.Th.U./hr. °F. 

= 105 ft.2 

.-. Temperature drop = = 23-5 F.° instead of 20° 

assumed. 

Outlet temperature of oil = 166-5° F. 

The values assumed for mean water temperature and mean 

pipe wall temperature can now be checked. 

Rise in water temperature = 164000/10000x10 = 1-64 F.°, 

and mean water temperature = 64-8° F. A value of 65° F. was 

assumed when calculating <xw, and clearly no adjustment is 

necessary. 

Mean oil temperature = (190+166*5)/2 = 178° F., and pipe- 

wall temperature t8 is given by 

«*(<•-65) = a0(178-g 
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whence t8 = (178 X 13*9+507 X 65)/(13*9+507) = 68° F., in- 

stead of 67° F. assumed. Again, no adjustment is necessary. 

Example 3 

Air at 60° F. is to be heated to 85° F. by passing it across the 
pipes of a staggered nest, inside which steam is condensing at 
212° F. The pipes have outer diameter, d, — b in., centre to 
centre spacing, X, = £ in. = l*5d, in the direction of flow and 
Y, = in. = 3d, in the transverse direction. If the mass 
velocity of the air is 8000 lb./hr. per ft.2 of total cross-section, 
find the number of rows of pipes required and the pressure drop 
across the nest. 

Solution. Since the coefficient of heat transfer will be so much 

bigger on the steam side than on the air side, it can be assumed 

that the outside surface of the pipes is at the steam temperature, 

and is therefore constant for all pipes. The mean temperature 

difference in this case is given by the log mean, and it is un¬ 

necessary to use the curves in Fig. 41. Since the ratio of outlet 

temperature difference to inlet temperature difference is nearly 

unity, the log mean will be very nearly the same as the arithmetic 

mean. 

That is, mean temperature difference 

= (212—60)+ (212 —85) = 152+127 = F 0 

2 2 

Mean bulk air temperature 

film temperature = 

60+85 

2 

142° F. 

= 72*5° F. and mean 

Mass velocity at the narrowest section, which is between 

adjacent tubes of any row, 

= 8000x3d/(3d-d) = 8000x1*5 = 12,000 lb./ft.2 hr. 

. From Table XVIII, the viscosity of air at 142° F. is 0*0486 

lb./ft. hr. and 
12000 1 

0*0486 2x12 
= 10300. 

From Table VIII for X = l*5d and Y = 3d, for Re = 10300 
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by interpolation CH = 115 and Cf — 1*00, whence, from ex¬ 

pression (66), 

Hd/kO = 0*30 X 1*15 x (10300)0’8 = 88. 

The conductivity k of air at 142° F. is 0 0162 B.Th.U./ 

ft. hr. °F., so that 

H/9 = 0 0162 x 24 x 88 - 34 B.Th.U./ft.2 hr. °F. 

Mass flow of air per 1 ft. length of pipe of any row 

= 8000 X (l = 1,000 Ib./hr. 

Specific heat of air = 0*24 B.Th.U./lb. °F. 

Surface area per foot length of pipe = 7r/24 = 0*131 ft.2 

Hence, if n is the total number of rows, equating heat transfer 

from the pipes to heat gained by the air 

34X0131/IX 139*5 = 1000 X 0*24 X (85-60), 

whence n = 9*7, say 10. 

Pressure drop. From expression (67), the pressure drop 

‘through the system 

A Cf nM^ax X 1 A~3 * r 4. An == JL-J^ax-in. of water. 
1 p 36002 

Taking the value of p at 72*5° F. as 0 075 lb./ft.3 

Ap = 
I*00xl0xl20002xl0-3 

6*075x^600^ 
1*48 in. of water. 

Example 4 

Water flowing at 20 gal./min. across a nest of staggered pipes 
12 in. long, J in. outer diameter, and 0*08 in. wall thickness, is 
to be cooled from 180° F. (tt) to 160° F. (/2). The rows consist of 
50 and 49 pipes alternately. Air, initially at 50° F. (^), is blown 
through the pipes at 35 ft./sec. Find the number of rows required, 
and the drop in pressure of the air between inlet and outlet. 

Solution. Reference to pp. 116 and 132 will show that the 

resistance to heat transfer on the water side can be neglected 

in comparison with that on the air side. Actually the coefficient 

of heat transfer on the water side is of the order of 700, that on 

the air side of 12, B.Th.U./ft.2 hr. °F. The pipes can thus be 
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assumed to be at the water temperature, and the drop of tem¬ 

perature all on the air side. 

The method of approach is first to guess an outlet air tempera¬ 

ture, t2, find the corresponding heat transfer coefficient from pipe 

to air, <xa. The mean temperature difference 9m from water to 

air is then found from Fig. 41, and, since there is no temperature 

difference from water to pipe, this is also the temperature differ¬ 

ence from pipe to air. The heat transfer for any two successive 

rows (containing 50+49 = 99 pipes) can thus be found by 

multiplying <xa6m by the surface area of the two rows of pipes 

and the number of rows required to cool the stated quantity of 

water calculated. The mass flow of air for this number of rows is 

known. Hence the temperature rise of the air for heat equal to 

that taken from the water can be calculated and compared with 

the assumed rise. If the difference is significant, a second and 

more accurate guess can be made and similarly checked. 

As a first guess, suppose the mean outlet air temperature 

t'2 = 110° F. and the mean bulk temperature of the air therefore 

= (50+110)/2 = 80° F. 

From Table XVIII, p for air at 50° F. = 0-078 lb./ft.3 and p, 

at 80° F. = 0-045 lb./ft. hr. 

Hence 
D 35 X 3600 X 0-078 X 0-234 . 0 
Re =-= 4260 

0-045x12 

and the flow will therefore be turbulent. 

From the curves in Fig. 33, for a mass velocity M 

= 35x3600x0-078 = 9830 lb./ft.2 hr., 

diameter 0*234 in. and temperature 80° F., 

12-5 B.Th.U./ft.2 hr. °F. 

The mean temperature difference 6m from water to air, which 

is equal to the mean temperature difference from pipe to air, can 

now be found from the curves in Fig. 41, from which: 

P — 180—160 __ q 
tx-t'x 180-50 

<2 = 
t2-tx __ 110-50 

tx—t'x ~~ 180-50 
= 0-46, 
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and R = -Al_ = 0-66, 
h-K 

whence 9m = 0*66 x 130 = 86 F.° 

Total rate of heat transfer from water to pipes = aa6mS, 

where S is the total inside surface area of the pipes. 

But this must be equal to the heat lost by the water which, 

since 1 gallon of water = 10 lb., is equal to 

20 x 10 x 60 x (180-60) = 240,000 B.Th.U./hr. 

Hence S = 240000/12-5 x 86 = 223 ft.2 

Surface area of any two successive rows of pipes 

99X77X0*234 

12 
= 6-06 ft.2 

Hence the number of rows required 

total surface area = 224 ft.2 

Cross-sectional area of each pipe 

2X223 

6-06 
= 74 and the 

0-00030 ft.2 

Mass flow of air through 74 rows 

= 9830 X 74 x X 0-00030 = 10,800 lb./hr. 
a 

But the temperature rise which would be caused in this by the 

240,000 B.Th.U./hr. needed for cooling the water would be 

———— = 93 degrees, making the outlet air temperature 
10800x0-24 6 * v 

143° F. instead of the guessed value of 110° F. 

A second and better guess can now be made, by taking t2 as 

143+110 _ 12g0 F 

2 

This will not affect a„ appreciably and we shall have, from 

Fig. 41, 
1 OA_ 

P = 0-154, Q = = 0-585, and R = 0-58, 
1 oU 

9m = 0-58x130 = 75-4 F.° whence 



156 FORCED CONVECTION CH. VI 

and S = 
240000 

12-5x75-4 
254 ft.2, 

giving the number of rows required as 
254 X 2 

IkkT 
84. 

The outlet air temperature required for the cooling of the water 

would be 50+(93 x 74)/84 — 132° F., which is fairly close to 

the guessed value of 126° F. However, it is clear that 84 rows are 

still not quite enough, and that the correct answer should be 

about 86 rows, or, in view of the uncertainty of the heat transfer 

data, say 90 rows to leave a small margin of safety. 

Calculation of pressure drop Ap. From expression (33), 

Ap — V . Taking t% as 130° F., mean temperature 
gd gdp 

50+130 

2 
= 90° F. 

At 90° F., p = 0-0456 lb./ft. hr., p = 0-072 lb./ft.3 

9830x0-234 

0-0456 X 12^ 
4,200. 

From Fig. 23, / for a smooth pipe = 0-01, 

Ap = 
2x0-01 XlX(9830)2X 12 

4-17 x 108x0-234x0-072 
= 3-3 lb./ft.2 = 0-64 in. water. 

Alternatively the pressure drop could be estimated from the 

Reynolds analogy, (44), as follows: 

Taking p at a mean air temperature of 90° F., and 9m as 73 F.° 

A p = 
(9830)2(130-50) 

0 072 X 4-17 Xl08X 73 
= 3-5 lb./ft.2 — 0-67 in water. 

Example 5 

A heat exchanger consists of 50 rows of pipes arranged in line, 
each row containing 10 pipes of § in. outside diameter, 0-048 in. 
wall thickness, and 12 in. length. The eentre-to-centre distance 
between adjacent pipes in a row, Y, — in. (1-25d), and be¬ 
tween adjacent rows, X, = 1 £ in. (l-5d). The exchanger is used 
to cool 25 gal./min. of fresh water initially at tx == 210° F., 
passed across the pipes. Sea water initially at t\ = 60° F. is 
passed through the pipes at 500 gal./min. Estimate the outlet 
temperature of the fresh water. The viscosity, density, and 
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thermal conductivity of sea water may be taken as the same as 
those of fresh water (see Table XVIII). 

Solution. The outlet temperatures of both liquids are first 

guessed, and then, by calculation, it can be found how far 

they are incompatible, and a second and better guess made and, 

if necessary, a similar process repeated. Since the mass flow 

of the sea water is twenty times that of the fresh water, the 

temperature drop of the fresh water will be twenty times the 

temperature rise of the sea water. As a first guess, suppose that 

the outlet temperature t2 of the fresh water is 100° F., making 

t1—t2 = 110F.° Then the outlet temperature of the sea water t2 

will be 65-5° F. since t^—t'x = 110/20 = 5*5 F.° 

Flow through pipes. Mean temperature of sea water 

= (60+65-5)/2 = 62-7° F. 

Total number of pipes = 500. Inside diameter 

= 0-75—0-096 = 0-654 in. 

(0 654\ “ 
- ——) = 117 ft.2 Mass 

flow of sea water = 500 x 10 X 60 = 300,000 lb./hr. Mass velo¬ 

city of sea water (inner liquid) 

300000 

1-17 
256,000 lb./ft.2 hr. 

Mean temperature of sea water — (60+65*5)/2 = 62-7° F. For 

water at 62-7° F., (jl = 2-65 lb./ft. hr. 

Ret = Mt dfoi = 256000X0-654/2-65X 12 = 5260, 

which indicates turbulent flow. 
From the curves in Fig. 35, for water at 62-7° F. flowing at 

256,000 lb./ft.2 hr. through a pipe of 0-654 in. diameter, the heat 

transfer coefficient oct — 315 B.Th.U./ft.2 hr. °F. 

Flow across pipes. As the pipes are arranged in line the mini¬ 

mum flow area is between the pipes of any row, and the free flow 

cross-section therefore = = 0-156 ft.2 
12 x 16 

Mass flow of fresh water = 25 x 10x60 = 15,000 lb./hr. 
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Mass velocity of fresh water (outer liquid) 

= M0 = 
15000 

0-156 
96,000 lb./ft.2 hr. 

CH. VI 

Mean temperature of fresh water = (210-fl00)/2 = 155° F. 

The heat transfer coefficient a0 for cross flow over a bank of 

pipes is by (65) given by a0 d/k = 0-33CH i?e°'6Pr03, where c, \u, 
and k are evaluated at film temperature. The mean pipe- 

wall temperature must therefore be guessed; as a first guess, 

suppose it is (62-7+155)/2 = 109° F. Then the mean film 

temperature = (109-)-155)/2 = 132° F. For water at 132° F., 

H = 1-21 lb./ft. hr., Pr = 3-25, k = 0-37 B.Th.U./ft. hr. °F. 

Re0 = M0 d/n = = 4960 and Re™ = 165. 
0 0 ,r 1-21x48 

From Table VII for X — l-5d, Y — l-25d, and Re — 4960, 

CH = 1-05. 

0-37 X 48 X 0-33 X l-05(4960)°'6(3-25)0'3 

= 482 B.Th.U./hr. °F. per ft.2 outer pipe surface 

= 482 x — = 553 B.Th.U./hr. °F. per ft.2 inner pipe 
0-654 i r 1 * 

surface. 

The overall coefficient U in B.Th.U./hr. °F. per ft.2 inner 

pipe surface is given + §L. 

Whence U = 201 B.Th.U./hr. °F. per ft.2 inner pipe surface. 

Using the curves in Fig. 41, to find the mean overall tempera¬ 

ture difference, 

P = ^1 ^2 

h-K 

<2 = 

h-t'l 

210-100 

210-60 

110 

150 
0-733, 

65-5-60 5-5 

210-60’ ~ L50 
0-037, 

whence R = 0-54 and 6m — 0-54 x 150 = 81 F.° 

Total inside surface area of pipes 

S( = 500 XirX 0-654/12 = 85-5 ft.2 
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Equating the heat transfer to heat taken from fresh water: 

us,em = 15000(<,—**), i.e. (<x-<2) = 2-1-Xi58oo5X---1 = 93 F-° 

The original guessed value was 110 F.° A more accurate 

estimate will be given by (tx—t2) = (93-fll0)/2 = 101 F.°, 

making t2 — 109° F. and {t2—1[) = = 5 F.°, making 
20 

t2 = 65° F. 

Mean temperature of fresh water 

= (210+109)/2 = 159° F. (first guess 155° F.). 

Mean temperature of sea water 

= (60+65)/2 - 62-5° F. (first guess 62-7° F.). 

Mean pipe-wall temperature ta is given by 

or 320(<s—62-5) = 553(159-^), whence 

t _ (553x159) +(320x62-5) _ 107900 _ 0 p 

8— 3204553 _ 873 

(first guess 109° F.). 

Since the outside coefficients vary only slowly with absolute 

temperature, it is clear that the above changes will not alter the 

value of U by more than a few per cent. 

Again referring to Fig. 41, 

210-109 

210-60 
= 0-67, 

150 « = 150 = 0'033- 

whence R = 0-58, and dm = 0-58 x 150 = 87 F.° 

(^1 ^2) 

201x85-5x87 

15000 
100 F.°, 

which compares favourably with the second guess of 101 F.° 

The outlet temperature of fresh water will therefore be 109° F. 
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VII 

HEAT TRANSFER FROM CONDENSING VAPOURS 

Film Condensation of Pure Vapour 

Streamline flow. When either a saturated or a super¬ 

heated vapour comes into contact with a surface kept at a 

temperature below the condensing point, vapour condenses on 

the surface, imparting to it its latent heat. If the cooling sur¬ 

face is wettable, the condensate forms a continuous liquid film, 

which, with gravity acting against viscosity, runs down the 

surface. The heat transferred to the surface must thus pass 

by conduction through the condensate layer, the thickness S 

of which depends upon both the rate of condensation and 

the rate at which the surface can drain under the action of 

gravity. Nusselt [1], in 1916, showed that in such a case, in 

the steady state, when a balance has been established between 

the rate of condensation and the rate of draining, the heafc 

transfer for a pure saturated vapour can be calculated for 

simple geometrical arrangements, provided the flow of the 

condensate down the surface is laminar. He assumed that the 

temperature of the surface of the film in contact with the wall 

is at the wall temperature, and uniform; and that the tem¬ 

perature of the surface of the film in contact with the vapour 

is at the saturation temperature. Actually, of course, there 

must be some temperature drop, however small, from vapour 

to condensate film, otherwise no condensation would occur, but 

it can usually be neglected compared with the temperature drop 

across the film. 

As we shall see later, under certain conditions a vapour may 

condense not as a continuous film, but as separate droplets, 

giving a vastly increased rate of heat transfer; and it must be 

borne clearly in mind that the results given in this section apply 

to film condensation only. 

The results obtained by Nusselt for the average heat transfer 

coefficient, a, over the whole surface, give, for the condensation 
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of a pure saturated vapour on a vertical plane or a vertical tube: 

oc = ~ = 0-94|?®!jiB.Th.U./ft.2 hr. °F„ (84) 

Fig. 42. Heat transfer coefficients for saturated steam condensing 
at 212° F. on horizontal cylinders. 

or, if the surface is inclined at an angle of (f> to the vertical, 

(cos<f>)* times the above expression. 

For horizontal tubes: 

* = j = 0-72 |£^?jlB.Th.U./ft.2 hr. °F. (85) 

According to the Nusselt expressions, the heat transfer 
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coefficients for streamline flow of the condensate should decrease 

with increase of 6, and should be less for a horizontal cylinder of 

diameter d than for a vertical cylinder of height h = d. For the 

more usual practical case of a cylinder long compared with its 

Fig. 43. Heat transfer coefficients for saturated steam condensing 
at 212° F. on vertical cylinders or vertical planes. 

diameter, a should be less in the vertical position than in the 

horizontal position. 

Figs. 42 and 43 show the coefficients of heat transfer, as cal¬ 

culated from these expressions, for air-free saturated steam, 

condensing at atmospheric pressure on vertical surfaces of 

heights £,1,2, and 6 ft., and on horizontal cylinders of diameters 
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1, 2, and G in., for temperature differences up to 200 F.° 

between steam saturation temperature and surface temperature. 

It will be seen that for the bigger temperature differences 

the coefficients are of the order of about 300 to 800 B.Th.U./ 

ft.2 hr. °F., and that for the smaller temperature differences 

they go up to several thousand B.Th.U./ft.2 hr. °F. No general 

comparison of these condensation coefficients with the co¬ 

efficients of heat transfer by natural convection from a gas to a 

surface can be given, since the condensing steam coefficients 

decrease with increasing 9 while the natural convection co¬ 

efficients increase with increasing 9, but it is useful to note that 

the condensing steam coefficients are of the order of 1,000 times 

the gas coefficients. They are 10 to 100 times the forced convec¬ 

tion gas coefficients according to the speed and geometrical 

conditions. If therefore a gas on one side of a metal partition 

is being heated by steam condensing on the other side, the 

resistance to heat flow on the steam side can be assumed almost 

negligible compared with that on the gas side. The metal will 

consequently be almost at the steam temperature. 

Close approximations to the Nusselt values of a for film con¬ 

densation are given by 

a = A, B.Th.U./ft.2 hr. °F. 
h*9* 

for a vertical surface of height h feet, (86) 

or <* - Al B.Th.U./ft.2 hr. °F. 
Cl* v* 

for a horizontal pipe of diameter d feet, (87) 

where b± and b2 are constants depending on the vapour. Some 

values of b1 and b2 for saturated steam are given in the table 

below. 

Table XI. Constants for Use in Expressions (86) and (87) 

Steam pressure 
Steam temp. 

°F. 6. b2 
Range of 6 

F ° 

Atmospheric . 212 4,000 3,100 0-200 
0*95 lb./in.2 abs. 100 3,000 2,300 0-90 
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The Nusselt expressions can be written in the dimensionless 

form: 

7r(iT o ^ = constant (.Re)-* — constantf^^ (88) 
e \kYgj \ H' I 

where the constant is 1-47 for vertical, and 1*50 for horizontal 

pipes, and Mt is the mass rate of flow of the condensate from 

the lowest point of the surface, per unit breadth of surface, in 

lb./hr./ft. For a vertical tube Mt — w/ird, where w is the total 

mass rate of flow of the condensate from the lowest point on the 

condensing surface in lb./hr. For a horizontal tube — w\l> 

where l is the length of the tube. 

Effect of turbulence. It has been pointed out that at high 

rates of heat transfer to tall vertical surfaces the motion of the 

condensate along the lower parts of the surface may become 

turbulent. The critical velocity is given by: 

Re = ^ = —I = 2100. (89) 
fi n 

For horizontal tubes the critical velocity is given by 

!^ = ^=2100. (90) 

but, since in this case the condensing height is usually inherently 

small, turbulence is not likely to occur. 

Kirkbride [2], for data of Badger, Monrad, and Diamond [3] 

on the condensation of diphenyl vapour on vertical nickel pipes 

at Reynolds numbers above the critical value, and Badger [4] 
condensing Dowtherm A, found good agreement with the em¬ 

pirical dimensionless equation, based on the mean coefficient 

for the whole pipe: 

H 

e (91) 

Tentative theoretical relations derived by Colburn [5] agree 

fairly well with the experimental results. The theoretical rela¬ 

tions for both streamline and turbulent flow are shown in Fig. 44, 

which also gives Kirkbride’s results for comparison. It will be 

seen from Fig. 44 that, whereas for streamline flow of the con¬ 

densate the heat transfer coefficient decreases with increasing 6, 
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as shown by the downward slant of the curve with increasing 

rate of condensation, for turbulent flow it increases, as shown by 

the upward slant of the curve with increasing rate of con¬ 
densation. 

Even when Re is below the critical value, and the flow is not 

turbulent, ripples may form in the lower parts of the condensate 

Fig. 44. Dimensionless correlation of theoretical and experimental results for 
film condensation of a pure vapour on a vertical cylinder or vertical plane. 

stream, causing the thickness to be alternately above and below 

the average. This increases the rate of heat transfer, since the 

average value of kjh is higher than when no ripples form and S, 

except for a slow gradual change from top to bottom of the 

surface, is constant. 
Experimental results and practical formulae. Many 

measurements have been made of the heat transfer from steam 

and other pure vapours condensing on both horizontal and verti¬ 

cal surfaces; but unfortunately even in the cases where the con¬ 

densation was known to be mainly filmwise, there is not always 

certainty of complete freedom from drop formation. However, 

the results for condensation on the outside of horizontal tubes 

show fair agreement with (85), although on the whole there is a 
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tendency for the measured results to be high. Most of them lie 

between 20 per cent, above and 10 per cent, below the calculated 

ones, although the deviation in a few cases is greater than this. 

For vertical surfaces the experimental data are consistently 

above the Nusselt values, and, even for streamline flow of the 

condensate, the constant in (84) should usually be increased by at 

least 20 to 25 per cent. When Re is above 2,100, and the flow of 

the condensate has become turbulent, the Kirkbride expression 

(91) may be used. Indeed, turbulence may set in at lower Rey¬ 

nolds numbers, even at 1,600 or below. 

For a vertical tier of n horizontal tubes, McAdams recommends 

using the Nusselt relation: 

according to whether it is more convenient to estimate 6 or 

But considering that this makes no allowance for possible 

turbulence of the film caused by high vapour velocity, or for 

splashing of the condensate, it would probably be advisable to 

add 10 to 20 per cent., even when there is no drop formation. 

Effect of vapour velocity. If the vapour flows at high 

velocity oyer the condensing surface the rate of heat transfer may 

be appreciably modified. Vapour flowing upwards in a vertical 

tube would tend to increase the thickness of the condensate film, 

and so decrease the rate of heat transfer, but, as Nusselt showed, 

for downward flow' of vapour in a vertical tube, IIjd should 

increase as the velocity increases. Jakob [6] extended Nusselt’s 

calculations to take account of the continuous decrease in the 

steam velocity with distance along the tube, w hich may be con¬ 

siderable at high rates of heat transfer. The resulting differential 

equation is very complex, but the solution for a 4-ft. tube agreed 

well with experiment, the coefficients of heat transfer for a steam 

velocity of 250 ft. per second being roughly double those for a 

very slow flow. 

Effect of air in steam. It is well known that even small 

proportions of non-condensable gas may seriously reduce the rate 

of heat transfer from a condensing vapour. The non-condensable 
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gas tends to collect on the surface of the condensate layer, form¬ 

ing a layer of a mixture of non-condensable gas and vapour in 

which the vapour pressure is lower than in the main body of the 

enclosure. To reach the surface of the condensate layer, the 

vapour from the main body must therefore pass by diffusion 

through the mixture layer. The resistance offered by the gas 

layer becomes more serious as the proportion of non-condensable 

gas increases and as the flow velocity decreases. It has thus been 

suggested that in tubular condensers the cross-sectional area of 

the steam space should be reduced near the end of the path so as 

to maintain a high flow velocity. The effect of the gas depends 

upon the other resistance^ to the heat flow, and exact solutions 

of heat transfer problems from mixtures of vapour and non¬ 

condensing gases are not usually possible since composition, 

velocity, and temperature vary along the path. But Colburn 

and Hougen [7] have published a detailed study of the effect 

of air in steam, considered as a dehumidification problem, and 

have attempted a solution for a tubular cooler condenser [8] to 

.which the reader is referred. Their method was to equate the 

heat transfer to the surface of the condensate film to the heat 

passing through the condensate film and wall to the cooling 

water. 

Dropwise Condensation of Pure Vapour 

When a cooling surface is smooth and greasy, vapour may 

condense either partially or wholly in the form of separate drops 

of liquid. Thus, a proportion of the surface is exposed directly 

or nearly directly to the vapour, with greatly increased heat 

transfer; and the heat transfer even to the drops of liquid is 

large compared with that to a plane layer of the same mean thick¬ 

ness. Moreover, the condensate on a vertical or inclined surface 

runs down more quickly than does a film, since the drops as they 

roll down the surface coalesce with other drops and carry them 

down too. 
Thus, although for film condensation the results usually agree 

reasonably well with theory, for dropwise condensation they 

may be up to 8 or 10 times as high; and until this was realized 
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it was not found possible to explain the wide discrepancies in the 

results of different workers for apparently similar conditions. 

Much attention has been given to the possibility of maintaining 

dropwise condensation on cooling surfaces, and so keeping up an 

increased rate of heat transfer. Drew and his colleagues in the 

U.S.A., after examining their own and other observations, came 

to the conclusion that clean steam, whether or not it contains 

non-condensable gases, always condenses in a film on clean 

surfaces, rough or polished, dropwise condensation being found 

only if the surface is contaminated in certain ways. Film con¬ 

densation, however, is more easy to maintain on rough surfaces, 

drop condensation on smooth surfaces. 

Although many substances while actually on a surface will 

make it non-wettable, and so prevent a film of liquid from 

spreading over it, only those that are strongly adsorbed or 

otherwise firmly held are significant as drop promoters in a 

condenser. Some contaminants seem to depend for their activity 

as drop promoters on the amount of non-condensable gas present; 

some are specifically effective on certain metals, e.g. mercaptan^ 

on copper alloys; while others, such as the fatty acids, are 

generally effective. Neither mild steel nor aluminium will 

give dropwise condensation, except temporarily. For further 

details the reader is referred to a review by Drew, Hottel, and 

McAdams [9]. 

Effect of surface tension. Kirkbride [2], by comparing the 

condensation of gasoline with that of steam and aniline, on 

smooth glass tubes, found that the form which the condensate 

takes depends upon both the surface tension and the rate of con¬ 

densation. At the lower rates, steam and aniline, owing to their 

high surface tension, condensed in drops, but gasoline with a 

much lower surface tension gave a film. By increasing the con¬ 

densation rates of steam and aniline, however, they also could be 

made to condense as films. In industrial plant the condensation 

is probably usually filmwise, because of the high rates of con¬ 

densation and the comparative roughness of ordinary industrial 

surfaces; but both types of condensation may occur, either on 

different parts of a surface, or at different times, especially if the 
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surface is liable to be greasy, and the changes sometimes give rise 

to results which may appear anomalous. 

Heat Transfer from a Superheated Vapour 

If the temperature of a condensing surface is below the vapour 

saturation temperature, the heat transfer rates for any given 

difference between vapour saturation temperature and con¬ 

densing surface temperature are practically the same for super¬ 

heated as for saturated steam, except when this temperature 

difference is so small that the sensible heat transfer is comparable 

with the latent heat transfer. If the surface temperature is above 

the saturation temperature the rate of heat transfer for a super¬ 

heated vapour must be calculated from the appropriate con¬ 

vection formulae for a gas, in this case, of course, taking the 

actual temperature difference between vapour and surface. 

Even when convection is high enough to keep the surface tem¬ 

perature at the inlet end of a heat exchanger above the saturation 

temperature, condensation may begin farther along the ex¬ 

changer. In such cases a preliminary estimate of the point at 

which the surface temperature reaches the saturation value must 

be made. 

Example 1 

It is required to condense 10,000 lb. of steam per hour, at 
212° F., on a bank of pipes through which cooling water flows at 
6 ft./sec. If the water enters at 50° F. and leaves at 100° F., how 
long should each pipe be, and how many would be needed? Both 
inner and outer pipe diameters may be taken as 1 in., and the 
coefficients of heat transfer on the water and steam sides as 800 
and 1,000 B.Th.U./ft.2 hr. °F. respectively. Latent heat of 
steam at 212° F. = 970 B.Th.U./lb. 

Solution. Heat per pipe given to water = vpc\t X cross- 

sectional area of pipe 

= 6 X 60 X 60 X 62 X 1 X (100—50) X -——— 
4x12x12 

= 364,000 B.Th.U./hr. 

Heat required to condense steam = 10000x970 

= 9,700,000 B.Th.U./hr. 
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So number of pipes required = (10000 X 970)/364000 = 26*6, 

say 27. 

Coefficient of heat transfer, steam to water 

1 

— (1/800+1/1000) ~ 

Mean 9, steam to water — 212 

444 B.Th/(J./ft.2 hr. °F. 

50+100 _ 137Fo 

2 

Heat transfer = 444 x 137 = 60,800 B.Th.U./ft.2 hr. 

Area of pipe required = (10000 x 970)/60800 — 159 ft.2 

Surface area per ft. length = ird — 22/(7 x 12) ft.2 

Total length needed — (159 x 7 X 12)/22 — 606 ft. 

Length per pipe — 606/27 — 22*4 ft. 

Example 2 

Dry saturated steam at 212° F. is condensing on the outside of 
a bank of pipes in which each row consists of 20 horizontal pipes, 
each 3 ft. long, one above the other. If the temperature of the 
outer surface of the pipes is 198° F., what will be the weight of 
condensate per row? Outer pipe diameter = 1 in. 

Solution. Provided 2Ml/fi is less than 2100, as it usually would* 

be for horizontal pipes, and the condensation filmwise, (92) will 

be reasonably applicable (see p. 168). Since 6, and not w, is 

known, the form to use is 

H = 0-72 
\ ndfjid ) 

For a film temperature of = 205° F. 

H = 0-72 x (212-198) x (- 
3913 X 60-42 X 4-17 X 108 X 970U 

20X1/12X0*705X14 

= 15,300 B.Th.U./ft.2 hr. 

tt 15300x2077dl 0.0„ /u 
Hence w = -= 248 lb./hr. 

q 
It must now be verified that the flow is non-turbulent by work¬ 

ing out 
2MJfi = 2w/fil = 2x 248/0*705X 3 = 234; 

this is far below the critical value of 2,100. Nevertheless, as 

already explained, the value obtained for w is likely to be low, 
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since any degree of dropwise condensation, splashing of conden¬ 

sate, or turbulence induced by high vapour velocity, would tend 

to increase it. 
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VIII 

HEAT TRANSFER TO BOILING LIQUIDS 

It is convenient, in dealing with boiling liquids, to consider 

separately the case of liquids boiling on the outside of submerged 

tubes or other submerged surfaces, where the circulation is 

usually natural, and that of liquids boiling inside the tubes of 

evaporators, where the circulation is often forced. 

Boiling on Submerged Surfaces 

It is for a number of reasons extremely difficult to measure 

accurately the heat transfer coefficients from a submerged 

heated surface to a liquid boiling on it, or even to get consistent 

results in repeat experiments. This is partly because the rate of 

heat transfer for any given temperature difference varies widely 

with the condition of the surface, which affects the ease with 

which the vapour bubbles are detached. It is partly also because, 

when a liquid is boiling vigorously, the rate of heat transfer may 

be so high that there are appreciable temperature gradients, even 

through the thickness of a metal wall. Moreover, since the 

columns of bubbles do not rise evenly from the entire surface, 

but originate in local spots, the rate of heat transfer, and there¬ 

fore the temperature of the surface, may vary from place to place. 

These variations make accurate determinations of the tempera¬ 

ture difference between surface and liquid almost impossible. 

Further uncertainties may be caused by the formation of scale, 

which, at high rates of heat transfer, may greatly reduce the 

temperature drop from surface to liquid and the rate of boiling, 

yet may increase the actual heat transfer coefficient on the 

boiling side because it helps the bubbles to get away freely. It is 

thus not surprising that our knowledge of heat transfer to boiling 

liquids is still incomplete, and that really satisfactory correlation 

of the results, in terms of the physical constants involved, has not 

been achieved, although several attempts have been made. 

The heat transfer coefficient to a boiling liquid depends upon 

how fast the liquid is boiling, which itself depends upon the 
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temperature difference between the heated surface and the 

liquid boiling on it. While the liquid is being heated up to 

boiling-point, the heat transfer of course follows the ordinary 

laws of convection; but Jakob [1] has shown further that, if the 

temperature difference between surface and liquid is so small 

that (Or Pr) is less than 109, even after the boiling-point has been 

reached the stirring effect of the bubbles is negligible compared 

with convectional motion, and the laws of natural convection 

hold good. For a vertical surface he found that the expression 

for streamline flow convection, i.e. Nu — constant x (Gr Pr)*, 

applied, although the appropriate constant, 0-61, was slightly 

above the mean value of 0-56 in expression (47): this difference 

is, however, scarcely significant. For a horizontal surface the 

expression for turbulent natural convection was found to hold, 

i.e. Nu — 0*16(Gr Pr)*, which agrees closely with Saunders’s 

expression (46) for natural convection to non-boiling water in the 

turbulent region. 

In Jakob’s experiments the temperature difference between 

heated surface and boiling liquid corresponding to (Gr Pr) = 109 

was about 3 F.° for the vertical surface and about 10 F.° for the 

smaller horizontal surface. Much bigger differences would 

ordinarily be used in industrial appliances. 

If the heat input, and consequently the temperature differ¬ 

ence, 0, is increased, chains of vapour bubbles rise in increasing 

quantity through the liquid, their sweeping and stirring action 

causing the heat transfer to be much above that due to natural 

convection. When the liquid is stirred in this way by the bubbles, 

the process is sometimes known as ‘nucleate’ boiling, and so 

long as this type of boiling persists, the bigger 9, and thus the 

more violent the boiling, the bigger the heat transfer coefficient 

also becomes. But if 9 is increased beyond a certain value, the 

formation of vapour ultimately becomes so rapid that the bubbles 

cannot get away quickly enough, but tend to merge and spread 

out over the heating surface in a continuous layer through which 

the heat has to be transferred by conduction. As a result there 

is a sharp drop in the heat transfer coefficient, so much so that 

beyond a certain critical temperature difference, which varies with 
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the conditions, what is known as ‘film’ boiling sets in, and the 

actual rate of evaporation decreases with increase of temperature 

difference. It is clearly of importance in evaporation processes 

not to push the temperature difference beyond this point. 

Effect of geometrical conditions. Neither shape, size, nor 

inclination seems to have much effect upon the rate of heat 

transfer to a liquid boiling on a submerged surface, in the range 

of temperature difference beyond that in which the laws of 

natural convection apply. Jakob [1], for instance, found that for 

water and carbon tetrachloride the rate of heat transfer for any 

given temperature difference was the same whether boiling took 

place on a vertical cylinder of diameter 1*4 in. or on a horizontal 

disk of diameter 3*9 in. Further, the heat transfer coefficient 

varied little with the dimensions of the vessels, or with the depth 

of liquid down to 2 in., but for depths less than 2 in. there was a 

rapid increase with decreasing depth. Kaiser [2] in a brew 

kettle about 2,000 times the size of Jakob’s horizontal surface 

found nearly the same coefficients, while Nukiyama’s [3] results 

for water boiling on an electrically heated platinum wire of 

diameter 0*005 in. were much the same as those of other 

observers for cylinders several inches in diameter. 

Again, Abbott and Comley [4], testing a model evaporator 

with nearly sixty horizontal tubes found results agreeing with 

those for experiments on single tubes; and increasing the clear¬ 

ance between their tubes from ^ in. to 1 in. had practically no 

effect. The results can thus all be considered together. 

Rates of heat transfer for liquids boiling on submerged 

surfaces* Fig. 45 shows a mean curve based on a number of 

independent experiments for water boiling at 212° F. on sub¬ 

merged metal surfaces, both the heat transfer coefficient, a, in 

B.Th.U./ft.2 hr °F., and the heat flux, H, in B.Th.U./ft.2 hr., from 

metal to water, being plotted against the corresponding tem¬ 

perature difference. There is considerable divergence between 

the results of the different experiments upon which Fig. 45 is 

based, both in the absolute values of a and H and in the slope of 

the rising portion of the curve, and the values must be considered 

as approximate only. 
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At a temperature difference of about 35-40 F.° between metal 

and boiling water, but varying a good deal with the conditions, 

oc reaches its maximum value of about 9,000 B.Th.U./ft.2 hr. °F. 

The critical temperature difference corresponding to the maxi- 

Temperature difference, degs F 

Fig. 45. Heat flux, and heat transfer coefficient, for water boiling 
at 212° F. on submerged surfaces. 

mum flux of heat is a few degrees above this, say about 40-45° F. 

The maximum flux for water boiling at 212° F. under laboratory 

conditions is about 350,000 to 400,000 B.Th.U./ft.2 hr., depend¬ 

ing upon the nature and condition of the surface. 

Effect of nature of liquid. For such organic liquids as have 

been investigated, both the heat transfer coefficient and the 

maximum flux of heat are, at any given pressure, considerably 

less than for water, the critical temperature difference being some 
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20 degrees more than for water. There are wide variations in the 

results, but for ethyl alcohol boiling on a clean surface a maxi¬ 

mum flux of 200,000 B.Th.U./ft.2 hr. has been obtained, corre¬ 

sponding values for benzene, butanol, ethanol, methanol, 

propanol, n-heptane, n-pentane, etc., being 50,000 to 120,000 

B.Th.U./ft.2 hr., according to the liquid and the nature and con¬ 

dition of the heating surface. 

It is obviously important in industrial plant not to exceed the 

critical temperature difference, and, when dealing with low 

boiling-point organic liquids, if exhaust steam is used as the 

heating medium it may be advisable to condense it under reduced 

pressure. Sauer and Cooper [5] boiling ethyl acetate on a horizon¬ 

tal tube found that with a gauge pressure of 40 lb./in.2 the overall 

heat transfer was only 14 per cent, of that with 12 lb./in.2, and 

22 per cent, of that with 2 lb./in.2 

Effect of condition of surface and surface tension of 

liquid. The nature and condition of the heating surface and the 

surface tension at the interface between the boiling liquid and the 

heating surface have a marked effect upon the rate of heat trans¬ 

fer for any given temperature difference, and also upon the maxi¬ 

mum flux and critical temperature difference. This is because, 

on a non-wettable surface, the vapour bubbles tend to spread 

out, thus reducing the area of contact between heating surface 

and liquid, where the rate of heat transfer is much higher than 

from surface to vapour. Jakob [1] compared the behaviour of a 

non-wettable surface covered with a thin layer of oil, a partially 

wettable polished chromium surface, and a specially prepared 

‘screen' surface, with cubical cavities of linear dimensions and 

spacings about 0*01 in. which became fully wetted. Three typical 

shapes of steam bubbles were observed, as shown in Fig. 46. 

On the non-wettable surface the bubbles (a) spread out side¬ 

ways, their free edges being drawn out into a wedge between the 

water and the heating surface, which resisted the action of 

buoyancy. On the smooth chromium-plated surface the bubbles 

(6) rose in columns from a few local spots, irregularly distributed, 

the number of points of origin increasing with increasing heat 

input. On the ‘screen’ surface, roughness so acted against 
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surface tension that the plate became completely wetted, globu¬ 

lar or oval bubbles with only point contact leaving the surface 

while still very small. 

Jakob [1] also found that there was a progressive change in the 

heat transfer coefficient on the boiling side, which decreased with 

the time the heating surface had remained under water, although 

after very long immersion, and long period of boiling, a stable 

value of the coefficient appeared to be reached. The explanation 

a Non wcttable 
surface 

7777777777777777777777, 

b Wettable 
surface 

77777777777^77777777/ 

c. Speciaty prepared 
“screen” surf ace 

Fig. 46. Formation of steam bubbles. 

was thought to be the gradual loss from the plate of adsorbed 

;iir, which provided microcells aiding bubble formation. 

Adding agents to reduce the surface tension of the liquid may 

greatly increase the heat transfer, the proportional increase 

depending largely upon the heat input. Thus, Jakob [1] at a low 

input (13,000 B.Th.U./ft.2 hr.) found that the addition of 0*5 

per cent, of a suitable organic substance to water increased the 

heat transfer coefficient by 23 per cent., while Rhodes and 

Bridges [6], at a heat input so high that film boiling had been 

established, found that the addition of a small quantity of sodium 

carbonate increased the coefficient more than ten times, with a 

sudden transition to nucleate boiling. 

Dimensionless correlation of heat transfer. Many 

attempts have been made to obtain more systematic correlations 

of boiling heat transfer coefficients with the physical constants 

of the liquids concerned. The most important resulting expres¬ 

sions are probably those of Insinger and Bliss [7] and of Jakob 

[8], of which the former seems to fit the experimental results 

rather better. On account of the possible variations due to 

variations in surface condition already discussed, however, 
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actual values may depart widely from calculated ones. Insinger 

and Bliss’s expression, which is dimensionless, and was derived 

from their experiments on various liquids boiling on a vertical 

tube, is 
logy = 0-363+0-923 log a:—0-047 (log xf, (93) 

where y—Hf Pv<j rw« 
9 [ckpf[](q3J3g)l 

and x = H/{PJ(qUg)}xW°. 

It is not applicable either for temperature differences so small 

that the heat transfer takes place according to the laws of natural 

convection, or so big that the critical point has been exceeded, 

and film boiling has consequently set in. 

In the above expressions, if H is expressed in B.Th.U./ft.2 hr., 

a is the surface tension of the boiling liquid in lb./ft., pc and pt the 

density of vapour and liquid respectively, in lb./ft.3, J the 

mechanical equivalent of heat, equal to 778 ft. lb./B.Th.U., and 

q the latent heat of vaporization in B.Th.U./lb. The other 

symbols bear the same meanings as previously. 

Equation (93) means that the heat transfer coefficient 

approximately proportional to c0'5, fc°'5, ct~0 5, p~°'5, /+81, q~°'29, 

and#069. 

Insinger gave values of y and x for various liquids, for use with 

ft., lb., hr., °F., B.Th.U. units, as follows: 

Table XII. Constants for Use in Expression (93). 

y X 

Water .... 0112 H/d 000977/ 
Isobutanol . 118 H/0 0-099H 
n-butanol M3 H/d 0-095# 
Isopropanol . 100 H/d 0-079# 
Carbon tetrachloride 3*85 H/d 0-249# 
Toluene 2-56 H/0 0-186# 

It will be noticed that neither viscosity nor size appears, 

which is consistent with the results of other observers. 

For water, (93) reduces to: 

log(O*112#/0) = 0*363+0*923 log(0*0097#) — 

—0*047 (log 0*0097# )2. (94) 
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Example 

Find the rate of heat transfer to water boiling at 212° F. on a 
surface maintained at 242° F. 

Solution. Temperature difference, 0, between surface and 

boiling water — (242—212) — 30 F.° Hence 

log 0-112+log H—log 30 

- 0-363+0-923 log 0-0097 + 

+ 0-923 log//-0-047(log//+log 0-0097)2 

- 0-363-(0-923x 2-013) + 

+ 0-923 log//—0-047(log2//—4-02 log/f+4-05). 
Whence 

log //(1-0-923 -0-189)+0-047 log2// 

= 0-951 + 1-477 + 0-363—1-857 — 0-190 = 0-74 

or 0-047 log2//—0-112 log// = 0*74, 

which is satisfied by // = 2-3 X 105 B.Th.U./ft.2 hr., and ///0, 

the heat transfer coefficient = (2-3X 105)/30 = 7,700 B.Th.U./ 

ft.2 hr. °F., which is in quite reasonable agreement with the cor¬ 

responding values of about 8,000 and 9,000 B.Th.U./ft.2 hr. °F. 

given by Figs. 45 and 47. 

Effect of pressure. The heat transfer coefficient, a, for a 

liquid boiling on a submerged surface, for any given temperature 

difference, 0, increases as the pressure and the consequent 

boiling-point are increased above atmospheric, and decreases as 

the pressure and the consequent boiling-point are decreased 

below atmospheric. For any given pressure, as already shown 

for atmospheric pressure, a at first increases with increasing 6, 

but at a certain point suddenly begins to decrease so that, with 

further increase of 0, the actual rate of heat transfer decreases. 

This is illustrated in Fig. 47, which is based mainly on the results 

of Braunlich [9] and Cryder and Finalborgo [10], and shows the 

heat transfer coefficients for temperature differences 10 to 

100 F.°, for pressures corresponding to boiling-points of 210° F., 

190° F., and 170° F. respectively. 

Several workers have found that the increase of the heat 

transfer coefficient with pressure, for any given temperature 
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difference, persists almost up to the critical point, but Cichelli 

and Bonilla [ii] have shown recently that the temperature 

difference at the maximum rate of boiling heat transfer decreases 

with increase of pressure, so that the maximum rate of heat 

transfer, or maximum flux of heat, occurs at a pressure about 

one-third the critical. They correlated the results for water, 

Fig. 47. Heat transfer coefficients for water boiling at 210° F., 
190° F., and 170° F. on submerged surfaces. 

ethanol, benzene, propane, w-pentane, n-heptane, and mixtures 

of water and butanol, water and ethanol, and water and acetone, 

by plotting the maximum rate of heat transfer per unit area, 

jffjnaxj divided by the critical pressure, pc, against the ratio of the 

actual to the critical pressure, p/pc, and found that the results 

for all the liquids fell, with a certain amount of scatter, on a single 

curve. The results for dirty surfaces were about 15 per cent, 

above those for clean surfaces, probably because the vapour 

bubbles were freed more easily from them. Their curve is shown 

in Fig. 48, which gives also a curve forp/pc between 0 and 0* 1 on a 

magnified scale. 
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The apparently good correlation in Fig. 48 is, however, 

probably due to the fact that the organic liquids used had rather 

similar physical properties at their boiling-points, and it is 

therefore not advisable to apply the curve to water, which has 

very different properties. Cichelli and Bonilla’s experiments did 

Fig. 48. Maximum heat flux for water boiling at different pressures on 
submerged surfaces. Upper scale corresponds to dotted curve. 

include water, but only over a very limited range, since their 

heater was not powerful enough for the peak value to be reached 

even at the lower pressures. The critical pressure for water is 

218£ atmospheres, or 3,220 lb./in.2, so p/j)c for water boiling at 

atmospheric pressure is 0*0046. At this point it will be seen from 

Fig. 48 that Hjp0 = 112, whence H = 112x3220 = 360,000 

B.Th.U./ft.2 hr., which is reasonably near the values found 

directly by other workers, and quoted on p. 177. At higher pres¬ 

sures the agreement is much less good. The peak density pre¬ 
dicted at a pressure $ the critical is 1,400,000 B.Th.U./ft.2 hr. 
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but MaAdams [12] has measured values of 2,100,000 B.Th.U./ 

ft:2 hr. at 83 atmospheres, and the flux was still increasing 

with pressure. 

In Fig. 49 the critical temperature difference between surface 

and boiling liquid at which the maximum boiling rate is given, 

as obtained from Cichelli and Bonilla’s experiments on ethanol, 

benzene, propane, etc., is plotted for ratios of p/pc from 0-01 

to 1-0. 

Effect of scale deposit. Where the surface coefficients are 

so high, as for condensing steam and boiling liquids, the effects 

even of thin layers of dirt or scale can be very serious. Thus 

1/100 in. of scale of conductivity 1 B.Th.U./ft.2 hr. °F. would be 

equivalent to a resistance of 1/1200, which is of the same order 

as that at the surfaces in many cases, and would thus cause an 

Taking into consideration also the dependence of both steam side 

and boiling side coefficients on surface conditions, it is easy to see 

that calculations based on work carried out under controlled 

laboratory conditions can give only a rough idea of the heat 
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transfer to be expected in practice, and may suggest values much 

higher than those obtainable. The table below, based on experi¬ 

ments of Pridgeon and Badger [13], is an example: it gives the 

overall heat transfer coefficients, U, from steam condensing on 

the inside of a submerged horizontal tube to water boiling on the 

Table XIII. Overall Coefficients of Heat Transfer from 

Steam Condensing inside a Submerged Horizontal Tube to 

Water boiling Outside 

Overall 6 in F.° 18 27 36 45 54 

Uy rusty iron 280 300 325 350 375 
Uy clean iron 300 385 460 535 610 
Uy slightly dirty copper 580 780 950 1,120 
Uy polished copper 820 1,110 1,470 1,810 2,120 

outside. It will be seen that the overall heat transfer for the 

rusty iron is very approximately only \ to £ that for the polished 

copper. 

Boiling inside Tubes 

, In both forced circulation and natural circulation evaporators 

unevaporated liquid recirculates through the tubes, entering at 

the saturation temperature corresponding to the pressure in the 

vapour space. Boiling does not start right at the bottom of the 

tubes, owing to the slight increase in boiling-point caused by 

the hydrostatic head, but as the liquid flows up the tube, a point 

is reached at which actual boiling begins. Thus, if the tube is 

treated as a whole, the coefficients obtained are not true boiling 

coefficients, since a part of the tube in which the liquid is not 

boiling is included. 

Forced circulation vertical tube evaporators. For forced 

circulation vertical tube evaporators, Boarts et alia [14] found 

that for runs in which Re exceeded 65,000, corresponding to 

inlet velocities above 3J ft./sec., the boiling side coefficients 

for the whole tube were about 25 per cent, above those which 

would be given by expression (53) for forced convection in flow 

through tubes, i.e. Nu — 0-023i?e0'8Pr0*4. For lower feed rates, 

in which a higher proportion of the water was evaporated per 

pass, they averaged about 140 per cent, above those given by 
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(53). Kirschbaum [15] found similarly that for a vertical tube 

evaporator the excess of the coefficients over those indicated by 

(53) increased as the feed rate was reduced, and also as the tem¬ 

perature difference was increased. For a velocity of 10 ft./sec. 

the excess was 26 and 84 per cent, at temperature differences of 

9 and 27 F.° respectively; for 3 ft./sec. 26 and 105 per cent, 

respectively. 

For water boiling at atmospheric pressure the coefficients 

calculated from (53) for a 1-in. tube and velocities of 5, 10, 15, 

20 ft./sec. work out at about 1,700, 3,000, 4,100, 5,000 B.Th.U./ 

ft.2 hr. °F. respectively, so that in forced circulation evaporators 

they should be well above this. Hence if steam were used for 

heating, the major resistance would be on the steam side unless 

the condensation were dropwise. Taking a steam side coefficient 

of 1,000 B.Th.U./ft.2 hr. °F., the overall coefficients would 

become about 600, 750, 800, and 820 respectively, not allowing 

for any resistance in the tube wall. In practice, as will be seen 

later, lower coefficients are usually found. 

Natural circulation evaporators. The boiling side heat, 

transfer coefficients are usually considerably less for natural than 

for forced circulation evaporators, because of the much lower feed 

velocities. Also, in this case, as for submerged surfaces, they 

increase with increased temperature difference or with increased 

boiling-point. Surface tension also has a very marked effect. 

Thus, Stroebe et alia [16], working with a long tube vertical 

natural circulation evaporator, found that, by decreasing the 

surface tension of water 50 per cent, by the addition of ‘Duponol ’, 

the heat transfer coefficients on the boiling side were increased 

by 100 to 300 per cent. On the other hand, increase of viscosity 

decreases the coefficients. Thus, Coates and Badger [17], using 

steam as the heating agent for boiling molasses solutions, found 

that practically all the resistance was on the boiling side. 

Overall heat transfer coefficients for natural circula¬ 

tion evaporators. Badger and Shephard [18] found the overall 

coefficients given below for a basket-type evaporator with verti¬ 

cal tubes 2 in. diameter and 2 ft. length, in which water was 

boiled by condensing steam on their outer surfaces. 
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Table XIV. Overall Coefficients of Heat Transfer from 

Steam condensing outside Vertical Tubes to Water boiling inside 

Overall 6 in F.° 10 20 30 40 50 60 

Overall a for B.P. 140° F. 120 205 270 320 350 370 
Overall a for B.P. 167° F. 220 320 400 440 480 500 
Overall a for B.P. 212° F. 320 

t 
440 500 520 •• 

Foust et alia [19], boiling water at 154° F. by condensing 

steam on short tubes (2| in. diameter, 4 ft. length), found corre¬ 

sponding values of 80 to 340 B.Th.U./f't.2 hr. °F. The coefficients 

increased as the level of the liquid was lowered, and as the 

temperature difference or the boiling-point was increased. 
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TABLES 

Table XV. Values of f(t) = 1-73 X l(H(£+460)4/w t from 
10° F. to 3,000° F. 

t m t m t m t m t m 

10 84 430 1,090 850 5,090 1,270 15,400 1,690 37,000 
20 92 440 1,140 860 5,250 1,280 15,800 1,700 37,700 
30 100 450 1,190 870 5,410 1,290 16,200 1,710 38,400 
40 108 460 1,240 880 5,580 1,300 16,600 1,720 39,100 
60 117 470 1,290 890 5,750 1,310 17,000 1,730 39,800 
60 126 480 1,350 900 5,92u 1,320 17,400 1,740 40,500 

70 % 136 490 1,410 910 6,100 1,330 17,800 1,750 41,200 
80 147 500 1,470 920 6,270 1,340 18,200 1,760 42,000 
90 158 510 1,530 930 6,450 1,350 18,600 1,770 42,800 

100 170 520 1,590 940 6,650 1,360 19,000 1,780 43,600 
110 183 530 1,660 950 6,850 1,370 19,400 1,790 44,400 
120 196 540 1,730 960 7,050 1,380 19,800 1,800 45,200 
130 210 550 1,800 970 7,250 1,390 20,300 ! 1,810 45,900 
140 224 560 1,870 980 7,450 1,400 20,700 1,820 46,700 
160 | 240 570 1,940 990 7,650 1,410 21,200 ! 1,830 47,600 

. 160 256 580 2,020 1,000 7,860 1,420 21,600 1,840 48,400 
170 273 590 2,100 1 1,010 8,080 1,430 22,100 1,850 49,300 
180 290 600 2,180 1,020 8,300 1,440 22,600 1,860 50,100 
190 309 610 2,260 1,030 8,520 1,450 23,100 1,870 51,000 
200 328 620 2,350 1,040 8,760 1,460 23,600 1,880 51,900 
210 349 630 2,440 1,050 9,000 1,470 24,100 1,890 52,800 
220 370 640 2,530 1,060 9,240 1,480 24,600 1,900 53,600 
230 1 392 650 2,630 1,070 9,480 1,490 25,100 1 1,910 54,500 
240 415 660 2,730 1,080 9,730 1,500 25,600 55,400 
250 440 670 2,830 1,090 9,990 1,510 26,100 1,930 56,400 
260 465 680 2,930 1,100 10,200 1,520 26,600 1,940 57,300 
270 491 690 3,030 1,110 10,500 1,530 27,100 1,950 58,300 
280 519 700 3,130 ! 1,120 10,800 1,540 27,600 1,960 59,300 
290 548 710 3,240 1,130 11,000 1,550 28,200 ; 1,970 60,300 
300 577 720 3,350 1,140 11,300 1,560 28,700 1,980 61,300 
310 607 730 3,460 1,150 11,600 1,570 29,300 1,990 62,300 
320 639 740 3,580 1,160 11,900 1,580 29,900 
330 674 750 3,710 1,170 12,200 1,590 30,500 2,100 74,300 
340 710 760 3,830 1,180 12,500 1,600 31,100 2,200 86,600 
350 746 770 3,960 1,190 12,800 1,610 31,800 2,300 100,000 
360 782 780 4,090 1,200 13,100 | 1,620 32,400 2,400 116,000 
370 821 790 4,220 1,210 13,400 9 33,000 2,500 133,000 
380 861 800 4,360 1,220 13,700 ms 33,600 2,600 152,000 
390 903 810 4,500 1,230 14,000 1,650 34,200 2,700 173,000 
400 946 820 4,640 1,240 14,400 1,660 34,900 2,800 195,000 
410 990 830 4,780 1,250 14,800 35,600 2,900 221,000 
420 1,040 840 4,930 1,260 15,100 1,680 3,000 248,000 
430 1,090 850 5,090 1,270 15,400 
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Table XVI. Emissivities of Various Surfaces 

0° F- 
100° F. 
(ll'3n- 

9-3») 
250° F. 
(7*3m) 

500° F. 
(5-4/a) 

1,000° F. 
(3-6n) 

2,000° F. 
(2-iM) 

3,000° F. 
(.l-5n) 

Pure polished metals (pro¬ 
vided not of exceptionally 
high electrical resistivity) 0-04 0*05 0-06 0-07 0-14 0-25 

White surfaces, white or 
cream paints or bricks, etc. 0*95 0-94 0-88 0*70 0-45 0-35 

Lampblack, acetylene soot, 
camphor soot' Pt black, 
black velvet, etc. . 0*97 0*97 0-97 0-97 0-97 0-97 

Dark painted surfaces, dark 
bricks, etc. 0*95 0-94 0-90 0*85 0-80 0*75 

Various A1 paints 0-40-0*70 
Various lacs and oils . 0-50-0-90 
Linseed oil on A1 foil: 

Low thickness 0*09 
One coat oil . 0-50 
Two coats oil. 0-57 

About a hundred different 
refractories, ceramics, 
bricks, tiles 0-9 0-9 0-65-0-85 0-3-0-8 0-3-0-9 0-2-00 

Iron and steel 
Pure polished . 0-06 0-06 0-08 0-12 0-22 0-26 
Polished steel casting. 0-49 0-56 

Rolled sheet steel 
007 0-08 0-10 0-14 0-23 0-28 
0*56 

Ground sheet steel 0-41 0-61 
Smooth sheet iron 0-48 0*60 
Bright cast iron 016 0-22 0-30 • 

Freshly drawn cast iron 0*44 
Cast plate iron: smooth 0*80 

„ ,, ,, rough 0-82 
Cast iron with skin 0-81 

»» ,, >» »» • 0-60 
»» ,, ,, ,, 0-66 

Cast iron lathe turned 0-70 
Rough ingot steel 0-95 
Ground sheet steel 0-61 
Rough steel plate 0*94 0-95 0-97 0-98 
Rolled sheet steel 0-66 
Cast iron: oxidized . 0*57 0-61 0-66 0-75 

*> ,, ,, 0-63 0-63 0-63 0-52 
Oxidized iron 0-74 
Smoothly oxidized electro¬ 

lytic iron 0*78 0*78 0*80 0-83 
Matt wrought iron, oxidized 0*95 0-95 0-95 
Rough cast iron, oxidized . 0-98 
Iron with rough oxide layer 0-81 
Corroded sheet iron . 0-74 
Sheet steel with rough oxide 0*80 
Sheet steel with shining oxide 0*82 
Oxidized steel, after long 

heating .... 0-84 0-88 0-93 0-96 
Oxidized steel . 0*79 0*79 0-79 0-79 
Calorized steel . 0*50 0-51 0-53 0*56 
Iron oxide 0-85 0-89 

,, ,, 0-85 0-88 
Black iron oxide 0-56 
Red iron oxide . 0*96 
Molten cast iron 0-29 

(at 
2,400° F.) 
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Table XVI (cont.) 

00 F.~ 
100° F. 

9-3p.) 
2500 F. 
(7-3n) 

500° 1F. 
(5-4n) 

1,000° F. 
(3-6n) 

2,000° F. 

(2-ln) 

3,000° F. 

Molten mild steel 
Oil on polished iron: 

Very thin 
0*0008 in. thick 
0*002 in. thick 
0*004 in. thick 
0*008 in. thick 
Very thick 

i 0*06 
1 0*22 

0*45 
0*65 
0*81 
0*83 i •• 

1 
** 

0*28 

See also McAdams, Heat Tran8missionf pp. 393-6. 
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Table XVIII (cont.) 

CARBON DIOXIDE 

Temp. 
°F. 

k 

B.Th.TJ. lb. 

V 

ft.1 

hr. 

c 

B.Th.TJ. 

8 

B.Th.TJ. 

P 

lb. 

ft* 

PrandU 
Number 

?(-?) 

Dimen- 
sionless 

08 / flrcp*\ 

kv\ ktx) 

10’ 
ft.hr.0 F. ft. hr. lb. °F. ft* °F. ft.' 

0 00076 0*0317 0*241 0*184 0*0246 0*132 0*76 556 
32 0*0084 0*0339 0*276 0*194 0*0238 0*124 0*78 427 

100 0*0101 0*0379 0*352 0*203 0*0220 0*108 0*76 257 
200 0*0125 0*0439 0*480 0*216 0*0199 0*092 0*76 138 
300 0*0160 0*0497 0*63 0*227 0*0182 0*080 0*75 80 
400 0*0174 0*055 0*79 0*237 0*0167 0*070 0*75 50 
500 0*0198 0*060 0*96 0*247 0 0156 0*063 0*75 34*5 
600 0*0222 0*065 1*15 0*256 0*0146 0*057 0*75 23*8 
700 0*0246 0*070 1*35 0*263 0*0137 0*052 0*75 17*1 
800 0*0270 0*075 1*56 0*269 0*0129 l 0*0480 0*75 12*6 
900 0*0294 0*079 1*78 0*275 0*0122 0*0445 0*74 9*7 

1,000 0*0317 0*083 2*01 0*280 0*0116 0*0414 0*73 7*5 
1,100 0*0339 0*087 2*25 0*284 0*0110 0*0387 0*73 5-9 
1,200 0*0360 0*091 2*50 0*288 0*0105 0*0364 0*73 4*83 
1,300 0*0380 0*095 2*76 0*292 0*0100 0*0344 0*73 3*90 
1,400 0*0399 0*099 3*04 0*295 0*0096 0*0325 0*73 3*28 
1,500 0*0418 0*103 3*33 0*298 0*0092 0*0308 0*73 2*73 
1,600 0*0436 0*107 3*63 0*301 0*0088 0*0293 0*74 2*31 

• 1,700 0*0453 0*110 3*93 0*303 0*0085 0*0280 0*73 1*97 
1,800 0*0469 0*113 4*22 0*305 0*0082 0*0268 0*73 1*71 
1,900 0*0484 0*116 4*52 0*307 0*0079 0*0257 0*73 1*50 
2,000 0*050 0*119 4*83 0*309 0*0076 0*0247 0*74 1*32 
2,100 0*051 0*122 5*15 0*311 0*0074 0*0237 0*74 1*16 
2,200 0*052 0*125 5*5 0*313 0*0071 0*0228 0*74 1*03 
2,300 0*054 0*128 5*8 0*314 0*0069 0*0219 0*74 0*91 
2,400 0*056 0*130 6*2 0*316 0*0067 0*0211 0*74 0*80 
2,500 0*057 0*132 6*5 0*317 0*0065 0*0204 0*74 0*72 
2,600 0*058 0*134 6*8 0*318 0*0063 0*0197 0*74 0*66 
2,700 0*059 0*136 7*1 0*319 0*0061 0*0191 0*74 0*60 
2,800 0*060 0*138 7*4 0*320 0*0059 0*0185 0*74 0*55 
2,900 0*061 0*140 7*7 0*321 0*0058 0*0180 0*74 0*51 
3,000 0*061 0*141 8*1 0*322 0*0056 i 0*0175 0*74 0*47 
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Table XVIII (cont.) 

HYDROGEN 

Temp. 
°F. 

X; 

B.Th.TJ. lb. 

V 

ft* 

hr. 

c 

B.Th.U. 

8 

B.Th.U. 

P 

lb. 

ft* 

Frandtl 
Number 

8V / nc\ 

*V *7 
IXimen- 
sionless 

081 OCp'\ 

kn) 

10* 

ft.* ft.hr. °F. ft. hr. lb. °F. ft.3 °F. 

-100 0079 0-0164 2-14 3-37 0-0258 0-0077 0-70 632 
0 0094 0-0194 3-22 3-39 0-0204 0-0060 0-70 280 

32 0-099 0-0203 3-62 3-40 0-0191 0-0056 0-70 221 
100 0-109 0-0223 4-53 3-42 0-0168 0-00491 0-70 141 
200 0-122 0-0249 6-0 3-44 0-0143 0-00416 0-70 81 
300 0135 00273 7-6 3-45 0-0125 0-00361 0-70 50 
400 0-146 0-0297 9-3 3-46 0-0111 0-00319 0-70 34 
500 0157 0-0319 11-2 3-47 0-0099 0-00286 0-70 23-3 
600 0-168 00341 13-2 3-48 0-0090 0-00259 0-70 16-8 
700 0-178 0-0361 15-2 3-49 0-0083 0-00237 0-71 12-7 
800 0-188 0-0380 17-4 3-49 0-0076 1 0-00218 0-71 9-6 
900 0-198 0-0399 19-8 3-50 0-0071 0-00202 0*71 7*5 

1,000 0-208 0-0419 22-3 | 3*51 0-0066 0-00188 0*71 5-9 
1,100 0-219 0-0438 24-9 | 3-53 0-0062 0-00176 0*71 4-7 
1,200 0-229 0-0458 27-7 3-55 0-0059 0-00165 0-71 3-8 
1,300 0-240 0-0477 30-5 3-57 0-0056 0-00156 0-71 3-2 
1,400 0-250 0-0496 33*5 3-59 1 0-0053 0-00148 0*72 2-6 
1,500 0-260 1 0-051 36-7 3-62 0*0051 0-00140 0-72 2-21 
1,600 0-270 0-053 39-9 3-64 0-00485 0-00133 0-72 1-87 * 
1,700 0-280 0-055 43-1 3-67 0-00467 0-00127 0*72 1-60 
1,800 0-289 0-056 46-1 3*70 0-00451 0-00122 0-72 1-40 
1,900 0-298 0-058 49-2 3-73 0-00435 0-00117 0-72 1*23 
2,000 0-307 0-059 52-0 3*76 0-00420 0-00112 0*72 1-09 
2,100 0-315 0-060 56 3-78 0*00405 000107 0-72 0-96 
2,200 0-323 0-061 59 3-81 0-00392 0-00103 0-72 0-85 
2,300 0-331 0-062 62 3-83 0-00381 0-00100 0*72 0-76 
2,400 0-338 0-063 66 3-86 0-00371 0-00096 0-72 0*69 
2,500 0-345 0-064 69 3-88 0*00361 0-00093 0-72 0*63 
2,600 0-352 0-065 72 3-91 0-00351 0-00090 0-72 0-57 
2,700 0-359 0-066 76 3-94 0-00342 0-00087 0-73 0-52 
2,800 0-366 0*067 80 3*97 0-00334 0*00084 0*73 0*47 
2,900 0-373 0*068 84 4-00 0-00326 0-00082 0-73 0*43 
3,000 0-380 0*069 87 4-02 0-00318 0-00079 0-73 0*40 
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Table XVIII (cont.) 

WATER VAPOUR (ATMOSPHERIC PRESSURE) 

Temp. 
°F. 

k 

B.Th.U. lb. 

V 

ftJ 

hr. 

c 

B.Th.U. 

8 

B.Th.U. 

P 

lb. 

ft.3 

Prandtl 
Number 

8U l fxc\ 

Dimen¬ 
sionless 

ff*( 17CPa\ 

kv \ kn ) 

10« 

ft.hr.0 F. ft. hr. lb. °F. ft.8 “F. ft.1 

212 0-0145 0-0313 0-84 0-451 0-0168 0-0372 0-96 576 
300 0-0171 0*0359 1-09 0-456 0-0149 0-0328 0-95 331 
400 0-0200 0-0408 1 -42 0-462 0-0133 0-0288 0*94 194 
500 0-0228 0-0455 1 -76 0-470 0-0121 0-0258 0-94 117 
600 0-0257 0-051 2-19 0-477 0-0111 0 0233 0-94 i 82 
700 0-0288 0-056 2-61 0-485 0-0103 0-0213 0-93 1 57 
800 0-0321 0-061 3-08 0-494 00097 0-0196 0-92 40-6 
900 0-0355 0-065 3-55 0-50 0-0092 i 0-0181 0-91 30*1 

1,000 0-0388 0-069 4-08 0-51 0-0087 0-0169 0-91 l 22-6 
1,100 0 0422 0 073 4-61 0-52 0-0082 0-0158 0-90 17-5 
1,200 0-0457 0-077 5-2 0-53 0-0079 0*0149 0*88 13-9 
1,300 00494 0-081 5-7 0-54 00075 0-0141 0-88 11-0 
1,400 0-053 0-085 6-4 0-55 00073 0-0133 0*87 8-9 
1,500 0-057 0-089 7-1 0-56 0-0070 0-0126 0-87 7*2 
1,000 0-061 0 093 7-7 0-56 0-0068 0-0120 0*87 6-0 
1,700 0-064 0-097 8-5 0-57 0-0066 0-0114 0-87 5*0 
1,800 0-068 0-101 9-3 0-58 0-0064 0-0109 0*87 4-17 
1,900 0-072 0-105 10-1 0-59 0-0062 0-0104 0*87 3-53 

• 2,000 0-076 0-109 10-9 0-60 0-0060 0-0100 0-87 3-01 
2,100 0-080 0113 11-8 0-61 0-0058 : 0-0096 0-86 2-56 
2,200 0-084 0-117 12-7 0-62 0-0057 0-0092 0-86 2*19 
2,300 0-088 0121 13-6 0-62 0-0055 0-0089 0-86 1*91 
2,400 0-092 0-325 14-5 0-63 0-0054 0-0086 0-86 1-67 
2,500 0-096 0-129 15-5 0-64 0-0053 0-0083 0*86 1-47 
2,600 0-100 0-132 16-5 0-64 0*0051 0-0080 0-86 1-30 

2,700 0-104 0-135 17-5 0-65 0-0050 0-0077 0-86 1-14 

2,800 0-108 0-138 18-5 0-65 0-0049 0-0075 0-86 1-01 

2,900 0-111 0-141 19-6 0-66 0-0048 0-0073 0-86 0-92 

3,000 0-114 0-144 20-7 0-67 0-0047 0-0071 0-86 0-83 
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Table XVIII (cent.) 

WATER 

Temp. 
°F. 

k 

B.Th.U. 

u 

tb. 

V 

ft* 

hr. 

c 

B.Th.U. 

8 

B.Th.U. 

P 

lb. 

ft-* 

Prandtl 
Number 

*v / nc\ 

fc\ k) 

Dimen¬ 
sionless 

08(gep\ 

kn) 

10” 

ft* ft.hr. °F. ft. hr. lb. °F. ft.3 °F. 

30 0-33 4-50 0-072 1-01 63 62 13-8 1-10 
40 0-33 3*70 0-059 1-01 63 62 11-1 1-32 
50 0-34 3-15 0-050 1-00 63 62 9-2 1-52 
60 0*34 2-74 0-0439 1-00 62 62 7-95 1-71 
70 0*35 2*39 0-0385 1-00 62 62 6*88 1-92 
80 0*35 2-10 0-0337 1-00 62 62 5-93 2-16 
90 0*36 1*85 0-0298 1-00 62 62 5-14 2-41 

100 0-36 1*64 0-0265 1-00 62 62 4-53 2-67 
110 0-37 1-47 0-0238 1-00 62 62 4-02 2-93 
120 0-37 1-33 0-0216 1-00 62 62 3-61 3-20 
130 0-37 1 1-23 0-0200 1-00 61 61 3-30 3-43 
140 0*37 1-14 0-0186 100 61 61 3-05 3*66 
150 0-38 105 0-0172 1-00 61 61 2-79 3-92 
160 ! 0-38 0*97 0-0159 1-00 61 61 2-56 4-18 
170 0-38 0-89 0-0147 1-00 61 61 2-35 4-48 
180 0*38 0*83 0-0137 1-00 61 61 2-17 4-78 
190 0-39 0-78 0-0129 1-00 61 60 2-03 5-0 
200 0-39 0*73 0-0121 1-00 60 60 1-88 5-3 
210 0-39 0-68 0-0113 1-01 60 60 1-74 5-6 * 
220 0-39 0-64 0-0107 1-01 60 60 1 -63 5-8 
230 0*40 0*61 0-0103 101 60 59 1-56 6-1 
240 0-40 0-58 0-0098 1-015 60 59 1-47 6-4 
250 0-40 0-55 0-0093 1-02 60 59 1-30 6-7 
300 0-39 0-44 0-0077 1-025 59 57 1-13 8-0 
350 0-39 0-36 0-0065 1-03 57 55 0-95 9-3 
400 0-38 0-32 0-0060 1-04 56 53 0-87 10-1 
450 0-37 0*29 0-0057 1-05 54 51 0-83 10-6 
500 0-35 0*27 0-0056 1*06 51 49 0-82 10-9 



CONVERSION FACTORS 

Length, l 

1 cm. = 3-28 x 10-2 ft. 1 ft. = 3*05 x 10 cm. 

Area, l8 

1 cm.2 = 1-08 X lO"3 ft.2 1 ft.2 = 9-29 x 102 cm.2 

Volume, Z3 

1 cm.3 = 3-53 x 10~6 ft.3 1 ft.3 - 2-83 x 104 cm.3 

Maas, m 

1 gm. = 2*20 x 10~3 lb. 1 lb. = 4*54 x 102 gm. 

Density, p = m/l3 

1 gm./cm.8 = 6*24 x 10 lb./ft.3 1 lb./ft.3 = 1*60 x 10"2 gm./cm.8 

1 kg./m.3 = 6*24 x lO'2 lb./ft.3 1 lb./ft.3 = 1*60 x 10 kg./m.3 

Pressure, p = m/lr2 

1 gm. weight/cm.2 = 10 kg. weight/m.2 = 2*05 lb. weight/ft.2 

= 1*42 X 10~2 lb. weight/in.2 
1 dyne/cm.2 2*09 x 10~3 lb. weight/ft.2 = 1*45 X 10-6 lb. weight/in.2 

= 6*72 x 10~~2 poundal/ft.2 = 4*67 X 10-4 poundal/in.2 

1 lb. weight/in.2 = 6*89 X 104 dyne/cm.2 = 4*63 x 103 poundal/ft.2 

= 3*22 x 10 poundal/in.2 
# Force, F = wiZ/t2 

1 gm. weight = 9*81 X 102 dyne = 2*20 x 10-8 lb. weight 

= 7*09 X 10~2 poundal. 

1 lb. weight = 4*54 X 102 gm. weight = 4*45 X 10B dyne 
— 3*22 X 10 poundal. 

1 poundal = 3*11 x 10~2 lb. weight = 1*41 X 10 gm. weight 

= 1*38 XlO4 dyne. 
Temperature, t or T 

1° C. = (l-8< + 32)° F. t° F. = °C. 

f C. = T° C. Abs. = (<+273)° C. Abs. 

t° F. = T° F. Abs. = («+460)° F. Abs. 

Heat, Q 
1 cal. = 3*97 X 10“3 B.Th.U. 1 B.Th.U. = 2*52 x 102 cal. 

1 kilocal. = 3*97 B.Th.U. 1 B.Th.U. - 2*52 x 10"1 kilocal. 

Heat transfer per unit time, b = Qjr 

1 cal./sec. == 3*60 kilocal./hr. = 1*43 X 10 B.Th.U./hr. 

— 4-19 x 10~3 kilowatt. 

1 kilowatt = 3-41 x 103 B.Th.U./hr. = 8*59 x 102 kilocal./hr. 
— 2*39 x 102 cal./sec. 

Heat transfer per unit time per unit area, H — b/lz = Q/tI2 

1 cal./cm.2 sec. = 1*33 X 104 B.Th.U./ft.2 hr. 

1 kilocal./m.2 hr. = 3*69 x 10“* B.Th.U./ft.2 hr. 
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1 B.Th.U./ft.2 hr. = 7-53 x 10~6 cal./cm.2 sec. 
= 2-71 kilocal./m.2 hr. 

Heat transfer per unit time per unit area per unit temperature difference, 

‘Heat transfer coefficient\ a — H/d = b/l29 = Q/t120 
1 cal./cm.2 sec. °C. - 7-37 x 103 B.Th.U./ft.2 hr. °F. 

1 kilocal./m.2 hr. °C. = 2*05 x lO"1 B.Th.U./ft.2 hr. °F. 

1 B.Th.U./ft.2 hr. °F. = 1-36 x 10~4 cal./cm.2 sec. °C. 

1 B.Th.U./ft.2 hr. °F. - 4-88 kilocal./m.2 hr. °C. 

Specific heat per unit mass, c = Q/mt 

1 cal./gm. °C. = 1 kilocal./kg. °C. - 1 B.Th.U./lb. °F. 

Specific heat per unit volume, s — Q/IH 

1 cal./cm.3 °C. = 103 kilocal./m.3 °C. = 6-24 x 10 B.Th.U./ft.3 °F. 

1 B.Th.U./ft.3 °F. = 1-60 x 10-2 cal./cm.3 °C. 

= 1-60x10 kilocal./m.3 °C. 

Thermal conductivity, k — Q/lrt 
1 cal./cm. sec. °C. = 2-42 x 102 B.Th.U./ft. hr. °F. 

1 kilocal./m. hr. °C. = 6-72 x 10"1 B.Th.U./ft. hr. °F. 
I B.Th.U./ft. hr. °F. = 4-13 x 10-3 cal./cm. sec. °C. 
1 B.Th.U./ft. hr. °F. = 1-49 kilocal./m. hr. °C. 

Viscosity, fi = m/lr 

1 gm./cm. sec. = I poise = 2-42 X 102 lb./ft. hr. 
1 lb./ft. hr. = 4*13 X 10~3 gm./cm. sec. 

Kinematic viscosity or thermal diffusivity, v -- 12/t 

1 cm.2/sec. = 3-87 ft.2/hr. 1 ft.2/hr. = 2-58 X 10-1 cm.2/sec. 

Miscellaneous 
1 ft.3 of water weighs 62-4 lb. 1 gallon water weighs 10 lb. 

I in. water = 5*20 lb./ft.2 = 3-61 x 10~2 lb./in.2 

Acceleration due to gravity, g — 3-22 x 10 ft./sec.2 
- 4-17xl08ft./hr.2 

log^x = 2*30 log 10 x. 

Latent heat of steam, q, at 212° F. = 539 cal./gm. = 970 B.Th.U./lb. 
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Boiling Liquids, Heat Transfer 

to, 174-88. 
Inside pipes, 185-7. 

Compared with forced convec¬ 
tion, 185, 186. 

Effect of feed rate on, 185. 
Effect of surface tension on, 186. 
Effect of viscosity on, 186. 
For forced circulation evapora¬ 

tors, 185, 186. 
For natural circulation evapora¬ 

tors, 186, 187. 
From steam to water, 186, 187. 

On submerged surfaces, 174-85. 
Critical temperature differences 

for, 177, 178, 182, 184. 
Difficulty of experiments for, 174. 
Dimensionless expressions for, 

179, 180. 
Effect of geometrical conditions 

on, 176. 
Effect of pressure on, 181-4. 
Effect of rate of boiling on, 174-7, 

182. 
Effect of scale deposit on, 184, 

185. 
Effect of surface condition on, 

178, 179. 
Effect of surface tension on, 178, 

179. 
Examples of calculations for, 

181, 183. 
Film boiling, 166. 
For different liquids, 177, 178. 
Heat transfer coefficients for, 

176, 177, 182, 185. 
Maximum flux of heat for, 177, 

178, 182-4. 
Nucleate boiling, 166. 

Coloub, Relation of, to temperature, 
3. 

Condensing Vapours, Heat Trans¬ 

fer from, 162-73. 
In film form, 162-9. 

Comparison of theoretical and 
experimental results, 166-8. 

Conditions producing, 162, 169, 
170. 

Effect of non-condensable gas on, 
168, 169. 

Effect of turbulent flow of con¬ 
densate on, 166-8. 

Effect of vapour velocity on, 168. 
Examples of calculations for, 

171-3. 

Experimental results for, 166-8. 
Expressions for calculation of, 

165, 166, 168. 
For horizontal pipe, 163-8. 
For tier of horizontal pipes, 168. 
For vertical surface, 163-8. 
Heat transfer coefficients for, 

163-5. 
In drop form, 169-71. 

Conditions producing, 169, 170. 
Heat transfer for, 169. 

Convection, Forced, 109-61. 
Flow across banks of pipes, 132-46. 

Comparison of in-line and stag¬ 
gered arrangements, 140, 141. 

Comparison of, with flow across 
single cylindor, 133, 134. 

Determination of temperature 
difference for, 144-6. 

Effect of angle of impact upon, 
141. 

Effect of number of rows on, 
132. 

Effect of pipe arrangement on, 
132-40. 

Evaluation of physical constants 
for, 132, 133, 194-8. 

Examples of calculations for, 
147-59. 

Friction factors for in-line 
arrangements, 133, 136. 

Friction factors for staggered 
arrangements, 133, 137. 

Heat transfer factors for in-line 
arrangements, 133, 136. 

Heat transfer factors for stag¬ 
gered arrangements, 133, 137. 

Mean equations for, 132. 
Pressure drop for, 134, 135, 138- 

40, 142, 143. 
Relation of heat transfer to pres¬ 

sure drop for, 139-43. 
Flow across single cylinder, 129- 

32. 
Effect of fins or ribs on, 146. 
Effect of inclination on, 132. 
Evaluation of physical constants 

for, 194-8. 
Examples of calculations for, 

127, 147-9. 
Heat transfer coefficients for, 

124. 
Mean curve of experimental 

results for, 129. 
Mean equations for, 130. 
Range of experiments for, 129. 
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Flow along plane surface, 143-4. 
Characteristic linear dimensions 

for, 143, 144. 
Evaluation of physical constants 

for, 144, 194-8. 
Mean equation for, streamline 

flow, 144. 
Mean equation for, turbulent 

flow, 144. 
Flow over sphere, 144. 

Comparison with conduction, 
144. 

Evaluation of physical constants 
for, 144, 194-8. 

Mean equation for, 144. 
Flow through pipes, gases, 109-17. 

Calculation of outlet temperature 
for, 124. 

Critical Reynolds number for, 78, 
110, 111. 

Determination of temperature 
difference for. 111, 112. 

Dimensionless groups for, 68-75, 
109, 110, 112. 

Effect of pipe diameter on, 113. 
Effect of pressure on, 114, 115, 

117. 
Effect of temperature on, 112, 

113. 
Effect of velocity on, 113. 
Evaluation of physical constants 

for, 111, 194-7. 
Examples of calculations for, 

125, 126, 147-9, 153-6. 
For different gases, 109, 117. 
For pipes of rectangular cross- 

section, 123, 124. 
For very high gas velocities, 147. 
Heat transfer coefficients for, 

H5-17. 
Length of pipe required for, 113, 

114. 
Mean curve of experimental 

results for, 110. 
Mean equations for, 110-12. 
Pressure drop for, 79-81, 85, 

114. 
Range of experiments for, 109, 

110. 
Relation of arithmetic and loga¬ 

rithmic temperature difference 
for, 111, 112. 

Streamline and turbulent flow 
for, 77-9, 109-11. 

Velocity distribution for, 77-9. 
Flow through pipes, liquids, 117- 

23. 
Streamline Flow, 120-3; deter¬ 

mination of temperature differ¬ 
ence for, 121, 122; dimension¬ 

less groups for, 121-3; effect 
of natural convection on, 123; 
effect of viscosity gradient on, 
122; examples of calculations 
for, 128, 149-51; limiting 
value of heat transfer coeffi¬ 
cient for, 121; mean equations 
for, 121-3; nature of flow for, 
78, 79, 120, 121; physical 
constants for water, 198; pres¬ 
sure drop for, 80; relation 
between heat transfer and fric¬ 
tion for, 83; theoretical 
expressions for, 121; transition 
between turbulence and, 123; 
velocity distribution for, 77-9, 
120-2. 

Turbulent Flow, 117-20; deter¬ 
mination of temperature dif¬ 
ference for, 111, 112; effect of 
physical constants on, 112, 
120; effect of temperature on, 
112-13, 115; effect of viscosity 
gradient on, 120; examples of 
calculations for, 126, 127, 149- 
50, 156-9 ; for different liquids, 
119-20; heat transfer coeffi¬ 
cients for water, 117-20; heat 
transfer coefficients for water 
and air compared, 120; mean 
equations for, 110—12, 120; 
nature of flow for, 78, 79; 
physical constants for water, 
198; range of experiments for, 
109, 110. 

Convection, Natural, 89-108. 
Between concentric cylinders, 99, 

101, 103-5. 
Between parallel planes, 99, 101-3. 
Characteristic linear dimensions 

for, 97, 99, 101. 
Definition of, 69, 71, 89. 
Dimensionless groups for, 69-73, 

89, 90, 92, 99, 101, 103. 
Effect of pressure on, 89, 90. 
Evaluation of physical constants 

for, 72, 90, 91, 194-8. 
Examples of calculations for, 105-7. 
Experimental results for, 89-97, 

101-5. 
Expressions for calculation of, 95, 

97, 98, 102. 
For horizontal cylinders, 91, 92, 97, 

98. 
For horizontal planes, 95—8. 
For streamline flow, 89, 92, 96-8. 
For turbulent flow, 90, 92-5, 97, 

98. 
For vertical surfaces, 92-5, 97, 98. 
Relation of, to conduction, 101-3. 
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Values of 0 for calculation of, 100. 
Conversion Factors, 199, 200. 

Dimensional Analysis, 62-76. 
Application of. 

To boiling of liquids, 175, 179-81. 
To condensation of vapours, 

166-8. 
To convection generally, 68-75. 
To forced convection generally, 

71, 72, 74, 75. 
To forced convection, flow across 

cylinder, 129, 130. 
To forced convection, flow 

across banks of pipes, 132, 141. 
To forced convection, flow over 

plane surface, 144. 
To forced convection, flow over 

sphere, 144. 
To forced convection, flow 

through pipe, 109-14, 120-4. 
To motion under gravity, 62. 
To natural convection between 

parallel surfaces, 99-105. 
To natural convection generally, 

71-3, 89-91. 
To natural convection, horizontal 

cylinders, 91, 92, 97, 98. 
To natural convection, hori¬ 

zontal planes, 95-8. 
To natural convection, vertical 

planes, 92-5, 97, 98. 
To viscous flow, 62. 

Choice of units in, 72, 73, 75. 
Correlation of experimental data 

by, 74, 75. 
Dependent variables in, 68. 
Dimensions of quantities used in 

heat transfer, 69. 
Graetz number, 122. 
Grashof number, 70-3, 89, 90, 92- 

9, 101-3, 105, 123, 175. 
Mach number, 67, 147. 
Method of indices, 64-7. 
Nusselt number, 70, 71, 74, 89- 

99, 101-5, 109-13, 120-4, 129, 
130, 132, 141, 144, 145, 147, 
175. 

P6clet number, 112. 
Physical significance of dimension¬ 

less groups, 71, 72. 
Prandtl number, 70^-2, 89, 90, 92-9, 

101-3, 105, 109-12, 117, 120- 
3, 129, 130, 132, 144, 175. 

Reynolds number, 63, 65, 66, 68, 
70-2,74,78,80,109-13,120-4, 
129, 130, 132-9, 141, 142, 144, 
145, 147, 166-8, 185. 

Scale effect in, 63. 
Selection of variables for, 67,72, 73. 

Shape as a variable in, 67, 78, 75. 

Friction and Pressure Drop, 77- 

88, 114, 132-43, 152, 153. 
For flow inside pipe, 77-88, 114, 

153, 154. 
Examples of calculations for, 86, 

87, 153, 154. 
Expressions for, 79, 80. 
Fanning equation for, 80. 
For pipes of non-circular cross- 

section, 80, 81. 
For streamline flow, 80, 83. 
Friction factors, 80. 
Relation between heat transfer 

and, 81-6, 114. 
For flow over pipe banks, 132-43. 

Effect of pipe spacing upon, 
135-8. 

Examples of calculations for, 
152, 153. 

Expressions for, 134, 135. 
For in-line arrangements, 139. 
For staggered arrangements, 140. 
Friction factors for, 136, 137. 
Relation between heat transfer 

and, 139-42. 

Radiation, 1-34. 
Luminous gasos and clouds of 

particles, 30-3. 
Effect of gas consumption upon 

radiation, 33. 
Effect of thickness upon emis¬ 

sivity, 30, 31. 
Emissivity of luminous and semi- 

luminous gas flames, 32. 
Radiation efficiency of luminous 

flames, 32, 33. 
Radiation from opaque particles, 

30, 31. 
Radiation from partially trans¬ 

parent particlos, 31-3. 
Radiation from petrol flames, 33. 
Radiation from pulverized coal 

flames, 30, 31. 
Non-luminous gases, 18-30. 

Absorptivity of carbon dioxide, 
21-5. 

Absorptivity of partially trans¬ 
parent substances, 18, 19. 

Absorptivity of water vapour, 
21-5. 

Emissivity of ammonia, 25, 26. 
Emissivity of carbon dioxide, 

21-5. 
Emissivity of carbon monoxide, 

25. 
Emissivity of non-luminous gas 

flames, 32. 
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Emissivity of partially trans¬ 
parent substances, 18, 19. 

Emissivity of water vapour, 
21-5. 

Equivalent hemispherical thick¬ 
ness for different shapes, 20. 

Example of calculation for, 27, 
28. 

Formulae for calculating heat 
transfer, 26. 

Gas radiation in a furnace, 28-30, 
32. 

Values of T4 for, 189. 
Opaque materials, 1-18. 

Absorptivity as surface effect, 1. 
Absorptivity of industrial sur¬ 

faces, 4-6, 190, 191. 
Absorptivity, variation with 

temperature, 4, 5, 190, 191. 
Between concentric cylinders, 

7, 8. 
Between concentric spheres, 7, 8. 
Between parallel planes, 7, 8. 
Between two black disks circum¬ 

scribed by sphere, 12. 
Between two black surfaces lying 

on sphere, 11, 12. 
Between two small surfaces, 9- 

12. 
Black body radiation, 1-4, 13. 
Distribution among different 

wavelengths, 2-4. 
Effect of indentations on, 12, 

13. 
Emissivity as surface effect, 1. 
Emissivity of industrial surfaces, 

4-6, 190, 191. 
Examples of calculations for, 

14-18. 
Formulao for calculating heat 

transfer, 6-12. 
Geometric factor, 10-12. 
Grey body radiation, 6. 
Heat loss by radiation and con¬ 

vection from, 192. 
Hemispherical and normal radia¬ 

tion, 5. 
Intensity of normal radiation, 

8, 9. 
Kirchhoff’s law, 2. 
Reflectivity, 1, 5. 
Relation between absorptivity 

and emissivity, 2, 4, 5. 
Relation between emissivity and 

electrical conductivity, 6. 
Selective emitters, 4, 7, 8. 
Stefan-Boltzmann law, 4. 
Temperature and colour, 3. 
Temperature and radiation, 2-6. 
Values of T* for, 189. 

SUBJECTS 

Wien’s law, 3, 4. 

Thermal Conduction, 35-61. 
Conductivity of alloys, 36, 37. 
Conductivity of gases, 38, 39, 

194-7. 
Conductivity of liquids, 37, 38, 

198. 
Conductivity of metals, 36. 
Conductivity of non-metallic 

solids, 37. 
Definition of, 35. 
Examples of calculations of, 44, 45, 

55-60. 
General case of, 35. 
Steady and unsteady conduction, 

39. 
Units and dimensions of, 36, 69. 

In steady state, 39-45; electrical 
analogies for, 43; examples of 
calculations for, 44, 45; from 
fluid to fluid through compo¬ 
site wall, 40; through bodies of 
complex shape, 42; through 
cylindrical walls, 41, 42; 
through plane slabs, 39, 40. 

In unsteady state, 45-60; axial 
temperature of long cylinder, 
after sudden exposure to sur¬ 
roundings at different tem¬ 
perature, 51, 52; central 
temperature of bodies of 
various shapes, after sudden 
change of surface temperature, 
47; centre plane temperature 
of slab, after sudden exposure 
of both sides to surroundings 
at different temperature, 47, 
49, 51; differential equation 
for, 35; electric analogies for, 
53; examples of calculations 
for, 55-7, 60; for rectangular 
body, 51, 53; general problem 
of, 51-64; graphical methods 
of plotting temperature dis¬ 
tribution for, 54-60; hydraulic 
analogies for, 53; numerical 
methods for, 53; surface tem- 
porature of long cylinder, after 
sudden exposure to surround¬ 
ings at different temperature, 
50, 51 ; surface temperature of 
slab, after sudden exposure of 
both sides to surroundings at 
different temperature, 47, 48, 
51; temperature distribution in 
thick slab, after sudden change 
of surface temperature, 46, 47. 

Thermal Diffusivity, definition of, 

45. 
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