 PILANI (Rajasthan) R Claw No. $5.9 .1 . . .954$
Book No I. 2 F \quad У 37
Acressiou No 6. 0.6 .7 .5

THE FAUNA OF BRITISH INDIA,

INCLUDINO

CEYLON AND BURMA.

Publinhed inder the alithority of the Selehetahy oh Stath for India in Coi'neil.

KDITED BY SIR ARTHUK E. SHIPLEY, G.B.E., F.R.S., M.A., Sc.D.Cuntab., IION. I.So. Princeton, HON. KI.D. Michigan, ASSISTED BY HUGH SCOTT, M.A., SC.I). ('entab., F.E.S.

OLIGOCH $\nrightarrow \mathrm{TA}$.

HY
J. S'TEPHENSON, M.B., L.Sc., Lieu'r.-Col. I.M.S. (Retired), Lecoturer in Zoolouy, Edinburah Univhrsity.

LONDON:
TAYLOR ANID FRANCIS, RED LION COUR'T, FLEET S'TREET'
June, 1923.

PRINTED HY TAYLOR AND FRANCIS, HEI) LION COURT, FLDEET STREET.

TABLE OF CONTEN'TS.

Page.
Author's Preface v
Systematic Index ix
Literature on the Oligochaeta of British India and Ceylon $\mathrm{x} V$
Other Literature referred to in the following pages xx
. Iblreviations of Titles of Journals, ete. xxii
Methods of Examination ; Kystematic Deseription. 1
The (Yeographical Distribution of Indian Oligocheta 12
Bomomics :33
(i) Seasonal Viriations 333
(ii) Mabitat 34
(iii) Commensalism 35
Clansification 37
Systematic list of Indian Olurocheta 40
Addenda 09
Alphabrtical Index 51

AU'IHOR'S PREFACE.

The present work follows in general the plan adopted for the other volumes of the series to which it belongs. The few remarks which follow may facilitate its use.

The species of each genus are arranged in alphabetical order. It is true that within certain genera we can distinguish a number of groups of allied species; but this is by no means always so, and even where it is possible to do this, the majority of the species of the genus do not as a rule allow themselves to be thus grouped; an arrangement according to affinities is therefore for the most part impossible. There seemed to be no particular advantage in a chronological order, according to the date of description of the several species ; while the alphabetical arrangement has at least the merit of convenience.

In the synonymies which head the accounts of the species I have given a complete list of the Indian references, references to all the records from India, ('eylon, and Burma, and to all accounts of anatomy etc. based on Indian material; in the case of species found only in India, therefore, the list forms a complete bibliography.
.In the case of species found also in other parts of the world I have often added to the Indian references, and separated from them by a line, other references to papers of importance,-for example, to such as contain accounts of the anatomy or of important structural details. In the case of species which have been known for a number of years I have often given references to Beddard's Monograph and to Michaelsen's Tierreich Volume, where the older sources will be found. But it would be impracticable in a work like this
to give a complete bibliography of the widely distributed species; a number of species are practioally worldwide, and the majority of the items would merely be records of occurrence in various parts of the globe.

In the case of genera I have given references which appear likely to be of use ; but for a number of widely distributed genera even this is unnecessary, since the lists in Michaelsen's Tierreich volume will supply what is wanted.

It may be convenient, for bibliographical purposes, to subjoin a list of the changes in nomenclature, etc., proposed herein for the first time.

Aolosoma hemprichi (Stephenson, 1909) is renamed A. kashyapi.

I have emended the current diagnosis of the genus Slarina.
Slavina montana is used for Slavina sp. (Stephenson, 1916).
Aulophorus michaelseni is used for A. palustris (Stephenson, 1913).

In accordance with my views on the significance of "tufted" nephridia (cf. p. 184), Megascolides hustatus Steph. and Notoscolex sarasinorum Mich. are transferred to Woodwardia.
Megascolides oneili Steph. becomes Votoscolex oneili.
Megascolides tennalai, Mich. var. karakulamensis Steph. becomes Notoscole.c tenmalai var. karakulamensis.

Megascolex phaseolus Steph. becomes M. cochinensis Steph. var. phaseolus.

Megascolers pentagonalis Steph. becomes 11. travancorensis Mich. var. pentagonalis.

Megascolect curtus Steph. disappears being united with M. varians var. simplex Mich.

Perionyx abovensis Steph. disappears, being united with P. depressus Steph.

Similarly Perionyx parvulus Steph. disappears, being united with P. excavatus E. Perr.

Perionyic aborensis, var. heterochcetus Steph. becomes P. heterochoetus Steph.

The name Perionyx polytheca is to be substituted for Perionys sp. Steph. (Rec. Ind. Mus. xii, p. 323, 1916).

The name Perionyx sikkimensis var. michaelseni is introduced for certain specimens of P. sikkimensis Mich. 1910.

Eudichogaster kiuneari Steph. becomes E. ashworthi Mich. var. kinneari.

Eutyphoous koboensis and magmus Steph., and chittagongianus Mich. disappear, being merged in $1:$. !ammiei (Bedd.).

Eutyplucus annandalei Mich., var. fulyidus Steph. becomes E. incommodus (Bedd.) var. fullyidus.

Eutyphoous bastianus Mich. disappears, being merged in E. masoni (A. G. Bourne).

Hoplochutella affinis Steph. becomes Eirythraodrilus uctorius (Steph.) var. affinis.
I may mention that I have given in the Introduction a section on Methods, which I trust may be of some use to those who are beginning systematic work on what will certainly prove to them a very interesting group; I hope it may save some of those who may be obliged to work at a distance from expert assistance from wasting time on procedures which are not calculated to give the best results, and from putting forth work which could easily be improved by adopting a more suitable technique.

My thanks are due to Sir Arthur Shipley for his interest in the progress of the work, for many useful suggestions and for much kind help while the volume was passing through the press; to the authorities of the British Museum for kindly allowing me to examine a number of type and other specimens; and to the Council of the Zoological Society for permission to make use of material previously published in the Proceedings of the Society. And I have finally gratefully to acknowledge the help I have received in the course of the preparation of this volume from Dr. Annandale, Director of the Zoological Survey of India. He has kindly lent a number of blocks for the text-figures, and given permission for the reproduction of other figures, for which blocks were not available, from the Memoirs and Records of the Indian Museum ; and he has at various times sent me many type and other specimens from the Museum collections
for examination. Indirectly, this work is indebted to him for far more than this ; since my studies on the Oligochæta of India, which I have pursued during the last sixteen years, and which have led up to the preparation of the present volume, have been largely carried out on the extensive collections of the Indian Museum, and have throughout owed much to Dr. Annandale's interest and kind encouragement. March 1923.

SYS'TEMA'IIC INIDEX.

r Order OLI(iOCHNJ'A .. 40
1 Fam. ※ol,osomatide 40

1. Gen. Eolosoma Ehrby. 40
2. bengulense Steph $+1$
3. kashyapi Steph. 4]
4. viride Steph 42
ternarium Schmarda 43
5. Fain. Naidide 43
6. (ien. Chætngaster K. Buer. 47
7. annandalei Ste, 1 49
8. bengalensis Annand 49
9. langi Bretrcher. 50
10. limuæi K. Buer 50
11. orientalis Steph 51
12. spongille Annend 52
sp. Annand. 53
13. (ien. Nais Mull. em. J'ejd. 53
14. communis Piguet 55
vur. punjabensis Stepl. 55
var. ceeca Steph.) 7
15. elinguis Miell., Ohrst 58
16. gwaliorensis Steph 59
17. ohtusa (Gerv) 60
18. paraguayensis Mich 61
par. requalis Steph. 62
var. barkudensis Steph. 63
19. pectinata Steph. 63
var. inæqualis Steph. 64
20. raviensis Steph. 65
21. Gen. Naidium O. Schm 66
22. brevisetn(A.G.Bourne). 67
23. minutum Steph. 68
24. Gen. Pristina Ehrby 69
25. longiseta Ehrbg 70
26. æquiseta \boldsymbol{A}. E. Bourne. 71
27. proboscidea Bedd. 73
var. paraguáyensis Mich 73
Page Page
\%. (ien. Branchiodrilus Mich. 74
28. semperi (A, (i̇. Bourne). 75
29. menoni Steph 76
30. hortensis Steph. 77
31. Gen. Hemonais Bretscher. 78
32. laurentii Steph. 79
33. Gen.Slavinal Iejd em.Steph. 80
34. appendiculata (Udek.). 8:
35. montana Steph. 84
36. (ien. Stylaria Lmk. 85
37. lacustris (L.) 85
38. kempi Steph. 86
39. (Gen. Dero Oken 87
40. limosa Leidy 88
41. zeylanica Steph 89
42. (ien. Aulophorus Schmurda 90
43. tonkinensis (Vejd.) 91
44. furcatus (Oken) 92
45. michaelseni Steph. 93
oxycephalus Schmarda. 91
46. Fam. Tubificidat 95
47. Gen. Limnodrilus ('lap). 96
48. socialis Steph. 96
49. Gen. Branchiura Bedd. 98
50. sowerbyi Bedd. 99
51. Gen. Bothrioneurum Stolc. 102
52. iris Bedd. 102
53. Gen. Monopylephorus Levinsen 103
54. parvus Ditlevsen 104
55. Gen. Tubifex Lmk. 105
56. tubifex (Milll.) 106
57. Gen. Aulodrilus Bretscher. 106
58. remex Steph. 107
59. kashi Mehra 509
60. stephensoni Mehra 510
61. Frm. Phreoneilidas 108
62. Gen. Phreodrilus Bedd. 109
63. zeylunicus (Steph.) 109
Page
64. Fam. Enchytreides 110
65. Gen. Fridericia Mich 111
66. bulbosa (Rosa) 111
67. carmichaeli Steph. 112
68. Gen. Enchytrous Henle 113
69. barkudensis Steph. 113
70. harurami Steph. 114
71. indicus Steph. 115
Henlea lefroyi Bedd 115
72. Fam. Moniligastridas 116
A. Subfam. Moniligastrince. 117
73. Gen. Desmogaster Rosa 119
74. dorise Rosa 119
75. Gen. Lupolygaster Mich. 120
76. browni Mich. 120
77. Gen. Moniligaster E. Perr. 121
78. deshayesi E. Perr. 121
var. minor Mich. 122
var. gravelyi Steph. 123
79. perrieri Mich 123
80. Gen. Drawida Mich. 124
81. affinis Steph. 132
82. annandalei Steph. 132
83. barwelli Bedd. 133
var. impertusa Steph 134
84. brunnea Steph. 134
85. burchardi Mich. 134
86. chalakudiana Steph 135
87. chloriua (A.G.Bourne). 136
88. decourcyi Steph. 136
89. elegans Rao 137
90. fakir Cogn. 137
91. friderici (Mich.) 138
92. ghatensis Mich 138
93. grandis (A. G. Bourne). 139
94. hodgarti Steph. 140
95. jalpaigurensie Steph. 141
96. japonica Mich. 142
97. kanarensis Steph. 143
98. kempi Steph. 144
99. matthaii Mich. 144
100. minuta (A.G. Bourne). 145
101. modesta Rao 145
102. naduvatamensis (A. G. Bourne) ... 146
103. nepalensis Mich. 146
104. nilamburensis
(A. G. Bourne). . . . 147
105. papillifer Steph. 148
106. paradoxa Rao 148
107. parambikulamana Steph 149
108. parva(A. G. Bourue) 140
Drawida (con.). l'age
109. pellucida(A.G.Bourne). 150
var. bournei (Mich.) 150
var. pallida Mich. 151
var. stewarti Steph 152
110. ramnadana Mich. 152
111. rangamatiana Steph. 153
112. robusta (A. G. Bourne), 154
var. ophidioides
(A. G. Bourne) 154
113. rosea Stepl. 155
114. rotungana Steph 155
115. sapphirinaoides (A. G. Bourne) 156
116. scandens Rao 156
117. shunkarai Mich. 157
118. somavarpatana Rao 158
119. sulcata Mich. 15
120. travancorensis Mich.. $15!$
121. uniqua (A. G. Bourne). 160
122. willsi Mich 161
Moniligaster papillatus A. (x. Borrne $1: 31$
Moniligaster ruber A. G. Bourne 1:31
123. lam. Megascolectide 1i:2
A. Subfam. Acanthodrilince. $16: 3$
124. Gen. Nicroscolex Rosu, em. Mich. 164
125. phosphoreus(Ant.Dug.) 164
B. Subfam. Meyascolecince 16.5
126. Gen. Plutellus E. Perr: 170
127. aborensis Steph. 171
128. aquatilis Steph. 172
129. dubariensis Mich 173
130. halyi (Mich.) 174
131. indicus Mich. 174
var. silvestris Mich. 175
132. palniensis Mich 176
133. sikkimensis Mich. 177
134. singhnlensis (Mich.) 178
135. timidus Cogn 179
136. Gen. Pontodrilus E. Perr: 179
137. bermudensis Bedd. 180
138. agnesm Steph 182
139. Gen. Woodwardia Mich. 183
140. burkilli Mich. 185
141. hastata (Steph.) $18($
142. sarasinorum (Mich.) 188
143. uzeli (Mich.) 188
144. Gen. Comarodrilus Steph. 189
145. gravelyi Steph. 190
146. Gen. Spenceriella Mich. 190

* 1. duodecimalis Mich. 191
Page
6．Gen．Megascolides McC＇oy． 192
1．annandalei Steph． 195
2．bergtheili Mrch． 196
3．cochinensis Mich 198
4．duodecimalis Steph 198
5．pilatus Steph． 200
6．prashadi Steph． 201
7．Gen．Notoscolex Fletcher． 202
1．ceylanensis Mich． 206
2．crassicystis（Mich．） 207
3．dambullaensis（Mich．）． 207
4．decipiens（Mich．） 208
5．gravelyi Steph． $\because 09$
6．jacksoni Bedh． 〔10
7．kraepelmi（Mich．） 211
8．oncili（Steph．） 215
var．monorchis steph 214
9．pommudianus Mich． 214
10．scutarius Mich． 21.5
11．stewarti Steph． elt；
12．striatue Steph 218
13．tenmalai（Mich．） 219
var．karakulamensis steph． 219
14．termiticola Mich． $\because 21$
15．trincomaliensis（Mich．）． 222
8．Gen．MegascolexTempletor$\because 2$
1．acanthodriloides Mich． 2ご
2．adami Mich． ！2！（）
3．bifoveatus steph． 230
4．brachycyclus
（Schmarda） 231
5．ceruleus R．Templeton． 232
（6．campester Steph． 〔33
7．ceylonicus（Bedd．） 235
8．cingulatus（Nchmarda）． 936
9．cochinensis Steph． $\bullet 37$
var．phaseolus Steph． 238
10．curgensis Mich． 239
11．dubius（Steph．） 240
12．escherichi Mich 241
var．papillifer Steph 242
13．eunephrus Cogn． 243
14．filiciseta Steph． 244
15．funis Meh 245
16．hendersoni Mich． 246
17．horai Steph 247
18．hortonensis Steph． 248
19．imperatrix
（A．G．Bourne）．．．． 249
20．insignis Mich． 250
21．kavalaianus Steph 251
22．kempi Steph． 252
23．konkanensis Fedarb 253
var．longus Steph． 255
Megascolex（con．）． Page
24．leucocyclus（Schmarda）． 256
25．longiseta Mich． 257
26．lorenzi Mich． 258
27．mauritii（Kinb．） 259
var．zeylanicus（Stoph．）． 260
28．multispinus Mich． 261
29．nureliyensis Mich． 261
30．pattipolensis Steph． 262
31．pharetratus Rosa 263
32．pheretima Mich． 264
33．polytheca Steph． 264
var．zonatus Steph． 265
34．pumilio Steph． 266
35．quintus Steph． 267
36．ratus Cogn． 268
：37．sarasinorum Mich． 269
38．schmardso Mich． 470
34．sextus Steph． 2π
40．siughalensis Mich 272
41．spectabilis Mich． 672
42．sylvicola（Mich．） 273
43．templetonianus Rosa． 274
44．travancorensis Mich． 275
var．quilonensis Mich． 276
var．ghatensis Mich， 277
var．bonaccordensis Mich． 277
var．pentagonalis （Steph．） 278
45．trilobatus（Steph．） 279
46．trivandranus Steph． 280
47．varians Mich． 281
var．simplex Mich． 28.2
var．insolitus Steph $28: 3$
48．vilpattiensss（Mich．） 285
49．willeyi Mich． 286
50．zygochætus Mich． 287
Perichæta viridis Schmarda $2: 27$
Perichæta（lleuro－ chæta ！）gracilis
A．G．Bourne 227
9．Gen．Pheretima Kinb 288
1．alexandri（Bedd．） 291
2．andamanensis Mich． 292
3．andersoni Mich． 293
4．anomala Mich． 294
5．bicincta（E．Perr．） 294
6．birmanica（Rosa） 295
7．bournei（Rosa） 296
8．burliarensis
（A．G．Bourne） 297
9．carinensis（Rosa） 297
10．elongata（E．Perr．） 298
11．few（Rosa） 299
Pheretima (con.).

12. hawayana (Rosa)
Page
13. heterochæta (Mich.)
300
14. hotorochæta (Mcr.) .. 302
15. houlleti (E. Perr.). . . . 304
16. lignicola Steph. 305
17. osmastoni Mich. 307
18. peguane (Rosa) 308
19. posthuma (L. Vaill.). . 309
20. suctoria Mich. 311
21. taprobanæ (Bedd.) 312
22. travancorensis
(Fedarb). 313
23. trivandrana Steph. 314
Pericheta lawsoni
A. G. Bourne 290
Perichæta hulikalensis
A. G. Bourne 290
Perichrota mirabilis
A. G. Bourne 290
24. Gen. liporochæta Bedd. . . 315
25. pellucida
(A. G. Bourne) 317
26. Gen. Perionyx E. Perr. . . 318
27. alatus Steph. 323
28. annandalei (Mich.) . . 324
29. annulatus Steph....... 325
30. arboricola Rosa 326
31. bainii Steph. …..... 326
32. ceylanensis Mich. . . . : 328
33. depressus Steph. 328
34. excavatus R. Perr. .. 329
35. fossus Steph. 331
36. foveatus Steph. 332
37. fulrus Steph. 333
38. gravelyi Steph. 334
39. heterochætus (Steph.) . 335
40. himalayanus Mich. . . 336
41. inornatus Steph. 337
42. kempi Steph. 338
43. koboensis Steph....... . . 339
44. m'intoshi Bedd. 341
45. millardi Steph. 342
46. minimus Steph. 343
47. modestus Steph. 344
48. nyysorensis Steph. 345
49. nainianus (Mich.) 346
50. nanus Steph. 346
51. pallidus Steph. 347
52. pincerva Steph. 348
53. pokhrianus Steph. 349
var. affinis Steph. 350
54. polytheca Steph. 351
55. pullus Steph. 352
56. pulvinatus steph. 353
57. rimatus Steph. 354
58. saltans A. G. Bourne. . 355

Perionyx (con.). Page
33. sansibaricus Mich. 356
34. shillongensis Steph. . . 357
35. sikkimensis (Mich.) . . 358 var. michaelseni Steph. 359
36. simlaensis (Mich.) . . . 359
37. turaensis Steph. 360
38. variegatus (Mich.) . . 362
C. Subfain. Octochetince. . . . 362

1. Gen. Howascolex Mich. . . 365
2. bidens Mich. 366
3. corethrurus Mich. 367
f. ditheca Mich. 368
4. merkaraensis Mich. . . 368
5. Gen. Octochætus Bedd. . . 369

Subgen. Octuchrotoides
Mich. 371

1. aitkeni (Fedarb) 373
2. barkudensis Steph..... 373
3. beatrix Medd. 376
4. castellanus Steph. 376
5. fermori Mich. 37×
6. ganeshre Steph. 379
7. hodgarti Mich. 381
8. maindroni Mich. 382
var. chaperi Mich..... : 383
9. montanus Strph.. 384
10. paliensis Steph. 385
var. ruparius Steph. . . 386
11. pattoni Mich. 388
12. phillotti Mich. 390
13. pittnyi Mech. 391
14. prashadi Steph. 392
15. surensis Mich. : 394
16. thurstoni Mich. 396
17. Gen. Ramiella Steph. 397
18. bishambari (Steph.) . . 398
19. heterochæta Mich.. . . . 399
20. pachpaharensis(Steph). 400
21. pallida (Steph.) 401
22. Gen. Eudichogaster
Mich. 402
23. ashworthi Mich....... 405
var: kinneari (Steph.) . 407
24. barkudensis Steph. 408
25. barodensis Steph. 409
26. bengalensis Mich. 410
27. chittagongensis Steph. . 411
28. falcifer Steph.. 412
29. indicus (Bedd.) 414
30. mullani Steph. 414
31. parvus (Fedarb) 415
32. poonensis (Fedarb) . . . 416
33. prashadi Steph. 416
34. pusillus Steph. 418
35. trichochætus Steph. . . 419
F. Page
36. Gen. Eutyphœus Mic 420
37. aborianus Steph. 428
38. annandalei Mich 430
39. bishambari Steph. 431
40. comillahnus Mich. 432
41. foveatus (Rosa) 433
42. gamniei (Bedd.) 434
43. gigas Steph. 436
44. ibrahimi Steph. 438
45. incommodus (Berd.) 438
var. fulgidus (Steph.) 439
46. manipurensis Steph. 441
47. masoni (A. (x. Bourne). 442
48. mohrmmedi Steph. 443
49. nainianus Mich. 444
50. nepalensis Mich. 445
51. nicholsoni (Bedd.) 44i
52. orientalis (Bedd.) 448
53. paivai Mich. 449
54. pharpingianus Mich. 450
55. quadripapillatus Mich.. 451
56. scutarius Mich 452
57. Luruensis Steph 453
58. waltoni Mich 455
levis (Rosa) 425
59. Gen. Erythræodrilus Steph. 457
60. anomalus (Nteph.) 458
61. inornatus (Steph.) 459
62. kempi (Steph.) 460
var. bifo veatus(steph.). 46:
63. kinneari Steph. 463
64. suctorius (Steph.) 464
var. affinis (Steph.) 466
Gen. IIoplochretulla Mich. 467
stuarti (A. (r. Bourne)
D. Subfam. Iniplocardince 468
65. (ien. Dichograster Berdl. 470
66. affinis (Mich.) 471
67. bolatia (Mich.) 472
var. malabarica Steph. 473
68. crawi Lisen 474
69. curgensis Mich. 474
70. malayana (Horst) 475
71. modiglianii (Rosa) 477
72. parva (Mich.) 477
73. saliens (Berd.) 178
74. travancorensis(Fedarb). 478
E. Subfam. Ocnerodrilina 479
75. Gen. Curgia Mich. 481
76. narayani Mich. 481
77. Gen. (iordiodrilus Beld 482
78. travancorensis Mich. 482

LITERATURE on the Oligochæta of British India and Ceylon.

(1) 1844. Templeton, R. (On Megascolex caruleus.) P. Z. S. 1844.
(2) 1858. Carter, II. J. On the Spermatology of a New Species of Nais. Ann. Mag. N. II. (3) ii.
(3) 1861. Scumandi, L. K. Neue wirbellose Thiere, beobachtet und gesammelt auf emer Reise um dio Erde 1853-57, i, pt. 2, Neue Turbellarien, Rotatorien, und Annelden, etc. Leipzig, 1861.
(4) 1867. Vatllant, I. Sur la Pericheta cingulata, Schmarda. Bull. Soc. Philom. Paris, (6) iv.
(5) 1872. Permer, E. Recherches pour servirà l'Histoire des Lombriciens terrentres. N. Arch. Mus. Paris, viii.
(6) 1882. Beddard, F. F. On the Anatomy and Histology of Pleqrochacta moselryy. Roy. Soc. Edin. xxx.
(7) 1883. Beddard, F. E. Note on some Earthworms from India. Aun. Mag. N. H. (i) xii.
(8) 1886. Bonnese, L. (1. On Indian Eartinworme. Part I. Preliminary Notice of Earthworms from the Nilgiris and Shevaroys. P.Z.S 1N86.
(9) 1886. Bendand, F. F. Notes on some Earthwoms from Ceylon and the Phupprine lalands, including a description of two new Species. Ami. Mag. N. H. (5) xiii.
(10) 1888. Bund \sin. F. E. On the Structure of Thnee New Species of Earthworms. with Remarhs on certan Ponts in the Morphology of the Oligocherta. Quart. J. Muc. Sci. xxix.
(11) 188s. Rosa, D. Viaggo di Leonardo Fea in Birmania e Regioni vicini. V, Perichetidi. Ann. Mus. Genova, (2) vi.
(12) 1889. Bourne, A. G. On certain Earthworms from the Western Himalay as and Dehra Dun. J. Asint. Soc. Bengal, Iviii.
(13) 18 (0). Bourne, A. G. On Chetohranchus, a New Genus of Oligochartous Chatopoda. Quart. J. Mıc. Sci. xxxı,
(14) 1890. Buninas, W. B. An Attempt to classify Earthworms. Quart. J. Mic. Scı, xxxi.
(15) 1890. Bemdard, F. E. On the Structure of a new Genus of Oligochaeta (D)codrilus), and on the presence of Anal Nephridin in Acanthodrilus. Quart. J. Mic. Sci. xxxi.
(16) 1890. Rosa, D. Viaggio di Leonardo Fea in Birmania e Regioni vicini. XXV, Moniligastridi, Geoscolecidi ed Eudrilidi. Ann. Mus. Genova, (2) ix.
(17) 1890. Rosa, D. Viaggio di Leonardi Fea in Birmania e Regioni vicini. XXVI, Perichetidi. Amu. Mus. Genova, (2) x.
(18) 1891. Rosa, 1), Die exotisehen Terricolen des k. k. naturhistorischen Hofmuseums. Ann, Hofmus. Wien. vi.
(10) 1891. Bovrne, A. G. Notes on the Naidiform Oligocheta; containing a description of New Species of the genern Pris'ina and Pterostylarides, and remarks upon Cephalisation and Gemmation as generic and specific characters in the group. Quart. J. Mic. Scı. xxxii.
(20) 1891. Bourne, A. G. On Megascolex caruleus Templeton, from Ceylon; togetleer with a Theory of the Course of the Blood in Earthworms. Quart. J. Mic. Sci. xxxii.
(21) 1892. Brddard, F. E. On some Species of the Genus Perichasta (sensu stricto). P.Z.S. 1892.
(22) 1892. Rosn, D. Megascolex templetonianus n. sp. (Diagnosi preventiva). Boll. Mus. Torino, vii, no. 131.
(23) 1892. Beddard, F. E. The Earthworms of the Viemna Museum. Ann. Mag. N. H. (6) ix.
(24) 1893. Bennum, W. B. Description of a new Species of Moniligaster from India. Quart. J. Mic. Sci. xxiv.
(25) 1893. Ude, H. Beitrige zur Kenntnis auslandischer Regenwürmer. Z. wiss. Zool. 1vii.
(26) 1893. Brddard, F. E. On some New Species of Earthworms from various parts of the World. P. Z.S. 1802.
(27) 1894. Bourne, A. G. On Certain Puints in the Jevelopinent and Anatomy of some Earthworms. Quart. J. Mic. Sci. Ixxvi.
(28) 1894. Bourne, A. G. On Monligaster grandis, A. G. B. from the Nilgeris, S Indıa; together with descriptions of other Species of the Genus Moniligaster. Quart. J. Mic. Sci. xxxvi.
(29) 1894. Rosa, D. Perichetini nuovi o meno noti. Atti Acc. Torino, xxix.
(30) 1895. Brddard, F. H. A Textbook of Zoogeography. Oambridge, 1895.
(31) 1895. Bradard, F. E. Λ Monograph of the Order of Oligochata. Oxford, 1895.
(32) 1896. Bednari, F. E. On some Earthworms from the Sandwich Islands collected by Mr. R. L. Purkins; with an Appendix on some new Species of Perchata, etc. P. Z. S. 1896.
(33) 1897. Micharlsun, W. Die Terricolenfauna Ceylons. Mt. Mus. Hamburg, xiv.
(34) 1898. Findarb, S. M. On some Earthworms from India. J. Bumbay Suc. si.
(35) 1898. Miciaklsen, W. Beiträge zur Kemntnis der Oligochaten. Zool. Jahrb. Syst. xii.
(36) 1898. Fidiarb, S. M. On some Earthworms from British India. P. Z. S. 1898.
(37) 1898. Bediard, F. E. In: Alcork, A. W. Report on the Natural History Results of the Pamir Boundary Commission. Calcutta.
(37a)' 1900. Brddard, F. E. A Revision of the Earthworms of the genus Amyntas (Perichata). P.Z.S. 1000.
(38) 1900. Micianlesex, W. Oligochæta. Tierreich, x.
(89) 1801. Beddard, F. E. On a Species of Earthworm from India belonging to the genus Amyntas. P. Z.S. 1900.
(40) 1901. Buddard, F. E. Contributions to the Knowledge of the Structure and Systematic Arrangement of Earthworms. P. Z.S. 1901, i.
(41) 1902. Mrcharlsan, W. Neue Oligochäten und neve Fundorte altbekannter. Mt. Mus. Haniburg, xix.
(42) 1902. Beddard, F. E. On two new Earthworms of the Family Megascolecidm. Ann. Mag. N. H. (7) ix.
(48) 1902. Brddard, F. E. and S. M. Frdarb. On a new coelomic organ in 'an Farthworm. P.Z.S. 1902.
(44) 1903. Bmddard, F. E. The Earthworms of the Maldive and Laccadive Islands. In: J. Stanley Gardiner. The Fauna and Geograply of the Maldive and Laccadive Archipelagnes, vol. i. Cambridge, 1903.
(45) 1903. Miciaklegnn, W. Die geugraphische Verbreitung der Oligochiten. Berlin, 1903.
(46) 1903. Micuablsex, W. Oligochaten von Peradeniya auf Ceylon, ein Beitrag zur Kenntnis des Einflusses botanischer Gärten auf die Einsohleppung peregrinur Tiere. Sb. bólum. Ges. Prng, 1903.
(47) 1904. Miciallsan, W. . Über eine Trinephrus-Art von Ceylon. Mt. Mins. Hamburg, $\mathbf{x x i}$.
(48) 190\%. Reddard, F. F. On a new Enchytræid Worm (Henlea lefroyi, sp. n.) from Indin, destructive to the eggs of a Locust (Acridium sp.). P.Z.S. 1905, ii.
(49) 1905. Annandale, N. Notes on an Indian Worm of the genus Chatoguster. Journ, and Proc. As. Soc. Bengal, (n.s.) :.
(50) 1906. Annandale, N. Notes on the Freshwater Fauna of India No.V, Some Auimals found assuchated with Spongilla carteri in Calcutta. Journ. and Proc. As. Soc. Bengal, (u. s.) ii.
(51) 1907; Michaelsan, W. Neue Oligochaten von Vorderindien, Oeylon, Birma und den Andaman-Inseln. Mt. Mus. Hamburg, xxiv.
(52) 1907. Strephenson, J. Description of an Oligochæte Wurm allied to Chetogaster. Rec. Ind. Mus. i.
(53) 1907. Stepinesson, J. Description of two Freshwater Oligoclaxte Worms from the Punjab. Rec. Ind. Mus, i.
(54) 1909. Michavisen, W. The Oligochæta of India, Nepal, Ceylon, Burma, and the Andaman Islands. Mem. Ind. Mus. i.
(65) 1909. Srarinanson, J. The Anatomy of some aquatic Oligochæta from the Punjab. Mem. Ind. Mus. i.
(56) 1909. Piauet, É. Nouvelles observatıons sur les Naididées. Rev. Suisse Zool. xiii.
(57) 1909. Micharlsin, W. On a new Megascolex from Ceylon. Spol. Zeyl. vi.
(58) 1910. Michablawn, W. Die Oligochatenfauna der vorderindischceylonischen Region. Abh. Ver. Hamburg, xix.
(58a) 1910. Strephenson, J. Studies on the aquatic Oligochæta of the Punjab. Rec. Ind. Mus. v.
(59) 1910. Strpuenson, J. On some aquatic Oligochæte Worms commensal in Sponyilla carteri. Rec. Ind. Mus. v.
(60) 1910. Stwpiksson, J. On Bothrioneurum aris Beddard. Rec. Ind. Mus. v.
(61) 1911. Stepienson, J. On some aquatic Oligochreta in the collection of the Indian Museum. Rec. Ind. Mus. vi.
(62) 1911. Lroyd, R. E. An Iatroduction to Biology for Students in India. London, 1911.
(63) 1911. Lloyd, R. E. Some disputed points in the Anatomy of a common Indian Earthworm. J. Bombay Soc. xxi.
(64) 1911. Powrll, A. Some disputed points in the Anatomy of a common Indian Earthworm. J. Bombay Soc. xxi.
(65) 1011. Oognetti de Martirs, L. A contribution to our Knowledge of the Oligochæta of Travanoore. Ann. Mag. N. II. (8) vii.
(68) 1912. Bedpard, F. E. Earthworms and their Allies. Cambridge, 1912.
(67) 1912. Stupherson, J. On Branchiura sowerbyi Beddard, and on a new species of Limnodrilus with distinctive characters. Tr. Roy. Soc. Edin. xlviii.
(68) 1912. Stephenson, J. On a new species of Branchiodrilus and certain other aquatic Oligochata, with remarks on Cephalization in the Naididæ. Rec. Ind. Mus. vii.
(69) 191\%. Strpirimson, J. Contributions to the Fauna of Yunnan. Part viii. Earthworms. Rec. Ind. Mus, vii.
(70) 1913. Miciancisme, W. Oligochäten von Travancore und Borneo. Mt. Mus. Hamburg, xxx.
(71) 1913. Sthphenson, J. On a Collection of Oligochæta, mainly from Oeylon. Spol. Zeyl. viii.
(72) 1913. Strpinanson, J. On Intestinal Respiration in Amnelids; with Considerations on the Origin and Evolution of the Vascular System in that Group. Irr. Roy. Soc. Edin. xlix.
(73) 1914. Stapinenson, J. Oligochreta, in: Zoological Rebilts of the Abor Expedition 1911-12. Rec. Ind. Mus. vii.
(74) 1914. Stapubnson, J. Littoral Oligochacta from the Chilka Lake on the E. Coast of India. Rec. Ind. Mus. x.
(75) 191 \&. Stephinson, J. On a Oollection of Oligochaxta, mainly from Northern Indin. Rec. Ind. Mus. x.
(76) 1915. Steruenson, J. On Hamonazs laurentii n sp., a representative of a little known genus of Naididæ. Tr. Roy. Soc. Edin. I.
(77) 1915. Strpilinson, J. On a Rule of Proportion observed in the setme of certain Naidide. Tr. Roy. Soc. Edin. 1.
(78) 1915. Strpinenson. J. On the Sexual Phase in certain of the Naidida. I. The Anatomy of sexual individuals of the genus Dero; with remarks on Hemonais. II. The genital organs in the genus Slavina. Tr. Roy. Soc. Edin. 1.
(79) 1915. Stkpiznson, J. Faina of the Chilka Lake. Oligochæta. Mem. Ind. Mus. v.
(80) 1015. Stephanson, J. On some Indıan Oligochæin, mainly from Southern India and Ceylon. Mem. Ind. Mus. vı.
(81) 1916. Stmpirmson, J. On a Collection of Oligochæta belonging to the Indian Museum. Rec. Ind. Mus. xii.
(82) 1916. Prabiad, Baini. The Warthworms of Lahore. J. Bombay Soc. xxiv.
(82a) 1916. Prasiad, Baini. The Anatomy of an Indian Earthworm, Pheretima posthuma. Lahore, 1916.
(83) 1916. Miciaklisen, W. Ohgochaten aus dem Naturhistorischen Reichsmuseum zu Stockholm. Ark. f. Zool. x, no. 9.
(83a) 1916. Michaelsen, W. Oligochaten, in: Results of Dr. E. Mjoberg's Swedish Scientıfic Expeditions to Australia 1910-1913. Kungl. Svenska Vetenskapsakad. Handlingar, lii, no. 13.
(84) 1917. Straphenson, J. Aquatic Oligochæta from Ohina and Japan, in: Annandale, N. Zoological Results of a tour in the Far East. Mem. As. Soc. Bengal, vi.
(85) 1917. Stepienson, J. Fauna of the Chilka Iale. Oligochæta (Supplementary Report). Mem. Ind. Mus. v.
(86) 1917. Strpiumson, J. On a Collection of Oligochæta from various parts of India and Further India. Rec. Ind. Mus xiii.
(87) 1917. Staphemson, J. On the so-called Pbaryngenl Gland-Oells of Earthworms. Quart. J. Mic. Sci. lxii.
(87a) 1917. Micharlskn, W. Die Lumbriciden. Zool. Jahrb. Syst. xli.
(88) 1918. Stmphexson, J. Aquatic Oligochæta of the Inle Lake. Rec. Ind. Mus. xiv.
(89) 1918. Thapar, G. S. The Lymph Glands in the genus Pheretima, with a note on the Coelomic Organ of Beddard. Beo. Ind. Mus. xy.
(90) 1919. Bahl, K. N. On a new Type of Nephridia found in Indian Earthworms of the genus Pheretima. Quart. J. Mic. Sci. lxiv.
(91) 1910. Stephenson, J. and B. Prasiad. The Calciferous Glands of Earthworms. Tr. Roy. Soc. Edin. lii.
(92) 1910. Strpilinson, J. and Haru Ram. The Prostate Glands of the Earthworms of the fanily Megascolecidm. Tr. Roy. Soc. Edin. lii.
(93) 1920. Staphunson, J. On a Collection of Oligochæta from the lesser known parts of India and from Eastorn Persia. Mem. Ind. Mns. vii.
(94) 1920. Mehra, H. R. On the Sexual Phase in certain Indian Naidide (Oligochæta). P.Z.S. 1920.
(95) 1921. Stepinarson, J. Contributions to the Morphology, Olassification, and Zongeography of Indian Oligochetta. I. The Affinities and Systematic Position of the genus Faddichogaster Michlsu., and some related questions. II. On Polyphyly in the Oligochata. III. Some general Considerations on the Geographical Distribution of Indann Oligochmota P. Z. S. 1921.
(96) 192]. Stepienson, J. Oligochæta from Manipur, the Laccadive Islands, Mysore, and other parts of India. Rec Ind. Mus. xxii.
(97) $10 \div 1$. Baml, K. N. On the Blood-Vascular System of the Earthworm Pheretima, and the Course of the Crrculation in Earthworms. Quart. J. Mic. Sci. lxv.
(98) 1021. Rao, O. R.N. On the Anatomy of some new Species of Drawuda. Ann. Mag. N. H. (9) vii.
(99) 1921. Michaflsen, W. Oligorhaten von westlichen Vorderindien und ilıre Beztehungen zur Oligochaten-fania von Madagascar und den Segchellen. Mt. Mus. Hamburg, xxxviii.
(100) 1922. strepilenson, J. Contributions to the Morphology, Classification, and Zoogeography of Indian Oligochata. IV. On the diffuse production of Sexual Oells in a species of Chcetoguster (fam. Naidıdæ). V. On Drawedı, aqponuca (Michlsn.), a Contribution to the Anatony of the Moniligastridæ. V1. On the Relationshups of the genera of Monhligastridat: with some Considerations on the Orgin of Terrestrial Oligochata. P. Z. S. 192.2 .
(101) 192:. Stapunson, J. On some Earthworme fiom India and Palestine belonging to the British Museum. Amn. Mag. N. H. (9) ix.
(102) 1922 . Kac, C. K N. Some new Species of Earthworms belunging to the Genus Giyphilrilus. Ann. Mag. N.H. (9) ix.
(103) 19:22. Stebilunsov, J. A Note on some supposed new Species of Earthworms of the genus Glyphidrlus. Ann Mag. N. H. (9) ix.
(104) 19\%2. Sterinenson, J. Some Earthworms from Kashmir, Bombay, and other parts of India. Rec. Ind. Mus. xxiv.
(105) 1922. Baill, K. N. On the Development of the 'Enteronephrie' type of Nephridial System found in Indian Earthworms of the genus Pheretima. Quart. J. Mic. Sci, lxvi.
(106) 1922. Micuafisan, W. Die Verbreitung der Oligochaten im Lichte der Wegener'schen Theorie der Kontinentenverschiebung und andere Fragen zur Stannesgeschichte und Verbrentung dieser Thergruppe. Verh. naturw. Ver. Hamburg, (3) xxix.

OTHER LITERATURE referred to in the following pages.

(107) 1911. Annandale, N. The Fauna of British India, including Ceylon and Burma. Freshwater Sponges, Hydroids, and Polyzoa. London, 1911.
(108) 1886. Beduard, F. E. Descriptions of some new or little-known Earthworms, together with an account of the Variations in Structure exhibited by Perionyx excavatus E. P. P. Z.S. 1886.
(109) 18\%8. Beddird, F. E. Observations upon an Annelid of the Genus Eolosoma. P. Z. S. 1888
(110) 1891. Brddard, F. F. Anatomical Descriptions of two new Genera of Aquatic Oligochata. Tr. Roy. Soc. Edin. xxxvi.
(111) 189… Brddand, F. E. On some Aquatic Oligochretons Worms. P.Z.S. 1892.
(112) 1894. Beddard, F. E. Preliminary Notice of South American Tubificidx, etc. Ann. Mag. N. H. (6) xiii.
(113) 1903. Benilasi, W. B. On a Now Species of Eartha orm from Norfolk Island. Tr. and Proc. New Zeal. Inst. xxxy.
(114) 1904 . Benifan, W. B. On some new species of the genus Phreodrilus. Quart. J. Mic. Sci. xlvii.
(115) 1909. Benham, W. B. Report on the Oligocharta. Art. xi in: The Subantaretic Islands of Now Zealand, i. Wellington, 1909.
(116) 1886. Bousfildd, E. C. On Slavina and Ophudonais. J. Jimn. Soc. xix.
(117) 1905. Cognktti de Martis, L. Su1 peptonefrid degli Oligocheti. Boll. Mus. Torino, xx.
(118) 1892. Flokmicke, C. Vorlaufge Mitthenlung uber emge anschenend neue Naidomorphen. Zool. Anz. xv.
(119) 1869. Jankester, E. R. A Contribution to the Knowledge of the lower Amnelids. 'Ir. Liun. Soc. xxvi.
(120) 1903. Michaelsen, W. Hamburgıeche Eib-Ǔntersuchung. IV. Ohgochaten. Mt. Mus. IIamburg, xix.
(121) 1905. Michablsen, W. Die Oligochaten Deatach-Ostafrikas. Z. wiss. Zool. lxxxii.
(122) 1905. Micianlsen, W. Zur Keuntms der Naididen. Zoologica, Heft. 44.
(123) 1907. Miciakl.sen, W. Oligochaeta, in : Die Fauna Südwest-Australiens, i, Lief. 2. Jena, 1907.
(124) 1909. Michamlsen, W. Oligochaeta, in: Die Süsbwasser-fauna Deutachlands, IIeft, xiii. Jena, 1909.
(125) 1910. Micharlask, W. Ohigochäten von versohiedenen Gebieten. Mt. Mus. Hamburg, xxvii.
(126) 1910. Michablame, W. Zur Kenntnis der Lumbriciden und ihrer Verbreitung. Amnuare Milis. St. Pétereb. xv.
(127) 1911. Michazlses, W. Zur Kenntnis der Eodrilaceen und ihrer V erbreitungeverhältnisse. Zool. Jahrb. Syst. xxxiv.
(128) 1913. Michalabens, W. Die Oligochaiten des Kaplandes. Zool. Jahrb. Syst. xxxiv.
(129) 1913. Micharlsen, W. Die Oligochäten von Neu Caledonien und den - benachbarten Inselgruppen. In: F. Sarasin und 'I. Roux, Nova Caledoniu, A, Zuol. Bd. 1, Heft. 3. Wiesbaden, 1913.
(180) 1915. Michaelsen, W. Oligochaten, in: Ergebnisse der zweiten deutschen Zentral-Afrika-Expedition 1910-1911. Bd. i, Zool. Teil 1, Leipzig, 1915.
(131) 1922. Miciablsen, W. Oligochaten aus dem Rijks-Muscum van Natuurlijke Historie zu Leiden. Oapita Zoologica, i, 3.
(132) 1913. Nomura, E. On two species of aquatic Oligochata (Limnodrilus gotoi IIatai and L. willeyi n. sp.). J. Coll. Sci. Tokyo, xxav.
(133) 1906. Pravar, É. Observations sur les Naididées et révision systématique de quelques espéces de cette famille. Rev. Suisse Zool. xiv.
(184) 1913. Pigurt, É. Oligochètes, in: Catalogue des Invertébrés de la Suisse. Genève, 1913.
(135) 1898. Rosa, D. On some new Earthworms in the British Museum. Ann. Mag. N. H. (7) ii.
(136) 1890. Vailiant, L. Histoire naturelle des Annélés marins et de l'eau douce, vol. iii, pt. 2. Paris, 1890.
(137) 1883. Vkidovsky, F. Revisio Oligochætorum Buhemiæ. Sb. Böhm. Ges. Prag, 1883.
(138) 1884. Vujnovsky, F. System und Morphologie der Oligochaeten. Prag, 1884.

ABBREVIATIONS OF TITLES OF JOURNALS, ETC.

Abh. Senckenb. Ges.--Abhandlungen, herausgegeben von der Senckenbergischen naturforschenden Gesellschait. Frankfurt a. M.
Abh. Ver. Hamburg. - Abhandlungen aus dem Gebiete der Naturwissenschaften hrsg. vom naturwissenschaftlichen Verein in Hamburg. Hamburg
Ann. Hofmus. Wien.-Aunalen des K. K. naturhistorischen Hufmuseums. Wien.
Ann. Mag. N. H. - The Annals and Magazine of Natural History, including Zoology, Botany, and Geology. London.
Ann. Mus. Genova.-Aınalı del Museo eıvico dı Storia naturale di Genova. Genova.
Ann. Natal Mus.-Annuls of the Natal Musemm. London.
Annuaire Mus. St. Pétersb.-Amnuare du Musée zoologique de l'Académié Impériale des Sicıences de St. Pétershourg. St. Pétersbourg.
Arch. f. Naturgesch.-Archiv fur Naturgeschichte. Berlin.
Ark. f. Zool. -Arkıv for Zoologi, utgiftet af k. Svenska Vetenshapsakadrmieu. Stockholiw.
Atti Acc. Torino.-Atti della Reale Accademia delle Scienze di Turmo. Torino.
Boll. Mus. Torino.-Bolletino dei Musei dı Zoologir ed Anatomia comparata della Reale Universita dı Tormo. I'orino.
Bull. Ac. Belgique. -Bulletıns de l'Académe Royule des Sciences, des Lettres et des Beaux-Arts de Belgique. Bruxelles.
Bull. Ac. Sci. St. Pétersb.-Bulletın do l'Académı Impériale des Scıences' de St. Pétersbourg. St. Pétersbourg.
Bull. Illinois Lab. - Bulletin of the Illmois State Laboratory of ${ }^{\text {Natural }}$ llistury. Yeorra, Springfield.
Bull. Soc. Philom. Paris. - Bulletin de lu Société philomathique de Parıs. Paris.
Capita Zool. - Capita zoologica. 's Gravenhage.
Ergeb. Magalh. - Ergebnisse der HamburgerMagalhaensischen Sammelreise. Hrsg. vom Naturhstorischen Museuß zu Hamburg. Hamburg, 18961900.

Fauna Laccad. Archip.-J. Stanley Gardinmr. The Fauna and Geography of the Maldive and Laccadive Archipelagoes. Vol. 1. Cambridge, 1903.
Fauna §.W. Austral.-Die Fauna Suidwest-Australiens. Ergebnısse der Hamburger sudwest-australisohen Forschungsreise 1905. Bd. i, Liei. 2, Oligochseta. Jena, 1907.
Geog. Verbr. Olig.-W. Mrchatlsen. Die geographische Verbreitung der Oligoohaeten. Berlin, 1903.
J. Asiatic 8oc. Bengal.-Journal of the Asiatic Society of BengalOaloutta.

Jb. böhm. Ces.-Jahresberıcht der Kön. Böhınischen Gesellschaft der Wissenschaften. Prag.
J. Bombay Soc.-Journal of the Bombny Natural History Society. Bombay.
J. Coll. Sci. Tokyo.-Journal of the College of Science, Imperial University of Tukyo. Tokyo.
J. Linn. Soc.--Journal of the Linuean Society-Zuology. London.

Journ. and Proc. Asiatic Soc. Bengal.--Jourmal and Proceedings of the Asiatic Society of Bengal. Calcutta.
Mem. As. Soc. Bengal.-Memoirs of the Asintic Society of llengal. Calcutta.
Mem. Ind. Mus. - Memoirs of the Indian Museum. Oalcutta.
Mem. Soc. Zool. Fr. - Mémoires de la Société zoologique de France. Paris.
Mjöberg's Austral. Exp. - Results of Dr. E. Mjoherg's Swedish Scientific: Expeditions to Austraha 1910 1913. XIII Oligochaten. Kungl. Svenskn Vetenskapsakademiens Handlingar, hi, no. 13. Stochholm, 1916.

Monog.-F. E. Bradard, A Monograph of the Order of Oligochaeta. Oxford, 1895.
or F. Vrjoovsky, System und Morphologie der Oligochaeten. Prag, 1884.

Mt. Mus. Hamburg.-Mitteilungen aus dom naturhistorischen Museum in Hamburg. Hamhurg.
N. Arch. Mus. Paris.-Nouvelles Archıves du Muséum d'Histoire naturelle. Paris.
Neue wirbell. Thiere.-L. K. Scimarda, Neue wirbellose Thiere, beobachtet und gesammelt auf einer Reise um die Erde 18i3-1857. Leipzig, 1859-61.
Olig. Subantarctic Is.--Subantarctic Islands of New Zealand. Art. xii, W. B. Benham, Report on Oligochieta of the Subantarctic Islands of New Zealand. Wellington, New Zealend, 1909.
Olig. Suisse.-E. Pigurt and K. Bretscurr, Catalogue des Invertébrés de la Suisse. Fasc. 7, Oligochètes. Genève, 1913.
Olig. Tiefsee Exp. --D1c Oligochaten der dentschen Tiefsee-Expedition, nebst Eröterung der Terricolenfauna Oceamscher Inseln, msbesondere der,Inseln des subantarktischen Meeres. 1903.
O. sudpolar Exp. - Die Oligochaeten der deutschen sudpolar-Expedition 1901-1903, nebst Eroirterung der Hypothese uiber emen früheren grossen der Südspitzen der Kontinente verbindenden antarktischen Kontınent. 1905.
P. Ac. Philad.-Proceedings of the Academy of Natural Sciences of Philadelphia. Philadel'pha.
P. Calif. Ac. - Proceedings of the Californin Academy of Sciences. Zoology. San Francisoo.
Proc. U.s. Nat. Mus.-Proceedings of the United States National Museum. Washington.
P.Z.S.- Proceedings of the Zoological Society of London. London.

Quart. J. Mic. Sci. - Quarterly Journal of Microscopical Science. London.
Rec. Ind. Mus.-Rec.rds of the Indian Museum. Oalcuttn.
Rev. Suisse Zool.-Revue Suisse de Zoologie et Annales du Musée d'Histoire Naturelle de Genòve. Genève.
8b. Böhm. Ges. Prag.-Sitzungsberichte der Königlichen Böbmischen Gesellischaft der Wissenschafien in Prag. Mathematisch-naturwissenschaftliche Klasse. Prag.

Spol. Zoyl.-Spolia Zeylanica. Colombo.
Siusswasserf. Deutsch.-Die Süsswasserfauna Deutschlands, Jsggn. A. Brauer. Heft 13, Oligochneta und Hirudinea. Jena, 1909.
Tier., x.-Das Tierreich, vol. x, Oligochaeta. Berlin, 1000.
Tr. and Proc. New Zeal. Inst.--Transactions and Proceerlings of the New Zealand Institute. Wellington, New Zealand.
Tr. Linn. Soc.-Transactions of the Linnean Society of London. London.
Tr. Roy. Soc. Edin.-Transactions of the Royal Society of Edinburgh. Edinburgh.
Verh. naturw. Ver. Hamburg.-Verhandlungen des naturwissensohaftlichen Vereins in Hamburg. Hamburg.
Zool. Anz.-Zoologischer Anzeiger. Leipzig.
Zool. Jahrb. Syst.--Zoologisohe Jahrbücher. Abtheilung für Systematik, Geographie und Biologie der Thiere. Jena.
Zweit. deutsch. Zent.-Afr.-Exp.-Ergebnisse der Zwerten deutselisen Zentral-Afrika-Expedition 1910-1911 unter Führung Adolf Friedrıchs, Herzogs zu Mecklenburg. 1. Zoologie, Teil 1. Leipzig, 1915.
Z. wiss. Zool.-Zeitschrift für wissenschaftliche Zoologie. Leipzig.

OLIGOCHIATA.

METHODS OF EXAMINATION; SYSTEMATIC DESCRIPTION.

Good systematic description is an art, and to practise this it is necessary to know what to observe, and how to manipulate in order to observe; the observations must then be clearly expressed, and arranged in a definite order. We may consider the methods employed in the systematic examination of the Oligochæta along with the enumeration of the characters to be observed; and for this purpose we will first take an earthworm of one of the families Mouiligastridæ, Megascolecidæ, or Lumbricidæ.

The investigator often has no control over the fixation and preservation of the material submitted to him; if, however, he is making his own collection, he will fiud it advantageous to paralyse the worms by placing them in water and gradually adding spirit; when they are completely insensible they are transferred to 10 per cent. formalin in a flat dish, and allowed to become stiff in the fully extended position; after twenty-four hours in the formalin they are transterred to spirit.

The dissecting microscope used in the examination and dissection should be a binocular, and one with a long arm is much the best, since the sinaller instruments, where the dissecting dish has to be placed on the stage, do not allow enough room Cataract knives are used for the dissection, with fine needles anu the finest scissors and forceps. The pins for pinning out the specimens are entomological pins, obtainable in varying degrees of fineness for the larger and smaller worms.

The length, diameter, number of segments, and colour, are to be noted, along with any special variations of the latter in different parts of the body; the colour is frequently altered by the preservative. The form may require mention; e. g., the anterior end may be markedly bulbous; the ventral surface may be flattened; the body, or the hinder end, may be four-cornered in transverse section; the dorsal surface may be grooved, etc.

The prostomium is to be noted. If not marked off by a groove from the first segment it is said to be zygolobous (text-fig. 1). If marked off, but not encroaching on the first segment, the separating groove being strictly transverse, it is prolobous (text-fig. 2). If it encroaches but slightly on the first segment it is proepilobous
(text-fig. 3); if more markedly, epilobous (text-fig. 4). The posterior prolongation into the region of the first segment is called the tongue; it may be delimited behind by a transverse groove, when the tongue may be said to be cut off behind; or there may be no such groove, when the tongue is open, or not cut off behind. The length of the tongue is of importance; if it extends through one-third, or a half, or two-thirds of the length of the first segment, the description runs "prostomium epilobous $\frac{1}{3}$, or $\frac{1}{2}$, on $\frac{7}{3}$," etc. If the tongue goes back to the groove between segments i and ii, the prostomium is said to be tanylobous (text-fig. 5). These forms are sometimes found combined; thus there may be a transverse groove at the anterior limit of the first segment as in the prolebous form, together with a tongue which extends through part or the whole of the first segment-conditions which may be described as "combined pro- and epilobous" (text-fig. 6), and

Fig. 1. Zygolobous prostomium.
Fig. 2. Prolobous prostomium.
Fig. 3. Proepilobous prostomium.

Fig. 4. Epilobous prostomium.
Fig. 5. Tanylobous prostomium.
Fig. 6. Combined pro- and epilobous prostomium.
"combined pro- and tanylobous" respectively. Special shapes of the tongue may sometimes require notice; its sides may converge backwards, even meeting to form a \mathbf{V}; or occasionally they diverge.

The segments themselves are suitably expressed by roman numerals:-i, ii, iii, iv, etc.; while fractions, or successive arabic numerals separated by an oblique line, are used to denote the intersegmental furrows, or, in the internal anatomy, the septa. Thus the furrow, or, according to the context, the septum, between segments x and $x i$ is denoted by ff or $10 / 11$.

The segments are often divided by secondary grooves into annuli, and it may be useful to note the extent of this subdivision; as an example, "segms. iv and v biannular, vi-vii triannular, viii-xiii with four or five annuli, post-clitellar segms. triannular." The first segment is̨ sometimes withdrawn within
the mouth aperture; but a mistake in enumeration will usually be avoided by observing that in this case the setæ begin on the first apparent segment.

Dorsal pores are present in most species of earthworms, beginning some distance behind the anterior end. The groove in which they begin is to be observed; this is suitably done when the worm is pinned out preparatory to opening, by gently pressing apart with needles the sides of the intersegmental grooves in the preclitellar region.

The setce are amongst the most important characters for systematic purposes. In the earthworms they begin usually on the second segment, but occasionally further back. They may be arranged either in two couples on each side of each segment (the lumbricine arrangement), or they may be more numerous and disposed in a ring (perichøtine arrangement). In the lumbricine arrangement the most ventrally placed seta on ench side is denoted by the letter a, the other seta of the ventral couple by b, the

Fig. 7.-Lumbriene arrangement of setr.
more ventral of the dorsal couple is called c, the most dorsally placed is d (text-fig. 7). The relative extent of the intervals between neighbouring setæ are recorded-i.e., the intervals $a a$, $a b, b c$, and $c d$. The observations are perhaps most easily made by holding the worm between the fingers of the two hands under the dissecting binocular, and rotating it as required. The mode in which these ratios are expressed has hitherto varied considerably, but I have adopted the following as convenient: the distance $a b$ is taken as the unit, and is compured first with the interval aasay it is one-third of aa; by slightly rotating the body of the worm it is now compared with bc-it may perhaps be equal to half $b c$; observations made by rotating the worm so as to bring $a b$ and $c d$ alternately into view may give, as a relation between these two, $a b=\frac{3}{4} c d$. The interdorsal interval $d d$ (measured over the dorsal surface) is also to be estimated in terms of the whole circumference; it is sometimes more, sometimes less than half the circumference, according as the seta d is below or above the lateral line of the body. A complete expression of the ratios can now be given in the following short and convenient form :$a b=\frac{1}{3} a a=\frac{1}{2} b c=\frac{3}{4} c d ; d d=\frac{1}{2}$ circumference.

As, however, the above ratios often vary in different parts of the body, the operations have to be repeated; three such will as a rule suffice-one about the middle of the body-length, one in the region behind the clitellum, and one in front of the clitellum; $d d$ need usually be given only once-at the middle of the body.

In worms with the perichætine arraugement, the setæ of each side are denoted $a b c d e \ldots$ beginning from the one nearest to the midventral line; and those on the dorsal side $z y x \ldots$ beginning from the middorsal line, without regard to the actual number in the ring. The relative sizes of the intersetal intervals in the different parts of the ring are to be observed; e. g., the setm may be set closer together ventrally than dorsally ; and if, as is usual, there is a gap in the ring in the middorsal and midventral lines, the size of the gap is to be estimated in terms of the next intersetal interval-e.g., $a a=2 a b, z z=3 y z$.

The number of setæ in the ring is also to be counted; and as thisdiffers in different parts of the body, several counts have to be made. Convenient segments for this purpose are v, ix, xii, xix, and one in the middle of the body. The results may be expressed thus :-Setæ $24 / \mathrm{v}, 30 / 1 \mathrm{x}, 32 / \mathrm{xii}, 36 / \mathrm{xix}$, and $34 /$ mid-body.

The counting is, I think, most easily done by holding the worm in the fingers of both hands under the dissecting binocular, fixing on the appropriate segment, and then, keeping the worm in focus, gradually rotating it. Bourne (20) recommends cutting open the anterior portion of the worm, scraping out the viscera, flattening out the empty body-wall between tuo glass slides, and allowing it to harden in spirit; then heating with caustic potash, placing in glycerine and mounting. But this of course is not allowable where a limited number of specimens only are available; and in any case it is needlessly troublesome; practice in the simpler method will give facility.

Certain setm are sometimes enlarged relatively to the others: e. g., the ventralmost setm, abc, of some of the anterior segments in certain perichætine worms. This is to be noted where it occurs.

It is to be observed that the positions of the setm give useful points of reference in describing the situation of such features as the external apertures of the body. For this purpose, in the worms with the lumbricine arrangement, the setm $a b c d$ on each side may be imagined as connected by longitudinal lines; and we may describe the male pores as lying, for example, between the lines of setæ a and b, or even more shortly as being in $a b$; in a perichætine form they might perhaps be between the lines f and g.

Certain setæ may be modified in form; this is especially the case with the penial setæ so commonly found near the male pores. These are to be specially and minutely described, since the features they present are among the most trustworthy of specific distinctions. The length, thickness at the middle of the shaft, curvature, characters of the poinṭ, and ornamentation by lines,
spiues or teeth, are the principal characters; it is usually advisable to give an illustration in addition to a verbal description. Certain setæ in the neighbourhood of the spermathecal pores may also be modified ("copulatory setæ" in the genera Octochatus and Eudichogaster).

Though the penial setæ may at times be seen projecting for some distance through the male pore, it is nevar safe to try to remove them from outside. They invariably break; and the only way is, at the close of the internal dissection, to seize the setal sac and its surrounding muscular bundles from the inside; withdraw the whole, and place it in a drop of glycerine on a slide; carefully, with fine needles, separate off the muscular fibres from the bases of the setæ, and cover. In some very small worms of the genus Dichoyaster, the setal sacs may be too minute to be easily recognisable even under the dissecting microscope; and since in this genus the penial setre are specially important, they must be obtained by taking hold of the prostatic duct as near the body-wall as possible, and removing the whole of the prostate; the setw in their sac will be found adhering to the ectal end of the duct.

The extent of the clitellum is of systematic importance, and also its form-ring-shaped or saddle-shaped-i.e., extending all round the body, or absent on the ventral surface. Sometimes setæ are present, and sometimes the interseginental grooves are visible; the colour also often differs from that of the neighbouring parts of the body.

The position of the genital apertures (male pores, prostatic pores, female pores and spermathecal pores) are to be noted. 'The male pores are properly the endings of the vasa deterentia; if prostate glands are present, they mny open at the male pores in common with the vasa deferentia, or may discharge separately. After a statement of the segment or intersegmental groove in which they occur, their exact positions are often best defined by reference to the lines of the setæ (v. sup.)-e. g., male pores on xviii between the lines of setæ a and b, female pores on xiv anterior and internal to seta a, spermathecal pores in grooves $7 / 8$ and $8 / 9$ slightly outside the line of b. In some genera the two prostatic pores of the same side are connected by a seminal groove, the characters of which (straight, bowed outwards or inwards, etc.) are to be noted.

Very important for systematic purposes is an accurate description of the papillm, ridges, pits and other genital markings which in many worms make their appearance at sexual maturity. These are often variable to some extent, and if possible a number of specimens should be examined, in order to discover which characters are constant. It is frequently useful to add a drawing to the description.

Having completed the account of the external characters, the investigator proceeds to the dissection of the worm. If the
specimen is single, and there is a possibility of its turning out to be a new species, the greatest care must be exercised, and the least possible amount of damage done, since the specimen will have to be preserved for future reference as the type of the new species.

The worm is to be pinned out and the anterior part of the body opened by a median dorsal incision. In pinning out the worm, the pin at the anterior end may be passed obliquely downwards and backwards through the mouth, so as to avoid damage to the prostomium.

The student who has had the usual laboratory training will often be tempted to examine the smaller earthworms by longitudinal sections of the anterior end instead of by dissection. For earthw orms, however, this is scarcely ever necessary, and, where material is limited, should only be resorted to in very exceptional cases. Not to speak of the time required (which is scarcely a valid argument), the alimentary canal often contains earth, which interferes with the cutting and may practically destroy the whole specimen; it is also much easter to give an accurute description ot the shape and relations of the organs-e. g., of a spermatheca with diverticula-from dissection than from the reconstruction of sections; the penial setæ, too, are destroyed in sections, and these are of decisive importance in precisely that genus-Dichogasterwhere, on account of the small size of the worms, sectioning is most likely to be employed.

By practice it will be found possible to obtain quite satisfactory systematic descriptions from dissections in worms down to $1 \frac{1}{2} \mathrm{~mm}$. in diameter, or even down to $1 \frac{1}{4} \mathrm{~mm}$., and there are very few earthworms of smaller size than this.

The above refers especially to the cases where only one or a very few specimens are available; it is of course not meant that sections should not be attempted when a number of examples are at hand. But it will be seen that I disagree with the opinion of Smith (Proc. U.S. National Museum, lii, 1917, p. 159), that "an udequate study of earthworms for systematic purposes demands serial sections of sexually mature specimens, although much important iuformation can be gained by careful dissection." This author recommends (in the case of types, or where material is scarce) splitting the anterior portion in the sagittal plaue, and removing the dirt from the alimentary canal; one half of the anterior end is then to be sectioned.

In case the material is ample, a second dissection from the ventral surface is sometimes useful-e.g., to determine the relations of the testis sacs, and whether or not those of the same segment are united below the alimentary tube. Benham (J. Linn. Soc. Lond., Zool., xxvi, 1897) recommends a dissection from the side; but of this I have scarcely any experience.

The worm having been opened, the septa in the anterior part of the body are first observed. Some of these may perhaps be absent; others may be thickened, in which case the various degrees of thickening are to be noted.

The chief features of systematic importance in the alimentary canal are the following:-(1) The presence and position of a gizzard or gizzards. If the gizzard is far forwards, it is not always easy to determine which segment it belongs to, since the septa here are usually funnel-shaped, with their parietal much in front of their œesophageal attachment; they may thus closely invest the sides of the gizzard, and the one in front of which the gizzard really lies may appear to be attached to its sides or even to its anterior end; moreover the septa here may be extremely thin, and in badly preserved specimens may be in danger of being overlooked altogether. (2) The calciferous glands-their number, position, and whether stalked or attached by a broad base to the œosophagus. (3) The segment in which the intestine begins, and the presence and position of intestinal cwea. (4) Some authors note the characters of the typhlosole.

Not many characters of the vascular system are used in systematic descriptions of earthworms. The chief of these is the number of hearts, and more especially the position of the last (most posterior) heart. Sometimes the dorsal vessel is double (very rarely indeed in Indian worms).

Nephridia occur either as meganephridia, or as micronephridia. The micronephridia vary much in size and arrangement. There may be a large number of minute nephridia scattered irregularly over the inner surface of the body-wall and on the septa; or the number in euch segment may be fewer, and they may then be arranged in definite transverse rows on the parietes-one or two rows in each segment. All the micronephridia may not be of the same size-e.g., the most ventrally situated may be the largest. These points of number and relative size are of some importance in certain genera of the Octochætinæ (Octochoctus, Eudichogaster) and Megascolecinæ (Megascolites, Megascolex). In micronephridial genera bushv nephridial tufts are usually found in the auterior segments by the side of the pharynx and anterior part of the œosophagus.

The sexual organs are the most important of all for systematic purposes. The testes and their associated funnels may be one or two pairs ; they may be enclosed in special compartments of the colom (testis sacs), or may lie free in their segments. In an advanced stage of sexual maturity the testes are quite small, and may be quite undiscoverable; the presence of the funnels, sometimes apparently large and glistening through adherent spermatozoa, may, however, usually be taken as an indication of the presence of testes also. The seminal vesicles, in which the spermatozoa ripen, communicate with the testis segments, or the testis sacs; their position, size, and lobulation or its absence are to be noted.

In connection with the external pores, or in the neighbouring segments, there may be prostate (spermiducal) glands. In the Moniligastridæ, the shape and character of the surface of the gland are important; in the Megascolecidæ, the form (whether tubular or compact, and in the latter case whether much or slightly lobed),
size, and position of the glandular portion and the length, thickness, course and character (whether smooth and shining, or the reverse) of the duct require description. The ectal end of the male apparatus may be dilated and eversible as a bursa copulatrix.

The female organs comprise the ovaries, female funnels and oviducts, and sometimes ovisacs (receptacula ovorum); these have not as a rule the same importance as the male organs. The spermatheces are among the most important of the genital organs; their number and position are to be noted, the ampulla and its duct are to be described; and especially the characters of the diverticulum or diverticula (if any), and the place of its junction with the main portion of the apparatus. In the Moniligastridæ, it is important to note any dilatation of the end, or the characters of any sac (atrium) opening into the end, of the spermathecal duct.

In many of the smaller Megascolecidx, the characters of spermatheca and diverticulum are best ascertained by removing one and mounting it in glycerine. The preparation will usually become sufficiently transparent in this medium ; if not, it may be rendered clearer by being treated on the slide with a small drop of glacial acetic acid before mounting in glycerine.

The small, usually aquatic Oligochæta of the families Жolosomatidæ, Naididæ, Tubificidæ and Enchytræidæ require quite different methods of examination. These are mainly microscopic.

The examination of the living worms should never be omitted if opportunity offers. The Жolosomatidæ, and most of the Naididæ, are transparent enough to allow the whole anatomy (except that of the sexual organs in the mature worms) to be investigated, and many details are more evident than in fixed specimens. The worms are, however, sometimes very active, crawling out from under the cover-glass, or not remaining long enough in one position to allow of examination; much patience is often needed, especially in warm weather. Piguet (133) recommends the use of ice; but the introduction of a drop of 1 per cent. solution of cocaine hydrochloride is often destructive. Less is to be learned from examination alive in the case of the Tubificidæ and Enchytræidæ.

It is very difficult indeed to examine worms which in the process of killing have screwed themselves up into all kinds of curves. The investigator will often receive worms for examination which have had no particular care bestowed on their fixation, and in such cases he must, of course, do the best he can with them. When, however, he collects material for himself, it is worth while taking some trouble in the matter.

A good way of getting worms killed in the extended position is to take two glass slides, and to place one on the top of the other, so that the longer edge of the lower projects some distance beyond that of the upper; a worm is now placed in a drop of water in the angle where the edge of the upper meets the surface of the
lower slide. The worm will extend itself and crawl in one direction or the other along this angle; at a suitable moment it is deluged with the fixing solution, preferably hot, in order to kill it before it has time to throw itself into curves.
If a number of worms have to be dealt with at one time, a fairly good method is to place them in a shallow glass dish, and drain off all the water. They will soon begin to extend themselves and crawl about on the moist bottom of the dish, when they may be deluged with the hot fixing solution. Some no doubt will be contorted, but while none will be absolutely straight, a number will be quite suitably disposed for microscopical examination or sectioning. I do not regard a slight ventral curve, which most of the worms will have, as altogether a disadvantage, since this is a help in orienting it for section cutting, and causes no distortion.

Or the worms may be simply dropped from a pipette into hot fixing solution in a test-tube or benker. The solution should, to get the best results, be some way under boiling point.

I do not recommend preliminary narcotization with chloretone, chloral, or methyl alcohol, at any rate for the Naididæ, which are very delicate and easily injured.

As fixing solutions for ordinary work, hot formalin (10 per cent.), and hot dilute sublimate and acetic are good. Piguet (133) recommends 1 per cent. sublimate for the large species of Naididæ and 0.1 per cent for the others. In this latter case presumably the heat is the chief fixative agent; the results, however, are excellent. The same solution of formalin, and stronger solutions of sublimate, or sublimate and acetic, may be used for Tubificidæ and Enchytræidæ.

In the Naididæ, the most important systematic characters are those of the setæ. It is very difficult to examine these adequately in whole worms, since they do not usually, in the intact animal, lie in one plane under the microscope, and neither their length nor the form of their distal end can be judged accurately. In preserved material nothing can be done, except to choose for examination such setæ as may be most suitably disposed ; but if the living worms are available, most excellent preparations can be made (at the sacrifice of the specimen for other purposes) according to the method well explained by Piguet (133). Place the worm in water under a cover-glass, without air-bubbles; remove any excess of water, and then allow evaporation to proceed ; the animal becomes more and more compressed, and finally bursts and flattens completely, the empty skin remaining with the setæ in place. When this has happened, and before the evaporation is so complete that air is drawn in under the cover-glass, a small drop of glycerine is placed at the margin of the cover-glass; this will be drawn in to replace the water lost by evaporation; any excess is remored, and a ring of varnish applied. Setm are best examined in wher or glycerine; it is difficult to see them well in balsam, owing to the refractive index, which is nearly the same for both setæ and balsam.

The setæ are not of such chief importance in the Enchytræidm, nor, as a rule, in the Tubificidæ, while the bodies of these worms are too resistant to flatten out completely under the above treatment. Similar preparations may, however, be obtained by killing the worms by dilute alcohol, or by leaving them for some time in a small quantity of water, which is not changed; if after death they are left in the water for some time longer-say over nightthey decompose and become sufticiently soft to give good setal preparations.

I know of no way of getting good setal preparations from preserved material. I have tried softening the specimens with solutions of caustic potash; but the prolonged action which is necessary affects the shape of the setæ, causing them to swell.

In no group of worms, not even in the Naididm, can the sexual organs be adequately examined in the living condition; the opaque clitellum entirely obstructs the view. Here dilacerations of fresh or of preserved specimens may give considerable help, and will allow the size and shape of parts of the apparatus to be more easily apprehended than cau be done from sections. Benham (114) gives some useful hints for the examination of worms of the size of the Phreodrlidæ; a specimen was "bisected in the region of the reproductive organs, and the latter were partially isolated by removal, under a dissecting lens, of the gut and part of the bodywall, so that the true form and disposition of the spermiducal gland could be studied." In another case, after bisecting, one half was cut into a series of transverse sections; in the other half, the male apparatus was first studied in situ as an opaque object; "it was then gently removed from its attachment to the body-wall near the pore, and later cleared in glycerine, in which it was possible to turn it over and examine first one side, then the other. Finally, it was stained and mounted in balsam. But, as is known to students of the Oligochæta, the glycerine preparation is of greater value in tracing out ducts, etc., than the balsam preparation."

But for the complete description, and usually for the identification, of an Enchytræid or Tubiticid worm (and also for the description of the sexual apparatus of one of the Naididæ), serial sections are essential. Attempts have often been made to describe species-especially of the Enchytræidm-without going to the trouble of sectioning one or more specimens, but I cannot consider the results satisfactory. These two families, the Enchytrwidæ and Tubificidæ, with the Lumbriculidæ and one or two other small groups which do not occur in India, are by far the most troublesome of all the Oligochæta to identify and describe; too large for microscopical examination, and too small for dissection, they must be sectioned if all adequate account of their anatomy is to be obtained. I prefer a series of longitudinal sections rather than transverse, since in the first place a satisfactory series can be obtained from specimens which are even fairly strongly curved, provided that the curve is approximately in one plane; and
secondly, larger portions of the systems are visible in one section, and their mutual relations are more easily ascertained; while it is much easier, also, to fix the numbering of the segments in a longitudinal series.

The characters to be observed in the Microdrili are largely the same as, though fewer than, in the Megadrili; there are however certain additions.

The characters of the seta, as has been explained, are of more importance, especially in the Naididæ and in some of the Tubificidæ. In the double-pronged setæ (crotchets) of the former family, the number in a bundle, length, thickness, degree of curvature, position of nodulus, the relative length and thickness of the terminal prongs, and sometimes their shape and the size of the angle between them, are to be determined. It is to be noted that the ventral setee in the most anterior segments (ii-iv, or more usually ii-v) sometimes have different proportions from those which occur throughout the rest of the body. The dorsal bundles may contain either hair or needle setæ, or both; the numbers of each in a bundle, the length of the hair setæ, and whether or not they are perfectly smooth, the length and shape of the needles, the position of the nodulus, and especially the characters of the tip, for which the use of the oil immersion lens is necessary, are the chief points to be observed. Occasionally fan-shaped or pectinate setæ are met with. Penial seta are important. if present.

The size, shape, and other characters of the coelomic corpuscles (if present) in the Naididæ and Enchytræidæ; the shape of the cerebral ganglion; the presence or absence of a stomachal dilatation of the alimentary tube; the characters of the various organs which have been termed prostates; the length and disposition of the vas deferens, and the characters of the atrium (the terminal dilated portion of the male apparatus) are examples of the points that require to be observed. Other features may deserve note in certain families or genera-e.g., the colour of the oil-like globules in the integument of the सolosomatidm; the distribution of the so-called copulatory glands which surround the ventral nerve cord in certain Enchytræidm; the leugth, relatively to the thickness, of the peculiar cylindrical male funnels in this family; the presence and characters of the penial bulb in a number of Enchytreeid genera; the segment in which the dorsal vessel begins in this family; the presence or absence of head-pores, the proportions of the anteseptal and postseptal parts of the nephridia, and the origin nud direction of the nephridial duct in the same worms ; the segments in which the peculiar "chyle-cells" occur in the genus Fridericia; the presence or absence of sapraintestinal, subintestinal, and integumentary vessels in the Tubificidm; the presence of gills in certain genera; the characters of the penis, and of the chitinous penis-sheath in certain genera of Tubificids; the occurrence of spermatophores, etc.

One further point is of importance in the Жolosomatidm and Naididm. These families reproduce themselves principally by fission; a " budding zone" is first produced-in other words, a number of new segments are formed at some point in the animal's body, and fission takes place through this zone of newly proliferated segments, in such a way that some of them form the tail end of the anterior animal, and the rest the head of the posterior. The number of the segments in front of the budding zone (i.e., the number of segments of the original animal which enter into the body of the anterior daughter animal) is denoted by n; it is constant for a number of species of Wolosoma and Chatogaster, but varies within wider or narrower limits for most species of Naididæ.
But systematic descriptions of the Microdrili are much less uniform in type than those of the earthworms, and the characters which are used for purposes of discrimination vary so much in the different families and genera that they can scarcely be learnt, except from a perusal of the descriptions themselves.

THE GEOGRAPHICAL DISTRIBUTION OF INDIAN OLIGOCHETA.

The regional division of India adopted below for the Oligochæta is largely similar to that employed by Dr. Annandale in the volume of the present series which deals with Freshwater Sponges, Hydroids and Polyzoa. Dr. Amnandale's division takes Blanford's physiographical regions as its basis. Mine differs from Annandale's mainly in recognising a southern region (very distinct as regards the Oligochæte fauna), which comprises the narrower southern end of the peninsula, below the level of Goa and south of the 15th parallel, from the eastern to the western shore; the Malabar (here called the Western) region and main Peninsular area are correspondingly reduced. It may be noted that the limits of these areas do not always correspond exactly with those of the political divisions whose names are used in defining them; thus I have placed Rangamati, which belongs politically to Bengal, in the Burma Region rather than in the Indo-Gangetic Plain.

As in Dr. Annandale's lists, varieties are ignored, as not having a geographical significance.

1. NORTH-WESTERN TERRITORY.*

(The drainage system of the Indus, so far as comprised in the plains of India; the Punjab, N.-W. Frontier Province, N. Rajputana, Sind.)

> ЖoLosomative. Жolosoma kashyapi (Lahore). Æolosonıa viride (Lahore).

[^0]Naidide.
Chætogaster bengalensis (Peshawar; Nowshera; Gurdaspur Dist.).
Chætogaster langi (Lahore).
Chætogaster orientalis (Lahore).
Nais communis (Lahore; Peshawar).
Nais paraguayensis (Lahore).
Nais raviensis (Lahore).
Naidium minutum (Lahore).
Pristina longiseta (Lahore).
Pristina æquiseta (Lahore).
Branchiodrilus hortensis (Lahore).
Hæmonais laurentii (Lahore).
Slavina appendiculata (Lahore).
Stylaris lacustris (Lahore).
Dero limosa (Lathore).
Aulophorus furcatus (Lahore).
Tubificide.
Limnodrilus socialis (Lahore).
Branchiura sowerbyi (Lahore).
Enchytrieide.
Fridericia bulbosa (Lahore).
Enchytræus harurani (Lahore).
Megascolecide.
Microscolex phosphoreus (Peshawar).
Megascolex maurtii (Lahore; Kapurthala).
Pheretima elongata (Karachi).
Pheretima hawayana (Lahore).
Pheretima heterochæta (Lahore; Peshawar).
Pheretima houlletı (Rawal Pindi).
Pheretima posthuma (widely spre:d).
Octochætus fermori (Hoshiarpur).
Eutyphoeus ibrahimi (Kupurthala).
Eutypheus incommodus (Ambala; Rawal Pindi; Hoshiarpur. Dist.).
Eutyphœus waltoni (Hoshiarpur Dist.).
Eutyphœus mohammedi (Rawal Pindi).
Ocnerodrilus occidentalis (Rawal Pindi ; Mardan).
Lumbricide.
Helodrilus caliginosus (widely spread). Helodrilus parvus (widely spread).
2. WESTERN HIMALAYAN REGION.
(From Hazara to the border of Nepal, including Kashimir.)
Naidide.
Chetogaster limnæi (Naini Tal).
Nais communis (Kasauli).

Slavina montana (Bhim Tal).
Stylaria kempi (Bhim Tal).
Aulophorus tonkinensis (Bhim Tal).
Moniligastride.
Drawida japonica (Murree; ? Simla).
Drawida nepalensis (Dehra Dun).
Megascolecide.
Pheretima hawayaua (Dehra Dun; Garhwal).
Pheretima heteruchæta (Simla; Naini Tal).
Pheretima houlleti (Dehra Dun; Bhim Tal).
Pheretina posthuma (Dehra Dun).
Perionys buinii (Simla).
Perionyx excavatus (Dehra Dun; Kumaon Dist.; Simla Dist.).
Periony, nainianus (Kumaon Dist.).
P'erionys simlaensis (Simla).
Octochætus fermori (Kasauli).
Futyphoeus anncurelalei (Kumaon Dist.).
Eutyphoeus masoni (Dehra Dun).
Eutypliceus nainianus (Naini I'al).
Eutyphoeus orientalis (Dehra Dun).
Eutyphœus waltom (Dehra Dun).
Eudichogaster parvus (Dehra Dun).
Lumbricide.
Helodrilus calginosus (Kashmir; Gilgit ; Simla; Naini Tal).
Helodrilus constrictus (Simla Hills).
Helodrilus eiseni (Naini Tal ; Painsur).
Helodrilus feetidus (Simla).
Helodrilus kempi (Simla).
Helodrilus mariensis (Murree).
Helodrilus parvus (Kashmir; Simla Hills ; Naini Tal).
Helodrilus prashadi (Kashmir).
Helodrilus roseus (Kashmir).
Helodrilus rubidus (Naini Tal; Simla).
Octolasium lacteum (Simla Hills).

3 NORTH-EASTERN FRONTIER REGION. (Nepal and eastwards, including Assam.)

Tubificide.
Branchiura sowerbyi (Manipur).
Bothrioneurum iris (Kurseong).

Enchytraide.

Fridericia carmichaeli (Darjiling Dist.).

Moniligastride.

Dravida decourcyi (Abor).
Drawida kempi (Abor).

Drawida nepalensis (Nepal).
Drawida pellucidus (Abor).
Drawida rosea (Cherrapunji).
Drawida rotungana (Abor).

Megascolecide.

Plutellus aborensis (Abor).
Plutellus sikkiniensis (Darjiling Dist.).
Meguscolicles bergtheili (Darjiling Dist.).
Notoscolex oneili (Abor, Darjiling Dist.).
Notoscolex stewarti (Abor).
Notoscolex striatus (Abor).
Megascolex dulius (Kurseong).
Meyascolex horai (Cherrapunji).
Pheretima hawayana (Kurseong; Nepal; Manipur).
Pheretima heterochreta (widely spread).
Pheretima houlleti (Cherrapunji).
Pheretima lignicola (Dibrugarh).
Periony.x alatus (Darjiling Dist.).
Perionyw annandalei (Darjiling Dist.; Cherrapunji).
Periony.x annulctus (Abor).
Periony,v clepressus (Abor).
Perionyx excavatus (widely spread).
Periony, fossus (Shillong).
Perionyx foveatus (Abor).
Perionyx ! !ravelyi (Darjiling Dist.).
Periony.x heterochatus (Darjling Dist.).
Perionylx himalayanus (Darjiling Dist.).
Perion!y inornatus (Darjiling Dist.).
Perionyx kempi (Abor).
Periony,v koboensis (Abor).
Periony,k m'intoshi (Nepal).
l'eriony.x modestus (Cherrapunji).
Perionyx nanus (Darjiling Dist.).
Perionys pallidus (Darjihng Dist.).
Perionyx pincerna (Darjiling Dist.).
Periony.r pokhrianus (Darjilng Dist.).
Perionyx pulvinatus (Darjiling Dist.).
Perionyx rimatus (Darjiling Dist.).
Perionyx shillongensis (Shillong).
Periony,x sikkimensis (Darjiling Dist.).
Perionyx turaensis (Garo Hills).
Perionys variegatus (Darjiling Dist.).
Octochetus hodyurti (Nepal).
Eutyphoeus aborianus (Abor).
Eutypheeus gammiei (Garo Hills; Abor ; Darjilng D:st.).
Eutyphous manipurensis (Manipur).
Eutyphous nepalensis (Nepal).
E'utyphoeus pharpiuyiunus (Nepal).
Eutyphoeus turaensis (Garo Hills).
Dichogaster crawi (Darjiling Dist.).

Lumbrioides.

Helodrilus constrictus (Darjiling Dist.).
Helodrilus foetidus (Darjiling Dist.).
Helodrilus rubidus (Darjiling Dist.).

4. INDO-GANGETIC PLAIN.
 (United Provinces, Bịhar, Bengal.)

历olosomatide.
A.olosoma bengalense (Calcutta).

Naidide.
Chætogaster bengalensis (Calcutta).
Chætogaster spongillæ (Calcutta).
Nais communis (Agra).
Nais elinguis (Calcutta).
Nais obtusa (Lucknow; Calcutta).
Nais paraguayensis (Calcutta; Sirsiah).
Nais pectinata (Agra).
Pristina longiseta (Calcutta).
Pristina æquiseta (Calcutta; Allahabad).
Pristina prohoscidea (Calcutta).
Branchiodrilus hortensis (Agra).
Hæmonais laurentii (Agra).
Slavina appendiculata (Alipur).
Stylaria lacustris (Calcutta).
Dero limosa (Agra).
Aulophorus tonkinensis (Calcutta; Lucknow).
Tubificide.
Limnodrilus socialis (Calcutta).
Branchiura sowerbyi (Calcutta, Lucknow, Agra).
Moniligastride.
Drawila jalpaigurensis (Jalpaiguri).
Drawida nepalensis (Kierpur).

Megascolecide.

Megascolex mauritii (widely spread).
Pheretima alexandri (Calcutta).
Pheretima anomala (Calcutta).
Pheretima hawayana (Bindra Ban).
Pheretima heterochæta (Siliguri).
Pheretima houlleti (Calcutta; Raniganj; Allahabad).
Pheretima posthuma (widely spread).
Perionyx excavatus (Calcutta; Sibpur ; Rajshahi; Pilibhit Dist.).
Perionyx fulvus (Calcutta).
Perionyx m'intoshi (Sibpur).
Octochætus beatrix (Calcutta).

Octochæotus fermori (Raniganj; Saharanpur).
Eutyphoeus bishambari (Pusa).
Eutyphoeus comillahnus (Comillah).
Eutyphoeus gammiei (Comillah).
Eutyphœus incommodus (widely spread).
Eutyphoeus masoni (Calcutta; Rajshahi; Sirsiah; Bara Banki; Basti Dist.).
Eutyphœus mohammedi (Allahabad).
Eutyphoeus nicholsoni (widely spread).
Eutyphoeus orientalis (Calcutta).
Eutyphoers paivai (Pusa).
Eutyphoeus quudripapillatus (Calcutta; Saraghat; Sirsiah).
Eutyphoeus seutarius (Comillah).
Eutyphoous waltoni (widely spread).
Ramiellı bishambari (Saharanpur).
Eudichoyaster bengalensis (Calcutta; Raj Mahal).
Dichogaster bolaui (Calcutta).
Dichogaster modiglianii (Calcutta).
Lumbricides.
Glyphidrilus papillatus (Lucknow).
Glyphidrilus tuberosus (Jnlpaiguri).
Helodrilus indicus (Calcutta).

5. BURMA.

(Including the Andamans and Nicobars.)
Naidide.
Chætogaster annandalei (Inle L.).
Chætoyaster bengalensis (Inle L.).
Chætogaster limnæi ? (Inle L.).
Tubificide.
Branchiura sowerbyi (Inle L., Kaung-Daing).

Moniligastride.

Desmogaster dorice (Meteloo).
Erpolygaster browni (N. Shan Hills).
Drawida barwellı (Padaung Dist.).
Drawida burchardi (Andamans).
Drawida affinis (Rangamati).
Drawida hodgarti (Rangamati).
Drawida nepalensis (Rangamati).
Drawida papillifer (Rangamati).
Drawida ranyamatiana (Rangamati).
Megascolectide.
Woodwardia burkilli (W. Akyab Dist.).
Megascolex mauritii (Mandalay ; Andamans).
Pheretima andamanensis (Andamans).

Pheretima andersoni (Amherst). Pheretima birmanica (Bhamo). Pheretima bournei (Cheba Dist.). Pheretima carinensis (Cheba Dist.).
Pheretima fea (Ainherst Dist.).
Pheretima hawayana (Rangamati).
Pheretima heterochæta (Rangamati ; N. Shan States).
Pheretima houlleti (Pegu Dist.).
Pheretima lignicola (Lower Burma).
Pheretima osmastoni (Andamans).
Pheretima peguana (Rangoon).
Pheretima suctoria (Andamans).
Perionyic arboricola (Cheba Dist.).
Perionyx excavatus (widely spread).
Perionyx fulvus (Inle L.).
Perionyx m'intoshi (Akyab).
Eutyphoous foveatus (Raugoon).
Eutyphoeus gigas (Rangamati).
Eudichogaster chittagongensis (Rangamati).
Dichogaster bolaui (Rangamati).
Ocnerodrilus occidentalis (Andamans).
Lumbricide.
Pontoscolex corethrurus (Andamans). Glyphidrilus papillatus (Cheba Dist.).
Helodrilus fortidus (Nicobar Is.).
Lumbricus ruhellus (Nicobar Is.).

6. MAIN PENINSULAR AREA.

(Including S. Rajputana and the Central India Agency.)
Naidide.
Nais gwaliorensis (Gwalior).
Nais paraguayensis (Gwalior ; Pachmarhi; Saugor ; Barkuda).
Nais pectinata (Gwalior).
Pristina longiseta (Gwalior).
Tubificide.
Monopylephorus parvus (Chilka L.).
Aulodrilus remex (Burhanpur).
Enchytreides.
Enchytræus barkudensis (Chilka L.).
Moniligastride.
Drawida willsi (Bilaspur ; Hyderabad).
Migascolecides.
Pontodrilus bernudensis (Chilka L.).
Megascolides annandalei (Godaveri Dist.).

Megascolex mauritii (widely spread).
Pheretima bicincta (Hyderabad).
Pheretima elongata (Hyderabad).
Pheretima hawayana (Udaipur).
Pheretima posthuma (Ajmere; Udaipur ; Gwalior).
Perionyx sansibaricus (Khandwa, Kala Kund).
Octochertus barliudensis (Chilka L.).
Octochætus fermori (Gwalior).
Octochcetus paliensis (Bina; Palia; Indore).
Octochatus phillotti (Hyderabad).
Octochetus surensis (Sur L. ; Barkul).
Eutyphoens waltoni (Gwalior).
Ramiella pachpuhurensis (S. Rajputana).
Eudichogaster ashworthi (widely spread).
Euclichogaster barludensis (Chilka L.).
Eudichoguster bengalensis (Jubbulpore: Cuttack).
Fudichoguster fulcifer (Jubbulpore; Saugor).
Eudichoyuster prashadi (numerous localaties).
Eudichogaster pusillus (Saugor).
Dichogaster bolani (E. Rajputana).
Ocnerodrilus oceidentalis (Kotah).
Lumbricide.
Pontoscolex corethrurus (IIyderabad).
Glyphidrilus tuberosus (Cuttack).
Criodrilus lacuum (Chilka I.).
Helodrilus caliginosus (Mt. Abu).
Helodrilus parvus (Partabgarh; S. Rajputana).

7. SOUCHERN REGION.

(S. of Latitude 15°.)

Naidide.

Nais communis (Travaucore). Nais pectinata (Travancore).
Naidium breviseta (Madras).
Pristina longiseta ('Iravancore).
Branchiodrilus semperi (Madras).
Branchiodrilus menoni (Madras).
Tubificide.
Branchiura sowerbyi (Madras).
Tubifex tubifex (Nilgiris).
Moniligastride.
Moniligaster deshayesi (Cochin; Travancore). Moniliyaster perrieri (Travancore; Palni Hills). Dravida annandalei (Tanjore).
Drawida barwelli (Travancore).

Drawida brunnea (Cochin).
Drawida chalakudiana (Cochin). Drawida chlorina (Nilgiris).
Drawida elegans (Coorg).
Drawida fakir (Arumanallur).
Drawida ghatensis (Travancore; Cochin).
Drawida grandis (Nilgiris).
Drawida natthaii (Calicut).
Drawida minuta (Salem).
Drawida modesta (Coorg).
Drawida naduvatamensis (Nilgiris).
Dravicla nilumburensis (Nilambur).
Drawida parado.ra (Coorg).
Drawnda parambikulamana (Cochin).
Drawida parva (Nilgiris).
Drawida pellucida (Nilgiris; Travancore).
Dravida ramnadana (Madura Dist.).
Drawida robusta (Nilgiris).
Drawida sapphirinaoides (Nilgiris).
Drawida scandens (Mysore, Coorg).
Drawida shunkarai (C. Comorin).
Drawida somavarpatana (Coorg).
Drawida sulcata (Nilgiris).
Drawida travancorensis ('Iravancore).
Drawidr uniqua (Nilgiris).

Megascoledide.

Plutellus aquatilis (Nilgiris).
Plutellus dubariensis (Coorg).
Plutellus indicus (Palni Hills).
Plutellus palnie.נsis (Palni Hills).
Plutellus timidus (Muvattupuzha).
Pontodrilus bermudensis (Ennur).
Woodurardia hastatus (Cochin).
Spenceriella duodecimalis (Palni Hills).
Comarodrilus gravelyi (Cochin).
Megascolides cochinensis (Cochin).
Megascolides duodecimalis (Cochin).
Megascolicles pilatus (Cochin).
Notoscolex ponmuclianus ('I'ravancore).
Notoscolex scutarius (Palni Hills).
Notoscolex tenmalai (Travancore).
Megascolex cochinensis (Cochin).
Megascolex curgensis (Coorg).
Megascolex eunephrus (Travancore).
Megascolex filiciseta (Cochin).
Megascolex hendersoni (Palni Hills).
Megascolex imperatrix (Nilgiris).
Megascolex insignis (Travancore; Cochin).

Megascolex kavalaianus (Cochin).
Megascolex lonkcanensis (Travancore; Cochin; Coorg; S. Malabar Coast).

Megascolex mauritii (numerous localities).
Megascolex pheretima (Coorg).
Megascolex polytheca (Cochin).
Meyascolex pumilio (Travancore).
Megascolex rutus (Travancore; Coorloon).
Megascolex sylvicola (Palni Hills).
Megascolex travancorensis (Travancore).
Megascolex trivandranus (Travancore).
Megascolex vilpattiensis (Pulni Hills).
Pheretima bicincta (Travancore).
Pheretima burliarensis (Nilgiris).
Pheretima elongata (Coorg).
Pheretima heterochæta (Nilgiris; Palnis).
Pheretima houlleti (widely spread).
Pheretima travancorensis (Travancore).
Pheretima trivandrana (Travancore).
Diporochata pellucida (? locality).
Perionyx nysorensis (Mysore).
Perionyx saltans (Nilgiris).
Perionyx sansibaricus (Nilgiris; Palnis).
Howascolex bidens (Mysore).
Howascolex. corethrurus (Mysore, Coorg).
Howascolex markaraënsis (Coorg).
Ramiella heterocheeta (Coorg).
Octochetus aitkeni (Travancore).
Octochætus fermori (Karakulam).
Octochetus maindroni (Weyra Karur ; S. Arcot).
Octochatus pattoni (Madras).
Octochetus pittnyi (Travancore; Mangalore).
Octochotus thurstoni (Madras).
Dichogaster affinis ('Iravancore).
Dichogaster bolaui (Travancore; Cochin).
Dichogaster malayana (Travancore).
Dichogaster curgensis (Coorg).
Dichogaster travancorensis (Travancore).
Ocnerodrilus occidentalis (Travancore).
Curgia narayani (Coorg).
Eudrilus eugenim (Travancore?).
Gordiodrilus travancorensis (Travancore).
Lumbricides.
Pontoscolex corethrurus (widely spread).
Glyphidrilus annandalei (numerous localities).
Helodrilus fartidus (Travancore; Nilgiris; Palnis).
Helodrilus caliginosus (Nilgiris).
Helodrilus constrictus (Nilgiris).

8. WESTERN REGION.

(Goa to Cutch, the Ghats to the Sea.)

Naidide.

Chætogaster bengalensis (Satara).
Chætogaster spongillæ (Khandula).
Nais communis (Khandala).
Pristina longiseta (Bombay).
Aulophorus furcatus (Bombay; Khed).
Enchytraide.
Enchytræus indicus (Boinbay).
Monilianstride.
Drawida barwelli (Bombay).
Drawida kanarensis (N. Kanara).

Megascolecide.

Pontodrilus bermudencis (Bombay ; Pamban ; Goa).
Megascolides prashadi (W. Ghats).
Meguscolex konkanensis (N. Konkan ; Bombay).
Megascolex mauritii (widely spread).
Megascolex trilobatus (Baroda).
Pheretima elongata (Bombay).
Pheretima hawayana (Bombay).
Pheretima houlleti (Bombay).
Pheretima lignicola (Bombny).
Pheretima posthuma (Bumbay ; Baroda).
Pheretima suctoria (Bombay).
Perionyx excavatus (Castle Rock).
Periony.x millardi (Bombay ; Igatpuri).
Periony: minimus (Belgaum).
Periony.x pullus (Beigaum).
Perionyx sansibaricus (numerous localities).
Erythreeodrilus suctorius (Goa).
Erythrcoodrilus inornatus (Castle Rock).
Erythreodrilus kempi (Castle Rock; Bombay).
Erythrcoodrilus kinneari (Castle Rock).
Erythreodrilus anomalus (Belgaum).
Octochætus beatrix (Baroda; Bombay).
Octochotus castellanus (Castle Rock).
Octochætus fermori (widely distributed).
Octocheetus ganeshee (Castle Rock; Poona).
Octochoctus montanus (Mabableshwar).
Octochatus paliensis (Poona).
Octochatus prashadi (Kalyan ; Mahableshwar).
Eutyphoeus waltoni (Baroda; Ahmedabad; Navh).
Ramiella pallida (Panchgani; Mahableshwar).
Eudichogaster ashworthi (Nasik).

Endichogaster barodensis (Baroda).
Eudichogaster indicus (Bombay).
Eudichogaster mullani (Bombay).
Eudichogaster poonensis (Poona).
Eudichoguster prashadi (Poona; Surat).
Eudichogaster trichochoetus (Bombay; Pal•-har).
Dichogaster affinis (Bombay; Baroda).
Dichogaster bolaui (several localities).
Ocnerodrilus occidentalis (Bnmbay).
Lumbricide.
Pontoscolex corethrurus (Bombay ; Poona; Ahinedabad).
9. CEYLON.

Æolosomatide.
Æolosoma ternarium (Galle).
Naidide.
Dero zeylanica (Kandy).
Aulophorus oxycephalus (Galle; interior).
Aulophorus michaelseni (Kandy).
Tubificine.
Limnodrilus socialis (Kandy).
Phreonrilide.
Phreodrilus zeylanicus (Nuwara Eliya).
Moniligastride.
Drawida friderici (Truncomali).
Drawida pellucida (several localities).

Megascolecide.

Plutellus halyi (Colombo).
Plutellus sinyhalensis (Nuwara Eliya).
Pontodrilus bermudensis (Belligamme).
Pontodrilus agnesa (Nuwara Eliva; Horton Plains).
Woodwardic sarasinorum (Peradeniya ?).
Woodwardia uzeli (Peradeniya; Avissavela).
Notoscolex ceylanensis (Nuwara Eliya).
Notoscolex crassicystis (Nuwara Eliya).
Notoscolex dambullaensis (N. Ceylon).
Notoscolex decipiens (numerous localities).
Notoscolex gravelyi (Kandy).
Notoscolex jacksoni (Nuwara Eliya; Trincomali).
Notoscolex kraepelini (Central Ceylon).
Notoscolex termiticola (Peradeniya).
Notoscolex trincomaliensis (N. Ceylon).
Megascolex acanthodriloides (Peradeniya).
Megascolex adami (Adam's Peak).

Megascolex bifoveatus (Pattipola; Horton Plains). Megascolex brachycyclus (Adam's Peak).
Megascolex caruleus (Peradeniya; Kandy ; Nuwara Eliya).
Megascolax campester (Horton Plains).
Megascolex ceylonicus (locality ?).
Megascolar cingulatus (Avissavela; Kandy; Peradeniya; Badullah).
Megascolex escherichi (Peradeniya; Horton Plains).
Megascolex funis (Kandy).
Megascolex hortonensis (Horton Plains).
Megascolex insignis (Panadhure).
Megascolex kempi (Horton Plains).
Megascolex leucocyclus (Nuwara Eliya; Kandy).
Megascolex longiseta (Nuwara Eliya; Kandy).
Megascolex lorenzi (Peradeniya; Kandy).
Megascolex mauritii (widely spread).
Megascolex multispinus (Peradeniya).
Megascolex nureliyensis (Nuwara Eliya; Horton Plains).
Megascolex pattipolensis (Pattipola).
Megascolex pharetrutus (Kandy).
Megascolex quintus (Pattipola).
Megascolex sarasinorum (Trincomali; Kaniya; Mahavali Ganga).
Megascolex schmardae (Adam's Peak).
Megascolex sextus (Pattipola).
Megascolex singhalensis (Nuwara Eliya).
Megascolex spectabilis (Vaxvella).
Megascolex templetonianus (Colombo).
Megascolex varians (Pattipola; Horton Plains; Nuwara Eliya; prob. Peradeniya).
Megascolex willeyi (Labugama).
Megascolex zygocheetus (Ratnapura).
Pheretima elongata (Panadhure; Kandy).
Pheretima hawayana (Pattipola).
Pheretima heterochæta (Adam's Peak ; prob. Peradeniya).
Pheretima houlleti (Peradeniya; Colombo).
Pheretima taprobanæ (Peradeniya).
Perionyx ceylanensis (Peradeniya; Point de Galle).
Perionyx excavatus (Kandy ; Peradeniya).
Perionyx polytheca (Peradeniya).
Dichogaster affinis (Peradeniya; Anuradhapura).
Dichogaster parva (Peradeniya).
Dichogaster saliens (Peradeniya).
Nematogenia panamaensis (Peradeniya).
Ocnerodrilus occidentalis (Panadhure).
Eudrilus eugeniæ (widely spread).

Lumbrioide.

Pontoscolex corethrurus (widely spread).

The difference of type in the above lists indicates the different values of the various species for Zoogeography; italic type signifies that the species has to be taken account of, ordinary type that it may be neglected, in zoogeographical discussions. This difference ot value depends on the following considerations.

The Oligochæta may be divided into three biological groupslimnic, littoral, and terrestrial, each with its distinctive modes of spreading.

Limnic forms have a great diversity of means of dispersal. They may spread directly thoughout a river system, through all the cauals and into all the tanks and reservoirs supplied from it. Their cocoons are easily transported in the mud which adheres to the feet of wading birds; some forms are known to encyst, and hence may be transported in this manner even in the adult state. An Enchytræid has been found frozen in a block of ice, and recovered (Beddard, 30).

As a consequence the same genera-sometimes the same species even-are found in widely distant places. The case is similar to that of the Rotifera and Protozoa, of which the same genera and species are found in ponds and streams all over the world. There appears to be but one genus, Branchiodrilus, of the limnic Oligochæta which is peculiar to India, while a number of species are found both in England and India, or in Europe and India (species of Nais, Chotogaster, Dero, Aulophorus, Pristina, etc.).

Littoral forms live on the shore, exposed at times to submersion in salt water. Like the last group, these have a wide distribution; being, unlike earthworms in general, immune to salt water, they can be transported in masses of seaweed; or more commonly their cocoons are so transported, entangled in masses of weed or other detritus. Not only can they take possession of a whole coast, and spread along the shore-line, but they may in this way travel over sea for long distances. The most noteworthy genus is Pontodrilus, which occurs along the coasts of India, and has a circummundane distribution.

Terrestrial forms constitute the bulk of the Oligochæta. Here the means of spreading are more limited; for the most part earthworms are dependeut on their own activities for reaching new regions, and hence their wanderings must be very slow. According to Michaelsen, worms which are found outside their burrows apparently wandering about have for the most part been obliged to leave their homes by illness, or by unfavourable conditions such as the flooding of the burrows; many worms, if extracted from their holes, are unable to make new ones, and must die. Some, however, certainly possess the power of active wandering, as is shown by the numbers sometimes found under heaps of manure. But it is obvious that the peopling of a territory by earthworms through their own exertions can only be very slow.

Not only so, but they are limited in their wanderings by desert tracts-some degree of moisture in the soil is essential. Snow-covered mountain ranges are another obstruction. And
especially the sea limits them, the majority of earthworms being quite unable to puss even a narrow arm of salt water.

We have to recognize, however, that not all the terrestrial forms are so strictly limited in their means of dispersal as the above would imply. A tree-trunk floating down stream, or earth between the hoofs of cattle, may transport worms or their cocoons. More important is the part that man has played; Lumbricids, natives of Europe, have been introduced all over the world along trade routes; in W. Australia they are almost the only earthworms to be found near the towns; the indigenous fauna is to be sought in the rewoter parts of the country. One of the commonest worms of the Punjab is Helodrilus caliginosus; certain species of Pheretima have been carried round the globe, far from the region where the genus is endemic. Suall worms are more likely to be carried in this way than larger ones; and small species of Dichogaster, an African genus, are common throughout the Malay Archipelago, and not rare in India. Botanical Gardens are obviously likely to be centres of dispersal for such introduced species in ia new country. Records at Kew and Hamburg leave no doubt of the reality and abundance of these transfers through the agency of man.

There are also. of course, differences in the powers of the worms themselves. Some species seem to be able to travel more widely than others, and more quickly, and to adapt themselves to new surroundings and establish themselves more easily; and it may thus happen that a species spreads over a large region quite apart from human interlerence. It is not always possible to distinguish hetween these cases and those of introduction by man; and Michrelsen has adopted the name peregrine for the widely wandering species, whether they owe their diffusion to man's agency or to their own unaided powers.

For the purposes of Zongeography, the distribution of freshwater and littoral forms is of little or no importance; and the same holds for the peregrine forms among the terrestrial group. It is these whose names are printed in ordinary type in the foregoing lists; while the names of those earthworms (in the strict sense) which have a definite and limited range, and which are therefore of importance in discussions of the place of origin and past hist ory of genera or larger groups, and in drawing conclusions as to the former distribution of land and water, are printed in italics. The distinction of type does not coincide with that between endemic and non-endemic forms (since a number of freshwater species are endemic, found only in a limited distriet), it only indicates zoogeographical value.

Considering now the chief characters of the several regions, as brought out in the tables, the North-western Territory strikes the eye at once as being particularly poor in earthworms, and especially in indigenous earthworms. Of these there is but one-a species of Eutyphoeus-that has any clains to be considered; its locality (Kapurthala) represents the westery limit
of the home of the genus, which is practically confined to the Indo-Gangetic Plain and the two Himalayan regions. The large number of Naididm in the North-Western Territory-nearly all from Lahore-is merely due to the fact that my own studies were carried out there.

The Eastern portion of the Western Himulayan Region forms part of the endemic area of the genera Perionyx and Eintyphoeus. Helodrilus mariensis, IV. prashecdi, and H. kempi may perhaps represent outposts of the Lumbricinæ-a Palæarctic groupadvancing from the North-West; but the numerous other Lumbricidæ are all well-known peregrine forms. A peregrine Moniligastrid (Drawida japonica), and one (D. nepalensis) which is peregrine in some degree, are curious members of the fauna.

The area of distribution of the large Moniligastrid genus Drawida is discontinuous, one portion being in the North-East Frontier and neighbouring part of the Burma regions, the otherthe main home of the genus-in the South. The North-East Frontier Region is one of the most interesting of the Indian areas, since it harbours indigenous species of several of the more prinitive Megascolecine genera,-of Plutellus, Megascolides, Notoscolex, as well as two species of Meyascolex. The meaning to be attached to these facts of distribution is not in all cases clear : it may mean that these genera, evolved outside India, entered round the head of the Bay of Bengal, and have left colonies behind them in their passage over this region; but in the case of Megascolex at any rate it probably means an independent evolution, nearly 1500 miles away from the main home of the genus, of isolated species with the morphological characters of Megascolex. The North-East Frontier is the great focus of evolution of species of Perionyx, and forms a part of the endemic home of Eutyphoous.

The Indo-Gangetic Plain is the chief home of Eutyphoeus, while at its eastern end it just includes the western edge of the Pheretima area (two indigenous species at Calcutta). Curiously, it scarcely forms any part of the aren of Periony.x (the two italicized species of Perionyx in the list are in some degree peregrine), which has evolved so luxuriantly in the neighbouring North-East Frontier Region; or of that of Eudichognster, the characteristic genus of the main Peninsular area. The single Lumbricine may (like II. mariensis, prashadi, and kenpi in the Western Himalayas) be an outpost of this powerful and advancing subfamily. One or two species of Drawida are also meluded.

Burma is well within the Pheretima region. A part of the separated northern home of Drawida is on its border, and two other genera of Moniligastridæ are represented each by a single species. Here again it is noteworthy that the area has scarcely been invaded by Perionya from the North-Enstern Frontier Region (two of the three italicized species are the semiperegrine species of the Indo-Gangetic Plain); or by Eutyphoeus from the Indo-Gangetic Plain. It is likely that these genera are but recently evolved.

The Main Peninsular Area is by far the largest of the regions, yet notwithstanding its size it strikes the attention at once by the smallness of the number of recorded forms; only the small Western Himalayan Region has fewer; and only this and the North-Western T'erritory have fewer indigenous forms. With the Western Region, it forms the home of Euclichogaster, and with the Western and Southern Regions, of Octochatus. The only other indigenous species (one each of Megascolides, Ramiella and Glyphidrilus) occur near its borders.

The Southern Region, though by no means one of the largest, has considerably more species, and more indigenous species, than any other area. The indigenous species belong largely to the genus Drawida, of which this region is par excellence the home. But the more primitive Megascolecinæ (Plutellus, Woodwardia, Spenceriella, Comarodrilus, Megascolides and Notoscolex) are well represented, and the region harbours a large number of indigenous species of Megascolex, the principal genus of Ceylon. The two species of Perionyx represent an extension of the Western home of this genus, while the species of Octochetus join on to those of the main Peninsular aren. It is curious, however, to find here indigenous species of Pheretima. Dichoguster travancorensis and D. curgensis are possibly not indigenous; the genus has its home in Africa, but many species are widely peregrine, and it is very possible that these two may yet be found to have their home elsewhere, and so to be only casual settlers in India.

In Coorg and Mysore occur the Indian species of Howascolex, as well as the only representative of the genus Curyia; Michatlsen has shown that these two genera indicate a relationship of the fauma to that of Madagascar; and that this area possesses an eurthworm fauna which has no immediately obvious relations to that of neighbouring regions; especially striking is the difference from Cochin and Travancore. The Southern is decidedly the most interesting of all the Indian regions.

The Western Region forms part of the Eudichoguster and Octochatus areas, and comprises all the known species of Erythroeodrilus. It presents several problems; there are several species of Perionyx which are separated by the whole of the large main Peninsular area from the chief home of the genus in the North-Eastern Frontier Region; a Megascolex, too (M. trilobatus), appears in isolation at a considerable distance from the chief home of the genus. The other indigenous Megascolex and the Drawida represent merely the northerly limits of the proper homes of these genera.

Ceylon, a very small region, has the second largest number both of total species and of indigenous species. But this is due entirely to the enormous number of species of Megascolex, and the fauna does not present the same interest as that of Southern India. It is to be noted that while Megascolex, the chief genus of Ceylon, is abundantly represented by endemic species in

Southern India, Drawida, the chief genus of Sonthern India, is almost unrepresented in Ceylon. As in Southern India, there are indigenous species of the more primitive Megascolecinæ, especially of Notoscolex. Pontodrilus agnesce and the two species of Perionyx present problems similar to those of Perionyx and Meyascolex in the Western Region.

The total numbers of species, and the number of species of indigenous earthworms, in the several regions may be tabulated as follows:-

Region	Total number of species of Oligochxta	Number of species of indigenous earthworms.
N.W. Territory	36	1
W. Himalayan Region.	33	11
N.E. Frontier	57	43
Indo-Gangetic Plain . .	52	18
Burma	41	21
Main Peninsular Area.	36	13
Southern Region	105	78
Wrstern Region	49	25
Ceylon	69	47

We have now to consider the extra-Indian geographical relations of the Indiau genera of earthworms. The little that can be said about the Lumbricidæ has been included above, and there fall to be discussed here the fanily Moniligastridæ, and the subfamilies Megascolecinæ, Octochætinæ, and Diplocardiinæ of the great family Megaseolecidæ.

(a) Tife Megascolecine.

Diplotreme, from which the subfamily takes its origin, is not represented in India; it occurs in Queensland and New Caledonia. Plutellus, found in India in Ceylon, S. India, and the E. Himalayas, occurs in Australia and Tasmania, and several species are found in the western part of North America. Megascolides (S. India, Western Region, and E. Hımalayas) also occurs in Australia and Tasmania, and one species in western North America. Notoscolex. (Cevlon; also S. India and E. Hunalayas) is found in Australia and New Zealand. Megascolex (in Indin almost exclusively in Ceylon and S. India) occurs in Australia, Tasmania, the N. Island of New Zenland, and Norfolk Island (between New Zealand and New Caledonia). Pheretima is a genus of which many members have wandered widely; its proper home, however, is S.E. Asia and the Malay Archipelago; from Burma on the one side it reaches to Japan on the other; one species is perhaps endemic in Queensland, and perhaps one in the Comoro Islands. Diporochata, represented by one species only in India (probably in the South, the locality is not given), is found principally outside India in Victoria and Tasmania, but also in Queensland, New Zealand,
and (one species) on the Chathan Islands (E. of New Realand). Perionyx (E. Himalayas, Western Region, and a few species in other parts of India) occurs in Victoria, Tasmania, and the Auckland Islands, while one endemic species is found in Sumatra and Java. Woolwardia (Ceylon, S. ludia, Burma) is found in Australia and Java. Comarodrilus is purely Indian, the single species being found in the extreme south. Spenceriella (S. India) occurs also in Vietoria.

It will be seen that nearly the whole of the Indian genera (all except the small genus Comarodrilus) are represented in Australia; a number are found also in New Zealand, a few in the islands near New Zealand, and a few in the islands of the Malay Archipelago.

The conclusion drawn by previous writers (see especially Michaelsen, 54, 58) from the occurrence of the parent genus Diplotrema in Queensland is that the subfamily took its rise trom somewhere in this region, which is not very far from the centre of the area now inhabited by the subfamily. The descendants have travelled further afield-towards India, towards Tasmania, towards New Zealand and the neighbourmg islands, and northward throughout the Malay Archipelago to Japan. And of course the important pont is that they must have travelled by land. The reason for the absence of so many of the genera from the islands intervening between Australia and ludia is that here the mighty genus Pheretima lias crushed all competitors; it is the youngest, most highly specialized, and most vigorous genus of the subfamily; it is still spreading, many species are among those most commonly introduced by man, and they show themselies most successful colonists.

Michaelsen did not, however, assume the prolonged existence of a broad land connection between the regions mentioned. The relations were much more complicated, and were often changing. Perhaps there was not a complete bridge at any time; the normal condition of the region intervening between Australia and New Zealand on the one hand and India on the other was that of an archipelago, which extended to Ceylon and S. India over the present Bay of Bengal. The boundaries of the islands often changed: sometimes they joined, sometimes they separated-and no doubt in a different place; and in this way paths became available for the continued expansion of the various genera.

Moreover, since certain Indian genera have such a definitely limited area (certain of those already noticed being confined to S. India, Perionyx being chiefly an inhabitant of the Himalayan region, and Eutyphous, to be mentioned subsequently, being confined to the (Gangetic plain), India itself was split up into a number of large islands. Thus the Malay Archipelago is the only rernaining part of a larger archipelago which existed in the early Tertiary, of which the middle part is submerged, and the Western has consolidated to form the present India. The occurrence of two of these genera (Plutellusand Megascolides) in North America
is supposed to point to their having travelled over the Angara continent.

The other groups which fall to be considered are less extensive; they have been held to reinforce the above conclusions, and permit the formulation of a few more.

(b) The Octociletins.

Octochotus, widely distributed in India, occurs also in New Zealand, but not elsewhere-not in Australia. Erythrceorlithus, Eutypherus and Éudichogaster are purely Indian genera. Dinocrilus is a genus which occurs in New Zealand only.

The relationships here indicated differ from those of the Megascolecinæ ; they exclude Australia, and concern only India and New Zealand. The conclusion which was draun by Michaelsen is that at the time of the dispersal of the Octochæotine there was a connection between India and New Zealand which did not extend to Australia ; perhaps it passed entirely to the north, though the great islands of the Malay Archipelago. The Octochretinæ do not occur at present in the Malay Archipelago because they have been unable to survive in competition with the dominant l'heretimu.

Michaelsen has recently (99) recorded Howascolecc, perhaps the most archaic genus of Octochretinae, from Southern India; the grenus had previously been found only in Madagascar. The relationship thus indicated between the famas of these two regions is confirmed by the occurrence of the Ocnerodriline genus Curgia in Southern India; the single species of this genus, with the endemic Indian species of Gordiodrilus, constitute the end of a line of relationship which stretches from Madagascar and Zanzibar through the Seychelles to India.

(c) The Diplocardine.

The geographical relations of this subfamily are quite different from those of the preceding groups. Diplocardia, the ancestral genus, is found in North and Central America, and its descendant Trigaster in Central America and the West Indies; these genera are not found in India. Dichogaster, a descendant of Trigaster and the only Indian genus of the subfamily, is endemic in Central America and the West Indies, and also in tropical Africa; all the species that are found in India are introduced, with the possible exceptions of one or two only. Eulichogaster, previously included in this subfamily, is now recognized as belonging to the Octochetine. The subfamily as at present constituted has therefore little bearing on the problems of Indian distribution.

(d) The Moniligastride.

This family consists of only a few genera. Desmoyaster, the supposed ancestral genus, is found in Borneo, Sumatra, and Lower Burina, and its descendant Eupolygaster has a similar distribution.

Drawida, the largest genus of the family, is predominantly South Indian ; Moniligaster, a small genus very close to Drawida, belongs to the same region.

Michrelsen has supposed that South India and Ceylon were peopled by this family by means of a land-bridge across the Bay of Bengal, and rejected the supposition that the forerunners of the present South Indian Moniligastrids could have travelled by land round the head of the Bay; they would, he thought, have left some trace of their passage in that region (a number of endemic species of Drawida have, in fact, recently been shown to inhabit this region).

Such are the main facts of the extra-Indian distribution of Indian genera of earthworms, and such the principal conclusions that have been drawn from them. I have, however, in a recent discussion of the subject (95) given reasons for dissatisfaction with certain of these conclusions, and have suggested alternatives.

The present tendency of geological speculation rejects the assumption of frequent and large upheavals and depressions of land masses, and favours the permanence of continents and oceans. Zoological evidence, moreover-e. g., the distribution of Monotremes and Marsupials,-shows that there has been no land conuection between Australia and New Zealand on the one hand and South-East Asia on the other, at least since the Eocene-probably the early Eocene. A number of the genera of earthworms which are common to both sides have, however, probably evolved since this period.

There are other possibilities to account for this. There is the possibility of spreading by meaus of "rafts." And especially there is the possibility of the separate evolution of the same combinations of morphological characters, i.e., the same genera, in different regions; in other words, some of the genera which occur both in the Australian and Indian regions may be diphy-letic-may have originated both in Australia and in India, and may never have crossed a land bridge from one to the other. I have endeavoured to show that not only is a polyphyletic origin a priori probable for some of the genera of Megascolecida, but that in the case of one genus (Megascolex) we can hardly avoid the assumption that it has occurred. For a fuller discussion, and especially for a more detailed consideration of the several land bridges that have been postulated by other writers, I must refer to the original article.

Lastly, as this work is going to press, a paper by Michaelsen has appeared (106), in which he employs Wegener's recent hypothesis to explain the distribution of the Oligochæta, not only in the Indo-Australian region but in other parts of the world also. According to Wegener's view, the great land masses of the earth were at an earlier period massed together, and have broken apart and gradually diverged from one another; a map, reproduced by Michaelsen, shows India and Australia in actual contact in the

Carboniferous period, and an elongated Southern India lying alongside and communicating through Madagascar with the S.E. coast of Africa. It is obvious that such a disposition of the land masses, if it could be assumed to have existed within recent geological periods, would help considerably to explain the presence of the same genera at the two ends of the IndoAustralian region.

My own view is that the genera of earthworms which exist at the present day are of comparatively recent origin (95); Michaelsen would contest this (106), at any rate as regards the more primitive of the genera hnown to us. But however this may be with regard to these more primitive genera, I cannot think that the Palrozoic connections of Wegener's hypothesis will assist us in the matter of the distribution, for example, of Perionyx, the last genus to be developed along one of the lines of descent, or of Meguscoler, the penultimate genus along another line--both genera with the marks of youth stronglv impressed on them, and both occurring alike in the Indian and Australian regions; nor would such connections have any bearing on the question, as regards these and other genera, even if they were in existence for a long time subsequently to the Carboniferous.

BIONOMICS.

The few and scattered observations on the bionomics of Indian Oligochota may be gathered t"gether under three headingsseasonal variations, habitats, and commensalism.
(i) Seasonal Variations.

The only observations on variations in numbers of worms found at different seasons are those of Prashad (82). In Lahore there are fire chief species-Pheretima haurayana, P^{\prime}. heterochata, P. posthuma, Helodrilus caliginosus, and H. parvus. In the winter, which is comparatively severe, the predominant fornis are H. cali,inosus and II. parvus; P. hawayane also occurs in numbers under flower-pots or logs and stones. In the spring H. caliginosus diminishes in numbers, and in Nay is not found at all. All three species of Pheretima increase during this period; Helodrilus purvus is found along with the other worms. Meguscolex mauritii is rare, and has only been found in the autump.

Observations on the period of sexual maturity of the Indian Microdrili have been made by Mehra (94) and myself (55, $58 a$, 76, 78). In Lahore the Naididæ are sexual in the spring, from February to May, and not at other times. In Agra sexual specimens have been observed in October and November. The difference may be due to the difference in the character of the seasons; in Agra the rains are abundant from June or July to September, the ponds begin to dry up in Octobar, and the cold weather appears to be the unfavourable period. In Lahore, however, the rains are later and scantier than in Agra, and the
hot weather therefore more prolonged; May, June, and July, when the ponds are dry, and the ground baked hard, represents the most unfavourable season of the year for pond-life; "whether the sexual phase makes its appearance in Spring or Autumn, therefore, it seems to be a measure of protection against approaching adverse conditions; the ova, quiescent pr developing slowly within the cocoon, are probably able to withstand such conditions better than the adult animal" (Mehra, 94).

Branchiura sowerbyi may become sexual in Calcutta in May, and Limnodrilus socialis has been found sexual in Lahore in December and February. In March, however, the large majority of these latter worms are found to be headless; and I have made the suggestion (67) that by the expulsion of the genital products the anterior segments of the body are so much damaged that they die and are thrown off ; the worms, however, continue to live, though it may be doubted if they are capable of regenerating the head, and they probably die after a time. In a somewhat similar way Mehra finds in Nais pectinata that the anterior portions of the worms, containing the genital organs, separate off as a sort of cocoon, while the hinder part of the animal lives for some time, but is unable to regenerate and ultimately dies.

(ii) Habicat.

Except as noted below, under Commensalism, there is not much room for striking variations in habitat among the Oligochæta. The terrestrial families-the earthworms-inhabit the soil; and the aquatic families of Microdrili live in ponds, tanks, and streams.

While it would in general be impossible for any of the Æolosonatidæ, Naididæ, or Tubilicidæ to live out of water, earthworms on the other hand can sometimes adapt themselves to life in other mediu. than the earth. The Moniligastridm seem to require moister conditions than any other family of earthworms, taken as a whole. They are found only in regions of great rainfall; though in number of species Drawidn is third among Indian genera, it has never been able to spread in the drier parts of the country. Often the species live in water; thus D. annanclalei was found in mud below the water in the Caveri R. ; D. Kempi in a strenm, under a stone in the water; D. robusta var. ophidioides in swamps and wet ground; D. sapphirinaoides in very wet black mud under turf; D. pellucidus var. bournei was found among roots in damp ground near the outflow of a hot spring; D. grandis was found before the rains only at depths of $9-10$ feet, but was seen crawling abont on the surface after rain. Seeing that in most species we have no data as to the character of the habitat, these facts seem to betoken a much larger proportion of aquatic species than is usual in the genera of terrestrial Oligochæta. As a rule, too, dorsal pores are wanting in the family, and absence of dorsal pores is usually connected with an aquatic babitat.

Another genus that inhabits only regions of great rainfall is

Perionyx (E. Himalayas, Malabar). Here, too, we have definitely aquatic species. P. excavatus is often, though not always, found in water or in very moist situations-in the leaves of water-plants, under stones or in mud by a tank, in the hollows of trees in accumulations of dead leaves and rain-water. P. fulvus was found in a few feet of water; and some indeterminable specimens of the genus were taken from hill-streams near Sitong in the Darjiling District.

A few other species are uquatic or semi-aquatic; Glyphidrilus tuberosus lives in canals, ponds, or mud; Pontoscolex corethrurus may be found in mud; and Helorrilus parvus has been taken at the edge of a stream.

A number of species of Megascolex and Perionyx have been found in rotten wood. A more curious habitat, however, is adopted by a number of worms-the bases or axils of the leaves of trees at some distance above the ground; thus Dichogaster bolaui subsp. palmicola has been found in the Museum compound at Calcutta at the base of the leaves of a tall palm-tree, or, again, at the crown of a paln-tree; a species of Eudichogaster. was also taken in the Museum compound at the base of leaves of a tall palm-tree; Perionyx arhoricola is found on trees, especially in the axils of the leaves; Periony.x depressus was taken at the base of the leaves of the screw-pine and plantain 10, 15, or 20 feet above the ground. A batch of indeterminable specimens of l'erionyx was found coiled up on the upper or under sides of leaves in dense jungle, forming a compact gelatinous mass; when touched, these worms spring to life, performing somersaults and other acrobatic feats. Parenthetically, it may be mentioned that Perionyx saltans is also "a very strong little worm; the name refers to its power of leaping in the air when touched."

(iii) Commensalism.

Among Indian Oligochæta it is only certain of the Naididæ that enter into the loose associations between animals belonging to different groups that go under the name of Commensalism. The other partners in these associations are certain freshwater Sponges, Polyzoa, and Suails.

The advantages in partnerships of this kind may be either onesided or reciprocal. In most cases in which Indian Oligochæta are concerned, while the worms certainly receive shelter they probably do not repay their hosts for their hospitality; Cheetogaster spongillue, however, which receives food as well as shelter from its host, appears to play an active part in the economy of the sponge in which it lives (Annandale, 50, 107); it " often occurs in enormous numbers in dead or dying sponges of S. carteri, apparently feoding on the decaying organic matter of the sponge and assisting by its movements in releasing numerous gemmules. In so doing it undoubtedly assists in the dissemination of the species." Species of Chatogaster are found in India, as all over the world, in association with fresh water snails.

Nais communis is found in Spongilla carteri in two forms-one with eye-spots and one without. Both forms were found, again together, living freely at Kasauli; so that the absence of eye-spots does not seem to be related to the habitat.

I subjoin a list of Indian Oligochæta that have been found in these and similar associations, and of their partners :-

Chatogaster annandalei in Ephydatia fluviatilis.
Chatogaster bengalensis in Ephydutia fluviutilis and Spongilla carteri, and on several species of water-snails of the genus Limncea.
Chatogaster limuci on ar Limneea; and a worm perhaps belonging to this species was found in Ephydatia fluviatilis:
Chetoyaster spongille on Sponyilla carteri, S. decipiens, S. crateriformis, and on Plumatella repens var. emaryinata.

Chetoyaster sp. on Plumatella repens var. enarginata.
Specimens of Nais communis var. pmanabensis found by Amnandale in Seistan were living in relatively long mucilaginous tubes to which colonies of Lophopodella had attached themselves; they were found in Lahore in tubes which had probably been abandoned by insect larve. The worms have also been found in Spongilla carteri.

Nais communis var. ceeca
Nais elinguis
Nais obtusia
Nais pectinuta
Nais pectinuta var. incqualis in Spongilla carteri.
Pristina lonyiseta in Spongilla crassissima and
Spongilla carteri, on Plumatella fruticosa and Plumatella emarginata.
Pristince cequiseta
Pristina proboscilca in Spongilla carteri and Spongilla crussissima.
Pristina proboscidea var. paraguayensis on Plumatella fruticosa and Plumatella emarginata.
Slavina appendiculata on Plumatella emarginata.
A different kind of association is that between worms of different species-indeed, of different genera-often or usually found living together. The worms may not be particularly common-rather the reverse perhaps; so that the associations are hardly the result of chance.

Thus Branch urara sowerbyi and Branchiodrilus semperi were long ago found together by Beddard in the Victoria regia tank in the Royal Botanic Society's Gardens in Regent's Park; Branchiura sowerbyi and another species of Branchiodrilus (B. hortensis) were
fuund, along with a species of Dero, living together at Lahore; Branchiura sowerbyi, Branchiollvilus hortensis, Dero limosa, and a Huemonais were found together. by Mehra near Agra. Along with the Branchiura and other worms at Lahore were numbers of Limnodrilus socialis; and I received these two worms together from the same pools in Kyoto in Jupan.

Finally, it may be mentioned that Aulophorus tonkinensis often builds the tube in which it lives mainly of the free statoblasts of Plumatella. "It apparently makes no selection in so doing, but merely gathers the commonest and lightest objects it can find, for small seeds and minute. fragments of wood as well as sponge gemmules and statoblasts of other genera are also collected by it. I know of no better way of obtaining a general idea as to what sponges and phylactolæmata are present in a pond than to examine the tubes of Aulophorus tnnkinensis" (Annandale, 107).

CLASSIFICATION.

The classification of the Oligochæta here adopted is, with modifications, that of Michaelsen in the Tierreich (38). For the Indian Oligochæta, the families Aiolosomatidæ, Naididæ, Tubificidæ, Enchytræidæ, Moniligastridæ, Megascolecidæ, and Lumbricidæ are recognized; the Lumbricidæ here include the Glossoscolecidæ, according to Michaelsen's later views (87a). In addition, the genus Phreodrilus is separated from the Tubificidæ as a distinct family, Phreodrilidæ (Michaelsen, Olig. deutschen Tiefsee-Exp. 1903); and the Moniligastridæ of previous authors become a subfamily, the Moniligastrine, in consequence of the discovery of the very distinct genus Syngenodralus, which becomes the representative of another subfamily, the Syngenodrilina.

Michaelsen has quite recently (Arch. f. Naturgesch., 86 Jahrg. 1920, Abt. A, 8 Heft) proposed a new classification, as follows:-

Order OLIGOCIIAETA.

Suborder Anchiolioocileta (setæ an indeterminate number per bundle; male ducts opening to the exterior oue segment behind their funmels).
Series Naidina (asexual reproduction by regular fission).
Families Æolosomatidæ. Naididæ.
Series Enchytroina (spermathece widely separated from the gonads).

Family Euchytræidæ.
Series Tubificina (nsexual reproduction not occurring; spermathecer situated not far from the gonads).

Fumilies Tubificidæ.
Phreodrilidæ.

Suborder Neooligooneta (setæ lumbricine or perichmtine; male pores not as a rule on the segment behind that of the funnels).

Series Lumbriculina (male pores on same segment as that of their funnels).

Families Lumbriculidæ. Branchiobdellidæ. Acanthobdellidæ.

Series Plureoryctina (male pores on the next to third next segment behind the testis segment).

Families Phreoryctidæ. Alluroididæ. Syugenodrilidæ. Moniligastridæ.
Series Lumbricina (spermathecal pores, i.e. the female copulatory pores, in number and position not in general correlated with the male copulatory pores).

Families Glossoscolecidæ.
Sparganophilidæ.
Microchætidæ.
Hormogastridæ. Criodrilidæ. Lumbricidæ.

Series Megascolecina (spermathecal pores, i.e. the female copulatory pores, in number and position in general or primitively correlated with the male copulatory pores or prostatic pores).

Family Acanthodrilida.
Subfamilies Acanthodrilinæ.
Octochætinæ.
Diplocardine.
Trigastrinæ. Ocnerodrilinx.
Farrily Eudrilidx.
Subfamilies Pareudrilinæ. Eudrilinæ.
Family Megascolecidæ.
This scheme is based in part on certain newer genetic considerations which have hardly ns yet had time to establish their validity, and for the present I prefer to abide by the above modification of the older scheme.

Key to the Families of Indian Oligochæta.

(The Indian members of the several families are alone considered in the following key.)

1. Asexual reproduction by fission predoni-
nates over sexual reproduction...... .2.

Asexual reproduction does not normally occur
3.
2. Cerebral ganglion permanently in connection with the epidermis; septa ior the most part wanting
Cerebral ganglion free in the body-cavity; septa present
[p. 40.
丞olosomatidæ,
Naididæ, p. 43.
3. Spermathecæ in v, spermathecal pores in groove 4/is; no gizzard
Spermathece situated behind v, or absent (if spermathecx in v, then a strong gizzard present)

Enchytræidæ, p. 110.
4.
4. Male pores not more than one segment behind the funuels to which they correspond
5.

Male pores more than one segment behind the funnels to which they correspond
7.
5. Two or more gizzards at the beginning of the intestine
No gizzard . 6.
Moniligastridæ,
6. Testes in x, oraries in xi; male pores on xi; spermathecal pores on x; seta an indeterminate number per bundle

Tubificidæ, p. 95.
Testes in xi, ovarics in xii; male pores on xii; spermathecal poresonxiii (apparently on xiv in the only Indian species) ; ventral setre two per bundle

Phreodrilidæ, p. 108.
or xix, separate from or opening in common with the prostatic pores
[p. 162.
Megascolecidæ,
Prostates usually absent (if present, spermathecal pores in groups of several or of several pairs behind testis segments) ; situation of male pores varies

Lumbricidæ, p. 487.

Family ÆOLOSOMATIDÆ.

Sinall freshwater worms, at most 10 mm . long, reproducing chiefly asexually, by fission. Prostomium ventrally with cilia. Setæ in four bundles per segunent, the number in each bundle indefinite; both dorsal and ventral bundles with capillary setæ, and often with slender single- or double-pointed hooked or needle setw in addition. Septa wanting for the most part, rarely septum $1 / 2$ present. No gizzard. Lateral vascular commissures wanting. Cerebral ganglion permanently in conuection with the epidermis. Testes and ovaries (which may fuse, becoming single instead of paired) in v and vi respectively; no proper vasa deferentia, the spermatozoa being evacuated by the nephridia of the genital region. Spermatheca 1-3 pairs, in iii-v.

Æolosoma Ehrbg. is the ouly genus, with the characters of the family.

I reject the genus Pleurophleps Vaill. Schmarda (3) described in 1861 two suall worms, one from Ceylon and one from Central America, under the names of Eolosomi ternarium and LE' macrogaster respectively, which resemble the other species of the genus very closely in general form, but differ in having no oildrops in the integument, and in possessing a puir of lateral vessels; the alimentary canal behind the stomach is figured as a narrow winding tube. These were separated by Vaillant (136) as a distinct genus, Pleurophlebs, which Michaelsen (38, Illeurophlepps) considered uncertain, though he has admitted it in his Indian lists (54, 58).

I have spent some time in investigating the vascular system of the two species of Eolosoma which occur in Lahore, and 1 cannot believe that in forms so closely related to the genus as these species of Schmarda's must be, there can possibly exist welldefined lateral vessels running the length of the body, at some distance from the alimentary tube, as shown in Schmarda's figures. I think there can be little doubt that the intestine of Schmarda's figure of \boldsymbol{A}. ternarium is the mid-dorsal portion of the intestinal plexus or sinus, or perhaps the outline of the lumen of the intestine in a contracted condition; and that the "lateral vessels" are the optical section of the sinus on the sides of the gut in a dilated condition (the intestine is continually dilating and contracting, Stephenson, 72). With regard to the absence of oildrops, Beddard (111) bas described an Eolosoma without oildrops, which he supposed to be Leydig's SE. niveum, but which Michaelsen (38) separates as a distinct species, A. beddardi.

Neither of the distinguishing features of the genus Pleurophleps is therefore in reality such; the genus ought accordingly to disappear, and the inadequately-described species ternariun may be placed as a doubtful species of Celosoma.

The sexual organs have rarely been seen in this genus; if they are seen to be present in any Indian Colosoma, the worms should be carefully fixed and sectioned, and the condition fully described.

Distribution. Lahore; Calcutta; Ceylon. The genus has probably a world-wide distribution, and will in all likelihood be found in almost all localities in India which provide a suitable habitat.

Key to the Indian species of Eolosoma.

1. Oildrops orange or red

AE. kashyapi.
Oildrops green or greenish
2.
2. Seta not distinguishable as markedly of two lengths in each bumdle; $u=7$ or $8 \ldots$. E. viride.
Setee in each bundle of two lengths, the longer about double the length of the shorter; $n=11 \ldots$ K. bengalense.

1. Folosoma bengalense S'teph.

1911. AEolosoma bengalense, Stephensnn, Rec. Ind. Mus. vi, p. 204.

Length (preserved) $1-1.5 \mathrm{~mm}$; diameter $0.2-0.3 \mathrm{~mm}$. Segments up to 16 (or possibly more); $u=11$. Prostomium not broader than succeeding segments. Setæ all straight, capillary; bundles consist as a rule of one long and several shorter, the long (about 210μ) averaging nearly twice the length of the shorter (about $11(1) \mu$). Oildrops blue-crreen. (Esophagus sinuous, in ii-iii; stomach deep orange, in jv-riii.

Distribution. Calcutta (Museum Tank).
2. सolosoma kashyapi, nom. nov.
1909. Aiolosoma hemprichi, Stephenson, Mem. Ind. Mus. i, p. 277, pl. $x x$, figs. $\tilde{\text { en }} 3-5$).
1913. Eolosoma hemprichi, Stephemson, Tr. Ioy. Soc. Edin. xlix, pp. 743, 748.
Length (maximum, extended and alive) $1.3 \overline{3} \mathrm{~mm}$. ; diameter usually about 0.06 mm . Segments of the single animal 8-11, of a chain of two about $14 ; n=7$ or 8 . Prostomium large, rounded, flattened, broader than the body. Setee capillary, straight or almost so. $2-5$ in a bundle, in length about equal to the diaineter of the body. Oil droplets deep orange or bright brownish red. Nephridia begin usually behind the first setal bundle, sometimes one segment further back; do not occur further back than the seventh setal bundle, and may be absent from one of the intermediate segments. Cerebral ganglion markedly indented behind.

Remarks. I at first identified this species with \mathcal{E}. hemprichi, but have now decided to separate it on grounds of differences in the size and setæ. \mathcal{K}^{\prime}. hemprichi is of comparatively large size, 2-5 mm. (Lankester, describing a form which he calls S. quater.narium (119), but which according to both Beddard and Michaelsen is AH. hemprichi, states that the largest specimens are nearly a
quarter of an inch long); Vejdovsky (138) describes it under the name \boldsymbol{A}. ehrenbergii as "ein mit blossem Auge ganz deutlich sichtbares Würmchen "; while my worm was "scarcely discoverable by the naked eye in its usual surroundings, and has to be searched for with a lens."

According to Vejdovsky, \boldsymbol{E}. hemprichi has 3 longer and as many shorter setæ in between the longer in each bundle ; these shorter setæ are according to the figure about half the length of the longer, and alternate with them. Lankester also shows bundles of up to 9 setæ, though no regular alternation in length is visible in his figure.

The animal is very hardy in unfavourable conditions. I have used this species in a discussion on the origin of the vascular system (72), and have given a description of the vessels, of the ascending ciliary movement in the intestine, of the antiperistaltic contractions of the gut, and of the relation of the contractions of the dorsal vessel to those of the gut.

The specific name which I now assign to this form commemorates my former colleague in the Biological Department of the Government College, Lahore, Professor S. R. Kashyap.

Distribution. Lahore, in standing water.
3. ADolosoma viride Steph.

> 1907. Aolosoma sp., Stephenson, Rec. Ind. Nus. i, p. 233, textfig. 1, pl. viii, tigs. I-4.
1913. AXolosoma viride, Stephenson, Tr. Roy. Soc. Edin. xlix, pp. 743, 751.
Length (living) $3-8 \mathrm{~mm}$. Segments from 10 upwards, according to length of chain ; $n=7$ or 8 . Prostomium rounded, wider than the following segments. Seta 2-6 in bundle, capillary, straight, of varying length, on the average equal in length to the diameter of the body, the longer of a bundle sometimes alternating with the shorter. Oil-globules pure green, or yellowish or brownish green. Nephridia begin behind the first setal bundle, to the number of six or seven pairs in a single animal. Cerebral ganglion transversely oval, or with a pair of rounded posterior cornua.

Remarles. In the original description I suggested the identity of this form with \mathcal{E}. hecudleyi Bedd., but withdrew the suggestion subsequently. The points of importance are, however, not quite those which I then brought forward. The principal is the number of segments : Beddard does not state what this is in the original account of A. headleyi (109), but from his drawing it is 16 in an animal which still shows no sign of a budding zone; X . viride would show a budding zone before it reached this size. The number of nephridia is correspondingly larger in \mathcal{E}. headleyi (10 pairs are shown). In \mathcal{E}. headleyi n is probably about 11, though we have no exact information.

Beddard in \mathcal{E}. headleyi found colourless oil-bodies in addition to the green oildrops. There are no such bodies in the present form, though I found "smaller, less defined, somewhat refractile particles of a very faint blue colour, so faint as to be almost colourless."

I investigated the vascular system and its relations to the alimentary canal in this species in the same way as for E. kashyapi (72).

Distribution. Lahore, in standing water.

> Species dubia Eiolosomatidarum.
> EOlosoma ternarium Schmarda.
> 1861. Folosoma ternarium, Schmarda, Neue wirbell. Thiere, i, 2, p. 10, pl. 17, fig. 153.
> 1895. ALolosoma ternarium, Beddard, Munog. p. 182.
> 1900. Pleurophlejss ternaria, Michaelsen, Tier. x, p. 16.

Length 2.5 mm .; diameter 0.5 mm . Colour yelluwish grey. No oildrops in integument. Prostomium rounded, as broad as the following segments. Setro capillary, straight, 3 per bundle, shorter than the diameter of the body; 10 seta-bearing segments.

Galle, Ceylon; in standing water.

Family NAIDIDE.

Small aquatic worms, seldom exceeding an inch in length. Setæ usually in four bundles per segment, two dorsal and two ventral, dorsal bundles sometimes wanting; number of setæ per bundle indeterminate; ventral bundles without hair-sete, composed as a rule of bifid crotchets only; dorsal bundles of varying composition, hair-setw and single- or double-pointed needles being the commonest types. Septa usually well marked. No muscular gizzard. Transverse vascular commissures present. Cerebral ganglion separate from the integument. Testes in \mathbf{v}, seldom in vii; ovaries in vi, seldom in viii; spermathece in testis segment. Male deferent apparatus well differentiated, with atrium and male pore in vi (or where testes are in vii, atrium and male pore in viii). The far more usual mode of reproduction is the asexual, by fission.

Distribution. The family is of world-wide distribution, and doubtless occurs throughout India wherever circumstances are favourable.

The group is an exceptionally fascinating one to study if fresh material is available. The anımals are all small enough to allow of microscopic examination; they are mostly very transparentthe Chætogasters particularly so-and all the organs (except the sexual organs, v. post.) are visible without difficulty in the living specimen.

Preserved materin, however, offers many difficulties, and it is sometimes necessary to relinquish the description or even the identification of spirit specimens; in any case the examination is certain to he tedious and trying to the eyes. This is due to the fact that the most important characters are usually the setw. These cannot be accurately observed unless they lie flai, and unfortunately the method of flattening described in the Introduction is not applicable to preserved material. In addition, the setre of preserved specimens can scarcely be seen if the examination is made in glycerine, because of the comparative opacity of the animal; while if the examination is made in balsam, the fine details on which so much depends are invisible, owing to the refractive indices of setæ and balsam being nearly identical.

It is quite certain that a large nnmber of Naididæ remain to be described from the ludian region. They are not easily gathered by collectors; they are difficult to see in, the mud or on the weeds where they live, and uuless the collector makes these worms a special object they will escape him. In any case, the ouly really satisfactory way of working at them is to obtain fresh material, best done by bringing a quantity of the weeds, mud, or débris for leisurely and exhaustive examination in the laboratory: and this means that ouly those localities in the immediate neighbourhood of a rompetent microscopist can be thoroughly explored.

The student who devotes himself to this group is therefore certain to reap a rich harvest of interesting forms; for example, Lahore is probably an exceptionally unfavourable place for the Naidida, yet 15 forms, 7 of them new, have been recorded, and the list is doubtless not yet complete. This contrasts with the list of Lahore earthworms-six species only, all of them wellknown and widely-distributed forms.

At the same time it is not to be expected that the aquatic worms will yield the same interest from a zoogeographical point of view as the earthworms; most Indian genera, and many species even, are common to India and Europe-indeed, a number of genera and species are probably cosmopolitan. For this reason also it is necessary to be cautious in describing new species; it is not safe to do this until descriptions of all the species of the particular genus from whatever part of the world have been compared; access to a considerable literature is therefore essential.

No opportunity should be lost of securing sexual individuals. The sexual apparatus is still not known in the majority of the Naididæ, including some whole genera; when it hecomes more fully known it will doubtless be of great use in the discrimination of species (which depends at present to an undesirably large extent on the setal characters), as well as in determining the interrelationships of the several genera. If sexual specimens are obtained, they should be fixed for histological examination-some at any rate before undertaking any examination under the microscope, in order to obviate possible death or injury. The method of longitudinal sections is the most satisfactory ; it is practically impossible to obtain any useful information about the sexual
animals in the fresh condition, as the opaque clitellum covers over the genital region, and the various organs are therefore (except in the genus Chcetogaster) not individually visible.
The time of appearance of the sexual organs would also be interesting. In Lahore most or all of the species which have been found sexual have developed the organs in the spring of the year, or at the commencement of the hot wenther; the hot weather is the unfavourable time for freshwater forms in the Punjab, and it seems possible that the ova in the cocoons are better adapted to survive it than the animals themselves. In Agra (United Provinces) the autumn appears to be the more usual time (Mehra, 94). According to Piguet (133) there is no very great regularity about the time when the Swiss Naidide become sexual.

A general diagram of the arrangement of the sexual organs is given in text-fig. 8 , and will assist the comprehension of the generic and spectic descriptions.

Fig. 8.-Diagram of sexual organs of one of the Naididæ at., atrium ; cl., clitellum, mor., sperm morule in sperin-sac; o., ovary; of., ovarian funnel; os , ovisac: on., an ovum; spth., spermatheen; *s., sperin-sace ; t., testis; c.d., vas defereus ; $5 / 6,6 / 7$, the correspondng septa; $1, \mathrm{i}, 1 \mathrm{ii}$, etc., the several seguents.

Ceplualization in the Naidilla.-An interesting feature of the family is the frequent occurrence of cephalization-the differentiation of several segments at the anterior end of the body to form a "head." Strictly, the phenomenon occurs throughout the Oligochæta, since, in alli, the first segment differs from the rest in not possessing sete; but as a rule the condition is carried further in the Naidido, not only the first, but also several more of the anterior segments being differentiated from those which follow. This is mainly shown in the absence of dorsal sete; often also in a difference between the ventral setæ of the anterior segments and those behind; and sometimes by differences of pigmentation.
I have endeavoured to bring this condition into relation with the mode of asexual reproduction which characterizes the family (68). It is usual to find that the cephalized segments are those which have been produced in the budding zone. This is not universal however; it is not the case in Naidium and Pristina, where seven segments at the anterior end are produced in the
budding zone, but cephalization is limited to the first. In the majority of cases the rule holds-five segments are produced in the budding zone, and five are cephalized.

The development of this condition has been somewhat as follows:-In the primitive condition there was no zone of bud-ding-the animals broke in two, and the posterior produced a new first segment and prostomium after separation. This soon gave place to a stage in which the new prostomium and first segment were produced before division; Branchiodrilus semperi illustrates this condition. In the next stage a few more new segments behind the first are produced, after separation, the jounger of these being posterior; the number may vary, as in Branchiodrilus menoni, where it has not apparently become fixed; perhaps the degree to which these new segments are finally developed also varies in B. menoni. The next stage is the formation of these segments in the budding zone before separation, and the fixing of their number; the number has becone fixed in Slavina, but apparently they are not always formed before separation (Stephenson, 55); in other genera, however, the full number of new segments is present before detachment. These segments are at this stage five in number, and differ from the rest in being less completely developed-they want the dorsal setæ (Nais, Branchioobrilus hortensis). A subsequent stage is that shown by some Deros, where the number of new segments is five, but the most posterior of these develups dorsal setæ, and ventral setæ of the type of those behind (so sometimes B. hortensis). Finally, in Pristinu and Naidium, there is an increase of the new segments to seven, all of which (except the first) are completely developed, with dorsal sete.

Two points must be further mentioned. The first is that this process of cephalization has taken place more than once in the family; we can see it at work in Branchioltrilus, where B. semperi shows an early stage, B. menoni a later, and B. luortensis a still later. In Parcunais, if Michaelsen is right in uniting the various species in the one genus, we have apparently again a number of stages, evidenced by the varying degrees of completeness of development of the budded segments. Nais, again, is not closely related to Branchiodrilus, yet the same stage has been reached in Nais as in B. hortensis.

The second is the relation of the budding zone to the position of the genital organs. In the family generally these are situated in the fifth and sixth segments; and five segments are produced in the budding zone. In Pristina the genital segments are the seventh and eighth, and seven segments are produced in the budding zone. There seems to be some connection, but what its nature is is not so easy to determine. The testes and spermathece are formed in the last segment which is derived from the budding zone; if the budding zone produced only four segments, we might say that the new segments were for some reason incapable of developing sexual cells and organs; but, as it is, this -will not do. The position of the genital organs differs in the
several families of Oligochæta, while the phenomena of the budding zone is confined to the Naididæ and Lolosoma; the differences in the position of the gonads cannot therefore in general be dependent on the occurrence and extent of a budding zone. Hence if in the Naididæ there is any comection between the position of the organs and the extent of the budding zone, it is probably in the reverse sense-the extent of the budding zone is dependent on the position of the genital organs.

The Indian Naididr have been the object of study (Stephenson, 72) in relation to intestinal respiration; almost all take in water by the anus, and pass it forward by means of an ascending ciliary action, which is aided by antiperistaltic movements of the alimentary wall itself. The same phenomena occur also in the Tubificide, but to a much more limited extent; they are common in the Polychæta. Fur the theoretical conclusions drawn from these phenomena the original may be consulted.

hey to the Indian genera of Naididæ.

1. Genus CHETOGASTER K. Buer.

Small worms, at most 15 mm . long, usanlly fairly stout, transparent and colourless, or whitish. Prostomium absent or very short, merely a rounded triangular projection of the first segment above the inonth. No dorsal setw; ventral setæ absent from segments iii-v. Pharyux large and wide; cesophagus short, at most as long as the pharynx. One pair of transierse commissural vessels. Ventral nerve cord extensively perforated in its anterior portion, where there are no distinct ganglia. Testes and ovaries (when present as distinct organs) in \mathbf{v} and vi respectively, - spermathecæ in v. Mostly carnivorous, sometimes vegetable feeders.

For a general account of the genus the monographs of Vejdovsky (138) and Beddard (31) are useful. For remarks on the Indian species of the genus, see Stephenson (53, p. 247).

The genus occupies an isolated position in the family, from which it was separated by Vejdovsky (138) as a distinct family; but later authors have not followed him. The worms are immediately recognizable by their transparency, absence of dorsal setæ, and absence of ventral setæ on segments iii-v. The alimentary canal is more differentiated than usual in the freshwater Oligochæta; the large barrel-like pharynx is succeeded by a narrow œesophagus, and this by a dilatation which 1 have called the crop; a second dilatation follows, the stomach; and finally the intestine. The amceboid shape of the cells lining the crop sometimes gives the idea that in this portion of the alimentary canal intracellular digestion may take place (Stephenson, C. spongilloe and C^{\prime}. bengulensis, 61, 88, 93).

The absence of ascruding ciliary action and antiperistalsis in the intestine (both of which are common features in the Naididæ), the reduction of the vascular system, the absence of complete dissepiments and consequently of sperm-racs and ovisacs, the generally carmvorous habit, the thinness of the body-wall and consequent transparency, and the sometimes parasitic or semiparasitic mode of life, have led me to argue that the whole genus was formerly parasitic, and that some members have returned to a free-living existence (72).

There are peculiar appearances in the cerebral ganglion of a number of species; granular, refractile, or pigmented particles or masses are present, the significance of which lias not been elucidated; they may represent a degenerate sense organ. For an enumeration of these, $c f$. Stephenson (53 and 61.)

Distribution: Punjab (Lahore; Gurdaspur Dist.); Berıgal (Calcutta); United Provinces (Agra); Burma (L. Inle); N.W. Frontier Province; Western Ghats; W. Himalayas (Naini Tal). The majority of Indian species are parasitic on and in freshwater snails and sponges.

The genus has probably a world-wide distribution ; and having regard to the means of spreading of freshwater Oligochætes, it is not surprising to find some European species in the Indian area. The occurrence of C. annandalei in Burma is interesting, since the worm was originally described from Japan, and the fauna of L. Inle, its Burmese station, shows Far Eastern affinities.

Key to the Indian species of Chætogaster.

1. Setæ 8 or more in bundl	2.
Setæ 7 or fewer in bundle	3.
2. Setæ 15-17 in bundle	C. bengalensis.
Setæ 8-12 in bundle	C. limnai.
3. Length more than 2 mm .	C. orientalis.
Length less than 2 mm .	
4. Esophagus moderately long	C. langi.
Essophayus short or very short	
5. Granular mass in cerebral ganglion	C. spongilla
No such mass in cerebral ganglion	C. annandalei.

1. Chætogaster annandalei Steph.

1918. Chatogaster annandalei, Stephenson, Rec. Ind. Mus. xiv, p. 9 .
1919. Chatoyaster annandalei, Stephenson, Mem. As. Soc. Bengal, vi, pp. 85, 88.
Small, a single individual (preserved) 0.44 mm . long, a chain of two $0 \cdot 66-0.89 \mathrm{~mm}$.; diameter $0 \cdot 13-0.175 \mathrm{~mm}$.; $n=10$ or 11 . Prostomium well marked, bluntly triangular; a constriction behind the second segment. Setæ of ii $70-90 \mu$ in length, 4 or 5 in the bundle; those of other segments $50-60 \mu$ long, 3 or 2 per buudle; all double-pronged, prongs very fine, the outer longer and more curved; nodulus markedly proximal. Esophagus short. No refractile bolly in cerebral ganglion.

Remarks. The species was originally described from Japan, where it was found in a sponge.

Distribution. Lake Inle, S. Shan States, Burma; in a sponge, Ephydatia fuviatilis.

2. Chætogaster bengalensis Annand.

1905. Chaetoyaster bengalensis, Annandale, Journ. \& Proc. As. Soc. Bengul, i, p. 117, text-tig., pl. iii, tigs. 1-4.
1906. Chatoryaster bengalensis, Stephenson, Rec. Ind. Mus. i, p. 248.
1907. Chatogaster bengalensis, Stephenson, Rec. Ind. Mus. xiv, p. 10.
1908. Chetogaster bengalensis, Stephenson, Mem. Ind. Mus. vii, p. 195.

Length at least 10 mm . when fully extended; in the preserved condition an animal which is preparing to divide mensures 1.8 mm . or more, the first individual being 1 or 1.2 mm . ; diameter up to 0.38 mm . ; $n=10$ or 11. Setre in bundles of $15-17$, implanted in semicircles; in ii they are $85-120 \mu$ long, the main portion of the shaft straight, the prongs almost equal in length and thickness, or the proximal prong slightly thicker at the base; position of nodulus varies from middle of shaft to frankly distal. In the other segments setæ shorter, $60-70 \mu$ long, $1 \cdot 7 \mu$ in thickness; shaft here also straight for the greater part of its length, distal end hooked, proximal part gently curred, no regular difference between the prongs; nodulus varies m position, trom the middle to distinctly distal. Prostomium practically absent; mouth a large circular orifice, ventro-terminal, looking obliquely forward and downward. EEsophagus short but distinct. Crop with a layer of chloragogen cells on its surface, like paving-stones, with slight intervals between them; a ring of elongated cells internally at the entrance to the crop, hanging backward into the crop, perhaps amœeboid. A granular opaque mass in the cerebral ganglion.

Remarks. The species is commensal on several species of water-snails-Limnoea gedrosiana var. rectilabrum, acuminata, chlamys, etc.; and also in the sponges Ephydutia fuviatilis and Sponyilla carteri.

Distribution. Calcutta; Lake Inle, Burma; Peshawar and Nowshera, N.W. Frontier Province; Gurdaspur Dist., Punjab; Satara, W. Ghats. Outside India recorded from Seistan, E. Persia.

3. Chætogaster langi Bretscher.

1907. Chatogaster punjabensis, Stephenson, Rec. Ind. Mus. i, p. 133, pl. v, figs. 1-11.
1908. Chetogaster punjabensis, Stephenson, Tr. Roy. Soc. Edin. i, pp. 740, 744.
1909. Chetogaster punjabensis, Mehra, P.Z.S. p. 457.
1910. Chatogaster punjabensis, Stephenson, Mem. Ind. Mus. vii, p. 196.

Length 1-2 mm.; segments $8-21 ; n=8$ or 9 . Transparent. Prostomium short and blunt; head with a rather bulbous appearance, the pharyngeal region being rather swollen, the rest of the animal of uniform diameter, slender. Setæ 5-7 per bundle, in length equal to two-thirds of diameter of body in moderate extension ; distal prong of the forked end longer than the proximal. Esophagus in segment iii, of moderate length, half as long as pharynx. One pair of lateral commissures in iii. First nephridium in vii. Cerebral ganglion with refractile body.

Remarks. I noted on one occasion the presence of a few small setæ in segment iii,-an ancestral reminiscence.

After examining British specimens of what are undoubtedly C. langi in the living condition, I recognize the identity of my C. punjabensis with it.

Distribution. Lahore ; free living. A common European form ; recorded also from Seistan, E. Persia.

4. Chætogaster limnæi K. Baer.

1909. Chatogaster limnaei, Michaelsen, Mem. Ind. Mus. i, p. 131.
1910. Chatogaster limnai?, Stephenson, Rec. Ind. Mus. xiv, p. 9.
1911. Chatogaster limnai, Stephenson, Mem. Ind. Mus. vii, p. 195.
1912. Chatogaster limnai, Vejdovsky, Monog. p. 36, pl. vi, figs. 16-18.
Length of a single individual up to 2 mm ., of chains up to 5 mm . Whitish in life, much less transparent than other species of the genus. Prostomium forming at most a feeble and indistinct projection. Setæ 8-12 per bundle, those of ii somewhat longer than the rest; terminal prongs almost equal and parallel. Esophagus very short, scarcely distinct. Contractile vascular commissures of the cesophageal region dilated as hearts.

Remarks. Michaelsen's definition of this genus in the 'Süsswasserfauna Deutschlands' (124) is wider than that given above. He there allows a very great variation in the number and size of the setæ, "the extremes being, on the one hand, 14-20, those of ii ca. 118μ long, and the rest ca. 79μ; and on the other hand $6-8 \mathrm{in}$. bundle, length of those of $\mathrm{ii} .69 \mu$, of the rest ca. 50μ."

The definition would almost include C. bengalensis. In the Tierreich volume the same author gives the number of setæ per bundle as $8-12$, as I have done above.

The identification of the worms which I examined from the Inle Lake remains doubtful, even after a comparison with an actual specimen of C. limnoei from Europe. The worms I examined were in a tube with C. annandalei, and were taken from the sponge Ephydatia fluviatilis. The species has not previously been recorded from a sponge.

Piguet (134) remarks that the much inferior transparency of this worm is due to its mode of life-parasitic on, or in the respiratory chamber of, freshwater Molluses.

Distribution. Naini Tal, W. Himalayas (Dr. Annandale informs me that these specimens were found on a Limncea); ? Inle Lake, Burma (on Ephyylatia fluviatilis). This is a widely distributed European species, commensal on or parasitic in freshwater suails.

5. Chætogaster orientalis Steph.

> 1907. Chetogaster pellucidus, Stephensun, Rec. Ind. Mus. i, p. 237 , text-ligs. $2 \cdot(\mathrm{f}, \mathrm{pls}. \mathrm{ix-x}, \mathrm{figs} 1,.3-10$.
1910. Chetogaster orientalis, Stephenson, Rec. Ind. Mus. v, p. 68, text-fig. 4, pl. viii, figs. 3-4.
1913. Chetoyaster orientahs, Stephenson, Tr. Roy. Soc. IEdin. xlix, pp. 740, 744, 754.
192). Chatogaster orientalis, Mehra, P. Z. S. p. 457.
1922. Chetoyaster orientalis, Stephenson, P. Z. S. p. 109, textfigs. 1-6.
1909. Chatoyaster orientalis, Stephenson, Rec. Ind. Mus. iii, p. 107.

Length of a chain $5-10 \mathrm{~mm}$. or more ; segments 11 upwards; $n=8$. Transparent. Prostomium vestigial, the mouth reaching to the tip of the snout. Setæ $6-7$ per bundle in ii, $2-5$ in the remaining segments; double-prouged, the distal prong being the longer, both equally thick at the base ; setæ of ii 0.14 mm . long, of other segments about 0.11 mm . Esophagus short, in iii. First nephridium in vii. Cerebral ganglion contains a dark granular mass. No definite gonads, sexual cells produced by proliferation of peritoneal epithelium in various parts of the body; no spermsacs or ovisacs; male funnel in \mathbf{v}, vas deferens dilating to an oval atrium in vi; clitellum $\frac{1}{2} v-\frac{1}{2} v i i=2$. Penial setæ (text-fig. 9) shorter, stouter and fewer (3 per bundle) than the normal, with a single point, quite blunt; nodulus very large, near distal end.

Remarks. The species is carnivorous, devouring small Crustacea, Rotifers, small Nematodes, Ciliates such as Paramcecium, and other small worms; they will attempt to swallow animals much larger than themselves, e. g., a dead fly.

I have described the vascular system and its relation to the gut in this species in some detail (72), and also the peculiar mode of origin of the sexual cells (98):

Distribution. Lahore, free living; also recorded from Tibet.
6. Chætogaster spongillm Annand.
1906. Chatogaster spongilla, Annandale, Journ. \& Proc. As. Soc. Bengal, ii, p. 188, text-ig. 1 A.
1907. Chatogaster spongilla, Stephenson, Rec. Ind. Mus. i, p. 248.
1911. Chatogaster spongilla, Stephenson, Rec. Ind. Mus. vi, p. 205, text-fig. 1.
1920. Chatogaster spongilla, Stephenson, Mem. Ind. Mus. vii, p. 195.

Length of living and not budding animal 1 mm ., of chain of two, preserved, up to 0.7 mm .; diameter 0.15 mm .; segments 11 upuards; $n=8$. Transparent. Prostomiun small. Setæ of ii (text-fig. 10),

Fig. 9.-Penial seta of Chetogaster orientalis Steph.

Fig. 10.-Chatogaster spongilla Annand. ; setre of segment ii ; $\times 890$.
up to 6 in number, 90μ long; of other segments 3 , 4 , or 5 in number, 60μ long ; prongs of setm unequal, the distal longer and often thinner ; nodulus proximal to middle of shaft. Esophagus short; no chloragogen cells on crop. Cerebral ganglion with spherical granular mass.

Remarks. The animal feeds on the organic débris of the decaying parts of sponges, and is not found in the healthy growing parts; it no doubt helps in liberating the gemmules. It progresses by wriggling.

The ventral nerve cord shows more distinct ganglionic aggregations than in some other species; the appearances of the epithelium of the crop suggest intracellular digestion.

Distribution. Calcutta, in Spongilla carteri and S. decipiens, and on Plumatellu repens var. emurginata; Khandala, W. Ghats, in Spongilla crateriformis.

Chætogaster sp.
1906. Chatogaster sp., Annandale, Journ. \& Proc. As. Soc. Bengal, ii, p. 189, text-fig. 1 в.
1907. Chretogaster sp., Stephenson, Rec. Ind. Mus. i, p. 248.

Length $2-3 \mathrm{~mm} . ; n=8$ or 9 . Anterior end somewhat truncated. Setæ arranged in semicircles, as in C. bengalensis. Buccal cavity deep, pharynx short, œesophagus short. First nephridium in vii, larger than the rest. Cerebral ganglion contains a densely pigmented mass (? eye).

A species inquirenda. The food consists, in part at least, of Protozoa which are abundant on the surface of the zoarium of the Polyzoon on which it was found. The eyespot is probably comparable with the refractile bodies in the cerebral ganglion in some other species; these bodies may originally have been eves, and may have lost their pigment and becomo vestigial since the genus took to a parasitic or commensal life in the cavities of other animals.

Calcutta; on the surface of Plumatella repens var. emargenata.

2. Genus NAIS Mill., em. Vejd.

Prostomium well developed, simple, rounded. Hinder end simple. Dorsal setæ beginning in vi, with moderately long hair setæ, at most twice as long as the diameter of the body, not specially elongated in any segment; and needles, with simple or bifid or rarely ctenate point. Ventral bundles of double-pronged crotchets, those of $\mathrm{ii}-\mathrm{v}$ almost always longer and thinner than the rest. Clitelluin including segments \mathbf{v}-vii. Testes in \mathbf{v}, ovaries in vi; male funnel on anterior face of $5 / 6$, vas deferens leading to a dilated atrium in vi; male pores in vi; sperm-sac formed from septum 5/6, ovisac from $6 / 7$, both single, the spermsac extending back within the ovisac; female funnels in hinder part of vi. Spermathecæ in \mathbf{v}, consisting of ampulla and muscular duct. Penial setæ near male aperture, $2-5$ in bundle.

This is perhaps the most numerous genus of the family, and will no doubt be found in most parts of India when the freshwater fauna has been more completely investigated.

The discrimination of species rests mainly on the characters of the setm, and in any description it is therefore necessary to examine these with the greatest care; the chief points to which attention should be directed are mentioned in the Introduction, and may be seen in the following diagnoses; especial importance attaches to the dorsal needles, the points of which should be examined with the oil immersion lens. The position of the nodulus seems in some species to vary in the several setro of the same ventral bundle according to a definite rule (Stephenson, 77).

Distribution. N.-W. Frontier Province (Peshawar); Punjab (Lahore, Kasauli); United Provinces (Agra, Lucknow); Bihar (Sirsiah); Calcutta and environs; Bombay ; W. Ghats (Khandala) ; Central India (Gwalior); Central Provinces (Saugor, Pachmarhi); Barkuda I.; Travancore (Bheemanagar); Ceylon (Kandy). Doubtless the genus exists throughout India.

A common European genus.
Key to the Indian species of Nais.

1. Eyes present 2.

Eyes absent 4.
2. Dorsal needles 2-4 in bundle, single-pointed.... N.

Dorsal needles 1-2 in bundle, double-pointed .. 3.
3. Prongs of dorsal needles comparatively long, of about equal length, set at an acute angle to each other
N. elinguis.

Prongs short, inconspicuous.
4. Dorsal needles pectinate

Dorsal needles double-pronged
N. communis var. punjabensis.
N. pectinata.
5.
5. Stomach present; prongs of dorsal needles short and inconspicuous
N. communis var. caca.
No stomach ; prongs of dorsal weedles fairly obvious

6
6. Segments of the single animal few, about 13 .. N. raviensis.

Segments of the single animal comparatively numerous, about 30 or more
7.
7. Inner (proximal) prong of dorsal needles the lenger
N. paraguayensis.

Prongs of dorsal needles equal in length........ N. paraguayensis var. aqualis.
Outer (distal) prong of dorsal needles the longer.
8. Onter (distal) prong of anterior ventral needles (segments ii-v) nearly twice as long as the proximal
8.

Outer (distal) prong of anterior ventral needles only slightly longer than the proximal
Carter (2) described a form which he called Nais fusca from Bombay. This is included by A. G. Bourne (19) in a systematic account of the Naididæ. Michaelsen omits it altogether from his lists of Indian Oligochæta (54,58), though be had previously included it doubtfully under N. josince in the Tierreich volume (38). The particulars given by Carter do not permit the identification of the worm ; it cannot, however, be N. josince, which has bifid needles in the dorsal bundles, since N. fusca has only capillary setæ there.

Schmarda (3) described a Nais caudata, which is thought by Michaelsen (38) to be possibly a Dero. Schmarda however recognizes Dero as a separate genus, with gills, and would have referred his worm to it had there been anything to remind him of it. Nais cauduta is probably a Nais with a small rapidly formed and narrow, newly budded tail. It was found at Kandy in Ceylon.

1. Nais communis Piguet.

1906. Nais communis, Piguet, Rev. Suisse Zool. xiv, p. 247, pl. x, fig. 9, pl. xi, figs. 14-17 and 19, pl. xii, fig. 11 .
a. var. punjabensis Steph.
1907. Nais variabilis var. punjabensis, Stephenson, Mem. Ind. Mus. i, p. 255, text-igs. 1-3, pls. xv-xxii, figs. 1-21.
1908. Nais communis var. punjabensis, Piguet, Rev. Suisse Zool. xvii, p. 198, text-fig.
1909. Nais variabilis var. punjabensis, Stephenson, Rec. Ind. Mus. $\mathrm{v}, \mathrm{p} .66$, pl. viii, figs. 1-2.
1910. Nais communis var. punjabensis, Stephenson, Rec. Ind. Mus. v, pp. 237, 239, 240, pl. xi, figs. 2, 4.
1911. Nais communis var. punjabensis, Stephenson, Tr. Roy. Soc. Edin. xlix, pp. 737, 744, 758.
1912. Nais communis var. punjabensis, Stephenson, Tr. Roy. Soc. Edin. l, p. 786.
1913. Nai» communis var. punjabensis, Stephenson, Rec. Ind. Mus. xiv, p. 12.
1914. Nais communis var. punjabensis, Stephenson, Mem. Ind. Mus. vii, p. 196.
1915. Nais communis var. punjabensis, Mehra, P. Z. S. p. 457.

Fig. 11.-Nais communis var. punjabensis; a, ventral seta of an anterior bundle; b, ventral seta of a posterior bundle ; c, dorsal needle.

Length 2-14 mm., average length of a single individual $5-6 \mathrm{~mm}$. Colour light grey, with irregular light brown pigmentation over the most anterior segments. Segments 18-32, often about 26 ;
$n=14-16$. Eyes present. Prostomium short, rounded. Ventral setæ usually $3-5$ in a bundle, extremes being $2-7$; those of ii-v (text-fig. 11, a) in length $86-95 \mu$, the distal prong one and a half times as long and half to two-thirds as thick at the base as the proximal, shaft thinner and less curved than in the more posterior bundles, nodulus proximal (usually only slightly so); setæ of the remaining segments (text-fig. 11,b) $70-80 \mu$ long, or more in extreme cases, moderately stout, inore curved than the anterior ones, distal prong slightly longer than the proximal and about half as thick at the base, nodulus distal. Dorsal bundles of 1-2 hair setæ and 1-2 needles, the length of the hairs at most equal to the diameter of the body; needles (text-fig. 11, c) average about 60μ in length, are slightly sickleshaped, with a finely forked distal end (the forking may apparently rarely be absent), and an indefinite nodulus about one-third of the length from the distal end. Body-cavity with many corpuscles, which may be of two kinds, white and brown.

Fig. 12.-Nais communis Piguet var. punjabensis; penial setæ.
Stomach in vii or viii or vii and viii. Cerebral ganglion deeply indented behind, less deeply in front. Male funnel of fair size, turned backwards into the mouth of the sperm-sac; ectal part of vas deferens covered by "prostatic" cells, atrium approximately spherical, ejaculatory duct short, opening into a slight depression of the surface. Ovisac includes the sperm-sac. Ampulla of spermatheca at maturity a large thin-walled sac extending back into vii, contained within cavity of sperm-sac; duct not marked off externally, but lumen suddenly contracts to a fine tube with thick walls. Clitellum v-vii. Penial setæ (text-fig. 12) 90μ long, 2-3 in bundle, stout, slightly bifid or with single blunt point.

Remarks. The nomenclature of this form has given some little difflculty. I at first named it N. variabilis var. punjabensis, on account of the similarity of the sete to those of N. variabilis

Piguet; but an examination of the genital system by Piguet, and independently by myself, showed that the present form was closely allied to N. comnnunis. See the discussion in Piguet (56).

The differences of this var. from the type form of the species are as follows :-In the type form the whole body is yellowish red or pale brownish; the prostomium is fairly long, twice as long as broad at the base; all the ventral setæ have a markedly longer distal prong; in the dorsal needles the forking is very easy to see (which is not at all the case in the var. punjabensis), and the prongs diverge almost at a right angle; the spermatheca does not appear (from the figure) to be contained in the sperm-sac in segment vi, as it is in the present form.

The thornlike projections on the dorsal hair setæ described in the original account of the worm are, as suspected by Piguet, a cryptogamic growth.

The worm has been found inhabiting tubes, probably abandoned by insect larvæ; specimens found by Annandale in Seistan were living in relatively long mucilaginous tubes, to which colonies of the Polyzoon Lophopodella had attached themselves.

I have used this form in an account of antiperistalsis and reversed ciliary action in aquatic Oligochætes, and have studied the relations of the contraction of the dorsal vessel and of the gut to each other (72). The relations of the nodulus in the setæ of the same bundle are explained in (77).

Distribution. Lahore; Peshawar; Kasauli, W. Himalayas; Agra; Khandala, W. Ghats; Bheemanagar, Travancore (in Spongilla corteri). Also in Seistan, E. Persia.

The type form of the species has been found as far spart as Patagonia and Switzerland.

b. var. cæca Steph.

1910. Nais communis var. caca, Stephenson, Rec. Ind. Mus. v, pp. 235, 238, pl. xi, fig. 3 .
1911. Nais communis var. cecea, Stephenson, Rec. Ind. Mus. xiv, p. 12.

Length about 2 mm .; segments $24-27$. No eyes. Ventral setæ in bundles of two or three throughout; those of ii- (textfig. 13, a) in length $80-94 \mu$, distal prong with slight swelling at its base and hence somewhat clawlike, one and a quarter times as long and about two-thirds as thick as the proximal ; from vi onwards (text-fig. 13, b) $71-87 \mu$ long, distal prong about equal to proximal in length but only about half as thick at the base. Dorsal setæ regularly one hair and one needle per bundle; the hair setæ equal to about three-quarters of the diameter of the body (preserved); the needles (text-fig. 13, c) $53-58 \mu$ long, shaft straight or nearly so, prongs short, equal in length, one thicker than the other at the base.

Remarks. The specimens were found originally along with others of N. communis var. punjabensis, of which this is really a variety-
a variety of a variety. The essential point of difference is the absence of eyes. As the specimens were taken from a sponge, it might seem possible to correlate the absence of eyes with the absence of light; but this latter would hardly be sufficiently marked to produce such an effect, and moreover specimens of the

Fig. 13.-Nais communis Piguet var. caca; a, ventral seta of an anterior bundle; b, ventral seta of a posterior bundle; c, dorsal needle.
more normal form, with eyes, were obtained from the same sponge. So, too, in Kasauli the two forms occur together, but here both live freely.

Distribution. Bheemanagar, Travancore (in Spongilla carteri); Kasauli, W. Himalayas.

2. Nais elinguis Müll., Örst.

1909. Nais elinguis, Michaelsen, Mom. Ind. Mus. i, p. 131.
1910. Nais elinguis, Michaelsen, Jabrb. Hamb. wiss. Anst. xix, p. 175 , fig. 4.
1911. Nais elinguis, Piguet, Rev. Suisse Zool. xiv, p. 241, pl. x, fig. 8, pl. xi, figs. 8-13, pl. xii, fig. 10.
Length of chains $1 \cdot 2-10 \mathrm{~mm}$., of single animals $2 \frac{1}{2}-8 \mathrm{~mm}$. Segments of a single animal 15-37; $n=12$ to 21. Colour a clear brown. Prostomium short, roundly conical. Eyes present. Ventral bundles with 2-5 bifid crotchets; distal prong longer and
thinner than the proximal; all similar in form, but those of ii-v a little longer than the rest, and with nodulus almost median, those of succeeding segments with nodulus distal. Dorsal bundles with 2-3 almost straight needles, nodulus rather more than a quarter of the distance from the distal end, tip slightly curved, ending in two fine prongs, which diverge only slightly, both fairly long, the outer or distal slightly longer; and 2-3 fairly stiff hair setæ, in length about equal to the diameter of the body, three times as long as the needles. Gut gradually widening in vii. Vascular commissures of i and ii mostly anastonosing, those of iii-v mostly independent. Male funnels turned backwards into the neck of the sperm-sac; vas deferens covered with prostatic cells; atrium rounded, with thick and muscular walls. Penial setæ 4-5 in number. Sperm-sac contained within ovisac. Ampulla of spermatheca thin-walled, duct one-third the length of ampulla, with thick walls and narrow lumen.

Remarks. Michaelsen records this species from Lahore; these Lahore specimens were sent by me to him; as I had never found this species in or near Lahore myself, I was inclined to believe that the specimens that actually reached Michaelsen were the ordinary Nais of Lahore-N. communis var. punjabensis. Dr. Annandale kindly sent all the museum specimens labelled Nais elinguis for me to examine; I found the specimens from Lahore to be, as I supposed, N. communis var. punjabensis, but those from Calcutta were N. elinguis; about those from Alipur I am very doubtful. The determination of Naididæ from spirit material is full of pitfalls; and the older diagnosis of N. elinguis has been shown by Piguet (133) to corer at least three species-N. elinguis, N. varicibilis, and N. communis-all of which have double-pointed needles in the dorsal bundles.

Distribution. Calcutta, in Spongilla carteri; ? Alipur, near Calcutta, from colonies of Plumatella emarginata. Widely spread in Europe.

3. Nais gwaliorensis Steph.

1920. Nars gwaliorensis, Stephenson, Mem. Ind. Mus. vii, p. 198, pl. ix, figs. 3-4.
Length 2.7 mm .; diameter 0.25 mm . Segments 29 in the single animal. Prostomium bluntly triangular. No eyes. No stomachal dilatation. Dorsal bundles usually of one hair and one needle, sometimes two hairs; the hair usually rather shorter than the diameter of the body; needles (text-fig. 14, c) ca. 45μ long, bent at a very obtuse angle distal to the middle, the distal section being slightly curved; length of distal section to that of proximal section :: 2:3; tip bifid, angle between the prongs moderately wide, outer prong slightly the longer. Ventral bundles behind segment v (text-fig. 14, a) 4 or 5 in bundle, $45-53 \mu$ long and 2.5μ thick; nodulus distal; prongs equal in length, outer only
half or two-thirds as thick as inner. In segments ii-v (textfig. $14, b$) the shaft is thinner and straighter, the nodulus at the

Fig. 14.- Nais gwaliorensis Steph. ; a, ventral seta from a posterior segment; b, ventral seta from an anterior segment; c, dorsal needle. $\times 1100$.
middle or slightly proximal, the outer prong is slightly longer, thinner and more hnoked than the inner ; 4 seta in a bundle, length $50-56 \mu$, thickness only 2μ.

Distribution. Gwalior, Central India.

4. Nais obtusa (Gerv.).

1909. Nais obtusa, Michaelsen, Mem. Ind. Mus. i, p. 131.
1910. Nais obtusa, Piguet, Rev. Suisse Zool. xiv, p. 234, pl. x, figs. 2-4, pl. xi, fig. 5, pl. xii, fig. 8.
Length of chains $3 \frac{1}{2}-6 \mathrm{~mm}$., of single individuals $3-5 \mathrm{~mm}$. Segments of a single animal 25-33. Colour of the anterior part yellow to brownish yellow. Prostomium fairly long. Eyes present. Ventral setæ 2-5 per bundle; those of ii-v slender, with rather longer and finer distal prong and nodulus proximal; those of the following segments shorter, about three-quarters as long as the former, thicker, more curved, prongs about equal in length but the proximal about three times as thick as the distal, nodulus distal. Dorsal bundles with 2-4 single-pointed needles with nodulus slightly distal, and 1-3 stiff hair setm about twice as long as the needles. No vascular commissures in segment i; those of ii-iii usually with a common origin from the dorsal vessel, those of iv and v independent. Male funnel large, vas deferens covered with prostatic cells, atrium globular, ejaculatory duct narrow, male pore on rounded papilla. Penial setæ 2-3 in number. Ectal region of spermatheca with thick and muscular walls, about one-third the length of the whole (empty) organ, marked off from the ampulla by a constriction, below which it is swollen ; ampulla
when empty an elongated sac, narrower behind, when distended invades the dorsal regions of neighbouring seginents.

Distribution. Lucknow ; Calcutta, from Plumatella fruticosa and P. emarginata in a tank at the Zoological Gardens. A common European form.

5. Nais paraguayensis Mich.

1909. Nais paraguayensis, Michaelsen, Mem. Ind. Mus. i, p. 181.
1910. Nuis paraguayensis, Stephenson, Mem. Ind. Mus. i, p. 263, pl. xvii, tigs. 22-24.
19:0. Nais paraguayensis, Stephenson, Mem. Ind. Mus. vii, p. 197, pl. ix, fig. 1.
1911. Nais paraguayensis, Stephenson, Rec. Ind. Mus. xxii, p. 750.
1912. Nais paraguayensis, Michaelsen, Zoologica, xviii, Heft 44, p. 354, text-fig.

Length of single animal $3 \cdot 5-14 \mathrm{~mm}$. preserved; Indian specimens may be as much as 20 mm . living and extended; diameter $0 \cdot 2-0 \cdot 3 \mathrm{~mm}$. Segments 29-106. Colour light orange. Prostomium short, rounded. Anus directed dorsally. No eyes. Ventral setal bundles with $3-6$ crotchets, those of $i i-v$ scarcely thinner than the rest, with distal prong slightly longer than the proximal, and

Fig. 16.-Nais paraguayensis Mich.; abuorinally shaped dorsal needles.

Fig. 15.-Nais paraguayensis Mich.; dorsal needie.
both of the same thickness or the distal thinner; in the remaining segments distal prong of equal length with and thinner than the proximal. Dorsal bundles with 1-2 hair seta and 1-2 needles; the hairs simple, their maximum length equal to diameter of body (0.3 mm .); needles (text-fig. 15) slightly sickleshaped, closely
applied to the base of the hairs, 60μ long and 4μ thick, with faint nodulus distal to middle, tip with two prongs of considerable size at an acute angle, proximal rather curved, alnost twice as long and twice as thick as the distal which is almost straight. Cœomic corpuscles present. No stomach. Vascular commissures plexitorm.

Remarks. The species was found originally, as the name implies, in Paraguay; it furnishes an instance of the wide distribution, and hence valuelessness for zongeography, of these small freshwater forms.

The Indian specimens have been much larger than the original ones from Paraguay, and have had many more segments. The hinder end of the body in these long Indian worms shows a considerable length of rapidly produced new segments. Fission has not been observed; possibly the worm fragments, without previous formation of a budding zone, and regeneration of the portions takes place subsequently (Stephenson, 96). Irregularities may occur in the shape of the dorsal needles (text-fig. 16).

Distribution in India:-Calcutta (Museum Tank); Sirsiah, Bıhar; Lahore; Gwalior, Central Iudia; Pachmarhi, Central Provinces.
a. var. æqualis Steph.
1920. Nais paraguayensis var. aqualis, Stepheuson, Mem. Ind. Mus. vii, p. 197, pl. ix, fig. 2.

Fig. 18.-Nais paraguayensis Mich. var. barludensis; dorsal needle. $\times 800$.

Fig. 17.-Nais paraguayenszs Mich.
var. equalis; dorsal needle.
\times ca. 1200.
Length 3.5 mm . (preserved) ; diameter $.0 \cdot 23 \mathrm{~mm}$. Segments 34 . Prostomium moderately large and long. Dorsal bundles of one hair and one needle seta; prongs of needle (text-fig. 17) equal in
length. For the rest appears to be essentially as for the type form (the material was scanty and not perfectly satisfactory).

Distribution. Saugor, Central Provinces.

b. var. barkudensis Steph.

1921. Nais paraguayensis var. barkudensis, Stephenson, Rec. Ind. Mus. xxii, p. 751, pl. xxviii, fig. 1.
Length probably about 5 mm . Anterior end rather bulbous. No eyes. No stomachal dilatation. Segments 31-33 plus a posterior zone of small rapidly produced segments. Dorsal setæ in bundles of two or three needles and two or three hairs; the hairs rather shorter than the diameter of the body; the needles (text-fig. 18) 94μ long, with slight sabre-like curve, nodulus onethird of the length from distal end, tip bifid, the prongs at an acute angle to each other, the outer slightly longer. Ventral needles of segments ii-v four per bundle, 100μ long, nodulus proximal, distal prong nearly twice as long as proximal, and of about equal thickness. In the remaining segments $4-5$ per bundle, length 90μ, nodulus distal, prongs equal, the proximal one and a half times as thick as the distal.

Remarks. The difference of this variety from the type of the species is considerable, and it is only the existence of the var. aqualis as an intermediary that permits of its inclusion in the same species. Indeed the difference in length of the prongs of the anterior ventral needles may still justify its separation. The large number of rapidly produced posterior segments is, however, suggestive of a relation to the type form of the species.

Distribution. Barkuda Island, Chilka Lake.

6. Nais pectinata Steph.

> 1910. Nais pectinata, Stephenson, Rec. Ind. Mus; v, p. 236, pl. xi, fig. 1.
> 1920. Nais pectinuta, Stephenson, Mem. Ind. Mus. vii, p. 198.

Length of single individunl (preserved) about 2 mm . Segments 27-31. No eyes. Prostomium well marked, conical with rounded tip. Ventral setæ of ii-v (text-fig. 19, a) three per bundle, 56μ long, thinner and less curved than those of following segments : distal prong one and a quarter times as long and about half as thick as the proximal, both prongs comparatively short, slightly swollen near their bases, nodulus proximal ; those of the remaining segments (text-fig. 19,b) 2-5 per bundle, 51-56 μ in length, the longer ones towards the hinder end of the body, distal and proximal prongs equal in length, the proximal fully twice as thick as the distal, both with a slight swelling at the base, nodulus distal. Dorsal setm in bundles of one hair and one needle seta; the hairs smooth, about equal in length to the diameter of the body; needles (textfig. 19, c) 56μ long, shaft slightly sickleshaped in its distal third, tip pectinate, the outer prongs on each side the strongest, the
intermediate prongs fine, $2-5$ in number, nodulus indistinct, resembling a slight angle in the shaft at the junction of middle

Fig. 19.-Nais pectinata Steph.; a, ventral seta from an anterior bundle; b, ventral seta from a posterior bundle; c, dorsal needle ; d, e, f, irregular shapes of the tip of dorsal needles.
and distal thirds; occasionally irregular forms with partial webbing between the teeth (text-fig. 19, d, e, f). No stomach.

Distribution. Bheemanagar, Travancore (in Spongillc carteri); Gwalior, Central India.
a. var. inæqualis Steph.
1911. Nais pectinata var. inequalis, Stephenson, Rec. Ind. Mus. vi, p. 208, text-fig. 2.
1920. Nais pectinuta var. inaqualis, Mehra, P.Z.S. pp. 457, 458, text-figs. $1 \mathrm{~A}, 2$.
Length as for type form (preserved); or $8-10 \mathrm{~mm}$., even (extended) $15-18 \mathrm{~mm}$. living. Segments $40-95$. Ventral setro 4-6 per bundle, ca. 100μ long in the anterior (ii-v) segments,' 90μ in the remainder, or (in other specimens) $60-65 \mu$ long throughout; in the anterior group distal prong one and a half times as long and two-thirds as thick as the proximal ; nodulus only slightly proximal in anterior and slightly distal in posterior group. Dorsal bundles may contain one hair and two needles, or two of each, but usually one of each; dorsal hairs $300-330 \mu$ long, or one may be more than double as long as the other- 250 and 100μ; in sexual specimens begin in viii or ix ; needle setæ (text-fig. 20) ca. 110μ or (in other specimens) ca. 70μ long, pectinate, the tooth on the inside of the slight curve at the distal end of the shaft being much thicker and longer than the others;' no nodulus. Ccolomic corpuscles present. Gut somewhat swollen in vi-viii. Dorsal
vessel on left side of alimentary tube from hinder end to septum $5 / 6$; lateral commissures 4 pairs, plexiform, in pharyngeal region (ii-v), commissures on anterior faces of septa for several segments further. Cerebral ganglion deeply indented in front and behind. Male funnels turned back into mouth of seminal vesicle; vas deferens enters atrium low down on anterior face; atrium ovoid with long axis vertical, no "prostatic" cells. Ovisac surrounds sperm-sac, may reach xvi ; female funnels small, opening externally

Fig. 20.-Nais pectinata Steph., var. inaqualis; dorsal needle.
about level of $6 / 7$, apparently too small to be functional. Spermathecal ampulla ovoid, duct arises anteriorly. Clitellum occupies more than half of v, vi, vii, and viii. Penial setæ $4-6$ per bundle, 100μ long, tip hooked, not bifid as a rule, occasionally with two short prongs, blunt and of equal length. Alimentary canal degenerates in the fully mature individual; such specimens separate off the anterior portion with genital organs (=cocoon).

Distribution. Agra; Bheemanagar, Travancore (in Spongilla carteri, along with the type-form of the species).

7. Nais raviensis Steph.

1914. Nais raviensis, Stephenson, Rec. Ind. Mus. x, p. 324, textfigs. 1-2.
1915. Nais raviensis, Stephenson, Tr. Roy. Soc. Edin. 1, p. $78{ }^{2}$.

Minute worms, the length of a chain of two being only 3 mm .; diameter 0.12 mm . Colour whitish. Prostomium short and blunt. No eyes. Segments in a double animal about 26, 13 in each half; $n=18$. Ventral setæ 3-4 per bundle; those of ii-v (text-ig. $21, a$) of a maximum length of 90μ, breadth $2 \cdot 2 \mu$, prongs enclosing a narrow angle, equal in thickness, the distal cousiderably
longer ; shaft comparatively straight, nodulus markedly proximal; those of succeeding segments (text-fig. 21, b) shorter, stouter, more curved, maximum length 48μ, thickness 2.5μ, prongs short, included angle wide, proximal prong slightly longer and twice as thick, nodulus distal. Dorsal setæ as a rule one hair and one needle per bundle, occasionally two needles; the hairs short and fine, 83μ long; the needles (text-fig. 21, c) double-pronged,

Fig. 21.--Nais ravicusis Steph.; a, ventral seta from an anterior bundle; b, ventral seta from a posterior bundle ; c, dorsal needle. $a \times 830$; $b \times 1150 ; ~ c \times 1350$.
40μ long, shaft almost straight, slightly curved distally, the prongs short and stout, separated by a considerable angle, and of equal length, nodulus two-sevenths from the distal end. No coolomic corpuscles. No stomach. Anus dorsal. Cerebral ganglion large, markedly bifid behind.

Distribution. Lahore (weeds etc. from R. Ravi).
3. Genus NAIDIUM 0 . Schm.
1884. Naidium, Vejdovsky, Monog. pp. 25, 31.
1895. Pristina (part.), Beddard, Monog. p. 289.
1901. Naidium, Michaelsen, Tier. x, p. 23.
1906. Naidium, Piguet, Rev. Suiske Zool. xiv, p. 215.
1909. Pristina (part.), Michaelsen, Süsswasserf. Deutsch. p. 25.
1913. Naidium, Piguet, Olig. Suisse, p. 24.

Prostomium rounded or pointed Ventral setal bundles composed of double-pointed crotchets; dorsal bundles beginning in ii, composed of hair setæ and double-pointed needles.

Relationships of the genus.-Apart from possible differences in the genital organs, the only definite distinction from the genus Pristinc appears to be the presence in the latter of a long pro-boscis-an extremely elongated prostomium. Beddard, and more recently Michaelsen, have united the two under the name Pristina; Piguet retains them as distinct on account of differences in the setæ, the circulation, the intestine, and the general physiognomy (what these differences are is not particularized). They resenble each other, however, in the fact that the second animal of a chain derives the first seven segments of its body from the budding zone (if we may generalize from the two Indian species-we lack information regarding others); while, so far as is known, no more than five segments are so derived in any other genus of the family. The genital organs are unfortunately not known in any species of Naidium, so that a comparison cannot be made with Pristina in this respect. A description of the genital organs in a species of Naidium would be valuable.

An intermediate form between the genera Naidium and Nais is perhaps seen in Naidium (\because Nais) darlayi Michaelsen (122, p. 355, and see remarks by Piguet, 134, p. 24). In this species the dorsal setæ begin sometimes in \mathbf{v}, sometimes further forward, even in ii; it might therefore be either a Nais with seta abnormally developed on the anterior segments, or a Naidium with setæ abnormally absent on these segments. Unfortunately none of the specimens showed a budding zone, and therefore the number of anterior segments which are derived from it is not known; this would have cleared up the uncertainty. The single-pointed needles of the dorsal bundles; the sharp division of the ventral setæ into two groups, the anterior group comprising those of segments ii-v (characteristic of most species of Nais); and the fact that setæ may occasionally occur in other genera where normally they are absent (e. g. on segment iii in Chatoguster lanyi, v. ant.), lead me to think that this species should be placed under Ncis.

Distribution. In India so far only recorded from Lahore and Madras. A common European genus; no doubt it will be found widely distributed in India when the freshwater fauna is better known.

Key to the Indian species of Naidium.

1. Naidium breviseta (A. G. Bourne).
2. Pristina breviseta, Bourne, Quart. J. Mic. Sci. xxxii, p. 3.)3, pl. xxvii, figs. 11-15.
3. Pristina breviseta, Beddard, Monog. p. 292.
4. Nuidium breviseta, Michaelsen, Tier. x, p. 23.
5. Naidium breviseta, liguet, Rev. Suisse Zool. xiv, p. 216.

Leugth more than 8 mm . Segments in a single animal may be

46 or more, of a chain more than 76 ; $n=22$ as a rule. Prostomium somewhat drawn out as a blunt, short tentacle-like proboscis. No eyes. Dorsal setæ of two kinds; hair setæ of about the same length throughout the body, except that those of ii are about half, those of iii three-quarters as long as those which follow; and needles, somewhat bayonet-shaped, bifid at the tip, prongs about equal. Ventral setæ of the ordinary crotchet form. Cœomic corpuscles black and very noticeable. First nephridium in ix. The newly-budded head consists of seven segments.

Remarks. Michaelsen, in his two lists of Indian species (54, 58), calls this worm Pristina lreviseta, in consequence of his decision to unite the two genera. In any cave, this species shows the first stage in the lengthening of the prostomium which leads to the characteristic tentacle of the typical Pristinas.

Distribution. Madian.

2. Naidium minutum Ste? h.

1914. Naidium minutum, Stephenson, Rec. Ind. Mus. x, p. 327, text-figs. 3-5.
1915. Naidium minutum, Stephenson, Tr. Roy. Soc. Edin. 1, p. 786.

Minute worms, length of a chain of two, moderately extended, 2 mm .; thickness 0.1 mm . Seen by reflected light against a black

Fig. 22.-Naidium minutum Steph.; dorsal needle. $\times 1600$.
background often marked by spots or transverse bands of a brilliant opaque white (masses of ccelomic corpuscles). Prostomium longer than its breadth at base, tip rounded. No eyes. Segments of double animal (excluding those of the budding zone) $17-10 ; n=1 \%$. First six segments all short, the rest much
longer. Dorsal bundles of one hair and oue needle, the hair very slender, $80-90 \mu$ long (rather less than the diameter of the body); needles (text-fig. 22) 35μ long, with slight double curve, distal end forked, the prongs about equal in length, set at a fairly wide angle, a slight nodulus one-third of the length of the shaft from the distal end. Ventral setæ $3-5$ per bundle, usually 3 ; no sharp division betireen anterior and posterior groups; each $30-40 \mu$ long, nodulus usually distal; prongs equal in length or the distal slightly longer. Coelomic corpuscles numerous, opaque as seen by the low power, by the high power seen to consist of aggregations of minute oildrops ; nucleated, circular, $6-13 \mu$ in diameter. Septal glands in iv and \mathbf{v}, sometimes also in ii or vi. Stomach in vii. First nephridium in ix, the next in xi, and no more in the anterior animal of a chain. Cerebral ganglion slightly bifid behind, the anterior border concave. Six seta-bearing segments interpolated in the budding zone at the anterior end of the second animal.

Distribution. Lahore (R. Ravi).

4. (xenus PRISTINA Ehrbg.

Prostomium prolonged into a mobile proboscis. Ventral bundles consisting of bifid crotchets. Dorsal bundles beginning in ii, consisting of hair setæ and needles with simple or bifid point. Stomach in viii. Genital apparatus occupying vii and viii (the organs being two segments further back than in the other genera of the family in which they are known). Seven segments intercalated in the budding zone at the anterior end of the second animal.
For relations to the genus Naidium, v.ant. under the latter genus. The larger number of segments added to the head of the posterior animal in the budding zone seems to be related to the more posterior position of the genital organs in the genus (cf. ant. p. 45).

I have used the phenomena seen in the Lahore species in a discussion on ascending ciliary action in the intestine and antiperistalsis in Amelids (72).

Distribution. Calcutta; lahore: Allahabad; Agra; Bombay; Bheemanagar, Travancore. Also in Europe and N. America.

Key to the Intian species of Pristina.

1. Hair seta of iii much elongated
P. longiseta.

Hair setæ of iii not longer than those of other segments
2.
2. Ventral setm of segments ii-iv increasing in stoutness, those of iv markedly stout...................
Ventral setæ of ii-iv diminishing in stoutness from
in front backwards
P. equiseta.
P. proboscidea.

1. Pristina longiseta Ehrbg., f. typica.

1909. Pristina longiseta, Michaelsen, Mem. Ind. Mus. i, p. 135.
1910. Pristiva longiseta, Stephenson, Mem. Ind. Mus. i, p. 264, text-tig. 4, pl. xvii, fig. 25, pl. xviii, tigs. 26-33, 38.
1909 Pristina longiseta, Piguet, Kev. Suisse Zool. xvii, pp. 212, 216. 1910. Pristina longiseta, Stephenson, Rec. Ind. Mus. v, p. 325.
1911. Pristina longiseta, Stephenson, Tr. Roy. Soc. Edin. xlix, pp. 739, 744.
1912. Pristina longiseta, Stephenson, Rec. Ind. Mus. xii, p. 304.
1913. Pristina longiseta, Stephenson, Mem. Ind. Mus. vii, p. 199.
1914. Pristina longiseta, Mehra, P. Z. S. p. 457.
1915. Pristina longiseta, Vejdovsky, Monog. p. 31, pl. ii, figs. 13-15. 1895. Pristina longiseta, Beddard, Monog. p. 290.
1916. Pristina longiseta, Piguet, Rev. Suisse Zool. xiv,'p. 290, pl. x, figs. 22-23, pl. xii, tigs. 21-25.
1917. Pristina longiseta, Piguet, Olig. Suisse, p. 50.

Length of single individual $3 \cdot 5-5 \cdot 5 \mathrm{~mm}$., of chains $3-6 \mathrm{~mm}$. Segments of single animal $20-33 ; n=12-2 \%$. Colour whitish. No eres. Ventral bundles with a maximum of 9 crotchets, with distal prong longer than the proximal ; those of ii and iii longer

Fig. 23.-Pristina longiseta Ehrbg.; penial setæ.
than the rest; those of ii slenderer than those of iii, and with nodulus proximal or almost at the middle of the shaft ; from iii onwards nodulus distal ; from iv onwards setæ shorter and slenderer. Dorsal setæ in bundles of $2-5$ straight and finelypointed needles without nodulus, and 1-4 hair setæ about equal to the diameter of the body in length, with a fine dentation on the convex border ; those of iii, however, smooth and much elongated, 3-4 times as long as those of neighbouring segments, and when turned forwards extending beyond the end of the proboscis. Colomic corpuscles present. Stomach in viii. Septal glands in iv-vi. Six pairs of vascular commissures in ii-vii, the first and second sometimes united by anastomosis, and the last swollen as hearts. Cerebral ganglion deeply indented in front and behind. Male funnels large, rounded, with borders slightly reflected; vas deferens with very thick walls and glandular epithelium, ascending
at first and then descending, the lumen in its downward course swollen to form an atrium ; ejaculatory duct short. Spermathece in the form of a long sac, ending by a thickened portion which is not differentiated externally. Penial setæ (text-fig. 23) 2 per bundle, in vi. No prostatic cells; a special gland in connection with the penial setæ.

Remarks. The degree of serration of the dorsal seter (of all except the elongated setæ of iii) varies; in the f. typica, the form found in India, it is slight or very slight, while the var. leidyi (Pristina leidyi Michaelsen, 122) has roughly serrated dorsal setæ.

The limits of n are apparently wider in Lahore than in Europe ($12-22$; European specimens $13-18$).

I have ascribed a special sensory function to the elongated dorsal hairs of segment iii (55) on account of their frequent quivering movements. According to my observations the septal glands are variable in number. The nephridia commence in ix, which is probably a generic character, correlated with the fact that seven segments are added to the head of the posterior animal in the budding zone.

I believed that in one specimen (55, pl. xviii, fig. 34) I found the setæ of the fourth segment, not the sixth, modified as genital setæ ; moreover, the modification was not that usually found in the setæ of vi. This Piguet (56) has shown to be a mistake, the specimen being one of P. cequiseta.

Distribution. Calcutta, in Spongilla crassissima, and from colonies of Plumatella fruticosa and P. emarginata (oral communication from Dr. Annandale, emending the original statement); Lahore; Bheemanagar, Travancore (on or in Spongilla carteri); Bombay; Gwalior, Central India. Widely distributed in Europe; found also in N. America.

2. Pristina æquiseta A. G. Bourne.

1909. Pristina tentaculata, Michaelsen, Mem. Ind. Mus. i, p. 134.
1910. Pristina aquiseta, Stephenson, Mem. Ind. Mus. i, p. 269, text-ig. 5, pl. xviii, fig. 34.
1911. Pristina qquiseta, Piguet, Rev. Suisse Zool. xvii, pp. 212, 216.
? 1915. Pristina aquiseta, Stephenson, Tr. Roy. Soc. Edin. 1, p. 786. 1916. Pristina aquiseta, Stephenson, Rec. Ind. Mus. xii, p. 304.
1912. Pristina equiseta, Bourne, Quart. J. Mic. Sci. xxxii, p. 352.
1913. Pristina equisetn, Beddard, Monog. p. 291.
1914. Naidium tentaculatum, Piguet, Rev. Suisse Zool. xiv, p. 219, pl. ix, figs. 18-20 \& 26.
1915. Pristina coquiseta, Piguet, Olig. Suisse, p. 52.

Length of both single individuals and chains about the same, $2-3 \mathrm{~mm}$. Segments of the single individual 18-23; $n=12-15$. Colour whitish. No eyes. Ventral bundles of 2-6 crotchets, those of ii 4-5 in number, straighter, slenderer, and a little longer than the rest, with distal prong strongly curved and notably
longer than the proximal, nodulus slightly proximal; those of iii 4-5 in number, stouter, more curved, and a little shorter than those of ii, distal prong a little lopger than the proximal, nodulus here and henceforward slightly distal; those of iv (text-fig. 24) or iv and v fewer in a bundle, much larger, longer, and thicker, might almost be called giant setm, with a more or less rudimentary proximal prong; in vi and following segments setæ are similar to but rather slenderer than those of iii. Dorsal bundles with one or more rarely two fine needles, the distal end slightly curved, without nodulus, the tip bifid with the teeth very small and equal ; and one or more rarely two hairs (and then one considerably

Fig. 24.-Pristina equiseta A. G. Bourne; seta from rentral bundle of segment iv.
longer than the other), somewhat longer than the diameter of the body. Stomach in viii. Three pairs of septal glands in iii-v, the posterior pair sometimes wanting. Six pairs of vascular commissures in ii-vii, those of vi and especially those of vii larger than the rest.

Remarks. The synonymy of this form bas given a good deal of trouble. It was originally described by Bourne from n Victoria regia tank in London in 1891. In 1896 Beddard described from Valparaiso a form which he named Pristina proboscidea; the account was somewhat scanty, and Michaelsen in the Tierreich volume considered it as possibly identical with Bourne's worm. In 1905, Michaelsen examined Beddard's originals on the occasion of investigating a similar worm from Paraguay and Java, and thus settled the characters of P. proboscidea (121). But Bourne's original account of P. aquiseta was by no means full, and Michaelsen was still in doubt as to the identity of the two forms. No too in 1909, on meeting P. proboscidea again, this time from India (54), he continued to regard P. cequiseta as a doubtful synonym.

Piguet had meanwhile described in Europe a form which he called Naidium tentaculatum (133); this he'subsequently recognized as identical with Bourne's worm (56); but Michaelsen, meeting
with specimens of Piguet's species from Indin (54), preferred to retain for them the name P '. tentaculata. In his list of Indian worms of 1910 (58), however, he calls the two Indian species F. proboscirlea nnd P. cquiseta.

In 1909 (55) I gave an inadequate description of certain worms from Lahore under the name P. cequiseta; these Piguet (56) agrees (from the figure of the setæ of segment iv) are rightle named. Specimens which I received from Calcutta, described in 1911 (61), agreed $ぃ i t h$ Michaelsen's revised diagnosis of P. proboscidea; and some which were obtained from Allahabad, which I examined in 1916 (81), agreed with Piguet's N. tentaculatun, and were therefore labelled as P. cequiseta.

Michaelsen thinks he has seen a fine serration on the dorsal hair setæ with the highest powers.

Distribution. Calcutta (in Spongilla carteri); Lahore; Allahabad. Also found in Furope.

3. Pristina proboscidea Bedd., f. typica.

> 1909. 1ristina mroboscidea f. typica, Michaelsen, Mem. Ind. Mus. i, p. 133 .
1911. Pristina proboscidea f. typica, Stephenson, Rec. Ind. Mus. vi, p. 211.
1896. Pristina proboscidea, Beddard, Ergeb. Magalh. p. 4, fig. 18.
1905. Pristina proboscidea f. typica, Michaelsen, Zoologica, xliv, p. 359.

Length $2-5 \mathrm{~mm}$; diameter ca. 0.25 mm . Segments $18-36$; $n=16$. Proboscis of varying length, from somewhat longer than the proper prostomium to nearly three times as long. No eyes. Ventral bnndles with $3-5$ or more, even as many as 8 , bifid crotchets, those of ii much stouter than those of the middle and hinder parts of the body; in ii 3μ thick, in iv 1.5μ thick, in iii intermediate; distal prong of ventral setæ somewhat or much longer than the proximal, especially in ii. Dorsal bundles beginning in ii, with $1-3$ or rarely 4 finely serrated hair setæ, in part somewhat longer, in part shorter than the diameter of the body; serrations in the middle of the shaft abont 6μ apart; the hair seta of iii not specially elongated. Also in the dorsal bundles about the same number of small needle sete, with simple pointed end. Septal glands in iii-v. First nephridium in ix.

For discussion as to synonymy, see under preceding species.
Distribution. Calcutta (in Sponyilla crassissima and S. carteri, also living freely). Kecorded also from Zanzibar, Chile (Valparaiso), Paraguny, and Java.
c. var. paraguayensis Mich.
1909. Pristina proboscidea var. paraguayensis, Michaelsen, Mem. Ind. Mus. i, p. 134.
1905. Pristina proboscidea var. paraguayensis, Michaelsen, Zoologica, xliv, p. 380.
As for the f. typica, with the following exceptions:-Hair setm of the dorsal bundles of very various lengths, some three times (up
to 0.55 mm .) as long as the diameter of the body, especially in the hinder segments; serrations of the hair setæe coarse, visible with comparatively low magnifications, in the middle of the seta about 11μ apart.

Remarks. The Indian specimens are described by Michaelsen as possessing the characters of the variety in a marked degree, some of the hair setæ being nearly four times the diameter of the body in length, and the serrations being very distinct.

There are transitions between the ordinary degree of serration and that characteristic of the variety (Michaelsen, 121, 122).

Distribution. Calcutta (from colones of Plumatella fruticosa and P. emarginata). Also in Paraguay.

5. Genus BRANCHIODRILUS Mich

1890. Chetobranchus, Bourne, Quart. J. Mic. Sci. xxxi, p. 83.
1891. Chetobranchus, Bourne, Quart. J. Mic. Sci. xxxii, p. 355.
1892. Chetobranchus, Beddard, Moncg. p. 301.
1893. Branchiodrilus, Michaelsen, Tier. x, p. 23.
1894. Lathoria, Stephenson, Rec. Ind. Mus. v, p. $5 \boldsymbol{6}$.
1895. Lahoria, Stephensou, Tr. Roy. Soc. Edin. xlviii, p. 285.
1896. Brachiodrilus (laps.), Stephenson, Rec. Ind. Mus. vii, p. 228.

Prostomium rounded. A pair of dorso-laterally placed branchial processes on many or most of the body segments, beginning immediately or at a short distance behind the mouth. Dorsal setæ beginning in the same segment as the gills, of two kinds, capillary and needles; the former, in n number of the anterior segments, enclosed in the gills. Ventral setæ crotchet-shaped, forked distally.

The genus has so far been found only in India. It is one of the few genera of Oligochæetes which possess gills; the relation of the gills to the hair setæ of the dorsal bundles is quite peculiar.

The three species show stages in the origin of cephalization, and I have used them in a discussion of this phenomenon (68, pp. 229 seq.). B. semperi may be considered as the primitive member of the genus; there is no budding zone, and the dorsal setæ begin in segment ii ; with the production of a budding zone before the two animals separate there comes into existence at the anterior end of the second animal a region of newly-formed segments in which dorsal setæ do not develop, though ventral setæ do; this region is of variable extent in B. menoni, while in B. hortensis its extent and characters have become fixed. It is evident that the condition of cephalization has been produced in Branchiodrilus independently of the other genera of Naididæ.

Before B. menoni was known, the presence of cephalization in B. hortensis and its absence in B. semperi seemed to warrant generic separation; and hence the former was given the generic name Lahoria. But with the discovery of B. menoni, an intermediate form which bridges over the gap in regard to this character, it became necessary to unite all three in the same genus.

I have recently recorded the genus from Lucknow (93), but have not identified the species; and from Burhanpur in the Central Provinces (96), the fragment being specifically indeterminable.

Distribution. Madras; Lahore; Lucknow; Burhanpur, C.P.
Key to the Speries of Branchiodrilus.

1. Branchiodrilus semperi (A. G. Bourne).

1890. Chetobranchus semperi, Bourne, Quart. J. Mic. Sci. xxxi, p. 83, pl. xli.
1891. Chatubranchus semperi, Beddard, Monog. p. 302.
1892. Branchiodrilus semperi, Michaelsen, Tier. x, p. 94.
1893. Branchodrilus semperi, Stephenson, Rec. Ind. Mus. vii, p. 228.

Length ca. $37-50 \mathrm{~mm}$., diameter 0.5 mm . Segments ca. 130 . Anterior end a little thinner, slightly pigmented in transverse bands seginentally arranged. No eyes. Branchial processes dorso-lateral, one pair on each of the anterior segments, commencing with the second; 60-70 pairs, the first five or six a little shorter than the next, diminishing in size after the first ten or twelve until they become mere warts; the longest several times as long as the diameter of the body. The processes are hollow projections of the body-wall, ciliated, with a loup of the lateral vessel of the segment in each of the first 50 or so. Dorsal setæ within the branchual processes, all in the more anterior, some only in the hinder segments; begin in ii; of two kinds, hair and needle setze; two or three of each kind in each bundle as a rule, but the sickle-shaped needles absent from the more anterior dorsal bundles; hairs very long in the anterior segments. Ventral setie crotchet-shaped, nodulus rather distal; 4-6 per bundle; in anterior segments outer prong twice as long as inner, behind this the inner twice as long as outer, and the angle between the two wider. Coelomic corpuscles rounded, with olive-green granules. Lateral commissures a pair to each segment. No stomachal dilatation. Asexual division without the production of a budding zone.

Remarks. The worm does not secrete any glutinous material in the form of a tube, but it makes for itself long tracks in the mud, and each appears to reside in its own burrow, which, unless disturbed in some way, remains as a permanent structure.

Distribution. Madras, in mud from a tank.

2. Branchiodrilus menoni Steph.

1912. Branchiodrilus menoni, Stephenson, Rec. Ind. Mus. vii, pp. 219, 229, text-figs. 1-3, pl. xi, figs. 1-6.
1913. Branchiodrilus menoni, Stephenson, Rec. Ind. Mus. xxii, p. 752.

Length (preserved) $8-15 \mathrm{~mm}$. ; segments up to 130 . Prostomium short, rounded; no eves. Anterior part of body pigmented dorsally and laterally, irregularly in front of gills, then in segmental bands for a few segments, soon disappearing. A short prebranchial region between first gills and mouth, which mny or may not present a series of ventral setal bundles (up to four pairs). Gills diminishing in size behind, and ending soine distance in front of posterior end ; longest gills two and a half times the length of the diameter of the body. Dorsal setre of two kinds, capillary and needles ; capillary alone in the most anterior segments, one or two per bundle, beginning with and enclosed in the gills, slenderer than those behind; capillary setæ cease to be enclosed in gills at some point in front of segment xxx, thence projecting freely, stouter, from this point usually one per bundle. Needles (text-fig. 25) begin from the point where hair setæ cease

Fig. 25.-- Branchiodrilus menoni Steph. ; dursal needle seta, \times ca. 375 .
to be enclosed in the gills; one per bundle, length 0.1 mm ., usually bayonet-shaped, finely pointed, supporting the base of the hair seta, projecting from the surface only slightly. Ventral setm usually three per bundle, of three types; in prebranchial region $77-87 \mu$ long, remarkably slender, with delicate prongs, nodulus proximal to middle of shaft; in anterior branchial region $100-116 \mu$ long, slender. distal prong one and a half times as long as proximal, nodulus at middle or somewhat proximal; behind this the shaft relatively stout, $110-140 \mu$ long, prongs equal or distal slightly longer, nodulus distal ; in all setw the distal prong is only about half as thick as the proximal. No stomach. Dorsal vessel on left side of gut. Asexual reproduction without or almost without previous formation of a budding zone.

Distribution. Madras.
3. Branchiodrilus hortensis (Steph.). (Text-fig. 26.)
1910. Lahoria hortensis, Stephenson, Rec. Ind. Mus. v, p. 59, texttigs. 1-3, pl. vii, figs. 1-3.
1912. Branchiodrilus hortensis, Stephenson, Rec. Ind. Mus. vii, p. 229.
1913. Branchiodrilus hortensis, Stephenson, Tr. Roy. Soc. Edin. xlix, pp. 738, 744, 760.
1920. Branchiodrilus hortensis, Mehra, P. Z. S. pp. 457, 458, 468, text-figs. 1 B, 3.
Length $16-25 \mathrm{~mm}$.; diameter $0.5-0.75 \mathrm{~mm}$. Segments of a single animal $90-120$; of a chain of two may be 170 . Prostomium

Fig. 26.-Branchiodrilus hortensis (Steph.); whole animal. $\times 10$.
bluntly conical, well marked. No eyes. Anterior part of body pigmented, irregularly on dorsal surface of first few segments, then in transverse bands as far as about segment xx, where it dies away; pigmentation less marked and less regular ventrally.

Surface of body as well as of gills ciliated. Gills and dorsal sete begin on vi (occasionally on v); longest gills equal to three times the diameter of the body (1.6 mm .); gills diminish in length posteriorly, and end just in front of hinder end of body. Dorsal setal bundles of capillary and needle setz, not more than two of each per bundle; capillary setee contained within the gills for first 4050 segments, some being almost as long as the gills within which they are contained ; behind this one capillary seta free from the gill, one, shorter than the free seta, still contained within it. Needle seter short pointed rods, scarcely projecting on the surface of the body. Ventral bundles of $4-5$ setæ, distal prong slightly longer than proximal and thinner at the base; nodulus slightly distal; length 0.15 mm . in front, 0.13 mm . behind; no difference of type between those of the first few and the remaining segments. No stomach. Dorsal vessel on left side of gut. A budding zone formed during asexual division. Clitellum comprising v-viii. Spermsac may reach back to xxvi, usually to xviii ; male funnels within sperm-sac at some distance behind its mouth, outer margin of funmel attached to wall of sac ; vas deferens first passes forwards in neck of sperm-sac, then upwards to enter atrium on its anterior face much above its middle. A large mass of "prostatic" cells covering ejaculatory duct. Spermathecal ampulla heart-shaped, notched below where duct originates; aperture some distance behind groove $4 / 5$. Penial setm $2-3$ in a bundle, somewhat hooked distally, not bifid, 132μ long, distal portion narrow, 36μ long; proximal portion stouter, 96μ long, no distinct nodulus, distal portion bent backwards.

> Distribution. Lahore ; Agra.

6. Genus HAEMONAIS Bretscher.

1900. Hamonais, Bretscher, Rev. Suisse Zool. viii, p. 16.

Ventral bundles composed of double-pronged crotchets. Dorsal bundles commencing between xii and xx, or sometimes still further back, of hairs and double-pointed needles. Vascular system complicated, the dorsal vessel giving origin in the anterior segments to a system of commissures which are connected among themselves by longitudinal vessels, and may also communicate with the ventral vessel. Vascular loops of the posterior segments form a capillary cutaneous network. Five segments intercalated in the budding zone to form the anterior end of the second animal of a chain. Testes in \mathbf{v}, ovaries in vi; sperm-sac single, its posterior part contained within the ovisac; vas deferens, atrium, and male pore in vi; spermathecæ in v, consisting of ampulla and duct. Penial setra at male pore. Alimentary canal degenerates in the fully sexual animal.

The genus is at present known only from one locality in Switzerland and from Lahore and Agra.

The genital system is similar to that of Nais, and it is probable that this is the nearest relative of Homonais ; Nais pectinata var.
inoequalis has some characters of an intermediary-commencing loss of dorsal setm and degeneration of the alimentary canal in the sexual animal.

Distribution. Lahore; Agra. Outside India only known from Switzerland.

1. Hæmonais laurentii Steph.

1915. Hcemonais laurentii, Stephenson, Tr. Roy. Soc. Edin. 1, p. 769, text-figs. 1-5, pl. lxxix, figs. 1-6; pp. 785, 793.
1916. Hecmonais laurentii, Mehra, P. Z.S. pp. 457, 458.

Length, maximum extended, $20 \mathrm{~min} . \quad N=31-36$. Prostomium triangular with rounded tip. No eyes. Ventral setæ 2-4 in bundle; in anterior part of body (text-fig. 27, a) 80-104 μ long, comparatively slender (3μ), distal prong slightly longer than proximal aud

Fig. 27.-Hemonais laurentii Steph.; varıous setæ, $\times 540$. a. anterior ventral; b,",posterior ventral ; c, single-pointed ventral; d, dorsal needle;

half as thick at base, nodulus usually proximal but variable in position; no sudden cluange in characters of setæ on passing backwards, but behind xv the type has changed (text-fig. 27, b), length $80-96 \mu$, thickness $4-4 \cdot 5 \mu$, prongs equal in length or proximal slightly longer, proximal more than twice as thick at base as distal, nodulus distal. Dorsal bundles of one hair and one needle seta, beginning in xviii-xx ; hair sete about 150μ long; needles (text-fig. 27, d) of double-curved and double-pronged type, about 105μ in length and $4 \cdot 5 \mu$ in thickness, prongs longer than those of ventral setæ, angle between prongs narrower, distal prong longer and sometimes thinner than proximal, nodulus distal, whole seta largest in posterior part of body, where length may reach 115μ. In both dorsal and ventral bundles single-pointed needles may occur (text-fig. 27, c, e). Dorsal setæ in anterior segments are shed
at an early period; traces of their occurrence are found as far forwards as segment vi. Cœlumic corpuscles present. Chloragogen pigment extends to anterior end of animal(into prostomium). No stomach. Dorsal vessel on left side of intestine as far forwards as vi. Cerebral ganglion bifid in front and behind. Clitellum includes half segment v and anterior part of viii ($=$ almost 3). Male funnels in anterior part of sperm-sac; vas deferens short and stout, entering atrium on upper surface of latter; atrium small, ovoid; spermathecal duct narrow and short, opening at middle of segment v , a:npulla ovoid with long diameter vertical (only seen in empty state). Penial setæ (text-fig. 27, f) in vi, $1-3$ in bundle, 110μ long, stout (4μ), distal end strongly hooked and bifid, nodulus very markedly distal to middle of shaft.

Remarks. I have investigated in this species the position of the nodulus in the several setæ of the same bundle (77). The degeneration of the alimentary tract at sexual maturty is noteworthy (76, 78).

Distribution. Lahore; Agra.
7. Genus SLAVINA Vejd., emend.
1883. Slavina (part), Vejdovsky, Sb. Böhm. Ges. Prag, Math.Nat. Classe, 1883, p. 219.
1884. Slavina (part.), Vejdovsky, Monog. pp. 25, 30.
1895. Nais (part.), Beddard, Monog. p. 281.
1900. Slavina (part.), Michael-en, Tier., x, p. 32.
1909. Slavina (part.), Michaelsen, Susswasserf. Deutsch. p. 13.
1913. Slavina (part.), Piguet, Olig. Suisse, p. 47.

Prostomium rounded. Body covered with an investment of foreign particles. Tactile papillæ present, segmentally arranged in zones. Ventral setæ double-pronged crotchets. Dorsal setæ beginning in vi, with hair setæ and single-pointed needles. Clitellum embracing v-vii. Male funnels facing backwards into the mouth of the sperm-sac ; atrium in vi; sperm-sac single, its hinder part included within the ovisac; spermatheca with duct and ampulla distinct. Penial setæ present.

The genus Sluvina was established for the Nais appendiculata of d'Udeken by Vejdovsky in 1883; the diagnosis is in Czech. In the same author's monograph of the following year the characters are:-Presence of capillary setæ, which begin on segment vi, absence of gills and proboscis, the capillary setm of the first pair of bundles being much longer than those of subsequent segments.

Beddard in 1895 does not recognize the genus, and places the only species under Nais. Michaelseu in 1900 defines the genus thus :-" Prostomium rounded. Integument often furnished with small non-retractile papille. Ventral bundles with forked crotchets; dorsal bundles beginning in vi, with capillary setm only, those of vi with one or several elongated hair setw." Two species are included, S. appendiculata, with foreign matter on the integument and integumental papillm, and S. gracilis, without either
(S. gracilis is the Nais gracilis of Leidy ; the absence of foreign matter is implied by its not being mentioned, as in the case of S. appendiculata).

In Michaelsen's volume on the Oligochæta in the 'Süsswasserfauna Deutschlands' the elongated hair setæ of segment vi are the diagnostic mark of the genus in the key; the full diagnosis runs :-" Prostomium well developed, simple, rounded. Dorsal bundles of setæ begin on vi, with capillary setæ, those of vi with enormously elongated hair setm, several times as long as the diameter of the body."

Finally Piguet in 1913 diagnoses Slavina as follows:-". Prostomium rounded. Ventral bundles of double-pronged crotchets. Dorsal bundles commencing in vi, and, at least in the European species, accompanied by needles with simple point. Reproductive apparatus not known."-Though thus neither the sheath of extraneous particles nor the elongated hair setæ of segment vi are found in the formal diagnosis of the genus, both features, as well as the circles of integumental papillæ, come into the key (the work, however, deals only with Swiss forms). The diagnosis in the body of the work would not, however, distinguish the genus from Nuis, of which certain species have single-pointed needles along with hair setæ in the dorsal bundles.

Four species altogether have been referred to this genus,-one American, one European, and two Indian; but I now recognize my S. punjabensis as identical with S. appendiculata (as suspected by Michaelselı in 1913). Of the three species which seem valid, two (appendiculata and gracilis) agree in possessing the elongated setro, and two (appencliculata and montana) in having the sheath of foreign particles and circles of tactile papillw.

Now specially elongated hair setæ are not necessarily-perhaps not at any time-of generic importance; compare the genus Pristina, where one species has such setæ and the others have not. The second group of characters, papillæ and extraneous covering, are of at least equal value, and immediately give a distinct physiognomy to the animals possessing them. I propose, therefore, to group together the two species with these features, appendiculata and montana, and to reserve the name Slavina for these ; S. gracilis will then go where it was placed by its discoverer Leidy, in the genus Nais, where its relation to the other species of the genus will be the same as that of Pristina longiseta to the other species of Pristina (I do not forget that Ophidonais serpentina has, according to Piguet, a sheath of fine foreign particles, and also circles of sensory papillm ; but that genus is characterized by the entire absence of hair setæ from the dorsal bundles, a good generic character).

Key to the Indian species of Slavina.

1. Eyes present; dorsal hair setme of vi much elongated
S. appendiculata.

No eyes; dorsal hair setæ of vi not specially elongated
S. montana.

1. Slavina appendiculata (Udek.).

1909. Slavina appendiculata, Michaelsen, Mem. Ind. Mus. i, p. 132.
1910. Slavina punjabensis, Stephenson, Mem. Ind. Mus. i, p. 272, pl. xviii, figs. 35-37, pl. xix, figs. 41-45, pl. xx, figs. 50-52.
1911. Slavina punjabensis, Stephenson, Tr. Roy. Soc. Edin. xlix, pp. 737, 744, 757.
1912. Slavina appendiculata, Michaelsen, Mem. Soc. Neuchatel, v, p. 207.
1913. Slavina punjabensis, Stephenson, Tr. Roy. Soc. Edin. I, p. 793, pl. ${ }^{\text {xxx }}$, figs. 4, 5.
1914. Slavina punjabensis, Stephenson, Rec. Ind. Mus. xii, p. 302.
1915. Nais appendiculata, d'Udekem, Bull. Ac. Belgique, xxii, p. 552, fig. 3.
1916. Slavina appendiculata, Vejdorsky, Monog. p. 30, pl. iii, figs. 17-26.
1917. Nais appendiculata, Beddard, Monog. p. 287.
1918. Slavine appendiculata, Michaelsen, Jahrb. Hamb. wiss. Anst. xix, p. 185.
1919. Slavina appendiculata, Piguet, Rev. Suisse Zool. xiv, p. 282, pl. xii, fig. 20.

Fig. 29. -- Slavina appendiculata (Udek.); penial seta. $\times 550$.
Fig. 28.-Slavina appendiculata (Udek.); ventral seta (the proximal prong of the fort shown slightly too short).
Length of single individual $2-8 \mathrm{~mm}$., of chains $4-20 \mathrm{~mm}$. Segments of single animal 20-46; $n=19-25$. Colour light brown ; body opaque, due to an investment of extraneous particles.

Prostomium rounded, short. Eyes present. Integument with zones of non-retractile tactile papillæ, bearing a few sensory bristles; one such principal zone at the level of the setæ; and from vi onwards a second, less important, often absent, more posteriorly in the segment. Ventral bundles with 2-5 crotchets (text-fig. 28), the distal tooth a little longer and considerably thinner than the proximal, nodulus proximal to middle of shaft; setæ of ii-v slenderer and longer than the rest. Dorsal bundles with one or sometimes two hair setæ, equal to or sensibly longer than diameter of body, those of vi much longer than the others, sometimes reaching four tumes the diameter of the body; and one or two needles, single-pointed, suddenly tapering towards the distal end. Alimentary canal dilates in viii. Colomic corpuscles present. Vas deferens forming a loop with its convexity downwards, ascending limb short, entering atrium below middle point of its height; atrium large, subspherical, taking up whole length of vi; " prostate" represented only by peritoneal cells in small clusters over the atrium. Spermathecal ampulla of two portions, an ental, thin-walled, variable in size and shape, and an ectal, a small rounded chamber fairly constant in size; duct vertical, invaginated upwards into eavity of ampulla. Penial setæ (text-fig. 29) 1-3 m number, ending in a single well-marked hook; no distinct nodulus.

Remarks. I now accept Michaelsen's identification of my S. punjabensis with the common form. My separation of the Lahore specimens was based on the diagnosis in the Tierreich volume-partly on the statement there made that there are two kinds of papillie in S. appendiculuta, one kind numerous, seattered. and minute, the other comparatively large sensory projections. Of these 1 only found the latter; and indeed, as I have since discovered, the former are not mentioned or figured by d'Udekem in the original description, nor by Vejdovsky (138), Beddard (31), Boustield (116), Piguet (133), nor by Michaelsen himself in a recent diagnosis (124). Ifound the vascular commissures to be plexiform; Michaelsen has explained that the contrary statement in the 'lierreich volume rests on inference onls.

The second row of papillæ was absent in the Lahore specimens, and the one which was present appeared to be less regular than in the European worms. But the second row is variable at bestindeed, Vejdovsky figures only one row. The papillæ were absent over the ventral surface; this had been previously noticed by Boustield in Nais luricla (a synonym of S. appendiculata).

I was able to study the sexual organs of this species, which had not before been seen, in mature specinens obtained in March at Lahore. I have also investigated the phenomena of autiperistalsis and reversed ciliary action in this species.

Distribution. Alipur, near Calcutta, from colonies of Plumatella emarginata; Lahore, free-living. A common European species.

2. Slavina montana, nom. nov.

1916. Slavina sp., Stephenson, Rec. Ind. Mus. xii, p. 301, pl. xxx, fig. 1.
Length ca. 5 mm .; diameter 0.25 mm .; segments 47 or 48 . Prostomium blunt. No eyes. Foreign particles adhering to surface. Body-wall contains pigment grains. Sensory papillæ apparently in a single zone rather behind middle of segment, often at the level of the setæ. Ventral setæ (text-fig. 30) up to 4 in bundle in most anterior segments, 3 in the rest; in segments ii-v length 135μ, thickness 3μ, proximal prong alnost equal in

Fig. 30.-Slavina montana Steph.; ventral seta. $\times 500$.
length to the distal and twice as thich, on the whole much the more massive of the tuo, distal prong slightly claw-like, nodulus proximal; in other segments length rather less, 125μ, but no other constant distinction. Dorsal bundles of one hair and one needle; the hairs equal to the diameter of the body in length, none specially lengthened; the needles straight, tnpering to a single point, $50-60 \mu$ long. Stomach in viii (not always).

Remarks. I at first refused to name this species, since I thought it possible that the specially elongated setæ which characterized the then known species of Slavina might have dropped out. As however there were two undamaged specimens available for examination, the chances of this having happened on both sides of both specimens seem to me to be slight, and I have therefore decided to distinguish it as \boldsymbol{S}. montanc. There is really no reason why a Slavina should have specially elongated setæ-one species of Pristinc has and others have not; and I think now that the description is probably trustworthy on this point. The absence of eyes in the present species is also a distinction.

Distrilution. Bhim Tal, Kumaon Dist., W. Himalnyas.

8. Genus STYLARIA, Lmk.

Prostomium prolonged into a long filiform proboscis. Ventral bundles of double-pointed crotchets. Dorsal bundles beginning in vi, with hair setm not specially elongated in any particular segment, and single-pointed needle setre.

The genus is best known by the species S. lacustris, which has a wide distribution in Europe, and is also recorded from N. America and Siberin.

Distribution. In India recorded from Calcutta; Lahore; and Bhim Tal, in the W. Himalayas.

Key to the Indian species of Stylaria.

1. Eyes present $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$..............................ustris.

Eyes absent S. kempi.

1. Stylaria lacustris (L.).
2. Stylaria lacustris, Stephenson, Mem. Ind. Mus. i, p. 276, pl. xix, figs. 46-48.
3. Stylaria lacustris, Stephenson, Rec. Ind. Mus. vi, p. 209 , text-fig. 3.
4. Stylaria lacustris, Stephenson, Tr. Roy. Soc. Edin. xlix р. 739, 744.

Fig. 31.-Stylaria laoustris (L.); ventral seta.
Length of single individuals $3-10 \mathrm{~mm}$. ; segments $23-60^{\circ}$; chains $5 \cdot 5-18 \mathrm{~mm}$. long; $n=15-35$. Colour to the naked eye: clear
reddish brown. Proboscis of variable length. Eyes present. Ventral bundles of slender crotchets (text-fig. 31), nodulus proximal, distal prong very large and much curved, proximal very small, almost rudimentary. Dorsal bundles commencing in vi, of long hair setæ alternating with very short straight needles, singlepointed, without nodulus. Stomach in viii or vii and viii. Behind vi the gut is surrounded in each segment immediately behind the septum by a ring of blackish pigment, sometimes well marked and visible to the naked eye, at others hardly present. First nephridium in vii, viii, or ix. Vas deferens without "prostatic" investment, opening into the upper part of a pearshaped atrium ; penial setæ present.

Remarks. The length of the hair setæ is variable; in my Calcutta specimens it was double the diameter of the body, in the Lahore specimens equal to the diameter only. The ventral setre in the Calcutta specimens were 6-9 per bundle, in those from Lahore 5-6.

The peculiarity of the process of asexual division consists in the fact that the second zone of budding is established one segment in front of the first, so that the animal of which this segment forms the middle part has only one segment of the parent, the rest having been produced by the budding zones; similarly the third such zone is produced one segment in front of the second.
some individunls become sexual in Calcutia in January.
Distribution. Lahore: Calcutta. It has also been found in Seistan, E. Persia, and is a common European species.

2. Stylaria kempi Steph.

1916. Stylaria kempi, Stephenson, Rec. Tnd. Mus. xii, p. 303, pl. $\mathbf{x x x}$, fig. 2.
Length $2 \frac{1}{4}-4 \mathrm{~mm}$. Prostomium a long narrow proboscis, in length equal to three times the diameter of the body. No eyes. $N=25$. Ventral setæ all with slight kinking forwards of the shaft at the nodulus; those of segments ii-iv (text-fig. 32) six or fewer in bundle, $120 \mu \mathrm{long}$, terminal prongs very unequal, the distal large, the proximal small, nodulus markedly proximal, distal curve of shalt slight; those of more posterior segments $6-7$ in bundle, $96-100 \mu$ long, proximal prong remarkably small, nodulus proximal, but not so markedly so as in the more anterior segments. Dorsal bundles with one long hair seta, $0.46-0.6 \mathrm{~mm}$. long, twice or three times as long as the diameter of the body; and shorter hairs, equal to diameter of body or less, 200μ down to 80μ; also two or three single-pointed needles, 10μ in length. No septal glands. Stomach slightly or well marked, in viii and ix.

Remarks. The chief difference between this and the widelydistributed S. lacustris is the absence of eyes in the present form; perhaps also the greater length of the single long hair seta of the dorsal bundles. Michaelsen (120) refuses to consider certain eyeless worms described by Floericke; as distinct from the common
S. lacustris. These worms, which Floericke (118) put in a separate genus Cocaria, and divided among three species, are stated to be characterized by (besides the absence of eyes) the shortness of the proboscis, and the shortness of the hair setm of the anterior segments. Michaelsen points out quite rightly that these are all signs of an incompletely developed anterior end, and that the

Fig. 32.-Stylaria kempi Steph. ; ventral seta of segment ii. $\times 550$.
animals are therefore probably ordinary Stylarias which have become detached abnormally early. It does not appear that there are any such marks in the two specimens on which the present species is founded.

Distribution. Bhim Tal, Kumaon Dist., W. Himalayas.

9. Genus DERO, Oken.

1887. Dero (part.), Bousfield, J. Linn. Soc., xx, p. 91. 1895. Dero (part.), Beddard, Monog. p. 297.
1888. Dero (part.), Michaelsen, Tier. x, p. 26.

Prostomium well marked, rounded. No eyes. Ventral bundles of segments ii-iv or ii-v longer than the others. Dorsal bundles beginning in v or vi, with hair setæ and bifid needles. Hinder end with branchial fossa, with gills but no palps. Genital organs in general resemble those of Nuis; sperm-sac single, its hinder part contained within the ovisac; spermathecæ in \mathbf{v}, do not enter sperm-sac, but (in D. limosa) rather bulge forwards. Alimentary canal degenerates in some species in the fully mature (sexual) animal.

For an account of the curious degeneration of the alimentary canal in this genus (in D. limosa and another unnamed species), v. Stephenson (78). The same phenomenon occurs in Hoemonais ;
it necurs in Polychmtes also, but not, so far as is yet known, in Oligochætes beyond those just mentioned.

The dorsal vessel is ventral in position and on the right side of the ventral vessel in D. zeylanica; its position has not been stated for D. limosa. In Hremonais the dorsal vessel is on the left side of the gut; in some Tubificids (Branchiura and Limnodrilus socialis), the dorsal vessel is ventral and on the left side of the ventral vessel; in Aulophorus, closely related to Dero, it has the normal position in some species and the abnormal (ventral or ventro-lateral, side apparently not stated) in others. If the statement that the dorsal vessel in D. zeylanica is on the right side of the ventral is correct, it would seem to be an exception to the usual run of these cases, so far as known.

True gills, in this genus, are projections, usually longer than broad, from the floor of the branchial fossa; secondary gills are projections from the margin of the fossa.

Distribution. Lahore; Kandy, Ceylon; Agra. The genus has a world-wide distribution outside India.

Key to the Indian species of Dero.

1. Gills of the usual type, one pair of secondary and two pairs of true gills
D. limosa.

Gills as ridges of wall of branchial fossa, free in only part of their extent
D. zeylanica.

1. Dero limosa Leidy.

1914. Dero limosa, Stephenson, Rec. Ind. Mus. x, p. 330, textfig. 6.
1915. Dero limosa, Stephenson, Tr. Roy. Soc. Edin. 1, pp. 785, 789, pl. lxxx, figs $1,3$.
1916. Dero limosa, Mehra, P. Z. S. pp. 457, 458.
1917. Dero limosa, Bousfield, J. Linn. Soc. xx, p. 105, pl. v, figs. 11-16.
1918. Dern limosa, Beddard, Monog. p. 298.
1919. Dero limosa, Michaelsen, Tier. x, p. 28.

Length of single animal about 6 mm ., of chains about 12 mm . Segments of single animal about 48, of chains about the same. Transparent. Ventral bundles of segments ii-v with 4 or 5 forked crotchets, longer than those of other segments, nodulus proximal, curve of shaft slight, shaft thinner than in those behind, prongs with a very narrow angle between them, distal one and a half times as long as proximal ; in middle of body bundles have 3 or 4 crotchets, shorter than those in front, more curved, nodulus distal, distal prong very slightly longer and half as thick as proximal, included angle moderately wide. Dorsal bundles beginning in vi, with one hair seta and one needle seta, the latter bifid, with a slight sickle-shaped curve. Branchial fossa with rounded ventro-posterior border, the dorsal (anterior) border bearing a pair of secondary gills; true gills two pairs, leaf-shaped, somewhat longer than broad. No corlomic corpuscles. Stomach in ix and x, or x. Four vascular loops in vii-x. Clitellum includes nearly
the whole of \mathbf{v}, with vi and vii. Male funnels face forwards in \mathbf{v}, are cup-shaped; vas deferens forms a downward loop and enters atrium on its dorsal aspect; atrium large, globular; no "prostatic" cells on vas or atrium; ejaculatory duct slightly invaginated upwards into atrial chamber. Spermatheces large ovoid thin-walled sacs, duct narrows downwards. No genital setm; setæ of vi disappear in the sexual animal. Alimentary canal degenerates at sexual maturity.

Remarks. The Lahore specimens showed a number of segmentally arranged bright orange-coloured spots, at the level of the setæ below the insertion of the dorsal setal bundles; the dorsal margin of the branchial fossa was more cut up than usual, apparently, and gave the appearance of two pairs of secondary gills.

The setæ of the ventral bundles vary, I find (77), in the position of the nodulus; as in some other species, there is a regular change in its position on the shaft from the outer to the inner seta of a bundle.

Distribution. Lahore; Agra. Widely distributed, e. g. in England, N. America, Philippines.
2. Dero zeylanica Steph.
1913. Dero zeylanica, Stephenson, Spol. Zeyl. viii, p. 252, pl. i, figs. 1-4.

Fig. 33.-Dero zeylanica Steph. ; dorsal needle.
Length of single animal 7.5 mm ; chains not observed; maximum diameter 0.35 mm . Segments 43-60. Prostomium short, rounded. No eyes. Ventral setæ of ii-v with only a
slight curve, longer than those of other segments, ca. 125μ, prongs with nurrow included angle, distal nearly twice as long as proximal and of same thickness, nodulus at or near mimdle, number in bundle 4 or 5 ; in other segments length $87-98 \mu$, distal prong only slightly longer than proximal and half or twothirds as thick at base, nodulus distul, number in bundle 2-5, the larger numbers in the more anterior segments, the smaller near the hinder end. Dorsal setw begin in vi, the anterior segments having 3 hair and :s needle setm, turther back two of each kind per bundle, and further back still one only; the hairs do not exceed the dianneter of the body; the needles (text-fig. 33) are nearly straight, with a slight sickleshaped curve and finely bifid point, and a slight nodulus distal to middle. Intestine opeus into floor of branchial fossa, which extends forwards dorsal to hinder end of the gut as a pocket; four pairs of gills as ridges of the wall of the branchial fossa and forwardly-directed pocket, the ridges being free in part of their extent, either in their middle or at their hinder ends (in the latter case they point forwards, not backwards as in most species of the genus).

Remarks. The curious arrangement and form of the gills is distinctive.

Distribution. Kandy, Ceylon.

10. Genus AULOPHORUS Schmarda.

1861. Aulophorus, Schmarda, Neue wirbell. Thiere, i, 2, p. 9.
1862. Dero (part.), Bousfield, J. Linu. Soc. xx, p. 103.
1863. Dero (part.), Beddard, Monog. p. 297.
1864. Dero (part.), Michaelsen, Tier. x, p. 26.
1865. Aulophorus, Michaelsen, Z. wiss. Zool. lxxxii, p. 307.

Prostomium well developed, rounded. Ventral setæ beginning in ii, composed of double-pronged crotchets. Dorsal seta beginning in v or vi, bundles composed of hair setæ and forked or palmate needles. Hinder end forms a branchial fossa with paired gills, the border of the fossa prolonged behind into a pair of long filiform appendages (palps) diverging in the form of a swallow's tail.

The distinction from the genus Dero consists in the porsession, in addition to the gills, of a pair of long non-retractile and nonvascular palps at the hinder end. Schmarda in defining Aulophorus took the presence of palps, the absence of gills (which apparently he failed to observe in his two species), and the manufacture of a tube as the distinguishing characters. Most writers for some time afterwards, however, merged the genus in Dero; but Michaelsen in 1905 re-defined it and separated it again, and he has been followed by later authors.

The dorsal vessel is ventral in position for the greater part of its extent in A. tonkinensis, and ventro-lateral in A. michaelseni; it has the normal position in A. furcatus.

Distribution. Calcutta; Lucknow; Bhim Tal, W. Himalayas; Lahore; Bombay; Khed, Poona Dist.; Kandy, Galle, and elsewhere in Ceylon. It has a world-wide distribution outside India.

Key to the Indian species of Aulophorus.

1. Dorsal needles palmate A. tonkinensis. Dorsal needles double-pointed 2.
2. Gills two or three pairs of true and one of accessory, or three pairs of true gills only A. furcatus.
Four pairs of true gills A. michaelseni.
A. oxycephalus Schmarda, (3), from Galle and also from the interior of Ceylon, is placed by Michaelsen in the Tierreich as a doubtful species; he has since suggested (54) that it may be identical with A. tonkinensis; it is not A. michaelseni, since found at Kandy.

1. Aulophorus tonkinensis ($V_{\text {ej }} d$.).

1909. Aulophorus tonkinensıs, Michaelsen, Mem. Ind. Mus. i, p. 132. 1911. Aulophorus tonkinensis, Stephenson, Rec. Ind. Mus. vi, p. 212.
1910. Aulophorus tonkinensis, Stephenson, Tr. Roy. Soc. Edid. xlix, pp. 738, 744, 757.
1911. Dero tonkinensis, Vejdorsky, Mem. Soc. Zool. Fr. vii, p. 244, text-fig.
1912. Dero tonkinensis, Michaelzen, Tier. x, p. 30.
1913. Dero tonkinensis, Michaelsen, Zoologica, xliv, p. 353.

Length of chain of two animals 3.5 mm .; maximum thickness $0 \cdot 28 \mathrm{~mm}$.; segments $26-29 ; n=17$ or 18 ; 5 segments added in budding zone to form head of second animal. Prostomium small, short, rounded; pharyngeal region swollen, the prostomium appearing like a nose on its end. Ventral bundles with 4-7 crotchets, the prongs short, setæ of ii-v the same thickness (3μ), but longer (90μ) than thove of other segments ($60 \mu)$. Dorsal bundles beginuing in vi, with one hair seta 0.16 mm . long and 3μ thick, the prongs diverging to a width of 7μ, and connected by a web which may appear ribbed. Hinder end cylindrical, not expanded, with an oblique funnel-shaped depression, from which two pairs of long cylindrical gills with conical extremities (the shape of a lead-pencil) project, the donsal pair longer atd thicker than the ventral; ventral border prolonged into a pair of palps, cylindrical, with distal end slightly swollen and rounded, somew hat longer and thicker than the dorsal gills. Coelomic corpuscles present. Stomach in ix. Dorsal vessel has a ventral position throughout the greater part of its extent ; contractile commissures in vii and viii.

Remarks. Michaelsen considers this species as possibly identical with Schmarda's A. oxycephalus from Galle, Ceylon (3).

Annandale apud Michaelsen, (54), gives an account of the behaviour of the worm; it moves about in a case of foreign particles; extending the anterior part of its body, it uses its
protrusible pharynx as a sucker by which to pull itself along; the palps protrude from the hinder end of the case as it moves; cf. also Stephenson (61, p. 213).

Distribution. Calcutta; Lucknow; Bhim Tal, Kumaon Dist., W. Himalayas. Also from Tonkin, China.
2. Aulophorus furcatus (Oken).
1910. Dero sp., Stephenson, Rec. Ind. Mus. v, p. 71, text-figs. $5-8$, pl. vii, tigs. 4-6, pl. viii, figs. 5-7.
1912. Aulophorus stephensoni, Michaelsen, Arch. f. Naturgesch. lsxviii, Abt. A, Heft 9, p. 116.
1914. Aulophorus furcatus, Stephenson, Rec. Ind. Mus. x, p. 332.
1915. Aulophorus furcatus, Stephenson, Tr. Roy. Soc. Edin. 1, p. 784.
1916. Aulophorus furcatus, Stephenson, Rec. Ind. Mus. xii, p. 306, pl. xxx, fig. 3.
1887. Dero furcata (part.), Bousfield, J. Linn. Soc. xx, p. 105, pl. v, figs. 17, 18.
1895. Dero furcata, Beddard, Monog. p. 299.
1900. Dero furcata, Michaelsen, Tier. x, p. 29.

Length of chains about $6-16 \mathrm{~mm}$.; diameter 0.2 mm . Segments of single individual about $35-40$ or more, of chains up to 48 ; $n=18-25 ; 5$ segments added to head of second animal in budding zone. Prostomium rounded. Ventral crotchets 4-5 in bundle, fewer posteriorly; those of ii-iv a little longer, with

Fig. 34.-Aulophorus furcatus (Oken); dorsal needle.
longer prongs, the distal longer than the proximal, equal in thickness or the proximal thicker at the base; from v onwards the crotchets are more curved, shorter, and thioker, with shorter teeth, the distal a little longer than or equal to the proximal, which is a little or considerably thicker. Dorsal bundles beginning in \mathbf{v}, containing one double-pointed needle (text-fig. 34)
with a slight sickleshaped curve, and one hair seta which does not attain a length equal to the diameter of the body. Branchial fossa funnel-shaped, with two pairs of true gills and oue pair of accessory gills, or three pairs of true gills, or three pairs true and one pair accessory gills. The posterior margin of the fossa prolonged into a pair of long narrow palps, diverging behind. Four or five pairs of vascular commissures, in vi-ix or vi-x, or even six pairs in $\mathbf{v - x}$; dorsal vessel on intestine. No stomach. Coelomic corpuscles present or absent. First nephridium in vii (rarely viii). Clitellum $v-\frac{1}{2}$ vii $=2 \frac{1}{2}$. Male funnels cup-shaped, close together, looking upwards and backwards, in mouth of sperm-sac ; vas deferens running downwards on septum $5 / 6$, entering anterior face of atrium; atrium small, subspherical, no covering of "prostatic" cells; ejaculatory duct short, somewhat invaginated upwards into the atrium. Ovisac encloses sperm-sac. Spermathecæ ovoid sacs confined to \mathbf{v}, duct narrow and straight.

Remarks. I have shown that all intermediate condtions exist between the trpical A. furcatus with two pars of true and one pair of accessory gills, and the form at first described as Dero sp. and afterwards named A. stephensoni by Michaelsen, with three pairs of true and one pair of aceessory gills. The spectes must therefore be united, and the diagnosis widened accordingly. If thought necessary, the typical form with two pairs of true and one pair of accessory gills may be distinguished as f. typica, and the other extreme of the series as f. stephensoni (Mich.), with the provioo, however, that intermediate forms occur.

Distribution. Lahore; Bombay ; Khed, Poona Dist., in a hot spring. Widely distributed in Europe ; perhaps in Africa and America also.
3. Aulophorus michaelseni, nom. nov.
1913. Aulophorus palustris, Stephenson, Spol. Zeyl. viii, p. 25.5, pl. i, fir. 5.
1916. Aulophorus palustris, Stephenson, Liec. Ind. Mus. xii, pp. 305, 306.

Length of single animal (preserved) 3-4.5 mm.; dianeter 0.3 mm . Segments max. 52; $n=22$. Prostomium short and rounded. In preserved specimens the anterior end is somewhat swollen, thickest at iv, vi-vii being contracted and having the appearance of a neck. No eyes. Hinder end with palps, gently lapering in thickness from 60μ proximally to 16μ at distal end, and four pairs of gills, all true (inserted within the margin of the funnel), the most anteriorly placed being the shortest. Ventral setæ of ii-iv (text-fig. 35, b) 4-5 per bundle, 76-84 μ long, distal prong twice as long as proximal, but only two-thirds as thick at base, nodulus markedly proximal; those of the other segments (text-fig. 35, c) 4 per bundle, or 3 or 2 posteriorly, prongs equal
in length but distal only half as thick as proximal, nodulus markedly distal, setæ shorter than those of the anterior group (68μ), and more curved. Dorsal bundles begin in v, consist of one hair seta not exceeding in length the diameter of the body, and one needle (text-fig. $35, a$), $51-55 \mu$ long, sickleshaped,

Fig. 35.-Aulophorus michaelseni Steph.; a, dorsal needle; b, anterior ventral seta; c, posterior ventral seta (b and c more magnafied than a).
forked, with slight nodulus at junction of curved with straight portion of the shaft. Septal glands in iv and v. No stomach. Dorsal vessel has a ventro-lateral position on the gut for the greater part of its course.

Remarks. I have come to the conclusion that the present species must be separated from A. palustris Mich. (121), with which I at first united it. So far as I know, the only description of A. palustris that we possess is merely a short preliminary diagnosis; but even so, the mention of crotchets (Hakenborsten) in the dorsal bundles is, I now think, sufficient to distinguish it from the present form; the dorsal needles of this form cannot be called Hakenborsten, and I therefore give it a new name.

I considered in 1916 that this species might ultimately have to be merged in A. furcatus, through the discovery of intermediate conditions of the gills, as it has been necessary to merge A. stephensoni. But the position of the dorsal vessel seems to be a well-marked distinction.

Distribution. Kandy, Ceylon.

Family TUBIFICID压.

Sinall aquatic worms, usually reddish in colour, up to 200 mm . in length, of slender build. Setæ in four bundles per segment, usually with an indeterminate number of setæ per bundle. Ventral bundles contain only bitid or more rarely singlepointed crotchets; dorsal bundles consist of bifid or pectinate crotchets only, or of bifid or single-pointed crotchets with hair setæ; both dorsal and ventral series begin in ii. No muscular gizzard. Testes and ovaries in x and xi respectively; vasa deferentia open each into an atrium, or both into a common atrium ; atrium opens on xi. Spermathecæ may be absent ; when present they open on x. Asexial reproduction by fission as in the Naididæ does not occur.

The above diagnosis does not apply fully to the aberrant genus Aulodrilus.

This family is very common in Europe, but hitherto only eight species, belonging to six genera, have been found in India. This poverty is partly apparent, partly real. The difficulties in the way of the exact study of this family are much the same as those mentioned for the Naididx; though being on the whole larger worms than the Naididm one would expect them to be collected oftener; that this does not happen is an indication that the family is really somewhat scantily represented in India; and the same applies to the Enchytræidæ. Two of the eight Tubificids, however, Limnodrilus socialis and Branchiura sowerbyi, seem to be tairly common forms.

The disproportions in numbers between the Indian Naididm and Tubificidæ are brought out by the following table:-

	Naidide.	Tubificid
Germany (Michaelsen, Suisswasserf.		
Deutsch. 1909)	39	19
Switzerland (Piguet, Olig. Suisse, 1913)	33-34	15
India .	31	8

Distribution. Kashmir; Lahore, Punjab; Lucknow and Agra, United Provinces; Burhanpur, Central Provinces; Calcutta and Belgatchia; Kurseong, E. Himnlnyas; Manipur, Assam; Inle Lake, Burma; Barkuda Island, Chilka Lake, E. Coast ; Madras; Nilgiris; Kandy, Ceylon.

Key to the Indian gencra of Tubificidæ.

1. Gills present in dorsal and ventral series

chidra

3. No spermathecæ; spermatophores affixed to surface of animal	
Spermatheca single	но
Spermatheca paired	4.
No hair setw in dorsal bundles; all dorsal needles bifid	Limnod
Hair setæ present; anterior dorsal needles ctenate	Ubifex.

1. Genus LIMNODRILUS Clap.

Dorsal and ventral bundles with bifid crotchets, of the same form in both; no hair setæ. Lateral pulsatile hearts in viii, or more usually in viii and ix; vascular cutaneous network in the posterior part of the body. Testes in x , ovaries in xi; vas deferens long, atrium with a bulky solid prostate, ending by a true penis (i.e., one the folds of which are not capable of being smoothed out) with usually a strong chitinous tube. Spermathecæ in testis segment, containing spermatophores after copulation.

The common species is L. socialis; specimens of the genus, species indeterminable, have been obtained from Sona Sur, a small lake in Kashmir, at a height of 12,500 ft. (Limuodrilus sp., Stephensor, Rec. Ind. Mus. xii, p. 307).

Distribution. Lahore ; Calcutta and Belgatchia; Kandy, Ceylon; Kashmir. The genus is common in Europe, and is found also in N. Americn, Japan, and Tibet.

1. Limnodrilus socialis Steph.

1912. Limnodrilus socialix, Stephenson, Tr. Roy. Soc. Edin. xlviii, p. 294, pl. ii, figs. 9-16.
1913. Limnodrilus socialis, Stephenson, Rec. Ind. Mus. vii, p. 237, text-fig. 4.
1914. Limnodrulus socialis, Stephenson, Spol. Zeyl. viii, p. 260.
1915. Iimnodrilus socialis, Stephenson, Tr. Roy. Soc. Edin. xlix, pp. 740, 744, 762.
1916. Limnodrilus socialis, Stephenson, Mem. As. Soc. Bengal, vi, p. 93, pl. iv, figs. 6, 7.

Colour pale reddish brown, deeper anteriorly. Length up to 75 mm . extended ; thickness less than 1 mm . Segments ca. 110 ; a double annulation in the first few. Prostomium bluntly conical. Setæ (text-fig. 36) with proximal prong of fork shorter and stouter than the distal; nodulus distal ; length in anterior part of body 115μ, diminishing to about 80μ behind; 6-8 per bundle anteriorly, diminishing to 3 or 4 posteriorly. Paired gland-like masses of cells ventro-laterally to cosophagus in vi and vii, and smaller aggregations in \mathbf{v} and viii. Dorsal vessel situated ventrally, to the left of the ventral vessel for the greater part of its course; no subintestinal vessel; a supra-intestinal present in segments \mathbf{v}-ix; hearts a single pair in viii, and in the sexual
animal in addition a pair of long sinuous loops to the genital organs. Cutaneous plexus in the posterior half of the body formed by four chief capillary vessels on each side in each segment, which branch freely and anastomose. Nephridia of vii and viii (the most anterior pairs) surrounded by large pear-shaped cells; then a hiatus till xiii ; nephridia not present in every segment after xiii. Cerebral ganglion cleft both anteriorly and posteriorly.

Fig. 37.-Limnodrelus socialıs Steph.; chitınous penial tube ; $\times 115$.

Fig. 36.-Limnodrilus socialis Steph.; seta; $\times 750$.
Clitellum embraces xi-xii. Vas deferens wider in its first portion; atrium elongated, pear-shaped, the first part the broader; prostate coutinuous with first part of atrium; penis sheath (text-fig. 37) circular in cross-section, narrowing somewhat to its termination, about $10-11$ times as long as broad at its upper end (520μ aud 49μ), termination expanded in form of a trumpet and its anterior lip strongly everted. Vesiculæ seminales paired in ix, single in xi, the latter reaching back through a number of segments. No spermatophores.

Remarks. The worms may occur in great abundance, forming tangled masses of several pounds in weight; their heads are downwards in the mud, their tails freely waving; on any interference the animals contract themselves with extraordinary rapidity, and there may be no sign of life where a moment before there was a large animated mass.

I found that in March at Lahore a large proportion of the worms were headless; the worins had been found sexually mature in December and also in February, and I am inclined to suppose that the deposition of the large eggs causes so much damage to the anterior segments that these are thrown off; the oviduct appears to be such a small passage that it does not seem possible, with every allowance for distension, to suppose that the ora can escape through it. It is thus possible that, though the worms live for some time after losing the anterior segments, the whole generation perishes every year.

I have found the worm in material from Kyoto, Japan, collected by Aunandale; it is sold as food for goldfish, and is thus one of the few Oligochæta that are of commercial importance.

The same species has been described by Nomura (132) as L. gotoi (for a discussion on the identity of these $c f .84$, where also the question of nomenclature is argued).

This species appears to differ from others of the genus in not having spermatophores.

Both antiperistalsis and ascending ciliary action occur in the intestine, as in the Naididæ.

Distribution. Lahore ; Calcutta and Belgatchia; Kandy, Ceylon. Also in Japan.

2. Genus BRANCHIURA Bedd.

1892. Branchiura, Beddard, Quart. J. Mic. Sci. xxxiii, p. 325.
1893. Branchiura, Beddard, Monog. p. 270.
1894. Branchiurra (part.), Michaelsen, Tier. x, p. 39.
1895. Branchiura, Michaelsen, Arch. f. Naturgesch. lxxiv, 1, pp. 140, 152.
Dorsal bundles with hair setæ, along with single-pointed or forked crotchets. Segments of the hinder part of the body with a dorsal and a ventral gill. Atrium with a blindly ending appendage (paratrium) ; terminal portion of atrium eversible as a penis; no penial setæ. No spermatophores; spermathecæ filled in copulation with amorphous masses of spermatozoa. A special coelomic sac encloses the ectal portion of the male efferent apparatus.

This interesting genus has been the subject of much discussion since the description of B. sowerbyi by Beddard in 1892. For a résume of the limits ascribed to the genus at various times of. Stephenson (84); at present it is held to comprise only the one species.

The relationships of the genus are discussed in the paper just mentioned, and in the others there referred to. The closest relative of Branchiura, however, is the recently discovered Kawamuria (Stephenson, 84). Notable in both genera is the coelomic sac which encloses the terminal portion of the male efferent apparatus; the function of this sac, which has muscular walls, is by its contraction to evert a portion of the atrial wall as a penis. A similar sac has been found in some species of

Phreotrilus (Beldard, 110; Benham, 114), where its function is apparently similar ; these authors suppose the sac to have been formed in Phreodrilus by a splitting off from the surface of the atrium.

Distribution. Lahore: Calcutta; Madras; Lucknow and Agra, United Provinces; Manipur, Assam: Inle Lake, Burma; and Kaung-daing, Yawng-hwe State. Also recorded from London, Dublin, France, Germany, Japan, and China.

1. Branchiura sowerbyi Belde.

1912. Branchiurca sowerbyi, Stephenson, Tr. Roy. Soc. Edin. xlviii, p. 2855 , pls. i, ii, figs. 18.
1913. Branchiura sowerbyi, Stephenson, Rec. Ind. Mus. vii, p. 234, pl. xi1, firys. 1-5.
1914. Branchiura sowerlyi, Stephenson, Tr. Loy. Soc. Edin. xlix, pp. $741,744,763$.
1915. Br'conchiura sowerbyi, Stephenson, Rec. Ind. Mus. xir, p. 19, text-figs. 1-3.
1916. Branchiura sowerbyi, Stephenson, Mem. Ind. Mus. vii, p. 200.
1917. Branchiura souceroyi, Mehra, l'. Z. S. pp. 4.57, 45s.

19:21. Branchiura succerbyi, Stephenson, Dec. Ind. Mus. x xii, p. 752.
1892. Branchiurle soweroyi, Dedlard, Quart. J. Mic. Sci. axxiii, p. 32.5, pl. 19.
1895. Branchiura sowerriii, Beddard, Monog. p. 271.
1900. Branchiura sowerly, Michaelsen, Tier. x, p. 40.
1908. Branchiura sowerbyi, Michnelsen, Arch. f. Naturgesch. Lxxiv, (1), p. 134, pl. iii, tigs. 1-6.
1913. Branchiura soucrbyi, Keyl, Z. wisa. Zool. cvii, p. 199, pl. ix, tigs. $2,5-7,9$, pl. x, firs. 10-15, pl. xi, tigs. 16, 17 ; text-figs. $1,2,17-19,28-30.36 \cdot 56$.
1917. Branchiura sowerbyi, Stephenson, Mem. Is. Soc. Bengal, vi, p. 89.

Length ordinarily $20-50 \mathrm{~mm}$., exceptionally up to 185 mm ; thickness 1 mm . or more; fairly stout, very contractile. Colour pinkish grey, with whiter and more translucent margins. Segments $74-270$. Prostomium bluntly conical. Ventral bundles with single- and double-pointed needles (text-fig. 38), up to 6 or 3 in a bundle, about $1: 0 \mu \mu$ in length, with double curve, nodulus distal; the double-pointed variety, in which the outer point is the smaller, predominant in the anterior part of the body, the singlepointed in the hinder part. Dorsal bundles in the anterior part of the body composed of $1-3$ hairs and 5-8 needles; the hairs short, $130-164 \mu$, not much longer than the needles, and absent from the whole of the gill region; the needles of the same form as those of the ventral bundles, mostly forked in the anterior part, single-pointed in the hinder part of the body. The gills are cylindrical projections segmentally arranged in the posterior part of the body, occupying the hindmost sixth to two-fifths of the body, one dorsal and one ventral in each segment; there are from 50 to 140 pairs; in length they are commonly about equal to the
diameter of the body, shorter in front, where before disappearing they become mere tubercles; they are not ciliated; the cavity of the gill-process is shut off from the colom, and contains a vascular loop. Dorsal vessel situated ventro-laterally for the greater part of its extent; supraintestiual present from vi to xii ; hearts two pairs, in ix aud x, the first pair originating above from the supraintestinal, the second from the dorsal vessel; noncontractile loops in ii-viii. Cerebral ganglion deeply indented in

Fig. 3x.-Bı anchiulı a sowerbyi Bedd.; single- and double-pointed seta; $\times 4.50$.
front, less markedly behind ; large giant fibres in ventral nerve cord, of which one is specially enormous (up to 70μ in diameter). Clitellum x-xii. Male pore at site of missing ventral setæ of xi. Spermathecal pore behind ventral setæ of x. Testes in x: vas deferens fairly short, joining the atrium some distance from its ental end, and thence running in the atrial wall to ental end of the latter; atrium long, joining the paratrium about the middle of its length; paratrium also much elongated, at its ectal end rumning with the (here narrowed) atrium for some distance before the two lumina unite; ectal portion of atrium (below union with paratrium) partially eversible as a somewhat bladder-like penis (not often seen everted); both paratrium and ental portion of atrium covered with a massive investment of "prostatic" cells (text-fig 39). Spermathece with almost circular ampulla and sharply distinct thick tubular duct.

Remarks. Many interesting and curious points have been brought out recently by the considerable amount of work which has been done on the anatomy of this species. The genital organs in particular have received attention (Michaelsen, 1908 sup.; Keyl, 1913; Stephenson, 68, 88). I have shown, on the basis of the Lake Inle specimens, that the variations in size, and in the number of the gills, as well as in the length of the latter, are very considerable; but I have been unable to correlate these variations with
the conditions of life, except in some degree with the nature of the bottom on which the animals happen to be living. Keyl has published a detailed study of much of the anatomy, in which he devotes special attention to the histology of the nervous system and to a comparative account of the giant fibres in the Annelida, to the elements of the lateral line, and to the genital system, and adds observations on the mode of life and powers of resistance.

Fig. 39.-Branchiura sowerlyi Bedd.; male gemtal organs (dhagrammatic). At.cc., at.en., at. m., the ectal, ental, and middle paits of the atrium respectively; b., body-wall ; c.s., ceelonic sac: ft.. male fumal ; m., muscular band ; p.at, paratrumu: per., peritoneal cells; s, septum ; v.d., vas deferens; ס, male aperture.

Antiperistalsis occurs in the intestine, and water may be taken in at the anus by "gulping morements"; but ascending ciliary action apparently does not occur in the intestine (Stephenson, 72).

Keyl states that the needle setro are more or less plainly bifid in all bundles.

A curious point in relation to its occurrence is its association with Limnodrilus socialis. The two were found together in lahore; they were found similarly in Calcutta; and they occus living together in Tokyo also.

Distribution. Coincides with that of the genus as given above.
The species was first found by Beddard in the mud of the Victoria regia tank in the Royal Botanical Society's (iarden in London; Michaelsen afterwards found it in a warm water tank of
the Botanical Gardens at Hamburg; Perrier then found specimens in the Rhone; it was then recorded from several places in India, first from Lahore, where it was living freely in the open, then from Calcutta, in the Museum compound, and Madras, in the Victoria regia tank in the Agri-Horticultural Society's Gardens; Keyl mentions that it has been found in warm water houses in Gottingen and Frankfort; Southern records it from the Victoric refia tank in the Botanical Gardens in Dublin. It has recently been taken in Japan (ditches near Tokyo), and China (Kiangsu Province); and in India in the Inle Lake, at Manipur, and at Agra and Lucknow.

The question has been discussed as to where its original home is, since in Europe it is almost constantly found in artificial surroundings. S. America was at one time suggested, since the Tictoria regia is a natuve of that region; when it was found living freely in India, that country also seemed possible. It has now been shown to be widely scattered in Asia; and its descent from Kawamuria, which is hardly to be doubted (84, 88), indicates with some degree of probability Japan or some Far Eastern locality as its place of origin.

3. Genus BOTHRIONEURUM Štoli.

Prostomium with a sensory pit. Dorsal and rentral setal bundles with bifid crotchets; no hair setr. No gills. Atrium with a blindly ending appendage (paratrium), No penis. No spermathecx. Spermatophores affixed to the body-wall in copulation.

Distribution. Kurseong, E. Ilimalayas. The genus is also known from Europe, N. America, and the Malay Peninsula.

1. Bothrioneurum iris Bedrl.

1909. Bothrioncurum irix, Michaelsen, Mem. Ind. Mas. i, p. 135.
1910. Bothrioneurum iris, Stephenson, liec. Ind. Mus. v, p. $\because 41$, text-figs. 1, 2.
1911. Bothrioneuron irzs, Beddard, P.Z.s. i, p. 81, text-figs. 8-10.

Moderately stout, about 25 mm . in maximum length. Segments about 64. Prostomium semicircular. Prongs of setze at a wide angle, the distal usually the longer, the proximal the thicker; number per bundle 3-6 in the anterior part of the body, regularly 2 in the posterior. No ventral sete in the segment of the male pore. Masses of gland cells in commection with the alimentary tube in iii, iv, and v. No cutancous capillaries. ©litellum on segments of male pore and succeeding segment. No peninl setre. Position of genital organs varies, male aperture being on xi or xii. Vas deferens divisible into two regions, invested by a thick layer of peritoneal cells; first part of atrium fusiform in shape, next portion irregular, with a number of folds or small diverticula; paratrium small, egg-shaped, without a cap of peritoneal cells, with
hardly distinguishable lumen, its mouth invaginated into second part of atrium ; terminal portion of atrium unites with its fellow underneath ventrul nerve cord, the male aperture being median

Fig. 40.-Bothrioneurum irts Bodd., empty spermatophores.
and single. Spermatophores (text-fig. 40) of somewhat fusiform or irregular shape, attached by a solid stalk to the clitellar segments, one to five in number. Female apertures paired, in groove behind male aperture.

Distribution. Kurseong, E. Himalayas. The species is also known from Siamese Malaya, whence it was first described.

4. Genus MONOPYLEPHORUS Levinsen.

1892. Vermiculus, Goodrich, Zool. Anz. xy, p. 474.
1893. Termiculus, Beddard, Monog. p. 271.
1894. Vermiculus, Michaelsen, Tier. x, p. 40.
1895. Rhizodrilus, Fr. Smith, Bull. Illinois Lab. v, p. 444.
1896. Rhizodrilus, Michaelsen, Tier. x, p. 5.22.
1897. Monopylephorus, Ditlevsen, Z. wiss. Zool. Ixxvii, p. 423.
1898. Monopyllephorus, Moore, P'. Ac. Philad. Ivii, pt. 2, pp. 375, 376.
1899. Rhizodrilus, Benham, Olig. Subantarctic Is., p. 260.
1900. Monumplephorus, Michaelsen, Zoologica, xxvi, Heft 67, Teil 1, p. 141.
1901. Rhizodrihus, Benham, Tr. N. Zealand Inst. xlvii, p. 183.
1902. Monopylephorus, Nomura, J. Coll. Sci. Tokyo, xxxv, Art. 9, p. 44.
1903. Monopylephorus, Stephenson, Mem. Ind. Mus. v, p. 439.

Ventral and dorsal setal bundles with forked crotchets only. Male pore, unpaired, in xi. Spermathecal pore or pores in x. Female pores paired, in 11/10. Hearts in \mathbf{x}, and often also in some of the preceding segments. Testes in x, vasa deferentia short, opening by means of a commou simple atrium. Ovaries in xi.

The above is taken from Michaelsen's Tierreich volume. In addition, the nephridia appear to be peculiarly constituted, having their coils closely united as in the Fnchytræidæ. Nomura gives as distinctions of Monopylephorus from Rhizolrilus (both being included in the above diagnosis):-the presence of unicellular valves in the dorsal vessel; the absence of direct commissural vessels between dorsal and ventral trunks (the commissures being broken up into a cutaneous network) ; and the presence of a flame-like structure in the nephridium, apparently the lengthening of the upper lip of the nephrostome; besides a few other characters of minor importance.

Distribution. In India only recorded from Barkuda Island, Cbilka Lake. The genus is widely distributed, being found in England, Japan, Denmark, N. America, the Kermadec and Auckland Islands, and the Transvaal.

1. Monopylephorus parvus Ditlevsen.

1917. Monopylephorus parvus, Stephenson, Mem. Ind. Mus. v, p. 485, text-fig. 1.

Maximum length $8-15 \mathrm{~mm}$.; diameter ca. 0.4 mm . Segments 38-64. Colour pink in life. Prostomium large, prominent, triangular with rounded tip. Setæ of two forms, single- and

Fig. 41.-Monopylephorus parvus Ditlevsen; a, double pointed seta from an anterior dorsal bundle; b, single-pointed seta from a ventral bundle behind the middle; $\times 760$.
double-pointed crotchets (text-fig. 41); no hair setæ. Doublepointed setæ 80μ long, 3μ thick, nodulus somewhat distal, prongs equal in length, both comparatively short, of about equal thickness or, especially posteriorly, the outer thinner than the inner. Single-pointed setæ ca. 70μ long, 3μ thick, distal curve more marked than the proximal, tip sharp, nodulus slightly distal.

Some setæ with intermediate characters, the outer prong being small. Ventral setæ absent in xi, usually three per bundle, but may be more in the anterior segments, and only two posteriorly ; in the anterior part the bundles consist of double-pointed setre only, behind the middle single-pointed also occur. Dorsal setæ begin in ii, 3 per segment, or 4 or 5 in the anterior segments; anteriorly only double-pointed setæ are present, single-pointed make their appearance not far from the anterior end, and soon entirely replace the double-pointed. A sucker-like "pharynx" resembling that of Enchytreids; pharyngeal gland-cells arranged in four cords dorsally and dorso-laterally. Body-cavity corpuscles up to 10μ in diameter. Dorsal vessel laterally or ventro-laterally situated on the left side throughout the greater part of the body, only fully dorsal at the anterior end. Supra- and sub-intestinal vessels absent. Parietal plexus within muscular layer of bodywall. Nephridia of "enchytræid" character; upper lip of funnel very long. Testes and funueis in x. Vas deferens covered almost from the beginning with high peritoneal cells, passes back in xi, and then rises towards the dorsal body-wall ; loses high peritoneal investment and bends downwards; dilates to form an atrial chamber of elongated pear-shape, the narrower end below. The atria converge and unite to open on a papilla on the roof of a median depression on the ventral surface of the animal (spermiducal chamber). Sperm-sacs two, an anterior in ix, and a posterior extending backwards from septum 10/11 through several segments. Spermatheca single, in x, aperture median in $9 / 10$, the organ being, however, on the left side; it is a somewhat twisted cylinder narrowing towards the external aperture to form a short duct. Spermatophores not formed.

Distribution. Barkuda Island, Chilka Lake. The species has previously been found in a littoral habitat in N. America; and a worm which may bs identical has been described from Denmark.

5. Genus TUBIFEX L m.

1805. Tubifer + Ilyodrilus + Meterochate + I'eluscole.r + Prammoryctes + IIemitubife. + Spirospermu + Embolocephalus, Beddard, Monog. pp. $24: 2,2.26-26,264,2 \pi$.
1806. Tulifec + 1hyodrilus, Michaelsen, Tier. x, pp. 47, 48-5;), 54
1807. T'ubifer, Michaelsen, Susswasserf. Deutsch. p. B4.
1808. Tubifer', Piguet, Olir. Suisse, p. 61.

Ventral bundles of bifid crotchets. Dorsal bundles of bifid crotchets, and, at least in the anterior segments, hair seta also. Ventral crotchets differing in form from the dorsal, the latter often pectinate, or more or less incompletely pectinate (with small teeth intermediate between the two prongs). Atrium with a solid prostate, terminating in a penis. Spermatophores in the spermathecr.
The characters which distinguish the subgenus Tubife. from
the others are:-Surface of the body without papillæ, smooth. Vas deferens longer than the atrium.

Distribution. Nilgiris, S. India. Outside Indin is widely distributed in Europe and N. America, and has been found in N. Africa. Apparently there is only the one record from Asia.

1. Tubifex (Tubifex) tubifex (Miill.).
2. Tubifer (Tubifer) tubifex, Stepin. Rec. Ind. Mus. xxii, p. 753.
3. Tubife. rivulorum, Beddad, Monog. p. 244.
4. Tubifex tubifex, Michaelsen, Tier. x, pp. 48, 525.
5. Tubifex (Tubife. $\boldsymbol{\text { r }}$) tubife.x, Michaelsen, Siuswasserf. Deutsch. p. 37, text-tig. 73.
6. Tubife.. (Tubife.v) tubufe.r, Piguet, Olig. Suisse, p. 63.

Length 30-40 mm. Segments 60-100. Reddish; rolling up into a ball on attempts to seize it. Ventral bundles with up to 5 bifid crotchets with upper tooth longer than the lower. Dorsal bundles with up to $\overline{5}$ crotchets which in the anterior segments present one or several small intermediate teeth but lack these posteriorly, and up to 6 hair setre rather shorter than the diameter of the body. Hearts in viii. Spermatheca with sac-like ampullæ; duct long, narrow, thin, and a little swollen ectally. Vas deferens long; atrium irregularly pyriform-reniform, the ental extremity thicker, but not separated as an atrial chamber from the rather narrower middle portion. Prostate large, shortly stalked; penis protractile, short, rounded in front. No penial setæ.

Remarlis. My own specimens differed from the above description only in the ventral setre, in which the prongs were about equal in length.

Distribution. In India only so far found below Coonoor in the Nilgiris. Outside India it is widely spread in Europe and has been found in N. America.

6. Genus AULODRILUS Bretscher.

1899. Aulodrilus, Bretecher, Liev. Suısse Zool. vi, p. 38t.
1900. Aulodrilus, Michaelsen, Tier. x, p. 5.).
1901. Aulodrilus, P'guet, Olig. Suisse, p. 57.

Crotchets numerous, with upper prong shorter and thinner than the lower. In the dorsal bundles the crotchets are accompanied or not, according to the species, by short capillary sets. Alimentary canal much dilated from viii onwards. Hearts in vi or viii; in ii-v anastomosing lateral loops; from vii or ix onwards a pair of loops in each segment. Male pore and penial setm on vii or x; clitellum on vii-riii or x-xi; a small atrium, followed by a long atrial duct enclosed in a muscular colomic sac; terminal portion of atrial duct evaginable as a pseudopenis; spermatheco in ri or ix.

The genus is represented by two species in Europe. A. limnobius
and A. pluriseta; in addition, a worm from the S. of France, as yet undescribed, is stated to belong to this genus, and to have retractile penes in front of the ventral setæ of segment vii.

Some species, perhaps all, form tubes. Probably in all species the hinder end of the body acts as a gill; it is highly vascularised, and the anus can dilate, forming in this way what Piguet calls at branchial fossa. The terminal part of the body is unsegmented, the posterior zone of production of new segments being situated some little distance in front of the hinder end of the animal.*

1. Aulodrilus remex Steph.

1921. Aulodrilhes remex, Stephenson, Rec. Ind. Mus. xxii, p. 753, pl. xxviii, figs. ㄹ-6.
Length 12 mm .: diameter $0 \cdot 43 \mathrm{~mm}$. anteriorly, $0 \because 5 \mathrm{~mm}$. posteriorly. Segments 49 plus a rogion where new segments are being differentiated, and behind this again a short unsegmented

Fig. 42.-Aulodrilus reme.x. Steph.; hinder end; \times ca. 70.
region at the hinder end (text-fig. 42). No eyes. Dorsal seta anteriorly in bundles of about 7 needles and 1-4 hairs: the hairs short, with a bayouet curve (text-fig. 43); needles half as long as the hairs, some singly pointed, others double-pointed with the outer prong much shorter and less conspicuous than the inner.

[^1]Further back the needles are oar-shaped, with flattened distal end (text-fig. 44); number in a bundle 5 needles and 2 or 3 hairs. Ventral setæ singly or doubly pointed needles (text-fig. 45), 9 or fewer in the anterior, and 6 or 7 in the posterior segments; singly pointed needles confined to a few of the most anterior

Fig. 43.-Aulodriius remex Steph.; dorsal hair seta. $\times 230$.

Fig. 44.-Aulodrilus reme.x Steph.; distal ond of dorsal oar-shaped seta; a, usual form ; b, exceptional form.

Fig. 45.-Aulodrilus remex Stepl.; tip of doublepointed ventral seta. \times са. 1200.
segments. Essophagus narrow, giving place to the much dilated intestine in viii. Dorsal vessel ventral in position and on the left side as far forwards as segment vii. Large parietal vessels, in complicated loops, in the hinder segments.

Distribution. Burhanpur, Central Provinces.

Family PHREODRJLIDE.

Ventral setx 2 per bundle, single- or double-pointed crotchets; dorsal bundles with single-pointed needles or hair sete only. Male pores on xii, spermathecal pores on xiii. (Esophagus without gizzard or appendages. Neganephridial. Central nervous system well developed, completely free from the integument. One pair of testes in xi, one pair of ovaries in xii; oue pair of male funnels in front of septum 11/12; vasia deferentia debouching through atria. Asexual reproduction by fission not observed.

The family was established by Beddard in 1891, but withdrawn by him in his Monograph of 1895, where the genera Phreodrilus and Hesperodrilus were ranked under the Tubicicidæ. Michaelsen adopted the same procedure in the Tierreich volume; in 1903, however, he united the two genera as Phreolrilus, and revived Beddard's family Phreodrilidæ ; since he is of opinion that the genus shows no nearer affinities to the Tubificide than to other families, and regards it as a phylogenetically ancient group, with reminiscences of various families.

In the only Indian species of the family the spermathece open on segment xiv.

1. Genus PHREODRILUS Beld.

$$
\text { 1891. Phreodrilus, Beddard, Ann. Mag. N. H. (6) vii, p. } 92 .
$$

1891. Pheeodrilus, Beddard, Tr. Roy. Soc. Edin. xxxvi, p. 291.
1892. Hesperodrilus, Beddard, Ann. Mag. N. II. (6) xiii, p. 206.
189.). Ihreodrilus + Mesperodrilus, Beddard, Monog. pp. 227, 255, 273.
1893. Phreodrilus + ILesperodrilus, Michaelsen, Tier. x, pp. 37, 38. 1903. Phreodrilus, Michaelsen, Olig. Tiefsee Exp. p. 134.

Cerebral ganglion bilobed, deeply cleft behind. Vas deferens ending in the middle part of the tubular atrium; no special prostate glands. Spermathecæ withont diverticula; spermatozoa stored in the ampulla, no spermatophores formed. Freshwater.

Distribution. Nuwara Eliya, Ceylon. Also widely distributed in the S. Hemisphere.

1. Phreodrilus zeylanicus (Steph.).

1913. Hesperodrilus aeylanicus, Stephenson, Spol. Zeyl. viii, p. 257, pl. i, fig. 6.
Length ca. 8 mm ., maximum diameter, 0.6 mm . Segments 34 . Prostomium short, bluntly conical. Ventral setre as a rule 2

Fig. 40.-Phreodrilus acylanicus Steph.; ventral setæ (the distul end of the single-pointed seta is uppermost); $\times 600$.
per bundle, one a single- and one a double-pointed crotchet (text-fig. 46), both about 120μ long, the shaft of the singlepointed being considerably thinner than that of the other; the
outer prong of the forked seta is only half as long and one-third as thick at the base as the other, and has a slight nodulus which is markedly distal to the middle of the shaft. Dorsal setm begin in iii, all capillary, up to 5 per bundle, some thicker than others, the longest equal to about the dinmeter of the body. (Esophagus passes without sharp demarcation into intestine in viii; no stomach. A number of large deeply staining cells on both sides of septa $4 / 5,5 / 6$, and $6 / 7$, and a few on $7 / 8$. Clitellum includes one-fifth of xii and all xiii. Setre absent ventrally on xii, where are the male pores. Sperm morulæ in x and xi, not enclosed in sperm-sacs; vas deferens joins ental end of atrium ; the latter vertically elongated, glandular, uarrower towards its lower end and bending forwards to male aperture. Spermathece are oroid sacs in xiv and $x v i$, dorsally situated, both however opening ventrally on xiv; ducts long and narrow.

Remarks. Only one specimen came under observation, and therefore some of the peculiarities mentioned above may be individual only-e.g., possibly the position of the spermatheca, and their opening on xiv (instead of on xiii, as usually in the genus).

The presence of a muscular sac in some species of the genus (ef. Beddard, 110, 112, and Benham, 114) is paralleled in Branchiura. Its function is recognized by Benham, who considers it to be a part of the atrial wall separated off.

Distribution. Nuwara Eliya, Ceylon.

Family ENCHY'TRÆID.E.

Small worms, aquatic or terrestrial in habit, whitish or in some genera pinkish in colour. Setæ mostly in four bundles per segment; dorsal and ventral setm sinilar in form, single-pointed, without distinct nodulus. No gizzard. Septal glands present, connected with septum $4 / 5$ and some following septa. Dorsal vessel exists only in the anterior part of the body, at its hinder end joining the intestinal plexus. Nephridia usually of compact form, a solid mass within which the tube undergoes a number of windings. Testes and ovaries in xi and xii respectively. Male funnels as a rule elongated, more or less barrel-shaped, composed of large glandular cells; deferent canal with glandular and muscular terminal apparatus, ending on xii. Spermathoce in v, opening in or behind groove $4 / 5$, not infrequeutly communicating with the œesophagus. (Occasionally the male and female organs are displaced 3 or 4 segments forwards, the spermathece keeping their typical position.)

This family is extremely common in Europe. where a very large number of species have been described in recent years. The family, like the Tubificidm, is apparently rare in India; and, as with the Tubificidm, and for the same reasons, the rarity is
probably in part apparent only. But it is likely that the family is in reality much less well represented than in the \mathbf{N}. Temperate zone.

Thus 85 species are recorded from Switzerland alone, as against some half dozen from India (it should be stated, however, that the Swiss species may not all turn out to be separate in reality, when the fauna has been more thoroughly investigated).

The two genera which are all that are known with certainty from India (Fridericia and Enchytreus) are ensily distinguished by the presence or absence of the characters mentioned under the genus F'ridericia.

Michaelsen (Tier. x, p. 105) puts Nais albida (Carter, Ann. Mag. N. H. ser. 3, vol. ii, p. 22, pl. iii, figs. 47, 48) as doubtfully an Enchytreeus. It was found at Bombay.

1. Genus FRIDERICIA Mich.

Mostly terrestrial. Setæ in four bundles per segment, of the Enchytricus-type, straight except for a proximal curve; in each bundle the setæ are disposed in pairs, the shorter being intercalated in between the longer, the shortest being thus in the middle of the bundle; sometimes only one pair of setæ in a bundle. Head-pore inostly small, between prostomium and first segment; dorsal pores exist mostly from vii backwards, sometimes from vi. Peptonephridia present. (Esophagus passes gradually into intestine. Chyle cells, with a canal in their interior, the canal opening into the lumen of the gut, and ciliated in part of its exteut at least, are a general feature of some part of the anterior alimentary tract. Dorsal vessel usually originates behind the clitellum. Blood colourless. Nephridia mostly with large anteseptal portion, in which the tube undergoes some windings. Vasa deferentia long. Spermathecæ usually communicating with the gut, simple or with diverticula.

The genus is easy of recognition, the disposition of the setæ, the dorsal pores, and the chyle cells being distinctive. The position of the chyle cells may be used as a specific distinction.

Distribution. Wagah, near Lahore; Darjiling Dist.; Purneah Dist., Bihar (an unidentified species, Stephenson, 1917, Rec. Ind. Mus., xiii, p. 364). Has a wide-alnost world-wide-distribution outside Indin.

Key to the Indian species of Fridericia.

1. Peptonephridia long tubes, male funnels com-
paratively small F. bullosa.
Peptonephridia small, solid, club-shaped; male funnels extremely large
F. carmichaeli.
2. Fridericia bulbosa (Rosa).
3. Fridericia bullosa, Stephenson, Rec. Ind. Mus. x, p. 334.
4. Fridericia bulbosa, Beddard, Monog. p. 343.
5. Fridericia bulbosa, Michaelsen, Tier. x, p. 90.

Length 4-15 mm.; seguents 30-46; pale greyish in colour, transparent. Setæ in bundles of 4 in anterior, of $\dot{\mathcal{L}}$ in posterior
part of body. Peptonephridia as simple or feebly ramified tubes, sometines merely bifurcated. Dorsal ressel post-clitellar in origin. Nephridia with large urn-shaped anteseptal portion, postseptal $2-3$ times as long, duct springing from the hinder end. Cerebral gangliou somewhat longer than broad. Male funuels 2-3 times as long as broad, with narrow everted margin. Spermathecæ communicating with the esophagus, without diverticulum, ampulla bulbous or of an inverted pear-shape, duct narrow, without glands, or surrounded by small gland-cells at its termination.

Remarks. The above is the diagnosis as it applies to European specimens. The worms found near Lahore do not correspond exactly, and the following notes are therefore appended.

Prostomium short, rounded; the setæ are not so regular as the above diagnosis would lead one to suppose; thus the lateral seta are usually two per bundle throughout the body (though there may be three in front of the clitellum) ; the veutral bundles in front of the clitellum may have only three setm in certain segments, or indeed only two. Dorsal pores from vii onwards. Septal glands in connection with septa $4 / \overline{5}, 5 / 6$, and $6 / \overline{7}$; stomach a marked dilatation in x and $x i$; intestine begins in xiv. Lymph corpuscles nuclented, the largest $22-27 \mu$ long. Nephridia small, anteseptal portion nearly as large as postseptal, the septum causing a marked constriction. Clitellum xii-xiii. No everted margin was seen in the male funnel, which was not more than twice as long as broad.

Thus there is no very exact correspondence; the worms may really belong to a different species.

Distribution. Wagah, near Lahore.

2. Fridericia carmichaeli Steph.

1915. Fridericia carmichaeli, Stephenson, Mem. Ind. Mus. vi, p. 47, pl. vi, tigs. 3-5.
Length ca. 15 mm .; diameter 0.4 mm . Segments ca. 64 . Prostomium rounded, semicircular. Setre usually 2 per bundle throughout; there may be three in the ventral bundles in front of the clitellum. Head-pore present; dorsal pores from vi onwards. Cœelomic corpuscles large, oval, nucleated, glandular, especially aggregated in vii, viii, and ix, surrounding setal fragments. Peptonephridia small, solid, club-shaped; septal glands in iv, \mathbf{v}, and vi; cesophagus passes gradually into intestine; chyle cells in xiv-xviii. Dorsal vessel extends backwards to xv; a small aggregate of cells in its interior in ix. Nephridia with relatively large anteseptal portion, one-third as long as the postseptal from which the duct originates ventrally at its hinder end. Cerebral ganglion a little longer than broad, rounded behind, concave in front. Clitellum slightly marked, xii-xiii. Male pores on conical papillæ. Male funnel with collar of
cubical cells, main mass very large, lumen excentric; vas deferens very fine, much coiled ; penial body small, compact, ovoid, on inner side of penial lumen. Ampullæ of spermathecæ ovoid, dorsally situated, continuous with esophagus; origin of duct from upper end of ampulla, invaginated into cavity of latter, its termination about the mid-lateral line, without gland cells.

Remarks. The presence of setal fragments in the body cavity may be compared with what happens in Enchytrous harurami; on the significance of this, as indicating a possibly excretory importance of the setæ, and parallels elsewhere, see Stephenson (80, Introduction).

Distribution. Rungneet Trea Estate, Darjiling Dist. (40005000 ft .).

2. Genus ENCHYTREUS Henle.

For the most part terrestrial (but all the Indian species so far described are aquatic). Setre straight, except at their proximal ends, where they are curved through an arc of a circle; singly pointed distally; all of a bundle of approximately equal length. No dorsal pores. Esophagus without any sharp delimitation from the intestine. Dorsal vessel originating behind the clitellum; no cardiac body. Spermathece without diverticulum, and communicating with the cesophagus. Vasa deferentia long.

It will be seen from the description of E. harurami that one or two of the above characters are not applicable there; the vasi deferentia are there comparatively short, and no communication between spermathecæ and œsophagas was observed.

Distribution. Lahore; Bombay; Chilka Lake; Ennur, near Madras. Outside India it is very widely distributed-almost world-wide.

Key to the Indien specres of Enchytræus.

1. Enchytræus barkudensis Stephl.

1915. Einchytreus burkudensis, Stephenson, Mem. Ind. Mus. v, p. 142, pl. x, figs. 1-4.
1916. Enchytreus barkudensis, Stephenson, Mem. Ind. Mus. vi, pp. 40, 43, 45, pl. vi, tigs. 1, 2 .
Length (preserved) $6-15 \mathrm{~mm}$.; diameter 0.3 mm ., filiform. Colour light brown (preserved) ; practically colourless in life. Segments 46-67. Prostomium rounded, very short. Setm 3 per bundle in both dorsal and ventral bundles in ii-xi, 2 thenceforward, except that there are none ventrally in xii. Coelomic corpuscles numerous in the anterior part of the animal, nucleated
and flattened plates, oval or broadly spindle-shaped, 28μ in average length. Intestine begins in xi, xiii, xv , or xvi . Peptonephridia club-shaped, small, inconspicuous. Septal glands in iv, v, and vi. Dorsal vessel very variable in place of origin-from xii to xxii. Nephridia with short anteseptal portion, one quarter the length of the postseptal, which is narrow and elongated, giving off the duct from its under surface one-third of its length from its hinder end. Lateral vascular cominissures four pairs, in ii-v. Clitellum not distinct. Testes in testis-sacs, which also contain spermmorulæ; funnels 2 or 3 times as long as broad; vas deferens long and coiled, the penial body a small hemispherical mass of cells round its termination. Ampulla of spermathece small, ovoid, communicating with cosophagus, duct narrow, long, with a few slight bends in its course, no glands round its termination.

Remarks. The worm lives in brackish water, the saline content of which varies considerably at different times of the year; it is found below the surface of the sand, in company with Pontodrilus bermudensis (in both places).

The sperm-sacs have the same form as those of E. harurami. The nephridia appear to be of variable form, and are sometimes pyramidal in shape. On the pharynx, and a possible sensory function of the pharyux in Enchytræids generally, see 80, p. 40.

Distribution. Barkuda Island, Chilka Lake; Ennur backwater, near Madras.

2. Enchytræus harurami Steph.

1914. Enchytraus harurami, Stephenson, Rec. Ind. Mus. x, p. 335, text-fig. 7, pl. xxxvi, fig. 1.
1915. Enchytraus harurami, Stephenson, Mem. Ind. Mus. vi, pp. 41, 43.
Length 4 mm . Colour opaque white. Segments 35 . Prostomium rounded; no head-pore or dorsal pores. Anterior end narrower than the posterior, gently tapering. Setæ 2 per bundle throughout, both in dorsal and ventral bundles, about 53μ long in the posterior, $40-46 \mu$ in the anterior part of the body. Coelomic corpuscles numerous, nucleated, in length $10-15 \mu$, oval, pearshaped, or spindleshaped. Septal glands in iv-vi as a connected lobulated mass on each side; peptonephridia in iv, extending into v ; intestine begins in xiii. Dorsal vessel begins in xii. Nephridia in vii-x, and again from xiv onwards; anteseptal portion short, a quarter the length of the postseptal, duct onethird to a quarter as long as the postseptal. Cerebral ganglion large, slightly indented behind. Clitellum not conspicuous, xii-siii. Sperm-sacs enclose testes and sperm-morulm; funnels relatively small, with a well-marked rim succeeded by a globular body, the whole resembling a thistle-funnel ; vas deferens straight, bending dorsalwards to enter upper surface of penial body, the latter a small spherical mass of tightly packed cells. Ampulla of spermathecæ spherical, small, marked off from the duct, no
opening into oesophagus, duct twice as long as ampulla, no diverticulum.

Remarks. The sperm-sacs appear not to correspond to those of the Naidida, which are produced by the backward bulging of certain septa; these rather appear to be due to the delamination of a superficial layer from the testis itself. Into this sac the sperm-morula fall off; but how the spermatozon when ripe make their way to the funnels is not exactly known (cf. 79, 80).

Concerning " excretory sete" in the body-cavity, cf. 80.
Distribution. Lahore (pond in Zoological Gardens).

3. Enchytræus indicus Stepl.

1912. Enchytraus indicus, Stephenson, liec. Ind. Mus. vii, p. 238, pl. xii, fig. 6.
Length (preserved) 4 mm . Colour brownish. Segments 31. Prostomium short, bluntly conical. Head-pore between prostomium and first segment. Setæ about 50μ long ; in ventral bundles 3 per bundle in ii-xi, absent in xii, 2 per bundle behind; dorsal setæ 2 per bundle throughout. Septal glands in ir, v, and vi ; peptonephridia in iv; intestine begins in xiv. Dorsal vessel originating in xiv. Nephridia with small anteseptal portion, and pear-shaped postseptal twice as long as anteseptal, its broad end anterior ; duct halt as long as postseptal. Cerebral ganglion not indented behind. Clitellum xii-xiii, absent midventrally. Malo funnels small; vas deferens coiled in the anterior part of xii, straight behind ; penial body spherical. No sperm-sacs. Ova in segments viii-xii. Ampulla of spermathece small, spherical or ovoid, (probably) communicating with the cesophagus; duct several times as long as ampulla, bent once or twice in its course.

Remarks. The worms were found in the egg-membranes of the pond-sinail Anıpullaria.

The occurrence of the penial body, a compact mass of glandular cells surrounding the end of the vas deferens, is noteworthy, since this structure has been supposed not to occur in the genus (cf. 68, p. 240). The seminal fumel also has here a form which is not very different from that found in other families-an intermediate condition between that and the "barrelshaped" fumnel usual in the Enchytræidæ.

Distribution. Bombay.
Species inquirenda Enchytreidarum.

Henlea (?) lefroyi Berld.

1905. Henlea lefroyi, Beddard, P. Z. S. p. 562.

Length 3-4 mm. Segments 27 . Colour white. No dorsal pores detected. Seta " of the usual Enchytræid form," curved; 2 in the lateral bundles (exceptionally 3), and 3 in the ventral. Septal glands in iv, \mathbf{v}, and vi, of equal size in the three segments.

Peptonephridia present but very short. CEsophagus not demarcated from intestine; no crea or pouches on gat. Dorsal vessel anteclitellar (segment xi) in origin; no cardiac body; no dorsal diverticulum as in Buchhotzia. Ortices of atria conspicnous on xii, in line with ventral setæ, which are absent here. No pemial setæ. Sperm funnels of the usual type, but details cannot be given. Spermathece open into esophagus in v; external openings in 4/' $\overline{5}$; no diverticulum.

Lefroy found that the worms attacked and destroyed the eggs of a locust of the genus Acriaizum, when the ground in which these are deposited is moist.

Michaelsen (Mem. Ind. Mns. i, 1909, p. 115) considers the genus to which the worm belongs uncertain; it may be a Marionina or Lumbricillus. Welch (Bull. Illinois Lab. x, 1914, p. 126) also criticizes the ascription of the worm to the genus Henlea.

Family MONILIG.AS'TRIDAE.

1ヶ00. Moniligastridæ, Michaelsen, Tier. x, p. 10@.
1910. Moniligastride, Smith and Green, l'roc. U.S. Nat. Mus. Iv, p. 145.

10:2. Moniligastridse, Stephenson, 1.Z.S. pp. 13.4, 135, 130, 142, 147.

Seta simple, pointed, sigmoid, four pairs per segment. Clitellum extending over 3 to 6 segments, including those bearmg the genital pores. Male pores one or two pairs, in or near grooves $10 / 11,11 / 12$ or $12 / 13$. Female pores one pair, in $11 / 12$ or on xiii or xiv. Spermathecal pores one or two pairs, in $7 / 8$ or $8 / 9$, or $7 / 8$ and $8 / 9$. (Esophagus with two gizzards anterior to x, or two to ten gizards at beginning of intestine. Last heart two segments in front of ovarian segment. Meganephridial. Testes and funnels one or two pairs, enclosed in one or two pairs of testis sacs; vasa deferentia opening into prostate glands, or independently of them. One pair of ovaries in the segment immediately in front of the groove or segment on which the female pores are situated; one pair of ovisacs extending backwards from the ovarian segment. One or two pairs of spermathece, with long tubular ducts.

The above definition is slightly modified from that current until recently, on account of the discovery of the new genus Syngenodrilus in British E. Africa. This worm is different in many respects from those previously known, and its discovery has necessitated the division of the family into two subfamilies, one of which contains Syngenodrilus only (Nyngenodrilinæ), the other all the forms previously known (Moniligastrinæ).

I have recently (98) discussed the phylogenetic history of the family, and of the individual genera, at some length. I consider the testis sacs of the Moniligastridæ, which differ in essential respects from those of other Oligochæta, as the morphological
equivalents of seyments. The ancestor of the family probably possessed three pairs of testes, in segments x, x i, and xii; three pairs of fummels, prostates, and male pores, the latter in furrows $11 / 12,12 / 13$, and $13 / 1+$; two pairs of ovaries, in segments xiii and xiv; and three pairs of spermatheca, opening in furrows $6 / 7,7 / 8$, and $8 / 9$.

Syngenodrilus is derived from the above form by a contraction, or huddling together, of the testis segments in such a way that the middle one is almost squeezed out of existence and the other two become testis sacs; by a corresponding reduction of the number of spermathece to two pairs opening in $7 / 8$ and $8 / 9$; and by the disappearance of the anterior pair of ovaries with their funnels and ducts.

Desmogaster is derived from the common ancestor by the contraction of the segments of the first and third pairs of testes to form testis sacs, and the disappearance of the middle pairs of male organs; by a corresponding diminution in the number of spermathecæ, the remaining pairs opening in $6 / 7$ and $7 / 8$; and by the disappearance, as in Syngenodrilus, of the anterior ovary with its funnel and duct.

Eupolygaster came into existence by the further disappearance of the posterior pair of male organs and the anterior pair of spermathecx of Desmogaster.
Dravida and Moniliyester originated from a form similar to Desmogaster by a contraction or haddling together of the testis segments like that in Syngenodrilus, but carried further, so that the testis sacs fuse, extinguishing the motervenug segment; the spermatheca are again reduced to one pair.

Distribution. The Moniligastrine are mainly found in S. India; also in Ceylon, Burma, Bengal, the E. Ilmalayas, and the other localities under Drawidu; outside India in the Malay Archipelago, Philippine lulamd, Japan, China, Caroline Islands, Bahamas. The Syngenodrina have been found only in British IS. Africa.

Subfamily MONILIGAS'TRIN門.

1890. Munilpastride, Rosa, Aum. Mus. Genova, (2) ix, pp. 368, :38(1, 391.
189.5. Moniligastridie, Beddard, Monog. p. 192.
1891. Moniligastrida', Michaelsen, Tıer. x, p. 109.
1892. Monilgastridac, Michaelsen, Mem. Ind. Mus. i, p. 117.
1893. Moniligastride, Michaelsen, Alh . Ver. Hamburg, ain, p. 20.
1894. Monilgastride, Stephenson, Rec. Ind. Mus. viii, p. 367.
1895. Moniligastrine, Smith and Green, Proc. U.S. Nat. Mus. lv, p. $14 \overline{5}$.

Male pores one or two pairs, in 10/11, or 11/12 and 12/13. (Esophagus with a number (2-10) of gizzards at the begimmg of the intestine. Vasa deferentia enter each a prostate.

The subfamily contains all the forms that have been accounted to the family until recent times, and coincides with the Moniligastride of previous authors up to 1919. The features which
distinguish the subfamily from the genus Synuenolvilus, which constitutes the subfamily Syngenodrilina, are (1) the position of the gizzards-in front of segment x in Syngenodrilus, at the beginning of the intestine in the Moniligastrine; (2) the

Chant I.

Distribution of endemic species of Moniligustridar in India.

presence in Syngenodrilus of prostate glands independent of the sperm-ducts ; the so-called "prostates" of the Moniligastrine are moditications of the terminal portions of the ducts themselves.

Distribution. As for the family, excluding British E. Africa. For a graphic representation of the Indian distribution of the subfamily cf. Chart 1.

Key to the generaof Moniligastrinæ.

Two pairs of male pores	Desmogaster.
One pair of male pores	2.
2. A stalked glandular mass, usually double, associated with the spermatheco	Moniligaster.
Spermathecæ without a stalked glandular mass in association	
3. Female pores in 11/12	Drawida.
Female pores anteriorly on xiii	Eupolygaster.

1. Genus DESMOGASTER Rosa.

1890. Desmugaster (typ. D. dorice), Rosa, Ann. Mus. Genova, (2) ix, p. 369.
1891. Desmogaster, Beddard, Monog. p. 905.
1892. Desmoyaster, Michaelsen, Tier. x, p. 110.
1893. Desmoyuster, Stephenson, P.Z. S. Pp. 136, 138, 144.

Two pairs of male pores, in $11 / 12$ and $12 / 13$; female pores anteriorly on xiv; spermathecal pores one or two pairs, in $7 / 8$ or $8 / 9$, or $7 / 8$ and $8 / 9$. Gizzards $7-10$, at the beginning of the intestine. Last heart in xi. Two pairs of testes and funnels, enclosed in sacs, on septa $10 / 11$ and 11/12. Two pairs of much elongated prostates. Ovaries in xiii; ovisacs extending back from septum 13:14. Spermathece without atrial dilatation or stalked glands at ectal end.

Distribution. Burma. Outside Iudia in Sumatra and Borneo.

1. Desmogaster doriæ liosa.

1890. Desmogaster dorire, Rosa, Ann. Mus. Genova, (シ) ix, p. 369, pl. xii, tigs. $2-11$.
1891. Desmoyaster doria, Beddard, Monog. p. 205.
1892. Desmogaster dorıce, Michaelsen, Tier. x, p. 111.

Length 500 mm. ; maximum diameter 12 mm . Segments 240-330. Colour yellowish brown, lighter ventrally. Prostomium prolobous. Setæ closely paired; no setæ visible on the most anterior segments; $a a=2 b c$. No dorsal pores. Nephridiopores just above b. Clitellum ? Male pores in cd. Female pores in ab. Spermathecal pores in $c d$, eyelike.

Septa 6/7-9/10 much thickened; a number of septa behind $8 / 9$ are displaced backwards, especially dorsally. Gizzards 10 , in xx-xxix, each occupying the anterior part only of its segment. The last two hearts larger than the rest, in \mathbf{x} and xi ; beneath these two pairs are other pairs close to the ossophagus, joining the lateral longitudinal vessels on the body-wall. Testis sacs suspended on $10 / 11$ and 11/12, projecting forwards and backwards. Vas deterens long, joining ental end of prostate. Prostates about 7 mm . long, tubular, slightly curved in S -shape, surface smooth ; multicellular pear-shaped glands contained within
the wall, peritoneal covering outside. Ovaries elongated, cylindrical, wary. Ovisacs elongated, in xiv and xv, extremity irregularly lobed, but surface not mammillary in appearance. Spermathecal ampulla of a flattened heart-shape, duct long and fine.

Distribution. Meteleo, Cheba or Biapo Dist., Burma.

2. Genus EUPOLYGASTER Mich.

1900. Eupolygaster, Michaelsen, Tier. x, p. 11ン.
1901. Eupolygaster, Michaelsen, Mem. Ind. Mus. i, pp. 117, 141. 1922. Eupolygaster, Stephenson, P.Z.S. pp. 136, 144.

Clitellum xii-xv (=4) (?). Male pores in 10/11; female pores on the anterior part of xiii ; spermathecal pores in $7 / 8$. Gizzards 4-7. Last heart in x. One pair of testes and funnels, enclosed in testis sacs on septum 9/10. Prostates long, sausage-shaped. Ovaries in xii ; ovisacs extending backwards from 12/13. Spermatheco without atrial dilatation or stalked glands at ectal end.

The name was introduced by Michaelsen in the Tierreich to replace Polygaster Horst, previously occupied. The relationships of the genus are discussed by Michaelsen and Stephenson.

Distribution. Burma. Outside India the genus occurs in Sumatra and Borneo.

1. Eupolygaster browni Mich.

1907. Eupolygaster Lrowni, Michaelsen, MIt. Mus. Hamburg, xxiv, p. 143.
1908. Eupolyyaster browni, Michaelsen, Mem. Ind. Mus. i, p. 139.

Length 150 mm . ; diameter $4-6 \mathrm{~mm}$. Segments 293 . Colour brownish. Prostomium broad, prolobous. First segment with a secondary furrow, exactly resembling an intersegmental groove. Setæ very small, especially in the anterior part of the body, inconspicuous or missing in the first 8 segments, closely paired; all ventral, $a a=2 \frac{1}{3} b c$ anteriorly, $=1 \frac{1}{2} b c$ posteriorly; $d l=$ ca. $\frac{2}{3} u$. Clitellum? Male pores just medial from c. Female pores ? Spermathecal pores in similar position to the male pores.

Septa 4/5-8/9 thickened; 9/10 displaced backwards dursally, as also some of the following. Gizzards 6, well developed, in xix-xxiv; a vestigial gizzard in xviii. Testis sacs rather small, not stalked, depending into x. Vas deferens long, irregularly undulating but not coiled, on hinder surface of $9 / 10$, enters ental end of prostate. Prostate tubular, bent in the form of a \mathbf{U}, long and thick, smooth, with muscular shimmer, ectal end a little enlarged. No ovarian chamber noted; ovisacs moderately long, somewhat undulating, extending back through several segments. Spermathece with irregularly pear-shaped ampulla, and long duct not sharply marked offi from ampulla, lying against hinder face of 7/8, irregularly winding. No atrial dilatation.

Remarks. If the groove on segment i is really an intersegmental
groove, the numbering of the segments in this species will have to be increased by one, and it will differ from the other species of the genus.

Distribution. Lashio, N. Sban IIIlls, Burma.

3. Genus MONILIGASTER E. Perr.

1872. Moniligaster (type M. deshayesi), E. Perrier, N. Arch. Mus. Parıs, viii, p. 130.
1895. Moniligaster. (part.), Beddard, Monog. p. 196.
1900. Moniliygaster, Michaelsen, Tier. x, p. 112.
1909. Moniliguster, Michaelsen, Mem. Ind. Mus. 1, p. 140.
1922. Monilignster, Stephenson, P. Z.S. pp. 141, 144.

One pair of male pores in 10/11, one pair of female pores in $11 / 12$, one pair of spermathecal pores in $7 / 8$. (iizzards 4 or 5 , in front of the intestine. Last pair of hearts in ix. One parr of testis sacs on septum $9 / 10$. Prostates with duct distinguishable from glandular part. Ovaries in xi. Ovisacs extending backwards from 11/12. Spermathece with a bifid muscular atrial chamber, each horn of which bears a lobulated glandular mass.

Michaelsen subjected the type-specimens of the genus to re-examination, and on the basis of this and of the examination of a second species the characters of the genus are now definitely determined.

The difference between this genus and Dravila is small, and consists only in the possessiou by Moniliguster of a pair of branched tubes opening into the two horns of the atrial chamber, or, as I should prefer to say, a pair of glands discharging each by its own canal into a common duct (cf. my description of M. cleshayesi, 80), and the absence of such an apparatus in Drawida. Michaelsen considers that it might be allowable to unite the two as Moniliguster s. l., or to consider them as subgenera of a larger genus Moniligastor s. l. (54). Compare, on the relationships of the genus, Stephenson (98).

Distribution. Cochin State; Travancore ; Palni IIills ; ? Ceylon.
Key to the specics of Moniligaster.
Prostates elongated backwards, at least as far as xiii.... M. deshayesi. Prostates contined to xi M. perrieri.

1. Moniligaster deshayesi E. Perr.

187․ Moniligaster deshayesi, F. Perrier, N. Arch. Mus. Paris, viii p. 130, pl. iv, figs. 77-84.
1895. Moniliguster deshayesi, Beddard, Monog. p. 199.
1900. Moniliyaster deshayeni, Michaelsen, Tier. x, p. 112.
1909. Moniligaster deshayest, Michaelsen, Mem. Ind. Mus. i, p. 149.
1910. Monilignater deshayesi, Michaelsen, Abh. Ver. Hamburg, xix, p. 54.
1915. Moniligaster deshayesi,Stephenson, Mem. Ind. Mus. vi, p. 57.

Length 150 mm .; diameter 6.5 mm . Colour a medium olive ventrally, darker dorsally with a bluish tinge. Segments ca.
184. Prostomium indistinct. Slightly thickened regions laterally in each segment. No dorsal pores. Setw closely paired, minute; $a a=b c$; $d \boldsymbol{l}$ slightly more than half circumference. Nephridiopores in $a b$ or $c d$, no regular alternation. Clitellum not well marked, x-xiii (=4). Male apertures small, between b and c, nearer b. Female pores indistinct, in b. Spermathecal pores minute, just below c, or in $c d$.

Septa $4 / 5$ and $5 / 6$ fused at their peripheral attachment ; 6/7$8 / 9$ much thickened. Gizzards four, in xv -xviii or xvi-xix. Testis sacs large, on posterior face of $9 / 10$, may extend back into xii; funnel fused with wall of sac. Vas deferens very long, with numerous loops which are bunched together, one bunch projecting into ix, another into x . Prostates very large, sausage-shaped, pearly white, extending back through several segments; vas passes back along it, fusing with it some little distance from its ental end; terminal part of prostate narrower, more shining, duct-like, rather twisted. Ovarian chamber present; ovisacs large, extending back through several segments. Spermatheca with broadly ovoid ampulla and coiled duct, which joins bifurcation of atrial appendage ; glandular appendage in vii, large, bifid, each half compact and rounded, with a yellownsh mammillated surface, the whole bound down to the ventral parietes and to septum $7 / 8$ by areolar tissue; the stalks of the two halves unite to form a common duct, which is not dilated.

Distribution. Parambikulam, Cochin State; Anachardie and Neduvangad, Travancore; ? Ceylon. (Michaelsen doubts the statement that Perrier's original specimen came from Ceylon.)

a. var. minor Mich.

1913. Momiligaster deshayesi var. minor. Michaelsen, Mt. Mus. Hamburg, xxx, p. 78.
Length 110 mm .; maximum diameter 4 mm . Segments ca. 200. Colour reddish grey with greenish iridescence. Prostomium prolobous. Setre very fine and very closely paired; a a is about equal to bc. Clitellum x-xiii, ring-shaped, but less distinct ventrally in x and xiii. Male pores about midway between b aud c, surrounded by small somewhat lighter areas. Five gizzards, the first small but not rudimentary. Testis sacs may extend back as far as xiv, after the manner of Drawida ghatensis. Prostates extend two or three segments backwards, duct not sharply delimited, smooth, spirally curved, half the length of the whole; glandular portion wavy in its course, chalky white, of glandular appearance, vas deferens entering its ental end. Ovisacs extend back to about xiv.

Remarlis. The atrial appendages appear to be essentially as in the type-form; the setæ, too, seem to be arranged similarly. The smaller size, the number of gizzards, and the smaller extent of the prostates distinguish the two.

b. var. gravelyi Steph.

1915. Mmiliyaster deshayesi var. gravelyi, Stephenson, Mem. Ind. Mus. vi, p. 59.
Length 130 mm .; diameter 5 mm . Dorsal surface a bluish grey, ventral surface lighter than dorsal; lateral regions thickened, lighter in colour than either dorsal or ventral regions. Prostomium absent (or invisible). $A a=b c$ approximately ; $d d=\frac{1}{2}$ circumference in middle of body. Nephridiopores in $a b$ or $c d$, no regular alternation. Male pores about midway between b and c.

Vas deferens enters prostate at its ental end. Prostate extends back to xiii, its surface presenting shallow depressions marking out ill-defined lobes. Atrial gland single, a short moderately stout duct being given off from its under surface; spermathecal duct joins atrial gland on its upper border.

Remarks. The distinguishing feature is the single character of the atrial gland. A specimen of the type-form which came under my examination showed a gland which was only indistinctly bifid, and so presented a transition to this variety.

Distribution. Trichur, Cochin State.

2. Moniligaster perrieri Mich.

> 1907. Moniligaster perrieri, Michaelsen, Mt. Mus. Hamburg, xxiv, p. I46.
> 1909. Moniligaster perrieri, Michaeleen, Mem. Ind. Mus. i, p. 1.0.
> 1913. Moniligaster perrieri, Michaelsen, Mt. Mus. Mamburg, xxx, p. 78.

Length 210 mm .; maximum diameter 5 mm . Segments ca. 175. Colour bluish grey, darker dorsally than ventrally. Prostomium prolobous or indistinctly zygolobous. Sety very small, very closely paired; $a a=h c ; \quad d d=c a . \frac{1}{2}$ circumference. Dorsal pores apparently absent. Nephridiopores in cd. Clitellum ringshaped, occupying $\frac{1}{3} \mathrm{ix}-\mathrm{xiv}\left(=5 \frac{1}{3}\right.$), less marked at the two ends. Male pores a little lateral from b, in hexagonal depressions the inner borders of which touch the lines of b. Female pores in $a b$. Spermathecal pores in $c d$.

Septa 6/7-8,9 moderately strong; $9 / 10$ attenuated, pushed back very far. Five gizzards in xvii-xxi ; the fourth strongest, thenceforward diminishingly strong as far as the first, the fifth the weakest of all, almost rudimentary. Testis sacs large, ovoid, depending backwards. Vas deferens enormously long, presenting a bunch of long narrow loops projecting forwards into ix. Prostates confined to xi, glandular part twice as long as thick, bent, surface mammillated, vas enters ental end, which is directed forwards; duct from under surface, a little thinner than glandular part, about as long as thick, nacreous in appearance. Ovisacs very large, thick, extending backwards through a number of segments, it may be as far as xx. Spermatheca resembles that of the previous species in all principal points except that the muscular atrial chamber and its horns are here shorter and thicker, and not so distinctly tubular.

Distribution. Kodaikanal and Tiger Shola, Palni Hills ; Ponmudi and Bonaccord, Travancore. In both the Travancore localities it was found in water.

4. Genus DRAWIDA Mich.

1845. Moniliguster (part.), Beddard, Monog. p. 196.
1846. Iraurida, Michaelsen, Tier. a, p. 114.
1847. Dravida, Michaelsen, Mem. Ind. Mus, i, pp. 117, 137.
192.2. Drawida, Stephenson, P. Z. S. pp. 141, 144.

Clitellum including the whole or the greater part of x-xiii. One pair of male pores in 10.11; female pores in 11/12; spermathecal pores in $7 / 8$. Two to eight gizzards at beginning of intestine. Last heart in ix. One pair of testes and fumels, enclosed within testis sacs which project from septum 9 ,10 into segment x or segments ix and x . Prostates of various form. Ovaries in xi; this segment may be reduced to a special ovarian chamber of characteristic form; one pair of ovisacs projecting backwards from septum 11 12. Spermathece with or without atrium-like dilatation at ectal end, without stalked glands.

Distribution. Southern ludia, also Ceylon: the Himalayas, esperially the Eastern; Bengal; Burma; also rarely in Central India; the Andaman Islands. Outside India an endemic (?) species has been found in Borneo (131), and peregrine species have been found in the Caroline lslands, Sumatra, the Sunda Islands, the Plulippine Islands, Japan, China, and the Bahamas.

This is one of the large Indian genera; only one species is known which does not occur in British India, - the one in Borneo. The genus presents many peculiarties.

The external features of the lining worms have not often been recorded, except by Bourne (28), who gives beautful colonred figures of a number of his species. The colours are verv various, but change in spirit, and are then less distmetive; while some species are deeply pigmented, others are pale, almost or quite without pigment.

The genus is remarkable in having, as ar rule, no dorsal pores (v. Introduction, Bionomics, p. 34) ; D. Larreelli is an exception, and pores are found in a vestigial condition in D. nepulensis and D. rosect.

In a few species rings of minute papill:o have been noticed, which, when well marked, resemble the small projections which bear the setre in Perichatine worms. They are visible only under a dissecting microscope, and occur most markedly in the anterior part of the body; they are also spen in the genus Moniligaster, and I have suggested that the are probably sensory. They have not, however, been investigated histologically.

There is sometimes to be seen a thickening of the lateral regions of the body (also found in Moniliyaster); in these cases the body-wall seems to be slightly swollen along each side in
about the middle third of the half circumference, and the inter-segmental grooves are deeper as they pass over this tract.

The setre are almost always very small and closely paired; they may be absent in segment ii, or even further back, in either the lateral or ventral bundles, or both; even when preseut, those of the most anterior segments may be very difficult to see. It is possible that this condition of the sete, like the absence of dorsal pores, may be related to a former aquatic habit : sete of the usual type would be of little use in locomotion in water or mud, and the norm would have to depend on wriggling movements only. Penial and copulatory sete are never found.

Genital markings are found comparati ely rarely.
Septa $5 / 6-8,9$ are nearly invariably thickened, sometimes to a remarkable degree; occasionally the thickening begins with $6 ; 7$. The remainder are thin; a few of the succeeding septa may be displaced somewhat backwards.

The number of gizards, and their position, are not constant within the various species; a difference of one or two in the number, and of one or two segments in thear position, is not uncommon. The :mallest number of gizzards is two, the largest eight; three to five are the commonest numbers; they are specially far back in 1). nilumburensis (some segments on each side of the thirtieth). All the gizairds may not reach the same degree of thickenng; those at the anterior end of the series may be more feebly dereloped, and it is sometimes diflicult to say where exactly the muscular development justifies the name of gizzard, the œsophagus becoming gradually more muscular orer several segments. In some cases again the muscular thickening is continuous from segment to segment, and there is but little constriction at the septa; while in others the segmental thickenings are separated from each other by soft rings where the alimentary wall is unmodified and thin. There is no evidence that the peculiar development of the esophagus is related to a harder nutriment-rather the reverse.

The last heart is always in segment ix.
The nephridia are meganephridia of a rather distinctive type, which I have described (98) in D. japonica. They do not appear to be of importance from a systematic point of view, and the above reference will therefore be sufficient.

Testes, male fumels, and developing sperm-morule are contained in special sacs connected with septum 9 ; 10 -suspended on the septum and projecting backwards into segment x or more commonly torwards and backwards into both ix and x; in the latter case they may be more or less constricted by the septum. 1 have argued (98) that the sacs represent a segment, the anterior and posterior walls of which have fused together for the most part, only remaining separate at the position of the sacs. This receives confirmation from the condition of the ovarian segment, where we see a similar contraction going forward, though without haring reached the same degree.

Thus in some species there is nothing unusual about segment
xi, the ovarian segment. In other cases it is narrow from front to back, and the anterior and posterior walls meet above, where they are inserted together into the dorsal parietes. In still other species septa $10 / 11$ and $11 / 12$ fuse dorsally for some distance downwards, so that on opening the animal the contents of the segment, which may now be called the ovarian chamber, are not at first displayed, and a segment appears to be missing. There are other peculiarities also in the cases of fully developed ovarian chamber, which I have described in the paper referred to above; septa $10 / 11$ and $11 / 12$ fuse together above and at the sides of the œesophagus, which is thus excluded from the chamber; and both are missing below, so that seginent x communicates directly with xii.

The prostate is the terminal part of the male deferent apparatus. Its form varies considerably; it may be an elongated cylinder, the thin vas deferens joining it at its ental end or at some point in its extent; or it may be a short cylinder, with the vas deferens joining it at its ental or sometimes apparently at its ectal end; or it may be reduced to a cushion-like circular or oval pad on the inner surface of the body-wall. Essentially it seems to be the thickened terminal part of the duct, the lumen widened and surrounded by a firm muscular coat, with a thick layer of large peritoneal cells on the surface; the narrow vas deferens thus enters normally at the ental end. In certain cases the vas deferens, although appearing to join the prostate lower down, can be separated from it and shown to become continuous with it at its ental end; in other cases this cannot be demonstrated by dissection, but sections show that in D. jeponica the condition is the same, as doubtless it is in other species also. The cushion-like form is thus to be looked on as a secondary shortening of the primitive cylindrical form.
The investment of peritoneal ("glandular") cells varies; in some cases it appears as a number of pear-shaped aggregations, in others as a mammillated covering, while in others the peritoneum seems to have its more usual characters, and the muscular coat of the prostate appears with the characteristic shimmer. The glandular cells do not appear to communicate with the lumen of the prostate (Stephenson, 98). The presence or absence of these glandular cells has some systematic importance; thus Michaelsen (58) establishes a closely related group of forms (the pellucida group) of which a smooth muscular prostate is one of the characters.

The spermathecæ have a characteristic form. They begin in an ovoid or pear-shaped ampulla, which is attached to the posterior face of septum $7 / 8$ by a mesentery, usually within the arch of the nephridium, and not far from the middle line; from the lower end of the ampulla passes the duct, long, fine, and coiled, also attached by mesentery to the septum; on reaching the ventrolateral body-wall the duct ends in one of several ways:-either it may immediately pass to the exterior without undergoing any
dilatation, or with only a slight dilatation which is concealed within the body-wall; or its terminal part may be expanded, the expansion being larger or smaller, simple or bifid,-the expansion being the continuation of the duct; or from the somewhat dilated terminal part of the duct a diverticulum may arise, sometimes of considerable size, narrow and elongated or broad and sac-like. The whole of this terminal apparatus is contained in segment vii, except that one horn of the bifid atrium may be situated on the posterior side of the septum.

Michaelsen (54) compares the several parts of this whole apparatus with the parts of the spermathecæ of the Megascolecidæ. In the Megascolecidæ the spermatozoa are contained in the diverticula, the main pouch being apparently glandular in function; the opposite is the case in the Moniligastridæ. Still it does not seem possible to homologize the ampulla of the Moniligastridæ with the diverticulum of the Megascolecidæ and vice versa; the invariable part of the Megascolecid apparatus is the main pouch, and so it is in the Moniligastridæ; these are therefore homologous with each other, and with the simpler organs of the lower families. The diverticula of the Megascolecida and the atrial sacs or branched glands of the Moniligastridæ (Drawida and Moniligaster) have been evolved independently, and so are not to be considered as homologous.

For the relationship of Drawida to Moniligaster, and the mode of derivation of the several genern of Moniligastrinæ from the common ancestor, see Michaelsen (54), and Stephenson (98).

In describing species of Drawida the important characters are the following:-Pigmentation; closeness of pairing of the setæ and relative extent of the intersetal intervals; the positions of the male, female, and spermathecal pores with reference to the setal lines; genital markings; uumber and position of gizzards; shape and position of testis sacs ; shape of prostate and condition of its surface; presence or absence of an ovarian chamber; description of atrium-its size, and presence or absence of sac-like appendage.

Key to the Indian species of the genus Drawida.

Two gizzards	2.
More than two gizzards	7.
2. Genital papillem present	3.
Genital papillı absent	5.
3. Prostates two pairs	1). scandens.
Prostates one pair	4.
4. Spermathecal atrium small, pear-shaped ..	D. japonica (part.).
Spermathecal atrium absent	D. modesta.
5. Setal interval aa less than bc.	1. travancorensis.
Setal interval aa equal to or greater than bc.	6.
6. Atrium a bilobed widening of end of spermathecal duct	D. minuta (part.).
Atrium a simple ovoid sac, duct entering its ectal end	D. willsi.

7. Spermathecal atrium absent 8.
Spermathecal atrium present 16. 16.
8. Setal interval $a a$ equal to or greater than $b c$. 9.
Setal interval an less than bc 14.
9. Spermathecal pores in or near or cd 10.
Spermathecal pores between b and c, butnearer b1). fakir.
10. Dorsal pores present D. barvelli. 11.
Doral pores absent
11. Male pores midway between b and c. 1). baruelli var.
impertusa (part.).
Male pores between b and c, but nearer to b.
Male pores between b and c, but nearer to c (just below c)D. pellucida (part.), 12.
D. Kicm.pi (part.).
12. Genital marking as a ridge on ix var. stercarti.No genital ridge13.
13. Non-pigmented f. typica (part.).Ileavily pigmenteavar. bournei.
14. Setal interval aa in middle of body equal to half $b c$ D. firidernci.
Setal interval aa in middle of body greater than half bc 15.
15. Complete ovarian chamber ; indefimite genital papille on segment x. 1). barvelli var. impertusa (part.).
D. rotunyana.on segment ix
Ovarian chamber incomplete or absent ; no genital papilla
16. pellucidu var.pallida (part.).
17. Atrium bilobed 17.
Atrium not bilobed 61.
18. Testis sacs much elongated backwards 18.
Testis sacs with the usual relations 19.
19. Each prostate composed of two finger- shaped structures side by side I. somavarpatana.
Each prostate a single ovoid or pear-shapedmassD. ghatensis.
20. Male and spermathecal pores in ab
Male pores between b and c, spermathecal pores in calD. minuta (part.).D. robusta, 20 .
21. Setal interval aa greater than bc var. typica.Setal interval aa not greater than bcvar. ophidioides.
22. Setal interval aa in middle of body equal to or greater than bc. 22.
Setal interval aa less than bc. 34.
2:2. Spermathecal atrium not separated off from end of spermathecal duct, of which it is a dilatation 23.
Atrium a sac or projection independent of ectal end of spermathecal duct 29.
23. Worm of large size, over 500 mm . long 1). nilaniburensis
Worm less than 250 mm . long 24.
24. Prostate elongated or teat-like 25.
Prostate hemispherical, hemiovoidal, or cuboid 26.
25. Ovarian chamber present 7. elegans.
No orarian chamber 1. uniqua.
26. Surface of prostate soft and glandular 27.
Surface of prostate smooth and muscular
27.
28.
29. No genital markings D. kempi (part.). Genital markings as semmal grooyes lead-ing backwards from near male poresJ). sulcuta.
Genital markings as oval thickenings on xi. D. kanurensis (part.).
30. Accessory glands in spermathecal region. No accessory glands in spermathecal region.1). shunkirai.
31. (łenital markings present
Genital markings absent 30.
32. Gental markings as discrete papillæ 31.
Genital markings as large transversely oval areas1). pellucida
f. typira (part.)1). japomica (part.).1). chalakimliana.
33. Gizzards about eight 1). deconeryi.
Gizzards about three or four 3\%.
34. Atrium small or moderate in size :3.
Atrium a large or very large sac 48.
35. Atrium teat-like; dd equal to half circum- ference 1. purambihulumana. Atrium small, pear-shaped; $d d$ greater than half circumference D. parcu.
36. Atrium a dilatition of the end of the sper- mathecal duct 3.).
Atrium an independent sac 4).
(3.), Prostates smuoth 36
Prostates glandular 38.
37. Length 500 mm . or more 1). gramis.
Length less than 200 mm 37.
38. Seminal grooves and ridges leading back-wards from male poresD. matthani.
No seminal grooves and ridges
39. Length about 500 mm .
Length less than 200 mm1. pellucida var.pallidu (part.).naruratamens's.
40. Ovarian chamber present; male pores midway between b and cI). supphirinaoides.
No or incomplete ovarian chamber; malepores nearer c than bD. chlorinu.
No or incomplete ovarian chamber: male pores nearer b than c; thickened patches on xi D. kamarensis (part.)
41. Body flattened vertically ; colour almost blackD. brunnea.
Shape and colour otherwise 41.
42. Atrium sac-like or pear-shaped 42.
Atrium narrow and elongated, finger- or club-shaped 4.5.
43. Setal interval dd equal to half circumference. 43.
Setal interval dd greater than half circum- ference 44.
44. Genital marking as a transverse oval area on x and $x i$ 1). annandalpt.Genital markings, if present, as smallpapillæ on vii, x, and $x i$1). papillifer.
45. Male and spermathecal pores in b. 1. ramnadana.
Male pores midway between b and c, sper-mathecal pores just below c; no genitalpapillm on xi.Male pores immediately outside b, sperma-thecal pores between b and c; genitalpapille on xiD. rosea.
46. Length less than 50 mm 46.
Length 100 mm . or more 47.
47. No genital markings D. affinis.Genital papillæ on vii.
D. jalpaigurensis.
48. Prostate smooth ; $d d$ greater than half circumference D. hodyarti.
Prostate glandular ; dd greater than halfcircumferenceD. rangamatiana.
49. Prostates thickly tubular D. burchardi.
Prostates flattened from side to side D paraloxa.

The preparation of the above key has presented difficulties; and where the comparatively few characters that have to be relied on do not chance to have been noted, or vary, or are described in ambiguous terms, it has been necessary to enter a species more than once in the key. Thus the number of gizards is variable within a species; the relative extent of the intersetal intervals $a a$ and $b c$ may perhaps vary according to the state of contraction of the body-wall at the time of fixation, or may be stated ambiguously ; e.g., "aa equal to or slightly less than $b c$ "; and, where all degrees exist, there is obviously room for difference of opinion in cases of very slight dilatation of the end of the spermathecal duct-does it exist, and should it be ranked as an atrium? In D. ghatensis I found variations in the gizzards and spermathecal atrium which would have necessitated so many entries that here I have been compelled to take account only of Michaelsen's original description.

The genus was established by Michaelsen in 1903 (38), being separated off from Moniligaster; a division had. previously been suggested by Rosa (Ann. Mus. Genova, xxxvi, p. 507). The distinction is in the spermathecal atrium ; in the worms which retain the name Moniligaster this has the form of a bifid muscular chamber, each horn of which bears a gland consisting of branched tubes; in Drawida there are no glands, and the atrium may be bifid, simple, a mere swelling of the end of the duct, or absent altogether. When first established, Michaelsen used Drawida as a feminine; and it so figures in his list of Indian worms in 1909 (54); in 1910 (125) he thinks it is more correct to make it masculine, and in his second Indian list (58) the specific names are altered accordingly. I have retained it as a feminine in the present work.

A number of species were described by A. G. Bourne during the earlier years of his residence in India; some of these were named, and a few characters noted, in a paper in 1886 (8), but the notes are in no sense a description of the worms. In a paper in 1894 (28) the descriptions are in certain cases somewhat amplified, but their baldness still leaves us wishing that the
author had been more generous. Beddard, when composing his Monograph of 1895, apparently had not this latter paper of Bourne's before him; at any rate he does not recognize any of Bourne's species as being sufficiently known for systematic purposes. Michaelsen (38) is more inclusive.

Moniligaster ruber, though it appears in both of Bourne's papers, is quite unrecognizable. Its length is stated to be about 100 mm ., the average diameter 3.5 mm ., the maximum near the anterior end 5 mm . (from the figure); the body-wall is thin, the organs showing through; from the figure the colour is brownish. The gizzards occupy segments xiii and xiv only. Found at Salem.

Moniliyaster papillatus, mentioned in Bourne's earlier paper, is characterized by the tubular projections bearing the male pores (this, however, is not of much value); the gizzards are in segments xvi-xx ; and it is said to be a much longer worm than any of the others mentioned in the same paper with the exception of M. grandis. In the second paper Bourne puts M. papillatus as a synonym of M. uniqua; no justitication is offered for thisindeed, M. uniqua is stated to be a small weak-looking worm. Michaelsen (38) accepts Bourne's identification; I think papillatus may be elimivated from consideration ultogether.
M. nucluvatamensis is one of Bourne's species which is admitted by Michaelsen in the Tierreich (38), and figures in his list of Indian species in 1909 (54); it is, however, omitted from his list of 1910 (58), but I cannot discover which species he has united it with. There are only two other species of anything like its length (500 mm .)-nilumburensis and grandis; from nilamburensis it is sufficiently distinct, and from grandis the glandular prostate should distinguish it; though Bourne remarks that it is very like M. grandis, occurs along with it, but may be easily distinguished by its small pointed prostomium.

A number of related groups of species can be distinguished. Thus Michaelsen (58) has subsumed D. bournei (with which D. pauli is identical) under D. pellucida as a variety, and holds D. grandis also to be related; I. friderici, barwelli, and uniqua may also belong to the same assemblage, and probably rotur!/ana also. Of these barvelli is a wanderer (Travancore, Burma, Philippine Islands, Caroline Islands, and the var. impertusa at Bombay); pellucida is found on the Nilgiris and in the Abor Country; uniqua and grendis occur in the Nilgiris, rotungana in the Abor Country, and friderici aud pellucide var. bournei in Ceylon.
D. parva and parambikulamana are much alike, and in the same group perhaps sulcata and lanarensis, and possibly burchardi, may be included. D. parva and sulcata are both from the Nilgiris, and paranbilculemana from Cochin not very far away; but kanarensis comes from some distance (roughly 300 miles) to the north, and burchardi from the Andamans and Sumatra; parve has also been found in the Aru Islands.
D. chlorina and sapphirinaoides are from the Nilgiris, and seem to resemble each other in most points.

Lastly there is a well-marked group of related species found at Ranganiati (Chittagong Hill Tracts); this consists of D. affinis, rangamatiana, hodgarti, and pruillifer ; jalpuignvensis, also related, comes from 340 miles to the north-west; the group has affinities with nepalensis, also found at Rangamati, and in addition at Katmandu, another 200 miles beyond Jalpaiguri; and perhaps with trarancorensis from S. India.

1. Drawida affinis Steph.

1917. Drawida affinis, Stephensen, liec. Ind. Mus. xiii, p. 368.

Length 37 mm ., maximum diameter 3 mm . Segments 115. Colour a medium grey. Prostomium small. Sete closely paired; $a a=\frac{3}{4}$ or $\frac{4 c}{2}$; $d d=\frac{1}{2}$ circumference. Nephridiopores in line with cal. Clitellum? Male pores inconspicuons, in b. Female pores? Spermathe al pores perhaps slightly ventral to c.

Septa 5/6-8/9 moderately thickened. Three gizzards, in xiiixv. Testis sacs wholly in x, oooid. Vas deferens narrow, coiled, in x. Prostate tubular, of several closely applied coils or loops, rather shiny, narrowing progressively towards ectal end ; joined by ras at a point ental to middle of its length. Ovarian chamber as in D. hodgurti. Ovisacs? Ampulla of spermatheca approximately spherical ; atrium as in D. hodgurti.

Remarks. Only a single specimen was obtained; the hinder end was regenerating. The worm belongs to the same group as hoclgarti (elongated prostate, much elongated spermathecal atrium); a distinction is the relatively narrow interval between the ventral setal bundles.

Distribution. Rangamati, Chittagong Hill Tracts, Bengal.

2. Drawida annandalei Steph.

1913. Dravida amnandalei, Stephenson Spol. Zeyl. viii, p. 261, pl. i, fig. 7.

Fig. 47.-Drawida annandalei Steph.; genital nrea.
Length 35 mm .; maximum diameter $1 \frac{3}{4} \mathrm{~mm}$. Colour olive. Segments 137. Prostomium prolobous. Setæ closely paired; aa
less than $b c$; $\quad d d=\frac{1}{2}$ circumference. Clitellum ircludes $\frac{3}{3}$ of \mathbf{x} and $\frac{2}{3}$ of xiii $\left(=3 \frac{1}{3}\right)$, not well marked. A genital area (textfig. 47) over groove $10 / 11$, darker in colour. transversely oval, extending from setae of x to those of xi ; within it a smaller oval area irtarked out by a slight ridge. Male pores in ab.

Septa 5/6-8/9 much thickened. Three gizzards, in xii-xiv. Testis sacs projecting forwards and backwards from septum $9 / 10$; ras deferens coiled, in ix and x, joins ental end of prostate, which is a vertical tube covered with a thick layer of glandular cells, the whole a short cylinder occupying the height of the segment, or directed forwards. Ovisacs extend backwards through several segments (to xvi), and are dilated at their hinder ends. A mpulla of spermatheca a relativelv small spherical sac; atrium of moderate size, sac-like, narrowing and becoming tubular at its base, where it is joined by the spermathecal duct.

Remarls. The specimen was single, and being of small size was investigated by means of sections. The species presents some resemblance to D. camnadana.

Distribution. Caveri River, Tanjore, S. India (in the mud below the water).

3. Drawida barwelli (Bedle.).

> 1890. Mmiliguster leddardii, Rosa, Amn. Mus. Genova, (2) ix, p. 379, pl. xii, fir. 12.
> 1895. Monligaster ban welli, Beddard, Monog. p. 200.
> 1900. Drawila baruelli, Michaelsen, Tier. x, p. 116.
> 1910. Drawida barrelic, Michaelsen, Abh. Ver. Hamburg, p. sl.
1886. Moniliguster: burwelli, Beddard, Amm. Mag. N. II. (5) xvii, p. 94, pl. ii, figs. 4-6.
1887. Momiliyaster barvelli, Beldard, Zool. Anz. x, p. 678.
1888. Momliyaster barreelli, Beddard, Quart. J. Mic. Sci. xxix, p. 119, pl. xii, figs. 10-13.
1891. Momiliy, ister barwelli, Beddard, Tr. Roy. Soc. Edin. xxxxi, p. 2, pl. figs. 1-10.

Length 30.38 mm .; maximum diameter 4.5 mm . Segments ra. 115. Colour yellowish to greenish brown. Body somewhat flattened. Prostominm withont dorsal process, small; segments i and ii short. Seta closely paired, $a a=l n$; on ii are small. Dorsal pores present. Nephridiopores in cel. Clitellum ringshaped, x-xiii $(=t)$. Male pores between b and c. Female pores in b. Spermathecal pores in c.

Septa $5 /(6-8 / 9$ much thickened. Gizzards three or four, in xiii or xiv to xv or xui. Testis sacs projecting forwards into ix or backwards into x : prostates pear-shaped, with a thick glandular investment. Ovaries in segment xi, which is very short; eggsacs absent(?). Spermathece with pear-shaped ampula, long duct. and no atrium.

Distribution. Kerumaadi, at S. end of Vembanand Lake, Travancore: Chiala, Padaung Dist., Burma. Outside India it
has been obtained from Jap I. (Carolines), from Lombok, and from Mauila; there is a doubtful record from Flores. It is thus one of the peregrine species of the genus.
a. var. impertusa Steph.
1920. Drawida barwelli var. impertusus, Stephenson, Mem. Ind. Mus. vii, p. 200.
Length ca. 45 mm .; diameter 3.5 mm . Segments ca. 130. Colour a blotchy olive, darker dorsally. Prostomium small, prolobous. Dorsal pores absent, indicated in some specimens as small pale dots, but no perforations. Setal interval aa rather less than $b c$, except at hinder end. Male pores bounded by very prominent anterior and posterior lips; a pair of indefinite but fairly large whitish papillie on the segment in front of the male pores. Four gizaards, in xiv-xrii. Prostates flat, sessile, almost circular. Oıarian chamber present, aunular; ovisacs present, extending back to xiii or xiv. Otherwise as for the typical furm.

Distribution. Bombay.

4. Drawida brunnea Step ${ }^{1}$ h.

1915. Drawida brumea, Stephenson, Mem. Ind. Mus. vi, p. 151.

Length 40 mm .; maximum diameter 5 mm . Segments 120 ; body short and relatively very broad, dorso-ventrally flattened. Colour alnost black dorsally, slightly lighter ventrally. Prostomium not recognizable. Setæ very small and very closely paired, not distinguishable in ii ; aa rather less than $b c$; $d d=\frac{1}{2}$ circumference. Clitellum? Male pores bordered by prominent lips, about midway between b and c. Female pores apparently between b and c, but nearer l. Spermathecal pores in cll.

Septa 5/6-8/9 somewhat thickened. Three gizzards, in xiii$x \mathrm{r}$, the first less firm than the others. Testis sacs large, projecting on hoth sides of $9 / 10$, more into x, not constricted by the septum; vas joins prostate on inner side; prostate opague white, oroid, with short moderately thick stalk, smooth but no muscular shimmer. Ovarian chamber with its roof at the dorsal parietes; funnel extends upwards on each side of gut nearly to mid-dorsal line; ovisac in xii, tapering towards its tree end. Spermathecal ampulla ovoid, atrium mammillary in shape, sessile on parietes, joined by the duct at its base.

Remarks. Perthaps related to D. travancorensis.
Distribution. Parambikulam, Cochin State.

5. Drawida burchardi Mich.

1909. Drawida burchardi, Michaelsen, Mem. Ind. Mus. i, p. 149.
1910. Drawida burchardi, Nichaelsen, Mt. Mus. Hamburg, xix, p. 7.

Length 50 mm .; diameter 1.4 mm . Segments ca. 181). Colour pure white. Prostomiun prolobous, very small. Setæ small,
closely paired; on segment $\times x a=b c, d d=$ just over half the circumference. Nephridiopores in cd. Clitellum? Male pores on large eye-shaped papillm lateral to $a b$, nearer $a b$ than $c d$. Female pores perhaps in $a b$. Spermathecal pores in $c d$.

Septa 5/6-8/9 uncommonly strongly thickened; 7/8-14/15 dorsally displaced backwards, $13 / 14$ most so (about half a segment). Three gizzards, in xv-xvii. Testis sacs project somewhat in front of the septum, and extensively behind into x and $x i$; funnel ventrally in testis sac, in x , fused with wall of sac. Vas uncommonly long, forming a large coil on each side of the septum. Prostates thickly tubular, either with or without glandular covering. Apparently no ovarian chamber; ovisacs long, irregularly bent. Spermathecal ampulla globular, its duct opening into the neck of a long slender pear-shaped atrial sac.

Distribution. Mt. Harriet, S. Andaman Island. Also outside India in Sumatra.
6. Drawida chalakudiana Steph.
1915. Dravida chalakudiana, Stephenson, Mem Ind. Mus. vi, p. 54 , pl. vii, fig. 7.

Length 41 mm .; diameter 1.5 mm . Segments 13.5. Colour bluish grey, darker dorsally. Prostomium prolobous. Setæ not very closely paired anteriorly; $a a=b c, \quad d d=\frac{1}{2}$ circumference. Nephridiopores (? always) in cd. Clitellum? Male pores in b, female in a, spermathecal in c. A transversely oval genital

Fig. 48.-Drawida chulakudiana Steph.; genital region, diagrammatic. A.. anterior genital area; b., light margin of posterior area; c., darker coloured interior of posterior area; d., a shallower part of groove 10/11; e., mediau tubercle.
marking (text-fig. 48) in 10/11, extending from the setal zone of x to that of x i, and in a transverse direction occupying the whole ventral surface; its margin white, the interior darker; included in the area a semicircular raised patch on x, with its
base at the furrow. A less well-marked and less extensive area, similar in shape, light in colour, thickened, bisected by $7 / 8$.

Septa 5:6-8/9 thickened, the first less than the rest. Three gizzards, in xiii-xv, not well marked. 'lestis sacs large, projecting more forwards into ix than backwards into x, not çonstricted by the septum. Vas enters prosiate at middle of its height. Prostate a large rectangular block, taking up the whole length of the segment, attached to the parietes by a somewhat narrowed base, soft in texture. Orarian chamber has the dorsal parietes for its roof ; ovisacs extend back to x vi, tubular, gradually narrowing behind. Spermathecal ampulla spherical, duct apparently joins atrium within the body-wall; atrium conspicuous, sac-like, cylindrical.

Distribution. Chalakudi, Cochin State.

7. Drawida chlorina (A. G. Bourne).

1894. Moniligaster chlorinc. Bourne, (Quart. J. Mic. Sci. xxxvi, p. 364, pl. xxiii, tig. \%.
1895. Drawida chlorina, Nlichaeken, Tier. x, p. 119.

Length 130 min . diameter $3 \frac{3}{3} \mathrm{~mm}$. Seginents 135 , not annulated. Colour slightly pigmented, greenish when put in spirit. Setæ absent from ii ; $c a=\frac{3}{4} b c, d d=c a$. $\frac{1}{2}$ circumference. Nephridiopores in cd. Male pores between b, and c, nearer (. Female pores in ab. Spermathecal pores in cal.

Septa 5/tj-8.9 thickened. Four gizzards, in xiv-xvii. Tentis sacs ovoid, with rather pointed ends. Prostates hemispherical, of glandular appearance. Ovaries not enclosed in an ovarian chamber. Spernathece with pear-shaped or ovoid ampulla and small atrial dilatation at ectal end.

Distribution. Ootacamund, S. India.

8. Drawida decourcyi Steph.

1914. Drawida decourcyi, Stephenson, Rec. Ind. Mus. vini, p. 373.

Length 100 mm . ; maximum diameter 8 mm . Segments 266 ; except the first four are biannulate as far as the middle of the body (vii and viii triannulate). Colour a dark bluish green dorsally, pale green elsewhere. Prostomium invisible. Seta closely paired, beginning on ii ; $a t=l a c, d d=\frac{4}{7}$ circumference. Clitellum? Male pores large curved slits with convexity backwards and somewhat inwards, their centre a little outside b, lying within a deep rectangular depression which includes more of x than of $x i$. Female pores in b (or between a alud b). Spermathecal pores below c, nearer c than b.

Septa 4/5-8/9 thickened, especially $5 / 6-8 / 9$. Eight giziards, in xviii-xxv, with an additional rudimentary gizzard in xvii ; the cesophagus is muscular even in front of xvii, as far as xv. Testis sacs confined to x; vas deferens a relatively immense closelypacked coil, larger than the testis sac, in ix and x. Prostate
oval, cushion-like, sessile ; surfare shining, muscular. Ovarian chamber present; ovisacs irregularly bulged, extending back into xiv. Ampulla of spermatheca subspherical ; duct joins atrium at base of latter; atrium an oral sac, partly in the body-wall, in length about equal to half that of the segnent in which it lies.

Remarks. The very large number of gizzards, and the immense vas deferens, are noteworthy features.

Distrihution. Rotung aud Renging, Abor Country, E. IImalayas.

9. Drawida elegans Rao.

1921. Drawodu elegans, Rao, Ann. Mag. N. H. (9), viii, p. 519 ; pl. ay, figs. $1 c, 2 c$; pl. xviii, tig. $10 d$.
1922. Draucida eleguns, Stephenson, Ann. Mag. N. H. (9), ix, p. 183.

Length 130 mm . ; maximum diameter $\overline{5} \mathrm{~mm}$. Segments 206; viii-xviii bs- or triannular. Colour grey, non-pigmented. Prostomium retractile, prolobous. No dorsal pores. Nephridiopores in line with lateral seta. Setæ closely paired; $a a=b c$, $d d=\frac{1}{2}$ circuinference. Clitellum? Male pores small, a little outside line of b. Female pores minute, in b. Spermathecal pores in line with c.

Septa 5/6-8;9 exceptionally stout. Fine gizards, in xii-xvi, the first rudimentary. 'lestis sacs depending into x; vas deferens a very bulky coil in ix and x, enters prostate near ental end of latter. Prostates elongated, no separate stalk. Ovarian chamber present. Uvisacs in xii, hinder end bent forwards, narrower. Spermathecal atrium large, much larger than ampulla, shortly pear-shaped, narrower end on the body-wall; sluct enters its upper pole.

Distribution. Bhagamandla, C'oorg, S. India.

10. Drawida fakir ('uyn.

1911. Inrawidu. fakir, ('ognetti, Ann. Mag. N. II. (8), vii, p. 495, pl. גini, tios. 1 is.
Sength 85 mm : maximum diameter 3 mm . Segments 9R. Colour a uniform lilac-grey. Prostomium prolobous. Seta closely paired ; $u n=b c$, ild $=a$ little more than half the circumference. Dorsal pores not seen. Nephidiopores in d. Clitellam? Male tubercles a little lateral to b, small, conical, contained in two small and not very deep pouches, like those of D. sulcata. Female pores in b. Spermathecal pores a little lateral to b.

Septa 6/7-8/9 somewhat thickened. Four gizzards, in xiii-xvi. Last heart in ix : in x a pair of trunks arise, which are directed backwards, joining the subueural at the anterior face of septum 11/12. Testis sa's project on both sides of $9 / 10$, the inteseptal part again divided by a constriction, the postseptal part the larger. Vasa deferentia short and a little wavy. Prostates white, tubular, closely coiled, of equal thickness throughout, muscular at
the ectal end, joined by the vas at the ental end. Ovaries enclosed in a thin-walled pericesophageal capsule (=ovarian chamber). Ovisacs cylindrical, in xii, folded on themselves. Ampulla of spermatheca globular, duct loosely coiled; no muscular atrial chamber.

Distribution. Arumanallur, 45 km . S.E. of Trivandrum, S. India.

11. Drawida friderici (Mich.).

1897. Moniliyuster friderici, Nichaelsen, Mt. Mus. Hamburg, xiv, p. 169 .
1898. Drawida friderici, Michaelsen, Tier. x, p. 115.
1899. Drawida friderici, Michaelsen, Abin. Ver. Hamburg, xin, p. 49.
1900. Drauida friderici, Michaelsen, Mt. Mus. Mamburg, xax, p. 74.

Length 165 mm .; diameter $6-7 \mathrm{~mm}$. Segments ca. :370; secondary amulation on vii-xiii, most marked on x-xii, where the segments are triannulate or (xii) quadriannulate. Prostomium zygolobous. Posterior end tapering. Dorsal pores represented by pits on inner surface of body-wall. Seta closely paired; c and d much finer than a and $b ; a a=1 b c$ in middle and hinder parts of body, bc smaller in the anterior part, and in front of xi $a a=b c$: $d d$ less than $\frac{1}{2}$ circumference in middle and hinder parts of body. Nephridiopores in middle of body in ccl. Chitellum? Male pores just above b, on prominent papille. Female pores in ab (?). Spermathecal pores just below c.

Septa 5/6-8;: thickened; 9/1,0-11:12 displaced barkwards dors:llly. Three gizzards, in xiii-xv, the first feebly developed; traces of thickening in xii. Testis sacs strongly constricted by the septum. Prostates thicily ovoid, sessile, smooth. ()arian chamber probably not present: ovisacs long, thin, tubular, reaching as far as xiv. Spermatheca with sac-shaped ampulla; no atrial dilatation.

Remarks. The distinction from the pellucide group is principally in the setal relations; here aa : $b c=1: 2$, and the dorsal setæ are considerably simaller and closer together ($c d=\frac{1}{2} a b$) than in that group of forms (Michaelsen, 58).

Distribution. Trincumali, N. Province, Ceylon.

12. Drawida ghatensis Mich.

1910. Dravida ghatensis, Michaelsen, Abh. Ver. Hamburg, xix, p. 52, pl. figs. 1, 2.
1911. Drawida ghatensis, Michaelsen, Mt. Mu-. Mamburg, xxx, p. 77.
1912. Drawida ghateusis, Stephenson, Mem. Ind. Mus. vi, p. 49, pl. vii, fig. 6.
Dimensions vary considerably; length $80-195 \mathrm{~mm}$. diameter $2-7 \mathrm{~mm}$. Segments 145-186. Colour grey-brown, with bluish-
green pigmentation dorsally at anterior end. Lateral regions in anterior part of animal appear thickened. Prostomium prolobous or zygolobous. Setæ fairly closely paired; aa slightly greater than $b c$; dd slightly greater than $\frac{1}{2}$ circumference; one or two of the anterior segments may lack setæ, ventral or lateral or both. Nephridiopores usually in $c d$ up to $x v$, behind xv in ab or $c d$. Clitellum x -xiii, interrupted between the lines of setæ a. Male pores about midway between b and c. Female pores in $a b$. Spermathecal pores just below c, the upper end touching the line c.

Gizzards variable in number and position; four, in xvi-xix or xix-xxii ; or six, in xiv-xix or xvi-xxi. Testis sacs situated far back, in extreme cases in xiii-xvi, taking up several segments, connected by a narrow neck with septum 9/10. Vas deferens winding or coiled, lying partly in the neek of the sac. Prostates ovoid or thickly pear-shaped, with investment of glandular cells. Ovarian chamber present; ovisacs reach back to xv or xvi. Spermathecal ampulla thickly pear-shaped. Atrium variable ;large, with bilobed cavity, duct entering atrimm in the depression between the lobes; or an upwardly-projecting papilla; or ovoid and sessile on body-wall; or embedded in a recess in the bodywall and not projecting.

Remarks. A variable species, especially in regard to size, gizzards, and spermathecal atrium.

Iistribution. Tenmala, Maddathoray, and Kulattupuzha at the foot of the western slopes of the Western Ghats, in Travancore; Kottayam, Ponmudi, Bonaccord, also in Traa ancore; Kavalai, and on the Forest Tramway, in Cochin State.

13. Drawida grandis (A. E. Bourne).

1886. Momiliguster grondis, Bourne, l'. Z. S. p. 671.
1887. Momligaster grandix, Bourne, Quart. J. Mic. Sci. xxxvi, p. $30 \overline{\mathrm{~T}}$, pls. xxii, xxır, xxv fig. 27. xxvi figs. 31-34, $37-41$, xxili, xxviii.
1888. Momligaster grundis, Beddard, Monog. p. 198.
1889. Drawida grandis, Michaelsen, Tier. x, p. 11 亿.
1890. Dravida grandis, Nichaelsen, Abl. Ver. Hamburg, xix, p. 48.

Length of a normally extended specimen 520 mm , stretcied out after bad preservation may be 1080 mm .; average diameter ca. 12 mm . Segments $266 ;-480$; anterior segments (iv-x) multiannular. Almost without pigment, in life a clear brown. Prostomium prolobous. Sere small, closely paired; a less than $b c, d d=\frac{1}{2}$ circumference; absent on ii, only the ventral present on iii. Nephridiopores in cd, or (in iii-ix) above this level. Clitellum includes $\frac{5}{8}$ of x-xiii $\left(=3 \frac{5}{6}\right)$; saddle-shaped in front, in xiii ring-shaped. Male pores just above b. Females pores in $a b$. Spermathecal pores just below c.

Septa $5 / 6-8 / 9$ much thickened: $9 / 10$ and $10 / 11$ displaced backwards ($9 / 10$ is attached normally ventrally). Five gizzards,
in xvii or xuiii to xxi or xxii. Testis sacs oval, projecting into hoth ix and x; bas extremelv long, $9 \frac{1}{2}$ inches when unravelled. Prostates cushion-like, circular, not glandular in appearance. Ovaries in an ovarian chamber: ovisacs tubular, extending into xv. Spermathecal ampulla pear-shaped; a small atrial enlargement of the duct, embedded in the body-wall.

Remarls. Belongs to the pellucida group (Michaelsen, 58). Bourne remarks that before the rains this worm is only found deep down, and that in May he has made coolies dig as fir down as $9-10 \mathrm{ft}$. before coming upon any worms; in June, after rain, they were found quite near the surface, or even crawling about on the ground.

Distribution. Naduratam, Nilgiris: widely spread on the Nilgiris at elevations of from 5000-8000 ft.

14. Drawida hodgarti Steph.

1917. Draviela hodyarti, Stephemon, Rec. Ind. Mus. xiii, p. 36fi, pl. xvi, fig. ※.
Length 113 mm .; maximum diameter $3 \cdot 75 \mathrm{~mm}$. Segments 164 . Colour non-pigmented, a uniform grey. Prostomium prolobous. Setw small and closely paired; ad less than be; del more than $\frac{1}{2}$ circumference. Nephridiopores in line with c. Clitellum? Male pores with swollen anterior lip, their centre just outside b. Female pores doubtfully in al, or b. Spermathecal pores junt internal to c.

Septa $5,6-8,9$ thickened. Four gizzards, in a1-xviii ; a siight strengthening of the resophagus in xir. Testis sacs kodney-shaped, in x, projecting sometimes slightly into ix also. Prostates (text-fig. 49) small, tubular, with shining surface, slightly colled,

Fig. 49.-Draucida hodgarti Steph. ; prostate with ras (eferens entering (the apirally coiled end is the actal).
ental end slightly dilated; vas deferens joinng anterior face of prostate. Ovarian chamber bounded by body-wall ahove, but alimentary camal excluded; ovisacs small, finger-shaped, confined to xii. Spermathecal ampulla small, roundly ovoid; atrium in vii. finger-like, joined by duct within the body-wall.

Remarks. Related by form of atrium to jalpaigurensis and travancorensis.

Distribution. Kangamati, Chittagong Hill Tracts, Bengal.

15. Drawida jalpaigurensis Steph.

1916. Irawida jalpaiyurensis, Stephenson, Rec. Ind. Mus. xii, p. 307, pl. xxx, figs. 4, i.

Length ca. $\because 3 \mathrm{~mm}$.; diameter 2 mm . Segments 106. Colour dark grey, lighter at anterior end. Prostomium prolobous (?), relatively large; first segment very short. Setax small, very closely paired; aa less than $b c$; $d d=\frac{1}{2}$ circumference. Clitellum x-xiv (?). Male pores on prominent oval papilla, the long diameter transversely over groove $10 / 11$; longitudinally the papilla take up half the length of segments x and $x i$; the pores between b and c, nearer to b. Spermathecal pores between b and c, nearer to c. A pair of genital papilla anteriorly on vii, flattopped and circular, their centres midway between b and c.

Septa 5 (6-8/9 considerably thickened. Four gizzards, in aii-xv, that in xii smaller than the rest; gizards separated from each other by thinner rings. Testis saes projecting into x, large, subovoid, attached to the septum only by a narrow neck. Tas deferens comparatively short, wavy. Prostate (text-fig. 50)

Fig. 50.-Drawida pulpruifurensis Steph. ; prostate of left sido.

Fig. 51.-Draurda jalpangurenses Stepl.; diagranmatic sketch to show relations of parts at ectal end of spermathecal apparatus, a., utrum: at.s., atraal sac ; d., spermathecal duct ; s, sept um T/8.
vertically flattened, shape varies, margin lobulated. Ovarian chamber appareutly not developed. Spermathecal ampulla large, ovoid; atrium a simple projection on imner surface of body-wall, from which arises an upwardly-projecting stalked sac, of a much elongated ovoid shape, the stalk being half as thick and half as long as the sac proper (text-fig. 51).

Remarks. The atrium resembles that of D. travancorensis. The surface of the prostate seems to be glandular, though this is not stated in the original description. The species is described from a single specimen, in a bad state of preservation.

Distribution. Jalpaiguri, at the base of the Eastern Himalayas.

16. Drawida japonica Mich., f. typica.

1917. Drarida japonica f. typica, Stephenson, Rec. Ind. Mus. xiii, p. 366, pl. xvi, fig. ì.
192.2. Draucide japonica, Stephenson, P. Z. S. p. 119, pl. i, figs. 1-6.
1918. Moniligaster japonicus, Nichaelsen, Mrch. f. Naturgesch. lviii (1), p. 23.).
189.2. Moniligaster bahamensis, Beddard, P. Z. S. p. 690, pl. xliv.
1919. Moniligaster japonicus+M. buhamensis, Meddard, Monog. pp. 201, 202.
1920. Drawida japonica + D. bahamensis, Nichaelsen, Tier. x, pp. 115, 118.
1921. Drawida japonicus, Michaelsen, Mt. Mus. Hamburg, xxvii, p. 48.

Length 28-60 mm.; diameter $2-3 \mathrm{~mm}$. Segments up to 14 . Colour grey or greenish grey. Prostomium small, prolobous. Setæ closely paired; $a a=b c$; $d d=\frac{1}{2}$ circumference : setæ small or in part absent on ii, large on genital region. Nephridiopores in three situations-not far from the mid-lorsal line, or in line with $c d$, or with $a b$, but no regular alternation. C'litellam

Fig. 52. - Drawida japonica Mich.; genital region, showing papilla and inale apertures (δ).
inconspicuous. Male pores between b and c, nearer b, on small tubercles. Spermathecal pores just below c. Genital papillo variable, but apparently always present in the sexual animals; paired or unpaired, two, three, or four in number, on vii-ix and xii; each a transversely oval patch, slightly raised, with a circular groove in the centre (text-fig. 52).
Septa $5 / 6-8 / 9$ thickened, especially $6 / 7$ and $7 / 8$. Two or three gizzards, large and spherical, except the first if there are three, which is smaller; in xii and xiii, or xi-xiii. Testis sacs spherical, projecting mostly int, x. Prostates thickly and shortly tubular, with glandular surface. Ovarian chamber present; ovisacs
thickly tubular, irregularly thickened and twisted, reaching to about xvi. Spermathecal ampulla pear-shaped, duct very long and thin, loosely coiled, altogether in viii; atrium small, pearshaped, projecting backwards in viii, joined below by the duct.

Remarks. The first description of this species was incomplete, and Beddard, who shortly afterwards met with it, described his specimens as a different species. Michaelsen in 1910 subjected his original specimens to a re-examination, and having also a new batch of material before him from China, was enabled to establish the identity of Beddard's species with his own. Up to this time the worm had been found in China, Japan, and the Bahamas, but not in India. I have lately found it in India, but far from the proper Drawida region-viz. in the W. Himalayas. The worm is thus a wanderer of a pronounced type.

The immature Drawida from Simla, said by Michaelsen (54) "probably, or rather doubtless" to belong to D. willsi, should, I think, be referred to this species.

I have recently (98) given a detailed account of the anatomy of the reproductive system and nephridia in this worm.

Distribution. Murree and probably Simla, in the W. Himalayas. Outside India has spread to China, Japan, and the Bahamas.

17. Drawida kanarensis Steph.

1917. Dravida kanarensis, Stephenson, Rec. Ind. Mus. xiii, p. 364.

Length 60-70 mm.; maximum diameter 3.5 mm . Segments 150-173. Colour pale grey, :unterior end rather lighter. Prostomium small, pro- or zygolobous (?). Setæ small, closely paired; a a equal to or rather less the $b c$; $d d=$ ca. $\frac{4}{7}$ circumference. Clitellum saddle-shaped, x-xiii ($=4$), limits rather indefinite. Male pores external to b, but nearer to b than c. Female pores in b. Spermathecal pores just below c. A pair of oval thickened patches on xi, not always present; setæ ab placed on the inner portion of the patch.
Septa $5 / 6-8 / 9$ thickened, especially the first three. Four gizzards, in xiii-xiv or xiv-xvii, the first or the last smaller than the others. Testis sacs with the longer part in x, not constricted; terminal part of vas deferens rather thicker than the rest. Prostate of moderate size, hemiovoidal, sessile, surface soft and yellowish. No ovarian chamber; ovisacs large, ovoid, in xiv, connected by a neck with septum 11/12. Spermathecal ampulla large, irregular in shape; atrium a cushion-like swelling partly embedded in the body-wall, several times as thick as the duct.

Remarks. Near D. parva; the genital markings of this species (which are not always present) are the chief difference.

Distribution. Castle Rock and Talewadi, N. Kanara Dist., Bombay Pres.

18. Drawida kempi Steph.

1914. Draweida kempi, Stephenson, Hec. Ind. Mus. viii, p. 376.

Length 75 mm . ; diameter 5 mm . Segments l2\%. Colour light olive-green. Prostomium small, prolobous. Sete closely paired : $a a=b c ; d d=\frac{4}{7}$ circumference; ventral pairs more approximated in posterior part of body. Male pores on small papille, the centre of the papilla just within the line c; each papilla in a darker area, which is grooved at its anterior and posterior margins. Female pores in b. Spermathecal pores in cor col.

Septa 5/6-8/9 thickened, the last most so. Four gizzards, in xvi-xix ; the first smallest ; a thickened part of the œenophagus in $x y$ (rudimentary gizzard). Testis sacs constricted by the septum, projecting equally forwards and backwards; vas not much coiled. Prostate large, cuboid, with narrow attachment to bodywall, and glandular surface. Ovarian chamber present; ovisacs reach xiv or xr , a relatively narrow neek passes through xii and xiii, and the sace swell out behind this. Spermathecal ampulla ovoid, duct much conled, atrial dilatation small or absent.

Remarks. The single specimen was found under a stone in water. The form seems to come near D. pellucidr, of which it might. but for the statement as to the ovarian chamber (which however is not rery precise in the original), form a variety.
I)istribution. Egar Stream, between Rotung and Renging, Abor Country.

19. Drawida matthaii Mich.

1910. Drawida matthaii, Michaelsen, Abh. Ver. Hamburg, xix, p. 47.

Length 110-160 mm. ; diameter $2-5 \mathrm{~mm}$. Segments 24()-250. Unpigmented, white to grey. Prostomium? Seta fine, very closely paired ; anteriorly $a a=b c$; in middle of body acc is barely $\frac{1}{2} b c$: $d d$ is about $\frac{1}{2}$ circumference, perbaps a little more at the anterior end, a little less in the middle of the body. Nephridiopores in cd. Clitellum x-xiii $(=4)$; wanting ventrally in x and xi. Male pores just lateral to b, slit-like, surrounded by large circular areolæ; from the hinder margin of each areola passes a ridge, convex outwards, ending just in front of $11 / 12$ somewhat lateral from the female pores; a fine groove runs along the ridge. Female pores in b. Spermathecal pores small, eye-like, their centre just internal to c.

Septa 5/6-8/9 much thickened. Three gizzards, in xiv-xvi (?), the first much smaller than the others. Testis sacs irregularly ovoid, not constricted by the septum, the part in x rather the larger. Prostates spherical, flattened below, sessile, with a smooth surface. Ovarian chamber present; apparently no ovisacs. Spermathecal ampulla large, thickly pear-shaped; duct very long, loosely coiled ; atrial swelling small, about double as thick as the duct, concealed entirely in the septum and body-wall.

Remarks. A spermatic groove is present also in D. sulcata. In a subsequent paper (70) Michaelsen lays stress on a secondary annulation of the segments on each side of the male pores (x and $x i$); the annulation is only present on the ventral surface, and is better marked in D. sulcata than in the present species. The grooves seem to be merely transverse grooves in front of and behind the apertures, produced perhaps by muscular contraction.

Distribution. Calicut, on the Malabar Coast.
20. Drawida minuta (A. G. Bourne).
1886. Monligaster minutus, Bourne, P. Z.S. p. 67\%.
1894. Moniligaster minuta, Bourne, Quart. J. Mic. Sci. xxxvi, p. 37., pl. xxiii, fig. 12.
1895. Moniligaster minutus, Beddard, Monog. p. 199.
1900. Drawida minuta, Michaelsen, Tier. x, p. 120.

Length 17 mm .: diameter $1 \frac{3}{4} \mathrm{~mm}$. Segments 150 . Strongly pigmented. The interval be scarcely greater than $a \alpha ; d d$ scarcely greater than $\frac{1}{2}$ circumference; setæ present on segment ii. Nephridiopores in cd. Male pores, female pores, and spermathecal pores in al.

Septa $5 /(i-8 / 9$ very slightly thickened. Two or three gizzards, in xii to xiii or xiv. Testis sacs ovoid. Prostates hemispherical. No ovarian chamber; ovisacs extend back at least to xr:. Spermathecal ampulla ovoid; atrium a bifid widening of the duct at its ectal end.

Distribution. Salem, Madras Pres. ; widely spread in the Madras Presidency at sea-level and up to about 6000 ft .

21. Drawida modesta Rao.

1921. Drawida modesta, Rao, Amn. Mag. N. II. (9), viii, p. 525, pl. xv, figs. 1D, 2D.
1922. Drawida modesta, Stephenson, Ann. Mag. N. H (9), ix, p. 134.

Length 75 mm .; diameter 4 mm . Segments ca. 207. Colour brown. Prostomium? Dorsal pores absent. Nephridiopores apparently in line with setæ d. Setre closely paired; $u a=b c, d d=$ $\frac{1}{2}$ circumference or slightly more. Clitellum? Male area resembles that of D. somavarpatana; male pores have prominent anterior and posterior lips, just outside the line of setæ b; transverse groove-like depressions before and behind the pores; midventral regions of \mathbf{x} and xi somewhat depressed. Female pores? Spermathecal pores slightly outside the line of seta l; a slightly elevated transversely oval flat papilla in front of each spermathecal aperture.

Septa $5 / 6-8 / 9$ thickened. Two gizzards, in xii and xiii. Testis sacs project into both ix and x. Prostates small, soft, transversely oval, sessile. Ovarian chamber apparently present; ovisacs extend back into xiii. No visible spermathecal atrium.

Distribution. Moornad, Coorg, S. India.
22. Drawida naduvatamensis (A. G. Bourne).
1894. Moniligaster naduvatamensis, Bourne, Quart. J. Mic. Sci. xxxvi, p. 361.
1900. Drauida naduvatamensis, Michaelsen, Tier. x, p. 117.

Length 500 mm . ; diameter 5 mm . Segments 400. Without pigment. Prostomium small, pointed. Setæ closely paired; aa smaller than $b c$; $d d$ greater than $\frac{1}{2}$ circumference. Nephridiopores in $c d$. Male pores between b and c.

Septa 5/6-8/9 moderately thickened. Three gizzards, in xvxvii. Testis sacs slightly kidney-shaped. Prostates appear glandular. No ovarian chamber. Spermathecal ampulla pearshaped to spherical ; atrium a small simple widening of the duct, embedded in the body-wall.

Remarks. On the specific distinctness of this worm cf. p. 131.
Distribution. Naduvatam, Nilgiris, S. India.

23. Drawida nepalensis Mich.

1907. Dravida nepalensis Michaelsen, Mt. Mus. Hamburg, xxiv, p. 146.
1908. Dravida nepalensis, Michaelsen, Mem. Ind. Mus. i, p. 147, pl. xiii, fig. 1.
1909. Drawida nepalensis, Stephenson, Rec. Ind. Mus. xiii, p. $37: 2$, pl. xvi, fig. 4.
1910. Drawida nepalensis, Stephenson, Rec. Ind. Mus. xxiv, p. 430.

Length 50-123 mm. ; diameter $3 \frac{1}{3}-5 \mathrm{~mm}$. Segments 149-175. Colour yellowish grey, non-piginented. Prostomium prolobous. Setæ closely paired; aa a little less than bc; dd a little more than $\frac{1}{2}$ circumference. Dorsal pores absent, but represented by gaps in the muscular coat as seen from the inside of the bodywall; these occur as far forward as $4 / 5$. Nephridiopores in d.

Fig. 53.-Drawida nepalensis Mich. ; spermathecal atrium.
Clitellum ring-shaped, x-xiii $(=4)$. Male pores on prominent transverse oval papillæ, midway between b and c. Female pores in b. Spermathecal pores just ventral from c. In some specimens genital markings present as broad transversely oval midventral cushions on vii and viii.

Septa $5 / 6-8 / 9$ very strong, especially $5 / 6$ and $6 / 7$. Four gizzards, in xiv-xvii, or three in $x v$-xvii. 'Testis sacs projecting forwards and backwards, into both ix and x, or backwards only, into x; testis tuft-like, stalked; vas deferens very long, coiled in scores of convolutions. Prostates long, tube-like, in a \mathbf{U}-shaped loop, the vas entering the ental end. Ovarian chamber present; ovisacs extend back through some segments. Spermathecal ampulla irregularly pear-shaped; atrial chamber (text-fig. 53) large, sac-like, continued into a narrower undulating neck, which is joined by the end of the duct; the atrial chamber marked by a fairly regular annulation, the opithelium markedly folded internally.

Remarks. Michaelsen suspects the identity of this form with D. uniqua; cf. remarks under the latter species.

My specimens differed from Michaelsen's principally in the relations of the testis sacs-pirojecting on both sides of the septum in Michaelsen's, backwards only in mine, on one side as far as the level of septum 15/16, -the condition indeed approximated to that of D. yhatensis.

Distrbution. Gou char, near Katmandu, Nepal Valley; Rangamati, Chittagong llill Tracts, Bengal; Kierpur, Purneah Dist., Bihar; Dehna Dun, United Provinces.

24. Drawida nilamburensis (A. G. Bourne).

1891. Moniliguster nilamburessis, Bourne, Quart. J. Mic. Sci xxxi1, p. 362.
1892. Drautida nilamburensis, Michaelsen, Tier. x, p. 11 T.

Length 750 mm .; diameter ca. 7 mm . Segments 566 ; secondary mmulation present. Slightly pigmented. Prostomium broad. Setæ long, black; ca sloghtly greater than be; dd considerably greater than $\frac{1}{2}$ circumference; not very closely paired, $a b=c d=\frac{1}{6} b c$. Nephridiopores (all ?) in cl. Male pores between b and c, nearer b. Female pores in $a b$. Spermathecal pores in cal.

Septa 5 ' $6-8 ;(9$ much thickened. Five or six gizzards, in xxiii or xxviii-xxxiii or xxxir. Testis sacs ovoid. Prostates not glandular in appearance. Ovarian chamber present. Spermathecal ampulla pear-shaped : atrium a dilatation of the end of the duct, small, embedded in the body-wall.

Remarks. A very distinct form, on account of its very large size, and the very posterior position of the gizzards. For the rest, it seems to approach the pellucida group.

Distribution. Nilambur, S. India (near the sea-level).

25. Drawida papillifer Steph.

1917. Drawida papillifer, Stephenson, Rec. Ind. Mus. xiii, p. 370.

Length 70 mm . ; diameter $3 \frac{3}{4} \mathrm{~mm}$. Segments 148. Colour light grey, non-pigmented. Prostomium prolobous (?). Setw closely paired; ace rather less than $l c$; $d d=\frac{1}{2}$ circumference. Nephridiopores apparently in line with d. Clitellum x-xiii $(=4)$, hinder end indistinct. Male pores between b and c, rather nearer to c. Female pores? Spermathecal pores with centre just below r. A few slightly marked darkish papillo, paired or single, on vii, x, and $x i$, above or below the lateral seto.

Septa $5 /(6$ and $6 / 7$ much strengthened, $7 / 8$ and $8 / 9$ much less so. Three gizzards, in $x v-x v i i$. Testis sacs rather irregular, and asymmetrical; the larger part of the sac may be either in front of or behind the septum. Prostate with glandular surface, elongated, bent with the angle directed forwards, the ental end the thicker, joined by vas deferens at the middle of its length. Ovarian chamber bounded above by the body-wall; oisacs large, asymmetrical, may reach hack to the level of 15'l6. Spermathecal ampulla owoid; atrium relatively large, the upper part a thinwalled sar, the lower part duct-like.

Remarks. Belongs to the same group as hodyarti. The atrium has here developed further, and the coiling of the prostate is less.

Distirhution. Rangamati, Chittagong Hill 'Iracts, Bengal.

26. Drawida paradoxa, Rio.

19:1. Drawida paradoxa Rao, Ann. Mag. N. H. (9), viii, p. ©28, pl. xv, figs. $1 \mathrm{E}, 2 \mathrm{E}, 3 c$; pl. xvi, figs. 4, ì; pl. xıiii, figs. $10 h, 10 i$.
1921. Drawida paradoıa, Stephenson, Amn. Mag. N. II. (9), ix, p. 135.

Length 90 mm ; average diameter 3 mm . Segments 152. Colour light grey, unpigmented. Prostomium prolobous. No dorsal pores. Setæ small, closely paired; $a a=b c$ in general, but in the region immediately behind the clitellum $=3 . b c$; $d d$ slightly less than $\frac{1}{2}$ circumference. Clitellum? Male pores small, inconspicuous, just outside the line of b. Female pores? Spermathecal pores small, in line with seta c.

Septa 5 6-8/9 considerably thickened. Fonr gizzards, in xiiixvi or xn-xy, the first smallent, the last largest. 'Iestis sacs depend into x. Vas deferens relatively a very large coil, in ix and x, runs some distance up prostate before becoming lost in it. Prostates large, flattened from side to side, glandular at edges, axial part more shiny ; ectal part of prostate Ω twisted mass, bound together by comnective tissue and adherent to the ventral body-wall. Ovarian chamber present; ovisacs form small projections into xii. Spermathecal atrium in vii, large, tongue-shaped, constricted a quarter or a third of its length from the body-wall, margins slightly lobed, duct joins its lower part.

Distribution. Madapur, Coorg, S. India.

27. Drawida parambikulamana Steph.

1915. Drawida parambilulamana, Stephenson, Mem. Ind. Mus. vi, p. $\overline{5} 3$.

Length 84 mm.; diameter $3 \cdot 5 \mathrm{~mm}$. Segments 140 . Colour a bluish grey, lighter ventrally and laterally. Body-wall appears thickened laterally. Prostominm? Setæ small and closely paired; $a a=b c, \quad$, $d d=c a . \frac{1}{2}$ circumference. Nephridiopores are found both in ab and in ccl, the majority however in cd. Clitellum? Male pores on minute papille outside b, but nearer b than c. Female pores in b (?). Spermathecal pores in c.

Septa 5/6-8/9) considerably thickened. Three gizzards, in xiiixv, the first smaller than the others. 'Testis sacs projecting slightly or not at all into ix. Vas deferens extremely fine and tightly coiled, broader in its terminal portion where it joins the prostate. Prostate large, ovoid, attached by a broad base; upper portion covered with glandular cells; vas deferens joins its anterior margin. Ovarian chamber present, anterior and posterior walls inserted together into the dorsal parietes; ovisacs small, tubular, narrower behind, turned forwards and completely contained within xii. Spermathecal ampulla broadly oval; atrium teat-like, of moderate size, with cavity of simple form.

Remarks. A single specimen only was available. The species may be related to Bourne's 7). parva; the differences appear to be in bodily proportions, colour, and extent of the interial del; possibly also the testis sacs differ in shape; Bourne does not mention ovisacs in his account. The distance between the places where this and Bourne's worm respectively were found is not more than 80 miles; but until the whole region has been thoroughly explored it must be dangerous to attempt identifications with species so sketchily described as those of Bourne.
listrihution. Parambıkulam, Cochin State, S. India.

28. Drawida parva (A. G. Bourne).

1894. Moniliyuster parcus, Bourne, Quart. J. Mic. Sci. xxxvi, p. 371, pl. xxili, fig. 11.
1895. Dranrda parra, Michaelsen, 'Tier. x, p. 118.
1896. Drauida pareus, Michaelsen, Abh. Senckenb. (ies. xxxini, p. 251.

Length 75 mm . diameter nearly 9 mm . (?). Segments 115 . Slightly pigmented. Setio absent in ii ; $a a=b c$; del greater than ${ }_{2}^{1}$ circumference. Nephridiopores in c. Male pores between b and c. Female pores in $a b$. Spermathecal pores in $c d$.

Septa 5/6-8/9 thickened. Three or four gizzards, in xiv-xis or xvii. Testis sacs slightly kidney-shaped. Prostates hemispherical, glandular in appearance. No ovarian chamber. Spermathecal ampulla ovoid; atrium simple, rounded.

Rerrarks. Michaelsen, in specimens which he identified with Bourne's species, but which came from outside Indin, found the spermathecal atrium small, muscular, of an inverted pear-shape, projecting into the body-cavity at the ectal end of the duct.
There is a discrepancy in Bourne's account; the circumference is given as $4 \frac{1}{4} \mathrm{~mm}$.; but the dorsal gap between the setal bundles is $2 \frac{3}{7} \mathrm{~mm}$., the lateral gaps $\frac{3}{4}$, and the ventral gap also $\frac{3}{4} \mathrm{~mm}$.i.e., the total circumference is 5 mm . without allowing for the intervals between the setæ of the several bundles, sity, 5.5 mm . in all. I therefore estimate the diameter as nearly 2 mm .

The worm is possibly identical with D. parambihulamana; cf. what is said under the latter species.

Distribution. Ootacamund, S. Indin. Also in the Aru Islands (near New Guinea).
29. Drawida pellucida (A. (i. Bourne) f. typica.
1894. Muniligaster pellucida, Bourne, Quart. J. Mic. Sci. xxxvi, p. 363, pl. xxiii, fig. :3, pl. xxv, fig. 30 .
1900. Ifravidu pellucida, Michnelsen, Tier. x, p. 118.
1910. Druerda pellucidus f. typica, Nichaelsen, Abh. Ver. Hamhurg, xix, p. 48.
1914. Dravuda pellucida, Stephenson, Rec. Ind. Mus. viii, p. :3or.

Length $75-190 \mathrm{~mm}$. ; diameter $3-7 \mathrm{~mm}$. Segments $130-186$, no secondary annulation. Without pigment; body-wall very transparent. Contracts its anterior end in a bulbous farhion. Seta absent in ii ; $a a=b c$, or slightly grenter; d $d={ }_{8}^{5}$ circumference. Nephtidiopores in cll. Male pores betwren b and c, nearer l. Female pores just above l. Spermathecal pores in or just below c.

Septa 5 6-8,9 thickened. Four or five gizzards, the first in xiv to xiii, the last in xvii to xxi. Testis sacs spherical or ovoid, mainly in x. Prostates as flattened hemispheres. No ovarian chamber; ovisacs present. Spermathecal ampulla spherical to oval; atrium a small simple widening embedded in the body-wall, or sometimes absent.

Distribution. Ootacamund and Naduvatam, S. India; Upper Rotung, Abor Country.
a. var. bournei (Mich.).
1894. Moniligaster sp., Bourne, Quart. J. Nic. Sci. xxxvi, p. 375, pl. xxiii, fig. 14.
1897. Momiliy, aster bournei + M. pauli, Nichaelsen, Mt. Mus. Hamburg, xiv, pp. 167, 171.
1898. Moniliguster bournei, Michnelsen, Zool. Jahrb. Syst. xii, p. 144.
1900. 1)ravida bournei + D. pauli, Michnelsen, Tier. x, p. 116.
1910. Lrruvida pellucidus var. Lournei, Nichaelsen, Abh. Ver. Hamburg, xix, p. 50.

Length 55-142 mm. ; diameter 2-4 mm. Segments 144-101. Colour bluish or brownish red, strongly pigmented. Prostomium prolobous, retractile. Setæ closely paired; $a a=b c$; $d d$ rather more than $\frac{1}{2}$ circumference. Nephridiopores in cl. Clitellum ring-shaped, x-xiii (=4). Male pores just above b. Female pores in b. Spermathecal pores in or just below c.
Septa 5/6-8/9 thickened, $9 / 10-14 / 15$ displaced somewhat backwards dorsally. Three to five giziards, in some of the segments xii-xviii. Testis sacs almost spherical, or somewhat constricted by the septum and projecting into both ix and x. Prostates spherical, smooth. No ovarian chamber; ovisacs extend back to about xv. Spermathecal ampulla ovoid; atrium absent.

Remarks. In 1894 Bourne shortly described a number of species of Moniliguster, and at the end of the paper mentions a single specimen from Kandy in Ceylon, but says that his notes are insufficient, and gives only a coloured drawing, with the information that the colour distinguishes it from all his other species, and that the gizzard is in segments $x v$-xviii. Michaelsen, in 1897, met with a form, probably from Peradeniya in Ceylon, which he thought could be identified with the above, and which he named JI. bournei; in this paper he also described as a new species M. pauli from Trincomali.
The three forms, pellucida, bournei, and pauli, were kept separate in the Tierreich, and in Michaelsen's first list of Indian species (54) in 1909. But in 1910 (58), in consequence of the examination of new material, he concluded that bournei and pauli were identical, and that both represented only a variety of pellucilla.

The sexual markings (grooves in front of and behind the male pores) in I I.pauli are due to the clitellum being thinner in these places; they are more marked the better developed the clitellum is, and are not real sexual markings.

Distribution. Vakvalla, Bentota, Kaniya (in the last place amongst roots in damp ground near the outflow of a hot spring), Kandy, Colombo (Museum Gardens), Trincomali,-all in Ceylon.

b. var. pallida Mich.

> 1910. Drauida pellucidus var. pallida, Michaelsen, Abh. Ver. Hamburg, xix, p. 51.

Length $100-125 \mathrm{~mm}$; average diameter $3-4 \mathrm{~mm}$. Segments 235-245. Pigmentation very faint, a slight bluish-green shimmer dorsally. Setal interval $c c t=\frac{\pi}{3} b c$; $d d$ about $\frac{1}{2}$ circumference. Three or four gizzards, the first (in a specimen where there were four) in xiii.

Distribution. Shencottah, E. side of W. Ghats, Travancore.
c. var. stewarti Steph.
1914. Drawida pellucida var. stevarti, Stephensun, Rec. Ind. Mus. viii, p. 369.
Length $37-62 \mathrm{~mm}$.; diameter $3 \frac{1}{2}-4 \mathrm{~mm}$. Segments ca. 165. Colour olive-green, varying in depth. Prostomium small, prolobous. Setre of moderately large size, closely paired; $a a=b c$ behind the genital region, but is greater than $b c$ in front of this; $d d=\frac{4}{7}$ circumference. Male pores between b and c, rather nearer to b, on papillæ which are surrounded by a circular depression. A transverse dumbbell-shaped ridge on segment ix just in front of groove $9 / 10$.

Four gizzards, in xv-xviii or xvi-xix, the first smallest. Testis sacs pear-shaped, with the small end forwards, in ix, the rounded end in x. Ovisacs small, curved and sausage-shaped, contained wholly in xii. Spermathecal ampulla ovoid; no atrium.

Remarks. The chief distinguishing mark is the ridge on segment ix; the other marks and irregularities in the region of the male pores have probably no significance. The shape of the testis sacs may also be distinctive.

Distribution. Rotung and Renging, Abor Country, E. Himalayas.
The above forms (except var. stewarti, since described) are discussed by Michaelsen (58), and shown to form, along with D.yrandis, a group to which D. friderici and D. barvelli are also related.

30. Drawida ramnadana Mich.

1907. Dravida ramnadana, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 145.
1908. Drawida ramnadana, Michaelsen, Mem. Ind. Mus. i, p. 141 .

Length 44-55 mm.; maximum diameter $13-2 \mathrm{~mm}$. Segments 165. Colour in dorsal and lateral regions anteriorly a bluish grey. for the rest yellowish grey. Prostomium prolobous. Setx minute, closely paired; a less than bc; dd greater than $\frac{1}{2}$ circumference: setæ present on ii. Nephridiopores in cd. Clitellum ring-shaped, x-xiii $(=4)$. Male pores in b, on small eye-shaped papillæ. Female pores in or near ab. Spermathecal pores in b.

Septa 5/6-8/!! thickened. Throe gizzards, in xii-xiv. 'Testis sacs large, somewhat constricted by the septum, the larger part of the sacs in x ; las deferens enters front of prostate within the body-wall. Prostates shortly tubular, stumplike, invested with a thick covering of gland cells. Ovarian chamber perhaps absent; ovisacs extend backwards through several segments, constricted by the septa. Spermathecal ampulla large, pear-shaped; atrium a small, simple sac, thickly pear-shaped; spermathecal duct opens into basal part of atrial chamber.

Remarks. Seems to be nearly allied to D. japonicus. The original does not mention whether there is or is not an ovarian chamber.

Distribution. Ramnad, Madura Dist., S. India, on sandy coastal plains.

31. Drawida rangamatiana Steph.

1917. Dravida rangamatiana, Stephenson, Rec. Ind. Mus. xiii, p. 369, pl. xvi, fig. 3.

Length 137 mm . ; maximum diameter $7 \cdot 5 \mathrm{~mm}$. Segments 237. Non-pigmented, light grey in colour. Prostomium absent (?). Seta closely paired, small; anteriorly $a a=b c$, behind the genital region $=\frac{2}{3} b c$, in the middle of the body and posteriorly is less than $\frac{1}{2} b c ; \quad d d=\frac{1}{2}$ circumference. Nephridiopores in $c d$. Clitellum? Male pores between b and c, but nearer to c. Female pores between b and c, but nearer to b. Spermathecal pores with their centre just below c.

Septa 5/6-8/9 very stout. Four gizzards, in xvi-xix. Last heart in viii; there are two commissures on each side in this segment. 'T'estis sacs recall those of D. ghutensis; on one side (in the single specimen) in xii, on the other extending back into xiii,

Fig. 54.-I)rauida ranyamatuena Steph.; spermathecal atrium, seen by transpurenes under the low power.
a neck passing forwards. Prostate closely curled, cylindrical, softish, not shiny, joined by vas deftrens below its middle. Ovarian chamber present; ovisacs small, finger-shaped, reaching back into xiii. Spermathecal ampulla small, globular; atrium (text-fig. 54) a long stalked appendage, erect, ental portion dilated in the form of a cone with a rounded tip; duct joins atrium in body-wall.

Remarks. The relationships are with the hodgarti group. The last hearts appear to be characteristic, and the shape of the atrial appendage.

Distribution. Rangamati, Chittagong Hill Tracts, Bengal.

32. Drawida robusta (A. G. Bourne) f. typica.

1886. Moniligaster robustus, Bourne, P. Z. S. 1880, p. 672.
1887. Moniliyaster indicus, Benham, Quart. J. Mic. Sci. xxxiv, p. 363, pl. xxxii, pl. xxxiii, figs. 8-15.
1888. Monilgaster robusta, Bourne, Quart. J. Mic. Sci. xxxvi, p. 36i6, pl. xiii, fig. $\overline{7}$.
1889. Moniligaster robustus + M. indicus, Beddard, Monog. pp. 19K, 202.
1890. Drawida robusta typica +1 . robusta indica, Michaelsen, Tier. x, pp. 119, 120.
1891. Draveida robusta f. typica, Stephenson, Rec. Ind. Mus. xii, p. 309.

Length $136-200 \mathrm{~mm}$.; diameter 6 mm . Segments $150-160$. Body depressed behind the anterior region, posterior end pointed. Colour bluish to greenish brown. Setæ closely paired, very small; $a a$ greater than $b c$; dd greater than $\frac{1}{2}$ circumference. Nephridiopores in $c d$. Male pores between b, and c, nearer to c. Female pores in $a b$. Spermathecal pores in $c d$.

Septa $5^{\prime 6} 6-8 / 9$ thickened, but not so much as in many other species. Four gizzards, in xii-xv or xiii-xvi. Testis sacs large, subovoid or nearly spherical, projecting backwards, or forwards and backwards. Prontates hemispherical, with glandular surface, may overhang towards the middle line. Ovarian chamber present; ovisacs small, tubular, confined to xii. Spermathecal ampulla pyriform to oval or nearly spherical; atrium bilobed, large, one lobe projecting on each side of the septum.

Remarks. I believe that there is no need to distinguish Benham's M. inclicus even as a separate variety, as Michaelsen does in the Tierreich. The only differences there brought forward are the length (137 as against about 200 mm .), a difference of one segment in the position of the gizzards, and the fact that the prostates do not overhang towards the middle line in var. indicu.

Distribution. Widely spread on the Nilgiris, S. India.
a. var. ophidioides (A. G. Bourne).
1894. Moniligaster ophidioides, Bourne, (Quart. J. Mic. Sci. p. 365, pl. xxiii, fig. 6, pl. xxv, figa. 28-29.
1900. Drawidl trobusta oplhidioides, Michaelsen, Tier. x, p. 120.

Length ca. 310 mm ; diameter ca. 7 mm . Segments 200, no secondary annulation. Colour bluish to olive-green. Setal distance $a a$ scarcely less than $b c ; d d$ more than $\frac{1}{2}$ circumference. Nephridiopores mostly in $c d$, occasionally in $a b$, occasionally abuve cd. Three gizzards, in xiv-xvi. Prostates hemispherical, or even more prominent, not overhanging.

Distribution. Ootacamund and Coonoor, Nilgiris, S. India; in swamps and wet ground.

33. Drawida rosea Steph.

19:2.2. Drawida rosect, Stephenson. Rec. Ind. Mus. xxiv, p. 430.
Length 102 mm .; maximum diameter 3 mm . Segments 149 . Colour grey, with a faint pinkish tinge dorsally. Prostonium prolobous. Vestiges of dorsal pores visible in the middle of the body. Nephridiopores in the line of the lateral setæ. Setæ closely paired; $a a=\frac{4}{3} b c$, $\quad d l=\frac{4}{7}$ circumference. Male pores on transversely elongated papillæ at the hinder border of x, inmediately outside the line lb; a pair of smaller and rounder papillæ on the anterior part of al, immediately behind the papillw of the male pores. Mid-ventral region between the four papillw depressed, and darker in colour. Female pores minute, in line with al. Spermathecal pores conspicuous, between ab and ccl, nearer the latter, the upper end of the pore reaching cd.

Septa 5/6-89 much thickened. Four gizzurds, in xiii-xvi. The greater part of the testis sacs in x, reaching to soptum 10,11; the sacs slightly constricted at septum $9 / 10$. Prostates elongated, cylindrical, beit, ental end rather thicker, no separate duct, surfaces soft and glandular, vas enters near ental end. No ovaran chamber; ovisacs extend back to 1314 . Atrium large, not much smaller than ampulla, a pear-shaped sac, the jower and narrower portion marked by a number ot annular constrictions and prolonged ectally into a tube leading to the exterior.

Remarks. The species, which was described from a single specimen, is related to D. nepalensis and papillifer.

Distribution. Cherrapunji, Asam.

34. Drawida rotungana Steplh.

1914. Irrawida rotungana, stephenson, Rec. Ind. Mus. viii, p. $37 . .3$

Length 62 mm ; diameter 4 mm . Segments 187 . Nonpigmented, whitish throughout, with a faint yellow tinge at the anterior end. Prostomium prolobous. Setæ small, closely paired; $a a$ slightly less than $b c$; $d d=\frac{1}{2}$ circumference; seta $a b$ absent on x. Clitellum indistinct. Nale pores on small papille, midway between b and c. Female pores just outside b. Spermathecal pores perhaps slightly internal to c. A pair of small genital papille on ix, close to posterior border, in the line of setre b.

Septum 4/5 thick, 5/6-8 9 extremely thick. Six gizzards, in xv-xx. Testis sacs large, compact, rectangular, constricted by the septum. Yas defereus joins the body-wall just in front of and internal to prostate. Prostate hemispherical, sessile. Ovarian. chamber present: ovisacs extend backwards into xiv. Spermathecal ampulla oroid; no atrium.

Remarks. Perhaps related to the pellurida group. The vas deferens can by dissection be traced to the inner side of the prostate, which it joins.

Distribution. Rotung, Abor Country, E. Himalnyas.

35. Drawida sapphirinaoides (A. (i. Boume).

> 1886. Moniligaster sapphirinaoides, Bourne, 1. Z. s. 1886, p. 676. 1894. Moniliguster sapphirinaoides, Bourne, Quart. J. Mic. Sci. xxxi, p. 366 , pl. xxiii, tig. \&, pl. xxvi, tigs. 35, 36. 1895. Moniligaster sapphirinaoides, Meddard, Monog. p. 198. 1900. Dravida sapphirinaoides, Michaelsen, Tier. x, p. 119.

Length $125-175 \mathrm{~mm}$.; diameter $5 \frac{1}{2} \mathrm{~mm}$. Segments ca. 160 . Colour bluish red. Setæ clovelv paired; aa less than bc; dd almost equal to $\frac{2}{3}$ circumference Nephridiopores in ccl. Clitellum x-xiii ($=4$). Nale pores miduay between b and c. Female pores in $a b$. Spermathecal pores in $\dot{c} d$

Septa 6:7-89 very slightly thickened. Four or five gizzards, in xvii-xx or xxi. Testis sac ovoid. Prostates hemispherical, flattened, of glandular appearance. An ovarian chamber present. Atrium as a large undivided swelling at the end of the spermathecal duct.

Remarks. This is another species that lives in a very damp habitat; the original find was "in immense numbers in some very wet black mud under turf." Bourne refers to the variability of the species, and to the possibility of the existence of hybrids between this form and D. robusta; intermediate forms are found, and it is possible, therefore, that the present is only a variety of D. robusta.

Distrilhution. Pykara Waterfalls, ca. 6000 ft . ; and widely spread on the Nilguris, S. India.

36. Drawida scandens Rao.

1921. Drauida scandens, Iiun, Ann. Mag. N. II. (9), viii, p. 515, pl. xv, figs. 1 B, 2 B, 36 : pl. xvii, fig. 9 ; pl. xviii, figs. $10 c$, $10 e$.
1922. Drawida raui, Stephenson, Rec. Ind. Mus. xxii, p. 750̃, pl. xxviii, fig. 7.
1923. Druuida scandens, Stephenson, Ann. Mag. N. II. (9), ix, p. 132.

Length 38-45 mm. diameter $1 \frac{1}{2}-1 \frac{3}{4} \mathrm{~mm}$. Segments ca. 144161. Colour dark bluish grey, brown, or olive. Anterior end rather bulbous. Prostomium prolobous. Seta closely paired, large and prominent, especially in the ventral bundles of iii-xii; $a a=b c$, or in the anterior part of the body is rather greater; $d d=\frac{1}{2}$ circumference or rather more. Clitellum? Male pores two pairs, the anterior in $9 / 10$, rather outside the line of setre b, on a median transverse somewhat dumbbell-shaped cushion, extending on each side to between the lines of b and c (this cushion may be represented by a pair of papillæ): posterior male pores over the normal situation of groove $10 / 11$, just outside the line of setæ l, in the antero-lateral angles of a thickened median patch which occupies the ventral surface of xi, pushing forwards
groove 10/11 (text-fig. 55). Female pores perhaps in 11/12 between the lines a and b. Spermathecal pores in $a b$.

Septa 6/7-8/9 considerably thickened, $5 / 6$ thin, $9 / 10$ and a few following also slightly thickened. Two gizzards, in xiii and xiv, or three, in xiii-xv. Testis sacs extending into ix and x. Prostates two pairs, in ix and x, elongated, cylindrical or pear-shaped,

Fig. .in.-Drauruda scandens Rno ; genital field.
surface soft, minutely papillated. No ovarian chamber; ovisacs may extend back to xr. Spermathecal atrium relatively large, ovoid and sac-like, duct entering near base.

Rematrks. This species is expecially interesting on account of the well-developed second pair of prostates, which mark it out as perhaps the most primitive member of the genus.

Distribution. Forests of Shimoga and Kadur Dists., Mysore; Bhagamandla, Coorg, S. India.

37. Drawida shunkarai Mich.

1913. Drawida schunkurui, Michaelsen, Mt. Mus. Hamburg, xxx, p. 74.

Length 110 mm .; diameter $3 \frac{1}{2}-7 \mathrm{~mm}$. Segments ca. 200; secondary annulation on the posterior parts of each of segments vii-xi. Setw very fine and closely paired, beginning in ini (\because); $a a=1 \frac{1}{2} b c$ anteriorly, $=b c$ in middle and hinder parts of body: che distinctly (anteriorly) or slightly (behind) greater than $\frac{1}{2}$ circumference. Male pores abont midway between b and c, on thick papilla, which project from a transverse spindle-shaped slit on each side; segments ix and x swollen between the lines b and c. Female pores in ab (\%). Spermathecal pores in cul, on small papillæ.

Septa 5/6-8/9 thickened, the first moderately, the rest very much. Four gizzards, in xvii-xx. Iestis sacs large, much constricted by the septum, projecting equally on each side: each portion of the sac concare inwards, nearly meeting its fellow above the gut. Ental portion of vas deferens is the thicker, and
wavy; it then becomes thinner, and closely coiled. Prostates hemispherical, smooth, and with muscular shimmer. Ovarian segment much narrowed by the approximation of the septa; ovisacs thickly tubular, irregular, constricted at the septa, extending back into xv. Spermathecal ampulla large, thickly pearshaped; atrium small, almost concealed in the body-wall, receives the duct at its broad ental pole. Accessory organs as two pairs of blind club-shaped tubes, in vii and viii, attached to the hinder septum of each segment, wavy, the ental end the thicker.

Kemarks. Owing to the condition of the single specimen it could not be determined whether or not there was any connection between the accessory apparatus just mentioned and the spermathecal atrium; if so, they would be atrial sacs. For a somewhat similar accessory apparatus, cf. Hoplochetella.

Distribution. Cape Comorin.

38. Drawida somavarpatana Rao.

1921. Drawida somavarpatana, Rao, Ann. Mar. N. II. (9), viii, p. 497 : pl. xv, figs. 1.1, 2 A, $3 a$; pl. xvi, firs. $5 a, 6,6 a$; pl. xvii, figs. $7,8,10,10 a, 10 b ;$ pl. xvii, figs. $10 f, 10 g$, $10 j$.
1922. Drawida somavarpatana, Stephenson, Amn. Mag. N. H. (9), ix, p. 131.
Length 85 mm . ; diameter $\pm \mathrm{mm}$. Segments 124 . Colour brownish yellow. Prostomium sinall, retracted under segment i. No dorsal pores. Nephridiopores in line with lateral seta. Setæ closely paired; $\quad a=h c, \quad d d=\frac{1}{2}$ circumference. Clitellum apparently x-xiii $(=4$). Male pores as puckered orifices with tumid lips, a little outside line of setæ b; a curved depression in front of and behind each, the concavities of the curves facing each other ; x and xi depressed midventrally. Spermathecal pores in line with chl.

Septa $5 / 6-8 / 9$ slightly thickened. Three gizzards, in xvi-xriii, the last the largest. Testis sucs as in D. ghatensis, extending back to xiv, in which segment the main portion of the sac lies. Prostates consist each of two finger-shaped structures, side by side, united below in a narrow neck, which again swells out somewhat at its termination, where it joins the parietes; surface soft, friable. Ovarian chamber present; ovisacs extend back to xiv. Spermathecal atrium bifid, one horn in vii, the other in viii, the duct joining in the angle between the two. Strong transverse muscular bands on inner surface of body-wall in prostatic region.

Distribution. Somvarpet, Coorg.

39. Drawida sulcata Mich.

1907. Drawida sulcata, Michaelsen, Nt. Mus. Hamburg, xxiv, p. 144, text-fig. 1.
1908. Drawida sulcata, Michaelsen, Mem. Ind. Mus. i, p. 141, pl. xiii, fig. 2.

Length 67-70 mm.; diameter $3-3 \frac{1}{3} \mathrm{~mm}$. Segments 150 ; \mathbf{x} and xi with a very sharp transverse furrow ventrally. Colour a dirty grey. Prostomium? Setæ very fine, very closely paired; $a a$ anteriorly distinctly larger than $b c$, in rest of body about equal to $b c ; d d$ a little more than $\frac{1}{2}$ circumference. Nephridiopores usually in $c d$. Clitellum x-xiii $(=4)$, ring-shaped in the hinder part. Male pores on very prominent papillæ, midway between b and c. Female pores? Spermathecal pores just ventral to c.

Fıg. 56.-Drawida sulcata Mich.; genital field.
Seminal furrows beginning at 10/11, medial from a (thus unconnected with the male pores); at first converge slightly, and reach $11 / 12$ near the middle line; then diverge, and die away at the middle of xii; the furrows included in a darker smooth area; probably not connected with the female pores (text-fig. 56).
Septa $5,6-8 / 9$ very strong. Five gizzards, in xv-xix, or perhaps xiv-xviii, the first two rather smaller. Testis sacs large, sharply incised by the septum, the portion in ix much shorter than that in x. Prostates hemispherical, shortly stalked, surface mammillated ("glandular"). Ovarian chanber absent; ovisacs extend back into xiii, much coustricted by septum 12/13. Spermathecal ampulla pear-shaped; atrium very small, simple, nearly hidden in body-wall.

Remarks. Except for the seminal grooves, the species is very like D. parva; and it is to be remembered that Bourne had a somewhat meagre scheme for the description of his species, and so might not have described actually existent grooves. Another worm that might possibly be identified with D. sulcata is D. kanarensis; the locality of D. sulcata is within a few miles of that of D. parva, but D. Kanarensis was found 300 miles away.

Distribution. Coonoor, Nilgiris, S. India.

40. Drawida travancorensis Mich.

1910. Dravida travancorensis, Michaelsen, Abl. Ver. Hamburg, xix, p. 46.
Length ca. 185 mm . ; diameter 3 mm . Segments 130. (Colour and prostomium no longer recognizable in the specimens.) Setæ closely paired, especially the lateral in the anterior part of the
body; $a a=\frac{3}{4}$ to $\frac{5}{8} b c$, in the anterior part the first relation, in the middle of the body the second; dd rather greater than $\frac{1}{2}$ circumference. Clitellum saddle-shaped, interrupted between the lines a, including x-xiii $(=4)$. Male pores comma-like slits, the broader end towards the middle line, about midway between b and c. Spermathecal pores in c.

Septa 5/6-8/9 fairly strongly thickened. Two gizzards, apparently in xiii-xiv, the first rather smaller. Testis sacs projecting into both ix and x, not markedly constricted. Prostates large, regularly pear-shaped, smooth, no glandular investment. Ovarian chamber present; ovisacs thick, short, extending backwards through one or two segments. Spermathecal ampulla thickly pear-shaped; atrium a fairly large, simple, slender club-shaped sac free in vii, the duct entering its ectal end.

Distribution. Kottayam, Travancore, S. India.

41. Drawida uniqua (A. G. Bourne).

1886. Momiligaster uniquus, Bourne, P. Z.S. 1886, p. 671.
1887. Moniliguster aniqua, Bourne, Quart. J. Nic. Sci. xxxvi, p. 363, pl. xxiii, tig. 4.
1888. Moniligaster uniquus, Beddard, Monog. p. 198.
1889. Dravida uniqua, Nichaelsen, Tier. x, p. 118.

Length 220 mm .; dianeter 5 mm . Segments 316 , faint secondary annulation. Unpigmented. Setæ present on ii; aa practically equal to $b c ; d d$ very slightly greater than $\frac{1}{2}$ circumference. Nephridiopores in cll. Male pores between l and c, often on papilla-like evaginations. Female pores in ab. Spermathecal pores in cd.
Septa 5/6-8/9 thickened. (Hizzards four or five, the first in xvxvii, the last in xix-xxi. Testis sacs lemon-shaped. Prostates teat-like, turned backwards. No ovarian chamber. Spermathecal ampulla pear-shaped to ovoid; duct with simple atrial widening at ectal end.

Remarks. Bourne in 1894 identified this species with his M. papillatus; the reason is not evident, as M. uniquus is said to be "a small weak-looking worm," while M. papillatus" is a much longer worm than any of the other species, with the exception of M. grardis." Michaelsen follows Bourne in identifying the two; I think (cf. the Introduction to the present genus) that M. papillatus must be left out of consideration altogether.

Michaelsen considers (58, p. 21) that D. nepalensis is probably identical with this species. I cannot agree here either ; D. nepalensis has an ovarian chamber, and the atrium is a large annulated sac.

Bourne states that "this species and M.pellucida occur together and form, I believe, hybrids,-I have found so many specimens "ith an intermixture of character . . ." The two species are much
alike externally, except for the bulbous anterior end of D. pellucida (an effect of contraction); the teat-like prostate of the present form seems to be the main difference. It might therefore be possible to unite this species with D. pellucida.

Distribution. Ootacamund and Coonoor, in the Nilgiris.

42. Drawida willsi Mich.

1907. Drawida willsi, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 145. 1909. Drawuda willsi, Michaelsen, Mem. Ind. Mus. i, p. 143.

Length $55-60 \mathrm{~mm}$.; maximum diameter 2.5 mm . Segments 155-160. Colour variable, bluish grey or realdish grey. Prostomiun prolobous, transversely oval in shape. Setre closely paired, especially the lateral; $u a=b c$, or anteriorly a little less; dd rather more than $\frac{1}{2}$ circumference. Nephridiopores in cd. Clitellum ring-shaped, x-xiii $(=4)$. Male pores on transversely oval papillo in b; in many specimens an additional parr ot rudimentary male pores in a corresponding position in $9 / 10$. Female pores in $a b$. Spermathecal pores in $a b$, inconspicuous.

Septa $6 / 7-8 / 9$ thickened, especially the first two $9 / 10$ and 10/11 dislocated backwards dorsally. Two gizzards, in xiv and xv. Testis sacs constricted by the septum. Prostates short thick tubes, somewhat bent or depressed, nearly disc-like, with thick covering of pear-shaped glands. A second pair of prostates, similar but smaller, in connection with the additional male pores. Ovarian chamber present; ovisacs large, extending back through about six segments, constricted by the septa. Spermathecal ampulla ovoid; atrium moderately large, simple, ovoid, almost unstalked; duct enters ectal end of atrium.

Remarks. The presence of vestigial prostates points to the origin of the genus from a form which possessed two pairs of glands; such a genus is Desmogaster. Compare the condition in D. scandens, where the second pair of prostates is quite well developed.

The special ovarian chamber mentioned by Michaelsen is, if it occurs as described by hum, apparently something different from the usual ovarian chamber, which is the eleventh segm-nt. Here the ovarian chamber is "separated from the small 11th segment by a fille membrane, which connects septa $10 / 11$ and $11 / 12$."

The specimen referred to by Michaelsen as coming from the W. Himalayas was probably D. juponica.

Distribution. Bilaspur, Ceutral Provinces; Hyderabad. Deccan.

Family MEGASCOLECIDx.

1895. Megascolicidæ + Eudrilidæe, Beddard, Monog. pp. 357, 573.
1896. Megascolecidæ, Michaelsen, Tier. x, p. 120°.

Setæ simply pointed, sigmoid, four pairs per segment, or numerous; in the latter case forning rings which may be either closed, or broken dorsally and ventrally; the setæ in the rings either arranged at fairly equal distances, or approximated in couples. Clitellum beginning with or in front of $x r$, with few exceptions including the whole of xv. Male pores one pair, usually on xviii or xvii, exceptionally on xix. Fermale pores one parr, often fused midventrally, on xiv or immediately behind this. (Esophagus usually with one on several gizzards in front of the testis segments, rarely no gizzard. Two pairs testes and funnels in x and $x i$, or one pair in x or $x i$; one or two pairs of prostates, rarely reduced to one only or altogether wanting. One pair of ovaries in xiii.

Distribution. Over the whole of the southern half of the globe, and the southern part of the N. Hemisphere; apparently absent from N. and W. Asia, and from N. Europe and Arctic N. America; present as an introduced element of the fauna in Central and S. Europe, and occasionally in N. Africa; endemic, however, in the Nile countries.

The Megascolecidæ, considerably the largest family of the Oligochæta, can be traced back to their evolutionary starting point, which is represented by worms of the genus Notiodrilus as defined by Michaclsen in the Tierreich. The ancestor of the family was characterized by the possession of two pairs of testes and funnels, not enclosed in testis sacs, in segments x and $x i$; the vasa deferentia passed backwards to op n n by a pair of pores on segment xviii, probably in the setal zone; of two pairs of prostates, tubular in structure, contained in and opening on segments xvii and xix ; of two pairs of spermathecæ, opening in grooves $7 / 8$ and $8 / 9$; of four couples of setas per segment ; and of a pair of meganephridia per segment; there was a single gizzard in the region of segments v-vii. This mav be called the "original Acanthodriline"condition, from the name of the genus (in which Notiodrilus is now included) which comprehends forms having these characters.

From this base the Megascolecid tree has branched out in a number of directions. The larger offshoots have a unity of their own, their evolution follows ea fairly definite course, and they constitute well-defined subfamilies-the Megascolecinæ, Octochætinæ, Diplocardiinæ, etc. But after the separation of these
main branches there is left a group of forms, which we may best compare to the undergrowth around the base of the tree-short sprouts from the base itself, mostly taking different directions, and none of them growing very far. It is found most convenient to group all these together as another subfamily, the Acanthodrilinæ, which thus has rather a different character from the rest.

The Acanthodilinæ scarcely interest the Indian worker, since only one species of the subfamily, and that a well-known wanderer, is known to occur. The chief subfamilies which will occupy his attention are the three already mentioned-the Megascolecinæ, Octochætinæ, and Diplocardiinæ.

Key to the Indian subfamilies of Megascolecidæ.

2. Two or three gizzards in front of the first
testis segment 3

One rizzard, or none, in front of the first testis segment
4.
3. Calciferous glands in 2 or 3 of the segments x -xiii

Gen. Eudichoguster(Octo-
cHKTINE).
Calciferous glands behind the ovarian segment, or absent

Diplocardinse.
4. Spermathecal pores behind groove 8/9, often fused with the femnle pores. Spermathecal pores at or in front of $8 / 9$.

Eudrilina.
5. Vasa deferentia opening into the prostates (unless the prostates are absent)
Vasa deferentia opening separately from the prostates, at most close besides them, or into the prostatic duct at its termination
6.

Meganephridial
5.

5. Vasa deferentia opening into the prostates (unless the prostates are absent)	Megascolrcins.
Vasa deferentia opening separately from the prostates, at most close besides them, or into the prostatic duct at its termina-	
6. Micronephridial	
6. Micronephridial Megauephridial	Octochetine (part.).

Subfamily ACANTHODRILIN 庣.

1900. Acanthodrilinæ, Michaelsen, Tier. x, p. 122.
1901. Acanthodrilinæ, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 58.

Sete mostly eight per segment, seldom numerous and then approximated in couples within the ring. Clitellum beginning with or in front of xiv. Culciferous glands mostly absent, rarely present in segments vii-ix or in xiii. , Male pores on xviii or xvii; prostatic pores two pairs on xvii and xix, or one pair on xvii. Spermathecal pores in grooves $7 / 8$ or $8 / 9$ or both, rarely absent. One gizzard in front of the testis segment, rarely vestigial or
absent. Purely meganephridial. Prostates tubular, lumen of glandular portion lined by a non-glandular columnar epithelium; vas deferens ending independently of the prostates or in a common pore, but at any rate not entering the gland.

Distribution. Mostly in the S. Hemisphere, but introduced into other parts. Thus the only Indian representative is a "worldwanderer."

1. Genus MICROSCOLEX Rosa, emend. Mich.

1895. Microscolex (part.), Beddard, Monog. p. 459.
1896. Microscolex + Notiodrilus (part.), Michnelsen, Tier. x, pp. 139, 128.
1897. Microscole.c (part.), Michaelsen, O. siidpolar-Exp. p. 91.
1898. Microscolex, Nichaelsen, Fauna S.W. Austral. p. 143.
1899. Microscolex + Notiodrilus (part.), Benham, O. Sub-antarctic Is. pp. 254, 269.
1900. Microscolex, Michaelsen, Zool. Jahrb. Syst. xxx, p. 528.

Setæ eight per segment. Nephridiopores in one longitudinal line on each side. Male pores on xviii or xvii. Two pairs prostatic pores on xvii and xix, or one pair on xvil. Spermathecal pores two pairs in 7/8 and 8/9, or one (or three?) pairs, the last in $8 / 9$. Gizzard vestigial or absent (at most recognizable as a slight thickenng of the circular muscle of the tube in sections, scarcely thicker and narrower than the neighbouring parts of the cesophagus). Two pairs free testes and funnels in x and $x i$.

The history of the various schemes of partition of this and related genera is given up to 1907 in Michaelsen (123); and further changes in the arrangement and content of the several genera in Michaelsen, (127, 128, 129); cf. Benhatn also (115). It is an interesting history, but as the subfamily has so slight a relation to the Indian fauna it would hardly be justifiable to enter into an ạccount of it here.

Distribution. In India only at Peshawar. Widely spread in the S. Hemisphere, circummundane; has also been carried into the N. Hemisphere.

1. Microscolex phosphoreus (Ant. Dug.).

1914. Microscolex phosphoreus, Stephensın, Rec. Ind. Mus. x, p. 338.

For the complete synonymy and distribution, up to 1907, see:-
1907. Microscolex phosphoreus, Michaelsen, Fauua S.W. Austral. p. 148.

Length $10-50 \mathrm{~mm}$. ; diameter $1-2 \mathrm{~mm}$. Unpigmented, in life phosphorescent. Segments 75-90. Prostomium epilobous $\frac{1}{2}$.

No dorsal pores. Nephridiopores intersegmental, as far as iv in d, behind this immediately below c. Setæ widely paired; $a b=\frac{1}{2}-$ $\frac{2}{3} a a=\frac{1}{2} b c=\frac{3}{4} c d ; \quad d l l=2 b c$. Clitellum ring-shaped, xiii-xvi ($=4$ or 5). Prostatic pores on xvii just outside seta b; vasa deferentia end at the same level as the prostatic pores, but just inside seta b. Other genital apertures in line with a; spermathecal pores in $8 / 9$.

Septa 6/7-12/d 3 moderately thickened. Gizzard in \mathbf{v}, vestigial. No typhlosole. Last heart in xii. Seminal vesicles two pairs, in xi and xii. Prostates small, extending over no more than one segment. Penial setæ delicate and slender, slightly bowed, with scattered broad teeth apposed to shaft. Spermathecal ampulla pear-shaped; one or two short diverticula given off from the duct.

Remarlis. Thr relation of the prostatic pore to the opening of the vas deferens as given above was determined from a series of sections. The Indian specimens had two spermathecal diverticula instead of the more usual one.
'This is the only representative of the Acanthodrilinæ in India.
Distribution. In India only found at Peshawar. Its original home is in S. America; it has been widely spread through artificial transfer, as well as in the S. Hemispbere by the drift across the S. Atlantic and Iudian Ocean.

Subfamily MEGAS(OOLECINÆ.

1900. Megascoleciux, Michaelsen, Tier. x, p. 161.
1901. Megrascolecinæ, Nichaelsen, Fuuna S.W. Austral. i, p. 149.
1902. Megascolecine, Michaelsen, Mem. Ind. Mus. i, p. 118
1903. Megrascolecinæ, Michaelsen, Abh. Ver. Hamburg, xix, p. 21.
1904. Megascolecinæ, Michaelsen, Mjoberg's Austral. Exp. p. 53.

Setæ either eight per segment, or numerous, and then either in regular chains or approsimated in couples. Clitellum beginning with or in front of xiv. Male pores on xviii. Spermathecal pores, if present, one to six pairs, in front of the testis segments. Usually one gizzard in front of the testis segments, sometimes two or three, exceptionally none. Mega- or micronephridial. Two pairs testes and funnels in x and $x i$, or only one pair : prostates tubular or brauched, sarely absent; vas deferens enters prostatic duct or gland.

Distribution (Charts II and III). The subfamily occurs throughout the whole of India, but in the N.W. and Central regions it is represented only by peregrine species. In general its home is the Australian and Indian regions, with the Malay Peninsula and Archipelago, the Pbilippines, China, Japan, and Polynesia; a very few species are found in N. America. Certain
widely wandering species are found in many parts of the world; the littoral Pontodrilus is found on the coasts of all the warmer parts of the globe.

Chart II.

The whole of the family Megascolecidæ is, as previously indicated, to be derived from an original form which has essentially the characters of the genus Notiodrilus as defined by Michaelsen in the Tierreich volume of 1900 (for these characters v. ant. p. 162).

The Megascolecinæ, however, take their origin from a form which is one remove from this-Diplotrema, in which the anterior pair of prostates have disappeared and the posterior pair of prostatic pores have moved furwards to open on xviii near the apertures of the vasa deferentia.

In Plutellus, the first genus of the Megascolecinæ, the prostatic pores have fused with the openings of the vasa deferentia on xviii so that there is but one pair of pores; and this remains

Ghart III.

throughout the subfamily as its distinguishing character. In the remaining genera the changes are of three chief kinds-the seta may take on the perichotine arrangement, the four pairs multiplying in number and becoming spread out to form a more or less complete ring round each segment ; the nephridia may be broken up, with the substitution of a number, sometimes a very large number, of small micronephridia for the single pair of meganephridia in each segment; and the single central canal of the
prostate may branch, with the consequence that the organ is no longer tubular and cylindrical in form, but racemose. In a small group of genera there is a development of two or more gizzards, instead of the single gizzard of Plutellus.

Plutellus, then, has meganephridia, eight setæ per segment arranged in four pairs (the lumbricine arrangement), and a pair of tubular prostates opening on segment xviii in common with the vasa deferentia. From Plutellus is derived Meyascolides, in which the nephridia are breaking up or have broken up; this apparently does not always take place in the same way : in one group of forms there are three or four nephridia on each side of each segment, all about the same size, while in other cases there is one large one and a number of quite small ones; however, all stages of the process are united in this genus, so long as the prostates and setær retain their original condition. The next stage is Notoscolex: the prostates now become branched; in a number of cases the branches of the central canal are so insignificant that they have no effect on the form of the gland, and can only be demonstrated in sections-the genus, however, is defined as including all forms in which there is any branching at all. Following this we come to Megascolex, where the setro take on the perichotine arrangement; here again there are a number of intermediate stages; in a number of species the anterior segments retain the lumbricine arrangement, and the increase in the number of setm takes place gradually as we move backwards; in others the anterior segments show an increase too, but the paired arrangement still holds-there are six pars, or eight pairs, instead of four ; and so on. The last ganus along this line is Pheretima; the essential characters are those of Megascolex, but the gizzard is further back, the testes and male fummels are enclosed in testis sacs instead of being free in the segments (this occurs occasionally in Meyascolex), and on the whole the ring of setw is more closed up-has smaller gaps in the dorsal and ventral lines than is usual in Megascolex.

But there are other lines starting from Plutellus. In the line just considered the first change was the breaking up of the nephridia: in another line the multiplication of the setm comes first. This change, occurring in the basal genus Plutellus, gives Diporochota, the generic characters of which are therefore tubular prostates, meganephridia, and perichætine setw. It is, of course, impossible to derive this form from any of the first line, since those all have micronephridia; the meganephridial condition is the primitive one, and a meganephridial cannot be derived from a micronephridial form. From Diporochoeta is derived Perionyx, in which the prostates have branched; this genus therefore possesses meganephridia, perichætine setm, and racemose prostates. As in the case of Megascolides and Notoscolex, the transition between these two genera is gradual, and in some cases the branching of the central canal of the
prostate or its absence can only be determined by microscopic examination.

In the third line which starts from Plutellus the initial change is the modification of the prostates; Woodwardia, having thus racemose prostates, luinbricine setæ, and meganephridia; cannut be placed on either of the other lines, since in them either the setm or the nephridia are modified from the start. From Woodwardia is probably to be derived Comarodrilus, in which the nephridia in front of the clitellum, but only these, are broken up, the gizzard has become vestigial, and the originally paired spermathecal pores have fused in the middle line.

The genus Spenceriella has the primitive form of prostate, but is micronephridial, and has the perichætine arrangement of seta; it is probably to be derived from Meyascolides by multiplication of the setæ. It could, however, equally come from Diporochoeta by the breaking up of the nephridia.

A group of small genera are characterized by the reduplication of the gizzard. Dicyaster and Didynnogaster have two gizzards, and are distinguished from each other by the number and postion of the spermathecio; Perissogaster has three gizzards, situated anteriorly, as in the two former species. The condition of the other systems indicates that these are all to be derived from Notoscolex. Plionogaster, in which there are several gizzards more posteriorly situated, at the beginning of the intestine, is to be considered as originating from Ileguscolex.

Finally Pontodrilus is to be mentioned. The majority of species are littoral in habitat; one is terrestrial, and one is limnic. It is derived directly from Plutellus; the gizzard has become vestigial, and nephridia are absent from the first twelve or fourteen segments.

The above relationships may be graphically expressed in the form of a tree, as follows:-

Key to the Indian genera of Megascolecinæ.

> 1. Setæ eight throughout the body
> Setæo numerous (more than eight) at least in the maddle and hinder parts of the body......
2. Meganephridia alone present..................... 3.

Micronephridia present with or without meganephridia
5.
3. Prostates tubular, with unbranched canal 4.

Prostates with branching canal system Woodwardia.
4. Gizzard well developed Plutrilus.

Gizzard small or vestigial Pontodnilus.
5. Prostates tubular, with unbranched canal Megascolidres.

Prostates with branching canal system 6.
6. Spermathecal pores in a single median series ... Comarodrilus.

Spermathecal pores paired...................... Notoscolex.
7. Meganephridia alone present.................. 8.

Micronephridia present, with or without meganephridia
9.
8. Prostates tubular with unbrauched central canal. Diporocheta.

Prostates with branching canal system Perionyx.
9. Prostates tubular, with unbranched central canal. Syenceriella.

Prostates with branching canal system 10.
10. Gizzard in segment v, vi, or vii.................... Mraascolex.
-Gizzard in viii Pheretima.

1. Genus PLUTELLUS E. Perr.

19C0. Plutellus + F'etcherodrilus, Michaelsen, 'Tier. x, pp. 163, 178.
1807. Plutellus + F'letcherodrilus, Michaelsen, Fauna S.W. Austral. i, p. 159.
1909. Plutellus + Fletcherodrilus, Michaelsen, Mem. Ind. Mus. i, pp. 118, 119, 120.
1910. I lutellus, Michaelsen, Abh. Ver. IIamburg, xix, p. 22.
1916. Plutellus, Michaelsen, Mjöberg's Austral. Exp. p. 63 ff .

Setæ eight per segment. Male pores paired or single; female pores mostly paired; spermathecal pores end at groove $8 / 9$ or on segment ix, a single pair or a series of two to five pairs or single pores. One gizzard in the region of segments v-vii. Purely meganephridial. Prostates tubular, with simple unbranched canal.

Distribution (Chart II). Palni and Nilgiri Hills, and Cochin, S. India ; Ceylon; Darjiling Dist. and Abor Country, E. Himalayas. Outside India in Australia, Tasmania, and N. America.

Michaelsen has included the genus Fletcherodrilus under this heading, otherwise Plutellus palniensis, with unpaired male pore, spermathece, and spermathecal pores, would be a Fletcherodrilus. The morphological difference between a typical Plutellus and it "Fletcherodrilus" is, of course, considerable ; but if the latter is retained as a separate genus it would be diphyletic-one species
having arisen in Australia and another in India, from Plutellus in each case. The tendency to fusion of the male and sperimathecal pores is seen also in Perionyx, and markedly in Comarodrilus. The female pores seem to be fused in only one species of Plutellus (P. halyi).
The genus is' a variable one'; developments seem to be starting in several directions. Thus in several species the gizzard is becoming vestigial ; one species has testis sacs; one has a number of vestigial spermathecæ; in one the spermathecæ are reduced to one pair; in P. timidus and inclicus spermathecal pores appear on viii (i.e., some distance from a furrow), and in aquatilis on viii and ix.

Key to the Indian species of Plutellus.

1. Spermathecæ and their pores unpaired

Spermathecem and their pores paired
P. palniensis.
2. Spermathece more than two pars, vestigial P. sikkimensis.

Spermathecæ two pairs
Spermathecer one pair
3.
P. timidus.
3. Spermathecal pores on segment viii and in groove 8/9
Spermathecal pores in grooves $7 / 8$ and $8 / 9 \ldots . .4$.
Spermathecal pores on segments viii and ix P. aquatilis..
4. Penial setæ present 5.

No peninl setro
6.
5. Penial sete without ornamentation, spermathecal duct short

I'. aborensis.
Penial setto ornamented, spermathecal duct long and thin
P. singhalensis.
6. Clitellum saddle-shaped; genital markings as papillæ in neighbourhood of male pores
P. halyi.

Clitellum ring-shaped; genital markings a pair of longitudinal ridges on xviii-xx
P. duburiensis.

In addition to the above, an indeterminable species has been recorded from Parambikulam, in Cochin State (Stephenson, Mem. Ind. Mus. vi, p. 61, 1915).

1. Plutellus aborensis Steph.

1914. Plutellus aborensis, Stephenson, Rec. Ind. Mus. viii, p. 384, pl. xxvi, figs. 9, 10.
Length 100 mm .; diameter relatively small, in front $\mathbf{3} \mathrm{mm}$., behind $1 \frac{1}{2} \mathrm{~mm}$. Segments 385 . Colour pale. Prostomium small, prolobous. Segment v. biannulate, subsequent ones trinnnulate ; the secondary annulntion lost towards the hinder end. Dorsal pores from 9/10. Setæ small and inconspicuous, difficult or impossible to see in front of xi ; $a a=4 a b=14 b c ; a b=$ $\frac{5}{3} b c$; $d d=\frac{1}{2}$ circumference ; sete a and b absent on xviii. Clitellum? Male pores on small papillm which occupy the interval $a b$; a brownish coloration around and internal to the papillæ. Female pores? Spermathecal pores in $7 / 8$ and $8 / 9$, between a and b.

Septa $5 / 6-9 / 10$ thickened. A short gizzard, square in shape, in v. No calciferous glands. Last heart in xiii. Testes and funnels free in x and $x i$. Seminal vesicles two pairs, in xi and sii, lobulated, rather compressed antero-posteriorly, a!tached to the anterior faces of $11 / 12$ and 12/13. Prostate small though extending through several segments, as far as xxi, coiled, tubular ; duct muscular and shining, forming a single rather elongated

Fig. 58.-Plutellus aborensis Steph., distal half of penial seta; $\times 132$.

Fig. 57.-Plutellus aborensis Steph.; spermatheca.
loop in xviii, its ectal end thickened. Spermathecal ampulla a straight or bent cylinder lying obliquely on the body-wall; duct'short, from its under surface; diresticulum finger- or clubshaped, joining the mesially situated end of ampulla (text-fig. 57). Penial setæ(text-fig. 58) 0.88 mm . long, 11μ brond, without ornamentation, sharply pointed, with a gentle wavy curve at the distal end ; the rest of the shaft straight.

Remarks. The situation of the seminal vesicles seems peculiarone would have expected vesicles in xi and xii to be attached to the posteriur faces of septa 10/11 and 11/12.

Distribution. Rotung, Abor Country, E. Himalayas.

2. Plutellus aquatilis Steph.

1921. Plutellus aquatilis, Stephenson, Rec. Ind. Mus. xxii, p. 756, pl. xxxviii, fig. 8.

Length 115 mm .; maximum diameter 2 mm . Segments 162. Unpigmented. Prostomium small, proepilobous. Dorsal pores from 8/9. Setæ paired; in middle of body $a b=\frac{2}{8} a c=\frac{1}{2} b c=\frac{2}{3} c d$; behind genital region $a b=\frac{1}{3} a a=\frac{2}{3} b c=\frac{1}{2} c d$; in front of genital region $a b=\frac{2}{5} a a=\frac{1}{2} b c=\frac{1}{2} c d$; $\quad d d=\frac{1}{3}$ circumference in middle of body. Clitellum? Male pores on small papillæ, between a and b, papillm connected across middle line by a ridge. Fenale pores? Spermathecal pores rather outside b, in setal zones of viii and ix.

Septum $5 / 6$ very thin, 6/7-13/14 all slightly thickened. Gizzard in \mathbf{v}; swelling of cesophagus with vascular striations in xii. Intestine begins in xv. Last heart in xii. T'estes and funnels free in x and x. Seminal vesicles in xi and xii, small, racemose, arranged as a transverse band across the hinder surface of the

Fig. 59.—Plutellus aquatiles Steph.; spermatheca.
septa. Prostates relatively large ; duct thin, twisted, much shorter than the gland. Spermathecal ampulla ovoid or of an inverted pear-shape; duct about as long as ampulla, stout, straight or rather twisted; diverticulum single, tubular, as long as ampulla and duct together, with a few irregular swellings, the seminal chambers (text-fig. 59). No penial setæ.

Jistribution. Below Kotagiri, Nilgiris, S. India.

3. Plutellus dubariensis Mich.

1921. Plutellus duburiensis, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 61, text-fig. 7.

Length 78 mm . or less; diameter $1-1 \frac{1}{3} \mathrm{~mm}$. Segments ca. 143. Colour whitish, unpigmented. Prostonium proepilobous ca. $\frac{1}{4}$. Dorsal pores from $6 / 7$ (? 5/6). Setæ widely paired, the dorsal almost separated; $a a: a b: b c: c d: l d=15: 10: 15: 12: 12$; in the most anterior segments al and $d d$ rather wider. Nephridiopores in l. Clitellum ring-shaped, $\frac{1}{3}$ xiii- $\frac{1}{3}$ xvii ($=4$). Male pores as elongated slits, somewhat converging behind, on xviii, nearly in the position of the (absent) seta b, on the anterior ends of longitudinal ridges, which can be followed back to segment xx, somewhat converging; the area between the ridges depressed, sometimes almost sucker-like. Femnle pores inconspicuous, placed anteriorly on xiv in front of setæ a. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in the line of setæ b. Ventral surface of segment viii glandular.

Septa 6/7-10/11 thickened, 7/8-9/10 fairly strongly. Gizzard large, cylindrical, in v. No calciferous glands. No typhlosole. Last heart in xii. Testes and funnels free in \mathbf{x} and xi. Seminal vesicles one pair, lobed, in xii. Prostntes very long, irregularly twisted and undulating, pressed together, occupying xvii-xx; duct short, set off. Spermathece in viii and ix ; ampulla narrower-
ectally, passing into the short cylindrical duct; diverticulum small, club-shaped, a quarter as long as the main pouch, entering the ectal end of duct. No penial setæ.

Remarks. Comes near P. indicus (Mich.).
Distribution. R. Cauvery, Dubari, Coorg.

4. Plutellus halyi (Mich.).

1898. Megascolides halyi, Michaelsen, Zool. Jahrb. Syst. xii, p. 142. 1900. Plutellus halyi, Michaelsen, Tier. x, p. 165.
1899. Plutellus halyi, Michaelsen, Mjoberg's Austral. Exp. p. 43.

Maximum length 40 mm .; diameter $0.8-1 \mathrm{~mm}$. Segments 75 . Colour whitish to bluish grey, without pigment. Prostomium epilobous (?). Setæ small, fairly widely paired; $a a=2 a b=b c=$ $1 \frac{1}{2} c d=\frac{1}{2} d d$. First dorsal pore at $7 / 8$. Clitellum saddle-shaped, from xiii or $\frac{1}{2}$ xiii to xvii ($=\frac{1}{2}-5$); xviii may be glandular and thickened ventrally. Male pores just outside the liue b, on small papillæ. Female pore single. Spermathecal pores two pairs, in line with b, in $7 / 8$ and $8 / 9$. Copulatory papillæ in the neighbourhood of the male pores, variable, one median on xviii, or one on the right side on xix.

Septa all thin, 7/8-9/10 rather thicker than the rest. Gizzard in vi, tairly well developed; no calciferous glands. Last hearts in xii. Testes and funnels two pairs, in x and $x i$, free. Seminal vesicles two pairs, in ix and xii, each consisting of a few large lobes. Prostates long, extending back as far as xxii or even further; glandular part thick, closely wavy; duct short, narrower, muscular. Spermathecal diverticulum thickly pear-shaped, somewhat shorter than the duct, which it joins just below its middle; duct straight, thin, somewhat shorter than and well marked off from the ampulla. No penial setæ.

Distribution. Colombo, the Museum Garden.

5. Plutellus indicus Mich. f. typica.

> 1907. Plutellus indicus, Michaelsen, Mt. Mus. Hamburg, xxiv, 1909. P. 148. Putelus indicus, Michaelsen, Mem. Ind. Mus. i, p. 153. 1916. Pluellius indicus, Michaelsen, Mjöberg's Austral. Exp. p. 43.

Length $60-110 \mathrm{~mm}$.; maximum diameter $2 \frac{1}{2}-3 \mathrm{~mm}$. Segments ca. 160. Colour uniform grey or brownish grey. Prostomium indistinctly epilobous to tanylobous. Sete widely paired; in front of the clitellar region $a b=\frac{1}{3} a a=\frac{2}{3} b c=c d$; just behind the clitellar region the pairs are narrower; towards hinder end the pairs become wider, finally almost equalling $b c$; $d d$ is less than $\frac{1}{2}$ circumference, a little less in the anterior part, much less in the hinder part. First dorsal pore in 12/13 (or ? more anteriorly). Clitellum? Male pores on large transversely oval papillæ which
comprise a space equal to $a b$ and extend outwards beyond the line b; papillæ connected by a ridge and surrounded by a common dumbbell-shaped wall. Female pores in front of and slightly medial to a. Spermathecal pores two pairs, those of each side approximated to each other, in line with a or between a and b, one pair in $8 / 9$ and one in the setal zone of viii. No copulatory organs.

Septa 6/7-12/13 somewhat thickened, especially the middle ones. A large gizzard in vi (? v); œsophagus in xii-xvii moniliform, vascular and lamellated internally; no calciferous glands. No typhlosole. Nephridia relatively small. Male funnels free in x and xi. Two pairs seminal vesicles, in ix and xii, lobulated, the posterior pair the larger. Prostates with glandular portion long

Fig. 60.-Plutcllus indecus Mich. var. silvestris; spermatheca made transparent by acetic acid; $\times 26$.
and fairly thick, coiled; duct short and thin, almost straight. Spermathecal ampulla oval or thickly tubular; duct not sharply set off, about as long and half as thick as ampulla, narrowing rapidly towards its ectal end; below the middle of the duct a shortly tubular, straight or bent diverticulum enters, about as long as the duct or somewhat longer, with simple seminal chamber (text-fig. 60). No perial setæ.

Distribution. Kodaikanal, Palni Hills, S. India.

a. var. silvestris Mich.

1907. Plutellus indicus var. silvestris, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 149.
1908. Plutellus indicus var. silvestris, Michaelsen, Mem. Ind. Mus. i, p. 155, pl. xiii, fig. 9.
Median ventral and dorsal distances less than in the f. typica; anteriorly $a b=\frac{1}{2} a a$; at the hinder end $a a=1 \frac{1}{3} b c$, and $c d d=2 c d$ (in f. typica $d d$ at hinder end $=3 \frac{1}{2} c d$). Sperinathecal pores of the anterior pair just iu front of groove $8 / 9$, alnost fused with those of the hinder pair.

Distribution. Tiger Shola, near Kodaikanal, S. India.

6. Plutellus palniensis Mich.

1907. Plutellus palniensis, Michaelsen, Mt. Mus. IIamburg, xxiv, p. 149, text-fig. 3.
1908. Plutellus palniensis, Michaelsen, Mem. Ind. Mus. i, p. 157, pl. xiii, tig. 7, text-fig. 11.
1909. Plutelhis palniensis, Michaelsen, Mjöberg's Austral. Exp. p. 42.

Length $70-125 \mathrm{~mm}$.; diameter $2-4 \mathrm{~mm}$. Segments $240-260$. Colour yellowish white or light grey. Body very slender. Prostomium epilobous $\frac{3}{3}$, hinder end tapering backwards. Segments of anterior part of body, except the first two, with 2-5 secondary annuli. Setæ rather small; in general $c d=2 a b=\frac{2}{3} b c=\frac{3}{5} a \iota$; in anterior part of body $a b$ is wider, bc and ac narrower, aa especially so on the clitellum and just in front of it ; $d d=$ ea. $\frac{1}{2}$ circumference; at the hinder end the setæ d are somewhat irregular. Dorsal pores visible only behind clitellum. Clitellum indistinctly saddle-shaped, xii-xix $(=8)$. Male pore single, on a small median papilla, which is surrounded, or bordered in front and behind, by a rather thick wall. Female pores in the place of the missing setæ a of xiv, on a common oval cushion. Spermathecal pores unpaired, midventrally in $7 / 8$ and $8 / 9$. Copulatory cushions unpaired, midventral, on the anterior parts of viii and ix, just behind the spermathecal pores; sometimes an additional one similarly placed behind the male pore, on xix, rather more indistinct.

Septa 6/7-12/13 thickened, especially 8/9-11/12. A fairly large cylindrical gizzard in vi (or v ?); two pairs of lateral swellings of the cesophagus in xiv and xv , not set off, internally with longitudinal lamellw. No typhlosole. One pair of testes and funnels free in xi. One pair of grape-like seminal vesicles in xii. Prostates paired, with fairly thick and long glandular

Fig. 61.-Plutelius palniensis Mich.; spermatheca made transparent by acetic acid; $\times 10$.
portion, and short, narrow and almost straight duct; the ducts onter the body-wall in the position of a, and join in the body-wall. Spermathece unpaired, on the left side, with exit underneath the nerve cord; a mpulla sac-like; duct sharply set off, about one-third as long and broad as ampulla; two diverticula, opening near ectal end of duct; short, with narrow stalk, one diverticulum simple and
almost spherical, the other broader with two or three seminal chambers incompletely separated (text-fig. 61). Penial setæ apparently absent.

Remarks. For the unpaired male pores and spermathecal pores, and unpaired spermathecæ, see the introduction to the genus.

Distribution. Tiger Shola, near Kodaikanal, S. Indıa.

7. Plutellus sikkimensis Mich.

1907. Plutellus sikkimensis, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 147, text-fig. 2.
1908. Plutellus sikhimensis, Michaelsen, Mem. Ind. Mus. i, p. 155, pl. xiii, fig. 8, text-fig. 10.
1909. Plutellus sikkimensis, Michaelsen, Mjuberg's Austral. Exp. p. 43.

Length 42 mm .; diameter $4^{-1 \frac{1}{4}} \mathrm{~mm}$. Seginents 90 . Colour pale, without pigmentation. Prostomium epilobous $\frac{3}{3}$, tongue with parallel borders, open behind. Setæ rathe: stout, widely paired, especially the dorsal, and the ventral also in front of the clitellum; in general $a a=2 a b, a b=\frac{2}{3} b c, \quad b c=1 \frac{1}{5} c d$; in the anterior part of the body $a a$ and $b c$ are equal, and $a b$ and $c d$ are equal and nearly as large as $a c a$ and $b c$; $\quad l d=4 c d=\frac{1}{3}$ circumference. First dorsal pore in 6/7. Clitellum? Male pores on minute papillæ in the line of b; a male area can be distinguished, midventral on xvii and encroaching on xvi and xix, laterally reaching b, not sharply defined, approximately circular. Female pores in front of setie a of ${ }^{i}$ xiv. Spermathecal pores (probably) five pairs, in $4 / 5-8 / 9$, just median from the line of b. A pair of transversely oval glandular areas in $a b$, over $12 / 13$ and divided by it, sometimes connected by a glandular median area.

Fig. 62.-Plutellus sikkimenisis Mich. ; distal end of penial seta; $\times 450$.
Septa 6/7-12/13 thickened, especially 9/10 and 10/11. Gizzard in \mathbf{v}, small but distinct; cesophagus behind this moniliform, with folded walls, but no calciferous glands. Intestine begins in xiv. Last hearts in xii. Two pairs testes and funnels, free in x and xi.

Seminal vesicles apparently in ix, xi, and xii. Glandular portion of prostate consisting of closely apposed undulations, the whole almost tongue-shaped in appearance; duct fairly long, narrow, in its first part somewhat wavy. Spermathecæ (in sections) very small (or undeveloped), without distinct lumen, five pairs, behind septa $4 / 5-8 / 9$, just medial from b. Penial setæ (text-fig. 62) ca. $\frac{1}{3} \mathrm{~mm}$. long, 9μ thick in middle, with curved proximal end; distal end bent at an obtuse angle and somewhat tapering, ending in a sharply pointed slender tip, slightly recurved; distal end (except the tip) ornamented by about 9 oblique circlets of relatively very large teeth, about 9 teeth in a circle.

Distribution. Sandakphu, Darjiling Dist., E. Himalayas.

8. Plutellus singhalensis (Mich.).

1897. Megascolides singhalensis, Michaelsen, Mt. Mus. Hamburg, xiv, p. 174.
 1900. Plutellus singhalensis, Michaelsen, Tier. x, p. 16\%.

Length ca. 65 mm .; diameter 0.8-1.2 mm. Segments 87-108. Colour an indefinite equable grey. Prostomium epilobous $\frac{2}{5}$. Setio widely paired; $a a=1 \frac{1}{2} a b=b c=c d=\frac{1}{2} c d c ; d c l$ rather less than $\frac{1}{4}$ circumference; setæ ornamented with several deep scars, of which the proximal border is sharp and concave, but the distal border not definite. First dorsal pore in 5/6. Nephridiopores between the lines of c and d, not regularly in the same line. Clitellum ring-shaped, $\frac{1}{2}$ xiii or xiv to xvii $\left(=4\right.$ to $\left.4 \frac{1}{2}\right)$. Male pores between the lines a and b, on small round papillæ. Female pores paired, in front of setæ a. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in line with b. Copulatory papillo, small, in $17 / 18$ and $18 / 19$, or anteriorly and posteriorly on xviii, in line with a and also midventral; often some or all absent; a maximum of six may be present.

No septa specially thickened. Gizzard small, in v, not sharply set off, in comparison with other forms appears restigial; no calciferous glands. Intestine begins in xviii or xix; ? lateral glands at beginning of intestine. Hearts in x and xi. Nephridia with bladder-like peritoneal cells. Two pairs of testis sacs in x and $x i$, meeting ventrally. Lobular seminal vesicles in ix, $x(?)$, $x i$, and xii. Prostates thickly tubular, glandular part coiled and adherent, with warty surface; duct shorter, thinner. Spermathecal ampulla irregularly sac-like; duct long and thin, in broad apposed curves; diverticulum thickly pear-shaped, entering ectal end of duct. Penial setæ 0.6 mm . long, with a maximum thickness of 6μ; slightly and irregularly bent, with sharp straight tip, and a few broad closely apposed teeth at the distal end.

Remarks. The species is peculiar in possessing testis sacs.
Distribution. Nuwara Eliya, Ceylon.

9. Plutellus timidus Cogn.

1911. Plutellus timidus, Cognetti, Ann. Mag. N. II. (8) vii, p. 497, pl. xiii, tig. 4.
Length $30-48 \mathrm{~mm}$. ; diameter ca. 1 mm . Segments 116-119. Colour violaceous grey, clitellum violaceons brown. Prostomium small, epilobous. Body slightly compressed bebind clitellum, except the tail. Dorsal pores from 11/12 (? from 10/11). Nephridiopores, in front of clitellum at least, nearly in line with b. About segment x $a a=1 \frac{2}{3} a b, a b=\frac{3}{4} b c, b c=c d, c d$ somewhat smaller than dld, which is a little larger than $\frac{1}{2}$ circumference; at middle of bodv $u a=1 \frac{2}{3} a b, a b=\frac{1}{2} b c, c d=\frac{2}{3} b c, d l=c d$; at the tail $\alpha a=a b=\frac{1}{2} b c=c d=d c l$. Clitellum xiv-xvii ($=4$), ringshaped. Male pores on small papillæ, "about equally distant from the two bundles of setæ." Female pores internal to and in front of a, in a small transversely oval area. Spermathecal pores one pair on viii, in the setal zone, between the lines of b and c. A pair of papillæ on xix, just lateral to b, prolonged obliquely forwards to join the porophores.

Septum 5/6 the first, very thin; 7/8-12/13 thickened. Gizzard in v , not very strong. 'Testes and funnels free in x and xi , Sperm-sacs small and grape-like, in xii. Prostates in xviii with their eutal euds in xix ; muscular duct a little coiled. No penial setæ. Spermathece one pair in vii consisting only of a long pear-shaped ampulla.

Remarks. Distinguished by only one pair of spermathecæ. Something has gone wrong with the original account of the setal relations-cil and del cannot stand to one another as stated; but I cannot suggest what correction should be made.

Distribution. Muvattupuzha, 170 km . N.N.E. of Trivandrum, S. India.

〔. Genus PONTODRILUS E. Perr.

1900. I'ontodrilus, Michaelsen, Tier. x, p. 179.
1901. Pontod \cdot lus, Michaelsen, Mt. Mus. Hamburg, xxvii, p. 83.
1902. Plutellus (l'ontodrelus), Michaelsen, Capita Zool. i, 3, p. 22.

Setæ eight per segment. Male pores paired. Female pores paired. Spermathecal pores two or four pairs, the last in $8 / 9$. Gizzard vestigial or absent. Purely meganephridial, nephridia wanting in front of the clitellar region. Two pairs free testes and funnels. Prostates tubular, with simple unbranched canal.

Distribution. The genus is found chiefly on the shore, and is very widely distributed, especially over the islands of the S. Hemisphere, the shores of S. Asia, and the islands and consts of N. America. There is one lacustrine species, P. lacustris (Benham) in New Kealand, and one terrestrial species, P. agnesa Steph. from Ceylon.
Michaelsen, in a recent publication (131), ranks Pontodrilus as a subgenus of Plutellus.

A thorough revision of the genus is to be found in Michnelsen's paper of 1909 . Apart from P. lacustris (which, according to Michaelsen, may not be a true Pontodrilus) the then known forms belonging to the genus may be arranged in three species according to' the characters of the prostates: (1) P. bermudensis-prostates with a large, definitely marked off spindle-shaped muscular duct ; (2) P. litoralis-with small, sharply marked off muscular duct equally thick throughout; (3) P. matsushimensis-with very small, almost vestigial, cone-shaped muscular duct, not definitely marked off. Within these species there are various forms, concerning the systematic value of which there may be differences of opinion; Michaelsen calls them "forms." P. bermudensis includes laccadivensis, ephippiger, arence, insularis, michaelseni, and hesperidum.

Michaelsen speaks of the generic affinities of 1'. lacustris, from fresh water in New Zealand, as not being beyond doubt. It was first described by Benham as a Plutellus; but according to the generic definitions it clearly belongs to Pontodrilus; moreover, it has two peculiarities, also possessed by Pontorlvilus, which would hardly have arisen twice in association--sculptured setæ (ornamented with a number of extremely fine crescent-shaped marks near the distal extremity), and the absence of nephridia from the anterior segments.

The habitat (one species littoral and one terrestrial), and the characteristic male field of P. bermudensis, will at once distinguish between the two Indian species.

1. Pontodrilus bermudensis Bedd.

1897. Pontorlrilus insularis, Michaelsen, Mt. Mus. Mamburg, xiv, p. 17:3.
1898. Pontodnlus aphippiger + P. arence $+P$. insularis + P'michaelseni $+P$. hesperidum, Michaelsen, Tier. x, pp. 180, 181, 189.
1899. Puntodrilus laccadivensis, Beddard, Fauna Laccad. Archip. i, p. 374.
1900. Pontodrilus ephippiger, Stephenson, Rec. Ind. Mus. x, p. 256.
1901. Pontodrilus bermudensis f. ephlippnyer, Stephenson, Mem. Ind. Mus. v, p. 145.
1902. Pontodrilus bermudensis f. ephippiger, Stephenson, Mem. Ind. Mus. vi, p. 61.
1903. Pontodrilus bermudensis f. ephippiger, Stephenson, Kec. Ind. Mus. xii, p. 311.
1904. Pontodrilus bermudensis f. ephippiger, Stephenson, Rec. Ind. Mus. xini, p. :375.
1905. Pontodrilus bermudensis f. ephippiger, Stephenson, Mem. Ind. Mus. vii, p. 202.
1906. Pontodrilus bermudensis f. typica, Michaelseu, Mt. Mus. Hamburg, xxvii, p. 84.

Length 32-65 mm.; maximum diameter 2-2 $2_{2} \mathrm{~mm}$. Colour light grey, or olive-green : bright pink in life. Segments 106-108. Prostomium slightly epilobous. No dorsal pores. Lateral setæ
not paired; $a a, b c$, and $c d$ all equal in frcnt of clitellum, and equal to $1 \frac{2}{3} a b$; behind the clitellum $a a=c d=o r$ is slightly greater than $b c=2 a b ; \quad d d=2 c d$ throughout the body. Clitellum suddle-shaped, $\frac{1}{2}$ xiii-xvii $\left(=4 \frac{1}{2}\right)$; the ventral region forms a broad groove; at the ventrolateral margins of xviii and extending on to the adjacent parts of xvii and xix are a pair of very prominent white and rounded longitudinal ridges; internal to each ridge is a narrow deep depression, i.e., a groove parallel to the ridge. Male pores on small papillæ in line with b, on the inner wall of the groove just described. Female pores as white points anterior to the setal zone and internal to a. Spermathecal pores two pairs, on small white papillo, in $7 / 8$ and $8 / 9$, in line with b. Genital markings varrable; a transversely oval papilla which may have a sucker-like depression in its centre is generally present in $19 / 20$; a similar low flat papilla is often present in 12/13; an ill-defined papilla is occasionally present in 13/14.

Septa increase in thickness from $6 / 7$ to $9 / 10$, continue thick to 11/12, 12/13 thimner again. No gizzard; intestine begins in xv. Last heart in xiii. Nephridia absent from the first 12 segments. Testes and funnels free, in x and xi. Seminal vesicles grape-like, in xi and xii. Prostates of moderate size, slightlv coiled, in xviii and xvii; duct runs backward and outward, on the inner side of the glandular portion, is only slightly curved, and of about the same diameter throughout, rather shorter than the gland, strong and very muscular. Spermathecal ampulla variable in shape, elongated to subspherical; duct of moderate width, shorter than the ampulla; diverticulum implanted into body-wall near termination of duct, tubular, about as long as the main part of the apparatus, not or only slightly swollen at its ental end. No penial setæ.

Remarks. The above describes the worm as it has been found on the shores of India. It is, however, a variable species, and the following points are brought out by Michaelsen in his discussion of the synonymy.

The setæ are typically ornamented, the markings consisting of "scars," i.e., depressions with steeper proximal border which is denticulated in rarying degrees; the depth and so the conspicnousness of the scars may vary; sometimes they may seem to be almost worn away. I did not notice any such markings on the setm I examined-either the examination was not sufficiently minute, or they were worn away altogether on those particular setm.

Often the only genital papilla is that on 19/20; that on 12/13 is perhaps the next in constancy; they are also recorded on $11 / 12$, and on $14 / 15-16 / 17$. The papilla on $13 / 14$ which I found on some examples does not seem to have been recorded elsewhere. When papillæ are absent altogether it may probably be due to mmaturity.
The depression of the male field, and the lateral walls, vary in
distinctness. As will be seen, I have not found the prostatic duct distinctly spindle-shaped, though this forms part of Michselsen's diagnosis of the species.

In Rosa's originals of P. insularis, and in specimens described under this name by Michaelsen, spermathecal diverticula were absent; this Michaelsen now ascribes to the immaturity of the specimens in both cases, and therefore unites 1 . insularis with the present species. There were, however, in the original specimens of P. insularis other peculiarities-the muscular coat of the cesophagus was thickened in segment vii, the prostatic duct was considerably curred, and the setal relations were somewhat different (seta not paired, the intervals from one to the next successively increasing; $d d$ is not large, scarcely twice $c d$, and the setæ d are therefore dorsally situated; $a a=2 a b$; in the hindmost segments the regular arrangement of the setæ is disturbed). Rosa's specimens came from the Aru Islands, Michaelsen's were found in Schmarda's collection and were taken at Belligamme, Ceylon.
P. laccadivensis, also merged in the present species by Michaelsen, and found both in the Laccadives and Maldives, is described as being characterized by papilla in front of the clitellum (this is now known not to be a distinction from bermudensis), by having a feeble but recognizable gizzard in vii (compare the specimens described as P. insularis), and as having the prostatic duct long and curved. The papilla on the anterior part of xiv is less convex than the one on $12 / 13$, and is said by Michaelsen to be the female field surrounding the female pores.

Distribution. Littoral; Chilka Lake, E. Coast (in damp mud under stones at edge of lake; in wet sand or sand mixed with mud both in the main area and in the outer channel of the lake, the water being either fresh, brackish, or as salt as that of the Bay of Bengal); under stones on the shore in Mormugao Bay near Goa; Ennur backwater, near Madras (in wet sand where the water was slightly brackish); Pamban, Malabar Coast (in a rotten palm-tree lying in the water); Bombay ; Belligamme, Ceylon; Laccadives and Maldives. It is widely distributed throughout the tropics and warmer coasts of both hemispheres; the form described as P. ephippiger, which the Indian spocimens resemble most closely, has been recorded from the Cape Verde Islands, Portuguese W. Africa, N.E. Madagascar, Christmas Island, W. Australia, Celebes, and Hawaii ; the form described as P. insularis was recorded from the Aru Islands.

2. Pontodrilus agnesæ Steph.

1915. Puntodrilus agnesce, Stephenson, Mem. Ind. Mus. vi, p. 61.

Length' 65 mm . ; average diameter 1 mm . Segments 116. Colour dark brown. Prostomium prolobous, only slightly delimited from the first segment. Setæ a and b absent on xviii; $a a=2 a l$; $b c=1 \frac{1}{2} a b=c d ; \quad d d=$ about $3 c d=$ about $\frac{1}{3}$ circumference, the
setw d being thus dorsolateral; $d d$ is rather greater in the anterior part of the body than behind. Clitellum lighter than the rest of the surface, $\frac{1}{2} x i i i-x$ vii or $\frac{1}{2}$ xvii ($=4$ or $4 \frac{1}{2}$); the midventral region is grooved in this part of the body. Male pores ou small papillm between the lines a and b. Female pores paired, in the setal zone. Spermathecal pores minute, in $7 / 8$ and $8 / 9$, in b.

Septa $9 / 10-11 / 12$ moderately thickened; $7 / 8$ and $8 / 9$, and also 12/13 slightly thickened. Eisophagus dilated in v , but the walls not thickened, and there is no gizzard. No calciferous glands. Last henrt in xii. Nephridia begin in xii or xiii. 'Testes free in x and $x i$. Seminal vesicles in ix and xii. Prostates moderate in size, confined to xviii, the coils closely pressed together so that the organ resembles a lobed Pheretima-prostate; duct at first thin-walled and windng, stouter and more muscular near its termination. Spermathecal ampullæ ovoid or subspherical; duct stout, narrowing towards its termination, not sharply demarcated from the ampulla, about half as long as the ampulla; diverticulum single, from middle of duct, spindle- or club-shaped, reaching upwards to about half height of ampulla.

Remarks. This is the only terrestrial species of the genus, and may perhaps represent the terrestrial ancestor from which the littoral species have descended.

Distribution. Horton Plains and Elk Plains, Ceylon.

3. Genus WOODWARDIA Mich.

1907. Woodvardia, Michaelsen, Fauna S.W. Austral. i, p. 153.
1908. Woodwardia, Michaelsen, Mjöberg's Austral. Exp. pp. 55, 59, 65.
Setæ eight per segment. One gizzard in \mathbf{v} or a neighbouring segment. Purely meganephridial. Prostates with branched canal system in the glandular part.

Distribution (Chart II.). W. Akyab Dist., Lower Burma; Ceylon: Cochin State, S. India. The genus is also found in Australia, and in Java.

The genus was instituted by Michaelsen in 1907 for several species previously included in Plutellus and Megascolides, characterized by the above combination of anatomical features. Since it is now recognized that the "Pheretima-prostate" may have arisen more than once, there is no difficulty in deriving the ganus directly from Plutellus, from which it differs only in the character of the prostates. This, I think, is very much to be preferred to Michaelsen's alternative-that it may be descended from Notoscolex by a retrogression of the micronephridial into the original meganephridial condition (Michaelsen, 83 a, p. 59). I am doubtful of the possibility of a reversal of the evolutionary process such as would lead to the restoration of a meganephridium on each side, when once the micronephridial condition has been established.

Michnelsen, however, would also consider as possible a descent of Woodwardia from Diporochota, in the course of which the perichætine arrangement of the setæ would have given place to the lumbricine (ib., p. 55).

I have included in the genus two species-Meguscolides hastatus and Notoscolex sarasinorum - which I believe to be meganephridial, instead of micronephridial (or mıxed mega- and micronephridial), as they were originally described. In Megascolicles hastatus Steph. the nephridia in the anterior part oi the body are a pair of tufts in each segment, each tuft with a single narrow duct; in the hinder region of the body the tuft is joined to a nephridial loop which stretches upwards on the body-wall. In Notoscolex sarasinorum (Mich.) compact tufts are present throughout the body, one pair in each segment, attached to the body-wall in the line of setæ c; no other nephridia are mentioned at ail.

These tufted nephridia are well known to all students of the Megascolecidæ; ther occur in a large number of genera in the region of the pharynx, gizzard, and cosophagus, and often in worms which in the rest of the body are typically micronephridial. They have always hitherto, I think, been considered as aggregations of micronephridia. I believe, however, that they are more correctly to be interpreted as meganephridia, and that consequently such species as the two just mentioned, where there are no scattered nephridia at all, must be removed from the micronephridial genera in which they have hitherto been placed.

The development of the tufted type of nephridia has been described by Bourne (27) and by Bahl (105). According to Bourne they arise as paired structures, each consisting of a preseptal funnel, a neck, and a postseptal glandular loop and excretory duct; from a portion of the loop a number of outgrowths develop, into which the canals extend in a very complicated manner; and this bunch of outgrowths, the tuft, ultimately constitutes by far the largest portion of the nephridium. In meganephridia of the ordinary form these outgrowths are not produced; the nephridia therefore retain the form of a loop.

It is, I think, obvious that in the tufted form of the nephridia the essential character of micronephridia-the breaking up into separate organs-never develops; the tuft is an appendage of the looped meganephridium which by its great development, along with the regression of the loop, comes to overshadow the latter altogether.

The anatomy of the tufted nephridia of the pharyngeal region of Pheretima posthuma has lately been described by Bahl (90), who apparently, like other students of the Oligochæta, regards the tufts as aggregates of micronephridia. The individual tubules of the tufts possess no funnels; and each tuft discharges by a single duct (in this case into the pharyngenl cavity). This suggests a branched single organ rather than an aggregate of separate organs : and this interpretation is confirmed by the same author's account of their development (105), which is similar to
that given by Bourne. Bahl finds that in Pheretima the tufts make their appearance as small club-shaped solid masses, produced into strings of cells leading to the pharynx; the strings of cells become canalized and form the duct; "secondary pharyngeal nephridia" (i.e., the individual components of the tuft) develop as buds on the nephridial ends of the pharyngeal ducts, the buds becoming "fully formed nephridia," and their ducts remaining continuous with the primary pharyngeal duct. Thus the original single nephridium never breaks up; the primary duct remains; the contmuity of the organ persists; the components have neither morphological nor physiological independence; there is one organ from beginning to end-a meganephridium of a peculiarly modified form.

In Notoscolex sarasinorum there appear to be no other nephridia than the tufts, and I therefore regard this species as megane-phridial,--i.e., as a Woodwardia; the great similarity of this species to Woodwardia uzeli is a confirmatory argument for ny view of its position. In Meyascolides hastatus it appears that the loop from which the tuft arises as an outgrowth has not regressed in the manner described by Bourne, and we have therefore the tuft along with a meganephridial loop of something like the ordinary form. It is possible that other species also ought to be included in Woodwardia, but we are probably not in all cases in possession of the necessary data; tufted nephridia may merely have been described as micronephridia.

Key to the Indian species of Woodwardia.

	No penial setre	W. burkilli.
	Penial setre present	
	Metandric*; no genital papillæ	W. hastata.
	Hulandric ; genital papillæ present	
	Copulatory papilla one pair on xvii	W. uzeli.
	Copulatory papillm median on 19/20, 20/21, and sometimes $21 / 22$.	W. sarasinorum.

1. Woodwardia burkilli Mich.

1907. Woodwardia burkilli, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 152, text-fig. 5.
1908. Woodwardia burkillii, Michaelsen, Mem. Ind. Mus. i, p. 162, pl. xiii, fig. 6 .
Length 50 mm .; average diameter 1 mm . Segments 125. Unpigmented; rosy in life. Prostomium prolobous. Setæ moderately large, not very closely paired: $a a=2 a b=\frac{8}{\square} b c=2 c d$; $d d=\frac{1}{2}$ circumference. Clitellum ring-shaped, xiv-xvii ($=4$). Male pores just medial from the line of b, on papillæ which have a semicircular outline in front, but are indistinctly defined behind. A narrow but distinct furrow, convex towards the middle line, is prolonged backwards from each pore on to segment

[^2]xix (pseudo-spermatic groove). Female pores medial from a and in front of the setal zone, on a common, almost linear, transverse area, which exteuds outward beyond a on each side. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, somewhat lateral from a; the ventral setæ of viii and ix scem to be wanting (? changed into copulatory setw und fallen out in copulation).

Septa 7/8-15/16 somewhat thickened, especially the middle ones, $10 / 11$ and 11/12. Gizzard stout, in vii (?). (Esophagus widened in ix-xii, with the structure of calciferous glands, but not set off from the tube. Intestine with simple typhlosole. Meganephric, the nephridia rather small. Two pairs testes and funnels free in x and $x i$. Seminal vesicles small, one pair, in xii. Prostates with an oblong densely grape-like glandular part, and fairly long somewhat coiled duct; vas deferens enters ental end of duct. Spermathecal ampulla large, irregularly pear-shaped; duct very short and narrow, almost hidden in body-wall; diverticulum club-shaped, somewhat shorter than ampulla, into the narrowed ectal end of which it opens. No penial setæ.

Distribution. Buthidaung, W. Akyab Dist., Lower Burma.

2. Woodwardia hastata (Steph.).

1915. Megascolides hastatus, Stephenson, Mem. Ind. Mus. vi, p. 63, pl. vii, fig. 9.
Length and diameter variable; of mature specimens, length 55-175 mm., diameter $1 \frac{1}{4}-2 \frac{1}{2} \mathrm{~mm}$. Colour grey. Segments 216 . Prostomium small, epilobous $\frac{1}{2}$. Dorsal pores from 10/11. Setæ paired, the lateral rather widely; the seta of the first 20 segments maller than those behind; $a a=2-3 a b, b c=1 \frac{1}{2}-2 a b, c l=$ about $1 \frac{1}{2} a b$; near the hinder end the lateral setæ are no longer paired, bc being equal to cll; $d d=\frac{1}{2}$ circumference. Clitellum apparently $\frac{1}{2} \times$ xiv-xvii $\left(=3 \frac{1}{2}\right)$. Male pores on small circular papillm between the lines of a and l. Female pores paired, between and in front of a. Spermathecal pores small, in $7 / 3$ and $8 / 9$, in a.

Septa $7 / 8-11 / 12$ inoderately thickened, $6 / 7$ and $12 / 13$ slightly. (Hizzard well developed, barrel-shaped, in vi. No calciferous glands, though the cesophagus is ıascular and segmentally bulged 111 xiii-xvi. Intestine begins in xix. Last heart in xiii. Nephridia in anterior part of body as bush-like tufts on each side of each segment, attached to parietes by a stalk; none elsewhere in the segment. In the posterior segments these tufts are still present, and in addition there is a relatively large loop intimately connerted at its lower end with the tuft and extending dorsalwards nearly to the middle line. Testes and funnels free in xi. Seminal vesicles one pair, in xii, sinall and grape-like. Prostate elongated and tongue-shaped, straight and rather flattened, with smooth borders, or the glandular part coiled; duct short and cylindrical. Spermathecal ampulla elongated, cylindrical, bent on itself; duct practically absent; diverticulum single, arising from base of main pouch where it joins the body-wall, cylindrical, two-thirds as long
and two-thirds as wide as ampulla. Penial setm (text-fig. 63) $3-3.5 \mathrm{~mm}$. long, sac extends back to xxii; 16μ thick in middle, straight for the greater part of their length, bowed distally, and

Fig. 63.-Wooduraraia hastatus ('Steph.) ; penial seta; a, distal portiou, $\times 90 ; b$, extreme end, \times ci.. 600.
sinuous at the end; the tip presents the appearance of a web stretched across a bifid termination; numerous fine triangular sculpturings irregularly arranged over the distal portion except the extreme tip.

Remarks. I investigated the prostate microscopically, and found besides the main duct in the centre of the mass other smaller ducts joining it; though externally of the tongue-shaped variety the glands are thus to some extent branched in structure.

The species is metandric.
For a discussion of the siguificance of the nephridial condition see the Introduction to the genus.

Distribution. Parambikulam, Cochin State, S. India.

3. Woodwardia sarasinorum (Mich.).

1897. Cryptodrilus sarasinorrm, Michaelsen, Mt. Mus. Hamburg, xiv, p. 177, text-figs. 14, 15.
1898. Notoscole. ${ }^{\text {s sarcusinorum, Michaelsen, Tier. x, p. } 192 .}$

Length 120 mm .; diameter $1 \frac{1}{2}-2 \mathrm{~mm}$. Segments 134 ; iii-vi biannular, subsequent segments triannular. Prostomium epilobous $\frac{1}{2}$, tongue open behind. Colour an indefinite grey. First dorsal pore at groove $9 / 10$. Setæ ornamented with numerous finetoothed transverse lines; enlarged at the ends of the body, and set widely apart; setal intervals not of very different extent-bc greater than $c d$, $c l$ greater than $a b, a a=1 \frac{1}{2}-2 a b, d d$ less than $\frac{1}{2}$ circumference; in the middle part of the body the setæ of a pair rather closer together than at the ends. Clitellum swollen, ringshaped, xiv-xvii $(=4)$, sharply defined, with Ω longitudinal median ventral groove. Male pores on small papillæ in line with b; a depression in front of each, the depressions surrounded by a common wall, which fuses behind with the male papillw. Female pores internal to a, in front of setal zone. Spermathecal pores in $7 / 8$ and $8 / 9$, in c. Copulatory cushions midventral, flat, suckerlike, on $19 / 20,20 / 21$, and often $21 / 22$; the two anterior rather larger than the last, meeting each other, and laterally reaching almost to c.

Septa $6 / 7-13 / 14$ thickened, the middle ones of the series most so. A strong barrel-shaped gizzard in vi; no calciferous glands. Last hearts in xiii. Micronephridia aggregated on each side of the middle line into compact tufts, attached to the body-wall in line with c. Testes and funnels free, in x and $x i$. Seminal vesicles racemose, two pairs, in xi and xii. Prostates racemose, extending over three segments. Spermathecæ with club-shaped diverticulum, as long as the duct, into the ental end of which it discharges. Penial setæ 1.3 mm . long, 30μ in maximum thickness, slightly curved distally, pointed, style-like, with many circlets of long, slender, not very closely applied teeth.

Renarks. There is a distinct resemblance to W. uzeli, from the same locality.

Distribution. Ceylon (probably Peradeniya).

4. Woodwardia uzeli (Mich.).

1903. Plutellus uzeli, Michaelsen, Jb. böhm. Ges. xl, p. 4, textfigs. A-C.
1904. Plutellus uzeli, Michaelsen, Mt. Mus. Hanuburg, xxi, p. 127.
1905. Woodivardia uzeli, Michaelsen, Abh. Ver. Ilamburg, xix, p. 57.
1906. Woodwardia uzeli, Michaelsen, Mjüberg's Austral. Exp. p. 46.

Length $30-40 \mathrm{~mm}$.; diameter $1-1 \frac{1}{2} \mathrm{~mm}$. Segments $96-112$; more or less distinctly multiannular (3-5 annuli). Unpigmented.

Prostomium minute, epilobous $\frac{1}{2}$, tongue not closed behind. Dorsal pores from $9 / 10$ or $10 / 11$. Setæ somewhat larger at hinder end, widely paired, especially the lateral; $a a=b c>c d>a b$, but all nearly equal; $a b=c a . \frac{2}{3} b c ; d d$ anteriorly $=\frac{1}{2}$ circumference or little less, at hinder end $=\frac{2}{3}$ circumference; setme c and $c l$ irregular in the last $10-20$ segments. Clitellum ring-shaped, though thinner ventrally, xiv- $\frac{1}{2} x$ vii $\left(=3 \frac{1}{2}\right)$. Male pores in line with b, on circular papillæ which take up nearly the whole length of xviii. Female pores paired. Spermathecal pores two pairs, close behind $7 / 8$ and $8 / 9$, above b, nearer b than c. Copulatory papıllm one parr, in b, posteriorly on xvii, transversely oval in shape.

No septa notably thickened. A large barrel-shaped giziard in vi (?). No calciferous glands. Intestine begins in xix. Testes and fummels free in x and xi. Seminal vesicles compressed racemose, in xi and xii. Prostates confined to xviii, glandular part of an elongated heart-shape, small, much cut up; duct emerges from the basal cleft between two rounded lobes : duct ouly slightly curved, somewhat thinner at both ends. Two penial setal sacs on each side. Spermathece thickly pear-shaped; duct not marked off, as long as the ampulla, narrowing towards the ectal end; diverticulum single, small, pear-shaped, $\frac{1}{2}-\frac{2}{3}$ as long as duct, attached to ental portion of duct. Penial sete five, ca. 1 mm . long, 7μ thick in middle, switch-like, undulating in its distal third, each small convexity constituted by a scale-like tooth. which is depressed within a scar-like hollow; tip simple-pointed.

Renuarks. The interial dld at the hinder end of the body is given in the original both as two-thirds and as one-third of the circumterence.

Distribution. Peradeniya and Avissavela, Ceylon.

4. Genus COMARODRILUS St ${ }^{2}$ ph.

1915. Comarodrilus, Stephenson, Mem. Ind. Mus. vi, p. 69.

Seta eight per segment. Wpermathecal pores in a single series, median. A somewhat vestigial gizaard in v. Micronephrida in the anterior part of the body, as far as segment xii; behind this meganephridia only. 'Testes and funnels tree in x and xi. Prostates a compact glandular mass, not tubular.

Distribution. Cochin State. The genus is not known outside India.

I have discussed the derivation of the genns in my paper of 1915 (80), and concluded that it is probably to be derived from Woodwardia, by degeneration of the gizzard and breaking up of the nephridia in front of the clitellum. The single series of spermathece may not be a generic character; Michatloen no longer recognizes it as such in Fletcherollrilus (cf. p. 170 aut.).

1. Comarodrilus gravelyi Steph.

> 1015. Comarodrilus gravelyi, Stephenson, Mem. Ind. Mus. vi, p. 69, pl. vii, fig. 13 .

Length 92 mm .; average diameter $1 \mathrm{~mm} .$, maximum $1 \frac{1}{4} \mathrm{~mm}$. A long thin worm, constricted at the clitellum. Segments 135. Colour grey. Prostomium? First dorsal pore in 6/7. Ventral setæ paired, but not the lateral; in front of clitellum $a a=2 a b$ approximately, c being about the lateral line of the body and $c l$ much above this level, $b c$ being less than $c d$, and $c c l$ less than $d d$; in the middle and hinder parts of the body the setæ d are much closer together, not far from the mid-dorsal line, del being obviously less than cd. Clitellum xiv-xvii $(=4)$. Male pores on small conical papilla which touch each other in the middle line; in front and behind each is a semicircular depression with defined margins, the concavities of the depressions facing each other. Female pores? Spermathecal pores mid-sentral, in $7 / 8$ and $8 / 9$.

Septa 7/8-9/10 considerably thickened, $5 / 6,6 / 7$, and $10 / 11$ somewhat so. A somewhat vestigial gizzard in \mathbf{v}, folded on itself. No calciferous glands. Micronephridia in the anterior part of the body, as far back as xii; behind this only a pairof meganephridia per segment. Funnels free in x and $x i$. Seminal vesicles two pairs, lobed, in xi and xii. Prostate a compact glandular mass confined to xviii; duct strongly muscular, contorted in its first part, straight in its last portion. Spermathece single in each segment (viii and ix); ampulla ovoid to spherical; duct thick, in length equal to the ampulla; a sinall diverticulum given off from the duct near its junction with the body-wall. No penial setæ.

Remarks. In the specimen examined the two spermathecal ducts were placed on opposite sides of the nerve cord-the anterior one on the left, the posterior on the right.

Distribution. Trichur, Cochin State, S. Indin.

5. Genus SPENCERIELLA Mich.

1907. Spenceriella, Michaelsen, Fauna S.W. Austral. p. 153.

Setæ numerous (more than eight per segment). Spermathecal pores 1-3 pairs. One gizzard in segment v. Micronephridial. Prostates tubular, with simple unbranched canal.

Distribution. Palni Hills, S. India. Outside India in Victoria, Australia.

The genus was instituted by Michaelsen in 1907 to receive worms with the above characters, previously included in Diporochoeta. It can be derived either from Megascolides by a change from the lumbricine to the perichætine arrangement of setæ along with a further breaking up of the nephridia, or from Diporochoeta
by the breaking up of the meganephridia merely. In 1907 Michaelsen thought the latter more likely; in 1916 (83 a, p. 60) he hesitated between deriving it from Megascolides in the way just mentioned and seeking its origin in Megascolex. In this latter case it would be necessary to suppose that there had been a regression of the Pheretima-prostates to the tubular form.

I am strongly opposed to this latter method of deriving genera by retracing evolutionary steps. The becoming vestigial of organs is of course a well-recognized occurrence, and does not involve the passage backwards through the successive steps of morphological evolution. But this is a different matter; such a derivation as this suggested by Michaelsen postulates the restitution of the steps themselves along with their former modes of functioning.

The genus is quite a small one, having one species only in the Indian region and two in Australia (Victoria). It is possible that the Indian species has been evolved independently of the Λ ustralian.

1. Spenceriella duodecimalis Mich.

1907. Spenceriella duodecimalis, Michaelsen, Mt. Mus. Hamburg, xiv, p. 152.
1908. Sypenceriella duodectmalis, Michaelsen, Mem. Ind. Mus. i, p. 161, pl. xiii, tig. 10.
1909. Spenceriella duodecimalis, Michaelsen, Mjoberg's Austral. Exp. p. 5\%.
Length 3:-40 mm. ; maximum diameter 2-2 $\frac{1}{2} \mathrm{~mm}$. Segments 94-109. Colour reddish grey anteriorly, yellowish or brownish behind. Prostomium epilobous $\frac{1}{2}$, tongue open behind. Eirst dorsal pore at 5/6. Setæ rather large at ends of body, moderately large in the middle part; in anterior half 12 per segment, in front of the clitellum arranged in distinct pairs, distances between the pairs a little less than the middorsal and midventral intervals; behind the clitellum the pairing ceases; and behind segments xlv to l the arrangement becomes irregular, and the number per segment increases to 16 or 17 . Chitellum ring-shaped, occupying $\frac{2}{3} x i i i-\frac{2}{3} x v i i\left(=4 \frac{1}{3}\right)$. Male pores on circular papillæ just medial from the line of b. Spermathecal pores one pair, in $7 / 8$, just lateral from the line of b.

Septa 7/8-12/13 somewhat thickened. A large gizzard in vii (or ? somewhat in front of this). Calciferous gland-like swellings of the cosophagus in xiii and xiv, but not stalked or set off, therr lumen continuous with that of the œsophagus. Intestine begins in xvi; no typhlosole. Last hearts in xii. Micronephric: in the posterior seginents several nephridia in each segment appear to be larger than the rest. Funnels free in x and xi. Seminal vesicles two pairs, in xi and xii, broad, grape-like. Prostates with thick and very long glandular part, extending through about 12 segments, from xxiii to xxxiv, irregularly winding, the bends pressed
closely together; no branching of the central canal microscopically; duct thin at first, thicker towards termination, relatively long (from xxiii to xviii), irregularly winding. Spermatheoal

Fig. 63 a.-Spenceriella duodecimalıs Mich. ; spermatheca made transparent by acetıc acid ; $\times 20$.
ampulla large, sac-like; duct short, narrow and indistinct; diverticulum thin, tube-like, half as long as main pouch, rather bent, opening into the duct (text-fig. 6:3 a). No penial setx.

Distribution. Kodaikanal, Palni Hills, S. India.

6. Genus MEGASCOLIDES McCoy.

1900. Megascolides (part.) + Trinephrus (part.) + Notoscolex (part.), Michàelsen, Tier. x, pp. 182, 184, 187.
1901. Megascolides (part.), Benham, P. Z. S. 1904, ii, p. 2577.
1902. Meyascolides, Mıchaelsen, Fauna S.W. Austıal. p. 161.
1903. Megascolides, Michaelsen, Mjoberg's Austral. Exp. p. 56.

Setæ eight per segment. Spermathecal pores 1-5 pairs, the last in $7 / 8$ or $8 / 9$ or on ix. One gizzard in the region of v and vi. Micronephridial in the anterior part of the body. Prostates tubular, with simple unbranched canal.

Distı ibution (Chart II). Cochin State, S. India; Western India; Godaveri Dist., E. Coast ; E. Himalayas. Outside India occurs in Australia and Tasmania, and has one species in N. America.

The definition of this genus has given much trouble to previous authors. The early history is given by Benham, 1904.

In Michaelsen's definition of 1900, the excretory system is said to consist of micronephridia, with, in addition, one pair of meganephridia in each of the hinder segments; the prostates are tubular (? often racemose); Michaelsen adds "perhaps several of the species under Notoscolex belong here, in which the hinder end of the body has not been investigated." The essential difference of the genus Trinephrus was the occurrence of three to five pairs of micronephridia regularly in each segment. Notoscolex was distinguished essentially by the presence of micronephridia (diffuse-
nephridia) throughout the body. Thus the nephridia were the chief point of distinction between the three genera; the prostates in all might be either tubular or racemose (this was queried in the case of Megascolides, v. sup.).

Beuham in 1904 doubted whether the nephridia should be used to so great an extent in the separation of genera, and thought the prostates would furnish more suitable criteria. IIe would distinguish the tubular prostate from the elongated tongue-shaped and from the lobed and compact "Pheretimu-prostate"; these three, he thought, perhaps form a developmental series. He established a genus l'okea for forms with (among others less important) the following characters:-Setæ eight, spaced, and more or less equidstant. T'wo pairs of seminal vesicles in ix and xii. Prostates long, tongue-shaped, lie below the gut, close to one another, and extend through several segments. No penial setæ. Micronephric, with meganephridia in the last few segments.

Benham's suggestion as to the importance of the prostates was taken up by Michaelsen in 1907; he now united under Megascolides all the Megascolecines which possess lumbricine setr and tubular prostates, and which show any trace of a division of the meganephridia up to the complete replacement of mega- by micronephridia; the genus includes both such species of Trimephrus as have tubular prostates, and Benham's genus Tokea (Michaelsen considered the "tongue-shaped" prostate to be tubular; though Benham had exammed the microscopical structure in Tokiea esculenta, and found that the main duct received small canalicules at intervals).

In 1916 Michaelsen made an examination of a large number of species of many genera of Megascolecinæ, and found that transition forms of the prostate in the series Plutellus-Mega-scolides-Notoscolex are numerous; all stages in the evolution of the typical racemose "Pheretima-prostate" are actually extant. Ho now defines as Notoscolex all species in which any lateral branches at all enter the main central duct, as well as those in which the main duct branches early, and in which therefore there is no central caual at all within the gland. The prostates are now all-important, the nephridia negligible.

It is certainly true that the strap-shaped or tongue-shaped prostates of "Tokec" and of certain other forms (e. g. Woodwardia hustata) are very nearly allied to the "Pheretima-prostate"; for example, I have described Megascolides oneili with much lobulated prostates (i.e., the Pheretima form), and a variety of the same species (var. monorchis) in which the organs have the tongue-shaped form. If the prostates are to be made a chief basis of distinction, "T'okea" and Megascolides oneili must go to Notoscolex.

The separation of two genera the characters of which merge inte one another is difficult, and however effected is bound to be merely arbitrary; the difficulty here is increased by the fact that microscopic examination by means of serial sections is necessary
in some cases before the tubular can be distinguished from the branched gland. But, to reduce the necessity for resorting to this procedure, it may perhaps be assumed that the flattened tongue-shaped glands, especially if their borders have any trace of lobing, will have branched ducts; while all glands which are definitely cylindrical in shape will quite possibly have simple ducts.

But the division of Meyascolides and Notoscolex is unsatisfactory in another way. The strap-shaped (tongue-shaped) prostates occur both in New Kealand and in India; there is apparently no close relationship between the Indian forms and Benham's "Tokeas," and it seems probable that the two groups have arisen independently. Michaelsen supposes the "Tokens" to be closely related species in a small secluded area which have sprung from a common ancestral species. In other words, the forms with intermediate characters between the typical Megascolides and typical Notoscolex are not closely related among themselves, and hence cannot be traced to a common origin. The genus Notoscolex will then be diphyletic at least-perhaps even polyphyletic.

The nephridial conditions in the two genera are interesting, but do not help towards a satisfactory division. In Notoscolex oneili there are micronephridia throughout the body, with, in addition, meganephridia of considerable size in the hinder segments. In N. tenmalai there are apparently only micronephridia throughout; this is so also in the var. karakulamensis, but there the micronephridia are few and relatively large. The "Tokeas" have micronephridia throughout the body, and in the last twenty segments there is in addition on each side a compact group of tubules constituting a meganephridium, with the usual funnel; a similar funnel is present throughout the animal, but in the anterior segments it is unconnected with the micronephridia and has no external opening. And the species both of Megascolides and Notoscolex described below will furnish numerous examples of other arrangements, of varieties of form of both mega- and micronephridia, and of combinations of these. Megascolides-Notoscolex represents, in fact, a group of forms in which the nephridial system and the prostates are so to speak in a fluid condition; changes are in progress, and in the nephridia are certainly taking place in various ways, and have reached various stages along each of the ways; it is at least probable that the changes in the prostates too have been initiated more than once, and here too the various species show various stages of the change. In these circumstances the only reason for keeping the two genera distinct must be one of convenience.

That any of these various admixtures of mega- and micronephridia are reversions from a micronephric to a partially meganephric condition I do not believe; I mean, of course, towards a meganephric condition such as that from which the evolution may be supposed to have started, i.e., an anteseptal funnel, followed by a coiled tube with an external opening in the
next following segment. 'The contrary, however, is the opiuion of Michaelsen in regard to the "Tokeas." That micronephridia might aggregate together, forming tufts of a size comparable to that of an ordinary meganephridium, seems possible (though the actual tufted nephridia appear to have arisen otherwise; cf. antea, p. 184). It is also conceivable that when the micronephridial condition has been established a number of the small organs may disappear, and that one of those that are left may increase in size so as to resemble a meganephrdium. But that the original meganephric condition can be restored, or even that the evolutionary steps can be partally retraced, in a worm which has become micronephric, I cannot agree. Not only does Michaelsen believe this reversion to have taken place in the case of the "Tokeas," but he thinhs that it may have taken place elsewhere in the subfamily independently (compare, on this and similar points, the introductions to the genera Woodwacilue and spencerielli, aut.).

Key to the Imlitur species of the genus Megascolides.

1. Spermathece one pair 2. 2. Spermathece two pairs. 2. 1penial sete present Penial sette absent :3. Seminal vevicles ma and sii; copulatory organs on xii, xiii, xx Seminal vesicles in ix, x , and xii; copulatory organs M. hergtherli. on viii, xix, xx. . 1. No calciferons glands. M. prashurdi. M. cochumensi Calciferons glands in segments x - viin. 5. Penial setio bayonet-shaped, tip flatened; last heart in xiii .. M. pilatus.	

1. Megascolides annandalei Step 1 h.

19:1. Meyascolides annandalei, Stephenson, Rec. Ind. Mus. sxii, p. 757 , pl. xxviii, lig. 9.

Length 95 mm.; dianeter 5 mm . Segments 130 , secondary ammulation from v onwards, trimnular or triaunular with one or two more secondary rings. Unpigmented. Prostomium prolobous ; median dorsal groove on segment i. Dorsal pores begin from 12/13. Sctæ paired; in middle of body $a b=\frac{1}{3}$ to $\frac{2}{i} a a$ $=\frac{1}{2} b c$ or slightly less $=a d$; in front of clitellum $a b=\frac{1}{4} a u=\frac{1}{3} b c$ $=$ slightly less than $c d ; \quad d d=\frac{2}{3}$ circumference. Clitellum xiii-xvii ($=5$). Male field a transverse depression on xviii, from outside b on one side to the same point on the other. Male pores as pits in the line b, with curved grooves in front of and behind each, the concavities facing each other. Female area transversely oval, on xiv, just in front of the setal zone. Spermathecal pores one pair, in $\overline{7} / 8$, in b or between a and b.

Septum $\mathrm{f}^{\prime} 5$ slightly thickened, 5:0-8/9 considerably, $9 / 10$ and $10 / 11$ moderately, the next two slightly. Gizuard in \mathbf{v}; calciferous glands in xi and xii, stalked, lamellated internally. Last heart in xii; a large obliquely transverse vessel in xiii passing backwards and outwards from the dorsal vessel. Micronephridial; the nephridia behind the clitellum in a transverse row of about six on each side, the inner two or three smaller than the rest; towards the hinder end seven or eight on each side, the inner three or four smaller, except the innermost of all, which is larger and forms a compact coll. Testes and funnels free in x

Fig. 64.-Mcgascoludes annandalei Steph.; sperinatheca.
and xi. Seminal resicles in ix and xii, lobed. Prostates closely coiled, tubular; duct narrow, short, bent, slightly shining, bulged at its ectal end. One pair spermathece (text-fig. (64), in viii; ampulla of inverted pear-shape, annulated: duct short, $\frac{1}{3}$ to $\frac{1}{\frac{1}{2}}$ length of :mpulla, bulged in its upper portion, narrowed ectally, with a row of four or five small semmal chambers on its inner side. Penial setie 0.66 mm . long, tapering, slightly bowed, the curve more marked towards the distal end, tip slightly hooked and rounded: a few very fine transverse markings or slight notches a little distance from the tip.

Distribution. Dowlaishweram, Godaveri Dist., E. Const.

2. Megascolides bergtheili Mich.

1907. Megascolides bergtheilh, Michaelsen, Mt. Mus. Hamburg, xniv, p. 150, text-fig. 4.
1908. Mecgascolides bergtheili, Michaelsen, Mem. Ind. Mus. i, p. 159, pi. xiii, fig. 3.
1909. Meynscolides bergtheili, Michaelsen, Mjöberg's Austral. Exp. p. 48.

Length $100-120 \mathrm{~mm}$.: maximum diameter $4 \frac{1}{2}-5 \mathrm{~mm}$. Segments $146-17 \overline{5}$; secondary annulation, up to 5 annul in preclitellar segments, 3 in postclitellar. Colour light grey, unpigmented. Prostomium tanylobous, tongue with parallel sides. Setm rather small, the ventral closely paired, the lateral almost separated; $a c: a b: b c: c l=10: 2: 8: 9 ; d l=c a . \frac{3}{7}$ circumference. Dorsal
pores from 12/13. Clitellum ring-shaped, xiii-xvii $(=\overline{5})$; less thick on xiii. Male pores in line with b, if not between a and b, on a short penis-like cone, which projects from a depression on the centre of a large knob-like papilla; these papilla are transversely oval, occupy the whole length of xiiii, and nearly meet in the midventral line. Female pores are transverse slits, anterior to and medial from a, in a more or less distinct furrow. Spermathecal pores one pair, in $7 / 8$, between a and l, each on a small eye-shaped papilla. Copulatory organs on xii, xiii, and $x x$, sometimes on xi and xxi , as midventral dumbbell-shaped areas, extending laterally beyond b, surrounded by a wall, and enclosing on each side a transversely oval papilla the centre of which is in a; the less constant of these organs may be present only on one side.

Neptum $6 / 7(5 / 6 ?)$ very strong, (? 6/7 and) $7 / 8$ wanting, 89 and $9 / 10$ very strong, 1011 and 1112 successively thinner. A strong gizzard in front of 8,9 ; calciferous gland-like swelling of œsophagus in xi, not set off from the main tube. A pair of cæca, short, wide, ronfined to the segment of their origin, in $x x$ (?). Micronephiridia scattered on the lateral walls between the lines of l and c, and a somewhat irregular row dorsal to d; in front of the clitellum the micronephridia are aggregated to form a rosettelike bunch in each segment; at the hinder and the mocronephindia are apparently replaced by one meganephridium on each side.

Fig. 6i5.-Meyascoludes lergthede Mich. ; spermatheea.
Testes and funnels in x and xi, the anterior pair of each free, the posterior perhaps enclosed in testis sacs; funnels of the anterior pair near the midventral line, of the posterior higher and more laterally placed. Seminal vesicles one pair, large, grape-like but rather compact, in xii ; and one pair smaller, rosette-like, in ix. Prostates tubular, with fairly thick, closely coiled glandular part, and much shorter, thimer, and ectally somewhat thickened duct. Vasa deferentia are separate in their course, uniting at ental end of prostatic duct, which ther enter and pursue their course in its wall, joining its lumen one-fourth of the length of the duct from its termination. Spermathecal ampulla sac-like, transversely striated; duct very short, about half as thick as ampulla; two groups of short spherical diverticula opposite each other at base of ampulla, about three in each group, more or less fused together, and discharging by a common short thick stalk (text-fig. 65). No penial setæ.

Distribution. Sandakphu, Darjiling Dist., E. Himalay'as.

3. Megascolides cochinensis Mich.

> 1910. Megascolides cochinensis, Michaelsen, Abh. Ver. Hamburg, xix, p. 56 , pl. figs. $4, \bar{b}$.

Length 155 mm .; diameter $2 \frac{1}{2}-4 \mathrm{~mm}$. Segments ca. 280. Colour and prostomium? Setre of some segments of the anterior part of the body (ca. iv-vii) fairly large, for the rest rather small ; in the middle of the body closely pared ventrally, rather widely laterally; in the auterior part both sets are wider apart; anteriorly $a c t: a b: b c: c d=3: 2: 4: 3$; in the middle of the body $=5: 1: 4: 2$; dld $=\frac{2}{3}$ circumference. First dorsal pore in $9 / 10$. Clitellum (? xiii or) xiv-xviii ($=$? 5 or $\mathbf{6}$). Male pores in setal zone in a, on the slopes of a midventral depression on xviii, which passes on to the hinder part of xvii, where it becomes a transverse depression reaching laterally to c. Female pores somewhat median from a and a little in front of setal zone. Spermathecal pores two pairs, in a, on viii and ix in the anterior part of the seginents.

Septa $7 / 8-11 / 12$ thickened. A large gizzard in vii (?). Calciferous glands apparently absent. Last heart in xiii. Micronephridia in the anterior part of the body. Seminal vesicles two pairs, in xi and xii, compact, grape-like. Prostates tubular, small; glandular part fairly thick, with uneven surface, irregularly doubled together and forming almost a compact mass; duct narrow and fairly long, somewhat bent. Spermathecal ampulla long, sausage-like, 2 mm . long and $\frac{1}{\mathrm{t}} \mathrm{mm}$. thick; a singrle diverticulum $\frac{2}{3} \mathrm{~mm}$. long, consisting of about 5 seminal chambers, of which one is more prominent than the rest; the diverticulum appears to join the body-wall separately from the main part of the apparatus (it probably unites inside the body-wall). Penial seta small, simple, almost straight, ca. $\frac{1}{3} \mathrm{~mm}$. long, 12μ thick in the middle, distal end pointed, tip very fine, sometimes bent; no ornamentation.

Remarks. The species is only known from one badly preserved specimen.

Distribution. Foot of Nelliampathis Hills, Cochin State.

4. Megascolides duodecimalis Steph.

1915. Megascolides duodecimalis, Stephenson, Mem. Ind. Mus. vi, p. 65, pl. vii, figs. 10, 11.

Leugth 160 mm .; diameter 5 mm . Segments ca. 317; segments triannular, except a few in the anteclitellar region. Colour a dirty grey. Prostomium? First dorsal pore in 11/12. Seta small, especially at the anterior end, where they are invisible (ventral) or difficult of recognition (lateral) in front of vii; ventral setæ closely paired, especially in the anterior part, the lateral more widely; $b c=\frac{2}{3} a c a$, and $d d=c a . \frac{1}{7}$ circumference. Clitellum slightly marked, xiv-xvii $(=4)$. Male pores in small porophores in $a b$, on the sides of a rectangular depression situated
midventrally on xviii. Female pores internal to a, near each other in front of the setal zone. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in a or $a b$.

Septa $5 / 6$ slightly, 6/7-11/12 considerably thickened, 12/13 and $13 / 14$ decreasingly so. A large globular gizzard in ∇. Calciferous glands in x-xiii, well set off, attached by a pedicle, with semicircular margin, flattened antero-posteriorly between successive septa. Intestine begins in xvi. Last heart in xii. Tufted nephridia behind the pharynx; micronephridia in anterior part of body mainly on the septa; in the hinder part, besides the septal nephridia, a regular chain of micronephridia on the bodywall between a and b, a less regular series in $c d$, and others

Fig. 66.-Megascolules duodecimalesSteph.; spermatheca, with small diverticulum showing at the buse.

Fig. 67.-Megascolides duodecimalıs Steph. ; distal end of penial seta; \times ca. 400.
scattered irregularly more dorsally; these three series are fairly large and easily visible to the naked eye. Funnels free in x and xi. Seminal vesicles small, in xi and xii; the anterior pair appear as lobed fringes around the calciferous glands, and are adherent in places to septum $11 / 12$, not apparently to $10 / 11$; both pairs racemose, and those of each segment fused together dorsally above the alimentary canal. Prostates tubular, rather coiled at their ental ends in xix ; duct narrow and short. Spermatheca (textfig. 66) elongated and finger-like, marked by indistinct transverse
striations, often bent on itself; the basal portion, instead of being narrowed to form a duct, is dilated, and gives origin where it joins the body-wall to a small spherical diverticulum. Penial setæ (text-fig. 67) 0.82 mm . long, 14μ thick, straight as far as the distal end, which is curved, the tip tapering and slightly recurved; a few minute spines with their points towards the base of the seta are scattered irregularly near the free end.

Distribution. Parambikulam, Cochin State, S. India.

5. Megascolides pilatus Steph.

1915. Megascolides pilatus, Stephenson, Mem. Ind. Mus. vi, p. 68, pl. vii, fig. 12.
Length more than 123 mm . (the single specimen was incomplete posteriorly); diameter 4 mm . Secondary annulation in some of the anterior segments from viii onwards. Colour grey, not pigmented. Prostomium? First dorsal pore in 11/l2. Setæ paired, except the lateral anteriorly, which are separated ; behind the male pores the setæ are very small; near the anterior end aa $=2 a b, c d$ slightly greater than $a b$, and $b c$ only slightly greater than $c d$; in front of the male pores $a a=3-4 a b, b c=2 \cdot 3 a b=2 c d$; behind the male pores aca becomes larger, $=6-7 a b$, and $b c=3 a b$ $=2 \mathrm{~cd}$. Clitellum? Male pores on small porophores in $a b$, in the middle of an oval thickened area which takes up the whole length of xviii and encroaches on the anterior part of xix. Female pores in front of setal zone and internal to $\%$. Spermathecal pores on minute papillæ in $7 / 8$ and $8 / 9$, in a.

Fig. 68. - Meyascolides pilatus Steph.; the distal ends of two penial setex, seen from two different aspects; X ca. 350 .

Septa 6/7-12/13 thickened, $13 / 14$ less so. A large spherical gizzard in v; calciferous glands in x-xiii, bean-shaped, flattened, stalked, with attachment to osophagus at their ventral ends. Intestine begins in xvi. Last heart in xiii. Micronephridial ; in the anterior part numerous small nephridia on the septa, and tufted nephridia by the side of the cesophagus; bebind, a row of small tufts in the line $a b$, and others irregularly arranged, mostly
on the parietes but some on the septa; arrangement not known at the hinder end, which was lost. Testes and funnels free in x and xi. Seminal vesicles small, in xi and xii, the attachment of each to the septum being linear, and the vesicle consisting of a row of grape-like lobes on each side of the axis, the whole flattened against the septum. Prostates tubular, small and narrow, of a few windings; the duct does not differ much in appearance from the gland, is straighter, slightly shiny, but not narrower, and runs inwards to its termination. Spermathece quite small, near the middle line, simple cylindrical sacs, without any separate duct; no diverticulum. Penial setæ (text-fig. 68) curved in various degrees; length, neglecting curves, 0.57 mm ., thickness 21μ; the free end bayonet-shaped, the tip flattened and hollowed, the edge thin and sharp.

Distribution. Parambikulam, Cochin State, S. India.

6. Megascolides prashadi Stepli.

1920. Meyascolides prashadi, Stephenson, Nem. Ind. Mus. vii, p. 202, pl. ix, figs. 5 , 6 .

Length 42 mm .; diameter 4 mm . Segments 140 . Unpigmented, buff-coloured. Prostomium prolobous. Dorsal pores from 12/13. In middle of body $a b=\frac{0}{7} a n=\frac{y_{5}}{5} c=\frac{4}{3} c d$; behind clitellum $a b=\frac{2}{7} a t=\frac{1}{3} b c=\frac{3}{4} c c t$; in front of chtellum $a b=\frac{2}{7} a a$ $=\frac{2}{7} b c=\frac{3}{4} c l ; \quad$ d $=$ ca. , circumference in middle of body. Clitellun smooth, thickened, well detined, xiii-xvii (=5). Male

Fig. 69.-Mcyascolides prashadi Steph.; male genital field.
pores on xviii, just outside b. Female pore single. Spermathecal pores in $7 / 8$, in or immediately outside b. A large flat oval papilla (text-fig. 69) on xix (rather on the left side in the siugle specimen), with groove-like depression across the centre; on $x x$ a smaller and less definite papilla, also on the left side; a few small whitish spots on ventral part of xvii; on hinder border of viii a pair of indefinite papillæ opposite setal intervals $a b$.

Septum $4 / 5$ slightly thickened ; 5/6-10/11 moderately strengthened, $11 / 12$ slightly. Gizzard in v. No calciferous glands. Intestine begins in xv (? xvi). Last heart in xii. Nephridia in the body generally in transverse rows, $8-10$ on each side ; about 40 segments from hinder end the innermost on each side enlarges, and continues larger to the hinder end. Testes and funnels free in x and $x i$. Seminal vesicles 3 pairs, in ix, x and xii, the largest

Fig. 70.-Megascolides נureshadı Steph.; spermatheca.
in xii, the smallest in x. Prostates tubular, consisting of a number of thick adpressed coils which extend through several segments; duct relatively short, narrow, broadening slightly towards ectal end. Spermatheca (text-fig. 70) one pair, ampulla a large irregular sac with much crenulated margins; duct about as long as ampulla, of moderate thickness; a single diverticulum from ental end of duct, lobulated, half as long as the duct, to the side of which it is adherent. No penial setw.

Distribution. Sakarwari, on the way to Mahableshwar, W. India.

7. Genus NOTOSCOLEX Fhetcher.

1000. Notoscolex (part.), Michaelsen, Tier. x, p. 187.
1001. Notoscolex, Michaelsen, Fauna S.W. Austral. i, p. 162.
1002. Notoscolex, Michaelsen, Mjoberg's Austral. Exp. p. 58.

Setæ eight per segment. Spermathecal pores one, two, or three pairs, the last in $8 / 9$ (in certain abnormal species in $7 / 8$). One gizzard in v or vi. Micronephridia present, sometimes with meganephidia also. Prostates with branched canal system.

Distribution (Chart II). Mainly in Ceylon; also in S. India (Cochin, Travancore, Palni Hills, all close together), and in the E. Himalayas (three species in the Abor Country, a var. in Darjiling Dist.). Outside India the genus occurs in Australia and New Zealand.

In 1900 Michaelsen did not regard the constitution of the prostates as of prime importance in the diagnosis of this genus, and in the Tierreich he lays more stress on the condition of the nephridia, which are said to be diffuse, while the prostates may be either tubular or racemose. As has already been said, views as to
the inportance of the prostates have changed, and this is reflected in the diagnosis of the genus given in 1907, of which the above is a slight modification.

An account has been given of the relation of Notoscolex to Megascolides, from which it is descended; we have now to consider its relation to Megascolex, its descendant. The difference is in the setie; in Meiguscolex the lumbricine has given place to the perichætine condition.

This would seem at first to afford a good basis for distinction. But it is found that here also there are intermediate forms, and consequently the dividing line is again bound to be more or less arbitrary.

There are also special relationships between certain species of Notoscolex and certain species of Meyascolex. Thus Michaelsen points out (70) the great similarity between Notoscolex ponmurlianus and Megascolex travancorensis, and the propriety (except for the setæ) of ranging N. ponmudicnus and its variety nanus ($=N$. tenmalai) as mere varieties of M, travancorensis, which also has several varieties of its own-the whole forming a large group of related forms. Again in a later paper (83 a) Michaelsen remarks on the arbitrary character of any division between the two genera, and adds another case of similarity between species of the one and species of the other genus found in the N. 1sland of New Zealand. He believes that the genera must be united, but does not actually carry this out in practice. Perhaps the most striking instance of similarity between species of Meyescolex and Notoscolex is that which I have described (104) between M. horai and the Notoscolex group comprising N. oneili, stewarti, and striatus.

The series of connecting forms between Notoscolex and Meyascolex, begiming from the purely lumbricine arrangement of the setæ, shows us first an increase in the number of the setm at the hinder end of the body only, while the anterior end still has the four couples (Meguscole.x willeyi); then the number of setæ in the anterior segments also begins to increase, at first from four couples to six (Meguscolex zy!fochuetus), in other cases to eight couples, and so on; when the number has increased considerably the coupled arrangement begins to be lost, and we arrive at the ordinary perichætine condition. For the purpose of classification the dividing line is placed at the first departure from the pure lumbricine condition; if a specimen shows an increase in the number of setie in any part of the body, it is a Megascolex (in the same way that a specimen showing any departure from the purely tubular condition of the prostates is to be accounted a Notoscole, ${ }^{2}$, not a Meguscoludes). It may, of course, be impossible to assign a worm to its right genus, if we have only the anterior end for examination, since in some cases, as already said, the multiplication of setm has taken place only in the posterior part of the body.

What force is there in the arguments for the fusion of the two genera? Is their fusion, as Michaelsen says, unavoidable? 1 do not think so.

Genera are established for our convenience, to denote an assemblage of forms bound together by a set of common characters; if the range of the characters is too wide, the genus ceases to be useful; to a certain extent this is also the case if the number of included forms becomes too large. In the case of Birds, for example, quite minute characteristics are used for generic distinctions, so that in this Class the amount of difference between the Orders is less than that between the genera, or perhaps even between species in some other groups. In other words the amount of splitting which is permissible depends on the number of forms to be dealt with ; groups which are too large become unwieldy.

Now any definite dividing line can be used for purposes of classification. And the abandonment of the lumbricine arrangement of the sete is such a definite dividing line-there are either eight setre per segment throughout the body, or there are more in some part of the body. Moreover, the distinction is a natural one and corresponds to the path of phyletic evolution; the lumbricine is the primitive arrangement and the perichatine the derived.

As to the objection that if we have not the hinder part of is worm we may be unable to clasnify it-there is no law forcing us to elassify or describe every specimen that comes before us. Specinens which are in a bad condition, or imperfect, have to be put on one side daily; if some essential part of the specimen is lacking, we can do nothing with it, and so we can do nothing with an animal without hinder end if the hinder end happens to be an essential portion.

The only objection which could cause hesitation is that implied in Michaelsen's citation of closely allied individual species of Notoscolex and Meyascolex. Certain species of these two genera, occurring in the same neighbourhood, resemble each other remarkably; it is a fair supposition that the Meyascolex form has evolved from the Notoscolex in each case, i.e., an increase in the numbers of the setæ has taken place independently in more than one locality-in other words the genus Meyascole. x is polyphyletic. This, it is held, cannot be permitted, and a way out of the difficulty is found in fusing the parent genus Notoscolex with the descendant Megascolex.

I have argued the whole question of polyphyly at some length elsewhere (95). The conclusion at which I arrived is that certainly Meyascolex and possibly other genera of Megascolecinæ are polyphyletic, but that this cannot be obviated by fusions of genera. Thus not only is Megascolex descended from more than one species of Notoscolex, but it is descended from Perionyx as well, and possibly from Spenceriella too. It would be necessary therefore to fuse not only Notoscolex and Megascolex, but Perionyx as well. Nor would this be enough ; the new genus Megascolex so arrived at would still be diphyletic, derived from Diporochoeta and

Megascolides. We could not, in fact, get a monophyletic genus until we had united all the members of the Perionyx line of descent with all those of the Notoscolear line down as far as their common starting point in Pletellus.

I might point out that exactly the same arguments which are used to justily the union of Notoscolex and Megascolerx may be used in favour of a fusion between Megascolicles and Notoscolex (cf. p. 194 supra). I have already said that the only reason for keeping these two genera distinct is one of convenience; but the reason is sufficient.

Key to the Indian specrips of Notoscolex.

Penial setie present	2.
Penial setio absent	5.
2. Calciterous glands in x	3.
No calciferous glands	4.
3. Copulatory cushions median, $4-1$; in number, on 17/18 and following segments.	N. crussicystis.
Copulatory cushions one pair, on 11/1:	N. jucksomi.
Spermathecæ one pair, opening in $8 / 9$	N. termiticola.
Spermathece two pairs, opening in $7 / 8$ and $8 / 9$.	N. gracelyi.
Calciferous glands in one or more of segments xv-xvii	6.
Calcifrous glands in viii, 15 , or x to xii (3-i) pairs)	8.
No calciterous glands	10.
6. Veucula seminales one pair, restigia	N. ceylamensis.
Vesicule seminales two pairs, in xi and xii	
7. Spermatheca without diverticulnm	N. trincomaliensis.
Spermathece with short club-shaped diverticulum.	A. decipiens.
8. Three pairs calciferous glands	N. stewarti.
Four or five pairs calciferous olands	9.
9. Megancphrida in posterior part of body	N.
No megraephridia . .	N. striatus.
10. Three pairs of spermathecse	N. dambullaensis.
Two pairs spermathece	
11. Copulatory organs on $12 / 18$ and 2	N. Mrcueprelini.
No such copulatery organs.	
12. Anterior pairs of (testes) funuels and seminal vesicles vestigial	N. ponmudianus.
Anterior pairs of testes, funnels and seminal vesicles absent (metandric condition)	N. scutarius.
Both pairs of testes, funnels and seminal vesicles well developed (holandric condition)	N. tenmalai.

A number of small groups of allied species may be distinguished within the genus. N. trincomaliensis and clecipiens, both from (Yeylon, form such a group; N. ponmudianus, scularius, and tenmalai (i.e., the whole of the S . Indian species) form another. Possibly N. gravelyi and termiticolu, both from Ceylon, constitute a third.
'I'he most striking group of related species, however, is that from the Abor Country (a variety of one species also in Darjiling Dist.),
N. stervarti, striatus, and oneili. All these have the organs of the anterior part of the body one segment further forward than normal (male pore on xvii, etc.); they are the only members of the genus which have the calciferous glands in front of the ovarian segment; secondary annulation is present in most of the preclitellar segments; and $d d$ is equal to about $\frac{2}{3}$ circumference. In addition, several characters are common to two out of three of the group.

1. Notoscolex ceylanensis (Mich.).

> 1897. Cryptodrilus ceylanensis, Michaelsen, Mt. Mus. IIamburg, xiv, p. 183, pl. tig. 3.
> 1900. Notoscolex ceylancnsis, Nichaelsen, Tier. x, p. 194 .

Length $120-280 \mathrm{~mm}$. ; diameter $3 \frac{1}{2}-6 \mathrm{~mm}$. Segments 159-230. Colour? Prostomium retractile, no distinct tongue. In general triannular. In anterior and middle parts of the body $a a=\frac{3}{3} b c$, $a b$ less than $c d, c d=\frac{1}{2} b c, d d=\frac{1}{2}$ circumference; in hinder part of body $a b=c l=\frac{1}{2} a a=\frac{2}{3}$ to $\frac{3}{4} b c, d d$ less than $\frac{1}{2}$ circumference. First dorsal pore at 10\% L1. Clitellum ring-shaped, swollen, well defined, xiii-xvii $(=5)$. Male pores in line with b, on small papillæ in the centre of sucker-like depressions with raised edres, which are often united by a median bridge. Female pores paired, within the lines a, in a depressed oval area. Spermathecal pores on the hinder part of viii and ix, between b and c. A copulatory cushion, rectangular or square, on xix-xxi, reaching as far as b on each side, often divided by a transverse or a longitudinal groove, bearing two pairs of sucker-like pits, large and round, corresponding to grooves $19 / 20$ and $20 / 21$. Often in addition a midventral depression on $16 / 17$ or $17 / 18$, or on xx .

Septa 6/7-11/12 much thickened, $5 / 6$ and $12: 13$ slightly. Gizzard in v; calciferous glands in xv -xvii, three pairs, broadly kidney-shaped. Intestine begins in xix. Last hearts in xiii. Nephridia form on each side of the nerve cord a thick tuft, attached to the body-wall in c : further out there are only scattered villus-like nephridia. Funnels enclosed in unpaired testis sacs in x and xi. One pair vestigial seminal vesicles, racemose, in xii. Prostates of the Pheretima-type, compact, confined to xviii; duct fairly short and thin, bent, slightly wider towards its termination. Spermathecal ampulla an elongated sac; duct long and narrow, half as thick and somewhat longer than ampulla, fairly well demarcated from ampulla; two small club-shaped diverticula, one of which is vestigial or may be wanting, join the duct above its middle. No penial setæ.

Remarks. The testis sacs are noteworthy.
Distribution. Nuwara Eliya, Ceylon.

2. Notoscolex crassicystis (Mich.).

> 1897. Cryptodrilus crassicystis, Michaelsen, Mt. Mus. Hamburg, xiv, p. 194, pl. figs. 19,20 .
> 1900. Notoscolc. crassicystis, Michaelsen, Tier. x, p. 195.

Length 221-425 mm.; maximum diameter $9-11 \mathrm{~mm}$. Segments $230-294 ; \mathrm{v}$ biannular, vi and subsequent segments triannular, or with other secondary anuulations in addition. Colour? Prostomium prolobous. Dorsal pores from 11/12. Seta small, not visible on the first and last few segments, all ventrally situated; $a a=5 a b=1 \frac{1}{2} b c, a b=\frac{2}{3} c c l$; $d d=\frac{5}{7}$ circumference. Clitellum swollen, ring-shaped, well defined; xiii-xvii (=5). Male pores on papillæ in ab. Female pores paired, close to the middle line. Spermathecal pores in $7 / 8$ and $8: 9$ in $a b$. Copulatory cushions $4-6$ in number, median, transversely elongated, laterally reaching to b, on $17 / 18-20 / 21,21 / 22$ or $22 / 23$; each bears a transverse row of dark points, probably gland pores.

Septum 5/6 very thin, 6/7-9/10 strongly thickened, 10/11 and 11/12 slightly thickened. A very strong gizzard in vi; calciferous glands three pairs, in $x v$ xvii, bulky, kidney-shaped, constricted in several places. Intestine begins in xix. Last hearts in xii. 'Testes and funnels free in xi, large. Vesicula seminales racemose, in xii. Prostates of Pheretima-type, compact ; duct almost straight, fairly short and thin. Spermathecal ampulla small, semi-globular; duct short, sery thick, appearing bulged on one side; one or two short, thickly pear-shaped diverticula on duct. Penial setæ ca. '2 mm. long, maximum diameter 40μ, tapering gradually, bent in a simple curve with truncated tip, proximal to which is a knife-like sharp ridge; distal end ornamented with numerous oblique circlets of fine teeth which often fuse to form oblique ribs.

Remarlis. A pparently metandric.
Distribution. Nuwara Eliya, Ceslon.

3. Notoscolex dambullaensis (Mich.).

> 1897. Cryptodrilus damluullaensis, Michaelsen, Mt. Mus. Hamburg, xiv, p. 181, pl. fig. (G.
> 1909. Notoscolex dambulíaensis, Michaelsen, Tier. x, p. 196.

Length 230 min.; maximum diameter 9 mm . Segments ca. 540 ; ii-vii biannular, viii-xi triannular, vii-xvii quadriannular. Colour? Prostomium? Setæ small, invisible in the anterior segments, on raised ridges, the lateral widely, the ventral somewhat more closely paired; $a a=4 a b=2 b c=2 c d ; \quad d d=\frac{2}{3}$ circumference. First dorsal pore at 12/13. Clitellum? Male pore unpaired, midventral, on a broad oval cushion which takes up the length of segment xviii; on xvii and xix are also median elevations, and so too on the following segments in diminishing degree, the whole forming a sole-like elevation sharply defined in front,
gradually fading behind. Two pairs of small papillæ, on the anterior border of the cushion of xix and the hinder border of that of xxii. Female pores? Spermathecal pores three pairs, near the middle line, in 6/7-8/9.

Septa 5 ' 6 thin, $6 / 7-12 / 13$ thickened. Gizzard in v. No calciferous glands ; swellings of œesophagus in xiv-xvii (?). Intestine begins in xviii or xix. Last hearts in xiii. Micronephridial. Testes and funnels free in xi. Small seminal vesicles in xii. Spermathecal duct short; diverticulum broadly ovoid, without stalk, sessile on the duct, containing numerous seminal chambers. No penial setx.
Remarks. Apparently metandric. The species was described from a single specimen, somewhat immature; the prostates were not fully developed.

Distribution. Plains N. of Dambulla and Trincomali, Ceylon.

4. Notoscolex decipiens (Mich.).

1897. C'ryptodrilus decipiens, Michaelsen, Mt. Mus. Hamburg, xiv, p. 197, pl. tig. 18.
1898. Cryptodrilus decipiens, Michaelsen, Zool. Jahrb. Syst. xii, p. 140.
1899. Notoscolex decipiens, Michaelsen, Tier. x, p. 191.
1900. Notoscolex decipiens, Michaelsen, Abh. Ver. Hamburg, xix, p. 62, pl. fig. 21.

Length 75 mm . ; diameter $2-2 \frac{3}{3} \mathrm{~mm}$. Segments 134 . Colour an equable grey. Prostomium and segment i retractile or vestigial, or fused with ii. First dorsal pore in 11/12. Setre finely ornamented at tip, widely placed; in general $a a=b c=1 \frac{3}{4} a b=1 \frac{1}{4} c d$; in clitellar region setæ a get nearer the midventral line, so that $a a=1 \frac{1}{4} a b=\frac{1}{2} b c=c d$. Clitellum constricted, saddle-sbaped, $\frac{1}{2}$ xiiixvii $\left(=4 \frac{1}{2}\right)$. Male pores between the lines of a and b on transversely oval papillæ which reach from a to near c. Female pore unpaired. Spermathecal pores midway between a and the middle line, two pairs, small, in $7 / 8$ and $8 / 9$. A rectangular rather elongated cushion often present ventrally on xix-xx, laterally reaching a little beyond b; a pair of roundish papillm usually on $13 / 14$, sometimes additional pairs on $14 / 15$ or $14 / 15$ and $15 / 16$, rarely a pair on 12/13. All these marks may be absent.

Septa 6/7-11/12 slightly thickened, the last very little. Gizzard in vi. One pair calciferous glands, elongated, with narrow stalk, projecting from xvi into the segments in front and behind. Last heart in xiii. Testes and funnels free, in x and xi. Two pairs grape-like seminal vesicles in xi and xii. Prostates brancherl, with large lobed glandular portion, extending through several segments; duct long, thin, slightly bent. Spermathecal ampulla consisting of ovoid ental and narrower cylindrical ectal portions, the duct being rather short and still thinner; diverticulum from junction of duct and ampulla, short, stoutly club-shaped. No penial setæ.

Remarks. The copulatory papillæ and cushions may be entirely absent; their presence and absence in the various situations seem to be characteristic for worms from various places, but not so constantly as to allow us to speak of local races. (nn the numbering of the segments, compare remarks on N. stewarti.

Distribution. Colombo (garden of Museum), Peradeniya, Panadhure, Kaniye near Trincomali, Avissavela 30 miles N.E. of Colombo,-all in Ceylon.

5. Notoscolex gravelyi Steph.

1916. Notoscolex gravelyi, Stephenson, Rec. Ind. Mus. xii, p. 325, pl. xxxi, fig. 19; pl. xxxii, fig. 20.

Length 29 mm. ; maximum diameter $1 \frac{3}{4} \mathrm{~mm}$. Segments 110 . Colour in life white; durty brown when preserved. Prostomium epilobous $\frac{1}{2}$, tongue broad, cut off behind. Dorsal pores apparently

Fig. 71.-Notoscolex gravelyıSteph.: spermatheca.

Fig. 72.-Notoscolex gravelyı Steph. . pental seta; a, slightly magnified, to show the general form; b, highly magnified, the distal end only.
from $9 / 10$. Setæ widely paired; in anterior part of body $a b=$ $\frac{3}{8} a a=\frac{3}{8} b c=c d$, and $d d=\frac{1}{2}$ circumference ; posteriorly $a b$ and $c d$ are a little greater relatively to $c a$ and $b c$; at the hinder end $b c=c / l$ (i.e., the lateral setre are no longer paired), $a b=\frac{2}{3} a c($, and $d d$ is considerably less than $\frac{1}{2}$ circumference. Clitellum xiv-xvi $(=3)$. Male pores in line with b, on slightly raised transverseily oval areas
which extend inwards to a. Female pores apparently paired, in a whitish groove which in length equals aa and is just in front of the setal zone. Spermathecal pores indistinguishable externally, two pairs, in $7 / 8$ and $8 / 9$, a little ventral to c. A pair of small papillie on xvii, in front of the male pores (artefacts?).

A number of septa-8/9-13/14-slightly strengthened. A large barrel-shaped gizzard in vi. No calciferous glands, but the esophagus is bulged in xv and xvi. Intestine begins in xix. Last hearts in xiii. In most segments from pharynx to prostates a large nephridial tuft on each side; behind this mega- and micronephridia coexist, the former as prominent elongated loops, becoming smaller towards the hinder end and finally indistinguishable from the micronephridia, which become more numerous and prominent towards the hinder end. Testes and fumels free in x and $x i$. Seminal vesicles small, racemose, in xi and xii. Prostates small and confined to xviii, compact, slightly lobed on the surface; duct relatively long, shining, bent or wavy, directed transversely inwards. Ovisacs in xiv. Spermathecal ampulla elongated, narrowing to form the duct without any sharp demarcation; duct half as long and half as wide as ampulla; diverticulum joins junction of ampulla and duct, and is an ovoid sac with stalk as long as itself, sac and stalk being about one-third as long as the ampulla (text-fig. 71). Penial setio (text-fig. 72) 0.9 mm . long, 7μ thick, the proximal half fairly straight, the distal portion undulating; tip pointed, no ormaneutation, but the terminal portion shows small irregularities of outline.

Distribution. Kandy, Ceylon.

6. Notoscolex jacksoni (Bedd.).

1890. Deodrilus jucksoni, Beddard, Quart. J. Nic. Sci. xxxi, p. 46i, pl. xxxiii, figs. 12-14, pl. xxxiii A.
1891. Deolrilus jacksoni, Beddard, Monog. p. 479.
1892. Cryptodrilus jacksoni, Michaelsen, Mt. Mus. Hamburg, xiv, p. 190.
1893. Notoscolex jucksoni, Michnelsen, Tier. x, p. 196.

Length $330-360 \mathrm{~mm}$. and more; diameter $9-13 \mathrm{~mm}$. Segments 530 and more. Prostomium retractile; segment i traversed by longitudinal grooves: secondary annulation in anterior segments. First dorsal pore in 13/14. Seta ornamented on distal portion with a number of minute pointed processes, and truncated at the free end; no setæ on first five segments; paired, all ventral; $a a=b c=2 a b=2 c d ; d d=\frac{2}{3}$ to $\frac{1}{2}$ circumference. Clitellum swollen, ring-shaped, $\frac{1}{3}$ xiii-xvii $\left(=4 \frac{1}{3}\right)$. Male pores in a, on longitudinal ridges which extend in ab from the setal zone of xvii to that of xix; the ridges appear as a series of papillo, separated by the interseginental furrows. Female pores paired, not far from the middle line, in front of the setal zone of xiv. Spermathecal pores in $7 / 8$ and $8 / 9$, in $a b$. One pair of copulatory cushions, often fused midventrally, over 11/12.

Nepta 6/7-12/13 thickened. Gizzard in vi. Three pairs calciferous glands in $x v$-xvii, bilobed, a deep transverse fissure separating the lobes. Intestine begins in $x x$. Last hearts in xii. Male funnels in xi. Seminal vesicles in xii. Prostates fairly compact, not greatly transgressing the limits of xviii; duct fairly short, straight. Spermathecal ampulla ovoid, finely ringed; duct short and moderately stout; diverticulum small, nodule-like, containing about four seminal chambers, opening into the upper end of the duct or into ampulla. Penial setæ slightly curved, ornanented at the distal end with numerous transverse striæ.

Remarlis. Apparently metandric. Neither Beddard nor Michaelsen in their descriptions give the relations of the setal intervals, and Michaelsen is obviously wrong in the ratios he gives in the 'Tierreich; the onlv source is Beddard's figure. Beddard found two forms of penial setio, but Michaeken obtained only one, and considers that the second form described by Beddard was different only through losing its sculpture.

Distribution. Nuwara Eliya and Trincomali, Cerlon (perhaps alsewhere in Ceylon, as no further matication than "Ceylon" is given by Beddard).

7. Notoscolex kraepelini (1/ich.).

> 1903. Trinephrus hruepelini, Michaelsen, Mt. Mus. Hamburg, axi, p. $1 \geq 2 \mathrm{~A}$, text-fig.

Length 58 mm . ; diameter $2 \frac{1}{2}-3 \mathrm{~mm}$. Segments 216 . Colour violet-brown. Prostominm epilobous $\frac{1}{2}$, tongue cut off b. ${ }^{\text {and }}$. Jorsal pores from 9 10. Setae larger at the ends of the animal; in general widely paired; dl throughout slightly less than $\frac{1}{2}$ circumference; behind clitellum $a b=\frac{1}{2} a u=c d$, and $a \iota=1 \frac{1}{3} b c$; further forward the ventral pairs are closer and the lateral pairs are wider, so that $a b$ is less than cel. Clitellum ring-shaped, xiv-xvi $(=3)$, dorsally getting on to xvii $\left(=3 \frac{1}{4}\right)$. Male pores just outside the line b, laterally placed within depressions which are included within a common spectacle-shaped wall which touches 17/18 and 18'19. Spermathecal pores two pairs, in $7 / 8$ and $8^{\prime} 9$, in b. Copulatory organs midventral on $12 / 13$ and $20 / 21$, as spectacle-shaped glandular walls enclosing a pair of transverse glandular areas with groove-like depressions; the depressions slightly more extensive than the interval $a b$; the posterior wall more extensive than the anterior, reaching to c, the anterior to midway between b and c.

A few septa behind the gizzard somewhat thickened. A barrel-shaped gizzard apparently in v. No calciferous glands. Five micronephridia on each side per segment as a rule, in fairly regular longitudinal lines; the ventral two, about half as large as the others, may be fused, thus giving four all about the same size. Two pairs seminal vesicles, in xi and xii, lobed, and the lobes again cut up into small globular lobules, the whole racemose.

Prostates composed of large loosely comnected lobes; duct fairly muscular, slightly curved in an S, narrow at its beginning, somewhat widened ectally. Spermathecal ampulla oroid, the bent duct separated off by a slight constriction, louger and somewhat narrower than the ampulla; diverticulnm tubular, longer than ampulla and duct together, slightly swollen at ental end, with a short, thin, and bent stalk attaching it to ectal end of duct. No penial setre.
Distribution. Central Ceylon.

8. Notoscolex oneili (Stephl.).

1911. Megascolides oneilli, Stephenson, Rec. Ind. Mus. viii, p. 377 ,

$$
\text { pi. } x \times 1, \text { figs. } 1, \underline{2},
$$

1916. Meynsenlides oneilli, Stephemon, Liec. Ind, Mus. aii, p. 314, pl. xxx, fig. 8.
Length 18.inmm. : maximum diameter 6 mm . Segments ca. 244. Colour a light olive-green. Prostomium procpilobous. Secondary anuulation on most of the preclitellar segments. Dorsal pores from 10 '11. No setz certainly visible on ii, very small and difficult to see on all the most anterior segments; rather widely paired; $a a=2 a b$ anteriorly, $=2 \frac{1}{2} a b$ behind the clitellum. $=3 a b$ turther back; be slightly or obviously greater than cd, and $=1 \frac{1}{2} \mathrm{al}$; ded approximately $\frac{2}{3}$ circumference; sete present on

Fig. 73.-Noloscolex onell (Steph.), genital area: r. clitellum.
t, transverse depression, δ, male aperture.
clitellum, but absent ventrally on xvii and xviii. Clitellam xiii$\frac{2}{3} \times v i\left(=3 \frac{2}{3}\right)$. Male pores on xvii, between a and b, with tumid lips, and connected by a transverse groove which continues outwards beyond the pores and then turns backwards as far as the middle of xviii; a second pair of longitudinal grooves internal to these in the longitudinal part of their course; transverse grooves in the space between these latter, and a transverse depression in front of the male pores (text-fig. 73). Female pores in the setal zone of xiii, near the middle line. Spermathecal pores two pairs, in a, in $6 / 7$ and $7 / 8$.

Septa 6/7-10/11 thickened, the next two slightly so. A large firm cylindrical gizaard in vi. Calciferous glands four pairs, in ix-xii. Intestine begins in xiv. Last heart in xii. Micronophridia exist alone in the anterior part of the body, a large mass on the anterior face of $5 / 6$, and a tuft on and behind a soft white pad which lies internal to the prostatic aperture being specially notable; in the hinder part, of the body, along with micronephridia, are meganephridia, of considerable size, each composed of a number of loops, lying on the intestine, to which they are

 h, main portion turned back.
attached in the neighbourhood of the dorsal vessel. Fumels free in x, and somewhat doubtfully present in ix. Seminal vesicles in x, attached to the posterior face of 9,10 , flattened and lobed; and in $x i$, attached to the posterior face of $10 / 11$. Prostates much lobulated, extending through several segments; duct bent once or twice in its course, narrower towards its ectal end. Ovaries and funnels in xii. Spermathece (text-fig. 74) not distinguishable into ampulla and duct, tubular, each bent on itself several times, its inner end rather dilated; situated near the middle line; a small subglobular diverticulum attached ciose to the ectal end. No penial setr.

Remarks. There is an abnormal shifting forwards of the organs in the anterior part of the body by one segment; this occurs in the variety also.

The seminal vesicles in x seem to point to a pair of testes in ix; the testes, however, could not be identified in the specimen.

I have recently made a special re-examination of the single specimen, with regard to this latter point and to the numbering of the segments.

Distribution. Janakmukh, Abor Country, E. Inimalayas.

a. var. monorchis Steph.

1916. Megascolides oneilli, ar. momorchis, Stephenson. Rec. Ind. Mus. xii, p. 313.
Length 115 mm .; maximum diameter 5 mm . Segments 188 . Colour pale buff. Prostomium prolobous. Dorsal pores from $9 / 10$. Setæ very small; behind the elitellum $a a=3-4 a h, b c=3 a b$, $c d=2 a b$; in front of clitellum an smaller, $=2 a b$ or more, $b c$ greater than aa, equal to or less than $3 a b, c d$ as before. Clitellum? Ventral surface of xrii thickened; secondary furrows in front of and behud the apertures, somewhat as in the typical form; the anterior two-thirds of xiiii also thickened.

Calciferous glands in viii-xii, kidney-shaped. Thestes and funnels free in ix. Seminal vesicles in x, xi, and xii, on the anterior wall of each segment, those of x of moderate size, the others small (of xii wanting on one side). Prostate small, tonguelike (perhaps not fully developed); duct considerably coiled, solt, not muscular. Spermathece are small ovoid sacs, duct scarcely separately distinguishable; cylindrical diverticulum from base of ampulla, half to two-thirds as long as ampulla. For the rest, as the type form.

Remarks. The presence of seminal vesicles in xi (and xii on one side) would seem to imply testes in x, in which case there would scarcely be sufficient reason for keeping this form as a distinct variety. It is possible that if the single specimen had been more fully mature the second pair of testes and funnels would have been identifiable.

Distribution. Darjiling to Soom, $7000-5000 \mathrm{ft}$., E. Himalayas.

9. Notoscolex ponmudianus Mich.

1913. Notoscolex ponmudianus, var. typicus, Michaelsen, Mt. Mus. Hamburg, xxx, p. 79, text-fig. 1.

Length ca. 170 mm . ; diameter $1_{3}^{2}-2 \frac{2}{3} \mathrm{~mm}$. Segments cal. 280 . Body very slender. Prostomium? Setæ enlarged in the most anterior segments, and also at the hinder erd; widely paired, $a b=3 a c a=c d ; b c=a \pi$ anteriorly, but behind is little more than the distance between the sete of a pair; the line d in the hinder part of the body is quite irregular, and the width of $c d$ varies, being less or more than $b c$ and $d d$; $d d$ anteriorly $=$ ca. $\frac{1}{3}$ circumference, but behind may be much less. Clitellum
ring-shaped, $\frac{1}{2}$ xiii- $\frac{1}{2}$ xvii $(=4)$, indented behind. Male pores probably about in the line a, on the sides of a midventral longitudinal groove. Female pore single, on the anterior part of xiv. Spermathecal pores two pairs, just laternl to a, in $7 / 8$ and $8 / 9$.

Septa 6/7-13/14 thickened, 8/9-10/11 especially, decreasingly so in front and behind these. A large gizzard in vi. No calciforous glands, but œesophagus very vascular, and with lamellar structure of its walls in viii-xiv. Last heart in xiii. Micronephridial. Funnels free in x and $x i$, those in x vestigial. Seminal vesicles in xi and xii, the latter normally developed, racemose, the anterior pair apparently vestigial. Prostates lobulated, extending through xvii-xxı, cut up by the septa; duct short, passing with an S-shaped curve transversely inwards, thicker and slightly shiny in its ectal part. Strong muscle strands pass between the inner aspect of the longitudinal depression in this region and the ventrolateral part of the parietes. Spermathecal ampulla pearshaped, bent at its ectal end, the wall showing low folds internally in its middle third; duct thin and short, not sharply marked off, narrowing to its termination; diverticulum slenderly pear-shaped, about one-third as long as ampulla, joining junction of ampulla and duct. No penial setr.

Distribution. Ponmudi, 'Travancore, S. India.

10. Notoscolex scutarius Mich.

1907. Notoscole. scutarius, Michaelsen, Mt. Mus. Mamburg, xxiv, p. 153, text-fig. 6.
1908. Notoscolex scutarius, Michaelsen, Mem. Ind. Mus. i, p. 164, pl. xiii, figs. 4, 5.
1909. Notoscole.. scrutarius, Michaelsen, Mjöberg's Austral. Exp. p. 5 I .

Length $68-90 \mathrm{~mm}$. ; maximum diameter $1 \frac{1}{3}-2 \mathrm{~mm}$., middle and hinder parts of body scarcely 1 mm . thick. Segments 120 140. Colour yellowish grey. Prostomium proepilobous. First dorsal pore in 13/14 (or further forwards?). Setæ rather small, widely paired; in front $a a: a b: b c: c d=12: 8: 10: 9$; behind $=5: 3: 4: 3$; in front $d d=\frac{1}{3}$ circumference, but is less behind. (Hitellum distinct only on xiv-xvi, indistinctly extending on to more or less of xiii (and ? on to anterior part of xvii). Male pores in the situation of b of xviii, on a trapeze-shaped midrentral area with rounded angles, broader in front, its margin raised, its centre sumk or flat, taking up the whole of xviii in length and laterally extending some distance beyond b (text-fig. 75). Female pores on a median darker area which extends between setæ a. Spermathecal pores two pairs, in b, in $7 / 8$ and $8 / 9$; the ventral walls of vii-ix may be swollen and glandular.

Septa 6/7-11/12 somewhat thickened, 12/13 very slightly so. A relatively large gizzard in v. No calciferous glands. Last hearts in xiii. The micronephridia aggregated into tufts on the
lateral body-wall in the anterior half of each segment; in the clitellar region the tufts are more expanded, and spread over nearly the whole ventral and lateral body-wall. One pair of testes and funnels in xi. One pair seminal vesicles in xii, broad, grapelike. Prestates with loosely lobed glandular part, band-like, extending through about six segments; duct about half as long an glandular part, fairly thin, describing one large loop and one or

Fig. 75.-Notoscolex scutarzus Mıch.; region of male apertures.

Fig. 76._-Votoscolex scuturiu. Mich. ; spermatheca made transparent by acetic acid: $\times 1 \overline{0}$.
two smaller ones. Spermathecal ampulla pear-shaped; duct somewhat shorter, thin, not sharply marhed off from ampulla; diverticulum club-shaped, slender, about as long as ampulla and duct together, with simple chamber, attached to ectal end of duct (text-fig. 76). No penial setæ.

Remarks. Metandric, and thus showing a possible relation to N. ponmudianus, in which the anterior pairs of testes and fumel; are vestigial; Michaelsen also compares the male field. The nephridial condition is somewhat reminiscent of Woompardie sarasinorum.

Distribution. Vilpatti, Palni Hills, S. India.

11. Notoscolex stewarti Stepl.

1914. Notosicolex stewarti, Stephenson, Ree. Ind. Mus. viii, p. 382, pl. xxvi, fige. 6-8.
Length 85 mm . ; maximum diameter $3 \frac{1}{2} \mathrm{~mm}$. Segments 216 ; preclitellar segments, except the first few, trianulate. Colour pale olive green, first few segments colourless. Prostomium small, prolobous. First dorsal pore in $9 / 10$ or $10 / 11$. Setæ behind the clitellum on small white transverse ridges; $a b=\frac{2}{5} a a$ (more posteriorly $\left.=\frac{1}{3} a a\right)=\frac{1}{2} b c=c d$ behind the clitellum; in front of clitellum the same, except that $a b=\frac{1}{2} a a$; $d d$ very slightly less than $\frac{2}{3}$ circumference. Clitellum ring-shaped, xiii-xy $(=3)$,

Genital field (text-fig. 77) thickened, marked by short transverse fissures, and by two longitudinal grooves, bent outwards at their ends, extending from xvi to xviii, with small tag-like processes in the bends, the grooves being united in front and behind by transverse shallow depressions without definite margins. Male pores in the longitudmal grooves, at the middle of their length. Female pores paired, just in front of and intermal to seta a of xiii. Spermathecal pores small, slit-like, in 6/7 and $7 / 8$, approximately in a.

Septa $4 / 7-8 / 9$ considerably thickened, the three following only slightly. A barrel-shaped gizzard in front of $6 / 7$, moderatelv stont. Calciferous glands in x, xi, and xii. Intestine begins in xiv. Micronephridial; tulted nephridia at sides of gizzard. Lant heart in xii. Testey and fummels free in ix and x. Two pairs

Fig. 77.-Motowolex sevarts Steph.; gemtal aren, n.. nodular projection, t.t transverse depresions. ç, male aperture.

 spermatheca.
seminal resicles in x and xi, Hattened anteroposteriorly, with slightly lobulated adges, arching up from below so as nearly to meet above the gut. Prostates large, cut into two lobes by septum 17/18, each lobe a compact mass somew hat indented into secondary lobes; duct short, with a single \mathbf{U}-shaped bend. Ovaries in xii. Spermatheca (text-fig. 78) in the middle of large nephridial tufts; ampulla a pear-shaped sac, narrowing to be attached to the body-wall with hardly any duct; diverticulum club-shaped, about equal in length to the ampulla, arising in the substance of the body-wall.

Remurlis. This species, like N. striatus, N. oneili and its variety, has the organs of the anterior part of the body one segment farther forwards than normal. I have recently re-examined the type-specimens, and find that the setæ begin on segment ii ; the condition is thus not quite the same as in N. decipiens, where the seta begin on segment 1 , and the original first segment is thus either retractile, or vestigial, or has fused with the original second segment (Michaelsen, in his description of N. decipiens, adopts the theoretical, not the actual, numbering of the segments).

Distribution. Rotung, A bor Country, E. Himalayas.

12. Notoscolex striatus Steph.

1914. Notoscole.x striatus, Stephenson, Rec. Ind. Mus. viii, p. 380, pl. xxvi, figs. 3-5.
Length 210 mm . ; maximum diameter $5-6 \mathrm{~mm}$. Segments 297 ; iv and v biannulate, the rest triannulate. Colour pale yellowish or grey, except clitellum which is light brown. Prostomium small, prolobous. First dorsal pore in 9/10. Setre relatively small, all ventral ; behind clitellum $a b=\frac{2}{2}-\frac{1}{3} a a=\frac{2}{5}-\frac{1}{2} b c, b c$ is slightly greater than cd; in front of clitellum the ratios are variable, $a b$ slightly greater than $\frac{1}{2} a a, b c=c c l=1_{3}^{1} a b$; thus the pairing of the lateral seta is wide behind and absent in front of the clitellum ; $d d=\frac{4}{3}-\frac{2}{3}$ circumference. Clitellum xiii-xv (=3). Genital area (text-fig. 79) extends from the setac of xvi to those of xviii, is rectangular, laterally reaching c on each side, depressed in the centre, brown in colour : within the area a pair

Fig. 79.-Notoscolex striatus Steph. . genital area: the shading shows the extent of the brown coloration; n.. small nodular elevations at the bend of the grooves.

Fig. 80.--Notowole, striatus Steph. . spermatheca
of longitudinal grooves which bend outwards at their ends; in the angles of the bends are four papilla, nodular and wart-like. Male pores in the grooves, on xvii in the line of 1 . Female pores paired, in front of setæ " of xiii (?). Spermathecial pores minute, in $6 / 7$ and $7 / 8$, interual to \approx.

Septa 6/7-10/11 much thickened. A large barrel-shaped gizzard in vi. Calciferous glands in ix-xii. Intestine begins in xiv. Last heart in xii. Micronephridial. Testes and funnels free in ix and x. Seminal vesicles in x, $x i$, and $x i$, lobulated and flattened anteroposteriorly. Prostates small, lobed; the duct forming a \mathbf{U}-shaped loop, the bend being internal. Ovaries and funnels in xii. Spermathecæ (text-fig. 80) situated by the side of the nerve cord; ampalla a small simple sac, ovoid; the duct not sharply marked off, opening near the middle line; diverticulum arises within the body-wall, tubular, slightly dilated at its free end, and as long as or slightly longer than the ampulla. No penial setx.

Remarks. Here also a recent examination showed setæ on segment ii but not on i ; compare remarks on the last species.

Distribution. Rotung and Renging, Abor Country, E. Himalayas.

13. Notoscolex tenmalai (Mich.).

1910. Megascolides tenmalai, Michaelsen, Abh. Ver. Mamburg, xix, p. $5 \overline{5}$, pl. fig. 3.
1911. Notoscolex ponmudianus var. nanus, Nichaelsen, Mt. Mus. Hamburg, xxx, p. 83, text-fig. 2.
1912. Notoscole.i tenmalai, Michaelsen, Mjoberg's Austral. Exp. p. $\overline{0} 0$.

Length ca. 95 mm . ; diameter $1-1 \frac{2}{3} \mathrm{~mm}$. Segments ca. 140. Unpigmented, white. Prostomium proepilobons, almost semicircular behind. Seta fairly small, separated; $a d: a b: b c: c a l$: $d d=3: 2: 2: 2: 7$ in the anterior part of the body, but del becomes t towards the hinder end, the other ratios remaining the same; dld is thas rather less than $\frac{1}{3}$ circumference in front, but scarcely $\frac{1}{6}$ behind ; the seta d are irregularly placed at the hinder end. Clitellum ring-shaped, xiv-xvii ($=4$). Male pores scarcely perceptible, between the lines a and b, each on and near the posterolateral border of a large cushion; the cushions have steep margins and a flat surface, are oval with straight and parallel median sides, only slightly separated in the middle line, laterally reaching to b, anteriorly pushing forwards the border of the segment (xviii), and behind not reaching 18/19. Spermathecal pores two pairs, in 7/8 and $8 / 9$, in b.

Septa $6 / 7$ 12, 13 strengthened, especially the middle ones of the series. A large gizzard in vi ; the ossophagns segmentally swollen in vii-xv, very vascular, villous internally. Intestine begins in xvii. Micronephridial (no nephridia seen). 'Iestes and funnels free in x and xi. Seminal vesicles two pairs, compact, grape-like, in $x i$ and xii. Prostates extend through $\&$ or 5 segments, constricted at the septa; in each segment several lateral canals enter the main central canal, which is continuous through the length of the gland; the lateral canals are themselves branched; ducts fairly long, thin. strongly curved. Spermathecal ampulla pear-shaped; duct short and thin; diverticulum given off from the junction of the two, shorter than the ampulla, consisting of a sausage-shaped seminal chamber and a thin, curved stalk; a spermatophore usually in the ectal end of the ampulla; duct and lower part of ampulla surrounded by numerous slender glandular lobes, each composed of a number of pear-sbaped cells. No penial setæ.

Distribution. Tenmalai and Bonaccord, Travancore, S. India.

a. var. karakulamensis Steph.

19116. Mey/uscolides tenmalai var. kurrakulamensis, Stephenson, Rec.
Ind. Nus. xii, p. 311, pl. xxx, figs. 6, 7 .

Length inore than 70 mm . ; diameter $1-1 \frac{1}{2} \mathrm{~mm}$. Segments more than 93. Colour grey. Prostomium? Dorsal pores from $4 / 5$ (?). In front of clitellum $a a=2 a b\left(=2 \frac{1}{2} a b\right.$ near anterior end), $b c=$ $2 a b, c d=1 \frac{1}{2} a b$ or less ; $d d=c a . \frac{1}{3}$ circumference. Clitellum ventrally xiv- $\frac{1}{2}$ xvii $\left(=3 \frac{1}{2}\right)$, dorsally xiv-xvi $(=3)$. Male pores on
a pair of oval elevations, longitudinally placed with auterior ends slightly converging, the posterior ends narrower than the anterior; the elevations extend a little beyond the limit of xviii in front and fall slightly short of the limit behind : their anterior puds are

within the line of a; the male pores themselves may be on the inner border of the cushions, in line with a (text-fig. 81). Female pore or pores in a circular whitish pateh, smaller than the interval aa, just behind groove 13/14. Spermathecal pores in $7^{\prime / 8}$ and 8,9 , in b.

Septa 7/8-10/11 moderately thickened, 6/7 and several behind 10/11 somewhat thickened. (Hizzard of moderate size and rather soft, in v; no calciferous glands. Intestine begins in xiii. Last heart in xiii. Tufted nephridia in each segment in front of the clitellum ; behind clitellum micronephridia few and relatively large, on body-wall. Testes and funnels free in x and $x i$. Seminal vesicles two pairs, in xi and xii, those in xi very small. Prostates long, Hat,

Fig. 82.-Nortoscole, tennealaı Mich. var. havakulamensen; spermatheca.
and strap-like, with slightly lobed margins, extending back to xxi, much constricted at the septa; microscopically the central duct gives off side branches; duct forms a with blind end directed inwards and backwards. Spermatheca ampulla pear-shaped, narrowing to form the duct, which is not marked off ; diverticulum
from the middle of the duct, narrow, club-shaped, equal to $\frac{2}{5}$ the length of ampulli and duct together; no spermatophores and no glandular appendages (text-fig. 82). No penial setæ.

Remarkes. The distinctions from the type-form are the setal intervals, the position of the gizzard, and the absence of glandular lobes round the spermathece.

Distribution. Karakulam, Cochun State, S. India.

14. Notoscolex termiticola Mich.

1910. Notoscolex termiticola, Michnelsen, Abl. Ver. Hamburg, xix, p. 63, text-fig. A .

Length 38 mm .; dianeter $1-1 \frac{1}{2} \mathrm{~mm}$. Segments ca. 140 . Non-pigmented, dirty white. Prostomium proepilobous; tongue rounded, reaching back halfway through segment i. Setæ farly widely paired, the lateral wider than the ventral: aa:ab:be:cd= 12:6:9:7; cld less than $\frac{1}{2}$ circumference; ventral seto of the anterior end somewhat enlarged. Clitellum xiv-xvii $(=4)$, less marked ventrally, indeed interrupted anteriorly, riug-shaped behind. Male pores just lateral to the line of b, on the front of papillæ, each of which curves round the outer end of a transverse depression situated in front of the male pore (these depressions are not to be confused with the male pores). Female pores median to ", on anterior part of xiv. One pair spermathecal pores, eyc-like, in $8 / 9$, between b and c, but nearer the latter. Copulatory papille one pair, small, transversely oval, situated autertorly on aix, bearing the setic a; also a single indistiuct papilla midventrally on the anterior part of xviii.

Septa $8!9-10 / 11$ relatively strong, those in front and behind successively thinner. A large gizzard in vi. No calciferous glands; the inner surface of the osophagus folded strongly, with apparently villous projections in parts. Last heart iu xiii. Micronephridial. Testes and funnels free in \mathbf{x} and xi. Seminal vesicles small, lobed, in xi and xii. Prostates compactly racemose, plate-like; duct fairly thick and muscular, slightly bent, about as long as the dianeter of the gland. Spermathecal ampulla ovoid; duct muscular, half as long and half as thick as the ampulla: diverticulum small, club-shaped, a little longer than the duct, joining the lower end of the ampulla. Penial setæ ca. 1 mm . long. 20μ thick proximally, becoming thinner only very gradually, curved, the curve becoming more marked distalwards, the tip being strongly beut into a hook and fairly sharply pointed; the distal fourth ornanented with transverse rows or irregular circlets of closely-set fine spines.

Remurcks. The worms were found in the nest of Termes obscuriceps; they exude a milky fluid. The species is peculiar in having only one pair of spermatheco, thus being reminiscent of some Ceylonese Meyascole, :

Distrihution. Peradenix: Ceylon

15. Notoscolex trincomaliensis (Mich.).

1897. Cryptodrilus trincomaliensis, Michaelsen, Mt. Mus. Mamburg, xiv, p. 188.
1898. Notoscole. trincomuliensis, Michaelsen, Tier. x, p. 190.

Length 135 mm ; diameter $2-3 \mathrm{~mm}$. Segments ca. 210. Colour? Prostomium and first segment retractile or vestigial. Setæ set widely apart; $a a=2 a b, a b: c d=5: 7, b c$ is greater than ua; cld very little greater than $\frac{1}{2}$ circumference. First dorsal pore at 12/13. Clitellum swollen, ring-shaped, more feebly developed ventrally, xiii-xvii (=5). Male pores in ab, immediately in front of the hinder copulatory cushions. Female pore unpaired (?). Spermathecal pores in a in $7 / 8$ and 8/9. A pair of copulatory cushions, circular, joined across the maddle line by a lower bridge, reaching c laterally, and extending from the setal zone of xyii to 19 ' 20 ; a similar smaller cushion on xvii.

Septa 6,7-12 13 thickened ($6,{ }^{\prime} 7$ and 12 '13 only slightly). Gizzard in v or vi ; calciferous glands three pairs, kidney-shaped, in $x v-x v i i$. Tntestine begins in xix. Last hearts apparently in xii. Micronephridia on each side aggregated into broad tufts between b and d, on superficial examination resembling a meganephridium on each side. Malo funnels in x and xi. Racemose seminal vesicles in xi and xii. Prostates of the Pheretima-type, fairly compact, bulging apart the septa of xviii ; duct very fine, shorl, straight. Spermathecal ampulla ovoid; duct one and a half times as long as ampulla, at first thin, but widening towards ectal end, strongly bent backwards; no diverticulum. No penial seta.

Remarks. Described from a single specinen, not well-preserved. The nephridial condition is somewhat reminiscent of Woodzurdia sarasinorum.

Distribution. Plains N. of Dambulla and Trincomali, Ceylon.

8. Genus MEGASCOLEX Templctort.

1895. Megascolex, Beddard, Monog. p. 370.
1896. Megascoler; Michaelsen, Tier. x, p. 212.
1897. Meyascolex, Michaelsen, Fauna S.W. Austral. p. 163.
1898. Meyascolex + Lampito, Micharlsen, Mem. Ind. Mus. i, p. 178.
1899. Megascolex, Michaelsen, Mjöberg's Austral. Expp. p. 57.

Seta, at least in the middle and linder parts of the body, numerous (more than eight) in ench segment. Spermathecal pores usually one to five pairs, between segments iv and ix (the exceptions are constituted by the few cases where the pores are fused in the middle line, or where they are numerous on each side in each segment). One gizzard in v, vi, or vii. Micronepliridial. Prostates with branched system of ducts.

Distribution (Chart III). Mainly Ceylon and the extreme south of the Indian Peninsula-Cochin and Travancore in particular ;
of these localities Ceylon has the greater number of species, and is the home of the genus par excellence. Outside these regions the genus is hardly found in the Indian region; one species has travelled up the Malabar coast towards Bombay (M. konkanensis); one, a "Lampito," is found at Baroda, another in the E. Himalayas, and the common "Lampito" mauritii, one of the great wanderers, is found all over India.

Outside Indin the genus is found in Australia, including Tasmania; in the N. Island of New Zealand, and Nortolk Island; "Lampito" mauritii is peregrine all over the coasts and islands of the Indian Ocean, over S.W. Asia and the Malay Archipelago.

The earlier history of the genus will be found fully set forth in Beddard's Monograph. Of later changes, two may be noted here. Michaelsen separated Kinberg's genus Lumpito again in 1909, in consequence of finding two other worms which agreed with L. mauritii in the possession of a peculiar form of nephridial apparatus (micronephridia throughout the body, and meganephridia in addition in all the postclitellar segnents) ; to these three species I later added two others. Michaelsen again fused the genera in 1016, since he had come to believe that the coexistence of mega- and micronephridia had no special importance;-the peculiarity has arisen at varions times, and is found in a number of genera of Megascolecine (Meynscolides, Notoscolex, Megascolex, Plionoyaster). With this I agree; there are many varieties of nephridial arrangements in the genus Meyuscolex, and I see no reason for the separation of the worms possessing one particular form of nephridial apparatus as a separate genus; indeed, M. escherichi var. papillifer has the "Limpito"-arrangement, while the type-form of the species has not. Nor is there anything in the distribution of the "Lampito" forms to suggest a common origin.

The second change in the content of the genus Meyascolex is the proposed fusion with it of the genus Notoscolex. This was hinted at by Michaelsen in 1913 (70); again, in 1916 (83a), he states that "a fusion of the two large genera Notoscolex and Megascolex appears to me unavoidable;" he does not, however, carry it out in the nomenclature used in the body of the paper, though in the "list of species discussed" at the end of the paper Notoscolex and Meyascolex (s.s.) appear as subgenera of Megascolex (s.l.). With this extension, however, 1 do not agree (cf. Introduction to genus Notoscolex); the genus as here comprehended therefore includes Lampito but excludes Notoscolex.
The origin of the genus is, according to Michaelsen's earlier view, to be sought in Notoscolex; in 1907, however (123), he thought it more likely that it was derived from Perionychella (i.e., the less specialized forms of Perionyx), and was still doubtful, or inclined to suspect a double origin, in 1909 (54). But the difficulty of separating Meyascolex and Notoscolex has led him, as
we have seen, actually to merge the two genera, and to regard them as successive steps in the evolution of the main line of the Megascolecina.

1 have myself argued (95) that, while the majority of species of Meyascolex are descended from Notoscolex (though at different times and places), a number have their origin in species of Periony،, and still others probably in Spenceriella. For the details of the argument, and for the question of polyphyly in general, reference must be made to the original paper.

On the other side, Megascolex has given rise to Pheretima. Indeed, the separation of these two genera is scarcely defined with absolute clearness; the only thoroughgoing distinction appears to be the position of the gizzard,-in vii or in front in Meyascolex, in viii or behind in Pheretima. Other points help to characterize the genera, though they are not constant characters of either; thus Megascolex often has penial setæ, and very rarely has testis sacs or intestinal cæca, while Pheretima has the contrary characters.

As to the positiou of the gizzard, it is in segment vii in several Indian species of Megascolex: ; in one (bifoveatus) it is actually in the hinder part of vii, bulging back the septum. It is easy to see how the transfer of the gizzard to segment viii might take place; all students of this family must have noticed how sometimes the septum behind the gizzard adheres to the organ, especially when the septum is thin; and it has then to be peeled off the gizand in order to demonstrate the true relations. Sometimes it is impossible to peel it off completely,-the septum is attached round the middle of the gizzard ; a slight further degree of adherence of the coneshaped septum to the surface of the gizzard will now cause the transfer of that organ to the segment behind. The shifting of the gizzird backwards is thus a gradual, not a sudden, change.

Key to the Indian species of Megassolex.

1. Spermatheral pores one pair in $7 / 8$	\because
	8.
, ", two pairs in $6 / 7$ and $7 / 8$.	4.
., ", two pairs in $7 / 8$ and $8 / 9$.	21.
, \quad, ${ }^{\text {a }}$ three pairs in $6 / 7,7 / 8$,	
and $\delta / 9$.	3.
Spermathecal pores, median, unpaired in $7 / 8$ and $8 / 9$	M. leucocyclus.
Spermathecal pores, several or numerous on each side in $7 / 8$ and $8 / 9$.	M. pelythect.
2. Spermatheca with free diverticulum	M. sarasinorum.
Spermatheca without free diverticulum, with numerous seminal chambers in wall of duct	
3. Funnels and testes free	4.
Funuels and testes enclosed in testis sacs..	6.
4. Highest number of setæ per segment not more than 50.	5.
Ilighest number of setæ more than 100	M. imperatrix.

Seminal vesicles in xii only; a web betweenterminal prongs of penial setro6. Testis sac in x onlyM. trilobatus.
Testis sacs in x and xi 7.M. escherichi.7. Spermathecal pores in c
M. brachycyclus.M. campester.
Spermathecal pores in g
8. Penial setæ absent 9.
Penial setre present 14.
!. Spermathecal diverticulum without secon- dary diverticulum 10.
Spermathecal diverticulum with secondary diverticulum
M. acanthodriloides.
10. Seminal vesicles in ix and xii M. hendersoni.
Seminal vesicles in xi and xii11.
11. Number of sete in front of clitellum 12, behind 16 12.
Number of setro in front of clitellum 20 22 , behind 24-28 13.
12. Male area (xviii and parts of neighbouring segments) thickened; xii not specially characterized M. quintus.
No specially modified male area; a large flat papilla on xii M. kempi.
13. Transversely elungated paired papillo on $17 / 18$ and on xix M. pattipolensis.
A thickened male field, on which are a pair of circular depressiony unteriorly on xviii, and a puir of large tlat papille on 18/19.. M. hortonensis.
14. Accessony prostate glands present. 15.
No accessoly prostate glands 17.
15. Accessory prostate glands two pairs, one in tront and one belind the main gland.. Accessory prostate glands one pair, in front of the main gland
M. cingulatus. 16.
16. Apertures of accessory prostates on anterior part of xviii M. ceylonicus.
Apertures in groove 17/18 M. spiectabilis.
17. No copulatory papillæ apart from the male aperture 18.
Copulatory papille present 19.
18. Spermathecal diverticulum with two secon- dary diverticula. M. nureliyensis.
Spermathecal diverticulum without secon- dary diverticula M. zyyochatus.
19. Female pore on xv M. varians var. insolitus.
Female pore on xiv 20.
20. Penial setre with two longitudinal rows of coarse blunt teethM. pharetratus.
Penial sete with small scattered triangular tepthM. carians var. simplex.
21. Penial setm present 22.
Penial setæ absent 30.
22. Seminal vesicles in ix and xii 29.
Seminal vesicles in xi and xii 63.
Seminal vesicles in xii and xiii M. singhulensis.
23. Penial setæ long, over 5 mm . M. longiseta.
Penial setæ less than 3 mm . in length 64.
24. Setæ a much enlarged, a larger than b, b than c, intersetal intervals decrease out- wards from midventral line. M. schmarde.
Setro and setal intervals not decreasing outwards by regular stages 25.
25. Gizzard in vii M. biforeatus.
Gizzard in v or vi or both 26.
26. Setæ in anterior part of body fewer than 20 per segment 27.
Seta in anterior part of body more than 50 per segment 28.
27. Setæ in anterior part of body about 16 per segment M. varians f. typıca.
Setæ in anterior part of body 8 per segment, in two pairs on each side M. villeyi.
28. Glandular part of prostate long and band- likeM. funis.
Glandular part of prostate racemose, deeply incisedM. templetonianus.
29. A single spermathecal diverticulum M. filictseta.
Two spermathecal diverticula M. curgensis.
30. Metandric 31.
Holandric 33.
31. Only micronephridia present M. lorenzi.
Mega- and micronephridia coexisting 32.
32. Copulatory organs as a pair of glandular cushions on 17/18 M. vilpattiensis.
Copulatory organ as a single cushion onthe anterior part of xixM. sylvicola.
33. Large calciferous glands in xiv and $x v$ M. cudami.
No set-off calciferous glands 34.
34. Seminal vesicles in ix and xii 35.
Seminal vesicles in xi and xii. 36.
Seminal vesicles in xii only M. cceruleus.
35. Testes and funnels free M. pumilio.
Testes and funnels enclosed in testis sacs M. ratus.
36. Setæ in anterior part of body 24 or fewer 37.
Setæ in anterior part of body 30 or more 38.
37. Setæa about 24 in anterior segments M. eunephrus.
Setæ 12-16 in most anterior segments. M. travancorensis.
38. Last heart in xiv M. kavalaianus.Last heart in xiii.39.
39. Body extremely long in proportion to its width ; anterior end truncated M. konkanensis.
Body has more usual proportions 40.
40. Male area limited by a transversely ellip- tical wall 41.
Male area not so limited 42.
41. Spermathecal pores outside b; diverticulum longer than duct plus ampulla

M. trivandianus. Spermathecal pores in a or almost so; diverticulum shorter than duct plus am- pulla M. cochinensis.

Perichuclu viridids Schmarda (Neue wirbell. Thiere, i, pt. 2, p. 13, text-fig., pl. xviii, fig. 161), found in the woods of S. Ceylon, near Belligamme, is, according to Beddard (23), indeterminable on account of its immaturity, but is a "Perichæta," i.e., a Pheretimu. According to Michatsen (33) the number of segments (209) is too many for a "Perichata," but will do for a Meguscolex ; in the Tierreich it is put down as perhaps belonging to Meyascolex.

Pericharte (Pleurochuta?) yracilis A. G. Bourne (P. /. S. 1886, p 666) is, according to Michaelsen in the Tierreich, a Meyascole.t; but he does not include it in his Indian lists $(54,58)$. A single specinen was found at Naduvatam in the Nilgiris; length tu0, diameter cia. $2 \cdot 5 \mathrm{~mm}$., segments 332 ; setal rings widely broken dorsally and ventrally ; clitellum xiv-xviii $(=5)$; female pores paired: spermathecal pores two pairs, in $7 / 8$ and $8 / 9$; gizzard in vii (or? vi); "two pairs of groups of small nephridia" opening posteriorly on vii and viii (these Michaelsen considers as glands, or possibly spermathecal diverticula); no penial setæ. The bodily proportions of this worm are reminiscent of Meyuscolex lionkenensis; but the extent of the clitellum is different in the $t w o$, and nothing corresponding to the glauds, or nephridia, of segments vii and,$~ i i i$ has been noted in the latter species.
Λ number of small groups of closely related species can be recognized. Thus M. hortonensis, liempi, pattipolensis, and quintus are much alike; in common they have the small number of sete, absence of pigment (colour not stated for pattipolensis), gizzard in vi, seminal vesicles in xi and xii, no penial setm, spermathecal pores in 8,9 in or near b, and the characters of the spermatheca; in size they form a series, from quintus (37 mm . long) to hortonensis ($\mathbf{7} 2 \mathrm{~mm}$.)-all are comparatively small worms. The setal characters form a series corresponding to that arranged for size; in the two smallest the sete are 12 per segment in the anterior part; in the two largest they are 20 anteriorly, and up to 24 (or $24-25$ in lurtmensis, the largest of all) belind; in three of the species it is noted that certain of the ventral seta in the anterior part of the body are enlarged. II. kempi shows the simplest condition of the male field, and something like a series can be constructed here also, leading up to hortonensis. Every one of the four species is unfortunately known only from a single specimen; at present the differences in the setæ and genital areas seem sufficient to warrant their being kept separate, but when other specimens come to hand it is possible that this conclusion will have to be revised. All are Ceylonese forms.

Another group seems to be comprised of M. cingulatus, ceylonicus, spectabilis, uureliyensis, and zygochotus; these are also all Ceylonese forms.
M. funis and M. templetonianus are remarkably alike; and I should have felt inclined to unite them, but for the fact that Michaelsen had examples of both under his eyes while writing his paper on the Earthworm Fauna of Ceylon (33), and yet does not hint at any such procedure.
M. eunephurs and M. travancorensis are closely related, and are distinguishable mainly by the configuration of the male field; the supposed peculiarity of the nephridia of M. eunephrus is, l think, of only slight importance. The only other points which can be mentioned are a slight difference in the numbers of the setæ, and perhaps a difference in the length of the spermathecnl diverticulum, neither of much monent. These are S. Indian forms.

Another group is constituted by M. cochinensis, insignis, kavalaianus, konkinnensis, and trivandranus. Ot these, kiavalaranus and insignis go together, and cochinensis and trivandrauts form another subgroup. It is possible that kitvaluiunus is identical with, or a variety of insignis. When one or only a very limited number of specimens are arailable, it is difficult to know what to do, since there is no indication of the extent of rariability. These five forms are a South Indian group.

Of the species previously grouped together as Lampito, MI. mauritii and M. trilobatus are connected, and so also are M. vilpattiensis and sylvicola; there is no very close relation between these two couples, and M. Iubius stands apart from both.

A word may be added on the relation of the Australian species of the genus to those of India-more especially to those of Ceylon. The Australian species are simpler, at a lower level of evolution, and more uniform; the Ceylonese species are often further advanced, and in many cases approach Pheretima. Of simpler forms among the Ceylonese species M. funis and varians may be mentioned, while of the more advanced forms, which approach Pheretima, multispinus, sarasinorum, and especially lrachycyclus are examples. It might be allowable, according to Michaelsen, to split up the genus into different groups; but as yet the necessary data for doing this are lacking.

1. Megascolex acanthodriloides Mich.

1897. Megascolex acanthodriloides, Michaelsen, Mt. Mus. Iamburg, xiv, p. 235, pl. figs. 9, 10.
1898. Megascolex acauthodriloides, Michuelsen, Tier. x, p. உ28.

Length $210-260 \mathrm{~mm}$.; diameter 8-9 mm. Segments 143-149, no secondary annulation. Prostomium epilobous $\frac{1}{2}$. Dorsal pores present. Setal rings with irregular dorsal and ventral breaks; $a a=1 \frac{1}{2}-2 a b, z z=3-4 y z$; setæ set wider apart near the dorsal break; numbers 44/v, 56/x, 54/xix, 48/xxvi. Clitellum ring-shaped, including $\frac{3}{4} x i v-x v i i\left(=3 \frac{3}{4}\right)$, excavated posteriorly and
ventrally, the posterior border being bowed forward there. Male pores on small papillæ, $\frac{1}{5}$ circumference apart, about in line with the eleventh seta; no setm between the male pores. Female pores paired. Spermathecal pores one pair, laterally placed in 8/9, about in line with the seventeenth seta. Two pairs of copulatory papillæ, one in front of and one behind the male pores, somewhat medial to these, at the anterior and posterior borders of xviii respectively, those of the same side connected by curved longitudinal walls which pass outside the male pores. One median copulatory cushion on $9 / 10$, with two papillæ on its hinder part.

Septa 6/7-12/13 thickened, the anterior ones less than the others. Gizzard in vi. Intestine begins in xv. Last hearts in xiii. Testes and funnels free in x and xi . Seminal vesicles in xi , xii, and xiii ; those in xi the largest, those in xiii rudimentary. Prostates very large, with broadly band-like glandular part ca. 15 mm . long, extending back to xxvii; duct ca. 10 mm . long, muscular, almost straight, situated longitudinally, connected with anterior end of gland. Accessory glands, resembing the prostates of some Acanthodrilines, each a flattened cylinder bent on itself, ending in front of and behind the prostates, in situations corresponding to the external papille. Spermathecal ampulla an elongated sac: duct of medium leugth, narrow, half as long as ampulla, set off from the ampulla; diverticulum thickly pearshaped, with single chamber, arising from middle of duct, bearing on its under side an accessory diverticulum with numerous small seminal chambers, the accessory diverticulum of about the same size as the first. No penial setio.

Jistribution. Peradeniya, Ceylon.

准. Megascolex adami Mich.
1910. Meyascolex culami, Michaelsen, Abh. Ver. Hamburg, xix, p. 64, pl. figs. $14,15$.
length $3: 0 \mathrm{~mm}$; diameter $3-4 \mathrm{~mm}$. Segments ca. ≥ 90. Reddish flesh-colour, unpigınented. Body very slender; anterior segments multiannular. Prostomium? First dorsal pore in 7/s. Setæ very small, especiallv in the middle and hinder parts of the body; in fairly regular pairs, but the width of the pairs variable; lines a and b fairly regular throughont the body; in the most anterior segments 10 setæ; then $1 \cup$, in three pairs on each side, the ventral pair the most regular; at the hinder end 14 or 16 ; median dorsal interval in the anterior part of the body very large. Clitellum? Male pores on small roundish papillo in the setal zone, ca. $\frac{1}{12}$ of the circumference apart. Female pore or pores indicated by a small glandular area in the setal zone. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, ca. $\frac{1}{10}$ of the circumference apart. Slight elevations on the four or five segments in front of the male pores (xiii or xiv to xvii), single in each segment, transversely oval, not quite median (possibly due to faulty preservation).

Septa 6/7-11/12 fairly strongly thickened, the next two successively thinner. A large gizzard in v. Two pairs of very large calciferous glands in xiv and xv , those of the same side apparently fused, opening by a common opening into the œesophagus in the hinder part of xiv. Typhlosole farly thick, angular. Fumels free (?) in x and xi. Seminal vesicles, if present, small and inconspicuous. Prostates rather small, irregularly disc-like, much incised; duct about as long as the giandular part is wide, straight, moderately and equally thick, except that it is rather thimer at both ends, with muscular shimmer. Spermathecal ampulla an elongated cylinder, rounded entally, often with a wart-like outgrowth at one side ; duct little narrower than ampula, short; diverticulum from ectal end of ampulla, regularly cylindrical in shape, half as thick and quite half as long as ampulla.

Distribution. Bulutota, above Ratnapura, Adam's Peak, Ceplon.

3. Megascolex bifoveatus Steph.

1913. Megascole.c biforeatus, Stepinenson, Spol. Zeyl. viii, p. 266, pl. ii, fig. 9.
1914. Megascole.x bifoveatus, Stephenson, Mem. Ind. Mus. vi, p. 80,

Length $48-80 \mathrm{~mm}$.; maximum diameter $2-3 \mathrm{~mm}$. Segments 100-126. Colour grey, with purple or pink tinge on dorsal surface anteriorly; mid-dorsal line purple; clitellum browner. Prostomium epilobous $\frac{1}{2}-\frac{3}{4}$, tongue cut off behind. Dorsal pores from $4 / 5$ or $5 / 6$. Setæ arrauged in fairly regular longitudinal rows; dorsal interval irregular, may be as much as $2 y z$ auteriorly ; ventrally the break may diminish backwards, from $2 a b$ in tront to being absent behind; number of setæ in anterior part of body from 34 to 42 , the smaller numbers towards the front end. Clitellum xiv-xvi=3. Male pores in c or d, ca. $\frac{1}{6}$ of the circumference apart. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in line with e. Genital marks a pair of oval pits in 19/20, their centre slightly internal to the live of the male pores.

Septum 12/13 and apparently a variable number in front of and behind this are slightly to moderately thickened. Gizzard rather small, short and cylindrical, in the hinder part of rii, bulging back septum $7 / 8$. No calciferous glands. Intestine begins in xv. Last heart in xiii. Micronephridia few or absent on body-wall in front of clitellum, otherwise present throughout; at some point behind clitellum larger nephridia appear, each consisting of a wavy or twisted tube, or of a number of coils, but of no great size; at first these are one on each side per segment, but towards the hinder end they are two or three on each side, some being attached to the anterior septum; these larger nephridia do not seem to be different in kind from micronephridia. Mule funnels tree in x and xi. Seminal vesicles in xi and xii, large and grape-like

Much lobulated prostates occupy seginents xviii-xx; duct straight and stout. Spermathecæ with rounded ampulla; duct fairly thick and short; diverticulum small, of an elongated ovoid shape, arising from the duct, a quarter as long as the ampulla. Penial

Fig. 83.-Megascolex bifoveatus Steph. ; distal end of penial seta.
setæ(text-fig. 83) 0.75 mm . long, 15μ thick, almost straight except at the distal end which is curved into the quadrant of a circle; proximal to the curve are four circles of finely sculptured dots, at some distance from each other along the shaft.

Remarks. The posterior position of the gizzard, and the nephridial condition are interesting; the meganephridia seem not to have completely broken up into micronephridia.

The genital markings may not be depressed, but are still recognizable by íheir darker colour ; the pits may be in 18/19.

Distribution. Pattipola and Horton Plains, Ceylon.
4. Megascolex brachycyclus (Schmarda).
1861. Perichata brachycycla, Schmarda, Neue wirbell. Thiere, i, pt. ii, p. 14.
1892. Megascolex brachycyclus, Beddard, Ann. Mag. N. H. (6) ix, p. 125.
1895. Megascolex brachycyclus, Beddard, Monog. p. 382.
1897. Megascolex brachycyclus, Michaelsen, Mt. Mus. Hamburg, xiv, p. 239, text-figs. 28, 29.
1900. Megascolex braclycyclus, Michaelsen, Tier. x, p. 227.
1910. Megascolex brachycyclus, Michaelsen, Abh. Ver. Hamburg, xix, p. 68.
Length 80 mm . ; diameter 3 mm . Segments ca. 213. Oolour dorsally in middle and hinder parts of body light reddish-brown,
for the rest an equable grey. Prostomium? Segments in anterior part of body triannular. Dorsal pores from 5/6. Setal rings almost closed; $a a$ regularly $=1 \frac{1}{2}-2 a b, z z$ about the same but irregular; numbers $48 / x, 47 / x x v i$. Clitellum? Male pores small, in setal zone, ca. it of the circumference apart, in line with c, surrounded by a dark common area which is somewhat narrower in the middle line and laterally ends in a point about in line with e. Female pores paired, just in front of setæ a. Spermathecal pores three pairs, in $6 / 7-8 / 9$, in line with c, each surrounded by a transverse area, dark in colour, which extends from a to e. Copulatory areas two pairs, in 17/18 and $18 / 19$, transversely extended and dark in colour, resembling the male area.

Intestine begins in xv; no typhlosole in anterior part. Testis sacs, unpaired, in x and xi. Seminal vesicles four pairs, in ixxii, the anterior two pairs connected with the anterior, the posterior two pairs with the posterior testis sac. Prostates with small loosely racemose glandular part; duct narrow. Spermathecal ampulla sac-like; duct sharply marked off, fairly thick, about as long as ampulla, half as thick in its ental part, but its ectal half much thinner; diverticulum given off from junction of thicker and thinner parts of duct, club-shaped, about half as long as duct. Penial setæ 1.3 mm . long, 25μ in maximum thickness, slightly bowed, and very slightly thinner towards the free end; tip sharply bent and then bent back again; the sides and concavity of the main curve at the tip ornamented with several groups of slender teeth.

Remarks. The presence of testis sacs and the relations of the seminal vesicles relate this form to Pheretima. The septa in the anterior part of the body were much softened, and the position of the gizzard, which would have been diagnostic, was not determinable; the absence of intestinal crea, the paired female pores, and the presence of penial sete, point to Megascolex. Nephridia were not recognizable; the species is therefore presumably micronephridial. The prostates were perhaps not fully developed.

The species is to be placed near M. escherichi; it also recalls M. iris and M. margaritaceus from the Philippines. Michaelsen thinks it possible that it may have to be separated as a distinct genus.

Distribution. Ratnapura, at the foot of Adam's Peak, Ceylon.

5. Megascolex caruleus R. Templeton.

1844. Megascolex cerveus, Templeton, P. Z. S. 1844, p. 89.
1845. Pleurochata moseleyi, Beddard, Tr. Roy. Soc. Edin. xxx, p. 481, pls. 25-27.
1846. Pericheta carulea, Benham, Quart. J. Mic. Sci. xxxi, p 285.
1847. Megascolex cceruleus, Bourne, Quart. J. Mic. Sci. xxxii, p. 49, pls. vi-ix.
1848. Megascolex coeruleus (part.), Beddard, Monog. p. 386.
1849. Megascole.c caruleus, Michaelsen, Mt. Mus. Mamburg, xiv, p. 214.
1850. Megascolex caruleus, Michaelsen, Tier. x, p. 232.

Length $250-1000 \mathrm{~mm}$. ; diameter $20-37 \mathrm{~mm}$. Segments $250-$ 290. Colour bluish green. Prostomium prolobous, broad and blunt. Dorsal pores from $8 / 7$. Setæ closer set and larger ventrally ; $a a=3-4 a b, z z=3-4 y z$; numbers $36 / \mathrm{v}, 140$ behind clitellum. Clitellum ring-shaped in front, saddle-shaped behind; $\frac{1}{3}$ xiii-xxi $\left(=8 \frac{1}{3}\right)$. Male pores in line with g, ca. $\frac{1}{10}$ of the circumference apart, on the edges of a median depression (in preserved specimens). Female pores paired. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in line with i. Two pairs of gland pores in $17 / 18$ and $18 / 19$, in line with the male pores or the hinder pair somewhat internal to the male pores.

Septa 8/9-12/13 thickened, all strongly except the first. (iizzard in v. No calciferous glands; cesophagus swollen in $x \cdot x y$, with ridges and rugæ on inner surface of wall. Well marked paired dorsal pouches on the anterior part of the intestine; typhlosole a simple ridge. Last heart in xiii; the dorsal vessel bifurcates and reunites several times in the anterior segments. Testes and funnels two pairs, free, in \mathbf{x} and xi. One pair of racemose seminal vesicles in xii. Prostates small, with tairly smooth glandular part ; duct very short, muscular. Accessory glands in connection with the pores in 17/18 and 18/19, small, solid, embedded in the body-wall, not seen in dissection. spermathecal ampulia pear-slaped; diverticulum very small, embedded in the wall of the duct. No penial setæ.

Remarks. Bourue describes a series of kidney-shaped glands on and opening into the intestine in segments cxii to cxxxiii, 22 pairs; Beddard found 15 pairs in lexxvi to ci. They do not seem to be lympl-glands; their acini are composed of columnar epithelium.

Bourne also gives an exhaustive account of the circulatory system.

Beddard could detect no segmental organs; the worm is therefore presumably micronephridial. He found the pores of the accessory glands on segments xvii and xix.

Distribution. Kandy, Peradenyn, Nuwara Eliya, all in Ceylon.

6. Megascolex campester Steph.

1915. Megascolex campester, Stephenson, Mem. Ind. Mus. vi, p. 78, pl. viii, figs. 17, 18.
Length $60-74 \mathrm{~mm}$.; maximum diameter 4 mm . Segments 139 . Colour a dark slate, slightly lighter ventrally and at anterior end. Prostomium epilobous $\frac{1}{2}-\frac{2}{3}$, tongue cut off behind. Dorsal pores from $5 / 6$. Setal rings on whitish lines; dorsally a small break ($z z=2 y z$), ventrally closed or nearly so; intersetal distances rather greater dorsally than elsewhere, smallest laterally;
numbers $46 / \mathrm{v}$, ca. $50 / \mathrm{ix}, 48 / \mathrm{xiii}, 50 /$ xix, and about 47 in the middle of the body. Clitellum xiii-xvii $(=5)$, purple in colour, otherwise indistinguishable. Male pores small, each in a whitish depressed area, the two areas united across the middle line by a tract of lighter colour than the regions in front and behind: a slight groove in front of and behind each pore; pores in line with f or $f g$, $\frac{1}{3}$ or $\frac{1}{6}$ of circumference apart. Spermathecal pores inconspicuous, three pairs, in line with g in $6 / 7-8 / 9$. A pair of small oval flat whitish genital papille in 18/19, internal and posterior to the male pores.

No septa notably thickened. Gizzard large, firm, barrel-shaped, in vii. Esophageal swellngs in x-xiii or xi-xiii, not set off, but with striated appearance, and transverse lamellæ internally.

Fig. 84.-Megascolex campester Stepl. ; spermatheca; the appendages on the upper swollen part of the duct are micronephrida.

Intestine begins in xiv. Last heart in xiii. Micronephridia very numerous and minute, on inner surface of whole body-wall and on dorsal wall of pharynx and buccal cavity; longer nephridia from xx backwards, irregularly distributed at first, then usually

Fig. 85.-Megascolex campester Steph.; distal end of a penial seta; a represents the tip as seen under the microscope, \times ca. $400 ; b$ represents what would probably be seen if the end could be rotated through a right angle.
two or three on each side in each segment; these larger nephridia are more conspicuous towards the hinder end, each consists of a few loops or a coil of a few turns, and has no connection
with a septum. T'estes and funnels in x and $x i$, in sacs which communicate across the middle line. Seminal vesicles four pairs, the anterior two pairs communicating with the anterior testis sac, the others with the posterior; those in ix attached to the posterior, the others to the anterior wall of their segments; all with lobulated edges. Prostates fiattened, lobed, occupying xviiixix or xx ; duct stout, almost straight, shining and of equal diameter throughout. Spermathecal anpulla roughly pear-shaped, the broader end joining the duct; duct separated from ampulla by a constriction, swollen below the constriction, as long as the ampulla, and as broad as the ampulla above, narrowing below; a small diverticulum from side of duct, stalked, swollen at its free end where a few chambers can be indistinctly seen; a number of micronephridia invest the broad part of the duct (text-fig. 84). Penial setæ (text-fig. 85) $1 \cdot 7 \mathrm{~mm}$. long, 20μ thick at middle of shaft, almost straight, with slight curve distally; tip flattened, ending in two points with an incisure between them; about half a dozen irregular rings of fine sculpturings near the free end, not resolvable into spines under the oil immersion.

Remarlfs. This species appears to be related to M. brachycyclus. Distribution. Horton Plains, Ceylon.

7. Megascolex ceylonicus (Bedd.).

1886. Perichata ceylonica, Beddard, Ann. Mag. N. H. (5) xvii, p. 89, pl. ii, tigs. 1-3.
1887. Meyascolex ceylonecus, Beddard, Monog. p. 385.
1888. Megascolex ceylonicus, Michnelsen, Tier. x, p. 228.

Length 225 mm . ; diameter 10 mm . Black dorsally, dark grey ventrally, except over clitellum, where it is black also. Setal rings closed dorsally, a very slight ventral gap; number in posterior part of body 51. Clitellum ring-shaped, xiv-xvi and a part of xvii ($=$ more than 3). Male pores ca. $\frac{1}{y}$ of circumference apart. A pair of gland pores on xviii in front of the male pores and rather more lateral. Spermathecal pores one pair, widely separated, in $8 / 9$.

Last heart in xiii. Prostates with lobular glandular part extending through several segments; duct narrow, long, somewhat curved. The accessory glands opening on xviii are narrow and tubular. Spermathece with a small pear-shaped diverticulum. Penial setro generally slightly bowed, more strongly so at the distal end, tip rather blunt; distal fourth of shaft with a number of minutely and irregularly denticulate ridges, towards the extreme tip broken up so as to become a series of chevron-shaped ridges with the angle turned towards the tip (i.e., triangular sculpturings).

Remarks. The species was described from a singly badly preserved specimen. The position of the gizard is not recorded.

Distribution. Ceylon.

8. Megascolex cingulatus (Schmarda).

1861. Pericheta cingulata, Schmarda, Neue wirhell. Thiere, vol. i, pt. ii, p. 14, pl. xviii, fig. 162, text-fig.
1862. Megascolex. cingulatus, Beddard, Ann. Mng. N. II. (6) ix, p. 122, pl. vii, figs. 9-13.
1863. Megascole.x cingulatus, Beddard, Monog. p. 38\%.
1864. Megascolex cingulatus, Michaelsen, Mt. Mus. Mamburg, xiv, p. 2:29, pl. figs. 7, 8.
1865. Meyascole.x cingulatus, Michaelsen, Tier. x, p. 229.
1866. Megascolex cingulatus, Michaelsen, Abh. Ver. Hamburg, xix, p. 80.
1867. Megascolex cingulatus, Stephenson, Rec. Ind. Mus. xii, p. 329, pl. xxxii, fig. 21.

Length 220 mm . or less; diameter $3-6 \mathrm{~mm}$. Segments 157 . Colour bluish to reddish violet in life. Prostomium epilobous 3 , tongue cut off behind. First dorsal pore in $5 / 6$. Setal rings almost closed, $a a=z z=1 \frac{1}{2}-2 a l$; numbers $31 / \mathrm{v}, 38 / \mathrm{x}$, $33 / \mathrm{xii}, 48 / \mathrm{xix}, 40 / \mathrm{xxv}$. Clitellum xiii-xvii $(=5)$; ring-shaped, but interrupted ventrally in the hinder half of xvii. Male pores in setal zone about $\frac{1}{3}$ of circumference apart, eaoh surrounded by a prominent lip ; no setæ intervening. Female pores paired, in front of setæ a of xiv. Spermathecal pores one pair, in $8 / 9$, $\frac{1}{3}$ of circumference apart. Two pairs of pits with slightly elevated margins in 17/18 and 18/19, rather wider apart than the male pures.

Septum $6 / 7$ very thin; $7 / 811 / 12$ or $13 / 1+$ thickened. Gizzard in vi or vii or both. Intestine begins in xiv or xv. Last heart in xiii. Funnels two pairs, in testis sacs, in x and xi. Seminal vesicles two or three pairs. Prostates with long, broadly

व.
Fig. 86.-Megascolex cingulatus (Schmarda); spermatheca; a, whole organ, the dotted lines showing course of duct behind ampulla; b, diverticulum only, from another organ, showing a rather different condition of the secondary diverticula, rather more highly magnified.
band-shaped, loosely lobed glandular part, extending back to segment xxv or xxx ; duct long, muscular, coiled. Two pairs accessory glands, opening in the pits in 17/18 and 18/19. Spermathecal ampulla somewhat pyramidal or irregular; duct begins from the apex of the pyramid, passes at first under the ampulla, where it is narrow; then emerging from under the ampulla dilates and becomes much stouter; diverticulum given
off from ectal portion of duct, club-shaped; one or two secondary diverticula from near base of primary diverticulum, small, stalked, each with one or more grape-like seminal chambers (text-fig. 86). Penial seto 1.7 mm . long, with sharp tip, bowed shaft, and thick (75μ) proximal end; ornamentation of numerous denticulated transverse lines on the concave side of the tip.

Remarlks. I found calciferous glands in segments x-xiii; these are not mentioned by other authors, and were probably cosophageal swellings only, not distinctly marked off.

The seminal vesicles are variously stated to be two pairs in xii and xiii, racemose, or three pairs in x, xi, and xii not racemose.

Michaelsen found the concave side of the tip to be sharp, like a knife; I did not see any indication of this in my specimen.

Distribution. E. of Badulla, Avissavela, Kandy, and probably Peradeuiya, all in Ceylon.

9. Megascolex cochinensis Steph.

1915. Megascole.x cochinensis, Stephenson, Mem. Ind. Mus. vi, p. 96, pl. ix, figs. 32, 33.
Length $175-220 \mathrm{~mm}$.; dameter 4 mm . Segments 224. Colour grey, non-pigmented. Prostomium epilobous $\frac{1}{3}$ to $\frac{1}{2}$, tongue cut off behind. Dorsal pores from 5/6. Setre closer set ventrally; $a a=2 a b$ in front of and $3 a b$ behind clitellum, $z z=2 y z$; numbers 41/v, $54 / \mathrm{ix}, 57 /$ xii, $48 /$ xix, $36-33$ in middle of body. Clitellum xiv- $-\frac{2}{3} x$ vii $\left(=3 \frac{2}{3}\right)$. Male pores as oblique wavy slits, the posterior ends of which approach each other, each on a white oval elevation, also oblique, which touches or almost touches its

Fig. 87.-Megascolex coclinensis Steph.: male genital area; clit., clitellum ; x, its posterior border.
fellow in the middle line; the area surrounding the papille depressed, and the whole surrounded by an oval wall; centres of male pores ca. $\frac{1}{12}$ circumference apart; the whole area in longitudinal extent takes up nearly the length of segment xviii (text-fig. 87). Female pore apparently single. Spermathecal pores in $7 / 8$ and $8 / 9$, in line with a.

Septa 6/7-11/12 moderately thickened, the following two slightly so. Gizzard large and barrel-shaped, in v. Esophagus swollen and vascular in xii-xiv. Intestine begins in xix. Last heart in xiii. In front of clitellum nephridia only as tufts by the side of esophagus; behind clitellum they form a band (but not a single line) in the anterior half of each segment. Testes and

Fig. 88.-Megascolex cochinensus Steph. ; spermatheca.
funnels free in x and $x i$. Seminal vesicles, moderately large, racemose, in xi and xii. Prostates limited to xviii, each a mass of small rounded lobules; duct passing straight inwards, wider at its termination. Spermathecal ampulla ovoid; duct as long as ampulla and less than half as wide; diverticulum arising from ectal end of duct, club-shaped, reaching about to middle of ampulla (text-fig. 88). No penial setæ.

> Remarks. I found a second pair of ovaries in one specimen.
> Distribution. Forest tramway, Cochin State.
a. var. phaseolus (S'teph.).
1915. Megascolex phaseolus, Stephenson, Mem. Ind. Mus. vi, p. 93 , pl. ix, figs. 28, 29.

Length 180 mm . ; maximum diameter 3 mm . Segments ${ }_{2}^{7} 0$. Colour grey, with a bluish tinge in parts, clitellum orange. Setæ closer set ventrally ; dorsal break decreases backwards from $3 y z$ to $1 \frac{1}{2} y z$, ventral break $=2 a b$ in front of clitellum, $4 a b$ in middle of body, $3 a b$ towards hinder end; in front of clitellum setre on dorsal and lateral surfaces arranged in pairs, in the middle of body the intersetal intervals are very irregular ; numbers $34 / \mathrm{v}$, $35 / \mathrm{ix}, 36 / \mathrm{xii}, 38 / \mathrm{xix}$, and 26-28 in middle of body. Clitellum $x i v-x v i i \quad(=4)$. Male genital field (text-fig. 89) marked by a kidney-shaped elevation, transversely placed on xviii, the concavity backwards; the elevation surrounded by a groove, and this again by an elliptical ridge which is cleft behind in the middle line.

Male pores as fine grooves, oblique in position, beginning in front on the kidney-shaped elevation, and ending behind nenr the middle line on the elliptical raised ring. In some, a small circular papilla anteriorly on xix, bordering the groove.

Fig. 89.-Megascolex cochinensis Steph. var. phaseolus; male genital area; b., bean-like elevation on xriii ; u., the ring-like wall, cleft behind; p., papilla on xix ; clit., clitellum.

Remarks. I have re-examined the original specimens. The smaller number of setæ, and the configuration of the male field, are the distinguishing marks. Michaelsen (70) considers that the state of contraction or relaxation has much to do with the appearance of the male area, and when the worms are otherwise similar makes one a variety of the other; thus the several varieties of Megascole:c travancorensis are distinguished by little more than the male fields.

Distribution. Parambikulam, Cochin State.

10. Megascolex curgensis Mich.

1921. Megascole. curyensis, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 64, text-figs. $8 a, b, c$.
Length 125-130 mm. ; maximum diameter 4.5 mm . Segments ca. 115. Colour yellowish white. Prostomium epilobous ca. $\frac{1}{4}$; a middorsal longitudinal furrow passes back from the prostomium to groove $1 / 2$. Dorsal pores from 5/6. Setæ enlarged at ends of body; dorsal break irregular; $a a=2 a b, z z=2-3 y z$; numbers $24 / v, 33 / \mathrm{x}, 34 / \mathrm{xix}, 36 / \mathrm{xxvi}, 28 / \mathrm{xc}$. Clitellum ring-shaped, $\frac{1}{2} \mathrm{xiii}-$ $\frac{1}{2} \times v i i i(=5)$. Male pores inconspicuous, in the setal zone of xviii, ${ }^{\frac{1}{0}}$ of the circumference apart. Female pores inconspicuous, ? paired. Spermathecal pores two pairs in 7/8 and 8/9, $\frac{1}{8}$ of the circumference apart. No other genital marks.
Septa 7/8-12/13 thickened, the middle ones of the series fairly strongly. Gizzard in vi. No calciferous glands. No typhlosole. Last heart in xiii. Micronephridial tufts united to form bushy rosettes in the anterior part of the body ; behind this are arranged in the form of a fan. Testes and funnels free in x and xi, the testes apparently on the posterior wall of the segment. Seminal vesicles in ix and xii, racemose. Prostates take up about three
segments, their border slightly indented; duct onc-fifth as long as glandular part, small, cylindrical, muscular. Spermathece with irregularly spindle-shaped ampulla; duct not sharply marked off, short, thin, almost entirely embedded in the body-wali ; diverticula two, one above the other, considerably shorter than the ampulla, opening into ental end of duct by a very short common stalk, each broad at the base and narrowing to its apex which is bent or spirally coiled. Penial setæ thin and delicate, 2.7 mm . long, 26μ thick in the middle, bowed; tip somewhat flattened at right angles to plane of curvature, spoon-shaped, ending in three or four irregular teeth; the hollow of the spoon furnished with small teeth, arranged in part in transverse rows.

Remarls. The nephridial condition apparently resembles that in M. filicisetu.

Distribution. Madapur and Somavarpatna, Coorg.

11. Megascolex dubius (Steph.).

1916. Lampito dubius, Stephenson, Rec. Ind. Mus. xii, p. 315, pl. xxxi, fig. 9.
Length 106 mm . (originally more, hinder end regenerated); diameter 6 mm . Segments 134 (or more originally). Colour slate-blue, slightly lighter on ventral surface. Prostomium epilobous $\frac{1}{2}$, tongue almost closed behind, sides converging at an obtuse angle. Dorsal pores from $6 / 7$. Setæ set more closely, and smaller, ventrally than dorsally; no ventral break, dorsal break $=2 y z$, irregular or sometimes absent; numbers $91 / \mathrm{v}, 88 / \mathrm{ix}$, ca. $81 /$ xix, $82 / \mathrm{xxvi}$. Clitellum? Midventral portion of xviii pale in colour. Male pores small and slit-like, close to midventral line, in a small transverse groove just behind the setal zone; the line of the setæ is on the sloping anterior wall of the groove, a few setæ missing in the neighbourhood of the pores. Female pore probably in a slight transverse depression midventrally on xiv, a little in front of the setal zone. Spermathecal pores close together, though slightly wider apart than the male pores, in $7 / 8$ and $8 / 9$.

Septa $5 / 6-7 / 8$ slightly strengthened, $8 / 5$ moderately, $9 / 10-$ 15/16 considerably; thereafter the thickening gradually diminishes. Gizzard large and firm, in \mathbf{v} and vi. Esophagus laterally bulged in x-xiv, and villous internally. Intestine begins in xix; typhlosole in middle of body low, with transverse folds. Last heart in xiii. In the most anterior segments nephridia as a tuft with a single stalk; behind xiii one loop of the tuft, longer than the rest, stretches outwards on the body-wall: from x onwards a number of small micronephridia make their appearance, scattered further out on the body-wall; in the middle of the body a transverse line of micronephridia on each side, and a meganephridium (text-fig. 90) with abnut six funnels, and two loops which stretch outwards on the body-wall, one shorter, stout and
conspicuous, the other extremely fine and reaching nearly to the middorsal line. Testes and funnels free in x and xi. Seminal vesicles single in xi aud xii, large in xi, small in xii. Prostate

Fig. 90.-Megascolex dubius Steph. ; a meganephridium from the middle of the body, to show the general relations of the parts, the fumels, the stout and slender loops; a, stout loop; b, slender loop; f., funnels.
very small, consisting of a number of finger-like processes, almost sessile on the body-wall, and without visible duct. Spermathece not visible internally. No penial setw.

Remarks. The single specimen was possibly immature. The condition of the nephridia is interesting; the meganephridia seem to be here caught in the nct of dividing up. The species is probably to be derived from a l'eriony. , its origin being independent of that of other species of the genus (cf. Stephenson, 95).

Distribution. Kurseong, E. Himalayas.

12. Megascolex escherichi Mich.

> 1910. Meyascole.x escherrchi, Michaelsen, Abh. Ver. Hamburg, xix, p. 66 , text-fig. B.

Length $43-45 \mathrm{~mm}$; maximum diameter 3 mm . Segments 104-119. Colour dorsally a dark brown-violet, laterally lighter, ventrally yellowihh-white. Prostomium epilobous ca. $\frac{2}{3}$; tongue open behind. First dorsal pore in $5 / 6$. Seto small, ventrally much closer set than dorsally ; the rings broken ventrally to a very slight extent and irregularly, dorsally more distinctly interrupted but the interval "gain small; numbers $40 / \mathrm{v}, 36 / \mathrm{x}$, $38 / \mathrm{six}, 40 / \mathrm{xxv}$. Clitellum xiv-xıii ($=4$). Male pores close together on a common transversely oval papilla which takes up the whole length of xiiii. Female pores paired. Spermathecal pores fused in the middle line or almost so, in $6 / 7-8 / 9$, contained almost wholly in the space between the lines a.
Septa $8 / 9-12 / 13$ very little thickened, $10 / 11$ and $11 / 12$ most distinetly so. Gizzard large, in vii. (Esophagus widened in viiixiii (?), with folded and vascular wall, but no set-off calciferous glands. No intestinal cæca. No typhlosele. One pair testes and funnels in x, enclosed in an unpaired testis sac, transversel placed, narrowed in the mid-ventral line; a large lateral prolongation on
each side (\sim seminal vesicle of x), and from this an extension into ix (=seminal vesicle of ix); these latter (in ix) are split up into a number of indistinctly separated pear-shaped chambers. Prostates irregularly disc-shaped; duct fairly thick, muscular, straight, shorter than the diameter of the gland. Spermathece with egg-shaped ampulla; duct fairly abruptly set off, somewhat longer than and about half as thick as ampulla. Diverticulum arises near ectal end of duct, about as long, when straightened, as duct; the ectal half is a stalk, the ental is somewhat dilated and its cavity often constricted near the ental end. The duct may contain a cylindrical spermatophore-like mass of spermatozoa. Penial setæ almost straight, ca. 0.65 mm . long and ca. 20μ thick proximally, not much thinner towards distal end; distal end narrowed just above the tip, rather flattened and chisel-like between the narrowing and the end, the truncated end being slightly hollowed out (like M. mauritii, but in a much feebler degree); this terminal portion is beset with about five irregular rings of long and slender spines.

Remarks. In life the worm moves with a strong, almost springing action.

The species has affinities with M. brachycyclus, thongh there are mauy very distinct differences. It stands alone in the genus in being proandric (though M. fielderi and M. frosti are metandric) ; the possession of a testis sac is shared with a few Australian and Ceylonese species. These peculiarities show that thas species is approximating to l'heretima; the posterior position of the gizrard (in vii) is also a step in the same direction; this last feature is only found in Ceyloneve and Indian species (1 In the Australian M. oallinus it occupies parts of vi and vii).

Distribution. Hıdana, near Peradeniya, Ceylon.

a. lar. papillifer Steph.

1915. Megascolex escherichi, var. papillifer, Stephenson, Mem. Ind. Mus. vi, p. 77, pl. viii, fig. 16.
Length 55 mm . ; diameter 3 mm . Segments 121. Colour much as in the type form. Prostomium epilobous $\frac{1}{2}$, tongue either cut off behind or not ; segment i divided ventrally by a longitudinal cleft. Setal rings broken dorsally and ventrally; $z z=\underset{-}{ }-2 \frac{1}{2} y z$, $\pi a=1 \frac{1}{2} a b$; numbers $36-44$. The oval raised area or papilla on which the male pores are situated (text-fig. 91) may be marked by one or more of the following grooves:-a transverse near its anterior border, a simılar groove near its posterior border, and a longitudinal in the middle line. The spermathecal apertures are not fused in the middle line, though close to it. Genital papillæ present or not; one, in 19/20, or more rarely two, in $19 / 20$ and $20 / 21$, small and transversely oval, never quite in the middle line, always somewhat to either the right or left side.

Gizzard partly in vi ; the septum (6/7) is attached round its anterior part, behind the anterior third. Micronephridia through-
out the body; in addition, nephridial tufts by the side of the alinentary canal in $v-\mathrm{ix}$; and a large nephridium on each side in each segment from xvii backwards, wavy or coiled tubes, in maximum length equal to half the dinneter of the intestine,

Fig. 91.-Megascolex escherichi Mich. var. papillifer; male gental area.
smaller towards the hinder end, and may be absent here from one or both sides of a segment. The spernathecal diverticulum may be cylundrical, and not stalked; or it may be attached separately to the body-wall. Penial setæ narrower at the truncated distal end than in the type form ; spines, in 6-7 rings, do not stand off so much from the slaft as in the type form.

Distribution. Llorton Plains, Ceylon.

13. Megascolex eunephrus Coyn.

 p. 498, pl. xiii, figs. $5-7$.

Length more than 85 mm . (hinder end wanting); maximum diameter (anteclitellaal) 3 mm . Segments 195. Colour a uniform lilac-grey. Prostomum proepilobous. No secondary annulation. First dorsal pore in 8/9. Nephridiopores in $3 / 4-8 / 9$ in line with setæ e. Setæ nearly constant in number, ca. 24 ; ventral break regular but not large,$=2 a b$, dorsal break a little larger. Clitellum ring-shaped, xiv-xvii ($=4$). Ventrally on xvii a few large papillæ, which, joining together, form a triangular figure enclosing a depression, one angle of the triangle pointing forwards and reaching $17 / 18$; male pores near the lateral angles, in line with b. Spermathecal pores in b in $7 / 8$ and $8 / 9$.

Septa 6/7-8/9 moderately thickened. Gizzard in v. Intestine begins in xxi. No calciferous glands. Last heart in xiii. Nephridia in iii-ix as conspicuous tufts, with thin-walled ribbonlike duct, which increases in length from the first to the seventh pair, and passes througb the body-wall at the extreme anterior inargin of the segment; from x onwards the nephridia are diffuse and small, but in xiv and $x v$ a pair of the larger nephridia are present in addition. Testes and funnels free in x and xi. Sperm vesicles grape-like, in xi and xii. Prostates with glandular part
much lobed, in xvii-xx ; duct curved with convexity forwards. Spermathece with club-shaped main pouch; diverticulum fingershaped, opening into ectal end of duct, in length one-third of main pouch (ampulla plus duct). No penial setæ.

Remarks. I do not think the "meganephridia" are here anything else than the usual tufted nephridia of the anterior segments, though they seem to extend further back than usual. The author notes that nephridia like the larger ones of the present species have been found by Benham in M1. laingii. (113), where they probably perform the office of peptonephridia. On peptonephridia see Cognetti (117) and Bahl (90).

This species comes very close to M. travancorensis and its varieties; the spermathecal diverticulum is wuch smaller, according to the figure.

Distribution. Courloon, Travancore, S. India.

14. Megascolex filiciseta Steph.

1915. Megascole.. filicieseta, Stephenson, Mem Ind. Mus. vi, p. 94, pl. ix, figs. 30, 31.
Length $63-70 \mathrm{~mm}$.; diameter $2-3 \mathrm{~mm}$. Segments 118 . Colour dorsally bluish grey behind, purplish in frout; ventrally a

Fig. 92. - Megascolex filiciseta Steph.; penial seta, lateral view of distal end, showing a relatively small number of pinna-like spines, \times ca. 510 .
slaty grey; \mathfrak{a} fine dark middorsal stripe. Prostomium opilobous $\frac{1}{4}$, tongue closed behind, and marked by a median groove. First dor:al pore in 5/6. Setal rings broken dorsally, $z z=2 y z$, or a little more or less; ventrally the ring closed anteriorly as far as xi, but thereafter soon becomes moderately widely interrupted, so that $a a=2 \frac{1}{2} a b$; seta a as Ω rule smaller than the rest, and $a b$
rather less than $l c$; numbers $33 / \mathrm{v}, 41 / \mathrm{ix}, 37 / \mathrm{xii}, 42 / \mathrm{xix}$, and 36 or 38 in middle of body. Clitellunı xiv-xvi (?). Male pores inconspicuons, on very small papillæ, between lines a and b. Spermathecal pores minute, close to the middle line, in $7 / 8$ and $8 / 9$.

Septa 8/9-11/12 moderately thickened, $7 / 8$ and 12/13-13/14 slightly so. Gizzard barrel-shaped, in vi. Intestine begins in xr. No calciferous glands. Nephridia as bushy tufts, one on each side per segment, attached by a narrow base or by a common stem ; towards the posterior end one loop gains increased prominence, but no part is attached to the septum. Testes and funnels free in x and xi . Seminal vesicles small, lobed and flattened, in

Fig. a3.-Meyascolex filicescta Steph. ; distal end of a pemal seta still in its sheath, with numerous spines, about 16 on each side: \times ca. 500.
ix and xii. Prostates small, flattened, and confined to xviii, with lobed margins; duct not visible as a separate structure. Spermathece close by side of nerve-cord; ampulla ovoid; a separate duct not distinguishable; diverticulum half as long as main pouch, arines along with the latter from a common base. Penial seta $1 \cdot 3 \mathrm{~mm}$. long, $2 \underline{2} \mu$ thick, slaft hent in a bow, tapering towards distal end, tip slightly recurved ; on each side of distal end a row of straight stout teeth arranged like the pinnex of a fern, the longer teeth 20μ long and $5-(i \mu$ broad, the number of teeth on each side $8-16$.

Remarks. The prostates and spermathece were perhaps not fully developed. The nephridial condition resembles that in Wooduardic hestata. Strictly speaking, it is meganephridial throughout, each tufted nephridium being developmentally a branched megauephridium (cf. remarks in introduction to the genus Wcodwardia). The condition in the anterior segnents of M. eunephrus is here continued throughout the body.

Distribution. Parambikulam, Cochin State, S. India.

15. Megascolex funis Mich.

1897. Megascolex funis, Nichaelsen, Mt. Mus. Hamburg, xiv, p. 210, text-figs. $1,2$.
1898. Megascolex funis, Michaelsen, Tier. x, p. 228.
1899. Megascole. funis, Michaelsen, Mem. Ind. Mus. i, p. 186, pl. xiii, fig. 24.
Length 255 mm . and probably more; diameter $3-5 \mathrm{~mm}$. Segments 386, triannular in anterior part of body. Colour an indefinite bluish grey (? due to mode of conservation). Prostomium
small, retractile. First dorsal pore in 12/13. Setæ in general very small, a a little larger than the rest, especially in the anterior part of the body; ventral interval in front of clitellum $=3 a b$, behind clitellum $=12 a b$ (setæ a and b closer together behind clitellum than in front); dorsal interval $=3-5 y z$; numbers $56 / \mathrm{iii}$, 63/v, 65/x, 61/xiii, 75/xxvi. Clitellum not distinguished. Male pores on small prominent papille, apparently close behind the setal zone, ca. $\frac{1}{5}$ of circumference apart; lateral to each pore are two papillæ, one in front of the other, forming with the papilla of the male pore a triangular area; in addition there may be one pair of papillm ventrally situated on the anterior part of xix, alinost contiguous in the middle line. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, about $\frac{1}{8}$ of circumference apart, between the lines of d and e.

Septum 5/6 very thin, 6;7-13/14 thickened. Gizzard in \mathbf{v}. Intestine begins in xvii. No calciferous glands. Last hearts in xiii. Funnels (and probably testes) free, two pairs. Seminal vesicles two pairs, in xi and xii. Prostates with long band-like glandular part, much cut up; duct thin, straight. Spermathece with narrow tongue-like ampulla, without distinct duct; clabshaped diverticulum arising from ectal end, three-fourths as long as main pouch, dilated ental portion consists of a large number of small pear-shaped seminal chambers opening into a central channel. Penial setæ 2 mm . Jong, 50μ in maximum thickness, with slightly bowed and bluntly double-pointed distal end (the points not seprarately visible as a rule, since in the usual position they corer each other) ornamented with numerous finely toothed transverse ridges.

Remarks. Not improbably to be united with M. templetonianus.
Distribution. Kandy, Ceylon (perhaps Peradeniya also).

16. Megascolex hendersoni Mich.

1907. Megascole. hendersoni, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 16U, text-fig. 10.
1908. Meyascole.x hendersoni, Michaelsen, Mem. Ind. Mus. i, p. 184, pl. xiii, figs. 22, 23, text-fig. 16.
Length 140-230 mm.; maximum diameter 6-8 mm. Segments 110-152. Colour dorsally bluish grey anteriorly, passing into a brownish or reddish grey behind ; ventrally yellowish grey. Prostomium tanylobous, tongue rather broad, its sides converging backwards. Segments of anterior part of body triannular. Dorsal pores from 5/6. Setæ fairly large, somewhat larger on anterior part of body than elsewhere, ornamented with irregular toothed transverse ridges ; ventral break regular, $=1 \frac{1}{2}-2 a b$; dorsal break irregular, $=1-2 y z$; numbers $28 / v, 33 / \mathrm{viii}, 38 / \mathrm{xii}, 36 / \mathrm{xx}, 40 / \mathrm{xxvi}$. Clitellum saddle-shaped, xiii-xix $(=7)$, less distinct on xiii and xix; darker in colour than rest of surface, not well-marked otherwise, segments biannulate, setæ present on hinder annulus. Male pores ca. $\frac{1}{10}$ of circumference apart, on small papillm in line with b,
behind the setal zone. Spermathecal pores one pair, in $8 / 9$, ca. $\frac{1}{8}$ of circumference apart, between the lines b and c. Copulatory papillæ (text-fig. 93 a) three pairs, sinall and transversely oval, situated between the lines b and c, at the hinder borders of xvii, xviii, and xix, or in the grooves; the first pair smaller than the others, the middle pair united to the porophores; the ventral parts of xvii and xx swollen, glandular, and somewhat overhanging the region between them; the lateral ends of these thickenings connected by a pair of longitudinal walls which run outside the papillæ; the male area between the walls somewhat depressed.

Fig. 93 a.-Meyascolex hendersoni Mich. ; male gental field, $\times \overline{\mathrm{J}}$.

Fig. 93b.-Migascolex hendersoni Mich.; spermatheca made transparent by acetic aeld; $\times 8$.
Septa $7 / 8-13 / 14$ (or ? $1+/ 15$) thickened, especially $10 / 11$ and $11 / 1$; ; the rest gradually thiuner. Gizzard very large, in front of 6/7. Esophagus swollen in xii, xiii, and xav ; in xiv the swellings, though not definitely set off from the asophagus, resemble calciferous glands; the wall of the swellings in all the segments has the lamellated structure of calciferons glands. Intestine begins in xvi; no distinct typhlosole. Last hearts in xiii. Funnels free (?) in x and $x i$. Vesicule seminales two pairs, loosely racemose, in $1 x$ and xii, the hinder pair the larger. Prostates confined to xviii, glandular part irregularly disc-shaped or broadly tongue-shaped, much incised; duct rather thick and short, straight, muscular, hardly as long as the glaudular part. Egg-sacs (?) in xiv. Spernathece with oblong sac-like ampulla; duct abruptly set off, onethird as long and one-third as thick as ampulla; diverticulum indistinctly stalked, with $3-5$ oval or rounded seminal chambers, hanging down and pressed agaust duct, half as long as duct and much thinner (text-fig, $93 b$). No penial setex.

Distribution. Tiger Sholn, near Kodaikanal, Palni Hills, S. India.

17. Megascolex horai Steph.

1922. Megascolex horai, Stephenson, Rec. Ind. Mus. xxiv, p. 432.

Length 110 mm .; diameter 2.5 mm . Segments 188. Colour yellowish grey. Prostomium slightly epilobous (?). Dorsal pores
from 10/11. Setæ in fairly regular longitudinal lines; $a a=3-4 a b$ in front of male pores, $=2 \frac{1}{2}-3 a b$ in middle and hinder parts of body; $z z=2-3 y z$ anteriorly, $=1 \frac{1}{4}-1 \frac{1}{2} y z$ behind genital region; numbers $26 / \mathrm{v}, 27 / \mathrm{ix}, 32 /$ xii, $32 /$ xix, and 28 in middle of body. No clitellum or genital markings present. Male pores on xvii, on papillw, nbout $\frac{1}{5}$ of circumference apart, in line with b. Spermathecal pores in $6 / 7$ and $7 / 8$, in or just interual to the line b, $\frac{1}{5}$ of circumference apart.

Septa $7 / 8-13 / 14$ very slightly strengthened; $6 / 7$ and $7 / 8$ attached to body-wall rentrally behind normal position. Gizzard in v, firm and barrel-shaped. Calcilerous glands in x, xi, and xii, stalked. Last heart in xii. Micronephridia in a single transverse row in each segment. Thestes and funnels free in ix and x. Seminal vesicles in xi only. Prostates deeply bifid on the outerborder ; duct bent round sharply at its ectal end. Ovaries in xii. Spermathecæ as small sacs sessile on body-wall, no separate duct; a single diverticulum, narrow and tubular, about as long as ampulla, from junction of sac with body-wall. No penial setæ.

Remarks. This species is closely related to an Assamese group of species of Notnscolex (N. oneilli, stewarti, and strint/ns), and has doubtless arisen from some species of this group, independently of the great majority of species of Meg/ascolex. The organs in the anterior part of the body are one segment further forwards than usual.

Distribution. Cherrapunji, Assam.

18. Megascolex hortonensis Stelh.

1915. Megascolex hortonensis, Stephenson, Mem. Ind. Mus. vi, p. 83. pl. viii, figs. 19, 20.

Length 72 mm .; maximum diameter 3 mm . Segments 141 . Colour light grey throughout. Prostomium prolobous. Dorsal pores from

Fig. 94.-Megascolex hortonensis Steph.; male genital area; clit., clitellum; f., the surface of the thickened genital field; pap., flat slightly raised papillæ; pen., penis ; pit., depression on xviii.
$8 / 9$ or in front of this (the single specimen was injured near the anterior end). Setal rings broken dorsally and ventrally, $z z=2 y z$, $a a=2 a b$; setæ larger in front of viii, and also somewhat enlarged
at hinder end ; arranged in fairly regular lines, especially a, b, and c, but not in pairs; $a b=2 \frac{1}{2} b c$; numbers $20 /$ iv and $\mathrm{v}, 22 / \mathrm{vii}, 22 / \mathrm{xii}$, behind clitellum 24 , in hinder part of body 28 . Clitellum xiv-xvi ($=3$), smooth, delimited by a constriction at each end. Male area (text-fig. 94) an almost rectangular thickened patch, takiug up ventral surface of x xii, xviii, and $\frac{1}{2} x i x$; on thes are a pair of conical pointed penis-like projections near the lateral border of xviii, $\frac{1}{3}$ of circumference apart; a pair of circular depressions on the anterior part of xviii, internal to and rather in front of the penes and connected together by a transverse fissure; and a pair of flat oval areas at the postero-lateral corners of the patch, well delimited but not mu $\cdot \mathrm{h}$ raised. No setæ on the male aren. Female pore single. Spermathecal pores one pair in $8 / 9$, cal. $\frac{1}{3}$ of circumference apart. A thickened area on viii, comprising nearly all the ventral surface of this segment, extending slightly on to ix ; this area includes a pair of darker oval patches in the posterior half of viii, the outer border of each in line with the spermathecal pore.

Septa 6/7-13/,14 slightly thickened. Gizzard subspierical, in vi. No calciferous glands. Intestine begins in xix. Last heart in xiii. Funnels in x and xi. Seminal vesicles in xi and xii, lobulated, meeting their fellows dorsally. Prostates of moderate size, flattened, and compact, occupying xviii and xvii ; duct moderately stout, muscular, almost straight, and of same diameter throughout.

Fig. 95.-Me. Mascolex hortonensis Steph.; spermatheca.
Spermathecm (text-fig. 95) with elongated ovoid ampulla; duct short and relatively wide, a third to a quarter as wide as ampulla; diverticulum finger-like, nbout as wide as duct, two fifths as long as main pouch, arising near ectal end of duct. No penial setæ.

Remarks. Closely related to M. kempi and quintus. The chiet difference from both is the larger number of setm; the male field is not at all unlike that of quintus: while the absence of calciferous glands is more like kempi; the genital area of segment viii is not represented in either kempi or quintus.

Distribution. Horton Plains, Ceylon.

19. Megascolex imperatrix (A. G. Bourne).

1894. Mahbenus imperatrix, Bourne, Quart. J. Mic. Sci. xxxvi, p. 12, pl. ii, pl. iv, fig. 33, pl. v, figs. 34-41.
1895. Meyascole.r imperatrix, Michaelsen, Tier. x, p. 233.

Length 650 mm .; diameter 11 mm . Segments 200. Colour dark brown. Prostomium epilobous, encronches very slightly on peristomium. First dorsal pore in $5 / 6$. Setal rings alinost closed; numbers $52 / \mathrm{ii}, 80 / \mathrm{v}, 110 / \mathrm{ix}$. Clitellum not definitely limited, xiv to part of $\mathrm{xx}\left(=6 \frac{1}{n}\right)$; setæ present. Male pores small and close together; in the preserved specimens, though not in the living, on an oval midventral papilla. Female pores paired. Spermathecal pores very small, three pairs, in $6 / 7,7 / 8$, and $8 / 9$, very close together. 'Two pairs of pores of accessory glands, on the hinder part of x vii and in groove 19/20, about in line with f.

Gizzard in vii. No calcareous glands; œesophagus dilated segmentally in xi-xiv. Dorsal vessel double in vii and onwards for some distance. Two pairs of testes and funnels, free in x and xi. Seminal vesicles in ix and xil. Prostates with large rounded glandular portion. Spermathece sausage-shaped, duct short ; small diverticulum embedded in body-wall; first pair of spermathece smaller than second, second smaller than third. No penial setæ.

Remarks. Bourne used this species in his investigations on the development of the setre and of the micronephridia.

Distrihution. Lamb's Rock, Coonoor, in dense forest or jungle, also on the Hulikal Droog opposite, on the other side of the ravine (oral communication from Bourne,--the locality is not stated in the original).

20. Megascolex insignis Mich.

1910. Megascolex insignis, Nichaelsen, Abh. Ver. Hamburg, xix, p. 78 , pl. fig. 8 .
1911. Megascole. insiignis, Stephenson, Hec. Ind. Mus. xii, p. 329, pl. xxxii, fig. 22.

Length $45-83 \mathrm{~mm}$.; maximum dinmeter $2-2 \frac{1}{3} \mathrm{~mm}$. Segments 115-145. Colour yellowish grey, clitellum light orange yellow. Prostomium epilobous z , tongue open behind. Dorsal pores from 10/11 (perhaps a vestigial pore in $9 / 10$). Setæ small; setal rings regularly broken ventrally, $a a=2-3 a b$; irregularly broken dorsally ; setæ more closely set ventrally; numbers $36 / \mathrm{v}, 40 / \mathrm{viii}$, $40 / \mathrm{xix}, 42 / \mathrm{xxv}$ (or somewhat smaller numbers may be found). Clitellum xiii or $\frac{1}{2}$ xiii-xvii $\left(=4 \frac{1}{2}-5\right)$. Male pores about in line with b, ca. $\frac{1}{B}$ of circumference apart, at the lateral limits of a median transverse depression, or in pits which are bounded on their outer sides by semicircular walls. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, about in line with b, $\frac{1}{8}$ of circumference apart.

Septa 6/7-13/14 thickened, the middle ones most, but none much. Gizzard in v (or ? vi). No calciferous glands. Intestine begins in xiv; no typhlosole. Last heart in xiii. Testes and funnels free in x and xi. Seminal vesicles two pairs, fairly large, compactly racemose, in xi and xii. Prostates small, much incised, lobes fairly loosely arranged; duct moderately thick, n little

Fig. 96.-Megascolex insignis Mich.; spermatheca.
shorter than the glandular portion, straight, slightly thinner at the extreme ectal end. Ovisacs or similar structures may be present in xiv. Spermathece (text-fig. 96) with sac-like ampullia; duct fairly distinctly set off, length variable, may be quite short or as long as or longer than ampulla ; diverticulum from ectnl end of duct, narrow but somewhat thicker at its ental end, as long as or rather longer than main pouch. No penial sete.

Remarks. In my specimens the dorsal pores appeared to begin in $5 / 6$ or $6 / 7$; and 1 found the lobes of the prostate closely pressed together. In one of Michaelsen's specimens the spermathecal diverticulum was forked some distance below its ental end.

The species is related to M. konkanensis, and especially to M. kavalaimus.

Distribution. Trivandrum, Nedumangad, and Kerumaadi in 'Travancore; Karakulam, Cochin State; Panadhure, Ceylon.

21. Megascolex kavalaianus Steph.

1915. Megascole. karalaianus, Stephenson, Mem. Ind. Mus. vi, p. 91, pl. ix, fig. 27.

Length 57 mm .; maximum diameter $1 \frac{1}{2} \mathrm{~mm}$. Segments 94 . Colour pinkish grey, anterior end purplish. Prostomium small, epilobous $\frac{1}{2}$. First dorsal pore in $5 / 6$. Setæ often small and difflcult to see: : $z z=2 y z, a a=4 a b$ in front of clitellum, $3 a b$ behind, and $3 \frac{1}{2}$ ab further back; numbers $40 / \mathrm{ix}, 38 / \mathrm{xii}$, ca. $32 / \mathrm{xix}$, and 28 in middle of body. Clitellum $\frac{1}{2} x i i i-\frac{3}{4} \times v i i\left(=4 \frac{1}{4}\right)$. Male pores as minute white dots, each in the centre of a circular slightly raised area; the areas, white with a darker centre, take up the greater part of the length of xviii, and touch each other in the middle line; the pores are in the setal zone and in line
with b. Female pore single. Spermathecal pores minute, two pairs, in $7 / 8$ and $8 / 9$, near the middle line, about in line with b.

No septa noticeably thickened. Gizzard barrel-shaped, in vi. (Esophagus bulged in xv, xvi, and xvii, with transverse vascular striations, and small folds internally. Intestine begins in xix. Last hearts in xiv; these are smaller than those in xiii. Funnels in x and $x i$. Vesiculæ seminales in xi and xii, racemose, each meeting its fellow dorsally. Prostates confined to xriii, cut up

Fig. 97.-Mcgascolex kavalaianus Steph.; spermatheca.
into lobes which are tightly compacted together; duct straight, muscular, directed transversely inwards, the ental part narrow, the rest stout. Ovisacs or similar structures present in xiv. Spermathecal ampulla flattened ovoid; duct well marked off, moderately wide, about half as long as ampulla; diverticulum a long narrow glistening tube, with dilated ental end, longer than main pouch, given off from ectal end of duct (text-fig. 97). No penial setæ.

Remarks. The species was described from a single specimen; it. is difficult to know what to do in such cases, when there is no indication of the extent of variability. It may ultimately have to be united with M. insiguis. The chief difference is in the male field and the hearts (the last in xiv in this form); other details in which the two differ are the cesophageal swellings, the point of commencement of the intestine, and the absence of thickened septa in the present form. The apparent differences in the spermathecæ are perhaps not very important, as this organ is variable in M. insignis.

Distribution. Kavalai, Cochin State, S. India.

22. Megascolex kempi Steph.

1915. Megascolex kempi, Stephenson, Nem. Ind. Mus. vi, p. 84, pl. viii, fig. 21.
Length 44 mm .; diameter 2 mm . Segments 115. Colour grey, clitellum rather lighter than the rest. Prostomium prolobous. Dorsal surface flattened, slightly grooved in middle and posterior thirds. First dorsal pore in 6/7. Setæ in regular longitudinal
lines, but not grouped in pars; ventral setæ larger at ends of body; rings broken dorsally and ventrally, $a a=2 a b, z z=2 y z$; numbers in front of clitellum 12 (6 on each side), behind 16 per segment. Clitellum xiv-3 l xvii ($=3 \frac{1}{3}$). Male pores on relatively large conical papillm, in line with b, and rather more than one-fourth of circumference apart. Female pore single. Spermathecal pores inconspicuous, in 8/9, in line with b. A genital area on xii, mesial, transversely oval, raised in the form of a large flat papilla, its transverse diameter about twice the longitudinal ; limited behind by $12 / 13$, in front extending slightly on to xi, laterally extending as far as the line b on each side.

No septa markedly thickened. Gizzard in vi, barrel-shaped, well developed. No calciferous glands. Last heart in xiii. Micronephridia in regular transverse rows behind the clitellum; in front of gizzard as large tufts at the sides of the œesophagus. Testes and fumnels free in x and x. Seminal vesicles in $x i$ and xii, the anterior small, of a few rounded lobules, the posterior

Fig. 98.-Megascolex liempi Stepl.; spermatheca.
racemose, nearly meeting above the cesophagus. Prostates forming rectangular masses, only slightly incised; duct short, narrow, almost straight, of equal diameter throughout. Spermathecal ampulla much elongated, fusiform; duct very short and narrow; diverticulum finger-shaped, two-thirds to three-quarters as long and balf as wide as ampulla, given off from base of ampulla (text-fig. 98). No penial setæ.

Remarks. Very closely related to M. quintus; the differences are in the genital fields, the presence or absence of calciferous gland-like swellings, and the thickening or absence of thickening of the septa.

Distribution. Horton Plains, Ceylon.

23. Megascolex konkanensis Fedarb.

1898. Megascolex konkanensis, Fedarb, J. Bombay Soc. xi, p. 434, pi. ii, figs. 1, 6-8, 10.
1899. Meyascole. lionkaneysis, Michaelsen, Tier. x, p. 221.
1900. Megascolex konkanensis, Michrelsen, Abh. Ver. Hamburg, xix, p. 75, pl. fig. 13.
1901. Megascolex konkanensis, Stephenson, Rec. Ind. Mus. xii, p. 328.
1902. Megascole.c konkanensis, Stephenson, Rec. Ind. Mus. xxii, p. 759.
1903. Meyascollex kionknnensis, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 68.
19:2. Megascolex konkanensis, Stephenson, Rec. Ind. Mus. xxiv, p. 431.

Extremely long in relation to diameter; a large example 415 mm . long, $2-3 \mathrm{~mm}$. thick, 370 segments; a moderate-sized specimen $16 \overline{\mathrm{c}} \mathrm{mm}$. long, ca. 2 mm . thick, 218 segments. Anterior end blunt, the worms being thickest at segment ii. Colour whitish or yellowish grey. Prostomium epilobous ca. $\frac{1}{3}$, tongue narrow and small. First dorsal pore in $4 / 5$. Setæ fairly small; ventral break distinct and regular, $a a=c a .3 a b$; dorsal break irregular; towards posterior end there may be no breaks; setæ more closely set ventrally than dorsally in anterior part of body, often arranged in regular longitudinal lines; numbers ca. 35 in anterior part of body, ca. 24 at 200 th segment. Clitellum ringshaped, xiv-xvi or $\frac{1}{2} \times v i i\left(=3-3 \frac{1}{2}\right)$. Male pores each in a special area, which when tully developed is oval, with its axis directed forwards and a little inwards, aud approaches its fellow towards the middle line ; each is depressed, with clean cut margins and a transverse ridge passing acrovs the floor, and occuples sviii, encroaching also on xvii and xix; male pores on the transverse ridge, ca. one-fourth of the circumference apart. Female pores paired. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, ca. $\frac{3}{10}$ of the circumference apart, situated ventro-laterally.

Septa $6 / 7-12 / 13$, thickened, the anterior ones as far as $9 / 10$ fairly strongly, the rest gradually less so. Gizzard large, in vi. No calciferous glands. Intestine begins in xvi. Last heart in xiii. Funnels free in \mathbf{x} and xi . Seminal vesicles compactly racemose, the lobules almost spherical, in xi and xii. Prostates with very large glandular part consisting of numerous branched lobules, the end branches long and finger-shaped, the whole being "mop-like"; duct thick, fairly long, muscular, thinner at the ends; no copulatory sacs spermathece with stalked pearshaped main pouch, the ectal part being perhaps morphologically part of the ampulla, and the vestigial duct contained in the bodywall; diverticulum given off from main pouch where this joins body-wall, elongated, slightly swollen at ental end, with simple lumen, length about half that of main pouch ; in many spermathece a spermatophore, fillng the narrower part of the anpulla and projecting upwards into the dilated portion. No penial setæ.

Distribution. Trivandrum, Shasthancottah, Kulattapuzhn, Maddathoray, Kerumaadi, Quilon, Kottayam, all in Travaucore; Ernakulam and Chitoor in Cochin; Palghat, Calicut, Tiruvallur and Tirur in Malabar; Mangalore in S. Kanara; Laccadive Is., N. Konkan.

a. var. longus Steph.

1915. Megascolex konkanensis, var. longus, Stephenson, Mem. Ind. Mus. vi, p. 97, pl. ix, figs. 34, 35.
Length $345-570 \mathrm{~mm}$.; maximum diameter $3-4 \mathrm{~mm}$. Segments ca.400-550. Auterior end truncated in appearance; body becomes much narrower (2 mm . only) behind the anterior third. Prostomium proepilobous, with the addition of two short grooves on dorsal surface of segment i. First dorsal pore in 5/6. Dorsal break in setal ring ca. $3 y z$ in front of clitellum, $1 \frac{1}{2}!z$ behind, and still further back ring is closed; in front of clitellum ventral break $=2 a b$, behind clitellum $=3-4 a b$; setm in front of clitellum mostly very small, ventral setæ of xii-xvii enlarged; in anterior part of body $a b=1 \frac{1}{2} b c$; numbers $30-33$ in front of clitellum, 30 at end of first third of body, 28-30 near hinder end. Male pores probably on a pair of transversely oval papillæ which are joined across the middle line, the whole having the shape of a dumbbell. Female pore single. Spermathecal pores small, in $7 / 8$ and $8 / 9$, in line with d or de.

Fig. 99.-Megascolex konkanensis Fedarb var. longus; prostate.

Fig. 100.-Megascolex konkanensis Fedarb var. longus; spermatheca.

* Gizzard in v. Prostates (text-fig. 99) small, confined to xviii, bushy, composed of many lobules of various shapes from fingershaped to spherical ; duct passes straight inwards, is soft, slightly glistening, thin at first and dilated in its terminal portion. Spermathecal ampulla ovoid; duct half as wide and half as long again as ampulla; diverticulum giveu off from ectal end of duct, small, club-shaped, half as long as duct or less (text-fig. 100).

Remarks. The differences from the type form are the greater ength, the conformation of the male field, the single female pore
the smaller size of the prostate, and different shape of spermatheca. If Michaelsen's supposition regarding the true relations of ampulla and duct in the type form are correct (v. ant.), these relations are still further obscured in the present variety.

Though there was no distinguishable clitellum in the specimens, the one dissected appeared to be mature, since copulation had occurred, the spermathecal diverticulum being full of glistening spermatozon.

Distribution. Paranbikulam, Cochin State.

24. Megascolex leucocyclus (Schmarda).

1861. Perichaeta leucocycla, Schmarda, Neue wirbell. Thiere, I, pt. ii, p. 13, pl. xviii, tig. 160, text-fig.
1862. Megascoler corruleus (part.), Beddard, Ann. Mag. N. H. (6) ix, p. 122.
1863. Megascole. carulens (part.), Beddard, Monog., p. 386.
1864. Megascole.. leucoryclus, Michaelsen, Mt. Mus. Hamburg, xiv, p. 215, pl. fig. 4.
1865. Meyascolex leucocyclus, Michaelsen, Tier. x, p. 233.

Length $240-370 \mathrm{~mm}$.; diameter $10-12 \mathrm{~mm}$. Segments $133-$ 174. Colour bluish grey, with shining white ridge-like setal zones; ventral surface yellowish white. Prostomiun epilobous? First dorsal pore in $5 / 6$. Setæ more closely set ventrally than dorsally; rings irregularly and shortly broken both dorsally and ventrally, $a a=2 a b, z z$ anteriorly $=3-4 y z$; numbers $24 / \mathrm{ii}$, $55 / \mathrm{v}, 67 / \mathrm{xii}, 63 / \mathrm{xx}, 67 / \mathrm{xxvi}$. Clitellum ring-shaped, swollen, xii or xiv-xviii or $\frac{1}{2} x i x\left(=5-7 \frac{1}{2}\right)$. Male pore single, midventral, on a cone-shaped papilla. Female pores paired, close together in front of setæ, not always at the same horizontal level. Spermathecal pores median, in $7 / 8$ and $8 / 9$. A transversely oval copulatory cushion midventrally on the hinder part of xvii, showing sometimes a transverse series of dots, perhaps the openings of glands; rarely a similar cushion on the hinder part of xix.

Septum 8/9 slightly, 9/10-12/13 more strongly thickened. Gizzard in vii, large and barrel-shaped. No calciferous glands. Intestiue begins in xv, with large lateral swellings in xxix confined to that segment. Last hearts in xiii. Testes and funnels free in \mathbf{x} and xi . Seminal vesicles three pairs, small, sausageshaped, in xi, xii, and xiii ; segments viii-xii occupied by free sperm-masses. Prostates paired, with small glandular portion; duct fairly thick, straight. Spermathece unpaired, the ampulla an irregular sac; duct sharply marked off, shorter than ampulla, sausage-shaped; diverticula two, arising from duct, broad, short, hanging down, each with several seminal chambers. Penial setw 3 mm . long, 50μ thick at base, slightly bowed, tapering gradually, distal end bent backwards and hollowed out in spoon fashion, tip slightly bent foruards; ornamentation of numerous thickly set rings of teeth.

Remarks. The original description was altogether incomplete, and the worm would have been unrecognizable if the type had not been preserved. Beddard, who was not allowed to dissect Schmarda's material, coucluded that the worm was M. cerruleus; but Michaelsen on dissection found that this was a mistake.

The worms apparently fragment easily, losing the hinder end. The lateral swellings of the intestine in xxix may be the beginnings of the cæca of Pheretima.

Distribution. Kaudy and Nuwara Eliya, Ceylon.

25. Megascolex longiseta Mich.

1907. Megascolex longisetı, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 163.
1908. Megascolex lnuriseta, Michaelsen, Mem. Ind. Mus. i, p. 182, pl. xiii, tigs. 20, 21.
Length 180 mm . ; diameter $5-6 \mathrm{~mm}$. Segments 240. Colour yellowish or in parts brownish grey. First dorsal pore in 7/8. Setal rings with rather large and regular ventral gap, and rather larger and apparently irregular dorsal gap; in anterior part of body ventral setæ somewhat enlarged and setal intervals greater; numbers in front of clitellum and back to about xxvi, 16 ;

Fig. 101.-Megascolex longiseta Mich.; spermatheca, cleared in acetic acid (ampulla somewhat flattened in preparation); $\times 12$.

Fig. 102.-Megascolex. longiseta Mich. ; penial seta: a, whole seta, $\times 10 ; b$, a part of the shaft, $\times 250$.
thenceforward more numerois, about 40 or even more (?). Male pores ventro-lateral, $\frac{3}{7}$ of circumference apart. Spermathecal pores two paire, in $7 / 8$ and $8 / 9$, about one-fourth of circumference apart.

Septa 6/7-12/13 rather strong, 13/14 scarcely thickened. Gizzard large, in v. No calciferous glands. Funnels free in x
and xi. Seminal vesicles in xi and xii, rather small, racemose. Prostates with rather small, rather loose grape-like glandular portion; duct about as long as glandular part, irregularly bent, moderately thick, narrower at ectal end. Spermathece (text-fig. 101) with elongated ovoid ampulla; duct not abruptly set off, about half as thick and half as long as ampulla; diverticulum given off from ectal end of duct, club-shaped, about as long as and half as thick as ampulla, with four tube-like undulating seminal chambers in its ental portion, which cause longitudinal protuberances on the surface of the diverticulum. Penial seta (text-fig. 102) ca. 7 mm . long, very slender, ca. 25μ thick at proximal end, 8μ at distal end, strongly and irregularly bent; shaft ornamented by small irregularly scattered triangular closely adpressed teeth, tip plain and rather blunt.

Distribution. Nuwara Eliya, Ceylon.

26. Megascolex lorenzi Rosa.

1894. Megascolex lorenzi, Rosa, Atti Ac. Torino, xxix, p. 5, pl. fig. 4.
1895. Megascolex lorenzi, Michaelsen, Tier. x, p. 230.
1896. Megascolex lorenzi, Michaelsen, Abh. Ver. Hamburg, p. 70, pl. fig. 9.
Length 27-60 mm.; diameter $1-2 \mathrm{~mm}$. Segments 121. Colour (in alcohol) white. Prostomium proepilobous. Dorsal pores from $4 / 5$; that of $9 / 10$ very large, that of $8 / 9$ only a little smaller. Setw set closer dorsally than ventrally; setw a a little larger than the rest in the anterior part of the body, in regular lines; ventral break of moderate size, no dorsal break; number in xii, 50. Clitellum including xiv-xvi and parts of xiii and xvii. Male field a transverse median depression, rectangular with rounded angles, its length that of segment xviii, the lateral margins thickened and bowed inwards; male pores on the lateral slopes of the depression, about between the lines of b and c. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, between the lines b and c.

Septa 5/6-13/14 thickened, the middle ones of the series most so. Gizzard very small but not vestigiul, in v. No calciferous glands. Esophagus swollen segmentally in viii-xiii. Metandric, funnels free in xi. Seminal vesicles a single pair, much incised, in xii. Prostates may be short or of the length of 4 or 5 segments, tongue-shaped, margin rather lobed; duct straight or slightly sinuous. Spermathecal ampulla sac-like, ovoid ; duct not abruptly set off, short, moderately stout; diverticulum shortly stallied, of 2,3 , or 4 seminal chambers buund together in a common mass, about one-third as long as main pouch. No penial setæ.

Distribution. Kandy and Peradeniya, Ceylon.

27. Megascolex mauritii (Kinl.).

1883. Perichata armata, Beddard, Ann. Mag. N. II. (亏) xii, p. 216, pl. viii, tigs. 5-7.
1884. Perichecta bivajinata + P. salettensis, Bourne, 1'. Z. S. 1886, pp. 666, 669.
1885. Meyascolex armatus, Rosin, Am. Mus. Genova, (シa) vi, p. $1 \% 9$.
1886. Megascole.r armatus, Beddard, Monog. p. 384.

18:77. Megascolex armatus, Michnelsen, Mt. Mus. Hamburg, xiv, p. 5.
1898. Megascole. armatus, Michaelsen, Zool. Jahrb. Syst. xii, p. 144.
1900. Mégascole.r mauritii, Michnelsen, Tier. x, p. 227.
1903. Meyascolex mauritii, Beddard, Fanna Laccad. Archip. p. 375.
1909. Lampito mauritii, Michaelsen, Mem. Ind. Mun. i, p. 179.
1910. Lampito mauritio, Nichaelsen, Abh. Ver. Hamburg, xix, p. 62.
1911. Lampito mauritii, Cognetti, Amm. Mag. N. II. (8) vii, p. 498.
1913. Lampito manritn, Nichaelsen, Mt. Mus. Hamburg, xxx, p. ${ }^{7} 9$.
1914. Lampito mauritii, Stephenson, Kec. Lnd. Mns. x, p. 340.
1915. Lampito mauritii, Stephenson, Mem. Ind. Nus. vi, p 75.
1916. Lampito mauritii, Stephenson, Rec. Ind. Mus. xis, 1 , 315.
1916. Lampito mauritii, Prashad, J. Bombay Soc. xxiv, p. 504, pl. i, figs. (i, 15, pl. ii, fiy. 8.
1917. Lampito mauritii, slephenson, Rec. Ind. Mus. xiii, p. 385.
1920. Lampito mauritii, Stephenaon, Mem. Ind. Mus. vis, p. 222.
1921. Meyascolex mauriti, Stephenson, Rec: Ind. Mus. xxii, p. 759.
1922. Megascole.v mauritii, Stephenson, Rec. Ind. Mus. xxiv, p. 432.
1916. Megascolex mauritii, Michaelsen, Mjöberg's Austral. Exp. p. 52.

Length $80-210 \mathrm{~mm}$. ; diameter $3 \frac{1}{2}-5 \mathrm{~mm}$. Segments 166-190. Colour dark yellow with purplish tinge at anterior end. Prostomium prolobous or epilobous $\frac{1}{2}$. Segments v and i biannul ite, the rest of those in front of the clitellum triannulate. First dorsal pore $10 / 11$ or $11 / 12$. Setal rings interrupted ventrally, $a a=1 \frac{1}{2}-2 \frac{1}{2} a b$; dorsal break absent or extremely small; setal intervals decrease from the ventral end; seta a is enlarged, especially in the anterior part of the body, and ornamented; numbers $38 / v i, 44 / \mathrm{x}, 34 / \mathrm{xxi}$, and 33 in the middle of the body. Clitellum xiv-xvii $(=4)$, ring-shaped. Male pores on large round papillæ, ea. one-fourth of circumterence apart, which take up the whole length of the segment and press aside the furrows in front and behind; no setæ butween the pores. Female pores double, but very near each other, anteriorly on xiv. Spermathecal pores three pairs, in 6/7, 7/8 and 8/9, in line with seta. h.

Septa 7/8-12/13 thickened. Gizzard in v (? vi). No calciferous glands. Last heart in xiii. Meganephridin accompany the
micronephridia from about xx onwards. Testes and funnels free in x and $x i$. Seminal vesicles in ix and xii, irregularly cut up into small lobes. Prostates much lobulated, occupying xviii and xix. Spermathecæ with elongated ampulla, constricted in the middle, and narrowing towards the external opening; duct not distinctly marked off; two diverticula, club-shaped, opposite each other, one-third as long as ampulla. Penial setæ $1 \frac{1}{2}-2 \mathrm{~mm}$. long, with a single curve, tip horseshoe-shaped with semicircular concavity, flattened; mumerous rings of large slender spines standing off somewhat from the shaft.

Distribution. Very widely distributed; has been recorded from all parts of India, except apparently the United Provinces. Lahore and Kapurthala, in the Punjab: Calcutta, Raniganj, Bhogaon, Rajjhahı, Saraghat, Betracona, and Siliguri, m Bengal; Sur Lake, Orissa; Bombay, Broach, Surat, Ahmedabad, Nadiad, Sirvai Madhopur, Dhanu, Baroda, Palchar, Joshachivir, and Godhra, in the Bombay Presidency; Portugurese Indar ; Nemar Kheri, Katni, Gwalior, and Jubbulpore, in Central ludia and Central Provinces; Dungarpura and Banswara, in S. Rajputana; Hyderabad, in the Deccan; Madras, Silem, Rmur, Pondicherry, Ramuad, Cochin State, and Travancore State, in S. India; Dowlaishweram, Godaveri Dist., on the E. Coast; Mandalay, in Burma ; from many places in Ceylon; from the Andaman Islands, the Maldives, and Laccadives.

Outside India it has spread in the region of the Indian Ocean, in the Malay Archipelago, and in S. and S.E. Asia generally. lts original home cannot be determined.
a. var. zeylanicus (Steph.).
1913. Lampito mauritii, var. zeylanica, Stephenson, Spol. Zeyl. viii, p. 262.

Length 100 mm .; diameter $3 \frac{1}{2} \mathrm{~mm}$. Segments 147. Colour grey. Prostomium prolobous. Dorsal pores from 12/13. Mule pores in large round sucker-like depressions with raised and swollen margins, one-fourth of the circumference apart. Female pore median. The breaks in the setal rings are more mnrked than in the type form ; ventrally $a n=3 a b$ in front of and $3 \frac{1}{2} a b$ behind the clitellum ; dorsally $z z=2-2 \frac{1}{2} y z$.

Septa $6 / 7-13 / 14$ thickened, $8 / 9-12 / 13$ most. Gizzard in vi. Esophagus bulged in xi and xii, but no calciferous glands. Intestine begins in xv. Prostates comparatively small; duct thick and S-shaped. Accessory prostates near the main glands, one on each side, situated either in front of or behind the main gland, each with a short stalk, and of the same texture as the prostate. Spermathecal ampulla fusiform, no distinctly separate duct; diverticula one or two, minute, club-shaped, from an eighth to a quarter as long as the ampulla. Penial setæ 0.83 mm . long, $22-27 \mu$ thick, resembling those of the type form.

Distribution. Anuradhapura, Ceylon.

28. Megascolex multispinus Mich.

1897. Megascolex multispinus, Michaelsen, Mt. Mus. Hamburg xiv, p. 621 , pl. fig. 27.
1898. Megascolex muиltiчpinus, Michaelsen, Tier. x, p. ©31.

Length 150-195 mm.; maximum diameter $5 \frac{1}{2}-7 \mathrm{~mm}$. Segments 115-145, not definitely multiannular. Prostomium prolobous. Colour an equable bluish grey (? caused by method of preservation). First dorsal pore in $5 / 6$. Seta all very small; rings only broken ventrally for a short distance, $a a=2-3 a b$; setæ more closely set on each side of the midventral line; numbers $58 / \mathrm{ii}, 84 / \mathrm{r}, 82 / \mathrm{x}$, 81/xiii, 72/xx, 68/xxvi, 72/xxxvii. Clitellum saddle-shaped, $\frac{3}{4} x i v-\frac{1}{2} x v i i i\left(=4 \frac{1}{4}\right)$. Male pores on prominent papillæ, one-third of circumference apart, no setm between them. Three pairs copulatory pits, small, deep, transverse in direction, on $16 / 17$, $17 / 18$, and $19 / 20$ (some may be absent), slightly internal to line of male pores; may be everted and appear as papillo. Female pores paired. Spermathecal pores one pair, in $7 / 8$, onc-third of circumference apart.

Septum $5 / 6$ thin, $7 / 8-13 / 1+$ thickened. Givard in v and vi, E/f attached to its middle. No calciferous glands. Intestine begins in xr or xvi. Last hearts in xiii. 'Two pairs funnels, enclosed in testis sacs, in x and $x i$; those in x rather larger. Two pairs seminal vesicles, simple in form, in ix and xii. Prostates with medium-sized glandular portion; duct thin, almost straight. Spermathecal ampulla large; dact thick, uneven, with numerous seminal chambers in its wall. No peninl seta.

Distributiou. ('eylon (probably Peradeniya).

29. Megascolex nureliyensis Mech.

1897. Me!ascole.v uureliyensis, Michaelsen, Mi. Mus. Hamburr, xiv, p. 2:32, pl. figs. 12, 13.
1898. Megascole. mureliyensis, Michandsen, Tier. x, p. 2.29.
1899. Meyascolex mureliyensis, Stephenson, Mem. Ind. Mus. vi,

Length 133-155 mm.: maximum diameter $61-7 \mathrm{~mm}$. Segments 109-127, triannular owing to elevation of setal ridges. Almost colourless (sublimate preservation). Prostomium epilobous $\stackrel{1}{2}$. First dorsal pore 5/6. Setal rings with irregular dorsal break, $z z=1 \frac{1}{2}-3 y z$: ventrally in front of clitellum adt=up to $1 \frac{1}{8} a l$, behind clitellum $=2-3 a b ;$ in the most anterior segments the first few intersetal intervals decrease on passing outwards from the middle line both dorsally and ventrally, while ventrally the seta themselves also becomo smaller on passing outwards; other specimens show an enlargement of the ventral setæ in segments iii or iv to viii or ix, while those of x may be markedly small; numbers $29 / \mathrm{v}, 3 \pm / \mathrm{x}, 38 / \mathrm{xix}, 52 / \mathrm{xxvi}$. Clitellum indefinite, may be absent in fully mature individuals, about xiii-xvii $(=\overline{5})$; marked only by a more pronounced purple colour on the dorsal
surface. Male pores abont in line with f, $\frac{1}{3}$ of circumference apart, surrounded by broad ring-shaped walls which fuse midventrally. Female pores paired. Spermathecal pores one pair, in $8 / 9$, about in line with g, $\frac{2}{3}$ of circumference apart.

Septa $8 / 9-13 / 14$ thickened, especially $9 / 10-10 / 11$. Gizzard firm and barrel-shaped, in vi (or vii?). No calciferous glands; oesophagus dilated and inner surface of wall lamellated in xii, swollen and probably similar internally in xiii. Intestine begins in xv. Last hearts in xiii. 'Testes and fumnels in testis sacs of characteristic form; a thin membrane extends from the anterior to the posterior wall of each of these segments, enclosing alimentary canal and hearts, as well as testes and funnels. Seminal vesicles varying in number; four pairs, in xi-xiv, those in xi contained within the tentis sac, those in xii the largest: or there may be one pair only, in xii; each vesicle is pear-shaped, the lower end being the broader, the surface mammillated all over, or mammillated over the upper and smooth over thelower portion. Prostates with long band-shaped glandular portion, much lobulated, extending backwards on intestine to axiii or xxv; duct short, stout, irregularly bent, passing outwards and backwards from antero-external end of gland. No accessory prostate glands. Spermathecal ampulla very irregular in shape: duct variable in length, as long as ampulla or much shorter, shining, stout, bronder towards ectal end; diverticulum given off near ectal end of duct, club-shaped, varying in size,- as thick as or thicker than duct, as long as or not so long as ampulla; two accessory diverticula from near base of the primary, stalked, each with two or three seminal chambers. Penial setm $1 \cdot 6-2 \cdot 5 \mathrm{~mm}$. long, $55-57 \mu$ thick at middle of length. bowed, more so at distal end; tip tap ering and bluntly pointed; the distal more curved portion ornamented by numerous small zigzag lines, which, however, leave the extreme end free for a little distance.

Remarlis. This species is near M. cingulatus.
Distrihution. Nuwara Eliya, Horton Plams, both in Ceylon.

30. Megascolex pattipolensis Steph.

1913. Meyuscolex pattipolensis, S'tephenson, Spol. Zeyl. viii, p. 265, pl. ii, fig. 8.

Length 50 mm . ; diameter $2 \frac{1}{2} \mathrm{~mm}$. Segments 129 . Prostomium combined pro- and epilobous $\frac{1}{3}$.' First dorsal pore 5/6. Setæ a and b in regular longitudinal lines; ventral break $=2-2 \frac{1}{2} a b$, dorsal break decreasing backwards, $=3 y z$ anteriorly, $2 y z$ at xiii, $1 \frac{1}{2} y z$ behind middle third, and is absent at hinder end; numbers $20 /$ siii, 20 in middle of body, and 24 at junction of middle and posterior thirds. Clitellum? Male pores in the line of $b, \frac{1}{3}$ of circumference apart, on papillæ which are connected by a transverse ridge. Spermathecal pores in $8 / 9$, in line with b. Genital papillæ (text-fig. 103) two pairs, in 1\%/18 and on xix; the
posterior pair transversely oval, with their centre in the line of l, abutting on 18/19 in front but not reaching'the hinder border of the segment; the anterior pair smaller, also transversely elongated, bordering the anterior edge of the male papillæ.

Fig. 103.-Mcgabcolex pattipolensts steph.; male genital area.
Septa $7 / 8$ and $8 / 9$ moderately and $9 / 10$ and $10 / 11$ considerably strengthened. Gizzard large, in vi. Calciferous glands (? only lateral swellings of the œsophagus) in xv and xvi . Male funnels free in x and xi. Seminal vesicles in xi and xii, lobulated, surrounding alimentary canal. Prostates of moderate size, simple rounded masses, not lobulated, with stont ducts, the whole resembling a mushroom. Spermathece one pair, fusiform, with short thick duct; diverticulum finger-shaped, as long as ampulla, attached to duct at its ental end. No penial setre.

Distribution. Pattipola, Ceylon.

31. Megascolex pharetratus Rosa.

1894. Megrscole.x pharetratus, Rosa, Atti Ac. Torino, xxix, p. 3, pl. tigs. 1-3.
1895. Meyuscolex pharetratus, Michaelsen, 'Tier. x, p. 231.

Length 50 mm .; maximum diameter 3 mm . Segments ca. 150. Colour in alcohol white. Prostomium epilobous. First dorsal pore in $6 / 7$. Setal break regular ventrally, and very large; dorsal break irregular; setal intervals decrease outwards from the middle line at first, both on the dorsal and ventral sides; numbers $18 / \mathrm{xii}, 30-40$ behind the clitellum. Clitellum xiv-xvii or xviii (=4 or 5). Male pores in line with b, on small papillæ. Female pore single. Spermathecal pores one pair, in $8 / 9$, in line with b. A pair of large transversely oval papillie on x, extending between a and b; a single papilla on $12 / 13$, the largest of all; another, also unpaired, on $15 / 16$; in addition 11 others, much smaller, some paired, others unpaired, on xvii, xviii, and xix, as well as on grooves $17 / 18$ and $18 / 19$; amongst these small papillw winds on each side a glandular line, which fuses with the one on the other side in the middle line of xix.

Septa of the anterior part of the body as far as $9 / 10$ much
thickened. Gizzard elongated. Prostates much lobulated; duct of morlerate thickness. Spermathecal ampulla pear-shaped; duct not set off ; diverticulum tubular, somewhat contorted, a little shorter than ampulla and duct combined. Penial setæ a little more than 1 mm . long, bowed, with a narrow and pointed smooth distal end, proximal to which are two longitudinal rows of coarse, blunt, slightly projecting teeth.

Remarks. The ventral setal break is said to be $7^{6} 0$ of the circumference, which of course is a mistake, perhaps for $\frac{1}{1 \pi}$; the figure does not seem to show an extraordinarily large interval.

Distribution. Kandy, Ceylon.

32. Megascolex pheretima Mich.

1921. Megascolex pheretima, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 66, text-fig. $8 d$.
Length 65 mm . ; diameter $2-3.5 \mathrm{~mm}$. Negments 85. Colour dorsally reddish or brownish grey ; setæ on pale circular ridges. Prostomiun epilobous ca. $\frac{3}{5}$; tongue open behind, but bounded n front by a transverse furrow (combined pro- and epilobous). Dorsal pores from $5 / 6$ (? 4/5). Setæ set rather wider apart dorsally; $a a=4-5 \mathrm{ab}, ~ z z=$ ca. $3-4 y z$; numbers $52 / \mathrm{xii}, 49 / \mathrm{xix}$. Clitellum ring-shaped, $\frac{1}{2}$ xiii-xvii ($=4 \frac{1}{2}$). Male pores on slightly raised rather indefinitely limited porophores, in or perhaps slightly in front of the setal zone, ca. $\frac{1}{10}$ of circumference apart. Spermathecal pores two pairs, near each other ($\frac{2}{3} \mathrm{~mm}$. apart), in $7 / 8$ and $8 / 9$.

Septa $6 / 7-14 / 15$ thickened, those of the testis segments strongly so. Gizzard very large, cylindrical, in vi. Esophagus swollen segmentally in vii-xiii, the walls with lamellm projecting internally in xi-xiii. No typhlosole (in anterior part of intestine). Micronephridia difiuse; in many places larger tufts present. Funnels free in \mathbf{x} and xi. Seminal vesicles reniform, racemose, in xi and xii. Prostates confined to xviii; duct thin, straight, of equable thickness throughout. Spermathecal ampulla elongnted, wider towards its ental end; duct fairly well marked off, much thinner than but almost as long as ampulla; diverticulum single, club-shaped, small, given off from ectal end of duct, twothirds as long as duct. No penial setæ.

Distribution. Manakoti, Coorg.

33. Megascolex polytheca Steph.

1915. Megascolex polytheca, Stephenson, Mem. Ind. Mus. vi, p. 89, pl. viii, fig. 25.

Length 160-250 mm.; maximum diameter $3 \frac{1}{2} \mathrm{~mm}$. Segments 264 or more. Colour a uniform grey, except at anterior end, which is darker with a purplish tinge. Body stout and cylindrical as far as xi; anterior half behind genital segments is flattened, with a dorsal groove. Prostomium proepilobous or
epilobous $\frac{1}{2}$, tongue opeu behind. Dorsal porés from 4/5. Setal rings almost closed dorsally (may be quite closed behind clitellum) ; ventral break antericrly $=3 a b$, behind male pores $4 a b$, and further back may be as much as $5 a b$; setæ of v-ix set on raised riugs, giving a triannulate appearance to the segments; $a b$ greater than $b c ; a$ and b are in regular longitudinal lines, and are larger than the other setw; c, d, and e may also be in regular lines behind the genital region; setæ of preclitellar region smaller and more numerous than those behind; numbers $54 / \mathrm{ix}$, ca. 46/xix, and 46-48 further back. Clitellum? Male pores in line with bc, on circular white papillæ which take up nearly the whole length of the segment. Spermathecal pores numerous, in $7 / 8$ and $8 / 9$, appearing as a row of white points on each side, 6 to 9 in number, extending outwards from between b and c, the intervals between successive apertures rather greater than the intersetal intervals.

Septa 7/8-11/12 considerably thickened, 7/8-9/10 most of all; those in front and behind slightly thickened. Gizzard barrelshaped, in v. No calciferous glands, but the oesophagus is dilated, with large transverse vascular striations. in xii-xiv. Intestine begins in xix. Funnels free in x and xi. Seminal vesicles racemose, in xi and xii. Prostates composed of small

Fig. 104.-Mcgascoler polytheca Steph. ; spermatheca, after clearing; b.r., bloodvessel running along its side; car., portion of its cavity containng only granular matter; ep., epthehal lmmg, x, transparent mass, tilling greater part of cavity $; \times 90$.
lobes closely compacted together, confined to x vini, but causing a bulging forwards and backwards of the septa; duct short, shining, and stout, widened near its termination. Spermathecæ (textfig. 104) small and numerous, disposed in a row on each side of the segment (viii and ix), each a club-shaped organ, with a long stalk, the ental end dilated; length of each up to $1 \mathrm{~mm} .$, breadth at the wider end ca. $0 \cdot 2 \mathrm{~mm}$. No penial setæ.

Distribution. Kavalai, Cochin State.
a. var. zonatus Steph.
1915. Megascolex polytheca, var. zonatus, Stephenson, Mem. Ind. Mus. vi, p. 90, pl. ix, fig. 26.
Length 110 mm . ; diameter $2 \frac{3}{4} \mathrm{~mm}$. Segments 145. Colour a medium grey, with darker middorsal groove over the greater part
of the length; clitellum browner. Prostomium epilobous $\frac{1}{2}$, the sides of the tongue converging behind, but the hinder end open. No appearance of secondary annulation in the anterior segments. Dorsal pores from 5/6. Dorsal setal gap diminishing backwards, from $2 \frac{1}{2} y z$ in front to complete absence at the hinder end; ventral gap $2 \frac{1}{2}-3 a b$ in front of clitellum, $3 \frac{1}{2} a b$ behind this;

Fig. 105.-Megascolex polytheca Steph. var. zonatus, spermatheca.
setio of pregenital region on the whole smaller than the rest; a and b not larger than the others, $a b$ not regularly greater than $b c$, and a and b not in regular lines; numbers $45 / \mathrm{ix}, 45 / \mathrm{xiii}, 39 / \mathrm{xix}, 35$ and 38 further back. Clitellum well delimited, from xiv to nearly hinder end of xvii (=nearly 4). Male pores on small whitish papille in line with b; the surface depressed between the pores. Female pore single. Spermathecal pores 4-6 on each side in each groove, beginning from the line b or interval $a b$; intervals between successive pores about equal to the iutersetal intervals.

Prostatic duct somewhat wavy, notably broader at the ertal end. Spermathecæ 4-6 on each side in each row; ampulla and duct distinguishable, ampulla ovoid, duct cylindrical, rather longer than and about half as wide as ampulla; usually a diverticulum from the terminal portion of the duct, slightly club-shaped, from half as long to nearly as long as duct, glistening, with simple cavity.

Distribution. Parambikulam, Cochin State.

34. Megascolex pumilio Steph.

1916. Megascolex pumilio, Stephenson, Rec. Ind. Mus. xii, p. :333.

Length 54 mm .; maximum diameter $1 \frac{1}{3} \mathrm{~mm}$. Segments 109. Colour an equable grey, clitellum a marked reddish brown. Prostomium epilobous $\frac{1}{3}$, tongue not cut off behind. Dorsal pores from $5 / 6$. Setæ throughout the greater part of the body 12 per segment, in front of clitellum as three pairs on each side; near the hinder end 16,17 , or 18 per segment, irregularly arranged
dorsal interval cousiderable. $=4 y z$ in front of clitellum, $3 y z$ behind. Clitellum xiv-xvi (=3). Male pores faintly indicated in or just outside the line of b. The ventral surface of x viii shows a transversely elongated thickened patch extending from outside the line b on one side to a corresponding point on the other. Female pore single. Spermathecal pores in $7 / 8$ and $8 / 9$, in line with b.

Septa 7/8-9/10 considerably thickened, 6/7 somewhat so, 10/11-14/15 becoming progressively thinuer. (Gizzard in v. No calciferous glands. Intestıne begins in x r. 'Testes and fumels free in x and $x i$. Seminal vesicles in ix and xii. Prostates extending from xviii to xxi, most bulky in xviii and xix, thinner and dorsally situated in xx and xxi ; duct relatively stout and sharply curved. Spermathece with relatively large ovoid ampulla; duct not sharply demarcated, as long as and nearly half as thick as ampulla, slightly curved; diverticulum elub-shaped, arising from ental end ot duct, as long as and half as wide as ampula.

Remarks. Penial seto are not mentioned in the original.
Distribution. Trivandrum, S.•Lndia.

35. Megascolex quintus Stepl.

1913. Meguscole. quintus, Sitephenson, Spol. Zeyl. viii, p. Dék, pi. ii, figs. 11, 12.
Length 37 mm .; dianeter $2 \cdot 5 \mathrm{~mm}$. Segments 139 . Colour light grey, Prostomum epilobous $\frac{1}{2}$. Dorsal pores from $6 / 7$. Setal ring interrupted irregularly dorsally, regulanly ventrally; $a a=3 a b ;$ sete 12 per segment in front of clitellum, usually 16 behind; a to f form a series of regular longitudnal lines, the

Fig. 106.-Megascolex quiutus Steph.; male genital area.

Fig. 107.-Meyascolex quintus Steph. : spermatheca.
remainder, when these are more, being irregular ; $u b=b c$ and $d e$, but these are rather greater than $c d$ and ef, i.e., there is an indication of pairing ; setæ of segments ii-vi enlarged, especially a and b. Clitellum? Male pores in line with b, on very small papillæ. Spermathecal pores inconspicuous, a single pair, in 8;9, just external to the line of b. A male genital area (text-fig. 106)
embraces sviii, hulf of xvii, and two-thirds of xix; it includes the whole of the ventral surface, is slightly raised, and carries a pair of flat circular patches, each with a dark dot in the middle, situated in front of and internal to the male pores over the position of $17 / 18$ (this groove being obliterated ventrally).
Septa 8/9-13/14 considerably, 7/8 and 14/15-17/18 moderately thickened. Gizzard in vi. Culciferous glands as dilatations of the oesophagus in xv and xvi, very vascular, with lamellated walls internally. Intestine begins in xviii. Testes and fumels free in x and xi. Seminal vesicles racemose, in xi and xii. Prostates small, confined to xviii; duct thick, and straight except for a bend at its ental end. Spermathecal ampulla elongated, somewhat dilated at its ental end ; duct not marked off, simply the prolongation of the narrower end of the ampulla ; diverticulum finger-shaped, $\frac{2}{3}$ as long as the main pouch or more, arising near the junction of the latter with the body-wall (text-fig. 107). No penial setæ.

Renarks. The formulæ for the intersetal distances are misprinted in the original paper. The calciferous glands are more probably gland-like swellings of the cosophagus: it is not inplied that they are set off from the œsophagus at all,

Distribution. Pattipola, Ceylon.

36. Megascolex ratus Cogn.

1911. Meyascole.x ratus, Cognetti, Amı. Mag. N. 11. (8) vii, p. 500, pl. xiii, figs. 8-10.
1912. Meyascolex ratus, Michaelsen, Mt. Mus.Hamburg, xxx, p. 87. 1916. Megascolex ratus, Stephenson, Rec. Ind. Mus. xii, p. 327.

Length $230-315 \mathrm{~mm}$.; maximum dianeter $7-10 \mathrm{~mm}$. Segments 162-218. Colour dorsally violet-brown or dark violet, ventrally grey. Prostomium tanylobous, epilobous $\frac{1}{2}$, or proepilobous. Segments x-siii biamular. Seta closer set ventrally than dorsally; in front of clitellum no dorsal brenk, or dorsal break irregular, while ventral break $=2 a b$; behind clitellum $a a=2-4 a b, z z=2-4 y z$; numbers about 180 in x , about 135 in middle of body. Clitellum saddle-shaped, xiv-xviii. Male pores each on a whitish tubercle, which is supported on a swollen papilla, in line with h; setæ absent between the pores. Female pores paired. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in line with f. Paired papillæ, all close to the midventral line, on $16 / 17,19 / 20,20 / 21$, and $21 / 22$, sometimes on $14 / 15,15 / 16$, and $22 / 23$ in addition: those on $16 / 17$ may be larger than the rest, and those on $21 / 22$, or $20 / 21$ and $21 / 22$, may be absent.
Septa 7/8-12/13 much thickened. Gizzard in v (or vi?). Intestine begins in xiv. Testes and funnels in x and xi, in large and lobulated sacs, which fuse dorsally to the cesophagus. Seminal vesicles finger-shaped, smaller than the testis sacs, in ix and xii. Prostates occupy xix-xxii, lobed at the margins ; duct strong, cylindrical, passing first forwards and then inwards. Spermathecal
ampulla transversely striped, more or less ovoid, but wider towards the ectal end; duct abruptly marked off, about one-third as broad and long as ampulla; diverticulum enclosed in duct-wall, but projects on its surface, small, with 4-7 oval seminal chambers, opening into ental end of duct. No penial sete.

Distribution. Coorloon, Chimungi, and Trivandrum, in S. India.

37. Megascolex sarasinorum Mich.

1897. Megascolex sarasinorum, Michaelsen, Mt. Mus. IIamburg, xiv, p. 2244, pl. fig. 5 .
1898. Meyascolear sarasinorum, Michaelsen, Tier. x, p. 231.
1899. Megascole.. sar'usmorrum, Michaelsen, Abh. Ver. Hamburg, xix, p. 83.
Length $140-190 \mathrm{~mm} . ;$ diameter $5 \frac{1}{2}-7 \mathrm{~mm}$. Segments $136-$ 148. Colour? (destroyed by preservative). Prostomiun prolobous. Segments triannular in consequence of setal zone forming a circular ridge. First dorsal pore in $5 / 6$. Setæ more closely set dorsally in anterior part of bodv; setal rings almost closed; numbers $85 / \mathbf{v}, 9 \pm / \mathrm{x}, 84 / \mathbf{x i x}, 70 / \mathrm{xxvi}$. Clitellum much swollen, saddle-shaped, xiv or $\frac{1}{2} \times 1 v^{-\frac{1}{3}}$ or $\frac{2}{3}$ xviii ($=$ ca., 4 or more); if clitellum includes whole of xiv the cushion which bears the female pores joms its two sides, so that it appears ring-shaped on the anterior part of xiv. Male pores ventrally situated, on the mesial sides of prominent broad papillw. Female pores paired, on a transversely elongated cushion. Spermathecal pores one pair, in 7/8. Sucker-like copulatory cushions, transversely oval, paired, in $9 / 10,17 / 18$, and $19 / 20$; there may be others in $16 / 17$ and 20/21: those in front of the male pores the largest.

Septum 6/7 very thin, 7/8-13/14 thickened, gradually more so towards the middle of the series. Guzard in vi. No calciferous glands. Intestine begins in xvi. Last hearts in xiii. Two pairs of testes and funnels in x and xi, enclosed in testis sacs. Two pairs seminal resicles, large, compressed racemose, in $1 x$ and xii. Prostates compressed racemose; duct S-shaped, muscular. Spermathecal ampulla flatly ovoid, or in younger specimens tongue-shaped; with broad scale-like bulging,-an evagination of the cuvity of the ampulia at its ectal end; duct as broad as long, narrower than ampulla; diverticulum in angle between ampulla and duct, small, globular, containing a few seminal chambers; also in wall of duct are numerous small canals, widened to form small seminal chambers at their blind ends.

Remarks. The similarity of this form to M. multispinus is so great that I should have considered it a variety only, if Michaelsen had not described them both in the sane paper, and presumably, therefore, had them under his observation about the same time, with an opportunity of comparing them.

Distribution. Trincomali, N. of Dambulla and Trincomali, Kaniya near Trincomali, Mahavali Ganga,-all in Ceylou.
38. Megascolex schmardm Mich.
1897. Megnscole.v schmarde, Michaelsen, Mt. Mus. Mamburg, xiv, p. 208, pl. tigs. 30, 31.
1900. Megascole. schmarda, Michaelsen, Tier. x, p. 200 .

Length ca. 60 mm .; diameter $3-3 \frac{1}{2} \mathrm{~mm}$. Segments ca. 190 . Colour grey to yellowish-grey. Prostomium? Dorsal pores present in front of clitellar region. Setæ a enlarged, b less so, c less so again, etc.; $u c=2-2 \frac{1}{2} a b, a b=2 b c, b c$ greater than $c d$, col greater than de, cle greater than or equal to eff, thenceforward spaces equal; dorsally the ring irregularly broken; lines a, b, and c regular, the rest nore or less irregular. Clitellum? (not developed). Male pores in the line of b, on transverse papilla which extend between a and d. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, between the lines of b and c. Three copulatory papillæ, transversely elongated, taking up the space between stima, longitudiunlly of the length of a segment, on x, xvii, and xix, mhdventral.
Septa 7/8-12/13 thickened. Gizzard in front of $7 / 8$. Intestine begius in xv or xvi. Two pairs racemose seminal vesicles in xi and xii. Prostates racemose; duct narrow, straight. Spermathecal ampulla irregularly pear-shaped, often kinked; duct short, narrow, not sharply marked off; diverticulum slenderly club-shaped, about as long as ampulla, opening into duct. Penial setæ 1.2 mm . long, maximum diameter 16μ, distally scarcely narrowed, distal fourth bent at an angle, tip flatiened and hollowed, without ornamentation, the lateral margins of the flattening thickened.

Remarlks. Described from a siugle specimen of Schmarda's collection, preserved along with the type of M. brachycyclus. The specimen was mutilated, and without clitellum; the segment which contained the gizzard was not exactly determined.

Distribution. Ratnapura, at the foot of Adam's Peak, Ceylon.

39. Megascolex sextus Steph.

1913. Megnseolex sextus, Stephenson, Spol. Zeyl. viii, p. 270, pl. ii, tigs. 13, 14.
1914. Meyuscoler. sextus, Stephenson, Mem. Ind. Mus. vi, p. 88, pl. viii, fig. 24.
Leugth 100 mm .; diameter 2 mm . Segments 114 . Colour brown dorsally, setæ implanted on whitish rings ; light grey ientrally. Prostomium epilobous $\frac{2}{3}$, tongue faintly cut off behind. Dorsal pores in anterior part of budy in front of the grooves, the first on the posterior part of segment v. Setal rings almost closed dorsally, ventrally $a a=2 a b$, or often $2 \frac{1}{2} a b$ in front of clitellum; intersetal intervals approximately the same in all parts of the ring; numbers $36 / \mathrm{v}, 40 / \mathrm{ix}, 36 / \mathrm{xv}, 50 / \mathrm{xix}$, and 50 posteriorly. Cli ellum fxiv-xvi ($=2 \frac{1}{2}$), not marked. Male pores on papillæ one-fourth of circumference apart, no setz between the pores. Spermathecal pores in $6 / 7$ and $7 / 8$, nearly half the circumference apart. Genital
papillæ two pairs; one in $9 / 10$, transversely oval with eye-like markings in the centre, a little more than $\frac{1}{5}$ of circumference apart; the other pair in $17 / 18$, as small whitish elevations slightly

Fig. 108.-Megascolex sextus Steph. ; spermatheca.
internal to the line of the male pores; sometimes an addional pair, in 18/19, almost circular, ege-like, in line with the ale pores.
Septa 9/10-13/14 may be slightly thickened. Gizzard in vii. Intestine begins in xiv or xv. Micronephridia in two rows in each segment, one in front of and the other behind the setal zone. Testes and funnels in x and xi, enclosed in testis sacs which approach, or actually fuse with, each other above the œesophagus. Seminal vesicles in xi and xii, comparatively small, not lobulated. Prostates occupy xviii-xxi, lobulated; duct stout,

Fig. 109.-Megascolex sext us Steph. ; distal end of penial seta.
originating in xix, and running forwards obliquely to end in xviii. Spermathecal ampulla somewhat flattened, irregularly circular; duct very broad, uearly as long as ampulla, not sharply marked off'; diverticulum very small, club-shaped, arising from middle or ental end of duct. Penial setæ 1 mm . long, 15μ thick at the middle; shaft, straight in its proximal two-thirds, distal third sometimes with wavy outline, tip curved through a quadrant and sharply pointed; about 0.08 mm . from the end there is a slight swelling at the situation of a ring of tooth-like sculpturings which do not stand off from the shaft, and there may be one or two similar swellings more proximally, with rudimentary sculpturings.

Remarks. The testis sacs and the posterior situation of the gizzard represent an approach to Pheretima; these, with the position of the spermathecal pores, form a distinctive combination of characters.

Distribution. Pattipola, Ceylon.

40. Megascolex singhalensis Mich.

1897. Megascolex singhalensis, Michaelsen, Mt. Mus. IIamburg, xiv, p. 227, pl. figs. 16, 17.
1898. Meyascolex sinyhalensis, Michaelsen, Tier. x, p. 2230.

Length 115 mm . ; diameter 5 mm . Segments 136, triannular, through setal zone being elevated to form a ridge. Colour whitish or grey (due to sublimate). Prostomium epilobous $\frac{1}{2}$. No dorsal pores. Setal rings almost closed; the interval ad greater than $a b, a b$ than $b c$, etc., $\approx z$ very irregular, $=1 \frac{1}{2}-4 y z$; in the anterior part of body seta a larger than b, b than c, c than d, etc.; numbers 28/vi, 33/viii, 34/xiii, 40/xix, 41/xxvi. Clitellum ring-shaped, xiv-xvii $(=4)$. Male pores scarcely one-fourth of circumference apart, behind the setal zone; no setw between the pores. Female pores paired. .Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in line with d.

Septum $6 / 7$ very fine, $7 / 8$ rather stouter, $8 / 9-13 / 14$ thickened. Gizzard in tront of $7 / 8$ ($\%$ in vii). No calciferous glands. Intestine begins in xv. Last hearts in xiii. Two pairs of testis sacs, in x and $x i$. Two pairs of racemose seminal vesicles, in xii and xiii. Prostates with long loosely racemose glandular portion, extending through xviii-xxvi ; duct long, thin, and evenly curved. Ovisacs present in xiv. Spermathecal ampulla an ovoid sac; duct well set off, two-thirds as long and one-third as thick as ampulla; diverticulum tubular, thinner than duct basally, and twice as long as duct, which it enters at its ectal end; nutferous seminal chambers in the swollen eutal end of diverticulum; and a small accessory diverticulum with two or three seminal chambers, on the ental portion of chief diverticulum. Penial setæ 6.5 mm . long, 80μ thick proximally, 50μ near distal end, bowed to form the third of a circle, with laterally rather widened, bluntly rounded smooth tip; proximal to tip numerous fine, narrow, not closely adpressed teeth.

Distribution. Nuwara Eliya, Ceylon.

41. Megascolex spectabilis Mich.

1910. Meyascolex spectabilis, Michaelsen, Abh. Ver. Hamburg, xix, p. 80, pl. figs. 10-12.

Length 235-320 mm. ; diameter $5 \frac{1}{2}-9$ to $7-10 \mathrm{~mm}$. Segments 157-174. Colour dorsally bluish to violet grey, fading ventralwards to a light yellowish-grey. Prostomium epilobous $\frac{1}{3}$, tongue open behind. First dorsal pore $9 / 10$ (or perhaps $8 / 9$). Setæ on ridges, sunall in anterior part and middle of body, fairly large towards
hiuder end; ventral break indistinct in anterior part, distinct but small further back; dorsal break in general distinct and fairly wide; numbers $58 / \mathrm{x}, 50 / \mathrm{xix}, 59 / \mathrm{xxv}, 30-40 / \mathrm{cl}-\mathrm{clx}$. Clitellum ringshaped, xiv-xvii $(=4)$. Male pores on small transversely oval papillæ, or sometimes depressed, about one-fourth of circuinference apart ; no setæ between the pores. Female pores paired. Spermathecal pores one pair, ventro-lateral, in 8/9, about ${ }^{3}$. of circumference apart. A pair of small grey circular glandular areas in $17 / 18$, surrounded by a whitish wall; they lie in front of the male papillæ, their centres a little lateral to the lines of the pores; they bear the openings of the accessory glands.

Septa $7 / 8-13 / 14$ thichened, those in the middle of the series most. Esophagus with calciferous gland-like swellings segmentally in x-xiii. Funnels in x and $x i$, these segments being filled out by masses of spermatozoa; if testis sacs are present, they must be extremely delicate structures. Seminal vesicles small, apparently vestigial, in xi and xii. Prostates large, occupying a number of segenents, thickly tongue-shaped, compactly racennose, consisting of closely adpressed lobules; duct of the same thickness throughout, bent, muscular. .An accessory gland in front of each prostate, opening in 17/18 (v. sup.); each is about half as long and thick as the prostate, with a smooth surface, and consists apparently of a tube with closely adpressed undulations; the duct, or narrower ectal end, is not distinctly marked off. Spermatheco with very large ampulla; duct very short and cone-shaped, concealed by the ampulla; diverticulum ovoid, with indistinct stalk, small, attached to ental end of duct: a still smaller secondary diverticulum, unstalked and roundish, comprising several seminal chambers, on under side of primary diverticulum. Penial seta 2 mm . long, 85μ thick proximally, alnost straigh in the proximal half, curved in the distal half and most so at the distal end; this end flattened in a plane at right angles to that of the curve of the shaft, though not broadened : the distal fourth, except the extreme tip, ornamented with very fine, closely set, slightly curved zigzag strix.

Remarles. The gizzard is not mentioned. Accessory prostatic glands occur also in M. acanthodriloides, cingulatus, and ceylonicus; M. nureliyensis also has relations to this group; compare the penial setæ of that and the present form.

Distribution. Vaxvella, Ceylon.

42. Megascolex sylvicola (Mich.).

1007. Lampito sylvicola, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 161, text-fig. 9.
1008. Lampito sylvicola, Michaelsen,' Mem. Ind. Mus. i, p. 181, pl. xiii, fig. 19, text-fig. 15.
Length 185 mm .; diameter $2 \frac{1}{2}-3 \frac{1}{2} \mathrm{~mm}$. Segments ca. 200. Colour a uniform light grey. Prostomium epilobous $\frac{1}{2}$, tongue
narrow. First dorsal pore in 9/10. Setæ small, rather enlarged in the anterior half of the anteclitellar region; rings irregularly but broadly interrupted dorsally, especially at the anterior end; regularly broken ventrally, $a a=c a .2 a b$; setæ a and b regularly placed throughout the body; numbers $10 / \mathrm{iii}, 12 / \mathrm{iv}, 11 / \mathrm{v}, 15 / \mathrm{xiii}$, $21 / x v i i, 27 / x x i v$, and ca. 30 at the hinder end. Clitellum? Male pores between the lines a and b, on minute papillw, the papillæ surrounded by a common whitish wall of dumbbell shape. Spermathecal pores in the line of a, in $7 / 8$ and $8 / 9$. A large rectangular cushion with rounded corners, broader transversely, on the anterior part of xix, laterally reaching about to the line d, and pressing back somewhat the setal zone, which is at its hinder margin.

Septa 6/7-13/14 thickened, especially 7/8-9/10. Gizzard large, in vi (? v). Esophagus simple, without set-off calciferous glands, a little swollen in xiii (? and in some neighbouring segments). Typhlosole small' and indistinct. Last heart in xiii. Behind clitellum in each segment a pair of meganephridia as well as a number of micronephridia; in front of this only micronephridia. Hunnels free in xi. Seminal vesicles, racemose, in xii. Prostates

Fig. 110.-Megascolex' sylvicola (Mich.); spermatheca made transparent by acetic acid; $\times 15$.
split into two parts, each part with some more or less deep incisures; duct fairly long and thin, irregularly undulating. Spermathecal ampulla pear-shaped, passing without break into the duct : duct twice as long and at its begiuning half as thick as the ampulla, but becomes thinner towards its ectal end; two diverticula, club-shaped or nearly cylindrical, about half as long and thick as the duct, opening opposite to each other into the duct below its middle, each with a single seminal chamber (textfig. 110). No penial setæ.

Distribution. Tiger Shola, near Kodaikanal, Palni Hills, S. India.

43. Tegascolex templetonianus Rosa.

1892. Megascolex templetonianus, Rosa, Boll. Mus. Torino, vii, no. 131, p. 1.

> 1893. Megascolex templetonianus, Ude, Z. wiss. Zool. Ivii, p. 65, pl. iv, figs. $13,14 a, 14$ b, 15 .
1897. Meyascolex tenıpletonianus, Michaelsen, Mt. Mus. Hamburg, xiv, p. 213, pl. fig. 11.
1000. Megascolex templetonianus, Michaelsen, Tier. x. p. 232.

Length 250-560 mm.; dianeter $10-12 \mathrm{~mm}$. Segments 240 570. Colour yellowish to greenish grey. Prostomium without dorsal process. First dorsal pore in 11/12 or 12/13. Setal rings interrupted dorsally and ventrally; $a a=c a .4 a b$ and $=2 z z$; numbers 62/xii, and further back up to 112. Clitellum $\frac{1}{2} x i v-$ $\frac{1}{2} x v i i(=3)$? Male pores ventrally situated, on small papillæ in a rectangular depressed area, which has swollen lateral borders and extends over $\frac{1}{3} x$ vii, xviii, and xix. Female pore single. Spermathecal pores in $7 / 8$ and $8 / 9$, ventrolateral, in line with h or i. Copulatory papillæ flat, transversely elongated, in line with the male pores, on the hinder part of xvii, both anteriorly and posteriorly on xix, and often an the anterior part of $x x$ three or four pairs in all: sometimes also a number of circular, less distinct spots on xviii.

Septa 5'6 or $6 / 7-14 / 15$ thickenel, especially the, four or five anterior of these. Grzzard in v. Two pairs of funnels in x and xi. I'wo pairs of seminal vesicles in xi and xii. Prostates racemose, glandular portion deeply incised, cleft into 1 wo. Spermathecæ tubular, duct thin and very short; small finger-shaped diverticulum arising from the ectal end. Penial setæ 1.6 nm . long, 80μ in maximum diameter; distal end slightly bent, sharpened in chisel-fashion, and slightly excavated (i.e., the terminal edge cut out in an are); ornamentation of numerous fine rigzag transverse ridges.

Remarlis. The two points of the penial setw are not seen separately in the usual position, since they cover each other.

This species is remarkably similar to \dot{M}. funis; 1 should have been tempted to unite the latter with the present species, but for the fact that Michaelsen had examples of both under his eyes while he was writing his paper (Mt. Mus. Hamburg, xiv).

Distribution. Colombo, Ceylon.

44. Megascolex travancorensis Mich.

1910. Megascole.r travancorensis f. typica, Michaelsen, Abh. Ver. Hamburg, p. 72, pl. fig 10.
1911. Meyascolex travancorensis var. typicus, Michaelsen, Mt. Mus. Hamburg, xxx, p. 85, text-fig. III b.
Length 125 min .; diameter $1 \frac{1}{2}-2 \mathrm{~mm}$. Segments 280. Colour grey, nonpigmented. Prostomium indistinctly epilobous. Eirst dorsal pore in $4 / 5$. Shta on ii-vi enlarged, distinctly paired in the fims two, three or four seta-bearing segments; rings interrupted fairly widely both dorsally and ventrally, the ventral interval very regular; the setm form more or less regular longitudinal lines, especially those on the ventral surface on the
anterior part of the body; numbers-3 pairs on each side in ii and iii, 3 or 4 pairs on each side in iv, 4 pairs or 9 setw on each side in v , ca. $20 / \mathrm{vii}$ and $\mathrm{ix}, 23-25 / \mathrm{x}$-xxv. Clitellum? Male pores in the setal zone in the line of b, on slightly raised cushions, which are egg-shaped, their inner borders approximated and parallel, their narrower poles directed forwards; both cushions together almort fill up a somewhat depressed median area, which is bounded laterally and in front by a .slight wall. Female pores paired. Spermathecal pores two pairs, between a and b, in $7 / 8$ and $8 / 9$, about $\frac{1}{6}$ of the circumference apart.

Septa 6/7-12/13 thickened, the last slightly, the rest more strongly. Gizzard large, in vi. No calciferous glands. Funnels free in x and $x i$. Seminal vesides fairly small, compactly racemose, in xi and xii. Prostates fairly large, rather long, irregularly rectangular, with deeply incised and uneven surface; duct fairly long, its ectal portion longitudinal in direction, fairly thick, with muscular shimmer ; the longer ental portion winding, about half as thick, less glancing, especially at the beginning, where it is concealed by the gland. No copulatory sacs. Spermathecal anpulla large, pear-shaped, much narrowed and usually much bent at its ectal end ; duct still thinner, very short, mostly concealed in the body-wall; diverticulum enters the ectal end of ampulla, is narrowly club-shaped and somewhat bent at its ectal end ; a mass at the ectal end of ampulla seems to represent an incoupletely formed spermatophore. No penial setr.

Remarks. The form of the spermathecre relates this form to M. konkamensis.

Distrilution. Pallode, Travancore, S. India.
a. var. quilonensis Mich.
1910. Megascole. travancorensis var. quilomensis, Michaelsen, Abh. Ver. Hamburg, xix, p. 7.4, pl. tigs. 17, 18.
1913. Megascole.: travancorensis var. quilonensis, Michaelsen, Mt. Mus. Hamburg, xex, p. 8it, text-fig. III C.
Length 85 mm .; diameter $1-2 \mathrm{~mm}$. Segments 186. Colour light grey, non-pigmented. Prostomium epilobous $\frac{1}{2}$. Pairing of setæ in anterior segments not distinguishable; numbers $12 / \mathrm{ii}$ vii, $16 / \mathrm{xi}, 20 / \mathrm{xiii}, 22 / \mathrm{xxv}$. Clitellum ring-shaped, including $\frac{1}{3}$ of xiii and $\frac{1}{3}$ of xvii ($=3 \frac{2}{3}$). Male pores en. $\frac{1}{8}$ circumference apart, in a common transverse groove; in front of this, in 17/18, a transversely oval, indistinctly limited glandular cushion. Spermathecal pores in $7 / 8$ and $8 / 9$, in line with a, ca. $\frac{1}{10}$ of circumference apart. Prostates extend through ten segments; the duct is very thin in its ental third. Spermathecal ampulla broad and flat, irregularly bulged; diverticulum very long, longer than in the type-form of the species; spermatophores in ectal purt of ampulla spherical (ouce two spermatophores in one ampulla).
Distribution. Shasthancottah, near Quilon, Trarancore.

b. var. ghatensis Mich.

1910. Megascolex travancorensis var. ghatensis, Michaelsen,. bbl . Ver. Hamburg, xix, p. 75.
1911. Megascolex travancorensis var. ghatensis, Michaelsen, Mt. Mus. Hamburg, xex, p. 85, text-fig. 1 II D.
length ca. 80 mm .; diameter $1-1 \frac{1}{2} \mathrm{~mm}$. Segments ca. 185. Colour light to dark grey, unpigmented. Setæ not paired in anterior segments; numbers $12 / \mathrm{ii}-\mathrm{iii}, 16 / \mathrm{iv}, 18 / \mathrm{v}-\mathrm{xiii}, 20 / \mathrm{xxv}$. Clitellum ring-slaped, xiv-3 xvii $\left(=3 \frac{1}{3}\right)$? Male pores in setal zone, ca. $\frac{1}{10}$ of circumference apart, on sinall roundish papillæ; a median ventral male field, somewhat depressed, shield-shaped, extending backwards to setal zone of xix; the male pores appear as mesially projecting swellings of the prominent border of the area. Spermathecal pores in $7 / 8$ and $8 / 9$, medial from the line of u, ca. $\frac{1}{5}$ of circumierence apart. Prostates and spermatheca as in var. quilonensis; for the rest as in the typical form of the species.

Distrihution. Naddathoray, Travancore.

c. var. bonaccordensis Mirl.

> 1913. Megas olex. travancorensis var. bonaccorlensis, Nichaelsen, It. Nus. Hambur, xxx, p. 84, text-fig. 111 A.

Length 250 mm .; diameter $2 \frac{1}{2}-33^{3} \mathrm{~mm}$. Segments cal. 300 . Colour pale, non-pigmented. Body extremely long and thin. Yentral seta in anterior region enlarged (as far as vi); rings distinctly and regularly broken ventrally, $a a=2 a b$, setæ a in regular longitudinal lines; dorsally rings not brohen; seta not in pars ; numbers $12 / \mathrm{ii}, 16 / \mathrm{iii}, 20 / \mathrm{xvi}, 25 / \mathrm{xxvi}, 45 / \mathrm{cc} / \mathrm{xxx}$ (i.e., the numbers are much greater postcriorly). Clitellum ring-shaped, $\frac{1}{2}$ xiii- $\frac{1}{2} \times$ vii $(=4)$. Male field trapeze-shaped, with rounded angles, broader than long, flat and sucker-like, projecting at the sides of the animal, extending from a little behind the setal zone of xvii to a little behind that of xviii; the heart-shaped centre and anterior and lateral borders of the area are raised, a depressed portion being left on each side of the heart-shaped figure, and a deeper depression, transverse in direction, behind, at the posterior border of the area ; the lateral depressions are almost filled up by flat elevations, so that the actually depressed portion is confined to a groove around these and to the transverse depression at the posterior border. The posterior ends of the lateral borders are turned in towards the middle line as papillm, which are doubtless the male porophores. Female pore single. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in line with b.

Septa $5 / 6-14 / 15$ thickened, the middle ones of the series most. Gizzard large, in v. Prostates lobed and uneven, in xvii-xxi, much constricted by the septa; duct S-shaped, fairly thick and muscular in its ectal, thinner and not shining in its ental part. Spermathecal ampulla sac-like in its ental, narrow in its ectal
portion; duct small, a little thinner than the ectal part of the ampulla; diverticulum narrowly club-shaped, opening into the duct, about half as long as main pouch.

Distribution. Bonaccord, Travancore.

d. var. pentagonalis (Steph.).

1916. Megascolex pentagonalis, Stephenson, Rec. Ind. Mus. xii, p. 331, pl. xxxii, figs. 23, 24.

Length more than 108 mm .; diameter 3 mm . Segments more than 94. Colour a uniform medium grey. Secondary annulation in segnents vii-ix. Anterior end truncated ; prostomium small, triangular, the posterior angle pointed. First dorral pore in 5/6. Ventral setal gap $=2 a b$ in front of clitellum, $2 \frac{1}{2} a b$ behind it ; dorsal gap large, $4-5 y$ y in front of clitellum, 6 or even $8 y z$ posteriorly; ventral setæ in fairly regular longitudinal lines, dorsal setæ not; ventral setæ of viii and ix remarkably small; numbers $14 / \mathrm{v}, 16 / \mathrm{x}, 14 / \mathrm{xii}, 13 / \mathrm{xix}, 19$ /xxii, 20 or 22 further back, 32 at hinder end of the (incomplete) specimen.

Fig. 111.-Megascolex travancorensis Mich. var. ןentagonalts, male genital field.

Clitellum not definitely limited, xiv- $-\frac{1}{4} x$ vii $\left(=3 \frac{1}{4}\right)$. Male field (text-fig. 111) on xviii, pentagoual in shape, with the base forwards, the whole occupying theanterior two-thirds of the segment; the lateral angles produced outwards, and the whole nrea surrounded by a groove and marked by an inverted T-shaped depression. Male pores uider the overhanging posterior sides of the pentagon, near the lateral angles, in line with setæ b. Spermathecal pores small, in $7 / 8$ and $8 / 9$, in line with b.

Septa 6/7-10/11 considerably thickened, the next few moderately so, and then gradually thinner as far as 16/17. Gizzard in \mathbf{v}, firm and barrel-shaped. No calciferous glands. Intestine begins in xvi. Prostates long, band-like, much incised, extending from xvii to xx ; duct sinuous or curled, passing backwards to its opening, its ental portion being the thinnest. Spermathecal ampulla sausage-shaped, bent near its ental end, the ental end being slightly dilated; duct short, half as thick as ampulla;
diverticulum from junction of duct and ampulla, more than half as long as ampulla, thin, tubular, with a slight dilatation at its ental end (text-fig. 112).

Distribution. Trivandrum, Travancore.

Fig. 112.-Meguscolex travancorensis Mich. var. pentagonalls, spermatheca.

Remarks on the several forms belonging to the species. The forms constitute an almost unbroken series, bonaccordensis, the largest, being at one end, ghatensis, the smallest, at the other; the next largest, typica and pentayonulis, come near bonaccordensis, and the second smallest, quilonensis, near ghatensis. The male field of Michaelsenn's forms are illustrated by a series of diagrams in Michaelsen's paper of 1913, and that of pentagonalis in mine of 1916 (reproduced here as text-fig. 111); all can be reduced more or less to a common type; it is possible that the differences are to some extent unreal, and due to varying states of contraction.

A renewed examination of var. pentagonalis does indeed seem to show that the male pores are as described above ; but from internal inspection they appear to be in line with setæ c, about in the setal zone; there is no outward indication of a pore here, this position corresponding to the extreme outer augle of the marginal groove.
45. Megascolex trilobatus (Steph.).
1914. Lampito trilobata, Stephenson, Rec. Ind. Mus. x, p. 340, pl. xxxvi, figs. 2-4.
Leugth 86 mm .; maximum diameter 4 mm . Segments 160 . Colour light brown dorsally, with mid-dorsal purple streak hehind clitellum. Ventral surface flattened. Prostomium combined pro- and epilobous $\frac{1}{2}$, tongue not cut off behind. Dorsal pores from 11/12. Setal rings almost closed dorsally, but the interval irregular; ventrally $a a=2 \frac{1}{2}-3 a b$, or even $4 a b$ in front of clitellum ; the largest interval is $a b$, and the largest setæ are a; numbers $28 / \mathrm{v}$, $40 / \mathrm{ix}, 44 / \mathrm{xii}, 34 / \mathrm{xix}$, and 32 - 34 more posteriorly. Clitellum extends over $\frac{2}{3}$ xiv-xvii ($=3 \frac{2}{3}$) Male pores between
b and c, nearly a quarter of circumference aprart, each pore on, and near the outer border of, a raised flat glandular area; the area takes up the whole length of the segment, and has a semicircular inner border and an indented outer margin the outline of which forms thiee lobes. Female pore apparently single. Spermathecal pores small, in $6 / 7,7 / 8$, and $8 / 9$, about in the lateral line of the body.

Septa $6 / 7-8 / 9$ considerably and 9/10-11/12 greatly thickened, the thickening rapidly diminishing behind this. Gizzard in \mathbf{v}, semi-ellipsoidal, its anterior end joined to a soft wide portion of the cesophagus. No set-off calciferous glands; cesophagus with lamellated internal wall in some of the anterior segments, where it is slightly dilated. Intestine begins in xx. Last heart in xiii. Meganephridia and micronephridia coexist behind xx ; in xx and in front only micronephridia, which are in numbers on the septa, and extremely dense on the body-wall in xv-xvii, but are rare or absent on the parietes elsewhere. Funnels free in x and xi. Seminal vesicles in xii, lobulated, curving round the gut so as to meet dorsally. Prostates of considerable size, contined to xviii, lobulated; duct stout, white and shining, short and only slightly bent. Spermathecal ampulla large, irregularly shaped, varrable in form ; no distinct duct, only a narrowing of anpulla where it reaches body-wall; two diverticula, small, elongated, and rather club-shaped, opposite each other, given off from the ectal end of the main pouch. Penial setæ $1 \times 2 \mathrm{~mm}$. long, 36μ in maximum thickness, gently curved; distal end of shaft armed ${ }^{\text {i }}$ with triangular teeth of some size, extending further up the shaft on the outside of the curve than on the inside; tip scooped out like a horseshoe, with a web spanning the concavity.

Distribution. Baroda.

46. Megascolex trivandranus $\mathrm{St}_{\mathrm{t}} \mathrm{p} h$.

1916. Meguscolex trivandranus, Stephenson, Rec. Ind. Mus. xii, p. 330, pl. xxxii, figs. 25, 26 .

Length $72 \mathrm{~mm} . ;$ diameter 2 mm . Segments 136. Colour grey, with darker mid-dorsal line; clitellum reddish-brown. Prostomium epilobous $\frac{1}{3}$ to $\frac{1}{2}$. Dorsal pores from 5/6. Dorsal setal gap $=2-3 y z$, ventral $=3 a b$, or it may be $4 a b$ behind the clitellum ; the intersetal distances increase towards the sides, $a b$ being the siallest; numbers $36 / \mathrm{v}, 43 / \mathrm{ix}, 41 / \mathrm{xii}, 34 / \mathrm{xix}$, and 29 in the middle of the body. Clitellum xiv-xvii $(=4)$. Male pores on small papillæ in line with c, or $b c$, at the ends of a transversely elongated depression deepest at the ends and slightly convex forwards; the depression is surrounded by a whitish lip, and with the lip takes up the whole length of the segment (textfig. 113). Spermathecal pores on ninute papillm, in $7 / 8$ and $8 / 9$, just external to the line of b.

Septum 7/8 slightly thickened; thenceforward septa moderately thickened up to $11 / 12$, thence decreasingly so to $15 / 16$.

Gizzard with a smaller portion in \mathbf{v}, a larger portion in vi, subspherical, anterior end flattened. ©isophagus segmentally swollen and vascular in ix-xiv. Intestine begins in xvi. Last heart in xiii. Nephridia belind clitellum arranged in a single row just behind the septum in each segment ; in front of clitellum none on parietes, but stalked tufts by the side of cosophagus, the first of the series large and connected with hinder angle of pharynx. Funnels free in x and xi. Seminal vesicles, racemose, in xi and

Fig. 113.-Mryascole, trivandiants Stepl.; male gemtal field.

Fig. 11t.-Mcyassolex trivandianus Steph. ; spermatheca. xviii, Ales closelv compacted; duct relatively stout, passing transimely inwards, thinner at its ental end and gradually widening. Spermathecal ampulla smooth and ovoid ; duct relatively stout, two-thirds as long and half as broad as ampalla; diverticulum two-thirds as long again as duct and ampulla together, tubular, coiled and twisted, arising from ectal end of duct, at its free end a small spherical chamber with simple cavity (textfig. 114). No penial setie.

Remarks. There is a mistake as to the length of the diverticulum in the original text-see the figure, which shows it correctly.

The species is closely related to M. cochinensis with its var. phascolus. It is a smaller worm, however, the gizzard is more posterior, the length of the spermathecal diverticulum is much greater, and the male field has a different conformation.

Distribution. Trivandrum, Travancore.

47. Megascolex varians Mich.

1897. Megascolex varians, Michaelsen, Mt. Mus. Hamburg, xiv. p. 201, pl. figs. 24,25 .
1898. Megascole.v variuns, Michrelsen, Tier. x, p. 220.

Length $85-290 \mathrm{~mm}$. ; maximum diameter $3-7 \mathrm{~mm}$. Segments 136-252, trinnuular or still further subdivided. Prostomium prolobous. First dorsal pore in 6/7 (? 5/6). Setæ in anterior part of body mostly in 16 regular longitudinal rows, behind the
clitellum up to 60 , further back up to 24 per segment; in the posterior part only a and b in regular lines; ventral gap $=2-2 \frac{1}{2} a b$; dorsal gap in front $=4 \frac{1}{2} y z$, behind is irregular, but mostly smaller. Clitellum swollen, ring-shaped, xiv-xvii $(=4)$. Male pores in line with b, on papillæ which are accompanied laterally by curved longitudinal walls. Female pore single. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in line with b. Copulatory cushions with central pit, mostly unpaired, seldom paired, but when unpaired not always median, on segments viii-xiii, xv-xvii, xixxxii or some of these, taking up the whole length of the segment; they are the rule on xii and xiii, but are very often absent on x and $x i$; very variable, seldom altogether wanting ; on the clitellum they are Hat, not raised.

Septum $5 / 6$ very thin, $6 / 7-11 / 12$ thickened, the first less than the rest. Gizzard in v (and ? $\frac{1}{2}$ vi). No calciferous glands. Intestine begins in xix. Last hearts in xiji. Testes and funnels two pairs, free. Seminal vesicles racemose, in xi and xii. Prostates with sinall glandular portion; duct narrow, forming a single spiral turn. Spermathecal ampulia an irregular sac; duct short, narrow; diverticulum finger-shaped, somewhat thinner and longer than the duct, which it joins at the ectal end of the latter. Penial setæ in two sacs on ench side, representing setæ a and b, several setæ in each sac : 2.5 mm . long, 35μ thick in the middle, almost straight, bowed at each end, bluntly pointed, ornamented with numerous broad and not very closely adpressed teeth, irregularly placed.

Remarks. There are astonishing variations in the size of the mature worms.

Distribution. Nuwara Eliya, and probably Peradeniya, both in Ceylon.
a. var. simplex Mich.
1897. Meyascolex varians var. simplex, Michaelsen, Mt. Mus. Hamburg, xiv, p. 207, pl. fig. 23.
1900. Megascole. varians var. simple.r, Michaelsen, Tier. x, p. 221.
1913. Megascolex annandalei, Stephenson, Spol. Zeyl. viii, p. 263.
1913. Megascolex curtus, Stephenson, Spol. Zeyl, viii, p. 267, pl. ii, fig. 10.
1915. Megascolex varians var. simplex, Stephenson, Mem. Ind. Mus. vi, p. 88.
Length $62-90 \mathrm{~mm}$.; maximum diameter $2 \frac{1}{2}-3 \mathrm{~mm}$. Segments 114-184. Colour light grey or olive. Prostomium prolobous, or epilobous $\frac{1}{3}$. First dorsal pore $9 / 10$. Setal rings broken dorsally and ventrally; $z z=2 y z$ anteriorly and $4 y z$ behind, $a a=3 a b$ in front of and $4 a b$ behind clitellum; in front of clitellum setæ arranged in regular longitudinal lines, in 6 puirs on each side; in the hinder part, while the number of setæ is about the same, those in the lateral region are more irregularly distributed. Clitellum xiv-xvii ($=4$). Male pores in line with b, on small papillæ $\frac{1}{5} \frac{1}{4}$ of circumference apart, the surrounding area
thickened and wrinkled. Spermathecal pores one pair, in line with b, in $8 / 9$. Copulatory cushions variable; behind the clitellum none, one (most usually), or two, on xx xxiv; and one, a pair, or three in front of this, on ix xii, or on xv.

Some of the septa 7/8-10/11 thickened. Gizzard in vi. Prostates small and compact; duct thin and straight. Spermathecal ampulla of an inverted pear-shape; duct of moderate thickness; diverticulum very long, 3-4 times as long as ampulla,

Fig. 115.-Megascolex varians Mich. var. simplex; distal end of penial seta.
tubular, coiled or bent on itself. Penial setæ (text-fig. 115) up to 7.25 mm . long, 24μ thick, tapering to a blunt point; distal end slightly broadened and fiattened; ornamentation of small triangular teeth irregularly distributed all round.

Distribution. Nuwara Eliya and Pattipola, Ceylon.

b. var. insolitus Steph.

1915. Megascolex varians var. insolitus, Stephensen, Mem. Ind. Mus. vi, p. 86, pl. viii, figs. 22, 23.
Length variable, up to 70 mm .: maximum diameter 3 mm . Segments 111. Colour light grey, both dorsally and ventrally. Prostomium prolobous. Dorsal pores from 6/7. Dorsal break in front of clitellum $=2-2 \frac{1}{2} y z$, behind $=3-3 \frac{1}{2} y z$; ventrally in front of clitellum $a a=2 \frac{1}{2} a b$, behind $=3 a b$, and more posteriorly $=4 a b$; the intervals $a b$ and $b c$ are larger than the rest, and a and b are arranged in regular lines; setæ a and b larger than the rest, and
the setæ of segments ii-vii larger than those of other segments; numbers $22 / \mathrm{v}, 24 / \mathrm{ix}, 22 / \mathrm{xii}, 27 / \mathrm{xix}$, and 31 further back. Clitellum xiv-xvii $(=4)$. Male pores in line with b, ca. one-fifth of circumference apart, on slight papillæ which are partly surrounded by grooves in front and behind. Female pore single, on $\mathbf{x v}$, rather in front of setal zone, in a darker slightly depressed area. Spermathecal pores one pair, in $8 / 9$, in line with b, a quarter

Fig. 116.-Meqascolex varians Mich. var. insolitus; spermatheca.

Fig. 117.-Mcyascole. variuns Mıd. var. insolutus ; distal ond of penial seta (the whole of the portion which is beset with spmes is shown); $\times 220$.
of circumference apart. A papilla constantly on xii, transversely oval, taking up the whole length of the segment; others may be present, e.g., one on xx, or one ou xiii ; these may or may not be median.
Septum $8 / 9$ slightly thickened, $9 / 10$ considerably, thence diminishingly so as far as the prostatic region. Gizzard large, barrel-shaped, in vand vi (?). No calciferous glands ; paired ovoid swellings of the cesophagus in xiv-xvi, and also less markedly in xvii. Ovaries in xiii, large, flattened and plate-like; funnels in xiii ; oviducts converge and meet underneath the nerve cord, then enter body-wall just in front of the attachment of septum 14/15.

Spermathecal apparatus variable; ampulla large, egg-shaped; duct proceeds from wider pole of ampulla, varies in length, mar be fully as long as ampulla or considerably shorter, stout, narrowest at ectal end, where it gives origin to diverticulum : diverticulum tubular, longer than ampulla and duct together, and about as thick as the duct. Pemal setæ 5 mm . long, 27μ thick near the tip, nearly straight; the free end slightly expanded, transversely cut across at the tip, and thinned in the middle, so as to give a web stretching between the two limbs of a fork; a number of irregularly arrauged spines project from the distalmost portion of the shaft; the peninl sacs are enormously long, extending back to be attached in xxvi.

Remurks. The name insolitus is given to this variety on account of the anomalous situation of the female pore.
1)istribution. Horton Plains, Ceylon.

48. Megascolex vilpattiensis (Mich.).

1907. Lampito vilputtiensis, Michaclsen, Mt. Mus. Hanburg, xxiv, p. 160, text-fig. 8 .
1908. Lampito rilpattiensis, Michaelsen, Mem. Ind. Mus. i, p. 179, pl. xiii, fig. 18.
1909. Meyascole.c vilputtiensis, Michaelsen, Mjoberg's Austral. Exp. p. ע.

Length $70-90 \mathrm{~mm}$. ; maximum diameter 2-2 $\frac{1}{2} \mathrm{~mm}$. Segments 15t-178. Colour a uniform light grey. Prostomium indistinctly epilobous ca. $\frac{3}{3}$, tongue narrow. First dorsal pore in 10/11. Setre enlarged at ends of body, especially ventrally; rings regularly interrupted dorsally and ventrally, $a a=1 \frac{1}{2}-2 a b, z z=2-3 y z$; setre a and b regularly disposed throughout the body, paired, al, being mostly smaller than $b c$; in ii, iii, and sometimes iv, the seta are in four pairs, the ventral pairs much closer than the lateral; numbers $8 / \mathrm{ii}-\mathrm{iii}, 5$ or $9 / \mathrm{iv}, 9$ or $10 / \mathrm{v}, 9-11 / \mathrm{ix}$, cit. $11 / \mathrm{xiii}$, ca. $21 / \mathrm{xix}$, ca. $24 / \mathrm{xxvi}$, at hinder end ca. 26 . Clitellum ring-shaped, xiii-xviii ($=6$). Male pores between the lines a and b, about onetenth of circumference apart, on small papille which are directed forwards. Female pores paired. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in line with a, about one-eighth of circumference apart. A pair of glandular cushions, shortly oval or egg-shaped. their long axes converging posteriorly, on $17 / 18$, extending nearly as far as the setal zones of xvii and xviii, and laterally approximately from the line a to the line c.

Septa $6 / 7-12 / 13$ thickened, especially $8 / 9$ and $9 / 10$. Gizzard large, cylindrical, in v. No calciferous glands. Last heart in xiii. In the postclitellar segments at least, a pair of mega- as well as a number of micronephridia. One pair of funnels free in xi. Oue pair seminal vesicles, broad, racemose, in xii. Prostates with flat, broad, almost band-like glandular part, with some deep incisures and lobes, and numerous fine furrows; duct from the midile of the inner border, very long, irregularly coiled, thin, but increasing
in thickness towards the ectal end. Spermathecal ampulla oval; duct fairly abruptly set off, about twice as long and half as thick as ampulla; two diverticula, opposite each other, nearly straight,

Fig. 118.-Megascolex vilpattiensis (Mich.) ; spermatheca made transparent by acetic acid; $\times 18$.
sausage-shaped, half as long or nearly as long as and half as thick as the duct, into the ectal end of which they open (text-fig. 118). No penial setæ.

Distribution. Vilpatti, Palni Hills, S. India.

49. Megascolex willeyi Mich.

1909. Megascolex willeyi, Michaelsen, Spol. Zeyl. vi, p. 96, textfigs. $1,2 a, 2 b, 3$.
1910. Megascolex willeyi, Michaelsen, Abh. Ver. Hambury, p. 68, pl. figs. 19, 20.
Length $40-55 \mathrm{~mm}$.; diameter $2 \frac{1}{2}-3 \mathrm{~nm}$. Segments ca. 140. Colour yellowish-grey, nonpigmented; clitellum brownish-grey; the living animals whitish. Prostomium combined pro- and epilobous $\frac{1}{2}$, tongue alnost square, open behind. Dorsal pores begin from $9 / 10$. Setæ at the ends of the body somewhat enlarged; setmaa in regular lines on each side, the others not so regular, or not regular for long distances; numbers of setm in anterior part 8, in middle and hinder parts 12, in anterior part arranged in wide pairs, while $a a=2 a b$ and $d d=5 c d$; further back $a a$ still $=2 a b$, but the median dorsal distance varies, e.g., $=2 \mathrm{ef}$ or 4 ef . Clitellum ring-shaped, xiv-xvii ($=4$). Male pores in or a little lateral to the line of b, at the tip of apparently non-retractile penes, which arise on each side from the hinder part of segment xviii, and are flattened antero-posteriorly, and of the shape of an equilateral triangle. Female pores either paired, or single and median. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in the line of b, about one-third of circumference apart. A pair of flat transversely oval papillæ usually on the anterior part of xviii in the line of the ventral pair of setæ; these may be represented by a single median papilla; sometimes a pair of rounder papillæ on xix, in front of the pairs of ventral setæ; occasionally paired papillæ in a similar position on ix and x.

Septa 7/8-11/12 slightly thickened. A large gizzard in vi (or perhaps v). No calciferous glands. Funnels free in x and $x i$.

Seminal vesicles compactly racemose, in xi aud xii. Prostates small, glandular part racemose or rather villous, the lobules being loosely compacted; duct about as long as glandular portion, straight, fairly thick, spindle-shaped, with muscular shimmer. Spermathecal ampulla pear-shaped; duct not sharply marked off, short and thin; diverticulum arising from duct, very small, tubular, a quarter as long as ampulla and duct together, consisting of a number of minute seminal chambers without central lumen. Penial setæ slender, ca. 1 mm . long, proximally 13μ thick, at distal end 5μ; proximal two-thirds of shaft slightly bowed, the distal third forming a semicircle with the curve in the reverse direction to that of the bowing of the shaft, tip bent back once more, simply pointed; on the concave side of the semicircle are numerous transverse rows of fine hairs, standing off obliquely and so giving a brush-like appearance.

Remarks. This species forms a transition from Notoscolex to Megascolex; the anterior end resembles Notoscolex exactly, the hinder end resembles the obsolete genus Tricheta (with six pairs of setæ per segment throughout the body).

7istribution. Labugama in Ratnapura Dist., Ceylon.
50. Megascolex zygochætus Mich.
1897. Meyascolex zyyochetus, Michaelsen, Mt. Mus. Hanburg, xiv, p. 199, pl. tigs. $21,22$.
1900. Megascole.c zygochatus, Michaelsen, Tier. x, p. 217.
1909. Megascolex zyyochatus, Michaelsen, Spol. Zeyl. vi, p. 101.

Length 50 mm .; diameter 3 mm . Segments 134, no secondary annulation. Colour a fairlv bright light brown, with faint red shimmer. Prostomium ? First dorsal pore in 9/10. Setæ in the anterior segments regularly paired, in ii and iii three pairs on each side, $a b=c d=e f=\frac{3}{4} b c=\frac{3}{4} d e, a a=2 a b, f=3 a b$; further back indistinctly paired, number of setæ in iv-xvi is 16 , in xxvi is 20 ; the lines of a and b regular throughout the body, an greater than $a b, a b$ less than $b c$; setai a much enlarged, b less so. Clitellum? Male pores on transverse oval papillæ, which extend from the line of a to that of c, the pores in line with b. Spermathecal pores one pair, in $8 / 9$, in line with c.

Septum 5/6 very thin, 6/7-13/14 slightly thickened. Gizzard in v. Last hearts in xiii. Nephridia diffuse, aggregated in places into denser clumps. Seminal vesicles racemose, in xi and xii. Prostates with loosely racemose glandular part; durt thin, narrow and straight. Spermathecal ampulla, of an inverted pear-shape, attached to the short broad duct in common with a finger-shaped diverticulum, which is almost as large as the ampulla; ampuila and diverticulum diverge at about a right angle. Peninl seta $2 \frac{1}{2} \mathrm{~mm}$. long, 40μ in maximum thickness, with flattened distal end slightly broadened lancetwise and bent at an angle, the extreme tip slightly bent back; the flattened part transiersely ridged, and above this many irregular rings of very slender fairly closely adpressed teeth.

Remarks. This species follows M. willeyi in the transition from Notoscolex to Megascolex; while M. villeyi resembles Notoscolex at the anterior end, and the obsolete genus Trichota at the posterior, this species resembles Trichota at the anterior end, and the ordinary Megascolex further back.

The original specimen was single, and was found by Michaelsen in Schmarda's collection, along with the original specimen of Perichotic brachycycla (Megascolex brachycyclus).

Distribution. Ratnapura, at the foot of Adam's Penk, Ceylon.

- 9. Genus Pheretima Kinl.

189.5. Perichata, Beddard, Monog. p. 388.
1900. Amyntas, Beddard, P.Z. S. 1900, p. 609.
1900. Pheretima, Michaelsen, Tier. x, p. 234.
1907. Pheretima, Michaelsen, Fauna S.W. Austral. p. 164.

Setse numerous on each segment. Spermathecal pores 1-6 pairs between iii and ix. One gizzard in viii, or between $7 / 8$ and $10 / 11$. Micronephridial. Testes and funnels enclosed in testis sacs. Prostates with branched system of ducts. Penial setw almost always wanting.

The history and synonymy of the genus may be gathered from Beddard's Monograph, and from Michaelsen's volume in the Tierreich. The genus was revised by Beddard in Proc. Zool. Soc. 1900 up to that date.
pheretimu forms the end of the main line of descent from Plutellus,-of the axis of the Megascolecine tree. The genus has evolved from llegascolex, from which it differs in the more posterior position of the gizzard. Testis sacs, present throughout the genus, are usually absent in Meyascolex ; penial seta, often present in Meyuscole.x, are usually absent in Pleretime (described in one ludian species, P. osmastoni); the setal rings are often closed in Pheretima, while they are nsually or always open in the dorsal and ventral middle lines in Meyfiscolex. But no feature except the position of the gizzard is absolutely diagnostic.

Other general features of the genus are the position of the ring-shaped clitellum, which usually covers segments xiv-xvi; the female pore is almost always single and median ; septa $8 / 9$ and $9 / 10$, or one of these, are absent; ; the intestine gives off a pair of conical cæca, directed forwards, in segment $x \times v i$ or thereabouts; the testes and funnels are usually two pairs, in x and $x i$, and their testis sacs communicate across the middle line with their fellow in the segment; the seminal vesicles are two or three pairs, in xi and xii, or x, xi and xii, and communicate with the testis sacs.

Distribution (Chart III). The genus is one of the commonest throughout India, but this is in virtue of its peregrine species, such as P. posthuma, hawayana, lieterocheeta, houlleti; the only parts where Pheretima is endemic are Burma, the Andamans, Lower Bengal (one or two species), and possibly the Nilgiris and the extreme South (perhaps two or three species).

Outside India the genus has spread so as to become worldwide; but its proper howe is S.E. Asia and the Malay Archipelago, China, and Japan; there is a single endemic species in Queensland, and perhaps one in the Comoro Islands (Michaelsen, 123).

Key to the Indian species of Pheretima.

1. No spermathecal pores

One pair spermathecal pores iu $7 / 8$
T'wo pairs spemathecal pores in $5 / 6$ and $6 / 7$
Two pairs spermathecal pores in 7/8 and 8/9
Three pairs spermathecal pores in 5/6-7/8
'Three pairs spermathecal pores in or near 6/7-8/9
Four pars spermathecal pores in $5 / 6-8 / 9$
Five pairs spermathecal pures in $4 / \overline{5}-8 / 9$
2. Nale pores ou xx

Male pores on xvii
3. Cupulatory papillæ 3 to 7 pairs, on xix and following segments
Copulatory papille very small, in groups on xviii nud neighbouring segments
4. Spermathecal diverticulum as a stalked sac, within which is a convolnted tube.....
Spermathecal diverticulunending in asmall simple dilatation
5. Copulatory organs ubsent

Copulatory organs present
2.
P. taprobance.
3.
P. andananensis.
4.
5.
10.
P. bicincta.
P. anomala.
P. elongata (part.).
P. elonyuta (part.).
P. hawayana (part.).
P. birmanica.
P. hawayana (part.).

6. Spermathecal appendages consist of a single diverticulum
P. travancorensis.

Spermathecal appendages consist of a diverticulum and a stalked gland or glands arising in comnection with its ectal end. .
Spermatheral appendages consist of two diverticula, of different characters, one dilated at the ental end, one simply tubular.
7. Cupulatory organs median
P. trivandrana.

Copulatory organs parred 8.
8. Copulatory organs situated in the spermathecal region
P. bururnei.

Copulatory organs in the region of the male pores
9.
9. Copulatory organs as a single pair of papillo on xviii
P. carinensis.

Copulatory organs as two pairs of papille, in grooves 17/18 and 18/19
${ }^{P}$. peguana.
10. Copulatory organs absent 11.

Copulatory organs present
14.
11. Prostatic duct with many windings....... P. lignicola.

Prostatic dact in a simple loop
12.

12. Prostatic duct forms a long, buckwardlyextending loop
 P. fea.

Prostatic duct forms a loop which is confined to the neighbourhood of the male pore
13.
13. Spermathecal diverticulum ends in a simple knob-like seminal chamber
Spermathecal diverticulum ends in an elongated moniliform or irregular seminal chamber. \qquad in the neighbourhood of the spermathecal apertures
P. heterochceta (part.)
Copulatory organs in the neirhbourhood of or behind the male pores
15.
15. Setal rings closed
16.
Setal rings widely broken ventrally $\quad P$. burliarensis.
16. Copulatory organs median. I. andersoni.
Copulatory organs paired
17.
17. Copulatory organs as large discs on xviii
P. suctorin.
Copulatory organs as small papille on xvii and xix
P. posthuma.
P. quadragenaria, which formerly passed as an Indian species, is according to Michaelsen (131) not such. The locality given by Vaillant and Perrier, "Indes orientales," probably does not refer to India, but to the Malay Archipelago.

Pericheta lausoni was described by Bourne from (otacamund in the Nilgiris (P. Z. S. 1886, p. (664). Beddard does not mention it in his revision of the genus in 1900; Michaelsen in the Tierreich volume of the same year places it as a doubtful species, and he does not admit it in his two Indiau lists (54, 58). Its characters are as follows :-Length 250 mm . ; diameter $2 \frac{1}{4} \mathrm{~mm}$. (thus it must be extraordinarily narrow in proportion to its length). Segments 119. Setal rings with small dorsal and ventral breaks; $a a=2 a b$, $z z=3 y z ; 30-35$ setæ per segment. Clitellum indistinct, xiv-xvii : setæ on clitellum. Male pores not on papillæ; female pores paired; spermathecal pores two pairs, in $7 / 8$ and $8 / 9$. Gizzard in x (?) ; intestinal cexca originate in xxvi and extend forwards to xxiii.

Perichata lulikalensis, from Hulikal-drug in the Nilgiris, is also described by Bourne (P. Z. S. 1886, p. 668); but even its genus is uncertain, and it may be a Megascolex. Length 200 mm .; diameter ca. 3 mm .; segments 209. Setw about 42 per segment; $a a=4 a b, z z=7!/ z$; setæ present on clitellum, no special seta observed. Clitellum well marhed, xiv-xvii. Male pores rather near together, on slight papillæ; female pore single; spermathecæ in segments vii and viii, each with a single diverticulum. "I believe intestinal diverticula are present in the usual position."

Perichata mirabilis, described by Bourne from Naduvatam in the Nilgiris (P. Z. S. 1886, p. 668), is not mentioned by Beddard in his Monograph, but is allowed as a species of Pheretima by Michaelsen in the Tierreich; it does not, however, appear in either of his Indian lists. Length 130 mm . ; diameter $2 \frac{1}{2} \mathrm{~mm}$.; segments ca. 114. Setal rings closed; number of setæ 39; clitellum xiv-xvi. Male pores far apart, on low papillo; ; spermathecal pores four pairs, in $5 / 6-8 / 9$. Four pairs of small
papillm on the hinder parts of v -viii, and two pairs situated internally to the above, and on the anterior half of the segment, in vii and viii (these papillæ are said by Bourne to be related to the openings of corresponding groups of nephridia; but Michaelsen takes the papillo to be copulatory papillæ, and the supposed nephridia to be glands). Gizzard in x (?); intestinal cæca present. Spermathecæ with a single appendage.

1. Pheretima alexandri (Bedd.).

1900. Amyntas alexandri, Beddard, P. Z. S. 1900, p. 998, text-figs. 1-3.

Length 145 mm .; segments 133 ; the six segments in front of the clitellum are more or less triannulate. Sita rather but not markedly larger on the anterior segments, and again rather larger at the hunder end of the body; seta a not larger in the anterior part of the body; numbers not counted, except on ii, where there are 16 . Clitellum xiv-xvi $(=3)$, without seta. Male pores very meonspicnous, in setal zone; in front of and behind the pores aro slightly curved grooves, and at tumb lip surrounding the whole; 13 seta intervene between the pores. Female pore single, median. Spermathecal pores four pairs, in $5 / 6-8 / 9$, in about the same position as the male pores (not seen externally), the openings laterally situated. No genital papilla.

Septa 5 . $6-7 / 8$ much strengthened ; 8/9 absent; 9,10 and $10 / 11$ moderately strong, the following ones decreasingly so. Intestinal reca orginate in xxvii, rather long, reaching xx, gradually tapering, without secondary bulgings. Seminal vesicles in xi and xil. Prostates large, occupying xvii-xx, much lobulated, somewhat ear-shaped; duct rather narrow, looped, of equal diameter throughout; no copulatory pouch. Spermathecal ampulla of an meerted pear shape, comparatively small; duct relativelv very large, longer than ampulla and more than half as thick, thickening even more towards the ectal end; diverticulum longer than main pouch, entering ectal end of duct, itself consisting of a duct and a moniliform seminal chamber as long as or not so long as the duct portion.

Remarlis. The species is described from a single specimen. Beddard considers its relations to P. trinitatis and heterochatu, and concludes that it is distinct. Michaelsen (58, p. 11) considers it to be possibly identical with P. heterochata. According to the figures, however, the form of the spermathece and especially of the diverticulum should distinguish it from 1 . heterochceta, as well as perhaps the prostate, which is vestigial or absent in the latter.

Distribution. Imported to Kew Gardens from the neighbourhood of Calcutta.

2. Pheretima andamanensis Mich.

> 1907. Pheretima andamanensis, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 164 .
1909. Pheretimn andamanensis, Michaelsen, Mem. Ind. Mus. i, p. 194, pl. xiii, fig. 25.

Length 108-120 mm. ; maximum diameter 6-6 $\frac{1}{2} \mathrm{~mm}$. Segments ca. 110. . Colour dorsally dark brownish to violet-grey, ventrally yellowish grey. Prostomium epilobous ca. $\frac{2}{3}$, small, tongue open behind. Dorsal pores from 12/13 (?), distinct only behind clitellum. Setse a little enlarged in front of clitellum; rings nearly continuous, slightly broken dorsally; setæ closer set ventrally than dorsally ; numbers $32 / v, 45 / x, 52 / x i i, 58 / x i x$, 54/xxvi. Clitellum ring-shaped, xiv-xvi $(=3)$, setex present. Male pores about one-quarter of circumference apart, on almost circular smooth papillæ, which are themselves seated on large transversely oval rough protuberances occupying the whole length of x viii : about 15 setre intervene between the pores. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, about $\frac{2}{7}$ of circumference apart. No copulatory papille.

Septumi $7 / 8$ fairly stout, $8 / 9$ and $9 / 10$ wanting, $10 / 11$ and $11 / 12$ fairly stout, $12 / 13$ and $13 / 14$ still stouter. Gizzard large ; cara

Fig. 119.-Pheretıma andamanenss Mich. ; spermatheca, \times.
long and simple, extending forwards for about four segments, tapering. Typhlosole simple. Testis sacs unpaired, semicircular with the convexity anterior, in x and $x i$, separate from each other. Seminal vesicles two pairs, in xi and xii, somewhat grauular, each with a dorsal rather large stalked appendage. Prostates loose and tuft-like, extending over segments xix-xxiii ; duct thickened and muscular in its ectal two-thirds, thinner in the proximal third, forming an S-shaped curve; no distinct copulatory pouches. A large accessory gland in front of each prostate, in appearance resembling a Pheretima-prostate, mors compact than the real prostate of this species, occupying xvi-xviii, and differing from the similar gland of P. osmasteni in the fact that the small divisions of the gland have no distinct ducts; its duct is thin, straight, ectally somewhat broader, opening just in front of and medial to the true prostate. Spermathecal ampulla sac-shaped; duct somewhat shorter, moderately set off, entally half as thick as ampulla, ectally much inflated; into this ectal part open a number
of irregularly sac-like sessile accessory ampulle, and also a thin tubular diverticulum alnost double as long as the main pouch and dilated entally to form a simple pear-shaped seminal chamber (text-fig. 119).

Remarks. Allied to ${ }^{1}$. burchardi and osmastoni.
Distribution. N. (inque Island, S. Andaman Island.

3. Pheretima andersoni Mich.

1907. Pheretima andersoni, Micharls, Mt. Mus. Hamburg, xxiv, p. 166, text-fir. 13.
1908. Iheretime andersomi, Micharlsen, Mem. Ind Mus. i, p. 198, pl. xiii, fiy. 27 , texthg. 90 .

Length ca. 250 mm .; maximum diameter 6 mm . Segments 120. Colour dorsally and anteriorly chestnut, on other parts of the body yellowish brown. Prostomium epilobous ca. $\frac{1}{3}$, tongue open behiad. Dorsal pores sisible only behind the clitellar region. Setæ everywhere very minute, the rings equally dense throughout, without gaps; numbers ca. 100/A. Clitellum ring-shaped, xiv$\mathbf{x v i}(=3)$, apparently without setix. Male pores in the setal zone, ca. one-third of circumference apart, in the centre of broad slightly-raised papilla, oval in shape, limited by a furrow; about

Fig. 120.-P'her ctıme ander:ont Mich., spermatheca. $\times 5$.
26 seta between the pores. Spermathecal pores four pairs, in 5/6-8/9, ventro-lateral, about two-fifths of circumference apart, on small papille. Copulatorv organs as six large transversely oval cushions, mid-ventral, in 19/20-2t/25, resembling a row of buttons, the interval between one cushion and the next small.
Septum $5 / 6$ thin, $6 / 7$ and $7 / 8$ much thickened, $8 / 9$ and 9,10 wanting, $10 / 11$ and $11 / 12$ much thickened. Gizaard large. Cacul large, slender, simple, without any dilatations, arising in xxvi. Last hearts in xil. Testis sacs two pairs, in x and xi, united in the middle line, the anterior smaller than the posterior; each sac communicates with a pair of seminal vesicles in the next following segment. The vesicles in xii larger than those in xi, all incised; the testis sacs in x also apparently communicate with a pair of seminal vesicles in x, which are flat and deeply incised. Prostates with flat heart-shaped glandular portion occupying several segments; duct fairly long, muscular, thinner at the ends, forming a loop which extends backwards; no copulatory sac

Spermathecal ampulla sac-like; duct short, rather thick though much thinner than the nmpulla: diverticulum a slender tube, with a wavy course, dilated at the free end to forin a simple pear-shaped seminal chamber (text-fig. 120).

Distribution. Amherst, Lower Burma.

4. Pheretima anomala Mich.

1907. Pheretima anomala, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 167, text-fig. 14.
1908. Pheretima anomalu, Michaelsen, Mem. Ind. Mus. i, p. 189, text-fig. 17.
Length $80-90 \mathrm{~mm}$.: diameter $5-5 \frac{1}{2} \mathrm{~mm}$. Segments cn . 130 . Colour? Prostomium epilobous ca. $\frac{1}{2}$. Seta very small, rings closed dorsally and ventrally, setæ equally closely set all round : numbers $70 / \mathrm{v}$, $84 / \mathrm{x}, 74 / \mathrm{xxr}$. Clitellum ring-shaped, xitxri (=3); setre present ventrally on xiv. Male pores on large, conical papille on xx, about one-sixth of circumference apart, approximately in line with k, about 16 sete intervening. No spermathecal pores. Copulatory papillar, paired, conical, rather smaller than the porophores and a trifle more laterally situated, mostly four pairs in the setal zones of xviii, xix, xxi, and xxii ; one sometimes wanting on one or other side, occasionally supernumerare papillæ on xvii or xxiii.

Septa 4/5-8/9 moderately thick, 9/10 thin, 10/11-13/14 very little thickened, none missing. A iery large gizzard in viii. Intestinal cæca large, slender, simple. T'estes seven pairs, in v-xi, with corresponding funnels; the five anterior pairs free, the two hinder-the homologues of the normal organs-enclosed in small testis sacs. No seminal vesicles seen. Prostates with large glandular part occupying several segments, much incised, moderately loose, almost grape-like; duct somewhat thickened ectally, describing a hroad almost S shaped curve; no copulatory pouch. No spermathecæ.
Distrihution. Sibpur, near Calcutta.
5. Pheretima bicincta (E. Perr.).

190!. I'heretina violacea, Michaeken, Men. Ind. Mus. i, p. 188.
1910. Pheretima bicincta, Michaelsen, Abh. Ver. Hamburg, p. 81. 1916. Pheretima bicincta, Stephenson, Rec. Ind. Mus. xii, p. 335.
1895. Perichceta violacea, Beddard, Monog. p. 407.
1900. Amyntas violaceus, Beddard, P.Z.S. 1900, p. 641.
1900. Pheretima violacea, Michaelsen, 'Tier. x, p. 312.
1922. Pheretima bicincta, Michaelsen, Capita zool. i, 3, p. 23.

Length $50-80 \mathrm{~mm}$.; diameter 23 mm . Segments 78. Colour during life a red-violet dorsally, clitellum yellow; these tints largely preserved in alcohol. Prostomium tanylobous, or epilobous $\frac{1}{4}$, with tongue widely open behind. Dorsal pores from 11/12
or $12 / 13$. Setal rings with quite sunall dorsal and ventral breaks; setro of anterior segments enlarged, except on x where they are markedly smaller, small on the first two segments of the clitellum, large on the third; numbers $44 / \mathrm{v}, 50 / \mathrm{x}, 40 / \mathrm{xvi}$. Clitellum xiv-xvi (=3), with complete ring of setæ; clitellum may be wanting on hinder half of xvi. Male pores in line with f, 4-8 setæ between the pores, about one-seventh of circumference apart, on considerable conical blunt porophores. Spermathecal pores five pairs, in $4 / \overline{0}-8 / 9$, in line with f and with the male pores, except that the last may be rather further from the middle line. A pair of papillæ, not alwars present, just behind and to the outer side of the male pores, in 18/19, continuous with the raised area on which the pores are situated. A pair of small glandular depressions ventro-lateraily in 9/10.

Septa $5 / 6-7 / \mathrm{s}$ and $9 / 10-10 / 11$ thickened, $8 / 9$ absent. (iizzard elongated, firm, barrel-shaped. Intestine begins in xv or xvi; cæca very short, broad, apparently rudimentary, or may be altogether absent : originating in xxii (\%) or xxii. Last hearts in xii. Testis sacs in x and xi, large, smooth, united dorsally over the gut, and containing the hearts also. Seminal vesicles in xii, meeting dorsally, cut up into numerous small lobules : a second pair of vesicles, not apparent, found by sectioning within the testis sacs of xi. Prostates occupy xvi-xx; duct bent upon itself, the ectal half thick-walled and spindle-shaped; vas deferens joins the commencement of the thin-walled portion. Glandular cushions iuternally, corresponding to the papillæ outside. Ovisacs present in xiv. Spermathecal ampulli spudle-shaped, elongated; duct, not marked off, is mercly the narrower ectal portion of the pouch; diverticulum from the ectal eud of the whole, narrow, about half as long as the pouch, swollen at the extremity.

R'emarks. The examination of the original specimens of Perrier's Perichatal bicincta (ranked in the Tierreich as a doubtful species) showed (Michaelsen, 58) that they are identical with Beddard's P. violacen, originally described from Penang.

Distribution. IIyderabad in the Deccan, and Trivandrum, S. India. Outside India from Penang, the Philippines, Java, and the West Indies.
6. Pheretima birmanica (Rosa).
1888. Pericheeta brmanica, Rosa, Ann. Mus. Genova, (2) vi, p. 164, pl. iii, figs. 7-9.

1890̃. Perichata birmanica, l3eddard, Monog. p. 405. 1900. Amyntas birmpret s, Beddard, 1. Z. S. 1900, p. 637. 1900. Pheretima bij

Length ca. 130 mm .; diz ter 6 mm . Segments 112. Colour in alcohol a dirty flesh-con r. Prostomium? Dorsal pores from 12/13. Setæ in continuous rings; number ca. 70. Clitellum
xiv-xvi ($=3$). Male pores on slightly swollen areas, lighter in colour, in line with the l5th setæ. Spermathecal pores three pairs, in $5 / 6-7 / 8$, in line with the 15 th setw. No copulatory papillw.

Septa $5 / 6$ and $6 / 7$ thickened. Gizzard barrel-shaped. Intestinal ceca present. Funneis in x and xi. Seminal vesicles in xi and xii, very small. Prostates well developed, lobed according to the three segments through which it extends; duct narrou, forming a U-shaped loop. Spermathecal ampulla oval; duct short, not distinctly marked off; diverticulum in the form of a stalked oval sac, half as long as the main pouch, in which lies a much convoluted tube.

Remarks. The glands described on the anterior faces of septa $5 / 6$ and $6 / 7$ are presumably nephridia. Testis sacs were not distinguished, perhaps on account of the bad condition of the specimens. The sac which forms the spermatheral diverticulum must be a connective-tissue investment, and the contained tube the proper diverticulum.

Distribution. Bhamo, Burma.

7. Pheretima bournei (Rosa).

> 1890. Perichueta bournei, Rosa, Amn. Mus. (ienova, xxa, p. 110, pl. i, figs. 3-5.
> 1895. Pericheeta bournei, Beddard, Monog. p. 403.
> 1900. Amyntas bournei, Beddard, P. Z. S. 1900, p. 633.).
> 1900. Pheretima bournei, Michaelsen, Thier. a, p. 157.

Length 150 mm .; diameter 5 mm . Segments ca. 130. Colour dorsally brown, ventrally flesh-colour. Prostomium combined pro- and epilobous. Dorsal pores from 12/13, visible on clitellum also. Setal rings closed; setre closer set ventrally than dorsally ; number ca. 60 . Clitellum xiv-xvi ($=3$). Male pores smalk, in line with 15 th setæ, each accompanied by two small papillæ, in front of and behind the setal zone respectively, to the inner side of the pore, and so forming a triangle with it; external to the pore a semicircular ridge with its convexity outwards. Spermathecal pores three pairs, on vi, vii, and viii, near the posterior border (not in the furrows), in line with the 1!th seta. Copulatory papillæ three pairs on each side, as small tubercles near the spermathecal pores, ventral to and behind each one.

Septa 8/9 and 9/10 wanting; 5/6-7/8 much and 10/11-12/13 slightly strengthened. Gizzard of the form of a truncated cone, slightly swollen in the middle and with the lower angle rounded off. Esophagus swollen and transversely striated in x-xiv. Intestine begins in $\mathbf{x v}$; cæea finger-shaped, originating in xxvii. Testis sacs two pairs, in x and xi, all sepgrate from each other. Seminal vesicles compact, in xi and xii. Prostates of moderate size, much lobed; duct narrow, in the form of a loop. Spermathecal ampulla of an inverted pear shape; duct narrow, about as long as ampulla ; diverticulum tubular, with a large ovoid seminal
clamber at ectal end, longer than whole of main pouch, joins ectal end of duct. Glandular swellings internally correspond to the tubercles seen externally near the spermathecal pores.

Remarks. Beddard (P.Z.S. 1900, p. 635) is "much disposed to think that this species is really hawayanvs." Michaelsen allows it in the Tierreich, and in his list in 54.

Distribution. Cobapo village, Cheba or Biapo Dist., Burma.

8. Pheretima burliarensis (A. G. Bourne).

1886. Pericherta burliarensis, Bourne, P.Z.S. 1886, p. 667.
1887. 1'heretima burliarensis, Michaelsen, Tier. x, p. 仓58.

Length 100 mm .; diameter 3 mm . Segments 123. Setal rings widely broken ventrally, especially in the segments following on the male pores; in these segments also the setæ a are larger than the rest : two pairs of groups of enlarged setm m vii and viii ; numbers $38-40$. Clitellum xiv-xvii $(=4)$, setæ absent. Spermathecal pores four pairs, in $5 / 6-8 / 9$. Copulatory papillæ in xix, xx, xxi, and xxii.
(Hizzard in x (\%). Intertinal ceca originate in xxvi, and extend forwards to xxiv. Spermathece with a single diverticulum.

Remarls. Beddard does not mention this species in his revision of the genus (P.Z.S. 1900); Michaelsen admits it in the Jierreich and in his Indian lists (54,58), but thinks that it may possibly be identical with P. rodericensis, a peregrine species which extends from Japan across the Indian Ocean and A frica to South America and the W. Indies.

Bourne's statement that the gizzard is in segment \mathbf{x} in this and a few other forms may perhaps be due to his having numbered the segments from behind ; the free space between septa $7 / 8$ and 10/11 (if, as often, two septa were missing) would then appear to be segment x.

The papillm on xix, xx, xxi, and xxii are said to be perhaps apertures, but no mention is made of anv structure opening there; it is not stated whether they are single or paired.

Distribution. Burliar, Nilgiri Hills, s. India.

9. Pheretima carinensis (Rosi).

1890. Perichata carinensis, Rosa, Ann. Nus. Genova, (i a a) x, p. 107, pl. 1, figs. 1, 2.
1891. Perichata carinensis, Beddard, Monog. p. 404.
1892. Amyntas carinensis, Beddard, 1'. Z. S. 1900, p. 625.
1893. Pheretima carinensis, Michaelsen, Tier. x, p 260.

Length $120-200 \mathrm{~mm}$; diameter $6-7 \mathrm{~mm}$. Segments 150 . Colour brown dorsally, yellowish ventrally ; clitellum darker than the ventral, lighter than the dorsal surface. Prostomiun combined pro- and epilobous, tongue with parallel sides. Dorsal
pores from 11/12 or 12/13. Setal rings mostly completely closed; setæ more closely set ventrally than dorsally ; number ca. $60 / \mathrm{viii}$. Clitellum xiv xvi ($=3$); dorsal pores absent. Male pores a little behind the setal zone, ventro-laterally situated, in line with the 15th seta, having the form of papillæ bordered by eye-like markings. Spermathecal pores three pairs, in $6 / 7-8 / \dot{9}$, in line with the 10th setæ. Copulatory papillæ one pair, in xviii, of variable form, on the anterior part of the segments and internal to the male pores, approximately between setæ c and g; their ${ }^{-}$ length is greater than their width, and they reach groove $17 / 18$ at their anterior end.

Septa $8 / 9$ and 9,10 wanting. (izzzard of the form of a truncated cone, slightly swollen in the middle and with the hinder angle rounded off. Funnels in x and xi. Seminal vesicles two pairs, the anterior in xi, relatively small, tongue-shaped, slightly lobed, the posterior three times as long as wide, rectangular, occupying a variable number of segments, and tonching the prostates behind. Prostates lobed, occupying three segments; duct long, muscular. Glandular elevations internally corresponding to the papillx on the external surface. Spermathecal ampulla oval; duct half as long as ampulla, bent in the form of a retort; diverticulum narrow, tubular, bent, almost as long as main pouch, arising from ectal end of duct.

Distribution. Metelio, Cheba or Biapo Dist., Burma.
10. Pheretima elongata (E. P'rr.).
1909. Pheretimu biserialis, Mlichaelsen, Mem Ind. Mns.i, p. 187. 191(). Pheretima elongata, Michaelsen, Alb. Ver. Hamburg, xix, p. 84.
1920. Pherrtima elongatu, Stephenson, Mem. Ind Mus. vii, p. 22%. 1921. Pheretıma elonyata. Michaelsen, Mt. Mun. Hamburg, p. (88. 1922. Pheretıma elongata, Stephenson, Rec. Ind. Mus. xxiv, p. 43:3.
1872. Perichate elongata,]:. Perrier, N. Arch. Mns. Paris, viii, p. 124, pl. iv, fig. 70.
1805. Perichata acystis + Perichater Diserialis + Pericheta elongata, Beddard, Monog. pp. 423, 430, 4:31.
1900. Amyntas biserialis, Beddurd, 1'. Z.S. 1900 , p. 658.
1900. Pheretima biserialis + I'heretima elonyata, Michaelsen, Tier. $\mathrm{x}, \mathrm{pp} .256,265$.
Length $95-230 \mathrm{~mm}$. ; diameter $4-5 \mathrm{~mm}$. Segments 221. Colour greyish yellow. Prostomium without dorsal process. First dorsal pore in 12/13. Setal rings closed dorsally; ventral setæ enlarged in anterior part of body, but diminishing regularly from the middle line, a larger than b, b than c, etc.; intersetal intervals also diminish, act larger than $a b, a b$ than $b c, b c$ than $c a l$, thenceforward equal; in middle of body the diminution of the setre cannot be followed beyond the first, a alone being enlarged, while $a a$ is larger than $a b, a b$ than $b c$, the rest equal; numbers 81/v, 90/x, 79/xiii, 70/xix, 70/xxvi. Clitellum usually without setæ,
xiv-xvi (=3). Male pores about one-quarter of circumference apart. Spermnthecal pores mostly two pairs, in 5/6-6/7, about ${ }_{5}^{4}$ of circumference apart, some or all often wanting. Copulatory papillæ three to seven pairs, on xix and the following segments, one pair on the anterior part of each segment, each transversely oval, rather nearer the middle line than the male pores.

Septa $5 / 6$ and $6 / 7$ much, and $7 / 8$ very much thickened. No intestinal caeca. Last heart in xii. Testis saes in x and $x i$, those of each seginent completely fused, projecting round the gut so as to resemble seminal vesicles, enclosing alimentary canal, hearts, and dorsal vessel, as well as the seminal vesicles of xi. Seminal resicles in xi, xii, and xiii. Prostates with fairly large glandular portion, much cut up into lobes; duct U-shaped; no copulatory pouch. Spermathecæ may be absent; ampulla spherical; duct fairly short, narrow; diverticulum tubular, half to two-thirds as long as main pouch.

Remarks. The identification of P. elongat, and biserialis rests on an examination of the original specimens of I '. elongata (Michaelsen, 58). The species is widely peregrine.

Distribution. Bombay, Karachi, and Manmad, in the Bombay Presidency; Calcutta and Namkana, Sundarbans, in Bengal; Hyderahad, Deccan; Palia, Indore, and Ujjain, in Central Indıa: Kandy and Panadhure, (eylon; Mockoh, Mhagananola, and Manakoti, in Coorg, s. India; Shimoga, in Mysore. Outside India from the Philippines, Malay Archipelaro, Comoro Islands, Madagascar, Dutch Guiana, Venemula, W. Indies, Central America: indeed, is world-wide in the tropies and sub-tropics.

11. Pheretima feæ (Rosu).

1sgs. I'erichata fece, Iosa. Amm. Mus. (ienova, (2) vi, p. 161, pl. iii, figs. 1-6.
18:9.7. Perichedu frea, Jeddad, Monog. p. 4:34.

1900. Pheretima fea', Michaelsen, 'Tier. x, p. ©66.
1916. Pheratima ferm, Stephenson, Rec. Ind. Mus. xii, p. 3355.

Length 180-360 mm. ; diameter 7-9 mm. Segments 90-160. Colour dorsally blackish, ventrally paler; clitellum brownish black. Prostomium eplobous $\frac{1}{2}$, tongue not cut off behind. First dorsal pore in 12/13. Setæ in rings which are closed ventrally and closed or almost closed dorsally ; setæ equally distant throughout, present on clitellum ; number about 100 in spermathecal region. Clitellum xiv-xvi, and in addition small parts of xiii and xii ($=$ more than 3); no dorsal pores or setm present. Male pores in line with 15th setæ; on round flat papillæ $1 \frac{1}{2} \mathrm{~mm}$. in diameter, ventro-laterally situated and taking up the whole length of the segment. Spermathecal pores four pairs, in $5 / 6-8 / 9$, in line with 11 th or 12 th setæ. No other genital markings.

Septa 5/6-7/S and 10/11-11/12 much strengthened, 8/9 and9/10 wanting. Giznard barrel-shaped, posterior border somewhat swollen, occupies viii, ix, and part of x; a glandular ring round alimentary canal in x. Intestinal ceca as narrow cones, without secondary diverticula. Testis sacs $m x$ and $x i$, single in each segment, but those of the two segments quite separate. Seminal vesicles two pairs, the anterior, in xi, small, the posterior, in xii, much longer and trilobate, extending back to the level of $x v$ by bulging the septa backward. Prostates long, much cut up into lobes; duct long, prolonged backwards as far as xxv as a \mathbf{U}-shaped loop, with the limbs parallel and close together. Spermatheca four pairs, the hinder the larger: ampulla ovoid; duct rather short and narrow; diserticulum enters ectal end of duct, is tubular, bent in a zigzag or coiled, and when extended is longer than the main pouch.

Remarks. The "gland" in seament x is a flange-like collar round the cosophagus, resting against the hinder end of the gizzard; microscopically it is composed of small follicles, like those of the œesophageal blood-glands behind the pharyux in P. posthuma, etc.

Rosa found the intestinal cæca originating in xxviii and extending forwards to xxy ; they arose in axvi in my specmens.

Distribation. Kawkareik (Kokareet), Amherst District, Lower Burma.

12. Pheretima hawayana (Rosit).

 tip. 1.
1900. Amyntus hawryamus, Beddard, 1’.Z.S. 1900, p. 64\%).
1900. Pheretima bariodensis + Pheretima hau "!у"ua, Michaelsen, Tier. x, pp. .n54, -71.
1909. Pheretıma harayuma f. typica + Pheretimu hacrayanu subsp. harbudensıs, Miehaelsen, Mem. Ind. Mus. i, p. 18i.
1910. Pheretima haucayana f. typica, Michatsen, Alh. Ver. Ilamburg, xix, p. 8:).
1913. Pheretıma hawayana, Stephenom, Spol. '/evl. viii, p. 271.
1914. Pheretima harayama, Stephenson, Reer. Ind. Mus. a, p. 343.
1916. Pheretima hawayuna subsp. !!pecta + subsp. barbadensis, Pranhad, J. Bombay Soc. xaiv, pp. 499, 501, pl. i, tigs. 3, 4; pl. ii, figs. 3 -5.
1916. Pheretima hawryana f. typien, Ntephenson, liec. Ind. Mus. sii, p. 334.
1917. Pheretma haucre!ana, Stephenson, Quart. Journ. Mic. Sici. laii, p. 2(67, pl. xix, fig. 5.
191\%. Pheretima hawayana, Stephenson, Rece. Ind. Mus. xiii, p. 386.

191×. Pheretima hravayan", Thapar, Hec. Ind. Mus. xv, p. 71, pl. vi, tig. 1.
1919. Pheretima haraynan + Pheretima barbrulensis, Bahl, Quart. Journ. Mic. S'ci lxiv, pp. 103, 104.
1919. Pheretima hawayana. Stephenson \& Llaru Ram, Tr. Roy. Sice lidin. lii, p. 439, pl. tige. 1-6.
1919. Pheretıma hawayana, Stephenson \& Prashad, Tr. Roy. Soc. Edin. lii, p. 460, pl. figs. 1, 2.
19:0. Pheretima havayana, Stephenson, Mem. Ind. Mus. vii, p. 2.2.

I乌2l. Pheretima haroayana, Stephenson, liec. Ind. Mus. xxii, p. 760.
192. Pheretima harayana, Stephenson, Lee. Ind. Mus. xxiv, p. 433.
1891. Perichata hawreyanu, Rosa, Ann. Hofmus. Wien, vi, p. 396, pl. גiv, figs. 7, 9.
189.). Perichata barbudensis $+P$. pallida $+P$. hawayana $+P$. asprer!illum, leddard, Monon. pp. 41:, 41\%, 420, 430.
1900. Amyntas haveryames, Beddard, P. Z. S. 1900, p. 645.

Length 50-16.) mm. ; diameter 3-5 mm. Segments 78-95. Colour greyish brown with violet shimmer. Prostomium combined pro- and epilobous, or epilobous $\frac{1}{2}$ with broad tongue. Dorsal pores from 10/11. Setio on raised rings; rings closed, or sometimes distinctly broken; ventral setæ of iii-x or fewer segments may be enlarged ; numbers $44 / \mathrm{ix}, 49 / \mathrm{xi}, 56 / \mathrm{xii}, 54 / \mathrm{xix}$, $56 / \mathrm{xx}$ ii. Clitellum xıv- $\frac{1}{2}$ xvi or xvi ($=2 \frac{1}{2}-3$) ; ventral setæ may be present on xui and xiv. Male pores on small slightly raised papillæ in line with setie $i, \frac{2}{7}$ of circumference apart. Spermathecal pores three pairs, in $5 / 6,6 / 7$, and $7 / 8$, in line with e; or two pairs in $5 /(6$ and 6/7. Copulatory papillæ as pigmented raised or sometimes depressed spots, in irregular groups of two or three to the inner side of the male pores; and of ten in transverse lues on the anterior parts of xviii and xix and posterior parts of xvii and xviii. Small papillæ may also occur on the posterior part of vii, slightly median to the line of the spermathecal pores, and in varying positions on the hinder part of viii.

Septa 5/6-7/8 thickened, 8/9-9/10 absent, 10/11-11/12 thickened. Gizzird bell-shaped. Intestine begins in xv ; caca originate in xxvi or xxvii, without secondary lobulations or with lobulations along the ventral border; typhlosole a small ridge. Testis sacs in x and $x i$. Seminal vesicles in xi and xii, irregularly lobulated. Prostates long, rectangular, extending over six or seven segnuents, xvii-xxii or xxiii, lobed according to the segments; duct almost straight, forming a single loop, or bent in the shape of an S. An ovisac may be present in xiv. Spermathecte with circular or oval ampulla; duct narrow, three-quarters as long as ampulla; diverticulum narrow, tubular, somewhat coiled, equal or nearly equal in length to main pouch, with small terminal pear-shaped dilatation, discharges into ectal end of duct. Small glandular masses on inner side of body-wall corresponding to papilla externally.

Remarlis. Beddard (37 a) united P. barbadensis and hawayana; subsequently Michaelsen placed barbadensis as a subspecies of hawayana (54), remarking that he had not met with any specimens which aroused any doubt as to where they should be placed--in the typical form or in the subspecies. Later 1 found
specimens with intermediate characters, or with some characters of the one form and some of the other, and therefore united the two (69, 71, 75). Prashad differs in opinion (82), and keeps the subspecies distinct.

Michaelsen finds the distinctions between the two to be the more robust habit of the type-form, the stronger setre in the anterior part of the body, and the fact that in the typeform "the papillæ near the male pores are always united at each side, occupying an oval oblong area medial from the male pores and mostly somewhat oblique," while in the subspecies "the papillæ near the male pores are scattered, partly very near the male pores, partly near the median ventral line." Prashad thinks that barbudensis is to be distinguished by the unbroken rings of setæ, the clitellum extending over the whole of three segments, without setæ usually and constricted, the prostatic duct straight, not with an S-curve; what he says regarding the papillo is partly contradicted by his own description of subsp. barbadensis, and the difference in the spermatheral ampullio of the two forms seems from his figures to be one of degree of distension rather than one of slape.

The species being one of the commonest worms in India has bren used for a number of morphological imestigations: Stephensoll and IIaru Ram have investigated the prosiate (92), Stephenson and Prashad the asophagus (91), Bahl the nephridial cystem (90), Thapar the lymph-glands (88), and Stephenson the pharyngeal gland-cells (87).

Distribution. Lahore; Nepal Valley; Kurseong in Darjiling 1)istrict: Manipur, Assam; Dehra Dun, Bindrahan near Muttra, Ramnee in Garhwal; Rangamati in Bengal: Udaipur in Rajputana; Bombay ; Pattipola in Ceylon; doubtless it oceurs practically throughout the whole of India. Outside India it is also widely spread, e. !., Borneo, China, Mauritius, Mawaii, Bermuda, Barbados, S. America, Teneriffe, and other places.

13. Pheretima heterochæta (Mich.).

> 1886. Perichetu mirabilis, Bourne, P. Z. S. 18s6, p. cisi. 1895. Perichatu indica (part.), Beddard, Monog. p. 4:27. 1897. Perichceta indica var. ceylonica, P. i. var. reylunensis, Michaelsen, Mt. Mus. Hamburg, xiv, pp. 24(i, 163.
> 1900. Aminytas heterochuctus, Beddard, 1'. Z. S. 1900, p. 622.
> 1900. Pheretimu indica (part.) $+P$. indica var. ceylomicu, Nichaelsen, Tier. x, pp. 275, 276.
> 1909. Pheretima heterochata. Michaelsen, Mem. Ind. Mus. i, p. 189.
> 1910. Pheretimu heterocheta, Michaelsen, Abh. Ver. Hamburg, xix, p. 83.
> 1914. Pheretima heterochata, Stephenson, Rec. Ind. Mus. viii, p, 399.
> 1914. Pheretima heterochiceta, Stephenson, Rec. Ind. Mus. x, p. 343. 1915. 1'heretima heterochata, Stepheuson, Men. Ind. Mus. vi, p. 99. 1916. Pheretima heterochata, Prashad, J. Bombay Soc. xaiv, p. 503, pl. i, tigs. 1, 14 ; pl. ii, fig. 7.
1916. Pheretima heterocheeta, Stephenson, Rec. Ind. Mus. xii, p. 334.
1917. Pheretima heterochata, Stephenson, Quart. Journ. Mic. Sci. Ixii, p. 265, pl. גix, tigs. 1, 3, 4.
1917. Pheretima heterochecta, Stephenson, liec. Ind. Mus. xiii, p. 385.
1918. Pheretima heterochata, Thapar, Rec. Ind. Mus. xx, p. 71, pl. vi, fig. 2.
1919. I'heretima heterocheta, Bahl, Quart. Journ. Mic. Sci. lxiv, p. 104.
1920). Iheretima heterochecta, Stephenson, Mem. Ind. Mus. vii, p. 22.2.

1921 Pheretima heterochæta, Stephenson, liec. Ind. Mus. xxii, p. 7 (i0.
192.. Pheretma heterocheeta, Stephenson, leec. Ind. Mus. xxiv, p. 433.

Length ($00-160 \mathrm{~mm}$.; diameter $3-5 \mathrm{~mm}$. Segments $91-110$. Colour yellowish grey, brown dorsally in middle of body; setal zone whitish, and in anterior and posterior regions of the body raised as a ridge. Prostomium epilobous $\frac{2}{3}$. Dorsal pores from $10 / 11$. Dorsal and ventral breaks in the setal rings small, less than $2 a b$ and $2 y z$; setie decrease in size from a outwards, dorsal sete smaller and closer set than the ventral, especially in the anterior part of the body, where the ventral setie are much enlarged; setal intervals also decreasing outwards from the middle line; setæ of x smaller than of other segments; numbers up to 40 in front of clitellum, $40-5+$ behind. Clitellum ringshaped, xiv-xvi ($=3$), sete absent, dorsal pores present. Male pores on elevated papille, about $\ddot{\Xi}$ of circumference apart, 12 setæ intervening. Spermathecal pores four pairs, in 5/6-8/9, eye-like, about $\frac{1}{3}$ of circumference apart. Small papillw, sometimes altogether wanting, paired, anteriorlv on vii and viii, less often on vi and ix, somewhat medial from the spermathecal pores.

Septa 5/6-7/8 much strengthened, $8 / 9$ and $9 / 10$ wanting, $10 / 11$ and $11 / 12$ also thickened. Gizzard large, somewhat conical, narrower in front. Intestinal cæca simple. Funnels in x and $x i$, in testis sacs, the sacs of x communicating with each other, those of xi entirely fused. Seminal vesicles two pairs, in xi and xii, irregularly lobed. Ovisacs may be present in xiv. Prostates often more or less vestigial, may be altogether absent; when present, much divided : duct large, muscular, in a horseshoe carve, convex towards the front and imer side; no copulatory pouch. Spermathecal ampulla of an inverted pear shape: duct almost equal in length to ampulla, narrow, muscular; diverticulum long, tubular, dilated at its ental end to a knob-like seminal chamber, often also with lateral seminal chambers.

Remarks. Michaelsen described a var. ceylonica (33), which also figures in the Tierreich, but not in his Indian lists (54, 58). The distinguishing character was the presence of a pair of papillo close to and on the inner side of the male pores.

Bahl has studied the nephridial system, which resembles that of P. posthuma (80), Stephenson the pharyngeal gland-cells (87), and Thapar the lymphatic glands on the intestine (89).

Distribution. Throughout India ; Peshawar and Peshawar Dist.; Lahore; Simla and Naini Tal in the W. Himalayas; Kurseong and other places in Darjiling Dist., Gangtok in Sikkim, aud the Abor country in the E. Himalayas; Manipur, Sadiya, and Cherrapunji, in Assam; Rangamati and Siliguri in Bengal; N. Shan Hills in Burma; Palni and Nilgiri Hills in N. Iudia; Ceylon. Outside India the list includes Japan, Hawaiian Archipelago, Madagascar, the Azores, Sunda Islands, New Caledonia, Comoro Islands, Cape Verde Islands, North. Central, and South America-indeed, as Beddard says, "every"here, including Europe."

14. Pheretima houlleti (b. Perr.).

1872. Perrcheta houlleti, E. Perrier, N. Arch. Mus. Paris, viii, p. 99, pl. i1, figs. ${ }^{31-44, ~ p l . ~ i i i . ~}$
1873. Perichacta houlleti, Bourve, J. Asiatic Soc. Bengal, lviii, p. 111, pl. iii, tigs. 4, 5.
1874. l'erichetu camprenulata, liosa, Amn. Nus. Genova, (2) x, p. 115, pl. i, tigs. 9, 10.
189.5. Perichata hunulleiti, Beddard, Monog. p. 424.
1875. lerrichecta houlleti, Michaelsen, Zuol. Jahrb. Syst. xii, p. 144.
1876. Perrchecta crescenticn, Fedarb, P.Z. S. 1898, p. 447, text-fig. 2.
1877. Amyntas houlleti (part.), Beddard, 1.Z.S. 1900, p. 613.
1878. I'heretima houlleti +1 '. crescentica, Michnelsen, Tier. x, pp. 273, 262.
1879. Pheretima houlleti, Michaelsen, Sb. Boihm. (Yes. Prag xl, p. 12.
1880. Pheretima houlleti, Michaelsen, Mem. Ind. Mus. i, p. 187.

191U. Iheretima houlleti, Michnelsen, Abh. Ver. Inamburg, xis, p. 83.
1916. $1^{\text {heretima }}$ houlleti, Stephensun, Rec. Jud. Mus. xii, p. $: 334$.
1917. 1heretima houlleti, Stephenson, Rec. Ind. Mus. xiii, p. 385,
1921. Iheretima houlleti, Michaelsen, Mt. Mus. Hamburg, xxsiii, p. 68.
1922. Pheretima looulleti, Stephenson. Kec. Ind. Mus. xxiv, p. 434.

Length 75-200 mm.; diameter 4-6 mm. Segments 98-108. Colour variable, purplish-brown on dorsum, with still darker median stripe; pale on ventral surface; clitellum pale. Prostomium epilobous $\frac{1}{2}$ or more. First dorsal pore from $9 / 10$ to 12/13. Setal rings with small dorsal and ventral breaks; $a b$ commonly the largest interval (except aa), but no regular decrease outwards ; setæ a usually oularged; ventral setæ of iv-ix enlarged, and set widely, so that the ventral break disappears here; numbers between 30 and 50 in front of clitellum, 50 or rather more behind (39/r, $42 / \mathrm{viii}, 52 / \mathrm{xii}, 56 / \mathrm{xxiv}$). Clitellum xiv-xvi ($=3$), or $\frac{2}{3} \mathrm{xiv}-\frac{2}{3} \mathrm{xvi}\left(=2 \frac{1}{3}\right)$; dorsal pores present; a few setw present, and these modified-tip trifid and the general form rather stumpy, or tip bifid with a web between the points and the ental end
truncated. Male pores on papillm, about one-third of circumference apart, in line with h. Spermathecal pores three pairs, in $6 / 7-8 / 9$, tar out laterally, it may be almost in the lateral line of the body. No genital papillæ.

Septa 5/6-7/8 thickened, 8/9 and 9/10 wanting, 10/11-13/14 thickened. Cwca originating in xxvii, with constrictions. Testis sacs in x and $x i$, those in xi united ventrally, those in x apparently separate. Seminal vesicles in xi and xii, of considerable size, much cut up into lobes. Prostates large, occupying xvii-xx, much cut up into lobes; duct thinner entally, in the form of a loop, the ends of which are approximated; a considerable copulatory sac, which appears as a porophore when everted. Spermathecal ampulla irregularly shaped, or pear-shaped or heartshaped; duct straight, as long as ampulla, thick, narrowing a little towards ectal end; diverticulum arising from near ectal end of duct, long, tubular, its ental portion much convoluted, the loops closely adpressed into a flattened semi-transparent mass, length of diverticulum in its natural condition'about two-thirds that of main pouch; one or more stalked glands enter extreme ectal end of duct, each of a length less than that of duct, consisting of a narrow stalk surmounted by a nodular ovoid glandular part.

Remarks. Perrier described grape-like glands in vii, the duct going forwards to open into the œesophagus at the level of $6 / 7$ these seem to be blood-glands, such as are found in some other species of Pheretima; but what the "pear-shaped glands" in vi are, which open backwards at the same level, I do not know,-perhaps part of the " pharyngeal glands."

Fedarb described Perichoeta crescentica as a new species (36); it was distinguished from P. houlleti by the clitellar seter not being in any way modified, while in P. houlleti the modification is very characteristic. Her specimens, however, may not have been fully sexual-the seminal vesicles were small, and the whole of the setm were still present on the clitellum. Beddard (37ω) and Michaelsen in the 'Tierreich accept P. crescentica as distinct from houlleti, but the species has disappeared from Michaelsen's later lists (54, 58).
P. houlleti is closely related to P. trivandrana and P. travancorensis; see the remarks under these two species.

Distribution. Rawal Pindi ; Dehra Dun, Bhim Tal, Allahabad, in the United Provinces; Calcutta and Raniganj, in Bengal; Cherrapunji in Assan; Pegu District in Burma; Bombay; Mangalore, Trivandrum, Trichur, Chevagun near Calicut, Merkara (Coorg), Shimoga (Mysore), in S. India; Ceylon. It is also widely distributed outside India, in the Philippines, China, Cochin China, Fiji, Sunda Islands, Java, Comoro Islands, Madagascar, Bahamas.

15. Pheretima lignicola Steph.

1914. Pheretima lignicola, Stephensun, Rec. Ind. Mus. viii, p. 399, pl. xxvii, tig. 17.
1915. Pheretima lignicola, Stephenson, Mem. Ind. Mus. vi, p. 99.
1916. Pheretima lignicola, Stephenson, Rec. Ind. Mus. xii, p. 385.
1917. Pheretima lignicola, Stephenson, Mem. Ind. Mus. vii, p. 223.

Length 105-165 mm. ; diameter 4-6 $\frac{1}{2} \mathrm{~mm}$. Segments 90-130. Colour olive-green or bluish purple, ventrally pinkish. Prostomium epilobous, almost tanylobous. Dorsal pores from 12/13, the first slit-like. Setæ implanted on circular ridges, the rings unbroken ventrally, a very slight break dorsally; in front of the clitellum the setæ are larger than behind, especially those of ii-ix; numbers 22/vi, 44/ix, 47/xii, 65/xxiii. Clitellum xiv-xvi ($=3$); dorsal pores absent, a few setæ ventrally on xiv. Male pores in the setal zone, in large depressions, circular, surrounded by a prominent lip, except on their inner margins ; the whole, including lips, extends nearly over the interval between the setal zone of xvii and that of xix; the pores two-sevenths of circumference apart, 12 setæ intervening. Spermathecal pores four pairs, inconspicuous, in $5 / 6-8 / 9$, two-sevenths of circumference apart, approximately in line with f.

Septum 5/6 thickened, 6/7 and $7 / 8$ much thickened, $8 / 9$ and $9 / 10$ absent. Gizzard cask-shaped, in viii. A collar-like structure round the œsophagus behind the gizzard, consisting of bloodglands, in x. Intestine begins in xiv-xvi; cæca originating in xxvi or xxvii, narrow, simple or crenulated on the dorsal margin. Testes and funnels in x and $x i$, in sacs, the sacs of x small and probably communicating with each other, those in xi larger and

Fig. 121.-Pheretima lignicola Steph.; spermatheca.
separate. Seminal vesicles in $x i$ and xii, those of xi within the testis sacs. Prostates of large size occupying xvi-xx, much cut up into lobes; duct with many windings, becomes thicker and more muscular as it proceeds; stout, smooth, and shining at its termination. Spermathecal ampulla ovoid or heart-shaped; duct of equal length or shorter, stout, muscular, and shining, sometimes fusiform in shape; diverticulum long, narrow, and twisted, its ental portion thin-walled, with numerous small irregularities, its ectal part shining and muscular (text-fig. 121).

Distribution. Dibrugarh, Assam; Lower Burma; Bombay.

16. Pheretima osmastoni Mich.

1907. Pheretima osmastoni, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 163, text-fig. 11.
1908. Pheretima osmastoni, Michaelsen, Mem. Ind. Mus. i, p. 191, pl. xiii, fig. 26, text-fig. 18.
Length $250-320 \mathrm{~mm}$.; maximum diameter $10-11 \mathrm{~mm}$. Segments 126-148. Colour dorsally violet-grey, iridescent; ventrally yellowish-grey. Prostomium epilobous ca. $\frac{1}{2}$, tongue open behind. Dorsal pores from 12/13 (?). Setæ somewhat enlarged in front of the clitellum and in the hinder half of the body, especially dorsally; dorsal setæ in general somewhat larger and further apart thau the ventral; rings with a regular dorsal break, $z z=1 \frac{1}{2}$ or $1 \frac{2}{3} y z$; ventral break small and rregular; numbers 28/v, 50/ix, 58/xiii, 72/xix, 70/xxvi. Clitellum ring-shaped, xiv-xvi ($=3$). Male pores about a quarter of circumference apart, with about 18 setæ intervening, on transversely oval papillæ in the setal zone, the surface of the papillo bearing the small porophores. Female pores apparently paired, but near together. Spermathecal pores three pairs, in 6/7-8/9, about two-sevenths of circumference apart. Copulatory organs as broad, median, transversely oval or rectangular cushions with rounded angles, with numerous closely set fine pores upon them, the openings of small glands; the cushions take up the hinder $\frac{2}{3}$ or $\frac{3}{4}$ of their segments, and are about a quarter of the circumference in breadth; their distrihution is variable, most often one, on \times or rarely on viii, sometimes tuo, on xii and xiii.

Fig. 122.-Pheretima osmastoni Mich.; spermathec: ; $\times 4$.
Septum $6 / 7$ fairly strong, $7 / 8$ very strong, $8 / 9$ and $9 / 10$ wanting, $10 / 11-12 / 13$ very strong, $13 / 14$ hardly strengthened. Gizzard thickly pear-shaped. Cæca fairly long, simple and slenderly coneshaped, extending upwards not forwards. Typhlosole simple. Lymph glands present. Testis sacs two pairs, in x and $x i$; those of each segment communicating with each other, those of the same side separated. Seminal vesicles two pairs, in $x i$ and xii, large, somewhat incised and granular. Prostates loosely and irregularly lobed, extending through ca. xviii-xxii : duct long, in a somewhat irregular loop the ectal limb of which is thick and muscular, the ental much thinner ; no copulatory pouch. A bifid

- accessory gland opens by a simple terminal canal medial to each male pore ; internally this canal bifurcates, the two halves of each gland being situated one in front of and one behind the prostate; each portion is grape-like, consisting of numerous fairly small groups of large gland-cells and their long narrow ducts, which open into a central canal, the main duct of the half gland; lastly the two main ducts unite. An enlarged seta, which must be regarded as a penial seta, between the opening of the male duct and that of the accessory gland. Spermathecal ampulla pearshaped, duct not distinctly set off, narrow, shorter than ampulla; diverticulum long, tubular, narrow, irregularly undulating, with small pear-shaped seminal chamber at the ental end, the whole more than twice as longe as main pouch, opens into ectal end of duct (text-fig. 122).

Remarks. The tips of the penial setw were broken in all specimens. Penial setæ are not known elsewhere in the genus.

Accessory glands are fomd in P. andamanensis also, but their structure is rather different.

Distribution. Port Blair, S. Andaman.

17. Pheretima peguana (Rosa).

> 1890. Perichetu peguana, Rosa, Ann. Mus. Genova, (2) x, p. 113, pl. i, figs. 6-8.
> 189.5. Perichata peguuna, Beddard, Monog. p. 403. 190. Amyntas peyuanus, Beddard, l'. Z. S. 1900, p. 6i28. 1900. Pheretima pegunna, Michacksen, Tier. x, p. 292.
192.2. 1heretima peguana, Michaelsen, Capita zool. i, 3 , p. 44.

Length 170 mm .; diameter 6 mm . Segments ca. 120. Colour grey-brown. Prostomium proepilobous. Dorsal pores from 12/13. Setal rings closed or almost so; setæ larger and set more widely ventrally than dorsally; numbers ca. 56 in spermathecal region, 66/xii. Clitellum xir-xvi (=3). Male pores as sinall fissures with anterior and posterior lips, $\frac{2}{7}$ of circumference apart, in line with 10th seta. Spermathecal pores, three pairs, in 6/7-8/9, a quarter of circumference apart, in line with 12 th seta. Copulatory papillæ two pairs, in 17/18 and 18/19, circular, immediately internal to the line of the male pores, occupying the space between the setal rings of xvii and xix.

Septa $8 / 9$ and $9 / 10$ absent (or $8 / 9$ may be vestigial); $11 / 12$ is the ouly one which is a little thickened. Gizzard in viii. (Esophagus swollen in each segment from x to xiii, and marked by vascular striations. Intestine begins in xv, cara simple, small, originating in xxvi. Two pairs testis sacs, those of each side fused together but not communicating with each other, and not with those of the other side. Seminal vesicles two pairs, in xi and xii, slightly lobed. Prostates occupying about three segments, much cut up into lobes; duct short, narrow, looped, discharges through
a muscular bulb, with copulatory sacs in front of and behind it. Spermathecal ampulla sac-like, duct short; diverticulum long, narrow and tubular, much coiled and enclosed in an oval sac. Accessory glands corresponding to the external papillæ, large, globular, of pearly appearance, consisting of a firm outer membrane enclosing a carity.

Remarks. Rosn, having described the species from Rangoon, afterwards had other specimens from Siam (135), which enabled him to make a few corrections in his former account. Beddard appears also to have had specimens (? he may have examined the Siam specimens which Rosa had, since they belonged to the British Museum), since (37 a) he says:--" I do not agree with Rosa as to the absence of the septum $8 / 9$. I found it to be disturtly present in individuals examined by myself." Michaelsen has recently (131) examined specimens from Lombok and Java; he sectioned the region of the testis sacs; as regards the sac enclosing the coils of the spermathecal diverticulum, it was not very distinct, and the appearance was as if the coils of the diverticulum were united by a jelly-like mass, which in turn was surrounded by a fine membrane.

The spermathecal diverticulum recalls that of P. birmrtinice, and the accessory glands those of Drawida japonica.

Distribution. Rangoon. Outside India from Siam, Iombok, and Java.

18. Pheretima posthuma (L. Vaill.).

1883. Megascolex affinis, Beddard, Ann. Mag. N. II. (5) xii, p. 214. 1895. Perichata posthuma, Jeddard, Monog. p. 424.
1884. Amyntas posthumus, Beddard, P. Z. S. 1900, p. 641.
1885. Pheretima posthumu, Michaelsen, Tier. x, p. 895.
1886. Pheretima posthuma, Beddard \& Fedarb, I'Z.S. 190\%, ii, p. 164, text-ligs. 36-39.
1887. Pheretima posthuma, Michaelsen, Mem. Ind. Mus. i, p. 189.
1888. Pheretima pusthama, Lloyd, Introd. to Biol. for Students in India, p. 68, pl. v.
1889. Pheretime posthuma, Lloyd \& Powell, J. Bumbay Soc. xxi, p. 289, text-figs. 1-is, p. 291.
1890. Pheretima posthuma, Stephenson, Rec. Ind. Mus. vii, p. 278.
1891. I'heretima posthuma, Stephenson, Tr. Roy. Soc. Edin. xlix, p. 764.
1892. Pheretima pasthuma, Stephenson, Rec. Ind. Mus. x, p. 34.2.
1893. Pheretima posthuma, Stephenson, Mem. Ind. Mus. vi, pp. 37, 99.
1894. Pheretima posthuma, Prashad, J. Bombay Soc. xxiv, p. 502, pl. i, figs. $2-\uparrow$; pl. ii, tig. 6.
1895. Pheretinia posthuma, Prashad, 'The Anatomy of an Indian Earthworm, Pheretima posthuma,' lahore, p. 1.
1896. Pheretima posthuma, Stephenson, Rec. Ind. Mus. xii, p. 334. 1917. Pheretima posthuma, Stephenson, Quart. Journ. Mic. Sci. lxii, p. 261, pl. xix, tig. 2.
1897. Pheretima posthuma, Stephenson, Rec. Ind. Mus. xiii, p. 385.
1898. Pheretima posthuma, Thapar, Rec. Ind. Mus.,xv, pp. 71, 74, pl. vi, tigs. 3, 4.
1899. Pherefimen posthuma, Bahl, Quart. Journ. Mic. Sci. Ixiv, p. 73, pls. vi-viii, text-figs. 1-3.
1900. Pheretima posthuma, Stephenson, Mem. Ind. Mus. vii, p. 222. 1921. Pheretima posthumu, Bahl, Quart. Journ. Mic. Sci. lxv, p. 349, text-figs. 1-11.
1901. Pheretıma posthuma, Stephenson, Rec. Ind. Mhs. xxiv, p. 434.

Length $115-130 \mathrm{~mm}$. ; diameter ca. 5 mm . Segments ca. 140. Colour a rich brown. Prostomium ranylobons. Dorsal pores from 12/13. Setæ in unbroken rings; all setæ of approximately the same size; numbers $144 / \mathrm{vi}, 108 / \mathrm{x}, 9 \overline{5} / \mathrm{xx}, 92 / \mathrm{xxxi}$. Clitellum xiv-xvi $(=3)$; sometimes no setæ, at other times indistinct rows of setæ present. Male pores in setal zone, about a quarter of circumference apart, on prominent prpilla; 19 or 20 setæ intervene. Spermathecal pores four pairs, in 5/6-8/9, about onethird of circumference apart. Copulatory papille two pairs, on xvii and xix, very slightly internal to the line of the male pores; occasionally papille on some of the following segments.

Septa 5/6-7/8 much thickened, either 8/9 or $9 / 10$ absent as a rule, $12 / 13$ also thickened. Cæca originate in xxvi, conical, without secondary projections. Typhlosole a slight rulge only. Lymph glands present behind xxvi. 'Iestis sacs median, in x and xi. Seminal vesicles three pairs, in x, xi, and xii. Prostates of moderate size, occupying xvi-xxi, irregularly lobulated; duct thick, looped; no copulatory pouch. Sperinathecal ampulla ovoid; duct not sharply set off, rather longer than ampulla; diverticulum of variable length, as long as or only half as long as ampulla, fairly thick. Small accessory glands correspond to the papillæ on xvii and xix.

Remarts. The worm is well known in India, since it is commonly used, in N. India at least, as the type for elementary study in the colleges; descriptions have been published by Lloyd and Prashad (62, $82 a$).

A considerable amount of morphological work has been done on this species. Stephenson has described parts of the vascular system in detail (72), and Bahl has given a complete description of the whole system in Pheretimu (97), one of the species investigated being the present one. Bahl has described the remarkuble nephridial system, and has shown that the septal nephridia empty themselves by segmentally arranged canals into a pair of supraintestinal excretory ducts, which in turn discharge by segmentally arranged openings into the intestine (90). Thapar has studied the lymphatic glands on the intestine, and the "cœlomic organ" of Beddard and Fedarb, which is shown not to be a constant structure (89).

Lloyd insists, against Powell, on the separateness of the two vasa deferentia of a side as they pass backwards $(63,64)$. According to Beddard the intestinal cæca are,sometimes absent (37a).

An accessory prostate may be present in xvii, with well-developed duct (Stephenson, 86).

Distribution. The worm is universally found in North India, throughout the Punjab, United Provinces, and Bengal (including Bihar), and localities need not be specified. It has also been found in Bombay and Baroda; Ajher and Udaipur, in Rajputana; Gwalior in Central India; the N. Shan States, in Burma; but it has not so far been recorded from Southern India. It is also common outside India in the Pheretima area-the Philippines, Malay Archipelago, Malay Peninsula, Cochin China, as well as in the Bahamas.

19. .Pheretima suctoria Mich.

> 1907. Pheretima suctoria, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 165 , text-fig. 12 .
> 1909. Pheretima suctoria, Michaelsen, Mem. Ind. Mus. i, p. 196, pl. xiii, fig. 28, text-fig. 19.
> 1922. Pheretima suctoria, Stephenson, Rec. Ind. Mus. xxiv, p. 434, text-fig. 1.

Length $75-135 \mathrm{~mm}$. ; diameter $4-7 \mathrm{~mm}$. Segments $103-123$. Colour dorsally and anteriorly chestnut, yellowish brown elsewhere. Prostomium epilobous ca. $\frac{1}{2}$, tongue short and broad, closed behind. Dorsal pores from 12/13. Setæ all nearly of equal size; rings unbroken, intersetal intervals about the same everywhere, except that on the anterior segments they are rather greater dorsally than ventrally; numbers vary greatly, 25-38/v, 35-58/x, 60-70/xiii, 75/xix, 80/xxvi. Clitellum ringshaped, xiv-xvi $(=3)$; setæ absent. Male pores on small papille in setal zone, about one-third of circumference apart. Female pores paired, close together. Spermathecal pores four pairs, $5 / 6-8 / 9$, ventro-lateral, about a quarter of circumference apart. Copulatory organs as a pair of large circular or transversely oval areas on xviii, transgressing the limits of the segment both in front and behind (according to fig.), with smooth surface, either depressed or elevated, of a dark ground colour with numerous lighter spots; these areas are placed between the papillæ of the male pores, which cause a slight indentation of the outer border of the areas; the setal zone causes a similar indentation of the inner border ; 4 to 8 setæ intervene between the discs.

Septa $8 / 9$ and $9 / 10$ wanting, $4 / 5-7 / 8$ and $10 / 11$ slightly thickened, 11/1り-13/14 fairly strongly thickened. Gizzard large. Intestinal cæca simple, slender, originating in xxvi; no typhlosole. Lymph glands present. Testis sacs two pairs, in x and xi ; those of a side, and those of a segment, communicating, the whole appearing as a ring with four regularly arranged globular swellings. Seminal vesicles large, compact, two pairs, in xi and xii. Prostates occupying xvii-xix, much cut up into lobes; duct fairly long and equally thick throughout, irregularly bent; no copulatory pouches. Cushions internally correspond to the discs externally. Ovisacs present in xiv. Spermathecal
ampulla bulbshaped, narrowed entally ; duct sharply set off, half as long and entally one-third as thick as ampulla, narrower ectally; diverticulum irregularly bent or coiled, very long and

Fig. 123.-Pheretima suctoria Mich.; spermathera; $\times 8$.
very thin, tubular, the ental end slightlv dilated; if uncoiled would be two or three times as long ns the main pouch; enters ectal end of duct (text-fig. 1こ3).

Remarks. The above is taken from the original description by Michaelsen. My own specimens from Bombay showed a number of differences. The length was 205 mm ., the colour dark brown; prostomium epilobous $\frac{4}{5}$, the tongue not cut off, and the grooves at its sides hardly differed from the numerous ot her longitudinal grooves round the mouth : the setre of ii-vi were enlarged. The male pores were closer together, scarcely $\frac{1}{4}$ of circumference apart, and at the centre of the discs; the female pore appeared to be single. Septa $5 / 6-7 / 8$ were very stout. The testis sacs enclosed the hearts, and in xi covered in the seminal vesicles also. The prostatic ducts became stouter towards the ectal end. There were no ovisacs. The spermathecal ampulle were ovoid, and the duct narrower entally.

Distribution. The Andamans; Bombay.

20. Pheretima taprobanæ (Bedd.).

1892. Perichreta taprobana, Beddard, P. Z. S. 1892, p. 163.
1893. Perichreta taprobana, Beddard, Monog. p. 411.
1894. Perichata pauli, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 243, pl. fig. 26.
1895. Perichata taprobanc??, Michaelsen, Zool. Jahrb. Syst. xii, p. 140.
1896. Amyntas taprobana, Beddard, P. Z. S. 1900, p. 648.
1897. Pheretima taprobana $+P$. taprobance var. pauli, Michaelsen, Tier. x, pp. 308, 309.
1903, Pheretima taprobana, Michaelsen, Sb. Böhm. Ges. Prag, $\mathrm{xl}, \mathrm{p} .12$.
Length $80-145 \mathrm{~mm}$. ; diameter $5-7 \mathrm{~mm}$. Segments $95-122$, triannular in consequence of elevation of setal ridges. Colour (preserved) pale brownish grey, clitellum a darker brown. Prostomium epilobous $\frac{1}{2}$; a middorsal longitudinal furrow over prostomium and i. First dorsal pore in 11/12 or 12/13. Setal
rings indistinctly broken dorsally, closed ventrally; $z z=1 \frac{1}{3}$ to $2 y z$; numbers $70 / \mathrm{v}, 77 / \mathrm{x}, 70 / \mathrm{xix}, 54 / \mathrm{xxvi}$. Clitellum xiv-xvi $(=3)$; setæ present. Male pores on small, slightly raised papillæ, $\frac{1}{3}$ of circumference apart. Spermathecal pores one pair, in 7/8, almost half the circumference apart. ' Copulatory papillæ circular, sunk in the middle, paired. on the anterior half of their segments, vii-x and xviii-xx, often also on vi, xi, and xxi, the posterior in two lines which converge posteriorly, those on sviii rather internal to the line of the male pores, on xix in the line of the pores, on the following segments successively a little nearer to the middle line; the anterior papillæ in regular longitudinal lines, about 5 intersetal intervals nearer the iniddle line than the spermathecal apertures.

Septa $8 / 9$ and $9 / 10$ wanting; $6 / 7-7 / 8$ and $10 / 11-13 / 14$ thickened. Gizzard almost globular. Intestine begins xv; no intestinal cæca. Two pairs seminal vesicles, in xi and xii. Prostates with small glandular portion confined to xviii, and U-shaped duct, the ental part of which is rather thinner; no copulatory pouch. Spermathecal ampulla ovoid ; duct fairly long, as long as ampulla, and thick; diverticulum tubular, as long as main pouch and half as thick as ampulla, joining ectal end of duct, its ental half swollen to form a seminal chamber, its ectal half acting as duct.

Remarks. Beddard at first overlooked the papillæ, which led Michaelsen to describe his own specimens as a separate species.

Distribution. Ceylon. Outside India from Madagascar and Brazil.

21. Pheretima travancorensis (Fedarb).

1898. Pericheta travancorensis, Fedarb, J. Bombay Soc. xi, p. 435, pl. ii, figs. 2, 5.
1899. Amyntas travancorensis (part.), Beddard, P.Z.S. 1900, p. 614.
1900. Pheretina travancorensis, Michaelsen, Tier. x, p. 310.

Length 70 mm ; diameter 4 mm . Segments 94 . Colour dorsally and anteriorly purple; behind clitellum only the middorsal line is purple. First dorsal pore in 16/17. Clitellum xiv-xvi (=3). Male pores raised, but not on sharply defined papillæ; 10 setæ intervene. Spermathecal pores three pairs, in 6/7-8/9.

Septum $8 / 9$ wanting. Intestine begins in xv; intestinal cæca simple. Last heart in xiii. Seminal vesicles three pairs, small, in xi, xii, and xiii. Prostates fairly large, loosely racemose, occupying xvii-xix; duct coiled in a circle. Spermathecal ampulla pear-shaped, narrowing gradually to form the duct; diverticulum given off from the duct at its junction with the body-wall, thin, often undulating, if stretched out is about as long as the main pouch, dilated at its ental end to form a thickly pear-shaped seminal chamber.

Remarks. Beddard (37a) unites P. crescentica (Fedarb, 36) with this species, and is followed by Michaelsen (54). Michaelsen $(54,58)$ considers this species to be possibly identical with P. dubia (Horst).

The spermathecal diverticulum of this form seems to be different in shape from that of P. crescentica; there is here no glandular appendage of the spermatheca looking at first like a second diverticulum; and there are three pairs of seminal vesicles as against two in P. crescentica. On these grounds I believe the species to be distinct; but crescentica should, I think, be united with houlleti.

Distribution. Travancore.

22. Pheretima trivandrana Steph.

1916. Pheretima tricandrana, Stephenson, Rec. Ind. Mus. xii, p. : 335 , pl. xxaii, fig. 27 , pl. xxxiii, figs. $28,29$.

Length 70 mm . ; maximum diameter 3 mm . Segments 100. Colour an equable grey. Prostomum epilobous $\frac{1}{2}$, tongue broad, not closed behind. Dorsal pores from 8/9. Setal rings closed dorsally in the first ten segments, thereafter a slight break, $z z=2 y z$; ventral break also small, ca. $1 \frac{1}{2} a b$, or absent in some of the anterior segments; setæ of ii-ix rather enlarged, those of x rather small; numbers $28 / \mathrm{v}, 46 / \mathrm{ix}, 52 / \mathrm{xii}, 52 / \mathrm{xix}$, and 54 in middle of body. Clitellum scarcely distinguishablo, perhaps xiv-xvi $(=3$?). Male pores situated towards the inner side of, but well within, a pair of circular thickened areas which are somewhat raised in therr centres; the pores in line with g, and rather more than $\frac{1}{4}$ of circumference apart, with about 9 setæ intervening. lemale pores paired. Spermathecal pores three pairs, in $6 / 7-8 / 9$, ventrc-lateral, about $\stackrel{2}{9}$ of circumference apart.

Fig. 124.-Pheretima trivandrana Steph. ; spermatheca.
Septa $8 / 9$ and $9 / 10$ absent, about three in front of and three behind the gap somewhat thickened. Gizzards well developed, ovoid. Intestine begins in xy, ceca originate in xxvii. T'estis sacs in x and xi. Seminal vesicles two pairs, in xi and xii, lobed. Prostates small, in xvii and xviii, cut up into numerous small lobules; duct describes almost a complete circle, and increases in
thickness towards the ectal end, firm and shining except at its ectal end, lying on a soft white cushion. Spermathecal ampulla relatively small, ovoid, or pear-shaped; duct very stout, almost straight, much longer than ampulla; diverticula two, one thin, finger-like, a simple tube, about half as long as duct, arising from ectal end of duct, its lumen wider at the eutal end; the other arising from the middle of the duct, consisting of a pear-shaped chamber subdivided into about three or four loculi which give to the surface a lobulated appearance, and a stalk, the whole nearly as long as the main pouch above the entry of this diverticulum ; of this second kind of diverticulum there may be two, one smaller than the other (text-fig. 124).

Remarks. This species is very similar to P. houlleti, and indeed may be identical with it. It is possible that the loculated seminal chamber of the second diverticulum may be in reality a convoluted tube, the windings closely pressed together, as in P. houlleti; a re-examination of the original material seems to show that this is not unlikely. I also looked for clitellar setx, but no sacs were visible.

Distribution. Trivandrum (Travancore).

10. Genus DIPOROCHETA Bedd.

1890. Diporochecta, Beddard, P. Z.S. 1890, p. 56.
1891. Diporocheeta, Beddard, Monog. p. 430).
1892. Diporochata, Michaelsen, Tier. x, p. 199.
1893. Diporocheta, Michaelsen, Fauna S.W. Austral. p. 161.
1894. Periony.c (part.), Mirhaelsen, Mjoberg's Austral. Exp. pp. 46, 53
Setie, at least in the middle and hinder parts of the body, numerous (more than eight) per segment. Spermathecal pores $2-5$ pairs, the last in $8 / 9$. One gizzard in the region of segments iv-vi, seldom vestigial. Purely meganephridial. Prostates tubular, with simple unbranched duct.

The genus was established by Beddard for worms with the essential three features of the group as we still know it, perichætine arrangement of the setæ, tubular prostates, and meganephridia. In the Monograph he adds a claracter of the clitellum to the diagnosis,--." clitellum generally more than three segments." Michaelsen in the Tierreich volume included Bourne's Perichceta pellucida in the genus, which thus came to have an Indian representative (all previously admitted species having belonged to Australia or New Zealand). Michaelsen in his diagnosis admitted the possibility of a racemose prostate; but in 1907 he retracted this, in consequence of his views on the importance of the prostate in the classification of the Megascolecinæ, and defined the genus as above. Still more recently (1916) he has fused the genus with Perionyx, under the name of the latter, though allowing it a certain independence as a subgenus.

In this last change I do not follow him. The reason for the fusion is that there exists a series of intermediate forms. The feature in which Diporochota differs from Perionyx is the prostate, tubular in the first, racemose in the second; and it happens that all stages in the evolution of the racemose (Phere-tima-prostate) from the tubular (Plutellus-prostate) are to be found in the combined gemus (Diporochata + Periony.x), so that any separation between the two must be arbitrary; further, there is not either any geographical means of distinguishing them. Diporochcetc as a subgenus, however, is to be distinguished, according to Michaelsen, as including all forms in which there is a distinct central canal through the middle of the glandular part of the organ, even though this central canal may receive branches.

But the fact that the dividing line is an arbitrary one is no reason for not drawing it, if convenience demands it. If the existence of intermediate forms is to be allowed to prevent us from making a division, we may look forward, as our knowledge increases, to seeing our groups diminish in number, until, the more perfect our knowledge becomes, the more our classification fades away into nothingness; so that when, owing to the number of forms known, our need for a detailed classification is greatest, we shall be left without any classification at all.

Michaelsen has already fused the genera Notoscolex and Megascolex: ; to be consistent, Meyascolides also must be fused, since here too there are a number of intermediate forms between the Plutellus-prostate and the Pheretima-prostate. This would lead to the establishment of a huge genus, Megascolides + Notoscolex + Meguscolex, which nould be extremely unwieldy, and would contain forms with lumbricine setse, tubular prostates, and a nephridial system consisting almost entirely of meganephridia, along with others with perichætine sete, racemose prostates, and a nephridial system of micronephridia only-it would, in short, be a renunciation of classification.

In fine, one of the great features in the evolution of the Megascolecinæ has been the change in the prostate; and if this is not to be marked in our scheme of classification, the scheme will be comparatively useless: it will certainly fail to indicate what it ought.

The dividing line between Diporochata and Perionyw considered as subgenera of Periony.x s.l., as proposed by Michaelsen, is not the same as that proposed in the case of Megascolides and Notoscolex. In the latter case Megascolides is to retain only those species in which there is no hint of branching of the duct; Diporocheeta, however, is to include forms with branching ducts, so long as there is a definite central canal through the axis of the gland.
The genus Diporochocta has arisen from Plutellus by the substitution of the perichætine for the lumbricine setal arrangement; and, as has been said, has given rise to Perionyx by the substitution of the racemose for the tubular prostate.

It should be noted, however, that the only Indian representative of the genus stands rather aside from the main line of this evolution by reason of the character of the anterior nephridia, in which it differs, apparently, from the Australian and New Zealand species or the majority of them. Diporochetct is defined as being purely meganephridial; but the term "meganephridium" is usually taken to mean the tubular form of the organ found, for example, in the Lumbricidæ. In the anterior part of Diporochoeta pellucida, however, the nephridia are tufted-a form which is generally, I think, looked on as a variety of microuephridia (1 have little doubt, for example, that when Michaelsen described a number of new species of the genus in 1910 (Abh. Ver. Hamburg, xix, 1), he intended, by calling them "meganephridial," to exclude this form of nephridium equally with the scattered micronephridia); and it would not have been strange if Diporochota pellucida had found a place under the genus Spenceriella (micronephridial, with perichætine setæ and tubular prostates).

In the Megascolecidæ this modification of the anterior nephridia very commonly goes along with the breaking-up of the post-clitellar nephridia into scattered micronephridia. It seems possible, therefore, that Spenceriellu may have arisen from such a Diporoch ata as D. pellucilla by the substitution of micronephridia for meganephridia (not from Megascolides by the development of the perichætine arrangement and further breaking-up of the nephridia). In any case, for geographical as well as anatomical reasons, it seems probable that the present species is not phyletically related to the Australian species.
(On the subject of the nephridia, see further under the species.)
Distribution. For the Iudian species no locality is given; presumably it was in Southern India. The headquarters of the genus is in Victoria and Tasmania; species are also found in Queensland, New Zealand, and (one species) on the Chatham 1slands.

1. Diporochæta pellucida (A. G. Bnurne).
2. Perichoota pellucida, Bourne, Quart. Journ. Mic. Sci. xxxvi, p. 13, pl. iv, figs. 17-32, pl. v, fig. 42.
3. Diporochreta pellucida, Michaelsen, Tier. x, p. 207.

Length 450 mm . ; diameter ca. 4 mm . Unpigmented; bodywall very transparent. Prostomium small, without dorsal process. Dorsal pores trom 5/6. Dorsal setal gap $=10 y z$, ventral gap $=3 \mathrm{ab}$; numbers $24 / \mathrm{ii}, 44 / \mathrm{v}, 36 / \mathrm{ix}, 36 / \mathrm{xx}$. Clitellum rather indefinite, including a little of the posterior end of xii and $\frac{1}{3}$ of $\mathbf{x x}$ ($=$ ca. $7 \frac{1}{2}$); not well developed ventrally. Male pores in a small dumbbell-shaped pit, at a distance apart equal to five intersetal intervals, but no setæ actually intervene. Female pores paired, in front of setm a. Spermathecal pores in $7 / 8$ and $8 / 9$, between the lines of a and b.

Gizzard in v. Calciferous glands in xiv, xv, and xvi. Intestine begins in xviii; no cæca; no typhlosole. A. pair of complex
nephridia in each of segments vii-xi, consisting each of a nephridial tube with a bush-like group of tubules springing from one part; a pair of small simple nephridia in each of the following segments; no micronephridia. Testes and funnels free in x and $x i$. Prostates long, tubular, confined to xviii. Sperinathecæ as elongated pyriform sacs with a small cæcum.

Remarks. In Bourne's own separate copy of his paper of 1886 in the P. Z.S. ("On Indian Earthworms. Part I.-Preliminary Notice of Earthworms from the Nilgiris and Shevaroys"), which has come into my hands, there is written opposite the heading of the description of Perichota (Pleurochutta?) gracilis " $=P$. pellucida." It would seem, therefore, that Bourne himself identified the species inquirenda: Perichceta gracilis with the present species; the differences in the descriptions, however, seem too great to justify the inclusion of the latter species in the synonymy. It will be best to leave P. gracilis, as Michaelsen does in the Tierreich, as a doubtful species of Meyascolex.

Bourne used this species in his investigations on the development of the setæ, and has some observations on the derelopment of the nephridia also.

The genus to which this species is to be referred depends on the interpretation of the anterior nephridia. These are bushy tufts on each side in segments vii-xi, and evidently are the same things as the tufts so commonly found in numerous genera of Megascolecidæ, in more than one subfamily. If they are considered as micronephridial, the species will go under Spenceriella; if each tuft is looked on as a meganephridium, under Diporochuta. In accordance with what was said under Woorlwirclia. I consider the tufts as a special form of meganephridium, and the present species as belonging to Diporocheeta. It is, however, evident that such a form camnot belong to the direct line of ancestry of Perionyx; Perionyx must have originated from forms which retained the origmal structure of the meganephridia in the anterior part of the body.

Distribution. Probably Southern India.

11. Genus PERIONYX E. l'err.

1895. Periony.r, Beddard, Monog. p. 435.
1896. Perionyx + Diporochata (part.), Michnelsen, Tier. x, pp. 207, 199.
1897. Periony.x + Perionychella, Michaelsen, Fruna S.W. Austral. p. 163.
1898. Periony.l + Perionychella, Michaelsen, Mem. Ind. Mus. i, p. 119.
1899. Periony.x, Michaelsen, Abh. Ver. Hamburg, xix, p. 58.
1900. Perionyx (part.), Michaelsen, Mjüberg's Austral. Exp. p. 7.

Setæ numerous (moro than eight) per segment, in rings which are often alnost closed. Male pores often approximated in greater or less degree, and may be very close to the middle line.

Female pore unpaired (? always). Spermathecal pores, like the male pores, often very near the middle line, the last pair in $7 / 8$ or 8/9. Gizzard very frequently more or less vestigial, in \mathbf{v} or vi. Meganephridial. Two pairs testes and funnels. Prostates of the branched Pheretima-type.

The early history of the genus can be ascertained from the synonymy in Michaelsen's Tierreich volume, where the diagnosis does not differ very greatly from that adopted here. Since that date, however, the definition of the genus has been modified more than once.

In 1907 Michaelsen instituted a new genus Perionychellameganephridial, with perichætine arrangement of the setæ and Pheretma-prostates; it differed in this last character from Diporocheta, in which its species had mostly been included, and from Periony.x in not having the vestigial gizzard and approximated male and spermathecal pores of the latter. The new genus was, however (in accordance with the view then held that the branched prostate had arisen once only in the history of the subfamily), not supposed to have arisen from Diporochata, but from IVoodwardia; Periony. x was its descendant. Its separation from Perionyc appeared to be justified, not only by the anatomical characters, but also by the facts of distribution, Perionychella being found only iu the Australian region, Perionyx only in the Indian.

In 1909 Michaelsen described a number of species of Perionychella from Indin, though he recognized that the separation from Perionyx on anatomical characters "as difficult, and that the geographical distinction too was breaking down. In 1910 he found that he could no longer maintain the two genera as distinct, since a Perionyx with vestigial gizzard and approximated genital pores had been found in the Australian region (Auckland Islands); lie therefore united them under the name Perionyx.

The most recently proposed alteration of the content of the genus-the inclusion in it of Diporochata-Diporooheeta and Perionyx s. s. becoming subgenera of Perionyx si. l., has been discussed under the heading of Dtporocheeta, where also I give my reasons for continuing the two as separate genera.

On the phylogenetic derivation of Perionyx, see also under Diporochatcta.

A typical Perionyx has a characteristic appearance, and can be referred to the genus at sight. The body is often depressed, the dorsal surface is of a deep purple colour, the ventral surface much paler; the setw are numerous and close-set, especially ventrally, and the rings closed or nearly so; the male and spermathecal pores are very near the midventral line, and copulatory papillæ are much less frequent than in the genera Megascolec. and Pheretima.

The most aberrant species are polytheca, with seven pairs of Sperınathecæ, and annulctus, with micronephridia; on the justification for retaining this latter species in the genus, see

Stephenson (95, p. 119); though by strict definition this worm should be a Megascolex, yet its general habitus is so markedly that of Perionys that it can hardly be doubtful where its relations lie, while the matter is definitely settled by its occurrence in the Perionyx region and far away from that of Megascolex.

The structure of the prostate in a number of species is described by Michaelsen (83a).

Distribution (Chart III). The Eastern Himalayas, including the Abor Country and Assam, is the chief home of the genus; the Western Himalayas (neighbourhood of Simla, Kumaon Dist.) have a few endemic species; Bengal, Burma, South India (Nilgiris, Mysore), Bombay and neighbourhood (as far as Belgaum to the south), and Ceylon each have one or two species. P. excavatus and P.sansiburicus are peregrine species which have wandered widely; they are omitted from the above statement. Some immature specimens, probably of peregrine species, have been recorded from the Maldive Islands.

The genus is also endemic in the Australian region-in Victoria, Tasmania, and the Auckland Islands. In addition, P. excavatus extends over the rslands and coasts of the Indian Ocean and Malay Archipelago; P. sansibaricus is found in Zanzibar as well as in S., W., and Central ludia; and a species P. violaceus is found in Sumatra and Java.

If the Indian localities are indicated on a map, the distribution is seen to be a double one; the main home of the genus is in the E. Himalayas, stretching W. to Simla and E. into Burma ; but it has also established itself in a line along the S . W. of the peninsula from Bombay to Ceylon. These are the regions of the greatest rainfall. I have mentioned as peculiarities of the genus that it has not infrequently been found in wood or on trees or under the leaves of trees, or even in running water (73, 93).

Key to the Indian species of Perionyx.

1. Seven pairs of spermathecæ, opening in 2/3-8/9
P. polytheca.

Four pairs of spermathec $æ$, opening in 5/6-8/9
P. arboricola.

Three pairs of spermathecæ, opening in 6/7-8/9
2.

Two pairs of spermathecæ, opening in 6/7 and $7 / 8$
6.

Two pairs of spermathecæ, opening in 7/8 and $8 / 9$
16.
2. Spermathecæ without diverticulum, pigment in spots
P. variegatus.

Spermathecæ with a single diverticulum .. 3.
Spermathece with two or more diverticula.
4.
3. Nephridia (and presumably nephridioporea) in a regular line
P. foveatus.

Nephridiopores and end-bladders alternating in position in successive segments
P. sansibaricus.
4. Penial setre present
P: ceylanensis.
No penial setæ5.
\%. Nephridiopores alternating in position in suc- cessive segments P. saltans.
Nephridiopores not alternating ; microne-phridia coexist with meganephridia behindthe genital region
P. annulatus.
6. Penial setæ absent 7.
Penial setw present 11.
7. Testis sacs present 8.
Testes and funnels free 9.
8. Male pores $\frac{1}{2}$ of circumference apart, on small papilla P. himalayanus.Male pores near togetner, in line with b or c,on papille delimited by a common groovein front and behindP. pokhrianus.
Male pores very close together, in a deeptransverse fissureP. rimatus.
9. Last heart in xiii 1. kempi.Last heart in xii10.
10. Setæ on dorsal surface in anterior third of body larger and set more widely than behind 1. heterochcetus.${ }^{1}$. nanus.
11. Ornamentation of penial setæ as definite spines or teeth 12.
Ornamentation of penial setw as tine sculp- turing 14.
12. Male pores on large papillie of characteristic outline P. alatus.
Male pores on small papilla or in depres- sions 13.
13. Male pores on papilla or on a circular wall; spermathecal pores about $\frac{1}{7}$ of circum- ference apart 1. sikkimensis.
Male pores each in a depression; sperma- thecal pores $\frac{1}{\text { of circumference apart }}$ P. depressus.
14. Last heart in xii 15.
Last heart in xiii P. pallidus.
15. Nale pores on the sides of a shallow depres- sion; highest number of seta ca. 80 1. inornatus.
Male pores in a depression which is sur- rounded by a thick lip; highest number of seter ca. 60 P. pincerna.
Male pores on small papille which are con- joined in the middle line; highest number of setr ca. 43 1 . gravelyi.
16. Penial seto present 17.
No penial setr 25.
17. P'enial setoo little modified 18.
['enial setao with spines or teeth 19.
18. Two sessile spermathecal diverticula P. fossus.
P. fossus
No spermathecal diverticulaP. nainianus.
19. Penial seta with square-cut tip 20.
Penial setre pointed, usually bluntly 21.
20. Spines projecting from the flat end of thepenial setexP. turaensis.
No spines on the flat end of the penial setre. P. eivcavatus.
21. No spermathecal diverticula g2.
Spermathecal diverticula present 24.
22. Calciferous glands set off from the cesophagus in xiii P. fulvus.
No calciferous glands 23.
23. Penial setæ with about 20 rings of spines P. koboensis.
Penial setæ with 10 or fewer rings of spines.
P. bainii.
P. bainii.
Penial seta with a few scattered transverserows of very minute teeth
P. mysorensis.
24. A spermathecal diverticulum; last heart in xiii
P. millardi.
Two clusters of diverticula; last heart in xii.
P. shillongensis.
25. Clitellum extending over 13 segments ments 26.
Clitellum extending over fewer than 13 seg-
Clitellum extending over fewer than 13 seg-P. annandalei.
26. Seminal vesicles present in ix 27.
No seminal vesicles in ix
No seminal vesicles in ix 28. 28.
27. One large mammillated spermathecal diverti- culum P. simlaensis.
Two spermathecal diverticula P. minimus.
28. One or more spermathecal diverticula 29.
No spermathecal diverticula 30.
29. Last heart in xii; dorsal pores from $1 / 2 \ldots \quad P$. pullus.
Last heart in xiii; dorsal pores from $4 / 5 \ldots$. I. modestus (part.).
30. Largest number of setæ over 100; length over 200 mm . P. m'intoshi.Largest number of setæ under 100; lengthunder 200 mm .31.
31. Male pores on longitudinally oval cushions ina midventral depressionP. pulvinatus.Male pores at end of a transverse groove \quad P. modestus (part.).
A few natural groups may be distinguished. Of these the bestmarked is characterized by the possession of testis sacs; it in-cludes himalayanus, pokhrianus, rimutus, and alatus, all with twopairs of spermathecæ opening in $6 / 7$ and $7 / 8$, and all fromDarjiling District; alatus is the most distinct in possessing penialseta, which the others lack.

Also from the same district are pincerna and inornatus, which may possibly be identical. P. pallidus and gravelyi may be coupled together, and have an obvious connection with the former pair. P. heterochotus and nanus from the same region, and rempi from the \mathbf{A} bor Country, form another group which also has relations to pallidus and gravelyi. All hitherto mentioned belong to that large section of the genus which has two pairs of spermathecal pores opening in $6 / 7$ and $7 / 8$.
P. saltans and sansibaricus are linked together by the peculiar alternation in the position of the nephridiopores in successive segments; all approximation to this condition is seen in ceylanensis and looboensis also, though the home of the latter is remote from that of the other species just mentioned, which are found in the west and south.
P.fulvus (Calcutta, Burma) and P. turclensis (Assam) are perhaps connected with the widely wandering excavatus, and possibly bainii should come in the same group; while there are resemblances between bainii and millardi (bainii from Simla, millardi from Bombay Presidency). P. parvulus I have united with excavatus; the latter is known to vary very much in size, and it needs only to stretch the lower limit previously given for excavatus somewhat further to include parvulus without any considerable difficulty.

1. Perionyx alatus Steph.

1920. Perionyx alatus, Stopbenson, Mem. Ind. Mus. vii, p. 21•, pl. ix, figs. 14-16.

Length 84 mm .; diameter 3 mm . Segments 123. Colour dusky purple dorsally, pale ventrally. Prostomium epilobous $\frac{1}{3}$, tongue not closed behind. Dorsal pores from 4/5. Setal rings closed dorsally and ventrally; seter rather closer set ventrally; numbers $50 / \mathrm{v}, 55 / \mathrm{ix}$, ca. $54 / \mathrm{xii}, 50 / \mathrm{xix}$, and ca. 52 in middle of body. Clitellum including xiii and first third of xvii $\left(=4 \frac{1}{3}\right)$. On xviii a pair of large transversely elongated papillæ, joined in the middle

Fig. 125 -Perzonyx alutus Steph.; male genital field
line by a narrow neck, with crenulated margins; the conjoined papille surrounded by a deep groove (text-tig. 125). The male pores as transverse grooves in the broader, inner part of the papillæ; distance between the middle points of the grooves onefourth of the transverse extent of the ventral surface. Spermathecal pores two pairs, in $6 / 7$ and $7 / 8$, the same distance apart as the male pores, in line with the setal interval de.

No septa notably thickened, 6/7-8/9 slightly so. Gizzard in v, large, cylindrical, and rather soft. Intestine begins in $x x$ behind the prostates. Last heart in xiii. Nephridia end all in the same line. Testis stacs in x and xi , delicate, both adherent to the seminal vesicle of $x i$, which spreads over the sac of x from behind. Seminal vesicles in xi and xii, fused dorsally over the alimentary canal in each segment. Prostates large, occupying xvii-xix, much indented: duct irregularly twisted, soft, moderately long, widest at its ectal end. The posterior pair of spermathecæ are the larger ; the spermathecal ampulla is a considerable smooth sac; the duct is very stout, about two-thirds as long as the ampulla, separated from the ampulla by a constriction, below which it is slightly
swollen; the swollen upper part of the duct corresponds to the diverticulum, but there are no definite seminal chambers (textfig. 126). Penial setæ (text-fig. 127) 1 mm . long, 20μ thick;

Fig. 126.-Perony.x alatus Steph.; spermatheca; the markings on the upper part of the duct represent masses of spermatozoa shining through.

Fig. 127.-Perionyx alatus Steph.; tip of penial seta; \times ca. 250.
shaft almost straight, but curved like a hockey-stick at the proximal end; the tip gently curved, bluntly pointed, the distal portion of the shaft ornamented by minute irregularly scattered spines.

Remarks. The species belongs to the himalayanus group, but is distinguished from its allies by possessing penial seta ; the configuration of the male field is also characteristic.

Distribution. Sitong Ridge, Darjiling Dist.

2. Perionyx annandalei (Mich.).

1907. Perionychella annandalei, Michaelsen, Mit. Mus. IIamburg, xxiv, p. 154, text-fig. 7.
1908. Perionyrhella asnandalei, Michaelsen, Mem. Ind. Mus. i, p. 166, text-fig. 13.
1909. Periony.r annandalei, Michaelsen, Abh. Ver. IIamburg, xix, p. 61, pl. fig. 7.

Length $160-280 \mathrm{~mm}$.; maximum diameter $6-10 \mathrm{~mm}$. Segments 170-215. Colour dorsally a dark violet-blue, ventrally reddish grey. Prostomium proepilobous, shortly epilobous, or epilobous $\frac{1}{2}$. First dorsal pore in 6/7. Setx very small in the anterior part of the body, somewhat larger behiud ; very close together ventrally, somewhat wider apart dorsally; rings complete, or shortly interrupted dorsally ; numbers $85 / \mathrm{x}$, 70/xix. Clitellum xii-xxiv ($=13$), ring-shaped, less well marked ventrally nt the extremities. Male area depressed or elevated, occupying the whole length of
xviii, pale in colour, as is also the surrounding region; in the setal zone the area elevated to form a ridge. Male pores in the lateral parts of the area in the setal zone; a few setæ on the ridge between the male pores. Spermathecal pores two pairs, $7 / 8$ and 8/9, near the middle line.

Septa thickened in the region of the seminal vesicles. Gizzard moderately large, in vi. No calciferous glands. Funnels apparently free in x and $x i$. Scminal vesicles in xi and xii, or xi, xii and xiii, compact and grape-like, those of xiii, when present, smaller and apparently continuous with those of xii. Prostates occupying xviii and xix, thick, compact, with fissured surface, cleft by septum 18/19; duct short and thick. Spermathecal ampullia sac-like or irregular ; duct half as long and half as thick as ampulla; two or three seminal chambers enclosed in its wall, projecting externally as a single papilla-like excrescence, or as so many small knobs, flat, and lastrous; no free diverticula. No penial setæ.

Distribution. Kurseong, Darjiling Dist.; Cherrapunji, Assam.

3. Perionyx annulatus Steph.

1914. Perionyx annulatus, Stephenson, Rec. Ind. Mus. viii, p. 386.

Length $100-150 \mathrm{~min}$.; diameter $4-6 \mathrm{~mm}$. Segments $198-$ 230. Dorsal surface in general a dusky purple; intersegmental grooves and setal ridges pale, a banded appearance resulting; ventral surface pale. Prostomium large, broad, epilobous $\frac{3}{4}$. First dorsal pore in 4/5. Setal rings unbroken or nearly so ventrally; dorsally a small interval ($1 \frac{1}{2}-2 y z$); intersetal distances a little greater dorsally than ventrally; numbers $55 / \mathrm{iv}, 74 / \mathrm{ix}, 82 / \mathrm{xiii}$, $70 / \mathrm{xix}, 70 / \mathrm{xxvi}$. Clitellum rather paler, xiii-xvii (-5); xii slightly modified also. Male pores fairly close together, ca. $\frac{2}{8}$ of circumference apart, on the lateral boundaries of a rectangular midventral depression which takes up the whole length of the segment, and is $1 \frac{1}{4}$ times as broad as long. Spermathecal pores three pairs, in $6 / 7-8 / 9$, ca. $\frac{2}{1^{2}}$ of circumference apart, the posterior pair opposite the 9th seta.

Septa from the anterior end as far as $9 / 10$, as well as $17 / 18$ and $18 / 19$, slightly thickened; 13/14-16/17 moderately so. Gizzard of some size, but soft and flattened dorso-ventrally, in vii. Essophagus much bulged in xiii-xv, the anterior dilatation with wall strongly ridged internally. Intestine begins in xix. Last heart in xiii. Meganephridia in all segments; in addition, in the post-genital segments, n number of minute micronephridia in transverse lines on the body-wall, especially ventrally. Testes and funnels in x and $x i$. Semiual vesicles in xi and xii, those in xi fused together. Prostates confined to xviii, granular in appearance, hemispherical with the flat surfaces facing inwards; duct long and coiled, the coils closely applied to each other on the inner face of the gland, the last portion of the duct thicker than the rest.

Spermathecæ large, sausage-shaped, almost meeting dorsally above the gut; duct short and moderately stout; diverticula two or more, very small, sessile on lower part of ampulla, divided or not divided into minute lobes. No penial setæ.

Remarks. A number of specimens showed variations in the position of the organs in the anterior part of the body; the male pores may be on xix or $x x$; there may be four pairs of spermatheca; the last heart may be in xvi.

On the position of the worm see the introduction to the genus.
Distribution. Rotung, and S. of Yembung, Abor Country.

4. Perionyx arboricola Rosa.

> 1890. Perionyx arboricola, Rosa, Ann. Mus. Genova, (2) x, p. 119, pl. i, tig. 11.
> 1895. Perionyra arboricola, Beddard, Monog. p. 438.
> 1900. Perimy x arboricola, Michaelsen, Tier. x, p. 209.

Length 70 mm . ; diameter at clitellum 5 mm . Segments 110 . Body depressed, posterior end pointed. Colour dorsally greenish brown, ventrally yellowish. Prostomium epilobous $\frac{1}{2}$. Setal rings closed; setæ closely set ventrally, very widely apart dorsally, so that 8 or 9 are seen on the dorsal surface, and about 40 on the ventral ; number per segment 56-60. Dorsal pores begin from $5 / 6$. Clitellum ring-shaped, xiv-xvi (=3). Male pores on large papillw, which are situated on the sides of a median depression, the anterior and posterior borders of which are at the middle of segments xvii and xix respectively. Spermathecal pores inconspicuons, four pairs, in 5/6-8/9.

Gizzard very small, in v. Seminal vesicles two pairs, in xi, and xii-xiv; the first pair small, the second divided into three lobes by the septa. Prostates very long, occupying nine segments, xvixxiv, cut into lobes by the septa; duct thin at first, rapidly widening. Spermathecæ with club-shaped diverticulum somewhat longer than the ampulla.
Remarks. Found on trees, especially in the axils of the leaves.
Distribution. Cobapo, Cheba or Biapo Dist., Burma.

5. Perionyx bainii Steph.

1915. Perionyx bainii, Stephenson, Mem. Ind. Mus. vi, p. 72, pl. vii, fig. 14, pl. viii, fig. 15.
Length $23-50 \mathrm{~mm}$. ; diameter $2-2 \frac{1}{2} \mathrm{~mm}$. Segments 94 . Colour dark bluish purple dorsally, grey ventrally. Prostomium epilobous $\frac{1}{2}$, tongue cut off behind. Dorsal pores from $4 / 5$. Setal ring slightly interrupted dorsally; $z z=2 y z$ in front of clitellum, $1 \frac{1}{2} y z$ behind ; ring closed ventrally behind clitellum, but in front of clitellum there may be a slight break; numbers $52 /$ vii, ca. $55 /$ xiii, $56 / \mathrm{xx}$. Clitellum xiii-xvii $(=5)$. Male pores as transverse cracks with small tag-like papilla at the outer side of each, and a transverse groove in front and behind, ca. $\frac{1}{10}$ of
circumference apart; the region of the pores marked by a number of small fissures (text-fig. 128). Spermathecal pores in $7 / 8$ and $8 / 9$, considerably further apart than the male pores (about $\frac{1}{5}$ or $\frac{1}{8}$ of circumference).

No septa thickened. Gizzard unrecognizable as such ; œsophagus dilated and soft in vi. No calciferous glands; cesophagus bulged in \mathbf{x}-xiii with transverse vascular striation. Intestine begins in xvi. Last heart in xii. Testes and funnels free in x and $x i$. Seminal vesicles in xi and xii, the anterior pair almost meeting, the posterior meeting and fusing. Prostates confined to xviii,

Fig. 128.-Perionyx bainii Steph.; male genital field; t., overhanging papilla, or "tag."

Fig. 129.-Perionyx bainii Steph.; distal end of pemal seta; X ca. 300.
each a compact mass; duct short, moderately stout, transverse in direction and almost straight. Spermatheco large, with regularly ovoid ampulla; duct stout, marked off from the ampulla, about equal in length to the anpulla; no diverticulum. Penial setæ (text-fig. 129) 1 mm . long, 20μ in thickness at middle of shaft, six or more on each side ; shaft slightly curved towards distal end, tip bluntly pointed, with a slight bulbous swelling just proximal to the tip; about eight rings of fairly large spines near tip.

Remarks. On the similarity to P. millardi see under this latter species.

Distribution. Near Simla, W. Himalayas.

6. Perionyx ceylanensis Mich.

1903. Periony.x ceylanensis, Michaelsen, Sb. Bühm. Ges. Prag, xl, p. 6, text-fig. D.
1904. Perionyx ceylanensis, Michaelsen, Ark. f. Zool. x, no. 9, p. 8.

Length $42-75 \mathrm{~mm}$.; maximum diameter ca. 2 mm . Segments 120-140. Colour dorsally violet with indistinct darker median stripe, ventrally yellowish. Prostomium epilobous $\frac{1}{2}$. Dorsal pores from $3 / 4$ (rudimentary ?) or $4 / 5$ (always distinct). Setæ closer set ventrally, the rings closed dorsally and ventrally or almost so ; numbers $32 / \mathrm{ii}, 40 / \mathrm{v}, 40 / \mathrm{x}, 39 / \mathrm{xii}, 37 / \mathrm{xix}, 38 / \mathrm{xxvi}$, $39 / \mathrm{xlv}$. Nephridiopores at rather different levels, not regularly alternating. Clitellum ring-shaped, xiii-xvii. (=5). Male pores near the middle line, in line with c or $\dot{c} d$, on somewhat glandular, usually slightly raised but occasionally somewhat depressed areas which are separated by a median longitudinal fissure; penial seta in a group on each side medial to the pore. Spermathecal pores three pairs, in $6 / 7-8 / 9$, very close to the middle line.

No septa notably thickened. Gizzard very small, not thicker than the rest of the cesophagus, in v. Intestine begins in xii, only moderately wide at first. Meganephridia with ducts which vary somewhat in length, no end-bladders. Testes and funnels free in x and xi. Two pairs of rather small seminal vesicles in xi and xii. Prostates confined to xviii; duct thin and straight. Spernathece in vii, viii, and ix, with sac-like ampulla; duct one-third as long as ampulla, spindle-shaped, sharply marked off; diverticula two, club- or pear-shaped, joining junction of ampulla and duct. Penial seta 0.3 mm . long and 10μ thick, slightly and simply bowed, ending in a claw-shaped tip; the distal third with moderately large thin scattered spines, fairly closely apposed to the shaft.

Remarks. The spermathecæ vary in number; once (out of fifteen examples) a supernumerary pore was present in groove $5 / 6$ on one side; once one of the pores in $6 / 7$ was missing.

The position of the species is near saltans and sansibaricus (position of nephridiopores; and cf. the two small spermathecal diverticula in saltans).

Distribution. Peradeniya and Point de Galle, Ceylon.

7. Perionyz depressus Steph.

1914. Periony.x depressus, Stephenson, Rec. Ind. Mus. viii, p. 394, pl. xxvi, fig. 14.
1915. Perionyx aborensis, Stephenson, Rec. Ind. Mus. viii, p. 392, pl. xxvi, fig. 13.
1916. Perionyx depressus, Stephenson, Rec. Ind. Mus. xiii, p. 380, note.
Average length $75-100 \mathrm{~mm}$., maximum 125 mm .; diameter 3-4 mm. Segments 125-156. Colour dusky purple dorsally, lighter ventrally; clitellum with a pink tinge. Body dorsoventrally flattened, ventral surface hollowed; a mid-dorsal groove
from anterior end extending a variable distance backwards. Prostomium epilobous $\frac{1}{2} \frac{2}{3}$. Dorsal pores from $4 / 5$ or $5 / 6$. Setal rings with a small dorsal break ($=2 y z$ or a little more), but no ventral break; setæ set closer ventrally than dorsally; in number about 70 per segment ($63 / \mathrm{ix}, 65 / \mathrm{xx}$). Clitellum $\frac{1}{2}$ xii- $\frac{1}{3}$ xviii (=nearly 6). Male pores ca. $\frac{1}{\frac{1}{3}}$ of circumference apart, each in a depression which occupies the whole length of the segment, the interval between the depressions being equal to the breadth of a depression; within the depression a couple of aarrow grooves, one in front of and one behind the male pore; the whole area pale in colour; no setm between the male pores. Spermathecal pores conspicuous, in $6 / 7$ and $7 / 8$, near the lateral borders of the body and one-third of circumference apart.

No septa notably thickened. Gizzard very rudimentary, in front of the first septum, 6/7. No calciferous glands. Intestine begins in xvii. Last heart in xii. Nephridia pierce the bodywall in approximately the same line. 'Testes and funnels free in x and xi. Seminal vesicles in xi and xii, continuous dorsally over the gut; that in xi slightly lobed, that in xii large, lobed, bulging back the septa behind so as to reach the level of $13 / 14$ or $14 / 15$. Prostates massive rather rectangular blocks, not much cut up into lobes, confined to xviii ; duct sinuous, thicker towards its termination. Spermathece prominent, with ovoid ampulla; duct short and very wide, $\frac{1}{2}-\frac{3}{4}$ as wide as ampulla; no diverticulum. Penial setæ in a considerable bunch, each 2 mm . long and 18μ thick, slightly curved towards the tip, which is pointed; the distal part of the shaft with twenty or more rings of small spines, the rings being closer together towards the tip.

Remarks. A re-examination of the original specimens of P. aborensis shows that I had overlooked the penial setæ, and that the species is to be united with the present one. No clitellum was visible; the original statement on this point is erroneous.

The statement that there is a pair of seminal vesicles in \mathbf{x} in P. depressus is probably a mistake; a mass of coagulum may have been taken for a vesicle.

The interval between the depressions in which the male pores are situated may also be depressed; thus there may be only one transversely elongated depression on the ventral surface of xviii.

Distribution. Rotung, Upper Rotung, Renging, all in the Abor Country, E. Himalayas.

8. Perionyx excavatus E. Perr.

1888. Perionyx excavatus, Rosa, Ann. Mus. Genova, (2) vi, p. 157. 1890. Perionyx excavatus, Rosa, Ann. Mus. Genova, (2) x, p. 121. 1892. Perionyx intermedius, Beddard, P. Z. S. 1892, p. 689.
1889. Perionyx excavatus $+P$. intermedius $+P$.gruenewaldi, Beddard, Monog. pp. 436, 437.
1890. Periony.v excavatus + P. intermedius, Michaelsen, Tier. x, pp. 208, 209.
1891. Perionyx excavatus, Michaelsen, Sb. Bühm. Ges. Prag, xl, p. 12.
1892. Periony.r excavatus, Michaelson, Mem. Ind. Mus. i, p. 175.
1893. Perionyx excavatus, Michaelsen, Abh. Ver. Hamburg, xix, p. 61.
1894. Perionyx excavatus, Stephenson, Rec. Ind. Mus. viii, p. 386.
1895. Perionyx excavatus, Stephenson, Rec. Ind. Mus. xii, p. 317.
1896. Periony. parrulus, Stephenson, Rec. Ind. Mus. xii, p. 321, pl. xxxi, fig. 15.
1897. Perionyx excavatus, Stephenson, Rec. Ind. Mus. xiii, p. 375.
1898. Periony.r excavatus, Stephenson, Rec. Ind. Mus. xxii, p. 760.
1899. Periony، excavatus, Stephenson, Rec. Ind. Mus. xxiv, p. 435.
1900. Perionyx excavatus, E. Perrier, N. Arch. Mus. Paris, viii, p. 126, pl. iv, figs. 73, 74.
1901. Perionyx excavatus, Beddard, P.Z.S. 1886, p. 308, textfigs. 3-6.

Length 23-120 mm.; diameter 2-5 mm. Segments 75-165. Colour from deep purple to reddish-brown dorsally, pale ventrally. Prostomium epilobous $\frac{3}{5}-\frac{2}{3}$. First dorsal pore in $4 / 5$ or $5 / 6$. Setal rings almost closed, ventrally more nearly than dorsally, or the midventral break may be absent; no setæ specially enlarged, and no great differences in the setal intervals; numbers $36-40$, behind clitellum may rise to 54 . Clitellum ring-shaped, xiii or part of xiit-xvii ($=5$ or less). Male pores approximated, in a cominon transversely oval small depressed area, each on a small transversely oval papilla, or sometimes represented by a small transverse slit; the anterior and posterior margins of the depressed area well marked, the lateral indistinct. Spermathecal pores in 7/8 and 8/9, approximated, about the same distance apart as the male pores.

No septa specially thickened. Gizzard vestigial, in vi, or may be unrecognizable. No calciferous glands; œesophagus swollen in xiii. Intestine begins in xv. Last heart in xii. Nephridia end in the same longitudinal line or nearly so. Testes and funnels free in x and xi. Seminal vesicles in xi and xii-xiv. Prostates small, usually confined to xviii, somewhat fissured, compact, sessile on body-wall ; duct short and straight. Spermathecæ with large ovoid ampulla; duct short and narrow ; diverticula one to four, very small, wart-like, on the duct, or diverticula may be quite unrecognizable. Penial setæ may be in a group of 4-6 on each side, medial from the male pores; 0.6 mm . long, with indistinctly quadrangular smooth tip and many rings of long thin teeth.

Remarks. This is one of the commonest worms in India. Besides the more usual situations it has been met with under logs, under bark, and in rotten wood; in the leaves of waterplants; under stones, or in mud by the side of a tank; and worms probably belonging to this species have been found in the hollows of trees in accumulations of dead leaves and rain-water; -it is thus able to adapt itself to very various surroundings.

Michaelsen draws attention (54) to the variations met with, especially in the size. The spermathecal diverticula may be mentioned as another variable feature, and also the male field; the depression in which the male pores lie may be quite indistinct. Beddard has found very large variations in the numbers and position of the genital apertures (108).

Distribution. In the E. Himalayas-Dibrugarh and Sadiya in N.E. Assam, the Abor Country, and Darjiling Dist.; in the W. Himalayas-Kumaon Dist., Sahasar Dhara near Delhra Dun, Simla and the Simla Hills; Calcutta, Rajshahi, and Sibpur in Bengal : Pilibhit Dist. in the United Provinces; T'einzo, Bhamo Dist., and Thao, Ghecu Dist., in Burma ; Talewadi, near Castle Rock, in Bombay Pres. ; Kandy in Ceylon; Little Andaman I.

Outside India the species has been met with in the Philippines, Malay Archipelago, Siam, Cochin China, and Réunion I.

9. Perionyx fossus Steph.

> 1920. Periony.x fossus, Stephenson, Mem. Ind. Mus. vii, p. 214, pl. ix, figs. 18,19 .

Length 86 mm . ; diameter 3.5 mm . Segments 136 ; body circular in transverse section. Colour a dusky purplo dorsally, pale ventrally. Prostomium epilobous $\frac{3}{4}$, tongue cut off behind. Dorsal pores from $4 / 5$. Setal rings regularly interrupted dorsally $\left(z z=1 \frac{1}{2}-2 y z\right)$, sets z in straight lines; no ventral break; ventral setx much closer set than the dorsal; numbers $52 / \mathrm{v}, 56 / \mathrm{ix}, 56 / \mathrm{xii}, 52 / \mathrm{xix}$, and 54 in middle of body. Clitellum $\frac{1}{2}$ xiii- $\frac{1}{3}$ xvii $\left(=3 \frac{5}{\hat{5}}\right)$. Male field as a deep squarish depression

Fig. 130.-Parionyx fossus Steph.; spermatheca.

Fig. 131.-Perionyx fossus Steph. ; tip of penial seta ; $\times 400$.
on xviii, across the floor and sides of which extends a transverse crack; male pores in the crack, at the junction of floor and sides of the depression, fairly close together, in line with d or e. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, about threequarters of circumference apart, in line with the ninth seta.

No septa notably thickened, perhaps $9 / 10$ most so. Gizzard rather large but soft, in vi. No calciferous glands. Intestine
begins in xvii. Last heart in xiii. Nephridia end in the same linc. Testes and funnels free in x and xi . Seminal vesicles in xi and xii, those in xi fused dorsally, those in xii fused in their hinder parts, which extend back to the hinder end of xiii. Prostates large compact masses which take up the space of three or four segments by bulging the septa of xviii forwards and backwards : duct narrow at first, becoming stouter and shining in its ectal portion. Spermathecal ampulla irregularly ovoid; duct half as long as ampulla and one-third as thick; two diverticula, small, flattish, sessile, lobulated, situated at about the middle of the length of the duct (text-fig. 130). Penial seta (text-fig. 131) little modified ; length 0.45 mm ., thickness 18μ, shape that of an ordinary seta, the tip fairly sharply pointed, no nodulus; a fer small indentations near the tip.

Distribution. Shillong, Assam.

10. Perionyx foveatus Steph.

1914. Perionyx foveatus, Stephenson, Rec. Ind. Mus. viii, p. 396, pl. xxvii, figs. 15, 16.
Maximum length 50 mm .; maxinum diameter 3 mm . Segments 112. Colour dorsall, dark brown to dark purple, paler ventrally. Prostomium cpilobous $\frac{1}{2}$. No intersegmental furrow between i and ii. First dorsal pore in $4 / 5$ or $5 / 6$. Setal rings unbroken ventrally but with an irregular dorsal interval

Fig. 132.-Perionyx foveatus Steph.; male genital area.
averaging $2-2 \frac{1}{2} y z$; setæ much more closely set ventrally than dorsally; numbers $45-48$ in anterior part of body. Clitellum xiii-xvii or $\frac{1}{2}$ xviii $\left(=5-5 \frac{1}{2}\right)$. Male pores as rounded apertures of some size, rather behind the setal zoue, ca. $\frac{1}{3}$ of circumference apart; about eight setæ between the pores. In 17/18, in front of and rather internal to the male pores, a pair of puckered pits, connected with each other across the middle line by a furrow which is convex backwards; midventral region between pores and pits depressed; the pits vary somewhat in appearance; their posterior angles may be prolonged to join the male pores (textfig. 132). Female pores apparently paired, separated by an interval of less than 2 aa, and just behind 13/14. Spermathecal pores three pairs, in $6 / 7-8 / 9$, near the margins of the flattened ventral surface, round and prominent.

No septa specially thickened. Gizzad, in \mathbf{v}, vestigial in the
extreme, a slightly wider part of the œsophagus only, walls not thickened. No calciferous glands. Last hearts in xii or xiii. Nephridia end in the same line; no end-sacs. Funnels free in x and xi. Seminal vesicles two pairs, in xi and xii, the former smaller and flattened, or may be absent; both pairs when present composed of a number of bead-like lobules. Prostates vary in size, occupying one or more than one segment, compact and firm, slightly indented into lobes; duct stout and straight, of some length. Spermathecal ampullæ large, and rectangular from mutual pressure; duct very stout, as long as the ampulla and half as wide; diverticulum minute, attached to uppermost part of duct, occasionally absent. No penial seta.

Remarles. A number of specimens were found in rotten wood. I re-examined the specimens recently; in one from Lenging the last heart was found in xii (previously said to be in xiii); there was apparently a small gland on the right side, attached to the body-wall just to the outer side of and in front of the ending of the prostatic duct, possibly opening at the depression in 17/1.8; no such gland was seen on the left side.

Distribution. Renging, Rotung, and Upper Rotung, Abor Country, E. Himalayas.

11. Perionyx fulvus Steph.

1916. Perionyr. fuluus, Stephenson, Rec. Ind. Mus. xii, p. 322, pl. xxxi, tig. 16.
1917. Perionyx fulvus, Stephenson, Rec. Ind. Mus. xvi, p. 16, textfigs. 4,5 .
Length up to 175 mm .; diameter 2.5-4\% mum. Segments up to 178. Colour yellowish brown, almost unpigmented, the anterior segments with a slight bluish tinge dorsally, a median dorsal dark stripe along the whole length (some specimens in aquatic habitat deep brownsh-purple dorsally). Prostomium epilobous $\frac{1}{2}$, tongue partly cut off behind by an inturning of the sides. Dorsal pores from 4/5. Setal ring with small dorsal break, less than $2 y z$, and a small ventral break, less than $2 a b$, in the anterior part of the body, but none behind; seta closer set ventrally than dorsally; numbers $48 / \mathrm{v}, 55 / \mathrm{ix}, 52 / \mathrm{xii}, 53 / \mathrm{xix}, 55 / \mathrm{xxv}$. Clitellum xiii-xvii ($=.5$), rather constricted. Male pores very close together, on small porophores which are in a slight depression and turned somewhat inwards, separated in the middle line by a median groove, and limited in front and behind by transverse grooves (text-fig. 133). Spermathecal pores two pairs, close together in $7 / 8$ and $8 / 9$.
Septa $7 / 8$ and $8 / 9$ slightly thickened. Gizzard in vi, small, soft, squarish, vestigial. Calciferous glands of moderate size in xiii; lateral enlargements of the œesophagus, which are not set off from the tube, in xi and xii. Intestine begins in xvi. Last heart in xii. Nephridiopores in the same line. Testes and funnels free in \mathbf{x} and xi. Seminal vesicles two pairs, those in xi large, meeting
dorsally but not fusing ; those in xii united and prolonged backwards through xiii. Prostates rather small squarish masses, confined to xviii; duct soft and short, curled up in a hollow of the gland, broader towards its ectal end. Spermathecal ampulla

Fig. 133.-Perionyx fulvus Steph.; male genital area.

Fig. 134.- Perionyx fulvus Steph. distal end of penial seta.
irregularly ovoid; duct short and stout; no diverticula. Penial setw (text-fig. 134) 0.83 mm . long, 20μ thick at the middle, almost straight, tip slightly curved, pointed; distal end ornamented with about twelve rings of rather long fine spines.

Remarks. At Inle the worms were found in a few feet of water. I noted that in the pigmented specimens the colour develops as a series of longitudinal streaks in each segment, which expand and coalesce.

Distribution. Calcutta; Inle, S. Shan States, Burma.

12. Perionyx gravelyi Steph.

1917. Perionyx gravelyi, Stephenson, Rec. Ind. Nus. xiii, p. 378, pl. xvi, figs. 7, 8.
Length 48 mm .; maximum diameter 2 mm . Segments 89 . Colour dorsally a light purple with darker mid-dorsal stripe, pale ventrally. Prostomium epilobous $\frac{3}{3}$, tongue broad, cut off behind. Dorsal pores from 6/7. Setal rings almost closed dorsally and ventrally; no noteworthydifferences in the intersetal intervals; numbers $34 / \mathrm{v}, 40 / \mathrm{x}, 40 / \mathrm{xii}, 32 / \mathrm{xix}$, and 32 in the middle of the body. Clitellun xiii or $\frac{1}{2}$ xiii-xvi $\left.\left(=3 \frac{1}{2}\right)\right\} \quad$ Male pores as transverse slits
just behind the setal zone and between setæ a and b, which are modified as penial setæ; the pores and setæ are on papillæ which meet in the middle line, the conjoined papillæ being bounded by grooves in front and behind (text-fig. 135). Spermathecal pores in $6 / 7$ and $7 / 8$, between the lines of a and b, like the male pores very near the midventral line.

Septa $7 / 8-9 / 10$ slightly strengthened. Gizzard small but moderately firm, in v. Esophagus somewhat swollen in xiv and xv. Intestine begins gradually in xvii. Last heart in xii. Testes and funnels free in x and xi. Vesiculm seminales of $x i$ fused

Fig. 135.-Perionyx gravelyı Steph.; male genital area.

Fig. 136.-Perionyx gravelyi Steph.; penial seta, $\times 150$.
into a single large sac ; those of xii fused behind septum 11/12, but separate posteriorly. Prostates occupying xvii-xix, in three lobes corresponding to the three segments; duct with an angle pointing backwards, rather thin, soft, broader ectally. Spermathecal ampulla sac-like, irregular ; duct not sharply marked off, nearly as long as ampulla and half as thick; no diverticulum. Penial setæ (text-fig. 136) little modified, $0 \cdot 4 \mathrm{~mm}$. long and 21μ thick; slightly curved proximally and distally, tip pointed; a few fine dot-like sculpturings near the tip, in more or less transverse rows.

Distribution. Pashok, Darjiling Dist., E. Himalayas.
13. Perionyx heterochætus (Steph.).
1917. Periony.r aborensis, var. heterochretus, Stephenson, Mec. Ind. Mus. xiii, p. 379, pl. xvi, fig. 9.
Length 60 mm .; diameter 2.5 mm . Segments 100. Colour dark purple anteriorly on dorsal surface, brownish behind with
darker median stripe; pale ventrally. Body depressed. Prostomium epilobous $\frac{1}{3}$, tongne not closed behind. Dorsal pores from $5 / 6$. Seter on dorsal surface in segments ii-xxxiv much larger and set further apart than behind, the change being sudden and coinciding with a change in pigmentation (darker and purpler in front, lighter and browner behind); setal ring closed ventrally, and almost so dorsally; numbers $30 / v, 31 / \mathrm{viii}, 31 / \mathrm{ix}, 31 / \mathrm{xii}, 33 / \mathrm{xix}$, and about 50 in middle of body. Clitellum apparently xiii-xvii $(=5)$, best marked over xiv-xvi. Male area a whitish patch taking up the whole length of xviii, the lateral margins rather swollen, the centre rather concave; the pores as transverse grooves in the setal zone, their centres about opposite the interval $d e, \frac{2}{15}$ of circumference apart. Spermathecal pores in $6 / 7$ and $7 / 8$, in line with e, $\frac{1}{6}$ of circumference apart.

Septa 6/7-8/9 slightly thickened. Gizzard vestigial, in v. Esophagus swollen in xi-xiii, with transverse vascular channels. Intestine begins behind the prostates. Last hearts in xii. Testes and funnels free, in x and xi. Seminal vesicles in xi and xii, of simple outline, meeting dorsally. Prostates squarish, confined to

Fig. 137.--Perionyx heterochatus (Steph.), spermatheca.
xviii ; duct apparently only slightly muscular, curled and twisted in the hilus of the gland. Spermathecal ampulla irregular in shape, about as broad as long; duct two-thirds as broad and twothirds as long as ampulla; diverticulum single, knob-like, sessile on the upper part of the duct, with a few indistinct seminal chambers (text-fig. 137). No penial seta.

Remarks. I now separate this form as a distinct species, since (1) it does not come from near the same place as P. uborensis; (2) the setal distribution is distinctive; (3) I have since found penial setie in P. aborensis, which I have united with P. depressus; (4) there is a spermathecal diverticulum here.

Distribution. Pashok, Darjiling Dist., E. Himalayas.

14. Perionyx himalayanus Mich.

1907. Perionyx limalayanus, Michaelsen, Mt. Mus. Hamburg, xiv, p. 158.
1908. Perionyr himalayanus, Michaelsen, Mem. Ind. Mus. i, p. 176, pl. xiii, tigs. 16, 17.
Length 56-62 mm.; diameter $2 \mathbf{z}^{-3} \mathbf{~ m m}$. Segments 86-95. Colour in general grey, with slight reddish tint dorsally in front.

Prostomium epilobous $\frac{3}{5}$, tongue not cut off behind. First dorsal pore in $8 / 9$ (it not $7 / 8$ or $6 / 7$). Setæ moderately large; circles nearly complete, only indistinctly interrupted in the middorsal line; numbers $40 /$ viii, $42 / \mathrm{xxi}$. Clitellum xiii-xvii $(=5)$, ringshaped except on xiii, where it is interrupted ventrally. Male pores rather behind the setal zone, about one-fith of circumference apart, on small transversely oval papillæ, each situated in the central depression of a large nearly circular glandular protuberance, which is sharply limited behind but only indistinctly in front. Spermathecal pores two pairs, in $6 / 7$ and $7 / 8$, about $\frac{1}{8}$ of circumference apart.

Septa of the region of the testes and some neighbouring ones slightly thickened. Gizzard vestigial, in vi (?). No calciferous glands. Nephridia end apparently in the same line. Funnels in x and xi, apparently enclosed in unpaired sacs, which are continued laterally into seminal vesicles. Seminal vesicles three pars, the first, in x , being the lateral continuations of the testis sacs;

Fig. 138.-Perionyx himalayanus Mich.; spermatheca; $\times 20$.
the others in xi and xii. Prostates with small, rather compact, irregular glandular part; duct moderately thick, irregularly bent or coiled, about as long as the glandular part. Spermathecal ampulla large, ovoid, obliquely placed; duct sharply set off, half as long and a quarter as thick as the ampulla, narrowed at its ectal end ; diverticula two, very small, at ental end of duct, nearly opposite each other, without stalk (text-fig. 138). No penia setæ.

Distribution. Sandakphu, Darjiling Dist., E. Himalayas.

15. Perionyx inornatus Steph.

1916. Periony. inornatus, Stephenson, Rec. Ind. Mus. xii, p. 3:0, pl. xxxi, fig. 14.
Length 96 mm .; diameter 5 mm . Segments 124. Colour yellowish brown. Prostomiuin apparently proepilobous. Dorsal pores from 6/7. Setal rings unbroken ventrally, a small and irregular dorsal break behind the genital region, none in front; setw set closer ventrally than dorsally ; numbers $56 / \mathrm{v}, 70 / \mathrm{ix}, 75 / \mathrm{xii}$, 83/xix. Clitellum? Male pores approximately in de, on the
sides of a shallow transversely oval depression with shelving sides, in transverse extent equal to $\frac{1}{9}$ of circumference. Spermathecal pores, two pairs, in $6 / 7$ and $7 / 8$, not far apart, the distance between them about equal to that between the male pores.

Septa $8 / 9$ and $9 / 10$ moderately thickened, those in front and behind ($6 / 7-7 / 8$ and $10 / 11-12 / 13$) slightly so. Gizzard soft but of some size, squarish, in ∇. Intestine begins in xiv. Last hearts in xii. Testes and funnels free in x and xi. Seminal vesicles in xi and xii, large and single in each segment, situated dorsally over the gut. Prostate small aud confined to xviii ; duct soft, white,

Fig. 139.-Perionyx inornatus Steph.; distal end of penial seta
comparatively narrow and of the same diameter throughout, straight and passing transversely inwards. Spermathecal anpulla small and simple, ovoid; duct short, stout, not marked off; no diverticula. Penial setæ (text-fig. 139) 0.92 mm . long, 30μ thick at the middle, with blunt point and straight shaft ; the distal end ornamented with about 14 irregular and interrupted rings of very minute sculpturings.

Remurks. The species is closely related to P. pincermu; each is unfortunately only known from a single specimen, and it is possible that if the material had been more ample it might have been permissible to unite them. In the present state of knowledge, however, the differences in size, in the numbers of the setm, and in the male field, seem to justify thair separation.

Distribution. Sandakphu, Darjiling Dist., E. Himalayas.

16. Perionyx kempi Steph.

1914. Perionyx kempi, Stephenson, Rec. Ind. Mus. viii, p. 389, pl. xxvi, fig. 11.
Length 75 mm .; diameter nearly 3 mm . Segments 164 . Colour light brown, paler ventrally and at the anterior end. Dorsoyentrally flattened, especially behind the clitellum. Segments in
general triannulate. Prostomium epilobous $\frac{1}{2}$, tongue cut off behind. A longitudinal middorsal groove from the anterior end to some distance behind the clitellum. First dorsal pore in $5 / 6$. Setal rings unbroken ventrally, interrupted dorsally $\left(z z=2 \frac{1}{2}-3 y z\right)$; setæ very closely set ventrally, laterally and dorsally three times as wide apart or even more; dorsal setæ behind clitellum extremely small; number per segment about 50 . Clitellum xii- $\frac{1}{3}$ xix $\left(=7 \frac{1}{3}\right.$), swollen, friable. Male pores with puckered margins, on the lateral borders of a square depression which occupies the midventral portion of xviii; no seta between the male pores. Spermathecal pores two pairs, in $6 / 7$ and $7 / 8$, ca. $\frac{1}{7}$ of circumference apart.

No septa notably thickened. No gizzard. Intestine begins in xix. Last hearts in xiii. Funnels free in x and xi. Seminal vesicles large, compact, only indistinctly lobed, in xi and xii, not fused dorsally. Prostates occupy xvii and xviii, bulging backwards septum 18/19, massive and compact, not distinctly lobulated

Fig. 140.-Perionyx kempi Steph. ; spermatheca.
on the surface; duct short, curved in an S-shape. Spermathecal ampulla very irregular in shape, somewhat triangular ; duct equal to ampulla in length or nearly so, sharply delimited from the ampulla by a constriction, dilated at its upper end, the dilated part containing spermatozoa and so functioning as a diverticulum; no other diverticulum (text-fig. 140). No penial setæ.

Remarks. Fourd in rotten wood.
Distribution. Kobo, Abor Country, E. Himalayas.

17. Perionyx koboensis Steph.

1912. Periony.x koboensis, Stephenson, Rec. Ind. Mus. viii, p. 391, pl. xxvi, fig. 12.

Length 100 mm .; diameter 4 mm . Segments 144 . Colour dorsally dark purple anteriorly, pinkish posteriorly; ventrally pale. Prostomium epilobous $\frac{1}{2}$. First dorsal pore in 8/9. Setal rings almost complete; $a a$ and $z z=2 a b$ and $2 y z$; seto rather more closely set; on the ventral than on the dorsal surface;
number cn. $51 / \mathrm{vii}$, ca. $49 / \mathrm{xvii}$, ca. $53 / \mathrm{xxv}$, more posteriorly 54. Clitellum $\frac{1}{2}$ xiii-xvi $\left(=3 \frac{1}{2}\right)$. Male pores near together, as small transverse slits in the setal zone, in a transversely elongated whitish field continuous with the whitish setal ridge, of which it represents a broadening; no setw between the pores, which are about four setal intervals apart. Spermathecal pores two pairs,

Fig. 141.-Perionyx koloensis Steph.; distal end of penial seta; \times ca. 400.
in $7 / 8$ and $8 / 9$, near the middle line, about the same distance apart as the male pores. A slight thickening of the anterior border of segment xix in the midventral region.

Septa 6/7-8/9 slightly thickened. Gizzard in vi, somewhat vestigial. Esophagus bulged in viii, and in xiv-xvii; longitudinal lamellæ internally in xiv and xv, less marked in xvi and xvii. Last heart in xil. Nephridia pierce the body-wall at varying positions, but not in two definite and alternating series; no end'sacs. Testes and funnels free in x and xi. Seminal vesicles in x, attached to the anterior face of $10 / 11$, and in xi and xii; each a single mass, continuous dorsally from side to side. Prostates in xviii, solid-looking, not cut up into lobes, somewhat
rectangular: duct stout and straight. Spermathecal ampulla ovoid; duct not marked off, as long as and nearly as broad as ampulla; no diverticula. Penial seta (text-fig. 141) four or more in each group, up to 0.88 mm . long and 22μ thick, with a slight sabre curve, pointed distally ; the distal portion of the shaft ornamented with about twenty riugs of extremely fine teeth.

Remarks. Found in rotten wood.
Distribution. Kobo, Abor Country, E. Himalayas.

18. Perionyx m'intoshi Beld.

> ? 1883. Periony.x m'intoshii, Beddard, Anm. Mag. N. II. (5) xii, p. 217 , pl. viii, figs. $3,8$.
> 1892. Periony.r macintoshii, Beddard, P.Z. S. 1892, p. 687.
> 1895. Periony.r macintoshii, Beddard, Monog. p. 438.
> 1900. Perionyx m'intushi, Michaelsen, Tier. x, p. 208.
> 1917. Periony.x m'intoshi, Stephenson, Rec. Ind. Mus. xiii, p. 383.

Length $230-375 \mathrm{~mm}$. ; diameter $9-12 \cdot 5 \mathrm{~mm}$. Segments ca. 200-261. Colour dorsally purple or violet, ventrally pale, clitellum buff. Prostomium epilobous $\frac{1}{2}$, tongue open behind. First dorsal pore in 5/6. Sete relatively small; rings closed dorsally and ventrally; setæ more closely set ventrally, the intersetal intervals often irregular; numbers $78 / \mathrm{v}, 72 / \mathrm{ix}, 76 / \mathrm{xii}$, ca. $90 / \mathrm{xxiii}$, and 112 in the middle of the body. Clitellum xiii-xix $(=7)$. Male pores closely approximated, on a common median field about 3 mm . broad, the pores as round pits behind the setal zone; the area rectangular with a well-marked border, taking up the whole length of the segment and eneroaching on adjacent segments, often depressed. Spermathecal pores two pairs, in 7/8 and 8/9, fairly close together.

Septum 5/6 slightly, 6/7-11/12 moderately thickened, and some succeeding ones slightly. Gizzard in vi, of fair size, moderately firm. No calciferous glands. Intestine begins in xviii or xix. Last hentt in xiii. Testes and funnels free in x and xi. Seminal vesicles in xi and xii, large, lobed, and may be united together over the alimentary canal; there may be also a small rudimentary vesicle in xiii. Prostate lobed; duct short, stout but soft, running transversely inwards. Rudimentary ovisacs may be present in xiv. Spermathecal ampullo almost spherical, prolonged into a short thin duct; no diverticulum. No penial setæ.

Remarks. My specimens showed a shifting back of the male pores and of the posterior border of the clitellum by one segment. The nephridia are stated to lie all in the same line, but there is no definite mention of the nephridiopores, which are the important things in this connection.

Distribution. Sibpur, Bengal; Nepal Valley ; ? Akyab, Burma.

19. Perionyx millardi Steph.

> 1915. Perionyx millardi, Stephenson, Mem. Ind. Mus. vi, p. 74, text-fig. 2.
1920. Periony.r millardi, Stephenson, Mem. Ind. Mus. vii, p. 205, pl. ix, fig. 8.
1920. Periony.r igatpuriensis, Stephenson, Mem. Ind. Mus. vı, p. 220, pl. x, fig. 24.

Length 40-90 mm. ; diameter 2-2.5 mm. Segments 120-170. Colour deep purple dorsally, brown ventrally, with a fairly sharp demarcation between the two. Prostomium epilobous $\frac{1}{2}-\frac{2}{3}$, sides of tougue converging behind, closed or not at hinder end. Dorsal pores from $4 / 5$ or $5 / 6$. Setal rings interrupted by small gaps dorsally and ventrally, or may be unbroken dorsally; breaks

Fig. 142.-Perionyx millardl Steph.; genital area. Spth. indicates the spermatheral apertures, σ° the wale, and \circ the female pores. The setre in the neighbourhood of the male and spermathecal apertures are shown.
largest ventrally in frout of clitellum, where $a a=2 a b$ or perhaps more; numbers $40 / \mathrm{ix}, 41 / \mathrm{xii}, 48 / \mathrm{xix}, 41$ in the middle of the body. Clitellum xiii-xvii $(=5)$. Male pores small, round, close to the middle line, on small papille. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, close to the middle line, in line with b (text-fig. 142).

No septa thickened. Gizzard vestigial, in vi, of some size, but its walls thin and soft. No calciferous glands. Iutestine begins in xviii or xix. Last heart in xiii. Nephridia end in the same line. Testes and funnels free in x and xi. Seminal vesicles in $x i$ and xii, the posterior pair the larger, and may bulge back septum 13/14. Prostates compact, may take up xviii and xix ; duct short and narrow, soft, only slightly shining, straight, running transversely inwards. Spermathecal ampulla irregularly ovoid; duct short; a single diverticulum from junction of duct and ampulla,
small and scale-like, or cauliflower-like with a number of small semmal chambers, or three-lobed with the lobes almost independent of each other (almost separate diverticula) (text-fig. 143). Penial setr $0.44-0.65 \mathrm{~mm}$. long, $15-18 \mu$ thick, slightly curved

a

6

C.

Fig. 143.-Perionyx mullardı Steph.; different forms of spermathecæ.
towards the distal end, which is bluntly pointed; 9 or 10 circles of spines near the tip, of fair size; a slight bulbous swelling just proximal to the tip.

Remurks. The similarity of the penial setm of this form to those of P. bainii (text-fig. 129) is striking. The spermathecal pores are much uearer together in the present species, the last heart is in xiii, the spermathecal duct is short, and the male pores are of simple form.

Distribution. Bombay, Talegaon, Kalyan, Vivar, Igatpuri (all near Bombny).

20. Perionyx minimus Steph.

1920. Periony.x minimus, Stephenson, Mem. Ind. Mus. vii, p. 219, pl. x, tig. 23.
Length up to 45 mm .; diameter 1 mm . or as a maximum $1 \frac{1}{4}$. Segments 100. Ventral surface flattened. Colour a medium brown dorsally, a lighter brown ventrally. Prostomium epilobous $\frac{1}{2}$, tongue cut off behind. Prostomium and segment i divided by a middorsal groove. Dorsal pores from $4 / 5$. Setal rings almost closed ventrally ; dorsal break well marked, $=2 y 8$; setæ much closer set ventrally; numbers $26 / \mathrm{xx}$, ca. 36 in middle of body. Clitellum xiii or $\frac{1}{2}$ xiii-xvii ($=4 \frac{1}{2}$ or 5). Male pores on conspicuous round papillæ; the space between the papillæ depressed, the depression extending from the middle of xvii to the anterior third of xix, dumbbell-shaped in form, being encroached upon from the sides by the papillm. Spermathecal pores in $7 / 8$ and $8 / 9$, about a quarter of the circumference apart.

No septa thickened. Apparently a vestigial gizzard in v. (Esophageal bulgings in xiii and xiv, slight, with longitudinal vascular striations. Intestine begins in xix. Pharyngeal glands
as definite lobes on each side, filling out the segments as far back as vii. Last heart in xii. Testes and funnels free in x and xi. Seminal vesicles in ix and xii, brown in colour; the posterior pair large and lobulated, meeting each other dorsally. Prostates somewhat loosely lobulated, occupying more than one segment; duct

Fig. 144.--Perionyx minimus Steph.; spermatheon viewed under the microscope.
short, narrow, and rather soft. Conspicuous ovisacs in xiv. Spermathecal ampullæ rounded; duct of same length as ampulla; diverticula two, sinall, subspherical, shortly stalked, at ental end of duct ; the duct becomes stouter below the diverticula (text-fig. 144). No penial setæ.

Distribution. Belgaum, Bombay Pres.

21. Perionyx modestus Steph.
 1922. Periony. modestus, Stephenson, Rec. Ind. Mus. xxiv, p. 435.

Length $85-167 \mathrm{~mm}$.; maximum diameter 4 mm . Segments 174. Colour deep purple dorsally, violet ventrally. Body somewhat flattened dorso-ventrally. Prostomium epilobous $\frac{1}{2}$, tongue open behind. Dorsal pores from $4 / 5$. Setæ more closely set ventrally; dorsal break absent or very small; ventral break small in front of genital region, absent or small behind this; numbers ca. 38/v, $41 / \mathrm{ix}, 42 / \mathrm{xii}, 42 / \mathrm{xix}$, and 42 in the middle of the body. Clitellum absent. Male pores at the ende of a transverse groove on xviii, not far from midventral line, about in line with d. Spermathecal pores near together, in $7 / 8$ and $8 / 9$, about in line with c.

Septa $6 / 7$ and $7 / 8$ slightly thickened, $8 / 9$ and $9 / 10$ moderately so. Gizzard vestigial, in v. No calciferous glands; œsophagus with transverse vascular striations in sii and xiii. Last heart in xiii. Nephridia all end in the same line. Testes and funnels free in x and xi. Seminal vesicles in xi and xii, those of the same pair meeting in the middle line. Prostates small; duct relatively
stout, straight, shining. Spermathece as small elongated sacs; duct not distinguishable; a minute wart-like diverticulum near base (not always). No penial sete.

Distribution. Cherrapunji, Assam.

22. Perionyx mysorensis Steph.

1921. Periony.r mysorensix, Stephenson, Rec. Ind. Mus. xxii, p. 762, pl. xxviii, fig. 10.

Length more than 38 mm .; dinmeter 2 mm . Segments more than 90. Colour light brownish purple dorsally, pale ventrally. Prostomium prolobous or slightly epilobous. Dorsal pores present. Setal rings closed dorsally and ventrally; numbers $5 \ddagger-62$. Clitellum? Male pores close to the middle line, on a transverse ridge across the middle of the segment. Transverse trenches in

Fig. 14j.-P'criony.x mysorensss Steph.; penial seta; a, general form, $\times 130 ; b$, distal end, \times ca. 400.
front and behind the ridge; the whole contained within the limits of segment xvii. Spermathecal pores in $7 / 8$ and $8 / 9$, near the middle line.

Septa 6/7-9/10 somewhat thickened, and also 12/13-15/16. Gizzard quite vestigial, in vi. No calciferous glands; lateral swellings of the œsophagus in xiii. Last heart in xii. Testes and funnels free in x and x. Seminal vesicles in $x i$ and xii. Prostates each a squarish mass, cut up into lobes; duct short, straight, passing transversely inwards. Spermathecæ spherical, sessile on body-wall : no diverticulum (? not fully developed). Penial setæ (text-fig. 145) 0.44 mm . long, slightly bowed, most so at the proximal end; tip tapering and fairly sharply pointed; a few scattered transverse markings composed of minute teeth.

Distribution. Forests of Shimoga or Kadur Dist., Mysore.

23. Perionyx nainianus (Mich.).

1907. Perionychella nainiana, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 15\%.
1908. Perionychella nainiana, Michaelsen, Mem. Ind. Mus. i, p. 169.

Length 85 mm .; diameter $2 \frac{1}{2}-3 \frac{1}{3} \mathrm{~mm}$. Segments ca. 105. Colour dark bluish-violet dorsally, ventrally grey ; anterior end violet grey both dorsally and ventrally. Prostomium epilobous $\frac{1}{2}$, tongue open behind. Dorsal pores from 3/4, apparently a rudimentary one in $2 / 3$. Setæ fairly large, nearly equidistant; rings complete; numbers differ little in the various parts of the body, ca. 50. Clitellum only distinguishable by colour, xiii-xviii ($=6$). Male pores as small transverse slits just behind the setal zone, about $\frac{1}{5}$ of circumference apart ; setæ interrupted in front of the pores, and 5 or 6 setæ median to the pores. Spermathecal pores in $7 / 8$ and $8 / 9$ about a quarter of the circumference apart.

Septa of the anterior male region a little thickened. Gizzard very small but not exactly vestigial, in v. No calciferous glands; cosophagus swollen in xiii and xiv, with lamellated and villous walls. Last hearts in xii. Nephridia of all segments similar. Testes and funnels free in x and xi. Seminal vesicles in xi and xii, rather compact, roughly mainmillated. Prostates confined to xviii, relatively small, lobed, deeply incised medially ; duct about as long as gland, straight, rather thin, especially ectally. Spermathecæ very simple, with almost spherical ampulla; duct short and narrow; no diverticulum. The setæ medial from the male pore though not displaced are modified; about twice as long $(0.7 \mathrm{~mm}$.) as the ordinary setre, and somewhat thickened (17μ), almost straight, pointed, without distinct ornamentation but with the highest powers showing apparently some very fine hair-like structures near the tip, closely adpressed to the surfiace of the seta.

Remarks. The median setæ on xviii represent an early stage in the evolution of penial sete.

Distribution. Naini Tal, W. IImalayas.

24. Perionyx nanus Steph.

1917. P'eriony.r nanus, Stephenson, Rec. Ind. Mus. xiii, p. 381, pl. xvi, tig. 10.
Length 53 mm .; diameter 1.5 mm . Segments 100. Colour brownish-purple dorsally, pale ventrally. Ventral surface flattened. Prostomium epilobous $\frac{1}{2}$, open behind. Dorsal pores from $5 / 6$. Setal ring almost closed dorsally and ventrally (entirely closed ventrally in the anterior region); numbers ca. 36/ix and the same in xii, $35 / \mathrm{xix}$, and 34 in the middle of the body. Clitellum xivxvii $(=4)$, well marked. Male pores in line with g or $g h$, onefourth of circumference apart, slightly behind the setal zone, prolonged somewhat towards the middle line as grooves; surrounding each pore a whitish thickened patch, the whole taking up the whole ventral surface of xviii (text-fig. 146). Spermathecal
pores in $6 / 7$ and $7 / 8$, widely apart (nearly $\frac{1}{3}$ of circuinference), large and patent.

No septa notably thickened. Gizzard vestigial, in v. Esophagus bulged in ix, with transverse vascular channels. Intestine begins in xix. Last heart in sii. Testes and funnels free in x and xi.

Fig. 146.-Perionyx manus Steph., male genital area.
Vesicule seminales large, in xi and xii, those in xi fusing together, but not those in xii. Prostates occupying xvii-xix ; duct thin and soft, bent once on stself with the convexity forwards. Spermathecæ simple in form, ampulla pear-shaped; duct broad and short, not sharply marked off; diverticulum single, wart-like, sessile, not chambered, at the junction of ampulla and duct. No penial setæ.

Distribution. Pashok, Darjiling Dist., E. Himalayas.

25. Perionyx pallidus Steph.

1917. Periomyx pallidus, Stephenson, Rec. Ind. Mus. xiii, p. 376, pl. xvi, tigs. 5, 6.
Length 80 mm .; diameter $3 \frac{1}{4} \mathrm{~mm}$. Segments 118 . Colour pale, a purple tinge anteriorly on the dorsal side, and a median

Fig. 147.-Perionyx pallidus Steph.; spermatheca under the microscope; a, bulging perhaps representing an incupient seminal chamber.

Fig 148.-Periomyx palludus Steph.; pental seta; $\times 235$.
purple stripe throughout. Prostomium epilubous $\frac{1}{2}$. Dorsal pores from $4 / 5$, Setal rings quite closed ventrally, almost so
dorsally ; setæ closer set ventrally ; numbers $53 / \mathrm{v}, 72 / \mathrm{ix}, 52 / \mathrm{xi}$, $64 /$ xii, $52 /$ xix, and 70 in the middle of the body. Clitellum xiiixvi $(= \pm)$, slightly swollen. A transverse groove on segment xviii, in which are the male pores, small cracks $\frac{1}{10}$ of circumference apart. Spermathecal pores small, slit-like, in $6 / 7$ and $7 / 8$, the same distance apart as the male pores.

Septa $5 / 6$ and $6 / 7$ thin, $7 / 8-9 / 10$ slightly thickened. Gizzard vestigial, in vi. Within the œesophagus, in xiii and xiv, are longitudinal folds, scarcely to be called lamellw. Intestine begins in xvii. Last heart in xiii. Nephridal ducts terminate in the same line. Testes and funnels free in x and x. Seminal vesicles in xi and xii, fused in each segment over the alimentary canal. Prostates very small; duct runs straight inwards. Spermathecæ (text-fig. 147) small, ampulla sac-like, rather constricted in the middle; duct short, scarcely separately distinguishable; diverticulum absent (? developing). Penial setæ (text-fig. 148) scarcely modified, of the ordinary form, 0.175 mm . long, 17μ thick; a few fine sculpturings on the distal half.

Remarks. Another form showing an early stage in the evolution of the penial setæ.

Distribution. Kalimpong, Darjiling Dist., F. Ilimalayas.

26. Perionyx pincerna Steph.

1916. Periony. pincerna, Stephenson, Rec. Ind. Mus. xii, p. 319, pl. xxxi, figs. 12, 13.
Length 45 mm . ; diameter 3 mm . Segments 88 . Colour light brownish grey. Body cylindrical, not flattened. Prostomium

Fig. 140.-Perionyx pincerna Steph.; male genital area.

Fig. 150.-Perionyx pincerna Steph. ; distal end of penial seta.
epilobous $\frac{1}{4}$, tongue cut off behind. Dorsal pores from $4 / 5$. Setal ring with small and irregular dorsal break, on the average less than $2 y z$; ventral break small and irregular, or may be wanting in front of clitellum ; setæ set closer ventrally than dorsally ; numbers $47 / \mathrm{v}, 57 / \mathrm{ix}, 60 / \mathrm{xii}, 50 / \mathrm{xx}$. Clitellum indistinguishable. A transversely oval depression on xviii, deepest at
its margin, so that the middle of its floor is somewhat raised above its periphery; a thick whitish lip surrounds the whole and extends over the posterior half of xvii and anterior halt of xix ; male pores perhaps in c or d; a few penial setm visible as black points (text-fig. 149). Spermathecal pores small slits near the taiddle line, in $6 / 7$ and $7 / 5$, ca. $\frac{1}{10}$ of circumference apart.

Septa 5/6-9/10 slightly thickened. Gizzard of moderate size, in v, with soft and thin walls, and hence in some degree vestigial. Intestine begins in xviii. Last heart in xii. Nephridia opening in the same line. 'Testes and funnels free in x and xi. Seminal vesicles in xi and xii, single in each segment, arehing over dorsal vessel and gut. Prostates conlined to xviii, small, lobed; duct narrow, of the same diameter throughout, soft, not shining, with slightly wavy course. Spermathecm simple oval sacs sessile on the body-wall, without distingushable duct; no diverticulum. Penial setex (text-fig. 150) 0.63 mm . long, 24μ thick at the middle; simple in form, straight except for a bend at the proximal end, tip slightly curved and blunt; faint sculpturings near the tip appearing as fine points in about a dozen irregular and much broken circles.

Remarks. See note on ${ }^{\prime}$ '. inornatus.
Distribution. Near Ghoom, E. Himalayas.

27. Perionyx pokhrianus Steph.

1920. Periony.c polhrianus, Stephenson, Mem. Ind. Mus. vii, p. 208, pl. ix, figs. 10, 11.

Length 65 mm .; diameter 3 mm . Segments 96 . Colour pale violet dorsally, unpigmented ventrally. Prostomium epilobous $\frac{1}{2}$, tongue open behind. Dorsal pores from 4/5. Setal rings almost closed dorsally and ventrally, and may be quite closed in

Fig 1.1.-Perionyx polihrianus Steph.; male genital area.

Fig. 15:..-Perionyx pokhrianus Steph.; spermatheca.
hinder part of body ; setæ slightly closer set ventrally; numbers $50 / v, 58 / \mathrm{ix}, 54 / \mathrm{xii}, 48 / \mathrm{xix}$, and 44 in the middle of the body. Clitellum siii-xvi $(=4)$. A pair of papillæ on xviii, midventral, touching each other, taking up the greater part of the length of the segment, not delimited from the rest of the surface on their
outer sides, but bounded in front and behind by a common transverse groove (text-fig. 151). Male pores on the papillw, near the middle line, and nearer the posterior than the anterior limit of the papillæ. Spermathecal pores in $6 / 7$ and $7 / 8$, very close together, nearly in line with b.

No septa markedly thickened. Gizzard in v, large, barrelshaped, rather soft but not otherwise vestigial. Intestine begins in xviii. Last beart in xiii. Nephridia apparently terminate in the same line. Testis sacs in \mathbf{x} and xi , both continuous dorsally over the œesophagus and dorsal vessel; that in x very delicate, that in xi delicate and covered over by the seminal vesicles. Seminal vesicles in xi and xii, large, with granular surface, each meeting its fellow in the middle line dorsally. Prostates large, in xvii-xix, much indented; duct rather short, soft and thin, irregularly twisted, somewhat dilated at the ectal end. Spermathecal ampulla very irregularly lobed; duct short, constricted off from ampulla; diverticula as about three small swellings on the upper half of the duct (text-fig. 152). No penial setæ.

Distribution. Sitong, Darjiling Dist., E. Himalayas.

a. var. afflisis Steph.

1920. Periony.r pokhrianus var. affnis, Stephenson, Mem. Ind. Mus. vii, p. 210, pl. ix, figs. 12, 13.
Length 55 mm . ; diameter $2 \frac{1}{4} \mathrm{~mm}$. Segments 105. Colour a light slaty or purplish dorsally with darker median stripe, pale ventrally. Prostonium epilobous $\frac{2}{3}$, tongue open behind. Dorsal

Fig. 153. - Perionya pokhrianns Steph. var. affinıs; male genital field.

Fig. 154.-Perionyx polkhrıanus Steph. var. affinis; spermatheca.
pores from 4/5. Setal rings almost unbroken dorsally and ventrally ; numbers $38 / \mathrm{v}, 44 / \mathrm{ix}, 45 / \mathrm{xii}, 37 / \mathrm{xix}$, and 36 in middle of body. Clitellum xiii-xvi ($=4$). Male field (text-fig. 153) as a depression with sloping sides, on which are placed the papillæ of the male pores; papillæ delimited by grooves in frout and behind, and separated by a slight interval in the middle line; pores as small transverse slits in line with c, d, or e. Spermathecal pores in $6 / 7$ and $7 / 8$, in line with the interval $c d$.

A number of the anterior septa slightly thickened. Gizzard in \mathbf{v}, of moderate size and fairly firm. Intestine begins perhaps in xviii. Last heart in xii. The nephridial ducts appear to
end at different levels on the body-wall, but no regular alternation; no end bladders. Testis saes in x and xi. Seminal vesicles with granular surface, in xi and xii: those in xi continuous with the testis sac; the pair in each segment fused together. Prostates large, taking up the whole of xvii-xix, deeply indented by the septa, and otherwise much incised; duct moderately long, bent with the angle backwards, soft and rather thin in its ental portion, thicker and shining ectally. Spermathecal ampulla large, irregularly lobed; duct stout, slightly shiny, well marked off, considerably longer than ampulla; diverticulum a rounded knob on the ental end of the duct containing two seminal chambers (text-fig. 154). No penial setæ.

Remarks. The differences from the type-form consist in the smaller numbers of the setæ, the configuration of the male field, the degrees of separation between the male and spermathecal apertures, the length of the spermathecal duct, and the position of the last heart.

Distribution. Sitong and Sitong Ridge, Darjiling Dist., E. Himalayas.
28. Perionyx polytheca, nom. nov.
1916. Perionyx sp., Stephenson, Rec. Ind. Mus. xii, p. 323, pl. xxxi, figs. 17, 18.
Length 8 mm .; maximum diameter 1 mm . Segments more than 30. In the living animal ground-colour whitish, each segment girdled with a broad dark band; preserved, the bands

Fig. 155.--Perionyx polytheca Steph., male genital area.

Fig. 156. - Perionyx polytheca Steph. ; distal end of penial seta.
are dark purple, take up more than the middle third of each segment, and are less distiuct ventrally, especially behind the genital region. Prostomium epilobous $\frac{1}{2}$, tongue cut off behind by a curved posterior border. Dorsal pores from $4 / 5$. Sete in unbroken rings, not countable; closer set ventrally. Clitellum not distinguishable. Male area (text-fig. 155) a clean-cut transverse oval occupying the whole length of the segment. Male
pores as black points on two considerable rounded almost confluen papillm on the floor of the depressed oval area. Spermatheca pores seven pairs, from $2 / 3$ to $8 / 9$, as minute white points (not visible in all the grooves externally) near the middle line.

No septa are specially thickened. Gizzard entirely absent. No calciferous glands. Last heart in xii. Testes and funnels free in x and xi. Semmal vesicles in xii, nearly but not quite touching in the middorsal line. Prostates confined to xviii, compact; duct stout and very muscular, somewhat bent. Spermatheco seven pairs; ampula ovoid, 0.24 mm . long (except the first which is somewhat smaller); duct short and comparatively stout, half as long and half as thick as ampulla; diverticula one or two, globular, attached by short stalks to junction of ampulla and duct. Penial setæ (text-fig. 156) 0.27 mm . long or possibly 0.3 mm ., 7μ thick near the base, straight and rod-like, tapering very gradually along the shaft, more rapidly near the tip, which is bluntly pointed; distal end ornamented with fine spines.

Remarks. When I described this species 1 did not name it, because the description of P.ceylanensis, which Michaelsen had described from the same place (Peradeniya, in Ceylon), was not at that time accessible to me, and I thought that the present worm might possibly be identical with that. It is, howerer, a very characteristically distinct species; the minute size and the very large number of spermathecæ, with the colouring, mark it out immediately.

The single specimen had been mutilated behind at some previous time. On account of its small size the internal anatomy was investigated by means of sections.

Distribution. Peradeniya, Ceylon.
29. Perionyx pullus Steph.
1920. Perionyx pullus, Stephenson, Mem. Ind. Mus. vii, p. 217, pl. x, fig. 22.
Length more than 62 mm .; maximum diameter 3.5 mm . Segments more than 165. Colour dark grey both dorsally and ventrally. Ventral surface concave, except at anterior end. Prostomium epilobous $\frac{3}{4}$, tongue triangular; a groove continued back from prostomium as far as clitellum. Dorsal pores from 1/2. Setal rugs interrupted dorsally, $z z=3 y z$ in front of clitellum, $2 y z$ behind; ventral break absent, or small and irregular ; setæ. very small and closely set on ventral surface; numbers behind clitellum ca. 60, further back ca. 64. Clitellum xi-xx ($=10$). Male field on xix (in the single specimen), a rectangular area delimited at the sides by slight grooves, and in front and behind by deep trenches which coincide with the intersegmental furrows. Male pores apparently on two small whitish papille very close together. Spermal hecal pores in $7 / 8$ and $8 / 9$, close to the middle line.

No septa specially thickened. Gizzard entirely absent. Pharyngeal glands bulky, extending back as large masses on the alimentary
canal as far as ix. (Esophagus bulged laterally, and its walls vascular, in x-xiii. Intestine begins in xvii. Last heart in xii. Nephridia end approximately in the same line. Testes and funnels free in x and xi. Seminal vesicles in xi, xii, and xiii, relatively small, racemose in appearance. Prostates in xix, small, each consisting of a number of finger-like lobes in a bushy cluster;

Fig. 157.-Perionyx pullus Steph.; spermathech.
duct small and soft. Ovarian fumels in xiii. Spermathecal ampulla very irregular in shape, narrowing below to become the duct, which is about as long as the ampulla, and itself narrows towards its ectal end; diverticula about three small rounded sessile chambers around the lower part of the ampulla (textfig. 157). No penial setæ.

Remurls. The single specimen showed an abnormal position of the posterior male organs and male pores, but the abnormality was limited to these, the female organs and all in front having the usual situation. There appeared to be an additional pair of minute seminal vesicles in xir.

Distribution. Belgaum, Bombay Pres.
30. Perionyx pulvinatus Steph.
1916. Perimy, puluinatus, Stephruson, Rec. Ind. Mus. xii, p. 317, pl. xxxi, figs. 10, 11.

Length 57 mm .; maximum diameter $3 \cdot 5 \mathrm{~mm}$. Segments 126. Colour a deep brown dorsally with darker median stripe; lighter anteriorly; ventral surface pale. Body dorso-ventrally com--pressed, ventral surface flat. Prostomum epilobous $\frac{1}{2}$, tongue cut off behind. A median dorsal groove over prostomium and first two segments. Dorsal pores from $5 / \delta$. Setal ring with small and irregular dorsal break $=2-3 y z$, the neighbouring setal interrals also irregular ; ventral break absent ; setæ set much closer ventrally than dorsally, all small; numbers $56 / \mathrm{vi}, 54 / \mathrm{ix}, 50 / \mathrm{xii}$, $48 / \mathrm{xix}$ (approximate in each case). Clitellum xiii- $\frac{1}{2}$ xix $\left(=6 \frac{1}{2}\right)$, rather indefinite. A conspicuous depression on xviii, extending slightly on to xvii and xix, rectangular with rounded corners, and rather broader than long, almost entirely occupied by two
longitudinally oval cushions which are in apposition in the middle line (text-fig. 158). Male pores anterior and internal to the middle point of each cushion, in front of the setal zone. Spermathecal pores large, in $7 / 8$ and $8 / 9$, opposite the tenth seta on each side.

No septa notably thickened, perhaps $6 / 7$ slightly so. Gizzard vestigial, in vi. Etsophagus swollen in ix and x, the walls having here apparently a lamellate structure. Intestine begins in xv. Last heart in xii. Testes and funnels free in x and xi. Seminal vesicles two pairs, those in xi completely fused to form a single

Fig. 158.-Perionyx pulvinatus Steph.; male genital area.

Fig. 159.-Perionyr pulvinatus Steph., spermatheca.
large lobed mass ; the posterior pair double in xii, but extending back and fusing incompletely in xiii, completely fused in xiv and xv. Prostates occupying xviii and xix, lobed; duct stout, beginning in the middle of the gland, forming a loop with its convexity forwards, bound down to the body-wall by a number of bands, and broadest towards its termination. Spermathecal ampulla irregularly shaped, roughly pyramidal, with nodular surface; duct as long and almost as wide as ampulla; no diverticulum (text-fig. 159). No penial sete.

Remarks. The original must be wrong in stating that the spermathecal pores are half the circumference apart.

Distribution. Near Ghoom, E. Himalayas.

31. Periony x rimatus Steph.

1920. Perionyx rimatus, Stephenson, Mem. Ind. Mus. vii, p. 200, pl. ix, fig. 9.
Length 80 mm .; diameter 4.5 mm . Segments 107. Body rather flattened. Colour light purple dorsally in the anterior part, pale except for a median stripe in the posterior half; pale ventrally. Prostomium epilobous $\frac{1}{2}$. Dorsal pores from 4/5. Setal rings closed or almost so both dorsally and ventrally; setæ smaller and closer set ventrally; numbers $59 / \mathrm{v}, 63 / \mathrm{ix}, 64 / \mathrm{xii}$, $56 /$ xix, 56 in middle of body. Clitellum xiii-xvi $(=4)$. Male pores in a deep transverse crack across the middle of xviii, apparently very near the middle line. Spermathecal pores small, rather close together, in $6 / 7$ and $7 / 8$, in line with c or the space $c d$.

Some slight thickening of the septa in the anterior part of the body, $7 / 8$ and $8 / 9$ most thickened. Gizzard vestigial, in v. Intestine begins behind the prostate. Last heart in xiii. Nephridia end in the same line. Testis sacs in \mathbf{x} and xi ; that in \mathbf{x} lobed, appearing as a number of ovoid lobes lying side by side in a transverse series, enclosing cesophagus and hearts; that in xi smaller. Vesiculm seminales in xi and xii, with granular

Fig. 160.-Perionyx rimatus Steph.; spermatheca.
surface, each pair fused dorsally above the alimentary canal, that in xi overlying the testis sac which is independent. Prostates occupying xviii and xix, much indented; duct much twisted, thin, not firm and shining, ectal end rather stouter. Spermathecal anpulla a large irregular sac; duct moderately stout, half as long as ampulla; diverticula as a few small warts on duct a short way below base of ampulla, in a cluster of about half a dozen (text-fig. 160). No penial setx.

Remarks. Resembles himulayanus in possessing testis sacs, in being of lighter colour than is usual in the genus, and in coming from Darjiling Dist.

Distribution. Sitong, Darjiling Dist.

32. Perionyx saltans A. G. Bourne.

1886. Perionyx saltans, Bourne, P. Z.S. 1886, p. 669.
1887. Periony.v saltans, Beddard, Monog. p. 439.
1888. Periony.c saltans, Michaelsen, Tier. x, p. 210.
1889. Perionyx saltans, Stephenson, Rec. Ind. Mus. xxii, p. 760.

Length 60 mm .; diameter 2 mm . Segments 61. Setal rings almost closed; numbers 45-54. Nephridiopores alternating in position in successive segments in line with the 11th and 17 th setm; a segment which has the pore in the outer position on one side has it in the inner position on the other. Clitellum xiv-xvi (=3). Male pores on papillæ in a median pit. Spermathecal pores three pairs, in $6 / 7-8 / 9$, near the middle line, in line with d.

Spermathecæ with two minute diverticula. No penial setæ.
Remarks. There is just a possibility that the worm I described in 1921 as belonging to this species may not do so in reality, as
it was not fully mature; I therefore give the following dato separately, instead of incorporating them above.
Length 40 mm . Segments 108 . Prostomium epilobous $\frac{2}{3}$. Dorsal pores from $3 / 4$ or $4 / 5$. Setæ 46-50, the rings closed ventrally, and almost so dorsally. The depression containing the male pores has sloping sides, and takes up the whole leugth of xviii. The nephridia end in considerable end-sacs, as in l. sansibaricus. In one of the spermathece there was, instead of two small diverticula, a single one, bilobed; in the others there were two.

Bourne remarks that "it is a very .strong little worm, and the name refers to its power of leaping into the air when touched."

Distribution. Nilgiri Hills, S. India.

33. Perionyx sansibaricus Mich.

1909. Perimyx sansibaricus, Michnelsen, Mem. [nd. Mus. i, p. 174.
1910. Periony.v sansiburricus, Stephenson, Mem. Ind. Mus. vii, p. $2(44, \mathrm{pl} . \mathrm{ix}$, fig. 7.
1911. Perionyx sansibaricus, Stephenson, Rec. Ind. Mus. xxii, p. 761.
1912. P'eriony.c sansibaricus, Michaelsen, Mt. Mus. Hamburg, ix, pt. 1, p. 4, pl. i, tig. 1.
1913. Perionya sansibaricus, Beddard, Monog. p. 438.
1914. Per iony.r sanszbarceus, Nichaelsen, Tier. x, p. ≥ 09.
1915. Periony.r sansibaricus, Michaelsen, Sb. Buhnı. (ies. Praq, $\mathrm{xl}, \mathrm{p} . \mathrm{b}$, text-fig. L.'.
Length $32-63 \mathrm{~mm}$. : diameter $2 \frac{1}{2}-3 \frac{1}{2} \mathrm{~mm}$. Segments $8 t-108$. Colour purple dorsally, pale ventrally; the purple darker anteriorly, and extending partly onto the ventral surface there. Prostomium epilobous $\frac{1}{2}$; first segment with medan furrow. First dorsal pore may be found as far forwards as $2 / 3$, but varies. Setal rings closed, ventrally somewhat more completely than dorsally; numbers $44 / \mathrm{v}, 54 / \mathrm{ix}, 58 / \mathrm{xii}, 47 / \mathrm{xix}$, and 56 in the middle of the body. Nephridopores in two series on each side, the series widely separated, one about 子 of circumference from the midventral, the other, on alternate segments, not quite $\frac{1}{8}$ of circumference from the middorsal line. Clitellum ring-shaped, xiii-xvii $(=5)$. Male area somewhat variable; depressed, broader than long, taking up the whole of the length of xviii; male pores close to middle line and usually in front of setal zone, the ring of setæ sometimes continuous across the segment immediately behind the pores; sometimes the whole area is not depressed, but only two crescentic depressions, oue in front and one behind a transverse ridge bearing the pores. Spermathecal pores $6 / 7,7 / 8$, and $8 / 9$, near the middle line.

No septa noticeably thickened. Gizzard entirely vestigial, in vi. Esophagus may be wider, and the wall ridged and vascular,
in xiii; or there may be no such change. Last heart in xii. Nephridia with alternately dorsally and ventrally placed terminal vesicles. Testes and funnels free in x and xi. Seminal vesicles in xi and xii, racemose. Prostates with large deeply indented glandular portion; duct thin, rather short, straight. Spermathecal ampulla pear-shaped, narrowing to a short duct; a small thickly pear-shaped diverticulum, one-fourth of the length of the ampulla, placed on the inner side of the duct, consisting of a few indistinct seminal chambers aggregated together on a short stalk. No penial setic.

Remarlcs. One of the peregrine species of the genus.
Muchaelsen on examining his first batch of specimens (from Kanzibar) thought that penial sete were present, though he was unable actually to isolate any; examination of specimens from India, however, failed to reveal any. I have had a large number of specimens through my hands, and have never found any.

Distribution. Baroda, Igatpuri, Manmad, Wathur near Mabableshwar, Londa near Castle Rock, all in Western India; Khandwa, Central Provinces; Kala Khund (between Khandwa and Indore), Central India; Coonoor and Kotagiri in the Nilgiris; Kodaikanal in the Palni Hills. Outside India it has been found in Kanzibar, whence it was first recorded.

34. Perionyx shillongensis Steph.

1920. Periuny.r shillonyenais, Stephenson, Mem. Ind. Mus, vii, p. 213, pl. ix, fig. 17.

Length 66 mm .; diameter 3 mm . Segments 120 . Circular in transverse section, not flattened.' Colour a dusky purple dorsally, ventral surface unpignented. Prostomium epilobous $\frac{1}{2}$, tongue

Fig. 161.-Perionyx shillongensis Steph. ; spermatheca.
open behind. Dorsal pores from $3 / 4$. Dorsal and ventral breaks in the setal rings small, and in the hinder part of the body absent; setæ rather closer set ventrally; numbers $42 / \mathrm{v}, 46 / \mathrm{ix}, 49 / \mathrm{xii}$,
$48 /$ xix, and 41 in the middle of the body. Clitellum xiii-xvii ($=5$), inconspicuous. Maie area white, rather swollen; pores fairly conspicuous, rather close together, about in line with setal interval $c d$. Spermathecal pores in $7 / 8$ and $8 / 9$, in line with the interval bc.

Septa of anterior region slightly thickened, t/7-9/10 perhaps most so. Gizzard in vii of fair size, walls somewhat soft. Intestine begins in xvi. Last heart in xii. Nephridial ducts end approximately in the same line. Testes and funnels free in x and xi. Seminal vesicles in xi and xii, large, smooth, meeting dorsally or actunlly fusing. Prostates confined to xviii, lobed; duct short, stout but without muscular shimmer, straight. Small ovisacs in xiv. Spermathecal ampulla an ovoid sac; duct half as long as ampulla, very stout; diverticula as two clusters of seminal chambers on the duct just below the base of the ampulla, each cluster cauliflower-like and sessile. Penial setæ 0.87 mm . long, 20μ thick ; shaft straight, tip slightly bowed and bluntly pointed; ornamentation of about eight rings of fine spines.

Distribution. Shillong, Assan.

35. Perionyx sikkimensis (Mich.).

1907. Perionychella sikkinensiz, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 156.
1908. Perionychella sikikimensis, Michaelsen, Mem. Ind. Mus. i, p. 170, pl. xiii, figs. 12, 13.
1909. Perionyx sikikimensis (part.), Michaelsen, Abh. Ver. Hamburg, xix, p. 60.
Length ca. 120 mm .; diameter 4-5 mm. Segments 109 (hinder eud regenerated). Colour dorsally violet-grey, darker in front;

Fig. 162.-Perionyx sikkimensis (Mich.); spermatheca made transparent by acetic acid; $\times 20$.

Fig. 163.-Perionyx sikkimensis (Mich.) ; distal end of penial seta; $\times 440$.
ventrally grey. Prostomium epilobous ca. $\frac{1}{2}$; segment i divided by a median furrow. First dorsal pore at 7'8 if not 6/7). Setæ
rather small; circles nearly complete, only slightly and irregularly broken dorsally; setæ more closely set ventrally than dorsally; numbers $60 /$ vii, $64 / \mathrm{x}, 78 / \mathrm{xiii}, 72 / \mathrm{xxv}$. Clitellum xiii-xvii $(=5)$; in the middle part ring-shaped, interrupted ventrally in front and behind. Male pores on small papillw, ca. $\frac{1}{8}$ of circumference apart; the surface between the pores somewhat depressed. Spermathecal pores in $6 / 7$ and $7 / 8$, ca. $\frac{1}{7}$ of circumference apart ; inconspicuous, only seen from inside.

Septa 6/7-16/17 thickened, those in the middle of the series most, the others gradually thinner. Gizzard small, cylindrical, in vi(?), hardly thicker than the rest of the cesophagus, but not exactly vestigial, the muscular coat being fairly strong. No calciferous glands. Last heart in xii (?). Testes and funnels free in' x and xi. Seminal vesicles large, in xi and xii, meeting dorsally and embracing the cesophagus. Prostates rather small and compact; duct leaves at a medial incisure, is fairly thick and nearly straight, about as long as the glandular part. Spermathecal ampulla farly long, almost cylindrical; duct somewhat shorter and thinner, not, set off from ampulla; no diverticalum (text-fig. 162). Penial setæ (text-fig. 163) apparently one per bundle, cai. 0.9 mm . long, 28μ thick; almoxt straight, only slightly bent at the distal end; narrowing a little distally, with fairly sharp and simple point; distal part of seta ornamented with irregular, sometimes oblique, transverse rows of small triangular teeth.

Distribution. Sandakphu, Kurseong, and doubtfully Subarkum, in Darjiling Dist., E. Himalayas.
a. var. michaelseni, nov. nom.
1910. Periony.v sikkimensis (part.), Michaelsen, Abh. Ver. Itamburg, xix, p. 60, pl. fig. ©.
Male pores on the border of a thick circular wall, in the middle of which is a deep triangular hollow. Penial setro 0.6 mm . long, 20μ thick, slightly bent proximally, almost straight distally; the tip, after showing a constriction, broadens aud is cut off obliquely, the section being almost circular; ornamentation rather more sparing than in the type form.

Remarks. This form was described but not naned by Michaelsen; the penial setre seem to entitle it to separate recognition.

Distribution. Gangtok, Sikkim, E. Himalayas.

36. Perionyx simlaensis (Mich.).

1907. Perionychella simkensis, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 157.
1908. Perionychella simlaensis, Michaelsen, Mem. Ind. Mus. i, p. 172, pl, xiii, figs. 14, 15.

Length $85-100 \mathrm{~mm}$.; maximum diameter $4-5 \mathrm{~mm}$. Segments ca.128. Colour in general violet-red; at the anterior end darker,
a deep blue-violet; ventrally grey. Prostomium epilobous $\frac{3}{5}$, tongue open behind. Dorsal pores from $4 / \overline{5}$. Setal rings almost complete, indistinctly broken dorsally; setæ set much closer ventrally than dorsally; numbers $45 / \mathrm{v}, 46 / \mathrm{viii}, 52 / \mathrm{xii}, 45 / \mathrm{xix}$, $45 / \mathrm{xxvi}$. Clitellum ring-shaped, xiii-xvii $(=5)$; interrupted ventrally in xiii. Male area (text-fig. 164) occupying whole of xviii, depressed, rectangular with rounded angles, rather broader than long, bounded laterally by raised glandular regions, and

Fig.164.-Perionyx stmlaensis (Mich.), Fig.165.--Perionyx sımlaensis (Mich.); male genital area; $\times 7$. spermatheca; $\times 20$.
containing a pair of nearly circular cushions, each of which bears a conical pointed penis-like projection directed obliquely backwards and towards the middle line. The male pores are in the middle of the cushions; and from them is prolonged on to the anterior surface of each penis a groove leading to it, tip. No setes between the male pores; setre cease on the glandular thickenings lateral to the male area. Spermathecal pores in $7 / 8$ and $8 / 9$, ca. $\frac{1}{10}$ of circumference apart.

No septa specially thickened; those in the testis region and some adjacent ones a little thicker than the rest. Givard very small, in v ; its walls, however, are of some thickness. No calciferous glands. Last henrt in xiii. No perceptible difference between the nephridia of different segments. Testes and funnels free in x and $x i$. Seminal vesicles four pairs, in $i x, x, x i$, and xii-xiv, large, much incised. Prostates compact, thickly disc-shaped, much incised; duct fairly thick, irregularly bent, about as long as the glandular part. Spermathecal ampulla large, sac-like, the surface areolated, with numerous closely set bladderlike projections, some of which overhang somewhat; duct much shorter and thinmer than the ampulla; diverticulum almost completely surrounding the duct, composed of numerous seminal chambers, and hence mammillated, opening into the ectal part of the ampulla (text-fig. 165).

Distribution. Dharmpor, Simla Hills.

37. Perionyx turaensis Steph.

1920. Perionyx turaensis, Stephenson, Mem. Ind. Mus. vii, p. 216, pl. x, figs. 20, 21.

Length 74 mm .; Aiameter 2 mm . Segments 132. Colour dark brownish-purple dorsally, with still darker median stripe, unpigmented ventrally. Prostomium epilobous $\frac{1}{2}$ or rather more, tongue squarish, either open or closed behind. Dorsal pores from $4 / 5$ or $5 / 6$. Setal rings almost closed ventrally, a small break dorsally; ventral sete closer set and apparently smaller than the dorsal; numbers $48 / \mathrm{v}, 56 / \mathrm{ix}, 54 / \mathrm{xii}, 44 / \mathrm{xix}$, and 55 in the middle of the body. Clitellum includes $\frac{2}{3}$ xiii and whole of $x v i i\left(=4 \frac{2}{3}\right)$. Male pores close together near the middle line, on small round papillw which are situated in a slight common depression. Spermathecal pores in 7/8 and $8 / 9$, close together near the middle line.

No septa specially thickened, $8 / 9$ slightly so. Gizard vestigial, in vi. Calciferous glands in xiii as well-defined ovoid swellings with longitudinal vascular channels. Intestine begius in xviii.

Fig. 166.-Pertonux turaensis Steph., syèrmatheca; $\times 40$.

Fig. 167.-Perionyx turaensis Steph.; distal end of ponial seta; $\times 700$.

Last heart in xii. Testes and funnels in x and $x 1$, those in x perhaps contained within a testis sac. Seminal vesicles in xi und xii, large, contiguous in the middle line. Prostates confined to xviii; duct short and moderately stout, transverse in direction. Spermathecal ampulla with lobulated anterior border ; duct thick, short, not definitely marked off; diverticula as a few small rounded knobs at the ental end of the duct, perhaps not always present (text-fig. 166). Penial setæ (text-fig. 167) 0.5 mm . long, 11μ thick; shaft straight with a slight curvature at distal end, tapering rather rapidly; tip cut off squarely and carries five or six fine spines; six circles of fine spines also just proximal to tip.

Distribution. Garo IIIlls, Assam.

38. Perionyx variegatus (Mich.).

> 1907. Perionychella variegata, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 158.
> 1909. Perionychella rariegata, Michaelsen, Mem. Ind. Mus. i, p. 167 , pl. xiii, fig. 11.

Length $21-24 \mathrm{~mm}$.; diameter 2-22 $\frac{2}{3} \mathrm{~mm}$. Segments 49-63. Shape that of a land Planarian or leech; body very short and depressed, narrowing towards both ends, the hinder rather slenderer than the anterior. Colour primarily yellowish grey; dorsum speckled with dark violet-grey spots; a dark longitudinal dorsal stripe. Prostomium epilobous $\frac{2}{3}$, tongue open behind; a median furrow over tongue and back to hinder end of segment i. First dorsal pore in 5/6. Sete moderately large; rings only slightly interrupted dorsally, $z z=1 \frac{1}{2} y z$; ventral interruption indistinct ; setæ rather closer set ventrally than dorsally; numbers in middle of body ca. $45-60$. Clitellum xiii-xvii $(=5)$; only distinguishable dorsally, by difference in pigmentation. Male pores on prominent circular papillæ, ca. $\frac{1}{\frac{1}{2}}$ of circumference apart, about in line with e; the papillie take up nearly the whole length of the segment; eight or nine setæ intervene between the pores, some of them on the papillæ. Spermathecal pores three pairs, in $6 / 7-8 / 9$, about in line with h, and further apart than the male pores.

Septa throughout the body stronger than is usual in earthworms; $7 / 8$ and $8 / 9$ specially strong. Gizzard very small, in v; very little thicker than the rest of the cesophagus, but with well-developed muscular coat, which reduces the width of the lumen. No calciferous glands or gland-like widenings of the tube. Intestine begins in xiv. Last heart in xii. Nephridia with a long and moderately thick terminal vesicle. Fumnels in x and xi, free. Seminal vesicles three pairs, large, in x, xi, and xii. Prostates intermediate in structure between the Plutellus and Pheretima types; glandular part kidney-shaped, consisting of a much-branched glandular tube, the branches compressed by a thin enveloping membrane ; duct fairly long, slightly bent. Spermathecal ampulla globular; duct as long as ampulla, scarcely thinner, set off by a slight constriction; no diverticulum. No penial setæ.

Distribution. Phallut, Darjiling Dist., E. Himalayas.

1899. Typhæinæ + Benhaminæ (part.), Michaelsen, Zool. Jahrb. Syst. xii, p. 242.
1900. Octochætinæ + Trigastrinæ (part.), Michaelsen, Tier. x, pp. 318, 330.
1901. Octochætinæ + Trigastrinæ (part.), Michaelsen, Geog. Verbr. Olig. pp. 108, 109.
1902. Octochætinæ + Trigastrinæ (part.), Michaelsen, Mem. Ind. Mus. i, pp. 122, 203.
1903. Octochætinæ + Trigastrinæ (part.), Michaelsen, Abh. Ver. Hamburg, xix, p. 25.
1904. Octochatinæ, Stephenson, Mem. Ind. Mus. vi. p. 103.
1905. Octochætinæ, Stephenson, Rec. Ind. Mus. xiii, p. 3 si9.
1906. Octochætinæ, Stephenson, 1'. Z. S. 1921, p. 103.
1907. Octochætinæ, Michaelsen, Mt. Mus. Ilamburg, xxxviii, p. 36.

Arrangement of setæ from pure lumbricine to pure perichætine. One cesophageal gizzard in one simple segment, or two in two simple segments, or one enlarged gizzard in a space which represents two or more fused segments; in the last two cases calciferous glands in the region of seginents x-xiii. Excretory system of meganephridia along with micronephridia, or micronephridia alone, the latter never having the form of sacs. Sexual apparatus from pure acinthodriline to pure microscolecine.

Distribution. In all parts of India, more sparsely in the North. Outside India in New Yealand (genera Octochoetus, Dinorlrilus, and Hoplochoetina) and South Madagascar (genus Howascolex).

The subfamily was instituted, under the name Typhæinæ, for the genera Octochoetus, Liutyphicus, Dinodrilus, and Hoplochoptello (the last now ranked as a genus inquirendum ; cf. post., p. 467) by Michaelsen in 1899. There has since been a certain amount of discussion as to its limits; it may be saia that it is intended to comprise a group of genera which spring, like other subfamilies, from the original Acanthodriline, the first modification in the present case being the splitting up of the nephridial system; other modifications aro superadded in the younger genera-the change from lumbricine to perichætine arrangement of setæ, the microscolecine reduction of the male genital apparatus, and a doubling of the gizzard, -but the original and constant modification is the micronephridial development. The prostates retain the tubular form throughout.

Besides the genera originally included in the subfamily, a number of others are now recognized as belonging here-IIowascolex, Ramiella, Euclichogaster, Erythraodrilus, and Hoplochertina. All the genera are found in India except Dinodrilus and Hoplochoetina, which occur only in New Zealand.

Howcascolex, the parent form of the subfamily, found in both Madagascar and India, is removed from the original Acanthodriline essentially by the fact that the nephridial system is partly broken up-micronephridia occur along with meganephridia. Certain members of the genus may show an increase in the number of setæ in the hinder segments (the perichotine arrangement), and in some the acanthodriline arrangement of the male organs begins to give place to the microscolecine ; there is also an incipient development of calciferous glands in segment xvi.
(The acanthodriline arrangement of the male organs, the primitive one in the family, is that in which there are two pairs of tubular prostates, discharging to the exterior on segments xvii and xix; while the vasa deferentin discharge separately from the prostates on segment xviii. In the microscolecine condition the
openings of the vasa deferentia have been, as it were, attracted to the anterior prostatic openings, and discharge in common with the anterior pair of prostates on segment xvii, while the posterior parr of prostates have disappeared; the reduction of the prostates is often accompanied by a reduction of the spermathece to one pair also.)

Octochetus is derived from Howascolex by a more complete breaking-up of the nephridial system into micronephridia, and, it may be, the more pronounced development of calciferous glands in segments $x \mathrm{x}$ or xvi , or both.

Dinodrilus (not an lndian genus) is derived from those forms of Octochatus which still possess only incipient calciferous glands (subgen. Octochetus, v. post., p. 371) by a multiplication of the setee to six pairs; and Hoplochactiza (confined, like Dinodralus, to New Zealand) by a further multiphation giving the ordinary perichætine condition.

Another line of descent from, or from near, IIowascolex gives Ramiella; the excretory system has broken up into micronephridia, but in a peculiar manner; the microncphridia are few in numberfrom seven pars to as few as one pair per segment; no calciferous glands are in process of development.

From Ramiella, Eudichogaster has evolved by a doubling of the gizzard, and a development of calciferous glands in the region of segments x-xiii (and therefore in front of the place where they develop in the Octochotus line). In some cases there is a partial microscolecine reduction.

A further stage of evolution along this line is reached, as was first recognized by Michaelsen in 1921, in Entyphuans, where the microscolecine reduction is complete, the calcilerous glands have become localized in segment xii, and the two gizzards have fused again, with the disappearance of the septum between them.

Erythrcoolrilus perhaps represents an independent offshoot from Howascolex; the nephridial system has made no further advance, but the setal arrangement has become perichatine, calciferous glands have developed, as in Euclichogaster, in x-xiii, and the genital organs are undergoing the microscolecine reduction. Its relations, as shown by the calciferous glands, incline rather towards the Euclichogaster branch.

The following tree expresses shortly the above relations:

Key to the Indian genera of Octochætinæ.

1. The perichrtine arraugement of setæ exists throughout the body.	Firythraodrifus.
At least in the anterior and middle regions of the body the setw are arranged in the	
2. Two gizzards	Eudichogaster.
One gizzard	3.
3. Gizzard large, some septa missing in the gizzard region ; purely microscolecine	Eutyphaus.
Gizzard simple, in one simple segment; not purely microscolecine	4.
4. Purely micronephridial	5.
Meganephridia along with micronephridia	Howascolex.
5. Calciferous glands absent	Ramillia.
Calciferous glands present	Octochatus.

1. Genus HOWASCOLEX Mich.

1901. IIowuscole.x, Michaelsen, Bull. Ac. Sci. St. Pétersb. xr, p. 202.
1902. Howuscolex, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 36.

Setal arrangement lumbricine either throughout the body, or at least in the anterior and middle regions ; often perichætine at the hinder end. One cesophagral gizzard in one simple segment; calciferous glands as mere swellings of the cesophagus in segment xvi, with or without a slighter development of the same kind in one of the neighbouring segments. True meganephridia accompanied by micronephridia. Sexual apparatus from purely acanthodrline to incompletely microscolecine.

Distribution. Coorg and Mysore. Outside India in S. Madagascar.

The faunistic relation of India to Madagascar which is indicated by the distribution of this genus is of great interest (cf. Introduction, p. 31, and Michaelsen, 99).

The type of the genus is 11. madagascariensis Mich. (v. sup). Michaelsen, 1901). The Indian worms of this genus, all recently discovered and described by Michaelsen (99), differ from the type in the beginning perichætme arrangement of the setæ (in two out of three species), in having a typhlosole, and in certain small differences in the arrangement of the mega- and micronephridia. The micronephridia have apparently originated by the breaking-up, of the meganephridia.

Key to the Indicin species of Howascolex.

1. Setæ eight per segment throughout the body .. H. bidens.

Seta in the hinder segments more than eight.. 2. [f. ditheca.
2. Spermathecal pores one pair $\mathrm{m} 8 / 9$.......... H. corethrurus. Spermathecal pores three, median, in 7/8-9/10 . H. corethrurus
f. typica.

Spermathecal pores four pairs, in 5/6-8/9...... H. merkaraensis.

1. Howascolex bidens Mich.

1921. Howascolex bidens, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 38, text-fig. 1.

Length $70-90 \mathrm{~mm}$.; diameter $1 \frac{1}{2}-1 \frac{3}{4} \mathrm{~mm}$. Segments ca. $110-$ 180. Colour an even grey, unpigmented. Prostomium epilobous ca. $\frac{1}{2}$. Dorsal pores present. Setr lumbricine, larger at the ends of the body; $a a=1 \frac{1}{4} b c, b c=2 a b=1 \frac{1}{3} c d$, $d d=$ half the circumference in front, but only $\frac{2}{5}$ of circumference behind ; arrangement of setæ irregular behind, certain setz being displaced. Clitellum xiii-xvi $(=4)$. Male porophores large, on xvii, joined by a bridge, and so forming a dumbbell-shaped elevation; pits on therophores in $a b$, but extending inwards and outwards beyond these lines; penial setre projecting, two, in the positions of a and b. Anterior prostatic pores within these pits, close to outer penial seta; posterior prostatic pores incouspicuous, in front of b of xix; male pores invisible, perhaps on xviii, at hinder ends of a pair of seminal grooves which extend a short way back from hinder margin of porophores. Setæ a and b of xviii absent; on xviii and xix narrow transverse ridges, extending about between the lines of a on each side. Female pore unpaired, anteriorly on xiv, at the centre of an almost circular area. Spermathecal pores one pair, large deep transverse slits in $a b$ in $8 / 9$, each surrounded by a glandular area. A median transversely oval papilla over groove 11/12.

Septa $6 / 7-13 / 14$ thickened, $7 / 8$ to $9 / 10$ fairly strongly. A large cylindrical gizzard in v. Esophagus in xvi swollen, with lamellæ internally; in xvii the same structure, but much less marked. Intestine begins in xx, with a rell-marked typhlosole. Meganephridia alone in posterior part of body ; apparently only micronephridia in anterior part of body, few in number, irregularly arranged. Testes and funnels free in x and $x i$; seminal vesicles in ix and xii, lobed. Prostates in xvii and xix, those in xix slightly smaller, glandular portion colled, longer and much stouter than duct. Spermathece large ($1 \cdot 3 \mathrm{~mm}$.) ; ampulla sac-like, passing into a short broad duct; diverticulum thickly club-shaped, one-third the length of the ampulla, opening into a bulging of the duct just below the ampulla; a spermatophore (? several aggregated spermatophores) in duct. Penial setæ 0.55 mm . long, relatively stout, $22-25 \mu$ thick, slightly bowed at proximal or at both ends, distal end somewhat flattened, extreme tip bifid; a number of short transverse zigzag markings over a short length near the tip.

Remurks. This species approaches the type of the genus (found in Madagascar) in preserving the lumbricine arrangement of the setro; it agrees with the other Indian species in possessing a typhlosole. The microscolecine reduction has been carried out in the spermathecæ, but not in the prostates, though the posterior ,pair is somewhat reduced in size and has no porophores.

Distribution. Shiboga (Mysore).

2. Howascolex corethrurus Mich. f. typica.

1921. Howascolex corethrurre, Nichaelsen, Mt. Mus. Hamburg. xxxviii, p. 42, text-figs. $2 a, 3$.
Length ca. 110 mm .; diameter $1 \frac{1}{3}-2 \frac{1}{3} \mathrm{~mm}$. Segments ca. 180 . Colour pale yellowish grey. Prostomium indistinctly epilobous, small, retracted. Dorsal pores from 11/12. Setre larger at the ends of the body, with lumbricine arrangement in anterior and middle regions; posteriorly perichætine; in the lumbricine region $a a: c b: b c: c d: c l d=24: 6: 15: 10: 108$; $d d=$ ${ }^{9} \frac{9}{2 \pi}$ of circumference; even at hinder end setæ a, b, and c regular, except that b and c are somewhat approximated; accessory setex introduced dorsal to d and between c and d, the total number of sete per segment 18 at most; extent of ac remains unaltered, while the median dorsal distance becomes hardiy greater than an intersetal distance. Clitellum xiii-xvi $(=4)$, thinner and somewhat depressed ventrally. A medianventral longitudinally oval wall extends over segments xvii-zix, the interior of the oval occupied by a papilla of corresponding shape; a narrow groove between wall and enclosed papilla; this groove corresponds to the seminal grooves, the anterior prostatic pores being close together at the anterior pole and the posterior similarly at the posterior pole of the elliptical groove, at levels correspouding about to $17 / 18$ and 18/19 (pores recognizable only in sections); male pores in the grooves, on xviii (in sections). Female pores anteriorly on xiv, close together (? fused), in an oval whitish area. Spermathecal pores three, median, in $7 / 8$, $8 / 9$, and $9 / 10$. Paired papille in $a b$ in $11 / 1 \unrhd$, and a smaller pair, often absent, in 10/11; median papillie in $15 / 16$ and $20 / 21$, and sometimes in $14 / 15$.

Septa $6 / 7-12 / 13$ moderately thickened, subsequent ones be-coming gradually thimner, $17 / 18$ and $18 / 19$ absent, $19 / 20$ still stouter than the first of the series. Gizzard in v. Esophagus swollen in xvi, with prominent lamellæ internally. Intestine beginning in xxi, with typhlosole. Posteriorly meganephridia only; in middle of bodv usually only micronephridia, few and irregularly placed in each segment (occasionally in a few segments meganephridia only). Testes and funnels free in x and xi. Seminal vesicles, much lobed, in ix and xii. Prostates two pairs, tubular, thick, undulations compressed together; duct much thinner and shorter, in a single loop. Spermathecæ three pairs, those of a pair conjoined at the ectal ends of the ducts, retortshaped; ampulla thickly pear-shaped, passing with a kink into the narrowing duct; diverticulum cylindrical, narrower near its attachment to the ectal end of duct, half as long and half as thick as duct. Penial setæ thin and delicate, 9μ thick proximally, gradually tapering to a point, bowed; distal three-fifths with undulating contour.

Remarks. Differs from the type of the genus in the commencing
perichætine arrangement of the setx, and in the presence of a typhlosole.

Distribution. Somavarpatna, Coorg.
a. forma ditheca Mich.

> 1921. Howascole.. corethrurus f. ditheca, Nichaelsen, Mt. Mus. IIamburg, $x \times x$ viii, p. 42 .

As for the typical form, with the following differences:-
Length 80 mm .; diameter $\frac{2}{3}-1 \mathrm{~mm}$. Segments ca. 170. Spermathecal pores one pair, in 8/9 in u. Spermathecæ one pair.

Distribution. Shimoga, Mysore.

3. Howascolex merkaraensis Mich.

1921. Horcuscole.x merkaraensis, Michaelsen, Mt. Mus. Hamburg, $\mathbf{x x x}$ iii, p. 47, text-figs. $2 b$, 4.
Lergth ca. 60 mm .; diameter $1.75-2 \mathrm{~mm}$. Segments ca. 200 . Colour brownish-grey. Prostomium indistinctly epilobous ca. $\frac{1}{3}$ (? proepilobous). Dorsal pores present. Setæ somewhat enlarged at the anterior, much enlarged at the posterior end ; lumbricine arrangement in the anterior and middle parts of the body, $a a: a b: b c: c d: d d=24: 7: 17: 13: 58 ; d d=c a$. $\frac{5}{9}$ of the circumference ; perichætine at the hinder end, from about segment exxx, commonly 12 (6 pairs) per segment ; the accessory seta, 1,2 , or seldom 3 , introduced dorsal to $a ; b$ is shifted, usually dorsalwards, but the line a is regular ; the other sete irregularly placed at the hinder end. Clitellum? Male field rectangular, longer than broad, embracing xvii-six, extending laterally trom b to b, depressed; setæ a and b absent on xviii. Prosratic pores two pairs, on xvii and xix, in the angles of the male field, median from the line a, the anterior par larger than the posterior ; seminal grooves almost straight, somewhat bent mwards in the middle of their length and at both ends. Male pores on xviii in the grooves (in sections). Female pore a transverse slit anteriorly on xiv, surrounded by a glandular area. Spermathecal pores four pairs, in $5 / 6-8 / 9$, median from a, near the middle line, increasing in size backwards. Sete a of ix shifted forwards and inwards, situated behind the hindmost spermathecal pores; seter and pores surrounded by a median glandular area. A pair of eye-like papillo in $11 / 12$, in $a b$.

Septum 8/9 slightly, $9 / 10$ and $10 / 11$ moderately thickened, the next two decreasingly strengtheued, 13/14 thin. Gizzard large, in vi (? v). Csophagus much swollen in xvi, with prominent longitudinal lamellm internally. Intestine begins in xviii ; a small typhlosole. Last heart in xiii. In at least most segments of hinder part of body only meganephridia are present; in at least many of middle region only micronephridia, in moderately large numbers, irregularly arranged; perhaps both kinds occur in some segments. Testes and funnels free in x and xi . Seminal vesicles
in ix and xii, each consisting of a few lobes. Prostates in xyii and xix, the anterior pair longer and thicker than the posterior ; in both, the glandular part pressed together, irreqularly disposed, almost coiled, the duct much shorter and thinner, disposed in a loop. Spermathece four pairs, of different sizes; the posterior parr, in ix, very large, with pear-shaped ampula, the wall of which shows a spiral constriction ; duct not marked off, short and thin ; diverticulum sausage-shaped, two-thirds as long and half as thick as the ampulla, entering ental end of duct; the spermathece of viii much smaller, the diverticulum small; those of vii and vi vestigial, small pear-shaped sacs without diverticula. Penial setæ 1.2 mm . long, 13μ thick in the middle, tapering gently to a point; the distal two-thirds with undulating contour (except just above the tip); a few scars on the distal half of shaft, with prominent tooth-like border.

Remarles. This species is to be placed near the last; it is distinguished bv the penial setæ, and by the commencing disappearance of the posterior prostates and anterior spermatheca (commencing microseolecine reduction).

Distribution. Merkara and Bhagamanola, Coorg.

2. Genus OCTOCHETUS Bedd.

1892. Octochartus Beddard, 1. Z. S. 189.2, p. 608.
1893. Octochcetus B+ddard, Monog. p. 550.
1894. Octochatu, Michaelsen, Tier. x, p 319.
1895. Octochcetus stephensom, 1'. Z. S. 19:1, p. 103.
1896. Octochectus Michachen, Mt. Mus. Jamburg, x xxviii, p. 36.

Seta with lumbricine arrangement. One osophageal gizzard in one simple segment; calciferous glands in the region of segments xv-xvii. Purely micronephridial. Sexual apparatus purely acanthodriline.

The genus has been recognized since its first establishment by Beddard in 1892. It consists of worms which are removed from the condition of the origmal Acanthodrline in having numerous micronephridat in cach segment instead of a pair of meganephridia, and a pair of calciferous glands behind the ovarian segment.

We have, apparently, in Howascolex (a furm which differs from the original Acauthodrline essentially only in having micronephridia along with the meganephridia) an intermediary; by the further breaking up of the nephridial system Howuscolex would become Octochetetes. This conclusion, arrived at before Howascolex was known from India (80), receives confirmation from Michuelsen's recent records of Howascolect from Mysore and Coorg (99). It must be added, however, that the species of Howascolery actually found in lndia are too advanced in some respects (perichetine arrangenent of setæ at hinder end, incipient microscolecine reduction) to serve as the ancestors of Octochetus;
possibly the Indian stock of Octochetus was given off from a more primitive Howascolex, which has since undergone further evolution and differentiation.

Distribution. (Chart IV). Outside India the genus is found only in New Zealand (subgenus Octochatus). In India (subgenus Octochortoides) it is found throughout, with on the whole, a certain

Chart IV.

preponderance, more marked if the peregrine species are excluded, in the West and South; the Central repion, the East and NorthEnst possess representatives, but in the Punjab the only species is
the widely-wandering 0 . fermori. Excluding this species and O. beatrax, also peregrine, the list of localities includes:Mangalore, Travancore, S. Arcot Dist., Weyra Karur, and Madras, all in S. India; Baroda, Poona, and other places in the W. Ghats, Kalyan near Bombay, Castle Rock, all in the Western region; Barkul on the Sur Lake, and Barkuda in the Chilka Lake, in the East; Hyderabad (Deccan), Palin, Indore, Bina, and (walior, in the Central area; and near Katmandu in Nepal.

Michaelsen has pointed out that the ludian species of Octochutus show a difference from the type of the genus and the other New /Realand species in possessing better developed calciferous glinds. For this reason, and on grounds of geography, he divides the genus into two subgenera, Octochotus for the New Zealand and Octochuetoides for the Indian species (type O. aitlieni) (99).

If Octochuetoides has developed in India, as seems not improbable (v. sup.), it may be independent of the New Zealand Octochotus, and the theory of the former wandering of Octochoctus by land from New Zealand to the Indian region would be unnecessary (cf. ant., Introduction, p. 31).

Subgenus (Ctochetoides Mich.

1921. Octochatus (Octochectoides) Nichaelsen, Mt. Mus. Hamburg, xxxviii, p. 37 .

Calciferous glands as sacs sharply delimited from the esophagus, one pair in $x v$ or $x v$ and $x v i$, or two pairs in $x v$ and $x v i$.

Distribution. Is equivalent to the Indian range of Octochotus, s. l. (v. sup.).

In this subgenus a character of systematic importance is frequently found, which is not met with in the preceding families and genera-the modification of the ventral seta of segments viii and ix to form what are known as copulatory setex.

The intimate structure of the calciferous glands in a member of the subfamily (O. barkiudensis) has been investigated by Stephenson and Prashad (91).
It does not soem possible to speak of any part of India as specially the home of the subgenus. Taking O. aitkeni and noontanus as perhaps the most archaic species (seminal vesicles in ix and xii, sinooth penial setæ), we find them not far from the W. coast, one near Poona, one near the south end of the peninsula; the other species with seminal vesicles in ix and xii, however, take up broadly the centre of the country from coast to coast.

Key to species of the subgenus Octochætoides.

2. Penial seta absent 3.
Penial setæ present t. t.
3. No spermathecal diverticulum O. beatrix.
A small thick sparmathecal diveaticulum O. hodgarti.
4. Testes and funnels free ; all sopta present O. castellanus.
Testis sac in segment xi ; septa $5 / 6-7 / 8$ absent O. fermori.
5. Copulatory cushions present 6.
No eיpulatory cushions O. pittnyi.
6. Copulatory cushions on xxiv and preceding seg-mentsO. thurstoni.
Copulatory cushions on xiii or $13 / 14$, with or without a papilla on xviii.
O. maindroni.
7. Penial setæ smioth 8.
Penial sete with spines or teeth 9.
8. Clitellum extending over five segments; last heart in xiii

O. aitkeni.
Clitellum extending over about eight segments;last heart in xiiO. montanus.
9. Testis sacs present 10.
Testes and funnels free 11.
10. Copulatory papillae present on xviii (viii, xvi); copulatory setie with serrated margins O. barkudensis.
No copulatory papille; eopulatory sete with transverse rows of seta-like hairs.11. Septa of anterior part of body all present (thoughsome of the number 5/6-8/9 may be vestigial).12.
Septa $5 / 6$ and $6 / 7$, or $(6 / 7$ only, absent 13.
12. P'aired cushions on $11 / 12(14 / 15,21 / 22,22 / 23)$ O. pattoni. No paired copulatory organs O. phillotti.
13. Copulatory setze marked by semicircular scar-like depressions O. prashadi.
Copulatory sete marked by two rows of spines, or two serrated ridyes 11.14. The two pairs of prostatic pores sunk in transversetremes separated by a transverse ridgeO. paliensis.[riparius.The prostatic pores sunk in the limbs of a dumb-bell-shaped depression
O. puliensis var.
The prostatic poles not situated in definitelyshaped depressions
O. ganteshc.

The peninl and copulatory seta afford good means of identification, and the original figures should be referred to where possible; unfortunately, the descriptions are often somewhat lengthy, and thus not convenient for introducion in the form of a ley. The latter part of the above key would have been better if it had been possible to use these characters to a greater extent.

A few groups of species can be distinguished. O. hodyarti is very closely related to bectrix, the only difference of importance being the presence of a spermathecal diverticulum in hodgarti and its absence in beatrix (penial setw, small and difficult to find, and overlooked at first in beatrix, may also have been overlooked in horlgarti) : it might be perhaps allowable to make horlgarti a variety. If hodyarti is really a variety the species would have a very wide distribution, and would come next to fermori in this respect.
O. beatrix and hodyarti are members of a well-marked group, which also includes fermrri and castellanus; in the three first we have the commencing disappearance of the anterior pairs of testes and funnels, and as a concomitant the reduction of the seminal vesicles to a single pair in segment xii; in castellanus, also, the reduction of the seminal vesicles has taken place, though that of the testes and fumels was not noted.
O. paliensis and yancshae are closely related, the chief difference being in the configuration of the male field; it might be allowable here again to rank one as a varrety of the other. O. prashali is perhaps to be associated with them in a small group. All are tound not far from each other in the Western Ghats, paliensis also at several places in the central parts of the peninsula, and prashadi near Bombay.

1. Octochætus (Octochætoides) aitkeni (Fellarb).

> 1898. Benhamiu aitkeni, Fedarb, J. Bombay Suc. xi, p. 432 , pl. i, tigs. 1-i, 7 .
1899. Octochectus aitkeni, Michaelsen, Zool. Jahrb. Syst. xii, p. 242. 1900. Octochertus aitlien, Michaelsen, 'lier. x, p. 32().

Length 119 mm .; diameter 3 mm . Segments 180 . First dorsal pore in 19/20 (? 18/19). Setal interval $a(a=2 a b$ and is slightly greater than bc, which $=c l$ (i.e., the lateral setæ are not pared). Clitellum xui-xvii $(=\mathbf{5})$. Male pores very small and near together on xvini. Female pore single. Spermathecal pores near together in 7,8 and $8 / 9$.

Gizzard in vii. Calciferous glands one pair, in $\mathbf{x v}$, cut up into lobes. Intestine begrins in xvi. Last heart in xiii. Seminal vesicles two pars, in ix and xii. Prostates irregularly twisted, sausage-hke. Spermathecal ampulla pyriform, the narrow end elongated to furm the duct, which is joined at the middle of its length by a club-shaped diverticulum about half as long as the ampulla. Penial seta smooth, three times as long as the normal seta, slightly bowed; a nodulus-like thickening one third of the way from the distal end.

Distribution. 'Travancore.

2. Octochætus (Octochætoides) barkudensis Steph.

1916. Octochectus bat kudensis, Stephenson, Rec. Ind. Mus. xii, p. 340, pl. גxxini, tigs. 32, 33.
1917. Octochcetus barkudensis, Stephenson, Rec. Ind. Mus. xiii, p. $405, \mathrm{pl}$ a vini, tig. $20-27$.
1918. Octochretus barkudensis, Stephenson and Prashad, Tr. Roy. Soc. Edin. lii, p. 464, pl. figs. §, 6.
1919. Octochertus barkiudensis, Stephenson, Mem. Ind. Mus. vii, p. 2 L 2 S .
1920. Uctochuetus barkudensis, Stephenson, Liec. Ind. Mus. xxi1, p. 703.

Length 43-91 mm.; diameter $1: 0-3 \mathrm{~mm}$. Segments ca. 140. Colour grey or brown. Segments triannulate from vii to clitellum.

Prostomium variable, epilobous $\frac{1}{2}$ or tanylobous. Dorsal pores from 12 13. In the anterior part of the body $u t=+a b$ or nearly, $=1 \frac{1}{3} b c$ or nearly, and $c d=1_{2}^{1}-2 a b$; further back aa and $b c$ become relatively narrower, $a a=3 a b$ or less, and $b c=2 a b$; $d d$ is rather more than half the circumference. Clitellum includes $\frac{2}{3}$ xiii- $\frac{2}{3} x v i i\left(=4 \frac{1}{3}\right)$. Male field (text-fig. 16S) characterized by two cushions on xviii which almost meet in the middle line;

Fig. 168.-Octochatus (Octochceludes) barkudensis steph., mule genital region, showing well marked copulatory papilla.
prostatic pores on xvii and xix connected by grooves which are bent outwards to pass over the external margins of the cushions. Spermathecal pores on viii and ix, in front of and between setæa and b. Additional genital markings, not always present:-On viii $a^{\text {app pair of }}$ transversely oval papillæ which include the setæ ab

Fig. 169.-Octochetus (Octochatoides) barkudensis St.eph.; a and b, two spermathece, showing variations in form.
and do not take up quite the whole length of the segment (these may be joined in the middle line); on xvi a pair of large flat papillm taking up the whole length of the segment, and almost meeting in the middle line (text-fig. 168); occasionally a large median transversely oval papilla on xxii ; rarely a median papilla on xxi.

The first septum, $4 / 5$ or perhaps 5,6 , somewhat thickened; the next is $8 / 9$, which is slightly thickened; $9 / 10-11 / 12$ considerably and a few following diminishingly thickened. Gizzard subspherical, the muscular thickening appearing as an oblique ring, in front of 8/9. Calciferous glands one pair only, in xv and xvi, sometimes asymmetrical ; openings apparently in xv. Last heart in xii. Nephridia small and scattered in the anterior part of the body; towards hinder end in two transverse rows per segment, one behind the anterior and one in front of the posterior septum. Testis sacs in x and xi, single in each, enclosing alimentary canal and hearts. Seminal vesicles two pairs, in ix and xii ; the anterior flattened and lobed, the hinder large. Prostates of moderate size, coiled, duct thin and twisted. Spermathecal ainpulla of variable shape, prolonged to form a short and narrow stalk; diverticulum also variable,-none, one or two, sessile or stalked, with or

Fig. 170. - Octochretus (Octochcetvides)
barkiudensis Steph. ; distal end of pemal seta.

Fig. 171.-Octochatus (Octochaturter) barkudensis Steph.: distal end of copulatory seta.
without indications of seminal chambers (text-fig. 169). Penial setæ (text-fig. 170) 0.58 mm . long, 10μ thick in the middle ; shaft slightly curved, distal end sinuous, tip pointed; ornamentation of relatively large spines which do not extend quite to the tip. Copulatory setæ (text-fig. 171) in viii, 0.52 mm . long and 17μ thick, not much modified; shaft slightly curved, distal end rather bulbous, the margins cut up into a number of serrations, tip pointed.

Distribution. Barkuda Island, Chilka Lake, E. coast.

3. Octochætus (Octochætoides) beatrix Belll.

1902. Octochretus beatrix, Beddard, Ann. Mag. N. H. (7) ix, p. 456. 1914. Octochcetus dasi, Stephenson, Rec. Ind. Mus. x, p. 346, pl. xxxvi, fiy. 7.
10\%!. Ortochatus beatrix, Stephensun, liec. Ind. Mus. xxiv, p. 436, text-fig. 2.
Length $70-80 \mathrm{~mm}$. ; dianneter 4 mm . Segments 192 . Colour pale grey, clitellum orange. Prostomium sinall, epilobous $\frac{1}{2}$, tongue pointed behind. Segments v-vi biannulate, vii-x triannulate. Dorsal pores from 12/13. Setæ all rentrally situated; $a a=2 \frac{1}{2}$ $a b=b c=1 \frac{1}{2} c c l ; \quad d d=\frac{2}{3}$ of circumference; seta $a a$ approach each other more closely in front of and behind clitellum than elsewhere, and in front of chteilum the spaces $a a$ and $b c$ are relatively smaller than belind. Clitellum xiii-xvii sentrally, xiii- $\frac{1}{2} x$ viii dorsally, very markedly limited by constrictions ($=5-5 \frac{1}{2}$). Male area presents a median rather small puckered depression which takes up the whole length of xviii and extends slightly onto the adjacent parts of neighbouring segments; all pores are within the line of setra a; semmal grooves bowed outwards. Female pores paired, close together at the bottom of a transverse groore. Spermathecal pores on minute papille near the middle line, in the setal zonc of viii and ix internal to a.

Neptum 5/6 moderately thick; the next is $8 / 9$, which with the four following is moderately stout; 8/9-11/12 all close together, especially $10 / 11$ and $11 / 12$. Gizaard short, resembling a stout ring in the middle of the space between $5 / 6$ and $8 / 9$. Calciferous glands one pair, in av-xvi, large, lobed. Iyphlosole prominent and double, beginning in xx. Last heart in xiii. , Jumels free in x and $x i$, those of $x i$ larger than those of x; testes of fairly large size in xi, absent (\% always) in x. Seminal vesicles one pair, small and compact, in xii. Prostates one or two pairs, small; if only one pair, they are in xvii. Spermathece minute, ovoid, by the side of the nerve cord; duct short; no diverticulum. Penial seta 0.6 mm . long, 13μ thick in the middle, with slight double curve; tip pointed; ornamentation of a few irregular indentations of the margin near the free end.

Distribution. Calcutta; Bombay; Baroda.

4. Octochætus (Octochætoides) castellanus steppl.

1917. Octochaetus castellanus, Stephenson, Rec. Ind. Mus. xiii, p. 407, pl. xvii, fig. 22, pl. xviii, fige. 23, 24.

Length 48 mm .; maximum diameter 2 mm . Segments ca. 125. Colour? Prostomium? Dorsal pores from 5/6. Setæ widely paired; $a a=1 \frac{2}{3} a b=b c=1 \frac{1}{2} c d ; d d=c a$. half of circumference. Prostatic pores as small pits on xvii and xix medial from a, on a common elevation in each segment; seminal grooves bowed outwards, running on broad curved ridges, so that there is a circular
depression in the middle of the male area. Fenale pore single, median. Spermathecal pores perhaps at the site of setie a on viii

Fig. 172.-Octochuetus (Octochetouldes) castellumus Steph. .
spermatheca.
and ix (or, as determined from inside, perhaps in front of the setal zone).
No septa wanting ; $9 / 10$ and $10 / 11$ slightly thickened. Gizzard in vii. Calciferous glands one pair, in xiv, of moderate size and symmetrical. Funnels free in x and xi. Seminal vesicles in xii,

Fig. 173. - Octorluetus (Octochatondes) castellanus Steph. ; a and b, penial setæ, of two types; \times ca. 360.

Fig. 174.-Octochatus (Octocheloides) castellanus Steph.; copulatory seta of segment vii ; Xca. 300.
rather small, deeply lobed. Prostates rather small, in several loops; duct thin, half as wide as glandular part, semitrcunsparent, running straight inwards. Spermathecx near the midventral line,
rather small ; ampulla spherical; duct slightly bent, about as long as ampulla and one-third as thick; diverticulum single, clubshaped, less than ampulla in length, attached near ental end of duct. Peninal sete $0.87-1 \mathrm{~mm}$. long, 14μ thick in the middle; main part of shaft only slightly curved; distal end of one of two forms:-(a) curve of distal end continues curve of shaft, tip tapering and bluntly pointed, a few teeth some distance above tip; (b) distal end considerably bent, it may be to nearly a right angle, tip rather expanded, spatula-like or slightly bifid, and the teeth more numerous; the first type is the shorter, corresponding to the shorter length given above. Copulatory setæ in viii and ix, 0.61 mm . long, 20μ thick at the middle; shaft bowed, especially at the ends ; distal portion of the shaft (almost half) cut up along its borders into a series of rough notches; tip rather claw-shaped and bluntly pointed.

Remarks. Described from a single specimen, in poor condition. The calciferous glands appear to be a segment further forwards than usual.

Distribution. Castle Rock, N. Kanara Dist., Bombay Pres.
5. Octochætus (Octochætoides) fermori Mich.
1907. Octochetus fermori, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 171.
1909. Octochetus fermori, Michaelsen, Mem. Ind. Mus. i, p. 212, pl. xiv, figs. 42, 43.
1914. Octochcetus fermori, Stephenson, liec. Ind. Mus. x, p. 344, pl. xxyvi, figs. 5, 6.
1916. Octochectus fermori, Stephenson, Rec. Ind. Mns. xii, p. 338.
1917. Octochcetus fermori, Stephenson, Rec. Ind. Mus. xiii, p. 405.
1920. Octochatus fcrmori, Stephenson, Mem. Ind. Mus. vii, p. 228.

Length $50-100 \mathrm{~mm}$.; maximum diameter $0 \frac{1}{3}-3 \mathrm{~mm}$. Segments 133-190. Colour light grey, clitellum yellower. Prostomium epilobous ca. $\frac{1}{2}$. Segments vi-vii biannular, viii-xii triannular (or some 4-annular), behind clitellum triaunular. Dorsal pores from $17 / 18$, or the first may be in front of clitellum, in $12 / 13$. Seta paired, the lateral widely; small, all ventral; behind clitellum $a b=\frac{2}{5} a a=\frac{1}{2}-\frac{4}{4} b c, c c l=\frac{3}{4} b c$ or more; in front of clitellum $a b=$ $\frac{1}{2} a a=\frac{2}{2}-\frac{1}{2} b c, c d$ as before; $d d=\frac{3}{3}-\frac{2}{3}$ of circumference. Clitellum very distinctly delimited by constrictions at each end, xiii-xvii or $\frac{1}{2}$ xviii ($=5-5 \frac{1}{2}$); setæ present. Clitellum overhangs anterior part of male field; prostatic pores medial from a, seminal grooves bowed outwards. Spermathecal pores on viii and ix, in setal zone, very close together, on small papillæ which may be fused midventrally to form cushions. No copulatory organs.
Septum $4 / \overline{5}$ thickened, $5 / 6-7 / 8$ wanting, $9 / 10-11 / 12$ thickened; $8 / 9-11 / 12$ rather close together, especially $10 / 11$ and $11 / 12$. Gizzard large, between 4/5 and 8/9. Calciferous glands in xv or xv and xvi, large, much lobed, asymmetrical. Typhlosole a double lamella, begins in xviii. Last hearts in xiii. Testes and funnels
in testis sacs in xi; a smaller pair of funnels free in x, but no testes. Seminal vesicles one pair, large, incised, in xii. Prostates small, with irregular undulations; duct much thinner and shorter than glandular part Ovisacs in xiv. Spermathecæ (text-fig. 175) small, by the side of nerve cord; ampulla pear-shaped ; duct short, muscular, and not sharply set off; diverticulum opening

Fig. 175.-Octochatu: (Octochatoides) fermori Mich.; spermatheca Fig. 176.--Octochetus (Octochatoides) made transparent by acetic aced ; $\times 35$.
 fermori Mich.; distal end of penial seta; $\times 400$.
into duct at junction of latter with body-wall, pear-shaped, half as long and thick as ampulla, with indistinct seminal chambers. Penial setr (text-fig. 176) $055-0.66 \mathrm{~mm}$. long, 15μ thick, nearly straight, slightly bent at the distal or at both ends; tip simply pointed; a few teeth lie flat against the shaft in the region of the distal curvature.

Remarks. The species shows a stage in the passage to metandry, as does O. beatrix, to which this appears to be related. Copulatory setæ seem to be absent, as they are mentioned by neither of the authors who have described the species.

Distribution. Kasauli and Hoshiarpur in the Punjab; Saharanpur in the United Provinces; Raniganj in Bengal; Karakulam in Cochin ; Gwalior in Central India; Dhanu, Surat, Ahmedabad, and Baroda in W. India.

6. Octochætus (Octochætoides) ganeshæ Steph.

1920. Octochetus ganesha, Stepheuson, Mem. Ind. Mus. vii, p. 238, pl. xi, figs. 43-45.
Length 43 mm .; diameter 2.5 mm . Segments 150 . Unpigmented. Prostomium epilobous 3 . Segments v and vi biannular, thence as far as the clitellar region triannular. Dorsal pores from 12/13. Behind genital region $a b=\frac{1}{4} a a=\frac{2}{8} b c=\frac{3}{4} c d$; in middle of body $a b=\frac{1}{3} a a=\frac{2}{2} b c=\frac{3}{4} c d$; setæ swall and difficult to see in front of genital region; $d d$ equal to nearly $\frac{2}{3}$ of circumference in middle of body. Clitellum absent (or undeveloped?). Male field a rectangular slightly raised area, including xvii-xix,
extending outwards to between b and c. Prostatic pores between a and b; seminal grooves slightly bowed inwards. Female pores paired, minute indistinct pupillæ anteriorly on xiv, internal to a. Spermathecal pores as minute slits on viii and ix, just in tront of and between the two setm of each ventral couple.

Septum $4 / 5$ moderately strengthened, $5 / 6$ and $0 / 7$ absent, $7 / 8$ and $8 / 9$ slightly, $9 / 10-11 / 12$ considerably, $12 / 13-14 / 15$ slightly thickened. Gizzard of moderate size, rounded, in the space in

Fig. 177.--Octochatus (Octorluetoides) ganeshue Steph.; spermatheca.
front of 7/8. Calciferous glands in $x v$ or $x v$ and $x v i$, one pair. Intestine begins in xvii or xviii. Last heart in xii. Micronephridia in a single row in each segment. Testes and funuels free in x and $x i$. Seminal vesicles in ix and xii, slightly lobed. Prostates consisting of a few coils only; duct half the thickness

Fig. 178.-Octochatus (Octochatoides) ganeshe Steph.; distal end of penial seta; $\times 600$.

Fig. 175.-Octochatus (Octochcetoides) ganeshae Steph.; distal end of copulatory sela; $\times 500$.
of the glandular portion, soft and semitransparent, with undulating course; and of the same diameter throughout. Spermathecal ampulla an elongated sac, narrower towards its ental end, almost sessile on the body-wall; a single small diverticulum, simple or
with a few small lobulations, attached by a short stalk to the base of the ampulla where this joins the body-wall (text-fig. 177). Penial setæ (text-fig. 178) 0.42 mm . long, 10μ thick; shaft almost straight, slightly bowed towards distal end, tip pointed and slightly hooked; ornamentation of a few circles of fine spines near the tip. Copulatory setw (text-fig. 179) 0.27 mm . long, 10μ thick, shaft straight except for a slight bowing towards the tip, which is bluntly pointed and somew hat claw-shaped; ornamentation a number of fine spines on the convex and concave borders of the terminal part of the shaft.

Distribution. Ganeshkhind, near Poona; Londa, near. Castle Rock (both in Western India).

7. Octochætus (Octochætoides) hodgarti Mich.

> 1907. Octochetus hodgarti, Michaelsen, Mt. Mus. Mamburg, xxiv, p. 172.
> 1909. Octochattus hodgarti, Michaelsen, Mem. Ind. Mus. i, p. 213, pl. xiv, fig. 32.

Length 40 mm .; maximum diameter $2 \frac{1}{2} \mathrm{~mm}$. Segments 138. Colour greyish. Prostomium epilohous $\frac{3}{4}$. Setæ ventrally closely paired, laterally less closely, especially in the anterior and middle parts of the body ; $c l=1 \frac{1}{2}-2 a b, a a=1 \frac{1}{4} b c, d d=\frac{2}{3}$ of circumference. Clitellum ring-shaped, xiii-xviii $(=6)$. Male area almost circular, a little depressed. Prostatic pores somewhat medial from a; seminal furrows a little concave towards the middle line. Female pores paired. Spermathecal pores on viii and ix, in the setal zone and somewhat medial from a. No copulatory organs.

Septum 5/6 stronis, 6/7 apparently missing, 8/9-13/14 strong, especially $9 / 10-11 / 12$. A large gizzard behind $5 / 6$. A pair of large, strongly bent and almost moniliform cal.iferous glands in $x v$, the moniliform appearance due to a number of transverse

Fıg. 180.-Octochatus (Octochetoides) hodgarti Mich.; spermathecr made transparent by acetic acid; $\times 30$.
constricting furrows. Typhlosole consisting of two longitudinal ridges. Last hearts in xiii. Testes and funnels two parrs, free in x and $x i$; anterior pair of funnels smaller than the posterior. Seminal vesicles in xii. Prostates small, irregularly undulating; duct small, thin. Spermathecæ (text-fig. 180) with short sac-like ampulla, which narrows ectally to pass into a conical duct about as long as ampulla; diverticulum small and thick, from upper end of duct or lower end of ampulla, half as long as ampulla.

Remarks. On its relations to O. beatrix see introduction to subgenus.

Distribution. Gowchar, Nepal Valley, Katmandu.

8. Octochætus (Octochætoides) maindroni Mich.

1907. Octochretus maindroni f. typica, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 168, text-fig. 15.

1909. Octochatus maindroni f. typica, Michaelsen, Mem. Ind. Mus. i, p. 206, pl. xiv, fig. 29, text-fig. 21.
Length 180 mm .; diameter $4 \frac{1}{2}-5 \mathrm{~mm}$. Segments 198. Colour a uniform grey. Prostomium epilobous ca. $\frac{1}{2}$. Segments ii-iv biannulate, \mathbf{v} and some following segments triannulate. Dorsal pores from 12/13. Setæ very delicate, fairly widely paired; $a a=b c, a a: a b: b c: c d=5: 2: 5: 3$; $d d$ greater than half of circumference; at the anterior end the pairs further apart, cd equal to or greater than $b c$ and equal to $1 \frac{1}{2} a b$. Clitellum xiii-xvii $(=5)$. The whole male area somewhat depressed; prostatic pores in b, on very small circular papillæ; seminal grooves convex towards the middle line. Spermathecal pores two pairs, anteriorly on viii and ix, between the lines of a and b, somewhat nearer the former. Copulatory organ as a single midventral cushion on 13/14, including $\frac{2}{3}$ of xiii and $\frac{1}{3}$ of xiv, broader than long, reaching nearly as far as d laterally, its anterior border convex, the posterior concave.
Septa 7/8-13/14 thickened, especially 9/10-11/12. Gizzard very large, in front of $7 / 8$. One pair of vers large calciferous glands opening into œesophagus in $x v$, but extending into xvi, divided up by deep incisions. Last hearts in xiii. Funnels free in x and xi. Seminal vesicles two pairs, in $x i$ and xii, the anterior pair small and simple, the posterior larger and racemose.

Fig. 181.- Octochatus (Octochatoides) maindroni Mich.; spermatheca mado transparent by acetic acid; $\times \mathbf{2 0}$.

Prostates restricted to x vii and xix; glandular part much bent, almost coiled; duct shorter, thin, irregularly beut. Spermathecal ampulla long, sac-like; duct shorter and narrower ; diverticulum at ectal end of duct, very short, almost encircling the duct, with about 7 seminal chambers separated externally by more or less deep grooves (text-fig. 181). Penial setæ (cf. text-fig. 183) very
slender, 1.2 mm . long and 10μ thick, somewhat bent at the distal end ouly ; distal end somewhat flattened but not broadened, with two fairly sharp edges, point simple; proximal to the flattened portion an ornamentation of irregular transverse rows of large rather slender teeth.

Remarks. It is possible that the specimens were not quite mature; the diverticulum of the spermatheca may perhaps be like that of var. chaperi when mature.

Distribution. Gingi, S. Arcot Dist., S. India.
a. var. chaperi Mich.
1907. Octochatus maindroni var. chaperi, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 169.
1909. Octochatus maindroni var. chaperi, Michaelsen, Mem. Ind. Mus. i, p. 208, pl. xiv, figs. 30, 31.
Length 50 mm .; diameter $2 \frac{1}{2}-3 \mathrm{~mm}$. Segments ca. 130 . Clitellum ring-shaped, xiii-xvii $(=5)$. Female pores paired. Copulatory organs as a large median transversely oval papilla on xviii between the seminal furrows; and a large transverse cushion on xiii, extending laterally beyond b.

Fig. 182.-Octochetus (Octochatotdes) maindroni Mich. var. chaperi; spermatheca. $\times 45$.

Fig. 183.-Octochatus (Octochatordes) maindronı Mich. var. chapert; distal end of penial seta. $\times 500$.

Spermathecal ampulla elongated sac-shaped; duct short, narrow, not sharply set off; diverticulum almost hemispherical, large, with very short and narrow stalk, and numerous seminal chambers which give the surface a mammillated appearance (text-fig. 182).

[^3]9. Octochætus (Octochætoides) montanus Steph.
1920. Octochectus montanus, Stephenson, Mem. Ind. Mus. vii, p. 234, pl. x, tigs. 39, 40.

Length 60 mm . ; diameter $3 \cdot 5 \mathrm{~mm}$. Segments 158 . Colour buff, unpigmented. Prostomium epilobous $\frac{1}{2}$, not marked off behind. Dorsal pores from 10/11. Setal relations on vii $a b=\frac{2}{a} a a=\frac{1}{2} b c=\frac{3}{5} c d$; behind clitellum $a b=\frac{1}{3} a a=\frac{2}{5} b c=\frac{1}{2} c d$; in middle of bodr $a b=\frac{1}{4}<a=\frac{8}{7} b c=\frac{4}{7} c d$; $\quad l d$ is almost $\frac{2}{3}$ of circumference. Clitellum saddle-shaped, embracing nearly all of xii to xix (= nearly 8). Male field whitish, rectangular, including xvii-xix ; seminal grooves longitudinal, in line with a. Female

Fig. 184.- ()،torluetus (Octorluptocies) montumus St eph. . spermatheer

 montunts Steph; penmal sota, $\times 40$.
pores probably double, in a whitish pad midventrally on xiv. Spermathecal pores in $7 / 8$ and $8 / 9$, apparently in lino with a. A genital papilla on $21 / 22$, transversely oval, depressed in its centre.

Septuin $4 / 5$ moderately stout, $5 / 6-7 / 8$ very thin, $8 / 9$ somewha's thickened, $9 / 10-11 / 12$ moderately so, $12 / 13$ very slightly. Gizzard in vi. Calciferous glands two pairs, in $x v$ and xvi, dorsally situated by side of the dorsal vessel. Intestine begins in xvii. Last heart in xii. Testes and funnels free in x and $x i$. Seminal vesicles much lobulated or racemose, large, in ix and xii. Prostates rather small ; glandular part a rather thick opaque tube, with a few undulations; duct very small, short and thin. Spermathecal ampulla an irregular sac; duct large, stout at first. narrowing towards ectal and, as long as ampulla and half as thick in its first part ; diverticulum single, joining duct at or above middle of its length, finger-shaped on the whole, slightly swollen at its free
end, where a few seminal chambers are indistinctly seen (textfig. 184). Penial setæ(text-fig. 185) up to 1.5 mm . in length, very thin, only 6μ thick in the middle; shaft rather bowed, slightly undulating towards the tip, tapering gradually, tip simply pointed; no ornamentation. No copulatory seta.

Distribution. Panchgani, W. Ghats (near Mahableshwar).

10. Octochætus (Octochætoides) paliensis Stephl.

1920. Octochatus paliensis, Stephenson, Mem. Ind. Mus. vii, p. 228, pl. x, figs. 30-33.
Length 45 mm .; diameter 23 mm . Segments 141 . Colour yellowish grey, not darker on dorsal surface. Prostomium proepilobous or combined pro- and tanylobous. Dorsal pores from $12 / 13$. Seta paired; in front of clitellum $a b=\frac{1}{3} a a$, is less than $\frac{1}{2} b c$ and $=\frac{2}{3} c c d$; behind clitellum $a b=\frac{2}{3} a a=\frac{1}{2} b c=\frac{3}{3} c d$; in middle of body $a b=\frac{2}{5} a c t=\frac{2}{3} b c$ and is slightly less than $c d ; d d$ is approximately $\frac{4}{7}$ of circumference. Clitellum xiii-xvii ($=5$). Male field shows two trench-like depressions on xvii and xix; segment xviii appears between them as a transverse ridge. Prostatic pores in the deeper lateral parts of the trenches on small white papillæ in line with b; seminal grooves straight.

Fig. 186.-Octochatus (Octochatovdes) paliensts Steph. ; spermatheca.
Male area may join behind with a transversely elongated papilla on the posterior half of $x x$ and nuterior half of xxi. Ventral surfaces of viii and ix thickened, forming a couple of broad papillæ; spermathecal pores apparently just in front of site of setæ a of these segments (setæ a and b not visible).

Septum $4 / 5$ moderately thickened, $5 / 6$ and $6 / 7$ missing, $7 / 8-$ 11/12 somewhat thickened, and diminishingly so as far as $14 / 15$. Gizzard spherical, in front of $7 / 8$. Calciterous glands large, kidney-shaped, in xv. Intestine begins in xvii. Last heart in xii. Testes and fumnels free in x and xi. Seminal vesicles in ix and xii. Prostates as moderately thick convoluted tubes, bulging apart the septa bounding xvii and xix; duct thimner than the gland, wavy, shining, thinner in its first part than nearer the
surface. Small ovisacs may be present in xiv. Spermathecal ampulla (text-fig. 186) elongated, somewhat conical; duct not sharply marked off, not shining, one-third as long and half as wide as ampulia; diverticulum single, club-shaped, without distinct stalk, arising from ectal end of duct, one-third or one-fourth as long as main pouch, may be bound down to duct; in other cases the diverticulum has the form of a cauliflower, with a short stalk. Penial setæ (text-fig. 187) $0.65-0.76 \mathrm{~mm}$. long, 16μ thick, shaft straight, distal end slightly curved, tip bluntly pointed; ornamentation as eight circles of small spines near the tip; the end may

Fig. 187.-Octochatus (Octochatoides) paleensis Steph.; a and b, distal ends of two penial setæ; \times ca. 340.

Fig. 188.-Octochatus (Octochetoides) paliensts Steph.; distal end of copulatory seta; \times cia. 230.
be somewhat sinuous instead of simply curved. Copulatory setæ of viii and ix (text-fig. 188) $0.76-0.82 \mathrm{~mm}$. long, 22μ thick, distal part bowed, tip rather sharp, somewhat claw-shaped; a row of spines on both convex and concave border of the distal curved part.

Remarks. A very variable species; related to O. ganeshce.
Distribution. Palia and Indore, Central India; Bina, Central Prov. ; Poona.

a. var. riparius Steph.

1920. Octochatus paliensis var. riparius, Stephenson, Mem. Ind. Mus. vii, p. 231, pl. x, figs. $34,35$.
Length up to 90 mm .; diameter up to 3.5 mm . Seginents 135. Prostomium tanylobous or almost so. Dorsal pores from hinder border of clitellum. Setal relations in front of clitellum $a b=\frac{1}{3} a a$
$=\frac{2}{5} b c=\frac{3}{4} c d$; behind clitellum $a b=\frac{2}{2} c a=\frac{2}{5} b c=\frac{3}{4} c d$; in middle of body $a b=\frac{1}{3} a c=\frac{2}{5} b c=c d$; $\quad l d=\frac{5}{5}$ of circumferences. Male area (text-fig. 189) rather square, including xvii-xix and the anterior half of $\mathbf{x x}$; on it a dumbbell-shaped depression longitudinal in direction, the uarrow part on xviii ; the narrowing caused by two large flat papillæ continuous at their outer edges with the thickened edge of the general male area. Prostatic pores in b, in the broadened ends of the dumbbell; seminal grooves convex

Fig. 189.-Octox•hetus (Octochretoudes) pulcensis Steph. var. riparıus; male genital region.

Fig. 190.-Octochretus (Octochretoides) palicnsts Steph. var. rıparius; distal end of copulatory seta; \times ca. 350 .
inwards, skirting the inner borders of the papillw. Spermathecal pores in same position as in type form; here in shallow depressions, each connected across the middle line by an irregular shallow trench.

The penial setr have the sinuous distal end. Copulatory setre (text-fig, 190) in form as before, the rows of spines replaced by thin serrated ridges; laterally on the seta, intermediate between the ridges, a series of semicircular markings, concave towards the tip.

Remarks. If the papillæ of the male area expanded inwards so as to join, the appearance would be like that of the type-form.

A number of muscular bands in the prostatic region, like those of O. surensis, are sufficiently marked in the dissection to attract attention.

Distribution. Gwalior.

11. Octochætas (Octochætoides) pattoni Mich.

1907. Octochatus pattoni, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 170, text-fig. 16.
1908. Octochatus pattoni, Michaelsen, Mem. Ind. Mus. i, p. 209, pl. xiv, figs. 33-35, text-fig. 22.
Length ca. 90 mm .; diameter ca. 3 mm . Segments ca. 180. Colour greyish, brown anteriorly on dorsum. Prostomium small, tanylobous (not always distinctly so). Setæ fairly large, all ventral; paired, but not very closely; $a b=c d=\frac{2}{3} a c=\frac{2_{3}^{2}}{3} b c ; c l l=\frac{T_{1}^{2}}{2}$. of circumference. Clitellum ring-haped, or sometines interrupted in the midventral line, dark brown, xiii or $\frac{1}{2} x i i i-x v i\left(=3 \frac{1}{2}\right.$ or 4$)$. Male field sunken, extending over xvii-xix and parts of xvi and xx, somewhat less extensive laterally on xviii, the whole surrounded by a wall. Prostatic pores in $a b$; seminal grooves slightly

Fig. 191.-Octochatus (Octorhutoides) pattoni Mich. : spermatheca made transparent by acetic acid, $\times \geq 0$.
convex towards the middle line. Female pores paired. Spermathecal pores in $7 / 8$ and $8 / 9$ in u; or those of the hinder pair slightly closer together, just medial from a. Copulatory organs as paired oval glandular cushions, with a depression in the middle and a more or less distinct central papilla ; lying mostly between a and c, but sometimes somewhat approximated or touching in the middle line; the most constant are in $11 / 12$, less constantly in $14 / 15$ or $21 / 22$ or $22 / 23$; seldom all present, and very seldom all absent.

Septum 5/6 strong, 6/7-8/9 very thin (apparently in part vestigial), $9 / 10$ thin, $10 / 11-13 / 14$ strong, $14 / 15$ fairly strong. Gizzard large, oblique, in vi(?). A pair of asymmetrical large calciferous glands with short thick stalks opening near the middorsal line at about the border-line between xv and xvi , one projecting forwards into xv and the other backwards into xvi. Intestine begins in xix; typhlosole a double ridge. Testes and funnels free in x and xi, these segments being narrow. Seminal vesicles racemose, in ix and xii. Vasa deferentia with large convolutions in xi, xii, and xiii ; those of a side do not unite till they pierce the body-wall. Prostates long, convoluted; duct relatively long, describing some wide convolutions. Spermathecal
ampulla pear-slaped; duct cone-shaped, not set off; diverticulum thick, $\frac{2}{3}$ as long and $\frac{2}{3}$ as thick as the main pouch, the ental portion of the diverticulum with folded walls separating a number of indistinct seminal chambers (text-fig. 191). Penial setæ (text-fig. 192) $1 \cdot 7-2 \mathrm{~mm}$. long, 17μ thick, slightly but regularly curved ; the distal fourth seems to have sharp lateral edges, which become expanded at the tip, forming with the thicker axial part a sort of shovel, which is somewhat bent forwards; the distal ends of these

Fig. 102.-Octwhetus (Octochetoides) pattoni Mich. ; distal end of penial seta; $\times \mathbf{3 2 5}$.

Fig. 193.-Octochatus (Octochatoides) pattom Mich.; distal end of copulatory seta; $\times 240$.
expansions are serrated ; proximal to the expanded tip the shaft is ornamented with 8 or 9 rings of slender teeth, and at the edges with 8 or 9 larger teeth on each side. Copulatory setæ (text-fig. 193) on viii and ix, $0.8-1 \mathrm{~mm}$. long and ca. 20μ thick, tip somewhat laterally compressed and bluntly pointed, with fine ringed markings; proximal to this part the shaft bears a number of smooth transverse ridges, each concave distalwards, arranged in 3 or 4 longitudinal rows, about 11 ridges in each row ; each bundle of setæ combined with a coiled glandular tube embedded in the body-wall.

Distribution. Madras.
12. Octochætus (Octochætoides) phillotti Mich.
1907. Octochetus phillotti, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 169.
1909. Octochatus phillotti, Michaelsen, Mem. Ind. Mus. i, p. 20̄, pl. xiv, figs. 65-67.
Length $35-55 \mathrm{~mm}$.; maximum diameter $2-2 \frac{1}{2} \mathrm{~mm}$. Segments ca. 125. Colour greyish. Prostomium epilobous ca. $\frac{3}{5}$, small, tongue open behind. Dorsal pores from 11/12. Setæ rather small, paired, but not very closely, the ventral somewhat closer than the lateral, especially in the clitellar region; $a b$ greater than $c d, b c=1 \frac{1}{2} c d=3 a a ; d d=\frac{3}{3}$ of circumference. Clitellum ringshaped, xiii-xvii ($=5$). Male area sunk, bordered laterally by broad almost wall-like protuberances which overhang somewhat in segment xyiii, so contracting the male area here. Prostatic pores in a; seminal grooves almost straight, slightly concave medially. Female pores paired. Spermathecal pores on viii and ix, just in front of a. The ventral part of xviii, and often of xx and of viii and ix, somewhat glandular. Often the spermathecal pores of a segment connected by a groove which is convex backwards, the posterior border of the groove sometimes wall-like.

Fig. 194.-Octochetus (Octochetoides) phillottc Mich.; spermatheca made transparent by acetic acid; $\times 20$.

Septum $4 / 5$ very strong, $5 / 6$ and $6 / 7$ very thin (? vestigial), 7/8-14/15 thickened, especially 10/11-12/13. A large somewhat oblique gizzard between $4 / 5$ and $7 / 8$. Calciferous glands one pair, large, surrounding cosophagus laterally and dorsally in xv, the stalk of each short and narrow. Intestine begins in $x v$, typhlosole as a double ridge. Last heart in xiii. Testes and funnels free in \mathbf{x} and xi . Seminal vesicles in ix and xii, the anterior smaller, the posterior cut up into lobes. Prostates of moderate size, the glandular part convoluted; duct much shorter and thinner, abruptly set off, describing one or two short broad loops. Spermathecal ampulla elongated, ovoid ; duct short, not abruptly set off; diverticulum about one-fourth as long as ampulla, indistinctly stalked, opening into duct, divided by deep incisions into two or three lobes, sometimes almost to its base (text-fig. 194). Penial
setæ (text-fig. 195) 0.9 mm . long, 17μ thick, almost straight; the distal end slightly bent, especially at the tip, which is hollowed out on the concave side like a spoon; proximal to this the shaft bears about 9 more or less regular oblique or broken

Fig. 195.-Octochcetus (Octochatoides) phillotti Mich., distal end of penial seta; $\times 300$.

Fıg. 196.-Octochatus (Octochetoides) phillotti Mich.; distal end of copulatory seta; $\times 300$.
rings of fine triangular teeth. Copulatory setae (text-fig. 196) in viii and ix, ca. 0.6 mm . long and 17μ thick, somewhat bowed ; distal end almost beak-like, with a slight ridge along each side; the distal half of the seta, except the tip, ornamented with a large number of closely placed rings of small triangular teeth.

Distribution. Hyderabad, Deccan.

13. Octochætus (Octochætoides) pittnyi Mich.

> 1910. Octochatus pittnyi, Nichaelsen, Abh. Ver. Hamburg, xix, p. 86, pl. figs. $25,20$.

Length 60-62 mm.; diameter $2-3 \mathrm{~mm}$. Segments ca. 165. Colour light grey, without pigment. Prostomium epilobous $\frac{1}{2}$, tongue closed behind. Segments iii-iv biannular, \mathbf{v}-xii triannular or still further subdivided. First dorsal pore in 11/12. Setæ rather small, ventrally fairly widely parred, laterally rather more widely still; au:ab:bc:cd::6:2:5:3, butact is smaller towards the front, near the male pores; $d d=\frac{2}{3}$ (in front) or $\frac{3}{5}$ of circumference (in iniddle of body). Clitellum xiii-xvii $(=5)$; midventrally on xvii the hinder border is excavated to accommodate the male field, which the clitellum overlangs. Prostatic pores rather medial from a; seminal grooves convex medialwards, running on indistinct walls. Female pore single, median. Spermathecal pores on viii and ix, medial from a, between the first and second annuli of these segments.

Septa 7/8-12/13 fairly strongly thickened, especially the middle ones of the series. Gizzard large, in front of $7 / 8$. Calciferoun
glands one pair, large, in xv and xvi, morphologically apparently belonging to $x v$; almost smooth externally, curved, meeting the dorsal vessel above. Typhlosole in anterior part of intestine a double ridge. Funnels free (?) in x and $x i$. Seminal vesicles in xi and xii. Prostates very small, confined to the ventral parts of their segments; glandular portion undulating, duct very narrow, much shorter than the glandular part, somewhat bent. Spermathecæ relatively small, ampulla ovoid; duct as long as and onethird as thick as ampulla; diverticulum thickly club-shaped, somewhat narrower and only half as long as duct, entering ectal part of duct. Penial setæ ca. $\frac{2}{3} \mathrm{~mm}$. long, 17μ thick, almost straight, bent only at the ends, rather bluntly pointed; ornamentation a few irregularly disposed relatively coarse "scars," the depressions of which are occupied by stout teeth. No copulatory setæ.

Remarks. Michaelsen considers this species to be related to O. aitkeni, but to be distinguishable by the setal arrangement, the smoothness of the calciferous glands, and the ornamentation of the penial setæ.

Distribution. Mangalore (W. Coast); Trivandrum (S. India).

14. Octochætus (Octochætoides) prashadi Steph.

1920. Octochretus prashadi, Stephenson, Mem. Ind. Mus. vii, p. 233, pl. x, tigs. 36-38.

Length $51-61 \mathrm{~mm}$. ; diameter $2.5-3.5 \mathrm{~mm}$. Segments ca. 150 ; v and vi biannular, some or all of the rest up to the clitellum triannular. Colour buff, no pigmentation; no difference between dorsal and ventral surfaces. Prostomium epilobous in varying degrees. Dorsal pores from $12 / 13$, or a vestigial pore in 11/12.

Fig. 197.-Octochetus (Octochœetordes) prashadi Steph.; spermatheca.
In the anterior part of body $a b=\frac{2}{7} a a=\frac{2}{5} b c=\frac{3}{4} c d$; the same behind the clitellum; in middle of body $a b=\frac{1}{3} a a=\frac{1}{2} b c=\frac{3}{4} c d$; $d d=\frac{4}{4}$ of circumference. Clitellum absent or indefinite. Male field a quadrangular thickening including part of $x v i$ and the whole of $\mathbf{x x}$; on xvii and xix transverse trench-like depressions, deeper laterally,
where the prostatic pores are situated on rounded papillw in line with b. Female pores perhaps a pair of whitish dots near middle line on xiv, nearly at the middle of the length of the segment. Ventral surfaces of viis and ix thickened; spermathecal pores in $7 / 8$ and $8 / 9$, in b or between a and b.

Septum $4 / 5$ somewhat thickened, $5 / 6$ thin, $6 / 7$ absent; thence some thickening as far as clitellar region. (Gizzard in front of $7 / 8$, large, globular but not very firm. Large calciferous glands in xv, projecting back into xvi, kidney-shaped on the whole, and each divided into an anterior and posterior lobe. Intestine begins in xvii or xriii. Last heart in xii or xiii. Testes and funnels free in x and x. Seminal vesicles in ix and xii, slightly lobulated. Prostates relatively large, bulging apart the septa of their segments;

Fig. 198. - Octochutus (Octoshatondes) ${ }_{i}$ rashade Steph. ; tıp of pemal seta; $\times 175$.

Fig. 199.--()ctochutus (Octochretoides) prashadi Steph ; tıp of copulatory seta, $\times 375$.
glandular part loosely coiled, rather thick; duct much thinuer, shiny, bent or wavy. Ovisacs may be present in xiv. Spermathecal ampulla variable in shape; duct very stout, not sharply marked off; diverticulum of considerable size, with a thick stalk, may be slightly lobed, and may show a few small seminal chambers on microscopical examination (text-fig. 197). Penial setæ (textfig. 198) 1.5 mm . long, 40μ thick; tip slightly hooked and rather hollowed on its concave side; a large number of closely set rings of fine spines extend nearly half-way along the shaft. Copulatory setæ (text-fig. 199) 0.8 mm . long, 26μ thick; slightly bowed, tip pointed; distal portion of shaft marked by a number of scar-like depressions, semicircular in shape.

Remarks. Related to paliensis, to which it is remarkably similar in many details; the penial and copulatory setæ are, however, very characteristic.

Distribation. Kalyan, near Bombay ; Sakarwari, on the way to Mahableshwar.

15. Octochætus (Octochætoides) surensis Mich.

> 1910. Octochatus surensis, Nichaelsen, Abh. Ver. Hamburg, xix, p. 88, pl. figs. 2L-24.
> 1916. Octochetus surensi (mispr.), Stephenson, Rec. Ind. Mus. xii, p. 338, pl. xxxiii, tig. 31.

Length 75 mm . ; diameter $2-2.5 \mathrm{~mm}$. Segments 113 . Colour grey, with dark brown tinge anteriorly and dorsally. Prostomium epilobous $\frac{3}{3}$, tongue cut off near the front. Setæ fairly large, rather widely paired, especially the lateral; in middle of body $a a: a b: b c: c d=7: 3: 8: 4$, and anteriorly $=6: 3: 6: 4 ; d d=$ about $\frac{4}{7}$ of circumference. Dorsal pores from 13/14 (or 12/13?). Olitellum xiii-xvii $(=5)$, ring-shaped, sete visible. Male field of a square shape with rounded corners, surrounded by a fairly broad but not sharply defined wall, and extending from the setal zone of xvii to 20/21. Prostatic pores just internal to b; seminal grooves almost straight. Female pores paired. Spermathecal pores inconspicuous, on viii and ix, in the setal zone just internal to b. Copulatory cushions two pairs, ill defined, on the hinder parts of viil and ix, between a and c, curving round the spermathecal pores on their outer sides.

Septa 7/8-12/13 slightly thickened. Gizzard very large, in front of $7 / 8$. Calciferous glands in xv, surrounding cesophagus, irregularly constricted. Typhlosole double in its anterior part. Testes and funnels in x and xi , apparently enclosed in testis sacs. Seminal vesicles large, in ix and xii. Prostates with long, fairly thick, irregularly coiled glandular part; duct thin, in a double loop. Strong muscular bands passing outwards from midventral portion of segments xvii and xix. Spermathecal ampulla ovoid or thickly sausage-shaped; duct half as thick and as long as ampulla or shorter ; diverticulum sessile on duct above its middle, irregular in shape, about as long and thick as duct is thick. Penial setæ 1.75 mm . long, 24μ thick, almost straight, but slightly curved at both ends; tip smooth, simply pointed; for a short distance proximal to the tip the shaft bears a number of triangular teeth, fairly large and fairly closely applied to the shaft. Copulatory setæ 1.4 mm . long and 35μ thick, slightly bowed ; tip claw-like and smooth; proximal to tip a large number of closely set transverse rows of hair-like projections, a series of these on each side of the seta, the rows closely placed one above the other ; the concave border of the seta apparently deeply grooved, the groove and the opposite border of the seta free from spines.

Remarks. The above description is taken entirely from that of Michaelsen. My own specimens, from Barkul, differed in a number of points, and since they form possibly a separate variety the characters in which they differ are given below, instead of confusing the above description with particulars which may possibly not belong there.

Length 90 mm .; diameter 3.5 mm . Colour dark purplish brown middorsally, fading off laterally, so that the sides as well as the ventral surface are unpigmented ; clitellum brown; anteriorly the pigmentation extends onto the lateral surfaces. Segments 171 ; vii-x more or less distinctly triannular, xi and xii 4 -annular dorsally. Prostomium epilobous $\frac{3}{4}$, sides of tongue parallel, tongue not cut off behind. Dorsal pores from 12/13. Setal intervals in middle of body $a b=\frac{1}{2} a a=$ rather more than $\frac{1}{2} b c=\frac{8}{y} c d$;

Fig. 200. - Octochuetus (Octochretordes) surensus Mich.; spermatheca of specimen from Barkul.
behind clitellum $=\frac{2}{5} a a=\frac{3}{2}-\frac{2}{3} b c=\frac{2}{3}-\frac{8}{9} c c d$. Clitellum xiii- $\frac{1}{2} x$ xii above $\left(=4 \frac{1}{2}\right)$, but only extends to $\frac{1}{2}$ xvi below $\left(=3 \frac{1}{2}\right)$. Male tield covers xvi-xx ; prostatic pores united across the middle line by broad grooves. No papille in spermathecal region, but the ventral surface of viii and ix is thickened and glandular.

Testes not seen in xi; the fumels of xi smaller than those of x. Testis sacs constituted by a delicate membrane which covers in the whole contents of the segments, dorsal vessel and alimentary canal included. The longitudinal groove in the copulatory setie was not seen; and the transverse rows of hair-hke spines appeared to be in four longitudinal series instead of two. The diverticulum of the spermathece was cauliflower-like and shortly stalked (textfig. 200).

According to these specimens there would seem to be a commencing proandry (disappearance of posterior testes and funvels).

In my paper the ratios of the setal distances are wrongly worked out from my original notes.

Distribution. Sur Lake, and Barkul on the Sur Lake, in Orissa.
16. Octochætus (Octochætoides) thurstoni Mich.

1907. Octochatus thurstoni, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 173, text-fig. 17.
1909. Octochetus thurstoni, Michrelsen, Mem. Ind. Mus. i, p. 215, pl. xiv, fig. 36, text-fig. 23.
1910. Octochætus thurstoni, Michnelsen, Abh. Ver. Hamburg, xix, p. 94.

Length $130-160 \mathrm{~mm}$. ; maximum dameter $5 \frac{1}{2}-6 \mathrm{~mm}$. Segments 198-204. Colour greyish. Prostomium tanylobous (\%), small. Dorsal pores distinct only from 18/19. Setæ moderately large, not very closely paired ventrally, laterally almost separated; $c d=c a . \frac{4}{8} b c, a b=c a . \frac{2}{3} b c, a a=c a .1 \frac{1}{2} b c ; \quad d d=c a . \frac{4}{\frac{2}{2}}$ of circumference. Clitellum complete ventralls, but not so swollen there; xiii-xvii (=5). Male area a little depressed, with a cushion-like elevation between the seminal grooves. Prostatic pores betueen a and b : seminal grooves almost straight. Spermathecal pores on viii and ix, immediately in front of the setal zone, between a and b. Copulatory organs as two to four transverse cushions across the midventral line, on xxiv and preceding segments, extending laterally to b or not quite so far.

Fig. 201.-Octochatus (Octochetoides) thirsitoni Mich.; spermathec.a made transparent by acetic acid, $\times 12$.

Septum $5 / 6$ fairly strong, $6 / 7$ and $7 / 8$ (? and $8 / 9$) missing, thence to $12 / 13$ all very strong. Gizzard large, behind 5/6. Calciferous glands one pair, large, tightly rolled into a spiral, meeting each other dorsally, furrowed and incised, upening into cesophagus in xv (?), but taking up more than one segment. Typhlosole a double ridge. Fumnels large, apparently free. Seminal vesicles in xi and xii, each composed of a few separated sacs. Prostates very long and much colled; duct relatively short, muscular, describing a broad loop. Sperinathecal ampulla spindleshaped; duct short; diverticulum irregularly and thickly pearshaped, narrowed at its attachment but without distinct stalk, almost as thick as ampulla, contaiuing a large number of small
seminal chambers, which project slightly on the surface, giving a mammillated appearance (text-lig. 201). No penial setæ discovered; strong transverse muscular bands in relation with ectal part of male apparatus.

Distribution. Madras.

3. Genus RAMIELLA Steph.

1914. Octochatus (part.), Stephenson, Rec. Ind. Mus. x, p. 347.
 1920. Octochactus (part.), Stephenson, Mem. Ind. Mus. vii, pp. 236, 239.

1921. Ramiella, Stephenson, P.Z. S. 1921, p. 109.
1922. Ramella, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 37.

Setal arrangement lumbricine. All septa present (after their commencement). One cesophageal gizzard in one simple segment. No calciferous glands. Excretory system purely micronephridial, the micronephridia relatively large and few in number, from seven to one pair per segment only. Sexual apparatus purely acanthodriline.

Distribution. Coorg; Mahableshwar in the W. Ghats; S. Rajputana; Saharanpur. Not known outside India.

The genus was instituted by me in 1921 in order to receive three species till then assigned to Octochortus. In the same year Michaelsen added another species, writing the generic name Ramella. I had formed the word from the Indian proper name Ran, as Michaelsen himself formed the generic name Liseniella from the proper name Eisen; it would appear unnecessary to change the original spelling.

The distinguishing features are the absence of calciferous glands, and the fewness and large size of the micronephridia; to these may be added the fact that all the septa are present after their first beginning. While the absence of calciferous glands, and the presence of all the septa, are doubtless primitive characters, the small number of micronephridia may be secondary; in R. bishamburi and heterochceta the number is reduced to one on each side in each segment.

The genus is to be derived from a form similar to Howascolexperhaps from a point on the phyletic tree rather anterior to the evolution of Howascolex. The breaking-up of the nephridial system in Howascolex took place, perhaps, by the separating-off as it were of a number of inicronephridia, leaving still a recognizable meganephridium on each side of each segment; in Ramiella the breaking-up appears to have been complete, resulting in a number of micronephridia ouly.

The distribution chart (Chart IV) shows the four species occupying stations on a slightly curved line which extends from north to south through the western part of the country.

Key to the species of the genus Ramiella.

A single nephridium on each side in each segment. More than one micronephridium on each side of each segment	2. 3.
2. Penial sotex with expanded end ; distal portion (except tip) with teeth	R. heterochata.
Penial setre with bluntly pointed tip; no teeth.	R. bishambari
Penial setre with rings of small teeth	12. puchpuharensis.
Penial setæ smooth	R. pallidus.

1. Ramiella bishambari (Steph.).

> 1914. Octochuetus bishambari, Stephenson, Rec. Ind. Mus. x, p. 347.
> 1921. Ramiella bishambari, Stephenson, P. Z. S. 1921, p. 109.

Length 35 mm . ; diameter 1 mm . Segments 85 . Thin narrow worms, of indefinite grey colour. Prostomium epilobous $\frac{1}{3}-\frac{1}{2}$. Setal intervals behind clitellum $a b=\frac{2}{7} a a=\frac{2}{5} b c=\frac{2}{3} c d$. Clitellum xiv-xvi $(=3)$: body narrower here. Prostatic pores apparently in the site of setæa of xvii and xix; seminal grooves longitudinil in direction; seta b apparently absent on xvis and xix, penial setæ in site of a.

No septa wanting; 7/8-9/11 considerably thickened, 6/7 moderately, $5 / 6$ and $10 / 11$ slightly. Gizıard in vi, small and elongated. (Esophagus segınentally dilated behind vii, the epithelium folded, but no calciferous glands. One nephridium on each side in each segment, not connected with the septa. Testes and funnels free in x and $x i$. Seminal vesicles three pairs, in $x, x i$, and xii, meeting or almost meeting dorsally above the alimentary canal. Prostatic ducts bent into a gentle S-shaped curve. Spermathecæ in segments viii and ix, opening in $7 / 8$ and 8/9; ampulla ovoid, duct longer than ampulla, bent, and stoutish; diverticulum of some size, approximately spherical, given off from base of ampulla. Penial setæ at prostatic pores in bundles of two or more ; each curved to nearly a quarter of a circle; extremely simple, tip bluntly pointed ; length 0.4 mm ., thickness 10μ.

Remarks. The nephridia are of large size, but they are not attached to the septa, and therefore do not correspond to the meganephridia of more primitive forms; if they did, the species would belong to the Acanthodrilinæ (genus Acanthodrilus). The organs must be secondarily enlarged micronephridia, other micronephridia in the segment having disappeared. This lends some weight to the supposition that the larger nephridia sometimes met with in other genera (e. g., Megascolex) are secondarily enlarged micronephridia, and not a remnant of a former meganephric condition.

Distribution. Saharanpur, U.P.

2. Ramiella heterochæta Mich.

1921. Ramelia heterocheta, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 51 , text-figs. 2 e, 5 .

Length ca. 80 mm .; diameter $\frac{3}{4}-1 \frac{1}{2} \mathrm{~mm}$. Segments ca. 160. Colour an even light grey, unpigmented. Prostomium prolobous to slightly proepilobous; a longitudinal middorsal furrow divides segment i. Dorsal pores not plainly recognizable. Setæ paired, the ventral fairly closely, the dorsal widely; in the middle of the body $a a: a b: b c: c d: d d=4: 1: 6: 2: 6$; towards hinder end $l d$ is less, may be equal to or even less than $c d$, and then $a a: a b: b c$: $c d: d l=5: 3: 9: 4-5: 5-4$; dorsal setz enlarged in hinder part of body. Clitellum saddle-shaped, $\frac{1}{2} x i i i-x v i \quad\left(=3 \frac{1}{2}\right)$. Prostatic pores two pairs, on xvii and xix, on fairly large papillo, in line with setæ b; the papillæ of the same side connected by a wall, along which runs the almost straight seminal groove. Male pores not visible (except in sections), on xviii, in the grooves. Female pores in front of and internal to setar a of xiv, in a transversely oval whitish field. Spermathecal pores not usually apparent, two pairs, in $\cdot 7 / 8$ and $8 / 9$, rather below the line c. A pair of large transversely oval eye-like papille in 11/12 outside the line b.

Septum 6/7 very slightly, the subsequent ones as far as 11/12 more strongly thickened, $8 / 9,9 / 10$, and $10 / 11$ most so, but still only moderately. Gizzard in \mathbf{v}. Typhlosole present. Last heart in xii. Nephridia one pair per segment, unconnected with septum, and apparently without funnel ($=$ a large micronephridium). Testes and funnels free, in \mathbf{x} and x. Seminal vesicles in ix and xii, lobed. Prostates confined to xvii and xix, with irregularly twisted glandular portion, and short thin duct. Spermathecie in viii and ix, ampulla elongated, sac-like, broader at the base; duct cylindrical, half as long and a quarter as thick as the ampulla, sharply set off; diverticulum single, small, pear-shaped, scarcely longer than duct, which it enters at ental end of latter. Peuial setre thin, 0.6 mm . long, 10μ thick proximally, 5μ thick distally, bowed ; tip expanded in a plane at right angles to that of curvature of seta, forming a triangle with base terminal and slightly excavated, and angles rounded; distal portion of seta with the exception of flattened tip presents a number of small triangular teeth. Copulatory setæ in spermathecal region perhaps present.

Remarks. The species is distinguished from the others of the genus by the form of the penial sete and of the spermathecal diverticulum, and probably by the eulargement of the dorsal setm of the hind part of the body. It agrees with M. bishambari in having only one pair of large micronephridia per segment.

Distribution. Somavarpatna, Coorg.

3. Ramiella pachpaharensis (Steph.).

1920. Octcchetus pachpaharensis, Stephenson, Mem. Ind. Mus. vii, p. 239, pl. xi, figs. 46, 47.
1921. Ramielln pachpaharensis, Stephenson, P. Z. S. 1921, p. 109.

Length 28 mm . ; diameter 1 mm . Segments 95 . Unpigmented. Prostomium broad, slightly epilobous, tongue not cut off behind. Dorsal pores from 7/8. Setal relations in general $a b=\frac{2}{7} a a=\frac{2}{2} b c$ $=\frac{2}{3} c d$; $d d$, slightly less than half circumference. Clitellum xiii${ }_{3}^{2} x$ vii $\left(=4 \frac{2}{3}\right)$; saddle-shaped except on xiii, or xiii and xiv, where it is complete. Prostatic pores between a and b; seminal grooves straight, longitudinally between the pores. Female pores apparently paired, on the anterior part of xiv. Spermathecal pores in $7 / 8$ and $8 / 9$ (?).

Septum 5/6 somewhat thickened, 6/7 considerably, 7/8-9/10 much thickened, $10 / 11-13 / 14$ somewhat so. Gizzard in vi, barre]shaped, of fair size, but soft and so in some degree vestigial.

Fig. 202.--Ramiella pachpaharensis(Steph.), spermatheca, $d_{i v ., ~ d i v e r t i c u l u m ~(: ") . ~}^{\text {. }}$

Fig. 203.-Ramiella pachpaharensis (Steph.) ; thp of penial seta ; \times ca. 300 .

Intestine begins in xiv. Last heart in xii. Micronephridia as flattened coils; behind genital region three on each side per segment, in front even fewer, perhaps only one on each side in some segments? Testes and funnels free in x and $x i$. Seminal vesicles as rounded masses which may meet dorsally, in xii only. Prostates of fair length, extending beyoud their own segments, bent several times; duct much thinner, almost straight, shining. Ovisacs present in xiv. Spermathecal ampulla very irregular and deeply lobed; duct as long as ampulla, narrow, firm, shining; diverticulum apparently as a saccule attached to ental end of duct, much resembling one of the lobes of the ampulla
(text-fig. 202). Penial setæ (text-fig. 203) bent into $\frac{2}{5}$ of a circle ; length across the bend 0.7 mm ., thickness at middle 12μ, at proximal end 20μ; shaft tapers gently, distal ond slightly recurved, tip somewhat wavy, point fairly sharp ; ornamentation a number of irregular rings of small teeth.
Distribution. Pachpahar, 40 m . S. of Kotah, Rajputana.

4. Ramiella pallida (N゙tcph.).

1920. Octocheretus pallidus, Stephenson, Mem. Ind. Mus. vii, p. 236, pl xı, figs. 41, 42.
1921. Ramiella pallida, Stephenson, P. Z. S. 1921, p. 109.

Length $40-44 \mathrm{~mm}$. ; diameter $2 \cdot 5 \mathrm{~mm}$. Segments 166 ; vi-ix indistinctly triannulate. Unpigmented. Prostomium prolobous or slightly epilobous. Dorsal pores from 10/11. In front of spermathecæ $a b=\frac{1}{3} a a=\frac{1}{2} b c=\frac{3}{3} c d$; behind genital segments $a b$ $=\frac{1}{3} a a=\frac{1}{3} b c=\frac{1}{2} c d ;$ at middle of body $a b=\frac{2}{5} a a=$ nearly $\frac{1}{2} b c=\frac{3}{5} c d ;$

Fig. 204.--Runiella pallcda (Steph.); spermatheca.

Fig. 20)5-Ramıella pallida (Steph.); tıp of pemal seta; $\times 600$.
$d d=$ half of circumference or rather less at middle of body, but ouly $\frac{1}{3}$ at hinder end. Clitellum saddle-shaped, xiii-xvii $(=5)$. Male field a thickening on ventral surface of xvii-xix, which may extend onto xvi and xx, and which laterally reaches beyond the line of b, or in some cases to c. Prostatic pores in b; seminal grooves just outside this line, straight for the most part, curving inwards at their extremities. Female pores paired, on minute papillm a little internal to and in front of the site of setæ a. Spermathecal pores at site of seta a on viii and ix.

Septum $4 / 5$ thin, $5 / 6$ and $6 / 7$ very slightly strengthened, $7 / 8-11 / 12$ all somewhat thickened, $12 / 13$ very slightly so. Gizzard barrel-shaped, in vi; cesophagus strengthened in v also by shining longitudinal muscular strands. Intestine begins in xvi. Last heart in xii. Micronephridia in postclitellar segments of moderately large size, about seven on each side in a transverse
row, increasing in size from the ventralmost to the fifth, the two most dorsal smaller again; this difference in size disappears towards the hinder end; in xi and xii masses of nephridial tubules aggregated to form compact oval bodies, a pair in each segment. Testes and funnels free in \mathbf{x} and xi. Seminal vesicles in ix and xii, those in ix with almost smooth borders, those in xii racemose. Prostates with glandular part as a series of apposed loops; duct very narrow at its beginning, then wider, of some length, first forming a bend, then straight, stout and shining. Ovisacs in xiv. Spermathecal ampulla elongated, narrower towards its blind end and swollen near its base; duct short, dilated; diverticulum single, stalked, rounded, attached to side of duct, not chambered (text-fig. 204). Penial seta (text-fig. ${ }^{205}$) 0.79 mm . long, $7-8 \mu$ thick; shaft slightly bowed, tapering gradually; point fairly sharp, distal end of seta has a wavy outline; no ornamentation.

Remarks. There appears to be the beginning of a double gizzard, such as is found in the genus Eudichogaster.

Distribution. Panchgani and Mahableshwar, in the W. Ghats.

4. Genus EUDICHOGASTER Mich.

> 1896. Benhamia (part.), Beddard, P. Z. S. 1896, p. 209.
> 1898. Dichogaster (part.), Fedarb, P. Z. S. 1898, p. 449.
> 1900. Trigaster (part.), Nichaelsen, Tier. x, p. 330.
> 1902. Eudichogaster, Michaelsen, Mt. Mus. Hamburg, xix, p. 13.
> 1910. Eudichoyaster, Michaelsen, Abh. Ver. Mamburg, xix, p. 92.
> 1921 Eudichogaster, Stephenson, P. Z. S. 1991, p. 103.
> 1921. Eudichoyaster, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 37.

Setal arrangement lumbricine. Two cesophagenl gizzards in two simple segments. Calciferous glands in the region of segments x-xiii, occupying 4,3 , or 2 segments, either as simple dilatations of the resophagus or as paired sacs. Excretory system purely micronephridial. Sexual apparatus from purely acanthodriline to incompletely microscolecine (prostatic pores two pairs on xvii and xix, or one pair on xvii or xviii ; spermathecal pores two pairs on viii and ix, or one pair on viii or in 7/8).

Distribution. The genus is confined to India. It is one of the dominant genera in West and Central India; its range is from a section of the West coast (from Bombay to Baroda) and the Western Ghats in this neighbourhood, across Central India to the region of the Ganges delta in Bengal ; one species comes from Dehra Dun, but this is an isolated station. The West and Central regions are the areas where the genus occurs thickly.

The worms which come under the above description were separated as a distinct genus by Michaelsen in 1902; the previously known species had been originally described as Dichogaster (or the synonym Benhamia), and had been included
by him under Triyaster in the Tierreich volume. The separation of these genera was now made on the basis of the calciferous glands; Triyaster has none, Eudichogaster has them in segments xi and xii (with, it may be, x and xiii in addition), and Dichogaster has them in xiv, $x v$, and $x v i$, or $x v, x v i$, and xvii.

Eudichoy/aster is to be looked on as descended from Ramiella (not from Triyaster, in spite of the small difference between them); see the discussion in Stephenson, 1921 sup.; in this Michaelsen agrees (1921 sup.). The evolution has consisted in the duplication of the gizzard, and the development of calciferous glands in a more anterior situation than that in which they are found in the genus Octocketus.

Key to the species of the geruus Eudichogaster.

1. Une pair of prostates and spermathecic........ 2

Two pairs of prostates and spermathece 5.
2. Spermathecal diverticulum cauliflower-like, consisting of a group, or two groups, of seminal chambers
E. barodensis.

Spernathecal diverticulum single and simple .. E. barkudensis:
No spermathecal diverticulum 3 .
3. Penial setic absent ; calciferousglands in xi, xii, aud xiii
E. parvus.

Penial setr present; calciferous glands in x, x, and xii
4.
4. Conjoined testis sac and seminal vesicle in x; penial setie wavy, pointed, no ornamentation.
Seminal vesicles in ix ; penial seto straight, tip flattened
E. chittagongensis.
F. pusillus.
5. Seminal vesicles in ix and xii (or ix, x, and xii).
6.

Seminal vesicles in xi and xii.
E. bengalensis.

Seminal vesicles in xii only 9 .
0. Penial sete at prostatic pores

No penial setic at prostatic pores; copulatory setex in spermathecal region
E. falcifer.
7. Copulatory sete wrthout cruanentation, simple.
7. Copulatory sete wrthout cruanmentation, simple.
8. Genital papillse on xvi and $x x$
7.

No genital papille on xvi and $x x$; ill-marked crescentic swellings, paired, concave medialwaids, on xvii-xix
E. prashadi.
9. Penial sete present, capillary in form

No penial setre
E. trichochatus.
10.
10. Median papillæ on $9 / 10$ and $10 / 11$; lateral sete not paired; $a b$ less than half $c d$
E. indicus.

No median papilire on $9 / 10$ and $10 / 11$; lateral setie paired; ab greater than half cd
11.
11. Small paired papille in line with prostatic pores, posteriorly on xvii and anteriorly on xix

EL. mullani.
8.
E. ashworthi.
E. poonensis.

No papillæ as for poonensis.
8.

The five species barodensis, chittagongensis, parvus, barkudensis, and pusillus show the microscolecine reduction of the posterior
male organs, and an accompanying reduction of the spermathece to one pair. In barodensis there is apparently no sign of a reduction in the anterior male organs; in chittagongensis these too lave been reduced, and the species is proandric; in parvus nothing is said as to the testes and funnels, but the seminal vesicles, and therefore quite probably the testes and funnels also, are reduced to one pair; in pusillus there are two pairs of testes and fumels, but the seminal vesicles appear to have undergone reduction (only a single one, in ix, was found in the unique specimen); in barkudensis no seminal vesicles were found, and a proandric reduction may be taking place. Though according to their structure these five species would seem to be closely related, this is not necessarily so. The microscolecine reduction is a change which has taken place frequently and independently-it occurs in nearly all the subfamilies of Megascolecidre, and the species of the present genus which show it are widely distributed; indeed, three of them represent the extreme limits of the genus on the West, East, and North respectively (Baroda, Chittagong, Dehra Dun). It is not unlikely, therefore, that these species have originated independently in various parts of the area covered by the genus.
E. ashworthi and prashucli are closely related, and with these are perhaps to be associated indicus and poonensis.
E. barodensis would appear to be distinctly anomalous in having the conjoined pores of the male deferent ducts and prostates on xviii instead of on xvii ; the prostatic pores have been attracted backwards instead of, as usual, the pores of the male ducts forwards.

The nephridia show a number of interesting conditions in the species in which they have been carefully examined. Towards the hinder end of the body in E. cshivorthi the innermost of the transverse series of micronephridia enlarges so as to resemble a meganephridium; the number of micronephridia in each segment seems to be small-in var. kinneari it is about six on earlh side. In prashadi much the same occurs; there are about five organs on each side, regularly arranged in longitudinal lines, till towards the hinder end, where the imnermost enlarges and the others become smaller, less regular, and more numerous. In burodensis the three dorsally situated on each side are larger than the rest, while at the hinder end the iunermost (most ventral) also enlarges. In bengalensis there are two pairs of large nephridia per segment, in addition to a number of small micronephridia; towards the hinder end the inner of the two larger nephridia becomes more conspicuous than the other. In chittagongensis there are three or four nephridia per segment on each side, arranged in longitudinal rows, the outer the longest; near the hinder end the ventralmost increases in size and becomes more conspicuous. Much the same is the case in barkudensis. In trichochotus there are four longitudinal rows on each side, but here the innermost series is the smallest. In parvus, though the nephridia are " diffuse," they are
of considerable size. In mullani there are 7-9 on each side of a segment, with no very great differences in size.
Thus the number of micronephridia per segment is often small, as in Ramiella.

1. Eudichogaster ashworthi Mich.

1902. Eudichuyaster ashworthi, Michaelsen, Mt. Mus. Hamburg, xix, p. 14.
1903. Eudichoyaster ashuorthi, Michaelsen, Abh. Ver. Hamburg. xis, p. 92.
1904. Luurchuy/uster ashworthi, Stephenson, Mem. Jud. Mus. vii, p. 446 , pl. xi, figs. 50, 51.

Length $45-190 \mathrm{~mm}$.; maximum diameter 7 mm . Segments ca. 200. Unpıgmented, a dirty yellowish grey. Prostomium prolobous. Anterior segments from iv or v divided, the anterior aunulus, which bears the setæ, being longer than the posterior;

Fig. 206.-Eudzchogastcr ashworthc Mich.: tips of copulatory setw from nerghbourhood of prostatic apertures; a, from Wah1; b, from l'oona; c, from Saugor ; d, From Jubbulpore.
from about vii onwards further secondary annulations also; in the middle and hinder parts of the body the segments more or less plainly triannulate. First dorsal pore in 11/12 or 12/13. Setæ rather small, all ventral; $a b=\frac{1}{4} a a=\frac{1}{2} b c=c a . \frac{1}{7} c d ; d d=\frac{8}{13}$ of circumference. Clitellum ring-shaped, but ventrally less developed than dorsally; $\frac{1}{2} x i i i-x v i\left(=3 \frac{1}{2}\right)$. The rectangular male field comprises xvii-xix, extends outwards beyond the line of b, and is somewhat raised. Prostatic pores on xvii and xix, on small papillæ in b; the pores connected by E-shaped seminal grooves, with a double convexity outwards. Large roundish raised papillæ on xvi and $x x$, outside l, not absolutely constant; sometimes less obvious flatter papillm on xvii and xix immediately medial to
the porophores, or these may be single and median; on xiii-xvi the ventral setæ placed on narrow transverse setal papillæ. Area of female pore or pores fairly large, median, transversely oval, situated anteriorly on xiv. Spermathecal pores two pairs, on

- papillæ in $a b$ ou the anterior annulus of viii and ix. Sometimes a pair of papillæ outside b posteriorly on viii, and another pair similarly on ix ; sometimes a midventral papilla posteriorly on viii and a median papilla on x.
Septa $5 / 6-7 / 8$ very strong, $8 / 9-10 / 11$ successi ely less strong. Two almost spherical gizzards in v and vi. T'wo pairs of retortshaped calciferous glands, in xi and xii. Intestine begins in xiv. Last heart in xii. A pair of larger nephridia in addition to the micronephridia, near the nerve cord in each segment of the hinder part. Two pairs of funnels, the anterior rather smaller, in x and xi. Two pairs of seminal vesicles, in xi and xii, the anterior rather smaller; or three pairs, in ix, x and $x i i$; or one pair, in xii.

Fig. 207.-Eudechogaster ashworthi Mich. ; tıp of copulatory seta from spermathecal region.

Prostates with very long thin convoluted glandular portion; duct thinner, fairly short, bent. Spermathecal ampulla long, sac-like, flattened, irregularly ringed; duct narrow and very short ; diverticulum enters ental end of duct, and consists of a number of chambers, being almost grape-like, with a short duct; diverticulum bound down to ectal part of ampulla and to duct (cf. text-fig. 209). Some setæ in neighbourhood of male field (but not at prostatic pores) may be slightly modified by fine sculpturings (text-fig. 206). Copulatory setæ (text-fig. 20i) $0.4-0.5 \mathrm{~mm}$. long, straight, somewhat thinner distally, pointed, with large transverse scars which have a rather projecting proximal border.

Distribution. Nagpur, Saugor, Bina, Teor near Jubbulpore, Central Provinces ; Choral near Indore, Ceutral India; Partabgarh, S. Rajputana.
a. var. kinneari (Steph.).
1920. Eudichognster linneari, Stephenson, Mem. Ind. Mus. vii, p. 255, pl. xi, figs. 58, 59.

Segments 120. Length 80 mm . Colour buff; no difference between dorsal and ventral surfaces. First segment small, divided

Fig. 208.-Hudichogaster ashworthe Mich. var. Kenneuri; clitellum and male gental regon; semmal grooves not seen; the grooves shown are Irregular fissures in the floor of the H -shaped depression.
by a median groove on dorsal surface. The interval $a b=\frac{3}{4} c r d$. Clitellum well marked, xiii-xvi $(=4)$; deficient ventrally in-a

Fig. 209.-Eudichogaster ashworthi Mich. var. kinneari; spermatheca.
\mathbf{V}-shaped interval on xiii. Male field (text-fig. 208) rectangular, on xvii-xix; margins much thickened; from the anterior and posterior margins backward and forward projections respectively, so
that there is a central \mathbf{H}-shaped depression; floor of depression deeply fissured. Prostatic pores in the four angles of the \mathbf{H}, in b or $a b$; seminal grooves as in type form. In addition to the paired papillo on xvi and xx there may be median papillo in these segments. In the spermathecal region the paired papillæ on viii and ix (not those on which the spermatbecal pores are situated) are further forward, and touch the spermathecal papillm on the outer side of the latter, including the lateral setw.

Septum 4/5 thin, $5 / 6-11 / 12$ moderately strengthened. Micronephridia behind \mathbf{x} arranged in transverse rows, about six on each side of each segment; towards the hinder end the innermost on each side becomes much thickened and more opaque, and hence much more conspicuous than the rest. Copulatory setw 0.730.87 mm . loug, 25μ thick; the scars apparently more semicircular and fewer than in the type form; the setæ are exactly like those of E. prashadi.

Distribution. Nasik (ca. 80 m . N.E. of Bombay).

2. Eudichogaster barkudensis Steph.

1921. Eudichogaster barrkudensis, Stephenson, Rec. Ind. Mus. xxii, p. 765, pl. xxviii, figs. 12, 13.

Length 57 mm .; maximum diameter 1.75 mm . Segments 130 . Unpigmented. Prostomium proepilobous. Dorsal pores from $11 / 12$. Setæ paired; in middle of body $a b=\frac{1}{2} a a$ or nearly

Fig. 210.-Eudichogaster barkudensis Steph. ; spermatheca.
so $=\frac{2}{3} b c=\frac{3}{3} c d$; further back be and $c d$ may be almost equal; behind clitellum $a b=\frac{2}{3} a a=\frac{1}{2}-\frac{4}{9} b c ; d d=$ half of circumference (or $\frac{4}{7}$ in anterior part of body). Clitellum xiii- $\frac{1}{2}$ xvii $\left(=4 \frac{1}{2}\right.$). Prostatic pores one pair, on xvii, on round papille between a and b; the pores slit-like, oblique, diverging behind. Female pores minute, in a circular white patch anteriorly on xiv. Spermathecal apertures one pair, as very minute white points on viii, just in front of setæ a.

Septum $4 / 5$ thin, $5 / 6$ extremely so, $6 / 7$ and $7 / 8$ also very thin, $8 / 8$ thin, $9 / 10$ and $10 / 11$ slightly strengthened, $11 / 12-13 / 14$ thin
but slightly thicker than those which follow. Gizzards in \mathbf{v} and vi. Calciferous glands in x, xi, and xii, diminishing in size backwards. Last heart in xii. Nephridia of moderate size, behind clitellar region forming a transverse row of four on each side, those towards the ventral end of the row smaller and closer together; towards the hinder end of the body the innermost of each row enlarges, and there are here three on each side-a long thin loop between d and the middorsal line, a smaller organ in c, and the largest and thickest extending from a outwards to between b and c. Testes and funuels free in x and xi (testes not actually identified in x, but funnels in x larger than those in xi). No seminal vesicles. Prostates one pair, in xvii, transversely disposed; duct thin, transverse, equal in length to the glandular portion. Spermathece (text-fig. 210) one pair, each a narrow elongated cylindrical tube, with small sac-like diverticulum towards ectal end. Penial setie (text-fig. 211) 0.53 mm . long, very slender, bowed

Fig. 211.-Furlichncaster barkiudensis Steph.; penial sete; a, general form, $\times 125 ; b$, distal end more highly magnified, $\times 500$.
towards distal end : shaft somewhat sinuous in outline in distal part ; tip ends in a small flattened expansion of rounded outline. No copulatory setæ.

Distribution. Barkuda Island, Chilka Lake, E. coast.

3. Eudichogaster barodensis Steph.

1914. Eudichoguster barordensis, Stephenson, Rec. Ind. Mus. x, p. 358 , pl. xxxvi, figs. 13, 14.

Length 74-100 mm.; diameter $31-4 \mathrm{~mm}$. Segments $163-167$. Colour pale yellowish brown, uniform all over, except clitellum which is darker. Prostomium prolobous, segment i partly divided by a middorsal groove. Segment iv biannulate, v triannulate, vi-xi 4 -annulate, xii triannulate with other secondary rings in
addition; behind clitellum triannulate. Dorsal pores from 12/13. Setæ closely paired; $a b=\frac{1}{3}-\frac{1}{4} a a=\frac{2}{3} b c=c d ; d d=\frac{4}{7}$ of circumference. Clitellum xiii- $\frac{1}{3} \times 1$ iii $\left(=5 \frac{1}{3}\right)$, or slightly shorter at each end. Male genital field with four flat pads; one on 17/18, transversely elongated, from between a and b to the corresponding point on the other side; another similarly placed on 18/19; the two remaining form a pair on xviii, small, including setæe $a b$ and extending somewhat beyond them inwards and outwards; thus the ventral part of xviii is enclosed by four cushions. Prostatic pores not visible externally; from internal dissection duct ends on xviii, in $a b$, nearly in b; setæ of xvii and xix present ; setæa a of xviii absent. Female pore midventral, indicated by a small whitish area in front of setal zone of xiv. An anterior genital area with a transversely elongated pad (often not well marked) in $7 / 8$ extending outwards beyond b, including the hinder annulus of vii and the anterior one of viii; spermathecal pores probably represented by a pair of minute dots on the pad, in line with b; small darkish spots in a transverse line on the middle part of the pads (as also on the anterior of the four pads in the male area).

Septa $5 / 6$ (the first) to $10 / 11$ moderately to considerably thickened. Gizzards in \mathbf{v} and vi, large, subglobular. Calciferous glands two pars, in xi and xii, subglobular and set off from the gut. Intestine begins in xv. Last hearts in xiii. Micronephridia in regular transverse lines in all postclitellar segments, the three dorsal larger than the rest on each side; at hinder end the ventralmost has become much larger and is equal in size to any of the series. Testes and funnels free in x and xi. Semmal vesicles large and lobed in ix and xii ; sometimes rudimentary vesicles in x also. Prostates a single pair in xviii-xix, much coiled; duct gently looped once or twice, ending in xviii; the two vasa deferentia of each side pierce the body-wall still ununited, close to and on the anterior side of the ending of the prostatic duct. Spermathecæ one pair, the ampulla somen hat conical with the base towards the surface; duct narrow and shining, in a gentle S-shaped curve, two-thirds as long as ampulla; diverticulum cauliflower-like, bound down to duct and base of ampulla, or the seminal chambers may be in two groups instead of one. No penial or copulatory setæ.

Distribution. Baroda.

4. Eudichogaster bengalensis Mich.

1910. Eudichogaster bengalensis, Michuelsen, Abh. Ver. Hamburg, xix, p. 96, pl. figs. $27,28$.
1911. Eudichogaster bengalensis, Stephenson, Rec. Ind. Mus. xii, p. 344.
1912. Eudichoyaster bengalensis, Stephenson, Mem. Ind. Mus. vii, p. 248.

Length 40-54 mm.; diameter 2-21 mm . Segments $94-124$. Colour light grey, unpigmented., Prostomium tanylobous, borders
of tongue parallel ; or proepilobous, with a pair of shallow grooves dorsally on i which do not reach $1 / 2$. First dorsal pore in 10/11 or $11 / 12$. Setæ fairly widely paired, especially the lateral; $a c t: a b: b c: c d=15: 6: 12: 8$; $d d=\frac{1}{3}$ of circumference in middle and hinder parts of body $=\frac{3}{8}$ of circumference in anterior part. Clitellum ring-shaped, xiv- $\frac{1}{2} x^{1 i}\left(=3 \frac{1}{2}\right)$; ventrally does not include any of xvii. Prostatic pores on xvii and xix, immediately internal to b; seminal grooves straight, except that they are bent inwards at both ends. Spermathecal pores at the site of the (missing) setæ u of viii and ix, surrounded by small somewhat darker areas. Occasionally three pairs of papıllæ, oval, in line with $a b$, on viii, ix , and x .

Septum 5/6 thin, 6/7-11/12 strengthened, especially $7 / 8-10 / 11$. Gizzards large, in v and vi. Calciferous glands in x-xii1, as bulgings of cesophagus with low transverse lamella on the ventral wall. Last heart in xii. Micronephridia more numerous towards hinder end; in addition, two pairs of larger nephridia per segment from genital region onwards; towards the hinder end the inner of the two becomes more conspicuous. Two pairs of testes and funnels, in x and xi. Two pairs of grape-like seminal vesicles in $x i$ and xii. Prostates with thick and long glandular part pressed together and flattened; duct thinner, shorter though still relatively long, with a few small undulations. Spermathecal ampulla almost spherical; duct as long as ampulla, scarcely half as thick at its ental end, thinner ectally; diverticulum at ental end of duct, knob-like, without stalk, enclosing a few irregular seminal chambers; or there may be two diverticula, each perhaps the equivalent of one of the seminal chambers. Penial setæ $0.7-1.3 \mathrm{~mm}$. long, gently curved (more strongly at the distal end) ; tip claw-shaped or simple and blunt ; proximal to tip shaft clothed with numerous fine spines which may or may not be longer nearer the tip.

Remarlis. The specimens that 1 examined seem to differ from Michaelsen's originals in the spermathece and penial setæ; possibly also in the nephridia, though Michaelsen's specimens were badly preserved and hence the nephridial characters scarcely determinable.

Distribution. Rajmahal, and Tribeni near Calcutta, in Bengal; near Cuttack, in Orissa; Marble Rocks near Jubbulpore, in the Central Provinces.

5. Eudichogaster chittagongensis Steph.

1917. Eudichagaster chittagonyensis, Stephenson, Rec. Ind. Mus. xiii, p. 411, pl. xviii, figs. 31-33.
Length $30 \mathrm{~mm} . ;$ maximum diameter 2 mm . Segments ca 121. Colour an indefinite grey. Prostomium triangular, epilobous $\frac{1}{\mathbf{2}}$. Dorsal pores from behind clitellum. $A b=\frac{1}{3} a a=\frac{2}{5} b c=\frac{2}{3} c d, d$ bring below the lateral line ; towards hinder end setæ less closely paired, $a b=\frac{1}{2} a a=\frac{2}{3} b c=\frac{2}{3} c d, d$ being about the lateral line. Clitellum $\frac{1}{2} \times \operatorname{iii}-\frac{1}{2} \times v i i(=4)$; smooth, constricted. Posterior part of xvii,
behind clitellum, is depressed; prostatic pores on xvii as short oblique slits between a and b. Female pores on xiv, just in front of seta a on each side. Spermathecal pores on viii at site of ventral setæ (?).

Septa 4/5-7/8 thin, 8/9-12/13 slightly strengthened. Gizzards large, in v and vi. Calciferous glands form somall white swellings in x, xi, and xii. Last heart in xii. Micronephridia as looped tubes, behind prostatic region in three or four longitudinal rows, the dorsal loop the most elongated; behind middle of body three rows; near hinder end the ventralmost increases in size and becomes more conspicuous. A pair of conjoined testis sacs and seminal vesicles in x , large, opaque and white, attached to $10 / 11$, meeting above alimentary canal. Prostates a single pair, very

Fig. 21:2.-Fudichogaster chattagonyensis Steph.; two spermathecx ; a, as seen in dissection; b, a second, seen by transparency under the low power.

Fig.213.-Eudichogaster chittagongensis Steph.; outline of penial sete.
small, in xvii, placed transversely; duct thin, about as long as glandular portion. Relatively large ovisacs in xiv. Spermatheca (text-fig. 212) one pair, each a twisted tube without distinction of ampulla and duct. Penial setæ (text-fig. 213) 0.58 mm . long, ca. 3.5μ thick; rather whip-like, slender and rather wavy, without ornamentation.

Distribution. Rangamati, Chittagong Hill Tracts, Bengal.

6. Eudichogaster falcifer Steph.

1920. Eudichogaster falcifer, Stephenson, Mem. Ind. Mus. vii, p. 252, pl. xi, fig. 55.

Length 40 mm .; diameter 2 mm . Segmehts 128 . Culour a noudescript yellowish grey, no difference between the dorsal and ventral surfaces. Prostomiunn proepilohous. Dorsal pores from $12 / 13$. In middle of body $a b$ rather greater than $\frac{1}{2} b c$, rather less than $\frac{1}{2} a a$, and nearly equal to $c l$; behind genital region $a b$ is
about equal to $\frac{1}{2} a a$ and $\frac{1}{2} b c$; in front of genital region $a b=\frac{3}{5} a a$ $=\frac{8}{5} b c=\frac{3}{4} c d$; $d d=c a$. $\frac{3}{5}$ of circumference. Clitellum indistinguishable. A slight whitening and thickening of ventral surface of xvii-xix, better marked laterally where there are definite ridges; these turu in at their ends so as to enclose the centre of the area as within brackets. Prostatic pores apparently in the position of setæ a of xvii and xix ; seminal grooves crescentic, convex outwards. Female pores? Spermathecal pores?
Septa $6 / 7$ and $7 / 8$ thin, $8 / 9-10 / 11$ slightly thickened. Large gizzards in vi and vii. Calciferous glands three pairs, in x, xi, and xii, roundly ovoid. Intestine begins in xv. Last heart in xii.

Fig. 214.--Euclechogaster fulcifer Steph.; distal end of penial seta ; \times ca. 700 .

Funnels free in x and xi . Seminal vesicles in 1 x and xii, somewhat lobulated and rather granular-looking. Prostates? Spermathece two pairs, the ampulla a small ovoid sac narrowing to become the duct, which is half as long and half as wide as the ampulla; diverticulum simple, tinger-shaped, half as long as ampulla, arising from junction of ampulla and duct. Penial sete 0.3 mm . long. 8-9 μ thick; distal portion gently curved in a sickle-shape, tip slightly bent in the opposite direction and bluntly pointed; towards the tip a number of indentations in the margin, which, however, do not form spines standing off from the shaft.

[^4]
7. Eudichogaster indicus (Bedd.).

1896. Benhamia indica, Beddard, P. Z. S. 1896, p. 209, text-fig. 3.
1897. Trigaster indica, Michaelsen, Tier. x, p. 333.

Length $75-100 \mathrm{~mm}$.; diameter ca. 4 mm . Prostomium large, no dorsal process. Dorsal pores present. Setæ ab closely paired; $c d=2,2 c t$, not paired; all setæ ventral; setæ shed in xvii, xviii, and xix at maturity. Clitellum xiii-xvi $(=4)$. Genital papilla present in spermathecal region ; a pair of large papillæ on ix, which include the setre (apparently both dorsal and ventral bundles); a single median papilla on $9 / 10$, and another on $10 / 11$; on each or these latter a row of pores "which appear to correspond to glands like the capsulogenous glands of Perichata."

First septum is $4 / 5 ; 5 / 6-7 / 8$ moderately thickened, also 8/9$11 / 12$ to some extent. Gizzards stout, in v and vi. Calciferous glands in xi and xii. Intestine begins in xvi. Last heart in xii. Nephridia of the diffuse type. Testes in xi (? immature); funnels in x and $x i$, those in x smaller. Neminal vesicles a single pair, in xii. Prostates very long and coiled. Spermatheca two pairs, in viii and ix; diverticulum near the extermal aperture, inconspicuous, apparently trifid or quadrifid. No penial setra. Copulatory setæ of ix on papille, rather longer than the ordinary setæ, less curved, distal extremity ornamented with elegantly disposed semicircular ridges.

Remarks. The details of the male field can only be gathered uncertainly from the figure. There appears to be a rectangular male field, whitish, covering xvii-xix, with a transversely oval depression across the middle, i.e., across segment xvii ; the prostatic pores in a on xvii and xix, each pair connected across the middle line by a transverse groove.

Distribution. Thana, near Bombay.
-

8. Eudichogaster mullani Steph.

192:. Eudichoguster mullani, Stephenson, Rec. Ind. Mus. xxi,
p. 438, text-fig. 4 .
Length 134 mm . ; diameter 6 mm . Segments 200. Colour an equable light grey. Anterior end rather bulbous; secondary annulation in anterior segments from iv to clitellum. Prostomium small, prolobous; a median dorsal groove divides segment i throughout its length. Dorsal pores from 12/13 (perhaps a small or rudimentary pore in 11/12). Setæ not visible in ii-iv, and only a few in v and $v i$; in middle of body $a b=\frac{2}{7} c a=\frac{2}{5} b c=\frac{2}{3} c d$, and $d d=$ ca. $\frac{4}{7}$ circumference; behind the genital region $a b=\frac{4}{} a c$ $=\frac{1}{3} b c=\frac{4}{3} c c l$, and $d d=\frac{3}{3}$ circumference; ratios in anterior segments about the same as the last. Clitellum $\frac{1}{2} x i i i-\frac{1}{2} x$ xii $(=4)$? Segments xtii-xix depressed midventrally, with an irregular raised rough patch in the middle of the depression. Prostatic pores apparently on four small papillæ at the angles of the
depression, in line with b, slightly in front of the setal zone of xvii and behind that of xix. Two unpaired midventral small papille, posteriorly on xvii and xix. Spermathecal pores in front of the setal zones of viii and ix, between b and c but nearer to b. A transversely elongated roughened slightly elevated patch, including both pairs of setr, but on the whole rather behind the middle of segment viii.

Septa 5/6-10/11 moderately strong, $8 / 9$ and $9 / 10$ the thickest : 11/12 also somewhat thickened. Gizzards in v and vi, the posterior of the two rather smaller. Calciferous glands in xi and xil, kidney-shaped, well set off, attached by one edge to the cesophagus. Last heart in xii. Micronephridia behind genital region in a transverse row in each segment, about nine on each side, no marked difference in size, but the inner of the series rather smaller ; towards hinder end about seven on each side, the innermost a little larger than the rest. Thestes and funnels free in x and xi. Seminal vesicles in ix, x, and xii, all small, those in x smallest of all, and may be wanting on ons side. Prostates small, in xvii and xix, the glandular part in a few loose loops: duct thin, shinng, of same diameter as glandular part. Spermathece in viii and ix; ampulla small, ovoid; duct short, relatively wide; diverticulum small, wart-like, on side of duct. Copulatory setæ in site of ventral bundles of viii, 0.7 mm . or more in length, 16μ thick in the middle; distal half curved through a guarter of a circle, or bent or twisted more irregularly; tip ends in a blunt point ; no ornamentation.

Distrıbution. Bombay.

9. Eudichogaster parvus (Fedarb).

 1898. Dichoguster parvus, Fedarb, P. Z. S. 1898, p. 499. 1900. Trigaster parva, Nichaelsen, Tier. x, p. 334.Length 40 mm .; diameter ${ }^{2} \mathrm{~mm}$. Segments 132. Dorsal spores from 11/12. Ventral setæ paired, lateral distant (as far apart as $b c) ; \quad l c=2 a b=c(l$. Clitellum xiii-xvii $(=5)$, saddleshaped on xvii only. Prostatic pores one pair, on xvii, on illdefined wrinkled papillx, which approach each other anteriorly; pores also obliquely placed on the papillæ. Female pores on a kidney-shaped area. Spermathecal pores inconspicuous, on viii, just in front of and between the lines of setæ a and b.

Gizzards in \mathbf{v} and vi, the anterior rather more globular. Calciferous glands small, in xi, xii, and xiii, the anterior pair the largest. Nephridia diffuse, but of considerable size. Semmal vesicles in xi, tongue-shaped. Prostates one pair, zigzag; duct about as thick as glandular portion. Spermathece one pair, in viii, tubular, slightly bulbous at the inner end; no diverticulum. No penial setæ.

Distribution. Dehra Dun, U.P.

10. Eudichogaster poonensis (Fedarb).

1898. Benhamia poonensis, Fedarb, J. Bombay Soc. xi, p. 434, pl. i, fig. 10, pl. ii, tigs. 3, 4, 9 .
1899. T'rigaster poonensis, Mhchaelsen, 'lier. x, p. 3:3:3.

Length 134 mm .; diameter 3 mm . Segments 157 . Sete closely paired; bc rather less than $a a, c l=1 \frac{1}{3} a b ; d d$ greater than the half circumference. Clitellum not well marked, appears to end at xvi dorsally, but continued to $x x$ ventrally (?). Prostatic pores on xvii and xix, in ab. Small papille, in lme with the male pores, at the posterior edge of xvii and anterior edge of xix ; ventral setro of $x x$ on a papilla. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$.

Gizzards in v and vi, subglobular, the anterur larger. Calciferous glands globular, in xi and xii. Last hearts in xii. Intestine begins in xiv. Seminal vesicles in xii, bent and tongue-shaped. Prostates with very twisted glandular part, almowt forming a knot, pigmented; duct long, straight, of same diameter as glaudular part. Spermatheca two pars, in viii and ix ; ampulla oval, faintly annulated; duct of same length as anpulta, relatively very thin, sinuous near its ectal end; diverticulum from junction of ampulla and duct, with numerous projecting seminal chambers. No penial setæ. Copulatory setæ 3-4 times as long as ordinary setw, shatt almost straight, the end notched, and with a small number of relatively stout spines.

Remarks. Some details in the above are not mentioned in the original text, and are taken from the figures.

Distributio,. Poona.

11. Eudichogaster prashadi Steph.

1920. Eudichoy,uster prashadi, Stephenson, Mem. Iud. Mus. vii, p. 250, pl. xi, fig. 54.

Length 35-6. mm . ; diameter $3-4 \cdot 5 \mathrm{~mm}$. Segments $140-168$. Colour yellowish brown, with only a slight difference between dorsal and ventral surfaces. Prostomum prolobons. Dorsal pores from 11/12 or 12/13. In general $a b=\frac{1}{5}-\frac{1}{3} a u=\frac{2}{\partial} b c=\frac{3}{4} c d$; in front of the male apertures bc becomes rather smaller and $c d$ increasc ${ }^{2}$; $d l=c a . \frac{2}{3}$ circumference. Chitellum absent (?). On xvii and xix a pair of ill-defined papillo or whitish thickenings of the body-wall, transverse in direction, with their centres near b; on xviii a similar thickening which unites the outer ends of those on xvii and xix, thus making a crescentic swelling on each side with its concavity inwards (text-fig. 215). Prostatic pores in or just internal to the line b; seminal grooves slightly bent inwards at the middle of their length. Female pore or pores perhaps within a minute white spot anteriorly on xiv. Small transversely elongated white cushions on viii and $1 x$, in the position of the ventral setal bundles; from internal dissection the spermathecal pores appear to be between the sites of setæ a and b on these segments.

Septum 4/5 thin, 5/6-9/10 moderately strengthened, 10/11, slightly so, $11 / 12$ still less so. Gizzards in v and vi, large, rounded and firm. Calciferous glands shortly stalked, in xi and xii. Intestine begins in xr. Last heart in xii. Nephridia in five longitudinal rows on each side of the body; towards the hinder end the innermost on each side increases in size, while the others become smaller and more numerous, losing their regularity of arrangement. Testes and funnels free in x and xi. Seminal vesicles in ix and xii, or perhaps sometimes in xii only. Prostates two pairs of small thin convoluted tubes; ducts of the same diameter as the glandular portion, a little more shiny in appearance. Spermathece two pairs, in viii and ix; ampulla an elongated ovoid sac; duct as long as ampulla; diverticulum single, ovoid, apparently not chambered, attached by a short thick stalk to base of ampulla, bound down to duct and base of ampulla by connective

Fig. 215.--Eudıchogaster prashadi Steph.; male genital area.

Fig. 216.--Euduchogaster prashadi Steph. ; distal ond of oopulatory seta; $\times 500$.
tissue. No penial seta. Copulatory setr (text-fig. 216) like those of E. ashworthi; 0.47 mm . long, 16μ thick, almost straight, slightly bowed towards distal end; tip pointed and rather clawshaped; distal fifth of shaft marked by a number of large hollows scooped out of the shaft with sharply defined crescentic proximal border.

Remarks. In this as well as in several other species the period of full sexual maturity must be limited to a relatively short period, if this is to be measured by the presence of the clitellum.

This species has much in common with E. inclicus.
Distribution. Poona and Surat in W. India; Palia, Indore, and Mhow in Central India; Khandwa, Saugor, and near Jubbulpore in the Central Provinces.

12. Eudichogaster pusillus Steph.

1920. Eudichogaster pusillus, Stephenson, Mem. Ind. Mus. vii, p. 253 , pl. xi, figs. $56,57$.

Length 28 mm .; maximum diameter $1 \frac{1}{2} \mathrm{~mm}$. Segments ca. 110 . Colour greyish. Prostomium procpilobous. Dorsal pores not visible in front of clitellum. In middle of body $a b=\frac{1}{2} a a=\frac{2}{3} b c$ $=\frac{3}{4} \mathrm{~cd}$ or nearly; the same immediately behind the clitellum; in front of the clitellum $b c$ and $c d$ are equal, $a b=\frac{2}{3} c d$. Clitellum swollen, well defined, including xiii-xvi ventrally, and xvii also laterally and dorsally ($=4$ or 5). Prostatic pores a single pair on xvii, as transverse slits which take up the interval ab. Female pores probably in a whitish area, slightly hollowed, anteriorly on xiv. Spermathecal pores?

Septa 7/8-13/14 slightly strengthened. Gizzards relatively very large, probably in v and vi (possibly in vi and vii). Calciferous glands three pairs, in x, xi, and xii, not sharply set off;

Fig. 217.-Endichogaster pusillus Steph. ; spermatheca.

Fig. 218.--Eudichogaster pusillus Steph. ; tip of peninl seta.
those in x the largest, those in xi the smallest. Intestine begins in xy. Last hearts in xii. Testes and funnels free (probably) in x and xi. Seminal vesicles in ix only. Prostates one pair, in xvii, short tubes bent once or twice; duct opaque white, not shining, almost as long as the gland, very fine, but widens gradually towards ectal end. Orisacs present in xiv. Spermathece (textfig. 217) a single pair, in vii, appearing to open in or near 7/8; each is a long narrow twisted tube, somewhat wider at its ectal end, where a short muscular duct about one-third as wide as the. ampulla leads to the exterior; no diverticulum; the whole organ looks at frst sight remarkably like a nephridium. Penial setæ (text-fig. 218). 0.56 mm . long, and only 4μ thick; shaft almost straight, tapering very gently towards the tip, which is flattened and slightly expanded.

Remarlis. The species was described from a single specimen. There was only a single seminal vesicle, on the right side. Distribution. Saugor, C.P. .

13. Eudichogaster trichochætus Steph.

1920. Eudichoyaster trichocheetus, Stephenson, Mem. Ind. Mus. vii, p. 249, pl. xi, figs. 52, 53.

Length $32-45 \mathrm{~mm}$. ; dianeter $1 \cdot 75-2.25 \mathrm{~mm}$. Segments $103-$ 128. Colour a yellowish grey, with no difference between dorsal and ventral surfaces. Prostomium epilobous 2 , pointed behind, the point continued back as a groove as far as the first furrow.

Fig. 219.--Fudichugaster trichochetus Steph.; penial seta; a, entire setæ; h, the tip, more highly magnified; $\times 550$.

Dorsal pores $12 / 13$ or $13 / 14$. In general $a b=\frac{1}{3}$ to $\frac{2}{5} a a=\frac{1}{2} b c$ $=\frac{3}{4} c d$; in front of clitellum $a b$ is wider, $=c a . \frac{1}{2}(a a ; d l d=$ nearly half of circumference. Clitellum absent. Male field a whitish rectangular thickening, including xvii-xix, extending laterally to between b and c. Prostatic pores small transverse slits corresponding in position to ab, on xvii and xix; seminal grooves longitudinal between the outer ends of the slits, in line with b. Femnle pores as a pair of tiny white thickenings just in front of and internal to setæ a on xiv. Some thickening ventrally on viit and ix; but spermathecal pores not seen externally (v. inf.).

Septum $4 / 5$ somewhat strengthened, $5 / 6-7 / 8$ thin, $8 / 9$ somewhat strengthened, $9 / 10$ slightly so. Gizzards relatively large, in v and vi. Calciferous glands in $x, x i$, and xii, not set off. Intestine begins in xiv? Last heart apparently in xii. Micronephridia in four longitudinal rows on each side, the innermost series the smallest. Testes and funnels free in x and xi. Seminal vesicles in xii only, with lobed margins. Prostates two pairs, twisted tubes. Spermatheco two pairs, in viii and ix, ending on bodywall apparently between the site of setæ a and b; ampulla ovoid ; duct as long as ampulla, not constricted off, a little wider above;

Fig. 220.--Euduchoguster trichochetus Steph.; tip of copulatory seta; \times ca. 400.
diverticulum single, shortly finger-shaped, one-third as long as ampulla, to the base of which it is attached. Penial seta (textfig. 219) up to 2 mm . long and only $5-6 \mu$ thick, capillary, undulating; no ornamentation; tip bifid with a web spanning the angle. Copulatory setæ (text-fig. 220) 0.42 mm . long, 13μ thick; shaft almost straight, with a bend at the proximal end; tip slightly claw-shaped, bluntly pointed; ornamentation of short transverse ridges on the distal part of the shaft.

Distribution. Bombay, and Palchar (N. of Bombay).

5. Genus EUTYPHEUS Mich.

1883. Typhocus, Beddard, Ann. Mag. N.H. (J) xii, p. 219.
1884. Typheus, Beddard, Quart. J. Mic. Sci. xxix, pp. 111, 117.
1885. Typhocus, Beddard, Monog. p. 472.
1886. Eutyphous, Michaelsen, Tier. x. p. 322.
1887. Typhous, Beddard, P.Z. S. 1901, i, p. 205.
1888. Futyphocus, Michaelsen, Mem. Ind. Mus. i, p. 216.
1889. Eutyphous, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 37.

Setal arrangement lumbricine. An enlarged œsophageal gizzard in a space formed by the fusion of several segments. A pair of calciferous glands imbedded in the oesophageal wall in xii. Purely micronephridial. Sexual apparatus purely microscolecine (conjoined pores of prostates and male ducts on xvii ; spermathecal pores one pair, in 7/8) ; holandric or metandric.

The genus was instituted by Beddard in 1883 for E. orientalis; E. ganmiei was added, and a defiuition of the genus was given, in 1888; Bourne added E. masoni in 1889, and Rosa E. foveatus in 1890, with E. levis, which however is insufficiently described. With the exception of the addition of E.incommodus and nicholsoni by Beddard in 1901, nothing more was added to the genus till the publication of Michaelsen's work $(1907,1909)$ on the Indian Oligochæta. Siuce then the genus has grown rapidly.

- The species may be divided into two groups, those of each group having a very considerable resemblance to each other. The larger group especially has a particularly uniform facies, its species having the following characters (or most of them) in common :-

Certain septa in the anterior part of the body are wanting; these are (perhaps always) $6 / 7$ and $7 / 8$, and the two septa which are present in front of the gap are $4 / 5$ and $5 / 6$. After the interval come three septa extremely close together, and all thickened; these three are displaced backwards, the first of them very considerably. The next septum should be $11 / 12$; but typically in this group of species it does not exist as a definite septum at all; there is, however, on the floor of the body-cavity in this region a quantity of matted connective tissuc, whech also surrounds the alimentary canal, and which envelops the heart of segment xi; the tissue binds down the heart to the gut.

The numbering of the segments in the dissection is thus not without difficulty, since confusion necessarily arises from the absence of some and the displacement of other septa; but if the numbering is carefully worked out from the segmentally arranged vascular commissures the above arrangement will be found to hold.

The dorsal vessel does not extend to the anterior end of the body, but comes to an end behind the gizzard by dividing into two branches, of which one goes to each side as the vascular commissure of segment vii ; these are situated immediately behind the gizzard and immediately in front of another pair of lateral commissures, those belonging to segment viii, which run on the anterior face of the septum behind the large gap. The position of the first pair of commissures in relation to the gizzard enables us to place this organ morphologically in segment vii, though septa are absent from this region.

The seminal vesicles (morphologically to be accounted to segment xii) take origin from the matted connective tissue which represents septum 11/12; they are thus not seated on a septum in the normal wav; under cover of this tissue they communicate with the testis sacs. The vesicles may project forwards so as to occupy segment xi, which they could not do if there were a septum between xi and xii ; they have a flattened form and extend backwards, embracing the sides of the alimentary canal, for the space of a few segments; their margins are lobulated, and their surface often granular.

This group of species is metnndric ; the testis sacs lie on thefloor of segment xi, and often communicate with each other.

The other section of the genus is holandric, haning testes and funnels in segments x and x i, and seminal vesicles in ix and xii. Here too septa $6 / 7$ and $7 / 8$ are absent, but $11 / 1 \cong$ is normal ; the heart of segment xi is not bound doun to the gut. The dorsal. vessel is continued forwards over the gizzard as far as the pharynx, giving off lateral commissures in the usual way.

Certain characters appear to be common to the whole genusto both the metandrir and holandric species.

The calciferous glands are a single pair, in segment xii, of a peculiar type described by Stephenson and Prashad (91). They show externally only as a swelling of the gut, but project into and narrow the lumen of the cunal. In some species of the genus a series of paired sacculi have been described on the intestine, in about five successive segments in the middle of the body; they maty not improbably be a general character of the genus, though they have not as a rule been noted by recent observers, who have not usually opened the worms in this region.

The spermathece are always very shortly stalked, and the diverticula are usually in the form of small seminal chambers, sessile on the duct-singly or in groups. The penial setæ, present in a considerable majority of the species, are often disappointingly difficult to describe, owng to their softened or deformed ends.

The genus is to be derived from Eudichoyuster. The microscolecine reduction is completed; i. e., the posterior pair of prostates disappears, and the openings of the vasa deferentia are shifted forwards to join those of the anterior prostates on segment xvii; since only oue pair of spermathecal pores can be apposed to the single pair of prostatic pores in copulation, the posterior pair of spermatheco also disappears. In the holandric species the process of reduction has stopped here. In the majority, however, the metandric condition has supervenedthe anterior pair of testes and funnels have disappeared, along with their ducts and testis sacs. Even in some of the holandric species we see this change beginning, the anterior pair of testes, or funnels, or seminal vesicles, or all of these, being smaller than the posterior.

The two gizzards of Euclichogaster lave fused, after the disappearance of the interienng septum; and the calciferous glands are restricted to segment xii.

Distribution (Chart V). The genus is entirely confined to India. It inhabits the entire Gangetic plain, and thie Himalayas to the north of this; its range is from the South Punjab (one or two widely distributed species even in the North Punjab) to Rangoon; the widely wandering species E. wualtoni has spread into Central India and westward as far as Baroda.

The species with the widest distribution are waltoni (Hoshiarpur to Calcutta, with the extension to the west just mentioned); incommodus (Rawal Pindi in the extreme north to Calcutia);
masoni (the whole of the Gangetic plain fran Dehra Dun downwards) ; nicholsoni (the whole of the Gangetic plain); and mohammedi (Rawal Pindi and Allahabad).

Chart V.

Key to the species of the genus Eutyphœus.

1. Two pairs testes; two pairs of seminal vesicles in ix and xii	2.
One pair testes; one pair seminal vesicles,	
No penial setm.	E. quadripapillatu
Penial setæ present	
3. No genital markings ...	E. mohammedi.
Genital markings present	4.

4. Spermathecal diverticula in a ring round base.

E. incommodus.Spermathecal diverticula two, stalked, op-posite

E annandalei.

Spermathecal diverticulum single, sessile .. E. manipurensis.
5. Genital markings absent 6.
Genital markings present, unpaired 8.
Genital markings present, paired 11.
6. Penial setæ ornamented with fine hairs E. ibrahimi.
Penial setæ ornamented with tine points 7.
7. Points on penial setæ scattered ; two simple spermathecal diverticula E. foveatus.
Points on penial setæ very close set ; two or three compound diverticula, or a fan- shaped series of seminal chambers E. garmiei (part.).
8. Penial seta absent E. nainanus.Penial setæ present9.
9. Genital marking as a large transverse papilla on $15 / 16$, in front of an hexagonal male area E. scutarius. Genital markings otherwise 10.
10. Spermathecal diverticula two, relatively long, simple E. comillahnus.Spermathecal diverticula two or three, shortand compound, or a single series of seminalchambers, broad and fun-like
E. gammiei (part.).11. No penial setre; some of the spermathecaldiverticula large, like separated lobes ofthe ampulla
Penial setæ present; spermathecal diver- ticula as small seminal chambers varionslyE. nepalensis.
arranged
12.
12. Genital markings constantly on $15 / 16$ only, large and conspicuous E. nicholsoni.
Genital markings not, or not only, on 15/16. 13.
13. Spermathecal diverticula as a single but interrupted series in a circle round the duct; seminal vesicles extraordinarily long (to segm. xxxiii) E. pharpingianus.
Spermathecal diverticula as a small groupof elongated seminal chambers, inde-pendent but close together.
E. paivai.Spermathecal diverticula as two or threeassociated groups of seminal chambers....
14. Paired copulatory areas in front of clitellumonly; penial setæ without ornamentation.
Paired copulatory area behind clitellum only;a special V-shaped depression on xvi;penial setæ with trunsverse rows of finedot-like sculpturings
14.
E. aborianus.
E. bishambarr.
Paired copulatory areas constantly on clitellarsegments, sometimes on others also;penial setæ ornamented
15.
15. Copulatory areas confined to $15 / 16$ and xvi (pits in 15/16, oval areas on hinder part of $x v i$)
Oopulatory areas (at least when fully deve- loped) not confined to the above situations
E. gigas. 16.
16. Markings of penial setre as a single series of chevron-like ridges
E. orientalis.

Markings of penial setw as fine points or spines, or crowded short rows of minute teeth

17.

17. Spermathecal pores in c; markings of penial setw as fine ipines over the spoon-shaped end
E. waltoni.

Spermathecal pores in b; ornamentation as fine dots on the bluntly pointed somewhat claw-hke end of the penial seta.
E. turaensis.

Spermathecal pores between b and c; ornamentation of penial setre as minute curved sculpturings looking like fish-scales.
E. masone.

Eutypheous levis (Rosa) (Typhaus levis, Rosa, Ann. Mus. Genova, (2) ix, 1890, p. 388; Typhews levis, Rosa, Ann. Mus. Wien, vi, 1891, p. 388 ; Eutyphicuers lrvis, Michaelsen, Tier. x, p. 323 ; Typhoeus levis, Beddard, P. Z.S. 1901, i, p. 206) from Burma and Ceylon, is insufficiently known. The internal anatomy of the single (type) specimen from Burma was not investigated because of its state of preservation; in the case of the specimens from Ceylon the small size and condition of preservation alsu prevented examination. The known characters are as follows:-

Length 35 mm .; diameter at clitellum 2 mm . Segments 180 (100 in Ceylon specinens). Colour brown. Prostomium proepilobous. Setre all ventral, paired, $c d$ greater than $a b$; in the anterior part of the body bc greater than $c d$, but posteriorly ed greater than be (i. e., the lateral setec not paired in this part of the body). Dorsal pores at least from 12/13. Clitellum ringshaped, $\frac{1}{2}$ xiii $-\frac{3}{4} x$ vii $\left(=4 \frac{1}{4}\right)$. Male pores on xvii, between a and b, on papillæ "hich are joined in the middle line. Spermathecal pores in $\%$. In the first specimen (Burma) there were no genital markings; in the second lot of specimens (Ceylon) there were two pairs of papillæ, on xvii and xviii, in b. Only three species of the genus were known at the time when the description was written, and the characters given might be sufficient then to distinguish it ; at the present day, however, more is necessary. In addition, it seems hazardous to identify the Ceylon specimens with the tarlier one from Burma when even the external characters are not the same.

Numerous species described as separate have been found to require merging, on account of the variability of such characters as the external markings, the shape of the tip of the penial setæ, and the arrangement of the seminal chambers of the spermathecal diverticula. Thus Michaelsen united his species bastianus and andersoni, and thought both might be identical with masoni; this I believe to be the fact. He also united his species lchani with nicholsoni. I believe it is necessary to sybsume bengatensis under evaltoni, and to unite a number now to be discussed.

In. undertaking a revision of the species which have been
described as gammiei, chittagonyianus, kempi, koöoensis, magnus, and aborianus, the following points are important.
E. chittagongianus is a variable species, as I have recently shown (93), and there can be no doubt as to the inclusion of kempi under the same name (this 1 have already noted in the paper just mentioned). The variability of the species shows itself in the various shades of colour (from olive or brown to pale, i.e.,' without pigment or nearly so); the first dorsal pore may be in 10/11 or 11/12; the relations of the setal intervals also vary within fairly wide limits; the male pores sometimes lie in a common transverse depression, sometimes not; the spermathecal pores may be miduay between b and c, or nearer to b, or in b; the genital markings, most commenly on $20 / 21$ and $21 / 22$, may be on auy of the furrows $10 / 11,13 / 14,19 / 20,20 / 21,21 / 22,22 / 23$, and may be single, or may show a narrowing in the middle line so as to be almost divided into two ; the tip of the peninl sete shows various conditions of curving and shape, due appareitly to its being always soft-it does not seem to harden in the normal way; and the seminal chambers of the diverticulum may be arranged in a single series to form a fan or semicircle, or the series may be split up into two or even three discontinuous chambered diverticula.

So much having been established by the comparison of Michaelsen's description with my specimens from Assam and Darjiling, and with the description of E. kempi, it is evident that E. koboensis must come under the same head; indeed I ought to have included it when I merged E'. Liempi(93). The supposed differences in the penial setm are explained by the above considerations; the only other point that could occasion hesitation is the fact that the testis sacs are apparently double instead of single.

The species after these additions has a range which includes Darjiling District, the Garo Hills in Assam, the Abor country, and Chittagong District.
In the revision of the genus for the purpose of this work, my attention was turned to the similarity between this group and gamniei, described in 1889 by Beddard. Naturally a description written in that year is not as full as we could wish : the following points call for comment:-(1) The male field. Beddard only says that the pores "are upon segment xvii, and correspond to the ventral puir of setæ"; Michaelsen (38), however, infers from the figure that they are situated on a median cushion-like elevation. There is, however, notling in the figure to show that it is not a depression that is intended. (Michaelsen says that the male pores and prostatic pores are separate, but close together. They are indeed shown so in Beddard's figure; in the text, too, it is said that the vas deferens "opens onto the exterior near to the atrfum and a bundle of penial setm." But in almost the next sentence it is stated that " a series of
transverse sections through this part of the body show that the vas deferens does ultimately join the atrium, though only just beneath the epiderims.") (2) The spermathecal pores are said in the text to "correspond to the iuterval between the dorsal. and ventral pairs of setæ," while the figure to which reference is made shows them as in $a b$; this, however, does not matter, as the pores are found in both situations in chittcyonyiunus. (3) The penial setet differ from any that have been figured for chittcgongianus, but both the figures and descriptions of the penial. setre of cluittayongianus (including kempi and koboensis) differ among themselves, as has been seen. The teeth on the setm of gammici are perhaps coarser than those which occur in chittayongianus; it is a question, however, as we bave seen with regard to both the male area and the spermathecal pores, how far Beddard's figures can claim a minute accuracy.

The specimens of gammiei came from Darjiling. If now we interpret the figure of the male pores as indicating a transverse dumbbell-shaped depression, the whole of the description corresponds with chittagongianus, and the locality is within the range of chittagongianus.

Two small points are confirmatory. In none of the species so far considered is the prostomium distinctly visible (Michatelsen does not mention it in his account of chittcyonyianus). Secondly, setm are absent from segment ii in gammiei, and may be absent trom the first four or five in chittagongianus. I thum we are justified in uniting the two, under the name E. yammiei (Bedd.).

There remain magnus and aborianus. As to magmus, the only feature that is not found in the gammiei group is the ahsence of genital markings; the testis sacs are apparently double, as in the specimens described as lioboensis; the spermathecal diverticula are tro, each compound, as in some specimens of chittagongianus and in ganmiei; they are described as being opposite, which seems to show that the separation of the originally single series of seminal chambers has gone further than elsewhere. But the absence of genital markings is the only character that could necessitate a separation of the species; and since this has been found to be of no value as a distunction between waltoni and beugalensis (93), it is perhaps scarcely justifiable to use it here. E. magnus comes from the same country as a number of the others (Abor country), and was in the same tube as koboensis. I therefore unite it also with gammici.

As regards E. aborianus, the definite differences from the group just discussed are: (1) dorsal pores from 17/18 (instead of from $10 / 11$ or $11 / 12$) ; (2) pairel genital markings on $9 / 10$ only; (3) no ornamentation on the penial setæ. Of these the position of the first dorsal pore is scarcely a decisive character (and see remark on this point under description of the species); but markings on $9 / 10$ have not been described
in any of the numerous specimens of the other group, nor do the characteristic postclitellar markings of the other group occur in aborianus. The absence of ornamentation on the penial setæ would also seem to be a good ground for separation. As the evidence goes at present, 1 consider aborianus to be distinct, though it is doubtless closely connected with the former group (note the curious character of absence of setæ from the first four segments). I should not, however, be surprised if evidence is forthcoming sooner or later to necessitate its union with the others.

The genus is thus reduced from 31 species which have at various times been described to 22 . Among these there are several well-defined groups.

The first is that of the holandric forms-the more primitive species of the genus; this group comprises incommodus, annanelalei, quadripapillatus, manipurensis, and mohammedi; and of these it is possible that mohammedi may in the future have to be merged in incommodus. The range of incommodus alone comprises nearly the whole of what may be looked on as the proper range of the genus; so that it is not possible to locate the place of origin of the genus from a consideration of the habitat of its more primitive species.

The relation between yammiei with its numcrous forms and uborianus has already been considered.
E. valtoni, masoni, and orientalis are closely related. and with them may probably be associated turaensis, gigas, and bishambari. Orientalis is somewhat of a puzzle; described from two places so far apart as Calcutta and Dehra Dun in 1883 and 1898 respectively, it is strange that it should not have turned up again from these or from any intervening places; one is inclined to suppose that the penial setw were described from an abnormal example, such as are only too common, and that it is perhaps identical-with E. masoni.

But the whole of the metandric forms are essentially similar, and their discrimination depends almost wholly on external markings and the characters of the penial setw and spermathecal diverticula. Hardly any other feature is capable of being used, and even these are often extraordinarily variable. Thus I consider the absence of genital markings to be of doubtful value, though in the present state of our knowledge I have admitted it as a means of discrimination in several cases.

1. Eutyphœus aborianus Steph.

1914. Eutyphœeus aborianus, Stephenson, Rec. Ind. Mus. viii, p. 406, pl. axvii, fig. 22.

Length 210 mm .; maximum diameter 6 mm . Colour pale. Prostomium minute. Negments triannulate over most of the body; some of the preclitellar segments of four or five annuli. Dorsal pores from 17/18 (? v. Remarks inf.). Setæ small, the lateral
rather widely paired; in front of clitellum $a b=\frac{3}{4} a a=\frac{2}{3} b c=\frac{3}{4} c d$; behind clitellum $a b=\frac{1}{2} a a=\frac{3}{5} b c=\frac{2}{3} c d$; further back $a b=\frac{1}{3} a a$; no setæ discoverable on ii, iii, or iv. Clitellum includes $\frac{2}{3}$ xiii-xvii ($=4 \frac{2}{3}$) ; setæ present. Male pores a pair of deep pits, oval in shape, their centres in line with b; the pit extends inwards to a, and outwards a corresponding distance beyond b. Female pore on left side only, in front of a on xiv. Spermathecal pores a little outside b. A pair of oval depressions in $9 / 10$, sinall, between a and b, or extending outwards a little beyond b : an almost circular clean-cut depression, on the right side only, over $13 / 14$ or on the hinder part of xiii, taking up the interval $a b$ and extending a little outside b.

Septa and calciferous glands as usual in metandric forms. Gizzard ovoid. Intestine begins in xv. Last henrt in xiii.

Fig. 221.--Eutyphous aborianus Steph.; distal end of penial seta; \times ca. 200.

Testis sac on each side in xi, unconnected with its fellow (?). Seminal vesicles overlapping the testis sacs anteriorly and extending back so as to bulge septum 13/14 backwards, margins slightly lobed. Prostates occupy xviii-xx, the tube becoming narrower and more glistening towards its end. Spermathecal ampulla ovoid, compact; duct very short and moderately stout; diverticulum fan-shaped, posteriorly situated at junction of duct and anpulla, consisting of seven or eight lobes arranged in two or three groups, fairly well separated or partly joined together. Penial setæ (text-fig. 221) 3.3 mm . long, 32μ thick ; shaft with a gentle S-shaped curve, tip bluntly pointed and
flattened and slightly excavated on one face, hence spoonshaped; small longitudinal ridges in the bowl of the spoon; no ornamentation.
Remarks. I have re-examined the original specimens, and hence the above account differs in a few points from my former description. I may add that dorsal pores appear to be present as far forwards as $11 / 12$, possibly $10 / 11$, though ns the specimen (which was single) had been cut up nearly in the middorsal line the determination was not very easy. The testis sacs seem to me now to be joined ventrally.

Related to E. gammiei (see introduction to the genus).
Distribution. Kobo (Abor country, E. Himalayas).

2. Eutyphous annandalei Mich.

> 1907. Eutypheus annandalei, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 174, text-lig. 18.
> 1909. Lutyphceus annandalei, Michaelsen, Mem. Ind. Mus. i, p. 217, pl. xiv, fig. 44, text-fig. 24.

Length 65 mm .; diameter $1 \frac{2}{3}-2 \frac{1}{3} \mathrm{~mm}$. Segments 91 . Colour in general grey, clitellum dark brown. Prostomium indistinctly tanylobous. Dorsal pores distinct only in the middle and posterior parts of the body. Setæ not closely paired in general,

Fig 22.--Eutyphoeus annandaleı Mich.; spermatheca; $\times 8$.
the ventral behind the clitellum most closely; behind clitellum $u a: a b: b c: c d=8: 4: 10: 5$; immediately 11 front of clitellum $a b$ almost equals ccl, and the rentral setæ (a and b) here are sonewhat enlarged; $d d=$ half the circumference. Clitellum ring-shaped, xiii-xvii (=5), but wanting ventrally on xvi. Male pores as transverse slits on lange transversely oval, alinosi circular papillo, the centres of whech are in a or somewhat lateral to this. Spermathecal pores in $7 / 8$, transversely oval slits between b and c, laterally reaching the latter line. Copulatory organs as parred transversely oval areas in $13 / 14$ and $14 / 15$, in the line of the ventral pairs of seta.
Septum $4 / 5$ strong, $5 / 6$ very strong, $6 / 7$ and $7 / 8$ wanting, $8 / 9$ scarcely strengthened, $9 / 10$ and $10 / 11$ moderately strong. A large giziard between $5 / 6$ and $8 / 5$. Calciferous glands large, laterally placed, in xii, closely united with the oesophagus. Testes and fummels free in x and $x i$, those of x smaller than those of xi. Seminal vesicles two pairs, in ix and xii-xvii, much incised. Prostates very long, extending backwards to -about xxiii, much bent or coiled, not forming a compact mass;
duct thin, relatively rather long though much shortor than the glandular part, describing some large loops; vasa deferentia notably thick. Penial setæ strong, ca. 90μ thick (points all broken). Spermathecal ampulla nearly globular, with transverse folds in the walls; duct somewhat thinuer and shorter; diverticula two, opening into the duct opposite to each other, longer than broad, with a short stalk and one or two globular seminal chambers (text-fig. 222).

Remarks. Michaelsen's two accounts differ as regards the situation of the male pores; I have taken the one (from the earlier paper) which corresponds with the diagrammatic figure of the external characters.

The species is closely related to incommorlus; I keep it separate on account of the two stalked diverticula (in incomnoorlus the diverticulum forms a frill round the duct).

Distrihution. Bhim 'I'al, Kumaon Dist., W. Himalayas.

3. Eutyphœus bishambari Steph.

1914. Eutyphorus bishambari, Stephenson, Rec. Ind. Mus. x, p. 355, pl. xxxvi, figs. 10, 11.

Length 180 mm ; maximum diameter $5 \frac{1}{2} \mathrm{~mm}$. Segments 164. Colour dark brown dorsally, with purplish strip in middle line, pale grey ventrally. Prostomium a minute projection within the mouth aperture; a pair of longitudinal grooves dorsally on segment i , diverging as they approach groove $1,{ }_{i}^{\prime} 2$. Secondary annulation on some of anterior segments, but not extending as far as clitellum. Dorsal pores from 11/12; none on clitellum. In general $a b=\frac{2}{5} a c=\frac{4}{6} b c=\frac{4}{4} c d$; in front of clitellum $a b=\frac{5}{8} a a$ and is somewhat less than $c l ; d d=6$ of circumference. Clitellum includes $\frac{1}{3}$ of xiii and $\frac{b^{\prime}}{}$ of xvii $(=4)$; setro visible. Male pores conspicuous triangular pitt, the narrowest angle internal, margins puckered; centre of pit between a and b, the pit extending rather beyond these lines; penial setm project close to outer margin of aperture. Spermathecal pores slit-like, centre between b and c, rather nearer b; the whole slit extending from c to rather inside b. Copulatory organs as three pairs of eye-like markings on 18/19 and the two following grooves, their centres in or just internal to b; on xvi, behind the setæ, a V-shaped depression, median, the legs of the \mathbf{V} rather wide apart, rather broadened at their anterior separated ends; in these broadened ends a pair of small round papillo ; these ends of the \mathbf{V} just behind the ventral setæ on each side.
Septa, calciferous glands, and anterior male organs as usual in the metandric species. Gizzard comparatively small, sulglobular. Male funnels contained in a com:non sac. Seminal vesicles extend forwards to the level of 10/11, and backwards to that of $14 / 15$ by bulging backwards septum $13 / 14$: deeply lobed and flattened against the sides of the gut. Prostates large, occupying
xvii-xx; duct much coiled and of considerable length, narrow at first but soon becoming stouter and more muscular, widest in the middle of its course. Penial setæ 4 mm . long, 36μ thick at the middle; almost straight for the greater part, the terminal 0.25 mm . bent at an angle of 120°, and a second, much sharper kink, not in the same plane as the first, $0 \cdot 1 \mathrm{~mm}$. from the tip; short transverse rows of fine sculpturings near the free end. Spermathecal ampulla elongated egg-shaped; duct brond and very short; diverticula two, one smaller, on the posterior and inner side of the duct, the other larger, on the outer; the smaller has about six seminal chambers, the larger more numerous chambers; the chambers only slightly separated externally.

Remarks. The " much sharper kink" near the tip of the penial setæ appears from the figure to be perhaps abnormal-due to the doubling up of the softened extremity within the setal sac.

Distribution. Pusa (Bihar).

4. Eutyphœus comillahnus Mich.

> 1907. Eutyphœus comillahnus, Michaelsen, Mt. Mus. Mamburg. xxiv, p. 187, text-lig. 80 .
1909. Entyphœous comillahnus, Michaelsen, Mem. Ind. Mus. i, p. 242, pl. xiv, figs. 49, 50; text-fig. 36.
Leugth 90 mm .; diameter $3-4 \mathrm{~mm}$. Segments ca. 240. Colour in general yellowish grey, anteriorly with violet-grey tints. Prostomium tanylobous, first segment very long. Dorsal pores from 11/12. Setæ all ventral, paired, the ventral closer than the lateral; on xviii $a c, a b: b c: c d=3: 1: 4: 3$; towards the head the ventral setæ become somewhat separated, $=3: 2: 4: 5$; towards hinder end aa becomes larger, $=6: 3: 5: 4$; clil greater than half of circumference. Clitellum ring, \%imped, xiv-xvii $(=4)$. Male pores about in c, setæ aa being veryinear ach other in the anterior part of the body; pores surround oyat ransversely oval scarcely depressed common area, not sharphthpgered, somewhat glandular. Female pores on a median ventral transverse glandular area in front of setal zone of xiv. Spermathecal pores in $7 / 8$, just outside a. Copulatory organs as transverse glandular cushions on 12/13 and $13 / 14$, each apparently formed by the fusion of a pair, that on 13/14 narrower than the one in front of it.

Septa and calciferous glands as usual. Gizzard large. Intestine. beginning in xv (?). Last hearts in xiii. Large male funnels in globular testis sacs which are united in the middle line. Seminal vesicles broad, much incised at the margins, extending back to xiv. Prostates with moderately long conled glandular part, occupying three segments; duct relatively short, hardly 2 mm . long, nearly straight or slightly undulating ; the whole organ much smaller than in other species of the genus. Vasa deferentia relatively very thick. Spermathenal ampulla irregularly sac- or pear-shaped; duct short and narrow; diverticula two, simple, hardly uarrowed at base, unequal in size, the larger nearly as long.
as anpulla (text-fig. 223). Penial setæ (text-fig. 224) ca. 2 mm . long and 40μ thick in the middle, nearly straight proximally, somewhat bent in the distal fourth; tip simple, rather blunt, seta

Fig. 223.--Futyphoous comillahnus Mich.; spermatheca; $\times 12$.

Fig. 29t.--E'utyphoeus comillahnus Mich. ; distal end of penial seta, \times ca. 200.
somewhat broadened just proximal to tip ; ornamentation begins proximal to the broadening and extends over distal fourth of shaft, as irregular transverse rows of moderately large triangular teeth.

Distribution. Comillah, Chiitagong Dist.

5. Eutyphœus foveatus (Rosic).

1890. Typhapus foveatus, Rosa, Ann. Mus. Genova, (2) ix, p. 389.
1891. Fityphorus foveatus, Michaelsen, Tier. x, p. 323.
1892. Typhous foveutits, Beddard, P.Z.S. 1901, i, p. 206.

Length $170-180 \mathrm{~mm}$.; diameter 5 mm . Segments 150-170. Prostomium retractile or absent. Dorsal pores from 11/12. Setæ all ventral; ac greater than $b c, b c$ greater than $c d$, and $c u=2 a b$ throughout the body. Male pores in a median fossa more or less hexagonal in shape, margins thickened, especially laterally, where the tossa extends to the line of b. Female pores each in front of and a little internal to a on xiv. Spermathecal pores in $7 / 8$, in b.

Septa $4 / \overline{5}, 5 / 6,8 / 9-10 / 11$ thickened. Gizzard large, in the form of a flattened bulb, between $5 / 6$ and $8 / 9$. Seminal vesicles one pair, much lobed. Prostates much coiled; duct forms a curve with its concavity facing towards the middle line. Spermathecm with two simple diverticula on the duct, which is somewhat swollen. Penial setæ numerous, strongly curved, ending in a simple conical point; distal end ornamented with irregularly scattered small points.

Distribution. Rangoon.

6. Eutyphous gammiei (Belld.).

1888. Typhaus gammii, Beddard, Quart. J. Mic. Sci. xxix, p. 111, pl. xii, figs. 1-9, pl. xiii, fig. 1.
1889. I'utypheeus gammiei, Nichaelsen, Tier. x, p. 323.
1890. Typhous gammii, Beddard, P. Z. S. 1901, i, p. 205.
1891. Eutyphceus chittagongianus, Michaelsen, Mt. Mus. Hamburg, xair, p. 181, text-fig. 25.
1892. Eutyphacus chittagongianus, Michaelsen, Mem. Ind. Mus. i, p. 231, pl. xiv, fig. 54 , text-fig. 31.
1893. Eutyphous kempi + E'. kıboensis + E. maynus, Stephenson, Rec. Ind. Mus. viii, pp. 401, 40t, 408, pl. xxvii, tigs. 18-21, 23, 24.
1894. Eutyphaus chittagongianus, Stephenson, Mem. Ind. Mus. vii, p. $\because 41$.

Length 182-405 mm., in general about 250 mm .; maximum diameter $7-10 \mathrm{~mm}$. Segments $195-263$; iv and v biannular, vi wath two chief and two subsidiary furrows, succeeding segments

Fig. 225.--Eutyphous gamniei (Bedd.); genital area; g, genital markings ("copulatory organs"); x, anterior limit of clitellum; δ, male aperture; P, female aperture.
as far as clitellum primarily triannular, with secondary grooves on first and last annuli. Colour in general grey or a medium olive dorsally, pale or a light olive-green laterally and ventrally, some specimens unpigmented. Prostomium indistinct. Dorsal pores from $10 / 11$ or $11 / 12$. Setæ small, sometimes absent from the first four or five segments; paired, but not closely; behind
clitellum in general $1 b=\frac{1}{3} a a=\frac{1}{2}-\frac{3}{3} b c=\frac{3}{3}-\frac{4}{5} c d$; in front of clitellum $a b=\frac{2}{3} a u=\frac{4}{3} b c=\frac{4}{3} c d ; \quad d d=$ ca. $\frac{3}{3}$ of circumference. Clitellum ringshaped, $\frac{1}{2} x i i i-x v i i\left(=\frac{1}{2}\right.$), slightly variable. Male pores (text-fig. 225) in deep transs erse pits or grooves, with their centres in b; or in a large transverse furrow extending across the ventral surface. Female pores on small transversely elongated glandular areas in front of setal zone of xiv; the two areas uearly meet in the middle line, and extend outwards as far as b. Spermathecal pores as small slits midway between b and c, or on the outer side of b, or aven in b. Copulatory organs as unpaired transversely elongated areas, when best marked appearing as clean-cut depressions sometimes containing low, flat papillæ; they may be constricted in the middle so as to appear dumbbell-shaped, or one-half the dumbbell may be absent, the marking being then confined to one side; extraordinarily variable in distribution, commonest on $20 / 21$ and $21 / 22$, may occur on 19/20 aud $22 / 23$, occasionally more anteriorly, $10 / 11$ and $13 / 14$, and may perhaps be absent altogether.

Fig.

226-Eityphrwus yammiei (Bedd.), spermatheca; $\times 6$.

Fig. 227.-Eutyphurus gummiei (Bedd.); distal end of penial seta; \times ca. 175.

Septa, calciferous glauds, and last heart as usual. Gizzard large. Male funnels enclosed in a common testis sac (? sometimes double). Seminal vesicles extend back as far as xir, xv, or xvi, with lobed margins. Prostates with long glandular part, much bent, reaching back to $\mathbf{x x}$; duct thinner, especially at ectal end, relatively long, looped with the bend forwards. Spermathecal ampulla an irregular sac, duct very short and thick, practically absent, so that the ampulla is attached to the body-wall by a portion of its under surface and is practically sessile ; diverticulum single, broad, fan-like, notched along its free edge, the notches separating from 6 to 20 seminal chambers; or the series of
chambers may be divided into two groups (text-fig. 226). Penial sete (text-fig. 227) $2-5 \mathrm{~mm}$. long, $26-40 \mu$ thick, shaft with a slight S-shaped curve, tapering towards distal end; the tip, which may be variously bent or hooked, is typically broadened or spoonshaped, but often softened and hence distorted; ornamentation of densely crowded rows of fine dots or teeth covers distal portion of seta except extreme tip.

Remarks. A very variable species; it was the examination of specimens from two places in the Garo Hills and two places in Darjiling District that first directed my attention to the width of variation, and to the fact that one or more of my species from the Abor Country would have to be merged in it.

Beddard in his original description appenrs to have made a slight error in the numbering of the segments; the thickened septa are $8 / 9-10 / 11$, and the last heart is in xiii, as usual ; the extent of the seminal vesicles should doubtless be xi-xviii (not x-xvii).

Distribution. Comilla, Chittagong Dist.; Garo Hills, Assam; Darjiling Dist. and Abor Country, E. Himalayas.

7. Eutyphœus gigas Steph.

1917. Liutypharus gigas, Stephenson, Rec. Ind. Mus. xiii, p. 408, pl. xviii, figs. 28-30.
1918. Eutyphaous gigas, Stephenson and Prashad, Tr. Roy. Sor. Edin. lii, p. ${ }^{45}$, pl. fig. 7.
Length 250 mm .; diameter behiud clitellum 9 mm . Segments 212 ; iv biannulate, v and vi triannulate, vii with four and viii with five annuli; the rest up to the clitellum with five or even

Fig. 228.-Eutyphous gigas Steph.; male genital field.
more annuli. Colour purplish brown dorsally, with darker median stripe, pale ventrally. Prostomium minute, prolobous. Dorsal pores from 11/12. Setæ paired; in front of clitellum $a b=\frac{1}{3}-\frac{2}{3}$ $a a=\frac{2}{3} c d, a a=b c$, and $d d=\frac{2}{3}$ of circumference; behind clitellum $a b=\frac{1}{3} a a=\frac{2}{3}-\frac{3}{4} c d$, $c a$ greater than $b c$, and $d d=\frac{3}{5}$ of circumference; behind middle of body $a b=\frac{2}{5} a a=\frac{3}{4} c d, a a=1 \frac{3}{3} b c$, and $d d$ is little more than half of circumference. Clitellum includes nearly half
xiii and extends back to include xvii (=nearly $4 \frac{1}{2}$). Male pores (text-fig. 228) as transverse slits on papillm within large circular pits, the centres of the pits in line with b; the papilla being in the lateral part of the pit, the middle of the pore is rather outside b. Female pore seen only on left side, in front of $a b$. Spermathecal pores small, slit-like, just outside b, in $7 / 8$. Genital markings in 15/16 as a pair of transverse depressions. pointed at both ends, almost meeting each other in the middle line; also a pair of small oval areas on the hinder part of xvi, behind $a b$, each surrounded by a narrow groove and somewhat depressed in the middle.

Septa, calciferous glands, and vessels as usual in metandric species. Gizzard large, firm, and subspherical. Intestine hegins at xv ; in xx 人iii a pair of ceca like those of Pheretina. Micronephridia behind clitellum in regular transverse rows, one row in each segment, and about a docen nephridia on each side. Testis

Fig.,229.-Eutyphous gigas Steph.; sporimatheca; the dotted lines moncate the portion of the under surface which is attached to the body-wall.

Fig. 230.-E'utyphouss yigas Steph. ; distal end of penial seta; $\times 160$.
sacs in xi. Seminal vesicles extending forwards to $10 / 11$ and bulging back $12 / 13$ to the level of $13 / 14$. Prostates extend back to xx ; duct one-third the thickness of the glandular portion, firm and shining, in many coils and loops. Spermathecæ (text-fig. 229) antero-posteriorly elongated sacs, irregular in shape, attached to parietes by a broad base, in front of and behind which the sac projects; 110 separate duct; diverticula two, each a compound sac with 12-20 chambers, attached to base of ampulla by a stout stalk. Penial setæ (text-fig. 230) 5.3 mm . long, 50μ thick near base, shaft slightly bowed towards tip, tapering rather rapidly to a fine point; distal portion (except extreme tip) ornamented with
very numerous and densely crowded transverse markings, each consisting of a few points set side by side.

Distribution. Rangamati, Chittagong Hill Tracts, Bengal.

8. Eutyphous ibrahimi Steph.

> 1914. Eutyphocus ibrahimi, Stephenson, Rec. Ind. Mus. x, p. 35', pl. xxxvi, fig. 12.

Length 70 mm . ; maximum diameter 3 mm . Colour light olivegreen, with browner tinge anteriorly. Segments 185. Prostomium tanylobous, sides of tongue parallel. Dorsal pores from 12/13. Behind clitellum ab approximately $=c l=\frac{1}{3}-\frac{2}{5} u\left(1=\frac{1}{2}\right) c$; in frout of clitellum $a b=\frac{1}{2} a c=\frac{2}{3} b c=$ slightly less than $c d$; thus pairing is rather closer behind than in front of clitellum; $d d=\frac{3}{3}$ of circumference. Clitellum indefinite. Male pores just external to l, on small papille, on the outer side of each of which is a slightly raised horseshoe-shaped ridge, partly surrounding the papilla, with the concavity of the horseshoe inwards. Female pore apparently single, on the left side in front of seta a of xiv. Spermathecal pores small, in c in $7 / 8$, with tumid lips. No genital markings.

Septa (probably), calciferous glands, and last heart as usual. Gizzard of moderate size, cylindrical. Intestine begins in xv. Male funnels apparently enclosed each in a separate sac. Seminal vesicles a single pair, flattened against the alimentary canal. Prostates of moderate size. Spermatheco small; ampulla small, ovoid; duct short, broad, about as long and nearly as broad as ampulla; diverticula two to four; rounded knobs at the upper part of the duct, none attached to anterior side of duct. Penial setæ ca. 2 mm . long, 20μ in maximum thickness, the whole curved through about a quarter of a circle; distal end spoon-shaped, with curved tip, slightly constricted proximal to the spoon; ornamentation of fine hairs distal and proximal (mainly proximal) to the constriction; apparently a faint longitudinal grooving immediately distal to the constriction.

Remarks. Only a single specimen came to hand, and that in bad condition and possibly not fully mature. Probably the first septa should be $4 / 5$ and $5 / 6$, as in other species, not as given in the original, $5 / 6$ and $6 / 7$. The hairs on the penial setæ might be called fine spines.

Distribution. Kapurthala, Punjab.

9. Eutyphous incommodus (Bedl.).

1901. Typhwus incommodus, Beddard, P.Z.S. 1901, i, p. 200, text-figs. 56, 57.
1902. Eutypheous incommodus, Michaelsen, Mem. Ind. Mus. i, p. 222. 1910. Eutyphceus incommodus, Michaelsen, Abh.Ver. Hamburg, xix, p. 90.

1914. Eutyphœcus incommoduя, Stephenson, Rec. Ind. Mus. x, p. 349, pl. xxxvi, tig. 8.

1916. Eutyphous incommodus, Stephenson, Rec. Ind. Mus. xii, p. 342 .
1917. Eutyphnous incommodes, Stephenson, Rec. Ind. Mus. xiii, p. 408.
1918. Eutyplucus incommodus, Stephenson, Mem. Ind. Mus. vii, p. 240.

Length 90-112 mm .; diameter 4 mm . Segments 124-162; first three simple, next three biamulate, rest of preclitellar segments triamnulate, and so also those behind clitellum. Colome brownish olive. Dorsal pores from $11 / 12$ or $12 / 13$. Prostomium combined pro- and epilobons, or combined pro- and tanylobous. Setar all ventral ; in middle of body $a b=\frac{1}{3}$ or $\frac{2}{5} a a=\frac{4}{7} b c=\frac{3}{4} c d$; in front of genital region $a b=\frac{1}{2} a a=\frac{1}{2}-\frac{4}{2} b c=\frac{3}{3} c c l$ or more. Clitellum embracing $\frac{1}{3}$, $\frac{\tilde{3}}{3}$, or all of xiii to xvii or $\frac{1}{3} x v i i i$ (ca. 5). Male pores in line with b, on circular papilloo which are limited by grooves round their bases. Female pores in front of setw a. Spermathecal pores slit-like, in $7 / 8$, between b and c. Genital papilla four pairs, close to the posterior border of their respective segments, on xni xvi (almost on grooves $13 / 1416 / 17$), almost circular, with a rim of white surrounding a darker central area, in $a b$, therr diameter equal to $a b$.

Septa $4 / \overline{5}, 5 / 6,8 / 9-10 / 11$ strengthened, $6 / 7$ and $7 / 8$ absent: 11/12 present. (dizard large. Calciferous glands in xii and extending into xi also. Intestinal cæca in moddle of body. Last heart in xiii ; dorsal vessel continued forwards on to pharenx. 'Testes and funnels free in x and $x i$, those $11 x$ usually smaller than those in xi, or perhaps occasionally absent. Seminal vesicles in ix and xi, the latter the larger. Prostatic duct much thinner than glandular part, short, bent once or twice. Spermathecal ampulla large, globular; diverticula forming a complete frill of seminal chambers round the duct. Penial setæ 1 mm , long, almost straight, distal end curved slightly, terminal portion faintly ornamented with short transverse rows of tine points; bluntly pointed, with a slight bulbous swelling at the end.

Distribution. Rawal Pindı, Iloshiarpur Dist., Ambala (Punjab); Rurki, Agra (U.P.) ; Bharatpur (E. Rajputana) ; Pusa (Bihar); Calcutta, Rajmahal (Bengal).

a. var. fulgidus (Steph.).

1916. Entyphoxus annandalei var. fulyidus, Stephenson, Rec. Ind. Mus. xii, p. 342, pl. xxxiii, fig. 34.
Length 56 mm . ; maximum dianceter 4 mm . Segments 164 . Unpigmented, clitellum a light brownish grey. A number of preclitellar segments multianmulate. Prostomium combined proand tanylobous. Nirst dorsal pore in 11/12. Behind clitellum $a b=\frac{2}{7} a a=$ nearly $\frac{1}{2} b c=$ rather less than $c d$; in front of clitellum $a b=\frac{1}{2} a c=\frac{1}{2}-\frac{2}{3} b c=c d . \quad$ Clitellum saddle-shaped, or at least much
less marked ventrally, includes $\frac{2}{3}$ of xiii and $\frac{1}{3}$ of xviii ($=5$). Male pores on penis-like porophores which take up the whole length of the segment, as transverse slits on the summits, their centres in line with b or the interval $a b$. Spermathecal pores in $7 / 8$, between b and c, rather nearer b. Copulatory organs in or rather just in front of $13 / 14,14 / 15$, and $15 / 16$, sometimes ailso on $16 / 17$, in $a b$.

Septum $4 / 5$ thin, $5 / 6$ moderately thickened, next two missing, $8 / 9$ thin, $9 / 10$ and $10 / 11$ considerably thickened, $11 / 12$ normal. Gizzard subspherical. Calciferous glands only discovered on opening the cesophagus, in xii. 'lestes and fumnels in x and $x i$, those in x not vestigial. Seminal vesicles in ix and $x i i$, the anterior of moderate size and lobulated, the posterior extending back through siii and xiv, or bulging back the septum $12 / 13$.

Fig. 231.--Eutyphous incommodus (Bedd.) var. fulgıdus; distal end of penial seta.

Prostates begin behind in xix. Spermathecal ampulla large, globular, and sessile; no duct; diverticula numerous, attached in a complete circle round the base of the ampulla, $8-15$ in number, each free from the others or bound up with them by connective tissue. Penial setæ (text-fig. 231) 0.9 mm . long and 17μ thick in the middle ; shaft slightly curved, tip bluntly pointed ; ornamentation of short transverse rows of fine points over the tip and distal part of the shaft.

Remarks. The distinctions between this form and the type of the species are not great-the colour, the shape of the tip of the penial setæ, and the considerably greater extent of the ornamentation in the present form are the chief.

Distribution. Anwarganj, Cawnpore Dist.

10. Eutyphœus manipurensis Steph.

1921. Eutyphoeus manipurensis, Stephenson, Rec. Ind. Mus. xxii, p. 763, pl. xxviii, fig. 11.

Length 120 mm .; diameter 5 mm . Segments 162 ; after the first few the segments are divided by secondary furrows, triannular behind the clitellum, and some segments in front of the clitellum still further subdivided. Colour dark grey. Prostomium tanylobous. Dorsal pores from 10/11. Setæ paired; in middle of body $a b=\frac{2}{5} a a=\frac{1}{2} b c=\frac{2}{3} c d$; behind clitellum $a b=\frac{2}{5} a c a=\frac{2}{5} b c=\frac{4}{7} c d$; in front of clitellum $a b=\frac{1}{2} a a=\frac{1}{2} b c={ }_{5}^{2} c d ; \quad d d=\frac{4}{7}$ of circumference. Clitellum includes $\frac{2}{3} x$ xii $-\frac{2}{3} x$ xii $\left(=4 \frac{1}{3}\right)$. Male pores on prominent round papillæ, on xvii between a and b; a trench round each papilla, the outer margin of the trench slightly swollen and indented. Ventral surface of xvi depressed and fissured ; genital markings usually present as oval areas with raived margin, in, behind, or in front of the setal zone, their number varying, 3-6

Fig. 23:.-Futyphoeis mantpurensis Steph. ; distal end of penial setu; \times ca. 150.
in all. Spermathecal pores in $7 / 8$, with centre in $a b$. Small papille variously in spermathecal region, behind the apertures, or midventrally on viii or ix.

Septum $4 / \overline{5}$ slightly, $5 / 6$ much thickened; $8 / 9$ the next, somewhat thickened, $9 / 10$ considerably so, $10 / 11$ very stout; $11 / 12$ present, thin; 8/9 and $9 / 10$ displaced backwards. Gizzard large. Calciferous glands as usual in the genus. Last heart in xiii; dorsal vessel continued forwards on to the pharynx. Micronephridia behind clitellum in a single row per segment. Two pairs of fumnels, apparently free, in x and $x i$. Seminal vesicles in ix and xii or xii-xiii. Prostates a close coil; duct also coiled, narrower than glandular part, only slightly shining. Spermathecm as ovoid sacs, sessile on parietes; diverticulum
single, sessile, slightly lobulated, one-third as broad and half as high as ampulla. Penial setæ (text-fig. 232) 1.5 mm . long, shaft straight, tip slightly curved, taperiug to a blunt point, a number of fine triangular teeth on the tip.
Distribution. Manipur; Assam.

11. Eutyphous masoni (A. G. Bourne).

1889. Typhiceus masoni, Bourne, J. Asiatic Soc. Bengal, lviii, p. 112, pl. iii, figs. 1-3.
1890. Typhaets masoni, Beddard, Monoy. p. 474.
1891. Eintyphaus masmi, Michrelsen, Tier. x, p. 3:3.
1892. Tiphhus masoni, Beddard, P. Z. S. 1901, i, p. 202, texttig. is.
1893. Eutyphocus bastianus + E. andersoni, Micharlsen, Mt. Mus. Hamburg, xxiv, pp. 183, 18.), text-figs. 27,28 .
1894. Futyphorus bastanus + E. andersom, Mochaelsen, Mem. Ind. Mus. i, pp. $2: 36,938$, pl. xıv, figs. 40, 41,.58-61, textfigs. 33,34 .
1895. Eutyphiarus bastianus, Michaelsen, Abli. Ver. Itamburg, xis, p. 91.
1896. Lutyphurus bastiamus, Stephenson, Mec. Ind. Mus. xii, p. 342.

Length $130-2 \cdot 0 \mathrm{~mm}$.; diameter $+\frac{1}{2}-6 \frac{1}{2} \mathrm{~mm}$. Segments ca. 215. Colour dorsally dark violet-grey, ventrally dark grey. Prostomium tanylobous. Segments in front of clitellum multiannulate from in onwards, those just in front of chtellum with as

Fig 233.-Eituphorus musoni (A. G. Bourne); under side of spermatheca, $\times 8$.

Fig. 334.-Eutyphous masoni (A. G. Bourne); distal end of penial seta (flat side) $\times 200$.
many as seven annuli. Dorsal pores not visible in front of clitellum. Setæ rather small, widely paired to almost separated; behind clitellum $a b=\frac{2}{5} a a=\frac{3}{3} b c=$ or is slightly less than $c d$; at ends of body $a b={ }_{3}^{2} a a=b c$ and $c d$ or nearly. Clitellum ringshaped, somewhat less prominent ventrally, $\frac{1}{3} x i i i-x v i i\left(=4 \frac{1}{3}\right)$. Male pores approximately in $a b$, in deep grooves, each of which is
surrounded by a broad wall forming three-fourths of a circle, open in front. Gental markings as paired oval areas on 15/16 in ab, $16 / 17$ in a or $a b$, more rarely on $14 / 15$ and $18 / 19$, sometimes on $9 / 10,19 / 20$ and $20 / 21$ in $a b$. Spermathecal pores in $7 / 8$ between b and c.

Septa and calciferous glands as usual in metandric species. Gizzard large. Typhlosole large, simple, with broad base, triangular in transverse section. Funnels in xi, enclosed in a common sac which extends forwards on each side to enclose the testes also. Seminal vesicles extend through several segments. Prostates long, glandular part much coiled; duct 6 mm . long, thinner than glandular part, winding irregularly. Spermathecal ampulla irregular, with broad short lobes and thick ery short duct; diverticula two, opposite, hidden beneath ampulla, each consisting of about three rounded seminal chambers united on a common stalk (text-fig. 2:33). Penial sete (text-fig. 234) up to 5 mm . long and 50μ thick, very slightly curved, distal end not brondened but flattened, and on one side somewhat hollowed, ending in a simple triangular point; distal third, except extreme tip, beset with a large number of minute sculpturings, ennex towards the tip of the seta, arranged in transverse rows, the appearance being that of fish-scales.

Remarlis. The chief difference between l'. bastianus and andersoni was the penial seta; the condition described in andersoni was later recognized by Michaclsen as being an artificial production; a minor difference was that the setal interval $a \pi=b e$ in anderson.

Michaelsen in 1910 suspected the identity of his species with E. masoni : the difficulty was that Bonrne said nothing about any ornamentation of the penial seta; he also described two forms of these set \mathfrak{m}, but'one of these is doubtless only an immature stage of the other. The sculpturing of the penial setw is fairly fine, and may have been neglected bv Bourne; it is always to be remembered that in the days of the earlier writers, it was not known what characters would ultimately be important for systematic distinctions (and therefore should be minutely described). I consider that the fact that I received specimens of Michaelsen's E. bastianus from Dehra Dun, the locality from which Bourne and Beddard received E. maconi, turns the scales sufficiently in favour of the identity to warrant the above synonymy.

Distribution. Dehra Dun, Basti Dist., Bara Banki (United Provinces); Sirssah (Muzaffarpur Dist., Bihar); Calcutta, Rajshahi (Bengal).

12. Eutyphous mohammedi Steph.

1914. Eutyphous mohammedi, Stephenson, Rec. Ind. Mus. x, p. 350 , pl. xxxvi, lig. 9 .
1915. Eutyphous mohammedi, Stephenson, Mem. Ind. Mus. vii, p. 241.

Length 39-75 mm. ; diameter 4.5 mm . Segments 149 ; some
preclitellar segments multinnuular. Colour light grey, middorsal purple streak anteriorly. Prostomium tanylobous, or combined pro- and tanylobous. Dorsal pores from 11/12. In general $a b=\frac{1}{3} a c t=\frac{2}{3} b c=\frac{3}{5} c d$; in front of clitellum $a b=\frac{2}{5}-\frac{1}{2} c t a=\frac{1}{2} b c=\frac{3}{4} c d$; behind clitellum $a b=\frac{1}{4} c a=\frac{1}{3}-\frac{2}{5} b c=\frac{3}{4} c d ; d d=$ rather less than $\frac{4}{3}$ of circumference. Clitellum indistinct, $\frac{1}{2} x i i i-x v i i\left(=4 \frac{1}{2}\right)$. Male pores in b, on distinct papillæ. Spermathecal pores external to b. No genital markings.

Septum 4/5 slightlv, $5 / 6$ moderately thickened, $6 / 7$ and $7 / 3$ absent, $8 / 9-10 / 11$ moderately thickened and close together, $11 / 12$ present and slightly thickened. Gizzard of moderate size. Calciferous glands as swellings of almentary tube in xii and neighbouring part of œesophagus. Intestine begins in xv. Last heart in xiii; dorsal vessel continued forwards as far as pharynx, heart of xi with normal relations. Micronephridia few and of moderate size behind genital region, arranged in at transverse row in each segment. Testes and funnels free in x and x. Seminal vesicles small, in ix and xii. Prostates confined to xviii ; duct in xvii, looped once, with convexity outwards. Spermathece very sinall, ampulla hemispherical, sessile on body-wall; a ring of seven diverticula round base. Penial setæ small, 0.5 mm . long. 18μ in maximum thickness; shaft gently curved, curvature increasing towards tip, which is bluntly pointed; a few minute triangular teeth near tip.

Remarks. The description raises the suspicion that the specimens were not fully mature, and that they may belong to E. incommoclus; perhaps the perial setr will distinguish them-in the present form there is no swelling of the tip, and the extent of the ornamentation is rather more limited (cf. the two figs. on pl. xaxvi, Rec. Ind. Mus. x). The absence of genital markings in the present case might be paralleled by their absence in E. bengalensis, which I have shown to be a form of walloni. I confess to being doubtful, and should not be surprised if further investigations show that the present form is to be united with E. incommodus.

Distribution. Rawal Pindi; Allahabad.

13. Eutyphœous nainianus Mich.

1907. Eutyphows nainianus, Michaelsen, Mt. Mus. Hamburg, xxiv,
p. 177 , text-fig. 21 .
1908. Eutyphous nainianus, Michaelsen, Mem. Ind. Mus. i, p. 225, pl. xiv, fig. 64, text-fig. 27.
Length 60 mm .; dianeter $3-4 \frac{1}{2} \mathrm{~mm}$. Segments 138 . Colour grey. Prostomium tanylobous, tongue broader behind. Setæ not closely paired, at hinder end separated; in postclitellar region $\boldsymbol{a} a: a b: b c: c l=7: 4: 6: 5$; $\quad d d=c a$. $\frac{5}{3}$ of circumference. Dorsal pores inconspicuous, only seen behind clitellum. Clitellum ringshaped, xiii-xvii $(=5)$. Male pores on very prominent almost circular papillæ, the centres of papilm in bor nearly so. Female
pores just in front of setæ a of xiv. Spermathecal pores in or rather interual to c. A transversely oval area in 16/17, extending slightly beyond a on each side, surrounded by a whitish wall, and divided down the middle by a similar wall.

Septa and calciferous glands as usual in metandric species. Gizzard large. Intestine begins in xiv (? xv). Large funnels in xi, enclosed in a common sac, which extends upwards at the sides of the segment. A pair of seminal vesicles extending backwards

Fıg. 235̃.--Eıtyphoens numianus Mich., spermatheca; $\times 10$.
to xx , constricted by the septa. Glandular part of prostate large, occupying about four segments; duct muscular, narrower than gland, relatively long, looped, the loop extending laterally. Spermathecal ampulla nearly glebular; duct very short, about half as thick as ampulla; diverticula in two groups of small round chambers, which form an incomplete circle round the base of the ampulla, interrupted at two points (text-fig. 235). No penial seta.

Distribution. Naini Tal, Kumaon Dist., W. Himalayas.

14. Eutyphous nepalensis Micl.

1907. Eutyphwus nepalensis, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 176, text-fig 20.
1908. Liutyphicus nepulensis, Michaelsen, Mem. Ind. Mus. i, p. 233, pl. xiv, fig. 37 , text-fig. 26.
Leugth 110-140 mm.; diameter from 6 mm . in clitellar region to ca. 3.5 mm . at hinder end. Segments $150-180$. Colour greyish. Prostomum more or less distinctly tanylobous; lateral borders of tongue not always distinctly different from the crowd of longitudinal furrows on i. Segments iv-x bi-, tri- or multiannular. Setæ moderately large, especially the ventral setæ of the anteclitellar region; all ventral, all widely paired or separated; aa: little greater than $b, b, b c$ about the same as $c d$, and a little greater than $a b, a u=c a .1 \frac{1}{2} a b ; d l d=\frac{3}{3}-\frac{2}{3}$ of circumference. Dorsal pores from 10/11. Clitellum less marked ventrally, xiii-xvii $(=5)$. Male pores on thick transversely oval papille, the centres of which are a little lateral to b. Female pores in front of a of xiv, each surrounded by a whitish area. Spermathecal pores eyeshaped, with centres in c. Genital markings as paired transversely oval cushions, between and extending outwards and inwards beyond a and b; most constant on $15 / 16$, usually on $19 / 20$ and $20 / 21$, sometimes on $18 / 19$, and unilaterally on $14 / 15$ and $21 / 22$.

Septa $5 / 6$ and $8 / 9$ very thick, the intermediate septa missing; $9 / 10$ and $10 / 11$ somewhat thickened. Gizzard large, oblique. Calciferous glands as usual. Large funnels in xi, enclosed in a sac which appears to embrace the cosophagus as a ring. Seminal vesicles in xii. Prostates very long, occupying about six segments ; duct long, muscular, describing irregular loops, thinner and shorter than the glandular part, but nevertheless about 20 mm . long. Spermathecæ (text-fig. 236) very large; ampulla irregular, sac-like; duct shorter, conical, thicker entally where it is about half as broad as the ampula, tapering ectally ; diverticula as two groups, five or six in each group, each with short stalk opening

Fig. 233.-Eiutyphceus nepalensis Mich.; spermatheca; $\times 5$.
into ectal part of duct, most are simple, some divided into two seminal chambers, all small; in addition, at each side a much larger diverticulum, irregular and sac-like, stalked, opening into the ental end of the duct, or lower down amongst the true diverticula (? separated lobes of main pouch, functioning as accessory diverticula). No penial setæ.

Remarks. For a somewhat similar condition of an accessory ampulla cf. Octochatus pachpaharensis.

Distribution. Chitlong, Little Nepal Valley.

15. Eutyphous nicholsoni (Bedd.)

1901. Typhous nicholsoni, Beddard, P. Z. S. 1901, i, p. 105, texttigs. 54, 55.
1902. Eutypheus khani, Michnelsen, Mt. Mus. Hamburg, xxiv, p. 182, text-fig. 26.
1903. Eutyphowus Lihani, Michaelsen, Mem. Ind. Mus. i, p. 233, pl. xiv, figs. 62,63 , text-fig. 32 ; E. provincialis (laps.), p. 219.
1904. Eutyphaus niciololsoni, Michaelsen, Abh. Ver. Hamburg, xix, p. 92.
1905. Eutypheus nicholsoni, Stephenson, Rec. Ind. Mus. x, p. 354. 1916. Eutyphoous nicholsoni, Stephenson, Rec. Ind. Mus. xii, p. 342.

Length up to 185 mm .; diameter up to 5.5 mm . Segments 190-225; secondary annulation behind iii; in some preclitellar segments as many as four secondary annuli, behind clitellum three. Colour dorsally brownish to violet-grey, ventrally yellowish
grey. Prostomium combined pro- and tanylobous. Dursál pores apparently begin in front of clitellum. Setæ all ventral; $a b: b c: c d$ $=3: 5: 4$ behind clitellum ; $a a$ less than $b c$ in frout of, greater behind clitellum; setæ present on clitellum. Clitellum $\frac{1}{3}$ xiii or all xiii to xvii ($=4 \frac{3}{3}$ to 5). Male pores near together, surrounded by a common ridge, in a or even closer. Female pore single, on left side in front of seta a of xiv. Spermathecal pores in a. Genital papillæ circular or slightly oval, in $15 / 16$, close together, surrounded by a common wall or groove, and separated from each other in the middle line by a groove; occupying most of the space between setal zones of $x v$ and $x v i$, and laterally extending beyond the line of b.

Fig. 237.-Fiutyphous nicholsoni (Bedd.) ; spermatheca; $\times 10$.

Fig. 238.--Eutyphhous nucholsoni (Bedd.); dıstal end of penial seta; $\times 225$.

Septa 4/5 and 8/9-10/11 very strong; 5/6-7/8 absent. Calciferous glands and vascular system as usual in metandric species. Intestine begins in $\mathbf{x v}$; intestinal pouches five pairs, beginning about lexxiv. Testis sac common to the organs of the two sides. Seminal vesicles long, extending back to xiv, flattened, the margins somewhat lobulated. Prostates tightly coiled; duct muscular, in an S-like curve, of fair length, much thinner than the glandular part. Spermathecal ampulla broad and short, somewhat lobed, the lobes showing a number of small lobular protuberances ; duct rather long (longer than height of ampulla), half as thick as ampulla, narrower ectally; diverticulum fan-shaped, on outer side of duct, or double, each broad, with 3-5 seminal chambers.

Penial setse (text-fig. 238) about 4 mm . long, 20μ thick, nearly straight; tip rather blunt; ornamentation of sparse indistinct triangular teeth (not always present).

Remarks. A variable species; for example, I found that the papillm on $15 / 10$ may or may not be surrounded by a wall, and that the male slits may be united in a single one. The penial setæ, according to Michaelsen, may be shorter and thinner than given above ; the tip appears otten to be sharply bent, almost looped (but it is common in the genus to find the tip solt and bent or deformed). I examined the female pores, and found the left present alone in nine, a large left with a small right pore in two, and no pores distinguishable in one.

Distribution. Saharanpur, Lucknow, Bara Banki, and Basti Dist., United Provinces ; Rajmahal and Calcutta, Bengal.

16. Eutyphœens orientalis (Bedd.).

> 1883. Typheus orientalis, Beddard, Ann. Mag. N. H. (5) xii, p. 919 , pl. viii, figs. 1, 2, 4, 9-12.
> 1888. Typhceus orientalis, Beddard, Quart. J. Mic. Sci. xxix, p. 117, pl. xiii, fig. 2.
> 1895. Typhceus orientalis, Beddard. Monog. p. 473.
> 1898. Typhceus orientalis, Fedarb, P. Z. S. 1898. p. 445.
> 1900. Eutyphceus orientalis, Michaelsen, Tier. x, p. 322.
> 1901. Typhocus orientalis, Beddard, P. Z. S. 1901 , i, p. 205.
> 1922. Eutyphocus orientalis, Stephenson, Rec. Ind. Mus. xxiv, p. 437, text-fig. 3.

Length $158-250 \mathrm{~mm}$.; diameter $5-8 \mathrm{~mm}$. Seginents 192. Dorsal pores present behind clitellum. Setæ all ventral. Clitellum includes xiv and a small part of xiii to xvii (=more than 4). The male area, on xvii, presents a pair of bracket-shaped grooves ([]), each overhung on its outer side by a thickened ridge; male pores in the posterior corner of each bracket, a little outside b. Spermathecal pores slit-like, between b and c, but nearer c, the outer end of the slit reaching the line of c. Three pairs of genital papillx, intersegmentat, in front of the male pores, transversely oval, depressed in the centre; another pair in 18/19, sometimes papillæ in 19/20 and 13/14; papillæ in line with $a b$.

Five glands, increasing in size backwards, on dorsal surface of intestine towards end of middle third of body, some or all bilobed (i. e., one lobe on erch side of the middle line). Seminal vesicles extend back to xv. Prostates as large coiled tubes; ducts thinner. Spermathecal ampulla an ovoid sac, with crenate margins; duct from under surface of ampulla, short, stout, muscular; two diverticula, one on each side, each with one, two, or three seminal chambers, join the main organ where ampulla passes into duct. Peuial setæ 2.5 mm . long, 26μ thick in middle, shaft almost straight; curved, bluntly pointed and flattened tip; ornamentation of closely set oblique markings along the borders of the distal end.

Remarks. The original description states that septa $5 / 6$ and $6 / 7$ are thickened; this may be a mistake for $4 / 5$ and $5 / 6$. The oblique ridges on the penial setæ are described by Beddard as "chevron-shaped ridges."

Distribution. Dehra Dun; Calcutta.

17. Eatyphœus paivai Mich.

1007. Eutyphous paivai, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 178, text-fig. 23.
1008. Eutyphreus paicai, Michrelsen, Mem. Ind. Mus i, p. 228, pl. xiv, figs. 38, 39 , text-fig. 29.
Length 195 mm .; maximum diameter 5 mm . Segments ca. 220. Colour violet-brown dorsally, with darker middorsal stripe ; greyish laterally and ventrally. Prostomium tanylobous, borders of tongue parallel. Dorsal pores inconspicuous. Setæ all ventral; $a a: a b: b c: c d=3: 2: 3: 2-2 \frac{1}{4} ; d d$ greater than half of circumference. Clitellum $\frac{1}{3} x i i i-x v i i ~\left(~=~ 4 \frac{1}{3}\right)$; ring-shaped, but less marked ventrally, and absent ventrally in xvii. Male pores in hollows, about in b; surrounding parts of body-wall tumid.

Fig. 239.--Futyphous paivai Mich.; spermatheca; $\times 5$.

Fig. 240.--Eutyphous paivai Mich.; distal end of penial seta; $\times 250$.

Spermathecal pores as slits between b and c, nearer to b; tumid patches in front and behind. Genital markings as paired transversely oval areas, in and slightly transgressing $a b$, on $15 / 16$, $16 / 17$, and $18 / 19-22 / 23$, seven pairs in all.

Septa, calciferous glands and anterior male organs as usual in metandric species. Gizzard large. Intestine begins in xv. Seminal vesicles lobate, extending back to xvi. Prostates large, occupying segments xvii-xxi ; duct thin, relatively long, describing several loops. Spermathecnl ampulla irregularly sac-shaped, constricted (? constantly) in front of the middle, thicker behind; duct broad and short, from the under surface; diverticula three or four, in a single group, each irregularly sausage-shaped or stump-like (text-fig. 239). Penial setæ (text-fig. 240) ca. 4 mm .
long and 32μ thick, scarcely bent, scarcely tapering distally; tip bent more strongly, flattened but not broadened; distal third of seta except extreme tip with densely crowded irregular transverse rows of fine teeth.

Distribution. Pusa, Bihar.

18. Eutyphoous pharpingianus Mich.

> 1907. Eutyphous pharpingianus, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 177, text-fig. 22 .
1909. Eutyphents pharpingianus, Michaelsen, Mem. Ind. Mus. i, p. 226, pl. xiv, figs. 56, 57, text-fig. 23.

Length 130 mm .; dianeter $4-4 \frac{1}{2} \mathrm{~mm}$. Segments 118. Colour grey. Prostomium indistinctly tanylobous, small, retracted into buccal cavity. Dorsal pores from 11/12. Setæ moderately large,

Fig. 241.--Eutyphous pharpingianus Mich.; spermatheca; $\times 15$.

Fig. 242.-Eutyphoeus pharpingianus Mich.; distal end of penial seta; $\times 225$.
the ventral paired, the lateral separated; $c d=b c=1 \frac{1}{2} a b=\frac{4}{4} \frac{3}{4} a a$; $d d=\frac{5}{8}$ of circumference. Clitellum xiii-xvii $(=5)$; somewhat less distinct ventrally between the lines of setm a. Male pores on nearly circular papillm, about in b. Female pores in front of a of xiv. Spermathecal pores in b. Genital markings as four pairs of transverse slits or narrow areas, in $a b$, on hinder parts of xiiixvi or in furrows $13 / 14-16 / 17$.

Septa and calciferous glands as usual in metandric species. Gizzard large. Funnels in xi, perhaps enclosed in a common
testis sac. Seminal vesicles extending very far back, to xxxiii in the single specimen, broader and lobed in their anterior part, constricted by the septa. Prostates with very long and convoluted glandular part, occupying about four segments; duct thinner, relatively long, describing two loops, muscular. Spermathecal ampulla nearly globular ; duct indistinct, very short, about half as broad as ampulla; diverticula as an interrupted circle of seminal chambers round base of ampulla in groups of twos, threes, or fours, or single chambers (text-fig. 241). Penial setæ (textfig. 242) ca. $1_{\frac{2}{3}}^{2} \mathrm{~mm}$. long and 26μ thick, bent only in the distal part, scarcely tapering, tip simple and blunt; ornamentation beginning some distance above extreme tip, of sparse sinall irregularly toothed ridges or rows of short teeth.

Distribution. Pharping, near Katmandu, Nepal Valley.

19. Eutyphœus quadripapillatus Mich.

1907. Eutyphous quadripapillatus, Michaelsen, Nt. Mus. Hamburg, xxiv, p. 175, text-fig. 19.
1908. Eutyphous quadripapillatus, Michaelsen, Mem. Ind. Mus. i, p. 221 , pl. xiv, fig. 55, text-fig. 25.
1909. Eutyphous quadripapillatus, Michaelsen, Abh. Ver. Hamburg, xix, p. 90.
Length $60-70 \mathrm{~mm}$.; maximum diameter $3 \frac{3}{4} \mathrm{~mm}$. Segments 120-155. Colour in general yellowish green, with a light rose tint anteriorly. Dorsal pores from 11/12. Setæ all ventral ; in

Fig. 243.--Eutyphceus quadripapillatus Mich.; spermathecn; $\times 8$.
general $a a: u b: b c: c d=4: 2: 4: 3$ in middle of body; $d d=c a .{ }^{3}$ of circumference. Clitellum indistinctly saddle-shaped, at least in the hinder part ; xiii or $\frac{2}{3}$ xiii-xvii ($=4 \frac{2}{3}$ or 5). Male pores on prominent transversely oval papillæ, the papille in $a b$ and extending somewhat outside b, their centre a little internal tn b. Female pores just in front of setæ a of xiv. Spermathecal pores on small transversely oval papillæ between a and b, somewhat nearer to b. Genital markings as two pairs of transversely oval papillw or areas on 13/14 and 14/15 about in b.

Septum $4 / 5$ strong, $5 / 6$ very strong, $6 / 7$ and $7 / 8$ missing, the following septa as far as $11 / 12$ scarcely strengthened, except $9 / 10$, which is moderately strong. Gizzard large. Calciferous glands as usual in the genus. Intestine begins in xv. Testes and funnels in x and $x i$, apparently free; those of x much smaller than those of xi, but by no means vestigial. Seminal vesicles in ix and xii, the anterior pair confined to ix, the posterior extending
back as far as xxx ; both pairs much incised. Prostates with long, coiled and adpressed glandular part, occupying about three segments; duct thin, somewhat bent; sperm-ducts of one side unite towards their ectal end, pass the end of the prostatic duct on its outer side, and turn round to open into the same pore from behind. Spermatheca (text-fig. 243) with nearly circular and depressed anpulla; duct short and conical; about ten stump-like diverticula of different sizes, sometimes united two together at their bases, the whole forming a rosette round the duct, which may be interrupted more or less at two points, the rosette being then divided into two groups ; in situ the diverticula are nearly hidden. No penial setæ.

Distribution. Sirsiah, Bihar ; Saraghat and Calcutta, Bengal.

20. Entyphous scutarius Mick.

1907. Eutyphocus scutarius, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 186, text-ig. 29.
1908. Eutyphacus scutarius, Michaelsen, Mem. Ind. Mus. i, p. 240, pl. xiv, figs. 51-53, text-fig. 35.
Length 140-180 mm. ; maximum diameter 5 mm . Segments ca. 290. Colour greyish with violet tints at the anterior end. Prostomium indistinctly epilobous (?). Dorsal pores from 11/12. Setæ all ventral, paired, but not closely; behind clitellum aa:ab: $b c: c d=3: 1: 3: 2$; in front of clitellum ab larger ($=3: 2: 3: 2$); at posterior end $c d$ nearly as large as $b c$, but arrangement somewhat irregular ; $d d$ greater than half of circumference. Clitellum ringshaped, $\frac{1}{2}$ xiii-xvii $\left(=4 \frac{1}{2}\right)$. Male pores a little lateral to b, each a small aperture surrounded by a ring-shaped wall. A median ventral male area of hexagonal form, including $\frac{1}{2} \times v i-\frac{1}{2} \times v i i i ~ a n d ~$ extending laterally nearly to c, the anterior and lateral borders often marked by a wall; male pores in the lateral angles of the area; the ring-shaped walls of the pores connected by a transverse wall, the space between the transverse wall and the anterior wall of the area often depressed, so also sometimes that between the transverse wall and the posterior border of the area. A median ventral cushion just in tront of male area on 15/16, transversely oval or hexagonal, extending from middle of $x v$ to middle of $x v 1$, and laterally reaching to midway between b and c; the cushion bordered by either a small wall or ridge, or by a furrow, according to the stage of maturity. Female pores just in front of and perhaps rather interual to setæ a of xiv. Spermathecal pores in $7 / 8$ between b and c.

Anterior septa as usual, except that $5 / 6$ is extremely strong, almost as thick as the body-wall. Gizzard large; calciferous glands as usual. Intestine begins in xv. Funnels in a common testis sac in xi. Seminal vesicles extend back as far as xv. Prostates with very long and much coiled glandular part, not forming a compact mass, reaching, back to xxiv; duct thinner, relatively long, describing one or two large loops; sperm-ducts pass round
outer side of end of prostatic ducts and bend forwards to open with them in a common pore. Spermathecal ampulla irregular, sac-like; duct short and narrow, arising from the under surface of ampulla about the middle of its length; diverticula two, opposite, simple or compound, hidden in the natural position (textfig. 244). Penial setæ (text-fig. 245) ca. 2 mm . long, proximally

Fig. 244.-Eutyphous scutarius Mich.; spermatheca; $\times 4$.

Fig. 245.-Eutyphous scutarius Mich.; penial seta; $\times 45$.
ca. 95μ thick, tapering very little, slightly bent in proximal half, more strongly bent distally; distal end simple, often irregular, apparently corrugated, fibrous; distal half of seta with deusely crowded irregular transverse rows of fine teeth, not easy to detect on account of structure of seta.
Distribution. Comillah, Chittagong District.
21. Entyphoous turaensis Steph.
1920. Eutyphous turaensis, Stephenson, Mem. Ind. Mus. vii, p. 244, pl. xi, figs. 48, 49.

Length 100 mm .; maximum diameter 3.5 mm . Segments 17.1 ; secondary annulation in $v-x i$. Unpigmented, no difference between dorsal and ventral surfaces. Prostomium small, tanylobous. Dorsal pores from 11/12. Setæ enlarged on iii-vi, scarcely visible on ix and x; anteriorly $a b=\frac{3}{3} a a=\frac{1}{2} b c=\frac{3}{4} c d$; behind clitellum $a b=\frac{1}{4} a a=\frac{2}{3} b c=\frac{2}{3} c d$; in middle of body $a b=\frac{1}{3} a a=\frac{1}{2} b c=\frac{2}{3} c d$; ,
$d d=$ nearly $\frac{2}{3}$ of circumference. Clitellum very slightly marked, ? xv-xvii. Male pores in a pair of narrow transverse depressions, which extend from inside a to outside b, the pores in b. Spermathecal pores in $7 / 8$ in b. Faint genital markings on $14 / 15,15 / 16$,

Fig. 246.-Eutyphoeus turaensis Steph.; spermatheca seen from above; the sac is attached to the body-wall by the middle of its under surface.
and $16 / 17$, as slightly pigmented spots surrounded by circular grooves.

Septa and calciferous glands as usual in metandric species. Gizzard barrel-shaped. Intestine begins in xr. Dorsal vessel

Fig. 247.-Eutypnceus turaensis Steph.; penial sets; a, as seen as a whole, $\times 37$; b, tip more highly magnified, \times ca. 180.
ends at anterior ond of gizzard (not posterior end, as usual in metandric species). .Testis sacs in xi, separate. Seminal vesicles large, indented, extending, back to the level of $14 / 15$ by bulging back the septa. Prostates small, in xviii-xix, coils closely packed; duct scarcely narrower than glandular part, undulating, soft, not
shining．Spermathecal ampulla as an elongated sac attached to body－wall by a portion of the under surface；no distinct duct； diverticula two，one on each side，attached to base of sac by a short and relatively stout stalk，each lobulated，with three or four seminal chambers（text－fig．246）．Penial setæ（text－fig．247）up to 1.5 mm ．long， 35μ thick，slightly curved in the distal half； tip bluntly pointed and rather claw－like；ornamentation as very fine dot－like markings over distal eighth or tenth of shaft， including tip．

Remarks．Allied to E．chittayongianus，the internal anatomy being strikingly similar；the genital markings，however，are just on those grooves where they do not appear in that species．

Distribution．Garo IIills，Assam．

22．Eutyphœus waltoni Mich．

1907．Eutypheous waltoni + E．bengalensis，Michnelsen．Mt．Mus． Hamburg，xxiv，pp．179，183，text－fig． 24.
1909．Eutyphous waltoni + E．bengalensis，Michaelsen，Mem．Ind． Mus．i，pp．229，235，pl．xir，figs． $4 \mathbf{5}-48$ ，text－fig． 30.
1910．Eutyphous welltoni，Michaelsen，Abh．Ver．Hamburg，xix， p． 91.
1914．Eutyphoous waltoni，Stephenson，Rec．Ind．Mus．x，p． 352. 1916．Eutyphous waltoni，Stephenson，Rec．Ind．Mus．xii，p． 342. 1917．Futyphous waltoni，Stephenson，Rec．Ind．Mus．xiii，p． 408. 1919．Eutyphous waltoni，Stephenson and Haru Ram，Tr．Roy． Soc．Edin．lii，p．447，pl．figs．7， 8.
1919．Eutyphous waltoni，Stephenson and Prashad，Tr．Roy．Soc． Edin．lii，p．465，pl．figs．8－10．
1920．Eutypiawus waltoni，Stephenson，Mem．Ind．Mus．vii，p． 243. 1922．Eutypharus ualtoni，Stephenson，Rec．Ind．Mus．xxiv， p． 438.
Length $90-230 \mathrm{~mm}$ ．；maximum diameter $4 \frac{1}{2}-6 \frac{1}{2} \mathrm{~mm}$ ．Seg－ meuts 190－210．Colour brownish to violet－grey dorsally，with middorsal stripe behind clitellum；laterally and ventrally yellowish grey．Prostomium tanylobous，sides of tongue parallel．Dorsal pores from $12 / 13$ or $11 / 12$ ．Setæ rather small，paired but not closely；behind clitellum $a b=\frac{2}{5} a a=\frac{1}{2} b c=\frac{3}{4} c c l$ ；in front of clitellum and at hinder end setæ nearly separated；all ventral，$d d=c a . \frac{3}{3}$ of circumference．Clitellum ring－shaped，but thinner ventrally； $\frac{1}{2} x i i i-x v i i\left(=4 \frac{1}{2}\right)$ ．Male pores lateral to if not in line with b ，in deep slits or grooves which extend between and rather transgress the lines a and b ．Female pores in front of and a little lateral to a ．Spermathecal pores in $7 / 8$ ，in c ，in the centre of eye－shaped areas．Genital markings as transversely oval areas or giandular slits between the lines of the ventral setal couples，somewhat transgressing these limits；nearly constant on $15 / 16$ and 18／19， often on $14 / 15$ and $16 / 17$ ，rarely on 19／20 and $20 / 21$ ；sometimes a pair of organs of a rather different appearance－eye－shaped papillæ－on 9／10．

Septn，calciferous glands，and vascular system as usual in metandric species．Gizzard large．Intestine begins in xiv（？xv）．

Intestinal cæca about the middle of the body. Funnels in xi, enclosed in a common testis sac. Seminal vesicles in xii. Prostates very long, occupying about three segments; duct muscular, thinner and much shorter than the glandular part, about 6 mm . long. Spermathecal ampulla thick, sac-like; duct thin, about half as long as ampulla; diverticula two, abreast, not opposite, each of about four seminal chambers arranged in a fan-like manner, apposed to base of ampulla, but the attachment is to the duct (text-fig. 248). Penial setæ (text-fig. 249) up to $4 \cdot 7 \mathrm{~mm}$. long,

Fig. 248.-Eutyphceus waltoni
Mich.; spermatheca; $\times 5$.

Fig. 240.--Eutyphous waltoni Mich.; distal end of penial setn, $\times 400$; a, ornamentation, $\times 3000$.
16μ thick, curved to form about a quarter of a circle; distal end ourved somewhat more strongly, broadened a little and hollowed on the concave side, and thus spoon-like, with a somewhat hooked tip; ornamentation of fine hair-like spines on convex side of distal end, irregularly but rather densely distributed (may not be identifiable as distinct spines, even with the oil immersion lens).

Remarks. This species produces penial setæ early, before the clitellum and genital markings appear ; hence the description of E. bengalensis as a separate species (93).

Stephenson and Haru Ram have studied the prostate (92), and Stephenson and Prashad the calciferous glands (91).

Distribution. Hoshiarpur District, Delhi (Punjab); Dehra Dun, Lucknow, Agra, Mainpuri, Fyzabad (U.P.); Pusa, Siripur (Bihar); Saraghat, Rajmehal, Calcutta (Bengal); Baroda, Ahmedabad, Navli (W. India); Gwalior (Central India).

6. Genus ERYTHRENODRILUS Steph.

1915. Erythreodrilus, Stephenson, Mem. Ind. Mus. vi, p. 100.
1917. Hoplochatella (part.) + Erythrceodrilus, Stephenson, Rec. Ind. Nus. xiii, pp. 354, 359.
1920. Hoplochactella (part.) + Erythrrodrilus, Stephenson, Mem. Ind. Mus. vii, p. 227.
1921. Eirythreodrilus, Michaelsen, Mt. Mus. Hanburg, xxxviii, pp. 35, 38.

Setal arrangement perichætine. One gizzard in one simple segment. Four pairs of calciferous glands in x-xiii. Nephridial system mixed mega- and micronephric, the micronephridia occurring throughout the body, the meganephridia from about $\mathbf{x x}$ onwards. Testes and funnels free or in testis sacs; genital apparatus various, from an impure acanthodriline to an incompletely microscolecine condition.

I follow Michaelsen (99) in uniting the two genera Hoplochcetellu (as conceived by me, 86) and Erythrceodrilus. I now agree with Michaelsen that Bourne's Perichocta stuarti, the type of the genus Hoplochoetella, is unrecognizable, but that it probably had no calciferous glands, and so did not belong to the present genus and cannot be classified along with the species which I described under the name Hoplochetella. The single species which 1 formerly placed in the genus Erythreodrilus (E. kinneari) differs from those I called Hoplochcetella in having testis sacs (found however in Hoplochaetella anomala), in having three pairs of seminal vesicles (also found in H. anomala), and in having only the anterior pair of prostates. It is thus a later evolved species, and H. anomala is possibly its actual ancestor.

The genus is to be derived from Howascolex, as previously explained, to which it is also adjacent geographically. It has given rise to no descendants, being itself as yet in process of evolution, and showing in its several species several stages of the microscolecine reduction.

Distribution. Western India, including Bombay and neighbourhood, Portuguese India, Castle Rock in N. Kanara District, and Belgaum.

Key to the species of the genus Erythræodrilus.

1. One pair of prostates

Two pairs of prostates E. kinneari.
2.
2. Spermathecal diverticula few, $2-4 \ldots \ldots$.

Spermathecal diverticula many, 9-20 5
3. Testis sacs present
E. anomalus.

Testes and funnels free
4.
4. Genital markings as two papillæ, each surrounded by a groove, over 16/17 and 19/20
E. kempi typ.

Genital markings as two saucer-like depressions over 16/17 and 19/20
E. Kempi var. bifoveatus.
5. Spermathecal diverticula in two circles .. E. inornatus.

Spermathecal diverticula in a single circle. 6 .
6. Spermathecal diverticula $15-20$ in number. E. suctorius typ.

Spermathecal diverticula 9-12 in number. . E. suctorıus var. affinis.
I. have somewhat reduced the number of species, in which, as I now think, the variable genital markings were previously accorded undue weight.

1. Erythræodrilus anomalus (Steph.).

1920. Hoplochatella anomala, Stephenson, Mem. Ind. Mus. vii, p. 223, pl. x, figs. 25-29.

Length ca. 85 mm. ; diameter 3 mm . Segments ca. 100. Colour pale, unpigmented or almost so. Prostomium epilobous $\frac{1}{3}$, tongue broad, not cut off behind. Dorsal pores from $4 / 5$. Setal rings almost closed ventrally, dorsally the gap $=4 y z$ in front of the clitellum, $3 y z$ behind it, $2 y z$ in middle of body; setal intervals decrease somewhat from the midventral line outwards, so that $a a>a b>b c>c a$; numbers $36-4 t / \mathrm{viii}, 40-46 / \mathrm{xii}$, and ca. 40 in middle of body. Clitellum $\frac{1}{2} x i i i-\frac{1}{2} \times 1 i(=3)$. On male area two pairs of crater-like depressions, with thickened and rounded

Fig. 250.-E'rythrcoodrilus anomalus (Steph.); spermatheca.

Fig. 251.-E'rythrcoodrilus anomalus (Steph.); tip of copulatory seta.
margins, rather oval in a transverse direction, on xvii and xix, longitudinally taking up the extent of the segment, transversely extending from b to h; the two depressions of a pair united by a transverse thickening; prostatic pores in the inner portions of the depressions, between c and d. There may be similar depressions, one or two, on xviii also. Female pore single, in front of the setal zone of xiv. Spermathecal pores two pairs, on small papille on viii and ix, in line with c, about one-fifth of the circumference apart, the pores of viii in front of the setal zone, those of ix in it. The setro on the ventral surface of viii or ix may be displaced forwards or backwards.

Septa 11/12 and 12/13 perhaps somewhat thickened. Gizzard large, ovoid, firm, in vii. Calciferous glands in x-xiii, small, ovoid, set off from the cosophagus, those in x and $x i$ within the testis sacs.

Intestine begins in xvi. Last heart in xii ; no large vessel in xiii, but in xiv a pair of large vessels, given off from the dorsal vessel, perhaps distributed to the alimentary canal. Meganephridia from $\mathbf{x x}$. Testis sacs in \mathbf{x} and xi, enclosing alimentary canal and dorsal vessel, and in x also a pair of seminal vesicles. Seminal vesicles in ix, \mathbf{x}, and xii. Prostates two pairs, the anterior occupying xvii-xviii, the posterior xix-xxi; ducts stouter than the glands, shining, rather short, straight, thinnor at the ental end. The vasa deferentia of the same side pass backwards side by side, one ending near the termination of the anterior prostate, the other near that of the posterior. Small ovisacs in xiv. Two pairs of spermathece (text-fig. 250) ; the ampulla an irregular sac: duct stout, nearly as long as ampulla, thicker above, contracted and shiny below, set off from ampulla by a constriction ; diverticula two, opposite, on the duct below the upper dilated part, sessile, each consisting of a few rounded seminal chambers. Clusters of finger-shaped accessory glands, 3-5 in each group, near the spermathecal duct. Copulatory setæ (text-fig. 251) associated with the accessory spermathecal glands; length 0.61 mm ., diameter $\because 2 \mu$, almost straight, with a slight proximal curve, tapering and bluntly pointed distally; ornamentation as a few very fine oblique lines or semicircular markings near the tip.

Remarls. Differs from the other species of the genus in the manner of ending of the vasa deferentia, and more primitive in the greater separation of the spermathecal and of the prostatic pores of the same side. The presence of testis sacs may or may not be primitive. The species is similar to E. kinneari in having testis sacs, and in having the same number of seminal vesicles in the same positions, and may be the direct ancestor of the latter.

Distribution. Belgaum, Bombay Presidency.

2. Erythræodrilus inornatus (Steph.).

1917. Hoplochcetlla inornuta, Stephenson, Rec. Ind. Mus. xiii, p. 395, pl. x xii, fig. 17.

Length 101 mmu ; maximum diameter 6 mm . Segments 79. Colour light brown dorsally, pale ventrally. Prostomium epilobous (or perhaps may be tanylobous). Dorsal pores from 6/7. Setal rings closed dursally, and almost so ventrally; setæ of viii-xii very small; numbers $84 /$ v, $80 / 1 \mathrm{x}$, ca. $84 / \mathrm{xii}$, $85 / \mathrm{xx}$, and 91 in middle of body. Clitellum $\frac{1}{2}$ xiii-xvi $\left(=3 \frac{1}{2}\right)$, brown and markedly constricted. Prostatic pores two pairs, on xvii and xix, at the hinder and anterior borders respectively; small pits, fairly close together, broadly oval in outline, with distinct lip. Female pore as in suctorius. Spermathecal pores represented by two pairs of transversely oval papille on viii, between the setal zoue and the anterior, and the setal zone and the posterior, limit of the segment respectively, not far from the middle line. Setæ of viii absent ventrally; a few dark dots on the posterior spermathecal papillæ may be displaced setæ.

Septa as in suctorius. A barrel-shaped gizzard in vi. Calciferous glands in x-xiii, small in the two anterior, large in the two posterior segments, kidney-shaped and attached by the hilus. Intestine begins in xvi; lymph-glands as in suctorius; a large, probably lymphoid mass on the nesophagus in xv. Last heart in xiii; vessels in xiv as in suctorius. Nephridia as in kempi. Anterior male organs disposed as in suctorius; anterior seminal vesicles very conspicuous, larger than the posterior. Prostates large, the anterior extending back to xxiii, the posterior to xxviii ; ectal portion as a thin coiled duct, becoming thicker towards its end. Vasa deferentia separate to their ending, both end in connection with the termination of the anterior prostatic duct. Apparently a small ovisac in xiv. Spermathecal ampulla an irregular sac, narrower below, and continued into the duct with

Fig. 252.-Erythrcodrilus inornatus (Steph.) ; spermatheca.
no sharp demarcation; duct about balf as long as ampulla, narrower towards ectal end; a double ring of small diverticula, about 20 in all, round junction of duct and ampulla (text-fig. 252). Aceessory glands in region of prostatic apertures, three pairs, in xvii, xviii, and xix ; those in xviii the largest, taking up whole length of segment; stalks short and stout, those of the glands in xvii and xix passing through the septa to join those of the glands in xviii. Accessory spermathecal glands in two groups of five each, each group between the ends of the spermathece of the same side, about the middle of the length of viii.

Distribution. Talewadi, near Castle Rock, W. India.
3. Erythræodrilus kempi (Steph.).
1917. Hoplochatella kempi, Stephenson, Rec. Ind. Mus. xiii, p. 392, pl. xvii, figs. 15, 16.

Length up to 103 mm .; diameter 4.5 mm . Segments 106. Colour rich brown dorsally with darker median stripe, pale
ventrally. Prostomium variable, epilobous $\frac{2}{5}$ to $\frac{4}{5}$, broad or narrow. Dorsal pores from 6/7. Setal rings with dorsal and ventral gaps; $a a=2 \frac{1}{2}$ or $2 a b, z z=2-3 y z$; sete on the average closer set ventrally; numbers $52 / \mathrm{v}, 56 / \mathrm{x}, 45 / \mathrm{xx}$, and 44 in the middle of the body. Clitellum $\frac{1}{2} x i i i-x v i\left(=3 \frac{1}{2}\right)$, darker than the rest of the surface. Ventral surface concave over xvii-xix;

Fig. 253.-Erythreodrilus kempn (Steph.); male genital area; x., papilla surrounded by groove; pr., prostatic apertures.
prostatic pores in transversely oval pits in 17/18 and 18/19. Genital markings (text-fig. 253) as large, broadly oval papillæ, each surrounded by a groove; one over 16/17 midventrally or on the right side, and one over 19/20 and the anterior part of xx , on the left side; or only the posterior may be present. Female pore as

Fig. 254.-Erythrcodrilus Kempi (Steph.) ; spermatheca, represented with an accessory gland alongside.
in suctorius. Spermathecal pores two pairs, on viii, on papille; actual pores present apparently only at copulation and oviposition (so, too, in some or all the other species of the genus); the anterior pair in front of the setal zone, the posterior just in front of $8 / 9$; both pairs rather near the middle line. Minute papillo bearing setæ on vii and ix, usually in the setal zone, not displaced; a few displaced setre apparently on the anterior pair of spermathecal papillæ themselves.

Septa as in suctorius. Gizzard of moderate size, in vi. Calciferous glands large, stalked, in xii and xiii; smaller and more deeply placed in x and $x i$. Intestine begius in xvi; lymph glands as in suctorius. Last heart in xiil; a pair of commissures in xiv, as in suctorius. Meganephridia first plainly visible in xx ; behind this micronephridia in a transverse band, though not in a single row. Anterior male organs as in suctorius; prostates also much as in that species. Vas deferens ends by entering body-wall just behind and external to prostatic duct. Spermathecal ampulla ovoid; duct only slightly set off, narrowing to its termination, rather shorter than the ampulla; diverticula two to four, about the middle of the length of the duct (text-fig. 254). Accessory glands numerous and conspicuous on inside of body-wall in spermathecal region, each elongnted and cylindrical, with short narrow stalk.
Distribution. Talewadi, near Castle Rock, W. India.
a. var. bifoveatus (Steph.).
1917. Hoplochcetella bifoveata, Stephenson, Rec. [nd. Mus. גiii, p. 398, pl. xvit, tig. 18.
1922. Erythreudrilus liempi var. bifoveatus, Stephenson, Rec. Ind. Mus. xxiv, p. 437.
As for type form, with the following exceptions:-
Colour light brown. Prostomium epilobous $\frac{1}{2}$, broad. Dorsal pores from $5 / 6$. Numbers of setie $49 / \mathrm{v}, 63 / \mathrm{x}, 60 / \mathrm{xii}$, ca. $50 / \mathrm{xxii}$. Clitellar region much swollen, xvii and part of xviii also somewhat modified. Genital markings (text-fig. 255) as two large shallow saucer-like depressed areas over $16 / 17$ and $19 / 20$, in transverse

Fig. 255.-Erythrcoodrilus keinpi (Steph.) var. bifoveatus; male genital field ; x. , depression ; pr., prostatic pores.

[^5]Distribution. Talewadi, near Castle Rock, W. India; Bombay.

4. Erythrmodrilus kinneari Steph.

1915. Erythraeodrilus kinneari, Stephenson, Mem. Ind. Mus. vi, p. 100 , pl. vii, firy. viii.
1916. Erythreodrilus kinneari, Stephenson, Rec. Ind. Mus. xiii, p. 402, pl. xvii, fig. 21.

Length 40-120 mm.; maximum diameter $2-3 \frac{1}{2} \mathrm{~mm}$. Segments 64-112. Colour brown. Prostomium apparently prolobous. Dorsal pores from 3/4. Setæ small; $a \iota=1 \frac{1}{2} a b, \quad z z=2-3 y z$; numbers $46 / \mathrm{vi}$, ca. $53 / \mathrm{ix}, 43 / \mathrm{xiv}$, $40 / \mathrm{xix}$ (or smaller numbers, 3436). Clitellum $\frac{1}{2} x i i i-\frac{2}{3} x v i\left(=3 \frac{1}{6}\right)$; dorsal pores absent. Male pores on xvii, behind the setal ring, about in ccl, $\frac{1}{4-\frac{1}{2}}$ of circumference apart, on whitish papillx. A rectangular glandular area may be present ventrally on xvii, within which the pores are included. Female pore single, in front of setal zone of xiv. Spermathecal

Fig. 256.-Erythreodrilus kinneari Steph.; spermathecæ of one side, with diverticula and spermathecal glands; the spermathecea almost meet at their ectal ends on the bods-wall in segment viii.
pores two pairs, those of each side nearly confluent at the level of the setal ring of viii, in or near d; or the anterior pair may end just in front of groove $7 / 8$, or in the groove. Genital markings notconstant, and may be absent: (1) a pair of small rounded papillæ on xviii behind the setal ring, very slightly internal to the position of the male pores; (2) a pair of oval patches with whitisi periphery and dark centre, on vii, near the posterior border of the segment, its centre in line with e; (3) eye-like markings in 16/17 just internal to the line of the male papillo.

Septa all present from $4 / 5$, all thin. Gizzard ovoid, in vi. Calciferous glands four pairs, in x-xiii, those in x and $x i$ smaller;
or three pairs in x-xii, with no marked difference in size. Intestine begins in xv or xvi. Last heart in xii or xiii; in xiv a vascular conmissure like that in suctorius. Meganephridia begin in $x x$ or $x x i$; micronephridia throughout the body, especially numerous on inner side of body-wall in clitellar region, and in iv and v in the form of conspicuous tufts at hinder end of pharynx. Testes and funnels in testis sacs in x and xi ; the sacs of xi contain also the hearts, extending upwards towards the dorsal surface. Seminal vesicles three pairs, in ix, x, and xii. Prostates extending back several segments, to xix or xxi, thrown into a series of loops; duct thinner than glandular part. Two pairs spermathecæ (text-fig. 256) ; ampulla large, pear-shaped, continued into duct at its narrow end ; duct about is long as ampulla, not set off; diverticula in two considerable clusters at base of ampulla, or two diverticula, each subdivided. Ducts of spermatheco of the same side converge, backwards and forwards, and may almost meet at the middle of viii. Accessory glands (text-fig. 256), one, two or three, on each side, opening near spermathecæ, narrow, finger-like, stalked, the longest about half as long as a spermatheca.

Distribution. Castle Rock, W. India.

5. Erythræodrilus suctorius (Steph.).

1917. Hoplochatella suctoria, Stephencon, Rec. Ind. Mus. xiii, p. 388 , pl. xri, fig. 12., pl. xvii, figs. 13, 14.

Length 140 mm .; diameter 6 mm . Segments 145 . Colour light brown dorsally, with darker median stripe; pale ventrally. Prostomium epilobous $\frac{2}{3}$, tongue not closed behind. Dorsal pores from $4 / 5$. Setal rings with small dorsal and ventral gaps;

Fig. 257.-Erythreodrilus suctorius (Steph.); region of male pores; x., suckerlike depression ; pr., prostatic apertures.
setæ of iii-viii enlarged; setæ more closely set ventrally ; numbers $66 / \mathrm{v}, 66 / \mathrm{ix}, 63 / \mathrm{xii}, 60 / \mathrm{xxi}$, and 58 behind middle of body. Clitellum not distiuguishable. Male field (text-fig. 257) over xvii-xix, sunken, triangular with base anterior; containing the prostatic pores, in 17/18 and 18/19, transverse almost linear pits, fairly close together; and also three sucker-like circular or oval clean-cut depressions, a pair on xvii and a single one on xix, which latter
may be in the middle line or not; or there may be a single depression on xvii and a pair on xix, in which case the triangle is reversed, the base being posterior. Female pore midventral on xiv, in front of the setal zone. Spermathecal pores (text-fig. 258) two pairs, transverse slits, their inner ends not far from the

Fig. 258.--Nrythreodrilus suctoraus (Steph.); regron of spermathecal apertures x., group of displaced setx; spth., spermatbecal apertures.
middle line, on viii, the anterior in the line of the seta, the hinder just in front of grouve 8/9. In the spermathecal region, on vii, viii, and ix. a number of minute papillæ, each with a black dot in its centre which is a displaced seta; these papillæ may be in front of, or less often behind, the setal zone; there are gaps in the regular line of setæ corresponding to the displaced setæ (textfig. 258).

Septum 4/5 thin, $5 / 6-7 / 8$ very thin indeed, $8 / 9$ scarcely thickened; ix is a wide segment, $9 / 10,10 / 11$, and $11 / 12$ are united together peripherally, giving the appearance of a single hugely thickened septum; 12/13 somewhat thickened. Gizzard in vi, large and subspherical. Calciferous glands in x-xiii, kidney-shaped,

Fig. 259.-Erythrcodrilus suctorius (Steph.); spermatheca.
well set off, the two posterior pairs larger than the others. Lymph-glands similar to those of Pheretima over the intestine. Last heart in xiii ; a pair of commissures, smaller than the hearts, in xiv. . Micronephridia behind the genital region arranged in a transverse row; meganephridia from about xii backwards, but large and conspicuous from xx. Testes and funnels free in x and
xi (between the fused septa, v. ant.). Seminal vesicles two pairs, slightly lobed, in ix and xii. Prostates two pairs, each a long looped tube longitudinally disposed, ending in a fusiform duct; the anterior occupying xvii-xxi, the posterior xix-xxv. Vas deferens joins the end of the ducts of the anterior pair. Spermathecæ (text-fig. 259) two pairs; ampulla sac-like, broadly ovoid; duct broad and short, not set off from ampulla; diverticula numerous, $15-20$, in a circle round lower part of ampulla; ducts of anterior pair run back under peritoneal layer of body-wall before ending. Accessory glands near spermathecal apertures, projecting into body-cavity, club-shaped, about 1 mm . in length.

Remarks. The displaced setw of the spermathecal region are rather longer and slenderer than the normal setæ of the region, with sharper tip and no distinct nodulus, and with well-marked sculpturings.

Distribution. Sanvordem, Portuguese India.
a. var. affinis (Stejh.).
1917. Hoplorhatella affinis, Stephenson, Rec. Ind. Mus. xiii, p. 399, pl. xvii, figs. 19, 20.
As for the type form, except as follows:-
Dorsal pores from $4 / 5$ or $5 / 6$. Setal rings with irregular and moderately large dorsal break, 4-5yz or less behind clitellum, 2-3yz

Fig. 260.--E'rythreodrilus suctorius (Steph.) var. affinis ; male genital region ; pr., prostatic apertures.
or less anteriorly and posteriorly; ventral break small and more regular; there may or may not be a tendency to coupling of the dorsal setæ; numbers $72 / \mathrm{v}, 80 / \mathrm{ix}, 74 / \mathrm{xii}, 65 / \mathrm{xix}$, and 60 in the middle of the body. Clitellum indistinct, xiii-xvi or $\frac{1}{2} x i i i-\frac{1}{2} \times v i$ ($=3$ or 4). Male area (text-fig. 260) snucer-like, depressed, oval with long axis longitudinal, with thickened lip, extending over xvii-xix (without the lip). Prostatic apertures on xvii and xix, near the posterior and anterior borders of the segments respectively. Two transversely oval dark slightly sunken patches, midventral or almost so, on xyii and xix, the anterior between the-
anterior prostatic pores, the posterior rather behind the posterior pores; or these patches may be represented by sunken flat papillæ, each surrounded by a groove, on $16 / 17$ and $19 / 20$ respectively. The anterior pair of papille of the spermathecal pores in front of the setal ring.

Anterior seminal vesicles very large and irregular in shape ; posterior of moderate size. Prostatic ducts fine, much coiled, of some length, widening into a fusiform shinng dilatation at the end. Spermathecal diverticula 9-12 in number, in an incomplete circle.

Distrilution. Mormugao Bay, Portuguese India.

Genus HOPLOCHETELLA Mich. gen. inquir.
1886. P'erchata (part.), Bourne, P.Z.S. 1886; p. 607.
1890. IInhlocheptn, Jeddard, P. Z. S. 1890, p. it.
1895. Hoplochata, Beddara, Monog. p. 368.
1900. Hupluchartella, Michaelsen, '1 irr. x, p. 321.
1909. Hoplochcetella (part.), Micharlven, Mem. Ind. Mus. i, p. 202.
1917. IIoplochcetella (part.), Stephenson, Rec. Ind. Mus. xiii, p. 354.

19:1. Moplochcetella, Michaelsen, Mt. Mus. Hamburg, xaxviii, pp. 34, 38.
Setal arrangement perichatine. One cesophageal gizzard. Calciferous glands? Excretory system? Sexual apparatus acanthodriline.

The genus was founded by Beddard for Bourne's Perichota stuarti, shortly and somewhat enigmatically described in 1886; but leddard withdrew the name again in 1895, apparently in the belief that we do not know enough about the worm to justify our assigning it to a definite genus. The name Moplocheta given to it by Beddard being preoccupied was altered to Hoplochoetella by Michaelsen in 1900, and Bourne's data were accepted and supplemented by a perhaps rather too venturesome assumption regarding the nephridia, concerning which Bourne had given no information; supposing these to be micronephridial, Michaelsen in 1909 united with Hoplochetella some species of New Zealand Plagiochuta.

In 1917 I identified generically several new species of Indian worms with Hoplochuptella, and gave reasons for filling in the gaps of our knowledge of the type form Perichceto stuarti in a different way from that adopted by Michaelsen; I believed that the species of Plagiochata have no close connertion with Hoplochetella. More recently still, Michaelsen has expressed the opinion that Bourne would have mentioned calciferous glands if they had been present, at any rate if well marked (since he records a series of dorso-lateral swellings on the anterior part of the intestine), and hence that this worm is not, as I had thought, closely related to my species of Erythrceodrilus which I first described under the
name Hoplochotella; he thinks it may be a Howascolex, in which the perichretine arrangement of the seta, beginning in some Indian species, has attained completeness.

Distribution. Yercaud, near Salem, S. India.

1. Hoplochætella stuarti (A. G. Bourne).

1886. Perichatn stuarti, Bourne, P. Z.S. 1886, p. 667.
1887. Perichata stuarti, Bourne, J. Asiatic Suc. Bengral, lviii, p. 110.
1888. Hoplocheeta stuarti, Beddard, P. Z. S. 1890, p. 57.
1889. Hoplochceta stuarti, Beddard, Monog. p. 368.
1890. Hoplochcetella stuarti, Michaelsen, 'Jier. x, p. 322.
1891. Hoplochectella stuarti, Stephenson, Rec. Ind. Mus. xiii, p. 354.
1892. Hoplochretella stuarti, Michaelsen, Mt. Mus. Hamburg, xxxviis, p. 34.

Length 141 mm .; diameter 4.5 mm . Segments 111. Setæ in rings with small dorsal and ventral breaks, ca. 52 per segment; present on clitellum. Clitellum well marked, xiv-xvi ($=3$). Prostatic pores two pairs, on xiii and xix, all contained in a whitish slightly depressed area, the male field, which extends over the greater portions of xvii and xix, and over the whole of xviii. Female pore single, on the anterior part of xiv. No special seta in xviii ; copulatory seta on the anterior part of viii, a group on each side, on papillæ.

In xxiii-xxvi (?) four pairs of dorso-laterally situated intestinal diverticula. Prostates two pairs, large, coiled, each extending back through eight or nine segments. Spermathece two pairs, in vii and viii; dwerticula as a frill of seminal chambers round the base of the ampulla.

Remarks. The description dates from a good many years back, and it was impossible to foresee at that lime what characters would ultimately be of systematic importance; consequently it is very defective. The original is probably wrong in placing the gizzard in segment x. The question as to how much we really know about this worm is discussed by me in my paper of 1917, and by Michaelsen in his of 1921 .

Bourne says that the worm is exceedingly common; when opportunity offers it should certainly be sought for, and subjected to a complete examination.

Distribution. Yercaud, near Salem, S. India; in dry ground, often under large stones.

Subfamily DIPLOCARDIIN风.

1900. Diplocardiinæ+Trigastrinæ (part.), Michaelsen, Tier. x, pp. 324, 330.
1901. Diplocardiinæ+Trigastrinæ (purt.), Michaelsen, Geog. Vorbr. Olig. p. 106.
1902. Diplocardiinæ+Trigastrinæ (part.), Michaelsen, Mem. Ind. Mus. i, p. 123.
1903. Diplocardiinæ+Trigastrinæ (part.), Michaelsen, Abh. Ver. Hamburg, xix, p. 26.

> 1915. Diplocardiinæ + Trigastrinæ (part.), Michaelsen, Zweit. deutsch. Zent.-Afr. Exp. I, p. 186 .
> 1921. Tripastrine, Stephenson, P.Z.S. 1921, p. 111 .
> 1921. Diplocardiinæ, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 54 .

Setal arrangement lumbricine. Two œsophageal guzzards, seldom united into one large one taking up more than one segment (in this case three pairs of large calciferous glands in xv-xvii).

A number of the forms included in the present subfamily were first put together by Michaelsen in 1895 as Benhamiacea (Verh. Naturw. Ver. IIamburg, (3) ii, p. 23), and later as Benhamini (1897, same journal (3) iv, p. 25). The name of this group appears as Trigastrinæ in the 'lierreich volume.

In 19211 proposed to reduce the content of this group by abstracting the genus Euchichogaster, which I placed in the Octochætuæ; the group came therefore to ennsist of Trigaster, Dichogaster, and the new genus Monoyaster, established by Michaelsen for (at present) a single species, which is essentially a Dichoyaster in which the two gizzards have fused into one. Since this group was only a small one, and since the genus from which it takes its origin, Diplocarlia, was associated with only one other, Zapotecia, in the subfamily Diplocardiins, it seemed more convement to unite the.two subfamiles into one. The name of the combined group should doubtless be Diplocardiina, as Michaelsen has it, not Trigastrinæ, as written by me.

Distribution. The Diplocardiina of India are confined to the genus Dichoygester, which occurs scattered over the W. const, in the extreme south, in Ceylon, in the region of the Ganges delta, and far inland only in E. Kajputana and Darjiling District. The only possibly endemic species are D. travancorensis and D. curyensis, and these must be considered as doubtful. Outside India the genus is endemic in Tropical Africa, the W. Indies, and Central America; but numerons spectes are found in the Malay Archipelago and Polynessa, which may not be endemic.

Of the other genera Diplocardia and Zapotecia are North American, Irrigaster West Indian and Mexican, and Monogaster West Africin.

In the main line of descent of the Diplocardiinæ from the "original Acanthodriline," the first stage is reached in the genus Diplocarclia, in which the gizzard is doubled; the next stage is represented by Triguster, where, in addition to the previous change, the excretory system has become micronephric ; the next stage is that of Dichogaster, where calciferous glands have been developed in segments xv-xvii ; lastly, in Nonogaster the two gizzards have fused into one again, while for the rest the anatomy is as in Dichogaster. The geographical argument also supports the above phyletic arrangement of the genera ($c f$. Stephenson, 95).

1. Genus DICHOGASTER Bedd.

1900. Dichogaster, Michaelsen, Tier. x, p. 334.

1921. Dichogaster, Stephenson, P.Z.S. 1921, p. 110.

Setæ paired, all ventrally situated; cd approximately equal to $a b$. Prostatic pores one to three pairs, on xvii, or xix, on xvii and xix, or on xvii, xviii and xix, in $a b$ or medial from a. Spermathecal pores one or two pairs, in $7 / 8$ and $s / 9$ or one of these. Two gizzards in front of the testis segments. Usunlly three, seldom two pairs of calciferous glands behind the ovarian segment, usually in xr-xvii, rarely aiv-xvi. Micronephridial.
The Distribution is given in the account of the subfamily.
The synonymy of the genus may be gathered from Michaeken's Tierreich volume. It now includes the majority of the species formerly described as Benhamic. Essentally it embraces forms which are derived from the original Acauthodriline in having a double gizzard (the Diplocardia stage), micronephrida (the 'Trigaster stage), and calciferous glands behind the ovarian segment. The male organs may retan the acanthodriline condition (prostates opening on xvii and xix, vasa deferentia on xiii), or reduction may have taken place (disappearance of one pair of prostates, union of the ending of the vasa deferentia with the remaining prostatic orifices); the spermathece may remain as two pairs, or may be reduced to one.pair along with the reduction of the prostates. (In one curious form there are thre prustates, the vasa deferentia open on x vii, and the spermathece have been reduced to one pair.)
$A \|$ the Indian and many of the other species of the genus are small worms, the dissection of which is often difficult, since they go down to a dameter of 1 mm . or so. Their small size helps to explain how it is that they are so frequently introduced into localities so far removed from their homes.

If the investigator ferls inclined to resort to section-cutting instead of dissection, he should remember (1) that a single specimen may be quite spoilt in the cutting if there should be, as not infrequently, a quantity of earth in the anterior part of the alimentary canal; (2) that the penial setæ are among the best means for the discrimination of species, and that these are destroyed by section-cutting; (3) that the relations and shape of such things as the spermathecal diverticula, on which also much may hang, are better appreciated in a dissection than in a series of sections.

Key to the Indian species of the genus Dichogaster.

1. One pair of prostates 2.
Two pairs of prostates 3.
2. Tip of penial setæ bent at a right angle 1. crawi.
Tip of penial setæ not bent at a rightangle.D. saliens.
3. All penial setre of the same form. 4.

Penial setie of two or more forms 7.
4. Spermathecal diverticulum simple, or with seminal chambers massed torether 5. Spermathecal diverticulum with two separate seminal chambers D. parva.
5. Penial setie ending in a small knob D. affinis.

Penial setie not ending in a small knoblike thickening
(.
6. Spermathecal diverticulum arises from middle of length of duct
1). travancorensis.

Spermathecal diverticulum arises from ental end of duct
D. curgensis.
7. Spermathecal diverticula two, sessile.... . D. bolaui var. malubavica. Spermathecal diverticulum single 8.
8. One variety of the penial setee is knobbed at the end
D. modigliani. None of the perial setio knobbed at the end. 9.
9. Clitellum rimer-shaped; gizaards in v and vi
D. malayana.

Clitellum saddle-shaped; grzzards in vii and viii
D. bolani.

The prostates have been investigated by Stephenson and Haru Ram in D. ceffinis and I). malayance (92).

Certain specties show a begmoning of the condition found in the genus Monoyaster, where the two gizzards are united into one. Thus in I). malreyana the gizzards, in v and vi, are not well separated; in 1). bolaui var. muluburica the alimentary tube is scarcely constricted between the two. No doubt other species would show various grades of the same condition if examined,those species, at least, where the septum which should intervene between the two gizzards is wanting.

1. Dichogaster affinis (Mirl.).

1903. Dichogaster affinis, Michaelsen, Sb. Bohm. Ges. Praq, al, p. 16.
1904. Dichogaster affinis, Michaelsen, Mt. Mus. Hamburi, xxi, p. $1 \because 7$.
1905. Dichuguster affinis, Michaelsen, Abh.Ver. Hamburg, xi x, p. 98.
1906. Dichoyaster "ffims. Stephenson, Spol. Zeyl. viii, p. 273.
1907. Dichoguster affinis, Stephenson, Rec. Ind. Mus. xii, p. 3:38.
1908. Dichoyaster affinis, Stephenson and Haru Ram, Tr. Roy. Soc. Edin. lii, p. 451.
1909. Dichogaster affinis, Stephenson, Mem. Ind. Mus. vii, p. 2.58.
1910. Benhamiat affinis, Beddard, Monog. p. 567.
1911. Dichognster affinis, Michnelsen, Tier. x, p. 345.

Length :30-32 mm. ; diameter 1•2-1.5 mm. Segments ca. 140. Colourless. Prostomium epilobous. Dorsal pores from 5/6. Setæ closely parred; $a a=b r, d d=$ two-thirds of circuinference. Clitellum saddle-shaped, xiii or xiv-xxi or xxii $(=8-10)$. Prostatic pores two pairs, on xvii and xix, in ab; seminal grooves
almost straight, each included by a whitish wall, which also includes the prostatic pores. Spermathecal pores two pairs, in a. One to three midventral papillæ, seldom wanting, eye-shaped, on $7 / 8-9 / 10$, or $8 / 9$ and $9 / 10$, or one of the latter.

Septa $9 / 10-12 / 13$ strongly, $8 / 9$ and $13 / 14$ more slightly. thickened. Gizzards in vi and vii. Calciferous glands three pairs, kidney-shaped, in $x v-x v i i$, the most anterior the smallest. Micronephridia in three or four longitudinal rous on each side. Testes and funnels two pairs, free. Seminal vesicles in x, xi, and xii. Prostates straight. Spermathece with very thick, fairly long duct, which bears immediately below its middle a small club-shaped diverticulum. Penial seta thin, $0 \cdot 3 \mathrm{~mm}$. long, gently undulating, with knob-like distal end.

Remarks. The genital "papillæ" were scarcely such in some specimens I examined; each was an inconspicuous circular area, with a smaller circular marking in its centre. In one specimen I also found a small area simiiar to these between and behind the posterior prostatic apertures.

The specimen from Ceylon that I examined was found in rotten wood. It possessed one segment less than normal in the anterior part of the body, and the organs therelore appeared one segment further forwards than usual ; possibly the first segment may have been retracted.

Distribution. Bombay and Baroda, in Western India; Shasthancottah and Trivandrum, Travancore ; Peradeniya and Anuradhapura, Ceylon. Outside India it is known from E. Africa, Mozambique, Madagascar, the Comoro Is., Siam, Cape Verde Is., and Colombia.

2. Dichogaster bolaui (Mich.).

1900. Dichogaster bolaui, Michaelsen, Tier. x, p. 340.
1901. Dichoguster bolaui, Michaelsen, Nib. Bohm. (ies. Pran, xl, p. 16.
1902. Dichoyaster bolaui Michaelsen, Abh. Ver. Hamburg, xix, p. 9 x .
1903. Dichoyaster bolaui subsp. palmicola, Stephenson, Kec. Ind. Mus. xii, p. 348.
1904. Dichuyaster boluur, Stephenson, Rec. Ind. Mus. xiii, p. 413.
1905. Dichuyaster bolaui, Stephenson, Mem. Ind. Mus. vii, p. 257.

Length $20-40 \mathrm{~mm}$.; diameter $1 \frac{1}{3}-1 \frac{1}{2} \mathrm{~mm}$. Segments 78-97. Unpigmented. Prostomium proepilobous. Dorsal pores from 5/6. Setm in general closely, towards the hinder end more widely paired; dd anteriorly $=\frac{2}{3}$ of circumference, in the hinder part little more than half the circumference. Clitellum saddle-shaped, xiii or xiv-xviii, xix or $x x(=5-8)$. Prostatic pores on xvii and xix; seminal grooves straight, bordered by flat walls. Female pore single, on a papilla. Spermathecal pores two pairs.

Gizzards in vii and viii. Calciferous glands three pairs, oval, in xv-xvii. Micronephridia in three or four longitudinal rows on
each side. Two pairs testes and funnels. One pair vestigial seminal vesicles in xi. Prostates almost straight. Spermathecal ampulla sac-like; duct thick, faintly set off ; diverticulum small, club-shaped, joining the middle of the duct. Penial setæ of two forms: (i) 0.32 mm . long, 5μ thick, with about eight sharp short teeth on the concave side of the distal end, tip slightly hooked; (ii) 0.67 mm . long, 5μ thick, with slightly thickened distal end, which is broadened in the form of a spatula and hollowed (often apparently scalpel-shaped).

Distributiou. Peradeniya (Ceylon); Ernakulam (Cochin), and Trivandrum (Travancore), in S. Indin: Rangamatr, Sibpur, and ('alcutta (Bengal); Junagar'h (Kathiawar), Lombay, Bassein Rd., Baroda, in W'estern India; Bayana (E. Rajputana). It has a wide distribution outside India, including tropical Africa, N., Central, and S . A merica, and the W . Indies.
a. var. malabarica Steph.

1920. Dichoyaster boluui var. malaburicus, Stephenson, Mem. Ind. Mus. vi, p. 957.

Length 2()$-4(1) \mathrm{mm}$. ; diameter $2 \frac{1}{4} \mathrm{~mm}$. Segments s 6 . Colour buff, unpignented except for a dark middorsal stripe. Prostomium prolobous. Dorsal pores in $5 / 6$, then absent till $11 / 12$ which is restigial, well marked from 12'13 onwards. In general $a b=\frac{1}{4} a u=\frac{1}{4} h c=c l$; in front of the clitellum the pairs are closer together, so that ald, wheh behind is about $\frac{1}{6}$ of the circumference, increases. Clitellum xiii-xx ($=8$); dorsally extends over part of xxi also; ring-shaped over xiii, thinned ventrally over xiv-xvi, thenceforward interrupted ventrally. Seminal grooves run in the interval between the lines a and b, are straight, and bordered by whitish thickened lips, the inner lips being almost contiguous in the middle line. Spermathecal pores? Ventral surface of viii and perhaps of ix slightly thickened, and seta rather irregular.

Septum $4 / 5$ slightly strengthened, $5 / 6$ and $6 / 7$ perhaps absent, $7 / 8$ thin, $8 / 9$ and $9 / 10$ perhaps slightly thickened. Gizzards in vii and viii. Calciferous glands in xv, xvi, and xvil, kidneyshaped. Intestine begins in xriii. Last hearts in xii. Testes and funnels in xi. Seminal resicles small, racemose, in xn. Small oriacs in xiv. Prostates and the two kinds of penial setæ as tor type form. Spermathece with two small sessile diverticula attached about the middle of the duct.

Remarks. The chief distinctions from the type are the two spermathecal diverticula, the clitellum (which is not saddle-shaped throughout), and the anterior male organs (which, howerer, may not have been fully developed in the specimens I had for examination).

Distribution. Bombay.

3. Dichogaster crawi Eisen.

1920. Dichoyaster crauci, Stephenson, Mem. Ind. Mus. vii, p. 258.
1921. Dichogaster crawi, Eisen, P. Calif. Ac. (3) ii, p. 228, pl. x, figs. $8 \mathbf{2}-94$.
1922. Ihchogaster crawi, Michaelsen, Tier. x, p. 346.
1923. Dichogaster craucl, Nichaelsen, Ann. Natal Mus. ii, p. 418.
1924. Dichoguster cruvi, Michaelsen, Ark. f. Zool. x, p. 19.

Length 40 mm . ; diameter ca. 1.5 mm . Segments 120 . Prostomium (pro-?) epilubous; segment i very short. Seta closely paired; the median ventral interval ace contracted in the region of the prostatic pores, and less obviously also in the region ot the spermathecal pores; dd greater than half the circumterence; all setm with four or more slight notches or spines near the apen. Dorsal pores from $3 / 4$. Clitellum ring-shapeci, less developed ventrally, $\frac{1}{2} x$ in $-\frac{1}{2} \times x(=7)$. Prostatic pores one pair, on papille on xvii, in $a b$, contamed in a narrow median sunken area on xvi- $\frac{3}{4} x$ vini, the area broader on xrii; openings of vasa deferentia close to the prostatic pores; in some specimens the pores are borne on a transverse oval elevation on xvi, and occasionally there is a similar elevation on xix. Spermathecal pores two pars, in ch.

Septa $4 / 5$ and $10 / 11-13 / 14$ thickened slightly, $6 / 7-9 / 10$ wanting, $11 / 12$ and $12 / 13$ double (abnormality ?). (Gizzards in vii and viii. Calciferous glands three pairs, in xt-xvic. discharging by a common duc't on each side in xvi. Last hearts in xii. Micronephridia in four longitudinal rows on each side. Two pairs racemose seminal vesicles in xi and xii. Prostates confined to xvii, with long duct; ectal end of ras deferens as thick as prostatic duct. Spermathecal ampullis short and broad, with sharply demarcated duct which bulges all round below the ampulla, the part not included in the body-wall being about as long though not quite as broad as the ampulla; diverticulum with globular seminal chamber, hanging down, entering ental end of duct; sometimes two diverticula. Penial setw $0 \cdot 4-0.6 \mathrm{~mm}$. Jong, thin, slightly bowed, distal end undulating, hair-like, with small terminal knob, bent at a right angle; the wavy outline is due to a series of ridges on each side, corresponding to grooves on the opposite side, the two series of ridges alternating.

Distribution. Pashok, Darjiling District. Outside India it has been found between the roots of greenhouse plants in California (the original discovery), where in one of the places (San Francisco) it was supposed, probably erroneously, to have been introduced from Ilawaii ; N.W. Australia; Natal (Pietermaritzburg).

4. Dichogaster curgensis Mich.

1921. Dichogaster curgensis, Michaelsen, Mt. Mus. Hamburg, xxxviii, $\mathbf{\jmath}$. $\mathbf{~ 5 4}$, text-fig. 6.

Length 65-75 mm. ; maximuin diameter ca. 2 mm . Segments 90-110. Colour an even grey, unpigmentod. Prostomium
epilobous ca. $\frac{2}{5}$. Dorsal pores from $11 / 12$ (perhaps more anteriorly). Setæ fine, closely paired; $a a=b c ; d d=3$ circumference. Clitellum xiii-xx ($=8$); may also include xii dorsally; ring-shaped, but less marked ventrally; when incompletely developed appears saddle-shaped ; setæ $a b$ of xvii, xviii, and xix absent. Male field depressed; prostatic pores on xvii. and xix, in line with $a b$; the seminal groove somewhat bowed inwards. Female pores in the position of setæ a on xiv. Spermathecal pores not obvious, two pairs, in $7 / 8$ and $8 / 9$, in line with a.

Septa $6 / 7-12 / 13(\% 13 / 14)$ slightly thickened. Gizzards in vi and vii. Calciferous glands three pairs, in xv, xvi, and avii; of approximately equal size, almost smooth. A moderately broad typhlosole. Funnels free in x and xi. Seminal vesicles? Prostates two pars, confined to xwi and xix, the glandular portion simple, irregularly spmole-shaped: the duct short and thin. Spermathecal ampulla short and thick, passing into the duct, which is three times as long as ampulla, narrowing in its middle and ectal portions; diverticulum small, with three or four seminal chambers, with short and thin stalk entering the ental end of duct, the whole as long as the duct is thick. Pemal seta slender, 1 mm . long, 9μ thick proximally, tapering gradually to a fine pont; moderately bowed; distal portion undulating, whiplike, marked by a double series of scars, the proximal border of each of wheh is formed by a relatively broad but only slightly projecting tooth.

Remarks. Micharlsen considers this form to be perhaps identical with Fediurb: Benhamia travencorensis; and it does m fact seem probable that some of the apparent differences between the two are due to faulty description by the earlier author (e.g., the position of the gizairds). The spermathece, however, seem to be of a different form, and the position of the calciferous glands and of the last heart may also be really different in the two.

Distribution. Moonad and Bhagamanola, Coorg.

5. Dichogaster malayana (Horst).

1916. Dichoyaster malayana, Stephenson, Rec. Ind. Mus. xii, p. 346, pl. xxxiii, figs. 35 , 36.
1917. Dichogaster malayana, Stephenson and Haru Ram, Tr. Roy. Soc. Edin. lii, p. $4 \bar{\pi} 1$, pl. fig. 9.
1918. Benhamia malayana, Beddard, Moncg. p. 569.
1919. Dichoyaster malayana, Michaelsen, Tier. x, p. 341.

Length $20-30 \mathrm{~mm}$.; maximum diameter 1.5 mm . Segments 92-95. Colour grey ; clitellum darker. Prostomium with posterior projecting angle; segment i partly divided midventrally by a groove leading back from the border of the mouth. Dorsal pores from 5/6 or 6/7. Setæ closely paired, all ventral ; $a a=b c=3 a b=$ $3 c d$. Clitellum xiii-xx $(=8)$; brown in colour, but lighter along a midventral strip (perlaps thinner here); sharply marked off by
a constriction at both ends. Prostatic pores on xvii and xix, between a and b (or? in a); seminal grooves with slightly wavy course; indications of faint transverse grooves between the two pores of the same segment. Spermathecal pores in $7 / 8$ and $8 / 9$, in $a b$.

Septum 4/5 the first, $7 / 8$ the next; 10/11-12/13 slightly. thickened. Gizzards in v and vi, not well separated, no septum attached between them. Calciferous glands in $x v-x$ vii, all about the same size. Micronephridia in three or four longitudinal rows on each side, the ventralmost row the smallest; sometimes a fifth row of small nephridia ventral to the others; behind the clitellar region the nephridia have the form of flattened plates, in the clitellar region are more like the usual twisted tubes. Testes and

Fig. 261.--Dichogaster malay, numbered 1 and 3 in text; (2 in text) resembles a except that the thin expausion is one-sided.
funnels free in x and xi. Seminal vesicles in x and xi, sometimes in xii also. Prostates in xvii and xix, vertically placed in the segments. Spermathecal ampulla small and ovoid, constricted from the duct; duct equal in size to the ampulla, pear-shaped, gradually narrowing ectally ; diverticulum (apparently not always present) small, tag-like, at middle of length of duct on its anterior face. Penial setæ (text-fig. 261) of several types: (1) slender, 3.5μ thick, shaft straight, distal end flattened and oar-like, 6μ across ; (2) 0.28 mm . long, 4μ thick, like the last, but the terminal expansion one-sided ; (3) stouter, 7μ thick, distal portion gently curved, distal end with a few blunt projections on its sides and on the concavity of the curve ; (4) a mixed type, with the tip.
of the second and the stout shaft of the third type, with a gentle almost even curve, the length across the curve 0.3 mm ., and thickness at the middle 6μ.

Distribution. Neyyatinkara, Travancore. Outside India has been recorded from numerous localities in the Malay Archipelago.

6. Dichogaster modiglianii (Rosa).

> 1910. Dichogaraser modiglianii, Michnelsen, Abh. Ver. IIamburg, xix, p. 98.
1900. Dichogaster modiglianii, Michnelsen, Tier. x, p. 346.

Length 22 mm ; diameter 2 mm . Colour dark grey. Segments 76. Prostomium proepilobous; segment i almost divided by a dorsal median groove. Dorsal pores trom $4 / \overline{0}$. Setæ paired, all ventral; $u a=l c$. Clitellum xiii-xx $(=8)$; only ring-shaped on xiii. Prostatic pores on xvii and xix ; seminal grooves straight. Spermathecal pores two pairs.

Micronephridia in four longitudinal rows on each side behind clitellum. Spermathecal ampulla pear-shaped : duct twice as long as and somewhat thicker than ampulla; diverticulum small, of an elongated pear-shape, hanging down, attached to ental part of duct. Penial setre of two kinds: (i) distal end slightly bent, with slightly thichened tip, with scale-like elevations situated above slight constrictions; (ii) smooth, distal end slightly bent, thread-like, with slightly thickened tip in the form of a knob.

Distribution. Calcutta at the base of a leaf on the stem of a sagn-palm). Outside India is known from Sumatra and New Britain (Neu Pommern).
7. Dichogaster parva (.Mich.).
1903. Dichoyaster parea, Michaelsen, Sb. Böhm. Ges. Prag, xl, p. 15.
1895. Benhumia parva, Meddard, Monog. p. 571.
1900. Dichogaster parve, Michnelsen, 'Tier. x, p. 356.

Length 32 mum. ; diameter 2 mm . Reddish in colour. Dorsal pores trom $5 / 6$ or still further forwards. Setæ closely paired, all ventral ; $u a=b c, d_{l}=\frac{5}{7}$ of circumference. Clitellum sin ollen, ringshaped but less developed ventrally, $\frac{1}{2} x i i$ or xiii-xx ($=8$ or $8 \frac{1}{2}$). Prostatic pores two pairs, on xvii and xix, in $a b$; seminal grooves straight, bordered by fairly broad walls which at the ends surround the prostatic pores. Spermathecal pores two pairs in $a b$.

Calciferous glands three pairs, xv-xvii, narrowly bean-shaped, with several marked indentations on the convex side. Prostatic duct twice kinked. Spermathecal ampulla pear-shaped; duct short and thick; diverticulum short, tubular, ending entally in two seminal chambers which are separate from each other and spherical in shape, close together; diverticulum joins ental portion of duct. Penial sete $0.75-0.9 \mathrm{~mm}$. long, at proxinal end 10μ
thick, in the middle 4μ, and the distal end still thinner; the ${ }^{\circ}$ narrow distal end showing irregularly alternating obtuse feeble bends; ornamentation of longitudinal scars, a small rounded projection at the proximal end of each.

Distribution. Peradeniya, Ceylon. The original find was in Central Africa.

8. Dichogaster saliens (Bedll.).

1903. Dichoyaster saliens, Nichaelsen, Sb. Bihm. Ges. Pray, xl. p. 13, text-fig. F .
1904. Microdrilue saluens, Beddard, Monog. p. 506.
1905. Dichaguster salieus, Michaelsen, Tier. x, p. 343.

Length $25-40 \mathrm{~mm}$.; diameter $1 \cdot 5 \mathrm{~mm}$. Segments 96-120. Unpigmented. Prostomium tanylobous, tongue narrow; groove $1 / 2$ less marked than the other grooves. Setw rather small, closely paired; $a a=b c$; $d d=\frac{2}{3}$ of circumference. Clitellum saddle-shaped, xiii-xix ($=7$). Prostatic pores one pair, in the setal zone of xvii, in a, on halfmoon-shaped papille, which take up all xvii and the anterior fourth of xviii, their straght sides contguous in the middle line. Spermathecal pores two pairs, inconspicuous, in $7 / 8$ and $8 / 9$, in a. Sometmes a pit, small, transversely situated, in 15/16.

Septa all thin; 10/11-13/14 somewhat thicker than the rest. Gizzards in vii and viii. Calciferous glands kidney-shaped, three pairs, in $x v-x v i i$, with narrow ducts leading into the cesophagus, the anterior pair the smallest. Intestine begins in xviii. Micronephridia four or oftener five on each side behind the clitellum. Funnels in x and $x i$ (apparently in testis sacs?). Seminal vesicles in xi and xii, racemose. Prostates in xvii, the glandular part thick and irregularly bent; duct thinner, fairly well demarcated. A bemispherical elevation internally corresponding to the groove in $15 / 16$. Spermathecal ampulla small, ovoid; duct demarcated, double as long as ampulla, thin ; diverticulum joining ental end of duct, narrowly pear-shaped, hanging down, half as long as duct. Penial setre ca. 0.6 mm . long, 12μ thick proximally, slightly curved in the shape of a sabre, gradually tapering; distal fourth with wavy course, at each bend a stout, blunt, scale-like tooth ; tip drawn out to a fine point, ending in a small knob.

Distribution. Peradeniya, Ceylon. Known outside India from several places in the Malay Peninsula and Archipelago (Penang, Singapore, Java).
9. Dichogaster travancorensis (Fedurb).
1898. Benhamia travancorensis, Fedarb, J. Bombay Soc. xi, p. 433, pl. i, figs. 6, 8, 9, 11, 12.
1900. Dichogaster travancorensis, Michaelsen, Tier. x, p. 353.

Length 75 mm . ; diameteer 2 mm . Segments 131. Dorsal pores. "commence posteriorly." Setæ in pairs, very close together. Clitellum saddle-shaped, $x i v-x x i(=8)$.

Septa 9/10-13/14 thickened. Calciferous glands in xiv-xvi, pouch-shaped, the anterior the smallest, somewhat corrugated, with about six equal lobulations. Intestine begins in xrii. Last hearts in xiii. Spermsacs in xi and xii, very minute. Prostates fusiform, prolonged at one end into a narrower duct. Spermathecæ two pairs, with ovoid ampulla, constricted from the duct, which is thick and dilated, equal to the ampulla in length; diverticulum shortly cylindrical, sessile on the duct at the middle of the length of the latter. Penial setæ four times as long as the ordiuary, ending in a fine whip-like end frequently bent into a hook.

Remarlis. The account is unsatisfactory. It is scarcely clear whether the setal pairs are very close together, or the two seta of a pair, probably the latter. According to the figure the prostates are in x vin and xix, but in the text they are said to be in xviii and xix. The gizarards are said to be in viii and ix; this is very far back. The spermathece, according to the figure, discharge at the hinder ends of the two gizzards respectively, i.e., in $8 / 9$ and $9 / 10$, which would be quite abnormal; probably they discharge in $7 / 8$ and $s / 9$, and the gizzards are in vii and vii. The meaning of the statement regarding the septa-that septa ix to xiv are thickened -may or may not be exactly what I have given above.

Michaulsen's recently described I). curgensis is possibly identical with this species.

Distribution. 'Travancore.

Subfamily OCNERODRILINEE.

18.!1. Ocnerodrilidæ, Beddard, Tr. Roy. Soc. Edin. xxrvi, p. 581. 1895. Ocnerodroliacea, Michaelsen, Verh. naturw. Ver. Hamburg, (3) ii, p. 23.
189.5. Cryptodrilide (part.) + Acanthodrilidæ (part.), Beddard, Honog pp. $206,510,515,553$.
1897. Ocnerodrilini, Michaelsen, Verh. naturw. Ver. Hamburp, (3) iv, p. 25.
1900. Ocnerodrlinæ, Nichaelsen, Tier. x, p. 3e8.
1903. Ocnerodrilinæ, Michaelsen, Geog. Verbr. Olig. p. 118.

19ㄹ. Ocuerodrilin:e, Mtchaelsen, Mt. Mus. Hamburg, xxxviii, p. 58.

Setal arrangement lumbricine. ©isophagus in segment ix (rarely ix and x) with paired diverticula or with an unpaired ventril sac (calciferons glands, chyle-sacs). Meganephridial. Prostates tubular, one to three pairs, with single-layered gland epithelium. Sexual apparatus acanthodriline, or in varying degree microscolecine (male pores on xvii or xviii; prostatic pores one to three pairs, on xvii, xviii, and xix; exceptionally male and prostatic pores shifted three segments further back); male pores opening either separately from the prostatic pores (though sometimes close to them) or fused with the anterior pair. Spermathecal pores, when present, in $7 / 8$ or $8 / 9$ or both of these. Genital pores often unpaired, fused in the midventral line.

The recognition of the present group of forms as a special subdivision was first made by Beddard in 1891, when he created a separate family for the genus Ocnerodrilus. In his Monograph, however, he gave up this division; but it was adopted by Michaelsen, and has been generally recognized by subsequent writers. The distinguishing character of the group is the presence of a ventral diverticulum, or of a pair of such diverticula, of the alimentary caual in segment ix. Various changes, along the lines we are accustomed to see in other groups, have taken place in the various genera, but the above feature is common to all, and is evidence of their relationship.

Thus the primitive genus Kerria only differs from the primitive Acanthodriline in the possession of the subfamily characteristic,-the cosophageal sacs in segment ix,-and in being protandric. Maheina, in the Seychelles, is acanthodriline, but metandric, and has two pairs of œsophageal appendages. The genus Ocnerorlrilus is to be derived from herria by the reduction of the posterior male organs. from the acanthodriline to the microscolecine condition. Gordiochilus comprises a group of species in which reduction of the posterior male organs is taking place in more than one way, but in none of which it is complete; the crsophageal sac is unpaired. In Curgia the microscolecine reduction is complete, and there are two unpaired cosophageal sacs, in ix and x; the genus is metandric. Nannolrilus retains the incomplete reduction of the posterior male organs, but differs from Gorcliodrilus in the doubling of the giziard. In Nematogenic, which possesses the two gizzirds of Nannodrilus, the microscolecine reduction has been completed. Pyymaodrilus (which like Kerria, Maheinc, and Nannodrilus does not occur in India) differs from the rest of the subfamily in having true diverticula on the spermathecal duct; its origin is uncertain.

Distribution. While Ocnerodrilus is widely spread throughout India, the other three genera found in India are restricted to the South and Ceylon. Outside India the subfamily is found in the warmer regions of America and Africa-California and Arizona to Central Chile and the Argentine; Egypt and Upper Guinea to Natal ; Maheina in the Seychelles. Certain forms are peregrine, e. g., two out of the four found in India. A number of species are limnic in habitat.

Key to the Inclian genera of Ocnerodrilinw.

Cssophageal sacs in ix and x	Curyia.
Esophageal sacs in ix only	
2. Male pores on xviii	Gordiodrilus.
Male pores on xvil	
Two gizzards in vi and rii	Nem

1. Genus CURGIA Mich.

1921. Curyiu (typ. C.narayani), Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 59.
Setæ closely paired. Prostatic pores one pair on xvii. Spermathecal pores one pair in furrow 8/9. an cesophageal gizzard in vii; two unpaired ventral chyle-sacs with narrow tubular central lumen in ix and x. One pair of testes and funuels in xi. Spermathece without diverticulum.

The genus has recently been established by Michaelsen for C. narayani. It differs from all the previously known species of the subfamily, except Manceina braueri, in possessing chyle-sacs in two segments instead of in only one; these sacs agree in structure with those of Gordoodrilus, the central lumen being narrow and tubular, and the thick wall being traversed in a lougitudinal direction by numerous cbyle-canals. The only other point of difference from Gordiodriles is that the male apparatus is in Curgia purely microscolecine.

The presence of two or three unpaired oesophageal sacs, of similar structure to those of the Ocnerodriline, in the Eudrilinæ "as one of the reasons which caused Michaelsen to derive these latter from the former. The discovery of the genus Curgia, with two sacs in segments ix and x, diminishes the distance between the two subfamilies.

Distribution. Coorg, S. India.

1. Curgia narayani Mich.

1921. Curyıu uurayani, Michaelsen, Mt. Mus. Hamburg, xxxviii, p. 69.

Length ca. 100 mm .; diameter ca. $0.7-0.9 \mathrm{~mm}$. or more: long, thread-likp, hinder end gradually tapering. Segments ca. 230 . Colour whitish. Prostomium epilobous $\frac{1}{2}$, not cut off behind. Sete closely paired; $a a=b c, d d=$ half the circumference. Nephridiopores in ab. Clitellum? Male pores (? prostatic pores) as whitish papille on xvii in $a b$, apparently close behind the setal zone; setæ al of segment xvii apparently absent. Female pores inconspicuous, anteriorly on xiv in the line b. Spermathecal pores one pair, in $5 / 9$ in b.

Septa $6 / 7$ and $7 / 8$ somewhat thickened; one or two in front and behind these also slightly thickened. Gizzard cylindrical, in vii. Esophagus swollen and vascular in viii, ix, and x; chylesacs in ix and x, ventral, unpaired, sessile, the axial canal communicating with the œsophageal lumen, and around this "chylus-tubes" and blood-vessels. Intestine beginning in xii; no typhlosole. Last heart in xi. Meganephridial. Testes and funnels free, one pair, in xi. Seminal vesicles, one pair, elongated, simple, and sac-like, occupying xii and xiii. Copulatory burse projecting inwards in xvii, and receiving vasa deferentia. Prostates one pair, long, tubular, irregularly undulating and winding; beginning bebind in xxii ; the duct short, not sharply set off.

Spermathece in ix, elongated, tubular, curved and winding; ampulla long; duct shorter, not sharply set off, not much thinner than ampulla; no diverticulum.

Distribution. R. Hatti, Madapur, Coorg.

2. Genus GORDIODRILUS Bedd.

1895. Gordiodrilus, Beddard, Monog. p. 506.
1896. Gordiodrilus, Michaelsen, Tier. x, p. 373.

Vasa deferentia ending on xviii. Prostatic pores one or two pairs; one pair of prostatic pores approximated to the male pores; either the anterior or the posterior or the only pair may be so approximated (in one case fused), so that the prostatic pores are on xvii and xviii, or xviii and xix, or only on xviii; the whole of the pores of the male apparatus may be displaced backwards for three segments. One or no gizzard. A single ventral esophageal sac in ix. Spermathece without diverticula on the duct, often with evaginations at the ectal end of the ampulla.

Distribution. Nedumangad, Travancore. Outside India is endemic in Equatorial E. and W. Africa, and in Dominica in the W. Indies.

1. Gordiodrilus travancorensis Mich.

> 1910. Gordiodrilus travancorensis, Michaelsen, Abh. Ver. Hamburg, xix, p. 98 .

Length 32 mm . ; maxımum diameter $\frac{2}{3} \mathrm{~mm}$. Segments 84 . Unpigmented, light grey in colour. Prostomium epilobous $\frac{1}{2}$; tongue triangular, pointed behind. Setæ fairly closely paired; aa very little greater than $b c$, and on xviii and xix ca is much diminished ; $d d=$ half of circumference. Clitellum saddle-shaped, or at least slightly developed between the lines $a a$, $\frac{1}{4}$ xii-xix ($=6 \frac{1}{2}$) (so orig.). Prostatic pores two pairs, on small wart-like papillo in the situation of the missing setæ b of xviii and xix; setra a of these segments well developed, but diヶplaced more medianwards; seminal grooves straight, bounded by low walls. Male pores apparently confluent with the anterior prostatic pores. Female pores in front of setæ $a b$ of xiv. Spermathecal pores two pairs, in $7 / 8$ and $8 / 9$, in line with b.

Septa 6/7-8/9 much thickened, $5 / 6$ and $9 / 10$ slightly so. No gizzard. A large median diverticulum depends from the cesophagus in ix; this has the usual structure in the genus-a fairly narrow lumen lined by cylindrical epithelium, and a thick wall penetrated by blood-vessels. Intestine begins in xiii. Testes and funnels in x and xi. Seminal vesicles one pair, in xii. Prostates two pairs, ending in xviii and xix, slender, moderately long, irregularly coiled, with short narrow duct. Spermathecal anpulla sac-like; duct narrow, about as long as ampulla.

Remarks. This species comes near G. zanzibaricus, and also has relations with G. madagascariensis; it thus illustrates a faunal relationship between India and East Africa.

Distribution. Nedumangad, Travancore.

3. Genus NEMATOGENIA Eiser.

1895. Ocnerodrilus (part.), Beddard, Monog. p. 510.
1896. Nematogenia, Nichaelsen, Tier. x, p. 376.

Male pores on xvii. Prostatic pores one pair, on xvii, fused with the male pores. Spermathecal pores one pair, in or immediately behind 8-9. Two gizzards, in vi and vii. One pair of cesophageal sacs in ix. One pair of testes and funnels free in xi. Spermathecal duct without diverticulum.

Distribution. In India found only at Peradeniya in Ceylon; doubtless introduced into the Botanical. Gardens there. Outside India the genus is known from the Cameroons and Central Americai.

1. Nematogenia panamaensis (Eisen).

1903. Nematogenia panamaensis, Michaelsen, Sb. Bühm. Ges. Prag, xl, p. 16.
1904. Nematoyenia panamaensis, Michrelsen, Tier, x, p. 376.

Length $55-75 \mathrm{~mm}$; diameter 2 mm . Segments 110-120. Dorsal pores from $10 / 11$. Clitellum from $\frac{1}{2} x i i i, \frac{1}{3}$ xiii, or xiv to xxi or xxii ($=$ up to $9 \frac{1}{2}$); saddle-shaped, with however only a -small ventral interval, except on xxii ; this deficiency is filled up by a swelling of the surface; setæ $a b$ absent on xvii. Prostatic pores as transverse slits on transversely oval papillæ, which are set on a raised cushion-like diamond-shaped median genital area; male pores open on the same papillm as and close to the prostatic pores. Spermaihecal pores anteriorly on ix, in $a b$.

Septum $4 / 5$, the first, thin; $6 / 7-8 / 9$ moderately strongly thickened, $5 / 6$ and $9 / 10$ less so. Two very small gizzards in vi and vii. Postclitellar nephridia with an investment of colomic cells. One pair of free testes and funnels in xi. One pair racemose seminal vesicles in xii; ectal end of vas deferens not thickened. Prostates very long, reaching as far as exxiii ; the duct much shorter but only a little thinner than the glandular part. Spermathecal ampulla ovoid; duct very thin, shorter than ampulla; no diverticulum.

Distribution. Peradeniya, Ceylon. Outside India is known from Panama and the Cameroons.

4. Genus OCNERODRILUS Eisen.

1895. Ocnerodrilus (part.), Beddard, Monog. p. 510.
1896. Ocnerodrilus, Nlichaelsen, Tier. x, p. 377.

Male pores on xvii ; prostatic pores one pair on xvii, fused with the male pores; seldom a second pair on xviii. Spermathecal pores one pair or absent. No gizzard. One pair of csophageal sacs in ix, of simple constitution. Spermathece without diverticulum.

Distribution. The single species found in India is widely distributed, from Ceylon in the S. to Mardan in the extreme \mathbf{N}., from Bombay in the W. to the Andamans in the E. The genus is endemic in America from California to Paragnay, and in the W. Indies; it has been found in S. Africa (Natal).

The genus may be divided into four subgenera: subgenus Ocnerodrilus, with two pairs of testes and funnels, the testes enclosed in testis sacs which are formed around them so as to exclude the funnels, without seminal vesicles, without spermathece ; Liodrilus, with two pairs of free testes and funnels, and one pair of spermathecæ opening in $7 / 8$; Ilyogenia, with two pairs of free testes and funnels, and one par of spermatheca opening in $8 / 9$; and Haplodrilus, with one pair of free testes and funnels, in x, and a pair of spermathecx opening in 8/9.

1. Ocnerodrilus (Ocnerodrilus) occidentalis Eisen.
2. Ocnerodrilus (Ocnerodrihus) occidentalis, Michatlsen, Abh. Ver. Hamburg, xix, p. 100.
3. Ocnerodrilus (Ocmerodhilus) ocridentalis, Stephenson, Rec. Ind. Mus. x, p. 361.
4. Ocnerodrilus (Ocnerodrilus) occidentalis, Stephenson, Rec. Ind. Mus. xii, p. 348.
5. Ocnerodrilus (Ocnerodrilus) occidentalis, Stephenson \& Haru Ram, Tr. Roy. Soc. Edin. lii, p. 45l, pl. fig. 10.
6. Ocnerodrilus (Ocnerodrilus) occidentals, Strphenson \& Prashad, Tr. Roy. Soc. Edin. lii. p. 463, pl. firs. 3, 4.
7. Ocnerıdrilus (Ocnerodrilus) occidentalir, Stephenson, Mem. Ind. Mus. vii, p. 258.
8. Ornerodrilus orcidentalis, Beddard, Monog. p. 512.
9. Ocnerodrilus (Ocnerodrilus) occidentaliy, Michaelsen, Tier. x, p. 377.

Length $15-30 \mathrm{~mm}$. (up to 36 mm . when living and moderately extended) ; diameter 1 mm . Segments 70. Clitellum ringshaped, xiii or xiv-xix or $\mathrm{xx}(=6-8)$. Male pores on small papillæ on xvii, immediately lateral to the line of setæ b.

Septa 5/6-11/12 thickened, 6/7-9/10 fairly strongly, the others gradually less. Septal glands in v-viii approximately of the same size. (Esophageal sacs with single lumen, imperfectly divided up by folds of the wall which project to a greater or less distance into the cavity. Two pairs testes, enlarged and dissolving into
masses of spermatozoa at their free ends, and surrounded by a peritoneal membrane after the manner of a testis sac. No seminal vesicles apart from these testis sacs. Ectal end of vasa deferentia not thickened. Prostntes long and thick, extending through several segments beyond the clitellar region posteriorly. No spermather.e.

Remarks. Eisen established a var. arizonce, with the following characters:-"Septa $5 / 6-7 / 8$ very slightly, 8/9-11/12 slightly thickened. Septal glauds of various sizes, those in viii much smaller than those in front. Prostates small, not extending behind the clitellar region. Length $15-25 \mathrm{~mm}$." Michaelsen does not agree in assigning an independent status to the variety; for example, he finds that the septal glands of segment viii may be only a little smaller than those of the preceding segments, and thus such specimens would be intermediate between the type form and the supposed variety. In this I agree (75, 93).
1 have given an account of the vascular system (75); with Haru Ram, of the development of the prostate (92); and with Prashad, of the chyle-sacs (calciferous glands) (91). For a comparison of the testis sacs with those of other Oligochæta, see a discussion in Stephenson (100).

Distribution. Mardan and Rawal Pindi (Punjab); Kotah (Rajputana) ; Bombay ; Andaman Is.; Nedumangad (Travancore); Panadhure (Ceylon). Outside India the species is known from N. America and Africa, including the Cape Verde Is. and Comoro Is. It is thus a widely peregrine species.

Subfamily EUDRILINA.

189.5. Ludrilidæ, Beddard, Monog. p. 573.
1900. Ludrilinæ, Michaelsen, Tier. x, p. 387.

Setal arrangement lumbricine. Clitellum beginning with or in front of $\mathbf{x y}$, extending over two to six segments. Male pores and spermathecal pores single or one pair, male pores on xvii or xviii, spermathecal pores on x or further back. Meganephridial. Prostates as "euprostates", not reducible to the acanthodriline type, the vasa deferentia entering the ental end of the gland or some other point in its extent. Female genital apparatus distingushed by a more or less close relation of the spermathece to the other female organs-ovaries, oviducts, fumels, and ovisacs-fusion and connection by means of celomic tubes and chambers; the lowest grade of this condition consists in the approximation of the spermathece to the other organs.

Distribution. The group has its home in tropical and subtropical Africa; the one species found in lndia is widely peregrine.

The present subfamily presents many peculiarities of organisation, which, since there is only one peregrine species in India, cannot be discussed here.

Michaelsen derives the group from the Ocnerodriline branch of the Megascolecid stem (45, p. 115).
The subfamily is again divided by Michaelsen into Pareudrilacea and Eudrilacea. For the distinctions between these, of. 45, p. 116; and for a discussion of the characters of the Eudrilacea, to which the Indian species belongs, 130, p. 231.

1. Genus EUDRILUS E. Perr.

1895. Eudrilus, Beddard, Monog. p. 603.
1896. Eudrilus, Michaelsen, Tier. x, p. 401.
1897. Eudrilus, Michaelsen, Zweit. deutsch. Zent.-Afr. Exp. I, i, p. 239.

Setæ closely paired. Male pores and spermathecal pores. paired, the latter some distance in front of the former. Separate female pores not present (fused with the spermathecal pores). Gizzard in front of 7/8; two unpaired œesophageal sacs in x and xi, one pair of calciferous glands in xii. Holandric. No penial setæ. Sexual organs completely paired. Oviduct (stalk of ovisac) united ectally with the spermatheco without separate opening to the exterior.

Distribution. Equatorial W. Africa. The species which is found in India has been distributed over the whole tropical belt.

1. Eudrilus eugeniæ (Kinb.).

1897. Eudrilus euyenice, Michaelsen, Mt. Mus. Hamburg, xiv, p. 41.
1898. Eudrilus eugenia, Fedarb, J. Bombay Soc. xi, p. 431.
1899. Eudrilus eugenia (laps.), Nichaelsen, Zool. Jahrb. Syst. xii, p. 144.
1900. Eudrilus eugenue, Michatsen, Tier. x, p. 40 〔.
1901. E'ulrilus eugenia, Michaelsen, S'b. Bohm. Ges. Prag, xl, p. 16.
1902. Eudrilus eugenice, Michaelsen, Abl. Ver. Hamburg, xix, p. 100.

Length 32-140 mm. ; diameter 5-8 mm. Segments 145-196. Colour brown and red to dark violet. Prostomium epilobous $\frac{1}{2}$. Setæ lateral and ventral; a a somewhat greater than bc. Clitellum ventrally somewhat less strongly developed, xiii or xiv-xviii ($=5$ or 6). Male pores immediately in front of $17 / 18$, in $u b$. Spermathecal pores fused with the female pores, immediately behind $13 / 14$.

Prostates with markedly set off narrow duct, sharply set off from copulatory sacs; these sacs with Y -shaped appendages. The muscular atrium-like cavity of the spermathece with ouly one proper diverticulun, fairly close to the ental end and opposite the ovisac. Ovisac with long undulating stalk; the tube which leade from the ovarian chamber opens into the ectal end of the spermathecal ainpulla.

Distribution. Colombo, Peradeniya, Kandy, W. Province, Bentota, Panadhure (all in Ceylon). Fedarb's specimens tway have come from Travancore, Poona, or N. Konkan-locality not stated.

Family LUMBRICIDÆ.

1895. Lumbricidæ + Geoscolicidæ (excl. gen. Ilyogenia), Beddard, Monog. pp. 622, 687.
1896. Lumbricidæ + Glossoscolecidæ, Michaelsen, Tier. x, pp. 420, 470.
1897. Lumbricidæ, Michaelsen, Znol. Jahrb. Syst. xli, p. 3.

Asexual reproduction by production of zones of budding and chains of individuals does not occur. Normal setæ S-shaped, usually eight per segment, seldom more. Male pores mostly intra- or, anteclitellar. Spermathecal pores never only in $4 / \dot{5}$, partly at least further back, if not altogether wanting. Clitellar epidermis never of only one layer of epithelium. Meganephridial; as a rule only one pair, seldom two pairs of nephridia per segment. I'estes and funnels in x and $x i$ or one of these; ovaries and funnels in xiii, very seldom a second pair of ovaries in xii. Prostates as a rule wanting (if present-Kynotus, Glyphidrilus, Callidrilus-spermathecal pores in groups of several or of several pairs behind the testis segments).

The union of the two groups Glossoscolecidæ and Lumbricidæ was first carried out by Michaelsen in 1897 (Mt. Mus. Hamburg, xiv, pp. 57, 68), who made them two subfamilies, Geoscolecini and I umbricini, of the family Lumbricidæ. In the Tierreich volume however he reverted to the old arrangement of the two families; but more recently still he has again united them (1916, sup.).

The close connection between the two groups has long been recognized ; a full discussion of the relationships between the two, and of the origin of the family and its relations to other families, will be found in the paper just quoted. Since the number of Lumbricidæ (incl. (ylossoscolecidæ) in India is so small, and especially since even of these such a small proportion are endemic, the family can searcely be looked upon as a proper part of the Indian fauna; and it would therrfore be out of place to enter on a lengthy discussion of questions of classification, relationships, and origins; this would bring in references to numerous genera which are not found in India, and the whole subject must therefore be studied in Michaelsen's paper. The result of Michaelsen's argument is to establish the Lumbricidæ in the old sense as a subfamily of the Family Lumbricidæ sensu lato, and to make it, as the Lumbricinæ, the equivalent of the subfamilies Glossoscolecinæ, Sparganophilinæ, Microchætinæ, Criodrilinæ and Hormogastrinæ.

In Michaelsen's last scheme ($c f$. p. 38) all the above subfamilies are given family rank, so that here the term Lumbricidæ has again the same content as in the Tierreich.

The Distribution of the family Lumbricidæs.l. takes in the whole world with the exception, of the Australian region and Polynesia. The various subfamilies have however each their own well-defined regions, which are broadly as follows.

The phyletically oldest group, the Glossoscolecinx, occupies Tropical S. America and the southern part of Central America; the Sparganophiline, N. America, with two species in England; the Microchætinæ have a more scattered distribution-the older genera in S. Africa and Madagascar, the aquatic Callillrilus and Glyphidrilus in Tropical E. Africa, the latter having also spread into Indin, Further India, and the Malay Archipelago, Driocrilus in Tropical S. America and southern Central America, and Alma in Tropical W. and Central Africa and Egypt; the Criodriline inhabit a region which extends from England to Palestine (? to India); the Lumbricinæ are endemic in temperate Eurasia and in the eastern part of N. America; and the ILormogastrinæ on both sides of the western Mediterranean.

Key to the Indian subfamilies of Lumbricidæ.

1. No obviously developed intestinal gizzard 2.

An obrious intestinal gizard present Lumbricina.
2. Genital setre, if present, are not groused 3.

Genital setæ present, with longitudinal grooves.
3. Spermathece at least partly in front of the testis segments, or wauting

Criodrilinas.
Spermathece behind the testis segments; in addition, sometimes other, vestigial, spermathecæ in the region of the testis segments . .

Ginossosculfcine.

Microchatines.

Subfamily GLOSSOSCOLECINA.

1900. Glossoscoler inxe, Michaelsen, Tier. x, p. 420.
1901. Glossoscolecinæ, Nichaelsen, Zool. Jahrb. Syst. xli, p, 54.

Genital setæ, if present, not grooved longitudinally. Male pores usually intraclitellar, seldom (Opisthoilrilus) postclitellar. Spermathecal pores, if not altogether absent, wholly or at any rate partly in front of the testis segments. Λ single cesophageal gizzard present. Calciferous glands ("chyle sacs") present.

Distribution. The subfamily is endemic ouly in Central and S. America as far as the Argentine, in the Bermudas and W. Indies. The ouly Indian species is Pontoscolex corethrurus, which has been carried all over the Tropics, where it is found on islands or near the coasts.

1. Genus PONTOSCOLEX Schmdrda.

1895. Pontoscolex, Beddard, Monog. p. 653.
1896. Pontoscooex, Michaelsen, Tier. x, p. 424.
1897. Pontoscolex, Michaelsen, Zool. Jahrb. Syst. xli, p. 233.

Setæ at the hinder end of the body usually (? always) arranged in quincunx. Male pores and copulatory papille in the region of the clitellum. Three pairs of chyle-sacs in vii-ix, of complicated structure, originating dorsally. Nephridia with terminal sphincter.

Sexual apparatus metandric and metagynous; seminal vesicles very long, piercing the successive septa for a long distance.

Distribution. For the Indian distribution see under the species. The original home of the genus is Central America.

Michaelsen considers it doubtful whether the quincuux arrangement in the hinder part of the body is a generic character; there are specinens which show the regular arrangement in pairs throughout the body. These however may possibly have been injured, and the regenerated part may have produced setæ with the paired arrangement, similar to that in the anterior part of the body.

1. Pontoscolex corethrurus (Fr. Miill.).

1897. Pontoscolex. corethruruy, Michaelsen, Mt. Mus. . Hamburg, xiv, p. $\underline{\varrho}^{4} 7$.
1898. Pontoscole.r corcthrurus, Michaelsen, Zool. Jahrb. Syst. xii, p. 144.
1899. Poutoscole. ' orethrurus, Michatlsen, Tier. x, p. 425.
1900. Pontoscolec corethrurus, Michaelsen, Sb. Biohm. Ges. Prag, xl. p. 1 (.
1901. Pontoscolex corethrurus, Michaelsen, Mt. Mus. Hamburg, xxi, p. $1=7$.
1902. Pontoscole.v corethrurus, Michaelsen, Mem. Ind. Mus. i, p. 2 H.
1903. Pintoscole. corcthrurus, Michaelsen, Abh. Ver. Hamburg, xix, p 101.
1904. I'ontoscolex corethrurus, Michaelsen, Mt. Mus. Hamburg, axx, p. 9.
191.). I'ontoscolde corethrurus, Stephenson, Mem. Ind. Mus. vi, 1. 10\%.
1905. Pontoscolex corethrurus, Stephenson, Rec. Ind. Mus. xii, p. 349.
1906. Pontoscole. corethrurus, Michaelsen, Zool. Jahrb. Syst. xli, p. 234.
1907. Pontoscolex corethrurus, Stephenson, Mem. Ind. Nus. vii, p. 258.
1908. l'ontuscolex corethrurus, Nichaelsen, Mt. Mns. IIamburg, xaxviii, p. 6 .
1909. Pontoscole.r corethrurus, Stephenson, liec. Ind. Mus. xxiv, p. 440.

Leugth 60-120 mm.; diameter 4 mm . Segments $90-212$. Unpigmented. Prostomium with segment i retractilc. Setæ slightly ornamented, transversely grooved at the tip (ornamentation often worn away) : in the anterior part of the body closely paired, and exceptionally so throughout the body; usually from about x or xii onwards the parring is wider, and in the hinder part of the body the sete are alternately widely and closely paired, with a quincunx arrangement. Sotæ in the hinder part of the body much enlarged, with straight distal end; in the clitellar region more strongly ornamented. Nephridiopores in c. Clitellum xv or xvi-xxii or xxiii ($=8$ or 9); thickened ridges (" walls") xixxxii, outside the line of b. Male pores on 20/21 or immediately behind this. Spermathecal pores three pairs, in $6 ; i-8 / 9$, in c.

Septa 5/6 (?), $6 / 7-10 / 11$ thickened, the first fairly strongly, thelast two gradually less. Last heart in xi. Spermathece very slenderly club-shaped. .

Remarks. In a worm probably belonging to this species (there is no other Indian worm which has the quincunx arrangement of the sete) I found the nephridia of segment ii opening into the pharynx; they would therefore be peptonephridia. According to Beddard these nephridia open on the surface of the body on segment ii, though owing to the great retractility of the anteriorend of the body this orifice may come to lie in Ω temporary buccal cavity.

I found the septum $10 / 11$ thin, and $9 / 10$ absent; there was. also some irregularity in the attachinent to the parietes.

Distribution. Myderabad, Deccan: Andaman Is.; Bombay, Poona, A nedabad (Western India); Adam's Peak, Peradeniya, Kandy, Colombo, Avissavela, W. Haputale, the W. Province (all in Ceylon); Mangalore, Calicut, Tiruvellur, on the Malabar Coast; Shimoga (Mysore); Merkara, Madapur, Dubari (Coorg); Coonoor (Nilgiris); Bonaccord, Chimunga, Shastbancottah, Pallode, Trivandrum, Kerumaadi, Vellany, Neyyatinkara (Travancore).

Outside India the species is circummundane.

> Subfamily MICROCH ETIN .
> 1900. Microchætinæ + Criodrilinæ (part.), Michaelsen, Tier. x, pp. $447,463$. , Mich.
> 1917. Microchætinæ, Michaelsen, Zool. Jahrb. Syst. xli, p. 305.

Normal setæ in eight lougitudinal rows. Genital setæ, if present, not longitudinally grooved. Male pores ante- or intraclitellar. Spermathecal pores mostly altogether behind the testis segments, occasionally vestigial spermathece in addition in the region of the testes. An œsophageal gizzard present. Calciferous glands present or wanting. No obvious intestinal gizzard; a strengthening of the musculature at the beginning of the intestine may be present. Sexual apparatus metagynous; seminal vesicles mostly short, not penetrating the septa so as to extend through several segments.

The only Indian genus is Glyphiclrilus.
Distribution. The subfanily is endemic in S. Africa, Tropical E. Africa, Madagascar, Central and N.E. Africa; in S. Asia and the Malay Archipelago (gen. Glyphidrilus); and (gen. Drilocrius) in Central and S. America.

1. Genus GLYPHIDRILUS Horst.

1895. Glyphidrilus + Bilimba, Beddard, Monog. pp. 679, 686. 1900. Glyphidrilus, Michaelsen, Tier. x, p. 458.
1896. Glyphidrilus, Michaelsen, Mem. Ind. Mus. i, p. 244. 1910. Glyphidrilus, Michaelsen, Abh. Ver. Hamburg, xix, p. 103. 1917. Glyphidrilus, Michaelsen, Zool. Jahrb. Syst. xli, p. 343.

Setæ anteriorly widely, posteriorly more closely paired. In the hinder part of the body cld equal to or little greater than aa. Male pores intraclitellar, behind segment xvi, on a flat surface included between a pair of long ridges (ridges of puberty). Spermathecal pores in front of male pores. A well-developed gizzard in front of $8 / 9$, in viii or vii and viii. No calciferous glands or cesophageal sacs. Oue pair of nephridia per segment. Holandric and metagynous. Testes and funnels free. No copulatory sacs. Prostates present (? always).

Distribution. Kumaon Dist. (W. Himalayas); Jalpaiguri, Assam (E. Himalayas) ; Cuttack (Orissa) ; Lucknow (U.P.); Mysore ; Travancore and the Malabar Coast ; Burma. Outside India in Tropical E. Africa, the Malay Peninsula, and Malay Archipelago (Borneo, Sumatra, Java, Celebes).

The locality Kumaon Dist. (Kichha, near Naini Tal) is that of an immature species which could not be identified (Michaelsen, Mem. Ind. Mus. i, p. 244). Michaelsen points out that the Indian species form intermediate stages between the E. African species and those of the Malay Peninsula and Archipelago, not only geographically but as regards the specific characters also.

Key to the Indian species of Glyphidrilus.

1. Paired papills in a single longitudinal series on each ' side 2.

Paired papille in two or three series on each side .. G. tuberosus.
2. "Wing4" end behind at or in front of segment
xxvi..... G. pupillatus.
"Wings" end behind at xxxii or xxxiii G. amnundale.

1. Glyphidrilus annandalei Mich.

1910. Glyphidrilus amnandulei, Michaelsen, Abh. Ver. Hamburg, six, p. 101.
1911. (ilyphidrilus annumdalei, Cognetti, Ann. Mag. N. H. (8) vii, p. 502, pl. xiii, figs. 11, 12; G. achercorl (laps.), ib. p. 506.
1912. Glyphidrilus annandalei, Nichaelsen, Mt. Mus. Hamburg, xxx, p. 92.
1913. Glyphidrilus amandalei, Stephenson, Rec. Ind. Mus. aii, p. 349.
1914. Glyphidrilus annandalei, Makaelsen, Zool. Jahrb. Syst. xli, pp. 344, 346.
1915. Glyphidrilus annandalei, Stephenson, Rec. Ind. Mus. xxii, p. 769.
192.2. Glyphidrilus fluciatilis + (r. elegans + (G. rarus $+G$. saffronensis, Rao, Ann. Mug. N. H. (9) ix, pp. 53, 62, 64, 66, textfigs. 1-4.
1916. Glyphidrilus amnandaleei, Stephenson, Ann. Mag. N. H. (9), ix, p. 387.
Length $90-165 \mathrm{~mm}$.; maximum diameter $2 \cdot 5-4 \mathrm{~mm}$. Segments 125-322. Colour light to dark grey, unpigmented; a slight rose
tint on the clitellum. Anterior end swollen, maximum thickness about segment ix, diameter decreases gradually in the middle and hinder parts of the body to only 1 mm . at the hinder ond; in its posterior half the body is four-sided in section, the dorsal side the broadest; towards the hinder end the dorsal surface becomes more and more concave. Prostomium zygolobous, or sometimes prolobous; segments from ii onwards tri- or multiaunular as far as xiv, after which the annulation becomes indistinct. Anus a longitudinal slit at the hind end on the dorsal surface, intersecting more or fewer of the terminal segments. Setæ very widely paired as far as xii, the intersetal distances diminishing behind this; $a a: a b: b c: c d: d d=3: 2: 3: 2: 5$ at first, but belind $=$ 4:2:4:2:7. Nephridiopores in b. Clitellum ring-shaped, beginning in xvii or xviii (or even as far forward as xiii) and extending to xxxvi \ldots xli ($=19-25$), indistinctly limited behind and indeed more or less so in front also. Ridges of puberty (" wings ") run between the lines b and c, from xxv, xxvii or xxviii to exxii or xxxiii, occasionally to exxv, usually continued forwards as lower ridges or angles as far forwards as xviii ; the ridges are-bent downwards somewhat towards the body-wall. Papillæ of puberty numerous, constant in position on ench segment, but the number of segments bearing them is very variable; they are roundish cushions on the hinder part of their segments, in two series, median and lateral, the latter paired, and situated between b and c; the nedian series begins on xi, xii, xiii or xiv, and ends at varying levels back to xxvi, but occasional papillæ may be found further back, on xxxv, xxxvi or xxxvii, the total number varying from 2 to 14 ; the lateral series begins on xiii, or on or behind $x v$, ends in front of the " wings," and another short series may begin behind the " wings." Male pores as two point-like depressions in 29/30, in line with b. Spermathecal pores in groups of one to six, with the arrangement characteristic of the genus, in $13 / 1+$ to $16 / 17$ or $17 / 18$; most have the full number of five in each group.

Septa 6/7-11/12 thickened increasingly. A fairly large gizzard principally in viii, the anterior end apparently getting into vii. Last heart in xi. Meganephric. Two pairs large funnels free in \mathbf{x} and $x i$. Four pairs large irregular seminal vesicles in ix-xii. Prostates apparently absent. Ovisacs may be present in xiv. Spermathec $\begin{gathered}\text { simple, thickly pear-shaped or spherical, "ith short }\end{gathered}$ and narrow stalk, in appearance sessile, the duct being embedded in the body-wall.

Remarks. This species forms an intermediate link between the Further Indian and Malayan species on the one hand and the isolated G. stuhlnianni of E. Africa on the other.

We have two independent descriptions of this species, Cognetti having described it before receiving Michaelsen's paper.

Autotomy appears to be common in the mature worms (Stephenson, 1921).

Distribution. Calicut, Malapuram, Tiruvallur, on the Malabar
coast; Arumanallur, Madatoray, Trivandrum, Vellany, Neyyantinkara, and ?Azhagiapandipuram in Travancore; Dubarı, Madapur, Fraserpet, in Coorg ; Shimoga and ? Kadur Dist., Mysore.

‥ Glyphidrilus papillatus (Rosa).

1890. Bilimba papillata, Rosa, Ann. Mus. Genova, (2 a) ix, p. 386,
pl. xii, fig.
1891. Bisimimbir papillatus, Beddard, Monog. p. 687.
1892. (ilyphidrilus papillatus, Michuelsen, Abh. Senckeub. Ges. xxiii, p. 196.
1893. (ilyphudrilus papillutus, Michaelsen, Tier. x, p. 459
1894. Giyphidrilus papillatus, Nichaelsen, Zool. Jahrb. Syst. xli, p. 344.
1895. Gilyphidr rlus papillatus, Stephenson, Mem. Ind. Mus. vii, p. 2.58.

Length 100-120 mm.; maxinum diameter 3-5 mm. Segments 202-3:30. ('olour flesh or greyish, no distinct pigmentation. Anterior segments after v divided by secondary annulations. Posterior half flattened dorsally, ventral surface flattened for the greater part of its extent. Prostomium large, pro- or zygolobous. Dorsal pores absent. Setæ paired, the setal couples being behind the clitellum at the angles of the body; in postclitellar region ab rather less tham $\frac{1}{2} a a$ and $=\frac{1}{2} b c=a l$, dde a little greater than au; in tront of clitellum setæ small and wider apart ; in posterior part of body chl larger and $b c$ smaller, $a b=\frac{2}{5} a u=\frac{1}{2} b c=c d=\frac{2}{7}$ d $d l$. Clitellum rather indefinite, xvi-xxvi . . . xxxiv ($=11-19$). Wings ventrolateral, xviii-xxiii . . xxvi, attached outside the line of b. Papille large, round, flattened or slightly depressed in the middle, on the posterior part of their segments, in two series, lateral and median; the lateral in line with or slightly dorsal to the attachment of the wiugs, usually paired, on any of the segments x-xvii, as well as occasionally on xxiii, xxiv, xxy or xxvi-xxiiii ; median papille not so common as the lateral, on xi-xv and on xvii and xviii. or may be absent altogether ; the lateral may be only two pairs, or two on one side and one ouly on the other.

Septum $4 / \bar{J}$ thin, $5 / 6$ slightly, $6 / 7-9 / 10$ moderately, and a few succeeding ones slightly thickened. Gizzard in vii and viii, $7 / 8$ being adherent to it at its middle: rather small and fairly soft. Intestine begins in xvi. Hearts in \mathbf{x} and x. Testes and funnels free in x and xi. Seminal vesicles four pairs, ix-xii, usually deeply lobed, not always symmetrical. No prostates. Orisacs in xir, and apparently in $x v$ also. Spermathece in four series on each side, in 13/14-16/17, with sometimes additional ones in the next anterior groove; each is a small elongated saccule, adherent to the body-wall ; each series consists of five on each side, one each on the lines of a, b, c, and d, and one between b and c.

Remarks. The immature specimen which was described by Rosa was made the type of a new genus Bilimba; Michaelsen in 1896 showed that Rosa's worm belonged to Glyphidrilus.

Distribution. Cobapo, Biapo Dist., Burma; Lucknow.

3. Glyphidrilus tuberosus Steph.

1916. Glyphidrilws tuberosus, Stephenson, Rec. Ind. Mus. xii, p. 349, pl. xxxiii, fig. 37.

Length ca. 60 mm .; max. diameter 3 mm ., average 2.5 mm . :Segments 221, all very short behind clitellum. Colour light brown. Dorsal surface concnve behind clitellum, ventral surface flat or concave; a section is thus foursided, the dorsal surface being the most extensive at the hinder end. Anus dorso-terminal. Prostomium prolobous or ? zygolobous, the delimiting groove being a shallow depression only. Setæ behind clitellum at the angles of the section ; $a u=b c=2 a b=2 c d ; d l=3 c d$ or nearly so ; in front of clitellum setæ widely paired and rather irregular, $\cdot a b=\frac{1}{2} a a$ or less. Clitellum from xiv, $x v$ or xvi to xxviii or xxix for xxx dorsally). Wings on $x x$ to xxiv, continued forwards as a

Fig. 262.-Glyphidrilus tuberosus Steph.; segments xvii-xxviii from the ventral surface, showing the papille in this region, with the ventrolateral ridge on one side and the caulifiower-like excrescence on the other.
slight ridge to $x v$ or xiv; they may grow out into a foliating tumourlike mass of numerous soft irregular closely apposed papillæ, extending ventralwards nearly to the line of a (text-fig. 262); similar patches may be present above the wings, between the middorsal and the lateral lines. Papilla small, white, rounded, on the posterior parts of their segments; an nuterior set, on x, xi, and xii, a midventral and two lateral on each side, one of the lateral between a and b, and the other outside b; a middle set on xvii-xix, or xviii and xix, paired, the full number being three pairs per segment, one internal to a, one between a and b, and one outside b; a posterior group on xxiv to xxviii, similar to the last, i.e. all paired, but one or more may be wanting in any segment (text-fig. 262).

Septum $4 / 5$ thin, $5 / 6$ slightly, $6 / 7$ somewhat thickened, $7 / 8$ moderately, $8 / 2-11 / 12$ or $12 / 13$ slightly so. Gizzard in vii, sometimes extending into the hinder part of vi; degree of development varies, often in some degree vestigial. No calciferous glands. Intestine begins in xv. Last heart in xi. Testes and funnels in x and xi. Seminal vesicles four pairs, ix-xii. Ovisacs in xiv. Spermathecæ in xiv and xv, small subspherical sacs; the duct a short thin stalk, debouching into grooves $13 / 14$ and $14 / 15$; three or four on each side in each segment, in line with a and b, between b and c, and in line with c.

Distribution. Cuttack (Orissa); Jalpaiguri (Bengal).

Subfamily CRIODRILIN Æ.

1900. Criodrilinæ (part.), Michaelsen, Tier. x, p. 463.

1917. Criodrilinæ, Michaelsen, Zool. Jahrb. Syst. xli, p. 372.

Genital setæ longitudinally grooved. Male pores preclitellar, on xv, on glandular elevations. Calciferous glands wanting; an obvious gizzard wanting, but an indefinite strengthening of the muscular coat at the beginning of the intestine present. Sexual apparatus holandric and metagynous; no prostates; muscular copulatory sacs present. No spermathecæ.

The Distribution is that of Criodrilus laf am, the only species till recently recognised, with, in additio. England (Anayaster fontinalis Friend).

1. Genus CRIODRILUS IIoffimstr.

189). Criodrilus, Beddard, Monog. p. 665.
1900. Criodrilus, Michaelsen, Tier. x, p. 467.
1917. Criodrilus, Michaelsen, Zuol. Jahrb. Syst. xli, p. 372.

Prostomium zygolobous. Middle part of body four-angled. Anus dorso-terminal. Setæ closely paired. Four pairs of seminal resicles in ix-xii.

1. Criodrilus lacuum Hoffimstr.

1914. (riodrilus lacuum, Stephenson, Rec. Ind. Mus. x, p. 258.
1915. Criodrilus lacuum, Stephenson, Mem. Ind. Mus. v, p. 145.
1916. Criodrılus lacuum, Vejdovsky, Nionog. p. 57, pl. x, fig. 21, pl. xiii, figs. $12-24$, pl. xiv, figs. 1-15.
1917. Criodrilus lacuum, Orley, Quart. Journ. Mic. Sci. xxvii. p. 551 , pl. xxxviii, figs. 1-8.
1918. Criodilus lacuum, Benham, Quart. Journ. Mic. Sci. xxviii, p. 661, pl. xxxvini, figs. 0-19.
1919. Criodrilus lucuum, Collin, Z. wiss. Zool. xlvi, p. 471, pl. xxiii.
1920. Criodrilus lacuum, Michaelsen, Zool. Jahrb. Syst. xli. p. 373.
(The ubove references contain descriptions of the worm and its habite, the last, by Michaelsen, consisting for the most part of a full account of the normal and genital setæ.)

Length 120-320 mm.; diameter 4-5 mm. or more. Segments
$\mathbf{2 0 0} \mathbf{- 4 5 0} \mathrm{mm}$. Colour light or dark brown to green. Prostomium zygolobous. Body from about ix onwards quadrangular in section; anus postero-dorsal. Setæ ornamented, closely paired; with two longitudinal series of broad scars with curved, elevated, and irregularly toothed proximal edges, each taking up half the circuinference of the seta, and alternating in the two series as regards. their position on the shaft; $d d$ only a little greater than aa. Clitellum not marked, indistinctly limited, xvi-xlvii ($=32$). Male pores on $x v$, external to b, on large low glandular cushions which laterally are somewhat wrinkled, extending over $x \vee$ and $x v i$, and nearly reaching to the line of c. Female pores on xiv, immediately outside b, on similar smaller cushions. Setæ $a b$ of $x-x i v$, xvii, and xix often on glandular elevations, and so back to xxiii, the elevations becoming gradually smaller.

Gizzard rudimentary, in xii-xiv. Seminal vesicles four pairs, in ix-xii. Vassi deferentia opening on to the surface through a hemispherical gland (prostate?). Spermathecæ absent. Genital setæ much thinner than the normal setæ, the nodulas situated markedly proximal; the distal half showing four longitudinal ridges separated by grooves; only setro a of xii, xiii, xvi-xviii (?) thus modified.

Remarks. Unfortunately the specimens diagnosed as belonging to this species were not fully mature, and there is therefore nu element of doubt in the identification.

Distribution. In India from the Chilka Lake on the E. coast. The species is widely spread in Europe, and occurs in Syria and Palestine ; it is limuic in habitat.

Subfamily LUMBRICIN .

189\%. Lumbricidæ, lBeddard, Monog. p. 687.
1900. Lumbricidæ, Michaelsen, Tier. x, p. 470.
1909. Lumbricidæ, Michaelsen, Mem. Ind. Mus. i, pp. 116, 246, 247.
1910. Lumbricidæ, Michaelsen, Abh. Ver. Hamburg, xix, pp. 17, 29.

Male pores anteclitellar, as a rule on xv, seldom further forwards, on a flat surface or on or between swollen glaudular elevations. Spermathecal pores often wanting, usually in the region of the testis segments, often behind, seldom in front of them. Genital setæ (not known in all forms) longitudinally grooved. Esophageal gizzard wanting; calciferous glands usually present; an obvious gizard is developed at the beginning of the intestine. Sexual apparatus as a rule holandric, seldom (? only individually) metandric; metagynous. Copulatory sacs and prostates wanting.

Distribution. The subfamily is widely distributed in India, occurring throughout Kashmir and the Punjab, in both Western and Eastern Himalayas, at Calcutta, at Partabgarh and Mt. Abu in Rajputana, in the Nilgiris, Palnis, and Travancore, and in the

Nicobar Islands. But this wide distribution is due to the peregrine species, endemic species being found only in Kashmir, the Punjab (in the Western Himalayas), and at Calcutta. The headquarters of the subfamily is S . Europe, especially the Caucasus region; it is the dominant group over the whole of temperate Eurasia, being endemic in N. and N.W. Europe, Central and S. Europe. Japan, Turkestan, Transcaucasia, Asia Minor, Syria, and Palestine, with a few Indian species and one in S.W. Persia; it has founded a small colony of endemic forms in Eastern N. America.

The further division of the subfamily has given much trouble; the history of the attempts which have been made is given by Michaelsen (126), who finds that of the genera and subgenera which he recognized in the Tierreich volume a number must. disappear, since they grade into one another in manifold ways. The only genera which can be definitely separated are Helodrilus ($=$ Allolobophora), Octolasium, and Lumbricus; and of the subgenera of Helodrilus there is no sharp line between Eisenia and Dendrobana, nor between Eisenia and Eiseniella, while there are difficulties in separating Dendroboena and Allolobophora, Allolobophora and Octolasium, Bimastus and the subgenus Helodrilus. Michaelsen leaves the subgenera, however (Eisenia, Eiseniella, Allolobophora, Bimastus, Dendrobcena, and Eophila-the latter the equivalent of the subgenus Helodrilus of the 'Tierreich volume), considering that the distinction of subgenera need not be as definite as that of genera..

The generic name Helodrilus, used in the Tierreich volume, is replaced by Allolobophora in Michaelsen, 87 a, p. 40.

Key to Genera and Subgenera of Lumbricinæ.

1. Gizzard confined to one segment; sperma-
thecal pores between d and the middorsal line

Allolobophora subgen.
Gizzard taking up 2-4 segments 2.
2. [Eiscniella.
2. Testes and funnels free
3.

Testes and funnels mostly in testis sacs, seldom in coclomic spaces incompletely closed by the junction of the septa or by strands of tissue (in the latter cases more than three pairs of seminal vesicles)
7.
3. Spermathecal pores occurring singly (i.e., not in groups) in or close to the middorsal line. Spermathecal pores often absent, usually occurring singly, and then in or below d; often also in groups of several, and then partly in and partly above d

Allolobophora subgen. [Eisenia.
4. Two pairs seminal vesicles in xi and xii ...

Three or four pairs seminal vesicles 6.
5. Clitellum extending at least to $32 / 33$, usually further back; spermathecæ usually pre-sent,-if absent, clitellum extends some distance back beyond 32/33
Clitellum extending at most to $32 / 33$, usually not so far ; spermathecæ absent
subgen. Eophila.
subgen. Bimastus.
6. Setpe more or less closely paired; four pairs seminal vesicles in $\mathrm{ix}-\mathrm{xii}$, those of x approximately as large as those in ix
Setæ mostly widely paired or separated, seldom closely paired; usually three pairs seminal vesicles, in ix, xi, and xii, seldom (only when the seter are widely paired) a fourth pair of small seminal vesicles in x, these being nuch smaller than those in ix.
Testes and funnels enclosed in a single unpaired testis sac; three pairs seminal vesicles in ix, xi, and xii ; two pairs spermathecæ
Testes and funnels enclosed in paired testis sacs, or in incompletely closed collomic spaces; in the last case, as usually, more than two pairs spermathecro; four pairs seminal vesicles The subgen. Fiseniella has not so far been found in India.

1. Genus ALLOLOBOPHORA Eisen.

1895. Allurus + Tetragonurus + Allolobophora (part.), Beddard,
1896. Helodrilus + Eisenia + Eiscniella, Michaelsen, Tier. x, pp. 471, 474, 479.
1897. Helodrilus, Míchaelsen, Annuaire Mus. St. Pétersb. xv, p. 10. 1918. Allolobophora, Michaelsen, Zoql. Jahrb. Syst. xli, p. 40.

Testes and funnels free.

There is now no other character which will apply to all the forms which come under this large genus. The prostomium is nsually epilobous, but any other form may occur. The setm may be closely paired, or widely paired, or even separated, i. e., not in pairs at all. Spermatheca may be absent, or there may be two, three, or four pairs, or the spermathecæ may be in groups. The Lizzard may be confined to one segment (subgen. Eiseniella), or may take up more than one. The seminal vesicles may be two, three, or four pairs.

Distribution. In India is found in Kashmir, the N.W. Frontier Province, the Punjab, Western and Eastern Himalayas, Bengal, Rajputana, and S. India. It appears to be endemic in Kashmir, the Western Himalayas, and at Calcutta, but by far the greater number of the records are of peregrine species. Outside India the genus is endemic in the whole area of the subfamily.

Subgenus Eisenia Malm.

1895. Allolobophora (part.) Beddard, Monog. p. 698. 1900. Eisenia (gen.), Michrelsen, Tier. х , p. 474.
1896. Eisenia (subgen.), Michaelsen, Annuaire Mus. St. Pétersb. xv, p. 8.
Prostomium epi- to tanylobous. Setæ closely or widely to very widely paired. Spermathecal pores two or three pairs, in 8/910/11, above d, in or near the middorsal line. Gizzard taking
up more than one segment. Three or four pairs of seminal vesicles, in ix, xi, and xii, or in ix-xii.

The two Indian species are easily separated by their colour; the transverse pigmented bands over the dorsum in A. (E.) fatida are very distinctive.

1. Allolobophora (Eisenia) footida (Sav.). .
2. Allolobophor a fotida, Rosa, Ann. IIofmus. Wien. vi, p. 381
3. Allolobophora fortida, Beddard, Monog. p. 702.
4. Eisenia fot ida, Michaelsen, 'Tier. x, p. 475.
5. Eisenia fortidu, Michaelsen, Mem. Ind. Mus. i, p. 245.
6. Helodıilus (Eisenia) foetidus, Michnelsen, Abh. Ver. Hamburg, xix, p. 104.
7. Helochilus (Eiseria) foetidus, Michaelsen, Mt. Mus. Hamburg, xxx, p. 92.
8. Meludrilus (Eisenia) foetidus, Stephenson, Rec. Ind. Mus. x, p. 363.
9. Helodrilus (Eisenia) foetida, Stephenson, Rec. Ind. Mus. aii, p. $3 \overline{5}$).
10. ILelodrilus (Eisenia) fatidus, Stephenson, Rec. Ind. Mus. xiii, p. 414.
Length $60-90 \mathrm{~mm}$.; diameter $3-4 \mathrm{~mm}$. In life with red, purple, or brown segmental bands over dorsum, separated bv paler intervals ; the bands slightly marked in ix-xi, except middorsally; bands sometimes two per segment; ventral surface pale. Prostomium epilobous $\frac{1}{2}$. Dorsal pores from 4/5. Setæ slender, ornamented, closely paired; $a u=b c ; d d=$ half the circumference. Clitellum from xxiv, xxy, or xxvi to xxxii ($=7-9$). Ridges ("walls") at maturity on 3-4 segments, xxvii or $\frac{1}{2} x x v i i i$ to axx or xxxi. Male pores with fairly large raised areas which do not transgress the limits of x. Spermathecal pores two pairs, in $9 / 10$ and $10 / 11$, near the middorsal line.

Distribution. Simla and neighbourhood; Kodaikanal and neighbourhood, Palni Hills; Coonoor, Nilgiri Hills; Ponnudi, Travancore ; Sevok, Darjiling Dist.; Nicobar Islands.
2. Allolobophora (Eisenia) rosea (Sav.).
1909. Eisenia rosen, Michaelsen, Mem. Ind. Nus. i, p. 245.
1895. Allolobophora rosea, Beddard, Monog. p. 714.
1900. Eisenia rosea, Michaelsen, Tier. x, p. 478.

Length $25-60 \mathrm{~mm}$.; diameter 3-4 mm. Segments 120-150. Flesh-coloured in life, unpigmented. Prostomium .epilobous $\frac{1}{2}$. Dorsal pores from 4/5. Setæ in general slender, in the anterior part of the body very slender, closely paired; aa rather greater than $b c$; dd anteriorly equal to about half the circumference, posteriorly equal to one-third the circumference. Clitellum from xxiv, xxv, or xxvi to xxxii to xxxiii ($=7-9$). Ridges ("walls") generally from xxix to xxxi, less often xxx to xxxi. Male pores in
large transverse furrows on transversely elongated elevated glandular areas which do not transgress the limits of xv. Spermathecal pores two pairs, in 9/10 and 10/11, close to the mid-dorsal line. Ventral or lateral or all setæ of ix or x or (and) xii or xiii, more rarely of exiv, situated on transversely elongated papillæ, and modified as genital set $¥ 0.8 \mathrm{~mm}$. long and 20μ thick, grooved and simply curved.

Distribution. Gurez, Kashmir.

> Subgen. Allolobophora Eisen em. Rosa.
> 1895. Allolobophora (gen.) (part.), Beddard, Monog. p. 698.
> 1900. Allolobophora (subgen.), Michaelsen, Tier. x, p. 480 .
> 1910 Allolobophora (subgen.), Michaelsen, Annuaire Mus. St. Petersb. xv, p. 4.

Prostomium mostly epilobous, seldom tanylobous. Setæ more or less closely paired. Spermathecal pores at most three pairs or pairs of groups, in cd. Gizzard taking up more than one segment. Seminal vesicles four pairs, in ix-xii, those of x approximately as large as those of ix (? always).

The two Indian species are immediately distinguishable by the position and extent of the clitellum and ridges of puberty.
3. Allolobophora (Allolobophora) caliginosa (Sav.) f. typica. 1909. Helodrilus (Allolobophora) caliginosus f. typrica, Michnelsen,
Mem. Ind. Mus. i, p. 245.
1895. Allolobophora caliyinosa (part.), Beddard, Monoy. p. 699. 1900. Helodrilus (Allolobophori) caliginosus (typicus). Nichaelsen, Tier. x, pp. 482, 483.

Length $60-160 \mathrm{~mm}$. ; diameter 4-6 mm. Segments 104-248. Colour very variable in life, grey, flesh-coloured, brown, yellowish, slate-blue, but never purple. Prostomium epilobous $\frac{1}{3}$, tongue cut off behind. Dorsal pores from $9 / 10$ or less often $8 / 9$. Setro closely paired, the lateral especially closely ; ac greater than bc; $d d=$ half the circumference or somewhat less. Clitellum saddle-
 of puberty two pairs on xxxi and xxxiii. Male pores in transverse slits, on usually much elevated glandular areas, which take up xiv-xvi (these areas seldom slight and inconspicuous, not elevated). Spermathecal pores two pairs, in $9 / 10$ and $10 / 11$, on oll. Setæab of ix, x, and xi usually on broad papillæ (and so also some of those in the clitellar region ?), transformed into genital setee, grooved, somewhat longer and thiuner than the normal setæ, slightly curved.

Septa 5/6-9/10 thickened, $7 / 8$ most so. Seminal vesicles of ix and \bar{x} small.

Distribution. Simla.
a. subsp. trapezoides (Ant. Dug.).
1909. Helodrilus (Allolobophora) caliginosus f. trapezoides, Michaelsen, Mem. Ind. Mus. i, p. 245.
1914. Helodrilus (Allolobophora) caliginosus f. trapezoides, Stephenson, Rec. Ind. Mus. x, p. 363.
1916. Helodrilus (Allolobophora) caliginosus f. trapezoides, Prashad, J. Bombay Soc. xxiv, p.495, pl. i, figs. 5, 9-12; pl. ii, fig. 1.
1917. Helodrilus (Allolobophova) caliyinosus subsp. trapezoides, Stephenson, Rec. Ind. Mus. xiii, p. 413.
1917. Helodrilus caliginosus, Stephenson, Quart. J. Mic. Sci. 1xii, pp. 269, 279, pl. xix, figs. 6, 10.
1919. Helodrilus caliginosus, Stephenson \& Prashad, Tr. Roy. Soc. Edin. lii, p. 470, pl. figs. 12, 13.
1920. Helodrilus caliginosus var. trapezoides, Stephenson, Mem. Ind. Mus. vii, p. 260.
1922. Helurlitus (Allolabophora) caliginoses subsp. trapezoides, Stephenson, Rec. Ind. Mus. xxiv, p. 440.
189.). Allolobophora caliginosa (part.), Beddard, Monog. p. 699.
1900. Helorrilus (Allolobophora) caliginosus trapezoides, Nichaelsen, Tier. x, p. 483.
'Tubercles of puberty conjoined to form a wall from xxxi to xxxiii or xxxiv. Otherwise as in the f. typica.

Remarlis. The ridges may be formed of imperfectly fused tubercles; or they may extend forwards to the anterior limit of the clitellum, becoming more cut up into tubercles in the anterior segments. The pharyngeal gland cells have been studied by Stephenson (87), and the calciferous glands by Stephenson and Prashad (91).

Distribution. Gilgit; Gurez, Gaudarbal, Anchar Lake(Kashmir); Lahore, Ferozepur, Peshawar, Mardan (Punjab and N.W. Frontier Prov.) ; Simla, Naini Tal (W. Himalayas) ; Mt. Abu (Rajputana); Ootacamund (Nilgiris). The species and its subspecies are widely distributed over the whole world.

4. Allolobophora (Allolobophora) prashadi (Steph.).

> 1929. Helodrilus (Allolobophora) prashadi, Stephenson, Rec. Ind. Mus. xxiv, p. 440.

Length 62 mm . ; diameter 3 mm . Segments 133. Colour grey with a slightly pinkish tinge. Prostomium proepilobous. Dorsal pores from $4 / 5$ or $5 / 6$. Setex closely paired; $a n=$ nearly twice $b c, a b$ is greater than $c d, d d$ is less than half the circumference. Clitellum from $1 / n$ xxiii or xxiv to xxxii or xxxiii ($=9$ to more than 10), saddle-shaped; ridges of puberty xxix-xxxi. Male - pores on very prominent hemispherical papillm on $x v$, which encroach also on xiv and xvi; centres of the papille just outside the line b. No spermathecal pores. Ventral setæ of xii, and sometimes those of $x i$ and x, situated on papillm.

Septa $8 / 7-8 / 9$ much thickened, $9 / 10$ fairly thick, and succeeding septa as far as 13/14 gradually diminish in thickness. Gizzard
occupies $x v i$ and xviii. Testes and funnels free in x and $x i$. Seminal vesicles in ix, x, xi, and xii; those in x the smallest, though not much smaller than those in ix; those of xi and xii much lobulated. No spermathecæ. The lateral setæ of xi and xii 0.76 mm . long, almost straight; fairly sharply pointed, the distal portion grooved (type of the clitellar setæ of Lumbricus terrestris).

Remarks. This species disagrees with the great majority of the subgenus, and resembles Bimastus, in having no spermathecr.

Distribution. Gandarbal, Kashmir.

Subgen. Dendrobana Eisen em. Rosa.

1895. Allolobophora (part.), Beddard, Monog. p. 698.
1896. Dendrobana (subgen.), Nichaelsen, Tier. x, p. 488.
1897. Dendrobcena (subgen.), Michaelsen, Annuaire Mus. St. Pétersb. xv, p. 4.
Skin mostly with red pigmentation. Prostomium usually epilobous, soldom tanylobous. Setæ mostly widely paired or separated, seldom closely paired. Spermathecal pores in c or d, seldom absent, usually two pairs in $9 / 10$ and $10 / 11$, occasionally with one or two additional pairs in neighbouring segments. Giziard extending over more than one segment. Usually three pairs of seminal vesicles, in ix, xi, and xii; seldom (only where there are widely paired setæ) a fourth pair in x, which are then much smaller than those in ix.

The two Indian species are immediately distinguished by the position of the clitellum.

5. Allolobophora (Dendrobæna) kempi (Steph.).

> 1922. Helodrilus (Dendrobana) kempi, Stephenson, Rec. Ind. Mus. xxiv, p. 441 ; text-fig. 5 .

Length 91 mm .; diameter 6 mm . Seginents 128 . Colour light grey, non-pigmented. Prostomium epilobous $\frac{1}{2}$, tongue not closed behind. Dorsal pores from $9 / 10$. Setæ small; anteriorly $a b=\frac{1}{3} a a=\frac{1}{2} b c=c d$; behind male apertures the distance between the setæ of a pair increases, and becomes still larger behind the clitellum; in middle of the body the setm are no longer paired, $a b=\frac{1}{2}$ to $\frac{3}{8} a a=1 \frac{1}{-1}-1 \frac{1}{2} b c=2 c d ; d d=\frac{1}{3}-\frac{2}{2}$ of the circumference. Nephridiopores just above line of setæ b. "Clitellum saddle-shaped, xxix-xxxiv ($=6$) ; ridges of puberty indistinct, perhaps equal in extent to clitellum. Male pores as transverse slits on xy, with tumid anterior and posterior lips, the slits reaching from the line of b to that of c. Spermathecal pores in $9 / 10$ and $10 / 11$, in line with setæ d.

Septa $5 / 6-15 / 16$ thickened, 6/7-8/9 most so. Gizzard occupying segments xvii and xviii ; œesophageal pouches in x, prolonged back as calciferous glands, not set off from the tube, in xi and xii. Last heart in xii, smaller than that in xi, and at a deeper level. Testes and funnels free in x^{\prime} and $x i$. Seminal vesicles four pairs, in ix-xii, those of x equal in size to those of ix. Spermathece in
x and xi as small round sacs sessile on the body-wall. Ventral setm of xv slightly modified; a faint sculpturing of the distal portion of the shaft by a numerous series of transverse markings, slightly jagged and convex towards the insertion of the seta.

Distribution. Kufri, Simla Hill States.
6. Allolobophora (Dendrobæna) rubida (Sav.) f. typica.
1909. Helodrilus (Dendrobena) rubidus f. typica, Michaelsen, Mem. Ind. Mus. i, p. 248.
1895. Allolobophora bopckii, Beddard, Monog. p. 705.
1900. Melodrilus (Dendrobena) rubidus, Michaelsen, Tier. x, p. 490.

Length $50-60 \mathrm{~mm}$.; diameter $3-4 \mathrm{~mm}$. Segments $50-100$; body cylindrical. Colour pale red dorsally. Prostomium epilobous $\frac{2}{3}$. Dorsal pores from $5 / 6$. Setæ widely paired; $a a=1 \frac{4}{3} a b$, $b c=2 c d, c d$ greater than $a b ; d d=4 c d$. Clitellum from xxvi or xxvii to xxxi or xxxii $(=5-\mathbf{7})$. Tubercles of puberty on xxix and xxx. Male pores with small glandular areas confined to xv. Spermathecal pores two pairs, in $9 / 10$ and 10/11, in c. Setæ ab of xvi usually on large broad papillæ, transformed to genital setæ, 0.6 mm . long and 20μ thick, bent in a simple curve distally, otherwise almost straight, grooved.

Distribution. Naini Tal, W..Himalayas.
a. f. subrubicunda (Eisen).
1909. Helodrilus (Dendrobena) rubidus f. subrubicunda, Michnelsen, Mem. Ind. Mus. i, p. 248.
1895. Allolvbophora subrubicunda, Beddard, Monog. p. 707.
1900. Helodrilus (Dendrobrena) rubidus var. subrubicunda, Michaelsen, Tier. x, p. 490.
Length 65-90 mm. ; diameter ca. 4 mm . Segments 60-110; body more or less flattened, especially in the clitellar region. Colour light to deep red. Prostominm epilobous $\frac{2}{3}-\frac{3}{4}$. Clitellum xxv or xxvi to xxxi or xxxii ($=6-8$). Ridges ("walls") on xxviii-xxx. Genital setre of the previous form, 0.8 mm . long. Otherwise as for the f. typica.

Distribution. Simla, W. Himalayns; Saudakphu and Phallut, Darjiling Dist., E. Himalayas.

Subgenus Fophila Rosa.

1895. Allolobophora (part.), Beddard, Monog. p. 698.
1896. Eophila (subgen.), Michaelsen, Abh. Ver. Hamburg, xvi, p. 9.
1897. Helodrilus (subgen.), Michaelsen, Tier. x, p. 495.
1898. Eophila (subgen.), Nichnelsen, Annuaire Mus. St. Pétersb. $\mathrm{xv}, \mathrm{p} .4$.
Clitellum extending to at least $32 / 33$, mostly further back.

Spermathecal pores seldom absent, usually 2-7 pairs or pairs of groups, in ed, or, if in groups, partly in and partly above ch. Gizzard taking up more than one segment. Semmnal vesicles two pairs, attached to septa $10 / 11$ and $11 / 12$, in xi and xii. Spermathece usually present-if absent, clitellum exteuding back some distance behind $32 / 33$. Mostly worms of moderate size, unpigmented.
7. Allolobophora (Eophila) mariensis (Steph.).
1917. Helodrilus (Helodrilus) muriensis, Stephenson, Rec. Ind. Mus. xiii, p. 414; text-fig. 6.
Length ca. 100 mm . ; maximum diameter 6 mm . Segments 151. Colour greenish grey, clitellum buff. Anterior end tapers rapidly, posterior end cut off straight, four segments visible on the flat posterior end. At and behind the middle a section is four-sided, the dorsal side being the longest; towards the hinder end all the surfaces are concave. Prostomium epilobous $\frac{1}{3}$. Dorsal pores from $4 / \overline{5}$. Setæ closely paired; $a a=1 \frac{1}{2} b c$ or nearly; in front of clitellum the lateral pair are below the lateral line of the body, in middle of body they are about in the lateral line, and towards the hinder end above it, but below the dorso-lateral angle of the body. Clitellum xxvii-xxxiv ($=8$). 'Iubercles at the site of the ventral setæ of all the clitellar segments except the last, almost forming a " wall" on each side; ventral setal bundles of x and $x i$, or of $i x, x$, and $x i$, also stated on glandular cushions. Male pores on large round papilla on $x y$, the papille also taking up parts of xiv aud xvi, the pores outside the line b. Spermathecal pores in $9 / 10$ and $10 / 11$, in line with cl .

Septum $5 / 6$ somewhat thickened, $6 / 7$ considerably so, $7 / 8,8 / 9$, and $9 / 10$ very strong, then diminishing in thickness. Gizzard in xvii, xviii, and a small part of xix, firm and cylindrical. EEsophagus swollen in x, and in addition a small pair of yellowish projections (crypts) opening into the general lumen; cesophagus ridged internally from vo backwards to xii. Last heart in xii. Seminal vesicles of moderate size, in xi and xii. Spermatheca two pairs, small, ovoid, sessile, at the anterior borders of x and $x i$.

Distribution. Murree, W. Himalayas.
Subgenus Bimastus H..F. Moore.
1895. Allolobophora (part.), Beddard, Monog. p. 698.
1900. Bimastus (subgen.), Michaelsen, Tier. x, p. 501.
1910. Bimastus (subgen.), Michaelsen, Annuaire Mus. St. Pétersb. $\mathrm{x} \boldsymbol{v}, \mathrm{p} .4$.
Clitellum extending back to at most $32 / 33$, usually not so far. Tubercles of puberty wanting or not obvious, not sharply defined. Gizzard taking up more than one segment. Two pairs of seminal vesicles, attached to septa $10 / 11$ and $11 / 12$, in xi and xii. No spermathecæ. ,Usually small worms, with reddish pigmentation.

Key to the Indian species of the subgenus Bimastus.

1. No tubercles or "walls" of puberty A. (B.) eiseni.

Tubercles or "walls" present
2.
2. "Walls", or tubercles on xxviii and xxix only.. A. (B.) constricta.
"Walls" or tubercles beginning on xxv or xxvi and extending to xxix or xxx................ 3.
3. Clitellum on $\times x v-x x x i i(=8) ; a b=c d \ldots \ldots$ A. (B.) indica.

Clitellum on xxiv-xxx $(=7)$; ab grenter than $c d \quad A$. (B.) parva.
8. Allolobophora (Bimastus) constricta Rosa.
1909. Helodvilus (Bimastus) constrictus, Michaelsen, Mem. Ind. Mus. i, p. 246.
1910. Helodrilus (Bimastus) constrictus, Michrelsen, Abh. Ver. Hamburg, vix, p. 104.
1916. Helodrilus (Binastus) constrictus, Stephenson, Rec. Ind. Mus. xii, p. 352.
192:. Helodrlus (Bimastus) constrictus, Stephenson, Rec. Ind. Mus. xxiv, p. 442.
1895. Allolobophora constricta, Beddard, Monog. p. 711.
1900. Melodrilus (Binuastus) constrictus, Michaelsen, Tiek. x, p. 503.

Length $20 \cdots 30 \mathrm{~mm}$.; diameter 3 mm . Segments $90-105$. Colour red dorsally, especially in the anterior part of the body. Prostomium epilubous $\frac{2}{3}$. Seto widely paired; be greater than cd, cel greater than $a b$. Dorsal pores from 5/6. Clitellum xxvi-xxxi ($=6$). No tubercles of puberty. Male pores with conspicuous glandular areas. Setæ ab of xvi usually on large broad indistinctly limited papillæ.

Remarks. Some of my specimens did not agree very closely with the above diagnosis; the clitellum extended as far as xxxii behind, inclading the whole of the segment dorsally and half or two-thirds of it ventrally; there was no pigmentation, and the papillæ in the region of setæ $a b$ of xvi were wanting.

Distribution. Simla Hills, W. Himalayas; Darjiling, E. Himalayas; Ootacamund, Nilgiris.
9. Allolobophora (Bimastus) eiseni (Levins.).
1909. Helodrilus (Bimastus) eiseni, Nichaelsen, Mem. Ind. Mus. i, p. 246.
1016. Helodrilus (Bimastus) eiseni, Stephenson, Rec. Ind. Mus. vii, p. 352.
1805. Allolobophora ciseni, Beddard, Monog. p. 705.
1900. Helodrihes (Bimastus) ciseni, Michnelsen, Tier. x, p. 503.

Length 30-48 mm. ; diameter 2-4 mm. Segments 75-110. Colour dorsally a bright violet. Prostomium tanylobous. Dorsal pores from $5 / 6$. Setæ closely paired. Clitellum from xxir or xxv to xxxii $(=8-9)$. No tuborcles of puberty. Male pores with conspicuous glandular areas.

Distribution. Naini Tal, Painsur (both in Kumaon Dist., W. Himalayas).
10. Allolobophora (Bimastus) indica (Mich.).
1909. Helodrilus (Bimastrs) indicus, Nichaelsen, Mem. Ind. Mus. i, p. 246.
1907. Helodrilus (Bimastus) indicus, Michaelsen, Mt. Mus. Hamburg, xxiv, p. 188.
Length $58-75 \mathrm{~mm}$. ; maximum diameter ca. 6 mm . Segments 87-107. Colour grev, unpigmented. Prostomium epilobous $\frac{2}{3}$; tongue not closed behind, lateral borders of tongue convergent behind. Dorsal pores from 5/6. Setæ closely paired ; $a a=b c=$ $\frac{3}{3} d d ; a b=c d=c a . \frac{1}{2} a a$. Clitellum saddle-shaped, $\mathrm{xxv}-\mathrm{x} x \mathrm{xii}(=8)$; on xxxii only developed dorsally. Glandular cushions on xxvixxx, internal to the ventral borders of the clitellum, extending from internal to a to outside b (estending further outward beyond b than inwards beyond a); smaller on xxvi. Male pores as deep transverse clefts on $x v$, between b and o but nearer b, on broad longitudinal glandular cushions which include xiv and xvi. Spermatophores may be borne on the surface of the body lateral to the male pores; they are irregular dises somewhat longer than broad.

Gizzard in xvii and xviii. Calciferous glands not set off from the cesophagus. Seminal vesicles large, in xi and xii. Spermathecæ absent.

Remarks. This is rather an aberrant member of the subgenus, and inclines, towards Eophila in size and pale colour. It seems to be closely allied to A. (B.) syriaca Rosa, the chief distinction being the arrangement of the setæ.

Distribution. Calcutta.

11. Allolobophora (Bimastus) parva Eisen.

1909. Helodrilus (Bimastus) parvus, Michaelsen, Mem. Ind. Mus. i, p. 248.
1910. Helodrilus (Bimustus) parrus, Stephenson, Rec. Ind. Mus. $\mathrm{x}, \mathrm{p} .363$.

- 1916. Helodrilvs (Bimastus) parvus, Stephenson, Rec. Ind. Mus. xii, p. 352.

1916. Helodrilus (Bimastus) parvus, Prashad, J. Bombay Soc. xxiv, p. 497, pl. i, tigs. 8, 13, pl. ii, fig. 2.
1917. Helodrilus (Dimastus) parvus, Stephenson, Rec. Ind. Nus. xiii, p. 414.
1918. Helodrilus parvus, Stéphenson, Quart. J. Mic. Sci. lxii, p. 278, pl. xix, figs. 7, 8.
1919. Helodrilus parvus, Stephenson and Prashad, Tr. Roy. Soc. Edin. lii, p. 474, pl. fig. 11.
1920. Helodrilus parvus, Stephenson, Mem. Ind. Mus. vii, p. 260.
1921. Helodrilus (Bimastus) parvus, Stephenson, Rec. Ind. Mus. xxiv, p. 442.
1922. Allolobophora parva, Beddard, Monog. p. 705.
1923. Helodrilus (Bimastus) parvus, Michaelsen, Tier. x, p. 502.

Length $25-40 \mathrm{~mm}$.; diameter $1-2 \mathrm{~mm}$. Segments $85-111$, usually about 90. Colour brownish red. Prostominm epilobous
$\frac{1}{2}-\frac{4}{5}$. Dorsal pores from 5/6. Setæ paired, the dorsal closer than the ventral; $a b=\frac{1}{4} a n=\frac{1}{3} b c=1 \frac{1}{4} c d ; d d=$ nearly half the circumference. Clitellum saddle-shaped, $\mathbf{x x i v}$ or $\mathbf{x x v}$ to $\mathbf{x x x}$, and may even encroach on xxxi dorsally ($=6$ to more than 7); tubercles or "walls" from xxy or xxvi to xxix or xxx. Male pores with small but distinct glandular areas. Ventral body-wall of xiv-xvi greatly thickened and glandular.

No septa specially thickened. Seminal vesicles compactly racemose.

Remarks. Stephenson has studied the pharyngeal gland cells (87), and Stephenson and Prashad the calciferous glands (91).

Distribution. Gorai, Srinagar (Kashmir); Peshawar, Mardan (N.W. Frontier Prov.); Lahore, Iyallpur, Ferozepur (Punjab); Kasauli, Barogh, Naini Tal (W. Himalayas); Partabgarh (S. Rajputana).

2. Genus OCTOLASIUM Örley em. Rosa.

1895. Allolobophora (part.), Beddard, Monng. p. 691.
1896. Octulasium, Nichaelsen, Tier. x, p. 504.
1897. Octolastum, Michaelsen, Annuare Mus. Sit. Pétersb. xv, p. 10.
1898. Octolısium, Michaelsen, Zool. Jahrb. Syst. xli, p. 40.

Prostomium mostly epilobous, seldom tanylobous. Setre usually separated, seldom closely paired. Tubercles of puberty fused to form walls. Spermathecal pores in c or between c and d or somewhat below c. Gizard taking up more than one segment. Testes and funnels usually enclosed in two pairs of testis sacs; if no sacs, the septa of the testis segments united by horizontal bands, or fused at their borders so as to form narrow chambers. Four pairs seiminal vesicles, in ix-xii.

Distribution. In India only recorded from Simla. Outside India is endemic in Southern Europe.

1. Octolasium lacteum Örley.

1909. Octolasium lacterm, Michaelsen, Mem. Ind. Mus. i, p. 248.
1910. Octolasium lactetm, Stéphenson, Rec. Ind. Mus, x, p. 364.
1911. Octolasinnn lacteum, Stephenson, Rec. Ind. Nus, xxiv, p. 443.
1912. Allolobophora profuga, Bēdard, Monog. p. 712.
1913. Octolasium lacteum, Michaelsen, Tier. x, p. 506.

Length $40-100 \mathrm{~mm}$.; diameter $3-5 \mathrm{~mm}$. Segments $100-165$. Colour bluish grey, milky, seldom reddish brown. Prostomium epilobous $\frac{1}{2}-\frac{2}{3}$, seldom tanylobous. Dorsal pores from $8 / 9,9 / 10$, or 10/11. Setæ widely paired to separated; in general ab equal to or greater than $b c, b c$ smaller than $c l$; in the anterior part of the body the pairs are distinct, ab smaller than $b c, b c$ greater than $c d$. Clitellum xxx-xxxv ($=6$); "walls" xxxi-xxxiv, often encroaching to a greater or less extent on xxx and xxxv.

Male pores usually with large glandular areas, which encroach on xiv and xvi. Spermathecal pores two pairs, in $9 / 10$ and 10/11, in line with c.

Testis sacs present.
Distribution. Simla and neighbourhood.

3. Genus LUMBRICUS L. em. Eisen.

1895. Iumbricus, Beddard, Monog. p. 791.
1896. Lumbricus, Michaelsen, Tier. x, p. 508.
1897. Lumbricus, Michaelsen, Annuaire Mus. St. Pétersb. xv, p. 10. p. 10.
1898. Lumbricus, Michaelsen, Zool. Jrhrb. Syst. xli, p. 41.

Usually darkly pigmented. Prostomium tanylobous. Ventral and lateral setæ closely paired. Clitellum saddle-shaped. Tubercles of puberty fused to form walls. Male pores between b and c; female pores immediately outside b. Spermathecal pores two pairs, in $9 / 10$ and $10 / 11$, in $c d$. Gizzard taking up more than one segment. Testis sacs fused to form a single median chamber in \mathbf{x} and xi. Seminal vesicles three pairs, in ix, xi, and xii.

Distribution. In India the genus is represented by only a single peregrine species, in the Nicobar Islands. The genus is endemio in Europe.

1. Lumbricus rabellus IJoffmstr.
2. Lumbricus rubellus, Rosa, Ann. Ilofmus. Wien, vi, p. 381.
3. Lumbricus rubellus, Beddard, Monog. p. 722.
4. Lumbricus rubellus, Michnelsen, Tier. x, p. 509.

Length $70-150 \mathrm{~mm}$. ; diameter $4-6 \mathrm{~mm}$. Segments $85-150$. Colour dorsally bright reddish brown to violet, slightly iridescent. Dorsal pores from 7/8. Setæ in general fairly slender and closely paired, the lateral somewhat more closely than the ventral ; aa= $b c$ or a trifle more, $b c=$ approsimately $j a b$ and $6 c d$; $d d=$ half the circumference. Clitellum from xxvi (seldom) or xxvii to xxxii ($=6$ or 7). "Walls" from xxviii to xxxi, usually broader on xxviii and xxx and somewhat more elevated. Male pores inconspicuous, without glandular area.

Septa 6/7-14/15 (?) somewhat thickened.
Distribution. Nicobar Islands.

ADDENDA.

On p. 107 the following key is to be added:-
Key to the Indian species of Aulodrilus.

On p. 108 descriptions of two additional species of Aulocrrilus are to de inserted, as follows:-

2. Aulodrilus kashi Mehra.

192.2. Aulodrilus kash, Mehra, P.Z. S. 1922, p. 946, pls. i-iii, figs. 1-1シ, text-figs. 1-7.
Length $20-28 \mathrm{~mm}$. ; diameter 0.26 mm . near anterior end, 0.13 mm . near hinder end. Segınents $31-70$. Anus wide, terminal. Setre begin in ii ; in dorsal bundles $8-10$ in number, of three kinds: (1) capilliform (these usually absent from the first two or three bundles), ca. $100 \mu \mathrm{long}$, slightly sickle-shaped; (2) needles, $75-92 \mu$ long, with double curve and forked distal extremity, nodulus distal (distal:proximal:: 1:2), outer prong shorter and much thinner than inner, some appearing singlypointed; (:3) our-shaped setæ, less numerous than the others, found in the segments of the anterior half of the body, $66-80 \mu$ long, flattened at the distal end, which may be either rounded or bluntly pointed, nodulus distal (1:2). Ventral setæ are crotchets of the nsual form, $60-100 \mu$ (the higher measurement in the anterior half of the body), the inner prong four times as thick as the outer, which appears as a fine process as long as or nearly as long as the inner; the shaft shorter and more curved in the posterior part of the body than in the anterior ; nodulus distal (2:3 or 1:2). Penial setæ are the modified ventral setæ of segment vii, usually two per bundle, ca. 0.25 mm . long, the shaft slightly curved, the tip pointed ; distal portion somewhat broader (12μ) than proximal, with blade-like inner and thickened outer edge;
proximal part of shaft 7μ thick. Clitellum includes segments vii and viii. Spermiducal chanber as a midventral depression quadrangular in shape on vii.

A large portion of the body-cavity of segment vi is separated off laterally and ventrally from the smaller peripheral portion, and contaius all the organs belonging to the segment; it is filled with a huge mass of developing sperms. The dorsal vessel runs on the left side, near the ventral vessel, except in the first six segments; commissural vessels are present throughout the body; in segment vi a pair of hearts between dorsal and ventral vessels; no cutaneous plexus; no supra-intestinal or sub-intestinal vessels. The cerebral ganglion is deeply cleft in front, slightly so behind. The testes are in vi, the ovaries in vii. Vas deferens in vii, short, slightly curved, opening behind into the atrium. Atrium an ovoid chamber, passing into the atrial duct, which is much convoluted and enclosed in the colomic sac, a chamber surrounded by a muscular sheath; terminal portion of the atrial duct evaginable as a penis. The prostate, a solid mass surrounding part of the vas deferens and most all of the ventral and part of the dorsal surface of the atriu, weommunicates with and discharges into the atrium. Sperm-sac median and dorsal, occupying vii and viii; ovisac in viii. Spermathecæ in vi; ampulla sac-like; duct narrow, about one-third the length of the ampulla, opening to the exterior about the middle of the length of the segment.

Distribution. Benares; found living in tubes.

3. Aulodrilus stephensoni Mehra.

> 1922. Aulodrilus stephensimi, Mehra, P. Z. S. 1922, p. 963, pl. iii, fig. 13, text-tigs. 8, 9.

Length 17.5 mm . Segments 56. Dorsal setze begin in ii, 3-9 per bundle, 2-3 bair setw and 1-6 needles; the needles singly pointed, shorter than the hairs, the nodulus distal ($1: 2$). Ventral setæ similar to the dorsal needles. Penial setæ the modified ventral setæ of $x, 1-2$ per bundle, resembling those of A. kashi. Sperwiducal chamber very shallow, on x. Spermathecal apertures on ix. Clitellum includes segments x and $x i$.

Hearts in viii; lateral commissures throughout the body. Sexual organs three segnents further back than in the previous species; the peripheral portion of segment ix separated off by a partition, as that of vi in A. kashi.

Remarks. Described from a single specimen, found along with the last.

Distribution. Benares.

ALPHABEIICAL INDEX.

All names printed in stalics are synonyms.

aborensis (Plutellus), 171.
aborianus (Eutyphocus), 428.

Acanthodrilides, ± 79.
Acanthodrilinæ, 163.
acanthodriloides (Megascolex), 228.
achencull (Glyphidrilus), 491.
ucystis: (l'erichuetu), 298.
adami (MIegascolex), 229.
Wolosoma, 4 ().
Eulosomatide, 40.
æqualis (Nais paraguayensis var.), 62.
equiseta (Pristına), 71.
affinis (Benhamia), 471.
uffinis (Dichogaster), 471.
afliuis (J)rawida), 132.
affinis (Erythraodrilus suctorius var.), 466.
affinis (Hoplochetellu), 466.
afinis (Megaccolex). 309.
affinis (Pertonys pokhrianus var.), 350 .
agnesse (Pontodrilus), 182.
aitkeni (Benhamiu), 373.
aitkeni (Octochretus), 373.
nitkeni (Octochatus (Octochettoides)), 373.
alatus (Perionyx), 323.
albida (Nais), 111.
alexandri (Amyntas), 291.
alexandri (Pheretima), 291.

Allolobophora, 498,500, $502,503,504$.
Allolulowhora, 498, 507.
sllurus, 498.
Amyntas, 288.
andamanensis (Pheretima), 49.
undersone (Eutyphoeus). 442.
audersoni (Pheretima), 293.
amuandalei (Chætugaster), 49.
anuandalei (Drawida), $13:$.
anuanduler (Eutyphœus), 430.
amandalei (Glyphidrilus), 491 .
annandalei (Megascolex). 282.
annand:alei (Mpgascolides), 195.
annandalei (Perionychella), 324.
annaudalet (Perionyx), 324.
annulatus (Perionyx), 325.
anomala (Hoplochretella), 458.
anomala (Pheretima), 294.
anomalus (Erylhreodrilus), 458.
appendiculatr (Nais), 82.
appendiculata (Slavina), 82.
aquatilis (Plutellus), 172.
arboricola (Perionyx), 326.
arence (P'ontodrilus), 180.
"rimata (Pericheta), $\because 59$.
(rmatius (Megascolex), $\because 59$.
ahworthi (Eudichogaster), 40.5
usipergatlum (Perichata), 301.

Aulodrilus, 106.
Aulophorus, 90.

Inhetmensis (Drawida), $1+2$.
bahanensis (Moniligaster), 142.
hailin (Perionyx), 326.
incelverlensis (Pericheta), 301.
barliadensis (Pheretima), 300.
harbulensis (Pheretima hawayana subsp.), 300 .
burkudensis (Enchytreus), 113.
barkudensis (Eudichogaster), 4 (1).
barkudensis (Nais paraguayensis var.), 63.
barkudensis (Octochætus), 373.
barkudensis (Octochætus (Octochartoides)), $37{ }^{\circ} \mathrm{O}$. barodensis (Eudichogaster), 409.
barwelli (Drawida), 183.
barwelli (Moniligaster), 133.
bastianus (Eutyplıeus), 442.
beatrix (Octochætus), 376.
beatrix (Octochætus (Octochætnides)), 376.
beddardii (Monlligaster), 133.
bengalense (玉olosoma), 41.
bengalensis (Chretogaster), 49.
bengalensis (Eudichogaster), 410.
bengalensts (Eutyphœus), 455.

Benhamia, 402.
Beihamine, 363.
bergtheili (Megascolides), 196.
bermudensis (Pontodrilus), 189.
bicincta (Pheretima), 294.
bidens (Howascolex), 366.
bifoveata (Hoplochatella). 462.
bifoveatus (Erythroodrilus kempi var.), 462.
biforeatus (.Megascolex), 230.

Bilimba, 490.
Bimastus, 504 .
birmanica (Perichueta). 295.
birmanica (Pheretima), 295.
birmanicus (Amyntas), 295.
biserialis (Amyntay), 298.
biserialis (Pericheta), 298.
biserialis (Pheretima), 298.
biahambari (Eutyphceus), 431.
bishanbari (Octochatus', 398.
bishambari (Ramiella), 398.
bivaginata (Perichata), 259.
boeckii. (Allolobophora), 503.
bolaun (Dichogaster), 472. bonaccordensis (Meguscolex travancorensis var.), 277.

Bothrioneurum, 102.
bournei (Amyntas), 296.
bournei (Drawida), 150.
bournei (Drawida pellucida var.), 150.
bournei (Drawida pellucidus var.) 150.
bournei (Moniligaster), 150.
bournei (Perichata), 296.
bournei (Pheretima), 296.
Brachiodrilus, 74.
brachycycla (Perichuta), 231.
brachycyclus (Megascolex), 231 .
Branchiodrilus, 74.
Brauchiura, 98.
breviseta (Naidium), 67.
breviseta (Pristina), $6 \boldsymbol{6}$.
browni (Eupolygaster), 120.
brunnea (Dranpida), 134.
bulbosa (Fridertcia), 111.
burchardi (Drawida), 134.

Inerkillii (Woodwardia), 185.
burkilli (Woodwardia), 185.
burharensis (Perichatu), 297.
burharensis (Pheretima). 297.
cæca (Nais communis var.), 57.
caruleus (Megascolex), $23 \div$.
caliginosa (Allolobophora), $5(0), 501$.
caligimosa (Allolobophora(Allolsbophora)), t. typica, 500.
caliginosus (Helodrilus), 501.
caliginasus (Helodrilus (Allolobophora)), f. typica, 500.
calignnosus (Helodrilus (Allolobophora)) (typr(us), 500.
campanulata (Perichata), 304.
campester (Megascolex), 233.
carinensis (Amyntas), 297.
carinensis (Perichata), 297.
carinensis (Pheretima), 207.
carmichaeli (Friderioia), 112.
castellanus (Octoclextus), 376.
cnstellanus (Octochætus (Octochætoides)), 376.
ceylanensis (Cryptodrilus), 206.
ceylunensis (Notoscolex), 206.
ceylanensis (Perichata indica var.), 302.
ceylanensis (Perionyx), 328.
ceylonica (Perichata), 235.
ceylonica (Pericheta induca var.), 302.
ceylonicus (Megascolex), 235.

C'hatoloranchus, 74.
Chretogaster, 47.
chalakudiana (Drawida), 135.
chaperi (Octochatus (Octochrtoides) maindroni var.), 383.
chaperi (Octochætus mamdronı var.), 383.
chittagongensis (Eudichogaster), 411.
chittayonyianus (Eutyphoeus), 434.
chlorina (Drawida), 136.
chlorina (Moniliganter), 136.
ringulata (Perichata), 236.
cingulatus (Megascolex), 236.
cochinensis (Megascolex), 237.
cochınensis (Megaseolides), 198.
reerulea (Perichata), 232.
corruleus (Megascolex), 232. 256.

Comarodrilus, 189.
comillahnus (Eutyphœeus), 432.
communis (Nais), 55.
constricta (Allolobo. phora), 505 .
constricta (Allolobophora(Bimnstus)),505.
constrictus (Helodrilus (Bimastus)), 505.
corethrurus (Howascolex), 367.
cotethrurus (Pontoscolex), 489.
crassicystis (Cryptodrilus), 207.
crassicystis (Notoscolox). 207.
crawi (Dichogaster), 474.
crescentica (Pericheta), 304.
cresccntica (Pheretima), 304.

Criodrilinue, 49).
Criodrilinea, 495
Criodrilus, 405.
Cryptudrilides, 473
cupalifera (Perichecta), 301.
curgensis (l)ichogaster). 474.
curgensis (Margascolex), $\because 39$.
Curgia, 481.
curtus (Megascolex), 282.
dambullaensis (C'r!/ptodrilus), $\mathfrak{c} 07$.
dambullaensis (Notoscolex), 207.
derst (Octochatus). 37 (6.
decupiens (C'ryptudiclus), :ư.
decifnens (Nutoscolex), 208.
decourcyi(Drawada), iet6.
Dendrobeua, 002 .
depressus (Perionys), $3 \geq 8$.
Dero, 87.
Dero, 90.
deshayesi (Momligaster). 121.

Desmogaster, 110.
Dichogaster, 470).
$1 I_{\text {chengaster, }} 402$.
$D_{\text {iplocardinat, }} 468$.
Diporochata, 315 .
Inporocheta, 318.
ditheca (Hownscolex corethrurus f.), 368.
doria: (Desmogaster), 119.

Drawida, 1?4.
dubariensis (Plutellus), 173.
dubius (Lampito), 240.
dubius (Megascolex), 240. duodecimalis (Megascolides), 198.
duodecimalis (Spenceriella), 101.

Eisenia, 498.
Eisenia, 498.
eisenı (Allolobrphora), 50i.
eisem (Allolobophora
(Bimastus)), 505.
Eiscmella, 498.
eisell (Helodrilus (Bumastus)), 505.
elegans (Drawida), 137.
cleyfuns (Glyphidrılus), 491.
eimguls (Nais), 58.
elongata (Perichetu), 298.
elongata (Pheretima), ?ils.
Eintrolocephalus, 105.
Euchytranda, 110.
Enchytreas, 113.
Euphila, 50%.
ephiippiger (Pontudrilus), 150.
ophapiger (Pontodrilus bermudensis f .), 180.
cquisuta (Pristina). 71.
Erythreodrilus, 457.
escherichı (Megascolex), $2+1$.
Ludachogaster, 4()…
Eiudrindre, 162, t8, $)$.
Eudelinza. 485.
Eudrlus, 486.
engemta (Eudrilus), 48(
ещуена (Eudnhus), 486 .
emurphrus (Megascolex). 243.

Eupolynisier, 120.
Eutypheres, $4 \geq 0$
excavatus (Perionyx), $3 \geq 9$.
fakir (Drawia), 137.
talcrter (Eudechogaster), $+1:$.
fe:c (Amyntus), :299.
frax (Powh hatr), 299.
feat (Pheretma), 299.
fermori (Octochxtus), 378.
fermorl (Octochetus (Octochationdes)), 378.
filliciseta (Megascolex), 244.

Fletcherodrelus, 170.
Aluviatulis (Ulyphudrilus), $4!1$
foetida (Allolobophora), 499.
feetida (Allolobophora (Eisenia)), 490.
fœetidu (Eisenia), 409.
fatidus (Helodrilus
(Eisenia)), 499.
fossus (Perionyx), 331.
foveatus (Eulyphocus), 433.
foveatus (Perionyx), 332.
foveatus (Typheus), 433.
foveatus (Typhocus), 433.
Fridericia, 111.
friderici (Drawida), 138.
friderici (Moniligaster), 138.
fulgulus (Butyphœus annandalci vir.), 436.
fulgidus (Eutyphceus incommodus var.), 430.
fulvus (Perinnyx), 333
funis (Megascolex), $\mathbf{2 4 5}$.
turcuta (Derv), D2.
furcatus(Aulophorus),92.
gamuiei (Eutyphœus), 434.
gummar (Typhcerss), 434.

ganeshe (Uctochaetin). 379.
ganeshue (Octochretus
(Octochactordes)), 379.
Geosulecide, 487.
ghatenses (Drawida), 138.
ghatellos (Megascolex trinancorellsts var.), 277.
glgas (Eut? phueus), $\mathbf{4} \mathbf{3 6}$.
Crlossoscolecille, teit.
Glossosculecina, 188.
Glyphidrilus, 490.
Gordıodrilus, 4×2.
graculis (Perichata
(Pleurocharta?), $2: \bar{T}$.
grandes (Draw da), 139.
grandis (Moneliguster). 139.
gravelyi (Comarodrilus), 190.
gravelyi (Moniligaster deslinyesi var.), 123.
gravelyi (Notuscolex), 209.
gravelyi (Perionyx), 334
gruencualdi (Perionys), 320.
gwaliurensıs (Nais), 50.

Hæmonais, 78.
halyi (Meyfascolides). 174
haly (Plutellus), 174.
harurami (Enchytræus), 114.
hastata (Woodwardıa), 186.
hustatus (Megascoludes), 186.
hawayana (Perichetu), 301.

Lawajana (Phcretima), 300.
hawayents (Amyntas), $300,301$.
Helodrlhes. 498, ©033.
Hemitubefex, 105.
hempichi(Eolosoma), 41 .
hendersoni (Megascolex), $24 i$.
hesperidum(Pontoririlus), 180.
'Hesperodrelus, 109.
Heterochaeta, 10 i .
neterochata (Pheretima), 302.
heterochata (Ramella), 399.
heterochata (Ramiella), 399.
heterochatus (Amyntas), 302.
heterochatus (Perionyx), 335.
heterochactus (Perionyx aborenas var.), 33j.
humalayanus (Perionya), 336.
hodgarti (Dranida). 140.
hodgarti (Uctochætus), 381.
hodgarti (Octochaxtus (Octochatoides)), 381.
Hoplochuta, 467.
Hoplochætella, 467.
Hoplochatella, 457.
horai (Megascolex), 247.
hortensis (Branchiodrilus), 77.
horterisis (Luhoria), 77.
hortonensis (Megascolex), 248.
houlleti (Amyntas), 304.
houlleti (Perichata), 31)t.
houlleti(Pheretima), 304.
Howarcolex, 365.
hulikalonsis (Perichata), 290.
ibrahami (Eutyphceus), 438.
igatpurieneis (Perionyx), 342.

Ilyodrilus, 105.
imperatrix (Mahbewus), 250.
imperatrix (Megascoles), 250.
impertusa (Drawida harwelli var:), 134.
imperlusus (Drawida burwelli var.). 134.
mæquales (Nas pectimatn var.), 6 H .
incommorlus (Eutypliceus), 438.
incommodus (Typhaus), 438.
indica (Allolobophora (Bımastus)). 5 (fi.
indice (Brahamia), 414.
udicu(Drawida robusta), 154.
milıca (1'ericheta), 3()2.
indicu ('Triyaster), 414.
indicus (Enchytreus), 115.
indecus (Eudichogasler) 414.
indicus (Helodrilus ($\mathrm{Bi}-$ mastus)). 506.
inderes (Momeligaster), 154.
indicus (Plutellus), 17 t .
mornata (Hoplor huptella), 459.
mornatus (Frythrendrilus), 450
inornatus(l'erionyx). 3:37.
insignis (Megasculex), 250.
insolitus (Megascolex varians var.), 283.
insularis ('ontodrilus), 180.
intermedius (Perionyx), 329.
iris (Bothrioneurum), 102.
jacksoni (Cryptodrilus). 210.
jackson! (Dcodrilus), 210.
jacksoni (Notuscolex), 210.
jalpaigurensis (Drawida), $1+1$.
japonica (Drawida), 142. japonicus (Drawida), 142. japonicus (Moniligaster), 142.
kanarevsis (Drawida), 143.
karakulamensis (Megascoliden temmalai var.), 219.
karahulamensis (Notoscoles tenmalai var.), 219.
kushi (Auludrilus), 509.
kushyapi (ADlosoma), 41.
kavalaianus (Megascolex), $: 251$.
kempr (Allolobophora (Jendrobæиa)), 502.
kemp (Drawida), 144.
kemp, (Erythraodrilus), 4(i).
kemp! (Eutyphæus), 434.
hempi (Ifciodrilus (Den(1robaana) 50 (0).
hempi (Hoplochuetella), 460.
kemp) (Meguscolex), 252.
kemp) (Perionyx), 3:38.
kemp (Stylaria), 86.
khumi (Eutyphreus). 446.
kimnenri (Erythrao. drinse). 463.
hemertre (Eudıchogaster'), 407.
kimmeari (Eudıchogaster ushworthi var.), 407.
holoenses (Eutypheeus), 434.
huboensis (Perionix).339.
konkanensis (Megascolex), 25.3.
kraepelini (Notoscolex), 211.
kruepelini (Trucphrus), 211.
lurcudirenss (l'ontodrinss), 180.
laternm (Octolnsium), 507.
lacustris (Stylnria), 85.
lacuun: (Criodrilus), 4!5.
luous (T'yphcus), 425.
icevis (Typhoeus), 425:
Lahoria, 74.
Lampito, 222.
langi (Chetognater), 50.
laurentii (Hxmonais), 79.
lawsoni (Perichæta), 290.
lefroyi (Henlea), 115.
leucocycla (Perichasta), 256.
lencocyclus (Megascolex), 256.
levis (Futyph(ceus), $12 \overline{5}$.
lignicola (Pberetima), 305.
limnæi (Chæt.ogaster), 50.
Lumnodrilus, 96 .
limosa (Dero), 88 .
longiseta (Megascolex), 257.
longiseta (Pristina), 70.
longus (Megascolex konkanensis var.), 255.
lorenzi (Megascolex), 258.

Lumbricide. 487.
Lumbricida, 496.
Lumbriemar, 496.
Lumbricus, 508.
macintoshin (Perionyx), 341.
m'intuskic (Perionyx), 341.
m’antonh (Perionyx), 341.
magnus (Entyplơus), 434.
maindroni (Octuchaetus), f. typuca, 38: .
mandromi (Octorhatus (Oct ochaturles)), ¿x".
malabarica (Dichogaster bolani var.), 473.
mulaburicus (1) choggaster bolani var.), 473.
malayana (licnhamia), 475.
malayana (Dichognster), 475.
manipurensis (Eutyphous), $4+1$.
marienvis (Allulobophora (Eophila)), $50 t$.
mariensis (Helotrtlus (Helorlrilus)), 504
masonı (Eutyplœeus), 442.
masoni (Typhutus), 44_{2}^{2}.
mason' (Typhaws), 44ま.
matthai (Drawida), 144.
mauritii (Lampito), 259.
maüriti (Megascolex), 259.

Megascolecidx, 162.
Megascolecinæ, 165.
Meguscolex, 222.
Megascolicida, 162.
Megascolides, 192.
menoni (Brauchiodrilue), 76.
merkaraensis (Howascolex), 368.
michaelseni(Aulophorus), 93.
michaelseni (Perionyx
sikkımensis var.), 359 .
michaelseni(Pontodrilus), 180.

Microchætınx, 490.
Microscolex, 164.
millardı (Perıon) x), 34…
ıuinumus (Perionyx), $3+3$.
minor (Moniligaster deshayesi var.), 122.
minuta (Drawidn), 145.
minuta (Monalıgaster), 145.
mmutum (Vaidimm), 68.
munutus (Momiliguster). 145.
mirabilis (Pericheta), 290.
mirahlilis (Perichata), $3(2)$.
modesta (Drawida), 145.
modestus(Perionyx). 344
modighianii (Dichogaster), 477.
mohammedi (Eutypheens), $4+3$.
Momingaster, 121.
Manilyguster. 101.
Montligastride, 116.
Monuliguti ida, 117.
Moniligastrina, 117.
Monopylephorus, 103.
monorchis (Meguseolides onedl/ var.), 2l4.
monorchis (Notoscolex onenli var.), 214 .
montana (Slavina), 84.
montanus (Octochætus), 384.
montanus (Octnchatus (Octochseroides)). 38 t .
moseleyi (Pleurochatu), 232.
multispinus (Megascolex), 2 (1 .
mysorensis (Perionyx), 345.
naduvatamensis
(Drawida), 146.
naduratamensis (Monillgaster), 131, 146.
Naidıdx, 43.
Naidium, 66.
nainiana (Perionychella), 346.
nainianus (Eutyplıeus): 444.
nainianus (Perionyx), 346 .

Nais, 33.
Nais, 80.
nanus (Notoscolex ponmuudiunus var.), 219.
nanus (Perionyx) 346.
narayani (Ourgia), 481.
Nematogenia, 483.
nepalensis (I)rawida), 146.
nepulensis (Eutyphœus), 445.
nicholsoni (Eutyphœus), 446.
nicholsoni (Typhous), 446.
nilamburensis (Drawida), 147.
nilamburensis (Monillgast(cr), 147.
Not ondrilus, $16+$.
Nutoscolex, 202 .
Notascolex, 192.
nureliyensis (Mrgascolex), 261 .
ubtura (Nais), (i0.
orecientilis (OeneroMrilus), 484.
ocerdemtali- (Ocuerodrilus (Oenerodrilus), 184.

Oruerodrilacea, 779 .
Ocnerodrildda, 479 .
Oenerodrihna, 479.
Ocuerodrılıui, 479.
Ocnerodrilus, 484.
Ocnerodrilus, 483.
Octochretinx, 363 .
Octuchat uides, 371.
Octochatus, 369.
Octochetus, 397.
Octolasinum, 507.
oneili (Notoscolex), 212.
oneili (Meguscolides), 212.
ophidıoides (Drawida robusta), 154.
ophidiordes (Drawida robusta var.), 154.
ophidioides (Momli. gaster), 154.
orientahs (Chætogaster), 51.
orientalis (Eutyphopus), 448.
orientalis (Typheus), 448.
orientalis (Typhous), 448.
osmastoni (Pheretima), 307.
oxycephalus (Aulophorus), 91.
pachpaharensis (Octochatus). 400
pachpaharensis (Ramiella), 40().
paivar (Eutyphœus), 449.
pahensis (Uctochretus), 38:\%.
paliensis (Octochatus (Octochret oides)), 385.
pallida (Druwida pellucida var.), 151.
pallida (Drawida pelluc cillus var.), 151.
patlida (Perucheta), 301.
pallid: (Ramiella), 401.
palludus ((Mctochatus), 401.
pallidus (Perionyx), 317.
pulmicola (Dichognster bolaui subsp.), $47^{\circ} \mathrm{L}$.
paluiensis (Plutellus), 176.
palustrts (Aulophorus), U3.
panamaensis (Nematogenia), 483.
papellata (Bılimbe), 493.
papillatus (Belimba), 493. papillatus(Clyphidrılus). 493.
papillatus (Moniligaster), 131.
papillifer (Drawida), 148.
papillifer (Megascolex escherıchi var.), 242.
paradoxa (Drawida), 148.
paraguayensis (Nais), 61.
paraguayensis (Pristina proboscidea var.), 73.
parambikulamana(Drawida), 149.
parva (Allolobophora), 506.
parva (Allolobophora (Bimastus)), 506.
parva (Benhamia), 477.
parva (Dichngaster), 477.
parva (Drawida), 140.
purva (Trigaster), 415.
parmelus (Perionyx), 330.
parvus (Jichogaster), 415.
parvus (Drawida), 149.
parvus (Eudichogaster), 415.
parvus (Helolrilus), 506.
parvus (Helodrilus (Bimastus)), 506.
parcus (Moniligaster), 149.
parpus (Monopylephorus), 104.
pattipolensis (Megascolex), 2(2.
pattoni (Octochartus), 388.
pattoni (Octochretus (Octochretotes)), 388.
pauli (Drawidn), 150.
panli (Monillgaster), 150.
paull (Perichceta). 312.
paule (Pheretima taprobane var.), $31 \geq$.
pectinata (Nais), 63.
peguana (Perirheta), 308. peguana (Pheretma), 308.
peyıuanus (Amyntus), 308.
pellucida (1)porochæta), 317.
pellucida (Drawida), 150.
pellucida (Momaligaster), 150.
pellucida (Perichata), $: 317$.
pellucidus (Chætogaster), 51.

I'eloscolex, 105.
pentay!onales (Megascolex), 278.
pentagonalis (Megascolex travancorensis var.). 278.
Pervchata, 288, 467.
Perionychella, 318.
Perionyx, 318.
Perionyx, 315.
perrier (Moniligaster), 123.
pharetratus (Megascolex), 263.
pharpingianus (Eutyphoeus), 450 .
phaseolus (Megascolex), 238.
phaseolus (Megnscolex rochinensis var.), 238 .
Pheretima, 288.
pleretima (Megascolex), 264.
plullotti (Octochretus), 390.
phillotti (Octnchaxtus (Octochatoides)), 390.
phosphoreus (Microscolex), 164.
Phreodrilidx, 108.
Phreodrigus, 109.
pilatus (Megascolides), 200.
pincernn (Perionyx), 348.
pittny, (Octochueus, 391.
pittnyi (Octochertus (Octochatoides)), 391.
Pleirrophlelss, 40.
Pleurophleps, 40.
Plutellus, 170.
Plutellus, 179.
pokhrianus (Perionyx), 349.
polythecu (Megascolex), 264.
polythecn (Perionyx), 351.
ponmudianus (Notoscolex), 214.
Pontodrilus, 179.
Pontoscolex, 488.
pomensis (Bвлliamia), 416.
$\mathrm{j}^{\text {monen-is }}$ (Eudichogaster), 416
poonensis (Triguster), 416.
posthuma (Perichata), 313:).
posthuma (Pherctima), 309.
posihumus (Amyntas), 309.
prashad, (Allolobophorn (Allolobophora)), 501. prashadi(Eudichogaster), 416.
prashadı (Helodrilus (Allulobophora)), 501.
prashadı (Megascohides), 201.
prashadi (Octochætus), $3!2$.
prashadi (Octochætus (Octochatoides)), 392.
Pristina, 69.
Pristina, 66.
proboscider (Prıstina), 73.
profuga (Allololophora), 50%.
provincialis(Eutyphœus), 4415.

Psammoryctes, 105.
pullus (Perionyx), 352.
pulvinatus (Perionyx), 353.
pamilio (Megascolex), 266.
pu! jaliensis (Chætogaster), 20.
punjabensis (Nais communis var.), 55.
punjabensis (Nuis varialilis var.), 55.
punjabensis (Slavina), 82. puaillus (Eudichogaster), 418.
quadrigenaria (Pheretima), 290.
quadrıpapillatus (Rutyphœus), 451.
quilonensis (Megascolex travancorensis var.), 276.
quintus (Megnscolex), 267.

Ramella, 397.
Ramiella, 307.
ramnadana (Drawida), 152.
rangamatiana (Drawida), 153.
rarus (Glsphidrilus), 491.
ratus (Megascolex), 268.
raui (Drawida), 156.
raviensis (Nais), 65.
remex (Aulodrilus), 107.
hhizodrilus, 103.
rimatus (Porionyx), 354. riparius (Octochatus (Octochartoides) paliensis var.), 386.
riparius (Octochætus paliensis var.), 386.
rivulor"ur ('Tubifex). 106.
robusta (Drawida), 154.
robusta (Monilugaster), 15t.
robustius (Moniligaster), 154.
rosea (Allolobophora), 499.
rosea (Allolobophora (Eisenia)), 499.
rosea (Drawida), 155.
rosea (Eisenia), 499.
rotungana (Drawida), $15 \overline{5}$.
rubellus (Lambricus), 508.
ruber (Moniligaster), 131.
rubida (Allolobophora (Dendrobæna)), f. typica, 503.
rulidus (Helodrilus (Dendrobæ๓1)),f.typica,503.
saffronensis (Glyphidrilus), 491.
salettensis (Perichata), 259.
saliens (Dichogaster), 478.
saliens (Microdrilus), 478.
saltans (Perionyx), 355.
sansibaricus (Perimyx), 356.
sapphirinaoides (Draw-

- ida), 156.
sapphrimaoides (Momligaster), 156.
sarasinorum (C'ryptodrilus), 188.
sarasinorum (Megascolex), 269.
sarasinorum (Notoscolex), 188.
sarasinorum (Woodwardia), 188.
scandens (Drawida), 156.
schmardse (Megascolex), 270.
schunkarai (Drawida), 157.
scutarius (Eutypherus), 452.
scutarius (Notoscolex), 215.
semperı (Branchiodrilus), 75.
semperi (Chntobranchus), 7.
sextus (Megascolex), 270.
shillongensis (Perionyx), 357.
shunkarai (Drawida), 157.
sikkimeusis (Perronychella), 358.
sikkumensıs (Perionyx), $3: 8$.
sikkımensis (Plutellus), 177.
silvestris (Plutellus indicus var.), 175.
simlaensis(Perionychella), 359.
simlaensis (Perionyx), 359.
simplex (Megascolex varians var.), 282.
singhaleusis (Megascolides), 178.
singhalensis (Plutellus), 178.

Slavina, 80.
socialis (Limnodrilns), 96.
somararpatana (Drawida), 158.
sowerbii (Branchiura), 99. sowerbyi (Branchiura), 99.
spectabilis (Megascolex), 272.

Spenceriella, 190.
S'pirosperma, 105.
spongillæ (Chætogaster), 52.
stephensoni (Aulodrilus), 510.
stephensoni (Aulophorus), 92.
stewarti (Drawidn pellucida var.), 152.
stewartı (Notoscoles), 216.
striatus (Notoscolex), 218.
stuarti (Hoplochata). 468.
stuartı (Hoplochætella), 468.
stnartı (Perichceta), 468.
Stylaria; 85.
subrulicunda (Allolobophora), 503.
subrubicunda (Allolobophora (Dendirobæna) rubida f.), 503.
subrubicunda (Helodrilus (Dendrobæna) rubidus f.), 503.
subrubicunda (ITelodrilus (Dendrobrena) rubidus var.), ¿(03.
suctıria (Hoplochatella), 464.
suctoria (Pheretuma), 311.
suctorius (Erythræodrilus), 464.
sulcata (Drawida), 158.
surcusi (Ochechatus), 394.
surensis (Octochætus), 394.
surensis (Octochætus (Octochatoides)), 39.
sylvicola (Lampito), 273.
sylvicola (Megascolex), 273.
taprobanæ (Anyntas), 312.
taprobance (Pericheta), 312.
taprobanæ (Pheretima), 312.
templetomanus (Megascolex), 274.
tenmalai (Megascolides). 219.
teumalai (Notoscolex), 219.
tentabulata (Pristina), 71.
tentaculatuın (Naidiumn), 71.
termiticola (Notoscolex), 291.
terıaria (Plenrophleps), 43.
ternarium (.Eolosoma), 43.

Tetragonurus, 498.
thurstoni (Octochatus), 396.
thurstom (Octochætus (Octuchretodes)), 396.
tminidus (Plutellus), 179.
tonkinensis (Auluphorus), 91.
tonkmensis (Dero), 91.
trapesoides (Allolobophorn (Allolobophora) caliginosa subsp.), 501.
trapezoides (Heludilus (Allolobophorn) raligenosus), 501.
trapezoides (Helodrilus (Allolobophora) caliglnosus f.), 501.
tripezoides (Heludrilus (Allolobophora) caligenosus subsp), 501.
trapezoides (Hclodrilus calegenosus var), 501.
travancorensis (Amyntas), 313.
travaucorensis (Benhrinia), 478.
travancorens1s (Dichogaster), 478.
travancorensis(Drawida), 159.
trarancorensis (Gordiodrilus), 482.
travancorensis scolex), 275.
travancorensis chata), :11\%.
travancorensis (Phere-
(Megu-
(Peri-
trichochretus (Eudichogaster), 419.
Trigaster, 402.
Trigastrine, 363, 364, $468,469$.
trilobatn (Lampito), 279.
trilobatus (Megascoles), 279.
trincomaliensis (Cryptodrilus), 2:2.
trineonaliensis (Notosrolex), 222.
Trinephrus, 192.
tri raudrana (Pheretima), 314.
trivandranus (Megascolex), 280.
tuberosus (Glyphidrilus), 4) 4.

Tubifex, 105.
tubifex (Tubifex), 106.
tubifer ('Tubifex ('Tubifex)), 106.
'Tubuticidex, 9.).
turaensis (Eutyphœus), 4.33.
turrensis (Perionyx), 360
T',
Tıphatus, 420 .
T'yphueks, 420).
typica (Drawida japonica f.), $1+2$.
typica (Drawida pellucida f.), 150.
typica (Drawidat pellucudus f), 150.
typica (Drawida robusta), 154.
typica (Drawida robusta f.), 154.
typuca (Megascolex travancorensis f.), 27.
typica (Octochrtus maindroni f.), 38.
typica (Pheretima hawayana f) 300 .
typica (Pheretima hawayana subsp.), 300.
typica (Plutellus indicus f.), 174.
typica (Pontodrilus bermudensis f.), 180.
typica (Pristina probos. cidea f.), 73.
typicus (Megascolex travancorensis var.), 275.
typicus (Notoscolex ponmudianus var.), 214.
uniqua (Drawidn), 1130.
uniqun (Momelignster), 16i).
uniquus (Moniligaster), 160.
uzeli (Plutellus), IN8.
uzeli (Woodwardia), 185.
varians (Megascolex), ‘281. varlegata (Perionychella), 362.
variegatus (Perionyx), 362.

Vermiculus, 103.
vilpnttionsis (Lampito), 285.
vilphttiensi-(Megascolex), 285.
violurea (Perichata), 204. violacel (Pheretima), 294.
miolaceus (Anyntas), 294. viride (Eolosoma), 42.
vuridis (Perichæta), 227.
walton (Elutyphoous), 45.5.
willeyi (Megascolex), e8is.
willsı (Drawidn), 161.
Woolwardia, loz3.
zeylamica (Dero), 89.
zeylanica (Lampto maurtii var.), 260.
zeylanicus (Hesperodrilus), 109.
zerlanicus (Megascolex mauritii var.), 240 .
zeylnnicus (Phreodrilus), 109.
zonatus (Megascolex polytheor var.), 265.
zygochretus (Megascolex), 287.

[^0]: * For the significance of Roman and Italic type in the following lists, of. p. 25.

[^1]: * As this work is passing through the press a paper by H. R. Mehra has appeared (P.Z.S. 1922, p. 943) describing two aew species from Benares, A. Kashi and A. stephensone (see Appendix). Our knowledge of the scxual organs in the genus is derived entirely from this paper.

[^2]: * Holandric, with two pairs of testes, in segments x and $x i$; metandric, with the posterior pair of testes only, in segment xi.

[^3]: Distribution. Weyra Karur, Madras Pres.

[^4]: Distribution. Jubbulpore and Saugor, Central Provinces.

[^5]: extent each equal to the interval between the prostatic pores. Setæ absent from viii in midventral region; displaced setæ on all the papillm of the spermathecal pores. An additional pair of papillæ on ix, in line with papillæ of spermathecal pores, with displaced setæ on them. Small accessory glands in neighbourhood of prostatic apertures, in front of and behind the terminations of each of the ducts.

