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PREFACE 

To understand most of this book the reader needs very little 

previous knowledge of the science of physics and a very slight 

mathematical equipment. It is hardly an exaggeration to say 

that mathematics is absent in most of the chapters. I have been 

forced to introduce a little in dealing with parts of relativity and 

quantum mechanics5 but even that is of the most elementary 

kind. 

The work is intended, as its title suggests, to present as clearly 

as possible the essential features in the development of the science 

during the past hundred years, or—to be more precise—since 

the beginning of Queen Victoria’s reign. The discovery of the 

cardinal facts of physics and the growth of its unifying theoretical 

structure are described and discussed together. There is much 

in it that is addressed to both students and teachers of science 

and a little of it, here and there, even to the great pundits of 

physics. 

Figures IV-1, VlI-5 and.XV~l are borrowed from my 

Theoretical Physics, and I wish to express my thanks to Messrs. 

Methuen &; Co. for permitting me to use them. My thanks are 

also due to Messrs. Edward Arnold & Co. for Figure VII-1 which 

appeared in my article on “The Origin and Nature of Wave 

Mechanics” in Science Progress, 52, p. 209 (1957). 

W.W. 

April 1950 

5 





CONTENTS 

Chaptd Page 

PROLOGUE ..... 9 

I. THERMAL PHENOMENA . . . .15 

II. ANOTHER ASPECT OF THERMAL PHENOMENA . 51 

HI. AN EXPERIMENTAL MISCELLANY . . .46 

IV. THE STATISTICAL THEORY OF HEAT 

I. KINETIC THEORY OF GASES . . 62 

V. THE STATISTICAL THEORY OF HEAT 

II. STATISTICAL MECHANICS . . 80 

VI. LIGHT . . . . .86 

VH. MORE ABOUT LIGHT . . . .106 

VIII. INTEGRATION OF ELECTROMAGNETISM . . 118 

IX. maxwell’s ELECTROMAGNETIC THEORY . . 157 

X. THE AETHER . , . . .148 

XL NEWTONIAN AND SPECIAL RELATIVITY . . 155 

XH. EINSTEIN’S GENERAL THEORY . . .174 

XHI. RADIANT HEAT AND THE EMERGENCE OF THE 

QUANTUM THEORY . . . .182 

XIV. CONDUCTION OF ELECTRICITY AND ASSOCIATED 

PHENOMENA .... 205 

XV. MISCELLANEOUS SUBJECTS . . . 212 

XVI. ATOMIC STRUCTURE .... 228 

XVH. THE CORRESPONDENCE PRINCIPLE AND ITS 

APPLICATION ..... 24-4 

XVIII. (QUANTUM MECHANICS .... 249 

XIX. RADIOACTIVITY AND COSMIC RADIATION . . 265 

XX. THE ATOMIC NUCLEUS .... 276 

XXL ASTROPHYSICS AND COSMOLOGICAL SPECULATION 282 

EPILOGUE ..... 298 

INDEX ...... 509 

7 



Dedicated to my former 

students at Bedford College 

and at King^s College^ London 



PROLOGUE 

At the beginning of Victoria’s reign physical and chemical 

phenomena, that is to say, the phenomena of the inorganic 

world, were regarded as the manifestation of the motions of 

material bodies, ranging from John Dalton’s atoms to planets and 

stars, under the influence of forces. In one set of phenomena the 

forces were gravitational, in another electrical, in still another 

chemical, and so on. The physicists and chemists of that time had 

fairly clear notions of what they meant by these terms. They 

were philosophers—though perhaps not in the special and rather 

restricted present-day sense of the term. For them the investi¬ 

gator of natural phenomena was a philosopher. Physical science 

was usually called natural philosophy. Their geometry was 

Euclidean and the inverse square law of force had for them an 

almost a priori character, and indeed in a Euclidean world it 

would seem to be as inevitable as it is for the illumination of a 

surface by a point source of light. The mechanical principles to 

which the motions of bodies, under the influence of forces, were 

found to conform were those laid down by Sir Isaac Newton 

(1642-1727) in the great work Philosophiae naturalis principia 

mathematical usually referred to as the Principia. No physicist of 

1857 could contemplate any other attitude to physical pheno¬ 

mena. Lord Kelvin (William Thomson, 182^^1907), one of the 

greatest scientific geniuses of his century, clung to it tenaciously 

till the end of his life. The mechanics of Newton impressed the 

early Victorians as something final which, like Euclid’s geometry, 

was settled for all time. It had acquired an almost perfect form 

from the progressive contributions of Maclaurin, de Maupertuis, 

Euler, d’Alembert and Lagrange in the eighteenth century and 

of Sir William Hamilton and C. G. J. Jacobi in the earlier half of 

the nineteenth century, and fitted perfectly into its Euclidean 

frame. 

The word ‘‘geometry” has now two senses: for the physicist 

it is a basic part of physical theory, with axioms, or premisses, the 

9 



10 A HUNDRED YEARS OF PHYSICS 

truth of wliich is guaranteed by observation—though doubtless 

some of his early Victorian predecessors were convinced, like 

Immanuel Kant, that these axioms had an apodictic a priori 

certainty wliich rendered experimental verification unnecessary. 

For the pure mathematician on the other hand, no question 

arises as to whether the axioms or premisses of his geometry are 

true or not. That is to say he is quite unconcerned about any 

such question as: Do tliey truthfully describe or report features 

of the physical world? He is only concerned with their logical 

coherence and that of the structure built up on them. 

At the beginning of the epoch in which we are interested this 

mechanical or matter and motion science was already highly 

developed and had great achievements to its credit. We cannot 

regard the fundamental principles on which it was based as crude 

and immature or as something on which we are entitled to look 

down with an air of modern superiority. As these principles 

left the hands of Hamilton and Jacobi they had acquired the 

character of a finished product, like the geometry of the Euclid¬ 

ean continuum in which they were framed, and indeed, had the 

essentials of the Hamiltonian expression of the old mechanics 

been better appreciated when the strange problem of black body 

radiation appeared, wave mechanics might have emerged 

directly from it rather than Planck’s tentative form of quantum 

theory. Hamilton’s principle, like that of de Maupertuis, which 

preceded it, is intimately related to Fermat’s principle in geo¬ 

metrical optics. Indeed the statement of the latter can be 

extended so as to take precisely the same form as Hamilton’s 

principle and in this form it provides us, not only with the shape 

of a ray of light (the path which the light takes), but also the 

group velocity with which the luminous disturbance is propa¬ 

gated. This indeed is expressed by a formula which is the exact 

analogue of one of Hamilton’s canonical equations. The wave 

mechanics of de Broglie and Schrodinger emerges when the 

analogy between geometrical optics and mechanics is widened so 

as to become an analogy between optics (in the widest sense of 

the term) and mechanics. Indeed Hamilton’s mechanics is a 

limiting case of quantum, i.e. wave mechanics (from the small- 

scale side), and it requires extraordinarily little amplification to 

make it identical with the mechanics of the special theory of 

relativity. It is valid (to a close approximation) for a vast field 



PROLOGUE 11 

of phenomena and its structural elegance gives it the impress of 

a supreme work of art. 

The outstanding achievements of the physicists, or natural 

philosophers, before the beginning of our period of approxi¬ 

mately one hundred years may be summarized as follows: 

The principles of mechanics had been successfully applied to a 

great variety of phenomena. The constant of gravitation and the 

mean density of the earth had been determined by Henry 

Cavendish (1751-1810) with an accuracy which has hardly been 

surpassed by the latest measurements. Good methods had been 

devised for the determination of the intensity of gravity (the 

familiar g of the text-books) by Kater (1818) and especially by 

Bessel (1826). Elastic phenomena (i.e. phenomena within the 

scope of Hooke's law) and the propagation of waves in elastic 

media were well understood. Fresnel’s wonderful theory of 

light was based on the premiss that light was a manifestation of 

wave motion in an elastic medium (aether) and it has been an 

object of admiration ever since. He arrived at the familiar si tie 

and tangent formulae for the reflection of light at the interface 

between two transparent and isotropic media and the associated 

formulae for refraction and was thus enabled to explain Brew¬ 

ster’s law connecting the refractive index with the tangent 

of the polarizing angle. He constructed, on the basis of this 

theory, the device now called Fresnel’s rhomb for producing 

circularly polarized light and developed a complete theory of the 

propagation of light in crystalline media. Nearly all his theoret¬ 

ical results are accepted to-day, though we have been compelled 

to re-erect them on new foundations. 

Quite respectable optical instruments, such as microscopes and 

telescopes, including astronomical telescopes, existed. Captain 

James Cook carried quite excellent chronometers wdth him 

round the world. The speed with which light travels in inter¬ 

stellar space had been computed, with an impressive approach to 

accuracy, from astronomical observations (Roemer, 1695, and 

Bradley, 1727). Wollaston (1802) had noticed that the sun’s 

spectrum was crossed by dark lines. Fraunhofer rediscovered 

them (1814) and measured their wave-lengths, using wire 

gratings, Thomas Young had carried out his famous inter¬ 

ference experiments and provided a new explanation of the 

earlier experiment of Newton (Newton’s rings). Provost enun- 
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ciated his theory of exchanges near the close of the eighteenth 

century. Fresnel had amplified Huygens^ principle and applied 

it successfully to diffraction phenomena. 

Electrostatic phenomena were nearly as well known and 

understood as they are now. Cavendish had tested the inverse 

square law by what appears to he the best method. He also 

arrived (before Faraday) at the notions of electrical capacity and 

specific inductive capacity (dielectric constant). George Greenes 

famous Essay appeared in 1828. Oersted discovered the basic 

phenomenon of electromagnetism in 1820 and Ampere’s great 

contribution followed soon after. G. S. Ohm discovered the law 

which is named after him in 1827. Faraday’s law of induced 

currents was discovered in 1851 and independently by the 

American Henry, a fact which is commemorated by the adoption 

of his name for a unit of inductance. Wheatstone’s bridge was 

invented (by someone named Christie, it is believed) in 1835, 

and in this year appeared the great work of Gauss on magnetism 

including, among other things, his method of investigating the 

law of force between magnetic point j>oles. Thermo-electric 

phenomena (with the exception of the Thomson effect) w'ere 

known (Seebeck, 1821, and Peltier, 1854), but not understood. 

The oscillating currents associated with circuits containing 

capacity (capacitance) and inductance were still unknowm, or at 

least not yet understood, and the complex exponential, so beloved 

by our present-day electrical engineers, had not yet acquired 

much importance in electrical theory. Faraday had enunciated 

his laws of electrolysis and thus opened the way to the discovery 

of charged ions. Primary cells for generating electric ciUTents 

were in existence. Daniell’s cell, the prototype of the standard 

cells of later times, appeared in 1856. The tangent galvanometer 

was invented by Pouillet in 1857. 

The phenomena of heat were however very imperfectly 

understood and indeed misunderstood. It was still generally 

believed that heat (caloric) was some kind of imponderable fluid 

and that it was strictly conserved. Lord Kelvin (William 

Tliomson) held this view till about 1850, though it had long 

been questioned by, among others. Count Rumford (Benjamin 

Thompson), Humphry Davy and Thomas Young. We are still 

reminded of it by the term ^'latent heat”. 

On the other hand Sadi Carnot (1796—1832) had discovered 
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the great principle which is still named after him and which is, 

in effect, the second law of thermodynamics (1824), and Clapey- 

ron (1834) had deduced remarkable consequences from it which 

were later confirmed experimentally. Carnot’s principle and its 

mathematical formulation by Clapeyron must certainly be 

reckoned among the greatest achievements in the history of 

science. The principle cannot be fully applied, nor even rightly 

appreciated, except in association with the first law of thermo¬ 

dynamics; but this too appears to have been foreseen by Carnot 

(some short time after the publication of his great work, 

Reflexions sur la Puissance Motrice du Feu) and the mechanical 

equh^alent computed by him—probably from the specific heats of 

^air—as we learn from the manuscript notes deposited with the 

French Academy in 1878 by his surviving brother, H. Carnot. 

The law of Charles (discovered independently by John Dalton 

and Gay-Lussac) and that of Avogadro were known; but the 

intimate relationship between them was not yet appreciated. 

Daniel Bernoulli had shown that Boyle’s law co\ild be deduced 

from a simple form of kinetic theory (1738) and he appreciated 

that the product pv is proportional to the ids viva of the mole¬ 

cules. 

Gay-Lussac had carried out (in 1807) the classical experiment 

in which a gas (air) was allowed to expand into a previously 

exhausted space, with the same result as Joule obtained about 

forty years later. Dulong and Petit had discovered (1817) the 

law, named after them, concerning the atomic heats of solid 

elements. Some gases had been liquefied, notably by Faraday, 

and half a century before Dr. Thomas Andrews began his 

beautiful investigation of the isothermals of carbon dioxide, the 

existence of a critical state had been demonstrated experimentally 

by Cagniard de la Tour. Jean Baptiste Fourier published his 

great work on the tlieory of heat in 1822 and had developed that 

wonderful mathematical tool known as Fourier’s series (or 

expansion) as long ago as 1807. 

The velocity of dilatational (sound) waves in air had been 

measured by Newton and the mathematical expression which he 

found for it, namely, the square root of the quotient of the 

elasticity of the air by its density, had received its correct inter¬ 

pretation from Laplace. 

One of the triumphs for Newtonian mechanics was the pre- 
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diction by J. C. Adams, and independently by the Frenchman 

Leverrier, of the existence and position of a hitherto unobserved 

planet (Neptune). This was actually observed, in the predicted 

position, by the Berlin astronomer Galle (1846). 

Sir William Herschel, in endeavouring to determine stellar 

distances by parallactic observations, was thereby led to the 

discovery of double stars, and F. W. Bessel actually carried out 

the first successful observations of parallax; so that the distances 

of the nearer stars were beginning to be estimated over a hundred 

years ago. It is noteworthy that Herschel arrived at the con¬ 

clusion that the stars occupied a region shaped rather like a 

biscuit or flat bun. He also observed extra-galactic nebulae and 

may indeed have suspected them to lie outside our galaxy. 

Such, broadly speaking, was the state of physical science at the 

beginning of the period of one hundred years, or thereabouts, 

with which this book is concerned. 



CHAPTER ONE 

. THERMAL PHENOMENA 

EQUIVALENCE OF HEAT AND WORK 

The (3evelopment of the science of heat, or thermodynamics, 

provides some of the most fascinating chapters in the history of 

physics. In 1857 F. Mohr published views on the nature of heat, 

very similar to Carnot’s later view, in Liebig’s Annaleny^ The 

following passages are from this paper: “Heat is thus not a 

particular kind of matter, but an oscillatory motion of the 

smallest parts of bodies.” “Heat appears as force [A>q/7].” It 

should be explained that the words “force” and KrafV" were 

frequently used in earlier times as synonymous with “work”, 

although the term “work” {travail) with its present-day sense 

had been introduced into mechanics by Poncelet as early as 1826. 

The first serious publication in which the equivalence of heat 

and work is insisted on and an estimate of the mechanical 

equivalent of heat given, was by Julius Robert Mayer, a medical 

practitioner of Heilbronn in Bavaria.| 

The qiiestion immediately arises: What is meant by saying 

that heat and work are equivalent? It means first of all that heat 

is not conserved; but may be used up (or destroyed) in doing 

work and may be generated when work is done, as for example 

in overcoming a frictioii'al resistance. It means further that when 

work is done in generating heat, a quite definite amount of 

work—the mechanical equivalent of heat—has to be done to 

produce one unit of heat, and conversely, when heat is used up 

solely in doing work, precisely this amount of work is done at the 

expense of one unit of heat. 

Work is measured by the product of force (as used in the sense 

* Translated by P. G. Tait for the Philosophical Magazine^ Ser. 5, 

Vol. 2, p. 110 (1876). 

f “ Bemerkungen iiber die Krafte der unbelebten Natur,” Ann. der 

(jhemie und Pharmacic, 42 (1842). Mayer’s collected works on Heat 

^ere published in 1867 in a book entitled Die Mechanik der Wdrme^ 

Stuttgart (J. G. Cotta). A second edition appeared in 1874. 

15 
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in which a weight is called a force) and distance. Thus we might 

describe a particular weight (a force directed downwards) as a 

weight (or force) of 5 lb. and when it descends a distance of, 

for example, 20 feet, we should say work is done by it and take 

as its measure 5x20=100 foot-pounds. We have of course 

introduced other and more suitable units since Mayer’s lime. 

Indeed systematic units were already gradually coming into use — 

units related to the structure of the quantities which they measure. 

Mayer computed the mechanical equivalent from the specific 

heats of air at constant pressure and at constant volume. For 

the former he used 0*267* given by Delaroche and B^rard, and 

the specific heat at constant volume he calculated from the ratio 

of the two, 1*421, given by Dulong. These numbers are appre¬ 

ciably in error and Mayer’s result is consequently rather rough. 

He found 565 (kilogramme weight x metres) per kilogramme 

calorie—a kilogramme calorie being the amount of heat required 

to raise the temperature of a kilogramme of water 1 ^C.—whereas 

the correct result is near 427. He did the calculation in the right 

way and evidently understood ilj though his knowledge and 

understanding of the physical science of his day, and of mechanics 

especially, appears to have been very slender. The calculation in 

question, which will be more fully discussed later, was based on 

the result of the experiment of Gay-Lussac. 

Mayer’s conviction of the equivalence of heat and work, 

though confirmed by experiments, was due chielly to quasi¬ 

metaphysical fancies. Krdfte^ i.e. forces, are causes, said Mayer, 

and therefore the fundamental principle causa aequat effcctum 

must apply to them. Hence the equivalence of heat and work, 

one caused by the other. He contrasts two kinds of causes, 

namely, force and matter {Kraft und Stqff)^ or, as we should say, 

in our terminology, energy and matter. This attitude to physical 

phenomena was rather common a hundred years ago. Even 

Joule writes: ‘‘ . . . but we are not left with this argument alone 

[i.e. the argument that the powers with which God has endowed 

matter cannot be destroyed or created by human agency], 

decisive as it must be to every unprejudiced mind.”*]* 

As early as 1859 James Prescott Joule, a brewer of Salford, 

began a long sequence of experiments in most of which heat was 

• Tile specific heat of water is the unit. 

I Joule’s Collected Papers^ 1, p. 268. 
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generated in all sorts of ways, as a consequence of work done. 

This sequence of experiments constituted one of the most 

important contributions ever made to physical science. The 

best known of them is the famous water-churning experiment. 

The water was contained in a cylindrical vessel (calorimeter), 

well protected against loss or gain of heat to or from the sur¬ 

roundings, and churned by a coaxial spindle to which paddles 

were fixed radially. These passed through openings in vanes 

which were fixed to the calorimeter and extended radially from 

its cylindrical wall towards the spindle in the centre and were 

just wide enough to let the paddles pass through. The purpose 

of this arrangement was to cause as much friction as possible 

between the moving paddles and the water. Without some such 

device tlie water would have rotated with the paddles, much as 

does the tea in a teacup with the stirring spoon.^ The rotation of 

the spindle was effected by falling weights suspended by cords 

which passed over fixed pulleys and round a cylinder fixed to the 

spindle and coaxial with it. The measure of the work done was 

the product of each weight and the distance it fell (lb. weight X 

feet), multiplied of course by the number of descents. Some 

portion of the work was done, of course, in overcoming the 

friction of the pulleys, i.e. in producing heat in the bearings. 

As this failed to get measured in the calorimeter, Joule carried 

out subsidiary experiments to determine what portion of the 

work was done in producing it. In fact he experimented with 

the apparatus when the spindle and paddles were disconnected 

and subtracted the work done in this way from the total work 

done in the main experiment. He also guarded against error 

due to the small loss or gain of heat to or from the surroundings 

and even estimated the rather small amount of work done to 

produce the sound emitted by the apparatus.. A certain part of 

the work was done in giving the w'eights the velocity they 

acquired in descending. This was duly taken into account. He 

measured the heat generated in the calorimeter by 

(Mass of water in lb.-fwater 1 (Rise in temperature! 

\ equivalent of containing vessel j | in Fahrenheit degrees j 

and found for the equivalent the value 772. 

♦ The apparatus was, and probably still is, in the museum at South 
Kensington. 

B 
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This type of experiment was repeated by the great American 

physicist, Henry Augustus Rowland (1848-1901),* * * § with one very 

great improvement in the mode of carrying it out. Instead of 

causing the paddles to revolve and keeping the calorimeter fixed, 

the calorimeter was made to revolve at a steady rate by a small 

steam engine, the rate being adjusted so that the weights and 

paddles, which tended to hinder the rotation, remained at rest. 

With this procedure no heat was generated in the bearings of 

the pulleys and the whole system of weights, pulleys, spindle 

and paddles remained at rest. He also caused the heat to be 

generated at a greater rate, thus reducing the gain or loss of 

heat from or to the surroundings. Joule himself thought of this 

in his later experiments. Rowland expressed his temperatures on 

the ideal gas scale (i.e. Kelvin^s work scale) while Joule merely 

gave the readings of his mercury thermometers. The American’s 

mean result was, in terms of the particular units he used, 

427*52 at 14*6“C. He gave the value of the gravitational 

intensity at Baltimore, where his experiments were conducted, 

as 9*8005 metres/sec.^, i.e. 980*05 cm./sec.^,*}* which makes 

Rowland’s result almost 4*19 x lO*^ ergs per 14*6° small 

calorie. J 

After correcting Joule’s thermometer, Rowland found, as the 

best result he could arrive at from Joule’s reports of his experi¬ 

ments, 426*75 as compared with Rowland’s own 427*52; 

impressive evidence of Joule’s accuracy.§ Joule carried out an 

immense variety of experiments which cannot be described here. 

He generated heat by compressing air, by electric currents in 

• Proc. American Academy', 15, pp. 72—200 (1880), and 16, pp. 58—45 

(1881). 

j This is an important datum. Had the experiments been carried 

out near the equator where the gravitational intensity, g, is only about 

978 cm./scc.^j the weight of a kilogramme would have been less in 

proportion and would have meant something different from what it did 

in Baltimore. 

J RowlancUs units were the kilogramme weight, metre and centi¬ 
grade degree. 

§ 1 have spoken of Rowland correcting Joule’s thermometer. This 

expression may mislead. In Joule’s day thermometry was very imper¬ 

fectly understood and his temperature readings were in terms of the 

arbitrary scale of his mercury thermometer, though these were taken 
with meticulous care. 
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wires, and he used other liquids besides water in the churning 

type of experiment. In the course of his experiments with 

electric currents he discovered the law, named after him, that 

the rate of generation of heat in a wire is proportional to its 

resistance and to the square of the strength of the current 

flowing in it. 

Two other investigators deserve mention: A. Golding and 

G. A. Him. The former, who was the chief engineer of the city 

of Copenhagen during the time when Joule was in full activity, 

convinced himself of the equivalence of heat and work on the 

ground that, as he expressed it, forces are spiritual in their 

nature and therefore cannot be destroyed. He claimed to have 

received his inspiration from d’Alembert’s Traiti de Dynam- 

ique* published a hundred years earlier, and he made an estimate, 

not a very good one, of the mechanical equivalent, on the basis 

of experiments. G. A. Him was also an engineer and belonged 

to Colmar in Alsace. He carried out a number of interesting 

experiments, in one of which he estimated the work done, and 

the corresponding amount of heat consumed, by a steam engine. 

Neither Colding nor Him achieved the extraordinary precision 

of Joule 5 but their work confirmed that of the Englishman and 

was important in helping to bring about the general recognition 

of the equivalence of heat and work. 

PRINCIPLE OF CONSERVATION OF ENERGY 

Dr. Thomas Young suggested the term ENERGY for one half 

of the vis viva^ that is for what we now term KINETIC ENERGY 

(vis viva was defined to be (mass)x (velocity)* )5 hence the term 

POTENTIAL ENERGY, suggested by Rankine for anything which 

was not in fact energy (i.e. kinetic energy), but convertible into 

it and therefore potentially energy. The notion of energy, in a 

sense near to the present-day one, began to emerge with the 

PRINCIPLE OF CONSERVATION OF FORCE (Prinzip der Erhaltung der 

Kraft) of Hermann von Helmholtz (1821-1894) but the term 

“energy” in this larger sense was first used by Rankine (1854) 

♦ One of the greatest contributions to mechanics during the eight- 

eenth century and a fine source of inspiration. 

f H. Helmholtz: fVissenschaftliche Abhandlungen, 1, p. 12. 
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and adopted by William Thomson (Lord Kelvin).* Helmholtz 

was influenced partly by the failure of all efforts to produce a 

perpetuurn mobile and partly by the belief that the phenomena 

of heat, like all inorganic phenomena, were mechanical. The 

perpetuum mobile is any device which, if for the moment we 

assume its possibility, can do work for nothing—a steam engine, 

for example, which could carry on without the supply of fuel. 

There is a story of a Viennese clockmaker who claimed to have 

devised a perpetuum mobile. He made a clock which continued 

to go and to be a satisfactory time-keeper while seemingly 

receiving no assistance from without. It was never wound up^ 

had no visible connection with anything outside it and no per¬ 

manent changes occurred within it but only those which con¬ 

stituted the motions of its mechanism. It was of course only a 

rather good simulation of something which did work for nothing. 

It did in fact receive assistance from outside, since it was kept 

going by the upward and downward motion of a barometric 

column of mercury which was harnessed to its mechanism. 

The meclianical view suggested to von Helmholtz that the 

various forms of ‘‘forcefor example heat, or the energy (if I 

may use the present-day term) exemplified by a charged con¬ 

denser, were just forms, not then very obvious, of mechanical 

energy. Indeed heat was suspected to be identical with the 

kinetic energy of the small particles (molecules) of the hot body. 

The charged condenser, or Leyden jar, was thought to have the 

strain type of energy (potential energy) such as that of a com¬ 

pressed gas or a stretched spring. When the jar is discharged an 

equal or equivalent amount of heat, i.e. kinetic energy, is 

generated in its place. This attitude was reinforced in the mind 

of von Helmholtz by the study of purely mechanical problems, 

i.e. pi'oblems concerning the motion of material bodies under the 

influence of forces (planetary motion for example) and un¬ 

associated with thermal or other effects not obviously mechanical. 

In such problems, as von Helmholtz was aware, there is some- 

* Macquorn Raiikinc; “Outlines of the Science of Energetics,” 

Edinburgh Journal (2), 2, p. 120 (1855). I feel that Rankine has never 

received the full credit due to him in connection with the energy prin¬ 

ciple and its application in thermodynamics. No doubt he was rather 

overshadowed by the contemporary giants, Helmholtz, Thomson and 
Clausius. 
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thing which is conserved and which we now describe as the sum 

of the potential and kinetic energies of the mechanical system. 

It was not quite so obvious as this to von Helmholtz. This con¬ 

served mechanical something must have been presented to him 

originally in the form of a difference, T—W (7’ ^ kinetic 

energy and W = force function); but he wrote JV sls — F and 

thus had a conserved totality T + F, 

Thus a fundamental principle was recognized as the outcome 

of the experimental labours of Joule, Him and others and the 

theoretical studies of von Helmholtz and many of his con¬ 

temporaries: the PRINCIPLE OF CONSERVATION OF ENERGY. A 

simple illustration is provided by a freely falling body. While 

descending, work is done on it by the force which is called its 

weight. This is measured by the product of the mass of the body 

and its acceleration (in the present illustration it is the familiar 

g). When the body has descended through the vertical distance 

A, the amount of work done on it by its weight is therefore 

mgh. 

This measures the amount of potential energy the body has 

lost. When work is done some form of energy is always used up 

and this is measured by the work done at its expense. In place 

of it an equal amount of energy is produced elsewhere and fre¬ 

quently in some other form. In the present illustration a 

quantity of KINETIC ENERGY equal to 

\Tnv^ 

is produced and the principle of conservation is expressed by 

= mghy 

or 

{Increment of 1 _ f Decrement of \ 

kinetic energy j \ potential energy j 

and therefore 

Total energy remains constant. 

When the body strikes the ground the kinetic energy is lost; 

but the equivalent quantity of heat appears in its place. 

For a long time after the experiments of Joule ujork and 

energy were (rather naturally) identified. Indeed they still are 

by many (or most) physicists. This seems to be the wrong 

attitude. It is rather better to speak of energy as capacity for 
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doing worky but even this attitude is not quite the right one, 

since lliere are the strongest reasons for associating MASS 'with 

energy^ so tliat energy is more substantial, as it were, than work 

or the capacity for doing work. We may say, however, that work 

is the measure of the energy used up in doing it, as it is also of 

the energy generated in consequence. In conclusion, energy is 

conserved and one of its most important forms is heat. 

Heat is still frequently measured in terms of such units as 

the amount of heat required to raise a gramme of water 1 °C. 

in temperature, or the amount of heat required to melt a 

gramme of ice, and before its relationship to work was known 

there was no other way of measuring heat. The significance of 

the EQUIVALENT (mechanical equivalent or Joule’s equivalent) is 

now clear. It means the number of units of work that generate 

one (old style) unit of heat, or alternatively are done at the 

expense of one such unit, 

THE FIRST LAW OF THERMODYNAMICS 

In the form it takes when applied to thermal phenomena the 

energy principle is called the first law of thermodynamics, 

which is just the English equivalent of Clausius’ erster Hauptsatz 

der mechanischen Wdrmetheorie,^ Its first application was, 

naturally, to gases; since their properties are much simpler than 

those of liquids or solids. 

To a first approximation the product of the pressure and the 

volume of a fixed quantity of a gas remains constant, so long as 

the temperature of the gas is kept constant (Boyle’s law), so that 

pv = function of ty (I—1) 

if t means the temperature. The precise nature of the function 

depends on the conventions and on the scale adopted for measur¬ 

ing the temperature, and here must follow some explanations in 

order that this sketch of the development of thermodynamics 

may be intelligible. It is convenient to use the product pv 

(pressure x volume) of a fixed quantity of some chosen gas (air 

for example) as a measure of the temperature of the air itself and 

• R. Clausius: “Ueber die bewegende Krafte der Warme und die 

Gesetze, welche sich daraus fiir die Warmelehre selbst ableiten lassen, ” 

Pogg, Ann., 79, pp. 368, 500 (1850). 
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of bodies which are in temperature equilibrium with it. And it 

seems desirable,/br a little while^ to ignore the fact that Boyle's 

law is not strictly acciirate^ or alternatively let us imagine we 

have chosen some rather ideal gas, instead of air, which obeys 

Boyle's law perfectly. vVe define the measure of temperature by 

/Increment ofl _ /Some conventional! pncrementl 

\ temperature j \ positive constant j I I 
(1-2) 

It happens, very happily, that when we make this definition 

the basis of our temperature measurements, they are in quite 

close agreement with those made with almost any gas. This is 

merely an unusual way of stating the old law of Charles, Gay- 

Lussac and John Dalton. It amounts to the same thing as saying 

that, if fixed quantities of any two gases have the same value of 

pv at some given temperature, they will have the same value of 

pv at any other temperature. The law is of course not exactly 

true^ but rather near the truth under moderate temperatures 

and pressures. 

The definition (I—2) may be written 

dt Ad{pv), 

The letter d is the symbol for increment. This formula is 

obviously equivalent to 

+ r = Apv 

where ^ is a constant, positive or negative, as you like. It is 

usual to use the letter R to mean \ jA^ so we get 

pv = R{a + t). (1—5) 

R is called the gas constant for the quantity of gas involved and 

the constant a simply fixes the zero from which the temperature 

is measured. We shall often suppose it to be chosen so that the 

temperature, t, of melting ice is zero. When we do this a is 

very nearly equal to 275^^0. Such an equation as (I—5) is called 

an EQUATION OF STATE. It is nearly true (Charles' law) for all 

gases and it is very convenient to write it in the form 

pv = RT, (I—5a) 

where T means the temperature as measured from a zero about 

275® lower than the temperature of melting ice (a + f = T), 

It is characteristic of an equation of state (like I—5) that if 
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*we are told the values of any two of the variables of state, e.g. 

those of V and then the equation obviously enables us to find 

that of the remaining one, p. 

Every material has an equation of state involving the temper¬ 

ature, pressure and volume, though it is seldom possible to give 

it a simple analytical expression^ but it can always be expressed, 

with any desired approach to precision, by graphical methods. 

I SC* 

—^Volume 

A good illustration of tliis is provided by the work of Thomas 

Andrews (1815-1885) who, in the years between 1865 and 

1869, carried out some remarkable experiments on carbon 

dioxide to which I shall have occasion to refer again. What he 

did was to subject the carbon dioxide (liquid, vapour or gas) to 

some known (i.e. measured) temperature, and while it was 

maintained at this known constant temperature he measured 

the volumes it occupied at various measured pressures. He 

repeated this for a whole range of temperatures. 
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In this way he obtained a number of graphs (Fig. I—1). 

Each of them is called an isothermal and collectively they 

constitute, in effect, an equation of state. If for example a par¬ 

ticular pressure and a particular volume are specified, we can at 

once find the corresponding temperature. We simply draw, on 

the diagram, a horizontal line corresponding to the specified 

pressure and a vertical one corresponding to the specified 

volume. Their intersection will be on, or sufficiently near to, 

one of the pv curves (isothermals) to give the required tempera¬ 

ture, provided enough of the isothermals have been constructed. 

The energy in a given quantity of some material is called its 

INTERNAL ENERGY and is fixed or determined by its pressure, 

volume and temperature. It is in fact fixed by any two of these, 

since any two fix the value of the third one. 

This statement needs amplification. It assumes that the only 

interference to which the material is subjected is due to some 

change in these variables. We might however imagine the 

material to be subjected, for example, to a magnetic field, in which 

case its internal energy might be altered, even though its pressure 

and volume remained unchanged. But on admitting such a new 

physical agency we should of course enlarge the equation of state 

to include, in addition to pressure, volume and temperature, at 

least the magnetic field intensity, or possibly the intensity of 

magnetization of the material, as a further variable of state. 

In the special case of a gas it happens that its internal energy 

is determined by its temperature alone—very nearly. This is 

what the old experiment of Gay-Lussac indicated and what 

justified Mayer’s way of computing the mechanical equivalent. 

Another characteristic of gases is the (approximate) constancy (at 

ordinary temperatures) of their specific heats at constant pressure 

and at constant volume, and it has long been usual to use the 

term ideal gas or perfect gas for a hypothetical body which 

conforms exactly to the following three laws: 

{a) Boyle’s law. 

{b) The internal energy depends on the temperature only 

(Gay-Lussac and Joule). 

{c) Constancy of specific heat at constant volume (Regnault 

and Clausius). 

No apology is needed, I think, on account of its great historical 

and intrinsic importance, for describing Joule’s form of Gay- 
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Lussac’s experiment in some detail and for explaining how {b) 

is inferred from it. Two strong vessels, A and B (Fig. I—2), were 

enclosed in a calorimeter and connected by a tube provided with 

a stop-cock, so that A could be shut off from B when desired. 

The calorimeter was shaped so as to fit as closely as possible 

round the vessels. This enabled the two vessels and the con¬ 

necting tube to be completely immersed in a very small quan¬ 

tity of water, so as to make the experiment as sensitive as 

possible. Initially one of the vessels, A^ was filled with gas (air) 

to a moderately high pressure (22 atmospheres) while the other 

one, jB, was exhausted. The water in the calorimeter was stirred 

and the temperature taken with a sensitive mercury ther¬ 

mometer. The stop-cock separating A from B was then opened 

so that the air expanded into the previously exhausted B, Once 

again the water was stirred and the temperature taken. Joule 

could observe no change.^ We can draw an inference from this 

experiment by applying the first law of thermodynamics, namely, 

AQ - A/F== A£/. (1—4) 

The meaning of the symbol A may be described in the following 

way: generally I shall use the letter Q for the quantity of heat 

• He did not omit to try the experiment with A and B in separate 

calorimeters. With this modified arrangement he was able to observe 

an appreciable lowering of the temperature of the water round A and 

a corresponding rise of that round B. The explanation is fairly obvious. 
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communicated to a body (or system of some sort) and it is con¬ 

venient to regard it as communicated in successive small 

portions. Each of these is represented by AQ and in equation 

(I—4) we are assuming that it is expressed, or measured, in 

terms of the same unit as is work. This of course is justified by 

the equivalence of heat and work. Before the equivalence had 

been established quite different units were, very naturally, used 

to measure heat on the one hand and work on the other, and 

when the equivalence was experimentally demonstrated it was 

of interest and importance to determine the ratio of, say, the 

small calorie to the erg (i.e. the number of ergs equivalent to a 

small calorie—mechanical equivalent of heat). But of course 

the equivalence having once been established, the sensible thing 

is to drop the inconvenient equivalent and to measure both 

things in terms of one unit—e.g. the erg. Just as in the case of 

heat (Q or AQ), so in the case of the work done by a gas or other 

body in expanding against an opposing pressure we use a letter, 

7F, for it and think of it (usually) as done in successive small 

amounts A/F. Similar observations apply to U and AZ7. The 

former means the internal energy of the substance and the latter 

represents a small increment of the internal energy. The mean¬ 

ing of (I—4) is then as follows: a quantity of heat, AQ, has been 

given to a body and part of it used up in doing the work A 

involved in the expansion of the body against some external 

pressure. The balance left over represents the energy, AC7, 

which stays in the body and constitutes an addition to its internal 

energy. 

Sometimes (I—4) is written as 

dq - dW:=: dU, 

This happens when it is convenient, or necessary, to deal with 

infinitesimally small quantities. It should be noted that on 

occasion work is done on a body instead of by it. When this 

happens we continue to use (I—4); but we associate a minus 

sign with A/F. Thus if 1/10 of a unit of work were done on 

the body, we should say bkW ^ — 1/1 Oj just as one might say 

on receiving £1 that one had spent minus £1. 

Now in Joule’s experiment AQ was zero, because the water in 

the calorimeter surrounding the gas did not change in tem¬ 

perature and did not consequently give any heat to, or receive 
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any heat from, the expanding gas. Further was also zero, 

because the gas expanded into empty space. There was nothing 

on which it could exert any force or pressure. Thus AQ and 

Abeing both zero, equation (I—4) tolls us that 

Af/= 0. 

Moreover the gas cannot have changed in temperature, since 

this would have shown itself by a change in the temperature of 

the surrounding water. The result of the experiment was that 

the gas occupied a larger volume at the same temperature and 

without any change in its internal energy. The conclusion must 

therefore be that, so long as the temperature of a gas continues 

unchanged, so does its internal energy, even if the volume of the 

gas sliould change. In fact the internal energy can only change 

wlien the temperature changes. It is, as we say, a function of 

the temperature only. This is what Joule found for air. A more 

sensitive type of experiment does however indicate a slight 

dependence of the internal energies of gases on their volumes, 

even when their temperatures remain unchanged. 

Wo can now understand Mayer’s calculation. What it is 

desired to find is the number of units of work—ergs for example 

—which are equivalent, shall we suppose, to the unit of heat 

represented by the quantity of heat which raises the temperature 

of one gramme of water from 14'5°C. to 15*5°C. Let us first 

examine the difference between the specific heat at constant 

pressure and that at constant volume, while continuing to 

measure heat in work units—in ergs for example. Imagine a 

small quantity of heat given to a gramme of air at constant 

pressure while its temperature rises some small amount, dt. 

The heat communicated to the air must be^ by definition of the 

specific heat, 

Cp X dt. 

Therefore 

dQ CpX dt 

and the work the gas (or air) does in expanding is measured by 

multiplying the pressure, py by the small volume increment, dvy 

so that 

dW == /? X dv. 

We have therefore 

c X dt p X dv ^ dU, 
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But dU depends only on dt^ as we have learned from the result 

of the experiment of Joule and Gay-Lussac. If we were to raise 

the temperature by the same amount, dt, while keeping the 

volume constant, the increment, <iC/, of the internal energy 

would be just the sarne^ it is indifferent to volume changes. So 

we have 

X dt ~ dU 

and 

Cp X dt — p X dv ~ X dt. 

But clearly, at constant pressure, by (I—5) 

and consequently 

p X dv = Rdt 

or 

Cp X dt — R X dt := X dt 

(1-5) 

This is true wdien we measure heat in terms of the same unit as 

work. If now we were to measure heat, that is to say Cpdt and 

c^dty in terms of the small calorie instead of the erg, then we 

should have to divide the right-hand side of (I—5) by the 

number of ergs corresponding to a calorie to keep the equation 

correct—by the mechanical equivalent J in fact—and so we get 

the equation 

c, - c„ = RIJ. (I—5a) 

Experiment gives for air 

Cp = 0*259, 
c, = 0*169, 

approximately as measured by the ordinary small calorie, i.e. 

the amount of heat which raises a gramme of water 1°C. The 

gas constant, R^ for a gramme of air is equal, very nearly, to 

2*9 X 10® when expressed in terms of ergs per °C. So we find 

2-9 y 10® 
0*259 - 0*169 - 

/ ’ 

which yields for the mechanical equivalent, /, the value 

4*14 X 10’ergs/cal. 

An important point should be noted here, the neglect of which 

in the past has led to much futile argument and misunder¬ 

standing. In the very simple calculation just given (Mayer's 
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calculation) dW has been taken to be correctly expressed by 

pdv. This means, in effect, that the expansion, dv^ has been 

assumed to take place very slowly. It is only under this condition 

that the p in pdv is the same p as occurs in the equation of state 

(I—3). The reason for this is very simple. The pressure, p^ as it 

appears in the equation of state is measured while the gas is at 

rest, and in the pdv the pressure, p, can only have the same 

meaning as the p in 

pv = R{a 4- t) 

if the expansion dv takes place so slowly that the gas may be 

regarded as practically at rest. We shall better appreciate the 

significance of the reversibility, which is so prominent in 

certain thermodynamical arguments, if we bear this in mind.* 

* Fide Carl Neumann: Forlesungeri ueber die Mcchanische Theorie 
der WarmCj § 15, p. 43, and § 37, p. 110 (Leipzig, B. G. Teubner, 

1875), 



CHAPTER TWO 

ANOTHER ASPECT OF THERMAL PHENOMENA 

Carnot’s principle 

In order to appreciate the great contributions which Rudolph 

Clausius (1822-1888) and William Thomson (Lord Kelvin) made 

to thermal science, it is necessary to study the work of Sadi 

Carnot (1796-1852) and E. Clapeyron (1799-1864), to whom the 

subsequent progress of thermodynamics owes so much. The 

former of these published, in 1824, a short treatise entitled 

Reflexions sur la Puissance Motrice du Feu et sur les Machines 

propres a Ddvelopper cette Puissance, The investigation described 

in this little book is purely theoretical and led to one of the most 

fundamental principles of physical science: Carnot’s principle, 

which is effectively the SECOND LAW OF THERMODYNAMICS 

(Clausius’ zweiter Hauptsatz der mechanischen Wdrmetheorie). 

The principle emerged before the first law and some quite 

important and experimentally verifiable consequences can be 

derived from it without any use, or even knowledge, of the first 

law. It is an instance of a sound principle inferred from faulty 

premisses. Carnot’s premisses were indeed generally approved 

by the men of science of his day, and though faulty (one of them 

at any rate) they do appear to necessitate the result he found. 

He was interested at first in the practical question of the EFFI¬ 

CIENCY of steam engines5 but was inevitably drawn to the more 

entrancing problem of the efficiency of heat engines in general. 

He attacked this problem by the device of the REVERSIBLE CYCLE, 

which has continued to be the most prominent feature of text¬ 

books on thermodynamics ever since. 

His picture of a heat engine was like that of a water mill. 

The heat descended, as it were, from a higher level (temperature) 

to a lower one and was not used up (according to the views of 

that day) any more than is the water which drives the mill 

wheel. On page 28 of his famous treatise we read: ‘ ‘ La puissance 

motrice d’une chute d’eau ddpend de sa hauteur et de la quan- 

31 
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tit6 du liquidej la puissance motrice de la chaleur ddpend aussi de 

la quantitd de calorique employd, et de ce qu’on pourrait nom- 

mer, de ce quo nous appellerons en effet la hauteur de sa chute, 

c’est a dire de la difference de tempdrature des corps entre 

lesquels se fait Tdchange du calorique/* 

His proof of the principle is very simple. It is most easily 

presented in terms of the mill wheel analogy which was in 

Carnot’s mind. We imagine two mill wheels, each taking water 

from the same upper level and rejecting all of it at a common 

lower level. Now imagine one (or both) of them to be exactly 

REVERSIBLE. That is to say, the wheel, if made to turn once 

round in the reverse sense, would take the same amount of 

water from the lower level and eject it at the upper level as 

would be transported from the upper level to the lower one if it 

turned once round in the direct sense. In fact, let us suppose 

that all the operations of the mill wheel are literally reversible 

and that nothing happens w^hen it turns in one direction which is 

not undone when it turns in the other direction. This means, 

among other things, complete absence of friction^ since friction 

cannot be undone. Let us suppose that, while in the direct 

operation of the mill wheel the work that it does consists usually 

in raising a weight, or weights, one of the wheels is arranged to 

drive the other (reversible one) backwards, in such a way that 

the same amount of water which descends in driving it is put 

back by the reversed one. If now the directly functioning mill 

wheel were able to do more work in one revolution, say, than is 

needed to drive the reversed one, we might use the combination 

to raise a weiglit. Thus we should have in this combination of 

two mill wheels a perpetuum mobile. The impossibility of such 

a thing was Carnot’s chief premiss. The driving mill wheel 

cannot therefore do more work than is just sufficient to drive the 

reversed one. In fact its efficiency cannot be greater than that 

of the reversible wheel and it follows that all reversible mill 

wheels must have the same efficiency when they are working 

between the same water levels. We might take as a measure of 

efficiency the work done per gallon of water transported from 

the upper to the lower level. 

All this applies, ftom Carnot’s point of view, to heat engines. 

If they are reversible they must have the same efficiency when 

working between the same temperatures. The nature of the 
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particular working substance, for example, whether air, steam or 

what, is quite irrelevant. All reversible heat engines working 

between the same temperatures do the same amount of work 

when supplied with the same quantity of heat. This is CARNOT^S 

PRINCIPLE. 

In order to translate the water wheel analogy more completely 

into terms of the reversible heat engine we imagine, as did 

Carnot, a Cylinder provided with a piston which can move 

smoothly in it, that is without friction. The cylinder contains 

the working material, wliich miglit, for example, be air. A 

source of heat at the higher temperature, say is brought into 

contact with the base of the cylinder. This is imagined to be 

made of highly conducting material, while the cylindrical wall 

and the piston are thought of as perfectly non-conducting. The 

piston moves outwards very slowly. It must be like this or the 

engine could not be reversible. We are quite unconcerned with 

the nature of the machinery which is driven by the backward 

and forward motion of the piston, except that we insist on it being 

frictionless and arranged, it is convenient to suppose, so that it 

can raise a weight. During the outward motion of the piston 

heat is supplied to the working substance, in the cylinder, at the 

temperature This part of the cycle of operations is repre¬ 

sented by ah in Fig. II—1a. From b to c the expansion con¬ 

tinues^ but now it is adiabatic. That is to say, heat is not being 

communicated to (nor abstracted from) the working substance, 

the base of the cylinder being covered, we suppose, by non¬ 

conducting material. The next stage is an isothermal com¬ 

pression at the lower temperature, the base of the cylinder 

being in contact with a body whose temperature is During 

this part of the cycle, which is represented by cd (Fig. II—1a), 

heat is given out by, or abstracted from, the working substance. 

According to Carnot, but not in fact, the amount of heat given 

out at the temperature is just the same as that received at 

the temperature Finally the compression is continued 

adiabatically, as represented by da^ and the c^xle completed. 

The area of the closed figure abed is equal to the work done by 

the engine during one cycle.* 

Carnot's principle is quite sound, notwithstanding the un- 

♦ See, for example, Dr. Barton’s Text Book on Heat (Longmans, 

Green 8c Co.). 

C 
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tenability of his assumption of the conservation of heat or caloric, 

and some remarkable and correct results w'ere inferred from it, 

which are quite independent of the truth, or falsity, of the 

equivalence of heat and work. This appears in the work of E. 

Clapeyron* who gave Carnot^s theory a good and very simple 

mathematical form, and later in that of the brothers James and 

William Thomson. 

clapeyron’s theory 

The method of Clapeyron was to apply Carnot’s principle to a 

very small cycle, abed in Fig. II—1b. It was in fact he who first 

applied the graphical method (no doubt suggested by Janies 

Watt’s indicator diagram) to Carnot’s theory, a method which 

has been, together with the reversible cycle, a prominent feature 

in thermodynamical text-books during the past hundred years. 

The representative closed line abed in Fig. II—1b of such a small 

cycle is obviously a parallelogram, since the opposite isothermals 

(and opposite adiabatics) are so near together that their directions 

cannot deviate. Its area is equal to 

(Vertical height) x (Horizontal breadth) 

or as we may describe it, 

(Pressure increment) X (Volume expansion). 

• E. Clapeyron: “Memoire sur la puissance motrice du feu”. Journ, 
de Vecole poly^technique, 16, p. 170 (1834). 
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This firea, as we have seen, is equal to the work that a Carnot 

reversible engine does when it completes the cycle ahcd of Fig. 

II—”1r. Since the efficiency of such an engine is measured by 

work done per unit quantity of heat supplied we may express it 

in the form 

(Pre^ssure increment) X (Volume increment) 
--------„ p ff j ^ f y 

(Quantity of heat, supplied) 

It is clear, I think, that when, as we are now supposing, the 

temperature difference is very small, the efficiency is projx)rtional 

to it and so, by Carnot’s principle, it must be equal to 

(jL X (Temperature difference), 

where [jl depends only on the temperature in some way or 

another. The factor jx is called Carnot’s function, though this 

name is sometimes given to its reciprocal. When we combine 

these statements we have 

(Heat supplied) ™ 
1 (Pressure increment) 

g (Temperature difference) 
X 

(Increase in 

volume) 

This is Clapeyron’s famous formula. It is usually written 

or, as I prefer it, 

clQ = _ civ, 
V- K 

clQ = C^dv, (II—1a) 

in which C means the same thing as l/g. 

When the heat is supplied during the evaporation of a liquid 

(or melting of a solid) it is then the so-called latent heat and 

the formula becomes 
(Pressure 

increment) 
(Latent heat) = (Increase in volume) x Cx --, 

(Temperature 
dilference) 

more conveniently written 

^ (^vapour ^liquid) ^' (II-lB) 

The increment dp is here the increase in the saturation vapour 
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pressure corresponding to the temperature rise dt. A similar 

formula applies, mutatis mutandis^ to the fusion of a solid. It 

must once again be emphasized that Carnot’s principle requires C 

to be di function of the temperature only. 

A REMARKABLE PREDICTION 

James Thomson made use of this fact and was thereby led to 

one of those remarkable predictions which have marked the 

course of the development of physical science.* He determined 

the numerical value of C (not the nature of the function) corres¬ 

ponding to the temperature of melting ice by using the experi¬ 

mental data for water (liquid) and its vapour and substituting in 

II—1b. The value of C thus obtained is of course equally good 

for the fusion of ice and he used it to calculate dpjdt for the 

equilibrium state of ice and water in the same temperature 

neighbourhood. Now since L (latent heat of fusion of ice) is 

positive, but t’g — iq is negative (volume of water produced is 

less than tliat of ice melted), Thomson calculated a negative value 

for dpjdt. For plus dp (pressure increased) there will therefore 

necessarily be a minus dt (equilibrium temperature, i.c. melting 

point, lowered). The amount of this depression (per one atmo¬ 

sphere rise in pressure) Thomson found to be equivalent to 

0*0075 of a degree centigrade. It was tested experimentally by 

his brother William (Lord Kelvin), whose experimental value 

differed only by about 0*0002®C. from the predicted one. 

SCALES OF TEMPERATURE 

Obviously there is some advantage in replacing a + which 

appears in I—3, by the single letter, T, as we did in I—3a. The 

latter represents the temperature as measured from the so-called 

absolute zero. It is even more important and intellectually 

satisfying to define, if possible, a temperature scale in a way 

which is independent of the peculiarities of any thermometric 

substance or property and one of Kelvin’s strokes of genius was 

•James Thomson: “Theoretical Considerations on the Effect of 

Pressure in Lowering the Freezing Point of Water,” Trans, Roy. Soc. 

of Edinburgh, 16, Part V, p. 575 (1848-1849). This paper was 

communicated by his brother William Thomson. 
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his appreciation of the fact that Clapeyron’s formula enables this 

to be done. Why not, one may ask, define the scale on which t is 

measured by laying down that C shall be a positive constant? 

In other words, why not define the measure of the temperature 

difference between two temperatures, which are very near 

together, in such a way that it is proportional to the efficiency 

of a Carnot engine which uses the two temperatures? This was 

actually proposed by Kelvin in 1848* when he was still clinging 

to the principle of conservation of caloric. I like to call this scale 

the EFFICIENCY SCALE. 

No use has been made so far of the equivalence of heat and 

work; but when we do make use of it and apply Clapeyron's 

formula (II—1a) to a gas—which means that we identify ciQ 

with p X dv—we find that Carnot’s function, C, is identical 

with the ideal gas temperature, T*. Having defined one scale by 

taking C to be constant, Thomson, after the victory of the 

equivalence of heat and work, defined another, now often called 

the WORK SCALE, which in effect makes C a measure of the 

temperature.I The work scale has a so-called absolute zero 

(about 275° below the temperature of melting ice) being in fact 

identical with the ideal gas scale. A gas thermometer, especially 

one containing hydrogen, which approximates closely to the ideal 

gas, gives work scale temperatures approximately and needs only 

small corrections to enable work scale temperatures to be effec¬ 

tively reached. The efficiency scale temperature is proportional 

to the logarithm of the work scale temperature and has its zero 

therefore at minus infinity. 

ACHIEVEMENTS OF CLAUSIUS AND THOMSON 

It is difficult in these days to appreciate what a formidable 

problem the reconciliation of the equivalence of heat and work 

and Carnot’s principle presented to the physicists of the eighteen- 

forties. Joule indeed suggested that the principle should be 

abandoned, while Thomson was equally convinced of its sound¬ 

ness. Clausius appears to have been the first to realize that it was 

• W, Thomson: “On an Absolute Thermometric Scale,” PJdl. Ma^., 

55, p. 513 (1848). 

f “On the Dynamical Theory of Heat, Part V. Thermo-electric 

Currents,” Trans. Ilqy. 5oc., Edinburghy 21, p. 125 (1854). 
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only Carnot's premisses which were in(X)nipatible with the results 

of the experiments of Joule and his contemporaries and he suc¬ 

ceeded (as did Thomson independently and possibly just as early) 

in finding new premisses which led to Carnot's result without 

being in conflict with that of Mayer and Joule. Clausius adopted 

the principle of the equivalence of heat and work and combined 

it with the axiom that heat cannot pass of itself irom a colder to 

a hotter body. This axiom is quite true of course5 but it is 

impossible to apply it to the problem in hand without raising, as 

we shall see, a rather strange difficulty. Clausius had to give it 

a somewhat sophisticated form: he imagined two reversible 

cycles of the Carnot type—I prefer to call them ‘‘reversible 

engines"—^each doing the same amount of work in one cycle 

of operations5 but one of them taking, if possible, less lieat from 

the source at the higher temperature, /g? during one cycle than 

does the other. Imagine now the less efficient engine (which, by 

hypothesis, is reversible) to be driven backwards by the more 

efficient one in such a way that each performs its cycle in the 

same time. The net amount of work done by the two of them 

during one cycle of the comj)Ound engine, which they constitute, 

is of course zero^ but the reversed one now transfers more heat 

from the sink to the source than is transferred in the opposite 

sense by the driving engine. So we have an isolated physical 

process the sole result of which, on completion of one cycle shall 

we say, is the passage of heat from the sink at the lower tempera¬ 

ture to the source at the higher. The axiom adopted by Clausius 

forbids this, so he reaches the same conclusion as did Carnot. 

And now we come to the difficulty which has been mentioned. 

When the cyclical processes (or engines) are both reversible, 

transference of heat from a higher to a lower temperature is just 

as impossible as transference in the opposite sense 5 since if it 

were possible the reversal of the whole process makes the 

transference of heat from the lower to the higher temperature 

possible. Clearly it cannot be the impossibility of the transference 

of heat in a specific direction which is relevant in discussing the 

efficiency of reversible engines. I am thus led to the following 

amendment of the axiom of Clausius: In any reversible cyclic 

process^ in which the net amount of work done during a cycle is 

zero^ there can be no transference of heat. 

It is noteworthy that Carl Neumann (in the first really 
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rigorous account of thermodynamics, published more than 

twenty years before Planck wrote his Thermodynamik) sug¬ 

gested^ the following axiom: The results of processes occupying 

some time internal can never be such that mere contact of two 

bodies will cause them to be reversed. 

Leaving this for the reader to reflect about, I shall pass on to 

Thomson’s axiom, which is better than that of Clausius. He 

assumes the impossibility of a self-acting engine which can do 

work by cooling a source of heat below the lowest temperature in 

the surroundings. It is a very good axioms but the one adopted 

by Max Planck (1858-1947) is perhaps the best of them all. It 

is the axiom of the impossibility of the perpetuurn mobile of the 

second kind—a name due to Wilhelm Ostwald (1855-1932). It 

may be stated as follows: It is impossible to construct a machine, 

or device, which 

{a) raises a weight, 

{b) takes heat from a single source of heat, 

(c) works in a periodic (or cyclic) way, 

and does nothing else, i.e. it brings about no other changes 

except the raising of the weight and the abstraction of heat from 

a source. This axiom leads very simply to Carnot’s principle. 

For suppose that, of two reversible engines woi'king between the 

temperatures t^ and one of them, is more efficient than 

the other, and suppose further, to simplify the argument, that 

both take the same quantity of heat, Qg? fi'om the source, at ^2? 

during a cycle. A then does more work during a cycle than does 

B—since by hypothesis it is more efficient and takes the same 

quantity of heat from the source during a cycle. Clearly A must 

give less heat to the sink at the temperature t-^. If noW A be 

made to drive B (assumed to be reversible) backwards in such a 

way that each performs its cycle in the same time—this is possible 

since A does more work in a cycle than does B—the source of heat 

will remain unchanged, or it will change periodically. The sink 

on the other hand will lose heat, since during a cycle B will 

abstract more heat from it than A supplies to it. The com¬ 

bination of the two engines—A driving B backwards—^con¬ 

stitutes a machine which can be applied to 

{a) raise a weight, since A does more work in a cycle than is 

needed to drive B backwards. 

♦ C. Neumann: op. c£l, § 24, p. 70. 
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Moreover 

{h) it takes heat from a single source—what, in the normal 

working of the engines, was called the sink (at the 

temperature and 

(c) it hinctions periodically and does nothing else. 

The combination of the two engines is in fact a perpetuum 

mobile of the second kind which Planck’s axiom declares to he 

impossible. 

It has been taken for granted in the foregoing proof that the 

efficiency of a reversible engine does not depend on the quantity 

of heat taken from the source during a cycle, but it is easily 

proved that this must be the case.* 

ENTROPY 

The efficiency of an engine is measured by 

Work done 

Heat supplied^ 

and if Q2 quantity of heat abstracted from the source and 

that rejected to the sink, evidently the work done in a cycle 

is equal to Qg assuming as we do that the heat is measured 

in work units^ since no change can have occurred in the internal 

energy. At the end of the cycle the working substance is in the 

same state exactly as at the beginning. This is one important 

reason for the use of a cycle of operations. Thus arrive at 

the result that the efficiency of a reversible engine is equal to 

Q2 Q\ 

Q2 
Carnot’s principle requires this to be the same for all reversible 

engines working between the same two temperatures. There¬ 

fore it is the same function of the two temperatures for any 

working substance, whether air, steam or anything else, which 

might be used to operate a heat engine. 

If we use Kelvin’s work scale the function must be 

* Fide W. Wilson: Theoretical Physics, 1, p. 292, or A. W. 

Barton: A Text Book on Hcat^ p. 286. 



ANOTHER ASPECT OF THERMAL PHENOMENA 41 

The reader will easily assure himself that this statement is in 

agreement with the definition of the work scale already given. 

Therefore 

9j == (II—2) 
Q2 2^2 

This statement is in fact closely related to Clapeyron’s formula 

(II—1). It is equivalent to 

(II—2a) 

This simple formula is the basis of the noble science of thermo¬ 

dynamics. It means this: If we choose any isothermal whatsoever, 

e.g. the isothermal xy shown in Fig. II—lA, joining the two 

adiabatics, ad and bc^ and if T be the corresponding temperature 

and Q the associated quantity of heat that must be supplied to 

the substance to change it isothermally and reversibly from the 

state X (on the adiabatic ad) to the state y (on the adiabatic bc)-^ 

the quantity QjT has the same value whatsoever isothermal we 

may select^ provided always we choose the same pair of adiabatics* 

There is another aspect of this quantity QjT. Think of any 

two isothermals which are l^iT apart (K means work scale 

temperature). Call the higher temperature T and the lower one, 

consequently, 7" — 1. Imagine them constructed on the diagram 

(Fig. II—1a) between the adiabatics ad and be. The efficiency 

of a reversible engine using these two temperatures must be 

equal to 

9 

Q’ 
where 9 is the area enclosed between the isothermals T and 

T — \ and the two adiabatics, and in virtue of II—2 

9 ^ JL 
Q T' 

so that the area 9 is equal to QjT, Temperatures VK apart 

enclose equal areas—‘each equal to QjT. 

We have now reached the great discovery of Rudolph Clausius. 

We can distinguish the different (reversible) adiabatics from one 

another in a numerical way, just as we distinguish the isothermals 

from one another by the numerical quantity temperature. Let 
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US call the adiabatic, which passes through the point corres¬ 

ponding to 0°C. and the normal pressure, the zero adiabatic, 

just as we call a particular isothermal the zero (centigrade) iso¬ 

thermal, We may suppose this adiabatic to be represented by 

ad (Fig. II—1a). We can now see that a?iy other adiabatic 

(such as be) is distinguished by the particular value of <p which 

is associated with it. In fact <p is a definite function of the state 

of the material or system, just as is its temperature, or its 

internal energy. The discovery and appreciation of this was the 

great achievement of Clausius, who gave to 9 the name entropy. 

It is the most important function in thermodynamicsf indeed 

perhaps in the whole of physical and chemical science. The 

statement 

dQ - r^/9, (II -3) 

in which dQ means a small quantity of heat communicated 

reversibly to a body or system, is the concise expression of the 

second law and thermodynamical reasoning is most conveniently 

and effectively done with its aid and with that of functions built 

up with it, such as FREE ENERGY, It has two outstanding proper¬ 

ties: {a) the sum total of the entropy within an adiabatic enclosure 

must remain constant when only reversible changes occur within 

it^ though the entropy may increase in one part of the enclosure 

at the expense of that in some other part, and ib) in any actual 

change or process—an actual process can never be reversible, 

since it is never a succession of states of equilibrium, though 

it may approach infinitely near to the limiting case of reversi¬ 

bility^ hence the validity of arguments based on reversible 

processes—the sum total of all the entropy changes must be 

positive. In other words, the sum total of entropy can only get 

bigger. As Clausius expressed it: 

Die Energie der Welt ist constant^ 

Die Entropie der Welt streht einem Maximum zu. 

Entropy will appear again in a new and fascinating guise 

(which justifies the remark about its importance) when w^e study 

the development of our knowledge of the statistical foundations 

of thermodynamics. 
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THE LATENT flEAT EQUATION OF CLAUSIUS AND ITS 

ELECTRICAL ANALOGUE 

In February 1850 Raukine read a paper to the Royal Society 

of Edinburgh which contained the following formula, the 

derivation of which can now be found in any elementary book 

on thermodynamics: 

(II-4) 

Vi and V2 respectively the volumes of the unit mass of a 

liquid and its vapour, both of these being in equilibrium with one 

another^ while Cj and Cg are their respective specific heats—not 

to be confused with specific heats at constant pressure or at 

constant volume—and L is the latent heat of evaporation.* In 

the same rnontli of the same year Clausius read a paper to the 

Prussian Academy winch contained the same result5 but he took 

the important further step of eliminating the left-hand side 

which, as the reader will recognize, is equal to LjT^ thus obtain- 

ingt 
dL L 

(II—4a) 

On substituting the values of the latent heat of evaporation of 

water and its temperature variation, dLjdT (as given by 

Regnault), he found the paradoxical result that the specific heat 

of saturated water vapour (steam) is negative.\ This means 

simply that, in raising the temperature of the vapour or steam 

while keeping it saturated^ work is done on it—more than is 

enough to raise the temperature5 so that heat has to be with¬ 

drawn. 

This explains the behaviour of the CLOUD CHAMBER (C. T. R. 

Wilson, 1897) which we shall meet with later. When initially 

saturated water vapour expands adiabatically it becomes super¬ 

saturated.^ or, if dust particles or charged ions are present, drops 

of water condense round them. 

As Clausius pointed out, some liquids, ether in particular, 

behave differently. If we start with saturated ether vapour and 

♦ Trans. Roy. Soc. Edinburgh, 20, p. 147. 

f Pogg. Ann., 79, pp. 508, 500. 

XFide the chapter on “Saturated Vapour” in Browne’s translation 

of Clausius’ work The Mechanical Theory of Heat. 
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let it expand adiabatically it is certainly cooled; but it becomes 

under saturated. The specific heat of its saturated vapour is 

positive.^ i.e. when We lower its temperature adiabatically we 

have to withdraw heat (at constant temperature) to bring it 

back into the saturated state. 

Examination candidates not infrequently write to the effect 

that, during the adiabatic expansion of initially saturated 

aqueous vapour, the vapour is cooled (which is quite correct) and 

therefore condensation occurs (an illegitimate inference). 

Clausius knew better than this nearly a hundred years ago. 

There is a remarkable analogy between Clausius’ formula 

(II—4a) and the formula which Thomson (Lord Kelvin) dis¬ 

covered for the passage of electricity across a junction between 

two metals in a thermoelectric circuit. Imagine a circuit made 

of two different metals, A and B (Fig. II—2). When one junction 

is maintained at a higher temperature than the other, then a 

thermoelectric current flows round the circuit—in the direction 

of the arrows, shall we suppose. The circumstances arc exactly 

analogous (thermodynamically) to the circulation of vapour and 

liquid which would occur on the supposition that A and B were 

the two halves of a closed tube, the lower half, being filled 

with some liquid and the upper half, A., with its vapour. Liquid 

woii^d evaporate at the hot junction where latent heat would be 

absorf^ed, corresponding to the Peltier heat, which I shall call Tl. 
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At the cold junction vapour condenses and latent heat is given 

out, corresponding to the Peltier heat given out. The two 

specific heats, q and have their parallel in the Thomson 

(Kelvin) coefficients, and ag? the two metals—Kelvin called 

them the specific heats of electricity in the respective metals 

and he might have called the Peltier coefficients latent heats of 

electricity. Finally he deduced the formula: 

^2 

n 

which in fact predicted the phenomenon indicated by the 

coefficients, cr. This is the phenomenon of the reversible genera¬ 

tion, or absorption, of heat in a wire for example, when an 

electric current flows through it, in consequence of a difference 

in temperature between its ends.* 

• ride 8. G. Starling: Electricity' and Magnetism. 

Note adcUui during correction of tlie proofs. 

Tlu^ apparent incompatibility between the equivalence of heat and 

work (Joule) and Carnot’s principle would liave appeared much Jess 

fornnda))le to Kelvin liad he reflected that conservation of caloric is the 

limiting case of an infinite value of the mechanical equivalent of heat, 

for wliich the two types of perpetuum mobile become identical. 



CHAPTER THREE 

AN EXPERIMENTAL MISCELLANY 

A 

B 

ANDREWS' EXPERIMENTS ON CARBON DIOXIDE 

Between 1865 and 1869 Dr. Thomas Andrews (1815-1885) 

carried out a remarkable series of experiments with carbon 

dioxide.* Tliey have been described and diagrams similar to 

Figs. T -1 and 111—1 reproduced so often that 

one might be forgiven for merely reffTring to 

them. They are however very important and con¬ 

stitute sux'h a perfect model of this kind of physical 

inquiry that I feel compelled to describe them in 

I some detail. The a})paratus which he used was 

quite small and has often been reproduced since 

: : his day for teaching purposes. It is illustrated in 

; i Fig. Ill—1 and consisted of a narrow tube, ABj 

with a calibrated capillary portion at its upper end 

for measuring volumes. It contained pure carbon 

dioxide, which was enclosed in the capillary por¬ 

tion by a short column of mercury, as shown in 

the figure. The way in which it was introduced 

was as follows: the top of the tube, at A^ was 

originally open and the previously dried carbon 

dioxide was made to flow through it for some hours 

to ensure the absence of air. The top, at Ay was 

then sealed off and the lower end opened under 

mercury. The small enclosing column of mercury 

was introduced by the familiar device of a slight 

warming which expelled some of the carbon 

dioxide, so that mercury was drawn in on subsequent cooling. The 

tube was then placed in the steel chamber, E, so that the capillary 

part projected outside. The whole of the space in the chamber 

and the part of the glass tube below the mercury was filled with 

D 

S 
Fig. HI—1 

•Andrews: PhU. Trans., 159, p. 575 (1869). 

46 
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water which could he subjected to pressure by turning the 

screw, S. 

The side tube, led to an exactly similar piece of apparatus, 

not shown in the figure, filled in a similar way5 but with air 

instead of carbon dioxide. Each projecting capillary was en¬ 

closed in a water bath with plate-glass sides, so that the tubes 

could be seen and the volumes of the carbon dioxide and of the 

air might be read off. One water bath was used of course to give 

the carbon dioxide various temperatures and the other to keep 

the air at a constant temperature. The measured volume of the 

air enabled the pressure, both of the air and of the carbon 

dioxide, to be determined, since Andrews knew how the pressure 

of the air depended on its volume. 

The results of the experiments are exhibited in Fig. I—1. 

At the lower temperatures each isothermal curve has a horizontal 

part associated with the coexistence of liquid and gas. Once 

liquid has begun to form, the isothermal remains horizontal till 

all the gas has liquefied. This means that during the transition 

stage, which begins on the right with the substance wholly in 

the form of gas and ends on the left with the substance wholly 

in the liquid form, the pressure remains constant. This is the 

pressure under whicli (at the particular temperature marking 

the isothermal) the gas and liquid are in equilibrium with one 

another. It is called the equilibrium pressure or saturation 

VAPOUR PRESSURE. 

The horizontal parts of the isothermals get shorter and shorter, 

it will be seen, the higher the temperature, until at a certain 

CRITICAL TEMPERATURE the horizontal part has contracted to 

nothing. At this critical temperature and higher temperatures 

there is no longer any distinction between tw^o states (gas or 

vapour and liquid). The substance can only exist in one state 

(the gas state in the narrower sense of the term) at temperatures 

higher than the critical one. The term VAPOUR is applied to the 

gas state below the critical temperature. 

It may be remarked parenthetically that, in suitable circum¬ 

stances, a liquid at constant temperature may have its pressure 

reduced far below the equilibrium (horizontal line) pressure for 

that temperature. Indeed it may be made negative, i.e. the 

liquid may be in a state of tension (Worthington’s experiments). 

Drops of water (or small spherules) suspended in a mixture of oils 
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of appropriate density have been raised to 178°C. at normal 

pressure before vaporization occurred (Dufour). On the other 

hcind a vapour may be subjected to a pressure well above the 

equilibrium pressure corresponding to its temperature. 

The point on the diagram (Fig. I—1) where the horizontal 

(liquid-vapour) line has just contracted to nothing is called the 

CRITICAL POINT and the associated pressure and volume are called 

the CRITICAL PRESSURE and CRITICAL VOLUME of the quantity of 

the substance involved respectively. The table below gives the 

critical data for a few substances. 

Tabek III—1 

Sul) .stance 
Critical 
Pressure 

(Atmospheres) 

Critical Volume 
('in cubic centi¬ 

metres per 
gramme) 

Critical 
7'emperature 

C c.) 

Water 21« 2-5 374 
Carbon dioxide 75 2-17 31 
Ftiiyleno 51 4-55 10 
Oxy^^en 50 2*55 j -119 
Nitrogen 54 3-23 1 -147 
Hydrogen 15 33*5 -240 
Helium 2-5 14*5 1 -268 I 

Andrews’ experiments made perfectly clear what had long 

been suspected, that a gas can only be liquefied when its tem¬ 

perature has been reduced below a certain critical one characteris¬ 

tic of it. I shall have a little more to say about the significance 

of Andrews’ results when we study the great contribution which 

J. D. van der Waals (1837-1923) made to the theory of gases a 

short while after Andrews had finished his work. 

DEVIATIONS FROM BOYLE’S LAW 

It has long been known that Boyle’s law is not exact for any 

gas. If it were exactly true and the product p X v (pressure x 

volume), measured at a particular constant temperature, were 

plotted against the pressure, p, the resulting graph would of 

course be a horizontal straight line. The first serious investiga¬ 

tion of the extent to which gases deviate from the law was made 
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by Henri Victor Regnault (1810-1878), who carried out in 1847 

a series of constant-temperature measurements of pv (reckoned 

for a fixed quantity of the gas under experiment) for values of p 

varying from one to about 50 atmospheres.* His method was to 

increase the pressure gradually till the volume was exactly 

halved, while taking observations of the pressure and the volume. 

He then, while keeping the pressure constant, introduced more 

gas till the original volume was restored j that is to say he doubled 

the quantity of the gas under experiment and proceeded further 

in the same way. In this manner he avoided the difficulty due 

to the progressive diminution of the volume with increasing 

pressure. He used for his pressure measurements a mercury 

manometer which was fixed to the wall of a tower. Many others 

followed Regnault. In 1850 Natterer discovered that, in the case 

of air and nitrogen, the product pv at first diminishes (at constant 

temperature) as p increasesj but beyond a certain pressure it 

begins to increase as the pressure is further raised. He noticed 

in fact that at a certain pressure pv has a minimum value. 

Amagat and Cailletet worked at the bottom of a mine in order to 

have plenty of scope for a manometer of great height. The 

former began a long sequence of experiments as early as 1870 

and continued them till after 1890.1 Amagat’s manometer, in 

his mine experiments, was over 500 metres high and his latest 

methods enabled him to reach 5000 atmospheres. At a tempera¬ 

ture in the neighboiirhood of 20°C. he found the minimum value 

of pv to be at a pressure of 50 metres of mercury in the case of , 

nitrogen and 100 metres in the case of oxygen. Tlie most recent ^ 

investigations have been made by Holborn and his collaborators/ 

(1915 and since). He introduced new methods including hi4 

PRESSURE BALANCE. J The results of these numerous experimenj(s 

have the same general character for all gases. They are illi^s- 

trated in Fig. Ill—2, which is not drawn to any particular scdle, 

nor to represent a particular gas. Each of the full lines, or gra|)hs, 

such as abc or dej'^ represents the relation between pv and p of 

a given mass of the gas at some particular temperature - abc 

being the isothermal (as it may be called, since it represents a 

* Mhnoires de VInstitut de France^ 21, p. 529. ^ 

I Arnagat: Ann. d. Chirn. et d. Phys. (1876-1885) dind ( Cornptes 
Rendus (1888-1893). 

J See Dr. Barton’s Text Book^ p. 224. 

D 
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constant temperature relationship) corresponding to a higher 

temperature than that to which def corresponds, and all the 

isothermals are plotted for the same mass of the gas. The parts 

which correspond to the horizontal, liquid-vapour, lines of 

Andrews’ diagram are here, naturally, vertical straight lines, 

Fig. Ill—2 

shown in Fig. Ill—2 traversing the shaded area. The critical 

point is at C. The minima lie on a curve, shown in the diagram 

as a broken line, the shape of which is roughly parabolic. The 

\ point, where this cuts the vertical, pv^ axis is called the boyle 

'.POINT, since in its neighbourhood the gas conforms most closely 

to Boyle’s law. The shapes of the curves in the figure are 

accounted for extraordinarily well, though quantitatively not 

quite exactly, by van der Waals’ theory, as we shall see. 

CALORIMETERS AND MEASUREMENTS OF SPECIFIC HEATS 

The earliest calorimeters, i.e. heat meaturers, functioned by 

using, as a measure of heat, the quantity of ice which it melted. 

Such calorimeters were used by Joseph Black* and Antoine 

• It was Black who first measured quantities of heat and who first 

distinguished between heat and temperature. 
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Lavoisier. Joule and Mayer used the product (mass of water) x 

(rise in temperature) as a measure of heat. Joule’s calorimeters 

were metal vessels covered with thermally insulating material. 

Such calorimeters were always slightly leaky. After Kirchhoff’s 

study of tlie radiation of heat from material surfaces and their 

associated reflecting powers, an improved type of calorimeter 

came into use. It consisted of two well-polished copper or, better 

still, silver vessels, one inside the other and, so far as practicable, 

not in thermal contact. That is to say the inner one was sus¬ 

pended by fine threads or perhaps rested on a small piece of 

badly conducting material, such as felt or ebonite, placed at the 

bottom of the outer one. A polished metallic surface, especially 

a silver one, radiates heat very slowly and such poor radiators 

reflect radiant heat correspondingly well, as Kirchhoff explained. 

The inner vessel, into which the hot body is introduced, throws 

out heat only very slowly and the greater part of this is reflected 

back to it from the highly reflecting outer vessel, so that although 

heat does escape from such an arrangement (or penetrate into it, 

if the temperature in its interior is lower than that of the sur¬ 

roundings) it does so remarkably slowly. With such an arrange¬ 

ment, used for example by Regnault* in measuring the specific 

heats of gases at constant pressure, the corrections for loss or gain 

of heat are very small and therefore more effective. 

The final perfection of this device was achieved by Sir Janies 

Dewar (1842-1925). It is well known as the thermos flask and 

was used by him as a container for liquid air and liquid hydro¬ 

gen. It is a double-walled glass vessel, silvered inside, and 

having the interspace exhausted, so that transference of heat by 

conduction and convection, as well as by radiation, is almost 

completely eliminated. 

Bunsen, the inventor of the Bunsen burner, devised an 

ingenious form of ice calorimeter in 1870, in which the quantity 

of ice melted is determined from the resulting contraction in 

volume. He also devised an equally ingenious method of finding 

the density of ice, in order to provide himself with a necessary 

datum for use with his calorimeter. Both are described in the 

elementary text-books. 

Jply’s steam calorimeter provided, in its differential form 

^ Regnault; Mem. de I'Acad., 26, p. 1 (1862), 
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(1894), the first successful direct way of determining the specific 

heats of gases at constant volume. H. Callendar introduced the 

continuous flow type of calorimeter in 1902. It is a douhle-walled 

tube with the interspace exhausted and with a coil of wire 

running through it to enable heat to be generated by an electric 

current. It was used by Callendar’s collaborator, Barnes, to 

investigate how the specific heat of water depended on the 

temperature. 

Sjxicial forms of calorimeter have been invented for measuring 

specific heats at low temperatures—Nernst and Lindemann 

(1911)* and a very elaborate one by Simon and Lange (1924)| in 

which heat losses are reduced or eliminated by maintaining the 

wall of the calorimeter at the same temperature, practically, as 

its interior. 

Much work has been done in recent times on the specific heats 

of gases at low temperatures (Eucken, Partington, Brinkworth), 

and the significant result, which the quantum theory predicts, 

has been found that, as the temperature is lowered, all gases 

behave more and more like monatomic gases, i.e. the molecules 

of gases seem to lose their degrees of freedom until tiiese are 

reduced to three. Below 80°K the ratio of the specific heats 

of hydrogen, for example, approximates almost to 1^, whereas 

of course it is close to If at ordinary temperatures. 

Determinations of the specific heats of solid elements are also 

of great interest from the point of view of the quantum theory 

and will be referred to again when we study the law of Dulong 

and Petit and Debye’s great work. 

DENSITIES OF GASES AND VAPOURS 

Avogadro’s law and its significance for molecular weight deter¬ 

minations gave to the measurement of the densities of gases and 

vapours a quite special interest. The molecular weights of gases 

and vapours are proportional to their densities, under like con¬ 

ditions of pressure and temperature, in consequence of Avoga- 

dro’s law. The molecular weight of hydrogen may be taken as 

2*016 (that of oxygen being fixed, conventionally, as 52). It 

* Nernst and Lindemann: Zeitschr. filr Klektrochemicy 17, p. 817 

(1911). 

■j* Lange: Zeitschr. fur Phys. Chemie.^ 110, p. 545 (1924). 
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follows that that of any other gas or vapour must be equal to 

Density of ^as or vapour 
2-016 X ---^---. 

Density of hydrogen 

Purely chemical methods enable the percentage composition of 

a substance to be determined. That of ether for example indicates 

that its molecule is C4H10O or CgH2o02 or some other integral 

multiple of C4H30O, so that its molecular weight is shown to be 

an integral multiple of (48 + 10*08 + 16) = 74*08. A rough 

estimate of its density indicates that it is equal to or near 57 

times that of hydrogen and so definitely decides in favour of 74*08. 

Dumas, Gay-Lussac, Hoffmann and Victor Meyer all devised 

well-known methods for determining vapour densities, and 

Regnault, who seems to have measured nearly every quantity 

depending in any way on temperature, determined directly tlie 

densities of a large number of gases. 

THE POROUS PLUG EXPERIMENT OF JOULE AND KELVIN 

The old Gay-Lussac experiment, as repeated by Joule, was not 

very sensitive for the reason already given. The ideal form of 

the experiment, had Joule found it practicable, would have been 

to provide the expansion vessel with an adiabatic covering and 

thus compel Uj the internal energy, to remain constant. Tlie 

temperature change, had one occurred, might have been 

measured by the change in tlie electrical resistance of a fine wire 

spread through both of the vessels A and B (Fig. I—2).* Kelvin 

thought of an experiment which, though quite different from 

the original Gay-Lussac-Joule one, was exactly analogous.! 

In this experiment it was U + pv^ that is the sum of internal 

energy and the product of pressure and volume, that was 

made to remain constant during adiabatic expansion, and not U 

itself. This quantity, U + pc>^ is called enthalpy (from 

daXiTCjug^ warmth, heat) sometimes TOTAL HEAT. It is of 

interest that it is exactly the same function of 9 (entropy) and p 

(pressure) as t/ is of 9 and v. The Joule—Kelvin experiment is of 

^ I am not aware that the experiment has ever been attempted in this 
form. 

! Joule’s Scientific Papers^ 2, p. 217, or Kelvin’s Paper's, 1, p. 333. 
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interest, not only on its own account, but because it also gives 

the information about the dependence of U on temperature and 

volume whicli was hoped for from the Gay-lAissac-Joule experi¬ 

ment. The reason for this is that the part of the temperature 

change due to tlie change of pv in the Joule-Kelvin experiment 

can be computed separately from the experimental results of 

Reguault and others on the dependence of pv on temperature 

and ])ressure. 

Joule and Kelvin experimented on several gases, including 

hydrogen, air and carbon dioxide, between 1852 and 1862. They 

found for air, initially at 0*^C., a cooling of 0*275°C. per one 

atmosphere drop in pressure and T39°C. for carbon dioxide. 

Hydrogen on the other hand showed a heating effect of 0*05°C. 

This is very largely due to the change in pv. Thermodynamical 

tlieory indicates (and this is borne out by experiments on hydro¬ 

gen and helium) that at sufficiently high temperatures all gases 

are heated;^ but there is a TEMPERATURE OF inversion (which 

depends slightly on the volume), characteristic of each gas, 

below which it is cooled. 

The experiment consisted in forcing the gas, adiabatically, 

through a porous plug (or throttle) consisting of cotton wool or 

silk. In the earliest experiments it was a piece of leather. To 

secure that the expansion was adiabatic, the part of the tube in 

which the plug was situated was made of non-conducting 

material—boxwood. On one side of the plug a high pressure 

was maintained and a low one (atmospheric) on the other; so 

that the gas was forced slowly through the pores in the plug from 

the high-pressure side to the low-pressure side. The tempera¬ 

tures on the two sides of the throttle were noted by sensitive 

mercuT} thermometers. 

It should be noted that the adiabatic expansion, both in this 

experiment and in the original one of Joule, was an IRREVERSIBLE 

one. This does not invalidate the application of thermodynamical 

reasoning to the initial and final states. We imagine the final 

state to be reached in a reversible way. We cannot of course 

apply such reasoning to the actual process in the plug itself. 

The state of affairs there is so far removed from equilibrium that 

both temperature and pressure are illusory. 

The practical details of the experiment are given in the text¬ 

books (see Dr. Barton’s book for example). In describing its 
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nature we may think of the porous plug as a minute aperture in 

a diaphragm, shown at a in Fig. Ill—5. The gas to the left of a 

is maintained at the high pressure, P, and that which has passed 

through the aperture, to the right is at a steady lower pressure, 

p. It is helpful to think of these pressures as maintained by the 

^-1 ! 

Fig. IIJ—5 

pistons shown in the diagram, although they constituted no part 

of the practical procedure. Let us consider the passage of one 

gramme of the gas through the aperture, a. The work done on 

the gas by the piston on the left is equal to the product of the 

pressure, P, and the volume occupied by one gramme of the gas 

on the loft. The work done by the gas on the piston on the right 

is equal to the product of p and the volume a gramme of the gas 

occupies on the right of the aperture, a. Let us call the former 

product (pv)i^ and the latter (pv)j^. So the net work done by the 

gas is 

It is in fact the increment of pv (for one gramme) and we shall 

represent it by 

A (pv). 

If we further represent the increment (positive or negative) of 

the internal energy by 

A Z7, 

the first law (I—4) will take the form 

0 - A (pv) = AU 

or 

A(t/+;7i0 = 0, (III—1) 

since A Q is zero (adiabatic process). 

Therefore U + pv remains unchanged. Compare this with 

the 

of the form of the Gay-Lussac-Joule experiment described above. 
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It should he observed that the cooling (or heating) effect to be 

exj)ected in the Joule-Kelvin experiment is quite small by com¬ 

parison with that in the more usual type of adiabatic expansion 

(or compression). The reason is of course that the work done on 

the gas and that done by it nearly compensate one another. 

'riie application of thermodynamics to the passage of a fluid 

(gas or liquid) through a minute aperture under adiabatic con¬ 

ditions with constant, but of course different, pressures on the two 

sides of the aperture, leads to the formula 

A Tl\p = F{«r - l}/c„ 

in which A 'F is the drop in temperature corresponding to the 

pressure drop A /?, a is the coefficient of expansion (i.e. hVjhTpV) 

of the fluid, is its specific volume (volume of one gramme), 

and Cp is its specific heat at constant pressure. The temperature 

is expressed on Kelvin’s work scale. The corresponding formula 

for the earlier Gay-Lussac-Joule experiment, when carried out 

in tlie way outlined above, is 

A r/A v = p{\- mjc,, 

in which means the temperature coefficient of pressure 

increase (i.e. bp/phT^) and is the specific heat of the fluid 

at constant volume. It will be seen that A T vanishes in both 

experiments when the fluid has the properties of an ideal gas, 

since for an ideal gas oc = p = l/7\ 

LIQUEFACTION OF GASES 

The liquefaction of any gas necessarily involves, as we have 

learned, lowering its temperature below the critical temperature 

characteristic of it. The earliest really effective method of doing 

this w'as by the use of the so-called CASCADE PROCESS of the 

Genevese chemist, Pictet, who employed it to liquefy oxygen 

(1877). It consists in liquefying, by the application of pressure, 

some easily liquefiable gas with a relatively high critical tempera¬ 

ture. The liquid produced is made to boil under reduced pressure, 

thus producing a considerably lower temperature, which is used 

to bring some other gas below its critical temperature. After 

liquefaction its ebullition under reduced pressure produces a 

low'er temperature still and so on. Pictet employed in succession 

methyl chloride and ethylene and was thus enabled to cool 
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oxygen below its critical temperature (now known to be about 

— 119°C.)j so that the application of pressure liquefied it. 

The next important step in the improvement of the methods 

for liquefying air and other gases is usually ascribed to Linde 

(1895). It is sometimes called the regenerative method. It is 

probable that it was thought of independently and used by 

Dewar, Hampson and Kamerlingh-Onnes about the same time. 

The functioning part of Linde’s apparatus is illustrated in 

Fig. IIT-4. 

The air is compressed to about 180 or 200 atmospheres 

and the heat thereby generated drawn off by passing it 

tlirough a copyjer pipe which is coiled in a tank through 

wliich cold water is kept running. The water vapour and 

carbon dioxide in the air (or other gas) are removed by 

passing it over suitable absorbing materials. It then 

enters the tube, of the liquefier (Fig. Ill—4). This is 

in fact a long coiled tube, shown in the diagram for 

convenience as straight. At its end is a very narrow aper¬ 

ture, /i, the size of which is adjustable. Beyond the 

apertuT'e, /i, the pressure is approximately atmospheric 

and in passing through it the air (or other gas) suffers 

the .loule-Kelvin drop in temperature. This cooled gas 

returns to the compressing pump by way of the wider 

tube, C, which encloses A. The oncoming air is thus 

cooled before it reaches the aperture, where, of course, 

on expansion it is cooled still further, and so it continues 

progressively. The whole of this part of the apparatus is 

thoroughly well lagged with thermally insulating material. 

In Claude’s method the compressed air passes into the cylinder 

of an engine and is cooled in the “ordinary” adiabatic way in 

pushing out the piston. The air, or gas, so cooled is made to 

cool the oncoming air which has not yet suffered the adiabatic 

cooling; so that the lowering of the temperature is progressive, 

as in Linde’s process. 

Naturally the methods, such as Linde’s, which depend on the 

Joule-Kelvin cooling effect cannot be used directly to liquefy 

hydrogen or helium, since the inversion temperatures of these 

gases are far below ordinary temperatures; but Dewar succeeded 

in liquefying hydrogen (1898) in this way after first cooling it 

below its temperature of inversion (— 80® C.) by means of liquid 

B 

Fig. 

Ill—4 
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air or oxygen. The boiling point of hydrogen, it may be noted, 

is -- 258°C. 

The Dutch physicist Kamerlingh-Onnes (1855-1926) was the 

first to liquefy helium (1908).^ He used Linde’s method, first 

cooling the helium below its temperature of inversion by passing 

it through hydrogen, boiling under reduced pressure. The 

experiments of Onnes and his collaborators indicated the exis¬ 

tence of two modifications of liquid helium and this has been 

definitely established by Keesom and others. Helium was solidi¬ 

fied in 1926 by Keesom. 

LOW TEMPERATURES—DEBYE’S SUGGESTION 

By boiling liquid helium under reduced pressure Keesom and 

his collaborators got down to the temperature 0*844°7L Tem¬ 

peratures down to this point have been determined by the helium 

gas thermometer. In the actual practical procedure of measuring 

low temperatures, or for that matter of measuring temperatures 

generally, a gas thermometer is an awkward kind of thing. In 

practice other devices are much more convenient. The resistance 

of a lead wire and thermocouples have been used down to 

14°Z. and below this the vapour pressure of helium^ but all 

these, in the last resort, have to be calibrated by comparison with 

a gas thermometer and this must be a helium one at these 

temperatures. 

P. Debye (1884- ) made a brilliant suggestion for reach¬ 

ing (and measuring) temperatures still lower than those attain¬ 

able by boiling helium (1926). When a paramagnetic material 

is magnetized adiabatically it is slightly heated, very naturally, 

since work is done on it. And conversely, when it is demag¬ 

netized adiabatically, by the removal of the magnetizing field, it 

is slightly cooled. This is a very trivial thing at ordinary tem¬ 

peratures, but not when it begins at a temperature so low as 

1°A, and since 1955 extraordinarily low temperatures have been 

reached by this magnetic method. Moreover, provided the 

initial temperature, say 1°A^, from which the magnetic cooling 

starts, is known (by the use of a helium gas thermometer) the 

magnetic method provides the means of determining the 

temperatures on the work scale. 

* Onnes, Leid. Comm, 108, Supp. 21a (1908). 
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There is a remarkable parallelism between this process and 

the reversible adiabatic cooling of a gas. The relationship 

between T, H and I (temperature, magnetizing field intensity 

and intensity of magnetization respectively) of a paramagnetic 

substance has a formal similarity to the relationship between 

T, p and v (temperature, pressure and volume respectively) of a 

gas. Thus the internal energy of a gas depends only on its 

temperature to a close approximation5 so too the internal energy 

of magnetization of a paramagnetic material depends only on its 

temperature, to a close approximation of course. Thermo¬ 

dynamical reasoning leads in the two cases to 

and 

, for the gas 

/- paramagnetic substance, 

F and f being functions which the thermodynamical reasoning 

tells us nothing about. But experiment indicates that 

and 

V — {ix constant, R) -f- 

/ = (a constant, C) X 

The constant, C, is called curie\s constant, after Pierre Curie 

(1859-1906), who discovered this law.* As is well known, 

IjH is called the magnetic susceptibility of the material and 

usually represented by k. Therefore 

K -= c/r. 
It may be remarked that the significance of I (intensity of 

magnetization), or kH^ is magnetic moment per unit volume. 

Sometimes it is convenient to use the magnetic moment per unit 

mass instead and the quantity, x? defined by 

^ X // == Magnetic moment per unit mass, 

is called the mass susceptibility of the material. Obviously 

x = ^/r 
• Curie: “Propri^t^s magnetiques des corps k diverses temperatures,” 

Ann. de Chim. ct Phy's.. 7, pp. 289—405 (1895). 
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where A is another constant. Thus we have in Debye's method, 

not only a means of producing unheard of low temperatures, 

but a simple means of estimating them, at least approximately, 

since it is a comparatively simple process to measure suscepti¬ 

bilities. Moreover the analogue of Clapeyron's equation (II—1) 

is also available for estimating the actual Kelvin work scale 

temperature and for testing Curie's law. 

THERMAL CONDUCTIVITY 

The scientific interest of a phenomenon and its measurement 

sometimes extends far beyond it. This is the case with the con¬ 

duction of heat. For Jean Baptiste Fourier (1768-1850) it 

provided interesting mathematical problems and led to tiie 

famous theorem, or expansion,* which is quite as important 

from the point of view of pure mathematics as from that of 

physical science. Fourier’s definition of the measure of thermal 

CONDUCTIVITY is concisely expressed in the formula 

K^QjJ 
At 

Ai’ 

in which K is the conductivity, Q is the quantity of heat passing 

in the unit time through a small area, A, which is at right angles to 

the direction of flow and At means the drop in temperature 

which occurs in a short distance Ax measured in this direction. 

Angstrom devised an interesting method of finding the con¬ 

ductivity of a long rod or bar whicli involved the use of Fourier’s 

expansion. It was suggested by the still earlier work of Forbes 

and of F. E. Neumann. One end of the bar was heated and cooled 

in a strictly periodic fashion, thus causing a temperature wave, of 

diminishing amplitude, to travel along the bar. Both the con¬ 

ductivity and the emissivity from the surface of the bar could 

be found from suitable observations at two points on it. (See 

Tait's Heatj Chap, xiv.) 

Lees devised methods for determining the conductivities of 

materials available in the form of thin plates, e.g. thin crystalline 

plates, and for liquids and poor conductors.*|* 

• Thioric Analytique de la Chaleur (1822), translated by A. Free¬ 

man (Cambridge). 

t C. H. Lees: Phil. Trans. A., p. 481 (1892) and p. 599 (1898). 
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In the case of gases difficulties are presented by radiation and 

convection. The former is easily dealt with and the latter has 

been eliminated in various ways, e.g. by giving the gas the form 

of a Lees disc and heating it from above. (For further informa¬ 

tion see Roberts’ Heat and Thermodynamics.) 

It is of great interest that Maxwell’s prediction, that the 

thermal conductivity of a gas (like its viscosity) is independent 

of the pressure, has been confirmed by experiment (see Kinetic 

ITeory). The relationship between the thermal and electrical 

conductivities is of great interest and will be found in a later 

chapter. 



CHAPTER FOUR 

THE ST^TISTJCyfL THEORY OF HEAT 

L KINETIC THEORY OF GASES 

PRELIMINARY SURVEY 

The thermodynamics of Clauvsius and Thomson has the 

remarkable feature that it makes no assumptions of a con¬ 

stitutive kind. It reaches valid conclusions without assumptions 

about the fine structure of material systems^ without assuming 

the existence of molecules at all and without the adoption of any 

view even as to the precise nature of the form of energy called 

heatj that is to say, without such an assumption, for example, as 

that heat is the kinetic (or mechanical) energy of molecules. 

At the time when Clausius and Thomson were giving definite 

form to the first and second laws, the kinetic theory of gases was 

already rapidly developing and was eventually to expand into 

the more comprehensive statistical mechanics—L. Boltz¬ 

mann (1844^1906) and J. Willard Gibbs (1859-1905)—which 

takes account of the molecular constitution of bodies and reveals 

a deeper foundation on which the laws of thermodynamics rest. 

Daniel Bernoulli’s explanation of Boyle’s law {Hydrodynamica^ 

1758) seems to mark the initiation of the kinetic theory of gases. 

It is of interest to note that he appreciated that the pressure is 

proportional to the mean square of the particle velocity. 

The kinetic theory was revived by Waterston in 1845. 

Krbnig and Clausius followed a little later (1857). In its earliest 

and simplest form the particles (molecules) were treated as so 

small that collisions might be ignored, as were also inter- 

molecular forces, and the important assumptions were made {a) 

that the heat energy in the gas might be identified with the 

kinetic energy of the molecules and (JY) that, at constant tempera¬ 

ture, the total energy of the molecules remained constant. 

Waterston anticipated the principle of equipartition of energy, 

or at least that particular case of it which lays down that, in all 

62 
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gases at the same temperature^ the average kinetic energy of 

translation of a molecule is the same.’*' 

Clausius and Kronig established the formula 

pv=:lNmc\ (IV—1) 

in which p means the pressure of the gas, v its volume, m the 

mass of a molecule, N the number of molecules in the gas and 

is the average value of the squares of the velocities of the 

molecules in the gas. 

It may be noted that (IV—1) is equivalent to 

P == 

where p is the density of the gas (i.e. the number of grammes per 

c.c.) or 

^ P 

so that it is very easy to find the mean velocity (or, strictly 

speaking, the root of the mean of the squares of the velocities) of 

the gas molecules. For hydrogen, oxygen and nitrogen at O^^C. 

these mean velocities are 184,400, 46,100, and 49,200 cm./sec. 

respectively.*]• Such estimates appear to have been first made by 

Joule. 

TEMPERATURE 

The equipartition theorem enables us to define a scale of 

temperature. Since the average kinetic energy of translation of 

the molecules of all gases, at the same temperature, has the 

same value, and as this average is all the greater the hotter is the 

gas, we may use it to define a scale of temperature. The simplest 

way of doing this is to lay down that 

r = A X (IV—2) 

* This anticipation is contained in a paper communicated to the 

Royal Society in 1845. The paper was rejected by reason of some errors 

it contained; but published in 1892 at the instance of Lord Rayleigh, 

who was then secretary. He wrote concerning it that “it marks an 

immense advance in the direction of the now generally received 

theory”. 
f We get the mean velocities in the strict sense if we multiply each 

of these by V8/3tu'= V28/35 ==0'921. 
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where T is tlie temperature and A is a conventional positive 

constant. Eliminating mc^ from (IV—1) and (IV—2) we got 

It is customary to write k for 2/5A and therefore 

pv = kNT, (IV—5) 

We see that kN is identical with the gas constant, and there¬ 

fore k may be described as the gas constant reckoned per mole¬ 

cule. It is usually called BOLTZMANN’S CONSTANT, but also the 

ENTROPY CONSTANT, for reasons which will appear later. 

The significance of the statement that A in IV—2 is a co7i- 

ventional positive constant is that it is perfectly legitimate to 

give it any positive value we like. It might be chosen to be | 

or to be 1000. Whatever choice we may make, it fixes the value 

of k and hence of R. In the practice of thermometry /( is more 

prominent than A or A. It has been chosen so as to make the 

temperature difference between melting ice and water boiling 

under normal pressure equal to 100. But conceivably the 

physicists of the future may think it desirable to make A = 1, 

or alternatively (and more probably) A = 1. In either case the 

constant R would have to conform to the choice made. Tlie 

special choice, A = 1, has the merit of making the temperature, 

T, equal to Willard Gibbs’ modulus 0, which we shall meet 

later. The temperature as defined by (IV—2) is clearly the ideal 

gas temperature, or Kelvin’s work scale temperature. 

PHENOMENA OF DIFFUSION 

The simple gas theory accounts not only for Boyle’s law, but 

also for the laws of diffusion of gases through minute apertures, 

discovered by Thomas Graham (1805-1869) about the year 

1846. Two different gases at the same temperature have 

molecules with the same average kinetic energy^ therefore 

\miC\ = 

if we distinguish them by the subscripts 1 and 2. So that 
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The rates at which the gases get through a very small aperture 

are proportional to their inolecular velocities and Cg, other 

things being equal, and therefore inversely proportional to the 

square roots of the masses of the molecules of the respective gases. 

This is the same thing as inverse proportionality to the square 

roots of their densities under like conditions of temperature and 

pressure (by Avogadro’s law, which follows from the equi~ 

partition theorem as does that of Charles). It should be noted 

that rate of diffusion, as we have just used the expression, means 

numbers of molecules passing through the small apertures per 

second and clearly this is proportional to volumes (measured of 

course under like temperature and pressure conditions) diffusing 

per second. 

It is often overlooked that, if we measure the rate of diffusion 

by the total mass diffusing per unit time, it is directly proportional 

to the square root of the density of the gas. In fact, if n is the 

number of molecules of some gas which pass through a minute 

aperture per second, then 

Constant 
n -- 

V rn 

' e mass of the molecule. Clearly then 

nm = Constant X V m 

and nm is the total mass which has diffused per second. 

This simple theory of diffusion also indicates that the rate of 

diffusion, other things being equal, is pro])ortional to the square 

root of the temperature, since it is proportional to the mean 

velocity, c, of agitation of the molecules. 

SPECIFIC HEATS OF A GAS 

By the number of degrees of freedom of a body (rigid body) or 

of a mechanical system is understood the number of independent 

numerical data needed to specify completely its situation and 

configuration. In the special case of the rigid body six such data 

are needed—three to fix the position of its centre of mass^ two 

more to fix the direction of some straight line fixed in the body and 

passing through its centre of mass, and last of all, after we have 

fixed the values of these five, we can still contemplate rotation 

E 
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about this line. So we need six in all. The rigid body is said to 

have six degrees of freedom. The equipartition theorem, in its 

full generality, requires that the average kinetic energy, 

reckoned per degree of freedom^ of the molecules or systems in 

an assemblage of molecules or systems, such as a gas, shall be 

the same for all gases at the same temperature. Now since the 

average kinetic energy of translation is equal to 5kTj2, evidently 

the average kinetic energy of a molecule, reckoned per degree 

of freedom, must be equal to AT/2. If now the molecules in a 

gas were really small rigid bodies we should expect their average 

kinetic energy to be 

6 X 

or 

5kT 

and the total kinetic energy in the gas to be 

5NkT or 5RT. 

We are supposing a rather ideal gas in which the molecules 

exert no forces on one another. There is therefore no potential 

energy in the gas, or its potential energy is a convent!'" 

constant. The total energy of the gas must therefore 

5RT + (a conventional constant). 

This will be the energy of a gramme of the gas if R is the gas 

constant for one gramme. Consequently its specific heat at 

constant volume must be 

c, = 5R. 
To get the specific heat at constant pressure we must add R, 
Therefore 

Cp = 5R + R^ 

In such a case the ratio of the specific heats is 

__ 4il __ 4 

Let us consider a more general case. A molecule has, shall we 

• It is perhaps needless to say that we are measuring heat in work 
units. 
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say, n degrees of freedom. Then the sum total of the kinetic 

energy of the gas must be 

kT 
N X n X — 

2 
ri 

- - RT 
2 

and its specific heat at constant volume must be 

and that at constant pressure, 

lR+ R. 

Their ratio is therefore 

f,? = 1 + (IV—4) 
c„ n 

This formula appears to have been given first by Clerk Maxwell 

(1866). 

One can easily imagine some of the degrees of freedom of a 

rigid body becoming, as it were, ineffective. If a molecule were 

perfectly spherical in shape, perfectly uniform in density and 

perfectly smooth, it could not be set in rotation by collisions with 

its neighbours and if actually in rotation it would be impossible 

for its angular velocity to be changed by such collisions. In fact 

the number of its degrees of freedom would be effectively 

reduced to three. The very simplest type of molecule is like thisj 

but it must have at least three degrees of freedom—corresponding 

to the three co-ordinates of its centre of mass—and the ratio 

of its specific heats would be 

1+?=.«. 
c, n 

This is the greatest value which the ratio of the specific heats of 

a gas can reach. It is just what is found experimentally for gases 

and vapours whose molecules are believed to be monatomic. 

Those gases which have two atoms in the molecule behave as if 

they had five degrees of freedom and the ratio is 11, e.g. hydrogen, 

oxygen and nitrogen. 



68 A HUNDRED YEARS OF PHYSICS 

FREE PATH PHENOMENA 

In order to avoid the rather formidable mathematical prob¬ 

lems which quickly presented themselves in the early days of the 

kinetic theory, Clausius and his contemporaries made many 

simplifying, though quite reasonable, assumptions. The relation¬ 

ship (IV—1), for example, was reached by completely ignoring 

the fact that a molecule is something more than a mere material 

point. He then advanced to the point of regarding a gas as 

constituted of spherical molecules, all having the same diameter, 

a. While imagining the molecules to be moving about in all 

directions he made the simplifying assumption that they all 

moved with the same speed, which he took to be c, the average 

of their actual speeds. Let us follow Clausius rather naively at 

first. Think of one particular molecule, travelling among the 

others, B, which at first we shall rather crudely imagine to be 

at rest. The molecule A has a diameter, ct, and travels a dis¬ 

tance, c, in a second. It must therefore collide with all the 

molecules B, which are in a volume equal to 

that is to say it must make 

Tia^cn 

collisions in one second, if n is the number of the molecules, .Z?, 

in one cubic centimetre. Clausius did the calculation more 

perfectly than this. Instead of crudely imagining all the mole¬ 

cules, J5, as at rest, he worked out the average speed with which 

A overtakes the others and found it to be 4c/5. So the amended 

calculation of the number of collisions per second must give 

4c 
X — . 

5 

If now we divide c, i.e. the average distance a molecule like A 

moves in a second, by the (very big) number of collisions it 

makes, we get the average distance it travels between two con¬ 

secutive collisions. This is called its mean free path and is 

usually represented by X. Consequently X is equal to 

c - 
5 

^ 5 or 
(IV—5) 
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The conception of the mean free path is one of Clausius’ chief 

contributions to the kinetic theory. Clerk Maxwell, making 

fewer approximations than did Clausius, found the more accurate 

but not very different formula 

1 
X - — - (IV-—5a) 

V 
by the application of his famous distribution law, which gives 

the relative frequencies of all possible velocities among the mole¬ 

cules. 

Clausius’ expression for the mean free path of a molecule made 

it possible to give quantitative expression to the coefficient of 

VISCOSITY, or briefly the VISCOSITY, of the gas. Viscosity is just 

another name for internal friction. The velocity which is repre¬ 

sented by c is the velocity of agitation of the molecules. Its 

average value is quite big, even when the gas as a whole is not 

in motion^ but when the gas is flowing along a pipe there is 

superposed on the velocity of agitation, c, of every molecule the 

STREAM VELOCITY of the gas. Now the molecules close to the 

wall of the })ipe have a very small, almost zero, stream velocity. 

They are hindered by frequent contact with the wall. These 

molecules, with small stream velocity, are often brought by 

their velocity of agitation (which is quite big) into the interior 

of the pipe and they naturally tend to reduce the stream velocity 

of the molecules there. The molecules in the interior (with their 

big stream velocity) are frequently brought near to the wall of 

the pipe and tend to add to the stream velocity of the molecules 

there. In fact these occurrences constitute friction in the gas, 

tending to retard the faster moving portion of the gas in the 

interior and to accelerate the more slowly moving portion near 

the wall. The measure of the viscosity, which we shall call t], 

is the frictional force over the unit area (in the gas) when the 

gradient of the stream velocity is unity, and a very simple cal¬ 

culation, which cannot be given here, shows that 

7) = \ nmc\ 

or, substituting Clausius’ expression for X, 

rnc 
V) = (iv_6) 

47Tor2 

Maxw'ell noticed something extraordinary about this expression. 
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It is quite independent of the pressure of the gas. This had never 

been suspected and Maxwell himself confirmed its correctness 

by experiments which he carried out in the garret at the top of 

his house (8 Palace Gardens, Kensington)."*' But (IV—6) contained 

another prediction: c is obviously proportional to the square root 

of the temperature, so that (IV—6) suggests the proportionality 

of viscosity and square root of temperature. This is not con¬ 

firmed by experiment—unless indeed the temperature is 

sufficiently high—but turns out to be more nearly proportional 

to T^^j{T + G), where C is a constant characteristic of the 

particular gas and known as SUTHERLAND’S CONSTANT. This 

deviation from what (IV—6) predicts is due to the fact that the 

molecules actually exert attractive forces on one another. This 

was not taken into ciccount in the derivation of the formula. 

It is eas}^ to see that two slowly moving molecules may deviate 

from rectilinear paths when passing one another on account of 

their mutual attraction, so that the effect is the same as if o. 

collision actually occurred. The effect is in fact the same as if 

the diameters of molecules become bigger at lower temperatures. 

At high temperatures we should expect (IV—6) to approximate 

more closely to the truth and indeed T^j{T + C) does approach 

T* when T gets very great. 

The conduction of heat in gases and the diffusion of one gas 

into another are free path phenomena ^ but they can only be 

mentioned here on account of the vast number of other things 

of even greater importance. Perhaps one should mention that 

the simple theory leads to 

K = Yjc„ (IV—7) 

where K is the thermal conductivity of the gas, v) is its viscosity 

and its specific heat at constant volume. It falls short of 

complete success in much the same way as does (IV—6). 

THE THEORY OF VAN DER WAALS 

An illuminating contribution to the study of the nature of 

gases was made in 1875 by the great Dutch physicist Johannes 

Diderik van der Waals (1837-1925). The main features of his 

theory are quite simple: In arriving at the gas equation (I—5) or 

• Bakerian lecture, Phil. Trans. (1865). 
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(I—5a) the actual proper volumes of the individual molecules 

have been completely ignored. Van der Waals saw that when 

the molecular volumes are taken into account the inference 

must be drawn that the number of collisions between the mole¬ 

cules and the wall of the containing vessel is increased. The 

effect is the same as if the volume of the vessel had been reduced 

in size and a better formula than (I—5) or (I—5a) is obviously 

p{v - = RT, 

where Z? is a small constant. But van der Waals made a further 

improvement. He assumed that the molecules exert attractive 

forces on one another and that these forces are only appreciable 

over very short distances^ so that in the interior of the gas 

the forces exerted on a molecule are on the average equally 

distributed in direction and magnitude. Their influence on the 

pressure is therefore nil. It is different with the molecules near 

the boundary. They must, obviously, all of them be dragged 

inwards and thus add to the pressure that is applied through the 

wall of the vessel. The number of molecules being dragged 

inwards, as well as the number of those dragging them inwards, 

must both be proportional to the density of the gas; that is to 

1/f; so that the addition to the pressure, p, can be expressed as 

ajv^y where « is a small positive constant. Thus we obtain van 

der Waals’ equation 

+ ^) - *) = RT. (IV—8) 

When this equation is used to plot p against v, for various 

given values of T, we get curves like those shown in Fig. IV—1, 

assuming we have given suitable small positive values to the 

constants a and b. It will be seen that they strongly resemble 

those of Andrews (Fig. I—^1); but instead of the horizontal 

portions, which are characteristic of Andrews’ isothermals and 

represent the transition between liquid and vapour states, there 

are portions like BCDEF with a double bend. This does not in 

the least discredit van der Waals’ theory. The theory does no 

doubt represent approximately the states of the substance to 

which the constants a, h and R belong, when all of it is in the 

same state at the same time\ but states represented by points 

such as where the isothermal slopes upwards from left to 
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right are unstable—as a little reflection will reveal—and if the 

whole of the substance were imagined to be in such a state at 

some instant, parts of it would immediately change to a stable 

state represented by some point on EFG (vapour) and the rest 

to a stable state represented by a point on ABC (liquid). The 

Fig. lV-1 

necessary consequence of this is indeed a horizontal line, BDEj 

the situation of which very simple thermodynamical reasoning 

shows to be such as to make the areas BCD and DEE equal to 

one another.* 

We have already seen that states corresponding to EF (super¬ 

saturated vapour) and BC (superheated liquid) can be realized 

experimentally and James Thomson was led by this in 1871 to 

suggest isothermals like those of van der Waals. There is a 

critical point represented by P in the diagram and the shapes of 

See W, Wilson: Theoretical Physics^ 1, p. 517. 
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the isothermals are very close to those determined by experi¬ 

ment. The critical values can easily he shown to be 

V, = 5h, 

and 

Pc = 
a 

27p’ 

rp _ 
" ~ 27Rb 

Wlien these critical values are introduced as units for volume^ 

pressure aud temperature, respectively, van dcr Waals’ equation 

becomes 

8 

5 

(tc — pressure, ca — volume, and t = temperature in terms of 

these special units). Instead of the constant, we now have 35 
instead of b we have and R is now replaced by 8/3. They are 

the same for all gases (THEOREM OF CORRESPONDING STATES). 

When we construct the isothermal graphs in which pv is 

plotted against p—the equation (IV—8) is easily adapted for this 

purpose by simply replacing z;, wherever it occurs, by pvjp—we 

get curves like those in Fig. Ill—2 with minima lying on a 

parabola corresponding to tlie broken line in the figure. 

Many other gas equations have been proposed since that of 

van der Waals, by Clausius, Dieterici, Callendar and others. 

They have all their peculiar merits and make up for particular 

deficiencies in that of van der Waals^ but it is true, I believe, that 

none of them has an approximate validity for so many substances 

and over such a wide range of temperatures and pressures as 

that of the great Dutchman. 

LOSCHMIDT’S NUMBER 

The kinetic theory enables us to make an estimate of the 

number of molecules in a given mass of a gas. Though such an 

estimate is rather rough, it is not to be despised. It appears to 

have been made first by a Viennese, Joseph Loschmidt (1821- 

1893), about the year 1865. It is convenient to express Losch- 

midt’s number (or Avogadro's number, as it is sometimes called) 

as the number of molecules in a gramme molecule (or mole) of 
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the gas; since when thus expressed it is the same number for all 

elements and compounds, ks already explained the atomic 

weight of oxygen is 16 and its molecular weight 52; the molecular 

weight of hydrogen is 2*016. Consequently a mole of oxygen is 

52 grammes and a mole of hydrogen is 2*016 grammes. The 

volume of a mole of any gas is near 22,400 cubic centimetres 

under normal temperature and pressure. There are two prin¬ 

cipal ways in which we may proceed to utilize experimental data 

to estimate Loschmidt’s number. One is to estimate the mass of 

a single molecule, e.g. that of hydrogen, and then divide the 

mass of the mole (gramme molecule)—in this case 2*016 

grammes—by it. The other is to estimate A:, the gas constant 

reckoned per molecule, and divide R (for a grairime molecule, 

namely 8*515 X 10’ in our usual units) by it. We have already 

seen how c, the mean velocity of agitation of a molecule—-e.g. 

a hydrogen molecule—can be found. We can then use (IV- -6) to 

find since the viscosity of the gas is given experimentcdly. 

The molecular diameter, a, can be estimated from the volume 

occupied by the gas when in liquid form, its molecules being 

then closely packed together. Thus knowing m/a^ and cr we can 

calculate m, the mass of a molecule, and so Loschmidt’s number. 

The reader may compute it for himself from the following 

data for hydrogen: 

Mass of gramme molecule = 2*016 gm. 

Gas constant for one gramme molecule = 8*5 X 10’ergs/°7L 

Viscosity at zero centigrade = 86 x 10“® 

gm. cm.~^ sec.~^ 

Total proper volume of the molecules == 4*95 c.c. 

Zero centigrade may be taken to be 275'^K, 

From these data, with the help of a table of logarithms, I find: 

Diameter of a molecule, a = 2*74 x 10~®cm. 

Mass of a hydrogen molecule = 4*58 x lO^^^gm. 

Loschmidt’s number = 4*6 x 10^^. 

The first fairly accurate estimate of this number was made by 

Max Planck (1858-1947) near the end of the year 1900 (see the 

chapter on Radiant Heat). We are convinced that it was fairly 

accurate, because it is almost the same as many later estimates 

made by very different methods. He calculated the value of 
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Boltzmann’s constant, from the data provided by experiments 

on black body radiation. The best estimate of Loschmidt’s 

number that can be given at the present moment is perhaps 

6-02 X 1023^ 

probably in error by appreciably less than one per cent. 

BROWNIAN MOVEMENT 

In 1827 the botanist, Robert Brown (1775-1858), observed 

that the pollen grains of Clarkia pulchella^ when suspended in 

water, were in constant irregular motion.* Kegnault (1858) 

suggested that it might be due to temperature irregularities, but 

Christian Wiener (1826-1896) concluded in 1865 that it could 

not be explained in this way and he appears to have been the 

first to suspect that it might be due to collisions between the 

pollen grains and the molecules of the liquid in which tlie grains 

were suspended. By degrees it was appreciated that the move¬ 

ment persisted when every kind of external disturbance to 

which it might conceivably be due was completely eliminated. 

It was also found to be quite independent of the nature or 

chemical composition of the particles, pollen grains or what notj 

though its violence depended on their size or mass and Jean 

Perrin (1870-1942) characterized it by the sentence: II est 

eternel et spontane. Delsaux (1877) and Sir William Ramsay 

(1879) thought, like Christian Wiener, that it might be due to 

the molecules of the suspending liquid. The complete elucida¬ 

tion of the nature of the phenomenon was due mainly to the 

theoretical work of M. Smoluchowski (1872-1917) and A. 

Einstein (1879- ) in the earliest years of this century, 

followed by a remarkable experimental study of it by Jean Perrin 

who established beyond all reasonable doubt that the movement 

of small particles, suspended in a liquid—or indeed in a gas— 

was in fact due to collisions with the molecules of the suspending 

medium, which have of course the irregular motion correspond¬ 

ing to the temperature. 

We have seen that the principle of equipartition of energy 

requires that at a given temperature the average kinetic energy 

of translation of the ultimate particles or molecules of gases, 

• PhiL Mag. 4, p. 161 (1828). 
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liquids and solids must have the same definite value and we 

should expect it to be true of the particles participating in the 

Brownian movement. The average kinetic energy of trans¬ 

lation of a particle we expect to be equal to '5kTj2, Perrin 

verified the equipartition principle by actual measurements on 

the small sjdierules which he used and thus estimated Boltz- 

mann\s constant, A, or its equivalent, and so Loschmidt’s num¬ 

ber. He carried out a great variety of experiments with spherules 

of gamboge or mastic suspended in water by which he tested 

Einstein’s formulae and made estimates of Loschmidt’s number, 

which he found to range in the moderately near neighbourhood 

of 6 X 1023. pjjg work furnishes convincing evidence of the 

soundness of the kinetic theory and of the reality of molecules. 

OSMOSIS 

Thomas Graham noticed that water passes quickly through 

porous membranes into alkaline solutions and solutions of 

crystalline substances.*[* In fact it was he who first suggested 

the classification of substances into crystalloids and COLLOIDS, 

the former associated with appreciable osmotic pressure5 the 

latter with hardly any, 

A great advance was made towards understanding the nature 

of osmosis by the Gernicin botanist, W. PfefferJ (1845-1920), who 

experimented with cane sugar solutions contained in a vessel 

with a semi-permeable wall^ that is a wall through which water, 

but not the dissolved sugar, can pass. The vessel was made of 

porcelain (like the inner vessel in a Daniell cell), which is 

porous, and had the semi-permeable material, copper ferro- 

cyanide, built up inside it. The semi-permeability of this 

substance was discovered in 1867 by the plant physiologist, 

Moritz Traube (1826-1894). Pfeffer’s method was to fill the 

semi-permeable vessel with the sugar solution and attach to it a 

* Einstein’s theoretical work is contained in Investigations on the 

Theory- of the Brownian Movement (Methuen). Perrin’s work is 

described in Les Atomes (Paris, Alcan). Earlier and very interesting 

work on the Brownian movement was carried out by M. Gouy: Journ. 

d. Phyrs. 7, p. 561 (1888). 

f T. Graham: “On Osmotic Force,” Bakerian Lecture, Phil. Trans. 
(1854). 

J Osmotische Untersuchungen (1877). 
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suitable mercury manometer. The vessel was immersed in pure 

water contained in a larger vessel. The water passed through 

into the solution until a certain excess of pressure (the OSMOTIC 

pressure) was developed inside it. The significant result of his 

exj)eriments may be expressed in the form: 

(Osmotic pressure) x (Volume of solution) 

remains constant at a given temperature—at least approximately. 

The explanation of the phenomenon is really very simple. By 

way of illustration imagine two rooms connected by one or more 

very small and narrow open doors5 but otherwise cut off from the 

rest of the world. Suppose now that a large number of Lilli¬ 

putian creatures are distributed in any sort of way (to begin 

with) in one or both rooms. Imagine them to be blindfolded 

and continually moving about in all directions at random and of 

course now and again colliding with the walls or passing through 

the open doorways. Lastly^ imagine a very small number of 

Gullivers in one only of the two rooms. They are also blind¬ 

folded and moving about in all directions in a perfectly random 

way. What will be the final state of affairs? Clearly the Lilli¬ 

putians will, vsooner or later, become uniformly distributed 

through both rooms, since they can pass freely through the open 

doors. The few Gullivers, on the other hand, will remain in the 

one room, the doorways being too narrow to let them pass 

through, and will become more or less uniformly spread through 

it. One other thing is obvious. The Lilliputians will occasion 

a nearly uniform pressure—by their collisions—on all the walls j 

but there will be an extra pressure on the walls in the interior of 

the room where the Gullivers are—the osmotic pressure of the 

Gullivers. 

An experiment similar to Pfeffer’s can be carried out with two 

gases. A palladium tube, sealed to a longer glass tube, contains 

nitrogen gas which is enclosed by mercury, constituting a simple 

manometer, such as students use in verifying Boyle’s law. An 

atmosphere of hydrogen is maintained round the palladium 

tube, the latter being kept sufficiently hot by an electric current. 

The hydrogen diffuses through the hot palladium, but not the 

nitrogen, and the end result is an excess of pressure in the inside 

exactly equal to that of the nitrogen if it filled the volume by 

itself. 
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Both PfelTer and van’t Hoff (1852-1911) showed"* that 

(Osmotic pressure) x (Volume of solution) 
-= Constant, 

m ' 

provided the solution is sufficiently dilute. Moreover vanh HoJ'i 

noticed that the constant is, in general, equal to the gas constant^ 

proper to the quantity of the dissolved substance, if it occu¬ 

pied the volume of the solution in the form of gas. It did not 

escape observation that in the case of dilute solutions of sodium 

chloride and similar electrolytes the constant was twice the 

appropriate value of the gas constant. This was to be expected 

because electrolytic phenomena indicate that in dilute solution 

sodium chloride, NaCl, for example, dissociates almost completely 

into Na'^ and Cl“ ions and thus has the number of its mole¬ 

cules” virtually doubled. 

The distinction between crystalloidal and colloidal solutions 

appears to be due to the fact that in the case of the former the 

ultimate particles of the dissolved substance are molecules or ions, 

whereas in the latter case they are much larger. Since the 

equation (IV—5), i.e. 

pv = kNT 

holds generally (at least approximately) for a given quantity 

then if the substance be a colloid its particles are large and N is 

consequently small ^ therefore p (osmotic pressure) will be «mall 

for a given volume. Examples of colloidal solutions are: solutions 

of silicic acid, ferric hydrate and solutions of metals, e.g. gold. 

RADIOMETER PRESSURE 

knudsen’s absolute manometer 

When two surfaces in a gas at low pressure are placed near 

together and are at different temperatures, forces, called radio- 

metric forces, are exerted on them. They may be accounted for 

in the following simple way: the molecules leaving the colder 

surface have the velocities of agitation, and therefore the energy 

and momentum, proper to the lower temperature. When the 

gas pressure is low enough the mean free path of the molecules is 

greater than the distance between the surfaces, so that the sur¬ 

face at the lower temperature is bombarded by molecules from 

* van’t Hoff: Zeits. f. PhysikaL Chem. i, p. 481 (1887). 



THE STATISTICAL THEORY OF HEAT—I 79 

the hotter surface. These have of course the momentum 

appropriate to the higher temperature and consequently the 

colder surface, facing the hotter one, is receiving more momen¬ 

tum than it loses. In fact, it is subject to a pressure in excess of 

that which it would experience under conditions of uniform 

temperature. Similar reasoning applies to the hotter surface. 

Sir William Crookes devised a simple piece of apparatus to 

exhibit this pressure—Crookes’ radiometer—and it was for¬ 

merly a familiar object in the windows of opticians’ shops. 

Martin Knudsen developed it into an absolute manometer for 

measuring very low pressures (of the order of mm. of 

mercury).’^ A simple description of it is given in The General 

Properties of Matter by Newman and Searle (Ernest Benn). 

Knudsen carried out a great deal of important theoretical and 

experimental work on gases which cannot be described here.j 

• M. Knudsen: Atm. d. Phy'sik. 2, p. 809 (1910). 

j* See, for example, Rnudseri’s Radiometer Pressure and Coefficient of 

Accommodation. 



CHAPTER FIVE 

THE STATISTICAL THEORY OF HEAT 

IL STATISTICAL MECHANICS 

maxwell's law of distribution 

The kinetic theory of gases was greatly advanced and the way 

prepared for something much more general by Maxwell's dis¬ 

covery of the law of distribution of velocities among gas mole¬ 

cules (1866). This is the law which lays down what fraction of 

the total number of molecules in a gas have velocities between 

specified limits, e.g. between 1000 cm. sec.“^ and 1001 cm. 

sec.~^, or also wliat fraction of the total number of molecules 

have one of the components of their velocities, e.g. the X 

component, between specified limits. I'he law is very like the 

Gaussian law for the distribution of errors in measurements, or 

the very similar law according to w’hich the shots fired at a 

target are distributed. Very likely these laws suggested to 

Maxwell his law of distribution of velocities. It will be described 

and its raison d'hre discussed when we study the more general 

approach to the stativStical problems which gases, i.e. assemblages 

of particles or molecules, and other assemblages have suggested. 

BOLTZMANN'S H THEOREM 

The great Viennese mathematical physicist, Ludwig Boltz¬ 

mann (1844-1906), encountered certain difficulties in studying 

Maxwell’s law, some of which, I think, were due to wrongly 

framed questions 3 but one of his questions was certainly very 

important: Is Maxwell's law the only possible one, or is STATIS¬ 

TICAL EQUILIBRIUM possible for more than one law of distribution? 

In order to appreciate Boltzmann's method of finding the 

answers to these questions let us imagine, for the sake of argu¬ 

ment, any kind of distribution of velocities among the molecules 

at the outset. For example a certain fraction of the total number 

80 
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of molecules have their X components of velocity between 

1000 cm. sec.-^ and 1000*1 cm. sec.^^, 

their Y components between 

1500 cm. sec.”^ and 1500*15 cm. sec.“*^ 

and their Z components between 

1200 cm. sec.“^ and 1200*05 cm. sec.“^. 

We might represent this fraction by 

/X 0*1 X 0*15 X 0*05, 

where is some function of the numbers 1000, 1500 and 1200. 

This is the appropriate way of representing such a state of affairs, 

because if wc were to imagine any one of the small ranges, say 

the Y one, to be doubled so as to become 0*5 instead of 0*15, the 

fraction of the molecules involved would obviously be doubled, 

so long of course as the range is small. To take an illustration: 

Think of a large population, approaching 50 millions; the 

fraction of the total number of individuals with ages between 

40 years and ^-0 years plus three weeks might be expected to be 

very nearly three times the number of those whose ages lie 

between ^ 0 years and 40 years plus one week; so that we might 

express such a fraction as 

f X range in weeks, 

where f depends, according to some law, on 40. This was the 

way in which both Maxwell and Boltzmann dealt with gases and 

the latter was led to construct a certain mathematical function 

with these quantities,/', which he represented by the symbol, H*, 

and I shall try to give at least a picture of it nearer the end of 

this chapter. Meanwhile it may be said that however the dis¬ 

tribution function, /, may change in consequence of the motions 

and collisions of the molecules the function H is so constructed 

that it cannot increase', it is only possible for it to become smaller 

or to remain unchanged. Obviously the steady state of the gas, 

i.e. the state of STATISTICAL EQUILIBRIUM—which of course must 

be identified with the state of temperature equilibrium—^will 

have set in when H has its smallest value and Boltzmann found 

that this required that Maxwell’s law should hold. Maxwell’s 

law and other laws appear to be sufficient for statistical equi- 

• Vide L. Boltzmann: Gastheorie (Johan Ambrosius Barth, Leipzig, 

1896). 

F 
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librium; but, as the H theorem indicates, Maxwell’s is necessary. 

The most important thing to be said about the 11 function is that, 

provided we change its sign—^i.e. put a minus sign in front of 

it—it can be identified with the natural logarithm of the 

probability of the state of the gas. The function H without a 

minus sign in front of it is already negative, consequently minus 

H is positive. We feel fairly safe in assuming that a gas, or any 

assemblage of an enormous number of things, will change from 

a less probable to a more probable state and settle down in the 

most probable one. For a gas this means that minus H has its 

biggest value. In fact H (with the minus sign) can be identified 

with the ENTROPY of the gas. The appreciation of this by Boltz¬ 

mann and his successors marked the beginning of that wonderful 

generalization of the gas theory called statistical mechanics, 

which is the real basis of thermodynamics and the creation of 

which was largely the work of the New England genius, Josiah 

Willard Gibbs.* It may be added parenthetically that Willard 

Gibbs made many important contributions to thermodynamics 

outside those relating to statistical thermodynamics. He discovered 

the famous PHASE RULE as early as 1876. Much of his greatest 

work was published in the Transactions of the Connecticut 

Academy and did not become known till much later. 

The investigations of Maxwell, Boltzmann and their pre¬ 

decessors were concerned with a very special kind of assemblage, 

namely, a number of particles (molecules). In theoretical 

investigations in physics it sometimes happens that a very 

general kind of approach to some problem is easier than the 

study of a special case, and the more general subject of statistical 

mechanics is in some ways easier than the direct approach to the 

particular case of it which the kinetic theory of gases exemplifies. 

In this more general study Boltzmann’s H theorem, or its 

equivalent, emerges naturally and dominates the subject. 

ASSEMBLAGE WITH NO INTERACTION 

Let us give our attention at first to an assemblage of mechani¬ 

cal systems which are all exactly alike and conservative. This 

means that each system in the fassemblage has kinetic and 

• J. Willard Gibbs: Elementary Principles in Statistical Mechanics 

(1901). 
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potential energy and that the sum of the two is constant. It 

is therefore implied that the systems do not interact with one 

another- As an illustration let us think of a vast number of 

ideal simple pendulums, each vibrating in a plane and suffi¬ 

ciently separated from one another to make interaction impossible. 

We shall not worry about their positions. Their points of 

suspension are fixed and sufficiently far apart. The state of such 

an assemblage at any moment may be represented on a very 

simple diagram (Fig. V—1). Each system in the assemblage, i.e. 

each pendulum, is represented by a point, like P, on the diagram. 

Fig. V—1 

The co-ordinates of this point are <7, the distance of the bob of the 

pendulum (+ or — as the case may be) from its position of 

equilibrium, and /?, its momentum, mv (likewise + or —). The 

position of each point, P, will be continually changing (unless the 

pendulum is not in motion at all). In fact in our illustration of 

the pendulums each point will travel along a curve approxi¬ 

mating to an ellipse. There is, we may suppose, an immense 

number of these points P, each representing a different pen¬ 

dulum. Those points which, at some instant, happen to be 

within the small element dp X dq—and we are supposing an 

enormous number of them even in such a small element—^will 

be in stream motion in some direction and it can be demon¬ 

strated that in the course of their motion they will continue to 

occupy the same area (= d/? X dq). This is called LiouviLLE’s 
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THEOREM. Another remarkable thing can be demonstrated: 

there will be statistical equilibrium, i.e. the number of the 

|X)ints P in a particular element—any one that may be chosen 

in some fixed position on the diagram—-will remain unchanged, 

provided the number of points P per unit area at every place 

on the diagram is any function of their energy that you may like 

to select. For example, there will be statistical equilibrium if the 

density of the points P is proportional to corresponding energy. 

There is in fact no unique law of distribution when statistical 

equilibrium exists. This justifies Boltzmann’s question: Is 

Maxwell’s law the only possible one? It is only when there is some 

interaction between one system and another that there is a unique 

law of distribution. 

ASSEMBLAGE OF INTERACTING SYSTEMS 

The problem of an assemblage of interacting systems is not so 

terribly difficult if the interaction is slight. Keeping to the 

illustration of the pendulums, let us suppose that now and again 

a pendulum collides with one of its neighbours. While the two 

pendulums are interacting they constitute a compound system. 

We are going to deal with the case where the interaction is so 

rare that the number of such compound systems is extremely 

small and we may equate the total energy in the assemblage to 

the sum of the energies of individual free pendulums. In these 

circumstances the following law of distribution is found to be 

necessary and sufficient for statistical equilibrium. The frac¬ 

tion of the total number of systems (pendulums) whose repre¬ 

sentative points are in dp x dq is expressed by 

Be dpdq, (V—1) 

~E/e 

Note that Be 

is the function y already mentioned. E is the mean energy of a 

system in dp x dq-,, while B and @ are constants which depend 

on the total energy of the assemblage. Each of our pendulums 

has (we have assumed) only one degree of freedom—one q and 

its corresponding p. For several degrees of freedom the formula 

(V—1) is correspondingly generalized. 

The distribution represented by (V—1), or its generalization, 
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was called by Willard Gibbs a CANONICAL DISTRIBUTION. It 

includes Maxwell’s law as a special case—the case where E is the 

kinetic energy of a molecule in an assemblage of molecules 

(gas). Willard Gibbs called & the modulus of the distribution. 

It can be identified with temperature^ in fact 

k being Boltzmann’s constant. 

The method of arriving at (V—1) is, roughly, as follows: We 

find an expression for the probahiliij of any state of the assem¬ 

blage. We take its logarithm, tj;, because its additive property 

introduces simplicity and we arrive at (V—1) by inquiring under 

what circumstances ^ has its greatest value. We can identify 

4^ with — H. It is easy to show that 

Entropy (9) = A X 4^, 

which explains why k is sometimes called the ENTROPY CONSTANT. 

Of course statistical mechanics changes in some ways when we 

give our attention, for example, to an electron gas, or to a 

photon gas (black body radiation)^ but happily the general stat¬ 

istical method remains unchanged when we replace Newtonian 

mechanical principles by those of quantum mechanics. 



CHAPTER SIX 

LIGHT 

PRELIMINARY EXPLANATIONS 

Such words as ‘Tight”, “heat” and “sound” have a subjective 

significance which does not belong to the parts of physical science 

which they label. The objective phenomena which we study 

under these titles did indeed first force themselves on our 

attention through our faculties of sight, touch and hearings but 

physics is mainly, or perhaps one should say only, concerned with 

the purely objective phenomena which convey to us our know¬ 

ledge of the physical world. These phenomena constitute the 

mechanism, as it were, by means of which all the information 

that goes to build up natural science is conveyed to us. It would 

not indeed be inappropriate to define the scope of physics as the 

study of the phenomena which enable us to observe the world. 

A blind man might very well carry out “optical” experiments. 

He might use a spectrometer the telescope of which is provided 

with a thermo-junction in place of the usual fine hair in the eye¬ 

piece. He would be able to recognize the coincidence with the 

image of the slit, which constitutes a spectral line, by means of 

a suitable amplifying device, which would enlarge the conse¬ 

quent thermo-current so that it might, for example, ring a bell. 

He would be able to determine angular values accurately by 

rotating drums. In fact we are not concerned in physics with 

any of those subjective concomitants, such as sight, which, 

though immensely convenient and helpful, are not essential 

in the observation of the phenomena with which we associate 

them. The essential part played by one or other of the senses 

is confined, one might say, to reading the record which the 

apparatus delivers. 

If I may anticipate the description of the work of Clerk 

Maxwell and his successors, which appears in a later chapter, 

“light”, in its widest objective sense, may be said to embrace 

electromagnetic waves ranging from the wave-length infinity 

86 
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through that of broadcasting waves, infra-red, visible light, ultra 

violet, X-rays and gamma rays to the wave-length zero at the 

other extreme. It is characterized by a unique and very great 

velocity of propagation in free space (i.e. in vacuo)» Before Clerk 

Maxwell produced his electromagnetic theory, light was believed 

to be an undulatory phenomenon in a medium called the aether, 

with properties like those of an elastic solid. Sound has always, 

at least since Newton’s time, been regarded as an undulatory 

disturbance in ordinary elastic material media, more especially 

in air and gases, propagated in the form of a dilational wave 5 but 

light waves are of the transverse or distortional type. The aether 

was destined, as we shall see, to raise formidable difficulties, first 

of all for the elastic solid theory and later for the much more 

satisfactory Maxwellian theory. 

The most prominent of the interesting features of light are: 

(i) The immense speed with which it travels, and 

(ii) the fact that it travels freely through empty regions, mean- 

ing regions which are devoid of everything which the exhausting 

devices of the physicist can remove and which, I believe, are in 

fact empty while no light is passing through them^ though this 

view could hardly have been entertained even so recently as 

thirty years ago. 

VELOCITY OF LIGHT—FIZEAU 

The earliest measurement of the velocity of light, in which 

astronomical distances or phenomena were not used, was made 

by H. L. Fizeau (1849),* who succeeded in a comparatively 

simple way in measuring the very short time required by light 

to travel the double distance between Suresnes and Montmartre, 

17*266 kilometres in all. The time-measuring device which he 

used was a toothed wheel with 720 teeth round its circumference. 

This was made to rotate by a suitable clockwork in such a way 

that the number of complete revolutions per second could be 

determined. A rough description of Fizeau’s procedure is as 

follows: A beam of light, travelling in a direction parallel to the 

* A splendid account and critical discussion of the whole series of 

measurements (exclusive of astronomical measurements) of the velocity 

of light in free space is contained in a publication by N. Ernest Dorsey: 

Trans. American Phil. Soc., New Series, Vol. 34, Part I (1944). 
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axis of the wheel, was projected so that it was alternately blocked 

by a tooth of the rotating wheel or permitted to pass when a gap 

between two teeth replaced the tooth. The light which emerged 

between two teeth (at Montmartre, say) travelled on across Paris 

and was reflected by a mirror at Suresnes (8'653 kilometres 

away). This reflected beam was received by the observer (at 

Montmartre) if the wheel was either at rest or, alternatively, 

rotating so fast that, in the time taken by the light for the double 

journey, the next gap between two teeth, or indeed any suc¬ 

ceeding one, had just managed to occupy the place of that 

through which the light had originally passed. In fact the 

returning light was seen by the observer when the wheel was 

rotating at certain definite speeds. There were of course inter¬ 

mediate speeds when the returning light was blocked by a tooth 

which had just managed to reach the place of the gap, through 

which the light had started, during the time it took for its 

double journey. 

The calculation of the speed of the light from the observations 

was very simple. For illustration let us take the following case: 

The wheel is gradually speeded up until at last the observer sees 

the light which has returned, i.e. he sees it for the second time. 

The first time was when the wheel was moving so slowly that 

the light gets back before the gap has gone. Clearly the time the 

light has taken to do the double journey is just that in which a 

gap gets into what was the position of its predecessor when the 

light started off on its journey. Suppose now Fizeau found that 

his wheel was making 25 turns per second. This would in fact 

be very nearly what he did find. He did not of course have to 

follow directly a speed like 25 turns per second. He could, for 

example, observe another wheel of his clock work, rotating with 

a known fraction of the required speed. For one turn per second, 

the time required by a gap to get into the place of its predecessor 

would be 1/720 second, and this must be divided by 25, thus 

giving 1/18,000 second. The total distance is 17*266 kilometres 

and therefore in one whole second the light travels 

17*266 X 18,000, 

or approximately 310,800 kilometres per second. Fizeau actually 

found 315,000 kilometres per second, or 

\ 3*15 X 10^® cm./sec., 
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which was creditable enough for the first direct method; but we 

know now that Fizeau’s result is a bit too large. 

The latest and best measurements lead to the velocity {in 

vacuo) 

2-99775 X 10i®cm./sec., 

and it is unlikely to be less than 

2-99765 X 10^® cm./sec. 

or greater than 

2-99785 X 10i<>cm./sec.* 

The description just given of Fizeau’s measurement is very 

rough. Had the experiments been attempted exactly in the way 

described, the light would have spread so much that the return¬ 

ing portion of it would have been too faint to be seen at all. 

The light was in fact concentrated practically at a point 

between two teeth of the wheel by a suitable converging lens 

system and, after passing on, was rendered parallel by another 

such lens system, so that it went on its journey as a parallel beam 

and was thus prevented from spreading out in all directions. 

Similarly the optical system at the reflecting mirror end made 

the light return as a similar parallel beam. Finally it converged 

to a point (nearly)—between two teeth when the speed of the 

wheel was suitable—and was reflected by a plane piece of glass 

to the observer’s eye. 

FOUCAULT’S METHOD 

As early as 1854 Charles Wheatstone used a rotating mirror to 

measure what he interpreted to be the velocity of electricity 

along a cable, and he is said to have had the idea of applying this 

device to measure the velocity of light; but the performance of 

this was left to J. L. Foucault (1819-1868) who carried out a 

successful series of determinations between 1850 and 1862.| 

The principle of the mirror method is the measurement of the 

short time involved by observing the small angle through which 

a rapidly rotating mirror turns while the light travels outwards 

from it over a measured distance and back again. A beam of 

light was directed to the rotating mirror, so that when the latter 

• N. Ernest Dorsey, loc, cit, 

f Foucault: Comptes RenduSy 50, p. 551 (1850). 
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was in a suitable position, it reflected the light across the measured 

distance to a fixed mirror, which in turn reflected it back again. 

Meanwhile the rotating mirror has turned through a small angle, 

so that the observer receives the light along a slightly different 

direction. The measurement of the angle between the two 

directions gives the angle through which the mirror has turned ^ 

in fact this latter is one-half the former, in virtue of the law of 

reflection: angle of incidence equals angle of reflection. Foucault 

overcame his quite formidable difficulties with great ingenuity 

and obtained the final result: 

2*98 X 10^®cm./sec. 

The next to measure the velocity of light was again a French¬ 

man, Cornu, whose measurements were made between 1872 

and 1876.* His earliest result was 

2*984 X lO^^cm./sec. 

which is equivalent to 

2*985 X 10^®cm./sec. 

in vacuo. His repetitions of these measurements in 1874 and 

1876 led him to the final value 

5*004 X 10^®cm./sec. 

(reckoned for vacuo). 

Since Cornu^s time the velocity of light has been determined 

many times with steadily increasing precision. About half of 

these were made by the great American physicist, Albert 

Michelson (1852-1951) who began as long ago as 1878. He used 

the rotating mirror method. In his later work he had, instead of 

the old rotating mirror, a rotating prism, originally eight-sided, 

but in his last determination 52-sided, each side being a mirror. 

It made of course many hundreds of revolutions per second 5 the 

\^number per second being determined by stroboscopic methods 

{'^pdj3aff==a whirling round). 

Sometimes at the cinema we observe the wheels of an auto¬ 

mobile to be quite still or perhaps even moving backwards. In 

the foWier case evidently the interval between two consecutive 

photographs is equal to the time taken by a spoke to get into the 

position ^s predecessor had occupied and we might determine 

this interral from the speed of the automobile and the dimen- 
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sions of the wheel. This would be a stroboscopic method. Th^ 

light travelled a distance of the order of 5 miles along a pipe 

which was exhausted as far as practicable, thus reducing the 

correction needed to get the velocity in vacuo, Michelson^s 

method of observation was to arrange that the returning light 

could only be seen by the observer when a face of the prism 

occupied the place of its predecessor during the interval of time 

required by the light to traverse the measured distance in both 

directions. 

The methods used in the very latest measurements may be de¬ 

scribed as improved forms of the original method of Fizeau. The 

first to use such methods were Karolus and Mittelstaedt (1929). 

Then came the American, Anderson, and lastly, A. Hiittel. 

Instead of the mechanical device of the toothed wheel, a Kerr 

cell was used. Starting with plane polarized light this was 

made to pass through the Kerr cell (in which an electric field is 

oscillating with so-called radio frequency). The effect of this on 

the light was to cause its state of polarization to vary periodically 

—from plane polarization to elliptical, circular, elliptical, plane 

and so on. After travelling some distance—which may be a few 

yards instead of miles, on account of the high frequency of the 

electrical alternations in the Kerr cell—the light passed through 

another, suitably oriented Kerr cell, then through a NicoFs 

prism to the observer’s eye, or to a photo-electric cell. According 

to the phase of the field in the cell, the light may be blocked 

altogether (as if a tooth of Fizeau’s wheel were in the way) or it 

may pass through. As the length of the path was changed the 

response of the photo-electric cell was periodic, the corresponding 

distances being traversed by the light during the very minute 

(and, of course, known) period of the Kerr cell. 

An alternative procedure was to keep the distance traversed 

unchanged and vary the period of the Kerr cell. 

The final estimate made from all these later methods is that 

already given above. 

GROUP AND PHASE VELOCITY 

Any one can convince himself, in a very simple way, that two 

velocities are, in general, associated with wave propagation. If 

a tiny pebble be dropped into (initially) still water a group of 
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ripples spreads out with a definite velocity. Its boundaries are 

not sharply defined^ the waves (crests and troughs) fade out 

gradually in front and behind and it will be seen that the crests 

and troughs travel through the group^ new crests being formed 

behind and fading out in front after traversing it. They travel 

faster than does the group^ though it may be remarked paren¬ 

thetically that, with sufficiently short waves-length, they travel 

more slowly than the group. There is a particular wave-length 

for which PHASE velocity (i.e. the velocity of the crests and 

troughs) and GROUP velocity are equal. So in the case of light 

we have to distinguish between these two velocities. It seems to 

have been appreciated first by Sir G. G. Stokes. The relation¬ 

ship between them was first given by Lord Rayleigh and is 

explained later. Naturally we ask which of these the experi¬ 

mental measurements of the velocity of light yield. The answer 

is the GROUP VELOCITY. One reason is that crests and troughs 

are unable to stay the whole course, unless group and phase 

velocities happen to be equal to one another. Group and phase 

velocities are always equal in a medium in which there is no 

dispersion—as we shall see—e.g. in free space. Moreover none 

of the methods used is capable of picking out a crest or trough and 

finding how long it takes to travel over a measured distance. 

Even stellar aberration gives the group velocity—though it 

happens that in free space phase velocity is equal to group 

velocity. It is the phase velocity which is referred to in such a 

statement as 

Velocity of light in vacuo ^ ^ • • j r i 
—-1-E-= Refractive index of glass. 
Velocity of light in glass 

CONVECTION OF LIGHT 

Already in the time of Fresnel (1818) experiments had been 

carried out by the French mathematician and physicist, Francois 

Arago (1786-1855), to ascertain whether the refraction of the 

light from a star (by a prism) was influenced by the motion of 

the earth through the luminiferous medium. Finding no such 

influence he applied to his protdgd, Fresnel, for an explanation 

and the answer he received is one of the historic documents of 

physical science.* The obvious explanation would appear to be 

* Larmor: Aether and Matter, p. 520 (Cambridge University Press). 
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that the aether travels along with the earth, but, as Fresnel 

wrote: par ait impossible (Vexpliquer V aberration des itoiles 

dans cette hypothese,^* The whole subject is discussed in the 

chapter on the aether. Meanwhile it may be said that Fresnel 

came to the conclusion that the motion of the earth, or of any 

body, transparent or other, does not influence the aether outside 

it—the aether remains ^‘at rest’\ In the case of a transparent 

body which is travelling with some velocity, r, relative to the 

quiescent aether outside it, and through which a beam of mono¬ 

chromatic light is travelling, in the same direction shall we say, 

Fresnel inferred that the velocity of the light relative to the 

quiescent aether was given by 

in which expression n means the refractive index of the trans¬ 

parent material. We should now say that v is the velocity of the 

transparent body relative to the observer and it may be remarked 

that we now appreciate that it is the phase velocity of the light 

which is expressed by (VI—1). The crests and troughs are, as 

it were, convected by the moving medium and the factor 

(1 — 1/7i2) is called Fresnel’s convection coefficient or 

DRAGGING COEFFICIENT. This prediction of Fresnel’s (VI—1)— 

which will be expressed with rather more precision later—was 

tested by Fizeau in 1859* and again in 1886 by Michelson and 

quite recently by Zeeman. All three of them confirmed Fresnel’s 

prediction. Fizeau’s method is illustrated by Fig. VI—1. A 

beam of monochromatic light starts from a slit, 6*, is then 

reflected from a plate of glass, P, to the converging lens, 

which renders it parallel. The upper part of the parallel beam 

travels along ab^ through which water is flowing in the same 

direction as the light is travelling. The parallel beam is made to 

converge to a line (image of the slit) on the mirror, M, and on 

reflection the part of it which has already traversed ab now 

passes along erf, again passing through the water which is flowing 

in the same direction. The lower portion of the beam from S 

takes in succession the paths dc and ba^ travelling in the opposite 

•Fizeau: Ann. d. Chimie et de Physique^ Ser. 3, Tom. 57, p. 385 

(1859); Michelson and Morley: Amer. Journal of Science^ 31, p. 377 

(1886). 
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sense to that in which the water is flowing. The two portions are 

reunited at 6", where interference fringes are produced and can 

be seen by the observer. The amount by which the fringes are 

displaced as the velocity of the water is raised from zero to some 

final value, Vy enables the change produced in the phase velocity 

of the light, in either direction, to be computed, since c, the 

velocity of light in the free aether, and n, the refractive index of 

the water, are known in advance. 

Fig. VI--1 

Fresnel seems to have regarded the problem of the convection 

of light in the following way: He had to assume that the aether 

outside material media is at rest in order to account for stellar 

aberration and his theory of light—as indeed any theory which 

regarded light as a wave propagation in a material, or quasi¬ 

material, medium—^I’equired the formula 

Velocity of light := 
V Density of aether 

the elasticity being, of course, that which is associated with a 

shearing stress, often called rigidity. He supposed this elasticity 

to have the same value for the aether in free space as for the 

aether in any material medium and consequently he had to 

account for the different velocity of light—we should now say 

phase velocity—in different media by supposing the density of 

the aether in material media to vary from one medium to 

another. The present-day use of the term “optical density” has 

its origin in this hypothesis. For free space, therefore, according 

to Fresnel, 
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e being the elasticity and the density of the aether in free 

space. Further 

“ = V;- 
where u is the velocity of light in any material medium, for 

example in water, at rest, and p is the density of the aether in it. 

Therefore 

w \ Po 

or 

Po’ 
(VI-2) 

n being the refractive index of the transparent medium. Now 

think of this transparent medium as a rectangular block of glass, 

abcdy its end faces ab and cd having each the unit area (Fig. 

VI—2). It is travelling, we suppose, with the velocity, in the 

direction of the arrow, and we represent the velocity of the 

convected aether in the glass by v' (still unknown of course) in 

the same sense as v. Since the aether outside the block is at rest, 

a quantity of the aether occupying the volume efba, the length 

of which is must be left behind in one second j that is to say the 

quantity 

X po 

But this emerges from the block, and as the aether in the block 

has the velocity t/ it is being left behind at the rate v v\ so 

that the quantity of the emerging aether must be equal to 

iv - f') X p, 



96 A HUNDRED YEARS OF PHYSICS 

p being the density of the aether in the glass. We have there¬ 

fore 

V X Po = (t^ - v')p, 
and consequently 

Po ^ 1 _ ^ 
P 

and by (VI—2), 

The velocityj v' ^ of the aether in the glass must be added on 

to cjn, which is the velocity of light in the resting material^ 

just as in the case of sound travelling in the direction of the wind, 

the velocity is that in still air plus the velocity of the air (wind). 

The result, therefore, is that exprovssed by (VI—1). Thomas 

Young described this view of Fresnel’s about the relationship 

between the aether and moving materials by comparing it to 

the wind blowing through a grove of trees. 

Fresnel’s formula has turned out to be correct^ but his method 

of arriving at it is open to criticisms which need not be discussed 

here,* but that based on Fermat’s principle appears to be quite 

sound, if we accept the premiss of the validity of Fermat’s 

principle in the special form which Arago’s experiments appear 

to justify. 

One of Fresnel’s predictions, based on (VI—1), was that the 

angle of aberration should be independent of the nature of the 

transparent material—^whether air, water, or what not—filling 

the observing telescope. This prediction was verified about 1870 

by Sir George Airy, the Astronomer Royal, who had a telescope 

filled with water (and its optical system suitably adjusted of 

course). He found the same aberration as that observed with 

normal telescopes.| Sir Joseph Larmor records^ that Fresnel 

• One which occurs to me is that the density of the aether in any 

material medium would seem to depend on the wave-length of the 

light. 

jG. B. Airy: Proc, Roy. Soc., 20, p. 35 (1871); Phil. Mag., 43, 

p. 310 (1872). 

J Aether and Matter, p. 10. 
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pointed out that some one named Wilson (about whom I have 

been unable to find any infoiVniadon) had shown that no effect 

was to be expected on the corpuscular theory as well as on 

the undulatory theory. 

DISPERSION 

This is the name of the phenomenon first investigated by 

Newton when, as he wrote in his Opticks^ “In a very dark 

Chamber, at a round Hole, about one-third Part of an Inch 

broad, made in the Shut of a Window, I placed a Glass Prism. 

. . . The refractive index of a transparent substance, water 

or glass for example, depends on the colour, or, speaking more 

j)recisely, on the wave-length of the light5 so wlien ordinary 

white light is passed through a prism of glass its constituent parts 

of different colours are separated.^ A so-called SPECTRUM is 

produced. In the case of a glass prism and light belonging to the 

visible part of the spectrum, the deviation produced is the greater 

the shorter the wave-length. This was long regarded as the 

normal type of DISPERSION, as it is called, until Fox Talbot (1840) 

noticed an exception to it. About 1860 le Roux observed^ that 

iodine vapour transmitted only the extreme ends of the visible 

sj)ectrum, red and violet, and that the refraction of the red (longer 

wave-length) was greater than that of the violet. Kundt§ 

observed that when a substance absorbed some part of the spec¬ 

trum, the deviation or refraction of the light is greatly increased 

as the absorption band is approached from the long-wave side 

and greatly diminished as it is approached from the short-wave 

side, (kundt's law). The term ANOMALOUS DISPERSION was intro- 

* Newton’s Opticks: p. 26 in the reprinted 4th Edition (G. Bell and 

Sons, 1951). 

f I do not feel happy about the use of the word “constituent” in this 

context; but perhaps it is well to approach precision of statement 

gradually and I am hoping that the precise meaning of the sentence 

will emerge later. 

JLe Roux: Ann. de Chimie ct de Phy'sique^ Ser. 3, Tom. 61, p. 285 
(1861). 

§ K\mdt: Pogg. Ann.y 1871—1872. 

G 



98 A HUNDRED YEARS OF PHYSICS 

duced for this departure from what was regarded as normal.* 
The theoretical explanation of dispersion appears to have been 

suggested first by Maxwell in the form of a question in the 
Cambridge Mathematical Tripos Examination in 1869. The same 
explanation was given independently by a German called Sell- 
meyer in 1872. Briefly it is based on the supposition that there 
are in the dispersing material small particles capable of simple 
harmonic vibrations about fixed points. These particles are to be 
thought of as molecules or ultimate particles of the material 
embedded in the aether and their oscillations are relative to the 
aether. When monochromatic light is traversing the material 
they are set in forced vibration with the same period as the light 
waves, which is of course different from their natural periods in 
general. Tlie consequence of this is that the light traverses the 
material with a definite phase velocity which is determined by 
the two periods, that of the light wave and that of the oscillating 
particles. This fixes the refractive index of the material for 
light of a particular wave-length, and since it varies from one 
wave-length to another, dispersion is the inevitable consequence. 
The theory is very simple, but cannot be given here.f If we 
neglect frictional (dissipative) forces and assume only one group 
of these vibrating particles with a natural period corresponding 
to the wave-length, in vacuo^ then we arrive at the following 
formula: 

1 
Nm 

X (VI-3) 
, P X* - 

for the refractive index N and m mean respectively the num¬ 
ber per unit volume and the mass of one of the vibrating par¬ 
ticles 5 p is the density of the free aether and X is the wave-length 
of the light travelling through it. Of course a substance might 
have two or more groups of such particles, each associated with 

♦ Kundt made very thin prisms of silver by sputtering silver from a 
silver cathode in a discharge tube. These transmit light of the blue 
end of the visible spectrum and the refraction is towards the edge of the 
prism, indicating a refractive index less than unity and therefore a 
phase velocity greater than that of light in vacuo. This is not in conflict 
with the pronouncements of the theory of relativity which sets no 
limits to the phase velocity of light. 

I It is presented very simply in E. Edser’s text-book on Light (Mac¬ 
millan 8c Co.). 
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its own special set of values of N, m and in which case the 

expression on the ri^ht of (VI—5) would he replaced by a sum^ 

for example, if there were two such sets the formula would 

become: 

Nm X2 TV'm' X^ 

T" X* - X* - X-] 
(VI—4) 

The general consequences of this theory can be seen by study¬ 

ing the simplest case (VI—3). If we begin with X greater than 

Xo we see that as X gets smaller, (and consequently n) gets 

progressively bigger, tending to infinity as X approaches Xg. 

For illustration imagine X = 500 and Xg == 300, then 

XV(X2 - X2) = 230,000/160,000 = 25/16 = 1/,-. 

Now suppose X to decrease to 301^ then — Xg) becomes 

90,601/601, which is more than 150. The infinite value corres¬ 

ponding to X == Xg is really due to the fact that in deducing 

(VI—3) frictional forces have been ignored. This defect in the 

original, very simple, theory was repaired by von Helmholtz. 

When X is in the neighbourhood of Xg (but X > Xg), the 

frequency of the light wave is close to the natural frequency of 

vibration of the particles (corresponding to Xg) and we have 

RESONANCE, nearly, which means very strong absorption. 

Imagine, for example, the point of support of a pendulum to be 

agitated with a frequency near to the natural one of the pen¬ 

dulum; it will rapidly get into violent oscillation. So when the 

frequency in the light waves is near to the natural frequency 

characteristic of one of the sets of particles they will quickly 

develop oscillations of large amplitude; that is to say they will 

absorb much energy from the light waves. When X is just a 

trifle less than Xg we see that is minus and so n is purely 

imaginary (in the mathematical sense of the word). The inter¬ 

pretation of this is that, in the narrow range of wave-lengths 

where n is imaginary, light cannot penetrate the material at all; 

it is completely reflected. 

Moreover when X is extremely short n is very nearly equal 

to unity. All these features of dispersion are observed. The 

general character of the dispersion curve {n plotted against X) 

for a material with two sets of particles, with characteristic 

natural periods, is illustrated by Fig. VI—3. The shaded parts 
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show the regions of total reflection. The part ah illustrates dis¬ 

persion, as it is exhibited by glass in the visible part of the 

spectrum—refractive index getting steadily less as we pass from 

shorter to longer wave-lengths. The “anomalous” behaviour 

of n is shown in the neighbourhoods of the wave-lengths and 

Xq' which correspond to the natural periods of the two groups 

of vibrating particles. 

R. W. Wood has described* a sinipde way of observing anom¬ 

alous dispersion. A prism of cyanine is made by pressing a small 

fragment of it between two glass plates hot enough to fuse it. 

The observations are carried out by placing together the cyanine 

prism and a glass one^ the former hciving its refracting edge 

horizontal and the latter its edge vertical. An appearance rather 

like that of Fig. VI—5 will be observed when white light passes 

through the combined prisms. 

It follows from this simple theory of dispersion that 

1 

(density of material) 

remains constant for the same material find the same wave¬ 

length. Consequently when n is close to unity, as with gases, 

« — 1 is proportional to the density. This is the law of Glad¬ 

stone and Dale.I 

* R. W. Wood: Physical Optics^ p. 96 (1905). 
\PhiL Trans., p. 887 (1858) and p, 517 (1865). 
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The essentials of this theory of dispersion still remained when 

the old “elastic solidtype of theory was replaced by Maxwell’s 

electromagnetic one. In the newer tlieory there are sets of 

vibrating IONS (charged particles) each with its characteristic 

natural period, instead of the vibrating particles of Sellmeyer’s 

theory. It turned out to be even more successful than the older 

one and accounted for facts which the elastic solid theory could 

not explain. In particular it leads to the law discovered by 

Lorenz of Copenhagen (1829-1891) and H. A. Lorentz of 

Leyden (1855-1928), namely that 

~ 1 

+ 2’ 

if divided by the density of tlie material, has the same value in 

its different phases, e.g. the same value for the liquid as for the 

vapour.* 

RESIDUAL RAYS 

The shaded portions of the diagram (Fig. VI—5) mark 

spectral regions, as we have seen, where there is the total 

reflection characteristic of so-called anomalous dispersion. This 

leads me to a remarkable investigation of the reflection of 

radiation belonging to the infra-red part of the spectrum 

(roughly between lOg and ZOg where p = 1/1000 mm.) by 

Heinrich Rubens (1865-1922) and his pupilsj* which is of 

immense interest. Their method of experiment consisted in 

throwing a beam of radiation from a hot body such as a heated 

Neriist rod—this of course included visible radiation as w^ell as 

infra-redj indeed the Nernst rod w’as a feature in the lamps once 

used in the London A.B.C. shops for lighting—on to the flat 

surface of a piece of quartz, or of rock salt, or other crystalline 

material. The beam of radiation was first rendered parallel by 

reflection from a concave mirror, at the principal focus of which 

the incandescent rod was placed, and after successive reflections 

from several plates of the particular material, was found to be 

• H. A. Lorentz: Ann. d. Pkjsik, 9, p. 641 (1880); L. V. Lorenz: 

Ann. d. Phjrsikj 11, p. 70 (1880). 

tH. Rubens and E. F. Nichols: med. Ann., 60, p. 418 (1897); H. 

Rubens and E. Aschkinass: Wied. Ann., 65, p. 241 (1898). 
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either monochromatiCj i.e. to consist of a very narrow range of 

wave-lengtlis, or a small number, two or three, of sucli narrow 

ranges^ all the rest of the radiation having been absorbed or 

transmitted. Rubens called this radiation which was left over 

after many reflections: residual RADIATION {Rcststrahlung). The 

phenomenon is just what the theory of dispersion predicts (strong 

reflexion of certain wave-lengths). Among the residual wave¬ 

lengths measured by Rubens and his pupils may be mentioned: 

Quartz . 8-25p and 20-75p, 

Fluorspar . 25*7{jl, 
Rock salt . 5T2(x, 

Sylvin . 61Tp. 

The reader may be reminded that 

Ifx = 1/1000 rnm., 

sometimes called the micron. 

These wave-lengths correspond, at any rate according to the 

views of that time, to the natural frequencies of vibration of the 

ions in the materials. We know that the relationship between 

wave-length in free space, velocity of light in free space, and 

frequency is expressed by 

c = vX, 

therefore the frequency corresponding to the wave-length 

5l*2{x of rock salt, for example, must be given by 

5 X 1010 ^ ^ X 51.2 X 10-% 

5 
therefore v =- X lO^^, 

51-2 ' 

or V =5*86 X 1012 vibrations per second. 

Rubens made use of his residual radiation, or I should say, 

rather, his method of producing it, in the investigation of the 

distribution of energy in the spectrum of black body radiation 

{vide the chapter on Radiant Heat and Quantum Theory). 

DISPERSION AND SPECTROSCOPY 

Spectroscopy began seriously about 1859 with R. W. Bunsen 

(1811-1899) and G. R. Kirchhoff (1824-1887), and their form of 

prism spectroscope was the prototype of all the prism spectro¬ 

scopes, or spectrometers, that have been constructed since. The 
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spectroscope analyses the light which passes through it into its 

constituents of various wave-lengths. In Fig. VI^—4 S repre¬ 

sents a very narrow slit (perpendicular to the plane of the paper). 

A 

It is illuminated with light from some source—it might be, for 

example, from hydrogen made to emit light by the passage of an 

electric current through a tube containing the gas at low pressure. 

The light passing through the slit, 6*, is made into a parallel 

beam by a converging lens, Lly called a collimating lens. Now 

we have learned that the refractive index of the prism varies 

with the wave-length of the light. The light from the source 

(e.g. the glowing hydrogen) will emerge from the prism, 

which has its refracting edge parallel to the slit, S, as a number 

of parallel beams, each corresponding to a different wave¬ 

length. A converging lens, L2, suitably placed perpendicularly 

to any one of these emerging parallel beams, will form a real 

image of the slit at I with the light of the associated wave¬ 

length. The totality of such images is the SPECTRUM of the source 

of light. In the special case of the glowing hydrogen, and in 

many other cases, these images which constitute the spectrum 

are discrete (for the most part), i.e. they do not overlap and the 

spectrum has the appearance of bright lines of various colours 

(emission line spectrum). Bunsen and Kirchhoff began the 

serious study of line spectra, the interest of the former being 

mainly bound up with chemical investigations. A spectrum con¬ 

sisting of an unbroken band—no gaps between the individual 

images of the slit—is called a CONTINUOUS SPECTRUM. The out¬ 

standing example is the spectrum of black body radiation. 
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Of course, in the complete spectroscope, the slit, iS, and the 

collimating lens, Z/^, are built into a tube called the collimator j 

while Lo forms the object glass of a telescope, so mounted that it 

can turn about a vertical axis parallel to the edge of the prism, 

and thus receive any one of the emerging parallel beams. 

Bunsen and Kirchhoff noticed (what I think had been observed 

still earlier) that, when common salt was volatilized in the flame 

of the burner devised by the former, the characteristic pair of 

yellow lines occupied exactly the position of the dark solar line 

which Fraunhofer had distinguished by the letter D. Kirchhoff 

explained the production of the dark lines in the sun’s spectrum 

by the hypothesis that the light from the incandescent solar 

interior, which would normally give rise to a bright D line 

(strictly speaking, D lines), passes through a colder atmosphere 

containing sodium vapour or the vapour of sodium compounds, 

in which it is absorbed. He and Bunsen confirmed this view by 

an experiment which has often been repeated since for the 

benefit of students. They successfully produced the dark D lines 

by passing the light from incandescent, lime through an alcohol 

flame in which sodium was volatilized.* 

EARLY APPLICATIONS OF THE SPECTROSCOPE 

By 1862 Sir William Huggins (182^1910), using a small 

spectroscope attached to an 8-inch telescope, had noted the 

positions of the more prominent lines in the spectra of about 

forty stars. It was he who first observed (in the case of light) the 

phenomenon which Doppler (1805-1855) foresaw for waves of 

any kind (1842). When a star is receding, its spectral lines are 

displaced towards the red end. It is the same phenomenon 

(essentially) as the drop in the pitch of a locomotive whistle when 

it is receding from the listener. 

In 1878 Sir Norman Lockyer (1856-1920) observed certain 

lines in the solar spectrum that had not been seen in any terres¬ 

trial source. He ascribed them to a new element (unknown on 

the earth) which he named helium (from rjXLos, the sun). 

It was discovered in the mineral cleveite about seventeen years 

* The light from incandescent lime (limelight) was used in projection 
lanterns long before the carbon arc light. 
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later (1895) by Sir William Ramsay (1852-1916) and Sir William 

Crookes (1852-1919). 

Victor Schumann (1841-1913), a Leipzig engineer and 

amateur scientist, extended spectroscojiy far into the ultra¬ 

violet part of the spectrum. His house was filled with a vast 

variety of green plants which he thought to be good for his 

invalid wife. He became very interested in them and started to 

photograph them. He was thus led to study photography, which 

he very much improved, and in consequence light and spectra. 

By 1892 he reached the wave-length 127 ^[i.* He was an expert 

mechanic and made his own spectroscopes, which were provided 

with finely made slits, and in his latest investigations were in 

vacuo, since the light of the S])ectral region in wliich his measure¬ 

ments were made is highly absorbable. 

•1 (jt|x= 1/1000 micron and is called llie millimichon. 



CHAPTER SEVEN 

MORE ABOUT LIGHT 

LIGHT AS AN UNDULATORY PHENOMENON 

IFj in the investigation of the phenomena of light, observations 

of the effects it produces were confined to such as might be used 

to determine its intensity—such for example as the heating of a 

thermo-junction or the blackening of a photographic plate or the 

visual comparison of intensities—^we should probably remain 

convinced that it is purely a wave phenomenon^ but light pro¬ 

duces certain other effects which we shall study later—the so- 

called photo-electric emission of electrons for example—which 

have rather forced us to regard it as a stream of quasi-particles 

(photons) and I believe this is the correct view to take of a beam 

of light. More than a quarter of a century ago the Due de 

Broglie, elder brother of Louis de Broglie, the author of wave 

mechanics, wrote: “ on serait bien prds (Tune theorie cor- 

pusculaire de la lumiereT* 

I will try to explain later how this corpuscular aspect of light 

can be reconciled with its equally prominent undulatory charac¬ 

teristics. Meanwhile it is the latter with which we are con¬ 

cerned. 

CHARACTERISTICS OF WAVES 

Certain features of waves, wliich are important from the point 

of view of understanding optical phenomena and also from the 

point of view of appreciating the fundamentals of wave mechanics, 

can be illustrated by a stretched cord. We imagine the cord to be 

horizontal and, to avoid irrelevant complications, we confine our 

attention to up and down motions of the parts of the cord. The 

simplest kind of wave that can travel along it has the shape of a 

sine (or cosine) curve (Fig. VII—1 a). As the wave outline 

•Maurice de Broglie: Les Rayons Xy p. 157 (1922). 
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progresses along the cord the up and down motion of any point 

on it is simple harmonic—the simplest kind of vibration of all. 

The period of a complete up and down vibration may be called 

T and the wave-length, i.e. the distance from crest to crest, may 

be called X. The phase velocity (velocity with which crests or 

troughs travel along) is expressed by 

u = X/t, (VII—1) 

or by 

v/v', (VII—1a) 

if V (“ 1/t) is the frequency of vibration and v' (= 1/x) is the 

wave-number (number of waves in one centimetre). Expressed 

in words: 

(Phase velocity) = (Frequency)/(Wave-number) 

Any kind of curve into which the cord may be bent—at least 

any kind that concerns us—can be represented as a superposition 

of sine (or cosine) curves. This is a purely mathematical pro¬ 

nouncement (Fourier’s theorem, 1807)$ but it may be explained 

here that the analysis which the prism makes of the light from 

a source such as a Bunsen flame in which some salt is volatilized, 

or of ordinary white light, is not correctly described as a decom- 
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position of the lights from the source, into its constituents. The 

prism really manufactures, from the original light, a number of 

beams of hght, each of which has a sine (cosine) form and whose 

superposition would build up the original light. For example, the 

curve in Fig. VIT—1 (c) is a superposition of the two sine curves 

Fig- VII—1 (a) and (b). 

Of great interest, both from the point of view of light and from 

that of wave mechanics, is something which I call a simple 

GROUP of Avaves. It has approximately a sine or cosine form^ but 

occupies a limited region—a limited length on the cord, or a 

limited area in the case of ripples on the surface of water, or a 

limited volume in the case of light waves. Its crests and troughs 

(or wave-fronts) are parallel to one another and the wave¬ 

length is very short compared with the dimensions of the group. 

It may be regarded as a superposition of sine (or cosine) waves all 

of which, whose am])litudes are appreciable, have very nearly 

the same wave-length. In fact the wave-lengths will range 

from 

X to X “f" Ax, 

Ax being very small compared with X, or, what amounts to the 

same thing, we may think of the wave-numbers as included in 

the narrow range between 

v' and v' + Av', 

and associated with this will be a corresponding narrow range of 

frequencies between 

V and V + A V. 

So-called monochromatic light consists of such simple groups, or 

a superposition of such simple groups. The group velocity can be 

shown to be expressed by 

i;== Av/Av', (VII—2) 

or, in words, 

(Group velocity) — (Frequency range)/(Corresponding wave- 

number range) 

An equivalent, though formally different, expression was first 

given by Lord Rayleigh, namely:* 

v=u--k— (VII—2a) 
cTk 

• Fide W. Wilson: Theoretical Physics^ 1, p. 136 and 3, p. 189. 
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A simple group travels in a direction perpendicular to its wave 

fronts (in isotropic media), as if it were a rigid configuration, 

though its boundary is not sharply defined and it can be shown 

that 

A X I is of the same order) X 

I of magnitude as j 
(VII—3) 

where L is the distance across the group perpendicular to the 

wave-fronts. Another way of saying the same thing as (VII—3) 

is: 

Av' X L 
is of the same order 

of magnitude as 
(VII—3a) 

DIFFRACTION AND INTERFERENCE 

When monochromatic light (i.e. light consisting of simple 

groups) falls perpendicularly on a screen with a slit in it, then, 

if the width of the slit be very small by comparison with the 

wave-length, X, the waves,- 

after passing through the slit,_r_ 

will proceed as shown in Fig.__ 

VII—2. If on the other hand y 

the wave-length is a first order 

small quantity compared with 

the width of the slit, they will 

proceed, after passing through 

it, in the way indicated in 

Fig. VII—3. They bend round 

slightly, as it were, into the 

geometrical shadow. In the 

former case (Fig. VII—2) this ^ 

is very pronounced. In the VII_2 

latter case most of the light 

travels straight on and there is a pronounced, but not quite 

sharply defined, shadow. This phenomenon is called diffraction 

and the way in which we have here regarded it is based on a 

principle due to the great Dutch mathematician and philosopher 

Christiaan Huygens (1629-1693)—^without all the details that 

are contained in it. This famous principle was greatly improved 

by Fresnel, who took into account the phenomenon of inter- 
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FERENCE, For instance, when two wave crests, or two wave 

troughs, come together at the same time, they reinforce one 

another and produce an amplified crest, or trough, the resulting 

amplitude being the sum of the amplitudes of the individual 

waves. If on the other hand 

a crest and a trough come 

together at the same time 

their interference is destruc¬ 

tive and the resulting ampli¬ 

tude is the difference of the 

amplitudes of the individual 

waves. All cases are compre¬ 

hended in the single expres- 

Fig. VII—5 sion, or rule, that the resulting 

amplitude or displacement is 

the algebraic sum of the individual amplitudes or displace¬ 

ments. This is Fourier’s theorem in operation—validated by the 

fact that light waves are described by a linear partial differential 

equation. 

There is the extreme case which may be mentioned here, 

namely that in which the wave-length of the light is a second 

order small quantity compared with the breadth of the slit in 

Fig. VII—3. In this case there is no diffraction. The light 

travels on in a strictly rectilinear fashion and the associated 

phenomena belong par excellence to GEOMETRICAL OPTICS {vide 

Fermat’s principle). 

An important application of these reflections must be explained 

here in order that what follows may be intelligible. We can 

deal with it, in its essentials, after the manner of Fresnel. 

Again we have a parallel beam of monochromatic light falling 

perpendicularly on a screen with a slit in it, the wave-length 

being rather small compared with the breadth of the slit (say 

1/100,000 of it or loss). It is illustrated in Fig VII—4. We 

appreciate already that most of the light, after passing through 

the slit or aperture, will travel straight onj but not all of it. 

Let us give our attention to the light which travels in the 

direction represented by the arrows on the side Tof the aperture. 

Suppose be to be equal to the wave-length of the light. Then 

this direction makes an angle with that of the incident beam 

equal (approximately) to X/^ radians, if B is the breadth of the 
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aperture {B=ah), The length de (d is the mid-point of ab) shown 

in the figure must be equal to X/2, and therefore if the light 

travelling in this direction is brought to a focus by a converging 

lens, the part travelling along bc^ being out of step with that 

travelling along de by the 

amount X/2, will destroy it 

by interference and it is not 

difficult to see that every part 

of the beam travelling in this 

direction will be destroyed in 

this pair-wise fashion. If now 

two beams of light, emerging, 

shall we suppose, from a Fig. vn-4 
spectroscope, give images of 

the slit of the spectroscope, i.e. spectral lines, whose wave¬ 

lengths are X and X + fl?X, and are separated by the angle 

d^ == X/5, 
B being the breadth of either beam, then the two lines will be 

distinguishable from one another. They will not overlap 

sufficiently to look like one line. They will be resolved. This 

was shown by Lord Rayleigh.* 

Two lines will appeeir to be resolved even when they eire 

separated by a smaller angle than that which we have called 

dby but this separation is the conventional criterion of resolution 

and 

X db 
— =^Bx — 

c?X d\ 
(VII—4) 

or (Breadth of beam) x (Dispersion) 

is the conventional measure of the RESOLVING power of the 

instrument. 

Fresnel’s form of Huygens’ principle, which is only indicated 

in the foregoing description, was a great improvement on the 

original. It was, however, imperfect in certain respects. The 

perfect form of the principle was discovered by Kirchhoff (1882)| 

•Lord Rayleigh: Phil, Mag., Ser. 5, Vol. 9, p. 271 (1879), and 
“Wave Theory”, Encyclopaedia Britannica, Vol. 24 (9th Edition). 

t Fide Drude’s work on Optics or W. Wilson: Theoretical Physics, 
Vol. 2. 



112 A HUNDRED YEARS OF PHYSICS 

THE GRATING 

The grating is a device for measuring wave-lengths by means 

of diffraction. In its earliest form, as used by Fraunhofer to 

measure the wave-lengths corresponding to the dark lines in the 

solar spectrum, it consisted of parallel, equally spaced fine wires, 

made by winding a long wire over the threads of two parallel 

screws. A. J. Angstrom (181"1^1874), Professor of Astronomy at 

the University of Uppsala, had measured many lines of the solar 

spectrum by 1868, using plane gratings constructed by a con¬ 

temporary, Norbert. For many years his measurements con¬ 

stituted the standards for wave-length determinations, e.g. 

when spectra were observed by prism spectroscopes, which are 

not adapted for the absolute determination of wave-lengths. 

A plane grating is usually a piece of glass, or, in the case of a 

reflecting grating, a piece of speculum metal, on which equally 

spaced parallel lines are ruled. It is immaterial liow arbitrary 

may be the shape of the groove made by the diamond which 

scratches it out. The important tiling is that each line or groove 

shall be exactly like every other one and that they are equally 

spaced. In the case of the plane transmission grating on which 

monochromatic light falls perpendicularly there are definite 

directions in which the transmitted light travels strongly. If 

these directions make an angle, 0, with that of the incident light, 

then, as shown in the text-books, 

nX = e sin 0, (VII—5) 

where n is an integer, X is the w^ave-length of the monochromatic 

light and e is the distance separating two consecutive lines, or 

grooves, of the grating. In the general case, i.e. whether the 

light is monochromatic or not, a whole spectrum is produced for 

each value of n (other than zero) and the particular (integral) 

value of n is called the ORDER of the spectrum, e.g. first order, 

second order, and so on. 

We obtain an expression for the dispersion produced by the 

spectrum, i.e. for dQjdX^ by differentiating (VII—5) with respect 

to X, thus 
dQ 

n ^ e cos 0 X — , 
d\ 

dQ n 

G?X e cos 0 

or 
(VII—5a) 
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Now the breadth of the emerging beam (of a particular wave¬ 

length, X) is easily seen to be expressed by 

B — Necos^y (VII—5b) 

if N is the number of grating lines which the incident light 

spreads over. The combination of the three formulae (VII—4), 

(VII—5a) and (VII—5b) gives us very simply 

Resolving power = Nji, (VII—6) 

It is the product of the number of grating lines over which the 

beam spreads and the order of the spectrum. 

THE CONCAVE REFLECTING GRATING 

The American Rowland, the same who determined Joule’s 

equivalent, made great improvements in wave-length measure¬ 

ments.* First of all he made a much more perfect screw than 

had ever been used before for the ruling machine—the screw 

which pushes the ruling point on from one line to the next. 

Consequently the lines on his gratings were more equally spaced 

than those of any earlier grfitings. Secondly, he ruled the lines 

on a concave reflecting surface of comparatively soft speculum 

metal. The concave surface of his grating, which was mounted 

in an ingenious way, enabled him to dispense with lenses for 

focusing purposes, and the softness of the metal made it possible 

for him to rule many more lines without wearing down the 

ruling diamond point to an appreciable extent and so changing 

the shape of the grooves. It will be remembered that the resolv¬ 

ing power of a grating is proportional to the number of grating 

lines over which the light spreads. 

THE ECHELON GRATING 

A. Michelson invented a piece of apparatus with the charac¬ 

teristics of a grating and possessing enormous resolving power. 

It is known as the echelon grating, and its design is amazingly 

simple 5 though the practical construction of one is rather 

difficult. It consists of a number of glass (or quartz) plates, all of 

•Rowland: Phil Mag. Ser. 4, Vol. 13, pp, 469-474 (1882), Phil 

Mag.^ Ser. 5, Vol. 16, pp. 197—210 (1883), also Phy'sicai Papers^ be¬ 

ginning at p. 487. 

H 
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the same thickness and built up like the steps of a staircase (hence 

its name). The breadths of the steps are also made as near equal 

as possible.* The reason for its extremely 

great resolving power lies mainly in the 

fact that the dispersion it produces, i.e. 

see (VII—4)) is so great. It can 

in fact only be used for light which is 

already nearly homogeneous, so that it 

is usually placed in the parallel beam of 

a spectrometer, between the prism and 

the telescope of the constant deviation 

type of instrument. 

In recent times W. E. Williams has 

succeeded in constructing a reflecting 

echelon grating and applying it to the 

investigation of the hyperfine structure 

of spectral lines (1927-1955). 

INTERFEROMETERS 

Diffraction gratings might well be classed under this heading, 

since the phenomenon of interference plays an essential part in 

their functioning. They are adapted almost exclusively to the 

purpose of measuring wave-lengths or differences of neighbour¬ 

ing wave-lengths. The class of instruments usually called INTER¬ 

FEROMETERS make little use of diffraction and their application 

is not confined to wave-length measurements. They have been 

aptly divided by W. E. Williams into two categories:’!' 

{a) Those in which the wave-front is divided and the resulting 

separate beams of light, after travelling along separate roads, 

reunited to produce interference fringes^ and 

{b) those in which the amplitude of a beam of light is divided 

and the resulting beams ultimately reunited to produce fringes. 

To the class {a) belong Fizeau’s apparatus for investigating the 

convection of light and the famous biprism apparatus of Fresnel. 

Jamin (1818-1886) devised an interferometer of the type {b) and 

used it between 1858 and 1861 to determine refractive indices of 

• A. Michelson: Astrophysical Journal, 8, p. 37 (1898). 

fW. E. Williams: Applications of Interferometry (Methuen’s Mono¬ 
graphs on Physical Subjects). 
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gases, for which purpose it is rather well adapted * It consists 

essentially of two thick parallel glass plates. The incident beam 

is partly reflected from the front of one of these; the rest of the 

light is refracted into the glass and reflected from the other side 

of the plate. The two beams emerge parallel to one another and 

travel an appreciable distance to the second plate. The first- 

mentioned beam is reflected from the back face of this plate and 

the other one from its front face. They reunite to form inter¬ 

ference fringes which are conveniently observed through a small 

telescope. The details of the use of the apparatus are described in 

the text-books on physical optics. 

By far the most important types of interferometer are those 

of Michelson (1881) and Fabry and Perot (1900). The former 

will be described and an 

important application of it 

discussed in the chapter on 

the aether. The latter con¬ 

sists of two parallel, half 

silvered glass plates. A very 

fine screw is provided for 

varying the distance be¬ 

tween them; though in 

some forms of the apparatus 

the plates and the distance 

separating them are fixed 

(Fabry-Perot dtalon). Un¬ 

like the interferometers of 

Jamin and Michelson, this 

interferometer has an ex¬ 

tremely high resolving 

power, the fringes appear¬ 

ing as bright thin lines 

separated by broad dark 

spaces. This is due to the 

fact that each incident ray 

such as a in Fig. VII—6 is 

into a wide emerging beam b . . . b. The consequence of this is 

that the factor B in (VII—4) is very great. With their apparatus 

Fabry and Perot were able to investigate the fine structure of 

• Jamin: Cours de Physique. 
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spectral lines directly—the sharpness of the fringes enabling the 

separate components to be distinguished from one anotlier. 

Michelson also iised his interferometer to investigate fine 

structure (1892)5 but in consequence of its low resolving power 

the fringe systems of the components of a line usually over¬ 

lapped and made it impossible to distinguish one from another. 

He overcame this difficulty most ingeniously by observing care¬ 

fully how the VISIBILITY of the fringes varied as the difference in 

the distances travelled by the two interfering beams of light was 

changed and was able to infer the fine structure from this. 

Mention should be made of the interferometer of 0. Lurnmer 

and E. Gehrcke (1902). It is a sort of blend of a Fabry-Perot 

italon and an echelon gratings multiple reflections occurring 

inside a glass plate.* 

Michelson counted the number of wave-lengths of the highly 

homogeneous cadmium red line in the Paris metre (1894) by 

an ingenious adaptation of his interferometer. Fabry and Perot 

repeated this very soon afterwards by an equally ingenious (and 

rather similar) use of their ctalons.^ Michelson’s results were: 

For the cadmium red line, X — 6438*4722 A.U. 

„ ,, green line, X — 5083*8240 A.U. 

,, ,, blue line, X = 4799*9107 A.U. 

in air at 15®C. and under a pressure of 760 mm. of mercury. 

A.U. of course means Angstrom unit (10“^® metre). It will give 

some idea of the precision of these measurements to observe that 

Fabry, Perot and Benoit found for the cadmium red line 

X == 6438*4696 A.U.+ 

W. E. Williams has proposed as a standard, in place of the 

cadmium red line, the green line of a certain isotope of mercury 

(Hg. 198) which is produced by exposing gold to bombardment 

by slow neutrons§—^the meanings of the terms “isotope** and 

“neutron’* are explained later. 

One further achievement of Michelson’s may be mentioned 

* O. Lurnmer and E. Gehrcke: Ann. d. Physik^ 10, p. 457 (1903). 

f Fide Schuster and Nicholson, The Theory of Optics (Arnold), from 
which the wave-lenths given below are taken. 

J Compare this ^vith Michelson’s value. 

§ The reason being of course the greater homogeneity of this line. 
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here, namely, his STELLAR INTERFEROMETER, by means of which 

he measured the angular diameters of (not too distant) stars 

{i)ide Chapter XXI), 

MISCELLANEOUS WORK 

It is well known that when two exactly similar sets of waves— 

waves of the same wave-length and amplitude—meet one 

another, as for instance waves travelling in opposite directions 

on a stretched cord, stationary waves are formed with nodes 

separated from one another by half the wave-length. Otto 

Wiener (1890) succeeded in demonstrating stationary light 

waves.* He tlirew a beam of monochromatic light perpendicu¬ 

larly on a strongly reflecting plane surface. The resulting system 

of nodal and internodal planes was exhibited by means of a 

sensitized film of collodion, the plane of which formed a minute 

angle with the reflecting plane. The internodes appeared in the 

developed film as lines of deposited silver. The experimental 

realization of colour photography by Lip})mann was suggested 

by Wiener’s experiment. 

In 1875 Ernst Abbd developed a theory of microscopic vision. 

According to this the image of an illuminated structure, pro¬ 

duced by a lens, will not correspond to the object unless light 

from the whole of the associated diffraction pattern goes to form 

the image. If the image is formed by light from some portion 

only of the diffraction pattern which the minute structure of the 

object produces, then it will look like an object which produces a 

diffraction pattern like this portion. 

* O. Wiener: Wiedemann's Annalen, 40, p. 205 (1890). 



CHAPTER EIGHT 

INTEGRATION OF ELECTROMAGNETISM 

ABSOLUTE MEASUREMENTS 

In Studying the history of electromagnetism during the nine¬ 

teenth century we learn that in 1849 Gustav Kirchhoff made, or 

is believed to have made, the earliest determination of electrical 

resistance in ABSOLUTE measure. What is meant by an absolute 

measurement and what made such measurements seem impor¬ 

tant? Why not, one might ask, adopt as a unit the resistance of a 

piece of platinum wire of say one metre in length and a square 

millimetre in cross-sectional area and leave it at that? We can 

easily use a bridge to determine other resistances by comparison. 

The unit just suggested may be called an arbitrary unit, since 

no consideration, except that of convenience, determines its 

choice. Other such units are, for example, the pint measure for 

volumes, the weight of a pound avoirdupois as a unit of force, or 

the small calorie as a unit of heat. But in measuring volumes, for 

example, our knowledge of the relationship between the linear 

dimensions of a body of well-defined geometrical shape—a 

rectangular block for instance—and its volume, makes it con¬ 

venient to proceed in another way. We may measure the length, 

breadth and height of the block in terms of some arbitrary unit, 

e.g. the inch, and express the volume of the block as their 

product. The unit of volume is now the cubic inch. It is not 

arbitrary: it is a derived UNIT—derived from the inch. In 

terms of this unit the volume of a sphere is 4Tcr®/5, where r is 

its radius in inches. Derived units are often an immense con¬ 

venience. Among such units are units of velocity, or speed, e.g. 

1 cm./sec. or 1 mile/hourj the DYNE, a unit of force, namely, the 

force producing an acceleration of 1 cm./sec.^ in a mass of one 

gramme 5 or the poundal, a unit of force producing an accelera¬ 

tion of 1 foot/sec.2 in a mass of 1 lb., and so on. There is still a 

certain kind of arbitrariness (seldom mentioned in the text¬ 

books) associated with derived units. If in measuring volumes, 

118 
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for example, we were mostly concerned with spherical bodies, we 

might very well adopt the volume of a sphere of unit radius as 

the unit of volume. The volume of any sphere would then be 

expressed by and if L, B and H are the length, breadth and 

height of a rectangular block, its volume, in terms of such a unit, 

would be 5 
— X L X B X H 
47U 

The cubic inch, or cubic centimetre, is so much more con¬ 

venient than the last-mentioned type of unit of volume (which is 

4^71/5 times the cubic centimetre or cubic inch, as the case may 

be) that we never even contemplate it; but we see that in the 

choice or specification of a derived unit for some physical quan¬ 

tity an arbitrary pure number is always involved. The volume 

of a rectangular block, for example, may be written 

k X L X B X H, 

where k is a numerical constant which has very naturally been 

chosen to be unity; but which might have been 5/4?!, had we 

felt it sufficiently important that the unit volume should be that 

of a sphere of unit radius, or I/tt, were the unit of volume chosen 

to be that of a circular cylinder of unit radius and unit length, or 

any other number. 

In purely mechanical problems and measurements only three 

units need be arbitrary—all other units can be derived from 

them. They have been chosen, for the purposes of physical 

science, to be those of length, mass and time, and are respectively 

the centimetre, gramme and mean solar second. They are called 

the FUNDAMENTAL UNITS and the whole ensemble of units 

derived from them is known as the C.G.S. system of units. 

There is of course a FOOT, pound, second system of units, hardly 

ever used now, except occasionally as exercises for students. 

Engineers use a system of units based on the foot (unit of lengl:h), 

WEIGHT of one pound (unit of force) and the mean solar second. 

Their unit of mass is a derived unit* based on 

Force = Mass x Acceleration 

1 lb. = Mass X 52-2. 

i 'I' i 
(weight) (in engineers’ (feet per sec. per sec., 

units) the intensity of gravity) 

• I am informed while reading the proofs that it is called the slug. 
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Hence the thing we call a lb., whose mass = 1 in the foot, pound, 

second system, has a mass of 1/32-2 in engineers' units. A 

numerical constant, /r, like that already mentioned in connection 

with volume, can be introduced in the definition of force. We 

might lay down that 

Force = k x Mass x Acceleration, 

and if we felt it desirable that the mass of a body should be 

expressed by the same number as its weight, at a particular place, 

we should require that 

1 = k X 1 X gy 

where g is the intensity of gravity at the place in question, for 

instance 980 cm./sec.and in such a case k would have to be 

chosen to be 1/980. These reflections arc important in studying 

the units of electromagnetism. 

One reason for suspecting that electromagnetic phenomena 

cannot be purely mechanical is that none of the units for electro¬ 

magnetic quantities can be derived from one or more of those of 

length, mass and time only. We are compelled to adopt one of 

our electrical or magnetic units ai^bitrarily as a fourth funda¬ 

mental unit. In the so-called electrostatic system of units—I 

should say systems, because there is more than one electrostatic 

system—the fundamental unit chosen is that of dielectric 

CONSTANT for which the dielectric constant of free, or empty, 

space has been adopted. Thus the equation 

Force (in dynes) — —-(VIII—1) 
Kr^ 

where Qi and Q2 are the charges on two very small bodies 

(particles), r is the distance (in centimetres) separating them and 

K is the dielectric constant of the medium in which they are 

situated, becomes Q x Qo 
Force ==-, 

when the particles are situated in empty space and the charges 

are measured in (ordinary) electrostatic units. 

It is open to us, of course, to introduce in the formula (VIII—1) 

a numerical constant like the k in the volume expression, 

k X L X B X H. I represent this number by ^4, so that formula 

(VIII—1) becomes ^ x Qi X 
Force =- 

Kr^ 
(VIII—1a) 
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In the old style of electrical units, which I shall consistently use, 

A is chosen to be unity^ but IL A. Lorentz and Oliver Heaviside 

preferred to give A the value l/47r, a choice which has certain 

advantages that cannot be discussed here. It will be seen that 

the old electrostatic unit of c^uantity is equal to the Lorentz- 

Heaviside one multiplied by a/47c. 

The equation (VIII—1) or (VIII)—lA enables quantity of elec¬ 

tricity to be expressed in terms of the units of length, mass, time 

and dielectric constant and there is no formula or relationship 

which enables us, for example, to eliminate K—without intro¬ 

ducing another electromagnetic quantity in its place—and so 

express a charge in terius of length, mass and time only. When 

we eliminate K in any of the possible ways we necessarily 

introduce another electromagnetic quantity. Every equation 

containing an electromagnetic quantity necessarily contains two 

of them at least. 

In the electromagnetic system of units the MAGNETIC PER¬ 

MEABILITY of empty space is chosen as a fundamental unit. This 

quantity occupies an analogous position in magnetostatic 

phenomena to that occupied by dielectric constant in electro¬ 

static phenomena^ but it is not in general a constant. Thus we 

have for the force between two point poles, 

X Wo 
Force =  (VIII—2) 

where and are the strengths of the poles, r is the distance 

separating them and g is the permeability of the medium. The 

permeabilities of empty space and of paramagnetic media are 

constants. 

Now an absolute measurement of some physical quantity is 

one which gives its value in terms of a unit derived from one or 

more of the adopted fundamental units. It would give a volume 

as so many cubic centimetres or a velocity as so many centi¬ 

metres per second. The former is said to have the dimensions of 

the cube of a length, the latter those of a length divided by a 

time. Equation (VIII—1) indicates that the dimensions of an 

electrical charge can be expressed by 

VForce X V Dielectric constant X Length (r), 
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or, since force, being the product of a mass and an acceleration, 

has the dimensions 
Mass X Length 

(Time^ ’ 

therefore those of a charge are: 

(Mass)* X (Length)* x /f* X (Tirne)"^.^ 

With a little more trouble it may be shown that an electrical 

resistance has the dimensions 

(Permeability) X (Velocity). 

Now in experiments in vacuo^ or even in air, in which g — 1 

(in air, nearly 1) in the electromagnetic system of units, a resis¬ 

tance presents itself as a velocity and a certain unit of resistance, 

later called the OHM in honour of G. S. Ohm, the discoverer of 

ohm’s law, was described about a hundred years ago as 

ONE EARTH QUADRANT PER SECOND. 

The unit represented by 

ONE CENTIMETRE PER SECOND 

is the ordinary electromagnetic unit of resistance and since the 

earth quadrant (distance from equator to pole) was taken to be 

10’ metres (for the purpose of the definition of the ohm), i.e. 

10® centimetres, therefore 

ONE OHM = 10® X ONE ELECTROMAGNETIC UNIT. 

Absolute measurements of electromagnetic quantities are very 

troublesome, involve a lot of operations and take up much time^ 

whereas a direct comparison of an unknown quantity with a 

known one of the same kind is usually a fairly simple and short 

operation. So a few important absolute measurements have been 

made with great care and standards set up. From this rather 

practical point of view electrical resistance is perhaps the most 

important electrical quantity^ partly because a standard resis¬ 

tance is something which can easily be preserved for an indefinite 

period without change and partly because the precise comparison 

of two electrical resistances is one of the simplest of all laboratory 

operations. 

Once again may it be emphasized that the description of a 

* The notion and theory of dimensions begin with Fourier; vide 

Freeman’s translation of his Theorie de la Chaleur^ p. 128. 
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resistance as a velocity is incomplete. There is in it the per¬ 
meability factor which, in those experimental measurements of 
resistance in which it occurs, is equal to unity or nearly so in 
electromagnetic units. 

ABSOLUTE MEASUREMENT OF ELECTRICAL RESISTANCE 

The simplest way of finding the value of a resistance in 
absolute measure is one due to Joule who carried it out in 1867, 
long after the original measurement made by Kirchhoff. 
Because of its simplicity I prefer to describe it first. It consists 
in maintaining a steady current in the wire, the resistance of 
which is to be determined, while the wire is immersed in the 
water (or other liquid) in a calorimeter. Thus the amount of 
heat generated in some chosen period of time can be estimated 
and the equivalent amount of work computed by multiplying by 
Joule^s equivalent. And here a few words of explanation seem 
to be called for. Resistance, as the name indicates, is a measure 
of some kind of hindrance which the conductor (wire) presents 
to the flow of electricity through it. It is intimately related to 
friction. We may prohtably compare the flow of electricity along 
a wire with that of water along a tube. Let us think of a horizon¬ 
tal tube (horizontal in order to 
exclude the irrelevant compli- ,B 
cation of gravity) in which water 
is flowing, preferably in a closed 
circuit as indicated in the diagram 
(Fig. VIII—1) and kept in motion 
by some sort of pump, shown at 
A. On account of friction, or 
viscosity, work has to be done 
to keep the water moving and 
the amount of work done, 
reckoned for each unit volume 
of water that has completed the 
circuit, simulates almost per¬ 
fectly the ELECTROMOTIVE FORCE in the analogous electrical 
circuit, with a cell (or battery) in place of A and resistance (cor¬ 
responding to the tube) in series. The work done on the unit 
volume when it travels from B to C, for example, is equal to the 
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pressure difference between B and C and simulates the potential 

DIFFERENCE between the corresponding points in the electrical 

case. When this work is done in generating heat (I am 

speaking of the electrical case) the measure of the resistance is 

defined by 

Work done per unit quantity 
Resistance = -;----- (VIII—5) 

Strength of current 

This relationship is often mistakenly called ohm’s law, but it 

is obviously only a definition. The law discovered by Ohm was 

the observational fact that, in the case of many conducting 

materials (but not all), the resistance, i.e. the ratio which expresses 

it, is independent of the current strength, subject to other con¬ 

ditions, e.g. temperature, remaining unchanged. In general, it 

should be noted, potential difference divided by current strength 

is not equal to the resistance of the corresponding part of the 

circuit, as for instance when an electric motor is included in it. 

In such a case the work is nearly all done in driving the motor 

and little of it in generating heat. 

Returning to Joule’s experiment, we start from 

Ri, 

where V is the work done per unit quantity of electricity in 

producing heat in the vsdre and calorimeter, R is the resistance to 

be measured, and i is the current strength, i.e. the quantity 

passing per second. During t seconds the quantity i X t passes 

through the wire and the work done on it must be equal to 

Vit, 

which is equivalent to 

RiH,^ (VIII-—4) 

The strength of the current was measured by a tangent gal¬ 

vanometer. This is also an absolute measurement and several 

pages might be written about it. The electromagnetic unit of 

current strength is so chosen that the magnetic field intensity 

generated at the centre of a circle of wire in which a current, i (in 

electromagnetic units) is flowing, is expressed by 

/= 27tz‘/r, 

f being the magnetic field intensity (in electromagnetic units) 

^ This expression was first given by Kelvin, Phil. Mag. (1851). 
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and r the radius of the circle in centimetres. The experimental 

fact is that 

yis proportional to ijr^ 

whatever units may be adopted, and we might (after having 

defined the units for f and r) decide to fix the unit for i by 

asvsignirig ciny positive value to the number k in 

/= kijr- 

In fact k has been chosen to be 2tz in defining the ordinary 

electromagnetic unit. With the tangent galvanometer 

f — //tan0, 

where H is the horizontal component of the earth’s magnetic 

field and 6 is the angle of deflection of its needle, and so we get 

rll 
I _ -tan 0, 

2T:n 

the number n being the number of circles of wire in the instru¬ 

ment. Joule ecpiated the total work done, as determined by the 

calorimeter, call it to (VIII—4), or to an equivalent expres¬ 

sion. Thus 

w = im 
and R is easily coniputed, since i and t are known. 

THE METHODS OF WEBER AND KIRCHHOFF 

Wilhelm Weber (1804-1891) was one of the famous Gdttinger 

Sieben—the Seven of Gottingen—who rebelled against the un¬ 

wise interference of King Ernst August of Hanover (1857) in 

the affairs of their university. On leaving Gottingen he received 

hospitality in the ancient University of Leipzig, where a small 

laboratory (entirely free from iron) was built for him in a garden 

off the Thalstrasse. 

Weber used a large coil, whose dimensions were carefully 

measured and which was connected in series with a tangent 

galvanometer. The coil was mounted so that it could be turned 

about a vertical axis. When it was turned through 180^, starting 

and ending with the planes of its windings perpendicular to the 

horizontal component of the earth’s field, there was a calculable 

change in the magnetic flux linked with it, equal in fact to 
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if g means the sum of the areas of the windings of the coil and 

H the intensity of the earth’s horizontal component. In con¬ 

sequence a quantity of electricity, equal to 

is discharged through the galvanometer, R being the resistance 

of the whole circuit. This quantity must, of course, be equal to 

TH 
-sin J 0, 

0 being the consequent angular throw of the galvanometer 

needle, corrected for damping, T the time of a complete oscilla¬ 

tion of the needle, and G the galvanometer constant.* So K is 

given by the equationf 

2g T 
- ~-siji 1 0, 
R tzG 

Maxwell points out in his Treatise that the two H's (namely 

H in the neighbourhood of the rotating coil and 11 in the 

neighbourhood of the galvanometer) have been assumed by 

Weber to have the same value and it is of course well known 

that H may have appreciably different values at two places ^ven 

within the same room. Perhaps Maxwell was unaware of the 

generous provision of Leipzig University. The absence of mag¬ 

netizable materials in Weber’s laboratory undoubtedly ensured 

that the two //’s did not differ to an extent that mattered. J 

A complete description of the earliest method, that of Kirchhoff 

(1849), would take up too much space.§ vSuffice it to say that he 

used two coils, whose mutual inductance he calculated j one, the 

secondary, connected in series with a ballistic galvanometer, was 

used to measure the quantity of electricity discharged round the 

secondary circuit when a current was started in the primary one. 

A further experiment enabled the unknown things, e.g. the 

constant of the galvanometer and the unknown primary current, 

to be eliminated. This consisted in linking the terminals of the 

resistance to be measured, wliich is in the primary circuit, with 

• The galvanometer constant is G as it appears in the formula for 
jj 

a steady current i, namely i = g tan 0. 

f Poggen. Annalen, 82, p. 337 (1851). 

j Weber’s unit of resistance was 1 mm. per second, i.e., ohm. 

§ Poggcn, AnnaleUy 76, p. 412 (1849). 
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the secondary circuit and observing the steady deflection of the 

galvanometer when the current in the primary circuit is steady. 

The experiment constitutes a valuable exercise for present- 

day students, who however are given the value of the resistance 

which it was Kirchhoff’s purpose to determine and are assigned 

the task of finding experimentally the mutual inductance which 

Kirchhoff calculated from the dimensions and positions of the 

coils. 

LATER METHODS 

Two further methods, developed later, of measuring resistance 

absolutely may be referred to: Kelvin’s rotating coil method and 

the method of Lotenz (1875).* The latter method has been 

improved by F. E. Smith (Sir Frank Smith).f Kelvin’s method 

was originally carried out by Balfour Stewart, Fleeming Jenkin 

and Clerk Maxwell in 1863 for the Standards Committee of the 

British Association. Unluckily a small error slipped into the 

computation of the result of their experiments and consequently 

the British Association ohm was a little below the correct value. 

Lord RayleighJ used this method (1882) and found the B.A. ohm 

to be equal to 

0*98651 earth quadrant per second^ 

while R. T. Glazebrook§, who used the original method of 

Kirchhoff, found it to be 

0*98665 earth quadrant per second. 

The error had at least one good consequence: the comparison 

of the B.A. ohm with the legal ohm by means of Carey Foster’s 

bridge has provided a fine exercise for students since these 

standards were set up. 

In Kelvin’s method the wire whose resistance was to be 

measured was in the form of a circular coil which was caused 

to rotate about a vertical axis in the earth’s field with a constant 

measured angular velocity. A small magnet (with a big moment 

of inertia) was suspended at the centre of the coil—the suspend¬ 

ing fibre being as nearly torsionless as possible—and its angular 

* Poggen. Annalen, 149, p. 251 (1873). 

t Dictionary of Applied Physics. 

%Phil. Trans.^ 175, p. 661 (1882). ^B.A. Report^ p. 97 (1890). 
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deflection observed.* The equation for calculating the result 

contains another unknown quantity besides the resistance of the 

wire, namely, the self-inductance of the coil. This can of course 

be calculated from its dimensions^ but Lord Rayleigh devised a 

simple approximate method of determining this quantity in 

terms of the resistance that is being measured. The approxi¬ 

mate character of his method does not lower its value, since the 

term containing the self-inductance is a very small one. 

In the method of Lorenz an induced electromotive force is 

balanced against the potential difference between the terminals 

of the resistance through which a steady current (on which the 

induced electromotive force depends) is passing.I 

ABSOLUTE MEASUREMENT OF ELECTRIC CURRENTS 

The earliest device for this purpose was of course the familiar 

tangent galvanometer—the sine galvanometer is a simple 

modification of it. One of the weaknesses of this instrument lies 

in the fact that the magnet, however short it may be, extends 

some way from the centre of the coil. This causes the well- 

known formula to be slightly in error. The reason is very 

simple. The familiar formula assumes that every part of the 

small magnet is subjected to a magnetic field of the same inten¬ 

sity as that at the centre of the coil, and of course this is only 

approximately true. Von Helmholtz greatly improved the 

instrument by having two coaxial coils, so constructed that each 

circular turn of one coil was separated from the corresponding 

one in the other coil by a distance equal to the radius of either. 

The effect of this is that the magnetic field is sensibly uniform 

over a region of quite appreciable dimensions within which the 

magnet of the instrument is pivoted and the size of the magnet 

is therefore unimportant provided it is well within this region. 

Weber's electrodynamometer came soon after 1840. It is like 

Helmholtz’s galvanometer with the magnet replaced by a small 

suspended pair of coils (bi-filar suspension) which are like the 

large ones in miniature. The current is made to pass in series 

through both the fixed coils and the suspended coils. The great 

• The theory of the experiment is presented very clearly in S. G. 

Starling’s Electricity and Magnetism (Longmans, Green Sc Co.). 

I Lord Rayleigh and Mrs. Sidgwick, Phil. Trans., 174, p. 193 (1883). 
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advantage of Weber’s instrument lies in the fact that it is easy 

to use it in such a way that no knowledge of the horizontal 

component of the earth’s magnetic field, is needed. Such know¬ 

ledge is essential with the old tangent galvanometer and also 

with the improved one of Helmholtz. 

One more type of instrument for the absolute measurement of 

currents should be mentioned. It appears to have been developed 

by Kelvin and Joule in 1885. It is usually described as Kelvin’s 

current balance or current weigher or, when adapted to give the 

current in amperes, the ampere balance. In its simplest form it 

is a sensitive balance with a coil, whose windings are horizontal, 

hanging from one arm and a coaxial fixed coil below it. The 

current to be measured is passed through these coils, in such a 

sense that they attract one another. The force of attraction is 

counterbalanced by weights in the scale pan depending from the 

other arm of the balance. This force, or weight, is obviously 

proportional to the square of the current and the constant of 

proportionality can easily be computed.* For practical purposes 

a unit of current strength called the ampere (after the great 

French savant of that name) is usually used. It is defined to be 

one-tenth of the electromagnetic unit of current strength and the 

ohm (one earth quadrant per second) is the associated practical 

unit of resistance. The practical unit of electromotive force, or of 

potential difference, is called the volt (after Alessandro Volta, a 

great Italian man of science). It may be defined in the following 

way: When a steady current is flowing in a wire, the product of 

the current strength, in amperes, and the resistance of the wire, 

in ohms, gives the potential difference between the ends of the 

wire, in volts.*]* Remembering that the ohm is equal to 10® 

electromagnetic units of resistance and that the ampere is equal 

to 1/10 (i.e. 10“"^) of an e.m. unit of current strength, it is not 

difficult to see that the volt must be equal to 10® e.m. units of 

potential difference, or electromotive force.| 

It may be added here that the practical unit of quantity of 

•Maxwell: Treatise^ Vol. 2, Art, 701. 

f This definition is equivalent to the following one: there is a potential 

difference of one volt between two points when one joxile of work 

(10’ ergs) is done on one coulomb in passing from one point to the other. 

J In order to enable students to remember this number easily, it has 

sometimes, in my experience, been described to them as equal to the 

number of the saints in Heaven—^ten thousand times ten thousand. 

I 
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electricity, called the COULOMB, is the quantity passing any point 

on a conductor during one second when the current strength is 

one ampere. The practical unit of work or energy is the joule, 

which is defined to be ergs. The systematization of electro¬ 

magnetic units is due largely to the efforts of the British Associa¬ 

tion, which appointed a ^Standards Committee for this purpose in 

1861; but it should not be overlooked that the principles on 

which the systematization is based are those laid down by 

Wilhelm Weber (1851) who received his inspiration from Gauss 

with whom he had worked in his youth. 

OTHER ABSOLUTE MEASUREMENTS 

Absolute measurements of potential difference have been 

carried out, notably by Lord Rayleigh and Sir Frank Smith, and 

the Weston (cadmium) cell, the E.M.F. of which is accepted as 

1‘0185 volts at 20*^0., is a recognized standard of potential differ¬ 

ence, for use with a potentiometer for example. Another important 

standard, which has been carefully determined, is one of quantity 

of electricity. One coulomb passing through a silver voltameter 

causes 0*0011183 gramme of silver to be deposited on the cathode. 

While we are dealing with absolute methods and standards, it 

may be mentioned that Kelvin invented an absolute electro¬ 

meter (1851) suitable for the absolute measurement of potential 

difference in electrostatic units. It consists essentially of a cir¬ 

cular conducting plate near a larger parallel one—both in air, 

though in the ideal instrument they would be in vacuo. When 

a difference of potential is established between them they attract 

one another. The force of attraction can be measured and from 

this and the dimensions and separation of the plates the potential 

difference can be calculated. 

THE RELATIONSHIP BETWEEN ELECTROSTATIC AND 

ELECTROMAGNETIC UNITS 

W. Weber and F. Kohlrausch carried out a most interesting 

experiment just about the middle of the century.* They 

measured the ratio of the electromagnetic unit of quantity of 

electricity to the electrostatic one. It was in any case important 

• Poggen. Annalen, 1856. 
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that the relationship between these units should be investigated, 

but the ratio in question turned out later to have a significance 

which perhaps they never dreamt of^ as we shall appreciate when 

we come to study Clerk Maxwell’s views about electromagnetism. 

The method they used was a very direct one: they determined the 

charge on a condenser in electrostatic units by measuring the 

potential difference, in such units, between its plates with an 

absolute electrometer, the type of instrument invented by Kelvin. 

They calculated the capacity of the condenser from its dimensions. 

In the case of a condenser consisting of two parallel plates, 

KA 
Capacity = -—^, 

where K is the dielectric constant of the intervening insulator, 

A is the appropriate area and d is the distance separating the 

plates. When the insulating medium is air, Z = 1 (very nearly) 

in electrostatic units and the capacity of the condenser becomes 

AjAiidj 

apart from a small correction. Thus 

Q = AVj^d, 

if Q means the charge and V the measured difference of potential 

between the plates. In this connection another of the numerous 

electrical devices invented by Kelvin may be mentioned. The 

simple formula just given is deduced from the assumption 

(among others) that the field is perfectly uniform everywhere 

between the plates and ends sharply at the edgesj but in fact 

this is not strictly correct. The correct formula is very com¬ 

plicated and in order that the simple formula may be available 

Kelvin introduced the device of the guard ring which prevents 

this departure from uniformity, at least sufficiently to reduce any 

error to second order dimensions. He also used the guard ring 

with his electrometer. 

To get the measure of Q in electromagnetic units, Weber and 

Kohlrausch discharged the condenser through a ballistic gal¬ 

vanometer and applied the familiar formula 

<? = 
TH 
-sin i6. 
■kG 

They found for the ratio 

5-1074 X 10»<> 
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and one of the tests of Maxwell's theory, as we shall see later, is 

the closeness with which this number approaches the velocity of 

light (in cm. sec.*"^) in free space. The measurement of the ratio 

has been repeated many times since; by Clerk Maxwell, Kelvin, 

Rowland and by Sir J. J. Thomson and Dr. G. F. C. Searle.* 

It 1 las turned out to be identical with the velocity of light in free 

space to within the narrow limits of unavoidable experimental 

error. 

We have noticed that when magnetic permeability is unity a 

resistance assumes the guise of a velocity, and we are not sur¬ 

prised to read in Maxwell's treatise that the value of the ratio, 

as found by Thomson (Kelvin), is 28*2 ohms and by Maxwell 

himself 28*8 ohms (1869). At that time Rowland’s result would 

doubtless have been described as 29*8 ohms. This means nearly 

50 earth quadrants per second, i.e. nearly 7^ times round the 

earth in a second. 

THE SIMPLEST OSCILLATING CIRCUIT 

Kelvin appears to have been the first to study the character of 

the current in what we should now call an inductive circuit.*}' 

He worked out theoretically what was to be expected when a 

condenser (Leyden jar) is discharged through a conductor with 

resistance and inductance in series. When the magnetic flux 

linked with a loop or coil of wire is changing, an electromotive 

force is induced in it, which is measured, in E.M. units, by the 

rate at which the flux changes. In the case we are studying the 

magnetic flux is equal to 

Z/f, 
where i is the current strength and L is a constant, called the 

self-inductance of the wire.J The rate of change of the flux, 

and consequently the induced electromotive force, is therefore 

• J. J. Thomson and G. F. C. Searle: Phil. Trans. 181, p. 583 (1890), 
They found for the ratio 2*9955 X 10^®. 

fW. Thomson: Phil. Mag., 5, p, 393 (1853), 
JThe practical unit of inductance is called the henry in honour of 

the American Joseph Henry, a contemporary of Faraday and inde¬ 
pendent discoverer of elactromagnetiq induction, 
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equal to the rate of change of Li, It is convenient to write this 

in the form 

L z, 

where i means the rate of change of z. Therefore 

Induced E.M.F. — Li 

Turning now to the discharge of a Leyden jar when its coat¬ 

ings are joined by a wire, or coil of wire, we find the effective 

electromotive force to be 

V - Li, 

that is to say, the potential difference between the coatings, less 

the induced E.M.F., since the latter tends to hinder the growth 

of the current (law of Lenz). We may therefore write 

V-^L\^Ri, 

if R is the resistance of the connecting wire. When R happens 

to be very small this simplifies to 

Li. 

If Q is the charge of the jar at any instant, the current is numeri¬ 

cally equal to its rate of change and therefore 

(? = z. 

Consequently 

q = i. 

That is to say that z means (apart from sign) the rate of change 

of the rate of change of Q, and since 

F=<?/C 

(C is the capacity of the jar) we have 

Now imagine a distance, equal to <^, measured off along a straight 

line from some chosen point on it—to the right if Q is positive 

and to the left if Q is negative. The point reached will be in 

motion, since Q is constantly changing, and its acceleration will 

be Q. Moreover the acceleration is directed to the zero point (law 
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of Lenz), The equation we have found tells us that the displace- 
•• 

ment divided by the acceleration (i.e. Q/Q) is constant, equal in 

fact to LC. This kind of motion is called simple harmonic. It is 

periodic and the period is equal to 

/(Displacement) 

y (Acceleration) 

which means that the current we have been studying is an 

alternating one with a period equal to 

2nVLC 

Of course the resistance is not always negligible and Kelvin’s 

treatment of the problem was more complete than what has just 

been given. 

The discharge of the Leyden jar was studied experimentally 

by a young German student, Wilhelm Feddersen (1852-1918). 

He observed the spark discharge of an initially charged jar with 

a rotating mirror and noticed of course a multiplicity of images, 

each spark image representing a discharge across the gap in one 

direction or the other. The speed of his rotating mirror enabled 

him to compute the period of the oscillations and to confirm 

Kelvin’s theory.* 

MAGNETISM 

Ampfere imagined magnetization to be due to molecular 

currents or currents in the ultimate particles of magnetizable 

materials, and this view, in an elaborated form, is still held. 

Indeed an electric current simulates a magnet. Weber (1854) 

adopted Ampere’s view. He supposed that in the unmag¬ 

netized state of a piece of material, e.g. a rod of iron, the mole¬ 

cular magnets were linked together in small closed rings^ every 

molecular north pole being in immediate contact with a south 

pole of equal strength. In the presence of an external magnetic 

field these rings were supposed to be broken up and the molecular 

magnets aligned to form long chains with free north poles at one 

end of the rod and free south poles at the other. This is, broadly 

• W. Feddersen: Beitrdge zur KenrUnis des elehtrischen Funkens, 

Dissertation, Kiel, 1857. 
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speaking, still our view about paramagnetic and ferromagnetic 

materials. 

A diamagnetic material is one which is repelled when a mag¬ 

netic pole is brought near to it. Weber also arrived at the correct 

view of the nature of this phenomenon. He imagined it to be 

due to the induction of currents in the molecules (or atoms) of 

the diamagnetic material. Such currents will, in accordance 

with the law of Lenz, produce magnetic fields opposing the 

inducing one. 

The phenomenon of hysteresis does not appear to have been 

noticed till Warburg discovered it in 1881. It was studied in 

great detail by Ewing between 1885 and 1890 and the name 

hysteresis (uorepcco, to come late) is due to him. It refers to 

the characteristic of a certain class of materials, among which iron 

is the most prominent, of retaining much of their magnetization 

after the magnetizing field has been removed (ferromag¬ 

netism). Ewing showed that the behaviour of ferromagnetic 

materials could be simulated by a large number of magnets 

(representing the molecular magnets) pivoted close together. 

Most materials are only slightly magnetizable, in what may be 

called the normal sense of the term, and show no hysteresis 

(paramagnetism). Their permeabilities (and susceptibilities) are 

constants (independent of the magnetizing field). 

The theory of magnetization owes most perhaps to Paul 

Langevin (1905) and Pierre Weiss.The former of these has 

given a very beautiful theory of a paramagnetic gas which may 

be concisely described as the kinetic theory of the gas, amplified 

by taking into account the fact that the molecules are magnets 

and including in the Maxwell-Boltzmann exponential distribu¬ 

tion the directions of their magnetic axes and the associated 

energy terms under the influence of an applied magnetic field. 

The theory of Weiss is based on that of Langevin, but he 

amplified the latter by supposing an internal field to be super¬ 

posed on the applied external one. He was thus able to give a 

very beautiful account of the main features of ferromagnetism. 

• Journal de Physique^ 6, p. 661 (1907). A very complete account of 

their work will be found in O. W. Richardson’s Electron Theory' of 

Matter (Cambridge) and in E. C. Stoner’s Magnetism and Atomic 

Structure (Methuen) and the latter’s smaller work (Methuen’s Mono¬ 

graphs) is also very informative. 
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Weiss came to the conclusion that there is a natural unit of 

magnetic moment, the MAGNETON, just as there is a natural unit 

electric charge (e.g. that of an electron, or a hydrogen ion). 

This appears to be the casej the quantum theory leads to such a 

unit. The latter, however, is just five times as great as the mag¬ 

neton of Weiss. The explanation of the discrepancy undoubtedly 

lies in the fact that Langevin’s theory needs to be supplemented 

(and corrected) by the appropriate Wilson-Sommerfeld quantum 

condition, without which the computation of the magnetic 

moment of the magneton of Weiss is in error in the same sense 

and to the same extent as has been observed. 



CHAPTER NINE 

MAXWELVS ELECTROMAGNETIC THEORY 

DIEI.ECTRIC MEDIA 

In common witli the physicists of his day, James Clerk Maxwell 

(1851-1879), a Scotsman and the first occupant of the Cavendish 

Chair of Experimental Physics in the University of Cambridge, 

believed that electromagnetic phenomena, like all other pheno¬ 

mena of the physical world, were matter and motion pheno¬ 

mena of some sort or other and that they came entirely within 

the scope of Newtonian mechanics. Yet it was his theory which 

was to give the old mechanics its first shock. He was greatly 

influenced by Faraday’s view of the nature of electromagnetic 

phenomena and of electrostatic phenomena in particular. He 

wrote in his great Treatises “We may conceive the physical 

relation between electrified bodies, either as the result of the state 
of the intervening medium [my italics] or as the result of a direct 

action between electrified bodies at a distance.” F'araday 

ascribed the force of attraction or repulsion between two electri¬ 

fied bodies to a state of vStress in the insulating medium (dielec¬ 

tric) separating them and Maxwell proceeded, as he expressed it, 

“to investigate the mechanical state of the medium” and used 

such illustrations as the “tension of a rope or the pressure of a 

rod”. For him, as for Faraday, the medium was in “a state of 

mechanical stress”. This attitude was supported by the obser¬ 

vational fact that when the materials of the conductors in an 

electrostatic field are replaced by different conducting materials, 

e.g. copper replaced by silver, leaving unchanged the charges, 

the shapes and configurations of the conductors and the dielec¬ 

trics the observed electrostatic phenomena are unchanged. On 

the other hand a replacement of the dielectrics makes all the 

difference in the world. 

There is a well-known mathematical expression for the force 

exerted on the unit volume of a piece of material under stress— 

or, shall we preferably say, for the X component of the force per 

157 
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unit volume. It is much simpler than it looks and it will be help¬ 

ful to examine it. A rectangular block of some elastic material 

is shown in Fig. IX—1 with three of its edges coincident with 

the X, F, Z axes of a rectangular system of co-ordinates. The 

eight corners of the block are marked o, a, c, f and g. 

Now imagine the material to be in a state of stress—rather a 

simple kind of stress—namely, a tension in the sense indicated by 

the arrows. The face aegf is pulled to the right by a force at 

right angles to its surface. Similarly there is a force exerted over 

obdc in the opposite sense. If they are equal the resultant force 

on the rectangular block is just zero. It is convenient and usual 

to describe the state of stress by the tension or force per unit area. 

The force over aegf, for example, may be written 

t X {aredi aegf). 

Now suppose the tension (force per unit area) over aegf Xo be 

greater than that over ohdc and distinguish them as (the 

greater) and (the lesser). Then obviously the resultant force 

(in the X direction of course) on the block is 

(^2 ~ X (area aegf), 

since both areas are the same. To get the force per unit volume 

we divide by the volume of the block, which is clearly 

(length oa) x {area aegf) 

h -h 

(oa) ‘ 

and thus obtain 
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If we wish to have the force per unit volume in the immediate 

neighbourhood of some point, we imagine the block containing 

the point to be very small, approaching zero in the limit, so that 

^2 — 2^1 becomes a very small increment of the tension, over 

a very small distance oa. The X component of the force per 

unit volume is therefore usually written 

bx 

But we may have other contributions to this X component. 

For instance, we may have stresses (called shearing stresses) 

exerted over the areas oaec and hfgd and directed oppositely, like 

the tensions already studied, the one over hfgd in the X direction 

and the other, over oaec^ in the opposite sense. Clearly we must 

do something to avoid confusing these rather different kinds of 

stresses with one another. So we shall distinguish the t of the 

former kind of stress by wdting it as 

and so also the associated force per unit volume as 

The sliearing stress we shall represent by 

^xy 

and its contribution to the X component will be 

by 
The former of the subscripts, i.e. the x (e.g. in marks the 

fact that we are dealing with an X component, the latter (e.g. 

they in indicates that is a stress over a face perpendicular 

to the Y axis. Lastly it should now be obvious, since we have to 

deal with faces perpendicular to three axes, that the total X com¬ 

ponent of the force per unit volume, i.e.y],, is expressed by 

L- 
I ^^xy I ^^xz 

dx 5y bz 
(IX—1) 

Maxwell succeeded in expressing the forces in an electrostatic 

field (and also in a magnetic one) in this form, and it seemed, at 

the time, that he had made an important step in the direction of 
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the desired mechanical explanation, or interpretation, of electro¬ 

magnetic phenomena. 

The actual expressions for the stress components, 4^, 4^, 

etc., will not be given here. When the system of stresses in an 

elastic medium is not in equilibrium, the medium acquires 

momentum and kinetic energy. Expressions can easily be found 

for tlie electromagnetic momentum and energy per unit volume 

of a dielectric medium in an electromagnetic field. 

Sometliing may be learned from the following illustration 

about the nature of the state of stress and strain, whether it be 

in an elastic medium or in an electrical or magnetic field. 

Imagine two parallel plates being drawn towards one another. 

If F be the force dragging one towards the other, then the work 

done as the distance between them is reduced by the small 

distance, d'ls 1-7 , 
’ ^ F X d. 

If this work is done at the expense of energy seated in the space 

swept out, then 

^7 . , F X d 
Energy per unit volume = --^- 

(Plate area) X d 

Energy per unit volume Tension. 

This is the case, for instance, with the plates of a parallel plate 

condenser: the tension on either plate is equal to the energy per 

unit volume in the neighbourhood. 

It is very easy to show that the energy per unit volume in an 

electrostatic field is 1^772 

E being the field intensity and K the dielectric constant.| For 

* No doubt Ernst Mach (if lie were still living) and his disciples would 

criticize the use of the word “explanation” in this context; but the 

word “description” cannot be substituted for it without some enrich¬ 

ment beyond its normal endowment. 

I The expression for the energy density depends on the kind of units 

we use. It might be (Lorentz-Heaviside units). It is part of the 

definition of the units I am using that the following formula always 
holds: 

Force in dynes ’^QiX 

where and Q2 are the charges on two particles separated by the 
distance r cm., in a medium of dielectric constant K. 
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instance, the energy associated with a charged conductor is 

\CV^, 

where C is its capacity and Vixs potential. This energy is seated, 

according to the views of Maxwell and Faraday, in the dielectric 

over which the associated electric field extends. Think of the 

conductor as the inner sphere of a spherical condenser. The 

energy in the interspace depends on the potential difference 

between the spheres and on the capacity of the inner one. This 

latter is equal to 

Ka^ 

where a is the sphere’s radius and d (assumed to be very small 

compared with a) is the distance between the charged sphere 

and the inner surface of the outer sphere. The energy in the 

interspace is therefore 

Ka^ 
\X - X F2 

d 

and the volume of this interspace is ^a^d. Therefore 

Energy per unit volume == ^ X - X 
^a^d 

But 

Exd, 

where E is the electric field intensity. Consequently 

Kd^ E^d^ 
Energy per unit volume == | x-X 

A'ud^d 

KE^ 
(IX—2) 

We conclude then that the tension along the lines of force must 

be equal to KE^jSn^ as Maxwell found. This is what is sym¬ 

bolized above by r^.. A more complete statement would be the 

following: The forces on the conductors in an electrostatic field 

are such as would result if the state of stress in the dielectric 

medium were a tension, in the direction of the electric field, 

equal to the energy per unit volume, and an equal pressure 

perpendicular to the direction of the field. It occurred to Max¬ 

well to put the energy per unit volume in the form 

lExD, 
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where E is the field intensity and D is some sort of displace¬ 

ment.* Evidently 

KE 
D ~ (IX-3) 

47r 

It is like a strain corresponding to the STRESS E and when we 

write 
Stress E 47r 

Strain D K ^ 

we are tempted to regard 4^jK as a kind of modulus, like a 

modulus of elasticity, and indeed Maxwell called it the co¬ 

efficient OF electrical elasticity of the medium (a term 

which has now fallen into disuse). He was led to appreciate the 

significance of D by the following kind of reflection. Imagine a 

spherical surface of radius r in a dielectric medium and a particle 

with a charge Q, placed at its centre. The value of the electric 

intensity at any point on its surface must be expressed by 

and since E — we find 

THE DISPLACEMENT HYPOTHESIS 

Thus was Maxwell led to the hypothesis that, when an electric 

field is established in an insulating medium, a quantity of elec¬ 

tricity, equal to Kj4*7z times the field intensity, is displaced, or 

pushed as it were, through every unit area perpendicular to the 

direction of the field. This simple DISPLACEMENT HYPOTHESIS^ 

together with the analogous thing in a magnetic field, had 

momentous consequences. 

When the medium is a conducting one there is a continuous 

flow, or movement, of electricity in the direction of the field to 

which the medium may be subjected and the current density, i 

♦ It is analogous to the statement that the energy in a stretched wire 
(or spring) is equal to one-half stretching force times extension. 

■[•“A Dynamical Theory of the Electromagnetic Field,” Phil. Trans. 
(1864). 
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(i.e. current per unit area perpendicular to the direction of flow), 

is equal to 

a 

by definition of the electrical conductivity, cr. When the medium 

is an insulating one, there may also be a current (a displacement 

current), but only while E is changing, and the current density 

is equal to the rate of increase of the displacement, £>, or, as we 

may write it, 

K 
— or -• 
ht 4?! ht 

This is of course quite compatible with perfect insulation, since 

when E is constant, so is D, 

There is also an analogous magnetic displacement current, 

namely 
^ hH 1 bB 

^ ht 47C 5/ 

where H is the magnetic field intensity, (x is the permeability 

of the medium, and ^ (= \lH) is the magnetic induction. 

When Maxwell’s hypothesis is combined with the familiar 

relations {a) between an electric current and its associated mag¬ 

netic field (Ampbre) and {b) between a changing magnetic flux 

and the associated electric field (Faraday and Neumann) the 

familiar partial differential equation representing a wave 

emerges and the phase velocity of this wave is 

1 
(IX—4) 

This expression has the same value in either electrostatic or 

electromagnetic units and Maxwell noticed that when it is 

reckoned for free space it is equal to 

Electromagnetic unit of Quantity 

Electrostatic unit of Quantity 

It is easy to see that this is the case. In the electromagnetic 

system [x is equal to unity in free space and therefore the velocity, 

w, of E.M. waves in vacuo is 

_1 

^e.m.u. X 1 

meaning the dielectric constant of free space in E.M, 
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units. Therefore^ since (dielectric constant of free space in 

E.S. units) is equal to unity, we may write 
jr 

•2 _ ^c.s.u. 

But now the force in dynes between two equal point charges is 

Q2 02 
XT’  x c.s.u.   X c.m.u. 

and so 

Consequently 

.2 ..2 

K. 

Q\.u.u. K. 
C.S.U. 

c.m.u. 

U — 
_ Qe...u. 

Qe.m.u.’ 

which is equivalent to the statement 

E.M. unit for Q 

E.S. unit for Q 

It is usual to employ the letter c for this particular velocity. It 

appears to us, i.e. to the reader and myself, at this stage, as the 

velocity of E.M. waves in the free aether and relative to the 

aether^ but we shall learn more about it in subsequent chapters. 

As we have learned, the ratio of the E.M. and E.S. units had 

already been determined by Weber and has been determined 

since his time by many others. It is not possible to distinguish 

it from the velocity of light in free space (expressed of course in 

the same fundamental units of length and time, i.e. cm./sec.). 

Maxwell naturally and correctly inferred that light waves are 

electromagnetic waves and his theory is usually called the 

ELECTROMAGNETIC THEORY OF LIGHT. It united the two great 

groups of physical phenomena, electromagnetic and optical. 

That they were related in some way was foreseen by Faraday 

when he observed that a magnetic field caused a rotation of the 

plane of polarization of plane polarized light. 

MaxwelFs theory has been abundantly confirmed since his day. 

The comparatively long waves of broadcasting are MaxwelEs 

electromagnetic waves and he may be said to have predicted 

them about sixty years before it became possible to bring them 

into efficient use. 
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FLOW OF energy IN THE ELECTROMAGNETIC FIELD 

A very important consequence of Maxwell’s theory was 

deduced by J. H. Poynting (1852—1914).* 

Poynting’s theorem may be described in the following way. 

The rate at which the electromagnetic energy within a closed 

surface diminishes is equal to the sum of two things: {a) the rate 

at which heat, or any form of energy other than electromagnetic 

energy, is generated within the surface at the expense of the 

electromagnetic energy, and {b) the rate at which electromagnetic 

energy travels outwards through the surface in the form of an 

electromagnetic wave, this latter being the same as if the quan¬ 

tity of energy, equal to 

~E X //, 
47t 

were flowing through every unit area of the surface. This 

expression requires some amplification, which would take up too 

much space to be fully dealt with here. It is correct as it stands 

when E and 11 are perpendicular to one another and both in the 

surface. It is known as poynting’s vector. If we imagine E to 

be in a nortlierly direction and H in an easterly one, then the 

flow of energy is perpendicularly downwards. 

VERIFICATION OF MAXWELL’S THEORY 

Perhaps the earliest experimental confirmation of Maxwell’s 

theory was carried out by O. J. Lodge (later Sir Oliver Lodge).*1* 

He joined parallel wdres to the inner and outer coats of a Leyden 

jar and arranged the length of the system so that when the jar 

discharged (and consequently produced the oscillations of Kelvin 

and Feddersen) there was a maximum spark at the free ends of 

the wires, in addition of course to the discharge in the immediate 

neighbourhood of the jars. He assumed the distance between the 

two sparks to be half a wave-length of the wave which travelled 

between the wires and was reflected at the end of the system. 

Multiplying the wave-length thus found by the known frequency 

of oscillation of the jar he estimated a velocity which was near 

to that of light, 

^PhiL Trans., 2, p. 543 (1884). 

]PhiL Mag,, 26, p. 217 (1888). 

K 
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E. Lecher greatly improved this device of two parallel wires 

and confirmed that the velocity of E.M. waves in air is equal to or 

near that of light.* 

Undoubtedly the strongest support was given to Maxwell’s 

theory by Heinrich Hertz (1857-1894), in his youth a student at 

Berlin under von Helmholtz, and later professor of physics in 

Bonn. He used a Ruhmkorff induction coil to produce sparks 

between two metal knobs connected by metal rods to two large 

plates (40 cm. square). The total length of the rods joining the 

plates to the knobs was about 60 cm. The system constituted 

effectively a condenser with a definite frequency of oscillation 

and sent out waves of a corresponding wave-length. He carried 

out a great variety of very convincing experiments. He studied 

the reflection of the waves and their refraction through prisms, 

measured wave-lengtlis and so on. An interesting feature in his 

experimental procedure was the receiver he used. It consisted of 

a piece of wire (or rod) bent into a circle except for a small gap. 

He was able, when his waves were reflected from a conducting 

wall, to locate nodes and internodes by observing the spark 

across the gap of his receiver, which of course was caused to 

oscillate strongly at an internode. 

EARLY WIRELESS TELEGRAPHY 

Sir Oliver Lodge appears to have noticed^ that conductors in 

loose contact were caused to adhere to one another more firmly 

when electromagnetic waves fell on them. Branley utilized this 

in his coherer, which consisted of a mass of finely divided nickel 

filings with a few per cent of silver filings between silver plugs 

in an exhausted glass tube. This formed part of a circuit con¬ 

taining a battery and an electric bell or a Morse recorder. In 

the ordinary way the current in the circuit was too feeble to ring 

the bell or operate the receiving device^ but immediately the 

E.M. wave arrives the filings cling together, the resistance of the 

circuit drops and the bell rings. The filings continue to adhere 

after the waves cease to fall on them and consequently an auto¬ 

matic tapping device was provided to shake them up and detach 

them from one another. 

• E. Lecher: fVied, Ann., 41, p. 850 (1890). 
\ Journal I.E.E., 19, p, 346 (1890). 
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The old wireless telegraphy, which was developed mainly by 

the Italian G. Marconi, has been obsolete since the invention 

of the electron valve. It was very useful in its day, especially in 

aiding ships in distress at sea and in conveying information to 

them. 

RADIATION PRESSURE 

Maxwell predicted that, as a consequence of his electro¬ 

magnetic theory, electromagnetic waves, including of course 

light waves, falling perpendicularly on a plane surface, must 

exert on it a pressure equal to the density of the electromagnetic 

energy per unit volume. This has been confirmed experimen¬ 

tally by the Russian P. Lebedev* and the Americans E. F. 

Nichols and G. F. Hull.f 

If the electromagnetic radiation, instead of travelling in one 

specific direction, is travelling in all directions and uniformly dis¬ 

tributed as regards direction (isotropic radiation), then the radia¬ 

tion pressure—as can easily be shown—is equal to one-third of 

the energy density. We shall meet with a most important 

application of this fact in the chapter on black body radiation. 

THE IONOSPHERE 

Oliver Heaviside suggested the existence of a conducting layer 

in the atmosphere to account for the fact that electromagnetic 

waves keep so closely to the earth’s surface. E. V. Appleton (now 

Sir Edward Appleton) definitely proved the existence of this 

HEAVISIDE LAYER and found its height to vary from 80 to 100 

kilometres. He also found another layer, the Appleton layer, 

estimated to be about twice as high. These conducting layers 

constitute, collectively, the ionosphere. Its conductivity is due 

to ionization by solar and cosmic radiation. 

♦ P. Lebedev; Rapp, Congris Internat, d. Phys,^ 2, p. 133 (1900). 

t E. F. Nichols and G. F. Hull: Proc, Amer. Acad., 38, p. 559 (1903). 



CHAPTER TEN 

THE AETHER 

michelson’s experiments 

Until the end of the eighteenth century the natural philosophers 
adhered generally to Newton’s theory of light rather than to that 
of Christiaan Huygens, who was the original author of the wave 
theory of light. Under the influence of Dr. Thomas Young and 

of Augustin Fresnel, both of whom produced very convincing 

experimental evidence for the correctness of the wave theory, 

Newton’s views about light were confidently given up and until 
this century it was believed to be finally settled that a beam of 

light was a wave propagation in a strange medium called the 

AETHER, which, before Maxwell produced his electromagnetic 

theory, was thought to have properties like those of an elastic 

solid and later to be a medium in which electric and magnetic 
displacements could be produced and propagated. 

In order to account for the phenomenon of stellar aberration, 

it will be recalled, Fresnel felt compelled to assume that the 
aether outside materials was permanently at rest—relative to 
some rather vague system of reference such as Newton’s spatium 

absolutum. This view was still strongly held in the opening 

years of this century, notably by H. A. Lorentz, of Leyden. On 
the other hand, Fizeau’s experiment seemed to provide evidence 

for Fresnel’s prediction that the aether inside material media 

partook in some degree of their motion. About 1881 Albert 
Michelson, one of the most distinguished experimenters in the 

history of physical science, devised an experiment which 

seemed calculated at that time to pronounce decisively about 
Fresnel’s view. It was designed to reveal and to determine 

the relative velocity of the earth and the aether outside it. He 

used a form of interferometer to which reference has been made 

in Chapter VII. It is illustrated in Fig. X—1, and consists of two 

plane mirrors, Mj and M2, whose reflecting surfaces are at right 

angles to one another. At O is a plane piece of glass, semi- 
148 
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silvered on its lower face, which is at 45° to the planes of both 
mirrors. The light from a source of light on the left, which may 
be regarded as a nearly plane illuminated surface, is divided at O 
(Williams’ division of amplitude), part of it travelling straight 

on to Mj and the remaining part reflected to Mg. At a is an 
exactly similar “compensating” plate of glass whose function is 
to make the two paths, O to and O to Mg (the two directions 
are perpendicular to one another), which have the same measured 
length, also have the same “optical” length for light of any 
wave-length.* The light which travels from O to Mj and back 
to 0 will pass twice through the plate at a, while that which 
travels from O to Mg and back to O will travel twice through the 
plate at O, both beams travelling the same distance through glass. 
The beams are reunited at O and interfere, the interference 
fringes being seen by the observer as indicated in the figure. 

• Two paths have the same “optical” lengths when they contain tlie 

same number of waves. 
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For some of Michelson’s purposes the possibility of having two 
equal optical paths was essential. When the two are equal the 
fringes (with monochromatic light) are straight, or nearly so, in 
the centre of the field. This is because the images of the nearly 
plane source of light are never strictly coincident, but intersect 
in an approximately straight line. One of the mirrors, e.g. Mg, 
can be moved by a screw nearer to or farther away from O. 
When the optical distance OMg is a little greater than, or a little 
less than, OM^, the fringes appear slightly curved in opposite 
senses in the two cases. When the two paths are exactly equal 
coloured fringes can be seen with white light—but not when 
they are unequal—and Michelson’s way of making this adjust¬ 
ment was to superpose faint white light on the monochromatic 
beam while turning the screw slowly in the direction required to 
change the sense of the curvature of the monochromatic fringes 
which were visible all the time. At a certain point the coloured 
fringes suddenly appear and then it is known that the two paths 
must be equal. 

The whole apparatus was mounted on a stone slab which 
floated on mercury while the slab and the interferometer on it 
rotated continuously and slowly in a horizontal plane. No change 

whatever could be observed in the position of the monochromatic 

fringes. This simply meant that the light travelled each of the 
double journeys in the same time whatever the directions of OMj 
or OMg relative to the earth*s presumed motion through the aether. 

Imagine the earth to be moving through the aether with the 
velocity i;, in the direction O to M^. If L be the length of the 
path OMj, the time (call it T^) taken by the light for the double 
journey, O to and to O, is clearly 

L L 
-1-—^ 
c — V C V 

so that 
2Lc 

— v^ 

(c of course means the velocity of the light relative to the aether). 
For our purposes it is best to express this in the form 
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where y nieans (1 — 
The journey from O to Mg and back is more complicated. The 

light must travel through the aether in the way shown in Fig. 
X—2. While it is going from O to Mg and back, the point O gets 

oc 
Fi^r. X—2 

to O'. Obviously Ox (i.e, ^00') is equal to if is the 
time the light requires for its journey. The distance xM^ is 

equal to L and therefore ^2 j-* 2 

(OM,)» = 1.2 + 

and consequently 
L^ + 

Y having the same meaning as before. 
Michelson’s negative result makes the times and equal 

to one another, which means that y == 1 and therefore = 0^ 
otherwise expressed, the aether is travelling along with the earth 
and this was the inference drawn by Michelson himself. The 
experiment was repeated by Michelson and his pupil Morley* 
with the same result^ but with such refinements that, if the 
aether were as Fresnel and Lorentz contemplated, the fringe 
shift corresponding to the difference between and T^a could 
easily have been observed. 

• Phil. Mag., 24, p. 449 (1887). 
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THE CONTRACTION HYPOTHESIS 

Since the adoption of what seemed to be the most obvious 
interpretation of the negative result of this experiment of Michel- 
son and Morley, namely, that the aether moves along with the 
earth, raised insuperable difficulties in the way of accounting for 
stellar aberration—and, incidentally, for the result of Fizeau’s 
convection experiment—it seemed necessary to find an inter¬ 
pretation of their negative result which would permit the aether 
to remain ‘‘at rest’’. If we may not suppose 

y* = Y = 1, 
there is still the alternative suggested by G. F. FitzGerald 
(1851-1901) and independently by H. A. Lorentz, namely, that 
bodies contract in length in the direction in which they are 
moving through the aether. Let us suppose that OMj, when it is 
in this direction, contracts to a shorter length, Then the 
formula (X—1) becomes 

Ty 
2L1 

and we can explain the result 

by supposing 
7\ = r, 

yZ-1 == L. 

That is to say, the modified length is equal to the original length, 
L, divided by the factor y which is slightly bigger than unity. 
This is the contraction hypothesis of G. F. FitzGerald* and 
H. A. Lorentz. The latter had noticed that the familiar equation 
of Poisson in electrostatics changes its form when one passes 
from one system of rectangular co-ordinates to another moving 
relatively to the former with some velocity v. On the other hand 
there is no experimental indication that electrostatic phenomena 
are different when referred to the new co-ordinates. Strangely 
enough the contraction hypothesis is just what is needed to make 
the equation have the same form in both systems, j* 

• The contraction hypothesis of FitzGerald is mentioned by O. Lodge 

in a paper, “On Aberration Problems,” Phil. Trans. A., 184, p. 749 
(1S93). 

IH. A, Lorentz: Fcrsuch einer Theorie der clektrischen und optiscken 

Erscheinungen in bewegten Kdrpern (Leiden, 1895). 
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THE EXPERIMENTS OF OLIVER LODGE 

After Michelson and Morley had carried out their earlier 
experiments, Sir Oliver Lodge attacked the same problem in a 
different way. He used two heavy steel discs, mounted close 
together on a common axle. A beam of monochromatic light 
was divided, as in Michelson’s interferometer for example, one 
part being sent round a closed loop between the discs (by suit¬ 
ably arranged mirrors) and the other made to travel in exactly 
the opposite sense round the loop. The two parts of the original 
beam were reunited to produce interference fringes. Now it was 
to be expected that the fringes would shift on setting the discs in 
motion, provided of course that they dragged the aether along 
wdth them^ since tlie velocity of light would become greater in 
one direction than in the other. Lodge could observe no change 
whatsoever, indicating that the aether was stagnant. He 
repeated the experiment with a spheroid of iron weighing half a 
ton and with a sort of canal or groove cut out along its equator. 
Round this, by suitably disposed mirrors, he sent the beams of 
light in opposite senses. The result was just the same and the 
only way of reconciling it with that of Michelson and Morley 
aj)peared to be the adoption of the contraction hypothesis. The 
situation was not yet desperate, but further experiments brought 
the physicists of the opening years of this century into a state of 
complete bewilderment. 

THE EXPERIMENT OF TROUTON AND NOBLE* 

A charged parallel plate condenser was suspended, by a 
delicate bifilar suspension, so that its plates were vertical. It 
was expected that the motion of the charged plates through the 
aether, if there were such relative motion, would give rise to a 
couple which would tend to turn the condenser towards the 
position in which the plates were parallel to the direction of 
motion, with the positive plate on the left when viewed by some 
one looking in the direction of the motion. Trouton and Noble 
found no sign of such a couple, thus supporting Michelson’s view 
that the aether moves along with the earth. This experimental 

•Proc. Hoy. Soc., 72 (1905). 
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result cannot be accounted for by the contraction hypothesis of 
FitzGerald, who suggested the experiment to Trouton. 

OTHER EXPERIMENTS 

If such a contraction of materials as contemplated by the 
FitzGerald-Lorentz hy}X)thesis really did occur, it should have 
consequences. A transparent isotropic material, glass for example, 
might be expected to show double refraction. Lord Rayleigh 
failed to observe this* and Brace, who repeated his experiments 
with more refinements, also failed.f 

Another consequence that might be anticipated would be a 
slight variation of the electrical resistance of a piece of wire with 
its direction. Trouton and Rankine failed to observe this, 
though their experimental method was amply sensitive enough 
to detect a variation of the expected magnitude. 

A SUMMARY OF PERPLEXITIES 

Young, Fresnel and all their successors through the nineteenth 
century held light to be an undulatory phenomenon requiring a 
very special luminiferous medium (the aether) which extended, 
not only through otherwise empty space, but which permeated 
material media and occupied the space between the atoms. 
Stellar aberration required this aether to be ‘‘at rest” or stag¬ 
nant, outside materials, and Fizeau’s experiment did not appear 
to be in conflict with this view. Difficulties began with Michel- 
son’s experiment. These, it seemed, could be removed by the 
rather artificial contraction hypothesis. Lodge’s experiment 
favoured the stagnant aether view. On the other hand all the 
obvious consequences of contraction failed to manifest themselves 
and the experiment of Trouton and Noble seemed to admit of 
no other interpretation except the naive one of Michelson. 
These perplexities were the outcome mainly of conflicting 
negative results. We shall see how they were removed, along 
with other still older difficulties, by the theory of relativity. 

• Lord Rayleigh: l?hiU Mag., 4, p. 678 (1902), 
t Brace: PkiL Mag., 7, p. 317 (1904). 



CHAPTER ELEVEN 

NEWTONIAN AND SPECIAL RELATIVITY 

OLD DIFFICULTIES 

It was Eddington, I think, who made the remark that the 

Inquisition and Galileo were agreed on one point, namely that 

there was indeed a certain question to be answered, and on this 

point, about which they were agreed, they were both wrong. 

The Inquisition contended that there were reasons so authorita¬ 

tive and compelling for belief in the immobility of the earth 

that it was indeed impious not to accept them. Galileo on the 

other hand was entranced by the beautiful order and simplifica¬ 

tion introduced into the apparently erratic behaviour of planet¬ 

ary bodies, by abandoning the ancient belief. We cannot wonder 

of course that he still retained some prejudices and misconcep¬ 

tions, inherited from an earlier time, as did indeed the great 

Newton who followed him. ‘"^he chief of these was that it had 

a meaning to say that a body was at rest or in motion quite 

independently of anything relative to which it was at rest or in 

motion. In the earliest times, naturally, the earth was at rest5 

then the belief came (to Aristarchus, now almost forgotten, in 

the third century B.c.—revived by Copernicus nearly 2000 years 

later) that the earth was in motion and immobility was trans¬ 

ferred elsewhere—to the stellar system or (Newton) to absolute 

space. For Newton space was something which was there in its 

own right. ^It was an entity (not unlike the aether which played 

so great a part in later times) which existed and persisted inde¬ 

pendently of the material things contained in it.^^ Spatium 

Absoluturriy natura sua sine relatione ad externum quodvis^ 

semper manet similare & immobile. . . T His definition of time 

begins in the same way, but after quodvis there follows in its 

description the words aequabiliter fluit. Newton’s mechanical 

and gravitational theory seemed to rest on this as the deepest 

part of its foitndations, but when we scrutinize the applications 

which Newton and his successors made of his mechanical prin- 
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ciples we fail to find his absolute space and time. They are in 

fact never involved. Indeed neither his absolute space nor his 

absolute time can be observed and the only way of defining a 

particular straight line, for example—and I am not here speaking 

of that quite different thing, the pure mathematician’s straight 

line—is in terms of something that can be observed^ perhaps I 

should say, in terms of an asymptotic sequence of observations 

and operations involving material things.* 

The great German mathematician, Carl Neumann, dealt with 

these things in his inaugural lecture on appointment as Professor 

of Mathematics in the University of Leipzig (ISGQ).*}* This 

remarkable address contains, I think, the earliest serious examina¬ 

tion of the principles of mechanics which dominated physical 

science till the close of last century. He examined, in particular, 

the axiom with which we are all familiar under the name of 

Newton’s first law of motion. As he said, it is in fact without 

content and incomprehensible until we can provide acceptable 

definitions of '‘straight line”, “equal distances” and “equal 

times”. He pointed out that motion in a straight line, defined 

with reference to some framework fixed in the earth, would 

appear as motion along a curved line if referred to a framework 

fixed in some other planet. We must therefore, since we are 

convinced of the importance of the law, ask ourselves wiiat is 

meant by straight line and by motion in a straight line., and so on. 

Neumann came to the conclusion that there must exist some¬ 

where in the universe an absolutely rigid body {absolut starrer 

Korper)—a body whose figure and dimensions remain un¬ 

changed for all time. He called it the body alpha. It is this body 

which determines whether anything is at rest or in motion and 

• Professor E. T. Bell writes in his fascinating book on The Develop¬ 

ment of Mathematics that “nothing so exasperates a mathematician 

who knows his trade as to hear geometry called a physical science”. 

Of course we grant him the profound difference between his geometry 

and that of the physicist; but the pure mathematician may be reminded 

that he borrowed the term “geometry” from the physicist, who has 

used it quite legitimately for more than two millennia as the name of a 

fundamental part of his science. One is tempted to ask whether the 

pure mathematician is becoming exasperated by the physicist’s use of 

the term “measure” which is so prominent in present-day pure mathe¬ 

matics. 

I Carl Neumann: Uebcr die Principien der Galilei—Newtonschen 

Theorie (Leipzig, B. G. Teubner, 1870). 
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which settles authoritatively what straight lines are and what 

are motions along straight lines. One gathers from his lecture 

that tins body Alpha is not necessarily to be regarded as an actual 

substantia] rigid lump of material, as it were. He had in mind 

the existence of a system of reference (e.g. a system of rectangular 

axes of co-ordinates) definable by observational procedure and he 

suggested the principal axes of inertia of the stellar system, as 

he thought of it.^e also appreciated that each of the infinity of 

systems of, say, rectangular axes of co-ordinates, each moving 

with a constant velocity of translation relatively to the body 

Alpha, and consequently with constant velocities of translation 

relatively to one another, is just as fitted to be a system of refer¬ 

ence as the body Alpha itself. Some of them would of course be 

more convenient to use for particular problems than others, but 

each one of tliern equally valid as a system of reference for the 

purposes of Newtonian mechanics, if the body Alpha has this 

validity. This amounts to saying that the laws of mechanics 

have the same form (i.e. the equations which express them 

have the same form) in all systems which have a constant 

velocity of translation relative to Neumann’s body Alpha. Such 

systems of reference are now called inertial systems. 

Newton’s mechanical principles fit a large class of pheno¬ 

mena extraordinarily well—those which may be described as 

matter and motion phenomena. They fail with very small things 

and to some extent with gravitational phenomena and the 

extra-galactic world. Their application to electromagnetic 

phenomena is also rather imperfect. Newton’s absolute space is 

not only not needed for the purposes of his mechanics^ it is in 

fact meaningless. Space (that is to say the space of the physicist) 

is no more than a complex of relationships of a certain type— 

relationships between observable material things, expressed in 

terms of measured lengths, angles and constructions built up 

with them. If we were to imaging all the material bodies and 

observable things, which are said to “occupy space”, to be 

annihilated, space too would vanish. Indeed we might make a 

similar remark about time as well. The two, as will be better 

understood when we study the further development of the theory 

of relativity, are inseparable. H. G. Wells appears to have 

appreciated this. His Time Traveller anticipated Minkowski 

some fifty or sixty years ago. 
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Neumann’s body Alpha is an advance beyond Newton’s 

absolute space, since it can be effectively defined by an asymptotic 

sequence of observations. What this means may be illustrated in 

the following way. Even quite rough approaches to simple 

mechanical problems are attended by appreciable success. If we 

examine the behaviour of a simple pendulum, it agrees quite 

well with what Newtonian theory predicts even when we refer 

it to a reference system fixed relatively to the earth, provided our 

observations are not exceedingly good. But when we proceed 

very carefully (like Foucault) we notice some deviation from 

what our naively applied Newtonian mechanics predicts and to 

obtain agreement we must refer our pendulum to a system 

relatively to which the earth is in rotation. In this way we find 

an inertial system which Newton would have regeirded as moving 

with a constant velocity of translation in his spatium ahsoluturn^ 

or which Neumann would have regarded as moving in such a 

way relatively to his body Alpha. 

We come then to the conclusion that the equations of New¬ 

tonian mechanics have the same form in a multiply infinite 

number of systems (inertial systems) the definition of which 

presents no formidable problems. This is of course THE prin¬ 

ciple OF RELATIVITY, as Einstein calls it, in a very restricted 

form. In its full generality it would assert that the equations of 

physics, properly expressed, have the same form in ALL reference 

systems. I am inclined to adopt the view, with which Henri 

Poincar^ would probably have agreed, had he lived longer, that 

the principle is a convention. 

NEWTONIAN RELATIVITY 

It is illuminating and, in view of what is to follow, helpful to 

consider how a simple problem in Newtonian mechanics appears 

when referred to different inertial systems. Almost the simplest 

we can contemplate is that of a particle moving under the 

influence of a constant force, for example the problem of a 

pebble thrown into the air. For our present purpose we may 

neglect the resistance of the air and we may adopt, as a suffi¬ 

ciently good first approximation to an inertial system, a system of 

rectangular axes of co-ordinates fixed relatively to the earth, 

since the acceleration of such a system, relatively to an inertial 
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one, is very small compared with that of the pebble. The 

simplest choice of co-ordinate axes is one in which one of the 

axes (e.g. the X axis) has the same direction as the force acting 

on the pebble (its weight). That is the direction we usually 

describe as vertically downward. The X component of the force 

would then be mg (mass X acceleration) and the remaining 

components zero. But in general the X component of the force, 

is equal to mg cos Gj, where Gj means the angle between 

the direction of the X axis and that of the force (weight). 

There are similar expressions for the Y and Z components, so 

that 

Fx = in^cosGi, 
Fy = m^cosGg, 
F^ = m^cosGg. 

The equations of motion of the pebble are then 

(Fx „ 
m- = F. 

dt^ 

m 
cFz 

(XI-l) 

the components F^, Fy and F^ being constants in this simple 

problem. 

The important thing which this illustration is going to eluci¬ 

date does not require the actual solution of these equations. 

That may be left as an exercise for the reader. It is that the 

equations have the same form^ in any one of the infinity of 

inertial reference systems, as that of (XI—1). We may write 

them down for another system as follows: 

(Fx^ „, 
m—- = F:, 

dF 

m ■ 

dt* 

d^z' 

dt^ 

(XI—1a) 

^F' 

We now inquire what this identity in form (covariance) 
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implies. It simply means that, when we pass from the system 

in which 

holds to that in which 

d^x .. 
m-== 

dt^ 

m-= FJ 
dt^ 

holds, we have to apply the same rule in calculating from 

F^j Fy and F^ as we use in calculating x' from x, y and z. Sets 

of quantities, F^, Fy and F^, which transform like the co-ordin¬ 

ates X, y and z of a point, are called VECTORS. It is precisely this 

which such propositions as the triangle and polygon of vectors 

(e.g. of forces) express. It is implicit in Newtonian mechanics 

that the mass, m, and the time, dt, are not changed in passing 

from one system to another. They are invariant or scalar 

quantities. It is important to notice—what the definition of a 

vector, just given, indicates—^that it is quite insufficient to 

define a vector simply as a quantity associated with a direction. 

The definition of a vector may also be put in the following way: 

A displacement is a vector and anything with the same trans¬ 

formation properties as a displacement is also a vector. 

VECTORS AND TENSORS 

There are other sets of quantities, such for example as those 

describing the state of stress at a point in a material medium, 

which have NINE COMPONENTS and follow the same rules of 

transformation as the products 

XXy xy, XZy 

yx, rr. yz, 

ZXy zy, zz. 

It will be remembered that the stress components of (IX—1) 

were in fact distinguished as 

^xy9 ^xz 

and so on, with subscripts marking pairs of co-ordinate directions. 

Such things are called TENSORS and the term TENSOR has gradu¬ 

ally come to be used as a general one for all things of this kind. 

Scalars are tensors of RANK ZERO. Such a tensor has only ONE 

COMPONENT, i.e. the number of its components is 5®. A vector is 

a tensor of rank one^ it has 5^ components. A state of stress (as 
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also one of strain) is represented by a tensor of rank TWO; it has 

5® components, and so on. The exponents, 0, 1, 2, etc., represent 

the rank, while 3 is the number of dimensions of the Euclidean 

continuum. It should now be intelligible that the equations 

expressing physical laws have to be relations between tensors in 

order that they may be covariant, i.e. retain the same form in 

different reference systems. 

THE SCOPE OF NEWTONIAN RELATIVITY 

It will be helpful to examine the simple transformation from 

a rectangular co-ordinate system, X, T, Z, to another, X', T', 2', 

both having a common origin and, for simplicity, a common Z 

axis. The equations of transformation are 

x' = X cos 0 — ^ sin 0, 
j' = X sin 0 + cos 0, (XI—2) 

z* = z, 

in which x, y and z are the co-ordinates of some point, P (see 

Fig. XI—1), in one system and x', y and z! its co-ordinates in 

the other. 

Now it follows that 

F\ = cos ^ — Fy sin 0, 

F* y = F^sinO + F^cosG, (XI—2-/» 

L 
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since the equations of transformation of a vector must have 

exactly the same form as those for the co-ordinates of a point. 

Furthermore, since the product is related to the products 

XX^ xy^ xz, yx^ etc., according to the formula 

x'y = (^rcosO — jKsinO) (orsinO +^cos6), 

or 

x*y == XX cos 0 sin Q xy cos* 0 — yx sin* 0 — yy sin 0 cos 0, 

so it follows that the component, f ^ (for example) of the stress 

tensor of Chapter IX is given, in this reference system, by 

cos 0 sin 0 + cos* 0 — ty^ sin* ^ sin 0 cos 0 

(XI—5) 

This is the kind of calculation we do when we change from the 

one co-ordinate system to the other. 

We turn now to something still more important, namely, the 

change from one (inertial) co-ordinate system to another, the 

latter of which is travelling with a constant velocity of translation 

relatively to the former. The Newtonian equations of mechanics 

have the same form in both systems, as we have seen. 

The special case illustrated in Fig. XI—2 is not only very 

simple, but of great interest. The two systems X, F, Z and 

X', F', Z' have their X axes coincident. The F and F' are parallel 

"o one another, and shown in the plane of the paper. The Z and 

axes are likewise parallel to one another and perpendicular 

e plane of the paper, so that they do not appear in the 
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diagram. Finally the two systems (and therefore also their 

origins O and O') are exactly coincident at the instant ? = Oj so 

that 

OO' = vt 

if, as we are going to suppose, the system X\ F', Z' is moving 

relatively to X, F, Z, in the direction of the common X axis 

with the constant velocity, v. If now the co-ordinates of a point, 

P, are x, y, z and x* z! in the two systems, it is obvious that 

z! = z, (XI-4) 

It should be carefully noted that 

and z! ^ z 

only because of our special choice of co-ordinate systems, but 

= t 

whatever choice we may make. It has been added only for the 

sake of tlie comparison we shall make later with the famous 

LORENTZ TRANSFORMATION. 

If the point, P, happens to be moving with a velocity whose 

components are Uy and and u'y and u*^ in the respec¬ 

tive systems, then obviously 

u\ 

u'y = (XI—5) 

GROUPS OF TRANSFORMATION 

Turning back to the transformation (XI—2), let us make a 

further transformation to a third system X", F", Z", as indicated 

in Fig. XI—1. We get, of course, 

x" = X* cos9 — y' sin 9, 

y” = x' sin 9 y' cos 9, 

z'' == z'. 

We should be greatly embarrassed if the result turned out to be 

different from that due to the direct transformation from 
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X, Y, Z, to X", F"', Z'j but on substituting for x' and y' in terms 

of X and y (using (XI—2)), we do in fact get 

x" = xcos (6 + 9) — jsin (0 + <p). 

This property of the transformation is called the GROUP PROPERTY 

and such transformations are said to constitute a GROUP OF 

TRANSFORMATIONS. 

One last remark: The equations (XI—2) may be expressed in 

another way which has a special appeal of its own: 

x' 4- iy' = (x + iy)e^, 

x’ + iy" — {x' 4- iy’)e'f. 

On multiplying these two together we find the group property 

exhibited in a compact and elegant form, 

+ iy” == (:r + + 

Needless to add, i means V— 1 and e is the familiar number 

2-718.... 

THE LORENTZ TRANSFORMATION 

The Newtonian transformation (XI—4) and its consequence 

(XI—5) are satisfactory—^within fairly wide limits—when 

applied to mechanical phenomena and Newtonian theory and 

observation are in quite excellent agreement. There are only 

minute discrepancies between theory and observation. 

Grave difficulties arise with electromagnetic phenomena. 

While on the one hand experiment indicates that such phenomena 

are represented by equations of the same form in different 

inertial systems 5 on the other hand Maxwell’s equations do 

change their form under the transformation (XI—4). There is 

also the difficulty raised by Michelson’s experiment. Imagine the 

X, F, Z, system of Fig. XI—2 to be fixed in the (presumed) 

stagnant aether and the X', F', Z', system to be fixed in the 

earth. We should expect from (XI—5), for light travelling in 

the common X direction, 

M = c — r, 

if u is the velocity of light in the system X', F', Z' and c that in 

the X, F, Z, system 5 but Michelson found a universal 

c 
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and concluded that t; == Of but as we have seen, this raises 

formidable difficulties. 

The FitzGerald-Lorentz contraction hypothesis seemed to 

Lorentz not only to explain Michelson’s result, but to promise 

a way of meeting the difficulties raised by electromagnetic 

phenomena generally. Why not, one might ask—putting one¬ 

self for a moment in the situation of Lorentz—why not replace 

the first equation of (XI—4) by 

X* — — vt) ? 

where y is the contraction factor which we have already en¬ 

countered (see (X—1) and (X—2)). It will be remembered that 

Poisson’s equation, which governs electrostatics, retains its form 

under the influence of the factor y. To cut a long story short, 

Lorentz replaced the Newtonian (XI—4) by 

x' = y(x - Vi), 

r' =r, 

- Y« - 

(XI-6) 

or, to be strictly accurate, he adopted a set of equations almost 

equivalent to these.* It will be noticed that he was forced to 

change the time equation as well as the X co-ordinate one. He 

called the new time local time. These equations (XI—6) are 

now known as the lorentz transformation and they replace 

the Newtonian one (XI—4). It is easy to see that they lead to 

- vujc^), 

u',= ujvii-vujc^), (XI-7) 

which now replace (XI—5). These last so-called kinematical 

equations were first given by A. Einstein (1905). It will be 

noticed—and this is of the very greatest interest—that, when 

• H. A. Lorentz: Proc, Acad. Sci., Amsterdam, 6, p. 809 (1904). 

Lorentz remarks, in one of his later papers on this subject, that he had 

been anticipated by W. Voigt in a paper published in the Gottinger 

Nachrichtungerij p. 41 (1887). 
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is equal to c (velocity of light in free space, or, if you like, in 

the aether), we get from (XI—7) 

c — i; 

c 

or 

== c. 
in agreement with Michelson’s result. There is another, very 

striking, consequence of (XI—7). Suppose some transparent 

material, glass or water, at rest in the X', F', Z' system of Fig. 

XI—2 and a beam of monochromatic light travelling through it 

in the X' direction. Its velocity relative to X', F', Z', in which 

the transparent material is at rest, is of course equal to c/n, where 

c is the velocity of light in vacuo and n is the refractive index of 

the material. We may then substitute cjn for u\ in the first 

equation (XI—7), so that 

c _ V 

This gives 

n 

1 + V 

nc 

and consequently, on neglecting second order small quantities, 

This of course is Fresnel’s formula. The formal coherence of 

these things is very impressive and compels us to take the Lorentz 

transformation very seriously. The vision of Lorentz was 

undoubtecily obscured by his belief in the reality of the aether, 

which played for him much the same role as did absolute space 

for Newton. He seems to have regarded the transformation as 

expressing an actual distortion in the dimensions of bodies, 

which was brought about somehow by their motion through the 

• In this derivation of the formula, as well as in the earlier one, the 
small Doppler change in n as between X, F, Z and X\ F', Z* has been 
ignored. 
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aether—yet a distortion which was hidden from experimental 

observation—and a more mysterious analogous distortion in the 

temporal intervals between successive events. 

The whole subject appeared in a new light in 1905, when 

Albert Einstein (1879- ) published his great paper on the 

“ Electrodynamics of Moving Bodies.*’^ 

THE SPECIAL THEORY OF RELATIVITY 

Einstein’s investigation was based on two premisses: 

{a) The equations of electrodynamics have the same form in 

all systems in which the equations of mechanics (i.e. Newton’s 

mechanics) hold. 

{b) The velocity of light in empty space has under all circum¬ 

stances the same value (now usually represented by d and a very 

little below 5 X 10^® cm. sec.”^). 

The premiss {a) he called the principle of relativity 

{Prinzip der Relativitdt) and later the principle of special 

relativity or the SPECIAL principle of relativity, to distinguish 

it from a more general form which he successfully developed 

some ten years later. These premisses led to the Lorentz trans¬ 

formation (XI—6) and among other things to the conclusion that 

the mass of a body, as defined by the formula 

force = rate of change of momentum, 

or 

F == d{mv)jdty 

varies with its velocity according to the law 

MASS == Y X (mass of body WHEN AT REST)f 

Einstein also made the great discovery, which in fact is a con¬ 

sequence of the last statement, that the energy of a body is 

proportional to its mass: 

ENERGY = MASS X C*. 

A remarkable feature of his theory is its complete ignoration 

of the aether. It will be remembered that all attempts to observe 

it have failed and Einstein was at that time, I think, a disciple 

of the great Austrian philosopher and physicist, Ernst Mach, who 

sternly condemned the assumption of anything that defied 

♦ Ann. d. Pkpik, 17, p. 891 (1905). 
f This, I believe, was known to Lorentz. 
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observation and a fortiori anything the definition or description 

of which actually implied its unobservability. The aether of 

Lorentz belonged to this latter category. It still eludes observa¬ 

tion, and the fine coherence of physical theory, in which it has 

(now at any rate) no place, may be regarded as evidence that there 

is no such thing. The aether is the Mrs. Harris of physical science. 

The reader will very properly ask what becomes of the electro¬ 

magnetic stresses, momentum and energy which are associated 

with electromagnetic waves, even in empty space, if there is 

no medium, like the aether, to support them? The answer to 

this question was forthcoming much later in the wave mechanics 

which we owe to the genius of Prince Louis de Broglie and Erwin 

Schrodinger. 

MINKOWSKI’S INTERPRETATION OF THE LORENTZ 

TRANSFORMATION 

In the transformations of Newtonian mechanics time is, as we 

have seen, an invariant. If the time interval between two events 

is 20 seconds when we refer it to one system (X, F, Z) it is also 20 

seconds when referred to any other system {X\ Y\ Z'). This is 

obviously not so when we adopt the Lorentz transformation. We 

are reminded by this change in the time of the change in the X 

co-ordinate of a point, which can happen when we introduce a 

new set of axes of co-ordinates, and there is a strong suggestion 

that we are now involved in a wider continuum—a continuum 

embracing the time as well as the three spatial dimensions.* 

This occurred to Hermann Minkowski (1864-1909), who, it may 

be remarked, was one of Einstein’s mathematical teachers in the 

Polytechnicum at Zurich. The fourth sentence of his famous 

address to the former German equivalent of our British Associa¬ 

tion at the Cologne meeting on the 21st September, 1908, runs: 

“Von Stund an sollen Raum fOr sich und Zeit fiir sich vOllig 

zu Schatten herabsinken und nur noch eine Art Union der 

beiden soli Selbststandigkeit bewahren.”| 

• The reader should turn to the initial pages of H. G. Wells’ Time 
Machine, 

f‘*From now on space by itself and time by itself fade away to 

shadows and only a sort of union of the two remains.”—Die SOte 

Fcrsammlung Deutscher Naturforscher und Aertze zu Coin, 
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It is fairly easy to describe Minkowski’s contribution—one of 

the greatest—to relativity. Let us boldly introduce a fourth 

axis—-these are almost his words—distances measured along 

which shall be proportional to the time. I shall call this axis W, 

and distances measured along it, w. Since w is always pro¬ 

portional to the time, 

W = sty 

where s is some constant (evidently with the dimensions of a 

velocity) which we already suspect to have some intimate 

relationship to c, the velocity of light in free space. This fourth 

axis is related to our Euclidean space just as the Z axis in a 

taining the X and Y axes. Consider now a point event, P (which 

simply means a point in our enlarged continuum), occurring at a 

place, i.e. at a spatial point, whose X co-ordinate is x and whose 

T and Z co-ordinates are both zero, but whose JV co-ordinate is 

Wy and let us study a transformation to another system, X', F', 

Z', W' y such that y* ^ y and z! == z, and try to find out what 

emerges when we assume our four-dimensional continuum to have 

a Euclidean character. We adopt the picture indicated in Fig. 

XI—5 and are able to write down at once the following equations 

of transformation: 
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X* ^ X COS 9 ~ Z4> sin 9, 

w* = X sin ^ w cos 9, (XI—8) 

/ ==r? 

which should be compared with (XI—2). 

Consider now the points on the W' axis. They represent 

perhaps a particle whose X', Y* and Z' co-ordinates remain 

constant and equal to zero, but in the other system its X co¬ 

ordinate increases as w increases (and therefore as t increases). 

The perpendicular, /?, represents the X co-ordinate of such a 

particle for a particular value of i.e. at a particular time, t. 

Obviously p grows bigger and bigger as w increases and therefore 

as t increases. In fact the points on the fV' axis represent a par¬ 

ticle at rest in X\ F', Z' and in motion in X, T, Z with a velocity 

xjt. Now 

tan 9 = xjwj 

that is 

tan 9 = xjst = vjs. (XI—9) 

It easily follows that 

cos 9 = (1 + 

and sin 9 = {vJsXl + 

Let us write, for brevity, 

Y = (1 4- 

then 

cos 9 = Y, 

sin 9 = yv/s, (XI—10) 

If now we substitute these expressions for cos 9 and sin 9 

in (XI—8), we find for the first equation 
vw 

x' = yx - Y-? 
s 

or, since w = st^ 

X* = y{x — t^l), 
which has exactly the form of the first equation of the Lorentz 

transformation (XI—6). For the next equation we easily get 
V 

w* = x — y + wy 
s 



NEWTONIAN AND SPECIAL RELATIVITY 171 

which becomes the corresponding Lorentz equation when we 

identify 

5® with — 

so that 

s =z V — 1 X c 
and 

= V — let. 

We need not worry about the seemingly strange apparition of 

V — 1. It is a very useful symbol and plays a great part in very 

matter-of-fact and practical things, e.g. in the theory of alter¬ 

nating electric currents. 

THE THEOREM OF PYTHAGORAS 

The equations (XI—8) imply 

:r2 + ^ ^ ^'2 

and in the special case where xft = c, i.e. the case where the 

particle or photon is travelling with velocity c, we have 

^2 ^ ^2 _ ^2^2 0. 

Consequently 

j:'2 ^/2 ^ ^'2 _ = 0 

and therefore 

± c. 
This means that when anything is travelling with the par¬ 

ticular velocity c (the velocity of light) as referred to the spatial 

co-ordinates X, T, Z it must be travelling with the same velocity 

when referred to X', T', Z', Thus in Minkowski’s four-dimensional 

space-time continuum, Michelson’s experimental result may be 

interpreted as a consequence of the ancient theorem of Pythag¬ 

oras. 

MISCELLANEOUS CONCLUSIONS 

This four-dimensional interpretation of special relativity presents 

both mechanics and electromagnetism in a very beautiful and 

indeed rather simple formj but its complete presentation would 

take us too far afield. Let it suffice to point out how some of our 

difficulties have now vanished. Two events occurring at different 
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places, but at the same time when referred to one system of co¬ 

ordinates, are in general no longer simultaneous when referred 

to another system, as a simple application of the Loreiitz trans¬ 

formation indicates. When we examine this in the light of 

Minkowski’s theory we find nothing puzzling about it. We are 

familiar with the fact that the X co-ordinates of two points may 

be equal in one system and very different in another. This is 

equally true of the TF co-ordinates (that is the time co-ordinates) 

of a point event. The FitzGerald-Lorentz contraction too is no 

longer mysterious for a similar reason. The rod which is said to 

‘‘contract” in fact remains unchanged^ but the difference 

between the co-ordinates of its ends has not the same value in 

different co-ordinate systems. There is in fact no physical 

change in a material when the system of reference is changed; 

hence the negative result of such experiments as those of Ray¬ 

leigh and Brace. 

When we refer a plane light wave (in free space) first to the 

A"", y, Z system and then to the X', F', Z' system, we find its 

directions to be slightly d.ifferent in the two systems. This is 

the phenomenon of aberration. Suppose the light is travelling 

towards a terrestrial observer in a direction at right angles to his 

motion when referred to a reference system fixed relatively to the 

star, it is found by a simple application of the Lorentz trans¬ 

formation to be travelling in a slightly different direction when 

referred to a reference system in which the observer is at rest. 

In fact the sine of the angle between the two directions is equal 

to vjc, where v means the relative velocity of the two systems. 

This angle is not dependent in the slightest degree on the nature 

of the transparent medium filling the observer’s telescope 

(Airv’s experiment). 

We may conclude this chapter by reference to a certain type of 

conundrum which bothers some people. A wheel is set in motion 

of rotation about its axle, which is at rest (i.e. in the particular 

reference system we are using). Now it is argued that the cir¬ 

cumference of the wheel contracts in consequence, but the spokes 

do not change in length since the motion of a spoke is at right 

angles to its length. Therefore, we are told, the ratio of the cir¬ 

cumference to the diameter of the wheel becomes, not only 

different from tt, but depends on the speed of the circumference 

of the wheel. The answer seems to me to be as follows: 
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It is implicit in the special theory of relativity that the spatial 

geometry, as referred to a particular inertial system, is Euclidean. 

A change in dimensions of the kind suggested does not occur at 

all. The FitzGerald-Lorentz change is due to referring the 

material system—rotating wheel or what not—to another system 

of reference. It represents no physical change in the body in 

question. A supplement to this answer is that there is no trans¬ 

formation within the scope of the special theory of relativity 

which enables us to pass from a system in which the wheel is at 

rest to one in which it is rotating. This is one of the limitations 

of the theory. It is imperfect in much the same sense as is 

Newtonian theory^ but not nearly to the same extent. We shall 

get some idea in the next chapter how Einstein generalized and 

greatly improved it, with consequences even more striking than 

those we have been discussing. 



CHAPTER TWELVE 

EINSTEIN^S GENERAL THEORY 

THE PRINCIPLE OF EQUIVALENCE 

The last chapter has revealed, I hope, that the characteristic 
features of relativity, and in fact the principle of relativity itself, 
are already implicit in Newton’s mechanics. The advance to 
the special theory of relativity, with which is associated a wider 
(four-dimensional) continuum, solved many of the problems which 

baffled the nineteenth-century physicists, but, quite apart from 
the strange microphysical quantum phenomena, there were still 
unsolved problems of the macrophysical world. The most 

important of these was that of correlating gravitational pheno¬ 
mena with other physical phenomena and there was the puzzling 
advance of the perihelion of the planet Mercury. Even without 
these problems to worry about it seemed desirable to inquire into 
the consequences that might ensue from a widening of the scope 

of the principle of relativity. 

In order to get some notion of the nature of the gravitational 
problem and some insight into Einstein’s way of approaching 
it—as I have understood it—it is desirable to examine those 
characteristics which distinguish universal gravitation from 
other phenomena. It is not the inverse square law which dis¬ 
tinguishes gravitation. Electrostatic phenomena also conform to 
an inverse square law. Let us examine the gravitational force 
between two bodies whose masses are M and and which are 
small in their linear dimensions compared with the distance, r, 

which separates them—a supposition needed to give precision to 
r. It is convenient to imagine their centre of mass fixed in the 
origin of an inertial system. According to Newton the force on 

either body is expressed by 

Force = G 
MMi 

9 

174 
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G being the constant of gravitation. This is, for example, the 
force exerted on by the other mass, M. Thus 

MMi 
X acceleration of Mj — G-. 

^2 

Therefore 

Acceleration of M, = G —. 

It is clear that, if were replaced by some other mass, Mg, 
the acceleration of this latter would also be equal to GMjr^. 

A remarkable characteristic of gravitation is thus revealed. 
If we place any body whatsoever at a particular point—always 
supposing its linear dimensions to be so small that it has a 
meaning to speak of it was being at a point—whatever its mass 
may be, or, for the matter of that, whatever its chemical com¬ 
position may be^ in every case the gravitational acceleration of 
the body will be the same. Then there is the further fact that 
Newton’s gravitational constant is a universal constant, quite 
independent of the masses and the nature of the materials that 
may be in the neighbourhood of the two gravitating bodies. 

Let us for a moment regard a gravitating particle rather 
naively from the old Newtonian point of view. It is referred to 
an inertial system in which it has a certain acceleration which, 
we appreciate, is identical with that of any other particle which 
we might imagine to replace it. If now we refer the particle to 
another reference system, not an inertial one, but a system 
accelerated with reference to our inertial system and having the 
same acceleration as the gravitating particle, then in this new 
system the particle has no acceleration. It is therefore either at 
rest or moving (at least momentarily) with a constant velocity in 
a straight line. Its motion is like that we associate with Newton’s 
first law. And note that, if our particle were replaced by any 
other particle, this would also move in such a way, or remain at 
rest. In fact the gravitational field has vanished—at least locally 
and temporarily. Similarly, if we contemplate a particle which 
is at rest, or moving in a straight line with a constant velocity, 
relatively to an inertial system, such a particle, if referred to 
another system which is accelerated relatively to the inertial 
one, will appear to be accelerated, and any other particle—not 
accelerated in the inertial system—would have the same accelera- 
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tioH. In fact this change from the inertial to the accelerated 
system has f^iven rise to a field of the same type as a gravitational 
field. It has, as it were, created a gravitational fieldi Reflections 
of this kind, I imagine, led Einstein to another principle which 
he called the PRINCIPLE OF EQUIVALENCE, which lays down that 
gravitational forces are equivalent to, or of the same nature as, 
the forces which may be created artificially, as it were, by 
changing the system of reference. This kind of change, as we 
have just seen, when it annuls the gravitational acceleration of a 
particle, causes it to move, for a short time and while it is com 
fined to a limited spatial region, as if it were following Newton’s 
first law of motion. The suggestion is that perhaps some 
generalization of our relativity theory will represent all gravi¬ 
tating bodies as obeying a law which is a generalization of 
Newton’s first law of motion. 

THE GENERALIZATION OF NEWTON’S FIRST LAW 

A Straight line drawn from a point to a point B—in a 
Euclidean plane, shall we say, for simplicity—is shorter than 
any other line that may be drawn from A to B. If we take two 
points, A and B^ on the surface of a sphere there is, in general, 
provided we keep on the spherical surface, a line from A to B 
which is shorter than any other from A to B, Such lines are 
called GEODESICS. A geodesic in a non-Euclidean space is the 
generalization of, or what corresponds to, a straight line in 
Euclidean or Minkowskian space. The definition given does not 
include all geodesics. It is rather difficult to define a geodesic 
satisfactorily in a simple way and I prefer not to attempt it. 
When a geodesic joins two points, A and B^ its length, from A 
to B^ is said to have a stationary value. It may be a minimum 
or a maximum, but there are other cases.* 

Now Einstein imagined a four-dimensional continuum of space 
and time whose geometry was related to that of Minkowski in a 
way which resembles the relation between the geometry of a 
spherical (or curved) surface and that of a plane surface. This 
more general continuum is called a riemannian CONTINUUM, 

after Bernard Riemann (1826-1866), a great German mathe¬ 
matician and indeed one of the greatest of all mathematicians. 

♦ Vide W. Wilson: Science Progress^ 32, p. 209 (1937), 
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Einstein assumed that the motion of a particle in a gravitational 

field is represented by a geodesic in a Riemannian space-time^._ 

Another way of expressing this is to say that the force’’Acting 

on the particle—this means the appropriate mathematical 

generalization of Newton’s force—vanishes.^ A warning must be 

given here: it has become customary to say that force has been 

eliminated from dynamics, especially of course from relativistic 

dynamics. This is misleading. In the case before us the vanish¬ 

ing thing is something which, although a generalization of 

Newton’s force, is very different from it. Newton’s acceleration 

is time rate of change of velocity, but in the generalization the 

time has been replaced by PROPER TIME, which is very different. 

Newtonian force of course is still a very real fact. 

If we consider a very small portion of a curved surface—a 

spherical surface for example—it is practically plane and we can 

imagine a tangential plane with which it coincides. So too a 

sufficiently small portion of Riemannian space-time coincides 

with a (tangential) Minkowskian space-time and in this region of 

coincidence Newtonian (gravitational) force vanishes—but in 

general not elsewhere. We have such a case when in Newtonian 

physics we change from an inertial system to co-ordinates 

accelerated in such a way that gravitational acceleration vanishes 

locally and temporarily. This is represented by the tangential 

region just described. In it geodesics become straight lines. In 

Einstein’s theory the motion of a gravitating particle is repre¬ 

sented by a geodesic and the associated Newtonian force vanishes 

when this geodesic is a straight line. 

EINSTEIN’S LAW OF GRAVITATION 

Since, according to the theory now being described, the motion 

of a particle in a gravitational field is represented by a space- 

time geodesic, then of course the law of gravitation must be 

sought in those mathematical features of the continuum which 

determine the shapes of geodesics. Our experience, on the other 

hand, indicates that gravitational fields are determined by the 

distribution of masses and so we conclude that this determines 

the geometry of the continuum. It is not possible to describe 

Einstein’s law of gravitation shortly and without rather elaborate 

• Fide W, Wilson: Theoretical Physics, Vol. iii (Methuen). 

M 
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mathematical statements,* but something of its nature may be 

indicated in the following way. The Riemannian vector cor¬ 

responding to the Newtonian md^xldt^ may be written 

($ + .,) (XII-.) 

The subscript i in this equation indicates the component, e.g. 

if 2 — 1, then means what we have usually called x^y if i == 2, 

then X2 means y. Similarly x^ means iv.l^ 

More precisely, (XII—1) corresponds to 

in Minkowski’s space-time. The symbol dsy which takes the 

place of dty is in fact a short interval in the space-time continuum. 

It is called the proper time. Now the above expression vanishes 

in Minkowski’s space-time along a straight line (not otherwise of 

course) and (XII—1) is the corresponding expression, generalized 

for the Riemannian continuum: it vanishes for a geodesic. It 

should be remarked that means the mass of our particle 

reckoned for zero velocity. Now m^d^x^jds^ measures (very 

nearly) the i component of the ordinary Newaonian force which 

is therefore equal to (approximately) 

Since the expression (XII—1) vanishes we have 

^ + 9, = 0. (XII-lA) 
ds^ 

This is the equation of a geodesic in Riemannian space-time. 

9- has its origin in the curvature^ of the continuum. Its very 

^ Fide A. Einstein: Ann. d. Ph^sik, 49, p. 769 (1916); A. Edding¬ 

ton: The Mathematical Theory of Relativity {QixmhYidige) \ W. Wilson: 

Theoretical Physics, Vol. hi (Methuen). 

I The (p in (XII —1) represents what is sometimes expressed in the 

Summation with respect 

to m and n 

Since it is not possible to deal adequately with this here, I have felt it 

best to replace it by as simple a symbol as possible. 

{The word “curvature”, it is perhaps unnecessary to state, is used 

here in a very Pickwickian sense. It means something whose mathe¬ 

matical expression has a similar form to that for the curvature of a 

curved Euclidean surface. 
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complicated mathematical expression will not be given here^ it 

will be found in the works already referred to (Einstein, Edding¬ 

ton and Wilson). It was already known to Riemann and 

Christoffel in the middle of last century. 

To get some idea of the approach to the law of gravitation, i.e. 

the law which determines the 9,- of the geodesics, let us first 

examine the square of a short interval as it appears in Euclidean 

and Minkowskian continua: 

ds^ “ dx^ + dy^ + dz^ (Euclid) 

ds^ — dx^ + dy^ + dz^ + dw^ (Minkowski) 

In eacli case ds^ is an invariant, that is to say, it has the same 

value in any co-ordinate system (theorem of Pythagoras). In 

Riemannian space-time it is expressed as follows: 

ds^ = giidxdx + gi^dxdy + g^^dxdz -f g^^dxdw 

+ g^idydx -f g^^dydy + g^^dydz + g^^dydiu 
+ gzidzdx + and so on to g^^dwdw. 

The ^’s are functions of jc, y, z and w. Our law of gravitation is 

obviously a law which determines the ^’s. Once we know them 

we can find out, if we are clever enough, all about the 9- and 

the geodesics. Now Einstein was led to his law of gravitation in 

the following way. There is, as he was aware, a certain tensor— 

the meaning of this term has already been elucidated—^whose 

vanishing is the necessary and sufficient condition that space- 

time shall be like that of Minkowski (or like that of Euclid). Its 

geodesics are straight lines and there is no gravitation. This 

Riemannian tensor, as it is called, obviously cannot be permitted 

to vanish in Riemannian space—not in general—and Einstein’s 

stroke of genius was the deriving of another tensor from the 

Riemannian one, the vanishing of which gave such values to the 

^11, ^12? that when the 9,- are calculated from them the 

equations (XII—1a) of the geodesics represent the gravitational 

trajectories of particles even better than does the old Newtonian 

law. 

The application of all this to a body (planet) in the field of a 

massive central body (sun) leads to equations of motion which 

differ only very very slightly from those we derive from Newton, 

but the minute differences are highly important. They account 

beautifully for the behaviour of the planet Mercury. The reader 

should refer to the works already cited for the details. Perhaps I 
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may add that the perihelion of a planet’s orbit is the point on it 

which is nearest to the sun. After allowance is made for the per¬ 

turbing influence of the other planets, the perihelion should not 

shift:, according to Newton’s theory^ but Mercury’s perihelion does 

definitely advance about 42" or 45" every hundred years. The 

motion of tlie ])eriholion depends partly on the ellipticity of the 

orbit and Mc^rcury’s orbit is more elliptical than the others. That 

is one of the reasons why we never hear of the advance of, say, 

the perihelion of Mars. 

Another consequence of Einstein’s theory was in the nature of 

a prediction. If instead of an ordinary particle we think of a 

photon, which is a “particle” travelling with the unique 

velocity, c, starting out from some distant star and passing near 

the sun, then we expect it to be deviated by the gravitational 

field of the sun whether it be subject to Newton’s law or to 

Einstein’s. In the latter case the calculated deviation (refraction) 

amounts to T75 seconds of an arc and in the Newtonian case to 

half as much. 

Observations carried out on May 29th, 1919, by two British 

solar eclipse expeditions were decisively in favour of Einstein’s 

theory. The observers at Sobral in Brazil found a deviation of 

T98 seconds and those at Principe off the west coast of Africa 

found 1'61 seconds. Another of Einstein’s predictions has also 

stood the test of observation: the so-called red shift of the spectral 

lines (spectral lines displaced towards the red end of the spec¬ 

trum) of the light from a star, or more precisely of the light from 

a place where the gravitational potential is lower than that where 

the observer is situated. The expected shift was very small and 

the earlier attempts to observe it were inconclusive. The actual 

formula is 

X, - X, = GMX/cV, 

where is the wave-length of some definite spectral line in the 

light emitted from the star and X, is the wave-length of the same 

line in light emitted near to observer. M is the mass of the star, 

G the constant of gravitation, r the radius of the star, and X is 

the mean of the two wave-lengths. Happily about this time the 

dark companions of Sirius and Procyon were discovered. They 

are distinguished by their exceedingly small radii^ r, while they 

have masses, M, comparable with those of other stars, which 
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means that their material is packed into very small space—about 
a ton or so in a cubic inch. The observations on the light from 

these stars leave no doubt about the reality of the shift and the 
correctness of Einstein’s formula. 

GENERAL RELATIVITY AND ELECTROMAGNETIC 

PHENOMENA 

Gravitational phenomena are an expression of the geometrical 
structure of the Riemannlan space-time continuum. Not so 

electromagnetic phenomena. These indeed find a place quite 

comfortably in the continuum; but it merely provides them, as 
it were, with a home. Unlike gravitational ])henomena, they are 
not in the least bit a necessary consequence of the general theory 

of relativity. Naturally attempts have been made to widen 
relativity theory in such a way that it will necessitate electro¬ 
magnetic phenomena as a consequence of the metrical cliaracter 

of the continuum and thus link them up with gravitational 
phenomena. Such unifying theories have been developed by 
Einstein himself, by the mathematician Hermann Woyl and by 

Kaluza. It is the last of these which, in my view, proceeds along 

the right lines. It has the great merit of uniting all the con¬ 
servation principles, so that the conservation of momentum, of 

mass and energy and of electric charge are just different aspects of 
the conservation of an extended momentum in a five-dimensioiial 
continuum (see page 247). It is not possible to go into it in 
detail here, but it may be said that the charge on a charged 

particle is proportional to its component of momentum along the 

new fifth axis. This gives, as it were, a reason for conservation 
of charge. 

We shall meet with relativity again in studying cosmological 

speculations and perhaps in some aspects of quantum mechanics.'*'' 

♦II. Weyl: Sitzu?igsbenchte, p. 465 (Berlin, 1918). Kaluza: “ Zum 
Unitatsprobleni der Physik,” Preus, Akad. dcr fflssenschaftcn, 54, p. 
966, (1921). See also A. Eddington’s Mathematical Theory' of 

Relativity\ W. Wilson: Proc. Roy. Soc. A., 102, p. 478 (1922), and 
Proc. Roy'. Soc. A., 118, p. 441 (1928); O. Klein: Zciis.fiir Physik, 46, 
p. 188 (1928). 



CHAPTER THIRTEEN 

RADIANT HEAT AND THE EMERGENCE 

OF THE QUANTUM THEORY 

BLACK BODY RADIATION 

Heat travels from one place to another in three quite different 
ways, as the text-books tell us. Maxwell’s definitions of them are 
as follows: 

(i) ‘'Convection is the motion of the hot body itself carrying 

its heat with it.” 

(ii) “Conduction is the flow of heat through an unequally 

heated body from places of higher to places of lower tempera¬ 

ture.” 

(iii) “In radiation, the hotter body loses heat, and the colder 
body receives heat by means of a process occurring in some inter¬ 
vening medium which does not itself thereby become hot.”’*^ 

Dr. Barton quotes these definitions in the very admirable text¬ 
book to which I have already occasionally referred and remarks, 
in speaking of the last one, that it is “a splendid example of the 
caution and power to suspend judgment in face of insufficient 
evidence which are essential to the scientific temper”. This kind 
of caution was held in very high esteem throughout the nine¬ 
teenth century. It was the most prominent element in the 
scientific ethic of the period. How often have examples been 
given us, such as Darwin’s long-continued patient accumulation 
of evidence before the cautious spirit permitted him to draw his 
great conclusions? Possibly this kind of scientific temper was 
inherited from the exasperation of Galileo and Newton and 
others of their time, when the wildest hypotheses and fancies 
were freely adopted about all sorts of phenomena. Perhaps this 
was the origin of Newton’s hypotheses non fingo and the almost 
religious caution of a later time. But important as it is to avoid 
error, it is even more important to run some risk for the prospect 
of a great truth. It is difficult to see how Young, Fresnel or 

• Clerk Maxwell: Theory of Heat (Longmans, Green & Co.). 
182 
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Maxwell himself could possibly have made their really great 

discoveries about light and electromagnetism without assuming 

an aether, the existence of which is not only doubtful, but now 

known to be incompatible with a host of observational facts. It 

is now, for example, quite certain that heat, or caloric, is not con¬ 

served, but the assumption of its conservation nevertheless led 

Carnot to one of the greatest of all physical discoveries. The 

scientific ethic of to-day iuvsists rather on the rejection of things 

which observation makes untenable than on the too severe 

avoidance of speculation. 

Radiation of heat, as Maxwell knew, is just the same process 

as the transference of energy in the form of light waves. Experi¬ 

ment established long ago that radiant heat is reflected and 

refracted according to the same laws as light. In fact it may take 

the form of visible light and of radiation outside both limits of 

the visible spectrum5 though it is much more obvious, at those 

temperatures reached in a terrestrial laboratory, beyond the red 

end of the spectrum. Moreover, observations made during total 

solar eclipses have shown that the radiant heat reaching us from 

the sun travels with the speed of light. It is simply light and 

electromagnetic radiation, which, in so far as it may be called 

^^heat’’, is bound up with temperature equilibrium. 

In the earlier investigations of heat radiation the centre of 

interest was the heat-radiating and absorbing properties of 

surfaces and all students of physics will remember that old 

experiment of Ritchie* which demonstrated in a simple way the 

proportionality of the emitting and absorbing powers of a sur¬ 

face. Kirchhoff (1859) was able to show that this was a con¬ 

sequence of thermodynamical principles and that it must be true, 

in the case of any surface, not only for the totality of the radiant 

heat emitted and absorbed by it, but also in detail for any range of 

wave-lengths, however narrow. Kirchhoff’s law includes even 

more than this. Tourmaline, for example, has the peculiarity 

that it strongly absorbs light, or radiation, which is polarized in 

a certain way and it emits correspondingly copiously light which 

is polarized in just this way. 

We get some insight into the emission, absorption and reflec¬ 

tion of radiation in the following way. Let us give our attention 

to a closed surface, abc in Fig. XIII—1, which is maintained at a 

• Ritchie: Bogg. Ann,y 28 (1833). 
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uniform temperature, T. In the case the space within is filled 

with any sort of material. Eventually temperature equilibrium 

gets established throughout the interior and thereafter no further 

temperature change can occur (second law of thermodynamics) 

so long as the temperature of the enclosing surface is maintained 

constant. Under tliese circumstances no heat passes through any 

surface such as de in the interior—or, if it does, it passes in both 

directions at the same rate. Now consider the case B of an 

evacuated enclosure, fghy within abc^ in which nothing of a 

material kind is left. Imagine a surface, de^ which, while within 

the vacuous enclosure, is quite close to its wall. The heat 

energy passing through it is now radiant heat (like light waves) 

and it is bound to pass through de at the same rate in both 

directions. The amount of radiant heat passing through any 

unit area per second has the same value everywhere in the 

vacuous enclosure. Let us call it /, the intensity of the radia¬ 

tion. Then 1 units of radiant energy reach the unit area of the 

wall per second and also leave the unit area per second. The 

part of / which on reaching the wall is absorbed or passes into 

it, never to return, we may represent by a/. The remainder, r/, 

is reflected. Therefore 

a/+r/=/, 

or 

a -f r = 1. 

The fractions a and r are respectively the absorbing and 

REFLECTING POWER of the Surface. 

Of the radiation leaving the unit area per second some 



RADIANT HEAT 185 

portion, e (emitting power), is actually emitted, the rest, r/, 

is reflected or scattered. Therefore 

e + r/ == / 

and obviously 

e = a/ 

or 

f = /. 
a 

A BLACK SURFACE is, by definition, a hypothetical surface which 

absorbs ALL the radiation falling on it, so that, for such a surface, 

a = 1. Clearly, the emitting power of a black surface is equal 

to /. If we represent the emitting power of a black surface by 

Ej tlien 

or, in words, the ratio of the emitting power of any surface to its 

absorbing power is the same for all surfaces (Kirchlioff) at a 

given temperature and is equal to the emitting power of a black 

surface. Kirchhoff also established a corresponding law for any 

narrow range of wave-lengths between X and \ d\ If we 

represent the intensity of the radiation in such a narrow range by 

IxclT, 

and the associated absorbing, reflecting and emitting powers by 

axj cind ex (and jEx for a black surface) we have 

— = 
ax 

This is included in Kirchhoff^s law.* 

Every part of the surface bounding an evacuated enclosure 

simulates a black surface, since the same amount of radiation 

leaves it in the unit time as would leave it if it were black—the 

only difference is that it is usually only partly actually emitted, 

the rest being reflected. There would in fact be no difference in 

the state of affairs within the enclosure if the containing surface 

were replaced by a black one. In fact the character of the radia- 

* G. Kirchhoff: Pogg. Ann. 109, p. 275 (1860). 
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tion inside a vacuous enclosure is independent of the nature of 

the enclosing wall. 

The discovery and appreciation of these things led to a gradual 

change in the attitude of physicists. Their interest naturally 

shifted from the study of the properties of surfaces^ e.g. their 

emitting, absorbing or reflecting powers, to the study of the 

character of the radiation itself^ which they called BLACK BODY 

RADIATION and later full radiation. Undoubtedly the best 

name for it is the old one, radiant heat, since it is energy 

associated with statistical equilibrium, i.e. temperature equi¬ 

librium, and heat is just that sort of energy. 

THE STEFAN-BOLTZMANN I.AW 

The Viennese physicist, Stefan (1851-1897), noticed in 1879 

that some measurements of the rate of loss of heat from a hot 

platinum wire, made by John Tyndall (1820-1893), suggested 

that loss by radiation was proportional to the fourth power of the 

K temperature of the wire. Guided by this and by the Max¬ 

wellian pressure of radiation (equal inside the enclosure to one- 

third of the energy density) Boltzmann was able to prove thermo¬ 

dynamically that the energy density within a vacuous enclosure 

is proportional to the fourth power of the K temperature of the 

enclosing wall. His proof is very simple. It is simply an applica¬ 

tion of Clapeyron’s formula (II—1b). Instead of L we have 

u 
- Vi) + -(^a - fi), 

0 

for, since u is the energy per unit volume in the enclosure, the 

quantity of heat u{v^ — vf) has to be supplied to fill up the 

volume increment {v^ — t^i) and since the pressure is equal to 

w/3 the amount of work done by the radiation pressure is 

%a - Vi), 
3 

and the corresponding quantity of heat has to be supplied at 

constant temperature. Therefore 

^ dPf . 
(i^a - fi) = r — (i^a - Vi), 

o di 

since, as we have seen, the factor C of Clapeyron’s formula is 
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equal to the Kelvin work scale temperature. When we cancel 

out (z^a ~ ^i) replace p by z//5, we get 

du 
== T—. 

dT 
Thus it follows that 

u^aT\ (XIII—1) 

where is a constant, called Stefan’s constant. This law has 

been confirmed experimentally and the constant a turns out to 

be near to 

7-67 X 10-15 

in our usual units (ergs x T~^jc,c.), 

The method of experiment consists in making an opening in 

the enclosure, very small in comparison with its dimensions, so 

that the equilibrium in the enclosure may not be appreciably 

upset and so that the emerging radiation shall retain the charac¬ 

ter of black body radiation. Such a minute aperture obviously 

simulates a black surface, both as regards emission and absorp¬ 

tion. The rate at which energy is emitted per unit area of the 

aperture (unit area of a black surface) can easily be shown to be 

where ct is equal to ac/4, and therefore if a = 7*67 X IQ-i^^ 

7«fi7 V ^ 
a = - X 10-15+10 = 5-75 X 10-5 

4 

in our units. In the experimental measurement the radiation 

enters another vacuous enclosure containing a bolometer or other 

suitable device at room temperature for measuring the radiant 

heat received. Naturally the net amount of heat measured by 

the bolometer or other device is proportional to {T^ ~~ 

where Tq is the temperature of the bolometer enclosure and T 

that of the received radiation (emitting enclosure). One of the 

most interesting of the measuring devices is Callendar’s radio- 

BALANCE.^ The name stefan’s constant is usually given to a 

in England. 

• Fide Starling’s Electricity and Magnetism for a description of the 
RADIO BALANCE. Coblentz: Diet, of Applied Physics^ 4, p. 541 (Mac¬ 
millan, 1925). Hoare: Phil. Mag., 6, p. 828 (1928); 15, p. 586 
(1952). 
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DISTRIBUTION OF ENERGY IN THE SPECTRUM OF 

BLACK BODY RADIATION 

The way in which the radiant energy is distributed among 

different wave-lengths began to be investigated in the eighties. 

Perhaps one should mention the American Langley (185^1^1905) 

first, although, so far as I know, he did not actually take obser¬ 

vations of black body radiation5 but he did, devise the most 

frequently used measuring instrument, the BOLOMETER.♦ This 

is essentially a thin metallic strip (iron in Langley’s own experi¬ 

ments). It is raised in temperature when radiant heat falls on it 

and the consequent rise in its electrical resistance can be used 

to compute the heat received. Langley employed it to investigate 

the distribution of energy in the sun’s spectrum, an experimental 

problem rather similar to tlie corresponding black body one. 

Langley’s curves are indeed rather like those for black body 

radiation. In fact the sun’s radiation does approximate, if rather 

roughly, to black body radiation. In consequence of this it is easy 

to make an approximate estimate of the temperature of the sun’s 

surface. Experimental measurements give us an estimate of the 

amount of energy leaving the unit area of the sun’s surface per 

second and the known value of a enables T to be computed. It is 

in the neighbourhood of 6000°A. Wien’s displacement law, 

which we shall study later, also gives us the solar temperature in 

agreement, roughly, with what is given by Stefan’s law. 

The experiments of Lummer and Pringsheim, Kurlbaum and 

Rubens at the end of the nineties yielded fairly accurate informa¬ 

tion about the distribution of the energy among the wave¬ 

lengths for various temperatures. When this is represented 

graphically it has the appearance shown in Fig. XIII—2. The 

full line shows the distribution corresponding to the particular 

temperature, T. The ordinates, E\, are so defined that 

means the energy per unit volume, in the vacuous enclosure, 

which is associated with wave-lengths between X and X -f c?X, so 

that the shaded area in the figure is equal to the energy per unit 

volume associated with the wave-lengths between X^ and Xg. 

For a particular temperature there is a maximum at a wave¬ 

length which may be represented by X,„. The higher the 

temperature the more the maximum shifts to the left (to shorter 

♦ Langley: Proc. Amer. Acad. Arts and Sciences^ 16, p. 342 (1881). 
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wave-lengths) and it is characteristic of these maxima that, for 

any temperature, 

(Wave-length) X (Temperature) — a constant, (XIII—2) 

the value of the constant being near to 0*288 (in terms of centi¬ 

metres and Kelvin work scale temperature). This is known as 

Wien’s displacement law and is part of more general theor¬ 

etical deductions of W. Wien which we shall presently study. 

It may be pointed out that the total area under the curve of 

Fig. XIII—2 must be equal to aT^ since it represents the total 

energy (over all wave-lengths) per unit volume. 

The experimental investigation presented a straightforward 

and soluble, if not awfully easy, problem. 

Really great interest began to be associated with black body 

radiation when the reason for its peculiar constitution began to 

be sought. 

THE PROBLEM 

When the earliest efforts were made to solve the distribution 

problem, very likely nobody foresaw, not even Planck himself, 

how their consequences would reverberate through the world of 

physical science. They were destined to reveal an extraordinary 

and quite unsuspected feature of the physical world, with which 
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Nevs-i:onian mechanical principles were quite unable to cope. 

W. Wien (1864-1928) arrived theoretically at the formula 

= ~/(0, (XIII-3) 

in which ^ means the product XT', and / was a then unknown 

function. This leads to the displacement law already mentioned 

which has been amply confirmed experimentally.* Somewhat 

later Wien deduced an expression for the function,/', namely, 

- 

't (XIII—4) 

Wien’s deduction of this formula was faulty, but nevertheless 

it represented a most valuable contribution to the solution of 

the problem, for two reasons: 

(i) It does in fact, as Lummer and Pringsheim showed, J fit the 

observations exceedingly well when 5? i-c. XT, is sufficiently 

small. 

(ii) It helped in some degree to guide Planck to what, we can 

scarcely doubt, is the correct form of the distribution law. 

Near the end of the century, Lord Rayleigh (1842-1919) 

deduced the following law from Newtonian dynamical prin¬ 

ciples :§ 

Tx = 87rAT/X^ (XIII—5) 

According to this, Wien’s function, which I have represented 

by f in (XIII—5) and (XIII—4), should be expressed (in our 

present-day symbolism) by 

f = SttA XT, 

or 

/= SttA?. 

• W. Wien: Sitzungsherichte d. Akad. d. fVissenschaftcn^ Berlin, 9th 
Feb., p. 55 (1895), IVied. Annalen^ 52, p. 152 (1894). F. Paschcn: 
Sitzungsherichte d. Akad. d, IVissenschaften^ Berlin, pp. 405, 959 
(1899), Ann. d. Phy^sik, 6, p. 657 (1901). O. Lummer and E. Prings¬ 
heim, V^erh. der Deutschen Phys. GeselLy 1, pp. 25, 215 (1899), Ann. 

d. Phys.y 6, p. 192 (1901). 
f W. Wien; Wied. Ann., 58, p. 662 (1896). In expressing his formula 

he used the letters Cj and Cj instead of my A and B and did not employ 
my device of representing XT by the single symbol 

J O. Lummer and E. Pringsheim: Verhand. d. Deutschen Phys. 

Gesell, 1, pp. 25, 215 (1899), Ann. d. Phys., 6, p. 192 (1901). 
§ Lord Rayleigh: Phil. Mag., 49, p. 539 (1900). 
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Max Planck (1858-1947), who solved the radiation problem, 

apparently did not become aware of Lord Rayleigh’s contribution 

till somewhat later, but he became acquainted with the experi¬ 

mental results of Rubens and Kurlbaum while their work, I 

believe, was still in progress, and these indicated that E\ was 

proportional to Tj\^ in the region of sufficiently large values of 

XT'. Rayleigh did not express his law in quite the same way as 

it is given in (XIII—5). Indeed it was Planck who first introduced 

the constant k (boltzmann’s constant) into radiation and 

statistical theory, though of course it is implicit in Boltzmann’s 

work. Planck inquired after a single formula which would, as it 

were, unite the extremes (XIII—4) and (XIII—5) and eventually 

(before he actually succeeded in deducing it from fundamental 

principles) found it in the form 

E - ^ 
X x® ‘ 

e — 1 

(XIII—6) 

This is obviously indistinguishable from Wien’s formula 

(XIII—4) when $ or X J* is very small, while it approximates to 

Rayleigh’s formula (XIII—5) when XT’ is large.*"* 

In this latter case Planck’s formula becomes in fact 

E 
T 

which, of course, is Rayleigh’s formula. 

Planck’s problem was to deduce the formula (XIII—6) from 

fundamental principles, if possible, or at least a formula which 

differed from it sufficiently little, since the experimental results 

were in excellent accord with it. 

Before describing Planck’s attack on the problem, it will be 

illuminating to give a little attention to the two extremes; 

(i) XT very small, i.e. v/T very large^ and 

(ii) X T very large^ 

and we bear in mind that the old principles do very well with 

large things. Now the exponential in Wien’s formula (XIII—4) 

—this formula fits the former case (i) quite well—suggests the 

exponential in Maxwell’s law of the distribution of velocities 

among the molecules of a gas, or that in the more general 

♦ When XT (in XIII —6) is large J5/XT is small, and when x is small 
^ — 1 approximates to x. 
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(V—1), namely distribution law of statistical mechanics 
—Energy —Energy 

e & ore , 

and we are tempted to follow, rather experimentally and 

tentatively, the suggestion that we are dealing with a strange 

sort of gas. Other phenomena, notably those of photo-electricity, 

tend to confirm this suggestion and such a view of black body 

radiation was taken seriously by Louis de Broglie. The molecules 

of this '‘gas’* are indeed now well recognized and are called 

PHOTONS. We may be sure that some rather drastic interference 

with old-established principles is necessary, since it is universally 

agreed that Rayleigh’s deduction of his formula is sound—only 

the Newtonian premisses which he used being inadequate. So 

we proceed to identify 

Energy of photon ^ B 
-with-. 

kT XT 
Therefore 

Bk 
Energy of photon =-^ 

X 

or, since it is more convenient to use frequencies, v, rather than 

wave-lengths, X, we write 

X == c/v 

and so obtain Bk 
Energy of photon = — X v. (XIII—7) 

Planck came on the constant Bkjc from a different direction 

and called it A, so we may write 

Energy of photon = hv. (XIII—7a) 

We might indeed build up a “gas” theory and find a “Max¬ 

wellian” law giving an energy distribution agreeing with Wien’s 

law. 

Turning to the other extreme in which we assume XT very 

large, or perhaps one ought to say, in which we assume that the 

large-scale methods will apply. It can be shown that the number 

of vibrations between v and v -b in the unit volume is 

87rv^fi?v/c^ and the statistical methods of Chapter V lead to kT 

as the average value of the energy of one vibration, so we get 

j Sttv^ATc^v 

for the energy per unit volume between the frequencies v and 
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V + This is Rayleigh’s formula in another form. Thus 

macroscopic methods applied in different ways, (i) to a photon 

gas and (ii) to waves or vibrations^ lead to formulae (Wien and 

Rayleigh) which represent the extreme limits of the distribution 

curve satisfactorily. 

The complete solution of the problem can be achieved in two 

ways; (i) by applying an improved form of statistics to a photon 

gas (Bose and Einstein), or (ii) by applying somewhat modified 

statistics to the wave view of radiation. The problem was first 

solved by Planck* who used a method equivalent to (ii), since in 

the year 1900 a corpuscular or quasi corpuscular constitution of 

black body radiation would have appeared to be just midsummer 

madness. Indeed Planck’s theory was regarded by many, or 

most, physicists as something that could not be taken seriously— 

in its earlier years at any rate. Planck’s innovation was to assume 

that the energy of any simple harmonic vibration is expressed by 

{Whole number) X /zv, 

where h means the same constant as it has already represented 

in (XIII—7a).*[' In consequence of this assumption the smallest 

quantity of energy that could be emitted, or absorbed, by the 

systems he contemplated is Av. This quantity is sometimes called 

a QUANTUM OF ENERGY and h itself Planck called the quantum 

OF ACTION. He discovered, or appreciated, later that his radiation 

formula, which he wrote in the equivalent forms 

=—i-j;.-, 
ekT _ 1 

(XIII—8) 

and 

E\d\ = 
Srrch d'K 

n 6 ch 

ekXT==l 

♦Max Planck; “Zvir Theorie des Gesetzes der Energieverteilung im 
Normalspektrum,” Ferh. d, Deutschen Phys. Gesellschajt, 2, p. 257 
(1900). “Ueber das Gesetz der Energieverteilung im Normal¬ 
spektrum,” Ann. der Phys., 4, p. 553 (1901). 

f Planck argued, correctly, that, since the character of the radiation 
in the vacuous enclosure is quite independent of the nature of the 
material constituting the enclosing wall, he was at liberty to imagine it 
constituted of simple harmonic oscillators which were the simplest 
absorbing and emitting systems he could think of. This device has 
been widely misunderstood to mean that he assumed that all materials 
do in fact contain such oscillators. 

N 
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could be derived by laying down that every small element 

dp X dq of Fig. V—1, instead of having the limit zero, must have 

the definite fixed value }u In fact, according to classical Newton¬ 

ian theory the energy of a simple harmonic vibration is expressed 

by 
Energy = ^rea X v, 

in which the area referred to is that of the closed curve (ellipse) 

which we construct when we plot the momentum, against 

the displacement, q. Now according to Planck’s new theory the 

energy of such a vibration is expressed by 

Energy — {Whole number) X Av 

and on comparing the two expressions we see that the area in 

question is equal to a 

{Whole number) X h. 

The classical statistical method developed by Maxw^ell, 

Boltzmann and Willard Gibbs takes into account every possible 

distribution of the systems (or molecules) over the q diagram 

of Fig. V—1 in the process of finding the maximum value of the 

logaritlim of the probability of the distributions, and such cases 

as the following are distinguished from one another: 

{a) the system a is in the dp X dq element number 1 and the 

system b is in the element number 25 
{b) the system a is in the dp X dq element number 2 and the 

system b is in the element number 1 ^ 

but in the statistics of Bose and Einstein,* especially when it is 

applied to photons, which cannot possibly be distinguished from 

one another (when associated with the same value of v) as macro¬ 

scopic individuals, or even the molecules of an ordinary gas can 

be, such distinctions are not made. This new Bose-Einstein 

statistics leads to Planck’s law (XIII—8). 

Obviously the number of “molecules” or photons in a photon 

gas filling a given volume at a given temperature is quite 

indeterminate and practically infinite. Einstein appears to have 

•Bose: Zeits. fur Physikj 26, p. 178 (1924); Einstein: Prcuss. Akad. 

d. Wiss,, Berlin, 22, p. 261 (1924). See also de Broglie: J. de Physique 

et le Radium, 5, p. 422 (1922), for a derivation of Wien’s law by the 
application of the methods of statistical mechanics to a photon gas. 
The conception of black body radiation as a photon gas is one of de 
Broglie’s great contributions to radiation and quantum theory. 
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been the first to apply the theory to an ordinary” gas, i.e. a 

gas with a precise finite number of molecules in a given mass of 

the gas. 

THE REALIZATION OF KELVIN’S WORK SCALE OF 

TEMPERATURE 

We have already learned that Kelvin’s scale is identical with 

that determined by the product 

{Pressure) X {Volume) 

of a fixed quantity of an ideal gas. This product therefore gives 

the K temperature very nearly when actual gases, such as 

hydrogen, are used and it is possible to make the small correc¬ 

tions needed to approach indefinitely close to the ideal K tem¬ 

perature. It is imposvsible, however, to use gas thermometers at 

very high temperatures, but we have in full radiation a means of 

measuring, on Kelvin’s scale, temperatures to which no upper 

limit need be assigned. We have at our disposal the law of 

Stefan and Boltzmann, the displacement law of Wien, or indeed 

Planck’s law, which includes them. Various forms of pyrometer, 

such as the disappearing filament pyrometer and Fdry’s pyro¬ 

meter, etc., are in use for measuring the temperatures of 

furnaces by means of the radiation they emit. They are mostly 

calibrated by using a number of known temperatures—known 

by the use of the properties of black body radiation. 

LOSCHMIDT’S number and THE ELEMENTARY 

IONIC CHARGE 

At the end of the century, when Planck was completing the 

solution of the great problem of radiant heat, the best estimates 

of Loschmidt’s number, though of the correct order of magnitude, 

still varied between rather wide limits, roughly between 

4 X 10^® and 8 X 10®®, and similarly the experimental methods 

of determining the elementary ionic charge directly were rather 

rough and gave values between 5 x 10““^® and 6 x 
electrostatic units. One of Planck’s greatest triumphs was to 

produce estimates of these numbers which differ extraordinarily 

little from what we now know to be very near the correct values. 
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He was able to compute the values of h and k from the data 

furnivshed by Lummer and Pringsheim and others. The former 

turned out to be about 

6*54 X IQ-^^^ergs X sec. 

and the latter 

1*54 X 10“^® ergs per 1°C. 

The constant k is now believed to be near 

1*572 X 10"i® ergs per TC. 

while 

h — 6*6 X 10~2’ergs X sec. 

We have seen how a knowledge of the value of k enables 

Loschmidt’s number to be found. We simply divide the gas 

constant, for a gramme-molecule (mole) by k. So Planck 

divided 

8*5 X 10’ 

by 
1- 34 X 10-1* 

and thus found for it 

6*2 X 1023. 

He used this number to find the value of the ionic charge. 

When a gramme of hydrogen is liberated in electrolysis (of 

dilute sulphuric acid, for example), experiment shows that a 

quantity of electricity equal to 

2- 896 X 101® 

in ordinary electrostatic units is carried to the cathode by the 

hydrogen ions. Now the number of hydrogen atoms in a gramme 

equivalent of hydrogen is identical with Loschmidt’s number, so 

Planck obtained the charge on a single hydrogen atom (ion) by 

dividing 

2*896 X 101® by 6*2 X lO^s, 

thus obtaining 

4*67 X 10~i®E.S. units. 

It is now believed to be very near to 

4*803 X 10~i®E.S. units. 

The closeness of Planck’s approach to it is even more impressive 

than appears from the actual figures. His error is due solely to the 

slight inaccuracy of the experimental data at his disposal. 
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THE LAW OF DULONG AND PETIT AND DEBYE’S 

THEORY 

The product of the specific heat (at constant volume) of an 

element and its atomic weight is called its ATOMIC HEAT. Dulong 

and Petit found the atomic heats of most solid elements to have 

the same value—roughly about 6 in terms of our ordinary small 

calorie. Thus copper has an atomic weight of 65 and its specific 

heat is near to 0*095. The law is approximately true for elements 

whose atomic weights are not too small. It fails for elements of 

low atomic weight, e.g. for carbon^ but in these cases it approxi¬ 

mates to the truth at high temperatures, as experiments on 

graphite at circa 1000°C. indicate. Classical methods account 

quite simply for this law. We may regard the heat in a solid 

element as the sum of the energies of its individual atoms and 

each of these may be regarded as in simple harmonic vibration 

about a position of equilibrium. In temperature equilibrium the 

average kinetic energy of an atom, reckoned per degree of free¬ 

dom, is A J’/2 (principle of equipartition of energy). In a simple 

harmonic vibration the average potential energy is equal to the 

average kinetic energy and therefore the average energy of an 

atom must be equal to JkT per degree of freedom. 

Each atom has three degrees of freedom and so the total 

average energy of an atom must be equal to 

5A:r. 
The number of atoms in a gramme-atom is identical with 

Loschmidt’s number, which we may represent by L. We see 

then that the heat energy in a gramme-atom is equal to 

5LkT, 

Now the product Lk is equal to the gas constant for a gramme- 

molecule. Therefore 

Lk == 8*5 X 10’ ergs per 1°C. 

Thus the heat in a gramme-atom of any solid element is equal to 

5 X 8*5 X 10’ X Tergs. 

This gives an atomic heat—for any solid element—equal to 

24*9 X 10’ ergs per degree. 

To express it in calories per degree we divide by Joule’s equiva¬ 

lent, 4*19 X 10’, and thus get very nearly 6. 
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After a tentative application of the quantum theory to the 

problem by Einstein,'*^ P. Debye (1884- ) succeeded in a 

rather wonderful way in accounting for the atomic heats of solid 

elements and their dependence on the temperature.| His theory 

is like Planck’s theory of cavity radiation, but in addition to the 

electromagnetic waves and vibrations which carry the energy of 

the radiant heat in the exhausted cavity, Debye considers the 

energy associated with elastic waves in the material. Indeed he 

was able to neglect the energy associated with electromagnetic 

waves altogether because of the small velocity of elastic waves 

as compared with that of electromagni^tic waves. Moreover there 

are two kinds of elastic waves: longitudinal waves (like sound 

waves) and transverse waves. It will be remembered that in 

the cavity radiation there were 

STTv^dvjc^ 

vibrations per unit volume with frequencies between v and 

V + ^v, and when we look at Planck’s law in the form (XIII—8) 

we see that the average energy of a vibration is 
hv 

h^liekT - 1). 

Debye used these formulae for his transverse elastic vibrations, 

with of course the dilTerence that he replaced the velocity c by 

that of transverse elastic vibrations, namely 

Vt == 

n being the rigidity of the material and p its density. In addition 

to this he included longitudinal vibrations, replacing the velocity 

c by that of the longitudinal waves, namely 

k here meaning the bulk modulus. In Debye’s theory therefore 

the expression corresponding to Planck’s (XIII—8) is 

/Stt/zv® 47rAv^\ c?v 

vy} ) hUL 
^ ' ekT ^ \ 

(XIII—9) 

The ^7T in the second term corresponds to the fact that there 

are only half as many longitudinal vibrations as transverse ones. 

To get the total energy in the evacuated cavity Planck summed 

up (integrated) the energy associated with all frequencies from 

♦Einstein: Ann, der Phys, 54, pp. 170, 590 (1911). 
t Debye: Ann. der Phys. 39, p. 789 (1912). 
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0 to 00. In Debye’s case however there must be an upper limit 

of frequency and this he chose so as to make his theory conform 

to the classical one at high temperatures (strictly at T — oo). 

The resulting expression is rather complicated.* It enables 

the atomic heat of a solid element, e.g. copper, to be calculated 

from the values of its elastic moduli, since Vx and vx are deter¬ 

mined by them. 

Debye’s theory has been amplified by Max Born and Karman, 

who took into account the natiii^l vibrations of the atoms in the 

crystal lattices.*[• 

At low temperatures Debye’s expression for the heat energy in 

a solid element simplifies to the product of a constant and the 

fourth power of the temperature. In this respect it resembles 

black body radiation and the atomic heat (so long as the tem¬ 

perature is low enough) is proportional to the cube of the absolute 

temperature. This is debye’s law. 

NERNST’S HEAT THEOREM 

In the case of a substance which obeys Debye’s law the 

increment of its entropy (at constant volume), when its tem¬ 

perature is raised from 7\ to Tg, is proportional to — 7\^, 

provided 7\ and Tg are low temperatures. The increment tends 

to zero as approaches zero. The condition of constant volume 

has been imposed because Debye’s theory is a theory of atomic 

heats at constant volume. The distinguished physical chemist 

Walther Nernst (186*1^1941) assumed this result to be true for 

all substances^ and the form he gave it may be expressed by 

saying that the increment of the free energy of a system is equal 

to the increment of its internal energy, in the neighbourhood of 

the absolute zero. He restricts its application to condensed systems 

(this is virtually equivalent to the condition already mentioned— 

constant volume) and to chemically homogeneous systems.§ 

• Vide W, Wilson: Theoretical Physics^ Vol. iii, p. 154 (Methuen). 

f Born and Karman: Phy:s. Zeits., 13, p. 297 (1912); 14, pp. 15 and 65 

(1915). 

fNachr. GeselL d, JViss., Gottingen; Math.-phy^s. Klasse (1906). 

Nernst: The New Heat Theorem (Methuen, 1926). 

§ For the meaning of free energy see J. R. Partington: A Text Book of 

Thermodynamics {Constable), or W. Wilson: Theoretical Physics, Vol. i, 
p. 310 (Methuen). 
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It will be remembered that before the advent of Einstein’s 

relativity theory only differences in the energy of a system were 

defined. It had no absolute value. The theory of relativity 

enables us, as we have seen, to assign an absolute value to 

energy. For instance, the energy associated with a mass, m, is 

equal to mc^. Now Nernst’s theorem assigns an absolute value to 

entropy and its universal validity can be justified by the statis¬ 

tical methods of the quantum theory. 

THE WILSON-SOMMERFELD QUANTUM CONDITIONS 

We have seen that the point, P (Fig. V—1), which represents 

the state of a simple harmonic system, moves along an ellipse 

(Fig. XIII—3) and that the energy of the system is equal to the 

product of the area of the ellipse and the frequency of the simple 

harmonic vibration, or, as we may express it, 

{Area of ellipse) X v = {Energy) 

so that Planck’s quantum hypothesis may be expressed in the 

form 

{Area of ellipse) =s: n X /i, 
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n being a whole number—for simplicity we ignore the possi¬ 

bility of some constant being added to n. Now this area may be 

regarded as the sum of an enormous number of very narrow 

strips, four of which are indicated in the diagram—only indi¬ 

cated, since their actual breadths are infinitely narrow. The area 

is therefore a sum of such products. The conventional way of 

representing any one of these is 

P X dq, 

p being the vertical height of^the strip and dq its infinitely 

narrow width. It is usual to represent such a sum by the symbol 

J (this symbol is a form of the letter 5, the initial letter of sum) 

and to indicate the sum which is involved when we go exactly 

once round the ellipse some conventional modification of the 

symbol, is made. Planck’s quantum condition may therefore 

be expressed in the following form: 

Ipdq = nh, (XIII—10) 

It is often convenient to represent the integral by a single letter, 

usually the letter /. Therefore 

J^nh, (XIII—10a) 

This simple-looking formula is the expression of one of the very 

greatest of all scientific discoveries. It has an even more pro¬ 

found significance—which I hope to discuss later—than the 

whole of the Newton-Einstein relativistic theory and its dis¬ 

covery places Planck among the half-dozen or so most notable 

human individuals of all time. 

Unknown to each other, Arnold Sommerfeld (1868- ) and 

William Wilson (1875- ) generalized the form of statement 

(XIII—10) so that it may be applied to a great variety of systems 

of several degrees of freedom, very nearly about the same time.* 

The nature of this generalization will be indicated in a simple 

application of it to the specific heats of gases and more fully, 

when we come to Bohr’s theory of the hydrogen atom. Suffice 

it to say now that, in the case of many mechanical systems it is 

• A. Sommerfeld: Ann. der Phjrs,^ ^1? P* 1 (1916). See also Sommer- 

feld’s book: Atomic Structure and Spectral Lines (Methuen, 1925). 

W. Wilson: Phil. Mag., 29, p. 795 (1915), and 51, p. 156 (1916). 

The p and q notation for the momentum and positional co-ordinates 

was introduced by the distinguished Konigsberger mathematician, 

C. G. J. Jacobi, P^orlesungen uher Dynamik (1842). 
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possible to choose co-ordinates—^the positional co-ordinates are 

represented by • 9n? where n means the number of 

degrees of freedom—in such a way that every co-ordinate, <7-, 

passes periodically through the same sequence of values and is 

associated with a constant value of the sum J Pidq-, The 

generalization of Wilson and Sommerfeld consisted in laying 

down that each such sum or integral is equal to the product of 

an integer, and h. 

J-^Tlih. (XIII--10B) 

SPECIFIC HEATS OF GASES 

The ratio of the specific heats of a gas increases as the tempera¬ 

ture is low^ered, tending to the limiting value 11. This behaviour 

is easily explained by the quantum theory. At rather low 

temperatures that part of the energy of a molecule which is 

associated with rotation may well be so small that the corres¬ 

ponding values of / (XIII—10b) never reach so high as h and 

the only possibility for them is / = 0 X = 0. The molecule 

has in fact, at low enough temperatures, no energy of rotation 

at all. It is quite different with translational kinetic energy. 

While the molecule is traversing a free path its velocity is prac¬ 

tically constant. It is in fact moving as if it were in simple 

harmonic motion of infinitely long period, or zero frequency. 

And since its energy must be equal to for each of the three 

translational degrees of freedom, even a minute quantity of 

energy makes n enormous. The quantum discontinuity is, as it 

were, wiped out, and we may in fact deal with the energy of the 

molecule as we did in Chapter IV, wdiere we learned that the 

ratio of the specific heats is when we had only translational 

energy to consider. 



CHAPTER FOURTEEN 

CONDUCTION OF ELECTRICITY 

AND ASSOCIATED PHENOMENA 

et.rctr(5i.ysis 

This is the name given to the conduction of electricity in acids, 

salts, etc., more especially aqueous solutions of them. It is 

accompanied by chemical changes at the electrodes of a charac¬ 

teristic kind. These result in decomposition of the electrolyte, 

though secondary chemical changes may reform it, e.g. in the 

case of sulphuric acid in aqueous solution and with electrodes 

(e.g. platinum electrodes) which do not interact chemically with 

the immediate products of the chemical changes. The old hypo¬ 

thesis of Theodor von Grotthus (1785-1822) accounted for some 

of the obvious features of electrolytic conduction and in some 

degree anticipated Faraday’s laws, discovered later, but as 

Clausius pointed out, electrolytes obey Ohm’s law and this is 

incompatible with Grotthus’ assumption that the molecules, 

H2SO4 for example, are disrupted by the electric field between 

the electrodes, as we should now say, into two positively charged 

II ions and a negatively charged SO4 ion. 

Johann Wilhelm Hittorf (1824--191^')? professor at the former 

Academy of Munster in Westphalia, noticed that different quan¬ 

tities of the electrolyte were lost round the two electrodes and 

ascribed it, correctly, to the different rates at whicli the two sorts 

of ions, the anions and the cations travel: the former in the 

direction of the anode and the latter towards the cathode.’*' The 

ratio of the velocity of the positive ions (cations) to that of the 

negative ions (anions) is equal, as Hittorf supposed, to the ratio of 

the loss round the anode to that round the cathode. 

Friedrich Wilhelm Kohlrausch (1840-1910), professor in the 

University of Wurzburg, showed how the actual ionic velocities 

could be determined absolutely from the ratio of the velocitie 

as determined by Hittorf’s method and their sum which C' 

♦ Ann, der Ph^s., 89, p. 177 (1855); 98, p. 1 (1858); 106, p. 337 (185 

203 
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be found by measuring the electrical conductivity of the elec¬ 

trolyte.* The understanding of electrolytic conduction and allied 

phenomena was much further advanced by vanh Hoff (1852- 

1911) and Svante August Arrhenius (1859-1927). The latter 

introduced the hypothesis that an electrolyte, when dissolved in 

water, dissociates partially into its separate ions, complete 

dissociation being approached at extreme dilution.'[' This seems 

to have been suggested much earlier by Clausius. It removed, 

as I have already explained in Chapter IV (I) the difficulty 

encountered by van’t Hoff^s view that the osmotic pressure of a 

substance in solution should be the same as the pressure it 

would exert if it filled, in the form of gas, the same volume as 

the solution at the same temperature. Indeed approximately 

/>F== iRT, 

where i is van’t Hoff’s factor and P and R respectively the 

osmotic pressure and the gas constant appropriate to the sub¬ 

stance in its undissociated condition. If we have, for example, 

N molecules in the solution and if the fraction a (degree of 

dissociation) dissociates into ions, each molecule breaking up into 

n ions, then the number of particles (complete molecules and 

ions together) in the solution must be equal to 

<tNri + (1 - a) N, 

Evidently this is equal to 

iN 

where i is van’t Hoff’s factor. Therefore, on cancelling out TV, 

1 + a(/z — 1) = z. 

As we already appreciate, i can be found by measurements of 

osmotic pressure. It can also be determined by measuring the 

electrical conductivity of the solution and in other ways, e.g. by 

finding the elevation of the boiling point of the solution above 

that of the pure solvent. All these different methods are in satis¬ 

factory agreement. 

• Gottiriger Nachr,^ p. 215 (1876); Ann. derPhys.^ 6, p. 167 (1879). 

f Arrhenius: Zeits. fur Phys. Chem,, 1, p. 651 (1887). No doubt the 

igh value of the dielectric constant of water facilitates dissociation 

id the consequent low values of the inter-ionic forces explain the 

nparative success of electrolytic theory without taking them into 
■>unt. 
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The forces exerted on one another by the charged ions in an 

electrol3rtic solution have some influence on the behaviour of 

electrolytes, and in recent times P. Debye and E. Hiickel have 

improved the theory of electrolysis by taking this into account.* 

CONDUCTION OF ELECTRICITY IN GASES 

The fact that gases do conduct electricity—though nearly 

complete insulators when subjected to rather small potential 

gradients—has long been known, and the success of the ionic- 

hypothesis with electrolytes naturally suggested that gaseous 

conductivity is due to charged ions. When air or any gas is sub¬ 

jected to a potential gradient which is not too great, a minute 

current passes for a short time and then the air becomes nearly 

a perfect insulator. This is due to the fact that all the ions have 

been removed from it. Under ordinary conditions a gas never 

insulates quite perfectly^ ions are always being formed—e.g. by 

cosmic radiation—unless rather special precautions are taken. 

Gases may be ionized in many ways—e.g. by hot bodies, by a 

flame, and by X-rays. When ions are produced in this way, a 

potential difference between two electrodes in the gas gives rise 

to a current which, for small potential differences, obeys Ohm’s 

law, but when the potential difference is big enough the current 

is almost independent of it. As the potential difference is 

increased the current remains almost constant. The explanation 

is that the ions which the ionizing agent produces are now being 

removed as fast as they are formed. The current is now said to 

be SATURATED. Further increase in the potential difference 

between the electrodes causes the current to increase again and 

results finally in an electric spark between the electrodes. This 

is explained by the supposition that the ions already present in 

the gas now acquire such high velocities that their collisions with 

the molecules of the gas cause the latter to be broken up into 

charged parts or ions, so that new ions are now being formed at 

a rate which is all the greater the greater the potential difference 

between the elctrodes. 

The phenomena of conduction in gases have been studied in 

great detail by Sir Joseph Thomson (1857-1940), Cavendish 

♦ Physikal, Zeitsch.^ 24, p. 505 (1925); 25, p, 145 (1924). Trans. 

Faraday Soc.y 25, p. 554 (1927). 
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Professor at Cambridge, and his pupils, and the aspects just out¬ 

lined have been minutely investigated by Sir John Townsend 

(1868“ ), lately professor at Oxford.* 

CONDUCTION IN GASES AT LOW PRESSURES 

Imagine the gas to be contained in a glass tube provided with 

two metal electrodes and with a side tube connecting it to a pump. 

If now an electric discharge is maintained through the gas, it is 

found that its resistance diminishes as the pressure gets lower, 

and as low pressures are reached the glow in the tube takes a 

characteristic form. At pressures of the order of 1 mm. of 

mercury and lower a long column of luminosity extends from 

the anode towards the cathode. Beyond this column is a fairly 

large dark space, the FARADAY DARK SPACE. Near the cathode is a 

glowing stratum of gas (cathode glow) and between this and the 

cathode is a rather narrow dark space called the CROOKES DARK 

SPACE. As the pressure gets still lower the positive column 

becomes striated, giving the appearance of thin glowing layers 

separated by dark spaces. At very low pressures the positive 

column contracts until the Faraday dark space and indeed the 

cathode glow reach the anode. The resistance of the tube begins 

to increase as this stage is approached and a remarkable fluor¬ 

escent glow is now produced on the walls of the glass tube 

opposite the cathode, the colour of which depends on the com¬ 

position of the glass. Usually it is greenish. This phenomenon 

was studied by Pliicker (1801-1868), Geissler (1814-1879)—the 

glass tubes in which the discharge occurs were often called 

Geissler tubes in Germany—Hittorf and by Sir William Crookes. 

Pliicker observed the phenomenon about 1859 and noticed 

that the fluorescent glow shifted when a magnet was moved 

into the neighbourhood of the tube. Hittorf observed in 1869 

that an object placed in the tube throws a shadow as if it screened 

the part of the glass wall from something projected from the 

cathode. This radiation from the cathode was later called 

CATHODE RAYS by Goldstein (1880), whose experiments indicated 

that they might be negatively charged particles. It may be 

remarked parenthetically that Goldstein made small holes in 

the cathode of the tube he used and thus discovered the canal 

• Phil Mag., 6, p. 598 (1905); 8, p, 738 (1904). 
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RAYS which proceeded through these holes in the dirocLioii 

away from the anode. Both sorts of rays were later discovered 

to be corpuscular, the canal rays to be positively charged atoms 

or molecules of the gas in the tube and the cathode rays to be 

corpuscles of quite a new kind, later called electrons. The 

corpuscular character of cathode rays was insisted on by Crookes 

who investigated them in the seventies. He demonstrated that 

they proceed in straight lines perpendicularly to the surface of 

the cathode, Goldstein noticed that they were deflected by an 

electrical field as well as by a magnetic field. There was every 

indication in fact that they were negatively charged particles of 

some kind thrown out from the cathode. 

X-RAYS 

In 1895 Wilhelm Conrad Rontgen (1845-1923) was occupied 

in investigating the emission of ultra-violet light from a dis¬ 

charge tube and used, as a detector, crystals of barium platino- 

cyanide which fluoresce under the influence of light. While this 

work was in progress he made the startling observation that his 

platinocyanide crystals fluoresced if there were no light at all 

and while the discharge tube was covered with opaque paper, 

provided they were in its neighbourhood. This was the dis¬ 

covery of X-rays, as Rontgen called them.^ 

CONDUCTION IN METALS 

Metals are by far the best conductors of electricity, but the 

nature of metallic conduction was not so easily open to experi¬ 

mental investigation, or rather, it was not easy to interpret the 

results of such experiments. G. Wiedemann (1826-1899) and 

R. Franz discovered the remarkable law that the ratio of the 

thermal conductivity of a pure metal to its electrical conductivity 

is proportional to the absolute temperature {K temperature). 

Moreover the constant of proportionality is very nearly the same 

for all (pure) metals.*}* If we write it in the form 

Kjc = AT, 
• W. C. Rontgen: Sitzungsher. der Fp^urzburger Physikalisch^ 

Medizinische GeselL (1895); Ann, der Phjrs,, 64, p. 1 (1898). 

^Pogg, Ann, 89, p. 498 (1853). 
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then A is very nearly the same constant for different pure metals, 

K and a being the thermal and electrical conductivities respec¬ 

tively. Paul Drude (1865-1906) assumed the conductivity of 

metals to be due to free electrons (the corpuscles already men¬ 

tioned, which constitute the cathode rays). It is very easy to 

obtain expressions for the electrical and thermal conductivities, 

assuming the electrons to constitute a gas in the metal and 

applying the simple kinetic theory. Very simple considerations 

lead to 

nc X 
cr =- 

%kT 

as an approximate expression for the electrical conductivity. 

The meanings of the symbols are: 

e s charge on one electron, 

72 S number of electrons per unit volume, 

X S mean free path of an electron, 

~c s average velocity of agitation of an electron, 

and k is Boltzmann’s constant. The thermal conductivity is 

expressed by 

K == I mnc'K X Cv, 

where is the specific heat at constant volume of the electron 

gas. From this we find 

K = ^krwky 

and on dividing it by the expression for c we get 

K k^ 
— = 5— r.* 

or 

Thus the constant, A, is equal to ^k^je^. Its value is known, since 

those of k and e are known, and it is quite near to the value 

experimentally determined from the conductivities. 

But Drude’s theory led to a difficulty. Our simple kinetic 

theory assigns to each electron the average energy 5AT/2. If 

we assume only one free electron for each atom of the metal this 

amounts to 5ilT/2 ergs per gramme-atom, and we learned in 

discussing the law of Dulong and Petit that the vibrational 

energy of the atoms (e.g. copper atoms) in a gramme-atom is 

equal to 5RT, Thus we have an atomic heat for copper of 9il/2 

♦ P. Drude: Ann. dei' Ph^s.^ 1, p. 566 (1900); 3, p. 369 (1900). 
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ergs per 1°C., and when we divide by Joule's equivalent and by 

63, the atomic weight of copper, we get about 0*143 calorie 

per gramme per 1°C. This is far too big—the specific heat of 

copper is about 0*095. 

The difficulty has been solved by applying to the electron gas 

a now form of statistics—fermi-dirac statistics. The applica¬ 

tion of it to the thermal and electrical conductivities of metals has 

been successfully achieved by A. Sommerfeld.'* It appears that 

the new statistics do not make any appreciable change in the 

calculated ratio of the conductivities, but the specific heat of the 

electron gas in a metal is zero or negligible.*[■ 

SUPERCONDUCTIVITY 

The electrical conductivities of metals increase as the tempera¬ 

ture is lowered, or, as it may be expressed, the resistance of a coil 

of wire becomes less as its temperature is lowered. Kamerlingh 

Onnes observed quite unexpectedly in 1911 that the resistance of 

mercury disappeared altogether when it was cooled to 4*12^A".J 

This SUPERCONDUCTIVITY was then observed in a number of 

metallic conductors, in lead below 7*26°A, in tin below 3*69° 

and in many others. It can be recognized by the persistent 

magnetic field of a superconducting ring of metal after the 

inducing electromotive force, or any other electromotive force, 

has ceased to act. The resistance of a metal in the super¬ 

conducting state, according to the experiments of Onnes and 

his collaborators, is less than 10*'^® times its resistance at room 

temperature. A remarkable feature of the phenomenon is that 

the resistance of a superconducting wire can be restored by a 

magnetic field parallel to the length of the wire, provided this 

field exceeds a certain critical value which depends on the 

temperature and on the particulcir conductor. Meissner and 

* A. Sornmerfeld: Zeitsch. fur Physiky 47, pp. 1 and 45 (1928). 

Fermi: Rend. Accad. Lined, 3, p. 145 (1926). P. Dirac: Proc. Roy. 
Soc., 112, p. 661 (1926). 

*[■ An electron gas (Fermi-Dirac statistics) approximates in its charac¬ 

ter to the old-fashioned gas of classical physics at sufficiently high 
temperatures and low enough pressures. This explains Sir Owen 

Richardson’s observation of the Maxwellian distribution in the elec¬ 

trons emitted from hot metals. 

{Kamerlingh Onnes: Leiden Comm., 122b (1911). 

O 
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Ochsenfeld have found in the case of a pure metal, in a super¬ 

conducting state, that the magnetic induction, is zero** 

(MEISSNER effect). 

FURTHER INVESTIGATION OF CATHODE RAYS 

The suggestion that cathode rays consist of streams of nega¬ 

tively charged particles was proved experimentally by Jean 

Perrin, j* 

He simply allowed the cathode stream to impinge on a con¬ 

ductor connected to an electroscope (or electrometer) and 

observed that it charged up negatively. The anode of his tube 

was hollow (like a Faraday vessel). Its potential was kept 

constant, and the conductor, on which the cathode particles fell, 

was inside it and, as it were, protected from everything except 

the corpuscular stream. 

Sir J. J. Thomson made one of the earliest determinations 

of the ratio of the charge on a cathode particle to its mass. 

He called these cathode particles CORPUSCLES, but the name 

ELECTRON has come to be universally adopted. A stream of 

charged bodies or particles has the magnetic properties of an 

electric current in a wire, J so that the cathode stream is deflected 

by a magnetic field directed at right angles to it. An electric 

field also deflects it, but when we apply both fields at the same 

time in suitable directions at right angles to one another, and to 

the direction of the flying electrons, and suitably adjust them, the 

forces they exert annul one another and the cathode stream is 

undeflected. If e is the charge on an electron, v its velocity and 

H the intensity of the magnetic field, the force exerted on it is 

Hev, The force due to the electric field is Ee^ if E is the electric 

field intensity, and when both forces are equal 

eE = Hev 

so that 

= EjH 

in electromagnetic units. Sir J. J. Thomson determined v in 

• Meissner and Ochsenfeld: Naturwiss., 21, p. 787 (1933). See also 

D. Shoenberg: Superconductivity' (Cambridge University Press). 

j Comptes rendus, 121, p. 1130 (1895). 

X H. A. Rowland: “On the Magnetic Effect of Electric Convection,” 

Amer. Journ. of Science (3), 13, pp. 30-38 (1878). 
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this way, and by measuring the deflection produced when only 

the magnetic field was applied he was able to find ejm* The 

ratio was found by Kaufmann and by Wiechert about the same 

time, j It turned out eventually to be in the neighbourhood of 

1*77 X 10’in E.M. units, a little more than 1840 times that of a 

hydrogen ion as found by measurements of the electrochemical 

equivalent in electrolysis. 

ElectronsJ were found to be identical whatever the material 

of the cathode from which they originated. Since they carry 

the same charge as a hydrogen ion and have a ratio ejm which 

is about 1845 times as big, their masses are all equal and much 

smaller than that of any atom—about 9 X 10“gramme. It 

therefore appeared to Thomson that electrons were actually con¬ 

stituents of atoms and he adopted the view that every atom 

consisted of a massive positively charged part and one or more 

negatively charged electrons, whose masses were negligible 

compared with that of the whole atom. His picture of an atom 

was not quite the same as Rutherford’s. He thought of the 

positive charge as spread over a spherical region and the electrons 

as moving inside it. 

• J. J, Thomson: PhiL Mag.^ 44, p. 295 (1897). 

f Kaufmann: IVied. Arm., ()2, p. 598 (1897); Wiechert: IVied. Ann. 

(Beiblatter), 21, p. 445 (1897). 

J The name “electron” was first used by G. Johnstone Stoney (1880), 

not for what were later called “electrons”, but for the natural unit of 

electric charge: the charge on a hydrogen ion, or on an electron as the 

name is now used. 



CHAPTER FIFTEEN 

MISCELLANEOUS SUBJECTS 

ELECTRON THEORY 

Ions and charged particles became very prominent in physical 

theory as it began to be appreciated that cathode rays consisted of 

charged particles and the view began to find acceptance that all 

electric currents consist of streams of charged particles. H. A. 

Lorentz modified the expression cE (conductivity x field inten¬ 

sity) for current density (e.g. in a metal) to pv (electric density X 

velocity of convection) or nev where n and e are respectively the 

number of charged particles (electrons) per unit volume and the 

elementary charge on one of them. He amplified MaxwelFs 

electromagnetic theory in this sense and found the now familiar 

expression for the force (due to a magnetic field) on a moving 

charged particle, namely, in our electromagnetic units for 

example, 
Charge x Vector product o f v and B, 

where B is the magnetic induction, i.e. p X H. We have already 

met with this in the form Hev which it assumes when AT and 

are at right angles to one another and (x = 1. 

As early as 1881 Sir J. J. Thomson pointed out that a charge of 

electricity has a mass (electromagnetic mass) associated with it, 

in addition to the mass peculiar to the material body that may 

carry the charge. It is very easy to see that tins must be the case. 

A moving charged body, as Rowland showed experimentally, 

produces a magnetic field round about it—since it constitutes in 

fact a convection current. In order therefore to set such a 

charged body in motion work must be done on it to provide the 

energy of its magnetic field. This energy is in fact kinetic 

energy (energy of motion), and when we equate it to mv^j2j we 

can calculate m, which turns out to be constant for small 

velocities. In fact, in the case of a spherical body with a charge 

uniformly spread over its surface and moving through air or in 

vacm (p. = 1 approximately) it is expressed by 

212 
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m = 2e^j5R 

(in ordinary electromagnetic units)^ R being the radius of the 

spherical body and e the charge on it. Both tlie charge on an 

electron and its mass are known from experimental observations 

and from them the radius of such an electron is found to be 

1*9 X 10“^^ cm. 

We can scarcely wonder that, as the end of last century 

approached, the suggestion arose that perhaps all mass is of this 

electromagnetic kind and that it should give birth to the ELEC¬ 

TRON THEORY OF MATTER, according to wliicli all material things 

are constituted of electricity, electrons having the most prominent 

place in it. In its most extreme form (Max Abraham, 1905) it 

presented electrons as charged spherical bodies and absolutely 

rigid.* They liad no mass except that of the electromagnetic 

kind. One consequence of it, which lent it some support, was 

that the masses of bodies must increase with their velocity. 

Even this extreme form of theory could not dispense with sorne- 

tliing which was non-electrical—the rigid framework which held 

the electric charge together by some sort of force which was 

necessarily not electrical. Lorentz’s theory was superior to that 

of Abraham. He anticipated much of the relativity theory which 

developed later, as we have already seen—including the depen¬ 

dence of mass on velocity, whether mass was of the electrical 

kind or not. His general attitude is set out in a little book 

called Versuch einer Theorie der Electrischen und Optischen 

Erschcinungen in Bewegten Korpern (Brill, Leiden, 1895^ re¬ 

printed in 1906 by Teubner, Leipzig). The outlook of the 

theoretical physicists at the fin de si^cle is fairly clearly presented 

in Joseph Larmor’s Aether and Matter (Cambridge, 1900). 

THE CLOUD CHAMBER 

One of the most important pieces of apparatus for investigating 

atomic phenomena is the CLOUD CHAMBER devised by C. T. R. 

Wilson (1869- ). It was not originally intended for any 

such purpose at all. When a young man Wilson, on holiday in 

the highlands of his native Scotland, climbed Ben Nevis and 

• Max Abraham: “Prinzipien der Dynamik des Elektrons,” Ann. der 

Phys., 10, p. 105 (1903). 
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became interested in the wonderful colour phenomena (glories) 

due to sun and mist. On returning to Cambridge he determined 

to reproduce and study them in the laboratory. Previous inves¬ 

tigations indicated that the fog produced when air, initially 

saturated with water vapour, is caused to expand adiabatically, is 

due to the presence of small dust particles.* Without them the 

vapour appeared to remain supersaturated (Coulier, 1875, and 

Aitken, 1888). Rontgen^s discovery of X-rays became known 

about the time when Wilson was occupied with these experi¬ 

ments and he tried the effect of passing a beam of X-rays through 

the saturated water vapour. He now obtained a dense cloud with 

an expansion in the ratio of 1 : 1*26, even when all dust particles 

had previously been removed. The nuclei, which were now 

effective, he proved to be charged ions by demonstrating that 

they could be removed by an electric field. He also found that a 

bigger expansion ratio was needed to cause condensation on 

positive ions than on negative ones.*!* 

The great importance of the cloud chamber is due to the fact 

that it enables individual (charged) particles such as a particles, 

electrons, protons, to be observed. One of these, as it travels 

through the cloud chamber, ionizes the molecules of air and 

water vapour, so that its track is indicated by a line of water 

drops. 

EXPERIMENTAL MEASUREMENT OF THE ELEMENTARY 

CHARGE 

There are many indirect ways of determining the charge on 

an ion. For example, a knowledge of Boltzmann’s constant, A, 

or of Loschmidt’s number, when combined with electrolytic 

data, enables this charge to be computed. The first direct 

experimental measurement of e (as 1 shall call it) was achieved 

by Sir John Townsend (1868- ).J The gases which come off 

during electrolysis, especially with large currents, are charged 

and, when passed through water, form dense clouds. Townsend 

determined the charge on such a cloud and the amount of water 

• Vide Chapter II. 

fC. T. R. Wilson: Phil Trans, A,, 189, p. 265 (1897); A., 192, 

p. 403 (1899). Proc, Roy, Soc. A., 85, p. 285 (1911). 

$iW. Carnb, Phil Soc., 9, p. 224 (1897); Phil Mag., Feb. 1898. 
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in it. He found the size of an individual drop by observing the 

rate at which the cloud fell and using Stokes’ formula: 

V = 2(p - p') X g X r2/9Y). 

This gave the average radius and thus the mass of a drop. 

The ionic charge e he got by dividing the total charge by the 

number of drops, which latter is given by dividing the total 

amount of water carrying the charge by the mass of a drop. He 

found about 5 X 10“^® electrostatic units at first. Making certain 

corrections later, he revised his estimate to 5 X which is 

very close to what is now thought to be the best estimate, 

namely 

4*805 X 10-10 E.S. units. 

Sir J. J. Thomson followed. His method consisted in producing 

a cloud of charged water drops in a Wilson cloud chamber.* 

Apart from this his method was almost the same as Townsend’s. 

Thomson’s earliest result was 6*5 X lO-i®, but in his later 

experiments he obtained 5*4 X 10“io E.S. units. Millikan’s 

judgment is that Thomson’s determinations contained all the 

theoretical uncertainties that attach to Townsend’s, but that the 

experimental uncertainties are more serious in Thomson’s type of 

experiment. *[' 

H. A. Wilson’s method was like Sir Joseph Thomson’s with the 

added feature that he could subject the charged cloud to an 

electric field. 

R. A. Millikan’s method was a great improvement on those 

of his predecessors. Instead of a cloud he used charged oil drops. 

He made use, like H. A. Wilson, of an electric field and he was 

able to deal with an individual drop. Moreover in using Stokes’ 

law he and his pupils made careful measurements of the vis¬ 

cosity of air and he also corrected the law for the inhomogeneity 

of the medium through which his oil drops moved. J Millikan’s 

final result was 

e = 4*774 X 10-^® E.S. units. 

• Phil. Mag., 46, p. 528 (1898); Phil. Mag. 5, p. 554 (1903). 

f ride R. A. Millikan: The Electron (University of Chicago Press, 

1917). This little book contains detailed information about the 

determinations of e up to 1917, including Millikan’s own work. 

J Air and gases are not homogeneous, being constit\ited of relatively 

widely spaced molecules, and Stokes’ law holds only for a homogeneous 

medium. 
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I should like to make the observation here that in my view 

Millikan’s experimental determination of e is the most impressive 

one that has been made. Slightly more accurate estimates have 

been made since, but they have been made by rather indirect 

methods which cannot be described here. They indicate, as we 

have seen, that the true value of e is a trifle greater than that 

obtained by Millikan. 

RATIO OF CHARGE TO MASS FOR HIGH-VELOCITY 

ELECTRONS 

The beta rays from radioactive materials are electrons and have 

a very wide range of velocities, approaching within one or two 

per cent of the velocity of light in free space, and the electron 

theories of Abraham and Lorentz, both of them, indicated a 

variation of mass with velocity which, though insensible for 

small velocities, becomes very appreciable with high velocities. 

So W. Kaufmann (1871- ), A. H. Bucherer (1863- ) and 

others measured the ratio e\m for beta particles, to decide the 

rival claims of Abraham’s electron and that of Lorentz (which was 

the so-called contractile electron, experiencing the FitzGerald- 

Lorentz contraction, or, we may say, the electron of special 

relativistic theory). The results of these experiments were very 

definitely in favour of Lorentz’s electron and of Einstein’s 

relativity theory. 

Bucherer used a very elegant method which is illustrated in 

Fig. XV—1. He placed a speck of radium fluoride at the centre, 

O, of an arrangement like a parallel plate condenser. A, This is 

contained in a wide cylindrical vessel, B (Fig. XV—1 {a)). A 

photographic film extended round the cylindrical wall of this 

vessel and the particles shot out (alpha and beta particles) from 

the fluoride, in the absence of fields, produce the line aa (Fig. 

XV—1 {b) ). Electric and magnetic fields are applied at right 

angles to one another, the former by establishing a potential 

difference between the condenser plates, so that the field stopped 

fairly sharply at the edge of the condenser^ the latter by large 

• W. Kaufmann: “Ueber die Konstitution des Elektrons,” Ann. der 

Phy's.j 19, p. 487 (1906). A. H. Bucherer: “Die experimentelle 

Bestatigimg des Reiativitatsprinzips,” Ann. der Phys.^ 28, p. 513 

(1908). 



MISCELLANEOUS SUBJECTS 217 

Helmholtz coils with their axis parallel to the condenser plates. 

The fields are so directed that the vertical forces they exert on 

the electrons are in opposite directions. Electrons (beta par¬ 

ticles) can emerge and their directions depend on their velocities. 

In fact 

V — EjHsin^ (E.M. units), 

where 0 is the angle between the direction of the magnetic 

field, //, and that in which the electron is travelling \vithin the 

X 

Fig. XV—1 

condenser. Ihe emerging electrons now produce one or other 

of the bow-sliaped lines (Fig. XV—1 (b)), according to the 

directions of the fields. The theory is too long to give here^* 

suffice it to say that measurements made on the lines (Fig. 

XV—1 (b) ) enable the ratio e/m to be computed and the associ¬ 

ated velocity of the electron is that given by the above formula. 

It is interesting to note that the bow-shaped lines (Fig. XV—1 (b)) 

meet at points on the median line which correspond to c, the 

speed of light in free space, and that electrons do not reach the 

film beyond these points (except of course in the absence of 

fields). In fact it appears that c is the upper limit for the speed 

of an electron. Bucherer’s experiments confirmed Lorentz’s law 

(which is also that of Einstein’s relativity theory) for the variation 

of mass with velocity. In fact experiment shows that 

m = TTZoY, 

where rriQ is the mass of the particle when at rest and m its mass 

• Eide O. W. Richardson: Electron Theory' of Matter (Cambridge), 

pp. 239 et seq.j or W. Wilson: Theoretical Phy'sics, Vol. ii, p. 210 

(Methuen). 
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when it has the velocity v. The factor y is of course the same 

factor as that represented by y in the chapter on the Aether— 

y = (1 - 

It has been assumed in the foregoing description that e, the 

charge on an electron, is independent of its velocity. It may 

suffice here to say that there are strong reasons for believing this 

to be the case. 

barkla's investigation of x-rays 

The first to make any appreciable progress in elucidating the 

nature of X-rays was Charles Glover Rarkla (1877-1944), Pro¬ 

fessor of Physics at King’s College, London, and later in the 

University of Edinburgh. He definitely established that tliey 

were of the same nature as light, but of very short wave-length. 

He liad no means of measuring wave-lengths, but was able to 

polarize X-rays. Tliis combined with the fact that the refractive 

index of the radiation in any material is ])ractically unity meant 

very short transverse waves. 

The following illustration, which Barkla used himself, 

explains the experiments he did to produce polarization in X-rays. 

Imagine a horizontal (inextensible) cord running north and 

south and attached at its northerly end to a point, which is not 

quite rigidly fixed. Transverse waves travelling along the cord 

will cause motions of ^ in a plane perpendicular to the cord. 

Another cord running from ^ in, say, a westerly direction will 

have transverse waves developed in it, but its vibrations will 

necessarily be up and down ones only. The wave along this 

second cord is polarized. Suppose it to end at some point, 5, 

which, like is not quite rigidly fixed. It is easy to see that no 

wave at all can travel from ^ in a vertical direction along some 

third cord, but if the direction of this third cord is horizontal and 

north and south, polarized waves will travel along it. Now we 

can understand Barkla’s experiment. The waves travelling 

northwards are waves of X-radiation. The X-radiation scattered 

from A (which in some of Barkla’s experiments was a piece of 

carbon) in the westerly direction are (suspected to be) polarized. 

The test was that no radiation, or a very weak radiation, is 

scattered from the piece of carbon at ^ in a vertical direction, but 
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a moderately intense beam is scattered northwards or southwards 

from B. Barkla observed and measured the intensity of X-ray 

beams by means of an ionization chamber.* 

When a primary beam of X-rays falls on some material this 

latter emits a secondary radiation consisting partly of a stream of 

electrons (plioto-electric emission) and partly of a secondary beam 

of X-rays. Barkla investigated the secondary X-rays by observing 

their absorbability in aluminium plates. If, for example, one of 

his aluminium plates cut down the intensity of the X-ray beam 

to one-half, and if a second exactly similar plate cut down the 

intensity of what had passed through the first plate to one-half, 

and so on, he described the X-radiation as homogeneous and 

assumed (correctly as we now believe) that it was ‘‘mono¬ 

chromatic,^’ i.e. radiation of a very short range of wave-lengths. 

A portion of the secondary X-ray beam he found to be a replica, 

as it were, of the primary beam—it was absorbed in the same 

way as the primary by the sequence of aluminium plates. He 

concluded correctly that this was just the part of the primary 

beam which the irradiated material scattered. According to the 

classical theory this scattered radiation should be exactly like the 

primary beam in all respects, except its intensity, but Barkla 

noticed one difference: the scattered radiation was slightly more 

absorbable than the primary, indicating a very slightly longer 

wave-length. This was the earliest indication of the COMPTON 

EFFECT. 

Barkla’s observations were also the earliest which indicated 

that the number of electrons (extra-nuclear electrons) in an atom 

is identical with its atomic number, i.e. the number which marks 

its place in the periodic system. It is impossible to give all the 

detail here,*}' but, briefly, he determined the mass coefficient 

of scattering in the case of a number of light elements and found 

it to be near 0*2. Now the classical theory indicates that 

(Number of scattering 

/T., \ ^ electrons in one atom) 
(Mass coenicient of scattering) = 0*4 x--r-- 

(Atomic weight) 

^PhiL Trans. A., 204, p. 467 (1905); Proc. Boy. Soc., 77, p. 247 

(1906). 

f Vide W. Wilson: Theoretical Physics (Methuen), Vol. ii, pp. 227, 

228, 229. 
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Thus Barkla found the number of electrons per atom to be one- 

half the atomic weight for a number of elements of low atomic 

weight. But for such elements the atomic number is also equal 

to one-half the atomic weight and there was tlius a strong pre¬ 

sumption that atomic number and number of electrons per atom 

are identical. We should now identify these scattering electrons 

with extra-nuclear electrons and since their total negative charge 

must bo balanced by the positive charge on the nucleus we may 

restate Barkla’s result by saying that the atomic number is 

identical with the number of elementary units of charge on the 

nucleus of the atom.* 

Perhaps Barkla’s greatest discovery was that of CHARACTERISTIC 

(or fluorescent) X-radiation. In addition to that part of the 

secondary radiation which is scattered, he found one or more 

radiations which were characteristic of the material itself (e.g. 

silver) and independent of the nature of the primary beam, 

provided the latter was hard enough, or penetrating enough (in 

terms of later knowledge, had a short enough wave-length or 

high enough frequency). He labelled them Z/, M, and so on. 

Silver, for example, he found to emit two, K and L. Each of these 

he found to be homogeneous (in the sense described above). 

Indeed this characteristic led him to their recognition. Of course 

homogeneous, as was learned later and as Barkla believed, means 

“monochromatic.”! The K radiation he found to be more pene¬ 

trating (shorter wave-length or higher frequency) than the L 

radiation and the L radiation more penetrating than the M, and 

so on.J The importance of these discoveries for the subsequent 

inquiries into the structure of atoms was very great indeed. 

THERMIONICS 

If a charged body, e.g, a metallic body, is raised in tempera¬ 

ture to 1000°C. or more it quickly loses its charge. This pheno¬ 

menon has been known for a long time. It was first seriously 

• C. G. Barkla: Phil, Mag,, 21, p. 648 (1911). 

I This is only an approximate description. The K radiation from an 

element, e.g. silver, exhibits discrete spectral lines, but the extreme 

variation in wave-length is not great. 

JC. G. Barkla and C. A. Sadler: Phil Mag., 16, p. 550 (1908). 

C. G. BarUa: Phil Mag., 22, p. 596 (1911). 
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examined by F. Guthrie,''^ but our knowledge of it is due almost 

wholly to Sir Owen Richardson, formerly professor at Princeton, 

U.S. A., and lately at King’s College, London, who gave the name 

THRRMIONICS to the subject and the name THERMIONS to the 

emitted ions-l 

When a hot wire is maintained at a positive potential rela¬ 

tively to its surroundings it emits positive electricity, but this 

efh^cl quickly decays and appears to be due to traces of volatile 

mat('rials, salts, etc., on the surface of the wire. On the other 

hand, when maintained at a negative potential the emission settles 

down to a steady rate w’hich lasts indefinitely. Richardson 

assumc^d that the electrons of which the negative emission con¬ 

sists J occupy the hot metal in the form of a gas (electron gas) 

and applied to it the old kinetic theory of gases. He thus deduced 

tlie following formula (RICHARDSON’S law) for the number of 

el(H'trons emitted per unit area per second, or for the current 

per unit area (they differ only by a constant): 

(XV—1) 

where yl is a constant, 9 the work that has to bo done to bring 

an electron through the surface of the metal and the remaining 

symbols have their usual meaning.§ Later investigation, by a 

thermodynamical method, of the dependence of 9 on tempera¬ 

ture led Richardson to the result: 

9 = 9o + '^kTj2, 
where cpo is a constant and so to an improved formula 

i = (XV—1a) 

where A is again a constant though somewhat different in value. 

It is impossible to distinguish between these two formulae by 

measurements of the thermionic current—because of the 

dominating character of the exponential, but it seems certain, on 

indirect grounds, that the latter is the more correct one. 

Very simple thermodynamical reflections suggest that the 

* Phil Mag., 46, p. 257 (1873). 

j* O. W. Richardson: The Emission of Electricity from Hot Bodies 

(Longmans, Green Sc Co., 1922). O. W. Richardson and W. Wilson: 

Article on Thermionics in the Dictionary of Applied Physics, Vol. ii. 

J That it consists of electrons is proved by measurements of the ratio 

elm. .1. J. Tliomson: Phil. Mag., 48, p. 547 (1899). 

§ O. W. Richardson; Phil. Trans. A., 201, p. 497 (1903). 
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photo-electric emission (emission of electrons under the influence 

of light) due to black body radiation should follow Richardson’s 

law and the author of this work suggested in 1912 that the ther¬ 

mionic emission is of this nature—due to the radiation within the 

hot metal.* 

Richardson showed that the electrons emitted by a hot body 

conform to Maxwell’s law of distribution of velocities. We 

appreciate to-day that this is only true because the electron gas 

outside the emitting metal has a very low density. 

Thermionic emission has an immense range of practical 

application. The electron tubes (triodes, pentodes, etc.) used for 

the emission and reception of broadcasting waves are simply 

adaptations of the tubes used by Richardson and his pupils for 

the investigation of thermionic phenomena. 

The modern X-ray tube, invented by W. Coolidge, is also such 

an adaptation. Instead of cathode rays produced by a current in 

a rarefied gas, electrons are produced thermionically by heating 

the cathode, which has the form of a coiled wire, with an electric 

current. The tube is exhausted as far as possible. With such a 

tube the intensity and hardness of the X-ray beam can be varied 

at will by varying the supply of electrons and the potential drop 

through which they are made to fall. 

In the recent forms of the cathode ray oscillograph, the cathode 

rays (electrons) are produced by a hot filament. The electrons 

impinge on a fluorescent screen and produce a bright spot there. 

A transverse electric field applied across the tube through which 

the electrons are flying causes them to impinge at another point 

on the screen. The instrument played a great part in “radar” 

(radio detection and ranging) during the late war, since it could be 

used to determine the minute fraction of a second elapsing between 

the emission of a radio pulse and the reception of its echo and 

thus to estimate the distance of an enemy aeroplane for example. 

PHOTO-ELECTRICITY 

In the later years of last century Heinrich Hertz noticed that 

light in some way facilitated the passage of a spark across the 

gap in the secondary of an induction coil. The length of the gap 

•,W. Wilson; Prop* Phys. Soc, (1912); Ann. der Phys.^ 42, p. 1154, 

(1915). 
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could be adjusted so that while no discharge passed across it in 

the dark it did so when the electrodes were illuminated by the 

light from another spark in the same neighbourhood. Metallic 

bodies emit electrons when illuminated by light of sufficiently 

short wave-length (sufficiently high frequency). The earliest 

Fig. XV—2 

notable investigation of the phenomenon was by W. Hallwachs, 

of Dresden. Indeed it has been called the Hallwachs pheno¬ 

menon. Ilallwachs made the important observation that, while 

a negatively charged body will lose its charge under the influence 

of ultra-violet light, this is not the case with a positively charged 

one.**^ The phenomenon has the following features: 

(i) There is no emission of electrons at allf unless the frequency, 

V, of the light is great enough. For most metals it is in the ultra¬ 

violet region. Each metal has a threshold frequency. Only 

when this frequency is exceeded does the effect occur. 

(ii) The kinetic energy of the individual electrons is a simple 

function of the frequency of the light, illustrated by Fig. XV—2, 

in which the ordinates represent the kinetic energies of in¬ 

dividual electrons and the abscissae the corresponding frequency 

• W. Ilallwachs: Ann. der Phys., 33, p. 301 (1888). 
I J. J. Thomson demonstrated that the emission consists of electrons. 

Phil. Mag., 48, p. 517 (1899). 
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of the light. In fact the energy of an electron (its maximum 

energy at any rate) is proportional to 

Frequency minus constant. 

Of course the greater the intensity of the light the greater the 

rate of emission of electrons and their total energy^ but the 

energy of individual electrons is quite independent of the 

intensity of the light. These facts about photo-electricity were 

very perplexing. However weak the intensity of the radiation, 

the ejected photo-electrons have the same energy (for radiation 

of a given frequency) on leaving the metallic surface as they 

have when the illumination is strong. It appeared to be im¬ 

possible that electrons could be ejected in this way, since the 

energy in the irradiating beam of ultra-violet light, or X-rays, is 

uniformly spread over the metallic surface. 

EINSTEIN’S THEORY OF THE PHOTO-ELECTRIC EFFECT 

Einstein met the difficulty in characteristic fashion. He 

assumed that the energy in a beam of light was concentrated in 

small bundles and assigned to each bundle the amount of energy 

which Planck’s quantum theory suggests, namely When 

the light bundle is absorbed by the metal, or other substance, 

an electron is liberated and a definite part, of the energy, /iv, 

is used up in doing the work necessary to drag the electron out 

through the surface of the material. The revSt of the hv units of 

energy endows the electron with its kinetic energy. Thus 

1 mv^ = ~ w,'\ (XV—2) 

An electron can only emerge when Av is just equal to or bigger 

than w. The lowest possible frequency, Vq (threshold frequency), 

is therefore given by 

Avq = w, 

Ck>nsequently 

J = Av - (XV—2a) 

in conformity with the diagram (Fig. XV—2). This formula was 

♦ A. Einstein: Ann, der Phys,^ 17, p. 152 (1905). 
f If V is very big the relativistic expression for the kinetic energy 

must be used, namely, — where m is mass of the electron 
and its mass when at rest. 
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confirmed experimentally by A. L. Hughes* and a value for h 

obtained which, within the limits of experimental error, was in 

agreement with Planck’s estimate. 

Einstein’s suggestion raised difficulties in another direction. 

If light has the constitution he suggested, i.e. if it consists of 

separate bundles of energy, as it were, one would expect a modi¬ 

fication of the familiar interference phenomena, at any rate 

when the light is so weak that each light bundle travels in 

isolation from its fellows. Sir G. I. Taylor tested this experi¬ 

mentally with light so faint that he had to expose his photo¬ 

graphic plate for 2000 hours, but the fringes duly appeared with 

unimpaired distinctness. The only inference seemed to be that 

light could not have this bundle constitution, but in that case 

photo-electric phenomena were inexplicable. The solution of the 

riddle and much more was revealed by the wave mechanics of 

Prince Louis de Broglie and its interpretation by his successors, 

especially Erwin Schroedinger and Max Born. Einstein’s 

bundles are our photons, the strange particles or quasi-particles 

of which light and radiation seems to be constituted. 

The excitation of X-rays by electron bombardment is a con¬ 

verse phenomenon to the photo-electric one. In falling through 

a potential drop, F, an electron acquires the additional energy 

eV {e is the electronic charge, namely 4*8 x E.S. units) 

and, if its initial energy is negligible, as it is when the electron 

is liberated thermionically, the eV is practically the whole 

energy of the electron. 

When now the electron with the energy eV strikes a piece of 

metal, e.g. the anti-cathode in an X-ray tube, it generates 

radiation, i.e. X-radiation, of frequency v, in accordance with 

eV^hv. (XV—5) 

Since in the phenomenon we are considering both eV and Av 

are very big we need not worry about any work, done on the 

electron at the metallic surface. 

Of course the collision of an electron and an atom generally 

results, as we shall better appreciate later, in a rearrangement of 

the electrons in the atom with the consequent emission of 

• Phil. Trans. A., 212, p. 205 (1912); see also O. W. Richardson 
and K. Compton, Phil. Mag.^ 24, p. 576 (1912). 

P 
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X-ray photons (Barkla’s characteristic radiation) of lower 

frequency than v, as indeed experiment confirms. The fre¬ 

quency given in (XV—5) is an upper limit. 

the COMPTON effect 

When an X-ray photon—or for that matter any photon— 

collides with an electron it gives up some of its energy to it and 

then glances off with diminished energy. The photon is like a 

rapidly moving billiard ball and the electron like a slowly 

moving and much more massive ball. Before the collision the 

photon has the energy /zv and after being scattered the smaller 

energy /zvi. Reflections like these led A. H. Compton to predict 

that the frequency of scattered X-rays should be slightly lower 

than that of the primary beam, or, what amounts to the same 

thing, the wave-length of scattered X-rays (or indeed of scattered 

light in general) should be slightly longer,* as indeed Barkla had 

inferred from measurements of absorbability. Compton deduced 

the following formula and verified it experimentally: 

Xi - X = 
2h 

-sin* 
mftC 

4 
in which X and X^ are the wave-lengths of the primary and 

scattered radiations respectively, ttiq is the mass of an electron at 

rest and 6 is the angle between the directions of the primary and 

the scattered beams. 

THE ELECTRON MICROSCOPE 

In the chapter on wave-mechanics we shall learn that waves 

are associated even with such things as electrons, just as light 

waves are associated with photons. A beam of electrons exhibits 

the phenomena of interference and diffraction characteristic of 

waves, and a new subject, rather naturally but not quite correctly 

called ELECTRON OPTICS, has grown up in recent times. Electrons 

emerging from a point can be focussed at another point and an 

image of a structiure irradiated by electrons can be formed and 

•A. H. Compton: Phys. Rev., 21, pp. 485, 715 (1923); 22, p. 409 
(1923). 

f Fide W. Wilson: Theoretical Physics, Vol. iii, pp. 164 and 165, 
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indirectly rendered visible by a fluorescent screen or photo¬ 

graphically. A uniform magnetic field will cause electrons, all 

starting from the same point with the same component of 

velocity parallel to the field, to pass through another point com¬ 

mon to them all. In fact the distance of this point from the 

starting point can be shown to be equal to 

2'rrmvlHy 

where v is the component of their velocity parallel to the mag¬ 

netic field of intensity H and m is the mass of an electron. The 

focusing can also be achieved by suitably arranged electrostatic 

fields. This is the basis of the electron microscope. It is a 

cumbersome and awkward piece of apparatus and probably no 

one would have taken the trouble to construct or use one, but 

for the high resolving power that can be achieved with it. I 

ought to explain that resolving power, as applied to a micro¬ 

scope or telescope, is not quite the same thing as spectroscopic 

resolving power, but they are similar and related to one another. 

As applied to a microscope or telescope the term means its 

capacity for separating and making clear the details in the struc¬ 

ture or appearance of the object being examined—in fact to 

reproduce in the image the fine detail of the object. The 

resolving power of a microscope is all the greater the greater its 

aperture and the smaller the wave-length of the undulations (light 

or electron waves) used with it. Now electrons can easily be 

given a momentum which is associated with a very much shorter 

wave-length than that of the light used with the common 

microscope, so that the electron microscope has a much higher 

resolving power, notwithstanding the fact that it cannot be 

endowed with a very great aperture. 



CHAPTER SIXTEEN 

ATOMIC STRUCTURE 

SPECTRA 

The first to make successful calculations of the wave-lengths of 

spectral lines from an assumed model of the emitting atom 

appears to have been J. W. Nicholson, Professor of Mathematics 

at Ring’s College, London. His work was published in a remark¬ 

able series of papers on the spectra of the light from certain 

nebulae and from the solar corona, in 1911 and 1912. These 

spectra were unlike any terrestrial spectra and he ascribed them 

to hypothetical elements which he named nebulium and proto¬ 

fluorine. Still earlier Rutherford (1871-1957) had come to the 

conclusion that all atoms consisted of a massive positively charged 

nucleus, a kind of sun, with planetary electrons revolving about 

it. This was suggested to him by the way in which metals 

scattered the alpha particles shot out by radioactive elements. 

The very wide angles through which some of the particles were 

deflected could only be accounted for on the supposition that the 

atom had a very small, but relatively very massive, repelling 

central nucleus. Under the influence of Rutherford’s suggestion 

Nicholson imagined atoms with a positively charged central 

nucleus and 4 or 5 electrons revolving round it, all in the same 

ring. His mathematical methods were rather similar to those 

employed by Clerk Maxwell many years earlier in his theoretical 

investigation of Saturn’s rings. He calculated the frequencies of 

vibration of the electrons perpendicular to and in the plane of the 

ring. He followed classical methods entirely at first, and since 

he had nothing which fixed the angular velocity of the electrons 

in the ring he could at first only calculate the ratios of the 

possible frequencies of vibration. Now according to classical 

notions the frequencies of the emitted radiation (light) are 

identical with the frequencies of vibration in the emitting 

system. By assuming one wave-length (as given by observation) 

JSficholson was able to calculate others quite correctly and even 

228 
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to predict correctly the wave-lengths of spectral lines which had 

not yet been observed. Finally he made a mo,st important dis¬ 

covery, namely, that the angular momentum of the atom was 

an integral multiple of /z/27r. This enabled him to calculate 

wave-lengths absolutely.* 

It was a great piece of work which has undeservedly fallen into 

oblivion and one cannot doubt that Bohr’s successful theory of the 

hydrogen atom which followed soon afterwards owes much to it. 

balmer’s series 

The spectrum of hydrogen, caused to glow by sending a 

current through the gas at low pressure, is characterized by a 

prominent series of lines called balmer’s series after a Swiss 

schoolmaster of that name who, in 1885, discovered that the 

wave-lengths of the lines in the series could be represented by the 

following formula: 

X == 5645* G X-, 
72* - 4 

in which n is any integer greater than 2 and the unit of length 

is the Angstrom (10“'® cm.).*]* He found this formula quite 

empirically, by trial and patience. Rydberg expressed it so as to 

give wave-numbers, i.e. 1/X, thus: 

1 4^1 1 

” X 5^^ \¥ ~ W’ 

or, on multiplying by 10®, 

v'- 109,720 

when lengths are measured in centimetres. This is usually 

written 

R 
V2* 72*/ 

The constant 109,720 is called rydberg’s constant, but this 

term is also used for its product with c, the velocity of light, i.e. 

for 

109,720 X 5 X lOio, 

• J. W. Nicholson; Monthly Notices, R.A.S., 72, p. 679 (1912). 
f It will be noticed that the wave-lengths have the lower limit 

5645-6 A.U. 
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which must replace 109,720 when we wish to calculate frequen¬ 

cies instead of wave-numbers. 

W. Ritz, who developed a spectral theory of his own,* con¬ 

jectured that the wave-numbers (and consequently also fre¬ 

quencies) of all spectral lines can be expressed as differences of 

terms which are characteristic of the emitting atom. This 

conjecture, which is suggested by Rydberg’s expressions for 

wave-numbers, has been confirmed by all subsequent observation 

and is now known as Ritz’s COMBINATION PRINCIPLE. In the case 

of hydrogen these SPECTRAL TERMS take the simple form: 

Rln\ 

where R is Rydberg’s constant and /z is a positive whole 

number. 

BOHR’S THEORY OF THE HYDROGEN ATOM 

Niels Bohr (1885- ), Professor of Theoretical Physics in 

Copenhagen, like Nicholson before him, assumed a model of the 

emitting atom which was 

suggested by Rutherford’s 

general notion of atomic 

structure. He assumed for 

hydrogen a massive central 

nucleus, now called the PRO¬ 

TON, with the elementary 

positive charge and a single 

electron travelling round it 

in a circular orbit (Fig. 

XVI—1). 

Before describing this the¬ 

ory of Bohr’s, some simple 

general considerations may 

be helpful. We shall, for 

simplicity, confine our attention to systems with one degree of 

freedom, though the important features which I shall try to 

illustrate by reference to systems of one degree of freedom can be 

generalized to apply to many systems with several degrees of 

• W. Ritz: Ann. der Phys.^ 25, p. 660 (1908). 
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freedom.* In the case of simple harmonic motion we have seen 

in Chapter XIII that 

E= Jx V, 

E is the energy of the simple harmonic oscillator, v its frequency 

and J is the phase integral, J pdq, equal in this case to the area 

of the ellipse of Fig. XIII—3. Hence 

dE 

57" 

This applies generally to conservative periodic systems of one 

degree of freedom. We are now speaking according to the 

classical (pre-quantum) theory and according to this the waves 

emitted by such a system have this frequency, or, it may be, 

integral multiples of it. So the frequency of the emitted waves 

is given by 
dE 

V = — X 5, (XVI-1) 
dJ 

where s is an integer. Now let us examine the modification 

which the simplest form of quantum theory introduces. We may 

write 
^E 

af: = — X A/ 
A/ 

where A£ is the energy emitted by a system in consequence of a 

“quantum jump”. But since J is always equal (in the older 

quantum theory) to 

Integer X A, 

so A/, the change of J corresponding to AJ5J, must be equal to 

s X h 

where s is some integer—positive or negative. Therefore 

AE 
AE —-X s X h, 

AJ 

Now Bohr adopted the hypothesis that the energy, A£, 

emitted in the form of light waves in consequence of a quantum 

jump, must be equal to 

Av, 

where v is the frequency in the emitted light wave. So we may 

write 

• Fide section on Wilson-Sommerfeld quantum conditions. 
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or 

Av 
AE 
- X s X h, 
AJ ’ 

AE 
V == - X s. 

AJ 
(XVI—1a) 

Compare this statement with (XVI—1) and observe the close 

correspondence between the classical and the older quantum 

theory. It constitutes the basis of Bohr^s correspondence 

PRINCIPLE to which I shall refer again later. 

Now turning to Bohr’s model (Fig. XVI—1), the kinetic 

energy of the electron can be shown, indeed very simply, to be 

equal to 
2Tz^me^ 

72 

and in this case J has a very simple form: it is equal to 

mv X 27rr, 

and it is immaterial whether we regard it as momentum times 

circumference or as 2n x angular momentum.* Moreover the 

whole energy is numerically equal to the kinetic energy, if we 

ignore a conventional constant. Therefore we may write for the 

whole energy: 
2Tz^me^ 

E ==- (XVI—2) 

numerically. 

There are two kinds of physical constants: {a) those like m and 

e in (XVI—2) which characterize the parts or the structure of an 

atom or other physical system, and {b) those like energy and 

momentum which may be changed by contact with external 

systems. Now it was part of the method of the old quantum 

theory to express the constants (b) in terms of the phase integrals 

J (of which there are as many as the system has degrees of 

freedom). Formula (XVI—2), for example, expresses the energy 

of Bohr’s hydrogen atom in this way and its angular momentum 

is simply Jj2Tt. Now the quantum theory makes 7 = /i/i (n is a 

positive whole number).j* Thus (XVI—2) becomes 

• In this calculation I have assumed, as did Bohr in his first paper, for 
simplicity, that the centre of mass of the system is actually in the 
nucleus. 

I Note that the condition 7 =« nh, as applied here, is simply that of 
Nicholson, namely, angular momentum is equal to nhl2T:. 
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E=: 

therefore E can only change discontinuously, due to the 

sudden changes of n from one whole number to another (quan¬ 

tum jumps). Now Bohr, as we have seen, adopted the hypothesis 

that any such discontinuous change of the energy, E, is equal to 

/zv, where v is the frequency of the emitted (or absorbed, as the 

case may be) radiation. Consequently 

2^1^ me^ 

or 

2tz^t U± _ -Ly 
\/2i2 

(XVI—5) 

We notice that this formula becomes identical with Rydberg’s 

form of Balmer’s formula when we replace by 2—provided of 

course that 2tz^mc^jh^ has a numerical magnitude which enables 

us to identify it with Rydberg’s constant, R. That this is actually 

the case was one of Bohr’s greatest triumphs. When we sub¬ 

stitute in it 

m = 9x 10“gramme, 

e = 4*8 X 10”^® E.S. units, 

and/x — 6*6 X lO'^^erg X sec.. 

we get a result which is miraculously close to the observational 

value, that is, approximately, 

109,700 X 5 X 10i*> 

or 5*29 X 10^®. 

We are dealing now, of course, with frequencies and not with 

wave-numbers.* The spectral terms, Rjn^^ of hydrogen, dis¬ 

covered of course before Bohr’s theory was developed, indicated 

—as does also the formula (XVI—5)—other series of lines which 

were to be expected and which were indeed observed in the 

hydrogen spectrum: 

Lyman’s series, represented by 

•N. Bohr: Phil. Mag., 26, pp. 1, 476, 857 (1913). 
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Paschen’s series, 

Brackett’s series, 

V =r-- r(1. - J-Y « 5, 6, 7 . . . 
\4s nV’ 

There is no end to them, except what is determined by the 

practical questions of suitable conditions for their excitation and 

means of observing them.^ 

THE HELIUM ATOM 

Naturally Bohr turned next to helium and assigned to its 

nucleus a double positive charge, wdiile assuming two planetary 

electrons. Since the atomic weight of helium is approximately 

four times that of hydrogen, Bohr assumed its nucleus to consist 

of four protons and two electrons^ the latter have negligible 

mass and bring the net positive charge down to two units. This 

view of the helium nucleus has been slightly modified in recent 

times as we shall see. The case of an ionized helium atom— 

ionized in such a way that it retains one of its two planetary 

electrons—is of special interest. The atom is now very like a 

hydrogen atom and we can calculate the kinetic energy of the 

planetary electron in the same way as that of the hydrogen 

electron. The difference lies in the fact that the nuclear charge 

is now two units, so that the of (XVI—2) is replaced by 

2 X 2 X or 4 X and the energy of the atom is expressed 

ty 

or 

2-K^Tn2^e^ 

2^Rh 

(XVI--4) 

when we replace J by nh and introduce Rydberg’s constant. 

More generally, when the nuclear positive charge (atomic 

number) is Z times that on a proton, and the atom is ionized to 

•Lyman: Astrophy's, Journ.j 19, p. 667 (1908); Paschen: Ann, der 

Phfs., 50, p. 935 (1916). 
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such an extent that only one planetary electron remains, then 

numerically 
Z^Rh 

E =-. (XVI—4a) 

Thus in the case of the ionized helium, it is obvious that we 

may expect spectral series resembling those of liydrogen. Thus 

/-L -1\ V « X 4{ 

or, as we may write it. 

R{ 

The particular case ~ 4 yields a series some of the lines of 

which are identical (apparently—a certain very small difference, 

with an important significance, will be discussed later) with those 

of Balmer's series. In fact 

and when == 6, 8, 10, . . . we have in fact the Balmer lines^ 

but there are other lines corresponding to n = 5, 7, 9, . . . . 

These latter, along with the Balmer lines, were actually observed 

by Pickering in the spectrum of the star ^ Puppis in 1896, and 

they were all naturally ascribed to hydrogen at that time.* 

A. Fowler (1868-1940), a distinguished astronomer and 

spectroscopist and, in his youth, assistant to Sir Norman Lockyer, 

pointed out that Rydberg’s constant had a slightly different value 

for different elements. Thisj* resulted in another great triumph 

for Bohr. It will be remembered that, as indicated in Fig. 

XVI—1, the mass of the nucleus has been assumed to be so 

enormous by comparison with that of the electron that it can be 

regarded as remaining at rest in the centre of the circular orbit 

of the electron. Actually it rotates in a very small circular orbit 

and Rydberg’s constant, as Bohr clearly appreciated, requires a 

correction. 

The value we have ascribed to it should be multiplied by 

M/(M+ m), 

♦ They were observed to have the same limit as the Balmer lines of 
hydrogen. 

f A. Fowler: Bakerian Lecture, 1914. 
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where M and m are, respectively, the masses of the nucleus and 

the electron. When the observational values -^^hydrogcn 

^helium compared, it is easy to get the ratio of the masses of 

the proton and electron. The spectroscopic values of the R's yield 

about 1845 for this ratio, which is quite near to what is given by 

the ejm measurements for the electron and for a hydrogen ion. 

X-RAY SPECTRA AND ATOMIC STRUCTURE 

In 1912 Max von Laue (1875- ) suggested that the fine 

grained regularities in a crystal might serve for X-rays as an 

ordinary grating does for light. It seemed clear that if X-rays 

were an undulatory phenomenon like light, the wave-lengths 

involved would be very short and would require a regular 

structure whose spacings were much more minute than any 

artificially constructed grating could provide. His suggestion 

was confirmed experimentally by his pupils Friedrich and 

Knipping, and was followed up by Sir William H. Bragg (1862- 

1942) and his son, W. L. Bragg (now Sir Lawrence Bragg 

(1890- ), who constructed the earliest X-ray spectrometer. 

At first they used an ionization chamber for detecting diffracted 

X-ray beams, and X-ray spectral ‘Tines” were indicated by sharp 

increases in the ionization current. It is rather remarkable that 

the elder Bragg, who had spent several years over experiments 

which seemed to demonstrate the corpuscular character of 

X-rays, should be the first to measure the wave-length of an 

X-ray beam. But Sir William Bragg turned his later attention 

rather to the use of X-rays for the investigation of crystal struc¬ 

ture than to the examination of X-ray spectra, or their use for 

elucidating atomic structure. 

It was naturally expected that the examination of Barkla’s 

A, L, Af, etc., radiations would throw light on atomic structure 

and this kind of investigation was first undertaken by H. G. J. 

Moseley, who produced the earliest photograph, I believe, of an 

X-ray spectrum which exhibited lines and looked somewhat like 

the spectra that the old spectroscopes produced with visible 

light.* He began with the K radiation of a number of different 

•Moseley: PhU. Mag., 26, p. 1024 (1915); 27, p. 705 (1914). 
Moseley lost his life in the Dardanelles campaign during the first world 
war. 
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elements and found that the first line, called ifa, of a large 

number of elements obeyed the following formula: 

V = f/l(Z - s)S 

V being the frequency, i.e. c divided by the measured wave¬ 

length, Z is in fact the atomic number of the element, and s a 

small number near unity. It is easy to interpret this formula. 

If we make 2—1 and ignore the 5, it is identical with the first 

line of Lyman’s series for hydrogen. In fact the first line of 

Lyman’s series is expressed by 

The lines of Lyman’s series are due to electron jumps from 

orbits with quantum numbers 2, 5, 4, etc., to the innermost 

orbit of quantum number 1. Barkla’s L radiation is like Balmer’s 

series^ the first line is due to a jump from n ^ '5 to n = 2. The 

differences are due to the fact that Z = 1 for hydrogen, while 

for copper, for example, Z — 29^ and of course, in the case of 

hydrogen, 5 — 0. Turning again to the example of copper, its 

first K line, or j^a as it is labelled, is due to the fact that an 

electron in an orbit for which n ~ \ has been removed by some 

kind of violence—e.g. a primary beam of X-radiation—and in 

consequence an electron jumps from an orbit for which n ~ 2 

into the n = 1 orbit. All the rest of the electrons have hardly 

any influence on this happening. They resemble the charge on 

the outside of a sphere which produces no field in the interior. 

The jumping electron is affected only by the charge Ze on the 

nucleus, or, to be exact, it is only very slightly influenced by the 

27 remaining electrons of the copper atom. It is this slight 

influence which the SCREENING CONSTANT s represents. 

THE IMPACT ON BOHR’S THEORY OF THE WILSON-SOMMERFELD 

QUANTUM CONDITIONS 

In the simple case of an electron travelling round a nucleus 

the orbit is in general elliptical and there are two phase 

integrals, and the former is the product (or the sum of 

products): 
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(Radial momentum) x (Increment of radius vector), 

the latter 

(Angular momentum) x (Increment of angle), 

and (XVI—2) is just a particular case of the more general 

271 
E =-. 

(A + 
The eccentricity of an orbit—let us call it e—conforms to tbe 

rule 
1 - 

and, as Sommerfeld and the present writer showed, 

1 - 6^ - + ^2)% (XVI—5) 

since and are replaced by Uih and n^h.* We might describe 

an orbit for which the two quantum numbers are ana /Zg as 

an TZi, TZg orbit. Bohr preferred to label such an orbit in rather a 

different way: he used the letter n for the wSurn + ^2 

letter k for and called the orbit an rif^ orbit. Thus an orbit 

which was originally described as a 3, 2 orbit—radial quantum 

number = 3, and angular quantum number /Zg —Bohr 

described as a Sg orbit. It is a convenient mode of aescription, 

since the energy is practically determined by the sum 

and not very much influenced by the individual values of 

and /Zg^ indeed, in the case where there is only one electron orbit 

(hydrogen) the energy, as we have seen, is fixed exactly by the 

sum -h Wg, 

GENERAL DESCRIPTION OF ATOMIC STRUCTURE 

Perhaps the best way to describe the general scheme of atomic 

structure, the discovery of which is mainly due to Bohr, is to 

begin by studying a few of the atoms in the order of their atomic 

numbers. An undisturbed hydrogen atom has a single orbit, 

i.e. 72^ = 0 and = 1. Its nucleus is the proton, a particle with 

a single unit of positive charge. A helium atom has a nucleus 

approxim ately four times as massive as the proton ^ but a net positive 

• W. Wilson; Phil, Mag,^ 51, p, 156 (1916). 
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charge of two units. This has been established not only by the 

concordance of the lines in the helium spectrum with what 

Bohr’s theory predicted, but also by direct experiment. Ruther¬ 

ford and his pupil Geiger counted the a particles (Sir William 

Ramsay and F. Soddy demonstrated that they are nuclei of 

helium atoms) passing through a small aperture into an ioniza¬ 

tion chamber and measured the total charge they carried. Their 

apparatus was the first geiger counter. To account for the 

mass 4 and the charge 2 it was formerly thought that the helium 

nucleus was made of 4 protons and 2 electrons. The sub¬ 

sequent development of quantum mechanics made it difficult 

to understand how an electron could exist in a nucleus, and when 

another particle, almost exactly like a proton, but with no 

charge, the NEUTRON, was discovered by Sir James Chadwick in 

1932, it seemed obvious that the helium nucleus must consist of 

2 protons and 2 neutrons. Round this are two electron orbits 

in the undisturbed or unexcited helium atom. The next element 

in order is lithium, atomic number 3. Its nucleus has 3 units of 

positive charge and it has 3 electrons in orbits, two of which are 

like the helium orbits, i.e. they are orbits, while the third 

orbit is a 2^ orbit. Helium, first noticed as present in the sun, 

was discovered as a terrCsStrial element by Sir William Ramsay 

and Sir William Crookes in the mineral cleveite. It is a very 

inert gas and does not take part, so far as I know, in any chemical 

reaction. The significance of this, in terms of our atomic theory, 

is that the two orbits are an exceedingly stable structure. 

Exceedingly stable atomic structures, comparable with that of 

helium, are repeated among the atoms of elements of higher 

atomic number, the next one being the inert gas neon. This 

element is followed by sodium, which like lithium has an 

electron orbit, in this case a 3i orbit, outside the stable structure 

of ten electron orbits which characterize the inert gas neon, and so 

we get some insight into the significance of the fact that the two 

elements, lithium and sodium, are extraordinarily similar. As 

we proceed further we find another stable configuration of 

electron orbits characterizing the atom of the inert gas argon and 

the following element, potassium, has an electron orbit, a 4^ 

orbit, thus resembling lithium and sodium. 

Originally, when it was still not known how the various elec¬ 

tron orbits were distributed in the atoms Bohr made the tentative 
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supposition that the two helium orbits were followed by four 2^ 

orbits and four 22 orbits, whereas facts discovered later required, 

as shown in the table, two 2^ orbits and six £3 in the completed 

system of L orbits. This was first suggested by E. C. Stonor, 

now Professor of Theoretical Physics in the University of Leeds, 

mainly to account for the peculiarities of X-ray phenomena, and 

independently by the American Main Smith, on chemical 

grounds. It is not possible to explain fully here just why the 

eight L orbits should be made up of two 2^ orbits and six 2^ 

orbits, but part of the explanation may be indicated. It is based 

on a principle due to W. Pauli,* according to which only one 

electron orbit in the atom can have the same set of quantum 

numbers. Associated with this is a notion called the SPIN of the 

electron. The possibility that an electron is a rotating structure 

has been suggested by many of the investigators of atomic 

problems in this century, by Voigt, Max Abraham, Ritz and 

Nicholson. It is also of special interest to-day that H. S. Allen, 

Professor of Natural Philosophy at the University of St. Andrews, 

made the suggestion in 1914, in a discussion of atomic structure 

at a meeting of the Royal Society, that the core of the atom 

might be a rotating sphere of positive electricity, or possibly 

the electron itself might be a rotating sphere of negative elec¬ 

tricity, f The suggestion in regard to the electron had to be taken 

seriously when the Dutch physicists, Uhlenbeck and Goudsmit, 

showed that it appeared to resolve difficulties connected with the 

fine structure of spectral lines and promised to solve the problem 

of the anomalous Zeeman phenomenon. J 

Broadly speaking, the need for assuming a spinning electron 

is that it may have the magnetic moment ehj^nmc (e expressed 

in E.S. units). With this assumption an electron orbit has four 

quantum numbers associated with it: 

Tz, /, m, and s, 

where n is Bohr’s total quantum number, I = k — 1, m is the 

component of I in the direction of s, and $ measures the spin 

♦ Pauli: Zeits. fiir Physik,, 5l, p. 765 (1925). 
f H, S. Allen: Nature, 92, p. 715 (1914); PhiL Mag., 29, p. 714 

(1915). 
JUhlenbeck and Goudsmit: Naturw., 15, p. 955 (1925); Nature, 

117, p. 264 (1926); Zeits, fiir Physik,, 55, p. 618 (1926). 
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momentum (spin momentum = shj2n). Strangely enough s has 

the values + i — 2* 

Let us combine this with Pauli’s principle—^called the EX¬ 

CLUSION PRINCIPLE. We ask how many Ij orbits are possible. In 

this case we have 

n I m s 

1 0 0 + ^ or — ^. 

There are only two of these orbits therefore, since the exclusion 

principle requires that only one electron orbit may be associated 

with the same set of numbers. Now consider the 2^ and 2^ orbits. 

For the former we have the same result again, namely two 

orbits^ but with the 2^ orbits k — 2^ equivalent to / — 1. 41ie 

number in is necessarily an integer and may therefore have 

the values + 1? — 1 combined with each of these is 

5 = -j- J or ^ There are therefore 3x2 possibilities in 

all. When we ask about the orbits for which n == 3, we have as 

before two 3^ orbits and six 32 orbits, but in the case of the 33 

orbits, k == 3, therefore / — 2, and we have for m the possibilities 

m = + 2, 1,0, — 1, — 2, five of them, and each of the five 

may be associated with 5 = + or 5 = — 1: ten possibilities. 

Electron Orbits of Atoms 

Taking all the orbits for which n ~ 5^ the complete set is made 

up of two 51 orbits, six 32 orbits and ten 33 orbits. The accom¬ 

panying table gives the electron configuration of the first thirty- 

six elements. The numbers in the vertical columns represent the 

number of orbits in the atom of the specified type. It will be 

noticed that sometimes, as happens in the case of potassium, 

atomic number 19, that the conceivably possible electron orbits 

are not occupied in succession as we follow the atomic numbers. 

Thus the electron which is distinctive of potassium is not in a 

53 orbit, but in a 4^ orbit. The 33 orbits do not begin to get filled 

up till we come to scandium (21). Evidently the potassium con¬ 

figuration, namely two 1^, two 2^, six 2^^ two 3^, six 52 and one 

4i, is more stable than one with the last orbit replaced by a 33 

one. In fact there is no atom with the configuration two 1^, 

two 2i, six 22, two 3^, six 32, one Sg. Similarly when we pass 

beyond the inert gas krypton^ in whose atom the 4^ and 4^^ orbits 

Q 
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Element 
and 

Atomic Number 

K L M N 

ii 2, 2^ 32 Ss ^2 

H 1 1 
He 2 2 

Li 3 2 1 
Be 4 2 2 
B 5 2 2 1 
C G 2 2 2 
N 7 2 2 5 
O 8 2 2 4 
F 9 2 2 5 
Ne 10 2 2 6 

Na 11 2 2 6 1 
Mg 12 2 2 6 2 
A1 15 2 2 6 2 1 
Si 14 2 2 6 2 2 
P 15 2 2 6 2 3 
S 16 2 2 6 2 4 
Cl 17 2 2 6 2 5 
A 18 2 2 6 2 6 

K 19 2 2 6 2 6 1 
Ca 20 2 2 6 1 2 6 2 
Sc 21 2 2 6 2 6 1 2 
Ti 22 2 2 6 2 6 2 2 
V 23 2 2 6 2 6 3 2 
Cr 24 2 2 6 2 6 5 1 
Mn 25 2 2 6 2 6 5 2 
Fe 26 2 2 6 2 6 6 2 
Co 27 2 2 6 2 6 7 2 
Ni 28 2 2 6 2 6 8 2 
Cu 29 2 2 6 2 6 10 1 
Zn 30 2 2 6 2 6 10 2 
Ga 31 2 2 6 2 6 10 2 1 
Ge 32 2 2 6 2 6 10 2 2 
As 33 2 2 6 2 6 10 2 3 
Se 54 2 2 6 2 6 10 2 4 
Br 35 2 2 6 2 6 10 2 5 
Kr 36 2 2 6 2 6 10 2 6 
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are completed, to rubidium, this latter has its outermost electron 
in a 5^ orbit and, as yve can understand, its properties strongly 
resemble those of lithium, sodium and potassium.'*'' 

• Mucli more detailed information will be found in Professor Max 

Born’s Atomic Phy’dcs (Blackie & Son). He uses a different convention 

in describing electron orbits, preferring I to Bohr’s k, so that, for 

example, an orbit whicli I have described by Sg (as Bohr did), Born 

describes by 5, 1. 



CHAPTER SEVENTEEN 

THE CORRESPONDENCE PRINCIPLE AND ITS 

APPLICATIONS 

SPECTRAL SERIES AND SPECTRAL TERMS 

Spectrai- series were first observed almost a century ago and also 

series of distinctive types—sharp series, principal series, diffuse 

series, and so on. Some kind of order began to be recognized in 

them when Ritz published his COMBINATION PRINCIPLE, namely 

that the associated frequencies, or wave-numbers, are differences of 

terms wliich are characteristic of the emitting atom or molecule. 

On the other hand, if we take any two spectral terms of an ele¬ 

ment and subtract one from the other, the result does not always 

represent the wave-number (or frequency) of an observed 

spectral line and certain SELECTION RULES were developed which 

indicated what pairs of spectral terms yielded observed fre¬ 

quencies, and the atomic terms were classified as 5, /?, of, etc., 

terms. One of Bohr’s most important discoveries was that these 

various types of term were to be associated with specific values of 

the quantum number k—later replaced by / -|- 1. For s terms 

/c = 1 (/ = 0), for p terms /r = 2, and so on. Differences between 

two different 5 terms, or between two different p terms, do not 

for example represent observed wave-numbers. Bohr introduced 

order into these perplexing things by his CORRESPONDENCE 

PRINCIPLE, It is based on the equations (XVI—1) and (XVI—1a) 

and their generalization. Each frequency as it would be given 

by the classical theory can be associated with a similar quantum 

formula. Now one weakness of the old quantum theory lay in 

the fact that it gave no indications about the possible values of the 

whole numbers, s in (XVI—1a), and A A:, the change in k during 

a quantum jump, is perhaps the most important of these^ 

whereas the classical theory is quite definite about them. It 

requires that A A: must be -y 1 or — 1. Now Bohr adopted in the 

quantum theory (where this proved insufficient) whatever the 

classical theory laid down for the corresponding frequency. He 

244 
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was thus led to suppose that s terms are associated with orbits for 

which k 1, p terms with orbits for which k = 2, d terms with 

orbits for which A = 5, and so on, and the correspondence prin¬ 

ciple allowed only those quantum transitions for which, as we 

have seen, Ak = -f- 1 or — 1, for instance from a p orbit to an 

s orbit. 

THE STARK EFFECT 

When emitting hydrogen atoms are subjected to a strong 

electric field each spectral line of the ordinary spectrum appears 

split up into a number of lines which are symmetrically situated 

with respect to the position of the original line. This was dis¬ 

covered by Johannes Stark (1874- ) and independently by Lo 

Surdo.^ Its explanation was one of the great triumphs of the 

quantum theory. It will be remembered that the general 

method of the old quantum theory was to proceed according to 

classical principles, using suitable co-ordinates, and express tlie 

energy in terms of the phase integrals 7, of which in this case 

there are three. Finally each / is replaced by the product of an 

integer and h. The mathematical problem involved is a par¬ 

ticular case of the problem of a particle attracted to two fixed 

points (under the inverse square law of force) and was solved 

by the great Konigsberger mathematician C. G. J. Jacobi more 

than a century ago.*j* The particular case is that in which 

one of the fixed attracting centres is at infinity. P. R])stein 

(1875- ) successfully calculated the frequencies by expressing 

the energy of the system atom plus external field in terms of the 

of (XIII—10a) and substituting for each of them the product 

Integer X h, 

Karl Schwarzschild (1875-1916) also achieve^d the same result 

as Epstein independently.J His solution of the problem has a 

certain distinction: he showed that the /’s may be made to 

* Stark: Ber. Akad., 40, p. 952 (1915); Lo Surdo: Accad. Lincci^ 22, 
p. 664 (1915), 52, p. 82(1914), 

f Jacobi: orlesungen iiber Dy-namik^ (Berlin Georg Reimer). It will 
be found on page 221 of the edition of 1866. 

JK. Schwarzschild: Ber, Akad. (1916); P. Epstein: Ann. der Pity's., 
50, p. 498 (1916). 
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function as p's and that instead of the q's a simpler type of 

variables, called angle variables, can be used.* 

Kramers has shown that the intensities of the components into 

which a spectral line is resolved in the Stark effect are well 

given by the corres]X)ndence principle while their state of 

polarization is exactly predicted by it. 

THE ZEEMAN EFFECT 

Faraday (1791-1867) was aware of the existence of some 

relationship between light and electromagnetism and tried to 

observe (about 1862) a conjectured influence of a magnetic field 

on the spectral lines of a source of light. Ho was unsuccessful; no 

doubt because his magnetic field was not strong enough and the 

resolving pow'er of his spectroscope too low; but such an effect was 

observed in 1896 by P. Zeeman (1865-1945), a pupil of the great 

Lorentz.*}* Zeeman was able to observe a broadening of the D 

lines of sodium from a sodium flame in a strong magnetic field. 

Lorentz then worked out a theory of the phenomenon—indeed 

he possibly did this before Zeeman began his experiments— 

which predicted the details of the effect quite accurately in the 

simplest case. He imagined the light forming the spectral line to 

be due to a simple harmonically vibrating ion and calculated that 

it would split up, in a magnetic field, into three lines, all three 

being visible to an observer receiving the light along a direction 

perpendicular to that of the field, but only the two outer lines 

when the observer is looking along the line of the field. He also 

calculated correctly the frequency differences and the state of 

polarization of the three components. The middle line of the 

three, which can only be seen transversely, is in the position of 

the original line and polarized as if the vibrations of the ion were 

along the line of the field. The remaining two were polarized 

as zy the vibrations were perpendicular to the field, but circularly 

polarized when seen longitudinally. Zeeman confirmed this by 

observing that the broadened D lines were circularly polarized at 

their edges. Assuming that the broadened line really consisted 

of two (or three, according to the direction along which the light 

• Vide W. Wilson, Theoretical Physics, Vol. iii (1940), pp. 177, 178. 
f Zeeman: Amsterdam Akad., 5, pp. 181, 242 (1896), and Phil. Mag., 

43, p. 226 (1897). 



THE CORRESPONDENCE PRINCIPLE 247 

was received) he estimated the value of the ratio e/m for the 

vibrating ion, using Lorentz’s formula, and found it to be about 

1*6 X E.M. units and negative. Clearly it was an electron. 

Lorentz found that each of the two outer components differed 

in frequency fz^om that of the original line by the amount 

^i//47u/nc, where H is the intensity of the magnetic field, e is the 

charge on tlie ion (electron) in E.S. units, m is its mass and c as 

usual the speed of light in free space. 

Sir Joseph Larmor, after Lorentz, was also able to account for 

the Zeeman effect, though, as later investigations showed, it was 

only the simplest form of Zeeman effect which they were able to 

explain. At that time (in the late nineties) nobody seems to have 

contemplated that it might be necessary to modify the classical 

principles on which they based their work. Let us for a moment 

think of an electron revolving round a nucleus in an elliptical 

orbit and imagine a straight line through the nucleus perpen¬ 

dicular to the plane of the orbit. So long as there is no other force 

but the attraction between the nucleus and the electron the 

position of this line does not vary. When however we apply a 

magnetic field the electi'on orbit pi'ecesses round a straight line 

through the nucleus in the direction of the magnetic field. The 

direction of the former straight line always makes the same 

constant angle with that of the latter, but processes round it with 

the angular velocity where H means the intensity of 

the magnetic field, measured in the usual units, and e is the 

electronic charge in E.S. units. This angular velocity is called the 

LARMOR PRECESSION. When divided by 27r an angular velocity 

always gives ^frequency,, so we expect fi'om this a change in 

frequency, due to the magnetic field, equal to 

eHj2mc 2tz 

which is exactly what Lorentz found. 

In applying the quantum theory to the problem we note that 

—though it is not possible to give the full reasons here—the 

classical expression for the frequency has not the form corres¬ 

ponding to (XVI—1), but very happily when we introduce a more 

general momentum, which I represent by the symbol 77, and 

which I defined* as the vector sum 

* W. Wilson: Proc. Roy. Soc. A.^ 102, p. 478 (1922). 
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(Ordinary momentum) + (Product of charge on electron and 
electromagnetic vector potential) 

or 

and define a new J by 
n — p + eKj 

/ ^ J Ildq^ 

(XVII~1) 

(XVII—1a) 

then the old quantum rules can be applied and it turns out that 
the particular .9 that occurs in that / which is associated with the 
Larmor precession must have one or other of the three values 
+ 1, 0, — 1 in virtue of the correspondence principle. The 
quantum theory when applied in this way gives precisely the 
same result as does the classical theory. 

The vector 77 is prominent in Dirac^s form of electron theory,. 
It is also remarkable that it gives the equations of motion of a 
charged particle, in an electromagnetic field, the form of a 
GEODESIC and thus simplifies the expression of Kaluza’s form of 
relativity and indeed suggests it.**^ 

The more complex forms of the Zeeman effect are now 
accounted for in terms of the rather strange electron spin which 
we have encountered in the description of the electron orbits of 
atoms. Paschen and Back have shown that in sufficiently intense 
magnetic fields the Zeeman effect approximates to the simple 
phenomenon which the classical theory of Lorentz and Larmor is 
able to account for.j This is known as the paschen-back effect. 

W, Wilson: Proc. Roy, Soc, A,, 118, p. 441 (1928). 
I Paschen and Back: Ann. der Phys., 59, p. 897 (1912). 



CHAPTER EIGHTEEN 

QUANTUM MECHANICS 

SOME OBSERVATIONS ON PLANCK’S THEORY 

The quantum theory, as it appeared in 1900 and as it continued 
to be till about 1925, might be described, at least approximately, 
as the mechanics of Hamilton with which certain liberties had 
been taken; but while Hamilton’s mechanics was logically 
coherent and complete, the modified mechanics was far from 
having this character. The former rests on a principle, known as 
Hamilton’s principle, which is a generalization of the still 
older principle of least action of Moreau de Maupertuis 
(1698-1759). The thing called action is the most fundamental 
thing in mechanics, old or new, arid Planck’s theory may be said 
to have given it an atomic structure, the atoms of action having 
the magnitude h. 

THE NEW mechanics 

A coherent new mechanics began to develop about 1925 from 
the initial efforts of Werner Heisenberg in Germany and Prince 
Louis de Broglie (1892- ) in France. The outward aspect of 
the new mechanics, as presented by Heisenberg on the one hand 
and by de Broglie and Schrodinger on the other, was so different 
that a new problem was raised: the problem of accounting for the 
strange fact that two such different mathematical schemes should 
lead to such similar, indeed identical, consequences. This problem 
was solved by Schrodinger, who exposed the intimate inner 
relationship between the two forms of mechanics.* He com¬ 
pared this relationAip very aptly to that between electrostatics 
in its Faraday—Maxwell field form on the one hand and the older 
action at a distance form on the other. In the former the energy 
is regarded as continuously distributed through the dielectric 
medium; in the latter it is associated discontinuously, as it were, 

• E. Schrodinger: Ann. der Ph^s.j 79, p. 754 (1926). 
249 
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with the individual conductors. But both lead to identical con¬ 
sequences. Schrodinger’s theory resembles the Faraday- 
Maxwell form of electrostatics and Heisenberg’s the other form. 
The latter theory was named matrix mechanics, because the 
algebraical tilings called matrices were so conspicuous in it, and 
the former, with the study of which it is preferable to begin, 
WAVE MECHANICS. 

It was the fact that light behaves sometimes (photo-electric and 
Compton effects) as if it were corpuscular and sometimes (in 
diffraction and interference phenomena) as if it were undulatory 
in its nature, that led de Broglie to suspect that a beam of light 
consisted of both waves and corpuscles (photons), the energy of 
the beam being carried by the corpuscles, while the wave itself, 
de Broglie thought, in some way or other guided the photons. 
But he went further and made the brilliant suggestion which is 
best given in his own words: “But if for a century we have 
neglected too much the corpuscular aspect in the theory of light, 
in our exclusive attachment to waves, have we not erred in the 
opposite direction in the theory of matter? Have we not wi’ongly 
neglected the j)oint of view of waves and thought only of cor¬ 
puscles?”* He thus predicted what was later observed by 
Davisson and Germer, G. P. Thomson, Rupp and others, namely, 
the extraordinary phenomenon of the diffraction of electrons. 

STATIONARY PRINCIPLES 

In order to get some insight into the nature of the wave 
mechanics which we owe to the brilliant work of de Broglie and 
Schrodinger it is very helpful, if not essential, to understand the 
principle of the stationary path in geometrical optics and those 
of action in classical mechanics and the remarkable parallelism, 
or analogy, between them. So we go back to the seventeenth 
century and look carefully at the principle of P. Fermat (1601- 
1665), returning to the present century after halting for a short 
while in the middle of the eighteenth century to examine de 
Maupertuis’ principle and in the early nineteenth century to 
examine that of Hamilton. These principles have all of them one 
thing in common: they assign a stationary value to something. I 

• L. de Broglie: JVave Mechanics, p. 3 (translated by H. T. Flint 

(Methuen)). 
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have tried to indicate the meaning of ‘‘stationaryin the chap¬ 

ter on general relativity. Usually, but not always, it means 

greatest or least, i.e. maximum or minimum. Fermat’s principle 

assigns a stationary value to the length of an optical path, 

assuming this to be measured by using the length of the wave in 

the medium as a unit-^ so that, when the ray traverses two or more 

media, the unitwill usually be different in different media. In geo¬ 

metrical optics with which Fermat’s principle is conC/Crned, we have 

to do with a certain limiting case of the simple groups described 

in the section on characteristics of waves in Chapter VII. Such 

a group is practically monochromatic and the wave-length in it 

is very small by comparison with the dimensions of the group. 

Now the limiting case of geometrical optics is that in which a 

portion of a beam of light, though so small as to be practically a 

point, is still a simple group and the path it traces is a ray of light. 

The wave-length is a second order small quantity and diffraction 

patterns are too small to be observable. The length of the path 

(in our special sense) traced by such a punctual group, in travel¬ 

ling from some point A to another is equal to 

v' X q, 
where v' is the wave number, i e. the number of waves in one 

centimetre, and q is the length of the path in centimetres. Of 

course when v' varies from point to point we multiply each short 

bit, or of the path by the appropriate value of v' and add 

up the products to get 

+ V2'c?<72 + v'3J<73 + . . ., 
which is usually written 

(XVIII—1) 
J A 

To get the stationary value of this sum we inquire how it 

changes as we pass from a path to a neighbouring one. When it 

is stationary the neighbouring paths have the same sum. This 

condition of being stationary is usually shortly expressed by 

sf’dq = 0. (XVIII-lA) 

The S is a symbol which is often used to express the difference 

between two neighbouring things, and stationariness is deter¬ 

mined by the vanishing of such a difference. 
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Now turning to the case of the motion of a particle, de 

Maupertuis laid down the principle which he called the prin¬ 

ciple OF THE LEAST QUANTITY OF ACTION (principle of least 

action). If p means the momentum of the particle, i.e. m X t', 

the principle may be stated in the form: 

l^pdq^ 0. (XVIII—2) 
J K 

I am assuming for simplicity that the position of the particle is 

given by one co-ordinate, only. It can of course be stated in 

such a form as to apply to more complicated systems. We notice 

that v' in Fermat’s principle and p in de Maupertuis’ are 

analogous. But there is something more: in applying Fermat’s 

principle we assume the constancy of the frequency^ v. Similarly 

in applying de Maupertuis’ principle we have to assume the 

constancy of the energy^ £, of the system. So v in geometrical 

optics is analogous to E in mechanics. 

The following passage from de Maupertuis’ Essay de Cos- 

mologie (1751) is of great interest: Notre principe . . . laisse le 

monde dans le hesoin continuel de la puissance du Crdatur^ <k est 

une suite necessaire de Vemploi le plus sage de cette puissance. 

He was clearly aware of its great importance. It may correctly 

be described as a special case of a much wider principle which 

embraces those of Fermat and Hamilton and includes within its 

scope the geodesics of Einstein’s gravitational theory. The 

Germans liave claimed that it was known much earlier to 

Gottfried Wilhelm Leibniz. 

Sir William Hamilton’s (1805-1865) generalization of it in the 

earlier half of last century is really a remarkable prevision of 

Minkowski’s form of relativity as well as of wave mechanics. 

Our study of Minkowski’s space-time continuum suggests that 

we should add to 

pdq 
the additional term 

pjiwy 

which is the product of the TV component of momentum, 

and dw. Now 

dw 
Pw 

dt 

so that p^ = mfc, because dw = icdt. Thus p^ dw = mic X icdt 
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or dw = — mc^dt. Now mc^ is the energy of the particle wo 

are dealing with, Therefore 

pdq + p^ dw = pdq — Edt 

and the statement 

r® 
S {pdq - Edt) = 0* (XVIII—5) 

A 

is HAMILTON’S PRINCIPLE. The important condition attaches to 

it that when we compare neighbouring paths they must start 

simultaneously from A and end simultaneously at B. Hamilton 

derived his form of mechanics by consciously using the analogy 

between geometrical optics and mechanics and we may note here 

that the statement of Fermat’s principle may be widened as 

follows; 

sfV'rfQ - vdt) = 0. (XVIII—3a) 
J A 

This is quite analogous to Hamilton’s principle. The mechani¬ 

cal equations which Hamilton deduced from his principle (the 

CANONICAL equations) include among others 

Velocity = ^ ^, (XVIII—4) 
dt bp 

which we can verify by a simple example A body moving along 

a straight line under no forces has the (kinetic) energy 

£ = J mass X {velocity)^. 

or E = i — 
/ 

~~y 
m 

i.e. 
m 

and bE mv 

bp m m 

♦ Conservatism is, perhaps fortunately, deeply entrenched in human 

nature and Hamilton’s principle is still written in the form 

rB ■0, 
though (XVin — 5) is much more illuminating. 
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in accordance with (XVIII—4). A strictly analogous equation 

can be obtained from (XVIII—3a) namely, 

5v 
Velocity = —L =-. (XVIII—4a) 

dt bv' 

This is obviously the group velocity of the small point group 

which traces out a ray of light.* Perhaps it is needless to remark 

here that, instead of speaking of an analogy between mechanics 

and geometrical optics, we may alternatively speak of an analogy 

between mechanics and any wave motion of very short wave¬ 

length (or very big wave-number). 

CONCISE EXPRESSION OF THE ANALOGY 

If in a geometrical optical problem we multiply both wave- 

number, v', and frequency, v, by the same constant, which we 

may call A, and make the identifications 

P = 
E = /zv, 

we have a problem in mechanics (that is the old mechanics of 

Hamilton). It does not matter what precise value is chosen for h. 

The reason for this is that in a problem in geometrical optics—> 

in the sense in which I have been using the term—the precise 

value of the frequency, v, or of the wave-number, v' (= 1/X), is 

of no account. Indeed as we have seen, diffraction patterns are 

too small to be observed and wave-lengths or wave-numbers 

cannot be known. 

WAVE MECHANICS 

When wave-numbers and frequencies are not big enough or, 

to put it in another way, when wave-lengths and periods are 

no longer small, Fermat^s principle and the simple laws of 

geometrical optics fail us. We now have recourse to the differ¬ 

ential equation which describes a light wave, and its solution 

solves our optical problem. As we have seen, the laws of classical 

mechanics too have turned out to be inadequate for small 

systems (systems in which the momenta, and the energy, 

* Fide ^‘Origin and qf Wave IVtechanigs.” $cier\c^ progress^ 
52, p. 209 (1957), 
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are small), and the analogy or parallelism just described suggests 

strongly that we should proceed as we do with optics when wave- 

numbers and frequencies are small. The suggestion is that we 

widen the scope of the analogy so that it becomes an analogy 

between mechanics and optics in the widest sense of optics. It is 

thus that WAVE mechanics arises. 

DE BROGLIE WAVES 

In the case of a beam of electrons, for example, all travelling 

in the same direction with the same velocity, which, as we have 

seen, can be measured, there is a perfectly definite wave-length 

which can be measured by using a crystal to perform the function 

of the grating used to measure optical wave-lengths. The wave¬ 

length being known, its reciprocal v', the wave number, is also 

known, and in the relation 

Momentum = mv = Av', 

both m and v can also be determined. Thus a definite value can 

be assigned to h. It turns out to be identical with Planck’s h. 

These waves have a certain phase velocity, which I call u. De 

Broglie found the relationship between it and the associated 

group velocity, which may be called v. We may derive it in the 

following way: 

Phase velocity^ w = v/v' 

and our Hamiltonian analogy requires that 

(Energy) I {Momentum) = h^jhv'. 

So when we substitute Einstein’s expression (mass X c^) for 

energy, we find 

(mc^)j(mv) == v/v' = u. 

Thus 

u = c^Jv 

or 

uv = ca (XVIII—5) 

This is de Broglie’s relation between the velocity of a particle 

and the phase velocity of the associated wave. Such waves are 

now known as DE broglie waves. The velocity of the electron 

must of course be identified with the GROUP VELOCITY* of the 

• L. de Broglie: de Physique^ 3, p. 22 (1925), Theses, Paris 

(1924). 
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simple group wliich we associate with it, since it is equal to 

bEjbp “ b(/fv)/d(/zv') — bvjby'• 

So far we have thought of a particle, e.g. an electron, as in 

some way associated with a simple wave group. It is travelling 

with the same speed, as the group and we must therefore 

think of it as being at some point in the group and travelling with 

it. We are dealing now with a state of affairs in which we know 

the velocity of the electron; but not where it is situated, except 

of course that it is somewhere within the limits of the group and 

even the outline or boundary of the group is not sharply defined. 

If we think of this group approaching perpendicularly to a trans¬ 

mission grating (for example) it will be partly reflected and 

partly transmitted along directions given by (VII—5). In fact 

it will now have split up into several groups, and all we know, so 

far as the position of the electron is concerned, is that it is in 

07ie of these groups. It may be in that one proceeding in the 

direction 0 of (VII—5) and we may represent the distance nX 

by 7, so that 

g = nX 

or v'<7 = n. 

If we multiply both sides of this equation by h we get 

/zv' X 9 = nh^ 

i.e. p X q = nh. 

This is a simple case of the familiar quantum condition of the 

old quantum theory, i.e. a special case of 7 = (XIII—10 and 

XIII—10a). 

We may of course carry out some experiment to locate the 

particle, or electron, at some instant, with great precision. When 

this has been done we are forced to regard the wave group in 

which it is situated as very small—almost a point. But a very 

little reflection indicates that it cannot now be a simple group. 

We have in mind a particle of very small energy and momentum 

and consequently the frequency and wave-number (or frequencies 

and wave numbers) associated with it are very small and a simple 

group which is almost a point is necessarily characterized by an 

enormously big wave-number. In fact the very small group 

(sometimes called a wave-packet) representing a very precisely 

located particle is a superposition of an immense range of wave¬ 

lengths, i.e. an immense range of wave-numbers associated with 
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a great range of frequencies. We cannot now assign a unique 

momentum or energy to the particle. This rather cumbersome 

argument has led us to two things. It appears that when we 

know the momentum (or velocity) of the particle very accurately, 

we cannot know its position very accurately, and conversely, when 

we know its position very accurately, we cannot have accurate 

information about its velocity. The other thing is that the wave 

associated with a particle seems to be determined by the experi¬ 

ments that have been carried out on the particle. 

Turning back to the simple formula (VII—5a) and replacing 

the length Lhy we have 

A v' X A(7 1 

and A <7 (or L) means the distance across the group in the direction 

in which it is travelling. In other words it means the range of 

uncertainty of this co-ordinate of the particle the group repre¬ 

sents, and Av' is the associated uncertainty in the wave-number, 

which lies between v' and v' + Av'. Multiplying both sides of 

the last equation by /z, we have 

^p X (XVIII—6) 

This is Heisenberg’s uncertainty relation. It simply means 

that if we do experiments to determine simultaneously the 

momentum and position of a small particle (electron) the product 

of the two errors (or, better expressed, uncertainties) is of the 

order of magnitude of h. There is of course a corresponding 

relation, namely 

AE X Ar ^ 

connecting the uncertainties in the measured values of the 

energy and the time. 

schrodinger’s wave equation 

The simplest equation representing a wave of any kind may 

be written in the form 

^ cos 2n (v'7 — vO 

in which v' and v, the wave-number and frequency, are con¬ 

stants. This equation has a mechanical interpretation when we 

replace v' by pjh and v by Ejhj so that we now have 

27r 
^ cos — {pq - Et) (XVIII—7) 

R 
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This is the simplest kind of equation we can meet with in wave 

mechanics. It might, for example, represent a particle moving 

under the influence of no forces with constant momentum, p, 

and constant energy, E, By differentiating it twice with respect 

to q we get. 
524) 

so that 

and 

57^ 
P 'i' > 

52 

-is, in some sense, equivalent to- 
bq^ ’ ^ 

X 

2Tii 
X p, b 

bq h 

if we use the symbol = for ‘‘equivalent to’\ Similarly 

b _2ni ^ 

bt h 

(XVIII—7a) 

(XVIII—7b) 

Now Schrodinger’s differential wave equation is what we get 

when we replace p and E in the classical energy equation by the 

aid of (XVIII—7a) and (XVIII—7b).* 

The significance of the amplitude ^ of the wave (XVIII—7), 

assuming the case where it is representing an electron, may be 

described by saying that the probability that the electron is in 

some small volume, Q, is proportional to 

X Q, 
Since only relative values of are given, we may fix its 

absolute value so that the above expression is actually equal to the 

probabilityIn other words, we fix the absolute value of A by 

equating the sum of all the X over the whole volume 

occupied by the wave, to unity. 

In general the problems of wave mechanics are not so simple 

that we can detect immediately, as it were, some expression like, 

or corresponding to, (XVIII—7) for the wave function As 

in optical problems, we have to start out from the Schrodinger 

differential equation, already mentioned, which represents the 

• Erwin Schrodinger’s most important papers are contained in the 

volume entitled Abhandlungen zur FEellen Mechanik (Barth, Leipzig). 

An English translation is published by Blackie & Son. 

I This interpretation is due to Max Born, 
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problem. This equation is of the type the mathematicians call 

LINEAR. Such equations have the peculiarity that when we have 

found particular solutions of them (i.e. particular expressions for 

0) the sum of these is also a solution. The simplest of these 

particular solutions are sometimes called PROPER FUNCTIONS 

(sometimes, such seems to be the poverty of our language, eigen 

functions). In some of their properties they strongly resemble 

vectors and indeed the mathematicians in recent times have been 

accustomed to think of a special kind of space called a HILBERT 

SPACE, in which tliese proper functions play a part resembling, or 

related to, that of vectors in Euclidean or Minkowskian space. 

Each proper function is associated with proper VALUES which 

determine the possible values of the energy or momentum of the 

system to which they refer and thus replace the rules expressed 

by the Wilson-Sommerfeld formulae (XIII—10) or (XIII—10a). 

Wave mechanics is superior in various ways to the older quan¬ 

tum theory. It is logically complete and does not require the 

assistance of ad hoc devices, such as the correspondence principle, 

to anvswer the questions that are put to it. In one respect the 

form of wave mechanics developed by Schrodinger requires 

amplification: it retains its form only under the transformations 

of Newtonian mechanics, e.g. (XI—4), and not under the Lorentz 

transformation (XI—6) or (XI—8). In this respect it has been 

improved by P. Dirac, at least in so far as the theory of the 

electron is concerned. He makes use of the suggestion (XVII—1) 

namely that the ordinary momentum, p = mv^ should be 

replaced by the more general momentum 27 = /? + in which 

e is the charge on the electron and K is the vector potential.* 

His theory has at least two merits—it conforms to the special 

principle of relativity and it gives a reason for the existence of the 

strange spin which characterizes the electron. Moreover it pre¬ 

dicted the existence of the counterpart of the electron—the 

positively charged electron, or POSITRON^ as it has been named 

^ P. A. M. Dirac: The Principles of Quantum Mechanics (Clarendon 

Press, 1935). See also Max Born: Atomic Physics, p. 182 (Blackie & 

Son, 1947). 

f P. A. M. Dirac: “The Quantum Theory of the Electron/’ Proc. 

Roy. Soc, A., 117, p. 610 (1928), and 118, p. 351 (1928). Dirac origin¬ 

ally identified the positively charged particle, which appeared in his 

theory, with the proton; but in fact his theory predicted the exact 

counterpart of the electron namely the positron, as it is now called. 
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since and which was discovered later by the American physicist 

Anderson in cosmic radiation. 

MATRIX MECHANICS 

This form of quantum mechanics was discovered by W. Heisen¬ 

berg and appeared at first to be totally different from Schrodin- 

ger’s mechanics until the latter showed that they were equivalent 

to one another.* Important contributions have been made to it 

by Max Born, P. Jordan and P. Dirac. Its nature can only be 

indicated here. The proper functions of wave mechanics are 

now replaced by vectors in a space appropriate to the particular 

problem.*[■ To take a very simple case let us think of a two- 

dimensional space, like a Euclidean plane and a vector^ 

referred to rectangular axes of co-ordinates. Its components are, 

we may suppose, and We may form from it another 

vector iff by some linear operation or other j for example 

(XVIII—8) 
== ai/, + 

where a, b, c and d are numerical constants. Such an operation 

may be written, as it was originally, for brevity only, in the 

following way: 

E’ a* (XVIII—8a) 

The square bracket symbol is called a MATRIX. We may go 

further and get a third vector by a similar operation on y, 

thus shortly: 

^ [2 (XVIII-8B) 

and obviously we may write 

+■ - E h] E "]+• (xvin-sc) 
The multiplication of matrices is done by the same rule, 

which indeed the reader might find for himself, as in the case of 

determinants. 

• Heisenberg: Zeits.fur Physik, 33, p. 879 (1925). Schrodinger: Ann, 

der Phys,, 79, p. 734 (1926). 

t That is to say, in the Hilbert space appropriate to the particular 
problem, 
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For example, 

as indicated in (XVIII—8b). Therefore 

Vx — 

on substituting from (XVIII—8). Therefore 

Vx = +fo)^x + 

Similarly 

Vy = 

So we get 

fea+fc, eb+fdl 

\^ga + hc, gb-\-hdy 

This last matrix is the product of the two matrices in (XVIII—8c). 

It is important to notice that the product would, in general, be 

different if the two factor matrices were in tlie other order. 

Now" in matrix mechanics, momentum, energy and observable 

things in general are represented by matrices. They are also 

associated with proper values, as in wave mechanics, which 

represent just what we can observe. When the co-ordinates are 

suitably chosen, a matrix like 

becomes 

and A and B are its proper values. 

To bring out the intimate relationship betw^een this form of 

quantum mechanics and that of Schrodinger, let us consider the 

following sequence of operations. We start with Schrodinger’s 

wave function ^ as illustrated by (XVIII—7) and multiply it 

by any function (of /? or <7 or both), thus: 

z ^ 

where z means the particular function. We then differentiate 

the result by q thus: 

It is important to appreciate that this last statement means the 

result of first multiplying hy z and then differentiating the 

result by q. Now 

+ ^ 
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in which the brackets are meant to indicate that in dz/d(/ the 

differentiation is carried out on z only. Thus 

in which the symbol = means ‘‘is equivalent to’\ 

Now if we replace d/dq by (XVIII—7a) w’C get 

^ (pz -zp)=( (XVIII-9) 
h \6q / 

In matrix mechanics p and z are replaced on the left by suitable 

matrices, and differential quotients like hzjhq^ wherever they 

occur in classical mechanics, are replaced by tliis matrix ex¬ 

pression on the left. In particular when -c = </ we liave 

'^{pq-qp)^\, (XVII1-9A) 
n 

which is one of the fundamental statements of matrix mechanics. 

The unity, 1, on the right of (XVIII—9a) means of course the 

matrix, 1, with its diagonal elements each equal to 1 and all the 

rest equal to zero. Its essential characteristic is that when it 

multiplies another matrix, or is multiplied by it, the latter matrix 

is unchanged, just as with ordinary numbers ^ X\ = \Xa^ a. 



CHAPTER NINETEEN 

RADIOACTIVITY AND COSMIC RADIATION 

INTRODUCTORY OBSERVATIONS 

Some information about atomic nuclei was revealed by the study 

of spectra in the light of the older quantum theory, and, as we 

have seen, by Rutherford’s experiments on the scattering of 

a particles from which it appeared that there is in every atom 

a massive positively charged central structure of relatively very 

small dimensions. This central structure, or nucleus, is rather 

like a sun with planetary electrons revolving about it. It is 

sim})lest in the hydrogen atom whose nucleus is called the 

PROTON and carries the positive charge characteristic of hydrogen 

ions in electrolysis. The nucleus of any atom has a positive 

charge equal to a whole number times the charge on the proton. 

This whole number represents the place of the particular 

element in the periodic system of Mendel^eff and his con¬ 

temporaries. Theoretical investigations, more especially those of 

Bohr, have suggested that each atomic nucleus consists of a 

number of protons equal to the atomic weight of the element, or 

nearly so, with just so many electrons that the net positive charge 

on it is equal to the product of the atomic number and the protonic 

charge. This suggestion—^reminiscent of Dr, William Prout^s 

view—has had to be modified, as we shall see, in consequence of 

the experimental results of radioactive investigations. 

RADIOACTIVITY 

The phenomena of radioactivity were first noticed by Antoine 

Henri Becquerel (1852-1908) who observed that salts of uranium 

caused a photographic plate to be blackened when it was not 

exposed to light at alh Moreover he observed that the radiation 

from the uranium salt, which caused this blackening, was able 

to pass through very considerable thicknesses of wood and other 

263 
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materials opaque to ordinary light, just as X-rays would do.**^ 

He was followed by Marya Sklodowska, a native of Warsaw, who, 

on the advice of her husband, Professor Pierre Curie, studied this 

uranium radiation and tracked it down to the uranium atom. 

Becquerel had observed that his uranium radiation, like X- 

radiation, renders air conducting—produces ions in it—^and 

Pierre Curie devised a simple apparatus for measuring such 

ionization currents. With this apparatus Madame Curie exam¬ 

ined the pitchblende from Joachimstal, Bohemia (later Czecho¬ 

slovakia), and found that its radioactivity was greater than could 

be accounted for by the quantity of uranium it contained. This 

led her to the discovery and eventual isolation of the element 

RADIUM (1898). It is chemically related to the group of metals 

beryllium, magnesium, calcium, strontium and barium. To give 

some idea of the laboriousness of this piece of work it may be 

pointed out that a ton of the pitchblende yields less than a gramme 

of radium. 

ALPHA, BETA AND GAMMA RAYS 

Examination of the radiation from radioactive materials 

revealed three distinct types of rays. A thin sheet of tin-foil 

absorbs most of the radiation, as measured by its power to 

ionize air. What succeeds in passing through the tin-foil is much 

more penetrating and can be recognized to consist of two distinct 

types of radiation by absorption experiments. Rutherford named 

the three types a rays (the most easily absorbable), p and y 

rays, the last-named being much the most penetrating. They 

are most effectively distinguished from one another by the way in 

which they behave in a magnetic field. The a rays are very 

slightly deflected in a strong magnetic field and in a sense 

indicating them to be positively charged particles. The p rays are 

strongly deflected in a magnetic field in the sense which indicates 

them to be negatively charged particles. Indeed they were 

easily recognized to be electrons. The y Fays are not deflected at 

all. I The ratio for a particles turned out to be nearly one 

half that of a hydrogen ion. They have turned out to be the 

• Compt. rend., 122, pp. 420, 501, 689, 1086 (1896). 

I Ruthprford: Phil. Ma^., 5, p. 177 (1903). 
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nuclei of helium atoms, as Ramsay and Soddy proved.* * * § They 

carry twice the charge of a proton, but have approximately four 

times its mass. Rutherford and Geiger actually counted the 

number of a particles emitted by radioactive materials. Their 

apparatus, devised by Geiger, was the prototype of the Geiger 

counters now in use.*}* By dividing the total charge by the 

number of particles they estimated the charge on a single par¬ 

ticle. 

The Y rays emitted by radioactive materials are simply 

X-rays and consist to some extent of the characteristic X-radia¬ 

tions of the radioactive element,| as indeed we miglit expect, 

since a and p particles ejected from the nucleus are likely to 

knock out the element’s Z/, etc., electrons. Of course not all 

of the Y radiation consists of this characteristic radiation; some 

of it originates in the nucleus itself. 

RADIOACTIVE DECAY—ISOTOPES 

Sir William Crookes carried out some simple and illuminating 

experiments in the early days of radioactive investigalion.§ He 

noticed that, when he precipitated uranium from solution by 

means of ammonium carbonate and redissolved it in excess of 

the carbonate, a precipitate remained over which was photo¬ 

graphically very very radioactive. As we now know, this meant 

that it emitted p rays copiously. Crookes called it uranium X 

(Ur X). The original uranium had lost its photographic activity. 

Further investigation revealed that uranium (atomic mass 258, 

atomic number 92) is constantly emitting a particles and becom¬ 

ing a new kind of element (Rutherford and Soddy). This new 

element is the uranium X of Crookes. It emits p particles 

copiously. As Soddy pointed out,|| when an atom emits an a 

particle (which is simply the nucleus of a helium atom with the 

positive charge 2 corresponding to its atomic number) its charge 

• Proc. Roy. Soc., 12, p. 204 (1903); 73, p. 341 (1904). 

IE. Rutherford and H. Geiger: Proc. Roy. Soc. A., 81, pp. 141, 

162 (1908). 

JE. Rutherford and E. N. da C. Andrade: Phil. Mag., 27, p. 854; 

28, p. 263 (1914). 

§ W. Crookes: Proc. Roy. Soc., 66, p. 409 (1900). 

11 F. Soddy: Chemical News^ 107, p. 97 (1913). 
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is reduced by 2. In fact it becomes the atom of an element of 

atomic number 2 less than the original atomic number, and its 

atomic weight is reduced by 4 approximately. When an atom 

emits a p particle (charge minus 1) its atomic charge is increased 

by 1 ^ the element becomes a new element whose atomic number 

is 1 higher than the original value. In this case, however, the 

new element has the same atomic mass (or atomic weight, in the 

old terminology) as the original one from which it has been 

formed by the p ray emission, since the mass of a p particle is 

negligible. Soddy named elements which have the same 

atomic number (and consequently the same chemical properties)^ 

but different atomic masses (atomic weights) isotopes. Elements 

vsdth the same atomic mass and different atomic numbers—so 

that they are in fact different chemical elements—are named 

ISOBARS. Relative atomic masses, experiment has shown, are 

very nearly whole numbers when oxygen^—one ought to say 

ordinary oxygen—is taken to be 16. The reader will suspect 

already how it happens that the chemically determined atomic 

weight of the chlorine of the chemical laboratories is not a whole 

number, but 55*46. In fact it is a mixture of two isotopes whose 

atomic masses are 55 and 57 in the proportion of 5 of the former 

to 1 of the latter. 

This had been shown directly by F. W. Aston (1877-1945), 

who devised a very effective method of separating isotopes by 

subjecting their nuclei to the influence of an electric and a 

magnetic field.’**' His apparatus is called the mass spectrograph. 

The existence and proportions of the isotopes of chlorine are 

clearly indicated in the infra-red band spectrum of HCl. The 

two sorts of chlorine atom, having different masses, vibrate in the 

HCl molecule with slightly different frequencies and con¬ 

sequently the spectral lines in the band spectrum are double, 

their relative intensities indicating the proportion of CP® to 

CP7 to be 5 : 1. 

One of the most interesting isotopes is known as deuterium. 

It is an isotope of hydrogen of atomic mass 2.1 There is about 

one part of it in 4000 parts of the hydrogen in ordinary water. 

* F. W, Aston: Fhil, Mag., 38, p, 709 (1919); Mass Spectra and 

Isotopes (Arnold). 

I H. C. Urey, F. G. Brickwedde and G. M. Murphy: Phys. Rev., 40, 

p. 1 (1932). 
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It can be recognized by the doubling of the lines in the band 

spectra of hydrogen compounds. In ordinary water nearly all 

the molecules are HjO molecules, but some are HDO molecules 

(D represents the deuterium atom) and some DgO. The mass 

spectrograph has revealed the existence of still another isotope 

of hydrogen of mass 5. The chemical properties of HEAVY 

WATER (water consisting of DgO molecules) are just like those of 

ordinary water, but its physical properties—density, freezing 

point, etc.—are so different that deuterium seems almost like 

another element. 

One of the pioneers in the separation of isotopes by the aj)plica- 

tion of electric and magnetic fields, it should be mentioned, was 

Sir Joseph Thomson, to whose inspiration the successful work of 

Aston, as of many others in the Cavendish Laboratory, including 

Rutherford himself, was largely due. 

The atoms of uranium or any other radioactive element are 

constantly breaking down. This is better expressed perhaps as 

follows. In a mass of a uranium compound many atoms break 

down into Ur X during every second, but of course most of the 

atoms endure for a very long time. In the particular case of 

uranium most of its atoms endure for thousands of millions of 

years. One might infer this from the fact that there is so much 

uranium in the earth’s crust. The activity of uranium, as of other 

elements, is due to the occasional and seemingly accidental 

breaking down of individual atoms. The frequency with which 

this happens varies from one element to another. If we use the 

letter M for a quantity of a radioactive element and dM for the 

amount of it that decays in the short time dt^ then 

dM = ’kMdtj 

where X is a constant characteristic of the element and called 

its TRANSFORMATION CONSTANT.^ 

In other terms the rate of decay (expressed, for example, in 

• The formula is more usually expressed as 

--dM^’kMdt 
because mathematicians and those with mathematical instincts prefer 

to use the symbol d to represent only increments, a decrement being 

regarded as a negative increment. It easily follows that 

where Mq is the mass of the radioactive element at a certain moment 

and M is the mass of it still enduring when the time t has elapsed. 
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grammes per second) is proportional to the mass of the radio¬ 

active material. This is like the law of mass action in chemistry. 

The time taken for the mass of a radioactive element to diminish 

to one-half of its original value is called its HALF-VALUE PERIOD. It 

varies enormously for different elements. For uranium it is about 

five thousand million years^ for radon, the immediate product of 

the disintegration of radium, it is only 5‘85 days. The end result 

of the disintegration of uranium and of the resulting products 

appears to be lead (of which there are several isotopes) in one or 

other of its isotopic forms. Lead is always found in the neigh¬ 

bourhood of minerals containing uranium. 

Radioactive disintegration is always associated with generation 

of heat. A quantity of a radium compound, for example, con¬ 

stantly maintains a higher temperature than its surroundings, so 

that heat is constantly flowing out from it. This energy is not 

created. It represents simply the difference between the energy 

of the original radium, before its disintegration, and that of the 

atom of radon or its successors which have resulted from the 

demolition of the radium aton. 

ARTIFICIAL TRANSMUTATION OF ATOMS 

The a particles emitted by a particular radioactive substance, 

e.g. by radium, are characterized by having a definite range (for 

example, in air at normal pressure and temperature). This 

was first noticed by Sir William H. Bragg and R. Kleeman.* 

They measured the ionization produced by a particles after 

travelling various distances and found it to cease rather abruptly 

when the a particles had travelled a characteristic distance. 

This distance they called the RANGE of the particles. The 

range, in this sense, is not the actual distance they travel, but 

the distance they travel while still having enough energy to 

ionize the molecules of the air. 

Rutherford noticed the presence in air and in nitrogen gas, 

subjected to bombardment by a particles, a few particles of much 

longer range than that of the a particles. He had some reason to 

believe they were protons—^the charged nuclei of hydrogen 

atoms—and naturally came to the conclusion that these had been 

knocked out of the nitrogen atoms. He could definitely associate 

• W. H. Bragg and R. Kleeman: Phil Mag., 10, p. 318 (1905). 
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them with nitrogen.’*^ P. M. S. Blackett subsequently confirmed 

this with the aid of Wilson’s cloud chamber. In fact he produced 

photographs of individual collisions.*[■ What actually happens to 

a nitrogen nucleus may be expressed as follows: 

+ ,He^ = + itP. 

A nitrogen nucleus, mass number 14 and nuclear charge 7, is 

struck by a helium nucleus (a particle) mass number 4 and 

nuclear charge 2, with the result that an oxygen atom of mass 

number 17 and nuclear charge 8 and a proton of mass number 1 

and charge 1 are produced. Clearly the oxygen produced is an 

ISOTOPE of the ordinary oxygen. 

Since these remarkable experiments were carried out, the 

atoms of many elements have been broken down by bombarding 

them with rapidly moving particles and in many instances 

the resulting products #are radioactive—induced radioactivity. 

‘‘Broken down” is not always the appropriate expression. In 

the case of nitrogen, as we have seen, a heavier atom, 

built up from it. 

DISCOVERY OF THE NEUTRON 

About 1950 a very penetrating radiation, at first thought to 

be very hard y or X-rays, was obtained by bombarding beryllium 

with the a rays from polonium.J 

Irene Joliot, daughter of Madame Curie, and her husband, 

M. F. Joliot, noticed that, while this radiation passed easily 

enough through thick sheets of metal, it was strongly absorbed 

by substances like paraffin, which contains a lot of hydrogen, 

with the expulsion of protons. These peculiarities of the radiation 

proved that it was not y radiation.§ Investigations by J. Chad- 

• E. Rutherford: “Collision of a Particles with Light Atoms,” Phil. 

Mag., 37, p. 537 (1919), and 41, p. 307 (1921). “Artificial Disin¬ 

tegration of the Elements,” Nature, 109, p. 614 (1922). E. Ruther¬ 

ford and J. Chadwick: “Artificial Disintegration of Light Elements,” 

Phil. Mag., 42, p. 809 (1921); “Disintegration of Elements hy a Par¬ 
ticles,” Phil. Mag., 44, p. 417 (1922). 

f P. M. S. Blackett: “The Ejection of Protons from Nitrogen Nuclei, 

Photographed by the Wilson Method,” Proc. Roy'. Soc., 107, p, 349 

(1925). 

JBothe and Becker: Naturiviss, 18, p. 705 (1930), 

§ I, CbW Mr F- Joliot; CompU^ Rendus^ 194, pp. 873, 708 (1952). 
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wick (now Sir James Chadwick) indicated that this penetrating 

radiation consisted of uncharged comparatively heavy particles'* 

and this was confirmed by Norman Feather, now professor in the 

University of Edinburgh, with the aid of the cloud chamber. 

Later Chadwick succeeded in making an estimate of the mass of 

the new particle and found it to be almost indistinguishable from 

that of the proton. It is in fact a trifle greater than that of the 

proton. On the scale of oxygen =16, the proton has a mass very 

near to 1‘0076 while that of the neutron, as the new particle 

was named, is almost 1'009. Its discovery has modified our view 

of the constitution of atomic nuclei. Thus we now think of a 

helium nucleus as made up of 2 protons and 2 neutrons j not 

4 protons and 2 electrons. A carbon nucleus we believe to con¬ 

sist of 6 protons and 6 neutrons, not of 12 protons and 6 electrons. 

Quantum mechanics raises difficulties about electrons as nuclear 

constituents. The ejection of neutrons from beryllium under 

bombardment with a particles is represented by 

4Be® + gHe^ = 

The symbol represents the neutron—mass number 1 and 

charge 0. Neutrons are produced, together with nitrogen atoms, 

when boron is bombarded with a particles, thus 

+ ^He^ = ,Ni^ -t- oiiL 

BETA RAY EMISSION AND THE NEUTRINO 

Since there are, it is believed, no electrons in atomic nuclei the 

emission of (3 rays, i.e. the emission of electrons, must be a 

process in which they are, as it were, manufactured. It appears 

as if in the emission of an electron a neutron in the nucleus 

splits up into a proton and an electron. 

Measurements of the energy of ejected p particles which can¬ 

not be described here suggested rather strongly a conflict with 

the fundamental principles of conservation of energy and momen¬ 

tum. To save these principles Fermi (1954) suggested that the 

emission of a p particle is accompanied in general by the simul¬ 

taneous ejection of a neutral particle of very small mass which 

bad not hitherto been observed. The existence of this particle, 

called the neutrino, has seemed doubtfulj but quite recently 

• J. Chadwick: Nature, 129, p. 312 (1932). 
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(1942) experiments by J. F. Allen in the Cavendish Laboratory 

have confirmed it. He came to the conclusion that the beryllium 

isotope 460’, which is formed in consequence of bombardment 

of a lithium isotope with deuterium nuclei (deuterons) in 

accordance with 

gLi® + ^02 = + on% 

is transmuted to gLi’ by capturing one of its own K electrons^ thus: 

4Be7 + = gLiL 

The total momentum is unaffected by this process. If, for 

example, the moon were to fall to the earth their common centre 

of mass would not thereby be affected. So with 4Be’ when the 

circurnnuclear electron ^^e® falls into it^ but Allen noticed that 

the atom recoiled, thus indicating the ejection of a particle. 

This is probably Fermi’s elusive neutrino. Uncharged particles 

are necessarily difficult to observe. They are not attracted or 

repelled by atomic nuclei, or electrons—so long at any rate as 

they do not get so extremely near to them that forces of the 

mesouic order come into play. They are therefore very pene¬ 

trating. Moreover they ionize very little and are consequently 

difficult to observe by cloud-chamber methods. 

THE CYCLOTRON 

The artificial transmutation of atoms was achieved at first, as 

we have seen, by the use of naturally occurring high-velocity 

particles, namely a particles. The next step was the develop¬ 

ment of methods of giving high velocities (and energies) to 

charged particles of various kinds. The most successful of the 

devices for this purpose is the CYCLOTRON invented by E. 0. 

Lawrence, of California.* It is easy to describe how it functions. 

Think of a circular metal cylinder the height of which is not 

very great compared with its diameter. Imagine it to be cut in 

half to produce two D-shaped portions—they are called '‘dees”— 

as indicated in Fig. XIX—1. Perpendicular to the semicircular 

faces is a strong uniform magnetic field, produced by an enor¬ 

mous electromagnet, weighing, in the latest instrument, not 

♦ E. O. Lawrence and N. E. Edlefsen: Science^ 72, p. 576 (1930). 

Lawrence was awarded the Nobel Prize in 1940 for his work in develop¬ 

ing the cyclotron. 
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far short of 4000 tons, I believe. The dees are connected (see a 

and h in the figure) to the terminals of a high-frequency oscil¬ 

lator vnth an amplitude of five to ten thousand volts. Consider 

what will happen to a charged particle which is projected from 

a 

b 

Fig. XIX—1 

a point A near the middle with a suitable initial velocity, say 

perpendicular to the edges of the dees. It will travel in a circle 

and the line of separation of the dees cuts this circle along, or 

almost along, its diameter. The force on the charged particle, 

due to the field, is equal to Hev where H = intensity of field, 

e = charge on particle and v =E particle velocity. This force is 

balanced by the centrifugal force, mv^jr, r being the radius of 

the circle along which the charged particle travels. Therefore 

Hev = mv'^jr 

or 

rjv = mjeH. 

Multiply both sides by 2tzj thus 

2nrlv = 2TzmjeH, 

The left-hand side of this statement means the time taken by 

the particle to travel once round its circular path. Call it T. 

Therefore 

T:=2nmjeH (XIX—1) 

Notice that this is quite independent of the speed of the particle 

—unless indeed its speed is so great that the relativistic increase 

of mass with velocity becomes appreciable. Now let us suppose 

that the field intensity, Hj or, for that matter, the period of the 
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oscillator, to be adjusted so that this period is that of the oscillator. 
Then the charged particle will complete a circle in the same time 
as the oscillator’s period. If then it crosses the gap between the 
dees while the electric field is accelerating it, it will acquire a 
higher speed. The isochronism will not be affected by this and 
it will again reach the gap between the dees when the con¬ 
ditions are conducive to a further increase in its velocity. Con¬ 
sequently the charged particle, proton, deuteron or whatever it 
may be, has its speed progressively augmented. 

The cyclotron provides the most effective way of giving 
enormously high speeds to such things as portons, deuterons, 
helium nuclei (a particles), etc., speeds corresponding to many 
millions of ELECTRON VOLTS. An electron volt is the energy 
acquired by an electron (or any free particle with the electronic 
charge of 4*8 X 10“^® E.S.U.) in moving under the influence of 
an electric field from one point to another whose potential differs 
by a volt. It is easy to estimate it in terms of the erg. It is in 
fact 

4*8 X 10-10 X 1/500, 

since 1 E.S.U. of potential difference is equal to 500 volts. There¬ 
fore 

1 electron volt = 1-6 X lO-i^ erg. 

This is a very small amount of energy. Even 100 million 
electron volts is only 

1*6 X 10~^ erg, 

but a deuteron with so much kinetic energy will reach a velocity 
approaching lO^o cm./sec. At this speed the relativistic depend¬ 
ence of mass on velocity is beginning to manifest itself. 

The cyclotron cannot be used for generating velocities which 
are so great as to make the relativistic factor y = (1 — 
appreciably greater than unity. Another type of apparatus has 
therefore been devised (Kerst and Serber, 1941) which can 
generate enormous velocities in electrons. It is called the 
BETATRON. In some respects it is like the cyclotron. There is 
the same flat cylinder and perpendicular magnetic field, but the 
cylinder is not divided into two dees and no electric field is applied. 
The electrons move in circular paths, their centrifugal force 
being balanced by Hev^ while their enormous speed is given them 
by the electromotive force induced by the increasing magnetic 

s 
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flux (Faraday’s law). In this instrument the magnetic field 

intensity is not uniform. In order to keep the electron on a circle, 

the field intensity on the circle must be half the mean value of 

the inducing field intensity. 

Van de Graaff has invented an interesting method of producing 

high-velocity particles. It is based on the generation of an 

enormously high potential by charging up a large hollow metal 

sphere. Charges are conveyed on a belt into the interior of the 

sphere and contact made with it. The high voltage developed 

can be applied to accelerate charged particles. 

COSMIC RADIATION 

A very penetrating radiation comes to us from interstellar 

space. It was first noticed about the beginning of the century. 

C. T. R. Wilson observed that the leaves of a charged electro¬ 

scope gradually collapsed, even when the strictest precautions 

were taken to ensure insulation. It was naturally thought at first 

that the air in the electroscope was ionized by radiations from the 

earth due to radioactive materials. The investigations of Hess 

(1912), Kohlhorster (1914) and Millikan, however, gradually 

revealed that this radiation came from outer space and appar¬ 

ently from all directions. Its intensity was found to be the same 

during the night as during the day, so that the sun had no 

appreciable share in its production. It has been investigated by 

balloon ascents in which the observers carried electroscopes with 

them and also by sending up small unmanned balloons carrying 

suitable recording apparatus. These have shown that the 

intensity of the radiation—as measured by its ionizing power— 

at first diminishes as the height increases, reaches a minimum 

and then increases with the height. The primary radiation 

appears to consist of positively charged particles of great energy 

and penetrating power—they are probably protons. Their 

positive charge can be inferred from the effect on them of the 

earth’s magnetic field. The ionization due to it is weak at the 

equator and in low latitudes, but increases rather suddenly about 

latitude 49°. 

The primary particles, it has been shown, produce secondary 
particles: electrons, positrons and MESONS (/xcaos* s middle), 
the last-named having a mass somewhere between that of an 
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electron (or positron) and that of a proton. Both the positron and 

the meson were predicted before they were actually observed, the 

former, as we have already seen, by Dirac and the latter by a 

Japanese, Yukawa, to whom I shall refer again. A charged cos¬ 

mic particle can be recognized by the curvature of its track in a 

magnetic field, but unless it is known in which direction it is 

moving it is impossible to know what is the sign of its charge. 

Anderson thought of a simple and ingenious way of finding out 

the direction in which a charged cosmic particle moved through 

his cloud chamber. He placed a sheet of lead across the middle 

of it and observed cloud tracks indicating paths which traversed 

the lead sheet. These were more curved, in a magnetic field, on 

one side of the sheet than on the other—the greater curvature 

indicating smaller velocity. And the smaller velocity could only 

bo due, of course, to the reduction of the velocity of the particle 

in consequence of passing through the lead. Thus the direction 

of motion of the particle was indicated. In this way Anderson 

was able to recognize that some cloud tracks, which were exactly 

like those of electrons, were associated with a positive charge. 

Thus the positive electron, or positron, was discovered. The 

MESON is a particle of rather uncertain mass—perhaps 200 times 

that of an electron—which has been observed in cosmic radiation. 

Both positive and negative mesons have been observed and there 

is reason to believe that mesons are sometimes neutral. 

A remarkable phenomenon due to cosmic radiation was first 

observed by Blackett and Occhialini (1955). They noticed that 

occasionally a shower of tracks appeared which all started from 

the same point on or in the wall of the cloud chamber. These 

cloud tracks appear to consist of equal numbers of positrons 

and electrons. It is believed that their formation is effected in the 

following way. A photon of enormously high frequency in the 

cosmic radiation—Max Born speaks of it as an ultra y ray— 

strikes an atom and a very high energy pair, positron and elect¬ 

ron, is produced in consequence. Each of these in striking an 

atom generates an ultra y photon and each photon in its turn 

generates a pair (positron and electron), and so on, the energy 

of the pairs becoming of course progressively smaller. 

The origin of cosmic radiation is still unknown. 



CHAPTER TWENTY 

THE ATOMIC NUCLEUS 

MESON THEORY 

The positive charge on the protons in a nucleus must obviously 
tend to disrupt it. What is it then that prevents a complex 
nucleus, e.g. a carbon nucleus, from flying apart under the 
mutual repulsion of its protons? An explanation was suggested 
some years ago by the Japanese physicist, Yukawa.* In broad 
outline his theory is as follows. Both protons and neutrons carry 
a kind of charge—not to be identified with an electric charge, but 
analogous. In virtue of this they attract one another and we 
might tentatively suggest that the force holding together a 
proton and a neutron is equal to 

gijr^ 

where g is the “charge” on the proton and on the neutron. 
But the new kind of force is limited to the region occupied by the 
nucleus, so Yukawa made what I think was originally an ad hoc 

amendment: he assumed for the mutual potential energy of the 
particles 

U=g2e--Krlr, (XX-1) 

X being very big, 10^^ or 10^® cm.-^. The exponential makes 
the expression diminish very rapidly with increasing r, so that 
this new field of force is effectively confined to the nucleus. 

In a changing electromagnetic field electromagnetic waves are 
constantly being generated, in other words photons are being 
generated. In Yukawa’s field a new type of particle plays the 
part of the photon. It is called the MESON and is effectively dis¬ 
tinguished from the photon by having a rest mass and also by 
the possibility of carrying a positive or a negative charge of 
electricity, though neutral mesons are also assumed. When a 
positively charged meson leaves a proton the latter becomes a 
neutron, and when a negatively charged meson leaves a neutron 

♦ H. Yukawa; Prac. Ph^s,-Math. Soc. Japan^ 17, p, 48 (1935). 
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the latter becomes a proton. The forces holding protons and 

neutrons together spring out of this exchange of their rdles by 

the protons and neutrons (exchange forces). 

The meson is a very short-lived thing. It has the spin momen¬ 

tum /z/2tc: (an electron, it will be remembered, has a spin momen¬ 

tum equal to one-half of hj2Tz) and a meson probably decays into 

an electron (or positron) and a neutrino, each of these having the 

half-unit of spin momentum. Both the electron and the neutrino 

have relatively enormous kinetic energy, since the greater part 

of the mass of the meson is used up to produce it. 

There is a term in the wave equation of the meson which 

indicates that Yukawa’s constant, X, must conform to 

2tz m^c 

where tuq is the mass of the meson. Yukawa’s estimate of X was 

5 X 10^2 cm.~^, which yields a value for the mass of the 

meson, about 200 times that of the electron. 

MASS DEFECT AND NUCLEAR BINDING ENERGY 

In ordinary mechanical systems stability is associated with low 

energy. As an illustration the case of a massive body supported 

at a point on it, well separated from its centre of gravity, will 

serve. One position of equilibrium is that in which its centre of 

gravity is vertically above the point of support and the other is 

that in which the centre of gravity is vertically below the point 

of support. The latter is the stable case. It is associated with 

lower energy, the difference between the corresponding energy 

values being the product of the vertical distance between the two 

positions of the centre of gravity and the weight of the body. 

So with the formation of a stable atomic nucleus from its con¬ 

stituent protons and neutrons we expect a reduction in energy (or 

the equivalent mass). The rate of exchange between mass and 

energy, i.e. grammes and ergs, is, as Einstein showed, 

E = me* 

or Ergs == grammes X 9 X 10*®. 

Now calling the mass of an oxygen atom 16, that of a proton 

is approximately 1*0076 and that of a neutron 1*009, and in what 
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appears to be the stablest of all nuclei, the helium nucleus, there 

are two of each and their total mass is equal to 

4*0552, 

But a helium nucleus is estimated to have, in terms of the same 

unit, a mass of 

4*005, 

so that in its formation there has been a loss of mass equal to 

0*0502 

in terms of this unit. It amounts to this: when four grammes 

(approximately) of helium are generated from protons and 

neutrons—or we might say from hydrogen—there is a loss of 

mass of a trifle over 0*05 gramme and the mass-energy law 

requires an emission of energy equal to 

0*05 X 9 X 10^® ergs 

= 2*7 X 10^® ergs. 

It is enormous. This diminution of mass is usually called the 

MASS DEFECT and the equivalent energy the binding energy of 

the nucleus. 

In nuclei of small mass number—mass number means the 

number of protons plus the number of neutrons in the nucleus— 

the number of protons is equal, or nearly equal, to the number 

of neutrons5 in the case of helium two and two5 in the case of 

carbon six and six. In the case of more massive nuclei the 

proportion of neutrons increases. This is easily comprehensible. 

The more protons the greater the electrostatic repulsion between 

them and the binding influence of the extra neutrons, which is 

of course not offset by repulsion, is needed to hold the nucleus 

together. 

ARTIFICIAL ISOTOPES AND INDUCED RADIOACTIVITY 

The first instance of the artificial production of an isotope was 

that of which emerged as the result of bombarding ordinary 

nitrogen with a particles (Rutherford). The lighter of the two 

well-known isotopes of lithium has been transformed into the 

heavier one by bombarding it with high-velocity deuterons 

(Cockcroft and Walton, 1954) in accordance with 

gLi® + = aLi’ -f 
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a proton being thereby produced. The bombardment of ordinary 

phosphorus with high-velocity deuterons gives rise to the isotope 

^gP82 Yvrith emission of protons, thus: 

+ iD^ = + iHi. 

This isotope of phosphorus, like many other artificially produced 

isotopes, is radioactive, with a half-peri6d of about a fortnight. 

It is one of a number of isotopes with artificially induced radio¬ 

activity which are now being used by the biologists to assist 

them in investigating the metabolic processes in the bodies of 

animals and plants. The course of such a thing can easily be 

traced through the body of the organism which has assimilated 

it, since its presence anywhere in the organism can be detected 

by its radioactivity—by a Geiger counter for example. 

CHARACTERISTICS OF NEUTRONS 

Neutrons were detected by their great penetrating power and 

were in fact first suspected to be y radiation until it was noticed 

that they were strongly absorbed by materials containing a lot 

of hydrogen. This alone suggested that they might be neutral 

particles of the same, or nearly the same, mass as hydrogen 

nuclei. When an elastic body strikes another, initially at rest 

and of very much greater mass, it rebounds with its energy only 

very slightly diminished, but when it makes a head-on collision 

with an elastic body of the same mass and initially at rest, it 

transfers all its energy to the second body. This kind of thing 

can be observed in the collisions of billiard balls. Being un¬ 

charged, neutrons can approach, even when their velocities are 

quite small, right up to the nuclei of atoms, since they are not 

hindered by the positive nuclear charge which would repel a 

particles or protons for instance. Neutrons flying about among 

the molecules and atoms of a substance, especially if these latter 

are comparatively light j rapidly reach statistical or temperature 

equilibrium. They have become thermal neutrons. Lastly, 

neutrons which collide with the nucleus of an element may 

become attached to it, or enter into it. Sometimes the nucleus 

breaks down with the emission of perhaps a proton or a particle. 

Naturally the effect of bombarding very massive nuclei, those 

of uranium in particular, with neutrons was investigated soon 
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after neutrons were discovered. It was hoped to produce in this 

way elements of still higher atomic number than uranium (92), 

which before the discovery of neutrons was the element of high¬ 

est known atomic number. Its commonest isotope has the mass 

number 258. When this is bombarded with neutrons the 

immediate result is usually another isotope with the mass 

number 259. Thus 

That is to say, the neutron (mass number 1 and charge zero) 

unites with the uranium nucleus (mass number 258 and charge 

92) to form 92U339 i^ith the emission of a y photon. The isotope 

thus formed is radioactive. It emits p particles and becomes a 

new element of mass number 259 and atomic number 95, thus: 

becomes 03Np333 4- ^^e®, 

the new element being called NEPTUNIUM. Evidently the guiding 

principle of this nomenclature is the fact that Neptune is the 

next planet beyond Uranus, and on the same principle the next 

isotope which emerges from the break-down of the neptunium 

nucleus is called PLUTONIUM. Thus 

9gNp33» becomes g^Pu**® + -.je®. 

The extraordinary appropriateness of the last name appears to be 

due entirely to chance. 

FISSION 

In 1958 Hahn and Strassmann noticed that one of the products 

of the bombardment of uranium with neutrons was like barium; 

indeed it was barium. The uranium atom had in fact split into 

two parts of comparable mass with the release of a relatively 

enormous amount of energy, the fragments of the nucleus 

flying apart with the energy equivalent of millions of electron 

volts. The uranium nucleus owes its instability to the repulsive 

force of its 92 protons, which is not at best very securely balanced 

by the mesonic binding forces of its neutrons and protons, and 

probably the entrance of the neutron from outside sets up 

oscillations which separate two portions of the nucleus just far 

enough for the repulsive force to predominate over the attrac¬ 

tive exchange force. 
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This phenomenon of fission is part of the basis of the devas¬ 

tating bomb used near the close of the late war. What the 

makers of the bomb achieved was the splitting, within a small 

fraction of a second, of all, or nearly all, of the atoms in a lump of 

uranium (and later plutonium). The uranium isotope which was 

found to be suitable is It is split up by slow-moving 

neutrons into barium and krypton nuclei. When this happens 

several fresh neutrons fly out, the barium and krypton nuclei 

having altogether appreciably fewer (at least 11 fewer) neutrons 

than the original uranium atom. These in their turn send off 

other uranium nuclei and thus a so-called CHAIN REACTION is 

started—provided of course that the lump of fissible material is 

not so small that most of the neutrons get right out of it before 

they get a chance to do any damage, and provided further that 

the velocities of the ejected neutrons are rather small. Now it 

happens that the neutrons ejected when the uranium 255 atom 

splits have quite big velocities and therefore a so-called modera¬ 

tor was used to bring down their velocities. Carbon in the form 

of very pure graphite was chosen for this purpose. Being rather 

light the carbon atoms are very effective in slowing down 

neutrons, while they do not capture them—though impurities in 

the carbon (graphite) might be very effective in absorbing them. 



CHAPTER TWENTY-ONE 

ASTROPHYSICS AND COSMOLOGICAL 
SPECULATION 

COSMICAL PHYSICS 

Astronomy is very largely physics. The investigation of the 

motions of stellar and planetary bodies is an application of 

mechanics. The examination of the spectra of stars and nebulae 

is the main part of the routine work of many astronomers. The 

study of such spectra and the inferences drawn from them con¬ 

stitute the subject of astrophysics. It goes back to the time of 

Wollaston and Fraunhofer. Among the earlier contributors to 

the subject was Sir William Huggins, who had a small observa¬ 

tory built for himself in the neighbourhood of London in 1855. 

About the same time Father Secchi began his observations of 

stellar spectra at the Vatican Observatory in Rome and appears to 

have been the first to classify stars according to their spectral 

type (1867). Norman Lockyer was active in the eighteen- 

seventies and later. He became a professor in the Normal School 

of Science, later called the Royal College of Science, which had 

an observatory in Exhibition Road, South Kensington. Part of 

its equipment included a very respectable reflecting telescope. 

STELLAR TEMPERATURES AND DIMENSIONS 

The radiation from the sun and stars approximates fairly 

closely to black body radiation. This fact has made it possible to 

make moderately good determinations of their surface tempera¬ 

tures. For this purpose a spectroscope is attached to a reflecting 

telescope and observations are made of the distribution of energy 

in the spectrum of the light from the star whose temperature is 

being sought; or this distribution is estimated from the relative 

brightness of the light of different wave-lengths. The tempera¬ 

ture may then be determined by Wien's displacement law, or by 

Planck's law. When the temperature at the surface of the star 
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has been found and the total rate at which it radiates heat, it is a 

simple matter to calculate its diameter. This method of getting 

stellar diameters appears to have been adopted first by Professor 

E. Hertzsprung, of Leyden, in 1915 or earlier. The rate of 

emission of heat by the star can be found by focusing its image 

on a suitable radiometric device. The immediate observation 

gives the rate at which heat enters the telescope, but a knowledge 

of the aperture of the instrument and of the distance of the star 

enables its total rate of emission to be computed. Since the star 

emits, at least approximately, like a black body, its rate of 

emission per unit area is of course equal to 

= 5-75 X lO-^r^ 

in ergs per cm.^ (Chapter XIII) and division of the total rate 

by the rate per unit area gives the area of the star’s surface and 

thus its diameter and volume. 

The determinations of stellar dimensions by Hertzsprung’s 

method received a remarkable confirmation from the observa¬ 

tions made with the aid of the stellar interferometer invented by 

Michelson (1920). This was not of course the famous apparatus 

of the aether drift experiments—though equally ingenious.♦ 
It was an instrument which, when mounted on a telescope, 

virtually enlarged its aperture and consequently its resolving 

power. One of the first stars, if not the first, on which it was 

tried was Betelgeuse (a Orionis) the angular diameter of which 

was found to be 0*046 of a second, and since its distance is about 

190 light years its linear diameter turned out to be about 250 

million miles, about 500 times that of the sun, amply big enough 

to include the earth’s orbit within it. It is not the largest star: 

the diameter of Antares is half as big again. 

The surface temperatures of stars range from about 2000°K. 

to perhaps 70,000°K, Capella is a double star. Capella A has a 

temperature about equal to that of the sun, while Capella B has 

a somewhat higher temperature. That of Arcturus is a trifle 

more than 4000°K. The blueness of Sirius, that is of Sirius A, 

indicates its much higher temperature, nearly 14,000°K. 

Hertzsprung noticed that red stars—i.e. those with a com¬ 

paratively low surface temperature—had one or other of two 

♦ For a description of it see An Introduction to the Theory' of Optics, 
by A. Schuster and J. W. Nicholson, p. 167e (Arnold, 1924), or Theo¬ 
retical Physics, by W. Wilson, Vol. ii, pp. 265 and 267 (Methuen). 
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fairly definite sizes, provided they had the same surface tem¬ 

peratures. They were either giants or dwarfs—it was he who 

introduced these now familiar terms—with nothing in between. 

Surface 7emj^erafi/re 

Fig. XXI—1 

As we proceed to stars of higher surface temperature the two 

groups differ less and less in size and in candle-power until at 

last, at the temperature of 15,000®K. or thereabouts, the two 

groups fall together. The intrinsic brightness (candle-power) of a 

star of given surface temperature is a measure of the area of its 

surface. The American astronomer, H. N. Russell, made a 

diagram on which he arranged the stars according to their candle- 

power and surface temperature. The accompanying diagram 
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(Fig. XXI—1) is meant to indicate what Russell’s diagram is like. 

It is not drawn exactly to scale, though I believe it does represent, 

if rather roughly, the magnitudes involved. The broken contour 

lines indicate the diameters of stars which lie near them on the 

diagram, A meaning the Sun’s diameter. Russell found the 

stars to lie, with some exceptions, on or near the lines AC and BC. 
The exceptions are the white dwarfs, such as the companion of 

Sirius and van Maanen’s star, which lie in the right-hand lower 

corner of the diagram (Fig. XXI—1). As we pass across the 

diagram from the right lower corner to the left-hand upper one 

the diameters of the stars on the diagram increase roughly in 

geometrical progression, those on or near the line BC^ so-called 

MAIN SEQUENCE Stars, such as Alpha Centauri, Altair, Procyon, 

Sirius and Vega, having dimensions of the order of that of tlie sun. 

STELLAR INTERIORS 

No doubt every star was at some time in its history a huge 

mass of attenuated gas contracting under the gravitational 

attraction of its parts and developing heat in its interior at a great 

rate. The giant red stars like Betelgeuse are passing through this 

phase of their life history now and probably it is a relatively 

short one. Russell supposed that, as the star aged, it passed 

along the upper line of the diagram (Fig. XXI—1) from ^ to C 

and then to B, In this he was no doubt right. In recent times 

A. S. Eddington (Sir Arthur Eddington, 1879-1944) and E. A. 

Milne have also occupied themselves with the problems of the 

internal condition and life histories of stars. The general out¬ 

come of their efforts may be described as follows. At first it 

seemed that while giants like Antares and Betelgeuse were 

entirely gaseous, smaller stars, like the Sun, could hardly be in 

the gas state throughout their interiors, until Eddington noticed 

that the luminosities of both types of star depend on their masses 

in the same way. It appeared then that the Sun and similar stars 

were also gaseous throughout their interiors. The question 

naturally arose as to how this could be when the densities at the 

centres of such stars are so great. The simple answer, as Edding¬ 

ton saw, is that at the enormous temperatures developed in the 

interior of these stars not only are all compounds disrupted into 

their atomic constituents, but the atoms themselves have their 
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outer electrons more or less completely stripped off. We have 

seen that an atom, with its system of electrons, iT, L, etc., 

intact, has a diameter of the order of 10~® centimetre, i.e. a 

hundredth of a millionth of a centimetre, and it excludes a 

corresponding volume from occupation by other atoms. But 

when the atoms are stripped of their electrons we have a set of 

particles: nuclei and electrons whose linear dimensions are only of 

the order of 10“^® cm. or, at most, perhaps ^ ^]^at is 

between a ten thousandth of that of an undamaged atom (at most) 

and a hundred thousandth of it. Collectively a relatively immense 

volume is thus provided for these small particles to fly about in, 

as the molecules of a gas fly about in the containing vessel. 

We can therefore understand how it is that the material of a 

star may still behave like a gas even when compressed to such a 

degree that this would be quite impossible under terrestrial 

conditions. There is one other very important difference 

between such a gas and one that can be observed in a terrestrial 

laboratory: the temperatures in the interiors of stars like the Sun 

are estimated to be of the order of 20 million degrees and con¬ 

sequently the pressure of radiation in such a star becomes enor¬ 

mous. It wdll be remembered that this pressure is eqxial to one- 

third of the density of the radiant heat, which means that it is 

equal to about 

2-56 X 10-15 X 

dynes per square centimetre. When 20,000,000 is substituted for 

T we easily find a trifle more than 

4x IQi^ dynes/cm.2 

This is approximately 400 million atmospheres. 

The behaviour of this super gas is very largely determined by 

the percentage of hydrogen it contains. The reason is that the 

average mass of its molecules” or ultimate particles would be 

one-half (calling a hydrogen atom unity) if it were wholly hydro¬ 

gen. Each atom gives rise to two “molecules” or particles, a 

proton and an electron whose combined mass is approximately 1, 

and 1 divided by 2 gives the average. But for nearly all the other 

elements this average is in the neighbourhood of 2. Even 

helium is Its atom has a mass of 4 and splits up into a nucleus 

and 2 electrons = 5 particles. 

The lithium atom has a mass 7 and it splits up into a nucleus 
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and 5 electrons so that the average mass of the particles is 7/4 = 

If. The carbon atom has a mass 12 and splits up into a nucleus 

and 6 electrons—7 particles^ average mass equal to 12/7. The 

copper atom has a mass 65 and splits up into a nucleus and 29 

electrons, yielding the average 65/50. For uranium we find 

258/(1 + 92), roughly 2f. The general formula is 

(Atomic mass number)/(l + Atomic number). 

The amount of hydrogen in a star has been estimated to be 

about one~third of its mass. It is this proportion which gives the 

right relation between the mass and the candle-power of the star. 

The life history of a star appears to be somewhat as follows. 

It passes quickly (“quickly’’ means occupying a period of time 

which is a rather small fraction of the time during which it can 

be identified as a star—still many million years) through states 

represented by the line from to C in Fig. XXI—1. During this 

phase it is contracting under gravity and the heat it radiates is 

mainly derived from the lost gravitational energy. Thus far the 

picture is that which Russell gave and it is very like that given by 

those earlier worthies, Kelvin and Helmholtz, but more recent 

knowledge and inquiry, and perhaps especially Eddington’s work, 

have suggested something quite different for the further progress 

of the star. At C its radius has got down to the size indicated by 

the position of C on the diagram. Its internal and surface 

temperatures are much higher, especially the former. Not only 

are its atoms beginning to get stripped, but a new source of 

energy is being drawn on for the heat radiation of the star. 

Protons are being converted into deuterons, thus 

+ iff = + leo, 

with emission of positrons and y radiation and as the internal 

temperature rises still further helium nuclei are produced from 

protons. H. A. Bethe and others believe that this occurs in the 

following way: 

+ iff yields and y radiation5 

disintegrates into gQ® and iC®; 

+ iff yields and y radiation^ 

^ yields and y radiationj 

gO^® disintegrates into 

and finally 

,Ni® + iff yields eO* + 
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the final result being the production of helium nuclei and 

positrons from protons with emission of y radiation. The star 

now practically ceases to contract because of the immense 

pressure of the radiation. This state of affairs continues during 

the greater part of the star’s life while it is passing roughly 

speaking along the line CB* After this it is conjectured that as the 

protons get used up the generation of radiation goes on at a 

slower rate, the temperature drops and the pressure of radiation, 

depending as it does on the fourth power of the temperature, 

drops in catastrophic fashion. The vast gravitational pressure is 

no longer counterbalanced by radiation pressure and a collapse of 

the star occurs on a gigantic scale. There is an immense and sudden 

development of heat at the expense of gravitational energy and 

the star becomes a nova^ so called because it gives to the observers 

the impression of a new star coming into being. After this it 

probably settles down into the condition exemplified by Sirius 

comes or van Maanen’s star, which have densities of the order of 

tons per cubic inch. 

Stable conditions in any kind of system whatsoever are only 

reached by loss of energy and, if I may speculate here, I would 

suggest that, where a vast mass of atomic nuclei are jammed 

together, as they must be in the companions of Sirius and Pro- 

cyon, van Maanen’s star and others like them, their combined 

energy is far above its minimum value. So possibly a star 

becomes a nova at least once again before it reaches the death 

which is represented by an absolute minimum of energy. 

One last word about the life of a star: the continual radiation 

from it is necessarily associated with a diminution in its mass, in 

accordance with Einstein’s masa-energy law. It is not difficult 

to make the estimate that the sun is now losing its mass at the 

rate of some four million tons a second, and it was, there is no 

doubt, losing it at a much greater rate when it was younger. 

ABOUT THE SPECTRA OF STARS AND NEBULAE 

The stars have been classified according to their spectral type 

into a number of groups (by Harvard Observatory) labelled O, 

J5, Fy Gy Ky My R and TV, which follow the order of their sur¬ 

face temperatures, those in the class O having the very highest 

surface temperatures and those in the class N the very lowest. 
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M. N. Saha showed how to calculate the way in which the ioniza¬ 

tion of an element depends on its temperature. The higher the 

temperature the more violent are the collisions between the 

atoms and the greater the extent to which they are denuded of 

their circumnuclear electrons. We thus get an explanation, as 

Saha showed,* for the spectral types associated with various 

surface temperatures. 

Huggins was able to distinguish (1862) between two types of 

nebulae. One of these had a greenish appearance, due to two 

green lines which had not been observed in the spectrum of any 

terrestrial source. They were ascribed to a hypothetical element, 

appropriately named nebulium {vide Chapter XVI), but are now 

known to be due to oxygen atoms which have lost two of their 

complement of electrons. These green nebulae consist of masses 

of widely diffused gas and the oxygen atoms in them have been 

robbed of two of their electrons by the light from a neighbouring 

very hot star—light the photons in which have a high frequency 

and correspondingly great energy. 

The other type of nebulae had been observed, before Huggins 

started his work, by Sir William Herschell about the end of the 

eighteenth century, and later by Lord Rosse, who had constructed 

and erected at Parsonstown in Ireland what was then the finest 

telescope in the world. He described many of these WHITE 

NEBULAE (also called SPIRAL NEBULAE because of their appear¬ 

ance). I Huggins noticed that their spectra were just like the 

spectrum of the light from the Milky Way. None of these— 

Herschell, Rosse or Huggins—had any means of estimating how 

far away these nebulae of either sort were. 

THE SPIRAL NEBULAE 

In Victorian days many romances of science were written, but 

not one of them rivals the story of the investigation of the spiral 

or white nebulae since about 1917. The happy discovery, made 

by Miss Henrietta Leavitt, of Harvard Observatory (1912), that 

all those variable stars called cepheid variables (after S CepheuSy 

the first one to be noticed), which have the same period of 

•M. N. Saha: Phil. Mag.^ pp. 472, 809 (1920); 41, p. 267 (1921); 
Proc. Roy, Soc.y 99, p. 155 (1921). 

t Phil. Trans. (1862). 

T 
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variatioiij also have the same candle-power, has made it possible 

to determine distances which are enormously greater than any 

previously measured. It may be explained here, parenthetically, 

that Miss Leavitt noticed thaj; all the cepheids in the Lesser 

Magellanic Cloud which had the same apparent brightness, also 

had the same period of variation. Now it could be assumed with 

some confidence that these cepheids were practically equally 

distant, so that it was almost certain their candle-powers were 

equal. If therefore the distances of comparatively near cepheids 

are measured by the old parallax method, it is simply a matter of 

comparing the apparent brightness of a distant cepheid with that 

of a near one of known distance and of the same period to get the 

distance of the former. In this way the dimensions of the 

Galaxy have been estimated. Its diameter exceeds 100,000 light 

years. E. P. Hubble, of Mount Wilson Observatory, noticed 

cepheid variables in some of the spiral nebulae, among others in 

the Great Nebula in Andromeda (1924). He was thus enabled to 

estimate their distances away. It turned out that they are all of 

them beyond our Galaxy (that in Andromeda being 890,000 

light years away) and that in fact they are galaxies similar to and 

comparable in size with ours. They appear to be uniformly 

distributed in space. This means that the number per unit 

volume is constant (approximately) provided the unit volume is 

not too small. The average separation between neighbouring 

spiral nebulae or galaxies is about two million light years. 

There is no doubt that the stars in the Galaxy are revolving 

about a centre situated in the direction of the constellation 

Sagittarius and between 50 and 40 thousand light years from the 

Sun. The flattened shape of the Galaxy, and also of the spiral 

nebulae, suggests that they are in rotation. The observations of 

J. C. Kapteyn, of Groningen, indicated (1905) that the motions 

of the stars in the Galaxy were not random motions. 

In 1913 the Swedish astronomer, Charlier, had come to the 

conclusion, on the ground of observation, that the plane of the 

ecliptic was moving or rotating relatively to the stars in the 

Milky Way with a period which he estimated to be 370 million 

years. We may, quite roughly, think of the earth, in motion in 

its orbit, as a gyi'oscope. Its axis, or a straight line through the 

Sun perpendicular to the plane of the ecliptic, should maintain 

an invariable direction relatively to an inertial reference system. 
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So we understand how Charlier’s observations led to the inference 

that it is the stars in the Milky Way which are rotating. 

The Dutch astronomer, W. de Sitter, predicted tliat observa¬ 

tion would probably reveal that the spiral nebulae were receding 

from us.* I believe de Sitter’s theory predicts recession or 

approach and that he thought recession to be the more probable 

of the two possibilities. His theory indicated a velocity of reces¬ 

sion proportional to the distance of the nebula. The prediction 

has been triumphantly vindicated, chiefly by Hubble at Mount 

Wilson, by observing and measuring the slight difference 

between the positions of the nebular spectral lines and those of 

the corresponding lines in a terrestrial source, or in the Sun’s 

spectrum. The nebular lines are shifted a little towards the red, 

and Doppler’s principle enables the associated velocity of reces¬ 

sion to be calculated. It might of course be argued that the 

spectra] shift is due to some other cause than a recessional motion, 

and indeed it is probably true that a very small part of it has a 

cause which is precisely analogous to that of the red shift pre¬ 

dicted by Einstein and which I have already described. We may, 

however, feel confident that all except a quite negligible part of 

the shift is a measure (Doppler’s principle) of a velocity of recession. 

The most distant of these spiral nebulae that I have heard of 

has been estimated to be 500 million light years away from us. 

Naturally there is some uncertainty in this estimate, but 

probably an allowance of 20 per cent for this is more than ample 

and it is not a wild statement when one says that the light from 

the nebula which formed the photographic negative in the 100- 

inch telescope at Mount Wilson started off on its journey 500 

million years ago, and its velocity of recession is, or more cer¬ 

tainly was, 500 million years ago, about 50,000 miles per second. 

In fact the velocity of recession in miles per second is equal, 

approximately, to 

100 X Distance 

when the unit of distance is a million light years. Meanwhile a 200- 

inch telescope is being completed and mounted in California.| 

• W. de Sitter: “On Einstein’s Theory of Gravitation and its Astro¬ 
nomical Consequences,” Monthljr Notices of the Royal Astronomical 

Society, 76, p. 699; 77, p. 155; 78, p, 5 (1916-1917), 
f Since writing this sentence I have read of still more distant nebulae 

which have been observed with it. 
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THE EXPANDING UNIVERSE 

In 1917 Einstein published a paper^ in which he assigned finite 

dimensions to the spatial world. Though the universe as he 

imagined it was not an expanding one, it is very relevant in the 

study of any cosmical speculations based on his type of relativity 

theory. Einstein’s paper has three outstanding characteristics: 

the greatness of the result achieved in it^ its lucidity^ and 

the j)leasing elegance of its form. It begins by a discussion 

of the formidable difficulties in the way of the assumption 

that the spatial world is infinite. I cannot deal with that here, 

but I can, I think, give a correct indication of the finite world 

as Einstein imagined it. According to the gravitational theory 

which he had published some two years earlier, gravitation 

is bound up with the curvature of the Kiemannian continuum 

(Chapter XII) and this in its turn is conditioned by masses. 

If we therefore assume that material masses are uniformly 

spread through the universe—this indeed appears to be the case 

if we ignore local irregularities and measure density with a large 

unit of volume—we are led to assume a uniform curvature and a 

finite volume for the universe. First of all let us sStudy the mean¬ 

ing of curvature, more particularly uniform curvature. We may 

exemplify it by a spherical surface. Any point on a surface is 

determined by two independent co-ordinates. Think, for example, 

of a plane surface and rectangular axes of co-ordinates. In the 

case of a spherical surface, for example, these co-ordinates might 

be latitude and longitude, but quite obviously another way of 

fixing or defining a point on a spherical surface has its peculiar 

merits: we may use three-dimensional rectangular axes of co-or¬ 

dinates, X, T, Z, with the origin at the centre of the sphere. 

Naturally, when our concern is confined to the surface of the 

sphere, the three co-ordinates, x, y and z, of a point are not 

independent. There is the relation between them 

^2 4. ^2 ^ ilS (XXI-~1) 

R being a constant, namely the radius of the sphere. Or, to put 

• “Xosmologische Betrachtungen znr Allgemeinen Relativitats- 
theorie,” Sitzungsherichte der Preussischen Akademie der Wissenschaften 

(1917). This paper has been translated by W. Perrett and G. B. 
Jeffery and appears in a volume entitled The Principle of Relativity 
(Methuen). 
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it in another way: 1/jR is a constant, namely the curvature of 

the surface. Note, too, that the area of the spherical surface is 

finite. Now the points in Einstein’s three-dimensional curved space 

are determined by four co-ordinates between which the following 

relation holds: 
:c2 + ^2 + ^2 52 7^2^ (XXI—1a) 

R being a constant, namely the radius of Einstein’s spatial 

world. His own words, as translated by Perrett and Jeffery are: 

“The points of this hyper-surface form a three-dimensional con¬ 

tinuum, a spherical space of radius of curvature if.” The volume 

of this spherical space is limited in precisely the same kind of way 

as the area of a spherical surface is limited. In fact it is not 

terribly difficult to show that the 

Volume of Einstein’s World = 2Tc^il®. 

In 1917 not only did it seem likely that the material in the 

universe was uniformly distributed when relatively small local 

irregularities were ignored, but it also seemed likely that the 

motion in it might be ignored. The former of these two possi¬ 

bilities has been confirmed since, but not the latter. Einstein 

assumed them both and was thus inevitably led to a relation 

between the radius of curvature of his world and the (assumed 

uniform) density, p, of the material in it. As I write it, this 

relation is 

1 _ 47CICp 

in which k means the Newtonian constant of gravitation.* 

The uniform curvature of the world, as Einstein realized, is not 

compatible with his original gravitational equations 5 but he 

found a slight modification of these latter which did conform to 

the uniform curvature condition and yet left the important 

results which had already been achieved unaffected, provided R 

is sufficiently big. Indeed other reasons, quite independent of the 

suggestion of a spherical world, would have suggested the 

generalization. 

• Einstein’s formula, as given in Perrett and Jeffery’s translation, is 

1 Kp^ 

;p' “ 2 ’ 
but his units assume c = 1 and his x means constant of gravitation 
multiplied by 8tc/c*. 
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The astronomer H. Shapley, of Harvard, estimated the density 

p to be equal to gm./cm.^ When we substitute this value 

in the formula for R we find 

R = 5*26 X 10*® cm. 

or R= 5*45 x 10^® light years. 

Furthermore, the mass in Einstein’s world must be expressed 

by 
Mass = Volume X Density 

or Mass = 2tz^R^ X p, 

and consequently Mass = 

and when we substitute for jR, #c and c we find 

Mass of Universe ^ 6-8 X 10®® grammes 

= 6*8 X 10®® tons. 

Very likely Shapley’s estimate of p is a bit too small. 

Einstein’s world, or rather his space-time, is often appropriately 

described as cylindrical. He gave the uniform curvature to space 

only and did not interfere with the co-ordinate which I represent 

by w (the time). As an illustration let us think of a plane rec¬ 

tangular sheet of paper on which two sets of parallel straight lines 

are drawn: one set {a) parallel to one edge of the sheet and the 

other {b) parallel to the other. If now we bend the sheet so that 

the set {a) remain straight lines while the set {b) are curved, we 

have a cylinder. 

It is now appreciated that this cylindrical world is unstable^ but, 

as we shall see after we have studied the cosmological speculations 

of W. de Sitter, this is perhaps its most interesting feature. In de 

Sitter’s world the space-time continuum has a uniform curvature. 

Thus 

+ + + R,*, (XXI—2) 

in which R^ is the constant radius of curvature and x, y, z and w 

have the meaning ascribed to them in the description of Minkow¬ 

ski’s space-time continuum. One consequence of the hypothesis 

(XXI—2) is of great interest^ it follows from it, as I shall show, 

that the spatial world is expanding (or contracting) and it led de 

Sitter to suggest that this might manifest itself by a recession (or 

approach) of the spiral nebulae. A number of marks or dots on 

the surface of a toy balloon will separate from one another when 
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the balloon is blown up, i.e. when it expands. In order to appre¬ 

ciate the nature of de Sitter’s world, let us begin (as we have done 

with Einstein’s world) with an ordinary sphere. Imagine a 

section of the sphere by a plane perpendicular to, shall we say, the 

Z axis. The radius of this section, which is of course a circle, will 

vary from one value of the co-ordinate, -z, of the plane, to another. 

So too when we consider the generalization of a sphere which 

(XXI—2) represents and imagine a locus for which w has a par¬ 

ticular value. This locus, or “section”, will vary in dimensions 

from one value of w to another, i.e. from one time to another, 

since iz? is a measure of the time. Let us write (XXI—2) in the 

form 

At a given instant of time, which means a given value of u;, the 

right-hand side has a particular value whatever may be jy, z 

or 5 individually. In fact we may replace ~ w^hj R^ and R 

will be the radius of a spherical spatial world rather like Einstein’s. 

Notice that since 

we have 
JR2 ^ Rl 4. 

R^ is a constant, consequently R^ increases as increases. A 

small increment of on the right, is associated with a corres¬ 

ponding increment of R^ on the left j thus 

A(il2) = c2A(r2). 

This is equivalent to 

M R 
(XXI—3) 

or in words: the rate of change of the radius of curvature of the 

spatial world is proportional to t/R^ t being the time as measured 

from the instant which is determined by the centre of the de 

Sitter hypersphere and R being the radius of curvature of the 

spatial world at the instant, t. R is necessarily positive and it is 

therefore clear that the rate of change expressed by (XXI—5) 

would be negative if the instant, ^ == 0, has not yet arrived, 

for in that case t would be negative. The fact that the distant 

spiral nebulae are actually receding indicates that the velocity 

(XXI—3) is positive. 

It would take me too far afield to derive an expression for the 
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velocity of a receding spiral nebula or to discuss adequately the 

law of gravitation in de Sitter^s world. If we use the proper 

TIME the velocity of recession of a spiral nebula whose distance 

from us is r is proportional to rjR^, It is strictly proportional to r, 

but if we use time in the usual meaning of the term the velocity 

of recession appears to be 

and is proportional to r so long as is small. For reasons that 

cannot be given here de Sitter's world must be an empty world. 

Notwithstanding this it may very well approximate closely to the 

actual world in which the average density of matter is negligibly 

small by comparison with the densities which may be observed 

locally. The constant 3/iI/ is usually represented by the letter X 

and called the cosmic constant. 

It is not unreasonable to indulge in speculation about the 

cosmos. Attempts have been made by A. Friedmann (1922) and 

by the Abbd G. Lemaitre (1927) and more recently by many 

others, Eddington, McVittie, McCrea and Sen, to generalize the 

efforts of Einstein and de Sitter. The picture of the universe 

which Eddington favoured, and which appeals to me, is a super¬ 

position of those of Einstein and de Sitter. A long time ago, 

many thousands of millions of years, the world may have been in 

the condition described in Einstein's picture. The familiar 

gravitational attraction in it is balanced by the “gravitational” 

repulsion characteristic of the pure de Sitter world. This state of 

affairs is unstable and one or the other, attraction or repulsion, 

will predominate. The latter has happened and the universe is 

approaching more and more to the de Sitter type—^the empty' 

world.^ 

This all too brief account of the expanding universe must not 

close without reference to Professor E. A. Milne's Kinematic 

Relativity, Milne's investigations were suggested, I believe, by 

the fact of the recession of the extra-galactic nebulae. He makes 

few initial assumptions about the nature of space-time. In his 

own words: “The leading idea in our work is not that of trans¬ 

formations of co-^ordinates but of transformations from observer 

• A. S. Eddington: The Mathematical Theory of Relativity (Cam¬ 
bridge); W. Wilson: Theoretical Physics^ Vol. iii (Methuen). 
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to equivalent observer. . . He makes use of a principle which 

he terms appropriately the COSMOLOGICAL PRINCIPLE; stated by 

Einstein in the form ‘‘Alle Stellen des Universums sind gleich- 

wertig,’^*!' which may perhaps be freely translated by ‘'One place 

in the universe is just as good as another’’. In brief Milne 

imagines equivalent observers spread through the universe. 

They are equivalent in the sense that "the totality of observa¬ 

tions A can make on B can be described by A in the same way as 

the totality of observations which B can make on A can be 

described by J5”. He idealizes the universe to a system of par¬ 

ticles. From this starting point, combined with the conventional 

fixing of the velocity of light to be a constant, he deduces a 

remarkable theory. If I have understood it correctly each 

equivalent particle is an idealization of a spiral nebula. It has 

always had its unique velocity of recession from a given equiva¬ 

lent observer either attached to it (in which case it is zero) or 

attached to some other equivalent particle. For Milne each 

extra-galactic nebula has always had the same velocity of 

recession (at least approximately). It is as if the universe began 

with all its mass concentrated in some relatively small region and 

a vast explosion occurred. Those fragments with the biggest 

velocities have travelled farthest. A simple computation indicates 

that this "explosion” must have happened about 2000 million 

years ago. 

The vast majority of theoretical physicists incline to the 

Einsteinian type of relativity theory, but Milne’s theory is 

rather profound and the significance of the distinction he makes 

between the transformations of the earlier relativity and those 

from observer to equivalent observer deserves to be very care¬ 

fully studied. 

• E, A. Milne: Relativity^ Gravitation and fVorId-Structure (Oxford, 
Clarendon Press). 

j* Sitzungsherichte d. Berliner Akad. (1931). Milne would, I believe, 
regard this as an inadequate statement of the principle. 



EPILOGUE 

Every science of the experimental and observational kind is 
something more, indeed very much more, than a mere accumula¬ 
tion of facts. An essential part of it is its theory, the intention of 
which is to make of it a progressively more unified and coherent 
structure within which the relationship between one fact and 
another is revealed, and in this record of a hundred years I have 
tried to show not only how many remarkable new phenomena 
were discovered, but also how the unifying theoretical frame¬ 
work has gradually been built up. 

The old ideal, as we have seen, was the mechanical one. The 
phenomena of physics and chemistry were believed to be matter 
and motion phenomena, conforming to mechanical principles laid 
down by Sir Isaac Newton. At the beginning of the period no 
serious difficulty was encountered in interpreting thermal 
phenomena in this way, and Clausius, Thomson, Neumann and 
other scientific worthies of that time called the newly developing 
science of heat (our thermodynamics) the mechanical theory of 
heat. Till 1860 the theoretical unification of the phenomena of 
light was like a triumphal progress of the old mechanics. It 
seemed to be finally settled that light consisted of waves in a 
quasi-material medium (the aether) nOt very different in their 
nature from distortional (transverse) waves in an elastic solid. 
Indeed the aether was assumed to have rigidity and inertia just 
as an elastic solid has. Students are still (very properly) intro¬ 
duced to the theoretical aspects of light by way of the old elastic 
solid theory. It represented important features of light correctly, 
and the phenomena of radiant heat, as they were known at the 
time when Planck was born, constituted a very natural and 
obvious link between optical and thermal phenomena. 

Electromagnetic phenomena refused to be nicely linked up 
with those of light and the rest of physics in the old mechanical 
way. They conformed to such fundamental principles as the 
conservation of energy, but no expressions in mechanical terms 
could be found for characteristic electromagnetic quantities like 

298 
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electric charge, magnetic induction, and so on^ and Maxwell’s 
electromagnetic theory did not seem to his contemporaries, 
Kelvin and others, to promise anything of the kind. Naturally it 
was slowly and reluctantly accepted, but Hertz’s experiments and 
the impressive feature of the theory—the requirement that 
electromagnetic waves in free space should travel with the same 
velocity as light—began to convince the physicists that it repre¬ 
sented a real advance. It made it certain that optical phenomena 
were actually a small part of the comprehensive group of electro¬ 
magnetic phenomena. Visible light waves, we now appreciate, 
occupy roughly the octave from 4000 to 8000 Angstrom units in 
the vast range of wave-lengths of electromagnetic waves extend¬ 
ing from the broadcasting waves of hundreds of metres in wave¬ 
length on one side to the shortest gamma-ray wave-lengths on 
the other. 

Maxwell’s wonderful synthesis assigned to electromagnetic 
waves, including light waves, a character never before con¬ 
templated for waves. They were indeed still regarded as waves 
in the aether, but the displacements associated with them were 
not displacements of the strange substance of the luminiferous 
medium—as, for example, the displacements in the transverse 
(or longitudinal) waves in an elastic solid are displacements of the 
material of the solid—but DISPLACEMENTS OF ELECTRICITY. 

Arthur Schuster, a distinguished physicist, wrote in 1904, 
‘‘There is at present no theory of Optics in the sense that the 
elastic solid theory was accepted fifty years ago. We have aban¬ 
doned that theory, and learned that the undulations of light are 
electromagnetic waves differing only in linear dimensions from 
the disturbances which are generated by oscillating electric 
currents or moving magnets. But so long as the character of the 

displacements which constitute the waves remains undefined^ we 
cannot pretend to have established a theory of light.”* This 
passage shows how strongly entrenched was the old ideal, even 
so recently as 1904. It was difficult to imagine any physical 
happening that could not be described in mechanical terms. 
Maxwell himself believed that his displacement would sooner or 
later be revealed as a clearly defined mechanical thing, and 
I have a little impatience with Eddington’s caricature of the 

• Preface to the first edition of Sir Arthur Schuster’s An Introduction 
to the Theory of Optics (Arnold, London, 1904). The italics are mine. 
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intellectual level of the nineteenth century physicist, in which he 
describes him as saying to himself, on having got on the track 
of an explanatory piece of mechanism: * ‘ Here we are getting to 
bedrock. . . . This is ultimate reality.’’* The old confidence in 
mechanical ‘‘bedrock” foundations was of course misplaced, but 
only in the mistaken belief that the Newtonian scheme was 
sufficient. The ideal of the old natural philosopher was not 
essentially different from that of the present-day physicist—he 
was striving to incorporate the phenomena known to him in the 
grand and imposing unity of Euclid’s geometry and Newton’s 
mechanics. The present-day physicist is also striving after such 
a unity, but he has ceased to be dominated by the belief that 
Euclidean geometry and Newtonian mechanical principles are 
established for all time. 

After Maxwell’s day, when it had been definitely proved 
(Rowland) that the motion of a charged body is accompanied by 
a magnetic field—it is in fact equivalent to an electric current— 
J. J. Thomson and his contemporaries appreciated that the electric 
charge on a body endows it with an additional mass or inertia. 
This led to an effort—an unsuccessful one—to account for all 
mass by assuming for it an electromagnetic origin, and to replace 
the old mechanical ideal by another, in which electricity, rather 
than “matter”, became the “building material” of which the 
physical world was made. The effort reached its extreme elabora¬ 
tion in Max Abraham’s electron theory (1905). It had to be 
rejected on several grounds, but mainly because it did not give 
the correct law for the dependence of mass on velocity and 
because of the great promise of the theory of Lorentz, which in 
Einstein’s hands developed into the special theory of relativity. 

The magnificent generalization of Einstein, which removed the 
peculiar mystery that had enshrouded gravitation, is still 

mechanics^ though of a more general kind which includes 
Newton’s as a limiting case. Even this did not incorporate electro¬ 
magnetic phenomena. They conform to it—so far as their 
macrophysical manifestations are concerned—but they are not 
an organic part of it. There is at present no general agreement 
as to which of the various suggested solutions of the problem of 
unifying electromagnetic and other phenomena in a still more 
general relativistic synthesis is the correct one. The most 

• A. S, Eddington: Science and the Unseen World, 
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impressive is Kaluza’s form of relativity in which electric charge 
appears as the fifth component of momentum in the five-dimen¬ 
sional continuum on which it is based. 

When we turn to small-scale, or microphysical, phenomena we 
get an impression of impenetrable obscurity. We have indeed 
learned much about atoms, protons, neutrons, electrons, etc., and 
the laws which describe their behaviour5 but these laws are 
statistical in their nature—of the same type as laws based on 
chance and large numbers, such for example as MaxwelFs law of 
distribution in the kinetic theory of gases. They have been 
unified almost completely in the beautiful scheme of quantum or 
wave mechanics. But there is a profound difference between the 
type of picture presented by the kinetic theory as Maxwell and 
Boltzmann thought of it, and that presented by quantum 
mechanics. The former is causal, while the latter is, or seems 
to be, ACAUSAL. By way of illustration, the phenomenon of the 
alternation of day and night is causal. It is in fact caused by the 
rotation of the earth relative to the sun, but the small-scale 
phenomena of the physical world do not reveal the causality, if it 
exists, to which the statistical laws of quantum mechanics owe 
their origin, and some great authorities, like Johann von Neu¬ 
mann,* maintain that there cannot be any such causal laws. 
There are, he contends, no “hidden parameters” from which the 
statistical laws can be inferred. The meaning of “hidden 
parameters” is illustrated by the kinetic theory. The gas laws 
such as Boyle’s or van der Waals’ rest on the assumption that a 
gas consists of molecules, each having at any instant a definite 
position and momentum—these are hidden parameters—which 
determine causally, according to the laws of mechanics, the state 
of affairs in the gas and its behaviour at subsequent times. Von 
Neumann, however, claims to have proved that the existence of 
hidden parameters and causal laws is incompatible with the 
known and accepted laws of quantum mechanics. 

However this may be, there is one remarkable causal feature 
in wave mechanics: the de Broglie wave, representing an elec¬ 
tron for example, changes and behaves according to strictly 
causal laws (see equation XVIII—7). On the other hand it does 

• J. von Neumann: Mathematische Qrundlagen. der Quanten- 

mechanik (Dover Publications, New York). A French translation is 
published by the Librarie Alcan (Paris). 
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not appear to be identifiable with the physical reality^ but is 
merely something which informs us about the probabilities of the 
results of measurements before they have been made. 

No doubt future discoveries will throw light on the question 
as to whether there are causal laws (hidden from us now) behind 
the statistical ones that we know, and we may leave it and turn to 
the possibilities of physical inquiry in the immediate future. 
First of all it seems certain that the investigation of nuclear 
phenomena will be vigorously continued. Probably new kinds of 
atoms (new elements) will be produced artificially as have been 
already the elements neptunium and plutonium.* Some may be 
capable of fission and may be used in the manufacture of even 
more formidable bombs than those that threaten humanity now. 
It is certain that we shall learn a great deal more about the 
utilization of atomic energy for industrial and beneficent pur¬ 
poses and about the risks attached to it. And generally the 
technological utilization of those physical phenomena that are 
already well known will be developed in directions and to an 
extent far beyond anything we can foresee. 

What we may call the middle regions of physics have been 
fairly exhaustively explored, and the scope for those whose 
interest lies in pure science, apart from its utilization for prac¬ 
tical ends—and it is to be hoped that there will always be 
inquirers who will pursue physics and other sciences for their 
own sake—now seems to be at the extremes, e.g. in the study of 
extremely low-temperature phenomena and of the opposite 
extremes of nuclear physics and cosinical phenomena, in the 
investigation of cosmic radiation, and so on. 

There is also another direction in which physical science may 
conceivably expand. There has long been a question as to 
whether the phenomena in a living organism are exclusively 
physico-chemical or whether—to use a perhaps obsolete nine¬ 
teenth-century expression—there is operative in it a VITAL 

FORCE. If we had to decide nowj i.e. on the basis of our present 
knowledge, in favour of the one or the other of these alternatives 
we should have to adopt the former. There appears to be no 

• Americium and Curium, atomic numbers 95 and 96, have recently 
been discovered. It has been maintained (H. T. Flint) on theoretical 
grounds that atoms with a higher atomic number than ca. 97 cannot 
exist, 
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evidence of any phenomena, in a living organism, which cannot 
be classed as physical in the broad sense of the term.** 

New types of law, different from those with which we are 
now acquainted in the inorganic world, may indeed be expected 
and discovered in living organisms in the future, but it seems 
likely that they will be found to belong to the same category as 
the laws operating in the inorganic world. So we may be con¬ 
cerned in biology, not only with biophysics in the sense of 
physics applied to biological phenomena, but possibly with new 
groups of purely physical phenomena. 

There are “quantum jumps” in living cells. They are the 
MUTATIONS of the geneticist, discovered by the Dutchman de 
Vries, about two years after Planck published his quantum 
theory, but not then suspected to have any connection with a 
revolutionary physical theory. Even the impressive orderliness 
manifested in a living organism—^one thinks of that superb 
structure, the human brain—appears to have the same type of 
statistical foundation as we find in the inorganic world. The 
familiar Maxwell-Boltzmann exponential 

e kT 

would seem to be as dominant in the organic as in the inorganic 
world. If we regard E as the energy requisite to effect some 
“quantum jump” or other, e.g. some isomeric change,*!* then the 
bigger E/kT the more seldom will such a change occur. Low 
temperature is associated with solidity and permanence and the 
measure of the stability of a structure is the bigness of the 
amount of energy needed to make it topple over. In fact the 
statistical basis of physics is compatible with extreme stability 
and orderliness. 

I am not ignoring the fact that, in living organisms certainly, 
and possibly even in the inorganic world, there is a boundary 
where physical science ends and where we are confronted with 
purpose, volition, sense-perception, and so on. These things 

• Fide E. Schrodinger’s fFhat is Life? (Cambridge University Press) 
and F. G. Donnan: “Zur Frage der Eigengesetzlichkeit der theoret- 
ischen Biologie,” Angewandte Chemie, 52, p. 469 (1939). 

I Ethyl alcohol and di-methyl ether furnish a simple instance of 
ISOMERISM {iaoSy same; piepos, part). Both are represented by CgH^O; 
but with their atoms differently combined. 
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appear to be outside the physical world and^I find it impossible 

to distinguish the r61e of the physicists’ percepts from that of 
symbols iised in a code; the code in terms of which his informa¬ 
tion about the physical world is conveyed to him. He starts out, 

as Max Planck has said, from the basic METAPHYSICAL assumption 

that a world exists which is independent of him and his affairs 
and of his investigation of it. This is his physical world, and his 

interpretation of the results of all his experimental activity is 
made to conform to the fundamental postulate of its independent 

existence. 

Physic of Metaphysic begs defence. 
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