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PREFACE. 

The rapid growth in recent years of all branches of applied 

science and the consequent increasing claims on the time of 

students have given rise in various quarters to the demand 

for a change in the character of mathematical text-books. 

To meet this demand several works have been published, 

addressed to particular classes of students and designed to 

supply them with the special kind and quantity of mathe¬ 

matics they are supposed to need. 

With many of the arguments urged in favour of the 

change I am in hearty sympathy, but it is as true now 

as it was of old that there is no royal road to mathematics, 

and that no really useful knowledge can be gained except 

by strenuous effort. 

It is sometimes alleged that a thorough knowledge of 

the derivatives and integrals of the simpler powers, of 

the exponential and the logarithmic functions, and perhaps 

of the sine and the cosine, is quite sufficient preparation 

in the Calculus for the engineer. This contention has a 

solid substratum of truth; but a knowledge that goes 

beyond the mere ability to quote results is not to be 

obtained by the few lessons that are too often considered 

sufficient to expound these elementary rules. It may be 

possible to state and illustrate in a few lessons a sufficient 

amount of the special results of the Calculus to enable 

a student to follow with some intelligence the more 
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elementary treatment of mechanical and physical problems; 

but, though such a meagre course in the Calculus may 

not be without value, it is quite inadequate, both in kind 

and in quantity, as a preparation for the serious study 

of such practical subjects as Alternate Current Theory, 

Thermodynamics, Hydrodynamics, and the theory of Elas¬ 

ticity, and to a student so prepared much of the recent 

literature in Physics and Chemistry would be a sealed 

book. Besides, it should surely be the aim of every well- 

devised scheme of education to place the student in a 

position to undertake independent research in his own 

particular line of work, and the very complexity of the 

problems presented to modern science, with the vast accum¬ 

ulation of detail so characteristic of it, enhances in no 

small degree the value of a liberal training in mathematics. 

Subsequent specialisation makes it the more, not the less, 

necessary that the mathematical training in the earlier 

stages should be the same whether the student afterwards 

devotes himself to pure mathematics or to the more 

practical branches of science, especially as the processes of 

thought involved in any serious study of mechanical, 

physical, or chemical phenomena have much in common 

with those developed in the study of the Calculus. 

The early text-books on the Calculus, such as Maclaurin’s 

or Simpson’s, were not written for pure mathematicians 

alone, but drew their illustrations largely from Natural 

Philosophy; the later text-books, probably in consequence 

of the ever-widening range of Physics, gradually dropped 

physical applications, and even tended to become treatises 

on Higher Geometry. In the present position of mathe¬ 

matical science, however, it is just as much out of place to 

make an elementary work on the Calculus a text-book 

of Higher Geometry as it would be to make it a text¬ 

book of Physics or of Engineering or of Chemistry. What 
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may be reasonably required of an elementary work on 

the Calculus is that it should prepare the student for 

immediately applying its principles and processes in any 

department of his studies in which the Calculus is generally 

used. With this end in view, the subject should be 

illustrated from Geometry, Mechanics, and Physics while 

the peculiar difficulties of these branches are relegated 

for detailed treatment to special text-books, so that the 

illustrations may really serve their purpose of throwing 

light on general principles, and may not introduce rather 

than remove intellectual obscurity. As regards Chemistry, 

a sound knowledge of the Calculus is of special importance, 

since it is the properties of functions of more than one 

variable that are predominant in chemical investigations; 

the lately published book of Van Laar, Lehrbuch der 

Mathematischen Chemie, is a sign of the times that cannot 

be mistaken. 

In this text-book an effort has been made to realise 

the aims just indicated. With respect to mathematical 

attainments, the reader is supposed to be familiar with 

Geometry, as represented by the parts of Euclid's Elements 

that are usually read, with Algebra up to the Binomial 

Theorem for positive integral indices, and with Plane 

Trigonometry as far as the Addition Theorem; but no 

use is made of Complex (imaginary) number, nor is a 

knowledge of Infinite Series presupposed. The excessive 

refinements of modern mathematics have been deliberately 

avoided, as being neither profitable nor even intelligible 

to the young student; constant appeal has been made to 

geometrical intuitions, while at the same time considerable 

attention has been paid to the logical development of the 

subject. 

The early chapters may * seem to contain a great deal 

of matter that is foreign to the book: but the theory 
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of graphs and of units is of such importance, and is as 

yet so imperfectly treated in elementary teaching, that some 

account of it appeared to be a necessity. After considerable 

hesitation I have included in my plan the elements of 

Coordinate Geometry, so far as these were likely to be of real 

service in elucidating fundamental principles or important 

applications; but for many applications of the Calculus an 

extensive acquaintance with Coordinate Geometry is not 

necessary, and I hope that a sufficiently clear account of 

its principles has been given to meet the practical needs 

of many students. I have, however, excluded the discus¬ 

sion of the theory of Higher Plane Curves and of Surfaces 

as unsuitable for an elementary treatise. 

Another innovation is the chapter on the Theory of 

Equations ; the innovation seems to be justified, not merely 

as an arithmetical illustration of the Calculus, but also by 

the practical importance of the subject, and by the absence 

of elementary works that treat of transcendental equations. 

The general development is that which I have followed 

in class-teaching for several years. The somewhat lengthy 

discussion of the conceptions of a rate and a limit I have 

found in practice to be the simplest method of enabling a 

student to grapple with the special difficulties of the 

Calculus in its applications to mechanical or physical 

problems; when these notions have been thoroughly 

grasped, subsequent progress is more certain and rapid. 

No rigid line is drawn between differentiation and inte¬ 

gration, and several important results requiring integration 

are obtained before that branch is taken up for detailed 

treatment. The discussion in Chapter X. of areas and of 

derived and integral curves is designed, not only to furnish 

a fairly satisfactory basis for the geometrical definition 

of the definite integral, but &lso to illustrate a method 

of graphical integration that is of some importance to 
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engineers, and that may be of some value even in purely 

theoretical discussions. 

As in some of the more recent text-books, the discussion 

of Taylor’s Theorem has been postponed; the Mean Value 

Theorem is sufficient in the earlier stages, and the some¬ 

what abstract theorems on Convergence and Continuity of 

Series are most profitably treated towards the end of the 

course. The treatment, however, is such that teachers who 

prefer the usual order may at once pass from the Mean 

Value Theorem to Chapters XVII. and XVIII. 

Functions of more tlian one variable are treated in less 

detail than functions of one variable; but I have tried to 

select such portions of the theory as are of most importance 

in physical applications. The book closes with a short 

chapter on Ordinary Differential Equations, designed to 

illustrate the types of equations most frequently met 

with in dynamics, physics, and mechanical and electrical 

engineering. 

Simple exercises are attached to many of the sections; 

in the formal sets will be found several theorems and 

results for which room could not be made in the text, and 

which are yet of sufficient importance to be explicitly 

stated. I have tried to exclude all examples that have 

nothing but their difficulty to recommend them; and 

with the object of encouraging the student to put himself 

through the drill that is absolutely necessary for the 

acquisition of facility and confidence in applying the 

Calculus, I have freely given hints towards the solution 

of the more important examples. 

In the preparation of the book, I have consulted many 

treatises, and where I am conscious of having adopted a 

method of exposition that is peculiar to any writer, I have 

been careful to make due acknowledgment. It is difficult, 

however, when one has been teaching a subject for years to 
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recognise the sources of his knowledge, and it may well be 

that I have borrowed more largely than I am aware. 

I am greatly indebted to my friends Professor Andrew 

Gray, F.R.S.; Mr. John S. Mackay, LL.1).; Mr. Peter Bennett; 

Mr. John Dougall, M.A.; and Mr. Peter Pinkerton, M.A., for 

help in the tedious task of the revision of proof-sheets and 

for useful criticism. In all matters bearing on Physics, 

Professor Gray’s advice has been of the greatest service. 

To Mr. Dougall my obligations are specially great; he has 

taken a lively interest in the work from its inception, and 

has read the whole of it in manuscript, placing at my dis¬ 

posal, in the most generous way, his great knowledge of 

the subject and the fruits of his experience as a teacher; to 

him, too, I owe the verification of the examples. 
I desire to thank Sir Richard Gregory for his constant 

and kindly advice on matters relating to the passage of the 

book through the press. I am also grateful to the printers 

for the excellence of their share of the work. 

GEORGE A. GIBSON. 

Glasgow, September, 1901. 



PREFACE TO THE SECOND EDITION, 

In this edition I have not ventured to make any changes 

on the first edition; I have however added two chapters 

with the object of making the book more useful to students 

of mathematical physics. In the discussion of operations 

under the sign of Integration I have adopted the method 

developed by M. Charles J. de la Valle'e Poussin in his 

Memoir jfitude den integrates d limites infinien; that method 

seems to me to combine simplicity and rigour in a very 

remarkable degree. The chapter on the Fourier Series will, 

I liope, be sufficient as an introduction to the subject; but 

the student can not be too earnestly recommended to read 

and to master the fascinating pages in which Fourier 

himself develops the process of representing an arbitrary 

function by means of a harmonic series. 

I am indebted to my friends Mr. John Dougall, M.A., and 

Mr. John Miller, M.A., for their generous help in the revision 

of the proof-sheets; Mr. Dougall has also verified all 

the examples and supplied answers where these seemed 

to be necessary. 

GEORGE A. GIBSON. 
Glasgow, November, 1905. 
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SUGGESTIONS FOR FIRST READING. 

The following order of reading the book may be adopted 

by students who are just beginning the study of the 

Calculus: 

Chapters I.-IV., V. $ 44-47, VI., VII. § 67 (with Exercises 

XIV. 1-4,11-14), IX. $ 74-76 (with Exercises XVIa., XVIb.), 

§78 (with Exercises XVII. 1-6). This course includes the 

fundamental properties of the algebraic functions, with 

several interesting applications. 

Chapters V. §§ 48-50, VII., VIII., the rest of IX., X., 

XIII.-XV. 

Chapters XI.-XII., XVI.-XIX. may be read as the needs 

of the student demand at any time after Chapters I.-X. 

have been mastered, and Chapter XX. as soon as some 

progress has been made in integration. 





AN ELEMENTARY 

TREATISE ON THE CALCULUS. 

CHAPTER I. 

COORDINATES. FUNCTIONS. 

§ 1. Directed Segments or Steps. Let A, B (Fig. 1) be any 
two points on a straight line. In Elementary Geometry it 
is customary to denote the segment of the line between 
A and B by AB or by BA indifferently, the order of the 
letters being of no consequence. It is useful, however, for 
many purposes to distinguish the segment traced out 
by a point which moves along the line from A to B from 
that traced out by a point which moves from B to A. 
When this distinction is made, the segment is called a 
directed segment or vector or step, and the distinction is 
represented in the symbol for the segment by the order of 
the letters; thus, AB denotes the segment traced out by a 
point which moves from A to B, while BA denotes the 
segment traced out by a point which moves from B to A. 
The length of the step AB is the same as that of the step 
BA, but the steps have opposite directions. 

~A B D7 C 5 

c o 
Fig. 1. 

Two steps AB, CD are defined to be equal if (1) they are 
on the same straight line or on parallel straight lines, (2) 
the lengths oi A B and CD are equal, and (3) D is on the 

o.c. a « 
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same side of C as B is of A. Thus, if D' be at the same 
distance from C as D is, but on the opposite side, AB is not 
equal to CD' but to D'C. The step AB has the same length 
and the same direction as CD or JD'C, but though it has the 
same length as CD\ it has not the same direction and is 
therefore not equal to CD' in the sense in which “equal” 
has been defined for steps. 

§ 2. Addition of Steps. Let A, B, C be any three points 
on a straight line. Whatever be the relative position of 
the points A, B, C, a point which moves along the line 
from A to B, and then from B to C, will be at the same 
distance from A and on the same side of A as if it had 
moved directly from A to C. AC is therefore taken as the 
sum of the steps AB and BC, and the operation of addition 
of steps is defined by the equation 

AB+BC=AC. 

When B lies between A and C, the sum of the lengths of 
the steps AB and BC is equal to the length of the step AC, 
and therefore in this case addition of steps agrees with the 
usual geometrical meaning of addition of segments in 
which length alone is considered. But when B does not 
lie between A and C, the sum of the lengths of the steps 
AB and BC is not equal to the length of the step AC. It 
will be seen immediately that steps can be represented as 
positive or negative, and that addition of steps corresponds 
to algebraical addition. 

If D be any fourth point on the line 

AB+BC+CD = AC+CD-AD, 

and in the same way the sum of any number of steps may 
be defined. 

To find the sum of A B and CD when B and C are not 
coincident, take the step BE equal to the step CD; then 

AB+CD^AB+BE^AE. 

If x be any positive number, xAB is a step in the same 
direction as the step AB, and of a length which is to the 
length of AB in the ratio of x to 1; thus, 3AB is a step 
thrice as long, and in the same direction as the step AB ; 
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%AB is a step five-thirds of the length of AB and in the 
same direction. 

The student will have no difficulty in showing that the 
commutative and associative laws for the addition of 
numbers hold for the addition of steps. 

§ 3. Symmetric Steps and Subtraction of Steps. If in the 
first case of the preceding Article the point C be supposed 
to coincide with A, the step AC becomes the zero-step A A, 
which is denoted by 0. Hence, in symbols, 

AB+BA=AA=: 0. 

Similarly, AB+BC+ CA=AC+CA=0. 

In Algebra the negative number —a is defined by the 
equation 

a + ( — a)==0. 

In the same way the negative step — AB may be defined 
by the equation 

AB+BA=0 

as being the step BA ; that is, the step — AB is the step 
BA of the same length in the opposite direction. The 
symbol + may now be attached to a step AB, and +AB 
may be called a positive step. The two steps +AB and 
— AB (or BA) are called symmetric steps. Obviously, if 
two steps are equal, so also are their symmetric steps. 

The operation of subtraction of a step is defined as the 
addition of the symmetric step; in symbols, 

AC-BC=AC+CB=AB; 

or, AB-CD = AB+DC=AC/, if B(?~DC. 

Precisely as in Algebra, the commutative and associative 
laws may be shown to hold for subtraction of steps, and 
there will be no confusion caused by the use of the symbols 
+ and — to indicate symmetric steps as well as the 
operations of addition and subtraction. 

By the definition of subtraction, if A, B be any two 
points on a line and 0 any third point, 

AB=A0+0B=0B+A0~0B-0A. 
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§ 4. Abscissa of a Point. Let 0 be a fixed point on a 
line X'OX and P, P' two points on opposite sides of 0 but 
at the same distance from it (Fig. 2); let P be another 
point on the line on the same side of 0 as P is, say to the 
right of 0. 

The steps 0 P, OP have the same sign; the steps 0 U, 
OP' have opposite signs. 

Let OP be taken as a standard of length, say 1 inch, and 
as a standard of direction; it may therefore be called the 
unit step. Steps measured like OP to the right will be 
called positive steps, while those measured to the left will 
be called negative. Thus OP, P'P are positive, OP', PP' 
negative steps. 

X7 P' A' u7 6 u A P X 

Pig. 2. 

If OP is equal to xOTJ, then 

0P'= ~P'0=-0P=-a0P. 

The positive number x is called the abscissa of P with 
respect to the origin 0; the negative number — x is called 
the abscissa of P' with respect to the same origin, and the 
line X'OX is called the axis of abscissae. Every point of 
the line to the right of 0 will have a positive number for 
abscissa, and every point to the left of 0 a negative 
number; the abscissa of 0 itself is zero. Thus if OA = 2011, 
the abscissa of A is 2 ; the abscissa of P is 1; the abscissae 
of P' and A\ the points symmetric to P and A, are — 1 
and — 2 respectively. 

As thus defined, the abscissa of a point P is the ratio of 
OP to the unit step 0 P, taken with the positive or negative 
sign according as P is to the right or to the left of 0, 
U being supposed to be to the right of 0. When a point P 
has the abscissa x, it is convenient to say that the point P 
and the number x correspond to each other. Thus the 
point A and the number 2, the point P' and the number 
— 1, the point 0 and the number 0 correspond to each 
other. 

Axiom.—The fundamental axiom on which the application 
of Algebra to Geometry rests is that, when the origin 0 and 
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the unit step OU have been fixed, there is a one-to-one 
correspondence between the points of the axis and the 
system of real numbers; that is, to every point on the axis 
corresponds a definite number, namely the abscissa of the 
point, and to every number corresponds a point on the axis, 
namely the point which has the number for abscissa. 

Wh£n the ratio of OP to OU is a rational number, that 
is, a positive or negative integer or fraction, P is determined 
by laying off OU, or a submultiple of OU, a certain number 
of times along the axis, to the right or to the left, according 
as the number is positive or negative. Thus if the number 
be — we lay off to the left a line equal to 7 times the 
third part of 0U. When, however, the ratio of OP to OU 
is an irrational number, such as ^2 or 7r, the position o^ 
P may be determined in practice by taking a rational 
approximation to the irrational number. Thus for 7r we 
may take 31 or 314 or 3142, etc., according to the size of 
the unit line. Of course, whatever size the unit line may 
be, a stage is soon reached when the closer approximations 
become indistinguishable in the diagram; if the unit be 
1 inch it would be difficult to distinguish the points whose 
abscissae are 314 and 3142 from each other. Irrational 
numbers are, however, subject to the same laws of operation 
as rational numbers, and though in a diagram it may be 
impossible to distinguish the points corresponding say to 
7r and 3142 from each other, yet in our reasoning they 
are to be considered distinct, just as in reasoning about a 
straight line we consider it to have no breadth, although 
we cannot represent such a line in a diagram. 

Ex. 1. Mark the points whose abscissae are : 

2i; -3; v/2; -V3; u 

Ex. 2. If x be the abscissa of a point, mark the points which are 
determined by the equations : 

2# —3=0; 3#+5 = 0; #2-4 = 0; 3#2-4#-l = 0. 

§ 5. Measure of a Step. If the abscissae of A, B are a, 6 
respectively, then 

AB~0B-0A = b0U-a0U=(b~a)0U. 
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The number 6 — a may be taken as the measure of AB; 
the numerical value of 5 — a gives the ratio of the length 
of AB to the length of the unit step OU, and the sign of 
b — a gives the direction of AB. Thus if OU he 1 inch, 
6 = 5, a = 2, AB will be 3 inches and B will be to the right 
of A ; if 6 = — 5, a= — 2, AB will be 3 inches long, and 
since — 5 + 2 is negative B will be to the left of A. The 
unit step OU is generally omitted, and AB is said to be 
equal to b — a. 

By the definition of the expression “ algebraically greater,” 
b is algebraically greater than a when 6 — a is positive; 
therefore when b is algebraically greater than a, B lies to 
the right of +. Similarly when b is algebraically less than 
a, B lies to the left of A. We have, therefore, the con¬ 
venient relation that the number h is algebraically greater 
or less than the number a, according as the point whose 
abscissa is b lies to the right or to the left of the point 
whose abscissa is a. Instead of the expression “ the point 
whose abscissa is a,” it will be more compact and equally 
clear to use the phrase “ the point a” 

Ex. 1. Determine in sign and magnitude the step AB for the cases 

a-^b — 4:; a— -1,6=1; a —-2,6=-5 ; a — -sj% b — ir. 

Ex. 2. Show that the abscissa of the middle point of AB is |(a-f 6). 

Ex. 3. If AP: PB=k : 1 show that the abscissa of P is {a + kb)j(Jc+1). 

For if x is the abscissa of P 

AP—x-a, PB—b~x and x~a — k(b-x). 

What is the sign of k (i) when P lies between A and B, (ii) when 
P does not lie between A and B ? 

§6. Axes of Coordinates. Let X'OX, Y'OY (Fig. 3) be 
two unlimited straight lines at right angles to each other, 
and P any point in the plane of the diagram; draw PM, 
PN perpendicular to X'X, Y' Y respectively. 

When P is given, the steps OM, ON are definitely deter¬ 
mined ; and conversely when the steps OM, ON are given, 
P is definitely determined as the point of intersection of 
the perpendiculars MP, NP. 

Let OU be the unit step for the direction X'X, OV the 
unit step for the direction FT, and for the present suppose 
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these two steps to be of the same length, say an inch. The 
step OM or its equal, the step NPy will be considered 
positive when P lies to the right of Y'Yy but negative 
when P lies to the left of Y'Y; the step ON or its equal, 
the step MPy will be considered positive when P lies above 
X'X. but negative when P lies below X'X\ 

Fia. 3. 

Of course, the direction which is to be considered positive may be 
chosen at pleasure, but unless the contrary is stated, the positive 
directions will be assumed to be from left to right and from below 
upwards respectively. Again OM and MP will only be compared as 
to their lengths; we only compare steps with each other when they 
are on the same straight line or on parallel straight lines. Obviously 
the theorems that hold for the comparison of steps with each other are 
true, whatever be the particular line on which the steps are taken, but 
we have given no definition of equality or of sum or of difference, 
except when the steps compared are on the same straight line or on 
parallel straight lines. 

Suppose now that 

OM—NP = aOU; ON=MP = bOV; 

the numbers a, b are called the coordinates of P with 
respect to the axes X'X, Y'Y; a is the abscissa, b the 
orainatey and P is described shortly as “ the point (a, by* 
In thus describing the point the first coordinate is under¬ 
stood to be the abscissa, the second the ordinate. The axes 
are at right angles to each other, and it will be assumed, 
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unless the contrary is stated, that the axes are always 
rectangular. 0 is called the origin of coordinates, and its 
coordinates are 0, 0. 

The axes divide the plane into four quadrants; the first 
quadrant is that bounded by OX, OY} the second by OF, 
OX\ the third by 0X\ OF, and the fourth by OF, OX. 

Fig. 4. 

The signs of the coordinates show at once the quadrant in 
which a point lies: in the first quadrant XO Y the signs 
(the first being that of the abscissa) are + , + ; in the 
second, FOX', + ; in the third, X'OY', ; in the 
fourth, Y'OX, +, ’ 
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Paper called “ squared paper,” ruled twice over with two 
sets of equidistant parallel lines, can be readily purchased, 
and its use greatly facilitates the plotting of points. 

Fig. 4 shows several points referred to the axes X'X, 
Y'Y. The four points A, B, G,1) are each at unit distance 
from both axes, but no two of them are in the same 
quadrant, since no two pairs of coordinates agree both in 
sign and in magnitude. 

K lies on X'X, and its ordinate is therefore zero; the 
abscissa of K is zero, since K lies on Y'Y. 

Since OU is divided by the faintly ruled lines into 
10 equal parts, each of these parts will represent *1; it is 
easy, therefore, to mark off a length such as 1*3 or — 7. 
In the same way — */2, — ^^/3 are represented by —141, 
— *87, though the second decimal can only be roughly 
indicated. 

Ex. 1. Plot the points (1, -2) ; (-;?, 0) ; (-3, -2) ; (0, £) ; (1, 0) ; 
l -1,0); (0,1); (0, -1); (tt, It) ; (v/2, ^3); (-x/2, -*/3).~ 

Ex. 2. Wliat is the locus of a point whose abscissa is (i) 2, (ii) - 2, 
(iii) 0, (iv) a ? What is the locus of a point whose ordinate has these 
values ? 

Ex. 3. Two points P, Q are said to be symmetric, with respect to a line 
when the line bisects PQ, and is perpendicular to PQ ; two points 
P, Q are said to be symmetric with respect to a point 0, when 0 is the 
middle point of the line PQ. If P is the point (a, h) show 

(i) that the point (a, - h) is symmetric to P with respect to X'X. 

(ii) that the point (— a, h) is symmetric to P with respect to Y'Y. 

(iii) that the point ( — a, - h) is symmetric to P with respect to 0. 

For simplicity take first the case a — 1, h = 2. 

Ex. 4. If A is the point (#t, y2), B the point (#2, ?/2), and P the point 
dividing AB in the ratio of £ to 1, show, as in § 5, Ex. 3, that the 
coordinates of P are 

yx +ky2 

1+F’ \+k ' 

What is the sign of k (i) when P lies between A and B, (ii) when P 
does not lie between A and B ? 

§ 7. Distance between two points. Let P (Fig. 5) be the 
point (xv Q the point (x2, y2); draw PM, QN perpendi¬ 
cular to XX and let PR be drawn parallel to X'X to meet 
NQ (or NQ produced) at R. 
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Whatever be the relative position of P and Q, we have 
for the measures of PR, RQ 

PR — MN~x2 — xl\ RQ = y>>—yv 

As regards magnitude we have, by Euclid I. 47, 

Y 
PQ* = PRz + RQ*, 

and whether the signs of x2—x1 
and 2/2 — t>e positive or nega¬ 
tive the squares of these numbers 
will give the number of square 
units in the squares described on 
PR and RQ. Hence 

FlG-6- PQ"=(^2 ~x\f+(y~i- ihf> 
and therefore the length of PQ is 

where the positive sign must be given to the root. 
If Q coincide with 0, x2 and y2 are both zero, and the 

length of OP is ^/(x^ + yi2). 
The student should verify the result for different positions 

of P and Q. 

Ex. 1. Find the distance between the points (3, 7), (9, 6), the 
length of the unit being 1 inch. 

Let the distance be r inches ; then 

rl=(3 - 9)2 + (7 - 6)2=37 ; r = J37=6*083, 

so that the distance is 6*083 inches. 

Ex. 2. Find the distances between the following pairs of points: 
plot the points in each case. 

i. (1, 1), (3, 2). ii. ( -1, 1), (3, 2). hi. (-1,0), (0, 2). 

iv. (-2, -3), (2, 3). v. (it, —it), (-£ f). 

Ex. 3. Show that if the point (x, y) be any point on the circle 
whose radius is 3, and whose centre is the point (2, 1), 

x2 + y2 - 4x - 2y - 4=0. 

§ 8. Polar Coordinates. The position of the point P 
(Fig. G) would clearly be determined by the angle which 
OP makes with the fixed line OX, and by the length of the 
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radius OP. We must be clear, however, as to the meaning 
of the word “angle.” Following the usual convention in 
Trigonometry, we consider the radius OP to be always 
positive, and define the angle 1 ‘ " 
positive direction of OX as 
the angle through which a line 
coinciding with OX (not with 
OX') has to be turned till it 
passes through the point P. 
The angle will be considered 
positive when the rotation is 
counter-clockwise. 

If OP be r units of length 
and the angle XOP 6 degrees 
or radians according to the 
unit of angle adopted, the two 
numbers r, 6 are called the 
polar coordinates of P, and P 
is described as the point (?’, 9). 
(r', 6'); 9' is negative. 

With the usual system of rectangular axes in which OX 
has to be rotated counter-clockwise through 90° till it 
coincides with OF, the positive direction of the axis Y'Y, 
we see that the polar coordinates (r, 9) of P are connected 
with the rectangular coordinates (x, y) by the equations 

x = r cos 9, y = r sin 6. 
These equations, when solved for r and 9 in terms of 

x and yy give 

r = +J{x*+yi), tan <9 = -. 

It must be noted, however, that tan 9 does not definitely 
determine the angle 9. For if tan 9 be positive we can 
only infer that P lies in the first or third quadrant, while 
if tan 9 be negative that P lies in the second or fourth 
quadrant. We must consider also the signs of x and y or 
of cos 9 and sin 0. 

It is usually most convenient to suppose 6 to vary from 
— 180° to +180° so that a point above the axis X'X has a 
positive angle, and a point below that axis a negative angle. 

that OP makes with the 

Similarly, P' is the point 
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Ex. 1. If P is the point ( - 3, 4), find its polar coordinates (r, 0). 

r=s/(9 + lG) = 5 ; tan 0 —1-3333 ; 0^120" 52'. 
— O 

Since tan 0 is negative, 0 is in the second or fourth quadrant; blit 
x or cos 0 is negative, and therefore 0 is in the second. 

Ex. 2. If P is the point (3, - 4), show that its polar coordinates 
are (5, —53' 8'). 

§ 9. Variable. Continuity. Let A be a fixed point on a 
line, say, on the ;r-axis X'X, and let a point P start from 
the position A and move steadily along the axis, say to the 
right, till it reaches another position B. The segment AB 
described by the point P is the most perfect type of a 
continuous magnitude ; there is no gap or break in it. As 
P moves from A to B, the step A P steadily increases; A P 
is a continuously varying magnitude during the motion 
of P. 

If a, b are the abscissae of A, B, and x the abscissa of P 
at any stage of the motion, then, as P moves from A to B. 
since AP = x — a* x steadily increases (algebraically) from 
a to b, x is a continuously varying number or, more 
briefly stated, x is a continuous variable. 

Again, since P coincides in succession with every point 
lying between A and B, so x assumes in succession every 
value lying between a and b. If a be negative and b 
positive, A will be to the left and B to the right of the 
origin 0, and when P passes through 0, x will be zero so 
that as x passes from negative to positive values it passes 
through the value zero. Had P instead of moving always 
to the right moved sometimes forward, sometimes back¬ 
ward, then every time it passed through 0 the value of x 
would have been zero, so that x would only change from 
negative to positive or from positive to negative by passing 
through zero. 

We will assume then, as characteristic of a continuous 
variable, that as it varies continuously from a value a 
to a value b it assumes once at least every value inter- 

* Here, and in similar cases, it is the measure of the step AP that 
is of importance ; it will cause no confusion to let AP stand for the 
step, and also for the measure of the step as is usually done in all 
applications of geometrical theorems. 
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mediate to a and b; if one of these values, say a, be 
negative and the other positive, one of the values the 
variable takes will be zero. 

§ 10. Geometrical Representation of Magnitudes. The 
measure x of any magnitude A is the ratio of A to another 
magnitude JJ of the same kind that is chosen as the unit. 
If then on any axis a unit step OU is taken as representing 
the unit magnitude U, the step 0M where 0M is equal to 
xOU will represent the magnitude A. There is thus 
established a correspondence between the magnitudes of 
the particular kind considered and the points of the axis; 
the point 1 corresponds to the unit magnitude U, the 
point 2 to the magnitude 2 Uy and so on. 

Many of the magnitudes considered in Geometry and 
Physics, for example, lines, angles, velocities, forces, are 
often treated as directed magnitudes, and their measures 
may then be either positive or negative; when the meas¬ 
ures are negative, the points that correspond to the magni¬ 
tudes will lie on the opposite side of 0 from that on which 
U lies. 

A variable magnitude P will be represented by a variable 
segment OP, and when the magnitude varies continuously 
the point P will trace out a continuous segment of the axis. 

For purposes of calculation it is the measure of the 
magnitude that is of importance, and, to avoid a tedious 
prolixity of statement, such an expression as “ a velocity v” 
will often be used in the sense “ a velocity whose measure 
is v units of velocity.” Of course in all cases care should 
be taken to prevent ambiguity as to the units employed. 

{5II. Function. Dependent and Independent Variables. In 
any problem the magnitudes dealt with will usually be of 
two classes, namely, those that retain the same value all 
through the investigation and those that are supposed to 
take different values: the former are called constants, the 
latter variables. It has become customary to denote con¬ 
stants by the earlier letters of the alphabet, a, by c, ..., and 
variables by the later letters, 0, y, x, .... Of course when 
there is any advantage in denoting a variable by a or a 
constant by z there is no reason against doing so. 
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Again, taking first the case of only two variables, it will 
usually happen that when one of the variables is given a 
series of values the other variable will take a series of 
definite values, one for each that the first is supposed to 
have been given. The second variable is then said to be 
a function of the first, or to be a variable dependent on the 
first, which is distinguished as the independent variable. 
Instead of the phrase “ independent variable/* the word 
argument is often used, and the dependent variable is then 
called a function of its argument. 

Thus, if we consider a series of triangles, all of the same 
altitude, the area of any triangle is a function of its base. 
The distance travelled by a train which moves at a constant 
speed is a function of the time during which it has moved 
at that speed. The pressure of a given quantity of gas 
which is maintained at a constant temperature is a function 
of its volume. In these examples the independent variable 
or argument is the base, the time, the volume; and the 
dependent variable or function is the area, the distance, the 
pressure respectively. 

It is usually a mere matter of convenience which of the 
two variables is considered as independent. Thus if the 
time at which the train passed certain stations on the 
railroad were the subject or inquiry, the distance would be 
taken as the independent variable and the time as the 
dependent. 

When there are more than two variables it may happen 
that when definite values are assigned to all but one of 
them the value of that one becomes determinate; this one 
variable is then said to be a function of or to be dependent 
on the other variables which are called the independent 
variables of the problem. 

Thus the area of a triangle is a function of the base and 
of the altitude when both base and altitude vary. The 
pressure of a given quantity of gas is a function of the 
volume and of the temperature when both volume and 
temperature vary. 

Generally, a variable y is said to be a function of another 
variable x when to every value of x there corresponds a definite 
value of y ; a variable y is said to be a function of two or more 
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variables, %, u, ..., when to each set of values of the variables 
x, u, ... there corresponds a definite value of y. 

While it is important to keep this general notion of 
functional dependence in mind, it will, however, be usually 
assumed that a function is defined by an equation (see 
§§ 13, 26, 27, 28), and that it can be represented by a 
graph (§ 16). This assumption implies (i) that as the 
argument varies continuously, in the sense explained in 
8 9, from a value a to a value b, the function also varies 
continuously from a value, A say, to a value B; (ii) that 
to a small change in the argument corresponds also a small 
change in the function. The assumption implies a good 
deal more than what is here stated, but at this stage the 
student is earnestly urged to pass lightly over the purely 
theoretical difficulties and to try to get a thorough grasp 
of the fundamental conceptions of variation and functional 
dependence by working out for himself the graphical 
exercises in the next chapter. He will find by trial that, 
except for special values of the argument, the property (ii) 
is actually found in all the ordinary functions ; the pro¬ 
perty (i), though apparently simpler, is really much harder 
to demonstrate mathematically. A mathematical definition 
of the continuity of a dependent variable will be given in 
Chapter V., § 44. 

The student should notice the phrase “definite value” 
or 4< determinate value.” It may happen that the analytical 
expression for a function ceases to have meaning for certain 
values of the argument; for these values, therefore, the 
function is not defined. Thus the function (x2 —1)/(# — 1) 
is defined for all values of x, except the value 1 ; because 
when x—l the expression takes the form 0/0, which is 
absolutely meaningless. We should not get out of the 
difficulty by first dividing numerator and denominator by 
x— 1 and then putting 1 for x; because in dividing by#— 1 
we assume that x — 1 is not zero, division by zero being 
excluded by the fundamental laws of algebra. 

Again, such a function as ^(1— #2) is only defined for 
values of x that are numerically less than or equal to 1; in 
this case we may say that the function is defined for values 
of the argument in the range from — 1 to +1 inclusive. 
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It has always to be understood in reasoning about a 
function that only those values of the argument are to be 
considered for which the function lias a definite value, or, 
in other words, for which the function is well-defined. 

§ 12. Natation for Functions. A function of a variable is 
often denoted by enclosing the variable in a bracket and 
prefixing a letter; thus, f(x), F(x), denote functions 
of x. The letters /, fr\ <j> are functional symbols, not 
multipliers; the symbol f(x) must be taken as a whole, 
and means simply “ some function of x” the context or 
some explicit statement determining which particular 
function is meant. For different functions occurring in 
the same investigation different functional symbols must 
of course be used. 

f(a) means “ the value of the function f(x) when x has 
the value a” or “the value of the function f(x) when x is 
replaced by <x.” * Thus, if f(x) denote the function 

x2 — Sx — 1, 

then /(0)= —1; /(1)= —3; f(a + b) = (a + bf - 3(a + &)-]; 

f{x2) = (x2)2 - Sx2 —1 =a:4 —3cn2—1. 

A similar notation is used for functions of two or more 
variables; thus, f(x, y), F(p, v), y, z) denote functions 
of x and y, of p and v, of x, y, and 0 respectively. 

If fix, y) = ‘Jx* - 2xy -y2+4, 

then /(l, -l) = 3 + 2-l+4 = 8; 

f(a, b) = 3a2 — 2ab — b2 + 4. 

The letters should be separated by a comma to indicate that there 
are two or more variables, and thus distinguish the function from one 
in which the argument is the product of two or more variables. Thus, 
f(xy) is a function whose argument is the product xy, and if J{x) be 
ax+ bf then f{xy) is axy + b. 

§ 13. Explicit and Implicit Functions. One variable is 
usually defined as a function of another by an equation. 
The dependent variable is called an explicit function of its 
argument, or is said to be given explicitly when the 
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equation is solved for the dependent variable in terms of 
the argument. Thus 

y = a? — lx 4- 3; <s* == cos(af + e); p = ^ ; 

y —f(x); »=0(O; p=F(v) 
are equations which give ?/, <s\ p explicitly as functions of 
xf t, v respectively. 

When the equation is not solved, the dependent variable 
is called an implicit function of its argument, or is said 
to be given implicitly. Thus y is given as an implicit 
function of x by the equation 

axy + bx 4- cy 4- d = 0. 

This equation when solved for y in terms of x gives 

_ bx 4* d 
^ ax 4~ c 

and y is now an explicit function of x. 

§ 14. Multiple-valued and Inverse Functions. When a 
function is given implicitly by an equation, it may happen 
that to one value of the one variable there correspond two 
or more values of the other. Hie definition of a function 
given in § 11 assumes that to each value of the argument 
there corresponds but one value of the function, and in 
reasoning about a function we must always suppose that it 
has but one value for each value of its argument; in other 
words, that the function is single-valued. When the 
defining equation gives more than one value of the one 
variable for one value of the other, we can usually consider 
the equation as defining a function that is made up of 
two or more functions each of which is single-valued; 
such a function is called a multiple-valued function. 

Thus, if y is given as a function of x by the equation 

x2 + 2.r// - y2 —1=0, 

then y—x± J(2x2 - 1), 

and to each value of x there correspond two values of y ; y is a two¬ 
valued function of x. The equation really gives two functions of x} 
namely, 

y=x -f V(2#2 -1 \ V=x ~ s/(‘lx2 ~ 1), 
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each of which is single-valued, and defined for those values of x for 
which 2.r2 is greater than or equal to 1. 

Again, the equation 
0 

defines y as a single-valued function of a\ hut x as a two-valued function 
of //, namely x is either */(// — 1) or — sf( y — 1). 

When the graphical representation of functions is considered, it will 
be seen that the separate functions represent different parts of the one 
curve § 20). 

The equation x? — y +1 =0, as we have just seen, not only 
defines y as a function of x but also defines x as a function 
of y. More generally, the equation y ~f{x), which defines 
y explicitly as a function of also defines x implicitly as a 
function of <y; the two functions thus defined by the one 
equation are said to be inverse to each other. 

For example the equation y = x* when solved for x gives 
x — ^/y and thus defines two functions winch are inverse to 
each other, namely the cube and the cube root. 

It is usual in English books to employ /-1 as the symbol 
of the function inverse to that denoted by the symbol/so 
that 

®=f~\y) when y = fix). 

The student will be already familiar with this notation 
in the case of angles. Tims sin"1?/ means, not 1/sin//but, 
the angle (within a certain range) whose sine is y ; and just 
as we have the identity, sin (sin-1//) = y, so we have 

f{f-\v))=y 
or, as the identity is usually written, 

ft '(?/)=;'/• 

Again it may well happen that the inverse function is 
not single-valued. Thus, sin "be may, unless some restric¬ 
tion be imposed, be any one of an infinite number of 
angles. To secure definiteness some restriction has in 
such cases to be placed on the range of the variable; 
for example, sin - 'x may be restricted to angles lying 
between — 7r/2 and + 7r/2 (inclusive of —7r/2 and + tt/2), 
and then sin-1* is single-valued. For further information, 
see §§ 25, 27, 28. 
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EXERCISES I. 

1. If/Jx)=x3-x4- 1, find/(()),/(1),/(- ]), and show that 

f{x + h) ~/(x) 4- (8.r2 -1) h 4- Wxlr 4- P. 

2. If /(x) — x2 - x - 2, write down /(ox4- b). 

3. If f(x)—x2 - fix-f 1, write down /(x2), /(x3), /sin x). 

I)* 
4. If /(x) = logx, show that 

A*s)~A*)+M; /(J) -/<»• 

5. If /(x) — (*x° + ^>x44*cx24- d, show that /( - x) is equal to f(x). 

When /(—x)—/(x), the function /(x) is called an even function of 
its argument. 

6. If f(x)—ax7 4- b.d> 4- c.r3 4- <7x, show that /( - x) is equal to —/(x). 

When /(— x) — - /*(x), the function /(x) is called an oc/tf function 
of its argument. 

7. Show that sinx, cosecx, tan.?’, cotx are odd functions of x, and 
that cosx, secx are even functions of x. 

8. Show that (e* - er*)jx is an even function of x. 

9. If/(x, ?/) = ax2 4* &xy 4- c, write down /y, x),/(x, x), and/(y, y). 

10. ifr-=./i>)=£+4 showtl,at/W-fS-2°2- 

11. If j/ -f{x)=s^)(,w that .r =/(?/). 

12. If /x, ?/) — x2 - y2, show that /(cos sin #) = cos and that 
/(sec tan 0) = 1. 

What is the value of /’( sin /(«»: 



CHAPTER II. 

GRAPHS. RATIONAL FUNCTIONS. 

§ 15. Object of the Calculus. Graphs. Stated in the most 
general terms the object of the Calculus may be said to be the 
study of the changes of a continuously varying function. 
The investigation of the rate at which a given function is 
changing for any specified value of its argument belongs to 
the Differential Calculus; the converse problem of deter 
mining the amount by which a function changes for a 
specified change in its argument, when the rate of change 
of the function is known, belongs to the Integral Calculus. 

An almost indispensable aid to this study is furnished by 
the graphical representation of a function, and for the sake 
of those students who may have had little or no experience 
in graphical work a few hints will now be given that may 
be of service to them. At times the tracing of a graph 
involves a good deal of tedious calculation, but the student 
will be well repaid for his labour by the insight he will 
obtain into the fundamental conceptions of variation and 
continuity of a function. When he has made but a little 
progress in the differential calculus he will find several 
methods of reducing the necessary calculations. An ex¬ 
tremely good discussion of graphs from an elementary 
standpoint will be found in Professor ChrystaPs Introduc¬ 
tion to Algebra. (London: A. & C. Black.) 

§ 16. Graph of x\ In geometry and physics we frequently 
find a function defined by an equation of the form y — cx2 
where c is a constant. Thus the area of a circle varies as 
the square on the radius; the distance that a body falls 
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from rest, the resistance of the air being neglected, varies 
as the square of the time of fall; the heat generated by an 
electric current in a given time varies as the square of the 
current in the circuit and so on. These statements when 
expressed in the usual algebraical way all lead to an 
equation of the above form; x denotes the number of units 
of the one kind of quantity, for example the number of feet, 
or the number of seconds, or the number of amperes; y 

denotes the number of units of the second kind, for example 
the number of square feet, or the number of linear feet, or 
the number of ergs (or other heat units). The number c is a 
constant, that is, does not change when x changes; it is not, 
however, the same constant in the different problems; thus 
for the area of the circle c — ir, for the falling body c — hg, 
for the electric circuit c depends on the resistance and on 
the heat unit. 

Suppose for simplicity that c = 1 ; the more general case 
can be deduced from this one. Let X'X, YY be two 
rectangular axes (Fig. 7), OU, OV unit segments on these 
axes. Give to x a series of values, and from the equation 
y — x2 deduce the corresponding values of y. Associating 
each value of x with the corresponding value of y, we 
obtain a series of pairs of numbers, and each pair may 
be taken as the coordinates of a point in the plane of the 
diagram, the value of x being the abscissa and the 
corresponding value of y the ordinate of the point. If the 
values given to x form an increasing or a decreasing series 
of numbers, and if the difference between any two con¬ 
secutive values be small it will be found that the consecu¬ 
tive points determined on the diagram lie pretty close to 
each other; the curve drawn through these points with a 
free hand is called the graph of the function x2. 

Tabulating values, we have 

XA o, T, •2, 3, ... 1, IT ... 

v 1 0, 01 , -04, 09, ... 1,1*21... / 
X T, -% - 3, ... -l, 
V 1 •01, , '04, -09, i, i’^p*4 

Take OU, OV each, say, 1 inch and plow 
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(0, 0), (1, 01) ... ( — I, -01), (-% -04) ...; by Jawing a 
curve through the points we get the graph of x~ (rig. 7). 

Of course only a comparatively small number of points can 
be plotted, but by actual calculation we find that a small 
change in x produces but a small change in y, we are there 
fore warranted in concluding that an ordinate coiresponding 
to a value of x that has not been used in plotting the points 
but that lies between two values that have been used can 
differ but little from the ordinate of the graph correspond¬ 
in''- to that value of x. When there is any room for doubt, 
a few more values of y at closer intervals may be calculated. 

When x is at all large, y will be much larger and it 
becomes impossible to plot the points in the diagram; we 
must then try to follow in imagination the course of the 
trraplt or if it be of importance to know the. form of the 
graph for such values we may take the unit lines OU, OV 
smaller. See further § 19. 
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§ 17. Equation of a Curve. Symmetry. Turning Values. 
Let us now consider the graph of xz from the purely geo¬ 
metrical point of view. 

(i) Equation of the Curve. A point in the plane will or 
will not be on the graph of x2 according as the ordinate of 
the point is or is not equal to the square of its abscissa; in 
other words, the condition that a point should lie on the 
graph is that the coordinates of the point should satisfy the 
equation y — x? which states the law according to which the 
curve was constructed. This equation is generally called 
the equation of the curve, and the curve is said to lie repre¬ 
sented by the equation ; the two expressions “ the graph of 
the function x2” and “ the curve whose equation ls y—x2'” 

(or “the curve represented by the equation y~x2”) mean 
the same thing. 

More generally, “ the graph of the function f(x) ” and 
4the curve whose equation is y—f(x)” mean the same thing, 
and the condition that a point should lie on the curve or 
graph is that its coordinates should satisfy the equation 
y =/(tr). Thus the point (— F {) does, and the point 
(— -J;) does not, lie on the graph of x2; the origin lies on 
the graph of x2 but not on that of <r2 + l. 

(ii) Symmetry. The ordinate of the point on the graph 
of x2 which has —a for its abscissa is equal to the ordinate 
of the point which has a for its abscissa, since each ordinate 
is a2, if A is the point (a, a2) and B the point ( — a, a1) 
AB will be perpendicular to OF and will be bisected by 
OF; that is, since a may be any number whatever, the 
graph is symmetrical about OF, or OF is an axis of sym¬ 
metry (cp. § 6, ex. 3). In plotting the graph by points 
therefore, it would be sufficient to calculate y from positive 
values of x alone; the part of the curve to the left of OF 
is simply the reflection in OF of the part to the right. We 
might imagine the plane of the diagram turned through 
two right angles about OF and the part of the curve origin¬ 
ally to the right of OF would after rotation form the part 
to the left of OF 

The graph of a function f(x) is not, as a rule, sym¬ 
metrical about the y-axis or about.any other line; but the 
function should always be examined for symmetry since 
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the presence of symmetry saves labour. The graph of f{x) 
will be symmetrical about OY if fix) is an even function 
(Exer. I., ex. 5), for in that case the ordinate /( — a) of the 
point whose abscissa is —a is equal in sign and in magni¬ 
tude to the ordinate/(a) of the point whose abscissa is a. 

(iii) Variation of the Function. Suppose a point to start 
from 0 and move along the graph. At first the ordinate of 
the point increases very slowly; as the point gets nearer to 
the point (1, 1) its ordinate grows more rapidly; when it 
has passed (I, 1) its ordinate grows still more rapidly. As 
x increases from 0 to A the ordinate increases from 0 to J ; 
as x increases from J to 1 the ordinate increases from J to 1 ; 
as x increases from 1 to S the ordinate increases from 1 to ■£ 
Thus for the same increase of A in x the ordinate increases 
by the amounts f, £ respectively. The course of the 
graph shows very clearly that after a certain point has 
been reached the ordinate grows more rapidly than the 
abscissa while near the origin it grows less rapidly; the 
graph thus gives a vivid picture of the variation of the 
function x2 represented by the ordinate. 

(iv) Turning Values. If a point move along the graph 
from any position on the left of OY to any position on the 
right the ordinate of the point decreases till the point 
reaches 0 and then increases. The point 0 where the ordi¬ 
nate ceases to decrease and begins to increase is called a 
turning point of the graph, and by analogy the value 
of the function x2 at 0, namely zero, is called a turning 
value of the function. The turning value is in this case a 
minimum value of the function or ordinate. 

In general those points on a graph at which the ordinate 
ceases to decrease and begins to increase, or else ceases to 
increase and begins to decrease are called turning points of 
the graph, and the corresponding values of the function turn¬ 
ing values; the turning values are respectively minima and 
maxima values of the function, that is values respectively 
less and greater than any other values of the function 
in their neighbourhood. 

§ 18. Graph of cx2. We might by assigning values to x, 
and calculating the corresponding values of y from the 
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equation y~cx2 construct the graph of cx2; it will be 
instructive to consider another method of deriving the 
graph. 

First let c be positive. Let any ordinate of the graph of 
x2 be denoted by yx and the ordinate of the graph of cor for 
the same value of x by y2; then y2=cyv because yx~x2, 
y2 — cx2 and x is the same number in both equations. The 
two ordinates may be called “ corresponding ordinates.” 

Hence to obtain any ordinate of the graph of cx2 we 
have only to multiply the corresponding ordinate of that 
of x2 by c; in other words, if MP is any ordinate of the 
graph of xl divide MP or MP produced at P' so that MP' 
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is to MP as a to 1 and P' will be a point on the graph of 
ex2. 

The upper dotted curve (Fig. 8) :is the graph of 2x2, and 
is obtained by doubling each ordinate of the graph of x2 
(full curve). It will be noticed that the general character 
of the two graphs is the same; the graph of 2.x1 however 
recedes more rapidly from X X than does that of x2 and is 
steeper. In general, the graph of ex2 lies above or below 
that of x2 according as c is greater or less than 1. 

Next let c be negative, say ~2. The graph of — 2x2 may 
be got from that of 2xl by reflection in Ar/Ar,or by rotating 
the graph of 2x2 through two right angles about X'X; for 
the ordinates of the graph of — 2x2 are simply those of the 
graph of 2x2 with signs changed. The lower dotted curve 
is the graph of — 2x2; 0 is a turning point of the graph 
and zero a maximum value of the function — 2x2, the value 
being taken algebraically. 

§ 19. Scale Units. Let us now consider the graph of cx2 as 
the geometrical representation of the law of falling bodies; 
c may be taken as 1G when the foot and the second are the 
units of space and time. The graph shows clearly how 
rapidly the distance fallen increases with the time, for the 
curve moves rapidly away from the axis OX; in this case 
the part of the curve to the left of OY does not belong 
to the representation since negative values of x are not 
considered. 

But if 0 U and OV are, as has been supposed, of the 
same length it will be impossible to represent the connection 
between the distance fallen and the time of fall, even for 
values of x up to 1, within the limits of an ordinary sheet 
unless Oil and OV are both very small. The remedy is to 
choose these segments of different lengths. The foot and 
the second are magnitudes of different kinds and there is no 
necessity therefore that the segment which represents 
1 second should be of the same length as that which repre¬ 
sents 1 foot, nor is it implied in the definition of the coordi¬ 
nates of a point that 0 U and 0 V should be of the same 
length. M being the foot of the perpendicular from P on 
X'X, the coordinates of P are x, y if OM~xOU\ MP — yOV 
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and P is definitely determined whether OU, OF are of the 
same length or not. 

In the case of y — 1G,/*2 we might therefore take Oil equal 
to 1 inch and OV equal, say to f^tli of an inch ; an abscissa 
1 inch long would therefore represent 3 second while an 
ordinate 1 inch long would represent 10 feet; an abscissa 
2 inches long would represent 2 seconds, an ordinate 2 inches 
long would represent 32 feet and so on. A similar choice 
would in other cases bring the graph within manage¬ 
able size. 

But even when the two magnitudes whose connection is 
represented by a graph are of the same kind it is often 
advisable to have units of different lengths. The value of 
the graph will not be thereby impaired; the purpose of the 
graph is to show to the eye how one magnitude changes as 
another with which it is connected changes, and the ratio 
of the two lines, say MP and NQ, which represent any two 
values of the first magnitude is independent of the size 
of the line which represents the unit magnitude. For 

MP: NQ = Vl0 V: y.2OV = yx: y, 

where OV represents the unit magnitude and yxOV, yJ)V 
the two values considered. 

Thus, in a contour road map, if the heights were represented on the 
same scale as the horizontal distances, it would he difficult to trace the 
character of the road ; hence the heights are exaggerated by using a 
much larger unit for the vertical than for the horizontal distances. Jf 
the graph is to be used to determine actual heights, the scale of the 
drawing must of course be given. 

§ 20. Coordinate Geometry. Many of the properties of a 
curve can be most simply investigated by using the 
equation of the curve; the study of curves from this point 
of view is the subject of coordinate geometry. 

On the one hand the curve may be defined by some 
geometrical property *, the law of the curve is then 
expressed in the equation of the curve. Thus the law of 
the circle is that every point on it is at the same distance 
from the centre. Now, taking rectangular axes, let 0 be 
the centre of the circle, * its radius and P (oc, y) any point 
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on it. 
to c. 

Then (§ 7) OP2 is equal to x2 + y*; also OP is equal 
Hence 

x2+y >2 -= (i) 
and this equation is true for the abscissa and the ordinate 
of every point on the circle but of no other point. As P 
moves round the circle, x and y change in value, but always 
the sum of their squares is equal to c2. Equation (1) is 
therefore called the equation of the circle with radius c. 

On the other hand an equation between x and y defines 
y as a function of x, and the graph of this function may be 
plotted point by point; numerous examples will be found 
in later articles. As a simple case we might consider the 
equation y = which gives the graph of § 16 ; or we might 
take equation (1). In that case y is defined as a two¬ 
valued function of x,y — ±s/(cr — x2), for values of x from 

— c to x= +c; clearly if x is numerically greater than o 
y is imaginary. The graph will be symmetric about 
the axis X'X, and by considering the inverse functior 
x — ± ^(c2 — y2), we see that the graph is also symmetric 
about Y'Y We might then plot points for which x and y 
are both positive and thus arrive at the form of the graph. 
The two functions + *J(c2 — x2) and — ^/(c2 —cc2) are repre¬ 
sented respectively by the semicircles above and below the 
cc-axis. 

In later sections it will be seen how the geometrical 
properties of the graphs of the simpler functions can be 
deduced from the equations (see § 26). 

If in plotting the graph of the function defined by 
equation (1) the units 0U] OV are of different lengths the 
graph will seem to be not a circle, but an ellipse (Exer. V. 4); 
if OV be, say, half of OU, each ordinate will be only half 
the actual length of the ordinate of the circle. So long as 
017, OV are of the same length the shape will not be 
altered; a change in the size of the units, so long as the 
units remain of equal length, only enlarges or reduces the 
figure since all lines are altered in the same proportion. 

Even in studying the geometrical properties of curves, 
however, it is often necessary to choose units of different 
lengths in order to get the curve represented on a sheet of 
reasonable size; it must then be borne in mind that the 
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graph will only show the ratios and not the actual lengths 
of the lines whose measures are the numbers taken as the 
ordinates. 

In all eases the units should be chosen so as to make the 
graph as large as possible; a diminutive graph usually 
defeats the end of its existence. 

EXERCISES II. 

1. Are the points A(}, 1), BQ, J), 0(-|), !)(,% 100), E(3, 40) on 
the curve whose equation is y ~ Yr 'i 

2. Is the /y-axis Y OY an axis of symmetry for the graph of any of 
the functions - 

(i) 2.r2 — 3.r4; (ii) 2a<2 — 3.r/’; (iii) x2u; (iv) ;r2n+1(^? integral) ; 
(v) (x + 1 )/(.v2 +1); (vi) 1 j(x2 + 1); (vii) a 4- hr2 + cxA 4- dx° ? 

.Does the point (1, —1) lie on any of the graphs ? What must be 
the value of a if the origin lies on the graph of (vii) ? 

3. Trace the graphs of the following functions for values of ,r 
between -2 and 4*2, and find the turning points of the graphs and 
the abscissae of the points where the graphs cross the axis of 
abscissae— 

(i) x2 - 1 ; (ii) 2a*2-! ; (iii) - 2a"2 4-1 ; 
(iv) a*-ar*; (V) 1 - x — x2 ; (vi) -l+a,-2a>2. 
How may the graphs (i), (ii), (iii) be derived without calculation 

from the graphs of .r2, 2.r2, --2x2 respectively '( How may the graph 
of (iii) be derived from that of (ii), and the graph of (vi) from that 
of (iv) ? 

4. Having given the graph of the function /(.r), show how to obtain 
the roots of the equation f(x) — 0. Illustrate from the gr aphs of ex. 3. 

[bet n be tne abscissa of any point A on the graph ; by the 
nature of a graph the ordinate of A is f(a) Hence, if/(") — 0, A must 
be on the axis of abscissae; but if f(a)—0, then a is a root of the 
equation f{x)~0. Therefore the roots of the equation f(x) — 0 are the 
abscissae of the points where the graph of /(.r) crosses the axis of 
abscissae.] 

5. Trace the curve whose equation is y--x\ 
To every point P on the curve there corresponds another point 

P on the curve which is symmetric to P with respect to the origin 
(§ 6, ex. 3.) ; for if P is the point (o, h\ P' is the point (~a, - />), and 
when b — ad then also — b~( — a)3. When, as in this case, the equation 
is not altered by replacing x and y by —x and — y respectively, the 
origin is called a centre of symmetry of the curve. 

6. On which of the curves given by the following equations is the 
origin a centre of symmetry— 

(i) y = ax34- bxP ; (ii) y—aS ; (iii) y — ,v$ ; (iv) ax24-by2 = c ? 
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§ 21. The Linear Function. If any point be taken on the 
bisector of the angle XOY, the ordinate of the point will be 
equal both numerically and in sign to the abscissa of the 
point; but if any point not on that bisector be taken its 
ordinate will not be equal both numerically and in sign to 
its abscissa. Hence the bisector has for equation y~x] the 
bisector is the graph of the function x. 

Similarly y—-x is the equation of the bisector of the 
angle VOX'. 

If P is any point on the straight line BOA (Fig. 9) and 
if x, y are the coordinates of P, then y = x tan A’ OA ; this 
equation is true whether the coordinates of P are both 
positive or both negative as when P has the position Pv 
Conversely, if the point is not on BOA the equation 
y—x tan A OA will not be true for the coordinates of 
the point. Hence the straight line BOA has for its equa¬ 
tion y~x tan XOA ; BOA is the graph of the function 
x tan XOA. 

Similarly y = x tan XOA' is the equation of the straight 
line B'OA'; the angle XOA' and tan XOA' are both 
negative. 

Hence the equation y — ax always represents a straight 
line through 0, the origin of coordinates, and a is the 
tangent of the angle which the line makes with OX. ’ 
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If through C a line DOE be drawn parallel to BOA then 

ME=MP+PE= OM tan XOA + 00 

MJ)- M11\ + 1\D = OM1 tan XOA + 00 

by the rule for addition oi* steps (§ 2). 
Hence if x, y are the coordinates of E and OC is equal to h 

y = x tan A" OA + h 

and the same equation holds if x, y instead of being the 
coordinates of E are the coordinates of D or of any other 
point on 1)E. 

If O were taken on 0Y'} the only difference would be 
that its measure b would be a negative number. 

The graph of any function of the form ax + b is therefore 
a straight line; a is the tangent of the angle which the line 
makes with OX and b is the distance from 0 of the point 
where the line crosses the axis 0 Y, or as it is usually called 
the intercept on OY. (See also Exer. Ill, ex. 2.) 

If a == 0, the line is parallel to the axis OX if b is not also 
zero; if both a and b are zero the line is the axis itself. 

The equation x = c represents a line parallel to the axis 
OY if c is not zero; if c = 0, the equation represents the 
axis Y'Y. In this case, the line is perpendicular to OX and 
the tangent of the angle it makes with OX is infinite. 

Since the graph of ax+b is a straight line, ax+b is often 
called a linear function of its argument x. 

It is important that the student should attach a definite 
meaning to the phrase “the angle that a straight line makes 
with the axis of abscissae.” We make the following con¬ 
vention which will save constant repetitions; the line is 
understood not to be perpendicular to OX. Through 0 
draw a parallel to the given line; by the angle which the 
given line makes with OX is meant the acute angle (positive 
or negative) through which a line coinciding with OX 
(not OX') must be turned till it coincides with the parallel 
through 0: or, what amounts to the same thing, it is the 
acute angle (positive or negative) through which a line 
drawn from any point on the given line parallel to OX 
(not OX') must be turned till it coincides with the given 
line. 
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Thus the angle which DE makes with OX is XQA or 
AGEt if CA be parallel to OX; this angle is positive. The 
angle which B'A' makes with OX is XOA' and is negative. 

§ 22. Gradient. The gradient of a line is the tangent of 
the angle the line makes with the axis of abscissae OX; 
the gradient is therefore positive or negative according as 
the angle is positive or negative. Instead of “ gradient ” 
the word “ slope ” is used by some writers; but the term 
“ gradient ” is already well established in this meaning. 

If we suppose the axis of abscissae OX to be horizontal 
and the axis of ordinates OY vertical, the positive directions 
being to the right and upwards respectively, we can 
describe the motion of a point which moves along the 
line briefly thus: as the projection of the point on XX 
moves to the right or to the left the point itself moves 
upwards or downwards; or, if the coordinates of the point 
be (x, y), we may say, as the point x moves to the right or 
left the point (x, y) moves upwards or downwards. 

When, as on the straight line DEy the gradient is positive 
we see that as the point x moves to the right the point 
(xf y) on the line moves upwards; but when, as on the 
straight line B'A\ the gradient is negative, as the point x 
moves to the right the point (x, y) on the line moves down¬ 
wards. Of course if the direction of motion of the point x 
be reversed so is that of the point (x, y). Instead of “ the 
point (x, y) on a line or curve ” we shall sometimes say 
simply “ the graphic point ” meaning the point supposed to 
be describing the graph. 

EXERCISES III. 

1. Find the gradients of and the intercepts on the axis of y made by 
the lines whose equations are 

(i) ?/= -#+2 ; (ii) y = §.r-l ; (iii) y=- - fr-l. 

Trace the lines on a diagram. 

2. Show that the equation 

2y 4- Zx -1 = 0 

represents a straight line, and find its gradient. 
The equation may be written y = -f#+£ ; it therefore represents 

a straight line with the gradient - §. 
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In the same way it may be seen that the equation 

ax A-by -f-c = 0.(i) 

represents a straight line. If b is not zero, the gradient is — ajb. If 
b is zero, the equation becomes x~ —c/a and represents a straight line 
perpendicular to the #-axis ; in this case the gradient is infinite. 

If a, b are both different from zero, and if the line cut the .r-axis 
at A and the y-axis at B, then OA — — cl a, OB— —c/b. For the 
coordinates of A are (0/1, 0), and since these satisfy (i), we must have 

ciOA -f c — 0 or OA = — c/a. 

Similarly the coordinates of B are (0, OB), and therefore bOB + c — O. 
OA, OB are called the intercepts made by the line on the coordi¬ 

nate axes ; of course, the simplest method of graphing the straight 
line is to find the intercepts OA, OB, and to join An. 

3. Determine whether any or all of the points A( 1, 1), B(2, -1), 
C(9, — 4) lie on the straight line given by the equation 

Zx -f- % = 6. 

4. Show that whatever constant value a may have the point (xlt yx) 
will lie on the line given by the equation 

y-yi=a{x-x■,.) 

The equation is true when for x we put x1 and for y we put yv 
and this is the only c ;ndition required. 

5. Determine the constant a in Ex. 4 so that the point (x2, y2) may 
lie on the line. 

Since the coordinates (x2, y2) must satisfy the equation, we find 

2/t~3/l= u(*2-^l) or a = (.V2-yi)/Cr2--1'l). 
and therefore the equation of the line through the points (xv yx)t 
(x2, y2) is 

y-y^^-r^- x0- x2 x} 

6. Find the equations of the lines tlirough the following pairs of 
points— 

(i) (1,2), (2,1); (ii) (-1,2), (2, -1); 

(iii) (0,0X0,- 1); (iv) (0,3), (-2,0). 

7. Find the equation of the line with the gradient 2 passing through 
the point (3, 1). 

8. Find the equation of the line with the gradient c passing through 
the point (a, b). 

9. Find the coordinates of the point of intersection of the two lines 
given by the equations 

(i) #+2y — 3 ; (ii) 3#+'?/=4. 

Since the point of intersection lies on both lines, its coordinates 
must satisfy both equations (i) .and (ii). Solving these as simultaneous 

g.c. c 
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equations, we get for the required coordinates #=1, y=sl, Verify the 
result by means of a diagram. 

10. Draw on one diagram the curves whose equations are 

2.r*f#-3~0, y~x\ 

and find by measurement the coordinates of the points of intersection. 
Verify by solving the equations as simultaneous equations. 

11. Show that the roots of the equation 2^+^-3 — 0 are the 
abscissae of the points of intersection of the curves of ex. J 0. 

12. Show that the roots of the equation f(x) — c are the abscissae of 
the points of intersection of the curves given by 

Compare Exer. II. ex. 4. 

§ 23. Rational Functions. An expression of the form 

a+ bx+cxl + ... + kxn'1 + lxn.(1) 

where the coefficients ay 6, c,... are constants and the 
indices of the powers of x are all positive integers of which 
n is the greatest is called a Rational Integral Function of 
x of degree n. 

The quotient of two rational integral functions of x is 
called a Rational Fractional Function of x. 

It is known from the theory of equations that an 
expression of the form (i) will in general vanish for n 
values of x; hence the graph of the function (1) will in 
general cross the #-axis n times. (See Exer. II. ex. 4). 
Some of the values of x for which (1) vanishes may how¬ 
ever be imaginary and for such values of the abscissa there 
are no real points on the axis so that the graph may not have 
as many as n crossings. When two of the values of x for 
which (1) vanishes are equal, the student will find that the 
graph touches the cc-axis at the corresponding point. 

Graphs of the even powers. The graphs of the even 
powers of x, x2, x* ... are all of the same general character; 
they touch the x-axis at 0 and have the ?/-axis as an axis 
of symmetry. The greater the index however, the slower 
does the graph recede from the #-axis near the origin; on 
the other hand, the greater the index the more rapidly 
does the graphic point move upwards when x is greater 
than 1. The general shape of the graphs of ax?y ax4,... 
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can be seen by dividing the corresponding ordinates of the 
graphs of x2, x4... in the ratio of a to 1, as in § 18. 

Graphs of the Odd Powers. The graphs of the odd 
powers higher than the first, x8, a?,... touch the <r-axis at 
the origin but they do not have the y-axis as an axis of 
symmetry. For these the origin is a centre of symmetry. 
(Exer. II. 5). For positive values of x the graphs resemble 
those of the even powers; near the origin the graph of xz 
is flatter than that of x\ 
not so flat as that of x4, 
while for values of x 
greater than 1 the graph 
of x8 lies above that of 
x2, below that of x4. 

To construct the graph 
of x8 for negative values 
of xy take a point P on 
the graph of the posi¬ 
tive values of x, produce 
PO backwards its own 
length to P\ and F will 
be the point on the graph 
symmetric to P (Fig. 10). 
any curve that has the origin for a centre of symmetry. 

The graphs of the odd powers thus both touch and cross 
the rr-axis at 0, bending away from the axis in opposite 
directions on opposite sides of 0 (Fig. 10). 

Definition. A point such as 0 where the curve crosses its 
tangent and bends away from it in opposite directions on 
opposite sides is called a Point of Inflexion, and the tangent 
at the point is called an Inflexional Tangent 

The student should plot on the same diagram for values 
of x between —1 and +1, using a pretty large unit, the 
graphs of x2, x8> x4, vft. He will gain useful ideas of the 
relative magnitude of the powers of x when a; is a proper 
fraction. He will also be able to deduce the general course 

of the graph of such a function as x% for values of x 
between 0 and 1; the graph will lie below that of x2, but 

above that of x8. If a? be negative x% is imaginary, and 
there is no part of the graph to the left of the i/-axia 

The same construction holds for 
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In the same way by plotting the graphs of the same 
functions for values of x between 1 and 3, using a small 
unit, he will see how rapidly the higher powers of x 
increase when x is greater than 1. He can readily verify 
the important principle that the term of highest degree in a 
rational integral function will for sufficiently large values 
of x be numerically greater than the sum of all the other 
terms, and will therefore determine the sign of the function 
for large values of x. 

The construction of the graph of the general rational 
integral function is usually laborious; when the student is 
able to differentiate a function he will find that the labour 
may be considerably reduced. 

As an example take the function f(x)t where 

f(x) = xz — 3x +1. 

w rite f(x)=^+^)* 
Now, if x is numerically equal to or greater than 2 the 

expression within the bracket will be positive, as a little 
consideration shows. Hence if x is positive and equal to or 
greater than 2, f(x) will be positive; if x is negative and 
numerically equal to or greater than 2, f(x) will be 
negative, since x3 will be negative and the expression 
within the bracket positive. The graph must therefore 
cross the sr-axis once at least between the points on that 
axis at which x is — 2 and 2 respectively. 

Examining further, we find 

f(-2)=-l; /( —1)= +3; /(1)=-1; /(2)=+3, 

and therefore the graph must cross thrice, namely, between 
the points —2 and — 1, —1 and 1, 1 and 2; since the 
equation is of the third degree, the graph cannot cross 
more than thrice. There will thus be two turning points. 

Again, /(-1*9)= -159, 

/( —18)= +-568, 

80 that the graph crosses between —T9 and —1*8. 
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When £=-1*88, f(x) =-*005, 

so that the graph crosses very nearly where x = — 1 *88, and 
this value is an approximate root of the equation 

a;3 — 3# + l =0. 

In the same way it may be found that the other two 
roots are approximately *35 and 153. 

The turning points occur where £=—1 and x=l, and 
the calculation of a few values of f(x) shows that the graph 
is of the form shown in Fig. 11. 

§ 24. Asymptotes. The simplest example of a rational 
fractional function is l/x. 

When x is small and positive, l/x is large and positive, 
and as x tends towards zero l/x becomes extremely large 
or, in the usual language, l/x tends toward infinity; thus 
when x takes the values T, *01, ‘001, ...l/x takes the values 
]0, 100, 1000,... respectively. Hence as the point x moves 
from the right toward 0 till it all but coincides with 0 the 
graphic point moves upward and recedes to a very great 
distance from the #-axis while approaching very close to 
the y-axis; when x is zero, that is when the point x 
coincides with 0, the graphic point may be said to be at 
infinity, in this case the graph is said to approach the 
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positive end of the y-axis asymptotically, or to have the 
y~axis as an asymptote. 

In the same way it may be seen that when x is very 
large and positive 1/x is very small and positive; the 
graph approaches the positive end of the a?-axis asymp¬ 
totically. 

The graph is obviously symmetrical with respect to the 
origin, and approaches both ends of both coordinate axes 
asymptotically (Fig. 12). 

Definition. In general, when a curve has a branch 
extending to infinity, the branch is said to approach a 
straight line asymptotically, or to have the straight line 
for an asymptote, if as a point moves off to infinity along 
the branch the distance from the point to the straight line 
tends towards zero as a limit, that is, if as the point moves 
off to infinity the distance becomes and remains less than 
any given length. 

If x — a be a factor of the denominator of a rational 
fractional function of x in its lowest terms, the function 
will tend towards infinity as x tends towards a and the 
line whose equation is a?— a will be an asymptote. If as x 
tends towards infinity the function y tends to a finite value 
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f3 then y = /3 will be the equation of an asymptote. These 
asymptotes are parallel to or coincident with the coordinate 
axes, as in the example just considered ; but there may be 
asymptotes that are not parallel to either axis, as in the 
following example: 

£3-f &2-f 1 

Here we may write 

1/=X+1 +-^. 
X 

If we denote by y^ the ordinate of the graph and by y2 
the corresponding ordinate of the straight line whose equa¬ 
tion is y = x +1, we see that 

, 1 
2/i = y2+x2- 

Hence whether x be positive or negative y1 is greater 
than y2 and therefore the graph of the function is always 
above the straight line. 

Again when x is numerically very large 1 /&2 is very small, 
and the difference between yx and y2 will as the point x 
moves either to the extreme right or to the extreme left 
of the o>axis become less than any given fraction; hence 
the graph approaches both ends of the line whose equation 
is y — x +1 asymptotically. 

The y-axis is also an asymptote; y is positive when x 
is either a small positive or a small negative number and 
therefore the graph does not approach the negative end of 
the y-axis but it approaches the positive end both from the 
right and from the left. 

The graph will cross the cc-axis for those values of x 
which make the numerator xs+x2 + l zero; a few trials 
will show that the numerator vanishes only once, namely 
when #=—l’47 approximately. When x is algebraically 
less than — T47, y is negative; for all other values of x the 
ordinate is positive. 

When x—l, y== 3; 

when x = 2, y = $i, 

and there is a turning point when x = 1*3 approximately. 
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The graph is shown in Fig. 13. The unit for the 
abscissae is double that for the ordinates; if the units were 
equal the portion ABC would be at a considerable distance 
above X'X and the diagram would have to be very large 

to show that part clearly. The curve approaches the 
asymptote GH very rapidly but the asymptote OY more 
slowly. 

In plotting the graph of a fractional function it will be frequently 
found convenient to split the function up into partial fractions as has 
been done above. Thus, if 

.r2 + l 

2 5 
we can write y — 1-r- 4- 

x — 1 x-2 

and we see that there are three asymptotes whose equations are 

y= 1, x~l, x—2. 

In this case the graph crosses the horizontal asymptote at the point 
whose abscissa is because when y = 1 we have 

i #2 + l i 

or *-*• 

X3 +1 
For tlie equation ^~2)’ 

we should have 
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and there would again be three asymptotes, two of which are parallel 
to the y-axis while the third has for equation 

3, 
and this third asymptote cuts the graph again at the point whose 
abscissa is 

EXERCISES IV. 

Graph the functions 1—6 : 

1. 3^r2 — 5a’ - 1 ; 2. #* + 2^ + 2; 

4. x?-x+Z-, 5. —■ -r- ; 
x-1 1 

7. Show that the roots of the equation yP-ax-b—O are the 
abscissae of the points of intersection of the graphs of a? and of ax + b. 

8. Find to two decimals the roots of the equations 

(i) x* — 7#+3 = 0 ; (ii) .r3 —7#+9 = 0. 

Graph the functions. 

9. If f(x)=x* - 4^ -4.r2+16#+1, show that the equation f{x)~0 
has four real roots, and find these to two decimals. 

[Find the values of f(x) for x equal to - 2, - 1,0, 3,4 respectively. 
The ordinate^ — 2) is positive and the ordinate/( - 1) negative, so that 
the graph crosses the axis of abscissae between the point - 2 and the 
point - 1. Proceed in the same way with the other numbers.] 

10. A point is moving in a plane and at time t seconds reckoned 
from a fixed instant, its coordinates with respect to two rectangular 
axes in the plane are x and y feet. Construct the path of the point 
in the following cases : 

(i) # = * + 1, y—Zt ; (ii) x=a + bt, y==c + dt; 

(iii) x~2ty y — St2; (iv)x — t,y = t*. 

[The position of the point at any instant may be found by 
calculating the values of x and y for the value of t at that instant; 
having found the position of the point for a number of values of ty 
the graph can be drawn in the usual way. Or, the equation of the 
path may be found by eliminating t. Thus in (i) t may be considered 
a function of x, namely t—x-l ; but y is always 21, and therefore 
y and x are always connected by the equation 2(#-l). In this 
case therefore the path is a straight line. In (ii) the path is also a 
straight line. The equations of the paths in (iii), (iv) are y — 2x\ 
y—xr. This method of representing the path of a point by means of 
two equations is of frequent occurrence both in Geometry and in 
Mechanics.] 

3. Xs - x ; 

0 2#2+#-l 
o.-,—• x - 1 
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1L The angle 9 between the two straight lines whose equations are 

(i) y-mx+c, (ii) y—m!x4-d 

may be found from the equation 

tan <9~ 
m - m! 

1 + mm' 

[Let (i) make the angle a, (ii) the angle fi with XOX ; suppose 
a > /?, then 0=a — ft and 

, ^ tan a - tan ft m - m! 

1 4- tan a tan p 1+ mm 

If the numerical value of 1 4*mm’) be taken, the acute angle 
between the lines will be obtained whether a > ft or a < /?.] 

12. The angle between the lines given by 

ax+by + c=Q and a'x+b'y+c'—O 

is given by tan 9 -■ (ah' - a’b)l(aa' 4- bbr), 

13. Show that the lines of ex. 12 are 

(i) parallel if a/b=a'/b\ 

(ii) perpendicular if aa' + Zh — 0. 



CHAPTER III, 

GRAPHS. ALGEBRAIC AND TRANSCENDENTAL 

FUNCTIONS. CONIC SECTIONS. 

§ 25. Algebraic Functions, y is called an Algebraic 
Function of x when it is determined by an equation of the 
form 

Ayn+Byn~1+... + Ky+L = 0, 

in which the indices of the powers of y are positive integers 
and the coefficients A, L, are rational integral 
functions of x. Manifestly, rational functions are special 
cases of algebraic functions. 

y will usually be multiple-valued and its graphical repre¬ 
sentation is much more difficult than that of the rational 
function except in particular cases of which the following 
are of special importance1: 

i 

Type I. yn—x== 0 or y~xn. 

When n is an even integer, x must be positive and y will 
be two-valued; when n is aij odd integer, x may have any 

i 
value and y will be single-valued. The graph of xn is 
readily found from that of xn. 

Let QOP (Figs. 14, 15) be the graph of xn, and let PN 
i 

be perpendicular to FT; then ON=ArP?i, or NP~0Nn. 
Hence if 0 Y be taken as the axis of abscissae, that is, 

as the axis of the argument, and OX as the axis of ordi- 

1 The beginner may find this article somewhat difficult; he should work 
out the simple examples of the various cases that are set down at the end 
of the article and the discussion will become more definite. He need not 
however spend much time on this article at a first reading of the subject. 
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nates, that is, as the axis of the function, the curve QOP 
i 

will be the graph of the function 0Nn. It is desirable 
however to have OX as the axis of abscissae and OY as 
the axis of ordinates, that is, the figure has to be turned 
so that OY becomes horizontal and coincides with the 
present position of OX, while OX becomes vertical and 
coincides with the present position of OY. The simplest 

way of securing this is to suppose the whole figure rotated 
through two right angles about the bisector BOA of the 
angle XOY as axis ; NAP will thus come into the position 
N'AP\ and QOP will come into the position Q'OF. Q'OP' 

i i 

will be the graph of xn} because N'P'—ON'7i, since 
N'P' — NP and ON'=ON. 

Fig. 14 is the graph when n is even and when, therefore, 
for one value of x there are two values of y; on the other 
hand, when n is odd, as shown in Fig. 15, to one value of 
x there is but one value of y. 

Construction of Graph of an Inverse Function. The same 
transformation gives the graph of the function inverse to a 
given function. If y = xn and if x be taken as the argu¬ 
ment, QOP is the graph of xn; the function inverse to y is 

x where a?=yn, and, when y is taken as the argument, QOP 
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is the graph of yr\ that is, of the function inverse to y or 
xn. It is convenient however to represent the argument 
in all cases by lines measured along X'OX and to denote 
the argument of the inverse function by the same letter 
as is used for the argument of the original function; that 
is when the inverse function has been formed we then 
replace y by x and x by y, and the graph of the inverse 
function, when this replacement has been made, will be the 
original graph rotated through two right angles about the 
bisector of the angle XOY. 

In this notation the graph of xn is QOP; the inverse 
i i 

function, which as first stated is y11, is now x11, and its 
graph is Q'OP\ 

Again, when the graph of a function has been constructed, 
we see how to choose the range of the variables so that the 
inverse function may be single-valued. When n is even 

OP' is the graph of and OQ' that of —xn; that is, OP' 
and OQ' are the two branches of the two-valued function 
inverse to xn when n is even. 

Type II. yn — xm = 0 where m, n are unequal and not both 
even. 

If m, n were both even the equation would be equivalent 
n m n m 

to the two equations y2 — x2 = 0, y2+x2 = 0, and there 
would therefore be two graphs, each of which would come 
under one of the following groups. 

The student should notice the remark in § 28 about the 

graph of such a function as x*; it will be found useful in 
the discussion of the groups contained in the general 
equation. 

(a) m > ji; y — x11 where — is an improper fraction. 
Tl/ 

Oi) to, n both odd. The graph is of the form QOP 
(Fig. 15); 0 is a point of inflexion and X'OX a tangent 
at 0. 

(a2) m even, n odd. The graph is of the form QOP 
(Fig. 14); 0Y is an axis of symmetry and X'OX a tangent 
at 0. 
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(a8) m odd, n even, y is imaginary when x is negative; 
OX is an axis of symmetry, and both branches touch OX 
(and each other) at 0. (Fig. 1G.) 

Definition. A point on a curve such as 0, at which 
two branches 0A, OB have the same tangent, but beyond 
which they do not pass, is called a Cusp. It must be 
observed that neither branch passes beyond 0 ; a point 
moving from A along the curve to 0 reverses its direction 
in order to proceed along the other branch OB. 

(b) men; y — xn where — is a proper fraction. 

(l^) m, n both odd. The graph is of the form Q'OP' 
(Fig. 15); 0 is a point of inflexion and Y'OY a tangent 
at 0. 

(b2) m odd, n even, y is imaginary when x is negative; 
OX is an axis of symmetry and Y'OY a tangent at 0. 
The graph is of the form Q'OP'. (Fig. 14.) 

(b3) m even, n odd. 0 Y is an axis of symmetry and is a 
tangent at 0; 0 is a cusp. (Fig. 17.) 

Thus if m = 2, n = 5, since f lies between f or \ and 

f or the graph of xt will, when x is positive, lie 

between those of xi and x&, each of which has the form 
OP' (Fig. 15). The branch OB is present because OF is an 
axis of symmetry. 

The student will have no difficulty in deducing the 
graphs when the equation is yn+xm~ 0; they are deduced 
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from those of yn—xm~ 0 by rotation about one of the 
coordinate axes. Thus the graphs corresponding to (ax) 
and (b,) are obtained by rotation about XX. More gene¬ 
rally, the graphs of yn — axm = 0 can be deduced by dividing 

i 

the ordinates of yn — xm~ 0 in the ratio of an to 1. 

Ex. 1. Draw the graphs of the following cases of Type I. : 

(i) y2=# ; (ii) yz^x ; (iii) y2 = -x ; (iv) y3= -x. 

Ex. 2. Draw the graphs of the following cases of Type II. (a) : 

(i) y3=x* ; (ii) y3=x*; (iii) y2=^ ; 

(iv) y3 — —; (v) y3 = — .r4 ; (vi) y2 — — x3. 

Ex. 3. Draw the graphs of the following cases of Type II. (b) : 

(i) y^—x3 ; (ii) y3=.r2; (iii) y^—.x3 ; 

(iv) y6 — - x3 ; (v) y5— -x2; (vi) y4 = - x3. 

Ex. 4. Draw the graphs of 

(i)y2 = 9.r3; (ii) y2=-&r3; (iii) y3=27^2. 

Ex. 5. Graph the functions 

(o 4 ’ (h) 4> (hi) 4* 
x2 X3 .T'5* 

§ 26. Conic Sections. For the sake of readers unfamiliar 
with the conic sections we give in this article the equations 
of the conic sections and define the most frequently occur¬ 
ring technical terms connected with them. 

Definition.—A conic section is the locus of a point 
which moves in a plane so that its distance from a fixed 
point is in a constant ratio to its distance from a fixed 
straight line. 

The fixed point is called the focus, the constant ratio the 
eccentricity, and the fixed line the directrix. 

Let 8 (Fig. 18) be the focus, KN the directrix and SK 
perpendicular to KN\ 

Let e be the eccentricity and on KS take A so that 
AS — eKA ; then A is a point on the conic. 

As axes of coordinates take KAS and the perpendicular 
through A to KASL Let P be any point (xt y) on the 
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conic and draw PM perpendicular to KS; then x~AM, 
y~MP. 

Let KA ~p; then 

AS~ep. 
Now 

SM — AM — AS = x — ep: 

NP = KM=p-\-x. 

But SP~eNP by the 
definition of the conic; 
hence 

SPZ — e2NP2 

or SM2 + MP2=;<rNP\ 

so that, inserting the values of SM, MPS NP, we get 

(x — epf -f y2 = e\x 4 p)2, 
or after reduction 

(1 — ez)x2 — 2e(l -f e)px 4 y2 = 0.(1). 

Every point whose coordinates satisfy equation (1) will 
be a point on the conic section; for different values of the 
constants e, p there will be different conics. Evidently .4$ 
is an axis of symmetry. 

If AK were taken as the positive direction of the axis of abscissae, 
then in equation (1) we should have 42<?(1 +e)px, for the change in the 
direction of the axis is equivalent to writing — x in place of x. 

Special Forms of the Conic Section.—I. If e — 1, the 
conic is called a parabola. In this case equation (1) reduces to 

^2 = 4px.(p) 

A is called the vertex, A X the axis of the parabola. 
When c=l, AS—p and if SL is the ordinate at S equa¬ 

tion (p) shows that == 2p == SL is called the semi- 
latus-rectum of the parabola; in every conic sectioij the 
double ordinate through the focus is called the latus rectum. 
Sometimes 4p is called the parameter of the parabola. 

It is easily seen that the curve is of the form of Fig. 19, 
extending to infinity towards the right. The graph of as2 is 
a parabola with its axis vertical (see § 16); its latus rectum 
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is 1, its focus the point (0, {) and its directrix is the line 

through (0, —J) parallel to the axis of abscissae. 

II. If e is less than unity the conic is called an ellipse. 
In this case equation (1) takes the form 

2 2eP , V1 a 

*2-r->+r^=0; 
or, putting a for ep/(l —e) and b2 for a2(l — e2)} 

x2 2x 
h2~~7i 

(E) 

III. Tf e is greater than unity, the conic is called a 

hyperbola. In this case, if a — ep/(e — 1) and b2 = a2(e2 — 1), 
equation (1) becomes ' 

x2 2x 
a2 a ■(H) 

Fig. 19. 

A more convenient form for the equations of the ellipse 
and the hyperbola is got as follows: 

In (e) let 2/ = 0 ; then x = 0 or 2a. The ellipse therefore 
cuts the a>axis at two points, namely at A where # = 0, 
and at another point, A' say, to the right of A where 
x — AA'~2a. A A' is called the major axis and A, A' the 
vertices of the ellipse. 

Similarly from (h) it will be found that the hyperbola 
cuts the x-axis at A and at another point, A' say, to the 

G.C. D 
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left of A where A A' is equal in length to 2a. A A' is called 
the transverse axis and A, A' the vertices of the hyperbola. 

To find the shape of the ellipse take the origin of 
coordinates at Cy the middle point of AA' (Fig. 20). 

Attending to the sign of the segments we have in all cases 

AM=AC + CM. 
Let CM—x'\ AM~x; then since AC=a 

x — a + x. 
Replacing x in (e) by a+x' and reducing we get 

dl o2 ~ 
1 (E') 

In exactly the same way we find, in place of (h), 
x'< v'2 v2 __ i 

> To — A. .(H') 

If we remember that the abscissae are now measured 
from C and not from A we may drop the accent; the 
equations are then 

x2 
a5 b2~ 

y~ 
¥ 1..(c) 

and these may be considered the standard forms. 
From these equations we see that both curves are 

symmetrical about both axes. The origin C is a centre of 
symmetry; C is called the centre of the conics, and the 
ellipse and the hyperbola are called central conics. The 
parabola has no centre. 

The axis of ordinates meets the ellipse (Fig. 20) at two 
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points JB, F; BF is called the minor axis. From the 
equation x2/a2 + y*/b2 = 1 

it is easy to see that x is never numerically greater than a 
nor y greater than b. The ellipse is therefore a closed curve. 

The circle is the particular case of the ellipse in which 
b — a and e = 0. 

The axis of ordinates does not meet the hyperbola 
because when x~0, y2~ — 62 and therefore y is imaginary. 
It will be seen further that y is imaginary if x is numeri¬ 
cally less than a3 so that no part of the hyperbola lies 
between the lines through A, A' perpendicular to AA\ 

Fig. 21. 

The curve consists of two branches extending to infinity to 
the right of A and to the left of A' respectively. It will 
be a good exercise for the student to prove that the lines 
E'E, F'F whose equations are 

y — bxja, y = — bxja3 
are asymptotes (Fig. 21). 

If b = a the hyperbola is said to be equilateral; since the 
asymptotes are in that case at right angles the hyperbola is 
also said to be rectangular. 

From the symmetry of the central conics about the axis 
of ordinates through C it may be inferred that they have 
a second focus S' and a second directrix K'N' symmetrical 
to S and KN with respect to C\ the curves might be con- 
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structed from S' and K'N' in the same way as from S 
and KN, the eccentricity being the same. 

Some useful properties of the Conic Sections will be 
found in Exercises V, VI. 

§ 27. Change of Origin and of Axes. The device of chang¬ 
ing the origin of coordinates is often useful in simplifying 
the equation of a curve and thus making the construction 

of the curve more simple. 
I. New Axes 'parallel to Old Axes. In Fig. 22 let B be 

the new origin, and let X\BXV Y\BYl be parallel to 
X'OX, IT/OI7 respectively. 

Y X 

P 

B m' X, 

X' 0 A M X 

y; 
Y' 

Fig. 22. 

Let (a, b), (x, y) be the coordinates of B and of any other 
point P with respect to the old axes X'OX, Y'OY; and let 
(x, y) be the coordinates of P with respect to the new axes 
X\BXVY\BYV Then 

OA=a,AB = b; OM=x, MP = y\ BM'^x'; M'P=y'; 

and OM — OA +AM—OA+ BM'; 

MP = MM'+M'P = AB + M'P; 

and therefore x = a + x ; y = b + y'.(1) 

Conversely x'~x — a\ y' = y — b.(T) 

When x and y have been replaced by a+x' and b + y' 
the accents may be dropped, it being remembered that the 
origin is then B, so that x will mean not OM but BM', and 
y not MP but M'P. 
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Example. The equation y2 - 4x - 2y - 1 =0 may be written 

(y-])*-4(*+i). 

Put x + i that is, x — - \ + x' and y — 1 =y', that is, y — 1 + ?/, which 
means transferring the origin to the point ( —£, 1), and the equation 
becom es y2 _ 4^/ 

This equation, and therefore also the given one, represents a parabola 
with its vertex at the new origin and with the new axis of abscissae 
as its axis. The latus rectum is 4 ; the focus is the point (1, 0) with 
respect to the new axes, and therefore the point (4, 1) with respect to 
the old because the coordinates of any point with respect to the old 
axes are equal to those with respect to the new increased by the 
coordinates of the new origin. 

II. The origin not changed, hut the New Axes obtained 
by turning the Old Axes through a positive or negative 
angle 0. in Fig. 22a let P 
be the point (x, y) when 
referred to the old axes 
X X, FT,; and the point 
[x, y) when referred to 
the new axes X\XV Y\YV 
so that 

x=0M, y = 31P; 

xf — 0M\ y' — M'P; 
lX0X1 = Q=lY0Yv 
By elementary trigono¬ 

metry, 

OM = Oil/' cos 0 — M'P sin 0; MP — 0M' sin 6 +M'P cos 0; 

that is, 
x-x'cosO — y' sin 0; y = x'sin 0 + y'cos 0.(2) 

Conversely, solving for x and y' in terms of x and y, 
x — x cos 0 -f y sin 0; y' = — cc sin 0 -f y cos 0.(2') 

It may be possible to choose 0, so that the new equation 
is simpler than the old or even is an equation of which the 
graph is known. 

Example. 

becomes 

since, by (2), 

By turning the axes through 45° the equation xy — c2 

^ or y-y-s* 
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The new form shows that the curve is a rectangular hyperbola; 
half the transverse axis, denoted in § 26 by a, is yf*2c. Hence the 
graph of c2/,r is a rectangular hyperbola referred to its asymptotes as 
coordinate axes. 

III. The origin changed to (a, h) and the axes tamed 
through an angle 9. Combining cases I., II. we get the 
more general transformation 

x = a + x' cos 9 — y sin 9; 

y — b+x sin 0-f 2/'cos0.(3) 

x' = {x — a) cos 9+(y — h) sin 6; 

y'=— (x — a) sin 9+(y — b) cos 9.(3') 

EXERCISES V. 

Unless otherwise stated the equations of the conic sections in this 
set of Exercises are supposed to be in the standard forms (jP), (<7) 
of § 26. 

1. In the central conics prove CS=eCA, CA—eCK. 
For the ellipse, AS : A K—e — A'S : A'K, 

and therefore e^A'S-AS : A'K- AK^S'S : AA = CS : CA, 
e=A'S+AS:A'K+AK=A'A : K'K^CA : OK. 

For the hyperbola, A'S - : A'K- A K—CA : CK, 
A'S+AS : A’K+AK-CS : CA. 

2. In Fig. 20, S is the point (- 0), S' the point (ea} 0). 

In Fig. 2], S is the point (ea, 0), S' the point (- ea, 0). 

In Fig. 19, S is the point (p, 0). 

3. Show that the latus rectum (or 'parameter) of a central conic is 
2 b*/a. 

4. On A A' (Fig. 20) as diameter a circle is described; if MP is 
produced to meet the circle at Q, show that 

MP : MQ — b : a — constant. 

For MQ2 —CA2- CM2=a2-x2-, MP2=K,(a2-x2). 

The circle is called the Auxiliary Circle of the ellipse. The theorem 
shows that if the ordinate MQ of a circle to any diameter is divided 
internally at P, so that MP : MQ= constant, the locus of P is an 
ellipse whose major axis is the diameter of the circle. 

The student may prove that if P is in MQ produced, the locus is 
an ellipse whose minor axis is the diameter of the circle. 
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5. Show that the point (a cos 0, b sin 0) lies on the ellipse, whatever 
be the value of 0. 

For the equation of the ellipse is satisfied by x — a cos 0, y — 6 sin 0. 
As 0 varies from 0° to 360° the point travels round the ellipse. In 

the notation of ex. 4, if P is the point (a cos 0, b sin 0) 0 is the angle 
A'CQ and is called the Eccentric Angle of P. 

6. Show that the point (pt2, 2pt\ p being a constant, lies on a 
parabola whatever be the value of t. 

7. In Fig. 20, if CM—x, prove that SP—a+ex, S'P—a - ex, 
SP + S'P^2a. 

For SP=cNP— eKC+eCM— a 4- ea?, 

S'P—e. PN' — e. CI\' — eCM— a - ex. 

SP, S'P are called the focal distances of P, and therefore in the 
ellipse the sum of the focal distances is constant, the constant being 
the major axis. 

8. In Fig. 21, if CM—x, prove SP—ex-a, S'P—ex+a, S'P—SP—2a. 
Hence the difference of the focal distances of a point on a hyperbola is 
constant. 

9^ In the parabola (Fig. 19) prove 

SP= KA + A M= AS+ AM=p+x, 

x being the abscissa of P. 

10. On any of the conics (Figs. 19, 20, 21) a point Q is taken and 
the chord P(J (produced if necessary) meets the directrix KN at Z. 
Prove that *SZ bisects the exterior angle PS(J, except when P and (J 
are on different branches of the hyperbola when SZ bisects the 
interior angle. 

Draw (JR perpendicular to KN\ then 

SP : PN— e — SQ : (JR, 

therefore SP : SQ = PN : QR=PZ: QZ, 

and the theorem follows by Euc. vi. 3 or A. 

11. Trace the conics given by the equations, 

(i) xr + 4//2 = 4; (ii) 2.x2 ~3y2 —6, 

and find the eccentricity of each. 

In (i) a2 = 4, 62~1, and b2~cr(l -e% so that e2=(a2~ 62)/a2 etc. 

12. Show by transferring the origin to (0, -b) that the equation of 
the ellipse when B' is the origin and B'B the axis of ordinates is 

x2/a2 +y2/62 - 2y/b = 0. 

If B is the origin and B'B the axis of ordinates the equation is 

x2/a2 +y2/ b2 4 2yjb=0. 
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13. Show by finding the values of A and B in terras of py a, b that 
when A is positive the equation 

ip—Ax+Bx2 

represents (i) a parabola if Z?=0; (ii) an ellipse if B is negative, the 
ellipse becoming a circle if B— -1; (iii) a hyperbola if B is positive. 

Show#that when B is negative and numerically greater than 1 the 
major axis of the ellipse lies along the axis of ordinates. Show that 
all the results hold also when A is negative. (See note on sign of 
term in x in equation (1) § 26.) 

14. Graph the ellipses given by 

(i) ?/2 -=4x- $x2; (ii) if = 4x - 2x\ 

and find their eccentricity. 

15. Show that the equation 

4y2 — x2+Sp + 6x- 5 = 0 

represents two straight lines through the point (3, -1). 

§ 28. Transcendental Functions. All functions that are 
not algebraic are classed as Transcendental functions. 

The elementary transcendental functions are (i) the 
Trigonometric Functions, Direct and Inverse, (ii) the 
Exponential Function and its Inverse the Logarithmic 
Function. 

Graphs of the direct trigonometric functions, sin#, cos#, 
tan #, cosec #, sec #, cot x will be found in most textbooks of 
Trigonometry. The characteristic property of these func¬ 
tions is that they are periodic; that is, if /(#) denote any 
one of these functions and if n be any positive or negative 

integer f(x+2mr) =/(*). 

In other words the function is not altered if its argument 
be increased or diminished by any multiple of 2tt. This 
number 2ir is called the periodl of the function. The tang¬ 
ent and cotangent have also the shorter period 7r. 

The graphs of the Inverse Functions can be constructed 
as explained in § 25 by rotation about the bisector of the 
angle XOY. To make the inverse functions single-valued 
we shall always suppose the angle denoted by sin*"1#, 

cosec~lx, tan"1#, cot-1# to lie between — ^ and ^ and the 

angle denoted by cos"1#, sec-1# to lie between 0 and t. 
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Thus 

tan ~1x+cot~lx— ^ if x be positive, 

= — ~ if x be negative. 

Ex. 1. Plot to the same axes the graphs of sin#, 2sin#, 3sin#, 

£ sin #, J sin # between — 27r and 27t. 

Ex. 2. Plot to the same axes the graphs of sin|#, sin#, sin 2# 
between - 27r and 27r. 

Ex. 3. Plot the graph of sin £# + sin # + sin 2#, making use of the 

graphs of ex. 2. (-|<*<|). 

Ex. 4. From the graph of sin# deduce without calculation the 
graph of sin (#+•«) where a is any positive or negative number. 
Deduce the graph of cos #. 

[Shift the origin to the point (a, o).] 

Ex. 5. Plot the graph of sin# + cos#. 

jjsin # 4- cos # = *J2 sin ( x + etc.^J 

Ex. 6. With the notation of ex. 10, Exer. IV. construct the path of 
the point when 

(i) #=21, y = 3sin4£; (ii) #~2tf, y = 3tan ~xt \ 

(iii) #—acosw^, y — b&mnt. 

§29. The Exponential Function and the Logarithmic Func¬ 
tion. The power ax is called an Exponential Function 
of x; here the base a is any positive constant, and the 
index or exponent x is the argument of the function. 

7YI 
ax is always positive. If x be a positive fraction — 

(m, n integers), ax means the (positive) nth root of am; if x 
m 

be negative, say-(m, n positive integers), ax means the 
n 

reciprocal of the (positive) nth root of am; if a? is zero, 
az is 1. If # be an irrational number we may for the 
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present suppose it to be replaced by a rational approxi¬ 
mation. 

(i) a>l. As x increases from —N to + A, where N is 
a large positive number, ax will increase from a very small 
positive number a~xN through 1, the value of ax when x = (), 
to a very large positive number a4 

(ii) <x = 1. In this case ax is always 1. 
(iii) «<], say a = 1/6 where b is greater than 1. As x 

increases from — N to -f A, ax will decrease from a large 
positive number b+N to a very small positive number h~N. 

Fig. 23. 

ABC in Fig. 23 shows the graph of ax when a = 2. The 
graph approaches the negative end of the a>axis asymptot¬ 
ically. 

If a is greater than 1, If a is less than 1, and since 
(1/0,)* = or* it is evident that the graph of (l/o)x can be 
found from that of ax by rotating the latter about the 
axis Y Y. Hence when a is less than 1, the graph of ax 
will approach the positive end of the a?-axis asymptotically. 
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By the definition of a logarithm, x~\ogay if y = ax. 
Hence the logarithm x is the function inverse to the 
exponential function ax. By the method given in § 25 
for finding the graph of an inverse function, we get the 
graph of loga£ by rotating the graph of ax about OD the 
bisector of the angle XO Y. The curve A'B'C' in Fig. 23 is 
the graph of hg2x. 

The most convenient base for the exponential function 
is an irrational number, usually denoted by e and called 
Napier's base; approximately 6 = 271828. Logarithms to 
the base e will throughout the book be denoted by the 
symbol “log" (without suffix), unless the contrary is 
expressly stated; they can be converted into logarithms 
to the base 10 by the ordinary rule. 

\og10x = log€x x log10e = logca-T-logc10, 

and log10e = *434 294 log* 10 = 2*802 585. 

The exponential function will be considered more fully 
when the number e is defined (§ 48). 

§ 30. General Observations on Graphs. The graphs that have 
been discussed up to this point have been those of functions 
defined by equations of the kind that occur in elementary 
algebra and trigonometry, and it has been assumed that the 
functions are Continuous. It is only on this assumption 
that we are justified in joining the points whose coordinates 
satisfy an equation and concluding that the coordinates of 
the points which lie on the short lines or arcs that we draw 
will actually satisfy the equation. In other words we 
assume that when the argument x changes by a small 
amount the function y will also change only by a small 
amount. The only exception we have found has been in 
those cases in which as x tended towards a special finite 
value y tended to a very large value (numerically). See § 24. 
Thus if y = l/x, as x changes say from 1/1000 to 1/1001, 
y changes from 1000 to 1001, that is, an extremely small 
change in x produces a change of 1 unit in y; as x gets 
nearer still to 0 a change of the same amount as before 
would produce a still larger change in y. Hence as x 
approaches 0, y or 1 jx ceases to be continuous, or, as it is 
usually expressed, becomes discontinuous. 
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Since division by zero is expressly excluded in stating the 

rules of division in algebra, the symbol - is really meaning¬ 

less ; but since it is possible by taking x nearer and nearer 

to 0 to make ^ greater than any given finite number, it is 

usual to define J as “ infinite/’ or “ an infinite number.” 

Hence a function becomes discontinuous for those values 
of its argument that make it, in the above sense, infinite. 

The question of continuity will be taken up in Chap. V. 
When, as frequently occurs in practical work, the relation 

between a function and its argument is determined by 
measurements, it is only possible to calculate a compara¬ 
tively small number of corresponding values of function 
and argument. In such a case it would be possible to find 
a great variety of curves which would be continuous in the 
mathematical sense and would pass through all the points 
that are plotted. In practice the points are not joined by 
straight lines; but the simplest curve on or near which the 
points seem to lie is usually taken as the graph of the func¬ 
tion. The broken line or curve which would be obtained 
by joining the plotted points by straight lines would have 
this disadvantage, that its curvature would not be con¬ 
tinuous ; in the language of the Calculus, the derivative of 
tlie function as represented by the graph would change 
abruptly, as a rule, for the values of the function actually 
calculated. 

Of course considerable care must be taken in selecting the 
curve and no inference should be drawn, as a rule, from the 
form of the graph outside the range of the argument for 
which the values of the function have been calculated. 
Examples of such graphs will be found in most text books 
of mechanics, physics or chemistry. 

EXERCISES VI. 

1. From the graph of fix) derive that of f(kx\ k being a constant. 
Denote the graph of fix) by Gx and that of fikx) by Go. When 

x = a, the ordinate of Go is f(ka); but fika) is the value of fix) when 
x~ka. Hence the ordinate of Gt when #=a is equal to that of Gx 
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when x~ka. Since a may be any value whatever of the abscissa, 
may be derived from 6^ without further calculation of ordinates ; 

we may say that every line parallel to the .r-axis is contracted in 
the ratio k to 1, while every line parallel to the y~axis is unaltered. 

2. Apply the principle of ex. 1 to construct (i) the graph of sin lx 
and of sin 2x from that of sin x ; (ii) the graph of 2kx from that of 2X ; 
(iii) the graph of 2~kx from that of 2~z. 

3. From the graph of f(.v) derive that of cf(kx), c and k being 
constants. 

Deduce the graph of the ellipse jr/a2 +y2jb2 — 1 

(i) from that of the circle x2+y2—a2 ; 

(ii) from that of the circle x2+y2~\. 

4. A point moves in a plane and at time t its coordinates are 

x = 1 rt cos a, y — Vt sin a — Igt2; 

show that the path of the point is a parabola with its axis vertical 
downward, that its vertex is the point ( V2 sin a cos ajgy I'2 sin2a/2g), 
and that its latus rectum is equal to 2F2cos2a/<7. (Compare Exer. 
iV., 10.) 

Eliminate (, then the equation between x and y may be written 

/ F2 sin a cos a \ 2 2 V2 cos2a / V- sin-a\ 

r 9 / 9 v 2fj 

5. Show that the equation of the directrix of the parabola in ex. 4 is 

V2/2g 

6. If the coordinates of a point are given by 

x=a + bt, y~A+Bt 4- Ct2 

where t is variable and a, &, ... C constants, show that the locus of the 
point is in general a parabola whose vertex is the point 

/ bB , B2\ 
\a iC' A 467’ 

and whose latus rectum is equal to b~/C. 

7. Apply the transformations of § 27, (2) to the equation 

A x2 4- 2 Bxy -f Cy2 — />,.(i) 

and show that the new equation will be 

Lx'2 4- 2Mxy + Ny'2 = A.(ii) 

where L = A cos2# 4- 2 B sin # cos # 4- 0 sin2#, 

M=(0 - A) sin # cos # 4- B(cos26 - sin2#), 

JV=A sin2# - 2 B sin # cos # 4- Ccos2#. 
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8. Show that equation (i) of ex. 7 represents, in general, a central 
conic. 

For equation (ii) will become Lx'2 + Ny'2 — D, which is of the form 
(c), § 26, if M=0. It is always possible to choose 0 so that M shall 
vanish, because 

9 n 
(C - A) sin 6 cos 0 4- Z?(cos2# - sin2#) = 0, if tan 20— £ _ 

and whatever be the values of A, B, C, an angle can always be found 
to satisfy this equation. The values of cos $ sin 0 found from this 
equation have to be inserted in the values of L and N. 

9. Show by turning the coordinate axes through 45° that the 
equation 

13 a:2 - 1 Oxy -f 1 3y2—7 2 

represents an ellipse whose axes are 6 and 4. Sketch the curve. 

10. The coordinates of a point are given by 

2trt 7 a (t \ 
x—a cos-^-, y = 6cos27r( ^+aj, 

where t is a variable, say the time. Show that the point describes the 
ellipse given by the equation 

— - 2cos 2ira -f ?2 as sin227ra. 
a2 ab b2 

11. The coordinates of a point are given by 

x ~a cos(27t^/Z), y—bco^(47rt/T) ; 

show that the point describes the parabola given by 

2x2 

a*' 

12. Find the coordinates of the centre and the lengths of the axes 
of the central conics given by the equations 

(i) 4^2+9y2-24x+72y +144 = 0; 

(ii) 3x2 -4f + 66tf 4- 40yq- 251=0. 

Equation (i) may be written 

Qr-3)2 (y4-4)2 

9 + 4 “A* 

13. Show by turning the axes through 45° that the equation 

x3 +yz—3 sj2kxy.(i) 

becomes, the accents being dropped, 

(x+%2={k- fay*.(ii) 
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From the torm (ii) show that there is an asymptote perpendicular 
to the new axis of abscissae. Show further that the new x is not 
greater than 3k nor less (algebraically) than it being assumed 
that k is positive. 

14. In Fig. 20, taking 8 as origin, SK as initial line, 8P—r, 
L K8P— 0, show that for this system the polar equation of an ellipse is 

r*=l/( 1 4-eeos 9), 

where £ = <?/u9“$Z = semi-latuB rectum. 
By the definition of a conic SP—eiVP; hence, since NP = KS4- SM, 

r = eK8 4* e8M= l 4- er cos(tt - 9) = l — er cos 9, 

and therefore r(J 4- e cos 9) — l. 

The equation is the same if 8' is origin, S'K' initial line, and 
lK'S’P^O, 

15. Show that the polar equation of a hyperbola is 

r- 1/(1 +e cos 9). 

16. Show that the polar equation of the parabola (Fig. 19) is 

r—2p/(l -f cos (9), 

where 2v = SL and lK8P— 9, the origin being 8 and the initial line 8K. 
If lX8P— 0, we shall have 1 - cos 9 instead of 14 cos 9. 

17. Show that the length of the perpendicular from the point 
(xv vq) to the line y - x tan 9=0 is 

(yl - x1 tan 6)/y/( 1 4- tan20). 

In Fig 22a, § 27, let P be the jioint (xt, yx) ; then M'P is the 
required perpendicular, since X/OAj is the line ?/- .r tan # — 0. But 
by (2 ), § 27, 

M'P—y' —yY cos 9-ir, sin 9=cos 9(yx - xv tan 9) 

~(j/i ~xitan 6)1^0 4-tan29). 

By putting -ajb for tan #, we see that the perpendicular on the 
line whose equation is ax+by — 0 is 

(axx 4- 6yi)/x/(a2 4- b2). 

Hence to find the length of the perpendicular from the point 
(#j, ?/j) on the line whose equation is ax + by—0, substitute xv yx for 
x, ?/in the expression ax+by and divide by the square root of the sum 
of the squares of the coefficients of x and y. 

18. By the method of ex. 17 show that the length of the perpen¬ 
dicular from the point (xl9 yx) to the line whose equation is 

ax+by+c—0 

is (ax j 4- byx 4- c)jj(a2 4- b2). 

The sign of the expression for the perpendicular will be positive 
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or negative according as a^rl -f- bi/y 4- c is positive or negative if the root 
have always the positive sign; the numerical value however always 
gives the length. 

19. Find the length of the perpendicular in the cases: 

(i) point (2, 1); line, Xv - 4y 4- 5 ~ 0. 

(ii) point (2, -1); line, 12#-13//-10 = 0. 

20. Find the length of the perpendicular on the line given by 

-cos 0+*f sin 0 = 1, 
a o 

from the points (i) (0, 0); (ii) (ea, 0); (iii) (- e«, 0). 

If e2 — (a2~b2)!a2 show that the product of the perpendiculars from 
the points (ii) and (iii) is equal to lA 

21. Show that the straight line in ex 10 meets the ellipse given by 

**/<** +I 

at only one point, namely the point (acos#, bsin#). (Compare 
Exercises III 9, 10.) 

The line is therefore a tangent to the ellipse; the three perpen¬ 
diculars are those from the centre of the ellipse and the two foci. 
(See Exercises X. 9.) 

22. If MP (Fig. 21) is produced to meet the hyperbola again at P 
and the lines CE, OF, at Q, q show that 

qp. pq-Mq2- qp. pq. 

From these equations prove that CE and OF are asymptotes ; also 
that Pq and Q'P are equal. 



CHAPTER IV. 

RATES. LIMITS, 

§ 31. Rates. The fundamental problem of the Differential 
Calculus may be considered as the investigation of the rate 
at which a function changes with respect to its argument. 

The element of time does not necessarily enter into the 
conception of a rate. Whatever be the nature of the 
magnitudes under consideration a change in the one which 
is taken as the independent variable or argument will 
usually produce a change in that which is taken as the 
dependent variable or function, and by comparing the 
change in the function with the change in the argument 
we can determine the rate at which the function changes 
with respect to its argument. Many problems in pure 
and applied mathematics depend on such a comparison, so 
that their solution reduces to the determination of a rate; 
for example, the problem of drawing a tangent to a curve 
is equivalent to that of determining the rate at which the 
ordinate varies with respect to the abscissa. 

32. Increments. When a variable x changes from a 
value xx to a value x2 the difference x2 — x1 (not is 
called the increment that x has taken, and is often denoted 
by the symbol Sxx or Axv read “delta x1,); <5, A are the 
Greek forms of the small d and capital d, the initial letter 
of the word “ difference.” The symbol Sxl must be taken as 
a whole ; S by itself in this use of the letter is meaningless. 

If x2 > x1 the increment is positive, so that x has increased 
algebraically; if x2 < xx the increment is negative, so that 
x has decreased algebraically. In both cases the one word 

G.C. E 
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“increment” is used, so that a negative increment is an 
algebraic decrease. 

Since x2 — xx — we have x2 = xx + Sxv so that if x change 
from the value xx to another value and if the increment 
that x takes is Sxx that other value is + the student 
must accustom himself to this method of denoting the 
value to which x changes, for although aq + cSoq seems more 
cumbrous than x2 its form is more suggestive and is really 
simpler in many investigations. 

Let y be a function of x, say 5x~3, and let xv yx be 
corresponding values of x and y. When x changes from 
xx to xl + Sxl let y take the increment Syv so that the value 
of y corresponding to %x -j- Sxx is yl + Syl; then 

Vi = •«! - 3; yx + Sy1 = o(x1+SxJ - 3, 

and therefore Sy} — ;>&cr 

If y = tlx2 + 7x — 2, we find, using the same notation, 

Vi = + 7xx-2; yx+Syx = 3(xx + Sxx)2 + 7(xx + Sxx)-2, 

and therefore, by subtracting the left side of the first 
equation from the left side of the second, and the right 
side of the first from the right side of the second, 

Syx — *f 3(&1)2 + 7 Sxx 

— (6xx + 7)Sxx -f 3(&Cj)2 

In general, if y =/(#), we have 

$!/i + Sxx) -f(xx) = Sf(xx). 

The same notation is used whatever letters denote the 
variables, so that if s = <£(£), 

Ssx = <p(tx 4* Stx) - <p(tx) = S<p(tx), 
and so on. 

As this process of finding increments is of constant 
occurrence the student should make himself quite familiar 
with it. The following examples should be worked 
through. 

Ex. 1. If show that 

Ex. 2. If 1, show that 

8f(xi) = Zjpx28xx + 3xx(8xx)2+(8xx)\ 
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Ex. 3. If (/ = logo?, show that 

fy/j = 8 log xx - log X1 + —1 = log (1+ ^ 
*ri \ •'*! 

Ex. 4. Ify — x3, 8yx — (xx 4- for,)3 ~ ^y5, calculate 8//x and Byl/8x1 when 

,v= 10, 0.rA— 1, *5, T, '01, *001. 

Ex. f). If ?/=sin.r, show that 

fy/j ” 3 sin xx — siii^rj + 3.^) - sin xv 

From the Tables calculate 3//, and f*^1 for the following values 
'■ O.Tj & 

of and 8xx, the numbers denoting the value of the angles in degrees : 

(i) Xj = 30, 8x^1, *5, % T ; 

(ii) a’,«G0, &Fj^l, *5, % •]. 

Ex. G. If ;/==!og1(>.r, find from the Tables the values of 8//x and 

(i) when xx~ 325 and Sxx^2, 1, *5, 1 ; 

(ii) when ^-72 and 3.^—2, 1, T, *01. 

§ 33. Uniform Variation. When the argument of a func¬ 
tion takes a series of values :i\, x.,, x2, x4... the function 
takes a corresponding series of values yv y2, yz, yr When 
the increment of the function is in a constant ratio to the 
corresponding increment of the argument the function 
is said to vary uniformly or at a constant rate with respect 
to its argument. 

If the constant ratio is a, then 

y*r?A==a; ?/4—?/« 

and y2-yi= 
If the increments (x2 — xt) and (#4 —a"3) of the argument are 
equal so are the corresponding increments (?/2“~2/i) anc^ 
(y4 — yz) of the function. The increment (x2 — x1) may be 
either positive or negative and may be of any magnitude 
whatever; the corresponding increment of the function is 
a(x2 — xl)f and always, when the argument takes two equal 
increments so does the function. 

It follows from the definition that the uniformly varying 
function is a linear function of its argument. For when 
the argument changes from any value x1 to any other 
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value x, let the function change from yx to y; then the 
increment of the argument is (#—xf), the increment of the 
function is (j/ — 2/i) and 

ty-yi)-(x-xi)=a’> 
that is, y — ax + y1 — axv 

But xv yx are fixed values of the argument and function 
and the ratio a is constant, so that y is a linear function 
of x. 

It is easy to see conversely that if y is a linear function, 
ax + b say, of x, then y varies uniformly with respect to x. 

Measure of a Uniform Hate.—The constant ratio a is 
taken as the measure of the rate at which the function 
varies with respect to its argument. Instead of saying that 
the ratio a measures the rate we shall generally use the 
briefer expression that a is the rate. 

When a is a positive number, y increases as x increases 
and decreases as x decreases; when a is a negative number, 
y decreases as x increases and increases as x decreases. 
The particular case in which the function reduces to a 
constant, y~bf may be included in the general category of 
uniformly varying functions by saying that the function 
varies at the rate zero; a — 0. 

Since the graph of ax f b is a straight line with the 
gradient a (§22) the gradient of the line measures the rate 
at which the function varies with respect to its argument. 
It should be noticed that if in plotting the graph the unit 
for the ordinates is not of the same length as the unit for 
the abscissae the tangent of the angle shown on the diagram 
will not be equal to the rate a; if the unit for abscissae is 
1 inch and for ordinates, say T inch, then to an increment 
1 of the abscissa the diagram will show an increment, not 
of a but of la of the ordinate, so that the real gradient 
or rate will be found by multiplying by 10 the tangent of 
the angle shown on the diagram. 

§ 34. Dimensions of Magnitudes. It is customary and 
convenient to use such expressions as “the area of a 
rectangle is the product of its base and its altitude,” “ the 
speed of a body which moves uniformly is the distance 
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gone in a given time divided by the time,” and these 
expressions are represented in the form of equations; 

area = base x altitude ; speed 
distance 

time 

When considered as equations in the sense commonly 
understood in algebra these must be interpreted as “ the 
number of square feet (or square inches, etc.) in the area is 
equal to the product of the number of linear feet (or inches, 
etc.) in the base and in the altitude,” “ the number of units 
of speed is equal to the quotient of the number of units of 
length in the distance by the number of units of time.” 

But the equations may be interpreted in a different 
manner. Let capital letters denote, not numbers but 
magnitudes; L the straight line of unit length, T the 
interval of time taken as the unit. Taking as unit of area 
the square on the line L, and as unit of speed that of a body 
which moves uniformly a distance L in time T, the 
equations may be stated for the unit magnitudes in the 
form 

unit area — L x L; 
L 

unit speed —^7; 

or, combining the symbols by the algebraic laws of indices, 

unit area = L2; unit speed = LT~1. 

These equations are usually called dimensional equations, 
and the indices are said to give the dimensions of the 
magnitudes; thus the first equation states that the unit area 
is of 2 dimensions in X, the unit of length, and the second 
states that the unit of .speed is of dimension 1 in L and of 
dimension — 1 in T. Since all areas are magnitudes of the 
same kind as the unit area, area is said to be of 2 
dimensions as to length and to have L2 as its dimensional 
formula. Similarly, the dimensional formula of speed is 
LT~\ 

If M denote the unit mass the dimensional formula of 
momentum will be MLT~l, because momentum is the 
product of’mass and velocity. 

It may happen that a magnitude has zero dimensions; 
thus angles when measured in radians have zero dimensions, 
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because the radian is “ arc divided by radius,” and its 
dimensional formula therefore is LjL, that is L°. 

A notation that suggests the dimensional formula is 
sometimes used; thus an area of 10 square feet is denoted 
by 10 ft.2, a speed of 10 feet per second by 10 ft./sec., a 
pressure of 14 pounds per square inch by 14 lb./in.2 and so 
on. The characteristic word for expressing a rate, namely 
pa\ is represented by the symbol of division. 

When a function varies uniformly the number which 
has been defined as the rate of variation is quite inde¬ 
pendent of the magnitude of the increment which the 
argument takes; it is therefore possible to choose at 
pleasure the increment of the argument that shall be 
called unit increment. Thus we may speak of a speed of 
30 miles per hour, although the motion may only last 5 
minutes, or 1 minute or less; a rate of 30 miles per hour 
is the same thing as one of half a mile per minute, or of 44 
feet per second. It is important to bear in mind this 
aspect of a rate when discussing non-uniform variation. 

Again, the statement that the speed of a moving body is 30 
miles per hour is equivalent to the statement that the distance 
travelled varies with respect to the time at the rate 30, when 
it is understood that the units arc the mile and the hour. 
The latter mode of expression is more simple in many cases. 

When the measure of a magnitude is interpreted as a 
rate the dimensional formula for the magnitude will be the 
quotient of the formula for the function by that for the 
argument. Thus force may be measured as the rate of 
change of momentum with respect to time; its dimensional 
formula is therefore MLT~ljT or MLT~2. 

It is important to bear in mind that the measure of one 
magnitude can often be interpreted as the rate of change of 
a second magnitude with respect to a third, because it is 
through this connection that the calculus is applied to the 
investigation of the numerical relations of magnitudes, and 
in all such interpretations the theory of dimensions is of 
great service. For a full treatment of that theory the 
student is referred to the books named below.1 

1 Everett’s Units and Physical Constants; Gray’s Absolute Measurements 
in Electricity and Magnetism ; Maclean’s Physical Units, 
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§ 35. Variable Rates. So far, only uniformly varying 
functions have been discussed. But it may happen that 
the increment of the function is not in a constant ratio to 
the corresponding increment of its argument, or in other 
words, that two equal increments of the argument do not 
always produce two equal increments of the function; in 
that case the function is said to vary non-uniformly, or at 
a variable rate, with respect to its argument. 

Let y = 3 a?2; when x varies from xl to x1 + h let y vary 
from yx to yx -f k, and when x varies from x2 to x2 + h let y 
vary from y2 to y2+k'. Then 

yx = 3x*; yx + k — 3 (a?x + h)2; k = 6xxh + Sh2; 

therefore Ic/h — 6xx -f- Sh; and in the same way we find 

k'jh — 6x2 + 3 h. 

The two ratios lc/h, k'/h are therefore unequal, so that y 
varies non uniformly writh respect to x. 

In this case the ratio kjh depends both on h and on xx; 
the characteristic property of a uniformly varying function 
is that the ratio kjh depends neither on h nor on the value xx 
^f x, from which the increment begins. To obtain the 
number which is taken as the measure of a variable rate 
we proceed as follows. 

§ 36. Average Rate. We first define an average rate, 
thus :—The average rate at which a function varies with 
respect to its argument while that argument takes a given 
increment h is defined to be that uniform rate which w'ould 
give the actual increment k taken by the function. 

The average rate is thus kjh. In the example of last 
article the average rate at which y varies with respect to x 
while x varies from xx to xx + h is 

kjh = (kTj -j- 3h ] 
the average rate at which y varies while x varies from x2 
to + h is k'jh = 6x2 + 3k 

The average rate thus depends both on x and on h. 
Next, it agrees with our ordinary notions of a rate of 

change to suppose that the smaller h is the better wTill the 
average rate measure the rate at which the function varies 
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as x varies from x1 to xx+h. But as h is taken Jess and 
less the average rate (k^ + oh approximates more and more 
closely to the definite number ()XV The average rate will 
never be exactly 6xv because; it would be absurd to suppose 
h actually zero; that would amount to supposing that x 
had not changed from the value xx at all. On the other 
hand, however small h maj^ be, provided it is not zero, the 
quotient kjh can be calculated and the average rate for 
that small increment determined. We may therefore 
suppose h to be, not zero, but so small that the difference 
between 6r1 + Sh and 6.^, namely 3/^, shall be less than any 
fraction that may be named, however small that fraction 
may be, provided only it is not zero; for example, the 
difference will be less than 001 if h be numerically 
less than one third of '001, say less than *0003. It is 
natural therefore to consider 6x1 as measuring the rate at 
which y changes with respect to x as x increases ui 
decreases from the value xv 

We therefore define 6.^ as the rate at which the function 
y or Sx2 varies with respect to its argument x for the value 
x1 of the argument. 

In the same way Gx*2 is, by definition, the rate of change 
for the value x2 and in general for any value a of the 
argument the rate is 6a, because the reasoning does not 
depend on the particular value xx; the reasoning is the 
same whatever value of the argument be chosen. 

When x has the values 0, |, i, f, 1, 4, 2... the rate is 
equal to 0, :}, 3, !!, G, 9,12 ... respectively ; thus for the value 
1 of x, y is increasing twice as fast as for the value A, for 
the value # thrice as fast, for the value 2 four times as fast 
and so on. The student should compare these statements 
with the information to be derived from an inspection of 
the graph of 3;r2. 

When x is positive the rate is positive, so that as the point 
x moves to the right the graphic point moves up ; on the 
other hand, when x is negative the rate is negative, so that 
as the point x moves to the right the graphic point moves 
down. 

It will be noticed that in stating a variable rate the 
phrase “ for the value xx of the argument ” occurs; the 
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phrase is needed because, unlike that of a uniformly vary¬ 
ing function, the rate is in this case itself a variable. If the 
number s of feet described by a moving body in t seconds 
be St2, the rate at which s varies with respect to t at time 
tx seconds after motion begins is (\tv that is, the speed at 
time tx is 6tx feet per second. 

§ 37. Measure of a Variable Rate. The method just given 
of defining a variable rate is of fundamental importance, 
and the student should make sure that he masters the 
reasoning on which the definition is based. The process 
consists of three steps : 

(i) We find the average rate k/h; the number k/h 
depends both on xx and on h, 

(ii) We assume as consistent with our notions of rate of 
change that the smaller h is the better will the quotient k/h 
measure the rate at which the function changes as the 
argument changes from xx to xx + h. It usually happens 
that by taking h less and less the quotient k/h gets nearer 
and nearer to a definite number; h is not supposed to 
become zero, but in general we can take h so small that the 
difference between k/h and a definite number will become, 
and for smaller values of h will remain, less than any stated, 
non-zero, fraction. The number will depend on xx. 

(iii) We then define this number as the rate at winch 
the function changes with respect to the argument for 
the value xx of the argument. 

The more rigorous of the older mathematicians, such as 
Maclaurin, starting from definitions or axioms respecting 
variation at a greater or less rate, proved\ that 6xx is the 
“ true measure ” of the rate at which Sx2 varies with respect 
to x for the value xx; but the reasoning on which we have 
based the definition seems sufficient to establish its correct¬ 
ness. Of course if the values considered were determined 
by measurement a stage of smallness for h would soon be 
reached at which it would become impossible to distinguish 
between Qxx and 6xx + 3h; the average rate determined by 
the smallest available value of h would therefore coincide 
with that determined by the process and definition we have 

adopted. 
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Ex. 1. If find the rate at which s varies with respect to t, 
when t has the values 0, 1, 2. 

Ex. 2. If find the rate at which p varies with respect to v 

when v~vv 

§ 38. Limits. It would seem at first sight as if the rate 
(h\ could be determined from the average rate (),r1 + 3h 
simply by putting h equal to 0. But the logic of such a 
step would be faulty, because the equation 

7 = Gx, + 3 h. 
k 1 

can only be established on the assumption that h is not 
zero; in proving the laws of division in algebra the case in 
which the divisor is zero is expressly excluded. But 
further, if A = 0, so also is k, and the quotient k/h would 
appear in the form 0/0—a symbol which has absolutely no 
meaning whatever. The ground in common sense for 
defining 6x1 as the rate of change for the value xx is that 
Gxx is the one definite number towards which the average 
rate kjh settles down as h is taken smaller and smaller. 
(See the values of SyfSxx in examples 4, 5, 6 (§ 32) as an 
illustration of this settling down.) 

In mathematical language we are said, in determining 
the number towards which the quotient lcjh settles down, 
to find the limit of kjh when h tends to zero as its limit; 
in this process h is a variable number, positive or negative, 
and it may take any value except zero; zero is so to speak a 
boundary to which it gets nearer and nearer, but which it 
never actually reaches. 

Before giving a formal definition of a limit wc will 
consider a few typical cases; by carefully studying these 
the student will gather the necessity for the introduction of 
the word and will see what it really means. 

§ 39. Examples of Limits, (i) Let AB (Fig. 24) be a 
chord of a circle whose centre is 0; AT, BT the tangents 
at J., B. Let 0T cut the chord AB at M and the arc AB at 
N; M and N will be the middle points of the chord and the 
arc respectively and OM will be perpendicular to AB. 
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The triangles DMA, OAT are equiangular; therefore 

MA _ OM 
A T ~ OA. 

Suppose now that the chord A B moves towards N, tlie 
point N remaining fixed and AB being always perpendicu¬ 
lar to ON: let A, B always 
denote the ends of the chord, 
M its mid point and T the point 
where the tangents at A and B 
meet. So long as A and B are 
not coincident, that is so long as 
AB is really a chord, equation 
(1) remains true. The ratio 
MA:AT is a function of Oil/, 
for as soon as OM is fixed every 
other line in the figure is fixed, and Ihe ratio can be 
calculated. 

When OM is all but equal to ON both MA and A T will 
be all but zero; nevertheless the ratio MA :AT will be all 
but equal to 1, because equation (1) remains true and Oil/ 
is all but equal to ON which is equal to OA. Manifestly 
the nearer M gets to N the nearer does the ratio MA :AT 
get to unity. 

This behaviour of the ratio MA : AT is expressed in the 
words:—as OM approaches ON as its limit the ratio 
MA : AT approaches 1 as its limit. 

Here again it has to be noted that the reasoning ceases 
to be just if OM becomes actually equal to ON, for the tri¬ 
angles will then have disappeared and the equation (1) on 
which the reasoning is based could not be established. 

We might equally well consider the ratio as a function, 
not of OM but, of the angle NO A ; if the angle NO A 
approaches zero as its limit the ratio approaches 1 as its 
limit. 

(ii) Suppose AB (Fig. 24) to be the side of a regular poly¬ 
gon of n sides (regular n-gon) inscribed in the circle; then 
it is easy to prove that the side of the regular n-gon cir¬ 
cumscribed about the circle is equal to AT+BT or 2AT and 
that the angle NO A is 180/n degrees. If p. P denote the 
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perimeters of the inscribed and of the circumscribed poly¬ 
gons respectively, then 

p = nAB — 2nMA ; P = 2nA T, 

and 
oa• 

(2) 

Imagine a series of polygons constructed corresponding 
to greater and greater values of n. When n becomes very 
large the angle NO A will become very small; AB and MN 
will also become small, and therefore the ratio p/P will 
become nearly equal to 1. Hence when the angle NO A 
approaches 0 as its limit, the ratio p/P approaches 1 as its 
limit; or again it may be put thus, when n becomes indefi¬ 
nitely large p/P approaches 1 as its limit. 

We may express the relation between p and P in a 
slightly different way. From equation (2) we get 

p-p= 
MN p 
OA ' 

When n is greater than 4, P will be less than the peri¬ 
meter of the circumscribed square, that is less than 8OA ; 
lienee P-p<8MN. 

Now let e be any line that is as small as we please, only 
not zero. By the geometry of the figure we see that we can 
take n so large that MN shall be less than any given line; 
choose n therefore so large that MN is less than e/8. Then 
for this and for all greater values of n, SMN will be less 
than e and therefore P— p less than e. 

It is here that the limit notion comes in; no matter how 
large n may be P and p will never exactly coincide, but as 
n increases beyond all bounds the difference P — p tends to 
zero as its limit, that is the perimeters P and p tend 
towards the same limit. 

G 
I-H 1 1- 
F Sn G„ H 

Fig. 25. 

On the straight line FH (Fig. 25) mark off Fgn> FGn equal 
to the perimeters p, P respectively; then clearly for every 
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value of n, Fgn is less than FGn. But, when n has been 
chosen as above, gj}n = P < e, 

and therefore n can be taken so large that gnGn shall be less 
than the line e. Hence tlio common limit of p and 1J is a 
line FG greater than every one of the lines Fgn, but less than 
every one of the lines FGn. 

Since the circumference C of the circle always lies 
between p and 1\ the circumference will be equal to the 
line FG; the circumference may therefore be considered 
as the limit either of an inscribed or of a circumscribed 
regular polygon when the number of its sides increases 
indefinitely. 

(iii) Show that the area of a circle may be considered as 
the limit either of an inscribed or of a circumscribed regular 
u-gon ; and that an arc of a circle may be considered as 
the limit of the sum of n equal chords obtained by dividing 
the arc into n equal arcs. 

The polygons have been supposed regular, but it would 
not be difficult to show that the theorems hold even if they 
be not regular, provided that as n increases beyond all 
bounds the length of each side of the polygons approaches 
zero as its limit. 

(iv) Let 9 be the number of radians in the angle NO A, 
where the angle is supposed to be acute; we have 

chord A B < arc A B < A T+ JJTi 

and therefore MA < arcNA < AT, and therefore 

Hence 

that is, 

M A arc NA A T % 

T)A < OA < OA ’ 

sin 9 < 9 < tan ft 

Divide by sin 6 ; therefore 

and therefore 

9 1 
< sin 9 ' cos 9 ’ 

^ sin 9 ^ 
1 > —7.-— > cos 9. 

u 

Thus the quotient sin 9/9 lies between 1 and cos ft When 
ft approaches 0 as its limit cos 9 approaches 1 as its limit; 
therefore also sin6/9 approaches 1 as its limit. 
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From the nature of a limit, or from the last inequality, 
we see that the statement that sin 0/6 approaches 1 as its 
limit when 9 approaches 0 as its limit may be put in the 
form: when 9 is a small number sin 9 is approximately 
equal to 9. The student should verify this statement from 
the Tables; thus, for lNOA = 1°, 

0 =-0174533; sin 9 = *0174524 ; 

for lN0A = 5°, 

0= *0872655 ; sin 0= 0871557. 

(v) Show that the limit of tan 9/9, as 9 approaches 0 as 
its limit; is unity. 

(vi) Provided x is not equal to a, 
(x1 — ar)l(x — a) ~x+a. 

The equation holds true so long as x is not equal to a; but 
we can take x so nearly equal to a that x + a shall differ 
from 'la by as little as we please. That is, the quotient 
can be brought as near to la as we please simply by taking 
x near enough to a. Hence although the quotient lias no 
meaning whatever, no value, when x is equal to a, it has 
a definite limit, namely 2a, for x approaching a as its limit. 

(vii) Let SPT (Fig. 26) be the tangent to a circle at P; 
PQ a secant and PR a given length measured along the 

S P R' T 
Ftg. 26. 

secant. Describe a circle with 
centre P and radius PP, cutting 
PT at R, 

Now let Q move along the 
arc PQ towards P; R will 
therefore move along the arc 
R R' towards R'. The nearer Q 
approaches P, the nearer does 
R come to R\ and the smaller 
becomes the angle TPR. If 
we suppose Q to approach P 

as its limiting position, the secant PR will approach the 
tangent PT as its limiting position. If we suppose the 
secant drawn on the other side of P, as PQ'y PS will be the 
limiting position of the secant as Q' approaches P. Hence 
we may define a tangent thus : 

Definition. A tangent to a curve at a point P is the 
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limiting position of a chord PQ as Q approaches P as its 
limiting position. 

It is this definition of a tangent that will be subsequently 
used in the book. 

(viii) Show from the theorem in Exercises V. 10, that if T is 
a point on the directrix AW such that the angle PST is a right 
angle, the line PT will be the tangent to the conic at P, 

§ 40. General Explanation of a Limit. The special meaning 
of the word limit should now be fairly clear. In each of 
the examples there are two variables, one being a function 
of the other. 

One of these variables, the argument, is supposed to 
become all but equal to a definite number, for example to 
a or 0 or ON; or else it is supposed to increase beyond all 
bound. In the former case the definite number is called 
the limit of the argument; it is not a value that the 
argument actually takes ; thus in (iv) 0 is not a value that 0 
assumes. In the latter case the argument is generally said 
to have infinity for limit, though this mode of expression 
seems rather a contradiction in terms; the argument has 
infinity for limit if it is supposed to become greater than 
any number N, no matter how great N may be. 

Again, when the argument becomes nearly equal to its 
limit the function at the same time becomes nearly equal to 
a definite number; not only so, but we can make the 
argument differ so little from its limit that the function 
shall differ by as little as we please (except by the difference 
zero) from that definite number. This definite number 
therefore is called the limit of the function for the 
argument approaching its limit. 

We will now give a formal definition of a limit; the first 
mode of statement is somewhat rough, the second is more 
definite, but in a first reading it may be found a little more 

difficult to grasp. 

§ 41. Definition of a Limit. Notation. Distinction between 
Limit and Value. 

Definition 1. When it is possible to make the argu¬ 
ment of a given function so nearly equal to a definite 
number a that the function will differ from another definite 
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number A by as little as we please, that difference remaining 
as small as we please when the argument is taken still nearer 
to a, then A is called the limit of the function for the argu 
ment approaching (or converging to) a as its limit. 

Definition 2. Given any positive number e that may 
be as small as we please, except that it must not be zero, 
given also two definite numbers a, A ; if it be possible to 
find a positive number rj such that a given function shall 
differ from A by less than e for all values of its argument 
that differ from a by less than >/ (the value a itself being 
excluded), then A is called'the limit of the function for the 
argument approaching (or converging to) a as its limit. 

The modifications required when either a or A is infinite 
offer no difficulty. In general a variable is said to become 
infinite if it takes values that are numerically greater than 
any positive number J\T, no matter how large N may be ; if 
the variable is positive it converges to + qo , if negative io 
— oo. The definite number A will be the limit of a 
function for its argument approaching -f oo as its limit, 
provided that a positive number N can be found such that 
for every value of the argument greater than N the difference 
between the function and A shall be as small as we please. 

The notation for a limit is the letter L or the first three 
letters of the word limit, namely lim. To state that the 
function f(x) approaches A as its limit when x approaches 
a as its limit, the notation is 

L f(x) = A when L x = a, 

or, more usually, L f(x) = A ; 
x~a 

read “ limit of f(x) for x equal to a is A.” It must be 
remembered however that the more usual form is a con¬ 
traction for the first, and that a, A are not values that the 
variables are supposed actually to take. 

In this notation, if lNOA—0 and 0A~a, ex. (i) of § 39 may be 
8tated T MA , T MA . 

L j ny — 1 or L m — I ; 
0M=a^i l 

ex. (ii) : 

ex. (iv), (v): 

Jj p = L P=C; 

tan 6 T sin 0 , 
L a —1> 

e=o V LV 8=0 C7 
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The necessity for the introduction of the notion of a 
limit arose from the consideration of cases in which the 
function ceased to have meaning when a particular value 
was assigned to the argument; but the notion of a limit is 
not, by the definition, restricted to such cases. Whether 
f(x) has or has not a definite value when x is equal to a the 
limit is found by considering the values of f(x) for values 
of x nearly equal to a; the value a itself is not to be used 
in the process. It may of course happen that the limit A 
of the function coincides with the value f(a); still, even 
when A and /(a) coincide, the fact that they are deter¬ 
mined by different processes should not be forgotten. 
Instances frequently occur in which the limit A and the 
value/(a) are both definite and yet unequal. 

§ 42. Theorems on Limits. We now state the principal 
rules for working with limits. In the following theorems 
the functions have the same argument, x say, and the 
limits spoken of are the limits for each function as the 
argument approaches a limit, say a, the limits of the 
functions being finite; it will be sufficient therefore to use 
the letter L without the subscript “ x = a” The number of 
functions is supposed to be finite; the theorems ure not 
necessarily true if the number be infinite. 

Theorem I. The limit of the algebraic sum. of any 
number of functions is equal to the like algebraic sum of 
the limits of the functions. 

Theorem II. the limit of the product of any number 
of functions is equal to the product of the limits of the 
functions. 

Theorem TIL The limit of the quotient of tivo functions 
is equal to the quotient of the limits of the functions, pro¬ 
vided the limit of the divisor is not zero. 

The proof of these theorems is simple; it depends on the 
particular cases that if the limit of each of a finite number 
of variables is zero, then the limit of their sum and of their 
product must be zero. 

Let hv h2, hv for example, be three variables the limit of 
each of which is zero. To prove that the limit of their sum 
is zero we have to show that x can be taken so near a that 
that sum will be numerically less than any given positive 
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number €. Now, since the limit of each is zero, we can 
take x so near a that each of the variables shall be numeri¬ 
cally less than Je; hence we can take x so near a that 
their sum shall be less than e. The same reasoning holds 
if there be n variables; each can be made less than e/n. 
It does not matter whether the variables be positive or 
negative or whether the sum contain negative terms since 
it is the numerical value alone that is concerned. Mani¬ 
festly the product will also have zero for limit. 

Again, if 0 be any finite constant, the limit of OZ4 will 
be zero; we need only choose x so near to a that hx shall 
be numerically less than e/0. 

Now, let u, v, w be functions of x whose limits are 
U, F, W. Then by the nature of a limit when x is nearly 
equal to a, u, v, w are nearly equal to U, V, W; hence we 

may write u= U+hv v = v+ht> w= W+hv 

where hv h2, /?3 are variables which have zero for limit 

Then u-\-v — w = UF-f* h2 ~ 1W—?i^ 

= U+ v-w+hx+h2-hz. 

Hence, since the limit of each of the numbers hv h2> is 

zero> L (u + v-w)=U+ F— W, 

=Lu+Lv-Lm 

Again, uv = ( U+ hx)( V + h2), 

= UV+Uh2+v\ + }hh2; 

so that L (uv) — UV—(L u) x (L v). 

Again, L {uvw) = L (uv) xL w, 

— IjUXIjVXTli v, 

by applying twice the case for the product of two variables. 

Finally, 

or 

u _U+lix_U (U+hx U\ 
v'~~V+h2~~V+\V+h2 V) 

u_U x VIh-Uh2 
v~v+V(V+k2y 

The limit of the second fraction is zero because the 
numerator can be made as small as we please, while the 
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denominator is not zero, since V is by hypothesis not zero; 
it follows that T u__ Z7_L u 

v~V~h^’ 

We have for simplicity taken only three functions, but 
clearly the reasoning holds if there be more than three 
functions, the limits U, V, ...being of course all finite and 
no denominator having zero for limit. 

If one or more of the functions be constant it is evident 
that the reasoning holds; thus u might be a constant, and 
then we might consider Lu as being simply u itself, 
without in any way violating the conditions for a limit. 

§ 43. Examples. We will now give a number of examples 
in which the above principles come into play. In seeking 
the limit it is useful to bear in mind that any transforma¬ 
tion of the function which is legitimate when the argument 
is not equal to its limit may be applied as a help towards 
the solution. Thus 

= _ a’+l-l 1 

xQ(x+i)+1} j(x+\)+Y 

The division of x out of numerator and denominator is 
legitimate so long as x is not zero; but in finding the limit 
for x = 0, x is not to become 0, and therefore the first and 
the last of the three fractions are equal for all values of x 
considered. Hence 

T x/(* + D-l t _1 

x—0 x “b 1)4-1 2 

In the same way we find 

L s/fr+n-i^ L i o. 
X— 00 X X— QO V1(x 4" 1) 4" 1 

We take it to be sufficiently evident that the first of 
these limits is by Def. 2, § 41, we should be able to find rj, 
so that when x is numerically less than rj the difference be¬ 
tween the function and £ shall be less than any number we 
may name, say less than '001. But the search for tj is usually 
very troublesome, and in such simple cases as we have to 
deal with we shall usually dispense with that part of the 
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investigation, as the nature of the processes involved will 
show that such a number can be found. 

Ex. 1. L ji+2-+3.)+ ... +-2}=i 
n~oo p/r n£ n~ nL) 2 

1+2 + 3+ ... +n 2w(n + 1^ 11 
For the sum =----—--— ~ 4 «-• 

nM nz 2 2 n 

This example shows that Th. I., § 42, is not necessarily true unless 
the number of functions is finite; for although the limit of each term 
in the bracket is zero, the limit of the sum is not zero. 

Ex 2 L *2 + 22 + 32 + +«2^T 
n^.’oo * 3 

for 

and therefore 

12 + 32 + 32+ ... + «2=|rc(n + l)(2» + l), 

12 + 22 + 32+ ... +W2_i 11 

n3 3 2)i 6 rft 
1 

so that the limit is i 

Ex. 3. If r be a proper fraction and n a positive integer, L rn — 0. 

For any positive proper fraction is of the form 1/(1 + a), where a is a 

positive number. Now, by the binomial theorem or otherwise we can 
readily show that (l 4«)w is greater than 1 +na. 

Hence, so far as numerical value is concerned, 

n__ 1 1 

(1 4 it)n 1 4* no, 

and since the limit of 1/(1 +na) for n— 00 is zero, the limit of rn is also 
zero. 

Ex. 4. Show that if r be a proper fraction and n a positive integer 

L nrn—0, L mV* — 0, etc., 

for (1 4 a)n> 14gn{n - 1 )a2; so that 

Ex. 5. 

for the fraction 

nrn< 

l+a+l(n-1)“2 

T 2.J.'2+3.r - 1 2 

7K3x?-‘2x+l~3’ 

2 + ?-i 
X X* 

X XJ 

etc. 

and the limits of numerator and denominator are 2 and 3 respectively. 
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for 

L(^±h)^ 
A=0 n 

{x+ltf-x2 
_ Zx2 4- 3 xh 4- h\ 

Ex. 7. T ■52 + 4.r4-3 

r=--1x2-~7x-8~ 

First remove the common factor .r+1; it is the presence of this 
factor that makes the fraction take the form 0/0 when we try to 
calculate its value for x— — 1. 

Ex. 8. 

Ex. 9. 

for 

Ex. 10. 

— 8. 
2) 

, sin Zx IJ-— o, 
x=0 X 

sin 3.r sin 3.r , T sin Zx „ 
— x 3 and L - — ~ 1. 

X Zx Zx 

L^=l. 

Put x~-} -y; then when x approaches - as its limit y approaches 0 

as its limit. Hence 
j cot x J tan y ^ 

^ •* 

This device of changing the variable is often useful; for example : 

Ex. 11. (x+hf ' x- 3 

Put x—y1 and x+h — (y + 1c)'2, so that when h approaches 0 so does k; 
therefore 

7 (x 4- h) ^ _ j (y 4- k)3 - ,?/3 -r 3?/2£ 4- Zyl 2 4- P 

h=o h +ky2 - y2~ ^ 2y1c 4- k'2 

3?/2 3 3 ^ 

-s&rs^s-*4- 

Ex. 12. P, P' are the perimeters of two regular w-gons circum¬ 
scribed about two circles whose radii are a, a! and circumferences 
C, 6,#; show that 

P: a —F' \o! and C: a — Cf: a!. 

The constant ratio of circumference to radius is denoted by 2rr ; 
7r is an irrational number, approximately equal to 3T4159. 

Ex. 13. Show that the area of a circle of radius a is ?ra2, and that 
the area of a sector of the circle of angle 0 radians is \6d2. 
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Ex. 14. Show that the volume of a right circular cylinder, the 
radius of the base being a and the altitude Jiy is tta2h. 

Show that the area of the curved surface is ihrah. 

Ex. 15. If A is the base and h the altitude of a triangular pyramid, 
and if the pyramid be divided into n slices, each of height h/n, by 
planes parallel to the base; show that the volume of the pyramid 
is less than 

hi 
n l 

A + !*=,+ ... + *, + ■!’ 
n“ n~ iv nu 

A \ 
but greater than 

h ( (n — l)3 , , (n - 2)2 l2 

a A -A+ ... +-.1A+-..A \ 
y 

Hence show, by ex. 2, that the volume is \hA. Extend the result to 
any pyramid. 

(Let V be the vertex and DEF the base ; through the line in which 
a plane meets the face VEFdraw a plane parallel to VI) to meet the two 
pianos next above and next below the plane containing the line. Two 
sets of triangular prisms will be formed; the one set will lie within 
the pyramid, the other set will include the pyramid. The two sums 
are the volumes of the two sets; the highest pyramid of the upper 
set is got by drawing a plane through the vertex parallel to the base.) 

Ex. 16. Taking a circular cone as the limit of a pyramid whoso 
vertex is the vertex of the cone and whose base is a regular w-gon 
inscribed in or described about the base of the cone, deduce from 
ex. 1T> that the volume of a cone is h being its altitude and 
A its base. 

Ex. 17. Show that the volume of the frustum of a right circular 

cone is \h{A + iCBB) or a2+<*£>-f/>2^, where h is the height of 

the frustum, A, a and 7?, b the areas and the radii of the circular ends. 

Ex. 18. C and a are the circumference and the radius of the base, 
and l is the slant side of a right circular cone ; show that the area of 
the curved surface is \IC or 7via. 

(The curved surface may be considered as the limit of the lateral 
surface of either of the pyramids of ex. 16.) 

Ex. 19. If the slant side of a frustum of a right circular cone is /, 
and if the radii of the circular ends are a, b show that the area of 
the curved surface is 7rl(a+b); if c, c' are the circumferences of the 
ends, the area is \l(c+d). 



CHAPTER V. 

CONTINUITY OF FUNCTIONS. SPECIAL LIMITS. 

.§ 44. Continuity of a Function. The conception of a limit 
enables us to put in arithmetical form the property that 
may be considered as most characteristic of a continuous 
function. 

The argument will be said to vary continuously from a 
to b when it takes once and once only every value lying 

between a and b; when the argument is represented as an 
abscissa, the corresponding point will move along the axis 

from the point a to the point b as the argument varies 
continuously from a to b, and will coincide once and once 
only with every point on that segment. 

In plotting the graphs of the elementary functions it 

was found that, except in the immediate neighbourhood of 
those values of the argument for which the function 
became infinite, a small change in the argument produced 
only a small change in the function. Now by the defini¬ 
tion of a limit, when x is nearly equal to a the function, 
f(x) say, is nearly equal to its limit A ; if therefore the 
limit A be identical with the value f(a) of the function, 
we see that when x either increases or decreases from the 
value a by a small amount the function fix) will also 
change by a small amount from the value f(a). Hence the 

Definition. A function f{x) is defined to be continuous 

for the value a of x> or more simply, continuous at a if 

(i) f(a) is a definite (finite) number, and 

(ii) L/(x) =/(«). 



88 AN ELEMENTARY TREATISE ON THE CALCULUS. 

For continuity therefore the value of f(x) for # = aand 
the limit of f(x) iorx — a must coincide; since infinity is 
not a value, in the sense that is required for the application 
of the laws of algebra, a function ceases to be continuous, 
that is it becomes discontinuous, for those values of the 
argument that make it infinite. 

Again it is implied in the definition that x may approach 
a either through values less than a or through values 
greater than a; that is when /(a) is represented as an 
ordinate the point x may approach a either from the left 
or from the right and the limit must for both methods of 
approach be the same. It will sometimes happen, as for 
example when f(x) = ^/(a2 — x2), that x can only approach 
a from one side, the function being undefined for values of 
x on the other side; in such cases of course the condition 
that the limit must be the same from whichever side x 
approaches a lias to be modified, but the modification offers 
no difficulty. To express that x is to approach its limit a 
through values less than a the notation 

Lf(x) 
x-a- 0 

is sometimes used, and in the same way the notation 
x = a- -h 0 implies that x is to approach a through values 
greater than a; but we shall as a rule use the ordinary 
notation and leave the student to modify it to suit special 
cases. 

The only other type of discontinuity that needs special 
mention is that represented in Fig. 27. As x varies from a 

Fig. 27. 

value a little less than a to 
one a little greater the func¬ 
tion changes by the finite 
amount BG. Here the func¬ 
tion f(x) has not a definite 
value when x — a; as x ap¬ 
proaches a from the left f(x) 
approaches one definite limit 
AB} while as x approaches 
from the other side f(x) ap¬ 

proaches another definite limit AG. If a moving particle 
were at a certain instant to experience an impulse the 
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graph of its velocity would present a discontinuity of this 
kind for the value of the abscissa representing the instant. 
(See § 69, ex. 6, for an example of discontinuity.) 

§ 45. Theorems on Continuous Functions. When fix) is 
continuous at a it is merely stating the definition of 
continuity in another form to say that if x be nearly equal 
to a, fix) is nearly equal to fia); or again we may say that 
fix) =f(a) + d, where d is a variable which converges to zero 
when x converges to a. 

A function is said to be continuous over the range from a 
to b if it is continuous for every value of its argument that 
lies between a and b; the range is understood, unless 
the contrary is stated, to include its extremities a, b. A 
range which includes its extremities is sometimes called a 
closed range ; one which excludes its extremities an open 
range. 

The following theorems are of constant application: 

Theorem I. If fix) is continuous at a and if fia) is not 
zero, then for values of x near a, fix) has the same sign as 
fia). 

For if f(x)=f(a) + d, the sign of fix) will be that of 
the numerically greater of the two numbers fia) and d; 
since x may be taken so near to a that d shall be less 
(numerically) than any given number, and therefore less 
(numerically) than fia), the sign will be that of fia). 

The meaning of the phrase “near a” and of similar 
phrases will be gathered from the proof. 

Theorem II. If fix) be continuous over the range from a 

to b, and if fia) = A and /(b) = B, then fix) will assume once 
at least every value lying between A and B as x ranges 
continuously from aiob; in particular if A and B have 
opposite signs fix) ivill become zero for at least one value of 
x lying between a and b. 

A mathematical proof of this theorem lies beyond 
our scope; so far as a function is adequately represented 
by a graph the theorem is geometrically evident. It is 
easy also to show by use of a graph that the converse 

theorem is not necessarily true. 
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§ 46. Continuity of the Elementary Functions. The theo¬ 
rems on limits stated in § 42 enable ns to prove that the 
elementary functions of a single variable are continuous for 
all values of the variable except those for which a function 
becomes infinite. 

When x varies continuously so does the product xn and 
the product ax11, n being any positive integer and a a con¬ 
stant. (S 42, Th. II.). Hence by Th. I. a rational integral 
function is continuous for all finite values of its argument; 
and by Th. I. and Th. III. a rational fractional function is 
continuous for all finite values of its argument except such 
as make its denominator vanish. 

From the geometrical definition or by direct application 
of the limit test we see that the trigonometrical functions 
are continuous for all values of the variable except such as 
make the function infinite. The sine and the cosine are 
continuous for all values of the argument; the tangent and 
the secant for all values except the odd multiples of 7r/2; 
the cotangent and the cosecant for all values except 0 and 
multiples of ir. 

A full discussion of the continuity of ax would take us 
too far into abstract considerations; we will therefore 
assume that ax is continuous for all finite values of x and 
that its inverse, log x, is continuous for all finite positive 
values of x but discontinuous for x = 0. When x is irra¬ 
tional we may in practice replace ax by ax' where x is a 
rational approximation to x; the simplest discussion is 
based on the exponential series. 

Function of a Function. When y is a function of u, 
say y — and u a function of x, say n~f(x), then y is 
said to be a function of a function of x; y is thus given as 
a function of x mediately, through u. Functions of func¬ 
tions are of constant occurrence in the calculus, and there 
may be several intermediate variables such as u. 

If y is a continuous function of u, and u a continuous 
function of the student will have no difficulty in showing 
that y is a continuous function of x; in the notation of § 42 

L = (p{ £7) = ^(L u). 

Again when a function is continuous so is its inverse 
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function. Hence xn is continuous when n is fractional, 
positive or negative, except for .r = 0 when n is negative. 
Iu the same way we see that the inverse trigonometric 
functions are in general continuous. 

rgffi_(('ll 

§47. L -- The limits discussed in §§ 47-49 are 
x — a % a 

fundamental. 

T xn — an n i 
L —via71-1. 

x—a & a 

n being any rational number. 

(i) Let n be a positive integer; then 

~ ^xn~l + xn - 2a + xn - -V +... + xan *2 + an -'1; 

L (= L(xn~1+xn~2a+x”_3a2+... + a;a.’‘"2+a” -x) 
& = a ' ^ ' jc = a 

z=nan~1) 

since the limit of each of the n terms is an~\ 

(ii) Let n be a positive proper fraction p/q, where p, q 
are positive integers. 

Put yq for x and l>q for a; then when x — a, y — b. Hence 
since xn — xplq = yp and an — bp, 

Xn—an_yr~.bP_yP-1 + yr-'2b+... + yhP-2 + bp~1 
~yqZ Jyi 

by rejecting the common factor y — b\ 

L (yP~1 + Vp'2b + • • • + ybp-2 + bp'x) 
v-b 
L (&■-1+yq lb+... + ybi - *+6?-1) 

y — b 

pbp" 

' qbq - 
--<i~ nd 

<1 
rtl-l 

(iii) Let n be negative, but either integral or fractional, 

say n= — m. Then 

x~171—a~ xm~an 
,rnnm J xma x — a x—a x—a 
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x—a ' & (& / x==a ' & CL 1 x=aP^ & 

— — mam~lX “~= —ma~m~l = nan~1, 
alm' 

since the limit of the first factor is mam ~1 by cases (i) 
and (ii). 

The student should be able to identify the theorem in 
whatever notation it may be presented; thus 

T (x+h)n-xn „ . x 1 ( 1 1\ 1 
h~o h &v=oSv\v + Sv vJ v- 

Cor. If h be a small positive or negative number, 
(x + h)n is equal to xn 4* nhxu ~1 approximately. 

/ i \m 
§48. L (14—) . The number a 

VI — oo \ 0)1/ 

(i) Let m be a positive integer and expand by the 
Binomial Theorem; then 

( \ i ^ i m 1 m(ra —1) 1 
V^m) ~ 2} m2 

+ 
m(m — 1) (m — 2) 

“3 F 

i 

“1+T + 

i-i (i-i)(i-i) 
1 . m \ 771/ \ 777,/ 

3! 

In the expansion there are (m + 1) terms and every term 
after the second can be written in the form given to the 
3rd and 4th terms ; for example, the last or (m4-l)th term 
is 

(i-iYl-—yii-— 
\ m/\ ml \ ml 

Let n be any positive integer less than m and let n be 
kept fixed while m increases. Denote the first (n+l) terms 
of the expansion by $'n+1 and the remaining (m — n) terms 
by R'n+1. Then 

0 m) ^ ^ ^ n+1‘ 
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$^4-1 — 1 + T + " 
00 -*•) i/ \ m/ 

1~- ••• 1' rn/ \ 

The limit for m = oo of each of the factors fl~ ~-\ 

(1-)— is 1 and since there is a finite number of factors 
V rn / 
the limit of each numerator is 1. Denote by Sn+1 the limit 
for m = oo of S'n+l; therefore 

Sn+1 = L = 1+ J 4- — + r-t 4-+-■ 
■)H = 0O A ** • • •V . 

We have now to consider the limit of 72',,. -. The first 
term of is 

^+(n+l)!, 

and this term is a factor of every one that follows it. 
Hence R'n±x is the product of: 

] 1+-—+ ~—7-^(7 ——+ • • -to (m-n) terms)- ( n + - (% + i)(n + 3) J 
Everywhere replace each of the factors (l ~ 

(^1-— -J, which are all positive and less than 1, by the 

factor 1, and replace each of the factors (w + 2), (w + 3)... m 
by (u4-1); by so doing we shall increase R'n+V which is 
therefore less than 

(«^Ui{1+iTI+(-STI?+- to tem4 
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But the series within the bracket is a geometrical pro¬ 
gression whose sum is 

!__L_ 

- 1 ~~ n t (n + l)m“nJ ’ 

L~n + 1 
and for every value of m greater than n, this sum is less 
than l)jn. 

Hence R'n+is a positive number which for every value 
of m greater than n is less than R"n+V where 

(n+])! n n(nl) 

But L (1 +— ) = L £'w+1 + L R'n+V 
771 = 00 ^ ''*•/ 7/1 — 00 171 “ CO 

The first limit is $n+1, and the second limit is a positive 
number less than ; therefore, inserting the values of 
$n+1 and /2",l+1 we get, 

/ l\m li 1 

i(1+m) >1 + 1 + ^+3l+," + »!; 

hut < 1 +1 +1 +1 + • • • + i + - , 

°r i(1+m) =1 + 1 + 21! + 3!+-+'/r! + ii;,l+1.(A) 

where i£n+1 is less than Rr'n+1 orn^n jy 

When 7i is even moderately large, Rn+i is very small; for 
example, when n =12, l/n(n !) is less than 3 x 10”10; so 
that the value of the limit may be obtained very approxi¬ 
mately by calculating the series as far as 1/12 !. The 
calculations are very easy to effect, and the value will be 
found to be, for the nearest 7-figure approximation, 

27182818. 

The limit is usually denoted by e; e is really an irrational 
number. It is easy to see, by comparing $n+1 with the sum 

1 +1+ 2+25++ 
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which is greater than Sn+l and equal to 3-1/2”'1, that no 
matter how great n may be <S’M+1 is certainly finite and 
less than 3. Since e—*ST„+1 is equal to Jin+1> and since the 
limit for n — oo of df„+1 is zero, e may be considered as 

,lL(1+1+^!+,r!+-+i!)i.<«) 
or, in the usual phraseology, 

e = 1 +1 + J ^ + J-- +.. .to infinity. 

(ii) Next suppose that m proceeds to infinity through 
positive fractional values; m will therefore always lie 
between two consecutive integers, say n and n+1. Hence 

l_j— > 1 -|— >1 -\-- ; 
n m u +1 ’ 

But L (l+IY+,= l(i+-)* x l(i+-) = cx1; 
71 = yj > 11/ 71-' 7? = oo ' 71/ 

and L (l + ~iT)n= L(l+ -i Y'+1-L(1+~-f) = e-r-l 

by case (i). 
Hence in this case also the limit is et because as m becomes 

infinite so does n. 
(iii) Let m be negative, m= — n wliere n is positive but 

either integral or fractional. Then 

o+sT-o-r-c-’i 
„b(‘+s) 

-.i.(i+s^r'xJi(i+»-x) 

by cases (i) and (ii). 

Hence finally 

= ex 1 

L 
W13S+00 
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whether m proceeds to infinity through integral or frac¬ 
tional values. 

3 
Cor. L (1+A)*=e. 

h~ o 

§ 49. The Function ex. If <r4=0, we see, by putting 
m=*Mxf that when m becomes infinite so does M\ hence 

1 + 

and L 
m-'jo 

1 + 
X 

m, 

*)'-( 
i \Mx 

]+m) -{o+irr- 
i+m) } -Lif i+ iyr^ 

M) J ’ 

by §46 (Function of a Function). 
Since M may be positive or negative, integral or frac¬ 

tional, the result holds whether x or m be positive or 
negative, integral or fractional. 

By exactly the same method as in §48, it may be shown 
that (/y»2 /y»«i 

.. _ 1+*+Jj+|i+ —+^i) 

/ x\m 
by expanding (^1+—J for positive integral values of m. 

It is easy to see that this series is a finite number no 
matter how great n may be ; for as soon as n is numerically 
greater than x, 

/jtitt+2 

0+1)! + + 1+- 
rn+l 

(n +1)! 
is numerically less than 

(w + 2)! ' (n + 3) 

l + ~--X . +_-t_p , 

n -f- 2 (% -f* 2)(n -j- 3) ■} 

rj£ W-f 1 

0+1) ! 
where is the numerical value of x. The series in brackets is 
a geometrical progression with a common ratio numerically 
less than 1; hence if we write 

e*=l+a?+2j+ ■(A) 
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iJn+i will, for every value of n greater than x numerically, 
be less than 

xxn+1 ^ w+l ,r/H1 

(n + i)!X n + I - x, ~ (n + T- ■ri)(n !) 

If xx — 1, this gives the value of 7f„+1 in § 48. 

(>x ■■ ] 
Cor. 1 j — — 1. 

X~<) X 

For if x be a positive proper fraction, we may put 1 for n in (a) ; 

therefore e* > 1 + x, but ex < 1 + x 4- ~ ? 

so that —but <1+., 
x 2-.r 

from which the result follows for positive values of x. 
If x be negative, x~- - h where k is positive, then 

«x-l_ j x - 
X ft—o tl tl 

by the first case, so that the limit is the same whether x proceeds by 
positive or negative values towards its limit 0. 

L 
ar--0 

I 1 . 
X -r = 1 

§ 50. Compound Interest Law. When an exponential 
function is spoken of, the base is usually understood to 
be e; where the base is any other number, say a, the func¬ 
tion ax can be written ekx, where k = log a. 

The rate at which aehx increases with respect to x when 
x — xY is hiekx\y that is, is proportional to the value of the 
function when x = xr For when x increases from xx to xx+h 
the increment of the function is 

^fK^iXh) _ aekxi — aekxi(ekh ~ 1), 

and the average rate is 

aekx\(ekh 
.h 

1) 
m _ j 

lch~' 

By § 49, Cor., the limit of this expression for h — 0 is haekxi. 
Many processes in nature follow this law, the law is 

sometimes quoted as the compound interest law, since the 
simplest case of it is that of compound interest. For, 
suppose a principal of P pounds to earn interest at the 
rate of p per cent, per annum; let interest he calculated at 
n equal intervals in each year, and let it be added to the 
principal as soon as it is earned, so that the interest bears 



98 AN ELEMENTARY TREATISE ON THE CALCULUS. 

interest. It is easy to see that at the end of t years the 
principal will amount to 

Let us suppose now that n increases indefinitely, that is, 
suppose that the interest is added on at shorter and shorter 
intervals; we thus approach a condition in which the 

interest is added on continuously. Put so that 

when n becomes infinite so does m. The limit of the above 
expression for n increasing indefinitely is Kl\ml v± PL 

1 + —) [iuo = Peioo. 
m/ J 

Again, we see that if t increase in any arithmetical pro¬ 
gression, whose common difference is h, A will increase in a 

ph 

geometrical progression whose common ratio is e™; for if 
J>{t+h) ph 

t become t + h, A will become Pe 100 , that is, Ae100. Hence 
A is a quantity which is equally multiplied in equal times. 

The density of the air as we descend a hill is a quantity 
which is equally multiplied in equal distances of descent, for 
the increase in density per foot of descent is due to the 
weight of that layer which is itself proportional to the 
density. Many other instances may be found in physics. 

EXERCISES VII. 

1. If f{x)~axn + bxn~1 +... + kx+l is a rational integral function 
of x, show that 

and therefore that when x is numerically large, 

f{x) = axn{l +d\ 

where d is a variable whose limit is zero for x— ± oo. 
Use Th. I., § 42. 

2. Show that f(.r) in ex. 1 has the same sign as a when x is a large 
positive number, but has the same sign as (-1 )na when x is 
numerically large but negative (that is, has the sign of + a or - a 
according as n is even or odd). 
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3. From the result of ex. 2, show, by applying Th. II. of § 45, that 
every equation of odd degree has at least one real root, and that if it 
has more than one it must have an odd number. 

4. If fix) is a rational fractional function 

a~m + • • • + k.r 4-1 
7K ) 'Aar + B^' + :..+Kx+L' 

prove (i) fix) = if m>n; 

(ii) f(iv)=•-jO + ^2) if m=» ; 

1 

~Ay 

a 
(ill) fix) = -J • + <*3)if m < n> 

where dv o?3 are numerically very small when x is numerically very 
large. 

Use Th. I. and Th. III., § 42. 

5. Show that, the angle being measured in radians, 

T /1 — cos 0\ 1T fmnlOy 1 

et I'-rrailir) ^2 
Hence show that when 0 is small, cos O-l-kd2 approximately, 

1 >COS 0> 1—hO‘K 6. Prove 

7. Prove 

8. Prove 

By § 49 (a) 

therefore 

(0 L 
sin aO ,..s T tan aO a 

e..:0tan bO Ti o^o^inbO b’ 

(i) L (xe~x)—0; (ii) L (x log x) — 0. 
*= + 00 

et>\ +x+kx2; 

Xr'x‘?<i+I+B>that is’ i—'—’ <r - + l+lv 

and the limit of the fraction last written is zero. 
Next put x=^e~y\ then xlogx— — ye~y and the limit for .r=G is 

equal to the limit for ?/= 4- 00, which is zero. 

9. Prove L xne~z = 0. *=4-w 
10. Prove that if n be positive L .^"log.r —0. 

x=0 

xn log x=log (#”) For 

and the limit is zero by ex. 8 since the limit of xn is zero. 

11. Prove L sin x log x=0, 
1=0 

For sin x log x — ^ ^ (x log x). 

12. If x is ?,ny finite quantity, prove 
/piit 

L ^=0. 
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Suppose x equal to or less than the integer fi; then, numerically, 

xn x* x x x^x^f x yi~^ 
n! n! fi 4-1 /i + 2 ’ n g!\{x +1 / 

But xftg + l) is a proper fraction. 

13. If a be a constant or a function of x which is finite for every 
value of x, prove 

(i) l (siu5 :?y=i; (ii) l (c°8jy=i; 

(iii) L (tan a~ : “Y~l. 
X—Y) \ X X) 

14. If sn is a variable that (i) always increases as n increases but 
(ii) always remains less than some definite fixed number a, show that 
as n tends to infinity sn tends to a definite limit that is equal to or 
less than a. 

Take the values siy .?2, s:i,.. as the abscissae of points Ai9 d<„>, A:i... 
on the .r-axis and let A be the point whose abscissa is a; for every 
value of ft, A n will be to the right of An.^ but to the left of A. As n 
increases the point A„ will move further and further to the right, 
but will not for any finite value of n coincide with A. There must 
therefore be some point S to the. left of A or coinciding with A to 
which A„ mav be made to approach as near as we please; if the 
abscissa of & is s then by the definition of a limit 

L sn—s, 
n—T> 

and .s is less than or equal to a. (Compare § 39 (ii) and Fig. 25.) 

15. If is a variable that (i) always decreases as n increases but 
(ii) always remains greater than some definite fixed numl>er 5, show 
that as ft tends to infinity .sn tends to a definite limit that is equal to 
or greater than b. 

16. If sn 1 + ^ + 2! + ^ ! + ••• + ny 

show that sn converges, as n tends to infinity, to a number that is 
greater than 2 but less than 3. 

17. If S» = 112 + ^ + 32 + -+’S 

show that sn converges to a number that lies between 1 and 2. 

Let +—-f* -v =2—<2, 
1 1.2 2.3 (ft-l)ft ft 

then for every value of n (greater than 1) sn<s'n<2. 

18. Apply the theorems of exs. 14, 15 to establish the results of 
exs. (i), (ii), (iii) of § 39 when the ft-gons are not regular but are such 
that as ft increases indefinitely the length of each aide diminishes 
indefinitely. 



1 CHAPTER VI. 

DIFFERENTIATION. ALGEBRAIC FUNCTIONS. 

§51. Derivatives. Differentiation. The process of §§36, 
37 can now, by making use of the notion of the limit, be 
stated more compactly. 

The average rate at which the function 3a;2 varies as x 
varies from x1 to xl + Sxv where <5.^ may be either a 
positive or a negative increment, is by definition 

=6Xi+3&i> 
dXj ()Xx 

and the number which is taken as measuring the rate of 
change when x — xl is 

L^2)= L(6x1+3&1) = Ca:1. 
to1==0 OXx Sx j ™ 0 

The reasoning does not depend on the particular value xx 
of the argument, and we therefore state the result in the 
form, “ the function 3a?2 varies with respect to x at the rate 
6x” leaving it to be understood that when x=xx the rate is 

when x — x2 the rate is Gx, and so on. It will save 
multiplication of symbols to use x as the symbol for the 
argument in general and also as the symbol for some 
definite value of the argument, and the student will find 
that, as a rule, it causes no ambiguity to do so; if he ever 
finds difficulty, let him choose a separate symbol as xx for 
the definite value at which the rate is measured. 

Now take the general case. Let f(x) be a continuous 
function of x; as the argument varies from x to x-f&c, 
where Sx may be either a positive or a negative increment, 
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the function varies from f(x) to f(x+Sx). The average rate 
of change of the function when the argument changes by Sx is 

fffo) ^f(x+ox)-t(x) 
Sx Sx 3 

and the number which measures the rate of change is 

L 
OX 

We shall find that for all the elementary functions this 
limit is a definite number, except, it may be, for particular 
values of x. In general the limit will depend on xy and a 
special name is given to it, namely, “ the derivative of f{x) 
with respect to x” 

Instead of “ derivative/' the names “ differential co¬ 
efficient,n “ derived function ” are also used; in certain 
connections also the word “ gradient " or “ slope” is used. 
(§ 53.) The process of finding the derivative is called 
“ differentiation ”; the name “ differential coefficientw was 
formerly more frequently used than “ derivative." 

Again, there are special notations for the derivative. A 
very convenient notation is obtained by accenting the 
functional letter, as f'(x); another is got by prefixing the 
letter D, with or without the suffix x, as Dxf(x) or Bf(x). 
If the function be denoted by a single letter, as yy the nota¬ 
tion for the derivative of y with respect to the argument 
x is similar, as y'xy Dxy or y\ By. As a rule the suffix is 
omitted when there is no ambiguity as to the argument. 

Finally, to denote the value of the derivative for a special 
value of x, say xv the following notations are used : 

f (Xl)> [Uxf(x)]x=xi > [y ]x=x^ 
As a matter of fact, the derivative is really formed for 

such a definite value, but the functional character of the 
derivative is more prominent when that value is denoted by 
the same symbol x as represents the argument in general. 

To sum up then we have the defining equations:— 

f(x) = Dxf(x)= L 
{£ = 0 to 

L /O+to)—/(a) 
&c=o to 

y' = Dxy = L& 
8x~Q SX 
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The function thus determined is called the derivative, or 
the differential coefficient, or the derived function of f(x) 
with respect to x and it measures, or briefly it is, the rate 
at which the function varies with respect to its argument 
for the particular value x. 

Of course other letters than x,f, y, may be used; thus 

,//(/)=AV>(i)= L Wp, 
61-0 Ot 

and <p'(t) is the derivative of <f>(t) with respect to t. 
It will be convenient often to use such expressions as the 

x-derivative of f(pc), or the time-rate of change of a func¬ 
tion, instead of the derivative with respect to x, or the rate 
of change with respect to the time. 

Ex. 1. 

for 

Now 

7b(3,r‘J - 4j- 4- 3) = 6.r — 4, 

A(3A-4.r + 3)- L 
&r=o 

fi(3.r3 — 4.r + 3) 
hr 

— 4,r ~f~ 3) ~~ 3(.r -f- S.rf — 4(.r -f- S>i) ■{■3 — (3A — 4.r *f* 3} 

= 6 rhr + 3(&r)2 - ; 

L L (to+3&r-4)=&v-4. 
$x=0 &>• Szxx o' ' 

Ex. 2. 

for 

A'(~J = - ^ (c constant), 

c _c_ — eSv 
\v) ~v+8v v~~vl+vSo 9 

If v — 0, the above process cannot be carried out. 

§ 52. Increasing and Decreasing Functions. 
of a limit and of a derivative 

By definition 

S/U) 
ox 

=f(x) + a, 

where a is a variable which is very small when Sx is very 
small and converges to 0 when Sx converges to 0. 

For an illustration of the difference between 8f(a)/8x and f(x), see 
the results of examples 4, 5, 6, § 32. 

Hence if f(x) is not zero the sign of f(x)-fa and there¬ 
fore of Sf(x)/Sx will be, for sufficiently small values of Sx, the 
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same as that of f{x)(compare §45 Th. I.); therefore the 
sign of Sf(x) will be that of f'(x)Sx. 

Now suppose Sx a positive increment; then Sf(x) will be 
positive or negative according as f(x) is positive or 
negative. But 

Sf(x)=f(x+Sx)-f(x); 

hence f(x + Sx) is algebraically greater or less than f(x) 
according as f\x) is positive or negative. In otlier words, 
f(x) increases as x increases so long as f(x) is positive, but 
f(x) decreases as x increases so long as f'(x) is negative, 
increase and decrease being algebraical and not numerical 
increase or decrease. 

If we suppose Sx a negative increment then Sf(x) will be 
negative or positive according as f'(x) is positive or negative; 
f(x) will decrease as x decreases so long as f(x) is positive 
but will increase as x decreases so long as f\x) is negative. 

Hence the mere sign of f'(x) tells how the function 
changes as x changes; if f(x) — ax+bf f\x) = a and the 
conclusions agree with the statements of § 33 for the 
uniformly varying function. 

Definition. A function which increases as its argument 
increases and decreases as its argument decreases is called 
an increasing function; one which decreases as its argu¬ 
ment increases and increases as its argument decreases is 
called a decreasing function. 

Thus since D(3x2) = 6x> Sx2 is a decreasing function for all 
negative values of x and an increasing function for all posi¬ 
tive values of x. The function ceases to decrease and begins 
to increase as x passes through the value 0; hence when x = 0 
the function is a minimum (§ 17, iv), and its value is then 0. 
It will be noticed that when x = 0 the derivative is 0; the 
rate of change is therefore zero for the minimum value. 

The derivative of 3x~ — 4./* -f 3 is 6,r — 4; hence so long as 
(xr — 4 is positive, that is, so long as 6x is greater than 4, 
that is, so long as x is greater than the function is an 
increasing one; on the other hand so long as x is (al¬ 
gebraically) less than f it is a decreasing function. When 
x = f the function is a minimum, the minimum value being 
f. Here again when x — \ the derivative is zero, that is the 
rate of change of the function is zero. 
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Stationary Values. The conclusions about increasing 
and decreasing cease to hold for those values of x for 
which f(x) is zero. Since f(x) measures the rate of change 
of the function it is usual to class those values of the 
function for which f'(x) is zero as stationary values. 

Ex. Show that the function a? -f 1 has a stationary value when 
and that for all other finite values of x it is an increasing 

function. 

§ 53. Geometrical Interpretation of a Derivative. A 

specially useful interpretation of a derivative is obtained 
from the graphic representation of a function. 

Let A BP (Fig. 28 a, b) be the graph of /(&). Take a 
point P on the graph; OM—x, MP — y =f(x). 

Let MN=ox; then ON-x Pox, NQ=y+Sy=f(x+Sx). 
From P draw PR parallel to the x-axis to meet NQ (or NQ 
produced) at R; then, both in sign and in magnitude, 

RQ = NQ - NR - NQ - MP =f(x + ox)-f(x) = of\x), 

i KPO-]i9 - RQ -V(x)- and tan RI Q-rr- j1n~ " 6x 

When Sx converges to 0 as its limit, the quotient of{x))ox 
converges to fix) as its limit. But as 8x converges to 0, N 
tends towards coincidence with M and Q tends towards 
coincidence with P. Hence since tan RPQ converges to a 
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definite value, namely f\x)y the angle RPQ converges to 
a definite angle and therefore the secant PQS tends to a 
definite limiting position PT. The line PT is, by defini¬ 
tion (§ 39, ex. vii.) the tangent to the curve at P. 

Hence f(x) is the trigonometrical tangent of the angle 
that the tangent to the graph at P, the point (x, f(x)), makes 
with the sc-axis. From this property of the derivative, the 
name gradient is used (see § 22). 

In Fig. 28a, the tangent PT makes with the rc-axis the 
positive angle RPT or XLP; in Fig. 28b it makes 
the negative angle RPT or XLP'. We will usually denote 
the angle by c/>, so that tan 0 = f(x). 

Fir,. 28b. 

In the diagrams Sx is positive, but it is evident that the 
same conclusions can be drawn if Sx is negative, that is if 
Q is on the opposite side of P. In particular cases it may 
happen that P can only be approached from one side. 
Thus if f(x) — ^x3, x cannot take negative values; in 
finding /'(O) therefore Sx must be positive. Here 

f'(Q\ — L/(&)-/(°»= L */(&«?_ 
lx=0 Sx Jx=0 OX 

L s/(Sx) = 0, 

and the tangent makes a zero angle with the a’-axis; since 
/(0) = 0, the x axis is itself the tangent at the origin. 

Ex. Find the gradient of the graph of 3^2 — 4r+3 at the points 
whose abscissae are — 1, 0, §, 1, 2. 

§ 54. Derivative as an Aid in Graphing a Function. The 
conclusions drawn in § 52 from the sign of the derivative 
are valuable as an aid to a mental representation of the 
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variation of a function; those of § 53 are equally valuable 
in helping us to graph the function. 

The diagrams of § 53 may be considered the standard 
ones. We see that when the gradient f'(x) is positive the 
graphic point moves upward as the point x moves to the 
right—as along BPQ Fig. 28a, along HAB Fig. 285; when 
the gradient is negative the graphic point moves down as 
the point x moves to the right—as along AB Fig. 28a, 
along BPQ Fig. 285. At B the gradient is 0, and the 
tangent is parallel to the as-axis; the graphic point is for 
the moment stationary. 

The student must not confuse moving upwards with 
motion away from the ft-axis; thus near II (Fig. 28b) the 
graphic point in moving up gets nearer the axis. The 
graphic point moves up or down when the point x moves 
to the right according as NQ is algebraically greater or less 
than MP; for NQ — MP —f(x)Sx approximately, and when 
f\x) is positive, Sx being supposed also positive, NQ is 
algebraically greater than MP. If MP and NQ are both 
negative this implies that NQ is numerically less than MP. 

As an exercise, trace the graph of f(x)=.r1 — Zx4- 1, already shown 
in § 23. Here it is easily found that 

/'(•?*) — 3.r2 - 3 — 3(# -f 1 )(x - 1). 

So long as x is less than -1, that is, so long as the point x is to the 
left of the point — 1, both #+1 and .r ~ 1 are negative, and there¬ 
fore f'(x) is positive. Hence, as the point x moves from the extreme 
left of the #-axis to the point -1, the graphic point moves steadily 
upwards. 

So long as x is greater than - 1, but less than 1, #+l is positive 
and x- 1 negative, and therefore f'(x) is negative. Hence, as the 
point x moves from the point -1 to the point 1, the graphic point 
moves downwards. 

If x be greater than 1, f*(x) is positive. Hence, as the point x 
moves from the point 1 to the extreme right, the graphic point moves 
steadily up. 

The turning points of the graph are found where x— -1 and where 
x — +1 ; when x— — 1, the function has a maximum value 3, and when 
x— +1, it has a minimum value — 1. 

§ 55. Derivative not definite. It may happen that the 
limit of Sf(x)/Sx is not a definite finite number. There are 
two chief cases. 
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(i) f{x) may be infinite for particular values of x. Thus 
if f(x) = tjx, then 

f(0)= L L J - 
&x=0 OX Sx~Q\f OX 

■ 00 > 

but, for all other positive finite values of x, 

f(r\— t \/(x^~ to)\JX _ T_■[__ ^ . 

^ ^ to fix=o^(^ + to) + x/£C ^ Jx 

We see that as x approaches the origin the gradient gets 
greater and greater, and when x coincides with the origin 
the tangent to the graph is perpendicular to the #-axis. In 
general the tangent at a point on the graph at which f(x) is 
infinite will be perpendicular to the #-axis. When f(x) is 
infinite for a finite value of x as in the case of 1 jx for x = 0, 
it will usually be found that as x tends towards that value 
f'(x) tends towards infinity; we may say, therefore, that 
the tangent which meets the graph at the infinitely distant 
point is perpendicular to the £-axis. Such a tangent is an 
asymptote. (See the graphs of § 24.) 

(ii.) It may happen that at particular points of the graph 
there are two tangents, as 
at A, Fig. 29. Although 
the function is continuous 
when x = a, the gradient 
fix) is not. There is one 
gradient as we approach A 
from the left, another as we 
approach A from the right; 
as x increases through the 
value a, f{x) changes sud¬ 
denly from tan XBA to 
tan X CD. 

It will be found that 
for all the ordinary func¬ 

tions the derivative f\x) is, except for particular values 
of x, a continuous function and therefore these func¬ 
tions can be appropriately discussed by means of their 
graph. 
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§ 56. Fluxions. Newton founded his treatment of the 
calculus on the conception of the growth of mathematical 
quantities by a continuous motion; he called the time-rate 
of change of a variable its fluxion, the variable itself being 
called the fluent. He laid little stress on notations but 
sometimes denoted the fluxion of a variable, say x, by the 
symbol x, and this notation is still often used in works on 
mechanics to denote a time-rate of change. 

We may take one illustration of a time-rate of change. 
Suppose a particle to move along iho path A PQ (Fig. 28 a, h) 
and at time t seconds from a chosen instant let it be at P, 
the point (x, y), where y—f(x) is the equation to the path. 
Let 8 be the length, in feet say, of the arc A BP measured 
from some fixed point A on the path, x, y, s are then all 
functions of t. 

Suppose that when the time increases from t to £ + ££ the 
particle comes to Q (Fig. 28 a, b) and denote the increments 
MNy HQ, arc PQ of x, y, h by Sx, Sy, Ss. By the usual 
definitions, the chord PQ is the displacement of the particle 
in time St and the quotient of the displacement by St is the 
average velocity of the particle during the interval, the 
direction of this velocity being given by the angle RPQ. 
To get the velocity at time t, find the limit of the average 
velocity for St approaching 0. 

Now the limit of the angle RPQ is RPT, so that the 
direction of the velocity at time t will be along the 
tangent PT. 

Again, to find the magnitude of the velocity, or the 
speed, as the magnitude is now usually called, we have to 

find k chord PQ 

o St 
We will assume as an axiom that when the chord PQ is 

very small, the arc and the chord are nearly equal; or, in 
the more definite language of limits, we will assume 

L (42^),,. 
chord PQ^O' ^rc -Tl/ / 

Now, 
chord PQ _ chord PQ arc PQ 

St - arc PQ St ~ arc PQ St 
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Hence, since Ss = 0 when St = 0, we have 

j chord PQ, _ j /chord PQ\ j Ss _ . 

_P«=oV arc PQ / X «.0S-& 

This equation of course simply states that the speed is 
the time-rate of change of s, and may be considered merely 
as the symbolic statement of the definition of speed; but, 
however simple the conception of a rate is at bottom, it will 
be well for the student to recur again and again to the 
process by which the number is determined. 

Again, x is the rate of change of x, that is, x is the rate at 
which the point moves to the right, and in the same way y 
is the rate at which the point moves upward. These two 
rates are called the components of the velocity parallel to 
the coordinate axes. 

From the diagram we sec that 

(Sx)2+(Sy)'i=(chord . (&)2, 

and therefore 

(Sx\2 fSy\2 __ /chord PQ\2 {SsY2 
VSt) + \St) V arc PQ ) \St) 

Hence, taking the limit for St~0, we get 

(*)2+(?/)2 = (s)2, 

a result that expresses the usual rule for determining the 
resultant velocity s, when the component velocities x, y are 
given. 

Ex. Suppose x—t, y—t2. For every value of ty y—x1; that is, the 
point P lies on the parabola whose equation is y—x2. The component 
velocities are x=l, y~2t, and the magnitude of the resultant velocity 
s is s](x2+?/“) — \f(l +4/2). The direction of the velocity is given by 
tan </> = Dxy = %x—'M. 

It will be observed that the path of the point is given by stating 
where at each instant the point is, because whenever the instant is 
named, that is, whenever the value of t is given, the coordinates x, y 
can at once be calculated. By eliminating t between the equations 
determining x and y, we find a relation that holds between the 
coordinates of every point on the path, that is, we find the equation of 
the path in the usual form. (See Exercises IV. 10, VI. 4, 6, 10, 11.) 

We will now show how to find the derivatives of the 
ordinary functions; in the exercises examples will be found 
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illustrating the geometrical and the mechanical applications 
of the derivative. After the student has gained some 
facility in differentiating, other examples will be considered. 

§ 57. Derivative of a Power. By definition 

i>4*)= L 
fcc=0 OX 

and, by §47, this limit is nxn~l; that is, 

I)(xn) — nx11"l. 

Hence the derivative of a power with respect to its base 
is got by multiplying by the index and then diminishing 
the index by 1. 

It is obvious that the derivative is a continuous function 
for all finite values of x, except for cc = 0, and it is then 
discontinuous only when n~ 1 is negative; that is, when 
n is less than 1 algebraically. 

Cor. If a be a constant, l)x(axn) = nax71 ~1, 

Ex. 1. Dix*) = Sx* ; 

s\ 1-8 5 

) 2 ~ 2XW 

Ex. 2, Write down the derivatives with respect to t of 

2 4 

Ex. 3. Write down a function of x which has x2 as its derivative. 
Be verse the process for obtaining a derivative, that is, increase the 

index by 1, and then divide the result by the new index. Thus, one 
function whose ^-derivative is x2 is J#3, as may at once be tested by 
differentiation. 

Ex. 4. Write down for each of the following functions a function 
of which it is the derivative, 

_ 4 , 2 l £ 
* ^ Jx x2’ .r6‘ 

§ 58. General Theorems. The following theorems are of 
constant application. We suppose x to be the independent 
variable, so that the suffix may be omitted in indicating 
derivatives. 
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Theorem I. An additive constant disappears in 
differentiation; or, two functions which differ only by a 
constant have the same derivative. 

For let f(x) — <j>(x) + O’, where C is a constant, that is, does 
not change as x changes; f(x) and therefore differ only 
by the constant C, 

f(x + Sx)-f(x) = [tfx + 8x) + C]-[<p(x) + C] 
Sx Sx 

__ <j)(x + Sx) — <f)(x) 

Sx 

Take the limit of these equal quantities for Sx converging 
to 0 and we find fix) = fix). 

Ex. 4)=3a'2. 

Theorem II. A constant factor remains as a constant 
factor in the derivative. 

For D[Cf{x)]=L°^x+Sx^= G 
OX ()>?’ 

therefore F[Cf(x)] = CDffx). 

Theorem III. The derivative of an algebraic sum of a 
finite number of functions is equal to the like algebraic 
sum of the derivatives of the functions. 

Let f(x), F(x)} <f>(x) be three functions of x; then it is 
easy to see that 

(5 [f(x)+F(x) — <p(x)] = Sf(x)+SF(x) — S<p(x). 

Therefore, dividing by Sx and taking the limit, we get 

D[f(x) + F(x) - <p{x)]=Df(x)+DF(x) - D<f>{x). 

The same proof holds for more than three functions; the 
number of them, however, must be finite, for if there be an 
infinite number the theorem is not necessarily true, jnat as 
in the case of the corresponding theorem in limits (§ 42, 
Th. I.). 

Ex. D(3x2 - bx 4* 1)=D{3r2) - D{bx) Th. III. and I. 

=3IXff)—bD{x) Th.IL 

=6vT 5. 
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Theorem IV. D(uv) = vDu 4- uDv, where ut v are func¬ 
tions of x. 

When x takes the increment Sx, let u, v take the incre¬ 
ments Su, Sv respectively, then 

S(uv) = (u + Sn)(v+Sv) — uv 

— vSu + uSv + SuSv; 

S(uv) Su Sv , Sv 
ir~v8x + uSx+Sx 

Sv. 

When Sx converges to 0 so does Sv; the limit of the last 
term is therefore 0, and we get 

D(uv) = vDu + uDv. 

If there be more than two factors, say u, v, w, we may 
extend the theorem by applying it twice; thus, first consider 
via as forming one factor, we get 

D(uvw) = D(u. vw) = vwDu + uD(vw). 

But D(vw) = wDv + vDw ; 

D{uvw) — vwl) u + uwDv + uvDw. 

If we divide both sides by uvw we get 

D( uvw) ~_Du Dv l)w 
uviv ~ u v w * 

More generally, if there be n factors, uv u2, ... un, we 

^aVe D(ulu2...un)_Du1 i Pu2 ^ Dw» 
u^u2...nn ux u2 un ’ 

Logarithmic Differentiation. When the differentiation 
is carried out in the form last written, the process is usually 
called logarithmic differentiation. (See § 65, ex. 3.) 

The student must particularly notice that the derivative 
of a product is not the product of the derivatives of its 
factors. 

Ex. D[{bx+2){?>x - 7)] = (3.r - 7)Z)(5.r+2) + (ft* + 2)0(3* - 7) 

= (3*-7). 5 + (5*+2).3 

= 30* - 29. 

The result may he verified by first distributing the product and 
then differentiating. 

G.C. h 
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Theorem V. 
vDu — uDv 

v* provided v is not zero 

for the values of x considered. 

For o 
Ju\ Su 
\v) 

u + Su u __ vSw—uSv # 
'f v2+t;5i; 5 

Sv 
'V'&c 

Sx v2+vSv 
Since the limit for Sx — 0 of the denominator is v2 and v2 

is not zero, we can apply the theorem that the limit of a 
quotient is the quotient of the limits of numerator and 
denominator. Hence the theorem. 

If we divide by ~ we get 

u u 
v 

Dv 

v 

n(*2Jll\ Cy2 +1 )D(x2 -1) - (.v2 - 1 )I){x2+1) 
Ex* D\v*+i)-~. (**+iy ‘ ~ “ 

(x2+1).2jc-(x*-1).2.v 

(afi+l y 
4x 

(j?2+l)2* 

Theorem VI. If the derivatives of two functions are 
equal for every value of the argument, the functions can 
only differ, if at all, 61/ & constant. 

This theorem is the converse of Theorem I. and seems 
hardly to require proof for the ordinary functions. For 
if fix) = <p'(x) for every value of x, then putting y equal 
to f(x) — <j>(x) we have 

Uy=Dx[f(x) - #&)] =/(*) - <£'(*0=o. 
Hence the gradient of the graph of y is zero for every 

value of x; the graph must therefore be either the &-axis 
or a straight line parallel to that axis. But the equation 
of every line parallel to the #-axis is y = const. = G; the 
equation will represent the axis itself if (7=0. 

Therefore f(x)—<p(x) = C or f(x) = <ffx) -f (7. 
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Ex. If jKy—x2 ~ 1, determine the general value of y. 
The derivative of \z?~x is .r2—1, as may he tested by differentia¬ 

tion ; therefore the derivatives of y and of ^x3 — x are the same for 
every value of x. Hence y and $.r*-x can only differ by a constant, 
that is, y—\x3~x+C. This value is called the general value, because 
every function which has the same derivative as y will at most differ 
from ^x3 - x by a constant, and C may be any constant. 

The particular function which has the value 2, say, when x has the 
value 1, will require a particular value of the constant 0. But always 

y= Ixt-x+C; 

therefore 2 = J -1 + <7, C— |; 

and 

It is to be observed that the derivatives must be equal 
for every value of the argument; thus a?2 — 1 and xs— 1 are 
equal when x is 0 or 1, yet the functions \x* — x + C and 
\x* — x+C\ of which they are the derivatives, do not differ 
merely by a constant: they are different functions. 

EXERCISES VIII. 

Differentiate with respect to x, examples 1-10 : 

1. 7.T3 4- 5.r2 4- 4x - 2. 

3. (x — 1X# 4* 2)(.r — 3). 

1 
5. \/.r+ - 

7. .rn + 

aJx 

1 

2. (Jx — 3)(8.r 4- 2). 

4. (Sx— 7)/(5 — 2.r). 

b 

6, 

8. axm 4- 
x 

v3— 2+x~3 
9. 4.^ 4- 2^ -2x 10. --rr-—T. 

x-2+x~l 

Differentiate with respect to t, examples 11-14 : 

11. (at -j- l))f{ct 4-<f). 12. a/(b + ct). 

13. (aft 4 2bt 4" c)/(ff^24" 2Bt 4* (7). 14. 
(t + l)(t + 2)' 

15. Give a geometrical interpretation of Th. I. § 58. 

Deduce Th. V. from Th. IV. by putting ^ =w, so that Du = ' D(vw). 

16. If at time t the adjacent sides of a rectangle are u and v feet 
respectively, where w, v are both functions of £, show that at time t 
the area is growing at the rate vu+uv. 

If at time t the three edges of a rectangular parallelepiped which 
meet at one corner are u, v, w feet respectively, find the rate at which 
the volume is increasing. 

Show that these results give a geometrical interpretation of Th. IV., 
§58. 
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17. Find the values of x for which the following functions are 
(i) increasing, (ii) decreasing, (iii) stationary. Apply the results to 
the graphing of the functions, and state the turning points. 

(a) 3-x+x2; (b) x3- 3.r + 2 ; (c) #4~2.r2-l. 

18. State the most general function which has as its derivative 

(i) 2.r-l ; (ii) 3#-^; (iii) clv2+bx -f- c. 

19. The gradient of a curve is and the curve passes 
through the point (1, £) ; find the equation of the curve. 

20. If pv—p0vo where p0, v0 are constants, show that 

— vDvp—p. 
21. The speed of a particle at time t seconds from the beginning of 

its motion is V-gt feet per second; find how far it has moved in 
t seconds. 

§ 69. Derivative of a Function of a Function and of Inverse 
Functions. 

The derivative of such a function as (x2 — x + \)- cannot 
be found by immediate application of the rule for the deri¬ 
vative of a power. In a case like this we may proceed as 
follows:—Denote (#2 — #+l)^ by y ; now put x2 — x+l = u. 
Then y = u~ where u — x2 — x +1; that is, y is a function 
of a where u is a function of x. In other words, y is a 
function of a function of x (§ 46). 

When x takes the increment Sx let u take the increment 
Su; when u takes the increment Su let y take the incre¬ 
ment Sy. Hence when x takes the increment Sx, y takes 
the increment Sy, and when Sx converges to zero so do Su 
and Sy. Now Sy^SySu, 

Sx Su Sx 9 

therefore L ~~ = L ~ • L ~ ; 
8x^0OX Su^oOU tx^QOX 

that is, Dxy = Duy x Dxu. 
In the derivative Dxy, y is supposed to be expressed as a 

function of x, while in the derivative Duy, y is supposed to 
be expressed as a function of u. That is, 

Dx{x2-x + l)i=Duu* x Dx(x2 -x+I) 

= X(2x-l)-2(x2-x+l)h’ 
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where, after the differentiation is effected, u is replaced by 
its value in terms of x, namely x2~x+l. 

The reasoning is perfectly general, so that we have the 
theorem:—If y—f(u) and u=<p(x), then y is a function of 
a function of x, and 

D%y - Duf(u) X Dx<j>(x) or Dxy = Duy x Dxu. 

If we had y=f(u), u = <f>(v), v = \fs(x), we should get in 
exactly the same way 

— Puf (^) x Dv(f>(v') x Dxyp^{o('^) 
or Dxy — Duy x Dvu x Dxv. 

Tlie same metliod shows how to obtain the derivative of 
an inverse function. Let y=f(x) so that x is the inde¬ 
pendent variable. The inverse function is x—f~l{y) and y 
is now considered to be the independent variable. 

Let Sx and Sy be two corresponding increments of x and 
y, so that Sx and Sy vanish together. Then 

sys*,. 
Sx Sy ’ 

therefore L x L ^ = 1 ; that is, Dxy x Dyx = 1. 
8x=oSX 8y~oSy 

The result is evident geometrically. In Fig. 28 (§ 53) Dxy 
is the tangent of the angle that PT makes with OX, J)ffx is 
the tangent of the angle that PT makes with 0 F, and since 
these two angles are complementary the product of their 
tangents is 1. 

This theorem is of great use in finding the derivatives of 
inverse functions (§§ 64, 65); meanwhile we note that 

and the theorem remains true even if one of the derivatives 
is zero. 

The student should carefully note the following ex¬ 
amples; at all stages the rule for differentiating a function 
of a function has constantly to be used. 

Ex. 1. D^ax+bY^nafax+b)*"1. 

Put ax+b—u, 

then Dx{ax + b)n=Duun x Dxu = nun~l xa=naiax 4- b)n~K 
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With a little practice, the student will be able to dispense with 
the actual substitution of u. Thus he will write 

Dx(ax + b)n = n(ax + b)n~l xa~na(ax + 6)n_1; 

Z4(3.r - 2)^ = i (3.* - 2)~ E 3 = — 
2(3x-2)2 

Ex. 2. DJyc* — a2) - = J(.r2 — «'•*) “ x2x=—avj 

Ex. 3. If T)^j—x*J(x2 — a2) and u~x2 — a2, find Duy. 

Duy = Dxy x Dux—I)xy/Dxu—xKf(x2 - a2);2x ; 

therefore J)u y — ^ J(x2 - a2) — kju. 

Ex. 4. If y is a function of x, so is ?/2, ?/8, ... xy, ary ..., and 

AOy)=-:rAr.'/+?/+ n; 
and generally, using ?/ for /)*?/, 

Dx(x'nyn)=xmDx(yn) +ynDx(x™) 

= xmny}l~1y + ynmxm~1 

—x™-hjn~x{yixy’ -f jwy). 

Co aversely, y?/~7)z(|?/2), yn~hj — 

This transformation is specially useful in mechanical problems. 
Thus, £ being the argument, 

xx=Df(hx2); yy — T)t{\y2). 

Ex. 5. If ?>=£, prove v) - D,(\v2\ 

v ~ T)tv = /)^ x iV — =vD„v — 7)s(h>2), 

or, in words, the time-rate of change of v is equal to the space-rate of 
change of \v2 (see § 69). 

Ex. 6. If the coordinates of a point on a curve are given in the 
form x—f(t), y = </>(£), where, for example, t may denote the time, 
find l)xy. 

y is a function of t, and t may be supposed to be determined as a 
function of x by the first equation. Hence 

Dxy — Dty x Dxt. 

But 7Jxt=ljDtX by the rule for inverse functions ; thereforo 

Thus, if x~at2> y~2at, 
2 a 

Y 
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Ex. 7. When y is given as an implicit function of x by an equation 
of the form 

A xmyn + Bx’y -f-... 4- Kx 4- Ly 4 M= 0,.(a) 

we can find y' by the method of ex. 4. For in whatever May x changes 
y must change so that the equation (a) always remains true ; therefore 
the rate at which the expression on the left side of (a) changes as 
x changes must always be zero ; that is, 

I)r(Axny + Bxpyq4... 4 Kx4-Ly 4 M)=0 ; 

that is, ADx{xmyn) + BD^xVy'1)-)-... 4 A'+£/)*?/=0. 

Each term may now be differentiated and the equation solved for 
Dxy or y'. For example, given 

x2 4 .tv/ 4y2 — 1=0 ;. .03) 
then Ar(.r~ 4- .r// 4 ?/2 - 1) — 0 ; 
that is, 2x 4 .r >/ 4 y 4 2yy' = 0 ; 

and therefore ✓=-**+*. 
.r 4 2// .(7) 

To lind the gradient of the ellipse represented by (/3) at particular 
points, we proceed as follow's : 

When .r —1, y2+y~0 ; that is, y = 0 or — 1 ; 

at the point (1, 0), -2 ; 

2 - J 
at the point (], -1), y'~ - } :>~1. 

To find where the tangent is parallel to the .r-axis, we have to solve 
(/j) and the equation ?/ — 0, taking care that the values which make 
the numerator of y vanish do not also make the denominator vanish. 
If this w'ere to happen, then ?/ would for such values take the form 
0/0, and y' might or miglit not be zero. In the above case we have to 

I 2 
solve (p) and 2.r 4y —0. The values are x— , y——. , and 

1 2 v** 
x~ — - ^ , y — ~ ; at those points the tangent is parallel to the .r-axis. 

In the same wray we find where it is perpendicular to the .r-axis by 
solving Q3) and x + 2y—0, which makes y' infinite. The points are 

(73’ “73)’ 73)' 

EXERCISES IX. 

Differentiate as to .r, examples 1-8 : 

1. 2. xjj(l - .r). 3. 

4. xlJ{a?-x>). 5. 6. «/(cu’3+/u:+c). 

7. 7(^+I)M^-I)- 8. 7(a*»+SS6»+«Mjl**+2B»+0. 
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In differentiating a quotient of the form (x 4- a)m/(x -f b)n, it is 
often advisable to write the quotient as a product in the form 
(.r-f a),n(x+b)~n ; when simplified, the result will appear in its lowest 
terms. Differentiate in this way : 

9. (.r-f l):V(.r-l)4. 10. (;v+a)nl/(x + b)n. 11. l/x\x-l)s. 

12. State in words the equation 

Dty^DxyxDtx. 

13. If show that v~ -~2, s and v being functions of 

the time t. 

14. If 2^-f 3y2 = 5, find y\ Then find the gradient at the points : 

(i) (1, 1), (ii) (-1, 1), (hi) (-1, -1), (iv) (I, -1). 

15. If (x4*?/)2 - 5.r 4-= 1, find y'. Find the gradient at the point or 
points where the line whose equation is x+y — 1 cuts the graph. 

16. If x—at, y — bt — find the components parallel to the axes of 
the velocity of the point (x, ?/), and find the direction in which the 
point is moving at time t. (Compare Ex. YI. 4.) „ 

17. Find I)xy in the following cases : 

(i) (x — of 4 (y - b)2=c2. (ii) y”~Ax+Bx2. 

(iii) xy—c'K (iv) xmyn=cm+n. 

18. If IK]J ~ x2J{aa? 4- b) and u — ax3+b, find l)uy. 

19. If Ihy = (x+a)(x2 4- 2ax 4- b)n and v — xl -f 2ax 4- b, find J)uy. 

20. If Dxy—f(ax + b) and u — ax + b, find Day. 

§ 60. Differentials. In Fig. 28 a, b, § 53, the value of f(x) 
or Dxy is tan RPT, and 

>, s_RT_RT 

Now, suppose that as x increases from OM to ON the 
ordinate y or f(x) increases uniformly at the rate f\x) 
or t&nRPT; then the point P will move, not along the 
arc PQ but along the tangent PT, and the increment that y 
on this supposition will take will be, not RQ but RT. 

This hypothetical increment of y is called the differential 
of the function y or f(x) and is denoted by dy or df(x). 
The actual increment of y, denoted by Sy or Sf(x), is not 
RT but RQ. Writing as usual Sx for the increment MN 
of x we have 

dy = RT -f(x)Sx; Sy-RQ-(J\x)+a)Sx, 

where a is used in the same meaning as in § 52. 
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If f(x) is the function x} then/'(aO = l, and we have 
df(x) = dx = 1. Sx, 

so that for the independent variable Sx and dx may be con¬ 
sidered to be the same thing. We may therefore write 

dy — RT=f{x)dx; Sy = RQ — (f'(x) + a)dx. 

The first of these equations gives a new notation for the 
derivative, namely 

J v 7 dx dx 

This notation, which is perhaps the most common, has the 
advantage that its form recalls the process by which the 
derivative is obtained. Again, we have another advantage. 
F or Sy — dy = (f'(x) + d)clx—f\x)dx = adx, 

and (see § 52) when dx or MN is very small a is also very 
small, and therefore Sy is very approximately equal to dy. 

The notation of differentials is due to Leibniz ; the above mode of 
defining a differential is usually attributed to Cauchy, but the 
differential is equivalent to Newton’s “ moment,” which is explained 
in exactly the same way by Benjamin Robins (see his Mathematical 
Tracts, London, 1761). A reading of Robins’ Tracts would well repay 
the student who is fortunate enough to get hold of a copy ; the book 
is now somewhat rare. 

The notation of differentials is practically a necessity 
in the integral calculus, and the student should accustom 
himself to it. In practical work dx and therefore dy are 
usually supposed to be very small quantities; but it is only 
their ratio that is of importance. 

dy . 
\L i o 

d 
The symbol ^ is often written as ; but when used 

in this way the symbol ^ is to be taken as a whole and as 

meaning exactly the same thing as Dx. 
Since du — Dxu dx, dv — Dxv dx, etc., when the independent 

variable is x, we have 
d(u + v — w) = du + dv — dw, 

d(uv) — vdu + udv, 

and so on. We may, in fact, replace D in the theorems 
of § 58 by d. 
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Ex. 1. d(&v2 — .r 4-1) = /b(3.r2 — .v4-1) • dx~ (fi.r — 1 )c?.r. 

Ex. 2. d . J(x2 - a1) = (.r- - a2)~ ^ . 2x dx — 

Ex. 3. .a? oh; — n?(4.r2) ; (.r2 — 1 )c/.r = — ,r). 

Ex. 4. State in the form of differentials Ex. IX. 1-G. 

§61. Geometrical Applications. Let OM be the abscissa 
and MP the ordinate of the point P on the curve whose 
equation is y — f(x); and let the tangent at P meet the 
axes at Z, K (Fig. 30). 

The line CPGc drawn through P perpendicular to the 
tangent is called the 
normal to the curve 
at P. 

When the tangent 
and the normal are 
spoken of as finite 
segments the portions 
LP, GP, intercepted 
between P and the 
;£-axis, are the seg¬ 
ments referred to. 

In the same way 
the projections of 
these segments on the 

ir-axis, namely LM and MG, are called the subtangent and 
the subnormal respectively. 
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These segments can be expressed in terms of the values 
of x, y, y' at P. 

Subtangent = ; 
B tan <j> y 

Subnormal = MG — y tan <p = y y'; 

Tangent = LP = y cosec <p — .).; 

Normal — 6rP= ?/ sec = y*J( 1 + v/2); 

y y 

OK — —OL tan (p= — ~y—xy'. 

Tli('«e expressions are true for all positions of J\ provided the signs 
of the segments be attended to. Thus, if LM is expressed by a nega¬ 
tive number, L will be to the right of J/, since, in the above diagram 
which is taken as the standard, LM is positive when L is to the left 
of M. There is no need to commit these formulae to memory ; the 
values can at once be obtained in any given case by drawing a 
diagram. 

We may also find the equations of the tangent and 
normal. For this purpose let the values of x, y, y at P be 
denoted by xv yv yx' in order to distinguish them from the 
coordinates (x, y) of a point on the tangent LP or the 
normal GP. 

The equation of the tangent is 

y-yi = (»-*i) tan0 or y -yx = y[(x-'xx), 

since it is a straight line passing through (xv yP) and making 
an angle <p with the &-axia 

The acute angle that the normal makes with the rr-axis 

is <p — ~ and tan (^ — ^) = — cot <p = —1 fy[ ; hence the equa¬ 

tion of the normal is 

V~Vx= -Lix~xi)- 
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Ex. 1. Find the subtangent and the subnormal in the ellipse 

given by ^ + p=l- 

If we suppose y to be positive, then 

y + ~x2) ; y' — - « . —s-\ 3 
ax x 7 ^ a v/(«2 ~ #2) 

„ _ /jr*2 

subtanffent —~ —-— j 
y x 

subnormal — yyf — 
h2x 
~a?' 

When x is positive, both these number’s are negative ; L therefore lies 
to the right of M and Q to the left of M \ when x is negative, the 
positions are reversed. 

a2 
OL~x — subtangent; 

OL . 0M=~ . x—cfi, 
X 

a well-known property of the ellipse. 0 is of course the centre of the 
ellipse, denoted in § 26 by C. 

Ex. 2, 
to LP. 

Here 

If the equation of the curve is .*y — c2, find the ratio of KP 

KP __ OM _ xy* _ e2 c2__ 

LP~LM~ y-~x + x"1' 

The ratio is given both in sign and in magnitude ; hence P lies between 
K and L, and KL is bisected at P. The curve is a hyperbola (§ 27, 
II ., ex.), and this is a well-known property. 

§ 62. Derivative of the Arc. Let s be the length of the 
arc AP measured from a fixed point A on the curve 
(Fig. 30); to find Dxs, Dy8. 

Proceeding exactly as in § 56 we get the equation 

(&)>+»)'=(cA“4^)!.(*)*.(») 

where <5s and Sy are the increments of the arc s and of the 
ordinate y due to the increment Sx of x; <58 = arc PQ. 

The average rate of change of 8' with respect to x, namely 
Ss/Sx, is determined by the equation 

1 4. (§y\2_ /chord PQ\2fSs\2 
\SxJ \ arc PQ ) \8x) ' 
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Since the limit for &c = 0 of the first factor on the right 
is 1 we get 

1 +(Dxy? = (Dxs)\ 

In exactly the same way we obtain 

Again, 

cos (f.> 

Dys = *J{ 1 + (A/^)2}* 

■p Sx i~ ^See arc PQ ^ ^ 

= pqLoPQ = poto\ Ss * chordP(^ = VsX = 

cte 

Using the notation of differentials we take PR — dx; 
then RT=dy and PT=ds. The equation in differentials is 

(ds)2 = (ate)2 + (<%)2.( a') 

and division by (dte)2 or (c£?/)2 at once gives the derivative 
of 8 witl) respect to x or y. 

If t be the independent variable and dt its differential, 
then, since x} y, s are all functions of t> we shall have 

dx =eedt, dy — ydt, ds — sdt, 

and the substitution of these values in (a') gives, as in § 56, 
xr + y2 — s2. 

We also have 

dx _ dx ds 
dt ds dt 

scos(f>; y = ~ 
dy 
dt 

dy ds . . 

EXERCISES X. 

1. Show that in the parabola* y2 — Aax the subnormal is constant. 

2. If the subnormal is constant (2a) show that the curve is a 
parabola y~ = Aax + C. 

3. Find the equation of the tangent and of the normal at the point 
(.r1? ?/d of the parabola y1 — 4a<v. 

Show that the subtangent is bisected at the vertex. 

* It is customary to abbreviate the phrase “ the curve of which the 
equation is ^ =/(#)” to “the curve y =/(#).” 
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4. If the tangent at P in the ellipse (Fig. 20, § 26) meet the major 
axis at T and the minor axis at £, prove that 

CM, CT=CA\ Cm. Ct= CB\ 

where m is the projection of P on B'B. 

5. Show that the equation of the tangent at (#■„ ?/j) to the 
hyperbola ^/a2-/J/62==l is 

x\xi a2 - 7/, yjb- — 1. 
With the same notation as in ex. 4 show that 

CM. CT— CA\ Cm. Ct= - CB% 

and explain the meaning of the minus sign. 

6. The equation of the normal to the ellipse at (jvt, ?/j) is 

{x - X^at/X! = (y -»/,) ft2/#,. 

7. If the normal at P to the ellipse (Fig. 20) meets the major axis 
at G show that CG—c2CM in magnitude and in sign. 

Prove also that 

SG ~e(AC+ eCM) = eSP; OS' = eS'P; 

SG : GS' — SP : S'P. 

The last equation shows (Euc. vi. 3) that the normal at P bisects 
the interior angle and that the tangent at P bisects the exterior angle 
between the focal distances of P. 

8. State and prove for the hyperbola the results corresponding to 
those of ex. 7 for the ellipse. 

9. If SZ, S'Z are the perpendiculars from the foci S, S' on the 
tangent at P to a central conic (Figs. 20, 21) show that 

SZ. S'Z' = CB2. 

l-l 1-- 
For the ellipse SZ. S'Z'—- -IF-' 

where 
a* +b* a4 

since (xl9 yx) is on the ellipse. A little reduction shows that 

e2.rt2\ 

”2/’ 

9 a2-b2 
since <r——■*— • 

a1 
(See Exercises VI. 18.) 

10. If P is the point (a cos $, 1 sin 0) show that the equations of the 
tangent and normal at P are (see Exercises V. 5) 
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11. If P is the point (at2, 2at) on the parabola y2 — 4ax show that 
the equations of the tangent and normal at P are (see Exercises V. 6) 

y—~ + at; y——tx+2at+at3. 

12. From the result of ex. 3 or otherwise show that if the tangent 
at P to the parabola (Fig. 19) meets the axis at T 

TS= AS A-AM—SP. 

If NP is produced to Q show that TP bisects the angle SPN and 
PG bisects the angle SPQ. Also that, if SN cuts the tangent 
at the vertex at Z, SZ is perpendicular* to and bisects JP and 
SZ'^AS.SP. 

13. In the notation of § 61 show that for the curves xmyn—cm+n 

KP : LP— — m : n. 

Sketch the curve (i) if m — 7, n — 5 ; (ii) if m = 10, ?^ = 9. 
These are Adiabatic Curves. 

14. Show that for the parabola y2=4ax 

15. In the semi-cubical parabola ay2 — x3 show that 

LU=\x\ MO=~a--, MG=^-LM\ 
3 z a o a 

Show also that 

and verify that if the arc 5 is measured from the origin 

16. Show that the tangents at the points where the straight line 
ax + hy—0 meets the ellipse 

ax2 -f 2 hxy + by2 — 1 

are parallel to the .r-axis, and that the tangents at the points where 
the straight line kx+by= 0 meets the ellipse are parallel to the 
?/-axis. 

17. Show that the tangents at the points where the parabola 
ay = x2 meets the folium of Descartes, whose equation is (compare 
Exercises VI., 13) 

.^4.^=3 axy, 
are parallel to the #-axis, and that the tangents at the points where 
the parabola y2^ax meets the folium are parallel to the y-axis. 
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The origin (0, 0) is one of the points, and the coordinate axesara 

*I>«A to » .no Of f .““l.>tof .r*„«r“ 
g r,9j ex. 7, The other points are (a s/'2, a^/4), (cc \/4> a v^)* 

18. Show that for the ellipse .r>2+//&*=1 

ds l(a*-AP\ 

and that for the hyperbola *>*-//&*=1 

_ If A2~a2\ 

dr \ \ .r-'-a52 / 

19. Show that for the curve y = 

$ = J(1 
i i a 

20. Show that for the curve x*+y' =« 

the arc being measured from the point (o, a). 



CHAPTER VII. 

DIFFERENTIATION (continued). TRANSCENDENTAL 

FUNCTIONS. HIGHER DERIVATIVES. 

§ 63. Derivatives of the Trigonometric Functions. The 
fundamental limit is that proved in § 39 (iv.), the angle 
being measured in radians, namely 

-t sin 0 .. ... e -1' 
(i) Dx sin x=cos x. 
™ . T sin(,r-f o.r) —sin x 
For ZL sm x — L —-v- .—. 

$.c=0 Sx 

, Sx 

Now, 
sin(.c 4- Sx) — sin £c 2si“ico^+f) 

Sx Sx 

. Sx\ 
f sin-— 

Sx 

2 

Jcos^+y)* 

The limit for Sx = 0 of the first factor is 1, and of the 
second factor is cos x. Hence 

Dx sin x = cos x. 

(ii) D*cosx = -sinx. 
^ r cos(x+Sx)—cos x 
For Dxco$x= L—* ^-> 

te=0 Sx 

and cos(cc+Sx)—cos x = — 2 sm sm I x+-g-j. 

The rest of the work is the same as in (i), 
G.C. i 
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(iii) Dxtan x =—i—=sec2x. 
cos2x 

^ , T tan(# -f ox) — tan x 
For Dx tan# — L —v~~— r -- 

Sx=0 UX 

L 1 sind# 
6x^qQOS(X -f <S#)cos X dx 

1 2 = —9— = sec2#. 
cos2# 

The result may, of course, be obtained by writing tan x 
in the form sin #/cos #, and applying the rule for differen¬ 
tiating a quotient. 

Directly from the definition or by applying the rule for 
differentiating a quotient we obtain 

(iv) l)x cosec x =— cosec x cot x; 

(v) Dx sec x = sec x tan x; 

(vi) Dx cot x— —= — cosec2#. 
v 7 sirr# 

The knowledge of the derivatives makes it easier to 
graph the functions, and the student should test such 
graphs as he has already drawn by examining the gradient 
in the light of the derivative. 

The derivatives of the sine and cosine are continuous for 
all values of the argument. The derivatives of the other 
functions become discontinuous for the values for which 
the functions become discontinuous. 

The rule for differentiating a function of a function has often to be 
applied, for it is very seldom that the argument is x simply. The 
most important case is that in which the argument is a linear function 
ax + b. 

Put ax+b — u, and wre have 

Dx sin (ax + b)—Du sin u x Dx(ax + b) 
—cos MX«=a cos (ax + b). 

In the same way we find 

Dx cos (ax -f b) = - a sin (ax + b) ; T)x tan (ax + b)—a sec2 (ax+b), 

and so on. In fact the student should from the first accustom himself 
to these forms. 

Again, to find the derivative of sin2 (<&*?•!•&), let sin (ax+b) be 
denoted by u ; then 
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DJ^m\ctx-f£>)] == I)u u2 x Dx sin {ax4-b) 

— 2ux a cos {ax + b) 

—2a sin {ax+b) cos {ax *f b). 

With a little practice, and the application of common sense, even 
this substitution will not be necessary. 

Note.—If the angle is measured in degrees, then D^buix 

is not cos# but ^^cos#, because x degrees make 77#/180 

radians, and 

sin(rc deg.) = sin(-j^ rad.); 

Dx sin(x deg.) = Dx sin(~^ rad.) 

~(iSra,0=ilocos(*de«> “lSo003 

EXERCISES XI. 

Differentiate with respect to x, ex. 1-9: 

9_ 
1. sin 3# -f cos 3.r. 2. sin—{x -f b). 3. sin rnx cos nx. 

a 
4. x sin x+cos x. 5. sin x - x cos .r. 6. ^#-Jsin2#. 

7. Isin 2x. 8. Jsin^+tbsin 3x. 9. -fcos.z' + ^cos 3x. 

Write down for each of the functions 10-15 a function of which it 
is the ^-derivative. 

10. cos 3# - sin 3x. 11. cos(a#-W>). 12. sec2 {ax+5). 

13. cos2 X. 14. sin2#. 15. sin 4# cos 2#. 

Differentiate with respect to x, ex. 1G-22. 

16. cos2 (ax -f b). 17. tan2(^+l). 18. v'sin 2#. 

19. sin2 #/cos3 x. 20. - 1 . 21. 
1 — cos X 

14- cos x 1+cos# 

22. 
sinx 

1 + tan x 

Dx[ tan|*]=1+(W 23. Show that 

and that 
rt r M. IT # + sin# Z>^ton^]=1+coar. 
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24. Show that ~~~~~ steadily decreases as x increases from 0 to 

- ; graph the function from x = 0 to x — ir (see also ex. 34). 

To prove the theorem, show that the derivative of sin x/x is negative, 
and therefore sin xjx a decreasing function. Since sin#/#—2/7r when 
x=7r/2 and sina’<^; we get the inequalities 

2 
—x < s m x < Xj 
7T 

which hold for the range 0 to 7r/2. 

25. A point moves on a straight line and at time t its distance s 
from a fixed point on the line is given by the equation s=a cos(?it ~ e). 
Find for what values of t its velocity is greatest and state where the 
point then is. For what values of t is its velocity zero and whore is 
the point at these instants ? 

26. The coordinates .r, y of a point at time t are given by the 
equations x— a cos y = b sin t. Show that as t varies from 0 to 
(or from tx to ^*f27r) the point describes an ellipse, and find the 
components of the velocity and the direction of motion at time t. 

27. The coordinates of a point are given by 

x~a(6 — sin 0\ y=«(1 — cos Q), 

where 6 r. Show that the tangent to the locus of the point 

makes with the .r-axis the angle and that if the arc a is measured 

from the origin, s = 4<^l -cos The locus of the point is called a 

cycloid (§ 146). 

28. Find the subtangent and the subnormal of the curve of sines 
whose equation is y — a sin (xjb). 

29. If Dxy = *J{a2 — x2) and x—a sin 0, show that Dey — a2cop?0. 

In the notation of differentials, we may write 

dy — J(a2 - xl)dx; dx=a cos 0 d6 ; dy — a2 cos2Qd0. 

30. If dy — sj(x2+a2)dx and x — a bin 0, show that 

dy = or sec2 9 dO. 
dx 

31. If dy ~~~77—g—:2\ ai)d 6, show that dy—dO. 

dx 
32. If dy = ——2x and x = a( 1 4- sin 6), show that dy — dO. 

tj \Zj(XX — X*) 

33. If f(x) — \ — lx2 — cos x, show that when x is positive f{x) is 
negative. Hence snow that for positive values of x 

1 — hx2 < cos x < 1. 

j\x) is a decreasing function. Since f(x) — 0 when #=0, it must 
therefore be negative for every positive value of x. 
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34. Show that when x is positive 

X - J.CT3 < si nx < x. 

Take <f)(x) = x - ^xA - sin x ; then (by ex. 33) $(x) is negative, since 
=f(x). 

35. Prove in the same way that when x is positive 
] 11 

1 - ~x2 < cos x < 1 - „x2 + -r-.x* ; 
2 2 4! 

x — ^r.r3 < sin x < x ~ ;~,x3 -f- -..r6. 
3! 3! 5! 

These inequalities may be carried out to any number of terms. 

36. How should the inequalities of examples 33, 34, 35 be stated for 
negative values of x ? 

37. Show that if x is positive and less than 7t/2 

x < J tan x *f § sin x. 

§ 64. Inverse Trigonometric Functions. The direct trigo¬ 
nometric functions are single-valued but the angle has to 
be restricted to a certain range in order that the inverse 
functions may be single-valued (see § 28). The range is 
from — 7t/2 to ir/2 for the functions inverse to the sine, the 
cosecant, the tangent, and the cotangent, but from 0 to tt 
for those inverse to the cosine and the secant. 

In finding the derivatives the theorem expressed in the 
equation Dxy=l/Dyx is used (§ 59). 

(!) D,sin-x = + va-l^r)- 

Let y — sin ~ lx; then x = sin y and 

Dirx = cos y = + J{ 1 - x2), 

because cos y is positive, y lying between — ir/2 and 7t/2. 

Hence D,*m Dxy = 

(ii) D,cos-^ = -vri^. 

Let y = cos ' lx; then x = cos y, and 

DyX = - sin y = - [ + ^/(l - a:'2)], 

because sin y is positive, y lying between 0 and nr. Hence 

1 1 
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This result may also be obtained from the equation 

cos Lx = --Hin lx. 

In the same way the following results are established: 

(iii) Dxtan~ 1x = j-~-_; (iv) Dxcot~1x= -j-hj, 

(v) I)xcosoc-^= (vi) ^sec-^=-^A__-, 

Of the above results (i), (iii) are tile most important. 
The root is a positive number, so that, for example, *J(x2) 
means -f x when x is positive, but — x when x is negative. 
The results (v), (vi) hold so long as x is positive; when x is 
negative the sign of each must be changed. 

It is worth noting that the derivatives of the inverse 
trigonometric functions are not transcendental but are 
algebraic functions. 

The derivatives (i), (ii), (v), (vi) become discontinuous for 
x = ± 1; (iii), (iv) are continuous for every finite value of x. 

In the case of the inverse functions also the student 
should accustom himself to the form in which the argument 
is not x but a linear function of x, specially xja or x/^/k. 
Thus, if 

Dx sin-© = Du sin -% x • \ = > 

Dx tan -©-^ ,tan"% xDx[-) = 
\aJ l+u2 a a2+x2* 

EXERCISES XII. 

Differentiate with respect to x, ex. 1-6: 

* ..-(5^). 3. i> 
5. 6. a’tan"1#. 

1. sin-13#. 

4. sinr3(l—#). 
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Write down for eacli of the functions 7-9 a function of which it is 
the ^-derivative: 

7. ,_1_. 8. — 9. 1 
JQl-x2) # 3+i®2 * v/{4-(.:^- 1)‘J}’ 

10. Prove that 

a{W(«2 “ *^2)+i^2 sin-^j = ^ (a2 - x2). 

11. Show that* 

T)x cos-1 ( *±«cos.^« « 
Vet -t-ft cos xj a 4- ft cos x 

If a2 is less than ft2 the derivative is imaginary ; explain this. 

12. Show that 

j, f a sin x_ft _2 ib + a cos \ _ («2 - ft2) cosa? 

x t a + b cos x J(d2 — 6") C°8 \ a + ft cos x ) ) (ft 4- ft cos x)2' 

13. Show that 

14. Show that 

7)rmrl (h+a»'" x\ = V(«2 
\a + 6 sin .-r / a + ft sin # 

15. If .r—r cos 0, if = rxm09 and .r, y, r, 0 are all functions of 2, 
prove 

(i) =/* cos 0 - r sin 0 0, (ii) y — r sin 0 + r cos 0 0. 

(iii) xy - yx = r 0. 

§ 65. Exponential and Logarithmic Functions. The funda¬ 
mental limit is now that discussed in § 48, namely, 

L (1 + - 

and that stated in the corollary to § 49, which may be put 
in the form 

(>6x— 1 
L L -i = l. 

&r=--0 OX 

*The value of the derivative given in ex. 11 is only true if a is 
positive and x lies in the first or second positive quadrant. If a is 
negative, or if x lies in the first or second negative quadrant, the sign 
of the result must be changed. A similar remark applies to ex. 12. 
In ex. 14 the result holds if a is positive and if x lies in the first 
positive or in the first negative quadrant. 
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I. D*e*=e*. 

For I).rex - 

Cor. 

^ + _ (3% /jSx _ 
L — L p 

Sx^O OX Sx = 0 OX 

Dxax = log* a. ax. 

~ &. 

For if /<; = ]ogu, ax=-ehc, so that putting kx = u 

Dxax — T)uev x Dx(kx) = ekx xlc = log a x ax. 

II. D,logx = ~. 

For 2).log«. L IfSO+MrlSi = L 1 l0g(1 + &). 
to U..0 Sx tx-O&B h\ x/ 

Sx 1 
Put —“== —, so that if rc=|=0, as Sx converges to 0, m con- 

verges to x . Now 

1 + 

mi Jiji l0« (*+*)* l i. lo« [('+£>’] 

-NU(‘+s)1 

1 

- - log e. 
x ° 

Since the base of the logarithms is supposed to be e the 
result is established. 

Cor. DJogwx = hogwe. 

Assuming the derivative of log x the derivative of ex may 
be obtained by the rule for the derivative of inverse func¬ 
tions ; and conversely that of log x may be obtained from 
that of ex. Thus, 

Let y~eX'> then x = log y, and DyX = 1/y* 

Dxfi*=Day=j~=y=e*. 

Again, Dx log (ax+b)~ — 
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For, put ax+b — u and we get 

I)x log (ax+b) = Du log u x Dx(ax+b)=- x a = ~~rp 
lb (XX ~t~ 0 

Since log a? is a real number only when x is positive, 
log (— x) will be real only if x is negative. The x-derivative 
of log (— x) is however 1/a?, as may be seen by putting 
a = — 1, b = 0. Hence the function whose ^-derivative is 1 jx 
is logo? or log( — x)y according asx is positive or negative. 

It will be noticed that the derivative of log a; is an algebraic 
function, discontinuous for x = 0 like the function itself. 

Ex. 1. 7)Jog (x+■JW+k)= 

Let u—x+sj'(.v2 + /•) ; then 

I>x log (x4-Vxl4-1) — Du log u x Dxu " “ x DXU 

and L)xu = 1 4- \(x“ 4* h) ^ . 

and the result follows at once. 
The student should note that 

=^-derivative of log (x4 s/x2 4- 1c), 

nfc w=^T.of siirl (S’)or of "C08_1 (5)' 
These results are frequently required in the Integral Calculus. 

Ex. 2. Find the derivative of e^sin^r-hc) and of ^cos^-t-c). 
These functions are of very frequent occurrence in certain branches 

of physics. 

l)x{eax sin (bx-ft*)} =ae(l*mn (bx+c) 4* beax cos (bx 4- c) 

=eax{a sin (bx + c)+b cos (bx 4- r)}. 

This result can be put into a form that is very convenient. What¬ 
ever be the values of a and b, it is always possible to find R and (9, so 

that Ji cos 0 — a, R sin 0—b; 
for these equations give 

R ~ J(a2 4- b2)y tan 

Replacing a and b by R cos 9 and R sin 0, we get 

i)x{eax sin (bx 4- c)} = Reax{cos 9 sin (bx4-c) 4- sin 9 cos (bx+e)} 

= Renx sin (bx 4- c 4- 0). 
In the same way we find 

Dz { cos (bx 4- c)} = Reax cos (bx 4- c 4* 6), 
where R and 0 have the same meaning as before. 
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Some care is necessary however in making the transformation, 
because 0 is not uniquely determined by its tangent; the quadrant in 
which 0 lies is determined by the signs of a and b. Thus, R being 
taken positive, if a and b are both positive, tan 0 is positive and 0 is in 
the first quadrant; but if a and b are both negative, tan 6 is also 
positive, but 6 is now in the third quadrant. Similar observations hold 
when a and b have opposite signs. 

In practice it is usually simplest to choose R positive when a is 
positive, but negative when a is negative ; then to choose 0 as a 
positive or negative acute angle. When numbers are given it is best 
to work the example without reference to the general formula. Thus, 

/^{d-^cos(hr-f l)} = - c~:u{3 cos (4.r-f l) + 4 sin (4.r-f 1)}. 

Choose R cos #~3, R sin #----4, and therefore R = 5, tan 6~$. Now 
tan 53° 8' and f>3° 8' —*1)274 radian, so that 

os(4.r+l)} = — f,(9-3*1 cos 0cos(4.r + l) + sin #sin(4.r+l)} 

— — .r)e~:iJr cos (4.r +1 — 0) 

« - r>e-:ix cos (4.r + '0726). 

Ex. 3. Find the ^-derivative of J(x — 1)(.«? — 2)/V(.r — 3)(.r - 4). 
In this and in similar cases where the function is a product, it is 

often simplest first to take the logarithm of the function and then 
differentiate. Denote the function by y ; then 

logy ■= £ log (% -1)+1 ]og (x - 2) - h log (x - 3) - 4 log (x - 4). 

Now Dx log y = I)y 1 og y x J)xy = ~/)xy ; 

• ~D ?/=I — ui—1_i 1 . _ i 
“ y xJ -\r-1+!4ar-2 

1 

x - 3 ~x — 4 

2x2 — 10#+ 11 

• * .T 1 ~ ;; 

(x - 1 )-(.r - 2)~(x - 3)-(.r - 4)2 * 

In the same way, if the function be nvwjUYW, where u... lTr are 
all functions of x[ we should get, denoting the function by y and 
taking logarithms (see § 58 Th. IV.), 

Dy__Du ^ ft* _MT_1)V_DW 

y u ^ v w 0 V W 

Ex. 4. If 7i, v are both functions of x, we may find the derivative 
of uv as follows : Put y ~uv and take logarithms ; then 

\ogy = v log 

Q& — j)Vx log 71+v. ; Duv — uv{Dv x log v 

For example, Dx1—#*(log #+1). 
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EXERCISES XIII. 
Differentiate with respect to x, examples 1-13: 

1. x log ,r. 2. x" log x 3. log sin x. 4. log cos v. 

5. log tan U 6. log (7. log (lr Y 
b * b V1 — sinx) b\l+cosx) 

8. 9. log { sl(x+a) 4 s/ix - a) }. 10. xex. 

11. #n<f. 12. e~x(sin,r4cos,?;). 13. 
1 4 v 

Write down for each of the functions 14-18 a function of which it 
is the ^-derivative: 

14. 
1 

is. ' r=ia. -L )1 
3.r + 4* 

e
 l N
 

x
 

S
 

3* 

_J 
n

 s
 i 

! 

x + af J 

16. 
1 

17 1 18. onx. 
4a*2 VR+T) 

19. If y 3 4k)+log {.r 4s!x2+ic}, 

show that J)xy = =VO,2+it). 

Compare Exercises XII. 10. 

y=,/(*»+*) - Jk logl^-i^+Vij, 

J)xy^K/(x2+k)/.v. 

_ |ofr 6+acos^-f- J(b2 - a2) sin x 

' ° a4&cos,r * 

l) y = ^a2). 
^ a-ftcos^; 

Compare Exercises XII. 11. 
_T 

22. In the exponential curve, the equation being ?/=ce«, find the 
subtangent and the subnormal. 

* ac 

23. The curve whose equation is y—\a(e« 4e“«) is called a 
“catenary”; find the subtangent, the subnormal, and the normal. 
Show that the perpendicular drawn from the foot of the ordinate at 
any point to the tangent at that point is of constant length. Graph 
the curve. 

24. In the catenary, show that, the arc s being measured from x=0, 

~=f(<£+<T*) and « = |(c'*-e"5). 

20. If 

show that 

21. If 

show that 

§ 66. Hyperbolic Functions. In recent years certain func¬ 
tions called Hyperbolic Functions have been introduced; 
these have many analogies with the trigonometric or 
circular functions, and in some respects have the same 
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relation to the rectangular hyperbola as the trigonometric 
functions to the circle. We shall not make much use of 
them, but it seems proper to define them, so that the 
student may not be altogether at a loss should he fall in 
with them in his reading. They are called the hyperbolic 
sine, cosine, etc., and are defined as follows, the symbol 
sinh meaning hyperbolic sine of; cosh, hyperbolic cosine of 
and so on. 

sinhx = |(ex — e~rr); coshx=i(ex+e~x); 

sinh x cosh t 
tanh x — ~ , - = -r-r ; coth x = . , -; 

cosh x ex + e~x sinh x 

cosecli x ■ 
sinh x' 

; sech x - 
1 

cosh x 

Identities. The following identities, similar to those for 
the trigonometric functions, are readily established by sub¬ 
stituting the values of the functions in terms of x. 

(i) cosh2 x — sinh2 x = 1 ; (ii) 1 — tanh2 x = sech2 x; 

(iii) coth2 x — 1 = cosecli2 xy 

where cosh2 x means (cosh #)2, etc. 

Addition Theorem. Again, corresponding to the addition 
theorem in trigonometry, we have 

(iv) sinh (x ± y) — sinh x cosh y ± cosh x sinh y : 

(v) cosh (x±y) — cosh x cosh y ± sinh x sinh y; 

By putting y — x we get 

(vi) sinh 2x — 2 sinh x cosh x; 

(vii) cosh 2x — cosh2 x + sinh2 x; 

— 2 cosh2 x - 1 = 1 + 2 sinh2 x. 

In drawing the graphs of these functions it should be 
noted that the sine, the tangent, and their reciprocals are 
odd functions, but that the cosine and its reciprocal are even 
functions. The sine may take any value from — oo to + oo ; 
the cosine is never less than 1 and is always positive; 
the tangent may take any value between — 1 and 1, and the 
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fines whose equations are y = ± 1 are asymptotes to the 
graph of tanh x. 

Derivatives. The derivatives are readily found : 

Dx sinh x = cosh x: Dx cosh x — sinh x; 

Dx tanh x = sech2 x; l)x coth x = — cosech2 03; 

Dx cosech x — — cosech # coth sc; 

Dx sech x — — sech sc tanh a;. 

Inverse Functions. The inverse functions can be ex¬ 
pressed by means of the logarithm. 

If y — sink~1 x, then x = sinh?/, just as when 7/ — sin “1 x, 
x — sin y. To find the logarithmic form of y we have to 
solve the equation 

x— l(ey — e~y) or e2y — 2xeV —1=0, 

which gi ves & — x ± *J{x2 +1). 

Since ey is always positive the + sign can alone be taken; 
therefore 

ey = x + v/(x2 +1), and sinh~lx — y — log(x + s/x2 +1). 

In the same way we find 

cosh “1 x = log (x±s/ x? — 1). 

Since (x—sjx2- l) = l/(sr + J-xz— 1) we have 

log (sc — \/x2— 1)= — log(^ + \fx?—l). 

In this case the inverse function is not single-valued; to 
each value of x greater than 1 there are two values of 
cosh"1 x, equal numerically but of opposite sign. The 
graph of cosh x is in general appearance like that of 1 +x2; 
by rotating the graph of l+;r2 about the bisector of the 
angle XOY we should get a curve resembling that of 
cosh”1 au, and the curve would be symmetrical about the 
sc-axis as the graph of cosh x is symmetrical about the 

y-axis, 
1 -j- x 

If x2<l, tanh_1a: = |log^——; 

xz>l, ooth'1a; = |log^tf- if 



142 an elementary treatise on the calculus. 

Derivatives of Inverse Functions. The derivatives of 
the inverse functions, taking for greater convenience xja 
instead of x, are 

DaSinh"1-— 

cosh"1 

Dx tanh"1 

_ 
a *J{x2+a2)? 

x . 1 
a 

a d2 — X‘ 

‘ 2)’ 

# (x2<a2); 

Dx coth~1 a~ = (x2>a2). 
a x2 — az v 

For the positive ordinate of cosh"1- the + sign must be 
taken. a 

It should be noticed that 

sinh ~1 ^ = log — log (& -f s/x2 + of) — log a, 

x 
so that the derivative of sinh"1- is the same as that of 

a 

log (x + sJjF+o?), the constant log a disappearing in the 
differentiation. The occurrence of the divisor a in the 

x 
logarithmic form of sinh"1- has to be borne in mind when 

* a 
comparing the same result expressed in logarithms and in 
inverse hyperbolic sines (or cosines). 

§ 67. Higher Derivatives. The derivative of f(x) is 
usually itself a function of x and may therefore be differ¬ 
entiated with respect to< x. Thus the derivative of xs is 
3#2 and the derivative of Sx2 is 6x. 6x is therefore called 
the second derivative of a?3, while 3x2, which has hitherto 
been called simply the derivative of amay be called for 
distinction the first derivative of x3 

The notation for derivatives higher than the first is 
modelled on the analogy of indices. Thus 

the first ^-derivative of y is Dxyy 
the second „ „ Dx(Dxy) written Dx2y, 
the third r, „ Dx(D2y) „ Dxhy, 
the ^th „ „ Dx(Dxn~ly) „ Dxny. 
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When the derivative is written in the form the higher 
d dx 

derivatives are written by considering -j- as the equivalent 
d2 (ix dhj 

of l)x and Dxy becomes -,-“2 * ?/> usually written 4*^; 
f-Jn dX~ c dX 

generally Dxny becomes -f~.y or 

The accent notation is also used; thus f"(x), 
fiw(x) ...f{n)(od) mean the 2nd, 3rd, 4tli... nth derivatives 
of f(x), n being enclosed in brackets to distinguish the nth 
derivative from the nih power. In the same way y'\ 
y'" ... x, x ... are used, but the notation is rather cumbrous 
when more than two accents are used. 

Ex. 1. If f(x)~ajfi + ha?+ca? + dj: + e, find f{x\f\x\f^x). 

f\x) — 4 ax2 + Wbx2 + 2 cx 4- d 

f\x) — 12 ax2 + (>bx 4- 2 c 

f"'(x) = 24ax + tib 

/Iv(.r) — 24 a. 

Since /^(.r) ™ a constant, the fifth and all higher derivatives will 
be zero. 

It will be readily seen that the ?ith derivative of xn is n ! and all 
derivatives of higher order than n are zero. 

Ex. 2. If x~a eos 7it, find x. 

x — — na sin nt; x = — n£a cos nt = — n2x. 

Ex. 3. If y = caxj prove Bny=ancnx—a"y. 

By = aenx ; D2y = aBe(lx = a V*, etc. 

Each differentiation in this case is equivalent to the multiplication 
of the function by a. 

Ex. 4. If y — sin (?>.r 4- c) find B2y and Bny. 

By — Reax sin (for; 4-c 4- 0) (§ Gf>, ex. 2), 

Bhj = sin (for 4- c + # + 0) 

= sin (for + c 4- 2 0). 

It is easy now to see, and the result may be strictly proved by the 
method of induction, that 

Bny — IPe** sin (bx+c+nO). 
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Ex. 5. Prove /)" sin (a#+ &) = «” sin — ), 

I) sin (ax 4- b) — a cos (ax 4-b)~ a sin (^ax + ^ ^ J? etc. ? 

and in the same way it may he shown that 

J)n cos (ax 4- £>) — a" cos ( ax 4’b + 7-^> 

Ex. 6. Prove Dn log x=( — 1 )n (?i — 1)! x~n. 

§ 68. Leibniz's Theorem. Examples. The calculation of 
higher derivatives is, as a rule, a laborious process, and 
there are only a few functions such as x11 or eax of which 
the nth derivative can be stated explicitly. The following 
theorem, named after its discoverer, is useful in finding 
the ?ith derivative of a product. 

Leibniz’s Theorem. If y is the 'product of two functions^ 
u and v, of x then 

Dny — vDnu+nCLlhd)n ~1 u + nC2D2vDn ~2u+ ... 

+ nC2I)n~2vD2u + 7lClDn~lvDu + Dnv. u ... (i) 

where nCv nC2)... are the binomial coefficients. 
The proof is obtained by repealed application of* Th. IV., 

§ 58. Using the accent notation we have, since y~uvf 

y' = vu + v'u, 

y" = vu"+v'u + vu' + v'u = vu" -f 2 v'u'-fv"u, 

y'" = vu" + v'u" + 2 v'u" + 2 v"u + v"u + v'"u 

= vu"'+3v'u"+:W'u'+v"'u. 

These expressions for ?/", -?/" clearly obey the law given by (i). The 
general theorem may now be proved by induction. The rth and the 
(r4- l)th terms in (i) are 

n(7r_1r(r~1,M(n~r+I) 4* nCrv(rVn-r\ 

and if (i) is differentiated the coefficient of v(r)uin~r+1) in the expression 
thus obtained for Dn+1y will be 

nCr-i + nCr, that is, n + lCr* 

Hence D*+ly=vu(n+1)4- „+1 v'u(n)4- n+1^r"w(n~1)4- ..., 

so that the expression for Dn+1?/ obeys the law given by (i). But the 
theorem has been proved to be true when w = 2 or 3; therefore it is 
true when n is any positive integer. 
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The theorem will be found very useful at a later stage 
when the expansion of functions in series is taken up 
(Chapter XVIJ1.); meantime the student will find among 
the exercises a number of examples to which the theorem 
may be applied. 

Geometrical and physical interpretations of the higher 
derivatives will be given in the next and following chapters. 
The student may however try to interpret the geometrical 
signification of the second derivative f"(x) as measuring the 
rate of change of the gradient f'(x); for example, if f'(x) 
is positive how will the tangent at the point P {x, f(x)) turn 
about its point of contact as x moves to the right \ 

We will conclude the chapter with one or two examples. 

Ex. 1. Find the derivative of (Zb/)2, the argument being x. 
(/b/)2 means the square of the derivative of y ; /)-// means the second 

derivative of //. The derivative of y2 should be written D{y2) or 1) . y2. 
These three forms (Zb/)2, D2y, D{y2) mean quite different things, and 

must be carefully distinguished ; or ™ean 

respectively (Dy)2, Z)2y, D{y2) or 1) . y2. 
Now put u for Dy ; then 

D. {Dy)2 = Dx{u2) = Du{u2) x Dxu = 2uDxu. 

But Dxu~D. Dy — D2y, and therefore 

D. {Dy)2 = 2/by Dhj. 

This equation may also be wr itten in such forms as 

I>* • (y)2=2y’y" ; 
d / dy \2 _ xi?/ d2y 

dx\ dx ) ~dx dx2 

In the same wav it may be shown that 

•O.-(y)3=%')¥'; 
d_ (dy\n_,, ( dyY-'dhj 
dx\dx) V dx) dx2 

Ex. 2. If x and y are functions of £, find Dx2y in terms of deriva¬ 
tives with respect to t. 

Here Dxy — DtyjDtx—y/x ; 

therefore D2y—Dx{y\x) = Dt{yjx)fDtx. 

But z>,(i) . 
\&1 {xy (x)2 

therefore Dx2y={xy — y ty/x3, 

where a? means (i)3. 
G.C. K 
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Ex. 3. If y — Ax2 4- Bjx, prove xhf — 2?/. 
We have 

y Ax1 + Bjx ; ?/ = 2 Ax - Bjx1; y" = 2 A + 2 Bjx1. 

Eliminate A and B between the three equations ; in this case the 
second equation is not really needed because if we multiply the third 
equation by x2 we get 

x2y" — 2 Ax2 4- 2 Bjx = 2//. 

In general, however, all three equations would be required for the 
elimination of the two constants A, B. The equation obtained is 
called a differential equation. 

Ex. 4. If y = a? u where u is a function of x, find J)ny. 

By Leibniz’s theorem 

Dny—.r2Dnu4*n(2/r)D"~1 u4- ------(2)l)n~hi, 

since every derivative of x2 above the second is zero Thus 

Dny—x2Dnu 4- 2nxDn ~[u + n{n-\)Dn~ hi. 

EXERCISES XIV. 

1. If 

2. If 

3. If 

4. If 

y~lx*-2.27s4-4, find ?/, y", y", yiv. 

y — J(x24-1), find y". 

y — xl(a - x)2, find y" and y,n. 

y 
^72 4-4.27 4-1 

xH 4- 2.r2 - x - 21 
show that 

1 

•T4-2’ 

and then find y>y ,r 
5. If y — sin2 x, find y”, and y^sin2#^ - ^ cos 2^J. 

6. If y—x2 cos .r, find y" and y(n). 

7. If y = sin .r cos3 x, find y" and y{“\ 

8. If y=x\ogx, find y" and y(n). 

9. If y—xex, find y(n). 10. If y = x2er, find y(n). 

11. If y is a rational integral function of x of degree n, say 

y — axn 4- bxn~l 4-... 4- Jcx4-1, 

prove y{n)~n! a, y(n+1)—0, y<n+2’=0.... 

12. Find the turning values of the functions in examples 1 and 2, 
and graph the functions. 

13. If y = —“~2 ^e turning points of the graph. Find also 
14“ *r 

where y" is zero, and show that at these points the tangent changes 
its direction of rotation. 
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14. If y=<uf'*l+bx~n, prove that x'Y—n(n+1)?/. 

15. If y = aenx+be~nz, prove that y" -«8y=0. 

16. If y~ a cos tm^+6 sin nx, prove that y" + n2y—0. 

17. If cos nx+b sin nx\ prove th at 

y" + hf+(n2+P2)?/ = 0. 

18. If f(x) — (x-a)2cf)(x\ where </>(.r) is a rational integral function 
that does not vanish when x—ay show that 

/(«)=°> /'(«)=0> /"(«) = 2^ (a). 

19. If f(x)=(x— af (x) where r is a positive integer and </i(.r) as 
in Ex. 18, show that 

/(<*)=0, /'(«) = 0, ... /(r"1)(a)=0, f{T)(o)—r\ 

20. If # is positive, show that 

# - %x2< log (1 + x) < x. 

Talce f(x) —x— %x2 - log (1 -f x\ (f> (x) — x~ log (1 -f x) ; then see 
Exercises XI. 33. 

21. If x is positive and less than 1, show that 

-* log (1 -x) >x. 

22. Show that the limit for n — oo of slt — log n, where 

«.=]+i+i+-+^ 
is a finite quantity (called Euler’s Constant) lying between 0 and 1. 

From the inequalities of examples 20, 21, 

or log {nI(n -1)} > ~ > log {(n 4-1 )/n\. 

Hence log {(w -1 )/(n ~ 2)} > —-y > log {nl(n -1)}, 

log {2/1 }>|>log{3/2}, 

1 — l>log{2/l}. 

By addition, 1 + log n> sn > log (n +1), 

therefore 1 >sn - log n >log 11 + 

from which the result follows at once. The value of the constant is 
•577 215 664 90. 

23. If x=a&, y=2at, find Dx2y in terms of t- 
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24. If .r=acosZ, y ~b sin t, find Dx2y in terms of t. 

25. If r2=.r24-y3, show that in the notation of § 62 

v=.r cos c/> +y sin <f>. 

26. If ax2 4- 2Ary 4- by2 = 1, show that 

Dhj ~ (A2 - a?;)/(Ar 4- fry)3. 

27. If <&r2 4- 2Ary -I- by1 -f 2y.r + 2/y 4- c* = 0, show that 

D2y — A /(Ar 4- by 4-/)3 

where A = abc 4- 2\fgh - ap - bg2 - ck2. 

28. If x?+y2 — 3<7.ry — 0, show that 

Z)2y = 2 fvi.ry((ax ~ y2)3. 

29. If w is a function of show that 

J)n(eaxu) = eax(anu 4-„riaw“ 4-nc2an~2D2u4- ... 4- Z)w?/). 

30. If y = tan”1#, show that 

(i) 7)y = cos7/ ; (ii) Z)2// — cos ^2y 4~~ j cos2y; 

(iii) Z)3y — 2 cos ^ 3y + 2^ cos3// ; 

(iv) l)ny — (r - 1)! cos^ny 4-cosny. 



CHAPTER VIII. 

PHYSICAL APPLICATIONS. 

§ 69. Applications of Derivatives in Dynamics. We give 
in this chapter a few simple examples of the use of 
derivatives in physical problems. 

Take first the case of the rectilinear motion of a particle 
and let the units of time, length, and mass be the second, 
the foot, and the pound respectively, and the units of force 
and work the poundal and the foot-poundal. 

At time t, that is, t seconds from some chosen instant, let 
the particle be at P, distant x feet from a fixed point 0 on 
the line of motion and let the mass of the particle be 
m pounds. Denote the velocity at time t by v, the accelera¬ 
tion by a, the momentum by M, the force by F, the kinetic 
energy by E; these quantities may be expressed in terms 
of t, x, m. 

“x7 O P Q X 

Fig. 31. 

When t increases by St let x increase by Sx — PQ; then 
the average velocity during the interval St in the direction 
in which x increases, namely, in the direction OX, is Sx/St, 
and the velocity at time t is the limit of this quotient for 
St = 0. Therefore 

T Sx d x 
v= L -7 = ^7 = £c. 

st~ o or at 

v is in general a function of t. The average acceleration 
during an interval St in the direction in which x increases 
is Sv/Sty where Sv is the increment of v in time St; the 
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acceleration at time t is the limit of this quotient for St = 0. 

Hence ^ dx d2x ^ Sv_^dv___ d 
st=o St ~ dt~ dt dt' dt2 

— x. 

The momentum in the direction in which x increases is 

M~mv — mx. 

By the second law of motion the force F in the direction 
in which x increases is the time-rate of change of the 
momentum in that direction. Hence 

r, dM 
= 7l —mv=mx. 

dt 
We may express F in another form, by considering v as 

a function of x, and x as a function of t, so that (see § 59, 

■^x* dv__dv dx__dv _ d , 2. 

di~~dx dt ~~dx0""dx^V ‘ 

Now E= hnv2 and therefore 

^ dv d os dE 
F=mdt=dxUmv)=- dx 

Hence the force may be defined either as the time-rate of 
change of momentum dM/dt or as the space-rate of change 
of kinetic energy dE/dx. 

Let W denote the work done on the particle by the force 
F in moving it from some standard position, say from the 
position at which x = a, to the position P; SW the work 
done in moving it from P to Q. At Q the force is P+<$P; 
hence when Sx is small the work done will lie between 
FSx and (F+SF)Sx, For FSx is the work done on the 
supposition that the force is constant over PQ and equal to 
its value at P, while (F+SF)Sx is the work done on the 
supposition that the force is constant over PQ and equal to 
its value at Q; evidently the work will lie between these 
two values. Hence SW/Sx lies between Pand F+SF and 
therefore dW 

dx 
Since dE/dx is also equal to F, E and W differ only by a 
constant. 
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Again, the time-rate at which the force works is cUVjdt, 
and W may be considered as a function of x and x, a func¬ 
tion of t. 

Therefore 
dW dW dx 
dt ~~ dx dt ~ V' 

The student should note the dimensional formula for 
these magnitudes (S 34). If x is the measure of a length 
so is dx, and the dimensional formula for v or dxjdt is LT j; 
similar observations hold for the other quantities. 

Ex. 1. Suppose/T constant; then the acceleration will he constant, 
equal to f say. Hence v —f and therefore 

v —ft -f const. 

Let the motion be such that when £=0, v— V and x~a\ these are 
called the initial conditions. The constant in the value of v is 
therefore V. We can now find for 

x—v— ft -f V; x = lft* + Vt + const. 

as may be tested by differentiation. The constant is a, since when 
t~0, x—a, so that finally 

x “ ^ ft“ + 11~f-o. 

To get E in terms of t vTe have E—bnv2=hn(ft + I7)2. Using the 
value found for x and putting E0 for hn F2 wo get 

E-~ E(i — mf(x - a) — E(x - a). 

This form may be obtained at once from the energy equation 
dE/dx— F. 

Finally since d\Vldx~ F we have lfr— F(x — a), If’ being zero when 
x—a. Hence E— E0= IF; that is, the gain in kinetic energy is equal 
to the work done by the force. 

Ex. 2. Suppose F to be an attraction proportional to the distance 
of the particle from 0. 

Let the intensity of the attraction, that is, the force on unit mass 
at unit distance from 0, be /x. If x be positive, that is, if the particle 
be to the right of the force towards 0 is /mix; if x be negative, that 
is, if the particle be to the left of 0, the force towards 0 is v)fi(-~x). 
In both cases therefore the force in the direction in which increases 
is - fxinx. But the force in the direction in which x increases is 
always mx. Hence 

m x — — /mix, or x + }uc=0. 

This equation is called the differential equation of the motion of the 
particle, the word tk differential ” being used because the equation 
contains the differential coefficient x. 
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The student will easily verify that the equation will be satisfied (see 
Exercises XIV., 16) by 

x — A cos Jfit + B sin Jpt, 

where A, B are any constants whatever. The motion becomes definite 
when in addition to the law of force we are told the position and the 
velocity of the particle at any one instant. Suppose for example that 
when t~0, x~a3 v—0. Putting t — 0 and x~a in the equation for x 
we find A — a. 

Again v is found by differentiating x with respect to t; therefore 

v—x — — Jfi A si n J/it 4- JtiB cos Jpt. 

But when t—03 v—0 ; therefore we get 0 = JpB3 that is, B — 0, and we 
find that x = a cos Jfit. 

Simple Harmonic Motion. When the law of force is that stated in 
the example the motion is called simple harmonic motion, and the 
form :*;=« cos Jpt is the simplest way of stating the relation between 
x and t. Obviously the motion is periodic, the period being ^Trjjfi 
because while t increases from a value tx to the value tx + 27r/v//x both 
x and x go through their complete range of values, a is called the 
amplitude of the motion. 

The student may show that if x—c3 v— V when t—0, then 

where 

y 
v = c cos Jiit H—y sin Jfit = a cos (Jfit - 9), 

v /A 

i= y\J(^c2 + a cos @—ci « sin 0— - j-• 

a is again the amplitude and r/Jp the period. 

Ex. 3. A rod is stretched from its natural length a to the length 
a-f x: assuming Hooke’s Law to hold, find the work done. 

The ratio x/a is called the extension, and by Hooke’s Law the force 
required to produce that extension is proportional to it. ] taunting 
this force by F\ we have F—Ex\a, where A' is a constant. When the 
extension is (x -f 8x)/a3 the force will be F+ 8F~ E(x + 8x)/a. If the 
work done in producing the extension x/a is W, and if 8 IT is the work 
done in producing the further extension, then $ IT will lie between 
F8x and (F+8F)8x3 so that 8 )V/8x will lie between F and F+&F. 
Taking the limit for 8x converging to zero, we get 

diV=F=E^. 
ax a 

Hence W= \>E*— 4- const. 
2 a 

Since TT=0 when x—0, the constant is zero, so that 
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Ex. 4. A fluid is in communication with a cylinder in which 
a piston is free to slide, the cross section of the cylinder being >S’, 
a constant. Let W be the work done by the fluid in pushing out the 
piston a distance .r, and let the intensity of pressure on the piston 
hep. Show that d Wjdx-pS. 

The force on the piston due to pressure is pS ; when the piston is 
pushed out the further distance 8x, let the intensity of pressure be 
p-r ftp so that the force on the piston is (p + 8p)S. The work 8 W done 
in pushing out the piston through the distance 8x will lie between 
pSojc and (p + 8p)*So.r, and therefore 8 W/8x will lie between pS 
and pS 4- 8p»S'. Hence d Wjdx —pS. 

The result may be put in another form. If v he the volume of the 
fluid, then S8x is the inclement of volume which may be called 8v. 
Hence 8 W/8v lies between p and p + 8p, and we get 

dW 

dv P’ 

Ex. 5. A body is rotating about an axis; a line fixed in the 
body and perpendicular to the axis makes at time t an angle 0 with 
another line nxed in space and perpendicular to the axis. What do 

0 and 6 measure ? 

0 is the time-rate of increase of that is, 6 is the angular velocity 

of the body about the axis. In the same way we see that 0 is the 
angular acceleration. 

If a point P is moving in a plane, and if 0 is the angle which the 
line joining the point /> to a fixed point 0 in the plane makes with a 

fixed line through O, 0 and 6 arc sometimes called the angular velocity 
and the angular acceleration of the point P about O. 

Ex. 0. A positive charge m of electricity is concentrated at a 
point 0; the repulsion on unit charge at P (Fig. 31) is m/x2 where 
x—OP. Find the work done as unit charge moves from A to B 
where OA = rc, OB — b. 

Let W be tlie work done from A to P; then 

When x ~ a, 
the work is 

dW m , T,. m 
and 11 =-f- const. 

dx x~ x 

JF=0, and the constant is therefore mja. 

a x 

Hence at P 

The work in moving from A to B is therefore 

1 a 

m 

b‘ 

Potential. When B is so far off that m/b is negligible in 
comparison with m/a then Wl == mja. Hence in this case 
the work done as unit charge moves from A out of the 
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field is m/OA. This function m/OA is called the potential 
of the charge m at A. 

At P the potential is m/OP. Denoting it by V we have 

Y— m • ^ F_ m 

X ’ (lx X? 

so that the force at P is the space-rate of diminution of 
the potential V at Pt and the direction of the force is from 
that of higher to that of lower potential. 

For gravitational forces the attraction between two 
particles, m, m (grammes) at a distance from eacli other 
of x cm. is kmm Ix2 dynes where k is the constant of 
gravitation (equal to 6*6 x 10~8). See (3rays Treatise on 
Physics, § 195. [London: J. & A. Churchill.] The potential 
V of m at the point x is km/x and the attraction towards 
m is — Dx V; the force outwards from m is + Dx V. 

It is proved in works on Dynamics (ex/. Gray, § 484; see 
also Exercises XXX., 24) that the potential at the point x 
of a sphere of radius a and uniform density p is 

F=27rkp(a2 — lx2) for an internal point (x<a).(i) 

Y__ feirlcp a3 

3 x 
for an external point (x>a) ,(ii) 

Since the field is symmetrical the force is radial at every 
point and the attraction at the point x is therefore 

-DXV= 
47rkp 
~3~~ 

x, (x<a); n tr_^7r^/° a3 
X ~1T x* 

(x>a). 

The functions V and PXV have each different analytical 
expressions according as x is less or greater than a, but 
they are each continuous functions near x = a; for we see 
from (i) and (ii) that whether x tends to a through values 
less or through values greater than a, V tends to 47rkpa2J3 
and DXV to - 4nrkpa/S, and these are the values of V and 
DXV when x — a. 

On the other hand the function D2V is discontinuous 
at a; for when x tends to a through values less than a 
we find from (i) that DX2V tends to —4nrkp/S and when 
x tends to a through values greater than a we find from 
(ii) that DXV tends to +87r/fcp/3. The function DX2V has 
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therefore no value when x = a, but has one definite limit 
for x approaching a from one side, and another definite 
limit for x approaching a from the other side (see § 44). 

To graph the functions V, I)XV} J)X2V suppose for 
simplicity a = l, 4nrkp/3 = l; the graphs for other values 
can be derived in the usual way (Fig. 32). 

ABCD is the graph of V; the part AB is a parabola, the 
part BCD a rectangular hyperbola. 

The dotted curve OEF is the graph of Dx V; the part 
OE is straight. 

The graph of DX2V is the straight line OE parallel to 
OX and the curve HCK. 

The parts to the left of the vertical dotted line represent 
the functions for x<a, the parts to the right for x>a. 
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§ 70. Coefficients of Elasticity and Expansion. Let p be 
the intensity of pressure and v the volume of unit mass of 
fluid, p being a definite function of v. When p increases 
by Sp let v increase by Sv; if we suppose Sp positive then 
Sv will be negative. The quotient ~Sv/vy that is, the ratio 
of the diminution of the volume to the volume at pressure py 
is called the compression or the mean compression, and the 
limit of the increment of pressure, Sp, to the compression 
produced, — Sv/v, is called the coefficient of the elasticity of 
volume, or simply the elasticity of volume, or sometimes the 
coefficient of the resilience of volume. Hence the elasticity 
of volume is 

L 
8v~Q Sv (tv 

For a gas expanding at constant temperature pv = k, a 
constant, so that the elasticity of volume is 

dfk]v)_ 
dv 

: — V ■ 
-fc 

„2 ~=P- 

For a gas expanding adiabatically pvy = c, a constant, and 
in this case the elasticity is yp. 

A rod whose length at a standard temperature, say at 
0°C., is the unit of length expands when heated to a 
temperature 0 so that its length becomes 14-/(0); denote 
14-/(0) by x, and when the temperature becomes 0 4- SO let 
the length become x4- Sx. The quotient SxjSQ is called the 
mean coefficient of linear expansion as the temperature 
increases from 0 to 04- <50, and dx/dO is called the coefficient 
of linear expansion at the temperature 0. 

Usually /(0) is of the form a6 or a6+b62 where a, b are 
very small constants. When x~\+aQ, the coefficient 
dxjdd is a and is independent of 0; if /(0) = «04-^>02 
and x—l+ad + bQ", the coefficient is a + 260 and depends 
on 0. 

If a solid expand equally in all directions, the area 
and the volume which are unity at 0°C. would become 
y = (l 4-/(0))2 and z — (l +/(0))3 at temperature 0. The 
numbers dyjdO, dz[d0 are called the coefficients of super- 
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ficial and of cubical expansion respectively at temperature 
6. If f(6) = a$, then 

y = (l+a6Y-, %=*a+2a*0; 

0 = (l+a0)3; ^=3a + 6a20+3a302. 

Since a is very small a2 and a3 will be much smaller and 
the coefficients will be very approximately *2a and 3a. 

Ex. The volume at temperature Q of the water which occupies 
unit volume at 4° is approximately l + «(0—4)2 where o ~8'3S x 10 6 ; 
find the coefficients of cubical expansion at temperatures 0° and 10°. 

§ 71. Conduction of Heat. A slab of thickness d whose 
opposite faces are parallel planes has one face maintained 
at constant temperature v and the opposite face at constant 
temperature vY (v>v1); the quantity Q of heat which in 
time t crosses an area A forming a part of a section parallel 
to the faces and lying between them is 

Q^kAiv-vJt/d, 

where k is a constant, called the conductivity, depending on 
the material of the slab. This equation expresses the law 
of steady flow of heat in a conducting solid and is a result 
of experiment. 

If the temperature v of a solid vary from point to point 
of the body at the same instant, and from one instant to 
another at the same point in the body, v will be a func¬ 
tion of more than one variable, namely of t and of the 
coordinates of the point. 

A t a given point in the solid the time-rate of change of v is 

j Sv 
-Dtv. 

In forming this derivative the coordinates of the point do 
not change; v changes through lapse of time at a given 
point. 

On the other hand, let P be a point in the body whose 
distance from a fixed plane is MP = s, and R a point in MP 
produced such that PR — Ss; then at the same instant the 
temperature v at P will be different from that at R, which 
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may be denoted by v -f Sv. At the time t the space-rate of 
variation of v at the point P in the direction PR will be 

T 
*-o Ss 

= Dgv. 

Let vis assume that at any given time t the temperature 
is the same at every point in any plane perpendicular to 
MP though different for different planes. We may assume 
therefore that the heat flows in straight lines parallel to 
MP ; let v be the temperature at P, v + Sv the temperature 
at R where PR — Ss, and let SQ be the amount of heat 
which in time St crosses unit area of a plane perpendicular 
to PR and lying between P and R. The formula given 
above for Q is assumed to give the average value of the 
amount of heat crossing a section when the flow is not 
steady, St and Ss being small. In that formula, therefore, put 
SQ for Q, 1 for A, v+Sv for vv St for t, Ss for d, and we get 

S Q — k {v — (■v + Sv)} St/Ss, 

and 
SQ __ 
St “ s7 

Take the limit for St and Ss converging to zero, and we get 

DtQ= —l'Dsv; 
in words, the time-rate at which heat crosses the section of 
unit area at P is k times the space-rate of diminution of 
temperature in the direction perpendicular to the area. 

DtQ or its equal — kl)8v is called the flax in the direction 
in which s increases; obviously the flux is from places of 
higher to places of lower temperature, and this is shown by 
the form — kD8v since if v decreases as s increases D8v is 
negative and — Dsv is positive. 

jt 
Ex. r — sin# where Vy c are constants. 

kt 

DtQ — -ki)j — ~ 1c Ve~ <■ cos .r. 

When #=7r/2, DtQ~0 whatever t may be; that is, there is no flow 
of heat across this plane ; when x <7r/2, the flow is towards the left, 
when x >ir/2 it is towards the right, the positive direction of x being 
towards the right. 

This problem gives an example of a function of more 
than one variable; such functions will be taken up later. 
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EXERCISES XV. 

1. A point P moves with uniform velocity V along a straight line 
AB; OA is perpendicular to A B and equal to a. Find the angular 
velocity of P about 0. 

2. A point P moves with uniform velocity ?/ along a straight line 
A By and another point Q with uniform velocity v along an intersecting 
straight line A C. Find the rate at which the distance between P and Q 
increases. 

3. If p is the density and p the intensity of pressure of the atmo¬ 
sphere at a height of x feet above sea-level, express in symbols the 
statement that the rate of increase of pressure per unit of length 
downwards is equal to the density multiplied by the acceleration due 
to gravity. Assuming that p = kp where k is a constant, and that at 
sea level show that 

(JX 
p^p{)<r k. 

4. If X be the number of lines of force passing through a circuit, 
state in words the meaning of - diXjdt. 

5. Express in symbols the statement that the electromotive force E 
is the sum of two terms of which the first is the product of the resist¬ 
ance It and the current C\ and the second is the product of the self- 
inductance L and the time-rate of increase of C. 

6. Express in symbols the statement that the force X acting on a 
magnetic shell in the direction x is equal to the space-rate of diminu¬ 
tion in that direction of the energy E. 

7. If in ex. 4, $ 69, W1 is the work done as the fluid expands from 

volume to volume find (i) if pv — k, (ii) if pv^ — k, k being 
constant. 

8. The potential of a long uniform rod of linear density cr at a point 
P whose distance PC from the rod is x is 

F— ‘lk<r log (c/.r). 

Show that the attraction of the rod on a unit particle at P is towards 
0 and equal to %k<rjx. 

9. The potential of a thin circular disc, of surface density cr, at a 
point P on the normal to the disc through its centre 0 is 

V = %7rkcr { v/(a2 -f x2) — x} 

where a is the radius of the disc and OP—x. Show that the attraction 
on unit mass at P is 

Show that if x is small compared with af the attraction is 2xkcr 
approximately. 
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10. The coordinates of a point at time t are given by 

x ~ a cos (2n t - a), y — b cos nt. 

Show that the equation of the path of the point is 

x=a{(%~1)cma+i>yl{1~ll^sina}- 

The .r-coordinate is a simple harmonic function of amplitude a and 
period 7rln, while the //-coordinate is a simple harmonic function of 
amplitude b and period 2w/?i, double that of the ^-coordinate. Tim 
motion is therefore said to be compounded of two simple harmonic 
motions in rectangular directions and of periods in the ratio 1 : 2. 

When a ~0, the path is a parabola. Figures of the curves for 
different values of a will be found in Gray’s Pht/mhs, Yol. I., p. 70, 
and in various other books. 

11. Show that two simple harmonic motions of the same period and 
in the same straight line compound into a simple harmonic motion of 
the same period and in the same straight line 

12. If in ex. 11 the motions are in rectangular directions, show that 
the curve compounded of the motions will be an ellipse. 



CHAPTER IX. 

MEAN VALUE THEOREMS. MAXIMA AND MINIMA. 

POINTS OF INFLEXION. 

§ 72. Rolle’s Theorem and the Theorems of Mean Value. 
The following theorems are of constant application. 

Theorem I. If F(x) and F'(x) are continuous as x 
varies fn/m a to b, and if F(x) is zero when x = a and 
when x~b, then F\x) will be zero for at least one value of 
x between a and\ b. (Rolle’s Theorem.) 

In geometrical language, the theorem simply states that 
at one point at least on the graph of F(x) the tangent is 
parallel to the rr-axis. 'There may be more points than 
one; if there are more than one there must be an odd 

number of such points, as G, D, E (Fig. 33). The student 
should show by a graph that the theorem is not necessarily 
true if either F(x) or F'(x) becomes discontinuous at a 
point in the range from a to b. 

G.C. L 



162 an elementary treatise on the CALCULUS. 

The theorem is otherwise obvious, because F(x) cannot 
either always increase or always decrease as x increases 
from a to b, since F(a) — Q and F(b) — 0. Hence for at least 
one value of x between a and 6, F(x) must cease increasing 
and begin to decrease, or else cease decreasing and begin to 
increase; for that value of x, F'(x) will be zero. Obviously 
a may be either less or greater than b. 

Theorem II. If f(x) and f'{x) are continuous as x 
varies from a to b, then there is at least one value of xy 
xx say, between a and b such that 

=f'(xi> or /O) =/(«) + (*!»-«)/'(*i).0) 

(Theorem of Mean Value). 
In Fig. 34 let A be the point (a, /(a)), B the point 

(b, f(b)) ; the gradient of 
the chord AB is 

m-m 
b — a ’ 

and the theorem simply 
asserts that there is at 
least one point, as P, on 
the graph between A 
and B such that the 
tangent at P is parallel 
to the chord AB. If the 
abscissa of P is xx the 

gradient at P is f\xf) and the equation is established. The 
student should draw graphs to show that there may be 
more than one point such as P, and that on the other hand 
the theorem may not be true if either f(x) or f\x) becomes 
discontinuous for a value of x between a and b. 

The theorem may however be deduced from Th. I., and 
the method of deduction is important as it leads to the 
theorem known as Taylor’s Theorem, one of the most 
far reaching in the Calculus; indeed the present theorem 
is only a special case of Taylor’s. 

Consider the quantity Q defined by the equation 

= Q °r f(b)—f(a)—(b — a)Q — 0 (2) 
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Let F(x) denote the function 

formed by replacing b by x in the expression 

f(b)-f(a)-(b-a)Q. 
By (2) F(b) is zero; also F(a) is zero. Hence the con¬ 
ditions of Tli. I. hold for F(x) since F(x\ F'(x) are 
continuous. Therefore F'(x) will be zero for at least one 
value of x, xx say, between a and b. But 

F\x) =/(*)- 0; 
and therefore f{x^)-Q — 0 or Q=zf'(x^) 

so that the theorem is established. 

Theorem III. If f(x), f\x), f"{x) are continuous as x 
varies from a to b, then there is at least one value of x> 
x2 say, between a and b such that 

m=f{a) + (b - a) f(a) + j (b - aff"(x^ 
This theorem is an extension of Th. II. To prove it 

consider the quantity R defined by the equation 

m -/(a) - (6 - a) f(a) - J(6 - af R = Q.(3) 

As before, take the function F(x), such that 

F(x)~f(x)—f(a) — (x — a) f\a) — i(x — a)2 II. 

Here, F(a)~ 0, F(b) = 0 (by (3)), and F(x) satislies the con¬ 
ditions of Th. I. Now, 

F'(x)=f(x) ~ /'(«) -(■*- «) R, 
and therefore for at least one value of x, x1 say, between 

a and b f\xx)=f(xx) -/'(<i) - (r, - a) R = (». 

Hence F\x) vanishes when x = xx; obviously it also vanishes 
when a? = a; the conditions of Th. I: apply therefore to 
F\x) so that its derivative must vanish for at least one 
value of x, x2 say, between a and xv and therefore between 
a and 6. But the derivative of F\x) is F"(x) and 

F\x) = f(x)-R, 
and therefore 

r(tr.2)=f(Xs)-R = 0; or R=f"(xJ 
and we get 

/(&)-/<«) - (6 -«) m - i(& - a?f\xf)=o 
which establishes the theorem. 
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The theorem has the following geometrical interpretation. 
If the tangent at A (Fig. 34) meet DB at R, then 

JDR—f(a) + (6 — a) f'(a); DJJ=/(6), 

and therefore, both in sign and in magnitude, 

RB=DB - DR = i(b - a)2 

Hence the deviation of the curve at B from the tangent at 
A, that deviation being measured along the ordinate at B, 
is equal to 1(6 —a)2/"(a?2). 

§ 73. Other Forms of the Theorems of Mean Value. The 
following forms may be given to Theorems II., III. 

If x be any number lying between a and b, then x — a and 
h — a are of the same sign whether a is less or greater than 
h\ therefore (x — a)/(b — a) is a positive proper fraction, 
6 say, and we can write x = a + 6(b~ a), so that any number 
between a and b is of the form a + 6(b — a) where 0 is a 
positive proper fraction. 

Now let b = a + hy b — a = h; Th. II. will become 

f(a + h) = f(a) + h f'(a+ 6h).(ILa) 

and Th. III. will become 

f(a+h) —f(a)+k f\a) A Wf\a + 0xk).(Ilia) 

The 0 of Th. III. is not necessarily the same as the 6 of 
Th. II. and 6t is used for distinction. All that is known of 
0 is that it is a positive proper fraction; it depends in 
general both on a and h. In special cases its value may be 
found. Thus, if f(x) — x2 

f\x) = 2x; f(a + Oh) - 2 (a 4- Oh). 

But (a+hy = a2 + 2ah + Kl — a2 -f h. 2(a + \h), 

and (a + h)2 = f(a) + hf\a + Oh) — a2 + h. 2(a + Oh), 

so that in this case 0 = In Fi^. 34 if APB is an arc of 
a parabola, M is the mid point of CD, and MP bisects the 
chord AB. 

If we replace a by x the above forms become 

fix+h)~ f(x) + h f\x + 0h).(116) 

fix+h) —f{x)+h fix) + \h2fix + 0xh).(III.6> 
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If we make a zero and then put x for h we get 

m=m+xf(6x).(ii. c) 
f(x) =f(Q)+xf{0) + .(III.C) 

Theorem II. affords anotlicr proof, though really at bottom 
it is not different, of Theorem VI. § 58. For if f\x) is zero 
for every value of x, then /'(a^) is zero, and we get 
f(b) — f(a), that is, any two values f{a),f(b) of f(x) are equal; 
in other words f(x) is a constant. Hence if F'(x) is 
zero, the function (j>(x) — F(x) is a constant. 

Ex. 1. If x is positive, show that log(l-fT) is less than x but 
greater than x - bA 

Ar) = log(l + *); /W=dp /'(*)= "(llbr 

/(0) = log 1 = 0 ; /'(0) = ], f\6x) ; 

By Th. II.c, log (I +x)=/(0)+.r/(^)=r+r^,<x. 

By Th. III.C, log(1 + x) =/(0) +af'(0)+b3f”(0{.x) 

= X - \2 > X 

Ex. 2. Show that cos x is greater than I - £.<:2. 

fix) = cos .r ; /'(.r) — - sin x ; /"(j?) = - cos .r ; 

fifi) =1 ; /(0) - 0 ; f(0vr) = - cos (<V). 

By Th. Ill.c, cosx—l— kx2 cos (0vv) > 1 - \x2, 

since cos (#j.r) is numerically less than unity. It is easy to deduce that 
cos.r~l - Ox1 where 6 is a positive proper fraction less than L 

Ex. 3. The student may try to prove by assuming 

fib)-A<*) ~ {b - a)f'(a) - l(b - aff'(a) - \{b 

that if fix) and its first three derivatives are continuous, 8 will be 
equal to f"(x3)y where x3 lies between a and b. By putting 0 for a 
and x for b we should get 

fix) =fi0) + xf( 0) + IxYX 0) + l*?f m 

where 03 is a positive proper fraction. 

Ex. 4. By using the theorem of ex. 3, show that if x lies between 

0 and 7t/2 .r >sin/r >.r — ; ta*Ti x>x+ J.r\ 

How would the inequalities be stated if x lay between - 7r/2 and 0 ? 

Ex. 5. If fix) —(x- 1)^ — 1, fix) is zero when x—0 and when x — 2. 
, Does f{x) vanish for any value of x between 0 and 2 ? 
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§ 74. Maxima and Minima. In §§ 17, 52 attention has 
been called to the turning values of a function; a turning 
value may be either a maximum or r minimum value of 
the function. A formal definition of such values may be 
given. 

Definition. /(a) is defined to be a maximum value of 
f(x) if f(a) is (algebraically) greater both than f(a — h) and 
than f(a + h) for every positive value of h less than a small 
but finite positive quantity tj. f(a) is defined to be a 
minimum value of f(x) if f(a) is (algebraically) less both 
than f{a — h) and than f(a+h) for every positive value of 
h less than rj. 

It is to be noticed that a maximum value is not 
necessarily the greatest value the function can have nor 
a minimum the least; f{a) is a maximum if it be greater 
than any other value of f(x) near /(a) and on either side 
of it. 

The condition for a maximum or a minimum value is 
easily obtained. If f(a) is a maximum value of f(x), then 
as x increases from a — h to a, f(x) is increasing, and 
therefore f\x) is positive (§ 52); on the other hand as x 
increases from a to a + h, f(x) is decreasing, and therefore 
f(x) is negative. Hence as x increases through a, f'(x) 
must change from a positive to a negative value. Con¬ 
versely, if as x increases through a, f(x) changes from a 
positive to a negative value, f(a) will be a maximum value 
of f{x). 

Hence f(a) will be a maximum value of f(x) if and only 
if f{x) changes from a positive to a negative value as x 
increases through a. 

In the same way it will be seen that f(a) will be a 
minimum value of f(x) if and only if f'(x) changes from 
a negative to a positive value as x increases through a. 

This condition may be called the fundamental condition 
or test. 

For ordinary cases a simpler form may be given to the 
condition. Usually f\x) will be continuous; now a con¬ 
tinuous function can only change sign by passing through 
the value zero (§ 45, Th. II.). Therefore, if f(a) is a turning 
value of f(x), f{a) will be zero. 
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Again, if f(a) is a maximum value of f(x),f'(x) changes 
from a positive to a negative value as x increases through 
a; therefore near a, f\x) is a decreasing function, and 
therefore its derivative, namely f'(x), must be negative 
near a. But if f"(a) is not zero, then near a the sign of 
f"(x) is that of f'(a). Hence f\a)t if it is not zero, will be 
negative when /(a) is a maximum value of f{x). Jn the 
same way we see that /"(</), if it is not zero, will be 
positive when /(a) is a minimum value of f(x). Conversely, 
/(a) will be a maximum or a minimum value of f(x) 
according as f"(a) is negative or positive. 

Hence the rule for determining the maxima and minima 
values of f(x) when /(#), f\x) are continuous: 

The roots of the equation /'(x) = 0 arc, in general, the 
values of x which make /(x) a maximum or a minimum. 
Let a be a root of f\x) = 0; then /(a) will be a maximum 
value of /(x) if f "(a) is negative but a minimum iff"(si) is 
positive. 

When f"(a) is zero this rule for testing whether/(n) is a 
turning value fails; f\a) may be zero and yet f(a) neither 
a maximum nor a minimum. When f\a) — 0 and also 
fr,(a) — 0, recourse may be had to the fundamental test that 
f{x) must change sign. It will be seen in § 78 that, in 
general, the point on the graph of f(x) for which both f(x) 
and f"(x) are zero is a point of inflexion. 

We leave it as an exercise to the student to show that 
maxima and minima values occur alternately. Thus in 
Fig. 83, § 72, which is the graph of F(x), the function is a 
maximum at C, then a minimum at D, then a maximum 
at E. At F and H on that graph the function turns 
though F'(x) is not zero at these points; however F\x) 
has opposite signs on opposite sides of F and H. Again 
at 0, F'(x) is zero, yet the graph has no turning point 
there; F\x) has the same sign on opposite sides of (7, and 
(} is a point of inflexion. 

The above conclusions, when f(x) and its derivatives are continuous 
at a, may also be deduced from the Theorem of Mean Value. For if 
f{a) is a turning value of f(x) the differences 

A =/(<*+h)-f{a\ 1)2 -/(a - h) —f(a\ 

must have the same sign for small values of h: the negative sign 
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when f(a) is a maximum, but the positive sign when f(a) is a 
minimum. 

Now, by 73 (Ilia), 

A=4A«)+ + Oh)=k{f(a) + Wf'{a+ Oh)}, 

A - - hf(a) + \hY\a - O'h) = h{ -f\a) + Uf'(a - O'h)}. 

When A is a very small positive number the signs of Y), and D2 will, 
if f'(a) is not zero, be the same as the signs of f(a) and — f(a) 
respectively (compare § 45, Th. I.) ; therefore l\ and JK cannot have 
the same sign, and therefore f(a) cannot be a turning value unless 
f(a) ~ 0. 

Again, if f'(a) is not zero the sign of f\a + Oh) and of f"(a ~ O'h) is 
the same as that of /"(a) ; therefore if f(a) — Q both f)i and /A, will be 
negative when f'(a) is negative, but positive when /"(a) is "positive. 
We thus get the same rule as before. 

By Taylor’s Theorem (chapter xvm.) ])Y and l)2 can be expressed in 
a series of ascending powers of h; the same line of argument as that 
just followed leads to the conclusion that if /'(a), /"(a),~ l)(a) all 

vanish, but f*\a) does not vanish, tlien f(a) will be a turning value 
pf f(v), provided that n (the order of the first of the derivatives that 
is not zero) is an even integer, but not a turning value when n is an 
odd integer : the turning value will be a maximum or a minimum 

according as fn)(a) is negative or positive. It will be a good exercise 
to deduce this conclusion by examining the signs of the derivatives 
near a ; for example, show that if f(a) and f'(a) are zero but /"'(a) 
not zero, f’(x) changes sign, and therefore /'(a) does not change sign 
as a increases through a, but that if f”(a) is zero and f\a) not zero 
f'Xv) does, /"(a) does not and /'(a) does change sign as a increases 
through a. 

B 75) Examples. 

^ExTi. Find the turning values of 3a4 - 4a3 4- 1. 
yenote the function by fix); then 

/'(a) = 12^4- 12a*2 ; f(x) = 36a*2 - 24a. 

Now/'(a)~ 12.r2(a -1), and is therefore zero if a=0 or 1. 

f'( 1) = 36- 24 = 12 =positive number. 

Since /"(l) is positive, f(l)~0 is a minimum value of fix). 
Again/"(0) = 0 ; in this case consider the sign of f'(x) near 0. Let 

A be a small positive number ; then 

/'( ~ h) = 12( - h)2( - A- l)—( + X~)=~ 

f( + A)=W(/i-l)»(+X-)«-, 

where only the sign of each factor and of the product needs to be 
written. f(x) is therefore negative both when x is a little less and 
when a is a little greater than 0 ; that is, fix) decreases as a increases 
from —h to 0 and continues to decrease as a increases from 0 to h. 
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Hence /(0) is not a turning value of f{x) ; on the graph of f(x) there 
in a point of inflexion where x —0. 

We may prove otherwise that /(0) is not a turning value ; for 
/"'(0)= “24, that is, the first of the derivatives whicWfloes not vanish 
when x — () is of odd order. / 

As x increases from - go to 1, f\x) is negativefand therefore f(x) 
is a decreasing function ; as x increases from 1 to 4- oo, f(x) is positive, 
and therefore f(x) is an increasing function. Hence /(l) is not only 
a minimum value of /(.r), but it is also the least value f{x) can take for 
any value of x ; f(xj is not negative for any value of .r. The student 
should graph the function. 

Ex. 2. Given the total surface, 27ra2, of a right circular cylinder, 
find the cylinder of maximum volume. 

Denote the radius of the base by .r, and the height by y ; then 

volume = 7rx2y ; surface — 2irxy -f 2irxl = 27ra2. 

From the second equation xy = a2 - x2; therefore denoting the volume 
by/(.r), we get 

f(x) — 7tx . xy — 7r(a~x - x3). 
Therefore 

f(x) — ir(a2 - 3.r2) ; f'(x) = - 67r.r ; f'(x) = 0 if x — 4- a/sf:3 ; 

the negative root may be discarded as irrelevant. Now /"(c//s/3) is 
negative, and therefore is a maximum ; the maximum volume 
is 27m:J/3/v/3. 

The height is given by//— (u2-,r2)/.r, and when x—alJ^y^Za/JS, 
so that the height of the cylinder of maximum volume is equal to the 
diameter of its base. 

The student should observe how the given condition enables us to 
express 7TXly as a function of the one argument x. 

Ex. 3. If r = aeos204-&sin20, find the maximum and minimum 
values of r, where a, b are positive constants. 

Examples of this type are most simply solved without the use of 
derivatives. Thus, 

r — |a(l + cos 2$) 4- i6(l - cos 2 0)—4- b) 4- i(a - h) cos 2(9. 

Now obviously r will be a maximum or a minimum according as 
h(a — F) cos 20 is so. If a>0, the greatest and least values of 
t(a - b) cos 20 are \{a — b) and - \{a - b), so that the greatest and 
least values of r are a and b. rfhese values are reversed if a<b, 
since in that case the greatest and least values of \{a — 7>)cos20 
are -\{a-b) and \{a~b). 

In a similar way we can find the maximum and minimum values of 
x2-\-y2 when x and y are connected by the equation ax2 4- 2hxy 4- by1 ~ 1. 

For put x = r cos 0, y=rsin 0, and then x2jry2 becomes r2, where 

r\a cos20 4- 2h sin 0 cos 04~b sin20) = 1. 

Now r2 will be a maximum or minimum according as 1/r2 is a 
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minimum or maximum, and we may write, from the equation between 
r and 0, 

1 jr2 — a cos2# 4- 2h sin 0 cos 0 4* b sin2# 

— \(a 4- b) 4- - b) cos 20 4- h sin 2 0 

= |(ct + b) 4 R cos (20- O'), 

where R cos 0' — \(a- b), R sin O' = A, and R~ 4 /\J4 /r j. 

The maximum and minimum values of 1/r2 are given by 

1 /r~+ b) 4 y{ (a - bf 4 4A2}. 

Geometrically, this example is the problem of finding tlie semi-axes 
of the conic whose e(juation is ox14 2hxy4 by* - 1. The values of 0 
that give the axes are determined by 

cos(20— O')-- ± 1, 2#= 0' or 7r4#', 0—10' or i7r4-&#', 

so that tlie two axes are at right angles. The value of O' is uniquely 
determined by the two equations R cos 0' — ^(a — b) and R sin #'■=//. 

The solution of problems of this kind by use of derivatives is much 
more tedious. 

Ex. 4. If f(x) — *rft*sin(&.r4c) where a, b are positive, find th^ 
turning values of f(x). 

f(x) — - c~ax{ a sin (bx 4 c) - b cos (bx 4 c)} 

= - Re~ax si n (bx 4 c - #), 

wh ere R cos 0 — a9 R sin 0 — by R— 4 ^/(a2 4 b2)y 

f'(x) = R2e~ax sin (bx 4 c - 20). 

Since e~ax is not zero for any finite value of .r, the roots of /*'(.?■) =0 
are those of sin (bx-\-c— #) — 0 ; therefore f(x) is zero when 

bx + c-0=mr (n-0, ±1, 4 2, ...). 
Denoting by xn the value of x corresponding to any ny we have 

fX^n) — R2e~axnsin (bxn4c—0—0) = R2e~axn sin (mr -- 0). 

Now sin(?27r— #) — — cos mr sin 0 ; and sin 0 and R\raxn are positive, 
so that the sign of f'(xn) is the same as that of - cos mr. that is, 
of (~l)t,+1. 

Hence f(x) is a maximum for n~0, 2, 4 ..., but a minimum for 
n = 1, 3, 5 limiting consideration to zero and positive values of n. 

XT wr — c+0 7r 
Now #„=-b~—xtl+1—xn~b> 

and /(.r„) — e~axn sin (bxn 4 c) — e~axn sin (mr 4 #), 

which may be put in the form 
vira ar - a$ 

f(x,)~( — \)nc 0 .e b .sin#. 

Thus the values of x for which f(x) turns form an arithmetic 
progression with common difference 7r/6; the values of x for which 
f(x) is a maximum (or a minimum) have the common difference 2ir/b. 
If e~axn be called the amplitude of fix^ the amplitudes of the maxima 
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and minima values of f(x) form a geometric progression with common 
_2ira 

ratio e 1 . 
Since I)xe~ax= -ae~ax, the gradient of e~ax is equal to that of f(x) 

for those values of .r, for which 

— ue~ax — - Re~ax sin (bx+c—0), 

that is, for which 

sin (for 4-c- 6) = a/R~mn + 

that is, for which 

bx+c-0~2mT + ~40 or (2//*4l)7T- -- $ (m~0, 1, 2 ...). 

Now when bx 4 c — (2m 41 )ir ~ ~ sin (bx 4 c) ~ 1, and therefore 

for these values of x, erax ~f(x). 
Therefore when bx+c~ 47r/2, e~ax and f(x) have the same value 

and the same gradient, and therefore their graphs touch at the points 
whose abscissae are given by these values of x. 

The discussion of <ra*eos(for4c') can be reduced to that of 

e~0,rsin (bx+c) by putting d equal to c-~. 
Jd 

Fig. 35 shows the graph for a — T, b — 1, c—0. The dotted line 

is the graph of e~^x . 

§ 76. Elementary Methods. Certain types of problems can 
be solved very simply by elementary algebra or trigonometry. 

The discussion of the quadratic function or the quotient 
of two quadratic functions will be found in any book on 
algebra; the turning values of y where 

y as (ax2 + bx+c)/{Ax2+Bx+G) 
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are found by writing the equation in the form 

(Ay —a) x2+(By — b) x+Cy — c~0, 

and determining the values of y that make the discriminant, 
that is, 

(By - bf - 4 (A y - a) (Cy - c) 

vanish. A little consideration distinguishes the maximum 
from the minimum if there are two values of ?/, and shows 
whether the solution is a maximum or a minimum when 
there is only one. 

A more general case occurs when there are more variables 
than one and these are connected by a relation, all the 
quantities being positive. For two variables the 5th, cSth, 
and 9th propositions of Euclid’s second book or their 
algebraic equivalents are fundamental. 

(i) 

(ii) (x + yf = 4,xy + (x-y)2; 

(iii) X2 + y2=b(x + yf +’$(*- yf- 

When the sum (x + y) of two quantities is given, we see 
by (i) that their product is greatest and by (iii) that the 
sum of their squares is least when the two quantities are 
equal When the product xy of two quantities is given we 
see by (ii) that their sum is least when they are equal. 

These theorems may easily be extended. Thus let x, ?/, 
z, w... be n positive quantities and let their sum (a) be 
given; then their product xyzw... will be greatest when 
they are all equal. For let xv yv zv wv... be a set of simul¬ 
taneous values of these variables; then if any two of these, 
say xv yv are unequal it will be possible, without altering 
the sum of the n quantities, to get a greater product than 

x^y^w^.. by replacing botli xx and yx by i(^i + ?/i) an(l 
leaving zv wv ... unaltered, because the product of the two 
equal quantities l(x1 + y1), that is l(x1 + y1f, is greater than 
xxyv So long, therefore, as any two are unequal the pro¬ 
duct has not reached its greatest value. When they are all 
equal each is equal to ajn, so that 
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(d\n 

n) ’ 

or xyzw ... is less than —, 

unless x~y~z~w... = ajn. 

If we suppose p of the quantities equal to x, q of them 
equal to y,r of them equal to z, where p + q + r = n then we 
may write the last inequality 

px+gy+rz\*+q+r 
p+q+r ) 

except when x — y — z, and then the inequality becomes an 
equality. It is easy to see that this inequality is true even 
if p, q, r are positive fractions. 

In the same way it may be seen that when the sum of 
the quantities is given the sum of their squares will be 
least when they are all equal, and when the product of the 
quantities is given their sum will be least when they are 
all equal. 

These theorems may be again extended. For suppose 
x, y} z,w... connected by the linear equation, 

ax+hy -f cz + dw + ... = k, a constant, 

the quantities being all positive. Then we may put 

° abed ... 

and xyzw... will be greatest when the numerator of the 
fraction is greatest. But if we put x for ax, y for by ... 
we reduce the case to that in which x' + y'+z+iv'+ ...is 
given. Hence the product is greatest when x\ y\ z\ w'... 
are all equal, that is when 

ax ~ by = ... = Jc/n. 

By means of the above theorems a large number of 
the simpler problems of maxima and minima of functions 
of more than one variable may be solved. For a full dis¬ 
cussion of the algebraic treatment, see Chrystals Algebra, 
Vol. II. chap, xxiv. 
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Ex. 1. The equilateral triangle has maximum area for given 
perimeter. 

In the usual notation for triangles, 

sf {Ks ~ a)(s ~ b)(s “ c)} = J(sxyz\ 

where x=s - a, y—s — b, z—s — c, 2$ being constant. 

Now x +y+z~Zs- {a+b + c) = 

Hence ancl therefore s.ct/2, and therefore is greatest when 
x—y~z, that is, when a~b — c. 

Ex. 2. From the identity 

(.w+4v+*.)(5+^+5) 

- H(”-*)'* (?-”)' 
deduce 

(i) aV -f b2y2-f-c2z2 = minimum, if 4- my -f nz — const., 

(ii) lv+my+nz—maximum, if ct2x2 -f b2y2 + c2z2 = const., 

when a2xjl—62y/m = chjn. 
These results are obvious. We might write A, /?, C instead of 

a2, 62, c’2, but A, /?, 0 must be positive. The student may prove a 

similar theorem for ^a2x2+ by2 + c2z2+d2w2^(J^2+™-f ), and 

extend to any number of variables. 

§ 77. Variation near a Turning Value. When a function 
f(x) and its first two derivatives are continuous near a we 

haVe f(a+h) =f(a)+hf\a) + \Wf\a + dh), 

f"(a + Oh) will be nearly equal to /"(a) when It is small, 
and we may write as a very approximate equation 

/(a+/0=/W + W+W>). 
Hence when f(a) is a turning value, so that /'(«) = 0, we 

have f(a+h)=f(a)+y,Y(a). 

Thus when/(a) is a turning value the change f(a + k) —f(a) 
as x changes from a to a+fi is, approximately, proportional 
to h2; if f(a) is not a turning value the change is, approxi¬ 
mately, proportional to h. Near a turning value therefore 
a function changes much more slowly than near a value 
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for which it does not turn, since when h is small h2 is much 
smaller than h. 

If therefore in a physical application of the theory of 
maxima and minima it is not possible to make the arrange¬ 
ment that which corresponds to the ax act solution, there 
will frequently be no great disadvantage in a slight 
departure from the theoretically best arrangement Thus 
when a battery of mn cells is joined up so that m rows 
of n cells each, connected in series, are joined in parallel, 
the current y is 

mnE 

“Y viR+nr 

where E is the electromotive force of each cell, r the 
internal resistance of each cell and R the external resist¬ 
ance. Since mn is constant y will be a maximum when 
mR + nr is a minimum, that is, when mR = nr or when 
jR = wr/m,that is, when the total external resistance is equal 
to the internal resistance of the battery. It may not be 
possible to join up the battery so as exactly to satisfy this 
condition ; but if the condition be very nearly satisfied the 
current will not fall far short of the maximum. In any 
case the nearer the arrangement can be brought to satisfy 
the condition the stronger will be the current. 

Again in applying the theory of maxima and minima 
to physical problems great care is necessary in drawing 
conclusions; an arrangement that best satisfies one set of 
conditions may conflict with that which best satisfies 
another set of equally important conditions. Thus the 
above arrangement of cells gives the highest rate of 
working in the external part of the circuit but it is not 
the most economical. The student may with advantage 
read the remarks on pp. 85, 86 and chap. ix. of Grays 
Absolute Measurements in Electricity and Magnetism. 
(London: Macmillan.) The theory of maxima and minima 
is of great value as a guide in all such investigations, but 
has to be applied with caution and not blindly. 
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EXERCISES XVI. a. 

The cones and cylinders referred to in the examples are right 
circular cones and cylinders. For the mensuration of various solids 
see chap. iv. 

Investigate the maxima and minima values of the functions in 
examples 1-12. 

1. 2.r3 - 3.r2 - 1 %v + 2. 2. or* - o.r4 -f 5a*3 — 1. 3, a’4 (x +1 )3. 

4. (a 4- x)2(a - x);i. 5. ,r/( 1 4- .r2). 6. (l + .r)2/'(a? - ,r2). 

7. x/(ax2 4- 2/>.r-j-a). 8. .r(.r2 +1 )/(.c4~4~ 1 )• 9. (tf 4-^%/(a2 —.r2). 

10. #/(l 4-jr)2. 11. a4-5(.r — <•)*. 12. tf4-5(.r-f c)ft. 

13. Find the maximum value of xmyn if x-\-y~k, a constant, the 
quantities being all positive. Hence show that 

am,>n<(ma±vb\— 
\ yn+n ) 

except when a — h. 

14. From the inequality in example 13 deduce that (14- \/z)* 
constantly increases when z is positive and increases, but decreases 
when z is negative and increases numerically. Hence show that the 
limit of (14-1 jz)* for z—± oo is a finite number greater than 2*5 but 

less than 3. fPut a = 1 4- - , b = 1; then a = 1, 5=1- i.l 
L m n J 

15. If a/x+b/y=c, find the least value of ax4-by, the quantities 
being all positive. Find also the minimum value of xy. 

16. For what value of v is 

mx (x - xx)2 4- m2 (x - x2)2 4*... 4-mn(x~ xn)2 

a minimum, mv being all positive. 
In the following examples the methods of § 76 may be used; the 

quantities are understood to be all positive. 

17. The equilateral triangle has minimum perimeter for given area. 

18. The cube is the rectangular parallelepiped of maximum volume 
for given surface and of minimum surface for given voltime. 

19. Find the minimum value of hex + cay + abz if xyz—abc. 

20. Find the maximum value of xyz when 

x?/a2+y2l b2 4- z2jc2 = 1, 
and the minimum value of a?la2+y2jb2+z2jc2 when xyz—cP. 

21. If xyz — a2(x+y+z\ then yz+zx+xy is a minimum wtien 
x~y — z—asf3. 

22. The electric time-constant of a cylindric coil of wire is 
approximately u-mxyz/(ax+by + cz) where x is the mean radius, y the 
difference between the internal and external radii, 2 the axial 
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length, and m, a, b, c known constants; the volume of the coil is 
nxyz. Show that when the volume V is given, u will be a maximum 
when ax -- by ~cz— %J{abe Vjn). 

23. If u = {ax2-fby'2)/■ /(aV -f bh/~) where .r24-?/2=l show that the 
minimum value of u is 2sJ{ab)j{a -f b). 

24. If P is a point within a triangle ABC such that A P'l+ BP~ 4* CP'1 
is a minimum, show that P is the centroid. 

25. In any triangle the maximum value of cos A cosBcos 0 is J. 

26. Find the greatest rectangle that win be inscribed in an ellipse 
whose semi-axes are a, b. 

EXERCISES XVI. b. 

1. ABC!) is a rectangle, and APQ meets BC in P and DC produced 
in Q. Find the position of APQ when the sum of the areas A BP, 
Pi is a minimum. 

2. Given one of the two parallel sides (a) and the two non-parallel 
sides (b) of an isosceles trapezium, find the length of the fourth side so 
that the area of the trapezium may be a maximum 

3. From a rectangular sheet of tin, the sides being a and b, equal 
squares are cut off at each corner, and a box with open top formed 
by turning up the sides. Find the side of the sqirare so that the box 
may have maximum content. 

4. An open tank is to be constructed wdth a square base and 
vertical sides to hold a given quantity of water; show that the 
expense of lining the tank with lead wdll be least if the depth be half 
the width. 

If the tank be cylindrical show that the depth will be equal to the 
radius of the base. If the section of the cylinder is not circular 
but if its shape is given show that the curved surface will be twice 
the base. 

5. Show that the altitude of the cone of maximum volume that can 
be inscribed in a sphere of radius R is 4/2/3. 

Show that the curved surface of the cone is a maximum for the 
same value of R. 

6. A cone is circumscribed about a sphere of radius R; show that 
when the volume of the cone is a minimum its altitude is 4/2 and its 
semi-vertical angle sin-1 

7. Show that the altitude of the cylinder of maximum volume that 
can be inscribed in a sphere of radius R is 2/2/N/3. 

Show that when the curved surface is a maximum the altitude 
is RJ2. 

Show that when the whole surface is a maximum that surface is to 
the surface of the sphere in the ratio of +1 to 4. 

G.C. M 
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8. A cylinder is inscribed in a cone; show that its volume is a 
maximum when its altitude is one-third that of the cone. 

Show that the curved surface is a maximum when the altitude is 
half that of the cone. Show also that the total surface cannot have 
a maximum unless the semi-vertical angle of the cone is less than 
tan-1^. 

9. Given the total surface of a cone show that when the volume of 
the cone is a maximum the semi-vertical angle will be sin~1J. 

Given the volume of the cone show that the total surface will be a 
minimum for the same value of the semi-vertical angle. 

10. PP' is a double ordinate of the ellipse whoso equation is 
x2/a2 +y2jb2— 1 and A is one end of the major axis; find when the 
triangle A PP' has maximum area. 

Find also when the cone formed by the revolution of the triangle 
about the major axis has maximum volume. 

11. The strength of a rectangular beam varies as the product of the 
breadth and the square of the depth; find the breadth and the depth 
of the strongest rectangular beam that can be cut from a cylindrical 
log, the diameter of the cross-section being d inches. 

12. The stiffness of a rectangular beam varies as the product of the 
breadth and the cube of the depth; find the breadth and the depth of 
the stiffest rectangular beam that can be cut from a cylindrical log, 
the diameter of the cross-section being d inches. 

13. A person in a boat a miles from the nearest point A of the 
beach wishes to reach in the shortest time a place b miles from A 
along the beach; if he can row at u miles an hour and walk at v miles 
an hour (u < v) find how far from A he must land. Consider the 
cases in which the ratio of u to v is equal to or greater than that of b 
to ^{(P + b2). 

14. Assuming that the brightness of a small surface A varies in¬ 
versely as tho square of the distance r from the source of light and 
directly as the cosine of the angle between r and the normal to the 
surface at Ay find at what height above the centre of a circle of radius 
a an electric light should be placed so that the brightness at the 
circumference should be greatest. 

15. If the intensities of two sources A, B of light be a3, h3 

respectively find the point on the line AB at which the brightness 
is least. 

16. A, B are two points on opposite sides of a plane L and P a 
point in the plane; a particle travels from A to Boy the path AP, 
PB its velocity along AP being constant (u) and its velocity along 
PB also constant (v) but the two velocities being different. Show 
that when the time of travelling from A to B is a minimum the plane 
through APB is normal to L and the sines of the angles that AP, PB 
make with the normal to L at P are in the ratio of u to r. 
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EXERCISES XVI. c. 

1. Show that x/(l +.rtan.r) wiil be a maximum when .r=cos.r; 
verify that x is very nearly ‘739. 

2. Show that sin x sin 2x is a maximum or a minimum when 
sin.r=-V(2/3) according as the angle x is in the first or the second 
quadrant. 

3. Show that sin x(\ -f cosx) is a maximum when x = 
u 

a2 £ 2 

4. Show that the minimum value of . 0 -|-0 is (a+b)2. 
suit cos-# x 7 

5. If asecO+b sec </> ™ c, show that a cos 0 + b cos (f> is a minimum 
when $ — </>, a, 6, c being positive and the angles 0, <j> acute. (Com¬ 
pare ex. 15a.) 

6. Given the length (a) of an arc of a circle, show that the segment 
of which a is the arc will be a maximum when a is the diameter of the 
circle. 

7. A circular sector has a given perimeter ; show that when the 
area is a maximum the arc is double the radius, and that the maximum 
area is equal to the square on the radius. 

8. From a given circular sheet of metal it is required to cut out a 
sector so that the remainder can be formed into a conical vessel of 
maximum capacity ; show that the angle removed must be 2(1 - &y/ti)7r 
radians (66° 4'). 

9. Draw a line through the vertex of a given triangle such that 
the sum of the projections upon it of the two sides which meet at that 
vertex may be a maximum. 

10. The lower corner of a leaf, whose width is a, is folded over so as 
just to reach the inner edge of the page ; find the minimum length 
of the crease. 

11. A ship sails from a given place A in a given direction AH at 
the same time that a boat sails from a given place C; supposing the 
speed of the ship to be u and that of the boat v (u, v constant), find in 
what direction the boat must sail so as to meet the ship. Discuss 
the condition that it shall be possible to meet. The course of the boat 
is understood to be rectilinear. 

12. The distance between the centres of two spheres of radii a, b 
respectively is c; find at what point P on the line of centres A B the 
greatest amount of spherical surface is visible. Note.—The superficial 
area of a segment of height h is 2ttah, a being the radius of the sphere 
(§ 85, ex. 2). 

13. A straight line is drawn through a fixed point (a, 6), meeting 
the axis OX at P and the axis 0 Y at Qy the axes being rectangular 
and a, b positive ; if the angle OPQ is equal to #, find 0, 

(i) when (ii) when OP+OQ, (iii) when OP. OQ 
is a minimum. 
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14. A tangent is drawn to an ellipse, whose axes are 2a, 26, such 
that the part intercepted between the axes is a minimum ; show that 
its length is a 4- 6. 

15. If D = (f) — <fi' and sinc/> — //.sin </>' where fi is greater than 1, and 
<£, </>' not greater than 7t/2, show that D increases as d> increases. 
Show also that the second and third derivatives of D with respect to 
<■/> are positive. 

16. A ray of light travels in a plane perpendicular to the edge of a 
prism of angle i; if the angle of incidence is cj> and the angle of 
emergence c/>', show that the deviation (/> + </>' — ?; is a minimum when 

17. Find the maximum value of xc~x and graph the function. 

18. Find the minimum value of x log x and graph the function. 

19. For what value of x is the ratio of log# to x greatest % 

20. Find the maximum value of x2 log 
° x 

21. If a, 6 are positive and a <6, find the maximum value of 

§ 78. Concavity and Convexity. Points of Inflexion. A 
curve is said to be concave upwards at or near A when 
(Fig. 80, a, b) at all points near A it lies above the tangent 

at A ; a cur^ejs said to be 
convex ? $k> in it or near 
A when (Fig. 86, c, d) at all 
points near A it lies below 
the tangent at A. 

Let y =/(&) be the equa¬ 
tion of the curve and let h 
be a small positive number, 
a the abscissa of A. Then 
as x increases from a — h to 
a+h, the gradient f(x) in 

the cases a, b steadily increases ; as the graphic point moves 
to the right (the direction of the arrows) the tangent turns 
about its point of contact counter-clockwise, and therefore 
the angle it makes with the #-axis increases. But if fix) is 
an increasing function its derivative fix) must be positive; 
if f"(a) is not zero then near a f(x) has the same sign as 
f(a). Hence the curve is concave upwards near A if f(a) 
is positive (not zero). 

Fig. 36. 
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In the same way we see that the curve will be convex 
upwards near A if /"(a) is negative (not zero). 

. Again, if A be a point of inflexion (§ 23) the gradient 
either increases as x increases from a — h to a and then 
decreases as x increases from a to a + h (Fig. 37, a) or 
else it decreases as x in¬ 
creases from a — h to a 
and then increases as x 
increases from a to a + h 
(Fig. 37,fc). In both cases 
therefore f(x) turns for 
the value a of x. Hence 
A will be a point of inflexion if and only if /'(a) is a 
turning value of f\x); therefore, if f\x) and /"(as) are 
continuous, f'{a) must be zero in order that A may be a 
point of inflexion. 

Conversely, if f"(a) is zero A will, in general, be a point 
of inflexion; but, to make certain, the test that f\a) is a 
turning value of /'(as) should be applied. 

Ex. 1. f(x) — 3.r4 — 4,r3 +1 ; 

f{x) = 12 (r3 - x1) ; f(x) = 12(3^2 - 2x) ; f\x) = 24(3.r - 1) ; 

/%*■) = 0, if x=0 or l ; /"(0)- -24, /"(g) = 24. 

Therefore /'(()), /(§) are maximum and minimum values of /(.r), 
and therefore the points (0, 1), (§, %}) are points of inflexion. The 
gradients at these points are 0 and -16/9 respectively. 

Since f\x)— 36j;(.r-g), we see that from #= — oo to x = 0, f"(x) is 
positive, and therefore the graph is concave upwards for that range 
of x; from x = 0 to .r~2/3, f'(x) is negative and the graph convex 
upwards; from j; —2/3 to x=co, f"(x) is positive and the graph 
again concave upwards. 

Ex. 2. f(x)==Zx*-8^-6^2+l; 

f(x) = 12(3.r2 — 4x- l) = 3C>(.r (•*-; 

/"(*)=24(3*-2). 
Tliere are points of inflexion where ^= ^(2 + v/7). From .r— - oo to 
$(2-v/7), and again from ,r=J(2 4-^/7) to #=+co, the graph is 

concave upwards; from #=J(2-/7) to .r=J(2 4-^/7) it is convex 
upwurds. 

Ex. 3. 

Fig. 37. 

(y — 2)3=(# —4). 
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When x~4,y~% but ?/ and ;/" are both infinite. When # = 4-hy 
y" is positive, but when x~4 + \ y” is negative. We may conclude 
therefore that the tangent at (4, 2) is perpendicular to the #-axis, that 
to the left of (4, 2) the curve is concave upwards, and that to the right 
of (4, 2) it is convex upwards. The point (4, 2) therefore must be 
considered a point of inflexion. 

EXERCISES XVII. 

1. Determine the points of inflexion of the graphs of the following 
functions, and state for what range of values of x they are concave 
upwards or convex upwards. 

(i) a?; (ii) x4; (iii) ; (iv) #2w+1; (v) tf3”; 

n being a positive integer. 

2. Find the points of inflexion on the curve whose equation is 
y = (x2 — 1 )2. Graph the curve. 

3. Find the points of inflexion and graph the functions 

(i) (ii) (iii) (iv) 
a2+x2’ v“7 a'^+x2’ v“v a?+x2 ’ v / a2+.r2‘ 

4. Show that the curve whose equation is y(#2-f «2) —a2{a — x) has 
three points of inflexion which lie on a straight line. 

5. Find the points of inflexion on the curve whose equation is 
«2y2~#2(a3-#2), and trace the curve. 

6. Show that the curve whose equation is {a - x)y2 — x5 has no 
point of inflexion, and trace the curve. 

7. Find the points of inflexion for values of x between 0 and 2tt 
(0 included, 27r excluded) on the graphs of 

(i) siri#; (ii) cos x; (iii) tan#. 

8. Show that the graphs of ex and of log# have no points of 
inflexion. 

9. Find the points,2of inflexion on the graphs of (i) xe~x, (ii) er*2. 
Trace the graph of e~x . 

10. Find the point of inflexion on the graph of e~ax-e~bx where 
a, b are positive and a less than K 

11. Find the points of inflexion on the graph of 6>~axsin(6#4-c). 

12. When the equation of a curve is given in the form 

#=/(<), y=<K0 
show that the points of inflexion will be determined by the equation 

xif-yx—O. 

Show that the curve whose equations are 

x—aty-sint), y~a(\—cost) 

is everywhere convex upwards. (See § 68, ex. 2.) 

13. Show that no conic section can have a point of inflexion. 



CHAPTER X. 

DERIVED AND INTEGRAL CURVES. 

INTEGRAL FUNCTION. 
DERIVATIVES OF AREA AND VOLUME OF 

A SURFACE OF REVOLUTION. 
POLAR FORMULAE. INFINITESIMALS. 

§ 79. Derived Curves. It is of some service in tracing 
the variation of a function f(jc) to draw the graph of the 
derived function f\x). The graph of f(x) may be called 
the derived graph or curve of /(&), while in relation to the 
graph of f\x) that of /(as) may be called the primitive curve 
or for a reason given in § 83, the integral curve of 

It is usually most convenient to take a common axis 
of ordinates for the two curves, but to take the axis of 
abscissae of the derived curve at a convenient distance 
below that of the primitive curve. Assuming the unit seg¬ 
ment for abscissae to be the same for both curves, but that 
for the ordinates to be the same or different as is most con¬ 
venient, we may call those points and ordinates of the twro 
curves which have the same abscissa “ corresponding points 
and ordinates/5 Corresponding points on the two graphs 
may be denoted by unaccented and accented letters. 

The student will easily prove that in general the follow¬ 
ing theorems hold:— 

(i) To the turning points (T) of the primitive curve cor¬ 
respond points (T) at which the derived curve not only 
meets but crosses its axis of abscissae; and conversely. 

(ii) To the points of inflexion (/) of the primitive curve 
correspond turning points (/') of the derived curve; and 
conversely. 
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The following geometrical construction may be given for 
the graphing of the derived curve when the functions 
f(x), f\x) are not analytically expressed. 

Let U (Fig. 38) be a point to the left of 01 on the axis 
0xX' of the derived curve, and draw Up parallel to the 
tangent FT meeting the common axis of ordinates at p. 
Draw PR and RT parallel and perpendicular respectively 
to OX; the triangles PRT, UOxp will be similar. Hence 

UO~PR~jyx)’ 

where OM = 0.M'=x, MP =f(x); therefore 

OlP=f\x). U0V 

Draw pP' parallel to 
UOYX' to meet M'P at 
P'; then 

l/,P,=01p=/(^). U0V 

If we take the unit 
segment for the ordin¬ 
ates of the derived 
curve equal to U0X we 
shall have 

M'P'=f'(xl 

so that P' is the point 
corresponding to P. 

Take any other point 
Q; draw Uq parallel to 
the tangent QS, and 
qQ' parallel to 0aZ' to 

meet the ordinate through Q at Q\ Qf will correspond to Q, 
and in the same way any number of points may be found. 

If the unit segment for the ordinates be not equal to U0X 
the ordinates will still be proportional to f'(x). 

To the turning points P, C correspond B, (7; to the point 
of inflexion 1 corresponds I' which is a turning point of 
the derived curve. 

At D the derivative f'{x) is discontinuous. As a point 
moves along the primitive curve from 0 to D the corre- 
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sponding point moves from O' to D'; as the first point, 
however, changes from Cl) to 1)E the corresponding point 
passes abruptly from D' to If. As x increases through the 
value OL or QJL', fix) suddenly changes from I'll to 2/D". 
LD is a maximum value of f{x\ but owing to the dis¬ 
continuity of f'(x) the derived curve does not (as at B' or O') 
meet the x-ixxm. 

In a similar way the derived curve of f\x\ that is the 
second derived curve of f(x), may be formed, and so on. 

§ 80. Derivative of an Area. Let CPD (Fig. 39) be the 
graph of a continuous function of x} F(x); 

0A=a,AC=F{a); 0M=x, MP = F(x). 

(i) Suppose the ordinates positive and AC to the left of 
MP. Let AC be fixed, 
MP variable, and let z be 
the measure of the area 
A MPC. We may consider 
the area as generated by 
a variable ordinate setting 
out from AC and moving 
to the right; 0 will be a 
function of x which is 
zero when x~a. Let us 
find the ^-derivative of 
z, that is the #-rate of 
change of the area. 

Let x take the increment Sx or MN\ z therefore will take 
an increment Szf the area MNQP. Complete the rect¬ 
angles MNRP, MNQS\ the area MNQP will be greater 
than MNRP but less than MNQS, therefore 

MP.Sx<Sz< NQ.Sx; MP< ^<NQ. 

In the figure MP is less than NQ; if MP is greater than 
NQ the signs of inequality will need to be reversed. As Sx 
converges to zero MP remains fixed and NQ converges to 
MP. Hence 

M N 

Fig. 39. 

Dxz = MP = F{x) = ordinate at M, 
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or in the notation of differentials 

dz — MP. dx = F(x) dx. 
(ii) Suppose the ordinates negative (Fig. 39a) and let z* 

be the numerical value of the area. 
In this case the rectangle MNRP is equal to — MP. Sx, 

since MP is negative, 
and we get by the same 
reasoning as before 

Dxz = —MP~ — F(x). 
It gives greater flexi¬ 

bility to the formulae 
to consider an area as a 
magnitude that, like a 
segment of a line, may 
be either positive or 
negative. If, therefore, 
the measure of the area 
be taken as negative, 

when the fixed ordinate is to the left of the variable one 
and the ordinates all negative, we may put 0 equal to —z, 
the measure 0 being now negative; hence Dxz = F(x) as in 
case (i). 

(iii) Lastly, suppose the fixed ordinate to the right of 
MP, say at IiD. The area BMPD may be considered to be 
generated by a variable ordinate setting out from BD and 
moving to the left. 

Let z' be the numerical value of the area BMPD; then z' 
is a decreasing function of x. By the same reasoning as 
before we see that the numerical value of Dxz is F(x) for 
Fig. 39 but — F(x) for Fig. 39a. Since z' is a decreasing 
function Dxz is algebraically negative, so that in sign and 
magnitude 

Dxz = ~F(x) (Fig. 39); Dxz = F(x) (Fig. 39a). 
If we take the measure 0 of the area BMPD to be nega¬ 

tive for Fig. 39, positive for Fig. 39a, we shall get for both 
cases Dxz = F(x). The same formula therefore holds for all 
three cases (i), (ii), (iii). 

Examination of the diagrams will show the truth of the 
following rule for determining the sign of the area. 
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Let the boundary of the area be described in the order, 
«-axis, variable ordinate, curve, fixed ordinate: the sign will 
be positive or negative according as the area lies to the left 
or to the right during the description of the boundary. 

Ex. 1. If the coordinate axes are inclined at an angle w, show that 
DxZ — F{x) sin to. 

Ex. 2. If CE\ PE (Figs. 39, 39a) are perpendicular to 0Y, and if w 
is the measure of the area EFPC, show that 

Dyw— — FP— — OM; dw— — xdy, 

the sign of w being positive or negative according as tlie area is to the 
left ox* to the right when its boundary is described in the order EFPCE. 

Consider the cases in which the abscissa is negative, and also the 
cases in which the fixed abscissa is on the opposite side of FP from 
that in the figures. 

§ 81 Interpretation of Area. The interpretation of the 
number 2 considered as the measure of an area will depend 
on the unit segments chosen for the abscissa and the 
ordinate. If the value 1 of x represents say 6 inches and 
the value 1 of ?/ say 10 inches, then the value 1 of z will 
represent 60 square inches; if on the graph the value 1 of x 
is half an inch and the value 1 of y quarter of an inch, these 
representing G and 10 inches respectively, an area on the 
graph of one-eighth of a square inch will represent the 
area of 60 square inches. 

The physical interpretation of the area will depend on the 
nature of the quantities represented by abscissa and ordinate. 

Suppose that the ordinate represents the speed of a 
moving point and the corresponding abscissa the time at 
which the point has that speed; the graph is then the 
speed-curve of the motion. The speed is the time-rate of 
change of the distance, and the ordinate (which represents 
the speed) is the rate of change of the area with respect to 
the abscissa (which represents the time); hence the area 
A MFC will represent the distance gone in the time repre¬ 
sented by AM. If the value 1 of x represents 2 seconds and 
the value 1 of y a speed of 16 feet per second, then the value 
1 of 0 will represent a distance of 32 feet. 

If the ordinate represents a force that acts in a constant 
direction, and if the abscissa represents the.distance through 
which the force has acted, the area AM PC will represent 
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the work done by the force acting through the distance 
represented by AM. If the force is not constant in direc¬ 
tion the result holds provided the ordinate represents the 
component of the force along the tangent to the path of its 
point of application. 

Ex. 1. If the ordinate represents acceleration and the abscissa 
time, what does the area represent ? 

Ex. 2. If the ordinate represents the intensity of pressure of a gas, 
and the abscissa the volume, what does the area represent ? 

§ 82. Integral Function. The fact that z in § 80 is a 
function of x which has F(x), the ordinate of the curve 
CPI), as its derivative at once suggests the problem of 
finding a function which has a given continuous function 
as its derivative. 

Now, if the derivative of f(x) is F(x) so is the derivative 
of f(x) + C where C is any constant; further (§ 58, Th. VI.), 
every function which has F(x) as its derivative must be of 
the form f(x) + G. The problem, therefore, as stated above, 
is indeterminate, since its solution involves a constant C 
which may have any value whatever; it becomes deter¬ 
minate, however, when stated in the form:—To find a 
function of x which shall have a given continuous function 
F(x) as its derivative and which shall take a given value A 
when x has a given value a. 

The solution is as follows :—Let CPD (§ 80) be the graph 
of F(x)y and let 0 be the measure of the area AM PC where 
OA—a. z therefore is zero when x — ay and z has F(x) as 
its derivative; the function z + A gives the solution. We 
may, if we please, consider the constant A as the measure 
of an area. 

It does not follow, however, that we can find an analytical expression 
for z in terms of known functions ; thus, if — + x3), we cannot 
find in the ordinary algebraic or transcendental functions one which 
lias F{x) as its derivative. The geometrical discussion shows, however, 
that in so far as we consider functions as being adequately represented 
by graphs, there always exists a function which is the solution of the 
problem, and it is possible by methods of approximation to get an 
analytical expression, for example, in the form of a series, that may be 
considered as a solution. Or, again, it may be possible by mechanical 
methods to get an approximate value of the area AM PC. 
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Any function f(x) which has F(x) for its derivative is 
called an Integral Function or simply an Integral of F(x). 
If f(x) is one integral, f(x)+ 0 is called the General Integral, 
0 being called the constant of integration. 

To find f{x) when F(x) is given we fall back on the 
known results of differentiation. In the Integral Calculus 
the search for integral functions is systematically carried 
out, but from the nature of the case the process is largely 
tentative. The fundamental test that f(x) should be an 
integral of F(x) is that l)xf(x) should be equal to F(x). 

Just as sin"1# means a function whose sine is x so we 
may for the present use the symbol Dx~l F(x) or I)~l F(x) 
as meaning a function whose derivative is F(x), that is 
Dx"1 F(x) is an integral of F(x). We will suppose that 
D~lF(x) contains no constant of integration, so that the 
general integral is D ~1 F(x) + C* 

We may now express the area A MFC in the new notation. 
Since I)"1 F(x) is an integral of F(x), the area 0 or A MFC 
is a function of x of the form 

z^D-1F(x) + G 

Now when x = a, 0 = 0; denote by [ZM jP(a;)]a the value 
of the integral when x = a; therefore, 

0 = [D-1 F{x)]a+C; C=-[D~'F(x)]a, 

and z = I)~1F(x)-[D-1F(x)]a. 

The area ABCD is the value of 0 when x = h; therefore 

area ABCD = [D~l F(x)]b-[Z)-1 F{x)]a. 

This symbol is usually contracted into 

[D~'F(x)t 

and this last symbol means “ replace x by h, then replace 
x by a and subtract the second result from the former/5 

In the same way the function whose derivative is F(x) 
and which is equal to A when x is equal to a is denoted by 

Z)-i F(x)]a+A. 

* For the ordinary notation for an integral see § 110. 
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Ex. 1. Find the area between the graph of x2~ 3#+2, the .r-axis, 
and the ordinates at x~h and ,r= 1. 

F(.v) —x^-Sx + S ; 1)~1 F(x) == ^ -f 2#, 

as may be tested by differentiation. Hence the required area is 

[!■** ~ §**+2r]| = # — § = ?.• 

Suppose tlie ordinates to be those at x — h and ,r=2; then the 
area is 

[Jut3 - 8x2+2.r]J = § - *f = 0. 

The reason for this apparently strange result is that from x — ^ to 
•r”l the ordinates are positive while from x— 1 to x—2 they "are 
negative. From .r — 1 to ,r—2 the measure of the area is negative; 
numerically this area is equal to that for which the ordinates are 
positive. 

Ex. 2. The area between the .r-axis and the graph of sin x between 
the points x~0, x—tt at which it crosses the axis is 

[D~l sin x]*=[ - cos = - cos tt - (- cos 0) = +1 +1 = 2. 

Ex. 3. A point moves on a straight line so that its velocity at 
time t is Fcoswtf ft./sec.; show that the space described from time 
( = 0 till it lirst comes to rest is Vj-n ft. 

Let x ft. be the distance described in time t seconds; then 

l.\x = Vcos nt; x=-^sin nt + C. 
n 

When t = 0, #=0 and therefore <[7=0. The point first comes to rest 
when t has increased from 0 to 7r/2n because cos nt is first zero when 
nt~tt/2. Hence we get for the distance required 

§ 83. Integral Curve. The graph of an integral function 
is called an integral curve. Since any two integral func¬ 
tions of F(x) differ only by a constant (7, the graph of the 
integral function f(x)+C may be obtained from that of 
f(x) by shifting the latter parallel to the y-axis through 
the distance C. 

A geometrical construction may be given for graphing 
an integral curve based on that for the graphing of the 
derived curve (§ 79). 

Divide 0xX' (Fig. 40) into equal short segments at the 
points 1^, 2j, 3V... and draw the ordinates through these 
points. Let the ordinates at 2V 4sv... meet the graph of 
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F(x) at 2', 4',... and let 2", 4",... be the projections of these 
points on 0TF, 1" being the point where the graph cuts O^Y. 

Let us take the integral 
curve that passes through O. 
Then the tangent at 0 is 
parallel to U1". Let this 
tangent be dr«o n r • . let it 
cut the ordinate a n i\ 
1* at 1. 

The tangent the point 
on the integral c v corre¬ 
sponding to 2' is J arail to 
U2". Draw 13 parallel to 
U2" cutting 2,2' at 2, and 
the ordinate drawn from 
at 3 ; 2 is the po’ut con 
spondjng to 2' 

In the Si no vaj rav 35 
parallel to 1 rtti 414/ 
at 4; 4 i. *nt corre- 
sponding to 

The con be 
repeated a V ' • ”1>s Fig. 40. 

r 3 

i ai 

eh may be considered as, approxi- 
*s at 0, 2, 4, ...to the integral curve, 
ov be drawn with a free hand through 
.. The point 0 from which the con- 
of course, arbitrary, but when that is 

curve is determinate. The position of 

of lines 0, 
mately, tl 
That curv 
the points 
struction be 
fixed the im 
the other points 2, 4,.. is approximate; the nature of the 
approximation and the justification of the construction may 
be seen thus. 

Let f(x) be the integral function; the equations of the 
tangents at the points on the graph of f(x) at which x is 
equal to a and b respectively, are 

y=(« - «)/(<*)+/(«); y=(* - &)/'(0+/(&)• 
The abscissa of the point of intersection of these tangents 

is given by 

{/(&)-/(«)} x=bf\b)-afXa)-f(b)+f(a). 



192 AN ELEMENTARY TREATISE ON THE CALCULUS. 

Now, by the theorems of mean value, if b = a + h, we have 

m=f(a+h)=f(a)+hfXa)+Wf(x,), 

fV>) = /'(«+ /0 =/(«) + hf(x 2), 

where #2 are each greater than a but less than a + A 
Substituting these values in the equation for x and 
reducing wo get 

x-a+h -1 hf{xx)lf"(x2). 

Assuming the derivatives continuous, then if h is small 
f'ixy) and f\x2) will differ very little from each other and 
from /"(a). Therefore approximately x — a+ilt; that is, 
the abscissa of the point of intersection of the tangents is 
very nearly that of a point half way between a and b. 

Hence, in the figure the tangent at the point on the 
integral curve corresponding to 2' passes through 1; the 
point 2, which must lie on the ordinate 2X2', is therefore got 
as the intersection of the line through 1 parallel to U2". 
Similarly for the other points. 

It may be noticed that if F(x) is of the first and, there¬ 
fore, f(x) of the second degree, the construction is exact 
since f'(x) is constant. 

§ 84. Graphical Integration. The area between 0xX\ 0l F, 
the graph of F(x) and the ordinate M'P' (Fig. 40) is equal 
to f\x) where f(x) is that integral of F(r) which is zero 
when x = 0. But the ordinate MP of th ntegral curve is 
f{x). Hence the area O^M'P'V is equal the ordinate of 
the integral curve at the point corresp ng to P'. We 
thus have a graphical method of finding in measure of an 
area and also of constructing an integral function even 
when the analytical form of the function F(x) is not 
assigned. 

The integral curve can be drawn with considerably 
greater accuracy than the derived curve. It is also 
possible to trace out the integral curve corresponding to 
a given curve by means of an instrument called an Inte- 
graph. For detailed description of the Integraph the 
reader is referred to the work of M. Abdank-Abakanowicz, 
Lee InUgraphes; la courbe integrate et ses applications 
(Paris: Gauthier-Villars), or to the German translation by 
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Bitterli, Die Integraphen (Leipzig: Teubner). The con¬ 
structions given above are taken from this work; the notes 
of Bitterli contain several investigations on the properties 
of the integral curve and also numerous references to 
original memoirs. An article by Prof. W. F. Durand in 
the Sibley Journal of Engineering, January, 1897, will 
also be found serviceable. 

§ 85. Surfaces of Revolution. Let V be the volume of the 
surface traced out by the revolution of the arc CP (Fig. 41) 
about OX; OM = x, MP = F(x) = y. To find DXV. 

When x increases by MN or Sx, V increases by S V, the 
volume traced out by MNQP. Clearly, when Sx is small,, 
S V is greater than the cylinder of height MN and base the 
circle of radius MP, but less than the cylinder of height MN 
and base the circle of radius NQ; therefore 

irMP2. MN<SV<ttNQ2. MN; irMP2<SVISx<irNQ\ 
Hence taking the limit for &c = 0 

DXV= 7rMP2 = Try2; dV^^fdx. 
Let S be the area of the surface traced out by the arc CP, 

and let CP be s. To find DXS. 
On the tangent at P take a length 

PT equal to the arc PQ, and let L 
be the foot of the ordinate to T. 
When x increases by MN or Sx, CP 
increases by the arc PQ or Ss; we 
may assume that the area traced 
out by the arc PQ is, when Sx is 
small, greater than that traced out 
by the chord PQ but less than that 
traced out by the tangent PT. If 
the arc PQ lies below the chord PQ Fig. 41. 

the inequalities will be reversed. 
The curved surface of the conical frustum having MP, 

NQ as the radii of its circular ends and the chord PQ for 
slant side is tt(MP+NQ)PQ ; the surface traced out by PT 
is similarly tt(MP+LT)PT. Hence 

MMP+NQ)?S<§<*(Mr+lT)*£ 

N G.C. 



194 AN ELEMENTARY TREATISE ON THE CALCULUS. 

The limit for Sx = 0 of PQ/Sx and of PT/Sx is D^s (§ 62) 
and the limit of MP+NQ and of MP+LT is 2MP; hence 

or 

Dr.S = 2-rrMP Dxs = 2Try D„?, 

cts 
dS — 27ry dx = 2iry ds. 

The volume V is that integral of 7ry2 which is zero when 
x = OA, and the surface S that integral of tiry dsjdx, which 
is zero when x — OA. 

By §62 
ds __ 

dx~~ VI’+CDI- 
Ex. 1. If the curve revolves about flTshow that 

d V— Trx ^dy; dS = 27rx~ dy — ^irxds. 
dy 

Ex. 2. Show that the volume of a spherical cap of height A iia 
irh2(lt- JA) and that the area" of the surface of the cap is 27tR/i, - 
R being the radius of the sphere. 

The equation of CPQ is y=J (R? - x2); hence 

IK V~tt(R? - x*); V~ 7r(xR* - J*3) + C 

K—0 when x—OA — R-h, and therefore 

C= -7r(§/^3 - Rh2 + JA3); tt(^2 - - tt (3 /i3 - Rk2 + JA3). 

The volume required is the value of V for x~R and is therefore 
Trh2(ll - JA). 

Again 

therefore 

dS 

dx 
:2tT 

R 
i = 27tR. j{R:*-x2y 

S—%ttRx+ C; 0~27tR(R — h)+C, 

So that S—27tR (x+k~ R\ 

and when x—R, S=2TrRh. 

Ex. 3. If the area of a section of a surface by a plane perpendicular 
to OX is a known function of x, F(:r), and if V is the volume 
contained between a fixed plane perpendicular to OX and the plane 
which gives the section of area F(x\ show that A 

D..V^F(xl 
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§ 86. Infinitesimals. The student will doubtless have 
noticed that in finding derivatives a good deal of work 
would have been saved had it been possible to reject at the 
outset those parts of an expression that had zero for limit. 
Thus in § 80 Sz consists of the rectangle MNRP and the 
curvilinear triangle PRQ, which is less than the rectangle 
PRQS. Sz/Sx is therefore the sum of MP and of a line 
which is less than RQ. Since RQ converges to zero with 
Sx we may, so far as the limit is concerned, throw aside 
RQ from the outset; we should thus at once obtain MP as 
the limit of Sz/Sx. 

Now that the student has had so much practice in finding 
derivatives and limits generally, he will be ready to grasp 
the method which enables us to reject, at any stage, a 
quantity which we can see will not occur in the limit; the 
method is that of Infinitesimals 

Definition. A variable quantity whose limit is zero is 
called an infinitesimal 

A constant, however small, is not an infinitesimal in the 
sense now defined; an infinitesimal is a variable quantity. 

Let a, /3, y ..., be infinitesimals, and let /3, y ..., be such 
that when a converges to zero /3, y... also converge to zero; 
/8, y...are dependent on a and we can compare them 
with a and with one another. When a is taken as the 
standard of comparison a is usually called the principal 
infinitesimal. 

fi is said to be an infinitesimal of the same order as a when 

L £=&, 
a = oU 

where k is a finite number not zero. When k is zero /3 is 
said to be an infinitesimal of a higher order than a; when k 
is infinite ft is said to be an infinitesimal of a lower order 
than a. 

When the limit of /3/a is infinite /3 is sometimes called an 
infinite with respect to a. 

In practice one infinitesimal is chosen as principal infini¬ 
tesimal and the other infinitesimals are said to be of a 
certain order, first, second, etc., the principal infinitesimal 
being either explicitly stated or sufficiently indicated by 
the context. 
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/3 is defined to be an infinitesimal of order n with respect 
to a, n being positive but not necessarily integral, when 

where k is a finite number, not zero. 
By the definition of a limit we may write 

/3/an = k + co or /3 = kan + toan, 

where w is a variable that converges to zero with a, that is 
to is an infinitesimal. The difference (3 — kan or am71 is an 
infinitesimal of a higher order than an because the limit 
of (tmn/an, that is of w, is zero. 

kan is called the principal part of /3; manifestly the 
ratio of an infinitesimal to its principal part has unity as 
its limit. 

If L/3a* = &, 
a~0 

where 1c is finite, not zero, /3 is sometimes said to be infinite 
of order n with respect to a, n being positive. 

If /3, y are infinitesimals of order m, n respectively, the 
product f3y is an infinitesimal of order m+nf and the 
quotient p/y is an infinitesimal of order m — n if m > n, 
but an infinite of order n — m if m<n. For 

fi~(k + w) am; y = (Jc + w') an, 

a=0XU ' a = 0 

and in the same way the quotient theorem may be proved. 

Ex. 1. sin a, 1 - cos a, sin a (1 - cos a) are of the 1st, 2nd, 3rd order 
respectively with respect to a. For 

j^sina^j. 1 — cosa_^ ^ s*n a(l - cos a) , 

a=0 a a=0 a2 ~ ’ a=o <*3 ^ 

and their principal parts are a, ia2, £a3 respectively. 

Ex. 2. If $ = \/(9a-2a2-i-3a3), /3 is of order | and its principal 
part is 3v/a. For 

L £= L s/(9 - 2a + 3a2) = 3. 
a=0 o=0 

Ex. 3. tan a-sin a is of the 3rd order and its principal part is 
Ja3. This follows at once from ex. 1. 
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§ 87. Fundamental Theorems. The value of the explicit 
discussion of infinitesimals depends on the principle that so 
far as the limit of an expression is concerned we need only 
in general attend to the principal part; the other terms of 
the infinitesimal being of a higher order than the principal 
part will have to that part a ratio whose limit is zero, and 
may therefore be discarded from the outset. 

If an expression contain a finite constant term A and 
infinitesimals a, /3, y..., then so far as the limit is con¬ 
cerned we may, in general, at once replace A + a + f3+y+ ... 
by A. The essential thing is to find out the order of the 
expression; in comparison with infinitesimals the principal 
part alone need be retained, while in comparison with finite 
quantities no infinitesimal need be retained. The order of 
an infinitesimal /3 + y + ... is, of course, that of its principal 
part. 

Care must, however, be exercised in applying this prin¬ 
ciple. Thus 1-cosa-fisina contains the constant term 1; 
but 1 — cos a is of the second order, sin a of the first. Hence 
the whole expression is an infinitesimal of the first order, its 
principal part being a. 

The following are the two fundamental theorems. 
Theorem I. The limit of the quotient of two infini¬ 

tesimals is not altered hy replacing each infinitesimal 
by another having the same principal part 

Let )3, y be two infinitesimals. In order that their 
quotient should have a finite limit, not zero, each must be 
of the same order. We may therefore write, the order 
being n, ^ __ j.an a)an. y __ /yan w'an. 

Let ft, yx be two other infinitesimals having the same 
principal parts as /3, y respectively; then 

j8l = ^an + w1an; y1 = ^/an + ft)/an, 

where wv are infinitesimals different from oo, a>'. Now, 

y j3X_ y k -f“ _k _ y 

a = 07l a=(Jc+Wi k' a=:oy 
The reasoning would clearly hold if f3 were of higher 

order than y, for the limit both of /3/y and of (3Jyx would be 
zero. If j3 were of lower order the theorem would hold in 
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the sense that the limit both of /3/y and of (Sfyx would be 
infinite. 

^ -r Y ax 

"X’ Xr=otan bx ~~x==0bx “b* 

From its great use in the differential calculus this theorem 
is often called the fundamental theorem of the differential 
calculus. 

Theorem II. The limit for n infinite of the sum of n 
infinitesimals is not altered by replacing each infinitesimal 
by another having the same principal part, provided all 
the infinitesimals are of the same sign. 

The theorem is not necessarily true if the infinitesimals 
are not all of tlxe same sign. 

Let un = fix+/32 + ... + f3n; vn = yl + y2 + • • • + y»> 
where (3l has the same principal part as yv as y2.... The 
principal infinitesimal, previously denoted by a, is here l/nf 
and therefore the limit of each of the quotients(3Jyv 
for a = 0 or n — co is unity. Of course the principal parts 
of /33 ... are not necessarily the same. 

It is a known theorem of algebra that when the quanti¬ 
ties /3V yx...,/32, y2..., are all of the same sign the fraction 
un/vn lies in value between the greatest and the least of 
the fractions 0x/yv /32/y2 ••• ■ Hence, for every value of n 
the fraction urJvn lies between two fractions, each of which 
has the same limit, unity. Therefore, 

L = 
n — oo Cfi 

and therefore if vn converges to a limit, un will converge to 
the same limit, that is 

L un — L vn. 
n-oo « = oo 

Ex. Let (ip—n/(n +p)\ yp—n/(n +p) (n +p -f 1); then the limit of 
PP!yP for n= oo is unity for every integral value of p. But 

yP~n/(n+p)-n/(n+p+l); 

. / Jt_i ( n _ 71 \ . . __\ 
w \w + l n + 2/ \w4-2 n+ 3/+*” \n+n n+n +1/ 
_ n n 

+1 2 ft+ 1 ’ 

LM” = L{(» + l)^+(nT2?+ - + (n+n)*} = L V” = 1 "*“*• 



THEOREMS. WORKED EXAMPLES. 199 

From its use in integration this theorem is often called 
the fundamental theorem of the integral calculus. 

Ex. 1. When dx is the principal infinitesimal, then (§ 60) the 
principal part of 8f(x) is df(x) (x)dx, and that of of'(x) is df(x)~ 
f"(x)dx. If /'(#) = tan d> then the principal part of 8 tan</> is. 
d tan <f> —/" (x) dx. 

Ex. 2. Let PQ be the graph of f(x); PT, TQ the tangents at P, 0. 
OM-- a, MN-PR=h, LRPS^<j>, lSTQ = 8<I>, lTPQ~cl, lTQP-(3. 

Let h or PR be the principal infinitesimal. 
RS\ PS, PQ are of the fir st order. 
Let /"(.r) be finite, not zero, from 

x=a to #=a+A; then by Th. Hi., § 72, 
h=o 

Hence SQ is of the second order. 
8<f> is of the first order and its 

principal part is h cos2<f>f"(a) ; for 
d tan (/> is equal to sec^</> d<j> and 
also (ex. 1) to hf"(a), so that 

d(jj—h cos2</>/». 

Again, a and B are of the first order. For sin PSR—cos </>, and 

sin a sin a sinP*$7£ SQ cos<b T sin a , . , r,„ . 
nrh ■ —h—=n' h ' h~r~lcos!^ <“>• 

Fig. 42. 

sin a, and therefore a, is thus of the first order; the principal part 
of a is \h coshf)f"(a), that is, half the principal part of 3(f). Since 
/d — fic/> — a its principal part is equal to that of a, that is, to half 
that of 8<j>. 

Again, i PT-\ hfQ X’ ° ’ PQ sinPQ ’ TQ~ 
so that PT, TQ are of first order. Also 

PT+ TQ - PQ=PT( 1 - cos a) + TQ( 1 - cos ft) ; 
so that the difference between PT+ TQ and PQ is of the third order, 
since PT and TQ are of the first and (1 - cos a) and (1 - cos ft) of the 
second. Hence the difference between PT+ TQ and the arc PQ is at 
least of the third order since the arc PQ is greater than PQ. 

The fact that the limit of PTjPQ is 1/2 is sometimes expressed in 
the words “ PT is ultimately equal to \PQ ” or “ PT is in the limit 
equal to \PQS Similarly it is said that “the triangle PTQ is 
ultimately isosceles.” This phraseology, though occasionally con¬ 
venient, is apt to lead beginners astray. 

If f\a)~0, SQ is of a higher order than the second, and 8(f), a, ft 
are also of higher order than the first, and PT+TQ- PQ of highei 
than the third. 
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Ex. 3. In Fig. 24, § 39, if MA be principal infinitesimal, prove 
(i) AT\ arc AN of first order. 

(ii) MN, NT, MT of second order. 
Draw MG perpendicular to AT; then prove 

(iii) MC of second order. 
(iv) CT of third order. 

Ex. 4. Show that (Fig. 42) if arc PQ — ^8 

s^„S = C09^ •/'(«)=/'(*)/{! + C/WJ1- 

§ 88. Polar Formulae. Let A PQ (Fig. 43) be a curve whose 
polar equation is r—f(6); let z.XOP = 0, lP0Q~S6; OP- r, 
0Q = r+Sr. Draw QR perpendicular to OP. 

We will consider the arc PQ positive when the angle 
POQ is described by a positive rotation of the radius 
vector OP; the tangent PT is to be drawn towards the 
positive direction of PQ and by the angle, ^ say, between 
the tangent PT and the radius OP is meant the angle RPT 
between the outward drawn radius OP and the tangent PT. 

(i) To find tan \fs, 
RQ _ (r+<Sr)sin SO 

"PR~~(r+Srjcos <30 — r 
r sin SO + Sr sin <30 

’ Sr cos SO — r (1 — cos 86) 

tan RPQ - 
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If S9 be principal infinitesimal, Sr is of first order since 
drjdd is in general finite; therefore Sr sin Sd and (1 — cos SO) 
are of second order. We may, therefore, omit the quantities 
of the second order and put <50 for sin Sd and 1 for cos Sd. 
Hence 

tan \fs — L tan RPQ = L 

(ii) To find the derivative of the arc. 

Let AP~8, arc PQ = Ss; then retaining only infinitesi¬ 
mals of the lowest order and remembering that PQ and 
arc PQ are of the same order we get 

(Srf + (rSd)2 
' (Sd)2 

or d8 = x/{dr2+r2dd2}, 

and sin \/r — rdd/ds, cos \js = dr/ds. 

(iii) To find the derivative of the area. 

Let sector A0P = z> sector POQ = Sz; then Sz is inter¬ 
mediate to the circular sectors of angle Sd and radii OP, 
OQ respectively. Hence SzjSd lies between hr2and £(?*+ <5r)2, 
and therefore , 

dz=h'H6. 

(iv) Polar subtangent andt Polar subnormal. 

If PM, PN are the tangent and the normal at P and 
through 0 a line MON is drawn perpendicular to OP, 
meeting PM at M and PN at N, OM is called the polar 
subtangent and ON the polar subnormal. PM and PN are 
sometimes called the polar tangent and the polar normal 
respectively. 

The lengths of these lines can be easily expressed when 
required in terms of r and \fs. 

EXERCISES XVIII. 

1, The equation r=a# represents the curve called the Spiral of 
Arclmnedes. Prove tanyjr~0 and show that the subnormal is con¬ 
stant. Sketch the curve. 
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2. The equation r~a/9 represents the Reciprocal Spiral. Sliovl 
that the subtangent is constant. 

Prove that the perpendicular from the point (r, 9) on the initial 
line OX is equal to asm 6/8, and then show that the curve has an 
asymptote parallel to OX and at a distance a from OX. 

3. The Lituus is the curve given by r29~a2. Show, as in ex. 2, tjhat 
OX is an asymptote and sketch the curve. 

4. Show that \fr is constant for the curve given by r = aeecota. From 
this property the curve is called the Equiaytgular Spiral. Sketch the 
curve. 

5. The curve given by r—<r(l - cos 9) is called the Cardioid. Show1 
that y(/~$/2 and sketch the curve. 

6. if r ~ 2aj{\ - cos 9\ show that \lr~7r- O'j2. What is the curve ? 

7. If ,■ = „<?, 

If r=ajB, t 
dr r 

T p n , dS 
If r = ac° cota? .. as r cosec a. 

du 

If r2 — a2 cos 29, 
ds a2 

d() r 

8. If, in the figure of $ 88, PC is drawn perpendicular to OP and 
QC perpendicular to OQ, prove that the limit of PC as $6 converges to 
zero is drjdO. If 8z is the area of the sector CPQ, show that dzjdO is 
equal to \{drld0)\ 

9. Find the area bounded by the curve and the radii whose vectorial 
angles are 9V 9o for the curves of examples 1-5. 

10. The curve given by r2-—a2 cos 29 is called a Lemniseate ; show 
that it consists of two loops of equal area and find the area of one 
loop. 

11. APQ (Fig. 43) is the path of a moving point P. If u, v and a, /j 
are the components of the velocity and of the acceleration of P along 
and perpendicular to the radius vector OP, show that 

u—r, v — r9\ 

a=r-r()\ -(rtf). 

To prove these, note that (the limits being taken for 8t= 0) 

, (r+Sr) cos 89 - r T (r 4- 8r) sin 89 “=L--, „=lA-£-; 
and if ux, vx are the values of u, v at Qy 

cos 89 - vx sin 89 - u Q __ T ux sin 89+25 cos 80-v 
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12. If in example 11 the acceleration is always towards 0, show 
that the radius vector sweeps out equal areas in equal times. 

For /3=0, and therefore r2$=2i (§ 88)=constant. 

13. If in Fig. 24 the tangent at N meets the tangents AT\ BT at 
I\ 0, show that the triangles PQT, ABT are each of the third order 
when MA is of the first, and that the limit of their ratio is 1 /4. 

14. If in Fig. 42 the ordinate at T is X7r, show that the limit 
of MLjMN is 1/2. Show also that the principal part of the triangle 
PTQ is yfif" (a). 

15. A circle is drawn touching PT at P) and passing through Q 
(Fig. 42); if p is the limit of the radius when Q converges to 1\ show 
that 

p=$L(PQIsm a)=*/#=(l +(/'(«)2}»//'(«)• 
If SQ is produced to meet the circle at Q\ show that the limit of 

SQ' is 2 sec2 </>//" (4 

16. A circle is described about the triangle PTQ (Fig. 42); if p] is 
the limit of the radius when Q converges to show that p1 = ip (ex. 15). 

17. If is any point on the arc PQ (Fig. 42), and a circle is described 
about the triangle PWQ ; show that when If and Q converge to P 
the radius of the circle converges to p (ex. 15). Show that the result 
is true if If and Q are on opposite sides of P) and If and Q both 
converge to P. 



CHAPTER XI 

PARTIAL DIFFERENTIATION. 

§ 89. Partial Differentiation. In the following chapter we 
will discuss very briefly functions of two or more inde¬ 
pendent variables; a thorough treatment of such functions 
is difficult, and we will restrict the discussion to the simpler 
properties of continuous functions. 

Definition. A function f(x, y) of two independent vari¬ 
ables y is defined to be continuous for the values a, b of 
x, y if the limit for h = 0 and k = 0 of 

f(a+h, b+k)-f(a, b) 
is zero, in whatever way h and k tend to zero. 

A similar definition holds for a function of more than 
two variables. 

Let u be a function of x and y} say u = ax2 + 2bxy + cy2. 
Since x and y are independent x may vary and y remain 
constant; the ^-derivative of u when x varies and y does 
not vary is called the partial x-derivative of u, or, the 
partial differential coefficient of u with respect to x. In 
the same way the partial y-derivative of n is the deriva¬ 
tive of u with respect to y on the supposition that x does 
not vary. 

When u is a function of x alone its ^-derivative is 
denoted by Dxu or dujdx; the same notation is often used 
for the partial ^-derivative of uy and the reader must 
infer from the context whether the derivative is partial 
or not. It has become customary, however, to represent 
partial derivatives by the notation 

dw dw . fdu\ fdv\ 
Zx Zj, °r (as> \3}t 
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the form d instead of d, or the bracket, indicating that the 
derivative is partial. 

Notations analogous to /'(%), fx(%) are also in use. Thus 
fx(x, y), fy (X, y), fx(x, y), fy(x, y), ux, uy, 

denote partial derivatives of the functions f(x, y) and u. 
There is no notation, however, that is in itself quite free 

from ambiguity; the reader must usually infer from the 
context whether a derivative is partial or not. 

The formal definition of du/dx, du/dy where u = f(x, y) 

is, therefore, du_ ^ f(x+&c, y)-f(x, y). 

ClX Sx=0 Sx 

—= l /(^ y+$y)-f(x' y) 
oy Sy=0 oy 

Ex. 1. If u — axP + Zbxy -bey2. 

du/dx=%ax-\- 2by ; dujdy = 2bx + 2cy. 

Ex. 2. If u~8\n(ax + by+c). 

du/dx—a cos (ax+ by+c); du/dy — b cos (ax + by + c). 

§ 89a. Coordinate Geometry of Three Dimensions. A knowledge 
cf coordinate geometry of three dimensions will greatly assist the 
reader in obtaining a clear conception of partial derivatives; we will 
therefore give in this article a few fundamental theorems regarding 
the representation of points, lines, and surfaces hy means of three 
coordinates. In many cases the extension from two to three co- 
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From any point P draw PN perpendicular to the plane XOY and 
NM perpendicular to the line X'OX; complete the parallelepiped. 
The position of P will be determined by the segments OM or M'P, 
QV or LP, OX or NP. 

The three planes YOZ, ZOX, XOY are called the coordinate planes, 
the three lines X'OX, Y'OY, Z'OZ the coordinate axes and the three 
segments OM, Oil, ON' the coordinates of P; 0 is the origin of 
coordinates. 

The positive directions of the axes and therefore of the segments 
or coordinates are from 0 to X, from 0 to Y, from 0 to Z respectively. 
P may be denoted the point (x, y, z) where 

x=OM— UN = MfP; y = OIJ=MN- LP; z—ON’ ~ L'M' = NP. 
The coordinate planes divide space into eight portions (octants) and 

there will be eight arrangements of the signs -f, — corresponding to 
the octant in which the point is situated. Thus when the signs are 
( + , +, +) P lies in the space bounded by YOZ, ZOX, XOY; when 
they are (-, —, -f) P lies in that bounded by Y'OZ, Z0X\ X'OY 
and so on. 

(ii) Distance between two Points. The geometry of Fig. 44 shows 

that OP^OMt+MN^+NP*-, OP=J(x‘'-+yi+z2).(1) 

If Pj is the point (.r^ yv zt) and P2 the point (x2, y2, draw 
through Pv P2 planes parallel to the coordinate planes (Fig. 45) 
forming the parallelepiped PlX2Y2Z.J\2; then 

l\X.2=x2-Xl, l\Yt=y2-yv 

and - *i)2+(ih ~ ViY+(2z - h f).O') 

If we suppose the point P in Fig. 44 to vary its position, hut always 
to remain at the same distance, a say, from 0, it will lie upon a 
sphere ; the coordinates of P will by (1) always satisfy the equation 

#2+y2+^=aa, 
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which is therefore called the equation of the sphere. Similarly we see 
from (T) that the equation of tne sphere with centre yx, zf) and 

radius a is (.r-*,)*+(y-y1)* + (*-*,)!!==a*..(2) 
(iii) Direction Comms of a Line. Let OP .(Fig. 44) be any line 

through 0; on the line take one direction, say, the direction from 
0 to P as positive. The position of the line will be definitely fixed 
when the angles that the positive direction of the lino makes with the 
positive directions of the coordinate axes are known. These angles, 
namely XOP, YOP, ZOl\ are called the direction angles of the 
line, and the cosines of these angles are called the direction cosines 
of the line. Each of these angles may be taken as lying between 
0° and 180° inclusive. 

Thus the direction angles of OX are (0°, 90J, 90°), of OX' (180°, 90°, 
90°), and the direction cosines are. (1, 0, 0), ( — 1, 0, 0) respectively. 

If a, (3, y are the direction angles of OP, then 

cos a — OM/OP, cos /3 = OL/OP, cos y = ON'jOP, 

and cob" «+«** /J+cos2 y -Ml+gg+gffL ]. 

If we write l, m, n in place of cos a, cos (3, cos y, we see that the 
direction cosines (l, m, n) of a line are connected by the identical 
relation P+«*+»*= 1.(3) 

When the line does not pass through the origin, draw a line 
through 0 parallel the direction on the line that is taken as 
positive ; the direction cosines of the line so drawn are those of 
the given line. 

If the distance between /*, and P2 is r, r being considered positive, 
the direction cosines of the segment P^\ are 

(Xj-#i)/r, (y3-y,)/r. (*2-*i)/r».I 
und those of the segment P2PX are \ (3') 

(y,-y2)/V, (*,-%)/r..I 
(iv) Cosine of the Angle between two 

Lines. Let (Zj, mv nf), {l2, m2, 7i2) be 
the direction cosines of the lines, and 
draw OP, 0Q (Fig. 46) parallel to the 
positive direction of the lines. Let 
OQ be the projection of OP on OQ, 
and let PN be perpendicular to the 
plane X0Y and XM perpendicular to 
OX. Then 

OM—lfOP, MN—mx0P, 

NP—ni0P, OQ^OPcosO, 

where 6 is the angle between the lines 
OP, 0Q. 

By the fundamental principles of 
projection, the projection of OP on 
OQ is equal to the sum of the projections of OM, MN, NP on 0Q 
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But the projection of OM on OQ is l2OM, of MN is m2MN, and of NP 
is n2NP, since f2 is the cosine of the angle between OM and OQ, etc. 

Hence OP cos 0 = l2OM+ n2NP 

= ldx0P4- m tm j f.)P -f n 2n x OP, 
and therefore cos 0=lf2 4* inxm<> -f nxn2.(4) 

Since sin2#= 1 - cos2# « nd If4- mf4-nf — 1, If + mf 4* nf = 1, 

we have sin2^“(/124-?a124- w12)(4:i + m224" W2J) - (V2 +wij;?2 + 7h^2)2 

= (- W-gWl)2 + («1^ - Vl)2 + ( V>*2 “ h‘n l)2. (5) 
The condition that two lines should be at right angles is, from (4), 

lf2 4- mxm2 4* nxii2 — 0.(4') 

(v) Equations of a Straight Line. Lot the point Px (a\, yx, zx) be a 
fixed point on the line and let P> (Fig. 45) be any other point (x, y, z) 
on the line. Let Pxl\~r and let (/, m, n) be the direction cosines of 
Px / ^; then 

Px X2 - x - xx ~ Ir ; y - yx — mr ; z~zx—ivr, 
and therefore 

x—a\_y - yx _z~zx 

l ~ m ~~ n 
(6) 

Equations (0) express the relations that hold between the co¬ 
ordinates of any point on the line and those of tfce fixed point, and are 
therefore called the equations of the line. Had a point P3 been taken 
on the opposite side of Px from that on which P2 lies the direction 
cosines of Pxf\ would have been (-1, — m, -n) but the resulting 
equations would have been the same. If r be the absolute distance 
between the variable point (.r, y, z) and the fixed point (.r1} yx, zx) we 

may write if..(6') 

the 4- or - sign being taken according as the variable point-lies to 
the positive or to the negative side of the fixed point. 

(vi) Equation of a Juane. The equation x—a is clearly true for 
every point on a plane parallel to the plane YoZ and distant a from 
that plane; in other words x~a is the equation of a plane parallel to 
the plane YOZ. Similarly y = 6, z~c are the equations of planes 
parallel to the other two coordinate planes. The equations of the 
coordinate planes themselves are 0, ?/~0, z=0 respectively. 

The equation y — ax+ b when considered with reference solely to the 
coordinate plane XOY represents a straight line, A B say. If through 
AB a plane is drawn parallel to Z'OZ the coordinates of every point in 
that plane will still satisfy the equation y—ax+b. When considered 
with reference to space therefore the equation represents a plane 
parallel to the axis of the omitted coordinate. Similarljk^=or 4- 
z—ay+b represent planes parallel to OY, OX respecdjrtS^ 

Let a plane meet the coordinate axes at A, n, ; let OL 
be the perpendicular from 0 on the plane, (ly m, n) the'dife^thwi cosines 
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of OL. Take P (x, ?/, z) any point on the plane and draw the 
coordinates OM%AfN> NP. 

The projection of OP on OL is OL itself which may he denoted by 
p ; also the projection of OP is equal 
to the sum of the projections of OM, 
MN, NP on OL which are 10 M, mMN 
71NP respectively. Hence 

lx 4- my 4- nz —p.(7) 

so tliat the equation of a plane is of 
the first degree in the coordinates. 

If 1) = J(a2 + Ir 4- c~) the equation 

ax 4- by 4- cz — d.(7') 

may be written in the form 

lx 4- my 4- nz —p 

by putting l, wi, n, p for a//), &//), e//>, 
dll) res})ectively, trie sign of the root being chosen the same as that 
of d so that p or djl) may be positive. The quantities ajl), b/D, cjD 
are direction cosines since the sum of their squares is unity which is 
the condition required by (3) for direction cosines. These quantities 
are the direction cosines of the iwrrtial to the plane. 

The direction cosines of the normal to the plane x — 0 are (1, 0, 0); 
of the normal to the plane y^-ax + b, that is, -ax+y~b are 
( - a/J(a2 4-1), 1 hj (a2 4-1 ), 0), and so on. 

(vii) Equation of a Surface. Equations of a Curve. In general an 
equation of the form z~f(x, y) or F(x, y, z) — 0 represents a surface. 
Thus by (ii) the equation x2 +y2 4- z2 - dl—0 represents a sphere of 
radius a. 

Again, when the coordinates of a point satisfy two equations 
F{x, y, z)~ 0, y, z) — 0, the point must lie on each of the surfaces 
represented by these equations, that is, the two equations, considered 
as simultaneous, are the equations of the curve of intersection of the 
surfaces. Thus the two equations 

3#4-2y 4-2=1, 2#4-3y-s = 2 

represent planes ; the two, taken as simultaneous equations, represent 
their curve of intersection, that is, are the equations of a certain 
straight line. Or, again, equaoicns (6) may be written 

m, v m, x 

y-ifi = n(-~h)< 

which are the equations of two planes ; the intersection of the planes 
is the straight line given by (6). 

The two equations #=1, .r24-y24-22 = 9 

represent a circle which is the curve in which a plane intersects a 
spnere. 

G.C. O 
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(viii) Polar Coordinates. In Fig. 44, let OP=*ry lZOP— 6, lXON— <f>; 
then r, </> are called the polar coordinates of P. The relations 
between the rectangular coordinates (.r, y, z) and the polar coordinates 
(r, 6) <}>) of the same point P are easily seen to be 

x — r sin 0 cos </>, y =■ r sin # sin </>, 2=r cos #. 

(ix) Cylindrical coordinates. In Fig. 44, let ON—p, lXON=<£, 
NP—z ; then p, <£, r are called the cylindrical coordinates of P. 

Evidently p — r sin 0 ; .r=p cos <£, y=p sin </>. 

p, are the pfow? polar coordinates of A7, the projection of P on the 
plane XO Y; r, 6, <p are sometimes called spherical polar coordinates. 

Ex. 1. Find the equation of the plane through the three points 
(1, 0, 0), (0, 2, 0), (0, 0, 3). 

Let the equation be ax + by + cz—d; the coordinates of each point 
must satisfy the equation. Hence, to find a. b, c, dy we have 

a — d ; 2b — d; 3c —d, 

that is, a/d— 1, bjd-\, cjd—\; 

and the required equation is 

x+y/2+z/3 = 'i. 'S> 

It will be noticed that only the ratios of a, by c, d are required ; the 
equation of the plane thus contains only three independent constants 
just as that of the straight line in Plane Geometry contains only two. 

Ex. 2. The equation of the plane through (a, 0, 0), (0, 0), 

(0, 0, c), is x/a+yjb + z/c — l ; 

a, 6, c are the intercepts made by the plane on the coordinate axes. 

Ex. 3. The equation of the plane through the three points (2, 0, 3), 
(-1,5, 2), (3, -4, -2) is 

29jt4- 16y — 7z = 37. 

Ex. 4. The equations of the line through (xx, y„ zx\ (x2, y2, %) are 

= y-y i = 

V\ D'i h-H 
By § 89a (v), the equations of the line through (xx, yv zx) in the 

direction (ly m, n) are 

(x - xy)jl = Oj -y,)/m = (z - «j)/b. 

Since (-r2* y2, ^ bes on tbe bne, the ratios l:m:n are determined by 

(x2 - xl)ll={y,,-y1)lm = (z2 - «,)/», 

from which the required equations follow. 

Ex. 5. The direction cosines of the line through the points (4 9 4 \ 

“Tm’ 7ii3’ the Poaitive direc‘ 
tion of the line being from the first to the second of the points. 
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Ex. 6. The cosine of the (acute) angle between the planes 

3,v + y~2z=1, 2.r — 3y 4-£== 1 
is 1/14. 

Ex. 7. If SO is the small angle between the lines whose direction 
cosines are /, m, n and l+ 81, rn+Sm, n + Sn, show that, approximately, 

{SOf^{Slf + (Smf+{Snf. 

Both sets of cosines satisfy (iii) (3), and therefore 

(l 4- SI)'2 4- (m 4- S?nf + (n 4- Sn)2 = 1 = l2 + m2 4- w2, 

and 2 (l SI + mSm 4- nSn) — — {(5/)2 4- (8m)2 + (S?i)"}. 

Again 2 sin2(= 1 - cos SO — - (ISl4-mom4-nSn), 

and the result follows at once. 

§ 90. Total Derivatives. Complete Differentials. Let 
u —f(x} y) and let x and y be functions of a third variable t. 
To prove 

dt 
du dx du dy 
dx dt dy dt 

.(A) 

When t takes the increment St let x, y, u take the incre¬ 
ments Sx, Sy, on respectively ; then 

Su = f(x + 6x, y + Sy)-f(x, y), 

and this equation may be written 

6u = [f(x+Sx, y+Sy)-f(x, y+Sy)] 

+lf(fr y+Sy)-fix, y)}.(l) 

By the mean value theorem § 72 

fix+Sx, y+Sy)—fix, y+Sy)=ffx+61Sx, y + Sy) ox...(2) 

fix, y+Sy)-f{x, y)=fvix, y+Q.fy) Sy.(3) 

where 9V 02 are proper fractions. The coefficient of Sx in 
(2) is the x-derivative of f(x, y + Sy) taken on the supposi¬ 
tion that y+Sy does not vary and with x replaced by 
x + 6xSx; the coefficient of Sy in (3) is the y-derivative of 
f(x, y) taken on the supposition that x does not vary and 
with y replaced by y + 02Sy. Hence 

^=fzix+dfx, y + Sy)S* +fyix, y + 6fy) 
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Now, 
j Su du T 8x_dx - Sy dy 

dt’ itoSTTt’ sZoSt~dt 

L fjp+e^x, y + Sy)=fx(x, y); 
6t=0 

L fy(x> y) i 
St-0 

since Sx, Sy converge to zero with St, and the functions are 
all supposed to be continuous. Writing du/dx, dujdy in 
place of fx(x, y), fy(x, y) we get equation (a). 

In the same way if u=f(x, y, z) and x} y, z are all func¬ 
tions of a variable t we get 

\/ d*11 _ ^u dx du dy du dz 
dt ~~ dx dt dy dt dz dt 

(B) 

and so on for any number of variables. 
In (a) we may suppose t to be the variable x; y is then 

a function of x, and u is really a function of the one vari¬ 
able x. Equation (a) becomes in that case 

sr du__du du dy 
dx ~dx ^dy dx 

and in the same way, from (b) 

•(A') 

j du_du du dy du dz 
dx dx ' dy dx r dz dx 

,(B') 

In these equations du/dx and du/dx have quite different 
meanings. The derivative du/dx is formed on the supposi¬ 
tion that an explicitly named variable x alone varies; on 
the other hand du/dx is the limit of Su/Sx where Su is the 
change in u, due (i) to the change Sx in the explicitly named 
variable xy and (ii) to the changes Sy, Sz, which are them¬ 
selves due to the change Sx. 

du/dx, du/dt are called total derivatives with respect to 
x and t respectively. 

J Ex. If u~x2+y2, then 

du [dx = 2#; du/d?/=2y. 
But if y is a function of x, say y—ax+b, then 

-f b)2; gj=2x4- 2a(ax+b) ; 
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or we may use {A'); then 

dx bx by dx H -0* 

since dy/dx=a, and we get the same result as before. 

If x, y are independent, and if Su be the change in u, due 
to the independent changes 8x, Sy, equation (1) may be 
written 

Su=fjx+O^x, y+Sy)Sx+fy(x,y+02Sy) Sy 

= [/*(«. 2/)+^,] Sx+[fv(x, y) + <x2] Sy 

where oov w2 converge to zero with Sx and Sy. Henoe if we 
take Sx, Sy as independent principal infinitesimals and write 
dx, dy in place of Sx, Sy the products wxdx, co2dy will be 
of order higher than the first and the principal part du of 
Su will be given by 

du^dx+^dy.(c) 

Similarly for three (or more) independent variables 

.<“> 

du is called a total differential or a complete differential 

i du 7 du 7 du 7 
and --- dx, ~— dy, — dz 

dx dy ° oz 

are called partial differentials. These partial differentials 
are sometimes written dxu, dyu, dzu. 

If x, y, z are not independent but functions of t then, 
since dx = (dx/dt)dt, we should get equations of the 
same form as (o), (d) by multiplying (a), (b) by dt. 

These equations (a)...(d) have important applications 
in geometry and mechanics. For plane geometry the 
equation (a') is very useful; the reader should study the 
following examples carefully. [See Note, p. 506.] 

Ex. 1. Let u=ax2 + by2-l ; then, x andy being independent, 

dujdx—2 ax, dujdy — 2by. 

Consider now the equation u=0. The variables x,y are no longer 
independent; the point {x, y) must lie on the conic i^frandy may 
be considered a function of x, namely an ordinate of the conic. Since 
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u is now always zero for the admissible variations of x andy, the total 
^-derivative of u (not the partial) must be always zero. Hence by {A') 

'dn /dn dif __ ' , du ldu_ ax 

dx by dx dn dx <3xi dy by 

This equation gives the gradient at the point (x, y) on the conic. 

Ex. 2. Let u be any function /(.r, y) of x and y; the. equation it ~0, 
that is f{xy y) — 0 defines y as a function of x, namely y is the ordinate 
of the curve/(.r, ?/)—(). As in ex. 1, the total ^-derivative of u is 
zero and the gradient at the point (x, y) is given by 

dy Jdu jdu_ df fdf 

dx dx! dy dx! dy 

where / is written for brevity instead of f(x, y). 

Ex. 3. If f(x, y) - a*3+y3 — 3u.ry, the gradient of the curve whose 
equation is f(x, y) — 0 is 

dy _ 3.r2 - 3ay _ ay — .r2 

dx 3y2 - 3ax yl ~ ax 

Ex. 4. If pv=k6 {k constant) find dp in terms of dv, dO. 

dp _ k0 __ p , dp _ k __p 

dv v* v 1 dO~v 0 

dPJ*Rd*+%W--tdo+ldO. 
dv oO v 6 

Ex. 5. If prove that 

du — (xdy - ydx);(x2+y2). 

Ex. f>. If x—r cos 0, y — r sin 6, r and 6 independent, show that 

dx=cos 6dr -r sin 9d0, dy — sin 6dr -f- r cos Odd 

xdy — ydx—r2dQ. 

Ex. 7. Let u =/(#, y) - z, then 

du_df du _df du _ i 

dx ~ dx' dy by dz 

The equation u = 0 defines a surface, and now z may be considered 
a function of two independent variables x, y, namely z =f(x) y), 

dz _df _ du dz __ df _du 

dx dx dx di/^dy^dy 

§ 91. Geometrical Illustrations. Let P be the point (x, y, z) 
on the surface given by z—f(x, y), and let APB, DPF be 
sections njade by planes through P parallel to the planes 
YOZ, ZOX respectively (Fig. 48). 
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For points on the curve DPF, y is constant. Hence dzjdx 
or df/dx is the gradient at P of the curve DPF. Similarly 
dz/dy is tlie gradient at P of the curve APB. 

If the equation of the 
surface is u = 0, where u is 
the function F(x, y, z), the 
equation u = 0 defines 2" as 
a function of two inde¬ 
pendent variables x and y. 
Along the curve DPF, y is 
constant. Hence along that 
curve the total .^-derivative 
of u or F(x, y, z) must- be 
zero, u being for that curve 
a function of x and 2' which 
is always zero. Therefore, 
as in § 90, ex. 1, 2, 

dn, du dz A dF jdF 
-V ^ — 0 or — == — / - 
ox Oz Ox Ox ox/ dz 

(i) 

and dz/dx is the gradient at P of the curve DPF. 

Similarly, the gradient at P of the curve APB is 

JdF jdF 
0U oyt dz 

O') 

These expressions reduce to those first given if we put 
n — f(x, y) — z. (Compare § 90, ex. 7.) 

Tangent Plane. In Fig. 49 let APP2, BPP1 be sections 
of the surface by planes parallel to YOZ, ZUX respectively. 
Let P be the point (x, y, z), MAl^ — Sx, MM2~Sy, Jl/3 the 
point (ir + &c, y + $y, 0) and Pa the point on the surface 
(x + Sx, y + Sy, z+'&z). Let PTV PT2 be the tangents at 
P to BPPV APP2, rl\ lying on M1Pl produced and T2 on 
M2P2 produced; Pm1?n3?n2 is a rectangle parallel and con¬ 
gruent to MMXM3M2; Pj\, P2P3 are the curves in which 
the planes M{m3, M2ms cut the surface, and TXT3, T2T3 the 
straight lines in which the same planes cut the plane 
through P2\T2. 
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Since the gradient at P of the curve BPP1 is dzfdx and 
of the curve APP2 is Zz/dy we have 

m2r2 = g%. 

Also the geometry of the figure shows that 

m]T1 + m 2T2 = m3Ps, 

so that ^Sx+^8y = msT3..(2) 

But 1&+S> 
is the principal part of Sz (§ 90, c); therefore, when Pm^ 

Pm2 represent Sx, Sy the line 
ra373 represents the principal 
part of Sz. 

Again, if the plane PMMJPZ 
cut the surface in the curve PP3 
the gradient at P of PP3 is the 
limit of Sz/MM2 or Sz/Pms. But 
by the principles of infinitesimals 
the limit of Sz/Pmz is the same 
as the limit of mzTJPmz> since 
mzTz is the principal part of Sz. 
Hence the gradient at P of PP3 
is mzTJPmz and therefore PTS 
is the tangent at P to the arc 
PP3. 

The plane PTXT2 is completely 
determined by the two lines PTV Pl\, that is, by the point 
(x, y, z) and the derivatives dz/dx, Zz/dy. By proper 
choice of the independent increments Sx, Sy we could get 
any point Q on the surface near P and the tangent to the 
arc PQ would lie in the plane PJ\T2. This plane is therefore 
called the tangent plane to the surface at P, and the line 
through P perpendicular to the tangent plane is called the 
normal to the surface at P. * 

To find the equation of the tangent plane suppose Tz to 
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be any point on it and let its coordinates be (X> F, Z) those 
of P being (x, y. z); then 

and therefore by (2) 

Z-^X-zH^Y-y).(», 

which is the equation of the tangent plane at the point 
(x, y, z) on the surface, X, F, Z being the current coordinates 
of any point on the plane. 

When the equation of the surface is F(x, y, z) — Q we get 
by substituting the values of dz/dx, dz/dy from (1) and (F) 

0..(S') 

The direction cosines of the normal are (89a (vi)) pro¬ 
portional to the coefficients of the current coordinates 
X, F, Z and therefore the equations of the normal are 

<*-41.<*> 

» <*-414r-4f=<z-VS'.<*■> 
Ex. 1. The equation F(x, y, z)—x2+y2+z2-a?=0 represents a 

sphere of radius a. 

a?-** ?/_2v F-2, 
'dr ’ ~dy~ J' dz~ - 

Hence the tangent plane at (x, y, z) is 

{X ~ .r)2# -f (F- y)2y + (Z-~ z)2z — 0, 

or jrA"4- y Jr 4- zif= (.r2 4- y2 4- s2) — a2, 

since (.r, y, 2) is on the sphere. If we take y, 2 as current coordi¬ 
nates and (.rI? yx, as the point of contact, the equation is 

+ y j y 4- zxz—a2. 

The equatioiis of the normal are 

(X-x)l2x=(Y-y)/2y=(Z-z)l2z, or X/x^Y/y^Z/z. 

With (#, y, z) as current coordinates the equations are 

xlx^yly^z/zy 

The normal clearly passes through the origin which is the centre of 
the sphere. 
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Ex. 2. The equation ax2+by2 + oz2~ 1=0 represents a surface called 
a central conicoid (a plane section is in general a central conic). Find 
the equations of the tangent plane and the normal at {jl\, ;/l3 zt). 

Ex. 3. The equation bt/2 + c.z2 - 2x = 0 repi*esents a non-central 
conieoid. Find the equations of the tangent plane and the normal 
at (.Cj, ^j). 

Ex. 4. The equation ax24-In/2 + cz2=0, where a, b, c are not all of 
the same sign, represents a cone with its vertex at the origin. Find 
the equations of the tangent plane and the normal at (,/q, yy, c,). 

If F(x, ;>/, z) = ax2 + In/2+cz2, tin* derivatives 'dFfdx, oFfdy, 'dFfdz are 
all zero when x —y =z = 0. Every tangent plane to the cone goes 
through the origin, and there is no definite normal at the origin ; the 
equations of the tangent plane and normal are illusory if formed for 
the origin. At special points on a surface it may happen that the 
three partial derivatives are all zero ; in that case there is no definite 
tangent plane or normal at the point. Such points are usually called 
conical, points, the vertex of a cone being the simplest case. 

§ 92. Rate of Variation in a given Direction. It is often 
necessary to find the rate at which a function of the 
coordinates of a point varies in a given direction. Thus 
at a point in a cooling solid the rate of diminution of tem- 

be different along different lines 
issuing from the point. 

(i) Let u be a function f(x, y) of 
two variables, and let nP) uQ denote 
the values of u at P(x, y) and at 
Q(x 4* Sx, y 4* Sy) respectively, where 
PR = Sx/ RQ'=PS = 8y (Fig. 50). 
Then 

Ue=f(x9 y\ 

uq — f(x + Sx, y -f Sy). 
The average rate of increase of u in the direction PQ is 

(uq — uP)/PQ which may be written 

uq — uP__uR — vP PR uQ — uR RQ 
~ PQ ~~P7T PQ+~BQr ' PQ 

As in § 89<x (iii) let the direction PQ be distinguished 
from that of PQ\ and let PQ make with OX the angle 0 
(see note at end of this article); then 

PR/PQ = cos 0, RQ/PQ = sin 0. 

perature will usually 
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Exactly as in § 90 it may be seen that the limits for 
PQ —0 of {nn — uP)/PR and (uq — Uj)JRQ are du/dx and 
du/dy respectively. If the element PQ be denoted by os 
(where s may represent the length of a line, straight or 
curved, measured from some point up to P) then the 
average rate of increase of u is {vsQ — nP)jos or SuP/Ss and 
the rate of increase of u in the direction PQ is then 

d'U 
ds 

du , , du . , 
= ™-cos<i) + ^-sm^ 

dx ^ dy 7 a) 
If the rate of increase of u in the direction PT perpen¬ 

dicular .to PQ is denoted by du/ds\ PT making the anide 
0 + tt/2 with OX 

du du du 
-—-sm <7> -f- - - cos d) 

dx r ^ 7 dy (2) 

(ii) If u be a function f(x, ?/, z) of three variables the 
rate of increase duj'ds in the direction PQ may be proved 
in exactly the same way to be 

du ,du , du , du 
= +m_ . 

ds dx dy dz 

where (/, m, n) are the direction cosines of PQ. 
If (1) and (2) be solved for du/dx, du/dy we get 

du du . du . 
— = — cos (p — —> sm 0 
dr ds r ds 7 

.(3) 

(!') 

du du . , du 
~ = dssmfp+^ COS <p, ,(2') 

Equations (1), (2), (3) may be obtained at once from the equations 
of § 90 by taking t equal to s or s'. We have used the notation dulds 
instead of du/ds since we wish to find the rate of variation of u in two 
(or three) independent directions. In this and similar cases the 
meaning of the symbols must be constantly attended to. 

For examples on the use of these formulae, see the set at the end of 
the chapter (examples 9-13). 

Note on Angles.—In earlier chapters it has been sufficient to consider 
the positive or negative acute angle that a line lying in the plane XOY 
makes with OX. In discussions like that of case (i), however, where 
only half dines issuing from a point are dealt with, that restriction 
must be given up, and the angle may, like the angle $ of the polar 
coordinates, vary from 0 to 2tt or from -7r to it. Thus PQ’ makes 
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the angle (<f> + 7r) or (<f> — v) with OX. With this new convention 
cos 0 may have a negative value. For lines in space the determination 
specified in § 89a (iii) is always sufficient. 

§ 93. Derivatives of Higher Orders. The derivatives of 
u=/(x, y) will usually be functions of x and y, and will 
therefore have derivatives. Hence we have 2nd, 3rd,... 
partial derivatives. The notation for these is similar to 
that for functions of one variable: 

dx*’ dy*' ' Uxx’ Uyyy ’ ’ fxx(X) 2/)> fyyy(x> V) *•• - 

The brackets and the letters within them are usually 
omitted and the last pair are written fxx, fyyy. 

Again, the ^-derivative of du/dx is 

d 'du ( d2u 
dy dx dydx 

while the ^-derivative of du/dy is 

d du ^ d2u 
dx dy 01 dxdy 

When all the functions in question are continuous these 
two derivatives are equal (see below). For example, let 
u~ax)nyn\ then 

so that 

= max - 1 yTl du _ 
dx 

du . 
- = naxmyn-1, 
dy dxdy 

d2u m , t) , 
— nmaxm~Lyn~l; 

5 dydx 

d2u 
— mnaxm~1yn~1: 

d2u _ dhi 
dydx dxdy 

when u = axmyn. In other words the order of differentiating 
is indifferent; the operations of differentiating as to x and 
as to y are commutative. 

Ex. Verify that these two derivatives are equal when 

(i) w=.rsiny+y sin# ; (ii)w=#logy; (iii) w=tan”1™. 
s, * 5 x 
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The ^ && 

means that n is to be differentiated first three times as to y 
then twice as to x; while the symbol 

d5u 

dy^dx2 

means that u is to be differentiated first twice as to x then 
thrice as to y. 

Similar meanings and notations hold for the higher 
derivatives of a function of any number of variables. 

A sound proof of the commutative property is somewhat difficult. 
Consider the expression 

/0+K V + k) -/(*» y + k) ~f(x+h,y) +f(x, y) n v 
.hk .K) 

By the definition of a derivative 

i/ix+h' y+h)t 
h:- 0 

A=0 ft 
Hence the limit of (1) for h — 0 is 

lf&, y+t) -/*(•n y)\/k. •(2) 
Again the limit of (2) for/?=0 is the y-derivative of fx{x, y), that 

is fyx.' 
By interchanging the second and third terms in the numerator of 

(1) and finding first the limit for £ — 0 and then the limit for h — 0 we 
should get fxy. Thus fyx and fxy are hoth derived as limits from the 
same expression. But the assumption that the limits will be the 
same in whatever order we make h and k tend to zero is equivalent to 
assuming the theorem to be proved. A simple example will show 
that the order of taking the limits is not necessarily indifferent. 

Take the function {h + 2k)/(h + k) 

j h + 2k _c2k 
to k + k ~~k ; 

j h + 2k__k . 
*=o h + k k 

Of course neither in this expression nor in (1) must h or k become 
zero; zero is the limit not a value of h and L 

Assuming all the functions in question to be continuous we may 
proceed as follows. Let, for brevity, 

F(x) =/(x, y+k)-f{x, y), 



222 AN ELEMENTARY TREATISE ON THE CALCULUS. 

then the numerator of (1) ia F{xAh)- F{x). By the Mean Value 

Theorem F(x+h)-F^hF^x+dJi), O<0L<1, 

or, returning to the function /(.r, y), 

F(x+h)--F{x)^h{fx{x+Olh1 y+k)-fx(x+9A ?/)}> 

so that (1) becomes 

{/r(-f+ OJi, y+k) -fx{.c+ Ojh, y)}/k.(2') 

Now apply the Mean Value Theorem to the function of y in (2'); 

y+lc)~fx(x+QJi, y)=kfyx{x-fOJi, y-f <92£)> 0<ft.<T, 

and (1) becomes fyz{x+ 0\K y + 02k).(3) 

Again, taking </>(y)”/(r+A, ?/) -/(r, y) instead of F(x), the 
numerator of (1) is <f>(y + k)~ <f>(y). Apply the Mean Value Theorem 
and proceed as before. We thus find that (1) is equal to 

fly(-v+ 03h, y+ 0tk).(4) 

The two expressions (3), (4) are therefore equal. Since the functions 
are continuous the limits are therefore equal in whatever way h and k 
tend to zero, that is fyx— fxy. 

The commutative property may be easily extended by 
induction to higher derivatives, the functions being sup¬ 
posed all continuous. Thus, since 

dhi __ d2a 
dxdy ~dydx 

?hi __d/d2u\_ 2Pu __ 22 /3iA ^ dhi 
dx2dy dx\dxdy) dxdydx dxdy \dx) dydxxdx) dydx2’ 

In general, 
dp^rn __ dp+q+ru __ dp+q+ru _ 

dxpdyqdzr dxpdzrdyq dzrdxpdyq 

as may be readily shown by induction. 

dsu _ 3 / 3% \ dPu 32 /3 u\ 32 p'\ 
dxrdy ~dxKdxdy) dxdydx ~dxdy \3.c/ dydx \dxJ 

Ex. 1. In Fig. 48, § 91, let Fbe the volume bounded by the surface 
APDC> the coordinate planes and the planes A/P, LP. 

7)V 7)2F 
Prove (i) A--area MNP A ; WP. 

<ii>?l-^LNPD-, 

If V be taken as the function /(#, y), we get a geometrical proof 
of the commutative property. 
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Ex. 2. If u — log r where r% — (x - of -f (y - b)2 and (# - a), (3/ - 6) are 
not simultaneously zero, show that 

d2u d2u 

d^ + dy2~' 

Similarly, 

<W?l-2(r-a) ■ also ~^-2rdr- • • • 
'dr ( a)’ alS dr “ dr’ dr~ r ' 

du_~d\ogr dr _ 1 # - a #~ a . 

c/r cte v r r* 1 

?'?=!+<v-«'>3-,r~2=1 - 2(r~a)2 
dr- r2 ' dr r2 r4 

Similarly, ’ 

and therefore by addition, since r2 = (.r - r/)2 + (y - /;)2, tlie result follows. 

*Ex. 8. If u~l/r where r2=(x-a)2+(y - b)‘i+(z — c)2 and (47-a), 
(y-fr), (z-c) are not simultaneously zero, prove that 

c)“« o2?/, 32^ __ 
Da*2 c)y2 cte* 

A charge m of electricity concentrated at (a, 6, c) has at (xy y, s) the 
potential mjr. The potential V therefore satisfies the equation last 
written, usually called Laplace's Equation. 

If charges ml9 m2,... are concentrated at (aly &„ Cj), (u2, b2y c2),... the 
potential Fat (xy y, z) of these charges is w(m/r) where 

V = (.r- a,)2 + (1/ - 6,)2+(s - c,)2, 

so that the potential at any point (x, y, r) not coincident with any of 
the masses also satisfies the same equation. 

Ex. 4. If u — f(x, y) and „r, y are functions of t find d2u/dl2 

We have du, Jdu dx d» cfy . 
dt dx dl d>i dt’ 

We have 
‘dx dt^dy dt' ' 

d2u __ d fdn\ Jdu d2x dx dfdu\ du d2y dy d fdu\ 

dt2 dt \ dt) dx dt2^ dt dt\dx) dy dt2 dt dt\Sy) 

Since dn/dx is a function of x and y, its ^-derivative is found in the 
same way as dujdt in (i); that is, write dufdx for u in (i), 

d_fdu\ Jd2u dx d2u dy 

dt \dx) ~~dx2 dtldydx dt 

R;n,n^w d (du\ _ ?*“ dx ^ dy Similarly, ~r+Z“ 1- 
‘ dt\dyJ dxdy dt dyu dt 

Substituting these values and noting that 

<Pu__du djx du d2y d2u} dx\2 

dt2 ~ dx dt2 dy dt2 Sr2 

, we find 

d* dy + &u/dyY<' 

dxSy dt di dy2 \ dt) 
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Ex. 5. If f(x, ?/)=0, show that d2yjdx2 is given by the equation 

f&y 
Jydx* 

-0. 

This may be obtained directly ; or in Ex. 4 put t = x and note that 
u~f(xy y) = 0 for every value of x and ?/, anu therefore dnfdt and 
dhijdt'1 are both zero, while dxjdt— 1, dhvjdt2 — 0. 

Deduce in this way the results of examples 20, 27, 28 of ExercisesXIV. 

Ex. 0. 

Ex. 7. 

If u = f(y + ax), prove 

(0 
du dn. 

dx~~a'dy ’ <«> 

3V 
a?' 

If « =/(.*• + «<) + </>(.r - at), j)rovo 

32w .,32a 
0f2“a'iV 

Verify for u = A cos+«*) + /? sin (.r — atf). 

§ 94. Complete Differentials. If u is a function of the two 
independent variables x and y the complete differential of 
a is (§ 90) da du 7 UM- I „ ^ IV 7 

da - — dx-h — dit. 
dx dy J •(i) 

Now the question arises; given two functions <j>(x, y), 
\fs(x, y) of two independent variables x, y, is there always 
another function a which has 

<p(x, y)dx + \fs(x, y) dy.(2) 

as its differential ? 
If x and y are not independent, say if y is a function f(x) 

of x, we may replace y by f(x) and dy by f\x)dx. The 
expression (2) will thus become of the form F(x)dx and in 
this case (§ 82) there is a function which has F(x) as its 
^'-derivative or F(x)dx as its differential. 

But if x and y are independent the case is altered. For 
suppose the expression (2) to be the complete differential of 
a function n; then the expressions (1) and (2) must be 
equal for all values of dx and dy. Since dx and dy are 
independent we may put dy — 0, dx4=0 and we get 

<p(x}y) = dw/dx} 
and in the same way 

\H&> y) = M'l'dy 
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for all values of x and y. Therefore 

30 _ 32u __ d2u __d\[s 

dy dydx dxdy dx 
(3) 

Hence the expression (2) cannot be a complete differential 
unless 30/3;?/ = d\js/dx. 

Condition (3) is therefore a necessary condition ; it is also 
a sufficient condition, but for the proof of sufficiency we 
refer to treatises on Differential Equations. 

If P, Q, R are functions of three independent variables 
x, y, z the necessary and sufficient conditions that 

Pdx 4- Qdy 4- Rdz 

should be a complete differential, that is, that there should 
be a function u of x, y, z such that 

are that 

du = Pdx+ Qdy + Rdz 

dQ_dP dR_d_Q dP_dR 

dx dy ’ dy dz dz dx 

The student may show that these conditions are necessary. 

Ex. 1. (3#2 - 4xy)dx + (3?/2 - 2x2)dy is a complete differential for 

|/:^-4*y)= - 4.r-^(v-ar») 

and u—Xs— 2x2y + y\ 

Ex. 2. If P=yz(2x-\-y+z\ Q—zx(x+2y + z\ R=ry(x+y+ 2z\ 

show that du — Pdx + Qdy + Rdz 

where u — x2yz+y2zx -f- zlxy. 

§ 95. Application to Mechanics. Let 
the plane curve APQ be the path of a 
particle which is acted on by a force 
F’ making an angle e with the tangent 
PT, F and € being functions of the 
coordinates x, y of P. Let W be the 
work done from the position A (a, b) 
up to the position P, and let the arc 
AP be denoted by s. To the first order of infinitesimals 
the work done over the distance ds is 

dW=Fco&€ds. 

Fig. 51. 
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Let PT’ PF make the angles <f>, \[s with the £-axis; then 
cos <p — dx/ds} sin 0 = dy/ds, and since cose = cos(0 —*0“) 

r«..=rm ^.g+i-sin^J-zg+rg, 

where X = F cos 0, F= F sin 0, the components of F 
parallel to the axes. We thus get 

<2F=(x (lx 
ds 

+ Y ds. a) 

Supjxjse now that Xdx + Ydy is the complete differential 
of a sinqle-valued function fix, y). Therefore X = df/dx 
and F=B//By, so that 

"-(ls+ By <P>\ 
) ds — ^ds — df. 

Hence, as the particle moves along the curve, the rate 
d WI ds at which W changes is equal to the rate df/ds at 
which the function f(x, y) changes, and any change dW in 
W is equal to the corresponding change df in the function 
f(x, y). As the particle moves from A to P the work done 
is therefore equal to the change in f(x, y), so that 

W=f(x} y)—f(a, b).(2) 

If W' is the work from A to P when the particle moves 
along a different path of length s, we have as before 

dW = &d8'=df, 

so that W'=f(x, y)—f(a, b)~ W. 

In this case, therefore, the work done by the force is 
independent of the path between A and P, and, when A :s 
fixed and P variable, is a function simply of the coordinates 
of P. When P coincides with A, that is, when the path 
is a closed curve, the work done is zero (see Ex. 2 for an 
illustration in which f(x, y) is multiple-valued). 

Suppose on the other hand that Xdx-\-Ydy is not a 
complete differential. In this case the coefficient of ds in 
(1) is not the total derivative of a function f(x, y). To find 
the work from A to P we must express y in terms of x by 
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using the equation of the path. Equation (1) will then 
become 

■(!') 

and the coefficient of dx in (T) is a function of x alone. 
For different paths the function X + Y(dyjdx) will have 
different values, and therefore W will depend not merely on 
the coordinates of P but also on the path from A to P. 
(See Ex. 3). 

If APQ is not a plane curve it is easy to prove by the 
same method as that of finding dxjds, dy/ds for a plane 
curve (§ 62) that the direction cosines of the tangent PT 
are (§ 89a, iii. (3')) 

dx/ds, dy/ds, dzjds. 

If Z, m, n are the direction cosines of PF 

Ax , dy , dz 
cos e = l~r + m~r + n~r 

as as ds 

and dW 
dz> 

ds. .(3) 

where X~lFy F=mP, Z—nF are the components of F 
parallel to the axes. 

Exactly as before we see that if Xdx + Ydy + Zdz is the 
complete differential of a single-valued function f(x, y, z) 

d W=df and W =f(x, y, z) -/(a, 6, e) 

where A is the point (a, b, c). In this case W is independ¬ 
ent of the particular path from A to P. 

If however Ydy + Zdz is not a complete differential 
it will be necessary to use the equations of the path and W 
will depend not merely on the coordinates of A and P but 
also on the particular path from A to P. 

When Xdx+Ydy + Zdz is a complete differential the 
force F is said to be conservative; the components are 
the derivatives of a force function u or a potential — V, 

X=p or dW=du or dW=-dV. 
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Ex. 1. If F—m/r2 where r2 = #2-f- ?/2-f z2 = OP2, and the direction 
of F is from 0 to P, then Pis a conservative force. 

For X—-F=— 
r r3 ’ 

V-mJL 
“ F ’ 

and 

or 

d W=Xdx+ Ydy+Zdz=~(xd.v+ydy+zdz) 

dW—^dr—di^ — since xdx+ydy+:dz=rdr. 

T fence !F=r —m/r+const, and if r=w/r, 

Z= - 3 F/ar, F= - 3 Tr/3y, - 3 lr/3j. 
The work from position P to position Q is 

m/OP-m/OQ, 

and is independent of the path between P and Q. 

Ex. 2. Let X— -y/r2, Ir=.r/r2, where r2—.r2-f y2. 
In this case, putting y/.r = tan #, 

o? IF=(#dy —ydx)jr2 = cf. tan_1(y/.r) — 0, 

and therefore TF—0 + constant. 

If the point P sets out from A and, after describing a closed curve 
within which the origin lies, returns to A, the angle 0 and therefore 
W will increase by 2tr. The work done is not zero, although d W is 
a complete differential dO ; the function 0 is multiple-valued. 

If, however, the path is a closed curve within which the origin does 
not lie, the work done over that path will be zero. 

Ex. 3. Let X— -y, Y=x. in this case xdy—ydx is not a complete 
differential. Let A coincide with the origin 0, and let the patn be 
the parabola y-c.tr2. Then, by (T), 

d W— (- cx2+x. 2 cx)dx — cx2dx ; W— — Jxy. 

If tho path is y—cx3, we find W—Ijcx*=%xy, the work being 
different for different paths. 

§ 96. Applications to Thermodynamics. The condition of 
a given mass of thermodynamic substance, say unit mass, is 
completely defined by three variables p, v, 6 the intensity of 
pressure, the volume and the absolute temperature, p, v, 6 
are connected by an equation, the characteristic equation 
of the substance, f(pf v, #) = 0; for a perfect gas the equa¬ 
tion is pv — k6, k being a constant. Of the three variables, 
therefore, only two are independent. 

Since/(p, v, 0) = O its total differential is zero; therefore 

%dP+lldv+%dd=o.V 
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If p be constant, and v, 0 vary, then dp — 0 and we have 

dv __ df ' df 
dQ~~"dd~*~dv 

Forming in the same way 3d/dp, dp/dv and multiplying 

dv dO dp 
30 dp dv 

dvdO 

we get 1. (2) 

Clearly 
30 dv = +l. ■(3) 

It must be remembered that in all these expressions the 
derivative of one of the variables p, v, 0 with respect to a 
second is formed on the supposition that the third variable 
is constant. 

If a small quantity SQ of heat be communicated to the 
substance and change p, v, 0 by Sp, Sv, SO respectively, 
then SQ can be expressed in terms of any two of these 
increments. To the first order of infinitesimals we may 
write, with 0, v as the variables, 

dQ — MdO + Ndv.(4) 

It is to be most carefully noticed that dO, dv are any arbitrary 
small changes of temperature and volume, jihe three differentials 
dO, dv, dp are subject merely to the restriction expressed in equation 
(1), and any two of them may have values chosen at will. 

The specific heat at constant volume (Kv) is the limit for 
SO = 0 of SQ/S6 on the supposition that the volume does not 
change when 0 increases by <50, that is, on the supposition 
that dv — 0. But if do — 0 equation (4) gives dQ/dd — M so 
that Kv — M. 

The specific heat at constant pressure (Kp) is the limit 
for (50 = 0 of SQ/S9 on the supposition that p is constant, 
that is, that dp — 0. To find Kp equation (4) must be trans¬ 
formed so that 0 and p shall be the independent variables. 
Since v is a function of 0 and p we have 

dv=wde+z£dp- 

and (4) becomes dQ=(m+N^) dd+Ngdp. 

,(5) 
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Therefore KP = M+N?? = .(0) 

The elasticity of the substance is —vdp/dv (§ 70). Let 
Eq denote the elasticity when the substance expands at 
constant temperature; 

therefore, Ee— —v*— 
?>v 

where dpldv is taken subject to the condition that d is 
constant. 

Let E^ denote the elasticity when the substance expands 
adiabatieally, that is, so that heat neither enters nor escapes. 
We must distinguish the ^-derivative of p in the two cases. 
For the present denote the ^-derivative of /> for adiabatic 
expansion by (dp/dv)$ and let dp/dv retain its previous 
meaning. Therefore, 

To find (dp/dv)$ we must transform (4) so tliat p and v 
shall be independent variables. Now 

de=fpdP+™dv, 

and therefore dQ — Mdp + (M^+N^dv.(8) 

(dp/dv\ is the value deduced from (8) on the supposition 
that dQ = 0. Therefore 

,,30 , Ar 
M-—+N 

dv 
M+N. 

dv 
30 

M 
30 

dp 
„,30 dv Mzj, w 

by (3). 

The numerator last written is Kp and M~KV; therefore 

(II W |-WV(2) 

Hence E*. 
LV 

vdp 

Ks 
'KJ ..(9) 
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For a perfect gas KPJKV is a constant, y; also for a 
perfect gas pv = lc0, and therefore 

dp/dv = —p/v. 

Hence for adiabatic expansion, by (7) and (9), 

that is, pvy — constant. 

The results (])... (3), (5)... (9), are merely formal con¬ 
sequences of the definitions and the two equations 

/(p, v, 0) = O and dQ — Mdd+Ndv. 

§ 97. Four Thermodynamic Relations. dQ in the previous 
article is not a complete differential; we cannot express Q 
in the form F(0,v)-~F(6O> v0) without assuming some further 
relation between 6 and v. Physically, Q is not a function 
of 6 and v; heat may be given to the substance and 0, 
v go through a range of values and return to their initial 
values, while the heat absorbed in the process is not equal 
to that given out. Compare g 95 when dW is a complete 
differential; when x, y return to their initial values a, 6, 
W = 0, that is, the work done by the force F is equal to 
that done against it. 

It is shown in treatises on thermodynamics that if we 
put dQ = 0d<p where 0 is the entropy we can replace (4) by 

dE = 0dcj> — pdv.(10) 

E is the intrinsic energy and pdv the work done in the 
infinitesimal expansion do. dE is a complete differential; 
that is, E is a function of the variables that define the state 
of the substance. 

There are now four variables p, v} 0, <f\ but of these only 
two are independent. If v, 0 are chosen as independent 
the symbol dp/d0 is now not sufficiently clear; it means the 
0-derivative of p when v is constant. But if <p, 0 were the 
independent variables, dp/d0 would mean the 0* derivative 
when <j> is constant. To avoid confusion we will, when 
there is doubt, enclose the derivative in a bracket and affix 
the independent variable which is supposed to be constant 
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Thus (dp/dd)v means that v, 6 are the independent variables, 
and that v is constant in forming 'dpj'dQ. 

Since dE is a complete differential we have (§ 94 (3)) 
from equation (10) 

Let now v, 6 be the independent variables, then since 

d^idv+ltdd’ 
(10) becomes dE,e%m+(^v-P)dv, 

and therefore 1(8^)= *-(6^-p) 
dv\ deJ d6\ dv PJ’ 

or 8^-8 
dvdd dOdvdv W 

that is, 
Xd6/V \dvJe’. 

since the two derivatives of second order are equal. 
In the same way, by taking p, 0 as independent variables, 

we get 
/dv\ /d$\ 

\d</>)p ~ 
...(2') 

and by taking pt 9 as independent variables 

(dv\ _ /30\ 

\d6Jp \dp/e 

Equations (T), (2'), (3'), (4') are those numbered (1), (2), 
(3), (4) in Maxwell’s Heat, p. 169. 

In effecting the differentiations it must be borne in mind 
that for example when v, 9 are the independent variables 
dO/dv is zero. The careful working out or these four rela¬ 
tions will give much information as to the meaning of 
partial derivatives; it is necessary at each step to attend 
to the meaning of the operations rather than to the notation. 
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Ex. 1. d<{>=dQ/0=(MdO + Ndv)jO. 
For a perfect gas A', Kv are constant, and by § 96, Kv—M and 

Kp - Kv—JV(dv[dO)p. But for a perfect gas CdvfdO)p — vjO. Hence 
i\/0~(Kp-IQ/v and ' “ 

d<t> = +(kp- a;)*’ = d . log 

as may be tested by differentiation. Therefore 

<f> = log (0Kvvkp~s v) 4- const. 

For adiabatic expansion dQ—0 and d<$> — 0 ; we therefore have 

0kvvkp-kv __ C01ist. or pvy=const., 

as in § 96. 

Ex. 2. The gain in energy dE due to a supply dQ of heat is given 

by dE=dQ~pdv = (N-p)dv + MdO. 

Show that if dE is a complete differential, dQ is not. 
Since dE is a complete differential, we have 

d{N-p)__aM dp 
dO dv °r d)0 'dv 'dO’ 

that is, dJV/dO, dM/dv are not equal and the result follows. 

Ex. 3. Prove that 

dpd9) ^dpdv_ dOd<f> _dOd<j> _ 
dO d<j> d(f> dO * dp dv ch> dp 

Ex. 4. Show that equation (10) may be written in the forms 

dE— d (0<f>) — <l>dO -pdv ; dE— - d(pv) -f Odifa + vdp ; 

dE—d{0<f>) - d(pv) — <\>d0 + vdp, 

and then prove (1'), (2'), (3'). 

Ex. 5. It is shown in works on Thermodynamics that d<f> is a 
complete differential. Prove that 

d(Af\_d_(N\ 
Wo\o) do\oj 

§ 98. Change of Variable. Differentials of Higher Orders. 
When the independent variable x of a function y is changed 
by a substitution, x = <j>(t) say, to a new independent 

variable t the ^-derivatives of y, Dxy, Dxy...t must bo 
expressed in terms of the ^-derivatives of y, y,y— We 
have found (§ 68, ex. 2) that 

Dxy=y/x, Dly=(xij—yx)ji? (1) 
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and it is easy to find D*yt D*y... when these are required. 
Since is supposed to be given, the values of x, x..., can 
be calculated, and the substitution of for x and the 
above values for Dy, Dhj changes any expression containing 
x, y, Dy, D'zy... into one containing t, y, y, ij.... 

If we wish to make y the independent variable and x the 
dependent, then 

Dx y = / \ ~ ? x y ~ ) 
UyX 

and so on. 
Again if we change from rectangular to polar coordinates, 

an equation f(x, ?/) = 0 becomes an equation between r and 

0 and we may express Dxy, Dxy..., in terms of Ddr, Dgr, 

... 0 being the independent variable. For x — rcos 0, 
y—r sin 0 and we can differentiate the products r cos 0, 
r sin 0 with respect to 0, r being a function of 0, 

dx 
d6 

dzx 
dO2 

= cos O^'—r sin 6 
(W 

nd2r . dr 
= cos 6 7/v, — 2 sin 6 In 

ddu dO 
— r cos 6, 

i 
i 

(3) 

with similar expressions for dy/dO, d2y/dd2. In equations 
(1) we may suppose t replaced by 6, since of course £ may 
represent any variable; Jb would be replaced by dx/dO, 
Z by drxjdO2 and so on. We should thus express Zb/, Z)2y 
in terms of r, 6, dr/dO, d2r/d02. 

In geometry and mechanics differentials of order higher 
than the first are often required. When x is the inde¬ 
pendent variable, dy = y'dx (8 60). The second differential 
of y is denoted by dly and is defined by the equation 

d2y = y"dx2 = (D~y)dx2, 

and in general the nth differential of y is denoted by dny 
and is defined by the equation 

dny — y(n)dxn — (Dxy)dxn 

where dxn means (dx)n. 
If dx is an infinitesimal of the first order dny is, in 

general, of the nth order. 
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In the second of equations (I) multiply the numerator 
and denominator of the fraction on the right by dt‘6. Since 
t is the independent variable we have 

dx — cbdt, d2x = xdt2, dy — ydt, d2y = ydt2} 

and therefore Dxy — (dxd2y ~dy d2x)/dx2.(4) 

Dly is thus expressed as a quotient of differentials; the 
independent variable for the differentials is not x but t 
(or any other variable of which x and y are functions). If 
x is the independent variable, then by definition 

d2x = (l)xx)dx2 = 0 x d/x2 = 0, 

and similarly we see that dsx, dAx, ... are zero. In other 
words, the differential of the independent variable is 
constant. 

From (4) we may easily derive (2). Take y as the 
independent variable ; then dry — 0, dx = (l)yx)dy) <Xlx 
= {DyX)dy2 and (4) becomes 

- dy ( ByX) dy2/(D?/x)3 dyz = -I)^xl{Dyxf. 

For more than one independent variable the trans¬ 
formations are complicated. We will consider only one 
case that is of great importance in mathematical physics. 

§ 99. Transformation of V2u. Let u be a function of two 
independent variables x, y, and let x, y be changed to polar 
coordinates r, 0; we wish to express ux, uxx... in terms of 
nr, Urr.... Of course a derivative ur implies that x, y have 
been replaced in the function u by r cos 0, r sin 0. 

du/dr is the rate of variation of u in the direction in 
which v increases, 0 being constant. In § 92 put 0 = 0, 
s = r and we find du du _ dy 

_ = cos 0--- + sin 0—.(O 
dr dx oy 

dujds' in § 92 is the rate of variation of u in the direction 
0 + 7r/2. Let 0 = 0 so that PT is perpendicular to OP and 
Ss = PT — r tan SO 

du_ L Sn_ l _ 1 du 
ds^ ss'^oSs' se^o^tan SO r 30* 

Hence 
1 du . fdu , fdu 
-•^7 — — sm0^—+cos0—• 
rdO dx dy 

.(2) 
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The element ds' is replaced by rd6; rd6 is the element 
in the direction perpendicular to r just as dr is that in the 
direction of r. 

Equations (1), (2) are so important that we give another 
proof of them. By § 90 (a), taking x and y as functions 
of r, 0 being kept constant, we get by putting r for t 

du_dudx dudy 
dr dx dr dy dr 

Here drujdx means (du/dx)y and dx/dr means (dx/dr)6 in 
the notation of § 97. Also 

/dx\ ^d(rcoaQ) 
\drJ $ dr 

= cos 9; 

and the substitution of these values in (T) gives (1). 
In the same way 

du __ du /dx\ du/dy\ 

d9~dx \dd)r+dy\dd)r. 
(2') 

and — r sin 0; 

from which equation (2) follows. 
Solving (1) and (2) for dujdx, du-/dy we get 

The function 

du Fdu sin d du 
— =COS0;r--£•' 
dx dr r dd 

du . „du , cos 6 du 
dy dr r d6 

d2u d?u d2u 
dtf+dtf+d? 

(3) 

(4) 

is of very frequent occurrence in Physics and is usually 
denoted by V2u. It is often necessary to transform V2m 
so that other variables shall be the independent variables. 

First, let u be a function of the two variables x, y so that 
the third term is absent, and transform it so that r, 0, polar 
coordinates, shall be independent variables. 

Denote dujdx, du/dy by ux, uy; then we can find d2u/dx2 
in terms of r, 6 by writing ux in place of u in (3). 
We must calculate dux/dr, dux/d0. Now, 
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'dux_~'d( ~0u sin 0 Dud 

dr 3r\C0S dr r 08) 

n d2u . sin 8 da sin 6 dPu 
= C°S03^+ r* 

dux n d2u . n du sin 0 d2u cos 8 du 
r vs-—w 

Hence from (3) 

d2u dux r\dux sin 0 dur 
dx Or r 08 

and when the above values of dux/dr, 0ux/08 are substituted 
we get, after an easy reduction, 

d2u 9 n d2u 2 sin 8 cos 8 dhi , sin2 8 d2u 
Ox2, dv2, r Ordd^ r2 082 

sin2 8 du 2 sin 8 cos 8 du 
r dr r2 08 

In a similar way we find 

Ohi . 9 n 02u 2 sin 0 cos 0 d2u 
—-t; = sir 8 H-+ 
0yl dr2 r Or08 o 

cos2 0 d2u 
*2 082 

r Or 

Adding (5) and (6) we get 

cos2 8 Ou 2 sin 0 cos 0 du 
r2 08 

.(6) 

0?u 02u__d2u 1 du 1 dhh 
_ .9. „ o— •* •(7) 

0x2~dy2 Or*— r dr rr2 082 

Next transform V2u from x, y, z to cylindrical coordinates 

x = p cos <f>, y — p sin0, 0 = 0. 

Here 0 is not changed; we have merely to write p, <p for 
r, 0 in (7), so that 

0?u . 1 du 1 d2u d2u 
V“"S?+^+?V+5?. 

Lastly, transform to spherical polar coordinates 

x = r sin 0 cos 0, 3/ = r sin 0 sin 0, 0 = r cos 0. 

.(8) 
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The transformation may be effected in two steps. First 
transform to cylindrical coordinates p, <f>} z where p — 
rsind; this change gives (8). Next transform from z% p 

to r, 6 where '* = rcoeft p = rsin0. 

This change gives by writing 0 for x and p for y in (7), 

dhi d'2u _d2u 1 du 1 dhi 

3s2^~3p2 dr2 r dr r2 d62. 

Also by (4) replacing y by p, 

du . A du , cos 6 du ,, 

».<10) 
Substitute from (9) and (10) in (8) and put p = rsind 

and we get 

—2 _dhi 2 du 1 d2u cot 6 du, 1 dhi 
W dr2 r dr r2 dO2 r2 30 r2 sin2 6) dfi2.* 

It is sometimes useful to write the first two terms of (11) 
in the equivalent forms 

13/ „3uA 1 32(m) 

r2 dr \ 37/ or r ~3r2~ 

and we may transform (11) to 

1 1 d2(ru) . ro| ad(ru) 1 1 &(ru)} n„ 
v -^r-+-002-+c°t0~m~ +-^e -g-r-}...(12) 

32(ru) d2u , 
since 3(92 ^ ~ r302 ’ e^C‘ 

EXERCISES XIX. 

1. If #=rcos0, y=rsin0, show that 

The equation (i) is not in conflict with the theorem that when x is a 
function of the single variable r, the product of dr/dr and dr/dx is 
unity. The student should prove the equations by using a diagram, 
and he will see their meaning much more clearly. 
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2. If x—r cos0, y = rsin 0, prove 

(i) D^y={r2 + 2 ( /^r)2 - r/>dV}/(cos 0 Ddr - r sin 0)A ; 

(ii) {i +(T>4,)4lir;y=If*+WVf - 

Deduce from (i) the condition for a point of inflexion on the curve 
given by the polar equation r=J{0). 

3. If x—a{ 1 - cos t), y — a(nt + sin t\ express l)}y in terms of t 

4. If x—r cos 0, y=r sin 0y and x, y, r, # functions of t, prove 

(i) x cos 0 + y sin 0 = r ; (ii) — a: sin Q + y cos 0—rO ; 

(iii) # cos 0+y sin 0—r - r#2 ; (iv) — ,f sin #+y cos 0 = ?*61 + 2f$. 

If P is the point (x, y), equations (i) and (ii) give the velocity of P 
along and perpendicular to the radius vector while equations (iii) 
and (iv) give the acceleration of 1* in the same directions. It is easy 
to see that 

r0+^=\^0). 

5. If s is the arc of a curve measured from a fixed point on it up 
to the point J\x, y, z\ prove, using accents to denote ^-derivatives 
and dots to denote ^-derivatives, 

(i) x'x"-f yy"-f zz" = 0 ; (ii) x—xs ; (iii) x—x's+x"^ ; 

(iv) x'x+y'y + z'z — s ; (v) x2+y2+z^~ s2 -f s 4/p2; 

wh ere 1 Ip2— x2 4- y"2 + z"2. 

Equation (i) is obtained by differentiating as to s the identity 

#'2-f ?/24-£,2—l, 

this relation holding since x\ y\ z' are direction cosines. These results 
are important in Mechanics. Thus (iv) gives the tangential velocity, 
(v) the total acceleration. 

6. If the axes are turned through an angle a, the old coordinates 
(.r, y) of any point are connected with the new coordinates (£, ?;) 
of that point by the equations (§ 27) 

x—£ cos a — r] sin a, y — £ sin a -f rj cos a, 

?)2u d*u rv 
. prove that 
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Solving for du/dx, <dufdy, wo find 

da . du_du 

dx ~ 0£ 

d2u du 

_ eos sin a ; 
or d£ dr/ 5 

3?«, 
A .i — ^ —”ov“" COS CL 
d.tr Ox d£ dr] 

du du . du 
— ~~ sin a + ~- cos ci: 

dy d* dr/ 

- sin a, etc. 

A similar equation to (i) holds for three variables ,r, y,. 

7. Prove 
d 

8. If in § 99 (12) 0 be changed to fi where jtr —cos#, show that 
Y*tt becomes 

ird%ru) 

AS 'dr3 + 
1 02?n 

l - /i2 0</>2J 
9. P, P' are the points (x, ?/, s), (.r', y', zi) and PP'=r, a positive 

number ; PQ~ds,P'Q’~ds'; the direction cosines of PQ, P'Q' are 
(/, m, n\ (V, m', w'), and the angles #PP', Q’P'P are #, #', while e is 
the angle between the directions of PQ and P’Q. Prove 

(i) dr/ds — - cos # ; (ii) dr/ds'— - cos O'; 

(iii) r 
d2r dr dr 

ds ds' 05 0s' ~ 
- cos € ; (iv) 

0(r-1)__cos 0 

ds~~~W~ ; 

. 4 d\Jr) _ 2 cos € + 3 cos 0 cos #' 

^V' aJr^dsds' r* 

In § 92 (3) put u—r ; then since r2—(jp' ~ xf + (y' -yf -f- iz' - z)\ 

drjdx = - (.0 - x)/r, drjdx' — (x' — #)/r, etc. 

and the .r-direction cosine of PP' is (x — .r)/r ; of P'P, (.r — jr')/r. 

Then — - ilS-—A + ... + ...} = -cos 0. 
os ox oy oz V r ) 

In finding d^r/dsds' by differentiating dr/ds as to s', it is to be noted 
that /, m, n and x, y, 2 are independent of s'; so are m\ n! and 
x\ y', d of 5. 

d l(x* — x) __ l dxf l(x' — x) dr _JP _ 1 tf — x 1 dr 

ds r r ds' r2 ds' r r r ds' 

since I'—dx'jdtf. Finding the derivatives of m{y'- y)lr, n{z'-z)jr 
and adding 

d2r 

05 ds' ~~ 
/gjWWN /'£z* my[zl+n*'-.? 
\ r / \ r r r 

cos € dr 1 dr 

r 05 r df 

\1 0r 

Jr 05' 

which gives (iii). Also 

0(r~1)/05= —r~*dr[ds- cos 0/r2, which is (\v)l 
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10. Let QP in ex. 9 be produced backward to Qv making PQX = QP. 
Let u — l/PP' — ljr, and let uq, uQl denote 1 IQP\ IjQf*'. Show 
(as in § 92) that 

du __ T vQ — uqj du _ cos 0 

ds ~VlJlo' Wf 5 S 
11. With the notation of ex. .9, let P be the centre of an elementary 

magnet of moment M, whose axis is in the direction PQ ; show that 
the potential V at P' of the magnet is 

y_ y'dQ If) f QOS 0 
'da r* 

At <?, Qi (see ex. 10) let quantities m, - m of magnetism be placed ; 
the potential at P’ of these quantities is 

mvq - mu(h -= mQlQ(?iq - uQl)!QvQ. 

Let QiQ tend to zero while the product mQxQ remains constant and 
equal to M; then V is the limit of the fraction just written, which 
by ex. 10 is 

t,du ,-cos 6 
J/ --A1- — 

os r~ 

12. The components of the magnetic force at P' (ex. 11) are 
-'d Vjdx\ - d Vjdy\ -d Vjdz ; show that 

_ 3 r 3 M{f_ - X) cos 6 _ Ml 

dxf r4 r3 ’ 

with similar expressions for the other two components. 

13. If an elementary magnet of moment M' is placed with its 
centre at P' and its axis along P'Q\ show that the mutual potential 
energy W of the magnets is 

Mr w3 ir i/ fP(r~l) MM' (cos e + 3 cos 0 cos O') 
04* o.9 c)$ r* 

Apply the method of ex. 11, taking lr in place of u or l/r. 

G.C Q 



CHAPTER XII. 

APPLICATIONS TO THE THEORY OF EQUATIONS. 

§ 100. Rational Integral Functions. If f(x) is a rational 
integral function of x of degree ny it is proved in treatises 
on the theory of equations that in general there are n 
values of x which make f(x) zero ; these values are called the 
roots of the equation f(x) — Q, or the zeroes of the function 
f(x). These values are not, however, necessarily real 
numbers, nor are they necessarily all different. Thus, if 

= — l)2(x — 2)(#2 + l), f(x) is of the 5th degree; two 
of the roots of f(x) = 0 are equal to 1, one root is 2, and 
there are two imaginary roots — 

a is called an r-ple root of f(x) = 0, or an r-ple zero of f(x) 
if f(x) contain (x — a)ry but no higher power of (x — a). In 
this case f(x) is of the form (as — a)r<p(x), and 0(a) is not 
zero; if 0(a) were zero, then by the Remainder Theorem 
proved in Algebra <p{x) would contain x — a, and therefore 
f{x) would contain a higher power than (x — a)r. 

When f(x) — (x — a)r<j>{x) it is obvious that the 1st, 2nd 
... (r —l)th derivatives of f(x) will contain 05 —a as a factor, 
and will therefore vanish when x~a. We leave it as an 
exercise to the student to show that the necessary and 
sufficient conditions that a should be an r-ple zero of f(x) 
are that f{x) and its first (r—1) derivatives should vanish 
when x~a, but that the rth derivative should not vanish 
when £c = a. Also that the multiple roots of f(x) = 0 are 
roots of /'(#) = 0, and may therefore be obtained as the 
zeroes of the g.c.m. of f(x) and f'(x). 

Manifestly the graph of (x —a)r<j>(x) will or will not cross 
the X-axis according as r is an oad or an even integer; if 
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t> 1 the a?-axis will be a tangent at the point (a, 0), since in 
that case /'(a) will be zero. 

Ex. 1. Show that 2 is a triple root of the equation 

3x*-16^ + 24^-16=0. 

f(2\ f'(2), f"(2) are zero, but is not zero ; /(2) is {x- 2)s(3#4*2) 
so that 2 is a triple root, and — 2/3 is the remaining root. 

Ex. 2. Find what relation must hold between q and r that the 
equation x3 + gx + r—Q should have a double root. 

If the root be a, then /(a) — 0, /'(a) = 0, /"(a)=^0 ; therefore 

a3 + ^a + r = 0 (i) ; 3a2 + ^==0 (ii); 6a=(=0 (iii). 

From (ii) a2= -q/3, and therefore by (i) 2qa/3 4* r=0. Hence 

a2= — q/3, and a2 = 9r2/4#2, 

so that 27rJ + 4<2r3=0 is the required relation. 

§ 101. Any Continuous Function. We will now suppose 
f(x) to be any continuous function; it has always to be 
remembered that theorems proved on the assumption of the 
continuity of the function may cease to be true if the 
function be discontinuous. 

If /(a), f(b) are of opposite signs, then (§ 45, Th. II.) there 
is at least one root of f(x) — 0 in the interval (a, b); when it 
is said that a root lies in the interval (a, b), what is meant 
is that the root is greater than one of the numbers a, b and 
less than the other. 

If f(x) is continuous and does not vanish for any value 
of x in the interval (a, b), then f(x) is either an increasing 
or else a decreasing function in the interval (a, 6), and 
therefore when f(a) and f(b) are of opposite signs, f(x) 
vanishes once only; that is, there is only one root in the 
interval. 

If f(x) and f(x) are continuous, then between every two 
consecutive roots of f(x) — 0 there is at least one root of 
/'(#) = 0; and conversely, between two consecutive roots of 
f\x) = 0 there cannot be more than one root of f(x) = 0 and 
there may be none. 

The first part of this proposition is Rolled Theorem (§ 72). 
To prove the converse, let a and /3 be the two roots of 
f\x) — 0, and suppose if possible that there are two roots of 
f(x)~Q, say a and 6, in the interval (a, /3); we may assume 
a<a<6</3. Since /(a) = 0, /(&) = 0, f{x) must vanish in 
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the interval (a, b), contrary to the hypothesis that a, /3 are 
consecutive roots of — 0. It has already been pointed 
out that f(x) may vanish more than once between two 
consecutive roots of f(x) = 0, and therefore it may happen 
that there is no root of f(x) = 0 between two consecutive 
roots of f (x) = 0 (§72). 

§ 102. Newton’s Method of Approximating to the Roots of 
an Equation. Throughout the chapter we consider real 
roots alone, and we suppose that f(x) and its first two 
derivatives are continuous within the range considered. 
When f(x) is a rational integral function we will suppose 
that the multiple roots, if any, of f(x)~Q have been 
determined by the method of the G.C.M., and that the cor¬ 
responding factors have been removed; hence f(x) and f\x) 
will not vanish for the same value of x. (Of course it may 
quite well happen that the zeroes of the G.C.M. have to be 
determined by one of the methods about to be given for 
approximating to the roots of an equation.) 

The following method of approximating to the roots is 
known as Newton’s Method. 

Suppose it has been found that /(a) is numerically small; 
we can generally get a closer approximation than a as 
follows: Let a be the root to which a is an approximation, 
so that f(u) — 0. By the Mean Value Theorem, 

/(a)=/(«) + (a-a)/'(a) + A (a-aff(xx).(1) 

where xx lies in the interval (a, a). If we neglect (a —a)2 in 
comparison with (a— a), equation (1) becomes, since f(a) = 0, 

/(«) + (a, - = 0, giving «, = a -f(<i)/f\a) 

where al is the approximate value of a. 
We may now use cq as we have just used a, and get 

another approximation «2 where 

a2 = al 

and so on. This process, however, does not show that <q is 
really closer to a than a is, and gives no criterion of the 
closeness of the approximation. We therefore investigate 
the conditions for the closeness. 
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§ 103. Tests for Degree of Approximation. Let us suppose 
(i) that fla), f(b) are of opposite signs, (ii) that f\x) does 
not vanish in the interval (a, 6), (iii) that f\x) does not 
vanish in the interval. 

Conditions (i), (ii) show that there is one and only one 
root, a say, in the interval (a, b); condition (iii) shows that 
the graph of f(x) is either convex upwards or else concave 
upwards in the interval, that is, it has no point of inflexion. 

Let a be that end of the interval at which f(x) has the 
same sign as f\x); this choice of the end of the interval is 
essential, a may be either greater or less than b. 

The figures (a), (h) show the graph when f"(x) is nega¬ 
tive, (c), (d) when f\x) is positive. The abscissae of A, B 
are a, b. 

The graphs show that the tangent at A will cross the 
#-axis at a point between a and a; ax will therefore be 
a better approximation than a. Now the equation of the 
tangent at A is 

y=f(a)+(x-a)f{a), 

and when y = 0, x — av Hence 

«i=«-/(»)//'(«).(i) 
Let the line through B parallel to the tangent at A cut 

the #-axis at the point bx; the equation of the line is 

y=f(b)+(x-b)f(a). 

Hence 61 = 6_/(6)//(a).(1') 
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and bt lies between b and a, so that bx is a better approxi¬ 
mation than b, though not necessarily better than a. 

Now 6, - {A6)-/[a)-(6-a)/(a)}//(aX 

which by the Mean Value Theorem may be written 

bi —ai = - i(b~ a)2f"(xi)lf'(a) 
where xx lies in the interval (a, h). 

Let d be the numerical value of (b — a), dx that of (frj —c^), 
and let G denote the greatest value of f"(x), g the smallest 
value of f{x) in the interval (a, b); then 

d1^d2G/2gf or dx d2k, k~G/2g. 

Since a — ax is numerically less than bx — av we have a — ax 
numerically less than dx or d2l\ so that the error in taking 
ax instead of the root a is less than d2k Similarly the error 
in bx is less than d2k. 

We may repeat the process with av bx instead of a}b; 
we should find, using a similar notation, 

«2=«i ~/(«i)//(«i); K=K-f(bi)lf'(ai) 
d2^d12ky that is, d2t=d*k3, 

and the error in taking a2 or b2 is less than d2 or d*k?. 
The process may be repeated. As soon as a, b are such 

that dk is less than 1, the approximation to a becomes very 
rapid. There is, as a rule, no need to calculate, bv b2... 

The student will see by examining figures that if a is not 
chosen as stated, the value of ax or bx may be further from 
a than a or 6. 

§ 104 Examples. 

Ex. 1. If f(x) — Sx3 - 4x+5, find the roots of fx) — 0. 

/'(*) = 9(* + §)(*-§); f'(x) = lSx; /"(*) = 18. 

f{-3) = 6$ is a maximum value of f{x); /(§) = 3$ is a minimum. The 
point (0, 5) is a point of inflexion. 

It is easy to see that the graph of f{x) crosses the #-axis once only, 
so that there is only one real root. 

/( — 2)= —11, /(-1) — 4-6, so that the root lies between -2 and 
-1 ; as /(- 2) and /(-l) are large, we seek a closer approximation 
before choosing a, b. Now /( -1 *6)= - *888, /( -1*5)= *f *875. Since 
f\x) is negative when x is negative, we take a= -1*6, 6= - l‘B. 
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tr = numerically greatest value of f'(x) in interval (— 1 *6, -1*6)—28'8. 

g — numerically smallest value of f(x) in interval —16 25. 

k— G/2g = 14*4/16'25 < 1 ; d^‘ 1; (PJc < *01. 

ax sss a — /(a) jf (a) = — 1 *6 4- ‘04 = — 1 *56, 

and differs from a by less than *01. 

a2 = «!-/(<*!)//(«,)== -1-564-*0083= -1*5517, 

and differs from a by Jess than rf4/*3 or *0001. 
The values *04 and *0083 are of course approximations. Care must 

be taken that we do not go beyond the root. Thus 

-/(«)//(«)= '040..., 
but if we take *05 as the value, thus making a, = -1*55, we find 
f( — 1 *55) to be positive. The reasoning, however, depends on having 
/(tq) of the same sign as /"(.r), that is in this case negative. 

A closer approximation is 

az~ —1*551 608 12, 

and the error is less than a unit of the last decimal place. 

Ex. 2. Solve the equation x 4- sin x - ^ — 0. 

If A is a point on the circumference of a circle, and if A />, A 0 are 
two chords which trisect the area of the circle, then the angle between 
AB and the diameter through A is be radians. 

f(x) = x 4- sin x - ^ ; f(x) = 1 4- cos x ; f"(x) = - sin x. 

It is easily found that x lies between 30° and 31°, or in radians 
*5236, and '5411. 

/(*5236)= - *0236 ; /'(*5236) = 1*8660 ; 

/(*5411)= 4* *0089 ; /(*5411) = 1-8572 ; 

d= *0175 < *02 ; k = Gj‘lg < % d2k < '00008. 

Since f'{x) is negative, we take a — *5236, 

ax = a —f(ci)lf (a) = *5236 + *0126 = *5362, 

and the error is less than a unit of the fourth place. 
The next approximation gives 

a2 - a, -/(<q)//(a,) - *5362 4- *0000674 = *5362674, 

and the error is less than a unit of the last figure. In degrees the 
angle is 30° 43' 33"*0. 

§ 105. Successive Approximations. Suppose the equation 
to be of the form x — let a be a root and a an 
approximation to a, a — a + h say. Now 

cl = 0(a) = 0(# + h) = 0(c&) + -f- Oh) \ 

and therefore a — 0 (a) = h(p\a + Oh). 



248 AN ELEMENTARY TREATISE ON THE CALCULUS. 

Using the terms “ greater ” and “ less” to mean numeri¬ 
cally “ greater ” and “ less,” we see that if, for every value 
of x that is nearer to a than a is, is less than a proper 
fraction m, the difference between a and <p(a) is less than 
mh; that is, the difference between a and (p(a) is less than 
that between a and a. Hence is a closer approxima¬ 
tion than a. 

Denote r/>(a) by ax and let a ~al + h1 where /q is equal to 
h<f>'(a + dh) and therefore less than mh. We find in the 
same way 

a — (p(ar) = h1 cj>'{al + d^q) < h^i < hm2. 

So that 0(a1) = a2 is a closer approximation than av The 
upper limits of the errors hm, hm2 usually decrease pretty 
rapidly as m is, in the cases to which the method applies, 
often a small fraction. We may proceed, of course, with a2 
and so on. 

It is essential for the success of the method that be, 
near the root, a proper fraction. It may be proved that 
Newton’s method is a particular case of that of Successive 
Approximations, and unless m be pretty small the latter 
method has no advantage over Newton’s. 

Ex. Solve the equation 10* = 3456 sfx. 
Take logarithms to the base 10, and we get 

x — J log x + 3 ‘538 5737 — <p(x). 

If we draw the graph of h log x and of x-3*538 5737 we see that 
they intersect for a value of x near 4 and also for a very small value 
of x. Take first a — 4, now 

,v x M *4343 u . 
= ^=h>g10e, 

so that when x is nearly 4, <f>(x) is a proper fraction. 
Take 4-figure logarithms for the first approximations, 

ax — </>(4) =3*5386+ ’3010 = 3*8396 ; 

a2 = <f>(a}) = 3*5386 + *2921 = 3*8307 ; 

a3 = cf>(aj) = 3*5386 + *2916 = 3*8302. 

When x=a2, x — </>(#) — *0005, so that a0 is a fairly close approxima¬ 
tion. Take now 7-figure logarithms, and we find 

= <£(%)=3*538 5737+ *291 6107 = 3*830 1844; 

% ^ ^(^<)=3*830 1835 ) 

—4Kab) “ 3 ‘830 1835 ; 

to 7 decimals a6 is correct 
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For the other root the method is inapplicable, since near 0 fi(x) is 
greater than 1. But since x is very small we get a good approxima¬ 
tion by taking the value of x, which satisfies </>(.r)~0. Therefore 

log x — - 7-077 1474 = 8-922 8526 ; 
and #=-000 0000 8372 45. 

§ 106. Expansion of a Root in a Series. Reversion of Series. 
Let the equation x — <p(x) be 

x = A y + Bx1 + Cxy + By1 + Ex? + Fx2y + Gxy2 + IIyz +..., 
or x = Ay + u2 + u3+...f 

where u2, are of the 2nd, 3rd... degree in x and y. 
If y is a small quantity one root will be approximately 

Ay, for this value of x makes u2 of the second order in 
y, u3 of the third— Call this approximation a. Clearly 
for small values of x we may suppose a proper fraction. 

The next approximation is a1~ (f>(a) — <j)(Ay). To the 
2nd order in y we may neglect u3, uv.. and take 

«i = <t>{Ay) = Ay + B(Ayf+C{Ay)y + Dy2 
= Ay+B1y2 say. 

The next approximation is a2 = 0(a1), and in forming 
we need only retain terms of the third order in y. 

ence in u3 we need only substitute the first approximation 
a or Ay, since if we put Ay + B\y2 all terms except those 
which come from Ay alone would be of a higher order 
than the third. In u2 we substitute ax or Ay+B^j2 but 
reject the term B(Bxy2)2 which is of the fourth order. We 
thus get a2 = Ay + Bxy2 + 

and we proceed in a similar way to find (j>(a2). 
The practical rule then may be stated as follows: 
For the first approximation neglect u2, ur..; we get 

Ay = a. 
For the second approximation neglect u3, u4... and sub¬ 

stitute a in u2; we get Ay + B{y2 — av 
For the third approximation neglect u4, u5..., substitute 

a in u3, ax in u2, and reject terms above the third order; 
we get Ay + Bxy2 + Cxys = a2.. 

For the fourth approximation neglect u5, substitute 
a in u4, ax in u3, a2 in ic2, and reject terms above the fourth 
order; we get Ay+B^+G^f+D^^a^ and so on. 
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Ex. 1. x—2y 4- x2 - xy4-Xs - x*. 

1st App. x— 2y ; 

2nd App. x = 2y 4- (2y)2 - (2?/)?y = 2?/ + 2y2; 

3rd App. x — 2y -f- (2y 4- 2y2)2 - (% 4- 2y2)y 4- (2y)3 ~ 2y 4- 2y2 4-14y3; 

4th App. #=2// 4- (% + 2?/2 4-14y3)“ - (2y 4- 2?/2 4-14y3)y 4- (2y 4- 2y2)3 - (2yf 

= 2?/ 4- 2y2 4- 3 4y3 4- fi4y4. 

Ex. 2. </>(.r) may be an infinite series, the usual conditions as to 
convergency being supposed satisfied. Thus if we put <?*— 1 4-y, then 

.v4-^,24"Jx34-i\^44-...~y ; 

or x~y — lx2 - J-r3 — s1^#4... ; 

and the student will readily find that to the fourth order 

•r=y-i/+Jy3-b'4; 
that in log (1 +.'/) -y - |y2 + Jy3 - \y\ 

This is an example of Reversion of Series ; the full discussion, how¬ 
ever, of the subject of this article lies beyond our limits. The student 
is referred to Chrystal’s Algebra, vol. ii., chap. 30, for an adequate 
treatment. 

Ex. 3. Expand y in powers of x for large values of x when 

y3 4- Xs — Saxy. 

When x and y are both large the product xy may be neglected in 
comparison with Xs and y3, hence a first approximation gives y34-^3=0, 
that is y— - x. To get a second approximation write 

y— —x + Saxy / (x2 — xy 4-y2), 

and on the right side put — x for y. We thus get 

2nd App. y = — x4- Sax( —x)/(,x2+x2+x2) — — x — a. 

To get a third approximation put -(x+a) for y and expand in 
powers of 1 /#, which by hypothesis is small since x is large. Then 

3a(x2 4- ax) 

y 'V Sx2 4- Sax 4- a2 
:-*-«(1+?)(1+? + £,) 

—-(>+:){‘-(j*»)+G+®)'} 
(. a2 \ a3 

= -r-“0~3pj=-^-<l + 3^- 
The line y— ~ x~a is an asymptote of the curve ; the term a3/Sx2 

shows that at both ends of the asymptote the curve is above the 
asymptote. (See Ex. 13, p. 62.) 

The method of this article is of great service in finding 
the shape of a curve near any point on it. If the point is 
not the origin, we may shift the origin to the point, and 
then the equation will be of the form given at the beginning 
of the article. We may, of course, when we wish to expand 
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y in powers of xy write the equation in the form y=z\fr(y). 
For the application of the method to the finding of asymp¬ 
totes and generally to the investigation of the shape of the 
curve at a great distance from the origin, example 3 may 
serve as an illustration. The student is referred to the 
admirable treatise on Curve Tracing by Frost (London: 
Macmillan) for a systematic exposition of the method in its 
applications to geometry; that book is, in the words of 
Professor Chrystal, “ a work which should be in the hands 
of every one who aims at becoming a mathematician, either 
practical or scientific.” 

§ 107. The Equation x = tanx. Equations of the form 
mx — tan x occur in the Theory of the Conduction of Heat 
and in the Theory of Vibrating Plates. For simplicity we 
take m= 1, but the discussion goes on similar lines when 
m is different from 1 

Obviously zero is a root, and the negative roots are equal 
in numerical value to the positive roots, so that we consider 
only the positive roots. 

By drawing the graphs of tan x and of x we see that they 
intersect once and once only in the intervals (7r, 3tt/2), 
(27r, 57r/2) and in general (?i7r, nir-\-Trj2) where n is any 
positive integer. There is therefore one, and only one, root 
of the equation in each interval; there is no root between 
0 and 7r/2. 

Let & —tan £==/(#) and calculate by Newton’s method 
the root in the interval (71-, 3tt/2). 

f\x) = — tan2 x; f'(x) = — 2 tan x sec2 x. 

An inspection of the tables shows that the angle lies 
between 180° + 77° and 180° +78°. Expressing these angles 
in radians, we have to three decimals 

3 = 4*485; /(a;) = 154; 
a: = 4-503; /(«)=- 202; f'{x)=~ 22*1. 

Since f'(x) is negative we take a = 4 503, Z> = 4'485, so 
that d!= *018 < *02 and it is easily found that k is less than 5. 

al = a—f(a)/f(a) = 4-503— 009 = 4*494, 

and the error is less than d2k or less than *002. 
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In seeking a closer approximation care must be taken 
not to go beyond the root; if we do so /(a2) will be positive. 
Owing to the rapidity with which the tangent changes 
tliere is danger of doing so when using 4-figure tables; 
besides the next approximation will have an error less than 
d*l<? or 2 x 10 “5, so that we may use the ordinary 7 -figure 
tables. 

a± is not beyond the root, for/(a1)= —*011 9542. 

Again, 

a2 = ax -/K)//(«!> = - ‘000 5888 = 4 4934112, 

so that if we take the root as 4*49341 the error is less than 
2 units in the last place. A closer approximation is 

4*493 4095. 

To get the other roots let x — v ir + 7r/2 — 9, then 9 is an 
acute angle and 

tan x = tan — d) = 1 /tan 9; 

and since x = tan x we have tan 9 = -> 9 = tan ~1 (Hence 
x \x/ 

putting c for W7r-|-7r/2 we have 

x = c — tan ~1 

It is shown in a later chapter that 

, /1\_ 1 11 1 , 
W a 3^ ' 5x5 7xs 

so that 
_i , i _ i_ 

X C a; .Sx* 5xf’ + 7x7 

The equation may be solved by the method of last article, 
since x is, even for n — 2, greater than 7‘5, and therefore 
l/x fairly small. 

1st. App. x = c; 

2nd. App. x = c — ~; 

3rd. App. x=c_(c_l)'1 + ~ = C—J 
_2_ 

3c* ’ 
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4th. App. x-c — 

+ .2 + ^i) + ^3(1+/T; 

1__ 2_13^ # 

c 3c*3 15c5> 

5th. App. x = c — ~ 
2 _ 13 _ 146 

3^ 15c5 105c7' 

For n = 2, 3, 4,..., this last approximation is amply 
sufficient for all practical purposes. The student may 
show that xjir has the values 14303, 2*4590, 3*4709, 4 4747, 
5*4818, 6*4844, for w = 1, 2, 3, 4, 5, 6. [Rayleighs Sound, 
I, p. 334 (2nd Ed.).] 

Many equations involving trigonometric and exponential 
functions were discussed by Euler, and the general solution 
of the equation x — t&nx is due to him. 

EXERCISES XX. 

In the following examples it will usually be sufficient to calculate 
the root to 3 or 4 decimal places ; in some cases the results are given 
to more figures. 

1. Find the real root of 3#3 + 5# -40 — 0. 

2. A sphere of radius 1 is divided by a plane into two parts whose 
volumes are in the ratio of 1 to 2 ; the distance # of the plane from 
the centre of the sphere is a root of the equation 3#:{ — 9# + 2 = O. 
Find x. 

3. Find the root of #3-4#2- 7#*f 24 —0 that lies between 2 and 3. 

4. If (1-f#)x = 27*34, find#. 

5. If 10* —20#, find#. 

6. The chord AB of a circle, centre C\ bisects the sector ACB; if the 
angle ACB is # radians, show that #=2sin# and find #. 

7. Solve the equation #=cos#. 

8. The equation 2# = tan# has one root between 0 and tt/2 and 
another between tr and 37r/2 ; find both roots. 

9. Show how to solve the equation 

for a when l and c are given, l being not much greater than c ; for 
example, c = 100, £=105. The value of a determines the catenary 
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assumed by a string of length l hanging from two points in a hori¬ 
zontal line distant c from each other. 

10. Find the least roots of 

(i) (e*-f e~*)cos.r- 2 = 0 ; (ii) (0*4-0“*) cos# 4-2 = 0. 

Obviously zero is a root of (i); find the next smallest root. 

11. Solve x — asinx—b 

where <* = -245316, 6 = 5*755067. 

12. Show that the approximations to the root a of x — <j>(x) given 
by the method of § 105 are alternately greater and less than a if 
is negative. 

13. If /(#, y) = 0 and F(x,y) — 0 have as an approximate pair of 
solutions x—a, y — b show that in general the values a 4- A, b + k will 
be closer approximations if k satisfy the equations 

f(a, b) + h*£ + k g^=0, F(a, b) + h Jc 5^ = 0 

where in the derivatives x, y are replaced by a, b. 

If /(#, y)■=■ x* 4- 3xy2-y-12, (#, y) — 2x2y4-y3- 8, 

find closer approximations to the roots near #=2, ?/ = 1. 

14. If (y~x) (y - 2#) — a? + 2x?y 4- x2y3 

show that when x is small there are two values of y given, as far as 
terms of the third order in x, by the equations 

y—x-x2-x3 and y~2x + x2 + Sx3. 

Show that the curve given by the equation has two branches that 
pass through the origin and that the tangents at the origin arey = # 
and y — 2x. Sketch the curve for small values of x. 

[Write y—x-\--—I-H-and proceed as in § 106 ; then 
y — Ax y — Ax y — Ax 

write y = 2x 4- x*f(y -x) + , etc.] 

15. If a2(;/2 - x2)—x* + y4, show that for small values of x there are 
two values of y given by 

y—x+aP/ct2 and y — —x — x'/a2. 

Show also that near (o, a) the shape of the curve is given by 

#24*2a(y-a) = 0. 
Graph the curve. 

16. If {y - x)2=x?+a?y+at show that for small values of x 

y~x+s] 2.x^. 

Graph the curve near the origin. 
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§ 108. Proportional Parts. In the use of Logarithmic and 
similar Tables it is often necessary to find the value of the 
function for a value of the argument not given exactly in 
the Tables. It becomes necessary, therefore, to interpolate, 
and the ordinary rule is based on the assumption that the 
difference in the function is proportional to the difference 
in the argument. We will now examine the assumption. 

Let h and 0 be small quantities having the same sign, 
but z being numerically less than h; then by the Mean 
Value Theorem, f(x), /'(#), f"(x) being assumed continuous, 
the following equations are approximately correct. 

fta + h)-f(a) = hf(a) +.(1) 

f(a+z) -f(a)=zf( a) + \z-f\a).(2) 

Let D=f(a + h)—f(a) and eliminate /'(a); therefore 

f(a + z) -fla) — jD + iz(z - h)f\a). .(3) 

Equation (3) is approximate, but by following the lines of 
the proof of the Mean Value Theorem we can show it to be 
exact if in place of we write f"(a + 6h) where 6 is a 
proper fraction. 

For let JHa+z)-fla)=lD+Wz-h)P.(a) 

and let — 

Now/,(a) = 0 identically; F{a + z) = 0 by (a); F(a + h) — Q 
identically, remembering the value of D. Hence F\x) must 
vanish for a value of x between a and a + z, and again for 
a value of x between a + z and a+h; therefore F"(x) must 
vanish for a value of x between these two values, and 
therefore between a and a + h. But 

F"(x) -f"{x) — P, 

and therefore P = f"(a + 6h). 

Hence, instead of (3) we get the exact equation, 

f{a+z)— f{a) — jD+\z(z~h)fXa+Qh).(4) 

where 
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In the figure (Fig. 53), 

OA — a, AC=z, AH—h. 

BQ=f(a+h)-/(a)=R 

TJS=f(a+z) -f(a). 

UT—zDjh. 

ST— hz(h — z)f'\a + Oh). 

The error committed in replacing 
the arc PSQ by the chord PTQ is 

measured by ST. z is by hypothesis less than A, and the 
numerically greatest value of z(h — z) is \lil. Hence, if G 
be the numerically greatest value of f"(x) in the interval 
(a, a + h), the numerically greatest value of ST or of 

%z(h-z)f"(a + 6h) 
will be l-h2G. 

Suppose now that f(x) is tabulated for a series of equi¬ 
distant values of x, the difference between successive values 
being A. Let a + z be a value of x between a and a + />, 
and therefore not given in the Table. The ordinary rule is 
to calculate f(a + z) from (4), neglecting the second term 
on the right; that is, 

f(a + z)=f(a)+jR 

For a given value of a, the amount by which f(a) is in¬ 
creased to find f(a+z), namely zDjh, is therefore proportional 
to 2?; the error in following the rule is therefore not greater 
than h2G/8. 

Exceptions to the application of the rule occur in the 
following cases: 

I. G may be suck that h2G/8 can not be neglected in 
comparison with zl)jh; in this case the, difference D is said 
to be irregular. 

II. D may be so small that it vanishes to the number of 
figures in the Table; in this case the difference is said to be 
insensible. The difference will be insensible when f{a) is 
very small, since 

D =/(a+h) -/(a)=hf\a)+ih2f(a+Oh). 
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Example, f (x) — log10 sin x. 

Let M = log10 e — *434 2945 ; 

then / '(x) = ilf cot oj ; / "(aj) = — ilf cosec2zr,. 

If x is small, f'(x) is large, and the differences are 
irregular; since cotx is not small the differences are not 
insensible. 

If x is nearly 90°, cot x is small, and the differences are 
insensible; though f\x) is not large the ratio f"(x)/f'(x) 
= — 2/sin 2x is numerically large and therefore h2G/8 can 
not be neglected in comparison with zl)/h. Near 90° 
therefore the differences are both insensible and irregular. 

For tables that proceed at differences of V, h is V or in 

radians /*=-000 2909, 

and 4m2 = 000 0000046. 

To find when \Mh2cosec2® would affect the seventh figure 

we may put Cosec2x = 5 x 10'8, 

and we find from this equation that x is about 18°. Hence, 
apart altogether from errors due to neglected figures in 
carrying out the numerical work which may easily amount 
to more than a unit in the seventh place, the error due to 
neglecting the term h2Gj8 will amount to half a unit in the 
seventh place for angles less than 18°. 

If k is equal to 10" the student may show that the 
seventh figure will not be affected by the neglect of h2G/8 
till the angle is about *6°. 

The student may with advantage consult Hobson’s 
Trigonometry, Chap. 9. The advanced student will find 
a thorough discussion of all the principles involved in 
numerical approximations and the use of tables in Luroths 
Vorlemngen iiber numerisches Rechnen (Leipzig: Teubner, 
1900). 

Ex. 1. Show that for log cos x the differences are insensible and 
irregular when x is small, and irregular when x is near 90°. 

Ex. 2. Show that for log tan x the differences are irregular when 
x is small and when x is near 90°. Show also that the maximum 
error is least when x is near 45°. 

G.C. R 
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Ex. 3. In a 7-figure table of the logarithms of numbers, show that 
the term h'lGj8 is most important when the number is 1000O, and that 
the greatest error arising from the neglect of that term is about 
5’5x 10~U), and is therefore negligible for these tables. 

§ 109. Small Corrections. In practice all measurements 
are subject to errors, and it is therefore of importance to 
determine the influence on the result of a calculation when 
the argument or arguments of the calculated function are 
given by measurements whose errors are approximately 
known. 

Let a quantity x be determined by measurement and let 
y be a function f(x) of x. Suppose that the value x given 
by the measurement differs from the true value by Sx, then 
the true value of y is f(x + Sx) and the error Sy is 

Sy ~f(x 4- Sx) —f(x) —f\x + 0Sx) Sx 

or Sy = f\x)Sx approximately. 

The relative error Sy/y is, approximately, 

Sj 
V Kx) 

As a rule it is the relative error that is important; of 
the two factors Sx and f(x)/f(x) the first depends solely 
on the accuracy of the measurements while the second is 
conditioned by the general arrangements of the inves¬ 
tigation. 

If there are two or more variables, x, y, £ say, then the 
error Su in the function u —j\ r, y, z) is 

dx dy ° dz 

as far as quantities of the first order in Sx, Sy, Sz. Since 
the value of Su is of the first degree in Sx, Sy, Sz the joint 
effect of the individual errors Sx, etc., is obtained by 
addition of the effects due to each separately. This 
principle of “the superposition of small errors'’ is of great 
importance in practice. 

Ex. 1. The side a and the angles B, C of a triangle ABC are 
measured ; if these be liable to the errors da, SB, SC, to find the error 
in the calculated value of the area S. 
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Denote by (8S)a the error in £ due to the error 8a taken by itself, 
and use a similar notation for the other errors. In finding the 
derivative of £ it is most convenient to differentiate logarithmically. 

£=£a2 sin B sin 0/sin (B + C), 

(S£)«/£ — 28a/a, 

($£)*/£={cot B - cot(B+C) \8B, 

(8S)C/S={ cot C-cot (7?+ C)}SC. 

The total error 88 is got by adding these separate errors. 
As an example, let a-250 (feet), 7?=^ 27° 12', C- 45° 18', 

Si?—10', 8C-~20'. The percentage errors in a, /?, 0 are 

1AASa t 1AnS7? inASC 17 
100— — T ; 100 n — *6 ; 100-7=-='7. 

a Is C 
It is sufficient therefore to use 5-figure logarithms. We find 

88 
8 

= -002 + -00474 + -00392 = -01066. 

5=10640; 35=113-49; 
n 

8a — *26, 

The calculation of S from the values a-f-Sa, 7? + S7?, C-f SC gives, if 
£' be the new value of £, 

S' = 10760; £' — £=114. 

Since 5 = a sin 7?/sin (7? + C), we have for the error in b 

8b/b = &*/«+(cot 7? - cot (5+C)) 67? - cot (77 + C) SC, 

so that 8b/b — 00390, 100SA/A='4, 8b— *5 nearly, 

and in the same way 

Sc/c = -0040, 100Sc/c=-4, Sc =‘75. 

Ex. 2. The sides a, 5, c of a triangle ABC are measured ; to find 
the error Sd in A due to errors So, 8b, 8c in a, b, c. 

We may take the value of cos A given by 

cos A — (A2 + c2 - a2)/2Ac 

and differentiate ; but the result may be obtained more quickly, thus: 

a — b cos C -f c cos B ; 

therefore 8a—cos C8b + cos B 8c- (b sin C8C+c sin B 8B) 

=cos CSA-f cos 7? Sc - b sin C(8C+8B) 

=cos C S6 + cos 7? Sc+A sin C Sd, 

since A sin C=csin B and A + 7?+C=l80°, so that Sd -f S7?+SC is zero. 

Hence Sd = (8a - cos C 8b- cos B 8c)/b sin C, 

and the trigonometrical functions may easily be expressed in terms of 
the sides if required. 
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EXERCISES XXI. 

1. The area S of a triangle A BG is determined by a> b, C; show 
that the relative error in the area is given by 

8S_5a 55 
8 a b 

Show that the error in the side c is given by 

6c=cos B 5a 4- cos A 66 + a sin B 6(7. 

2. At a distance of 120 feet from the foot of a tower the elevation 
of its top is 40° 16'; if the distance and the elevation are measured to 
within 1 inch and 1 minute, find the greatest error in the calculated 
height. 

3. If the density (p) of a body be inferred from its weights IF, w in 
air and in water respectively, show that the relative error in p due 
to errors 5 IF, in )V, w is 

5— w 6 IF 6?r 

p IF— w W ^ IF-- w 

4. The side a and the opposite angle A of a triangle ABC remain 
constant; show that when the other sides and angles are slightly 
varied, • g 

-j} H-0- 
cos B cos 6 

5. If a triangle A BC be slightly varied but so as to remain inscribed 
in the same circle, show that 

6a 5 b 5 c - 
--. +-55 "T -- 
cos A cos B cos C 

6. In a tangent galvanometer the tangent of the deflection of the 
needle is proportional to the current; show that the relative error 
in the value of the current due to an error in the reading of the 
deflection is least when the deflection is 45°. 

7. If ordinates which differ by less than one-hundredth of the unit 
line are considered to be equal, show that the parabola y~x + 2#a will 
coincide with the graph of 

x 4- 2.r2 + 3.r3+ 4x4 + 5^4 

for values of x between -14 and 4- T4. 

8. Show that the curve .a^-Py3 —3axy has two branches which pass 
through the origin and that the equations of these branches near the 

origin are * *2.3^ y^3ox 

Show that closer approximations are given by 

y=#2/3a 4- x^/Sla4, x —y2jZa +y5/8\a\ 
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9. Show that, near the points stated, the curve .z34y3=2aofi is 
given by the respective equations, a being positive. 

Near (o, o) yz = 2aaiL ; near (2«, 0) yA = - 4a2(x ~ 2a); 
At infinity y — -x+2a/3 4 4a2/9x. 
Show that y is a maximum when x — 4a/3 and graph the curve. 

10. Show that for the curve xy2 -x2~ 6.r2 4 xy 4y2 0 the following 
approximations hold 

Near (o, o) y — 2x-\x2 and y— - 3^r+|.r2. 
At infinity x41 = 1 /?/, y~x42-5/r, y = -- v-346/.r. 
Show that the asymptote #41=0 crosses the curve at (-1, -5), 

the asymptote y=x42 crosses at (- f, f) and the asymptote y~ -x- 3 
crosses at (- J, -|). Graph the curve. 

11. Show that the curves 

(i) (y - x2)2=x3, (ii) (y - x2)2= 

have each a cusp at the origin but that both branches of (ii) lie above 
the .r-axis near the origin. Graph the curves. 

In case (ii) the cusp is called a cusp of the second hind or a ramphoid 
cusp while the ordinary cusp is called for distinction a cusp of the first 
kind or a ceratoid cusp. 



CHAPTER XIII. 

INTEGRATION. 

§ 110. Integration. In § 82 the general problem of the 

Integral Calculus has been stated, namely:—Given a con¬ 

tinuous function F(x), to find another function which 

(i) has F(x) as its derivative and (ii) takes a given value A 
when x takes a given value a. 

When condition (i) alone is given there is an indefinite 

number of solutions. These solutions, however, differ only 

by a constant; any one of them is called an indefinite 
integral of F(x) and the constant is called the constant of 
integration. This constant is sometimes called an arbitrary 
constant since it may have any value whatever. If f(x) 
is an indefinite integral, f(x) + C is called the general in¬ 

tegral, G being an arbitrary constant. 

Instead of the notation of inverse functions Dx~lF(x) it 

is customary to denote the indefinite integral of Fix) by 
the symbol r 

\F(x)dx;.(1) 

read, “ the integral of F(x) with respect to x}” or “ integral 

of F(x)dx” The differential dx indicates the variable of 

integration, namely x, and the joint symbol J... dx means 

“ integral of ... with respect to x ” F(x) is called the 

integrand. 

by 
What was in § 82 denoted by [Z)'1 F(x)]b is now denoted 

| F(x)dx;.(2) 

read, “ the integral from a to 6 of F{x) dx ” The function 
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denoted by the symbol is called a definite integral, and a, b 
are called the limits of the integral, a being the lower limit 
and b the upper. (The word “ limit ” in this use of it means 
merely “ value of the variable of integration at one end of 
its range,” “ end-value ”; this use of the word must not be 
confused with the technical sense employed in other con¬ 
nections.) The interval (6 — a) is called the range of 
integration. 

Geometrically, the symbol (2) denotes the area, in sign 
and in magnitude, swept out by an ordinate of the graph 
of F(x) as x varies from the lower limit a to the upper 
limit 6. If f(x) is an indefinite integral of F(x) then as 
in § 82 J/(*) dx = [7J-1 F(x)l =f(b)-f(a).(3) 

We may, if we please, use the general integral 
instead of fix); the result will be the same since C, being a 
constant, will disappear in the subtraction. 

It follows at once from the geometrical meaning or from 

(3) that j* F{x) dx = — J F(x) dx=f(a)—fib).(4) 

that is, the limits a, b may be interchanged if at the same 
time the sign of the integral is changed. 

Again, the form f(b)—/(a), or the geometrical meaning, 
shows that the definite integral is a function of its limits, 

Cb 
not of the variable of integration. Thus F(u)du has 

Cb J a 
precisely the same value as I F(x) dx. 

From the point of view of a rate, F(x) when it is the 
derivative of f{x) measures the rate at which fix) increases 
with respect to x; the amount, positive or negative, by 
which fix) increases as x varies from a to & is f(b)—fia). 
Hence the definite integral (3) measures the amount by 
which a function fix) increases for a given change (b — a) of 
its argument when the rate of change, F(x), of the function 
is known. 

The function which has F(x) as its derivative, and which 
is equal to A when x is equal to a, is (§ 82) 

D~'F(x)-[I)-'F(x)]a+A, 
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and is, in the present notation, represented by 

j* F(x)dx+A or by J F(u)du+A.(5) 

Here the upper limit x denotes the particular value of the 
argument for which the function is calculated. In the 
geometrical representation of § 82 the upper limit x is 
the abscissa Om of the point P. From the point of view 
of rates the symbol (5) denotes the function which is 
equal to A when its argument is equal to a and which 
increases at the rate F(x). 

The subject of definite integrals will be more fully con¬ 
sidered in Chapter XIV.; enough, however, has been given 
in this article and in Chapter X. to enable the student to 
solve the simple examples on areas, etc., which are given 
in the exercises of this chapter. 

111. Standard Forms. Integration from the point of 
view from which it is now being considered is simply the 
inverse of differentiation and the first requisite for the 
calculation of an integral, definite or indefinite, is a table 
of known integrals; the table will be formed from an 
examination of the known results of differentiation. 
Various methods will then be given for reducing, if 
possible, an integrand not found in the table to a form 
that may be integrated by means of the standard forms. 
In all cases of indefinite integrals the test to be applied 
is that the derivative of the integral must be equal to the 
integrand. 

In symbols 

f(x)=\F(x)dx if = 

so that the equation that defines an integral is 

s[f F{x)dx~\ = F{x). 

Considered as symbols of operation djdx and I.. .dx are 
inverse to each other. J 

In the language of differentials F(x)dx is the differential 
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of /(as) when f(x) is the integral of F(x); f{x) is often 
called the integral of the differential F(x)dx. Since 

F(x)dx = e2/(&) = 

the operators d and J are inverse to each other. 

The following table contains what may be called the 
fundamental standard forms; other important forms will 
be given later. Most of the forms are given twice; the 
argument occurs so often in the combination ax + b that 
the student should from the outset make himself familiar 
with the corresponding integral. The results should of 
course be tested by differentiation. 

1. If u=t= — 1. 
f ti j ffw+1 
J n+1 

2. If — 1. 

= log*; 

8. je*dx = e*; I eaxdx = -eax. 
J a 

4. jsin x dx = — cos x; jsin (ax + b) dx = — ^ cos (ax + 6). 

5. Jcos xdx — sin x; J cos (ax + b) dx — ~ sin (ax+b). 

6. jsec2# dx=tanx; jsec2(a#+b) dx = ~ tan(acc + b), 

7. jcosec2#dx~ — cotx; 

jcosec2(a# + ?>) dx = — ^ cot (a#+6). 

dx 

Mi-*2) 

or =—cos-1®; 

'sin‘‘©- s/(a2-x*y 

or = — cos_1(§I 
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9> \j(P±T)=log +^ ± 1}; 

\jS^r]og(x+J^2)- 
10. f = tan "1 x; ( — - tan "1 ; 

Jl+ur Ja- + ar a \a/ 

or —-cot-l/^ 
a 

or = — cot ~lx\ 

1 *• f^*©Ios(?© “ *>* « II2> Ex- «• 

©‘'■©G9 itxW 

Since sin“br —( — cos-1#) is equal to tt/2, both sin""1# and — cos"1# 
are integrals of 1/^(1 -#2) ; a similar observation holds for the integral 
of 1/(1 -f#2). An indefinite integral may often be expressed in 
different forms, any two of which must however differ only by a 
constant. Particular care is required in dealing with the inverse 
trigonometric functions since these are many-valued ; the restriction 
on the range of the angle (§J$ 28, f>4) must always be attended to. 

If x is negative, the integral of 1 jx is not log x but log ( ~x) ; if x is 
less than a, the integral of 1 /(x-a) is log (a - .r). Form 11 is inserted 
for the sake of comparison with 10 ; fora similar reason forms 8 and S) 
are brought together. 

Again, if x is negative, it may be verified that the integral of 

1 U(x~ + k) is -log{ - x+ sJ^+Jc)}. 

Instead of the logarithms in form 9 inverse hyperbolic 
functions may be used (§ 66). 

9“- l;7(?T*Tr8“''©; be^hr0081*'©’ 
and it should be remembered that cosh-1 a? is two-valued. 
The forms tanh-1#:, coth”1#, are of less importance. 

Ex. 1. Integrate with respect to x 

,x. -1 • 
' ’ Jx ’ J(Sx 4); ij(px-4) ’ 

1 
V(3 - x1)' 

Ex, 2. Evaluate 

/ sin x dx ; 
Jo 

f'cosxdx; P dx ; 
Jo Jo COS2# 

fV*. f-Wx 
Ja2 X J—3 X 
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§ 112. Algebraic and Trigonometric Transformations. By 
applying the definition of an integral and Theorems II., III. 
of § 58 the following theorems are easily proved: 

(i) Jr; F(x) dx = c J/7(;r) dx if c is a constant. 

(ii) J(*it — v + ...+z)dx — Jadx — Jwfo + ..• + Jzdxy 

where n, v,... z are functions of x or constants. 
Thus the derivative of the integral on the left of (ii) is 

by definition 
J u — v+ ... +z; 

by Theorem III., § 58, the derivative of the sum on the 
right of (ii) is the sum of the derivatives of the terms, and 
that sum is by the definition of an integral u — v+ ... +z. 
Hence, apart from constants of integration, which are not 
considered, equation (ii) is seen to be true. 

Ex. j (3&4 —5#2+l)dx~ 13x*dx~ J,rxr2dx+ dx by (ii) 

= 3 j~;v4d.r - 5 jxldx + J dx by (i) 

Integration is essentially a tentative process, and it often 
happens that among the known functions there is none of 
wrhich a given function is the derivative (see g 82). Two 
general methods of integration will be given (gg 113, 118) 
which are of great use in the search for integrals; but 
usually some simple algebraic or trigonometric transforma¬ 
tion of the integrand will be of great assistance in reducing 
it to a sum of terms each of which is a standard form. 
Some of the results are so important as to be included 
among the standard forms, but the student should rather 
try to seize the spirit of the transformations than burden 
his memory with a mass of isolated results. (See the 
remarks in g 123.) 

We now take one or two examples of such transforma¬ 
tions. 
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Ex. 1. Integrate (2^-7#2 + l)/(2#-l). 

By division, 

(2a3 -7^2+l)/(&r- 1) =-.r2-3.r- f - }J(2x-1). 

Hence the integral is 

J.r3 - gjp2 - 3.1? - J log (2.r -1). 

Any fraction in which the numerator is a rational integral function 
of x and the denominator a linear function may be integrated in the 
same way. 

Ex. 2. Integrate \/(x2 — a?). 

Resolve the fraction into partial fractions : 

l^-«*=i(log ^~a)- los<*+a>) 
1 

2 a 
x — a 

log-. 
h x + a, 

Tin's is the proper form if x2 > a\ because then, and only then, is 
(a- d)/(x + a) positive ; if x2 < a? the integral is 

a~x 

a+x* 

because in that case the integral of 1 j(x - d) is log (a - x). 
The transformation is a particular case of the method of partial 

fractions, and the student should refer to some text-book of algebra 
for an account of the method ; see also § 120. 

Since 

we find 

3x — 5 2 I 

(#—l)(.r-2) x-l+ x-tf 

/(.v-l2 f* = 2 log (•* ~1) + log (* “ 2)- 

Ex. 3. The forms 
1 

a + bx2' J(a + bx2)' 

If a, b are both positive, we have 

dx 

a + bx2 

1 f dx 

V(«S) tan~ 

If a is negative, b positive, we reduce the integrand to the form of 
ex. 2; thus 

f dx 1 f dx_L.lonf — J-M3} 
J 3^-6 3Jx*-§ 2«yi5 s 

In a similar way 1 /«/(« + bx2) may be treated ; thus 

C dx 1 f dx _ 1 . _JxJ2\ 

J VO-S^'V2 ’ J 2 Sm W3/ 
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With a little practice the student should be able to do many of the 
steps mentally ; the full process for the first case is 

1 r dx 1 1 a. _i/ # \ I * _ixJb 

b\7—.rv^lx ferN/(«0 7«‘ 
J b+ Jb VJfJ 

Ex. 4. sin"#, cos"#, sin mx cos nx. 
When n is a small positive integer, sin"#, cos"# may, without any 

difficulty, be expressed in terms of sines or cosines of multiples of # ; 
for other values of n it is best to take the method of successive reduc¬ 
tion (§ 119) or the method of ex. 4, § 114, 

sin2# = 4(1— cos 2#) ; sin3a- = •] sin # — \ sin 3# ; 

J sin2#//# — 4 # — } sin 2# ; ^sin [)xdx = — \ cos # 4- cos 3# ; 

ir tr 

jf sin2#<7# ” 4 ’ Jo s*n3‘r^r=d - [ - J 4- jV] — §. 

In the same way powers of cos# may be treated. 
Again, a product of a sine and a cosine, or of two sines or of two 

cosines, may be expressed as a sum or a difference of sines or cosines 
and then integrated. Thus 

sin mx cos nx=4 {sin (m 4- n)x 4- sin(m — n)x}; 

hence, if 7h-\=?i, 

fsin mx cosnxdx- n + n)x_vm(m-n)x 
J 2(m+n) 2 (m-u) 

but if in—n, then the integral is 

- ^ cos 2m#. 

EXERCISES XXII. 
Integrate, with respect to #, examples 1-15. 

3#4 — 4#3 4- 2#“ — 3 n 2# 4-1 

# —3 ’ 2# -r * X 

4_^XJZ^_• 5 _ J_ . 6 - 
* (# — 1) (# — 2 )(# — 3)9 7-3#2’ ‘7 

7 _ 1 _ . c }_ q 0( 
N/(3 - 4#2) 9 x/(3 4- 4#2) 

11. cos2(«r#4-6); 12. sin4#; 13. si 
14. sin (3# 4- 2) cos (4# 4- 3) ; 15. ct 

Find the value of the integrals in examples 16-21. 

16. fcoa2xdx; 17. fsin22xdx; 18. 
Jo Jo 

f1 dx f4 dx 

19, [ 4-x2’ 20- L 4-P ’ 21- 

3 2x’Z3 ■ 
x2 — 3# 4- 2 ’ 

ft 1 • 
7 + 3x2 ’ 

9. cos2# ; 10. cos3#; 

13. sin 3# sin 4# ; 

15. cos x cos 2# cos 3#. 

17. / sin2 2# dx; is. r 
Jo Jo 

~ f4 cf# 
V 

20‘ fs 4—P ’ 21. 
Jo 

, 44-#2 ’ 

TT_ dx 

•j (3 —py 
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22. If m, n are unequal positive integers, prove that 

i' cos mx cos nx dx~ 0— / sin mx sin nx dx^ 
Jo 

and find the value of each integral when m, n are equal positive 
integers. 

23. Show by considering the graphs of the integrands that the 
following equations are true : 

p dx where n is positive, (i) f cosnxdx~ [ 
Jo Jo 

(ii) j mnnxdx=2j 

(iii) j C081ixdx ~2 J 

but =0 if n is an odd integer. 

24. The area bounded by the parabola ?/2=4ax, and the double 
ordinate through the point (6, c) on it is 

25. If a, b are positive and a<b, the area between the hyperbola 
xi/=c‘\ the .r-axis and the ordinates at a, b is c2 log (6/a). 

If instead of a hyperbola the curve is that given by y~xnjcn~l, 

then the area is (J»+i _ „«+>)/(„ + 

26. The area between the .r-axis and one arch of the harmonic curve 
y = 6 sin (x/a) is 2ab. 

27. An ellipse revolves about its major axis ; show that the volume 
of the spheroid generated by a complete revolution is $7ra62. 

If the axis of revolution be the minor axis, the volume is §7rdLb. 

28. The area of the section of certain surfaces made by a plane 
through the point whose abscissa is x perpendicular to the a’-axis 
is A +Bx+ Cx2 where A, B, C are constants. Show that the volume 
intercepted between two planes perpendicular to the .r-axis is 

A(b-a)+\B{b2 - dl) + J<7(63 - a3) 

where a, b are the abscissae of the points where the planes cut the 
#-axis, (a<6). 

Apply the result to find (i) the volume of a cone ; (ii) the volume of 
a segment of a sphere ; (iii) the volume of the ellipsoid whose equation 

is xV+//&2+*2/cs= 1. 

29. If in ex. 28 S8% M are the areas of the sections through a, b 
and the point midway between a and 6, and if 6-a—2^, show that 
the volume is ^(^+^+4^). 
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§ 113. Change of Variable. The rule for differentiating a 
function of a function (§ 59) leads to one of the two general 
methods of integration referred to in the preceding article, 
namely, that of changing the variable of integration. 

Take first the simple example 

_ f dx dy _ 1 

^ J x2jr + 2 ’ dx ~~ xx + 2x + 2 

Let y be made a function of u by the substitution x — u — 1 ; 

by § 59, dx — 1 

dw ~~ dx da ~ xf+ 2x + 2~ 
_ 1 
u1 -f1 

Hence, considered as a function of u, the integral is 

r dt & 
y — j= tan~1 u, that is, ?/ = tan"1 (ir + 1). 

The change of variable has enabled us to reduce the 
integrand to a known form, and thus to integrate it. 

Take now the general case in which the integrand is F(x). 
Let y be made a function of u by the substitution x — <p(u); 

dy _ dy dx __ „ dx 
du~ dx du~~ 'X*du 

then 0) 

In (1) let dx/du be found from the equation x = and 
then express the new integrand F(x) dx/du in terms of u 
by means of the same equation. Equation (1) will now be 
free from x and we shall have 

y^F(x)/^du. .(2) 

It may happen that the new integrand is, as in the above 
example, a standard form ; if not, it may perhaps be more 
easily reduced to one than the old integrand F(x). 

Expressing y as an integral with respect to and equating 
it to the value given by (2), we have 

y=\F{x)dx=\F(x)^.dn.(3) 

The simple rule then for changing the variable is: 
Replace dx by (dx/du) du and by means of the equation 
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between x and u express the new integrand F(x) dxidu in 
terms of u ; the integral will then be a function of the new 
variable u. 

When the integration has been effected the integral 
should be expressed in terms of the old variable. 

If when x = a, u — a, and when x= b, u~ft, the relation 
being such that as x varies continuously from a to 6, u also 
varies continuously from a to /3, then 

^F{x)dx^F{x)^udu.(4) 

In this case, of course, there is no need for returning to the 
old variable. 

In applying the transformations (3) and (4) it is essential 
that to each value of x there should correspond one and 
only one value of u, and to each value of u one and only 
one value of xt within the ranges b — a, /3 — a of integration. 
When the equation between x and a gives n as a multiple¬ 
valued function of or x as a multiple-valued function of 
u, care must be taken to choose the proper value. (See 
§ 117, Ex. 3, § 123.) 

§ 114. Examples of Change of Variable. 

Ex. 1. F(x) of the form yjr(ax+b). 

Let u = ax+b ; du~a dx, dx=~du 

j yfr (ax 4- b)dx — du. 

This type constantly occurs. Thus if u=x- 1/4, 

/dx * f dx __ x f du 

2x^ — X + 1 J (X — l)2 + -fe Ul 

so that the integral is 

i • ^7 fcan“1 (3^)=J?tan_1 
/vW -.» +1)= Ts/s/ {(•* -IY+ i7.ri= 7/2 k>g ^ ^ + 

A constant factor, like 2, can be taken outside the integral sign 
when necessary ; similarly a constant factor may be introduced, as in 
ex. 3. 
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Ex. 2. F(x) of the form y/r(xn)xtl'~1. 

Let u — ; du=dr, .r”'1 dr ~ -d^ 7 ra 

J yfs (xn) xn ~1 d.v — ^~J\fr(u)du. 

Thus, if u—x\ 

j sj(axl 4- b)x dx—~J J(au 4- b) du—™ {an 4- b)^\ 

and the given integral is (ax- 4- b)m/3a. 

The integral may also he found by putting n—ax'1 -f b, or by putting 
u2—ax2+b. The last substitution gives 

x dx = ^-u du ; j\j(ax24- b)x dx = ~f ?ddu = ~, 

leading to the same value as before. 

Ex. 3. F(x) of the form [^(x)]n^/(x). 

Let u — yjr(x) ; du — ty (x)dx ; F(x)dx — undti, 

and the integral is a power or a logarithm according as n is different 
from or equal to — 1. We have 

(за) J [f(x)]n^‘(.v)dx=[f (.*■)]"+*, n+-l- 

(зб) / ^ffid* = log O (.r)J. 

From (3b) we see that when the integrand is a fraction whose 
numerator is the derivative of the denominator, the integral is the 
logarithm of the denominator. 

The introduction of a factor is sometimes needed to make the 
integrand of the form 3. Thus 

(1) 
f (x- 1 )dx 

J J(^x2 - Ax 4- 

(ii) 
f (x+a )dx 

J (x 4- a)2 4- 02 ~ 

(Hi) j ta nxdx= — 

(iv) J tanzxdx=* f i 

=£ n/(2^’2 — 4x 4-1). 

-dx— - log cos#. 

and therefore 
G.C. 

—tan2 j? 4- log cos x. 
8 
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Ex. 4. F(x) — sinm# cosw#. 

(i) When either m or n is an odd positive integer the integration 
can be effected by substituting u for cos# when m is odd, but u for 

sin.r when n is odd. For example, take F(x) = sin^# cos5#. 

Let u — sin # ; du — cos x dx ; cos4#=(1 — u2)2 

and 

Jsin^# cos5# dx— J (n& - 2-f uf)du 

— -iu14- u ^ 

~sirAr($ — i sin2# 4- ff sin4#). 

f siiArcos5xdx — f (ir-2u^+ u^)du =+ A — Jo Jo 

Again, if u — cos #, du — - sin # dx 

J sin5# dx- ~ I (\- u2)2du— - (u - §m3 +Jw6), 

J sin5# dx— - cos # 4-§ cos3# - | cos5#. 

(ii) When m + n is an even negative integer, let ?^ — tan # (or cot#) ; 
the new integrand can be expanded by the Binomial Theorem. Thus, 

(. -3 =/'<' 
J sin5# cos3# J 

4- u2y du 

ub 1 4- u2 ■/(i 
3 3 

i+«3+» + “ 
dUy 

and the integral is readily found in terms of #. 

Ex. 5. If F(x) is a rational function of # and of *J(ax+b), the sub¬ 
stitution ax-f b — u2 will make the new integrand a rational function 
of u. Thus, if #4-1 =w2, 

j.x'V(# 4-1 )dx — 2 J(u2 - 1 )Vdu — 2(} u7 - fu5 -f J^3), 

and after a little reduction we get for the integral 

2y/(# +1 )(15/r3 + 3#2 - 4# 4- 8)/105. 

The forms just given include many of the most important 
cases in elementary work, and the student should at once 
try the earlier examples in Exercises XXIII. Only through 
practice will he gain facility in making the transformations. 

§ 115. Quadratic Functions. If R = ax2 + bx + c and if f(x) 
is rational and integral, the fraction f(x)/R can be expressed 
as the sum of an integral function and a proper fraction 
(Ax+B)/R We will now consider the forms (Ax + B)/R 
and (Ax+B)j JR. 
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For beginners the simplest method is to write R in the 

form / b\l , 4ac—62. 
R = a(x+ 

2a) + - 
4 a 

when a is positive we may take it as equal to +1, and 
when negative as equal to — 1 : there is no loss of generality 
in so doing since a constant factor may always be taken 
outside the integral sign. 

If 4ac — b2 is positive the factors of R are imaginary; 
R is then of the form 

R = (x + a)2 + /32.(i) 

If 4ac — b2 is negative the factors of R are real, and 

for a= +1, R = (x+ a)2 — /32.(ii) 

for a = — 1, E = /32 — (x + a)2.(iii) 

1. (Ax+B)/R. 

(i) If the factors of R are real resolve the fraction into 
partial fractions as in § 112, Ex. 2. 

(ii) If the factors of R are imaginary then R = (x + a)2 + ft 
and we can transform the fraction so that the substitutions 
of Ex. 3 and Ex. 1 of § 114 can be used. Choose X and jm 

so that jLX_^^=.^2x+2a)+jui; \ = bA, jul — B — ciA. 

Hence 
Ax + B_ 2x 4- 2a 1 

~R~~ A (x + af + 02 + M (^af+J2 ’ 

and \(Ax + R)dx_xl0g {(x + a)2 + /32}+^tan-1 

the first integral being a case of § 114, Ex. 3, the second 
of §114, Ex. 1. 

II. {Ax+ByjR. 
(i) Let R be either (x+af+fS2 or (# + a)2 —/32. Make 

the same transformation of Ax + B ; then 

+ f (2x + 2a)dx t f dx 
J JR ~ }JW+^F±W} 'MJJ{(*+a)2±P*} 

= 2X JR + /j. log {(a: + a) + J(x+af ± fi2}. 
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(ii) Let R = /32 — (x + a)2; then 

^(Ax + B) dx _ ^ J -~(2x-t-2a)dx 

jW-Xx + afY+ M }J{^-(x+af} I; 
dx 

/3 
when J.=0, X = 0 and the integrand is of the type § 114, 
Ex. 1. 

In working numerical examples it is best to find first the 
derivative of 11; it is then easy to write Ax + B in the 
required form. 

Ex. 1. (3^+l)/(2^+.r+3). 

Dx{2x2+x+$) — 4.r+l ; *J(4.^ + 1)+J ; 

2.r2 + .r+3 = 2{(.;;+J)2+^}. 
T , , 3 f(4x+l)d.v 1 f dx 
Integra+ ^ (—J— 

= | log (2.r*+x + 3) + 2^23 tan 
\ ./23 )' 

Ex. 2. (ar+l),V(-2^+^+3). 

3.r+l=-|(-4^+l)+J ; 

N/(-2.^+^ + 3) = V2V{^-(^-i)2}- 
T . . 3 [ (- 4.r + ] )d.v 7 f dx 

= - fv/( - 2^+x+3)+8in-i ( —fi--). 

The types 
1 _1_ 

xs/(ax2 + bx + c*)’ (mx + n) J{ax2 + bx + cj’ 

can be reduced to the cases just discussed by the substitu¬ 
tions x= 1/u, mx + n—l/ti respectively. These give by 
logarithmic differentiation 

dx _ ___ du dx 1 du 
~ u x u mx+ n m u 

The substitution of 1/u for x is effective in other cases; 

thus 
r dx _ r 

J(a2+£c2)^_ Jr, 
udu 

(a2u2 +1 y a?(a2u2+iy 

which, expressed in terms of xy is #/u2(a2+£C2)*. 
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The more general form 1 j(ax2 + bx+cf can be treated in 
a similar way after expressing the quadratic in the form 
given at the beginning of this article. 

§ 116. Trigonometric and Hyperbolic Substitutions. Another 
method of treating the quadratic function is to transform 
it by a trigonometric or hyperbolic substitution. The 
particular transformation is suggested by the form of the 
quadratic. 

a2 — x2, */(a2 — x2); x = asm6 or x — acos 

x2+a2, ^/(^2 + a2); x = atan# or # = asinh@; 

x2 — a2, ^/(a;2 —a2); x = asec6 or # = acosh6; 

s/{fi2 — (x+a)2}; £ + a = /3 sin 6; etc. 

Ex. 1. If# — a sin#; dx~a cos Odd. 

Js/(a2-x2)dx~a2Jcos2# dO — (^0 4- sin 0 cos 

and therefore 

Js/(a2~ x2) dx — \xsj(a2 — x2) 4- ~ sin-1 

Ex. 2. If x = a sinh 0 ; dx—a cosh 0 dO. 

j(x2 4- a2)dx—a2 jcosh2# dd — ~^ + sinh # cosh #^, 

and therefore 

jJ(x? + a2)dx^\xsJ(#Hsinh-1 

By putting x—a cosh # we find 

j J(x2-a2)dx==\xJ (x2 - a2) - —- cosh-1 ^ 

Ex. 3. If #4-2=^3 tan # ; dx—sjZ sec2# <f #. 

i dx 

(.r2+4r+7)2 

f J3 sec 20 dO _ x/3 
J~(Ssec20yr~~9~ 

J cos2 Odd, 

and the integral is 

1 #4-2 

6 #24-4#4-7 41*"- 

For definite integrals trigonometric substitutions are of 
great importance. 
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f § 117. Some Trigonometric Integrands. The integration 
of powers and products of sines and cosines can often be 
effected by the methods of § 112, Ex. 4, § 114, Ex. 4, and 
§119, Ex. 2, 3. There is another method, however, that is 
frequently useful. When the integrand is a rational 
function of sin# and of cos# the substitution u = tanj# 
will reduce the integral to that of a rational algebraic 
function of u, for 

sin x — 
2 u 

1 + 
cosx= 

1 — u2 , _ 2 du 
l+H? dx~T+u* 

Examples 1-3 may almost be reckoned among the 
standard forms; the substitution is for each u = tanix. 

Ex. 1. f dlL 
J sin # 

Ex. 2. f dx 
J cos# 

The integral can he put in several forms as 

i ^ /vF , . 1 -f sin# 
log tan l - + - ) or i log - . . 

6 \2 4/ 2 1 - sm # 

The substitution w = J — # or —~ will reduce the integral of 
2 2 

1 /cos # to that of 1/sin x. 

Fx [ — f 
K 3' Ja + bcoax~J\ 

2 du 

a( 1 + u2) + b (1 — u2) •I; 
du 

(a+fi) + {a-b)u2' 

Let a + b be positive; then there are three cases according as b 
is numerically less than or greater than or equal to a. 

(i) b2 < a2 and therefore b < a, numerically 

f-rf?—— -/~r if--"retail"1 (u ■), u — tan\x. 
J a + b cos# J{a2-b2) \ Ya + 6/’ 2 

(ii) b2 > a? and therefore b — a positive, 

L dx 
d°g 

sfb + a + uslb — c 

'a+b cos# s/b2 — a2 & srb + a— us/b — a 

(iii) b2=a\ 

f-ffei—=ltan^r ; f -*L—-loot to. 
J a+a cos# a Ja — a cos# a 

Case (ii) is of less importance than (i). A more easily remembered 
form of the integral (i) is obtained by writing 
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0 = 2tan->{tanf . 

whence cos 6—(a cos #4-£)/(<* 4- 5 cos x), 

or (a - 6 cos #) (a 4- b cos x) = a2 - 52. 

# is the true and # the eccentric anomaly in an ellipse of eccentricity 
bja (Godfray’s Astronomy, § I8G ; Gray’s Physics, § 520.) 

a 4- 6 cos x goes through its complete range of values if x varies from 
0 to 7r or again if varies from —7r through negative values to 0. If 
.r lies between 0 and 7r, # is positive and lies between 0 and 7r ; but if 
.r lies between — 7r and 0, 0 is negative and lies between - tt and 0. 
Hence bearing in mind the restriction on the inverse cosine (§§ 28, 64). 

but 

f_dr_=_1_cos-i («_co8 x+ b \ 
J a +6 cos x sj(a2 — b2) \ a 4- b cos x ) 

= _ -L. cos '(rt-COS-- + ,5 
\a+hi-m:cl 

if 0^.r"57r. 

if — irt~x“SQ. 

There is no ambiguity when the integral is expressed in terms of the 
inverse tangent. See also Examples 11, 12, p. 135: 

Ex. 4. 
f dx__ 

J a 4- b sin ,r’ 
positive, 

The integral = f-4—- 
J a + 2bu 

2 du 

+ ‘2bu + <iu2 

If b2 < a2, the substitution x — tt/2-v or .r = 7r/2 +v will reduce it to 
Ex. 3 (i) ; the student should make both of the latter substitutions, 
lie will thus see that it is not sufficient to consider only the one value 
of 0 as determined by cos 0. The substitution furnishes a good 
instance of the care needed in dealing with inverse functions. There 
is no ambiguity if the integral of Ex. 3 (i) in terms of the inverse 
tangent is used. 

Ex. 5. f--—(^r~-— a positive. 
J a 4- 0 cos x 4- c sin x 

If 524-c2 = £2 we may write 

a 4- b cos x+c sin x=ci + k cos (x - a) 

and the integral reduces to Ex. 3. For k2 < a2 the integral is 

4:1 /acos(,r- a)4-£A 

\ a + b cos (x— a)/ ~J{a2 - 62 — c2)C0S" 

the sign being 4- or - according as x-~a lies between 0 and w or 
between -TrandO. 
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EXERCISES XXIII. 

Integrate with respect to # examples 1 -22. 
1 

2#2 -f- 3# -f- 4 

1 

\/(#-«)(6 —#) ’ 

1. 

4. 

7. ; 

10. cot x; 

13. tan4#; 

16. sin7#; 

19. 
cos0# 

22. 

2. 
1 

3. 
1 

s/{ax - #2) * sj(^-ax) f 

5. 
# 

«2+#3 J 
6. 

X 

>J{dl+x*) 1 

8. 
# 

9. 
#4-1 

#4+#2+1 ’ v/(#2 + 2#-3)’ 

11. 
cos # 

12. 
1 + COS x m 

] -f sin # 1 x+sin #’ 

14. cot6#; 15. 
1 

a2 cos2# + sin2# 

17. sin6# cos4#; 18. 
1 

sin2# cos2# ’ 

20. - x) \ 21. 

.r+V(.r-]) 

23. Find the value of the integrals 

[* fZ fn J 
(i) l sinted*; (ii) l rin*xeo*xdx ; (iii) ( ; 

(iv) ; (v) /"tan xdx ; (vi) f\. 
Jo 4- sin2# Jo Jo 1 

dx 

i ~+x+a?* 

(viii) 
y Jo 1 4- cos2 

dr 

Integrate with respect to # examples 24-41. 

24. #4-1 25. 
#2 -1 , 

26. #4-f 7 

#24-#4-1* x*+'i’ #2 4- 2# 4- 3 

27. #3+#. 
#4 —4 * 

28. (#+i)2. 29. V(K) 
30. V(2i)> 31. V(s?)> 32. VIs?) 
33. 1 34 , 1 35. 1 

#%/(8#2 + 2#-1) ’ 

36. 1 37 1 38. 1 
(#+1)^(1-#2) ’ <*-iy<i-*r #(#”4-1) * 

39. 1 40 1 41. cos #4-sin# 
Wv» 

Cc2 + 2#+3)^ 
* 1 4- tan # * sin #4-2 cos#’ 
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42. Find the value of the integrals 

(w . /"\ [~v dx t I1* dx 
1 Jo 5 + 3 cos x ’ Jo 5 + 3 c< *s x ’ 11 J- % 5 + 3 sin x r 

(iv); (v)l\+JL<>»J0<a<7r); 

(vi)f™^<i); (vi,) r 
dx 

3 + 5 cos .r 

43. Find the value of f+1 
J- 11 — 2x cos a + .r2 

(i) when 0 < a< tt ; (ii) when ir<a< 27r. 

44. If a is positive, and b numerically less than 
substitution cos 0 — (a cos x + 6)/(a + b cos x\ that 

f" dx _ I f", 
Jo (a + b cos x)n (a2 - b2)u ~ vo ^ 

a, prove, by the 

b cos 6)n~ld6. 

45. Trace the curve given by ay2=x\a- x)> a> 0, and find the area 
of the loop, 

46. Trace the curve given by a2y2=x\d2 - x~), and find the area of 
both loops. 

47. Trace the curve whose polar equation is r~ a + b cos 0, a>b>0, 
and find the area enclosed by it. 

48. By transferring to polar coordinates, find the area of the ellipse 
whose et < uation is ax2+2hxy + by2 — 1. 

The area is 

__ dO _ ir 

a cos2# + 2h sin 6 cos 6 + b sin2(9 J(ab - h2)' 

§ 118. Integration by Parts. The second of the general 
methods of Integration is that called “Integration by 
Parts ”; it corresponds to the theorem for the differentia¬ 
tion of a product. 

For the moment denote integration by a suffix and 
differentiation by an accent; thus 

dvu 
dx 

By the rule for differentiating a product we have 

d(uxv)_du, x dv 
dx ~ dxV^ ldx 

Mj = ^udx; n' — 

d(uxv) 
dx 

=uv+uxv\ 
dvu 

since ~ = u- 
dx 

that is, 
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Hence uxv = ^(uv + uxv') dx.(1) 

= Jitvdx + ^uxv'dx; 

and therefore Juvdx — uxv — jttxv'dx.(2) 

Equation (2) gives the theorem in question. It may happen 
that the integral of uxv can be more easily determined 
than that of uv. 

For a definite integral, lower limit a upper limit 6, we 
get instead of (1) 

,# p 
\uxv\^ =1 (uv+v,xv')dx.(3) 

and instead of (2) 

p h p 
J uvdx = — J uiv'dtv..(4) 

where the symbol means as usual that x is to be first 

replaced by h, then by a, and the second result subtracted 
from the first. 

The examples will show the great power of the theorem. 

Ex. 1. Find Jx cos x dx. 

Here both x and cos# can be immediately integrated ; but we take 
v—x since then v'—l. 

cos x dx — x . sin x— /1 . sin a x dx—x sin x -f cos x. 

Ex. 2. Find J.r2 cos x dx. 

Again we put v — x2 since v' — 2x, and the new integrand will 
therefore be simpler than the old. 

jx2 cos x dx—x2. sin x - j%x. sin x dx. 

The theorem may be again applied 

j2x. sin xdx—2x( - cos x) - J2(- cosx)dx = — 2x cos v + 2 sin#. 

Hence jx2 cos xdx—x2 sin x+2x cos x - 2 sin x. 
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Ex. 3. Find JV* cos (for 4 c)dx and Jcaxsin (for 4 c) dx. 

In finding one of these integrals we also find the other. 

Let P~ Jeax cos (bx+c)dx, Q— f eaxain(bx+c)dx. 

In tliis case it does not matter which factor is taken for v. 
,,<ix r pax 

P — 1 - . cos (for -he)- I . [ - /> sin (for 4 c)l dx 
CL J iJL 

x cos (for 4- c) bQ -- -f-. 
a a 

Hence aP-bQ = eaxco&(bx+e).(i) 

In the same way by operating on Q we find 

bP-h aQ — eaxsin (for4e).(ii) 

Solving (i) and (ii) for P and Q we find 

J a2 + b2 

Q= [<rmn(bx + c)dxJ^+ c)-bcos(bx+$ 
J a2 4 bl 

These two integrals are of great importance in mathematical 
physics. 

Ex. 4. Find js/(a2 - x2)dx and js]{x2 ± a2)dx. 

Here the integrand has but one factor ; but we may take unity as a 
factor and put ?* = 1. Hence 

/\/(«2 - xl)dx-=xs/{a- x • 

.(1) 
We now write 

-** =(«g-.»8)-g»== J( t ^_«*_. . 

J{a2-x2) N/(a2 - x2) ' J(d2 - x2) 

Tlic first term on the right is the given integrand while the integral 
of the second term is -a2sin~l{xja). 

Substitute in (1), transfer the integral to the left side, and divide 
by 2 ; we thus get 

J *J(a2 - x2)dx — \xj(a2 - x2) -h\a2 sin-1 ^ ^, 

the same result as in § 116, ex. 1. 

In the same way it may be shown that 

f *J(x* ± a2)dx = \xj{x2 ± a2} ± la2 log (x 4 \!x2 ± a2). 

Compare § 116, ex. 2. 
The algebraic transformation used above is often useful ; a similar 

transformation occurs in integrating circular functions (§ 119, 2, 3). 
The quadratic ^(ax^ + bx+c) can be integrated by expressing it as 

in § 115, and putting x + a*=u. 
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Ex. 5. Find Jlog x dx. 

J log x dx=x log x - Jx~dx=# log a? - #. 

§ 119. Successive Reduction. 

Ex. 1. Let un — jxnexdx ; then, integrating by parts, 

un — Jxne*dx~xn(f - Jnx”-1 ezdx —xne?~nJ#”-Vc?#, 

that is, un—#V - nun~i. 

Writing n~ 1 in place of ??, we find 

w»-i =#”"V - (n - 1 )u^ o, 

that is, u,n — xnex — ?i#”-V + n(n - 1)mm_2. 

Proceeding in this way, we see that if n is a positive integer, un may 

be made to depend on m0> that is, jeTdx or ex. If n is not a positive 

integer but is still positive, un may be made to depend on an integral 
in which the integrand contains x with a positive proper fraction as 
index. The integral cannot in that case be expressed in finite terms 
by means of known functions, but it is reduced to the most convenient 
form for studying. 

The above method of making an integral depend on another of the 
same form is called that of Successive Reduction. 

The integrals of #” sin#, xn cos# may be treated in the same way. 

Ex, 2. 

Now 

Hence 

un-f sin”# dx. 

u„ = j si n"xdx—j sin"-1#. sin xdx 

= sinw-1#( - cos #) - j(n - 1) sin"-2# (- cos2#) dx 

— — sin”-1# cosx + (n — l)jsin”-2# cos2#. dx. 

cos2# = 1 ~ sin2# ; sin”-2# cos2#=sin”-2# — sin”#. 

un = - sin”-1# cos # -f- (n - 1) un-2 -{n-\)un, 

.(i) 
, . sin”-1#cos# n-1 

and therefore un—--wn_2- 
n n 

The index n has thus been reduced by 2. Writing n- 2 in place of ny 

we £ek sin”-3# cos # n - 3 

+: 
and therefore 

sin””1#cos # n — 1 sin”-3# cos # . (n — 1 )(n — .3) 
Un n n n- 2 n(n — 2) Un~4‘ 

If n is a positive integer, we can repeat the reduction until the 
index is 1 if n be odd, or 0 if n be even ; ux — - cos# and w0—#, since 

n — z 
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sin0#— 1. If n is positive but not integral, un may be reduced to 
index is depend on an integral in which the ind either a positive or a 

negative proper fraction. For negative values of n see ex. 4. 
The most useful case of the formula (i) is that in which n is a 

positive integer and the integral is taken between the limits 0 and 7r/2. 
In this case (i) becomes 

f2 • „ 7 r 1" r sinw"].a:cos#l* n - If "T2 l smWH“"Jo=L--—*—_L+~ L“m-2Jo 

but when n is even, 

«-l f* , 
=-/ sin”-*#a#, 

n Jo 

vanishes at bo 
term of u.n is 

n(n-‘2)... 5.3 \ V ’ 

since the integrated term vanishes at both limits. 
When n is odd, the last term of un is 

Hence 

(n- l)(n -3)... 3.1 

n{n — 2) ...4.2 

l! 

Jo 

„ v (ft-l)(?i-3) ... 4.2 . , ,, . , x 
u”.*flte= -.6~3— • 1 (n odd integer) ; 

If vn = Jcos\vdx, then 

n(n - 2) 

yn — O) ... o . l 7T . . , s 

— 2)~'.Ti'2~~ 2 even lnteKer)- 

cos”-1# sin# ?? —1 
--4-r„_2, 

n 

and it is easy to prove from the formula or, better, directly from the 
meaning of the definite integral that 

f cos”# dx = f sin”#tf#. 
Jo Jo 

A simple inspection of the graphs of sinw# and cos”# will show that 

/ sin”# dx=2 / sin”# d#. 
Jo Jo 

f cos"# <£# = 2 r cos”#d# (« even integer), 
Jo Jo 

but =0 (ft odd integer). 

In a similar way such results as 

J sin3#d#=0; j cos0# dx=4 cos8# dv 

are readily proved. See also the rule given in ex. 3. 
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Ex. 3. /(m, n) — j sinm.r cos"# dx. 

In /(m, n) the first letter is the index of sin x, the second that of 
cos x. For brevity denote sin x by s, cos x by c. Then 

f(m, n)~ Jsmcn dx~ j smc . cn~l dx. 

Since c is the derivative of sy the integral of smc is sm+1/(m + iy 
Thus, W+1 f m+l 

n) = --- c”"1 - / --—- (w - 1) c"“2( - s) dx 
1 J m + l J m+V 

Sm + l(.n~l n-l [ 

~~ m+l +m + lJS c 
~2dx. .(i) 

But sm+2cn~2=sm(l -~c2)cn~'2^smc"-~~smcn. 

The first term is the integrand of f(m, n - 2), and the second that of 
f(m, n). Substitute in (i), transfer f(m, n) to the left side, and then 
multiply by (m+ l)/(m + n). Therefore 

»m + L,n-l /yi   "1 

/(wt, n) — —- - H—f(m, n - 2). 
J v ’ 7 m -f n m + 7iJ ' 

•(A) 

The integral thus depends on another of the same form with m 
unchanged but the other index reduced by 2. 

Had we begun by writing sm'1. scn and integrating the cosine, we 
should have got 

»m-Vn+1 ~ 1 
/(m, n)~---1-—/(w-2, n\.(b) 

y / m + n m + nJX y ” v ' 

and now m is reduced by 2, n unchanged. 
We will continue the reduction for the case in which m, n are 

positive integers, so as to obtain the definite integral from 0 to 7t/2. 
If n is odd, (A) makes f{m, n) depend on /(m, 1); (B) then makes 

f(m, 1) depend on/(l, 1) or on /(0, 1) according as m is odd or even. 
If n is even, (A) makes f(m, n) depend on f(my 0) ; but/(ra, 0) is the 

integral of ex. 2, with m in place of n. Thus, by ex. 2 (i), /(m, 0) 
depends on/(l, 0) or on /(0, 0) according as m is odd or even. 

Thus,/(w, n) may be reduced to depend on one of the four 

/(], 1) =jscdx—l sin2.r ; /(0, 1) = Jcdx — sinx; 

/(1, 0)== jsdx= — cosx ; /(0, 0) = j^ldx-x. 

When the integral is taken between 0 and tt/2 the values of these 
are 1/2, 1, 1, 7r/2 respectively. 

The student may now show that the following rule is correct: 

jf. sin™ xcoBnxdx— 
(m— l)(m~ 3)... x (n- 1)(n — 3)... 

(m + ri){m+n- 2)... 
X a, 
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where a = l except when m and n are both even integers, in which case 
a = 7r/2 ; each of the three series of factors is to be continued so long 
as the factors are positive. 

It will be noticed that the factors of each series decrease by 2. 
The rule includes the integral of ex. 2, putting m (or n) zero and 
omitting negative factors. 

1 x3.1 „7T 

C. 4.2 X2 
7r 

f* . 
/ sin6 x cos4 

Jo 

J sin7 x cos5 

cos4 x dx - 
5.3.1 x 3.1 7r 3tt 

! (>. 4.2 X 2 012 ! 

6.4.2x4.2 

= 12.16.8. C’’472 5 

•5 _ 
si n8xdx~ 

7.5.3.1 wtt 

8.6.4.2 X 2 

3f>w 
25(3 

The great importance of the results of ex. 2 and 3 arises from 
the fact that many integrals are, by a proper substitution, easily 
reduced to these forms. For example, if we put x—a sin 6, so that 
when .r = 0, 0 = 0, and when x = a, Q — 7r/2, we get 

f x2(a2 - x2y dx — a° I sin2 0 cos4 Odd— 
Jo Jo 32 

If we put r=ttsin2 6, then 
T ft 

I a 3 |> / 7-r 1 Orr 2 

/ r2 (a - = 2a * I sin5 # cos4 Odd—--s’— 
Jo v Jo 315 

Ex. 4. If w is negative the index of un_.is numerically greater 
than that of n. In ex. 2 (i) let n~ — w, where m is positive ; then 

[ dx_ c m + \ / dx 
f «) / + 2 * 

. i r f dx C 771 f dx 
therefore J ^ 

Now put m + 2 — 9i, where rx is positive, and we get 

f dx _ cos x n — 2 f dx 

J sinnr (n -- 1) sin” ^.r n — 1J sin"~^r 

In many cases the integration will be simplified by writing 

sm^+cos-.r cos X 
-\- —;-- COS X. 

“ x smnr 

But these integrals are of small importance for elementary work. 
The key to the transformations is that after one integration by parts 
the new and the old indices differ by 2 ; when an index is negative it 
is simpler to begin by integrating the integrand with the reduced 
index. 
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u,.-- / tan’1 x dx. 

uH ~ I tan”"2 x (sec2 x — ]) dx — j tan”"2 x. sec2 x dx — un„<>. 

so that un =-7 tan”-1 x - 
n — 1 

Other examples of reduction formulae will be found in the Exercises, 
but in many cases a trigonometric substitution will ieduce the in¬ 
tegral to one of the forms just discussed. 

EXERCISES XXIV. 

Integrate with respect to x examples 1-24. 

1. xe~x ; 

4. x cos x 

2. x'e 

5. x sin x cos x; 

7. xn log x (n =|= - 1) ; 8. - log x ; 

jlu. 7r-~—rr, ; 11. xe~x2 ; JL6. sin \r ; 
(!+•»)“ 

13. tan"1#; 14. ^sin"1#; 15. .rtan"1#; 

16. V(3 + 2# - #2) ; 17. >/(3 + 2#+.r2) ; 18. x/(2a.r - .r2) ; 

3. x sin x ; 

6. #2sin#; 

9. e~x si n2.r ; 

12. sin hr ; 

15. x tan"1# ; 

19. tJ(2ax+x2) ; 20. ; 

22. e~Sx cos 4 v ; 23. cosh x cos a. 

25. Find the value of the integrals 

x? x 4- sin x 

20- 7(1^) ’ 1 4-cos# ’ 

23. cosh x cos x ; 24. sinli x sin x. 

(i) 1 COS8# G?# ; 
Jo 

f v 

(») j f sin6# <7# ; 
0 
fir 

(iii) / sin0# cos4# cf# ; 
Jo 

/ 41r 

(iv) j ' sin3# cos4# d#; 
0 

rf 
0) / sin8# cos4# cf# ; 

Jo 
(Vi) J tan6# d#. 

0 

26. Find by a trigonometric substitution the value of 

fa f2a 

(i) J x?J{a2 -x2)dx ; (ii) J x*J(2ax - x2) dx; 

(iii) j x2J(2ax - #2) dx. 

27. Integrate £ XJ(a2+£*) ^ 8Ukstitution x2—a2 cos 20. 
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8. If f(m, n)~ Jxm( 1 — x)n dx show i 

r/ x xm+1(l-x)n , n xt , v 
7?) —-~—H---~7/(m, ??, - 1). 

J 777+72 + 1 m+Ti + l-'' 

Hence, or by the substitution .r—sin2#, find the value of 

-x)ndx, 
. . 

m, n being positive integers. 

29. If u„-- jdxj(a2 + .r2)”, prove that 

_ x 2n — 3 

~(2?i — 2) a2(a2 + x2)n 1 (2n — 2) a2 

30. If vn— f‘xns/(a2 — ,r2)dx, prove that 

31. If u. 

xn~x(a2 — x2)- n - 1 9 
un = - - - , ,rH— 

72 + 2 72 + 2 

„ — j xnsJ{2ax — x2) dx, show tliat 

xn~1 (2ax — .r2)* , 272 +1 
■«n=---H-^g- 

Write UH --- fxn~l{a - (o — #)} dU = cm„_i — if xn~l I$dx 

where It — 2o.r - ,r2, and then integrate by parts. 

32. If «n = jxndx/s/(2ax — .r2), show that 

xn"lJ(2ax - x~) 2n - 1 
-.'Vi--y -j-(7?2n 

n n 

33. If r/?, n are positive integers find the value of 
f i i 
/ (1 —xn)mdx. 

Jo 

34. Find the value of 

(i) / xxsJ{a<2 - x2)dx \ (ii) f xisJ{2ax — x2)d,r. 
Jo Jo 

35. OM is the abscissa and MP the ordinate at the point P (£, y) on 
the hyperbola x2ja2 — y2jb2 = 1, £, 77 being both positive. If A is the 
vertex nearest P show that the area AMP is equal to 

IJ-n-Ub logg+y, 

and that the area of the sector 0 A P is 

^iog(4Q. 

36. Trace the curve given by y2=(x- l)(^r— 3)2 and find the area of 
the loop. • 

g.c. T 
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37. Trace the curve given by a2g2=x3(2a — x\ a being positive; 
find the whole area enclosed by it. 

X ar 

38. Find the length of an arc of the catenary y=\a(e* + e~ *) measured 
from the point C where x—0. Show that the area between the two 
axes, the curve and the ordinate at a point P is a times the arc CP. 

39. Find the length of an arc of the cardioid r— a(l — cos 0), the arc 
being measured from the origin. 

40. Find the length of an arc of the spiral r~a6, taking s — 0, when 
r = 0. 

41. Find the length of an arc of the spiral r=ae6cota, taking ^=0, 
when 0=0. 

§ 120. Partial Fractions. The method of resolving1 a 
rational fraction into partial fractions is now found in 
most text-books of Algebra. We will therefore refer the 
student to Chrystal’s Algebra, Vol. I., Chap, viii., for a full 
discussion of the theory, and will merely work out a few 
examples. The fraction will be supposed to be a proper 
fraction, that is to have the degree or its numerator m the 
variable x less than that of its denominator, and to be at 
its lowest terms. 

Let the fraction be F(x)/f(x) where F(x) and f{x) are rational 
integral functions of x. f(x) can be resolved into a product of real 
jyrime factors, each of which is a linear or else a quadratic function 
of x, but a factor, linear or quadratic, may be repeated several times. 

F{x)!f{x) can be resolved in one and in only one way into a sum of 
proper partial fractions ; these partial fractions are of the following 
types : 

(i) To every non-repeated linear factor x-a of f(x) corresponds 
a partial fraction of the form A/(x — a). 

(ii) To every r-fold linear factor (x- fi)r of f(x) correspond r partial 
fractions of the form 

Br Br-1 . . B2 A 

(x - py py-1 ^''^ix-py^x-fi' 

(iii) To every non-repeated quadratic factor x2+yx + 8 of f{x) 
corresponds a partial fraction of the form (Cx +D)j(x2 + yx+8). 

(iv) To every r-fold quadratic factor (x2 + yx + 8)r of f{x) correspond 
r partial fractions of the form 

CyX 4- Dr Cr„iX-)r Dr^\ CyV+Di 

(x2 + yx+ 8)r (.r2 + yx+8)r“1 “'+ xl + yx+8 

The method of determining the coefficients A, B, ... will be learned 
from the examples. 
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Ex. 1. #2/(#2 -1 )(x - 2). 

No factor of the denominator is repeated ; therefore 

_B <7_ 

(#4- l)(.r —l)(#-2) #4* 1 #-l x-2 

Clear of fractions ; therefore 

x2 = A(x-l)(x-2) + B(x+l)(x — 2) + C(x + ])(#- 1). 

This equation being an identity, we may give to x any value we 
please. Put x 4-1=0, that is, x— - 1, and the terms in B and C vanish, 

and we get i1 -1)(_ i _2) or J = ]/<5. 

Similarly, by putting #=1 we get B— -1/2, and by putting x~2 
we get (7=4/3 and 

1 

x 4-1 
_L_ + 4. 
-13 

1 

x — 2 (x2— l)(x - 2) 

Or, to find Ay multiply both sides by its denominator #4-1 and then 
put #4-1=0; 

J=T_1 
L(#- 1)(# —2)J*’"=-1* 

In the same way, if x-a is a non-repeated factor of f(x) and 
A/(x- a) the corresponding partial fraction 

L f{x) Ji=tt 

If f(x) = (x - a)<p(x), then 

f'{x) = <ji(x) + (.v - a)4,'(x) and f’(a) = </>(«), 

so that 
r(r-«)^(.r)-] 
L(i' - a)<j>(x) Jx ' </>'(«) f'(a) 

Ex. 2. (#24-#4-2)/(# - l)2(#2-#4-l). 

The repeated factor (x — 1 )2 gives two fractions, and the factor 
#2-.r+l, since it has no real linear factors, gives a fraction of the 
type (iii) ; hence 

_#24-#4-2 _ A B + 

(#— 1 J^#2 — #+1)~ (#- l)2"#- 1 o.?~x+l 

Clearing of fractions, we get 

#2+.r + 2 = A(#2-#4-l)4-2?(#- 1)(#2-#4- l) + (Cx+D)(x- l)2. 

Putting x — 1, we get A—4. Now bring the term in A to the left 
side and reduce after putting 4 for A. The right side will contain 
(x- 1) as a factor, and therefore, since the equation is an identity, the 
left side must also contain (.r-1) as a factor. If it does not, there is 
an error in the work. We get 

-(3#-2)(#- !) = /?(#- l)(#,2-#4-l)4-(C# 4- 
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Divide by (x — 1), and then by putting #=1 we find 7?= - 1. Now 
take the term in B to the left, and again divide by (x — 1). Then 

x — 3= Cx+ D 

so that, since the equation is an identity, (7=1, Z)= -3, and therefore 

x2 + x + 2 __ 4 1 x — 3 

(x — 1)2(jp2 — x +1) ~ (x — 1 )2 x - 1 x* — x -f 1 ’ 

Ex. 3. (.r3 — 2)/{x2 -f x4- 2)2(.j,2 4*x +1). 

By (iv) and (iii), since there are no real linear factors of the 
denominator, 

x*-2_ Ax+B Cx+D Ex + F 

( jf8+x + 2)2(#2 + x +1) (x2+x + 2)2 x2 +x 4-2 #2+# + l 

Clearing of fractions, 

.r3 _ g = ( A x -f B) (.r2+x -f 1) -f (Cx-fD) (.r2 + x + 2 ) (.r2 -f x+1) 

+ {Ex + F) (x2+x+2)2. 
Put x2 + x+2=0 and reduce x2 and x3 to linear functions by means 

of this equation. It gives 

x2+x+ 1 = - 1 ; x2— -x—2, ofi— -x2- 2x — -x+ 2, 

and therefore - x = - Ax - B, 

so that A = 1, 71 = 0. Take the term in A and 7? to the left and 
divide hy x^+x+ 2 which must be a factor. Hence 

-1 =z(Cx+l))(x2+x+ \)+{Ex+F){x'iA-xA-2\ 

Put x2+x+2 — 0 and proceed as before. We get C= 0, D— 1. 
Hence, after dividing by x2 + x+2, 

— 1 —Ex-\-F) £*=0, F=*-l, 

and the fraction is equal to 

jc_ I _J_ 

(xt + x+Zy x2+x + 2 x2 + x + l 

These examples show sufficiently the method of deter¬ 
mining the coefficients; other methods will suggest them¬ 
selves to the student, and he will find full details in the 
chapter of Chrystals Algebra referred to above. 

§ 121. Integration of Rational Functions. If F(x)/f(x) is 
not a proper fraction it may by division be expressed as 
the sum of a rational integral function and of a rational 
proper fraction. 

The integral of a rational integral function is a rational 
integral function. 
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The integral of A/ipc-a) is A log(& —a). 
The integral of B/(x — /3)r where r is different from unity 

The integral of (Cx + D)/(x2+yx + S) has been discussed 
in § 115 and is of the form 

X log (x2 + yx+ (")+//tan-1 

We have, therefore, only to consider ((7^ + i>)/(£r2'f yx+S)r. 
Writing the quadratic in the form R ~(x + a)2 + /32 the 
integral is 

iC\2~~+R^+(D~ aC)\d£ 

= 2(r~ljltr-1+(1}~ aG^\w 

In practice it is usually simplest to integrate 1/Rr by the 
substitution x + a = fit&n 9; but it is of some theoretical 
interest to get a formula of reduction. If we differentiate 
{x-\-a)lRr~1 we find 

d {x + a\_ 1 2(r— l)(a-fa)2 

dx\Rr-1)~Rr-1 RT 

_ — (2r —3) 2(r-l)/32 
~ ~ RrZi“ Rr ’ 

by putting (x + a)2 = I? — /32. Integrating and rearranging 

fcfcc_ sc-fa 2?' —3 f dx 
we get J^r-2(r_ 1 + 2(f^l)^Jli^1' 

Hence the integral of (Cx+D)/Rr can be made to depend 
on that of 1/R, which is an inverse trigonometric function. 

Thus the integral of any Rational Function of x can be 
expressed in terms of rational functions, logarithms and 
inverse circular functions. 

There is always a considerable amount of labour in inte¬ 
grating by the method of partial fractions. The student 
should, before resolving into partial fractions, examine 
whether the integral may be simplified by a substitution. 

Thus, 
f xsdx , f udu 
J“-Ju2-"w+T u=a5' 

and the fraction in u is easier to handle than that in x. 
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X § 122. Irrational Functions. We consider one or two cases 
in which the integrand is an irrational function. 

(i) When the integrand contains only fractional powers 
of x let n be the l.c.d. of the fractions; then the substitu¬ 
tion x = un will make the new integrand rational in u. 

Thus, if x — U* 

fx^ dx _ f uhla 

= 6 (}u7 — — n + tan-1 u) 

= 6 (- lafi 4- - afi + tan-1 

(ii) When the integrand contains ^(ax + b) but no other 
irrationality the substitution ax-\-b — u2 will make the new 
integrand rational in u. 

(iii) When the integrand contains s/(ax2+bx + c) but no 
other irrationality the integral may be reduced to that of a 
rational function as follows: 

First, let a be positive and write the root in the form 

y = Ja s/(xr+px+q), p = b/a} q = c/a. 

Let s/(x2+px + q)~u—x so that, squaring and solving 

« u2 — q dx 2 (u2+ pu + q) 
for x, x= 0 - ----- -j- = ------——.--±L 

2 a + p da (2 tt+py 

The new integrand will clearly be rational in u. 
Second, let a be negative. In order that y may be real 

the linear factors of ax2 + bx + c must be real; if they were 
not real the quadratic would be negative for every real 
value of x and therefore y would be imaginary. We may 
therefore write, since ( — a) is positive, 

y = J(-a) J(x- a)(fi-x). 
For definiteness suppose /3>a (algebraically) and let 

u= + J {(x-a)l(fi—x)\. 

Then, v? — (x—a)/(/3 —x)\ 

\fO — u/w 

1 + U2 

o fi —a 

^-x=T-*s 

a + ftu2 m 
1 + u2 ’ 

U dx 
dsn’ 

2(0-cl) w 

l+u2’ du (1 +u2)2 

The new integrand will clearly be rational in u. 
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In (ii), (iii) we may suppose all the roots to be positive. 
(See § 123, end.) 

The above analysis shows that if y be either ^/(ax + b) 
or x/(ax2 + bx + c), and if the integrand be a rational func¬ 
tion f(xy y) of x and of y> the integration of f(x, y) can 
always be reduced to that of a rational function, and 
therefore (§12.1) requires for its integration only rational 
functions, logarithms, or inverse circular functions. 

(iv) Let the integrand be xm(a + bxn)p. 

(a) If p is a positive integer expand (a + bxn)1>. 

(b) Try the substitution u = a -f bxn which gives 

1 7 xi d/x (v,-ay~' 

nbn 

and the integral becomes 

“Tm+v \up(u — a)w»1'1 du, 
no~n J 

so that if (m+l)/n is a positive integer the binomial may 
be expanded and the integral obtained in finite terms. 

(c) If (m+l)/n is not a positive integer let x = 1/v and 
the integral becomes 

v~m- up - 2 (^ a vn)V dV. 

Instead of m we have now —(m + vp + 2) and therefore 
by (b) if — (m + np +1)/n be a positive integer, that is, if 
(m + l)/n+ p be a negative integer the integral may be got 
in finite terms. The substitution is 

u~b + avn = b + ax~n. 

§ 123. General Remarks. From the discussion now given 
it will be seen that integration is a somewhat haphazard 
process. The only general results obtained are those of 
§§121, 122; in most cases the integration, when it is 
possible at all, has to be effected by reducing the given 
integrand by various methods to a few standard forms. 
Even for the cases discussed in § 122 it is frequently simpler 
to take a special method for a given case than to apply the 
general theorem. 
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Much of the difficulty beginners find in integration is 
due to a deficiency in power of algebraic and trigonometric 
manipulations. When the standard forms have been com¬ 
mitted to memory the next step is to master the two 
principles of change of variable and of integration by 
parts; but the student who lias not a thorough mastery of 
elementary algebraic and trigonometric transformations 
will often fail to see the reasons that suggest the particular 
devices adopted and will have to struggle with difficulties 
that are due, not to the nature of the calculus but to his 
own deficient algebraic training. 

Integral dependent on the range of the variable. Another 
source of difficulty requires special notice, namely that the 
integral may have one form for one range of the variable 
and a different form for another range. Thus the integral 
of \/x is logrr or log( — x) according as x is positive or 
negative; in this case the integral may be written llog (x2), 
a form which covers both cases. See § 117, Ex. 3, for 
another case. 

Again, difficulty may arise from the ambiguity of the 
square root; in that ambiguity the explanation of the two 
forms for the integral of l/(a + 6eos#) is to be found when 
the inverse cosine is derived from the inverse tangent. 
Thus, if it be agreed that the root is always to be taken 
with the positive sign, the transformation P^/Q — s/(P2Q) 
would only be correct if P were positive; if P were 
negative we should have P^/Q = — */(P2Q). 

EXERCISES XXV. 

Integrate with respect to x examples 1-24. 

1. 

3. 

x2 - 6# — 4 

(2J-f i)(.r+2)(3j?-f2) ’’ 

x2 

(x - aj(x — b)(x — c) ’ 

2 30*5_. 
* (x2- l)(jr2~4) ’ 

A £ . 
(x+1 )*(*-!)' 

5. 

8. 

_1_ . 

x*(x — 1) ’ 

^+1 . 
x*+i9 

1 ■ 
(•T2-!)3’ 

o f8 • 

7. 

10. 

_ X 

(S2^l)3 ; 

X*~X+1 ; 
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x* 1 X 
11. 

^f4+^2- 2 7 
12. 

(x2 + a2) (x2 + 62) 7 13* (^+a2)(x2 + b2) 

tf2 1 1 
14. 

(x2+a2)(x2+b2) 7 15. 
16- ,*+i: 

1 COS X 
17. 

(jf2 + 2# + 5)2 * 
18. 

a4 (a#-I-6) 7 
1Q - ; 

• 16 + Osin2.r 

1 .#4-1 .r- — «2 
20. 3 sin x sin3 x 9 21. 4# 4 6 V1 7 22* ? + a¥+a4 7 

{x4-1 )(4.r4 +1 lx2 + 4) * x*(l +a?f ’ 

25. Transform tlie integral 

f dr 

J (x — a)m(x — b)n 

by the substitution u=(x — a)/(x — b) ; find its value when m — 3, w = 2. 

Integrate with respect to x examples 26-37. 

261 f+i'’ *>■ idy;1 28- v(.£ i)! 
X 11 

29- («+; 30- (i+Fy(r^); 31 (1 -^(iTx?) ; 

32. sc+s/(x'2~a) ’ 33- ■r3v/(" + i'r2) ; 34. **(l+**)*; 

^V(i +*“)1 

2a •f.r // a —a1 

a+# \ Va+jr 
; 37. Jtan x. 



CHAPTER XIY. 

DEFINITE INTEGRALS. GEOMETRICAL 

APPLICATIONS. 

§ 124 Definite Integrals. In this and the two following 
articles we will state a few of the more important theorems 
respecting definite integrals. 

Theorem I. A definite integral is a function of its 
limits, not of the variable of integration. 

This theorem is obvious from the geometrical meaning of 
the integral; so long as the symbol F denotes the same 
function the graph of F(x) with x for abscissa is the same 
as that of F(u) with u for abscissa, and therefore 

J F(x) dx = J F(u) da. 

Or, again, if F(x) — Dxf(x), then F(u) = l)uj (u) and each 
symbol represents f(b)—f(a). 

Theorem II. ^hF(x) dx = — J F(x) dx. See § 110. 

Theorem III. If a<b and if F{x) is positive for every 
value of x within the range of integration, the integral 

J F(x)dx 

is positive, not zero; if F(x) is negative, the integral is 
negative. 

For the area represented by the integral is positive in the 
first case, negative in the second. Obviously the theorem 
will still be true if F(x) is zero for some but not all of the 
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values of x in the interval (a, b), and a similar observation 
is true in Theorems V., VI., VII. 

Thus such an equation as 

p ^L_-r^T--2 Joix-1)2 (x-\y 
is absurd. The contradiction arises from the fact that the positive 
integrand l/(.r-l)2 is discontinuous when j?—1, the value 1 lying in 
the interval (0, 2). 

Theorem IV. j F(x)dx= J F(x)dx +J F(x)dx. 

For the area represented by the integral on the left, sign as 
well as magnitude of the areas being taken into account, is 
equal to the sum of the areas represented by the integrals 
on the right. In the same way, 

| F(x)dx=j* F(x)dx+^ F(x)dx+j* F(x)dx, 

and so on for any number of subdivisions of the interval 
(a, b). Of course one or more of the numbers c, g,..., may 
be greater than the greater or less than the smaller of the 
two numbers a, b, provided F(x) is continuous for all the 
values considered. 

Theorem V. If a<b and if 0 is the (<algebraically) 
greatest and L the (algebraically) least value of F(x) in the 

interval (a, 6), then j* F(x)dx<G (b — a) but>L{b — ai). 

For G — F(x) and F(x) — L are positive; hence by Th. III. 
the integrals 

that is 

or 

| [(? — -F(&)] dx and J [F(cr) — L] dxy 

| Gdx—^ F(x)dx and J F(x)dx—J Ldx, 

G(b — a) — J F(x)dx and J F(x)dx — L(b — a), 

are both positive, so that the integral is less than G(b — a) 
but greater than L (b — a). 

The integral will be equal to H(b—a) where H is a 
number less than G but greater than L; but since F(x) is 
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continuous it must, for at least one value xx of x between 
a and b, be equal to H. The value xt is of the form 
a+d(b — a) where 0 < 6 < 1 (§ 73). Hence, 

|”F(x) dx=F(x1) (b-a)-F{a+d(b—a)}(b-a). 

The theorem is evident from the figure; for the area 
ABDEG is less than the rectangle G. AB, greater than the 
rectangle L. ABy equal to the rectangle H .AB or MP. AB 
where MP is an ordinate less than G but greater than L. 

The value H or F{xx) is sometimes called the Mean Value 
or the Average Value of the function F{x) over the range 
(6 — a). (See § 134.) 

Theorem VI. If a <b and if for every value of x in the 
interval (a, b)y F{x) is {algebraically) less than <p{x) but 
{algebraically) greater than \[r{x)} then 

| F(;x)dx<^ (p{x)dx but >^\Js{x)dx. 

Proved in the same way as Th. V. since (p{x)—F{x) and 
F{x)—\fs{x) are positive. For geometrical proof see the 
figure (Fig. 55). 

Theorem VII. If a < b and if F{x) is the product of two 
functions <{>{x), yfr{x\ one of which, <f>{x\ is positive for 
every value of x in the interval {a, b), then 

| (f>{x)\}r{x)dx<G^J>{x)dx but >L^J>{x)dx, 



INTEGRAL THEOREM OF MEAN VALUE. 301 

where 0, L are the (algebraically) greatest and least values 
of\ffCx) in the interval (a, h). 

Proved in the same way as Th. V., since — 
\U(x) — />, and therefore (0 — \^{x))^{x) and (\[s(x) — L)<f)(x) 
are positive. 

If <f)(x) is negative for every value of x in the interval 
(a, h) we shall have 

f <!>(x)dx>o\ <j>(x)dx but <l\ <f>(x)dx. 
J a J a J a 

In both cases, the function \fs(x) being continuous, we 
may as in Th. V. write 

[ <f>(x) \[/(x) dx = yfrixA <f>(x) dx.(a) 
J a J a 

where a<x1< h. 
The theorem expressed in equation (a) is called The First 

{Integral) Theorem of Mean Value. (See Exercises XXVI., 
29-31.) 

Ex. Show that if n > 2, the integral 

dx 

Jo J(T-Xn) 

is greater than *5 but less than ‘524. 
For every value of x within the range of integration, the value 0 

excepted, 

x2>xn>0 ] l-x2<l-xn<l ; 1/V(1-^)>1/V(1 ~0>1, 

so that the integral is less than 

L ^CT)^=sin^=i=‘623- 

but greater than 
1 dx—'h. 

§ 125. Related Integrals. 
fa fa 

Theorem I. F{x)dx=\ F{a—x)dx. 
Jo Jo 

Let x —a—u] then dx = — du, and when x = 0, u = a, when 
x~a, u~0, so that 

r<i ro fa 

J F{x)d:c=—J F(a—u)du = J F(a—u)du} 
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and in the integral last written we may put x for u (§ 124, 
Th. 1). 

A useful case is 
ir tr ir 

r2 r*J pr 
J /(sin x) dx = J /(sin[£ — x])dx~ J f(co$x)dx. 

Theorem II. j F(x) dx = J {F( — &) + F(x)} ate. 

For f F(&) = f F(x) dx + f F(x) dx. 
J - <i J -a JO 

In the first integral let x— — u and it becomes 

— f F( — u) du = f F( — u) du = f F( — &) dx, 
Ja JO Jo 

from which the result follows. Hence 

| F(x) dx = 2J F(te) dte, if F( — x)- F{x), 

= 0, if F(—o;)= —F{x). 

The last results are evident geometrically from the figures. Ja ria 
F(x) dx=\ {F(x)+F(a - x)} dx, 

o Jo 

so that f F(x) dx=2 f F(x) dx, if F(a—#) = F(te). 
Jo Jo 

= 0, if F(a — x)— — F(x). 

The proof is the same as for Th. II.; divide the interval 
into (0, £a) and (\a, a), and in the second integral put 



RELATED INTEGRALS. 303 

As a particular case 
rr 

I /(sinx)dx~2\ f(sinx)dx. 
J o' Jo 

Theorem IV. If F(x) is periodic, with the period a, that 
is, if F(x + na) is equal to F(x) for every integral value of n 

Cpa Ca 

F(x) dx —p F{x) dx, 
Jo Jo 

where p is any positive integer. 

y\ 

If OA -- a = AB= BG= ... then from the nature of the 
graph the areas OAKH, A ELK, BCML,.. are all equal, so 
that if 00~p . OA the area OGMH is p times OAKII. 

Or divide the range pa into p parts each equal to a, then 
Cpa Ca f(£+l)a 

F(x) dx = F(x) dx + ... + F(x) dx 
Jo Jo Jka 

Cpa 

+ ... + Fix) dx. 
JO>-i)a v 7 

In the integral having ka, (k+l)a for limits let x — u + ka; 
then dx = da, and when x~kay u — 0, when x — (k+ \)a 
u = a, so that 

f(fc+l)a Ca Ca Ca 

F(x)dx—\ F(u+ka)du = I F(u)du = I F(x)dx, 
J Jo Jo' Jo 

since F(u + ka) — F(u). Thus each of the p integrals has 
the same value and the result follows. 

Similar reasoning shows that the theorem is also true 
when p is a negative integer. 
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As a particular case . 
CZir 

J /(sin x) dx=pJ /(sin x) dx. 

These theorems are of great service in tlie evaluation of 
integrals. 

§ 126. Infinite Limits. Infinite Integrand. Up to this 
point the limits of the integral have been assumed to be 
finite, and the integrand has been supposed continuous and 
therefore finite for every value of the variable within the 
range of integration. It is, however, possible in certain 
cases to remove these restrictions by the use of limits. 

A. Infinite Limits. An integral with one of its limits 
infinite is defined as follows: 

J* F(x)dx= L fbF(x)dx; P F(x)dx= L [ F(x)<Lc, 
J & b—coJa J - oo a~ -ooJ® 

provided the limits for b= oo and for a= — oo are definite 
quantities. 

Ex. 2. /J=L^=Llog&. 
J1 X d 1 X ft—oo 

In this case the limit of log 6 is not a definite number, and the 
integral is therefore a meaningless symbol. 

Ex. 3. J e~xcoa xdx. 

By § 118, ex. 3, the indefinite integral is - cos .r + sin .r), and 
we have to find the limit for b — ao of 

\ + $e~b( - cos b + sin b). 

Now cos 6, sin b are each never greater than 1, and the limit of e~b 
is zero so that the integral is equal to 

The limit for .27=00 of xne~ax, where a is positive, is often needed in 
dealing with these integrals. It is easy, by § 49, to see that 

L xne~ax^0. 

See also Exercises VII. ex. 9. 

B. Infinite Integrand. If F(x) is continuous for all 
values of x between a and b except for x — a when it is 
infinite, then the integral of F{x) between a and b is defined 
thus, a being less than b and e being positive, 
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f F{x)dx~ L f F(x)dxy 
Ja c = oJa+e 

provided the limit is a definite quantity. 
If F(x) is continuous except at b then, e being positive, 

fbF(x)dx= L P~*F(x)dx. 
Jet e = 0 Ja 

f1** L C-% L(8-V«)-2. 

cjr _ J fa-e dz _T • _! 

Jo >J{<*?-$*) e ~ qJq s](d* - x2) jr 

the limit is obviously sin”11 or 7r/2. 

Ex. 3. f1**- L f*5= L(i-l). 
Jo ^r2 «=oJ* x2 c=o\€ / 

In this case there is no definite limit and the integral therefore does 
not exist. 

If a< c < b and if F(x) is continuous except when x — c, then the 
integral between a and b is defined thus, c, c' being positive, 

[bF{x)dx= L lC~,F{x)dx+ L fb F(x)dx, 
Ja e=0 Ja «=0 Je-fV 

provided each limit is separately a definite quantity. 

Ex. 4. f L (-3V«+3)+ L (3-3 VO- 
J-l \/X e ~0 e'=0 

Here the first limit is 3, the second is also 3, and the integral is 6. 

In this case there is no definite limit and the integral does not exist. 

A change of variable will often remove the difficulty of 
an infinite integrand or an infinite limit; thus, in ex.. 2, we 
might put x — a sin 6. The change of variable is specially 
useful for the forms given in § 116. 

These exceptional cases of 
integrals may be illustrated by V 1 
consideration of the graph of \q 
F(x). Let F(x)— l/xn where n i 
is positive; then the cr-axis is V 
an asymptote and the area 
ABDG is (n=|= 1) _ ^S*,***EL» 

f»dte 1 / 1_1 \ 
Ja fiCw n—lVa""1 &nl/ 



306 AN ELEMENTARY TREATISE ON THE CALCULUS. 

Hence, if n> 1, the area ABDO tends to the value 
l/(n —l)ctn-1 as b tends to oo ; while if 0 < n < 1 the area 
tends to oo since l/6n_1, that is, bl~n tends to oo . If w= 1 
the area ABDG is equal to log (6/a) and therefore tends 
to oo with b. 

On the other hand, consider JP(a’)= l/(cc — a )n where is 
positive. If OA ~ay'AE=€, 0B — by then the area EBDF 
is equal to (n =|= 1) 

P (lx 
Ja+e(CB — (l)n 

Hence, if 0<n<l the area tends 
to (6 — a)1~n/(l — n) as e tends to 
zero; while if n>l the area tends 
to oo since e1 ~n, that is, 1 jen'1 tends 
to infinity as e tends to zero. If 
n = 1 the area is log{(6 — a)/e} and 
therefore tends to oo as e tends to 
zero. 

It is easy to show by the use of 
Th. VII., § 124, that if near a, F(x) 
is of the form <fj(x)/(x — a)n, where 
(p(x) is continuous, the area EBDF 

and the corresponding integral tend to a finite limit if n is 
a positive proper fraction, but that when (f>(a) is not zero 
the limit is infinite if n is equal to or greater than 1. 

It is beyond the scope of this book to enter further into 
these exceptional cases. 

EXERCISES XXVI. 

Evaluate the following integrals : 
TOO I'M 

1. I cos bx dx (a > 0) ; 2. / e*®* sin bx dx (a > 0); 
Jo Jo 

a r d* . 4 r dx • 
J-*x2+2x+2 9 * Jo (x2+a2y} 

[Let x—a cos2#+b sin2^l 
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10. 

8. j[ ^{[x-a){b-x)}dx-, 

'•A dx 

a2 cos2# 4-52 sin2#' 

9‘ L(a-bJ)J(i-x*)(a>b>0)- 

n-1 (a2 cos2# 4- 62 bidPxf y 
T 

^ n cos2# sin x dx 

Jo aJ 

10 f^cos2x sin x dx # 

Jo l+e2cos2# ' xw# 7o ^(I+^cos^)' 

14. j tan x dx ; 15. j log x dx ; 16. j x2 log x dx. 

17. Provo that if m and n are positive, 

f xm(l-x)ndx— f xn(\-x)mdx. 
Jo Jo 

18. Prove that if n is positive, 
Jf® r® 

e~xxndx — n / e~*#" 
0 Jo 

Find the value of the integral if n is a positive integer. 

Tr fwxsmxdx 
19- If “=i0r+ cos%> 

fV sin # rf# 
m- — 

Jo 1 - prove that 

and then find the value of u. 
I + COS2# 

20. If u~ f where 0 < e <1, 
Jo 14-^ sin# 

,, , [' irdx 

r Jo 1 4- e sin x 

and then find the value of u. 

21. Show that J F(x) dx- J F(a + b-x) dx. 

22. Prove that if n is a positive integer 

f8in nxdx> J sinn+1# dx. 

Hence, show that ir/2 lies between 

2.2.4.4.6.6 .... %n.2n 

1737375.5.7.... (271-1 )(2n+l) 

and the fraction obtained by omitting the last factor in numerator 
and denominator. (This is often quoted as Wallis's value of tt.) 
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23. Prove that, n being .a positive integer, 

"sin# 
x 

where uk 

t: - dx—un ux + uz~\(,z+ ...+(-l)*w*+... ±unFmi, 

_ f'ainudu 
Jo UJ i -f* klT 

Show that u0, uv w2...are positive, and that if Jc is equal to or 
greater than 1, uk is less than 1 jk. Interpret these results by con¬ 
sidering the graph of sin #/#, and show that the integral has a finite 
limit for w = qo . Tlie limit is 7r/2 but the proof can not be given here. 

24. Prove 

25. Prove 

f1 dx 
Jo ^/(4 — xl 

dx 

+^)>l but 

[x dx dx . 3 
Jo 17(4-3*+^)‘'i, J(4- Zx) bUt >Jo ~ Ji^-Sx+x3) 

that is, <j, but >19/32. 

dx 

3d?+8 
16 

dx, 

r ■ >•573, but < -095. 
26‘ 1>r°Ve ' 7X4-3^)' 
Put x—1 ; then replace ?*3 +3w2 + 2 by 4ft2+ 2 and by 3w2-f 2. 

27. If a and </> are positive acute angles, prove 

f* ^ j I...* ^ </> 

i* 
:></■> but <- 

Jo J(l-sin2asin2#)^ ^ - sin2asin2</>)‘ 

If a = </> = 7r/6, show that the integral lies between *523 and *541. 
More accurate methods give *52943 as an approximate value of the 

integral. 

28. Prove /<*> r<*> r oo 
e~afidx<Ji xe~x<idx ; (ii) < 1 -f - 

29. Give a geometrical interpretation of Th. YII., § 124, by con¬ 
sidering the volume of the solid bounded by the coordinate planes, the 
planes through x = a and x— b perpendicular to the #-axis, and the 
cylinders y = </>(#) and z—\}r(x). 

30. If i^(x) is positive, and if <f>(x) is a positive decreasing function 
in the interval (a, 6), show by considering the volume of the solid of 
ex. 29 that 

(i) Ja <f> (x) \fr (x) dx*=<$> (a) f* yfr(x)dx, where a < £ < 6 ; 

but that if <£(#) is a positive increasing function, 

(ii) J*<f>(x)ylr(x)dx=<j>(b)J^yfr(x)dx where a<£<b. 

31. If <M'V) increases (algebraically) as x increases from a to 5, show 
that in ex. 30 (i) we may put <f>(b) - </>(#) in place of </>(#), while if 
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<f>(x) decreases (algebraically) we may in ex. 30 (ii) put <j>(a) - cjj(x) in 
place of </>(#).* Show that, wnen these substitutions are made, both (i) 
and (ii) become 

j <f>fa)ylr(x)dx—<p(a)J^yls(x)dx + <f>(b)j^ yfr(x)dx. 

In this case <£(#) may be either positive or negative. The theorem 
expressed by the equation is called The Second (Integral) Theorem of 
Mean Value ; it is true even if ty{x) take both positive and negative 
values, though the illustration would require more careful elaboration 
to show this. 

Illustrate by an area when i/r(#) = 1. 

§ 127. Some Standard Areas and Volumes. In this article 
we collect some of the more important results already 
obtained or easily proved. 

1. The right Circular Cylinder. Let the radius of the base be a and 
the height A. 

volume = 7ra2A ; curved surface — Zirak. 

2. The right Circular Cone. Let the radius of the base be a, the 
height A, and the slant side £ = V(a2+^2)* 

volume = j7ra2A ; curved surface — iral. 

For a frustum of height A, slant side l, and with radii of ends a, 6, 

volume — J7r(a2 + ab 4* b2)h ; curved surface = 7r(a + b)l. 

Let A be the base, A the height, and X the section parallel to the 
base at distance x from the vertex of any cone ; then 

X\A~x>.h\ 
since parallel sections are similar figures. Let V be the volume of the 
portion having X for base and height x; then to the first order of 
infinitesimals o Tr= XSx, and DXV is equal to X. Hence the volume of 
the whole cone is 

For a frustum of height A, the areas of its ends being A and By the 

volume is j{A +J(AB)+B}h. 

3. The Sphere. Let the radius be R ; then, by § 85, ex. 2, the 
volume of a spherical cap of height A is 

wh2(R - JA), 

and the curved surface of the cap is ZrrRh. By putting A=2R we 
get for the volume and the surface of the sphere $7rl$ and 4rR2 
respectively. 

It will be noticed that the surface of the cap is equal to the curved 
surface of a cylinder of the same height whose base is equal to a great 
circle of the sphere. 
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To find the volume of a spherical sector, add to the volume of the 
cap that of the cone whose vertex is at the centre of the sphere and 
whose height is R-h. The result is 

nk2(R - £k) 4- Jtr(21ih ~ h2)(R -A) —J2 ttRVi - }SR, 

where S is the surface of the cap. The result is more easily obtained 
by supposing the surface of the cap divided into a large number 
of small areas ; the sector may then be considered as made up of a 
large number of cones having the same height R, and the volume 
of the sector will therefore be £SR. 

4. The Ellipse. The area of an ellipse whose axes are 2a, 2b is 

f a Ah f a 
4 / yds* — / ^/(a2 - ar)dx — nab. 

J 0 CL Jo 

The volume of the spheroid generated by the revolution of the 
ellipse about its major axis 2a is 

2 J ny2dx * 27r f (a2 - x2)dx — £ nab2. 

This spheroid is called “ prolate.” When the axis of revolution is 
the minor axis 2b, the spheroid is called “ oblate.” The volume of the 
oblate spheroid is 

2 j nx2dy — 2(b2 -y2)dy — £na2b. 

Tlie surface of the prolate spheroid is 

/ dk \2 __ / dy V- _ a4 - (a2 - b2)x2 

\dxj \dx) a2(a2 — x2) \dx/ \dx / a2(a2 — x2) 

Let € be the eccentricity of the ellipse ; then a2€2 = o2 -b2, and the 
integral may be written, since b — a^l - e2), 

47TN/( 1 - e2) f ^/(a2 - 6 V) <£r, 
.'0 

and the value is easily found to be 

2jra2| 1 - e2+^/(l -12) }• 

The limit of this expression for e —0 is 47ra2, which gives the surface 
of the sphere of radius a. 

For tne oblate spheroid the student will readily prove that the 
surface is 

(Tat 4 7T f av,a 

U 27r*£d^i-d 
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Since - log ~~=log(l 4- €)f 4- leg(1 

we find L - log = log e + log e = 2 ; (§ 48, Cor.) 
«~o€ 1--c 

so that the limit for e — 0 of this area is also 47ra2. 

5. 774e> Ellipsoid x2/a2 -Yy^fb2 4- z~jc2 = 1. 
The traces of this surface on the coordinate planes are ellipses ; the 

section MPQ by a plane parallel to 
the plane YOZ is an ellipse. If 
OM~x then 

MP= - V(a2 - .r2); HQ=-J(dl -x2), 

and the area X of the quarter ellipse 
MPQ is 

If V is the volume bounded by 
the coordinate planes, the surface 
BCQP and the section MPQ, then 
to the first order of infinitesimals 
6 V— X8x and Dx V— X. Hence the volume of the octant OABC is 

fa v , 7rbc [a, . irabc 

Jo JdX=wJo -* 

so that the volume of the ellipsoid is 47r«&6*/3. 
The method of finding the volume illustrated in examples 2 and 5 

is obviously applicable whenever the area of a section perpendicular 
to the .r-axis is a known function F(x) of x ; the volume is simply the 
integral of F(x) between proper limits. (See ex. 3, § 85.) The 
modification needed when the axes are not rectangular is plain. 

Carve Tracing.—Before proceeding to the next set of 
Exercises the student should read over carefully the 
hints given in the earlier chapters for tracing curves; 
these, with the additional help furnished by the first and 
second derivatives, should enable him to graph the more 
elementary curves. In general he should proceed in* some 
such way as the following: 

(i) Examine the equation for symmetry. 
(ii) Find where the curve crosses the axes. 

(iii) Find the finite values of x (or of y) that make y 
(or x) infinite; these values usually show the asymptotes 
that are parallel to the axes. Asymptotes inclined to the 
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axes may in the simpler cases be found as in § 24 or by the 
method of § 106; but such cases lie outside elementary work. 

(iv) Find the values of the one coordinate that make 
those of the other coordinate imaginary. 

(v) Find the gradient (see § 54); note the turning points. 
(vi) Find the second derivative; it determines the con¬ 

vexity or concavity of the arc and the points of inflexion. 
It is often laborious, however, to find the second derivative, 
and general considerations will frequently show the course 
of the curve without its use. 

For polar coordinates the procedure is similar. It is 
often convenient, however, to suppose that the radius vector 
may take negative values; thus the point ( — 1, —1) in the 
third quadrant may be given in polar coordinates as 
(^2, 57t/4) qr as (~v/2, 7r/4). In the second form 

s/%> tt/4), if l XOP is tt/4 and OP equal to ^2, 
produce PO beyond 0 to P' so that 0P/ = P0 and P' 
is the point ( —a/2, tt/4). See Exer. XXVII., ex. 23. 

The general course of^the curve should always be found 
before attempting to find an area, or arc, etc. In evaluating 
the integrals substitutions will usually be necessary, and 
the student will that sometimes a considerable amount 
of labour will besaved by choosing a good substitution. 

Even though the curve is given in rectangular coordinates 
a change to polars will sometimes simplify the integrations. 

EXERCISES XXVII. 
1. The parabola y2 = 4ax revolves about the A’-axis ; find the volume 

and the surface of the segment cut off from the solid by a plane 
perpendicular to the .r-axis through the point where x*=h. 

2. Find the volume cut off from the paraboloid 
y2lb+z2lc—%Xj 

by a plane perpendicular to 
the #-axis through the point 
where #=A. 

3. Find the area enclosed 
by the curve (Fig. 61) 

aAy2 + b2z*=a2bV. 

Fig. CL Symmetry about both axes; 
x2^a2; max. of v=6/2. 

Find also the vol ume of the solid generated by the revolution of the 
curve about the #-axis. 
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4. Find the area enclosed by the curve <?y2~x2(x-a)(b~x), where 
b>a> 0. 

If x is less than a or greater than 6, y is imaginary except when 
and then y~ 0. The curve is therefore a closed curve symmetrical 
about the ^r-axis ; the origin is called an isolated point because its 
coordinates satisfy the equation, while there is no other point nearer 
the origin than (a, 0) which lies on the curve. 

5. bind the area of the curve 
(x2 -f y2)2=a2x2 4- b2y2. 

Change to polar coordinates. The 
origin is an isolated point. 

6. Trace the curve 
by2—x(x — a)(2a - x) 

where a and b are positive.. 
y is imaginary (i) if x>%a ; (ii) if 

()<x<a. 
The curve consists of an infinite 

branch and an oval as in Fig. 62. 

7. Find the area of the loop of the 
curve K)d3y2~b2x2(a~2x) where a, b 
are positive. 

8. Trace the curve ky2 — (x - a)(x - b)(x - c) where c>b>a>0, £ > 0. 
Consider the forms for which (i) a — b ; (ii) b~c ; (iii) a—b — c. 

The general form consists of an oval and an infinite branch like 
Ex. 6, only the oval lies to the left of the infinite branch. When 
a~ b the oval shrinks up to an isolated point at (a, 0); when a = 6 = c 
the curve is the semi-cubical parabola, the point (a, 0) being a cusp. 
The area of the oval in the general case, a, 6, c unequal, cannot be 
expressed in terms of the elementary integrals. 

9. Trace the curve y2(a- x)—x2(a + x); find (i) the area of the loop, 
(ii) the area between the curve and the asymptote (Fig. 63). 

Fig. 62. 

Here the gradient is zero when x is (1 a/2, but the value 
(1 -+V&) a/2 makes y imaginary. 
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10. The “cissoid” is the curve given by the equation y2(2a-x)~x?\ 
find the whole area between the curve and its asymptote (Fig. 64) 

Find also the volume of the solid generated 
by the revolution of the cissoid about its 
asymptote. 

If PM is perpendicular to the asymptote the 
volume is 

fee f 00 

2 / 7rPM* dy = 27r / (2a - xf dy. 
Jo Jo 

To integrate let x—2a sin2#, then 

y — 2a sin3#/cos 6, 
and the limits for 0 are 0 and tt/2. 

11. Find the area between the curve 

xy2 — a\a — x) 

and its asymptote ; also the volume of the solid 
generated by the revolution of the curve about 

Fro. 64. its asymptote. 

12. Find the area of a loop of the curve y2(a24-x2) ~ x\a2 - or). 

13. The figure bounded by a quadrant of a circle of radius a, and 
the tangents at its ends revolves about one of these tangents ; find 
the volume of the solid. 

14. An arc of a circle of radius a revolves about its chord ; if the 
length of the arc is 2aa show that the volume of the solid is 

27ra3(sin a — J sin3a — a cos a), 

.and that the surface of the solid is 

47ra2(sin a —a cos a). 

15. If s is an arc of the curve an~1y—xn show that 

Show that the arc can be expressed by means of the elementary 
functions when n is of either of the forms (2&-H)/2£ or 2kj(2k-\) 
where k is any integer, positive or negative. 

16. Find the area between the graph of 4/(ex+e~*y and the .r-axis. 

17. Find the whole area enclosed by the curve 

(xlaf+(yibf = 1. 

Put a sin3#, then y—b cos3#, and the area is 

4^ ydx = 12abj sin2#cos4#cW=§7ra& 
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18. The cycloid is the curve given by the equations (§ 146) 

tf=a(0-sin0); y = a(l-cos 0). 

Find (i) the area between the #-axis and one arch of the curve ; 
(ii) the length of the arch from 0 = 0 to 0 = a ; (iii) the volume of the 
solid generated by the revolution of the arch about the .r-axis ; (iv) the 
volume of the solid generated by the revolution of the arch about 
the tangent at the highest point (or vertex) of the arch, namely, 
where 8~tt. 

Here j'y dx=a2J(1 - cos OfdO ; = 2a sin 

19. Find the volume of the tetrahedron formed by the coordinate 
planes and the plane 

x/a+y/b + z/c — l. 

20. Find the volume of the cono-cuneus determined by the equation 

z2 -f a2y‘2/x2 ~ c2, 

which is contained between the planes x~ 0 and .r=a. 

21. Find the perimeter of the curve 

*l+yl=a4. 

If .r=asin:?0, then ?/ = acos30 and ds/d8=3a sin 0cos 0 ; the peri- 
metor is \ f 

4 / 3u sin 0 cos 0 d6=6a. 
Jo 

22. The polar equation of a conic, the focus being the pole, is 
r(l ~f* a cos 0) = /. Find the area bounded by the initial line, the curve 
and the radius vector for which 0 = a, where a < tt, (i) for the para¬ 
bola, (ii) for the ellipse. 

23. Show that the curve r — a sin 30 consists of three loops of equal 
area lying within a circle of radius a, 
and find the area of a loop. 

As 0 increases from 0 to ir/3, the 
graphic point describes the loop 
OA BCG ; as 0 increases from tt/3 to 
2ir/3, r is negative and the graphic 
point describes the loop ODEFO ; as 
0 increases from 2tt/3 to ir, r is again 
positive and the graphic point de¬ 
scribes the loop OullKO. A further 
increase of 0 gives no new arc. 

24. Find the area enclosed by all 
the loops of the curve r = a sin »0 (i) 
when n is an odd integer, (ii) when n Fiu. 65. 
is an even integer. 

25. Find the area of a loop of the curve r^cos 0=a2sin 30. 

26. Find the area of the loop of the curve r cos 0=a cos 20. 



316 AN ELEMENTARY TREATISE ON THE CALCULUS. 

§ 128. Closed Curves. Let GPXDP2 be a curve that can 
not be cut by a straight line in more than two points, and 
let each ordinate be positive; let AC> BD be the tangents 
parallel to the i?/-axis, OA—a, OB = b. 

The area enclosed by the curve is 

^ Ml\dx-^ Ml\dx..(1) 

where Px and P2 move along GPlB and GP2D respectively 
as x increases from a to b. 

The integrals (1) may be written 

^MPX dx+J“j/P2 dx.(2) 

Suppose now that the coordinates x and y of a point on 
the curve can be expressed as functions of a variable, t say, 

such that as t increases from tx to 
t2 the point (x, y) travels com¬ 
pletely round the curve. As t 
increases from tx to t' let the point 

y) travel from G to D along 
the arc (7P1 D; as t increases from 
/' to t2 let the point (x, y) travel 
from D to G along the arc DP2C. 
We might, for example, suppose t 
to be an arc of the curve measured 
from (7; then ^ = <), = arc CPlD) 

If we make t the variable of integra- t2 — whole perimeter, 
tion, (2) becomes 

n 
.(3) 

The second integral in (3) is negative,since MP2is positive 
and dx/dt is negative as t increases from t to t2. When t 
represents an arc of the curve dx/dt is the cosine of the 
angle which the tangent at (x, y) makes with the a>axis, 
the angle being measured as in § 92. We may combine the 
two integrals of (3) into one and write as the expression for 
the area of the closed curve 

dx 
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As an example, lei CPXDP2 be the ellipse 

(x — h)2/a2+(y — k)“//32 — 1. 
Put x — h - a cos t, y — k 4-/3 sin t ; as t varies from 0 to 27t, the point 

(xy y) travels round the curve in the direction CPXDP2. The area is 

j (k -f /3 sin t) a sin t dt — aftj sin2* dt ~ ira/3- 

The restriction that the curve is to be cut in not more 
than two points by a straight line is easily removed. 

Thus, when the point (x, y) travels in the direction 
shown by the arrows, the area swept out by the ordinate 
of the point is 

A GEM - NFEM+NFDB - A CGDB, 

which is clearly the area enclosed by the curve, 
arcs EF\ DGC, dx/dt and the corre¬ 
sponding integrals are negative; 
the areas NFEM, ACGDB are 
therefore to be subtracted. 

We might have written (1) in 
the form 

Along the 

If as t increases from tx to the 
point (x, y) travels completely 
round the curve in the direction CP1DFV the area will be 

^ (iXl‘ .(4') 

The area, as given by (4) or (4') is a positive number; if, 
however, we agree to give the area a sign, the integral 

f4> .(5) 

taken round the curve, that is, the range of t being such 
that the point (x, y) travels completely round the curve, 
will always give the algebraical measure of the area. 

In exactly the same way as (4), (4') are established, it 
may be proved that the integral 
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taken round the curve will give the algebraical measure of 
the area. If, as t increases from tx to t2t the point travels in 
the direction GPXDPV the integral (5) is positive and ((>) is 
negative, and 

if the point travel in the direction CP2DPl it is (5) that is 
negative and (6) that is positive. 

The direction of motion of the point (x, y) is of course 
arbitrary; in mathematical physics it is customary to 
choose the number that measures the area to be positive 
when the area lies to the left of an observer who moves 
round the curve in the direction corresponding to in¬ 
creasing t. If we adopt this convention we find for the 
area A of a closed curve 

-j X^rdt- 
dt ■\y> =#§- s'SK- ..(7) 

the integral being taken round the curve in the direction in 
which t increases. The integrals in (7) are often abbrevi¬ 
ated to 

A = J;xdy = — jydx — \xdy — ydx). 

There is no difficulty now in removing the restriction 
that the coordinates are to be positive; the expressions (7) 
always give the algebraical measure of the area. Of course 

it is understood that the point (xy y) travels round the curve 
in a direction determined once for all; the sign of A given 
by (7) is positive for the direction CP2DP1} if the direction 
be CP1DPij the sign will be negative. 
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The theorem includes cases in which the curve cuts 
itself; thus, if the point travels round the figure of eight 
in the direction of the arrows, the integral (7) is equal to 
A^ — Ay For the other figure the integral gives the sum 
of the areas of the two loops; for the inner area is taken 
twice. 

§ 129. Area swept out by a moving Line. Let AB be a 
straight line of length £, and let it be displaced to a close 

osition A'B\ sweeping out an area ABB'A'\ this area will 
e taken as positive or negative according as it lies to 

the left or to the right of an observer moving round the 
boundary in the direction ABB'A'. 

Draw A'C, BC parallel to AB and to the chord A A' 
respectively; let AX' be parallel to a 
fixed line and let the angles X'AB, 
CA 'B' be a and Sa. To the first order 
of infinitesimals the area ABB'A\ Sz 
say, is equal to the sum of the paral¬ 
lelogram AO and the triangle A'OB'. 

The motion of AB may be resolved 
into (i) a translation to A'C, (ii) a rota¬ 
tion about A' to the position A'B'. Let 
h be the altitude of the parallelogram, then to the first 
order of infinitesimals 

dz = lh + W1da.(1) 

LetP be a fixed point in AB; AP — a = A'P1 — A'P\ and 
consider the displacement of P normal to AB. For the 
translation the normal displacement is (not PP, but) h; for 
the rotation it is ada. The total normal displacement, ds 
say, of P is therefore 

ds = h + ada.(2) 

From (2) h—ds—ada] therefore (1) becomes 

dz = Ids + (£Z2 — al)da.(3) 

If we suppose the variables to be functions of t, as 
in § 128, we have 
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Equation (4) is general, provided the variables are given 
the proper signs, ds and dx/dt will be taken positive when 
the motion of P is to the left of an observer looking along 
AB from A to B ; positive rotation (a) is counter clockwise. 
The constant a will be positive when P lies in AB or in 
AB produced beyond B; negative when it lies in BA 
produced beyond A. 

As t increases from tt to the area swept out by AB is 

^ftMdt+qp~al)&dt 
= + —&0(a2““ «i).(5) 

where s is the total normal displacement of P during the 
motion and av a» are the initial and final values of a. s is 
not, in general, the same thing as the length of P’s path. 

Suppose now that B describes a closed curve C and let 
the area of the curve be also denoted by 0. 

(i) When B makes a complete circuit of C let A move to 
and fro along an arc EFX 
returning to its initial posi¬ 
tion when B returns to its 
initial position; in (5) a2 = a1 
and z is simply equal to C, 
so that 

C=k.(6) 
where 6* is the total normal dis¬ 
placement of P. For, clearly, 

the integral (5) gives the area ABDGH diminished by the 
area ABKGH. In this case s is independent of a, that is 
of the position of P on A B. 

Fiq. 71. Fig. 72. 

(ii) Suppose that while B makes a complete circuit of C 
A travels round a closed curve (7. If (7 is outside 0 
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(Fig. 71) a, and a2 will be equal; (5) will be Is but the area 
swept out by AB will be C— G\ so that 

C—C' — ls.(7) 
If, however, C completely encloses C (Fig. 72) then a.2 — ax 

will be 27r and we shall have 

C-C'^l* + 2Tr(U2-al).(8) 

The signs of the numbers C\ (7 are supposed to be deter¬ 
mined by the convention of § 128 (7). 

§ 130. Planimeters. The investigations in the last two 
articles contain the theory of several instruments that have 
been devised for mechanically evaluating the area of a closed 
curve; the best known of these is Amsler’s Polar-Planimeter. 

Essentially the polar-planimeter consists of two bars OA, 
AB freely jointed at A, the bar OA rotating about a fixed 
point 0. If B is made to describe a closed curve, A will 
move along the circumference of a circle. When A merely 
oscillates along the circunderence, not making a complete 
revolution, the area enclosed by the curve which B describes 
is, by (6) of § 129, Is. In this'case s is independent of the 
position of P on the bar A B. 

To find s a wheel with axis parallel to AB is attached to 
A B; the wheel, as B describes its 
curve, partly slides and partly rolls 
The sliding and the rolling motions 
are independent, and the sliding 
motion has no effect in the way of 
turning the wheel. The normal 
displacement of P is therefore equal 
to the circumference, 27rr say, of 
the wheel multiplied by n, the 
number of turns made by the wheel while B describes its 
curve; that is, s = 2irrn. A counter is provided that registers 
n \ n of course may be integral or fractional. 

If we suppose the curve C so large that the circle of 
radius OA lies wholly inside it then, by (8) of § 129, 

(7—7r OA2 = Is + 27tQ72 —- al), 

that is, C = ZTfh'Ti + 2ir(^-Z2 — <xl)+7rOA.K 
G.C. X 
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since s = All the numbers except n are constants of 
the instrument. 

For information on Planirneters the student is referred 
to Henrici’s “ Report on Planirneters/' Brit. Ass. R<p. PS94. 
The method of proof followed in §§ 128, 129, is essentially 
that given by Appell in his Elements d'Analyse MatM- 
matiqne. 

EXERCISES XXVIII. 

1. Show that in polar coordinates the area of a closed curve is 
given by the integral 

taken round the curve. Prove the result (i) by use of the polar 
formula for area ; (ii) by transformation of the last integral in (7), 
§ 128, by putting x—rcos 0, y — rsin 0. (See Exer. XII,, ex. 15.) 

2. If the coordinates of the vertices of the triangle OAB are, when 
taken in the order 0, d, /i, (0, 0), (.r, ?/), + y-ffy/) respectively, 
prove geometrically that the area of the triangle is \{xhf-ybx\ in sign 
and in magnitude. Apply the result to establish the theorem of ex. 1. 

3. Find the area common to the two parabolas y2 = 4a.r, .r2 = \ay. 

4. Find the area between the asymptote y — a, the y-axis and the 
branch of the curve y2(a2+x2) = a2x2 that lies in the first quadrant. 

The area is equal to 

L f (a - y)dx=a2 + L a {b - J(a2 -f b2)} = a2. 
6=:or;i .'0 * 6~ao 

Find the area by integrating with respect to y. 

5. The “tore” or the “anchor-ring” is the solid formed by the 
revolution of a circle about a straight line in its plane. Let a be the 
radius of the circle, the y-axis the axis of revolution, and let the centre 
of the circle be on the .z-axis at a distance c from the origin. The 
coordinates of any point on the circle may be taken as 

x—c +a cos t} y —(taint. 

If V is the volume and S the surface of the tore, then, when 
a, prove 

C 2* 

(i) V— 7T I (c+acos t)2a cos tdt~27r2a2c~ AL ; 

(ii) S~27rJ (c+a cos t)adt—4?r2ac — (7Z, 

where A is the area and C the perimeter of the circle, and L is the 
circumference 27rc of the circle described by the centre of the revolving 
circle. 
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6. The curve r=34-2 cos 6 consists of a single oval; trace the curve 
and tfnd its area. 

7. The curve r = 2 4-3 cos# consists of two ovals (Fig. 74); if 
cos (x = - g (0 < a < tr), show that the 
area of the large oval is 

A 4-12 sin a4*| sin a cos a, 

and of the small oval is 

Show also that the integral of \rz 
from #=0 to 6 — 2tt gives the sum of 
these two areas. 

Examples 6, 7 show the nature of 
the curve r~a + b cos 0 for a > b and 
a < b respectively. 

8. How may the curve given by the equation f(mx, n?/) = 0, where 
m and n are constants, be deduced from that given by /(.r, y) = 0 t If 
the second curve is closed, show that the first is also closed and that 
the area of /(m.r, ny) — 0 is equal to that of /(.r, y)~Q divided by mn. 

Let w.r=y, ny—y\ and therefore x'dy' — mnxdy. Now apply (7), 
§ 128 ; the integral of x'dy' round the curve f(x', yr) — 0, (which is the 
same thing as the integral of xdy round the curve /(#, y)~0), will be 
equal to the integral of mnxdy round the curve f(mx, ny) — 0, that is, 
to mn times the area enclosed by that curve (since mn is constant and 
the integral of xdy is the area). 

9. Apply the method of ex. 8 to deduce from Exer. XXVTI., ex. 5, 
the area of the curve (mV 4- n2//2)2 = «V- 4- b2yl. 

10. When A B (§ 129) describes one complete revolution, show that 
P describes a curve which encloses an area C" given by 

(i) C” = (aC+b(V)l(a 4- b) - irab, 

where PB-b and a, C, C' denoto the same quantities as in § 129. 
Show also that if the ends J, B move on a closed oval curve C 

(ii) C—C"~7rab. (Holditch’s Theorem.) 

Use equation (8), 55 129. Put l~a+b and we get C— C" ; then put 
l —a and we get C"-~C\ The elimination of s gives (i). To find (ii), 
consider the areas swept out by AP and BP. 



CHAPTER XV. 

INTEGRAL AS LIMIT OF A SUM. 

DOUBLE INTEGRALS. 

§ 131. Integral as the Limit of a Sum. It is instructive 
and for some applications necessary to consider an integral 
as the limit of a sum. F(x) is, as usual, understood to be 
continuous. 

In the first place, suppose a<b and F(x) a positive 
increasing function; these restrictions will afterwards be 
removed. Between a and b insert (w —1) values in ascend¬ 
ing order of magnitude, xv x2) x8, ..., %n-i, and form the 
differences (x1 — a), (x2—Xj), (x3—x2), ..., (b — xn-i); these n 
differences are all of the same sign, in this case positive, 
and their sum is b — a. The interval b — a is thus divided 
into n sub-intervals. 

Now multiply each sub-interval by the value of F(x) at 
the beginning of that sub-interval and add the n products. 
We get the sum 

F(a)(xl - a)+F(x1)(x2 - xx) + F(x2)(x3 - a$2) +... 

+F(xn-i)(b-xn-i).(1) 

or, in the ordinary notation of differences 8a, 8xv.. 

F(a)8a+F(x*)Sx1+F(x2)8x2+... +F(xn-i)8xn-1.(1') 

The sum (T) may be more compactly written 

%F(x)Sx.(2) 
x=a 

The symbol '2F(x)Sx means “ the sum of all the terms of 
the type F(x)Sx ” and is read “ sigma F(x)Sx.’’ In inter¬ 
preting the symbol, the manner in which the interval b — a 
has been divided has to be gathered from the context; the 
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end of the interval from which the division begins is 
indicated by “& = &,” the other end by “x = 6,” and each 
difference Sx has the same sign as 6— a, in this case positive. 

We wish to find the limit of the sum (1) or (2) for n 
increasing indefinitely, each difference 8a, Sx,, at the 
same time diminishing indefinitely. To find the limit con¬ 
sider the graph of F(x), (Fig. 75). 

Let OA=a, OA^x,..., 05 = 6; then AC = F(a), 
AXGi = Fix,) ..., An^Gn^ = F{xn^\ BD = F{b). CEV 
CXE2, ..., Cn-xEn are parallel to the #~axis. The sum (1) 
is clearly the area enclosed by the rectangles AEV A XEV 

, An~xEn and differs from the area ABDG by the sum 
of the curvilinear triangles GEXCV GXE2G2, ..., Gn.xEnD. 

Draw CE parallel to AB to cut BD at E and produce 
CE to F so that EF may be equal to the greatest of the 
sub-intervals AAV AXA2, ..., and complete the rectangle 
EFGD. Let z denote the area A BDG; then the difference 
between z and the sum (1) is less than the sum of the n 
rectangles CE.. EXGV CXE2.E2G2, ..., Cn.xEn. EnD, and 
therefore less than the rectangle 

EF(ExG1+E2G2+... + EnD) 
or the rectangle EF. ED, that is, EF{F(b)—F(a)}. 
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If n increases indefinitely and if at the same time each 
sub-interval diminishes indefinitely, the limit of EF will be 
zero and therefore the limit of (1) will be 0. Hence 

x—h 

L ^F(x)Sx — z=area, ABDG..(3) 
n = cc x~a 

We may, of course, write 
x ~b 

y] F(x)Sx = 0, approximately. 
x—a 

It is easy now to remove the restriction that F(x) should 
be positive and increasing or that a should be less than b. 

If a<b and F(x) positive and decreasing the only change 
is that 0 is less than the sum (1); if F(x) is sometimes 
increasing and sometimes decreasing we can combine the 
results for the cases of increasing and of decreasing F(x). 

If a >b and F(x) positive, each of the differences (x’j — a), 
(x2 — xx)y ... is negative and the limit gives the area with 
negative sign. 

Lastly, if F(x) is negative the limit is still the area if the 
appropriate sign be chosen as in § 80. 

In regard to the sub intervals we may if we please 
suppose them all equal, each therefore being (b — a)ju; the 
only restriction on the sub-intervals is that each must have 
zero for limit when n tends to infinity as limit. 

We have supposed F(x) in the sum (I) to have its value 
at the beginning of each interval; but the limit will be the 
same if we take the value at the end or at any inter¬ 
mediate point of each interval, as may be proved by § 87, 
Th. II. For, restricting attention to the case a <b, F(x) 
positive, since the others can be easily deduced from this, if 
a', x[y x,'... are values of x within or at the end of the inter¬ 
vals (x.—a), (xi} — x.), (Xo — Xo)... respectively, we may take 

ft = Fia'Kx.-a), ft = F(x;)(x,~ 
Vl^F(a)(x^a\ y2 = F(x1)(x2—mx1)t ... 

and the conditions of that theorem apply since, F(x) being 
continuous, the limit for n=oo of ft/yp /32/y2... is unity. 

Having proved that the limit of (1) is the area we can 
now show, as in § 80, that the derivative of that limit with 
respect to b is BDy that is F(b)t and therefore we can apply 
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all the theorems respecting integrals to the limit of the 
sum (1). The origin of the ordinary notation for integrals 

is also obvious, the J being a form of the initial letter of 

the word “sum”; it will be remembered, however, that the 
integral is not a sum but the Limit of a sum. (See § 132, 
ex. 2). 

§ 132. Examples. 

Ex. 1. Evaluate 

Divide the interval b into n equal parts ; in the notation of § 131, 

0 * = 0, ()A1 — b/ny OA2 — 2b/n, ..OA~(n~ 1) bjn. 

The sum (1) becomes 

o.(-)2 -+y+1(w _ iyT - n \ 7i/ n \ n) n l ii J n 

-\{\- 
n61 

+ 22 + ...+(«-!)*} 

_ (n- l)n(2u -1) b3 r, 
“ al 1 ■i}- ri* 6 ’ 3 1‘ 2n 

and the limit is clearly IP/li. 

Ex. 2. Show that if in § 131, (2), we put F(.r) —/'(a), the limit 
will be f(b) -f(a) 

By the definition of a derivative, 

f(x + 8x)-f(x) 

8x =f(x) + a ; f(x -f &r) -f(x) ~f(x)8x 4- a&t?,.(a) 

where a vanishes with Give successively to x and in (a) the 
values in § 131 ; a will not usually have the same value for all values 
of x, and we therefore use suffixes. Hence 

/Vi) -/(«) = f(a)Sa + a,Sa ; 

/(**) ~f(xi) =/(•»!) &-i+; 

f(*s) - f(xi) =f(xi) br.,+a3&r2 ; 

/(b) - f(-rn-1) i + a„Sx„-i. 

Add: ••• f(b) ~ /(«) Atf(x) Sx+R, 
x~a 

where It = cqSa + a2SxJ +... + On&Vn-i- 

Let a be the greatest, numerically, of the quantities ai? a.fa>, ; 
then, numerically, 

It < a (8a + 8x\ +... -f or a'(b - a). 

Since every a, and therefore a\ has zero for limit, It will have zero for 
limit and the result follows. 
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Ex. 3. Find the limit for n = oo of 

-A +JL+.i_+ +L. 
« + r?i+2 n+3T t2w 

We may write this sum 

ITi *+77? *+7b'*+'"+rh 
n 71 n n 

1 
n 

Consider the function F(x)~ l/x; in § 131, let each difference be 
1 /«, let a = l, & = 2, and the above sum will be the same as (1), § 131, 
if we suppose the values of F(x) to be those at the end of each interval. 
Hence the required limit is 

l ^=[log*J = log2==-693. 

§ 133. Approximations. The method of evaluating an 
integral by first finding the function of which the integrand 
is the derivative would fail if we could not find such a 
function. An important case in which that method can not 
be used is that in which the integrand is given only by its 
graph, as often happens in physical applications. Methods 
have therefore been devised for determining approximately 
the value of the integral when only a limited number of 
values of the integrand are known; it is assumed that the 
integrand may be treated as a continuous function, though 
if only a limited number of values of the integrand are 
known, the analytical expression for the function can not 
be given. The rules now to be stated can be applied even 
when the analytical form of the function is known, though 
in genera] more powerful methods are available in that 
case, in particular the method of expansion in series. 

Let AB be divided into n equal parts, each part being 
equal to h, and suppose the (n+1) ordinates at A, B and 
the points of division to be known; let these be yv yv ys>.... 
The calculation of the integral 

| F(x)dx. 

is then equivalent to finding the area ABDC (Fig. 76). 

(1) 
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The most obvious method is to replace the graph by the 
inscribed polygon OOjGThe area of the first trapezium 
is y2), and this area may be assumed to differ but 
little from that of the corresponding strip of ABDC. 
Adding together all the trapeziums, we get, as an approxi¬ 
mation to the area, and therefore to the integral (1) 

Ax = kHVi + 2/2) + hHy2 + 2/s) + * • • + hHVn+2/n+i) 

5=5(Vi+y*+i + 2(y2 + 2/3+.. • + yn) r.(2) 
Tf the graph is, as in the figure, convex upwards through¬ 

out the value At is 
in defect; if the 
graph is concave Y 
upwards, Ax is in 
excess. 

Through the 
ends of the even 
ordinates y2, yA ... 
let tangents be 
drawn and pro¬ 
duced to meet the 
adjacent odd ordin¬ 
ates; if the number 
of ordinates is odd, 
2n +1 say, we shall 
get n trapeziums ' Fig. 76. 

whose sum exceeds 
ABDC in area when the graph is convex upwards through¬ 
out. The area of the first trapezium is 2hy2, of the second 
2hyv and so on. Hence we get another approximation 

A2 = 2 h(y2+yA+... + y2n).(3) 

The value of the integral (1) always lies between Ax and 
A 2 when there is no point of inflexion on the arc CD, 
and the difference ±(A1-~A2) gives a measure of the error 
involved in either approximation. The formula (2) is 
usually referred to as the Trapezoidal Rule. 

A formula that is in practice more accurate than (2) or 
(3) is got as follows: By § 72 we may write 

F(x)=F(c)+(x- c)F'(c)+l(x- cyF'XxJ. 
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If x~c is small we may assume that F"(xx) differs but 
little from F"(c); if F(x) were of the second degree F"(xx) 
would be simply F"(c). The equation 

y = F( o) + (x- c)F(c) + J (* - cfF'Xc).(4) 

represents a parabola; we therefore replace a short length 
of the graph of F(x) by this parabola. 

Now consider the double strip AA2C2C; for convenience 
let 0Al=sct 0A~c~h, 0A2 — c + h; then using (4) as the 
value of F{x) along the arc GGfJ^ we find for the area of 
aa2g2g 

f*hF(x)dx= f F(x'+c)dx' = 2hF(c)+WF"(c).(5) 

where, to integrate, we put x = x' + c. We can now express 
(5) in terms of h and yv y2> y3> assuming F(x) to be given 
by (4). For F(c) — y2 and 

y1 = F(e - h) = F(r) - h F'(c) + }JrF"(c), 

ys = F(c+h)=F(c)+hF’(c)+lFF'\c). 

By addition 

h2F"ic) = i/j +1/3 - 2F(c) = ;</,+ y3 - 2y2, 

and (5) becomes iM?/i + 4y2 + %).(6) 

Suppose now ABDC divided into an even number, 27?,, of 
strips by an odd number, 2n + l, of equidistant ordinates. 
The formula (6) may be applied in succession to the 
n double strips ; the sum of the n expressions is, the terms 
being rearranged, 

V1 f2/l + y2w41 + 2(y3 + 2/r)+ ••• +2/2n~l) 
+ 4(;?/2 + y4 + ...+t/2%)}.(7) 

Formula (7) is known as Simpson’s Rule, which may be 
stated thus: Let the area be divided into an even number 
of strips by equidistant ordinates; find (i) the sum of the 
extreme ordinates, (ii) twice the sum of the other odd 
ordinates, (iii) four times the mm of the even ordinates; 
add the three sums thus obtained and multiply this total 
sum by one-third of the common distance between the 
ordinates. 
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Let u = y1+y2n+i 

v=?/2+2/4"t'",+2/2K» w=ys+yr,+•■■+y-2n-i> 

then in terms of h, u, v, w, we find 
dx = \k(u + 2v + 2w); A2 = 2hv; d3 = J/i(w + 4v+2w), 

and therefore A3 = fiAl^-lA2.(8) 

Suppose the graph convex upwards and the ordinates 
positive, so that dj<area ABJ)C<A2; then 

A 3 Ai — a (d2 A j) ; A2 A3 = § (d 2 d j). 

The error in the Simpson Rule is therefore less than 

_S(d2 — dj) or \h(2v-2w-u).(9) 

Formula (8) sliows that in Simpson’s Rule greater weight 
is given to the inscribed than to the circumscribed polygon. 

These methods of approximation apply of course to a 
definite integral, whether F(x) be considered as the ordinate 
of a curve or not; for example, F(x) might be a radius 
vector and x the vectorial angle in a curve given by its 
polar equation. The values of the function for equidifferent 
values of the argument then take the place of the ordinates 
Vv V* *••• A very important practical case is that of the 
mensuration of solids; yv y2, ... are then the areas of equi¬ 
distant sections. (See, for a good statement of Simpson’s 
Rule for practical mensuration, Lodge’s Mensuration for 
Senior Students: London, Longmans.) 

Ex. Calculate 
J1 X 

Let 2n 4-1 = 11; h — '\ : a — 1; 6 = 2. An easy calculation gives 

^ = 3*459 5394; w—27281746. 

A1 = *693 771 ; J2 = -61)1 908; J3=’693150. 

The exact value of the integral is log 2, that is, ‘693 147. The value 
of 2{AX — A%)13 is *001 242, while A,-log2 is '000003. As a rule, the 
error in Simpson’s formula is considerably less than that given by (9). 

EXERCISES XXIX. 

1. If in § 133 F(x) is the area of a section of a surface made by a 
plane perpendicular to the .r-axis, and if the ordinates y,, y2, ... be 
replaced by the sections Su S2i ..., the expressions (2), (3), (6), (7) give 
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the volume intercepted between the surface and the corresponding 
planes. Thus (6) gives for the volume 

F= 4- 4 S2 4- £3),.(i) 

where Sv Sz are the areas of the end sections, S2 that of the mid¬ 
section, and 2h the distance between the end sections. The value (i) 
is exact when F(x) is a quadratic function of x. 

Apply the formula to obtain the results regarding volumes in § 127. 
Apply it also to the solid formed by the revolution of a parabola about 
its axis. 

2. Show that the formula (i) holds for a prismoid. 
A prismoid is a solid whose lower and upper bounding surfaces are 

polygons with the same number of sides and with corresponding sides 
parallel, and whose lateral bounding surfaces are trapeziums. 

3. If dx is the head diameter, d2 the bung diameter, and h the depth 
of a cask, show that when the curve of the cask is a parabola, the 
volume is 

When the upper and lower halves of the cask are equal frustums of 
a paraboloid or revolution, the greatest bases being joined in the 
middle of the cask, show that the volume is 

IhW+dft 

4. If F(x)—A + B(x-c)+ C(x-c)2 + D(x-c)3, show that formula 
(6) of § 133 still holds. * 

5. If F(x) = 4+ Bx+ Cx24-Dx3 and if y^ y3, ?/4 are the values of 
F(x) when x has the values a, a + k, a + a + 2>)i respectively, show 
that the area between the curve, the #-axis, and the ordinates yX) yA is 

tKy 1 + %y2 4- 3y3 4-?/4). 

The formula is sometimes called Simpson’s Second Rule. To prove 
it most simply, put x—a + ht; then F(x) takes the form 

= P+Qt + Rt2+St3, 

and yY) y2, y# yA are the values of <f>(t) for t equal to 0, 1, 2, 3, and the 
area is 

6. Show that 

I log sin x dx — - I x cot xdx, 

F(x)dx=zh 

and calculate the value of the integral by Simpson’s rule. The exact 
value of the integral is — ^tt log 2. For let the integral be u ; then 

=log sin xdx~j log cos x dx=(log sin x 4- log cos x) dx, 
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so that 
f* tt 

2u — J log (£ sin 2x) dx — ^ l°g i + / log sin 2# dx; 

also j log sin 2xdxlog ain z dz—log sin zdz^u, 

from which the result follows. 

7. Show that tan x dx—0. (No integration is necessary.) 

8. Show that the limit when n is oo of 
r—tt-l j 

r?o J(n*-r*) 
is 7r/2. 

9. Show that the limit when n is oo of 

is 7r/4. 

r=^~3 n 
rto ril + r2 

§ 134. Mean Values. The arithmetic mean of n quantities 
Vv Vv • • • > Vn is (yx + Vi+ ■ ■ ■ + yn)/n. Let yv y.L, ...,yn be 
the values of F(x) for x equal to a, a+h, ... , b — h, the 
interval h — a being divided into n parts each equal to h; 
the limit for n = oo of the arithmetic mean of yv y2, ... , yn 
is called the mean value of the function F(x) over the range 
b — a. 

The mean value may be expressed as an integral; for 

(3/i + 2/2 + • • • + yn)h=(yxh + y2h+...+ ynh)/(b - a)....(1) 
The numerator of the fraction on the right is 

F(a)h-f-F(a-\~h)h~\~... -f-F(b — h)h, 

and the limit of it for 71 = 00 (and therefore h = 0) is 

| F{x)dx; 

and the Mean Value is 

Ex. 1. The mean value of the ordinate of a semicircle of radius a is 

f(a2-x2)dx—^a— ‘7854a. 

In this case the diameter is divided into n equal parts. If, however, 
the semi-circumference is divided into n equal parts, so that the inde¬ 
pendent variable of the function is the arc aO from one end of the 
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diameter to the point from which the ordinate is drawn, the mean 
value is, since the ordinate is a sin 0, 

1 fn o 
— / a sin 6 adO '6366a. 
TTCtJO 7T 

In speaking of mean values, therefore, it is essential that the inde¬ 
pendent variable should be clearly indicated. 

Ex. 2. For the harmonic curve ?/ —asin.r, find (i) the mean ordi¬ 
nate, (ii) the square root of the mean of the squai'e of the ordinate for 
the range from x~0 to x—tt. 

\ C* 2 
(i) mean ord. = I a sin x dx — ■ a = *6366a-. 

7T ~'0 7T 

In case (ii) the function is y2, and the mean value of y2 is 

— [ a2 sin2a* dx—$a2, 

and the square root of this mean is aj>J2 or '7071a. 
In the theory of alternating currents the important mean is not (i), 

but (ii); the latter is sometimes called the mean-square value of the 
ordinate. 

If the interval — a is divided into n sub-intervals 
hv ... , and if yv y2, ... are the values of F(x) at any 
point of the intervals hv h2, ... respectively, the limit for n 
infinite (and each sub-interval hv h2, ... zero) of 

(y A+yj12+• • •+y,An)/(b—a) 
is still given by (2). 
The integral (2) may 
be taken as the gene¬ 
ral definition of the 
mean value of F(x). 

§ 135. Double In¬ 
tegrals. Let EFGH 
(Fig. 77) be a plane 
curve, and let f(x, y) 
be a single-valued 
continuous function 
of x and y for all 
points within or on 
the curve. Let AH, 
BF, and CE, DG be 
the tangents parallel 

to the axes; we suppose that no straight line cuts the curve 

Y 

D D, _ _ 

/I 
f 

S / 

F 

/_ / 
N 

■ ■ m 
C ■ E ■ PI 
0 / M B X 

Fig. 77. 
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, in more than two points; any curve that does not satisfy 
this condition may be divided into partial areas, each of 
which satisfies it. 

Let AB be divided into m and Cl) into n sub-intervals, 
and through the points of division let parallels be drawn to 
the axes. The area bounded by EFGH will thus be divided 
into partial areas; these areas are rectangles, though near 
the boundary EFGH the rectangles will contain points that 
lie outside the curve. 

Let xr, xr+Sxr be the abscissae of two consecutive points 
of division on AB and y„ yH + Sys the ordinates of two 
consecutive points of division on Cl); and let S, S' be the 
points (yv> ys), (xr+8xr, yg+ 8ys). 

Multiply Sxr Syg, the area of the rectangle SS\ by f(xr, ?/„), 
the value of f(x, y) at S, and form the sum 

'£,f(Vr, ?/.) SXrSy,.(1) 

for all points such as S within or on the boundary of EFGH. 

Geometrically, z~f(x, y) represents a surface; the typical term 
yt) 8xr 8yt of the sum (1) is the volume of a parallelepiped whose 

aao is the rectangle Sxr Sy„ and height the ^-coordinate f(xr, yg) of the 
point in which the normal from S to the rectangle meets the surface ; 
the sum (1) is therefore approximately equal to the volume of the solid 
hounded by the surface, the plane XOY and the cylinder formed by a 
straight line which moves round the boundary EFGH, remaining 
always perpendicular to the plane XOY. (Compare Figs. 48, 49.) 

We wish to find the limit of (1) for m and n each in¬ 
creasing indefinitely, each element Sxr, <??/*, and therefore 
each area SxrSy8 at the same time diminishing indefinitely. 
Seeing that there are two sets of increments we may appro¬ 
priately represent (1) as a double summation 

££/(*" ?/*) Sxrsy.<2) 
the one 2 referring to Sy8 and the other to Sxr. 

First, keep xr and Sxr constant, that is, find the limit for 
7i = oo; 

^ CMP' 

L ^f(xr,y,)Sy,= \ f(xr,y)dy.(3) 
tt = 00 J MP 

by the definition of the integral of a function of one vari¬ 
able y. The integral (3) will contain xr, MP, MP'; MP 
and MP' are functions of OM or xr determined by the 
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equation of the curve EFGH. Hence (3) is a function of 
xr and may be denoted by (p{xr). 

Geometrically, <f>(xr) is the area of the curve of section of the solid 
defined above, made by a plane through PPr perpendicular to XO Y \ 
and c/>(.r,.) 8.rr is, to the first order of infinitesimals, the volume of the 
slice of the solid of thickness &rr. 

Next find the limit for m= oo. We get 
COB 

L 2 4txr) = 0(.r) cfa.(4) 
7)1 ~ 00 J 0-4 

Hence, finally, the limit of (1) is expressed by (4) and that 
limit is the volume of the solid already mentioned. 

Since <f>(x) is itself an integral the expression (4) is a 
double integral and this double integral is denoted by the 
symbol 

COB CMP' 

f(x, y) dy.(5) 
J OA J MP 

The mode of establishing (4) shows that (">) which is 
merely the fuller symbol for (4) means, integrate/(x, y) as 
to y from y = MP toy = MP', treating x as a constant during 
this integration; then integrate the result as to x from 
x = OA to x = OB. 

We might also find the limit of (1) by making first m, 
then n infinite; the result would be stated in the form 

COO CN(f 

<iy\ f(x> y) dx.(6) 
J OC J NQ 

In (6) the integration is first carried out as to x, treating y 
as a constant during this operation; then the result is inte¬ 
grated as to y. Clearly the double integrals (5) and (6) are 
equal since they represent the same volume. 

When the area is the rectangle AlBlC1Dl the limits MP, 
MP' of y in (o) are constant and equal to OC, OD respec¬ 
tively, and the limits NQ, NQ' of x in (6) are also constant 
and equal to OA, OB respectively. Hence, writing a, b, 
a'} b' for OA, OB, OC, OD, 

y)dy— (7) 
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that is, when the limits are all constants the limits of y and 
the limits of x are the same in whatever order the integra¬ 
tions are effected. When the limits are not all constants 
the limits of y (or of a*) in (5) are not the same as the limits 
of y (or of x) in the equal integral (6). 

The geometrical representation of the meaning of the double integral 
is very helpful. Other illustrations might of course be given ; for 
example, f(x, y) might be taken as representing the (variable) density 
of a surface distribution of matter over the area E EG II, and then the 
integral would give the total mass. 

§ 136. Notations for Double Integrals. Polar Elements. 
The forms (.">), (0) indicate clearly the order in which the 
integrations are to he carried out. Other notations are, 
however, in use which, though not so expressive, are often 
convenient. Thus the form 

y)dx dy.(8) 

with the addition “ the integration being extended over the 
area EFGH ” (or a similar phrase) is used as an equivalent 
either of (5) or of (6). 

Instead of (5) we also find 
COB CMP1 

f(x, y)dx dy 
J oaJ mp 

with the convention that the first integration is made with 

respect to the variable on the right, namely y, between the 

limits named on the symbol j* that stands next the integrand, 

that is, MP, MP'. But there is not complete agreement as 
to this convention. 

Again, we might suppose the area enclosed by EFGH to 
be divided into partial areas other than rectangles. If SS 
be the type of such an area, and if (x, y) be the coordinates 
of any point within or on the boundary of 6S, the sum 

2/(*. y)*s.(i') 

would replace (1). Geometrically (T) would give approxi¬ 
mately the volume of the solid defined in last article; the 
limit obtained by supposing the number of the areas SS to 
increase indefinitely, while the size of each area SS at the 
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same time diminishes indefinitely, would give the volume of 
the solid and would be denoted by 

j/(*. y)ds,.(<)) 
the integration being extended over the area EFGH. 

It is easy to see, by Th. II., § 87, that (#, y) may be any 
point within or on the boundary of SS, so far as the limit 
(9) of the sum (T) is concerned; it is of great importance 
to bear this remark in mind, as the principle involved is 
constantly used (see for instance ex. 8, § 137). 

If we take for SS the area bounded by two circular arcs 
of radii r and r + Sr, and two radii making angles 0 and 
(9-f with the initial line, where r, 6 are polar coordinates, 

SS = $ (r + Sr)2SO - )>r2S0 = rSrS0 + h (SrJSO, 
so that dS — rdrdO. 

If f(x, y) becomes F(r, 0) when ?"cosd, ?*sind are put for 
x, y, we should get instead of (9), or the equivalents (5), (fi), 

JjV(/\ 0) rdrdO,.(10) 

the integration being extended over the area EFGH. In 
integrating with respect to 6, r is to be kept constant; the 
d-integration would therefore give, in the geometrical re¬ 
presentation, the area of a cylindrical section of the solid. 
Before evaluating an integral such as (10), the curve EFGH 
should be drawn, and care has to be taken so that there 
may be no omission or inclusion of areas other than those 
belonging to the curve. The same remark applies to most 
integrations. 

The reader will have little difficulty in extending these 
results to triple integrals, 

^X ^ or j/(®> y< z)dv.(ii) 
dx dy dz or dv may be taken as an element of volume, and 
fix, y, z) might, for example, denote the density at (x, y, z). 
Integration with respect to 0, keeping x, y constant, would 
give the mass of the column standing on the base dxdy; 
then the y-integration, keeping x constant, would give the 
mass of a slice of thickness dx perpendicular to the sc-axis, 
and lastly the ^-integration would give the total mass. 
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Ex. 1. Find the volume of the tetrahedron bounded by the 
coordinate planes and the 
plane 

x/a+y/b+z/c—1 

where a, b, c are positive. 
The curve EFGH is in 

this case the triangle 
GAB; the equation of 
AB is 

y-=b(l-x/a) 

and MB' — b(l-x/a), 

while MP in § 135 is here 
zero. 

= c( 1 — xja — y/b). 

Hence using (5), the 
volume is Fig. 78. 

Obviously —xja)2 is the area of the triangle LMPr. 

Ex. 2. Find the value of J x2dv taken throughout the volume of 

the ellipsoid x2/a2+y2/b2 + z2/i?—]. 

jAiv — Jx2dx I j^=]y^[Vbc( i-g)]. 

since, in integrating as to y and z, x is constant and J J dydz is the 

area of the section perpendicular to the .r-axis. Integrate now as to 
x ; the result is 4ira2bc/lb. 

The mean value of the function x2 throughout the volume of the 
ellipsoid is the above value divided by the volume, that is, a2/5. 

In general, the mean value of a function /(.r, y) over an area EFGH 
(Fig. 77) is the value of the integral (5) or (6) divided by the area ; 
and a similar definition holds for the mean value throughout a volume. 
If, in the example, x2 is the density at (.r, y, z) of a mass occupying the 
volume of the ellipsoid, then a2/5 is the mean density of the mass. 
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Ex. 3. If f{x, y) is the product of a function <f>(x) of x alone, and 
of a function yfr(y) of y alone, it follows at once from § 135 that the 
integral of the product §{x) yjr(y) taken over the rectangle A1B1ClDl 
(Fig. 77) is equal to the product of the integrals 

/ <f>(x)dx and / ^r(y)dy. 

Now let <f>(x) — 0/) — e~v\ and 

U~j[ e-^dx=Jo e-v'dy.(i) 

It follows that U2, the product of these two integrals, is equal to 
the integral 

I / .(ii) 

taken over the square 
OABC of side OA — a 
(Fig. 79). 

Draw the arcs ADC, 
EBF from the centre 0 
with the radii OA — a, 
OB—aJZ. The integral 
(ii) is greater than the 
integral of the same func¬ 
tion over the area OADG 
and less than that over 
the area OEBF. These 
two integrals can be 
found by changing to 
polar coordinates ; dxdy 
is replaced by rdrdO and 

by an(j (ji) be¬ 

comes, for the area OA DC, 
Fig. 79. 

jJe~^rdrdO—J e~**rdrj dff = ^( l-e~a) 

since the integral of <rrV is When the area is OEBF\ the 

integral is ~^(l -«~2aa). 

U2 lies between these two values ; but when a tends to infinity 
both values tend to tt/4 ; and therefore also U2 tends to ir/4, and U to 
\sJtt, Hence 

f er^dx — L f er^dx—ljw. 
JO a=oo Jo 

This example is a particular case of an integral of great importance 
(see Ex. XXX. 21), and the transformation is worthy of careful 
attention. 
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§ 137. Centres of Inertia. It is shown in works on 
mechanics that the coordinates (x, y, z) of the centre of 
inertia of a set of n particles of masses mv m2, ... , mn 
situated at the points (xv yv zx\ (x2, y2, z2), ..., (xn, yn, zn) 
are given by the equations 

_ _ mxxx + m2x2 -f... -f mnxn __ 'Emx . 
mx + m2-f...+ mn 2m 7 

with similar expressions for y, z. 
For a continuous distribution of matter the volume 

density p at the point (x, y, z) is the limit for Sv = () of 
Sm/Sv where Sm is the mass of the volume Sv surrounding 
the point; hence to the first order of infinitesimals 

Sm — pSv. 

When the maas is supposed concentrated in a surface or 
in a line we have in a similar way Sm — orSS, Sm — \Ss 
where or and X are the surface density and the line density 
at a point and SS and Ss elements of area and of length 
including the point. 

A continuous mass may be supposed to be divided into 
n elements Sm; if (x, y, z) are the coordinates of any point 
in the element Sm then the coordinates of the centre of 
inertia of the mass are given by 

_ T 2xSm fxdm 
n=oo 2(5m j dm N 7 

with similar expressions tor y, z. The integrations in (2) 
are to be extended through the total mass. 

For volume, surface, and line distributions equations 
(2) take the forms 

\xpdv \xardS \ x\ds ,,, 
J pdv \crdS Jxd!$ 

respectively; the denominator is in each case the total 
mass. 

The terms mass-centre, and centroid are sometimes used 
as equivalent to centre of inertia. The centroid of a 
volume, area, or line is the centre of inertia of a mass of 
uniform density occupying the volume, area, or line. 
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Ex. 1. A circular arc of uniform density, BAG (Fig. 80). 

Let 0 be the centre of the circle; 
OA—dy LGOB — 2a. Let OA bisect 
the angle GOB, and take OA as the 
;r-axis. 

By symmetry, y — 0. 

Let L XOP— 6 ; 

0M~x—a cos 0 

arc AP~s~aO; 

ds—adO. 

The linear density X is constant; 
hence the total mass is "2Xaa. 

Also 

jx\ds—\ J a cos 0 a (16 ~ 2Xa2 sin a 

Ex. 2. A plane lamina of 
quadrant of an ellipse, OAPB (Fig. 81). 

In a case like this the 
use of a double integral 
may be avoided ; for we 
may take a narrow strip 
jVPP'JV', of breadth dy, 
parallel to OA as the ele¬ 
ment of mass. The centre 
of inertia of the strip is 
at its middle point, and 
therefore the moment of 
the strip about OB is 

\x. crx dy or Wx2dy. 

The total mass is 
7r<rai>/4, 

and therefore 

and therefore 

2r = 2\aasin a/'2\aa — amn a/a. 

uniform density a, in the form of a 

Fig. 8L 

mrab- 
-x ■ 

4 
= x2dy = icr%l (W-f)d‘/= h<Ta% 

and therefore x—^a/^TT. 

In the same way, y — ^b/Zir, taking the strip M'MPP' as element. 
When the density is not uniform, the above method usually fails. 

Suppose (T — kxy {Jc constant); the total mass M is 

M= j jhey dxdy — k j' x dxj^ y dy = ^kj^ x. ON2dx, 

and since OAr2—y2=b2(l -x2/a2), we readily find IfoPhP. 
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Again, 

Mx = J Jx. kxy dxdy—kj x2dx j ydy —-fekazb\ 

and therefore x~ fya. Similarly, y~f«,b. 

Ex. 3. A circular sector of uniform density. 

Take the notation of ex. 1. We may take as element the small 
sector OPQ. The centre of inertia of OPQ may be taken as the point 
($<7, 0\ and the moment about OF of the element is 

\a cos 0 . (rha2d6= Jem3 cos 0 d0. 

The total mass M is cr«2a ; y — 0 from symmetry ; and x is given by 

so that 

Mx = lwa3J cos 0 d0 — \era3 sin a, 

#=5 a' 

When the density is not uniform, double integration will usually be 
required. 

The centre of inertia of 01}Q was taken on OP; as has been indi¬ 
cated several times, it does not matter for the limit whether we take 
the point as 0) or 0') where 0' is a value between 0 and 6 + &0. 
Simplifications of this kind are of constant occurrence ; a similar one 
was made in ex. 2 when the centre of inertia of NPP'N' was taken at 
the middle point of NP. 

Ex. 4. A uniform right circular cone. 

From symmetry the centre of inertia is in the axis. Take a section 
perpendicular to the axis at a distance x from the vertex ; if h is the 
height and A the area of the base of the cone, this section is x2A /A2. 
We may take as element of mass the slice between this section and the 
parallel section at distance from the vertex. 

The total mass M is \phA, and 

Mx=Jo x. p dx — \ph2Ay 

and x --1ft. 

If the density is not uniform, double or triple integrals may be 
required since the element of mass could not be chosen as above. If, 
however, the density is a function of x alone, the method still applies ; 
for example, if p—kx, the student may prove 

M — pxPdx—\kA h? ; x— f h. 

§ 138. Moments of Inertia. If rv r„,..., rn are the distances 
from an axis OR of n particles of masses mv 

the sum m^2 + m2r22+...+ mnrn\ 

or, in the notation of a sum, 2mr2, is defined in works on 
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mechanics as the moment of inertia of the set of particles 
about the axis OR 

When the masses form a continuous body the summation 
is replaced by integration, as in the case of centres of inertia. 

If the total mass of the system is M and if k is chosen so 
that r 

MU2 == Smr2 or MU1 = I r\im, 

the quantity k is called the radius of gyration of the system 
about the axis. The moment of inertia is often denoted by I. 

The work of finding moments of inertia is simplified by 
the following theorems: 

(i) If OX, OF, OZ are three rectangular axes, and if 
Ix, Iy, Iz are the moments of inertia about OX, OY, OZ 
respectively of a plane lamina lying in the plane XOY, then 

IZ = Ix -f" Iy. 

(ii) If IR is the moment of inertia about any axis OR, 
T() the moment about a parallel axis through the centre of 
inertia G and a the distance between these axes, 

1 k — I (] + Ma\ 
where M is the total mass of the system. 

The proofs of these theorems are very simple and may be 
left to the reader; they may be found in any work on 
mechanics. 

Ex. 1. A thin straight rod of uniform density about an axis 
through one end perpendicular to the rod. 

Let x be the distance from the axis of a point on the rod, X the 
linear density, l the length of the rod. For the element of mass we 
may take \8x ; hence 

I=J1 . \dx=JXP = $ Ml-, 

where M—\l is the mass of the rod. The radius of gyration Jc is 
therefore IjsjZ. 

The moment about an axis through the mid point of the rod and 
perpendicular to it is d/72/12 as may be proved directly or by using 
theorem (ii.). 

Ex. 2. A uniform rectangular lamina about an axis through its 
centre parallel to one side. 

Let a, b be the lengths of the two sides and let the axis be parallel 
to the side a. Divide the lamina into thin strips parallel to the side b 
and let $m be the mass of a strip, M being the mass of the lamina. 
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By ex. 1 the moment of inertia of 8m about the axis is 8m b2/12 and 
therefore the moment of inertia of the whole rectangle is 

&Mb2. 
In the same way the moment about an axis through the centre 

parallel to the side b is J/a2/l2 and therefore by Th. (i.) the moment 
about an axis through the centre perpendicular to its plane is 

J/(a2 + 62)/12. 
It is easy to deduce the moment of a uniform rectangular 

parallelepiped, whose edges are a, 6, c, about an axis through its 
centre parallel to an edge. For, let the axis be parallel to the edge c 
and divide the solid into thin slices of mass 8m by planes perpendicular 
to the edge c. The moment of one slice is, by the result just found, 

8m (a2 + b2)/12, 

and therefore the moment of the solid is i/(a2-f 62)/l 2, M being the 
mass of the solid. 

Ex. 3. A uniform elliptic lamina about the major axis. 

Divide the lamina into strips of mass 8m by lines parallel to the 
minor axis; then the moment of the strip is by ex. 1 om.(2^)2/12 or 
8m.y2/3 wherey is the ordinate of the strip. 

If p is the density, 8m is 2py8x\ hence 

But 

= f \y~dm = ”- f y3dx = ~~ • ^ f (a2 - x2)^dx. 
J J-a 3 djO 

J (a2 - x2) ^ dx~ a4 ^ cos4 0 dO- 
3tt 

by the substitution .r^asin#. The total mass M is irpab, Hence 

I^\irp<dA=\Mb\ 
The moment about the minor axis is i/a2/4 and about an axis 

through the centre perpendicular to its plane it is M(d2 + b2)/4. 
For a circle of radius a we get, by putting b equal to a, for the 

moment about a diameter Ma2jA and about an axis through the centre 
perpendicular to its plane J/a2/2. 

The last value may be found most simply by dividing the circle 
into thin concentric strips; then Theorem (i.) show’s that the moment 
about a diameter, since all such moments are equal by symmetry, is 
half that about the axis perpendicular to the lamina. 

Ex. 4. A uniform ellipsoid about the axis OA. 

Divide the ellipsoid into thin slices by planes perpendicular to OA; 
the mass 8m of a slice may be taken as 

7rpbc (1 —x2j a2) 8a7, 

and by the last example the moment of 8m about OA is 
|8m(a12 + 612) 

where 2a1} 26j are the axes of the section. But 

ai2=&2(l-^/a2), b2=c2(l~x2/a2). 
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Substituting and integrating from — a to a we get 

/=ix/.6C(fi»+c*)£(l 

where M— Airpabc!?) - mass of ellipsoid. 
The moments about the other axes may be found by symmetry. 

§ 139. Polar Element of Volume. The expression for the 
element of volume (IV in terms of the spherical polar 
coordinates r, 9, </> (S 89a) of a point P is often required in 
physical applications. 

Let a denote the plane through P and the axis OZ. 
Fird, keeping r and </> constant, let 6 become (9-bc50; 
P thus describes an are, PQ say, in the plane a and 
arc PQ = rod. Next, let the plane a turn about OZ as an 
axis through the small angle <k/>, the coordinates r, 9 being 
kept constant; P will describe an arc, PR say, equal to 
r sin $(?</> and, if SO is kept constant, the arc PQ will describe 
an area, SS say, equal approximately to arc PQ x arc PR, 
that is, equal to r2sin 9S98</>. Finally, keeping 0, <fi, SO, S<p 
constant, let r become r+rSr; the area 8$ will describe an 
element of volume SV equal approximately to SS x Sr, that 
is, equal to r2sin 0 Sr S08(f>. The limit of SV is the polar 
element of volume, so that 

dV=- r2sin 9drdOd(j>. 

The element of the surface of a sphere of radius r is 

dS = r2 sin 0 (19 d<p. 

If r—f(9) is the polar equation of a curve lying in the 
plane ZOX, the initial line being OZ, we find by integrating 
dV from c/> — 0 to <f> — 2tt and then from r = <) to r—f(9) 
that the polar element of volume of a surface of revolution 
about the initial line is ^irr^smOdO, where r now means f(9). 

Let P be the point (x, y, z) on a surface and let the 
rectangular parallelepiped standing on the rectangle SxSy 
as base cut out of the surface the element of area Scr, and 
out of the tangent plane at P the element Scr'. If the 
normal to the tangent plane at P make with OZ the angle 
y we have 

Scr cos y = Sx 8y> Scr = Sx Sy sec y. 
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If we assume that the limit of Scr'/Scr is unity wre find 

d<r = dx dy sec y. 

The direction cosines of the normal can be found (§91) 
when the equation of the surface is known and thus da- 
can be expressed in terms of x, y, dz/'dx, dzjdy. 

Definitions. The terms Line Integral, Surface Integral occur so 
often that it may be worth while to define them, though we cannot 
find room for a consideration of their special properties and 
relations. 

Let F denote a quantity such as a velocity or a force having 
direction as well as magnitude, and at the point Pon a cur ve AP{J let 
the angle between the direction of F and the tangent at P be €. If 
s is the arc measured from a fixed point on the curve up to the 
integral r 

I /bos € ds .(1) 

taken from the value of s at a point A up to the value of s at another 
point B is called the line integral of F along the nerve AB. 

For example, in § 95, the work IT is the line integral of the force F 
along the curve A P. 

If A\ Y, Z are the components of F parallel to the axes, the integral 
(1) may also (J} 95 (?)), be written 

/(-’•£ as as) 
ds. .(2) 

Again, let &S be an element of surface, P a point on SN, and e the 
angle between the normal to the surface at P and the direction of F. 
The integral r 

I FcoscdS.(3) 

taken over any portion of the surface is called the surface integral of 
F over that portion. 

Thus if F is the electric intensity at P, then /Tc.osc is the normal 
component N of the intensity, and the integral (3) is the surface 
integral of normal electric intensity over that portion of the surface. 

EXERCISE XXX. 

1. Find the mean value of y2 over the range from 0 to 7r when 

(i) y=ax si n x 4- a2 sin 2;r . 4- an sin nx. 

(ii) y — bx cos x 4- b2 cos 2x 4-... 4- bn cos nx. 

2. If y — sin x 4- bY cos x 4- a2sin 2x 4- b2 cos 2x 

and Ai sin x4-Bx cosx + A2 sin 2x+B2cos 2.r, 

find the mean value of the product yz over the range from 0 to 2*-. 
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3. A particle falls freely from rest; show that the mean velocity 
with respect to the time is half the final but that the mean velocity 
with respect to the distance is two-thirds of the final velocity. 

4. A particle of mass m describes a simple harmonic motion of 
amplitude a and period T; show that the mean kinetic energy is half 
the maximum kinetic energy. 

5. Show that in a homogeneous liquid under gravity the mean 
pressure-intensity over a plane area immersed in the liquid is equal to 
the pressure-intensity at the centroid of the area. 

6. If the density at a distance r from the centre of the earth is 
given by p—(pQ)siiikr)jkr where k is a constant, show that the mean 
density is 

3p0(sin kR - kR cos kR)/PRli 

where R is the earth’s radius. (Lamb’s Calculus.) 
Take as element of volume, Sr, the shell between two spherical 

surfaces of radii r and r + Sr; then 8r=47rr28r and = The 
total mass is found by integrating pdv from r — 0 to r — R. 

7. Find the centroid in the following cases : 
(i) The area between the arc of a parabola, the axis, and the 

ordinate at the point (A, k). 
(ii) The segment cut off from a parabola by the straight line joining 

the vertex and the point (A, k). 
(iii) The segment BAC (Fig. 80). 
(iv) The spherical sector formed by the revolution of the circular 

sector 0AB (Fig. 80) about OA. 
(v) The cardioid r~a( 1 +cos 6). 

8. If the density of a hemisphere vary as the distance from the 
bounding plane, show that the distance from that plane of the centre 
of inertia is 8/?/15 where R is the radius. 

9. Prove the Theorems of Pappus, namely, 
(i) If an arc of a plane curve revolve about an axis in its plane 

which does not intersect it, the surface generated is equal to the 
length of the arc multiplied by the length of the path of tne centroid 
of the arc. 

(ii) If a plane area revolve about an axis in its plane which does 
not intersect it the volume generated is equal to the area multiplied 
by the length of the path of the centroid of the area. 

Taking the .r-axis as the axis of revolution, the theorems follow at 
once from the equations 

VJ ds = fyds; y J dS=jydS = J ft\y*-y.*)dx 

by multiplying by 2ir. vu y2 are the ordinates of the points in which 
a line perpendicular to the ^r-axis cuts the curve. 

Deduce from (ii) the formula for the polar element of volume of a 
surface of revolution (§ 139.) 
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10. Find the moments of inertia in the following cases, the density 
being uniform : 

(i) A circular lamina of mass M and radius a about a tangent. 
(ii) A sphere of mass M and radius a about a tangent line. 

(iii) A triangular lamina of mass M and height h about its base. 
(iv) A right cone of mass J/, height />, and radius of base a, (a) about 

its axis, (ft) about an axis through its vertex parallel to tile base. 

11. A rectangle A BOD revolves about an axis in its plane parallel 
to A /?, and not intersecting the rectangle ; if a, b are the distances 
of AB, CD from the axis, show that the radius of gyration of the 
solid generated is given by 

12. The moment of inertia of the anchor-ring (Exer. XXVIII., 
ex. 5) about its axis is M(c2+J«2), the density of the solid being 
supposed uniform. 

13. If r2=x24-y2+z2, show that the mean value of r2 throughout the 
volume of the ellipsoid a?la2+y2/b2 + z2lc2~ 1 is (a2-\-b2 + c2)!5. 

14. The volume of the wedge intercepted between the cylinder 
y2—2ax 

and the planes z—x tan a, s=x tan ft 
is 7r(tan f3 - tan a)a3. 

15. If n > 0, the integral 

has a definite value ; the integral is a function of n, usually called 
the Gamma-function, and denoted by F(^). Show, by integrating 
by parts, that 

.(o 
and that when n is an integer, r(w) — (n - 1)!, r(l) = l. 

If n is not an integer, let p be the integer next below n so that 
[n -p) is a proper fraction, then (i) shows that 

r(w)=(n— l){n-2)'..(n-p) T(n-p).(ii) 

16. Prove 

<i)r(iw*s 

(ii) T(m+=—2'- • .... KnM -(m integral). 

Equation (i) follows from § 136, ex. 3, by putting x~*]z for 

/V*=* fV* ■ '<iz=ir(i). 
Z Jo "Jo 

Then (ii) follows from ex. 15 (ii). 

17. Prove f e~axxn^1dx^-—' (a positive). 
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18. By the given substitutions, prove other formulae for F(n): 

x—r2 ; r(n) = 2 f e-*rn~ldr.(i) 
Jo 

e~*=z\ r(?i) = j^1^logiy ldz.(ii) 

19. When m and n are both positive, the integral 

-j)n ,ds 

has a definite value ; it is a function of m and n usually called the 
Beta-function, and denoted by B(m, n). Show that 

B(m, n) — B(w, m). 

20. By the given substitutions, prove other formulae for B(wi, w): 

x — cos2 6 ; B(w, ??) = : 
ri 

2 / cos2"1*10 sin"”~10 d0. 
Jo 

.(i) 

1 
B (//i, n)~ f" r-'dv 

)o (i+y)",+n. .(») 

21. Using form (i) of ex. 18, write 

T(m)=-if fr^x^dx, !’(«) = 2 £V»y—Wy; 

and then show, as in § 130, ex. 3, that 
w 

T(m) x r(w) = 4 f e~r*‘r{m+n)~ldr f cos2m~10 si n ‘w~1 # d0 ; 
jo Jo 

and therefore, by exs. 18 (i) and 20 (i), 

r (m) F(?i) = F(wi -f n) B(w, n). 

Tlius the Beta-function can be expressed in terms of the Gamma- 
function. 

22. Let 2m — 1 2n~l—q\ then, from exs. 20 (i) and 21, 

r(*r)r(2fi) j co^?}8su\rj0 d0 
B(w, n) 

~ 2 = 

where, since m >0, n > 0, we have \(p + 1) and \(q -f 1) > 0, or p and q 
each greater than -1. 

The student may test that this result includes the rule given in § 119. 
Tables of logr(n) for l^±n~=2 have been calculated (no wider 
range for n is necessary by ex. 15, (ii)), and many integrals can be 
expressed in terms of Gamma-functions. 
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23. Find the potential F at a point Q of a mass M distributed 
uniformly (density <j) over the surface of a sphere of radius a. 

Take (\ the centre of the sphere, as origin and OQ as 2-axis ; let dS 
be the surface element at I\ and denote PQ by It and Oty by c. Then 

crdS 

PQ ; 
dS=a2 sin 0d0d<[> ; IP =. a2 + <'2 - C2ac cos 0. 

The limits lor c/> are 0 and 2-n-, for 0 they are 0 and 7r ; in integrating 
as to (f>, the other variable 6, and therefore in this case also PQ or tt 
(which is a function of 0 and not of </>) is to be kept constant. Hence 

r=o-«2 [’ 
It J 0 

27T(ra ■r Jo 

sin Odd 

~ir' 

Now change the variable from 0 to R ; we have RdIt ~ ac sin OdO. 
When 0=0. R~ ±(a-c); R is a positive number, so that if Q is out¬ 
side the sphere /l = a — a, and if Q is inside R~a—c. When 0 — 7T, 
It —a + c in both cases. Hence 

V=2tzv<i1 j^—J (Q outside).(i) 

— 47rcra (Q inside).(ii) 

Thus V—Mjc when Q is outside, but Y—Mja — constant when Q is 
inside the sphere. 

24. Same problem as in Ex. 23 for a solid sphere (density 
p - constant). 

Take as element of mass the shell bounded by radii r and r+dr, 
and use the results of Ex. 23, putting pdr for cr, and r for a. 

If Q is outside, the result (i) gives 

\TTprldr 

c 

4tTp a3 

IT cm (iii) 

If Q is inside, V consists of two parts, Vv V2. T, is the potential 
duo to the sphere of radius c, and by the result just found 

3 ' c" 3 C' 

V2 is that due to the shell of radii c and a ; by the result (ii) of 
ex. 23 

27rp(a2-c2). 

Hence V~ \\ + V2 — 2irp (a2 - J c2).(iv) 

When c~a the values given by (iii) and (iv) coincide. 



CHAPTER XVI. 

CURVATURE. ENVELOPES. 

§ 140. Curvature. Let P and Q be two points on a plane 
curve, (j) and <j> + S<p the angles which the tangents at P and 
Q make with the cc-axis, a the arc measured from some fixed 
point on the curve up to P and 8s the arc PQ. 8(p will be 
the angle between the tangents at P and Q (Fig. 82, p. 354), 

Definitions, (i) The angle 8<p is called the total curvature 
of the arc PQ\ (ii) the quotient 8<p/8s is called the average 
curvature of the arc PQ; (iii) the limit of S<p/Ss when Q 
approaches P as its limiting position, that is, dcpjds, is called 
the curvature of the curve at P. 

For a circle of radius R, 8s — R8(p and therefore 

S(j> 1 d(p 1 /^\ 

8s ~R ] ds ~ R.V } 

that is, the average curvature of any arc of a circle is equal 
to the curvature at any point of that circle. In other 
words, a circle is a curve of constant curvature and its 
curvature is equal to the reciprocal of its radius. 

Curvature is thus a magnitude of dimension — 1 in length. 
The curvature may be expressed in terms of the first and 

second derivatives of the ordinate at the point. For, since 

. dy , dx 
tan <p = ~~i cos <f> = 

we get, by differentiating the first equation with respect to a, 

d. tan <f> d(f>~_ d (dy\ dx 

dtp ds ~~ dxKctxJ ds’ 
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that is, 

and therefore, 

secr<j6 
d(h d2y 

*,h _ — ,''—sec <f>; 

els dxl 

d(p __ d2y 
ds dx1 

secs</>. (2) 

Hence, since spc2</> — 1 +(dy/dx)2 we find 

__ dhj 
ds ~ dx2 

(A) 

Formula (a) may be considered fundamental. 

Con. When the gradient dyjdx is so small that for all values of x 
within the range considered its square may l>e neglected, the curvature 
is approximately d2yjdx2. This approximate value is often used in 
Mechanics ; for example, in the theory of the bending of beams. 

Ex. 1. The parabola y2 — 4ax. 

dy __ 2a dh/ - 2a dy _ —4a2 # 

dx y 9 dx2 y- dx v/3 ’ 

d<j> — 4a2 ^ f j 4 «2 H __ - 4a2 

X ~ X ~\+ f) _(/ + 4a2)f 

If the normal at P(r, >/) meet the axis at O, 

**-?+** and f 

The meaning of the negative sign will be referred to in § 3 41. 

Ex. 2. The ellipse xi/a~4-y2j(>2~l. 

dy _ b2x' d-y _ h2 b2x / 52#\ _—bA 

dx a2y ’ dx2 a2y~ d2y2\ a2y) a2y:i' 

since b2x2-f ah/2 = a"b2 by the equation of the ellipse. Hence 

dj>^ 

ds 

a*b* 

(b\r2 4- ah/2) 2 

If p is the perpendicular from the centre on the tangent at (xy y), 

a2b2 dj>^ 

ds 
and 

r (b*x2 + aY)l 

If PG is the normal at P (x, ?/), 

an(J 

r 
a2b2' 

d<f>_ 

ds ~ " afPG*' 

A similar result holds for the hyperbola. Thus the curvature or a 
conic section varies inversely as the cube of the normal. 

o.cl z 
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§ 141. Circle, Radius, and Centre of Curvature. Let the 
normals at P and Q (Fig. 82) intersect at C"; when Q tends 
to P as its limiting position, G' will tend to a point G on 
the normal at P as its limiting position such that PC is 
equal to ds/d<f>. 

For lPG'Q = S(/>, and 

PC' __ chord PQ __ chord PQ Ss S<f> 
sin PQC ~ sin PC Q arc PQ S<j> sin S</> 

The limit of PQC is 90° and the limits of the three 
fractions last written are 1, d$/d<f>, 1 respectively; hence 
the limit of PC' is ds/d<f>, as was to be proved. 

The circle with centre G and radius PC has therefore the 
same tangent and the same curvature as the curve has 
at P. This circle is called the circle of curvature, its 
radius PC or ds/d<j> the radius of curvature, and its centre 
G the centre of curvature at P. If any line through P 
meet the circle again at R, PR is called a chord of 
curvature. 

If (x, y) are the coordinates of P, (£ *?) those of C and p 
the radius of curvature PC or ds/d<f> it is easy to prove 

psm<f>, j? = 2/+pcos0.(1) 
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We will generally use p for the radius of curvature; the 
curvature will then be denoted by 1/p. 

If d2y/dx2 is zero at P then 1/p is zero by (a) and p or 
PC is infinite. Thus at a point of inflexion on a curve 
p is infinite. 

We take Fig. 82 as the standard diagram. If we adhere 
to the convention that y> is always acute (§ 21) then dx/ds 
and sec <p will be always positive and the root in (a) will 
have the positive sign, p and 1/p will therefore be positive 
or negative according as dly/dx2 is positive or negative, 
that is according as the curve is concave upwards or convex 
upwards near P. Of course other conventions may be 
used but a little care, especially if a figure is drawn, will 
usually settle the question of sign. In many cases it is the 
numerical value alone that is important. 

The limiting position 0 of the point C' is sometimes called the point 
of intersection of two consecutive normals. Of course there is no one 
normal that is the consecutive of another, but the phraseology is 
briefer than that used in the statement at the beginning of this article 
and is therefore sometimes useful. 

It should be noticed that when the arc PQ is an infinitesimal of the 
first order the difference between PC' and QC' is of a higher order 
since the limit of (QC' - PC')/Ss is zero ; for 

QC' - PC' = QC'( 1 - cos S</>) - PQ cos QPC'. 

Yj § 142. Other Formulae for the Curvature. Formula (a) is 
not very convenient unless the equation of a curve is in the 
form y = f(x) or unless, as in the examples worked in § 140, 
the values of the derivatives can be easily calculated. We 
will therefore give one or two other formulae; the question 
of the sign of p usually needs special consideration. 

(i) Equation of form x~f(t\ y = F(t). The variable t 
need not, of course, represent time but we will for brevity 
use the fiuxional notation. 

Substitute in (a) the values of Dy, IPy in terms of 
x9 y, y, as given in § 98; we find 

- - (Ay - yx)/{x2+y2f.(b) 
p 

Since Pxy~(xij--yx)ld?9 we can determine the sign of p 
when necessary in accordance with the convention of § 141. 
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(ii) Polar Equations. In (a) substitute the values of 
Dy, D2y in terms of D$r, De2r and we get 

1 

P 
(c) 

Formula (c) is cumbrous. It is often simpler to find 
wliat is called the pf r equation, that is the relation between 
the perpendicular OZ from the origin 0 on the tangent at 
P (Fig. 82) and the radius OP (see ex. 2), and then to apply 
a formula we will now deduce. 

In Fig. 82 we have, OZ~p, OP — r, 

OC'2 = OP2+PC'2 -2 OP. PC cos OPC 

— r2+PC2 — 2p. PC 

since p = OP cos OPC'=r sin where i/r is, as usual, the 
angle between the tangent and the radius vector. 

If OQ — r + Sr and if p + Sp = perpendicular from 0 on 
tangent at Q we find in the same way 

1 OC2=(r+Sr)2+QC'2-2(p + Sp)QC. 

Equating the two values of OC'2 we get 

2rSr+(Sr)2+(QC - PC) (QC + PC - 2p) - 2QCSp - 0. 

But (QC—PC) and (Sr)2 are of order higher than the 
first, and therefore 

p=LQC~ 
rdr 
dp* 

.(D) 

Formula (d) may also be proved thus: since p — rsinyfr 
and 0 = @ + we have (see § 88) 

dp . # . f d\Ir d6 , d\ls dd> 

ds’ 

and therefore dsjd^ — rdr/dp. 

An inspection of figures will show that when the curve 
is concave towards the origin (as in an ellipse with the 
centre as origin) p and r increase or decrease together, and 
therefore dr/dp and p are positive; when the curve is 
convex to the origin p is negative. 
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We can now deduce (c) from (d) ; for (§ 88) 

tan \ls — rd6/dr 

A !_ 1 _ 1 , /l dr\2 r. 
ana y2“"r2sin^““r2 + \^d0/ .(1) 

and by differentiating with respect to r we can find dp/dr. 
We will work out a slightly different formula that is of use 
in dynamics; namely, putting r=l/u we will find p in 
terms of u and 6. 

xr dr_ dr du 1 du 
0W d6 du c?@~~ u2 d& 

and therefore (i) becomes 

1 

jr 
u2+ 

(du\ 

\dd) 
.(h) 

Hence, differentiating with respect to u, 

2 dp 
p* du 

-2u+2(d~)-U d0 
~ + \de) d&du 

d2u 
= 2w+2- 

But 
dp _ dp — 1 
du~ dr ' u2 

'de* •• 

i—l dip 
p r dr w du’ 

and now by substitution in (iii), using (ii), we get 

d2U\ f , , /'dwV'l* 
p 

.(iii) 

H(“+SM»’+©T 
-("+S)+{i+(i®)’}'.w 

The root being taken positive, p will be positive or 
negative according as the arc is concave or convex to the 
origin. 

(iii) Intrinsic Equation. Let 8 denote the arc of a 
curve measured from a fixed point on it up to the point P, 
and <f> the angle which the tangent at P makes with a fixed 
tangent; the equation which expresses the relation between 
8 and <f> is called the intrinsic equation of the curva This 
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equation does not depend on any lines of reference outside 
the curve, such as the ordinary rectangular axes; hence the 
name. 

When the intrinsic equation is given p is founa at once 
by differentiation. In elementary work, however, the 
intrinsic equation is of comparatively small importance; 
it has usually to be deduced by integration xroin the 
ordinary equation, one of the coordinate axes being taken 
as the fixed tangent. The angle <j> must not in this case be 
restricted to acute angles. 

Ex. 1. y* eft. 

Let x=acos'Jt, y—-asin3t, and use formula (B). 

x — -3a cos21 sin t; x—3a cos *(2 sin2* - cos2*!) ; 

y — 3a sin2* cos *; y = 3a sin *(2 cos2*! — sin2*1); 

cv2-by2—9a2sin2£cos2*; xy - yx - - 9a2siu2* cos2* ; 

p= — 3a sin * cos t— —3(axyy. 

In this case Dx2y~\l3asm *cos4* and p, if determined by the con¬ 
vention of § 141, will be 4-3a sin * cos *. 

Ex. 2. rm — am cos m$. 

Form the py r equation and use formula (d). 

tan yjr — ■= — — 

We will take = 4-7r/2 ; then 

p — rsin \fr~rcosmtf~rm+l/am, 

rdr am 
and therefore /> = dp (?n+l)rm~1' 

By giving different values to m we get several well-known equations. 
See Exercises XXXI. 10. 

Ex. 3. Find the centre of curvature and the locus of the centre of 
curvature of an ellipse. 

It is easy to show, with the notation of § 140, ex. 2, that 

sin <f) — — joxja2. cos <j> ~py/b2y p = — a2b2Jp3, 

£—x—psin<f>—x(l - b2/p2); 77—y(l - a2jp2). 

Let 6 be the eccentric angle of P(x, y) and these values become 

a£=(a2 - b2) cos39; brj = - (a2 - b2) sin30. 
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To find the locus of the centre of curvature eliminate 9; thus 

(«£)*+ 
or, taking now x and y as current coordinates, 

(axft + (&y) ” —(a2- b'rf. 

The curve is shown in Fig. 83, § 143. 

Ex. 4. Show that the normal acceleration at a point P on a curve 
is v2/p where v is the tangential velocity and 1/p the curvature at P. 

At Q (Fig. 82) let the tangential velocity be ; the components 
in the direction PC of the velocity at P and at Q are 0 and 
(v-f Sv)sin8<f> respectively. Hence the normal acceleration at Pis 

L 
o 

(v + Sv) sin $<t> __ d(jy _ d<f> ds 1 

St V ~di V ds dt V ' p ' 

as was to be proved. 

EXERCISES XXXL 

1. The equation of any conic may be put in the form y2~ 2Ax+ B.rt, 
where the .r-axis is the focal axis and 2.4 is the latus rectum. If the 
normal at P meet the r-axis in G and if a is the angle between PG 
and the focal distance SP prove that 

p= - PG*/A2~ - PG I costa. 

Note that the projection of PG on SP is equal to the semi-latus 
rectum. 

2. From the value of p in terms of a (ex. 1) prove the following 
construction for the centre of curvature K of any conic : Draw Gti 
perpendicular to PG to meet SP at //, then draw IIK perpendicular 
to IIP to meet PG at K; K will be the centre of curvature. 

3. For the rectangular hyperbola xy — c2 show that 

p—(x2+y2)^/2c2. 

4. C is the centre of an ellipse, CD is a semi-diameter parallel 
to the tangent at P and 0 is the eccentric angle of P; show that, 
numerically, 

p = (d2 sin2 9 + 62cos2 9^ jab — CIP job. 

It may be shown that the eccentric angle of D is 9+\tt or 9 — ^ir. 
CPy CD are called conjugate, semi-diameters since, as may be readily 
proved, each diameter bisects all chorda parallel to the other. 

5. If r is the central radius of a point P on an ellipse, and p the 
perpendicular from the centre on the tangent at P, prove 

at + b2 - r2 — atb2jpt; p = atb2jpz. 

For a hyperbola prove, with similar notation, 

r2 — at+b2asatb2jpt; p= — atb2jpt. 
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6. For the curve a2y=xs show that p=(a4 + 9.r4)^/6a4jr and for the 

curve ay2=#3, p=^ (4a + 9:r)^ /6a. 

7. At the origin on the curve J 

ay=fop2 + 2e#y + #y2 + w3-f tt4-f... + w«, 

where is of the »th degree and homogeneous in x and y, show that 
Dy — 0, D2y = 2b/a, p—a/2b. 

8. At the origin on the curve 

y=2x + 3.x2 - 2xy+y2, 

the radius of curvature is 5x/5/6. 

9. Prove that the radius of curvature of the catenary 

a I * _*\ 

yas2V+tf / 

is y2/a, and that of the catenary of uniform strength 

y—clog sec (xjc) 
is c sec {xjc). 

10. Verify the general results given in ex. 2 § 142 for the particular 
cases : 

(i) Lemniscate r2 — a2 cos 20 ; r*—a2p\ p-a2/3r. 

(ii) Equilateral hyperbola r2cos 20=d2; pr — a2 ; p=r7a2. 

(iii) Parabola r(l -f cos 6) — 2a ; ar~p2 ; p~2r^la^m 

(iv) Cardioid r=a(l + cos 0); rz—2ap2 ; p = 4ap/3r. 

For the parabola m - -1/2 ; for the cardioid m —1/2, and 2a takes 
the place of a. 

11. Show that the chord of curvature through the origin is 
2pdrjdp ; for the curve rm = amcosmO, this chord is 2r/(ra+l). 

12. Show that for the equiangular spiral r=a/cota the radius of 
curvature is r cosec a; show also that the radius of curvature subtends 
a right angle at the origin. 

13. If yjr is the angle between the focal radius of a conic and the 
tangent at Pand a the angle between the focal radius and the normal, 
show by formula (E) that 

p—l/&inzyjr = l/cos\ 

the equation of the conic being lu~ 1 +e cos 6. 
Show also that if r and r are the focal distances 

rr'cos2 a=b2=al, 

p_(rr’)i= r/ 

^ ah a cos a* 
and that 
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14. If accents denote differentiation as to the arc show by 
differentiating the equations cos <£=#', sin </> = ?/ that, (£, y) being the 
centre of curvature, 

i//>= -*i; vp2=vy+m 
and £=».r-fpV', ^=y+/>y'. 

16. Show from formula (e) that the condition for a point of 
inflexion is 

dhi 
u+m=0- 

16. The circle (x — a)2-f (y — f3)2~R2 and the curve v ~f(x) intersect 
at the point P(a, b). If at P the values of Dy and D2y are the same 
for the circle and the curve show that the circle is the circle of 
curvature at P. 

The circle and the curve have the same tangent at P because P lies 
on both circle and curve, and the gradient of the circle at P is equal 
to that of the curve at P. Again, differentiate the equation of the 
circle twice and after differentiation put a, b (or /*(a), f\°)> f°r 

y, l)y, l)ly respectively; we get 

(a - a)2 4* (6 - fif=R2.(i); (a-a)+(6-$/(*)= 0.(ii); 

l+{/'(a)P + (6-/3)/'(a) = 0.(iii) 

From (ii) and (iii) we find 

Wi= -D +{/(«) P]-/"(«); a-a=/(«)[l+{/'(a)P]-/"(a), 

and therefore by substituting these values in (i) 

K = [l+{f(a))*f+f’(a).(iv) 

But R as given by (iv) is the radius of curvature at P and (a, [3) is 
the centre of curvature at P. 

Definition. Two curves y—F(x\ y—fi#) which intersect at the 
point P (a, b) are said to have contact of the nih order with each other 
at P if F'{a)—f(a\ F"(a)=f"(a), .F^(a)=f^(a) but />+"(«) not 
equal to /(n+1>(a). 

The circle of curvature has thus in general contact of the second 
order with the curve. 

From Taylor’s Theorem (§ 152) it will be seen that when the curves 
have contact of the nth order at (a, b) the difference F(x) —/(#) 
between corresponding ordinates near (a, b) is an infinitesimal of 
order n + \ when x-a is principal infinitesimal; for 

F{x) - {F^Ka) -/(-+»(«)+£}, 

where R is zero when x—a. 

§ 143. Evolute. Involute. Parallel Curves. 

Definition. The locus of the centre of curvature of a 
given curve is called the evolute of that curve. 
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The coordinates (£ tj) of the centre of curvature G corre¬ 
sponding to the point P (x, y) are given by 

sin</>, n^y+p cos0.(1) 
The four quantities x} y, <f>, p can all be expressed in terms 
of one quantity, for example x or s or t; the elimination of 
that quantity between the equations (1) will give a relation 
between £ and q which will be the equation of the evolute. 

The evolute of the ellipse is (§ 142, ex. 3) given by 

(axf + (by)^ = (a2—62)^, 
and is shown in Fig. 83. 

Fig. 83. 

E, E\ Ft F' are the centres of curvature corresponding to 
the vertices A, A', B, B'; and 

EA = A'E = b*la, FB=B'F'=a?/b. 
It is obvious how the radius of curvature may be utilised 

for graphing the curve. 
The following are important properties of the evolute: 
(i) The normal at P to the given curve is the tangent at 
to the evolute. (ii) The length of an arc of the evolute 
equal to the difference between the radii of curvature of 
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the given curve at the points corresponding to the ends of 
the arc. 

(i) In equations (1) take 8, an arc of the given curve, as 
independent variable; then 

dfi dx d(b . d 
_2 __ ^ nr\a _L g = cos^-sin -sin*- 

dp 
ds 

(2) 

since dx/ds = cos <j>, 1/p = d<f>/ds. 

Similarly C~~ = cos <j> ..(3) 

Therefore ^=~ ~ co^ ^ 

Now the centre of curvature C (g, rj) lies on the normal 
at P, and the gradient of the evolute at 0 is dyjdg, that is, 
— cot </>, which is the gradient of the normal to the given 
curve at P. Hence the normal PC coincides with the 
tangent to the evolute. 

(ii) Let dcr be the differential of an arc of the evolute; 
by (2) and (3) 

dg~ —sin <f>dp, drj = cos</)dp, 

so that da= ± \/{dg2 + dr}*) = + dp.(4) 

The sign will be posi¬ 
tive or negative accord¬ 
ing as a increases or 
decreases as p increases. 
For the positive sign we 
have 

a — p + const.(5) 

In Fig. 84 let a be 
measured from Cv and 
let I\CV P2C2, Ps03 be 

Pv Pi’ Ps; then (5) gives 
arc C\C2 = p2+const. 

^ P2Pi > 
arc CXC3 = p3 - pv Fig. 84. 

which proves the required result. 
If a thread were wrapped round the curve CXC3 and one 

end fixed at <73, the length of the thread being equal to pv 
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it is clear that when the thread is unwound, and kept 
stretched in the process, the free end will describe the 
curve PjPgPg. It is from this property that the evolute 
is named. 

The curve PXP3 is said to be an involute of CtC3. Ob¬ 
viously any point on the thread will describe an involute, 
so that a given curve has an infinite number of involutes 
while it has but one evolute. 

The two involutes PXP8, PX'P3' are called parallel curves, 
since the distance between them measured along their 
common normals is constant. 

§ 144. Envelopes. The equation 

y — aX^afa.(1) 

where a, a are constants, represents a straight line. If we 
give a different constant value to a, say av the equation 
will become 

2/ = a1«+a/a1.(2) 

and will represent a different straight line. The coordinates 
of the point of intersection of (1) and (2) are 

x = a\aav y — aja + a/c^.(3) 

Suppose now that ax is taken closer and closer to a; the 
line (2) will therefore come closer and closer to the line (1), 
but the values (3) show that the point of intersection tends 
to a definite position when ax tends to a as its limit. The 
coordinates of the limiting position of the point of inter¬ 
section are 

x~a/a2, y — 2aja.(4) 

If we eliminate a between the two equations (4) we get 

y2z=4fax.(5) 

so that, whatever value a may have, the limiting point lies 
on the parabola (5). It may be readily verified that 
whatever value a may have the line (1) is a tangent to the 
parabola. 

In general the equation f(x, y) = 0 of a curve contains 
constants that determine tne shape, size, and position of 
the curve. By assigning a series of different values to the 
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constants we get a series of different curves. We will 
consider the case in which, as in the example just given, 
the series is determined by assigning different values to one 
constant, and we will speak of the series as a family of 
curves. The constant is then often called the parameter of 
the family; thus, in (1) a is the parameter of a family of 
straight lines. 

Two curves of the family will, in general, intersect; if a 
and a + <5a are the values of the parameter for two curves 
C, and (72 of the family, the point or points of intersection 
of Cl and C2 will tend to definite limiting positions as Sa 
tends to zero, and the locus of these limiting positions is 
called the envelope of the family of curves. 

Thus the parabola (5) is the envelope of the family (1) ; the evolute 
of a curve is the envelope of the family of straight lines composed of 
the normals of the curve (§§ 141, 143). 

§ 145. Equation of Envelope. Let the equation 

f(x,y,a) = 0.(1) 

represent a family of curves, the parameter a of the family 
being indicated in the functional symbol; a is constant for 
any one curve of the system. Let the equation 

f(x,y,a + Sa) = 0.(2) 

represent another curve of the system. The coordinates of 
the points of intersection of (1) and (2) will satisfy 

f(x, y, a + Sa)-f{x, y, «) = 0, 

and therefore also 

{fix, yy a+Sa)—f(x, y, a)}/&x = 0.(3) 

The limit of (3) for Sa = 0 is 

Vfix, y, a)/da = 0,.(4) 

and therefore the coordinates of the points on the envelope 
satisfy equations (1), (4). The equation of the envelope is 
therefore got by eliminating a between these two equations. 
In forming (4) x and y are treated as constants, as is evident 
from the proof. 
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Thus, if f(xf y, a)= -y + cur + a/a, 

B/fo y, a) a 
-^-—==07-^ 

Eliminate a between the equations 

-y + ax+aja — 0, x~aja2~0 

and we get ij2—4ax. The envelope is thus a parabola, as in § 144. 

We saw in § 144 that the parabola (5) has each member 
of the family (1) as a tangent. We will now prove the 

Theorem. In general, the envelope of a family of curves 
touches each member of the family. 

The gradient at a point (x, y) on (1) is given by 

dy=Q 
dx^dy dx (5) 

where, in differentiating, a must be kept constant. 
On the other hand, to get the equation of the envelope, 

we have to eliminate a between (1) and (4); we may there¬ 
fore take (1) for the equation of the envelope provided we 
regard, a as a function of x and y determined by (4). 
The gradient at a point (x, y) on the envelope will therefore 
be found by taking the total derivative of (1); this total 
derivative is given by 

dxdy dx^~da dx (6) 

Suppose now that the coordinates of the point (x} y) 
satisfy both (1) and (4); that point is therefore on the curve 
(1) and also on the envelope; and, by (4), equation (6) 
reduces to equation (5). Hence at the point (x, y) the 
gradient dyjdx is the same for the curve (1) and for the 
envelope, which proves the theorem. 

It is assumed that dffdx, dffdy are not both zero; if they are, the 
value of dyjdx given by (5) or (6) is not determinate and the theorem 
may not be true. The discussion of such cases, however, is beyond 
our limits. 

Analytically, the problem of finding the envelope of the 
family (1) is equivalent to that of finding the turning values 
of the function f(x} y, a) of the variable a, when x and y 
are regarded as constants. 
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The student should draw a few lines of the family 
y^ax + aja for both positive and negative values of a, and 
he will get a clear idea of a curve as the envelope of its 
tangents; the lines are easily drawn since the intercepts on 
the axes are —a/a2 and a/a respectively. 

Ex. 1. The evolute of the parabola y2 — \ax considered as the 
envelope of its normals. 

The normal at (/*, k) is given by 

2a(y~ k) + k(# - h) — 0 

or 8a?y + 4a(#— 2a) k — 0,.(i) 

since A=P/4a by the equation of the parabola. Take k as the para¬ 
meter of the family of straight lines (i), and find the envelope. 

Differentiate (i) as to k ; we get 

4 a[x - 2a) ~3F = 0.(ii) 

Eliminate k between (i) and (ii) and we get 

2*1 ay2 = 4 {x— 2 a)3, 

which is therefore the equation of the evolute. 

Ex. 2. Find the envelope of the circles which pass through the^ 
origin and have their centres on the hyperbola 

x't—yt — c2. 

Let (a, /3) be the centre of any circle of the family ; the equation of 
a circle is therefore 

#24-y2 —2a# — 2/Jy=0,.(i) 

there being no constant term, since the circle goes through the origin. 
Since the centre lies on the hyperbola, we have, 

a2 —/?-—c2.(ii) 

We might suppose (ii) solved for f3 in terms of a and the value 
inserted in (i) ; this shows that there is really but one parameter. It 
is simpler, however, to differentiate with respect to a, considering /3 as 
a function of a determined by (ii), and then to eliminate a, p and 
d/3/da. 

Differentiating (i) and (ii) with respect to a we get 

*+yg=°, a-/?g = 0.(iii) 

From (iii) a/#= - j8/y, 

and therefore by (ii) «/#= - /3/y~cl+J(x2-~y2). 

Substitute in (i) for a and /3 and reduce ; we then get 

(#2+y2)2—4 c2{x?-y2), 

which is the equation of a lemniscate. 
It will be evident that the procedure is the same as that of finding 

maxima and minima. 
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§ 146. Cycloids. As the cycloid is of some importance in 
dynamics, we will very briefly investigate its chief 
properties. 

Definition. The cycloid is the curve traced out by a 
point in the circumference of a circle (the generating circle) 
which rolls without slipping along a fixed straight line 
(the base). 

Let 01) (Fig. 85) be the base, P the tracing point on the 
generating circle LPI, and 6 the angle between the radius 
SP and the radius SI, I being the point of contact with 
the base. 

Suppose P to be at 0 when the circle begins to roil; draw 
PM perpendicular to OD, and let OM—x, MP — y. Then 
if a is the radius, we have 

01—arc PI—a9, 

x-OI—SP sin0 = a(0 —sin0) | 

y — IS+SP cos LSP — a (1 — cos 0)/ 

ISL being the diameter through L Equations (1) are those 
of the cycloid. 
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When 0 = 7r, x — ira—OB and P is at A, the greatest 
distance it can be from the base. A is called a vertex. 

When 0 = 27r, # = 27ra — Ol), and P is at I). The arch 
OAJJ is symmetrical about BA, and BA is called an axis. 

If the circle were to continue rolling, P would trace out 
a series of arches congruent to OAI); when the cycloid is 
spoken of, it is usual to coniine it to the one arch, and A, 
BA are then the vertex, the axis. 

Properties. The following^are easily established: 

(i) tan <f> — Dxy = cot hd~ tan {hir—W) — tan P1L, 
and therefore <p — ^7t-— 16~ B PIL, 

so that PL is the tangent and PI the normal at P. 

(ii) s = arc OP — 4a (1 — cos 40); arc 0A — 4a. 

(iii) p = PC— 4a sin 40 = 2PI, numerically. 

If the tangent AT and the normal AB are taken as axes, and PN 
drawn perpendicular to AT’ we put O'-lLSP—tt- 0 ; then 

x—AN—a{& +sin O’) ; y — NP—a{ 1 - cos O').(1') 

(i a) — PLN—\ 0' — lPIL. 

(iia) s = arc AP—Aasin ; s2 = 8a. NP—8ay. 

The coordinates of C, the centre of curvature, are 

£= OM + 4a sin 40 cos |0 = a (0 + sin 0), 

rj— ~~ICsin 40= —a(l—cos0). 

Hence, by equations (l'), the evolute of the cycloid OAI) 
consists of the halves OCB\ B'D of an equal cycloid. In 
(T) the positive direction of y is downwards, but when 0 
is origin the positive direction is upwards, so that r\ is 
negative. 

E is a cusp on the evolute ; 0, D are cusps on the original 
cycloid and vertices of the evolute. 

Epicycloids and Hypocycloids. The curve traced out by a point on 
the circumference of a circle which rolls without slipping on the 
circumference of a fixed circle is called an epicycloid or a hypocycloid 
according as the rolling circle is outside or inside the fixed circle. 
When the rolling circle surrounds the fixed one the epicycloid is 
sometimes called a pericycloid. 

G.C. 2a 
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Let Figure 86 represent the generation of an epicycloid, P being 
the tracing point and 6* the starting point. Let a and b be the radii 
of the lixed and of the rolling circles, 6 and & the angles CAI and 
IBP; AM—x, MP—y. Then 

arc PI==are (?/, so that, b&-a0. 

x—(a + b)cos 0 — b cos(O+O') 

— (a + b) cos 0-b cos f(a + b) 0/b] 

y s (a -f b) sin 0 - b si n [(a 4- b) 0/b].(2) 

When the circles are on the same side of the tangent at /, that is, 
for the hypocycloids (b<a) and the pericycloids (b > a), it is only 
necessary to change the sign of 6. Hence, the equations of the hypo- 
cycloid are of the form 

x =*= {a — b) cos 0 + b cos [{a — b) 0/b] 

y~(a-b)sin 0-b sin [(a-b) 0/b].(3) 

When the ratio of b to a'is a commensurab e number the tracing 
point Pwill return to C after the circle B has rolled once or oftener 
round the fixed circle ; when the ratio of b to a is incommensurable 
P will not return to C. 

Trochoids. If the tracing point P is not on the circumference but 
on a radius or on a radius produced, the curve it describes is a 
trochoid or an epitrochoid or a hypotrochoid. 

If the distance of P from the centre of the circle is to the radius in 
the ratio of A to 1, the equations of the trochoid are got from equations 
(1) by multiplying sin 0 and cos 0 by A, while the equations of the 
epitrochoid and the hypotrochoid are got from equations (2) and (3) 
respectively by multiplying the coefficient b of the second term by A, 
as the student will easily prove. 
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EXERCISES XXXII. 

1. Show that for the parabola y2—4ax, 

p s= — 2a cosec3 <j>y £ = 2a -f 3a cot2 0, *)= —2a cot3<£, 

and then find the equation of the evolute. 

2. Show that for the hyperbola x2la2-y2/b2 — 1, 

a4£ — (a2 + i2)^3, 64 r/ ~ - (a2 4- b2)?/\ 

and that the equation of the evolute is 

:(«2+62)t (ax?-(by)' 

Show that for the rectangular hyperbola xy = c2, 

"3 3 . x3 

^ 2 X+2c2’ V 2^+2c2’ 

and that the equation of the evolute is 

(x+>/f - - yY *= (4c)t 

« a | 
4. Show that for the curve x* +yv —or (see § 142, ex. 1), 

£=a cos31 -f 3a cos t sin2*:, ?] = a sin3 + 3a sin t cos2 £, - 

and that the equation of the evolute is 

(.),.+//)5+(.r —,/)3 = 2<i1. 

5. Prove that the envelope of the family of straight lines 

.r/a+y/(i = l, '/ 

(i) when aft—a2, is the hyperbola, 4xy—a2 ; 

(ii) when a + ft—a, is the parabola Jx+Jy — Ja ; 

(iii) when a2 + /32—a2, is the curve .zr-fy — a*. 

State the geometrical meaning of the conditions to which the para¬ 
meters a, ft are subject. 

6. Prove that the envelope of the family of ellipses 

^/a2+y//i2-l 

(i) when aft—a2 is the two hyperbolas 2xy = ±a2. 
2 2 2 

(ii) when a-1-/2 = a is the curve a’5 +yli —a . 

State the geometrical meaning of the conditions to which the 
parameters a, /2 are subject. 

7. The envelope of the circles described on the double ordinates of 
a parabola as diameters is an equal parabola. 

8. If P, Qy B are functions of the coordinates of a point, and a 
a variable parameter, show that the envelope of 

Pa2 + 2$a-f P=0 

<22-PP=0, is 
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and that the envelope of 

Pcosa-f$sin a = 

is P2+Q2=&. 

9. Show that whatever be the value of m, the straight line 

y=mx+ «/{(# 4- fori*) jab } 

touches the conic ax14- by2 — 1. 

10. A straight line moves so that (i) the product, (ii) the sum, of the 
squares of the perpendiculars drawn to it from two fixed points 
(c, 0), (— c, 0) is constant; show that in each case the envelope is 
a central conic. 

11. Show that the envelope of the circles described on the central 
radii of an ellipse as diameters is 

(.r2 -f v/2)2—a2x2jr b2y2. 

12. The envelope of the ellipses (x — a)2/a24- (y — /3)2/b2 — 1 when the 
parameters a, fi are connected by the equation 

a2/«24-j8*/6*=l 

is the ellipse x2ja2+y2/b2~±. State the problem in geometrical 
language. 

13. Show that the envelope of the family of straight lines 

ax sec a — by cosec a — a2-b2 

is the curve (a.r)S +(6?/)S =(„* _ V-)*. 

14. If in Fig. 82 OZ—p, show that the equations of the tangent 
and normal at P are 

x sin cf>-y cos </> =p (i); x cos <£ +y sin </> = ~~ (ii), 

and show, from (ii), that ZP — dp/d</>. 
Consider the curve as the envelope of its tangents. 

15. With the same notation as in ex. 14, show that the coordinates 
(£, V) of the centre of curvature are given by 

£co8<£4**?sin<£= -£sin cos 

or ^cos^-gsin*, ^=^ain ^+^co8^. 

16. With the same notation as in the last two examples, show that 
the projection of DC, where C is the centre of curvature, on PC, is 

-£sin <^4^cos 4>, 



EXERCISES XXXII 373 

17. Show that the radius of curvature of the evolute of a curve is 
pdp/ds, where p is the radius of curvature at the corresponding point 
on the given curve. 

Use § 143, (ii); d<j> is the same for curve and evolute. 

18. If A is the area between a curve, its evolute and two radii of 
curvature, show that 

*d«V**-l 
dx T dx 2 

19. ABC is an arc of a circle whose centre is 0 and radius a \ CP is 
the tangent at C and AP a part of an involute of the circle. Taking 
OA as the .r-axis and putting </> for the angle AOC, show that the 
coordinates (x, y) of P are 

x—a cos <j) -f a<f> sin <£, y — a sin <£ - a<j> cos </>, 

and that the intrinsic equation of the involute is 

8=%acj)2. 

All the involutes of a circle are identically equal, so that we may 
speak of the involute of a circle. 

20. Show that the jd, r equation of the involute of a circle is 

r2 =p2 -f a2. 

21. The total length of the evolute of an ellipse is 

4(a3 — b2)/ab. 

22. The intrinsic equation of the cycloid, when the vertex A is 
the origin of s and the tangent A T the fixed tangent (Fig. 85) is 

a sin <p. 

23. Show that for the epicycloid (Fig. 86) PL is the tangent and 
PI the normal at P. 

For, 
, , dy cos 0-cos(6+&) , 
tan<p = — . ,a .-' = tan(6' + icf), 

^ dx sm(# + (I)-am 0 

and PL makes with the .r-axis the angle 6+id'. Similar results hold 
for the hypocycloid. 

24. If 8 is the arc CP of an epicycloid, Fig. 86, show that 

ds . , . aO 
3=2 (a + £>) 

4 b(a + b)( 

ib' d V 
and that the length of CPD is 8l(a + b)/a. 

25. The intrinsic equation of an epicycloid is 

_46(r/-f b) 

a 
and the radius of curvature is 

ad 
3 2ft :> 

a+2b \a + 26/’ 

Similar results hold for the hypocycloid, the sign of b being changed. 
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26. If b —a/4, show that the hypocycloid has four cusps, and that 
its equations are x==acoa% 

Eliminating 0, we get + —eft. 

27. Show that if b—a/2 the hypocycloid hecomes a diameter of the 
fixed circle. 

28. Show that if b — a the epicycloid becomes the cardioid 

r—2n(l - cos 0), 

the origin being at the point C; that is, 

r cos 0—.r — a, r sin 0 
29. In ex. 25 put 

(a + 2b)ir 46(« + 6) 
~2r" + <^: '-a~+S’ 

that is, measure the arc from the middle point V of CPD (the vertex), 
and we get , 7, , , x ,, 

& , 4b(a+b) . nth 
s =—-- sin - -—rT. 

a a + 2 b 

Show that the equation .<? —/sin vf</j will represent an epicycloid if 
n is less than unity, a hypocvcloid if n is greater than unity. 

30. If s, cr are corresponding arcs of a curve and its evolute 
, da , 

a — ± -yv 4* const. 
<l(j> 

Show from the result of ex. 29 that the evolute of an epicycloid is 
an epicycloid, and that of a hypocycloid is a hypocycloid. 

31. Parallel rays fall on the circumference of a circle and are 
reflected, the angle of reflection being equal to that of incidence. 
If a is the radius of the circle, (»7cos0, a sin 0) the point of incidence, 
the centre of the circle the origin of coordinates, and the .r-axis 
parallel to the direction of the incident ray, show that the equation 
of the reflected ray is 

y cos20-.rsm 20 + asin 0—0, 

and that the envelope of the reflected ray is an epicycloid 

x = -(3cos0~cos30^, y=^3sin 0-sin 30^. 

32. If v is the velocity of a particle describing a central orbit under 
an outward radial force Fy then with the usual notation vl = JdjpK Prove 

F~i («—«©+*)■ 
This equation is the differential equation of the orbit. If F=* ± jum2, 

show that the orbit is a conic, the centre of force being at a focus. 
(See §§ 169, 170). 



CHAPTER XVII. 

INFINITE SERIES. 

§ 147. Infinite Series. For a thorough treatment of 
infinite series the student is referred to Chrystal’s Algebra, 
vol. II.; an exceedingly good elementary account will be 
found in Osgood’s Introduction to Infinite Series (Cam¬ 
bridge, U.S.A.; Harvard University). We will limit our 
discussion to those parts of the theory that are needed in 
the applications we make. 

Definition of an Infinite Series. Let uv u2>u^ , 
be a set of quantities unlimited in number, un being a 
single-valued function of the integer n} and let sn denote 
the sum of the first n terms, 

*f ... + Un.(1) 
When n increases indefinitely the sum (1) becomes an 
Infinite Series. 

If as n increases indefinitely the sum sn tends to a definite 
finite limit s, the infinite series is said to be convergent, and 
to converge to the value s, or to have the value s, or to have 
the sum s 

Ex. 1. Let 5«==l + 24’4~^‘,,”^2”-i’ 

Here sn~ 2-1 /2”"1 ; L sn=2=s. 

If as n increases indefinitely sn does not tend to a definite 
finite limit, the series is said to be non-convergent. In this 
case either sn increases (numerically) beyond all bound, and 
then the series is said to be divergent or to diverge, or else sn 
does not tend to a definite finite limit, and then the series 
is said to oscillate * 

* Some writers use divergent as equivalent to non-convergent. 
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Ex. 2. Let £n = l + 2 + 3 + ...+W. 

Here sn increases beyond all bound, and therefore the infinite series 
is divergent. 

Ex. 3. Let s„=l -1 + 1-1 + —I)""11. 

Here sn is 0 or I according as n is even or odd, and though s„ does 
not become infinite, it does not tend to a definite finite limit. The 
series therefore oscillates 

It is obvious that if uv ... are all of the same sign, 
the series cannot oscillate. 

Notation. We will represent an infinite series by the 
notation oo 

ui+u2+•••; or 1Zju> or 
i 

The following theorems are readily proved: 

Theorem I. If \i1+n2 +... converges to the value s, the 

series cUj-f cu2~f... 

where c is any finite quantity, converges to the value cs. 
The proof is so simple that it may be left to the reader. 

Theorem II. If ux + u2 +. •. converges to the value s, and 
v1 + v2+... to the value t, the series 

Oi + v1)+(u2+v2)+... 

converges to the value (s +1). 

Let sn — 16j-j~Uc>...-f~unt fn—*4"'O'l"b 

then (u x+vY) + (u2 + Vtf) 4" * * • + (un+vn) = sn+tn 
for every value of ?i, and the result follows at once. 

The first theorem shows that the product of c and is 
2 (cu), and the second shows that the sum of 2t& and 2v is 
2 (u -f v), and sum may obviously be considered as including 
difference. 

In forming sn it is to be understood that the terms are 
added on in the order in which they stand in the series, 
and it follows at once that when the series is convergent 
the law of association holds good; that is, we may group 
the terms as we please (so long as we do not change their 
order), and the value of the series will not be affected. It 
does not follow, however, that if we form a new series by 
writing the terms in a different order, the new series will 
converge to the same value as the old (see § 150). 
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The phrase “ numerical value ” or “ absolute value ” occurs so often 
that we will use the notation (now generally adopted) 

M 
to represent the numerical value of a. Thus, 

| 21 —2 ; |-2|-2; |-10 + 6|-4. 

The following statements are easily proved : 

(i) + + 

the equality holding only when a, b, c... have all the same sign. 

(ii) If c is positive, the inequality 

| a- b \ < c 

is equivalent to either of the inequalities 

b — c<a<b + c; a-c<b<a+c. 

§ 148. Existence of a Limit. A function may be defined 
by an infinite series provided the series is convergent. 
Thus, the infinite geometrical progression 

a+ax-\-ax2+... 

converges to the value a/( 1—x) so long as x is numerically 
less than 1, and we may say that if — 1<x<1 the function 
rt/( 1 — x) is represented by the series, or that the series 
defines the function. But if x is greater than 1 the series 
is divergent and does not represent a/(I ~x) at all. Con- 
ver</eni series alone are of use in practice and, subject to 
certain restrictions, can be manipulated like expressions 
containing only a finite number of terms; non-convergent 
series can only be used under very special conditions. 

It is not often, however, when a series is given, that we 
can. as in the case of the geometrical progression, actually 
assign the number which is the limit of sn. It is necessary, 
therefore, to have a criterion for the existence of the limit, 
and we will now state three general theorems that will be 
of great service in leading to simple tests for the convergency 
of a series. The variable sn is assumed to be a single-valued 
function of n, and n is to increase indefinitely; since all 
the limits are taken for n = oo we may omit the subscript 
“ n — oo 

Theorem I. If sa is a function of n that (i) always 
increases as n increases, hut (ii) always remains less than 
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a definite quantity a, then as n increases indefinitely sa will 
tend to a definite limit that is less than or equal to a. 

Theorem II. If sn is a function of n that (i) always 
decreases as n increases, but (ii) always remains greater 
than a definite quantity b, then as n increases indefinitely 
sn will tend to a definite limit that is greater than or equal 
to b. 

Theorem III. The necessary and sufficient condition 
that hu should, as n increases indefinitely 9 tend to a definite 
limit is that the limit for n infinite o/(an+p—sn) should be 
zero for every value, of the integer p; or, in other words, 
given an arbitrarily small positive quantity e it must be 
possible to choose n, say n = m, such that when n>m the 
difference (s11+p — sn) shall be numerically less than e, what¬ 
ever value the integer p may have. 

Wo do not propose to prove these theorems ; the first and second 
have been giv^n as exercises (Exer. VII., 14, 15), and the geometrical 
illustration there given affords some justification for assuming them. 
As to the third theorem it is easy to see that the condition stated is 
necessary. For, if sn has a definite limit s, then since 

Sn+p $n ~ (^n+p *$) 4“ («$ $n)j 

we have 
L(sn+p-sn)~ L(sH+p-s) + L(,s-s„)=0. 

To illustrate the sufficiency of the condition, take on the .r-axis the 
points Av A2, A3, ..., which have ... as abscissae. In this 
case An+l may be either to the right or to the left of A„, since sn does 
not necessarily either always increase or always decrease as n increases. 
But, by hypothesis, if n^vi, 

\fin+P-Sn |<c; that is, sm-€<sm+p<sm+c. 

If V and Q are the points whose abscissae are sm — e and sm *f e, then 
the length of the segment PQ is 2c, and every one < f the points An 
for which n is greater than m lies within this segment. By assigning 
to c smaller and smaller values we get shorter and shorter segments 
P'Q', P"Q'\ ..., each lying within the one that precedes it. The ends 
P, P\ P", ... move to tlie right, Q, Q\ ...to the left; by Theorem I. 
P, P', P", ... tend to a definite limit, and by Theorem II. Q, Q\ Q'\ ... 
also tend to a definite limit, and since e may be as small as we please, 
these two limits coincide, say at S. The points An therefore tend to 
Sy and s, the abscissa of S, is thn limit of sn. 

Examples 16, 17 of Set VII. illustrate Theorem I. To illustrate 
Theorem III. take 

1 
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72+3 72 + 2^ "n+p 72+1 V??+2 72 + 3/ 

<]/(M + l), 
since each bracket is positive ; if p is an even number the last bracket 
will contain but one term, \j(n+p). 

/__1_1_ I \ 
\ 72 + 1 72 + 2 “’^7 l+p)' 

_ 
72 + 25 72+1 \ 72 + 2 72 + 3/ 

A I 1 ,1 
Again,---- +... ± --= 

72+ 1 72 + 2 n+p 

_1_1_ 
72 + 1 72 + 2 72 + 3 72 + 4)*^"*** 

and the expression on the l ight is positive.; therefore | sn f^ — sn | lies 
between 0 and 1 j(n +1). 

Hence the limit of sn +p ~ s„ is zero, and sn tends to a definite limit; 
the limit will be found later to be log 2 (p. 39.5), so that 

log 2 — 1 — o+^ — } +.... 

It is clear that the Theorems 1., II., III. hold even when 
the variable sn is a continuous function, f(x) say. If x tends 
to a finite limit .r, we may put xx ± 1 jn for x; when v tends 
to infinity x tends to xv If x tends to — oo we may put 
— n for x. 

§ 149. Tests of Convergence. The difference s — s,n between 
the sum sn of the first n terms and the value s of the series 
Eu is called the remainder after n terms; if we denote this 
remainder by rn we have 

8 = s.n + rn. 

Clearly rn is itself an infinite series un+i + un+2+ ••• and 
the limit of rn is zero. If the series is such that |rn| is 
small when n is small the series is said to be rapidly or 
highly convergent, because the calculation of a few terms 
will yield a good approximation to the value s. For 
purposes of calculation rapidity of convergence is valuable; 
but a series may yet be convergent though it require the 
calculation of a million terms to get a fair approximation. 

Fundamental Test. Let prn denote — sn, that is, 

prn = un+i + un+2 4- •. • + un+p> 
then prn is called a partial remainder after n terms. By 
§ 148, Th. Ill, the necessary and sufficient condition that 
the series Eu should be convergent is that the limit of prn 
should be zero for every value of p. 
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If y> = l then prn=un+u and therefore a necessary condi¬ 
tion of convergence is that or, what amounts to the 
same thing, that un should converge to zero; but as we 
shall see (ex. 1) this condition is not sufficient. 

This test is not easy of application; we therefore deduce 
one or two special tests that can be more readily used. 

Comparison Test. Let ux-\-u2-\-... be a series of positive 
terms; if each term is less than or equal to the correspond¬ 
ing term of a series of positive terms al+a2+... that is 
convergent, the series ux + u2 +... is also convergent, but if 
each term is greater than or equal to the corresponding 
term of a series of positive terms bx + b2+... that is 
divergent, the series ux -j- u2 4-... is also divergent. 

n n 

Let sn ~ 2>,, tn = y* y(Xrt t L tfit 
1 1 

then 8n^tn; tn<t, 

since all the terms of a1 + a2+... are positive. Hence sn, 
which increases as n increases, is always less than t; there¬ 
fore (§ 148, Th. I.) sn tends to a limit s that is less than or 
equal to t. 

The proof for the case of divergence may be left to the 
reader. 

Note. We may note here that in testing a series we are 
at liberty, when it is convenient, to disregard any finite 
number of terms; the rejection of such terms would affect 
the value but not the existence of the limit. Thus we 
need only suppose the terms of ux + u2+... to be ultimately 
positive. 

Ex. I. The series 1+-J + J-!- ... is called the harmonic series ; show 
that it is divergent even though Lwn=0. 

Beginning with the third term take in succession 2 terms, then 
4 or 22, then 8 or 23, and so on. Now 

1 , 11 . 1 1 
3 + 4>4 + 4 °r 2 ’ 

l+i+M>* or 
5 o/o 8 

1 
2’ 

and so on. Thus, the sum of 2m terms is greater than 

+ ...to m terms; 

that is, greater than l+w/2. We can therefore take n so large that 
sn shall exceed any assigned number; that is, the series is divergent. 
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Ex. 2. The series 111 
1 + 4^a + gd + ]^a + 

is convergent if a>l, divergent if a*5 1. 

(i) a>l. Group as in ex. 1, beginning with the second term. 

and so on. 

+ 3a<''2“~^ 2a or 2a~* ’ 
1_ , 1 1 1 ^ 4 / 1 V 
^a + ^d + 0a"T or ^gd-l) 1 

Hence the series is less than 

1+7 

which is a g.p. with common ratio less than 1 and therefore convergent. 
The given series is therefore also convergent. 

(ii) a?ri. The case a —1 is that of ex. 1. When a<l the. terms 
are greater than the corresponding terms of the harmonic series ; the 
series is therefore in this case divergent. 

The Test Ratio. Let + u2 -h... be a series of positive 
terms, and let the limit for n — oo of un+i/un be p; the 
series will be convergent if p<\, but divergent if yo>l. 
The test fails to discriminate if p = 1. 

(i) p< 1. By the definition of a limit we can take n so 
large, say ?i = m, that when the ratio un+ljun shall 
differ from p by as little as we please and therefore shall be 
less than a proper fraction r. If m be so chosen wc have 

,U'm+1 < ^rnT > ^rn+2 ^ ^Gn+1^* ^ 'U'mT* \ ^m+3 ^ ^m^ 

and so on. Hence, after the term um, each term of the 
series is less than the corresponding term of the g.p. 

Since r is less than 1 the G.P. and therefore also the given 
series is convergent. 

(ii) p>l. In the same way the series may be proved 
divergent when p> 1. 

Cor. The remainder rm of the given series is less than 
umr + umr2 + ..., that is, umr/( 1 — r). 

Ex. 3. 1 + x+~~ +... (x positive). 
A o 

W„tl = 

un n 

x*-1 n-1 -=-x . 
n — 1 n 

p—x. 

Hence the series is convergent if x<1, divergent if #>1 ; if x—1 
the series is the harmonic series and therefore divergent. 
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Ex. 4. + (# positive). 

The series (the exponential series, § 49) is therefore convergent for 
every positive value of x. It will be seen immediately that we may 
suppose x to be either positive or negative. 

§ 150. Absolute Convergence. Power Series. 

Theorem I. If a series which contains both positive and 
negative terms is convergent when all the negative terms 
have their signs changed, it is convergent as it stands. 

For the effect of restoring the negative signs is to 
diminish both | sn | and | prn |. 

Definition 1. A serias is said to be absolutely or uncon¬ 
ditionally convergent when the series formed from it by 
making all its terms positive is convergent; that is, 
u1 + n2+... is absolutely convergent when Iw-J + I^l + • •• 
convergent. Any other convergent series is said to be 
conditionally convergent (sometimes semi-convergent). 

The converse of Theorem I. is not true; the series 
u1 + u2 +... may be convergent, and the series 1%! + |u2| +... 
divergent (see ex. 1). 

Cor. A series is absolutely convergent if the limit of 
un+i/un is numerically equal to a proper fraction. 

Absolutely convergent series are of special importance; no rearrange¬ 
ment of the terms affects the sum. It is possible, however, so to 
rearrange the terms of a conditionally convergent series that the 
series thus arising shall be convergent, but shall converge to a different 
value or even shall be divergent. Hence the words “ conditional ” and 
“ unconditional” (See Chrystal’s Algebra, vol. 2, chap. 26, § 13). 

Theorem II. If ul5 u2, u3, ... are all positive, and each 
less than (or equal to) that ivhich precedes it; if, further, 
the limit of un is zero, the series 

U1-u2+u3-mui+...+(- l)n"1Un+... 

is convergent. 
This series is called the Alternating Series. 
We may write the sum of an even number of terms in the 

two forms 
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«2» = (Wj - U2) + (U8 - U4) + . .. + (^2n-1 - «2») 

= - K - U8> - (U4 - ^5) ~ ~ ™2»- 

The first form shows that *2w is positive and increases 
with ?6, while the second form shows that s2n is less than 
uv because each difference is positive. Hence s2n converges 
to a limit, s say. 

Again, «2»+i =^2»+^2»n 1, and therefore, since .L w2n+i is 
zero, 1 and s2n have the same limit; the series is there¬ 
fore convergent. 

Cor. I rn| is less than uM+1. 

Ex. 1. 1 — ^ + J 
The series satisfies all the conditions, and is therefore convergent, as 

was shown previously (§ 148); but the series 1+J + J+ }+... is 
divergent. 

Theorem III. If the series Ui + u2+... is absolutely 
convergent, and if each of the quantities vv v2, ... is 
numerically less than a finite quantity c, the series 

uivi + u2v2-f ... is absolutely convergent 
For, the terms of \MiV1\ + \u2v2\ + ... are less than the 

corresponding terms of 

I V/ll 6‘ + | 7^2| c+... or c {j u^ | -f* 17,^2 [-{-•••}• 

Hence | *a1 vl | +1 v 1 + ... is convergent, and therefore 
u1vl + n2v2 +... is absolutely convergent. 

Ex. 2. 
sin x sin 2.r t sin 3.r 

1 2^ ip 
sin 4x 

4^ 
+... 

™ 1111 
The series ~ “22 + 32“ 42+••• 

is absolutely convergent, and no sine is greater than 1 ; thus the 
series is absolutely convergent for every value of x. 

Definition 2 A series of ascending integral powers of 
a variable, x say, of the form 

a0+axx -f a<f*r +... + anxn +..., .(p) 

where the coefficients are constants, is called a Power Series 
in x. 

It is with Power Series we chiefly have to deal; the 
following theorems are important. 
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Theorem IV. If the limit of an+i/an is numerically 
equal to 1/R, the Power Series (p) converges absolutely 
when x is numerically less than R, but diverges when x is 
numerically greater than R; it may or may not converge 
when x is equal to R. 

For, disregarding the first term aQt we have numerically 

U7l+1 

un 
an+lx ■ L —=xL<ln+- 
an vn an 

X 

Tv 
and the result follows from Theorem I, Cor. 

The following is a more general theorem : 

Theorem V. If when x — R none of the terms of the 
series (p) exceeds numerically a finite quantity c, the series 
(?) will be absolutely convergent so long as x is numerically 
less than R. 

For, if we write (p) in the form 

a0+aL R (xjR)+a2 R2(x/ Iif +... 
we see that the terms of (p) are numerically not greater 
than the corresponding terms of the geometrical progression 

C + c(x/R) + e(x/R)2 + 
and therefore the series is absolutely convergent so long as 
xjR is numerically less than unity. 

The series (p) may or may not converge when x — R\ if 
it does converge each term must, when x — R, be finite, and 
therefore it will converge absolutely when x is less than R 
numerically. 

Interval of Convergence. When a series whose terms 
are functions of x is convergent when a<x<b, we may say 
the series converges within the interval (a, b). When the 
series converges for a<x<by and diverges for x<a and 
x > 6, we may speak of (a, b) as the interval of convergence. 

Ex. 3. The series x-ffl ... 
2 3 4 

converges (conditionally) when x—\ ; therefore absolutely when 
— 1 < x < 1. It diverges when x— -1 and when \x\> 1. 

Ex. 4. The series 

converges absolutely when -1 =^x~z 1, diverges when \x \ > 1. 
For both series (-1, 1) is the interval of convergence. 



UNIFORM CONVERGENCE. 385 

§ 151. Uniform Convergence. When the terms of a series 
are functions of a variable x and the series converges within 
a certain interval it will be possible, for a given value of x 

within the interval, to choose n so that the remainder rn 
will be less than a given quantity. For different values 
of x, however, different values of n will usually be required 
to make the remainder less than the given quantity. 
Hence the 

Definition. A series, whose terms are functions of a 
variable x, is said to converge uniformly within an interval 
if it is possible to choose n, say w = m, so that for every 
value of n equal to or greater than m and for every value 
of x within the interval the remainder rn shall be less than 
any given positive quantity e. 

We will indicate the variable by the notation un(x),sn(x), 
rn(x), s(x). 

Theorem I. If the series u](x)+u2(x)+ ... is uniformly 
convergent when a;ix ;~b, and if each tern is a continuous 
function of x for the same range, the sum s(x) is also a 
continuous function for that ra/ngc. 

Let x and be two values of the variable within the 
range ; we have to show that, given e, it is possible to take 

so near to x that the difference j K‘;‘i) ~~ 8(x) I shall be less 
than e. With the usual notation we have 

s(xx) - s(x) = Snixf) - sn(x) + rw(£x) - rn(x), 

and therefore 

| s(xx) - s(x) I ^I *„0i) - 8n(x) I +1 rn(xf) | +1 rn(x) |. 

First, since the series is uniformly convergent, we can 
choose m so that if n^m both |n*(^i)| and \ rn(x)j shall be 
less than e/3. Suppose m so chosen. 

Next, sm(x) is the sum of a finite number of con¬ 
tinuous functions and therefore we can take ,t1 so near x 
that | sm(xf) — sm(x) | shall be less than e/3. 

Combining the two results, we can take xx so near x 
that ! .sf.Tj)—s(x) | shall be less than three times e/3, that 
is less than e. 

Q.C. 2b 
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The theorem is thus established when x is within the 
interval; the slight modifications required when « = a or 6 
may be left to the reader. 

Theorem II. A Power Series a0 + a1x + R2x2+ **• repre¬ 
sents a continuous function within its interval of con¬ 
vergence (— R, R); the function may, however, become 
discontinuous at an end of the interval. 

We will show that if — R<aEix^b<R the series is 
uniformly convergent ; the result then follows from 
Theorem I. 

Take p less than R but greater than | b | or | a |; then by 
§ 150, Theorem V., the series is absolutely convergent when 
x = p. Also i f a:: x EE b 

anxn = anpn(x/p)n; | anxtl | < | anpn | 

and therefore | rn(x) | < | anpn \ + \an +irn+1\+- 

But, the series a^+a^ + a^2... being absolutely con¬ 
vergent, we can choose m so that when n^m the remainder 
|«n/on| + |aw41pn+1|+ ... shall be less than e, and therefore 
for this m we shall have | rn(x) | less than e. But this is 
the condition for uniform convergency. 

The proof requires x to be within the interval. We refer to 
Chrystabs Algebra, vol. 2, chap. 2G, $ 20, for the proof of the theorem 
(Abel's Theorem) that if the series is convergent when x - ft (or — ft), 
the function represented by the series is continuous up to and including 
the value ft (or - ft) ; in other words, the value of the function when 
x — ft is the same as that of the series when x— ft. 

The method by which the uniform convergency of the 
power series was established is easily extended to prove 

Theorem III. If the terms of a series are continuous 
functions of x when a^x^b, and if they are numerically 
less than the corresponding terms of an absolutely con¬ 
vergent series, whose terms do not contain x, the series will 
be uniformly convergent for the same range. 

The student must not mix up uniform and absolute convergence; 
a series may be uniformly and yet not absolutely convergent, though 
such series are rather beyond our limits. 

The theorems contained in Examples 9, 10, II of the following 
Exercises should be specially noted. 
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EXERCISES XXXIIL 

1, Show that the following series are convergent: 

(i) l+2-2 + 3"3 + 4~4+... ; (ii) x+x*+x?+x™ + ...(0<x<l); 

(iii) 1 /(a4- l)a 4*l/(a 4- 2)a 4-1 /(a 4- 3)a 4-... (a > 0, a>l). 

2. Show that the following series are divergent: 

(i) £ + (ii) 1+A+I + ...; (iii) 3S1 /(«-hw); 

(iv) 2 (n 1 )/(n2 4* 1); (v) 2 (an 4- b)/(cn2 4- d) [a+0]. 

3* If !l+22+32+-=c. 

prove (i)^+]2+g,+ ... = }c; (ii) Ja+p+^+...=!c. 

The value of c is 7r2/6 (Exercises XXXIV., 22). 

4. Show that the series (the Binomial Series) 

1 + 

is absolutely convergent for every value of m when |.r|<l, blit 
divergent when \x\>\. 

For 
un 

m-n 4-1 
n 

s-(2± 
\ n 

4-1 

5. Show that if f(n) is a rational integral function of n, the series 
2/(>i).rn is absolutely convergent when but divergent when 

\x\ >1- 

Let f(n)=a?ir + bnr~> +the degree of /(«) being r ; then 

«. +1 «(W+l)r+-”_. T + l — _ x , xj " 
un anr+... un 

6. If the series 2a, 2ft are absolutely convergent, show that the series 

(i) a0 4- ax cos x 4- a2 cos 2x 4- a3 cos Zx 4-..., 

(ii) bj sin x 4- ft2 sin 2x 4* ft3 sin 3a*4-... 

are absolutely convergent for every value of x, and represent continuous 
functions. It follows that if (i) [or (ii)] represents a discontinuous 
function, 2a (or 2ft) cannot be absolutely convergent. 

7. Show that if .r>0, the series 

e^cos (x — ax) 4* e'^cos (2x ~ a2) 4- e_8xcos (3# — a3) 4-.. . 

represents a continuous function. 

8. Show that if and if 2a is absolutely convergent, the series 

cos (x - aj) 4- a2^”2Xcos (2# — ag) 4- a3«r3*c os (3x — a8) 4-... 

represents a continuous function. 
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9. If fche power series a* + axx-fag#2 4-... is zero for every value of 
x in the interval (-R, R), show that every coefficient is zero. 

When # = 0, the series reduces to the term a0; therefore a0=O. We 
now have 

0 = avv4-«2'r2 + • • • —#(&! + «2-r +...)=xfi(x) say. 

Hence, either x—0 or ft(x)=0. Suppose #4-0 ; therefore /,(#) —0. 
But /,(.r) is a continuous function, and therefore the limit of /,(#) for 
x—0 is equal to the value of fx(x) for Q. Hence ax~Q. Similarly 
a-2 — 0, a3=0, and so on. 

10. Theorem of Identical Equality. If the two power series 
o0-f a1# + a2#8+ft0-hb1x + b2x2+... are equal for every value of 
in the interval ( -R, R\ show that a0~b0, aL = bv .... 

For we have 0=(a0 - b0) 4- (ax -bx)x-\- (a2 — b2)x2 +..., 

and the results follow from ex. 9. 

11. Multiplication of Series. Suppose the two series 

s=a0 4- axx 4- a^v2 4-..., t — b0 4- bxx 4- b^2 +... 

to contain only positive terms, and to be convergent when xt^R ; let 

wn = a0b0 4- (a0bx 4- axb0)x 4- (a0b2 4- axbx 4- a2b0)x2 4-... 
4- (a0bn-14- axbn- 2 +... 4- a„-A) .r71"1 

where the terms of wn are formed by multiplying sn and t,n no term of 
degree higher than n- 1 being placed in wn. Show that the limit of 
u'n is st, the product of the two given series. 

A little consideration shows that 

Sntn ^ W'2n #2nt'2n ♦ ^2n^'2n ~ W‘2n 4" 0*21? • 

The inequalities show that or, what amounts to the same thing, 
that wn converges to st. 

Next, let s and t contain both positive and negative terms, and let 
them be absolutely convergent when \x\^R. Let ar\n be the value of 
(72n when all the terms are made positive ; then by the first part, 
which holds when all the terms are made positive, the limit of cr'2n is 
zero. But cr2n is not greater than a\n) and therefore the limit of cr^n 
is zero. Hence the limit of w-,n is st. The rule may fail if the series 
are only conditionally convergent. 

12. Determine av a2l ... so that 

cos6>+^ A.arA-a^+ 
1+2XCOS6+X* 0+1 + ^ +"" 

Assuming convergency, multiply up by 1 + 2# cos 6+x2, and equate 
coefficients. We have 

cos 6+x — a0 + (ax + 2a0 cos Q)x + (a2 + 2al cos 6+a0)x2+.... 

Hence cos0=ao; I =a1 + 2a0co8 9 ; 0=^a2+2a1 cos 6+a0 ; . 



EXERCISES XXXIH. 389 

Solving these equations we find 

a0—cos0, -co&20, a2 = cos30, an=(~l)wcos(7i-f 1)0, 

and the series becomes 

cos 0 — x cos 20-f x2 cos 30 — .r3 cos 404-_ 

The series is convergent when |.r|<l, and therefore the assumption 
that there was a convergent power series is justified. 

13. Deduce from ex. 12, or prove independently, that when j.r|<l, 

TTcT"—~~2~,—> — 1 —2#cos 0 4- 2.r2cos 20~cos36+.... 
14-2# cos 0+x~ 

14. Show that if 0 is neither zero nor a multiple of 2tt, the series 

cos 04-£cos 20 + J cos 304-... 
is convergent. 

Multiply sn by 2 sin 40, express the product of cosine and sine as a 
difference of sines, and rearrange ; we thus find 

o • in * in i l * 3(9 1 . 60 , , 1 . 2n-1n 
2sv sm \0 = - sin $6+£ sm ~+^ sin y +... 4- sin -y-0 

, 1 . 2n+ln 
+n»m~ir-e’ 

and therefore 

2sn sin 40= ~sini0 + i sin 0 
~ 71 2 

+ sin~-f... + 
30 
2 

1 2 n - 

(n— l)7i J4 
But the expression in the bracket has a definite limit for n — oo, 

since the infinite series ~ + ... is convergent. Hence, 

2sn sin \0 has a definite limit, and therefore also sn unless sin \0 is zero. 

15. Show, with similar restrictions to those in ex. 14, that the series 
whose wth terms are 

-sinnO, ( — l)tt~l-cosn0, ( — I)n_1-sin7i0 
n ’ v 7 n * v ' n 

are convergent. 



CHAPTER XVIII. 

TAYLOR’S THEOREM. 

§ 152. Taylor’s Theorem. In § 72 we obtained the equation 

/O) =/(«•)+(x- «)/(«)+Hx- a)2f"(xi)< 
and although all we know of xx is that it lies between a 
and x, yet when x — a is small, the function f(x) will be 
approximately represented by the quadratic function 

f(a)+(x- a)f(a) + §(x-aff"(a), 

whose coefficients depend only on the values of f(x), f(x\ 
f"(x) when x — a. We will now discuss the general theorem 
of which this is a particular case; we will first obtain a 
closed expression involving an undetermined number like xv 
and then, instead of a quadratic function, we shall get a 
Power Series. We will slightly modify the method used in 
g 72 so as to require only one application of Rolles Theorem. 

Let f(x) and its first n derivatives be continuous from 
x — a to # = and consider the quantity Q defined by the 
equation 

/(&)-{/(«)+(&-“)/(«) i 

+Kb- «)7»+• • • + j~zjyrf(n" 1>(«)} 
—{b — a)nQ.!.(1) 

By Rolle’s Theorem we can find another expression for 
Q which, when substituted in (1), gives the general theorem 
sought. 

Let F(x) be a function of x defined by the equation 

F{x) =/(&)-f(x) - (b - x)f'(x)-\(b-xff\x)... 

(2) 
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By equation (1) F(a) — Q; also F(b) — 0 identically. 
Further F(x) and F\x) are continuous from x = a to x = b, 
since f(x) and its first n derivatives are so, by hypothesis. 
Hence F\x) is zero for a value of x, say xv between a and 
b. But if we differentiate (2) and reduce, we find 

F'(x)= f”\x)+n(b-xy-'Q,.(3) 

and therefore, since (h-x^ is not zero, 

Q = ^/(n)(xi) = ^/(n){« + 6{b-a)}.(4) 

where 0<#<1, because any number between a and b may 
be represented by a + 6(b — a). 

Substitute in (1) the value of Q given by (4), and trans¬ 
pose the terms f(a), (b — a)f\a)... to the other side of the 
equation; we then get 

/(0=/(*) + (& - «)/'(«) + § (b - aYf'(a)+... 

+ib0^f(n-1)(a)+ib~T^ 
We may now write x instead of 6, the only reason for 

using the symbol b instead of x in (1) being to prevent 
confusion when applying the Mean Value Theorem; thus, 
finally, 

/(*) =/(«)+(x- a)f(a) +1 (x - off'(a)+... 

.« 
The theorem expressed by equation (6) is called Baylor's 

Theorem. The particular case of it for which a = 0, namely, 

f(x)=m+xfxo)+x*-fxo)+... 

.(7) 

is called Maclaurin’s Theorem. 
The conditions under which Taylors Theorem has been 

proved are that f(x) and its first n derivatives are con¬ 
tinuous (and therefore finite) over the range from x — a to 
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the particular value of x for which f(x) is taken. In regard 

to the number 0y all that can be said is that it is a positive 
proper fraction; it will usually be different for different 
values of n and of x. 

Remainder in Taylor’s Theorem. In equation (6) denote the 
sum of the first n terms by Sn(x) and the last term by 
Rn(x), so that 

f(x)=8n(x)4-Rn(x); Unix)=+ 0(x- a)}....(8) 

If we suppose n to increase indefinitely the sum on the 
right of (6) becomes an infinite series, and if the limit of 
Rn(x) is zero the series is convergent. Since f(x) and its 
first n derivatives are by hypothesis continuous, every 
•derivative must remain continuous in order that it may be 
possible to suppose n to become infinite. We therefore 
have the 

Theorem. If f(x) and all its derivatives are continuous 
for the range considered and if the limit of Rn(x) is zero, 
the infinite seines 

f(a)+(X-a)f(a)+(xJ!a^r(a)+.(9) 

derived from (6) by making n infinite, is convergent and 
represents the function f(x), that is, converges to the value 
f(x).* 

The series (9) is called Taylor's Series for f(x); when it 
is necessary to draw a distinction between (6) and (9) the 
former may be called Taylor’s Formula. Of course all that 
has been said about Taylor’s series applies to the particular 
case of it, Maclaurin’s series 

/(0)+<(0)+f/'(0)+.(10) 

The value of Iin(x) given by (8) is called Lagranges 
form of the remainder %n Taylor's series. Another useful 
form of the remainder is obtained by writing (fe — a)Q 

* Cases may be constructed in which the series (9) is convergent and 
yet does not converge to the value f(x) ; such cases, however, may be 
safely assumed not to occur in ordinary work. 
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instead of (b — a)nQ in equation (1). The last term of 
equation (3) becomes simply Q and (b — a)Q becomes 

or — 

Hence 

Rn(x)J^T^-^f(n){a + e(x-a)}.(11) 

This form is called Cauchy18 form of the remainder. 
If we put (b — a)pQ instead of (b — a,)nQ in (1) we get 

Rn(x) = ^ 1 )lf""^'<W){ (l + e(X~a)}’.(12) 

called the Schlomilch-Roche form of the remainder; p — n 
gives Lagrange's form and p — 1 gives Cauchy's. 

In (5) put x for a and x + h for b; we get 

/(a:+/0=/(*) + W 

a value of f(x + h) that is often useful. 
We will now apply these theorems to the expansion of 

functions, and will usually employ Maclaurin’s Theorem; 
the two forms of remainder to be used are 

JinO)=~fw(ex)-, Rn(x)=—jy,--mex), 

the first being Lagrange's and the second Cauchy's. 

§ 153. Examples. 
1* sin x. 

f{x) — sin x ; f(x) — cos x ; /"(#) = - sin x ; f"(x) — — cos x; 

fW(x)=sinx ; fn)(x)~ sin 

Hence 

/(0)=0; /(0) = 1; /,,(0)=0; /"(0)--l; /<lv>(<>)=0; 

fn) (0) = sin ~ ; fn) ( Ox)=sin (f)x+~ ^. 

Since sin (mr/2) is 0 or ± 1 according as n is even or odd, the coefficients 
of the even powers of x will be zero, and only odd powers of x will 
occur, the terms being alternately positive and negative. Thus 

x3 . x3 v? 
sin#=#* 

3 + 5! (*+¥> 
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Again, ;?„(*) = ^sin(ftr+^), 

and therefore is not greater numerically than af'jn!, which has zero for 
limit. We thus get the series 

'>’3 qr& 

which is absolutely convergent for every finite value of x. 

2. cosx. 
T 4.1 n & , jA , In the same way cos— 

the series being absolutely convergent for every finite value of x. 

3. e\ 
f(x) — e* ; f(n)(x) ~ ex ; /(0) — 1 ; f{n) (0) — 1 for every n. 

«,=i+*+S+S+-. 

the series being absolutely convergent for every finite value of x. 

4. (l+x)m. 
f(x)=(14- x)m; f{n) (.r) = m(m -1)... (mi - n +1 )(1 4-x)m~n. 

f(0)~ 1; f'n)(0) — 'M(m - 1). 

fW(6x)—m(m - — 1)(1 + 0x)m~n. 

Hence 

(1 +x)m— 1 +mx+ 
w(ro-l)... (m-n + 2) 

+ R„(.v). 1.2 ~ . (n — 1) ! 

If m is a positive integer the series stops with the term, 
2 fln)(x)—Q when n > m ; if m is not a positive integer we have tc 
ider Rn(x). We take Cauchy’s form, 

- er*<i+8xr~. 
\71 *■) • 

The infinite series 

since 
const 

1-f mx+—xr+... 

converges absolutely if |.r| < 1 and diverges if |.r|>l (Exer. xxxiii., 
4) ; we therefore need only consider values of x such that 1. 

(a) |#|<1. Rn(x) iuay be written as the product of the three 
factors, 

*“<’+«*>-; (rasp 

Tlie first factor is finite for every n since (1 + 0x)m~1 lies between 1 
and (1 The second factor cannot exceed unity. The third 
factor has zero for limit, since it is the 7ith term of the convergent 
series 
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Hence the limit of Rn{x) is zero, and the infinite series converges to 
(1 +#)M for every value of m so long as -1<#<1. 

(b) #~±1. These cases are of less importance, and the investiga¬ 
tion of Rn(x) is tedious. We will therefore merely state the results, 
referring for proof to Chrystal’s Alg., vol. 2, chap. 26, § 6. 

#=+1 ; series absolutely convergent if m>0, but conditionally if 

0>m> - 1 ; oscillating if m= - 1 ; divergent if m< - 1. 

x— — 1 ; series absolutely convergent if m>0 ; divergent if m<0. 
If a-]-b the binomial (a + b)m may be written am(l + b/a)m or 

bm(l -\-a/b)m and then x put for b/a or for a/b according as b is less or 
greater thau a numerically. 

5. log(l+x). 
It is not possible to expand log# by Maclaurin’s Theorem since 

log# is infinite when x — Q. We may expand log# in powers of (# — a), 
if a is positive, using Taylor’s Theorem, but it is simpler to take 
log(l+#). 

/(.r) = log (I+.?;); /'(.r)=—/">(*) = 

/(0)=0 ; /(0)=1; /,n)(0)=(-l)"~1 (ra-1) ! 

iog(i+*)=*-^+£-£+... +*.<*). 

The infinite series diverges if |#|>1 and if x= — I ; we therefore 
consider the remainder for -1 

For x positive, Lagrange’s form 

shows that the limit is zero, since \x/(l + 6x)}n is never greater than 
unity and the limit of 1 /n is zero. 

For x negative, Cauchy’s form 
„ 1 / 1 -OY-1 
Rn(x)=(-l)n-lx" 

/ 1-6 Y 
\1 +0x) 

shows that when |#| < 1 the limit is zero ; for the limit of xn is zero 
and the other factors are finite for every value of n. 

log (1+#)—#- -T+... 

where -1 <#^T1 ; the series is conditionally convergent when #=1. 
We may note that, putting #=1, we get 

6. Calculation of Logarithms. 
The series just found is too slowly convergent for purposes of 

calculation ; a more rapidly convergent series is got as follows. 

We have . x1 x3 oA m 
iog(i+#)=#- 2"+x*’**’.0) 
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and by writing -x in place of x 

log (1-*)—.(2) 

By subtraction we find, since log(l +#) - log(l - .r)=log{(l +x)/(l — #)}» 

{a^3 ai2w 1 

*+y+7+-+sn+- .(3) 

Suppose x positive and let 

(1 +#)/(! -,r)=(y + l)jy ; so that #=l/(2y + l)<l. 

Equation (3) becomes 

log (y +1) = log y + 21 + i 

from which log(y + l) is found when logy is known. It may be 
noticed that (4) is not a power senes in y. 

With very little labour the logarithms of the prime numbers 
2, 3, 5, 7,..., may be found; thus 

*=1; log8-s{g+37p+575S+-} l 

^=2; !og3=log2+2{i+^53+^+...}. 

Then log 4 = 2 log 2 ; log 5 is obtained by putting 4 for y ; 
log 6 = log 2 + log 3 ; and so on. Series (4) converges rapidly even 
when y = 2. 

For particular numbers special artifices may be used. Thus, if 
y = 49 equation (4) would give log 7 when log 2 and log 5 are known, 
the series being very rapidly convergent. 

The student is referred to Chrystal’s Algebra, vol. 2, chap. 28, §11, 
for further information and references. 

7. Huyghens* Rule for the Length of a Circular Arc. 
If a is the chord of the whole arc and b the chord of half the arc, 

then the length (l) of the arc is, approximately, (8b - a)/3. 
Let the arc subtend at the centre of the circle an angle of 6 radians, 

and let the radius of the circle be r ; then l — rO and 

a=2rsini9=2r{ie-i(W+Th(W--}.« 
6=2rsin^=2r{^-J(J^+1^(^-...}.(ii) 

Multiply (ii) by 8 and then subtract (i); we thus eliminate 6P. 
Therefore f ^ v 

»-a-*r{v-1^SP+...} 
=3^1-^/7680+...}. 

Hence, neglecting the fourth and higher powers of 6, we find 
l — (8b-a)/3. It may be shown that for an angle of 30° the relative 
error is less than 1 in 100,000, for an angle of 45° less than 1 in 20,000, 
and for an angle of 60° less than 1 in 6000. 
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§ 154. Calculation of the nth Derivative. The practical 
difficulty in finding a power series by Maclaurin’s Theorem 
lies in the calculation of f{n)(x); indeed, there are few cases 
besides those already treated in which the nth derivative 
can be expressed in a manageable form. The discussion of 
the remainder, Rn{x)y is impossible unless we know f^n\x); 
in special cases, however, we can find and the 
infinite series, if it converges, will (in general) represent 
f(x) within its range of convergence. 

In this connection Leibniz’s Theorem (§ 68) will be found 
very serviceable. 

As an example consider /(#)== sin (a sin-1#). It would 
be difficult to calculate f^n\x) directly; we will, therefore, 
first calculate f\x) and f'\x), and will then form a differ¬ 
ential equation to which Leibnizs Theorem may be applied 
and which will lead to the value of /<*>(0). 

f(x) * sin (a sin“\r) ; 
f(x) ~ a cos (a si n_1#)/V( 1 - x1).(i) 

/"(#)= - a2sin (a sin_1.r)/(l -x*)+a cos (a sin-br). xj(l -.r2)*, 
= -a?f(x)/(1 -x2) + xf'(x)l(\ - Aa).(ii) 

and therefore 

(1 - x2)f'(x) - xf(x) 4- a2f(x) = 0.(iii) 
By making x zero in /(.r), f (.r), f\%), we find 

/(0)—0 ; f'(0)—a ; /"(0) = 0. 
The function on the left of (iii) is always zero and therefore its 

nth derivative is always zero. The function, being a sum of pro¬ 
ducts, may be differentiated n times by applying Leibniz’s Theorem 
to each of its terms and then adding the results. For the first term 
let f"(x) — u, (1 -x^ — v. Every derivative of v above the second is 
zero; the nth derivative of f"(x) is f{n+2)(x)y the (n - l)th is /<w+3)(^), 
and so on. Thus, 

Dn{{\ - x*)f'(x)}=(1 - r) + nCx{ - 2 x)f"+%v)+nC2( - 2)/<">(*), 
—(1 - x2)/{n+2)(x) — 2 nxf{n+1)(x) - (n2 - n)f(n\x). 

In the same way 

Dn{xf{x)\=xfn+l\x) + nf{n)(x). 

Also, 

Adding we find, after a slight reduction, 

(1 - x2)fin+2\x) - (2to -f l).r/^+1,(.r) - (n~ - a?)fW(x) = 0.(iv'J 

and therefore when x—0 

0), (v) 
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From (v) we find in succession all the derivatives above the second 
for .r=0, since we know the first two. 

/(<>(0M2W)/'(0) =0; 

/(«)(())~(4- - <z“)/(4)(0)=0, 

and so on ; thus every even derivative is zero. Agaiu, 

f(!,)(0) = (12 — aF)f (0) = (12 — a?)a ; 

/<*>( 0) - (3‘2 - a*)p\0) - (32 - ar){ l2 - 

and so on, the general value being 

y*(2n-])(o) = a(p-cr)(32-<r)... {(2>i-3)2-«2}. 
Hence, 

• / • i \ . «(l2-a2) q , a(l2~a2)(32~a2) , , . .. 
sin (a sin_\r)=a.r+ - - .r3 -f —-— /a*6 +....(vi) 

o I 0 I 

The series (vi) will terminate if a is an odd integer ; in all other 
eases it will not terminate. The ratio of the term in #a"+1 to the term 
before it is 

(2 n-jY-ar 
2«(2« + l) ’ 

and since the limit of this ratio is x? the series (vi) is absolutely 
convergent so long as - 1<ot<1. 

For many purposes only a few terms of the development 
of a function are required, and the calculation of a small 
number of derivatives may always be effected with more 
or less labour. Thus, the first three or four derivatives of 
log(l+sin^) are easily calculated and the first three terms 
of the expansion obtained, x — x2/2+x*/6. 

It is usually simpler, however, in cases like this to proceed as 
follows: suppose 

y = axx-f a2x2 + ... ; f(y)^K+bxy + tuy>+ .... 

Substitute for y in the series b0 + bxy-f b2y2 + ... its value in terms of x 
and rearrange in powers of x; the series obtained will be convergent 
for sufficiently small values of x. 

For example, 

y=sinx=a7-g-+ ...; log(l+y)=y-^-+!|-+ ..., 

and therefore 

log(l+sin 

The proof of the method cannot be gone into here# 
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§ 155. Differentiation and Integration of Series. The pro¬ 
perties of a function are often most simply investigated by 
using an infinite series which represents the function; we 
must, therefore, see under what conditions a series may be 
differentiated or integrated term by term. The rules for 
differentiating and integrating a sum have been proved 
with the express limitation that the number of terms is 
finite; their extension to infinite series requires justification. 

We begin with the theorem in integration; e denotes as 
usual a given arbitrarily small positive quantity. 

Theorem I. If the series u1(x) + u2(x)4- ••• uniformly 
convergent from x = a to x —b and converges to f\x), then 
the series f* . . 7 p* 

J u1(x)dx+j u2(x)ax+ ..., 

where a ^c < x zlb is also convergent and converges to the 
value pr 

yf{x)dx. 

Let f(x) — sn(x) + rn(x) and let 
Cx Cx 

an(x) = I sn(x) dx; pn(x) = I rn(x) dx; 

Cx Cx Cx 

then crjx) — I ufx) dx + I nfx) dx +... + I un(x) dx, 

and £ f(x) dx = ajx)+pn(x). 

Now, since the series is uniformly convergent, we can 
choose m so that, if nilm, the remainder rn(x) will, for 
every value of x from x = a to x — h, be less than e; there¬ 
fore, m being so chosen, if n^rm the quantity pn(x) is 
numerically less than 

| edx, that is, e(x — c). 

Hence, if n^m} the difference 

^J(x)dx-<jn{x), 

is numerically less than e(x — c); that is, the limit for 
n = oc of the difference is zero, and therefore 

Cx Cx Cx 

I f(x)dx= L <Tn(x)— \ ux(x)dx+ I u2(x)dx+ .... 
Jo n=oo Jc Jo 
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Theorem II. If the series ux(x) + u2(x) + ... is convergent 
and converges to f(x) when a~x:^b, then the derivative 
of f(x) is obtained by differentiating the semes term by 
term, that is f(;r.) = Ul'(x) + U.;(x)+ ... , 

provided the series u/(x) + u2'(x) + ... is uniformly convergent 
from x = a/ox = b. 

Let F(x)~u1\x) + Uo(x)+ ; 

then by Theorem I., since ul'(x) + u2'(x)+ ... is uniformly 
convergent, 

f j; Cx Cx 

I F(x)dx = I u1/(x)dx+\ u2fr)dx + ..., 
JC ' ' Jc Jc 

= K('r) - Ux{c)} + {u2(x) - u2(c)} + ..., 

= {u,(a?)+tt2(.*)+ ... }-{«1(c)+«2(c)+ ••• }, 
= f(x) — constant. 

Therefore 

f,\/0)dx=f(x)\ that is, F(r)=f(x). 

By § 151 Theorem 11. we see that a power series may 
bo integrated term by term if x is within the interval of 
convergence. 

We will now show that the series obtained by differ¬ 
entiating the power series is uniformly convergent when, 
in the notation of §151, Theorem II., — It < a F xb < R, 
and that the derivative of the series is therefore got by 
differentiating it term by term. For the scries 2anpn is 
absolutely convergent, and therefore | anpn\ is finite, less 
than c say, for every n. 

The series obtained by differentiation is 

-J- 2<t2x -f- 3(lugX? -j- ... -j- nanxn ~ * -f* .... 

Numerical values alone being considered, we have 

* i ,/ri\n~l c/x\n~l 
nanx:n "1 = nanpn , 

and therefore the terms of the series of derivatives are 
numerically less than the corresponding terms of the series 

c 

P 
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But this series is absolutely convergent since the test ratio 
is x/p and xjp is numerically less than unity. Hence, the 
series of derivatives is uniformly convergent when x is 
any number in the interval (a, b), the numbers a, b being 
such that —R<a<b<IL (§151, Theorem II.) 

Ex. log(l +x)—x - .hr2+J#3—... ( — 
By differentiation we find 

l/(l4-.r)=rl~.r+.r2-... 

This equation is true if — 1 <.r<l, but not if x — 1. 

§ 156. Examples. We will give two examples of the 
development of a function as a power series by the integra¬ 
tion of a known series. 

1. tan Xx. 
If — 1 < x < 1, we have 

= l - J?2-f 1 )nxln + (1) 

and therefore, integrating from 0 to x, 

Um~1x = x- 
.r3 xr> 
3^5 y + ...+(-l)n^-+1+. .(A) 

The expansion (a) is proved for |#|<1. The series (1) oscillates 
when x— ± 1, but (a) is convergent for ,r=:±-l ; we may therefore 
apply Abel’s theorem (p. 38b), and deduce that (a) remains true even 
when x~ ± 1. 

If x= 1 we find, since tan 31 = 7r/4, 

(ai) 

The series (Aj) is called Gregory's (sometimes Leibniz's) series for tt ; 
it is too slowly convergent, however, to be suitable for calculation. 
A better series is got by using Markin's formula, namely 

4=4tan~’®-taiKi)- 
It will be a good exercise to calculate tt from this formula by using 
the expansion (a); the series for tan”1 (1/5) and tan”1 (1/239) converge 
rapidly and give tt to 5 or 6 decimals with little labour. 

2. sin^x. 
If - 1 <x< 1, we got by the binomial expansion 

1 /, o\~*j i,l 9, 1.3^1.3. 
7(T^)=(1-^) =1+r+ n* + 0^+"- 

and therefore, integrating from > to x, 

sm 5+27176 T + "" 
u.c. 2c 



402 AN ELEMENTARY TREATISE ON THE CALCULUS. 

The following example shows how we may obtain an 
approximate value of an integral by means of a series : 

3. The time of a complete oscillation of a simple pendulum of 
length l, oscillating through an angle a on each side of the vertical 
is AKJ{ljg) where 

r f* d(j> 7-1 
K=l *=sm2a: 

to find a series for K. 

Expand (1 -Fsin2</>)"* by the binomial theorem, and then integrate 
term by term. We nave 

= 1 +g£2sin2<£ + 
1 .3 

2.4 
^sin^-H_ 

The integrals of sin2</>, sin4<£, ... are given on page 285 ; therefore 

When a is so small that k2y kJ} ... may be neglected, A'=7r/2 and the 
period is 27rJ(l/g). 

4. To evaluate f -—— (r a positive integer) 
Jo I — 2CL COS 

If |«!<1 we have by ex. 13 Exer. XXXIII. 

i-gaek^+o80- a211 + 2a C0S -r + 2“2coa 2x + 2a3cos 3#+...}- 

Also / coscos7*xdx—0 if n^r 
Jo 

7r 
— — if n~r. 

2* 
Therefore, when the series is multiplied by cosr.r and integrated, 

every term will vanish except that arising from 2arcos rx cos rx; we 
thus get 

fw co&rxdx _ 7var 

Jo 1—2a cos x+a2 1 — a2. Jo 1—2a cos x -f a2 1 — a2* 

If | a | > 1 we have 

1 _ 1_1_ 
l~2acos# + a2 a2 _ rtl 

l - 2-cos^+i 
a a£ 

and we may expand in powers of 1/a ; or, we may write 1/cr for a 
in (i) and then multiply by 1/a2. We find for the integral 
va-rJ(a?-1). b 
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EXERCISES XXXIV* 

1. Prove that the following expansions hold for every finite 
value of x: 

• xP xP 
(i) sin (x “f* ci) — sin ci 4- «r cos a —^ sin a — ~ cosa+ 

/••\ rjc t , 2o;3 22-^ , kt: xn 
(li) e*cos.r=l-fo7- 3T-Tr-...+2*c08—5T+..., 

/•••\ • , o , ^x3 2‘V n . mr xn t (in) etBmx=x+x2+——.4-2* sin —— + ..., 
3 ! 5 ! “ ““ 4 

^2 £3 
(iv) ^^“cos (x sill a) — 1 +x cos a 4- cos 2a4-5-y cos 3a 4-.... 

Show that //"e* 008 a cos (# sin a)=e*c°*acos(o7sin a + na). 

2. From 1 (ii), (iii) derive the expansions of cosh x cos 
sinh x sin x, cosh x sin x\ sinh x cos x. 

3. Prove that if | x | < 1, 
7*2 O t»3 7*4 

10g(l+* + *2 6) = * + ? --f +4+-. 

4. Show that, as far as the terms stated, 

5x* 
(0 sec 07= 

1 + 2 + 24 + 720 : 

tan 07 = 
a? 2.1/' 17x7 

(ii) ■X + - + 
Ts + 315 

(iii) x cot X i 
r-t II X* 

45 

2^> 

945* 

These expansions may be obtained by division, replacing cos x and 
sin.r by the equivalent series. Can cot# be developed by Maclaurin’s 
Theorem ? 

5. If x is so small that squares and higher powers may be neglected, 
show that 

W(4+*)+ if(i +*)M,y(i+4*)+V(i - *)}=! - f~- 

6. If f(x)—x/(eK-1), show that the limits of f(x) and of f(x) for 
o’=0 are 1 and — £ respectively. Show also by differentiating n times 
the equation 

e*f{x) - f(x) -x—0 

that 

and therefore that if n> 1, 

nO1f^(0) + nO2f^(0)+ - +nC1f(0)+f(0) = 0, 

the limits of the functions for o"=0 being taken as the values for 
#=0. 



404 AN ELEMENTARY TREATISE ON THE CALCULUS. 

7. If 

show that i?j = l/6, Z?2 = l/30, ^3= 1/42 .... 

The numbers Bv i?2,... are called Bernoulli’s numbers (see Clirystal’s 
Alg.y vol. 2, chap. 28, § 6). 

8. Show that 

-4-I=f-(22-1)||^ + (24-l)fX-(2»-0^+.... 

9. If /(.r)==(sin~1^,)/v/(l — .a?2), show that 

(1 - x2)f (x) - xf(x) = 1 
and that if |,r|<l, 

2.4 K,2.4.6 
3.5 3.5.7 v/(l-.r2) ~'3" 

10. Show from ex. 9 that 

(i) 6—sin 0cos 0^1+|sin20+~£8in40+...J. 

,+Ilis+5 
(ii) tan-^=~2-( 

Put x—sin 6y tan 0=z. 

11. Deduce from ex. 9 by integration that, if |#|<1, 

i, . , v> xl 2 xA 2.4 ofi 

^ 81,1 X^‘~ 2+3 4+3.5 6 + ‘"' 

12. Show that cos(asin-1^) satisfies equation (iii), § 154, and prove 
the expansion (|#|<1), 

13. Prove from the series for sin (a sin-hr) and cos (a sin"1#) that 

/•\ ■ n -a wi(m2-l2) . m(m2-l2)(m2-32) . rn 
(t) sinw = msm^---sin3#H— ----sinf,^~... . 

o! 5! 

(ii) cosmd=l -^~sin2ff+- ^ ~2 ^sin4fl~...* 

Series for cos mOjcos 0 and sin mOjcos 0 may be obtained by differ¬ 
entiating sin^sm-1.?) and cos (a sin-1#). 

14. Show that if | x | < 1, 
ni c , 1 .r3 1.3 jc6 1.3.5 .r7 
(i) log {^+V(l+^)}=^-2 3+2T4 5'^Xe 7+- 5 

(ii) |{log(H-.r)}2 

~ S “ (x +i)?+ (J +l+l)i " +I+5+s)?+ - 
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15. Prove that if | x | < 1, 

(0 3! 4! 

(ii) {.r+V(l +*2)}*= 1 +hx+^**»+ ^3,--^**+ 

To prove convergency, note that both in (i) and in (ii) the series 
formed of the odd terms and the series formed of the even terms are 
separately convergent or divergent according as \x\ is less than or 
greater than unity. 

16. Show that, with the usual notation, the perimeter of an ellipse is 

17. Prove (i) the perimeter of an ellipse of small eccentricity e 
exceeds that of a circle of the same area in the ratio 1 + 3<r/64 
approximately ; (ii) the surface of an ellipsoid of revolution (either 
prolate or oblate) of small eccentricity e exceeds that of a sphere of 
equal volume by the fraction 2e4/45 of itself. 

18. Show by integrating (cos 0+#)/(l +2# cos Q+x?) first with 
respect to x, and next with respect to 0 (see Exer. XXXIIL, 12), 
that if |.r |< 1, 

£-2 ^3 

(i) £log (1 + 2xco& 0-f#2)=:i£cos cos 20+y cos30~ ... ; 

(ii) tan_1( =.rsin 0-sin 20+ sin 30 —... 
7 \l+#cos0/ 2 3 

19. Deduce from ex. 18, by taking the limit for x— 1, that 
if -7r<0<7r, 

(i) cos0~ \cos204-^ cos30-...= log(2cos£0). 

(ii) sin 0 - \ sin 20+J sin 30 - ... = |0. 

Show that the series (ii) does not represent the function 0/2, except 
when -7r < 0 < 7r, and that the value of the series when 0~ir is zero, 
but that the limit of the series for 6—tt is 7r/2. Show also that neither 
series can be differentiated term by term, although both are convergent 
(Exer. XXXIII., 15). 

20. Deduce from 19 by putting 0=7r —.r that if 0<x<2ir, 

(i) cos x+\cos 2x+J cos 3x+...==- log (2 sin £,r), 

TT X 
(ii) 8in#+£sin2#+Jsm3#+...=y-^ 
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21. By integrating 20 (ii) show that if 0^x^27rt 

x2 ttx (cos# t cos2# , cosSx , \ r 

4" +~32 + **‘/ 0 

where P+12+33 + * ‘ * 

The series is uniformly convergent for every value of x, and we may 
therefore give to x the values 0 and 27r after integration. The series, 
however, is periodic, and does not represent the function xljk-Trxj2 
outside the interval (0, 27r). 

22. Deduce from 21 that 

(i) 1 . 1 , 1 . _7r‘2 . /in 1 . 1 . 1 , _7r'2. 

W i*+3* + 6*+-“'8 ’ 0 ) P + 2*+3*+-—6 ’ 

22 a2 42 12' 

To yet (i) put .r=7r in 21 ; (ii), (iii) readily follow. (Exercises 
XXXIII., 3.) 

23. Show that 

(i) ff-log(l+x)dx^-^+^-...^ 

.Cll°s0 -x)d*= - (i+p+p+-)” ~T 
w 

(iii) £tau ^log(cot^=I(^-l+|-I + ...)=g. 

To get (iii) put tan 0~x; note that L xn log x=0 (Exercises VII., 10). 
x—0 

24. Prove 
cos# cos 2# t cos 3# cos 4# t 7r2 #2 

\l) + 42-12~ 4’ 

cos x , cos 3# . cos 5# , 7r2 7r.r 
(u) T2-+-p-+--B2-+-=8-- 4- 

In (i) —tt^x^tt ; in (ii) O^x^tt. 

25. Show that for every finite value of x 

(>) l jfcos^coa0)dd= 1 -22+2^42 - 2r^7P+- 5 

(ii) - J cos(#cos0)sin2r0<i# 

_ (2r)I f .r2 ^ 

2(2r+2)+2.4(2r+2)(2r+4)~ ”* 
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26. If y denote the series (or integral) in 25 (i) show that 

dx2 x dx 
+y=o. 

27. If u denote the series (or integral) in 25 (ii) and if y~xru show 
that 

^+4l+{x2-ri)^°- 
y is called a Bessel Function of order r, and is (but for a numerical 
factor) usually denoted by Jr(x); the function in 26 is J0(x). (See 
Gray and Mathews, Bessel Functions). 

28. Show that if n is a positive integer 

sm#(l +2 cos 2x + 2 cos 4x+... 4-2 cos 2w^) = sin(2w + l)^, 

and then prove 

f* sin(2n -f l).r^ __ tt 

Jo sin x 2 * 

29. Prove the following results, a being positive and r a positive 
integer : 

(i) ^log(I - 2a cos a2)<7^=0 if a<l 

= 27t log a if a>l ; 

x sin x dx 
zi=-loeO+a)if «<1 - 2a cos x + a2 a J 

=>g(1+Difa>1: 
(iii) / cos rx log (1 - 2a cos x+a2)dx~ - irarjr if a< 1 

Jo 
= ~7Ta-rjr if a>l j 

/. \ sin ,r sin rx dx tt r , .. _ 
(iv) — -——» = 0a 1 if a<l J0 1 -2a cos#-for 2 

* a-(r+l) jf 

30. Prove 
/.x f*sin# y x3 , x5 

rdx = X~3!3+5l6"- 

(ii) ^^=l-p+p-~ + ... 

To obtain (ii), put #* in the form ex]°ex and expand. 



CHAPTER XIX. 

TAYLOR'S THEOREM FOR FUNCTIONS OF TWO OR 
MORE VARIABLES. APPLICATIONS. 

§ 157. Taylor's Theorem for Functions of two or more 
Variables. We will consider very briefly the expansions 
corresponding to Taylors Theorem when there are more 
variables than one. The expressions for the remainder are 
very complicated and will not be written down although 
the form they would take can easily be gathered from the 
proof; any adequate discussion of the remainder, however, 
would take us too far into the theory of algebraic forms. 
It is, of course, assumed that the functions and their 
derivatives up to and including those that would appear 
in the remainder are all continuous. 

We will take first the expansion of f(x+h, y + k) in 
powers of h and /c; this expansion corresponds to (13) of 
§152. 

f(x + h, y + k) is the value of f(x+ht, y + kt) when £ = 1; 
the latter function, considered as a function of t, can be 
expanded by Maclaurin’s Theorem. For brevity denote 
f(x+ht, y+kt) by F(t) and let accents indicate derivatives 
with respect to t; then 

F(t) = F(0)+tF'(0)+i*F"H))+ ... +Bn(t).(1) 

We will now show how to express the ^-derivatives of 
F(t) in terms of the partial derivatives with respect to x 
and y of F(t). 

Let x+ht—a; y+Jd = /3,.(2) 

then m= 
’dF da 3.F d/3_, S-F , ’dF 
lkidi+dpdt~hd^+dp 

.(3) 
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But 
dx ~~~ da dx 

dF 
da 

, since, by (2) 
da 

’ dx i, 

and, similarly, 

Thus (3) becomes 

3FjdF 
'dy~'dj3 

T,,, , , dF , 'dF 
' dx dy 

.(4) 

The student will perhaps see the meaning of (4) more clearly by 
taking a particular case, say F(t)~(x+ht)m(y + kt)n. The example will 
also illustrate the fact that F\t) is a function of x + ht and y + kt, and 
that F'\t) may therefore be found in the way we now state. 

Next F"(t) is the ^-derivative of F'(t) and will be obtained 
by replacing F(t) in (4) by F\t); thus 

F'(t)=h?f+k 
w dx dy 

— h {* 
JPF.j d*F\ 
dxdy C dyz. 

Similarly, 

12d2F n] 7 &F .12&F 
=z/iu + 2 hh —f-/t' o- 

dx1 dxdy dy1 ■(B) 

«d*F d*F 
F'V)=h*^+Wk^t+m 

dPF >d*F 
dx2dy dxdy1’^ dy*' 

.(6) 

The law of formation of the derivatives is now clear; we 
will show immediately how the value of F^m\t) can be 
written down in a more compact form. We first consider 
the values of F\0), F\0), F"\0). 

F(0)—f(x, y) and the values of F'(0), ^"(O), F'"(Q) are got 
by simply replacing the function F(t) in (4), (5), (6) by 
f{x, y). To get the Lagrangian form of the remainder, we 
must in F^n\t) replace t by Ot; if n = 3, then in (6) F(t) 
would be replaced by f(x + h6t, y + lc6t). Thus (1) becomes 

f(x + ht,y + kt)- ./(*, y)+t(h2[+t?£) 

+ dx1 dxdy dyV 
.. (7) 
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To get f(x+ht y+k) put 1 for t in (7); therefore, 

f(x+h, y+k)=f(x, y)+h^+k^ 

+Kh‘dtf+2hk~~ dxdy fP^)+' (8) 

Equation (8) gives the required expansion ; the expansion 
(7) is however a form that is useful. 

The values of F'(t), F'\t), in (5), (6) may be written more 
compactly in the symbolical forms 

if these are interpreted as follows:—Let the binomial be 
0 3 

expanded as if h— and Jc— were single quantities; after 

expansion place F as the last factor of each term and then 
replace a term like 

first by 3h*kjL-F, then by Wk f ~ . 
J dx*dy dx?dy 

In this notation the (m+l)th term of (7) would be 

tm 
m! 

=—(h 
m!\ 

*TL umh^k "°mf 
'dxm+ 'dxm~'?ry 

The form (8) may be easily adapted to the expansion of 
f(x + h, y + k) in powers of x and y \ we have merely to 
interchange x with h and y with k. Using the suffix 
notation, we get 

f(x+h, y+k) =f(h, k)+xfh+yfk 

+^vtfhh+%cyfhk+yjkk)+.(10) 

To form fhy fhh ... we may differentiate f(x} y) with respect 
to x and yy and then replace x by h and y by k 
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In (10) we may of course suppose, if we please, h = 0, 
A; = (); we should thus get the expansion of f(x, y) cor¬ 
responding to Maclaurin’s Theorem. 

When there are three or more variables the expansions 
are similar. Thus for three variables 

f(x + h, y+k, z+l)=f(x, y, z)+h& + 1<$^ + 

+¥l(hic+kdy + lS)f+-- (H) 

wlrere the symbolical expression is to be interpreted in the 
same way as before. 

§ 158. Examples. 

1. To find the equation of the tangent plane at the point P(4, A, l) 
on the surface /(.r, y, z) — 0. 

The equations of the straight line through P, with the direction 
cosines A, fi, v, are 

{x-h)!k — {y-k)liL~{z-l)!v—r,.(i) 

where r is the distance from (4, k, l) to (x, y, z). Let (r, y, z) be the 
point Q on the surface ; then 

#=4 + \r, y -k+/xr, z = 14- vr ; r, y, z) = 0. 

In /(.r, y, 2) put for .r, y, 2 the values just written, and expand by 
Taylor’s Theorem ; therefore 

0 =/(4, k, Q + r(A/ft + tfA + v/i) + Ar2+.(ii) 

But /(A, £, £) —0, since the point P is on the surface ; therefore one 
value of r given by (ii) is zero. The other roots of (ii) are the distances 
from P to the several points in which the line (i) meets the surface. 
Let rx ~ PQ ; then (ii) becomes, since rx is not zero, 

0 = A fh 4- fi/k 4- vfi + >4r14-.(iii) 

As q tends to zero the line (i) tends towards the position of a 
tangent line ; but (iii) shows that as rx tends to zero, so does 

Afh + yfk+vfu 
Hence the line (i) will be a tangent line if A, p, v satisfy the 

equation V»+/*/* +»/«=<*.(iv) 

If we eliminate A, /q v from equations (i) and (iv), we shall obtain 
an equation which is true for the coordinates of any point on any 
tangent line through P. The result of the elimination is 

(x - h)fh + (y-k)fk-\-(z-l)f,=0, 

the same equation, except for the notation, as was found in § 91. 
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2. Euler’s Theorems of Homogeneous Functions. 
Definition. A function u of two or more variables is said to be 

homogeneous and of degree n if, when the variables .r, v, ... are 
replaced by Xx, A//, ... respectively, the function u becomes Anu what¬ 
ever the quantity A may be. 

Let u—f(x, y) be a homogeneous function of degree n in two 
variables ,v, y. Then 

xux+yuv—7iu, .(i) 

+ 2xy uxtJ 4-y2uyy—n(n - 1)u.(ii) 

Replace x and y by (1 + t)x and (1 -f t)y, that is, by x+xt and y+yt\ 
then u becomes (l+i)ww-, that is, 

f{x+xt, y+yt)~(l+t)nn. 

Expand the function on the left by Taylor’s Theorem and that on 
the right by the Binomial Theorem ; therefore 

/(•*•. y)+t(xf*+y/»)+|(«y«+2 xyfxy +y*fn) +■■■ 

=u+ntu + ~^%+_ 

Equating coefficients of the same powers of t, we get equations 

(i), (ii)- 
It is easy to see that 

/ d d Yn 
V’3x+yZg.) “ = «(»- 1 )•■■(«-m +1)«» 

and that the theorems may be extended to homogeneous functions of 
three or more variables. For example, 

.mtx -\‘yuil+zut~nu.(iil) 

Ex. Let u=t3M~J(y/x); then u is of zero-degree. 

— 2 —y_ —y ' __ x 
Ux 1 +y2/x2 X x2 x2+y2’ Uy x2+y21 

■ xy XV 

3=°- 

§ 159. Maxima and Minima of a function of two or more 
Variables. 

Definition. f(a, b) is said to bo a maximum value of 
f{x, y) if f(a + h, b+k) is less than /(a, b) for all values of 
h and k, positive or negative, that lie between zero and 
certain finite values however small; f(a, b) is said to be a 
minimum value of f(x, y) if f(a+h, b + k) is greater than 
/(a, b) for all such values of h and k. 

Similar definitions hold for functions of more than two 
variables. 
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We will assume the continuity of the functions and their 
derivatives for all values of the independent variables 
considered. 

A necessary condition that/(a, b) should be a maximum 
or a minimum (a turning value) is that both fx and fy 
should be zero when x = a, y = b. For f(a, b) cannot be a 
turning value of f(x, y) unless it is a turning value of the 
function f(x, b) of x alone when x = a and also a turning 
value of the function /(a, y) of y alone when y = b; there¬ 
fore fx(x, b) vanishes when x = a and fy(a, y) when y = h. 

To investigate sufficient conditions expand f(a+h, b-f /,;); 
we get 

J(a+k9 b + k)—f(a, b)—h(h2faa + 2hhfab + h2Ji)i)) + li...(l) 

where the terms Jiff, Jeff are omitted since fa = 0,ff~0 when 
/(a, b) is a turning value. 

If f(a, b) is a turning value the expression on the right 
of (1) must retain the same sign for all small values of h 
and k, the negative sign for a maximum value and the 
positive sign for a minimum value. Now R contains h and h 
in the third degree, if we suppose R to be the remainder in 
Taylors Theorem; it seems natural therefore to assume 
that, for sufficiently small values of h and Jey the sign will 
be that of the quadratic expression in h and 1c. Yet this 
assumption is not sound as the following example, given 
by Peano, will show. 

Let f(xy */) = 8x2 — Cxvy2 + ; then a — 0, b — 0, f(a, b)~ 0, and 
equation (1) becomes 

f(h, £) = + + .(2) 

Here we have R exactly, R = — 6A£2 4- lA. The terms of second 
degree reduce to 8A2 and are therefore positive so long as h is not 
zero. Yet /(/», Jc) is not of the same sign for all smab values of h and k. 
For let A), and we lind 

/(MMA-2)(A-4)A* 

Hence/(A, lc) is positive or negative according as A does not or does 
lie between 2 and 4. In other words, /(0, 0) is not a minimum value 
of f(x, y), even though the terms of second degree are positive except 
when A = 0. 

The difficulty just noticed would require a fuller con¬ 
sideration of the remainder in Taylor's Theorem than we 
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have room to give. We therefore simply state that f(a, b) 
will be a turning value if 

faafbb > (fab)2, 

and the value will be a maximum if faa (or fbb) is negative, 
a minimum if faa (or fbb) is positive. 

It may be seen that a necessary condition that /(a, 6, c) 
should be a turning value of f(xy yt z) is that fx,fy,fz> should 
all vanish when x — a, y ~b, z — c. 

In many cases it is known that a turning value of a 
function must exist; it is usual to assume without further 
proof that the values of the variables that make the first 
derivatives vanish are those that give the turning value. 

§ 160. Examples. The most important cases are those in 
which the function whose turning values are required is 
given as a function of two or three or more variables, the 
variables being connected by one or more equations of 
condition. The best method of proceeding in such cases is 
usually the following. Let the function be n and let there 
be, say, four variables with two equations of condition, 

u=f(x, y, z,w) (1); 

<{>{x,y,z,w) = 0(2); \/s(x,y,z, w)=0 (3). 

Suppose for the moment that z and w are found from (2) 
and (3) in terms of x, yy and that these values are sub¬ 
stituted in (1) which thus becomes a function of two 
independent variables x, y; let Dxu, Dyu denote the first 
derivatives on the supposition that the substitutions have 
been made. For a turning value Dxu and Dyu must both 
be zero. Now 

.(4) 

and dz/dx, dw/dx are found by differentiating (2), (3); thus 

- <5>; -(o 

Instead of solving (5), (6) for dz/dx and dwjdx, multiply 
(5) by X, (6) by y and add to (4); therefore 
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Dxu —fx + \<f>x + 
^■111 

+ ( fz + X$Z + H'lfz) 'fo + (fw + ^<pw + .(7) 

In exactly the same way we find 

DyU =fy + X<j>! + fJ.'J/y 
'd'hU 

+ (fz +^<pz + + (fw+ A0W + M.(8) 

It will be noticed that the coefficients of dz/dx and 'dwj'dx 
in (7) are respectively equal to those of 'dzj'dy and dw/dy in 
(8); therefore choose the multipliers A, jjl (and this is in 
general possible) so that these coefficients are zero, and the 
values of Dxu, Dyu will reduce to the first three terms of 
(7), (8) respectively. • 

For the turning values of u the derivatives Dzu} Dyu are 
zero; therefore for the turning values we have the four 
equations, 

/c + A^a; + ^\/ra. = 0, } /£\ 

fz 4- A^>r -h/W'/'z = 0, fw-\- A0w + /x'^lP = O, / 

and these four equations together with equations (2), (3) 
are just sufficient to determine A, ju, and the values of x, y> 
z, v) that give the turning values of u. 

The equations (9) are symmetrical in x, y, w, and this 
method, called the method of undetermined multipliers, is 
specially simple when the functions /, yjs are homo¬ 
geneous. We have taken four variables and two equations 
of condition, but it is clear that the reasoning is quite 
general. We may state the rule for writing down the 
equations (9) thus: 

Form df+Xdcp+ydxfs 

and equate to zero the coefficients of dx, dy, dz, dw. 

Of course df means fxdx+fydy+fzdz+fwdw and dtp, d\Js 
have like meanings. 

Ex. 1. u — x2+y2 + z2 (1); <j>=ax+by+cz-k=0 (2) 

Clearly u has a minimum value; for, by (2), x, y, z cannot be 
simultaneously zero and u is always positive. Now 

du + Xd<p = (2x + Xa)dv -I- (2y + Xb)dy + (2 z + Xc)dzy 
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and therefore, equating to zero the coefficients of dx, dy, dz> we find 
for the values of x, y, z that make u a minimum 

x/ct = — \/2=y/b~z/c. 

By (2) each of these fractions is equal to k/(a2+b2 + c2), and then by 
substitution for r, ?/, z in (1) we see that the minimum value of u is 

&/(a*+ &+<?). 

The student may also solve the example by replacing s in (1) by its 
value {k — ax - by)jc deduced from (2); he must be on his guard against 
confounding the value of ux in this method with the value of ux in the 
first method. 

Ex. 2. Find the turning values of u when 

?/ = ah:2 + b2y2 + cV, .(1) 

and x14- }fl + z2 = 1 ;.(2) 

lx+my + nz = 0 .(3) 

In this case u is really a function of only one variable, but the 
method of undetermined multipliers is equally applicable. 

To get rid of the factor 2 we take A, 2as the multipliers ; then 
we readily find 

idx + A x + fil ~ 0, h2y -f* A y + ym ~ 0, e2z + Ac + jui = 0.(4) 

Multiply the first of equations (4) bv .r, the second by y, the third 
by s, and add ; then taking note of (2), (3), we find 

a2x2 + b2y2 + c2z2+ A —0, that is, A— - u, 

where u is now a tummy value, since the values of x, ?/, z that satisfy 
(4) are those that determine the turning values. 

Put - u for A in (4), and we get 

x=ju,lj(u — a2), y — fjL/n j{u - 62), 2=fin/(u — c2), 

If we now put these values of .r, y, z in (3) the factor /x divides out 
and we get a quadratic equation for ?/, 

l2j(u - a2) + m2/(u - h~) + n2/(u - c2) — 0.(5) 

One root of (5) will be the maximum value of uy and the other the 
minimum. 

EXERCISES XXXV. 

1. Verify Euler’s theorem on Homogeneous Functions (taking first 
derivatives only) in the following cases. 

(i) ax2 + 2bxy+cy2; (ii) ax3 + by3 + cd; (iii) sjx + sfy + Jz 

(iv) (x+y)!(x2 +y2) ; (v) (x 4- y + z)/(x2 -f-y2 + z2); 

(vi) tan”1 (r/z) where r — ^(x2+y24-z2); (vii) 1 /r. 

2. If u is homogeneous of degree w, prove 

(i) xuxx+yuxy^(n-X)ux\ (ii) xu^+yuyy = (rc -1)uy. 

3. Show that if a is positive 3axy — x*—y3 is a maximum when 
#=a, but neither a maximum nor a minimum when .r=0, 0. 
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4. The function — y) is a maximum when #—3, y — 2, but 
is neither a maximum nor a minimum when a' —0, y — 0. 

5. Show that if a, 6, c are positive, and if 

aj:v 4 6/?/ 4 cfe — 1, 

the sum ^+?y+2 is a minimum, when 

x/Ja ~ylsfb -zjjc Ja 4 Jb 4 Jc. 

Show also that if p, </, r are positive, the product xvjfzr is a 
minimum, when 

p.vja — qyjb = rzjc —p 4 q-\-r. 

6. If u~x2+y2, and if a,x2 + V/uy + by21, find the maximum and 
the minimum value of ?/, and interpret the result geometrically. 

7. If u—-:c1+y~ + z\ and if 

x2/a2+y2jb2 4 z2]<? ~ 1, and lx 4- my 4 nz = 0, 

find the maximum and the minimum value of uy and interpret the 
result geometrically. 

8. If n=x, - -j- x22 4-... 4- xu\ 

and if <rvrt 4-up2 +... 4a„x„ — 

show that the minimum value of u is k-:{af + a»i+... + a,2). 

9. If x, ?/, c are the perpendiculars from any point P on the sides 
a, b, c of a triangle of area A, show' that the minimum value of 
x2 4 v/2 4- z2 is 

4 A2/ (<i2 4- b2 4- c2). 

10. Show that the minimum value of 

(a vv 4- bly 4-c,)2 4 (<ux4- b2y 4- m)2 4... 4- (anx 4 b„y 4c„)2 

is given by the values of x and y which satisfy the equations 

(Xop>’4{^u{bx)y 4(wcqc,) = 0 ; 

+ (Zh;-)y + (-Vi) = 0. 
11. Show that the centroid of n given points is the point, the sum 

of the squares of whose distances from the n points is a minimum. 

12. Apply the method of undetermined multipliers to find the 
evolute of an ellipse considered as the envelope of the normals. 

The normal is a2xja - b2y/ft — a2 — b2 

where a2/a2 4 ft2/b2 — 1. 

"4+^=o, 
or a2 

% , A 2£_0 
X + A b" ’ 

a ml therefore A — k(a2 — ?>2), a3 — air/(a2 - b2), etc. 

13. Show that the envelope of 

xam 4 y ftm ~am'11 where an 4 ftn — ?>n 

-2- -it. fam+l\-JL- 

T ~\ bm 1 • 
G.C. 
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§ 161. Indeterminate Forms. A function f(x), that is in 
general well defined for a certain range of values of its 
argument, may for a particular value, a say, of its argument 
take a form (such as 0/0) that has no meaning. It is 
possible, however, that f(x) may have a definite limit A 
when x converges to a. Although f(x) is really undefined, 
has no value that can be calculated by the ordinary rules 
of algebra, when x — a, yet it has become the established 
practice to call f(a) in such a case an indeterminate form. 
and to define A as the value of f(x) when x — a. The value 
thus assigned by the definition is usually called the true 
value of f(x) when x — a. 

If it be clearly understood that this “ true value ” is 
assigned by definition and is therefore arbitrary, there is a 
certain advantage from the procedure, namely, f(x) becomes 
continuous up to and including the value a, it being sup¬ 
posed that f(x) is in general continuous. 

The typical indeterminate forms are 

0/0; oo Jtj\ oo— oo; Ox so; 0°; oo°; 1°°. 

We have already had some important cases of such 
forms; the derivative of f(x) is a case of 0/0. 

0 x oo is seen in x log x when sc = 0; the true value is zero. 
xne~x or xnjex when x — + oo gives 0 x oo or oo /oo and the 

limit is zero. (See Exercises VII., 8, 9.) It is easy to see 
that the result holds whether n is integral or fractional. 

i 

1“ is the case of (l+x)x when & = 0; in this case the 
limit or true value is e (§ 48 Cor.). 

In many cases the limits are found most simply by 
algebraical transformations and the use of series. We will 
take one or two examples before indicating the general 
theorems. 

Ex. 1. fLi+fci)* ,„m» 
1 

Divide numerator and denominator by (#J-1); we see at once that 
the limit is —3/2. The “true value” of the fraction when .r —X is 
therefore -3/2. 

Ex. 2. (sin-1# — #)/#3 when # = 0 ; form 0/0. 

Expand sin-l#(—#-h#3/6-h ...); x cancels in numerator, and after 
dividing numerator and denominator by .r3 we get 1/6 as the limit. 
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Ex. 3. sec xfsec 3# when x—7r/2 ; form oo/oo. 

Let x — $7r-u; then 
T secx T — sin3?^ 
L -- = L —. = -3. 

a-^ifl-sec3^ u—0 HinM 

Ex. 4. 

1 

1 
x2 

- cot2# 

-cot2# when .r—0 ; form x - x. 

-(■ 
i , x 
1 + —-COR X 

sin x 
^ ^_x ^ ^sin x - x cor 

The limit of the first factor is 2 and of the second factor 1 ; also 
^*3 / sgl \ j>3 

sinx — xcosx~x —~ ■+■ ...4* ...) = ■—+ ..., 

so that the limit of the third factor is 1/3. 
Hence the limit or true value is 2/3. 

Ex. 5. x* when x—0 ; form 0°. 

1 jet ?z = .£*; then logu~x\ogx. The limit of .rlog# or logu is 0, 
as we have just seen, so that the limit of v or x* is 1. 

Ex. 0. (1/#)*“* when #=0 ; formx0. 

The logarithm of the function is 

- tan x log x— - - (x log x) 

and has therefore 0 for limit; the limit of the function is therefore 1. 

§ 162. Method of the Calculus. We will now prove the 
general theorem for the evaluation of indeterminate forms, 
the continuity of the functions near the critical values 
being assumed. 

Theorem. If <j>(a) and \fs(a) are either both zero or both 
infinite, and if (f>\x)/\//(x) converges to a limit when x 
converges to a, then (f>(x)/\fr(x) converges to the same limit. 

It will save repetition to observe at once that if <f)'(x)/\[s'(x) 
is indeterminate when x = a, the theorem shows that if 
d>'(x)l\]s'Xx) converges to a limit then (p'{x)j\j/{x) and there¬ 
fore also <f>(x)j\fAx) converges to the same limit; and so on. 

We need the following extension of the Mean Value 
Theorem of § 72; if <f>(x), <p\x)y \Js(x), \j/(x) are continuous 
for the range a^X'^lb ana if is not zero so long as 
a<x<b, then 

<{>(b)-<p(a) (p'(xi) .n\ 

\{r(b)-\lfia) y/rXxj.. 

where a<xl<b (Generalised Theorem of Mean Value), 
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The proof is obtained at once by considering F(x) where 

m=w«>-wi - <#«) - #o>, 
because F(a) — 0, .F(6) = 0, and therefore J7/(rr1) = 0 and we 

can divide by f°r Vr(^i) ^ no^ zoro gince lies 
between a and 5. 

I. Form 0/0. Let </>(a) == 0, \/r(a) = 0, and in (1) put a; for b; 

therefore ^)=^) 

and L = L L 
YW Xi-aY\p^i) x-aY\X) 

If a=oo the substitution x=l/z reduces the problem to 
the evaluation of the limit for z — (), and therefore the 
theorem holds in this case also. 

II, Form oo fco. First, let </>(#), \^(#) be infinite when x 
is infinite. Let c be a large but finite value of x; then, 
by (1), putting x for b and c for a 

<t>(x)-<j>(c) _ (p'jXj) 

YX)~HC) 'f'(xi) 
(c ^ tJ/J iJy). 

We may also write 

<!>(x)-<p(c) $x) 1 - <f>(c)/4>(x) 

Yx)~ Yc) Yx) 1 - YC)IYX) 
and therefore by equating values 

<f>(x) ^ <t>(xx) l-\[,(c)/\fs(x) 
' yjs(x) yfi'(xx) 1 

Now, let c be taken so large that ^(^iVVA^i) differs from 
its limit A by less than et and let c be then kept fixed; 

\]s{c) will, though large, be finite. Then let x be taken 
so large (and this choice is possible since <f>(x), \K^) tend t° 
infinity) that the second fraction on the right shall differ 
from 1 by less than e2. The fraction <p(x)/^(x) is now the 
product of two factors, the first of which differs from A by 
less than e? and the second of which differs from 1 by 
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less than where ev e2 may be as small as we please. 
Hence the limit of <f>(x)/x[s(x) is A ; that is 

L ^ = L 
a; = oo^//r(^) x-coljs(x) 

Second, let 0(a), \[r(a) be infinite, a being finite. The 
substitution & = a-f l/z reduces the problem to the evalua¬ 
tion of the limit for z = oo , and therefore the theorem holds 
in this case also. 

The above proof is that given in the Calculus, of Gennochi- 
Peano (German Translation, Leipzig : Teubner). 

III. Other Forms. If 0(a) = 0, 0r(a)= oo , we may write 

00*0 x ^0*0 = 00*0“*“ (I AK^)}> 
and the case reduces to case I. 

The forms 0°, oc°, l00, are reduced by taking logarithms 
as illustrated in § 161, ex. 5, 6. 

The form oo — oo may be treated as in § 161, ex. 4; or 
expansion in series may be used. 

Of course the method of differentiation may be combined 
with that of expansion in series. 

Ex. 1, If n is positive, (log#)/#*1 converges to zero when x becomes 
infinite ; for 

1 

L —L A 
flt=» X X—<K) UX X— <X)UX 

Ex. 2. Find the limit for #=0, y = 0 of the function of two inde¬ 
pendent variables {x - y)j{x-\-y). 

We take this example to illustrate the arbitrariness of the definition 
of a “ true value,” and also to show the great difference between limits 
for a function of one variable and limits for a function of two variables. 

The above function may be made to tend to any value whatever ; for 
let y — Xx and we get 

jX-y_ Xx l -X 

x+y~~ x+Xx~ l + X' 

By proper choice of X we can make (1 — A)/(l + A) equal to any 
number whatever. 

Geometrically, the 2-axis lies on the surface 

z(x+y)=x-y, 

and as x and y tend to zero the point (#, y, z) may be made to approach 
any point on the 2-axis. 
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EXERCISES XXXVI. 

Find the limits (the “true values”) of the functions in examples 1-15 
for the given values of the argument. 

1. {j;-(tt + l)^"+1 + w.rn+2}/(l — x)2 when #=1. 

2. {a - J(a2 - x2)}Ix2 when x = 0. 

3. x- \/(x2- 2ax) when x—oo. 

4. V{ (#+a\)(x+a>)- ■ •(#+an)} ~ x when x = oo. 
Put x—\jz and expand by the binomial theorem. 

5. (1 4-1 jxY and (14-1 /x2)* when x~-cc. 

c log x , 1 — 4? 4- log# , . 

1 - x 1 -sf(2x-x“) 

_ tan x - x , tan nx - n tan x , * 
7. .— and -;-;-when x—0. 

x — sin x n sin x ~ sin nx 

»■ (i-) 
tan x and x tan x - ~ sec x when x— 

9. log (1 4- ax)/ log (1 4- bx) and (e** - e ~ax)/ log (14- bx) when x = 0. 

10. -- log (1 4- x) when x—0. 

11. (ax - b*)K<? — gx) when # = 0. 

i o h>g ban ax n A log tan ax — log tan bx __ n 
IZ. -i " i1 ",i ana ~r~ * # - ^ ~ * v wIi6ii 00 (,)• 

1 < >g ta 11 6.4’ log sin ax - log si n 6a* 

a,x-h«./4-... 4-a,, 
when X—Q. 

- . smh#-sin# , cosh x — cos x . ~ 
14. -^3-and -^-when 47=0. 

15. (cos ax)CMt>cibz and (cos a#)cusec3&a: when #=0. 

16. If the equation of a curve is 

w24-?434-w44-...—0 

where %, u3, u±, ..., are homogeneous of degrees 2, 3, 4, ..., in the 
coordinates, show that when the factors of u2 are real, the equation 
u2 — 0 gives the tangents at the Origin. 

Put # = rcos0, y = rsin$, and let u2, n3, ..., become r2v2> rnr3, ; 

then two values of r are zero since r2 is a factor of u2 4- u3 4-_ If, then, 
6 be chosen so that v2 tends to zero, another value of r will tend to 
zero. The equation v2 = 0 is a quadratic for tan 6, and therefore when 
its roots are real and different we get two gradients ; when they are 
real and equal we get one gradient; when they are imaginary the 
valuer of tan 6 are imaginary, and the origin is then an isolated point. 
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Definition. A point on a curve at which there are two distinct 
tangents is called a node. 

At a node two branches of the curve cross each other, intersecting 
at a finite angle. In Fig. 61, p. 312, and in Fig. 63, p. 313, the origin 
is a node. 

17. If x7 + 2x6j/ + 5x3 -f- a¥ - b2y2 ~~ 0, find the value of di/jd.v when 
.r—0, y—0. 

18. If, when x becomes infinite, </>(.r) (tonverges to zero, show that 
when x becomes infinite if it converges to a finite limit at all, 
will converge to zero. 

Suppose 4>'(x) has the limit A different from zero ; the equation 

= + (r<.r,< r) 

shows that c^(.r) must tend to infinity, because the term (x — c)<f>(.ri) 
tends to (x-c)A, that is, to infinity. But this is contrary to the 
hypothesis that <j>(x) tends to zero, so that if A is finite, it must be 
zero. 

19. Show that the series 

1 _1__ _1 

(log2r + (logV+(log4)a+*‘* 

is divergent for every positive value of a. 

Compare with 1/2 + 1/3 + 1/44*...; the limit for n — oo of 

—L_ that is, of (wtt/log ?i) 
(log n)a n 

is infinite (§ 162, ex. 1). Hence the given series is divergent since the 
harmonic series is divergent. The series is obviously divergent when 
a is negative. 



CHAPTER XX. 

DIFFERENTIAL EQUATIONS. 

§ 163. Differential Equations. We propose in this chapter 
to discuss a few differential equations that occur in elemen¬ 
tary work. Nothing beyond the merest outline can be 
given; the student will find ample treatment in Forsyths 
Differential Equations (Macmillan) or Murray’s Differential 
Equations (Longmans). 

An ordinary differential equation is ail equation between 
one independent variable, one dependent variable and one or 
more derivatives of the dependent variable. 

A partial differential equation is an equation between two 
or more independent variables, one dependent variable and 
partial derivatives of the dependent variable. 

We deal only with ordinary differential equations. 
The order of a differential equation is that of the highest 

derivative contained in it; the degree is that of the highest 
derivative when the equation is cleared of fractions and the 
powers of the derivatives are positive integers. 

Thus the equation 
cchf 4- xy' -f (x2 - r^y — 0 

is of the second order and of the first degree. The equation 
xyfi —yy' + a —0 

is of the first order and of the second degree. 

By the theory of elimination explained in algebra we can 
eliminate one quantity from two equations, two quantities 
from three equations, n quantities from (w+1) equations. 
Hence if an equation containing xf y and constants is 
differentiated once the new equation will contain x, y, y and 
constants, and from the two equations one constant may be 
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eliminated; the resulting equation will be a differential 
equation of the first order and will contain one constant 
fewer than the given equation. 

Similarly, if the given equation is differentiated twice, we 
shall have three equations from which two constants may 
be eliminated ; the resulting equation will be of the second 
order and will contain two constants fewer than the given 
equation; and so on. 

The given equation is in each case called the complete 
primitive of the resulting differential equation and we see 
that the complete primitive contains one, two ... constants 
that do not occur in the differential equation when that 
equation is of the first, second ... order. In the process of 
elimination no account is taken of the particular value of 
the constants; these constants may therefore be called 
arbitrary. 

Ex. 1. Let the given equation be 

y--=Ax* + B,.(1) 

and differentiate twice ; we find 

2h/=2d.r;.(2) 

I>y-'2A .(3) 

The first differentiation eliminates B; we can eliminate A from 
(2) and (3), getting - Zfc=0..(4) 

Whatever be the value of Bf equation (1) represents a parabola 
with a given latus rectum 1/d, and with its axis lying along the 
?/-axis ; hence (2) is the differential equation of all such parabolas. 
Equation (4) again is the differential equation of all parabolas whose 
axes lie along the y-axis. 

Ex. 2. Let the given equation be 

(x-a)2+(y-b)i=<?,.(1) 

and differentiate twice ; we find 

(x-a)+{y-b)Dy=0;.(2) 

1 + (By)2+(y - b)Dh/- 0.(3) 

If we eliminate a and b from equations (1), (2), (3), we find 

c%DW={l+(%)2}s.(4) 

Equation (4) is the differential equation of all circles with radius c; 
equation (2) is the differential equation of all circles whose centre is 
the point (a, b) ; equation (3) is that of all circles whose centres are on 
the line y=6. 
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§ 164. Complete Integral. If in example 1 of last article 
we suppose equation (4) to be given, and if we pass from the 
differential equation to equation (1) we are said to integrate 
or solve the differential equation. From this point of view 
(1) is called the complete integral of (4), and A and B are 
called the arbitrary constants of integration. 

Equation (4) is of the second order and (1) contains two 
arbitrary constants. It is proved in works on Differential 
Equations that a complete integral exists for every 
differential equation and that when the equation is of the 
nih order the integral contains n arbitrary constants. 

A particular integral is one obtained by assigning a 
definite value to one or more of the arbitrary constants in 
the complete integral. Thus y = x2 — 1, y — 2x2, y — x2 are 
particular integrals of (4) in Ex. 1 of last article. 

Another way of considering the integration of a differential 
equation may be illustrated thus:—Find a function y (i) 
that shall satisfy the equation 

xD2y — Dy — 0. 

(ii) that shall be equal to b when x~a and (iii) that shall 
have its first derivative equal to c when x — a. 

Since the complete integral y — Ax2-\-B contains two 
arbitrary constants A, B we can determine them to satisfy 
conditions (ii), (iii). These conditions give 

b = Aa2+B\ c~2Aa. 

so that A — c/2a, B — b — \ac, 

and the function y = x2 + 
Ml u 

satisfies conditions (i), (ii), (iii). 

For another illustration of a similar kind see § 69, exs. 1,2. 

The student should work through the following set of Exercises ; 
several of the differential equations occur frequently in physical appli¬ 
cations. The primitive, considered as the integral of the differential 
equation, is in each case the complete integral. It will be noticed (see 
examples 7, 8) that the one differential equation may arise from 
different primitives into which the constants enter in different forms. 
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EXERCISES XXXVII. 

1. If y = Ax A- B, then Bhj — 0. What is the geometrical meaning of 
the equations By — A, Bhj =0 rt 

2. If y—Axn~1 4- Bxn~2 +...+ Ex4-A, a rational integral function 
of degree (?i - 1), prove /)”?/ — (). 

3. If ?/ — Ax2 + Bx+C, then B3y —0. Interpret geometrically 

4. I f y — A x3 4- Bx2 4- Cx, then 

Bl =0 or a?D*y - 2>x2Uhy + QxBy - 6y = 0. 

5. If y=Ajx+B, then 

xlDy- - Ay B2y4- ~By = 0. 

6. If ~ A log x 4- By then 

x Dy = J, 7)2// 4- ~ By—0. 

7. I f y ~ A cos nx 4- B sin nx or if y = C cos (nx - E) then 
B2y + nhj —0. 

8. If y ~Aenx -f Be~nx or 'if y = (7 cosh nx+E sinh ft#, then 
D2y — nLy—0. 

9. If y — A/x+B+x2, then 

n'-y+~1}.y=-G- 

10. If y=A cos nx 4- /I sin ft# 4- Ecospx4-T^sin px where A, B are 
arbitrary and ft, p unequal, prove 

B2y -f n2y — (ft2 —jd2) E cos px + (ft2 -jo2) A sin />#. 

11. If y = e~&x(A cos nx + B sin nx), then 
Bhj + h Dy 4- (ft2 4- \k2)y ^ 0. 

12. Tf y — e ~^tx( A e™ 4- Ber™), then 
Bhj 4- k By - (ft2 - \k2)y=0. 

13. If y — Ae™* A- Be™, then 
Dly - (m 4- n)Dy 4- mny=0. 

14. If y=(.<4 4- Bx) e™, then 
Bhj — 2 n Dy 4- nhj=0. 

(Compare 13 and 14.) 

15. If y—(A 4- Bx) cos nx 4- (E 4 Ex) sin nXy then 
Diy 4- 2 ft2 Z)2y 4- nAy == 0. 

16. If y = (.4 cos nx 4-17 sin ft#)/#, then 
o 

Zl2(^y)4-w2^y!=0, or D2y + -Dy+n2y~0. 
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17. If y = (Ae™ -f Be~wc)jxi then 

D^ + hh/-nhj=Q. 

18. If y—mx+a/m, m being arbitrary, then 

x (Dy)* - y Dy 4- a = 0. 

19. If x?Ka2 +*) + ?/2/(&24-k) = 1, £ being arbitrary, then 

(ih/)2 + (.r2 — ?/2 - a2 4- b2) - ry = 0. 

The primitive represents a family of central conics having the same 
foci (confocal conics). 

20. Show that the complete integral of equation (iii) § 154 is 

f(x) = A sin (a sin'1 x) 4- B cos (a sin-1 x). 

§ 165. Equations of the First Order and of the First Degree. 
We will now state one or two types of equations which can 
be readily integrated; at any rate their integration can be 
reduced to the evaluation of an ordinary integral. So far 
as the theory of differential equations is concerned, the 
solution may be considered to be obtained when the equa¬ 
tion is reduced to either of the forms 

dy 
dx =/(*). 

dy 
dx = F(V), 

for these equations give at once 

y=^f{x)dx+C\ 

and the rest of the work is ordinary integration. 
Type I. Variables Separable. The variables are said to be 

separable when the equation may be written 

f(x)dx+F(y)dy = 0, 

where f(x) is a function of x alone and F(y) a function of 
y alone. The solution is 

J/(«) dx+jF(y) dy=C. 

Ex. 1. 

We have 

therefore 

or 

or 

n(x+a)Dy 4- m( y 4- b) = 0. 

ndy mdx _ 

J+b+FVa 
n log (y 4- b) 4- m log (x+a)—const., 

log {( y + b)n(x 4- a)m} = const., 

(y + b)n(x + a)m^C. 
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Any one of the last three equations may be taken as the solution, 
but tbc last form is usually the most convenient since the integral is 
algebraic. 

Type II. Homogeneous Equations. An equation is called 
homogeneous when it is of the form 

Dy = fix, y)/F(x, y), 

where f(x, y), F(x, y) are homogeneous and of the same 
degree in x and y. 

To solve, change the dependent variable by the substitu¬ 
tion y = vx; the equation becomes 

xDv + v—f(\, v)/F( 1, v) = <f>(v), 
and the variables are now separable. 

Ex. 2. 

We find 

whence 

therefore, 

or 

2xy Dy—xl 4- y2. 

%xb (xDv -f v)—x2 (1 + v2), 

dx 2vdv _ A 

log {x( 1 - v2)}=const. ~ log Gy 

xl~y2— Ox. 

The equation (ax + by + c) Dy — a'x -f b'y + d 
may be made homogeneous by the substitutions 

g=ax + by + c, rj — a.'x + b'y + c'y 

provided ab' — a'b is not zero. (See Exer. XXXVIII., 6, 7.) 

Type III. Linear Equations. An equation is said to be 
linear if the dependent variable and its derivatives occur 
in it only in the first degree. The linear equation of the 
first order is therefore of the form 

Dy+Py = Q, 
where P, Q are functions of x (or constants). 

Let ll-^Pdx and multiply by 

then since DeM = eM DPi — e^P, 

we find e^Dy + e^Py — D(e^y). 

Hence, D(eAy) — eAQ; 

and therefore e^y = cfcr + C* 

Con. The equation Dy+Py—Qif1 may be reduced to the linear 
form by putting v=y“n+1 and taking v as the dependent variable. 
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Ex. 3. (1 —a?)Dy+xy~ax. 

Here 

and pi=/rS= - i log (i -*2)=iog 

cp» = 1/N/(1 -.r2). 

Therefore y = I-aJ(~- + (7=-p_ , 
\/(l - *“) ^ J (i _ ^.2)4 1 - 

and y — a-t- CJ( 1 - .r2). 

+ Cy 

Ex. 4. When an electric current of strength x is flowing in a circuit 
of inductance L and resistance R subject to an extraneous electromotive 
force E\ the equation of the current at time t is 

Lx-f Rx~ E. 

First suppose E constant, equal to E»L and R being constant. 

have .R E0 
X + J, 

Jj lj 

We 

fit & r Rt n Rt 

and therefore eL'v~~£) &L(^t + ^~ReL + Q 

py _JRt 

and *=-£+Ce L. 

When t = 0 the current .r—0, and therefore 0— — EJR ; hence 

Rt 

The part E0e LjR is the extra or induced current and dies away to 
zero as the total current attains its steady value EJR. 

Next suppose E~ E0 cos (pt - a) ; then since 
Rt 

[ m Le L 
J eL cos (pt - a)dt=^^ C°S (Pl ~ a)+VL sin (pt~a)}, 

—^ E 
we find x = Ce L + ^ cos ( Pt ~ «) +pL sin (pt - a) f. 

As t increases, the term Ce~mjL becomes of less and less importance ; 
the other term gives the steady oscillation. The steady oscillation 
may be put in the form 

*=v(fl2+V^cos(^~a~ai) 
where tana,—pLjR. The quantity J(R2+p2L2) is called the im¬ 
pedance of the circuit. 
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Type IV. Exact Equations. The equation 
M+NDy — 0, or, Mdx+Ndy~ 0, 

where M, N are functions of x and y, is- called an exact 
equation if Mdx + Ndy is a complete differential, that is, if 
dMjdy is equal to dN/dx (§ 94). In this case there exists a 
function u such that du = Mdx + 

and, obviously, the integral is u = constant. 

Ex. 5. 2.ry - y2 4 2# 4- (^2 — 2#y 4 2y) Z)y = 0. 

Here M = 2/ry - y2 4 2.r, A7"— .r2 — 2.ry 4 2y, 

and dM/dy = 2# — 2y — dN/dx, 

bo that the equation is exact. Knowing that the equation is exact, 
we can readily arrange Mdx4Ndy as a sum of complete differentials ; 

we 1 i nd (2 xydx 4- x2dy) - (y2dx 4 2 xydy) 4 2 xdx 4- tydy, 

that is, d(jxPy) - d(xy2) 4 d(x2) 4 d(y2)> 

so that v.~x2y — xy2+x2+y2, 

and the integral is x2y - xy2 4x2■\~y2—C. 

Ex. 0. .r3 - 2y2 4 2xyDy — 0. 

This equation is not exact, but it becomes exact when multiplied 
by 1 /x\ We find ^ __ 2?/2 2y 

±£). 
Xs ' x * 

and the integral is (xfi+y2)lx2— C, or, xz+y2 = Cx2. 
The factor l/x3 which makes the equation exact is called an inte¬ 

grating factor ; when an equation is not exact it may be possible to 
guess an integrating factor and thus integrate it. 

§ 166. Equations of First Order but not of First Degree. 
Let Dy be denoted by p; the equation, when of the 
7ith degree, will have the form 

Apn+Bpn~1 + ... +Kp + L = 0.(1) 

where A, B, ... are functions of x and y (or constants). 
If possible, solve for p\ there will be in general n values 

P = PvP=P»—' 
and each of these equations when integrated will give a 
relation between x and y that will satisfy (1). 

Ex. 1. xyp2 - (x2 4 y2)p+xy—0. 

Tlierefore p—y/x or p=x/y, 

and these equations have as integrals 

y — Cx, y* - x2 * (7. 
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Ex. 2. Clairaufs Equation, 

y—xp + f(p).(i) 

This equation is of a special form and is integrated thus : 

Differentiate (i) as to .r, and we find 

P =p + +/'(?') ^ ; °r k+/(?') }^!= 0.(») 

Hence cither dpjdx — 0, that is, p — constant — C ; or 

■v+f\p)=(l.(»i) 
rrhe substitution of C for p in (i) gives the complete integral 

y=C.c+f(C)..(iv) 

On the other hand, if p is eliminated between (i) and (iii), we shall 
get a relation between x and y that will satisfy (i). This relation is 
not obtained by assigning a particular constant value to C in (iv), and 
is called a Singulax Solution. 

The singular solution is in fact the envelope of the family of 
lines (iv); for if we eliminate 0 between (iv) and x +f'(G) — 0, we 
clearly must get the same equation as that called the Singular 
Solution (we have simply interchanged 0 and p). As we have seen 
(§ 14")), the gradient of the envelope is the same as that of the family 
(iv) at their points of meeting. 

f\;r example, the complete integral of y — xp -f- a Ip is 

y = Cx + (t/C9 
and the Singular Solution is given by 

y1 ~ 4 ax. 

§ 167. Equations of the Second Order. 

Type I. ])*y=sf(x)t a function of x alone. 

Integrate twice with respect to x; two constants will be 
introduced. 

Type II. l)2y ~f(g), a function of g alone. 

Multiply by Dy ; then since Dy D2y — I) (l(]Jy)2} 

\{Oyf = ^f(y)Dydx+ 6'== j f(u)dy+C. 

It may now be possible to integrate this equation of the 
first order. 

Ex. 1. The equation of motion of a simple pendulum of length l 

is 16— -g&in. 6. To integrate, multiply by 6, then 

\l{6)l—g cos dxC. 

When t — 0, let 6— a, 6—0 ; then 

C— —g cos a 
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and $= ~ /\/(y)\/(cos 6- cos a) = ~2aJ^ 

the negative sign being taken because 6 decreases as t increases. 
If we put sinsinj*>a sin </>, we get after reduction 

dt_//A _ 1 
d<j> V \g ) JO - sin2I«. sin-</>)’ 

The integration cannot be carried further by means of the elementary 
functions, but t may be expressed by an infinite series. The value of t 
for the quarter period is KsJ(ljg) [§ 156, ex. 3j. In general, 

* a/(g)If> v/(l — siily ja siirc{>)' 

Type III. D2y=f(Dy)y a function of D?/ alone. 

Let J>// = v and we get Dv — f(v) and it may be possible to 
find v, and then y. 

Ex. 2. The equation cD2y — {14- (7b/)2} - gives (p. 276) 

x = cvj{ l -h r2)^ 4- a (constant). 

Th en J)y ~v-~ ± (x - a )/J {c2 - (x - a )2 }, 

y = -T {c2 - (x - «)-} 4- b (constant), 

or (x — a)2 4- (y - h)2 ■= c2. 

§ 168. Linear Equations. The typical equation of the 
second order is 

B*tt+PDy + Qy = R.(1) 

where P, Q, R are functions of x alone (or constants). 
The complete integral of all linear equations is the sum 

of two functions:— 
I. The Complementary Function (c.f.) which is the 

complete integral of the equation when R (or in general the 
term independent of y and its derivatives) is zero. This 
function will contain two (when the equation is of the 
nth order, n) arbitrary constants. 

II. The Particular Integral (p.i.) which is any solution 
whatever of the equation as it stands. This function 
contains no arbitrary constant. 

We prove the proposition for equations of the second order, but it 
is easy to see that the reasoning is general ; for the equation of the 
nlh order there wifi be n functions like v, and n constants. 

If y — u and y = v satisfy 

D2y+PDy + Qy=^0, 
2e G.C. 

(2) 
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so does y—Au + Bv where A, B are constants. For if 
Dhi + PDu -f Qu — 0, l)2v + PDv + Qv — 0, 

then also D\Au-f Bv) + PJ)(Au 4- Bv) + Q(Au + Bv) — 0, 

and therefore Au + Bo satisfies (2), and since it contains two constants 
it is the complete integral of (2). 

Next, if y — w is the particular integral, that is, if w verifies 
equation (1) and if Au-f-Bv is the complementary function, then 
A u + Bv + w will satisfy (1). For when y~Au + Bv + w, 

Dhj + PDy -f <?/= D\A u + Bv) + PD{A u 4- Bv) + Q(Au f Bv) 

+ D'hv + PDw + Qid. 

The first line on the right is zero, and, since w satisfies (l\ the 
second line is equal to R. This value of y therefore satisfies (1), and 
since it contains two constants it is the complete integral of (1). 

The only equations we consider are those in which P, Q 
are constants. 

§ 169. Complementary Function. The equation to be 

integrated is Dhj+aDy+by- 0.(3) 

I. Let y — eXx (X constant); then 

(X2 + «X + 6)eAflf =0. 

If therefore X is a root of the equation (the auxiliary 

equation) x2+a\+b = 0 .(4) 

e** will satisfy (3). The two roots \v X2 of (4) are 

Xj = — ha + s/(l<i2 — 6), X2= — i<i—s/{la2 — b) 

and eXlZ, ex^ are two solutions of (3) Hence the complete 
integral of (3) is 

y = A eK'x + Bex*x = e- &x (A enx + Be-nx).(5) 

where n = ^/(|a2 — 6). 
We must however consider special cases. 

II. If a2 = 46 equation (4) has tivo equal roots, namely 
Xi = X2== — ia. In this case (5) becomes 

y = (A+B)e-*ax, 

and there is only one distinct constant, for we might 
obviously replace A +B by C. 

When a2 = 46 let y = e~^axu and (3) becomes, after reject¬ 
ing the factor e " *ax, jyiv __ q 

of which the complete integral is u = A +Bx. 
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Hence the complete integral of (3) when the auxiliary 
equation has two equal roots, each = — Aa, is 

y = (4 + Bx)e^ax.(6) 

III. If a2 <46 the roots of (4) are imaginary. Again, let 
y — (>-^axu and equation (3) becomes 

D2n + m2u = 0.(7) 

where \a2 — b~-~m2 and m is real. Now (7) is satisfied 
by u = cos rase, u — sinmx; its complete integral is thus 

u — A cos mx + B sin mx, 

and therefore the complete integral of (3) when a2 <46 is 

y = e~^axu~e~^ax(A cos ra# +J?sin mx).(8) 

We shall now show how to write down (5) and (8) when 
the roots of (4) are known. 

Let i denote as usual s/( — 1). When the roots of (4) are 
real let {a2—b — n2; the roots then are 

— \a + n, —la — n, 

and the solution is y = e~^x(AenxA-Bc'nx). 

When the roots of (4) are imaginary let |a2 —&= — n2; 
the roots then are 

— i a + niy — | a — ni, 
and the solution is 

y = e _ *ax(A cos nx + B sin nx), 

so that instead of enix, e~nix we have cos nx, sin nx. 
It should be noticed that the auxiliary equation is ob¬ 

tained by replacing D by A and rejecting y. 

Ex. 1. Dhj + 7 Dy - 8y—0. 

Aux. Eq. A24-7A — 8 = 0 ; A, = 1, A2=-a 

Solution y = d e* 4- jftr8*. 

Ex. 2. D2y 4- 2 Dy 4-10?/ — 0. 

Aux. Eq. A24-2A 4-10 = 0; Ax=-l+3i, A2=-l- 

Solution y=e~x(A cos 3x -l- B sin 3#). 

Ex. 3. IAy 2 JFy 4- bDhj — 8T)y 4- 4y = 0. 

Aux. Eq. A4-2A3 + 5A2-8A 4-4 = 0;* 

Aj ’==z 1 = A-j, A3 = 2i, A4 = — 2?. 

The equal roots A2 give (A +Bx)e* ; the imaginary roots 21\ 
give Ecos 2x + Fa\n2x. Hence the 

Solution y—(A + Bx) & 4- E cos 2x -f Fain 2x. 
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§ 170. Particular Integral. The most important practical 
cases are those in which R is a sum of terms of the form 
Le**, L sin ax, L cos ax ; the simplest method of finding a 
particular solution is by substitution. Equation (1) is now 

D2y+aDy + by = R.(9) 

I. R = Lear. Let y — Ce** and try to find C so that equa¬ 
tion (9) shall be verified. We find 

C(a2 + aa+b) e°* = Le°*, 

and Ce** will satisfy (9) if C = L/(a2 + aa + b). 
There are exceptional cases, liowever. 

I. (a). If a is a root of the auxiliary equation (4) then 

a2 + aa-|-6 = 0, 

and the value of C is infinite. In this case try Cxeor 
Cx2(iax according as a is a single or a double root of the 
auxiliary equation. 

Ex. 1. D'2y - 2 Dy -f y=e*+e>2x. 

Aux. Eq. A2-2A-M=0; A = 1 twice. 

To find p.i. take e* and e2* separately; that is, since the coefficient of x 
in ex is 1, and 1 is a double root of Aux. Eq., try (7.rV, for r.i. corre¬ 
sponding to E, and Ee2* for p.i. corresponding to e2*. Hence we put 

y—Cxl<?+Eelx, 
and the equation becomes 

2Cer+Ee2x=e*+e2*, 

so that C"A, E=l, and therefore 

p.i. = \xhx + e2*. 

The part corresponding to e2* may be obtained at once by direct 
application of I. The complete integral is now 

y = c.f. + p.i. 

— (A + Bx) ex + \x2ex+e2*. 

II. R = Lmnax + Mcosax. 

Take as trial solution 

y~Esin acc+jFcos ax. 
We find 

( — a2E—aaF+ \>E) sin ax + (— a2F+ aaE+bF) cos ax 

= L sin ax + M cos ax} 
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and the equation will be satisfied if 

(b — a?) E—aaF = L ; aaE+(b-a*) E=M; 

p_(b — a2)L + aaM „ — ctaL + (b — a2)M 
°r ~ (6 — a2)2 + a2a2 ; 

If a —0 we get 

E=L/(b—a2); E-MI(b — a2); 
but this solution fails if a2 — b, that is, when the com¬ 
plementary function is A cos a£ + i?sm ax. We have then 

II. (a). If tt = 0 and a2 = 6 it will be found on trial that 

L , M . 
P.I. = — x- % cos ax +~ x sm ax, 

za za 
when 11 = L sin ax + M cos a#. 

Ex. 2. The equation 

ir 4- kx 4- fix = cr< cos(W — a). 

is typical in dynamical and electrical theory. 
o.F. is easily found. To find r.i. try 

x = Euo&tyit — a) 4- i^sin{nt - a), .. 

and we find by substitution in (i) 

(- n2E+ Jen F+ \lE) cos (nt - a) 

4- ( - n2 F— hi Eh- ilF) sin — a)=a cos (n t - a). 

Hence (ii) will satisfy (i) if 

(/x - n2) E4- hi F= a ; — knE+ (fi — w2) 0. 

(fi-n2)a Jena 

(fi — 7i2)2 4- khi2 * (fi - n2)2 4- khi2' 
Therefore 

Hence 

E~~} 

a{ (/x — w2)cos(w< — a) 4- hi sin {nt — a)} 

{(/x — ri2)2 -f khi2} 

= a cos {nt — a - aj )/J {(/x - w2)2 4- } 

where tan ax — kn/(fi — n2). 
If k — 0 and n2 = /x, we have IT. (a). In this case 

••(>) 

.(ii) 

r.r. = 1 sin(w£ - a). 
2 n 

III. If R is a rational integral function of x we may put 
for y a rational integral function and try to determine the 
coefficients so as to satisfy the equation. 

§ 171. Simultaneous Equations. We will illustrate, by 
solving one or two examples, some methods of integrating 
simultaneous ordinary differential equations, the number of 
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equations being equal to the number of dependent variables. 
We take t as the independent variable and restrict our¬ 
selves to two dependent variables, x and y. 

Ex. 1. x~ — <D?/ ;.(i) 

?/ —tox.(ii) 

Differentiate (l) and substitute for y its value u>x given by (ii); we 
thus get an ordinary equation with one dependent variable, namely, 
x 4- — 0, of which the integral is 

x—A cos nut 4- B sin ut or x— Geos (at - E).(iii) 

The value of ?/ is now found from (i); we get 

y — A sin <Dt — B cos wt or y = Csin (o>t - E).(iv) 

It should be noticed that although A and B are arbitrary, yet the 
constants in y are determinate as soon as those in x are chosen. If, 
however, (i) contains x alone, and (ii) y alone, the constants in x do 
not condition those of y. Thus the equations 

x 4* = 0, y 4- co2j/ = 0 

give x—A cos a)^-f7?sin u)t, y—Ecos at + Esin tot, 

and there is no relation between Ay B and Ey E. 

Ex. 2. x 4- 5x - 3y = 0.(i); — 0.(ii) 

Differentiate (i); x 4- 5i — 3y = 0..(iii) 

From (i), (ii), (iii) we can eliminate y and y ; we find 

x — 2jc + 10jc — 0, .(iv) 
of which the integral is 

x = e*(A cos 3t + B sin 3tf).(v) 

Equation (i) now determines y, namely, 

y — ef{(2A + B)cos3t + (2B-A)sin3t}.(vi) 

If (i), (ii) had each contained both x and vy, we should have differ¬ 
entiated both (i) and (ii), and from the four equations we should have 
eliminated the three quantities ?/, ?/, y. 

Ex. 3. As the last example we take the equations 

Lx 4- My 4- Rx — P,.(i) 

Mx + Ny + Sy^Q,.(ii) 

which connect two mutually influencing electric circuits, x and y 
denote the currents, L and N the self-inductances, M the mutual 
inductance, R and $ the resistances, and P and Q the extraneous 
electromotive forces. The product LN is greater than M2. 

We may proceed as in example 2 by differentiating (i) and (ii) and 
eliminating ?/, y, y ; but we will illustrate another method. The prin¬ 
ciple of complementary function and particular integral evidently 
holds for simultaneous linear equations; /J, Q are either constants or 
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functions of £, and we may apply the principle to (i) and (ii). The 
complementary function is thus obtained from 

Lx 4- My 4 llx — 0;.(iii) 

Mx 4 Nif 4 Sy — 0.(iv) 

Let x~AeKt, y — Beki where A, B are constants, and substitute in 
(iii), (iv). We find (LX + R)A +MXB=0 ..(v) 

MXA+(NX+fyB^O.(vi) 

If we eliminate the ratio A : B from (v) and (vi) we get the condition 
that (v) and (vi) should be simultaneously satisfied, namely 

(LX 4- R) {NX4S) - M2X2 - 0, 
or (LN~ M2) A2 4- (LB 4- NR) X + RS^O.(vii) 

The roots- of (vii) are real; for 

(LS+ NR)'2 - 4 (LN-1/2) RS^= (LS-NR)'2+MPRSy 
so that the discriminant of (vii) is positive. Also, since LN>M2, the 
roots of (vii) have the same sign ; both are negative. If we call them 
-An — A2 and take the constants as Av A2 and Bv B2 we get for 
the solutions of (iii), (iv), 

x^Atf" Al* 4- A2e “ A‘*, y=Bve~^4- B2e~KoJ.(viii) 

By is connected with Av and B2 with A2 by equation (v) or (vi), that is, 

Bl=Al(R-LXl)IMXly B2=A2(R-LX2)/MX2. 
If P, Q are constants, the particular integrals are clearly 

*~PIK, 
and these added to (viii) give the complete integrals of (i), (ii). 

The only other important case is that in which P= E{) cos(?^ - a) 
Q—0, and the particular integral is found by assuming as a trial 

solution, x= Ecm(nt _ „) + Ff,m (nt - a), 

y = Q cos(nt - a) 4- IIsin (nt - a), 

and determining the constants E\ F\ G, II. 

The equations x 4 ky 4- c2x — 0, y - lex -4 chj — 0, 
are the equations for the small motions of the bob of a gyrostatic 
pendulum (gyroscope axis along suspension), and also the elementary 
equations of motion of an electron in a magnetic field in the theory of the 
Zeeman effect. (See Gray, Magnetism and Electricity, Vol. I., § 565. 
In Chapter X. of this work will be found several instructive examples.) 

EXERCISES XXXVIIL 
Integrate equations 1-16. 

1. (l+;r2)ify=l+/; 2. v/(l -/); 

3. y - x Dy - m(y2 4 Dy); 4. (xy+x2)Dy+y2=0 ; 

5. xDy-y^J^+y2); 6. (2x+18y-14).%= 6#45y-7 ; 

7. (ax 4 by 4 c)Dy=m(ax 4 by) 4 g ; Replace y by the 
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substitution Tj—ax+by. 

8. (ax + by 4 c) Dy — fx -ay+g ; 9. Z)y4y = ; 

10. xDy +y^=x ; 11. (1 - Ay - .*y=1; 

12. (14 x2) Dy 4 2xy —x2; 13. Dy-\-ay — cos {bx 4 c); 

14. x Dy +y — xh/G ; 15. x2 Dy +y2—xy ; 

16. y (x2 - y2 - b2) Dy -f- x (x24y2 - a2) — 0. 

Find the complete integral and the singular solutions (where they 
exist) of equations 17-19. 

17. (y - px)2=a2p2 4 b2; 18. y=px4* p:i; 19. x2 (y - px) —yp2. 

Solve equations 20-27. 

20. Ay - (a 4- b) Dy 4- a by — 0 ; 21. A?/ - 5 Ay 4 6 Dy=0 ; 
22. Ay — 6/)y 41 Oy = sin 2„r ; 23. Ay — 3Dy 4 2y — <? ; 

24. Ay 4 n2y — a cos nx 4- b sin nx ; 25. Ay - w2y = ae™ 4- be""*; 

26. Ay - 6/>y 413y=x2 ; 27. Ay 4 2/)2y 4y=0. 

Integrate the simultaneous equations 28-31. 

28. x - lx 4y = 0, y — 2# - 5y — 0 ; 

29. i;4y42.r4y = 0, y45#43y=0; 

30. x 4 2.r - 3y — t, y — 3x + 2y —e2t; 

31. x -3x- 4y = 0, y4#4y~0. 

32. Integrate the equations x — 0, y = —y, determining the constants 
so that # = (), y = 0, x = Fcosa, y = Fsina when —0. 

33. Integrate the equations x=—fLX, y=—py, choosing the con¬ 
stants so that x—a, y=0, x— 0, y~bjp when t —6. 

34. Integrate the equation x——fi/x2y choosing the constants so 
that x — a, x = Q when t—0. 

35. The equation 2?Ay—w occurs in the theory of the bending of 
beams, B being the flexural rigidity and w the weight per unit length; 
integrate the equation under the conditions : 

(i) y-0, D2y—0 when x—0 and when x — l ; 

(ii) y — 0, Dy — 0 when #=0 and when x — l; 

(iii) y = 0, Dy — 0 when x—0 and Ay—0, Ay—0 when x—l. 

36. The plates of a charged condenser of capacity C are connected 
by a wire of self-inductance L and resistance R ; if at time t the 
difference of potential between the plates is F, then F satisfies the 
equation 

CLV+RCV+ F=0, 

and the current y is — 0F. Show that the discharge will be oscil¬ 
latory if CR2<4L, that the period T is given by 

T— 4L/C- R2}, 

and that the logarithmic decrement of the potential is RTjAJj. 
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2 
37. Integrate the equation Dhy 4 ~ + nly=0 by changing the 

dependent variable from y to u wliere u~xy. 

Give the complete integral, and also the integral which remains 
finite as x converges to zero. 

38. Show that the complete integral of 

x2D2y 4- ax Dy 4 by ~ 0 

is y=Axfa + BaM 

where A1? A2 are the roots of the equation 

A (A ~ 1)4« A4&=0. 

Take as trial solution y—xK and proceed as in § 169. 

39. I ntegrate 

(i) x IPy 4 21)y=6x ; (ii) x3D*y - 3x2D2y 4 6a; Dy — 6?/=a?2 ; 

(iii) x?D2y - 2y~x. 

40. Integrate the equation 

x2D2y 4 x Dy 4- n2y—0 

by changing the independent variable from x to 0 where x—e9. The 
equation for A, corresponding to that of example 38, has in this case 
imaginary roots. 

41. Integrate +<)=<>• 

42. Integrate ^-1 4 - -J-—0, 
dr1 r dr 

43. Find Dy from the equation 

d2D2y~y{\ + {Dyf$. 

44. If y=uv, where u9 v, are functions of x9 show that the linear 
equation 

D2y + PDy + Qy = R .(i) 

becomes, the accents denoting ^-derivatives, 

vv." 4 (2v' -f Pv) uf4(v" 4- /V 4 Qv) u~R.. .(ii) 

It follows that if v is any solution of (i) when R —0, the value of u 
(and therefore of y) can be found ; for the coefficient of u is zero, and 
(ii) is linear, and of the first order when u' is the dependent variable 

45. Integrate x2Df2y+xDy -y—x*r 

Put y~xu. 



CHAPTER XXL 

DEFINITE INTEGRALS. OPERATIONS UNDER THE 

SIGN OF INTEGRATION. 

§ 172. Continuity of an Integral. From the definition of 
an integral as the measure of an area (§§82, 110, 131) it 
follows that when the integrand F{x) is continuous for all 
the values of x in question the integral 

0*=| F(x)dx— I F{u)du .(1) 
J a J a 

is a continuous function of the upper limit x, its derivative 
being F(x). 

The definite integral 

w= \ F(x)dx— — f F(x)dx .(2) 
Ja Jb 

is a function of its limits a, b, and the derivatives of w 
with respect to b and a respectively are, by the definition 
of an integral, 

dw T,n x div 

ar^  <3) 
if, as frequently happens in physical applications (see 

§ 44 and § 69, example 6), the integrand has a finite dis¬ 
continuity of the type shown in Fig. 87 for the value 
OE—c of x, the integral when x = 0M> 0E> OA—a is 
defined by the equation 

0= f F(x)dx= f F(x)dx+ [ F(x)dx. 
Ja Ja Jc 
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The integral z is still a continuous function of x, but 
dz/dx is discontinuous for x~c; in the notation explained 
in § 44 we have 

SL.rF(c-0)-E(!; 
The discontinuity is measured by the limit, for e and e 

converging independently to zero, of F(c+e) — F{c — e) and 
is equal to OH; it is said* to be finite since GH is finite. 
A discontinuity such as that of lfcx — c) for x — c is said to 
be infinite because the limit of the difference 1/e —l/( — e) 
is infinite. 

In § 126 the definition of an integral is extended so as 
to include cases in which the integrand has an infinite 
discontinuity and the definition is such that the integral 
is continuous. When the integrand has an infinite discon¬ 
tinuity, or when the integral has one or both of its limits 
infinite, the integral is called an improper or an infinite or 
a generalised integral. Before beginning the consideration 
of the special subject of this chapter we must discuss 
briefly the improper integral; in the discussion the ideas 
and terminology of Chapter XVII. find frequent application. 

§ 173. Infinite Limits. If F(x) is continuous for x~a, 
then by definition (§ 126) 

f F(x)dx= L f F(x)dx~ L f(x),.(1) 
J a x—coJa x —co 

provided the limit for oo is a definite quantity. 
Now, by § 148, Theorem III., the necessary and sufficient 

condition that the function f{x) should tend to a definite 
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limit when x tends to infinity is that the difference /(c)— f(b) 
should converge to zero when b and c tend in any manner 
towards infinity. In this case 

/(c)—/(&)= f F(x)dx— f F(x)dx — f F(x)dx..(2) 
J a J a J b 

so that the integral (1) will exist if the limit of the last 
integral in (2) is zero when b and c tend in any manner 
towards infinity. When the limit exists the integral (1) is 
often said to be convergent. 

Similarly, if F(x) is continuous for x :g a, the integral 

f F(x)dx.(3) 
J — 00 

will be convergent provided the limit of the integral 

j* F(x)dx .(4) 

is zero when the positive numbers V and c' tend in any 
manner towards infinity. 

When the limits are — oo and -foo the integral is con¬ 
vergent provided the limit of each of the integrals 

J F(x)dx and j* F(x)dx .(5) 

is zero when the positive numbers b, c, b\ c tend in any 
manner towards infinity. 

Obviously the convergence of the integral (1) depends 
solely on the behaviour of F(x) for large values of x 
(compare the Note, p. 380). When the indefinite integral 
can be found the convergence can usually be decided with 
facility; the following theorem will be useful when the 
indefinite integral can not be obtained. 

Theorem. Suppose that for large values of x, say for 
x>iV, the function F(x) can be put in the form (p(x)/x\ 
If, for every value of x greater than N, <fi(x) is numerically 
less than a finite number A, then the integral (1) is con¬ 
vergent provided k> 1; but if, for every value of x greater 
than N, cf>(x) is either always greater than a positive 
number B or else always less than a negative number — C 
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(B and G not zero), then the integral (I) is not convergent 
when k~^l. 

The proof follows at once from § 124, Theorem VII.; thus, numerical 
values alone being considered, if F(.v)< A jxk when x > iV, we have 

When b and c tend to infinity the limit is clearly zero if k> 1. 
In the same way the case for divergence is proved. 

A similar theorem holds for the other cases of infinite 
limits. 

Absolute and Conditional Convergence. An integral is said 
to be absolutely convergent if it remains convergent when 
the integrand F(x) is replaced by its numerical value 
| .?*(&) |. If a convergent integral ceases to be convergent 
when the integrand F(x) is replaced by its numerical value 
|7'T(rr)| the integral is said to be conditionally convergent. 

Ex. 1. The integral f is conditionally convergent. 
Jo x 

The theorem given above cannot be directly applied in this case 
(though it may be after integration b\' parts) ; but by example 23, 
p. SOS, we have, if mr < b < (n +1 )7r, 

f =«»-«, + ... +(- 1)*%+... +(-+ !)"«., 
.'0 A 

where 
sin u du 

u + Jctt 
(*=o, i,ix sin u du 

u + mr * 

The integrand of uk is never negative and, since u -f yfor is less than 
?/4-(X‘,+ 1)7t, uk is greater tlian uk+} ; it follows therefore, as in the 
example on p. 379 or as in Theorem II., §3 7)0, that the integral is 
convergent. The convergence is however conditional; because Jrb I j-i r I 

o I x 1 

•, _ C*mi\udu , . 2 
and uk> / ——r—, that is, uk>77— 

Jo ir + lnr' 9 * (k+l)w' 

so that the integral is greater than 

2 

7r J+i+- +■ a. 
and therefore tends to infinity when b does so. 



446 AN ELEMENTARY TREATISE ON THE CALCULUS. 

Ex. 2. If a>0, the integral [ c--s'v — is conditionally convergent. 
Ja X 

Ex. 3. If a > 0 and r > 1, each of the integrals 

C x— C 009 x d'v 
Ja &r 9 Ja X* 

is absolutely convergent. 
Example 2 is proved like example 1 ; the examples in 3 follow from 

the theorem of tne text, since | sin x | and |cos.r| never exceed unity. 

§174. Infinite Integrand. If F(x) is continuous from 
x = a + €(e>0) to x~b, but the limit of F(a + e) for e 
tending to zero is infinite, then (§126) 

f F(x)dx = L f F(x) dx = L f{x) .(1) 
Ja x—a 

provided the limit is a definite quantity. 
f(x) will converge to a definite limit as x converges to a 

provided the difference /(a + e") — /(a + e) converges to zero 
when the positive quantities e, e" tend in any manner to 
zero. Hence the integral (1) will be convergent if the 
integral 

r F(x)dx=r F(x)dx- r f^x.(2> 
Ja-fV J a+*' J a+c" 

converges to zero when e, e" tend in any manner to zero. 
In a similar way the integral is defined when F(x) 

becomes infinite for x tending to b or for x tending to c 
where c lies between a and b. (See § 126, with example 3, 
p. 305.) 

Theorem. If from x=a to x = 5 the integrand F(x) is 
of the form <p(x)/(x—a)k) where </>(x) is continuous from 
x — atox — b, the integral (1) is convergent provided lc< 1; 
but when <p(a) is not zero the integral is not convergent 
if 1. 

A similar theorem holds for the other cases of discon¬ 
tinuity. The proof follows at once from Theorem VII., 
§124. (See pp. 305, 306.) 

Ex. 1. The integral f 6>0, is convergent if r<2. 
Jo * 

We may take «£(#)=sin and the integrand is then 4>(x)/xr~1. 
The integral is therefore convergent if r-1 < 1 or r<2. If we take 

sin#, the limitation that <£(0) is not to be zero comes into play. 
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Ex. 2. The integral f b>0, is convergent if r< 1. 
Jo xr 

In this case <j>(x)=cosx. 

The discussion of improper double integrals is much 
more difficult. When the integrand becomes infinite at one 
or more isolated points, or at every point of a curve within 
or on the boundary of the area of integration, that area 
should be first contracted a little so as to exclude these 
points; the integrand, being continuous over the area thus 
contracted, will yield a finite integral. This finite integral 
may possibly, when the contracted area is extended so as 
to coincide with the original area, tend to a definite limit; 
if so, this limit is taken as the value of the original 
integral. We give two examples, but the detailed treat¬ 
ment is quite beyond our limits. Jfb ra 

o H b>p> *n a11 p09itive- 

The integrand is infinite for .r=0, y=0, hut at no other point in the 
area of integration. We therefore exclude the origin from the area of 
integration by a small rectangle of sides c, e; the integral over the 
area thus contracted (Fig. 88) is 

fb j f1 , (b 7 l'e dx 1 yu (px+w)n+l' '!/.( {pz+q.v)" 

=(l^K2 ^ti)pq 'ipa + qh^" ~ (p®)2'" “ (?Z,)2"n + 

Fig. 88. 

If n<2 this expression converges to a definite limit when €, ef tend 
in any way to zero. If n — 2 the integral contains logarithms which 
do not tend to a definite limit, while if n>2 the expression becomes 
infinite. The given integral is therefore convergent if n< 2. It is 
obvious that if the integrand were (f>(x, y)Kpx + qy)n and if <£(#,y) 
were continuous, the integral would still be convergent. 
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Ex. 4. rdx f n > 0. 
*0 *0 

The area of integration is the isosceles right-angled triangle OAR 
(Fig. 81)); 0A—a~AB. The integrand is infinite at every point of 

the line OB; we therefore cut off the line OB by the dotted lines 
parallel to OB and perpendicular to 0A9 the ordinate of the parallel to 
OB being x-e and OC being ?/. 

The integral over the contracted area is 

fa (iv fx~e_/fy   d2'n - rj-~n _ at}-” - ?;€*;w 
Jr, ‘ Jq (x-i/)n~~(l-n)(2-v) l-n 

If n< 1, but only if n < 1, will this expression have a definite limit 
when c, 7/ converge independently to zero. The integral, and similarly 
the integral of y)!(x -?/)n where ?/) is continuous throughout 
the area OAB, is convergent if n < 1. 

§ 175. Two Important Integrals. For the proof of the 
following expression for l/sin;« the student is referred to 
Chrystal’s Algebra, Vol. II., Chap. XXX., £ 10, or Hobson’s 
Trigonometry, § 295 ; x may have any value except zero or 
±nir where n is any positive integer. 

J-A+±i_) 
sin* x 7 \x — mr x + nir/ 

=£j -(S+T)^).(a) 
In (a) let x =pir where p is a proper fraction; we find 

sin pir 
.(b) 
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In example 1, § 173, let b — {n-X-\)rr ; this choice is admissible since 
id t< 

Jo x 2 

b — (n+ l)7r ; thi 
b may tend to infinity in any manner. Hence 

r^d,= l{«0-«1+...+(-i)*«*+...+(-i)"m„}. 
Jo x n~ao 

ir r 

fw sin u du _ sin u du f * sin u du 
J0 U + /C7T Jo u + icTr J0 (k+\)7r-u' 

Now ?<* = 

because T sin u die ft sin v dv fT sin u du _ f 
X u + krr-Jo U + fCTT Jo (&+l)7T-V 

2 

by the substitution u—tt — v. Hence 

C-d*- L fm.W 1 + >-))sinMrf« 
Jo x »=ooJo U=o \u + K7r (&+\)7r-u/J 

f7* J rH 
~ -Bin udu — du — 

Jo sin u Jo 

It will be observed that we have assumed that 

L I ?{ *f(-1 )* (-J-r- +,, ,J ~~ )} Bin udu 
n~«cJo 1 k~0 \U-]-k7r (k -f" 1)7T — Uy J 

= [ L j 2 ( - 1)* (—T iT + 7TTT\-s^n u du' 
Jq n-oo Vk~Q Vl4 4-X'7T (/?-!“ 1)7T— U/ ) 

The assumption is legitimate because, as may be very easily proved, 
the integrand last written is a uniformly convergent series. 

Corollary. f03 sin < 
Jn X 

ax . tr ., _ „ 
— dx=~ if o>0 

“ — ^ if a<0 

= 0 if a — 0. 

If a>0, the substitution ax—y reduces the integral to that just 
evaluated. If a<0, the integral is equal to 

/* sin a'x ^ ir 
x 2 

where a!— — a=positive quantity. If a — 0 every element of the 
integrand is zero, and therefore the integral is zero. The integral is 
therefore a discontinuous function of a. 

2 F o.a 
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xT-'dx 7T r xr 
i 1 

if 0<p<l. B. , 
\+x Bin pir 

The integrand may be written in the forms : 

near x~0, 
I 

1 +x x'~p 

1 
.1-J9 9 

near # = ao 
’ l + ijx * a*-*5 

for convergency therefore we must have 0 <p< 1. 
Denoting the integral by /, we have 

[' xp~ldx rxp~'dx 

l+x 1- L +# 

In the second of these integrals let x—lfuj and we find 

r'*xp~1dx_ flu~pdu_ f1 x~pdx 

I 1+x ~~J0 l+u~J0 1+x’ 

and therefore 

Now 

but 

\lxp-l+x'p r xp- 

Jo 1 + x 
dx. 

r«+i 

90 ti.t /- ?< -, r (,JL+J^)+(-»■*'/' *. 

As n tends to infinity the integral last written converges to zero, 
because it is less than 

f (xp~l + x~p) xn+ldx~  —-H-?—-. Jo V y »+jD+l w-p+2 

H.„c, 
§ 176. Gamma Functions. On pages 349, 350 some of the 

simpler properties of the Gamma and Beta functions are 
stated; we now give two important results. 

A. If 0<j><1, r(p)r(l-^) = 7r/sin^7r. 

In examples 20, 21, p. 350, let n~p, m = l— p, so that 
T(m + n) — r(l) = l; then 

T(p)T(l-p) = B(p, l-p)=[-PfJdx T 

by §175 B. 

v_ /sA' 

!+x ampiT 

B. r(p)T(p+h)=^r{2P). 
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Let us consider B(p, p). 

B(p,p)~ f xp~1(l—x)p~1dx=\ {|—(b —xy^-'dx. 
Jo Jo 

The second integral is easily seen (compare §125, 
Theorem III.) to be equal to 

2 [\ i — (J—x)2}p " ldxy 
Jo 

which, by the substitution l — x — §*/«, leads to 

Expressing the Beta functions in terms of the Gamma 
functions, and noting that 1X2) = s/tt, we find the equation B. 

§ 177. Second Theorem of Mean Value. This theorem has 
been referred to in examples 30, 31, p. 308; as it is of fun¬ 
damental importance in the discussion of definite integrals 
we shall now prove it. It is convenient to have a word to 
describe a function which, as its argument increases, either 
never decreases or else never increases; such a function 
will be called monotonic. 

The proof of the theorem depends on the following simple lemma, 
usually quoted as Abel’s Inequality. 

Lemma. If for all values of r less than or equal to where n is 

any integer, A >u1+n.i+...+ur>B 

where ulf u2y ... un are any real quantities, and if aJf a2f ... a„ is a 
non-increasing sequence of positive quantities, then 

axA > Oitti + 02^2 + ... + > U\B- 

The numbers a2, ... an form a non-increasing sequence if each 
number is greater than or equal to every number that comes after 
it; the sequence would be non-decreasing if each number were less 
than or equal to every number that comes after it. Now, to prove the 
lemma, let «r=Wi-pw2 + ... + ur ; then 

Wj , ^2 ~ ^‘2 j M3 —- ^3 ^2 j • *» Mfl ■— 1 • 

Denote 4- a2u2 4-... 4- anun by S and substitute for uu u<ly ... in 
terms of «i, s2, ...; therefore 

S=a^i 4* 02(^0 - sy) 4- a3(«3 ~ s2) +... 4- an{sn - 1) 

= (ai - a2)e x+(<Jh~ a3)s2 +... 4- (an^ - an) sH^ 4- ansn. 



452 AN ELEMENTARY TREATISE ON THE CALCULUS. 

The differences (ax-a*), (a2-aa), ... are all positive or zero, and each 
of the quantities «i, «a, ... is less than A and greater than B; hence 

S<.{ («1 — 0,2) + («2 — a8) + ... 4* (&n-1 “ &n) + <*», } A 

but > { (CLi — 0%) 4- (<X2 — 0fa)4" ... 4-(<Xn-l *“ &n)~b<ln}Bf 

that is, axA >$> a\B. 

If M is some mean value between A and B, we may write 

Theorem I. If, throughout the interval a^x~b, the 
function <fi(x) is continuous, positive and non-increasing, 
and if the function \}s{x) is continuous, then 

[ <j>(x)\{s(x)dx~<j>(a)f \j/(x)dx 
J a J a 

where a^g^b. 

Divide the interval (a, b) into n parts (a, #,), (xv x2\ ... 
(ccn-1, 6), and, for symmetry, let a = x0, b = xn; then 

fb(/>(x)\fr(x)dx= 2 P” <t>(x)yjs(x)dx..(1) 

In the interval (xr.h xr) put (f>(xr~i)-- l<fi(xr-i) — <fi(x)} 
for its equivalent <p(x), and write the integral from xr~i to 
xr as the difference of two integrals; then 

Cb r—n r>x 

I (f>{x)yp'{x)dx— ^<p(xr-i)I r yjs(x)dx—. 
r=1 J xr—l 

ran pjj. 

where 12= TJ r {^(ov-i)—0(oO} .(3) 

In the lemma let ar~<j>(xr-1) and 

f^r (% 
wr = J \Js(x)dx, so that sr = J \fs(x)dx. 

Cx 
The integral \[s(x)dx is a continuous function from 

x — a to x = b, and therefore the mean value M of the lemma 
will be given in this case by a value of the integral for 
some value (or values) of x in the interval (a, b); let g be 
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one such value, so that a^g^jzb, then the first sum in the 
right-hand member of (2) is of the form 

0(a)J y^(x)dx. 

We shall now show that R tends to zero when n tends to 
infinity, each interval (xr-\, xr) at the same time tending 
to zero. 

In the interval (xr-\, xr) the difference — <f>(x) is 
either positive or zero and (§ 124, Theorems VI., VII.) 

I*|SST r— 1 Jzr-i 

r==w Cxr 
< 2 {^(®r-i)-^(av)}| I \H*)|(lx. 

r— 1 Jxr-1 

Now we can choose n so large (and each interval so 
small) that for every r the integral 

Pr | r]r(x)\dx 
Jxr-l 

shall be less than any given, arbitrarily small, positive 
number e; we then have 

r= 1 

Hence the limit of R is zero and Theorem I. is established. 
It is not hard to see that the proof holds even if <f>(x) 

and \Js{x) have a finite number of discontinuities of the 
kind referred to in §§172-174 provided the discontinuities 
of <f>(x) are finite. 

Theorem II. If, throughout the interval a^x^-b, the 
function <f>(x) is continuous and monotonic and the function 
\Js(x) continuous, then 

f <j>(x)\lr(x)dx~<p(a)f \Js{x)dx + <f>(b)[ \fs(x)dx ....(II., 1) 
J a J a J £ 

= 0(a)| ....(II., 2) 

where a 
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This theorem follows at once from Theorem I. For if <p(x) 
does not increase but is either positive or negative, then 
4>(x)—<i>{b) does not increase and is positive; similarly, if 
<p{x) does not decrease, then <f>(b) — <p(x) does not increase and 
is positive. The substitution of <f>(x) — <j)(b) or <p(b) — <f>(x) 
in place of <j>(x) in Theorem I. gives after a slight trans¬ 
formation the equation (II., 1); the equation (II., 2) is 
merely another form of (II., I) which is sometimes useful. 

Ex. 1. If 
cos ax dx 

~a? ’ 

sin axdx 

' of 

show that u is convergent if 0<r<l, and that v is convergent if 
0 < r < 2 (a ^ 0). 

Both integrals are convergent at the lower limit by the Theorem of 
§ 174. When x>0 the function 1 jxr is in both cases a decreasing 
function ; hence 

[k cos ax , 1 , 1 (k 7 
I — ax~y- / cos ax dx -f T- | cos ax ax 

Jh xr hrJh kr Jg 

sin - sin ah sin ale - sin a£ 

ahr akr 

and therefore less numerically than 2jaJf+2 jakr. The limit for h 
and k tending to infinity, is therefore zero if r>0. 

In the same way we see that v is convergent. 

Ex. 2. Apply Abel’s Inequality to prove examples 14, 15, p. 389. 

Take example 14 and let 

prn = cos (n+\)6+ eos(« + 2)0+... + cos (re + p) 0. 

In Abel’s Inequality let ar= l/(n+r), ur=co$(?i+r)6 ; 

then 
. rO 

sr—sm-^-cos (re+^0)+si 0 

If 0 is neither zero nor a multiple of 27r, ,sr is finite for every value 
of r, say | sr\ less than c. Hence \prn\ is less than c/(n-fl), and 
therefore converges to zero, for every value of as n tends to infinity, 
so that the series is convergent. 

EXERCISES XXXIX. 

1. if a and b are both positive show that the integral 

[m sin ax cos 

Jo * (X 
is equal to tt/2 or zero according as a is greater or less than 6, and is 
equal to 7r/4 if a==6. 
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2. Show that 

... / sm*r , 7r (1) j L3# 7 37T 

3. Graph the curves 

f00 sin 0 sin xQ 

k w 
4. Show that, n being a positive integer, 

(0 y=( 
J 0 

/*“ sin: 

; <"> i -? 

do. 

jf 
,0° sin2M+Vr r- Jo 2.4.6... 2ti 2 

5. Show that if 0 < p < 1 

r'Z=£?d,-*reolpr. 
Jo 1 X Jq 1 — X 

^Proceed as in § 175, b, using the result (§ 193, example 1 (v)), 

*cot,»-T(^-—1^)} 

6. Establish the following values, which are all obtained by trans¬ 
formation from § 175, u, or from example 5 : 

(o 
Jo 1+ar* 

_7t_ m, n positive integers 

2k sin—Chi,/ Mdm<W- 
2 72- 

~>~ + 

enx~ft~nz y 7r, rnr _ , dr=2 tan—, 

[lxn + x'n , [lxn + x~ndx 7T «7T 

(n)| ~T+xrdv=l i+?f7"28ecT’ 

(iii) f -—;—-<fe=ir (cot ajr — cotfar), 
Jo 1— .r (J<Co<Cl. 

(iv) f 
•'0 

(V) f 
j 0 

/ /** awii iu;cusu w 7 & <u „ 7 _ 
(vi) / ---dk =-;-r~, — 1 <a±6< 1. I nnoh nno /7frr-L/iAa /i<rr* 7 

7 7T 7Z7T 
= - sec —, -1 < n < 1. 

cosh ax cosh bx 

air bre 
7r cos — cos — 

cosh .r cos a7r + cos 67r 

7. Show that if 0 <p < 1, 

f (,rp+^7“p) log (1 + #) — =—~J~~-L 
J0 /o' ' x p ampir p2 

8. Prove that (see § 193, example 2, (vi)) 

f00 sin a# cfjr a 

Jo 
5 sina^cfjr_M^° _ 7T f ^ «7T 

nto a2+(271+1)2-4 tann X 
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9. Show that (see example 6, p. 332), if n is a positive integer, 
rMT 

# log (sin2#) dx—rdir2 log Q). 

Examples 10-18 are all reducible, by an appropriate substitution, to 
Gamma functions. 

10 f1 ■rtn~1 (^v — ZL IX f1 #W~L dx_t 

' Jo ( !-*”)» ~»sin2^’ ’ i. (l+M)(l-*r(l+«)' 

f1 #m_1 (1 — #)*~1 dx __ B(m, n)~ 
Jo (a + bx)m*n ~~a”(a-f-6)m’ 

f7 cos2m_1# sin2”-1# dx _ Z?(m, 7t) 

JQ (acos2#-f tain2#)”14-” 2am6n ’ 

w 
14 f ^ tan*# 

X « cos2# +6 si 

15 f9 s^”"1#^# _ 2n-1 ^fn 
J„ (a + b cos x)n (at_hiyi \2’2/' 

i6- 
Jo 

sinw7r 

hir 

v -f b sin2# lr* .jip* 
2a a 6 a 

(1 +#)m+ 
e*mx + e-2mx 

17‘ 1 (e*+e-*y 

is J1 (i+-r)'iro~i(i -*)*-1 

+ n - m). 

'2m—1 ^ 

(i+?r+n 
o?# = 2m+n-25(rn, n). 

19. If each of the integrals (a> 0) 

is convergent, show that P= Q log a. 

20. Trace the curve (a > 0) 

«=ixh) # 

Bin x0 Bin 3a 0 
~07ina0 * 

§ 178. Operations under the Sign of Integration. Let 
F(x, y) be a continuous function of the two independent 
variables x, y throughout the ranges 

a^x^b, a'—y^b'; .(r) 
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the function f(y) defined by the integral 

/(y)= y)dx.(i) 
J a 

will be a continuous function of y (see below). 
A property of a continuous function that we have always 

tacitly assumed—its uniform continuity—plays a pro¬ 
minent part in the proof of this and other theorems. If 

7/t be any given pair of values in the ranges (r) we can, 
by the primary definition of continuity (§89 and §45), 
always find a positive number tj such that the difference 

\F(x2, y%)~~F(xv y1)| .(2) 

shall be less than any given e (where e has the usual 
meaning) when |a:2 — ^1 and |i/2 —2/1I are each less than j;. 
If, however, we choose another pair x\ y' instead of xx, yx 
we shall usually have to choose a new value of rj. Now 
the uniform continuity of F(x, y) consists in this (compare 
§151), that when e is given we can always find one rj such 
that the difference (2) shall be less than e provided only 
that |#2—xx\ and |y2 —yj are each less than tjf however we 
choose the pair xv yv* We shall assume that continuity 
is uniform. 

We can readily prove the continuity of f(y); for 

f(y+h)-f(y) = f {f{x, y+h)—F(x, y)}dx.(3) 
J a 

Whatever value in the interval (a, b) x may have, we can 
always choose h so small that |F(x, y +h) — F(xy y)j shall be 
less than e and therefore \j(y + h)— f(y)\<e(b — a); but 
this shows that f(y) is continuous, and that for every y in 
the interval (ab'). 

We now prove the theorem, a and b being supposed 
independent of y: 

Theorem I. If F(xt y) and the partial derivative 
Fy(x, y) are continuous functions of the independent 
variables x, y throughout the ranges (r) the derivative 

*The necessary modifications when xx—a or b and yx — a! or V we 
leave, in this ana similar cases, to the student’s own judgment. 
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f'(y) of the function f(y) defined by (1) is given by the 
equation 

.<*> 

This theorem is usually quoted as that of differentiation 
under the sign of integration, and the variable y is often 
called a parameter. 

By the mean value theorem of § 73 we can write 

F(x, y+h)-F(x, y)=hFy(x, yx) 

= hFy(x, y)+h{F,,(x, yl)-Fy{x, y)} 

where y1 is some value between y and y + h. 
Substituting in (3) and dividing by h we find 

Ay ±= ^Fy(x, y)dx+^{Fy(x, y1)—Fy(x, y)}dx. (5) 

But | Fy(x, y^ — Fy(x, y)\ can, by taking h small enough, be 
made as small as we please whatever value in the interval 
(a, b) x may have; the last integral in (5) therefore 
converges to zero with h and we obtain equation (4). 

Suppose now that a and b are continuous functions of y\ 
the conditions of Theorem I. holding and the derivatives 
dajdy, dbjdy being continuous; the total derivative of 

f(y) is (§ 90) given by 

df _ df da df db df 
dy~da dy^dbdy^dy 

= .(6) 

where df/da, df/db are found as in §372 (3) and df/dy is 
given by the integral (4) above. 

The following theorem has been proved in § 135, but it is 
instructive to establish it apart from the considerations of 
that article. 

Theorem II. If F(x, y) is a continuous function of the 
independent variables x, y throughout the ranges (r) and if 
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then 

and the integrals 

3V 
dxdy 

= F(x, y)-- 
320 

dydx* 
.(8) 

f dy [ F(x, y)dx, Q= ( dx f F(x, y)dy .(9) 
J a' J a J a J a' 

are equal to each other. 
The double integrals P, Q are really repeated or successive 

integrals, just as the derivatives in (8) are successive; we 
make no use of the results of § 135. 

Let v) = F(u, v)du, <j>(x, y)~ \ \}s(x, v)dv; 
J a J a' 

then \ls(x, v) is continuous and 

d<f> _ D 

'dy~~dy 
I yp-{x, v)dv = \],(x, y)= j F(u, y)du, 
J a' J a 

(u, y)du = F(x, y). 

Again by Theorem I. 

v)dv=t «)*-• 

&jk=uy{x-v)dv~F{x-v)- 

so that equation (8) is established. 
Next, in the integrand of P put d2(f>/dxdy for F(x, y); 

then 

f V(x, y)dx = \ 
Ja L dy Ja dy dy 

and P^J^dy^m-aldy 

= ^>(6, b')-<p(b, a')—<j>(a, 6')+0O> a'). 

In the integrand of Q put d2<j>/dydx for F(x, 2/) and we 
get for Q the value just found for P. 
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Taking the function f(y) defined by (1) we may write 
the equation jP = Q in the form 

J J(y)dy=^ dx^F(x, y)dy.(10) 

The theorem expressed by equation (10) is usually quoted as 
that of integration under the sign of integration. 

It must be specially noted that throughout this article 
the numbers a, 6, a\ b' are supposed to be finite. 

The methods illustrated in the following examples are 
often useful in the evaluation of integrals; other examples 
will be given later. 

Ex. 1. Evaluate f jJZ 
J (#2+a2)2 

Consider the equation 

f* 1 , 1 . ,# 
I ~r,-x,du = - tan”1- ; 

J0 + a a 

we may take a as a parameter and differentiate with respect to a. 
We thus find 

f* -2adu _ 1 _xx 1 1 
JQ (u2 + a2)2~ a*™11 a a l+x2/d2 

fx du _ 1 _,# 1 
J0 (u2 -f- a2)2 ~~ 2aztan a&i 

(?> 

J0 (u2 + a2)2 2a3 a 2d2 #2-fa2* 

The value just found is that integral of 1 /(x?+a2)2 which vanishes 
when#=0; we have taken u as the variable of integration to make 
the process quite clear, but in finding an indefinite integral we may 
obviously dispense with the change of the variable. 

Ex. 2. Calculate f log(l -e2sin2#)d#, e2<l. 
Jo 

Denote the integral by u and differentiate with respect to e; we find 

— 2esin2#d#__7r 2 
1 - e2 sin2# ~~ e e 

r* dx 
Jo l -e2 sin2#* 

The integral may be found at once by the substitution v — cot #; then 

du _ 7r tt 
de~ e e^/(l - e2)' 

Integrating with respect to e and noting that w=0 when c=0 we 
get the result 

W = 7T log |1 
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The integral is continuous up to and including e~ 1 ; putting e— 1 
we find 

jf log (cos #)~~ log Qj = ^ log (sin #) 

§ 179. Uniform Convergence of Integrals. When the limit 
b (or a) of the integral (1) of §178 is infinite the theorems 
of that article require further examination; in the dis¬ 
cussion to be now given we follow closely the lines laid 
down by Cli. J. de la Vallee Poussin in his memoir fiitude 
des integrates d limites infinies (Annales de la society 
scientifique de Bruxelles, Vol. 16 (1891-2), pp. 150-180). 
Reference may also be made to an article by Professor 
Osgood, Problems in Infinite Series and Definite Integrals 
(Annals of Math. (2nd series), Vol. 3, pp. 129-146). The 
student should compare the following discussion with that 
of §§151, 155. The conditions stated for the validity of 
the various theorems are merely sufficient, not necessary. 

Note.—Unless the contrary is explicitly stated the 
integrand, usually denoted by F(x, y), is a continuous 
function of the two independent variables x and y for all 
the values considered. An interval or range, denoted by 
(a'y V), is, unless the contrary is explicitly stated, a closed 
interval (p. 89). The symbol e will always represent an 
arbitrarily small positive quantity. These conventions 
will save tedious repetitions. 

Definition. The integral 

F(x, y)dx .(a) 
J a 

is said to converge uniformly throughout the range 
a^Ly^b' if, e being given, there exists a number M inde¬ 
pendent of y such that for every N greater than M 

l r°° 

F(x, y)dx <e.(b) 
UN 

The following remarks may he useful. If the integral (a) converges 
at all we can choose M so that the inequality (b) will be satisfied 
if N> M; but Jfwill usually depend not only on c but on y. If M 
is a function of c alone when d^y^h* the integral (a) converges 
uniformly throughout {a\ l/). 
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It may happen that M is a function of c alone for every y^a'; in 
this case the integral (a) converges uniformly throughout the unlimited 
interval y^af. But it may also happen that M is a function of € 
alone whatever definite value (no matter how large) is assigned to V 
and yet not a function of € alone for every y £ a!; M may tend towards 
infinity along with //, the convergence therefore becoming infinitely 
slow (compare § 188). In this case the integral (a) is said to converge 
uniformly throughout an arbitrary interval (a', V). 

The integral I e~yzdx converges uniformly throughout the un- 
Jo ^ r°° 

limited intervaly~a >0, but the integral / e~xjvdx only throughout 
Jo 

an arbitrary interval, 0 Ca'^y^b' where l> is any definite number 
but as large as we please. 

Theorem. The integral (a) will converge uniformly 
throughout the interval (a', l/) if there exists a function 
<p(x), independent of y, such that for a'^y^b' 

(a) 0(a)£O for x^a ; (/3) \F(x, y)\~<f>(x) for x^a ; fX> 

<l>(x)dx converges. 

The proof is simple ; we have 
IrOO I /»O0 I /*QO J F(x, y)clx = J \F(x,y) dx<^ <f>(x)dx, 

and by condition (y) we can choose M (manifestly inde¬ 
pendent of y) so that if N> M the integral last written will 
be less than e. 

This theorem is analogous to Theorem III., § 151; the 
interval (a, V) may be limited or unlimited. 

Cor. 1. If throughout the interval (a', b') 

F(x, y)=f(x)^(x, y) 

where \fr(x, y) is finite and I f(x)dx absolutely convergent 
J a 

the integral (a) will converge uniformly throughout the 
interval (a, b'). 

If \yjs(x, y)\< C, a constant, we have only to put 

<p(x)=G\f{x)\ 

and the theorem is applicable. 
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Cor. 2. We may write F(x, y) = x~k. xkF(x, y); if 
xhF{x, y) is finite for all values of x and y in question the 
integral (a) will converge uniformly provided k> 1. (§ 173.) 

Ex. r(y)— / x?~le~xdx% converges uniformly throughout an arbi- 
J o 

fcrary interval (1, b'); because .r*'-1 e~x—x~\xy^e~x) and xy^e~x is 
finite. 

If 0<y < 1 the integrand is discontinuous at the lower limit; but, 
integrating by parts, we see that 

I 
y -'o 

and this integral converges uniformly throughout the range 

0 < a' ^ryl>. 

§ 180. Continuity and Limits. We shall now consider 
some theorems that are of fundamental importance. 

Theorem. I. If the integral 

/(?/)= j F(x, y)dx 
J a 

converges uniformly throughout the range a'^y^b' it is a 
continuous function of y throughout that range. 

The proof is similar to that of Theorem I., § 151, and may 
be left to the student. 

Theorem II. If \fs(x) is continuous for x~a and the 
poo 

integral /—I \fs(x)dx 
J a 

convergent, then if y > 0 the integral 
/•ao 

f(u) = I c-vx\f,(x)dx 
J a 

is convergent and L f(y) = I. 
y—0 

Since e~yx is a decreasing function we have, when b is 
positive and 

| e~yx\}r{x)dx = e-yh^ \fs(x)dx+e~yc^ \p>(x)dx. (1) 

The factors e~yby e~yc are finite, and, since the integral 1 
is convergent, each of the integrals in the right-hand 
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member of (1) tends to zero as b and c tend to infinity. 
The integral f(y) is therefore convergent (as is otherwise 
very obvious). 

Now let c tend to infinity, b remaining finite; from (1) 
we find, since e~yc tends to zero, 

r* re J e-yx\js(x)dx — e-ybJ \^{x)dx, £'~b 

(the value of £ in (1) will usually vary with c); and 
therefore 

f(y)= f e-yx\js(x)dx+e~yb[ \]s(x)dx.(2) 
J a Jb 

Next we may write 
Cb 

1 = J \/s(x)dx + j \]s(x)dx..(3) 

so that, 

/(y) —7=j (e-vx—l)\}s(x)dx+e-vh^ \Js(x)dx—^\Js(x)dx. (4) 

Now, since I is convergent and e~yb finite, we can choose 
b so large that the second and third terms in the right-hand 
member of (4) shall each be as small, numerically, as we 
please. Choose such a value of b and then keep it fixed. 
We can now take y so near zero that the remaining 
integral in the right-hand member of (4) shall be as small 
as we please, numerically. Hence we can take y so near 
zero that \f(y) — I\ will be as small as we please; that is, 
the theorem is established. 

This theorem is of great service in the evaluation of 
integrals. The next theorem is more general and is of 
special importance in the case of double integrals, though 
it may be passed over for the present. 

Theorem III. Let f(x, y) be a continuous function of 
x and y for the ranges x^a, y^a'. If (i) the integral 

poo 

^(2/)= /(*> y)dx 
J a 

converges uniformly for every y~(i, and if (ii), as y tends 
to infinity, /(x, y) converges uniformly to a definite limit 
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<p(x) for every x such that a~x~-h where b is any given 
number (as large as we please), then 

poo poo pco r- —| 

L I f{x,y)dx=\ <j>(x)dx=\ L f{x, y) \dx. 
~ co J a Ja Ja L?/=® J 

We first show that \fs(y) tends to a definite limit. Let 
y\ y" be any two values of y; then 

= f \f(x> y')-f(x> y")}dx+ f f(x, y')dx— f fix, y")dx (5) 
Ja Jb Jb 

— X fj. y, say. 

By condition (i) we can choose b so large that, whatever 
be the values y\ y \ we shall have |/x| and \v\ each less than 
e/3; choose such a value of b and then keep it fixed. By 
condition (ii) we can choose Y so that, whatever value in 
the interval (a, b) x may take, we shall have the difference 
| f(x, y')—f(x, y")\ less than e/3(b — a) if only y' and y" are 
greater than Y; this is simply the condition that f{xy y) 
should tend uniformly to a definite limit as y tends towards 
infinity. When Y has been thus chosen |X| will be less 
than e/3. Hence if y and y" are greater than F the 
difference ^(y^ — 'f'iy")] will be less than e; in other 
words, as y tends to infinity, \fr(y) tends to a definite limit, 
which we may call P. 

We have now to show that 
poo 

P= I <pix)dx. 
J a 

Let us write, b being at present undetermined, 

\ <j>ix)dx-P= \ {fix)-fix, y))dx 
J a J a 

+[|/(a:. y)dx-^fix, 2/)cfcJ + [j/(:r, y)dx~pj 

=*a+/3+y, say. 

Since P is the limit of \fs(y) we can choose F, so that if 
y>Yx we shall have |y|<e/3. By condition (i) we can 

O.C. 2 G 
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choose B so that if b>B we shall have |j8|<c/3, whatever 
be the value of y; having chosen a value of b to satisfy this 
condition we can by condition (ii) choose F2 so that if 
y>Y2 we shall have |a|<e/3. Hence if y is greater than 
Yx and F2, and b any number greater than B, we shall have 

<6. (6) 

Since this inequality does not contain y we may say more 
simply that, however small the given e may be, we can find 
B so that if b> B the inequality (6) will be satisfied. In 

other words, as b tends to infinity the integral I <f>(x)dx 
J a 

converges to P; the theorem is therefore established. 

§ 181. Operations under the Sign of Integration. We now 
extend the theorems of §178; the student is reminded of 
the note in § 179. 

Theorem I. If the integral 

f(y)= f F(x,y)dx .(1) 
J a 

converges uniformly throughout the range a'^Sy^.b\ then 

f f(y)dy - Pdy f F{x, y)dx=\ dx \yF(x, y)dy .. .(2) 
J a' J a1 J a J a J a' 

where y is any fixed number in the interval (a, b'). 
When the limits of integration are finite constants the 

order of integration is indifferent; we therefore have 

f dx fV(x, y)dy = Pdy f F(x} y)dx 
J a J a' J a' J a 

f.y f* Cy f00 
= I dy I F(x, y)dx— dy F(x, y)dx. 

J a! J a J a' J b 

Let b tend towards infinity; then 

[ dxi F(x, y)dy = f f(y)dy- L ^dy [ F(x,y)dx. 
J a J a' J us b — ooJ a' J b 
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But since the integral (1) converges uniformly through¬ 
out the interval (a', V) we can choose M (independent of y) 
so that if b>M 

F(x, y)dx <e, 
fy f30 l 

<hj\ F(x,y)dx\<e(y-a'). 
J a' J b 

Hence, as b tends to infinity, the integral last written 
converges to zero; the theorem is therefore proved. 

It should be noted that the new integral obtained by 
integrating under the integral sign is itself uniformly 
convergent throughout the range 

An extension of this theorem is given in Theorem II., 
§182. 

Theorem II. If the integral [ ——■- dx converges 
J a oy 

uniformly throughout the range a'^y~b' it is the deri¬ 
vative of the integral (1). 

For, if 0 (?/) = £ dF^j^dx, 

we have by Theorem I. 

\ fi>(y)dy=dxj/dy=\aF(:r' y)dx-\aF(x’ a)dx, 

that is, f <P(y)dy =/(?/) -f(ay 
J a' 

Differentiating with respect to y we find (p(y)=f\y). 
We shall now apply these theorems to the evaluation of 

some important integrals; when the proof that an integral 
is uniformly convergent is not given, the student should 
have no difficulty in supplying it. The mean value 
theorems and the process of integration by parts will often 
be useful in testing for uniform convergence; change Gf 
variable is also sometimes effective. (See also the remark 
at the beginning of § 183.) 

Ex. 1. Let fVA>0. 
Jo # 

Differentiate with respect to y ; therefore 

$=.( <-*'co8y*d*-j£p 
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Integrating this equation with respect toy, and observing that u—0 
when y —0, so that the constant of integration is zero, we obtain 

w=tan_1 (y/A).(1) 

When A —0 the integral is convergent; therefore by Theorem II., 
§ 180, 

I.» 

the 4* sign being taken when y>0, the — sign when y<0. If y — 0 
the integral is zero. 

p—ax _ p-bx 7. 

Ex. 2. *-— ^r = logi?, b>a>0. 
Jo X 

Consider the integral, y^c> 0, 

i e~yx dx = 
Jo y 

If where c is a fixed positive number, we can integrate with 
respect to y from y = atoy = 6>«; therefore 

r»e-ax_e-bx h 

f - dir=log - 

Ex. 3. £ 
’ cos ax — cos bx 

dx=log (-), b>0, a>0. 

If A>0 we have J e-^sinyxdx^j^-^. 
Integrate with respect to y from y—a to y — b ; therefore 

r . cos ax - cos bx , 1 . /A2 4* b2 \ 

l e~Kx-¥--^=2l0° (iW 

It may be easily shown that this integral is convergent when A=0; 
putting A=0 we obtain the value stated. 

What would be the value of the integral if either a or b or both a 
and b were negative ? 

Ex. 4. u=rcmaxdx v=r *sin ax 
Jo i+x* ’ Jo l+i? 

-~f * Jo 
5 x sin axdx 

(i) 
du 

da~ Jo 14- xl 

provided the integral v is uniformly convergent, and it is so if 
fl = c>0. For if x^h>\ the factor x/(l 4-.^) is a decreasing function 
of x, and therefore {h^^’Sk) 

fkxsinaxdx_ h cos ah-coaa£ k cos a£- cos ak 

l+x* ~lTP a + I+P a /: 
so that ' x sin ax dx 

~14- x*~ 
2 h 

'' (14-A2)c Ac’ 
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But 2/he is independent of a and can by choice of k be made as small 
as we please. 

The integral obtaining by differentiating v is not convergent, blit if 
in example 1 (2) we take y=«^c>0we get 

tt r f x 1 \ . , f*3 sin ax dx 

V~2 ~ Jo {T+&-JBmaxdx=-Jo W+*)' 

, Thus 

fm COS < 

Jo ~T+W »(2) 

and we can now differentiate. Thus 

dv __ fn cos ax dx 

da~ J0 

From (1) and (2) we get 
dhi _ dv __ 

da2 ~da Uy 

und the complete integral of this differential equation for u is 

u~ Aea + Be~a. 

Now u is finite (not greater than tt/2) for every a ; therefore A =0 
since, if A were not zero, u would tend towards infinity when a did so. 
Again n is continuous for every a; putting « —0 in the integral we see 
that u is then 7r/2, so that B—Tr/2. Hence 

i—-e~ay 0; v- 
«>»• 

If a<0, v—-~ea; if a —0, v—0. 
Jj jL 

i 
X 8*n dx 7T _ 

62+.r2 ~26 J 6>0* 
«>0 rw» i1,0 cos ax dx tt _ab a~Q f 

Jo ~W+x*'~2b ’ 6>0’ J„ 

r® !tt & 
Ex. 5. / e-"2*2 cog 2bx dx—■ e «*. 

Denote the integral by u and differentiate with respect to 6 ; thus 

— =s f - 2xe~a9x0 sin 2bx dx 
db Jo t„-ahp2 H® 9h r00 

-—— sin26.r —- / e“a2x2 cos 26.r <£r 
a2 J0 a1 J0 

by integration by parts. The integrated part vanishes at both limits, 

du 

db~ ' 

But when 6=0, 

bo that 
26 . * 

--jm; u — Ae «*. 
a2 

«=jf 2“ (§136, ex. 3). 

Hence 

/o 

A =~ and 
2a 2a 
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Ex. 6. a>0, b>0. 
Jo -la ‘ 

This integral may be evaluated by differentiating with respect to 6, 
but it is more instructive to use a change of variable. Let us put 

y — ax+hjx, so that x—{y ± <J(y2 -~4ab)}/2a, 

d!L-n-*L *:_2/ u_1L_X 
dx x2' dy 2a l >J{y2 ~ 4ab)) 

(i) 

•(2) 

The variable y is a minimum when x=>J(bfa). As x increases from 
0 to sj(bja\ y decreases from oo to 2s/(ab) ; for this range of x the 
minus sign must be taken in (1) and (2). As x increases from y/(b/a) 
to qc, y increases from 2 \/(a&) to oo ; for this range of x the plus sign 
must i>e taken in (1) and (2). 

Again a2x2+b2Jx2~y2 - 2a6, so that the integral is equal to 

ab r2V(«&) f 

*/. --t1 s/(/--4ab) 

,2ab /•* 
■ 2 a 

'I e2ah /■* , f 

J J2\/{abf 1 

2y dy _ er-ab C 

a J0 

y 

*J(y2 - 4ab)" 

*J(y2-4ab) 

e~* dz 

by the substitution z2—yl — 4ab, from which the given value is at once 
obtained. 

The student may also evaluate by the substitution v — ax — b/x; as x 
increases from 0 to oo, v increases from - oo to oo. 

Ex. 7. U— I e~ax xn~l cos bx dx, V— I e~az xn~l sin bxdx 
Jo Jo 

where a>0, n>0. 

Make the following substitutions : 

a = rcos$, 6 = rsin# where — 7r/2<#<7r/2, 

rx—y9 Urn — u, Vrn — v.(1) 

The integrals then take the form foo /•« 

e-y co. eyn-1 cos ^ g|n 0) v _ / c-v co« sin sin 0) dy. 
Jo 

Now differentiate u with respect to 0; therefore 

^ = f e~yco*6 yn sin# cos (?/ si n #) dy - / e~vco*eyn cos #sin(ysin 0)d[?/, (2) 
du Jq 1 Jo 

provided the integrals are uniformly convergent, as they are. For, if 
c is positive but as small as we please, then 1 S cos 0^ c, and each of 
these integrals is numerically Jess than 

f e~cvyndy~ 
Jo 

T(n + l) 

so that each is uniformly convergent when -~7r/2<0<7r/2. 
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We may write equation (2) in the form 

l yn7h^e~V“*9sin^sin ®Jdy' 
and, integrating by parts, we get 

^ = — nj e~v co> eyn~l gin (y sin 0) dy — — nv. .,.(3) 

Similarly, .(4) 

and therefore from (3) and (4) 

+n%11’=0 ; w ~ ^4 cos n0 + B sin n0. 

When 0=0, it=jV»y-1<^=r(n)) ^=0, 

so that A = T», B~0, 

and therefore u—F(tt)cosn#, r = “ ~ ^(w)s'n .(5) 

We therefore obtain the results 

ax n-1 I 7 r(w)COfl??,^. 
I e axx 1cos hxdx— ——7--;.(6) 

Jo r 
/** n—i • i 7 F(w)fiinw0 ^ 

Jq T 
where 0=tan”1 (6/a), r=(aa+62)‘*. 

By specialising the constants in (6) and (7) several important results 
are obtained. 

When a — 0, b>0 we get, if 0<l-fi<l, 

„ , , r(«)coa5E „ . , , r(«)sin~ 
f cos bxdx _ 2 f sin bxdx 2 /QN 

Jo X1-” ” 6" ’Jo ~xs=* F .. ^ 

The second equation holds if 0<1 -t?<2. 
In these integrals let 6=1, n — h ; then, since r(|) —N/(7r), 

.» 
and, by substituting x2 for x, 

f cos (xz) dxyj= J sin (x2) dx.(10) 

Again in (6) and (7), let n—§ and substitute x2 for x ; then 

; f e-°* sin (b.r*) <Jbc=^- S1" ^ ...(H) 
Jo 2 r* J° 2r* 

where 9 and r have the same values as before. 
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§ 182. Order of Integration for Infinite Limits. Theorem I., 
§181, shows that under certain conditions the order of inte¬ 
gration is indifferent even when one of the limits is 
infinite; Theorem III. of §180 assigns conditions that 
enable us to extend Theorem I. of §181 to the case in 
which the upper limit y is also infinite. 

Theorem I. If the integrals 

f F(x,y)dx .(1), \*F(x,y)dy.(2) 
J a J a? 

converge uniformly throughout the arbitrary intervals 
(a\ V) and (a, b) respectively, and if the integral 

f dx f F(x, y)dy .(3) 
J a J a' 

converges uniformly throughout the unlimited interval 
y~a', then 

f dy \ F(x,y)dx=[ dx\ F(x,y)dy.(4) 
J a' J a J a J a' 

Let the function f(x, y) of Theorem III, § 180, be defined 
by the equation 

f(x, y)=\ F(x,y)dy \ 
J a' 

the integral (3) above will then be the function \fs(y) of 
that theorem. The convergence of the integral (2) above 
satisfies condition (ii) and the convergence of the integral 
(3) above satisfies condition (i) of the theorem, while the 
convergence of the integral (1) above enables us to apply 
Theorem I. of § 181. We thus have 

poo poo py poo 

I dy I F(x, y)dx = L i dy I F(x,y)dx 
Jo! Ja Ja 

= L [dx [*F(x, y)dy (Th. I, § 181.) 
y=ooJa J a’ 

= [”dx f F(x, y)dy. (Th. III., § 180.) 
J a J a' 

The student may be inclined to suppose that the last of these 
integrals is merely another way of writing the second last, but this is 
not so. In the second last integral the order of operations is (i) 
integration as to y, (ii) integration as to x and passage to the limit 
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*r= qo ; (iii) passage to the limit y — oo. In the last integral the order 
is (i) integration as to y% (ii) passage to the limit y = qo ; (iii) inte¬ 
gration as to x and passage to tne limit # = oo. The reversal of order 
requires justification, as the following simple example shows. If a>0 

L / dx I cos {xy)dy~ L f .^S-V)dx== L f --?--du = 0, 
yrrao •'a ^0 y=oo^a & y»»ao* ay % 

but J dx f cos (xy)dy is not a definite quantity 
Ja JO 

We may also state the position in this way. Let us write 

L f dx f*F(x, y)dy— I dx f F{x, y)dy- L f dx f F(x,y)dy; (5) 
y—ao Ja Ja' Ja Ja' y=ao-'a Jy 

we must prove that the last of these integrals tends to zero as y tends 
to infinity. For the above theorem this proof is contained in 
Theorem III., § 180. 

Uniform Convergence in General. It may happen that the 
integral (1) is only uniformly convergent throughout the 
intervals (a\ c — rj), + b') where a'^c^b' and rj, r{ are 
arbitrarily small positive quantities, the convergence thus 
ceasing to be uniform near c. If there is only a finite 
number of such values as c the integral is said to converge 
uniformly in general throughout the interval (a\ b'). Of 
course, if c = a' we take ^ = 0 and if c = b' we take j/ = 0. 

THEOREM II. If the integral (1) is only uniformly con¬ 
vergent in general but the integral (3) a continuous 
function of y for the range a~y§b\ then 

f dy\ F(x, y)dx=\ dx ^F(x, y)dy .(6) 
J a' J a J a J af 

where the upper limit y is any number in the interval (or/, b'). 
This is an extension of Theorem I., § 181. Suppose there 

is only one point c and that a'cccy; if there are more 
points than one the reasoning can be repeated. Denote the 
integral (1) by f(y)\ then (compare §174) 

fV(2/)%= L f 1'f(y)dy+ L [' f(y)dy (by definition) 
Ja' ij = 0Ja' t/ = (V c-fi?' 

= L f dx f VF(x,y)dy+ L [ dx f F(x,y)dy 
ti=0 Ja Ja' T)'=(Vtt Jc+•*)' 

(Th. I. §181.) 
fc [» [v 

= 1 dx\ F(x, y)dy + da F(x, y)dy, 
J a Ja' Ja J c 
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because the integral (3) is continuous and we may there¬ 
fore make tj = 0, r{ = 0. This proves the theorem since the 
sum of the last two integrals is the integral on the right 
of (()). 

It should be noted that (3) will be continuous if it con¬ 
verges uniformly in the interval (a', 6'). 

Theorem III. The equation (4) is still true if the 
integral (1) is only uniformly convergent in general, 
provided the other conditions of Theorem I. are satisfied. 

This theorem is an immediate corollary of the preceding 
one. 

Theorem IV. If the integrals (1) and (2) are only 
uniformly convergent in general throughout the arbitrary 
intervals (a', b') and (a, b) respectively, but if the integral 
(3) and the corresponding integral 

[ dy [ F(x, y)dx .(3') 
J a' J a 

converge uniformly throughout the unlimited intervals 
y~a and x^a respectively, then equation (4) remains true 
provided one of the integrals in (4) is determinate. 

Suppose it is the integral on the right of (4) that is 
determinate and denote it by A ; then (compare § 173) 

L f dx\ F(x,y)dy=0. .(7) 
6 = qo J b J a' 

By Theorem II., the integral (3) being continuous, 

r?/ r*> r00 Cy r°° r°° 
dy I F(x,y)dx = I dx\ F(x,y)dy = A- \ dx\ F(x,y)dy. 

J a' J a J a J a' J a J y 

Denote the integral last written by Ji(y); we must show 
(compare equation (5) and the remark on it) that LR(y)~0 
for y = oo. Now R{y) converges uniformly for y^La! \ 
because 
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By (7) we can choose M' so that |a|<e if b>M\ and 
because the integral (3) converges uniformly for y~a we 
can choose M" so that j/3|<e for every y~a' if b>M\ 
Let M be tlie greater ox the two numbers M', M"; then 
|a —j8|<2e for every y~a if b>M and therefore ll{y) 
converges as stated. 

fh r°° r°° 
Next, R(y)~ I dx I F(x, y)dy+1 dx J F(x,y)dy 

J a J y J b J y 

[<*> p poo 

= dy I F(x, y)dx+ I dx\ F(x,y)dy, 
J y J a J b J y 

by Theorem II., since the integral (3') is continuous, 

= y + (a — /3), say. 

Now let b be a fixed number greater than M (as found 
above); then la — /3|<2e. Further, since the integral (3') 
converges uniiormly for x^a we can choose JV so that 
|y|< e if y>N. Hence |i2(y)|<3e if y>N; in other words 
L li(y) = 0 for y = x. The theorem is therefore established. 

Cor. If F(x,y) is always positive the convergence of 
the integrals (3) and (3') can be deduced from the fact that 
one of the integrals (4) is determinate. It will be a good 
exercise for the student to establish this statement. Hence 
when F(x, y) is positive, Theorem IV. is considerably 
simplified because the integrals (3) and (3') may be 
disregarded. 

Note. The conditions stated for the validity of the 
various theorems given in §§181, 182 are merely sufficient, 
not necessary. It must also be always remembered that 
the functions considered are supposed to be continuous. 

§ 183. Other Improper Integrals. When the integrand is 
a discontinuous function a change of variable or integration 
by parts will sometimes remove the discontinuity ana make 
possible the application of the preceding theorems. 

For example, if 0<«<1 both e~*xn~l and e~xxn~l logx are discon¬ 
tinuous for x—0 and we cannot directly apply Theorem II., § 181, to 
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find dT{n)ldn. But integration by parts gives r(n)=r(vi + l)//i, 
and then 

_ r(»+l)+I_[V^ log xdx=j* log^cdr. 

This is the integral that would be obtained by directly applying 
Theorem II., § 181. (See also example 5 below.) 

The theorems of § 178 may be extended to the case of an 
integral with finite limits in which the integrand becomes 
infinite at one of the limits by applying the following 
definition. 

Definition. If F(x, y) is continuous throughout the 
intervals 

a<x~b, a~y^b\ 

but becomes infinite for x=za,y — y, the integral 

f(y)=\ F{x,y)dx.(1) 
J a 

is said to converge uniformly throughout th$ interval 
of^y~b' if there exists a number X, independent of y, such 
that when a< x< a + X 

(2) 

If F(x, y) is infinite for x = b, y~y the limits of the 
integral corresponding to (2) will be x and 6 where 
b—\<x<b. 

The student should have no difficulty in proving that 
Theorem I., § 180, and Theorems I., II., § 181, are valid (with 
the proper changes) for the improper integral (1). 

We conclude with some examples. 

Ex. 1. Show that A= f“‘e~“’du=~. 
J0 2 

Change the variable from u to x by the substitution u—xy ; then 

A— [ e~xWydx. 
'0 

Multiply by eand integrate from y=0 to y«oo ; therefore 

A2—A f e'^dy = f dy f e^^^ydx. 
Jq Jq .ft 
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Change the order of integration ; we thus get 

A2 — f dx f e~i1+3flWydy~ [ 
Jq J o 1 Jq 

d.T _ 71' 
2(1 +.r2)”4’ 

so that 

To see that we may change the order of integration let 

Now f F{x, y)dx—e~y2[ e~x2t/ly dx = e~v% f e~*dz. 
*JS 1 Js Jjiy 

If y~«' >0 we can obviously (since j" e~*ldz is convergent) find J/J 
*o 

independent of y, so that when N>M 

| f F{x,y)d.xft. 

Hence / F(x,y)dx converges uniformly for the range ygla'>0; 
J o *' ___ 

it converges uniformly in qeneral for the range y~0 and a fortiori for 
an arbitrary interval (0, £>'). The other conditions required for the 
application of § 182, Theorem III., are manifestly satisfied ; the change 
of order is therefore legitimate. 

Ex. 2. Show that if a > 0, c > 0, ng.1, 

p eos2«fe-(^+g)^n-2dx. 
J0 (a*+x-)n I («)-{, 

We have (a^Hr*)*5" f (ex. 17, p. 349.) 

Multiply by cos2r.r, integrate from x~0 to .r—oo, and in the 
repeated integral change the order of integration ; therefore 

cos 2ex dx ecos 2 cx dx 

dy (ex. 5, p. 469.) 

•'0 

by the substitution y—x2. We have still to show that the change of 
order of integration is admissible. The integrand being denoted by 
F(x, y), we have 

j j' F(x, y) dx j —yn~l e~a3y j j e~lfiv cos 2cx dx | <y«-1e~rt2v J e~x%*dx. 
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If a’>0 the integral / e-^dx is small for every when N is 
J ft ' ' r<x> 

large. Also yn~1e~a^ is finite for every y§La'. Therefore / F(x,y)dx 
Jo 

converges uniformly in general in an arbitrary interval (0, U). The 
other conditions for the application of § 182, Theorem III., are still 
more easily sben to be satisfied, and therefore the change of order is 
legitimate. 

Ex. 3. Show that if a > 0, c > 0, n 2T1, 

I» f e r ,rln~‘2 dx — aJ-jt c~2ac I e~2ax (2c 4- .r)n_1 xn~1 dx. 
Jo Jo 

By putting 1/a? for x the left-hand member becomes 

rwf 
and this, by substituting an integral for T(?i)/xrn as in example 2, 
becomes 

f c~(°x2+^ dx I e~x*v yn~l dy 
Jo J o 

= fV'1 dy dx 
Jo * Jo 

= (ex. 6, p. 470.) 

» Jtt e~-ac f e~‘2ax (2c4-x)n-1 a?1*1 dx 
Jo 

by the substitution J(c2+y)—c+x. 
We must omit the justification of the change of order of integration; 

the proof however is easily given by means of § 182, Theorem IV., Cor. 
This example, along with example 2, gives an interesting result. 

Ex. 4. If u — f and 0 <m<1, find 
Jo sin"# dn 

du_ log (sin #) ^ ^ 
dn { sm"i .{) 

provided the integral converges uniformly. Now, putting y = sin#, 
we find 

f* - log (sin x) , __ r-ln * ~ log y dy ^ 1 fBln * - log y , 
{ ^ J0 y- \/(l ~y2)coBxJ0 y« 

that is. < JL (^2-Si,|1~n;lQg(ain j)|- 
cos#t(l-ft)^ l-n J 
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Since sin1~nj7log(sin x) converges to zero with xy we can manifestly 
satisfy the conditions of the definition in § 183. Hence the integral 
in (i) converges uniformly and equation (i) gives dujdn. 

Ex. 5. Find the derivatives of T(?i)= / e~xxn~ldx. 
Jo 

If n> 1 we can apply § 181, Theorem II., because .rn-1 (log .r)m con¬ 
verges to zero with x if n— 1 and m are positive (ex. 10, p. 99); we 
take this limit as the value of the function when #=0. If 1 write 

I» = j dx+jf* e~xxn~l dx—u + v say. 

Then find the derivatives of u as in example 4 ; the derivatives of r 
can still be found by § 181, Theorem II. We thus get 

=j[ €~Xj;n-1 x J = J e~xxn~l (log x'f dx, 

and so on, combining into one integral the sums ™ -f~, etc. 
dn dn 

EXERCISES XL. 

Establish the following equations 1-20 : 
* 

1. f log(a2cos2j7-f-62sin2^)fir—7rlog^i^, a>0, b>(X 
Jo 2 

2. Q-aOr. 

3. f]0g(?+|sin?)-^=rsin->(^, a>b>0. 
J0 ° \a -usmx/smx \a/, 

4. / ^ ”1 dx = log (?? +1), M-h 1 >0. 
Jo log* 

*■ >■ 

r® a2 _ 7,2 
7. / xe~axcoabxdx—7-f~-jtjrr» a>0. 

Jo (a2 + 62)-’ 

«■ 0<’<L 

Q , 7T- 2n7T _ . . 
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10. dx=l{b-a\ a>0,b>0. 

11. l"]^±^>dx = ^loS(a + \), «>0. 

12. «> 
Jq oLIl *<6 

IS. 

a> — 1. 

14. / *-«2*9 cosli 2kr dx = 

X 2 . 

-- f00 cosaxdx_ 7r / a 1 \ a& 
10, X, (r+?rr?lF+pje • 
1 fi f °° coa a‘r ^;r - 77 / «2 3a 3 \ -4 

Jo (h*+W " 1 . 2723 V 63 + 6«+F/ • 

17 f ® .r sin <z.r dr tt a (tb 

Jo lP+*?F~TT&be ‘ 

1 p f® .r sin ar dr 7r (a2 , a ^ 

i0 (62+x2)3 ~1.2.2»V6* + WC ' 

1Q f® sinar dx_ tt f ab + 2 ^ 

X (62-M2)2 * ~2MV 2 /’ 

20. /"“e-o"-” sin 2kr j/T /V^ c/.c. 
Jo x a J0 

r® /rn“^T dr 
21. Transform the integral / —--— by the substitution 

J0 (a+-kr4-6\z2)w 
y — cx+a/x, the constants a, 6, c being all positive, and show that 
the value of the integral is 

sJtt r (n - £)-r c* {6 + 2 r (w). 

22. If <£(w) and its derivative <f>'(u) are continuous for every positive 
value of Uj and if <f>(u) converges to the finite numbers Id ana Nwhen 
u tends towards infinity and zero respectively, show that (b>a>0). 

(i) f dxf 4>(xy) dy = f dyf <f>'(xy)dx. 
Jq Ja Ja Jo 

(ii) r dx—(M-N) log 
Jo x a 

[Note that 4>(xy) is a function of the product xy. Theorem (ii) is 
known as Frutlani's Theorem,} 
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23. Show that, b>a>0, 

(i) r d* w t 
J0 x 2 ® a 

(ii) f^(A'hta!LhW*=wl 
L .7? a 

24. Establish the following results : 

c&r— 1 - log 2. 
(i) l —e~r)dx=1 ~log2, 

(ii) 1 
=(»-l)l°g 

25. Establish the equation of example 27, p. 407, by differentiating 
the integral (ii) of example 25, p. 406. 

26. If t/0(.r) = - f cos (#cos 0)dQ, show that (b>0) 
TT Jo 

i e~'bXJo(aX'> dx = n/(«2 + W) 

27. If 0<wi<l, prove that 

r (w) r ) r (~~~) sin wt7r 
f J0(ax)dx w \2/ V 2 / 

i 8**«- 
28. If v=—f e-*a2f —- rfa, show that 

7T ;0 a 

(0 ^z=zK^i 5 (ii) v== r wlien *=°> ^>°* 

1 Z*00 
29. If v — —.— I f(u)e~a2da where w = .r-j-2a */(*£), show that 

V7T /_« 

= (ii) v—/(x) when f=0. 

[Note that 

9/(«) __ v/ \ On/k . ._1  ^f(«) 

~ dw 'dt~JK ) Jt ’ J W~‘2J(kC) da 

and assume f(u) to be finite when i oo.] 

X 

30. If j2^Kt^e-a2dc^ prove that 

C«9L.-r,*>a 
O.C. 
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3L If U=lj{(x+t){y+t)(z+t)) and *’ * Z ar6 aU p0SitiV6’ Pr0V6 

rA 3m 3m 3u 1 

' ' Tx+Ty + ^z~ 

o/ \ c)2m 3m 3m (n) 

/...x 3m 3?/ 3?« 1 
(m) x^+y^+z-^--^. 

32. If m = f c'*2cos(° -J)dx, »- fusing) 

Jo V-* rj J o \#v 

show that ^4=-4m, 
ofa2 * da2 

and then prove that 

m = ~-e~a ^cos (aj2)y v = ~ c~a ^si n (a^/2). 

33. Show that 

p£ginWr= rxBin2axdx (” e~*Sinydy 
Jo ,r4 + l Jo Jo 1/17 

and then, by reversing the order of integration and using example 32, 
prove that the value of the integral is ^7re~rt'/2sin(av/2). 

Deduce the following results : 

(,)I -F+r-=2e ^,nW2+4> 

a;\ f* x2cos2axdx 7r _v/2 / /n , 7r\ 
'H -^+1—“f* ^cos(«V2+4> 

(iii) fAinM^r-v^WS^ 
Jo + i 2 

34* Derive from § 181, example 7, equation (10), the following : 

(0 /.“■("*+2^=V te) {cos (?, )-(?)}■ 
(ii) f_jm(ax* + 2bx)dx (cos (£ )-©}■ 
(iii) y* cos(a.r2)cos 2bxdx — ^^(^~^j |cos ( 

(iv) y* sin (a.r2) cos 2&r cLv—^^(j^j) {cos ( 
:?)-(?)}■ 
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35. If A.>0, A+/*-f r > 0, 1 > r > 0, show that 

r ..d->. [\k-i(i+xvVdx- v rWr(A.+M+v) 
l (1+2/y+y Jo (l+X2/) dX~amv7rr(\+,i+])V(\ + v) 

) [Schlomilch]. 

36. Show that, if m > 0, n > 0 

(i) f C-”»dV f ™m*W**dx=,jm 00t^(lx J° e^ys[nxyd]h 

(ii) jf e-">dy jf -dx / ernyco$xydyy 

and deduce the values of the integrals in example 4, § 181. 

37. Plot the curve y = T(x)~ / e~uux ldu ; show that it has a 
*o 

minimum between #=1 and #=2 and that it is always convex to the 
a*-axis. 

38. Show that 

/■» 

eft/ / 6~^cos .r dx 
.0 

and from this and the corresponding integrals with sin x in place of 
cos x deduce the integrals in § 181, ex. 7 (9). [Apply § 182, Th. IV.] 

J cos x dx j" e~^xdy ~ J 



CHAPTER XXII. 

FOURIER SERIES. 

§ 184. Fourier Series. Suppose that for the range 
— = x = the function f(x) can be represented by the 
infinite series 

oo oo 

f(x) = A0+ Anco$nx+ ^ Bnsinnx.(1) 
= 1 n — 1 

Assume also that the integral of f(x) may be obtained by 
integrating the series term by term; it is then possible to 
express the coefficients A0, An, Bn as definite integrals. 

It may he first noted that the integrals (m, n positive integers) 

J cos mx cos nx dx, J sin tux sin nx dx 

are each zero if m and n are unequal, but are each equal to x if 
m — n ; the integral 

I cos mx sin nx dx 

is always zero. These results may be easily proved by expressing the 
products as sums or differences of sines or of cosines. 

Now, integrate each member of equation (1) from — x 
to x; every integral in the series vanishes except the first, 
and we get 

| f(x)dx=2TA0; A0=;IJ /(*)«**■.(2) 

Next, select any value of n, multiply each member of (1) 
by cos nx (n having the value selected), and integrate from 
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— t to 7r; every integral in the series vanishes except that 
of the term containing cos nx, and we obtain 

f /<*> cos nxdx = Af, T.: cos2nx dx; 

An = - | /(#) cos dx j 
Lastly, multiplying by sin nx we find in the same way 

(3) 

Bn = — f /’(&) sin 7i£ dx.(4) 
7T J - TT 

If in (3) and (4) we suppose n to take in turn the 
values 1,2,3,... we get the coefficients Ax, A>z, ..., 
Bly B2, JS3, ... and the series in (1) is completely determined. 

The series in (1) is called a Fourier Series, and it is to be 
observed that the series is a periodic function of x, the 
period being 27r. If therefore f{x) is not periodic, of 
period 2irt it is impossible that the series in (1) can repre¬ 
sent f(x) outside the range (— 7r, ir). In fact we are not 
in this discussion concerned with the nature of the function 
fix) outside the range (— 7r, 7r), and the student must 
always keep this limitation on the range of the function 
before him. 

We shall work one or two examples to illustrate the 
method of determining the coefficients; the examples will 
also show that the assumption that a function can be 
represented by a Fourier series is not always applicable 
even to the complete period. 

Ex. 1. f(x)—x. 

An easy integration shows that 

f xdx= 0, j x cos?i#cfo7==0, 

and therefore J0=0, ^n=0, for every value of n. 

Again, x sin nx dx = - 
27r cos rnr 

so that Bn= ~ 2 cos mr/n. We thus find that the series is 

0 (mix 
x*=2 [—- sin 2x , sin 3x sin 4x , 

-4~+ 4 
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Note that /(7r) = ir, /( -7r) — —7r, but that when #= ±7r the value of 
the series is zero ; the series therefore does not represent the function 
either when x—ir or when x—~tt. It should be further remarked 
that the series is only conditionally convergent. 

Ex. 2. fix)~x2. 

In this case we find 

rr 

'' 3’ 

. 4 cos mr p A 

a* 
/cos .r cos 2.r cos 3.r cos 4x \ 

\ T- ^ 32 4»' +-r 

id when x~—ir the value of the Both when #-7r and when x~—ir the value of the series is (see 
example 22 (ii), p. 406) 

so that in this case the series does represent the function both when 
x~7T and when x— -tv. It should be noted that the series is a 
continuous function for the range —rr^x — ir (Theorem III., p. 386). 
The series is indeed continuous for every value of x, but it does not 
represent xa outside the range (-7r, 7r) ; from x~tt to # = 37r, for 
example, it represents (/r-27r)\ 

Ex. 3. f(x) — 0 from x— -it to x—0; y(^) = l from x~ 0 to x—rr. 

The function f(x) has a finite discontinuity (§ 172) for #=0 ; what 
value will the series have when x — 0 ? It is by no means clear before 
examination that it will have any definite value. 

A 

A 

1 dx=g 0=b fj(x) dx=b /_> dx+b[ 
1 /*» 1 ro If" 

n~ — / f(x) cos nxdx= ~ / 0dx4--~ 1 cos nxdx— 
TT J-Jc ' TT J-n TT J0 

0, 

i?„=- r 
^ Jo 

1 sin m’ c/.r = 
1 — cos mr 

Hence we find that 

/w= 
1 2 

2 + ^ 
(sin x , sin 3# sin 5# , \ 

(—+—+—+■••> 
We now see that when # = 0 the series is equal to When .r=7r 

the series is but/(tt) = 1; when x— — it the series is but^ — 7r)=0. 

§185. Statement of the Problem. The work of the pre¬ 
ceding article is based on the assumption that it is possible 
to represent a function by a Fourier series, but that 
assumption is not an easy one to grant; it was, in fact, 
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long asserted to be untenable. The simplest method of 
proving the assumption valid is to show that as n tends to 
infinity the sum S2n+1 of the first 2n + l terms of the series 
(1), with coefficients determined by (2), (3), (4), actually 
does converge to the value f(x). 

For greater clearness take u as the variable of inte¬ 
gration in equations (2), (3), (4) of last article and let 
$2n+i denote the sum 

r~n 

&2n+1 = u404- 2 (A „ cos nx + Bn sin nx). 
r = 1 

We may write this in the form 

&,„+, = -[ {i+Scosr(u-x)}f(u)du, .(1) 

or, when the series in brackets is summed, 

^2«+l = M /(«> 
7T J -tt 

sin(2n + l) 
u — x 

-du. 

2 sin 
u—x 

Let u-x—2v and we get 
ir~ x 

S„+1-i[ ,\x+2v)S^±^dv. 21 ttJ ' 81IIV 

2 

(2) 

Finally, divide the range of integration into the parts 
(-10+^ 0) and (0, 7r—x))] in the first of the integrals 
thus obtained write — v for v and we find for $2n+1 the 
sum of two integrals, namely 

7rJ0 sint> 

+i f 
7rJ0 * 8m V •(3) 

We now state the restrictions on the function f(x); these 
are merely sufficient, not necessary. 
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Restrictions on the Function. (1) The function is to be 
finite, having an upper limit, G say, to its numerical 
values; (2) it is to be in general continuous, but it may 
have a finite number of finite discontinuities of the kind 
illustrated in §172; (3) it is to have a finite number of 
turning values (it must not, for instance, be sin (1/x)). 

If i; is a small but fixed positive number the interval 
(rt — t], c + rj) will be called the neighbourhood of e; we shall 
often speak of the point c instead of the value c (§ 5). The 
notation f(x±0) will be frequently employed (§§44, 172). 

The problem before us is the following:—to show that 
when n tends to infinity $2n+1 converges, if x is not equal 
to ± 7r, to the value 

l{f(x + 0)+f(x-0)}} 

but, if x is equal to either tt or — x, to the value 

i {/(— + 0) +f(7r — 0)}; 

further that, if x is not in the neighbourhood of a point of 
discontinuity, the convergence is uniform. 

When f(x) is continuous S2n+1 converges to f(x), because 
in that case f(x + 0)—f(x)~f(x — 0). If c is a point of dis¬ 
continuity S2n+1 converges to l{f(c + 0) +f(c — 0)}. If /(7r) 
and /(— 7r) are not equal the points ir and —7r are to be 
reckoned among the points of discontinuity. 

K186. Dirichlets Integral. Consider the integral, usually 
called Dirichlet’s integral, 

p 
1 0(f) sin mvdv .(1) 
J a 

where m is any positive number, integral or fractional, and 
0(f) satisfies the conditions specified for f(x) in the pre¬ 
ceding article. The limits a, b and the function 0(f) may 
contain a parameter x; for example 0(f) may be f(x + 2v). 

Let cij, a2,... dp be the values of v (p in number) for 
which 0(f) either has a turning value or is discontinuous, 
and suppose |0(f)| less than a given number G. The 
function 0(f) is monotonic in each of the intervals (a, ax)f 
(ctj, a2) and therefore the second theorem of mean value 
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may be applied to each of the (p +1) integrals into which 
the integral (1) may be divided by the values av a2,... ap. 

Now 

l<p(v) sin mv dv 
y 

= $ (ar) I sin mv dv + </> (ar+ x) I sin mv dv 
J J P 

= <j> {<lr) 

and therefore 

ar 

cos ma \r — cos m£ , J . cos m£— cos mar+1 
■5T"-+ ^(ar+l)-m-’ 

sin mv dv <p(dr) + m 
4 G < — 
m 

and [ <f>(v) sin mv dv 
Ja 

<Hp± Ug 
771 

■(2) 

The quantities C? do not depend on the parameter x;* 
hence as m tends to infinity the integral (1) converges 
uniformly to zero. 

In the same way it may be shown that the integral 

f (f>(v) cos mv dv.....(3) 
J a 

converges uniformly to zero as m becomes infinite. 
Next suppose 0<a<b, the values ar being therefore all 

positive; we shall prove that the integral 

.w 

converges uniformly to zero as m tends to infinity. For, 

fttr+1,/ x sin mv , t/ xffsin mv 7 , , .f^^sinmt; 7 
Jo, dv = <t>(ar))a^T-dv + <t>{ar^( ~^—dv 

* Even if p depends upon a: we can assume that there is a finite upper 
limit to its value independent oi x. 
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But since ar> £, ar+1 are all positive and the integral 
I sin u • 
I L __ du is convergent, we can choose M so that for every 

m greater than M each of the two integrals in the right- 
hand member of the equation will be less than any given, 
arbitrarily small, positive quantity e. In the same way 
therefore as the inequality (2) was deduced we find that for 
every m greater than M 

<2(p + l)Ge, 
J a V 

so that the integral (4) converges as stated. Obviously the 
same conclusion holds if 0>b>a. 

A special result of this investigation is that the limit for 
n~co of the coefficients An, Bn of the Fourier series is 
zero, because these coefficients have the form of the integrals 
just discussed. The order of smallness of An and Bn is 
however, as the inequality (2) shows, in general that of 
\/ny so that if the series converges at all the convergence 
will, in general, be conditional. 

§187. Summation of the Series. Take the first of the 
integrals in equation (3), §185, put m for 2n-fl and 
write the integrand in the form 

yv . ~ x v sm mv T1/ N sm mv 
f(x 4* 2v)  -- F(x, v)-, 
J sm v v v / v 

so that F(xf v) = f(x + %v) (v/sin v), F(x, 0) = f(x + 0). 
Let a be any number such that 0<a~\{tt — x) ; then 

If — X 

f Z f(x + 2v)Sm mVdo J0 7 Binu 
w - X 

f° n, \ sin mv , , f 2 .sin mv , ,,. 
= F(x, v)-do -f F(x, v)-do..(1) 

J o v '« v 
If x is not equal to — 7r the last integral in (1) satisfies 

the conditions imposed on the integral (4) of the preceding 
article. Hence 

L [ * F(x,v)™^dv = 0, .(2) 
m—ooJa v 



SUMMATION OF THE SERIES. 491 

and the integral converges uniformly to zero. Thus 

T f 2 yy , ~ x mix mv 7 T CaT1/ . sin?m; 7 /0. 
L f(x + 2v)~^—dv= L i(x,v)———dv. (3) 

Next, suppose a to be very small; we may then assume 
F(x, v) to be monotonic (see end of §191) as v increases 
from 0 to a and therefore, by the mean value theorem, 
we find 

a yi/ \ sm mv , 
F(x,v)——dv 

=F(x, 0) P 
^0 

sm mv 
v 

or, substituting u for 
F(x,a)-F(x, 0), 

fa7V . sinmv 7 
/(T,»)-— i. 

dv + {.F(ir, a)- 
sm mv 

mv and putting a) 

dvf 

for 

=/(*+0)Jo da + xj,(x, a) du (4) 

where f(x + 0) has been written in place of F(xy 0). 
Suppose now that x is not in the neighbourhood of a 

point of discontinuity—a case that will be considered in 
§ 188. We can choose a so small that for every x in 
question |\//>(.t, n)| will be as small as we please. Having 
chosen a to suit the required degree of smallness we can 
then choose m so large, but finite, that the integral 

fwut sin u ^ 

J0 u 
shall differ as little as we please from its limit it{% and at 
the same time the integral in (2) as little as we please from 
zero. Since the coefficient of \Js(x, a) in (4) is certainly 
finite (not greater than 7r) we can therefore choose m so 
large that the right-hand member of (4) will differ from 
-|7r/(^ + 0) by as little as we please, no matter what value 
x may have (the excluded values alone excepted). 

We thus finally obtain the result that 
tr -x 

J f(x + 2v) dv = ~/(x + 0).(5) L 
m=cc Jo 
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In exactly the same way we find that, if x is not equal 
to 7r nor in the neighbourhood of a point of discontinuity, 

ir+x 

sin mv L f f(x-2v) 
n=ccJQ 

dv=~f(x~0), 
sint; (6) 

and therefore 

L <Sf2»+i = H/(®+0)+/(a;-0)}, .(7) 

the convergence to the limit being uniform. 
It should be observed that by equation (3) the limit of 

$2n+x f°r a given value of x depends only on the behaviour 
of f(x) in the neighbourhood of that value. 

The value of the limit of S2 +l when a? = 7r or —7r is 
easily settled. If x~tt we find irom (3), § 185, 

S' 2n+l 7 smv 

. -Ijj, 
as will be seen by dividing the range (0, 7r) into the parts 
(0, £7r), (|7r, 7r) and substituting 7r — v for v in the integral 
from £7r to 7r. The limit for n = oo is found exactly as 
before and is 

*{/(*-0)+/(-x+0)}. 

The same value is obtained when — 7r. 

§188. Discontinuities. Suppose now that x is in the 
neighbourhood of a point of discontinuity; let Fig. 87, 
p. 443, represent the graph of f(x), 0E = c, AE^EM—rj, 
QA^x^SOE. If x~0K the ordinates f(x) and f(x + 2v) 
will lie on opposite sides of EH unless 2v is less than KEy 
so that the function \Js(x, a) cannot be small unless a is less 
than \KE. Now if x is very nearly equal to c, that is, if 
KE is very small, a value of a can be found to make 
)^(#, a) | small and then a value of m to make the integral 
of (2), § 187 small and the coefficient of f(x+0) in (4), § 187, 
differ but little from 7t/2; but as x is taken still nearer to 
c the required value of a becomes smaller and smaller and 
the required value of m larger and larger, so that the con- 
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vergence becomes extremely slow. For any given x the 
convergence exists, but it is not possible to find a number 
M such that if m>M the difference 

will be less than a given e for every x in the interval 
(c — V, c); in other words the convergence ceases to be 
uniform as x approaches c. 

When x lies in the interval (c — c) the convergence of 
the integral (6), § 187, is uniform ; on the other hand, when 
x is in the interval (c, c 4- t?) it is the integral (6) that con¬ 
verges non-uniformly. When x^c there is no peculiarity, 
and fi>2n+1 converges to | {/(c + 0)+/(^ — 0)}. 

The value of the series at a point of discontinuity is 
illustrated in examples 1 and 3, §184. 

§189. Change of Origin and Period. Up to this point 
the range of x has been from — tt to it, but we may equally 
well take the range from 0 to 2tt. Graphically considered, 
this change of range is equivalent to changing the origin 
to ( — 7r, 0); analytically, we substitute x~ir for x, If we 
denote f(x — 7r) by F(x) we find for the coefficients the 
values 

'2ir 

0 
F(x)dx ...(1), -;j>> cosnxdxy ...(2) 

B, 
1 f2Tr 

= — I F(x) sin vx dx.(3) 
7r Jo 

> series bot 

±{F(0)+F(2 tt)}. 

The value of the series both when x = 0 and when 
x — 2 tt is 

We may also suppose the period to be any given number, 
2a say; we have merely to put irxja in place of x. It we 
denote f (irxja) by F(x) we obtain for the coefficients the 
formulae 

A^la\aj{x)C°*V?dX' 
(4') 

4„=-((£ F(x) cos ~dx ..(4") 



494 AN ELEMENTARY TREATISE ON THE CALCULUS. 

with corresponding values for A0 and Bn. The formula 
(4/) implies the range ( — a, a) while (4") suits the range 
(0,2 a). 

There is no need for committing these formulae to memory ; it is 
simplest in practice to multiply by the sine or cosine of the appro¬ 
priate angle, nx or mrxla, and integrate over the proper range. 

§190. Sine Series and Cosine Series. Suppose f(x) in §184 
to be an odd function so that /(— x) = — /(#).* In this case 

I f(x) cos nx dx ~ fix') cos vx dx + j /( — x) cos nx dx = 0, 
J -ir J0 Jo 

so that -4rt = 0; A0 is also zero. But for Bn we find 

1 (v . i (V 
Bn — — I f(x) sin nx dx — — I /( — x) sin nx dx 

IT J{) IT Jq 

2 
= — f(x) sin n x dx 

ttJo 

...a) 

We thus obtain a sine series for/(as), namely 

f(x) sin nx .(2) 
n=l 

where Bn is given by (1). The series is zero both when 
x = 0 and when x — nr, and therefore will not represent the 
function for these values unless /(0) and /(7r) are zero. 

On the other hand suppose f{x) to be an even function 
so that /( — x)~}\x). In this case Bn is zero and 

j (V 2 C" 
A0 = — I /(as) dx .. .(3); A = - I f(x) cos nx dx. 

7r Jo 71" Jo 
We thus have a cosine series for /(as), namely 

f{x)=A0+^Ancosnx . 

(4) 

(5) 

where A0 and An are given by (3) and (4). The cosine 
series represents the function both when x = 0 and when 
as = 7r; because 

H /<+o) +/< - 0)}=* {/(+0) +/(+o)} =/(0), 
H/(tt- °)+/( - 7T + 0)} = H /(t - 0)+/(x — 0)} =/(ir). 

It is easy to see what the above formulae (1)...(5) 
become when the period is 2a. 
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§ 191. General Remarks. When the range of x is a com¬ 
plete period, 2x or 2a, there is only one Fourier series for 
f(x), the coefficients An, B being given in the preceding 
articles. The case is altered however when the range of x 
is only a portion of a complete period. Thus, suppose f(x) 
to be given for the range (0, nr); then to obtain a function, 
F(x) say, given for the complete period we may choose any 
function for the range ( — 7r, 0) so that F(x) — <p(x) 
from x— —ir to x = 0 but F(x) =f(x) from x — 0 to x — ir. 

There is only one series which will represent F(x)\ the 
series will represent <f>(x) in the range ( — 7r, 0) and f(x) in 
the range (0, tt), but the coefficients will depend both on 
</>(x) and f(x). We may thus find any number of series 
to represent a function over a portion of a period, but the 
sine and cosine series alone are of practical importance. 
In these two cases f(x) is given for the range (0, tt) and 
the function <f>(x)( — tt^Ix^O) is defined by the equations 
0O)=-/(MX Hx)=f(\x0 respectively. 

The Fourier series has been shown to be in general 
uniformly convergent; by an easy extension of Theorem I., 
§ 155, it may be shown that we obtain the integral of the 
function by integrating the series term by term. As a rule 
however we do not obtain the derivative of the function 
by differentiating the series term by term; on the subject 
of differentiation of the series reference may be made to an 
article in the Proceedings of the Edinburgh Mathematical 
Society, vol. 12. 

Another remark may be made. The proof given in § 187 
may seem to be inapplicable, as regards uniform conver¬ 
gence, if f(x) is near a turning value. The difficulty is 
however easily removed by observing that if f(c) is, say, a 
maximum value, then between the two adjacent minima 
that include f(c) we may put f(x) in the form <j>{x) + \J/(x) 

where = f(x), \jr{x) — 0 for x^c, 

<t>(x) =/(c)> \K#) =/(aJ) ~f(G) for 

Evidently <p(x) is not decreasing and \fs(x) not increasing, 
so that the mean value theorem is applicable to each. 
Turning values are thus of the same nature as ordinary 
values of the function (see the article just referred to). 
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§ 192. Examples. We shall now work some examples; 
the student should always specially test the values of the 
series for the points of discontinuity. 

Ex. 1. Find a sine series foi*y(^) when f{x)=x from #=0 to x—ir/2 
and j\x) — tt-x from x=ir/2 to x - tt. 

The graph of f(x) is a broken straight lino. To obtain Bn we have 

~ Bn — I x sin nx dx + [ (tt - x) sin nx dx—-% sin — 
2 Jo Jr U 2 2 

Therefore 
N 4/sin.r sin 3.t; , sin 5x sin 7# , \ 

/w=- +-&—7T-+-J- 

The student should plot a few terms of the series, say the first four, 
in order to see the nature of the approximation to the broken line. 

The series is a continuous function for every x. 

Ex. 2. Find a cosine series for the function of example 1. 

4 cos 

In this case A.q A.n * 
?(■-“¥) 

ril7T 

and 
•, 7r 8 /cos 2.r cos 6.r cos lO.r \ 

^)=4-?lT+-F-+-ior-+-j- 62 ' 102 

This series is also a continuous function for every x. 

Ex. 3. Find (i) a sine series, (ii) a cosine series for the function 

/(*)=!■ 

(i) f(x)=l(?“f+““?*...). 

(«)>**)-1. 

The student should explain why the cosine series reduces to its 
absolute term. In (i) the range of validity is 0<x<7r. 

Ex. 4. Find a sine series for f(x) when f{x)—x from # = 0 to #=y, 
from x-y to x=tt-~y, f(x) -=7r-x from x=7r-y to x=ir. 

7r [V . fw~V . f* 
— Bn= I #sin nxdx+) y sin nxdx+ / (t - .r) sin nx dx, 
* Jo Jy Jir-y 

Bn—2(1 — cos mr) sin ny/wV, 
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Ex. 5. Find a cosine series for ax-x1 from # = 0 to x^a. 

In this case the form of the series is 

ax — x2—A () 4* X A n cos —-. 
a 

Integrate from 0 to a; then A0=a2/6. 
Multiply by cos(mrx/a) and integrate from 0 to a ; then 

An— —2(1+ cos Mr)a2/»2ir2. 
Hence we find 

„ a2 4a2 ( 1 %ttx 1 47rx \ 
ax -x^~-rr ( cos-b -r? cos-b.... 

G 7r2 \22 a 42 a / 

The expansion is valid for For the range — a^kX'S0 the 
series represents ( — a#-.r2). 

Put a = 2c and subtract c2 from each member ; we then get 

, <r 4c*2 / 7r.r 1 27r.r 1 37r. 
(c - xf=-— + —j ( cos-b cos-b -55 t;os — 
x ' 3 7T2 V c 22 c 3- 6* 

valid for 0^x^2c. 

§ 193. Some Standard Series. We shall deduce some well- 
known expansions; they are usually established by more 
direct processes, but they furnish interesting illustrations of 
the subject under discussion. 

Ex. 1. Find a cosine series for cospx where p is neither zero nor 
an integer. 

J0=^; Jn-(- 
u pr (n*-pl)7r 

sm p7r 2p sin pir * 7 , cos nx 
cos px=-r + *--- 2 ( - 1) -o-5* 

r pr 7T ft2-/;- 
,.(i) 

The expansion holds for Oii^^r ; but since cospx is an even 
function it is valid for — ir'SxlEir. 

In (i) let #=0, and we find 

— =Uf(- oi n /n^r ^ . v ' /W" — /■ sm pir p n==i n*~p* 

= 2(-I)n +---\.(ii) „r0V ' \n+p n+l-p) K ' 

In (ii) put z for prr ; then if z is neither zero nor a multiple of 
it we get 

_JL_=-I + v(_ iy»-i- 2g- 
sinz z ' ttai' ^ nW — z2 

.(hi) 

2i o.o. 
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In (iii) put \ir-z for z ; then if z is not an odd multiple of 7r/2 
we find 

J_=4 V <■_ 1 1 .(i v) 
cos 2 ^ ' (2ra-l)V-4*aV ' 

Again in (i) let #~7r, and we obtain 

7T COt pTT — — 5 -2^-2= 2 (A-ZT-).<V) J0 „=o \»+jp fH-l-jtv 

In (v) let prr—z ; then, if z is neither zero nor a multiple of 7r, 

2 2 (-- V * _).(ri) 
2 £\nhrl-zl n^\nTr+z (n + \)7r-zJ 

In (vi) put r — z for z ; then if z is not an odd multiple of 

co / g 2 \ 
tan r — \^2w + l)ir- 2z (2n+\)n:+2z). 

Now write (vi) in the form 

. 1 %n 2z - D “ 2z 

COtZ z~ ,S fV-2* 

The limit for z—0 of (cotz-l/r) is zero ; we may therefore integrate 
from z—0 to z—x<ir. Hence 

l0*-!r “1 log0-£)~S'I{”dz.(a) 

But rhr2-z2>(r- ])r7r2, so that 

r ^ 1 + U_?L 
n (w + i)(w + 2) ***/ 717T2 

•Dd rRndi<^j^ o<$<\. 
Jo mrl mr2 

We may now write (a) in the form 

and, passing from logarithms to numbers, we find 

■K’-SX-s.M-wK^.<-» 

When n tends towards infinity the factor e nw2 tends to unity. 
Hence we obtain for sin a: the infinite product 
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In the same way we find from (vii) the infinite product for cos a-, 

/ 4**\( ' Ax1 \ 
\ 7T2 / V-3W)\ , 5%V 

Formulae (ix), (x) are valid for every value of x though the proof 
does not show this. 

Ex. 2. Find a cosine series for 4(^z 4- e~ax) or cosh ax. 

sinh air 
_ j -d« 

2a sinh air cos??7r 

7r dl + v? 

Therefore, -tt^x^tt, 

£ 
cosh ax=- 

In (i) let x—0f then 

, sinh o7T 2<7. sinh «7r ® cos vx 
coshax~-+-X (“ 1) a* 

air it ,i=: iv az + 7r 

1+ 
~ 2'-v ' d*+n* sinh 07T a n=i 

In (ii) put ^ for air ; then, z not zero, 

14_ v (_ \)n _?£_ 
sinh z z „=i z^ + iiW 

In (i) put x—ir ; then 

77 cotll rt7T — ~ + 5 
a ntT] az+nl 

In (iv), put z for a/ir ; then, z not zero, 

coth0=-+ § . 
Z n^iZ* + nZ7T“ 

Again tanh ^ — coth air — 1/sinh arr ; therefore from (iv) and (ii) 

or, putting «7r — 2^ 

Z tanh 2E- v__ 
2ta 2 ^,a!+(&-lf 

tanh ? — v_?_ 
»ti422+(2ra-l)V 

-Cl) 

..(ii) 

•OH) 

.(iv) 

,.(v) 

.(vi) 

.(vii) 

As in example 1, we may easily derive the infinite product formulae 

+ 22ir2/ 

/ 42s \ 

'327rV (1+5m) 

§ 194 Fourier’s Double Integral. In § 187, suppose that 
F(x, v) is a function f(x + v) which satisfies the conditions 
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of § 185; we may in this case take any number b, greater 
than a, instead of £(7r — x) as the upper limit of the integral 
in (1), § 187. We then obtain the following result: 

L f7(cc + ^)^^^==0, if l»a>0 
m = 00 J a 'V 

==-/(» + 0), if h>a — 0 

Similarly, corresponding to (6) of § 187, we have the 
result 

L P /(® - =0, if b'> a' > 0 
r/i ss. 00 J «/ ^ 

= ^/(oj — 0), if b' > a = 0 

In (2) let w = —v, —a'~b, — 1/ — a, so that a and b are 
negative and a algebraically less than b; we then have 

L fbf(x + vp^-dv - 0, if a < h< 0 ) 

-J- * . (3) 
= £/(■* —0), ^ a<b — 0 

We can combine (1) and (3) into one formula, namely 

I. .(4) 
?w.= co TT J a V 

is H/(‘r + °)+/(^ —0)} if b>0>a, 

is |/(.r-f0) if b>a~0, 

is — 0) if 0 — b>a, 

is zero if b>a>0, 

or if 0>b>a. 

If in the integral (4) 6 is positive and a negative we may, 
without altering the limit, substitute for 6 any greater 
number b' and for a any (algebraically) less number a'; 
because that limit is zero when the limits of the integral 
are 6, V or a', a. Assuming that we may extend the upper 
limit of the integral to +oo and the lower limit to — oo 
we find 
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L;f f(x+v)^^dv=i{f(x+0)+f(x-0)}, 
m — oo" J — do V 

or, substituting a for x+v, 

L M” /(a) ~ = H /(« + 0) +/(s - 0)}. (5) 
m=oo7T J ^ 

x> , sin m(a — a) f“ , 10 
But -—-^=1 cos/3(a—x)dp, 

a # J q 

and therefore, by substitution in (5), we obtain 

i r° r» 
i{/(# + 0)+/Or-0)} = L - /(a)cZa cosfi(ct — x)dft 

m=co 7T J - oo J o 

i fM r°° 
= L - d/3 I /(a)cos(3(a—cr)<lu 

Jjl = 00 7T J Q J—OO 

1 /*oo poo 

= — d@ I f(a)cos 8(a—x)da, ...(6) 
7T J 0 J - co 

provided the various transformations are valid. We have 
not the space to discuss the validity, but the student will 
perhaps have little difficulty in proving that the formula 
(6) holds if, in addition to the restrictions previously im¬ 
posed on f(x)y the function is such that the integral 

\Mdx 
J X 

converges absolutely as x tends to + oo or — oo. 
The integral (6) is known as Fourier’s double integral; 

of course when f{x) is continuous the value of the integral 
is f(x). 

The following special cases are easily deduced. 
If /( — x)- —/(&), then for x>0, 

/(a) = |Jo s*n Jo f(a) sin afida, .(7) 

but if /( — x) —f(x), then for x g 0, 

/(a.') = ||o cosxfidfi£/( a) cos a/3 dat .(8) 

with the usual convention as to the value at a point of 
discontinuity. 
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Ex. Find a solution of the equation — k valid for t>0, #>0, 

and such that v~0 for x~0 and v~f(x) for £ = 0, .r>0. 

It is easily verified that nx/3 satisfies the differential 
equation whatever be the value of (3 ; further, that every expression 
of the form x function of j3) will also satisfy the equation. It 
will then be seen that 

r = — f e~KP2t sin xf3 d/3 f /(a) sin a/8 da 

satisfies all the conditions. It satisfies the equation, because it is of 
the form ^(vp x function of /3) ; the integral is zero when a*~0; and 
the integral is equal tof(x) when t— 0, x>0 by equation (7) above. 

§ 195. Empirical Functions. A problem that frequently 
occurs in practical work is that of representing by a 
Fourier series an empirical function. The student who may 
have occasion to solve such a problem will find a sketch of 
a graphical solution in the authors Treatise on Graphs, 
pp. 139-143, and an analytical solution in his Introduction 
to the Calculus, pp. 130-139. For the analytical treatment 
the most thorough discussion will be found in articles by 
Professor C. liunge, in the Zeitschrift filr Mathematik und 
Physik, vol. 48, pp. 443-456, and vol. 52, pp. 117-123, and 
in the Elektrotechnische Zeitschrift, 1905 (Heft 11). 

§ 196. References. The literature of the Fourier Series 
is very extensive; a brief account of the more important 
memoirs will be found in an article in the Proceedings of 
the Edinburgh Mathematical Society, vol. 11. The student 
should however read the epoch-making treatise of Fourier 
himself, Theorie aimlytique de la Chaleur (edited by G. 
Darboux. Paris: Gauthier-Villars); there is an English 
translation by A. Freeman (Cambridge: University Press). 

An excellent text-book containing numerous applications 
to problems in mathematical physics is An Elementary 
Treatise on Fourier's Series and Spherical, Cylindrical, 
and Ellipsoidal Harmonics, by W. E. Byerly (Boston, 
U.S.A.: Ginn & Company). 

EXERCISES XLI. 
Find Fourier series for the functions in examples 1-10 : 

1. f{x)~ — 1 from x— -7r to #—0, f(x)— 1 from .r—0 to x—tt. 

2. f(ir)= -c from x— - a to #=0, f(x)~c from x—0 to x—a. 
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3. f{x) — v-hx from x— -tt to x— -^7r, f(x)—\ir from x= -\ir to 
x=^7T, f(x)~7T-x from x~hr to x~w. 

4. The same as example 3 but with ir everywhere replaced by a. 

5. f(x) ~a — x from x~ -a to x—0, f{x) — a-\-x from #=0 to x~a. 

6. f(x) = cx from x—0 to x~a, j\x)~0 from x~a to x~2a. 

7. A cosine series for sin#. 

8. A cosine series for f(x) when f(x) — \a2 - x2 from x—Q to x — la, 
f(x)~ 0 from x—\a to x ~ a. 

9. A cosine series for (ir — x) sin x. 

10. A sine series for f(x) when f(x) — bxja from x~0 to x—a and 
f(x) = b(c — x)/(c — a) from x=a to x~ c. 

11. If f(x) is continuous from x—-tt to x — tt and if also/(~7r)=/(7r) 
show that the derivative of f{x) may bo obtained by differentiating 
the Fourier series for f(x). 

12. Obtain (i) a cosine series, (ii) a sine series for eax. Examine 
^whether each series can be derived from the other by differentiation 
or by integration. 

13. If f(x) is an even function of x show that, under certain restric¬ 
tions on f(x\ 

f(x) -f f(x + 2 A) -hf(x -f 4 A) -f... 

+f(x - 2A) +f(x - 4A) -f.. •, 

that is, 2 /(j? + 2rA) 
oo* 

may be represented by the series y|0+ £ Ancos^^ where 
ji—i A 

;f0=x{ An="xi /(w)C0H du. 
[See the Aligners.] 

14. By means of the theorem of example 13 show that 

(x+2nA)2 ntyr'lc 

(i) JLe * = "0 * i+22> 
n—1 

11TTX) 

008 "rr 
(.r+2/fA)2 

(ii) 2 (- !)"« 

#/ . (2n+l)27r2 c 

J(7TC) « 4aT“ * 4_(2^ + 1 )TTX 

A nio cos 2A * 

15. If f(x) is periodic with period 27t show that 

j F(x) f(x) dx= j f(x) {F(x)+F(x+27r) + F(x + 47r) -f...} dx. 

[Schlomilch.] 
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16. If in example 15 f(x)—k(ir — x) show that 

f F(x){ 2 H1‘V~}'*;==S f (Y ~^){ 2 F(x + 2nn)}dx. 
.'o v »i=i n J L Jq «~o 

Deduce by putting F(x) — c~Xx that 

1 , ® 2\ rM + e~\tr 
v + 2/ *\Tr — 7r - ~~ir cotii Air. 
A rfAlT-g-Air 

The values e-kx cos /x.r, e-A*«ftin /-ur for /r(^r) give interesting series. 

17. Deduce from example 14 (i) that 

® f 00 w2n-2l 
1+2 2e>-*2«2==*~ l +2 2«—«» . 

«=i a l n^i J 

show that ?.+m+(my+njooy. 
2^1001 VlOol/ VK)01/ 

is equal to 28*03196_ [Schldmilcli.] 

18. In equations (7), (8) of § 194 let f(x)—e~mx (ra>0) and deduce 
the values 

f* /3 sin xfi d/3 _ tt _1 
.(, -^2+gr— 

/-"eoa .r/? tf/3 a- 

rWI, *>0, 

Jo w2 + /32 2m * 

19. Show by means of the integrals of § 194 (7), (8) that 

[Let /(a)= 1/Va.] 

20. If ^ /(a)cosxada—y\J<f>(x), 

then J <f>(a) cos xa da — /(.r). 

There is a corresponding relation when the integrand has sin#a 
instead of cos xa 

21. Show that if n> 1 and .r^0, or if ?? = 1 and ,r>0, 

1 ft TT 
(i) / sin nOsin (xtan 6)cos"-20dfr— --p/r . e~xxn~\ 

Jo ^1 \n) 
w 

(ii) j cos nO cos (x tan 8) cos""2 0 d6= 

[Use § 181, ex. 7, and § 194, (7) and (8).] 
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22. Using the results of example 21, show that if m> 1 

(i) jf sin m0win = 

jr 

(ii) |f cos m.6 cos n9 cosm+n~'16 d6=^STn ^ (m) p 

[Multiply both members of the equations in example (21) by e~*.rT*“1 
and integrate with respect to x from 0 to oo.] 

23. Deduce from example 22, 

(i) / cos(7?i--7i)#cosm+n~2$o?$ 

rf 
(ii) / cosp6 cosp 0 dO 

Jo 

7r 
2^+i» 

7T F(m-f 7i - 1) 
gm + n-l “r'(^)T(^)“» 

(in) r(^)ro ~p)=-j 
sin y>7r 

[Equation (i) and equations (i), (ii) of example 22 hold so long as 
»?, vi and m + n-l are all positive; equation (ii) holds if p + 1 is 
positive.] 

24. Show that if m> 1 and l>7i>0, 

(i) [ cos 77i0 cosw~w~* 0 sin”- 10d0=r—~cos~> 
Jo r(m) 2 

(ii) / sin m0 co 
J(\ 

'Osin n-l9d6= 

rw 

r(M)r(OT-7l) . W7T 

r(w) ~~ 8in 2 : 
and by taking the limit for ?i = l, prove that (v«>l) 

cos m0 cosm“2 6 d 6 = 0, (Hi) f 
*'o 

rf X 
(iv) / sin m0 cos’”-2 Od0—--• 

Jn *»-l 
25. With the same restrictions on f(x) as in § 185 show that if 

— 7T<.r<7T 
(1 - r2) f(v) dv 

isjCrf W*+°) +/(■" " °» 

and .i/_. ^z^*)*-|t«*+0>+^-o)i 
where t converges to zero through positive values. 

[See Exercises XXXIII. 13.] 



APPENDIX. 

NOTE ON DIFFERENTIALS. 

In § 90 the differential du of a function of two or more 
independent variables is defined to be the principal part of 
Su; for three independent variables x, y, 0 we have the 

equation g* . , 
du = ^xdx+-ydy + -dZ.(1) 

It is important to notice that du is still expressed by 
equation (1) whether the variables x, y, z are independent 
or are functions of two or more independent variables, all 
the functions and their first partial derivatives being con¬ 
tinuous. 

Suppose that x, y, z are functions of two independent 
variables s and t; n is therefore a function of the inde¬ 
pendent variables s and t and the differential of u is given 
by the equation 3# v 

du = - ds + — dt.(2) 
ds dt 

Now x, y and 0 are functions of the independent variables 
8 and t; their differentials are therefore given by the 

equations a* , cte ,/| 
dx — — ds + — dt\ 

os ot 
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But, by equation (b) of § 90, 

dx du dy du dz 
ds dx ds dy ds dz ds’ 

du__du dx du dy du dz 
dt~~dx dt^dydt + dz dt' 

(In regard to the notation dujds* instead of du/ds, see the 
remarks near the foot of p. 219.) 

Multiplying the first of these equations by ds, the second 
by dt and adding, we obtain 

du 7 , du 1± 
-^-cfo + - dt 
ds dt 

dufdx 7 . dx 
'sis *+s dt)+^Mds+^dt) 

it 
oz \ds dt 

du 7 du j du 7 /A v 

.w 
by applying equations (3). Comparing equations (2) and 
(4), we see that 

7 du 7 du 7 , du , 
du = —dx+ — dy + dz. 

dx dy ° dz 

Thus the expression for du in terms of dx, dy, dz is of the 
same form as when x, y, z are independent. 

The proof obviously holds whatever be the number of 
variables of either set, x, y, z or s, t. 

In § 98 the second differential d2y of a function y, or f(x), 
of one independent variable x is defined to be f"{x)dx2; in 
this case dlx is zero or dx is constant. If, however, another 
variable, t say, is the independent variable so that y is a 
function of x and x is a function of t, then dlx is not zero, 

but we have d*x=xdt\ d?y=ydt\ 

where the dots indicate differentiation with respect to t. 

But y=f”(x)(xf+f(x)x, 

so that ydt- —f"(x)(xdt)~ +f'(x)xdt2 

or d2y dx} +/'(.x) d2x.(5) 
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The form of the expression for d2y is thus no longer the 
same as when x is the independent variable. 

We may obtain (5) by taking the differential of the 
product f(x). dx which is the value of dy; thus 

d2y = d (dy) = dx. df(x) + f(x). d (dx) 

= dx. f"(x) dx + f(x) d2x 

=f"(x)dx2+f'(x)d*x. 

Similarly, we find 

dzy = d(cVy) = f"(x) dx3+3f'(x)dxd2x + f(x)dzx. 

These expressions for second and third differentials are 
often required in analytical geometry. 

The higher differentials of a function of two or more 
independent variables are somewhat complicated. If 

, du 3 , du , 
du=^dx+^dy, 

we have 

<Vu=d(du)=dxd(^j+dyd 

dx-{ 
3*3?/ 

=l>'+2I|<ws'+^’.<6> 
If in equation (11), p. 411, we put cfc, cZy, dz for A, A, l 

respectively and 5/ for /(#+A, y+A, 2+Z)—/(&, y, 0), that 
equation may be written 

If a:, y, z are not independent variables, then c&r, dy, dz 
are not constant, and the form of the expression for d?u is 
different from that given above. To the terms on the 
right side of (6) we should have to add 

du 
dx 

Vx+^dty. 



ANSWERS. 

CHAPTER I. 

§5, p. 6. 1. 3J; 2; -3; 4'56. 3. (i) + ; (ii) - 

§ 6, p. 9. 2. The locus in each case is a straight line: in cases (i), (ii), 
(iv) the line is perpendicular to the axis of abscissae, and in (iii) the 
line is the axis of ordinates. When the ordinate is given the lines are 
parallel to or coincident with the axis of abscissae. 

4. (i) -h ; (ii) 

§ 7, p. 10. 2. (i) (ii) VI7; (iii) s/5', (iv) 2^13; (v) 3^2/2 or (i) 2*24; 

(ii) 412; (iii) 2*24; (iv) 7*21; (v) 6*66 

Set I, p. 19. 
1. 1, 1, 1. 2. (ax + by-iax + b)-! 

3. xi -5x2 -f1; xP-5rs +1 ; sin2# - 5sina;-f 1; -2*04. 

9. ay2 + byx + c ; a#2 -f bx2 + c; ay2 + by2 -f c. 

CHAPTER II. 
Set II, p- 29. 

1. A, Ct 1) on curve ; B, E not on curve. 

2. Y'OY is an axis of symmetry for (i), (iii), (vi), (vii). Point (1, -1) lies 
on (i), (ii). a=0. 

3. Turning points, (i) (0, -1); (ii) (0, -1); (iii) (0, 1); (iv) (£, |); 

(v) (~b i)t (vi) (£, 1). Abscissae (i) -1, 1; (ii) ~L 
11 „ , , 

(»») (v)i(-l±s/5); MIL 

3. (i), (ii), (iv). In (iii) y is imaginary when x is negative. 

Set III., p. 32. 

1. (i) -1,2; (ii) f, -1; (iii) - f, -1. 8. C lies on line. 

6. (i)ar + y=3; (ii) = 1; (iii) z + y=0; (iv) 3x-2y + 6=0. 
7. y-2x-C\ B. y-b=c(x-a). 10. (1, 1), (-3,9). 

Set IV., p. 4L 

8. (i) -2*84, *44, 2*40; (ii) -3*14. «. -1*98, -*06,2.06, 3*98. 
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Set V., p. 54. 
CHAPTER III. 

11. (i) ?$, (ii) i/15. 14. (i)-L;(ii) 

14. The equation is equivalent to y -f1 = ± j(x - 3). 

1 
'n/2‘ 

Set VI., p. 60. 
12. (i) an ellipse, (3, -4), 2a = 6, 25 = 4; (ii) a hyperbola, (-11, 5), 2a = 4, 

26=2v/3' 18 (i>*:(ii> Jib- 
30. (i) abl/JiaP&in^O+ V*cosi20) which may be written b/J(\ - e2cos20) when 

a2 - b* — e2a2; 
(ii) (1 -eeos 0)(a5/\/(a2sin20-f 52cos20) = 5(l ~ecos0)/x/(l -e2cos20); 
(iii) b[ 1 -f e cos 0)/^ (1 - e2cos20). 

CHAPTER IV. 

§ 33, p. 67. 4. The values of 6yl/Sx1 are in order 331, 315*25, 303*01, 
300*3001, 300*030001. 

5. The values of Sy1/dx1 are 
(i) *015038, *015077, *015100, *015107; 

(ii) *008594, *008661, *008701, *008713. 

6. The values of Syi/$x1 are 
(i) *001332, *001334, *001335, *001336; 
(ii) *005950, *005990, *0060*28, *00603. 

§ 37, p. 74. 1. 0, \g, g, 2g. 3. - ajv,* 

CHAPTER VI. 

§63, p. 106. -10, -4, 0, 2, 8. 

§57, p. 111. 3. 51*, -ijt3, 3/2*Jt, -2T*. 

4. 4+Jx, - l/x, -3/4r*. 

4. 1/(5 -2*)3. 

3. Z&-4X-5. 

6. 

Set VIII., p. 115. 

1. 21a:2 + 10a;+ 4. a. 112a;-10. 

5. J_L. 
7. wfa;”-1 - a;-”"1). 8, m(axm~l - bx~m~l). 

9. 5a;^ + 4- - jx~%. lO. 2(a: -f 1 )(a^ - 1 )/a^. 

II. (ad-bc)/{ct + d)2. 13. -ac/{b + ct)2. 

18. 2{(aJfi-6A)^ + (aCf-cA)«: + (6(7-c5)}/U^ + 2^ + C)2. 

6(i!2-2) 
14. 16. vivu + wuv + uvw. 

(t+l)2(t + 2f 

17. Abscissae of turning points (a) i, (6) ±1, (c) 0, ±1. 
18. (i) x2-x + C; (ii) fa2+~ + C7; (iii) saa^ + l&a^ + car-f (7. 

19. y=^a;3 - -fa;. 81, Vt- feet. 
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Set IX., p. 119. 

4. a2(a2 - x2)~ 6. a2(a2 + x2) K 6. (ax + vh)lKt'(ax'2+bx + c). 

~ 2#_ (aB~ bA)x2 + {aC ~ cA )x + (bC- cB) 
(x2 - 1 )sl\x4 - 1 )* * (Ax2 + 2/i# + C)J(ax2 -f 26# + c)^{Ax2 4- 2Bx+C) 

(a?H-7)(a:-f-1 )2 {mx-nx + mb - »a)(a; + a)m_1 
(a?-“l)e 10 (* + &)»+* 

ll- i)4- 14- -2x/3y, -f, f, -f, f. 

15. -(2# + 2y-5)/(2#-f2y-f 1), grad. = 1. 16. a, ft - ct; tan 0 = (6-c£)/a. 

... a: — a ...xA+2Bx ..... c2 .. . 
17 (1)-3T=T; (,i) ‘“^T- ; (,,1) “S2' (1V) 

18. 3a^u' 19. f*n. 

nx 

20. 

Set X., p. 125. 

3. yy,=2a(x+x1); (y-y1)2a + (a--xJ)yI = 0. 

CHAPTER VII. 

Set XI., p. 131. 

I. 3(cor.‘ix - sin 3z). 2. ^~coa^(x+b). 

8. m cos mx cos nx - n sin mx sin nx. 4. x cos #. 6. a; sin a:. 6. sin2#. 

7. cos2#. 8. cos3#. 9. sin8#. lO. ^ (sin 3# + cos 3#). 

11. ^sin(a#-f6). 12. ^tan(a#-f&). 13. i# + ^sm2#. 

14. x - J sin 2#. 15. - j\ cos 6# - j cos 2#. 

16. -2a cos (a# + b) sin (a# + b). 17. tan(-2-#+l)sec2(w#+1). 

18. cos 2#/^/sin 2#. 19. sin # (3 - cos2#)/cos4#. 

20. sin #/( 1 + cos #)2. 21. 2sin#/(l+cos#)2. 

22. (cos x - sin x tana#)/( 14- tan #)2. 

25. (i) *=~{(^+i)7r-f*e}> s = 0; (ii) t = i(2\rir-he), «= ±a where N is any 

integer. 

26. - a sin t, & cos 2; tan <£= - (6/a) cot t. 

28. b tan (xfb); (a2/2&) sin (2x/b). 

36. For cos# the inequalities are not changed; for sin# put > in place of 
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Set XIL, p. 134. 

3 
a 1 « 3 S 

• */(2+ *-**)’ a- 5-2x + 2x* 

4. 
-i 

]j(2x- x2)' «. sm-x+^j,^. 3. tan']x+ j +aj. 

7. 
8 ^tan'1(^)' 3. Bin-1^™). 

Set XIII., p. 139. 

1. 1 + logx. 2. ^“'(l+nlogx). 3. cotx. 4. -tanx. 

5 1/sin x. 3. 2/cos x. 7. 2/sin x. 

3. a/(a2- x)sjx. 9. jjfjr-a'1)- IO- (a:+I)eI. 

11. a;”"1 (a: -f 12. -2e *sinx. 13. xe* 

(i+SF 

14. log (3a: + 4). 16. 1 . x-a 
2a°gxTa 

16. 1 . 2x~3 

12log2x+3‘ 

17. log {x+sjx* + 1). 18. 
1 
-e«. 
a 

aa. 
c* S 

“5 ae“* 

/ 5 _l\ // * , / ^ -2?V 
33. «(«* + « °)/(ea- c *)> M«‘-« a)> y7«- 

Set XIV., p. 146. 

i. 23xs-6x2; 84x2-12x; 168x-12; 168. 

а. (s»+]f*. 3. 12x2- 12ax + 2aa; 12(2x-a). 

4. y'=-(x-l)-*-(x+l)'3 + (x + 2)-I!; 

y"=2(x-l)-3 + 2(x+l)-»-2(x + 2)-*; 

yW = ( - l)»(n !)(x- l)~n~1 + two similar terms. 

б. yW — - 2n "1 cos (2a: + mr/2). 

6. =x2 cos $ -f 2nx sin 9 - n (n - 1) cos 9 where 9=x 4- nir/2. 

7. y=£sin2x + |sin4x; yM=2"-2 sin (2x + mr/2) + 22" -11 sin (4x+nr ft). 

1 ( - l)n(7i -2)! 
xn~1 

9. e*(x + n). 

IO. e*{x2 + 2nx +n(?i-l)}. 

19. y"=0 when x~ - 1/^3 or -f l/v/3. 

Ex. 1. j Ex. 2. x=0« 

24. 
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CHAPTER VIII. 

§70, p. 157. -67x 10-*, 50x10 *. 

Set XVM p. 159. 

1. aV/OP2. 8. -dp/dx—gp. 

4. - dN/dt is the time-rate of decrease of the number of lines that pass 
through the circuit; or, the time-rate at which lines are withdrawn 
from the circuit. 

5. E—RC+ LdC/dt. 6. X^-dEjdx. 

7. (i) klogivjvt); (ii) “7) °r (TV’i - />2va)/(7“ *)• 

CHAPTER IX. 

Set XVI. a., p. 176. 

1. x— - I, max.; x -2, min. 2. x~ 1, max.; x = 3, min. 

3. x — 0, min.; x- -4/7 max. 

4. x-- - a, max.; x~ --J«, min.; x~ -Ja, max. 
5. x~ - 1, min.; x=\, max. 6. x— - l, max.; x~%f min. 

7. x— ~ 1, min.; a?= ], max. if a \ >0. 8. x= - 1 min. ; #=1 

9. x=ia, max. lO. x~ — min.; x=- max. 

11. x = c, min. if b > 0. 12. No max. or min. 

13. mmnn{k/(m + n)}m+n. 15. {a 4- bfjc ; 4a6/c2. 
16. ( 7fl1Xl + TflkpCn +...)/(?nj + ...) 1. 19. 3abc. 

20. abc/3J3; 3cP/(abr.)% 2G. 2ab. 

Set XVI. b., p. 177. 

1. tan 5 = h/a^/2. 2. i(a + \/a2 + 86s). 

3. K (a + 6 - Va2 - a6 + 62). lO. ; x ~ ^a. 

11. fd; fd- i*. ids At 2 a* 13. 
ua 

14. a/,/2. 16. .4.P : PR = a : 6. 

Set XVI. c., p. 179. 

lO. 
3s/3 

4 
12. 

13. (i) tan e=y/(fj; (ii) V© ; (iii); 
6 1 
“• 17. -* 18. a e 

1 
e’ 

19. e. ao. 

fJ.f?. 

1 
2e* 

2k 
- ef-( 

& 
b\a-b. 
a) 
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Set XVII., p. 182. 

1. Origin a point of inflexion on (i), (iii), (iv). a. x — 
sJ3 

3. x for points of inflexion (i) + ajJS; (ii) 0, ±aJ3; (iii) ±a/x/3; 
(iv) 0, ± a*/:?. 

5. The origin, 7. (i) 0, ir ; (ii) ; (iii) 0, it. 

». (i) x=2, (ii) *= +j2- lO. *=^log(£). 

11. bx + c - 20 = ?i7r (§ 75, Ex. 4). 

CHATTER X. 
Set XVIII., p. 201. 

9. (!) JaW-V); (2) (3) -ia2log^; 

(4) ]a2 tan a (e29*cota - e2^1 cot a); (5) -£a2[60 - 8 sin 6 + sin 20]**. 

io. \dK 

CHAPTER XI. 

§ 91. p. 218. 3. aXiX + byM + czp- 1; (#-xx)laxv-{y-y^by^-iz-z^jazy 

3. fry# + <e,s ~ x + .r,; - (# - a?j) = (y - yx)/5yi = (2 - Zi)/csi. 

4. auTjX + fry# + 02,3 = 0 ; (.*? - ir,)/ou?i = (y - yd/fryi = (z - Zi)/cZi. 

Set XIX., p. 239. 

3. r2 + 2( D0r)2 - rDlr=0. 3. - l-±^- 

CHAPTER XII. 
Set XX., p. 253. 

1. 2 137 812. 2. -226 074. 3. 2-188 920. 

4. 2-588 968. 5. 057 014; 1 467 65. 6. 1*895 494. 

7. -739 085. 8. 1 165 6; 4-604 2. 9. 91 964. 

IO. (i) 4*730 04 ; (ii) 1875 1. 11. 5-600 257, or in deg., 320° 52' 16". 

13. # — 1 996, y = ’909. 

Set XXI., p. 260. 3. 1-57 in. 

CHAPTER XIII. 

§111, p. 266. S. §^; 2vte; f (3,-r - d)*; |^(3a;-4); sin-1-^. 

8. ‘2; 0; 1; log (&>“); -log3. 
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Set XXII., p. 269. 

i. 2 ’x4 + Jx3 + -Vx2 4- Six 4- ISO log (x - 3). 2. x4-log(2x- 1). 

3. log (x2 - 3x + 2). 4. log — 
-2)(x-3) 

'4-1? • 
6. 1 w 47+^3. 

2^/21 gV7-xv/3 

e. ^ tiUI 7. 4sin'1 
/ 2x 

V73 )■ 
a. ’ i log (2x +s/4x2 + 3). 9. ix+f sin 2x. 

io. It, sin3x 4- \sinx. 11. r>x 4- ^ sin 2(ax 4- b). 

12. Jx - | sin 2x 4- o\r sin 4x. 13. |sinx 1 
“ IT sin 7x. 

14. J- cos (x 4- 1) - rV cos (7x 4- 5). 15. Ixf -J sin 2x 4* iY sin 4x 4- tjY sin 6x. 

16. 7r/4. 17. 7r/4. 18. 7r/S. 19. log 3. 

20. 4 l°e (S)- 31. 7r/6. 22. tt/2. 28. (iii) 47ra/>c/3. 

Set XXIII., p. 280. 

2 _,/4x + 3\ 

X‘ J28ta” (W)' 2- 
sin" 

■(—> 
3. log (x - ia 4- n/x2 - ax). 

. /2x -a-b\ 

4- s,n ^ b-a / 6 
•5-log (a2 4-X2). 6. N/(a24-x2). 

( xs - 1 \ 1 ./2x2+l\ 
7. J 

i Mar'll]' 8 jntan 
9. 7(x2+2x-3). 

IO. log sin x. 11. log (1 4-sin x). 12. log (x4- sin x). 

13. J tan3 x - tan x 4- x. 14. —-}eot4x4- cot3 x 4- log sin x. 

16. ihUn'i’itaux)- 16. - COS X 4* cos3 X - -f cos5 X 4- y COS7 X. 

17. - ^ cos5 x 4- f cos7 X - jj cos9 X. 18. tanx- - cot X. 

19. ]- sec4 x. 20. 2^/(0- -*){i r {a-xf -\a{a-x). 

21. - fs (x + 2a) s/(a - x). 22. log (X4-Vx -1)- tan-1^-^^1 —• ^ 

23. (1) 8/15; (ii) 8/315; (iii) 7r/a6 ; (iv) flog3; 

(v) \ log 2 ; (vi) ir/,V3; (vii) 2ir/,V3; (viii) tt/2. 
, l /2x4-l\ 

24. j,- log (a;2 4- x 4- 1)4- tan\“Y/3/ 25‘ ^-Stan^x. 

26. l(x-l )3 4-2 log (x2 4-2x4-3). 27. f log (a;2 ~ 2) 4- | log (x2 + 2). 

28. x4-41og(x~ 1) -4/(x- 1). 29. sin_1x-^/(l - x2). 

30. J(x2~- l)44og(x4Vx2-l). 31. %/(x2 4-ax)4-|log(x4-~Tslx* + ax). 

32. [ax - x2) -f ^ sin"1 ^ 33. sin 
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84 n/(*8-*> 
X4-1 

36. - 
x-1 

37. 
V(r^> “iio*(j€i> 

-V(ra> 
_X4" 1 __ 

2v/(xa +2xl-3)‘ 

41. £x- | log (sin a;+ 2 cos#). 

36. 

30. 

40. ^ x 4- | log (sin x 4- cos a:). 

49. (i) tt/4 ; (ii) w/2; (iii) 7r/4 ; (iv) 7r/(l-r2) or ?r/(r2-l) according as 
r2<l or r2>l ; (v) a/sin a ; (vi) w/2is/( 1 -F); (vii) ylogS. 

48. (i)ir/2;(ii) -tt/2. 45. 8a2/15. 46. Each = 2a2/3. 47. -|(2a24-&2)r. 

Set XXIV., p. 288. 

1. -~(x4-l)e'x. 3. - (a^ + S^ + G^ + GJe'*. 3. sin x - x cos x. 

4. x sin x 4- cos x. 6. - x cos 2x 4-1 sin 2x. 
/pH+l 2;n-H 

6. - x2 cos x + 2x sin x f 2 cos x. 7. -—=■ log x - 7-a .>• 
?i 4- 1 5 (to 4- 1 )2 

®* 'l(logx)2. O. -xcre~x(cos2x-2sin2x). 

IO. e*/{l+x). 11. --le-*2 19. xsin^x-f^l-x2). 

13. xtan"1 x- \log (1 -f x2). 14. ^sin^x--J-sin'1 x +1x^(1 -x2). 

16. | (1 4-x2) tan_1x- |x. 16. | (x- l)N/(3 + 2x-x2) + 2sin"1^-2~* 

17. i (x + 1 K/(*2 4- 2x + 3) 4- log (x +1 + v^x2 4- 2x 4- 3). 

18. \{x-a),J{<lax- x^^^sin'1—™* 

10. (x 4- a),J(2a,x + x2) - \a2 log (x 4- a + J'lax T x2). 

i , i xsinx e'3* 
30. Isin-'x-lx^l-x2). 31. j~ + c08a.* 22- (4 sm 4x - 3 cos 4x). 

33. ^(cosh x sin x 4- sinh x cos x). 34. ^ (cosh x sin x - sinh x cos x). 

35. 35tt/256, 5tt/16, 3tt/256, 4/35, 7tt/256, 13/15-tt/4. 

36. 7ra4/16, ira8/2, 57ra4/8. 37. (7r-2)a2/4. 
38. m! 7i!/(m + n4-l)!. 33. r?i! n\/(m + n)L 

84. ira6/32, (21ir/32 - 28/15)a6. 36. 32^2/15. 87. 7ra2. 

30. 4a( 1 - cos 0/2). 40. ■J-a^x/(l 4- 02) 4--|alog(04- \/l *f 02). 41. (r-a) sec a. 

Set XXV., p. 296. 

1. log (x 4- 2) - jr log (2x 4-1) - ^ log (3x 4- 2)- 

3. 15x2 - 5 log (x2 - 1) 4- 80 log (x2 - 4). 3. 

- Ill, x-1 
4- -2irr+4loe; * X4-1 

6. 

V-l>(5-e)tog(*“B)- 

1 1 . X-1 
2^ + i+log— • 

6. 
1 1 1 

16 (x-f l)2 16 (x 

1 1 
4 (x3 - l )2' 

1 3/1 1 . x-n 
log^v 

2 1 I 9-r -1 
8. jjlog(x4-l)4-glog (xs-x + l) + --^tan-1-— 7. 
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0. 

11. 

13. 

16. 

16. 

17. 

18. 

10. 

81. 

22. 

28. 

24. 

26. 

28. 

20. 

81. 

82. 

38. 

86. 

87. 

la»s — ~ tan "1 %*. 
3 3 

lO. x4log(x2-x4l) + -^s tan'1?a?~ 1 

12. 

V3 

1 (l 
* a2-&2\& 

2(a2-&2) x24a2 a2-fe2(a 

ilog(a?-l)~|log(a;2-Hl)-itan-1x + i 

s/2 , , x , 1 . a? - 1 
irtan 

1 , X24&2 

1 0g x2 4 a2’ 

~73T 

tan”1?--tan"1 
6 a 

tan”1 - -fctan"1? a b 

i> 
:> 

V2 log a:2 - aC/2 +1 + 2j2 tan"1(V2 + 1) + 2J2 tan'1(^-1). 

16 
tan 

_1ar +1 
•^2 + lTV 

X *4 1 

2^2 

2 
a 

a:242a;45 8 x242x45 
1 a a2 a3 ax 4 6 

3bx3+2b*x* £»3x+ 6* °g x 
1 , . 3 sin x 

12^ -4- 
1 x44 

3°. j2logi 

x+2 3J2 

2 4 cos x 1 . 1 - cos x 
+ 6logT+^' 

64 
tan 

2 - cos x 

,1x 4 2 

\/2' 8 (*s + 4a; + 6)2 32x2 + 4x + 6' 
1 1 x2-ax4a2 

2» l0g x2 4^4^** 

^ log (a: +1) + log (a;2 + 4) - ~ log (4a2 +1) 

4trz tan'12x- 
75 

. 1 _I x ft tan'1 x 
x 2 1+x* 2* 

2_ 
150 

tan" 

26. J_ [ (1 -**) - u)m+n~2 du. 
(a - fc)TO+«" 

2a7x - 2 tan” Vx. 27. 2x^ - 3x7 4 6x^ - 6 log(14 x^). 

V(* -1) {a; + |(a: -1)2 + ^(a; - 1 )»|. 

2 2a4&x _1 
fc2 J{a 4 bx) 

J2taIlh sj{ i + a:2) ~ 2J-2 log V( a®T1)~- x^/2' 
llog(x + N/F_)_ 

ao - tan'1 
8 v/2tan ^/(1-x2)* 

^(x2 4 1) 4 x^/2 

2a 2 

^/(o + 6x2)|i(a + 6a^)2-|a(a + 6aj2)|. 34. ^(l + ®*)*-^(l+**)t 

(2a? -1^/(1+ *2)/3*» S3, -{a-xfilia + x)*. 

1 logl±t2EL£^^^+l t«-i(^5tiSnS-l) 
6 14tanx4\^2tanx n/2 

+ -^2tan'1(V2 tanx4l). 
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CHAPTER XIV. 

Set XXVI., p. 306. 

1. o/(oa + 6a). 2. 6/(aa + 69). 3. t. 

3. 5ira8/16. 6, ira. 7. ?r. 

3. ir/s/ia? - 6s). lO. ir/2a6. 

12. (e-tan‘1c)/68. 

4. 3ir/16a* 

8. tr(6-a)a/8. 

11. 7r (a2 + 62)/4os6s. 

la- ip 7(1 +«2)-^31°g(c + '/H-e2)- 14. 0. 

1». -1. 16. -1/9. 16. re! 13. re2/4. 

Set XXVII., p. 312. 

1. 2ira/(2; v/a[(a + /i)^-a-]. 

30- V(l-«*)tan"1 V! l-e 

+ e 

2. Th**/(bc). 

5. 7r (a2 + 62)/2. 

lO. 3iraa; 2v2a:{. 

13. ira3(10 - 3ir)/6. 

19. a6c/6. 

4. ir(b~a)2{b + a)/8c. 

9. (4 - 7r) a2/2 ; (4 + 7r)a3/2. 

12. (ir-2)a2/2. 

18. 3ira2, 4a (1 - cos a/2), 5ir2a8, ir2a8. 

00 2® / a 1 a\ 
4(tan2+3tan 2j; 

ft f sin a 2 
2(1-e2)! _ 1 + e cos a <7(1 - e2)tan " 

23. ira2/12. 24. rea2/4, ira2/2. 25. (3 - 2 log 2) c*/4. 

3. -a?); 4reai2/15. 

7. «ft/30. 

11. rea2; reV/2. 

ie. 2. 

20. reac2/2. 

tan !)}• 1 + e 

26. (4-re)a2/2. 

Set XXVin., p. 322. 

8. 16o2/3. 6. lire. 3. 2»m\m: 
2 (<2\ 
3 + re2)‘ 

CHAPTER XV. 

Set XXX., p. 347. 

1. (i) (o12 + os2+ ... + 0/2. (ii) (6,2 + 622+ ... + 0/2. 

2. (flj./ii + 6j5^ + Oj^4.2 4* 6g52)/2. 

7. (i) 36/5, 36/8. (ii) 26/5, 6/2, (iii) |asin3a/(a-sinacosa), 0. 

(iv) S=*|a(l +cosa). (v) 5a/6, 0. 

lO. (i) 5ifa9/4. (ii) 7i/a2/5. (iii) Mh2/6. 

(iv) 3Jfa*/10, 3AT(aa+462)/20. 
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CHAPTER XIX. 

Set XXXV., p. 416. 

6. (1 -au) (1 -bu)~ h2u2=0; ult u2 are the squares of the semi-axes of 
the conic ax2 -f 2hxy + by2— 1. 

7. l2a2/(a? - u) + m2b2/(b2 - u) + n2c2/(c2 - u) = 0 ; «2 are the squares of 
the semi-axes of the conic in which the plane cuts the ellipsoid. 

Set XXXVI., p. 422. 

1. \n{n+1). 2. l/2a. 

6. oo and 1. 

8. 1 and - 1. 

11. (log a - log b)/(log c - log g). 

14. J and 1. 

3. a. 

6.-1 and - 1. 

9. a/b and 2ajb. 

12. 1 and 1. 

16. and 0. 

4. (aq + Oa-f 

7. 2 and 2. 

lO. 1/2. 

13. cqao...^. 

17. ±{a/b). 

CHAPTER XX. 

Set XXXVIII., p. 439. 

1. y - x~-C(l+xy). 2. sin'V-sin'^s:^. 

3. Cy = {\ -my){x + m). 4. xy2~C{2y + x). 

6. y — Cx1- 1/4(7. 6. (2x -3y+l )2{x + 2y - 2) = (7. 

7. x~C + JV£C dy, where i?=(a-f 7716)77 + <*c + &gr. 

8. by2 + 2axy -fx2 - 2gx + 2cy = C. 9. y~.{x + C)e~x. 

lO. y^YX+Cjx. 11. y = {ain-1x+C)/s/(l-x2). 12. (1 -fa;2)y~\x?+C. 

13. y = (7e_ai+ {acos(kr + c) + &sin(&x + c)}/(a2-f 62). 

14. 1 ly6 = %3* + Cxfi. 16. x/y=C+ log a:. 

16. cc4 -f 2#2y2 - y4 - 2a2#2 - 262y2 = C. 

17. {y - Cx)2=a2C2 + b2; x2/a2 + y2/b2= 1. 

18. y=Cx+Cs; 21y2 + 4^ = 0. 19. y2—Cx2 + C2. 

20. y=Aea*+5e6*. 21. t/=A+5e2x + Ce3a:. 

22. y—e^iA cos # + i? sin x) + (2 cos 2a; + sin2a:)/30. 

28. y^Aex^Be2x-xex. 

24. y=A cos wa? + 5 sin wa? + x{a sin nx - b cos nx)/2n. 

26. y=Aenx-fJBe“n* + a:(aeTW-6e-na:)/2n. 

26. y=cos 2# + £ sin 2a?) + (169a2 + 156a + 46)/2197. 

27. y-(A + Ra)cosa + (i?+/fy;)8ina. 
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96. cos t + Bain t), 

y~eu{{A - £)cont + (A + B) sin*}. 

26. x—A cos f + 5 sin t, 

y=v|(B- 3A) cost ~^(^4 +3B) sink 

30. x^Aet + Be-M-jt-lj+^e*, 

y-Ae* - Bt-U- \t-\\ + ^e2t. 

31. a', = {A + Bty* + {E+ Ft)t-\ 

y=\{B-A - B^e'-ilE+F+Ftje-*. 

32. x—Vt cos a, y—Vt sin a - 

83. x=acoant, y — l)Binnt where n — Jy.. 

®«. S= ’ i!^/(^) = tf + sin0CO8@. where x=aco&6 

86. (i) By- -xjw^ -2lx? + Px); 

(ii) By—yjwx2{1 - xf ; 

(iii) By - -%jwxl(x'2 - 4lx + 6P). 

87. y=(A coanx + Bsinnx)/x ; y=B{sinnx)lx. 

88. (i) y-A+B/x + x2; (ii) y~Ai?+Bx2 + Cx-x2\ogx; 

<iii) y-Ax? + B/x~lx. 

40. y = A cos (w log x) + i? sinolog sc), 41. w= Ar + B/r2. 

42. V=Alogr + B. 43. {Dy)2+1 — 4a4/{C~y2)2. 

46. y^zxP + Ax + B/x. 

Set XXXIX., p. 454. 

8. (i) x>\, y=r/2; 0<tf<l, y-tx/2; -\<x<0, y=vxJ2; 

x<~l, y~ -tt/2. 

(ii) x>2, y = tt/2 ; 0<a;<2, y=7r{4x-xP)/8 ; 

-2<x<0, y=ir(4» + a:2)/8; x<~2, y—- tt/2. 

20. x>2a, y = 3r/2; 0<ar<2a, y=7r/2; -2a<x<0, y--wl2; 

x<-2a, y= -3ir/2. 
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CHAPTER XXIL 

Set XLL, p. 502. 

4 /sin x sin3x sin5x \ 

7r\a3 a 5 a J 

37r 2 /cos x cos 2x cos 3a: 

A 3a 2a / 1 „ ttx 1 2ttx 1 37rx \ 
8 tH \ l2 a 22 a 32 a J 

2a ( 1 27rx 1 47rx 1 67rx \ 
ir2 \ 22 a 42 a 62 a / 

- 3a 4a /_„ irx 1 3irx 1 5rx \ 
6. / COS—4-COS-+ COS-4-...). 

2 7rJ \ a 3- a 5- a / 

— ac 2ac Z' 7rx 1 3tx 1 5vx \ 

4 irJ \ a 32 a 52 a / 

, ac / 1VX 1 27rx 1 • 37tx \ 
v \ a 2 a 3 a J 

_ 2 4 / cos2x cos 4a: cos6x \ 

• r~A i.r+~3~r+iT+-} 
0 a2 2a2 ( ] 2ttx 1 4ttx 1 07rx \ 
e. 4- cos-7ocos-+ ^2C0S-...J 

12 ir2 \22 a 42 a 62 a / 

4a2/ irx 1 „„3irx 1 57rx \ 

+^iC08a-FC0»-+FC08 —-j- 

^ , 1 n( cos 2x cos 3x cos 4.r \ 
•• 1+2cosa;-2(T^-+^4-+'3:r+ •> 

lO. ■ (sin™ sin—+ lain —sin—+ ,.,\ 
ir2a(e - a) \ c c 22 c c 7 

\ 2 (cos 2x cos 4x , cos 6x \ 
w\& 4F"+'~62 “*/ 

1 nn. 3™ \ 
32 ~~"'J 

a2 2a2 ( ] 

3x cos 4x 
T” + ~3T 5~ + ' 

ir2a(e - a) 
. Tra . ttx 1 2ira . 27rx 

sm — sin-(- — sm-sm-4-. 
c c 22 c c 

12. (j) + ^ y 
a*- IT JT, a2-h»2 

5 (1 - e0' cos 717r) sin tix. 

1ft. If the series is uniformly convergent when x is in the interval (0, X) it 
i8 easily proved to be uniformly convergent for every x, and to 
represent an even periodic function, <p(x) say, with period 2\. 
Expand ^(x) in a cosine series in the interval (0, X); to determine 
the coefficients we can integrate term by term. The cosine series 
represents <f>{x) for every x. 



INDEX. 

Abdank-Abakanowicz, 192. 
Abel’s Theorem, 386. 
Abscissa, 4, 7. 
Acceleration, 160. 

angular, 153. 
normal, 359. 
radial, 239. 

Adiabatic curves, 127. 
expansion, 230. 

Algebraic functions, 43. 
Ainsler’s planimeter, 321. 
Anchor-ring, 322, 349. 
Angle, 31, 219. 

between two lines, 42, 207. 
Appell, 322. 
Approximations, 196, 244-269. 

rule for, in expansions, 249. 
to areas and volumes, 328. 
to integrals, 299, 308, 328. 
to roots of equations, 244. 

Arc, derivative of, 124, 201. 
of circle, Huyghens’ approxima¬ 

tion, 396. 
Area, approximations to, 328. 

derivative of, 185, 201. 
interpretation of, 187. 
of closed curves, 316. 
of surfaces, 193, 338. 
of some common curves and sur¬ 

faces, 309. 
sign of, 186. 
swept out by moving line, 319. 

Argument of function, 14. 
Asymptote, 38, 250. 
Auxiliary circle, 54. 

equation, 434. 
Attraction, 151, 154, 241. 
Axes, change of, 52. 

rectangular, 6, 205. 

Bernoulli’s numbers, 404. 
Bessel Function, 407. 
Beta Function, 350. 
Binomial Theorem, 394. 

Cardioid, 202, 360. 
Catenary, 139, 360. 
Cauchy, 121. 
Cauchy’s form of remainder, 393. 
Centre of curvature, 354. 

of gravity, or inertia, or mass, 
341. 

Centroid, 341. 
Clirystal’s Algebra, 173, 250, 290, 

375, 382, 386, 395, 396, 404. 
Elementary Algebra, 20. 

Circle, Area of, 85. 
of curvature, 354. 
involute of, 373. 
perimeter of, 85. 

Cissoid, 314. 
Clairaut’s equation, 432. 
Commutative property of deriva¬ 

tives, 221. 
Complementary function, 433. 
Complete differential, 213, 224. 

integral, 426. 
Compound interest law, 97. 
Concavity, 180. 
Cone, surface and volume of, 86, 

309. 
moments of, 349. 

Confocal conics, 428. 
Conic section, definition, equation 

and properties of, 47, 54, 61. 
polar equation of, 63. 
tangent properties of, 124-128. 
confocal, 428. 

Conical point, 218. 

The numbers refer to pages. 
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Conieoid, 218. 
Consecutive normals, 355. 
Constant, 13. 

arbitrary, 262, 425. 
elimination of, 424. 

Contact of curves, 361. 
Continuity, 12, 87, 204, 457, 463. 

of elementary functions, 90, 
of series, 385. 

Convergence of series, 375. 
absolute or unconditional, 382. 
conditional, 382, 
uniform, 385. 

Convexity, 180. 
Coordinate geometry— 

of two dimensions, 27. 
of three dimensions, 205. 

Coordinates — 
cylindrical, 210. 
polar, 10. 
rectangular, 7. 
spherical polar, 210. 

Corrections, small, 258. 
Cos x, expansion of, 394. 
Curvature, 352. 

centre of, 354. 
chord of, 354, 360. 
circle of, 354. 
formulae for, 353, 355 
radius of, 354. 

Curves— 
contact of, 361. 
derived, 183. 
equation of, 23, 209. 
family of, 365. 
integral, 190. 
tracing of, 311. 

Cusp, 46, 
of second kind, 261. 

Cycloid, 368. 
properties of, 369, 373. 

Cylinder, surface and volume of, 
86, 309. 

Decreasing function, 104. 
Definite integral, see ‘Integral.’ 
Definite value, 15. 
Density, 341. 
Derivatives, 101. 

geometrical interpretation of, 
105. 

not definite, 107. 

Derivatives of sum, product etc., 
112-114. 

of a function of a function and 
of inverse functions, 116. 
of implicit functions, 119, 214. 
of arc, 124, 201. 
of area, 185, 201. 
of surface and volume, 193, 346. 
successive or higher, 142. 

Derivatives, partial, 204. 
commutative property of, 221. 
geometrical illustrations of, 214. 
of higher orders, 220. 

Derivatives, total, 212. 
Derived curve, 183. 

function, 102. 
Differential, 120. 

complete or total, 213, 224. 
higher, 234. 

Differential coefficient, 102 set 
‘ Derivatives.’ 

Differential Equations, 424. 
degree of, 424. 
exact, 431. 
homogeneous, 429. 
linear, 429, 433. 
order of, 424. 
ordinary, 424. 
partial, 424. 
simultaneous, 437. 

Differentiation, 101. 
logarithmic, 113. 
of series, 400. 
see ‘Derivatives.’ 

Dimensions of magnitudes, 68. 
Direction cosines, 207. 
Directrix of conic, 47. 
Discontinuity, 88,154,387,443,492. 
Divergent series, 375. 
Durand, 193. 
Dynamics, 149-155, 225, 341-347. 

Eccentric angle, 55. 
Eccentricity of a conic, 47. 
Elasticity, coefficient of, 156, 230. 
Electric current equations, 159, 

430, 438. 
Elimination of constants, 424. 
Ellipse, definition and simpler 

properties of, 49, 54, 61. 
area of 281, 310. 
curvature of, 353, 359. 

The numbers refer to pages. 
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Ellipse, evolute of, 362, 
perimeter of, 405. 
tangent properties of, 124-128. 

Ellipsoid, moments of inertia of, 
345. 

volume of, 270, 310. 
of revolution, see * spheroid.’ 

Elliptic lamina, 
centroid of quadrant of, 342. 
moments of inertia of, 345. 

Energy, kinetic, 150. 
Envelopes, 364. 

contact-property of, 366. 
Epicycloid, 369. 

properties of, 373. 
Epitrochoid, 370. 
Equations, of a curve, 23, 209. 

of a surface, 209. 
theory of, 242-254. 
differential, 424. 

Errors, superposition of small, 258. 
Euler, 253. 

theorems of, on homogeneous 
functions, 412. 

Everett, 70. 
Evolute, 361. 
Expansion, coefficient of, 156, 

230. 
Expansions of functions, 390, 408. 
Explicit function, 16. 
Exponential function, 96, 394. 

graph of, 58. 
Extension, 152. 

Fluent, fluxion, 109. 
Focus of a conic, 47. 
Forms, indeterminate, 418. 
Fourier Series, 484. 
Frullani’s Theorem, 480. 
Function, algebraic, 43. 

definition of, 14. 
explicit, 16. 
graphical representation of, 20. 
homogeneous, 412. 
implicit, 17. 
inverse, 18. 
multiple-valued, 17. 
notation for, 16. 
of a function, 90. 
periodic, 56, 303. 
single-valued, 17. 
transcendental, 56. 

Gamma Function, 349, 450. 
Gen nochi-Peano’s Calculus, 421. 
Geometry, coordinate— 

cf two dimensions, 27. 
of three dimensions, 205. 

Gradient, 32, 102. 
Graphical integration, 192. 
Graphs, 20, 311. 

general observations on, 59. 
of inverse functions, 44. 

Gray’s, Absolute Measurements, 
70, 175. 

Magnetism, and Electricity, 439. 
Physics, 154, 160. 

Gray and Mathews, Bessel Func¬ 
tions, 407. 

Gregory’b series for 7r, 401. 
Gyration, radius, of 344. 

Harmonic motion, 152, 160. 
Heat, conduction of, 157. 
Henrici’s Report on Planimeters, 

322. 
Hobson’s Trigonometry, 257. 
Hold itch’s Theorem, 323. 
Homogeneous functions, 

Euler’s theorems on, 412. 
Huyghens’ rule for circular arc, 

396. 
Hyperbola, definition and simpler 

properties of, 50, 54, 61. 
area of sector of, 289. 
curvature of, 359. 
evolute of, 371. 
rectangular, referred to asymp¬ 

totes, 54. 
tangent properties of, 124-128, 

Hyperbolic functions, 139-142. 
Hypocycloid, 369, 373. 
Hypotrochoid, 370. 

Identical Equality, theorem of, 
388. 

Impedance, 430. 
Implicit function, 17. 

differentiation of, 119, 214. 
Increasing function, 104. 
Increment, 65. 
Indeterminate forms, 418. 
Inductance, 159, 430, 438. 
Inertia, centre of, 341. 

moment of, 343. 

The numbers refer to pages. 
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Infinite, 60, 80, 195. 
series, see ‘Series.’ 

Infinitesimals, 195-200. 
Inflexion, point of, 35, 180, 239. 
Inflexional tangent, 35. 
Integral curve, 190. 

function, 188. 
Integral, complete, 420. 

definite, 263, 298-309. 
double, 334. 
general, 189, 262. 
geometrical representation of, 

188, 263. 
indefinite, 262. 
limit of a sum, 324. 
line, 347. 
particular, 426, 433. 
related, 301. 
standard forms, 265, 278. 
surface, 347. 
triple, 338. 
see contents of Chap. XXI. 

Integrand, 262. 
infinite, 304, 446, 476. 

Integraph, 192. 
Integrating factor, 431. 
Integration, 262, 295. 

along a curve, 318, 347. 
by algebraic and trigonometric 

transformations, 267. 
by change of variable, 271, 340. 
by partial fractions, 268, 290. 
by parts, 281. 
by successive reduction, 284. 
of irrational functions, 294. 
of quadratic functions, 274. 
of rational functions, 292. 
of series, 399, 495. 
of trigonometric functions, 278. 
operations, under sign of, 456- 

479. 
over an area, 337. 
through a volume, 338. 

Intrinsic equation, 357. 
Inverse function, 17. 

differentiation of, 113. 
graph of, 44. 

Involute, 361. 
Isolated point, 313. 

Lagrange’s remainder, 392, 409. 
Lamb’s Calculus, 348. 

Laplace’s Equation, 223, 235. 
Leibniz, 121. 

series for 401. 
theorem on derivative of pro¬ 

duct, 144. 
Limits, 74-86. 

distinction between limit and 
value, 81, 405. 

of a definite integral, 263. 
theorems on existence of, 100, 

377, 463. 
Line integral, 347. 
Linear differential equations, 429, 

433. 
function, 31, 

Lituus, 202. 
Lodge’s Mensuration, 331. 
Logarithmic differentiation, 113. 

function, 57. 
series, 395. 

Logarithms, calculation of, 395. 
derivative of, 136. 
graph of, 58. 

Liirotn, 257. 

Maclaurin’s Theorem, 391, 411. 
Maclean’s Physical Units, 70. 
Magnitudes— 

dimensions of, 68. 
directed, 13. 
geometrical representation of, 

13. 
Mass-centre, 341. 
Maxima and Minima, 166. 

elementary methods, 171. 
of functions of several variables, 

412. 
Maxwell’s Heat, 232. 
Mean-Value Theorems— 

Derivative, 162, 419. 
Integral, 300, 309, 451. 

Mean value of a function, 332, 
339. 

Mechanics, see ‘Dynamics.* 
Minima, see ‘Maxima.’ 
Moment = differential, 121. 
Moment of inertia, 343. 
Momentum, 150. 
Mono tonic, 451. 

see also 495. 
Multipliers, undetermined, 415. 
Multiple-valued function, 17. 
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Napier’s base, 59, 92. 
Newton, 109. 

his method of approximating to 
the roots of equations, 244. 

Node, 423. 
Normal, 123, 201, 216. 
Number e, 92. 

t, 85, 401. 

Order of differential equation, 424. 
of infinitesimals, 195. 

Ordinate, 7. 
Origin of coordinates, 8. 

change of, 52. 
Oscillating series, 375. 
Osgood on Infinite Series, 375. 

Pappus’ Theorems, 348. 
Parabola, definition and simpler 

properties of, 48, 54, 61. 
arc of, 127, 314. 
curvature of, 353. 
evolute of, 367, 371. 
semi-cubical, 127. 
tangent properties of, 124-128. 

Parallel curves, 361. 
Parameter, 365, 458. 
Partial Derivatives, see “Deriva¬ 

tives, partial.” 
Peano, 413, 421. 
Pendulum, period of oscillation of, 

402, 432. 
Pericycloid, 369. 
Period of a function, 56, 303. 
Perpendicular, length of, 63. 
Plane, equation of, 209. 

tangent, 215, 411. 
Planimeter, 321. 
Plotting of points, 9. 
Points, conical, 218. 

distance between two, 9, 206 
isolated, 313. 
turning, 24, 167. 

Polar formulae, 200. 
tangent, normal, etc., 201. 

Potential, 153, 223, 351. 
Power, fundamental limit, 91. 

derivative of, 111. 
Power series, 383. 

continuity of, 386. 
differentiation and integration 

of, 400. 

Primitive of differential equation, 
425. 

Prismoid, 332. 
Proportional parts, 255. 

Radius of curvature, 354. 
of gyration, 344. 

Rates, 65-73, 101. 
Rational fractions, integration of, 

290. 
Rational function, 34, 

integration of, 292. 
Reduction, successive, 284. 
Remainder in Taylor’s and 

Maclaurin’s Theorems, 392, 
409. 

Ring, see “Anchor-ring.” 
Robin’s Tracts, 121. 
Rolle’s Theorem, 161. 
Roots, see ‘ Equations.’ 

Schlomilcli-Roche’s form of re¬ 
mainder, 393. 

Segments, directed, 1. 
addition and subtraction of, 

2, 3. 
measure of, 5, 12. 
symmetric, 3. 

Series, infinite, 375. 
alternating, 382. 
differentiation of, 400, 495. 
integration of, 399, 495. 
multiplication of, 388. 
semi-convergent, 382. 
See ‘ Convergence of series,’ 

‘ Pow er-senes. ’ 
Sign of area, 186. 
Simpson’s Rules, 330, 332. 
Simultaneous differential equa¬ 

tions, 437. 
sinxy sin'1#, expansion of, 393, 

401. 
Slope, 102. 
Solution of a differential equation, 

426. 
singular, 432. 

Space-rate of change, 103, 150. 
Sphere, surface and volume of, 

194, 309. 
Spheroid, oblate and prolate, 310. 

surface and volume of, 310. 
Spiral, of Archimedes, 201. 
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Spiral, equiangular, 202, 360. 
reciprocal, 202. 

Stationary value, 105. 
Step, see ‘Segments/ 
Subnormal, 123, 201. 
Subtangent, 123, 201. 
Surface, equation of, 209. 

of revolution, 193. 
areas and volumes of, 309, 

312-315. 
integral, 347. 

Symmetry, 9, 23. 
centre of, 29. 

Tan*1#, expansion of, 401. 
Tangent, definition of, 78. 

length of, 123, 201. 
inflexional, 35. 
plane, 216, 411. 

Taylor’s Theorem and Series— 
for function of one variable, 

390-398. 
for function of several variables, 

408-412. 
Thermodynamics, 228-233. 
Time-rate of change, 103. 
'Fore, 322, 349. 
Total derivative, 211. 

differential, 213, 224. 

Trapezoidal rule, 329. 
Trigonometric ’ functions, direct 

and inverse, 56. 
differentiation of, 129, 133. 
integration of, 265, 278, 284. 

Trochoid, 370. 
True value, 418. 
Turning value, 24, 166. 

Ultimately equal, 199. 
Uniform convergence, 385. 

of integrals, 461, 473. 

Value, stationary, 105. 
true, 418. 
turning, 24, 166. 

Variable, dependent and indepen¬ 
dent, 12. 

change of, 233, 271. 
Variation, near a turning value, 

174. 
in a given direction, 218. 

Velocity, 149. 
angular, 153. 
components of, 110. 

Volumes, 193, 309, 331, 335. 
polar element of, 346. 

Wallis’s value of it, 307. 
Work, 150, 225. 
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