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l^EMEMBER, THEN, THAT [SCIENTIFIC THOUGHT] 

IS THE GUIDE OF ACTION; THAT THE TRUTH WHICH IT 

ARRIVES AT IS NOT THAT WHICH WE CAN IDEALLY CON- 

TOMPI.ATE WITHOUT ERROR, BUT THAT WHICH WE MAY 

ACT UPON WITHOUT l-TAR; AND YOU CANNOT FAH< TO 

SEE THAT SCIENTIFIC THOUGHT IS NOT AN ACCOMPANI¬ 

MENT OR CONDITION OF HUMAN PROGRESS, BUT HUMAN 

PROGRESS ITSELF. 

W. K. Clifford 
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P K E F A C E 

The copy of this book which I still possess was given to me 
by my tutor when I was fifteen years of age. I read it at 
once, with passionate interest and with an intoxicating de- 
fight in intellectual clarification. From that day until I 
came to write this Preface, I had not looked at the book. 
Now, having re-read it after fifty-seven years, many of them 
devoted to the subjects of which it treats, I find that it 
deserved all the adolescent enthusiasm that I bestowed 
upon it when I first read it. 

Clifford possessed an art of clarity such as belongs only 
to a very few great men—not the pseudo-clarity of the popu- 
larizer, which is achieved by ignoring or glozing over the 
diflicult points, but the clarity that comes of profound and 
orderly understanding, by virtue of which principles become 
luminous and deductions look easy. When I first became 
acquainted with Clifford, it was only three years since I had 
been struggling with Euclid’s theory of proportion—a sub¬ 
ject that is now considered too difficult for schoolboys, but 
which in those days had to be mastered by every budding 
mathematician. As Euclid treats it, it is a puzzling subject, 
not only because it is inherently complicated, but because 
Euclid never mentions his perfectly adequate reasons for 
not adopting the much simpler arithmetical procedure, of 
which the fallacies are not obvious until they are pointed 
out. Clifford, by telling just what is necessary and no more, 
makes the whole theory as clear as noonday. In this and in 
other matters the book is invaluable to the schoolboy who, 
though interested by mathematics, is bewildered, as any in¬ 
telligent boy must be if he is badly taught. 

The later parts of the book, as explained in the original 
Preface, owe much to Karl Pearson, since Clifford’s early 
death left the manuscript incomplete. Karl Pearson, how- 
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ever, had so fully assimilated Clifford’s way of looking at 
mathematics that he was able to carry out his task without 
producing in the reader any awareness of discontinuity. The 
book can therefore be treated as a whole, and there is no 
need to struggle to separate the editor’s work from the 
author’s. 

The subject of which the book treats—the basis of pure 
mathematics in logic and of applied mathematics in obser¬ 
vation—is one in which immense progress has been made 
since the time when Clifford wrote, but knowledge of subse¬ 
quent work only increases the reader’s admiration for his 
prophetic insight. All that is .said on the relation of geometry 
to physics is entirely in harmony with Einstein’s theory of 
gravitation, which was published thirty-six years after Clif¬ 
ford’s death. The Book’s explicit rejection of “matter” and 
“force” as concepts to be used in physics is due to Karl 
Pearson, but has some .sanction in Clifford’s notes and is 
clearly in line with his thinking. In this respect, as in many 
others, Clifford was ahead of almost all the best thinking of 
liis time. 

Non-Euclidean geometry, in which two straight lines may 
enclose a space, or a triangle may have all its angles zero, was 
a subject which, though inaugurated by Lobachevsky in 
1829, had only just begun to attract the notice of most 
geometers in Clifford’s day. It was a very exciting and 
rather disturbing subject, since it showed that many things 
which, since Greek times, had been thought capable of 
mathematical proof could in fact be estabhshed only by 
observation. Chfford himself did important work on this 
subject, and read a paper on a branch of it to the British 
Association in 1873. But the work remained unpublished, 
and might have been forgotten if it had not been mentioned 
and carried further by a German mathematician, Felix 
Klein, in his Lectures on Non-Euclidean Geometry, in which 
he states that he felt himself more intimately related to 
Clifford than to any other geometer. At the time when I 
first read The Common Sense of the Exact Sciences, I had only 
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lately heard of the possibihty of geometries that contra¬ 
dicted Euchd; what I read in this book did much to diminish 
the bewilderment that I had been feeling. In spite of all the 
work that has since been done, hardly anything that Clif¬ 
ford (or Karl Pearson) says on this subject could be bettered 
by a writer at the present day. Some other geometrical 
topics, however—for instance, the mention of quaternions, 
for which apparently the editor is responsible—would be 
omitted by most modern authors, since they have not proved 
as important or as illuminating as seemed likely at one time. 

The opening chapter, on Number, although it says ad¬ 
mirably what, in the seventies, seemed best worth saying, 
carmot tell the reader what is now known to be most im¬ 
portant, since in this subject the great advances made by 
Dedekind, Cantor, and Frege came in the decade inune- 
diately following Clifford’s death. He was, moreover, a 
geometer rather than an analyst, and it was in geometry 
that his mathematical intuition appeared at its best. 

A taste for mathematics, hke a taste for music, can be 
generated in some people, but not in others. My brother, to 
the end of his life, could not distinguish God Save the King 
from Rule, Britannia! For him even the most admirable 
book on harmony and counterpoint would have been totally 
useless. In like manner there are people for whom such books 
as Clifford’s serve no purpose; they are the people who have 
no wish to understand the matters of which it treats. But I 
think that these could be much fewer than bad instruction 
makes them seem. Pupils who have not an unusually strong 
natural bent towards mathematics are led to hate the subject 
by two shortcomings on the part of their teachers. The 
first is that mathematics is not exhibited as the basis of all 
our scientific knowledge, both theoretical and practical: the 
pupil is not convincingly shown that what we can under¬ 
stand of the world, and what we can do with machines, we 
can understand and do in virtue of mathematics. The second 
defect is that the difiSlculties are not approached gradually, 
as they should be, and are not minimized by being con- 
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nected with easily apprehended central principles, so that 
the edifice of mathematics is made to look like a collection 
of detached hovels rather than a single temple embodjdng 
a unitary plan. It is especially in regard to this second de¬ 
fect that Clifford’s book is valuable. 

Clifford’s book may not only still be read with great profit 
by young people interested in mathematics, but should also 
be studied with diligent admiration by all who are engaged 
in trying to make difficult ideas intelligible. New ideas almost 
always appear first in an unnecessarily complicated form, 
and are therefore thought harder to master than they are 
subsequently found to be. Plato thought the years from 
twenty to thirty not too long for acquiring a knowledge of 
the mathematics that had been discovered in his day, most 
of which in our time any promising student achieves by 
the age of tliirteen. Tliis acceleration is due to the labours of 
many men who have done something of what Chfford did 
in tliis book. As the total amount of human knowledge in¬ 
creases and the journey from childish ignorance to the 
frontier of discovery lengthens, it becomes more and more 
important to hasten the process and to make the journey 
as easy as possible. In each generation some of this work has 
to be done afresh, since some old subjects turn out to be un¬ 
important and some new ones important. Plato and Euclid 
thought the construction of the regular solids the most im¬ 
portant problem in geometry; nowadays this is a mere by¬ 
path. The earliest extant treatise on arithmetic, that of 
Ahmes the Eg5q)tian, of about 1700 b.c., is largely concerned 
to show how to exhibit fractions as sums of other fractions 
having 1 for their numerators, a matter that has since become 
totally without interest. The discarding of such useless 
traditional problems is one part of what must be done if 
instruction is to be sufficiently rapid. 

The other thing that must be done—and here Clifford is 
supremely excellent—^is to discover the point of view from 
which a subject is most easily surveyed. A wood in which 
the trees are planted in rows looks regular when viewed 
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along a row from one end of it, but may appear completely 
hi^ledy-piggledy when viewed on a slant. The same sort of 
thing is true of a mathematical subject: if you approach it 
from the wrong angle, each step will be difficult, you will 
be entangled in thickets, and you will get no view of the 
whole; but if you start at the right point and advance in the 
right direction, the obstacles disappear and progress is easy. 
Clifford’s survey of elementary EucUdean geometry, begin¬ 
ning with the two axioms that things can be moved without 
change of shape, and that the size of things can be increased 
or diminished by a change of scale without change of shape, 
is just what is needed to make geometry easy to a beginner 
without undue sacrifice of logical rigour. And the same 
merits remain when he comes, later, to treat of conic sections. 

Clifford was much more than a mathematician: he was a 
philosopher, of considerable merit in what concerned the 
foundations of mathematical knowledge. Moreover, he saw 
all knowledge, even the most abstract, as part of the general 
life of mankind, and as concerned in the endeavour to make 
human existence less petty, less superstitious, and less 
miserable. He hved at a time when optimism was not so dif¬ 
ficult as it has since become, and when hope for the future 
seemed justified by the history of the previous two hundred 
years. It was possible, without any blind act of faith, to 
believe that the human species would become progressively 
more humane, more tolerant, and more enhghtened, with 
the consequence that war and disease and poverty, and the 
other major evils of our existence, would continually di¬ 
minish. In this beneficent process rational knowledge was 
to be the chief agent, and mathematics, as the most com¬ 
pletely rational kind of knowledge, was to be in the van. 
This faith was Clifford’s, and it was mine when I first read 
his book; in turning over its pages again, the ghosts of old 
hopes rise up to mock me. Over large parts of the earth’s 
surface the most civihzed individuals have suffered perse¬ 
cution, there has been a dehberate lowering of the standard 
of comfort, and in the course of combating these evils we 
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have been compelled to destroy many ancient cities and re¬ 
duce whole countries, many of them friendly countries, to the 

verge of starvation. 
In the world in which we find ourselves it is difficult to 

believe in the influence of reason on human affairs, or in the 
importance to mankind of theoretical knowledge. Practical 
knowledge, yes, since it enables us to kill our enemies; but 
it was not on this account that Clifford valued knowledge, 
or that Klein, a German, went out of his way to praise him. 
Difficult as it is to maintain the beliefs that inspired the best 
men of the nineteenth century, there is, I still tliink, every 
ground for regarding the old virtues of tolerance and en¬ 
lightenment as the basis for the hopes that are possible. If 
the men of that time were too optimistic, it is easy for us to 
be too pessimistic, for bad periods are no more eternal than 
good ones, though while they last they may seem so. I hope 
that, in reading this book, readers may imbibe sometliing 
of its author’s belief in the possibility of excellent things, 
and that this may help them to acquire some of the strength 
that is needed to fight against the evils of the age in which 
we are compelled to live. 

Cambridge, 1945 Bertrand Russell 
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INTRODUCTION 

I 

Throughout the nineteenth century men travelled the 
roads of science with enormous strides. So numerous were 
the travellers, so varied and far their journeys, that it is 
bewildering to attempt to recall the milestones of their prog¬ 
ress. In physics: electro-magnetic theory and thermo¬ 
dynamics; in astronomy: the discovery of new planets, the 
cataloguing of thousands of stars, advances in every part of 
theoretical astronomy; in chemistry: spectrum analysis, the 
periodic table, the development of organic chemistry; in 
biology: theories of evolution and inheritance; in mathe¬ 
matics: group theory, new fields of algebra and analysis, non- 
Euclidean geometry, foundation studies, a mathematics of 
infinity—these are among the names which the milestones 
bear. 

If we confine our attention to mathematics two facts stand 
out. The first is that at no time in the history of mathematics 
did its contradictory aspects, its diversity and its unity, be¬ 
come more noticeable than in the nineteenth century. While 
new branches of mathematics emerged, the relationship and 
interdependence of its existing parts were strengthened, 
giving to algebra, analysis, and geometry a freedom and 
generality hitherto inconceivable. The mathematics of the 
nineteenth century thus brought “scattered but cognate 
lines of reasoning” together, and, as Merz says,^ “made 
them mutually fertile and suggestive.” 

From the other sciences, which in their forward surge 
besought the aid of its analytical and descriptive powers, 
mathematics in the nineteenth century received a powerful 
impulse; this, the second noteworthy point. The advances 

^ John Theodore Merz: History of European Thought in the Nineteenth 
Century. Fourth edition, Edinburgh and London, 1923. 
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were so swift and revolutionary that if the mathematics 
of the nineteenth century differs markedly from that of the 
eighteenth, if it seems strikingly modern and of our time, the 
explanation is not far to seek: for the physics, chemistry, 
biology, and astronomy of the nineteenth century were also 
radically different, also modern and of our time. Nor are 
the great movements of our own century behttled by ac¬ 
knowledging their birth in the last. 

This stimulus and the search for new links between the 
several branches of mathematics are reflected in the papers 
of the foremost mathematicians of the century: Gauss, 
Riemann, Fourier, Cauchy, Poisson, Hamilton, and many 
more. Even those who engaged only in pure research and 
like the eminent Jacobi took the view that the principal aim 
of mathematics is not “pubhc utihty” but, rather, “the 
honour of the human spirit,” ^ despite their esoteric prefer¬ 
ence, contributed immeasurably to the solution of problems 
in physics, astronomy, and chemistry. The “public utility” 
of the beautiful structure in function theory erected by 
Niels Abel may not have been at once apparent; nor was it 
early recognized in the tiny mathematical legacy of fivariste 
Galois, killed in a duel at twenty-one. The work of Steiner 
and von Staudt in synthetic geometry, of Riemann, Loba¬ 
chevsky, and Bolyai in non-Euchdean geometry, at first 
also seemed remote from the experimental sciences. 

But the essence of pure mathematical speculation lies in 
the construction of new concepts which, when translated 
into symbols, lend themselves to complex operations; 
through the operations the concepts are extended in meaning, 
their relations developed beyond the boundaries originally 
conceived, and again fresh areas of thought are opened. 
“All applications of mathematics consist in extending the 
empirical knowledge which we possess of a limited number 
or region of accessible phenomena into the region of the 

* . and from this point of view a question about numbers is as impor¬ 
tant as a question about the system of the world/* Quoted by Florian Cajori: 
Hutory of MathemcUicaf p. 413. Second edition, New York, 1919. 
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unknown and inaccessible.” * And in this region pure and 
applied mathematics meet and join forces. 

Possessed of mathematical and speculative genius, im¬ 
pelled by a passion for search and inquiry, responsive to 
the intellectual and social forces that shaped nineteenth- 
century thought, the author of T/te Common Sense of the 
Exact Sciences earned a place among the century’s distin¬ 
guished scientists. His best mathematical work lay in geom¬ 
etry, but beyond that he was a citizen of science, ceaselessly 
endeavouring to strengthen its foundations and organic unity 
and, by preaching the widest apphcability of its methods, to 
promote the rational and confound the irrational. The gauge 
and bent of his views are perhaps best shown in a single 
sentence of an address made at Cambridge when he was 
twenty-one: “Thought,” Clifford said, “is powerless except 
to make something outside of itself: the thought which con¬ 
quers the world is not contemplative but active.” ^ In a 
tragically short life of thirty-five years, in a working life of 
fifteen, he enlarged scientific knowledge by a series of con¬ 
tributions, as beforchanded as they were fertile, as valuable 
as they were lucid. To the brilliant Enghsh astronomer Roger 
Cotes, Newton paid tribute with the comment: “If he had 
lived we might have known something.” For Clifford, too, 
this is a fitting epitaph. 

II 

William Kingdon Clifford was born at Exeter, May 4, 
1845. His father, who served as justice of the peace, was 
well known in town affairs. His mother died when he was 
young. From her he inherited his restless energy, his genius, 
perhaps, and, more unfortunately, the predisposition to the 
disease that so early ended his life. 

® Merz, op. cit. 

^ Lectures and Essays by the late William Kingdon Clifford, F.R.S. Edited 

by Leslie Stephen and Frederick Pollock. London, 1879. [This is referred to 

hereinafter as L & E; where the quote is from Pollock’s Introduction, it is 

given as L & E (P); where the quote is from Clifford’s Letters, it is given as 

L & E (Clifford’s letters).] 
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We know nothing of Clifford’s childhood. The few stilted 
anecdotes that survive are of the George Washington cherry- 
tree school. They tell something of the tellers but nothing of 
the child. After his early education at Exeter, Clifford at 
fifteen was sent to King’s College in London. There he did 
well in classical and literary studies as well as in mathe¬ 
matics. Having won a minor scholarship, he left King’s in 
October 1863 to enter Trinity College, Cambridge. The 
same year that Chfford entered the university he produced a 
number of original mathematical papers, and his private 
tutor, Percival Frost, recognizing his gifts, foresaw that he 
would win a liigh place among contemporary scientists. 

His reputation in his student years stemmed not from his 
mathematical powers alone. In a rigidly conventional age 
he was marked by eccentricities of habit, dress, and opinion. 
His rehgious views were those of an ardent High-Churchman, 
and this was not usual in Cambridge at the time. Later in 
hfe, influenced by the writings of Darwin and Spencer, 
Clifford turned violently against organized rehgion, espe¬ 
cially “priestcraft,” but at this time, having studied Aquinas, 
he was “fond of supporting Catholic doctrines by ingenious 
scientific analogies.”® What attracted others were “the 
varied and flexible play of his thought, the boundless range 
of Ills human interests and sympathies.” ® Widely read in 
philosophy, classical hterature, and modern history, he chal¬ 
lenged his friends by the “daring versatility of his talk.” ’’ 
While he often took the unpopular view, even in scientific 
disputes, he was not eristic in spirit: in debate, as in all ac¬ 
tivities, he sought the truth. His sincerity and freshness of 
viewpoint went so naturally together that few of his op¬ 
ponents in argument could take umbrage at his sometimes 
unlimited enthusiasm; he could give no lasting offence, 
quite simply, because he meant none. 

Frederick Pollock, the eminent jurist, was a student at 

* Leslie Stephen: article on Clifford, Dictionary of National Biography, 
^L&E (P). 
^ Ibid. 
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Trinity with Clifford. In a tender and reverent biographical 
note introducing the edition of Lectures and Essays that ap¬ 
peared seven years after Clifford's death, Pollock described 
an incident, at the outset of their friendship, revealing the 
clarity of Clifford's thought and his talent for imparting 
knowledge to others. 

‘‘In the analytical treatment of statics there occurs a proposi¬ 
tion called Ivory^s Theorem concerning the attractions of an 
ellipsoid. The textbooks demonstrate it by a formidable apparatus 
of co-ordinates and integrals, such as we were wont to call a grind. 

On a certain day in the Long Vacation of 1866, which Clifford and 
I spent at Cambridge, 1 was not a little exercised by the theorem 
in question, as I suppose many students have been before and 
since. The chain of symbolic proof seemed artificial and dead; it 
compelled the understanding but failed to satisfy the reason. After 
reading and learning the proposition one still failed to see what it 
was all about. Being out for a walk with Clifford, I opened my 
perplexities to him; I think I can recall the very spot. What he 
said I do not remember in detail, which is not surprising, as I have 
had no occasion to remember anytliing about Ivory^s Theorem 
these twehe years. But I know that as he spoke he appeared not 
to be working out a question, but simply telling what he saw. 
Without any diagram of symbolic aid he described the geometrical 
conditions on which the solution depended, and they seemed to 
stand out visibly in space. There were no longer consequences to 
be deduced, but real and evident facts which only required to be 
seen. And this one instance, fixed in my memory as the first that 
came to my knowledge, represents both Clifford's theory of what 
teaching ought to be and his constant way of carrying it out in his 
discourses and conversation on mathematical and scientific sub¬ 
jects. So whole and complete was the vision that for the time the 
only strange thing was that anybody should fail to see it in the 
same way.® 

Clifford was a member of the well-known club called the 
Apostles. At its meetings, as in his rooms, he drew around 
him by his brilliance and charm a group of distinguished 
contemporaries, who in their discussions—to use his own 

»Ibid. 
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expression—“solved the universe with delight”® and par¬ 
took generally of the pleasures of good talk and friendly 
dialectic. 

He belonged also to the Grote Club at Cambridge, which 
included; among its members the famous economist Alfred 
Marshall, Henry Sidgwick, the philosopher, and John Venn, 
the logician. Marshall was a great friend of ClifiFord’s and 
admired him immensely, although he felt that “He was too 
fond of astonishing people.” Describing Clifford’s participa¬ 
tion in the meetings of the club, Marshall wrote: 

“For a year or two (1809) Sidgwick, Mozley, Clifford, Moulton 
and myself were the active membrs; and we all attended regu¬ 
larly. Clifford and Moulton had at that time read but little 
philosophy; so they kept quiet for the first half hour of the discus¬ 
sion, and listened eagerly to what others and especially Sidgwick, 
said. Then they let their tongues loose, and the pace was tre¬ 
mendous.” “ 

Whatever Clifford tackled was carried through with a 
drive that reflected not merely his eagerness for mastery but 
his joy in living things out to the full. He studied French, 
German, and Spanish because he thought them necessary 
for his work; Arabic, Greek, and Sanskrit because they were 
difficult and, because difficult, a challenge; hieroglyphics 
because they were a riddle.” His justification for learning 
the Morse code and shorthand was that he was interested in 
all methods of conveying thought, but this was not the only 
instance where the httle boy in him had to be rationalized. 
His athletic achievements seemed to please him even more 
than the winning of literary, scientific, and oratorical prizes. 
He topped his athletic career hanging by his toes from the 
cross-bar on the weathercock of a church steeple, thereby 
earning the accolade in the yearbook of his class as “one of 
the most daring athletes of the University.” 

• L <fe £? (Clifford's letters). 
Essay on Alfred Marshsdl by John Maynard Keynes: Essays in Biography, 

London, 1933. 
^L&E (P). «Ibid. 



Introduction XXI 

The catholicity of Clifford’s interests and his independence 
of mind guided his reading even in mathematics. He would not 
permit himself to be strait-jacketed into the training routine 
for the competitive examinations known as the tripos. In 
England more than elsewhere the honours a student wins, 
or fails to win, at the university tag him for the rest of his 
hfe, especially if he follows an academic career. The un¬ 
fortunate competitive aspect of the tripos has long since 
been abandoned, but in Clifford’s day to finish on top, to be 
“first wrangler,” was coin for the future. To prepare for the 
competition one placed oneself in the hands of a special 
coach for a long and unbelievably arduous grind. Months 
of practice in intricate manipulations were intended to in¬ 
crease the rate at which one could solve, and more especially 
write out, the solutions of the problems.^* Tutors and stu¬ 
dents alike knew that Clifford could be first wrangler if he 
trained for this intellectual gymnastic. Clifford, too modest 
to know and caring less, with almost no preparation fin¬ 
ished second wrangler. At that level he was in good com¬ 
pany; De Morgan, in his time, was fourth; Whewell, Syl¬ 
vester, Kelvin, and the incomparable Clerk Maxwell were, 
in their day, all second. 

Ill 

In 1868 Clifford was elected to a fellowship at Trinity. 
While his best mathematical papers were still to come, his 
output, not voluminous, was steady in quantity—three or 
four papers a year—in quality, elegant and suggestive. The 
year of his election also marked his first important lecture, 
or what was referred to as the “discourse for an enhghtened 
auditory.” Great importance attached to popular or semi- 
popular lectures in the nineteenth century; every scientist, 
philosopher, and man of letters took to the lecture platform— 
Huxley, Kelvin, Mach, Helmholtz, Maxwell, Faraday, 

“ A. Macpherson: Ten Britiah Mathematiciana of the Nineteenth Century^ 
essay on Clifford. New York, 1916. 
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Davy, to mention at random a few of the scientists—to popu¬ 
larize learning and, often, to impart the first notice of new 
ideas and discoveries. In this medium for disseminating in¬ 
formation, frequently preferred to writing and cultivated as 
a fine art, Clifford was a master. He spoke with great clarity 
and enthusiasm and by his evident interest in his audience 
at once captured their attention. He rarely wrote out his 
address in advance, and the ease thus achieved, combined 
with his powers of illustration and his ability to turn the 
abstract into the concrete, gave his lectures both lucidity 
and charm, which even the lapse of time and transfer to 
print do not diminish. A few of the lectures will be con¬ 
sidered further on, but there is a brief passage in his first: 
“Conditions of Mental Development,” dehvered at the 
Royal Institution, March 6, 1868, which seems appropriate 
here. It is Clifford’s description of the “twin-characteristics 
of a man of genius”; it fits the lecturer singularly well: 
“He is clearly distinct from the people that surround liim, 
that is how you recognize him; but then this very distinction 
must be such as to bind him still closer to them, extend and 
intensify his sympathies, make him want their wants, re¬ 
joice over their joys, be cast down by their sorrows.” 

Clifford spent over two years at Cambridge. His mathe¬ 
matical powers, directed mostly to geometry, steadily de¬ 
veloped. His work ranged from the more abstruse—“On 
Syzygetic Relations among the Powers of Linear Quantics,” 
“On the Umbihci of Anallagmatic Surfaces,” “On the Space 
Theory of Matter”—to the simpler “Lectures on Geom¬ 
etry,” “given to a Class of Ladies at S. Kensington.” He con¬ 
cerned himself increasingly with the work of Lobachevsky, 
And more particularly Riemann, in non-Euchdean geometry. 
H. J. Stephen Smith, a noted British geometer of the nine¬ 
teenth century, who held the Savihan chair at Oxford during 
the latterpartof Clifford’s fife, points out that while Clifford’s 
predilection for geometry lay deep: 

»L&E. 
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‘Ho this his favourite science he attributed the widest imaginable 
scope, and at times regarded it as co-extensive with the whole 
domain of nature. He was a metaphysician (though he would only 
have accepted the name subject to an interpretation) as well as a 
mathematician; and geometry was to him an important factor in 
the problem of ‘solving the universe.^ Thus he was a geometer of 
a type peculiarly his own; and his dealings with the science were 
characterized by an amount of scepticism and an amount of faith 
which one would hardly expect to find combined in a mathema¬ 
tician.^' 

Indeed, throughout his work the most arresting facet of 
Clifford's originahty is the manner in which he leavened 
mathematical thought with the ferment of philosophy. 

IV 

In 1870 Clifford joined the English eclipse expedition but 
the ship Psyche^ carrying the party, was wrecked ofif Catania. 
Fortunately all hands were saved and even the instruments 
were rescued. Clifford took the mishap with his customary 
good humour. In writing to Lady Pollock from Florence 
shortly after the shipwreck—only a fragment of the letter 
is preserved—he says: 

“No ink, no paper, no nothing. . . . After that [the shipwreck] 
somehow to Catania, some in boats and some in holy carts of the 
country, all over saints in bright shaws—well, if ever a shipwreck 
was nicely and comfortably managed, without any fuss—but I 
can't speak calmly about it because I am so angry at the idiots 
who failed to save the dear ship—alas! my heart's in the waters 
close by Polyphemus's eye, which we put out. At Catania, orange 
groves and telescopes; thence to camp at Augusta; Jonadab, son 
of Rechab, great fun, natives kept off camp by a white cord; 200 
always to see us wash in the morning—a performance which never 
lost its charm—only five seconds totality free from cloud, found 
polarisation on moon's disc, agree with Pickering, other people 

Mathematical Papers by William Kingdon Clifford. Edited by Robert 
Tucker (from the Introduction by H, J. Stephen Smith). London, 1882. 
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successful. ... At Rome 2^ days, pictures, statues. Coliseum by 
moonlight. Both of us sneezed awfully next morning. This morning 
arrive in Florence—Pitti palace—spent all my money, and shall 
get stranded between Cologne and Ostend unless I can live on one 
egg every other day, and thereout suck no small advantage,—be 
better off in Paris. . . ” 

So in the same gay, vividly descriptive vein were most of 
his letters of travel to the last months of his life, when even 
to hold the pen meant a fearful effort. 

Appointed professor of applied mathematics at University 
College, London, Clifford left Cambridge in 1871. Among 
those recommending him for this post, which he occupied 
until his death, was Clerk Maxwell, who had first learned to 
value Clifford's talents at the small, more or less informal 
meetings of the London Mathematical Society, to wliich 
both men belonged. Clifford could be shy as well as exuber¬ 
ant or outspoken; and in the company of Sylvester, Maxwell, 
Smith, and other distinguished mathematicians, members 
of the society, he rarely rose to speak of his own accord. 
But the cogency of his remarks when he was called upon 
was such as to evoke high praise from Maxwell, not given, as 
Pollock phrases it, to unmeasured expression of his mind.’^^^ 
Maxwell's letter urging the selection of Clifford stressed 
that his researches did not tend to ''the elaboration of ab¬ 
struse theorems by ingenious calculation, but to the elucida¬ 
tion of scientific ideas by the concentration upon them of 
clear and steady thought." 

Within less than two years after his appointment Clifford 
delivered several of his best-known lectures and published, 
among numerous writings, a celebrated paper on biquater¬ 
nions. This last I pass for the comment of more competent 
judges with the bare remark that it is a paper on the gen¬ 
eralized conceptions of space, a subject to which Clifford 
made major contributions; the paper stands high in the lit¬ 
erature of mathematics. The lectures in which Clifford sets 

L & E (Clifford’s letters). L & E (P). w Ibid. 
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forth his philosophy of science, and more particularly his 
analysis of geometry, attract further consideration, being 
of wider and less technical interest and epitomizing Clifford's 
singular powers. 

V 

Before the members of the British Association at Brighton, 
in 1872, Clifford gave his address: ^^On the Aims and Instru¬ 
ments of Scientific Thought." He offers at the outset an 
admirable definition of scientific thought: 

‘Tn the first place, then, what is meant by scientific thought? 
You may have heard some of it expressed in the various Sections 
this morning. You have probably also heard expressed in the same 
places a great deal of unscientific thought; notwithstanding that 
it was about mechanical energy, or about hydrocarbons, or about 
eocene deposits, or about malacopterygii. For scientific thought 
does not mean thought about scientific subjects with long names. 
There are no scientific subjects. I’he subject of science is the 
human universe; that is to say, everything that is, or has been, or 
may be related to man.^^ 

From examples of scientific thought in astronomy, en¬ 
gineering, physics, biology, Clifford then shows that each 
step forward in science, 

‘Trom past experience to new circumstances, must be made in ac¬ 
cordance with an observed uniformity in the order of events. . . . 
By the use of this instrument [of uniformity, scientific thought] 
gives us information transcending our experience, it enables us to 
infer things that we have not seen from things that we have seen; 
and the evidence for the truth of that information depends on 
our supposing that the uniformity holds good beyond our experi¬ 
ence." 

Is this uniformity of nature exact—as a wholly mechanical 
interpretation of nature would say it must be? 

suppose there is hardly a physical student (unless he has 
specially considered the matter) who would not at once assent to 

^L&E. 
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the statement. . . that if we knew all about it, Nature would 
be found universally subject to exact numerical laws. [But there 
is a difference between the theoretical and the practical meaning of 
^exact.'] When a grocer weighs you out a certain quantity of 
sugar very carefully, and says it is exactly a pound, he means that 
the difference between the mass of the sugar and that of the pound 
weight he employs is too small to be detected by his scales. If a 
chemist had made a special investigation, wishing to be as accurate 
as he could, and told you this was exactly a pound of sugar, he 
would mean that the mass of the sugar differed from that of a 
certain standard piece of platinum by a quantity too small to be 
detected by his means of weighing, wliich are a thousandfold more 
accurate than the grocer's. But what would a mathematician mean, 
if he made the same statement? He wmuld mean this. Suppose 
the mass of the standard pound to be represented by a length, say 
a foot, measured on a certain line; so that half a pound would be 
represented by six inches, and so on. And let the difference be¬ 
tween the mass of the sugar and that of the standard pound be 
drawn upon the same line to the same scale. Then, if that differ¬ 
ence were magnified an infinite number of times, it would still be 
invisible.* This is the theoretical meaning of exactness; the prac¬ 
tical meaning is only very close approximation; how close, depends 
upon the circumstances. The knowledge then of an exact law in 
the theoretical sense would be equivalent to an infinite observa¬ 
tion. I do not say that such knowledge is impossible to man; but 
I do say that it would be absolutely different in kind from any 
knowledge that we possess at present. 

“I shall be told, no doubt, that we do possess a great deal of 
knowledge of this kind, in the form of geometry and mechanics; 
and that it is just the example of these sciences that has led men 
to look for exactness in other quarters. If this had been said to me 
in the last century, I should not have known what to reply. But 
it happens that at about the beginning of the present century the 
foundations of geometiy were criticized independently by two 
mathematicians, Lobatchewsky [Lobachevsky] and the immortal 
Gauss; whose results have been extended and generalized more re¬ 
cently by Riemann and Helmholtz. And the conclusions to which 

♦ Here one ought to eliminate the word **infinite,quite meaningless in this 
connection, and interpret the passage: ‘‘if that difference were magnified as 
often as you please—without limit, it would still be invisible.” — J.R.N. 
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these investigations lead us is that, although the assumptions 
which were very properly made by the ancient geometers are prac¬ 
tically exact—that is to say, more exact than experiment can be— 
for such finite things as we have to deal with, and such portions of 
space as we can reach; yet the truth of them for very much larger 
things, or very much smaller things, or parts of space which are 
at present beyond our reach, is a matter to be decided by experi¬ 
ment, when its powers are considerably increased. I want to make 
as clear as possible the real state of this question at present, because 
it is often supposed to be a question of words or metaphysics, 
whereas it is a very distinct and simple question of fact.” 

Clifford thus firmly allied himself with Riemann, one of 
the greatest mathematicians of the century, in the view 
that geometry as applied to the world of ex-perience is an 
exTperimental science and, as physicists today would say, a 
proper part of physics. Geometry, according to this analysis, 
remains an exact science but ceases to be a universal one, 
and between these two, though the difference in practical 
calculation is inconceivably small, “there is fixed an enor¬ 
mous gulf.” For a law is only true universally if it is true of 
all cases whatever; “and this is what we do not know of any 
law at all.” 

Clifford formed this conclusion when much of accredited 
mathematics and philosophy was against it. His opinions 
were a challenge to the belief that Euclidean geometry was 
the perfect description, for all times, of all parts of actual 
space. Upon the success of this challenge depended the 
evolution of the new concepts of space, time, energy, and 
matter underlying modern physics. Clifford’s views, from 
the standpoint of philosophy, also contested the doctrine, 
advanced in Kant’s transcendental aesthetic, that the long- 
accepted notions of space were immutable because they were 
a necessary and inherent attribute of our mode of perception 
or, more simply, were determined by the nature of our minds. 
To a fuller examination of this problem we shall return 
when considering Clifford’s lectures on the philosophy of 
the pure sciences. 
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I cannot leave this lecture without quoting another por¬ 
tion in which Clifford, with his gift for making involved 
things simple, defines the notion of cause: 

^*In asking what we mean by this [cause], we have entered upon 
an appalling task. The word represented by ^ cause ^ has sixty- 
four meanings in Plato and forty-eight in Aristotle. These were 
men who liked to know as near as might be what they meant; but 
how many meanings it has had in the writings of the myriads of 
people who have not tried to know what they meant by it will, I 
hope, never be counted. . . . I shall evade the difficulty [of attempt¬ 
ing still another definition of my own] by telling you Mr. Grote^s 
opinion. You come to a scarecrow and ask, what is the cause of 
this? You find that a man made it to frighten the birds. You go 
away and say to yourself, 'Everything resembles this scarecrow. 
Everything has a purpose.' And from that day the word 'cause' 
means for you what Aristotle meant by 'final cause.' Or you go 
into a hairdresser's shop, and wonder what turns the wheel to which 
the rotary brush is attached. On investigating other parts of the 
premises, you find a man working away at a handle. Then you go 
away and say, 'Everything is like that wheel. If I investigated 
enough, I should always find a man at a handle.' And the man at 
the handle, or whatever, corresponds to him, is from henceforth 
known to you as 'cause.'" 

"And so generally. When you have made out any sequence of 
events to your entire satisfaction, so that you know all about it, 
the laws involved being so familiar that you seem to see how the 
beginning must have been followed by the end, then you apply 
that as a simile to all other events whatever, and your idea of 
cause is determined ■ by it. Only when a case arises, as it always 
must, to which the simile will not apply, you do not confess to 
yourself that it was only a simile and need not apply to everything, 
but you say, 'The cause of that event is a mystery which must 
remain forever unknown to me.’ On equally just grounds the nerv¬ 
ous system of my umbrella is a mystery which must remain for¬ 
ever unknown to me. My umbrella has no nervous system; and the 
event to which your simile did not apply has no cause in your sense 
of the word. When we say then that every effect has a cause, we 
mean that every event is connected with something in a way that 
might make somebody call that the cause of it. But I, at least, 
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have never yet seen any single meaning of the word that could be 
fairly applied to the whole order of nature/^ 

VI 

In his book on The Social Function of Science J. D. Bernal 
points out that in most countries science, since the violent 
days of the seventeenth century when a basic philosophy 
of the sciences was hammered out, has been able ^^to get on 
perfectly well without philosophy, especially in England 
where philosophy, hke religion in polite circles, was hardly 

2® The lecture is concluded with these words: “By scientific thought we 

mean the application of past experience to new circumstances by means of 

an observed order of events. By saying that this order of events is exact we 

mean that it is exact enough to correct experiments by, but we do not mean 

that it is theoretically or absolutely exact, because we do not know. The proc¬ 

ess of inference we found to be in itself an assumption of uniformity, and we 

found that, as the known exactness of the uniformity became greater, the 

stringency of the inferences increased. By saying that the order of events is 

reasonable we do not mean that everything has a purpose, or that everything 

can be explained, or that everything has a cause; for neither of these is true. 

But we mean that to every reasonable question there is an intelligible answer, 

which either we or posterity may know by the exercise of scientific thoughts* 

Implicit in Clifford's philosophy of science is a reappraisal of the function 

of science: What is the immediate aim of experiment and research? What are 

the criteria for a successful hypothesis? Where is the boundary between 

philosophy and science? What is the proper task of each? The famous intro¬ 

ductory sentence to Kirchhoff’s lecture “Mechanics" embodies the trend of 

Clifford's thought: “Mechanics is the science of motion; we define her task: to 

describe completely in the simplest manner the motions that take place in 

nature." And so for every science, its function being to describej not to explain. 

To the extent this is true—and it is well to recognize that scientific description, 

like any other, implies selecting data, distinguishing between the relevant 

and irrelevant, and so cannot be free of explanation in the form of precon¬ 

ceptions, tentative hypotheses and criteria—science partially frees itself of 

vexatious and bewildering problems such as choosing between the sixty-four 

“causes" of Plato and the forty-eight of Aristotle. There remains to it the more 

direct activity of inquiry and experiment, adopting or discarding hypotheses 

without too much regard for consequences to philosophical systems, or, for 

that matter, common sense. Philosophy may come after to repair the damage; 

common sense must lick its wounds and recuperate as best it can. Science, as 

Eddington remarks, must not be built like a house that comes tumbling down 

when someone takes away a cornerstone; “it should be like an engine with 

movable parts." 
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ever mentioned in connection with science.” The spirit of 
bold philosophical criticism directed to the foundation and 
borderland problems of science, while burgeoning in the 
great German universities of the nineteenth century, was 
notably withering in the academic centres of England. There 
the metaphysical interest had been all but banished from 
science. 

But the prevailing mores of academicians laid little re¬ 
straint on Chfford. He was among the first in England to call 
attention to the philosophical ideas related to the founda¬ 
tions of geometry, bringing them to pubhc notice in the lec¬ 
ture just considered.^^ The next year he translated from the 
German the epoch-making paper of Riemann: “On the 
Hypotheses Which Lie at the Bases of Geometry.” This 
work of vast prophecy in mathematics and physics further 
inspired and impelled Clifford to his studies in geometry. 
Some mathematicians found geometry dull under the sign 
of EucUd because they felt themselves imprisoned in the 
axioms. If geometry was this perfect logical disciphne, its 
propositions deduced from a handful of universal postulates 
and axioms by rigorous rules of inference, were not all con¬ 
sequences implicit in the axioms? Were not the propositions 
already foretold, merely awaiting exfoliation or a mechanical 
recital pursuant to formula? How could this exercise challenge 
the imagination of the creative scientist? To answer these 

“ J. D. Bernal: The Social Function of Science (New York, 1939), p. 230, 

** In his philosophy of science Chfford held views essentially similar to those 

of Clerk Maxwell, Karl Pearson, Ernst Mach, and Hermann Helmholtz. In 

some points there was also an affinity to the opinions of that curious nineteenth- 

century prophet of “advanced'* views in physics, Johann Bernhard Stallo. 

Stallo, of German birth, migrated to the United States, settled in Cincinnati 

in 1839, and became a teacher, lawyer, judge, and finally United States Am¬ 

bassador to Rome. In this busy and worldly existence he maintained a deep 

interest, of early origin, in philosophy and the foundations of science, and his 

book The Concepts and Theories of Modern Physics, although in almost violent 

opposition to the possibihty of new-fangled geometries, was filled with trench¬ 

ant and fertile ideas. 

“ Thus the unknown, or at least the unforeseen, seems to be excluded from 

geometry, because whatever may be found out hereafter must be latent in 

what is already known. But in the view put forward by Riemann and adopted 
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questions and better to appreciate the problems on which 
Clifford focused his speculations it is perhaps desirable to 
consider for a moment the distinction betweenj’geometry as 
pure and as applied mathematics.® 

Geometry considered as a pure science of ideal space is an 
exercise in logic comparable to a game played with formal 
rules. As in any game, there are pieces or counters (elements: 
hnes, points, etc.), their properties fixed by definition 
(postulates), their operations prescribed by rules (logical 
inference). There is no point in asking what the game 
means; it is essential only that it be consistent and played 
according to the rules. If the game points some moral or 
there is discernible in its patterns some similarity to the pat¬ 
terns of physics, politics, or psychoanalysis, the coincidence 
is interesting, but not necessarily important. The pure logic 
of games has httle to do with the erratic wanderings of 
nature. And the propositions of pure geometry have notliing 
to do with the space in the Yale Bowl or around the planet 
Neptune, with geometric figures on a blackboard, with the 
path of projectiles or the orbits of electrons. 

Geometry considered as applied mathematics is quite 
another case. The postulates and elements based upon ex¬ 
perience purport to describe the space around us and the ex- 
tensional properties of matter. Pure geometry can no more 
be wrong than the game of dominoes; hke dominoes, also, it 
cannot be right. Geometry as apphed mathematics, on the 

by Clifford, the essential properties of space have to be regarded as things still 

unknown, which we may one day hope to find out by closer observation and 

more patient reflection, and not as axioms to be accepted on the authority of 

universal experience, or of the inner consciousness.’^ {Mathematical Papers by 

William Kingdon Clifford, edited by Robert Tucker; from the Introduction 

by H. J. Stephen Smith.) 

“ The basic dichotomy in mathematics is well described in an address of 

the eminent British mathematician George Cayley to the British Association 

in 1883: “Mathematics connect themselves on the one side with common life 

and the physical sciences; on the other side with philosophy in regard to our 

notions of space and time, and in the questions which have arisen as to the 

universality and necessity of the truths of mathematics and the foundation of 

our knowledge of them. . . 
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other hand, can be right or wrong in describing measurable 
relations. The postulates and propositions of geometry, con¬ 
sidered as having physical validity, like the laws of physics 
or ecology represent an organized body of hypotheses, of 
tentative and transient judgments subject to modification 
or abandonment as fresh data may require, so as to yield 
propositions that more nearly conform to observation.^® 

For two thousand years Euclidean geometry passed as 
pure and applied geometry. It was judged both a model of 
human reasoning beyond the contamination of earthly phe¬ 
nomena and a perfect science of nature describing the prop¬ 
erties of space with theoretical exactitude. With Euclid’s 
system elevated to an immobile, transcendental heaven, it 
was thought, not merely that spatial relations within a 
limited range are thus and so, as Euclid said, but that they 
must be thus and so, everywhere and for ever. 

By focusing attention upon two concepts of space, physical and mathe¬ 

matical, the distinction between applied and pure mathematics reveals itself 

as follows: Certain ad }u>c conventions with regard to physical objects and 

physical operations are granted, for reasons of convenience, a generality be¬ 

yond any particular set of objects or operations. “They then become, as we 

say, properties of space. That is what is meant by physical space, which we may 

define, in brief, as the abstract construct possessing those properties of rigid 

bodies that are independent of their material content. Physical space is that 

on which almost the whole of physics is based and it is, of course, the space of 

everyday affairs.” (Lindsay and Margenau: Foundations of Physics, New York, 

1936.) 

. On the other hand the spaces or manifolds of pure mathematics are 

constructed without any reference to physical operations, such as measure¬ 

ment. They possess only those properties expressed in the postulates and axioms 

of the particular geometry in question, as well as those properties deducible 

from them. 

“It may weU be that the postulates are themselves suggested, in part or in 

whole, by the physical space of our experience, but they are to be regarded as 

full-grown and independent. If experiments were to show that some, or all, of 

our ideas about physical space are wrong (as the theory of relativity has in fact 

done) we would have to rewrite our texts on physics, but not our geometries.” 

(Kasner and Newman: Mathematics and the Imagination. New York, 1940.) 

For a general discussion of this subject see Enriques: Historic Development 

of Logic (New York, 1929); Cohen and Nagel: Introduction to Logic and Scien¬ 

tific Method (New York, 1934); Russell: The Analysis of Matter (New York, 
1927). 
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Now, this enthronement was unfortunate in two respects. 
First, as a description of actual space Euclidean geometry 
could not pretend to universality: its postulates and theorems 
having been tested only in a most limited range might not 
be valid outside that range—in the domain of the very small 
or of the very large. Second, by turning Euclidean postulates 
into commandments, the freedom of mathematical inquiry 
was more effectively throttled than by ecclesiastical ban. 
For there appeared to be no possibility of constructing new 
geometries based upon non-Euclidean postulates, such 
postulates being, clearly, “contrary to nature.” Any dis¬ 
cussion of space not known to the senses was thus forbidden. 

The revolt came in the nineteenth century, the explosive 
force being the non-Euclidean geometries of Lobachevsky, 
Bolyai, and Riemann; the powder train, the disputes about the 
nature of the parallel postulate which Gauss had also studied. 
The first doubts had been stirrednot by experimental evidence 
but by logical considerations. Inclined to be a Jacobin in re¬ 
evaluating the foundations of science, Clifford was an early 
and ardent disciple of the new doctrines. He saw in them an 
extension on the widest scale of the importance and influence 
of geometrical knowledge to every part of physical science. 
Beyond that, judging geometry as a prototype of intellectual 
activity, as Clifford observed its branches multiply and its 
roots go deeper, he was convinced that the method of its 
emancipation and growth would aid in the development of 
other phases of speculative thought. His behefs and his 
hopes, his deep interest in geometry are fully encompassed 
in the lectures on “The Philosophy of the Pure Sciences.” 

VII 

The lectures open with an analysis of what our senses really 
convey to us of the external world. What part of that which 
we think we see do we actually see? What part of that which 
we claim our senses tell us do they actually tell us? On brief 
reflection it becomes clear that just as a story undergoes 
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marked changes as it is retold from one person to the next, 
just as parts of the original are lost and new parts added 
until at last it bears little resemblance to the original, so 
the phenomena of the outside world are told and retold 
through the senses and then woven by the brain into a fiction, 
its content a distortion of the objects and events constituting 
the initial stimulus. 

“On entering this room [says Clifford] and looking rapidly 
around, what do 1 see? I see a theatre, with a gallery, and with 
an arrangement of seats in tiers. [But no, for the] utmost I can 
possibly see is two distinct curved pictures of a theatre. Upon the 
two retinas of my eyes there are made pictures of the scene before 
me, exactly as pictures are made upon the ground glass in a 
photographer’s camera. The sensation of sight which I get comes 
to me at any rate through those two pictures; and it cannot tell 
me any more, or contain in itself any more, than is in those two 
pictures. Now the pictures arc not solid; each of them is simply 
a curved surface variously illuminated at various parts. Whereas, 
therefore, I think I see a solid scene, having depth, and relief, and 
distance in it, reflection tells me that 1 see nothing of the kind; but 
only (at the most) two distinct surfaces, having no depth and no 
relief, and only a kind of distance which is quite different from 
that of the solid figures before me.” 

Extending his description, Clifford continues: 

“I see people sitting upon these seats, people with heads more 
or less round, with bodies of a certain shape; sitting in various 
positions. [How much of that is true?] Of course, I cannot see 
your heads, I can only see your faces. I must have imagined 
the rest. But just consider what it is that I have imagined. 
Is it merely that besides what I do see I have added something 
that I might see by going round to the other side? No, there 
is more than that. The complete sensation which I have of a 
human head when I look at one is not merely something which I 
do not see now, but something which I never could see by any 
possibility. I have the sensation of a solid object, and not of a 
series of pictures of a solid object. Although that sensation may 
be really constructed out of a countless number of possible pic- 
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tures, yet it is not like any of them. I imagine to myself, and seem 
to see the other side of things, not as it would look if viewed from 
beyond them, but as it would look if viewed from here. I seem to 
see the back of your head, not as it would look if I get behind you, 
but as if 1 saw it through your face from the spot where I am 
standing; and that, you know, is impossible.’^ 

What of the composition of our images? We seem to see 
objects as existing together, but in fact we move our eyes 
about and ''see a succession of small pictures very rapidly 
changed.’^ Now only a small part of any scene before us can 
be seen distinctly at once, and so while we really see a pano¬ 
rama, and not the one large picture we imagine, yet looking 
at the small portion we tliink we distinctly see the whole. 

As to the impressions gained through another of our senses, 
Clifford observes: 

“[Suppose when I came into the room I said:] 'I put my 
hands on the table, I feel a hard, flat,; horizontal surface at 
rest, covered with cloth.’ [That statement will also bear check¬ 
ing. There arc three things that really happen:] 'First, there 
is a definite kind of irritation of certain organs of my skin, called 
papillae. It is that irritation that makes me say cloth. Secondly, 
certain of my muscles are in a state of compression, and they tell 
me that. Thirdly, I make a certain muscular effort which is not 
followed by motion. This is all that I can really feel; but those 
three things do not constitute a hard, flat, horizontal surface 
covered with cloth. As before, I must have imagined the rest.’” 

Clifford continues with a characteristic flash of humour: 

“ Do not suppose that I am advocating any change in our com¬ 
mon language about sensation. 1 do not want anybody to say, for 
instance, instead of, ' I saw you yesterday on the other side of the 
street,’ 'I saw a series of panoramic pictures in a sort of mosaic, 
of such a nature that the imaginations I constructed out of them 
were not wholly unlike the imaginations I have constructed out of 
similar series of panoramic pictures seen by me on previous oc¬ 
casions when you were present.’ This would be clumsy, and it 
would not be sufiScient. And yet I cannot help thinking that in 
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certain assemblies, when some of those who are present are in an 
exalted state of emotional expectation, and the lights are low, even 
this roundabout way of putting things might be, to say the least, 
a salutary exercise/^ 

From this analysis of sense impressions Clifford draws the 
inference that 

‘Hhere are really two distinct parts in every sensation that we get. 
There is a message that comes to us somehow; but this message 
is not all that we apparently see and hear and feel. In every sensa¬ 
tion there is, besides the actual message, something that we im¬ 
agine and add to the message. This is sometimes expressed by say¬ 
ing that there is a part which comes from the external world and 
a part which is supplied by the mind. But however we express it, 
the fact to be remembered is that not the whole of a sensation is 
immediate experience (where by immediate experience I mean the 
actual message—whatever it is—that comes to us); but that this 
experience is supplemented by something else which is not in it. 
And thus you may see that it is a perfectly real question, ^ Where 
does this supplement come from?’'^ 

Clifford then points out that the spatial aspect of our sen¬ 
sations, the extensional properties of the perceived objects, 
the relations of distance, 

^‘are always so filled in as to fulfill a code of rules, some called 
common notions, and some called definitions, and some called 
postulates, and some assumed without warning, but all somehow 
contained in Euclid's Elements of Geometry.^^ 

And these which he calls the rules [that] are the founda¬ 
tions of the pure sciences of Space and Motion’^ constitute 
an important part of the ‘‘supplement^' by which we fill in 
our experience. 

^ ** Instead of Space and Motion, many people would like to say Space and 

Time. But in regard to the special matter that we are considering, it seems to 

me, for reasons which I do not wish to give at present, to be more correct to 

say that we imagine time by putting together space and motion, than that 

we imagine motion by putting together space and time.'* (“The Philosophy of 

the Pure Sciences.” L & E.) 



Introduction xxxvn 

There are other rules in accordance with which we fill in 
our sensations, relating, for example, to continuity, number, 
uniformity; and some of these rules of supplementation are 
the foundations of the pure sciences of arithmetic, formal 
logic, and geometryAs to those of geometry: 

‘‘There has been for ages a conviction in the minds of men that 
these rules about space are true objectively in the exact or theo¬ 
retical sense, and under all possible circumstances. If two straight 
lines are drawn perpendicular to the same plane, geometers would 
have told you for more than two thousand years that these straight 
lines may be prolonged for ever and ever without getting the least 
bit nearer to one another or further away from one another; and 
that they were perfectly certain of this. They knew for certain 
that the sum of the angles of a triangle, no matter how big or how 
small it was, or where it was situated, must always be exactly 
equal to two right angles, neither more nor less. And those who 
were philosophers as well as geometers knew more than this. They 
knew not only that the thing was true, but that it could not possibly 
have been otherwise; that it was necessarily true. And this means, 
apparently, not merely that I know it must be, but that I know 
that you must know that it must be.^' 

Concerning these rules of supplementation, Locke, and 
more especially Hume, gave the explanation 

“that the supplement of experience is made up of past experience, 
together with links which bind together perceptions that have 
been accustomed to occur together. This fact, that perceptions 
and feelings which have frequently occurred together get linked, 

‘^The case of arithmetical propositions is perhaps more easily compre¬ 

hended in this respect. Everybody knows that six things and three things make 

nine things at all possible times and places; you cannot help seeing not only 

that they do always without exception make nine things, but that they must 

do so; and that the world could not have been constructed otherwise. For to 

those ingenious speculations which suppose that in some other planet there 

may always be a tenth thing inevitably suggested upon the union of the six 

and the three, so that they cannot be added together without making ten; to 

these, I say, it may be replied that the words number and thing, if used at all, 

must have different meanings in that planet.” ('^The Philosophy of the Pure 

Sciences.” L <fc E.) 
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so that one calls up the other, is called the law of Association, and 
has been made the basis of scientific Psychology. According to 
these explanations of Locke and Hume ... all the knowledge we 
have that the rules are right, or may be objectively verified, is 
really derived from experience; only it is past experience, which 
we have had so often and got so accustomed to that it is now really 
a part of ourselves. 

‘‘But Kant, after being staggered for some time by Hume's ex¬ 
planation, at length said, ‘It is impossible that all your knowledge 
can have come from experience. For you know that the axioms of 
mathematics are absolutely and universally true, and no experi¬ 
ence can possibly have told you this. However often you may have 
found the angles of a triangle amount to two right angles, how¬ 
ever accustomed you may have got to this experience, you have 
no right to know that the angles of every possible triangle are 
equal to two right angles, nor indeed that those of any one triangle 
are absolutely and exactly so equal. Now you do know this, and you 
cannot deny it. You have therefore some knowledge which could 
not possibly be derived from experience; it must therefore have 
come in some other way; or there is some other source of knowledge 
besides experience.' 

“At that time there was no answer whatever to this. For men 
did think that they knew at least the absolute universality if not 
the necessity of the mathematical axioms. To any one who ad¬ 
mitted the necessity, the argument was even stronger; for it was 
clear that no experience could make any approach to supply 
knowledge of this quality. But if a man felt absolutely sure that 
two straight lines perpendicular to the same line would never meet, 
however far produced, he could not maintain against Kant that 
all knowledge is derived from experience. He was obliged to admit 
the existence of knowledge a priori, that is, knowledge lying ready 
in the mind from from the first, antecedent to all experience." 

How is it possible to have knowledge of objects antecedent 
to all experience, a priori knowledge? Clifford gives Kant’s 
solution to the problem with the aid of a singularly appro¬ 
priate analogy: 

“If a man had on a pair of green spectacles, he would see 
everything green. And if he found out this property of his spec- 
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tacles, he might say with absolute certainty that while he had those 
spectacles on everything that he saw without exception would be 
green. 

‘^‘Everything that he saw'; that is to say, all objects of sight 
to him. But here it is clear that the word object is relative; it means 
a representation that he gets, and has nothing to do with the thing 
in itself. And the assertion that everything is green would not be 
an assertion about the things in themselves, but about the repre¬ 
sentations of them which came to him. The colour of these repre¬ 
sentations would depend partly on the things outside and partly 
on his spectacles. It would vary for different things, but there 
would always be green in it. 

“Let us modify this example a little. I know for certain that 
the colour of every object in the universe is made up of colours 
that lie within the range of the visible spectrum. This is apparently 
a universal statement, and yet I know it to be true of things which 
it is impossible that I should ever see. How is this? Why, simply, 
that my eyes are only affected by light which lies within the range 
of the visible spectrum. Now I say that this case is only a little 
modified from the previous one. The green glass lets in a certain 
range of light; the range is very little increased when you take it 
away. Only in the second case it happens that we are all actually 
wearing very nearly the same spectacles. That universal state¬ 
ment which I made is true not only of objects as they appear to 
me, but also of objects as they appear to you. It is a statement 
about objects; that is, about certain representations which we 
perceive. It may therefore so far have its origin in the things of 
which these are representations, or it may have its origin in us. 
And we happen to know that in this case it is not a statement 
about external things, but about our eyes. 

“Admitting, then, that the objects of our sensations are repre¬ 
sentations made to us; that their character must therefore be 
partly dependent upon our own character; what properties of 
these objects should we naturally suppose to have this origin, to 
be derived from the constitution of our minds? Why, clearly, those 
which are necessary and universal; for only such properties can 
be so derived, and there is no other way in which they can be known 
to be universal. 

“Accordingly, Kant supposes that Space and Time are necessary 
forms of perception, imposed upon it by the perceiving mind; that 
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things are in space and time as they appear to us, and not in them¬ 
selves; and that consequently the statement that all things exist 
in space and time is a statement about the nature of our percep¬ 
tion and not about the things perceived. . . . And it is just because 
these statements are about me [just as the statement about the 
colours of things was really a statement about the eyes of the ob¬ 
server and not about the things themselves] that I know them to 
be not only universally, but always necessarily true about the ob¬ 
jects I perceive; for it is always the same me that perceives them— 
or at any rate it is a me possessing always the same faculties of 
representation. 

^'Now observe what it is that this theory does with general 
statements; what is the means by which it gets rid of them—for 
it does get rid of them. It makes them into particular statements. 
Instead of being statements about all possible places and times 
and things, they are made out to be statements about me, and 
about other men in so far as they have the same faculties that I 
have,^' 

Clifford then shows why the method by which Kant at¬ 
tempted to answer the question: “Are there any properties 
of objects in general which are really due to me and to the 
ways in which I perceive them, and which do not belong to 
the things themselves?^^ was inadequate. For just as in the 
case of the man with the green spectacles, the way to clinch 
the argument that he necessarily saw everything green be¬ 
cause of his spectacles would be “to take him to a looking 
glass and show him that these spectacles were actually upon 
his nose/' the answer to the question Kant set out to 
answer 

“must be sought not in the subjective method, in the conviction 
of universality and necessity, but in the physiological method, in 
the study of the physical facts that accompany sensation, and of 
the physical properties of the nervous system. The materials for 
this valid criticism of knowledge did not exist in Kant^s time. I 
believe that they do exist at present to such an extent at least as to 
indicate the nature of the results which that criticism is to fur¬ 
nish/^ 
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After considering opinions of Berkeley, Hume, Whewell, 
Mill,and Spencer as to how concepts of every kind are re¬ 
lated to experience, Clifford continues: 

^Ht seems to me that the Kantian dilemma about universal 
propositions is just as valid now, in spite of these explanations, as 
it was in his time. How am I to know that the angles of a triangle 
are exactly equal to two right angles under all possible circum¬ 
stances; not only in those regions of space where the solar system 
has been, but everywhere else? The accumulated experience of all 
my ancestors for a hundred and fifty million years is no more compe¬ 
tent to tell me that than my own experience of the last five minutes. 
Either I have some source of knowledge other than experience, 
and I must admit the existence of a 'priori truths, independent of 
experience; or I cannot know that any universal statement is true. 
Now the doctrine of evolution itself forbids me to admit any tran¬ 
scendental source of knowledge; so that I am driven to conclude in 
regard to every apparently universal statement, either that it is 
not really universal, but a particular statement about my nervous 
system, about my apparatus of thought; or that I do now know 
that it is true. And to this conclusion, by a detailed examination 
of various apparently universal statements, I shall in subsequent 
lectures endeavour to lead you.” 

Clifford then goes on to show that while Kant^s arguments 
for the universality of geometric truths were valid against 

® “One broad result of non-Euclidean geometry, even in its earliest form, 

was that the geometry of actual space is, at least in part, an empirical study, 

not a branch of pure mathematics. It may be said that empiricists, such as 

J. S. Mill, always based geometry upon empirical observation. But they did 

the same with arithmetic, in which they were certainly mistaken. No one 

before the non-Euclideans perceived that arithmetic and geometry stand on a 

quite different footing, the former being continuous with pure logic and inde- 

p)endent of experience, the latter being continuous with physics and de¬ 

pendent upon physical data. Geometry can, it is true, be still studied as a 

branch of pure mathematics, but it is then hypothetical, and cannot claim 

that its initial hypothesis (which replace the axioms) are true in fact, since 

this is a question outside the scope of pure mathematics. The geometry which 

is required by the engineer or the astronomer is not a branch of pure mathe¬ 

matics, but a branch of physics. Indeed, in the hands of Einstein geometry 

has become identical with the whole of the general part of theoretical physics: 

the two are united in the general theory of relativity.” (Bertrand Russell: 

The Analysis of MoMcTj London, 1927.) 
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Hume they failed against the thesis of the non-Euclideans: 
(a) the axioms of traditional geometry “are convenient 
assumptions and not a priori necessities of thought or per¬ 
ception”; (b) there are possible any number of a priori pos- 
tulational systems, in addition to the EucUdean, defining 
different kinds of ideal space; (c) the geometry of our world 
space is a matter of experience, and as that is enlarged, the 
refinement of our geometry must continue. 

VIII 

Perhaps the two greatest nineteenth-century advances of 
thought were made by mathematics and biology. While the 
first deposed, as sole authority, a system regnant almost 
since the beginning of science, biology took man from his 
pedestal of isolation and assigned him a place in the Linnaean 
table. “While Huxley, the Duke of Argyll and the bishops 
were exciting themselves and the world about Darwin and 
the Book of Genesis,” the non-Euclideans reaffirmed, as 
consolation for their annihilating scepticism in demonstrat¬ 
ing the tentative character of human judgments even in 
mathematics, the almost unlimited freedom of man’s 
thought. In this adventure of ideas, Clifford by tempera¬ 
ment and speculative powers felt himself at home. How he 
appraised the work of Lobachevsky, almost lyrically, is re¬ 
vealed in the following passage: 

“What Vesalius was to Galen, what Copernicus was to Ptolemy, 
that was Lobatchewsky to Euchd. There is, indeed, a somewhat 
instructive parallel between the last two cases. Copernicus and 
Lobatchewsky were both of Slavic origin. Each of them has 
brought about a revolution in scientific ideas so great that it can 
only be compared with that wrought by the other. And the reason 
of the transcendent importance of these two changes is that they 
are changes in the conception of the Cosmos. Before the time of 
Copernicus, men knew all about the Universe. They could tell you 

“ Sir William Dampier: A History of Science and Its Relations with Phi¬ 

losophy and Religion. Cambridge, England, 1936. 



Introduction xliii 

in the schools, pat off by heart, all that it was, and what it had 
been, and what it would be. There was the flat earth, with the blue 
vault of heaven resting on it like the dome of a cathedral, and the 
bright cold stars stuck into it; while the sun and planets moved 
in crystal spheres between. Or, among the better informed, the 
earth was a globe in the centre of the universe, heaven a sphere 
concentric with it; intermediate machinery as before. At any rate, 
if there was anything beyond heaven, it was a void space that 
needed no further description. The history of all this could be 
traced back to a certain definite time, when it began; behind 
that was a changeless eternity that needed no further history. Its 
future could be predicted in general terms as far forward as a cer¬ 
tain epoch, about the precise determination of which there were, 
indeed, differences among the learned. But after that would 
come again a changeless eternity, which was fully accounted for 
and described. But in any case the Universe was a known thing. 
Now the enormous effect of the Copernican system, and of the 
astronomical discoveries that have followed it, is that, in place 
of this knowledge of a little, which was called knowledge of the 
Universe, of Eternity and Immensity, we have now got knowledge 
of a great deal more; but we only call it the knowledge of Here and 
Now. We can tell a great deal about the solar system; but, after 
all, it is our house, and not the city. We can tell something about 
the star-system to which our sun belongs; but, after all, it is our 
star-system, and not the Universe. We are talking about Here 
with the consciousness of a There beyond it, which we may know 
some time, but do not at all know now. . . . This, then, was the 
change effected by Copernicus in the idea of the Universe. But 
there was left another to be made. For the laws of space and mo¬ 
tion . . . implied an infinite space and infinite duration, about 
whose properties as space and time everything was accurately 
known. The very constitution of those parts of it which are at 
an infinite distance from us, ^geometry upon the plane at infinity,’ 
is just as well known, if the Euclidean assumptions are true, as 
the geometry of any portion of this room. ... So that here we 
have real knowledge of something at least that concerns the 
Cosmos; something that is true throughout the Immensities and 
the Eternities. That something Lobatchewsky and his successors 
have taken away. The geometer of today knows nothing about the 
nature of actually existing space at an infinite distance; he knows 
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nothing about the properties of this present space in a past or future 
eternity. He knows, indeed, that the laws assumed by Euclid are 
true with an accuracy that no direct experiment can approach . . . 
but he knows this as of Here and Now; beyond his range is a There 
and Then of which he knows nothing at present, but may ultimately 
come to know more. So, you sec, there is a real parallel between 
the work of Copernicus and his successors on the one hand, and 
the work of Lobatchewsky and his successors on the other. . . 

Completing his theme, Clifford analyses the four funda¬ 
mental postulates upon which the ordinary Euclidean con¬ 
ception of space is based. What is their necessary order and 
classification? Which postulates are true independently of 
the others? By adopting the contraries of certain of the 
postulates, what new geometries can be developed? 

The first postulate states that space is continuous, with¬ 
out breaks or gaps of any kind. But continuity, Clifford ar¬ 
gues, is an impression gathered from our senses. And with 
respect to space our senses may be deceiving us as thoroughly 
as when they tell us that water is continuous, that a moving 
picture has no breaks or gaps. In such instances science cor¬ 
rects our impressions so that we recognize the “continuous” 
medium or phenomenon as consisting of separate little pieces, 
so closely joined or following upon one another so quickly 
in time that we are unable to perceive the discontinuity and 
separateness. The instruments of physics and chemistry 
further reveal the breaks, the atomicity, of smooth, compact 
objects wholly unbroken in appearance. What proof have 
we that space is not of the same nature, smooth in appear¬ 
ance but actually criss-crossed, say, by a lacework of tiny 
fissures. The Euchdean postulate of continuous space there¬ 
fore waits upon experience. While, as Clifford admits, ob¬ 
servation has not yet disclosed instances of a discontinuous 
space, there is no certainty, nor even a likelihood, that it 
will never do so. Continuous space is not one of the “eter¬ 
nities”; it is not necessarily and universally true. 

The second postulate relates to “the flatness of space in 
its smallest parts.” Many attempts have been made to de- 
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fine this concept simply. But it is not a simple idea, especially 
in relation to space.^^ The matter is certainly put more easily 
by analogy, in two dimensions. Chfford gives the example 
for a curved surface: 

If you perceive a portion of the surface of a very large sphere, 
such as the earth, it appears to you to be fiat. If, then, you take a 
sphere of say a foot diameter, and magnify it more and more, you 
will find that the more you magnify it the flatter it gets. . . . Any 
curved surface which is such that the more you magnify it the 
flatter it gets, is said to possess the property of elementary flat¬ 
ness.'' 

H. J. S. Smith in his Introduction to Clifford's Mathematical 
Papers offers what is perhaps the most intuitable extension 
of the concept to space of three dimensions: A space which is 
flat in its smallest parts is so constituted 'Hhat if anywhere 
in it we take three points very near to one another and join 
them by the shortest lines that can possibly be drawn, the 
triangular figure so formed will lie very nearly in a plane. . . . 

The universality of this postulate Clifford also doubts. 
For as he says: 

‘‘we have merely to point to the example of polished surfaces. 
The smoothest surface that can be made is the one most com¬ 
pletely covered with the minutest ruts and furrows. Yet geometrical 
constructions can be made with extreme accuracy upon such a sur¬ 
face, on the supposition that it is an exact plane. If, therefore, 
the sharp points, edges, and furrows of space are only small enough, 
there will be nothing to hinder our conviction of its elementary 
flatness. It has even been remarked by Riemann that we must 
not shrink from this supposition if it is foimd useful in explaining 
physical phenomena.” 

^ As Clifford remarks, Euclid^s less general equivalent of the postulate 

seems so childishly self-evident, so tautologous, *‘that you will wonder how 

anybody could make all this fuss.” His fourth postulate says: “All right angles 

are equal.” It requires the subtlest reasoning and the sharpest scrutiny of the 

obvious to discern the fact that this “self-evident” postulate entails the not so 

self-evident principle of elementary flatness. 

** “Now it seems that the empirical notions on which the metrical deter¬ 

minations of space are founded, the notion of a solid body and of a ray of 
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The third postulate is that of superposition. “According 
to this postulate a body can be moved about in space with¬ 
out altering its size or shape.” It is at the base of Euclid’s 
propositions relating to congruence. In another form the 
postulate states that “all parts of space are alike.” Con¬ 
sidered jointly with the fourth postulate, which Clifford 
names that of “similarity,” the two together are equivalent 
to the assumption that space is uniformly of zero curvature. 

“According to this postulate [the fourth], any figure may be 
magnified or diminished in any degree without altering its shape. 
If any figure has been constructed in one part of space, it may be 
reconstructed to any scale whatever in any other part of space, 
so that no one of the angles shall be altered, though all the lengths 
of lines will of course be altered. This seems to be a sufficiently 
obvious induction from experience; for we have all frequently 
seen different sizes of the same shape. ... It is easy to show that 
this involves the two postulates of Euclid: ‘Two straight lines 
cannot enclose a space,’ and ‘Lines in one plane which never meet 
make equal angles with every other line. ’ ” 

If the first two postulates are attacked on the side of “the 
very small,” the third and foiuth postulates are vulnerable 
on the side of “the very great.” To the extent that a given 
space deviates from the standard of elementary flatness “ 
extraordinarily complicated ad hoc geometries may be re¬ 
quired. These are closely tied to modern concepts of physics, 
partly foreshadowed by Clifford, suggesting, roughly speak¬ 
ing, that all phenomena, even matter itself, consist of wrinkles 

light, cease to be valid for the infinitely small. We are therefore quite at 

liberty to suppose that the metric relations of space in the infinitely small do 

not conform to the hypotheses of geometry; and we ought in fact to suppose 

it, if we can thereby obtain a simpler explanation of phenomena.” (Riemann: 

Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. Clifford*s transla¬ 

tion.) 

“ It should be remembered that elementary fiatness does not preclude 

curvature. A curved surface which grows less curved the more it is enlarged 

has this property; '^but if every succeeding power of our imaginary micro¬ 

scope disclosed new wrinkles and inequalities without end, then the surface 

does not possess the property. .. .” (L & E,) 
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or changes of curvature in space.®"* But if the postulate of ele¬ 
mentary flatness is retained and the fourth postulate of 
“similarity,” in so far as it relates to parallels, is abandoned, 
the way is open for the conventional non-Euclidean geome¬ 
tries. Assuming a constant negative curvature of space, the 
appropriate non-Euclidean geometry is that of Lobachevsky. 
Now referred to as a geometry of hyperbolic space, Loba¬ 
chevsky’s system replaces the parallel postulate of Euclid, 
with a hypothesis that tlwough a given point in the plane at 
least two lines parallel to a third may be drawn. In Loba¬ 
chevsky’s geometry the sum of the angles of every triangle 
is less than 180° and only triangles equal in area can have 
the same angles. The non-Euchdean geometry of Riemann, 
preferred by Chfford, assumes a constant positive curvature 
of space. Following Felix Klein’s terminology, in current 
use, this geometry is known as elliptic. It adopts the hy¬ 
pothesis that through a given point there can be drawn not 
a single line parallel to a given line and infers that the sum 
of the angles of every triangle is greater than 180°.®® Clifford 
describes a space of this kind as follows: 

^ In this connection it may be of interest to quote from an abstract of one 

of Clifford’s papers, appearing in the Cambridge Philosophical Society’s Pro- 
ceedings (1876). (The subject was introduced at greater length to English 

mathematicians in Clifford’s translation of Riemann’s inaugural dissertation: 

^‘On the Hypotheses that Lie at the Bases of Geometry.”) The paper bearing 

the title “On the Space-Theory of Matter” concludes with these words: 

“. . . I hold in fact 

“ (1) That small portions of space are in fact of a nature analogous to little 

bills on a surface which is on the average flat; namely, that the ordinary laws 

of geometry are not valid in them. 

“ (2) That this property of being curved or distorted is continually being 

passed on from one portion of space to another after the manner of a wave. 

“ (3) That this variation of the curvature of space is what really happens in 

that phenomenon which we call the motion of matter, whether ponderable or 

etherial. 

“ (4) That in the physical world nothing else takes place but this variation, 

subject (possibly) to the law of continuity. . . 

“This conception [of a constant positive curvature] lies at the bottom 

of Clifford’s theory of biquaternions, to which he devoted much continuous 

thought, and which was the origin of his researches into the classification of 

geometric algebras. A space of constant positive curvature is most easily repre- 
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. what is the nature of things on the supposition that the curva¬ 
ture of all space is nearly uniform and positive? In this case the 
Universe, as known, becomes again a valid conception; for the 
extent of space is a finite number of cubic miles. And this comes 
about in a curious way. If you were to start in any direction what¬ 
ever, and move in that direction in a perfect straight line ac¬ 
cording to the definition of Leibnitz; after travelling a most pro¬ 
digious distance, to which the parallactic unit—200,000 times the 
diameter of the earth’s orbit—would be only a few steps, you 
would arrive at—this place. Only, if you had started upwards, 
you would appear from below. Now, one of two things would be 
true. Either, when you had got half-way on your journey, you 
came to a place that is opposite to this, and which you must have 
gone through, whatever direction you started in; or else all paths 
you could have taken diverge entirely from each other till they 
meet again at this place. In the former case, every two straight 
lines in a plane meet in two points, in the latter they meet only in 
one. Upon this supposition of a positive curvature, the whole of 
geometry is far more complete and interesting; the principle of 
duality, instead of half breaking down over metric relations, ap¬ 
plies to all propositions without exception. In fact, I do not mind 
confessing that I personally have often found relief from the 
dreary infinities of homaloidal space in the consoling hope that, 
after all, this other may be the true state of things.” 

This discussion of ^‘The Philosophy of the Pure Sciences,^’ 
extended at some length, has none the less been confined to 
Clifford's treatment of geometry. His examination of other 
fundamental concepts in science maintains the same high 
level. I have been at some pains to quote substantial por¬ 
tions in full so as to preserve the flow of Clifford's style, the 
richness of his exposition, the aptness of his humour and il- 

Bented to the mathematician (in the absence of any possibility of imaging it 
to the mind) as the locus of an equation of the form 

+ 2/^ -f 2* 4* - constant 

in a flat space of four dimensions in which xyzw are rectangular coordinates. 
It is related to the two-dimensional surface of a sphere, just as in ordinary 
geometry space of three dimensions is related to a plane surface.” (H. J. S. 
Bmith, op. cit.) 
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lustrative gifts. It seemed appropriate on the further ground 
that this group of lectures, like all his writings, is out of 
print, and nowhere except perhaps in his technical memoirs 
are we afforded a better exhibition of Clifford’s powers, a 
deeper insight into the reach and fecundity of his thought. 

IX 

In 1874 Clifford was elected a Fellow of the Royal Society, 
having dechned earUer to have his name put forward, though 
certain of election, on the ground that he “did not want to 
be respectable yet.” The same year he dehvered a number 
of lectures on popular science as well as on social and ethical 
philosophy. Throughout his Ufe Clifford searched for a gen¬ 
eral philosophy he could make his own, but developed none 
that stands out as clearly as his interpretation of the pure 
sciences. One can make little of his theory of “mind-stuff,” 
obscure, involved, and unconvincing.’’ A harsh critic might 
condemn it with Chfford’s own phrase as “that rhetoric 
which frequently assumes the name of philosophy.” Pol¬ 
lock impUes that the concept of “mind-stuff” was a half¬ 
hearted idea that could not have satisfied Clifford for long, 
little more than a scaffolding in his thought; he may have 
advanced it as a sheer intellectual exercise without even a 
momentary commitment of behef.®” 

Evolutionist doctrines, to which Clifford gave so deeply 
of his mind, were the framework of his ethical precepts. To 
an even greater extent his temperament controlled his social 
and ethical views. These were imbued with the ideals of 

^L&E (P). 

^ Clifford “was more inclined than most English psychologists to believe 

in the possibility of constructing a definite metaphysical system, in which 

he was probably influenced by his admiration for Spinoza. . . . He agreed 

with Berkeley that mind is the ultimate reality; but held that consciousness 

as known to us is built up out of simple elements or atoms of ^mind-stuffy— 

the characteristic phrase which gives the keynote of theories full of sugges¬ 

tions, and showing curious affinities to other philosophies, but not fully worked 

out.yy (Article on Clifford by Leslie Stephen, Dictionary of National Biography.) 

^L&E. ^L&E (P). 
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freedom, with “the duty of independence and spontaneous 
activity. . . . That alone was right which was done of one’s 
own inner conviction . . . that was lifeless and evil which 
was done out of obedience to any external authority.” 
“There is one thing in the world,” Clifford wrote, “more 
wicked than the desire to command, and that is the will to 
obey.” 

Chfford attempted, in his writings on social, religious, and 
ethical beliefs, to develop his theories on the same objective 
basis as underlay his philosophy of science. It was consist¬ 
ent with his precept of denying the name of knowledge to 
any result not reached by scientific method.His test of 
theories lay in action and he sought moral and rehgious 
values—to quote from a passage remembered, but its author 
forgotten—“within the flow of experience, not in a realm of 
pre-existent being outside it.” As a protestant against es¬ 
tablished beliefs, he was no more prepared to accept eternal 
values in ethics than in geometry. His views are summarized 
in several passages from the essay on “The Scientific Basis 
of Morals”: 

“Every scientific fact is a short hand expression for a vast 
number of practical directions: if you want so-and-so, do so-and- 
so. If with this meaning of the word ‘Science,’ there is such a thing 
as a scientific basis of Morals, it must be true that,—(1) The 
maxims of Ethic are hypothetical maxims, (2) derived from ex¬ 
perience, (3) on the assumption of uniformity in nature. ...” 

Ethical maxims, Clifford holds, are learned by the tribe 
and not by the individual. 

« Ibid. » L&E (Clifford’s letters). 

*2 “Take Professor Clifford’s article on the ‘Ethics of Belief.’ He calls it 

‘guilt’ and ‘sin’ to believe even the truth without scientific evidence. . . . 

What we enjoy most in a Huxley or a Clifford is not the professor with his 

learning; but the human personality ready to go in for what it feels to be right, 

in spite of all appearances.” (William James: “The Sentiment of Ration¬ 

ality,” from The Will to Believe.) There is a further reference to Clifford, a 

comparison of his views on psychology with those of Thomas Huxley, in 

James’s Principles of Psychology, VoL I (edition of 1927), pp. 130-2. 
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Those tribes have on the whole survived in which conscience 
approved such actions as tended to the improvement of men^s 
characters as citizens and therefore to the survival of the tribe. 
Hence it is that the moral sense of the individual, though founded 
on the experience of the tribe, is purely intuitive; conscience gives 
no reasons. Notwithstanding this, the ethical maxims are pre¬ 
sented to us as conditional; if you want to live together in this 
complicated way, your ways must be straight and not crooked, 
you must seek the truth and love no lie. Suppose we answer, ‘I 
don^t want to live together with other men in this complicated 
way; and so I shall not do as you tell me.^ That is not the end of 
the matter, as it might be with other scientific precepts. For 
obvious reasons it is right in this case to reply, ^ Then in the name 
of my people I do not like you,^ and to express this dislike by ap¬ 
propriate methods. And the offender, being descended from a social 
race, is unable to escape his conscience, the voice of liis tribal self 
which says, ^ In the name of the tribe, I hate myself for this treason 
I have done. ’ ” 

But w^hile ethical maxims differ from scientific precepts 

in their compulsory aspect, they rest upon the same assump¬ 

tion of uniformity in nature. For that uniformity underlies 

the possibility of even unconscious adaptation to experi¬ 

ence, of language, and of general conceptions and statements, 

and without that adaptation the sense of moral reprobation 

and responsibility would not come into being. 

‘^It may be asked ^Are you quite sure that these observed uni¬ 
formities between motive and action, between character and mo¬ 
tive, between social influence and change of character, are ab¬ 
solutely exact in the form in which you state them, or indeed that 
they are exact laws of any form? May there not be very slight di¬ 
vergences from exact laws, which will allow of the action of an 
‘^uncaused will,'' or of the interference of some ^^extra-mundane 
force"?' I am sure I do not know. But this I do know: that our 
sense of right and wrong is derived from such order as we can ob¬ 
serve, and not from such caprice of disorder as we may fancifully 
conjecture; and that to whatever extent a divergence from exact¬ 
ness became sensible, to that extent it would destroy the most 
widespread and worthy of the acquisitions of mankind. 
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, , By these views we are led to conclusions partly negative, 
partly positive; of which, as might be expected, the negative are 
the most definite. 

First, then, Ethic is a matter of the tribe or community and 
therefore there are no ^self regarding virtues.^ The qualities of 
courage, prudence, etc., can only be rightly encouraged in so far as 
they are shown to conduce to the efficiency of a citizen; that is, 
in so far as they cease to be self-regarding. The duty of private 
judgement, of searching after truth, the sacredness of belief which 
ought not to be misused on unproved statements, follow only 
on showing of the enormous importance to society of a true 
knowledge of things. And any diversion of conscience from its 
sole allegiance to the community is condemned a priori in the 
very nature of right and wrong. 

‘^Next, the end of Ethic is not the greatest happiness of the 
greatest number. Your happiness is of no use to the community, 
except in so far as it tends to make you a more efficient citizen— 
that is to say, happiness is not to be desired for its own sake, but 
for the sake of something else. If any end is pointed to, it is the 
end of increased efficiency in each man\s special work, as well 
as in the social functions which are common to all. . . . 

Again, Piety is not Altruism. It is not the doing good to others 
as others, but the service of the community by a member of it, 
who loses in that service the consciousness that he is anything dif¬ 
ferent from the community. . . 

On balance, Clifford's more formal system of ethics is 
stilted by comparison with the warmth and wisdom so mani¬ 
fest in his personal conduct or letters. While he was never 
given to pontifying, his ethical philosophy appears old- 
fashioned in an age of Freud and Marx, of general moral 
and intellectual uncertainties; an age which has veered away 
from the tidy scientifiic materialism of the nineteenth century 
even as it has grown sadly aware of the limitations of science 
in meeting its social and ethical problems. That we are in need 
of more scientific method rather than less in all our exertions 
is a belief that men of reason share with Clifford. It is simply 
that he would have looked to science for solutions which we 
are either too wise to expect or too cynical to perceive. 
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In Clifford's personal life there was never a trace of cant, 

hypocrisy, or self-righteousness. Writing to Lady Pollock on 

his ^4deal theory’^ of behaviour, he concludes, character¬ 

istically: ^^All this, by the way, is only theory; my practice 

is just like other people^s.^’ Free from pretentiousness 

himself, Clifford was sharp in criticizing it in others. Of an 

acquaintance about to undertake a work in philosophy he 

remarked: 

‘‘He is writing a book on metaphysics, and is really cut out for 

it; the clearness with which he thinks he understands things and 
his total inability to express what little he knows will make his 
fortune as a philosopher/’ ^ 

But he was incapable of malice or personal enmity. Once 

he wrote: 

“A great misfortune has fallen upon me; I shook hands with 
-. 1 believe if all the murderers and all the priests and all the 
liars in the world were united into one man, and he came suddenly 
upon me round a corner and said, ‘How do you do?’ in a smiling 
way, I could not be rude to him upon the instant.” 

In a letter Clifford wrote to his wife the year before they 

were married, there is a noble expression of his faith: 

“Still there is room for some earnest person to go and preach 
around in a simple way the main straightforward rules that 
society has unconsciously worked out and that are floating in the 
air; to do as well as possible what one can do best; to work for the 
improvement of the social organization; to seek earnestly after 
truth and only to accept provisionally opinions one has not in¬ 
quired into; to regard men as comrades in work and their free¬ 
dom as a sacred thing; in fact, to recognize the enormous and fear¬ 
ful difference between truth and falsehood, right and wrong, and 
how truth and right are to be got at by free enquiry and the love 
of our comrades for their own sake and nobody else’s.” 

^LiScE (Clifford's letters). ^ L Sc E (P). 

^L&E (P). ^ L Sc E (CUfford^s letters). 
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X 

On April 7, 1875 Clifford married Lucy Lane. When he 

took leave of absence from University College on the occasion 

of his marriage, he informed “his class that he was obliged 

to be absent on important business which would probably not 

occur again.’' His wife outlived him by half a century and 

became well known as a novelist and dramatist. Their mar¬ 

riage was one of unmixed happiness, and the two little girls 

that were born to them brought Chfford great joy. He loved 

all children, and for his own delighted in making up new 

games, fairy tales, and poems. Some of his fables he con¬ 

tributed to a collection. The Little People. He recognized the 

urgent need to plan the education of children so as to make 

it alive and interesting, and to extend its opportunities and 

its benefits. 

“I have a scheme [he wrote to Pollock in 1876] which has 
been communicated in part to MacMillan, and which grows hke 
a snowball. It is founded on Pleasant Pages the book I was taught 
out of; which is a series of ten minutes’ lessons on the Pestalozzian 
plan of making the kids find out things for themselves: history of 
naughty boys on Monday, animals on Tuesday, bricks on Wednes¬ 
day, Black Prince on Thursday, and so on. . . . Well, I first want 
that brought up to today, both in choice of subject and in ac¬ 
curacy . . . then I want it taught on the Russian system, in dif¬ 
ferent languages on successive days . . . more particularly we must 
get published excellent little manuals at twopence or threepence 
for the use of Board and other primary schools. I do not even 
know that penny schoolbooks would not be a successful move . . . 
printed by the million. ... Of such a size could be made a very 
good elementary schoolbook of arithmetic, geometry, animals, 
plants, physics. . . .” 

In a letter to Lady Pollock after the birth of his first child 

Clifford wrote: 

^L&E (P). ^ L & E (CMord^s letters). Ibid. 



Introduction Iv 

“I wrote to Fred about the education of our infants. I am very 
gjad we have both begun with girls, because it will be so good for 
the other children to have an elder sister. ... I have thought of 
a way to make them read and write shorthand by means of little 
sticks (not to whop them with but to put together on a table and 
make the shorthand signs). Ask G whether she thinks they had 
better learn to sing on the sol-fa system; it is very amusing and 
seems to me more adapted for children than the other. Of course 
I can teach them to stand on their heads.” 

As for the ethical training of children, in his last essay, and 
one of his best, “Virchow on the Teaching of Science,” ap¬ 
pearing in Nineteenth Century, April 1878, Clifford makes a 
strong plea against the teaching of “unproved doctrine about 
body and mind; the conclusion that a man’s consciousness 
survives the decay of his body.” We have no right “to teach 
little children as a known fact” what is “a hope, a con¬ 
jecture, an aspiration,” however strongly we may desire 
that it should be true, “that better evidence will shortly be 
forthcoming.” If you must teach it at all, teach it as some¬ 
thing that may possibly be true but is certainly not the es¬ 
tablished fact. The reasons for this caution “are deeper and 
stronger than the merely intellectual ones, because of the 
vast hold of this doctrine upon the hearts, and its serious 
influence upon the actions of men.” For one thing, by teach¬ 
ing it too early, you “make it familiar as an ill-understood 
conception, weaken the power it might have for good and 
help the perversion of it to superstitious uses. The second 
point to be considered is the frightful loss and disappoint¬ 
ment you prepare for your child if, as is most probable in 
these days, he becomes convinced that the doctrine is founded 
on insufficient evidence. It is not merely that you have 
brought him up as a prince, to find himself a pauper at 
eighteen. He may have allowed this doctrine to get inex¬ 
tricably intertwined with his feelings of right and wrong. 
Then the overthrow of one will, at least for a time, endanger 
the other. ...” 

The happiness Clifford shared with children, his unaf- 
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fected gaiety in their company, his deep concern with their 
problems of learning and adjustment, stand in poignant con¬ 
trast to the brief period he lived to spend with his own. 

In 1876 the first alarming signs of tuberculosis appeared. All 
his fife he had burdened his physical powers. The abundant 
but self-consuming nervous energy, the warfare against false 
beliefs, the self-goading search for new riddles and new chal¬ 
lenges, the full submission to the demands of his intellect, were 
altogether out of proportion to what the physical machine 
could endure. His mother’s early death should have served 
as forewarning and precept; there were other signs, before 
the more serious ones, that he was using his substance faster 
than it could be replaced. Rational in other matters, to this 
he would give no heed. Indeed in his charming and perverse 
naivet6 he imagined that to overtax himself, to talk or write 
through the entire night, was good “training in versatility 
and disregard of circumstances.” But, as Pollock remarks, 
“he fancied himself to be making investments when he was 
in fact living on his capital.” 

Reluctantly he agreed to take six months’ leave of absence, 
which he spent travelling with his wife in Algeria and Spain. 
The rest and change were beneficial and he returned to Eng¬ 
land somewhat improved. In the next year and a half, de¬ 
spite his illness and the distress occasioned by the death of 
his father, Clifford accelerated his work, issuing two of his 
most celebrated papers, “On the Canonical Form and Dis¬ 
section of a Riemann’s Surface,” “On the Classification of 
Loci,” along with other mathematical memoirs, an excel- 

“ L (P). “ Ibid. 

Unfortunately an unfinished memoir. 

^‘The application of Abelian functions to this new aspect of geometry 

awakened all Clifford's enthusiasm. He spoke to me of this part of his theory 

as opening a boundless field for new researches—as * altogether too big a things 

for one man to manage. . . . How much may have perished unrecorded we 

cannot tell, but, however this may be, no geometer will look for a more splen¬ 

did monument of Clifford’s genius, or for a more touching memorial of his 

early death, than is to be found in the unfinished pages 'On the Classification 

of Loci ’ which embody the last and perhaps the greatest effort of his inventive 

powers.” (H. J. Stephen Smith, op. cit.) 
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lent volume on dynamics, a number of essays, lectures, and 

reviews. He made no concession in his manner to the terrible 

disease that was destroying him; he charged his strength as 

carelessly as before. There came, inevitably—surprising only 

that he was given so much grace—a collapse, in February 

1878. So dangerous was his condition that as soon as he had 

recovered sufficiently to travel, he left England, accom¬ 

panied by his wife, for the Mediterranean. At Monte Gene- 

roso, in Italy, he appeared to improve. On strict orders his 

work had been left behind, but he wrote a few letters, which 

even in their casual phrase carried his talent and his spirit. 

In August 1878 he came home “looking very ill and feeble 

to ordinary observation, but much better to those who had 

seen him before he started.” ^ Before he had a chance to 

leave in the autumn, he suffered another relapse. His condi¬ 

tion was so hopeless that it was difficult for his friends to 

understand “how he maintained his cheerfulness, patience 

and unselfishness.” 

At the beginning of 1879 Clifford was fast losing strength. 

Travel was dangerous, but the Enghsh climate was worse. 

It was certain he would be more comfortable in the south, 

and so, although his friends feared he would not live through 

the journey, he sailed for Madeira.^® For some weeks after 

his arrival there was a sUght improvement—not enough to 

warrant hope, but enough to give him a few hours of peace 

in the fine sunshine. Knowing the end was coming, he gave 

^L&E (P). « Ibid. 

^ After Clifford had left for Madeira, a number of his friends got together 

to offer him a testimonial of their affection and admiration. The meeting is 

described in Nature (February 13, 1879, Vol. XIX, p. 349): “The friends of 

Professor Chfford, who has been compelled by ill health to relinquish active 

work and reside in Madeira, are anxious to present him with a substantial 

testimonial in public recognition of his great scientific and literary attain¬ 

ments. At a meeting held at the Royal Institution ... it was resolved that 

a fund should be raised for the above-mentioned purpose, and that the sums 

received should be placed in the hands of trustees for the benefit of Professor 

Clifford and his family.^^ Among the signatories were Dr. William Spottis- 

wood, president of the Royal Society, T. H. Huxley, Sir Frederick Pollock, 

H. J. 8. Smith, John Tyndall, Sir John Lubbock, Hon. Mr. Justice Stephen. 
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careful directions for the disposal of his works. To the last 
he retained interest in Ms friends and world affairs. On March 
3, 1879, aged thirty-five, he died. 

“And tMs,” writes Pollock, “is the witness of Ms ending, 
that as never man loved life more, so never man feared death 
less. He fulfilled well and truly that great saying of Spinoza, 
often in Ms mind and on his hps: ‘Homo liber de nulla re 
minus quam de morte cogitat.’ ” 

XI 

Clifford’s own writings, a few letters. Pollock’s biographi¬ 
cal introduction to the Lectures and Essays, the article by 
Leslie Stephen, another friend, in the Dictionary of National 
Biography, the obituary notices,®* and a handful of scattered 
articles and reviews of Clifford’s books in the pages of 
Nature, the Fortnightly Review, and other Enghsh magazines 
—out of these meagre sources, all that were available, this 
wholly inadequate appreciation has been drawn. In the 
Mstories and Uterature of mathematics there are tributes 
abundant to Clifford’s powers as a mathematician,®® powers 

” “There is nothing over which a free man ponders less than death. 

(Spinoza^s Ethics^ P. IV, Prop. 67.) L & E (P). 

“ Perhaps the best-known of the obituaries is the one in the Athenaeum of 

March 8, 1879. It states in part: “Clifford was admitted on all hands to be 

the most remarkable mathematician of his generation, and promised to be a 

second Cayley. His general acquirements, too, were singularly great.” It is 

conceded that even if some of his philosophical articles “failed to convince,” 

they always “commanded attention.” “The continued strain of mathematical 

study and metaphysical polemic proved too severe for his physical powers. . . . 

Of his gentle, affectionate disposition, his unaffected simplicity, and his 

charm of manner, this is not the place to speak. To his friends his loss is almost 

irreparable.” The obituary in Nature of March 13 refers to Clifford as “One 

of the deepest thinkers and most brilliant writers this century has seen.” 

“He was,—some of his friends may think unfortunately,—most generally 

known for his philosophical and polemical writings. [But his] fame will rest 

on no such narrow basis.” 

Writing of the growth of non-Euclidean geometry in his Vorlesungen vber 

die Entwicklung der Mathematih im 19 Jahrhundert^ the famous geometer Felix 

Klein comments on Clifford: “I remember him with particular pleasure as one 

who immediately fully understood me and, also, soon went beyond me.” 
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embodied in his many papers, some of clarity and depth, ar¬ 

tistically finished; others fragmentary, but rich with ideas. 

No detailed critique of his mathematical contributions has 

been attempted, an appropriate task, rather, for a full 

biography, long overdue. Certainly in this study there is 

nothing of novelty or originality. So far as Pollock’s bio¬ 

graphical essay is concerned, I admit to a shameless plagia¬ 

rism : there was no alternative on consideration of the unique 

importance of the source. I might have reprinted Pollock’s 

piece entire, but not all was suited to the present purpose 

and it seemed preferable to devote more space than did he 

to Clifford’s philosophy of science. The debt must be ac¬ 

knowledged with the hope that as a result of my incurring 

it the reader will have come closer to Clifford as he really was. 

How Tlie Common Sense of the Exact Sciences came to be 

written is described by Karl Pearson in his Preface (retained 

in tliis volume) to the original edition. Clifford had ambitious 

plans for writing a fresh series of texts re-evaluating basic 

concepts in mathematics and physics, but he hved to finish 

no more than the Elements of Dynamics and several chap¬ 

ters of the present work. Sharing his views on the founda¬ 

tions of science, Pearson, a noted mathematician and 

geneticist, later the author of the well-known Grammar of 
Science, decided as a tribute to Clifford to revise his manu¬ 

script and complete it by adding a large amount of new ma¬ 

terial. It may thus be supposed that the work presents Chf- 

ford’s judgments, more fully worked out, as he himself would 

have wished. Despite the measure of his contribution Pearson 

permitted the use of his name only in the form of initials 

under the introduction. 

The task of collecting Clifford’s scattered notes and as¬ 

sembling the crude manuscript was originally undertaken by 

Professor R. C. Rowe, but at his death Pearson continued 

the job. 
To laud The Common Sense of the Exact Sciences would 

be superfluous. It is known to every student of the physical 

sciences; leading scientific works contain references and quo- 
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tations; it is most often mentioned in writings on popular 

science and the philosophy of science.™ Like other great 

books it is praised more often than read, a neglect partly 

attributable to the fact that the volume has been so long 

out of print. 
Much of the book exhibits Chfford’s (and Pearson’s) ex¬ 

traordinary virtuosity in the art of making hard things 

seem easy. Throughout, one feels the impulsion, the intellec¬ 

tual range and vigour of Clifford’s spirit. But it is not an 

easy book. It treats of ideas inherently subtle and difficult, 

rendered more so by dogmatic preconceptions as to their 

obvious and unanalysable character. In dissecting such 

concepts as space, number, motion, Clifford adopts the geo¬ 

metric, intuitive method. Some concepts, however, are im¬ 

permeable to this approach, while others lend themselves 

not merely to a clearer understanding but to an unhampered 

development only by the use of analytic instruments. The 

enormous fruitfulness of the union of algebra and geometry 

must not be permitted to obscure the fact that algebra,®' as 

well as geometry, retains autonomous functions; there are 

paths that one can travel and the other cannot. Pure rea¬ 

son sometimes hghts the way where the lamp of intuition 

will not avail. That abstract transactions in symbols can 

be translated into the pictures of geometry and vice versa is 

aesthetically and intellectually satisfying. It demonstrates 

the generahty, the interrelatedness, and the symmetry of 
The Aihenseum of July 11, 1885 in reviewing The CoTtimon Sense of the 

Exact Sciences comments: There is a marvellous charm about Clifford's 

writing. He had a singular faculty of presenting difficult truths in words of a 

startling clearness and brevity . . . [throughout] he eschews the ponderous 

plirases of learned pedantry. . . P. G. Tait, in Nature (June 11, 1885), con¬ 

cludes that it is “in many respects a very good book,” but his review fails to 

conceal a note of asperity as well as condescension. Tait, an eminent physicist, 

had on at least one occasion fared poorly at Clifford's hands: in Clifford's 

smashing review of The Unseen Universe; or Physical Speculations on a Future 

State, a somewhat confused philosophical work of which Tait was co-author. 

The review, appearing in the Fortnightly Review, was one of Chfford's best- 

known polemics and, with its biting sarcasm and agnosticism, was not des¬ 

tined to win friends. 

The term here is used broadly to include analysis. 
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mathematics; it gives to mathematics a concreteness em¬ 
phasizing its connection with the physical world. While 
these are values not to be contemned, they must not be re¬ 
garded as the touchstone of mathematical activity. The final 
stamp of the Q.E.D. depends upon logic, not pictures. 

Although Clifford’s exposition of the number concept is 
an instance of his singular skill, the real number system as 
developed since his time affords a more convincing and 
logical structure. The greater portion of the chapters on 
“Space,” “Position,” and “Motion” are brilliant examples 
of the didactic art and have not been outmoded by newer 
methods. Wherever possible Clifford and Pearson eschew 
the algebraic symbol and equation; inordinately complex 
ideas, such as the bending of space, are untangled and their 
elements laid bare with the aid of a prose style, clean and of 
measured pace, embodying the first principles of successful 
teaching. Yet Pearson admits that to arrive at complete 
understanding in certain parts of mathematics, or at least 
an understanding sufficient to permit of further advances, we 
cannot depend on geometric conception alone: 

“ It may be held by some that the postulate of the sameness of 
our space is based upon the fact that no one had hitherto been able 
to form any geometrical conception of space-curvature. Apart 
from the fact that mankind habitually assumes many things of 
which it can form no geometrical conception (mathematicians the 
circular points at infinity, theologians transubstantiation), I 
may remark that we cannot expect any being to form a geo¬ 
metrical conception of the curvature of his space till he views it 
from space of a higher dimension, that is, practically, never.” 

The minor qualifications may frankly be admitted, for the 
whole of the book forms a distinguished legacy of an out¬ 
standing intellect. Modern advances in mathematics and 
physics, advances either superseding Clifford’s ideas or, more 
often, following along paths he had charted to regions he had 
prefigured, have been so extensive since The Common Seme 
of the Exact Sciences appeared that one cannot but admire 
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how fresh it remains in outlook, how httle left behind by 

another century. 

I have assumed few editorial prerogatives. Except for 

modernization of some of the symbols, correction of obvious 

misprints and errors, the addition of a number of diagrams, 

and the redrawing of all, the text of the present edition of 

The Common Sense of the Exact Sciences is taken unaltered 

from the third edition of 1899. Alterations in the text itself 

were never considered. Such notes as appear are intended to 

clarify occasional obscurities. 

James R. Newman 



PREFACE 

In March 1879 Clifford died at Madeira, six years after¬ 

wards a posthumous work is for the first time placed before 

the public. Some explanation of this delay must be attempted 

in the present preface. 

The original work as planned by Clifford was to have 

been entitled The First Principles of the Mathematical 

Sciences Explained to the Non-Mathematical, and to have 

contained six chapters, on Number, Space, Quantity, Position, 

Motion, and Mass respectively. Of the projected work Chf- 

ford in the year 1875 dictated the chapters on Number and 

Space completely, the first portion of the chapter on Quan¬ 

tity, and somewhat later nearly the entire chapter on Motion. 

The first two chapters were afterwards seen by him in proof, 

but never finally revised. Shortly before his death he ex¬ 

pressed a wish that the book should only be published after 

very careful revision, and that its title should be changed to 

The Common Sense of the Exact Sciences. 

Upon Clifford’s death the labour of revision and comple¬ 

tion was entrusted to Mr. R. C. Rowe, then Professor of 

Pure Mathematics at University College, London. That 

Professor Rowe fully appreciated the difficulty and at the 

same time the importance of the task he had undertaken is 

very amply evidenced by the time and care he devoted to the 

matter. Had he lived to complete the labour of editing, the 

work as a whole would have undoubtedly been better and 

more worthy of Clifford than it at present stands. On the 

sad death of Professor Rowe, in October 1884, I was re¬ 

quested by Messrs. Kegan Paul, Trench, & Co. to take up 

the task of editing, thus left incomplete. It was with no 

light heart, but with a grave sense of responsibility that I 

undertook to see through the press the labour of two men 

for whom I held the highest scientific admiration and per- 
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sonal respect. The reader will perhaps appreciate my diffi¬ 

culties better when I mention the exact state of the work 

when it came into my hands. Chapters I and II, Space and 

Number; half of Chapter III, Quantity (then erroneously 

termed Chapter IV); and Chapter V, Motion, were in proof. 

With these proofs I had only some half-dozen pages of the 

corresponding manuscript, all the rest having unfortu¬ 

nately been considered of no further use, and accordingly 

destroyed. How far the contents of the later proofs may 

have represented what Clifford dictated I have had no means 

of judging except from the few pages of manuscript in my 

possession. In revising the proofs of the first two chapters, 

which Clifford liimself had seen, I have made as little altera¬ 

tion as possible, only adding an occasional foot-note where 

it seemed necessary. 

After examining the work as it was placed in my hands, 

and consulting Mrs. Clifford, I came to the conclusion that 

the chapter on Quantity had been misplaced, and that the 

real gaps in the work were from the middle of Chapter III 

to Chapter V, and again at the end of Chapter V. As to the 

manner in which these gaps were to be filled I had no defi¬ 

nite information whatever; only after my work had been 

completed was an early plan of Clifford’s for the book dis¬ 

covered. It came too late to be of use, but it at least con¬ 

firmed our rearrangement of the chapters. 

For the latter half of Chapter III and for the whole of 

Chapter IV (pp. 134-204) I am alone responsible. Yet what¬ 

ever there is in them of value I owe to Clifford; whatever 

is feeble or obscure is my own. 

With Chapter V my task has been by no means light. It 

was written at a time when Clifford was much occupied 

with his theory of “Graphs,” and found it impossible to con¬ 

centrate his mind on anything else: parts of it are clear and 

succinct, parts were such as the author would never have 

allowed to go to press. I felt it impossible to rewrite the 

whole without depriving the work of its right to be called 

Clifford’s, and yet at the same time it was absolutely neces- 
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sary to make considerable changes. Hence it is that my re¬ 

vision of this chapter has been much more extensive than 

in the case of the first two. With the result I fear many will 

be dissatisfied; they will, however, hardly be more con¬ 

scious of its deficiencies than I am. I can but plead the condi¬ 

tions under which I have had to work. One word more as 

to this chapter. Without any notice of mass or force it seemed 

impossible to close a discussion on motion; something I felt 

must be added. I have accordingly introduced a few pages 

on the laws of motion. I have since found that Clifford in¬ 

tended to write a concluding chapter on mass. How to ex¬ 

press the laws of motion in a form of which Clifford would 

have approved was indeed an insoluble riddle to me, because 

I was unaware of his having written anything on the sub¬ 

ject. I have accordingly expressed, although with great 

hesitation, my own views on the subject; these may be con¬ 

cisely described as a strong desire to see the terms matter 

and force, together with the ideas associated with them, 

entirely removed from scientific terminology—to reduce, in 

fact, all dynamic to kinematic. I should hardly have ven¬ 

tured to put forward these views had I not recently dis¬ 

covered that they have (allowing for certain minor differ¬ 

ences) the weighty authority of Professor Mach, of Prag.^ 

But since writing these pages I have also been referred to a 

discourse delivered by Clifford at the Royal Institution in 

1873, some account of which appeared in Nature, June 10, 

1880. Therein it is stated that “no mathematician can give 

any meaning to the language about matter, force, inertia 

used in current text-books of mechanics.” * This fragmentary 

account of the discourse undoubtedly proves that Clifford 

held on the categories of matter and force as clear and 

original ideas as on all subjects of which he has treated; only, 

alas! they have not been preserved. 
1 See his recent book, Die Mechanik in ihrer Eniwickelung. Leipzig, 1883. 

* Mr. R. Tucker, who has kindly searched Clifford's note-books for any¬ 

thing on the subject, sends me a slip of paper with the following words in 

Clifford's handwriting: “Force is not a fact at all, but an idea embodying what 

is approximately the fact.” 
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In conclusion I must thank those friends who have been 

ever ready with assistance and advice. Without their aid I 
could not have accomplished the httle that has been done. My 

sole desire has been to give to the pubhc as soon as possible 

another work of one whose memory will be revered by all 
who have felt the invigorating influence of his thought. Had 

this work been published as a fragment, even as many of 
us wished, it would never have reached those for whom Chf- 

ford had intended it. Completed by another hand, we can 
only hope that it will perform some, if but a small part, of 
the service which it would undoubtedly have fulfilled had 
the master fived to put it forth. 

K. P. 
University College, London: 

February 26, 1885 

The third edition of this book is a reprint of the first, 
with a few corrections, which I owe principally to the kind¬ 
ness of readers. 

K. P. 
October 10, 1886 
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CHAPTER I 

Number 

§1. Number is Independent of the order of Counting '■ 

The word which stands at the head of this chapter contains 

six letters. In order to find out that there are six, we count 

them; n one, u two, m three, 6 four, e five, r six. In this 

process we have taken the letters one by one, and have put 

beside them six words wliich are the first six out of a series 

of words that we always carry about with us, the names of 

numbers. After putting these six words one to each of the 

letters of the word number, we found that the last of the 

words was six; and accordingly we called that set of letters 

by the name sL\. 

If we counted the letters in the word “chapter” in the 

same way, we should find that the last of the numeral words 

thus used would be seven; and accordingly we say that there 

are seven letters. 

But now a question arises. Let us suppose that the letters 

of the word number are printed upon separate small pieces 

of wood belonging to a box of letters; that we put these into 

a bag and shake them up and bring them out, putting them 

down in any other order, and then count them again; we 

shall still find that there are six of them. For example, if 

they come out in the alphabetical order b e m n r u, and we 

put to each of these one of the names of numbers that we 

have before used, we shall still find that the last name will 

be six. In the assertion that any group of things consists of 

six things, it is implied that the word six will be the last of 

the ordinal words used, in whatever order we take up this 

^ Clifford confines his discussion to cardinal numbers. Ordinal numbers 

require a separate mathematical treatment.—J.R.N. 

3 
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group of things to count them. That is to say, the number of 
any set of things is the same in whatever order we count them. 

Upon this fact, which we have observed with regard to 

the particular number six, and which is true of all numbers 

whatever, the whole of the science of number is based. We 

shall now go on to examine some theorems about numbers 

wliich may be deduced from it. 

§2. A Sum is Independent of the order of Adding 

Suppose that we have two groups of things; say the letters 

in the word “number,” and the letters in the word “chap¬ 

ter.” We may count these groups separately, and find that 

they come respectively to the numbers six and seven. We 

may then put them all together, and we find in this case 

that the aggregate group which is so formed consists of 

thirteen letters. 

Now this operation of putting the things all together may 

be conceived as taking place in two different ways. We may 

first of all take the six things and put them in a heap, and 

then we may add the seven things to them one by one. The 

process of counting, if it is performed in this order, amounts 

to counting seven more ordinal words after the word six. 

We may however take the seven things first and put them 

into a heap, and then add the six things one by one to them. 

In this case the process of counting amounts to counting six 

more ordinal words after the word seven. 

But from what we observed before, that if we count any 

set of things we come to the same number in whatever order 

we count them, it follows that the number we arrive at, as 

belonging to the whole group of things, must be the same 

whichever of these two processes we use. This number is 

called the sum of the two numbers 6 and 7; and, as we have 

seen, we may arrive at it either by the first process of adding 

7 to 6, or by the second process of adding 6 to 7. 

The process of adding 7 to 6 is denoted by a shorthand 

symbol, which was first used by Leonardo da Vinci. A little 
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Maltese cross (+) stands for the Latin plus, or the English 

increased by. Thus the words six increased by seven are written 

in shorthand 6 + 7. Now we have arrived at the result that 

six increased by seven is the same number as seven increased by 
six. To write this wholly in shorthand, we require a symbol 

for the words, is the same number as. The symbol for these 

is =; it was first used by an Englishman, Robert Recorde. 

Our result then may be finally written in this way:— 

6 + 7 = 7 + 6. 

The proposition which we have written in this symbohc 

form states that the sum of two numbers 6 and 7 is inde¬ 

pendent of the order in which they are added together. But 

this remark which we have made about two particular num¬ 

bers is equally true of any two numbers whatever, in conse¬ 

quence of our fundamental assumption that the number of 

things in any group is independent of the order in which we 

count them. For by the sum of any two numbers we mean 

a number which is arrived at by taking a group of things 

containing the first number of individuals, and adding to 

them one by one another group of things containing the 

second number of individuals; or, if we like, by taking a 

group of things containing the second number of individuals, 

and adding to them one by one the group of things contain¬ 

ing the first number of individuals. Now, in virtue of our 

fundamental assumption, the results of these two opera¬ 

tions must be the same. Thus we have a right to say, not 

only that 6 + 7 = 7 + 6, but also that 5 + 13 = 13 + 5, and 

so on, whatever two numbers we hke to take. 

This we may represent by a method which is due to Vieta, 

viz., by denoting each number by a letter of the alphabet. 

If we write a in place of the first number in either of these 

two cases, or in any other case, and b in place of the second 

number, then our formula will stand thus:— 

0/ + 6 = h + fl. 

By means of this representation we have made a state¬ 

ment which is not about two numbers in particular, but 
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about all numbers whatever. The letters a and b so used are 

something like the names which we give to things, for ex¬ 

ample, the name horse. When we say a horse has four legs, 

the statement will do for any particular horse whatever. It 

says of that particular horse that it has four legs. If we said 

“a horse has as many legs as an ass,” we should not be 

speaking of any particular horse or of any particular ass, 

but of any horse whatever and of any ass whatever. Just 

in the same way, when we assert that a -)- 6 = + a, we are 

not speaking of any two particular numbers, but of all num¬ 

bers whatever. 

We may extend tliis rule to more numbers than two. Sup¬ 

pose we add to the sum a + b a tliird number, c, then we 

shall have an aggregate group of things wliich is formed by 

putting together three groups, and the number of the aggre¬ 

gate group is got by adding together the numbers of the 

three separate groups. This number, in virtue of our funda¬ 

mental assumption, is the same in whatever order we add 

the three groups together, because it is always the same set 

of things that is counted. Whether we take the group of a 
things first, and then add the group of b things to it one by 

one, and then to this compound group of o + 6 tilings add 

the group of c things one by one; or whether we take the 

group of c things, and add to it the group of b things, and 

then to the compound group of c -f 6 things add the group 

of a things, the sum must in both cases be the same. We may 

write this result in the symbolic form a + 6-|-c = c + fe + a, 

or we may state in words that ihe sum of three numbers is 
independent of the order in which they are added together. 

This rule may be extended to the case of any number of 

numbers.^ However many groups of things we have, if we 

put them all together, the number of things in the resulting 

aggregate group may be counted in various ways. We may 

start with counting any one of the original groups, then we 

may follow it with any one of the others, following these by 

^ To the case of any finite number of numbers. For an infinite number of 

numbers (e.g., infinite series) the rule as stated would not be correct.—J.R.N, 
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any one of those left, and so on. In whatever order we have 
taken these groups, the ultimate process is that of counting 
the whole aggregate group of things; and consequently the 
numbers that we arrive at in these different ways must all 
be the same. 

§3. A Product is Independent of the order of Multiplying 

Now let us suppose that we take six groups of things 
which all contain the same number, say 5, and that we want 
to count the aggregate group which is made by putting all 
these together. We may count the six groups of five things 
one after another, which amounts to the same thing as add¬ 
ing 5 five times over to 5. Or if we like we may simply mix 
up the whole of the six groups, and count them without 
reference to their previous grouping. But it is convenient 
in this case to consider the six groups of five things as ar¬ 
ranged in a particular way. 

Let us suppose that all these things are dots which are 
made upon paper, that every group of five things is five dots 
arranged in a horizontal fine, and that the six groups are 
placed vertically under one another as in Figure 1. 

• • • • • 

6X5 = 5X6 

Fig. 1 

We then have the whole of the dots of these six groups 
arranged in the form of an oblong which contains six rows 
of five dots each. Under each of the five dots belonging to 
the top group there are five other dots belonging to the re- 
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maining groups; that is to say, we have not only six rows 
containing five dots each, but five columns containing six 
dots each. Thus the whole set of dots can be arranged in five 
groups of six each, just as well as in six groups of five each. 
The whole number of things contained in six groups of five 
each, is called six times five. We learn in this way therefore 
that six times five is the same number as five times six.* 

As before, the remark that we have here made about two 
particular numbers may be extended to the case of any two 
numbers whatever. If we take any number of groups of dots, 
containing all of them the same number of dots, and arrange 
these as horizontal lines one under the other, then the dots 
will be arranged not only in lines but in columns; and the 
number of dots in every column will obviously be the same 
as the number of groups, while the number of columns will 
be equal to the number of dots in each group. Consequently 
the number of things in a groups of h tilings each is equal to 
the number of things in b groups of a things each, no matter 
what the numbers a and b are. 

The number of things in a groups of b tilings each is called 
a times 6; and we learn in this way that o times b is equal to 
b times o. The number a times b is denoted by writing the 
two letters a and b together, o coming first; so that we may 
express our result in the symbohc form ab = ba. 

Suppose now that we put together seven such compound 
groups arranged in the form of an oblong like that we con¬ 
structed just now. They cannot now be represented on one 
sheet of paper, but we may suppose that instead of dots we 
have little cubes which can be put into an oblong box (Fig. 2). 
On the floor of the box we shall have six rows of five cubes 
each, or five columns of six cubes each; and there will be 

1 This definition of multiplication is based on the concept of addition alone. 
The modern definition uses two concepts: combination and addition. The 
number 5, say, is represented by a set consisting of five elements; the num¬ 
ber 6 by a set consisting of six elements. The product 5 times 6 is represented 
by a new set, each element of which is a combination of two elements, one 
from each of the original sets. The elements of the new set are then counted 
in the usual way.—J.R.N. 
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Fig. 2 

seven such layers, one on the top of another. Upon every 
cube therefore which is in the bottom of the box there will be 
a pile of six cubes, and we shall have altogether five times six 
such piles. That is to say, we have five times six groups of 
seven cubes each, as well as seven groups of five times six 
cubes each. The whole number of cubes is independent of 
the order in which they are counted, and consequently we 
may say that seven times five times six is the same thing as 
five times six times seven. 

But it is here very important to notice that when we say 
seven times five times sLx, what we mean is that seven 
layers have been formed, each of wliich contains five times 
six things; but when we say five times six times seven, we 
mean that five times six columns have been formed, each of 
which contains seven things. Here it is clear that in the one 
case we have first multiplied the last two numbers, and then 
multiplied the result by the first mentioned (seven times five 
times six = seven times thirty), while in the other case it is 
the first two numbers mentioned that are multiplied together, 
and then the third multiplied by the result (five times six 
times seven = thirty times seven). Now it is quite evident 
that when the box is full of these cubes it may be set upon 
any side or upon any end; and in all cases there will be a 
number of layers of cubes, either 5 or 6 or 7. And whatever 
is the number of layers of cubes, that will also be the number 
of cubes in each pile. Whether therefore we take seven layers 
containing five times six cubes each, or six layers containing 
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seven times five cubes each, or five layers containing six 
times seven cubes each, it comes to exactly the same thing. 

We may denote five times six by the symbol 5x6, and 
then we may write five times six times seven, 5x6x7. 

But now this form does not tell us whether we are to mul¬ 
tiply together 6 and 7 first, and then take 5 times the result, 
or whether we are to multiply 5 and 6 first, and take that 
number of sevens. The distinction between these two opera¬ 
tions may be pointed out by means of parentheses or brack¬ 
ets; thus, 5 X (6 X 7) means that the 6 and 7 must be first 
multiplied together and 5 times the result taken, while 
(5 X 6) X 7 means that we are to multiply 5 and 6 and then 
take the resulting number of sevens. 

We may now state two facts that we have learned about 
multiplication. 

First, that the brackets make no difference in the result, 
although they do make a difference in the process by which 
the result is attained; that is to say, 5 x (6 X 7) = (5 X 6) X 7. 

Secondly, that the product of these three numbers is inde¬ 
pendent of the order in which they are multiplied together. 

The first of these statements is called the associative law 
of multiplication, and the second the commutative law. 

Now these remarks that we have made about the result 
of multiplying together the particular three numbers, 5, 6, 
and 7, are equally applicable to any three numbers what¬ 
ever. 

We may always suppose a box to be made whose height, 
length, and breadth will hold any three numbers of cubes. 
In that case the whole number of cubes will clearly be inde¬ 
pendent of the position of the box; but however the box is 
set down it will contain a certain number of layers, each 
layer containing a certain number of rows, and each row 
containing a certain number of cubes. The whole number 
of cubes in the box will then be the product of these three 
numbers; and it will be got at by taking any two of the three 
numbers, multiplying them together, and then multiplying 
the result by the third number. 
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This property of any three numbers whatever may now 
be stated symbolically. 

In the first place it is true that a(6c) = (a&)c; that is, it 
comes to the same thing whether we multiply the product 
of the second and third numbers by the first, or the third 
number by the product of the first and second. 

In the next place it is true that abc = acb = bca, &c., and 
we may say that the product of any three numbers is inde¬ 
pendent of the order and of the mode of grouping in which 
the multiplications are performed. 

We have thus made some similar statements about two 
numbers and three numbers respectively. This naturally sug¬ 
gests to us that we should inquire if corresponding state¬ 
ments can be made about four or five numbers, and so on. 

We have arrived at these two statements by considering 
the whole group of things to be counted as arranged in a 
layer and in a box respectively. Can we go any further, and 
so arrange a number of boxes as to exhibit in this way the 
product of four numbers? It is pretty clear that we cannot. 

Let us therefore now see if we can find any other sort of 
reason for believing that what we have seen to be true in the 
case of three numbers—viz., that the result of multiplying 
them together is independent of the order of multiplying— 
is also true of four or more numbers. 

In the first place we will show that it is possible to inter¬ 
change the order of a pair of these numbers which are next 
to one another in the process of multiplying, without alter¬ 
ing the product. 

Consider, for example, the product of four numbers, abed. 
We will endeavour to show that this is the same thing as the 
product aebd. The symbol abed means that we are to take c 
groups of d things and then b groups like the aggregate so 
formed, and then finally a groups of bed things. 

Now, by what we have already proved, b groups of ed 
things come to the same number as c groups of bd things. 
Consequently, a groups of bed things are the same as a groups 
of cbd things; that is to say, abed = aebd. 
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It will be quite clear that this reasoning will hold no mat¬ 
ter how many letters come after d. Suppose, for example, 
that we have a product of six numbers abcdef. This means 
that we are to multiply / by e, the result by d, then def by c, 
and so on. 

Now in this case the product def simply takes the place 
which the number d had before. And b groups of c times def 
things come to the same number as c groups of b times def 
things, for this is only the product of three numbers, b, c, 
and def. Since then this result is the same in whatever order 
b and c are written, there can be no alteration made by mul- 
tiphcations coming after, that is to say if we have to multiply 
by ever so many more numbers after multiplying by a. It 
follows therefore that no matter how many numbers are 
multipUed together, we may change the places of any two of 
them wliich are close together without altering the product. 

In the next place let us prove that we may change the 
places of any two which are not close together. For example, 
that abcdef is the same thing as aecdbf, where b and e have 
been interchanged. We may do this by first making the e 
march backwards, changing places successively with d and 
c and b, when the product is changed into aebcdf; and then 
making b march forwards so as to change places successively 
with c and d, whereby we have now got e into the place of b. 

Lastly, I say that by such interchanges as these we can 
produce any alteration in the order that we like. Suppose 
for example that I want to change abcdef into dcfbea. Here I 
will first get d to the beginning; I therefore interchange it 
with a, producing dbcaef. Next, I must get c second; I do this 
by interchanging it with 6, this gives dcbaef. I must now put 
/ third by interchanging it with b, giving dcfaeb, next put b 
fourth by interchanging it with a, producing dcfbea. This is 
the form required. By five such interchanges at most, I can 
alter the order of six letters in any way I please. It has now 
been proved that this alteration in the order may be pro¬ 
duced by successive interchanges of two letters which are 
close together. But these interchanges, as we have before 
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shown, do not alter the product; consequently the product 
of six numbers in any order is equal to the product of the 
same six numbers in any other order; and it is easy to see 
how the same process will apply to any number of numbers. 

But is not all this a great deal of trouble for the sake of 
proving what we might have guessed beforehand? It is true 
we might have guessed beforehand that a product was inde¬ 
pendent of the order and grouping of its factors; and we might 
have done good work by developing the consequences of this 
guess before we were quite sure that it was true. Many beauti¬ 
ful theorems have been guessed and widely used before they 
were conclusively proved; there are some even now in that 
state. But at some time or other the inquiry has to be under¬ 
taken, and it always clears up our ideas about the nature of 
the theorem, besides giving us the right to say that it is true. 
And this is not all; for in most cases the same mode of proof 
or of investigation can be applied to other subjects in such a 
way as to increase our knowledge. This happens with the 
proof we have just gone through; but at present, as we have 
only numbers to deal with, we can only go backwards and 
not forwards in its appheation. We have been reasoning 
about multiphcation; let us see if the same reasoning can 
be applied to addition. 

What we have proved amounts to this. A certain result 
has been got out of certain things by taking them in a definite 
order; and it has been shown that if we can interchange any 
two consecutive things without altering the result, then we may 
make any change whatever in the order without altering the 
result. Let us apply this to counting. The process of counting 
consists in taking certain things in a definite order, and ap¬ 
plying them to our fingers one by one; the result depends on 
the last finger, and its name is called the number of the 
things so counted. We learn then that this result will be in- 
dei)endent of the order of coimting, provided only that it 
remains unaltered when we interchange any two consecutive 
things; that is, provided that two adjacent fingers can be 
crossed, so that each rests on the object previously under 
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the other, without employing any new fingers or setting free 
any that are already employed. With this assumption we 
can prove that the number of any set of things is independent 
of the order of counting; a statement which, as we have seen, 
is the foundation of the science of number. 

§4. The Distributive Law 

There is another law of multiplication wliich is, if possible, 
still more important than the two we have already con¬ 
sidered. Here is a particular case of it: the number 5 is the 
sum of 2 and 3, and 4 times 5 is the sum of 4 times 2 and 4 
times 3. We can make this visible by an arrangement of dots 
as follows (Fig. 3):— 

• • • • • 
• • • « • 
• • • • • 
• • • • • 

Fig. 3 

Here we have four rows of five dots each, and each row is 
divided into two parts, containing respectively two dots and 
three dots. It is clear that the whole number of dots may be 
counted in either of two ways; as four rows of five dots, or 
as four rows of two dots together with four rows of three 
dots. By our general principle the result is independent of 
the order of counting, and therefore 

4x5= (4x2)+ (4x3); 

or, if we put in evidence that 5 = 2 + 3, 

4(2 + 3) = (4 X 2) + (4 X 3). 

The process is clearly applicable to any three numbers 
whatever, and not only to the particular numbers 4, 2, 3. 
We may construct an oblong containing o rows of 6 + c dots; 
and this may be divided by a vertical line into a rows of 6 
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dots and a rows of c dots. Counted in one way, the whole 
number of dots is a (b + c); counted in another way, it is 
ab + ac. Hence we must always have 

a{h + c) = ab + ac. 

This is the first form of the distributive law. 
Now the result of multiplication is independent of the 

order of the factors, and therefore 

a(b + c) = (6 + c)a, 
ab = 6a, 
ac = ca; 

80 that our equation may be written in the form 

(6 + c)a = ba + ca. 

This is called the second form of the distributive law. Using 
the numbers of our previous example, we say that since 5 is 
the sum of 2 and 3, 5 times 4 is the sum of 2 times 4 and 3 
times 4. This form may be arrived at independently and 
very simply as follows. We know that 2 things and 3 things 
make 5 things, whatever the things are; let each of these 
things be a group of 4 things; then 2 fours and 3 fours make 
5 fours, or 

(2 X 4) + (3 X 4) = 5 X 4. 

The rule may now be extended. It is clear that our oblong 
may be divided by vertical hnes into more parts than two, 
and that the same reasoning will apply. This figure (Fig. 4), 

Fig. 4 

for example, makes visible the fact that just as 2 and 3 and 4 
make 9, so 4 times 2, and 4 times 3, and 4 times 4 make 4 
times 9. Or generally— 
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a{b + c + d) = ab + ac + ad, 
(6 4- c + d)a = ba + ca + da; 

and the same reasoning applies to the addition of any num¬ 
ber of numbers and their subsequent multiphcation. 

§5. On Powers 

When a number is multiplied by itself it is said to be 
squared. The reason of this is that if wc arrange a number 
of lines of equally distant dots in an oblong, the number of 
lines being equal to tlie number of dots in each line, the ob¬ 
long will become a square. 

If the square of a number is multiplied by the number 
itself, the number is said to be mbed; because if we can so 
fill a box with cubes as to have the same number of them in 
its height, length, and breadth, the shape of the box itself 
must be a cube. 

If we multiply together four numbers which are all equal, 
we get what is called the fourth power of any one of them; 
thus if we multiply 4 3’s we get 81, if we multiply 4 2’s we 
get 16. 

If we multiply together any number of equal numbers, 
we get in the same way a power of one of them which is 
called its fifth, or sixth, or seventh power, and so on, accord¬ 
ing to the number of numbers multiplied together. 

Here is a table of the powers of 2 and 3:— 

Indei 1 2 3 4 .5 6 7 8 

Powers of 2 ... 2 4 8 16 32 64 128 256 

“ 3 ... 3 9 27 81 243 729 2187 6561 

The number of equal factors multiplied together is called 
the index, and it is written as a small figure above the line 
on the right-hand side of the number whose power is thus 
expressed. To write in shorthand the statement that if you 
multiply seven threes together you get 2187, it is only need¬ 
ful to put down:— 

3^ = 2187. 
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It is to be observed that every number is its own first 
'power-, thus 2^ = 2, 3* = 3, and in general = o. 

§6. Square of a + 1 

We may illustrate the properties of square numbers by 
means of a common arithmetical puzzle, in which one per¬ 
son tells the number another has thought of by means of 
the result of a round of calculations performed with it. 

Think of a number.say 3 
Square it. 9 
Add 1 to the original number. 4 
Square that .16 
Take the difference of the two squares . . 7 

This last is always an odd number, and the number 
thought of is what we may call the less half of it; viz., it is 
the half of the even number next below it. Thus, the result 
being given as 7, we know that the number thought of was 
the half of 6, or 3. 

We will now proceed to prove this rule. Suppose that the 
square of 5 is given us, in the form of twenty-five dots ar¬ 
ranged in a square, how are we to form the square of 6 from 
it? We may add five dots on the right, and then five dots 
along the bottom, and then one dot extra in the corner. 
That is, to get the square of G from the square of 5, we must 
add one more than twice 5 to it. Accordingly— 

36 = 25 + 10 + 1. 

And, conversely, the number 5 is the less half of the dif¬ 
ference between its square and the square of 6. 
if The form of this reasoning shows that it holds good for 
any number whatever. Having given a square of dots, we 
can make it into a square having one more dot in each side 
by adding a column of dots on the right, a row of dots at the 
bottom, and one more dot in the corner (Fig. 5). That is, we 
must add one more than twice the number of dots in a side 
of the original square. If, therefore, this number is given to 
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us, we have only to take one from it and divide by 2, to have 
the number of dots in the side of the original square. 

We will now write down tins result in shorthand. Let a be 
the original number; then o + 1 is the number next above 
it; and what we want to say is that the square of o + 1, that 
is (a + 1)^, is got from the square of a, which is a*, by add¬ 
ing to it one more than twice a, that is 2a 4-1. Thus the 
shorthand expression is 

(a 4“ 1)^ “ 4~ 2a 4-1. 

This theorem is a particular case of a more general one, 
which enables us to find the square of the sum of any two 
numbers in terms of the squares of the two numbers and 
their product. We will first illustrate this by means of the 
square of 5, which is the sum of 2 and 3 (Fig. 6). 

Fig. 6 
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The square of twenty-five dots is here divided into two 
squares and two oblongs. The squares are respectively the 
squares of 3 and 2, and each oblong is the product of 3 and 2. 
In order to make the square of 3 into the square of 3 -I- 2, 
we must add two columns on the right, two rows at the bot¬ 
tom, and then the square of 2 in the corner. And in fact, 
25 = 9-b2x6 + 4. 

§7. On Powers of a -{-h 

To generalize this, suppose that we have a square with 
a dots in each side, and we want to increase it to a square 
with a + h dots in each side. We must add h columns on the 
right, b rows at the bottom, and then the square of b in the 
corner. But each column and each row contains a dots. Hence 
what we have to add is twice ab together with 6®, or in 
shorthand:— 

(a + by = + 2ab -H 6*. 

The theorem we previously arrived at may be got from this 
by making & = 1. 

Now this is quite completely and satisfactorily proved; 
nevertheless we are going to prove it again in another way. 
The reason is that we want to extend the proposition still 
further; we want to find an expression not only for the square 
of (a -I- 6), but for any other power of it, in terms of the 
powers and products of powers of a and b. And for this pur¬ 
pose the mode of proof we have hitherto adopted is unsuit¬ 
able. We might, it is true, find the cube of a + 6 by adding 
the proper pieces to the cube of a; but this would be some¬ 
what cumbrous, while for higher powers no such representa¬ 
tion can be used. The proof to which we now proceed de¬ 
pends on the distributive law of multiphcation. 

According to this law, in fact, we have 

(a -b 6)* = (o + b){a + b) = a(o + 6) -t- b{a -f 6) 
= oct ab d" bo -b bb 
■= a* -b 2o6 -b 6*. 
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It will be instructive to write out this shorthand at length. 
The square of the sum of two numbers means that sum mul¬ 
tiplied by itself. But this product is the first number multi¬ 
plied by the sum together with the second number multiplied 
by the sum. Now the first number multiplied by the sum is 
the same as the first number multiplied by itself together 
with the first munber multiplied by the second number. 
And the second number multiplied by the sum is the same 
as the second number multiplied by the first number to¬ 
gether with the second number multiplied by itself. Putting 
all these together, we find that the square of the sum is 
equal to the sum of the squares of the two numbers together 
with twice their product. 

Two things may be observed on this comparison. First, 
how very much the shorthand expression gains in clearness 
from its brevity. Secondly, that it is only shorthand for 
something which is just straightforward common sense and 
nothing else. We may always depend upon it that algebra, 
which cannot be translated into good English and sound 
common sense, is bad algebra. 

But now let us put this process into a graphical shape 
which will enable us to extend it. We start with two num¬ 
bers, o and b, and we are to multiply each of them by a and 
also by b, and to add all the results. 

aa ba ah bb 

Fig. 7 

Let US put in each case the result of multiplying by o to the 
left, and the result of multiplying by b to the right, under 
the number multiplied. The process is then shown in the 
figure. 

If we now want to multiply this by a -f- 6 again, so as to 
make (o + b)®, we must multiply each part of the lower line 
by o, and also by 6, and add all the results, thus:— 
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aba hba 
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Fig. 8 

Here we have eight terms in the result. The first and last 
are a® and 6® respectively. Of the remaining six, three are 
baa, aha, aab, containing two o’s and one h, and therefore 
each equal to a^b; and three are bba, bab, abb, containing one 
a and two b’s, and therefore each equal to o6®. Thus we 
have:— 

(a + by = a® + 3a®6 + 3a6® + b®. 

For example, 11® = 1331. Here a = 10, b «= 1, and 

(10 + 1)® - 10® + 3 X 10® + 3 X 10 + 1, 

for it is clear that any power of 1 is 1. 
We shall carry this process one step further, before making 

remarks which will enable us to dispense with it. 
In this case there are sixteen terms, the first and last being 

a* and b* respectively. Of the rest, some have three a’s and 

one b, some two a’s and two b’s, and some one a and three 
b’s. There are four of the first kind, since the b may come 
first, second, third, or fourth; so also there are four of the 
third kind, for the o occurs in each of the same four places; 
the remaining six are of the second kind. Thus we find that, 

(a + b)* = + 4a®b + 6a®b® + 4ab® + b*. 

We might go on with this process as long as we hked, and 
we should get continually larger and larger trees. But it is 
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easy to see that the process of classifying and counting the 
terms in the last Une would become very troublesome. Let 
us then try to save that trouble by making some remarks 
upon the process. 

If we go down the tree last figured, from a to abaa, we 
shall find that the term abaa is built up from right to left 
as we descend. The a that we begin with is the last letter of 
abaa; then in descending we move to the right, and put 
another a before it; then we move to the left and put b before 
that; lastly we move to the right and put in the first a. From 
this there are two conclusions to be drawn. 

First, the terms at the end are all different; for any diver¬ 
gence in the path by which we descend the tree makes a dif¬ 
ference in some letter of the result. 

Secondly, every possible arrangement of four letters which 
are either a’s or b's is produced. For if any such arrangement 
be written down, say abab, we have only to read it back¬ 
wards, making a mean “turn to the left” and b “turn to 
the right,” and it will indicate the path by wlfich we must 
descend the tree to find that arrangement at the end. 

We may put these two remarks into one by saying that 
every such possible arrangement is produced once and once 
only. 

Now the problem before us was to count the number of 
terms which have a certain number of b’s in them. By the 
remark just made we have shown that tliis is the same thing 
as to count the number of possible arrangements having that 
number of b’s. 

Consider for example the terms containing one b. When 
there are three letters to each term, tlie number of possible 
arrangements is 3, for the b may be first, second, or third, 
baa, aba, aab. So when there are four letters the number is 4, 
for the 6 may be first, second, third, or fourth; baaa, abaa, 
aaba, aaah. And generally it is clear that whatever be the 
number of letters in each term, that is also the number of 
places in which the b can stand. Or, to state the same thing 
in shorthand, if n be the number of letters, there are n terms 
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containing one b. And then, of course, there are n terms con¬ 
taining one a and all the rest 6’s. 

And these are the terms which come at the beginning and 
end of the nth power of a+ b; viz. we must have (a + 6)" 
= o" + na^~^b + other terms + nab”~^ + 6”. 

The meaning of this shorthand is that we have n (a 4- b)’s 
multiplied together, and that the result of that multiplying 
is the sum of several numbers, four of which we have written 
down. The first is the product of n a’s multiplied together, 
or a"; the next is n times the product of 6 by (n — 1) a’s, 
namely, na’'~%. The last but one is n times the product of a 
by (n - 1) 6’s, namely, nab"^^; and the last is the product of 
n b’s multiphed together, which is written 6". 

The problem that remains is to fill up this statement by 
finding what the “other terms” are, containing each more 
than one a and more than one b. 

§8. On the Number of Arrangements of a Group of Letters 

This problem belongs to a very useful branch of applied 
arithmetic called the theory of ‘' permutations and combina¬ 
tions,” or of arrangement and selection. The theory tells us 
how many arrangements may be made with a given set of 
things, and how many selections can be made from them. 
One of these questions is made to depend on the other, so 
that there is an advantage in counting the number of ar¬ 
rangements first. 

With two letters there are clearly two arrangements, ah 
and ba. With three letters there are these six:— 

abc, acb, bca, bac, cab, cba, 

namely, two with a at the beginning, two with b at the be¬ 
ginning, and two with c at the beginning; three times two. 
It would not be much trouble to write down all the arrange¬ 
ments that can be made with four letters abed. But we may 
count the number of them without taking that trouble; for 
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if we write d before each of the six arrangements of abc, we 
shall have six arrangements of the four letters beginning 
with d, and these are clearly all the arrangements which can 
begin with d. Similarly, there must be six beginning with a, 
six beginning with b, and six beginning with c; in all, four 
times six, or twenty-four. 

Let us put these results together: 

With two letters, number of arrangements is two = 2 
“ three “ three times two .... =6 
“ four “ four times three times two = 24 

Here we have at once a rule suggested. To find the number 
of arrangements which can be made with a given group of letters, 
multiply together the numbers two, three, four, <fcc., up to the 
number of letters in the group. We have found this rule to be 
right for two, three, and four letters; is it right for any num¬ 
ber whatever of letters? 

We will consider the next case of five letters, and deal 
with it by a method which is apphcable to all cases. Any one 
of the five letters may be placed first; there are then five 
ways of disposing of the first place. For each of these ways 
there are four ways of disposing of the second place; namely, 
any one of the remaining four letters may be put second. 
This makes five times four ways of disposing of the first two 
places. For each of these there are three ways of disposing 
of the third place, for any one of the remaining three letters 
may be put third. This makes five times four times three 
ways of disposing of the first three places. For each of these 
there are two ways of disposing of the last two places; in all, 
five times four times three times two, or 120 ways of arrang¬ 
ing the five letters. 

Now this method of counting the arrangements will 
clearly do for any number whatever of letters; so that our 
rule must be right for all numbers. 

We may state it in shorthand thus: the number of ar¬ 
rangements of n letters is Ix2x3x...xn; or putting 
dots instead of the sign of multiplication, it is 1 • 2 • 3 ... 
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The 1 which begins is of course not wanted for the multi¬ 
plication, but it is put in to include the extreme case of there 
being only one letter, in which case, of course, there is only 
one arrangement. 

The product 1 ■ 2 • 3 ... n, or, as we may say, the product 
of the first n natural numbers, occurs very often in the exact 
sciences. It has therefore been found convenient to have a 
special short sign for it, just as a parliamentary reporter 
has a special sign for “the remarks which the Honourable 
Member has thought fit to make.” Different mathematicians, 
however, have used different symbols for it. The symbol 
is very much used in England, but it is difficult to print. 
Some continental writers have used a note of admiration, 
thus, n! ^ We may now state that— 

1! = 1, 2! = 2, 3 ! = 6, 4! = 24, 5 f = 120, 6! = 720, 

and generally that 
(n + 1)! = (n + l)(n)! 

for the product of the first n+1 numbers is equal to the 
product of the first n numbers multiplied by n + 1. 

§9. On a Theorem concerning any Power of a + h 

We will now apply this rule to the problem of coimting 
the terms in (a + 6)"; and for clearness’ sake, as usual, we 
will begin with a particular case, namely the case in which 
n = 5. We know that here there is one term whose factors 
are all a’s, and one whose factors are all b’s; five terms which 
are the product of four a’s by one b, and five which are the 
product of one a and four b’s. It remains only to count the 
number of terms made by multiplying three a’s by two b’s, 
which is naturally equal to the number made by multiplying 

1 In the original text Clifford used the symbol (T, which he justified as fol¬ 
lows: *‘I myself prefer a symbol which has the weighty authority of Gauss, 
namely a Greek n (Pi), which may be taken as short for product if we like, 
thus, 

In this edition the symbol ! (factorial) has been used, following modem 
usage.—J.R.N. 
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two a’s by three b’s. The question is, therefore, how many dif¬ 
ferent arrangements can be made with three a’s and two b’sf 

Here the three o’s are all alike, and the two b’s are alike. 
To solve the problem we shall have to think of them as dif¬ 
ferent ; let us therefore replace them for the present by capi¬ 
tal letters and small ones. How many different arrangements 
can be made with three capital letters ABC and two small 
©nes del 

In this question the capital letters are to be considered 
as equivalent to each other, and the small letters as equiva¬ 
lent to each other; so that the arrangement A B C d e counts 
for the same arrangement as C A B e (i. Every arrangement 
of capitals and smalls is one of a group of 6 X 2 = 12 equiva¬ 
lent arrangements; for the 3 capitals may be arranged among 
one another in 3 ! = 6 ways, and the 2 smalLs may be arranged 
in 2! = 2 ways. Now it is clear that by taking all the arrange¬ 
ments in respect of capital and small letters, and then per¬ 
muting the capitals among themselves and the small letters 
among themselves, we shall get the whole number of ar¬ 
rangements of the five letters A B C c? e; n9,mely 5 ! or 120. 
But since each arrangement in respect of capitals and smalls 
is here repeated twelve times, and since 12 goes into 120 ten 
times exactly, it appears that the number we require is ten. 
Or the number of arrangements of three a’s and two b’s is 
5! divided by 3! and 2!. 

The arrangements are in fact— 

bbaaa, babaa, baaba, baaab 
abbaa, ababa, abaab 

aabba, aabab 
aaabb 

The first fine has a 6 at the beginning, and there are four 
positions for the second b; the next line has a 6 in the second 
place, and there are three new positions for the other b, and 
so on. We might of course have arrived at the number of ar¬ 
rangements in this particular case by the far simpler process 
of direct counting, which we have used as a verification; but 
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the advantage of our longer process is that it will give us a 
general formula applicable to all cases whatever. 

Let us stop to put on record the result just obtained; viz. 
we have found that 

(o + by = + 5a^6 + lOa^b^ + + 5a¥ + ¥. 

Observe that 1 + 5 + 10 + 10 + 5 + 1 = 32, that is, we 
have accounted for the whole of the 32 terms which would 
be in the last line of the tree appropriate to this case. 

We may now go on to the solution of our general problem. 
Suppose that p is the number of a’s and q is the number of 
b’s which are multiplied together in a certain term; we want 
to find the number of possible arrangements of these p a’s 
and q b’s. Let us replace them for the moment by p capital 
letters and q small ones, making p + q letters altogether. 
Then any arrangement of these in respect of capital letters 
and small ones is one of a group of equivalent arrangements 
got by permuting the capitals among themselves and the 
small letters among themselves. Now by permuting the 
capital letters we can make p! arrangements, and by per¬ 
muting the small letters q! arrangements. Hence every ar¬ 
rangement in respect of capitals and smalls is one of a group 
of p ! X 5! equivalent arrangements. Now the whole number 
of arrangements of the p + q letters is (p + ?)!; and, as we 
have seen, every arrangement in respect of capitals and 
smalls is here repeated p\x q\ times. Consequently the 
number we are in search of is got by dividing (p + 5)! by 
p! X g!. This is written in the form of a fraction, thus:— 

(P + g) 1 
p!-g! ' 

although it is not a fraction, for the denominator always 
divides the numerator exactly. In fact, it would be absurd 
to talk about half a quarter of a way of arranging letters. 

We have arrived then at this result, that the number of 
ways of arranging p a’s and q b’s is 

(p±jLx 
p! • g! 
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This is also (otherwise expressed) the number of ways of 
dividing p + g places into p of one sort and q of another; 
or again, it is the number of ways of selecting p things out 
of p + g things. 

Applying this now to the expression of (a + 6)", we find 
that each term, other than the first and last, is of the form 

where p 4- g = n; and that we shall get them all by giving to 
g successively the values 1, 2, 3, &c., and to p the values got 
by subtracting these from n. For example, we shall find that 

(a + hf = a» + 

+ 0*6^ + 6a6'^ + 6®. 

The calculation of the numbers may be considerably short¬ 
ened. Thus we have to divide l-2-3-4-5-6byl-2-3-4; 
the result is of course 5 • 6. This has to be further divided 
by 2, so that we finally get 5 • 3 or 15. Similarly, to calculate 

6! 
31-31' 

we have only to divide 4 • 5 • 6 by 1 • 2 ■ 3 or 6, and we get 
simply 4 • 5 or 20. 

To write down our expression for (a -t- 6)” we require an¬ 
other piece of shorthand. We have seen that it consists of a 
number of terms which are all of the form 

n! 
pig! 

but which differ from one another in having for p and g dif¬ 
ferent pairs of numbers whose sum is n. Just as we used ! 
for a product, so we use the Greek letter 2 (Sigma) for a 
sum. Namely, the sum of all such terms will be written 
down thus;— 

2 
n! 

p! -g! 
op6«, Cp + g = n]. 
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Now we may very reasonably include the two extreme 
terms a” and h" in the general shape of these terms. For sup¬ 
pose we made p = n and g = 0, the corresponding term 
would be:— 

and this will be simply a" if 0! = 1 and 6® = 1. Of course 
there is no sense in "the product of the first no numbers”; 
but if we consider the rule 

(n + 1)! = (n + 1) (n)!, 

which holds good when n is any number, to be also true when 
n stands for notliing, and consequently n + 1 = 1, it then 
becomes 

11 = 0!, 
and we have already seen reason to make 1! mean 1. Next 
if we say that ¥ means the result of multiplying 1 by 6 g 
times, then 6® must mean the result of multiplying 1 by 6 
no times, that is, of not multiplying it at all; and tliis result 
is 1. 

Making then these conventional interpretations, we may 
say that 

(a + 6)" = S [P + e = «], 

it being understood that p is to take all values from n down 
to 0, and q all values from 0 up to n. 

This result is called the Binomial Theorem, and was 
originally given by Sir Isaac Newton. An expression con¬ 
taining two terms, like a + 6, is sometimes called binomial; 
and the name Binomial Theorem is an abbreviation for 
theorem concerning any power of a binomial expression. 
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§10. On Operations which appear to he without Meaning 

We have so far considered the operations by which, when 
two numbers are given, two others can be determined from 
them.* 

First, we can add the two numbers together and get their 
sum. 

Secondly, we can multiply the two numbers together and 
get their product. 

To the questions what is the sum of these two numbers, 
and what is the product of these two numbers, there is 
always an answer. But we shall now consider questions to 
which there is not always an answer. 

Suppose that I ask what number added to 3 will produce 
7.1 know, of course, that the answer to this is 4, and the op¬ 
eration of getting 4 is called subtracting 3 from 7, and we 
denote it by a sign and write it 

7-3 = 4. 

But if I ask, what number added to 7 will make 3, al¬ 
though this question seems good English when expressed in 
words, yet there is no answer to it; and if I write down in 
sjrmbols the expression 3 - 7, I am asking a question to 
which there is no answer. 

There is then an essential difference between adding and 
subtracting, for two numbers always have a sum. 

If I write down the expression 3 + 4,1 can use it as mean¬ 
ing something, because I know that there is a number which 
is denoted by that expression. But if I write down the ex¬ 
pression 3-7, and then speak of it as meaning something, 
I shall be talking nonsense, because I shall have put to¬ 
gether symbols the realities corresponding to which will not 
go together. To the question, what is the result when one 
number is taken from another, there is only an answer in 

* The phrase is awkward. What is meant is that the operation of addition 
performed on two numbers yields one new number; the operation of multi¬ 
plication, another new number.—J.R.N. 
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the case where the second number is greater than the 
first. 

In the same way, when I multiply together two numbers 
I know that there is always a product, and I am therefore 
free to use such a symbol as 4 x 5, because I know that there 
is some number that is denoted by it. But I may now ask a 
question; I may say, What number is it which, being multi- 
pfied by 4, produces 20? The answer I know in this case is 6, 
and the operation by which I get it is called dividing 20 
by 4. This is denoted again by a symbol, 20 4 = 5. 

But suppose I say divide 21 by 4. To this there is no 
answer. There is no number in the sense in which we are 
at present using the word—that is to say, there is no whole 
number—winch being multiplied by 4 will produce 21: and 
if I take the expression 21 h- 4, and speak of it as meaning 
something, I shall be talking nonsense, because I shall have 
put together symbols whose realities will not go together. 

The things that we have observed here will occur again 
and again in mathematics: for every operation that we can 
invent amounts to asking a question, and this question may 
or may not have an answer according to circumstances. 

If we write down the symbols for the answer to the ques¬ 
tion in any of those cases where there is no answer and then 
speak of them as if they meant something, we shall talk 
nonsense. But this nonsense is not to be thrown away as 
useless rubbish. We have learned by very long and varied 
experience that nothing is more valuable than the nonsense 
which we get in this way; only it is to be recognized as non¬ 
sense, and by means of that recognition made into sense. 

We turn the nonsense into sense by giving a new meaning 
to the words or symbols which shall enable the question to 
have an answer that previously had no answer. 

Let us now consider in particular what meaning we can 
give to our symbols so as to make sense out of the at present 
nonsensical expression, 3 — 7. 
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§11. Steps ^ 

The operation of adding 3 to 5 is written 5 + 3, and the 
result is 8. We may here regard the + 3 as a way of stepping 
from 5 to 8, and the symbol + 3 may be read in words, step 
forward three. 

In the same way, if we subtract 3 from 5 and get 2, we 
write the process symbolicall3'^ 5-3 = 2, and the symbol 
— 3 may be regarded as a step from 5 to 2. If the former 
step was forward this is backward, and we may accordingly 
read — 3 in words, step backwards three. 

A step is always supposed to be taken from a number 
which is large enough to make sense of the result. This re¬ 
striction does not affect steps forward, because from any 
number we can step forward as far as we like; but backward 
a step can only be taken from numbers which are larger 
than the step itself. 

The next thing we have to observe about steps is that 
when two steps are taken in succession from any number, it 
does not matter which of them comes first. If the two steps 
are taken in the same direction this is clear enough. + 3 + 4, 
meaning step forward 3 and then step forward 4, directs us 
to step forward by the number which is the sum of the num¬ 
bers in the two steps; and in the same way — 3 — 4 directs 
us to step backward the sum of 3 and 4, that is 7. 

If the steps are in opposite directions, as, for example, 
+ 3 — 7, we have to step forward 3 and then backward 7, 
and the result is that we must step backwards 4. But the 
same result would have been attained if we first stepped 
backward 7 and then forward 3. The result, in fact, is always 
a step which is in the direction of the greater of the two steps, 
and is in magnitude equal to their difference. 

* Here the transition from cardinal numbers to numbers bearing signs: 
+, —, is abrupt in the sense that the connection between them is not shown. 
In modem mathematics signed numbers are defined in terms of cardinal num¬ 
bers. It thus becomes unnecessary to conceive of signed numbers as analogous 
to physical steps—^forward or backward, albeit the analogy is not without 
didactic value.—^J.R.N. 



33 Steps 

We thus see that when two steps are taken in succession 
they are equivalent to one step, which is independent of 
the order in which they are taken. 

We have now supplied a new meaning for our symbols, 
which makes sense and not nonsense out of the symbol 
3 — 7. The 3 must be taken to mean + 3, that is, step for¬ 
ward 3; the — 7 must be taken to mean step backward 7, 
and the whole expression no longer means take 7 from 3, 
but add 3 to and then subtract 7 from any number which is 
large enough to make sense of the result. And accordingly 
we find that the result of this operation is — 4, or, as we may 
write it, + 3 - 7 = — 4. 

From this it follows by a mode of proof precisely analogous 
to that which we used in the case of multiplication, that 
any number of steps taken in succession have a resultant 
which is independent of the order in which they are taken, 
and we may regard this rule as an extension of the rule 
already proved for the addition of numbers. 

A step may be multiplied or taken a given number of 
times, for example, 2(— 3) = — 6; that is to say, if two back¬ 
ward steps of 3 be possible, they are equivalent to a step 
backwards of 6. 

In this operation of multiplying a step it is clear that 
what we do is to multiply the number which is stepped, and 
to retain the character of the step. On multiplying a step 
forwards we still have a step forwards, and on multiplying 
a step backwards we still have a step backwards. 

This multiplying may be regarded as an operation by 
which we change one step into another. Thus in the example 
we have just considered the multiplier 2 changes the step 
backwards 3 into the step backwards 6. But this operation, 
as we have observed, will only change a step into another 
of the same kind, and the question naturally presents itself. 
Is it possible to find an operation which shall change a step 
into one of a different kind? Such an operation we should 
naturally call reversal. We should say that a step forwards 
is reversed, when it is made into a step backwards; and a 



S4 Chapter I : Number 

step backwards is reversed when it is made into a step for¬ 
wards. 

If we denote the operation of reversal by the letter r, we 
can, by combining this with a multiphcation, change — 3 
into H- 6, a step backwards 3 into a step forwards 6; viz. we 
should have the expression r2(— 3) = + 6. Now the opera¬ 
tion, which is performed on one step to change it into an¬ 
other, may be of two kinds: either it keeps a step in the 
direction which it originally had, or it reverses it. If to make 
things symmetrical we insert the letter k when a step is 
kept in its original direction, we may write the equation 
fc2(— 3) = — 6 to express the operation of simply multiplying. 

Of course it is possible to perform on any given step a 
succession of these operations. If I take the step + 4, treble 
it, and reverse it, I get — 12. If I double this and keep it, I 
get - 24, and this may be written, A:2(r3)(+ 4) = — 24. But 
this is equal to r6(+ 4), which tells us that the two successive 
operations which we have performed on this step, trebling 
and reversing it, doubhng and keeping it, are equivalent to 
the single operation of multiplying by 6 and reversing it. 
It is clear also that whatever step we had taken the two 
first operations performed successively are always equivalent 
to the third, and we may thus write the equation k2{r3) = rfi. 

Suppose however we take another step and treble it and 
reverse it, and then double it and reverse it again; we should 
have the result of multiplying it by six and keeping its 
direction unchanged. 

This may be written r2(r3) = k • 6. 
If we compare the last two formulae with those which we 

previously obtained, viz. k2(— 3) = - 6 and r2(- 3) = + 6, 
we shall see that the two sets are alike, except that in the 
one last obtained k and r are written instead of + and -- 
respectively. 

The two sets however express entirely different things. 
Thus, taking the second formulae of either set on the one 
hand, the statement is. Double and reverse the step back¬ 
ward 3, and you have a step forward 6; on the other bund, 
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Treble and reverse and then double and reverse any step 
whatever, and you have the effect of sextupUng and keeping 
the step. We shall find that this analogy holds good in gen¬ 
eral, that is, if we write down the effect of any niunber of 
successive operations performed upon a step, there will 
always be a corresponding statement in which this stepping 
is replaced by an operation; or we may say, any operation 
which converts one step into another will also convert one 
operation into another where the converted operation is a 
multiplying by the number expressing the step and a keep¬ 
ing or reversing according as the step is forward or back¬ 
ward. 

§12. Extension of the Meaning of Symbols 

We now proceed to do something which must apparently 
introduce the greatest confusion, but which, on the other 
hand, increases enormously our powers. 

Having two things which we have so far quite rightly 
denoted by different symbols, and finding that we arrive at 
results which are uniform and precisely similar to one another 
except that in one of them one set of symbols is used, in the 
other another set, we alter the meaning of our symbols so as 
to see only one set instead of two. We make the symbols + 
and — mean for the future what we have here meant by k 
and r, viz. keep and reverse. We give them these meanings 
in addition to their former meanings, and leave it to the 
context to show which is the right meaning in any particu¬ 
lar case. Thus, in the equation (— 2)(— 3) = -t- 6 there are 
two possible meanings; the - 3 and + 6, may both mean 
steps, in this case the statement is: Double and reverse the 
step backwards of 3 and you get the step forward 6. But the 
— 3 and the + 6 may also mean not steps but operations, 
and in this case the meaning is triple and reverse and then 
double and reverse any step whatever, and you get the same 
result as if you had sextupled and kept the step. 

Let us now see what the reason is for saying that these 
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two meanings can always exist together. Let us first of all 
take the second meaning, and frame a rule for finding the 
result of any number of successive operations. 

First, the number which is the multiplier in the result 
must clearly be the product of all the numbers in the suc¬ 
cessive operations. 

Next, every pair of reversals cancel one another, so that, 
if there is an even number of them, the result must be an 
operation of retaining. 

This then is the rule: Multiply together the numbers in 
the several operations, prefixing to them + if there is an even 
number of minus or reversing operations, prefixing — if there 
is an odd number. 

In the next place, suppose that many successive opera¬ 
tions are performed upon a step. The munber in the result¬ 
ing step will clearly be the product of all the munbers in the 
operations and in the original step. 

If there is an even number of reversing operations, the 
resulting step will be of the same kind as the original one; 
if an odd number, of the opposite kind. Now let us suppose 
that the original step were a step backwards; then if there 
is an even number of reversing operations, the resulting step 
will also be a step backwards. But in this case the number 
of (—) signs, reckoned independently of their meaning, will 
be odd; and so the rule coincides with the previous one. 

If an odd number of reversing operations is performed on 
a negative step, the result is a positive step. But here the 
whole number of (-) signs, irrespective of their meaning, is 
an even number; and the result again agrees with the pre¬ 
vious one. 

In all cases therefore by using the same symbols to mean 
either a “forward” and a “backward” step respectively, or 
“keep” and “reverse” respectively, we shall be able to give 
to every expression two interpretations, and neither of these 
will ever be untrue. 
* In the process of examining this statement we have shown 
by the way that the result of any number of successive op- 
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erations on a step is independent of the order of them. For 
it is always a step whose magnitude is the product of the 
numbers in the original step and in the operations, and 
whose character is determined by the number of reversals. 

§13. Addition and Multiplication of Operations 

We may now go on to find a rule which connects together 
the multiphcation and the addition of steps. 

If I multiply separately the steps + 3 and — 7 by 4, and 
then take the resultant of the two steps which I so obtain, I 
shall get the same thing as if I had first formed the resultant 
of + 3 and — 7, and then multiplied it by 4. In fact, + 12 
— 28 = — 16, which is 4(— 4). This is true in general, and it 
obviously amounts to the original rule that a set of things 
comes to the same niunber in whatever order we count them. 
Only that now some of the counting has to be done back¬ 
wards and some again forwards. 

But now, besides adding together steps, we may also in a 
certain sense add together operations. It seems natural to 
assume at once that by adding together + 3 and - 7 re¬ 
garded as operations, we must needs get the operation — 4. 
It is very important not to assume anything without proof, 
and still more important not to use words without attaching 
a definite meaning to them. 

The meaning is this. If I take any step whatever, treble 
it without altering its character, and combine the result 
with the result of multiplying the original step by 7 and re¬ 
versing it, then I shall get the same result as if I had multi¬ 
plied the original step by 4 and reversed it. This is perfectly 
true, and we may see it to be true by, as it were, performing 
oiLT operations in the form of steps. Suppose I take the step 
+ 5, and want to treble it and keep its character imchanged. 
I can do this by taking three steps of five numbers each in 
the same direction (viz. the forward direction) as the original 
step was to be taken. Similarly, if I want to multiply it by 
— 7, this means that I must take 7 steps of five numbers 
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each in the opposite or backward direction. Then finally, 
what I have to do is to take three steps forwards and seven 
steps backwards, each of these steps consisting of five num¬ 
bers; and it appears at once that the result is the same as 
that of taking 4 steps backwards of five numbers each. 

We have thus a definition of the sum of two operations; 
and it appears from the way in which we have arrived at it 
that this sum is independent of the order of the operations. 

We may therefore now write the formulae:— 

(2 -f- 6 = h (Z 

a(b + c) = ab + ac 
(a + b)c = ac + be 

ab = ba, 

and consider the letters to signify operations performed 
upon steps. In virtue of the truth of these laws the whole of 
that reasoning which we apphed to finding a power of the 
sum of two numbers is appUcable to the finding of a power 
of the sum of two operations. If it did not take too much 
time and space, we might go through it again, giving to all 
the symbols their new meanings. 

It is worth while, perhaps, by way of example, to explain 
clearly what is meant by the square of the siun of two op¬ 
erations. 

We will take for example, + 5 and — 3. 
The formula tells us that (+ 5 — 3)* is equal to (+ 5)* 

+ (— 3)* + 2(+ 6)(- 3). This means that if we apply to any 
step twice over the siun of the operations + 5 and - 3, that 
is to say, if we multiply it by 5 and keep its direction, and 
combine with this step the result of multiplying the original 
step by 3 and reversing it, and then apply the same process 
to the result so obtained, we shall get a step which might 
also have been arrived at by combining together the follow¬ 
ing three steps:— 

First, the original step twice multiplied by 5. 
Secondly, the original step twice multiplied by 3 and 

twice reversed; that is to say, unaltered in Erection. 
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TMrdly, twice the result of tripling the original step and 
reversing it, and then multiplying by 5 and retaining the 
direction. 

§14. Division of Operations 

We have now seen what is meant by the multiplication of 
operations; let us go on to consider what sort of question is 
asked by division. 

Let us take for example the symbolic statement — 3(+ 5) 
= — 15; and let us give it in the first place the meaning that 
to triple and reverse the step forward 5 gives the step back¬ 
ward 15. We may ask two questions upon this statement. 
First, What operation is it which, being performed on the 
step forwards 5, will give the step backwards 15? The an¬ 
swer, of course, is triple and reverse. Or we may ask this 
question. What step is that, which, being tripled and re¬ 
versed, will give the step backwards 15? The answer is, Step 
forwards 5. But we have only one word to describe the 
process by wliich we get the answer in these two cases. In 
the first case we say that we divide the step — 15 by the 
step + 5; in the second case we say we divide the step — 15 
by the operation — 3. 

The word divide thus gets two distinct meanings. But it is 
very important to notice that symbolically the answer is the 
same in the two cases, although the interpretation to be 
given to it is different. 

The step — 15 may be got in two ways; by tripling and 
reversing the forward step + 5, or by quintupling the back¬ 
ward step - 3. In symbols, 

(- 3)(+ 5) = (+ 5)(- 3) = -15. 

Hence the problem. Divide — 15 by — 3 may mean either of 
these two questions: What step is that which, being tripled 
and reversed, gives the step — 15? Or, What operation is that 
which, performed on the step - 3, gives the step - 15? The 
answer to the first question is, the step + 5; the answer to 
the second is the operation of quintupling and retaining 
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direction, that is, the operation + 5. So that although the word 
divide, as we have said, gets two distinct meanings, yet the two 
different results of division are expressed by the same symbol. 

In general we may say that the problem. Divide the step 
a by the step 6, means. Find the operation (if any) which 
will convert h into a. But the problem, Divide the step a by 
the operation 6, means. Find the step (if any) which h will 
convert into a. In both cases, however, the process and the 
symbolic result are the same. We must divide the number 
of a by the number of h, and prefix to it + if the signs of 
a and h are alike, — if they are different. 

We may also give to our original equation 

(- 3) X (+ 5) = - 15 

its other meaning, in which both — 3 and + 5 are operations, 
and - 15 is the operation which is equivalent to performing 
one of them after the other. In this case the problem. Divide 
the operation — 15 by the operation — 3 means. Find the 
operation which, being succeeded by the operation - 3, will 
be equivalent to the operation — 15. Or generally. Divide 
the operation a by the operation 6, means. Find the operar 
tion which, being succeeded by h, will be equivalent to o. 

Now it is worth noticing that the division of step by step 
and the division of operation by operation, have a certain 
likeness between them, and a common difference from the 
division of step by operation. Namely, the result of dividing 

a by 6, or, as we may write it, when a and h are both 

steps or both operations, is an operation which converts 6 
into a. This we may write in shorthand, 

r ■ 0 = a. 
0 

But when o is a step and b an operation, the result of division 
is a step on which the operation b must be performed to con¬ 
vert it into o; or, in shorthand. 
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The fact that the symbolic result is the same in the two 
cases may be stated thus:— 

and in this form we see that it is a case of the commutative 
law. So long, then, as the commutative law is true, there is 
no occasion for distinguishing symbolically between the two 
meanings. But, as we shall see by-and-by, there is occasion 
to deal with other kinds of steps and operations in which the 
commutative law does not hold; and for these a convenient 
notation has been suggested by Professor Cayley. Namely, 

means the operation which makes b into a; but ^ repre¬ 

sents that which the operation b will convert into a. So that— 

• 6 = a, but 6 • ^ = a. 16 61 

It is however convenient to settle beforehand that when¬ 

ever the symbol ^ is used without warning it is to have the 

first meaning—namely, the operation which makes 6 into o. 

§15. General Results of our Extension of Terms 

It will be noticed that we have hereby passed from the 
consideration of mere numbers, with which we began, to 
the consideration first of steps of addition or subtraction 
of number from number, and then of operations of multi¬ 
plying and keeping or multiplying and reversing, performed 
on these steps; and that we have greatly widened the mean¬ 
ing of all the words that we have employed. 

To addition, which originally meant the addition of two 
numbers, has been given the meaning of a combination of 
steps to form a resultant step equivalent in effect to taking 
them in succession. 

To mvUiplicatwn, which was originally applied to two 
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numbers only, has been given the meaning of a combination 

of operations upon steps to form a resultant operation equiv¬ 

alent to their successive performance. 

We have found that the same properties which charac¬ 

terize the addition and multiphcation of numbers belong 

also to the addition and multiphcation of steps and of op¬ 

erations. And it was this very fact of the similarity of prop¬ 

erties which led us to use our old words in a new sense. We 

shall find that this same process is carried on in the con¬ 

sideration of those other subjects which he before us; but 

that the precise similarity which we have here observed in 

the properties of more simple and more complex operations 

will not in every case hold good; so that while this gradual 

extension of the meaning of terms is perhaps the most power¬ 

ful instrument of research wliich has yet been used, it is 

always to be employed with a caution proportionate to its 

importance. 



CHAPTER II 

Space 

§1. Boundaries take up no Room 

Geometry is a physical science. It deals with the sizes and 
shapes and distances of things. Just as we have studied the 
number of things by making a simple and obvious observa¬ 
tion, and then using this over and over again to see where 
it would bring us; so we shall study the science of the shapes 
and distances of things by making one or two very simple 
and obvious observations, and then using these over and 
over again, to see what we can get out of them. 

The observations that we make are:— 
First, that a thing may be moved about from one place 

to another without altering its size or shape. 
Secondly, that it is possible to have things of the same 

shape but of different sizes. 
Before we can use these observations to draw any exact 

conclusions from them, it is necessary to consider rather 
more precisely what they mean. 

Things take up room. A table, for example, takes up a 
certain part of the room where it is, and there is another 
part of the room where it is not. The thing malms a dif¬ 
ference between these two portions of space. 

Between these two there is what we call the surface of 
the table. 

We may suppose that the space all round the table is 
filled with air. The surface of the table is then something 
just between the air and the wood, which separates them 
from one another, and which is neither the one nor the other. 

It is a mistake to suppose that the surface of the table is 
a very thin piece of wood on the outside of it. We can see 

43 
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that this is a mistake, because any reason which led us to 
say so, would lead us also to say that the surface was a very 
thin layer of air close to the table. The surface in fact is com¬ 
mon to the wood and to the air, and takes up itself no room 
whatever.* 

Part of the surface of the table may be of one colour and 
part may be of another. 

On the surface of this sheet of paper there is drawn a round 
black spot (Fig. 10). We call the black part a circle. It divides 

Fig. 10 

the surface into two parts, one where it is and one where it is 
not. 

This circle takes up room on the surface, although the 
surface itself takes up no room in space. We are thus led 
to consider two different kinds of room; space-room, in 
which solid bodies are, and in which they move about; and 
surface-room, which may be regarded from two different 
points of view. From one point of view it is the boundary 
between two adjacent portions of space, and takes up no 
space-room whatever. From the other point of view it is 
itself also a kind of room which may be taken up by parts 
of it. 

These parts in turn have their boundaries. 
Between the black surface of the circle and the white 

surface of the paper round it there is a line, the circum- 

^ It is certain that however smooth a natural surface may appear to be, 
it could be magnified to roughness. Hence, in the case of the surface of the 
table and the air, it would seem probable that there is a layer in which par¬ 
ticles of wood and air are mingled. The boundary in this case of air and table 
would not be what we “see and feeT' (cf. p. 46), nor would it correspond to the 
surface of the geometer. We are, I think, compelled to consider the surface 
of the geometer as an “idea or imaginary conception,*^ drawn from the 
apparent (not real) boundaries of physical objects, such as the writer is de¬ 
scribing. Strongly as I feel the ideal nature of geometrical conceptions in the 
exact sciences, I have thought it unadvisable to alter the text. The distinction 
is made by Clifford himself (Essaysj I. pp. 306-321).—K.P. 
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ference of the circle. This hne is neither part of the black 
nor part of the white, but is between the two. It divides one 
from the other, and takes up no surface-room at all. The hne 
is not a very thin strip of surface, any more than the surface 
is a very thin layer of sohd. 

Anything which led us to say that this line, the boundary 
of the black spot, was a thin strip of black, would also lead 
us to say that it was a thin strip of white. 

We may also divide a hne into two parts. If the paper 

Fig. 11 

with this black circle upon it were dipped into water so that 
part of the black circle were submerged, then the hne sur¬ 
rounding it would be partly in the water and partly out 
(Fig. 11). 

The submerged part of the hne takes up room on it. It 
goes a certain part of the way round the circumference. 
Thus we have to consider hne-room as weU as space-room 
and surface-room. The hne takes up absolutely no room on 
the surface; it is merely the boundary between two adjacent 
portions of it. Still less does it take up any room in space. 
And yet it has a certain room of its own, wliich may be 
divided into parts, and taken up or filled by those parts. 

These parts again have boundaries. Between the sub¬ 
merged portion of the circumference and the other part 
there are two points, one at each end. These points are 
neither in the water nor out of it. They are in the surface 
of the water, just as they are in the surface of the paper, and 
on the boundary of the black spot. Upon this hne they take 
up absolutely no room at all. 

A point is not a very small length of the hne, any more 
than the hne is a very tliin strip of surface. It is a division 
between two parts of the hne which are next one another, 
and it takes up no room on the hne at all. 

The important thing to notice is that we are not here 
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talking of ideas or imaginary conceptions, but only making 
common-sense observations about matters of every-day ex¬ 
perience. 

The smface of a thing is something that we constantly 
observe. We can see it and feel it, and it is a mere common- 
sense observation to say that this surface is common to the 
thing itself and to the space surrounding it. 

A hne on a surface which separates one part of the simface 
from another is also a matter of every-day experience. It is 
not an idea got at by supposing a string to become indefi¬ 
nitely thin, but it is a thing given directly by observation as 
belonging to both portions of the surface which it divides, 
and as being therefore of absolutely no thickness at all. The 
same may be said of a point. The point which divides the 
part of our circumference which is in water from the part 
which is out of water is an observed thing. It is not an idea 
got at by supposing a small particle to become smaller and 
smaller without any limit, but it is the boundary between 
two adjacent parts of a line, which is the boundary between 
two adjacent portions of a surface, which is the boundary 
between two adjacent portions of space. A point is a thing 
which we can see and know, not an abstraction which we 
build up in our thoughts. 

When we talk of drawing lines or points on a sheet of 
paper, we use the language of the draughtsman and not of 
the geometer. Here is a picture of a cube represented by 
lines, in the draughtsman’s sense (Fig. 12). Each of these so- 
called “lines” is a black streak of printer’s ink, of varying 
breadth, taking up a certain amount of room on the paper. 

Fig. 12 

By drawing such “lines” sufficiently close together, we might 
entirely cover up as large a patch of paper as we Uked. Each 
of these streaks has a line on each side of it, separating the 
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black surface from the white surface; these are true geometri¬ 
cal Unes, taking up no surface-room whatever. Millions of 
milhons of them might be marked out between the two 
boundaries of one of our streaks, and between every two of 
these there would be room for millions more. 

Still, it is very convenient, in drawing geometrical figures, 
to represent lines by black streaks. To avoid all possible 
misunderstanding in this matter, we shall make a conven¬ 
tion once for all about the sense in which a black streak is to 
represent a fine. When the streak is vertical, or comes straight 
down the page, hke this ], the line represented by it is its 
right-hand boundary. In all other cases the Une shall be the 
upper boundary of the streak. 

So also in the case of a point. When we try to represent a 
point by a dot on a sheet of paper, we make a black patch 
of irregular shape. The boundary of this black patch is a 
line. When one point of this boundary is higher than all the 
other points, that highest point shall be the one represented 
by the dot. When however several points of the boundary 
are at the same height, but none higher than these, so that 
the boundary has a flat piece at the top of it, then the right- 
hand extremity of this fiat piece shall be the point repre¬ 
sented by the dot. 

This determination of the meaning of our figures is of no 
practical use. We lay it down only that the reader may not 
fall into the error of taking patches and streaks for geomet¬ 
rical points and fines. 

§2. Lengths can he Moved without Change 

Let us now consider what is meant by the first of our ob¬ 
servations about space, viz., that a thing can be moved 
about from one place to another without altering its size 
or shape. 

First as to the matter of size. We measure the size of a 
thing by measuring the distances of various points on it. 
For example, we should measure the size of a table by meas- 
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tiring the distance from end to end, or the distance across 
it, or the distance from the top to the bottom. The measure¬ 
ment of distance is only possible when we have something, 
say a yard measure or a piece of tape, which we can carry 
about and which does not alter its length while it is carried 
about. The measurement is then effected by holding this 
thing in the place of the distance to be measured, and ob¬ 
serving what part of it coincides with this distance. 

Two lengths or distances are said to be equal when the 
same part of the measure will fit both of them. Thus we 
should say that two tables are equally broad, if we marked 
the breadth of one of them on a piece of tape, and then car¬ 
ried the tape over to the other table and found that its 
breadth came up to just the same mark. Now the piece of 
tape, although convenient, is not absolutely necessary to the 
finding out of this fact. We might have turned one table up 
and put it on top of the other, and so found out that the 
two breadths were equal. Or we may say generally that two 
lengths or distances of any kind are equal, when, one of 
them being brought up close to the other, they can be made 
to fit without alteration. But the tape is a thing far more 
easily carried about than the table, and so in practice we 
should test the equality of the two breadths by measuring 
both against the same piece of tape. We find that each of 
them is equal to the same length of tape; and we assume 
that two lengths which are equal to the same length are equal to 
each other. This is equivalent to saying that if our piece of 
tape be carried round any closed curve and brought back to 
its original position, it will not have altered in length. 

How so? Let us assume that, when not used, our piece 
of tape is kept stretched out on a board, with one end against 
a fixed mark on the board. Then we know what is meant by 
two lengths being equal which are both measured along the 
tape from that end. Now take three tables. A, B, C, and sup¬ 
pose we have measured and found that the breadth of A is 
equal to that of B, and the breadth of B is equal to that of 
C, then we say that the breadth of A is equal to that of C. 
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This means that we have marked off the breadth of A on the 
tape, and then carried this length of tape to B, and found it 
fit. Then we have carried the same length from B to C, and 
found it fit. In saying that the breadth of C is equal to that 
of A, we assert that on taking the tape from C to A, whether 
we go near B or not, it will be found to fit the breadth of 
A. That is, if we take our tape from A to B, then from B 
to C, and then back to A, it will still fit A if it did so at 
first. 

These considerations lead us to a very singular conclusion. 
The reader will probably have observed that we have de¬ 
fined length or distance by means of a measure which can 
be carried about without changing its length. But how then 
is this property of the measure to be tested? We may carry 
about a yard measure in the form of a stick, to test our tape 
with; but all we can prove in that way is that the two things 
are always of the same length when they are in the same 
place; not that this length is unaltered. 

The fact is that everything would go on quite as well if 
we supposed that things did change in length by mere 
travelling from place to place, provided that (1) different 
things changed equally, and (2) anything which was carried 
about and brought back to its original position filled the 
same space.* All that is wanted is that two things which fit 
in one place should also fit in another place, although brought 
there by different paths; unless, of course, there are other 
reasons to the contrary. A piece of tape and a stick which 
fit one another in London will also fit one another in New 
York, although the stick may go there across the Atlantic, 
and the tape via India and the Pacific. Of course the stick 
may expand from damp and the tape may shrink from dry¬ 
ness; such non-geometrical circmnstances would have to be 
allowed for. But so far as the geometrical conditions alone 
are concerned—the mere carrying about and change of 
place—two things which fit in one place will fit in another. 

^ These remarks refer to the geometrical, and not necessarily to all the 
physical properties of bodies.—K.P. 
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Upon this fact are founded, as we have seen, the notion 
of length as measured, and the axiom that lengths which 
are equal to the same length are equal to one another. 

Is it possible, however, that lengths do really change by 
mere moving about, without our knowing it? 

Whoever likes to meditate seriously upon this question 
will find that it is wholly devoid of meaning. But the time 
employed in arriving at that conclusion will not have been 
altogether thrown away. 

§3. The Characteristics of Shape 

We have now seen what is meant by saying that a thing 
can be moved about without altering its size; namely, that 
any length which fits a certain measure in one position will 
also fit that measure when both have been moved by any 
paths to some other position. Let us now inquire what we 
mean by saying that a thing can be moved about without 
altering its shape. 

First let us observe that the shape of a thing depends 
only on its bounding surface, and not at all upon the inside 
of it. So that we may always speak of the shape of the surface, 
and we shall mean the same thing as if we spoke of the shape 
of the thing. 

Fig. 13 

Let us observe then some characteristics of the surface of 
things. Here are a cube, a cylinder, and a sphere (Fig. 13). The 
surface of the cube has six flat sides, with edges and comers. 
The cylinder has two flat ends and a round surface between 
them; the flat ends being divided from the round part by 
two circular edges. The sphere has a round smooth surface 
all over. 



51 The Characteristics of Shape 

We observe at once a great distinction in shape between 
smooth parts of the surface, and edges, and comers. An edge 
being a line on the surface is not any part of it, in the sense 
of taking up surface room; still less is a comer, which is a 
mere point. But still we may divide the points of the surface 
into those where it is smooth (like all the points of the sphere, 
the round and flat parts of the cylinder, and the flat sides of 
the cube), into points on an edge, and into comers. For con¬ 
venience, let us speak of these points respectively as smooth- 
points, edge-points, and comer-points. We may also put the 
edges and corners together, and call them rough-points. 

Now let us take the sphere, and put it upon a flat face of 
the cube (Fig. 14). The two bodies will be in contact at one 

Fig. 14 

point; that is to say, a certain point on the surface of the 
sphere and a certain point on the surface of the cube are 
made to coincide with one another and to be the same point. 
And these are both smooth-points. Now we cannot move the 
sphere ever so little without separating these points. If we roll 
it a very little way on the face of the cube, we shall find that 
a different point of the sphere is in contact with a different 

Fig. 15 

point of the cube. And the same thing is true if we place the 
sphere in contact with a smooth-point on the cylinder 
(Fig. 15). 
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Next let us put the round part of the cylinder on the flat 
face of the cube (Fig. 16). In this case there will be contact all 
along a hne. At any point of this line, a certain point on the 
surface of the cylinder and a certain point on the surface of the 
cube have been made to coincide with one another and to be 
the same point. And these are both smooth-points. It is just 
as true as before, that we cannot move one of these bodies 
ever so little relatively to the other without separating the 

Fig. 16 

points of their surfaces which are in contact. If we roll the 
cylinder a very little way on the face of the cube, we shall 
find that a different line of the cylinder is in contact with a 
different line of the cube. All the points of contact are 
changed. 

Now put the flat end of the cylinder on the face of the 
cube (Fig. 17). These two surfaces fit throughout and make but 
one surface; we have contact, not (as before) at a point or 
along a line, but over a surface. Let us fix our attention upon 

Fig. 17 

a particular point on the flat surface of the cylinder and the 
point on the face of the cube with which it now coincides; 
these two being smooth-points. We observe again, that it is 
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impossible to move one of these bodies ever so little relatively to 
the other without separating these two points} 

Here, however, something has happened which will give 
us further instruction. We have all along supposed the flat 

Fig. 18 

face of the cylinder to be smaller than the flat face of the 
cube. When these two are in contact, let the cylinder stand 
on the middle of the cube, as in Fig. 17, the circle being wholly 
enclosed by the square. Then when we tilt the cylinder over 
we shall get it into the position of Fig. 18. We have already 
observed that in this case no smooth-points which were 
previously in contact remain in contact. But there are two 
points which remain in contact; for in the tilted position a 
point on the circular edge of the cylinder rests on a point on 
the face of the cube; and these two points were in contact 
before. We may tilt the cylinder as much or as little as we 
like—provided we tilt always in the same direction, not roll¬ 
ing the cylinder on its edge—and these two points will re¬ 
main in contact. We learn therefore that when an edge-point 
is in contact with a smooth-pointy it may be possible to move one 
of the two bodies relatively to the other without separating those 
two points. 

The same thing may be observed if we put the round or flat 

^ In all these cases (Figs. 14-17) the relative motion spoken of must be either 
motion of translation or of tilting] one body might have a spin about a vertical 
axis without any separation of these two points. The true distinction between 
the contact of smooth-points and of smooth- and rough-points seems to be this: 
in the former case without separating two points there is only one degree of 
freedom—namely, spin about an axis normal to the smooth surfaces at the 
points in question; in the latter case there are at least two (edge-point or 
smooth-point) and may be an infinite number of degrees of freedom—^namely, 
spins about two or more axes passing through the rough-point. The reader 
will understand these terms better after the chapter on Motion.—K.P. 
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surface of the cylinder against an edge of the cube (Fig. 19, 
a, h), or if we put the sphere against an edge of either of the 

Fig. 19 

other bodies. Holding either of them fast, we may move the 
other so as to keep the same two points in contact; but in 
order to do this, we must always tilt in the same direction. 

If, however, we put a corner of the cube in contact with 
a smooth point of the cyhnder, as in Fig. 20, we shall find that 

Fig. 20 

we can keep these two points in contact without any re¬ 
striction on the direction of tilting. We may tilt the cube 
any way we hke, and still keep its corner in contact with the 
smooth-point of the cyhnder. 

Edge in contact with edge lengthwise = 1 degree of freedom 

Fig. 21 
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When we put two edge-points together, it makes a dif¬ 
ference whether the edges are in the same direction at the 
point of contact (Fig. 21) or whether they cross one another 
(Fig. 22). In the former case we may be able to keep the 
same two points in contact by tilting in a particular direction; 
in the latter case we may tilt in any direction. So if a corner 
is in contact with an edge-point there is no restriction on 

Edge in contact with edge crosswise = 2 degrees of freedom 

Fia. 22 

the direction of tilting, and much more if a corner is in con¬ 
tact with a corner. 

The upshot of all this is, that in a certain sense all surfaces 
are of the same shape at all smooth-points; for when we put 
two smooth-points in contact, the surfaces so fit one another 
at those points that we cannot move one of them relatively 
to the other without separating the points.^ 

It is possible for two edges to fit so that we cannot move 
either of the bodies without separating the points in con¬ 
tact.* For this it is necessary that one of them should be 
re-entrant (that is, should be a depression in the surface, 
not a projection), as in Fig. 23; and here we can see the pro¬ 
priety of saying that the two surfaces are of the same shape 
at a point where they fit in this way. The body placed in 

* See, however, the footnote, p. 53.—^K.P. 
* In this case the system wWch formerly had 2 degrees of rotational free¬ 

dom has been cut down by ‘‘constraint'' to zero degrees of rotational free¬ 
dom.—J,R.N. 
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contact with the cube is formed by joining together two 
spheres from which pieces have been sliced off. If only very 

Fig. 23 

small pieces have been sliced off, the re-entrant edge will be 
very sharp, and it will be impossible to bring the cube-edge 
into contact with it (Fig. 24); if nearly half of each sphere 

Fig. 24 Fig. 25 Fig. 26 

Note that in Fig. 24 the angle between the spheres is less than 90°; in Fig. 26, 
greater than 90°; in Fig. 26, exactly equal to 90°. 

Only in the last case, where the angle between the spheres is the same as 
the dehedral angle of the two faces of the cube in contact with the spheres, 
is it not possible to “move either of the bodies without separating the points 
in contact.*'—^J.R.N. 

has been cut off the re-entrant edge will be wide open, and 
the cube will rock in it (Fig. 25). There is clearly one inter¬ 
mediate form in which the two edges will just fit (Fig. 26); 
contact at the edge will be possible, but no rocking. Now in 
this case, although one edge sticks out and the other is a 
dint, we may still say that the two surfaces are of the same 
shape at the edge. For if we suppose our twin-sphere body 
to be made of wood, its surface is not only surface of the 
wood, but also surface of the surrounding air. And that 
which is a dint or depression in the wood is at the same time 
a projection in the air. In just the same way, each of the 
projecting edges and comers of the cube is at the same time 
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a dint or depression in the air. But the surface belongs to one 
as much as the other; it knows nothing of the difference be¬ 
tween inside and outside; elevation and depression are ar¬ 
bitrary terms to it. So in a thin piece of embossed metal, 
elevation on one side means depression on the other, and 
vice versa; but it is purely arbitrary which side we consider 
the right one. (Observe that the thin piece of metal is in no 
sense a representation of a surface; it is merely a thin solid 
whose two surfaces are very nearly of the same shape.) 

Thus we see that the edge of wood in our cube is of the 
same shape as the edge of air in the twin-sphere solid; or, 
which is the same thing, that the two surfaces are of the 
same shape at the edge. 

Now this twin-sphere solid is a very convenient one, be¬ 
cause we can so modify it as to make an edge of any shape we 
like. Hitherto we have supposed the slices cut off to be less 
than half of the spheres; let us now fasten together these 
pieces, and so form a solid with a projecting edge, as in Fig. 27 
at right. The two solids so formed, one with a re-entrant edge 
from the larger pieces, the other with a projecting edge from 
the smaller pieces, will be found always to have their edges 
of the same shape, or to fit one another at the edge in the 
sense just explained. 

Formed by joining to¬ 
gether the equal, 
larger portions of two 
spheres.—J. R. N. 

Fig. 27 

Formed by join¬ 
ing together the 
equal, smaller 
portions of two 
spheres.—J.R.N. 

Now suppose that we cut our spheres very nearly in half. 
(Of course they must always be cut both alike, or the flat 
faces would not fit together.) Then when we join together the 
lai^r pieces and the smaller pieces, we shall form solids with 
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very wide open edges. The projecting edge will be a very 
slight ridge, and the re-entrant one a very slight depression. 

If we now go a step further, and cut our spheres actually 
in half, of course each of the new sohds will be again a sphere; 
and there will be neither ridge nor depression; the surfaces 
will be smooth all over. But we have arrived at this result 
by considering a projecting edge as gradually widening out 

(i) (ii) 

(iii) (iv) (v) (vi) (vii) 

Fig. 28 

until the ridge disappears, or by considering a re-entrant 
edge as gradually widening out until the dint disappears. Or 
we may suppose the projecting edge to go on widening out 
till it becomes smooth, and then to turn into a re-entrant 
edge. We might represent this process to the eye by putting 
into a wheel of life a succession of pictures like that in Fig. 28, 
and then rapidly turning the wheel. We should see the two 
spheres, at first separate, coalesce into a single solid in (ii) 
and (iii), then form one sphere as at (iv), then contract 
into a smaller and smaller lens at (v), (vi), (vii). The im¬ 
portant thing to notice is that the single sphere at (iv) is a 
step in the process; or, what is the same thing, that a smooth- 
point is a particular case of an edge-point coming between the 
projecting and the re-entrant edges. As being this particular 
case of the edge-point, we say that at all smooth-points the 
surfaces are of the same shape. 

§4. The Characteristics of Surface Boundaries 

Remarks like these that we have made about solid bodies 
or portions of space may be made also about portions of sur¬ 
face. Only we cannot now say that the shape of a piece of 
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surface depends wholly on that of the curve which botinds 
it. Still the only thing that remains for us to consider is the 
shape of the boundary, because we have already discussed 
(so far as we profitably can at present) the shape of the in¬ 
cluded surface. 

We shall find it useful to restrict ourselves still further, 
and only consider those boundaries which have no rough 
points of the surface in them. Thus on the surface of the cube 
we will only consider portions which are entirely included 
in one of the plane faces; on the surface of the cyhnder, only 
portions which are entirely included in one of the flat faces, 
or in the curved part, or which include one of the flat faces 
and part of the curved portion. 

This being so, the characteristics which we have to remark 
in the boundaries of pieces of surface may be suflSciently 
studied by means of figures drawn on paper. We may bend 
the paper to assure ourselves that the same general prop¬ 
erties belong to figures on a cyhnder, and to make our ideas 
quite distinct it is worth while to draw some on a sphere or 
other such surface. 

In Fig. 29 are some patches of surface; a square, a three- 
cornered piece, and two overlapping circles. For distinct- 

Fia. 29 

ness, the part where the circles overlap is left white, the rest 
being made black. 

Attending now specially to the boundary of these patches, 
we observe that it consists of smooth parts and of comers 
or angles. Some of these corners project and some are re¬ 
entrant. The pieces of surface are not soUd moveable things 
like the portions of space we considered before, but we can 
in a measure imitate our previous experiments by cutting 
out the figures with a penknife, so as to leave their previous 
positions marked by the holes. We shall then find, on apply- 
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ing the cut-out pieces to one another, or to the holes, that at 
all smooth-points the boundaries fit one another in a certain 
sense. Namely, if we place two smooth-points in contact we 
cannot roll one figure on the other without separating these 
points; whereas if we place a sharp-point (or angle) on a 
smooth-point we can roll one figure on the other without 
separating the points. If we attempt to put two angles to¬ 
gether without letting the figures overlap, the same things 
may happen that we found true in the case of the edges of 
solid bodies. Suppose, for example, that we try to put an 
angle of the square into one of the re-entrant angles of the 
figure made by the two overlapping circles. If the re-entrant 
angle is too sharp, we shall not be able to get it in at all; this 
is the case of Fig. 21. If it is wide enough, the square will 
be able to rock in it; this is the case of Fig. 22. Between these 
two there is an intermediate case in which one angle just 
fits the other; actual contact takes place, and no rocking is 
possible. In this case we say that the two angles are of the 
same shape, or that they are equal to one another. 

From all this we are led to conclude that shape is a matter 
of angles, and that identity of shape depends on equality of 
angle. We dealt with the size of a body by considering a 
simple case of it, viz. length or distance, and by measuring a 
sufficient number of lengths in different directions could find 
out all that is to be known about the size of a body. It is, 
indeed, also true that a knowledge of all the lengths which 
can be measured in a body would carry with it a knowledge 
of its shape; but still length is not in itself an element of 
shape. That which does the same for us in regard to shape 
that length does with regard to size, is angle. In other words, 
just as we say that two bodies are of the same size if to any 
fine that can be drawn in the one there corresponds an ex¬ 
actly equal line in the other, so we say that two bodies are 
of the same shape, if to every angle that can be drawn on one 
of them there corresponds an exactly equal angle on the other. 

Just as we measured lengths by a stick or a piece of tape 
so we measure angles with a pair of compasses; and two 
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angles are said to be equal when they fit the same opening 
of the compasses. And as before, the statement that a thing 
can be moved about without altering its shape may be 
shown to amount only to this, that two angles which fit in 
one place wiU fit also in another, no matter how they have 
been brought from the one place to the other. 

§5. The Plane and the Straight Line 

We have now to describe a particular kind of surface and 
a particular kind of fine with which geometry is very much 
concerned. These are the plane surface and the straight fine. 

The plane surface may be defined as one which is of the 
same shape all over and on both sides. This property of it is 
illustrated by the method which is practically used to make 
such a surface. The method is to take three surfaces and grind 
them down until any two will fit one another all over. Sup¬ 
pose the three surfaces to be a, b, c; then, since a will fit b, 

it follows that the space outside a is of the same shape as the 
space inside b ; and because b will fit c, that the space inside 
B is of the same shape as the space outside c. It follows there¬ 
fore that the space outside a is of the same shape as the space 
outside c. But since a will fit c when we put them together, 
the space inside a is of the same shape as the space outside c. 
But the space outside c was shown to be of the same shape 
as the space outside a; consequently the space outside A is 
of the same shape as the space inside; and so, if three sur¬ 
faces are ground together so that each pair of them will fit, 
each of them becomes a surface which is of the same shape 
on both sides: that is to say, if we take a body which is partly 
bounded by a plane surface, we can slide it all over this sur¬ 
face and it will fit everywhere, and we may also turn it 
round and apply it to the other side of the surface and it will 
fit there too. This property is sometimes more technically 
expressed by saying that a plane is a surface which divides 
space into two congruent regions. 

A straight line may be defined in a similar way. It is a 
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division between two parts of a plane, which two parts are, 
so far as the dividing hne is concerned, of the same shape; 
or we may say what comes to the same effect, that a straight 
line is a line of the same shape all along and on both sides. 

A body may have two plane surfaces; one part of it, that 
is, may be bounded by one plane and another part by an¬ 
other. If these two plane surfaces have a common edge, this 
edge, which is called their iTilersection, is a straight line. We 
may then, if we hke, take as our definition of a straight line 
that it is the intersection of two planes. 

It must be understood that when a part of the surface of 
a body is plane, this plane may be conceived as extending 
beyond the body in all directions. For instance, the upper 
surface of a table is plane and horizontal. Now it is quite 
an intelhgible question to ask about a point which is any¬ 
where in the room whether it is higher or lower than the sur¬ 
face of the table. The points which are higher will be divided 
from those which are lower by an imaginary surface which is 
a continuation of the plane surface of the table. So then we 
are at hberty to speak of the fine of intersection of two plane 
surfaces of a body whether these are adjacent portions of 
surface or not, and we may in every case suppose them to 
meet one another and to be prolonged across the edge in 
which they meet. 

Leibniz, who was the first to give these definitions of a 
plane and of a straight Une, gave also another definition of 
a straight hne. If we fix two points of a body, it will not be 
entirely fixed, but it wiU be able to turn round. All i>oints of 
it will then change their position excepting those which are 
in the straight line joining the two fixed points; and Leibniz 
accordingly defined a straight hne as being the aggregate 
of those points of a body which are unmoved when it is 
turned about with two points fixed. If we suppose the body 
to have a plane face passing through the two fixed points, 
tWs definition will fall back on the former one which defines 
a straight line as the intersection of two planes. 

It hardly needs any words to prove that the first two defi- 
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nitions of a plane are equivalent; that is, that two surfaces, 
each of which is of the same shape all over and on both sides, 
will have for their intersection a line which is of the same 
shape all along and on both sides. For if we shde each plane 
upon itself it will, being of the same shape all over, occupy 
as a whole the same unchanging position (i.e. wherever there 
was part of the planes before there will be part, though a 
different part, of the planes now), so that their line of inter¬ 
section occupies the same position throughout (though the 
part of the hne occupying any particular position is differ¬ 
ent). The line is therefore of the same shape all along. And 
in a similar way we can, without changing the position of 
the planes as a whole, move them so that the right-hand 
part of each shall become the left-hand part, and the upper 
part the lower; and this will amount to changing the hne 
of intersection end for end. But this line is in the same place 
after the change as before; and it is therefore of the same 
shape on both sides. 

From the first definition we see that two straight Unes 
cannot coincide for a certain distance and then diverge from 
one another. For since the plane surface is of the same 
shape on the two sides of a straight hne, we may take up the 
surface on one side and turn it over and it will fit the sur¬ 
face on the other side. If this is true of one of our supposed 
straight fines, it is quite clear that it cannot at the same 
time be true of the other; for we must either be bringing over 
more to fit less, or less to fit more. 

§6. Properties of Triangles 

We can now reduce to a more precise form our first ob¬ 
servation about space, that a body may be moved about in 
it without altering its size or shape. Let us suppose that our 
body has for one of its faces a triangle, that is to say, the 
portion of a plane bounded by three straight fines. We find 
that this triangle can be moved into any new position that 
we like, while the lengths of its sides and its angles remain 
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the same; or we may put the statement into the form that 
when any triangle is once drawn, another triangle of the 
same size and shape can be drawn in any part of space. 

From this it will follow that if there are two triangles 
which have a side of the one equal to a side of the other, and 
the angles at the ends of that side in the one equal to the 
angles at the ends of the equal side in the other, then the 
two triangles are merely the same triangle in different posi¬ 
tions; that is, they are of the same size and shape. For if we 
take the first triangle and so far put it into the position of 
the second that the two equal sides coincide, then because 
the angles at the ends of the one are respectively equal to 
those at the ends of the other, the remaining two sides of the 
first triangle will begin to coincide with the remaining two 
sides of the second.^ But we have seen that straight lines 
cannot begin to coincide and then diverge; and conse¬ 
quently these sides will coincide throughout and the triangles 
will entirely coincide. 

Our second observation, that we may have things which 
are of the same shape but not of the same size, may also be 
made more precise by application to the case of triangles. 
It tells us that any triangle may be magnified or diminished 
to any degree without altering its angles, or that if a triangle 
be drawn, another triangle having the same angles may be 
drawn of any size in any part of space. 

From this statement we are able to deduce two very im¬ 
portant consequences. One is, that two straight lines can¬ 
not intersect in more points than one; and the other that, 
if two straight lines can be drawn in the same plane so as 
not to intersect at all, the angles they make with any third 
line in their plane which meets them, will be equal. 

To prove the first of these, let a b and a c (Fig. 30) be two 
straight lines which meet at a. Draw a third line B c, meet- 

* This proposition, like many others of Euclidean geometry involving 
superposition, cannot be proved except in three dimensions. The manipula¬ 
tion of certain types of congruent triangles reveals the fact that to super¬ 
impose one upon the other, it is necessary to lift one of the triangles out of the 
pWe and tam it over before superposition is possible.—^J.R.N. 
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ing both of them, and the three lines then form a triangle. 
If we now make a point p travel along the line a b it must, 
in virtue of our second observation, be always possible to 
draw through this point a line which shall meet a c in q so 
as to make a triangle a p q of the same shape as A b c. But 

APB D 

Fig. 30 

if the line a c were to meet a b in some other point n besides 
A, then through this point D it would clearly not be possible 
to draw a hne so as to make a triangle at all. It follows then 
that such a point as n does not exist, and in fact that two 
straight hnes which have once met must go on diverging 
from each other and can never meet again.* 

To prove the second, suppose that the lines a c and b d 

(Fig. 31) are in the same plane, and are such as never to meet 

E 

Fio. 31 

at all (in which case they are called parallel), while the line 
A B meets them both. If we make a point p travel along b a 

towards a, and, as it moves, draw through it always a line 
making the same angle with b a that b d makes with b a, 

then this moving hne can never meet a c until it wholly 
coincides with it. For if it can, let p q be such a position of 
the moving hne; then it is possible to draw through b a hne 
which, with a b and a c, shah form a triangle of the same 
shape as the triangle a p Q. But for this to be the case the hne 

1 This property might also be deduced from the first defimtion of a straight 
fine, by the method already used to show that two straight lines cannot coin¬ 
cide for part of their length and then diverge. 
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drawn through b must make the same angle with a b that 
p Q makes with it, that is, it must be the line b d. And the 
three lines b n, b a, a c cannot form a triangle, for b n and 
a c never meet. Consequently there can be no such triangle 
as A p Q, or the moveable hne can never meet a c imtil it 
entirely coincides with it. But since this hne always makes 
with b a the same angle that b d does, and in one position 
coincides with a c, it follows that a c makes with b a the 
same angle that b d does. This is the famous proposition 
about parallel lines.^ 

The first of these deductions will now show us that if two 
triangles have an angle of the one equal to an angle of the 
other and the sides containing these angles respectively 
equal, they must be equal in all particulars. For if we take 
up one of the triangles and put it down on the other so that 
these angles coincide and equal sides are on the same side 
of them, then the containing sides will begin to coincide, 
and cannot therefore afterwards diverge. But as they are of 
the same length in the one triangle as they are in the other, 
the ends of them belonging to the one triangle will rest upon 
the ends belonging to the other, so that the remaining sides 
of the two triangles will have their ends in common and 
must therefore coincide altogether, since otherwise two 
straight lines would meet in more points than one. The one 

1 Two straight lines which cut one another form at the point where they 
cross four angles which are equal in pairs. It is often necessary to distinguish 
between the two different angles which the lines make with one another. This 
is done by the understanding that a b shall mean the line drawn from a to b, 

and B A the line drawn from b to a, so that the angle between a b and c d (i) 

is the angle bod, but the angle between b a and c d (ii) is the angle d o a. 

So the angle spoken of above as made by a c with b a is not the angle cab 

(which is clearly, in general, unequal to the angle D B a), but the angle cab, 
where e is a point in b a produced through a. 
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triangle will then exactly cover the other; that is to say, 
they are equal in all respects. 

In the same way we may see that if two triangles have 
two angles in the one equal to two angles in the other, they 
are of the same shape. For one of them can be magnified or 
diminished until the side joining these two angles in it be¬ 
comes of the same length as the side joining the two cor¬ 
responding angles in the other; and as no alteration is thereby 
made in the shape of the triangle, it will be enough for us to 
prove that the new triangle is of the same shape as the other 
given triangle. But if we now compare these two, we see 
that they have a pair of corresponding sides which have been 
made equal, and the angles at the ends of these sides equal 
also (for they were equal in the original triangles, and have 
not been altered by the change of size), so that we fall back 
on a case already considered, in which it was shown that the 
third angles are equal, and the triangles consequently of 
the same shape. 

If we apply these propositions not merely to two different 
triangles but to the same triangle, we find that if a triangle 
has two of its sides equal it will have the two angles opposite 
to them also equal; and that, conversely, if it has two angles 
equal it will have the two sides opposite to them also equal; 
for in each of these cases the triangle may be turned over 
and made to fit itself. Such a triangle is called isosceles. 

The theorem about parallel fines which we deduced from 
our second assumption about space leads very easily to a 
theorem of especial importance, viz. that the three angles of 
a triangle are together equal to two right angles. 

If we draw through a, a corner of the triangle a b c (Fig. 
32), a fine n a e, making with the side a c the same angle as 
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B c makes with it, this line will, as we have proved, never 
meet b c, that is, it will be parallel to it.‘ It will consequently 
make with a b the same angle as b c makes with it,® so that 
the three angles a b c, b a c, and b c a are respectively equal 
to the angles e a b, b a c, and cad, and these three make 
up two right angles. 

Another statement of this theorem is sometimes of use. 
If the sides of a triangle be produced, what are called the 

exterior angles of the triangle are formed. If, for example, 
the side b c of the triangle a B c (Fig. 33) is produced beyond 
c to D, A c D is an exterior angle of the triangle, while of the 

interior angles of the triangle a c b is said to be adjacent, 
and CAB and a b c to be opposite to this exterior angle. It is 
clear that as each side of the triangle may be produced in 
two directions, any triangle has six exterior angles. 

A 

B CD 
Fra. 33 

The other form into which our proposition may be thrown 
is that either of the exterior angles of a triangle is equal to 
the sum of the two interior angles opposite to it. For, in the 
figure, the exterior angle a c d, together with a c b, makes 
two right angles, and it must therefore be equal to the sum 
of the two angles which also make up two right angles with 
A c b. 

* This is not what Clifford proved before. He proved that if two lines are 
parallel the corresponding angles are equal; which is not the equivalent of the 
proposition that if the corresponding angles (or alternate interior angles) are 
equal, the two lines are parallel. It happens that both propositions are 
true.—^J.R.N, 

* The convention mentioned in footnote 1 on page 66 must be remembered. 
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§7. Properties of Circles; Related Circles and Triangles 

We may now apply this proposition to prove an impor¬ 
tant property of the circle, viz. that if we take two fixed 
points on the circumference of a circle and join them to a 
third point on the circle, the angle between the joining lines 
will depend only upon the first two points and not at all 
upon the third. If, for example, we join the points a, b 

(Fig. 34) to c we shall show that, wherever on the circum¬ 
ference c may be, the angle a c b is always one-half of a o b ; 

o being the centre of the circle. 
Let c o produced meet the circumference in d. Then since 

the triangle o a c is isosceles, the angles o a c and oca are 
equal, and so for a similar reason are the angles o B c and 
o c b. 

But we have just shown that the exterior angle a o n is 
equal to the sum of the angles o a c and oca; and since 
these are equal to one another it must be double of either 
of them, say of o c a. Similarly the angle b o d is double of 
o c B, and consequently a o b is double of a c b. 

In the case of the first figure (i) we have taken the sum of 
two angles each of which is double of another, and asserted 
that the sum of the first pair is twice the sum of the second 
pair; in the case of the second figure (ii) we have taken the 

difference of two angles each of which is double of another, 
and asserted that the difference of the first pair is twice the 
difference of the second pair. 

Since therefore a c b is always half of a o b, wherever c 
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may be placed in the upper of the two segments into which 
the circle is divided by the straight line a b, we see that the 
magnitude of this angle depends only on the positions of a 

and B, and not on the position of c. But now let us consider 
what will happen if c is in the lower segment of the circle. 
As before, the triangles o a c and o b c (Fig. 35) are isosceles, 
and the angles n o a and dob are respectively double of 
OCA and o c b. Consequently, the whole angle a o b formed 
by making o A turn round o into the position o b, so as to 
pass through the position o d (in the way, that is, in which 
the hands of a clock turn), this whole angle is double of a c b. 

By our previous reasoning the angle a d b, formed by 
joining a and b to d, is one-half of the angle a o b, which is 
made by turning o b towards o a as the hands of a clock 
move. The sum of these two angles, each of which we have 
denoted by a o b, is a complete revolution about the point 
o; in other words, is four right angles. Hence the sum of the 

D 

angles a d b, a c b, which are the halves of these, is two right 
angles. Or we may put the theorem otherwise, and say that 
the opposite angles of a four-sided figure whose angles 
lie on the circumference of a circle are together equal to two 
right angles. 

We appear therefore to have arrived at two different state¬ 
ments according as the point c is in the one or the other of 
the segments into which the circle is divided by the straight 
line A B. But these statements are really the same, and it is 
easy to include them in one proposition. If we produce a c 
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in the last figure to e, the angles a c b and b c e axe together 
equal to two right angles; and consequently b c e is equal to 
A D B. This angle b c e is the angle through which c b must 
be turned in the way the hands of a clock move, so that its 
direction may coincide with that of a c. But we may describe 
in precisely the same words the angle a c b in Fig. 34, where 
c was in the upper segment of the circle; so that we may 
always put the theorem in these words:—If a and b are 
fixed points on the circumference of a circle, and c any other 
point on it, the angle through which c b must be turned 
clockwise in order to coincide with c a or a c, whichever hap¬ 
pens first, is equal to half the angle through which o b must 
be turned clockwise in order to coincide with o a. 

We shall now make use of this to prove another interesting 
proposition. If three points d, e, f (Fig. 36) be taken on the 

A 

sides of a triangle a b c, d being on b c, e on c a, f on a b, 

then three circles can be drawn passing respectively through 
A F E, B D F, c E D. These three circles can be shown to meet 
in the same point o. For let o in the first place stand for the 
intersection of the two circles a f e and b f d, then the angles 
F A E and FOE make up two right angles, and so do the 
angles d o f and d b f. But the three angles at o make four 
right angles, and the three angles of the triangle a b c make 
two right angles; and of these six angles two pairs have been 
shown to make up two right angles each. Therefore the re- 
nudning pair, viz. the angles doe and d c e, make up two 
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right angles. It follows that the circle which goes through 
the points c E n will pass through o, that is, the three circles 
all meet in this point.^ 

There is no restriction imposed on the positions of the 
points D, E, F,* they may be taken either on the sides of the 

triangle or on those sides produced, and in particular we 
may take them to he on any fourth straight hne n e f; and 
the theorem may be stated thus:—If any four straight lines 
be taken (Fig. 37), one of which meets the triangle a b c 
formed by the other three in the points n, e, f, then the 
circles through the points afe, bdp, ced meet in a point. 
But there is no reason why we should not take a p E as the 

1 Clifford again avails himself of the converse of a theorem when all he has 
proved, in fact, is the theorem itself. If a quadrilateral is inscribed in a circle, 
then the sum of the opposite angles is equal to two right angles. This is what 
Clifford proved earher. The converse, on which the present theorem rests 
(i.e., if the sum of the opposite angles of a quadrilateral equals two right 
angles, the quadrilateral can be inscribed in a circle), was not proved.—J.R.N. 

»If either of the points d, b, f, is taken on a side produced, the proof given 
above will not apply literally; but the necessary changes are slight and 
obvious. 
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triangle formed by three lines, and the fourth line d c b as 
the hne which cuts the sides of this triangle. The proposi¬ 
tion is equally true in this case, and it follows that the circles 
through ABC, BCD, FED will meet in one point. This must 
be the same point as before,^ since two of the circles of this 
set are the same as two of the previous set; consequently all 
four circles meet in a point, and we can now state our prop¬ 
osition as follows: 

Given four straight lines, there can be formed from them 
four triangles by leaving out each in turn; the circles which 
circumscribe these four triangles meet in a point. 

This proposition is the third of a series. 
If we take any two straight hnes they determine a point, 

viz. their point of intersection. 
If we take three straight lines we get three such points of 

intersection; and these three determine a circle, viz. the 
circle circumscribing the triangle formed by the three lines. 

Four straight lines determine four sets of three lines by 
leaving out each in turn; and the four circles belonging to 
these sets of three meet in a point. 

In the same way five hnes determine five sets of four, and 
each of these sets of four gives rise, by the proposition just 
proved, to a point. It has been shown by Miquel, that these 
five points he on the same circle. 

And this series of theorems has been shown^ to be endless. 
Six straight hnes determine six sets of five by leaving them 
out one by one. Each set of five has, by Miquel’s theorem, a 

circle belonging to it. These six circles meet in the same 
point, and so on for ever. Any even number (2n) of straight 
hnes determines a point as the intersection of the same num¬ 
ber of circles. If we take one hne more, this odd number 
(2n +1) determines as many sets of 2n hnes, and to each of 
these sets belongs a point; these 2» 4-1 points he on a circle. 

^ The inference is not quite correct. Since two circles may intersect in two 
points, not merely in one, there is an ambiguity in the text, which, however, 
in no way vitiates the result.—J.R.N. 

* By Prof. Clifford himself in the Oxfordj Cambridge, and Dublin Messenger 
of Matkematics, vol. v. p. 124. See his Mathematical Papers, pp. 51-54. 
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§8. The Conic Sections 

The shadow of a circle cast on a flat surface by a lumi¬ 
nous point may have three different shapes. These are three 
curves of great historic interest, and of the utmost impor¬ 
tance in geometry and its apphcations. The hnes we have so 
far treated, viz. the straight line and circle, are special cases 
of these curves; and we may naturally at this point investi¬ 
gate a few of the properties of the more general forms. 

If a circular disc be held in any position so that it is al¬ 
together below the flame of a candle, and its shadow be al¬ 
lowed to fall on the table, tliis shadow will be of an oval 
form, except in two extreme cases, in one of which it also 
is a circle, and in the other is a straight line. The former of 
these cases happens when the disc is held parallel to the 
table, and the latter when the disc is held edgewise to the 
candle; or, in other words, is so placed that the plane in 
which it lies passes through the luminous point. The oval 
form which, with these two exceptions, the shadow presents is 
called an ellipse (Fig. 38, i). The paths pursued by the planets 
round the sun are of this form. 

If the circular disc be now held so that its highest point is 
just on a level with the flame of the candle, the shadow will 
as before be oval at the end near the candle; but instead of 
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closing up into another oval end as we move away from the 
candle, the two sides of it will continue to open out without 
any limit, tending however to become more and more paral¬ 
lel. This form of the shadow is called a parabola (ii). It is 
very nearly the orbit of many comets, and is also nearly 
represented by the path of a stone thrown up obUquely. If 
there were no atmosphere to retard the motion of the stone 
it would exactly describe a parabola. 

If we now hold the circular disc higher up stiU, so that a 
horizontal plane at the level of the candle flame divides it 
into two parts, only one of these parts will cast any shadow 
at all, and that will be a curve such as is shown in the figure, 
the two sides of which diverge in quite different directions, 
and do not, as in the case of the parabola, tend to become 
parallel (iii). 

But although for physical purposes this curve is the whole 
of the shadow, yet for geometrical purposes it is not the 
whole. We may suppose that instead of being a shadow our 
curve was formed by joining the luminous point by straight 
lines to points round the edge of the disc, and producing 
these straight fines until they meet the table. 

This geometrical mode of construction will equally apply 
to the part of the circle which is above the candle flame, 
although that does not cast any shadow. If we join these 
points of the circle to the candle flame, and prolong the 
joining fines beyond it, they will meet the table on the other 
side of the candle, and will trace out a curve there which is 
exactly similar and equal to the physical shadow (iv). We 
may call this the anti-shadow or geometrical shadow of the 
circle. It is found that for geometrical purposes these two 
branches must be considered as forming only one curve, 
which is called an hyperbola. There are two straight fines to 
which the curve gets nearer and nearer the further away it 
goes from their point of intersection, but which it never 
actually meets. For this reason they are called asymptotes, 
from a Greek word meaning “not falling together.” These 
lines are parallel to the two straight lines which join the 
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candle flame to the two points of the circle which are level 
with it. 

We saw some time ago that a surface was formed by the 
motion of a Une. Now if a right Une in its motion always 
passes through one fixed point, the surface which it traces out 
is called a cone, and the fixed point is called its vertex. And 
thus the three curves which we have just described are called 
conic sections, for they may be made by cutting a cone by a 
plane. In fact, it is in this way that the shadow of the circle 
is formed; for if we consider the straight lines which join 
the candle flame to all parts of the edge of the circle we see 
that they form a cone whose vertex is the candle flame and 
whose base is the circle. 

We must suppose these lines not to end at the flame but 
to be prolonged through it, and we shall so get what would 
commonly be called two cones with their points together, 
but what in geometry is called one conical surface having 
two sheets. The section of tliis conical surface by the hori¬ 
zontal plane of the table is the shadow of the circle; the sheet 
in which the circle lies gives us the ordinary physical shadow, 
the other sheet (if the plane of section meets it) gives what 
we have called the geometrical shadow. 

The consideration of the shadows of curves is a method 
much used for finding out their properties, for there are cer¬ 
tain geometrical properties which are always common to a 
figure and its shadow. For example, if we draw on a sheet 
of glass two curves which cut one another, then the shadows 
of the two curves cast through the sheet of glass on the table 
will also cut one another. The shadow of a straight line is 
always a straight line, for all the rays of light from the 
flame through various points of a straight fine he in a plane, 
and this plane meets the plane surface of the table in a 
straight line which is the shadow. Consequently if any curve 
is cut by a straight line in a certain number of points, the 
shadow of the curve will be cut by the shadow of the straight 
fine in the same number of points. Since a circle is cut by a 
straight line in two points or in none at all, it follows that 
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any shadow of a circle must be cut by a straight line in two 
points or in none at all. 

When a straight line touches a circle the two points of 
intersection coalesce into one point. We see then that this 
must also be the case with any shadow of the circle. Again, 
from a point outside the circle it is possible to draw two 
Hnes which touch the circle; so from a point outside either 
of the three curves which we have just described, it is possi¬ 
ble to draw two lines to touch the curve. From a point inside 
the circle no tangent can be drawn to it, and accordingly 
no tangent can be drawn to any conic section from a point 
inside it. 

This method of deriving the properties of one curve from 
those of another of wliich it is the shadow, is called the 
method of projection. 

The particular case of it which is of the greatest use is. 
that in which we suppose the luminous point by which the 
shadow is cast to be ever so far away. Suppose, for example, 
that the shadow of a circle held obliquely is cast on the table 
by a star situated directly overhead, and at an indefinitely 
great distance. The Hnes joining the star to all the points 
of the circle will then be vertical lines, and they will nO' 
longer form a cone but a cyUnder. One of the chief advan¬ 
tages of this kind of projection is that the shadows of two 
parallel Hnes wiU remain parallel, which is not generally the 
case in the other kind of projection. The shadow of the 
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circle which we obtain now is always an ellipse; and we are 
able to find out in this way some very important properties 
of the curve, the corresponding properties of the circle being 
for the most part evident at a glance on account of the sym¬ 
metry of the figure. 

For instance, let us suppose that the circle whose shadow 
we are examining is vertical, and let us take a vertical di¬ 
ameter of it, so that the tangents at its ends are horizontal. 
It will be clear from the symmetry of the figure that all 
horizontal lines in it are divided into two equal parts by 
the vertical diameter, or we may say that the diameter of 
the circle bisects all chords parallel to the tangents at its 
extremities. When the shadow of this figure is cast by an 
infinitely distant star (which we must not now suppose to 
be directly overhead, for then the shadow would be merely 
a straight line), the point of bisection of the shadow of any 
straight line is the shadow of the middle point of that line, 
and thus we learn that it is true of the ellipse that any line 
which joins the points of contact of parallel tangents bisects 
all chords parallel to those tangents. Such a line is, as in the 
case of the circle, termed a diameter. Since the shadow of a 
diameter of the circle is a diameter of the ellipse, it follows 
that all diameters of the ellipse pass through one and the 
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same point, namely, the shadow of the centre of the circle; 
this common intersection of diameters is termed the centre 
also of the ellipse. 

Again, a horizontal diameter in the circle just considered 
will bisect all vertical chords, and thus we see that if one 
diameter bisects all chords parallel to a second, the second 
will bisect all chords parallel to the first. 

The method of projection tells us that this is also true of 
the ellipse. Such diameters are called conjugate diameters, 
but they are no longer at right angles in the ellipse as they 
were in the case of the circle. 

Since the shadow of a circle which is cast in this way by an 
infinitely distant point is always an ellipse, we cannot use 
the same method in order to obtain the properties of the 
hyperbola. But it is found by other methods that these same 
statements are true of the hyperbola which we have just 
seen to be true of the ellipse. There is however this great 
difference between the two curves. The centre of the elhpse 
is inside it, but the centre of the hyperbola is outside it. 
Also all lines drawn through the centre of the ellipse meet 
the curve in two points, but it is only certain lines through 
the centre of the hyperbola which meet the curve at all. Of 
two conjugate diameters of the hyperbola one meets the 
curve and the other does not. But it still remains true that 
each of them bisects all chords parallel to the other. 

§9. On Surfaces of the Second Order 

We began with the consideration of the simplest kind of 
line and the simplest kind of surface, the straight fine and the 
plane; and we have since found out some of the properties 
of four different curved lines—the circle, the ellipse, the 
parabola, and the hyperbola. Let us now consider some 
curved surfaces; and first, the surface analogous to the 
circle. This surface is the sphere. It is defined, as a circle is, 
by the property that all its points are at the same distance 
from the centre. 
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Perhaps the most important question to be asked about 
a surface is, What are the shapes of the curved hnes in which 
it is met by other surfaces, especially in the case when these 
other surfaces are planes? Now a plane which cuts a sphere 
cuts it, as can easily be shown, in a circle (Fig. 41). This circle. 

Fig. 41 

as we move the plane further and further away from the 
centre of the sphere, will get smaller and smaller, and will 
finally contract into a point. In tliis case the plane is said to 
touch the sphere; and we notice a very obvious but important 
fact, that the sphere then lies entirely on one side of the 
plane. If the plane be moved still further away from the 
centre it will not meet the sphere at all. 

Again, if we take a point outside the sphere we can draw 
a number of planes to pass through it and touch the sphere, 
and all the points in which they touch it he on a circle. Also 
a cone can be drawn whose vertex is the point, and which 
touches the sphere all round the circle in which these planes 
touch it (Fig. 42). This is called the tangent-cone of the point. 

Fio. '42 

It is clear that from a point inside the sphere no tangent 
cone can be drawn. 
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Similar properties belong also to certain other surfaces 
which resemble the sphere in the fact that they are met by a 
straight line in iwo points at most; such surfaces are on this 
account called of the second order. 

Just as we may suppose an ellipse to be got from a circle 
by pulling it out in one direction, so we may get a spheroid 
from a sphere either by pulling it out so as to make a thing 
like an egg, or by squeezing it so as to make a thing hke an 
orange. Each of these forms is symmetrical about one diame¬ 
ter, but not about all. A figure like an orange, for example, 
or like the earth, has a diameter through its poles less than 
any diameter in the plane of its equator, but all diameters 
in its equator are equal. Again, a spheroid like an egg has 
ail the diameters through its equator equal to one another, 
but the diameter through its poles is longer than any other 
diameter. 

If we now take an orange or an egg and make its equator 
into an elhpse instead of a circle, say by pulling out the 
equator of the orange or squeezing the equator of the egg, so 
that the surface has now three diameters at right angles all 
unequal to one another, we obtain what is called an ellipsoid 
(Fig. 43). This surface plays the same part in the geometry 

Elipsoid Spheroid 

None of the three The two principle 
principle axes are axes labelled a are 
equal. equal. 

Fig. 43 

of surfaces that the ellipse does in the geometry of curves. 
Just as every plane which cuts a sphere cuts it in a circle, 
so every plane which cuts an ellipsoid cuts it in an ellipse. 
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It is indeed possible to cut an ellipsoid by a plane so that 
the section shall be a circle, but this must be regarded as a 
particular kind of ellipse, viz. an ellipse with two equal axes. 
Again, just as was the case with the sphere, we can draw a 
set of planes through an external point ail of which touch 
the elhpsoid. Their points of contact he on a certain elUpse, 
and a cone can be drawn which has the external point for its 
vertex and touches the elhpsoid all round this ellipse. The 
elhpsoid resembles a sphere in this respect also, that when 
it is touched by a plane it hes wholly on one side of that 
plane. 

There are also surfaces which bear to the hyperbola and 
the parabola relations somewhat similar to those borne to 
the circle by the sphere, and to the ellipse by the elhpsoid. 
We will now consider one of them, a surface with many 
singular properties. 

Let A B c D be a figure of card-board having four equal 
sides, and let it be half cut through all along b d, so that the 
triangles a b n, c B n can turn about the hne b d. Then let 
holes be made along the four sides of it at equal distances, 
and let these holes be joined by threads of silk parallel to 
the sides. If now the figure be bent about the hne b d and 
the silks are pulled tight it will present an appearance hke 
that in Fig. 44, resembhng a saddle, or the top of a moun¬ 
tain pass. 

This surface is composed entirely of straight hnes, and 
there are two sets of these straight hnes; one set which was 
originally parallel to A b, and the other set which was origi¬ 
nally parallel to a d. 

A section of the figure through a c and the middle point of 
B D will be a parabola with its concave side turned upwards 
(Fig. 45). 

A section through b d and the middle point of a c will be 
another parabola with its concave side turned downwards, 
the common vertex of these parabolas being the summit of 
the pass. 

The tangent plane at this point will cut the surface in two 
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straight lines, while part of the surface will be above the tan¬ 
gent plane and part below it (Fig. 46). We may regard this 
tangent plane as a horizontal plane at the top of a mountain 
pass. If we travel over the pass, we come up on one side 
the level of the plane and then go down on the other. But 
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Pig. 46. The tangent plane ir at F cuts the surface 
in the two straight lines a and 6. 

we go down from a mountain on the right and go up the 
mountain on the left, we shall always be above the hori¬ 
zontal plane. A section by a horizontal plane a little above 
this tangent plane will be a hyperbola whose asymptotes will 
be parallel to the straight lines in which the tangent plane 
meets the surface (Fig. 47). A section by a horizontal plane a 

Kttle below will also be a hyperbola with its asymptotes par¬ 
allel to these lines, but it will be situated in the other pair 
of angles formed by these asymptotes. If we suppose the cut¬ 
ting plane to move downwards from a position above the 
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tangent plane (remaining always horizontal), then we shall 
see the two branches of the first hyperbola approach one 
another and get sharper and sharper until they meet and 
become simply two crossing straight lines. These lines will 
then have their corners rounded off and will be divided in 
the other direction and open out into the second hyperbola. 

This leads us to suppose that a pair of intersecting straight 
lines is only a particular case of a hyperbola, and that we 
may consider the hyperbola as derived from the two crossing 
straight lines by dividing them at their point of intersection 
and rounding off the corners. 

§10. How to form Curves of the Third and Higher Orders 

The method of the preceding paragraph may be extended 
so as to discover the forms of new curves by putting known 
curves together. By a mode of expression which sounds 
paradoxical, yet is found convenient, a straight fine is called 
a curve of the first order, because it can be met by another 
straight line in only one point; but two straight fines taken 
together are called a curve of the second order, because they 
can be met by a straight fine in two points. The circle, and 
its shadows, the ellipse, parabola, and hyperbola, are also 
called curves of the second order, because they can be met 
by a straight fine in two points, but not in more than two 
points; and we see that by this process of rounding off the 
corners and the method of projection we can derive aU these 
curves of the second order from a pair of straight fines. 

A similar process enables us to draw curves of the third 
order. An ellipse and a straight fine taken together form a 
curve of the third order. If now we round off the corners at 
both the points where they meet we obtain (Fig. 48) a curve 
consisting of an oval and a sinuous portion called a “snake.” 
Now just as when we move a plane which cuts a sphere 
away from the centre, the curve of intersection shrinks up 
into a point and then disappears, so we can vary our curve 
of the third order so as to make the oval which belongs to 



86 Chapter II ; Space 

CO (ii) (iii) (iv) 

Fig. 48 

(i) Full loop and snake. (iii) The loop has shrunk to a point. 
(ii) Shrunk loop and snake. (iv) Snake only. 

it shrink up into a point, and then disappear altogether, 
leaving only the sinuous part, but no variation will get rid 
of the “snake.” 

We may, if we like, only round off the corners at one of 
the intersections of the straight line and the ellipse, and we 
then have a curve of the third order crossing itself, having a 

G) Cu) Gii) Gv) 
Fig. 49 

knot or double point (Fig. 49); and we can further suppose 
this loop to shrink up, and the curve will then be found to 
have a sharp point or cusp. 
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It was shown by Newton that all curves of the third order 
might be derived as shadows from the five forms which we 
have just mentioned, viz. the oval and snake, the point and 
snake, the snake alone, the form with a knot, and the form 
with a cusp. 

In the same way curves of the fourth order may be got 
by combining together two ellipses. If we suppose them to 

Fig. 50 

cross each other in four points we may round off all the cor¬ 
ners at once and so obtain two different forms, either four 
ovals all outside one another or an oval with four dints in it, 
and another oval inside it (Fig. 50). 

But the number of forms of curves of the fourth order is 
so great that it has never yet been completely catalogued; 
and curves of higher orders are of still more varied shapes. 



CHAPTER III 

Quantity 

§1. The Measurement of Quantities 

We considered at the beginning of the first chapter, on Num¬ 
ber, the process of counting things which are separate from 
one another, such as letters or men or sheep, and we found 
it to be a fundamental property of this counting that the 
result was not affected by the order in which the things to 
be counted were taken; that one of the things, that is, was 
as good as another at any stage of the process. 

We may also count things which are not separate but all 
in one piece. For example, we may say that a room is six¬ 
teen feet broad. And in order to count the number of feet 
in the breadth of this room we should probably take a foot 
rule and measure off first a foot close to the wall, then an¬ 
other beginning where that ended, and so on until we 
reached the opposite wall. Now when these feet are thus 
marked off they may, just like any other separate things, 
be counted in whatever order we please, and the number of 
them will always be sixteen. 

But this is not all the variety in the process of counting 
which is possible. For suppose that we take a stick whose 
length is equal to the breadth of the room. Then we may cut 
out a foot of it wherever we please, and join the ends to¬ 
gether. And if we then cut out another foot from any part of 
the remainder and join the ends, and repeat the process 
fifteen times, we shall find that there will always be a foot 
length left when the last two ends are joined together. So, 
when we are counting things that are all in one piece, like 

88 
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the length of the stick or the breadth of the room, not only 
is the order in which we count the feet immaterial, but also 
the position of the actual feet which we count. 

Again, if we say that a packet contains a pound, or six¬ 
teen ounces, of tea, we mean that if we take any ounce of it 
out, then any other ounce out of what is left, and so on until 
we have taken away fifteen ounces, there will always be an 
ounce left. 

If I say that I have been writing for fifteen minutes it will 
of course have been impossible actually to count these 
minutes except in the order in which they really followed 
one another, but it will still be true that, if any separate 
fourteen minutes had been marked off during that interval 
of time, the remainder of it, made up of the interstices be¬ 
tween these minutes, would amoimt on the whole to one 
minute. 

In all these cases we have been counting tilings that hang 
together in one piece; and we find that we may choose at 
will not only the order of counting but even the things 
that we count without altering the result. This process is 
called the measurement of quantities. 

But now suppose that when we measure the breadth of a 
room we find it to be not sixteen feet exactly, but sixteen 
feet and something over. It may be sixteen feet and five 
inches. And if so, in order to measure the something over, 
we merely repeat the same process as before; only that in¬ 
stead of counting feet we count inches, which are smaller 
than feet. If the breadth is found not to be an exact number 
of inches, but that something is left beside the five inches, we 
might measure that in eighths of an inch. There might, for 
example, be three eighths of an inch over. But there is no 
security that the process will end here; for the breadth of 
the room may not contain an exact number of eighths of an 
inch. Still it may be said that nobody wants to know the 
breadth of a room more exactly than to within an eighth of 
an inch. 
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Again, when we measure a quantity of tea it may be 
nearly, but not exactly, sixteen ounces; there may be some¬ 
thing over. This remainder we shall then measure in grains. 
And here, as before, we are repeating the same process by 
which we coimt things which are all in one piece; only we 
count grains, which are smaller things than ounces. There 
may still not be an exact number of grains in the packet of 
tea, but then nobody wants to know the weight of a packet 
of tea so nearly as to a grain. 

And it is the same with time. A geological period may, if 
we are very accurate, be specified in hundreds of centuries; 
the length of a war in years; the time of departure of a train 
to within a minute; the moment of an eclipse to a second; 
our care being, in each case, merely to secure that the 
measurement is accurate enough for the purpose we have 
in hand. 

To sum up. There is in common use a rough or approxi¬ 
mate way of describing quantities, which consists in saying 
how many times the quantity to be described contains a 
certain standard quantity, and in neglecting whatever may 
remain. The smaller the standard quantity is the more ac¬ 
curate is the process, but it is in general no better than an 
approximation. 

If then we want to describe a quantity accurately and 
not by a mere approximation, what are we to do? There is 
no way of doing this in words; the only possible method is 
to carry about either the quantity itself or some other 
quantity which shall serve to represent it. For instance, to 
represent the exact length and breadth of a room we may 
draw it upon a scale of, say, one inch to a foot and carry 
this drawing about. 

Here we are representing a length by means of another 
length; but it is not necessary to represent weights by means 
of weights, or times by means of times; they are both in 
practice represented by lengths. When a chemist, wishing to 
weigh with great delicacy, has gone as near as he can with 
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the drachms which he puts into his scales, he hangs a little 
rider upon the beam of the scale, and the distance of this 
rider from the middle indicates how much weight there 
is over. And, if we suppose the balance to be perfectly 
true, and that no friction or other source of error has to 
be taken into account, it indicates this weight with real 
accuracy. 

Here then is a case in which a weight is indicated by a 
length, namely, the distance from the centre of the scale to 
the rider. Again, we habitually represent time by means of 
a clock, and in this case the minute hand moves by a suc¬ 
cession of small jerks, possibly twice a second. Such a clock 
will only reckon time in half seconds, and can tell us nothing 
about smaller intervals than this. But we may easily con¬ 
ceive of a clock in which the motion of the minute hand is 
steady, and not made by jerks. In this case the interval of 
time since the end of the last hour will be accurately repre¬ 
sented by the length round the outer circle of the clock 
measured from the top of it to the point of the minute hand. 
And we notice that here also the quantity which is measured 
in this way by a length is probably not the whole quantity 
which was to be estimated, but only that which remains 
over after the greater part has been counted by reference to 
some standard quantity. 

We may thus describe weight and time, and indeed quan¬ 
tities of any kind whatever, by means of the lengths of lines; 
and in what follows, therefore, we shall only speak of 
quantities of length as completely representing measurable 
things of any sort. 

§2. The Addition and Subtraction of Quantities 

For the addition of two lengths it is plainly sufficient to 
place them end to end in the same line. And we must notice 
that, as was the case with counting, so now, the possible 
variety in the mode of adding is far greater in the case of two 



92 Chapter III : Q U ANTITY 

quantities than in the case of two numbers. For either of 
the lengths, the aggregate of which we wish to measure, may 
be cut up into any number of parts, and these may be in¬ 
serted at any points we please of the other length, without 
any change in the result of our addition. 

Or the same may be seen, perhaps more clearly, by refer¬ 
ence to the idea of “steps.” Suppose we have a straight line 
with a mark upon it agreed on as a starting-point, and a 
series of marks ranged at equal distances along the line and 
numbered 1, 2, 3, 4. . . . Then any particular number is 
shown by making an index point to the right place on the 
line. And to add or subtract any other number from this, we 
have only to make the index move forwards or backwards 
over the corresponding number of divisions. But in the case 
of lengths we are not restricted to the places which are 
marked on the scale. Any length is shown by carrying the 
index to a place whose distance from the starting-point is 
the length in question (of which places there may be as many 
as we please between any two points which correspond to 
consecutive numbers), and another length is added or sub¬ 
tracted by making the index take a “step” forwards or 
backwards of the necessary amount. 

It is seen at once that, for quantities in general as well as 
for numbers, a succession of given steps may be made in 
any order we please and the result will always be the 
same. 

§3. The Multiplication and Division of Quantities 

We have already considered cases in which a quantity is 
multiplied] that is to say, in which a certain number of equal 
quantities are added together, a process called the multipli¬ 
cation of one of them by that number. Thus the length 
sixteen feet is the result of multiplying one foot by 
sixteen. 

We may now ask the inverse question; Given two lengths, 
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what number must be used to multiply one of them in order 
to produce the other? And it has been implied in what we 
have said about the measurement of quantities that it is 
only in special cases that we can find a number which will be 
the answer to this question. If we ask, for example, by what 
number a foot must be multiplied in order to produce fifteen 
inches, the word “number” requires to have its meaning 
altered and extended before we can give an answer. We know 
that an inch must be multiplied by fifteen in order to become 
fifteen inches. We may therefore first ask by what a foot 
must be multiplied in order to produce an inch. And the 
question seems at first absurd; because an inch must be 
multipfied by twelve in order to give a foot, and a foot has 
to be, not multiplied at all, but divided by twelve, in order 
to become an inch. 

In order then to turn a foot into fifteen inches, we must go 
through the follovping process; we must divide it into twelve 
equal parts and take fifteen of them; or, sliortly, divide by 
twelve and multiply by fifteen. Or we may produce the same 
result by performing the steps of our process in the other 
order: we may first multiply by fifteen, so that we get fifteen 
feet, and then divide this length into twelve equal parts, 
each of which will be fifteen inches. 

Now if instead of inventing a new name for this compound 
operation we choose to call it by the old name of multiplica¬ 
tion, we shall be able to speak of multiplying a foot so as 
to get fifteen inches. The operation of multiplying by fifteen 
and dividing by twelve is written thus: H; and so, to change 
a foot into fifteen inches, we multiply by the fraction 
Of this fraction the upper number (15) is termed the numeral 
tor, the lower (12) the denominator. 

Now it was explained in the first chapter, that the for¬ 
mulae of arithmetic and algebra are capable of a double in¬ 
terpretation. For instance, such a symbol as 3 meant, in the 
first place, a number of letters or men, or any other things; 
but afterwards was regarded as meaning an operation, 
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namely, that of trebling anything. And so now the symbol 
^ may be taken either as meaning “so much” of a foot, or 
as meaning the operation by which a foot is changed into 
fifteen inches. 

The degree in which one quantity is greater or less 
than another; or, to put it more precisely, that amount 
of stretching or squeezing which must be applied to the 
latter in order to produce the former, is called the ratio of 
the two quantities. If a and h are any two lengths, the ratio 
of a to 6 is the operation of stretching or squeezing which 
will make h into a; and this operation can be always ap¬ 
proximately, and sometimes exactly, represented by means 
of numbers.^ 

§4. The Arithmetical Expression of Ratios 

For the approximate expression of ratios there are two 
methods in use. In each, as in measuring quantities in gen¬ 
eral, we proceed by using standards which are taken smaller 
and smaller as we go on. In the first, these standards are 
chosen according to a fixed law; in the second, our choice 
is suggested by the particular ratio which we are engaged in 
measuring. 

The first method consists in using a series of standards 
each of which is a tenth part of the preceding. Thus to express 
the ratio of fifteen inches to a foot, we proceed thus. The 
fifteen inches contain a foot once, and there is a piece of 
length three inches, or a quarter of a foot, left over. This 
quarter of a foot is then measured in tenths of a foot, and 
we find that it is 2-tenths, with a piece—which proves to be 
half a tenth—over. So, if we chose to neglect this half-tenth 
we should call the ratio 12-tenths, or as we write it 1.2. 
But if we do not neglect the half-tenth, it has to be measured 
in hundredths of a foot; of which it makes 5 exactly. So that 
the result is 125 hundredths, or 1.25, accurately. 

^ Integers or fractions.—^J.R.N. 
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Again we will try to express in this way the length of the 
diagonal of a square in terms of a side. We find at once that 
the diagonal contains the side once, with a piece over: so 
that the ratio in question is 1 together with some fraction. 
If we now measure this remaining piece in tenth parts of a 
side we shall find that it contains 4 of them, with something 
left. Thus the ratio of the diagonal to the side may be ap¬ 
proximately expressed by 14-tenths, or 1.4. If we now meas¬ 
ure the piece left over in hundredth parts of the side we 
shall find that it contains one and a bit. Thus 141-hun¬ 
dredths, or 1.41 is a more accurate description of the ratio. 
And this bit can be shown to contain 4-thousandths of the 
side, and a bit over; so that we arrive at a still more ac¬ 
curate value, 1414-thousandths, or 1.414. And this process 
might be carried on to any degree of accuracy that was re¬ 
quired; but in the present case, unhke that considered before, 
it would never end; for the ratio of the diagonal of a square 
to its side is one which cannot be accurately expressed by 
means of numbers. 

The other method of approximation differs from the one 
just explained in this respect—that the successively smaller 
and smaller standardjquantities in terms of which we meas¬ 
ure the successive remainders are not fixed quantities, an 
inch, a tenth of an inch, a hundredth of an inch, and so on; 
but are suggested to us in the course of the approximation 
itself. 

We begin, as we did before, by finding how many times 
the lesser quantity is contained in the greater, say, the side 
of a square in its diagonal. The answer in this case is, once 
and a piece over. Let the piece left over be called a. We then 
go on to try how many times this remainder, a, is contained 
in the side of the square. It is contained twice, and there is 
a remainder, say b. We then find how many times h is con¬ 
tained in a. Again twice, with a piece over, say c. And this 
process is repeated as often as we please, or until no remain¬ 
der is left. It will, in the present case, be found that each 
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remainder is contained twice, with something over, in the 
previous remainder.* 

Let us now inquire how this process enables us to find suc¬ 
cessive approximations to the ratio of the diagonal to the 
side of the square. 

Suppose, first, that the piece a had been exactly half the 
length of the side; that is, that we may neglect the remain¬ 
der 6. Then the diagonal would be equal to the side to¬ 
gether with half the side, that is, to three-halves of the side.^ 

Next let us include 6 in our approximation, but neglect 

^ For the more algebraically minded reader the process described above 
may be explained as follows: 
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c; that is, let ns suppose that b is exactly one half of a. Then 
the side contains a twice, and half of a; that is to say, con¬ 
tains five-halves of a; or a is two-fifths of the side. But the 
diagonal contains the side together with a, that is, contains 
the side and two-fifths of the side, or seven-fifths of the side. 
The piece neglected is here less than b, and 6 is one-fifth of 
the side of the square.^ 

Again, let us include c in our approximation, and suppose 
it to be exactly one half of b. Then a, which contains 6 twice 
with c over, will be five-halves of b; that is, b will be two- 
fifths of a. Hence the side will contain twice a and two-fifths 
of a, that is, twelve-fifths of a; so that a is five-twelfths of 
the side. And the diagonal is equal to the side together with 
a; that is, to seventeen-twelfths of the side.^ Also this ap¬ 
proximation is closer than the preceding, for the piece 
neglected is now less than c, which is one-half of b, which is 
two-fifths of a, which is five-twelfths of the side; so that it is 
less than one-twelfth of the side. 

By continuing this process we may find an approximation 
of any required degree of accuracy. 

The first method of approximation is called the method 
of decimals; the second, that of continued fractions. 

1 Assuming c = 0 
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§5. The Fourth Proportional 

One of the chief differences between quantities and num¬ 
bers is that, while the division of one number by another is 
only possible when the first number happens to be a multiple 
of the other, in the case of quantities it appears, and we are 
indeed accustomed to assume, that any quantity may be 
divided by any number we like; that is to say, any length— 
quantities of all kinds being represented by lengths—may 
be divided into any given number of equal parts. And, if 
division is always possible, that compound operation made 
up of multiplication and division which we have called 
“multiplying by a fraction” must also be always possible; 
for example, we can find five-twelfths not only of a foot 
but of any other length that we like. 

The question now naturally arises whether that general 
operation of stretching or squeezing which we have called a 
ratio can be applied to all quantities alike. If we have three 
lengths, a, h, c, there is a certain operation of stretching or 
squeezing which will convert a into h. Can the same opera¬ 
tion be performed upon c with the result of producing a 
fourth quantity d, such that the ratio of c to d shall be the 
same as the ratio of a to 6? We assume that this quantity— 
the fourth proportional, as it is called—does always exist; and 
this assumption, as it really lies at the base of all subse¬ 
quent mathematics, is of so great importance as to deserve 
further study. 

We shall find that it is really included in the second of the 
two assumptions that we made in the chapter about space; 
namely, that figures of the same shape may be constructed 
of different sizes. We found, in considering this point, that 
it was sufficient to take the case of triangles of different 
sizes of which the angles were equal; and showed that one 
triangle might be made into another of the same shape by 
the equal magnifying of all its three sides; that is to say, 
when two triangles have the same angles, the three ratios of 
either side of one to the corresponding side of the other are 
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equal. If this is true, it is clear that the problem of finding 
the fourth proportional is reduced to that of drawing two 
triangles of the same shape. Thus, for example, let a b and 
A c represent the first two given quantities, and a d the third 
(Fig. 51); and let it be required to find that quantity which 
is got from a n by the same operation of stretching as is re- 

A B C 

Fio. 51 

quired to turn a b into a c. Suppose that we join b d, and 
draw the fine c e making the angle ace equal to the angle 
A B D. The two triangles a b d and ace are now of the same 
shape, and consequently ace can be got from a b d by the 
equal stretching of all its sides; that is to say, the stretching 
which makes a b into a c is the same as the stretching wliich 
makes a d into a E. a e is therefore the fourth proportional 
required. 

To render these matters clearer, it is well that we should 
get a more exact notion of what we mean by the fourth pro¬ 
portional. We have so far only described it as something 
which is got from a d by the same process which makes a b 

into A c. In what way are we to tell whether the process is 
the same? We might, if we fiked, give a geometrical defini¬ 
tion of it, founded upon the construction just explained; and 
say that the ratio of a d to a e shall be called “equal” to the 
ratio of A B to A c, when triangles of the same shape can have 
for their respective sides the lengths a b, a n, a c, and a e. 

But it is better, if we can do it, to keep the science of quantity 
distinct from the science of space, and to find some definition 
of the fourth proportional which depends upon quantity 
alone. Such a definition has been found, and it is very im¬ 
portant to notice the nature of it. For we shall find that 
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similar definitions have to be given of other quantities whose 
existence is assumed by what is called the principle of con¬ 
tinuity.^ This principle is simply the assumption, which we 
have stated already, that all quantities can be divided into 
any given number of equal parts. 

If we apply two different operations of stretching to the 
same quantity, that which produces the greater result is 
naturally looked upon as an operation which under like 
circumstances will always produce a greater effect. Now we 
will make our definition of the fourth proportional depend 
upon the very natural assumption that, if two processes of 
stretching are apphed to two different quantities, that proc¬ 
ess which produces the greater result in the one case will also 
produce the greater result in the other. 

Suppose now that we have tried to approximate to the 
ratio which a c bears to a b, and that we have found that 
A c is between seventeen-twelfths and eighteen-twelfths of 
A B, then we have two processes of stretching which can be 
apphed to a b, the process denoted by H (that is, multiply¬ 
ing by 17 and dividing by 12), and the process which makes 
A c of it. The result of the former process is, by hypothesis, 
less than the result of the latter, because A c is more than 
seventeen-twelfths of A b. Let us now apply these two proc¬ 
esses to A D. The former will produce seventeen-twelfths of 
A D, the latter will produce the fourth proportional required. 
Consequently this fourth proportional must be greater than 
seventeen-twelfths of a n. 

But we know further that a c is less than eighteen-twelfths 
of a b. Then the operation which makes a b into a c gives a 
less result than the operation of multiplying by 18 and divid¬ 
ing by 12. Let us now perform both upon a d. It will follow 
that the fourth proportional required is less than eighteen- 
twelfths of A D. The same thing will be true of any fractions 
we hke to take, and we may state our result in this general 
form:— 

' In modern mathematics this would be the equivalent of fljgfiUTnmg the 
existence of the real number system,—^J.R.N. 
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According as a c is greater or is less than any specified 
fraction of a b, so will the fourth proportional (if it exists) 
be greater or be less than the same fraction of a d. 

But we shall now show that this property is of itself suf¬ 
ficient to define, without ambiguity, the fourth proportional; 

that is to say, we shall show that there cannot be two dif¬ 
ferent lengths satisfying this condition at the same time. 

If possible, let there be two lengths, a e and a e', each of 
them a fourth proportional to A b, a c, a d (Fig. 52). Then by 
taking a sufficient number of lengths each equal to e e', the 
sum of them can be made greater than a d. Suppose for ex¬ 
ample that 500 of them just fell short of the length a d, and 
that 501 exceeded it; then, if we divide a d into 501 equal 
parts, each of these parts will be less than e e'.* Secondly, if 
we go on marking off lengths from d towards e, each equal 
to one of these small parts of A d, one of the points of division 
must fall between e and e'; since e e' is greater than the dis¬ 
tance between two of them. Let this point of division be at 
F. Then a p is got from a d by multiplying by some number 
or other and then dividing by 501, If we apply this same 
process to a b we shall arrive at a length a g, which must be 
either greater or less than a c. If it is less than a c, then the 
operation by which the length a b is made into a g is a less 
amount of stretching than the operation by which A b is 
made into a c. Consequently the operation which turns A n 
into A P is a less amount of stretching than that which gets 

^ To complete the proof Clifford should have considered the case where the 
sum of the lengths chosen was exactly equal to a d. The result as stated, how¬ 
ever, is correct.—^J.RN, 
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A E, and also less than that which gets A e' from A d. There¬ 
fore A p must be less than a e, and also less than A e'. But 
this is impossible, because f lies between e and e'. And the 
argument would be similar if we had supposed A G greater 
than A c. 

Thus we have proved that there is only one length that 
satisfies the condition that the process of making A d into it 
is greater than all the fractions wluch are less than the process 
of making a b into a c, and less than all the fractions wliich 
are greater than this same process. 

Let us note more carefully the nature of this definition. 
First of all we say that if any fraction whatever be taken, 

and if it be greater than the ratio of A c to a b, it will also 
be greater than the ratio of a e to a d, and if it be less than 
the one it will also be less than the other. 

This is a matter which can be tested in regard to any par¬ 
ticular fraction. If a length a e were given to us as the fourth 
proportional we could find out whether it obeyed the rule 
in respect of any one given fraction. But if there is a fourth 
proportional it must satisfy this rule in regard to all fractions 
whatever. We cannot directly test this; but we may be able 
to give a proof that the quantity which is supposed to be a 
fourth proportional obeys the rule for one particular frac¬ 
tion, which proof shall be applicable without change to any 
other fraction. It will then be proved, for this case, not only 
that a fourth proportional exists, but that this particular 

quantity is the fourth proportional. This is, in fact, just what 
we can do with the sides of similar triangles. If the length 
A B (Fig. 53) is divided into any number of equal parts, and 
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lines are drawn through the points of division, making with 
A B the same angle that b d makes with it, they will divide 
A D into the same number of equal parts. 

If now we set off points of division at the same distance 
from one another from b towards c, and through them draw 
lines making the same angle with the line A c that b d does, 
these lines will also cut off equal distances from d towards E. 
If any one of these lines starts from a c on the side of c 
towards a, it will meet a E on the side of e towards a; be¬ 
cause the triangle which it forms with the lines a c and A e 
must have the same shape as a c e. So also any one of these 
lines which starts from a c on the side of c away from a will 
meet a e on the side of e away from a. 

Looking then at the various fractions of a b which are 
now marked off, it is clear that, if one of them is less than 
A c, the corresponding fraction of a d is less than a e; and if 
greater, greater. It follows, therefore, that the line a e 
which is given by this construction satisfies, in the case of 
any fraction we choose, the condition which is necessary for 
the fourth proportional. Consequently, if the second assump¬ 
tion which we made about space be true, there always is 
a fourth proportional, and this process will enable us to 
find it. 

There is, however, still one objection to be made against 
our definition of the fourth proportional, or rather one point 
in which we can make it a firmer ground-work for the study 
of ratios. For it assumes that quantities are continuous; that 
is, that any quantity can be divided into any number of 
equal parts, this being implied in the process of taking any 
numerical fraction of a quantity. 

We say, for example, that if a, b, c, d, are proportionals, 
and if a is greater than three-fifths of 6, c will be greater than 
three-fifths of d. Now the process of finding three-fifths of h 
is one or other of the following two processes. Either we 
divide b into five equal parts and take three of them, or we 
multiply b by three and divide the result into five equal parts. 
(We know of course that these two processes give us the same 
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result.) But it is assumed in both cases that we can divide a 
given quantity into five equal parts. 

Now in a definition it is desirable to assume as little as 
possible; and accordingly the Greek geometers in defining 
proportion, or (which is really the same thing) in defining 
the fourth proportional of three given quantities, have tried 
to avoid this assumption. 

Nor is it difiSicult to do this. For let us consider the same 
example. We say that if a is greater than three-fifths of b, c 
will be greater than the same fraction of d. Now let us mul¬ 
tiply both the quantities a and b by five. Then for a to be 
greater than three-fifths of 6, the quantity wliich a has now 
become must be greater than three-fifths of the quantity 
which b has become; that is, if the new b be divided into five 
equal parts the new a must be greater than three of them. 
But each of these five equal parts is the same as the original 
b; and so our statement as to the relative greatness of a and 
b is the same as this, that five times a is greater than three 
times b; and similarly for c and d. 

Now every fraction involves two numbers. It is a com¬ 
pound process made up of multiplying by one number and 
dividing by another, and it is clear therefore that we may, 
not only in this particular case of three-fifths but in general, 
transform our rule for the fourth proportional into tliis new 
form. According as m times a is greater or less than n times 
b, so is m times c greater or less than n times d, where m and 
n are any whole numbers whatever. 

This last form is the one in which the rule is given by the 
Greek geometers; and it is clear that it does not depend on 
the continuity of the quantities considered, for whether it 
be true or not that we can divide a number into any given 
number of equal parts, we can certainly take any multiple 
of it that we like. 

These fundamental ideas, of ratio, of the equality of ratios, 
and of the nature of the fourth proportional, are now es¬ 
tablished generally, and with reference to quantities of any 
kind, not with regard to lengths alone; provided merely that 
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it is always possible to take any given multiple of any given 
quantity. 

§6. Of Areas; Stretch and Squeeze 

We shall now proceed to apply these ideas to areas, or 
quantities of surface, and in particular to plane areas. The 
simplest of these for the purposes of measurement is a rec¬ 
tangle. The finding of the area of a rectangle is in many 
cases the same process as numerical multipfication. For ex¬ 
ample, a rectangle which is 7 inches long and 5 inches broad 
will contain 35 square inches, and this follows from our 
fundamental ideas about the multiplication of numbers. 
But this process, the multiplication of numbers, is only ap¬ 
plicable to the case in which we know how many times each 
side of the rectangle contains the unit of length, and it then 
tells us how many times the area of the rectangle contains 
the square described upon the unit of length. It remains to 
find a method which can always be used. 

For this purpose we first of all observe that when one side 
of a rectangle is lengthened or shortened in any ratio, the 
other side being kept of a fixed length, the area of the rec¬ 
tangle will be increased or diminished in exactly the same 
ratio. 

In order then to make any rectangle o p R q out of a square 
o A c B (Fig. 54), we have first of all to stretch the side o a until 

Q E R 

i . . > c ' 
1 

O I ̂ p 
Fig. 54 

it becomes equal to o p, and thereby to stretch the whole 
square into the rectangle O D, which increases its area in the 
ratio of o A to o p. Then we must stretch the side o b of this 
figure until it is equal to o q, and thereby the figure o n be- 
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comes o r, and its area is increased in the ratio of o b to 
o Q. Or we may, if we like, first stretch o b to the length o q, 
whereby the square o c becomes o e, and then stretch o A 

to o p, by which o e becomes o r. 
Thus the whole operation of turning the square o c into 

the rectangle o r is made up of two stretches; or, as we have 
agreed to call them, “multiphcations”; viz. the square has 
to be multiplied by the ratio of o p to o a, and by the ratio 
of o Q to o B; and we may find from the result that the order 
of these two processes is immaterial. 

For let us represent the ratio of o p to o a by the letter a, 
and the ratio of o q to o b by 6. Then the ratio of the rec¬ 
tangle o D to the square o c is also a; in other words, a times 
o c is equal to o d. And the ratio of o r to o n is 6, so that b 
times o D is equal to o r; that is, b times a times o c is equal 
to o R, or, as we write it, ba times o c is o r.‘ 

And in the same way b times o c is equal to o b and a times 
b times o c is a times o e, which is o r. 

Consequently we have ba times o c giving the same result 
as ab times o c; or, as we write it 

ba = ab, 

which means that the effect of multiplying first by the ratio 
a and then by the ratio b is the same as that of multiplying 
first by the ratio b and then by the ratio a. 

This proposition, that in multiplying by ratios we may 
take them in any order we please without affecting the result, 
can be put into another form. 

Suppose that we have four quantities, a, b, c, d, then I 
can make a into d by two processes performed in succession; 
namely, by first multiplying by the ratio of b to a, which 
turns it into b, and then by the ratio of d to b. But I might 

^ It is a matter of convention which has grown up in consequence of our 

ordinary habit of reading from left to right, that we always read the symbols 

of a multiplication, or of any other operation, from right to left Thus a b times 

any quantity x, means a times b times x; that is to say, we first multiply x by 

Z>, and then by a; that operatJion being first performed whose symbol comes 

last. 
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have produced the same effect on a by first multiplying it 
by the ratio of c to a, which turns it into c, and then mul¬ 
tiplying by the ratio of d to c. We are accustomed to write 
the ratio of 6 to a in shorthand in any of the four following 
ways:— 

6 : a, fe 4- a, 6/o, 

and so the fact we have just stated may be written thus:— 

fe/a X d/h = c/a X d/c. 

Now let us assume that the four quantities, a, h, c, d, are 
proportionals; that is, that the ratios h/a and d/c are equal 
to one another. It follows then that the ratios c/a and d/h 
are equal to one another. 

This proposition may be otherwise stated in this form; 
that if a, h, c, d are proportionals, then a, c, h, d will also be 
proportionals: provided always that this latter statement 
has any meaning, for it is quite possible that it should have 
no meaning at all. Suppose, for instance, that a and h are 
two lengths, c and d two intervals of time, then we under¬ 
stand what is meant by the ratio of h to a, and the ratio of 
d to c, and these ratios may very well be equal to one an¬ 
other; but there is no such thing as a ratio of c to a, or of d 
to h, because the quantities compared are not of the same 
kind. When, however, four quantities of the same kind are 
proportionals, they are also proportionals when taken alter¬ 
nately; that is to say, when the two middle ones are inter¬ 
changed. 

§7. Of Fractions 

We have seen in §3, page 92, that a ratio may be expressed 
in the form of a fraction.^ Thus, let a be represented by the 

1 Only where the two numbers are commensurable. The numbers repre¬ 
senting the lengths of the side and diagonal of a square, for example, are not 
commensurable.—^J.R.N. 
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7? / 
fraction - and b by the fraction where p, q, r, s are num- 

q s 
bers. Then the result on page 107 may be written— 

p r 
- X - 
q s 

Z^P. 
s q 

Let us examine a little more closely into the meaning of 
either side of this equation. Suppose we were to take a rec- 

P_ R' P' 

Q- 

O K S 

Fig. 55 

tangle o q t s (Fig. 55), of which one side, o q, contained q 
units of length, and another, o s, s units. Then this rectangle 
could be obtained from the unit square by operating upon it 
with the two stretches q and s. Its area would thus contain qs 
square units. Now let us apply to tliis rectangle in succession 

T) T 
the two stretches denoted by — and -. If we stretch the rec- 

q s 

tangle in the direction of the side o q in the ratio of we 

divide the side o q into q equal parts, and then take o P 
equal p times one of those parts. But each of these parts will 
be equal to unity, hence o p contains p units. We thus con¬ 
vert our rectangle o t into one o p', of which one side, o p, 

contains p and the other, o 8, s units. Now let us apply to 
T 

this rectangle the stretch - parallel to the side o s (as the 
s 

T 
figure is drawn - denotes a squeeze). We must divide o s 

s 
into s equal parts and take r such parts, or we must measure 
a length o R along o s equal to r units. Thus this second 
stretch converts the rectangle o p' into a rectangle o r', of 
which the side o p contains p and the side o r contains r 
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units of length, or into a rectangle containing pr square 
7) T 

units. Hence the two stretches - and - applied in succes- 
q s 

sion to the rectangle o t convert it into the rectangle o r'. 
Now this may be written symbolically thus:— 

7) T 
^ X - • rectangle o t = rectangle o r' 

= pr unit-rectangles. 

Now unit-rectangle may obviously be obtained from the 

rectangle o t by squeezing it first in the ratio ^ in the 

direction of o q, and then in the ratio - in the direction o s. 
s 

Now this is simply saying thato t contains qs unit-rectangles. 
7) T 

Hence the operation ^ X - applied to unit-rectangle must 

produce ^ of the result of its application to the rectangle 

o T. That is:— 

P T , 1 
^ X - • unit-rectangle - ^ unit-rectangle, 

or, in our notation, = ^ • unit-rectangle. 

7) T 
Hence we may say that ^ X - operating upon unity is 

equal to the operation denoted by —, or to multiplying 

unity by pr and then dividing the result by qs. This equiva¬ 
lence is termed the multiplication of fractions. 

A special case of the multiplication of fractions arises when 
s equals r. We then have— 

£x- = ^- 
q r qr 

t T 
But the operation - denotes that we are to divide unity into 

r 
r equal parts, and then take r of them; in other words, we 
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perform a nuU operation on unity. The symbol of operation 
may therefore be omitted, and we read— 

P _pr 
q~ qr' 

This result is then expressed in words as follows: Given a 
fraction, we do not alter its value by multiplying the nu¬ 
merator and denominator by equal quantities. 

From this last result we can easily interpret the operation 

P 
Q 

For, by the preceding paragraph— 

P 
Q qs s qs 

Hence— 

q'^ s qs^ qs 

Or, to apply first the operation ^ to unity and then to add 

T 
to this the result of the operation - is the same thing as 

dividing unity into qs parts, taking ps of those parts, and 
then adding to them qr more of the like parts. But this is 
the same thing as to take at once ps + qr of those parts. 
Thus we may write— 

p ^ r _ ps + qr 
q^ s qs 

This result is termed the addition of fractions. The reader 
will find no difficulty in interpreting addition graphically by 
a succession of stretches and squeezes of the unit-rectangle. 

We term division the operation by which we reverse the 
result of multiplication. Hence when we ask the meaning of 

dividing by the fraction - we put the question: What is the 
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7) 
operation which, following on the operation just reverses 

its effect? 

Now, 

Suppose we take r = q, s = p. 

Then 

r p p r pr 
-X- = -X- = —- 
s q q s qs 

p q qp> 

T) Q 
or, to multiply unity by -, and then by -, is to perform the 

q p 
operation of dividing unity into qp parts and then taking pq 

of them, or to leave unity unaltered. Hence the stretch - 
P 

completely reverses the stretch it is, in fact, a squeeze 

which just counteracts the preceding stretch. Thus multi¬ 

plying by ^ must be an operation equivalent to dividing by 

Or, to divide by ~ is the same thing as to multiply by 

^. This result is termed the division of fractions. 

§8. Of Areas; Shear 

Hitherto we have been concerned with stretching or 
squeezing the sides of a rectangle. These operations alter its 
area, but leave it still of rectangular shape. We shall now 
describe an operation which changes its angles, but leaves 
its area unaltered (Fig. 56). 

Fig. 56 

Let A B c D be a rectangle, and let a B e f be a parallelo¬ 
gram (or a four-sided figure whose opposite sides are equal). 
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having the same side, a b, as the rectangle, but having the 
opposite side, b f (equal to a b, and therefore to c n), some¬ 
where in the same hne as c n. Then, since c d is equal to 
E p, the points e and f are equally distant from c and d re¬ 
spectively, and it follows that the triangles b c e and a n f 

are equal. Hence if the triangle b c e were cut off the paral¬ 
lelogram along B c and placed in the position a n p, we should 
have converted the parallelogram into the rectangle without 
changing its area. Thus the area of the parallelogram is 
equal to that of the rectangle. Now the area of the rectangle 
is the product of the numerical quantity which represents 
the length of a d into that quantity which represents the 
length of A B. A B is termed the base of the parallelogram, and 
A D, the perpendicular distance between its base and the op¬ 
posite side E p, is termed its height. The area of the parallelo¬ 
gram is then briefly said to be “the product of its base into 
its height.” 

Suppose c D and a b were rigid rods capable of sliding 
along the parallel lines cd and ah. Let us imagine them con¬ 
nected by a rectangular elastic membrane, a b c n; then as 
the rods were moved along ab and cd the membrane would 
change its shape. It would, however, always remain a paral¬ 
lelogram with a constant base and height; hence its area 
would be unchanged. Let the rod a b be held fixed in posi¬ 
tion, and the rod c n pushed along cd to the position e p. 

Then any line, g h, in the membrane parallel and equal to 
A b will be moved parallel to itself into the position i J, and 
will not change its length. The distance through which c 
has moved is c e, and the distance through which G has 
moved is G i. Since the triangles c b e and g b i have their 
sides parallel they are similar, and we have the ratio of c e 

to GI the same as that of b c to b g; or, when the rectangle 
A B c D is converted into the parallelogram A b e p, any hne 
parallel to a b remains unchanged in length, and is moved 
parallel to itself through a distance proportional to its dis¬ 
tance from A B. Such a transformation of figure is termed a 
^mer, and we may consider either our rectangle as being 
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sheared into the parallelogram or the latter as being sheared 
into the former. Thus the area of a parallelogram is equal to 
that of a rectangle into which it may be sheared. 

The same process which converts the parallelogram a b e F 

into the rectangle a b c n will convert the triangle a b e, the 
half of the former, into the triangle a b c, the half of the 

latter. Hence we may shear any triangle into a right-angled 
triangle, and this will not alter its area. Thus the area of any 
triangle is half the area of the rectangle on the same base, 
and with height equal to the perpendicular upon the base 
from the opposite angle. This height is also termed the alti¬ 
tude, or height of the triangle, and we then briefly say: The 
area of a triangle is half the -product of its base into its altitude. 

A succession of shears will enable us to reduce any figure 
bounded by straight fines to a triangle of equal area, and thus 
to determine the area the figure encloses by finally shearing 
this triangle into a right-angled triangle (Fig. 57). For ex¬ 
ample, let ABODE be a portion of the boundary of the 

figure. Suppose a c joined; then shear the triangle a b c so 
that its vertex b falls at b' on d c produced. The area a b' c 
is equal to the area a b c. Hence we may take a b'd b for 
the boundary of our figure instead of abode; that is, we 
have reduced the number of sides in our figure by one. By a 
succession of shears, therefore, we can reduce any figure 
bounded by straight fines to a triangle, and so find its area. 
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§9. Of Circles and their Areas 

One of the first areas bounded by a curved line which sug¬ 
gests itself is that of a sector of a circle, or the portion of a 

Fig. 58 

circle intercepted by two radii and the arc of the circumfer¬ 
ence between their extremities (Fig. 58). Before we can con¬ 
sider the area of this sector it will be necessary to deduce some 
of the chief properties of the complete circle. Let us take a 
circle of unit radius and suppose straight lines drawn at the 
extremities of two diameters a b and c n at right angles ; 
then the circle will appear as if drawn inside a square (see 
Fig. 59). The sides of this square will be each 2 and its 
area 4. 

Now suppose the figure composed of circle and square first 
to receive a stretch such that every line parallel to the di- 

B' 
Fig. 59 

ameter A b is extended in the ratio of a : 1, and then another 
stretch such that every line parallel to c n is again extended 
in the ratio of o : 1. Then it is obvious that we shall have 
stretched the square of the first figure into a second square 
whose sides will now be equal to 2o. 
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It remains to be shown that we have stretched the first 
circle into another circle. Let o p be any radius and p m, p N 

perpendiculars on the diameters a b, c n. As a result of the 
first stretch the equal lengths o m and N p are extended 
into the equal lengths o' m' and n' p', which are such that 

-^-^7 = -^7^ = - • Similarly as a result of the second stretch 
o' m' n' p' a •' 
M p and o N, which remained unaltered during the first stretch, 

are converted into m' p' and o' n': so that ? 
o N M p a 

During this second stretch o' m' and n' p' remain unaltered. 
Thus as the total outcome of the two stretches we find that 
the triangle o p n has been changed into the triangle o' p' n'. 

Now these two triangles are of the same shape by what was 
said on p. 99, for the angles at n and n' are equal, being both 
right angles, and we have seen that— 

N P _ ^ _ o M 

n' p' ~ a ~ o' m' 

Thus it follows that the third side o p must be to the third 
side o' p' in the ratio of 1 to o; or, since o p is of unit length, 
o' p' must be equal to the constant quantity a. Further, 
since the angles p o N, p' o' n' are equal, o' p' is parallel to 
o p. Hence the circle of unit radius has been stretched into a 
circle of radius a. In fact, the two equal stretches in direc¬ 
tions at right angles, which we have given to the first figure, 
have performed just the same operation upon it, as if we had 
placed it under a magnifying glass which enlarged it uni¬ 
formly, and to such a degree that every line in it was magni¬ 
fied in the ratio of a to 1. 

It follows from this that the circumference of the second 
circle must be to that of the first as a is to 1. Or, the cir¬ 
cumferences of circles are as their radii. Again, if the arc 
p Q is stretched into the arc p' q'—that is, if o' p', o' q' are 
respectively parallel to o p, o q—^then the arc p' q' is to the 
arc p q in the ratio of the radii of the two circles. Since the 
arcs p q, p' q' are equal to any other arcs which subtend 
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the same angles at the centres of their respective circles, we 
state generally that the arcs of two circles which subtend equal 
angles at their respective centres are in the ratio of the corre¬ 
sponding radii. 

Since the second figure is an uniformly magnified image 
of the first, every element of area in the first has been mag¬ 
nified at the same uniform rate in the second. Now the 
square in the first figure contains four units of area, and in 
the second figure it contains 4a^ units of area. Hence every 
element of area in the first figure has been magnified in the 
second in the ratio of al to 1. Thus the area of the circle in 
the first figure must be to the area of the circle in the second 
figure as 1 is to a*. Or: The areas of circles are as the squares 
of their radii. 

It is usual to represent the area of a circle of unit radius 
by the quantity ir; thus the area of a circle of radius a will 
be represented by the quantity iral. 

If, after stretching a b to a' b' in the ratio of a to 1, we 
had stretched or squeezed c d to c'd' in the ratio of 6 to 1, 

where h is some quantity different from c, our square would 
have become a rectangle, with sides equal to 2o and 26 

A' 

Fig. 60 

respectively. It may be shown that we should have dis¬ 
torted our circle into the shape of that shadow of a circle 
which we have termed an ellipse. Furthermore, elements 
of area have now been stretched in the ratio of the product 
of a and 6 to 1; or, the area of the ellipse is to the area of the 
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circle of unit radius as ah is to 1: whence it follows that the 
area of the ellipse is represented by irab, where a and b are 
its greatest and least radii respectively. 

We shall now endeavour to connect the area of a circle 
of unit radius, which we have written t, with the number 
of linear units in its circumference. Let us take a number of 
points uniformly distributed round the circumference of a 
circle, a b c d e f (Fig. 61). Join them in succession to each 
other and to o, the centre of the circle, and draw the lines per¬ 
pendicular to these radii (or the tangents) at a b c d e f; then 
we shall have constructed two perfectly symmetrical figures, 
one of which is said to be inscribed, the other eircumscribed to 
the circle. Now the areas of these two figures differ by the sum 
of such triangles as a a b, and the area of the circle is ob¬ 
viously greater than the area of the inscribed and less than 
the area of the circumscribed figure. Thus the area of the 

a 

circle must differ from that of the inscribed figure by some¬ 
thing less than the sum of all the little triangles a a n, b /3 c, 
&c. Now from symmetry all these little triangles are equal, 
and their areas are therefore equal to one half the product 
of their heights, or an, into their bases, or such quantities 
as A b. Hence the sum of their areas is equal to one half of 
the product of an into the sum of the sides of the inscribed 
figure. Now the sum of the sides of the inscribed figure is 
never greater than the circumference of the circle. If we 
take, therefore, a great number of points uniformly dis- 
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tributed round the circumference of our circle, a and b may 
be brought as close as we please, and the nearer we bring 
A to B, the smaller becomes an. Hence, by taking a sufficient 
number of points, we can make the sum of the triangles 
A a B, B |8 c, &c. as small as we please, or the areas of the 
inscribed and circumscribed figures, together with the area 
of the circle which lies between them, can be made to differ 
by less than any assignable quantity. In the limit then we 
may say that by taking an indefinite number of points we 
can make these areas equal. Now the area of the inscribed 
figure is the sum of the areas of all such triangles as a o b, 

and the area of the triangle a o b is equal to half the product 
of its height o n into its base a b ; or if we write for the 
“perimeter,” or sum of all the sides a b, b c, &c. the quantity 
p, the area of the inscribed figure will equal ^px on. Again 
if p' be the sum of the sides aj8, jSy, &c. of the circumscribed 
figure, its area = Jp' X o b. 

Since the triangles o a n, o b n are of the same shape, 
being right-angled and again equi-angled at o, we have the 
ratio of b n to a B, or of their doubles a b to a /3, the same as 
that of o n to o B. But p is obviously to p' in the same ratio 
as A B to a j8; hence p is to p' as o n to o b. By taking a suf¬ 
ficient number of points we can make o n as nearly equal to 
o B as we please; thus we can make p as nearly equal to p', 
and therefore either of them as nearly equal to the circum¬ 
ference of the circle (which lies between them),^ as we please. 
Hence in the limit p will equal the circumference of the circle, 
and o n its radius, and we may state that the areas of the 
inscribed and circumscribed figures, which approach nearer 
and nearer to the area of the circle as we increase the number 
of their sides, become ultimately equal to each other and to 
half the product of the circumference of the circle into its 
radius. This must therefore be the area of the circle. Hence 
we have the following equalityThe area of a circle of 
radius a equals one half its circumference x o. But it equals 
also ira®; whence it follows that the circumference of a circle 

1 In the case of the circle the reader will recognize this intuitively. 
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equals n ■ 2a. We may express this result in two different 
ways:— 

(i) The ratio of the circumference of a circle to its diame¬ 
ter (2a) is a constant quantity tt. 

(ii) The number of linear units (27r) in the circumference 
of a circle of unit-radius is twice the number of units of area 
(tt) contained by that circumference. 

The value of tt, the ratio of the circumference of a circle to 
its diameter, is found to be a quantity which, like the ratio 
of the diagonal of a square to its side (see p. 95), cannot 
be expressed accurately by numbers; its approximate value 
is 3.14159. 

We have now no difficulty in finding the area of the sector 
of a circle, for if we double the arc of a sector we obviously 
double its area; if we treble it, we treble its area; shortly, if 
we take any multiple of it, we take the same multiple of its 
area. Hence it follows by §5, that two sectors are to each 
other in the ratio of their arcs, or a sector must be to the 
whole circle in the ratio of its arc to the whole circumference. 

If we represent by s the area of a sector of a circle of which 
the arc contains s units of length and the radius a units, we 
may write this relation symbolically— 

_s_ 
Tra* 2ira 

Thus we deduce s = Js x a; or. 
The area of a sector is half the ■product of the length of its arc 
i-nto its radius. 

§10. Of the Area of Sectors of Curves 

The knowledge of the area of a sector of a circle enables 
us to find as accurately as we please the area of a sector whose 
arc is any emve whatever. Let the arc p q (Fig. 62) be divided 
into a number of smaller arcs p A, a b, b c, c n, n q. We shall 
suppose that p a subtends the greatest angle at o of all these 
arcs. Further we shall consider only the case where the fine 
o p diminishes continuously if p be made to pass along the 
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arc from p to q. If this be not the case, the sector q o p can 
always be split up into smaller sectors, of which it shall be 
true that a line drawn from the point o to the arc continu¬ 
ously diminishes from one side of the sector to the other, 
and then for the area of each of these sectors the following 
investigation will hold. With o as centre describe a circle of 
radius o p to meet o a produced in p'; with the same centre 
and radius o a describe a circle to meet o b in a' and o P 

in a; similarly circles with radius o b to meet o a in 6 and 
o c in b', with radius o c to meet o b in c and o n in c', with 
radius o d to meet o c in d and o q in d', and finally with 
radius o Q to meet o d in e, o a in /, and o p in q'. Then the 
area of the sector obviously hes between the areas of the 
figxire bounded by o p, o n' and the broken line p p' a a' b b' 

c c' D d', and of the figure bounded by o a, o q and the broken 
line aAftBCcdneQ. Hence it differs from either of them 
by less than their difference or by less than the sum of the 
areas p' a, a' h, b' c, c'd, n' e. Now since the angle at p o p' 

is greater than any of the other sectorial angles at o, the sum 
of all these areas must be less than that of the figure p p' / q', 

and the area of this figure can be made as small as we please 
by making the angle a o p sufficiently small. This can be 

* If in the diagram the areas d'd e «, c'd d c, b' c c b, a' b i> a are swung 
around and moved into a o/q', there will be space left over. Thus the sum 
of the smaller areas < the area A a / q. 
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achieved by taking a sufficient number of points like a, b, c, 

D, &c. We are thus able to find a series of circular sectors, 
the sum of whose areas differs by as small a quantity as we 
please from the area of the sector p o Q; in other words, we 
reduce the problem of finding the area of any figure bounded 
by a curved line to the problem already solved of finding the 
area of a sector of a circle. The difficulties which then arise 
are purely those of adding together a very great number of 
quantities; for, it may be necessary to take a very great 
number of points such as a b c n . . . in order to approach 
with sufficient accuracy to the magnitude of the area p o q. 

§11. Extension of the Conception of Area 

Let A B c D be a closed curve or loop, and o a point inside it 
(Fig. 63).^ Then if a point p move round the perimeter of the 
loop, the line o p is said to trace out the area of the loop A B c d. 

By this is meant that successive positions of the line o p, 
pair and pair, form together with the intervening elements 
of arc elementary sectors, the smn of the areas of which can, 

by taking the successive positions sufficiently close, be made 
to differ as httle as we please from the area bounded by the 
loop. 

Now suppose the point o to be taken outside the loop 
A B c D (Fig. 64), and let us endeavour to find the area then 
traced out by the line o p joining o to a point p which moves 
round the loop. Let o b and o n be the extreme positions of 
the line o p to the left and to the right as p moves round the 

* This must be a closed canoex curve which does not croes itseK.— 
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loop A B c D; then as p moves along the portion of the loop 
DAB, OP moves counter-clockwise from right to left and 
traces out the area bounded by the arc dab and the lines 
o D and o b. Further, as p moves along the portion of the 
loop b c D, o p moves clockwise from left to right and traces 
out the area doubly shaded in our figure, or the area bounded 
by the arc b c d and the lines o b and o d. It is the difference 

of these two areas which is the area of the loop a b c d. If, 
then, we were to consider the latter area o b c d o as negative, 

the line o p would still trace out the area of the loop a b c d 

as p moves round its perimeter. Now the characteristic dif¬ 
ference in the method of describing the areas o d a b o and 
o B c D o is, that in the former case o p moves counter¬ 

clockwise round o, in the latter case it moves clockwise. 

Hence if we make a convention that areas traced out by o p 

when it is moving counter-clockwise shall be considered 
positive, but areas traced out by o p when it is moving 
clockwise shall be considered negative, then wherever o may 
be inside or outside the loop, the line o p will trace out its 
area provided p move completely round its circumference. 

But it must here be noted that p may describe the loop 
in two different methods, either going round it counter¬ 
clockwise in the order of points a b c d, or clockwise in the 
order of points A d c b. In the former case, according to our 
convention, the greater area o d a b o is positive, in the lat- 
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ter it is negative. Hence we arrive at the conception that an 
area may have a sign; it will be considered positive or nega¬ 
tive according as its perimeter is supposed traced out by a 
point moving counter-clockwise or clockwise. This extended 
conception of area, as having not only magnitude but sense, 
is of fundamental importance, not only in many branches of 
the exact sciences, but also for its many practical applica¬ 
tions.^ 

Let a perpendicular o n be erected at o (which is, as we 
have seen, any point in the plane of the loop) to the plane 
of the loop, and let the length o n be taken along it contain¬ 
ing as many units of length as there are units of area in the 
loop A B c D. Then o n will represent the area of the loop in 
magnitude; it will also represent it in sense, if we agree that 
o N shall always be measured in such a direction from o, 

that to a person standing with his feet at o and head at n the 
point p shall always appear to move counter-clockwise. 
Thus, for a positive area, N will be above the plane; for a 
negative area, in the opposite direction or below the plane. 
We are now able to represent any number of areas by seg¬ 
ments of straight hnes or steps perpendicular to their planes. 
The sum of any number of areas lying in the same plane will 
then be obtained by adding algebraically all the lines which 
represent these areas. 

When the areas do not all he in one plane the representa¬ 
tive hnes will not all be parallel. In this case there are two 
methods of adding areas. We may want to know the total 
amount of area, as, for example, when we wish to find the 
cost of painting or gilding a many-sided sohd. In this case 
we add all the representative hnes without regard to their 
direction. 

In many other cases, however, we wish to find some quan¬ 
tity so related to the sides of a sohd that it can only be found 
by treating the hnes which represent their areas as directed 
magnitudes. Such cases, for example, arise in the discussion 

^ As in calculating the cost of levelling and embanking, in the indicator 
diagram, &c. It was first introduced by Mobius. 



124 Chapter III : Quantity 

of the shadows cast by the sun or of the pressure of gases 
upon the sides of a containing vessel, &c. A method of 
combining directed magnitudes will be fully discussed in the 
following chapter. The conception of areas as directed mag¬ 
nitudes is due to Hayward. 

§12. On the Area of a Closed Tangle 

Hitherto we have supposed the areas we have talked about 
to be bounded by a simple loop. It is easy, however, to de¬ 
termine the area of a combination of loops. Thus consider 
the figure of eight in Fig. 65, which has two loops: if we go 
round it continuously in the direction indicated by the arrow¬ 
heads, one of these loops will have a positive, the other a 
negative area, and therefore the total area will be their dif¬ 
ference, or zero if they be equal. When a closed curve, like 
a figure of eight, cuts itself it is termed a tangle, and the 
points where it cuts itself are called knots. Thus a figure of 
eight is a tangle of one knot. In tracing out the area of a 
closed curve by means of a line drawn from a fixed point to 
a point moving round the curve, the area may vary accord¬ 
ing to the direction and the route by which we suppose the 

B 

Fig. 65 

curve to be described. If, however, we suppose the curve to 
be sketched out by the moving point, then its area will be 
perfectly definite for that particular description of its 
perimeter. 
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We shall now show how the most complex tangle may be 
split up into simple loops and its whole area determined 
from the areas of the simple loops. We shall suppose arrow¬ 
heads to denote the direction in which the perimeter is to 
be taken. Consider either of the accompanying figures. The 
moving line o p will trace out exactly the same area if we 
suppose it not to cross at the knot a but first to trace out 
the loop A c and then to trace out the loop a b, in both cases 
going round these two loops in the direction indicated by the 
arrow-heads. We are thus able in all cases to convert one 
fine cutting itself in a knot into two lines, each bounding a 
separate loop, which just touch at the point indicated by the 
former knot. This dissolution of knots may be suggested to 
the reader by leaving a vacant space where the boundaries 
of the loops really meet. The two knots in the following 
figure (Fig. 66) are shown dissolved in this fashion:— 

Fig. 66 

The reader will now find no difficulty in separating the 
most complex tangle into simple loops. The positive or nega¬ 
tive character of the areas of these loops will be sufficiently 
indicated by the arrow-heads on their perimeters. We ap¬ 
pend an example (Fig. 67, page 126). 

In this case the tangle reduces to a negative loop a (Fig. 68), 
and to a large positive loop 6, within which are two other posi¬ 
tive loops c and d, the former of which contains a fifth small 
positive loop e. The area of the entire tangle then equals 
b + c + d + e — a. The space marked s in the first figure will 
be seen from the second to be no part of the area of the tangle 
at all. 
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Fig. 68 

§13. On the Volumes of Space-Figures 

Let us consider first the space-figure bounded by three pairs 
of parallel planes mutually at right angles (Fig. 69). Such a 
space-figure is technically termed a “rectangular parallele¬ 
piped,” but might perhaps be more shortly described as a 
“right six-face.” We may first observe that when one edge 
of such a right six-face is lengthened or shortened in any 
ratio, the other non-parallel edges being kept of a fixed 
length, the volume will be increased in precisely the same 
ratio. Hence, in order to make any right six-face out of a 
cube we have only to give the cube three stretches (or it may 
be squeezes), parallel respectively to its three sets of parallel 
edges. Let o a, o b, o c be the three edges of the cube which 
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B' 

meet in a comer o. Let o a be stretched to o a', so that the 
ratio of o a' to o A is represented by a; then if the figure is to 
remain right all fines parallel to o a will be stretched in the 
same ratio. The figure has now become a six-face whose sec¬ 
tion perpendicular to o a' only is a square. Now stretch o B 
to o b', so that the ratio o b' to o b be represented by h, 
and let all fines parallel to o b be increased in the same ratio; 
the figure is now a right six-face, only one set of edges of 
which are equal to the edge of the original square. Finally 
stretch o c to o c', so that o c and all fines parallel to it are 
increased in the ratio of o c' to o c, which we will represent 
by c. By a process consisting of three stretches we have thus 
converted our original cube into a right six-face (Fig. 70). If 
the cube had been of unit-volume, the volume of our six-edge 
would obviously be ahc, and we may show as in the case of a 
rectangle (see p. 107) that ahc = cha = hac, &c.; or the order of 
multiplying together three ratios is indifferent. If we term 

C D 
Fig. 70 

the face a' c' of our right six-face its base and o b' its height, 
ac will represent the area of its base, and b its height, or the 
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volume of a right six-face is equal to the product of its base 
into its height. 

Let us now suppose a right six-face o a d c e b p g to re¬ 
ceive a shear, or the face b e p g to be moved in its own plane 
in such fashion that its sides remain parallel to their old 
positions, and b and E move respectively along b p and e g. 

If b' e' g' f' be the new position of the face b E G p, it is 
easy to see that the two wedge-shaped figures b e e' b' o c 
and F G g' p' A D are exactly equal; this follows from the equal¬ 
ity of their corresponding faces. Hence the volume of the 
sheared figure must be equal to the volume of the right six- 
face. Now let us suppose in addition that the face b' e' g' p' 

is again moved in its own plane into the position b" e" g" p", 

so that b' and e' move along b' e' and f' g' respectively. 
Then the slant wedge-shaped figures b' b" f" p' a o and 
e' e" g" f'd c will again be equal, and the volume of the 
six-face b" e" g" f*' a d c o obtained by this second shear will 
be equal to the volume of the figure obtained by the first 
shear, and therefore to the volume of the right six-face. But 
by means of two shears we can move the face b e g p to any 
position in its plane, b" e" g" f", in which its sides remain 
parallel to their former position. Hence the volume of a six- 
face will remain unchanged if, one of its faces, o c d a, re¬ 
maining fixed, the opposite face, b e g f, be moved an3rwhere 
parallel to itself in its own plane. We thus find that the 
volume of a six-face formed by three pairs of parallel planes 
is equal to the product of the area of one of its faces and the 
perpendicular distance between that face and its parallel. 
For this is the volume of the right six-face into which it may 
be sheared; and, as we have seen, shear does not alter volume. 

The knowledge thus gained of the volume of a six-face 
bounded by three pairs of parallel faces, or of a so-called 
parallelepiped, enables us to find the volume of an oblique 
q/linder. A right cyhnder is the figure generated by any area 
moving parallel to itself in such wise that any point p moves 
along a line p p' at right angles to the area (Fig. 71). The vol¬ 
ume of a right cylinder is the product of its height p p' and the 
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generating area. For we may suppose that volume to be the 
sum of a number of elementary right six-faces whose bases, as 
at p, may be taken so small that they will ultimately com¬ 
pletely fill the area a c b o, and whose heights are aU equal 

to p p'. D 

We obtain an oblique cylinder from the above right cylin¬ 
der by moving the face a' c' b'd' parallel to itself anywhere 
in its own plane. But such a motion will only shear the ele¬ 
mentary right six-faces, such as p p', and so not change their 
volume. Hence the volume of an oblique cylinder is equal 
to the product of its base, and the perpendicular distance 
between its faces. 

§14. On the Measurement of Angles 

Hitherto we have been concerned with quantities of area 
and quantities of volume; we must now turn to quantities 
of angle. In our chapter on Space (p. 60) we have noted one 
method of measuring angles; but that was a merely relative 
method, and did not lead us to fix upon an absolute unit. 
We might, in fact, have taken any opening of the compasses 
for unit angle, and determined the magnitude of any other 
angle by its ratio to this angle. But there is an absolute unit 
which naturally suggests itself in our measurement of angles, 
and one which we must consider here, as we shall frequently 
have to make use of it in our chapter on Position. 
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Let o A B (Fig. 72) be any angle, and let a circle of radius a 

be described about o as centre to meet the sides of this angle 

Fia. 72 

in A and b. Then if we were to double the angle A o b, we 
should double the arc a b ; if we were to treble it, we should 
treble the arc; shortly, if we were to take any multiple of 
the angle, we should take the same multiple of the arc. We 
may thus state that angles at the centre of a circle vary as 
the arcs on which they stand. Hence if 6 and 6' be two angles, 
which are subtended by arcs s and s' respectively, the ratio 
of 6 to 6' will be the same as that of s to s'. Now suppose 6' 
to represent four right angles; then s' will be the entire cir¬ 
cumference, or, in our previous notation, 27ro. We have 
thus— 

_d_^ 
four right angles 2Ta 

Now it is extremely convenient to choose a unit angle 
which shall be independent of the circle upon which we 
measure our arcs. We should obtain such an independent 
unit if we took the arc subtended by it equal to the radius 
of the circle or if we took s = a. In this case our unit equals 

of four right angles, = — of two right angles, = .636 of a 
^TT TT 

right angle approximately. 
Thus we see that the angle subtended at the centre of any 

circle by an arc equal to the radius is a constant fraction of a 
right angle. 
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If this angle be chosen as the unit, we deduce from the 
proportion 6 is to 6' as s is to s', that 6 must be to unity as s 
is to the radius a; or:— 

s = ad. 

Thus, if we choose the above angle as our unit of angle, 
the measure of any other angle will be the ratio of the arc 
it subtends from the centre to the radius; but we have seen 
(p. 116) that the arcs subtended from the centre in dif¬ 
ferent circles by equal angles are in the ratio of the radii 
of the respective circles. Hence the above measurement of 
angle is independent of the radius of the circle upon which we 
base our measurement. This is the primary property of the 
so-called circular measurement of angles, and it is this which 
renders it of such great value. 

The circular measure of any angle is thus the ratio of the 
arc it subtends from the centre of any circle to the radius 
of the circle. It follows that the circular measure of four 
right angles is the ratio of the whole circumference to the 

radius, or equals that is, equals 27r. The circular measure 

TT 
of two right angles will then be tt, of one right angle ^» oi 

Stt 
three right angles and so on. 

§15. On Fractional Powers 

Before we leave the subject of quantity it will be necessary 
to refer once more to the subject of powers which we touched 
upon in our chapter on Number (p. 16). 

We there used a" as a symbol signifying the result of mul¬ 
tiplying a by itself n times. From this definition we easily 
deduce the following identity:— 

a’^ X a’^ X a« X or = a“+>'+«+'. 

For the left-hand side denotes that we are first to multiply 
o by itself n times, and then multiply this by o**, or o mul- 
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tiplied by itself p times, and so on. Hence we may write 
the left-hand side— 

(aXaXaxa...ton factors) 
X (aXaXaXa...top factors) 
X (a xaxaxa... to g factors) 
X(aXaXaxa..,tor factors). 

But this is obviously equal to (aXaXaXaX...to 
n ■+ p -j- g + r factors), or to 

If b be such a quantity that 6” = a, 6 is termed an nth root 

of o, and this is written symbolically h = '^a. Thus, since 
8 = 2®, 2 is a 3rd, or cube root of 8. Or, again, since 243 = 3®, 
3 is termed a 5th root of 243. 

Now we have seen at the conclusion of our first chapter 
that we can often learn a very great deal by extending the 
meaning of our terms. Let us now see if we cannot extend 
the meaning of the symbol a". Does it cease to have a mean¬ 
ing when n is a fraction or negative? Obviously we cannot 
multiply a quantity by itself a fractional number of times, 
nor can we do so a negative number of times. Hence the old 
meaning of a", where n is a positive integer, becomes sheer 
nonsense when we try to adapt it to the case of n being frac¬ 
tional or negative. Is then a” in this latter case meaningless? 

In an instance hke this we are thrown back upon the results 
of our definition, and we endeavour to give to our symbol 
such a meaning that it will satisfy these results. Now the 
fundamental result of our theory of integer powers is that— 

a<*+}>+ 9+r+ . .. = a" X a” X o« X O' X ... 

This will obviously be true however many quantities, n, p, 
£ 

q, r, we take. Now let us suppose we wish to interpret o’" 

where ~ is a fraction. We begin by assuming it satisfies the 

above relation, and in order to arrive at its meaning we sup¬ 

pose that n=‘p==g = r= ...=‘—} and that there are m 
fifl 

such quantities. Then 



On Fractional Powers 133 

I , n + p + ? + r = mx — = 1: 
m ' 

111 
and we find o' = o” X a” x a™ X ... to m factors 

± 
= (a”*)“. 

Thus o™ must be such a quantity that, multiplied by itself 
m times, it equals o'. But we have defined above (p. 131, 
132) an mth root of o' to be such a quantity that, multiplied m 

times by itself, it equals o'. Hence we say that o’" is equal 
to an mth root of o'; or, as it is written for shortness,— 

a“ = Va'. 

We have thus found a meaning for o" when » is a fraction 
from the fundamental theorem of powers. 

We can with equal ease obtain from the same theorem an 
intelligible meaning for o" when n. is a negative quantity. 

We have o" X o” = o"+*’. Now let us assume p = - n in 
order to interpret o~“. We find o" x o~" = o"~® = o" = 1 (by 
p. 29). Or dividing by o". 

that is to say, o“" is the quantity which, multiplied by o", 
gives a product equal to unity. The former quantity is 
termed the inverse of the latter, or we may say that o~“ is 
the inverse of o". For example, what is the inverse of 4? 
Obviously 4 must be multipUed by i in order that the prod¬ 
uct may be unity. Hence 4~' is equal to J. Or, again, since 
4 = 2*, we may say that 2“^ is the inverse of 4, or 2*. 

The whole subject of powers—integer, fractional, and 
negative—is termed the Theory of Indices, and is of no small 
importance in the mathematical investigation of symbolic 
quantity. Its discussion would, however, lead us too far be¬ 
yond our present Unfits. It has been slightly considered here 
in order that the reader may grasp that portion of the fol¬ 
lowing chapter in which fractional powers are made use of. 
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Position 

§1. All Position is Relative 

The reader can hardly fail to remember instances when he 
has been accosted by a stranger with some such question as: 
“Can you tell me where the ‘George’ Inn lies?”—“How 
shall I get to the cathedral?”—“Where is the London Road?” 
The answer to the question, however it may be expressed, 
can be summed up in the one word—There. The answer 
points out the position of the building or street which is 
sought. Practically the there is conveyed in some such phrase 
as the following; “You must keep straight on and take the 
first turning to the right, then the second to the left, and 
you will find the ‘George’ two hundred yards down the 
street.” 

Let us examine somewhat closely such a question and an¬ 
swer. “Where is the ‘George’?” We may expand this into: 
“How shall I get from here" (the point at which the question 
is asked) “to the ‘George’?” This is obviously the real 
meaning of the query. If the stranger were told that the 
“George” lies three hundred paces from the Town Hall 
down the High Street, the information would be valueless 
to the questioner unless he were acquainted with the posi¬ 
tion of the Town Hall or at least of the High Street. Equally 
idle would be the reply: “The ‘George’ lies just past the 
forty-second milestone on the London Road,” supposing 
him ignorant of the whereabouts of the London Road. 

Yet both these statements are in a certain sense answers 
to the question: “Where is the ‘George’?” They would be 
the true method of pointing out the there, if the question 
had been asked in sight of the Town Hall or upon the Lon- 

134 



All Position is Relative 135 

don Road. We see, then, that the query, Wheref admits of 
an infinite number of answers according to the infinite num¬ 
ber of positions—or possible heres—of the questioner. The 
where always supposes a definite here, from which the desired 
position is to be determined. The reader will at once recog¬ 
nize that to ask, “Where is the ‘George’?” without mean¬ 
ing, “Where is it with regard to some other place?” is a 
question which no more admits of an answer than this one: 
“How shall I get from the ‘George’ to anywhere?” mean¬ 
ing to nowhere in particular. 

This leads us to our first general statement with regard 
to position. We can only describe the where of a place or 
object by describing how we can get at it from some other 
known place or object. We determine its where relative to a 
here. This is shortly expressed by saying that: All position 
is relative. 

Just as the “George” has only position relative to the 
other buildings in the town, or the town itself relative to 
other towns, so a body in space has only position relative 
to other bodies in space. To speak of the position of the 
earth in space is meaningless unless we are thinking at the 
same time of the Sun or of Jupiter, or of a star—that is, of 
some one or other of the celestial bodies. This result is some¬ 
times described as the “sameness of space.” By this we 
only mean that in space itself there is nothing perceptible 
to the senses which can determine position.^ Space is, as it 
were, a blank map into which we put our objects; it is the 
coexistence of objects in this map which enables us at any 
instant to distinguish one object from another. This process 
of distinguishing, which supposes at least two objects to be 
distinguished, is really determining a this and a that, a here 
and a there; it involves the conception of relativity of 
position. 

* We shall return to this point later. 
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§2. Position may be Determined by Directed Steps 

Let us turn from the question: “Where is the ‘George’?” 
to the answer: “You must keep straight on and take the 
first turning to the right, then the second to the left, and you 
will find the ‘George’ 200 yards down the street.” 

The instruction “to keep straight on ” means to keep in the 
street wherein the question has been asked, and in a direction 
(“straight on”) suggested by the previous motion of the 
questioner, or by a wave of the hand from the questioned. 
Assuming for our present purpose that the streets are not 
curved, this amounts to: Keep a certain direction. How far? 
This is answered by the second instruction: Take the first 
turning on the right. More accurately we might say, if the 
first turning to the right were 150 yards distant: Keep this 
direction for 150 yards. Let this be represented in our figure 
(Fig. 73) by the step a b, where a is the position at which the 

G 
Fig. 73 

question is asked. At b the questioner is to turn to the right 
and, according to the third instruction, he is to pass the 
first turning to the left at c and take the second at d. More 
accurately we might state the distance b d to be, say, 180 
yards. Then we could combine our second and third in¬ 
structions by saying: From b go 180 yards in a certain 
direction, namely, b d. To determine exactly what this 
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direction b d is with regard to the first direction a b, we 
might use the following method. If the stranger did not 
change his direction at b, but went straight on for 180 yards, 
he would come to a point n'. Hence if we measured the angle 
n' B D between the street in which the question was asked 
and the first turning to the right, we should know the direc¬ 
tion of B D and the position of n exactly. It would be de¬ 
termined by rotating b d' about n through the measured 
angle n' b ». If we adopt the same convention for the meas¬ 
urement of positive angles as we adopted for positive areas 
on p. 123, the angle d' b n is the angle greater than two right 
angles through which b d' must be rotated counter-clockwise 
in order to take it to the position b d. Let us term this angle 
n' b D for shortness /3, then we may invent a new symbol 
{jS! to denote the operation; Turn the direction you are 
going in through an angle jS counter-clockwise. If we use 
the symbol 7r/2 to denote an angle equal to a right angle, 
we have the following symbolic instructions: 

{ 0 ! = Keep straight on. 
{ ir/2 j = Turn at right angles to the left. 
{ TT } = Turn right round and go back. 
{3ir/21 = Turn at right angles to the right. 

Thus for a turning from a b to the left the angle of our sjm- 
bolic operation will be less, for a turning from a b to the 
right greater, than two right angles. 

If the directed person had gone to n' instead of to d, he 
would have walked 150 yards to b and then 180 yards to n'; 
he would thus have walked'a b -f b d', or 150 yards 4- 180 
yards. In order to denote that he is not to continue straight 
on at B we introduce the operator of turning, namely {/S}, 
before the 180 yards, and read 150-1- {j8!180 as the instruc¬ 
tion: Go 150 yards along some direction a b, and then, 
turning your direction through an angle /S counter-clockwise, 
go 180 yards along this new direction. 

We are now able to complete the symbolic expression of 
oxir instructions for finding the “George.” The fourth in- 
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struction runs: Take a turning at d to the left and go 200 
yards along the direction thus determined. Let n g' repre¬ 
sent 200 yards measured from n along b d produced, then 
we are to revolve n g' through a certain angle g' n g 

counter-clockwise, till it takes up the position n g. Then g 

will be the position of the “George.” Let the angle g'd g 

be represented by y. Our final instruction may be then ex¬ 
pressed symbolically by {7}200. 

Hence our total instruction may be written symbolically— 

150+ {131180+ (71200, 

where the units are yards. 
But we have not yet quite freed this symbolic instruction 

from any suggestion of direction as determined by streets; 
the first 150 yards are still to be taken along the street in 
which the question is asked. We can get rid of this street by 
supposing its direction determined by the angle which a 
clock-hand must revolve through counter-clockwise, to 
reach that direction, starting from some other fixed or chosen 
direction. For example, suppose the stranger to have a com¬ 
pass with him, and at a let a n be the direction of its needle. 
Then we might fix the position of the street a b by describing 
it as a direction so many degrees east of north, or still to 
preserve our counter-clockwise method of reckoning angles, 
we might determine it by the angle a which the needle would 
have to describe through west and south to reach the posi¬ 
tion AB. We should then interpret the notation |a}150: 
Walk 150 yards along a direction making an angle o with 
north measured through west. 

Our answer expressed symboUcally is now entirely cleared 
of any conception of streets. For, 

{all50+ {|8!180+ 17)200 

is a definite instruction as to how to get from a to G quite 
independent of any local characteristics. It expresses the 
position of g with regard to a in a purely geometrical fashion, 
or by a series of directed steps. Expanded into ordinary Eng- 
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lish our symbols read: From a point a in a plane, take a 
step A B of 150 units in a direction making an angle a with a 
fixed direction, from b take a step b n of 180 units making 
an angle /3 with a b, and finally from d take a step n g of 
200 units making an angle 7 with b d. All the angles are to 
be measured counter-clockwise in the fashion we have de¬ 
scribed above. 

§3. The Addition of Directed Steps or Vectors 

If we now compare our figure with the symbolical instruc¬ 
tion ja}150+ {/31180+ {7)200, we see that {ajlSO repre¬ 
sents the step A b, when that step is considered to have not 
merely magnitude but also direction. Similarly b d and n G 

represent more than linear expressions for number—they 
are also directed steps. We shall then be at liberty to replace 
our symbolically expressed instruction 

{a}150-l- (dll80-(- {7)200 

by the geometrical equivalent 

AB + BD + DG, 

provided we understand by the segments a b, b d, d g and 
the symbol -I- something quite different from om former con¬ 

ceptions (Fig. 74). We give a new and extended meaning to 
our quantity and to our addition. 

AB + BD-fDGno longer directs us to add the number of 
units in B D to that in a b and to the sinn of these the num- 
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ber in d g, but it bids us take a step a b in a certain direction, 
then a step b d from the finish of the former step in another 
determined direction, and finally from the finish d of this 
second step a third directed step, n g. The entire operation 
brings us from a to g. Now it is obvious that we should also 
have got to g had we taken the directed step a g. Hence, if 
we give an extended meaning to the word “equal” and to 
its sign =, using them to mark the equivalence of the re¬ 
sults of two operations, we may write 

ag = ab + bd + dg, 

and read this expression:—a g equals the sum of A b, b d 

and D G. 

Steps such as we considered in our chapter on Quantity, 
which were magnitudes taken along any one straight line, 
are termed scalar steps, because they have relation only to 
some chosen scale of quantity. We add or subtract scalar 
steps by placing them end to end in any straight line (see 
§2 of Chapter III). 

A step which has not only magnitude but direction is 
termed a vector step, because it carries us from one position 
in space to another. It is usual to mark by an arrow-head the 
sense in which we are to take this directed step. For example 
in Fig. 74 we are to step from a to b, and thus the arrow-head 
will point towards b for the step a b. In letters this is denoted 
by writing a before b. The method by which we have ar¬ 
rived at the conception of vector steps shows us at once how 
to add them. 

Vector steps are added by placing them end to end in such 
fashion that they retain their own peculiar directions, and 
so that a point moving continuously along the zigzag thus 
formed will always follow the directions indicated by the ar¬ 
row-heads. This may be shortly expressed by saying the steps 
are to be arranged in continuous sense. The sum of the 
vector steps is then the single directed step which joins the 
start of the zigzag thus formed to its finish. In Fig. 75 let ah, 
cd, ef, and gh be directed steps. Then let a b be drawn equal 
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and parallel to ab] from b draw b c equal and parallel to cd, 
from c draw c n equal and parallel to ef, and finally from n 
draw D E equal and parallel to gh. We have drawn our zigzag 
so that the arrow-heads all have “a continuous sense.” 
Hence the directed step a e is the sum of the four given 
vectors. If, for example, at c we had stepped c n', equal 
and parallel to ef, but on the opposite side of b c to c n, and 
then taken n' e', equal and parallel to gh, the reader will 

remark at once that the arrow-heads in b c, c n' and n' e' 

are not in continuous sense, or we have not gone in the proper 

direction at c. 
Should the vector steps all have the same direction, the 

zigzag evidently becomes a straight line; in this case the 
vector steps are added precisely like scalar quantities; or, 
when vector steps may be looked upon as scalar, our e.x- 
tended conception of addition takes the ordinary arith¬ 
metical meaning. 

We can now state a very important aspect of position in a 
plane; namely, if the position of g relative to a be denoted 
by the directed step or vector a g, it may also be expressed 
by the sum of any number of directed steps, the start of the 
first of such steps being at a and the finish of the last at G 

(see Fig. 76). We may write this result symbohcally;— 

AG = AB + BC + CD + DE + EF-1-PG. 
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It will be at once obvious that in our example as to find¬ 
ing the “George,” the stranger might have been directed 
by an entirely different set of instructions to his goal. In 

fact, he might have been led to make extensive circuits in 
or about the town before he reached the place he was seek¬ 
ing. But, however he might get to g, the ultimate result of 
his wanderings would be what he might have accomplished 
by the directed step a g supposing no obstacles to have 
been in his way (or, “as the crow flies”). Hence we see that 
with our extended conception of addition any two zigzags of 
directed steps, a b c d e f g and A b' c'd' e' f' g (which may 
or may not contain the same number of component steps), 
both starting in a and finishing in g, mUst be looked upon as 
equivalent instructions; or, we must take 

AB + BC + CD-|-DE + EP + FG = AG = 

A b' + b' c' + c' n' + d' e' + e' p' + p' G. 

In other words, two sets of directed steps must be held to 
have an equal sum, when, their starts being the same, the 
steps of both sets will, added vector-wise, have the same 
finish. 

Now let us suppose our stranger were unconsciously stand¬ 
ing in front of the “George” when he asked his question as 
to its whereabouts, and further let us suppose that the per¬ 
son who directed him gave him a perfectly correct instruc¬ 
tion, but sent him by a properly chosen set of right and left 
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turnings a considerable distance round the town before 
bringing him back to the point a from which he had set out. 
In this case we must suppose the “George” not to be at the 
point G, but at the point a. The total result of the stranger’s 
wanderings having brought him back to the place from which 
he started can be denoted by a zero step: or we must write 
(Fig. 76)- 

AB + BC + CD + DE + EF + FG + GA = 0.... (i) 

We may read this in words: The sum of vector steps which 
form the successive sides of a closed zigzag is zero. Now we 
have found above that— 

An + BC + CD + DE + EF + FG = AG. (ii) 

Hence, in order that these two statements (i) and (ii) may 
be consistent, we must have - g a equal to a g, or 

A G + G A = 0. 

This is really no more than saying that if a step be taken 
from A to G, followed by another from g to a, the total oper¬ 
ation will be a zero step. Yet the result is interesting as show¬ 
ing that if we consider a step from a to G as positive, a step 
from G to A must be considered negative. It enables us also 
to reduce subtraction of vectors to addition. For if we term 
the operation denoted by a b — d c a subtraction of the vec¬ 
tors A B and D c, since n c + c d = 0, the operation indicated 
amounts to adding the vectors a b and c d, or to a b + c n. 
Hence, to subtract two vectors, we reverse the sense of one 
of them and add. 

I—I-1-n-1-1 

UR P S Q TV 

Fig. 77 

The result a g+g a = 0 can at once be extended to any num¬ 
ber of points lying on a straight line. Thus, if pqrstuv 
(Fig. 77) be a set of such points— 

PQ + QR + BS-|-ST + TU + UV + VP=0. 
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For starting from p and taking in succession the steps indi¬ 
cated, we obviously come back to p, or have performed an 
operation whose result is equivalent to zero, or to remaining 
where we started. 

§4. The Addition of Vectors obeys the Commutative 
Law 

Wq can now prove that the commutative law holds for 
our extended addition (see p. 5). First, we can show that 
any two successive steps may be interchanged. Consider four 
successive steps, a b, b c, c n, and n e (Fig. 78). If at b in¬ 
stead of taking the step b c we took a step b h equal to c n in 
magnitude, sense, and direction, we could then get from h to 
n by taking the step h n. Now let b n be joined; then in the 
triangles b h d, n c b the angles at b and n are equal, because 
they are formed by the straight line b d falling on two 
parallel lines b h and c n; also the side b n is common, and 
B H is equal to c n. Hence it follows (see pp. 66-67) that these 
triangles are of the same shape and size, or H d is equal to 
B c; and again the angles b n h and n b c are equal, or H n 

and B c are parallel. Thus the step h n is equal to the step 
b c in direction, magnitude, and sense. We have then from 
the two methods of reaching n from b, 

BC+CD=BD=BH+HD 

= C D + B C 

by what we have just proved. 
E 

Hence any two successive steps may be iilterchanged. By 
precisely the same reasoning as we have used on p. 11 we 
can show that if we may interchange any two successive 
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steps of our zigzag we may interchange any two steps what¬ 
ever by a series of changes of successive steps; that is, the 
order in which vectors are added is indifferent. 

Tlie importance of the geometry of vectors arises from 
the fact that many physical quantities can be represented 
as directed steps. We shall see in the succeeding chapter 
that velocities and accelerations are quantities of this char¬ 
acter. 

§5. On Methods of Determining Position in a Plane 

It has been remarked (see p. 92) that scalar quantities 
may be treated as steps measured along a straight line. In 
this case we only require one point on this hne to be given, 
and we can determine the relative position of any other by 
merely stating the magnitude of the intervening step. A line 
is occasionally spoken of as being a space of one dimension; 
in one-dimensioned space one point suffices to determine 
the relative position of all others. 

When we consider, however, position in a plane, in order to 
determine the whereabouts of a point p with regard to another 
A (Fig. 79) we require to know not only the magnitude but 
the direction of the step a p. Hence what scalar steps are to 
one-dimensioned space, that are vector steps to plane space. 

Fig. 79 

In order to determine the direction of a step a p we must 
know at least one other point b in the plane. Space which 
requires two points to determine the position of a third 
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is usually termed space of two dimensions. There are various 
methods in general use by which position in two-dimensioned 
space is determined. We shall mention a few of them, con¬ 
fining our remarks, however, to the plane, or to space of two 
dimensions which is of the same shape on both sides.^ 

(a) We may measure the distances between a and p and 
between b and p. If these distances are of scalar magnitude 
r and r' respectively, there will be two points corresponding 
to any two given values of r and r'; namely p and p' the in¬ 
tersections of the two circles with centres at a and b and 
radii equal to r and r' respectively. We may distinguish 
these points as being one above, and the other below a b.^ 

Only in the case of the circles touching will the two points 
coincide; if the circles do not meet, there will be no 
point. 

If p moves so that for each of its positions with regard to 
A and b the quantities r and r' satisfy some definite relation, 
we shall obtain a continuous set of points in the plane or a 
curved line of some sort. For example, if we fasten the ends 
of a bit of string of length I to pins stuck into the plane of 

the paper at a and b (Fig. 80), and then move a pencil about 
so that its point p always remains on the paper, and at the 

^ A space of two dimensions ... of the same shape on both sides’^ is es¬ 
sentially a meaningless concept. It becomes meaningful only when the space 
of two dimensions is considered as embedded in a space of three dimensions. 
The implications of the concept are perhaps more understandable when re¬ 
lated to a curved two-dimensional space—analogous to the surface of a sphere— 
for in this case, quite obviously, the space is not ^‘of the same shape on both 
sides’*: one side being concave, the other convex.—^J.R.N. 

* This sentence more correctly phrased should read “We may distinguish 
these points as being on opposite sides of a b.” For the specifications “above” 
and “below” are equivocal when applied to positions in the plane.—^J.R.N. 
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same time always keeps the string a p b taut round its point, 
the pencil will trace out that shadow of the circle which we 
have called an ellipse. 

In this case r + r' = AP+PB = Z, the constant length of 
the string. This relation r + r' = l is an equation between 
the scalar quantities r, r' and I, which holds for every point 
on the ellipse, and expresses a metric property of the curve 
with regard to the points a and b. 

If on the other hand we cause p to move so that the dif¬ 
ference of A p and B P is a constant length {r - r' = 1), then 
p will trace out the curve we have termed the hyperbola. We 
can cause p to move in this fashion by means of a very simple 
bit of mechanism. Suppose a rod b l (Fig. 81) capable of re¬ 
volving about one of its ends b; let a string of given length 
be fastened to the other end h and to the fixed point a. Then 
if, as the rod is moved round b, the string be held taut to 

the rod by a pencil point p, the pencil will trace out the 
hyperbola. For since l p -|- p a equals a constant length, 
namely that of the string, and l p + p b equals a constant 
length, namely that of the rod, their difference or p a — p b 
is equal to the constant length which is the difference of the 
string and the rod. 

The points a and b are termed in the cases of both ellipse 
and hyperbola the foci. The name arises from the following 
interesting property. Suppose a bit of polished watch spring 
were bent into the form of an ellipse so that its flat side was 
turned towards the foci of the elhpse; then if a hot body were 
placed at one focus b (Fig. 82), all the rays of heat or light 
radiated from b which fell upon the spring would be collected, 
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or, as it is termed, "focussed” at a ; hence a would be a much 
brighter and hotter point than any other within the ellipse 
(b of course excepted). The name focus is from the Latin, 
and means a fireplace or hearth. This property of the arc of 
an ellipse or hyperbola, that it collects rays radiating from 
one focus in the other, depends upon the fact that a p and 
P B make equal angles with the curve at p. This geometrical 
relation corresponds to a physical property of rays of heat 
and light; namely, that they make the same angle with a 
reflecting surface when they reach it and when they leave 
it. 

A third remarkable curve, which is easily obtained from 
this our first method of considering position, is the lemniscate 
of James Bernoulli (from the Latin lemniscus, a ribbon). It 
is traced out by a point p which moves so that the rectangle 
under its distances from a and b is always equal to the area 
of a given square ^ (r • r' = c^). If the given square is greater 
than the square on half a b, it is obvious that p can never 
cross between a and b ; if it is equal to the square on half a b, 

the lemniscate becomes a figure of eight; while if it is less, 
the curve breaks up into two loops.® In Figure 83 a series 

^ The explanation is somewhat obscure. What is meant by “the rectangle 
under its distances is the area of the rectangle, the base of which is one dis¬ 
tance and the altitude the other distance.—^J.R.N. 

* Thus if 

r-r' > 
2 / the corresponding lemniscate is 

rr* <(¥)■ 

03 
©O 
OO 

—J.R.N. 
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of lemniscates are represented. A set of curves obtained by 
varying a constant, like the given square in the case of the 
lemniscate, is termed a family of curves. Such famihes of 
curves constantly occur in the consideration of physical 
problems. 

§6. Polar Co-ordinates 

(/3) The points a and b (Fig. 84) determine a line whose 
direction is a b. If we know the length a p and the angle bap, 

we shall have a means of finding the position of p. Let r be 
the number of linear units in a p and d the number of angular 
units in B A p, where r and 0 may of course be fractions.* 
In measuring the angle Q we shall adopt the same conven¬ 
tion as we have employed in discussing areas (see p. 123); 
namely, if a line at first coincident with a b were to start 

P 

from that position, and supposed pivoted at a to rotate 
counter-clockwise till it coincided with a p, it would trace 
out the angle B. Angles traced out clockwise will like areas 

1 Not merely fractions, but any real number, or as Clifford says: *^quan- 
tity.»W.R.N. 
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be considered negative. Thus the angle bap' below a b 

would be obtained by a rotation clockwise from a b to a p', 

and must therefore be treated as negative. On the other 
hand, we might have caused a hne rotating about A to take 
up the position a p' by rotating it counter-clockwise through 
an angle marked in our figure by the dotted arc of a circle. 
Further we might obviously have reached a p by a line 
rotating about a clockwise, and might thus represent the 
position of p by a negative angle. But even after we had got 
to p we might cause our line to rotate about a a complete 
number of times either clockwise or counter-clockwise, and 
we should still be at the end of any such number of complete 
revolutions in the same position a p. 

We have then the following four methods of rotating a 
line about a from coincidence with a b to coincidence with 
A p;— 

(i) Counter-clockwise from a b to a p. 

(ii) Clockwise from a b to a p. 

(iii) The first of these combined with any number of 
complete revolutions clockwise or counter-clock¬ 
wise. 

(iv) The second of these combined with any number 
of complete revolutions clockwise or counter¬ 
clockwise. 

The following terms have been adopted for this method 
of determining position in space:— 

The line A B from which we begin to rotate our line is 
termed the initial (“beginning”) line; the length a p is 
termed the radius vector (from two Latin words signifying 
the carrying rod or spoke, because it carries the point p to 
the required position); the angle b a p is termed the vectorial 
angle, because it is traced out by the radius vector in moving 
from A B to the required position a p; a is termed the pole, 
because it is the end of the axis about which we may sup¬ 
pose the spoke to turn. Finally a p (= r) and the angle 
B A p (= 0) are termed the polar co-ordinates of the point p, 
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because they regulate the position of p relative to the pole a 
and the initial line a b. 

§7. The Trigonometrical Ratios 

If p M be a perpendicular dropped from p on a b, the ratias 
of the sides of the right-angled triangle p a m have for the 
purpose of abbreviation been given the following names:— 

P M 
or the ratio of the perpendicular to the hypothenuse, 

is termed the sine of the angle bap. 

AM. 
or the ratio of the base to the hypothenuse, is termed 

the cosine of the angle bap. 

PM. 
-, or the ratio of the perpendicular to the base, is termed 
A M 

the tangent of the angle bap. 

AM. 
or the ratio of the base to the perpendicular, is termed 

the cotangent of the angle bap. 

If d be the scalar magnitude of the angle bap these ratios 
are written for shortness, sin d, cos d, tan 6, and cot 6, respec¬ 
tively. Let us take any other point q on a p, and drop Q n 
perpendicular to a b, then the triangles Q a n, p a m are of 
the same shape (see p. 99), and thus the ratios of their 
corresponding sides are equal. It follows from this that the 
ratios sine, cosine, tangent, and cotangent for the triangles 
Q A N and PAM are the same. Hence we see that sin 6, cos 6, 
tan 6, and cot 6 are independent of the position of p in a p; 
they are ratios which depend only on the magnitude of the 
angle b a p or 6. They are termed (from two Greek words 
meaning triangle-measurement) the trigonometrical ratios 
of the angle d. The discussion of trigonometrical ratios, or 
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Trigonometry, forms an important element of pure mathe¬ 
matics. The names of the trigonometrical ratios themselves 
are derived from an older terminology which connected these 
ratios with the figure supposed to be presented by an archer 
whose bow string was placed against his breast.* 

§8. Spirals 

Let us suppose the spoke a p (Fig. 85) to revolve about the 
pole A, and as it revolves let the point p move along the spoke 
in such fashion that the magnitude r of a p is always definitely 
related in some chosen manner to the magnitude 0 of b a p. 
Then if p be taken as the point of a pencil it will mark out a 
curved fine on the plane of the paper. Such a curved line is 

termed a polar curve or spiral, the latter name from a Greek 
word denoting the coil, as of a snake, to which some of these 
curves may be considered to bear resemblance. 

One of the most interesting of these spirals was invented 
by Conon of Samos (fl. b.c. 250), but its chief properties 
having been discussed by Archimedes, it is usually called by 
his name. The spiral of Archimedes is defined in the follow¬ 
ing simple manner. As the spoke a p moves uniformly round 
the pole, the point p moves uniformly along the spoke. Let 

* In our figure the angle bap has been taken less than a right angle, it may 
have any magnitude whatever. It has been found useful to establish a convention 
with regard to the signs of the perpendicular p m and the base a m. p m is con¬ 
sidered positive when it falls above, but negative when it falls below the initial 
line A b; A M is considered positive when m falls to the right, but negative 
when it falls to the left of a. The reader will understand the value of this con¬ 
vention better after examining §§ 11, 12. 
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c be the position of p when the spoke coincides with the 
starting line a b, and let a c contain a units of length. Then 
if p be the position of the pencil-point when the spoke has 
described an angle bap containing 6 units of angle, and if 
A c' be measured along a p equal to a c, the point will have 
described the distance c' p while the spoke was turning 
through the angle cap. But since the point and spoke are 
moving uniformly, the distance c' p must be proportional 
to the angle cap, or their ratio must be an unchangeable 
quantity for all distances and angles. Let b be the distance 
traversed by the point along the spoke while it turns through 
unit angle, then c' p must be equal to the number of units 
in c A p multiplied by b. Using r to denote the magnitude of 
A p we have 

& p = b X 6, but c' p = r - a; 

thus; r = a + bd. 

This relation between r and 6 is termed the polar equation 
to the spiral. 

The following easily constructed apparatus will enable us 
to draw a spiral of Archimedes, n e f (Fig. 86) is a circular disc 

of chosen radius; upon the edge of this disc is cut a groove. To 
the centre A of the disc is attached a rod or spoke which can 
be revolved about a as a pole; at the other end of this rod is 
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a small grooved wheel or pulley g, A string is then fastened 
to some point n in the groove of the disc, and passing round 
the pulley g is attached to a small block p which holds a 
pencil and is capable of sliding in a slot in the spoke. If this 
block be fastened by a piece of elastic to a, the string from 
p to G and then from G to the groove on the disc will remain 
taut. Now supposing the disc to be held firmly pressed against 
the paper, and the spoke a G to be turned about a counter¬ 
clockwise, the pencil p will describe the required spiral. For 
the string touching the disc in the point t the figure gat 

always remains of the same size and shape as we turn the 
spoke about the pole; hence the length of string G t is con¬ 
stant. Thus if a length of string represented by the arc n t 

be wound on to the disc as we turn the spoke from the posi¬ 
tion a B to the position a p, the length p g (since the length 
G T always remains the same) must lose a length equal to 
D T as p moves from c to p. But the amount of string n t 

wound on to the disc is proportional tc the angle through 
which the spoke a p has been turned; hence the point p must 
have moved towards G through a distance proportional to 
this angle, or it has described a spiral of Archimedes. 

Once in possession of a good spiral of this kind we can 
solve a problem which often occurs, namely to divide an 
angle into any number of parts having given ratios.^ Let the 
given angle be placed with its vertex at the pole of the spiral 
and let the radii vectores a c and a p (Fig. 87) be those which 
coincide with the legs of the angle. About the pole a describe a 
circular arc with radius a c to meet a p in c'. Now let us sup¬ 
pose the problem solved and let the radii vectores a d, a e, 

A F be those which divide the angle into the required pro¬ 
portional parts. If these radii vectores meet the circular 
arc c c' in o', e', f' respectively, then by the fundamental 
property of the spiral we have at once the lines d' e», e' e, 

f' f, c' p in the same ratio as the angles c a d, c a e, c a f, 

* It is interesting to note that the triseotion of an angle, one of the famous 
problems of classical antiquity, while not possible using ruler and compass, 
can be accomplished with the aid of the spiral of Archimedes.—J.R.N. 
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CAP. Thus if we measure lengths Ad, a e, a f equal to a d, 

A E, A F respectively along a p, c' p will be divided in d ef into 
lengths which are proportional to the required angles. Con¬ 
versely, if we were to divide c' p into segments c'd, de, ef, 
and / P in the same ratio as the required angular division, we 
should obtain lengths a d, a e, Af, which would be the radii 
of circles with a common centre a cutting the spiral in the 
required points of angular division. The spiral of Archimedes 
thus enables us to reduce the division of an angle in any 
fashion to the like division of a hne. 

Now the division of a line in any fashion, that is, into a set 
of segments in any given ratio, is at once solved so soon as we 
have learnt by the aid of a pair of compasses or a “ set square ” 
to draw parallel lines. Thus suppose we require to divide 
the line c' p (Fig. 88) into segments in the ratio of 3 to 5 to 4; 
we have only to mark off along any line through c', say c' q, 

steps c' R, R 8, 8 T placed end to end and containing 3, 5, and 
4 units of any kind respectively. If the finish of the last step 

T be joined to p and the parallels r r, s s to t p through r and 
s be drawn to meet c' p in r and s, then c' p will be divided 
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in r and s into segments in the required ratio of 3 to 5 to 4. 
This follows at once from our theory of triangles of the 
same shape (see p. 99). For, since r c' r, s c's, and t c' p 

are such triangles, they have their corresponding sides pro¬ 
portional, and the truth of the proposition is obvious. 

A spiral of Archimedes accurately cut in a metal or ivory 
plate is an extremely useful addition to the ordinary con¬ 
tents of a box of so-called mathematical instruments. 

§9. The Equiangular Spiral 

Another important spiral was invented by Descartes, and 
is termed from two of its chief properties either the equi- 
angular or the logarithmic spiral. 

Let BOA (Fig. 89) be a triangle with a small angle at o, and 
whose sides o a and o b are of any not very greatly different 
lengths. Upon o b and upon the opposite side of it to a con¬ 
struct a triangle b o c of the same shape as the triangle a o b. 

and in such wise that the angles at b and a are equal. Then 
upon o c place a triangle c o n of the same shape as either 
B o c or A o B; upon o n a fourth triangle doe, again of 
the same shape; upon o e a fifth triangle, and so on. We 
thus ultimately form a figure consisting of a number of 
triangles aob, b oc, cod, doe, &c., of the same shape. 
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all placed with one of their equal angles at o, and in such 
fashion that each pair has a common side consisting of two 
non-corresponding sides (that is, of sides not opposite to 
equal angles). The points abode, &c., will form the angles 
of a polygonal Une, and if the angles at o are only taken small 

enough, the sides of this polygon will appear to form a con¬ 
tinuous curved hne. This curved hne, to which we can ap¬ 
proach as closely as we please by taking the angles at o 
smaller and smaller, is termed an equiangular spiral. It 
derives its name from the following property,—a b, b c, c d, 

&c., being corresponding sides of triangles of the same shape, 
make equal angles o b a, o c b, o d c, &c., with the cor¬ 
responding sides o B, o c, o D, &c.; but when the angles at 
o are taken very small a b, b c, c D, &c., will appear as suc¬ 
cessive elements of the curved hne or spiral. Hence the arc 
of the spiral meets aU rays from the pole o at the same con¬ 
stant angle. 

Let us now endeavour to find the relation between any 
radius vector o p (= r) and the vectorial angle a o p (= 6). 

Since all our triangles a o b, b o c, c o d, &c., are of the 
same shape, their corresponding sides must be proportional 
(see p. 99); or, 

OB_OC_OD_ _ OJF _ 

oaob oc od oe 

Each of these equal ratios will therefore have the same scalar 
value; let us denote that value by the symbol p. Then we 
must have 

ob = /x-oa; oc = m-ob; OD = p-oc; &c. 

Or, OB = p ■ o A] o c = p^ ■ o a; od = p^ • o a, and so on. 
Hence if o n be the radius vector which occurs after n equal 
angles are taken at o, we must have 

o N = • o A. 

Now let the very small angles at o be each taken equal to 
some small part of the unit angle; thus we might take them 
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xfc or TjsW of the unit angle. We will represent this frac¬ 
tion of the unit angle by 1/6, where we may suppose b a 
whole number for greater simphcity. Further let us use 
X to denote the power of //, or X = /x'*. With the notation 
explained on p. 131 we then term /x a root of X, and write 
M = X^/^ 

Hence finally we have o n = o a • or in words: The 
base of the (» + 1)“* equal-shaped triangle placed about o 
is equal to the base of the first multiplied by a certain quan¬ 
tity X raised to the power of n-times the quantity 1 /b which 
expresses the magnitude of the equal angles at o in units of 
angle. 

Now let the spoke or ray o p fall witliin the angle which is 
formed by the successive rays o n and o q of the system of 
equal-shaped triangles round o. Then o n makes an angle 
7i-times 1/6, and o q an angle (n -f l)-times 1/6 with o a. 

Hence the angle a o p, or 6, must he in magnitude between 
n/b and (n -I-1)/6. Similarly the magnitude of o p must he 
between those of o n and o q. Now by suflficiently decreasing 
the angles at o we can approach nearer and nearer to the 
form of the spiral, and the ray o p must always he between 
two successive rays of our system of triangles. The angle 0, 
which will thus always he between n/b and (n -f l)/6, can 
only differ from either of them by a quantity less than 1 /6. 
If then 6 be taken large enough, or the equal angles at o 
small enough fractions of the unit angle, this difference 1/6 
can be made vanishingly small. In this case we may say 
that in the limit the angle 0 becomes equal to n/b and the 
ray o p equal to o n or o q, which will thus be ultimately 
equal. Hence o p = o a • X"^* = o a • X’, or in words: If a 
ray o p of the equiangular spiral make an angle a o p with 
another ray o a, the ratio of o p to o a is equal to a certain 
number X raised to the power of the quantity 0 which ex¬ 
presses the magnitude of the angle a o p in units of angle. 

If a and r be the numbers which express the magnitudes 
of o A and o p, we have r = aW This is termed the polar 
equation of the spiral. 
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We proceed to draw some important results from a 
consideration of this spiral. The reader will at once observe 
that the ratio of any pair of rays o p and o q (Fig. 90) is equal 
to the ratio of any other pair which include an equal angle, 
for the ratio of any pair of rays depends only on the included 
angle. Further, if we wanted to multiply the ratio of any two 
quantities p and q by the ratio of two other quantities r and 
s we might proceed as follows; Find rays of the equiangular 
spiral o p, o Q, o n, o s containing the same number of linear 
units as p, q, r, s contain units of quantity (see p. 91) and. 

let 6 be the angle between tlie first pair, <t> the angle between 
the second pair. 

Then 

—- = X®, and — = X*; 
OP OK 

whence it follows that X = X® x X* = X®"'"'^, or is 
o p o R ’ 

equal to the ratio of any pair of rays which include an angle 
d + 4>- Thus if the angle q o t be taken equal to <j>, and o t 

O T 
be the corresponding ray of the spiral, = X®'^'*', and is a 

ratio equal to the product of the given ratios. Hence to find 
the product of ratios we have only to add the angles between 
pairs of rays in the given ratios, and the ratio of any two 
rays including an angle equal to the sum will be equal to 
the required product. Thus the equiangular spiral enables 
us to replace muUiplicaiion by addition. This is an extremely 
valuable substitution, as it is much easier to add than to 
multiply. 
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Since — divided by — = X® divided by = X®~*, it is 

obvious that we may in like fashion replace the division of 
two ratios by the subtraction of two angles. A set of quanti¬ 
ties like the angles at the pole of an equiangular spiral which 
enables us to replace multiplication and division by addition 
and subtraction is termed a table of logarithms. Since the 
equiangular spiral acts as a graphical table of logarithms, 
it is frequently termed the logarithmic spiral. 

§10. On the Nature of Logarithms 

Since in the logarithmic spiral o p = o a X X®, where d is 
equal to the angle a o p, we note that as 6 increases, or as 
the ray o p revolves round o, o p is equally multiplied during 
equal increments of the vectorial angle a o p. When one 
quantity depends upon another in such fashion that the 
first is equally multiplied for equal increments of the second, 
it is said to grow at logarithmic rate. This logarithmic rate is 
measured by the ratio of the growth of the first quantity for 
unit increment of the second quantity to the magnitude of 
the first quantity before it started this growth. 

Let us endeavour to apply this to our equiangular spiral. 
Suppose A o B, B o c, c o D, &c. to be as before the triangles 
by means of which we construct it (see Fig. 89), the angles 
at o being all equal and very small. Along o b measure a 
length o a' equal to o a ; along o c, a length o b' equal to 
o b; along o d, a length o c' equal to o c, and so on. Then 
a' b, b' c, c'd, &c., will be the successive growths as a 
ray is turned successively from o a to o b, from o b to o c, 
and so on. Join a a', b b', c c', &c. Now the triangles a o b, 

b o c, COD, &c., are all of the same shape; so too are the 
isosceles triangles a o a', b o b', c o c', &c. Hence the dif¬ 
ferences of the corresponding members of these sets, a a' b, 

B b' c, c c' D, (fee., must also be of equal shape, and thus 
their corresponding sides proportional. It follows then that 
the lengths 
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a' b, b' c, c'd, &c., are in the same ratio as the lengths 

a' a, b' b, c' c, &c., or again as the lengths 

o A, o B, o c, &c. 

Whence we deduce that 

k' b _ n' c _ c' D _ 

OA OB~OC~ 

Or, the growt.h a' b is always in a constant ratio to the grow¬ 

ing quantity o a. 

Now, if the angles at o be very small, the line a a' will 
practically coincide with the arc of a circle with centre o 
and radius equal to o a. Hence (see pp. 130,131) a a' will ul¬ 
timately equal o a x the angle a o a', while the angle at a' 

will ultimately be equal to a right angle. 
Further, the ratio of a' b to a a' remains the same for all 

the little triangles a a' b, b b' c, c c'd, &c. It is in each case 
the ratio of the hose to the 'perpendicular when we look upon 
these triangles with regard to the equal angles a b a', b c b', 

c D c', &c. Now these are the angles of the triangles which 
give the spiral its name. Let any one of them, and therefore 
all of them, be equal to a. By definition the cotangent of an 
angle (see p. 151) is equal to the ratio of the base to the per¬ 
pendicular. 

Hence 
. a'b a' b 

cot; Cl 7 I f } 

A A o A X angle a o a 

or 
k' b 

O A 
angle a o a' x cot a. 

Now A B denotes the growth for an angle a o a', supposed 
very small; whence it follows that the logarithmic rate, or 
the ratio of the growth to the growing quantity for unit angle, 
is equal to cot a. Thus the logarithmic rate for the growth of 
the ray of the equiangular or logarithmic spiral, as it de¬ 
scribes equal angles about the pole, is equal to the cotangent 
of the angle which gives its name to the spiral. 

Let us suppose o a to be imit of length, then, since o p 
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= o A X X®, the result o p of revolving the ray o a through 
an angle 6 equal to unity will be X, or X is the result of making 
unity grow at logarithmic rate cot a. 

Now let us denote by the symbol e the result of making 
unity grow at logarithmic rate unity during the description 
of unit angle. Then e will have some definite numerical value. 
This value is found, by a process of calculation into which 
we cannot enter bere, to be nearly equal to 2.718. This 
means that, if while unit ray were turned through unit angle 
it grew at logarithmic rate unity, its total growth (1.718) 
would He between eight and nine-fifths of its initial length. 
Since e is the result of turning unit ray throqgh unit angle, 
and since the ray is equally multipUed for equal multiples 
of angle, e'^ must represent the result of turning unit ray 
through y unit angles. Hitherto we have been concerned 
with unit ray growing at logarithmic rate unity; now let us 
suppose unity to grow at logaritlunic rate y, then it grows y 
times as much as if it grew at logarithmic rate unity, or the 
result of turning unit ray through unit angle, while it grows 
at logarithmic rate y, must be the same as if we spread 1/y 
of this rate of growth over y unit angles; that is, as if we 
caused unity to grow at logarithmic unity for y unit angles, 
or e^. Hence e'' denotes the result of making unit ray grow 
at logarithmic rate unity while it describes y unit angles, or 
again of making unit ray grow at logarithmic rate y while it 
describes a unit of angle. 

Let us inquire what is the meaning of e’’ when y is a com¬ 
mensurable fraction equal to s/t, s and t being integers. Let 
X be the as yet unknown result of turning unit ray through an 
angle equal to y while it grows at unit logarithmic rate; then 
X* will be the result of turning unit ray through i angles equal 
to y while it grows at unit rate; but t angles equal to y form 
an angle containing s units, or this result must be the same 
as the result of turning unity through an angle s while it 
grows at logarithmic rate unity. Thus we have = e*. That 
is, z is a Mh root of e*, or, as we write it, >equai to e** = 
Thus if 7 be a commensurable fraction, lis the result of 
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causing uni^ ray to grow at logarithmic rate unity through 
an angle equal to 7, or as we have seen at logarithmic rate 7 

through unit angle. 
Now let us suppose it possible to find a commensurable 

fraction 7 equal to cot a; then the result of making unity 
grow at logarithmic rate cot a as it is turned through unit 
angle must be e'^. But we have seen (see p. 162) that it is 
equal to X. Hence 

X = 

Further, the result of making unity grow at logarithmic 
rate cot a as it is tmned tlirough an angle 0 is X"; or, 

X" = 6-''“. 

Thus we may write 

op = oaX* = oa - 

or with our previous symbols, 

r = a- 

This is therefore the equation to our equiangular spiral 
expressed in terms of the quantity e.. 

If we take a spiral in which a is the unit of length, and in 
which cot a or 7 is also unity, we find 

r — e®. 

The symbol e® is then read the exponential of 0, and 0 is 
termed the natural logarithm of r. It is denoted symbolically 
thus:— 

0 = loge r. 

The quantity e is termed the base of the natural system of 
logarithms. Oim spiral would in this case form a graphical 
table of natural logarithms. 

Returning to the equation 

r - a • e"^®, 

let us suppose 7 so chosen that e'' = 10; then 7 will repre¬ 
sent the angle through which unit ray must be turned in 
order that, growing at unit logarithmic rate, it may in- 
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crease to ten units. Again taking a to be of unit length we 
find r = = 10*. 6 is in this case termed the logarithm of r 
to the base 10, and this is symbolically expressed thus;— 

d = logio r. 

The spiral obtained in this case would form a graphical table 
of logarithms to the base 10. Such logarithms are those 
which are usually adopted for the purposes of practical cal¬ 
culation. 

Natural logarithms were first devised by John Napier, 
who published his invention in 1614.^ Logarithms to the 
base 10 are now used in all but the simplest numerical cal¬ 
culations which it is needful to make in the exact sciences; 
their value arises solely from the fact that addition and sub¬ 
traction are easier operations than multiplication and 
division. 

§11. The Cartesian Method of Determining Position 

(7) In order to determine the position of a point Pi in space 
of two dimensions, we may draw the fine b a b' (Fig. 91), 

C 
Fig. 91 

joining the given points a b and another line c a c' at right 
angles to this through a. These will divide the plane into 

^ Logaritkmorum Canonis Descriptio, 4to. Edinburgh, 1614, 
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four equal portions termed quadrants. Let Pi m be a line drawn 
from the point Pi (the position of which relative to a we wish 
to determine), parallel to c a and meeting b' a b in m. Then 
we may state the following rule to get from a to Pi ; Take a 
step A M from A on the line b' a b, and then a step to the left 
at right angles to this equal to m Pi. Now a step hke a m may 
be taken either forwards along a b or backwards along a b'. 

Precisely as before (see p. 92) we shall take + a m to mean 
a step forwards along a b, and — a m to mean a step a m' 

backwards along a b' through the same distance A m. Let us 
use the letter i to denote the operation, which we have 
represented by (t/2) on p. 137. Thus applied to unit step it 
will signify: Step forwards in the direction of the previous 
step and from its finish unit distance, and then rotate this 
tinit distance through a right angle counter-clockwise about 
the finish of the previous step. The operator i placed before 
a step, thus f • m Pi, will then be interpreted as follows: 
Step from m in the direction a b a distance equal to the length 
M Pi, and then rotate this step m Pi about m counter-clock¬ 
wise through a right angle. We are thus able to express sym¬ 
bolically the position of Pi relative to a, or the step a Pi, by 
the relation 

A Pi = A M -b f • M Pi. 

If we had to get to a point Pt in the quadrant b a c', 

instead of to Pi, we should have, instead of stepping forwards 
from M, to step backwards a distance M P4, and then rotate 
this through a right angle counter-clockwise. The step 
backwards would be denoted by inserting a — sign as a re¬ 
versing operation (see pp. 35, 36), and we should have 

A P4 = A M - f • M P4. 

Next let us see how we should get to a point like P2 in the 
quadrant c a b', where P2 is at a perpendicular distance 
P2 m' from A b'. First, we must take a step, a m', backwards; 
this is denoted by — a m'; secondly, we must step forwards 
from m' a distance m' P2; since this step is forwards, it will 
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be towards a; thirdly, by applying the operation i to this 
step, we rotate it about m' counter-clockwise through a right 
angle, and so reach P2. Hence 

A P2 = - A m' + V • m' P2. 

Finally, if we wish to reach P3 in the quadrant a </, 
we must step backwards a m', and then still further back¬ 
wards a step m' P3, and lastly rotate this step counter¬ 
clockwise through a right angle. This will be expressed by 

A P3 = - A m' - Z • m' P3. 

Now let us suppose Pi, P2, Ps, Pi, to be the four corners of a 
rectangular figure whose centre is at A and whose sides are 
parallel to b a. b' and c a c'. Let the number of units in a m 

be X, and the number in m Pi be y, then we may represent 
the four steps which determine the positions of the p’s 

relative to a. as follows:— 

A Vi = X + iy a P2 = — X -h fy 

A P3 = - X — zy A P4 = X - zy. 

Here x and y are mere numbers, but, when we represent 
these numbers by steps on a fine, the y-numbers are to be 
taken on a certain line at right angles to that line on which 
the x-numbers are taken. Thus the moment we represent 
our X and y numbers by lengths, they give us a means of 
determining position. 

The quantities x and y might thus be used to determine the 
position of a point, if we supposed them to carry with them 
proper signs. Our general rule would then be to step forwards 
from A along a b a distance x, and then from the end of x a 
distance forwards equal to y; rotate this step y about the 
end of X counter-clockwise through a right angle, and the 
finish of y will then be the point determined by the quanti¬ 
ties X, y. If X or y be negative, the corresponding forwards 
must be read: Step forwards a negative quantity, that is, 
step backwards. Thus:— 
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Pi, or position in the quadrant b a c is determinedi by x, y. 
1*2 cab' -x, y. 
P3 b' A c' ■ -X, -y. 
P4 . . C' A B H

 1 

The quantities x and y are termed the Cartesian co-ordi¬ 
nates of the point p, this method of determining the position 

C 

1 
] . 

B' A h 

c' 
Fig. 92 

of a point having been first used by Descartes, n a b' (Fig. 92) 
and c A c' are termed the co-ordinate axes of x and y respec¬ 
tively, while A is called the origin of co-ordinates. P^or example, 
let the Cartesian co-ordinates of a point be (- 3, 2). How 
shall we get at it from the origin a? If p be the point, we have 
AP = — 3 + f-2. Hence we must step backwards 3 units; from 
this point step forwards 2 and rotate this step 2 about the 
extremity of the step 3 through a right angle counter-clock¬ 
wise; we shall then be at the required point. 

If p be determined by its Cartesian co-ordinates x and y, 
we might find a succession of points, p, by always taking a 

step y related in a certain invariable fashion to any step x 
wliich has been previously made. 

Such a succession of points p, obtained by giving x every 
possible value, will form a hne or curve, and the relation 
between x and y is termed its Cartesian equation. 

As an instance of this, suppose that for every step x, we 
take a step y equal to the double of it. Then we shall have 
for our relation y = 2x, and our instructions to reach any 
point p of the series are x-\-i- 2x. Suppose the quadrant 
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BAG (Fig. 93) divided into a number of little squares by lines 
parallel to the axes, and let us take the sides of these squares to 

be of unit length. Then if we take in succession x = 1,2,3, &c., 
we can easily mark off our steps. Thus: 1 along a b and then 2 
to the left; 2 along a b and 4 to the left; 3 along a b and then 
6 to the left; 4 along a b and then 8 to the left; 5 along a b 

and then 10 to the left, and so on. It will be obvious (by 
pp. 98, 99) that our points all lie upon a straight hne through 
A, and however many steps we take along a b, followed by 
double steps perpendicular to it, we shall always arrive at a 
point on the same line. If we gave x negative values we should 
obtain that part of the line which lies in the third quadrant 
b' a c'. Hence we see that y = 2x is the equation to a straight 
line which passes through A. 

Let us take another example. Suppose that the rectangle 
X 

16 units in rectangle 16 units in square 

Fig. 94 
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contained by y and a length of 2 units, always contains as 
many units of area as there are square units in x-^ (Fig. 94). Our 
relation in this case may be expressed by 2y = x^, and we have 
the following series of steps from a to points of the series:— 

1 + f 2 + t • 2, 3 + f 
4 + f • 8, 5 + t 6 + f • 18, &c. 

We can by means of our little squares easily follow out 
the operations above indicated; we thus find a series of 
points like those in the quadrant b a c of the figure. (See 
Fig. 95.) If, however, we had taken x equal to the negative 
quantities - 1, - 2, - 3, - 4, — 5, - 6, &c., we should have 
found precisely the same values for y, because we have seen 
that (— a) X (- a) = = (+ a) X (+ a). These negative val¬ 
ues for x give us a series of points like those in the quad¬ 

rant b' A c of the figure. It is impossible that any points of 
the series should lie below b a b', because both negative 
and positive values for x give when squared a positive value 
for the step y, so that no possible x-step would give a nega¬ 
tive y-step. The series of points obtained in this fashion are 
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found to lie upon a curve which ia one of those shadows of a 
circle which, we have termed parabolas. 

Hence we may say that 2y = is the equation to a 
parabola. 

This method of plotting out curves is of great value, and 
is largely used in many branches of physical investigation. 
For example, if the differences of successive x-steps denote 
successive intervals of time, and y-steps the corresponding 
heights of the column of mercury in a barometer above some 
chosen mean position, the series of points obtained will, if 
the intervals of time be taken small enough, present the ap¬ 
pearance of a curve. This curve gives a graphical representa¬ 
tion of the variations of the barometer for the whole period 
during which its heights have been plotted out. Barometric 
curves for the preceding day are now given in several of the 
morning papers. Heights corresponding to each instant of 
time are in this case generally registered automatically by 
means of a simple photographic apparatus. 

The plotting out of curves from their Cartesian equations, 
usually termed curve tracing, forms an extremely interesting 
portion of pure mathematics. It may be shown that any 
relation, which does not involve higher powers of x and y 
than the second, is the equation to some one of the forms 
taken by the shadow of a circle. 

§12. Of Complex Numbers 

We shall now return to our symbol of operation i, and in¬ 
quire a little closer into its meaning. Let the point p (Fig. 96) 
be denoted as before by a m + f • m p, so that we should read 
this result: Step from a to m along a b, and from m to p' along 
the same line (where m p' = m p), finally rotate m p' about m 
counter-clockwise through a right angle; m p' will then take 
up the position m p. Now let m q' be taken equal to a p', 

then A M + z • M q' will mean: Step from a to m and then 
from M perpeiiidicular to a m to the left through a distance, 
Mq', equal to a p'. Since however mq' = ap' = am + mp 
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» M p + p q', p q' must be equal to a m and we can read our 
operation 

A M + f • (m P + P q') 

which denotes two successive steps at right angles to A m, 
namely m p followed by the step p q'. Suppose now we wished 
to rotate this latter step through a right angle counter¬ 
clockwise, we should have to introduce before it the symbol 
i, and m p + f • p q' would signify the step m p followed by 
the step p Q at right angles to it to the left. Now p q' is equal 
to A M, and hence the result of this operation must bring us 
to Q, a point on a c which might have been reached by the 
simple operation 0 + i • a Q. Thus we may put 

0 + f • A Q = A M 4-1 • (m p -I- f • p q) 
= A M + f • M p + f f • p q; 

or, since the quantities a q, a m, m p, and p q here merely 
denote numerical magnitudes, and since as such a Q = M p 

and A M = p Q, we must have 

0 = A M + f f • A M, 
or - A M = i • i • A M. 

Thus the operation i is of such a character that repeated 
twice it is equivalent to a mere reversor, or, as we may 
express it symbolically. 

- 1 = t*. 
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This may be read in words; Turn a step counter-clock¬ 
wise through a right angle, and then again counter-clock¬ 
wise through another right angle, and we have the same 
result as if we had reversed the step. Now we have seen 
(p. 132) that if x be such a quantity that multiplied by itself 
it equals o, x is termed the square root of a, and written 

y/a. Hence since 

= — 1, we may write i = V — 1. 

This symbol is completely unintelligible so far as quantity 
is concerned; it can represent no quantity conceivable, for 
the squares of all conceivable quantities are positive quan¬ 

tities. For this reason V- 1 is sometimes termed an imagi¬ 

nary quantity. Treated however as a symbol of operation V— 1 
has a perfectly clear and real meaning; it is here an instruc¬ 
tion to step forwards a unit length and then rotate this length 
counter-clockwise through a right angle. 

Any expression of the form x + V— 1 ?/ is termed a com¬ 
plex number. 

Let p be any point determined by the step a p = a M 

+ V- 1 M p, and let r, x, y be the numerical values of the 
lengths A p, A M, and p m. It follows from the right-angled 
triangle p a m that = x^ + y*. The quantity r is then 

termed the modulus of the complex number x + V- 1 y. 
Further let the angle map contain 6 units of angle; then 

sin0 = 
p M _ y 
A p r’ 

COS0 = 
A M 

A P 

X 

or y = r sin0, x = r cos0. 

The angle 6 is termed the argument of the complex num¬ 
ber. Here r and 6 are the polar co-ordinates of p, and we are 
thus able to connect them with the Cartesian co-ordinates; 
they are respectively the modulus and argument of the com¬ 
plex number which may be formed from the Cartesian co¬ 
ordinates. Since r is merely numerical we may write the 
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complex number a: + V- 1 y in the form r • (cosd + V- 1 
sin0), or as the product of its modulus and the operator 

eosO + V— 1 sind, 

which depends solely on its argument 0. Hence we may in¬ 
terpret the step 

A p = r • (cos0 + V— 1 sind) 

as obtained in the following fashion: Rotate unit length from 
A B (Fig. 97) through an angle 6, and then streioh it in the ratio 
of r: 1. The latter part of this operation will be signified by the 

modulus r, the former by the operator (cos0 + V— 1 sin0). 
Thus if A D be of unit length and lying in a b, we may read— 

A p = r • {cosO + V— 1 sin0) • A d, 

and we look upon our complex number as a symbol denoting 
the combination of two operations performed on a unit step 
A D. 

Starting then from the idea of a complex number as de¬ 
noting position, we have been led to a new operation repre¬ 

sented by the symbol cos0 + V- 1 sin0. This is obviously 

a generalized form of our old symbol V— 1. The operator 

COS0 + sin0 applied to any step bids us turn the step 
through an angle 0. We shall see that this new conception 
has important results. 
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§13. On the Operation which turns a Step through a 
given Angle 

Suppose we apply the operator (cos0 + V— 1 sin0) twice 
to a unit step. Then the symbolic expression for this opera¬ 
tion will be 

(cos0 -h V— 1 sin0)(cos0 -f V— 1 sin0), 

or (cos0 + V— 1 sin0)^. 

But to turn a step first through an angle 0 and then through 
another angle 0 is clearly the same operation as turning it 
by one rotation through an angle 26, or as applying the op¬ 

erator cos20 + V- 1 sin20. Hence we are able to assert 
the equivalence of the operations expressed by the equation— 

(cos0 -t- V— 1 sin0)® = cos20 + V— 1 sin20. 

In like manner the result of turning a step by n operations 
through successive angles equal to 6 must be identical with 
the result of turning it at once through an angle equal to n 
times 6, or we may write 

(cos0 -f- V— 1 sin0)” = cosn0 + V- 1 sinn0. 

This important equivalence of operations was first expressed 
in the above S3Tnbohcal form by De Moivre, and it is usually 
called after him De Moivre’s Theorem. 

We are now able to consider the operation by means of 
which a step a p can be transformed into another a q. We 
must obviously turn a p about a counter-clockwise till it 
coincides in position with a q; in this case p will fall on p', 

so that A p' = A p. Then we must stretch a p' into a q; this 
will be a process of multiplying it by some quantity p, which 
is equal to the ratio of a q to a p'. 

Expressing this symbolically, if <f> be the angle P a q, we 
have 

(cos^ + V- 1 sin0) • A p = A p'. 

p • (coatf) -f- sin<^) •ap*p-ap' = aq. 

This last equation we can interpret in various ways: 
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(i) p • (cos<^ + V— 1 sini;!)) is a complex number of which 
p is the modulus and ^ the argument. Hence we may say 
that to multiply a step by a complex number is to turn the 
step through an angle equal to the argument and to alter 
its length by a stretch represented by the modulus. 

(ii) Or, again, we may consider the step a p (Fig. 98) as itself 

representing a complex number, x + V- 1 y, or if r be the 

scalar value of a p and 6 the angle bap, we may put 

A p = r(cos0 + V- 1 sin0). Similarly a q will be a complex 
number, and its scalar magnitude (= p • a p' = pr) will be 
its modulus, while the angle b a q = 6 + 4> will be its argu¬ 
ment. We have then the following identity— 

p(cos0 -f- V— 1 sin<^) • r(cos</> -|- V— 1 sin0) = 

pr • (cos0 + + V- 1 cos4> + 6). 

This may be read in two ways: 
First, the product of two complex numbers is itself a com¬ 

plex number, and has the product of the moduli for its 
modulus, the sum of the arguments for its argument. 

Or secondly, if we turn unit step through an angle 0 and 
give a stretch r, and then turn the result obtained through 
an angle <^> and give it a stretch p, the result will be the same 
as turning unit step through an angle 6 + <(> and giving it a 
stretch equal to p r. 

Thus we see that any relation between complex numbers 
may be treated either as an algebraical fact relating to such 
numbers, or as a theorem concerning operations of turning 
and stretching unit steps. 

(iii) We may consider what answer the above identity 
gives to the qu^tion: What is the ratio of two directed steps 
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A Q and A p? Or, using the notation suggested on p. 41, we 
aqI 

ask: What is the meaning of the symbol ? A step like a p 

(or a q) which has magnitude, direction, and sense is, as we 
have noted, termed a vector. We therefore ask; What is the 
ratio of two vectors, or what operation will convert one into 
the other? The answer is: An operation which is the product of 
a turning (or spin) and a stretch. Now the stretch is a scalar 
quantity, a numerical ratio by which the scalar magnitude 
of a p is connected with that of a q. The stretch therefore 
is a scalar operation. Further, the turning or spin converts 
the direction of a p into that of a q, and it obviously takes 
place by spinning a p round an axis perpendicular to the 
plane of the paper in which both a p and a q he. Thus the 
second part of the operation by which we convert a p into 
a q denotes a spin (counter-clockwise) through a definite 
angle about a certain axis. The amount of the spin might 
be measured by a step taken along that axis. Thus, for in¬ 
stance, if the spin were through 6 units of angle, we might 
measure 6 units of length along the axis to denote its amount. 
We may also agree to take this length along one direction of 
the axis (“out from the face of the clock”) if the spin be 
counter-clockwise, and in the opposite direction (“behind 
the face of the clock”) if the spin be clockwise. Thus we 
see that our spinning operation may be denoted by a line 
or step having magnitude, direction, and sense; that is, by 
a vector. We are now able to understand the nature of the 
ratio of two vectors; it is an operation consisting of the prod¬ 
uct of a scalar and a vector. This product was termed by 
Sir William Hamilton a quaternion, and made the founda¬ 
tion of a very powerful calculus. 

Thus a quaternion is primarily the operation which con¬ 
verts one vector step into another. It does this by means of 
a spin and a stretch. If we have three points in plane space, 
the reader will now understand how the position of the 
third with regard to the first can be made identical with 
that of the second by means of a spin and a stretch of the 
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step joining the first to the third, that is, by means of a 
quaternion.* 

§14. Relation of the Spin to the Logarithmic Growth 

of Unit Step 

Let us take a circle of unit radius and endeavour to find 
how its radius grows in describing unit angle about the 
centre. Hitherto we have treated of growth only in the di¬ 
rection of length; and hence it might be supposed that the 
radius of a circle does not “grow” at all as it revolves about 
the centre. But our method of adding vector steps suggests 
at once an obvious extension of our conception of growth. Let 
a step A p (Fig. 99) become a q as it rotates about a through 
the angle p a q, then if we marked off a q a distance a p' equal 
to a p, p' Q would be the scalar growth of a p; that is, its 

growth in the direction of its length. But if a p be treated 
as a vector (see p. 139) 

AQ = AP + PQ, 

or the directed step p q must be added to a p in order to con¬ 
vert it into A Q; p Q may be thus termed the directed growth 
of A p. If we join p p', we shall have p q equal to the sum of 
p p' and p' Q. Now if the angle pap' be taken very small 
p p' will be ultimately perpendicular to a p, and this part 

of the growth p q might be represented by V— 1 • p p'. 

Hence we are led to represent a growth perpendicular to a 
rotating fine by a scalar quantity multiphed by the symbol 

v'=i:. 
We can now consider the case of our circle of unit radius. 

* The term “stretch” must be considered to include a squeeze or a stretch 

denoted by a scalar quantity p less than unity. 
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Let o p (Fig. 100) be a radiiis which has revolved through an 
angle d from a fixed radius o A, and let o Q be an adjacent po¬ 
sition of o p such that the angle q o p is very small. Then p q 

will be a small arc sensibly coincident with the straight fine 

p Q, and the line p q will be to all intents and purposes at right 
angles to o p. Hence to obtain o q we must take a step P Q 

at right angles to o p. This we represent by V— 1 q p. Since 
the radius of the circle is unity the arc Q p, which equals the 
radius multiplied by the angle q o p (see pp. 130,131), must 
equal the numerical value of the angle q o p. Or the growth 

of o p is given by V— 1 x angle q o p. Now since o p remains 
of constant length as it revolves about o, it is equally mul¬ 
tiplied {i.e., by the factor unity) in describing equal angles. 
It thus satisfies our definition of growth at logarithmic rate 
(see p. 160). In this case what value shall we give to the 
rate for unit angle? 

It must equal — divided by the ratio of the angle Q o p 

to unit angle =----= V- 1 since o p is unity. 
® o p X angle q o p 

Thus o p is growing at logarithmic rate V- 1 as it describes 
unit angle; that is to say, the result of turning o p through 

unit angle might be symbolically expressed by Hence 

the result of turning o p through an angle 6 must be 
We may then write 

o p = o A • e 
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Drop p M perpendicular to o a and produce it to meet the 
circle again in p', then by symmetry M p = M p', and we have 

OP = om+V'-1mp. 

o p' = o M — V— 1 M p'. 

Now since o p and o p' are of unit magnitude, 

. o M ..PM 
COS0 =- = o M, sin0 = — = P M. 

OP OP 

Also the angle p' o m equals the angle mop, but, according 
to our convention as to the measurement of angles, it is of 
opposite sense, or equals — 6. Thus we must write 

o p' = o A • 

Substituting their values, we deduce the symbolical results 

gV^iO _ QQgff .j. V- 1 sin0 \ 

= COS0 - V— 1 sin0 / 

Further, 
o p - o p' = 2V- 1 p M 
op + op' = 2om 

that is, 
_ ^-v=ie = 2 sin0\ 

e'^^ + e-'^« = 2cos0 

These values for cos0 and sin0 in terms of the exponential 
e were first discovered by Euler. They are meaningless in 
the form (ii) when cos0 and sm0 are interpreted as mere 
nvunerical ratios; but they have a perfectly clear and definite 
meaning when we treat each side of the equation in form (i) 

as a symbol of operation. Thus cosO + V— 1 sin0 applied to 
unit step directs us to turn that step without altering its 

length through an angle 0; on the other hand, applied 
to the same step causes it to grow at logarithmic rate unity 
perpendiadar to itself, while it is turned through the angle 
B. The two processes give the same result. 
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§15. On the Multiplication of Vectors 

We have discussed how vector steps are to be added, and 
proved that the order of addition is indifferent; we have also 
examined the operation denoted by the ratio of two vectors. 
The reader will naturally ask: Can no meaning be given to 
the product of two vectors? 

If both the vectors be treated as complex numbers, or as 
denoting operations, we have interpreted their product (see 
p. 175) as another complex number or as a resultant op¬ 
eration. Or again we have interpreted the product of two 
vectors when one denotes an operation and the other a step 
of position; the product in this case is a direction to spin the 
step through a certain angle and then stretch it in a certain 
ratio. But neither of these cases explains what we are to 
understand by the product of two steps of position. 

Let A p, A Q (Fig. 101) be two such steps: What is the mean¬ 
ing of the product a p • a Q? Were a p and A Q merely scalar 

Fig. 101 

quantities then their product would be purely scalar, and we 
should have no difficulty in interpreting the result a p • p q as 
another scalar quantity. But when we consider the steps a p, 

.•? 

Fig. 102 

p Q to possess not only magnitude but direction, the meaning 
of their product is by no means so obvious. 

If A Q were at right angles to A p (see Fig. 102), we should 
naturally interpret the product a p • a q as the area of the 
rectangle on a q and a p, or as the area of the figure Q a p r. 

Now let us see how this area might be generated. Were we 
to move the step a q parallel to itself and so that its end a 



181 On the Multiplication of Vectors 

always remained in the step a p, it would describe the rec¬ 
tangle Q A p R while its foot a described the step a p. Hence 
if A p and a q are at right angles we might interpret then- 
product as follows: 

The product a p • a q bids us move the step a q parallel 
to itself so that its end a traverses the step a p ; the area 
traced out by a q during this motion is the value of the prod¬ 
uct A p • A Q. 

It will be noted at once that this interpretation, although 
suggested by the case of the angle q a p being a right angle, 
is entirely independent of what that angle may be. If q a p 

be not a right angle the area traced out according to the 
above rule would be the parallelogram on a p, a q as sides. 
Hence the interpretation we have discovered for the prod¬ 
uct A p • A Q gives us an intelligible meaning, whatever be 
the angle q a p. 

There is, however, a difficulty which we have not yet solved. 
An area is a directed quantity (see p. 123), and its direction 
depends on how we go round its perimeter. Now the area 
Q A p R (Fig. 103) will be positive if we go round its perimeter 
counter-clockwise, or from a to p; that is, in the direction 

Fig. 103' 

of the first step of the product or in the direction of motion 
of the second or moving step. Thus the product a p • a q 

will be the area q a p r taken with the sign suggested by the 
step A p. The product a q • a p will be formed by causing the 
step A p to move parallel to itself along a q, and it is there¬ 
fore also the area of the parallelogram on a q and A p; but 
it is to be taken with the sign suggested by a q, or it is the 
area p a q r. 

By our convention as to the sign of areas, 

PAQR= — QAPR, 

AQ*AP=-AP AQ. or 
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Hence we see that, with the above interpretation, the prod¬ 
uct of two vectors does not follow the commutative law 
(see p. 41). 

If we suppose the angle q a p to vanish, and the vector 
A Q to become identical with a p, the area of the enclosed 
parallelogram will obviously vanish also. Thus, if a vector 
step be multiplied by itself, the product is zero; that is, 

A p • A p = (a p)* = 0. 

If we take a series of vector steps, a, (8, 7, S, &c. then 
relations of the following types will hold among them: 

a2 = 0, /3" = 0, 7' = 0, 5^ = 0, &c. 
a/3 = - /Sa, a7 = - 7a, 
67 = — 75, &c. 

A series of quantities for which these relations hold was 
first made use of by Grassmann, and termed by him alternate 
units. 

The reader will at once observe that alternate units have 
an algebra of their own. They dispense with the commuta¬ 
tive law, or rather replace it by another in which the sign 
of a product is made to alternate with the alternation of its 
components. Their consideration will suggest to the reader 
that the rules of arithmetic, which he is perhaps accustomed 
to assume as necessarily true for all forms of symbolic quan¬ 
tity, have only the comparatively small field of application 
to scalar magnitudes. It becomes necessary to consider 
them as mere conventions, or even to lay them aside entirely 
as we proceed step by step to enlarge the meaning of the 
symbols we are employing. 

Although 2x2 = 0 and 2x3 = —3x2 may be sheer 
nonsense when 2 and 3 are treated as mere numbers, it yet 
becomes downright common sense when 2 and 3 are treated 
as directed steps in a plane. 

Let us take two alternate units a, d and interpret the quan¬ 
tity aoL + &/3, where a and h are merely scalar magnitudes. 
If o A (Fig. 104) be the vector a, ao signifies that we are to 
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stretch o a to o a' in the ratio of 1 to a. To this o a' we are 
to add the vector o b' derived from o b by giving it the 
stretch 6. Hence if a' p = o b' the vector o p represents the 
quantity aa + 6/8, which is termed an alternate number. Let 
o Q represent a second alternate number a'a + h'/3, obtained 
by adding the results of applying two other stretches a' and 
V to the alternate units a and In the same way we might 
obtain, by adding the results of stretching three alternate 
units (o, /3, 7), alternate numbers with three terms (of the 
form aa + 6jS + cy), and so on. If we take the 'product of as 
many alternate numbers as we have used alternate units in 
their composition, we obtain a quantity called a determinant, 
which plays a great part in the modern theory of quantity. 
We shall confine ourselves here to the consideration of a 
determinant formed from two alternate units. Such a deter¬ 
minant will be represented by the product o p • o q, which 
according to our convention as to the multiplication of 
vectors equals the area of the parallelogram on o p, o Q as 
sides, or (by p. 113) twice the triangle qop. Through q 
draw c q a" parallel to o b, and n q b" parallel to o a, then 
o a" = a' a and o b" — b' /3. Join b' q, then twice the triangle 
b' Q P equals the parallelogram b" p. Hence, adding to both 
these the parallelogram a'b" we have the parallelogram 
a' b'^ together with twice the triangle b' q p equal to the 
parallelogram b' a', or to twice the triangle b' o p. But the 
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triangle b' o p equals the sum of the triangles o Q b', b' q p, 

and o p Q. It follows then that the parallelogram a' b" must 
equal twice the triangle o p q together with twice the triangle 
o Q b'. Now twice the latter equals b' a". Hence the differ¬ 
ence of the parallelograms a' b" and b' a" is equal to twice 
o p Q. The parallelogram a' b" is obtained from the paral¬ 
lelogram A b by giving it two stretches a and b' parallel to 
its sides, and therefore its area equals ah' times the area a b. 

Similarly b' a" equals ha' times the area a b ; but the area 
A b itself is OjS. Thus we see that the identity 

o p ■ o Q = a' b" - b' a" 

may be read 

(ao + h§){a'a + fc'jS) = {ah' — ba')a^. 

Or, the determinant is equal to the parallelogram on the 
alternate units magnified in the ratio of 1 to ah' — ha'. It 
obviously vanishes if ah' — ha' = 0, or if a/b = a'/b'. In this 
case p and Q he, by the property of similar triangles, on the 
same straight line through o, and therefore, as we should 
expect, the determinant o p • o q is zero. 

The reader will find little difficulty in discovering like 
properties for a determinant formed from three alternate 
units. In this case there will be a geometrical relation be¬ 
tween certain volumes, which may be obtained by stretches 
in the manner explained on p. 127.* 

We have in this section arrived at a legitimate interpre¬ 
tation of the product of two directed steps or vectors. We 
find that their product is an area, or according to our previous 
convention (see p. 123), also a directed step or vector whose 
direction is perpendicular to the plane which contains both 
steps of the product. 

11 have to thank my friend Mr. J. Rose-Innes for suggesting the introduc¬ 
tion of the above remarks as to determinants. I may, perhaps, be allowed to 
add that by treating the alternate units, like Grassmann, as points, and the 
alternate number as their loaded centroid, a determinant of the second order 
is represented geometrically by a length, and we thus obtain for one of the 
fourth order a geometrical interpretation as a volume. 
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§16. Another Interpretation of the Product of Two 

Vectors 

The reader must remember, however, that the result of 
the preceding paragraph has only been obtained by means of 
a convention', namely, by adopting the area of a certain 
parallelogram as the interpretation of the vector product. 
Only as long as we observe that convention will our deduc¬ 
tions with regard to the multiplication of vectors be true. 
We might have adopted a different convention, and should 
then have come to a different result. It will be instructive 
to follow out the results of adopting another convention, if 
only by so doing we can impress the reader with the fact 
that the fundamental axioms of any branch of exact science 
are based rather upon conventions than upon universal 
truths. 

Suppose then that in interpreting the product a p • a q we 
consider a p to be a directed step which represents the area 

D E F G (Fig. 105). This area will be perpendicular to the di¬ 
rection of A p, and we might assume as our convention that 
the product a p • a q shall mean the volume traced out by the 
step A Q, moving parallel to itself and in such wise that its 
end A takes up every possible position in the plane n e f g. 

This volume will be the portion of an oblique cylinder on the 
base D E F G intercepted by a plane parallel to that base 
through Q. We have seen (p. 129) that the volume of this 
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cylinder is the product of its base into its height, viz. the 
perpendicular distance a h between the two planes. Now 
let r and p be the scalar magnitudes of A p and A q respec¬ 
tively, and 6 = the angle p a q. Then a h = p cos0, and the 
volume = AP-AQ = rp cos0, for r represents the number 
of units of area in d e f g. Hence, since a volume is a purely 
numerical quantity having only magnitude and no direc¬ 
tion, we find that with tliis new convention the product of 
two vectors is a purely scalar quantity, or our new conven¬ 
tion leads to a totally different result from the old. 

Further, since r and p are merely numbers, r p = pr, and 
thus A p • a Q = r p cos0= p r cos0 = aq-ap, if aq be 
treated as the directed step which represents an area con¬ 
taining p units of area. Thus in this case the vector product 
obeys the commutative law, which again differs from our 
previous result. We can then treat the product of two vec¬ 
tors either as a vector and as a quantity not obeying the 
commutative law, or as a scalar and as a quantity obeying 
the commutative law. We are at hberty to adopt either con¬ 
vention, provided we maintain it consistently in our result¬ 
ing investigations.’ 

The method of varying our interpretation, which has been 
exemplified in the case of the product of two vectors, is 
peculiarly fruitful in the field of the exact sciences. Each new 
interpretation may lead us to vary our fundamental laws, 
and upon those varied fundamental laws we can build up a 
new calculus (algebraic or geometric as the case may be). 
The results of our new calculus will then be necessarily true 
for those quantities only for wliich we formulated our funda¬ 
mental laws. Thus those laws which were formulated for 
pure number, and which, hke the postulates of Euclid with 
regard to space, have been frequently supposed to be the 
only conceivable basis for a theory of quantity, are found to 
be true only within the limits of scalar magnitude. When we 

^ In the mathematical treatment of physical problems both conventions are 
often adopted together. Thus in a angle equation scalar and vector products 
may be combined.—J.R.N. 
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extend our conception of quantity and endow it with direc¬ 
tion and position, we find those laws are no longer valid. 
We are compelled to suppose that one or more of those laws 
cease to hold or are replaced by others of a different form. 
In each case we vary the old form or adopt a new one to 
suit the wider interpretation we are giving to quantity or 
its symbols. 

§17. Position in Three-Dimensioned Space 

Hitherto we have been considering only position in a 
plane; very little alteration will enable us to consider the 
position of a point p relative to a point a as determined by 
a step A p taken in space. 

We may first remark, however, that while two points a 

and B are sufficient to determine in a plane the position of 
any third point p, we shall require, in order to fix the posi¬ 
tion of a point p in space, to be given three points a, b, c 

not lying in one straight line. If we knew only the distances 
of p from two points a and b, the point p might be anywhere 
on a certain circle which has its centre on the line a b and 
its plane perpendicular to that line; to determine the posi¬ 
tion of p on this circle, we require to know its distance from 
a third point c. Thus position in space requires us to have 
at least three non-collinear points (or such geometrical 
figures as are their equivalent) as basis for our determination 
of position. Space in which we live is termed space of three 
dimensions; it differs from space of two dimensions in re¬ 
quiring us to have three and not two points as a basis for 
determining position. 

Three points will fix a plane, and hence if we are given 
three points a, b, c in space, the plane through them will 
be a definite plane separating all space into two halves. In 
one of these any point p whose position we require must lie. 
We may term one of these halves below the plane and the 
other above the plane. Let p n (Fig. 106) be the perpendicular 
from p upon the plane; then if we know how to find the point n 
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in the plane A b c, the position of p will be fully determined 
so soon as we have settled whether the distance p N is to be 
measured above or below the plane. We may settle by con¬ 
vention that all distances above the plane shall be con¬ 
sidered positive, and all below negative. Further, the position 
of the point N, upon which that of p depends, may be deter- 

P 

mined by any of the methods we have employed to fix posi¬ 
tion in a plane. Thus if n m be drawn perpendicular to a b, 

we have the following instruction to find the position of p: 

Take a step a m along a b, containing, say, x units; then take 
a step M N to the right and perpendicular to a b, but still 
in its plane, containing, say, y units; finally step upwards 
from N the distance n p perpendicular to the plane a b c, 
say, through z units. We shall then have reached the same 
point p as if we had taken the directed step a p. If a: had 
been negative we should have had to step backwards from 
a; a y had been negative, perpendicular to a b only to the 
left; if z had been negative, perpendicular to the plane but 
downwards. The reader will easily convince himself that by 
observing these rules as to the sign of x, y, z he could get 
from A to any point in space. 

Let i denote unit step along a b, j unit step to the right 
perpendicular to a b, but in the plane a b c, and k unit step 
perpendicular to the plane a B c upwards, from foot to 
head. Then we may write 

AV’=X'i + y-3 + Z'k, 
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where x, y, z are scalar quantities possessing only magnitude 
and sign; but i, j, k are vector steps in three mutually rec¬ 
tangular directions. 

The step a p (Fig. 107) may be regarded as the diagonal of a 

solid rectangular figure (a right six-face, as we termed it on 
p. 126), and thus we shall get to the same point p by traversing 
any three of its non-parallel sides in succession starting from 
A. But this is equivalent to saying that the order in which 
we take the directed steps x ■ i,y ■ j, and z • A: is indifferent. 

The reader will readily recognize that the sum of a num¬ 
ber of successive steps in space is the equivalent to the step 
which joins the start of the first to the finish of the last; and 
thus a number of propositions concerning steps in space 
similar to those we have proved for steps in a plane may be 
deduced. By dividing all space into little cubes by three 
systems of planes mutually at right angles, we may plot 
out surfaces just as we plotted out curves. Thxis we shall 
choose any values we please for x and y, and suppose the 
magnitude of the third step related in some constant fashion 
to the previous steps. For example, if we take the rectangle 
under z and some constant length a, always equal to the dif¬ 
ferences of the squares on x and y, or symbolically if we 
take oz = jc* — y^, we shall reach p by taking the step 

. . X* — V* I 
AV - X • t + y • J -— • k. 
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The series of points which we should obtain in this way 
would be found to lie upon a surface resembhng the saddle¬ 
back we have described on pp. 82, 83. The above relation 
between z, x, and y will then be termed the equation to a 
saddleback surface. 

We cannot, however, enter fully on the theory of steps 
in space without far exceeding the hmits of our present 
enterprise. 

§18. On Localized Vectors or Rotors 

Hitherto we have considered the position of a point p 

relative to a point a, and compared it with the position of 
another point q relative to the same point a. Thus we have 
considered the ratio and product of two steps a p and a q. 

We have thereby assumed either that the two steps we 
were considering had a common extremity a, or at least were 
capable of being moved parallel to themselves till they had 
such a common extremity. Such steps are, as we have re¬ 
marked, termed vector steps. 

Suppose, however, that instead of comparing the position 
of two points p and q relative to the same point a, we com¬ 
pared their positions relative to two different points A and B. 

(See Fig. 108.) The position of p relative to a will then be 

Fio. 108 

determined by the step a p and the position of Q relative to 
B by the step b q. 

Now it will be noted that these steps a p and b q have 
not only direction and magnitude, but have themselves posi- 
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tion in space. The step a p has itself position in space relative 
to the step b q. It is no longer a step merely indicating the 
position of p with regard to a, but taken as a whole it has 
itself attained position when considered with regard to the 
step B Q. This localizing, not of a point p relative to a point 
A, but of a step a p with regard to another step b q, is a new 
and important conception. Such a localized vector is termed 
a rotor from the part it plays in the theory of rotating or 
spinning bodies. 

Let us try and discover what operation will convert the 
rotor B Q into the rotor a p; in other words: What is the 

A P I 
operation p—^ ? In order to convert b q into a p we must 

make the magnitude and position of b Q the same as that of 
A p. Its magnitude may be made the same by means of a 
stretching operation which stretches b q to a p. This stretch, 
as we have seen in the case of a quaternion (see p. 176), 
may be represented by a numerical ratio or a mere scalar 
quantity. Next let c n (Fig. 109) be the shortest distance 

Fio. 109 

between the rotors a p and b q; then c n will be perpendic¬ 
ular to both of them.^ b q may then be made to coincide in 
position with a p by the following process: 

^ That the shortest distance between two lines is perpendicular to both of 
them may be proved in the following manner. Let us suppose the lines replaced 
by perfectly smooth and very thin rods, and let two rings, one on either rod, 
be connected by a stretched elastic string. Obviously the rings will slide along 
tlie rods till the elaetic string takes up the position of the shortest distance; 
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First turn B Q about the shortest distance, c n, through 
some angle, Q n q', till it takes up the position b' q' parallel 
to A p; then slide b' q' along the shortest distance parallel to 
itself till its position coincides with A p. If we wished b' q' 
to coincide point for point with a p, we should further have to 
slide it along a p till b' and a were one. 

Now the two operations of tiu-ning a line about another 
line at right angles to it, and moving it along that Une, are 
just akin to the operations which are applied to the groove 
in the head of a screw when we drive the screw into a block of 
wood; or again to the handle of a corkscrew when we twist the 
screw into a cork. The handle in the one case and the groove 
in the other not only spin round, but go forward in the di¬ 
rection of the screw axis. Such a movement along an axis, and 
at the same time about it, is termed a Iwisl. The ratio of the 
forward space described to the angle turned through during 
its description by the head of the screw is termed the pzich 
of the screw. This pitch will remain constant for all forward 
spaces described if the thread of the screw be uniform. Thus 
turn an ordinary corkscrew twice round, and it will have 
advanced twice as far through the cork as when it has been 
turned only once round. Let us see whether we cannot apply 
this conception of a screw to the operations by which we 
bring the rotor b q into the position of the rotor a p. Upon a 
rod placed at c n, the shortest distance, suppose a fine screw 
cut with such a thread that its pitch equals the ratio of c n 
to the angle Q n q'. Then if we suppose b q attached to a 
nut upon this screw at n, when we turn b q through the angle 

■ Q D q', the nut with b q will advance (owing to the pitch 
we have chosen for the screw) through the distance n c. In 

for that will correspond to the least possible tension of the string. Suppose 
that the string is then not at right angles to one of the rods, say, at the 
point c. By holding the string firmly at b, we might shift the ring at c along 
the rod to c', so that the angle e c' c should be a right angle. Then since c' is a 
right angle c e would be greater than c' e, being the side opposite the great¬ 
est angle of the triangle e c' c. Hence the length of string c' b + » d is less 
than the length c d, or c n cannot be the shortest distance which we have sup¬ 
posed it to be. Thus the shortest distance must be at right angles to both lines. 
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other words, b q will have been brought up to A p and coin¬ 
cide with it in position and direction. 

Hence the operations by means of which b q can be made 
to coincide with a p are a stretch followed by a twist along a 
certain screw.* A screw involves direction, position, and 
pitch; a twist (as of a nut) about tliis axis involves some¬ 
thing additional, namely a magnitude, viz. that of the angle 
through which the nut is to be turned. Magnitude associ¬ 
ated with a screw has been termed by the author of the 
present book a motor ^ (since it expresses the most general 
instantaneous motion of a rigid body). Hence the operation 
by which one rotor is converted into another may be de¬ 
scribed as a motor combined with a stretch. This operation 
stands in the same relation to two rotors as the quaternion 
to two vectors. The motor plays such an important part in 
several branches of physical inquiry that the reader will do 
well to familiarize himself with the conception. 

The smn of two vector steps is, as we have seen (p. 139), 
a third vector; but imlike vector steps the sum of two rotors 
is in general a motor; only in special cases does it become 
either a rotor or a vector. The geometry of rotors and 
motors, which we have only here been able to hint at, forms 
the basis of the whole modern theory of the relative rest 
(Static) and the relative motion (Kinematic and Kinetic) of 
invariable systems. 

§19. On the Bending of Space 

The peculiar topic of this chapter has been position, posi¬ 
tion namely of a point p relative to a point A. This relative 
position led naturally to a consideration of the geometry of 
steps. I proceeded on the hypothesis that all position is rela¬ 
tive, and therefore to be determined only by a stepping 
process. The relativity of position was a postulate deduced 

1 In general the screw must be followed by a slide, unless the single per¬ 
pendicular (c d) to both rotors (b q and a p) bisects them.—J.R.N. 

* ‘‘Preliminary Sketch of Biquaternions,” Proceedings of ike London 
Mathematical Society, vol. iv. p. 383. 
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from the customary methods of determining position, such 
methods in fact always giving relative position. Relativity of 
position is thm a postulate derived from experience. The late 
Professor Clerk-Maxwell fully expressed the weight of this 
postulate in the following words;— 

All our knowledge, both of time and place, is essentially relative. 
When a man has acquired the habit of putting words together, with¬ 
out troubling himself to form the thoughts which ought to corre¬ 
spond to them, it is easy for him to frame an antithesis between this 
relative knowledge and a so-called absolute knowledge, and to point 
out our ignorance of the absolute position of a point as an instance 
of the hmitation of our faculties. Any one, however, who will try 
to imagine the state of a mind conscious of knowing the absolute 
position of a point will ever after be content with our relative 
knowledge.* 

It is of such great value to ascertain how far we can be 
certain of the truth of our postulates in the exact sciences 
that I shall ask the reader to return to our conception of 
position albeit from a somewhat different standpoint. I 
shall even ask him to attempt an examination of that state 
of mind which Professor Clerk-Maxwell hinted at in his last 
sentence. 

Suppose we had a tube of exceedingly small bore bent into 
a circular shape, and within this tube a worm of length A B 

(Fig. 110). Then in the limiting case when we make the bore 

> Matter and Motion (London: Society for Promoting Christian Knowledge, 
1876; p. 20. New York: The Macmillan Co, 1920; p. 12).—JJLN. 
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of the tube and the worm infinitely fine, we shall be consider¬ 
ing space of one dimension. For so soon as we have fixed one 
point, c, on the tube, the length of arc c a suffices to determine 
the position of the worm. Assuming that the worm is incapa¬ 
ble of recognizing anything outside its own tube-space, it 
would still be able to draw certain inferences as to the nature 
of the space in which it existed were it capable of distinguish¬ 
ing some mark c on the side of its tube. Thus it would notice 
when it returned to the point c, and it would find that this 
return would continually recur as it went round in the bore; 
in other words, the worm would readily postulate the finite¬ 
ness of space. Further, since the worm would always have 
the same amount of bending, since all parts of a circle are of 
the same shape, it might naturally assume the sameness of 
all space, or that space possessed the same properties at all 
points. This assumption is precisely akin to the one we make 
when we assert that the postulates of Euclidian geometry, 
which, experience teaches us, are practically true for the 
space immediately about us, are also true for all space; we 
assume the sameness of our three-dimensioned space. The 
worm would, however, have better reason for its postulate 
than we have, because it would have visited every part of 
its own one-dimensioned space. 

Besides the finiteness and sameness of its space the worm 
might assert the] relativity of position, and determine its 
position by the length of the arc between c and a. Let us 
now]]make a variation in our problem and suppose the worm 
incapable either of making or of recognizing any mark on 
the tube. Then it would clearly be impossible for the worm 
to ascertain whether its space were limited or not; it would 
never know when it had made a complete revolution in its 
tube. In fact, since the worm would always possess the same 
amount of bending, it would naturally associate that bending 
with its physical (institution, and not with the space which it 
was traversing. It might thus very reasonably suppose its 
space was infinite, or that it was moving in an infinitely long 
tube. If the worm thus associated bending with its ph3rsical 
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condition it would find no difference between motion in space 
of constant bend (a circle) and’motion in what is termed 
homaloidal or flat space (a straight fine); if suddenly trans¬ 
ferred from one to the other it would attribute the feeling 
arising from difference of bending to some change which 
had taken place in its physical constitution. Hence in one- 
dimensioned space of constant bend all position is necessarily 
relative, and the finite or infinite character of space will be 
postulated according as it is possible or not to fix a point in 
it.i 

Let us now suppose our worm moving in a different sort 
of tube; for example, that shadow of a circle we have called 
an ellipse. In such a tube the degree of bending is not every¬ 
where the same; the worm as it passes from the place of least 
bending c to the place of most bending n, will pass through 
a succession of bendings, and each point h between c and d 

will have its own degree of bending (Fig. 111). Hence there is 

something quite apart from the position of h relative to c 
which characterizes the point h; namely, associated with h is 
a particular degree of bending, and the position of the point 
H in c D is at once fixed if we know the degree of bending 
there. Thus the worm might determine absolute position in 
its space by the degree of bending associated with its posi¬ 
tion. The worm is now able to appreciate differences of bend, 

^ This supposes the one-dimensioned space of constant bend to lie in a plane; 
the argument does not apply to space hke that of a helix (or the form of a 
corkscrew), which is of constant bend, but yet not finite. 
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and might even form a scale of bending rising by equal dif¬ 
ferences. The zero of such’ scale might be anywhere the 
worm pleased, and degrees of greater and less bend might be 
measured as positive and negative quantities from that zero. 
This zero might in fact be purely imaginary; that is, repre¬ 
sent a degree of bending non-existent in the worm’s space; 
for example, in the case of an elhpse, absolute straightness, 
a conception which the worm might form as a limit to its 
experience of degrees of bend.^ Thus it would seem that in 
space of “varying bend,” or space which is not same, posi¬ 
tion is not necessarily relative. The relativity has ceased to 
belong to position in space; it has been transferred to the 
scale of bending formed by the worm; it has become a relon 
tivity of -physical feeling. In the case of an elliptic tube there 
are owing to its symmetry four points of equal bend, as H, 
E, F, and G, but there is the following distinction between 
H, F and E, G. If the worm be going round in the direction 
indicated by the letters c h n e, at h or p it will be passing 
from positions of less to positions of greater bending, but at 
E or G from positions of greater to positions of less bending. 
Thus the worm might easily draw a distinction between h, 
F and E, G. It would only be liable to suppose the point h 

and F identical because they possess the same degree of 
bending. We might remove even this possible doubt by sup¬ 
posing the worm to be moving in a pear-shaped tube, as in 
Fig. 112; then there will only be two points of equal bend, 

1 Physicists may be reminded of the absolute zero of temperature. 
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like H and a, which are readily distinguished in the manner 
mentioned above. 

We might thus conclude that in one-dimensioned space 
of variable bend position is not necessarily relative. There 
is, however, one point to be noted with regard to this state¬ 
ment. We have assumed that the worm will associate change 
of bending with change of position in its space, but the worm 
would be sensible of it as a change of physical state or as a 
change of feeling. Hence the worm might very readily be 
led into the error of postulating the sameness of its space, 
and attributing all the changes in its bend, really due to its 
position in space, to some periodic (if it moves uniformly 
round its tube) or irregular (if it moves in any fashion back¬ 
wards and forwards) changes to which its physical consti¬ 
tution was subject. Similar results might also arise if the 
worm were either moving in space of the same bend, which 
bend could be changed by some external agency as a whole, 
or if again its space were of varying bend, which was also 
capable of changing in any fashion with time. The reader 
can picture these cases by supposing the tube made of 
flexible material. The worm might either attribute change 
in its degree of bend to change in the character of its space 
or to change in its physical condition not arising from its 
position in space. We conclude that the postulate of the 
relativity of position is not necessarily true for one-dimen¬ 
sioned space of varying bend. 

When we proceed from one- to two-dimensioned space, we 
obtain results of an exactly similar character. If we take 
perfectly even (so called homaloidal) space of two dimen¬ 
sions, that is, a plane, then a perfectly flat figure can be 
moved about anywhere in it without altering its shape. If 
by analogy to an infinitely thin worm we take an infinitely 
thin flat-fish, this fish would be incapable of determining 
position could it leave no landmarks in its plane space. 
So soon as it had fixed two points in its plane it would be 
able to determine relative position. 

Now, suppose that instead of taking this homaloidal space 
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of two dimensiona we were still to take a perfectly same 
space but one of finite bend, that is, the surface of a sphere. 
Then let us so stretch and bend our flat-fish that it would 
fit on to some part of the sphere. Since the surface of the 
sphere is everywhere space of the same shape, the fish would 
then be capable of moving about on the surface without in 
any way altering the amount of bending and stretcliing 
which we had found it necessary to apply to make the fish 
fit in any one position. Were the fish incapable of leaving 
landmarks on the surface of the sphere, it would be totally 
unable to determine position; if it could leave at least two 
landmarks it would be able to determine relative position. 
Just as the worm in the circular tube, the fish without land¬ 
marks might reasonably suppose its space infinite, or even 
look upon it as perfectly flat (homaloidal) and attribute 
the constant degree of bend and stretch to its physical 
nature. 

Let us now pass to some space of two dimensions which 
is not same—to some space, for example, hke the saddle¬ 
back surface we have considered on pages 82, 83, which has a 
varying bend. In this case the fish, if it fitted at one part of 
the surface, would not necessarily fit at another. If it moved 
about in its space, it would be needful that a continual proc¬ 
ess of bending and stretching shoxfld be carried on. Thus 
every part of this two-dimensioned space would be defined 
by the particular amount of bend and stretch necessary to 
make the fish fit it, or, as it is usually termed, by the curva- 
taire. In surfaces with some degree of symmetry there would 
necessarily be parts of equal curvature, and in some cases 
the fish might perhaps distinguish between these points in 
the same fashion as the worm distinguished between points 
of equal curvature in the case of an elliptic tube. In irregular 
surfaces, however, it is not necessary that such points of 
equal curvature should arise. We are thus led to conclusions 
like those we have formed for one-dimensioned space, 
namely: Position in space of two dimensions which is not 
same might be determined ahsoliUely by means of the curvar 
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ture. Our fish has only to carry about with it a scale of 
degrees of bending and stretching corresponding to various 
positions on the surface in order to determine absolutely 
its position in its space. On the other hand, the fish might 
very readily attribute all these changes of bend and stretch to 
variations of its physical nature in nowise dependent on its 
position in space. Thus it might believe itself to have a most 
varied physical life, a continual change of physical feeling 
quite independent of the geometrical character of the space 
in which it dwelt. It might suppose that space to be per¬ 
fectly same, or even degrade it to the “dreary infinity of a 
homaloid,” ^ 

As a result, then, of our consideration of one- and two- 
dimensioned space we find that, if these spaces be not same 
(d fortiori not homaloidal), we should by reason of their 
curvature have a means of determining absolute position. 
But we see also that a being existing in these dimensions 
would most probably attribute the effects of curvature to 
changes in its own physical condition in nowise connected 
with the geometrical character of its space. 

What lesson may we learn by analogy for the three- 
dimensioned space in which we ourselves exist? To begin 
with, we assume that all our space is perfectly same, or that 
solid figures do not change their shape in passing from one 
position in it to another. We base this postulate of sameness 
upon the results of observation in that somewhat limited 
portion of space of which we are cognizant.* Supposing our 
observations to be correct, it by no means follows that 
because the portion of space of which we are cognizant is 

^ In this case of two-dimensioned space assume it to be a plane. Cf. Clif¬ 
ford's Lectures and Essays, vol. i. p. 323. 

* It may be held by some that the postulate of the sameness of our space is 
based upon the fact that no one has hitherto been able to form any geometrical 
conception of space-curvature. Apart from the fact that mankind habitually 
assumes many things of which it can form no geometrical conception (mathe¬ 
maticians the circular points at infinity, theologians transubstantiation), I 
may remark that we cannot expect any being to form a geometrical concep¬ 
tion of the curvature of his space till he views it from space of a higher di¬ 
mension, that is, practically, never. 
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for practical purposes same, that therefore all space is same.* 
Such an assumption is a mere dogmatic extension to the 
unknown of a postulate, which may perhaps be true for the 
space upon which we can experiment. To make such dog¬ 
matic assertions with regard to the unknown is rather char¬ 
acteristic of the mediseval theologian than of the modern 
scientist. On the like basis with this postulate as to the 
sameness of our space stands the further assumption that it 
is homaloidal. When we assert that our space is everywhere 
same, we suppose it of constant curvature (Uke the circle 
as one- and the sphere as two-dimensioned space); when we 
suppose it homaloidal we assume that this curvature is zero 
(like the line as one- and the plane as two-dimensioned 
space). This assumption appears in our geometry under the 
form that two parallel planes, or two parallel lines in the 
same plane—^that is, planes, or lines in the same plane, which 
however far produced will never meet—have a real existence 
in our space. This real existence, of which it is clearly im¬ 
possible for us to be cognizant, we postulate as a result built 
upon our experience of what happens in a limited portion of 
space. We may postulate that the portion of space of which 
we are cognizant is practically homaloidal, but we have 
clearly no right to dogmatically extend this postulate to 
all space. A constant curvature, imperceptible for that 
portion of space upon which we can experiment, or even a 
curvature which may vary in an almost imperceptible man¬ 
ner with the time, would seem to satisfy all that experi¬ 
ence has taught us to be true of the space in which we 
dwell. 

But we may press our analogy a step further, and ask, 
since oiu* hypothetical worm and fish might very readily at- 

1 Yet it must be noted tliat, because a solid figure appears to us to retain 
the same shape when it is moved about in that portion of space with which 
we are acquainted, it does not follow that the figure really does retain its shape. 
The changes of shape may be either imperceptible for those distances through 
which we are able to move the figure, or if they do take place we may attribute 
them to “physical causes“—to heat, light, or magnetism—which may possibly 
be mere names for variations in the curvature of our space. 
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tribute the effects of changes in the bending of their spaces 
to changes in their own physical condition, whether we may 
not in like fashion be treating merely as physical variations 
effects which are reaUy due to changes in the curvature of 
our space; whether, in fact, some or all of those causes which 
we term physical may not be due to the geometrical con¬ 
struction of our space. There are three kinds of variation in 
the curvature of our space wliich we ought to consider as 
within the range of possibility. 

(i) Our space is perhaps really possessed of a cmvature 
varying from point to point, which we fail to appreciate 
because we are acquainted with only a small portion of 
space, or because we disguise its small variations under 
changes in our physical condition which we do not connect 
with our change of position. The mind that could recognize 
this varying curvature might be assumed to know the ap- 
solute position of a point. For such a mind the postulate of 
the relativity of position would cease to have a meaning. It 
does not seem so hard to conceive such a state of mind as 
the late Professor Clerk-Maxwell would have had us beheve. 
It would be one capable of distinguishing those so-called 
physical changes which are really geometrical or due to a 
change of position in space. 

(ii) Our space may be really same (of equal curvature), 
but its degree of curvature may change as a whole with the 
time. In this way our geometry based on the sameness of 
space would still hold good for all parts of space, but the 
change of curvature might produce in space a succession of 
apparent physical changes. 

(iii) We may conceive our space to have everywhere a 
nearly uniform curvature, but that slight variations of the 
curvature may occur from point to point, and themselves 
vary with the time. These variations of the curvature with 
the time may produce effects which we not unnaturally 
attribute to physical causes independent of the geometry 
of our space. We might even go so far as to assign to 
this variation of the curvature of space “what really hap- 
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pens in that phenomenon which we term the motion of 
matter.” ^ 

We have introduced these considerations as to the nature 
of our space to bring home to the reader the character of the 
postulates we make in the exact sciences. These postulates 
are not, as too often assumed, necessary and universal truths; 
they are merely axioms based on our experience of a certain 
limited region. Just as in any branch of physical inquiry we 
start by making experiments, and basing on our experi¬ 
ments a set of axioms which form the foundation of an exact 
science, so in geometry our axioms are really, although less 
obviously, the result of experience. On this ground geometry 
has been properly termed at the commencement of Chap¬ 
ter II a physical science. The danger of asserting dogmat¬ 
ically that an axiom based on the experience of a hmited 
region holds universally will now be to some extent apparent 
to the reader. It may lead us to entirely overlook, or when 
suggested at once reject, a possible explanation of phenom¬ 
ena. The hypotheses that space is not homaloidal, and again, 
that its geometrical character may change with the time, 
may or may not be destined to play a great part in the 
physics of the future; yet we cannot refuse to consider them 

1 This remarkable possibility seems first to have been suggested by Professor 
Clifford in a paper presented to the Cambridge Philosophical Society in 1870 
{Mathematical Papers^ p. 21). I may add the following remarks: The most 
notable physical quantities wliich vary with position and time are heat, light, 
and electro-magnetism. It is these that we ought peculiarly to consider when 
seeking for any physical changes, which may be due to changes in the curvature 
of space. If we suppose the boundary of any arbitrary figure in space to be dis¬ 
torted by the variation of space-curvature, there would, by analogy from one 
and two dimensions, be no change in the volume of the figure arising from such 
distortion. Further, if we assume as an axiom that space resists curvature with 
a resistance proportional to the change, we find that waves of “space-dis¬ 
placement" are precisely similar to those of the elastic medium which we sup¬ 
pose to propagate light and heat. We also find that “space-twist" is a quantity 
exactly corresponding to magnetic induction, and satisfying relations similar 
to those which hold for the magnetic field. It is a question whether physicists 
might not find it simpler to assume that space is capable of a varying curvature, 
and of a resistance to that variation, than to suppose the existence of a subtle 
medium pervading an invariable homaloidal space. 
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as possible explanations of physical phenomena, because they 
may be opposed to the popular dogmatic belief in the uni- 

versaUty of certain geometrical axioms—a belief which has 
arisen from centuries of indiscriminating worship of the 

genius of Euclid. 



CHAPTER V 

Motion 

§1, On the Various Kinds of Motion 

While the chapters on Space and Position considered the 
sizes, the shapes, and the distances of things, the present 
chapter on Motion will treat of the changes in these sizes, 
shapes, and distances, which take place from time to time. 

The difference between the ordinary meaning attached to 
the word “change” in everyday hfe and the meaning it has 
in the exact sciences is perhaps better illustrated by the sub¬ 
ject of this chapter than by any other that we have yet 
studied. We attained exactness in the description of quantity 
and position by substituting the method of representing 
them by straight lines drawn on paper for the method of 
representing them by means of numbers; though this at 
first sight, might easily seem to be a step backwards rather 
than a step forwards, since it is more hke a child’s sign of 
opening its arms to show that its stick is so long, than a 
process of scientific calculation. 

It is, however, by no means an easy thing to give an ac¬ 
curate description of motion, even although it is itself as 
common and familiar a conception as quantity or position. 

Let us take a simple case. Suppose that a man, on a rail¬ 
way journey, is sitting at one end of a compartment with 
his face towards the engine; and that, while the train is 
going along, he gets up and goes to the other end of the 
compartment and sits down with his back to the engine. 
For ordinary purposes this description is amply sufficient, 
but it is very far indeed from being an exact description of 
the motion of the man during that time. In the first place, 
the train was moving, and it is necessary to state in what 
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direction, and how fast it was going at every instant during 
the interval considered. Next, we must describe the motion 
of the man relatively to the train; and, for this purpose, we 
must neglect the motion of the train and consider how the 
man would have moved if the train had been at rest. First 
of all, he changes his position from one corner of the com¬ 
partment to the opposite corner; next, in doing tliis he turns 
round; and, lastly, as he is walking along or rising up or 
sitting down, the size and shape of many of his muscles are 
altered. We should thus have to say, first, exactly how fast 
and in what direction he was moving at every instant, as 
we had to do in the case of the train; then, how quickly he 
was turning round; and, lastly, what changes of size or shape 
were taking place in his muscles, and how fast they were 
occurring. 

It may be urged that this would be a very troublesome 
operation, and that nobody wants to describe the motion 
of the man so exactly. Tliis is quite true; the case which 
has been taken for illustration is not one which it is neces¬ 
sary to describe exactly, but we can easily find another case 
which is very analogous to this, and which it is most impor¬ 
tant to describe exactly. The earth moves round the sun 
once in every year; it is also rotating on its own axis once 
every day; the floating parts of it—the ocean and the air— 
are constantly undergoing changes of shape and state which 
we can observe and which it is of the utmost importance 
that we should be able to predict and calculate; even the 
solid nucleus of the earth is constantly subject to slight 
changes in size and shape, which, however, are not large 
enough to admit of accurate observation. Here, then, is a 
problem whose complexity is quite as great as that of the 
former, and whose solution is of pressing practical impor¬ 
tance. 

The method which is adopted for attacking this problem 
of the accurate description of motion is to begin with the 
simplest cases. By the simplest cases we mean those in 
which certain complicating circumstances do not arise. We 
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may first of all restrict ourselves to the study of the motions 
of those bodies in which there is no change of size or shape. 
A body which preserves its size and shape unaltered during 
the interval of time considered is called a rigid body. The 
word “rigid” is here used in a technical sense belonging to 
the science of dynamic, and does not mean, as in ordinary 
language, a body which resists alteration of size and shape, 
but merely a body which, during a certain time, happens 
not to be altered in those respects. Then, as the first and 
simplest case, we should study that motion of a rigid body 
in which there is no turning round, and in which therefore 
every line in the body keeps the same direction (though of 
course not the same position) throughout the motion. We 
state this by saying that every line “rigidly connected” 
with the body remains parallel to itself. Such a motion is 
called a motion of translation, or simply a translation; and so 
the first and simplest case we have to study is the transla¬ 
tion of rigid bodies. After that we must proceed to consider 
their tm-ning round, or rotation; and then we have to de¬ 
scribe the changes of size or shape which bodies may under¬ 
go, these last changes being called strains. The study of 
motion therefore requires the further study of translations, 
of rotations, and of strains, and further, the art of combin¬ 
ing these together. When we have studied all this we shall 
be able to describe motions exactly; and then, but not till 
then, will it be possible to state the exact circumstances 
under which motions of a given kind occur. The exact cir¬ 
cumstances under which motions of a given kind occur we 
call a law of ruUure. 

§2. Translation and the Curve of Positions 

Let us talk, to begin with, of the translation of a rigid 
body. 

Suppose a table to be taken from the top to the bottom of 
a house in such a manner that the surface of it is always kept 
horizontal, and that its length is made always to point due 
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north and south; it may be taken down a staircase of any 
form, but it is not to be turned round or tilted up. The 
table will then undergo a translation. If we now consider 
a particular corner of the table, or the end of one of its legs, 
or any other point, this point will have described a certain 
curve in a certain manner; that is to say, at every point of 
this curve it will have been going at a certain definite rate. 
Now the important property of a motion of translation, 
which makes it more easy to deal with than any other mo¬ 
tion, is that for all points of the body this curve is the same 
in size and shape and mode of description. That this is so 
in the case of the table is at once seen from the fact that the 
table is never turned round nor tilted up during the motion, 
so that the different points of it must at any instant be 
moving in the same direction and at the same rate. In order 
therefore to describe this motion of the table it will be suf¬ 
ficient to describe the motion of any point of it, say the end 
of one of its legs. And so, in general, the problem of describ¬ 
ing the motion of translation of any rigid body is reduced 
to the problem of describing the motion of a point along a 
curve. 

Now this is a very much easier task than our original prob¬ 
lem of describing the motion of the earth or the motion of 
the man in the train; but we shall see that, by properly studj'- 
ing this, it will be easy to build up out of it other more 
complicated cases. Still, even in this form our problem is 
not quite simple enough to be directly attacked. What we 
have to do, it must be remembered, is to state exactly where 
a certain point was, and how fast it was going at every in¬ 
stant of time during a certain interval. This would require 
us first to describe exactly the shape of the curve along 
which the point moved; next, to say now far it had travelled 
along the curve from the beginning up to any given instant; 
and lastly, how fast it was going at that instant. To deal 
with this problem we must first take the very simplest case 
of it, that, namely, in which the point moves along a straight 
line, and leave for the present out of account any descrip- 
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tion of the rate of motion of the point; so that we have only 
to say where the point was on a certain straight line at every 
instant of time within a given interval. 

But we have already considered what is the best way of 
describing the position of a point upon a straight line. It is 
described by means of the step which is required to carry it 
to that position from a certain standard place, viz. a step 
from that place so far to the right or to the left. To specify 
the length of the step, if we are to describe it exactly, we 
must not make use of any words or numbers, but must draw 
a line which will represent the length corresponding to every 
instant of time within a certain interval, so that we may 
always be able to answer the question, Where was the point 
at this particular instant? But a question, in order to be 
exactly answered, must fust be exactly asked; and to do 
this it is necessary that the instant of time about which the 
question is asked should be accurately specified. 

Now time, like length, is a continuous quantity which 
cannot in general be described by words or numbers, but 
can be by the drawing of a line which shall represent it to a 
certain scale. Suppose, tlien, that the interval of time during 
which the motion of a point has to be described is the in¬ 
terval from twelve o’clock to one o’clock. We must mark on 
a straight line a point to represent twelve o’clock and an¬ 
other point to represent one o’clock; then every instant be¬ 
tween twelve o’clock and one o’clock will be represented by 
a point which divides the distance between these two 
marked points in the same ratio in which that instant 
divides the interval between twelve o’clock and one o’clock. 
Then for every one of these points it is necessary to assign a 
certain length, representing (to some definite scale) the dis¬ 
tance which the point has travelled up to that instant; and 
the question arises. In what way shall we mark down these 
lengths? 

Let us first of all observe the difficulty of answering this 
question. If we could be content with an approximate solu¬ 
tion instead of an exact one, we might make a table and put 
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down in inches and decimals of an inch the distances trav¬ 
elled, making an entry for every minute, or even perhaps 
for every second during the hour. Such tables are in fact 
constructed and published in the “Nautical Almanac” for 
the positions of the moon and of the planets. The labour of 
making this table will evidently depend upon its degree of 
minuteness; it will of course take sixty times as long to make 
a table showing the position of the point at every second as 
to make one showing the position at every minute, because 
there will be sixty times as many values to calculate. But 
the problem of describing exactly the motion of the point 
requires us to make a table showing the position of the point 
at every instant; that is, a table in which are entered an 
infinite number of values. These values moreover are to be 
shown, not in inches and decimals of an inch, but by lengths 
drawn upon paper. Yet we shall find that this pictorial 
mode of constructing the table is in most cases very much 
easier than the other. We have only to decide where we 
shall put the straight lines which represent the distances 
that the point has travelled at different instants. 

Let ab (Fig. 113) be the length which represents the interval 
of time from twelve o’clock to one o’clock, and let m be the 
point representing any intermediate instant. Then if we draw 
at m a line perpendicular to ah whose length shall represent 
(to any scale that we may choose) the distance that the 
point has up to this instant travelled, then p, the extremity 
of this line, will correspond to an entry in our table. But if 
such lines be drawn perpendicular to ab from every point in 
it, all the points p, which are the several extremities of these 
lines, will lie upon some curve; and this curve will represent 
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an infinite number of entries in our table. For, when once 
the curve is drawn, if a question is asked: What was the 
position of the point at any instant between twelve o’clock 
and one o’clock? (this instant being specified in the right 
way by marking a point between a and h which divides that 
line in the same ratio as the given instant divides the hour), 
then the answer to this question is obtained simply by draw¬ 
ing a line through the marked point perpendicular to ah 
until it meets the curve; and the length of that fine will 
represent, to the scale previously agreed upon, the distance 
travelled by the point. 

Such a curve is called the curve of positions for a given 
motion of the point; and we arrive at this result, that the 
proper way of specifying exactly a translation along a 
straight line is to draw the curve of positions. 

We have now learned to specify, by means of a curye, the 
positions of a body wliich has motion of translation along a 
straight line; and we have not only represented an infinite 
number of positions instead of a finite number, which is all 
a numerical table would admit, but have also represented 
each position with absolute exactness instead of approxi¬ 
mately. It is important to notice that in this and in all 
similar cases the exactness is ideal and not practical; it is 
exactness of conception and not of actual measurement. For 
though it is not possible to measure a given length and to 
state that measure any more accurately by drawing a line 
than it is by writing it down in inches and decimals of an 
inch, yet the representation by means of a line enables us 
to reason upon it with an exactness which would be impossi¬ 
ble if we were restricted to numerical measurement. 

§3. Uniform Motion 

Hitherto we have supposed our point to be moving along 
a straight line, but were it to move along a curve the con¬ 
struction given for the curve of positions would still hold 
good, only the distance traversed at any instant must now 
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be measured from some standard position along the curve. 
Hence any motion of a point, or any motion of translation 
whatever, can be specified by a properly drawn curve of 
positions, and the problem of comparing and classifying dif¬ 
ferent motions is therefore reduced to the problem of com¬ 
paring and classifying curves. Here again it is advisable and 
even necessary to begin with a simple case. Let us take the 
case of uniform motion, in which the body passes over equal 
distances in equal times; and then, as we may easily see, 
the curve of positions is a straight line. Uniform motion 
may also be described as that in which a body always goes 
at the same rate, and not quicker at one time and slower at 
another. It is obvious that in this case any two equal dis¬ 
tances would require equal times for traversing them, so that 
the two descriptions of uniform motion are equivalent. 

It was shown by Archimedes (the proof is an easy one, 
depending upon the definition of the fourth proportional) 
that whenever equal distances are traversed in equal times, 
different distances wUl be traversed in times proportional 
to them. Assuming this proposition, it becomes clear that 
the curve of positions must be a straight line, for a straight 
line is the only curve wliich has the property that the height 
of every point of it is proportional to its horizontal distance 
from a fixed straight line. 

We may also see in the following manner the connection 
between the straight line and uniform motion. 

Suppose we walk up a hill so as always to get over a hori¬ 
zontal distance of four miles in an hour. The rate at which 
we go up will clearly depend on the steepness of the hill; and 
if the hill is a plane, i.e. is of the same steepness all the way 
up, then our rate of ascent will be the same at every instant, 
or our upward motion will be uniform. If the hill be four 
miles long and one mile high, then, since the four miles of 
horizontal distance will be traversed in an hour, the one mile 
of vertical distance will also be traversed in an hour, and we 
shall be gaining height at the uniform rate of one mile an 
hour. If the hill were two miles high, or, as we say twice as 
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steep, then we should have been gaining height at the rate 
of two miles an hour. But now if we suppose a hill of varying 
steepness, so that the outline of it seen from one side is a 
curve, then it is clear that the rate at wliich we go up will 
depend upon the part of the hill where we are, assuming 
that the rate at which we go forward horizontally remains 
always the same. This “elevation” of the hill may be taken 
as the curve of positions for our vertical motion; for the 
horizontal distance that we have gone over, being always 
proportional to the time, may be taken to represent the time, 
and then the curve will have been constructed according to 
our rule, viz. a horizontal distance will have been taken pro¬ 
portional to the time elapsed, and from the end of this line 
a perpendicular will have been raised indicating the height 
which we have risen in that time. Uniform motion then has 
for its curve of positions a straight line, and the rate of the 
motion depends on the steepness of the line. Variable mo¬ 
tion, on the other hand, has a curved line for its curve of 
positions, and the rate of motion depends upon its varying 
steepness. 

In the case of uniform motion it is very easy indeed to 
understand what we mean by the rate of the motion. Thus, 
if a man walks uniformly six miles an hour, we know that 
he walks a mile in ten minutes, and the tenth part of a mile 
in one minute, and so on in proportion. It may not, how¬ 
ever, be possible to specify this rate by means of numbers; 
that is to say, the man may not walk any definite number 
of miles in the hour, and the exact distance that he walks 
may not be capable of representation in terms of miles and 
fractions of a mile. In that case we shall have to represent 
the velocity or rate at which the man walks in much the 
same way as we have represented other continuous quanti¬ 
ties. We must draw to scale upon paper a line representing 
the length that he has walked in an hour, or a minute, or 
any other interval of time that we decide to select; thus, for 
example, a uniform rate of walking might be specified by 
marking points corresponding to particular hours upon an 
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Ordnance naap. The rate of motion, or velocity, is then a con¬ 
tinuous quantity which can be exactly specified, as we 
specify other continuous quantities, but which can be only 
approximately described by means of numbers. 

§4. Variable Motion 

Let us now suppose that the motion is not uniform, and 
inquire what is meant in that case by the rate at wliich a 
body moves. 

A train, for example, starts from a station and in the 
course of a few minutes gets up to a speed of 30 miles an 
hour. It began by being at rest, and it ends by having this 
large velocity. What has happened to it in the meantime? 
We can understand already in a rough sort of way what is 
meant by saying that at a certain time between the two 
moments the train must have been going at 15 miles an 
hour, or at any other intermediate rate; but let us endeavour 
to make this conception a httle more exact. Suppose, then, 
that a second train, which is indefinitely long, is moving in 
the same direction at a uniform rate of 15 miles an hour on a 
pair of rails parallel to that on which the fii’st train moves; 
thus, when our first train is at rest the second one will appear 
to move past it at the rate of 15 miles an hour. When the 
first train starts an observer seated in it will see the second 
train going apparently rather more slowly than before, but 
it will still seem to be moving forwards. As the first train 
gets up its speed, this apparent forward motion will gradu¬ 
ally decrease until the second train will appear to be going 
so slowly that conversation noay be held between the two; 
this will take place when the rate of the first train has 
amounted to something nearly but not quite equal to 15 
miles an hour, which we supposed to be the constant rate 
of the second train. But as the rate of the first train continues 
to increase there will come a certain instant at which the 
second train will appear to stop gaining upon the first and 
to begin to lose. At that particular instant it will be neither 
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gaining nor losing, but will be going at the same rate; at 
that particular instant, therefore, we must say that the first 
train is going at the rate of 15 miles an hour. And it is at 
that instant only, for the equality of the rates does not last 
for any fraction of a second, however small; the very instant 
that the second train appears to stop gaining it also appears 
to begin losing. The two trains then run exactly together 
for no distance at all, not even for the smallest fraction of 
an inch, and yet we have to say that at one particular instant 
our first train is going at the rate of 15 miles an hour, al¬ 
though it does not continue to go at that rate during the 
smallest portion of time. There is no way of measuring this 
instantaneous velocity except that wliich has just been 
described of comparing the motion with a uniform motion 
having that particular velocity. 

Upon this we have to make the very important remark 
that the rate at which a body is going is a property as purely 
instantaneous as is the precise position which it has at that 
instant. Thus, if a stone be let fall to the ground, at the mo¬ 
ment that it hits the ground it is going at a certain definite 
rate; and yet at any previous moment it was not going so 
fast, since it does not move at that rate for the smallest 
fraction of a second. Tliis consideration is somewhat diffi¬ 
cult to grasp thoroughly, and in fact it has led many people 
to reject altogether the hypothesis of continuity; but still 
we may be helped somewhat in understanding it by means 
of our study of the curve of positions, wherein we saw that 
to a uniform motion corresponds a straight line and that the 
rate of the motion depends on the steepness of the line. 

Let us now suppose a motion in which a body goes at a 
very slow but uniform rate for the first second, during the 
next second uniformly but somewhat faster, faster again 
during the third second, and so on. The curve of positions 
will then be represented by a series of straight lines becoming 
steeper and steeper and forming part of a polygon. From a 
sufficient distance off this polygon will look like a curved 
line; and if, instead of taking intervals of a second during 
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which the rates of motion are severally considered uniform, 
we had taken intervals of a tenth of a second, then the 
polygon would look like a curved hne without our going so 
far away as before. For the shorter the lengths of the sides 
of our polygon, the more will it look curved, and if the in¬ 
tervals of time are reduced to one-tenth the sides will be 
only one-tenth as long. The rate at which the body under 
consideration is moving when it is in the position to which 
any point of the polygon corresponds, is obtained by pro¬ 
longing that side of the polygon which passes through the 
point; the rate will then depend on the steepness of this line, 
since, where the line is a side of the polygon, it represents 
the uniform motion which the body has during a certain 
interval. When the polygon looks hke a curve the sides are 
very short, and any side, being prolonged both ways, will 
look like a tangent to the curve. 

Now in considering the general case of varjing motion we 
should have, instead of the above polygon which looks like 
a curve, an actual curve; the difference between them being 
that, if we look at the curve-hke polygon with a sufficiently 
strong microscope, we shall be able to see its angles, but 
however powerful a microscope we may apply to the curve 
it will always look like a curve. But there is this property 
in common, that if we draw a tangent to the curve at any 
point, then, since the steepness of this tangent will be ex¬ 
actly the same as the steepness of the curve at that particular 
point, it will give the rate for the motion represented by the 
curve, just as before the steepness of the prolonged small 
side of the polygon gave the rate for the motion represented 
by the polygon. That is to say, the instantaneous velocity of 
a body in any position may be learnt from its curve of posi¬ 
tions by drawing a tangent to this curve at the point cor¬ 
responding to the position; for the steepness of this tangent 
will give us the velocity or rate which we want, since the 
tangent itself corresponds to a uniform motion of the same 
velocity as that belonging to the given varying motion at 
the particular instant. From this means of representing the 
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rate we can see how it is that the instantaneous velocity of a 
body generally belongs to it only at an instant and not for 
any length of time however short; for the steepness of the 
curve is continually changing as we go from one part of it 
to another, and the curve is not straight for any portion of 
its length however small. 

The problem of determining the instantaneous velocity 
in a given position is therefore reduced to the problem of 
drawing a tangent to a given curve. We have a sufficiently 
clear general notion of what is meant by each of tliese tilings, 
but the notion which is sufficient for purposes of ordinary 
discourse is not sufficient for the purposes of reasoning, and 
it must therefore be made exact. Just as we had to make 
our notion of the ratio of two quantities exact by means of 
a definition of the fourth proportional, or of the equality of 
two ratios which were expressed in terms of numbers, so 
here we shall have to make our idea of a velocity exact by 
expressing it in terms of measurable quantities which do not 
change. 

We have no means of measuring the instantaneous velocity 
of a moving body; the only thing that we can measure is 
the space which it traverses in a given interval of time. In 
the case in which a body is moving uniformly, its instantane¬ 
ous velocity, being always the same, is completely specified 
as soon as we know how far the body has gone in a definite 
time. And, as we have already observed, the result is the 
same whatever this interval of time may be; the rate of four 
miles an hour is the same as eight miles in two hours, or two 
miles in half an hour, or one mile in a quarter of an hour. 
But if a body be moving with a velocity which is continually 
changing, the knowledge of how far it has gone in a given 
interval of time tells us nothing about the instantaneous 
velocity for any position during that interval. To say, for 
instance, that a man has travelled a distance of four miles 
during an hour, does not give us any information about the 
actual rate at which he was going at any moment during 
the horn:, unless we know that he has been going at a uni- 
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form rate. Still we are accustomed to say that in such a case 
he must have been going on an average at the rate of four 
miles an hour; and, as we shall find it useful to speak of this 
rate as an “average velocity,” its general definition may be 
given as follows;— 

If a body has gone over a certain distance in a certain 
time its mean or average velocity is that with which, if it 
travelled uniformly, it would get over the same distance in 
the same time. 

This mean velocity is very simply represented by the help 
of the curve of positions. Let a and h (Fig. 114) be two points 

Fiq. 114 

on the curve of positions; then the mean velocity between the 
position represented by o and that represented by 6 is given 
by the steepness of the straight line a h. This, moreover, 
enables us to make some progress towards a method of 
calculating instantaneous velocity, for we showed that the 
problem of finding the instantaneous velocity of a body is, 
in the above method of representation, the problem of draw¬ 
ing a tangent to a curve. Now the mean velocity of a body 
is defined in terms of quantities which we are already able 
to measure, for it requires the measurement of an interval 
of time and of the distance traversed during that interval; 
and further the chord of a curve, i.e. the line joining one 
point of it to another, is a line which we are able to draw. If 
then we can find some means of passing from the chord of a 
curve to the tangent, the representation we have adopted 
will help us to pass from the mean to the instantaneous 
velocity. 
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§5. On the Tangent to a Curve 

Now let us suppose the chord ah (Fig. 115) joining the 
points on the curve to turn round the point a, which reinaius 
fixed; then h will travel along the curve towards a; and if we 

Fig. 116 

suppose h not to stop in this motion until it has got beyond a 
to a point such as b' on the other side, the chord will have 
turned round into the position a b'. Now, looking at the 
curve which is drawn in the figure, we see that the tangent 
to the curve at a obviously lies between a b and b' a. Thus if 
a b turn round a so as to move into the position a b' it will 
at some instant have to pass over the position of the tangent. 
At the instant when it passes over this position where is the 
point 6? We can at once see from the figure that it cannot 
be anywhere else than at a, and yet we carmot attach any 
definite meaning to a line described as joining two coincident 
points. If we could, the determination of the tangent would 
be very easy, for in order to draw the tangent to the curve at 
o, we should merely say. Take any other point b on the 
curve; join o 6 by a straight line; then make b travel along 
the curve towards a, and the position of the line a b when b 
has got to a is that of the tangent at a. Here however arises 
the difficulty which we have already pointed out, namely, 
that we cannot form any distinct conception of a fine joining 
two coincident points; two separate points are necessary in 
order to fix a straight line. But it is clear that, although it is 
not yet satisfactory, there is still something in the definition 
that is useful and correct; for if we make the chord turn from 
the position o 6 to the position of the tangent at a, the point 
b does during this motion move along the curve up to the 
point a. 
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This difficulty was first cleared up and its explanation 
made a matter of common sense by Newton. The nature of 
his explanation is as follows:—Let us for simplicity take the 
curve to be a circle. If a straight stick be taken and bent so 
as to become part of a circle, the size of this circle will depend 
upon the amount of bending. The stick may be bent com¬ 
pletely round until the ends meet, and then it will make a 
very small circle; or it may be bent very slightly indeed, and 
then it will become part of a very large circle. Now, con¬ 
versely, suppose that we begin with a small circle, and, hold¬ 
ing it fast at one point, make it get larger and larger, so that 
the piece we have hold of gets less and less bent; then, as 
the circle becomes extremely large, any small portion of it will 
more and more nearly approximate to a straight line. Hence 
a circle possesses this property, that the more it is magni¬ 
fied the straighter it becomes; this property likewise belongs 
to all the curves wliich we require to consider. It is sometimes 
expressed by saying that the curve is straight in its elements, 
or in its smallest parts; but the statement must be under¬ 
stood to mean only this, that the smaller the piece of a curve 
is taken the straighter it will look when magnified to a given 
length. 

Now let us apply this to the problem of determining the 
position of a tangent. Let us suppose the tangent a i of a circle 
to be already drawn, and that a certain convenient length is 

marked off upon it (Fig. 116); from the end of this t let a 
perpendicular be drawn to meet the circle in b, and let a be 
joined to b by a straight line. We have now to consider the 
motion of the point b along the circle as the chord o b is turn¬ 
ing round a towards the position a t; and the difficulty in 
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our way is clearly that figures like a b t get small, as for 
example aht, and continue to decrease until they cease to 
be large enough to be definitely observed. Newton gets over 
this difficulty by supposing that the figure is always magni¬ 
fied to a definite size; so that instead of considering the 
smaller figure ab t we magnify it throughout until at is 
equal to the original length a t. But the portion a 6 of the 
circle with which we are now concerned is less than the 
former portion a n; consequently when it is magnified to 
the same length (or nearly so) it must appear straighter. 
That is to say, in the new figure a b't, which is abt magni¬ 
fied, the point b' will be nearer to the point t than b in the 
old one a b t; consequently, also, as b moves along to a the 
chord a b will get nearer to the tangent a t, or, what is the 
same thing, the angle tab will get smaller. This last result 
is clear enough, because, as we previously supposed, the 
chord a b is always turning round towards the position a t. 

But now the important thing is that, by taking b near 
enough to a, we can make the curve in the magnified figure 
as straight as we please; that is to say, we can make b' ap- 

Fio. 117 

proach as near as we like to t. If we were to measure off from 
T perpendicularly to a t any length, however small, say t d 
(Fig. 117), then we can always draw a circle which shall have 
a T for a tangent and which shall pass between t and d; and, 
further, if we like bo draw a line a d making a very small angle 
with a T, then it will still be possible to make b go so close to a 
that in the magnified figure the angle b' a t shall be smaller 
than the angle d o t which we have drawn. 

Now mark what this process, which has been called New¬ 
ton’s microscope, really means. While the figure which we 
wish to study is getting smaller and smaller, and finally 
disappears altogether, we suppose it to be continually mag¬ 
nified, so as to retain a convenient size. We have one point 
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moving along a curve up towards another point, and we 
want to consider what happens to the hne joining them when 
the two points approach indefinitely near to one another. 
The result at which we have arrived by means of our micro¬ 
scope is that, by taking the points near enough together, the 
line may be made to approach as near as we please to the 
tangent to the curve at the point a. This, therefore, gives us 
a definition of the tangent to a curve in terms only of meas¬ 
urable quantities. If at a certain point o of a curve there is 
a line a t possessing the property that by taking h near enough 
to o on the curve the line a h can be brought as near as we 
hke to a i (that is, the angle hat made less than any assigned 
angle, however small), then at is called the tangent to the 
curve at the point a. Observe that all the things supposed 
to be done in this definition are things which we know can 
be done. A very small angle can be assigned; then, this 
angle being drawn, a position of the point 6 can be found 
which is such that a b makes with a t an angle smaller than 
this. A supposition is here made in terms of quantities which 
we already know and can measure. We only suppose in ad¬ 
dition that, however small the assigned angle may be, the 
point b can always be found; and if this is possible, then in 
the case in which the assigned angle is extremely small, 
the line ab or at (for they now coincide) is called a tangent. 

It is worth while to observe the Ukeness between this 
definition and the one that we previously discussed of the 
fourth proportional or of the equahty of ratio. In that defi¬ 
nition we supposed that, a certain fraction being assigned, 
if the first ratio were greater than this fraction, so also was 
the second ratio, and if less, less; and the question whether 
these ratios were greater or less is one that can be settled 
by measurement and comparison. We then made the further 
supposition that whatever fraction were assigned the same 
result would hold good; and we said that in that case the 
ratios were equal. Now in both of these definitions, applying 
respectively to tangents and to ratios, the diflSculty is that 
we cause a particular supposition to be extended so as to be 
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general; for we assume that a statement which can be very 
easily tested and found true in any one case is true in an in¬ 
finite number of cases in which it has not been tested. But 
although the test cannot be applied individually to all these 
cases in a practical way, yet, since it is true in any individual 
case, we know on rational grounds that it must be satisfied 
in general; and therefore, justified by this knowledge, we 
are able to reason generally about the equality of ratios and 
about the tangents to curves. 

Let us now translate the definition at which we have thus 
arrived from the language of curves and tangents into the 
language of instantaneous and mean velocities. The steep¬ 
ness of the chord of the curve of positions indicates the mean 
velocity, while the steepness of the tangent to the curve 
at any point indicates the instantaneous velocity at that 
point. The process of making the point b move nearer and 
nearer to the point a corresponds to taking for consideration 
a smaller and smaller interval of time after that moment at 
which the instantaneous velocity is wanted. 

Suppose, then, the velocity of a body, viz. a railway train, 
to be varying, and that we want to find what its value is at 
a given instant. We might get a very rough approximation 
to it, or in some cases no approximation at all, by taking 
the mean velocity during the hour which follows that instant. 
We should get a closer approximation by taking the mean 
velocity during the minute succeeding that instant, because 
the instantaneous velocity would have less time to change. 
A still closer approximation would be obtained were we to 
take the mean velocity during the succeeding second. In all 
motions we should have to consider that we could make the 
approximation as close as we like by taking a sufficiently 
small interval. That is to say, if we choose to name any very 
small velocity, such as one with which a body going uni¬ 
formly would move only an inch in a century, then, by taking 
the [timej interval small enough, it will be possible to make 
the mean velocity differ from the instantaneous velocity by 
less than this amount. Thus, finally, we shall have the fol- 



224 Chapter V : Motion 

lowing definition of instantaneous velocity: If there is a cer¬ 
tain velocity to which the mean velocity dining the interval 
succeeding a given instant can be made to approach as near 
as we like by taking the interval small enough, then that 
velocity is called the instantaneous velocity of the body at 
the given instant. 

In this way then we have reduced the problem of finding 
the velocity of a moving body at any instant to the problem 
of drawing a tangent to its curve of positions at the corre¬ 
sponding point; and what we have already proved amounts 
to saying that, if the position of the body be given in terms 
of the time by means of a curve, then the velocity of the 
body will be given in terms of the time by means of the 
tangent to tliis curve. 

Now there are many curves to which we can draw tangents 
by simple geometrical methods, as, for example, to the ellipse 
and the parabola; so that, whenever the curve of positions 
of a body happens to be one of these, we are able to find by 
geometrical construction the velocity of the body at any 
instant. Thus in the case of a falling body the curve of posi¬ 
tions is a parabola, and we might find by the known proper¬ 
ties of the tangent to a parabola that the velocity in this 
case is proportional to the time. But in the great majority of 
cases the problem of drawing a tangent to the curve of posi¬ 
tions is just as difficult as the original problem of deter¬ 
mining the velocity of a moving body, and in fact we do in 
many cases solve the former by means of the latter.^ 

§6. On the Determination of Variable Velocity 

What is actually wanted in every case will be apparent 
from the consideration of the problem we have just men¬ 
tioned—^that of a body falling down straight. We note, from 
the experience of Galilei, that the whole distance which the 
body has fallen from rest at any instant is proportional to 
the square of the time; in fact, to obtain this distance in feet 

I The method is due to Roberval (1602-1675)^. 
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we must multiply the number of seconds by itself and the 
result by a number a little greater than sixteen. Thus, for 
instance, in five seconds the body will have fallen rather 
more than twenty-five times sixteen feet, or 400 feet. Now 
what we want is some direct process of proving that when 
the distance traversed is proportional to the square of the 
time the velocity is always proportional to the time. In the 
present case we can find the velocity at the end of a given 
number of seconds by multiplying that number by thirty- 
two feet; thus at the end of five seconds the velocity of the 
body will be 160 feet per second.^ Now as a matter of fact a 

* The following may be taken as a proof. Let a be the distance from rest 
moved over by the body in t seconds, h that moved over by it in ^ -f V seconds, 
BO that V seconds is the interval we take to find out the mean velocity. Now 
by our rule just quoted, since a feet are passed over in t seconds, we have 

a = 16/2, 
and similarly fo == 16(/ -j- t'Y == 16(/2 -f- 2//' -f- Z'^). 
Hence we have 5 — o = 16(/2 -h 2//' + t'^) — I6/2 

= 16(2«' -f 
= 16/'(2/ + O, 

giving the distance moved over in the interval But the mean velocity during 
this interval is obtained by dividing the distance moved over by the time taken 
to traverse it; hence the mean velocity in our case for the interval of seconds 
immediately succeeding the t seconds 

6 — a 

_ m\2t 4- O 

” v 
= 16(2/ 4- /') 
= 32/ + 16/'. 

Now if we look at this result, which we have obtained for the mean velocity, 
we see that there are two terms in it. The first, viz. 32/, is quite independent 
of the interval /' which we have taken; the second, viz. 16/', depends directly 
on it, and will therefore change when we change the interval. Now the distance 
per second represented by 16/' feet can be made as small as we hke by taking 
/' small enough; so that the mean velocity during the interval /' seconds 
succeeding the given instant can be made to approach 32/ feet per second 
as near as we like by taking /' small enough. Recurring to our definition of in¬ 
stantaneous velocity, it is now evident that the instantaneous velocity of our 
falling body at the end of / seconds is 32/ feet per second. 
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process (of which there is a simple example in the footnote) 
has been worked out, by which from any algebraical rule 
teUing us how to calculate the distance traversed in terms 
of the time we can find another algebraical rule which will 
tell us how to calculate the velocity in terms of the time. 
One case of the process is this: If the distance traversed is 
at any instant a times the nth power of the time, then the 
velocity at any instant will be na times the (n-l)th power 
of the time. It is by means of this process of altering one 
algebraical rule so as to get another from it that both of the 
problems which we have shown to be equivalent to one an¬ 
other are solved in practice. 

There is yet another problem of very great importance in 
the study of natural phenomena which can be made to de¬ 
pend on these two. When a point moves along a straight 
line the distance of it from some fixed point in the line is a 
quantity which varies from time to time. The rate of change 
of this distance is the same thing as the velocity of the mov¬ 
ing point; and the rate of change of any continuous quantity 
can only be properly represented by means of the velocity 
of a point. 

Thus, for instance, the height of the tide at a given port 
will vary from time to time during the day, and it may be 
indicated by a mark which goes up and down on a stick. 
The rate at which the height of the tide varies will obviously 
be the same thing as the velocity with which this mark goes 
up and down. Again the pressure of the atmosphere is indi¬ 
cated by means of the height of a mercury barometer. The 
rate at which this pressure changes is obviously the same 
thing as the velocity with which the surface of the mercury 
moves up and down. Now whenever we want to describe the 
changes which take place in any quantity in terms of the 
time, we may indeed roughly and approximately do so by 
means of a table. But this is also the most troublesome way; 
the proper way of describing them is by drawing a curve in 
which the abscissa, or horizontal distance, at any point repre¬ 
sents the time, while the height of the curve at that point 
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represents the value of the quantity at that time (see p. 167). 
Whenever this is done we practically suppose the variation 
of the quantity to be represented by the motion of the point 
on a curve. The quantity can only be adequately represented 
by marking off a length proportional to it on a line; so tliat 
if the quantity varies then the length marked off will vary, 
and consequently the end of this length will move along the 
curve. The rate at which the quantity varies is the rate at 
which this point moves; and when the values of the quantity 
for different times are represented by the perpendicular dis¬ 
tances of points on a curve from the hne which represents 
the time, its rate of variation is determined by the tangent 
to that curve. 

§7. On the Method of Fluxions 

Hence we have three problems which are practically the 
same. First, to find the velocity of a moving point when 
we know where it is at every instant; secondly, to draw a 
tangent to a curve at any point; thirdly, to find the rate of 
change of a quantity when we know how great it is at every 
instant. And the solution of them all depends upon that 
process by which, when we take the algebraical rule for 
finding the quantity in terms of the time, we deduce from 
it another rule for finding its rate of change in terms of the 
time. 

This particular process of deriving one algebraical rule 
from another was first investigated by Newton. He was ac¬ 
customed to describe a varying quantity as a fluent, and its 
rate of change he called the fluxion of the quantity. On ac¬ 
count of these names, the entire method of solving these 
problems by means of the process of deriving one algebraical 
rule from another was termed the Method of Fluxions. 

In general the rate of variation of a quantity wiU itself 
change from time to time; but if we consider only an interval 
very small as compared with that required for a considerable 
variation of the quantity, we may legitimately suppose that 
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it has not altered much during that interval. This is prac¬ 
tically equivalent to supposing that the law of change has 
been uniformly true during that interval, and that the rate 
of change does not differ very much from its mean value. 
Now the mean rate of change of a quantity during an interval 
of time is just the difference between the values of the quan¬ 
tity at the beginning and at the end divided by the interval. 
If any quantity increased by one inch in a second, then, al¬ 
though it may not have been increasing uniformly, or even 
been increasing at all during the whole of that second, yet 
during the second its mean rate of increase was one inch per 
second. Now if the rate of increase only changes slowly we 
may, as an approximation, fairly suppose it to be constant 
during the second, and therefore to be equal to the mean 
rate; and, as we know, the smaller the interval of time is, the 
less is the error arising from this supposition. This is, as a 
matter of fact, the way in which that process is established 
by means of which a rule for calculating position is altered 
into a rule for calculating velocity. The difference between 
the distances of the moving point from some fixed point on 
the line at two different times is divided by the interval be¬ 
tween the times, and this gives the mean rate of change 
during that interval. If we find that, by making the interval 
smaller and smaller, this mean rate of change gets nearer 
and nearer to a certain value, then we conclude that this 
value is the actual rate of change when we suppose the in¬ 
terval to shrink up into an instant, or that it is, as we call it, 
the instantaneous rate of change. 

Because two differences are used in the argument which 
establishes the process for changing the one rule into the 
other, this process was called, first in other countries and 
then also in England, the Differential Calculus. The name is 
an unforttmate one, because the rate of change which is 
therein calculated has nothing to do with differences, the 
only connection with differences being that they are men¬ 
tioned in the argument which is used to establish the process. 
However this may be, the object of the differential calculus 
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or of the method of fluxions (whichever name we choose to 
give it) is to find a rule for calculating the rate of change of 
a quantity when we have a rule for calculating the quantity 
itself; and we have seen that when this can be done the 
problem of drawing a tangent to a curve and that of finding 
the velocity of a moving point are also solved. 

§8. Of the Relationship of Quantities, or Functions 

But we not only have rules for calculating the value of a 
quantity at any time, but also rules for calculating the 
value of one quantity in terms of another quite independ¬ 
ently of the time. Of the former class of rules an example is 
the one mentioned above for calculating the rise of the tide. 
We may either write down a formula which will enable us to 
calculate it at a given instant, or we may draw a curve which 
shall represent its rise at different times of the day. Of the 
second kind of rule a good example is that in which the 
pressure of a given quantity of gas is given in terms of its 
volume when the temperature is supposed to be constant; 
the algebraical statement of the rule giving the relation be¬ 
tween them is that the two things vary inversely as one an¬ 
other, or that the product representing them is constant. 

1 
2h 

1 
Fig. 118 

Thus if we compress a mass of air to one-half of its natural 
volume the pressure will become twice as great, or will be, 
as it is called, two “atmospheres.” And so if we compress it 
to one-fifth of the volume the pressure will become five 
times as great, or five atmospheres (Fig. 118). 
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If we like to represent this by a figure (see Fig. 119) we 
shall draw a curve in which the abscissa, or horizontal dis¬ 
tance from the starting point, will represent the volume, and a 
vertical line drawn through the extremity of this abscissa will 
represent the pressure. For any particular temperature the 
curve traced out by the extremity of the line representing the 
pressure will be a hyperbola having one asymptote vertical 
and the other horizontal; and for different temperatures we 
shall have different hyperbolas with the same asymptotes. 

Thus every point in the plane will represent a particular 
state of the body, since some hyperbola can be drawn through 
it; the horizontal distance of the point from the origin will 
represent the volume, and its vertical distance the pressure, 
while the particular hyperbola on which it hes will indicate 
the temperature. We have here an example of the physical 
importance of a family of curves, to which reference was 
made in the preceding chapter (see pp. 148, 149). 

When the connection between two quantities has to be 
found out by actual observation, this is done by properly 
plotting down points on paper (as in §11, Chap. IV) to 
represent successive observations. Thus in the case of air 
the pressme would be observed for different values of the 
volume. For each of these observed pairs of values a point 
would be marked in the plane; and when a sufficient number 
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had been marked it would become obvious to the eye that, 
roughly speaking, the point lay on a hyperbolic curve. But 
it is to be noticed that it is only roughly that this result 
holds, because observations are never so accurate that the 
curve does not require to be drawn pretty freely in passing 
through the points. But directly the geometer has seen that 
the shape of the curve is hyperbolic he recognizes the law 
that pressure varies inversely as volume. 

We have here the relation between two quantities ex¬ 
pressed by means of a curve. Whenever two quantities are 
related in some such way, so that one of them being given 
the other can be calculated or found, each is said to be a 
function of the other. Now a function may be supposed to 
be given either by an algebraical rule or by a curve. Thus to 
find the pressure corresponding to a given volume we might 
say that a certain number was to be divided by the number 
representing the volume, and the result would be the num¬ 
ber of units of pressure; or we might say that from the given 
point of the horizontal line which represented the volume a 
perpendicular was to be drawn and continued till it met the 
curve, and that the ordinate (or the part of this between 
the horizontal fine and the curve) represented the pressure. 
We have thus a connection established between the science 
of geometry and the science of quantity, as, for example, 
the relation between the two quantities, volume and pres¬ 
sure, is expressed by means of a certain curve. 

Now every connection between two sciences is a help to 
both of them. When such a connection is established we may 
both use the known theorems about quantities in order to 
investigate the nature of curves (and this is, in fact, the 
method of co-ordinates introduced by Descartes), or we 
may make use of known geometrical properties of curves in 
order to find out theorems about the way in which quantities 
depend upon one another. For the first purpose the relation 
between the two quantities is regarded as an equation. 
Thus, instead of saying that a pressure varies inversely as a 
volume we should prefer to say that the product of the pres- 
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sure and the volume is equal to a certain constant, the tem¬ 
perature being supposed unaltered; or, paying attention 
only to the geometrical way of expressing this, we should 
say that, for points along the curve we are considering, the 
product of the abscissa and the ordinate is equal to a cer¬ 
tain fixed quantity. This is written for shortness 

xy = c^ 

and from such an equation all the properties of a hyperbola 
may be deduced. 

But we may also make use of the properties of known curves 
in order to study the ways in which quantities can depend on 
one another. Thus the perpendicular distance p m from the 

point p of the circle to a fixed diameter a o a (Fig. 120) is a 
quantity whose ratio to the radius o p depends in a certain 
definite way upon the magnitude of the angle p o a, or, what 
is the same thing (p. 131), upon the length of the arc a p. 

The ratio is in fact what we have termed the sine of the 
angle, or, as it is sometimes called, the sine of the arc. If the 
arc A p is made proportional to the time, or, what is the same 
thing, if p is made to move uniformly round the circle, then 
the length of the fine p m will represent the distance from 
the centre o of a point q oscillating according to a law which 
is defined by this geometrical construction. This particular 
kind of oscillation, which is called simple harmonic motion, 
occurs when the air is agitated by sound, or the ether by 
light, or when any elastic body is set into a tremor. Rela¬ 
tions such as that which we have just mentioned between 
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arcs of a circle and straight lines drawn according to some 
simple constructions in the circle give rise to what are often 
termed circular functions. Thus the trigonometrical ratios 
considered in §7 of Chapter IV are functions of this kind. 
We have also hyperbolic functions, depending on the hyper¬ 
bola in somewhat the same way in which circular functions 
depend upon the circle, and elliptic functions, so called be¬ 
cause by means of them the length of the arc of an ellipse 
can be calculated. 

But the most valuable method of studying the properties 
of functions is derived from the considerations of which we 
have been treating in this chapter, viz. considerations of the 
rate of change of quantities. When the relation between 
two quantities is known, the relation between their rates of 
change can be found by a known algebraical process; and 
we have shown that the problem of finding this relation ul¬ 
timately comes to the same thing as the problem of drawing 
a tangent to the curve which expresses the relation between 
the two original quantities. Thus, in the case we previously 
considered of two quantities whose product is constant or 
which vary inversely as one another, it is clear that one 
must increase when the other decreases; it is found that 
the ratio of these rates of change is equal to the ratio of the 
quantities themselves. Thus the rate of change of the volume 
of a gas is to the rate of change of the pressure (the tem¬ 
perature being kept constant) as the volume is to the pres¬ 
sure, it being always remembered that an increase of the one 
implies a decrease of the other. 

The consideration of this ratio of the rates of change is of 
great importance in determining one of the fundamental 
changeable properties of a body, namely, its elasticity. We 
define the elasticity of a gas as the change of pressure which 
will produce a given contraction; where by the term contrac¬ 
tion is meant the change in the volume divided by the whole 
volume before change. Thus if the volume of a gas diminished 
one per cent., it would experience a contraction of i^th. If 
then, in accordance with our definition, we divide the pres- 
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sure necessary to produce this contraction by xinj or, what 
is the same thing, multiply it by 100, we shall get what is 
called the elasticity. Now in our case the change of pressure 
divided by the whole pressure is equal to what we have 
called the contraction, that is, to r^; and therefore the 
change of pressure is equal to rfeth of the whole pressure. 
But we have just proved that the elasticity is 100 times the 
change of pressure necessary to produce the contraction we 
have been considering, and it is therefore equal to the whole 
pressure. Consequently the elasticity of a gas is measured 
by the pressure of the gas. 

§9. Of Acceleration and the Hodograph 

We may then consider the rate of change of any meas¬ 
urable quantity as another quantity which we can find; 
and we have derived our notion of it from the velocity of a 
moving point. In the simplest case, when this point is mov¬ 
ing along a straight Une, the rate at which it is going is the 
rate of change of its distance from a point fixed in the line. 
But in the general case, when the point is moving not on a 
straight fine, but along any sort of curve, we shall not give a 
complete description of its state of motion if we only say 
how fast it is going; it will be necessary to say in addition 
in what direction it is going. Hence we must not only meas¬ 
ure the quantity of a velocity, but also a certain quality of 
it, viz. the direction. Now we do as a matter of fact contrive 
to study these two things together, and the method by which 
we do so is perhaps one of the most powerful instruments by 
which the scope of the exact sciences has been extended in 
recent times. Defining the velocity of a moving point as the 
rate of change of its position, we are met by the question. 
What is its position? 

This question has been answered in the preceding chap¬ 
ter. The position of a moving point is determined when we 
know the directed step or vector which connects it with a 
fixed point. If then the velocity of the moAdng point means 
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the rate of change of its position, and if this position is de¬ 
termined by the vector which would carry us from some 
fixed point to the moving point, in order to understand 
velocity we shall have to get a clear conception of what is 
meant by the rate of change of a vector. 

+— ^ p 
Fig. 121 

Let US go back for a moment to the simpler case of a point 
moving along a straight fine; its position is determined by 
means of the step a p from the point a fixed in the straight 
fine to the moving point p (Fig. 121). Now this step alters 
with the motion of the point; so that if the point comes to p' 

the step is changed from a p to a p'. How is this change made 
in the step? Clearly by adding to the original step a p the new 
step p p', and we specify the velocity of p by saying at what 
rate this addition is made. 

Now let us resume the general case. We have the fixed 
point A given; and the position of the moving point p is 
determined by means of the step a p. As p moves about, this 
step gets altered, so that when p comes to p' this step is a p'; 
it is therefore obvious that it is altered not only in magnitude 
but also in direction. Now the change may be made by add¬ 
ing to the original step a p the new step p p'; and it is quite 
clear that if we go from a to p and then from p to p' the re¬ 
sult is exactly the same as if we had gone directly from a to 

p' (Fig. 122). The question then is: At what rate does this 
addition take place, or what step per second is added to the 
position? The answer as before is of the nature of a step or 
vector—that is, the change of position of the moving point 
has not only magnitude but direction. We shall therefore 
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have to say that the rate of change of a step or vector is 
always so many feet per second in a certain direction. 

To sum up, then, we state that the velocity of a moving 
point is the rate of change of the step which specifies the 
position; and that in order to describe accurately this veloc¬ 
ity, we must draw a line of given length in a given direction; 
we observe also that the rate of change of a directed quan¬ 
tity is itself a directed quantity. This last remark is of the 
utmost importance, and we shall now apply it to a considera¬ 
tion of the velocity itself. 

If a point is moving uniformly in a straight line its velocity 
is always the same in magnitude and the same in direction; 
and consequently a line drawn to represent it would be un¬ 
altered during the motion. But if a point moves uniformly 
round a circle its velocity, although always the same in 
magnitude, will be constantly changing in direction, and the 
line which specifies tliis velocity will thus be always of the 
same length, but constantly turning round so as always to 
keep parallel with the direction of motion of the moving 
point. And so, generally, when a point is moving along any 
kind of curve let us suppose that through some other point, 
which is kept fixed, a line is always drawn which represents 
the velocity of the moving point both in magnitude and 
direction. Since the velocity of the moving point will in gen¬ 
eral change, this line will also change both in size and in 
direction, and the end of it will trace out some sort of curve. 
Thus in the case of the uniform circular motion, since the 
velocity remains constant, it is clear that the end of the line 
representing the velocity will trace out a circle; in the case 
of a body thrown into the air the end of the corresponding 
line would be found to describe a vertical straight line. This 
curve described by the end of the line which represents 
the velocity at any instant may be regarded as a map of 
the motion, and was for that reason called by Hamilton the 
hodograph. If we know the path of the moving point and 
also the hodograph of the motion, we can find the velocity 
of the moving point at any particular position in its path. 
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All we have to do is to draw through the centre of reference 
of the hodograph a line parallel to the tangent to the path 
at the given position; the length of this hne will give the rate 
of motion, or the velocity of the point as it passes through 
that position in its path. Hamilton proved that in the case 
of the planetary orbits described about the sun the hodo¬ 
graph is always a circle. In this case it possesses other in¬ 
teresting properties, as, for e.xample, that the amount of 
light and heat received by the planet during a given interval 
of time is proportional to the length of the arc of the hodo¬ 
graph between tlie two points corresponding to the begin¬ 
ning and end of that interval. 

But the great use of the hodograph is to give us a clear 
conception of the rate of change of the velocity. Tliis rate 
of change is called the acceleration. Now, it must not be sup¬ 
posed that acceleration always means an increase of velocity, 
for in this case, as in many others, mathematicians have 
adopted for use one w’ord to denote a change that may have 
many directions; thus a decrease of velocity is called a nega¬ 
tive acceleration. This mode of speaking, although rather 
puzzling at first, becomes a help instead of a confusion when 
one is accustomed to it. Now a velocity may be changed in 
magnitude without altering its direction— that is to say, it 
may be changed by adding it to a velocity parallel to itself. 
In this case we say that the acceleration is in the direction 
of motion. But a velocity may also be changed in direction 
without being changed in magnitude, and we have seen that 
then the hodograph is a circle. The velocity is altered by 
adding to it a velocity perpendicular to itself, for the tan¬ 
gent at any point to a circle is at right angles to the radius 
drawn to that point, and in this case we may say that the 
acceleration is at right angles to the direction of motion. 
But in general both the magnitude and the direction of the 
velocity will vary, and then we shall see that the acceleration 
is neither in the direction of motion nor at right angles to it, 
but that it is in some intermediate direction. 

If we consider the motion in the hodograph of the end of 
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the line representing the velocity, we observe the motion of 
a point whose position is defined by the step to it from the 
centre of the hodograph. Now this step is just the velocity 
of the point p in the original curve, for the line o Q is sup¬ 
posed to be drawn at every instant to represent the velocity 

of P in magnitude and direction. Now we saw that the rate 
of change of the step from some fixed point a to p was the 
velocity of p. Hence, since the step o q drawn from the fijced 
point o to Q defines the position of q, it is obvious that the 
rate of change of the step o q is the velocity of q. Since o q 

represents the velocity of p, it follows that the velocity of 
the point Q describing the hodograph is the rate of change 
of the velocity of p; that is to say, it is the acceleration of the 
motion of p. This acceleration being the velocity of q, and a 
velocity being as we have seen a vector, it at once follows 
that the acceleration is a vector or directed quantity. 

In changing the magnitude and direction of the velocity 
of a moving point we may consider that we are pouring in, 
as it were, velocity of a certain kind at a certain rate. In the 
case of a stone thrown up obhquely and allowed to fall again 
the path described is a parabola, and the direction of motion, 
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which originally pointed obhquely upwards, turns round and 
becomes horizontal, and then gradually points more and 
more downwards. But what has really been happening the 
whole time is that velocity straight downwards has been 
continually added at a uniform rate during every second, so 
that the original velocity of the stone is compounded with 
a velocity vertically downwards, increasing uniformly at the 
rate of thirty-two feet a second. In this case, then, we say 
that the acceleration, or rate of change per second of the 
velocity of the stone, is constant and equal to thirty-two 
feet a second vertically downwards. 

If we whirl anything round at the end of a string we shall 
be continually pouring in velocity directed towards the end 
of the string wliich is held in the hand; and since the velocity 
of the body which is being whirled is perpendicular to the 
direction of the string, the added velocity is always per¬ 
pendicular to the existing velocity of the body. And so also 
when a planet is travelling round the sun there is a continual 
pouring in of velocity towards the sun, or, as we say, the 
acceleration is always in the hne joining the planet to the 
sun. In addition it is in this case found to vary inversely as 
the square of the distance from the sun. 

§10. On the Laws of Motion 

These examples prepare us to understand that law of mo¬ 
tion which is the basis of all exact treatment of physics. 
When a body is moving let us consider what it is that depends 
upon the circumstances, meaning by the "circumstances” 
the instantaneous position relative to it of other bodies as 
well as the instantaneous state of the body itself irrespective 
of its motion. We might at first be inclined to say that the 
velocity of the body depends on the circumstances, but very 
httle reflection will show us that in the same circumstances 
a body may be moving with very different velocities. At a 
given height above the earth’s surface, for example, a stone 
may be moving upwards or downwards, or horizontally, or 
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at any inclination, and in any of these modes with any 
velocity whatever; and there is nothing contrary to nature 
in supposing a motion of this sort. Yet we should find that, 
no matter in what way the stone may move through a given 
position, the rate of change per second of its velocity will 
always be the same, viz. it will be thirty-two feet per second 
vertically downwards. When we push a chair along the ice, 
in order to describe the circumstances we must state the 
compression of those muscles which keep our hands against 
the chair. Now the rate at which the chair moves does not 
depend simply upon this compression; for a given amount of 
push may be either starting the chair from rest or may be 
quickening it when it is going slowly, or may be keeping it 
up at a high rate. 

What is it, then, which does depend upon the circum¬ 
stances? In whichever of these ways, or in whatever other 
way this given amount of push is used, its result in every 
case is obviously to change the rate of motion of the chair; 
and this change of the rate of motion will vary with the 
amount of push. Hence it is the rate of change of the velocity, 
or the acceleration of the chair which depends upon the cir¬ 
cumstances, and these circumstances are partly the com¬ 
pression of our muscles and partly the friction of the ice; 
the one is increasing and the other is diminishing the velocity 
in the direction in which the chair is going. 

The law of motion to which allusion has just been made 
is this:—The acceleration of a body, or the rate of change of 
its velocity depends at any moment upon the position rela¬ 
tive to it of the surrounding bodies, but not upon the rate 
at which the body itself is going. There are two different 
ways in which this dependence takes place. In some cases, 
as when a hand is pushing a chair, the rate of change of the 
velocity depends on the state of compression of the bodies 
in contact; in other cases, as in the motion of the planets 
about the sun, the acceleration depends on the relative 
position of bodies at a distance. 

The acceleration produced in a body by a particular set 



Of Mass and Force 241 

of surrounding circumstances must in each case be deter¬ 
mined by experiment, but we have learnt by experience a 
general law which much simplifies the experiments which it 
is necessary to make. This law is as follows:—If the presence 
of one body alone produces a certain acceleration in the 
motion of a given body, and the presence of a second body 
alone another acceleration; then, if both bodies are present 
at the same time, the one has in general no effect upon the 
acceleration produced by the other. That is, the total ac¬ 
celeration of the moving body wiU be the combination of the 
two simple accelerations; or, since accelerations are directed 
quantities, we have only to combine the simple accelera¬ 
tions, as we did vector steps in §3 of the preceding chapter, 
in order to find the result of superposing two sets of sur¬ 
rounding circumstances. 

Now while this great law of nature simplifies extremely 
our consideration of the motion of the same body under dif¬ 
ferent surrounding circumstances, it does not enable us to 
state anything as to the motion of different bodies under the 
same surrounding circumstances. This case, however, is 
amply provided for by another comprehensive law which ex¬ 
perience also has taught us. We may thus state this third 
all-important law of motion:—The ratio of the accelerations 
which any two bodies produce in each other by their mutual 
influence is a constant quantity, quite independent of the 
exact physical characteristics of that influence. That is to 
say, however the two bodies influence one another, whether 
they touch or are connected by a thread or being at a dis¬ 
tance still alter one another’s velocities, this ratio will re¬ 
main in these and all other cases the same. 

§11. Of Mass and Force 

Let us see how we can apply this law. Suppose we take 
some standard body p and any other q, and note the ratios 
of the accelerations they produce in each other under any 
of the simplest possible circumstances of mutual influence. 
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Let the ratio determined by experiment be represented by 
m, or m expresses the ratio of the acceleration of the stand¬ 
ard body p to that of the second body q. This quantity m 
is termed the mass of the body q. Let m' be the ratio of the 
accelerations produced in the standard body p and a third 
body E by their mutual influence. Now the law as it stands 
above enables us to treat only of the ratio of the accelera¬ 
tions of p and Q, or again of p and r under varied circum¬ 
stances of mutual influence. It does not tell us anytliing 
about the ratio of the accelerations which q and r might 
produce in each other. Experience, however, again helps 
us out of our difficulties and tells us that if q and r mutually 
influence each other, the ratio of the acceleration of q to 
that of R will be inversely as the ratio of m to m'. If then we 
choose to term unity the mass of our standard body, we may 
state generally that mutual accelerations are inversely as 
masses. Hence, when we have once determined the masses 
of bodies we are able to apply our knowledge of the effect 
of any set of circumstances on one body, to calculate the 
effect which the same circumstances would produce upon 
any other body.^ 

The reader will remark that mass as defined above is a 
ratio of accelerations, or in other words a mere numerical 
constant experimentally deducible for any two bodies. It is 
found that for two bodies of the same uniform substance, 
their masses are proportional to their volumes. This relation 
of mass to volume has given rise to much obscurity. An in¬ 
describable something termed matter has been associated 
with bodies. Bodies are supposed to consist of matter filling 

^ Without considering the body K, the same conclusion may be arrived 
at thus: 

1. The acceleration of p (due to q) is proportional to the mass of q. 
2. The acceleration of q (due to p) is proportional to the mass of p. 

/. dividing 1 by 2 
Acc, p (due to q) mg 

‘ Acc. Q (due to p) mp 

or in other words the mutual accelerations are inversely as the masses.— 
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space, and the mass of a body is defined as the amount of 
matter in it. An additional conception termed force has been 
introduced and is supposed to be in some way resident in 
matter. The force of a body p on a body q of mass m is a 

quantity proportional to the mass w of Q and to the accelera¬ 
tion which the presence of p produces in the motion of Q. 

It will be obvious to the reader that this conception of force 
no more explains why the presence of p tends to change the 
velocity of q, than the conception of matter explains why 
mutual accelerations are inversely as masses. The custom 
of basing our ideas of motion on these terms “matter” and 
“force” has too often led to obscurity, not only in mathe¬ 
matical, but in philosophical reasoning. We do not know 
why the presence of one body tends to change the velocity 
of another; to say that it arises from the force resident in 
the first body acting upon the matter of the moving body is 
only to slur over our ignorance. All that we do know is that 
the presence of one body may tend to change the velocity 
of another, and that, if it does, the change can be ascertained 
from experiment, and obeys the above laws. 

To calculate by means of the laws of motion from the 
observed effects on a simple body of a simple set of circum¬ 
stances the more complex effects of any combination of cir¬ 
cumstances on a complex body or system of bodies is the 
special function of that branch of the exact sciences which is 
termed Applied Mathematics. 
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