BIRLA CENTRAL LIBRARY PILAN (RAJASTHAN)

Kall No. 621.2
$\angle 95 P$
Accesision N. 35354

A
 POCK ET-BOOK
 FOR
 MECHANICAL ENGINEERS

BY

DAVID ALLAN LOW
(Whitworth Scholar), M.I.Mec̀m.'. bmelitus profzisor of enginiering, caat london (now quegn maby) college, UNIVERSITY OF LONDON

EDITED BY
BEVIS BRUNEL LOW
M.A.(Oantab.), M.J.mech.E.
gombitime heoturer in mbohanioal enginhering, mmitary college of soimed

WITH OVER 1000 ILLUSTRATIONS NEW EDITION
64th THOUSAND

LONGMANS, GREEN AND CO. LONDON \sim NEW YORK \diamond TORONTO

LONGMANS, GREEN AND CO. LTD 6 AND 7 CLIFFORD STREET, LONDON, W.I LONGMANS, GREEN AND CO. INC. 55 Fifth avenue, NEW york, 3
 LONGMANS, GREEN AND CO. 215 VICTORIA STREET, TORONTO, I also al melbourne and cape town
 ORIENT LONGMANS LTD bombay, culcutta, Madras

PREFACE

The pages which have been revised in this edition concern the following subjects: Chains, Chain Slings, and Crane Hooks; Manila and Wire Ropes; Screw Threads; Pipes and Pipe Joints; Steam Tables; and Locomotives. Small changes and corrections have been made on other pages. Acknowledgments are made in the text, but the editor wishes to thank Messrs. Stewarts \& Lloyds Ltd. and Messrs. F. Baylie \& Co. Itd. for so readily supplying information, and the British Standards Institution for permitting extracts to be made from specifications.
B. B. LOW.

September 1947.

EXTRACT FROM PREFACE TO NEW EDITION REVISED 1943

The Equivalent Temperatures on the Fahrenheit and Centigrade Scales (pp. 541-543) now cover a wider range, and the notes on the Practical Measurement of Temperature (pp. 544-546) have been extended. The information on p. 594, in the Boiler section, replaces older matter, and the section on Compressed Air (pp. 712-719) has been revised.
B. B. LOW.

February 1943.

EXTRACT FROM PREFACE
 TO NEW EDITION REVISED 1942

In addition to somo corrections, the chief alterations in this edition concern Weights and Moasures. All the tables from p. I to p. 32 and some of the values on p. 342 have been entirely recalculated, using the most accurately known factors.

The editor wishes to thank the Director of the National Physical Laboratory and the Controller of the Standards Department of the Board of Trade for the considerable information they have given and for their kindness in answering a number of questions.

Information has also been obtained from The Units and Standards of Measurement Employed at the National Physical Laboratory (H.M. Stationery Office, 1929) and from Measurement of Oil in Bulk, Part I, Standard Weights and Measures (Institute of Petroleum, 1932).

In conclusion, thanks are due to C. J. Tranter, M.A.(Oxon.), for valuable assistance with the calculations.
B. B. LOW.

December 1941.

EXTRACT FROM

PREFACE TO THE NEW (1938) EDITION

Tre main additions and alterations in this edition occupy about 240 pages.

Acknowledgments.-To individuals, institutions, and firms mentioned in the text, for information and assistance; British Standards Institution for extracts from specifications; Committee of Lloyd's Register of Shipping for extracts from rules relating to engines and boilers for vessels; Controller of H.M. Stationery Office for extracts from Board of Trade Instructions as to the Survey of Passenger Steamships, vol. i. -Text, and from Magnesium and its Alloys.
B. B. LOW.

October 1938.

PREFACE TO THE FIRST EDITION

The preparation of this work has occupied the whole of the author's spare time during the past five years ; and he has also had the services of several assistants in the calculation of tables, and in the preparation of the illustrations, which are unusually numerous for a work of this kind.

Many of the tables to le found in pocket-books and works of reference for engineers have been published for so many years that they may be regarded as public property, and the author might therefore have compiled a consilerable portion of this work hy the simple use of scissors and paste, but he had a suspicion that this had been done so often before that errors had found their way into tables which no one thought of verifying. He thetefore decided to have all the older tables very carefully checked. Some of the tables were checked by simply comparing those given by the best authorities, English, American, and (ierman, and wherever there was any difference the correct values were obtained by careful calculation. It would astonish many to learn how many errors there are in the tables in books which have been relied on for many years. Many of the tables have been calculated throughout and then compared with those of standard authorities.

Where the tables are new or have not before been published, and there are many such in this work, they have beon calculated throughout at least twice, and generally by two different individuals, and the results compared, and wherever there was a difference fresh calculations were made until there was perfect agreement.

In nearly every case the formula used in calculating any table is given, and also the values of any constants which are used in it.
It will be found that a special feature of this pocket-br ' which distinguishes it from other porket-looks is the large space devoted to the proportions of machines and machine details, and in this section numerous rules and tahles are given, which it is hoped may be of service to draughtsmen and students.
It is ohvious that in a work of this kind use mut be made of the experience of many men, and in this matter the author would record his great indebtedness to the numerous engineering journals, and the transactions of the principal engineering societies at home and alroad.
Great attention has heen given by the Author, Printers, and Pulblishers to the arrangement of the matter and to the selection of type and paper; in fact, neither pains nor expense has been spared to make the hook relialle, useful, and attractive to those engaged in merhanical engineering.

In conclusion, where there are so many tables, formulæ, and rules, the author can scarcely hope that there are no errors, notwithstanding the labour and care which have been bestowed on them, and the author will be grateful if those using this work will kindly inform him of any mistakes which they may discover.

D. A. LOW.

London, January 1898.

CONTENTS

PAGH
British Measures. United States Measures. Metric Measures. Equivalents of Metric and British Measures. Wire Gauges 1-34
Arithmetical and Algebraical Signs. Algebraical Formulac. Trigonometrical Formuls. Tables of Sines, Cosines, etc. Common Logarithms. Napierian Logarithms. Powers, Roots, and Reciprocals of Numbers. Useful Functions of π 35-140
Notes on Geometry, Plane, Solid, and Analytical. Graphic Arithmetic 141-168
Areas of Plane Figures. Areas of Circles. Areas of Seg- ments of a Circle. Circumferences of Circles. Surfaces of Tubes. Volumes and Surfaces of Solids 168-204
Centres of Gravity. Moments of Inertia 204-217
Statics. Flui. Pressure. Kinematics. Kineties. Friction. Mechanical Efficiency of Machines 218-245
Strength and Stiffness of Materials 245-262
Chains. Ropes 263-272
Stress Diagrams for Braced Structures 273-286
Properties of Rolled Steel Sections and Weldless Steel Tubes 287-323
VVeight of Materials. Weight of Bars, Sheets, Tubes, etc., of different Materials 324-346
Notes on Materials. Tables of Strength of Materials. Brinell Hardness Testing 347-392
Screws, Bolts, and Nuts. Keys. Cotters. Pipes and Pipe Joints 393-421
Shafting. Shaft Couplings 421-437
Plain, Ball, Roller, and Michell Bearings 437-472
Belt Gearing. Rope Gearing. Telodynamic Transmission.
Friction Gearing473-495

L0 W'S

ECHANICAL، ENGINEER'S POCKET-BOOK

BRITISH MEASURES.

Linear Measure.

Inches.	Feet.	Yards.	Poles.	Furlongs.	Mile
1	-08333..	-02777..	-00505....	$\cdot 000126 . .$.	00K01578...
12	1	33333... \|	. $060606 .$.	'001515...	-(0018939...
36	3	1	-181818...	-004545...	-00056818...
198	$16 \frac{1}{2}$	$5 \frac{1}{2}$	1	${ }^{\circ} 025$	003125.
7920	660	220	40	1	$\cdot 125$
63360	5280	1760	320	8	1

${ }^{\text {nil }}=0.001$ inch. 1 chain $=100$ links $=22$ yards.
fathom $=6$ feet. $\quad 1$ knot $=1$ nautical mile (6080 feet) per hour.

Square Measure

. Inches.	Sc. Feet.	Sq. Yards.	My. Poles	Roods.	Acres.	Sq. Mile.
1	-006944...	0007716 ..	0000255...	- - -		...
144	1	\| $11111 . .$.	003673...	.0000918 ..	.0000229 .	
1296	9	1	, 0330578.	000828...	(0002066...	
39204	2724	301	1	025.	-00625.	-00000976..
1568160	10890	1210	40		25.	000390625.
6272640	43560	4840	160	4	1	. 0015625
114489600	27878400	,3097600	102400	2560	640	1

1 square chain $=16$ square poles $=484$ square yards.
10 square chains = 1 acre.
1 circular inch $=$ area of a circle 1 inch in diameter $=7854$ s luare inch.

Cubic Measure and Measures of Capacity.

1 cubic inch $=00057870 . . \quad$ cub. foot $=00002143$. cub. yad ${ }^{\text {d. }}$ 1728 cubic inches $=\quad 1$ cub. foot $=037037037 \ldots$ cub. yatd. 46656 cubic inches $=$ 27 cub. feet $=$ 1 cub. yad.

Pints.	Quarts.	Gallons.	Pecks.	Bushels.	Quarters.	Cubic Inches.
1	$\cdot 5$	$\cdot 125$.	$\bigcirc 0625$.	$\bigcirc 15625$.	$\cdot 001953125$	$\overline{34} \cdot 6 \cdot 8$
2	1	-25.	$\cdot 125$.	-03125.	-00390625	$69 \cdot 3 \cdot \frac{}{6}$
8	4	1		$\cdot 125$.	-015625.	$277 \cdot 420$
16	8	2	1	$\cdot 25$	-03125.	$554 \cdot 84$
64	32	8	4	1	$\cdot 125$	$2219 \cdot 36$
512	256	64	32	8	1	177.54.88

$$
4 \text { gills }=1 \text { pint. }
$$

One shipping ton (for measuring cargo) $=42$ cubic feet.
The gallon is defined as the volume "containing ten Imperial standard pounds weight of distilled water weighed in air againt brass weights, with the water and the air at the temperature of sixty-two degrees of Fahrenheit's thermometer and with the bar ${ }^{\text {p- }}$ meter at thirty inches."

There is no legal equivatent of the gallon expressed in cublc inches, but 1 gallon $=277 \cdot 420$ cubic inches is the equivalent not mally adopted, and from this

1 cubic foot $=6.22882$ gallons.
The weight and volume of water at various temperatures is given on p. 342.

Avoirdupois Weight.

Ounces.	Pounds.	es.	Quarters.	Hundredweights.	Ton
1	$\cdot 0625$.	-004464...	-002232...	.000558...	.0000279...
16	1	-071428...	$\cdot 035714$.	-008928...	-0004464...
224	14	1	-5.	-125.	-00625.
448	28	2	1	$\cdot 25$.	-0125.
1792	112	8	4		'05.
35840	2240	160	80	20.	1

1 dram $={ }_{1}^{10}$ ounce is a legal avoirdupois weight.

Troy Weight.
24 grains $\quad=1$ pennyweight. 20 pennyweights $=1$ ounc9.

Apothecaries' Weight.

20 grains $=1$ scruple.
3 scruples $=1$ drachm. 8 drachms $=1$ ounce.

1 ounce Troy $=1$ ounce Apothecaries $=480$ grains.
The grain is derived from the avoirdupois pound, which is equal to $\mathbf{7 0 0 0}$ grains.

Measures of Velocity.

Feet per Second.	Feet per Minute.	Miles per Hour.
1	60	$681818 \ldots$.
.0166666.	1	$0113636 \ldots$
$1.4666666 .$.	88	1

Measures of Work and Moments.

Inch-Pounds.	Foot-Pounds.	Inch-Tons.	Foot-Tons.
1	$.08333 \ldots$	$0004464 \ldots$	$.0000372 \ldots$.
12	1	$.0053571 \ldots$	$.0004464 \ldots$
2240	$186.6666 . .$.	1	$0833333 \ldots$
26880	2240	12	1

1 horse-power $=550 \mathrm{ft}$. lbs. per sec. $=33,000 \mathrm{ft}$. lbs. per min. $=$ $1,980,000 \mathrm{ft}$. lbs. per hour $=746$ watts. 1 klowatt $=1.34 \mathrm{~h} . \mathrm{p}$. 1 Board of Trade unit = 1 klowatt-hour.

Measures of Stress and Pressure.

UNITED STATES MEASURES.

These are practically the same as the British measures.
A U.S. gallon $=231$ cubic inches $=83267$ Imperial gallon.
An Imperial gallon $=1.20095$ U.S. gallons.
One net or sbort ton $=2000 \mathrm{lbs}$. avoirdupois.
One shipping ton (for measuring cargo) $=40$ cubic feet.
METRIC MEASURES.
Linear Measure.

$\begin{gathered} \text { Milli- } \\ \text { metres } \end{gathered}$	Centimetres.	Decimetres.	Metres.	Dekametres.	Hecto. metres.	Kilometre.
1	$\cdot 1$	01	$\cdot 001$	$\cdot 0001$	$\cdot 00001$. 000001
10	1	$\cdot 1$	01	$\cdot 001$	$\cdot(001$	-00001
100	10	1	$\cdot 1$	01	$\cdot 001$	0001
1000	100	10	1	$\cdot 1$. 01	001
10000	1000	100	10	1	$\cdot 1$	01
100000	10000	1000	100	10	1	$\cdot 1$
1000000	100000	10000	1000	100	10	1

Square Measure.

1 centiare $=1$ square metre.
Cubic Measure and Measures of Capacity.

Cubic Centimetres.	Cubic Decimetres.	Culic Metre.
1	000	0.000101
100000	1	0001
	1000	1

1 stere $=1$ cubic metre. 1 litre $*=1 \cdot 000027$ cubic decimetres.

Milli-	Centilitres.	Decilitres ${ }^{1}$	Litres.	Dekalitres.	Heeto. litres.	Kilolitre.
1	$\cdot 1$	$\cdot 1$	-(0)1	()(\%) 1	$\cdot 00001$	$\cdot 000001$
10	1	$\cdot 1$	$\cdot 01$	$\cdot 001$	$\cdot 0001$	$\cdot 00001$
100	10	1	$\cdot 1$	$\cdot(1$	$\cdot 001$. 0001
1000	100	10	1	$\cdot 1$. 01	. 001
10000	10 (\%)	100	10	1	$\cdot 1$	- 01
100000	10000	1000	100	10	1	$\cdot 1$
1000000	10 OHOO	10000	1000	100	10	1

Weights.

Milli- grammes.	Centi- grammes.	$\begin{gathered} \text { Deci- } \\ \text { grammes. } \end{gathered}$	Grammes	Deka-	Hecto.	$\begin{array}{\|c} \text { Killo- } \\ \text { gramme. } \end{array}$
1	$\cdot 1$	$\cdot 01$	$\cdot 001$	$\cdot 0001$	$\cdot 00001$	$\cdot 000001$
10	1	$\cdot 1$	$\cdot 1$	$\cdot 001$	-0001	$\cdot 00001$
100	10	1	$\cdot 1$	-01	-001	$\cdot 0001$
1000	100	10	1	1	- 01	. 001
10000	1000	100	10	1	$\cdot 1$. 01
100000	10900	1000	100	10	1	$\cdot 1$
1000000	100000	10000	1000	100	10	1

1 myriagramme $=10$ kilogrammes. 1 quintal $=100$ kilogrammes. 1 millier or tonne $=1000$ kilogrammes.
The International Prototype Kilogramme, a plain cylindrical mass of platinum.iridium alloy, differs slightly from the mass of one cubic decimetre of pure water at $4^{\circ} \mathrm{C}$. and 760 mm ., whioh was originally intended to be the kilogramme.
Equivalents of Metric and British Measures.

Metric Units.	British Equivalents.	British Cnits.	Metric Equivalents.
1 millimetre	-039370147 inch.	1 inch	$25 \cdot 399956$ millimetres.
1 centimetre .	- 39370147 inch.	1 inch.	$2 \cdot 5399956$ centimetres.
1 decimetre	3.9370147 inches.	l inch.	-25399956 decimetre.
1 metre	39-370147 inches.	1 inch	-025399956 metre.
1 metre	$3 \cdot 2808456$ feet.	1 foot.	-30479947 metre.
1 metre .	1.0936152 yards.	1 yard	. 91439841 metre.
1 kilometre	. 62137227 mile.	1 mile.	$1 \cdot 6093412$ kilometres.

The standard metre is the distance between two marks on a platinum-iridium bar when the temperature is $0^{\circ} \mathrm{C}$.
or $32^{\circ} \mathrm{F}$. The standard yard is the distance between two marks on a bronze bar when the temperature is $62^{\circ} \mathrm{F}$.

$$
\begin{aligned}
& \mathrm{ch}=25 \cdot 399956 \mathrm{~mm} . \\
& \mathrm{ch}=25 \cdot 399978 \mathrm{~mm} . \\
& \mathrm{ch}=25 \cdot 4 \mathrm{~mm} . \\
& \mathrm{ch}=25 \cdot 400051 \mathrm{~mm} .
\end{aligned}
$$

Square Measure.

Metric Units.	British Equivalents.	British U'nits.	Metric Equivalents.
1 square centimetre.	-1550008 square inch.	1 square inch.	6.451578 sq. centimetres.
1 square decimetre	15.50008 square inches.	1 square inch.	$\cdot 06451578$ sq. decimetre.
1 square decimetre	$\cdot 1076395$ square foot.	1 square foot.	$9 \cdot 290272$ sq. decimetres.
1 square metre	$10 \cdot 76395$ square feet.	1 square foot.	-09290272 sq. metre.
1 square metre	1-195994 square yards.	1 square yard	. 8361245 sq. metre.
1 are	119.5994 square yards.	1 square yard	- 008361245 are.
1 hectare.	2.471062 acres.	1 acre. .	. 4046842 hectare
1 hectare .	.003861035 sq. mile.	1 square mile	258.9979 hectares.

Equivalents of Metric and British Measures.
Cubic Measure and Measures of Capacity.

Metric Units.	British Equivalents.	British Units.	Metric Equivalents.
1 cubic centimetre.	-06102406 cubic inch.	1 cubic inch	16.3
1 cubic decimetre.	61.02406 cubic inches.	1 cubic inch	- 01638698 cubic decimetre.
1 cubic decimetre	$\cdot 03531485$ cubic foot.	1 cubic foot	28-31670 cubic decimetres.
1 cubic metre .	$35 \cdot 31485$ cubic feet.	1 cubic foot	. 02831670 cubic metre.
1 cubic metre .	$1 \cdot 307957$ cubic yards.	1 cubic yard	.7645509 cubic metre.
1 millilitre . .	. 06102571 cubic inch.	1 cubic inch	16.38654 millilitres.
1 centilitre .	. 6102571 cubic inch.	1 cubic inch	, 1.638654 centilitres.
1 centilitre .	-07039217 gill.	1 gill . .	14-2061 centilitres.
1 decilitre	$\cdot 7039217$ gill.	1 gill	1.42061 decilitres.
1 decilitre	. 1759804 pint.	1 pint	$5 \cdot 68245$ decilitres.
1 litre . .	1.759804 pints.	1 pint	$\cdot 568245$ litre.
1 litre	. 879902 quart.	1 quart	1-13649 litres.
1 litre .	-2199755 gallon.	1 gallon	$4 \cdot 54596$ litres.
1 dekalitre .	$2 \cdot 199755$ gallons.	1 gallon .	$\cdot 454596$ dekalitre.
1 dekalitre.	$\cdot 2749694$ bushel.	1 bushel	3.63677 dekalitres.
1 hectolitre.	$2 \cdot 749694$ bushels.	1 bushel.	$\cdot 363677$ hectolitre.

[^0]Equivalents of Metric and British Measures.

Metric Units.	British Equivalents.	British Units.	Metric Equivalents.
	Avoirdupois.	Avoirdupois.	
1 milligramme .	- 01543236 grain.	1 grain.	64-79891 milligrammes.
1 centigramme. . .	-1543236 grain.	1 grain.	6.479891 centigrammes.
1 decigramme . . .	$1-543236$ grains.	1 grain.	$\cdot 6479891$ decigramme.
1 gramme .	15-43236 grains.	1 grain .	. 06479891 gramme.
1 gramme .	-0352740 ounce.	1 ounce . .	$28 \cdot 34952$ grammes.
1 dekagramme.	-352740 ounce.	1 ounce . .	2.834952 dekagrammes.
1 hectogramme	$3 \cdot 52740$ ounces.	1 ounce . .	- 2834952 hectogramme.
1 kilogramme.	35.27396 ounces.	1 ounce . .	-02834952 kilogramme.
1 kilogramme .	$2 \cdot 20462275$ pounds.	1 pound. .	. 453592343 kilogramme.
1 myriagramme	22.0462275 pounds.	1 pound . .	- 045359234 myriagramme.
1 quintal	1.96841 hundredweights.	1 hundredweight	$\cdot 50802342$ quintal.
1 millier or tonne .	.98420658 ton. Troy.	1 ton. . . . Troy.	1.0160468 milliers or tonnes.
1 gramme .	15-43236 grains.	1 grain .	.06479891 gramme.
1 gramme	$\cdot 03215075$ ounce.	1 ounce . .	$31 \cdot 103475$ grammes.
	Apothecaries.	Apothecaries.	
1 gramme - . -	15.43236 grains.	1 grain . .	-06479891 gramme.

Equivalents of Metric and British Measures.
Miscellaneous Compound Measures.

Metric Units.	British Equivalents.	British Units.	Metric Equivalents.
1 metre per second	3-2808 feet per second.	1 foot per second	-3048 metre per second.
1 metre per minute	$3 \cdot 2808$ feet per minute.	1 foot per minute	- 3048 metre per minute.
1 kilometre per hour.	- 6214 mile per hour.	1 mile per hour	-6093 kilometres per hour.
1 kilogramme per metre.	-67197 pound per foot.	1 pound per foot.	1.48817 kilogrms. per metre.
1 kilogramme per metre.	$2 \cdot 01590$ pounds per yard.	1 pound per yard	. 49606 kilogrm. per metre.
1 tonne per metre	- 899957 ton per yard.	1 ton per yard	1-11116 tonnes per metre.
1 tonne per kilometre	1.5839 tons per mile.	1 ton per mile	. 63134 tonne per kilometre.
$\left.\begin{array}{l} 1 \text { kilogramme per sq. } \\ \text { centimetre } \end{array}\right\}$	$14 \cdot 22329$ pounds per sq.in.	1 lb . per sq. inch .	$\left\{\begin{array}{l} 07031 \text { kilogramme per sq. } \\ \text { centimetre. } \end{array}\right.$
grm. per sq. metre.	- 20482 pound per sq. ft.	1	4.88244 kilogrms.per sq.metre.
1 kilogramme per cub. $\left.\begin{array}{l}\text { centimetre . . }\end{array}\right\}$ 1 kilogrm. per cub. metre	36.1271 pounds per cub.in.	b. per cub. inch	$\left\{\begin{array}{l}\text { - } 02768 \text { kilogramme per cub. } \\ \text { centimetre. }\end{array}\right.$
1 kilogrm. per cub. metre	- 0624276 lb . per cub. ft.	1b. per	16.019 kilogrms. per cub. metre.
1 kilogrm. per cub. metre	$1 \cdot 68555$ lbs. per cub. yard.	1 lb . per cub. yard	$\cdot 5933$ kilogrm. per cub. metre.
1 tonne per cub. metre .	$\cdot 75248$ ton per cub. yard.	1 ton per cub. yard	1.329 tonnes per cab. metre.
$\left\{\begin{array}{l} 1 \text { cub. centimetre per } \\ \text { kilogramme } \ldots . \end{array}\right\}$	$\cdot 02768$ cab. in. per lb.	ub. inch per lb.	$\left\{\begin{array}{l} 36 \cdot 1271 \text { cub. centimetres per } \\ \text { kilogramme. } \end{array}\right.$
1 cub. metre per kilogrm.	16.019 cub. ft. per pound.	1 cub. foot per lb.	- 06243 cub. metre per kilogrm.
1 cub. metre per kilogrm.	. 5933 cub. yard per lb.	1 cub. yard per lb.	$1 \cdot 68555$ cub. metres per kilogrm.
1 cub. metre per tonne	1.329 cub. yards per ton.	1 cub. yard per ton	$\cdot 75248$ cub. metre per tonne.

Equivalents of Metric and British Measures.
Miscellaneous Compound Measures.

Metric Units.	British Equivalents.	British Tnits.	Metric Equivalenta.
1 gramme per litre	$70 \cdot 155$ grains per gallon.	1 grain per gallon	- 01425 gramme per litre.
1 kilogramme per litre	10.0221 pounds per gallon.	1 pound per gallon.	-09978 kilogrm. per litre.
1 kilogrammetre	$7 \cdot 23303$ foot-pounds.	1 foot-pound	-1382547 kilogrammetre.
1 tonne-metre	3.22903 foot-tons.	1 foot-ton.	-309691 tonne-metre.
1 force de chev	- 986322 horse-power.	1 horse-power §	1.01387 force de cheval.
$\left.\begin{array}{l} 1 \text { kilogrm. per force } \\ \text { de cheval } \end{array}\right\}$	$\mathbf{2} 23520$ pounds per horsepower.	1 pound per horsepower	$\left\{\begin{array}{c} -44739 \text { kilogramme per force } \\ \text { de cheval. } \end{array}\right.$
$\left.\begin{array}{c}1 \text { sq. metre per force } \\ \text { de cheval . . }\end{array}\right\}$	10.9132 sq. feet per horsepower.	l sq. foot per horsepower	$\left\{\begin{array}{c} 09163 \text { sq. metre per force } \\ \text { de cheval. } \end{array}\right.$
1 calorie \dagger	3.96832 B.Th.U.	1 B.Th.U. II	. 251996 calorie.
1 calorie per sq. metre	-36867 B.Th.U. persq.foot.	1 B.Th.U. per sq.ft.	2-71247 calories per sq. metre
1 franc \ddagger per kilogrm.	- 35999 shilling per pound.	1 shilling per pound	$2 \cdot 7778$ francs per kilogrm.
1 franc per tonne.	- 04032 £ per ton.	$1 £$ per ton	24.802 francs per tonne.
1 franc per metre.	- 7257 shilling per yard.	1 shilling per yard.	1.37796 francs per metre.
1 franc per kilometre	-06386 £ per mile.	1 £ per mile . .	$15 \cdot 6586$ franes per kilometre.
1 franc per sq. metre	- 07373 shilling per sq. ft.	I shilling per sq. foot	13.563 francs per sq. metre.
1 franc per sq. metre .	-66359 shilling per sq. yd.	1 shilling per sq. yd.	1.507 francs per sq. metre.
1 franc per cub. metre	-02247 shilling per cub.ft.	1 shilling per cub. ft.	44.497 francs per cub. metre.
1 franc per cub. metre	.60679 shilling per cub. yd.	1 shilling per cub. yd.	1.648 francs per cub. metre.
1 franc per litre.	3.6079 shillings per gallon.	1 shilling per gallon	. 2772 franc per litre.

[^1]Equivalents of Millimetres in Inches.
Inches $=$ Millimetres $\times \mathbf{0 3 9 3 7 0 1 4 7}$

Mm.	Inches.	Mm.	Inches.	Mm.	Inches.	Mm .	Inches.
1	-0394	46	1.8110	91	$3 \cdot 5827$	136	$5 \cdot 3543$
2	$\cdot 0787$	47	1.8504	92	$3 \cdot 6221$	137	$5 \cdot 3937$
3	$\cdot 1181$	48	1.8898	93	$3 \cdot 6614$	138	$5 \cdot 4331$
4	$\cdot 1575$	49	1.9291	94	$3 \cdot 7008$	139	$5 \cdot 4725$
5	$\cdot 1969$	50	1.9685	95	$3 \cdot 7402$	140	$5 \cdot 5118$
6	- 2362	51	2.0079	96	$3 \cdot 7795$	141	$5 \cdot 5512$
7	$\cdot 2756$	52	2.0472	97	$3 \cdot 8189$	142	$5 \cdot 5906$
8	-3150	53	2.0866	98	3.8583	143	$5 \cdot 6299$
9	-3543	54	$2 \cdot 1260$	99	3.8976	144	$5 \cdot 6693$
10	-3937	55	$2 \cdot 1654$	100	3.9370	145	$5 \cdot 7087$
11	$\cdot 4331$	56	$2 \cdot 2047$	101	$3 \cdot 9764$	146	$5 \cdot 7480$
12	$\cdot 4724$	57	22441	102	$4 \cdot 0158$	147	$5 \cdot 7874$
13	. 5118	58	$2 \cdot 2835$	103	$4 \cdot 0551$	148	$5 \cdot 8268$
14	$\cdot 5512$	59	$2 \cdot 3228$	104	40945	149	$5 \cdot 8662$
15	$\cdot 5906$	60	$2 \cdot 3622$	105	$4 \cdot 1339$	150	5.9055
16	-6299	61	$2 \cdot 4016$	106	$4 \cdot 1732$	151	5.9449
17	- 6693	62	$2 \cdot 4409$	107	$4 \cdot 2126$	152	5.9843
18	-7087	63	$2 \cdot 4803$	108	$4 \cdot 2520$	153	6.0236
19	-7480	64	$2 \cdot 5197$	109	$4 \cdot 2913$	154	6.0630
20	. 7874	65	2.5591	110	$4 \cdot 3307$	155	6.1024
21	-8268	66	$2 \cdot 5984$	111	$4 \cdot 3701$	156	$6 \cdot 1417$
22	-8661	67	26378	112	$4 \cdot 4095$	157	6.1811
23	-9055	68	$2 \cdot 6772$	113	$4 \cdot 4488$	158	$6 \cdot 2205$
24	-9449	69	$2 \cdot 7165$	114	$4 \cdot 4882$	159	6.2599
25	. 9843	70	2.7559	115	$4 \cdot 5276$	160	6-2992
26	1.0236	71	$2 \cdot 7953$	116	$4 \cdot 5669$	161	6.3386
27	1.0630	72	2.8347	117	$4 \cdot 6063$	162	$6 \cdot 3780$
28	1-1024	73	$2 \cdot 8740$	118	$4 \cdot 6457$	163	6.4173
29	$1 \cdot 1417$	74	2.9134	119	$4 \cdot 6850$	164	6.4567
30	1.1811	75	2.9528	120	4.7244	165	6.4961
31	1.2205	76	2.9921	121	4.7638	166	6.5354
32	$1 \cdot 2598$	77	3.0315	122	$4 \cdot 8032$	167	6.5748
33	1.2992	78	3.0709	123	$4 \cdot 8425$	168	6.6142
34	1.3386	79	3-1102	124	4.8819	169	6.6536
35	1.3780	80	$3 \cdot 1496$	125	$4 \cdot 9213$	170	6.6929
36	1.4173	81	3•1890	126	$4 \cdot 9606$	171	6.7323
37	1.4567	82	3-2284	127	$5 \cdot 0000$	172	6.7717
38	1.4961	83	$3 \cdot 2677$	128	5.0394	173	6.8110
39	1.5354	84	$3 \cdot 3071$	129	$5 \cdot 0787$	174	6.8504
40	$1 \cdot 5748$	85	3-3465	130	$5 \cdot 1181$	175	6.8898
41	1.6142	86	$3 \cdot 3858$	131	$5 \cdot 1575$	176	6.9291
42	1.6535	87	3.4252	132	$5 \cdot 1989$	177	6.9685
43	1.6929	88	$3 \cdot 4646$	133	5.2362	178	7.0079
44	1.7323	89	$3 \cdot 5039$	134	5.2756	179	7.0473
45	1.7717	90	$3 \cdot 5433$	135	8.3160	180	7.0866

Equivalents of Millimetres in Inches.

Mm.	Inches.	Mm.	Inches.	Mm.	Inches.	Mm.	Incher.
181	$7 \cdot 1260$	226	8.8977	271	$10 \cdot 6693$	316	12.4410
182	7-1654	227	8.9370	272	$10 \cdot 7087$	317	$12 \cdot 4803$
183	$7 \cdot 2047$	228	8.9764	273	$10 \cdot 7481$	318	$12 \cdot 5197$
184	$7 \cdot 2441$	229	9.0158	274	$10 \cdot 7874$	319	$12 \cdot 5591$
185	$7 \cdot 2835$	230	9.0551	275	10.8268	320	$12 \cdot 5984$
186	$7 \cdot 3228$	231	9.0945	276	10.8662	321	$12 \cdot 6378$
187	$7 \cdot 3622$	232	9.1339	277	10.9055	322	12.6772
188	$7 \cdot 4016$	233	$9 \cdot 1732$	278	10.9449	323	$12 \cdot 7166$
189	$7 \cdot 4410$	234	$9 \cdot 2126$	279	10.9843	324	$12 \cdot 7559$
190	$7 \cdot 4803$	235	9.2520	280	11.0236	325	12.7953
191	$7 \cdot 5197$	236	$9 \cdot 2914$	281	11.0630	326	$12 \cdot 8347$
192	$7 \cdot 5591$	237	9-3307	282	11-1024	327	12.8740
193	$7 \cdot 5984$	238	9.3701	283	11-1418	328	12.9134
194	$7 \cdot 6378$	239	$9 \cdot 4095$	284	11-1811	329	12.9528
195	7.6772	240	$9 \cdot 4488$	285	11-2205	330	12.9921
196	7.7165	241	$9 \cdot 4882$	286	$11 \cdot 2599$	331	13.0315
197	7.7559	242	$9 \cdot 5276$	287	11.2992	332	13.0709
198	7.7953	243	$9 \cdot 5669$	288	11-3386	333	$13 \cdot 1103$
199	7.8347	244	$9 \cdot 6063$	289	11.3780	334	$13 \cdot 1496$
200	7.8740	245	$9 \cdot 6457$	290	11.4173	335	$13 \cdot 1890$
201	7.9134	246	$9 \cdot 6851$	291	$11 \cdot 4567$	336	$13 \cdot 2284$
202	7.9528	247	$9 \cdot 7244$	292	11.4961	337	13.2677
203	7.9921	248	9.7638	293	11.5355	338	13-3071
204	8.0315	249	9.8032	294	11.5748	339	$13 \cdot 3465$
205	$8 \cdot 0709$	250	9.8425	295	11-6142	340	$13 \cdot 3858$
206	$8 \cdot 1103$	251	9.8819	296	11.6536	341	13.4252
207	$8 \cdot 1496$	252	9.9213	297	11.6929	342	$13 \cdot 4646$
208	$8 \cdot 1890$	253	9.9606	298	11.7323	343	$13 \cdot 5040$
209	8.2284	254	10.0000	299	$11 \cdot 7717$	344	$13 \cdot 5433$
210	$8 \cdot 2677$	255	10.0394	300	11.8110	345	13.5827
211	$8 \cdot 3071$	256	10.0788	301	11.8504	346	13.6221
212	$8 \cdot 3465$	257	$10 \cdot 1181$	302	11.8898	347	$13 \cdot 6614$
213	$8 \cdot 3858$	258	$10 \cdot 1575$	303	11.9292	348	13.7008
214	$8 \cdot 4252$	259	$10 \cdot 1969$	304	11.9685	349	13.7402
215	$8 \cdot 4646$	260	10.2362	305	12.0079	350	13.7796
216	$8 \cdot 5040$	261	10.2756	306	12.0473	351	13.8189
217	$8 \cdot 5433$	262	10.3150	307	12.0866	352	13.8583
218	8.5827	263	$10 \cdot 3543$	308	12.1260	353	13.8977
219	$8 \cdot 6221$	264	10.3937	309	$12 \cdot 1654$	354	13.9370
220	$8 \cdot 6614$	265	10.4331	310	12.2047	355	13.9764
221	$8 \cdot 7008$	268	10.4725	311	12.2441	356	14.0158
222	$8 \cdot 7402$	267	10.5118	312	12.2835	357	14.0551
223	8-7795	268	10-5512	313	12.3229	358	14.0945
224	8.8189	269	10.5906	314	12.3622	359	14.1339
225	8.8583	270	10.6299	315	$12 \cdot 4016$	360	$14 \cdot 1733$

Equivalents of Millimetres in Inches.

	Tnch	Mm.	Inc	m.	Inc	Mm.	Inches.
361	$14 \cdot 2126$	406	$15 \cdot 9843$	451	17.7559	496	$19 \cdot 5276$
362	$14 \cdot 2520$	407	16.0236	452	17-7953	497	$19 \cdot 5670$
363	$14 \cdot 2914$	408	$16 \cdot 0630$	453	$17 \cdot 8347$	498	$19 \cdot 6063$
364	$14 \cdot 3307$	409	16.1024	454	$17 \cdot 8740$	499	$19 \cdot 6457$
365	14-3701	410	$16 \cdot 1418$	455	17.9134	500	$19 \cdot 6851$
366	$14 \cdot 4095$	411	16.1811	456	$17 \cdot 9528$	501	19.7244
367	14.4488	412	16.2205	457	17.9922	502	19.7638
368	14.4882	413	$16 \cdot 2599$	458	18.0315	503	$19 \cdot 8032$
369	$14 \cdot 5276$	414	16.2992	459	18.0709	504	$19 \cdot 8426$
370	$14 \cdot 5670$	415	16.3386	460	$18 \cdot 1103$	505	19.8819
371	14.6063	416	16.3780	461	$18 \cdot 1496$	506	19.9213
372	$14 \cdot 6457$	417	16.4174	462	18.1890	507	$19 \cdot 9607$
373	14.6851	418	16.4567	463	$18 \cdot 2284$	508	$20 \cdot 0000$
374	14.7244	419	$16 \cdot 4961$	464	18.2677	509	20.0394
375	14.7638	420	16.5355	465	$18 \cdot 3071$	510	20.0788
376	14.8032	421	16.5748	466	$18 \cdot 3465$	511	20.1181
377	14.8425	422	16.6142	467	$18 \cdot 3859$	512	$20 \cdot 1575$
378	$14 \cdot 8819$	423	$16 \cdot 6536$	468	$18 \cdot 4252$	513	$20 \cdot 1969$
379	14.9213	424	$16 \cdot 6929$	469	$18 \cdot 4646$	514	20.2363
380	14-9607	425	16.7323	470	$18 \cdot 5040$	515	$20 \cdot 2756$
381	$15 \cdot 0000$	426	16.7717	471	18.5433	516	$20 \cdot 3150$
382	15.0394	427	16.8111	472	18.5827	517	$20 \cdot 3544$
383	15.0788	428	16.8504	473	18.6221	518	$20 \cdot 3937$
384	$15 \cdot 1181$	429	16.8898	474	$18 \cdot 6614$	519	$20 \cdot 4331$
385	15.1575	430	16.9292	475	$18 \cdot 7008$	520	20.4725
386	15-1969	431	16.9685	476	$18 \cdot 7402$	521	20.5118
387	15.2362	432	$17 \cdot 0079$	477	18.7796	522	20.5512
388	15.2756	433	$17 \cdot 0473$	478	18.8189	523	20.5906
389	$15 \cdot 3150$	434	$17 \cdot 0866$	479	18.8583	524	20.6300
390	$15 \cdot 3544$	435	$17 \cdot 1280$	480	$18 \cdot 8977$	525	20.6693
391	15.3937	436	$17 \cdot 1654$	481	18.9370	526	20.7087
392	$15 \cdot 4331$	437	17-2048	482	18.9764	527	20.7481
393	15.4725	438	17-2441	483	$19 \cdot 0158$	528	20.7874
394	$15 \cdot 5118$	439	17-2835	484	19.0552	529	20.8268
395	15.5512	440	$17 \cdot 3229$	485	19.0945	530	20.8662
396	15.5906	441	$17 \cdot 3622$	486	$19 \cdot 1339$	531	20.9055
397	15.6299	442	$17 \cdot 4016$	487	$19 \cdot 1733$	532	20.9449
398	15.6693	443	$17 \cdot 4410$	488	$19 \cdot 2126$	533	20.9843
399	15.7087	444	$17 \cdot 4803$	489	$19 \cdot 2520$	534	21.0237
400	15.7481	445	$17 \cdot 5197$	490	$19 \cdot 2914$	535	21.0630
401	15.7874	446	$17 \cdot 5591$	491	$19 \cdot 3307$	536	21-1024
402	15.8268	447	$17 \cdot 5985$	492	19.3701	537	$21 \cdot 1418$
403	15.8662	448	17.6378	493	$19 \cdot 4095$	538	$21 \cdot 1811$
404	15.9055	449	$17 \cdot 6772$	494	19.4489	539	21.2205
405	15.9449	450	$17 \cdot 7166$	495	$19 \cdot 4882$	540	21.2599

Equivalents of Millimetres in Inches.

Mm.	Inches.	Mm.	Inches.	Mm.	Inches.	Mm.	Inches.
541	$21 \cdot 2992$	586	$23 \cdot 0709$	631	$24 \cdot 8426$	676	$26 \cdot 6142$
542	$21 \cdot 3386$	587	$23 \cdot 1103$	632	$24 \cdot 8819$	677	$26 \cdot 6536$
543	$21 \cdot 3780$	588	$23 \cdot 1496$	633	$24 \cdot 9213$	678	$26 \cdot 6930$
544	$21 \cdot 4174$	589	$23 \cdot 1890$	634	$24 \cdot 9607$	679	$26 \cdot 7323$
545	$21 \cdot 4567$	590	$23 \cdot 2284$	635	$25 \cdot 0000$	680	$26 \cdot 7717$
546	$21 \cdot 4961$	591	$23 \cdot 2678$	636	$25 \cdot 0394$	681	$26 \cdot 8111$
547	$21 \cdot 5355$	592	$23 \cdot 3071$	637	$25 \cdot 0788$	682	$26 \cdot 8504$
548	$21 \cdot 5748$	593	$23 \cdot 3465$	638	$25 \cdot 1182$	683	$26 \cdot 8898$
549	$21 \cdot 6142$	594	$23 \cdot 3859$	639	$25 \cdot 1575$	684	$26 \cdot 9292$
550	$21 \cdot 6536$	595	$23 \cdot 4252$	640	$25 \cdot 1969$	685	$26 \cdot 9686$
551	$21 \cdot 6930$	596	$23 \cdot 4646$	641	$25 \cdot 2363$	686	$27 \cdot 0079$
552	$21 \cdot 7323$	597	$23 \cdot 5040$	642	$25 \cdot 2756$	687	$27 \cdot 0473$
553	$21 \cdot 7717$	598	$23 \cdot 5433$	643	$25 \cdot 3150$	688	$27 \cdot 0867$
554	$21 \cdot 8111$	599	$23 \cdot 5827$	644	$25 \cdot 3544$	689	$27 \cdot 1260$
555	$21 \cdot 8504$	600	$23 \cdot 6221$	645	$25 \cdot 3937$	690	$27 \cdot 1654$
556	$21 \cdot 8898$	601	$23 \cdot 6615$	646	$25 \cdot 4331$	691	$27 \cdot 2048$
557	$21 \cdot 9292$	602	$23 \cdot 7008$	647	$25 \cdot 4725$	692	$27 \cdot 2441$
558	$21 \cdot 9685$	603	$23 \cdot 7402$	648	$25 \cdot 5119$	693	$27 \cdot 2835$
559	$22 \cdot 0079$	604	$23 \cdot 7796$	649	$25 \cdot 5512$	694	$27 \cdot 3229$
560	$22 \cdot 0473$	605	$23 \cdot 8189$	650	$25 \cdot 5906$	695	$27 \cdot 3623$
561	$22 \cdot 0867$	606	$23 \cdot 8583$	651	$25 \cdot 6300$	696	$27 \cdot 4016$
562	$22 \cdot 1260$	607	$23 \cdot 8977$	652	$25 \cdot 6693$	697	$27 \cdot 4410$
563	$22 \cdot 1654$	608	$23 \cdot 9370$	653	$25 \cdot 7087$	698	$27 \cdot 4804$
564	$22 \cdot 2048$	609	$23 \cdot 9764$	654	$25 \cdot 7481$	699	$27 \cdot 5197$
565	$22 \cdot 2441$	610	$24 \cdot 0158$	655	$25 \cdot 7874$	700	$27 \cdot 5591$
566	$22 \cdot 2835$	611	$24 \cdot 0552$	656	$25 \cdot 8268$	701	$27 \cdot 5985$
567	$22 \cdot 3229$	612	$24 \cdot 0945$	657	$25 \cdot 8662$	702	$27 \cdot 6378$
568	$22 \cdot 3622$	613	$24 \cdot 1339$	658	$25 \cdot 9056$	703	$27 \cdot 6772$
569	$22 \cdot 4016$	614	$24 \cdot 1733$	659	$25 \cdot 9449$	704	$27 \cdot 7166$
570	$22 \cdot 4410$	615	$24 \cdot 2126$	660	$25 \cdot 9843$	705	$27 \cdot 7560$
571	$22 \cdot 4804$	616	$24 \cdot 2520$	661	$26 \cdot 0237$	706	$27 \cdot 7953$
572	$22 \cdot 5197$	617	$24 \cdot 2914$	662	$26 \cdot 0630$	707	$27 \cdot 8347$
573	$22 \cdot 5591$	618	$24 \cdot 3308$	663	$26 \cdot 1024$	708	$27 \cdot 8741$
574	$22 \cdot 5985$	619	$24 \cdot 3701$	664	$26 \cdot 1418$	709	$27 \cdot 9134$
575	$22 \cdot 6378$	620	$24 \cdot 4095$	665	$26 \cdot 1811$	710	$27 \cdot 9528$
576	$22 \cdot 6772$	621	$24 \cdot 4489$	666	$26 \cdot 2205$	711	$27 \cdot 9922$
577	$22 \cdot 7166$	622	$24 \cdot 4882$	667	$26 \cdot 2599$	712	$28 \cdot 0315$
578	$22 \cdot 7559$	623	$24 \cdot 5276$	668	$26 \cdot 2993$	713	$28 \cdot 0709$
579	$22 \cdot 7953$	624	$24 \cdot 5670$	669	$26 \cdot 3386$	714	$28 \cdot 1103$
580	$22 \cdot 8347$	625	$24 \cdot 6063$	670	$26 \cdot 3780$	715	$28 \cdot 1497$
581	$22 \cdot 8741$	626	$24 \cdot 6457$	671	$26 \cdot 4174$	716	$28 \cdot 1890$
582	$22 \cdot 9134$	627	$24 \cdot 6851$	672	$26 \cdot 4567$	717	$28 \cdot 2284$
583	$22 \cdot 9528$	628	$24 \cdot 7245$	673	$26 \cdot 4961$	718	$28 \cdot 2678$
584	$22 \cdot 9822$	629	$24 \cdot 7638$	674	$26 \cdot 5355$	719	$28 \cdot 3071$
585	$23 \cdot 0315$	630	$24 \cdot 8032$	675	$26 \cdot 5748$	720	$28 \cdot 3465$

Equivalents of Millimetres in Inches.

Mm.	Inches.	Mm.	Inches.	Mm.	Inches.	Mm.	nches.
721	28.3859	766	30-1575	811	31.9292	856	33.7008
722	28.4252	767	30-1969	812	31.9686	857	$33 \cdot 7402$
723	28.4646	768	$30 \cdot 2363$	813	$32 \cdot 0079$	858	$33 \cdot 7796$
724	$28 \cdot 5040$	769	30-2756	814	32.0473	859	33.8190
725	$28 \cdot 5434$	770	$30 \cdot 3150$	815	32.0867	860	$33 \cdot 8583$
726	28.5827	771	30.3544	816	32-1260	861	33.8977
727	$28 \cdot 6221$	772	30-3938	817	32-1654	862	33.9371
728	$28 \cdot 6615$	773	30.4331	818	32-2048	863	33.9764
729	$28 \cdot 7008$	774	$30 \cdot 4725$	819	32-2442	864	34-0158
730	28.7402	775	$30 \cdot 5119$	820	32-2835	865	34.0552
731	$28 \cdot 7796$	776	$30 \cdot 5512$	821	32-3229	866	34.0945
732	28.8189	777	$30 \cdot 5906$	822	$32 \cdot 3623$	867	34.1339
733	28.8583	778	30.6300	823	$32 \cdot 4016$	868	34.1733
734	28.8977	779	$30 \cdot 6693$	824	$32 \cdot 4410$	869	34-2127
735	28.9371	780	$30 \cdot 7087$	825	$32 \cdot 4804$	870	34.2520
736	28.9764	781	$30 \cdot 7481$	826	$32 \cdot 5197$	871	34-2914
737	29.0158	782	30.7875	827	32.5591	872	34.3308
738	29.0552	783	30.8268	828	32.5985	873	34-3701
739	29.0945	784	30.8662	829	$32 \cdot 6379$	874	34.4095
740	29.1339	785	30.9056	830	32.6772	875	34.4489
741	29-1733	786	30.9449	831	32.7166	876	34.4882
742	29.2126	787	30.9843	832	$32 \cdot 7560$	877	34.5276
743	29.2520	788	31.0237	833	$32 \cdot 7953$	878	34.5670
744	29.2914	789	31.0630	834	32.8347	879	34.6064
745	29.3308	790	31-1024	835	32.8741	880	$34 \cdot 6457$
746	$29 \cdot 3701$	791	31-1418	836	32.9134	881	34.8851
747	$29 \cdot 4095$	792	31-1812	837	32.9528	882	34.7245
748	29.4489	793	31.2205	838	32.9922	883	34.7638
749	29.4882	794	31-2599	839	33.0316	884	34.8032
750	29.5276	795	31.2993	840	33.0709	885	34.8426
751	29.5670	796	31-3386	841	33.1103	886	34.8820
752	29.6064	797	31-3780	842	33-1497	887	34.9213
753	29.6457	798	31-4174	843	33-1890	888	34.9607
754	29.6851	799	31-4567	844	33-2284	889	35-0001
755	29.7245	800	31.4981	845	33.2678	890	35.0394
756	29.7638	801	31.5355	846	$33 \cdot 3071$	891	35.0788
757	29.8032	802	31.5749	847	33.3465	892	35.1182
758	29.8426	803	31.6142	848	33.3859	893	35.1575
759	29.8819	804	31.6536	849	$33 \cdot 4253$	804	35.1969
780	29.9213	805	31.6930	850	33.4646	885	35.2883
761	29.9607	806	31.7323	851	$33 \cdot 5040$	886	35.2757
762	30.0001	807	31.7717	852	33.5434	897	35-3150
763	30.0394	808	31.8111	853	33.5827	898	35.3544
764	30.0788	809	31-8504	854	33.6221	899	35.3988
765	$30 \cdot 1182$	810	31.8898	855	33.6615	900	85.4881

Equivalents of Millimetres in Inches．

Mm．	Inches．	Mm．	Inches．	Mm．	Inches	Mm．	Inche
901	35.4725	926	36－4568	951	37－4410	976	38.4253
902	35.5119	927	36－4961	952	37－4804	977	38．4646
903	35．5512	928	36．5355	953	37．5198	978	38－5040
904	35．5906	929	36．5749	954	37.5591	979	38．5434
905	35.6300	930	36.6142	955	37．5985	980	38．5827
906	35．6694	931	36．6536	956	37．6379	981	38.6221
907	35.7087	932	36.6930	957	37．6772	982	38.6615
908	35.7481	933	36．7323	958	37.7166	983	38.7009
909	35.7875	934	36.7717	959	37.7560	984	38.7402
910	35．8268	935	36.8111	960	37.7953	985	38.7796
911	35－8662	936	36．8505	961	37.8347	986	38.8190
912	$35 \cdot 9056$	937	36.8898	962	37.8741	987	38.8583
913	35.9449	938	36.9292	963	37.9135	988	38.8977
914	35.9843	939	36.9686	964	37.9528	989	38.9371
915	36.0237	940	37.0079	965	37.9922	990	38.9764
916	36.0631	941	37.0473	966	38.0316	991	39.0158
917	36．1024	942	37.0867	967	38.0709	992	39.0552
918	36．1418	943	37－1260	968	38.1103	993	39.0946
919	36－1812	944	37－1654	969	$38 \cdot 1497$	994	$39 \cdot 1339$
920	36．2205	945	37.2048	970	38．1890	995	39．1733
921	36－2599	946	$37 \cdot 2442$	971	38.2284	996	$39 \cdot 2127$
922	36.2993	947	37.2835	972	38.2678	997	39.2520
923	$36 \cdot 3386$	948	37－3229	973	38－3072	998	39.2914
924	36．3780	949	37－3623	974	$38 \cdot 3465$	999	39．3308
925	36.4174	950	$37 \cdot 4016$	975	38.3859	1000	$39 \cdot 3701$

Equivalents of Fractions of an Inch in Millimetres． Millimetres $=$ Inches $\times 25 \cdot 399956$ ．

Inoh．	Mm．	Inch．	Mm．	Inch．	Mm．	Inch	Mm．
${ }^{2} 6$	－3969	87	6.7469	部	13.0969	\％${ }^{\text {d }}$	$19 \cdot 4468$
$8^{\frac{1}{31}}$	． 7937	${ }^{\text {8 }}$	7.1437	${ }^{17}$	13.4937	38 ${ }^{\frac{8}{8}}$	19.8437
8	$1 \cdot 1906$	49	7.5406	新	13.8906		$20 \cdot 2406$
	1.5875	${ }^{\frac{18}{18}}$	7.9375	${ }^{18}{ }^{2}$	14.2875	${ }^{\frac{8}{8}}$	$20 \cdot 6375$
${ }^{6} 4$	1.9844	䑶	8.3344	${ }^{\text {\％}}$	14.6843		21.0343
	$2 \cdot 3812$	$8^{\frac{11}{3}}$	8.7312		15.0812	${ }^{17}$	21.4312
${ }^{7}$	2.7781 3.1750	新	${ }^{9} \cdot 1281$	孝晏	15.4781	星岳	21.8281
	$3 \cdot 1750$		$9 \cdot 5250$	${ }^{\frac{8}{4}}$	$15 \cdot 8750$	${ }^{\frac{1}{8}}$	22.2250
${ }^{81}$	3.5719		9.9219	ft	16.2718		22.6218
$7^{\frac{8}{81}}$	$3 \cdot 9687$ 4.3656		10.3187 10.7156	\％	16.6687	景	23.0187
${ }^{\frac{3}{8} 8}$	$4 \cdot 7625$	${ }^{8}{ }^{\text {\％}}$	11.1125		17.4625		23.4156 23.8125
$7{ }^{1}$	$5 \cdot 1594$		11.5094	新	17．8593		24.2093
	$5 \cdot 5562$	1	11.9062	\％	18.2562	${ }^{\frac{1}{8} \frac{1}{2}}$	24.6062
14	$5 \cdot 9531$	新	12．3031	$4{ }^{4}$	18.6531	$4{ }^{4}$	25.0031
1	6.3500	1	12.7000	亲	18.0500	1	25.4000

Equivalents of Inches and Fractions of an Inch in Millimetres.

Millimetres $=$ Inches $\times \mathbf{2 5 \cdot 3 9 9 9 5 6}$.

In.				\% 8				8
1								
2	$50 \cdot 800$	53		60.325				
3	$76 \cdot 200$	79	82-550	85	88.	92	$95 \cdot 250$	98.425
4	101.60	104•77	10	111-12	11	47		
5	127.00	130		13				
6								
7	177.8	180.97	184	187				
8	$203 \cdot$	206.37	$209 \cdot 55$	212.72	21	21	222.25	$225 \cdot 42$
9	228	231.77		$238 \cdot 12$		$244 \cdot 47$	5	$250 \cdot 82$
10	254							
11								
12	304	307	311	314	31			
13	$330 \cdot 20$	333.37	336-55	339.72	34	3	5	42
14	$355 \cdot 60$	35	36	$365 \cdot 12$	36	2		
15	38							
16	406							
17	431	43		$441 \cdot 32$				
18	$457 \cdot 20$	$460 \cdot 37$	463.55	466.72		47	476-25	
19				$492 \cdot 12$				
20								
21								
22	558	56	$565 \cdot 15$	568.32	571.5	574.67		
23	584		590	593.72	596	600		
2	609	61	61	619	62	62		
25								
26								
27	685	688	692.15	$695 \cdot 32$	698	701.	704	
28	711.20	714	717	720.72	723	727.	73	
29	736.60		74	$746 \cdot 12$	74	7	755.65	
30								
31		$790 \cdot 57$		796.92		803		
32	$812 \cdot 80$	$815 \cdot 97$	819.15	822.32	825.50	828.67	831	35.02
33	838.20	841.37	844.55	847.72	850.90	$854 \cdot 07$	857.25	$60 \cdot 42$
34	$863 \cdot 60$	866.77	869.95	873.12	876.30	879.47	882.65	
35	889.0	892.17	895.35	898.52	901.7	904.8	908	911.22
	. 0	1/8	$1 / 4$	8/8	1/2	\%	/4	8

Equivalents of Metres in Feet.

Metres.	- 0	$\cdot 1$	- 2	-3	$\cdot 4$	$\cdot 5$	-6	$\cdot 7$	$\cdot 8$	-	Metres
1	$3 \cdot 28085$	$3 \cdot 60893$	3.93701	$4 \cdot 26510$	4.59318	4.92127	5-24935	5-57744	5.90552	6.23361	1
2	6.56169	$6 \cdot 88978$	$7 \cdot 21786$	$7 \cdot 54594$	$7 \cdot 87403$	$8 \cdot 20211$	$8 \cdot 53020$	8-85828	$9 \cdot 18637$	$9 \cdot 51445$	2
3	$9 \cdot 84254$	$10 \cdot 1706$	$10 \cdot 4987$	10.8268	11-1549	11.4830	11.8110	$12 \cdot 1391$	$12 \cdot 4672$	12.7953	3
4	13-1234	$13 \cdot 4515$	13.7796	$14 \cdot 1076$	14.4357	14.7638	15.0919	15.4200	$15 \cdot 7481$	16.0761	4
5	16.4042	16.7393	17-0604	17-3885	17.7166	18.0447	18.3727	18-7008	19.0289	19.3570	5
6	19.6851	20.013	20.3412	20.6693	20.9974	21-3255	21-6536	21-9817	$22 \cdot 3098$	22.6378	6
7	22.9659	23.2940	23.6221	23.9502	$24 \cdot 2783$	$24 \cdot 6063$	24.9344	$25 \cdot 2625$	25.5906	$25 \cdot 9187$	7
8	26.2468	26-5748	26.9029	$27 \cdot 2310$	27-5591	27-8872	28-2153	28.5434	28.8714	$29 \cdot 1995$	8
9	29.5276	29.8557	$30 \cdot 1838$	30.5119	30.8399	31-1680	31-4961	21-8242	32-1523	32-4804	9
10	32-8085	33-1365	\|33-4646	133.7927	34-1208	34-4489	34-7770	35•1050	$35 \cdot 4331$	$\left\lvert\, \begin{aligned} & 35 \cdot 7612\end{aligned}\right.$	10

\footnotetext{
Equivalents of Feet in Metres. Metres $=$ Feet $\times \cdot 30479947$

Feet.	- 0	$\cdot 1$	$\cdot 2$	-3	-4	$\cdot 5$	$\cdot 6$	$\cdot 7$	-8	$\cdot 9$	Feet.
1	- 304799	- 335279	- 365759	- 396239	- 426719	-457199	$\cdot 487679$	$\cdot 518159$	$\cdot 548639$. 579119	1
2	- 609599	- 640079	$\cdot 670559$	-701039	. 731519	. 761999	-792479	-822959	. 853439	. 883918	2
3	- 914398	. 944878	$\cdot 975358$	1.00584	1.03632	$1-06680$	$1 \cdot 09728$	1-12776	$1 \cdot 15824$	1-18872	3
4	1.21920	1.24968	1.28016	1.31064	$1 \cdot 34112$	1-37160	$1 \cdot 40208$	1.43256	1-46304	$1 \cdot 49352$	4
5	1.52400	1-55448	1.58496	$1 \cdot 61544$	$1 \cdot 64592$	1.67640	$1 \cdot 70688$	1.73736	1.76784	1.79832	5
6	1.82880	1.85928	1.88976	1.92024	$1 \cdot 95072$	1.98120	$2 \cdot 01168$	$2 \cdot 04216$	$2 \cdot 07264$	2-10312	6
7	2.13360	$2 \cdot 16408$	$2 \cdot 19456$	2-22504	2-25552	$2 \cdot 28600$	$2 \cdot 31648$	$2 \cdot 34696$	$2 \cdot 37744$	$2 \cdot 40792$	7
8	$2 \cdot 43840$	$2 \cdot 46888$	$2 \cdot 49936$	$2 \cdot 52984$	$2 \cdot 56032$	$2 \cdot 59080$	$2 \cdot 62128$	2-65176	$2 \cdot 68224$	$2 \cdot 71272$	8
9	$2 \cdot 74320$	$2 \cdot 77368$	$2 \cdot 80416$	$2 \cdot 83464$	$2 \cdot 86512$	$2 \cdot 89559$	$2 \cdot 92607$	$2 \cdot 95655$	2.98703	$3 \cdot 01751$	9
10	13.04799	13.07847	3-10895	13-13943	3-16991	\|3-20039	1-23087	-3.26135	1-29183	3-32231	10

Equivalents of Kilometres in Statute Miles. Statute miles $=$ Kilometres $\times \mathbf{6 2 1 3 7 2 2 7}$.

$\begin{gathered} \text { Kilo- } \\ \text { metres. } \end{gathered}$	- 0	$\cdot 1$	-2	-3	- 4	$\cdot 5$	$\cdot 6$	$\cdot 7$	-8	-9	Kilo-
1	- 621372	- 683509	$\cdot 745647$	- 807784	- 869921	-932058	. 994196	$1 \cdot 05633$	$1 \cdot 11847$	$1 \cdot 18061$	1
2	1.24274	1.30488	1.36702	1.42916	$1 \cdot 49129$	1.55343	1.61557	1.67771	$1 \cdot 73984$	$1 \cdot 80198$	2
3	1.86412	1.92625	1.98839	$2 \cdot 05053$	$2 \cdot 11267$	2-17480	2-23694	$2 \cdot 29908$	$2 \cdot 36121$	$2 \cdot 42335$	3
4	$2 \cdot 48549$	$2 \cdot 54763$	$2 \cdot 60976$	$2 \cdot 67190$	$2 \cdot 73404$	$2 \cdot 79618$	$2 \cdot 85831$	$2 \cdot 92045$	2.98259	$3 \cdot 04472$	4
5	3-10686	3-16900	3-23114	3-29327	3-35541	3-41755	$3 \cdot 47968$	$3 \cdot 54182$	$3 \cdot 60396$	$3 \cdot 66610$	5
6	3-72823	$3 \cdot 79037$	3-85251	$3 \cdot 91465$	3-97678	4.03892	4-10106	$4 \cdot 16319$	$4 \cdot 22533$	4-28747	6
7	4-34961	$4 \cdot 41174$	$4 \cdot 47388$	$4 \cdot 53602$	$4 \cdot 59815$	$4 \cdot 66029$	$4 \cdot 72243$	$4 \cdot 78457$	$4 \cdot 84670$	$4 \cdot 90884$	7
8	4.97098	5.03312	5.09525	5-15739	$5 \cdot 21953$	$5 \cdot 28166$	$5 \cdot 34380$	$5 \cdot 40594$	$5 \cdot 46808$	$5 \cdot 53021$	8
9	5.59235	5-65449	$5 \cdot 71662$	5.77876	5-84090	5-90304	5-96517	$6 \cdot 02731$	6.08945	6-15159	9
10	6.21372	6.27586	6.33800	\|6.40013	6-46227	6-52441	6.58655	$6 \cdot 64868$	6.71082	6.77296	10

Nautical miles $*=$ Kilometres $\times \mathbf{5 3 9 6 1 2 7 6}$.

$\begin{array}{c\|} \text { Kilo- } \\ \text { metres. } \end{array}$	- 0	$\cdot 1$	$\cdot 2$	$\cdot 3$. 4	- 5	- 6	$\cdot 7$	-8	$\cdot 9$	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$
1	. 539613	. 593574	-647535	$\cdot 701497$	$\cdot 755458$	- 809419	. 863380	.917342	$\cdot 971303$	1.02526	1
2	1.07923	1.13319	1-18715	1.24111	1.29507	1.34903	1.40299	1.45695	1.51092	1.56488	2
3	1.61884	1-67280	1.72676	1.78072	1.83468	1-88864	1.94261	1.99657	$2 \cdot 05053$	$2 \cdot 10449$	3
4	$2 \cdot 15845$	$2 \cdot 21241$	$2 \cdot 26637$	$2 \cdot 32033$	$2 \cdot 37430$	$2 \cdot 42826$	$2 \cdot 48222$	$2 \cdot 53618$	$2 \cdot 59014$	$2 \cdot 64410$	4
5	$2 \cdot 69806$	$2 \cdot 75203$	$2 \cdot 80599$	$2 \cdot 85995$	2.91391	2.96787	3-02183	3.07579	3-12975	3-18372	5
6	3-23768	$3 \cdot 29164$	$3 \cdot 34560$	3-39956	3-45352	3-50748	3-56144	$3 \cdot 61541$	3-66937	3-72333	6
7	3-77729	3.83125	$3 \cdot 88521$	3.93917	3.99313	$4 \cdot 04710$	4-10106	4-15502	4-20898	4-26294	7
8	$4 \cdot 31690$	$4 \cdot 37086$	4-42482	4-47879	4-53275	4-58671	$4 \cdot 64067$	$4 \cdot 69463$	4-74859	4.80255	8
9	4-85651	4.91048	4.96444	5-01840	5.07236	5-12632	5-18028	5-23424	5-28821	$5 \cdot 34217$	9
10	$5 \cdot 39613$	5.45009	5.50405	5.55801	$5 \cdot 61197$	5.66593	5-71990	5.77386	5.82782	$5 \cdot 88178$	10

Equivalents of Statute Miles in Nautical Miles and in Kilometres

Nautical miles * $=$ Statute miles $\times \mathbf{8 6 8 4 2 1 0 5}$.
Kilometres $=$ Statute miles $\times 1 \cdot 6093412$.

\%	Fractions of a Mile.				Fractions of a Mile.			
	- 0	$\cdot 25$. 5	$\cdot 75$	- 0	- 25	5	. 75
	Nautical Miles.				Kilometres.			
1	. 8684	1.0855	1-3026	1.5197	$1 \cdot 609$	2.012	$2 \cdot 414$	2-816
2	1.7368	1.9539	$2 \cdot 1711$	$2 \cdot 3882$	$3 \cdot 219$	3.621	$4 \cdot 023$	$4 \cdot 426$
3	$2 \cdot 6053$	$2 \cdot 8224$	3.0395	$3 \cdot 2566$	$4 \cdot 828$	$5 \cdot 230$	5.633	6.035
4	$3 \cdot 4737$	$3 \cdot 6908$	$3 \cdot 9079$	$4 \cdot 1250$	6 -437	6.840	$7 \cdot 242$	$7 \cdot 644$
5	$4 \cdot 3421$	4.5592	4-7763	4.9934	8.047	8.449	8.851	9.254
6	5-2105	5-4276	$5 \cdot 6447$	$5 \cdot 8618$	9.656	10.058	$10 \cdot 461$	$10 \cdot 863$
7	6.0789	6.2961	6.5132	6.7303	11.265	11.668	$12 \cdot 070$	$12 \cdot 472$
8	6.9474	7-1645	$7 \cdot 3816$	$7 \cdot 5987$	12.875	$13 \cdot 277$	13-679	14.082
9	7.8158	$8 \cdot 0329$	$8 \cdot 2500$	$8 \cdot 4671$	14.484	14.886	$15 \cdot 2$	
10	$8 \cdot 6842$	$8 \cdot 9013$	9.1184	9.3355	16.093	16.496	16.898	7-300
11	9.5526	9.7697	9.9868	10.2039	17.703	18-105	18.507	18.910
12	$10 \cdot 4211$	10.6382	$10 \cdot 8553$	11.0724	19.312	19.714	$20 \cdot 117$	$20 \cdot 519$
13	11.2895	11.5066	11.7237	11.9408	20.921	$21 \cdot 324$	21.726	22-128
14	12.1579	12.3750	12.5921	$12 \cdot 8092$	22-531	$22 \cdot 933$	$23 \cdot 335$	23.738
15	13.0263	$13 \cdot 2434$	$13 \cdot 4605$	$13 \cdot 6776$	24-140	24-542	24.945	25-347
16	13.8947	14-1118	14-3289	14-5461	$25 \cdot 749$	26-152	26.554	26
17	14.7632	14.9803	15-1974	$15 \cdot 4145$	27-359	27-761	$28 \cdot 163$	28.566
18	$15 \cdot 6316$	$15 \cdot 8487$	16.0658	16.2829	28.968	29-370	29.773	$30 \cdot 175$
19	16.5000	16.7171	16.9342	17.1513	30.577	$30 \cdot 980$	31.382	31.784
20	$17 \cdot 368$	$17 \cdot 5855$	17-8026	18.0197	32-187	32-589		
21	18.2368	$18 \cdot 4539$	18.6711	18.8882	33.796	34-199	34.601	35.003
22	$19 \cdot 1053$	$19 \cdot 3224$	19.5395	19.7566	$35 \cdot 406$	$35 \cdot 808$	36-210	36.613
23	19.9737	20-1908	20-4079	20.6250	37.015	$37 \cdot 417$	37.820	38-222
24	$20 \cdot 8421$	21.0592	21.2763	$21 \cdot 4934$	$38 \cdot 624$	$39 \cdot 027$	$39 \cdot 429$	$39 \cdot 831$
25	21.7105	21.9276	22-1447	22-3618	40.234	$40 \cdot 636$	41.03	
26	22.5789	22.7961	$23 \cdot 0132$	23-2303	41.843	42-245	42.648	43.050
27	$23 \cdot 4474$	$23 \cdot 6645$	23-8816	24.0987	43-452	43-855	44-257	$44 \cdot 659$
28	24-3158	24-5329	24.7500	24.9671	45.062	45-464	45-866	46.269
29	25-1842	$25 \cdot 4013$	25-6184	25.8355	$46 \cdot 671$	47.073	47-476	47.878
30	26.0526	26-2697	26-4868	26.7039	48	48.683		7
31	26.8211	27.1382	$27 \cdot 3553$	$27 \cdot 5724$	49.890	50.292	$50 \cdot 694$	51.097
32	$27 \cdot 7895$	28.0066	28-2237	28-4408	51.499	51.901	52-304	52-706
33	28.6579	28.8750	29.0921	29-3092	53-108	53.511	53.913	54-315
34	29.5263	29.7434	29.9605	30-1776	$54 \cdot 718$	55-120	55.522	$55 \cdot 925$
35	30-3947	$30 \cdot 6$	$0 \cdot 8289$	31.0461	56.327		$57 \cdot 132$	[57-534

[^2]
Equivalents of Nautical Miles in Statute Miles and in Kilometres.

i Nautical milo $=6080$ feet.
1 Statute mile $=5280$ feet.
1 Kilometre $=3280 \cdot 8456$ feet .
Statute miles $=$ Nautical miles $\times 1 \cdot 1515152$.
Kilometres $=$ Nautical miles $\times 1.8531808$.
N.M. = Nautical miles.

免	Fractions of a Nautical Mile.				Fractions of a Nautical Mile.			
	. 0	$\cdot 25$. 5	. 75	. 0	$\cdot 25$. 5	$\cdot 75$
	Statute Miles.				Kilometres.			
1	1-1515	1.4394	1.7273	$2 \cdot 0152$	1.853	$2 \cdot 316$	$2 \cdot 780$	$3 \cdot 243$
2	$2 \cdot 3030$	$2 \cdot 5909$	$2 \cdot 8788$	$3 \cdot 1667$	3.706	$4 \cdot 170$	$4 \cdot 633$	$5 \cdot 096$
3	$3 \cdot 4545$	3.7424	4.0303	$4 \cdot 3182$	5.560	6.023	$6 \cdot 486$	6.949
4	4.6061	4.8939	5-1818	$5 \cdot 4697$	7.413	7.876	$8 \cdot 339$	8.803
5	5.7576	6.0455	6.3333	$6 \cdot 6212$	9.266	9.729	10-192	10.656
6	6.9091	$7 \cdot 1970$	$7 \cdot 4848$	$7 \cdot 7727$	$11 \cdot 119$	11-582	12.046	12.509
8	8.0606	$8 \cdot 3485$	8.6364	8.9242	12.972	13.436	13.899	14.362
8	$9 \cdot 2121$	9.5000	9.7879	10.0758	14.825	$15 \cdot 289$	15.752	$16 \cdot 215$
9	$10 \cdot 3636$	10.6515	10.9394	11-2273	16.679	17-142	$17 \cdot 605$	18.069
10	11-5152	11.8030	12.0909	12.3788	18.532	18.995	$19 \cdot 458$	19.922
11	12.6667	12.9545	13.2424	13.5303	20.385	20.848	$21 \cdot 312$	21.775
12	13.8182	$14 \cdot 1061$	$14 \cdot 3939$	14.6818	22.238	22.701	$23 \cdot 165$	23.628
13	$14 \cdot 9697$	$15 \cdot 2576$	15.5455	15.8333	24.091	$24 \cdot 555$	25.018	25.481
14	16.1212	16.4091	16.6970	16.9848	25.945	$26 \cdot 408$	26.871	$27 \cdot 334$
15	17.2727	17.5606	178485	18.1364	27.798	28.261	28.724	29.188
16	18.4242	18.7121	$19 \cdot 0000$	$19 \cdot 2879$	29.651	30-114	$30 \cdot 577$	31.041
17	19.5758	19.8636	$20 \cdot 1515$	20.4394	31.504	31.967	$32 \cdot 431$	32.894
18	20.7273	21.0152	21-3030	21-5909	33.357	33.821	34.284	34.747
19	21.8788	22-1667	$22 \cdot 4545$	22.7424	35-210	35-674	36-137	36.600
20	23.0303	$23 \cdot 3$	23	23	37.064	37	37.990	4
21	24-1818	24-4697	24.7576	25.0455	38.917	$39 \cdot 380$	$39 \cdot 843$	40.307
22	$25 \cdot 3333$	25.6212	25.9091	$26 \cdot 1970$	40-770	$41 \cdot 233$	41.697	$42 \cdot 160$
23	$26 \cdot 4848$	26.7727	27.0606	$27 \cdot 3485$	$42 \cdot 623$	43.086	$43 \cdot 550$	44.013
24	27.6364	27.9242	28.2121	28-5000	44.476	44.940	45-403	$45 \cdot 866$
25	28.7879	29-0758	29.3636	29.6515	$46 \cdot 330$	46.793	47.256	47.719
26	29.9394	30.2273	30.5152	30.8030	48.183	48.646	49-109	49.573
27	31.0909	31-3788	31.6667	31.9545	50.036	$50 \cdot 499$	$50 \cdot 962$	$51 \cdot 426$
28	32.2424	32.5303	$32 \cdot 8182$	33-1061	51.889	52-352	52.816	53.279
29	33.3939	33.6818	33.9697	34-2576	53.742	$54 \cdot 206$	54.669	55.132
30	34.5455\|	34.8333	35-1212	35.4091	55.595	56.059	56.522	56.985

Sq． Cent．	－ 0			$\cdot 3$			$\cdot 6$	$\cdot 7$	$\cdot 8$	－9	
1	－155001	$\cdot 170501$	． 186001	－201501	－217001	－232501	－248001	$\cdot 263501$	－279002	－294502	1
2	－310002	$\cdot 325502$	$\cdot 341002$	－356502	－372002	－387502	403002	－418502	－434002	$\cdot 449502$	2
3	－465003	$\cdot 480503$	$\cdot 496003$	$\cdot 511503$	－527003	－542503	－ 558003	－ 573503	$\cdot 589003$	－604503	3
4	－620003	－635503	－651004	－666504	－682004 ${ }^{\text {＇}}$	－697504	－713004	$\cdot 728504$	－744004	－759504	4
5	－775004	$\cdot 790504$	－806004	－821504	－837005	－852505	－868005	883505	－899003	－914505	5
6	． 930005	． 945505	． 961005	$\cdot 976505$	－992005，	$1 \cdot 00751$	1.02301	1.03851	1.05401	1.06951	6
7	1.08501	$1 \cdot 10051$	1－11601	$1 \cdot 13151$	1－14701	1－16251	$1 \cdot 17801$	｜1－19351	$1 \cdot 20901$	$1-22451$	7
8	1－24001	$1 \cdot 25551$	$1 \cdot 27101$	$1 \cdot 28651$	1－30201	1.31751	$1 \cdot 33301$	$1 \cdot 34851$	$1 \cdot 36401$	$1 \cdot 37951$	8
9	$1 \cdot 39501$	$1 \cdot 41051$	1－42601	$1 \cdot 44151$	1－45701	$1 \cdot 47251$	$1 \cdot 48801$	1－50351	1.51901	1.53451	9
10	1．55001	11.56551	，1－58101	1.59651	1－61201	1.62751	1－64301	$11 \cdot 65851$	1.67401	． 68951	10

\footnotetext{
Equivalents of Square Inches in Square Centimetres．Sq．centımetres $=8 q$ ．inches $\times 6 \cdot 451577(6)$ ．

呆	ーNのザロ CNOOO
\bigcirc	
∞	
\uparrow	
\bigcirc	
\bigcirc	
＋	
\bigcirc	
？	
$\begin{aligned} & \dot{\text { á }} \\ & \text { 兑 } \end{aligned}$	いN以ザィ

Sg. M.	- 0	-1	. 2	-3	.4	- 5	- 6	- 7	. 8	$\cdot 9$	Sq. M.
1	10.7639	11.8403	12.9167	13.9931	15.0695	16.1459	17-2223	18.2987	$19 \cdot 3751$	$20 \cdot 4515$	1
2	21.5279	$22 \cdot 6043$	$23 \cdot 6807$	24.7571	$25 \cdot 8335$	26.9099	27.9863	$29 \cdot 0627$	$30 \cdot 1391$	$31 \cdot 2154$	2
3	32.2918	$33 \cdot 3682$	$34 \cdot 4446$	35-5210	36-5974	$37 \cdot 6738$	38.7502	39-8266	40.9030	41.9794	3
4	43.0558	44-1322	$45 \cdot 2086$	46.2850	47-3614	48.4378	$49 \cdot 5142$	$50 \cdot 5906$	51.6670	52-7433	4
5	53.8197	54.8961	55-9725	57.0489	58.1253	592017	$60 \cdot 2781$	61-3545	62.4309	63-5073	5
6	64.5837	$65 \cdot 6601$	$66 \cdot 7365$	67.8129	68.8893	69.9657	71.0421	72-1185	$73 \cdot 1948$	74.2712	6
7	$75 \cdot 3476$	$76 \cdot 4240$	77-5004	78.5768	$79 \cdot 6532$	80.7296	81.8060	$82 \cdot 8824$	83.9588	$85 \cdot 0352$	7
8	86.1116 96.8755	87.1880 97.9519	88-2644	89-3408	90-4172	91-4936	92.5700	$93 \cdot 6463$	94.7227	95.7991	8
9 10	96-8755	97.9519	99.0283	100-105	$101 \cdot 181$	102.258	103.334	$104 \cdot 410$	105.487	106.563	9
10	107.639	$108 \cdot 716$	$109 \cdot 792$	110.869	1111.945	113.021	114.098	115.174	116.251	117.327	10

Sq. Ft.	- 0	$\cdot 1$	$\cdot 2$	-3	$\cdot 4$. 5	$\cdot 6$	$\cdot 7$	- 8	-9	Sq. Ft.
1	. 092903	-102193	-111483	- 120774	-130064	- 139354	- 148644	$\cdot 157935$	- 167225	$\cdot 176515$	1
2	- 185805	- 195096	- 204386	- 213676	- 222967	- 232257	- 241547	- 250837	- 260128	-269418	2
3	- 278708	- 287998	- 297289	-306579	- 315869	- 325160	- 334450	- 343740	- 353030	-362321	3
4	-371611	-380901	- 390191	- 399482	-408772	- 418062	$\cdot 427353$	$\cdot 436643$	- 445933	$\cdot 455223$	4
5	. 464514	-473804	-483094	- 492384	- 501675	$\cdot 510965$	$\cdot 520255$	$\cdot 529545$	- 538836	$\cdot 548126$	5
6	- 557416	- 566707	- 575997	- 585287	- 594577	- 603868	- 613158	- 622448	- 631738	-641029	6
7	-650319	- 659609	- 668900	- 678190	. 687480	- 696770	- 706061	-715351	- 724641	$\cdot 733931$	7
8	-743222	- 752512	- 761802	- 771093	$\cdot 780383$	- 789673	- 798963	. 808254	- 817544	-826834	8
9	. 836124	- 845415	- 854705	- 863995	- 873286	-882576	- 891866	. 901156	. 910447	. 919737	9
10	. 929027	. 938317	. 947608	. 956898	. 966188	. 975479	. 984769	. 994059	1.00335	1.01264	10

Equivalents of Cubic Centimetres in Cubic Inches．Cubicinches＝cubic centimetres $\times \cdot \mathbf{0 6 1 0 2 4 0 6 (2)}$ ．

烒淢	ーNツザロ
क	 以心
\cdots	が （ ∞
\div	Fi0 NTNom ∞ §すN N o No 엉
0	
？	¢
\pm	꾱ㅇㅇ앵Nㅇㅇㅇㅅㅇ ホば№
？	 か．
©	
\cdots	
－	
呂䓪	HNown commos

$\underset{\underset{\sim}{\infty}}{\underset{O}{\infty}}$		
$\begin{gathered} \infty \\ \underset{\sim}{0} \\ \times \\ 0 \\ 0 \end{gathered}$	9	\cdots 앙
$\begin{aligned} & \text { dy } \\ & . \vec{~} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	∞	
$\begin{aligned} & 11 \\ & 00 \\ & 0 \\ & \text { d } \\ & \text { did } \end{aligned}$	\bigcirc	
$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\bigcirc	ज
$\begin{aligned} & \dot{0} \\ & \dot{0} \end{aligned}$	4	
$\begin{aligned} & \text { G } \\ & \text { H } \\ & \text { व } \end{aligned}$	＋	
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	？	
$\begin{aligned} & \text { O} \\ & \text { O } \\ & \text { O } \\ & \text { g } \end{aligned}$	¢	
	\cdots	ヘิञ
9	\bigcirc	

Cubic Metres.	- 0	$\cdot 1$	$\cdot 2$	$\cdot 3$. 4	- 5	$\cdot 6$	$\cdot 7$	-8	. 9	Cubic Metres.
1	35-3149	38.8463	42.3778	45.9093	$49 \cdot 4408$	$\overline{52.9723}$	56.5038	60.0352	$63 \cdot 5667$	67.0982	1
2	$70 \cdot 6297$	$74 \cdot 1612$	$77 \cdot 6927$	81.2242	84.7556	88-2871	91.8186	- 95-3501	98.8816	$102 \cdot 413$	2
3	105.945	109.476	113.008	116.539	$120 \cdot 070$	$123 \cdot 602$	$127 \cdot 133$	$\mid 130 \cdot 665$	$134 \cdot 196$	$137 \cdot 728$	3
4	$141 \cdot 259$	144.791	$148 \cdot 322$	151.854	155.385	158.917	$162 \cdot 448$	165.980	$169 \cdot 511$	$173 \cdot 043$	4
5	176.574	$180 \cdot 106$	$183 \cdot 637$	187-169	190.700	194-232	197.763	'201-295	$204 \cdot 826$	208.358	5
6	211.889	$215 \cdot 421$	218.952	1222-484	226.015	229-547	233.078	236.609	$240 \cdot 141$	$243 \cdot 672$	6
7	$247 \cdot 204$	\|250.735	$254 \cdot 267$	257.798	261-330	264.861	268.393	$\left\lvert\, \begin{aligned} & 231.924\end{aligned}\right.$	$275 \cdot 456$	1278.987	7
8	282.519	286.050	289.582	293-113	$296 \cdot 645$	$300 \cdot 176$	$303 \cdot 708$	\|307-239	310.771	$314 \cdot 302$	8
9	317.834	321-365	\|324.897	328.428	331.960	$335 \cdot 491$	$339 \cdot 023$	342.554	346.086	$\mid 349 \cdot 617$	9
10	353.149	\|356.680	360.211	363.743	367-274	370-806	374-337	377.869	381.400	\|384.932	10

Cubic Feet.	- 0	$\cdot 1$	$\cdot 2$	-3	$\cdot 4$	- 5	- 6	$\cdot 7$	- 8	$\cdot 9$	Cubic Feet.
1	. 028317	. 031148	- 033980	. 036812	- 039643	. 042475	. 045307	. 048138	- 050970	. 053802	1
2	- 056633	- 059465	- 062297	- 065128	-067960	-070792	. 073623	. 076455	. 079287	. 082118	2
3	- 084950	- 087782	- 090613	- 093445	-096277	-099108	- 101940	$\cdot 104772$	- 107603	$\cdot 110435$	3
4	- 113267	- 116098	- 118930	- 121762	- 124593	- 127425	- 130257	-133088	- 135920	$\cdot 138752$	4
5	- 141583	- 144415	- 147247	- 150079	- 152910	$\cdot 155742$	-158574	-161405	- 164237	-167069	5
6	-169900	- 172732	- 175564	- 178395	-181227	-184059	-186890	-189722	-192554	$\cdot 195385$	6
7	- 198217	- 201049	- 203880	- 206712	-209544	- 212375	- 215207	$\cdot 218039$	-220870	-223702	7
8	- 226534	- 229365	- 232197	- 235029	-237860	-240692	- 243524	$\cdot 246355$	-249187	-252019	8
9	- 254850	- 257682	- 260514	- 263345	-266177	-269009	- 271840	$\cdot 274672$	-277504	$\cdot 280335$	9
10	. 283167	-285999	$\cdot 288830$	-291662	-294494	-297325	-300157	. 302989	. 305820	$\cdot 308652$	10

Equivalents of Litres in Imperial Gallons．

Litres．	－ 0	$\cdot 1$	$\cdot 2$	－3				$\cdot 7$	－8	$\cdot 9$	Litres
1	－ 2199	－ 241973	－263971	－ 285968	－307966	－ 329963	－351961	$\cdot 37$	56		1
2	－ 439951	－ 461949	－ 483946	$\cdot 505944$	$\cdot 527941$	－ 549939	$\cdot 571936$.593934	－615931	－637929	2
3	－659927	－681924	－703922	$\cdot 725919$	$\cdot 747917$	－769914	－791912	－813909	－835907	－857904	3
4	． 879902	． 901900	．923897	． 945895	． 967892	． 989890	$1-01189$	1.03388	11.05588	$1 \cdot 07788$	4
5	1.09988	1－12188	1－14387	$1 \cdot 16587$	$1 \cdot 18787$	$1 \cdot 20987$	$1 \cdot 23186$	$1 \cdot 25386$	$1 \cdot 27586$	$1 \cdot 29786$	5
6	$1 \cdot 31985$	1.34185	$1 \cdot 36385$	$1 \cdot 38585$	$1 \cdot 40784$	$1 \cdot 42984$	$1 \cdot 45184$	$1 \cdot 47384$	$1 \cdot 49583$	1.51783	6
7	1.53983	1.56183	1.58382	1.60582	$1 \cdot 62782$	$1 \cdot 64982$	$1 \cdot 67181$	$1 \cdot 69381$	$1 \cdot 71581$	1.73781	7
8	1.75980	1.78180	1.80380	1.82580	1.84779	1.86979	1.89179	1.91379	1.93578	$1 \cdot 95778$	8
9 10	1.97978	2．00178	2．02377	$2 \cdot 04577$	2.06777	$2 \cdot 08977$	$2 \cdot 11176$	$2 \cdot 13376$	， $2 \cdot 15576$	2－17776	9
10	2－19976	2．22175	2．24375	$2 \cdot 26575$	2．28775	｜2．30974	$2 \cdot 33174$	$\underline{2 \cdot 35374}$	$2 \cdot 37574$	2．39773	10

\footnotetext{
Equivalents of Imperial Gallons in Litres．Litres $=$ Gallons $\times 4 \cdot 54596$ ．

©	
$\stackrel{\infty}{\infty}$	NN NOM NHO NO
\uparrow	
\bigcirc	
？	
\pm	
\bigcirc	 ¢ 궁ㅇㅇ
$\stackrel{ }{\bigcirc}$	
\cdots	
－	 丩 ¢ ¢
音	サー ONかの

Equivalents of Kilogrammes in Pounds.

$\begin{array}{\|c\|} \hline \text { Kilo- } \\ \text { grams. } \\ \hline \end{array}$	- 0	-1	$\cdot 2$	$\cdot 3$	$\cdot 4$	- 5	- 6	$\cdot 7$	-8	$\cdot 9$	Kilograms.
1	2.20462	$2 \cdot 42509$	$2 \cdot 64555$	$2 \cdot 86601$	3.08647	$3 \cdot 30693$	$3 \cdot 52740$	3-74786	3.96832	$4 \cdot 18878$	1
2	4.40925	$4 \cdot 62971$	$4 \cdot 85017$	5-07063	$5 \cdot 29109$	$5 \cdot 51156$	$5 \cdot 73202$	$5 \cdot 95248$	6-17294	$6 \cdot 39341$	2
3	$6 \cdot 61387$	6.83433	$7 \cdot 05479$	7.27526	$7 \cdot 49572$	7.71618	$7 \cdot 93664$	$8 \cdot 15710$	8-37757	$8 \cdot 59803$	3
4 5	8.81849 11.0231	9.03895 11.2436	9.25942 11.4640	$\underset{11.68458}{\text { 9.47988 }}$	9.70034 11.9050	$\underline{9.92080}$	$10 \cdot 1413$	10.3617	110.5822	10.8027	4
5	11.0231	11.2436	$11 \cdot 4640$	11.6845	11.9050	12.1254	12-3459	12.5663	12.7868	13.0073	5
6	13.2277	13.4482	13.6687	13.8891	14-1096	14.3300	14.5505	14.7710	14.9914	15.2119	6
7	15.4324	$15 \cdot 6528$	$15 \cdot 8733$	16.0937	16.3142	16.5347	16.7551	$16 \cdot 9756$	17-1961	17.4165	7
8	$17 \cdot 6370$	17.8574	18.0779	18.2984	$18 \cdot 5188$	18.7393	18.9598	$19 \cdot 1802$	19.4007	$19 \cdot 6211$	8
9 10	$19 \cdot 8416$	$20 \cdot 0621$	20.2825	20.5030	20.7235	20.9439	21-1644	21-3848	21.6053	21.8258	9
10	22.0462	22-2667	22.4872	22.7076	22.9281	23-1485	$23 \cdot 3690$	23-5895	[23-8099	24.0304	10

Fquivalents of Pounds in Kilogrammes. Kilogrammes $=$ Pounds $\times \cdot \mathbf{4 5 3 5 9 2 3 4 3}$

Lbs.	- 0	-1	-2	-3	$\cdot 4$	-5	$\cdot 6$	$\cdot 7$	-8	- 9	Lbs.
1	-453592	$\cdot 498952$	- 544311	- 589670	-635029	- 680389	- 725748	$\cdot 771107$. 816466	-861825	1
2	- 907185	. 952544	. 997903	1.04326	1.08862	$1 \cdot 13398$	1-17934	1-22470	$1 \cdot 27006$	$1 \cdot 31542$	2
3	1.36078	$1 \cdot 40614$	1.45150	$1 \cdot 49685$	$1-54221$	$1 \cdot 58757$	$1 \cdot 63293$	$1 \cdot 67829$	$1 \cdot 72365$	$1 \cdot 76901$	3
4	$1 \cdot 81437$	$1 \cdot 85973$	1.90509	1.95045	1.99581	$2 \cdot 04117$	$2 \cdot 08652$	$2 \cdot 13188$	$2 \cdot 17724$	$2 \cdot 22260$	4
5	2.26796	2.31332	2.35868	2-40404	$2 \cdot 44940$	2.49476	$2 \cdot 54012$	2.58548	$2 \cdot 63084$	$2 \cdot 67619$	5
6	$2 \cdot 72155$	$2 \cdot 76691$	$2 \cdot 81227$	$2 \cdot 85763$	$2 \cdot 90299$	$2 \cdot 94835$	2.99371	3-03907	3-08443	3-12979	6
7	$3 \cdot 17515$	$3 \cdot 22051$	$3 \cdot 26586$	$3 \cdot 31122$	3-35658	$3 \cdot 40194$	$3 \cdot 44730$	$3 \cdot 49266$	$3 \cdot 53802$	$3 \cdot 58338$	7
8	$3 \cdot 62874$	$3 \cdot 67410$	3-71946	3-76482	3-81018	$3 \cdot 85553$	$3 \cdot 90089$	3-94625	$3 \cdot 99161$	$4 \cdot 03697$	8
9	$4-08233$	$4 \cdot 12769$	$4 \cdot 17305$	4.21841	$4 \cdot 26377$	$4 \cdot 30913$	$4 \cdot 35449$	$4 \cdot 39985$	$4 \cdot 44520$	$4 \cdot 49056$	9
10	4-53592	4-58128	4-62664	$4 \cdot 67200$	4-71736	4-76272	$4 \cdot 80808$	4-85344	$4 \cdot 89880$	$4 \cdot 94416$	10

Equivalents of Milliers or Tonnes in Tons. Tons $=$ Tonnes $\times \mathbf{9 8 4 2 0 6 5 8}$.

Tonnes.	- 0	-1	-2	-3	$\cdot 4$	- 5	$\cdot 6$	$\cdot 7$	- 8	$\cdot 9$	Tonnes
1	. 984207	1.08263	1.18105	$1 \cdot 27947$	$1 \cdot 37789$	$1 \cdot 47631$	1.57473	$1 \cdot 67315$	1.77157	1.86999	1
2	1.96341	2.06683	$2 \cdot 16525$	$2 \cdot 26368$	$2 \cdot 36210$	$2 \cdot 46052$	$2 \cdot 55894$	$2 \cdot 65736$	$2 \cdot 75578$	$2 \cdot 85420$	2
3	2.95262	3.05104	3-14946	$3 \cdot 24788$	3-34630	3-44472	$3 \cdot 54314$	$3 \cdot 64156$	$3 \cdot 73999$	$3 \cdot 83841$	3
4	3.93683	4.03525	$4 \cdot 13367$	$4 \cdot 23209$	$4 \cdot 33051$	$4 \cdot 42893$	$4 \cdot 52735$	$4 \cdot 62577$	$4 \cdot 72419$	$4 \cdot 82261$	4
5	4.92103	$5 \cdot 01945$	$5 \cdot 11787$	$5 \cdot 21629$	5-31472	$5 \cdot 41314$	5-51156	$5 \cdot 60998$	5-70840	$5 \cdot 80682$	5
6	$5 \cdot 90524$	6.00366	6-10208	$6 \cdot 20050$	$6 \cdot 29892$	$6 \cdot 39734$	6.49576	6.59418	$6 \cdot 69260$	6.79103	6
7	6.88945	6.98787	$7 \cdot 08629$	7-18471	$7 \cdot 28313$	$7 \cdot 38155$	$7 \cdot 47997$	$7 \cdot 57839$	$7 \cdot 67681$	7-77523	7
8	$7 \cdot 87365$	7.97207	$8 \cdot 07049$	8-16891	$8 \cdot 26734$	$8 \cdot 36576$	$8 \cdot 46418$	$8 \cdot 56260$	$8 \cdot 66102$	$8 \cdot 75944$	8
9	8.85786	8.95628	9.05470	$9 \cdot 15312$	$9 \cdot 25154$	9-34996	$9 \cdot 44838$	$9 \cdot 54680$	$9 \cdot 64522$	9.74365	9
10	9.84207	9.94049	10.0389	$10 \cdot 1373$	$10 \cdot 2357$	10.3342	10.4326	10.5310	$10 \cdot 6294$	10.7279	10

Equivalents of Tons in Milliers or Tonnes Tonnes $=$ Tons $\times 1 \cdot 0160468$.

Tons.	- 0	-1	-2	- 3	$\cdot 4$. 5	$\cdot 6$	$\cdot 7$	$\cdot 8$	$\cdot 9$	Tons.
1	1.01605	$1 \cdot 11765$	$1 \cdot 21926$	$1 \cdot 32086$	$1 \cdot 42247$	$1 \cdot 52407$	$1 \cdot 62567$	1.72728	$1 \cdot 82888$	1.93049	1
2	2.03209	2.13370	2.23530	$2 \cdot 33691$	$2 \cdot 43851$	$2 \cdot 54012$	$2 \cdot 64172$	$2 \cdot 74333$	$2 \cdot 84493$	$2 \cdot 94654$	2
3	3.04814	$3 \cdot 14975$	$3 \cdot 25135$	$3 \cdot 35295$	$3 \cdot 45456$	$3 \cdot 55616$	$3 \cdot 65777$	3.75937	$3 \cdot 86098$	$3 \cdot 96258$	3
4	4.06419	$4 \cdot 16579$	$4 \cdot 26740$	$4 \cdot 36900$	$4 \cdot 47061$	4.57221	$4 \cdot 67382$	$4 \cdot 77542$	$4 \cdot 87702$	$4 \cdot 97863$	4
5	$5 \cdot 08023$	5-18184	5-28344	5-38505	$5 \cdot 48665$	5-58826	5-68986	5-79147	$5 \cdot 89307$	$5 \cdot 99468$	5
	$6 \cdot 09628$	$6 \cdot 19789$	$6 \cdot 29949$	$6 \cdot 40109$	$6 \cdot 50270$	$6 \cdot 60430$	$6 \cdot 70591$	6.80751	$6 \cdot 90912$	$7 \cdot 01072$	6
7	$7 \cdot 11233$	$7 \cdot 21393$	$7 \cdot 31554$	$7 \cdot 41714$	$7 \cdot 51875$	$7 \cdot 62035$	$7 \cdot 72196$	$7 \cdot 82356$	$7 \cdot 92517$	$8 \cdot 02677$	7
8	8-12837	$8 \cdot 22998$	$8 \cdot 33158$	8.43319	$8 \cdot 53479$	8-63640	$8 \cdot 73800$	$8 \cdot 83961$	$8 \cdot 94121$	$9 \cdot 04282$	8
9	$9 \cdot 14442$	$9 \cdot 24603$	$9 \cdot 34763$	9-44924	$9 \cdot 55084$	$9 \cdot 65244$	9-75405	$9 \cdot 85565$	$9 \cdot 95726$	10.0589	9
10	$10 \cdot 1605$	$10 \cdot 2621$	$10 \cdot 3637$	10.4653	10.5669	$10 \cdot 6685$	10.7701	10.8717	10.9733	11.0749	10

\pm		\pm
		\bigcirc
		$\stackrel{\square}{+}$
	 $\stackrel{\square}{7} \mathscr{H}^{\circ} \mathrm{O}$ 	\div
		\bigcirc
	か ஜำค ה゙	\bigcirc
		\#
		\bigcirc
	 	$\xrightarrow{\sim}$
	 	\cdots
		?
		¢

Equivalents of Pounds per Square Inch in Kilogrammes per Square Centimetre. $\mathbf{K i l o g r a m m e s}$ per square centimetre $=$ Pounds per square inch $\times \cdot 07030719(8)$.

P.	- 0	-1	$\cdot 2$	-3	$\cdot 4$. 5	$\cdot 6$	$\cdot 7$	- 8	$\cdot 9$	P.
1	$\cdot 070307$	$\cdot 077338$	-084369	-091399	-098430	$\cdot 105461$	-112492	- 119522	$\cdot 126553$	-133584	1
2	$\cdot 140614$	$\cdot 147645$	- 154676	- 161707	- 168737	- 175768	-182799	- 189829	-196860	-203891	2
3	- 210922	- 217952	- 224983	- 232014	- 239044	- 246075	- 253106	- 260137	- 267167	-274198	3
4	-281229	- 288260	- 295290	- 302321	- 309352	- 316382	- 323413	- 330444	- 337475	$\cdot 344505$	4
5	-351536	- 358567	$\cdot 365597$	- 372628	-379659	- 386690	- 393720	$\cdot 400751$	$\cdot 407782$	-414812	5
6	-421843	$\cdot 428874$	-435905	- 442935	$\cdot 449966$	$\cdot 456997$	- 464028	- 471058	-478089	-485120	6
7	- 492150	$\cdot 499181$	- 506212	$\cdot 513243$	- 520273	. 527304	. 534335	- 541365	. 548396	$\cdot 555427$	7
8	- 562458	- 569488	- 576519	- 583550	- 590580	- 597611	-604642	- 611673	-618703	-625734	8
9	-632765	- 639796	- 646826	-653857	-660888	- 667918	- 674949	- 681980	-689011	-696041	9
10	-703072	$\cdot 710103$	$\cdot 717133$	-724164	-731195	$\cdot 738226$	$\cdot 745256$	-752287	. 759318	. 766348	10
11	- 773379	-780410	$\cdot 787441$	-794471	-801502	-808533	- 815563	-822594	-829625	-836656	11
12	- 843686	- 850717	- 857748	- 864779	-871809	- 878840	- 885871	-892901	-899932	- 906963	12
13	- 913994	- 921024	- 928055	- 935086	$\cdot 942116$	-949147	. 956178	- 963209	- 970239	. 977270	13
14	. 984301	. 991331	. 998362	$1 \cdot 00539$	1.01242	1.01945	$1 \cdot 02649$	1.03352	1.04055	1.04758	14
15	1.05461	1.06164	1.06867	1.07570	1.08273	1.08976	1.09679	$1 \cdot 10382$	1-11085	$1 \cdot 11788$	15
16	1-12492	1-13195	1-13898	1-14601	1-15304	1-16007	$1 \cdot 16710$	$1 \cdot 17413$	$1 \cdot 18116$	$1 \cdot 18819$	16
17	$1 \cdot 19522$	1-20225	1-20928	1-21631	$1 \cdot 22335$	1-23038	$1 \cdot 23741$	$1 \cdot 24444$	1.25147	$1 \cdot 25850$	17
18	$1 \cdot 26553$	$1-27256$	1.27959	1-28662	$1 \cdot 29365$	$1 \cdot 30068$	1-30771	$1 \cdot 31474$	1.32178	$1 \cdot 32881$	18
19	1-33584	1-34287	1.34990	$1-35693$	$1 \cdot 36396$	$1-37099$	1-37802	1.38505	$1-39208$	$1 \cdot 39911$	19
20	11.40614	$1 \cdot 41317$	1.42021	1.42724	1.43427	1.44130	1.44833	$1 \cdot 45536$	$1 \cdot 46239$	$1 \cdot 46942$	20
P.	- 0	$\cdot 1$	$\cdot 2$	$\cdot 3$	$\cdot 4$	-5	- 6	$\cdot 7$	$\cdot 8$	$\cdot 9$	P.

Equivalents of Kilogrammetres in Foot-Pounds.

Kilo-grammetres.	- 0	-1	-2	-3	-4	- 5	-6	$\cdot 7$	-8	. 9	Kilo- gram- metres.
1	7.23303	7.95633	$8 \cdot 67963$	$9 \cdot 40293$	$10 \cdot 1262$	10.8495	11.5728	$12 \cdot 2961$	$13 \cdot 0194$	$13 \cdot 7428$	1
2	14.4661	$15 \cdot 1894$	$15 \cdot 9127$	$16 \cdot 6360$	$17 \cdot 3593$	18.0826	$18 \cdot 8059$	$19 \cdot 5292$	$20 \cdot 2525$	20.9758	2
3	21-6991	22.4224	$23 \cdot 1457$	23.8690	24-5923	$25 \cdot 3156$	$26 \cdot 0389$	$26 \cdot 7622$	$27 \cdot 4855$	$28 \cdot 2088$	3
4	28.9321	29.6554	$30 \cdot 3787$	31-1020	$31 \cdot 8253$	32.5486	$33 \cdot 2719$	33.9952	34-7185	$35 \cdot 4418$	4
5	$36 \cdot 1651$	36.8884	$37 \cdot 6117$	$38 \cdot 3350$	$39 \cdot 0583$	39.7816	$40 \cdot 5050$	41-2283	41.9516	$42 \cdot 6749$	5
6	43-3982	$44 \cdot 1215$	44-8448	45-5681	$46 \cdot 2914$	47-0147	47.7380	48.4613	$49 \cdot 1846$	49.9079	6
7	$50 \cdot 6312$	$51 \cdot 3545$	$52 \cdot 0778$	$52 \cdot 8011$	$53 \cdot 5244$	$54 \cdot 2477$	$54 \cdot 9710$	$55 \cdot 6943$	56.4176	$57 \cdot 1409$	7
8	$57 \cdot 8642$	$58 \cdot 5875$	59.3108	$60 \cdot 0341$	60.7574	$61 \cdot 4807$	$62 \cdot 2040$	62.9273	$63 \cdot 6506$	$64 \cdot 3739$	8
9	65.0972	$65 \cdot 8205$	$66 \cdot 5438$	$67 \cdot 2671$	67-9905	68-7138	$69 \cdot 4371$	70.1604	70.8837	$71 \cdot 6070$	9
10	72.3303	$73 \cdot 0536$	173-7769	74.5002	$75 \cdot 2235$	$75 \cdot 9468$	$76 \cdot 6701$	77-3934	$78 \cdot 1167$	78.8400	10

\footnotetext{
Equivalents of Foot-Pounds in Kilogrammetres. Kilogrammetres $=$ Foot-pounds $\times 13825471$

Ft.-Ibs.	- 0	$\cdot 1$	-2	-3	-4	. 5	-6	$\cdot 7$	- 8	. 9	Ft.-lbs.
1	. 138255	- 152080	- 165906	. 179731	- 193557	-207382	. 221208	-235033	$\cdot 248858$	$\cdot 262684$	1
2	$\cdot 276509$	-290335	-304160	-317986	. 331811	. 345637	-359462	-373288	$\cdot 387113$. 400939	2
3	-414764	. 428590	. 442415	-456241	-470066	-483891	. 497717	. 511542	-525368	. 539193	3
4	-553019	. 566844	-580670	- 594495	-608321	-622146	-635972	-649797	. 663623	. 677448	4
5	. 691274	$\cdot 705099$.718924	$\cdot 732750$	$\cdot 746575$. 760401	$\cdot 774226$	$\cdot 788052$.801877	.815703	5
6	-829528	-843354	- 857179	. 871005	- 884830	. 898656	. 912481	-926307	. 940132	. 953957	6
7	. 967783	. 981608	. 995434	$1 \cdot 00926$	I-02308	1.03691	$1 \cdot 05074$	$1 \cdot 06456$	$1 \cdot 07839$	$1 \cdot 09221$	7
8	1.10604	1.11986	$1 \cdot 13369$	$1 \cdot 14751$	$1 \cdot 16134$	$1 \cdot 17517$	$1-18899$	$1 \cdot 20282$	1-21664	1.23047	8
9	1.24429	1.25812	1.27194	$1 \cdot 28577$	$1 \cdot 29959$	1.31342	1.32725	1.34107	1.35490	$1 \cdot 36872$	9
10	1.38255	11.39637	$1 \cdot 41020$	1.42402	\|1.43785	1.45167	$1 \cdot 46550$	1.47933	1.49315	1.50698	10

$\begin{array}{c\|} \text { Force } \\ \text { de } \\ \text { Oheval } \end{array}$	- 0	$\cdot 1$	$\cdot 2$	$\cdot 3$	-4	-5	-6	$\cdot 7$	$\cdot 8$	$\cdot 9$	$\begin{array}{\|c\|} \hline \text { Force } \\ \text { de } \\ \text { Cheval. } \\ \hline \end{array}$
1	. 986322	1.08495	1.18359	$1 \cdot 28222$	$1 \cdot 38085$	$1 \cdot 47948$	$1 \cdot 57811$	$1 \cdot 67675$	$1 \cdot 77538$	1.87401	1
2	1.97264	2.07128	$2 \cdot 16991$	2.26854	$2 \cdot 36717$	$2 \cdot 46580$	$2 \cdot 56444$	$2 \cdot 66307$	$2 \cdot 76170$	$2 \cdot 86033$	2
3	2.95897	3.05760	$3 \cdot 15623$	3-25486	3-35349	3-45213	$3 \cdot 55076$	$3 \cdot 64939$	$3 \cdot 74802$	$3 \cdot 84666$	3
4	3.94529	4.04392	$4 \cdot 14255$	$4 \cdot 24118$	$4-33982$	4.43845	4.53708	$4 \cdot 63571$	$4 \cdot 73434$	4.83298	4
5	4.93161	5-03024	$5 \cdot 12887$	$5 \cdot 22751$	5-32614	5-42477	$5 \cdot 52340$	$5 \cdot 62203$	5.72067	$5 \cdot 81930$	5
6	$5 \cdot 91793$	6.01656	$6 \cdot 11520$	$6 \cdot 21383$	6-31246	6.41109	$6 \cdot 50972$	$6 \cdot 60836$	6•70699	$6 \cdot 80562$	6
7	6.90425	$7 \cdot 00289$	7-10152	$7 \cdot 20015$	$7 \cdot 29878$	$7 \cdot 39741$	$7 \cdot 49605$	7.59468	7-69331	$7 \cdot 79194$	7
8	7.89057	$7 \cdot 98921$	8.08784	$8 \cdot 18647$	$8 \cdot 28510$	$8 \cdot 38374$	$8 \cdot 48237$	$8 \cdot 58100$	$8 \cdot 67963$	$8 \cdot 77826$	8
9	8.87690	8-97553	9.07416	9-17279	$9 \cdot 27143$	9-37006	9-46869	$9 \cdot 56732$	$9 \cdot 66595$	9.76459	9
10	9.86322	9.96185	10.0605	$10 \cdot 1591$	10.2577	$10 \cdot 3564$	$10 \cdot 4550$	10.5536	$10 \cdot 6523$	10.7509	10

Horsepower.	- 0	-1	-2	$\cdot 3$	$\cdot 4$. 5	$\cdot 6$	$\cdot 7$	-8	$\cdot 9$	Horsepower.
1	1.01387	1-11525	1.21664	$1 \cdot 31803$	1.41941	1-52080	$1 \cdot 62219$	1-72358	1.82496	1.92635	1
2	2.02774	$2 \cdot 12912$	$2 \cdot 23051$	$2 \cdot 33190$	2.43328	2-53467	$2 \cdot 63606$	2.73744	2.83883	2.94022	2
3	3.04160	$3 \cdot 14299$	3-24438	3-34576	$3 \cdot 44715$	$3 \cdot 54854$	$3 \cdot 64992$	$3 \cdot 75131$	$3 \cdot 85270$	$3 \cdot 95408$	3
4	4.05547	$4 \cdot 15686$	$4 \cdot 25824$	$4 \cdot 35963$	$4 \cdot 46102$	$4 \cdot 56241$	$4 \cdot 66379$	4.76518	$4 \cdot 86657$	$4 \cdot 96795$	4
5	5.06934	5.17073	5.27211	$5 \cdot 37350$	$5 \cdot 47489$	$5 \cdot 57627$	$5 \cdot 67766$	5-77905	$5 \cdot 88043$	$5 \cdot 98182$	5
6	6.08321	6.18459	$6 \cdot 28598$	$6 \cdot 38737$	$6 \cdot 48875$	$6 \cdot 59014$	6.69153	6.79291	$6 \cdot 89430$	6.99569	6
7	$7 \cdot 09707$	$7 \cdot 19846$	$7 \cdot 29985$	$7 \cdot 40123$	$7 \cdot 50262$	$7 \cdot 60401$	$7 \cdot 70540$	$7 \cdot 80678$	$7 \cdot 90817$	$8 \cdot 00956$	7
8	8.11094	$8 \cdot 21233$	$8 \cdot 31372$	$8 \cdot 41510$	$8 \cdot 51649$	8-61788	8.71926	8.82065	8.92204	9.02342	8
9 10	$\left\lvert\, \begin{gathered}9 \cdot 12481 \\ 10 \cdot 1387\end{gathered}\right.$	$\xrightarrow[10 \cdot 2401]{\text { 9-22620 }}$	$\underset{10 \cdot 3415}{9.32758}$	$\left\lvert\, \begin{gathered}9 \cdot 42897 \\ 10 \cdot 4428\end{gathered}\right.$	$\left\lvert\, \begin{gathered}9 \cdot 53036 \\ 10 \cdot 5442\end{gathered}\right.$	$\|$9.63174 10.6456	$\left\lvert\, \begin{gathered}9.73313 \\ 10.7470\end{gathered}\right.$	$\xrightarrow{9.83452}$	$\left\lvert\, \begin{gathered}9.9359 \\ 10.9498\end{gathered}\right.$	$\left\lvert\, \begin{aligned} & 10.0373 \\ & 11.0512\end{aligned}\right.$	9 10

The C. G. S. System of Units.

This is the system of units recommended, for scientific purposes, by a committee of the British Association. The centimetre is the unit of leagth, the gromme is the unit of mass, and the second is the unit of time.

The unit of area is the square centimetre.
The unit of rolume is the cubic centimetre.
The unit of velority is a velocity of a rentimetre per second.
The unit of momentum is the momentum of a gramme moving with a velocity of a centimetre per second.

The unit of force is that force which generates a unit of momentum in a second, and i, therefore that force which, acting on a gramme for one second, generates a velocit! of a centinetre per second. This unit of force is called the dyne.

The unit of work is the work done by a force of a dyne acting through a distance of a centimutre. This unit of work is called the erg.

Equivalents of ordinary British and C. G. S. Units.

1 foot $=30 \cdot 47995$ centimetres.
1 centimetre $=.03280846$ foot.
1 square inch $=6.451578$ square centimetres.
1 square foot $=929.0272$ square centimetres.
1 square centimetre $=\cdot 1550008$ sq. inch $=\cdot 00107639$ sq. foot.
1 cubic inch $=16 \cdot 386979$ cubic centimetres.
1 cubic foot $=28316.7$ cubic centimetres.
1 cubic centimetre $=.061024$ cubic inch $=.00003531$ cubic foot.
1 lb . avoirdupois $=453.59234$ grammes.
1 gramme $=.00220462 \mathrm{lb}$. avoirdupois.
1 foot per second $=30 \cdot 47995$ centimetres per second.
1 mile per hour $=44.7039$ centimetres per second.
1 centimetre per second $=\cdot 03280846$ foot per second $=.02237$ mile per hour.

1 lb . per cubic foot $=016019$ grammes per cubic centimetre.
1 gramme per cubic centimetre $=62 \cdot 4276$ lbs. per cubic foot.
Accelerating effect of gravity $=32.2$ feet per sec. per sec. $=981$ centimetres per sec. per sec., approximately.

In the equivalents below g is taken $=981 \mathrm{~cm}$. per sec. per sec.
1 lb . avoirdupois $=444974$ dynes.
1 gramme $=981$ dynes.
1 foot-pound $=13562790$ ergs.
1 kilogrammetre $=98100000$ ergs.
1 lb . per square inch $=68971$ dynes per square centimetre.
1 lb . per square foot $=478.97$ dynes per square centimetre.
1 kilogramme per square centimetre $=981000$ dynes per square contimetre.

Imperial or Legal Standard Wire Gauge.

	Equivalent in		Sectional Area of Sq. In.		Equivalent in		Sectional Area of Wire in Sq. In.
	Parts of an Inch.	$\underset{\text { metres. }}{\text { Milli- }}$			Parts of an Inch.	Milli-	
7/0	500	12.700	-196350	23	024	$\cdot 610$. 00045239
6/0	$\cdot 464$	11.785	-169093	24	022	-559	$\cdot(00038013$
5/0	-432	10.973	$\cdot 146574$	25	-020	-508	-00031416
4/0	$\cdot 400$	$10 \cdot 160$	$\cdot 125664$	26	018	$\cdot 457$	$\cdot 00025447$
3/0	$\cdot 372$	$9 \cdot 449$	$\cdot 108687$	27	$\cdot 0164$	- 4166	.00021124
2/0	$\cdot 348$	8.839	-095115	28	-0148	-3759	$\cdot 00017203$
0	-324	8.229	-082448	29	$\cdot 0136$	-3454	$\cdot 00014527$
1	-300	7.620	-070686	30	-0124	-3150	$\cdot 00012076$
2	$\cdot 276$	$7 \cdot 010$	-059828	31	. 0116	-2946	$\cdot(0010568$
3	-252	$6 \cdot 401$	$\cdot 049876$	32	$\cdot 0108$	-2743	$\cdot 00009161$
4	-232	5.893	042273	33	$\cdot 0100$	$\cdot 2540$	-00007854
5	-212	5.385	-035299	34	-0092	'2337	-00006648
6	$\cdot 192$	$4 \cdot 877$	-028953	35	.0084	2134	-00005542
7	$\cdot 176$	$4 \cdot 470$	-024328	36	$\cdot 0076$	-1930	-00004536
8	$\cdot 160$	4.064	-020106	37	$\cdot 0068$	$\cdot 1727$	$\cdot 00003632$
9	$\cdot 144$	3.658	-016286	38	. 0060	$\cdot 1524$	$\cdot 00002827$
10	-128	3.251	- 012868	39	. 0052	$\cdot 1321$	-00002124
11	-116	$2 \cdot 946$. 010568	40	. 0048	-1219	$\cdot 00001810$
12	$\cdot 104$	$2 \cdot 642$	$\cdot 008495$	41	. 0044	-1118	$\cdot 00001521$
13	.092	$2 \cdot 337$	$\cdot 006648$	42	-0040	$\cdot 1016$.00001257
14	-080	2.032	$\cdot 005027$	43	. 0036	0914	$\cdot 00001018$
15	.072	1.829	. 004072	44	-0032	-0813	.00000804
16	.064	1.626	$\cdot 003217$	45	-0028	-0711	$\cdot 00000616$
17	$\cdot 056$	$1 \cdot 422$	$\cdot 002463$	46	. 0024	-0610	-00000452
18	$\cdot 048$	$1 \cdot 219$	$\cdot 001810$	47	$\cdot 0020$	-0508	$\cdot 00000314$
19	-040	1.016	$\cdot 001257$	48	. 0016	. 0406	-00000201
20	-036	$\cdot 914$	$\cdot 001018$	49	$\cdot 0012$. 0305	$\cdot 00000113$
21	. 032	$\cdot 813$. 000804	50	$\cdot 0010$	-0254	$\cdot 00000079$
22	. 028	$\cdot 711$	$\cdot 000616$				

Birmingham Gauge.*

Descriptive Number.	Equiv. in Parts of an In.	Descriptive Number.	Equiv. in Parts of an In.	Descriptive Number.	Fquiv. in Parts of an In.	Descriptive Number.	Equiv. in Parts of an In.
15/0 B.G.	1.000	3 B.G.	-2804	20 B.G.	. 0392	37 B.G.	. 0054
14/0 B.G.	0.9583	4 B.G.	-250	21 B.G.	-0349	38 B.G.	. 0048
$13 / 0$ B.G.	. 9167	5 B.G.	- 2225	22 B.G.	. 03125	39 B.G.	-0043
12/0 B.G.	. 8750	6 B.G.	-1981	23 B.G.	-02782	40 B.G.	-00386
11/0 B.G.	-8333	7 B.G.	- 1764	24 B.G.	- 02476	41 B.G.	-00343
10/0 B.G.	. 7917	8 B.G.	-1570	25 B.G.	. 02204	42 B.G.	-00306
9/0 B.G.	-750	9 B.G.	-1398	26 B.G.	$\cdot 01961$	43 B.G.	-00272
$8 / 0$ B.G.	-7083	10 B.G.	- 1250	27 B.G.	. 01745	44 B.G.	-00242
$7 / 0$ B.G.	-6666	11 B.G.	$\cdot 1113$	28 B.G.	-015625	45 B.G.	-00215
6/0 B.G.	-625	12 B.G.	-0991	29 B.G.	- 0139	46 B.G.	-00192
5/0 B.G.	- 5883	13 B.G.	. 0882	30 B.G.	-0123	47 B.G.	-00170
4/0 B.G.	-5416	14 B.G.	-0785	31 B.G.	- 0110	48 B.G.	-00152
3/0 B.G.	-500	15 B.G.	-0699	32 B.G.	-0098	49 B.G.	-00135
2/0 B.G.	-4452	16 B.G.	. 0625	33 B.G.	-0087	50 B.G.	-00120
1/0 B.G.	-3964	17 B.G.	. 0556	34 B.G.	-0077	51 B.G.	-00107
1 B.G.	- 3532	18 B.G.	-0495	35 B.G.	. 0069	52 B.G.	-00095
2 B.G.	-3147	19 B.G.	. 0440	36 B.G.	. 0061		

Board of Trade Standards, S.R. and O., 1914, No. 1095.
Birmingham Wire Gauge.

$\begin{aligned} & \text { Mark } \\ & \text { or No. } \end{aligned}$	Size. Inch.	$\begin{aligned} & \text { Mark } \\ & \text { or No. } \end{aligned}$	Size. Inch.	$\begin{aligned} & \text { Mark } \\ & \text { or No. } \end{aligned}$	size. Inch.	Mark or No.	Size. Inch.
4/0	.454	7	.18	17	. 058	27	.016
3/0	$\cdot 425$	8	-165	18	-049	28	. 014
$2 / 0$	-38	9	-148	19	. 042	29	. 013
0	. 34	10	-134	20	. 035	30	. 012
1	$\cdot 3$	11	-12	21	. 032	31	. 01
2	-284	12	-109	22	. 028	32	. 009
3	-259	13	-095	23	. 025	33	-008
4	-238	14	-083	24	-022	34	. 007
5	-22	15	-072	25	. 02	35	. 005
6	-203	16	-065	26	$\cdot 018$	36	. 004

American Standard Wire Gauge (Brown and Sharpe).

Mark or No.	Size. Inch.	$\begin{aligned} & \text { Mark } \\ & \text { or No. } \end{aligned}$	Size. Inch.	$\begin{aligned} & \text { Mark } \\ & \text { or No. } \end{aligned}$	Size. Inch.	$\begin{aligned} & \text { Mark } \\ & \text { or No. } \end{aligned}$	Size. Inch.
4/0	$\cdot 46$	8	- 12849	19	. 03589	30	. 010025
3/0	-40964	9	-11443	20	. 031961	31	. 008928
$2 / 0$. 3648	10	-10189	21	-028462	32	.00795
0	- 32486	11	-090742	22	-025347	33	-00708
1	-2893	12	-080808	23	. 022571	34	.006304
2	-25763	13	- 071961	24	-0201	35	. 005614
8	- 22942	14	- 064084	25	-0178	36	. 005
4	-20431	15	. 057068	26	-01594	37	. 004453
5	- 18194	16	-05082	27	. 014195	88	.003965
6	- 16202	17	-045257	28	-012641	38	.003631
7	-14428	18	-040303	29	-011257	40	. 003144

ARITHMETICAL AND ALGEBRAICAL SIGNS.

+ (plus) is the sign of addition. + placed between two quantities denotes that they are to be added together. + placed in front of a quantity denotes that it is a positive quantity as distinguished from a negative quantity.
- (minus) is the sign of subtraction. - placed between two quantities denotes that the second is to be subtracted from the first. - placed in front of a quantity denotes that it is a negative quantity as distinguished from a positive quantity.

A positive quantity may be considered as a quantity greater than nothing, and a negative quantity as a quantity less than nothing. Thus a man who has no debts and whose assets are valued at $£ 100$ has his wealth represented by $+£ 100$, while a man who owes $£ 100$ and has no assets has his wealth represented by - £100. The plus and minus signs are also used to show the direction in which a distance is measured along a line. If distances in one direction are positive (+), then distances measured in the opposite direction are negative (-). If + denotes compression, then - denotes tension.
\sim placed between two quantities denotes that the smaller of the two is to be taken from the greater.
$=$ placed between two quantities or expressions denotes that they are equal to one another.
$>$ placed between two quantities denotes that the first is greater than the second.
< placed between two quantities denotes that the first is less than the second.
\times placed between two quantities denotes that they are to be multiplied together. In algebra $a . b=a \times b=a b$.
\div placed between two quantities denotes that the first is to be divided by the second. Division is also indicated by a single line between the quantities, thus $\frac{12}{3}=12 / 3=4$. In algebra $\frac{a}{b}=a / b=a \div b$.
$\%$ means per cent., thus 21% means 21 per cent., or 21 in 100 , 21 or 100°
In proportion $a: b:: c: d$ is read a is to b as c is to d, or the ratio of a to b is equal to the ratio of c to d, or $\frac{a}{b}=\frac{c}{d}$.
$3^{2}=3 \times 3=3$ squared, or 3 to the second power, or the second power of 3 .
$3^{8}=3 \times 3 \times 3=3$ cubed, or 3 to the third power, or the third power of 3 .
$3^{n}=n$ threes multiplied together, or 3 to the $n^{\text {th }}$ power (n is here called the index of the power).
$\sqrt{ } 9=$ the square root of $9=3$. The square root of a quantity is another quantity whose second power equals the first quantity.
$\sqrt[8]{8}=$ the cube root of $8=2$. The cube root of a quantity is another quantity whose third power equals the first quantity.
$\sqrt[n]{ } a=$ the $n^{\text {th }}$ root of a. The $n^{\text {th }}$ root of a quantity is another quantity whose $n^{\text {th }}$ power equals the first quantity.
∞ (infinity) is used to denote a quantity which is so great that it cannot be represented by any number however large.
(), \{\}, [] (brackets) are used to denote that the quantities between them are to be treated as one quantity. The vinculum —_ placed over two or more quantities is used for the same purpose as brackets. The following example illustrates the use of brackets and vincula: -

$$
\begin{aligned}
& 3[2+5\{23-2(2+8-6-4)\}+3 \times \overline{7-2}] \\
& =3[2+5\{23-2(2+8-2)\}+3 \times 5] \\
& =3[2+5\{23-2 \times 8\}+15]=3[2+5 \times 7+15]=3 \times 52=156
\end{aligned}
$$

Factors.

$x^{2}+(a+b) x+a b=(x+a)(x+b)$.
$x^{2}+(a-b) x-a b=(x+a)(x-b)$.
$a^{2}+2 a b+b^{2}=(a+b)^{2} . \quad a^{2}-2 a b+b^{2}=(a-b)^{2}$.
$a^{2}-b^{2}=(a+b)(a-b)$.
$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$.
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$.
$a^{n}+b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^{2}-\ldots .+b^{n-1}\right)$ where n is an odd number.
$a^{n}-b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^{2}-\ldots . . b^{n-1}\right)$ where n is an even number.
$a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots+b^{n-1}\right)$ where n is either an odd or an even number.
$a^{4}+a^{2} b^{2}+b^{4}=\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right)$.
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-a c\right)$.

Ratio and Proportion.

If $\frac{a}{b}=\frac{c}{d}=\frac{c}{f}=\frac{g}{h}$, then each of these ratios is equal to

$$
\sqrt[n]{ }\binom{p a^{n}+q c^{n}+r c^{n}+s g^{n}}{p b^{n}+q d^{n}+r f^{n}+s h^{n}}
$$

If $p=q=r=s=n=1$, then $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{q}{h}=\frac{a+c+e+g}{b+d+f+h}$.

If $a: b:: c: d$ or $\frac{a}{b}=\frac{c}{d}$, then,
(1.) $a d=b c$.
(2) $\frac{b}{a}=\frac{d}{c}$.
(3.) ${ }_{c}^{a}=\frac{b}{d}$.
(4.) $\frac{a+b}{b}=\stackrel{c+d}{d}$.
(5) ${ }_{b}^{a-b}=\stackrel{c-d}{d}$.
(6) ${ }_{a-b}^{a+b}=\frac{c+d}{c-d}$.

Indices.

$$
\begin{aligned}
& a^{m} \times a^{n}=a^{m+n} . \quad \begin{array}{ll}
a^{m} & a^{n} \\
=a^{m-n} . & a^{\frac{1}{n}}=\sqrt[n]{a} .
\end{array} \\
& a^{n}=\sqrt[n]{ } / a^{m} . \quad a^{-n}=\frac{1}{a^{n}} . \quad a^{1}=\alpha^{n} . \quad a^{0}=1 .
\end{aligned}
$$

Quadratic Equations.-If $x^{2}+a x+b=0$, then $x=-\frac{a}{2} \pm \begin{gathered}\sqrt{a^{2}-4} b \\ 2\end{gathered}$.
The roots of an equation are the values of x which satisfy the equation.

If a and β are the roots of the equation $x^{2}+a x+b=0$, then $a+\beta=-a$, and $\alpha \beta=b$.

Cabic Equations.-If $x^{3}+a x+b=0$, then Cardan's solution gives,

$$
x=\left\{-\frac{b}{2}+\sqrt{\frac{a^{3}}{27}}+\frac{b^{2}}{4}\right\}^{\frac{1}{3}}+\left\{\begin{array}{l}
\left.\frac{b}{2}-\sqrt{\frac{a^{3}}{27}}+\frac{b^{2}}{4}\right\}^{\frac{1}{2}} ~ . ~
\end{array}\right.
$$

The equation $x^{3}+p x^{2}+q x+r=o$ may be reduced to the form $x^{3}+a x+b=0$ by substituting $x-\frac{p}{3}$ for x in the given equation.

Arithmetical Progression.-Quantities are said to be in arithmetical progression when they increase or decrease by a common difference.

The common difference is found by subtracting any term of the series from the one which follows it.

Examples.-2, 4, 6, 8, \&c., common difference $=2$.

$$
\begin{aligned}
& 13,10,7,4, \& c ., \quad(")=-3 . \\
& a,(a+b),(a+2 b),(a+3 b), \text { etc. } "=
\end{aligned}
$$

Let $a=1^{\text {th }}$ term, and $b=$ common difference.
The $r^{\text {th }}$ term from the beginning $=a+(r-1) b$.
Sum of n terms $=\frac{n}{\mathbf{2}}\{2 a+(n-1) b\}$.
If M, A, and N are in arithmetical progression, then $A=\frac{M+N}{2}$, and A is the arithmetical mean of M and N.

Geometrical Progression.-Quantities are said to be in geometrical progression when each is equal to the product of the preceding and some constant factor. The constant factor is called the common ratio of the series.

Examples.-2, 4, 8, 16, etc., common ratio $=\mathbf{2}$.

$$
\begin{array}{ll}
27,9,3,1, \text { etc., } \\
a, a r, a r^{2}, a r^{3}, \text { etc., } ", & "=\frac{1}{9} .
\end{array}
$$

Let $a=1^{n t}$ term, and $r=$ common ratio.
The $n^{\text {th }}$ term from the beginning $=\left.a\right|^{n-1}$.
Sum of n terms $=\frac{a\left(r^{m}-1\right)}{r-1}=\begin{gathered}a\left(1-r^{n}\right) \\ 1-r\end{gathered}$.
If r is less than 1 , the sum of an infinite number of terms (called the sum to infinity) $=\frac{a}{1-r}$.

If M, G, and N are in geometrical progression, $G=\sqrt{M N}$, and G is the geometrical mean of M and N.
Harmonical Progression.-Three quantities $M, I I$, and N are said to be in harmonical progression when $M: N:: M-H: I-N$.
The reciprocals of quantities which are in harmonical progression are in arithmetical progression.
If $M, I I$, and N are in harmonical progression, then $H=\begin{gathered}2 M N \\ M+N\end{gathered}$, and H is the harmonical mean of M and N.

Miscellaneous Series.--In the following formula S_{n} denotes the sum of n terms of the series, and S_{∞} the sum to infinity.

$$
\begin{aligned}
& S_{n}=1+2+3+\ldots . .+n=\frac{n}{2}(n+1) . \\
& S_{n}=1^{2}+2^{2}+3^{2}+\ldots . .+n^{2}=n(n+1)(2 n+1) . \\
& S_{n}=1^{3}+2^{3}+3^{3}+\ldots . .+n^{3}=\left\{\frac{n(n+1)}{2}\right\}^{2} . \\
& S_{n}=(1 \times 2)+(2 \times 3)+(3 \times 4)+\ldots+n(n+1)={ }_{3}^{1} n(n+1)(n+2) \text {. } \\
& S_{n}=(1 \times 2 \times 3)+(2 \times 3 \times 4)+(3 \times 4 \times 5)+\ldots+n(n+1)(n+2) \\
& =\frac{1}{4} n(n+1)(n+2)(n+3) . \\
& S_{n}=\stackrel{1}{1 \times \overline{2}}+\underset{2 \times 3}{1}+\frac{1}{3 \times 4}+\cdots+\underset{n(n+1)}{1}=1-\frac{1}{n+1} . \\
& S_{\infty}=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots . .=1 . \\
& S_{n}=\frac{1}{1 \times 2 \times 3}+\frac{1}{2 \times 3 \times 4}+\frac{1}{3 \times 4 \times 5}+\cdots+\frac{1}{n(n+1)(n+2)} \\
& =\frac{1}{4}-\frac{1}{2(n+1)(n+2)} . \\
& S_{\infty}=\frac{1}{1 \times 2 \times 3}+\frac{1}{2 \times 3 \times 4}+\frac{1}{3 \times 4 \times 5}+\cdots . . .
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}-1+2 x+3 x^{2}+4 x^{3}+\ldots . x^{n}+n x^{n-1} \\
& \quad=\left(1-x^{n} n x^{n}\right. \\
& =(1-x)^{2}-1-x
\end{aligned}
$$

Permutations and Combinations.-" Each of the arrangements which can be made b! taking some or all of a number of things is called a pernutation."

Thus the permutations which can be made with the digits 1,2 , and 3 , taking them two at a time, are $12,13,21,31,23$, and 32.
"Each of the groups or selectons which can be made by taking some or all of a number of thugs is called a combination"

Thus the combinations which can be made with the digits 1,2 , and 3 , taking them two at a time, are 1223 , and 31.

12 and 21 are different permutations, but one combination of the digits 1 and 2.

The number of permutations of n different things taken r at a time is $n(n-1)\left(\begin{array}{ll}n & 2\end{array}\right) \ldots(n-r+1)$.

The number of permutations of n different things taken n at 2 time is $n(n-1)(n-2) \ldots 1$, or $1 \times 2 \times 3 \ldots \ldots$.

The expression $n(n 1)(n-2) \ldots \ldots 1$ is denoted by n, which is called "factorial u."

The number of combinations of n different things taken r at a time is $\underline{n(n-1)(n-2)} \underset{\underline{r}}{\ldots} \underline{(n+1)}$ or $\frac{\mid n}{\operatorname{r|n-r}}$.

Binomial Theorem. $-(a+x)^{n}=$
$a^{n}+n a^{n-1} x+\frac{n(n-1)}{1.2} a^{n-2} x^{2}+\frac{n(n-1)(n-2)}{1.2 .3} a^{n-3} x^{3}+\ldots \ldots+x^{n}$.
Example. - $(a+x)^{5}=$

$$
\begin{gathered}
a^{5}+5 a^{4} x+\frac{5 \cdot 4}{1 \cdot 2} a^{3} x^{2}+\frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3} a^{2} x^{3}+\frac{5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4} a x^{4}+x^{5} \\
=a^{5}+5 a^{4} x+10 a^{3} x^{2}+10 a^{2} x^{3}+5 a x^{4}+x^{5} .
\end{gathered}
$$

The $(r+1)^{\text {th }}$ term of $(a+x)^{n}=\begin{gathered}n(n-1)(n-2) \ldots(n-r+1) \\ a^{n-r} x^{r}\end{gathered}$.
Exponential and Logarithmic Series.
where $A=\log _{e} a$.
Put $a=e$, then since $\log _{e} e=1$,
$e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots \cdot \cdot$
$e=1+1+\frac{1}{[2}+\frac{1}{[3}+\frac{1}{\sqrt[4]{4}}+\ldots$.

$$
a^{x}=1+A x+\frac{A^{2} x^{2}}{1 \underline{2}}+\frac{A^{3} x^{3}}{1 \underline{3}}+\frac{A^{4} x^{4}}{1 \underline{4}}+\cdots \cdots
$$

e is the base of the Napierian system of logarithms.
$e=2.7182818284$. . . .
$\frac{1}{e}=e^{-1}=\frac{1}{\underline{2}}-\frac{1}{13}+\frac{1}{4}-\frac{1}{15}+\ldots .$.
$\log _{e}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots .$.
$\log _{e} m=2\left\{\frac{m-1}{m+1}+\frac{1}{3}\left(\frac{m-1}{m+1}\right)^{3}+\frac{1}{5}\left(\frac{m-1}{m+1}\right)^{5}+\ldots \quad \ldots\right\}$
$\log _{e}(n+1)-\log _{e} n=2\left\{\frac{1}{2 n+1}+\frac{1}{3(2 n+1)^{3}}+\frac{1}{5(2 n+1)^{5}}+\cdots\right\}$
$\log _{10}(n+1)-\log _{10} n=2 \mu\left\{\frac{1}{2 n+1}+\frac{1}{3(2 n+1)^{3}}+\frac{1}{5(2 n+1)^{5}}+\ldots\right\}$
$\mu=\frac{1}{\log _{e} 10}=43429448 \ldots$

TRIGONOMETRY.

Measurement of Angles.

In Sexayesimal Measure, one right angle $=90$ degrees, one degree - 60 minutes, and one minute $=60$ seconds.

In Radian or Circular Measure, an angle is measured by the ratio, $\frac{\operatorname{arc}}{\text { radius }}$

$n=$ number of degrees in angle A.
$\theta=$ circular measure of angle A.
$\pi=$ ratio of half the circumference of a circle to its radius.
$=$ circular measure of an angle of 180 degrees $=3.1416$ nearly.
(For functions of π, see pp. 139 and 140.)

$$
\frac{n}{180}=\frac{\theta}{\pi} . \quad n=\frac{180 \theta}{\pi}=57 \cdot 2958 \theta . \quad \theta=\frac{\pi n}{180}=0.017453 \mathrm{~m} .
$$

Trigonometrical Ration

Angle A is contained by the lines $O P$ and $O X$
$P N$ is perpendicular to $O X$.
$P N$ is positive (+) when it is above $O X$.
$P N$ is negative (-) when it is below $O X$.
$O N$ is positive (t) when it is to the right of O.
$O N$ is negative (-) when it is to the left of O.
$O P$ is always positive $(+)$.

versed sine $A=$ vers $A=1-\cos A$.
coversed sine $A=$ covers $A=1-\sin A$.

Trigonometrical Formulæ.

$$
\begin{array}{ll}
\operatorname{cosec} A=\begin{array}{c}
1 \\
\sin A
\end{array} & \sec A=\begin{array}{c}
1 \\
\cos A
\end{array} \\
\tan A=\frac{\sin A}{\cos A} \bar{A}=\begin{array}{c}
1 \\
\cot ^{\sin ^{2} A+\cos ^{2} A=1 .}
\end{array} & \cot A=\frac{\cos A}{\sin A}=\frac{1}{\tan A} .
\end{array}
$$

$\sec ^{2} A=1+\tan ^{2} A$.

$$
\operatorname{cosec}^{2} A=1+\cot ^{2} A
$$

$\sin \left(360^{\circ}-A\right)=-\sin A$.	$\cos \left(360^{\circ}-A\right)=\cos A$.
$\tan \left(360^{\circ}-A\right)=-\tan A$.	$\cot \left(360^{\circ}-A\right)=-\cot A$.
$\sin \left(180^{\circ}-A\right)=\sin A$.	$\cos \left(180^{\circ}-A\right)=-\cos A$.
$\tan \left(180^{\circ}-A\right)=-\tan A$.	$\cot \left(180^{\circ}-A\right)=-\cot A$.
$\sin \left(180^{\circ}+A\right)=-\sin A$.	$\cos \left(180^{\circ}+A\right)=-\cos A$.
$\tan \left(180^{\circ}+A\right)=\tan A$.	$\cot \left(180^{\circ}+A\right)=\cot A$.
$\sin \left(90^{\circ}-A\right)=\cos A$.	$\cos \left(90^{\circ}-A\right)=\sin A$.
$\tan \left(90^{\circ}-A\right)=\cot A$.	$\cot \left(90^{\circ}-A\right)=\tan A$.
$\sin \left(90^{\circ}+A\right)=\cos A$.	$\cos \left(90^{\circ}+A\right)=-\sin A$.
$\tan \left(90^{\circ}+A\right)=-\cot A$.	$\cot \left(90^{\circ}+A\right)=-\tan A$.

$\sin (A+B)=\sin A \cos B+\cos A \sin B$.
$\sin (A-B)=\sin A \cos B-\cos A \sin B$.
$\cos (A+B)=\cos A \cos B-\sin A \sin B$.
$\cos (A-B)=\cos A \cos B+\sin A \sin B$.

$$
\begin{aligned}
& \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} . \\
& \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B} .
\end{aligned}
$$

$$
\begin{aligned}
& \sin 2 A=2 \sin A \cos A . \\
& \cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A . \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} \bar{A} .} \\
& \sin 2 A=\frac{2 \tan A}{1+\tan ^{2} A} \quad
\end{aligned}
$$

$$
\begin{aligned}
& \sin 3 A=3 \sin A-4 \sin ^{3} A \\
& \cos 3 A=4 \cos ^{3} A-3 \cos A \\
& \tan 3 A=\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A}
\end{aligned}
$$

$\sin (A+B) \sin (A-B)=\sin ^{2} A-\sin ^{2} B-\cos ^{2} B-\cos ^{2} A$. $\cos (A+B) \cos (A-B)=\cos ^{2} A-\sin ^{2} B=\cos ^{2} B-\sin ^{2} A$.
$\sin \frac{A}{2}= \pm \sqrt{2}(1-\cos A)$. $\tan \frac{A}{2}=\frac{\sin A}{1+\cos A}$. $\cos \frac{A}{2}= \pm \sqrt{\frac{1}{2}}(1+\overline{\cos } A)$.

$$
\begin{aligned}
& \sin \frac{A}{2}+\cos \frac{A}{2}= \pm \sqrt{1}+\sin A \\
& \sin \frac{A}{2}-\cos \frac{A}{2}= \pm \sqrt{ } 1-\sin A
\end{aligned}
$$

$$
2 \sin A \cos B=\sin (A+B)+\sin (A-B)
$$

$$
2 \cos A \sin B=\sin (A+B)-\sin (A-B)
$$

$$
2 \cos A \cos B=\cos (A+B)+\cos (A-B)
$$

$$
-2 \sin A \sin B=\cos (A+B)-\cos (A-B)
$$

$$
\begin{array}{r}
\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \\
\sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \\
\cos A+\cos B=2 \cos \frac{A+B}{2} \cos A-B \\
\cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}
\end{array}
$$

a, b, and c are the sides of a triangle, and A, B, and C are the opposite angles.

$$
\text { Area of thangle } \Delta-2^{l / c} 411 A-\sqrt{s(s-a)(s-b)(s \quad c)}
$$

R-radus of the circumscnbing circle of a triangle.
$r=$ radius of the inscribed circle.
$r_{1}=$ radius of the escribed circle which touches the side a and the sides b and c produced.
$r_{2}=$ radius of the escribed circle which touches the side b and
the sides c and a produced
$r_{3}=$ radius of the escribed circle which touches the side c and the sides a and b produced.
$R=\underset{2 \sin A}{a}=a b c$.
$r_{1}=\stackrel{\Delta}{s-a}$.
$r_{2}=\frac{\Delta}{s-6}$
$r=-\underset{a}{2 \Delta}+b+c={ }_{s}^{\Delta}=(s-a) \tan \begin{gathered}A \\ 2\end{gathered}$.
$r_{1}=s \tan \begin{gathered}A \\ 2\end{gathered} \quad r_{2}=s \tan \begin{aligned} & B \\ & 2\end{aligned} . \quad r_{3}-s \tan _{\substack{C^{\prime} \\ 2}}$
$l=$ length of each side of a regular polygon.
$n=$ number of sides.
$R=$ radius of the circumscribing circle.
$r=1$ adius of the inscribed circle.
Perimeter of polygon $=n l=2 n r \tan \frac{180^{\circ}}{n}=2 n R \sin \frac{180^{\circ}}{n}$.
Area of polygon $=\frac{1}{4} n l^{2} \cot \frac{180^{\circ}}{n}=n r^{2} \tan \frac{180^{\circ}}{n}=\frac{1}{2}{ }^{n} R^{2} \sin \frac{360^{\circ}}{n}$.

$$
l=2 r \tan \frac{180^{\circ}}{n}=2 R \sin \frac{180^{\circ}}{n}
$$

$$
\begin{aligned}
& a+b+c=2 s \\
& A+B+C=180^{\circ} . \\
& \begin{array}{ll}
a & b \\
c
\end{array} \\
& \sin A=-\sin B=\sin C^{\circ} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \text {. } \\
& a=b \cos C^{\prime}+c \operatorname{con} B \text {. } \\
& \cos A=\begin{array}{c}
b^{2}+r^{2}-a^{2} \\
2 b r
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \cos _{2}^{A}-\sqrt{s}{ }_{-8}^{8}{ }_{b c}^{a)} . \\
& \tan _{2}^{A}=\sqrt{(\stackrel{s-b)(s-\bar{c})}{s(s-a)} .} \\
& \sin A=\frac{2}{b c} \sqrt{s}(s) \quad \text { a) } \overline{(s-b)}(\overline{s-c}) . \\
& \tan { }_{2}^{A-B}=\frac{a}{a}+{ }_{b}^{b} \cot \frac{C^{r}}{2} .
\end{aligned}
$$

Solution of Triangles

In the figures the given parts are shown by thick lines.

Sines, Cosines, Tangents, and Cotangents.

Angle in Degrees	Sine.	Tangent		Angle in De grees	Sine.	Tangent.	
0	-00000	-00000	90	20)	-34202	-36:397	70
$0 \cdot 5$	$\cdot 00873$	-00873	89.5	205	-35021	$\cdot 37388$	$69 \cdot 5$
1	. 01745	-01746	89	21	-35837	-38386;	69
1.5	-02618	-02619	$88 \cdot 5$	$21 \cdot 5$	-36650	-39391	68.5
2	-03490	-03492	88	22	$\cdot 37461$	-4040:3	68
$2 \cdot 5$	-04362	-04366	$87 \cdot 5$	$22 \cdot 5$	$\cdot 38268$	41421	$67 \cdot 5$
3	$\cdot 05234$	$\cdot 05241$	87	23	$\cdot 39073$	-42447	67
$3 \cdot 5$	-06105	-06116	86.5	235	-39875	-43481	$66 \cdot 5$
4	$\cdot 06976$	-06993	K6	24	-40674	- 14523	66
$4 \cdot 5$. 07846	-07870	85.5	24.5	-41469	$\cdot 45573$	$65 \cdot 5$
5	$\cdot 08716$	-08749	85	25	-42262	-46631	65
$5 \cdot 5$	-09585	-09629	84.	$25 \cdot 5$	$\cdot 43051$	$\cdot 47698$	$64 \cdot 5$
6	$\cdot 10453$	-10510	84	26	$\cdot 43837$	- 48773	64
$6 \cdot 5$	$\cdot 11320$	-11394	83.5	$26 \cdot 5$	$\cdot 44620$	- 49858	$63 \cdot 5$
7	$\cdot 12187$	- 12278	83	27	-45399	-50953	63
$7 \cdot 5$	$\cdot 13053$	-13165	$82 \cdot 5$	$27 \cdot 5$	-46175	$\cdot 52057$	$62 \cdot 5$
8	$\cdot 13917$	-14054	82	28	$\cdot 46947$	-53171	62
$8 \cdot 5$	$\cdot 14781$	-14945	81.5	$28 \cdot 5$	$\cdot 47716$	$\cdot 54296$	$61 \cdot 5$
9	$\cdot 15643$	$\cdot 15838$	81	29	$\cdot 48481$	-50431	61
$9 \cdot 5$	$\cdot 16505$	-16734	805	$29 \cdot 5$	-49242	$\cdot 56577$	$60 \cdot 5$
10	$\cdot 17365$	-17633	80	30	-50000	-57735	60
105	18224	-18534	$79 \cdot 6$	$30 \cdot 5$	$\cdot 50754$	${ }^{-58905}$	$59 \cdot 5$
11	$\cdot 19081$	-19438	79	31	$\cdot 51504$	-60086	59
$11 \cdot 5$	-19937	$\cdot 20345$	$78 \cdot 5$	31.5	-52250	-61280	$58 \cdot 5$
12	$\cdot 20791$	-21256	78	32	$\cdot 52992$	-62487	58
$12 \cdot 5$	-21644	$\cdot 22169$	$77 \cdot 5$	$32 \cdot 5$	$\cdot 53730$	$\cdot 63707$	$57 \cdot 5$
13	$\cdot 22495$	$\cdot 23087$	77	33	54464	-64941	57
$13 \cdot 5$	$\cdot 23345$	-24008	$76 \cdot 5$	$33 \cdot 5$	$\cdot 55194$	-66189	$56 \cdot 5$
14	-24192	$\cdot 24933$	76	34	-65919	-67451	56
14.5	$\cdot 25038$	-25862	$75 \cdot 5$	$34 \cdot 5$	-56641	$\cdot 68728$	$55 \cdot 5$
15	-25882	$\cdot 26795$	75	35	-57358	$\cdot 70021$	55
$15 \cdot 5$	-26724	$\cdot 27732$	745	$35 \cdot 5$	-58070	71329	$54 \cdot 5$
16	$\cdot 27564$	-28675	74	36	-58779	-72654	54
$16 \cdot 5$	$\cdot 28402$	$\cdot 29621$	$73 \cdot 5$	$36 \cdot 5$	-59482	-73996	$53 \cdot 5$
17	- 29237	-30573	73	37	-60182	-75355	53
$17 \cdot 5$	$\cdot 30071$	-31530	$72 \cdot 5$	$37 \cdot 5$	$\cdot 60876$	$\cdot 76733$	$52 \cdot 5$
18	-30902	-32492	72	38	$\cdot 61566$. 78129	52
$18 \cdot 5$	- 31730	$\cdot 33460$	71.5	$38 \cdot 5$	$\cdot 62251$	-79544	$51 \cdot 5$
19	$\cdot 32557$	$\cdot 34433$	71	39	${ }^{*} 62932$	-80978	51
$19 \cdot 5$	$\cdot 33381$	- 35412	$70 \cdot 5$	$39 \cdot 5$	${ }^{6} 63608$. 82434	50.5
	Cosine.	Cotangent.	Angle in De. grees		Cosine.	Cotangent.	Angle in Degreen.

Sines, Cosines, Tangents, and Cotangents.

Sines, Cosines, Tangents, and Cocangents.

Angle in De grees	Sine.	Tangent		Angle in De grees.	Sine.	Tangent	
80	' 984881	567128	10	85:\%	-99692	12.70620	$4 \cdot 5$
80.5	-98629	5.97576	95	86	99756	$14 \cdot 30067$	4
81	-98769	$6 \cdot 31375$	9	$86 \cdot 5$	99813	$16 \cdot 34985$	$3 \cdot 5$
81.5	. 98902	$6 \cdot 69116$	$8 \cdot 5$	\& 7	$\cdot 99863$	1908114	3
82	. 99027	$7 \cdot 11537$	8	87.5	99905	22.90377	$2 \cdot 5$
825	. 99144	759.75	75	88	$\cdot 99939$	$28 \cdot 63625$	2
83	-992.5	8.11435	7	$88 \cdot 5$	$\cdot 99966$	$3 ¢ \cdot 18846$	1.5
83.5	-99357	8.77689	65	89	-99985	57.28996	1
84	-99452	951436	6	49.5	-99996	11458865	$0 \cdot 5$
845	99540	$10 \cdot 38540$	$5 \cdot 5$	(\%)	1.00000	Infinite	0
85	-99619	11.43005	5				
	C'osine	otangent	Āngle in Iegrees		Cosine.	rotangent.	Añle in Degrees.

Trigonometrical Ratios of Certain Angles.
A Angle in degrees

The trigonometrical ratios of angles greater than 90° are found by means of the formulex on page 41, and the values given in the above tables.

Measurement of Angles by "Two-Foot" Rula.

Angle A in Degrees and Decimals of a Degree.

B	$\cdot 0$	1/8	1/4	$3 / 8$	1/2	5/8	$3 / 4$	7/8	B
0	-	6	12	18	24	3.0	$3 \cdot 6$	$4 \cdot 2$	0
1	4.8	54	60	$6 \cdot 6$	$7 \cdot 2$	$7 \cdot 8$	$8 \cdot 4$	90	
2	$9 \cdot 6$	$10 \cdot 2$	$10 \cdot 8$	11.4	12.0	126	13.2	$13 \cdot 8$	2
3	$14 \cdot 4$	150	$15 \cdot 6$	$16 \cdot 2$	$16 \cdot 8$	$17 \cdot 4$	$18 \cdot 0$	18.6	3
4	$19 \cdot 2$	19.8	$20 \cdot 4$	21.0	$21 \cdot 6$	$22 \cdot 2$	$22 \cdot 8$	$23 \cdot 4$	4
5	$24 \cdot 1$	24.7	25.3	25.9	26.5	$27 \cdot 1$	27.7	$28 \cdot 3$	5
6	290	29.6	$30 \cdot 2$	$30 \cdot 8$	$31 \cdot 4$	$32 \cdot 0$	32.7	$33 \cdot 3$	6
7	339	$34 \cdot 5$	35.2	$35 \cdot 8$	$36 \cdot 4$	$37 \cdot 0$	37.7	$38 \cdot 3$	7
8	$38 \cdot 9$	$39 \cdot 6$	402	$40 \cdot 8$	41.5	$42 \cdot 1$	$42 \cdot 8$	$43 \cdot 4$	8
9	44.0	44.7	$45 \cdot 3$	46.0	46.6	$47 \cdot 3$	$47 \cdot 9$	48.6	9
10	49.2	$49 \cdot 9$	50.6	$51 \cdot 2$	$51 \cdot 9$	$52 \cdot 6$	$53 \cdot 2$	53.9	10
11	54.6	$55 \cdot 2$	55.9	56.6	573	57.9	$58 \cdot 6$	$59 \cdot 3$	11
12	60.0	$60 \cdot 7$	$61 \cdot 4$	$62 \cdot 1$	62.8	$63 \cdot 5$	$64 \cdot 2$	64.9	12
13	65.6	$66 \cdot 3$	67.0	67.7	68.5	69.2	69.9	$70 \cdot 6$	13
14	$71 \cdot 4$	$72 \cdot 1$	72.8	$73 \cdot 6$	$74 \cdot 3$	75.1	$75 \cdot 8$	76	14
15	$77 \cdot 4$	$78 \cdot 1$	78.9	79.7	80.5	81.2	82.0	82.8	15
16	83.6	$84 \cdot 4$	85.2	86.0	86.9	87.7	88.5	89.4	16
B	$\cdot 0$	1/8	1/4	3/8	1/2	5/8	$3 / 4$	7/8	B

LOGARITHMS OF NUMBERS.

Logarithms are auxiliary numbers, by means of which the simple operations of addition and subtraction may be substituted for the more cumbrous operations of multiplication and division, and easy cases of multuplication and division for involution and evolution.

The logarithm of a number to a given base is the index of the power to which the base must be raised to be equal to the number. Thus, if $a^{x}-N$, then x is the logarithm of N to the base a.

There are two systems of logarithms in use, namely, the common system, in which the base is 10 , and the Napicrian system, in which the base (denoted by f) is $2 \cdot 71 \times 281828$. Napierian logarithms are also called natural and also Hyperbolic logarithms.
When logarithms are ppoken of without any qualification, common logarithms are to be understood.

The loganthm of a number usually consists of two parts, namely, an integial part and a fractional part ; thus log. $789=2.897077$. The integral part is called the character istic, and the fractional part is called the mantissa. Thus the characteristic of the logarithm of $789 \mathrm{i}, 2$, and the mantisa is 897077 .

The characteristic of the logarithm of a number is determined by inspection. The rules for the characteristic are: (1) If the number has an integral part, the characteristic is one less than the number of figures in the integral part, and it is positive. Thus the characteristic of the logarithm of 687345 is 3 . (2.) If the number is wholly a decimal, the characteristic is one more than the number of noughts to the right of the decimal point, and is negative. Thus the characteristic of the logarithm of 00567 is -3 , and is written $\overline{3}$.

The mantissa of the logarithm of a number depends only on the figures which occur in the number and their order, and is independent of the position of the decimal point. The mantissa 28 alvays positive.

The above rules for the characteristic and mantissa do not apply to Napierian logarithms.

In tables of common logarithms of numbers the mantisse or decimal parts only of the lugarithms are given.

Examples.

$\log .7391=3 \cdot 868703$	log. $\cdot 7391$	$=\overline{1} \cdot 868703$
$\log .739100=5 \cdot 868703$	log. $\cdot 07391$	$=\overline{2} \cdot 868703$
$\log .739 \cdot 1=2868703$	log. $\cdot 007391$	$=\overline{3} \cdot 868703$
$\log \cdot 73 \cdot 91=1 \cdot 868703$	log. $\cdot 0007391$	$=\overline{4} \cdot 868703$
$\log \cdot 7 \cdot 391=0 \cdot 868703$	log. $\cdot 00007391=\overline{5} \cdot 868703$	

Computation of Negative Characteristics.

To add two negatire characteristics, take their sum and make it negative. Thus $\overline{5}+\overline{2}=\overline{7}$.

To add a positive to a negative charactcristic take their difference and make its sign the sign of the greater ; thus, $\overline{3}+5=2$, and $3+\overline{5}=\overline{2}$.

Examplen on the Addition of Logarithms.

	(1)	(2)	(3)	(4)
To	3 15×12	1:516059	$2 \cdot 189720$	2.691856
Add	4:31980.	$3 \cdot 301562$	$\overline{3} 9999118$	$\overline{4} \cdot 764865$
Answer	7.75×717	2*17651	$4 \cdot 1888.38$	$1 \cdot 456721$

In example, (3) and (4) the sum of the decimal parts is greater than 1, and the integral part of this sum, which is positive, is added to the sum of the characteristics.

To subtruct a wyutive characterstic, change its sign to plus and proceed as in addition; thus, $1-\overline{3}=4+3=7$, and $\overline{1}-\overline{3}=\overline{4}+3=\overline{1}$.

To subtract a positive characteristu, change its sign to minus and proceed as in addition; thus, $4-3-4+3=1$, and $\overline{4}-3=\overline{4}+\overline{3}=\overline{7}$.

Examples on Subtraction of Logarithms.

	(1)	(2)	(3)
From	$3 \cdot 16173.5$	4513829	2.685609
Take	$\bar{\top} 214809$	$\overline{2} \cdot 608051$	3.776152
Answer	42946926	$3 \cdot 905778$	$\underline{6} \cdot 9094.57$

In examples (2) and (3) the lower decimal part is greater than the upper decimal part, hence 1 is borrowed from the upper characteristic, causing the characteristic $\overline{4}$ in example (2) to become $\overline{5}$, and the charact eristic $\overline{2}$ in example (3) to become $\overline{3}$.

To multiply a negative characteristic, multiply as if positive and make the product negative ; thus, $\overline{2} \times 3=\overline{6}$.

Examples on Multiplication of Logarithms.
(1)

Multiply $\overline{\mathbf{2}} 310311$
By 3
Answer $\quad 6.930933$

1. 810698

6
$\overline{2} \cdot 864188$

In example (2) the decimal part multiplied by 6 gives 4 and a decimal, and this 4 is added to $6 \times \overline{1}$, thus $6 \times \overline{1}+4=\overline{6}+4=\overline{2}$.

To divide a loyurithm having a negative characteristic.- If the characteristic is divisible by the divisor without a remainder, write the quotient with a negative sign and divide the decimal part in the usual way ; thus, $6 \cdot 45 \times 938 \div 2=3 \cdot 229469$. If the characteristic is not divisible by the dnisor without a remainder, add such a negative number to it as will make it divisible without a remainder and prefix an equal positive number to the decinal part of the logarithm, then divide the increased negative chatacteristic and the other part of the logarithm separately; thus, $\overline{7} \cdot 135718 \div 3=(\overline{2}+\overline{7}+2 \cdot 135718) \div 3=(9+2 \cdot 135718) \div 3=3 \cdot 711906$.

To find the Logarithm of a Number by the Tables.

If the number contains one, or two figurts only, the mantissa of its logarithm will be found on page 53, and to this must be prefixed the proper characteristic by the rules already given; thus, $\log .87=1 \cdot 939519, \log .8 \cdot 7=0 \cdot 939519, \log \cdot 87=1939519$, and $\log \cdot 087=\overline{2} 939519$.
If the number contains thref figures, the mantissa of its logarithm will be found in the column headed 0 in the table given on pages 54 to $9 x$; thus, log. $549=2.739572, \log .51900=4.739572$, and log. $\cdot 00549=3 \cdot 739572$.

If the number contains four fiyures, the mantissa of its logarithm will be found in the column headed by the last figure of the number, and in a line with the first thee figures of the number to be found in the column headed N ; thus, log. $3865=3 \cdot 587149$, and log. $38 \cdot 6.5=1 \cdot 587149$.

If the number contains more than four figures, its logarithm is determined by assuming that the increase in the logarithm is proportional to the corresponding increase in the number, which is approximately the case.

Example:---To find the logarithm of 689412 .

$\begin{aligned} & \mathrm{N} . \\ & 689 \overline{\mathrm{j}}(\mathrm{~K}) \\ & 689400 \end{aligned}$	$\begin{gathered} \log . \\ 8385.34 \\ 838471 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 6 \times 9412 \\ 6 \times 94(0) \end{gathered}$	$\underset{\substack{\text { log. } \\ \times 3 \times 4171 \\ x 3 \times 171}}{ }$
Diff. 100	Diff. 6.3	Diff 12	Diff. x
$\begin{aligned} & 100: 12 \\ & r=\frac{12 \times}{100} \end{aligned}$	$\begin{aligned} & : 63: x . \\ & =7 \cdot 56, \end{aligned}$	838	=83847

Therefore log. 689412 $=5 \cdot 838479$.
In practice the above calculation is abbreviated by taking the difference between the logarithms from the column headed D in the table.

To find the Number corresponding to a given Logarithm.

If the mantissa is found in the table, the first three figures of the number will be found in a line with it in the column headed N , and the fourth figure will be that at the head of the column containing the mantissa. The characteristic will fix the position of the decimal point.

If the mantissa is not found exactly in the table, proceed as in the following example :-

Example.-To find the number corresponding to the logarithm 2027529.

Therefore, the number corresponding to the logarithm 2.027529 is 106.544 .

Applications of Logarithms.

Multiplication.-The logarithm of a product is equal to the sum of the logarithms of its factors; thus, $\log .(A \times B \times C)=$ $\log , A+\log . B+\log . C$.

Example.-T'o find the product of $853 \cdot 7,99 \cdot 18$, and $6 \cdot 437$.
$\log .853 .7=2.931305$
log. $99 \cdot 18=1.996424$
log. $6 \cdot 437=0 \cdot 808684$
\log of product $=5.736413 . \quad$ Product $=545020$.
Division.-The logarithm of a quotient is equal to the logarithm of the dividend diminished by the logarithm of the divisor ; thus, log. $\stackrel{A}{\bar{B}}=\log . A-\log . B$.

EXAMPLE.-To find the value of $\begin{aligned} & 87.65 \times 3914 \\ & 8733 \times 47.19\end{aligned}$
log. $87 \cdot 65=1.942752$
log. $3914=3 \cdot 592621$
log. of dividend $=5.535373$
log. of divisor $=5.615013$
log. of quotient $=\overline{1} \cdot 920360$
log. $8733=3.941163$
log. $47 \cdot 19=1 \cdot 673850$
log. of divisor $=5.615013$
quotient $=\mathbf{8 3 2 4 5}$

Involution.-The logarithm of a power of a number is equal to the logarithm of the number multiplied by the index of the power; thus, $\log . A^{n}=u \log A$.

Example. -To find the fourth power of x 79 .
$\log .479^{4}=4 \log .879=1 \times 913989=3 \cdot 775956$

$$
879^{4}=5969 \cdot 7
$$

Evolution. -The logarithm of a root of a number is equal to the logarithan of the number divided by the index of the root; thus, log. $\sqrt[n]{ } / A=\frac{\log \cdot}{n}$.

Example. - To find the cube root of 2998.

$$
\begin{aligned}
\log \cdot \sqrt[3]{3} 2998 & =\begin{array}{l}
\log .2998 \\
3
\end{array}={ }^{3476832}=1158944 . \\
\sqrt[3]{2} 2998 & =14 \cdot 419
\end{aligned}
$$

$T o$ find x from the equation $a^{x}=b$, where a and b are knoun numbers.

$$
x \log . a=\log . b . \quad x=\frac{\log . b}{\log . a}
$$

Logarithms of Numbers.

N	Ing	N	1 La	N	1 log	N	Log
1	(100060	26	414973	51	707570	76	880814
2	301030	27	1431364	52	716003	77	886491
3	477121	28	447158	53	724976	78	892095
4	602060	29	- 462:398	54	732394	79	897627
5	698970	30	477121	05	740363	80	903090
6	778151	31	491362	56	718188	81	908485
7	845098	32	505150	57	755875	82	913814
8	903090	33	518514	58	763428	83	919078
9	954243	34	531479	59	770852	84	924279
10	000000	35	644068	60	77×151	85	929419
11	041393	36	556303	61	785330	86	934498
12	079181	37	568202	62	792392	87	939519
13	113943	38	579784	(63	799341	88	944483
14	146128	39	591065	6.4	806180	89	949390
15	176091	40	602060	65	812913	90	954243
16	204120	41	612784	66	819544	91	959041
17	230449	42	623249	67	826075	92	963788
18	255273	43	633468	68	832509	93	968483
19	278754	44	\%43453	69	838849	94	973128
20	301030	45	653213	70	845098	95	977724
21	322219	46	662758	71	851258	96	982271
22	342423	47	672098	72	857332	97	986772
23	361728	48	681241	73	863323	98	391226
24	380211	49	690196	74	869232	99	995635
25	397940	50	698970	75	875061	100	mmm

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
100	000000	000434	000868	001301	0017.31	002166	(0)2598	003029	003461	003891	432
101	004321	004751	005181	005609	006038	0064tit	006×94	(0)7321	00.748	008174	428
102	, 008600	009026	009451	009876	010300	$01072 \pm$	011147	011570	011993	012415	424
103	012837	013259	013680	014100	014521	014940	015360	015769	016197	016616	420
104	017033	017451	$01786 \times$	018284	018700	019116	019532	019947	020361	020775	416
105	021189	021603	022016	022428	022841	02.3252	023664	024075	()244×6	024×96	412
106	025306	025715	026125	026533	026942	027350	02765	02×164	02×371	02897	408
107	029384	029789	030195	030600	031004	0.31408	$031 _12$	032216	032619	033021	404
108	033424	033826	034227	031628	035029	035430	0355×30	036230	036629	037028	409
109	037426	037825	038223	038620	039017	039414	039811	040207	040602	040998	397
110	041393	041787	042182	042576	042969	043362	013755	044148	044540	044932	393
111	045323	045714	046105	046495	046885	047275	047664	048053	048442	048830	390
112	049218	049606	049993	0503×0	050766	051153	$0.51 .53 \times$	051924	052309	052694	386
113	053078	053463	053846	054230	054613	051996	(155:378	055760	056142	056524	383
114	056905	057286	057666	058046	0.58426	05880.5	059185	059563	0599942	060320	379
115	060698	061075	061452	061829	062206	0625×2	062958	063333	063709	0640×3	376
116	064458	064832	065206	065580	065953	066326	066699	067071	067443	067815	373
117	068186	068555	068928	069298	069668	070038	070107	070776	0.11145	071514	370
118	071882	072250	072617	072985	073352	073718	074085	074451	074816	075182	367
119	075547	075912	076276	076640	077004	073368	077731	078094	078457	078819	364
120	079181	079543	079904	080266	080626	080987	0×1347	081707	082067	082426	361
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers（continved）．

N	0	1	2	3	4	5	6	7	8	9	D
121	082785	083144	083503	083861	（1x4219	（0x4576	$0 \times 493 \pm$	0×5291	0×5647	086004	358
122	086360	086716	087071	087426	057isl	0×2136	084490	0×8845	0×9198	089552	355
123	089905	090258	090611	090963	091315	091667	092015	092370	092721	093071	352
124	093422	093772	094122	094471	094820	095169	095\％14	095866	096215	096562	349
125	096910	097257	097604	097951	09¢298	09×641	094990	099335	099681	100026	346
126	100371	100715	101059	101403	101747	102091	102434	102775	103119	103462	343
127	103804	104146	104487	104828	105169	105510	1058．51	106191	106531	106471	341
128	107210	107549	107898	108227	108565	10890．3	$1092+1$	109579	109916	110253	338
129	110590	110926	111263	111599	111934	112270	112605	112940	113275	113609	335
130	113943	114276	114611	114944	115279	115611	11594.3	116976	116602	116940	333
131	117271	117603	117934	118265	114595	118926	119256	119586	119915	$120 \% 45$	330
132	120574	120903	121231	121560	121くらヶ	129216	129541	1228.1	12319	123525	328
133	123852	124178	124501	124830	1251．56	125441	125406	126131	126456	12674	325
134	127105	127429	127753	128076	12『399	12ヶi22	129045	$12936 \times$	129690	130012	323
135	130334	130655	130977	131298	131619	131939	1．3226）	132580	132900	133219	321
136	133539	133858	134177	134496	134×14	135133	135451	135769	136086	136403	318
137	136721	137037	137354	137671	13798	13×303	13－61	13×934	134249	139564	316
188	139879	140194	140508	140822	141136	141450	141763	142076	1423×9	142702	314
139	143015	143327	143639	143951	141263	114．34	14188.5	145196	145507	14.5918	311
140	146128	146438	146748	147058	147367	147676	147985	14－294	148603	148911	309
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

H	0	1	2	3	4	5	6	7	8	9	D
141	149219	149527	149835	150142	150449	150756	151063	151370	151676	151982	307
142	152288	152594	152900	153205	153510	153815	154120	154424	154729	155032	305
143	155336	155640	$15 \sim 943$	156246	156549	156852	157154	157457	157759	15×061	303
144	158362	158664	158965	159266	159567	159868	160168	160469	160769	161068	301
145	161368	161667	161967	162266	162564	162×63	163161	163460	163758	164055	299
146	161353	164650	164947	165244	165 ั41	165838	166134	166430	166726	167022	297
147	167317	167613	167908	168203	168497	168792	169086	$1693{ }^{\circ} 0$	169634	169968	295
148	170262	170555	170848	171141	171434	171726	172019	172311	172603	172895	293
149	173186	173478	173769	174060	174351	171641	174932	175222	175512	175802	291
150	176091	176381	176670	176959	177248	177536	177×25	178113	178401	178689	289
161	178977	179264	179552	179839	180126	180413	180699	1×0986	181272	181558	287
152	181844	182129	182415	182700	182985	183270	183555	183×39	184123	184407	285
153	184691	184975	185259	185542	185825	186108	186391	146674	186956	187239	283
164	187521	187803	188084	188366	1*9647	184928	149209	189490	189771	190051	281
185	190332	190612	190892	191171	191451	191730	192010	192289	192567	192846	279
186	+ 193125	193403	193681	193959	194237	194514	194792	195069	195346	195623	278
157	195900	196176	196453	196729	197005	197281	197556	197832	198107	198382	276
168	198657	198932	199206	199481	199755	200029	200303	200577	200850	201124	274
159	201397	201670	201943	202216	202488	202761	203033	203305	203577	203848	272
160	204120	204391	204663	204934	205204	205475	205746	206016	20624;	206556	271
H	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued)

N	0	1	2	3	4	5	6	7	8	9	D
161	206826	207096	207365	207634	207904	208173	208441	208710	208979	209247	269
162	209515	209783	210051	210319	210586	210853	211121	211388	211654	211921	267
163	212188	212454	212720	212986	213252	213518	213783	214049	211314	214579	266
. 164	214844	215109	215373	215638	215902	216166	216430	21669 1	216957	217221	264
165	217484	217747	218010	218273	218536	218798	219060	219323	219585	219846	262
166	220108	220370	220631	220892	221153	221414	221675	221936	222196	222456	261
167	222716	222976	223236	223496	223755	224015	224274	224533	224792	225051	259
168	225309	225568	225826	226084	226342	226600	226859	22 1115	227372	227630	258
169	227887	228144	228400	228657	228913	229170	229426	229682	229938	230193	256
170	230449	230704	230960	231215	231470	231724	231979	232234	232488	232742	255
171	232996	233250	233504	233757	234011	234264	234.317	234770	235023	235276	253
172	235528	235781	236033	236285	236537	236789	237041	237292	237544	237795	252
173	238046	238297	238548	238799	239049	239299	239550	239800	240050	240300	250
174	240549	240799	241048	241297	241546	241795	242044	242293	242541	242790	249
175	243038	243286	243534	243782	244030	241277	244525	24476	245019	245266	248
176	245513	245759	246006	246252	246499	246745	246991	247237	217482	247728	246
177	247973	248219	248464	248709	248954	249198	249443	249687	249932	250176	245
178	250420	250664	250908	251151	251395	2.51638	2.51881	252125	252368	252610	243
179	252853	253096	253338	253580	253822	254064	254306	254518	254790	255031	242
180	255273	2555514	255755	255996	256237	256477	256718	256958	257198	257439	241
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers（contenued）．

N	0	1	2	3	4	5	6	7	8	9	D
181	257679	257918	258158	258398	258637	258874	259116	259355	259594	259x33	239
182	260071	260310	260548	260787	261025	± 61263	261501	259305	261976	262214	239
183	262451	262688	262925	263162	263399	$\underline{2} 63636$	263873	264109	264346		237
184	264818	265054	265290	265525	263761	265996	$\because 66232$	266167	2667 （12	26.69 .37	235
185	267172	$26 \pi 406$	267641	267875	26ヶ110	$\bigcirc 64344$	26ヶゴ5	26 ¢×12	26944	269279	234
186	269513	269746	269980	270213	270446	270679	270912	271144	27137	271609	233
187	271842	272074	272306	$\underline{272538}$	272770	273001	273233	273464	273696	273927	232
188	274158	274389	274620	274850	275091	275311	275042	275772	276002	276232	230
189	276462	276692	276921	277151	273340	277609	27：434	の行067	9－8296	278525	229
190	278754	278982	279211	279439	279667	279×95	290123	240351	280578	2508106	228
191	281033	281261	281488	281715	281942	2¢2169	282396	242622	－ 28	2830－5	297
192	283301	283527	283753	2×3979	284205	2－4431	284656	284×82	285107	245332	296
193	285557	2×3782	286007	286232	2×6456	$\underline{2} 666 \times 1$	${ }_{2} \times 6905$	2×7130	287354	$2 \times 757 \times$	225
194	287802	288026	$2 ¢ 8249$	298473	2×8696	$\underline{2} \times 920$	28914.3	$2 ¢ 9366$	2×9589	$2 ¢ 9812$	223
195	290035	290257	2904＊0	290702	290925	29114	291369	291591	291813	292034	222
196	292256	292478	292699	292920	293141	$\underline{293363}$	2933^{24}	293804	294025	291246	$\underline{21}$
197	294466	294687	294907	295127	295347	295567	295\％	296007	296296	296446	220
198	296665	296884	297104	297323	297542	297761	297979	298199	298416	298635	219
199	298853	299071	299289	$29950 i$	299725	299943	300161	300378	300595	300813	218
200	301030	301247	301464	301681	301898	302114	302331	302547	202764	302980	217
\mathbf{N}	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (confinued).

N	0	1	2	3	4	5	6	7	8	9	D
201	303196	303412	30362×	303844	304059	304275	304491	304706	304921	305136	216
202	305351	3055066	305781	305996	306211	306425	306639	306854	307068	307282	215
203	307496	$307 \pi 10$	307924	308137	30¢351	31×564	3057T	30<991	309204	309417	213
204	309630	309843	310056	310268	310181	310693	310906	311118	311330	311542	212
205	311754	311966	312177	3123×9	312600	312812	313123	313234	313445	313656	211
206	313967	314078	314289	314499	314710	314920	315130	315340	31.5551	315760	210
207	315970	316180	316390	316599	316ऽ09	31701s	312227	317436	317646	317854	209
208	318063	318272	3184×1	314689	315598	319106	319314	319522	319730	319938	208
209	320146	320354	320.562	320769	320975	3211*1	321391	32159	321805	322012	207
210	322219	322426	322633	322×39	32304	3230.92	32345	32366.5	323-71	324076	206
211	324282	324488	324694	324899	325105	325310	325516	325021	325926	326131	205
212	326336	326541	326745	326950	327155	327359	32 тัt 3	.32-767	327972	32×176	204
213	328380	328583	328757	32 2991	329191	329392	329601	329405	330008	330211	203
214	330414	330617	3301×19	331022	331225	3.31127	331630	331 ¢32	332034	332236	202
215	332	332640	332842	333044	333246	333447	333649	333550	334051	334253	202
216	334454	334655	334×56	335057	33.925	33545	33.5658	33う59	336059	336260	201
217	336460	336660	336860	337060	337260	3374.59	33 T 659	33Tく.	338058	338237	200
218	339456	338656	338855	339054	339253	339151	339650	33.1949	34004	340246	199
219	340444	340612	340841	341039	311237	341435	. 311632	311530	312028	342295	198
220	342423	342620	342817	313014	343212	313409	$3+3606$	343×02	343999	344196	197
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers（continued）．

ค	¢9\％			$\underbrace{\infty}_{\infty} \infty$	ค
σ					\oplus
∞		－10 9 1515 คึ $\sim \mathrm{m}$			∞
\sim		고응 サッNー ๙ ल ल ๓		옹g $\rightarrow \infty$ 	\pm
\bullet					∞
ω					\cdots
\pm				＂ぶ 以 MM心品	\cdots
∞		No po M il			∞
－			 承 ๗ల లూ 心	0－7 510路留 ๗がm	\cdots
\cdots					m
0		$\infty 010200$ O№min －Com M M M			\bigcirc
5					婦

Logarithms of Numbers (continued)

N	0	1	2	3	4	5	6	7	8	9	D
341	382017	382197	382377	382557	382737	382917	383097	3×3277	383456	383636	180
248	383815	383995	384174	384353	384533	384712	384891	385070	385249	385428	179
248	385606	385785	385964	386142	386321	386499	386677	386856	387034	387212	178
244	387390	387568	387746	387923	388101	388279	388456	388634	388811	388989	178
245	389166	389343	389520	389698	389875	390051	390228	390405	390582	390759	177
246	390935	391112	391288	391464	391641	391817	391993	392169	392345	392521	176
247	392697	392873	393048	3932.t	39.3400	393575	393751	393926	394101	394277	176
248	394452	394627	394802	394977	395152	39.3326	395501	395676	395850	396025	175
249	396199	396374	396548	396722	396896	397071	397245	397419	397592	397766	174
250	397940	398114	398287	398461	398634	39480	39×981	399154	399328	399501	173
251	399674	399847	400020	400192	400365	400535	400711	400883	401056	401228	173
252	401401	401573	401745	401917	402089	102261	402433	402605	402777	402949	172
253	403121	403292	403464	403635	403×07	403978	404149	404320	404492	404663	171
254	404834	405005	405176	405346	403517	40368 ¢	40.885	406029	406199	406370	171
265	406540	406710	406881	407051	407221	407391	407561	407731	407901	408070	170
256	408240	408410	408579	408749	408918	409087	409257	409426	109595	409764	169
257	409933	410102	410271	410440	410609	410777	410946	411114	411283	411451	169
258	411620	411788	411956	412124	412293	412461	412629	412796	412964	413132 ।	168
259	413300	413467	413635	413803	413970	414137	414303	414472	414639	414806	167
260	414973	415140	415307	415474	415641	415808	415974	416141	416308	416474	167
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
261	416641	416807	416973	417139	417306	417172	417639	417×04	417970	41×135	166
262	418301	418467	418633	418798	418964	419129	119295	419460	419625	419791	166
263	419956	420121	420286	420451	420616	420781	120945	421110	421275	4214.39	165
264	421604	421768	421933	422097	422261	422126	422590	422754	42291 x	$1230<2$	164
265	423246	423410	423534	423737	423901	424065	421228	424392	424555	424718	164
266	424882	425045	425208	425371	425534	425697	425960	426023	426186	426349	163
267	426511	426674	426836	426999	427161	427324	427486	427648	427811	427973	162
268	428135	428297	428459	428621	428783	429944	429106	429268	429429	429591	162
269	429752	429914	130075	4.30236	430398	430539	130720	430881	431042	431203	161
270	431364	431525	431695	431846	432007	432167	432324	432488	432619	432809	161
271	432969	433130	133290	433450	433610	433770	433930	434090	434249	434409	160
272	434569	434729	434888	435048	435207	437367	435526	435685	43.5944	436004	159
273	436163	436322	436481	436640	436799	436957	437116	437275	437133	437592	159
274	437751	437909	438067	438226	438384	438542	438701	439859	439017	439175	158
275	439333	439491	439648	439806	439964	440122	440279	440437	440594	440752	158
276	440909	441066	441224	441391	441539	441695	441452	442009	442166	442323	157
277	442480	442637	442793	442950	44310\%	443263	443419	443576	443732	443889	157
278	444045	444201	444357	444513	444669	444825	444981	445137	445293	445449	156
279	445604	445760	445915	446071	4462:26	446382	446537	446692	446848	447003	155
280	447158	447313	447468	447623	447378	447933	448088	448242	448397	448552	155
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (contınued).

N	0	1	2	3	4	5	6	7	8	9	D
281	448706	448861	449015	449170	449324	449178	449633	449787	449941	450095	154
282	450249	450403	450557	450711	450865	451018	451172	451326	451479	451633	154
283	451786	451940	452093	452247	452400	452533	452706	452859	453012	453165	153
284	453318	453471	453624	453777	453930	154082	454235	454387	454540	454692	153
285	454845	454997	455150	455302	455454	455006	455758	455910	156062	$45621 \pm$	152
286	456366	456518	456670	456821	1456973	45712.)	457276	457428	457579	457131	152
287	457882	458033	458184	458336	458487	458638	458789	458940	459091	459242	151
288	459392	459543	459694	459845	459995	460146	460296	460147	460597	460748	1.51
289	460898	461048	461198	461348	461499	461649	461799	$46194 \times$	462098	462248	150
290	462398	462548	462697	462847	462997	463146	463296	463445	463594	463744	150
291	463893	464042	464191	464340	464490	± 64639	4647×8	464936	465085	465034	149
292	465383	465532	465680	465829	46.997	466126	46627 it	466423	± 66371	466719	148
293	466868	467016	467164	467312	467460	467608	467756	467904	468052	468200	148
294	468347	468495	468643	468790	468938	46904	169233	469380	469527	469675	118
295	469822	469969	470116	470263	470410	170537	170704	$470 \times .31$	470998	471145	147
296	471292	471438	47158.7	471732	$4718{ }^{-6}$	472025	472171	472.318	472464	472610	146
297	472756	472903	473049	473195	173311	47.3187	47.3633	473779	473923	474071	146
298	474216	474362	474508	474633	471799	F74944	47.5090	475235	175381	47.5526	146
299	475671	475816	475962	476107	476:52	476397	476.912	476687	476832	476976	145
300	477121	477266	477411	477555	477700	477841	477989	478133	178278	478122	145
\mathbf{N}	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
301	478566	478711	478855	478999	479143	479287	479431	479575	479719	479863	144
302	480007	480151	480294	480438	480582	480725	480869	481012	481156	481299	144
303	481443	481586	481729	481872	482016	482159	482302	482445	482588	482731	143
304	482874	483016	483159	483302	483445	483587	483730	483872	484015	484157	143
305	484300	484442	484585	484727	484869	485011	485153	485295	485437	485579	142
306	485721	485863	486005	486147	486289	486430	486572	486714	486855	486997	142
307	487138	487280	487421	487563	487704	487845	487986	488127	488269	488410	141
308	488551	488692	488833	488974	489114	489255	489396	489537	489677	489818	141
309	489958	490099	490239	490380	490520	490661	490801	490941	491081	491222	140
310	491362	491502	491642	491782	491922	492062	492201	492341	492481	492621	140
311	492760	492900	493040	493179	493319	493458	493597	493737	493876	494015	139
312	494155	494294	494433	494572	494711	494850	494989	495128	495267	495406	139
313	495544	495683	495822	495960	496099	496238	496376	496515	496653	496791	139
314	496930	497068	497206	497344	497483	497621	497759	497897	498035	498173	138
315	498311	498448	498586	498724	498862	498999	499137	499275	499412	499550	138
316	499687	499824	499962	500099	500236	500374	500511	500648	500785	500922	137
317	501059	501196	501333	501470	501607	501744	501880	502017	502154	502291	137
318	502427	502564	502700	502837	502973	503109	503246	503382	503518	503655	136
819	503791	503927	504063	504199	504335	504471	504607	504743	504878	505014	136
320	505150	505286	505421	505557	505693	505828	505964	506099	506234	506370	136
N	0	1	2	3	4	5	6	7	8	9	D

Togarithms of Numbers (contanued).

N	0	1	2	3	4	5	6	7	8	9	D
321	$506505{ }^{\text {' }}$	506640	506776	506911	507046	507181	507316	207451	507586	507721	135
322	507856	507991	508126	508260	508395	508530	508664	508799	508934	509068	135
323	509203	509337	509471	509606	509740	509874	510009	Ј10143	510277	510411	134
324	510545	510679	510813	510947	511081	511215	511349	511482	511616	511750	134
325	511883	512017	512151	512291	512418	5125\%1	512684	J12818	512951	513084	133
326	513218	513351	513484	513617	513750	513883	514016	514149	514282	514415	133
327	514548	514631	514813	514946	515079	515211	515344	515476	515609	$515 \pi 41$	133
328	515874	516006	516139	516271	516403	516535	516668	516800	516932	517064	132
329	517196	517328	517460	517592	517724	517855	517997	518119	51×251	$51 \times 3 \times 2$	132
330	518514	518646	518777	J18909	519040	519171	519303	519434	519566	519697	131
331	519\%28	519959	520090	520221	520353	5204>4	520615	520745	520876	521007	131
332	ธ21138	521269	521400	521530	521661	521792	521922	522053	522183	522314	131
333	522444	522575 ।	522705	522835	522966	523096	523226	523356	J23486	523616	130
334	523746	323876	52.4006	524136	524266	524396	524526	224656	524783	521915	130
335	525045	525174	525304	525434	525563	525693	525822	525951	526081	326210	129
336	526339	526469	526598	526727	526856	526985	527114	527243	527372	527501	129
337	527630	527759	527888	528016	528145	528274	528402	529531	528660	528788	129
338	528917	529045	529174	529302	529430	529559	529687	529815	j29943	530072	12 ${ }^{\text {d }}$
339	530200	530328	530456	530584	530712	530840	530968	531096	531223	531351	128
340	531479	531607	531734	531862	531990	532117	532245	532372	532500	53262i	128
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

Logarithms of Numbers (continued).

1	0	1	2	3	4	5	6	7	8	9	D
361	557507	557627	557748	557868	557988	558108	538228	558349	558469	558589	120
362	558709	558829	558948	559068	559188	559308	559428	559 5ั48	559667	559787	120
363	559907	560026	560146	560265	560385	560504	560624	560743	560863	560982	119
364	561101	561221	561340	561459	561578	561698	J61817	561936	562055	562174	119
365	562293	562412	562531	562650	562769	562887	563006	563125	563244	563362	119
366	563481	563600	563718	563837	563955	564074	564192	564311	564429	564548	119
367	564666	564784	564903	565021	565139	565257	565376	565494	565612	565730	118
368	565848	565966	566084	566202	566320	566437	566555	566673	566791	566909	118
369	567026	567144	567262	567379	567497	567614	567732	567849	567967	568084	118
370	568202	568319	568436	568554	568671	568788	268905	569023	569140	569257	117
371	569374	569491	569608	569725	569842	569959	570076	570193	570309	570426	117
372	570543	570660	570776	570893	571010	571126	571243	571359	571476	571592	117
373	571709	571825	571942	572058	572174	572291	572407	572523	572639	572755	116
374	572872	572988	573104	573220	573336	573452	573568	573684	573800	573915	116
375	574031	574147	574263	574379	574494	574610	574726	574841	574957	575072	116
876	575188	575303	575419	575534	575650	575765	575880	575996	576111	576226	115
377	576341	576457	576572	576687	576802	576917	577032	577147	577262	577377	115
378	577492	577607	577722	577836	577951	578066	578181	578295	578410	578525	115
379	578639	578754	578868	578983	579097	579212	579326	579441	579553	579669	114
380	579784	579898	580012	580126	580241	580355	580469	580583	580697	580811	114
H	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (rontinued)

N	0	1	2	3	4	5	6	7	8	9	D
381	580925	5¢1039	581153	581267	58131	591495	3 l 1608	581722	581×36	581950	114
382	582063	582177	5×2291	282404	582518	a¢2631	5×2745	j82238	582972	583085	114
383	583199	583312	583426	583539	583652	283765	543¢99	583992	584105	jx 4218	113
384	584331	38444	5845.5	384670	39473 3	548×95	-5009	585122	585235	583348	113
385	585461	38557t	385686	585799	5×5912	586024	586137	586250	5×6362	$5864{ }^{5}$	113
386	586587	586700	586812	586923	587037	587149	587262	587374	58i486	557599	112
387	587711	587823	387935	588047	588160	588272	5×834	389496	529608	588720	112
388	588832	588944	599056	389167	589279	5×9391	$5 ¢ 9503$	589615	589726	$5<9838$	112
389	589950	590061	590173	590284	390396	590507	590619	590730	390812	590953	111
390	591065	591166	591297	591399	391510	591621	591732	591843	391975	592066	111
391	592177	592288	592399	592510	592621	592732	392843	342954	593064	593175	111
392	593286	593397	593508	593618	593729	593×40	543950	${ }_{5} 94061$	394171	5942ヶ2	111
393	594393	594503	594614	594724	594934	594945	395055	593165	595276	595386	110
394	595496	595606	59371\%	395827	395937	396047	396157	595267	59637	596487	110
396	596597	596707	596917	596927	397037	597146	5972Ј6	597366	5974i6	5975 ${ }^{86}$	110
396	597695	597805	597914	598024	39×134	598243	598353	598462	599572	598681	110
397	598791	598900	599009	599119	399228	299337	599146	599556	599665	599774	109
398	599883	599992	600101	600210	600319	$60042 \times$	600537	600646	600755	600864	109
399	600973	601082	601191	601299	601408	601517	601625	601734	601843	601951	109
400	602060	602169	602277	602386	602494	602603	602711	602819	602928	603036	108
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued)

M	0	1	2	3	4	5	6	7	8	9	D
401	603144	603253	603361	\| 603469	603577	6036¢6	603794	603902	604010	604118	108
402	604226	604334	604442	- 604550	604658	604766	604874	604982	6050×9	605197	108
403	605305	605413	6050521	, 605628	60.5736	605×11	605951	606059	606166	606274	108
404	606381	606489	606596	, 605704	606811	606919	607026	607133	607241	607348	107
405	607455	607562	607669	60737	607884	607991	608098	60×205	608312	608419	107
406	608526	608633	608740	608847	60895 ¢	609001	609167	609274	609381	609484	107
407	609594	609701	609805	609914	610021	610129	610234	6103+1	610477	610554	107
408	610660	610767	610873	610979	611086	611192	611298	611405	611511	611617	106
409	611723	611829	611936	612042	612148	619054	612360	612466	6125is	612679	106
410	612784	612890	612996	613102	613207	613.313	613419	613525	613630	613736	106
411	613842	613947	614053	614159	614264	614.370	614475	611581	614696	614792	106
412	614897	615003	615108	61521.3	615319	$615+24$	615 529	$61563 \pm$	61570	615×45	105
413	615950	616055	616160	616265	616370	616476	615\%>1	616686	616790	$616 \bigcirc 95$	105
414	617000	617105	617210	617315	617120	617525	617629	617734	617×39	617943	105
415	618048	618153	618257	618362	614466	614571	61^{8676}	618750	61×484	618949	102
416	619093	619198	619302	619406	619511	619615	619719	6198.4	619928	620032	104
417	620136	620240	$6203+4$	620448	620552	620656	620760	620×64	620968	621072	104
418	621176	621280	6213×4	621488	621592	621695	621799	621903	622007	622110	104
419	622214	622318	622421	622525	622628	629732	602 $\times 35$	622939	623042	623146	104
420	623249	623353	623156	623559	623663	623766	623869	623973	624076	624179	103
N	0	1	2	3	4	5	61	7	8	9	D

Logarithms of Numbers (continued).

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
441	644439	644537	644636	644734	644832	644931	645029	645127	645226	645324	98
442	645422	645521	6455619	645717	645815	645913	646011	646110	646208	646306	98
443	646404	646502	646600	646698	646796	646894	646992	64.089	647187	647285	98
444	647383	647481	647579	647676	647774	647872	647969	648067	64×165	648262	98
445	648360	648458	648555	648653	648750	648848	$64<945$	649043	64.9140	649237	97
446	649335	649432	649530	649627	649724	649821	649919	650016	650113	650210	9
447	650308	650405	650502	650599	650696	650793	650890	650987	651084	651181	97
448	651278	651375	651472	651569	6.51666	651762	631859	651956	652053	652150	97
449	652246	652343	652440	652536	652633	652730	$672 ¢ 96$	652923	653019	653116	97
450	653213	653309	653405	653502	653598	653695	653791	653888	653984	654080	96
451	654177	654273	654369	654465	654562	654658	654754	654850	654946	650042	96
452	655138	655233	635331	655427	655523	655619	635715	65 ± 810	655906	656002	96
453	656098	656194	656290	656386	656482	6365:	656673	656769	656864	636960	96
454	657056	637152	657247	637343	657438	637534	657629	$65 \pi 725$	63 ¢ぇ20	657916	96
455	658011	658107	658202	658298	658393	658488	$65 \checkmark 584$	658679	$65 \times 7 \mathrm{~T} 4$	658870	95
456	658965	659060	659155	659250	659346	659441	659536	659631	659726	639821	95
457	659916	660011	660106	660201	660296	660391	660486	660581	660676	660771	95
458	660865	660960	661055	661150	661245	661339	661434	661529	661623	661718	95
459	661813	661907	662002	662096	662191	662286	662380	662475	662569	662663	94
460	662758	662852	662947	663041	663135	663230	663324	663418	663512	663607	94
\mathbf{N}	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
461	663701	663795	663889	663983	664078	664172	664266	664360	664454	$66454 \times$	94
462	664642	664736	664830	664924	665018	665112	665206	665299	665393	665487	94
463	655581	665675	665769	665862	665956	666050	66611.3	666237	666331	666424	94
464.	656518	666612	666705	666799	666892	666986	667079	667173	667266	667360	94
465	667453	667546	667640	667333	667826	667920	668013	668106	66×199	668293	93
466	668386	668479	668572	668665	669759	668852	668945	6690.3	669131	669224	93
467	669317	669410	669503	669596	6696×9	6697-2	669×75	669967	670060	6701.33	93
468	6'0246	670339	670431	670524	670617	670710	670802	670×95	670988	671080	93
469	6'1173	671265	$67135 \times$	671451	671543	671636	67172¢	G71821	671913	672005	92
470	612098	672190	672283	672375	672467	672560	672652	672744	¢72896	672929	92
471	673021	673113	673205	673297	673390	673482	673574	673666	67375	673¢50	92
472	673942	674034	674126	674218	674310	674402	674494	674586	674677	674769	92
473	674861	674953	675045	675137	675228	673320	675412	675503	675595	675687	92
474	675778	675870	675962	676053	676115	676236	676328	676419	676511	676602	92
475	67.694	676785	676876	67696^{9}	677059	677151	675242	677333	677424	677516	91
476	617607	677698	677789	677881	677972	67<063	678154	67×245	67-336	678.427	91
477	$6{ }^{6}$ ¢518	678609	678700	678791	67×882	678973	679064	679153	679246	679337	91
478	67.528	679519	679610	679700	679791	679882	679973	680063	6801.54	6×0245	91
479	680336	680426	680517	680607	680698	680789	6×0879	680970	681060	6×1151	91
480	681241	681332	681422	681513	681603	681693	68178t	681874	681964	682055	90
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers（continued）．

N	0	1	2	3	4	5	6	7	8	9	D
481	682145	682235	682326	682416	6x250t	6×2596	$6 \times 26 \times 6$	6ヶ2775	682867	682957	90
482	683047	683137	683227	683317	683407	683497	6×35ヶ	6×3675	683767	683857	90
483	683947	684037	684127	684217	684307	684396	6844×6	6×4576	6×1666	684756	90
484	684845	684935	685025	685114	685204	655294	685．3ヶ3	685473	685563	6৯コ652	90
485	685742	685831	685921	686010	6×6100	6×6149	686979	686368	6×6458	686547	89
486	686636	686726	686815	686904	686994	64：083	$6 \sim 7172$	647261	6×7351	6，7440	89
487	687529	687618	687707	687796	687886	6×7975	6×9064	688153	$68 \times 2+2$	688331	89
488	688420	688509	688598	688687	6кヶ776	688863	688953	6×9042	6×9131	659220	89
489	689309	689398	689486	689575	6×9664	6897.33	$6 \times 98 \pm 1$	6×9930	690019	690107	89
490	690196	690285	690373	690462	690550	690639	690728	690×16	690905	690993	$\times 9$
491	691081	691170	$6912 \mathrm{J8}$	691347	6914.35	691521	691612	691700	6917×9	691577	88
492	691965	692053	692142	692230	692314	692406	692494	69258.3	692631	692759	88
493	692847	692935	693023	693111	693199	693247	693375	693463	693551	693639	88
494	693727	693815	693903	693991	694078	694166	694251	694342	694430	694517	88
495	694605	694693	694781	$69486 \times$	694956	695044	695131	69.5219	695307	695394	88
496	695482	695569	695657	695744	$695<32$	695919	6960077	696094	696182	696269	87
497	696356	696444	696531	696618	696706	696793	696880	696968	697055	697142	97
498	697229	697317	697404	697491	697578	697665	697752	697839	697926	698014	87
499	698101	698188	698275	698362	698449	698535	694622	698709	698796	698883 ！	87
800	698970	699057	699144	699231	699317	699404	699491	69957x	699664	699751	87
3	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

Logarithms of Numbers (continued)

ค		ค
∞		o
∞		∞
\cdots		-
\bullet		ω
10	No dode	\bullet
4	 	+
∞		∞
\sim	 	\cdots
\cdots		-
\bigcirc		0
m		z

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
541	733197	733278	733358	733438	733518	73359x	733679	T33759	733×39	733919	80
542	733999	731079	734160	734240	734320	73440	-34480	734560	734640	734720	80
543	734800	734880	734960	735040	735120	735200	735279	735359	735439	735519	80
- 544	735599	735679	735759	735×38	73591x	735994	736078	736157	736237	7.36317	80
545	736397	736476	-36556	736635	736715	736795	736971	736954	737034	T.37113	80
546	737193	737272	737352	737431	737511	737590	737670	737749	737829	73790x	79
547	737987	738067	738146	738225	738305	73¢384	738463	736543	738622	738701	79
548	738781	738860	738939	739018	739097	73917	739256	739335	739414	739493	79
549	739572	739651	739731	739810	739888	7399468	740) 57	74012 6	740205	7102×4	79
550	740363	740442	740521	740600	740678	740757	740436	740915	740994	7110.3	79
551	741152	T 41230	741309	74138*	741467	741546	741624	741703	741782	741×60	79
552	741939	7 ± 2018	742096	742175	719254	742332	742111	742189	742568	712647	79
553	742725	742804	742882 ।	742961 ।	I 43039	743114	I 4.3196	743275	i43353	74:3431	78
554	743510	743588	743667	743745	743×2.3	743902	743940	714058	744136	7 ± 4215	78
855	744293	744371	744449	744528	741606	7446 A 4	744762	744840	744919	744997	78
556	745075	T45153	745231	745309	745397	745465	745543	- 45621	745699	74576	78
557	745855	745933 ,	746011	746089	746167	746245	746323	T46401	746479	746556	78
558	746634	746712	746790	746868	746945	717023	247101	747179	7472.56	747334	78
559	747412	747489	747567	747645	747222	747800	747878	717953	2t $\times 033$	748110	78
560	748188	748266	748343	748421	748498	74×576	748653	718731	748308	748×85	77
I	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
561	748963	749040	749118	749195	749272	749350	749427	249504	749582	749659	77
562	749736	749814	749891	749968	750045	750123	750200	7.50277	750354	750431	77
563	750508	750586	750663	750740	750817	750894	750971	7.51019	751125	751202	76
564	751279	751356	751433	751510	751587	751664	751741	7.51418	7.51895	751972	77
565	752048	752125	752202	752279	752356	752433	752509	7525 6	752663	759740	78
566	752816	752893	752970	753047	753123	753200	753277	7.53353	7.53430	753506	77
567	753583	753660	753736	753813	7534×9	753966	754042	754119	754195	751272	76
568	754348	754425	754501	754578	7.94654	7.54730	754807	754883	754960	755036	76
569	755112	755189	75526.3	755341	755417	75.5491	7.5 .350	75)646	75.5722	755799	76
570	755875	755951	756027	756103	756180	7562.56	756333	7.26408	7.56484	756560	76
571	756636	756712	756788	756×64	756940	757016	750092	757168	7.57244	757320	76
572	757396	757472	757548	757624	757700	75775	757851	757927	758003	758079	76
573	758155	7.58230	7.58306	7583×2	75845	758533	$75 \checkmark 609$	7.59685	7.54.61	758936	76
574	758912	75¢9K8	759063	759139	T59214	7.59390	7.59366	$7594+1$	759517	759592	76
575	759668	759743	759819	759894	7.99970	76004.5	760121	760196	760272	760347	73
576	760422	760498	760573	760649	760724	760799	i60875	7609.50	761025	761101	75
577	761176	761251	761326	761402	761477	761502	761627	761.02	7617\%	761×53	75
578	761928	762003	762078	762153	762299	762303	7623-4	769453	762529	762604	75
579	762679	762754	762×29	762904	762978	763053	76.3128	763:03	763278	763353	75
580	763428	763503	763578	763653	763727	763×02	763477	763952	764027	764101	75
\mathbf{N}	0	1	2	3	4	5	6	7	8	9	D

Togarithms of Numbers (continued).

H	0	1	2	3	4	5	6	7	8	9	D
581	764176	764251	764326	764400	764475	764550	764624	764699	764774	764848	75
682	764923	764998	765072	765147	765221	765296	765370	765445	765520	765594	75
583	765669	765743	765818	765892	765966	766041	766115	766190	766264	766338	74
584	766413	766487	766562	766636	766710	766785	766859	766933	767007	767082	74
885	767156	767230	767304	767379	767453	767527	767601	767675	76.749	767823	74
586	767898	767972	768046	768120	768194	768268	768342	768416	768490	768564	74
687	768638	768712	768786	768860	768934	769008	769082	769156	769230	769303	74
688	769377	769451	769525	769599	769673	769746	769820	769894	769968	770042	74
589	770115	770189	770263	770336	770410	770484	770557	770631	770705	770778	74
590	770852	770926	770999	771073	771146	771220	771293	771367	771440	771514	74
591	771587	771661	771734	771808	771881	771955	772028	772102	772175	772248	73
592	772322	772395	772468	772542	772615	772688	772762	772835	772908	772981	73
593	773055	773128	773201	773274	773348	773421	773494	773567	773640	773713	73
694	773786	773860	773933	774006	774079	774152	774225	774298	774371	774444	73
595	774517	774590	774663	774736	774809	774882	774955	775028	T75100	775173	73
596	775246	775319	775392	775465	775538	775610	775683	775756	775829	775902	73
597	775974	776047	776120	776193	776265	776338	776411	776483	776556	776629	73
598	776701	776774	776846	776919	776992	777064	777137	777209	777282	777354	73
599	777427	777499	777572	777644	777717	75789	777862	777934	778006	778079	72
600	778151	778224	778296	778368	778441	778513	778585	778658	778730	778802	72
\mathbf{N}	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued)

N	0	1	2	3	4	5	6	7	8	9	D
601	778874	778947	779019	779091	779163	779236	779308	779380	779452	779524	72
602	779596	779669	779741	779813	779885	779957	780029	780101	780173	780245	72
603	780317	780389	780461	780533	780605	780677	7×0749	780821	780893	780965	72
604	781037	781109	781181	781253	781324	781396	741469	781540	781612	781684	72
605	781755	781827	781899	781971	782042	782114	782186	782258	782329	782401	72
606	782473	782544	782616	782688	782759	782×31	782902	782974	783046	783117	72
607	783189	783260	783332	783403	783475	783546	783618	783689	783761	783832	71
608	783904	783975	784046	784118	784189	784261	784332	784403	784475	784546	71
609	784617	784689	784760	784831	784902	784974	785045	785116	785187	785259	71
610	785330	785401	785472	785543	785615	785686	783757	785828	785899	785970	71
611	786041	786112	786183	786254	786325	786396	786467	786538	786609	786680	71
612	786751	786822	786893	786964	787035	787106	787177	787248	787319	787390	71
613	787460	787531	787602	787673	787744	787815	787885	787956	788027	788098	71
614	788168	788239	788310	788381	788451	788522	788593	788663	788734	788804	71
615	788875	788946	789016	789087	789157	789228	799299	789369	789440	789510	71
616	789581	789651	789722	789792	789863	789933	790004	790074	790144	790215	70
617	790285	790356	790426	790496	790567	790637	790707	790778	790848	790918	30
618	790988	791059	791129	791199	791269	791340	791410	791480	791550	791620	70
619	791691	791761	791831	791901	791971	792041	792111	792181	792252	792322	70
620	792392	792462	792532	792602	792672	792742	792812	792882	792952	793022	70
1	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued)

\mathbf{N}	0	1	2	3	4	5	6	7	8	9	D
621	793092	793162	793231	793301	793371	793441	793511	793581	7936.51	793721	70
682	793790	793860	793930	794000	794070	794139	794209	794279	T94344	794418	70
623	794488	794558	794627	794697	794767	794836	794906	794976	795045	795115	70
624	795185	795254	795324	795393	795463	795532	795602	T95672	793741	795811	70
625	795880	795949	796019	796088	796158	796227	796297	796366	796436	796505	69
626	796574	796644	796713	796782	796852	796921	796990	797060	797129	797198	69
627	797268	797337	797406	797475	797545	797614	797683	797752	797821	797890	69
628	797960	798029	798098	798167	798236	798305	798374	798443	798513	798582	69
629	798651	798720	798789	798858	798927	798996	799065	799134	799203	799272	69
630	799341	799409	799478	799547	799616	799685	799754	799823	$\tau 99892$	799961	69
631	800029	800098	800167	800236	800303	800373	800442	800511	800580	800648	69
632	800717	800786	800854	800923	800992	801061	801129	Q01198	801266	801335	69
633	801404	801472	801541	801609	801678	801747	801815	901884	801952	802021	69
634	802089	802158	802226	802295	802363	802432	802500	802568	802637	802705	68
635	802774	86,2842	802910	802979	803047	803116	803184	803252	803321	803389	68
636	803457	803525	803594	803662	803730	803798	803867	803935	804003	804071	68
637	804139	804208	804276	804344	804412	804480	804548	804616	804685	804753	68
638	804821	804889	804957	805025	805093	805161	805229	805297	805365	805433	68
639	805501	805569	805637	805705	805773	805841	805908	805976	806044	806112	68
640	806180	806248	806316	806384	806451	806519	806587	Q06655	806723	806790	68
H	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
641	806858	806926	806994	807061	807129	807197	807264	807332	807400	807467	68
642	807535	807603	807670	807738	807806	807873	807941	808008	808076	808143	68
643	808211	808279	808346	808414	808481	$80 \searrow$ ゴ 49	808616	808684	\%08751	808818	67
644	808886	808953	809021	809088	809156	809223	809290	809358	809425	809492	67
645	809560	809627	809694	809762	809×29	809×96	809964	810031	810098	810165	67
646	810233	810300	810367	810434	810501	810.569	$\times 10636$	810703	810770	810837	67
647	810904	810971	811039	811106	811173	811240	811307	811374	S11441	811508	67
648	811575	811642	811709	811776	811843	811910	811977	812044	812111	812175	67
649	812245	812312	812379	812445	812512	812379	812646	812713	812740	812447	67
650	812913	812980	813047	813114	8131×1	813247	$\checkmark 13314$	813381	-13448	813514	67
651	813581	813648	813714	813781	813×t 4	813914	S 139×1	814048	\& 14114	814181	67
652	814248	814314	8143×1	814447	814514	$\checkmark 14581$	814647	814711	814780	814847	67
653	814913	814980	815046	815113	815179	415246	815312	815378	815445	815511	66
654	815578	815644	815711	815737	$815^{\text {Q }} 43$	815910	81.997n	$\times 16042$	816109	816175	66
655	816241	816308	816374	816440	816506	816.573	816639	816703	816751	816838	b6
656	816904	816970	817036	817102	817169	817235	817301	817367	817433	817499	66
657	817565	817631	817698	817364	817830	817896	817962	819028	818094	818160	66
658	818226	818292	818358	818421	818490	818556	Q14622	818688	818754	818820	66
659	818885	818951	819017	819083	<19149	819215	819281	819346	819412	819478	66
660	819544	819610	819676	819741	819507	819873	819939	820001	$\times 20070$	820136	66
\mathbf{N}	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

Logarithms of Numbers (continued).

䢒	0	1	2	3	4	5	6	7	8	9	D
381	833147	833211	833275	833338	833102	833466	833530	833593	833657	833721	64
682	833784	833848	833912	833975	834039	834103	834166	834230	83429.4	834357	64
488	834421	834484	834548	834611	834675	834739	834802	834866	834929	834993	64
684	835056	835120	835183	835247	835310	835373	835437	835500	835564	835627	63
685	835691	835754	835817	835881	835944	836007	836071	836134	836197	836261	63
686	836324	836387	836451	836514	836577	836641	836704	836767	836830	836894	63
687	836957	837020	837083	837146	837210	837273	837336	837399	837462	837525	63
688	837588	837652	837715	837778	837841	837904	837967	838030	838093	838156	63
689	838219	838282	838345	838408	838471	838534	838597	838660	838723	838786	63
690	838849	838912	838975	839038	839101	839164	839227	839289	839352	839415	63
691	839478	839541	839604	839667	839729	839792	839855	839918	839981	840043	63
692	840106	840169	840232	840294	840357	840420	840482	840545	840608	840671	63
693	840733	840796	840859	840921	840984	841046	841109	841172	811234	841297	63
694	841359	841422	841485	841547	841610	841672	841735	841797	841860	-841922	63
695	841985	842047	842110	842172	842235	842297	842360	842422	842484	842547	62
696	842609	842672	842734	842796	842859	842921	842983	843046	843108	843170	62
697	843233	843295	843357	843420	843482	843544	843606	843669	843731	843793	62
698	843855	843918	843980	844042	844104	844166	844229	844291	844353	844415	62
699	844477	844539	844601	844664	844726	844788	844850	844912	844974	845036	62
700	845098	845160	845222	845284	845346	845408	845470	845532	845594	845656	62
睈	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
701	845718	845780	845842	845904	845966	846028	846090	846151	846213	846275	62
702	846337	846399	846461	816523	846585	846616	846708	846770	846832	846894	62
703	846955	847017	847079	847141	847202	847264	847326	Q47388	847449	847511	62
704	847573	847634	847696	847758	847819	847881	847943	848004	84×066	848128	62
705	848189	848251	848312	848374	848435	848497	848559	848620	848682	848743	62
706	848805	848866	848928	848989	849051	849112	849174	849235	849297	849358	61
707	849419	849181	849542	$84960 \pm$	849665	849726	849788	849849	849911	849972	61
708	850033	850093	850156	850217	850279	850340	850401	850462	850524	850585	61
709	850646	850707	850769	800830	850891	850952	851014	851075	8.51136	851197	61
710	851258	851320	851381	851442	851503	8.51564	851625	851686	851747	851809	61
711	851870	851931	851992	852053	852114	852175	852236	852297	852358	852419	61
712	852480	852541	852602	852663	852724	852785	Q52846	852907	852968	853029	61
713	853090	853150	853211	853272	853333	853394	853455	853516	8535%	853637	61
714	853698	853759	853820	853881	¢53941	854002	854063	854124	854185	854245	61
715	854306	854367	854428	854488	854549	854610	854670	854731	854792	854852	61
716	854913	854974	855034	855095	855156	855216	855277	855337	855398	855459	61
717	855519	855580	855640	855701	855761	855822	¢55882	855943	856003	856064	61
718	856124	856185	856245	856306	856366	856427	856487	856548	856608	856668	60
719	856729	856789	856850	856910	856970	857031	857091	857152	857212	837272	60
720	857332	857393	857453	857513	857574	857634	857694	857755	857815	837875	60
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued)

2	0	1	2	3	4	5	6	7	8	9	D
721	857935	857995	8.58056	858116	858176	858236	858297	85×357	858417	85847	60
722	858537	858597	858657	838718	8587:8	858838	85889	858958	859018	85907	60
733	859138	859198	859258	859318	859379	859439	859499	859559	859619	859679	60
724	859739	859799	859859	859918	859978	860038	860098	860158	860218	86027	60
725	860338	860398	860458	860518	860578	860637	860697	860757	Q60817	860×7	60
726	860937	860996	861056	861116	861176	861236	861295	861355	K61415	861475	60
727	861534	861591	8616.4	861714	86173	$\bigcirc 61833$	861893	861952	862012	862072	60
728	862131	862191	862231	862310	862370	862430	Q62189	862549	862600	862 ti69	60
729	862728	8627-7	862847	862906	862966	863025	$8630 \checkmark$ \%	863144	863204	¢63263	59
730	863323	863382	863442	863501	863561	863620	8636×0	863739	863799	\&63-58	59
731	863917	86397	864036	864096	864153	864214	Q61274	$\star 64333$	864392	864452	59
732	864511	864370	864630	864689	6617ts	864804	$86 \pm \times 67$	\&64926	8649\%5	¢6504J	59
733	865104	865163	865222	865282	865341	1865410	$\times 65459$	865519	Q65378	865637	59
734	865696	865755	865814	865874	865933	86.5992	866051	¢66110	¢56169	¢66225	\%9
735	866287	866346	866405	866465	866591	8665×3	866612	866701	866760	866×19	59
736	866878	866937	866996	867055	867114	867173	867232	867291	867350	Q67409	59
737	867467	867526	86758J	867644	867703	867762	867821	867880	867939	86799	59
738	868056	868115	868171	868233	868292	868350	<68409	86x+64	868527	868586	59
739	868644	868703	868762	868821	868879	866934	868997	869056	869114	869173	59
740	869232	869290	869349	869408	869466	869525	869584	869642	869701	869760	59
N	0	, 1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers（continued）

A	앙				ロ
∞		人m x_{0}^{∞} ๗๓ TM $\rightarrow \infty$			∞
∞		＊ 80.12 H Nかセ Nㅓㅇ ल 		か路にた かっO $\infty \infty \propto \infty$	∞
\bigcirc					\sim
\bullet					\bullet
\pm			© 10 Co思机是 $\infty \infty \infty$		∞
4		に汤出出 $\infty \infty \infty$	둔웅 品に心品 $\infty \infty \infty \infty$		＊
∞		0190010 －会 $\underset{\infty}{\infty} \div \underset{\infty}{\circ}$			∞
－		上にかに N以HNに $\infty \infty \infty$		M－ ∞ ${ }_{\infty}^{1-\infty} \infty \infty$	\cdots
\cdots				刃～盆示 が心が $\infty \infty \infty$	m
－		궁ㅇㅇ잉 Nึ゚N゙心 $\infty \infty \infty \infty$	O 020 に ぐふがだ NOCNN $\infty \infty \infty$		\bigcirc
地				Bo	如

Logarithms of Numbers (continued).

	0	1	2	3	4	5	6	7	8	9	D
781	881385	881442	881499	881556	881613	881670	8S1727	881784	881841	881898	57
782	881955	882012	882069	882126	882183	882240	882297	882354	882411	882468	57
763	882525	882581	882638	882695	882752	882809	882866	882923	882980	883037	57
764	883093	883150	883207	883264	883321	883377	883434	883491	883518	883605	57
785	883661	883718	883775	883832	883888	883945	884002	884059	881115	884172	57
766	884229	884285	884342	884399	884455	884512	884569	884625	884682	884739	57
767	884795	884852	884909	884965	885022	885078	885135	885192	885248	885305	57
768	885361	885418	885474	885531	885587	885644	885700	885757	885813	885870	57
769	885926	885983	886039	886096	886152	886209	886265	886321	886378	886434	56
旡740	886491	886547	886604	886660	886716	886773	886829	886885	886942	886998	56
771	887054	887111	887167	887223	887280	887336	887392	887449	887505	887561	56
772	887617	887674	887730	887786	887842	887898	887955	888011	888067	888123	56
273	888179	888236	888292	888348	888404	888160	888516	888513	888629	888695	56
774	888741	888797	888853	888909	888965	889021	889077	889134	889190	889246	56
775	889302	889358	889414	889470	889526	889582	889638	889694	889750	889806	56
776	889862	889918	889974	890030	890086	890141	890197	890253	890309	890365	56
777	890421	890477	890533	890589	890645	890700	890756	890812	890968	890924	56
778	890980	891035	891091	891147	891203	891259	891314	891370	891426	891482	56
779	891537	891593	891649	891705	891760	891816	891872	891928	891983	892039	56
780	892095	892150	892206	892262	899317	892373	892429	892484	892540	892595	56
榾	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
781	892651	892707	892762	892818	892xT3	892929	892985	893040	893096	893151	56
782	893207	893262	893318	893373	893429	893144	893540	893595	4936.91	893706	55
783	893762	893817	893873	893928	$89398 \pm$	894039	891094	894150	894205	894261	55
784	894316	894371	894427	894482	894538	894593	591648	894704	894759	894814	55
785	894870	894925	894980	895036	\$95091	895146	89.5201	\$95257	895312	$\times 4.3367$	55
786	89 ¢ั423	895478	895533	895588	$89564 t$	995699	895754	895×09	895864	895920	55
787	895975	896030	896085	896140	896195	896251	896306	896361	896416	896471	5J
788	896526	896581	896636	896692	896747	896502	¢9685	-96912	896967	897022	55
789	897077	897132	897187	$8972+2$	897297	Q97352	$89740{ }^{\circ}$	997462	897517	897572	55
790	897627	897682	897737	897792	897847	897902	897957	898012	89×067	898122	55
791	898176	898231	898286	898341	898396	899451	89850f	898561	898615	848670	55
792	898725	898780	898835	898890	898944	895999	899051	$\times 99109$	<99164	899218	55
793	899273	899328	899383	899437	899492	- 69954	899602	\$ 899656	899711	899766	5
794	899821	899875	899930	899985	900039	900094	900149	900203	900258	900312	55
798	900367	900422	900476	900531	900586	9	900695	900749	900×04	900859	55
796	900913	900968	901022	901077	901131	901186	901240	901295	901319	901404	55
797	901458	901513	901567	901622	901676	901731	901785	901840	901994	901948	54
798	902003	902057	902112	902166	902221	902275	902329	902381	902438	902492	54
799	902547	902601	902655	902710	902764	902818	902×73	902927	902981	903036	54
800	903090	903144	903199	903253	903307	903361	903416	903450	9035 -4	903578	54
H	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

H	0	1	2	3	4	5	6	7	8	9	D
801	903633	903687	903741	903795	903849	903904	90395	904012	904066	904120	54
802	904174	904229	904283	904337	904391	904445	904499	904553	904607	904661	54
803	904716	904770	904824	901878	904932	904986	903040	905094	905148	903202	34
804	905256	905310	905364	905418	905472	905326	905580	905634	9056×8	905742	54
805	905796	905850	905904	905958	906012	906066	906119	906173	906227	906291	54
806	906335	906389	906443	906497	906351	906604	90665	906712	906766	906*20	54
807	906874	906927	906981	907035	907089	907143	907196	907250	907304	90735 K	54
808	907411	907465	907519	907573	907626	907680	9077.34	907787	$90^{-7} \times 41$	907895	54
809	907949	908002	908056	908110	908163	908217	008270	904324	908375	908431	54
810	908485	908539	908592	908646	908699	908753	908×07	90×860	908914	908967	54
811	909021	909074	909128	909181	909235	9092×9	909342	909396	909449	909503	54
812	909556	909609	909663	909716	909770	909823	909875	909930	909984	910037	53
813	910091	910144	910197	910251	910304	$91035{ }^{8}$	910411	910464	910314	910571	53
814	910624	910678	910731	910784	910838	910891	910944	910998	911051	911104	53
815	911158	911211	911264	911317	911371	911424	91147	911530	911584	911637	53
816	911690	911743	911797	911850	911903	911956	912009	912063	912116	912169	53
817	912222	912275	912328	\| 912381	912435	912488	912541	912594	912647	912700	53
818	912753	912806	912859	912913	912966	913019	913072	913125	913178	913231	53
819	913284	913337	913390	913443	913496	913.549	913602	91365.	913708	913761	53
820	913814	913867	913920	913973	914026	914079	914132	914184	914237	914290	53
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

A	ำ	A
0		∞
∞		∞
-		-
\bullet		-
∞		∞
4		*
∞		∞
\cdots		¢
-		-
\bigcirc	 	-
\%	정	\%

Logarithms of Numbers (continued).

Logarithms of Numbers (continued).

Logarithms of Numbers (continued).

12	0	1	2	3	4	5	6	7	8	9	D
881	944976	945025	94507t	945124	945173	945222	945272	945321	945370	945419	49
882	945469	945518	945056	945616	945665	945715	945764	945813	945862	945912	49
883	945961	946010	946059	946108	- 946157	946207	946256	946305	946354	946403	49
884	946452	946501	946551	946600	946649	94669 ~	946747	946796	946845	916894	49
885	946943	946992	947041	947090	947140	947189	947238	94724.	947336	947385	49
886	947434	947483	947332	947581	947630	947679	947528	94777	947826	947875	49
887	947924	947973	948022	948070	948119	948168	948217	94×266	948315	948364	49
888	948413	948162	948511	948560	94×609	94×657	948706	94×755	948804	9488 ธ̃3	49
889	948902	918951	94×999	949048	949097	: 49146	949195	919244	949292	949341	49
890	949390	949439	949488	949.336	919.585	949634	949683	949731	9497×0	949829	49
891	949878	949926	949975	9500024	950073	9.50121	950170	950219	93026	9.50316	49
892	950365	95041 t	950462	950.511	950.860	9.5060 N	9.50657	950706	950754	950803	49
893	950851	950900	950949	950997	9.510 .46	9.5109.)	951143	9.51192	951240	951289	49
894	951338	9513*6	9.5143.5	9514×3	951.332	951500	9.51629	951675	9.51726	95176	49
895	951823	951872	951920	951969	952017	952066	9.52114	9.52163	952211	952260	49
896	952308	952356	952405	952453	9.52502	952.50	932599	952647	952696	952744	48
897	952792	952841	952889	952938	952986	953034	953083	9.38131	953180	953228	48
898	953276	953325	953373	953421	953470	953.518	9.93566	9.5361 .5	953663	953711	48
899	953760	953808	953856	953905	953953	954001	9.94049	9.94098	954146	954194	48
900	954243	954291	954339	954387	954435	951484	951532	9.54580	954628	954677	48
H	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued).

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
921	964260	964307	964354	964401	964448	9644	964542	964590	964637	964684	47
922	964731	964778	964825	964872	964919	96496	965013	965061	965108	965155	47
923	965202	965249	965296	965343	965390	965437	965484	965531	965578	965625	47
924	${ }^{965672}$	965719	${ }^{965766}$	${ }^{965813}$	965860	${ }^{965907}$	965954	966001	966048	966095	47
925	966142	966189	966236	- 966283	966329	966376	966423	9664 亿0	966517	966564	47
926	966611	966658	966705	966752	966799	966845	966892	966939	966986	967033	47
927	967080	967127	967173	967220	967267	967314	967361	967408	967454	967501	47
928	967548	967595	967642	'967688	967735	967782	967829	967875	967922	967969	47
929	968016	968062	968109	968156	968203	968249	968296	968343	${ }^{968390}$	968436	47
980	96848	968530	968576	968623	968670	968716	968763	968810	968856	968903	47
931	968950	968996	969043	969090	969136	969183	969229	969276	969323	969369	47
932	969416	969463	969509	969556	969602	969649	969695	969742	${ }^{969789}$	969835	47
933	969882	969928	969975	970021	970068	970114	970161	9 9 0207	970254	970300	46
934	970347	970393	970440	\| 970486	970533	970579	970626	970672	970719	970765	46
${ }^{935}$	970812	970858	970904	970951	9 ¢0997	${ }^{971044}$	971090	971137	971183	971229	46
936	971276	971322	971369	971415	971461	971508	971554	971601	971647	971693	
937	971740	971786	971832	971879	971925	971971	972018	972064	${ }^{972110}$	972157	46
938 989	${ }_{972203}$	${ }_{972712}^{97249}$	${ }_{97275}^{97295}$	${ }_{972842}^{9723}$	${ }_{9} 972388$	${ }_{972434}$	${ }_{972481}^{97291}$	${ }_{972527}^{9729}$	${ }_{972573}^{97253}$	972619	${ }^{46}$
939	${ }^{972666}$	972712	${ }^{972758}$	972804	972851	972497	${ }^{972943}$	972989	973035	973082	46
940	973128	973174	973220	97326	973313	973359	973405	973451	973497	973543	46
N	0	1	2	3	4	5	6	7	8		D

Logarithms of Numbers (continued).

N	0	1	2	3	4	5	6	7	8	9	D
941	973590	973636	973682	973728	973774	973820	973866	973913	973959	97400.5	46
942	974051	974097	974143	974189	974235	974281	974327	974374	974420	974466	46
943	974512	9745058	974604	974650	974696	974742	974788	974834	974880	974926	46
944	974972	975018	975064	975110	975156	975202	975248	975294	975310	9753*6	46
946	975432	975478	975524	975570	975616	975662	975707	975753	975799	975845	46
946	975891	975937	975983	976029	976075	976121	976167	976212	976258	976304	46
947	976350	976396	976442	976488	976533	976579	976625	976671	976717	976763	46
948	976808	976854	976900	976946	976992	977037	97083	973129	977175	977220	46
949	977266	977312	977358	977403	977449	974495	977541	975586	977632	977678	46
950	977724	97 9769	977815	$977 ¢ 61$	977906	977952	977998	978043	978089	978135	46
961	978181	978226	978272	978317	978363	978409	978454	978500	978546	978591	46
952	978637	978683	978728	978774	978×19	978×65	978911	978956	979002	979047	46
953	979093	979138	979184	979230	979275	979321	979366	979412	979457	979503	46
954	979548	979594	979639	979685	979730	979776	979821	979867	979912	979958	46
955	980003	980049	980094	980140	98018J	980231	${ }^{9 \times 0276}$	980322	980367	980412	45
956	980458	980503	980549	980594	950640	980685	980730	980776	980821	980867	45
957	980912	980957	981003	981048	981093	981139	981184	981229	981275	981320	45
958	981366	981411	981456	981501	981547	9×1592	981637	981683	981728	98173	45
959	981819	981864	981909	981954	982000	982045	982090	982135	982181	982226	45
960	982271	982316	982362	982407	982452	982497	982543	982588	982633	9826:8	45
N	0	1	2	3	4	5	6	7	8	9	D

Logarithms of Numbers (continued)

\%	0	1	2	3	4	B	6	7	8	9	D
961	982723	982769	982814	982859	982904	982949	982994	983040	983085	983130	45
962	983175	983220	983265	983310	983356	983401	983446	983491	983536	983581	45
963	983626	983671	983716	983762	983807	983852	983897	983942	983987	$984032{ }_{\text {i }}$	45
964	984077	984122	984167	984212	984257	984302	984347	984392	984437	984482	45
965	984527	984572	984617	984662	984707	984752	984797	984842	984887	984932	45
966	984977	985022	985067	985112	985157	985202	985247	985292	985337	985382 ,	45
987	985426	985471	985516	985561	985606	985651	985696	985741	985786	985830 ;	45
968	985875	985920	985965	986010	986055	986100	986144	986189	986234	986279	45
969	${ }_{986324}$	986369	986413	986458	986503	986548	986593	986637	986682	986727	45
970	986772	986817	986861	986906	986951	986996	987040	987085	987130	987175 ;	45
971	987219	987264	987309	987353	987398	987443	987488	987532	987577	987622	45
972	987666	987711	987756	987800	987845	987890	987934	987979	988024	988068	45
973	988113	988157	988202	988247	988291	988336	988381	988425	988470	988514	45
974	988559	988604	988648	988693	988737	988782	988826	988871	988916	988960^{\prime}	45
975	989005	989049	989094	989138	989183	989227	989272	989316	989361	989405	44
976	989450	989494	989539	989583	989628	989672	989717	989761	989806	989850	44
977	989895	989939	989983	990028	990072	990117	990161	990206	990250	990294	44
978	990339	990383	990428	990472	990516	990561	990605	990650	990694	990738 ।	44
979	990783	990827	990871	990916	990960	991004	991049	991093	991137	991182	44
980	991226	991270	991315	991359	991403	991448	991492	991536	991580	991625	44
N	, 0		2	3	4	5	6	7	8	9	D

Logarithms of Numbers (concluded).

Hyperbolic or Napierian Logaritinms of Numbers.

N	Log	N	Log.	N	L g g.	N	Log.
$1 \cdot 01$	-0099	$1 \cdot 41$	-3436	1.81	5933	$2 \cdot 21$	7930
1.02	-0198	$1 \cdot 42$	-3507	1.82	-5988	$2 \cdot 22$	-7975
1.03	-0296	143	-3577	1.83	-6043	$2 \cdot 23$	-8020
1.04	-0392	$1 \cdot 44$	-3646	1.84	-6098	224	-8065
1.05	-0488	145	-3716	1.85	$\cdot 6152$	$2 \cdot 25$. 8109
1.06	-0583	$1 \cdot 46$	-3784	1.86	-6206	$2 \cdot 26$. 8154
1.07	$\cdot 0677$	$1 \cdot 47$	-385:3	$1 \cdot 87$	-259	$2 \cdot 27$	-8198
1.08	.0770	$1 \cdot 48$	-3920	1.88	$\cdot 6313$	2.28	-8242
1.09	-0862	149	$\checkmark 3988$	1.89	$\cdot 6366$	2'29	-8286
$1 \cdot 10$	-0953	$1 \cdot 50$	-4055	$1 \cdot 90$	$\cdot 6419$	2:30	-8329
$1 \cdot 11$	-1044	151	$\cdot 4121$	$1 \cdot 91$	$\cdot 6471$	$2 \cdot 31$	-8372
$1 \cdot 12$	$\cdot 1133$	1.52	$\cdot 1187$	1.92	$\cdot 6523$	$2 \cdot 32$	$\cdot 8416$
1.13	-1222	1.53	$\cdot 4253$	1.93	$\cdot 6575$	2.33	. 8459
$1 \cdot 14$	$\cdot 1310$	1.54	-4318	1.94	$\cdot 6627$	$2 \cdot 34$	-8502
$1 \cdot 15$	-1398	1.55	$\cdot 4383$	195	$\cdot 6678$	$2 \cdot 35$	-8544
$1 \cdot 16$	$\cdot 1484$	1•56	$\cdot 1447$	1:96	$\cdot 6729$	236	8587
$1 \cdot 17$	$\cdot 1570$	1.57	$\cdot 1511$	197	-6780	$2 \cdot 37$	-8629
$1 \cdot 18$	-1655	1.58	-4574	1.98	-6831	238	${ }^{8671}$
1/19	-1740	1.59	$\cdot 4637$	1.99	$\cdot 6881$	2:39	-8713
$1 \cdot 20$	$\cdot 1823$	1.60	$\cdot 4700$	$2 \cdot 0$	6931	$2 \cdot 40$	8755
$1 \cdot 21$	-1906	1.61	-4762	$2 \cdot 01$	-6981	$2 \cdot 41$	-8796
$1 \cdot 22$	-1988	$1 \cdot 62$	$\cdot 4824$	$2 \cdot 02$	$\cdot 7031$	$2 \cdot 42$. 8838
$1 \cdot 23$	$\cdot 2070$	$1 \cdot 63$	-1886	$2 \cdot 03$	-7080	243	. 8879
$1 \cdot 24$	2151	$1 \cdot 64$	$\cdot 4947$	2.04	$\cdot 7129$	$2 \cdot 44$	-8920
$1 \cdot 25$	-2231	$1 \cdot 65$	-5008	205	-7178	$2 \cdot 45$	-8961
$1 \cdot 26$	$\cdot 2311$	$1 \cdot 66$	-5068	2.06	$\cdot 7227$	$2 \cdot 46$. 3002
$1 \cdot 27$	-2390	$1 \cdot 67$.5128	2.07	$\cdot 7275$	$2 \cdot 47$. 9042
$1 \cdot 28$	-2469	$1 \cdot 68$	-5188	2.08	-7324	$2 \cdot 48$	$\cdot 9083$
$1 \cdot 29$	-2546	$1 \cdot 69$	-5247	2.09	$\cdot 7372$	$2 \cdot 49$	9123
$1 \cdot 30$	- 2624	1.70	-5306	$2 \cdot 10$	$\cdot 7419$	$2 \cdot 50$. 9163
$1 \cdot 31$	$\cdot 2700$	1.71	. 5365	$2 \cdot 11$	$\cdot 7467$	251	. 9203
132	-2776	1.72	-5423	2-12	$\cdot 7514$	$2 \cdot 52$. 9243
$1 \cdot 33$	-2852	1.73	-5481	$2 \cdot 13$	$\cdot 7561$	$2 \cdot 53$. 9282
134	$\cdot 2927$	1.74	-5539	$2 \cdot 14$	$\cdot 7608$	$2 \cdot 54$	9322
135	-3001	1.75	-5596	$2 \cdot 15$	$\cdot 7655$	$2 \cdot 55$. 9361
$1 \cdot 36$	-3075	1.76	-5653	2-16	$\cdot 7701$	$2 \cdot 56$. 9400
137	-3148	1.77	-5710	$2 \cdot 17$	$\cdot 7747$	$2 \cdot 57$. 9439
138	-3221	1.78	$\cdot 5766$	$2 \cdot 18$. 7793	2.58	. 9478
139	-3293	1.79	-5822	2-19	$\cdot 7839$	2.59	-9517
140	-3365	$1 \cdot 80$	-5878	$2 \cdot 20$	$\cdot 7885$	$2 \cdot 60$. 9555

Hyperbofic Logarithms (continued).

N	Log	N	Log.	N	Log.	N	Log.
$2 \cdot 61$	$\cdot 9594$	3.01	$1 \cdot 1019$	$3 \cdot 41$	1.2267	381	$1 \cdot 3376$
$2 \cdot 62$	$\cdot 9632$	$3 \cdot 02$	$1 \cdot 1053$	$3 \cdot 42$	$1 \cdot 2296$	$3 \cdot 82$	13403
2.63	-9670	3.03	$1 \cdot 1086$	$3 \cdot 43$	$1 \cdot 2326$	$3 \cdot 83$	13429
$2 \cdot 64$	-9708	$3 \cdot 04$	$1 \cdot 1119$	$3 \cdot 44$	$1 \cdot 2355$	$3 \cdot 84$	$1 \cdot 3455$
2.65	$\cdot 9746$	$3 \cdot 05$	$1 \cdot 1151$	3-45	1.2384	$3 \cdot 85$	$1 \cdot 3481$
$2 \cdot 66$	$\cdot 9783$	$3 \cdot 06$	$1 \cdot 1184$	$3 \cdot 46$	1.2413	$3 \cdot 86$	$1 \cdot 3507$
$2 \cdot 67$	$\cdot 9821$	$3 \cdot 07$	11217	$3 \cdot 47$	$1 \cdot 2442$	$3 \cdot 87$	$1 \cdot 3533$
2.68	$\cdot 9858$	3.08	$1 \cdot 1219$	$3 \cdot 48$	$1 \cdot 2170$	$3 \cdot 88$	$1 \cdot 3558$
$2 \cdot 69$	$\cdot 9895$	309	1-1283	$3 \cdot 49$	$1 \cdot 2499$	3.89	$1 \cdot 3584$
2.70	$\cdot 9933$	$3 \cdot 10$	$1 \cdot 1314$	$3 \cdot 50$	$1 \cdot 2528$	$3 \cdot 90$	$1 \cdot 3610$
2.71	$\cdot 9969$	311	$1 \cdot 1346$	$3 \cdot 51$	$1 \cdot 2556$	391	$1 \cdot 3635$
2.72	J.0006	312	$1 \cdot 1378$	$3 \cdot 52$	$1 \cdot 2585$	$3 \cdot 92$	$1 \cdot 3661$
2.73	1.0043	$3 \cdot 13$	$1 \cdot 1110$	$3 \cdot 53$	1.2613	3.93	$1 \cdot 3686$
$2 \cdot 71$	10080	$3 \cdot 14$	$1 \cdot 1442$	354	12641	$3 \cdot 94$	$1 \cdot 3712$
$2 \cdot 75$	$1 \cdot 0116$	$3 \cdot 15$	1-1474	3.55	$1 \cdot 2669$	$3 \cdot 95$	$1 \cdot 3737$
$2 \cdot 76$	$1 \cdot 0152$	$3 \cdot 16$	$1 \cdot 1506$	3.56	1.2698	$3 \cdot 96$	$1 \cdot 3762$
$2 \cdot 77$	$1 \cdot 0188$	$3 \cdot 17$	$1 \cdot 1537$	357	$1 \cdot 2726$	$3 \cdot 97$	13788
278	1-()225	3•18	1-1569	358	$1 \cdot 2754$	398	$1 \cdot 3813$
2.79	$1 \cdot 0260$	$3 \cdot 19$	$1 \cdot 1600$	3.59	$1 \cdot 2782$	$3 \cdot 99$	$1 \cdot 3838$
$2 \cdot 80$	$1 \cdot 0296$	$3 \cdot 20$	11632	$3 \cdot 60$	$1 \cdot 2809$	400	$1 \cdot 3863$
$2 \cdot 81$	$1 \cdot 0332$	$3 \cdot 21$	$1 \cdot 1663$	361	1.2837	4.01	1.3888
$2 \cdot 82$	$1 \cdot 0367$	$3 \cdot 22$	1-1694	$3 \cdot 62$	$1 \cdot 2865$	$4 \cdot 02$	$1 \cdot 3913$
$2 \cdot 83$	1.0403	$3 \cdot 23$	$1 \cdot 1725$	$3 \cdot 63$	1.2892	$4 \cdot 03$	$1 \cdot 3938$
$2 \cdot 84$	$1 \cdot 0438$	3.24	$1 \cdot 1756$	$3 \cdot 64$	12920	$4 \cdot 04$	$1 \cdot 3962$
$2 \cdot 85$	$1 \cdot 0473$	$3 \cdot 25$	$1 \cdot 1787$	$3 \cdot 65$	$1 \cdot 2947$	4.05	$1 \cdot 3987$
$2 \cdot 86$	$1 \cdot 0508$	$3 \cdot 26$	$1 \cdot 1817$	$3 \cdot 66$	$1 \cdot 2975$	4.06	$1 \cdot 4012$
$2 \cdot 87$	$1 \cdot 0543$	$3 \cdot 27$	$1 \cdot 1848$	367	$1 \cdot 3002$	$4 \cdot 07$	$1 \cdot 4036$
$2 \cdot 88$	1.0578	3.28	$1 \cdot 1878$	$3 \cdot 68$	$1 \cdot 3029$	$4 \cdot 08$	$1 \cdot 4061$
$2 \cdot 89$	$1 \cdot 0613$	329	11909	$3 \cdot 69$	1-3056	$4 \cdot 09$	1.4085
$2 \cdot 90$	$1 \cdot 0647$	$3 \cdot 30$	1-1939	$3 \cdot 70$	$1 \cdot 3083$	$4 \cdot 10$	$1 \cdot 4110$
2.91	1.0682	3:31	1-1969	3.71	$1 \cdot 3110$	$4 \cdot 11$	1.4134
2.92	1.0716	3.32	$1 \cdot 2000$	$3 \cdot 72$	$1 \cdot 3137$	$4 \cdot 12$	$1 \cdot 4159$
2.93	1.0750	$3 \cdot 33$	$1 \cdot 2030$	3.73	$1 \cdot 3164$	$4 \cdot 13$	1.4183
$2 \cdot 94$	1.0784	$3 \cdot 34$	$1 \cdot 2060$	3.74	133191	$4 \cdot 14$	$1 \cdot 4207$
2.95	10818	3:35	$1 \cdot 2090$	$3 \cdot 75$	1:3218	$4 \cdot 15$	$1 \cdot 4231$
2.96	1.0852	$3 \cdot 36$	12119	$3 \cdot 76$	$1 \cdot 3244$	$4 \cdot 16$	1.4255
2.97	1.0886	$3 \cdot 37$	12149	$3 \cdot 77$	$1 \cdot 3271$	$4 \cdot 17$	1.4279
2.98	1.0919	$3 \cdot 38$	1-2179	$3 \cdot 78$	$1 \cdot 3297$	$4 \cdot 18$	$1 \cdot 4303$
2.99	1.0953	$3 \cdot 39$	1-2208	$3 \cdot 79$	$1 \cdot 3324$	$4 \cdot 19$	1.4327
300	1.0986	$3 \cdot 40$	$1 \cdot 2238$	3.80	$1-3350$	4.20	$1 \cdot 4361$

Hyperbolic Logarithms (continued).

N	Log.	N	Log.	N	Log.	N	Log.
$4 \cdot 21$	$1 \cdot 4375$	4.61	1.5282	501	$1 \cdot 6114$	541	168882
$4 \cdot 22$	1-4398	$1 \cdot 62$	$1 \cdot 5304$	5.02	16134	$5 \cdot 42$	16501
$4 \cdot 23$	$1 \cdot 4422$	463	1.5326	$5 \cdot(0)$	$1 \cdot 6154$	$5 \cdot 43$	16919
$4 \cdot 24$	$1 \cdot 4446$	$4 \cdot 64$	$1 \cdot 5347$	$5 \cdot 04$	$1 \cdot 6174$	$5 \cdot 44$	16938
$4 \cdot 25$	$1 \cdot 4469$	$4 \cdot 65$	$1-5369$	505	$1 \cdot 6194$	$5 \cdot 45$	$1 \cdot 6956$
426	$1 \cdot 4493$	$4 \cdot 66$	1.5390	5.06	$1 \cdot 6214$	5.46	16974
$4 \cdot 27$	14516	$4 \cdot 67$	$1 \cdot 5412$	$5 \cdot 07$	$1 \cdot 6233$	$5 \cdot 47$	16993
4.2K	1-4540	468	$1 \cdot 5433$	5.08	$1 \cdot 6253$	$5 \cdot 48$	1.7011
429	145663	469	$1 \cdot 5454$	$5 \cdot 09$	1.6273	$5 \cdot 49$	17029
430	$1 \cdot 4586$	470	1.5476	$5 \cdot 10$	1.6292	$5 \cdot 50$	1.7047
$4 \cdot 31$	14609	4.71	15497	$5 \cdot 11$	$1 \cdot 6312$	$5 \cdot 51$	1.7066
$1 \cdot 32$	$1 \cdot 46: 33$	4.72	15518	$5 \cdot 12$	1.6332	$5 \cdot 52$	1.7084
$4 \cdot 33$	$1 \cdot 4656$	$4 \cdot 73$	15539	$5 \cdot 13$	$1 \cdot 6351$	563	1.7102
4:34	$1 \cdot 4679$	4.74	1.5560	$5 \cdot 14$	16371	$5 \cdot 54$	17120
$4 \cdot 35$	$1 \cdot 4702$	$4 \cdot 75$	1:5581	515	16390	$5 \cdot 55$	1.7138
$4 \cdot 36$	$1 \cdot 4725$	$4 \cdot 76$	1.5602	$5 \cdot 16$	$1 \cdot 6409$	$5 \cdot 56$	$1 \cdot 7156$
$4 \cdot 37$	$1 \cdot 4748$	4.77	$1 \cdot 5623$	$5 \cdot 17$	$1 \cdot 6429$	$5 \cdot 57$	1.7174
4*3	14770	4.78	$1 \cdot 5641$	5.18	16448	6.58	1.7192
$4 \cdot 39$	1.4793	$4 \cdot 79$	1 5665	$5 \cdot 19$	$1 \cdot 6467$	$5 \cdot 59$	1.7210
$4 \cdot 40$	$1 \cdot 4816$	$4 \cdot 80$	1-5686	520	$1 \cdot 6487$	$5 \cdot 60$	1.7228
$4 \cdot 41$	$1 \cdot 4839$	4.81	$1 \cdot 5707$	$5 \cdot 21$	$1 \cdot 6506$	$5 \cdot 61$	17246
$4 \cdot 42$	$1 \cdot 4861$	4.82	$1 \cdot 5728$	$5 \cdot 22$	$1 \cdot 6525$	$5 \cdot 62$	17263
$4 \cdot 43$	14884	$4 \cdot 83$	15748	$5 \cdot 23$	16544	$5 \cdot 63$	$1 \cdot 7281$
$4 \cdot 44$	$1 \cdot 4907$	$4 \cdot 84$	1.5769	$5 \cdot 24$	1-6563	$5 \cdot 64$	17299
$4 \cdot 45$	$1 \cdot 4929$	$4 \cdot 85$	1.5790	$5 \cdot 25$	$1 \cdot 6582$	$5 \cdot 65$	1.7317
$4 \cdot 46$	$1 \cdot 4951$	4.86	$1 \cdot 5810$	$5 \cdot 26$	16601	$5 \cdot 66$	17334
$4 \cdot 47$	$1 \cdot 4974$	$4 \cdot 87$	$1 \cdot 5831$	$5 \cdot 27$	$1 \cdot 6620$	$5 \cdot 67$	1.7352
$4 \cdot 48$	$1 \cdot 4996$	$4 \cdot 88$	$1 \cdot 5851$	$5 \cdot 28$	$1 \cdot 6639$	$5 \cdot 68$	$1 \cdot 7370$
$4 \cdot 49$	1.5019	$4 \cdot 89$	$1 \cdot 5872$	$5 \cdot 29$	$1 \cdot 6658$	$5 \cdot 69$	17387
$4 \cdot 50$	$1 \cdot 5041$	$4 \cdot 90$	$1 \cdot 5892$	$5 \cdot 30$	$1 \cdot 6677$	$5 \cdot 70$	$1 \cdot 7405$
$4 \cdot 51$	1.5063	4.91	1.5913	$5 \cdot 31$	$1 \cdot 6696$	$5 \cdot 71$	1.7422
$4 \cdot 52$	$1 \cdot 5085$	$4 \cdot 92$	$1 \cdot 5933$	5.32	$1 \cdot 6715$	$5 \cdot 72$	1.7440
4.53	$1 \cdot 5107$	$4 \cdot 93$	1.5953	$5 \cdot 33$	1.6734	$5 \cdot 73$	1.7457
4.54	1.5129	$4 \cdot 94$	1-5974	$5 \cdot 34$	$1 \cdot 6752$	$5 \cdot 74$	1.7475
$4 \cdot 55$	1.5151	$4 \cdot 95$	1-5994	$5 \cdot 35$	$1 \cdot 6771$	$5 \cdot 75$	1.7492
4.56	$1 \cdot 5173$	4.96	$1 \cdot 6014$	$5 \cdot 36$	1.6790	$\bigcirc \cdot 76$	1.7509
$4 \cdot 67$	$1 \cdot 5195$	$4 \cdot 97$	$1 \cdot 6034$	$5 \cdot 37$	1.6808	$5 \cdot 77$	1.7527
$4 \cdot 58$	1.5217	4.98	$1 \cdot 6054$	5.38	$1 \cdot 6827$	$5 \cdot 78$	1.7544
4.69	1.5239	$4 \cdot 99$	$1 \cdot 6074$	$5 \cdot 39$	1.6845	$5 \cdot 79$	1.7561
$4 \cdot 60$	$1 \cdot 5261$	$5 \cdot 00$	1-6094	$5 \cdot 40$	1.6864	5.80	1.7579

Hyperbolic Logarithms (continued).

N	g.	N	Log.	N	Log.	N	Log.
5.81	1.7596	6.21	1.8262	6.61	1.8886	7.01	1.9473
5.82	1.7613	622	1.8278	$6 \cdot 62$	1.8901	7.02	1:9488
$5 \cdot 83$	$1 \cdot 7630$	623	1.8294	6.63	1.8916	703	1.9502
$5 \cdot 84$	1.7617	$6 \cdot 2 \mathrm{t}$	$1 \cdot 8310$	6.64	1.8931	$7 \cdot 04$	$1 \cdot 9516$
5.85	1.7664	$6 \cdot 25$	$1 \cdot 8326$	6.65	1.8946	705	19530
$5 \cdot 86$	1.7681	6.26	1.8312	$6 \% 66$	1.8961	7.106	19544
5.87	1.7699	$6 \cdot 27$	$1 \cdot 8358$	6.67	1.8976	7.07	19559
5.88	1.7716	6.28	$1 \cdot 88374$	6.68	1.8991	7.08	$1 \cdot 9573$
$5 \cdot 89$	17733	6.29	18890	$6 \cdot 69$	$1 \cdot 906$	$7 \cdot 09$	1.9587
$5 \cdot 90$	1.7750	6:30	$1 \cdot 8405$	6.70	1:9021	7-10	19601
5.91	1.7766	$6 \cdot 31$	1.8121	6.71	$1 \cdot 9036$	$7 \cdot 11$	1.9615
5.92	1.7783	6:32	$1 \cdot 8137$	6.72	1.9051	$7 \cdot 12$	1.9629
$5 \cdot 93$	1.7800	6.33	$1 \cdot 8453$	6.73	19066	$7 \cdot 13$	1.9643
$5 \cdot 94$	1.7817	6.31	18169	6.74	$1 \cdot 9081$	$7 \cdot 14$	19657
5.95	1.7883	6:35	1.8185	6.75	1-9095	7115	$1 \cdot 9671$
$5 \cdot 96$	1.7851	6:36	1.8500	6.76	$1 \cdot 9110$	716	19685
5.97	1.7867	6.37	1×516	6.77	1.9125	$7 \cdot 17$	1.9699
5.98	1.7884	$6 \cdot 38$	1.8532	6.78	$1 \cdot 9140$	$7 \cdot 18$	$1 \cdot 9713$
$5 \cdot 99$	17991	639	$1 \cdot 8547$	6.79	1.9155	$7 \cdot 19$	1.9727
$6 \cdot 00$	1.7918	6-40	185643	6.80	$1 \cdot 9169$	7×2	19741
6.01	1.7934	$6 \cdot 41$	$1 \cdot 8579$	6.81	1.9181	7.21	1.9755
6.02	1.7951	$6 \cdot 12$	18594	6.82	$1 \cdot 9199$	$7 \cdot 22$	1.9769
6.03	1.7967	$6 \cdot 13$	1.8610	$6 \cdot 83$	$1 \cdot 9213$	$7 \cdot 23$	1.9782
6.04	$1 \cdot 7984$	$6 \cdot 44$	1.8625	$6 \cdot 84$	$1 \cdot 9228$	7.24	19796
6.05	1.8001	$6 \cdot 45$	1.8641	6.85	$1 \cdot 9242$	$7 \cdot 25$	1.9810
6.06	$1 \cdot 8017$	6.46	1.8656	6.86	19257	$7 \cdot 26$	1.9824
6.07	1.8034	$6 \cdot 47$	1.8672	$6 \cdot 87$	1.9272	$7 \cdot 27$	1.9838
6.08	$1 \cdot 8050$	$6 \cdot 48$	1.8687	6.88	1.9286	7.28	1.9851
6.09	$1 \cdot 8066$	$6 \cdot 49$	1.8703	$6 \cdot 89$	1.9301	7.29	1.9865
$6 \cdot 10$	$1 \cdot 8083$	6.50	$1 \cdot 8718$	6.90	1.9315	730	1.9879
$6 \cdot 11$	1.8099	6.51	1.8733	6.91	1.9330	$7 \cdot 31$	1.9892
$6 \cdot 12$	1.8116	6.52	18749	6.92	$1 \cdot 9344$	$7 \cdot 32$	1.9906
$6 \cdot 13$	1.8132	6.53	1.8764	$6 \cdot 93$	$1 \cdot 9359$	$7 \cdot 33$	1.9920
$6 \cdot 14$	1.8148	6.54	1.8779	6.94	$1 \cdot 9373$	$7 \cdot 34$	1.9933
$6 \cdot 15$	1.8165	6.55	1.8795	6.95	1.9387	$7 \cdot 35$	1.9947
$6 \cdot 16$	1.8181	6.56	1.8810	6.96	1.9402	$7 \cdot 36$	1.9961
6.17	$1 \cdot 8197$	6.57	1.8825	6.97	$1 \cdot 9416$	$7 \cdot 37$	1.9974
$6 \cdot 18$	1.8213	6.58	1.8840	6.98	1.9430	7.38	1.9988
$6 \cdot 19$	1.8229	6.59	1.8856	6.99	1.9445	$7 \cdot 39$	2.0001
6.20	1.8245	6.60	$1 \cdot 8871$	$7 \cdot 00$	1.9459	$7 \cdot 40$	2.0015

Hyperbolic Logarithms (continued).

N	Log.	N	Log	N	L.ag	N	Log
$7 \cdot 41$	2.0028	7.81	2.0554	8.21	$2 \cdot 1054$	8.61	$2 \cdot 1529$
$7 \cdot 42$	$2 \cdot 0042$	$7 \cdot 82$	$2 \cdot 0567$	8.22	$2 \cdot 1066$	$8 \cdot 62$	$2 \cdot 1541$
$7 \cdot 43$	$2 \cdot 0055$	7.83	20580	$8 \cdot 23$	$2 \cdot 1078$	$8 \cdot 63$	21552
$7 \cdot 44$	$2 \cdot 0069$	$7 \cdot 84$	$2 \cdot 0592$	$8 \cdot 24$	$2 \cdot 1090$	$8 \cdot 64$	2•1564
$7 \cdot 45$	20082	$7 \cdot 85$	$2 \cdot 0605$	$8 \cdot 25$	$2 \cdot 1102$	$8 \cdot 65$	$2 \cdot 1576$
$7 \cdot 46$	$2 \cdot 0096$	7.86	2.0618	826	$2 \cdot 1114$	¢ 666	$2 \cdot 1587$
$7 \cdot 47$	$2 \cdot 0109$	$7 \cdot 87$	$2 \cdot 0631$	$8 \cdot 27$	$2 \cdot 1126$	$8 \cdot 67$	2.1599
$7 \cdot 48$	20122	$7 \cdot 88$	$2 \cdot 0643$	8.28	$2 \cdot 113 \times$	$8 \cdot 68$	2.1610
$7 \cdot 49$	2.0136	$7 \cdot 89$	$2 \cdot 0656$	$8 \cdot 29$	$2 \cdot 1150$	$8 \cdot 69$	2-1622
$7 \cdot 50$	$2 \cdot 0149$	7.90	$2 \cdot 6669$	8:30	$2 \cdot 1163$	$8 \cdot 70$	$2 \cdot 1633$
$7 \cdot 51$	$2 \cdot(162$	791	$2 \cdot 0681$	$8 \cdot 31$	$2 \cdot 1175$	8.71	$2 \cdot 1645$
$7 \cdot 52$	$2 \cdot 0176$	7.92	20694	$8 \cdot 32$	$2 \cdot 1187$	872	$2 \cdot 1656$
$7 \cdot 53$	20189	793	$2 \cdot 0707$	$8 \cdot 33$	2.1199	8.73	2•1668
$7 \cdot 54$	20202	794	$2 \cdot(1)$	$8 \cdot 34$	21211	874	$2 \cdot 1679$
$7 \cdot 55$	$2 \cdot(1) 2$	795	$2 \cdot 0732$	$8 \cdot 35$	$2 \cdot 1223$	8.75	2-1691
7-56	$2 \cdot 0229$	7.96	$2 \cdot(0744$	8.36	$2 \cdot 1235$	$8 \cdot 76$	$2 \cdot 1702$
$7 \cdot 57$	20242	$7 \cdot 97$	$2 \cdot(0757$	$8 \cdot 37$	$\stackrel{9}{ } \cdot 1217$	$8 \cdot 77$	21713
$7 \cdot 58$	$2 \cdot 0255$	7.98	$2 \cdot 0769$	$8 \cdot 38$	$2 \cdot 1258$	8.78	$2 \cdot 1725$
$7 \cdot 59$	20268	$7 \cdot 99$	$2 \cdot 782$	$8 \cdot 39$	$2 \cdot 1270$	8.79	$2 \cdot 1736$
$7 \cdot 60$	$2 \cdot 0281$	8.00	$2 \cdot 0794$	$8 \cdot 40$	$2 \cdot 1282$	$8 \cdot 80$	$2 \cdot 1748$
$7 \cdot 61$	$2 \cdot 0295$	8.01	$2 \cdot 0807$	$8 \cdot 41$	$2 \cdot 1294$	881	21759
$7 \cdot 62$	2.0308	8.02	$2 \cdot 0819$	$8 \cdot 42$	2•1306	$8 \cdot 82$	$2 \cdot 1770$
$7 \cdot 63$	$2 \cdot 0321$	$8 \cdot 03$	$2 \cdot 0832$	$8 \cdot 43$	$2 \cdot 1318$	$8 \cdot 83$	$2 \cdot 1782$
$7 \cdot 64$	$2 \cdot 0334$	$8 \cdot 04$	20844	$8 \cdot 44$	2.1330	$8 \cdot 84$	$2 \cdot 1793$
$7 \cdot 65$	$2 \cdot 0347$	$8 \cdot 05$	$2 \cdot 0857$	$8 \cdot 45$	2•1342	$8 \cdot 85$	2-1804
766	$2 \cdot 0360$	80 ;	$2 \cdot 0869$	$8 \cdot 46$	$2 \cdot 1353$	$8 \cdot 86$	$2 \cdot 1815$
$7 \cdot 67$	$2 \cdot 0373$	$8 \cdot 07$	$2 \cdot 0882$	$8 \cdot 47$	$2 \cdot 1365$	$8 \cdot 87$	$2 \cdot 1827$
$7 \cdot 68$	$2 \cdot 0386$	$8 \cdot 08$	$2 \cdot 0894$	$8 \cdot 48$	$2 \cdot 1377$	$8 \cdot 88$	$2 \cdot 1838$
$7 \cdot 69$	2•0399	$8 \cdot 09$	20906	$8 \cdot 49$	21389	$8 \cdot 89$	$2 \cdot 1849$
$7 \cdot 70$	$2 \cdot 0412$	$8 \cdot 10$	2.0919	$8 \cdot 50$	$2 \cdot 1401$	890	$2 \cdot 1861$
7.71	$2 \cdot 0425$	$8 \cdot 11$	2.0931	$8 \cdot 51$	$2 \cdot 1412$	8.91	$2 \cdot 1872$
$7 \cdot 72$	2.0438	$8 \cdot 12$	$2 \cdot 0943$	$8 \cdot 52$	$2 \cdot 1424$	$8 \cdot 92$	$2 \cdot 1883$
7.73	$2 \cdot 0451$	$8 \cdot 13$	20956	8.53	$2 \cdot 1436$	$8 \cdot 93$	$2 \cdot 1894$
$7 \cdot 74$	$2 \cdot 0464$	$8 \cdot 14$	$2 \cdot 0968$	$8 \cdot 54$	$2 \cdot 1448$	$8 \cdot 94$	$2 \cdot 1905$
7.75	2.0477	$8 \cdot 15$	20980	$8 \cdot 55$	$2 \cdot 1459$	8.95	$2 \cdot 1917$
$7 \cdot 76$	$2 \cdot 0490$	$8 \cdot 16$	20992	$8 \cdot 56$	$2 \cdot 1471$	$8 \cdot 96$	$2 \cdot 1928$
$7 \cdot 77$	$2 \cdot 0503$	$8 \cdot 17$	2-1005	$8 \cdot 57$	$2 \cdot 1483$	$8 \cdot 97$	$2 \cdot 1939$
$7 \cdot 78$	2.0516	$8 \cdot 18$	$2 \cdot 1017$	$8 \cdot 58$	$2 \cdot 1494$	8.98	$2 \cdot 1950$
7.79	2.0528	$8 \cdot 19$	2-1029	$8 \cdot 59$	$2 \cdot 1506$	8.99	$2 \cdot 1961$
$7 \cdot 80$	2.0541	$8 \cdot 20$	$2 \cdot 1041$	$8 \cdot 60$	$2 \cdot 1518$	9.00	$2 \cdot 1972$

Hyperbolic Logarithms (concluded).

N	Log	N	Log	N	Log.	N	Log.
$9 \cdot 01$	$2 \cdot 1983$	$9 \cdot 26$	$2 \cdot 2257$	$9 \cdot 51$	$2 \cdot 2523$	$9 \cdot 76$	22783
$9 \cdot 02$	21994	9.27	$2 \cdot 2268$	$9 \cdot 52$	$2 \cdot 2534$	$9 \cdot 77$	$2 \cdot 2793$
$9 \cdot 03$	$2 \cdot 2006$	$9 \cdot 28$	$2 \cdot 2279$	$9 \cdot 53$	$2 \cdot 2544$	$9 \cdot 78$	$2 \cdot 2803$
$9 \cdot 04$	$2 \cdot 2017$	$9 \cdot 29$	$2 \cdot 2289$	$9 \cdot 54$	$2 \cdot 2555$	$9 \cdot 79$	$2 \cdot 2814$
$9 \cdot 05$	$2 \cdot 2028$	$9 \cdot 30$	$2 \cdot 2300$	$9 \cdot 55$	$2 \cdot 2565$	$9 \cdot 80$	22824
$9 \cdot 06$	$2 \cdot 2039$	$9 \cdot 31$	$2 \cdot 2311$	$9 \cdot 56$	$2 \cdot 2576$	$9 \cdot 81$	$2 \cdot 2834$
$9 \cdot 07$	22050	$9 \cdot 32$	$2 \cdot 2322$	$9 \cdot 57$	$2 \cdot 2586$	$9 \cdot 82$	$2 \cdot 2844$
$9 \cdot 08$	$2 \cdot 2061$	$9 \cdot 33$	$2 \cdot 2332$	$9 \cdot 58$	$2 \cdot 2597$	$9 \cdot 83$	$2 \cdot 2854$
$9 \cdot 09$	$2 \cdot 2072$	$9 \cdot 34$	$2 \cdot 2343$	$9 \cdot 59$	$2 \cdot 2607$	$9 \cdot 84$	$2 \cdot 2865$
$9 \cdot 10$	$2 \cdot 2083$	$9 \cdot 35$	$2 \cdot 2354$	$9 \cdot 60$	$2 \cdot 2618$	$9 \cdot 85$	$2 \cdot 2875$
$9 \cdot 11$	$2 \cdot 2094$	$9 \cdot 36$	$2 \cdot 2364$	$9 \cdot 61$	$2 \cdot 2628$	$9 \cdot 86$	$2 \cdot 2885$
$9 \cdot 12$	$2 \cdot 2105$	$9 \cdot 37$	$2 \cdot 2375$	$9 \cdot 62$	$2 \cdot 2638$	$9 \cdot 67$	$2 \cdot 2895$
$9 \cdot 13$	$2 \cdot 2116$	$9 \cdot 38$	$2 \cdot 2386$	$9 \cdot 63$	$2 \cdot 2649$	$9 \cdot 88$	$2 \cdot 2905$
914	22127	$9 \cdot 39$	$2 \cdot 2396$	$9 \cdot 64$	$2 \cdot 2659$	$9 \cdot 89$	$2 \cdot 2915$
915	$2 \cdot 2138$	$9 \cdot 40$	$2 \cdot 2407$	965	$2 \cdot 2670$	$9 \cdot 90$	$2 \cdot 2925$
$9 \cdot 16$	$2 \cdot 2148$	941	$2 \cdot 2418$	$9 \cdot 66$	$2 \cdot 2680$	$9 \cdot 91$	$2 \cdot 2935$
$9 \cdot 17$	$2 \cdot 2159$	$9 \cdot 42$	$2 \cdot 2428$	$9 \cdot 67$	$2 \cdot 2690$	$9 \cdot 92$	$2 \cdot 2946$
$9 \cdot 18$	$2 \cdot 2170$	$9 \cdot 43$	$2 \cdot 2439$	$9 \cdot 68$	$2 \cdot 2701$	$9 \cdot 93$	$2 \cdot 2956$
$9 \cdot 19$	$2 \cdot 2181$	$9 \cdot 44$	$2 \cdot 2450$	$9 \cdot 69$	22711	$9 \cdot 94$	22966
$9 \cdot 20$	$2 \cdot 2192$	$9 \cdot 45$	$2 \cdot 2460$	$9 \cdot 70$	$2 \cdot 2721$	$9 \cdot 95$	$2 \cdot 2976$
$9 \cdot 21$	22203	$9 \cdot 46$	$2 \cdot 2471$	$9 \cdot 71$	$2 \cdot 2732$	$9 \cdot 96$	$2 \cdot 2986$
$9 \cdot 22$	$2 \cdot 2214$	$9 \cdot 47$	$2 \cdot 2481$	$9 \cdot 72$	$2 \cdot 2742$	997	$2 \cdot 2996$
$9 \cdot 23$	$2 \cdot 2225$	$9 \cdot 48$	$2 \cdot 2492$	$9 \cdot 73$	$2 \cdot 2752$	$9 \cdot 98$	$2 \cdot 3006$
$9 \cdot 24$	$2 \cdot 2235$	$9 \cdot 49$	22502	$9 \cdot 74$	$2 \cdot 2762$	$9 \cdot 99$	$2 \cdot 3016$
$9 \cdot 25$	$2 \cdot 2246$	$9 \cdot 50$	$2 \cdot 2513$	$9 \cdot 75$	$2 \cdot 2773$	$10 \cdot 00$	$2 \cdot 3026$

The hyperbolic logarithm of a number may be obtained by multiplying the common logarithm of the number by $2 \cdot 302585$.

The hyperbolic logarithm of a number which is 10 times a number in the above table may be obtained by adding 2.3026 (the hyperbolic logarithm of 10) to the logarithm in the table.

Example.-To find the hyperbolic logarithm of 916
From the table log, $9 \cdot 16=2 \cdot 2148$
$2 \cdot 3026$
$\log _{e} 91 \cdot 6=\overline{4.517 \overline{4}}$
The hyperbolic logarithm of a number which is 100 times a number in the above table may be obtained by adding 2.3026 twice, to the logarithm in the table.

Example.-To find the hyperbolic logarithm of 916
From the table log, $9 \cdot 16=2 \cdot 2148$
$2 \cdot 3026$
$2 \cdot 3026$
$\log 916=\widehat{6 \cdot 8200}$

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers.

The use of the table which follows may be greatly extended by aid of the following notes and rules:-

For numbers larger than those given in the table, the following rules are sometimes useful:-

The square or cube of a number is equal to the product of the squares or cubes respectively of its factors.

$$
\begin{aligned}
\text { Thus, } 1778^{2}=(2 \times 889)^{2} & =2^{2} \times 889^{2}=4 \times 790321=3161284 \\
2895^{2}=(3 \times 965)^{2} & =3^{2} \times 965^{2}=9 \times 931225=8381025 \\
1396^{8} & =(2 \times 698)^{3}=2^{3} \times 698^{8}=8 \times 340068392=2720547136
\end{aligned}
$$

The square root or cube root of a number is equal to the product of the square roots or cube roots respectively of its factors.

From Table.

Thus, $\sqrt{ } / 1964-\sqrt{\prime}(4 \times 491)=\sqrt{ } / 4 \times \sqrt{ } / 491=2 \times 22 \cdot 1585=44.317$

Decimals. -The number of decimal places in the exact square of a number is equal to twire the number of decumal places in the number. Or, if the decimal point be moved one place in the number, it must be moved two places in the square of the number, in the same direction

The number of decimal places in the exact cube of a number is equal to thrice times the number of decimal places in the number. Or, if the decimal point be moved one place in the number, it must be moved thrce places in the cube of the number, in the same direction.

Examples. - $16^{2}=256$	$16^{3}=4096$
$1 \cdot 6^{2}=2 \cdot 56$	$1 \cdot 6{ }^{3}=4 \cdot 096$
-1 $6^{2}=0256$	$\cdot 16^{3}=\cdot 004096$
$\cdot 016{ }^{2}=\cdot 000256$	$\cdot 016^{3}=\cdot 000004096$

Also, if the decimal point be moved two places in the number, it must be moved one place in the square root of the number, in the same direction; and if the decimal point be moved threc places in the number, it must be moved one place in the cube root of the number, in the same direction.
Examples.- $\begin{gathered}\mathcal{y} 16=4 \\ \cdot 16=\cdot 4 \\ \cdot \cdot 0016=\cdot 04\end{gathered}$

$$
\begin{aligned}
\sqrt{160} & =12 \cdot 6491 \ldots \\
\mathcal{V} \cdot 6 & =1 \cdot 26491 \cdots \\
\sqrt{0} \cdot 16 & =\cdot 126491 \ldots
\end{aligned}
$$

$$
\begin{array}{ll}
\sqrt[3]{3} 16=2 \cdot 5198 \ldots & \sqrt[3]{160}=5 \cdot 4288 \ldots \\
\sqrt[3]{0} \cdot 016=\cdot 25198 \ldots & \sqrt{2} 6=\cdot 54288 \ldots
\end{array}
$$

In the case of the reciprocal of a number, if the decimal point is moved in the number, it must be moved an equal number of places in the reciprocal, in the opposite direction.

Examples.-

Number	32	$3 \cdot 2$	$\cdot 32$.032	3200
Reciprocal	03125	$\cdot 3125$	$3 \cdot 125$	$31 \cdot 25$.0003125

The product of a number and its reciprocal is equal to 1.

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers.

n	n ${ }^{2}$	n^{3}	$\sqrt{ }$ n	$8^{3 / n}$	$\underline{1}$	n
1	1	1	1	1		1
2	4	8	$1 \cdot 4112$	$1 \cdot 2599$	$\cdot 500000$	2
3	9	27	$1 \cdot 7321$	1.4422	$\cdot 333333$	3
4	16	61	2	$1 \cdot 5 \times 74$	$\cdot 250000$	4
5	25	12.5	$2 \cdot 2361$	$1 \cdot 7100$	$\cdots 00000$	5
6	36	216	$2 \cdot 4495$	1×171	-166667	6
7	49	34.3	$2 \cdot 61.58$	19129	-1424.77	7
¢	64	512	2-4081	$\underline{2}$	-125000	8
9	¢1	729	3	$2 \cdot(1801$	$\cdot 111111$	9
10	100	$1(\mathrm{KN})$	$3 \cdot 1623$	2-1.514	-10\%000	10
11	121	1331	$3 \cdot 3166$	2.9210	- $0: 40909$	11
12	144	1728	$3 \cdot 1611$	2.9894	-043333	12
13	169	2197	$3 \cdot 6056$	$2 \cdot 3.513$	$\cdot 076923$	13
14	196	2744	$3 \cdot 7417$	$2 \cdot 1101$	-071429	14
15	225	3375	38730	$2 \cdot 1662$	$\cdot 066667$	15
16	256	4096	4	$2 \cdot 5198$	-062500	16
17	289	4913	$4 \cdot 1231$	2.5713	-058824	17
18	324	5832	$4 \cdot 2426$	$2 \cdot 6207$	$\cdot 055556$	18
19	361	6859	$4 \cdot 3589$	$2 \cdot 6644$	$\cdot(052632$	19
20	400	8000	$4 \cdot 4721$	$2 \cdot 7144$	$\cdot 050000$	20
21	441	9261	$4 \cdot 5826$	$2 \cdot 75 \times 9$. 047619	21
22	484	10648	$4 \cdot 6904$	$2 \cdot 8(120$	-045455	22
23	529	12167	$4 \cdot 7958$	2.8439	$\cdot 04.3478$	23
24	576	13824	$4 \cdot 8990$	$2 \cdot 8845$	$\cdot() 41667$	24
25	625	15625	5	$2 \cdot 9240$	-040000	25
26	676	17576	$5 \cdot 0990$	$2 \cdot 9625$	$\cdot 038462$	26
27	729	19683	$5 \cdot 1962$	3	$\cdot(037037$	27
28	784	21952	$5 \cdot 2915$	$3 \cdot 0366$.035714	28
29	841	24389	$5 \cdot 3852$	3•0723	$\cdot 034483$	29
30	900	27000	$5 \cdot 4772$	31072	-033333	30
31	961	29791	$5 \cdot 5678$	$3 \cdot 1414$	-032258	31
32	1024	32768	$5 \cdot 6569$	$3 \cdot 1748$	-031250	32
33	1089	35937	$5 \cdot 7446$	$3 \cdot 2075$	$\left.{ }^{1}\right) 30303$	33
34	1156	39304	5.8310	$3 \cdot 2396$	-029412	34
35	1225	42875	5.9161	$3 \cdot 2711$	$\cdot 028571$	35
n	n^{2}	\mathbf{n}^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1}{n}$	\boldsymbol{n}

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n^{2}	n ${ }^{\text {a }}$	\wedge^{\prime}	$\lambda^{3 / n}$	1 n	n
36	1296	46656	6	3•3019	$\cdot 027778$	36
37	1369	50653	6.082ヵ	3:3322	$\cdot 027027$	37
38	1444	51872	$6 \cdot 1644$	3:3620	${ }^{(026} 2316$	38
39	1521	59319	62450	3:3912	025641	39
40	1600	64000	$6 \cdot 3246$	$3 \cdot 420$	(2,5000	40
41	1681	68921	6.4031	3.4482	(024390	41
42	1764	74088	$6 \cdot 4807$	$3 \cdot 4760$	-023810	42
43	1849	79507	6. 2574	3.5034	023256	43
44	1936	85184	$6 \cdot 6332$	3:5303	$\cdot 022727$	44
45	2025	91125	6.7082	35569	$\cdot 022222$	45
46	2116	97336	6.7823	3:5830	$\cdot 021739$	46
47	2209	103823	$6 \cdot 4557$	$3 \cdot 6088$	-021277	47
48	2304	110592	6.9292	$3 \cdot 6312$	$\cdot 020833$	48
49	2401	117649	7	$3 \cdot 6593$	$02040 \times$	49
50	2500	$1250{ }^{\circ} 0$	$7 \cdot 0711$	366810	-020006	50
51	2601	132651	7-1414	3.7084	-019608	51
52	2704	14060x	7×111	3.7325	019231	52
53	2809	148877	72801	3.7563	-018868	53
54	2916	157464	7-3485	3•7798	$\cdot 018519$	54
55	3025	166375	$7 \cdot 4162$	$3 \cdot 8030$	018182	55
56	3136	175616	$7 \cdot 1833$	$3 \cdot 8259$	-017857	56
57	3249	185193	7-5498	3-848.5	$\cdot 017544$	57
58	3364	195112	7.6158	38809	$\cdot 017241$	58
59	3481	205379	$7 \cdot 6811$	$3 \cdot 8930$	$\cdot 016949$	59
60	3600	216000	7.7460	3:9149	016667	60
61	3721	226981	7-8102	3.9365	-016393	61
62	3844	238328	$7 \cdot 8740$	39579	$\cdot 016129$	62
63	3969	250047	7-937.3	3:9791	$\cdot 015873$	63
64	4096	262144	8	4	$\cdot 015625$	64
65	4225	274625	8.0623	$4 \cdot 0207$	-015385	65
66	4356	287496	$8 \cdot 1240$	4.0412	$\cdot 015152$	66
67	4489	300763	$8 \cdot 1854$	$4 \cdot 0615$	$\cdot 014925$	67
68	4624	314432	8.2462	4.0817	$\cdot 014706$	68
69	4761	328509	$8 \cdot 3066$	4.1016	-014493	69
70	4900	343000	8.3666	$4 \cdot 1213$. 014286	70
n	n^{2}	\mathbf{n}^{8}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n^{2}	n ${ }^{3}$	$\wedge^{/ n}$	$3^{3} \mathrm{n}$	1	n
71	5041	357911	$8 \cdot 4261$	41408	$\cdot() 14085$	11
72	5184	373248	$8 \cdot 48.53$	$4 \cdot 1602$	$\cdot 013889$	72
73	5329	389017	8.5440	$4 \cdot 1793$	$\cdot 013699$	73
74	5476	405224	$8 \cdot 6023$	$4 \cdot 19 ¢ 3$	013514	74
75	5625	421875	$8 \cdot 660 \cdot 3$	42172	$\cdot 013333$	75
76	5776	438976	$8 \cdot 7178$	4.235 ${ }^{\text {4 }}$	$\cdot 013158$	76
77	5929	456533	8.7750	$4 \cdot 2543$	012987	77
78	6084	474.552	$8 \cdot 8318$	$4 \cdot 2727$	-012¢21	78
79	6211	493039	$8 \cdot 8882$	$4 \cdot 2908$	-01265	79
80	6400	512000	8.9443	$4 \cdot 3089$	-012500	80
81	6561	531441	9	$4 \cdot 3267$	-012316	81
82	6724	551368	9.0554	$4 \cdot 3445$	-012195	82
83	6889	571787	$9 \cdot 1104$	$4 \cdot 3621$	-012048	83
84	7056	592704	9-16.5	$4 \cdot 3795$	-011305	84
85	7225	614125	9.2195	$4 \cdot 3968$	-011765	85
86	7396	636056	9.2736	$4 \cdot 4140$	$\cdot 011628$	86
87	7569	658503	9:3274	$4 \cdot 4310$	$\cdot 011494$	87
88	7744	681472	9:3808	$4 \cdot 1480$	$\cdot 011364$	88
89	7921	704969	$9 \cdot 4310$	$4 \cdot 4647$	$\cdot 011236$	89
90	8100	729000	$9 \cdot 4868$	$4 \cdot 4814$	-011111	90
91	8281	753571	95394	4.4979	$\cdot 010989$	91
92	8464	778688	$9 \cdot 5917$	45144	$\cdot 010 \times 70$	92
93	8649	804357	$9 \cdot 6437$	$4 \cdot 5307$	-010753	93
94	8836	830584	$9 \cdot 6954$	$4 \cdot 5468$	-010638	94
95	9025	857375	$9 \cdot 7468$	$4 \cdot 5629$	$\cdot 010526$	95
96	9216	884736	$9 \cdot 7980$	$4 \cdot 5789$	$\cdot 010417$	96
97	9409	912673	$9 \cdot 8489$	$4 \cdot 5947$	$\cdot 010309$	97
98	9604	941192	$9 \cdot 8995$	$4 \cdot 6104$	$\cdot 010204$	98
99	9801	970299	$9 \cdot 9499$	$4 \cdot 6261$	$\cdot 010101$	99
100	10000	1000000	10	$4 \cdot 6416$	$\cdot 010000$	100
101	10201	1030301	10.0499	4.6570	$\cdot 009901$	101
102	10404	1061208	10.0995	4.6723	-(0)9804	102
103	10609	1092727	$10 \cdot 1489$	$4 \cdot 6 \times 75$	$\cdot 009709$	103
104	10816	1124864	$10 \cdot 1980$	$4 \cdot 7027$	-009615	104
105	11025	1157625	$10 \cdot 2470$	$4 \cdot 7177$	$\cdot 009524$	105
n	n^{2}	\mathbf{n}^{3}	\sqrt{n}	$\sqrt[3]{n}$	1	$\underline{2}$

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	\mathbf{n}^{2}	n^{3}	$\sqrt{ }$ n	$3^{3 / n}$	$\frac{1}{n}$	n
106	11236	1191016	10.2956	4.7326	-009434	106
107	11449	1225043	$10 \cdot 3441$	4.7475	-009346	107
108	11664	1259712	$10 \cdot 3923$	$4 \cdot 7622$	$\cdot 009259$	108
109	11881	1295029	$10 \cdot 4403$	$4 \cdot 7769$	$\cdot 009174$	109
110	12100	1331000	$10 \cdot 4881$	4.7914	-009091	110
111	12321	1367631	$10 \cdot 5357$	$4 \cdot 8059$	-009009	111
112	12544	1404928	$10 \cdot 5830$	4.8203	-008929	112
113	12769	1442897	10.6301	4.8346	-008850	113
114	12996	1481544	10.6771	$4 \cdot 8488$.008772	114
115	13225	1520875	$10 \cdot 7238$	4.8629	'008696	115
116	13456	1560896	$10 \cdot 7703$	48770	-008621	116
117	13689	1601613	$10 \cdot 8167$	4.8910	$\cdot 008547$	117
118	13924	1643032	10.8628	$4 \cdot 9049$	-008475	118
119	14161	1685159	$10 \cdot 9087$	4.9187	-008403	119
120	14400	1728000	10.9545	4.9324	-008333	120
121	14641	1771561	11	4.9461	-008264	121
122	14884	1815848	11.0454	4.9597	-608197	122
123	15129	1860867	11.0905	4.9732	'008130	123
124	15376	1906624	11.1355	4.9866	-008065	124
125	15625	1953125	$11 \cdot 1803$	5	-008000	125
126	15876	2000376	$11 \cdot 2250$	$5 \cdot 0133$	-007937	126
127	16129	2048383	$11 \cdot 2694$	$5 \cdot 0265$. 007874	127
128	16384	2097152	$11 \cdot 3137$	5.0397	007813	128
129	16641	2146689	$11 \cdot 3578$	5.0528	. 007752	129
130	16900	2197000	$11 \cdot 4018$	$5 \cdot 0658$	-007692	130
131	17161	2248091	11.4455	5.0788	-007634	131
132	17424	2299968	$11 \cdot 4891$	5.0916	.007576	132
133	17689	2352637	$11 \cdot 5326$	$5 \cdot 1045$	-007519	133
134	17956	2406104	$11 \cdot 5758$	$5 \cdot 1172$	-007463	134
135	18225	2460375	11.6190	$5 \cdot 1299$. 007407	135
136	18496	2515456	$11 \cdot 6619$	5•1426	-007353	136
137	18769	2571353	11.7047	$5 \cdot 1551$. 007299	137
138	19044	2628072	11.7473	5-1676	$\cdot 007246$	138
139	19321	2685619	11.7898	5•1801	-007194	139
140	19600	2744000	11.8322	$5 \cdot 1925$	-007143	140
n	n^{2}	\mathbf{n}^{8}	\sqrt{n}	$\sqrt[8]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	\mathbf{n}^{2}		$\sqrt{ } \mathrm{n}$	$\sqrt[3]{ } \mathbf{n}$	$\frac{1}{n}$	n
141	19881	2803221	11.8743	$5 \cdot 2048$	$\cdot 007092$	141
142	20164	2863288	11.9164	$5 \cdot 2171$	-007042	142
143	20449	2924207	$11 \cdot 9583$	52293	$\cdot 006993$	143
144	20736	2985984	12	5.2415	-006944	144
145	21025	3048625	120416	$5 \cdot 2536$	$\cdot 006897$	145
146	21316	3112136	12.0830	5-2656	-06849	146
147	21609	3176523	12.1244	$5 \cdot 2776$	-0106803	147
148	21904	3241792	$12 \cdot 1655$	$5 \cdot 2896$	006757	148
149	22201	3307949	12.2066	$5 \cdot 3015$	-006711	149
150	22500	3375000	$12 \cdot 2474$	$5 \cdot 3133$	$\cdot 006667$	150
151	22801	3442951	12.2882	5.3251	$\cdot 006623$	151
152	23104	351180¢	12.3288	5.3368	-006579	152
153	23409	3581577	$12 \cdot 3693$	$5 \cdot 3485$	-006536	153
154	23716	3652264	$12 \cdot 4097$	5.3601	-006494	154
155	24025	3723875	$12 \cdot 4499$	5•3717	-006452	155
156	24336	3796416	124900	5.3832	-006410	156
157	24649	3869893	125300	5•3947	$\cdot 006369$	157
158	24964	3944312	12.5698	$5 \cdot 4061$	-006329	158
159	25281	4019679	$12 \cdot 6095$	$5 \cdot 4175$	006289	159
160	25600	4096000	126491	$5 \cdot 4288$	006250	160
161	25921	4173281	$12 \cdot 6886$	$5 \cdot 4401$	$\cdot 006211$	161
162	26244	4251528	12.7279	$5 \cdot 4514$	$\cdot 006173$	162
163	26569	4330747	12.7671	5-4626	$\cdot 006135$	163
164	26896	4410944	$12 \cdot 8062$	$5 \cdot 4737$	$\cdot 006098$	164
165	27225	4492125	$12 \cdot 8452$	$5 \cdot 4848$	-006061	165
166	27556	4574296	$12 \cdot 8841$	5.4959	-006024	166
167	27889	4657463	$12 \cdot 9228$	5.5069	-005988	167
168	28224	4741632	$12 \cdot 9615$	$5 \cdot 5178$	005952	168
169	28561	4826809	13	5.5288	005917	169
170	28900	4913000	13.0384	5.5397	. 005882	170
171	29241	5000211	13.0767	$5 \cdot 5505$. 005848	171
172	29584	5088448	$13 \cdot 1149$	$5 \cdot 5613$	-005814	172
173	29929	5177717	$13 \cdot 1529$	$5 \cdot 5721$. 005780	173
174	30276	5268024	131909	5.5828	-005747	174
175	30625	5359875	13.2288	5•6934	-005714	175
n	n^{2}	\mathbf{n}^{8}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	\mathbf{n}^{-}	n	\sqrt{n}	$\sqrt[3]{ } 1$	$\frac{1}{n}$	n
176	30976	5451776	$13 \cdot 2665$	$5 \cdot 6041$	-005682	176
177	31.329	5515233	13:3041	$5 \cdot 6147$	-005650	177
178	316 N 1	¢639752	$13 \cdot 3417$	$5 \cdot 6252$	(0)5618	178
179	32041	5735339	13•3791	$5 \cdot 6357$	-005587	179
180	32400	5832(\%)	$13 \cdot 4164$	$5 \cdot 6462$	- 005556	180
181	32761	5929741	13.4536	56567	- 005525	181
182	33124	6028568	$13 \cdot 4907$	$5 \cdot 6671$	-(0)5495	182
183	33489	6128187	13.5277	$5 \cdot 6774$	-(0)5464	183
184	33856	6229.04	$13 \cdot 5647$	$5 \cdot 6877$	(0)5435	184
185	34225	633162.)	$13 \cdot 6015$	5.698()	()05405	185
186	34596	6434856	$13 \cdot 6382$	$5 \cdot 7083$	005376	186
187	31969	6539203	$13 \cdot 6748$	$5 \cdot 7185$	-005:348	187
188	35344	(6644672	13.7113	$5 \cdot 7287$	-(0)3319	188
189	35721	6751269	$13 \cdot 7477$	57388	-005291	189
190	36100	6859000	13.7840	57489	-(0)5263	190
191	36481	6967871	13.8203	5.7590	-005236	191
192	36864	7077888	13.8564	$5 \cdot 7690$	$\cdot 005208$	192
193	37249	7189057	13•8924	$5 \cdot 7790$.005181	193
194	37636	7301384	$13 \cdot 9284$	$5 \cdot 7890$	$\cdot 005165$	194
195	38025	7414×75	$13 \cdot 9642$	$5 \cdot 7989$	-005128	195
196	38416	7529536	14	5.8088	. 005102	196
197	38809	7645373	14.0357	5-8186	$\cdot 005076$	197
198	39204	7762392	$14 \cdot 0712$	5.8285	-005051	198
199	39601	7880599	$14 \cdot 1067$	$5 \cdot 8383$	$\cdot 005025$	199
200	40000	8000000	14.1421	$5 \cdot 8480$	$\cdot 005000$	200
201	40401	8120601	$14 \cdot 1774$	$5 \cdot 8578$	$\cdot 004975$	201
202	40804	8242408	$14 \cdot 2127$	$5 \cdot 8675$.004950	202
203	41209	8365427	142478	$5 \cdot 8771$	004926	203
204	41616	8489664	142829	$5 \cdot 8868$	$\cdot 004902$	204
205	42025	8615125	14•3178	5•8964	$\cdot 004878$	205
206	42436	8741816	$14 \cdot 3527$	$5 \cdot 9059$. 004854	206
207	42849	8869743	14.3875	5.9155	$\cdot 004831$	207
208	43264	8998912	$14 \cdot 4222$	$5 \cdot 9250$	-004808	208
209	43681	9129329	14.4568	$5 \cdot 9345$.004785	209
210	44100	9261000	14.4914	509439	. 004762	210
n	$\mathrm{n}^{\mathbf{2}}$	n^{3}	\cdots	$\sqrt[8]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n^{2}	n^{3}	$\sqrt{ } \mathbf{n}$	$\sqrt[3]{ } \mathrm{n}$	$\frac{1}{n}$	n
211	44521	9393931	14.5258	$5 \cdot 9.333$	004739	211
212	44944	9528128	14:5602	$5 \cdot 9627$	-())4717	212
213	45369	9663597	14.5945	59721	. 0046995	213
214	45796	$9 \times() 311$	146287	5.9814	- 004673	214
215	46225	9938375	14.6629	$5 \cdot 9307$	-004651	215
216	46656	10077696	14.6969	6	-004630	216
217	47089	10218313	14.7309	60092	-(0)460)	217
218	47524	10360232	14.7648	$6 \cdot 0185$	$\cdot(101587$	218
219	47961	10503459	1479×6	60277	004566	219
220	48400	10648000	14.8324	$6 \cdot 0368$	- () 4545	220
221	48841	10793861	$14 \cdot 8661$	$6 \cdot 0459$	-(1)4525	221
222	49284	10941048	148997	$6 \cdot 0550$	(1)4505	222
223	49729	11089567	14.9332	$6 \cdot 0641$	(1) 14484	223
224	50176	11239424	149666	$6 \cdot 0732$	-())4464	224
225	50625	1139065	15	$6 \cdot(1 \times 22$	() 4444	225
226	51076	11513176	15.0338	$6 \cdot 0912$	$\cdot(004425$	226
227	51529	11697083	15.0665	$6 \cdot 1002$	-004405	227
228	51984	11852352	$15 \cdot 0997$	$6 \cdot 1091$	-004386	228
229	52441	12008989	$15 \cdot 1327$	$6 \cdot 1180$	$\cdot 004367$	229
230	52900	12167000	15•1658	61269	-004348	230
231	53361	12326391	$15 \cdot 1987$	$6 \cdot 1358$	-004329	231
232	53824	12487168	152315	$6 \cdot 1446$	-004310	232
233	54289	12649337	152643	$6 \cdot 1534$	004292	233
234	54756	12812904	15.2971	61622	(0)4274	234
235	55225	12977875	15:3297	$6 \cdot 1710$	$\cdot 004255$	235
236	55696	13144256	$15 \cdot 3623$	$6 \cdot 1797$	004237	236
237	56169	13312053	15.3948	6-1885	004219	237
238	56644	13481272	$15 \cdot 4272$	6.1972	-004202	238
239	57121	13651919	154596	6.2058	-004184	239
240	57600	13824000	$15 \cdot 4919$	62145	$\cdot 004167$	240
241	58081	13997521	15.5242	$6 \cdot 2231$	$\cdot 004149$	241
242	58564	14172488	$15 \cdot 5563$	$6 \cdot 2317$	-004132	242
243	59049	14348907	$15 \cdot 5885$	$6 \cdot 2403$	-004115	243
244	59536	14526784	15.6205	6.2488	-004098	244
245	60025	14706125	$15 \cdot 6525$	$6 \cdot 2573$. 004082	245
2	n^{2}	n ${ }^{8}$	\sqrt{n}	$\sqrt[8]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n^{8}	n^{3}	\checkmark n	$3^{3 / n}$	$\frac{1}{n}$	n
246	60516	14886936	1.56844	6.2658	$\cdot 004065$	246
247	61009	15069223	15.7162	$6 \cdot 2743$	-004049	247
$24 \times$	61504	15252992	15.7480	$6 \cdot 2828$	-004032	248
249	62001	15438249	$15 \cdot 7797$	$6 \cdot 2912$	$\cdot 004016$	249
250	62500	15625000	$15 \cdot 8114$	6×296	-004000)	250
251	63001	15813251	$15 \cdot 8430$	$6 \cdot 3080$	-003984	251
252	63504	16003008	$15 \cdot 8745$	$6 \cdot 3164$.003968	252
253	64009	16194277	15.9060	$6 \cdot 3247$	-00395	253
254	64516	16387064	15.9374	$6 \cdot 3330$	$\cdot 003937$	254
255	65025	16581375	15-9687	$6 \cdot 3413$	-003922	255
256	65536	16777216	16	$6 \cdot 3496$.003906	256
257	66049	16974593	$16 \cdot 0312$	$6 \cdot 3579$	$\cdot 003891$	257
258	66564	17173512	$16^{\circ} \cdot 0624$	6•3661	$\cdot 003876$	258
259	67081	17373979	16.0935	$6 \cdot 3743$	$\cdot 003861$	259
260	67600	17576000	$16 \cdot 1245$	6-3825	$\cdot 003846$	260
261	68121	177795	$16 \cdot 15$	$6 \cdot 3907$	$\cdot 003831$	261
262	68644	17984728	16.1864	$6 \cdot 3988$	$\cdot 003817$	262
263	69169	18191447	16.2173	$6 \cdot 4070$	$\cdot 003802$	263
264	69696	18399744	16.2481	$6 \cdot 4151$	(103788	64
265	70225	18609625	16.2788	6.4232	03	265
266	70756	18821096	16-3095	$6 \cdot 4312$	'003759	66
267	71289	19034163	$16 \cdot 3401$	$6 \cdot 4393$	-003745	267
268	71824	19248832	$16 \cdot 3707$	6.4473	-003731	268
269	72361	19465109	$16 \cdot 4012$	$6 \cdot 4553$	-003717	269
270	72900	19683000	$16 \cdot 4317$		0317	270
271	73441	19902511	16.4621	$6 \cdot 4713$. 003690	271
272	73984	20123648	$16 \cdot 4924$	$6 \cdot 4792$	$\cdot 003676$	272
273	74529	20346417	16.5227	$6 \cdot 4872$	-00366	273
274	75076	20570824	16.5529	6.4951	. 00365	274
275	75625	20796875	16.5831	6.5030	-0036	275
276	76176	21024576	16.6132	$6 \cdot 5108$	-003623	276
277	76729	21253933	16.6433	$6 \cdot 5187$	$\cdot 003610$	277
278	77284	21484952	16.6733	6.5265	-003597	278
279	77841	21717639	16.7033	6.5343	-003584	279
280	78400	21952000	16.7332	6.5421	$\cdot 003571$	280
n	\mathbf{n}^{2}	\mathbf{n}^{8}	\sqrt{n}	$\sqrt[8]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	$\mathrm{n}^{\mathbf{2}}$	n^{3}	\checkmark,	$\lambda^{\prime \prime}$	1	n
281	78961	22188041	16.7631	65499	-003559	281
282	79524	22425768	16.7929	65577	-003546	282
283	80089	22665187	$16 \cdot 8226$	$6 \cdot 5654$	003534	283
284	80656	22906304	16.8523	6.5731	003521	284
285	81225	23149125	16.8819	6580	-003509	285
286	81796	23393656	169115	6.5885	-003497	286
287	82369	23639903	16.9411	6.5962	003484	287
288	82944	$\underline{2887872}$	169706	66039	003472	288
2×9	83521	24137569	17	66115	003460	289
290	84100	24389000	17.0294	$6 \cdot 6191$	-003448	290
291	84681	24642171	170587	66267	-003436	291
292	85264	24897088	170880	$6 \cdot 6343$	003425	292
293	85849	25153757	$17 \cdot 1172$	$6 \cdot 6419$	-003413	293
294	86436	25412184	17-1464	66494	$\cdot 003401$	294
295	87025	25672375	$17 \cdot 1756$	66569	-003350	295
296	87616	25934336	172047	66644	-003378	296
297	88209	26198073	172337	66719	003367	297
298	88804	26463592	$17 \cdot 2627$	6.6794	-003356	298
299	89401	26730899	$17 \cdot 2916$	$6 \cdot 6869$	003344	299
300	90000	27000000	$17 \cdot 3205$	6.6943	'003333	300
301	90601	27270901	$17 \cdot 3494$	6.7018	-003322	301
302	91204	27543608	$17 \cdot 3781$	6.7092	-003311	302
303	91809	27818127	$17 \cdot 4069$	6.7166	. 003300	303
304	92416	28094464	$17 \cdot 4356$	6.7240	-003289	304
305	93025	28372625	$17 \cdot 4642$	6.7313	-003279	305
306	93636	28652616	$17 \cdot 4929$	6.7387	-003268	306
307	94249	28934443	17-5214	6.7460	-003257	307
308	94864	29218112	17-5499	67533	-003247	308
309	95481	29503629	$17 \cdot 5784$	6.7606	-003236	309
310	96100	29791000	$17 \cdot 6068$	6.7679	-003226	310
311	96721	30080231	$17 \cdot 6352$	6.7752	-003215	311
312	97344	30371328	$17 \cdot 6635$	6.7824	-003205	312
313	97969	30664297	$17 \cdot 6918$	6.7897	-003195	313
314	98596	30959144	17.7200	6.7969	-003185	314
315	99225	31255875	$17 \cdot 7482$	6.8041	-003175	315
n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1}{n}$	\underline{n}

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n'	$\mathbf{n}^{\text {s }}$	$\sqrt{ } / \mathrm{n}$		$\frac{1}{n}$	n
316	99856	31554496	$17 \cdot 7764$		65	316
317	100189	3185.5013	$17 \cdot 8045$	$6 \cdot 8185$. 103155	317
318	101121	321.57432	$17 \cdot 8326$	6.8256	$\cdot 003145$	318
319	101761	32461759	17×8606	6.8328	$\cdot 003135$	319
320	102400	32768000	17-8885	6.8399	-003125	320
321	103041	33076161	17.9165	6.8470	-003115	321
322	103684	33386218	$17 \cdot 9444$	6.8541	-003106	322
323	104329	3:3698267	17-9722	6.8612	-003096	323
324	104976	34012224	18	6.8683	$\cdot 003086$	324
325	105625	34328125	$18 \cdot 0278$	$6 \cdot 8753$	-(0)3077	325
326	106276	34615976	$18 \cdot 0555$	68824	-003067	326
327	106929	34965783	18.0831	68894	.00305	327
328	107584	35287552	18.1108	6.8964	.003049	328
329	108241	35611289	$18 \cdot 1384$	6.9034	-003040	329
330	108900	35937000	$18 \cdot 1659$	$6 \cdot 9104$	-003030	330
331	109561	36264691	$18 \cdot 1934$	69174	.003021	331
332	110224	36594368	$18 \cdot 2209$	$6 \cdot 9244$	-(03012	332
333	110889	36926037	18.2483	6.9313	-003003	333
334	111556	37259704	18.2757	$6 \cdot 9382$. 002994	334
335	112225	37595375	18:3030	$6 \cdot 9451$	002985	335
336	112896	37933056	$18 \cdot 3303$	$6 \cdot 9521$	-002976	336
337	113569	38272753	18:3576	$6 \cdot 9589$	-002967	337
338	114244	38614472	$18 \cdot 3848$	6.9658	-002959	338
339	114921	38958219	$18 \cdot 4120$	6-9727	-002950	339
340	115600	39304000	18.4391	$6 \cdot 9795$	-002941	340
341	116281	39651821	$18 \cdot 4662$	6.9864	-002933	341
342	116964	40001688	18.4932	$6 \cdot 9932$	-002924	342
343	117649	40353607	18.5203	7	-002915	343
344	118336	40707584	18.5472	$7 \cdot 0068$	-002907	344
345	119025	41063625	$18 \cdot 5742$	7.0136	-002899	345
346	119716	41421736	$18 \cdot 6011$	7.0203	. 002890	346
$347{ }^{\circ}$	120409	41781923	$18 \cdot 6279$	$7 \cdot 0271$	-002882	347
348	121104	42144192	18.6548	7.0338	-002874	348
349	121801	42508549	$18 \cdot 6815$	$7 \cdot 0406$	-002865	349
350	122500	42875000	18.7083	7.0473	-002857	350
n	n^{2}	\mathbf{n}^{3}	\sqrt{n}	$\sqrt[8]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	\mathbf{n}^{2}	n^{3}	$\checkmark^{\prime} \mathbf{n}$		n	n
351	123201	438243551	18.7350	$7 \cdot 0540$	$\cdot 0(12 \mathrm{~s}$	351
352	12:3901	$4361+208$	18.7617	$7 \cdot 0607$	-(0)284	352
353	124609	43986977	18.7883	$7 \cdot 0674$	-002x 33	353
354	125316	44361864	18.8149	$7 \cdot 0740$	-()0282	354
355	126025	1173×875	18.8414	$7 \cdot 0807$	$\cdot 002 \times 17$	355
356	126736	1.5118016	18.8600	7.0873	-(0)28	356
357	127449	45499293	$18 \cdot 8944$	$7 \cdot 0940$	(1)02 ${ }^{(1)}$	357
358	128164	45882712	18:9209	7-1006	002793	358
359	128881	46268279	18.9473	71072	.002786	359
360	129600	16656000)	18.9737	$7 \cdot 1138$	-00277	360
361	130321	470458881	19	7-120)	$\cdot 002750$	361
362	131044	47437928	$19 \cdot(0263$	7-1269	-002762	362
363	131769	47882117	$19 \cdot 0526$	71335	- 002755	363
364	132496	48228544	$19 \cdot 1788$	$7 \cdot 1400$	-(0)2747	364
365)	133225	48627125	$19 \cdot 1050$	$7 \cdot 1466$.002740	365
366	133956	49027896	$19 \cdot 1311$	$7 \cdot 1531$	-(0)732	366
367	134689	49430863	$19 \cdot 1572$	$7 \cdot 1596$	$\cdot 002725$	367
368	135424	49836032	$19 \cdot 1833$	7-1661	$\cdot 002717$	368
369	136161	50243409	19.2094	7-1726	-002710	369
370	1369900	50653000	$19 \cdot 2354$	7-1791	- 002703	370
371	137641	51064811	$19 \cdot 2614$	7•1855	002695	371
372	138384	51478848	$19 \cdot 2873$	$7 \cdot 1920$	002688	372
373	139129	51895117	$19 \cdot 3132$	7-1984	-(h)2681	373
374	139876	52:313624	$19 \cdot 3391$	$7 \cdot 2048$	$\cdot 002674$	374
375	140625	52734375	$19 \cdot 3649$	$7 \cdot 2112$	$\cdot 002667$	375
376	141376	53157376	$19 \cdot 3907$	$7 \cdot 2177$	$\cdot(002660$	376
377	142129	53582633	$19 \cdot 4165$	$7 \cdot 2240$	$\cdot 002653$	377
378	142884	54010152	$19 \cdot 4422$	7-2304	$\cdot 002646$	378
379	143641	54439939	$19 \cdot 4679$	$7 \cdot 2368$	-002639	379
380	144400	54872000	19-4936	$7 \cdot 2432$	-002632	380
381	145161	55306341	19:5192	$7 \cdot 2495$	-002625	381
382	145924	55742968	$19 \cdot 6448$	7.2558	-002618	382
383	146689	56181887	$19 \cdot 5704$	$7 \cdot 2622$. 002611	383
384	147456	56623104	$19 \cdot 5959$	$7 \cdot 2685$.002604	384
385	148225	57066625	19.6214	$7 \cdot 2748$	$\cdot 002597$	385
n	n^{2}	n^{8}	/n	$\sqrt[3]{n}$	$\frac{1}{n}$	\mathbf{n}

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n^{2}	n^{3}	$\checkmark^{\prime n}$	$\sqrt[3]{ } \mathrm{n}$	1 n	n
386	148996	57512456	$19 \cdot 6469$	7×2811	-(0)2591	386
387	149769	57960603	196723	7.2874	-002584	387
388	150.54	58411072	$19 \cdot 6977$	$7 \cdot 2936$	(0)2577	388
389	151321	58863869	$19 \cdot 7231$	$7 \cdot 2999$	-(0)2571	389
390	152100	59319000	$19 \cdot 7481$	$7 \cdot 3061$	062564	390
391	152881	59776171	$19 \cdot 7737$	$7 \cdot 3124$	-002558	391
392	153664	(60236288	19-7990	$7 \cdot 3186$	-002551	392
393	154449	60698457	$19 \cdot 8242$	7-3248	-002545	393
$39 \pm$	155236	61162984	$19 \cdot 849 \mathrm{t}$	73310	-(0)2538	394
395	156025	61629875	$19 \cdot 8746$	$7 \cdot 3372$	$\cdot 002532$	395
396	156816	62099136	$19 \cdot 8997$	$7 \cdot 3134$	-(0)2525	396
397	157609	62570773	199249	7.3196	-(0)2519	397
398	158404	63044792	$19 \cdot 9499$	$7 \cdot 3558$	()02513	398
399	159201	63521199	$19 \cdot 9750$	$7 \cdot 3619$	$\cdot 002506$	399
400	160000	61000000	20	$7 \cdot 3681$. 002500	400
401	160801	64481201	200250	73742	. 002494	401
402	161604	64964808	200499	7-3803	-002488	402
403	162109	65450827	20.0749	7-3864	-002181	403
404	163216	65939264	$20 \cdot 0998$	7 -392:	. 002475	404
405	164025	66430125	20.1246	7-3986	-(0)2469	405
406	164836	66923416	20.1494	$7 \cdot 4047$	$\cdot 002463$	406
407	165649	67419143	20.1742	$7 \cdot 4108$	$\cdot 002457$	407
408	166464	67917312	20-1990	$7 \cdot 4169$	-(0)2451	408
409	167281	68417929	20.2237	$7 \cdot 4229$	-002445	409
410	168100	68921000	20.2485	$7 \cdot 4290$. 002439	410
411	169921	69426531	20.2731	$7 \cdot 4350$	$\cdot 002433$	411
412	169744	69934528	20.2978	$7 \cdot 4410$	$\cdot(0) 2427$	412
413	170569	70444997	20-3224	$7 \cdot 4470$.002421	413
414	171396	70957944	$20 \cdot 3470$	$7 \cdot 4530$	$\cdot 002415$	414
415	172225	71473375	20-3715	7-4590	-002410	415
416	173056	71991296	20-3961	$7 \cdot 4650$.002404	416
417	173889	72511713	$20 \cdot 4206$	$7 \cdot 4710$	$\cdot 002398$	417
418	174724	73034632	$20 \cdot 4450$	$7 \cdot 4770$	-002392	418
419	175561	73560059	20-4695	$7 \cdot 4829$	$\cdot 002387$	419
420	176400	74088000	20-4939	$7 \cdot 4889$	-002381	420
n	\mathbf{n}^{2}	$\mathbf{n}^{\text {d }}$	$\sqrt{ } \mathbf{n}$	$\sqrt[3]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n^{2}	n ${ }^{3}$		${ }^{3 / n}$	1	n
421	177241	74618461	205183	$7 \cdot 4948$	002375	421
422	178084	75151418	20.5426	7-5007	$\cdot 002370$	422
423	178929	756869167	20.3670	7.5067	(0)23364	423
121	179776	76225024	205913	75126	-002358	424
425	180625	76765625	20.615.	7-518.5	(002353	425
426	1×1476	77308776	$20 \cdot 6398$	$7 \cdot 5244$	-(0)2347	426
427	182329	77851483	$20 \cdot 6640$	7.3302	$\cdot 002342$	427
428	183184	784027.52	$20 \cdot 6882$	7:3361	-0023331	428
129	184041	78953589	$20 \cdot 7123$	$7 \cdot 5420$	-(002331	429
430	194900	79507000	$20 \cdot 7364$	75478	(0)2326	430
431	185761	80062991	$20 \cdot 7605$	75537	-002320	431
432	186624	80621 Ј68	$20 \cdot 7816$	7.5595	(0)2315	432
433	187489	81182737	$20 \cdot 6087$	7.5654	$\cdot 002309$	433
434	188356	81716504	$20 \cdot 8327$	75712	$\cdot 002304$	434
435	189225	82312875	$20 \cdot 8567$	7.5770	002299	435
436	190096	82881856	$20 \cdot 8806$	7:3828	-002294	436
437	190969	83453453	$20 \cdot 9045$	7-5886	-002288	437
438	191844	81027672	$20 \cdot 9284$	7.5944	-002283	438
439	192721	84604519	$20 \cdot 9523$	$7 \cdot 6001$	${ }^{(002278}$	439
440	193600	88184000	209762	7-6059	002273	440
441	194481	85766121	21	76117	-002268	441
442	195364	86350888	21.0238	$7 \cdot 6174$	-002262	442
443	196249	86938307	210476	$7 \cdot 6232$	-002257	443
444	197136	87528384	21.0713	7-6289	$\cdot 002252$	444
445	198025	88121125	21.0950	$7 \cdot 6346$	-002247	445
446	198916	88716536	211187	76403	-002242	446
447	199809	89314623	$21 \cdot 1424$	$7 \cdot 6160$	$\cdot 002237$	447
448	200704	89915392	$21 \cdot 1660$	$7 \cdot 6.517$	$\cdot 002232$	448
449	201601	90518849	21-1896	$7 \cdot 6574$	$\cdot 002227$	449
450	202500	91125000	21.2132	$7 \cdot 6631$	-002222	450
451	203401	91733851	$21 \cdot 2368$	$7 \cdot 6688$	$\cdot 002217$	451
452	204304	92345408	$21 \cdot 2603$	$7 \cdot 6744$	$\cdot 002212$	452
453	205209	92959677	21.2838	7.6801	002208	453
454	206116	93576664	$21 \cdot 3073$	$7 \cdot 6857$	-002203	454
455	207025	94196375	$21 \cdot 3307$	$7 \cdot 6914$	-002198	455
n	n^{2}	\mathbf{n}^{3}	$\sqrt{ } \mathbf{n}$	$\sqrt[3]{n}$	$\frac{1}{n}$	п

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continucd).

n	\mathbf{n}^{2}		$\lambda^{\prime \prime}$	$\sqrt[3]{ } \mathbf{n}$	$1-$ $n-1$	n
456	207936	94818816	$21 \cdot 3542$	7-6970	$\cdot() 0193$	456
457	208849	95443993	$21 \cdot 3776$	$7 \cdot 7026$	$\cdot 002188$	457
458	209764	96071912	$21 \cdot 4009$	7.7082	-002183	458
459	210681	96702579	$21 \cdot 4243$	7.7138	$\cdot 002179$	459
460	211600	97336000	21.4476	7.7194	$\cdot 002174$	460
461	212521	97972181	21.4709	$7 \cdot 7250$	$\cdot 002169$	461
462	213441	98611128	$21 \cdot 4942$	7-7306	-()2165	462
463	214369	99252847	$21 \cdot 5174$	$7 \cdot 7362$	$\cdot 002160$	463
464	215296	99897344	21-5107	$7 \cdot 7418$	-002155	464
465	216225	100544625	$21 \cdot 5639$	7.7173	$\cdot 002151$	465
466	2171.56	10119469;	$21: 5870$	7-7529	())2146	466
467	218089	101847563	$21 \cdot 6102$	7.7584	-(0)2141	467
468	219024	102503232	$21 \cdot 6333$	$7 \cdot 7639$	-())2137	468
469	219961	103161709	$21 \cdot 6564$	7-769.	-())2132	469
470	220900	103823000	$21 \cdot 6795$	$7 \cdot 7750$	-002128	470
471	221841	104487111	21-7025	$7 \cdot 7805$	-()02123	471
472	222784	105154048	21-7256	$7 \cdot 7860$	-()02119	472
473	223729	105823817	21.7486	$7 \cdot 7915$	$\cdot 002114$	473
474	224676	106496424	$21 \cdot 7715$	7.7970	-(0)2110	474
475	225625	107171875	21.7945	7.8025	-002105	475
476	226576	107850176	$21 \cdot 8174$	$7 \cdot 8079$	$\cdot 002101$	476
477	227529	108531333	218403	$7 \cdot 8134$	-002096	477
478	228484	109215352	$21 \cdot 8632$	$7 \cdot 8188$	-002092	478
479	229441	109902239	$21 \cdot 8861$	$7 \cdot 8243$	-002088	479
480	230400	110592000	219089	$7 \cdot 8297$	-002083	480
481	231361	111284641	$21 \cdot 9317$	$7 \cdot 8352$	$\cdot 002079$	481
482	232324	111980168	21.9545	$7 \cdot 8406$	- 002075	482
483	233289	112678587	$21 \cdot 9773$	$7 \cdot 8460$	-002070	483
484	234256	113379904	22	$7 \cdot 8514$	-002066	484
485	235225	114084125	22 (1227	$7 \cdot 8568$	$\cdot 002062$	485
486	236196	114791256	220454	$7 \cdot 8622$	-002058	486
487	237169	115501303	22.0681	$7 \cdot 8676$	$\cdot 002053$	487
488	238144	116214272	22.0907	$7 \cdot 8730$	-002049	488
489	239121	116930169	$22 \cdot 1133$	$7 \cdot 8784$	$\cdot 002045$	489
490	240100	117649000	$22 \cdot 1359$	7.8837	$\cdot 002041$	490
n	n^{2}	$\mathbf{n}^{\mathbf{3}}$	\sqrt{n}	$\sqrt[8]{n}$	$\frac{1}{2}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n^{2}		$\sqrt{ } \mathrm{n}$		1	n
491	241081	118370771	22-1585	$7 \cdot 8891$	002037	491
492	242064	119095488	22.1811	7•8944	-(0)2033	492
493	243049	11982:3157	222036	78998	$\cdot 002028$	493
494	244036	120553784	222261	7?051	O) 2024	494
495	245025	1212¢7375	22.2186	7910.	-002020	495
496	246016	122023936	$22 \cdot 2711$	7-9158	002016	496
4.97	247009	12276317.3	229935	79211	002012	497
498	248004	123505992	2231.59	79264	$\cdot(002008$	498
499	249001	1212.51499	223383	74.17	002004	499
500	250006)	125000000	$22 \cdot 3607$	7.9370	$\cdot(0) 2000$	500
501	251001	1257:51501	$22 \cdot 3830$	79423	(0)1996	501
502	252004	126506600s	22-40.54	7.9476	-001992	502
503	253009	1272633527	$22 \cdot 1277$	$7 \cdot 9528$	-01988	503
504	254016	128024064	$22 \cdot 4499$	$7 \cdot 9581$	$\cdot 001984$	504
605	255025	128787625	$22 \cdot 4722$	$7 \cdot 9634$	$\cdot 001980$	505
506	256036	129554216	$22 \cdot 4944$	$7 \cdot 9686$	${ }^{(001976}$	506
507	257049	130323843	22.5167	7-9739	001972	507
508	258064	131096512	22.5389	7.9791	. 001969	508
509	259081	131872229	225610	7.9843	(001965	509
510	260100	132651000	$22 \cdot 5832$	7.9896	(6)1961	510
511	261121	133432831	226053	7•9948	$\cdot 001957$	511
512	262144	134217728	$22 \cdot 6274$	8	$\cdot 001953$	512
513	263169	135005697	22.6495	80052	001949	513
514	264196	135796744	$22 \cdot 6716$	$8 \cdot 0104$.001946	514
515	265225	136590875	22.6936	80156	.001942	515
516	266256	137388096	22.7156	8.0208	$\cdot 001938$	516
517	267289	138188413	22.7376	8.0260	$\cdot 001934$	517
518	268324	138991832	22.7596	8.0311	-001931	518
519	269361	139798359	22.7816	80363	-001927	519
520	270400	140608000	228035	8.0415	-001923	520
521	271441	141420761	228254	80466	-001919	521
522	272484	142236648	$22 \cdot 8473$	8.0517	-001916	522
523	273529	143055667	22-8692	$8 \cdot 0569$	001912	523
524	274576	143877824	$22 \cdot 8910$	8.0620	001908	524
525	275625	144703125	$22 \cdot 9129$	8.0671	. 001905	525
n	n^{2}	n^{8}	\sqrt{n}	$\sqrt{3} \mathrm{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	\mathbf{n}^{3}	n	\checkmark /n	$\sqrt{3 / n}$	1	n
526	276676	145.3.15576	22.9347	$8 \cdot(103$	-001901	526
527	277729	146.363183	22.9565	$8 \cdot 074$	-01898	527
528	2787-4	147197952	$22 \cdot 9783$	8.0825)	-001894	528
529	279841	1480358889	2.3	$8 \cdot 0876$	$\cdot 001890$	529
530	280900	148877000	$23 \cdot(0217$	¢•0927	$\cdot 001887$	530
531	281961	149721291	$23 \cdot 0134$	$8 \cdot 0978$	-01883	531
532	283024	15056ヶ768	$23 \cdot 0651$	$8 \cdot 1028$	-001880	532
533	284089	151419437	230 0¢5	¢ 1079	-101876	533
534	285156	152273304	$23 \cdot 1084$	8.11.30	$\cdot 001873$	534
535	28622.5	153130375	231301	8.1180	001869	535
536	287296	153990656	$23 \cdot 1517$	8-1231	-001866	536
537	288369	1518.54153	$23 \cdot 1733$	8.1281	-001862	537
538	289444	155720872	$23 \cdot 1948$	8.1332	'001859	538
539	290521	156590819	$23 \cdot 2164$	8.1382	-(01855	539
540	291600	157464000	23.2379	8.1433	-(1)1852	540
541	292681	158340421	$23 \cdot 2594$	8.1483	-001848	541
542	293764	1,59220088	$23 \cdot 2809$	8.1533	'001845	542
543	294849	160103007	$23 \cdot 3024$	81583	$\cdot(0) 1842$	543
544	293936	160989184	23.3238	81633	-(0)1838	544
545	297025	161878625	$23 \cdot 3452$	$8 \cdot 1683$	-001835	545
546	298116	162771336	$23 \cdot 3666$	8.1733	-001832	546
547	299209	163667323	$23 \cdot 3880$	$8 \cdot 1783$	-001828	547
548	300304	164566592	$23 \cdot 4094$	8-1833	-001825	548
549	301401	165469149	$23 \cdot 4307$	81882	$\cdot(0) 1821$	549
550	302500	166375000	23.4521	$8 \cdot 1932$	-001818	550
551	303601	167284151	23-4734	8.1982	-001815	551
552	304704	168196608	23-4947	$8 \cdot 2031$	-001812	552
553	305809	169112377	23.5160	8-2081	-001808	553
554	306916	170031464	23-5372	$8 \cdot 2130$	-001805	054
555	308025	170953875	23.5584	$8 \cdot 2180$	-001802	555
556	309136	171879616	23:5797	$8 \cdot 2229$	-001799	556
557	310249	172808693	$23 \cdot 6008$	8-2278	-001795	557
558	311364	173741112	$23 \cdot 6220$	$8 \cdot 2327$	-001792	558
559	312481	174676879	$23 \cdot 6432$	$8 \cdot 2377$	-001789	559
560	313600	175616000	23.6643	$8 \cdot 2426$	001786	560
n	\mathbf{n}^{2}	n^{3}	\sqrt{n}	$\sqrt[8]{ } \mathrm{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n^{2}	n^{3}	$\sqrt{ } 1$	$\sqrt[3]{n}$	$\frac{1}{n}$	n
561	314721	176558481	23.6854	82475	.001783	561
.762	315844	177504328	$23 \cdot 7065$	$8 \cdot 2524$	$\cdot 001779$	562
563	316969	178153547	23.7276	8-2573	(01776	563
564	318096	179106144	23•7487	\$-2621	(0)1773	564
565	319225	180362125	$23 \cdot 7697$	82670	-(01770	565
566	320356	181321496	23.7908	8-2719	-001767	566
567	321489	1822-426:3	23.8118	8.2768	- 01764	567
568	322624	183250432	23•8328	$8 \cdot 2816$	-(0)1761	568
569	323761	184220)09	23.8537	$8 \cdot 2 \times 65$	$\cdot(01757$	569
570	324900	185193000	23•8747	$8 \cdot 2913$	-001751	570
571	326041	186169411	238956	$8 \cdot 2962$	-001751	571
572	327184	18714924*	23.9165	$8 \cdot 3010$	-001748	572
573	328839	188132517	23.9374	8-3059	$\cdot 001745$	573
574	329476	189119221	23-9583।	$8 \cdot 3107$	$\cdot 001742$	574
575	330625	190109375	23:9792	8.3155	(0)1739	575
576	331776	191102976	24	8.3203	- (6)1736	576
577	332929	192100033	24.0208	8-32.11	(6)1733	577
578	334084	193100552	21.0416	- 33300	-001730	578
579	335241	194104539	21.0624	8.334x	-(0)1727	579
580	336400	195112000	240832	8:3396	-(01724	580
581	337561	196122941	24-1039	8:3443	-001721	581
582	338724	197137368	24-1247	8-3191	001718	582
583	339889	198155287	241454	8-3539	-001715	583
584	341056	199176704	24-1661	8-3587	$\cdot 001712$	584
585	342225	200201625	24-1868	$8 \cdot 3634$	$\cdot 001709$	585
586	3433.96	201230056	$24 \cdot 2074$	8.3682	$\cdot 001706$	586
587	344569	202262003	24.2281	$8 \cdot 3730$	$\cdot 001704$	587
588	345744	203297472	24-2487	$8 \cdot 3777$	-001701	588
589	346921	204336469	21.2693	8.3825	-001698	589
590	348100	205379000	24.2×99	8:3872	-001695	590
591	349281	206425071	24:3105	$8 \cdot 3919$.001692	591
592	350464	207474688	$24 \cdot 3311$	$8 \cdot 3967$	$\cdot 001689$	592
593	351649	208527857	$24 \cdot 3516$	$8 \cdot 4014$	$\cdot 001686$	593
594	352836	209584584	24-3721	$8 \cdot 4061$	-001684	594
595	354025	210644875	24-3926	$8 \cdot 4108$	-001681	595
n	n ${ }^{8}$	\mathbf{n}^{3}	\sqrt{n}	$\sqrt[8]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n'	\mathbf{n}^{3}	$1{ }^{\prime} \mathbf{n}$	$3^{3 / n}$	$\frac{1}{n}$	n
596	355216	211708736	244131	$8 \cdot 4155$	$\cdot(101678$	596
597	356409	212776173	244336	8.1202	(0)1675	597
598	357601	213847192	214540	8-1249	$\cdot 001672$	598
599	358801	214921799	244745	8 4296	$\cdot 001669$	599
600	360000	216000000	$24 \cdot 4919$	$\times 4343$	- 001667	600
601	361201	217081801	24.5153	$8 \cdot 1390$	001664	601
602	$36 \pm 10 \pm$	218167908	$24 \cdot 5357$	$8 \cdot 1437$	-())1661	602
603	3633609	219256227	$24 \cdot 5561$	8.1tい1	()01658	603
604	364×16	220348×64	245764	8.15.30	. 001656	604
605	366025	221445125	$24 \cdot 5967$	84577	-(0)1653	605
606	367236	22:545016	$24 \cdot 6171$	81623	- 001605	606
607	368449	223618543	24.6374	¢.1670	-()01647	607
608	369664	224755712	246577	$8 \cdot 1716$	001645	608
609	370881	225866599	24.6779	81763	-(0)1642	609
610	372100	226981000	$24 \cdot 6982$	$8 \cdot 4809$	-001639	610
611	373321	228099131	24.7184	8.4856	(0)1637	611
612	374544	229220928	24.7386	$8 \cdot 4902$	$\cdot 001634$	612
613	375769	230346397	24 75, 4	$8 \cdot 4948$	$\cdot 001631$	613
614	376996	231175.544	21.7790	$8 \cdot 4994$	(0)]629	614
615	378225	232608375	21.7992	$8 \cdot 5040$	$\cdot 001626$	615
616	379456	233744896	$24 \cdot 8193$	$8 \cdot 5086$. 001623	616
617	380689	231885113	21.8395	8.5132	001621	617
618	381924	236029032	$24 \cdot 8596$	8.5178	$\cdot 001618$	618
619	383161	237176659	248797	85224	-(0)1616	619
620	384400	238328000	24.8998	$8 \cdot 5270$	$\cdot 001613$	620
621	385641	239483061	$24 \cdot 9199$	$8 \cdot 5316$	$\cdot 001610$	621
622	3868884	240641848	24.9399	8.5362	-001608	622
623	388129	241804367	$24 \cdot 9600$	$8 \cdot 5408$	$\cdot 001605$	623
624	389376	242970624	$24 \cdot 9800$	$8 \cdot 5453$	$\cdot 001603$	624
625	390625	244140625	25	8.5499	$\cdot 001600$	625
626	391876	245314376	$25 \cdot 0200$	$8 \cdot 5544$	$\cdot 001597$	626
627	393129	246491883	$25 \cdot 0400$	$8 \cdot 5590$	-001595	627
628	394384	247673152	$25 \cdot 0599$	$8 \cdot 5635$	-001592	628
629	395641	248858189	25.0799	$8 \cdot 5681$	$\cdot 001590$	629
630	396900	250047000	25.0998	$8 \cdot 5726$	$\cdot 001587$	630
n	\mathbf{n}^{2}	\mathbf{n}^{8}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n^{2}	n^{3}	\checkmark n	$\sqrt[3]{ } \mathbf{n}$	1	n
631	398161	251239591	$25 \cdot 1197$	$8 \cdot 5772$	$\cdot 001585$	631
6.32	399424	252435968	$25 \cdot 1396$	85817	$\cdot 001582$	632
633	400689	253636137	251595	$8 \cdot 5862$	$\cdot 001580$	633
634	401956	254840104	251794	8:5907	$\cdot 001577$	634
635	403225	256047875	$25 \cdot 1992$	$8 \cdot 5952$	-001575	635
$6: 36$	401496	257259456	$25 \cdot 2190$	$8 \cdot 5997$	001572	636
637	105769	2.58474853	25.2389	$8 \cdot 6043$	001570	637
638	407044	259694072	25.2587	86088	-(0)1567	638
639	40×321	260917119	25-2784	$8 \cdot 6132$	-(0)1565	639
640)	109600)	262144000	252982	86177	-001563	640
641	410881	2633.374721	$25 \cdot 3160$	86222	$\cdot 001560$	641
(642	412161	264609288	253377	8.6267	001508	642
643	413449	26.)847707	2.5:3574	8.6312	-(001555	643
644	414736	267089984	$25: 3772$	86357	001558	644
64.5	416025	268336125	253969	$8 \cdot 6401$	001550	645
646	417316	269586136	$25 \cdot 4165$	$8 \cdot 6446$	-001548	646
647	418609	270840023	$25 \cdot 4362$	$8 \cdot 6490$	-(0)1546	647
648	419904	272097792	25.4558	86535	-(0)1543	648
649	421201	273359449	25.4755	$8 \cdot 6579$	$\cdot(01541$	649
650	422500	274625000	$25 \cdot 4951$	$8 \cdot 6624$	001538	650
651	423801	275891451	25:5147	$8 \cdot 6668$	-(0)1536	651
652	425104	277167808	25.5343	86713	-(0)1534	652
653	426409	278445077	25.5539	$8 \cdot 6757$	$\cdot 001531$	653
654	427716	279766264	$25 \cdot 5734$	$8 \cdot 6801$	$\cdot 001529$	654
655	429025	281011375	$25 \cdot 5930$	$8 \cdot 6845$	$\cdot 001527$	655
656	430336	282300416	$25 \cdot 6125$	$8 \cdot 6890$	$\cdot 001524$	656
657	431649	283593393	256320	¢•6934	001522	657
658	432964	284890312	$25 \cdot 6515$	$8 \cdot 6978$	001520	658
659	434281	286191179	$25 \cdot 6710$	$8 \cdot 7022$	$\cdot 001517$	659
660	435600	287496000	$25 \cdot 6905$	87066	$\cdot 001515$	660
661	436921	288804781	25-7099	8.7110	001513	661
662	438244	290117528	$25 \cdot 7294$	$8 \cdot 7154$	-001511	662
663	439569	291434247	$25 \cdot 7488$	8.7198	-001508	663
664	440896	292754944	25-7682	$8 \cdot 7241$	-001506	664
665	442225	294079625	$25 \cdot 7876$	8.7285	-001504	665
n	n^{2}	n^{8}	\sqrt{n}	$\sqrt[8]{n}$	$\frac{1}{7}$	n

Squares, Cubes, Square Roots, Cube Roots, and
Reciprocals of Numbers (continued).

n	n^{2}	n^{3}	$\sqrt{ } \mathbf{n}$	$8^{8} \mathrm{n}$	1	n
666	443555	295408296	258070	87329	-001502	666
667	444889	296740963	25-826:3	$8 \cdot 7373$	-001499	667
66×	446224	2980776.32	25×157	8.7416	-001497	668
669	147561	299418309	25.8650	$8 \cdot 7460$	-001495	669
670	148900	300763000	258844	87503	-()01493	670
671	450241	302111711	$25 \cdot 9037$	$8 \cdot 7547$	-(0)1490	fir
672	451584	303464448	$25 \cdot 9230$	87590	-(0)1488	672
673	452929	304821217	25.9422	8.7634	$\cdot 001486$	673
674	454276	306182024	25.9615	8.7677	$\cdot 001484$	674
675	455625	307546875	$25 \cdot 9808$	8.7721	-001481	675
676	456976	308915776	26	8.7764	001479	676
677	458329	310288733	26.0192	$8 \cdot 7807$	001477	677
678	4596×4	311665752	260384	8.7850	001475	678
679	461041	313046839	26.0576	87893	-001473	679
680	462400	3144320(0)	260768	¢ 77937	-001471	680
681	463761	315821241	26.0960	$8 \cdot 7980$	-001468	681
682	465121	317214568	$26 \cdot 1151$	8.8023	001466	682
683	466489	318611987	261343	$8 \cdot 8066$	$\cdot 001464$	683
684	467856	320013.504	$26 \cdot 1534$	$8 \cdot 8109$	-()1462	684
685	469225	32141912.)	$26 \cdot 1725$	8.8152	$\cdot 001460$	685
686	470596	322828856	26•1916	8.8194	-01458	686
687	471969	324242703	$26 \cdot 2107$	8.8237	001456	687
688	473344	325660672	$26 \cdot 2298$	8.8280	-001453	688
689	474721	327082769	$26 \cdot 2488$	$8 \cdot 8323$	-001451	689
690	476100	328509000	$26 \cdot 2679$	8.8366	$\cdot 001449$	690
691	477481	329939371	$26 \cdot 2869$	8.8408	-001447	691
692	478864	331373888	$26 \cdot 3059$	8.8451	-001445	692
693	480249	332812557	$26 \cdot 3249$	8.8493	$\cdot 001443$	693
694	481636	334255384	$26 \cdot 3439$	8.8536	-001441	694
695	483025	335702375	263629	8.8578	.001439	695
696	484416	337153536	263818	$8 \cdot 8621$	$\cdot(001437$	696
697	485809	338608873	26-4008	$8 \cdot 8663$	$\cdot 001435$	697
698	487204	340068392	$26 \cdot 4197$	$8 \cdot 8706$	$\cdot 001433$	698
699	488601	341532099	£6.4386	8-8748	$\cdot 001431$	693
700	490000	343000000	26-4575	8.8790	001429	700
n	n^{2}	\mathbf{n}^{8}	$\sqrt{ } \mathbf{n}$	$\sqrt[8]{n}$	$\begin{aligned} & 1 \\ & n \end{aligned}$	n

Squares, Oubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued)

n	n ${ }^{\text {a }}$	n ${ }^{3}$	$n^{\prime n}$	$\sqrt[3]{n}$	$\frac{1}{n}$	n
-						
701	491401	344472101	26.4764	$8 \cdot 8883$	(0)1427	701
702	492404	34594840k	264953	$8 \cdot 8875$	$\cdot 001425$	702
703	494209	347428927	$26 \cdot 5141$	$8 \cdot 8917$	(1)1422	703
704	495616	34¢913664	$26: 5330$	$8 \cdot 8959$	-001420	704
705	497025	350402625	26.0518	89001	-001418 ${ }^{\prime}$	705
706	498436	351895816	$26 \cdot 5707$	$8 \cdot 9043$	-(0)1416	706
707	499849	353393213	26:5895	8 9085	- 001414	707
708	501264	354894912	26608.3	$8 \cdot 9127$	-(0)1412	708
709	502681	356400829	$26 \cdot 6271$	$8 \cdot 9169$	-001410	709
710	504100	357911000	$26 \cdot 64.58$	8.9211	$\cdot 001408$	710
711	505521	359425431	$26 \cdot 6616$	$8 \cdot 3253$	001406	711
712	506944	360944128	$26 \cdot 6833$	$\times 9295$	001404	712
713	508869	362467097	26.7021	$8 \cdot 9337$	(1)1403	713
714	509796	363994344	$26 \cdot 7208$	89378	001401	714
715	511225	365525875	26 739.5	- 9.9420	(0)]:399	715
716	512656	367061696	$26 \cdot 75 \times 2$	- 3462	((1)1397	716
717	514089	368001813	26.7769	$8 \cdot 9503$	-(0)1395	717
718	515524	370146232	26.7955	6.9545	-001393	718
719	516961	371694959	$26 \cdot 8142$	$8 \cdot 9587$	-00139]	719
720	518400	373248000	26.8.328	$8 \cdot 9628$	001389	720
721	519841	374805361	$26 \cdot 8514$	$8 \cdot 9670$	001387	721
722	521284	376367048	268701	$8 \cdot 9711$	0013×5	722
723	522729	377933067	$26 \cdot 8887$	89752	$\cdot 001383$	723
724	524176	379503424	269072	$8 \cdot 9794$	$\cdot 001381$	724
725	525625	3×1078125	26.9258	$8 \cdot 9835$	$\cdot 001379$	725
726	527076	382657176	269444	$8 \cdot 9876$	-001377	726
727	528529	384240583	269629	$8 \cdot 9918$	$\cdot 001376$	727
728	529984	385828352	26.9815	$8 \cdot 9959$	$\cdot 001374$	728
729	531441	387420489	27	9	001372	729
730	532900	389017000	27.0185	90041	001370	730
731	534361	390617891	27.0370	$9 \cdot 0082$	-001368	731
732	535824	392223168	$27 \cdot 0555$	$9 \cdot 0123$	$\cdot 001366$	732
733	537289	393832837	27.0740	$9 \cdot 0164$	$\cdot 001364$	733
734	538756	395446904	27.0924	$9 \cdot 0205$	$\cdot 001362$	734
735	540225	397065375	$27 \cdot 1109$	$9 \cdot 0246$	$\cdot 001361$	735
n	n^{2}	n^{8}	\sqrt{n}	$\sqrt[8]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n^{2}				$\underline{1}$	n
736	541696	394688256	27-1293	$9 \cdot 0287$. 001359	736
737	513169	400315553	$27 \cdot 1477$	90328	$\cdot(0) 1357$	737
738	544611	401947272	$27 \cdot 1662$	$9 \cdot 0369$	$\cdot 001355$	738
739	546121	403583419	$27 \cdot 1846$	9.0410	$\cdot(0) 1353$	739
740	547600	40522400)	$27 \cdot 2029$	90450	$\cdot 001351$	740
741	549081	406869021	$27 \cdot 2213$	$9 \cdot(0491$	-001350	741
742	5.00 .564	408518488	$27 \cdot 2397$	$9 \cdot 0532$	$\cdot 001348$	742
743	552049	410172407	$27 \cdot 2580$	90572	001346	743
744	553536	411830784	27.2764	$9 \cdot 0613$	-01344	744
745	55.5025	413493625	$27 \cdot 2947$	$9 \cdot 0654$	-001342	745
746	556516	115160936	$27 \cdot 3130$	$9 \cdot 10694$	-001340	746
747	558009	416832723	$27 \cdot 3.313$	90735	-(0)1339	747
748	5.59504	418.508992	273196	90775	$\cdot 001337$	748
749	561001	120189749	$27 \cdot 3679$	$9 \cdot 0816$	(\%)1335	749
750	562500	421875000	$27 \cdot 3861$	$9 \cdot 0856$	${ }^{\circ} 001333$	750
751	564001	42356475J	$27 \cdot 4044$	90896	. 001332	751
752	$56550 \pm$	425259008	$27 \cdot 4226$	$9 \cdot 0937$.001330	752
753	567009	426957777	274408	90977	-001328	753
754	568516	428661064	$27 \cdot 4591$	9•1017	${ }^{(0) 1326}$	754
755	57002.)	430368875	274773	9•1057	$\cdot 001325$	755
756	571536	432081216	$27 \cdot 4955$	9•1098	-001323	756
757	573049	433798093	$27 \cdot 5136$	$9 \cdot 1138$	-001321	757
758	574564	435519512	$27 \cdot 5318$	9-1178	-001319	758
759	576081	437245479	$27 \cdot 5500$	$9 \cdot 1218$	$\cdot 001318$	759
760	577600	438976000	$27 \cdot 5681$	9•1258	. 001316	760
761	579121	440711081	27.5862	9-1298	$\cdot 001314$	761
762	580644	442450728	276043	$9 \cdot 1338$	$\cdot 001312$	762
763	582169	444194947	$27 \cdot 6225$	$9 \cdot 1378$	$\cdot 001311$	763
764	583696	445943744	276405	$9 \cdot 1418$	$\cdot 001309$	764
765	585225	447697125	$27 \cdot 6586$	9-1458	-001307	765
766	586756	449455096	$27 \cdot 6767$	$9 \cdot 1498$.001305	766
767	588289	451217663	$27 \cdot 6948$	$9 \cdot 1537$	$\cdot 001304$	767
768	589824	452984832	$27 \cdot 7128$	$9 \cdot 1577$	-001302	768
769	591361	454756609	27.7308	91617	-001300	769
770	592900	456533000	27.7489	9•1657	-001299	770
n	n^{2}	n^{8}	$\sqrt{ } \mathbf{n}$	$\sqrt[8]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued)

n	\mathbf{n}^{2}	n ${ }^{3}$	\checkmark n	$\sqrt[3]{n}$	1 n	n
771	594441	458314011	27.76669	91696	$\cdot(001297$	771
772	595984	46\%0996448	$27 \cdot 7 \times 49$	$9 \cdot 1736$	00129.5	772
773	597529	461×89917	27.8029	91775	-001294	773
774	599076	463684824	278209	91815	001292	774
775	600625	465484375	27.8388	918.5	001290	775
776	${ }_{6} 62176$	467288.576	$27 \cdot 8568$	91894	(101289	776
777	603729	469097433	278747	91933	001287	777
778	605284	470910952	27-8927	9•1973	-(01285	778
779	606841	472729139	$27 \cdot 9106$	92012	-(6)1284	779
780	608400	4745520 ¢0	27-928.)	$9 \cdot 2052$	-(\%)1282	780
781	609961	476379541	279164	$9 \cdot 2091$	(0)1280)	781
782	611524	478211768	279613	$9 \cdot 2130$	001279	782
783	613089	480048687	$27 \cdot 9821$	92170	$\cdot 001277$	783
784	614656	481890304	28	$9 \cdot 2209$	001276	784
785	616225	4837366625	28.0179	$9 \cdot 2248$	-(01274	785
786	617796	485587656	$2 \mathrm{2} \cdot 0357$	9×2287	001272	786
787	619369	487443403	$2 \mathrm{t} \cdot 1535$	92326	(0)1271	787
788	620944	489303¢72	$2 \times \cdot 0713$	$9 \cdot 2365$	-(0)1269	788
789	622521	491169069	$28 \cdot 0891$	$9 \cdot 2404$	$\cdot 001267$	789
790	624100	493039000	$28 \cdot 1069$	9.2443	-001266	790
791	625681	494913671	$28 \cdot 1247$	$9 \cdot 2482$	$\cdot 001264$	791
792	627264	496793088	$28 \cdot 1425$	$9 \cdot 2521$	-001263	792
793	628849	498677257	281603	$9 \cdot 2560$	-001261	793
794	630436	500566184	$28 \cdot 1780$	$9 \cdot 2599$	$\cdot 001259$	794
795	632025	50245987	28-1957	9-2638	-001258	795
796	633616	504358336	28-2135	9-2677	$\cdot 001256$	796
797	635209	506261573	$28-2312$	$9 \cdot 2716$	001255	797
798	636804	508169592	282489	$9 \cdot 2754$	-001253	798
799	638401	510082399	$28 \cdot 2666$	$9 \cdot 2793$	$\cdot 001252$	799
800	640000	512000000	28.2843	$9 \cdot 2832$. 001250	800
801	641601	513922401	$28 \cdot 3019$	9-2870	001248	801
802	643204	515849608	28-3196	$9 \cdot 2909$	-001247	802
803	644809	517781627	283373	9-2948	$\cdot 001245$	803
804	646416	519718464	283549	$9 \cdot 2986$	$\cdot 001244$	804
805	648025	521660125	$28 \cdot 3725$	$9 \cdot 3025$	$\cdot 001242$	805
n	n^{2}	n^{3}	$\sqrt{ } \mathbf{n}$	$\sqrt[3]{ }{ }^{1}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (contznued).

n	n ${ }^{2}$	n^{3}	n	1	$\frac{1}{n}$	n
806	6496:36	523606616	2×3901	$9 \cdot 3063$	-(0)1241	806
807	(6)12 19	525.55791 .3	28.4077	$9 \cdot 3102$	-001239	807
808	652864	527514112	284253	93140	001238	808
809	6544×1	529175129	$24 \cdot 4429$	9-3179	- 001236	809
810	6.50100	531441000	$24 \cdot 1605$	9:3217	-001235	810
811	657721	533411731	28.4781	$9 \cdot 3255$	-(0)1233	811
812	6.593344	5350887328	2x-4956	9:3294	(0)1232	812
813	660969	537367797	$28 \cdot 5132$	93332	(0)1230	813
814	669596	639353144	28-5307	9:3370	(0)1229	814
815	664295	541343375	$2 \times .54 \times 2$	$9 \cdot 340 \mathrm{~K}$	001227	815
816	6658,56	51:3.384966	$28 \cdot 5657$	$9 \cdot 3447$	-(0)1225	816
817	6671×9	54.3338513	$24 \cdot 5832$	9 3486	(0)1224	817
818	669124	547343432	$28 \cdot 6007$	93523	(0)1922	818
819	670761	549353259	$28 \cdot 6182$	9.3561	$\cdot(001221$	819
820	672400	551368000	$24 \cdot 6: 356$	9 9:3599	-(0)1220	820
821	671011	5533387661	28•6.:31	$9 \cdot 3637$	(0)1218	¢ 21
822	675644	555112048	2 $6 \cdot 6705$	$9 \cdot 3675$	(א)1217	822
823	677329	557111767	$28 \cdot 68.6$	9.3713	-001215	823
824	678976	659176291	29.70.54	$9 \cdot 37.51$	001214	824
825	680625	561515625	28.722	$9 \cdot 3789$	$\cdot 001212$	825
826	682276	563559976	$28 \cdot 7402$	$9 \cdot 3827$	$\cdot 001211$	826
827	683929	56.7609283	$28 \cdot 7576$	$9 \cdot 3865$	-001209	827
828	685584	567663552	28.7750	$9 \cdot 3902$	-001208	828
829	687241	569722789	287924	9-3940	001206	829
830	688900	571787000	28.8097	9-3978	$\cdot 001205$	830
831	690561	573856191	$28 \cdot 8271$	$9 \cdot 4016$	$\cdot{ }^{(001203}$	831
832	692224	575930368	28.8444	$9 \cdot 4053$	$\cdot(0) 1202$	832
833	693889	578009537	$28 \cdot 8617$	94091	-001200	833
834	695557	580093704	28.8791	94129	-001199	834
835	697225	582182875	288964	$9 \cdot 4166$	-001198	835
836	698896	584277056	$28 \cdot 9137$	$9 \cdot 4204$	$\cdot 001196$	836
837	700569	586376253	28.9310	$9 \cdot 42+1$	$\cdot 001195$	837
838	702244	588480472	28-9482	9-4279	$\cdot 001193$	838
839	703921	590589719	$28 \cdot 9655$	$9 \cdot 4316$	$\cdot 001192$	839
840	705600	592704000	28-9828	$9 \cdot 4354$	$\cdot 001190$	840
n	n^{2}	\mathbf{n}^{3}	\sqrt{n}	$\sqrt[8]{n}$	$\frac{1}{7}$	n.

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

			$\sqrt{ } / \mathbf{}$		1	n
841	707281	594×23321	29	9-4391	$\cdot 001189$	841
842	708964	596947688	$29 \cdot 0172$	$9 \cdot 4429$	-(0)1188	842
84.3	710649	599077107	290345	9-4466	$\cdot 001186$	843
844	712336	601211584	29.0517	$9 \cdot 4503$	$\cdot 001185$	844
845	714025	603351125	29.0689	94541	$\cdot 001183$	845
846	715716	605495736	29.0861	$9 \cdot 4578$	$\cdot 001182$	846
847	717409	607645423	291033	$9 \cdot 4615$	-(01181	847
848	719104	609800192	$29 \cdot 1204$	9-1652	-001179	848
849	720801	611960149	$29 \cdot 1375$	$9 \cdot 4690$	-001178	849
850	722500	61412500)	291548	9•4727	001176	850
851	724201	616295051	291719	9-4764	001175	851
852	725904	618470208	29.1890	$9 \cdot 4801$	001174	852
853	727609	620650477	292062	9-4838	.001172	853
854	729316	62283.5864	$29 \cdot 2233$	$9 \cdot 4875$	M01171	854
855	731025	625026375	29.2404	9.4912	. 001170	855
856	732736	627222016	$29 \cdot 2575$	9.4949	.001168	856
857	734449	629122793	292746	$9 \cdot 4986$. 001167	857
858	736164	631628712	29.2916	$9 \cdot 5023$	-001166	858
859	737881	6;33839779	$29 \cdot 3087$	$9 \cdot 5060$	$\cdot 001164$	859
860	739600	636056000	29.3258	9-5097	-001163	860
861	741321	638277381	$29 \cdot 3428$	9,5134	. 001161	861
862	743044	64050392¢	$29 \cdot 3598$	$9 \cdot 6171$. 001160	862
863	744769	642735647	29-3769	$9 \cdot 5207$	$\cdot 001159$	863
864	746496	644972544	$29 \cdot 3939$	$9 \cdot 5244$.001157	864
865	748225	647214625	$29 \cdot 4109$	$9 \cdot 5281$.001156	865
866	749956	649461896	$29 \cdot 4279$	$9 \cdot 5317$. 001155	866
867	751689	651714363	$29 \cdot 4449$	$9 \cdot 6354$	$\cdot 001153$	867
868	753424	653972032	$29 \cdot 4618$	$9 \cdot 6391$	001152	868
869	755161	656234909	$29 \cdot 4788$	$9 \cdot 5427$. 001151	869
870	756900	658503000	$29 \cdot 4958$	$9 \cdot 5464$	$\cdot 001149$	870
871	758641	660776311	29.5127	9.5501	. 001148	871
872	760384	663054848	$29 \cdot 5296$	$9 \cdot 5537$	$\cdot 001147$	872
873	762129	665338617	$29 \cdot 5466$	9.5574	-01145	873
874	763876	667627624	29.5635	$9 \cdot 5610$	'001144	874
875	765625	669921875	29.5804	$9 \cdot 5647$	$\cdot 001143$	875
n	n^{2}	n^{2}	\sqrt{n}	$\sqrt[8]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	\mathbf{n}^{2}	n^{3}	\checkmark 'n	$3^{3 / n}$	$\frac{1}{n}$	n
876	767376	672221376	295973	93688	001142	76
877	769129	674526133	$29 \cdot 6142$	$9 \cdot 5719$	-001110)	877
878	7708×1	676836152	2966311	9•5756	-001139	878
879	772641	679151439	29-6479	975792	-001138	879
880	77440)	(68147200)	$29 \cdot 6648$	$9 \cdot 7828$	- 011136	880
881	776161	683797841	$29 \cdot 6816$	95865	$\cdot 001135$	881
882	777924	68612896	296985	9.5901	-001134	882
883	779689	688465387	$29 \cdot 7153$	9.5937	$\cdot 001133$	883
88.	781456	690507104	$29 \cdot 7321$	9:5973	$\cdot 001131$	884
885	78322.)	693154125	$29 \cdot 7489$	$9 \cdot 6010$.001130	885
886	784996;	695506456	$29 \cdot 7658$	$9 \cdot 6016$	-(0)1129	886
887	786769	697864103	297825	$9 \cdot 6082$	(\%)1127	887
88	788544	700227072	$29 \cdot 7993$	$9 \cdot 6118$	-001126	888
889	790321	702595369	$29 \cdot 8161$	$9 \cdot 6154$	-001125	889
890	792100	704969000	$29 \cdot 8329$	96190	-001124	890
891	793881	707347971	$29 \cdot 8496$	$9 \cdot 6226$	-001122	891
892	795664	709732288	298664	$9 \cdot 6262$	-(6)1121	892
893	797449	7121219.7	$29 \cdot 8831$	$9 \cdot 6298$	-61120	893
894	799236	714516984	$29 \cdot 8998$	$9 \cdot 6334$	001119	894
895	801025	716917375	$29 \cdot 9166$	$9 \cdot 6370$	(0)1117	895
896	802816	719323136	29.9333	$9 \cdot 6406$	-001116	896
897	804609	721734273	$29 \cdot 9500$	$9 \cdot 6442$	-001115	897
898	806404	724150792	$29 \cdot 9666$	96177	-001114	898
899	808201	726572699	29:9833	$9 \cdot 6513$	$\cdot(0) 1112$	899
900	810000	72900000)	30	9•6549	001111	900
901	811801	731432701	$30 \cdot 0167$	$9 \cdot 6585$	-001110	901
902	813604	733870808	300333	96620	(01109	902
903	815409	736314327	300500	$9 \cdot 6656$	-001107	903
904	817216	738763264	300666	9.6692	-001106	904
905	819025	741217625	30.0832	96727	001105	905
906	820836	743677416	$30 \cdot 0998$	$9 \cdot 6763$.001104	906
907	822649	746142643	$30 \cdot 1164$	9.6799	-001103	907
908	824464	748613312	30-1330	9.6834	-001101	908
909	826281	751089129	30-1496	$9 \cdot 6870$	-001100	909
910	828100	753571000	30-1662	$9 \cdot 6905$	$\cdot 001099$	910
n	$\mathrm{n}^{\mathbf{2}}$	\mathbf{n}^{8}	$\sqrt{ } \mathbf{n}$	$\sqrt[8]{ } / \mathbf{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued).

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{ } \mathbf{n}$	$\frac{1}{n}$	n
-						
911	829921	756058031	30.1828	96941	$\cdot 001098$	911
912	831744	758550528	30-1993	9.6976	-001096	912
913	833569	761048497	, 30-2159	$9 \cdot 7012$.001095	913
911	835396	76:3551944	:30.2324	9.7047	$\cdot(01094$	914
915	8:37225	766040875	30.2490	$9 \cdot 7082$	-001093	915
916	839056	768575296	$30 \cdot 2655$	97118	-01092	916
917	840889	771095213	$30 \cdot 2 \times 20$	$9 \cdot 7153$.001091	917
918	842724	773620633	$30 \cdot 2985$	9.7188	.001089	918
919	844561	776151559	$30 \cdot 3150$	97224	-001088	919
920	846400	778688000	30\%3315	$9 \cdot 7259$	-001087	920
921	84×241	781229961	30-3480	$9 \cdot 7294$	001086	921
922	850084	783777448	30 3645	$9 \cdot 7329$	-001085	922
923	851929	786330467	30-3809	9.7364	-001083	923
924	853776	788889024	30-3974	$9 \cdot 7400$	$\cdot 001082$	924
925	855625	791453125	30.4138	9.7435	-001081	925
926	857476	794022776	$30 \cdot 4302$	9.7470	-001080	926
927	859329	796597983	$30 \cdot 4467$	$9 \cdot 7505$	-001079	927
928	861184	799178752	30-4631	$9 \cdot 7540$	-001078	928
929	863041	801765089	$30 \cdot 4795$	9-7575	$\cdot(01076$	929
930	864900	804357000	$30 \cdot 4959$	$9 \cdot 7610$	-001075	930
931	866761	8069954491	$30 \cdot 5123$	$9 \cdot 7645$	-001074	931
932	868624	809557568	30:5287	$9 \cdot 7680$	$\cdot 001073$	932
933	870489	812166237	30.5450	$9 \cdot 7715$	-001072	933
934	872356	814780504	305614	9•7750	$\cdot 001071$	934
935	874225	817460375	30:5778	$9 \cdot 77 \times 5$. 001070	935
936	876096	820025856	$30 \cdot 5941$	$9 \cdot 7819$	-001068	936
937	877969	822656953	$30 \cdot 6105$	$9 \cdot 7854$	-001067	937
938	879844	825293672	$30 \cdot 6268$	$9 \cdot 7889$	$\cdot 001066$	938
939	881721	827936019	$30 \cdot 6431$	$9 \cdot 7924$	$\cdot 001065$	939
940	883600	830584000	$30 \cdot 6594$	9.7959	-01064	940
941	885481	833237621	30.6757	9.7993	-001063	941
942	887364	835896888	$30 \cdot 6920$	9•8028	-001062	942
943	889249	838561807	$30 \cdot 7083$	$9 \cdot 8063$	-001060	943
944	891136	841232384	30.7249	$9 \cdot 8097$	-011059	944
945	893025	843908625	30.7409	$9 \cdot 8132$. 001058	945
n	n^{2}	\mathbf{n}^{8}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (continued)

n	n^{2}	n^{3}	$\sqrt{ } \mathbf{n}$	$\sqrt[3]{n}$	1	\mathbf{n}
946	891916	8465905.36	$30 \cdot 7571$	$9 \cdot 8167$	-(0)1057	946
947	8965809	-49278123	30) 77.34	98201	001056	947
948		- 51971392	307896	$9 \cdot \times 236$	-(101055	948
949	90060]	85.4670 .349	30 8058	98270	-001054	949
950	902500	857375000	$30 \cdot 8.21$	9•8305	$\cdot 0010.53$	950
951	904401	860085351	$30 \cdot 8383$	9-8339	-(0)1052	951
952	906.304	86250110 c	308545	98374	-001050	952
953	908209	865523177	$30 \cdot 8707$	$9 \cdot 8108$	-()01049	$95: 3$
954	910116	868250664	30.8869	9•8143	O(010) 6	954
955	912025	870983875	30 9031	$9 \cdot 8477$	-001047	955
956	91.3936	$87: 3722 \times 16$	309192	$9 \cdot 9511$	-001016	956
957	915449	876167493	$30 \cdot 9354$	98546	$\cdot{ }^{-(0) 1015}$	957
958	917764	879217912	309516	9858()	-(0)1044	958
959	919681	8*1974079	$30 \cdot 9677$	9) 86614	-001043	959
960	921600	8847.360000	$30 \cdot 9839$	98648	001042	960
961	923521	8875036 x 1	31	98683	001041	961
962	925144	890277128	31.0161	9.8717	-())1040	962
963	927369	$893056: 347$	31.0322	9.8751	$\cdot 001038$	963
964	929296	895811344	$31 \cdot 0483$	9.8785	-001037	964
965	931225	898632125	$31 \cdot 0614$	$9 \cdot 8819$	(0)1036	965
966	933156	901428696	31.0805	9.8854	-001035	966
967	935089	904231063	31.0966	988848	$\cdot 001034$	967
968	937024	907039232	31-1127	9.8922	$\cdot 001033$	968
969	938961	909853209	311288	9-8956	-001032	969
970	940900	912673000	31.1448	9-8990	-(0)1031	970
971	942841	915498611	31-1609	$9 \cdot 9024$	-001030	971
972	944784	918330048	31-1769	9-9058	-001029	972
973	946729	921167317	31-1929	99092	$\cdot 001028$	973
974	948676	924010424	$31 \cdot 2090$	9.9126	-001027	974
975	950625	926859375	31.2250	99160	-(0)1026	975
976	952576	929714176	$31 \cdot 2410$	99194	$\cdot 001025$	976
977	954529	932574833	31.2570	99227	$\cdot 001024$	977
978	956484	935441352	31.2730	9•9261	-001022	978
979	958441	938313739	:31.2890	$9 \cdot 9295$	-001021	979
980	960400	941192000	$31 \cdot 3050$	9.9329	-001020	980
n	$\mathbf{n}^{\mathbf{2}}$	n^{8}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1}{1}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Numbers (concluded).

n	n^{2}	$\mathrm{n}^{\sqrt{3}}$	$\checkmark \mathrm{n}$	$1 / \mathrm{n}$	1	n
981	962361	914076141	$31: 3209$	993663	001019	981
982	$96+324$	916966168	$31 \cdot 3369$	$9 \cdot 939$	(\%)1018	982
983	966289	919862087	31:352	99130	001017	983
984	968256	952763904	31-3684	99164	${ }^{0} 01016$	9×4
98.9	970225	955671625	$313 \bigcirc 47$	99197	-(0)1015	985
986	979190	954585256	311004	99531	(r)1014 ${ }^{\prime}$	986
987	971169	961501803	311166	9956.5	-00]013	987
988	976141	961 3 30272	$31 \cdot 4325$	$9 \cdot 9598$	-(N)1012	988
989	976121	967361669	$31 \cdot 1184$	$9 \cdot 9032$	-(k)1011	989
990	$9 \times(1)(0)$	970299000	311643	9)9666	$\cdot 01010$	990
991	9×2081	973242271	314802	(1)9699	.001009	991
992	98.4064	9761914×8	$31 \cdot 4960$	$9 \cdot 9733$	-01008	992
993	986049	979146657	315119	99766	(0)1007	993
941	98×036	982107Tい	31:5278	(1) 9600	-0100t	994
99.5	990025	98507187.5	31-7436	$9 \cdot 98 \times 33$	(00100.	995
996	992016	98<017936	31-3.995	$9 \cdot 9463$	001004	996
997	994009	991026973	$31: 5753$	9990%	-0010)(3	997
998	996004	¢94011992	31.5911	99933	$\cdot 001002$	998
999	998001	997002999	31 (6070	9.9967	(0)1001	999
1000	1000000	1000000000	$31 \cdot 6228$	10	$\cdot(101000$	1000
		n^{3}	/n	$\sqrt[3]{ } \mathbf{n}$	$\frac{1}{n}$	n

Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of Fractions.

Tables of Aliquot Parts.

One quantity is sald to be an alıquot part of another when the first is contaned in the second an exact number of times; thus, 1 s .8 d . is an aliquot part of $£ 1$, because $£ 1=12$ times 1 s .8 d ., or 1s. $8 \mathrm{~d} .=\frac{1}{12}$ of $£ 1$

Money

$10 \%=\frac{1}{2}$ of $£ 1$.	3s. $4 \mathrm{~d} .=\frac{1}{1}$ of 10 s .	1s. $\mathrm{xd} .=1$ of 5 s.
6s $8 \mathrm{~d}-\frac{1}{3}$,	2s. 6 d $=\frac{1}{4} \quad$,	$1 \mathrm{c} .3 \mathrm{~d} .=\frac{1}{4} \quad$,
5. $=1$	$1 \mathrm{l} . \mathrm{xd}={ }^{\text {d }}$	$10 \mathrm{~d} .=\frac{1}{6} \quad$,
$4 \mathrm{~s} . \quad=1$	$11 \mathrm{~s} .3 \mathrm{~d} .=1$	$7 \frac{1}{2} \mathrm{~d} .=\frac{1}{8} \quad$,
3s. $4 d=\frac{1}{4} \quad$,	$10 \mathrm{~d} .={ }_{1}^{1 / 2}$	1s $4 \mathrm{~d}=\frac{1}{8}$ of 4 s .
24. $6 \mathrm{~d} \mathrm{~d}=\frac{1}{4}$	$9 \mathrm{~d} .=\frac{1}{10}$ of 7 s (d.	$x \mathrm{~d} .=\frac{1}{6}$
2. $=\frac{1}{10}$	1s xd . - 1 of $6 \mathrm{~s} . \mathrm{xd}$.	$10 \mathrm{~d} .=\frac{1}{4}$ of 3 s .4 d .
1. $8 \mathrm{~d}=\mathrm{l}^{1}$,	$1 \mathrm{c} .1 \mathrm{~d} .=$!	Sd. $=\frac{1}{3}$
$1 \mathrm{~s} .4 \mathrm{~d} .=1 \mathrm{t}$	$10 \mathrm{~d} .=\frac{1}{8}$	$10 \mathrm{~d} .=\frac{1}{3}$ of 2 s .6 d .
1s. $3 \mathrm{~d}={ }_{\text {it }}$	$8 \mathrm{~d} .=1{ }^{10}$	$1 \frac{1}{2} \mathrm{~d} .=\frac{1}{4}$ of 1 s .

Length.

$$
\begin{aligned}
& 440 \mathrm{yds}=\frac{1}{4} \text { of } 1 \mathrm{ml} .9 \mathrm{in} .=\frac{1}{6} \text { of } 1 \text { yard. } 4 \mathrm{in} .=\frac{3}{3} \text { of } 1 \text { foot. } \\
& 352 \mathrm{y} \text { ds }=\frac{1}{5} \quad, \quad 6 \text { in. }=\frac{1}{6} \quad, \quad 3 \text { in }=\frac{1}{6} \quad, \\
& \begin{array}{llllll}
220 \mathrm{yds} .=\frac{1}{8} & ,, & 4 \frac{1}{2} \mathrm{in} .=\frac{1}{8} & , & 2 \mathrm{in} .=\frac{1}{6} & " \\
176 \mathrm{yds} . & =10 & , & 4 \mathrm{~m} .=\frac{1}{6} & " & 1 \frac{1}{2} \mathrm{in} .=\frac{1}{8}
\end{array} \quad "
\end{aligned}
$$

Avoirdupois Weight.

Decimal Equivalents of Vulgar Fractions．

Vulgar Fractions	Decimal Equivalents	Vulgar Fractions	Derimal Equivalents	Vulgar Fractions	Decimal Equivalents．
$8^{\frac{1}{4}}$	$\cdot 015625$	$1 \frac{1}{2}$	34375	$4{ }_{4}^{4}$	$\cdot 671875$
$\frac{1}{32}$	－（）3125	$\frac{23}{64}$	$1-3.99375$	118	$\cdot 6875$
${ }^{6} 4$	$\cdot 046 \times 75$	：	：375	$\frac{45}{64}$	703125
16	－0625	$8{ }^{25}$	$\cdot 390625$	亏亏	－71875
8_{6}^{6}	$\cdot 078185$	1^{1} ：	－1062．）	$4{ }_{4}^{4}$	－731375
$3{ }^{3} 2$	－09375	$\frac{27}{64}$	－121475		75
64	－109375	10	－1375	${ }_{6}{ }^{4}$	765625
$\frac{1}{8}$	－125	$\frac{29}{69}$	－ 453125	部	－78125
\％${ }^{9}$	－ 11068.5	$\frac{1}{2}$	－ 468875	8.	－796875
$3{ }^{5}$	－15625	$\stackrel{4}{4}+$	－181375	${ }_{18}^{18}$	－ 8125
${ }_{6}^{11}$	－171875	－${ }^{1}$	\％		－ 28125
$1^{\frac{3}{6}}$	－1875	13	$\bigcirc 51562 \%$	$3{ }^{2}$	84375
$\frac{1}{64}$	－203125	$\frac{1}{3}$	5：3125	等	859375
${ }^{\frac{7}{72}}$	21875		－ 16875	7	$\times 75$
$\frac{18}{84}$	－231375	${ }_{17}^{9}$	1－5625		－ $\mathrm{Y90625}$
	$\cdot 25$	84	$\cdot 578125$	$2 \frac{2}{2}$	$\cdot 90625$
$\frac{17}{4}$	－26562；	1？	－59375	${ }_{6}^{89}$	－921875
$3^{\frac{9}{2}}$	－28125	－${ }^{69}$	609375	18	－ 937.
$\frac{19}{6}$	－296875	${ }_{8}^{8}$	625	${ }_{6}^{61}$	－953125
${ }_{1}^{5}$	－3125	$\frac{41}{4}$	－610625	\＄3	－96875
$\frac{21}{64}$	$\cdot 32812 \%$	51	$\cdot 6.5625$	$\frac{83}{63}$	$\cdot 981375$

Inches and Fractions of an Inch expressed as Decimals of a Foot．

Inches	． 0	1／8	1／4	3／8	1／2	5／8	$3 / 4$	7／8
0		． 01042	－02083	（03125	04167	－05208	． 0625	92
1	－08333	－09375	－10417	$\cdot 11458$	125	－13542	－14583	15625
2	－16667	$\cdot 17708$	－1875	－19792	20833	－21875	－22917	23958
3	$\cdot 25$	$\cdot 26042$	－27083	－ 28125	＇29167	－30208	－3125	32292
4	$\cdot 33333$	－ 34375	－35417	－36458	375	－38542	$\cdot 39583$	－40625
5	－41667	42708	4375	－44792	－45833	－46875	－47917	48958
6	$\cdot 5$	$\cdot 51042$	$\cdot 52083$	－53125	－54167	－55208	－5625	－57292
7	$\cdot 58333$	－59375	－60417	－61458	－ 625	$\cdot 63542$	$\cdot 64583$	65625
8	$\cdot 66667$	$\cdot 67708$	－675	－69792	70833	$\cdot 71875$	$\cdot 72917$	． 73958
9	$\cdot 75$	$\cdot 76042$	$\cdot 77083$	． 78125	－79167	－80208	－8125	－82292
10	－83333	－84375	－85417	86458	875	－88542	－89583	． 90625
11	－91667	$\cdot 92708$	－9375	$\cdot 94792$	$\cdot 95833$	－96875	－97917	98958

[^3] foot．
Useful Functions of π.
The Greek letter π denotes the ratio of the circumference of a cincle to its diameter.

	N	2N	3N	4 N	5 N	6 N	iN	$\times \mathrm{N}$	9 N
$\pi=$	$3 \cdot 14159265$	6.283185	9•424778	12.566371	15707963	18849556	21991149	25132741	$28 \cdot 274334$
$\frac{\pi}{2}=$	$1 \cdot 57079633$	3•14593	$4 \cdot 712389$	6.283185	7853982	$9 \cdot 424778$	0995.37	12.566371	$14 \cdot 137167$
$\overline{3}=$	104719755	$2 \cdot 094395$	3141593	$4 \cdot 188790$	$52359{ }^{\circ}$	6.283185	7330383	$8 \cdot 371580$	$9 \cdot 424778$
$\frac{\pi}{4}=$	$\cdot 78539816$	1570796	$2 \cdot 356194$	$3 \cdot 141593$	3.926991	4.712389	5497787,	6.283185	$7 \cdot 068583$
$\frac{\pi}{6}=$	$\cdot 52359878$	1.047198	1570796	2.094395	2617994	$3 \cdot 141593$	366.5191	$1 \cdot 188790$	$4 \cdot 712389$
$\frac{\pi}{7}=$	$\cdot 44879895$	$\cdot 897598$	$1 \cdot 346397$	1795196	2.24399.)	2.692794	$3 \cdot 141593$	3590392	$4 \cdot 039191$
$\frac{\pi}{16}=$	$\cdot 19634954$	$\cdot 392699$	$\cdot 589049$	$\cdot 785398$	98174	$1 \cdot 178097$	137444	1570796	1767146
$\frac{\pi}{24}=$	$\cdot 13089969$	$\cdot 261799$	-392699	$\cdot 523.999$	6.54498	78.5398	-91629	1.04719	1-178097
$\frac{\pi}{32}=$	-09817477	-196350	-294524	-392699	$\cdot 490874$	589049	-687293	-78539	.883573
$\frac{\pi}{180}=$	01745329	-034907	. 05236	-069813	087266	104720	122173	$\cdot 139626$	$\cdot 157080$
	N	2N	3N	4N	5N	6N	7 N	8N	9N

Useful Functions of π (continued).
The Greek letter π denotes the ratio of the circumference of a circle to its diameter.

N	2 N	3 N	4N	5N	6 N	7N	8N	9N
$\boldsymbol{x}^{2}=9.86960440$ $x^{3}=31.00627668$	19.739209 69.012553	$29 \cdot 608813$	$39 \cdot 178418$	$49 \cdot 348022$	59217626	69087231	78956835	$88 \cdot 826440$
$\pi^{3}=3100627668$	$62 \cdot 012553$	018830	02510	5.031383	6037660	17043937	302	056490
$\frac{1}{T}=31830989$	$\cdot 636620$	$\cdot 954930$	1273240	1591549	1909859	2228169	2546479	2864789
$\frac{1}{\pi^{2}}=\cdot 10132118$	$\cdot 202642$	$\cdot 303964$	$\cdot 405285$	$\cdot 506606$	$\cdot 607927$	709248	$\cdot 810569$	-911891
$\frac{1}{x^{3}}=03225153$	-064503	-096755	$\cdot 129006$	161258	$\cdot 19350$	225761	258012	290264
$\sqrt{\pi}=1 \cdot 77245385$	$3 \cdot 544908$	5.317362	$7 \cdot 089815$	8862269	10634723	12•407177	$14 \cdot 179631$	$15 \cdot 952085$
$\sqrt[8]{\pi}=1 \cdot 46459189$	$2 \cdot 929184$	$4 \cdot 393776$	5.858368	7322959	8787551	10252143	11716735	13181327
$\frac{1}{\sqrt{\pi}}=\cdot 56418958$	$1 \cdot 128379$	$1 \cdot 692569$	2-256758	2820948	3385137	394932	$4 \cdot 513517$	5.077706
$\frac{1}{\sqrt[3]{x}}=.68278406$	$1 \cdot 36556$	O48352	$2 \cdot 73113$	3413920	4096704	4779488	$3 \cdot 462272$	$6 \cdot 145057$
$\mathbf{L o g} \cdot \pi=\mathbf{4 9 7 1 4 9 8 7}$	$\cdot 994300$	$1 \cdot 491450$	1.988599	2485749	2.982899	3480049	3977199	4.474349
N	2 N	3	4 N	5 N	6 N	7 N	8 N	9N

NOTES ON GEOMETRY.

A circle is a plane figure contaned by one line, which is called the curcumference, and is such, that all straight lines drawn from a certain point within the figure to the circumference are equal to one another; and this point is called the centre of the circle.

In a segment $B A D C^{\prime}$ of a circle the angle $B O C^{\prime}$ at the centre is double of the angle $B A C$ at the circumference.

Angles $B A C$ and $B D C$ in the same segment of a circle are equal to one another.

The angle in a semicircle is a right angle.
Simplar segments of circles are those which contain equal angles.

In a quadrilateral $A B C D$ inscribed in a circle the opposite angles $A B C$ and $A I C C$ are together equal to two right angles. Also the opposite angles $B A D$ and $B C D$ are together equal to two right angles.

$$
\text { Also } \overline{A C} \times \overline{B D}=\overline{A B} \times \overline{C D}+\overline{A D} \times \bar{B}(\text {. }
$$

A diameter $D E$ which bisects a chord $A B$ is at right angles to that chord. Hence the construction for drawing a circle through three points, A, B, and C. Bisect the straight lines $A B$ and $B C$ by straight lines at right angles to them. These bisecting lines will intersect at the centre O of the circle required.

To describe an arc of a circle through three points, A, B, and C, when the centre of the circle is inaccessible. With centres A and B describe arcs $B H$ and $A K$. Join $A C^{\prime}$ and $B C$, and produce these lines to meet the arcs at H and K. Mark off short equal arcs $H 1, K 1$. The intersection P of the lines $A 1, B 1$, is another point on the arc required. In like manner other points may be found. A fair
 curve drawn through these points is the arc required.

If $P R$ is a tangent to the circle $P T V$, and P is the point of
 contact, $P R$ is at right angles to the radius or diameter through P.

To draw a tangent to the circle $P T V$ from a point s outside the circle. With centre S describe an are $O T U$ to pass through O, the centre of the circle. With centre O and a radus equal to the diameter of the circle describe an arc to cut the arc $O T V$ at U. Draw OC', cutting the cncle at V. SV is the tangent required and V is the point of contact.

To draw a tangent to two given citcles. Make $I) E=B C$ Draw a circle, with centre A and radius $A E$. Draw $B F$ a tangent to this circle, F being the point of contact. Draw the line $A P$,

meeting the given circle, whose centre is A, at H. Draw $B K$ parallel to $A H$. $I I K$ is a tangent to both the given circles.

The angle $A B C$ between the chord $A B$ and the tangent $B C$
 to the circle at the point B is equal to the angle $A D B$ in the alternate segment.

To inscribe in the circle $A B I$) a triangle equangular to the triangle $E F H$. Draw the tangent $K B C$. Draw $A B$, making the angle $A B C=$ angle F. Draw $D B$, making the angle $D B K=$ angle $H . \quad B D A$ is the triangle required.

On a given line $A B$ to describe a segment of a circle which
 shall contain an angle equal to a given angle C. Draw $A D$, making the angle $D A B=$ angle C. Draw $A O$ at right angles to $A D$. Bisect $A B$ at E. Draw $E O$ at right angles to $A B$, meeting $A O$ at O. O is the centre, and $O A$ is the radius of the circle, of which the segment $A P B$ sball contain an angle $=$ angle C.
$A B$ and $C D$ are any two chords of a circle intersecting at $E . \quad A E \times B \bar{E}=C E \times D E:$.
$F H$ is a tangent to the circle $A C^{\prime} B D, I /$ being the point of contact. FKL is a line cutting the circle at K and $L . \quad \overline{F I I}^{2}=\overline{F K} \times \overline{F L}$.

To bisect the angle between two straight dines. (1) The lines $A B, A\left({ }^{\prime}\right.$, intersect within the paper. With centre A describe an arc $D E$ '. With centres D and E describe arcs, with equal radii, to intersect at F. The line $A F$ bisects the angle BA(: (2) The lines $H K, L M$, do not intersect within the paper. Draw $A B$ and $A C$ parallel to $H K$ and $L M$ respectively, and at equal distances from them, so that the point A is accessible. The line $A F$, which bisects the angle $B A A^{\prime}$ ', is the line required.

To draw the inscribed and escribed circles of a triangle $A B C$. The inscribed circle is the one which touches each of the three sides. An escribed circle touches one side and the other two produced. There are three escribed circles to a triangle. When a circle touches each of two straight lines its centre lies on the line bisecting the angle between them. O is the centre of the
 inscribed circle, and O_{1} is the centre of one of the escribed circles.

To draw a series of circles to touch one another and two lines $A B, C D$. Draw $E F$, bisecting the angle between $A B$ and $C D$. Let E be the centre of one circle: its radius is $E A$, the perpendicular on $A B$. Draw $H K$ perpendicular to $E F$. Make $K L=K H$. Draw $L M$ perpendicular to $A B . \quad M$ is the centre of the next circle.

To draw a circle to pass through the point D and touch the lines $A B$ and $A C$. Draw $A E$, bisecting the angle $B A C$. Take any point F in $A E$. Draw $F H$ perpendicular to $A B$. With F as centre and $F H$ as radius describe a circle to cut the line $A D$ at K. Draw $D O$ parallel to $K F$, meeting $A E$ at $O . O$ is the centre, and $O D$ the radius of the circle required.

To draw a circle to touch two lines $A B$, $C D$, and a circle $E F$ Draw $H K$ and $L M$ parallel to $A B$ and (D) respectively, and at distance, fiom them equal to the radius $E N$ of the circle $E F$. Draw a circle to pass through N, and touch the lines $H K, L M$. O the centre of this circle, is the centre of the circle required.

To draw a circle to touch the line $A B$ and pass through the points C and I. Draw $C D$, and produce it to cut $A B$ at E. Make $E F=E D . \quad$ On $C F$ describe a semicircle. Draw $L I I$ perpendicular to (F to meet the - emeircle at $I I$. Make $E K=E H$. Draw $K O$ perpendicular to $A B$. Draw $L O$, bisectmig (' 1) at right angles to meet $K O$ at O. O is the centre of the circle required

If a circle whose centre is A and radius $=R$ touches another circle whose centre is a and radius $=r$, the point of contact P hes on the line $A a$ or on that line produced, and the distance $A a$ between their centres is equal to $R+r$ or $R-r$.
To draw a circle of given radius to touch two given circles. A and B are the centres of the given circles. Make ('D) and $F E$ each equal to the given radius. With centre A and radius $A D$

draw the arc $D O$. With centie B and radius $B E$ draw the arc $E O$, cutting the former arc at O. Join O with A and B, and produce these lines if necessary. O is the centre of the required circle, and H and K are the points of contact.

To draw a circle to touch a circle $A B C$ and a straight line
 $I D E$ at the point D. Through F, the centre of the circle $A B C$, draw $F E$ perpendicular to $D E$, and produce it to meet the circle at C. Draw $D O$ perpendicular to $D E$. Join $C D$, cutting the circle at B. Join $F B$, and produce it to meet $D O$ at O. O is the centre of the circle required.

To draw a circle to pass through the points A and B, and touch the circle CDE. Draw a circle CABE through A and B, cutting the circle ('IDE at C and E. Join $C E$, and produce it to meet $A B$ produced at F. Draw $F I$, touching the given circle at 1). Join H, the centre of the circle (D)E, with D, and produce it to meet the line bisecting $A B$ at right angles at O. O is the centre of the circle required.

To draw the locus of the centre of a circle which touches two given citcles. A and B are the centres of the given circles. Draw $A B$, cutting the circles at C and D. Bisect (' D at E. Mark off from E, above and below it, on $A B$ a number of equal divisions. With centres A and B describe arcs through these divisions, as shown. A fair curve through the intersections of the arcs i, the locus required. The curve is an
 hyperbola.

To draw the locus of the centre of a circle which touches a line $A B$ and a circle CDE. Through O, the centre of the circle, draw $O I I$ perpendicular to $A B$. Bisect $D H$ at F. Mark of from F, above and below it, on $O I I$ a number of equal divisions. With centre O draw arcs through the divisions above F to meet parallels to $A B$ through the divisions below F, as shown. A fair curve through the intersections of the arcs and parallels is the locus required. The curve is a parabola.

To draw a triangle equiangular to a given triangle, and circumscribing a given circle. From O, the centre of the circle, draw the radii $O A, O B$, and $O C$ at right angles to the sides a, b, and c of the given triangle respectively. The sides of the required triangle will be tangents to the circle at A, B, and C.

The nine points circle. $A B C^{\prime}$ is a triangle. D, E, and F are the feet of the perpendiculars on the sides from the opposite angles. O is the point of intersection of these perpendiculars. The circle through D, E, and F also passes through the middle

points of the sldes and through the middle points of $O A, O B$, and $O C$. This circle is known as the nine points circle. If M is the centie of the circumscribing circle of the triangle, and N is the centre of the nine points circle, N is the middle point of $O M$. The radius of the nine points circle is equal half the radius of the circumscribing circle

$A B C D$ is a square.
If $A a=B b=C c=D d$, then $a b c d$ is a square.
Lines $E F$ and $H K$, which are perpendicular to one another and are terminated by the sides of the square, are equal to one another.

To draw a square to pass through four given points, A, B, C, and D Join $A C$. Draw $B E$ at right angles to $A C$, and equal to it. Join $D E$, and produce it both ways. Lines through A and C perpendicular to $D E$, and a line through B parallel to $D E$, will complete the square required.

In any triangle, $A B C$ the three angles are together equal to
 two right angles, i.e. $A+B+C=180^{\circ}$.

In any polygon, $A B C D \ldots$ the sum of the interior angles together with four right angles is equal to twice as many right angles as the figure has sides, i.e. $A+B+C+D+\ldots+360^{\circ}=n \times 180^{\circ}$, where n denotes the number of sides
$A B C$ is a triangle. $A D$ is perpendicular to $B C$ or $B C$ produced.

(a) $\overline{A B}^{2}=\overline{A C}^{2}+\overline{B C}^{2}+2 \overline{B C} \times \overline{C D}$.

(b) Angle $C=90^{\circ}$.

$$
A B^{2}=\bar{A} C^{2}+\overline{B C}^{2}
$$

(c) $\overline{A B}^{2}=\overline{A C}^{2}+B C^{2}-2 B C \times C D$.

$A B C$ is a triangle. $A D$ bisects the angle $B A C$.
$\bar{A} \bar{B} \times \overline{A C}=\overline{B D} \times \overline{D C}+A D^{2}$.
$B E=E C$.
$\overline{A B}^{2}+\overline{A C}^{2}=2 \bar{B}^{2}+2 \overline{A B}^{2}$.
$A B C$ is a triangle. $A D$ bisects the angle $B A C$.
$A E$ bisects the angle $C A F$ between $C A$ and $B A$ produced.
$A B: A C:: B D: C D$, and $A B: A C:: B E: C E$.
Angle $D A E=90^{\circ}$. If B and C are fixed points, and the ratio of $A B$ to $A C^{\prime}$ is constant, the locus of A is a circle described on $D E$ as diameter.

To draw a regular polygon on a given line C5. With centre C and radius O, describe the semicircle 035, and divide it into as many equal parts as there are sides in the polygon to be drawn. Join C with 2, 3, etc. With centre 2 and radius $2 C$ draw an are to cut (3 produced at 1). With centre D and the same radius
 draw an arc to cut $C 4$ produced at E, and so on.
$A B$ and $A C$ are two lines intersecting at A and making any angle with one another. $D E$ is parallel to $B C$.
$A B: A C:: A D: A E$.

To find a fourth proportional to three lines a, b, and c. Draw $O A$ and $O B$, making any angle with one another. Make $O A=a, O B=b$, and $O C=c$. Draw $C D$ parallel to $A B$. Then $a: b:: c: O D$.

To find a mean proportional to $A B$ and $B C$. $A B$ and $B C$ are placed in the same straight line. On $A C$ describe a semicircle. Draw $B D$ perpendicular to $A C$ to meet the semicircle at D. Then $A B: B D:: B D: B C$, or $B D^{2}=\bar{A} B \times B \bar{C}$.

To divide a line $A B$ in medial section. Draw $A D$ perpendicular to $A B$ and equal to half $A B$. Join $B D$. Make $D E=D A$, and $B C=B E$. Then $A B: B C:: B C: A C$, or $\overline{B C}^{2}=\bar{A} B \times \overline{A C}$.

$C B$ and $F E$ are parallelograms. Angle $A=$ angle D. The parallelograms are equal in area if $\overline{A B} \times \overline{A C}=\overline{D E} \times D F$.
$L H K$ and $P M N$ are triangles. Angle $H=$ angle M. The triangles are equal in area if $\overline{H K} \times \overline{H L}=\overline{M N} \times \overline{M P}$.

Similar figures are those which have their several angles equal, each to each, and the sides about the equal angles proportionals. If $A D$ and $F L$ are similar

figures, then angle $A=$ angle F, angle $B=$ angle I, angle $C=$ angle K. and so on. Also $A B: A E:: F H: F M, B C$: $B A:: H K: H F$, $C^{\prime} D: C B:=K L: K H$, and so on.

The areas of similar figures are to one another as the squares on their homologous or corresponding sides; thus, area of figure $A D$: area of figure $F L:: A \bar{B}^{2}: \overline{F I}^{2}$.

If simnlar figures be described with corresponding sides on the three sides of a right-angled triangle $A B C$, then figure on hypotenuse $A B=$ figure on $B C+$ figure on $A C$ The above is true also for circles with the sides of the triangle as diameters, also for similar segments of circles.

To divide a triangle $A B C$ into a given number of equal parts by lines parallel to one side, $B C$. On $A B$
 describe a semicircle. Divide $A B$ into the given number of equal parts. Let l be one of the points of division. Drat $D d^{\prime}$ perpendicular to $A B$ to meet the semicircle at d^{\prime}. Make $A d=A d^{\prime}$. Draw $d m$ parallel to $B C . d m$ is one of the required lines of division ; the others are obtained in a similar manner.

A and B are given points. $D E$ is a given line. C is a point on $D E . \quad A C+B C$ is a minimum when angle $A C D=$ angle $B C E$.

To find C when $A C+B C$ is a minimum. Draw $A D$ perpendicular to $D E$, and produce it. Make $D F=D A$. Join $B F . \quad C$ is where $B F$ cuts $D E$.

A and B are given points. $C D E$ is a given circle whose centre is $0 . A C+B C$ is a minimum when angle $A C O=$ angle $B C O$. $A D+B D$ is a maximum when angle $A D O=$ angle $B D O$.
$\overline{A C}^{2}+\overline{B C}^{2}$ is a minimum, and $\overline{A D}^{2}+\overline{B D}^{2}$ is a maximum when D, O, and C are in a straight line bisecting $A B$.
A and B are given points. $D E$ is a given line. C is a point on $D E$. The angle $A C B$ is a maximum when the circle through A, B, and C touches the line $D E$.

A and B are given points. $C D E$ is a given circle. The angle $A C B$ is a maximum when the circle through A, B, and C^{\prime} touches the circle C $I E$ externally. The angle $A D B$ is a minimum when the circle through A, B, and D is touched internally by the circle CDE.

A and B are points on the chord $D E . \quad C$ is a point on the arc DCE of a circle. The angle $A C B$ is a maximum when the circle through A, B, and C touches the arc $D C E$.

$A B C$ is a triangle. To find a point O such that $A O+B O+C O$ shall be a maximum. On $A B$ and $B C$ describe segments of circles containing angles of 120°. The point O required is at the intersection of the arcs of these segments.

The area of the rectangle DEFH inscribed in the triangle $A B C$ is a maximum when $D E$ bisects the sides $A B$ and $A C$. The maximum area of the rectangle is half the area of the triangle in which it is inscribed.

To inscribe in a segment $A F C B$ of a circle a rectangle CDEF of maximum area. Make $h=\frac{\sqrt{8 r^{2}+a^{2}}-3 a}{4}$.

The construction may be verified by drawing the tangent $H C K$ to meet $A B$ produced at K, and $O H$ the perpendicular from the centre O to $A B$ at H. $H C$ should be equal to $\boldsymbol{O K}$.

In a circle to inscribe a rectangle such that $b d^{2}$ shall be a maximum. Draw a diameter $A B$. Make $B D=$
 $\frac{1}{8} A B$. Draw $D C$ perpendicular to $A B$ to meet the circle at C. $A C B E$ is the rectangle required.

Of all the rectangular beams which can be cut out of a cylinder of dameter $A B$, the one having the section $A C B E$ has the greatest resistance to bending.

To inscribe a square in a given triangle $A B C$ Draw $A D$ perpendıcular to $B C$, and $A E$ parallel to $B C$. Make $A C=A D$. Join $C E$, meeting $A B$ at F. Draw $F H$ parallel to $B C$, and $H K$ and $F L$ perpendicular to $B C$. FHKL is the square requred.

To reduce any plane rectuneal figure $A B C D E F$ to one having the same area but fewer sides Join $A E$ Draw $F H$ parallel to $A E$, meeting $A B$ or $A B$ produced at II. Join
 HE. The figure $B C D E H$ has the same area as the original figure. Repeating the above construction the figure KIDLII is obtaned, which has the same area as the original figure. By the continued application of the above construction any plane rectilineal figure may be reduced to a triangle having the same area.

The Conic Sections. $-K X$ is a fixed line, and F is a fixed point. P is a point which moves in the plane containing P and $K X$ in such a manner that its distance from F bears a constant ratio to its perpendicular distance $P K$ from $K X$. The curve traced out
 by P is either an ellipse, an hyperbola, or a parabola, according as $F P$ is less than, greater than, or equal to $P K$. These curves are called conic sertions or conics, because they may be obtained by taking plane sections of a cone. $K X$ is called the directrix, F the facus, and the line $X F N$ at right angles to $K X$ the axis of the conic. The ellipse and hyperbola have two directrices and two foci. The parabola has one directrix and one focus. The constant ratio of $F P$ to $P K$ is called the eccentricity of the conic.

The figures below show how the ellipse, hyperbola, and parabola are obtained by taking sections of the cone. F, F_{1} are the foci, and $K X, K_{1} X_{1}$ are the directrices. The foci are the points where spheres inscribed in the cone touch the plane of section. Any point P on the curve is obtained by making $N P$ equal to $n p$.

For the ellipse, the plane of section $x x_{1}$ cuts $v t$ and $v u$ below the vertex v. For the hyperbola, $x x_{1}$ cuts $v u$ below, and $v t$ above the vertex v. For the parabola, $x x_{1}$ is parallel to $v t$.

The Ellipse.-In the ellipse the ourve cuts the axis at two points, A and A_{1}. The line ΔA_{1} is called the major axis. A line

$B B_{1}$ bisecting $A A_{1}$ at right angles and terminated by the curve is called the minor axis. P is any point on the curve. $P N$ is perpendicular to $A A_{1}$, and $P M$ is perpendicular to $B R_{1}$. $P F+P F_{1}=A A_{1} . \quad B F=B F_{1}=A O$.

$$
\begin{aligned}
& P \bar{N}^{2}: A N \times \overline{A_{1}},: B O^{2}: A \sigma^{2} \\
& P M^{2}: B M \times B_{1} M: A O^{2}: B O^{2} .
\end{aligned}
$$

The tangent at P is equally inclined to the focal distances $P F, P F_{1}$, so also is the normal.

Ellipses which have the same foci are said to be confocal.
 Tangents $P R$ and $P R_{1}$ to an ellipse from any point P are equally inclined to $P F$ and $P F_{1}$ respectively If P is on a confocal ellipse, $P R$ and $P R_{1}$ are also equally inclined to the normal at P. If angle $R P R_{1}=90^{\circ}$, the locus of P is a circle with centre $($).

A diameter of an ellipse is a line passing through the centre and terminated by the curve. Tangents at the extremities of a diameter are parallel. A diameter
 bisects all chords parallel to the tangents at its extremities. A diameter $Q Q_{1}$ parallel to the tangents at P and P_{1} is said to be conjugate to the diameter $P P_{1} . \quad O P^{2}+\overline{O Q} Q^{2}=\overline{O A}^{2}+\overline{O B^{2}}$. The parallelogram formed by the tangents at the extremities of conjugate diameters is equal in area to the rectangle contained by the major and minor axes.

Given, conjugate diameters $P P_{1}$ and $Q Q_{1}$, to find the axes.
 Draw $P D$ perpendicular to $O Q$. Make $P H=P H_{1}=O Q$. Major axis $A O A_{1}$ bisects angle $H_{1} O H$. Join P to middle point of $O H$, to cut major axis at a and minor axis at b. $\quad P b=$ length of semimajor axis. $\quad P_{a}=$ length of semiminor axis.

The circle described on the major axis as diameter is called the auxiliary circle. The feet of the perpendiculars from the foci on any tangent to the ellipe lie on the auxiliary circle. $B O^{2}-F Y \times F_{1} Y_{1} \quad$ If $Q P N$ is perpendicular to the major axis, then $P N: Q N:: B O: A O$. The tangent to the ellipse at P, and the tangent to the auxiliary circle at Q, meet at a point T on the major axis produced.

To draw tangents to the ellipse from the point S. On $S F$ or $S F_{1}$ as diameter describe
 a circle to cut the auxiliary circle at X and $X_{1} . \quad S X$ and $S X_{1}$ are the directions of the tangents required.

The axes of an ellipse being given, the best practical method of drawing the curve is that involving the application of the trammel. On the straight edge of a strip of paper mark off $P b$ equal to the semi-major axis, and $P a$ equal to the semi-minor axis. Place the strip so that a is on the major and b on the minor axis. Mark the point P on the drawing paper. P is a point on the curve. By moving the strip round, any number of
 points may be determined. a and b may be on the same or on opposite sides of J. If the axes are nearly equal, it is better to place P between a and b.

Another method of drawing the curve, the axes being given. Draw circles with centre \mathcal{C} and radii $O A$ and $O B$. Draw the radial line $O R Q$. Draw $Q P$ parallel to $O B$ and $R P$ parallel to $O A . \quad P$ is a point on the curve. In like manner any number of points may be determined.

Given the conjugate diameters $P P_{1}, Q Q_{1}$, to draw the ellipse. At P and P_{1} draw parallels to $Q Q_{1}$. At Q and Q_{1} draw parallels to $P P_{1}$. Divide $O P$ into any number of equal parts. Divide $P D$ into the same number of equal parts. Draw lines from Q to the

points of division on PI), and lines from Q_{1} to the points of division on $O P$. The intersections of the former and latter lines, taken as shown, are points on the portion $P Q$ of the curve. Points on the other portions of the curve are determined in a similar manner.
Another method of drawing the ellipse from conjugate dia-
 meters is that due to Professor Minchin, and is similar to the trammel method. Draw O_{q} perpendicular to $O P$. Draw Qaparallel to $O P$. Make $O q=O Q$, and $O p=$ $O P$. Draw ab parallel to $q p$. Draw the triangle $a b O$ on a strip of paper, as shown at $a_{1} b_{1} O_{1}$. If a_{1} is placed on the diameter $P P_{1}$, and b_{1} on the diameter $Q Q_{1}$, then O_{1} will be a point on the curve.
Centre of curvature. P is any point on the ellipse. Draw $P C$ bisecting the angle $F P F_{1}$. Draw $H K$ perpendicular to $P C$. Draw $K C$ perpendicular to $P K$. The point C is the centre of curva-
 ture at the point P, i.e. it is the centre of the circle which most nearly coincides with the ellipse at P. Draw $B D$ parallel to $O A$ and $A D$ parallel to $O B$. Draw $D C_{2} C_{1}$ perpendicular to $A B . \quad C_{1}$ is the centre of curvature at B, and C_{2} is the centre of curvature at A. Make $B E$ a mean proportional to $A O$ and $B O$. Make $A L=B E$. Draw the arc $E C_{3}$ with centre C_{1} and the arc $L C_{3}$ with centre C_{2}. Arcs of circles $A R, R Q$, and $Q B$, with centres C_{2}, C_{3}, and C_{1} respectively, will give a very close approximation to the quadrant $A B$ of the true ellipse.

The Hyperbola.-The hyperbola consists of two similar branches, which cut the axis at A and A_{1}, F and F_{1} are the foci. If any point P be taken on the curve, then the difference between the focal distances $P F$ and $P F_{1}$ is equal to $A A_{1}$. To construct the curve. Draw any line $a p_{3}$. Make $a a_{1}=A A_{1}$. Take any number of points p_{1}, p_{2}, p_{3} on $a_{1} p_{2}$ With centres P and P_{1} describe arcs with radii $=a p_{1}$, and with centres F_{1} and
F and radii $=a_{1} p_{1}$ describe arcs to cut the former at $P_{1} P_{1} P_{1} P_{1}$, these are points on the hyperbola. In like manner any number of points may be determined.
The tangent at P is equally inclined to the focal distances $F P$ and $F_{1} P$.

The construction for the centre of curvature is the same as that for the ellipse.
O, the middle point of $A A_{1}$, is the centre of the hyperbola. The circle described on $A A_{1}$ as diameter is the auxiliary circle. Let the circle with centre O and radius $O F$ meet the tangent at A at L and L_{1}. Draw $L B$ and $L_{1} B_{1}$ parallel to $A A_{1}$ to meet a line through ($)$ at right angles to $A A_{1}$ at B and $B_{1} . A A_{1}$ is the transverse axis, and $B B_{1}$ is the conjugate axis. Let the circle through F cut $B B_{1}$ produced at f and f_{1}. An hyperbola with foci f and f_{1} and $B B_{1}$ as axis
 is conjugate to the hyperbola with F and F_{1} as foci and $A A_{1}$ as axis. lines $O L$ and $O L_{1}$ produced both ways are the asymptotes of the hyperbola.

When the transverse and conjugate axes are equal, the asymptotes are at right angles to one another, and the hyperbola is said to be rectangular or equilateral. Given the asymptotes $O L$ and $O L_{1}$ of a rectangular hyperbola and a point P on the curve : to draw the curve. Draw any line $M R$ parallel to $O L_{1}$ and $P N$ parallel to $O L_{1}$. Through P draw $T P R$ parallel to $O L$. Join $O R$, meeting $P N$ or $P N$ produced at S. Draw $S Q$ parallel to $O L$, meeting $M R$ at Q. Q is another point on the curve. Or thus: through P draw $P Q$ parallel to $T M$ to
 meet $M R$ at Q. These constructions depend on the property of the rectangular hyperbola, viz., $\overline{P N} \times \overline{O N}=Q M \times \overline{O M}$.
$P U$ is a tangent at P. The angle $U P T=$ angle $O P T=$ angle $P O N$.
The Parabola. $-F$ is the focus, and $K X$ the directrix. P is any point on the curve. $F P=P K$. The tangent at P is equally inclined to $F P$ and the axis $T G$.
$N G$, the subnormal, is constant, and equal to $F X$. The foot of the perpendicular from F on any tangent lies on the tangent at $A . \quad A T=A N$.

$\bar{P} N^{2}=4 \overline{A F} \cdot A N$. Tangents at the ends of a focal chord intersect at right angles on the directrix.
A diameter of a parabola is a line parallel to the axis. S, the
 point of intersection of two tangents, is equidistant from the diameters through the points of contact. A diameter bisects all chords parallel to the tangent at the point where the diameter cuts the curve.

The angles subtended at the focus F by tangents $S P$ and $S P_{1}$ are equal to one another and to the angle LSP. The diameter $S V U$ through the point of intersection of the tangents $S P$ and $S P_{1}$ bisects the chord of contact $P P_{1}$. Also $S V=V U$.

To draw tangents from a point S. Join S to the focus F. On $S F$ as diameter describe a circle to cut the tangent at the vertex in Y and $Y_{1} . S Y$ and $S Y_{1}$ are the tangents required.

Given the vertex A,

Cycloidal Curves.-If a circle be made to roll along a line and remain in the same plane, a point on the circumference of the rolling circle will describe a cycloidal curve. The line along which the circle rolls is called a directing line or director. If the
director is a straight line, the curve is called a cycloid. If the director is a circle, the curve described is called an epicycloid or a hypocycloid, according as the generating circle rolls on the outside or inside of the directing circle.

The constructions for drawing the cycloid, epicycloid, and hypocycloid are shown below.

Make the straight line or arc $o^{\prime} e^{\prime}$ equal to half the circumference of the rolling circle. Divide $o^{\prime} e^{\prime}$ into any number of equal parts, and divide the semicircle $P c o$ ' into the same number of equal parts. Draw the normals $a^{\prime} A, b^{\prime} B$, etc., to meet a line ${ }^{\text {or arc }} O E$ parallel to or concentric with $o^{\prime} e^{\prime}$ at the points A, B, etc. With centres A, B, etc., describe arcs of circles to touch $D^{\prime} e^{\prime}$. Draw through the points a, b, c, etc., lines parallel to $o^{\prime} e^{\prime}$, or arcs concentric with $o^{\prime} e^{\prime}$ to meet the arcs whose centres are at A, B, C, etc.

The intersections of these determine points on the curve required.

The hypocycloid becomes a straight line when the diameter of the rolling circle is equal to the radius of the directing circle.

The normal at any point Q of the curve passes through R, the point of contact of the rolling circle, and the directing line, when the former passes through Q.

Refering to the cyclond; if $Q q$ be drawn parallel to the directing line, then the normal $Q R$ at Q will be parallel to the chord $q o^{\prime}$, and the tangent $Q T$ will be parallel to $q P$. Again, if $P T$ be drawn parallel to the directing line to meet the tangent $Q T$ at T, then the length of the arc $P Q$ of the cycloid will be equal to twice the length of $Q T$, or twice the length of the chord $P q$ Hence the total length of the cycloid is equal to four times the diameter of the rolling circle.

The centre of curvature S of the curve at Q is in the normal $Q R$ produced. In the cycloid $R S=Q R$. For the epicycloid the construction for finding S is as follows.-Draw the diameter QNU of the rolling circle. Join U with the centre of the directing circle, cutting $Q R$ produced at S.

Involute of a Circle.-If a flexible line be wound round a circle, and the part which is off the circle be kept straight, any point in it will describe a curve called the involute of the circle. The involute of a circle is what an epicycloid becomes when the generating circle is of infinite diameter, i.e. when the generating circle becomes a straight line.

To draw the involute to a given circle $O C P$, draw the tangent $O m$, and make $0 m$ equal to half the circumference of the circle. Divide the semicircle $O C P$ into
 any number of equal parts at the points A, B, C, etc., and divide $O m$ into the same number of equal parts at the points $a^{\prime}, b^{\prime}, c^{\prime}$, etc. At the points A, B, C, etc., draw tangents to the circle, and make $A a, B b, C o$, etc., equal to $O a^{\prime}, O b^{\prime}, O c^{\prime}$, etc., respectively. $P a b c \ldots m$ is a portion of the involute which may be extended to any length.
The normal to the involute at any point is the tangent to the circle from that point, and the centre of curvature at any point is the point of contact of the tangent from that point to the circle.
The Catenary.-The catenary is the curve in which a perfectly flexible and uniform cord hangs when suspended from two points.
A is the lowest point of the curve.
The curve is symmetrical about a vertical axus OAY. OX is a horizontal axis.
$O A=c . \quad P$ is any point on the curve, and its coordinates are x and y.

The equation to the curve is, $y={ }_{2}^{c}\left(e^{x}+e^{-\frac{x}{c}}\right)$ where e is the bace of the Naperiau system of logarithms.

The table below will faclitate the construc-
 tion of the curve.

The tangent and normal at $P .-P M$ is parallel to $O X . M Q$ is a tangent to the circle whose centre is O and radius $O A$. $P T$, the tangent to the curve at P, is parallel to $M Q . S P G$, the normal at P, is perpendicular to $P T$ '.
If $S P=P G$, then S is the centre of curvature of the curve at P.
The following are geometrical pioperties of the curve. If $N T$ is perpendicular to $P T^{\prime}$, then $N T=O A$, and the length $P T=$ length of the arc $A P$. Length of arc $A P=\sqrt{y^{2}-c^{2}}$. Alea of the figure $O A P N=$ twice the area of the triangle $P T N=0.1 \times$ length of $\operatorname{arc} A P$. If $A R K$ is parallel to $O X$, then $R T=R K$.

If $s=$ length of arc $A P$, then $s=\frac{c}{2}\left(r^{\frac{x}{c}} e^{-\frac{x}{c}}\right)$, and $x=c$ hyp. $\log . \frac{y+s}{c}$.

$\frac{x}{c}$	$\frac{y}{c}$	$\frac{x}{c}$	$\frac{\psi}{c}$	$\frac{x}{c}$	$\frac{y}{c}$	$\frac{x}{c}$	$\frac{y}{c}$
00	$1 \cdot 000$	1.0	1543	2.0	3.762	$3 \cdot 0$	$10 \cdot 07$
$0 \cdot 1$	$1 \cdot 005$	$1 \cdot 1$	$1 \cdot 669$	$2 \cdot 1$	$4 \cdot 144$	$3 \cdot 2$	12.29
$0 \cdot 2$	$1 \cdot 020$	1.2	1.811	$2 \cdot 2$	$4 \cdot 568$	$3 \cdot 4$	15.00
$0 \cdot 3$	1.045	13	1.971	$2 \cdot 3$	$5 \cdot 037$	$3 \cdot 6$	$18 \cdot 31$
$0 \cdot 4$	1.081	$1 \cdot 4$	$2 \cdot 151$	$2 \cdot 4$	$5 \cdot 557$	$3 \cdot 8$	$22 \cdot 36$
$0 \cdot 5$	$1 \cdot 128$	1.5	$2 \cdot 352$	$2 \cdot 5$	$6 \cdot 132$	$4 \cdot 0$	$27 \cdot 31$
$0 \cdot 6$	$1 \cdot 185$	16	2.577	2.6	6.769	45	45.01
0.7	$1 \cdot 255$	1.7	2.828	2.7	$7 \cdot 473$	$5 \cdot 0$	74.21
0.8	$1 \cdot 337$	1.8	$3 \cdot 108$	$2 \cdot 8$	$8 \cdot 253$	$5 \cdot 5$	122.35
0.9	1.433	1.9	$3 \cdot 418$	$2 \cdot 9$	$9 \cdot 115$	$6 \cdot 0$	$201 \cdot 72$

Proportions of Regular Polygons.
$n=$ number of sides.
$s=$ length of each side.
$R=$ radius of circumsciibing circle.
$r=$ radius of inscribed circle.
$A=$ area of polygon
${ }_{s}^{R}=\frac{1}{2} \operatorname{cosec} \frac{1 \times 0}{n} \quad{ }_{R}^{s}=2 \sin \begin{gathered}180 \\ n\end{gathered}$.
$r=\frac{1}{2} \cot . \frac{140}{n} . \quad \frac{s}{r}=2 \tan \cdot \frac{180}{n}$.
$s^{2}=\frac{n}{4}$ cot. $\frac{180}{n} . \quad \frac{A}{R^{2}}=\frac{n}{2} \sin .{ }_{n}^{360}$.

$$
\begin{aligned}
& A \\
& r^{2}=n \tan \cdot \begin{array}{c}
180 \\
r^{2} \\
A=\frac{1}{n} \cot \frac{180}{n}
\end{array} .
\end{aligned}
$$

Angle subtended at centre by one side in degrees $=\begin{gathered}360 \\ n\end{gathered}$.
Angle between adjacent sides, in degrees $=180-\frac{360}{n}$.

Rectangular Co-ordinates of a Point -The axes $O X$ and $O Y$ are at right angles to one another. The position of a point P in the plane of the axes is fixed by its distances x and y from the axes. x is called the abscissa, and y the ordinate of the point P. Together, x and y are called the co-ordinates of P. Distances to the right of $O Y$ are positive $(+)$, and those to the left are negative (-). Distances above $O X$ are positive. and those below are negative.

Oblique Co-ordinates of a Point.-The axes $O X$ and $O Y$ make any angle a with one another. The co-ordinates x and y are measured parallel to $O X$ and $O Y$ respectively.

Polar Co-ordinates of a Point.- $O X$ is a fixed line called the initial line. O is a fixed point called the pole. $O P=r$ is the radius vector of the point P. Angle $P O X=\theta$ is the vectorial angle. r and θ are the polar co ordinates of the point $P . \quad r$ is always positive. θ is positive when measured from $O X$ in the direction of the arrow, and negative when measured from $O X$ in
 the opposite direction.

In what follows the co-ordinates are rectangular.
Distance between two Points P and Q.- Co-ordinates of $P=x_{1}$ and y_{1}.

Co-ordinates of $Q=x_{2}$ and y_{2}.

$$
P^{\prime}()^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} .
$$

Co-ordinates of a Point R dividing a Straight Line $P Q$ in the ratio of n_{1} to n_{2}. - ('o-ordinates of $P=x_{1}$ and y_{1}.

Co-ordinates of $Q=x_{2}$ and $y /$.
Co-ordinates of $R=x$ and y.

$$
x=\frac{n_{1} x_{2}+n_{2} x_{1}}{n_{1}+n_{2}} . \quad y=\begin{gathered}
n_{1} y_{2}+n_{2} y_{1} \\
n_{1}+n_{2}
\end{gathered} .
$$

If R is the middle point of $P Q$, then $n_{1}=n_{2}$ and

$$
x=\frac{x_{1}+x_{2}}{2} . \quad y=\frac{y_{1}+y_{2}}{2}
$$

Area of a Triangle.-Co-ordinates of angular points, $x_{1} y_{1}, x_{2} y_{2}$, and $x_{3} y_{3}$. Area of triangle $=\frac{1}{2}\left\{y_{1}\left(x_{2}-x_{3}\right)+y_{2}\left(x_{3}-x_{1}\right)+y_{3}\left(x_{1}-x_{2}\right)\right\}$.

Equations to Lines, Straight or Curved.-An equation which expresses the relation between the co-ordinates of any point on a line is called the equation to that line.
Equation to a Straight Line. - x and y are the co-ordinates of any point P in the straight line $A B$.

$$
y=m x+b . \quad \text { Where } n=\tan . \theta \text {. }
$$

Another form of the equation is,

$$
\frac{x}{a}+\frac{y}{b}=1
$$

Equation to a Straight Line passing through two given Points P and Q.-Co-ordinates of $P=x_{1}$ and y_{1}.

Co-ordinates of $Q=x_{2}$ and y_{2}
x and y denote the co-ordinates of any point in the line passing through P and Q

Equation to line is, $y-y_{1}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\left(x-x_{1}\right)$.
Given the Equations to two Straight Lines to find the Coordinates of their Point of Intersection. - Given equations, $y=m_{1} x+b_{1}$ and $y=m_{2} x+b_{2}$. Treating these as simultaneous equations, and solving for x and y,

$$
x=\frac{b_{1}-b_{2}}{m_{2}-m_{1}}, \text { and } y=\begin{gathered}
b_{1} m_{2}-b_{2} m_{1} \\
m_{2}-m_{1}
\end{gathered} .
$$

These are the co-ordinates required.
Equation to a Straight Line passing through a given Point $x_{1} y_{1}$, and perpendicular to a given Line $y=m x+b$.

$$
\text { Equation required is, } y-y_{1}=-\frac{1}{m}\left(x-x_{1}\right) \text {. }
$$

The Perpendicular Distance of a given Point $x_{1} y_{1}$ from a given Line $y=m x+b$.

$$
\text { Distance }=\frac{y_{1}-m x_{1}-b}{\left.\sqrt{(1}+m^{2}\right)}
$$

Equation to a Circle.- a and b are the co-ordinates of the centre of the circle. x and y are the co-ordinates of any point P on the circumference. $r=$ radius of circle.

The equation to the circle is

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

If O the origin be taken at the centre of the circle, then $a=0$, and $b=0$, and the equation to the circle becomes $x^{2}+y^{2}=r^{2}$.
The general form of the equation to a circle is $x^{2}+y^{2}+A x+B y+C=0$.

This may be written in the form,

$$
\left(x+\frac{A}{2}\right)^{2}+\left(y+\frac{B}{2}\right)^{2}=\frac{A^{2}+B^{2}-4 C}{4}
$$

which shows that the radius of the circle is $\frac{1}{2} \sqrt{A^{2}+B^{2}-4 C}$, and that the co-ordinates of the centre are, $-\frac{A}{2}$ and, $-\frac{B}{2}$.

Equation to a Parabola. $-F$ is the focus. $A O=A F=a$.

$$
y^{2}=4 a(x-a) .
$$

If the origin O is at A, then $y^{2}=4 a x$.

Equation to an Ellipse. $-F$ is a focus, and $O K$ a directrix. Major axis $=2 a \quad$ Minor axis $=2 b$.
$O F=p . \quad \begin{aligned} & P F \\ & P K\end{aligned}=$ eccentricity of curve $=e$.

$$
y^{2}+(x-p)^{2}=e^{3} x^{2}
$$

If origin O is at A, then

$$
y^{2}=\left(1-e^{2}\right)\left(2 a x-x^{2}\right)
$$

If origin O is at C, then

$$
y^{2}=\left(1-e^{2}\right)\left(a^{2}-x^{2}\right), \text { or } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Equation to an Hyperbola. $-F$ is a focus, and $O K$ a directrix.
Transverse axis, $A A_{1}=2 a$.
Conjugate axis, $B B_{1}=2 b$.
$O F=p \cdot \frac{P F}{P} K=$ eccentricity of curve $=c$.

$$
y^{2}+(x-p)^{2}=e^{2} x^{2}
$$

If origin O is at A, then

$$
y^{2}=\left(e^{2}-1\right)\left(2 a x+x^{2}\right) .
$$

If origin O is at C, then

$$
y^{2}=\left(e^{2}-1\right)\left(x^{2}-a^{2}\right), \text { or } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Rankine's Rules for Lengths of Circular Arcs. - $A B$ is an arc of a circle whose centre is $0 . A C$ is a tangent to the arc at A. Produce the chord $B A$ to E, making $A E=$ half the chord $A B$. With centre E and radius $E B$ describe the arc $B C$, cutting the tangent $A C$ at C. $A C$ is approximately the length of the arc $A B$.

Make $A F=\frac{1}{4} A C$. With centre F and radius $F C$ describe the arc $C B$, cutting the $\operatorname{arc} A B$ at B. The length of the arc $A B$ is approximately the length of $A C$.

The errors in the above constructions increase as the angle $A O B$ increases. When the angle $A O B$ is 30°, the straight line $A C$ is shorter than the arc $A B$ by about $\frac{1}{4 \pi 50}$ of the length of the arc $A B$. When the angle $A O B$ is 60° the straight line $A C$ is shorter than the arc $A B$ by about $\frac{1}{b j \pi}$ of the length of the $\operatorname{arc} A B$.

The Helix or Screw Curve.-If a point moves on the surface of a circular cylinder so that its motion round the axis and its motion parallel to the axis are uniform, the path of the point is a helix. The pitch of the helix is the distance traversed by the point in the direction of the axis while it makes one complete revolution round the axis. From the definition of the helix it follows that if the point makes, say, 1-12th of a revolution it will advance along the cylinder a distance equal to 1-12th of the pitch. Hence the construction for drawing the helix shown in Fig. (a).

Fig. (b) shows the application of the construction of Fig. (a) to the drawing of a spiral spring of rectangular section.

On working drawings screw threads are represented in various
conventional ways. Fig (c) shows four different ways of representing a triangular screw thread on a bolt.

Development of the Surface of a Cylinder.-If the surface of a cylinder, whose ends are at right angles to its axis, be laid out flat, its shape will be a rectangle whose length is equal to the circumference of the cylinder, and whose width is equal to the length of the cylnder. The Fig. below shows two cylinders intersecting, one being vertical and the other horizontal.

$A B$ is the development of the surface of the vertical cylinder and $O D$ is the development of the surface of the horizontal cylinder. The curves $E F$ and $G H$ are the developments of inter sections of the horizontal with the vertical cylinder. The curves $K L M$ and $N O P$ are the developments of the intersections of the vertical with the horizontal cylinder. The distance from, say, 4 to 5 on $A B$ is equal to the length of the arc 45 on the plan of the vertical cylinder. The distance from, say, 4^{\prime} to 5^{\prime} on $C D$ is equal to the length of the arc $4^{\prime} 5^{\prime}$ on the elevation of the horizontal cylinder.

The upper curve on $A B$ is the development of the end of the surface of the vertical cylinder when the latter is bevelled off, as shown by the sloping straight line on the elevation.

Development of the Surface of a Cone.-If the surface of a right circular cone be laid out flat, a sector of a circle is obtained whose radius is equal to the length of the slant side of the cone and whose arc has a length equal to the circumference of the base of the cone. The annexed Fig. shows a right cone, with its axis vertical, intersected by a horizontal cylinder. The sector $0 V^{2} 0$ is the development of the surface of the cone. The curves $E F$ and $(x I I$ are the developments of the intersections of the cylinder with the cone. The length of, say, the arc 34 on the development is equal to the length of the arc 34 on the plan. The curve $A B C$ is the development of the upper end of a frustum of the cone.

GRAPHIC ARITHMETIC.

Representation of Numbers by Lines (Fig. 1).-If the line $A B$ be taken to represent the number onc, then a line $C D$ three times the length of $A B$ will represent the number three. Again, if $A B$ represents the number one, the number represented by the line $E F$ will be the number of times that $E F$ contains $A B$. In the above examples $A B$ is called the unit.

Ordinary drawing scales may be used in marking off lengths for numbers. For example, if the unit is a length equal to $\frac{3}{8}$ inch, a scale of $\frac{3}{8}$ inch to a foot would be suitable for measuring off lengths to represent the numbers.

Addition (Fig. 2).-To add a series of numbers together. Take a line $O X$ of indefinite length. Fix upon the unit, that is, decide what length shall represent the number one. Make $O A=$ the first number, $A B=$ the second number, $B C^{\prime}=$ the third number, and so on. From O to the last letter will be the answer.

Subtraction (Fig. 3).-From one number to subtract another.
$O A$ (measured to the right of O) $=$ first number. $A B$ (measured to the left of A) $=$ second number. $O B=$ answer. If $O B$ is to the reght of O the answer is poritive (+), but if $O B$ is to the left of O the answer is neyatue (-).

Addition and Subtraction Combined (Fig. 4) - To find the result of $a+b-c+d-e$. Make $O A=a, A B=b, B C^{\prime}=c, C D=d$, and $D E=e$, then $O E=a+b-c+d-e$. Note that in adding the lengths are measured to the right, and in subtracting they are measured to the left.

In Figs. (5) and (6) the angle $A O B$ may have any magnitude, but for convenience it should not be less than 30° or more than 90°. The lines $A B$ and $C D$ are parallel.

Proportion (Figs. 5 and 6).-OA :OB::OC: OD.
To find a fourth proportional to three given numbers. Make OA $=$ first number, $O B=$ second number, and $O C=$ third number. Join $A B$, and draw $C D$ parallel to $A B . O D=$ fourth proportional to the given numbers.

To find a mean proportional to two given numbers (Fig. 7). Make $O A=$ one number and $O C=$ the other number. On $A C$ describe a semicircle and draw $O B$ at right angles to $A C$, then $O A: O B:: O B: O C$, or $O B^{2}=O A \times O C$.

Multiplication (Figs. 5 and 6). $-O A: O B:: O C \cdot O D$, therefore $O A \times O D=O B \times O C$. Make $O B=$ the unit, then, $O A \times O D=1 \times O C=O C$.
To multiply one number by another. Make $O A=$ one number, $O D=$ the other number, and $O B=$ the unit. Join $A B$, and draw $D C$ parallel to $B A$. Answer $=O C$.
Division (Figs. 5 and 6).-OA:OB::OC:OD, therefore, $O A$
$O \bar{B}$
$=\frac{O C}{O D}$. Make $O B=$ the unit, then $\frac{O C}{O D}=\frac{O A}{1}=O A$.

T'o divide one number by another. Make $O C$ - the dividend, $O D=$ the divisor, and $O B=$ the unit. Join $C D$, and draw $B A$ parallel to $D C \quad$ Answer $=O A$

Square Root (lig. 7) -To find the square nont of a number. Make $O A=$ the number and $O C^{\prime}=$ the unit. On $A C^{\prime}$ deceribe a semicircle, and draw $O B$ at right angles to $A C$, then $O B=\sqrt{\prime} O A$.

To find $/\left(a^{2}-b^{2}\right)\left(\mathrm{F}_{1} \mathrm{k}\right)$. Draw a right-angled triancle, having the hypotenuse $=a$, and perpendicular $=b$, then the base $=$ $\sqrt{ }\left(a^{2}-b^{2}\right)$

Areas of Plane Figures.

Areas of Plane Figures (continued).

Simpson's Rule.

To find the arca of a plane figure the boundary line of which is curved, or partly curved.

Divide the figure into an even number of parallel strips of equal width by ordinates $0,1,2,3$, etc. There will be an odd number of ordinates. Approximate area of figure is found as

follows :-Add together the first ordinate (0), the last ordinate (6), four times the sum of the alternate ordinates 1,3 , etc., and twice the sum of the remaining ordinates; multiply the reunlt by one-third of the common distance between two adjacent ordinates.

The above rule does not give good results if any considerable part of the curve makes an acute angle with the ordinates as at (a). In such a case divide the figure into two parts by the ordinate $B C$, and use ordinates at right angles to $B C$ to find area of $A B C$.

The rule gives a more exact result the larger the number of ordinates.

Areas of Circles.

$D=$ diameter of circle. $A=$ area of circle.

$$
A=\frac{\pi}{4} I^{2}=\cdot 7 \times 539 \times I I^{2} . \quad \quad D=\frac{2 \sqrt{ } / A}{\sqrt{\prime} \pi}=1 \cdot 128379 \sqrt{ } A
$$

If the diameter is in inches, the area is in square inches. If the diameter is in feet, the area is in square fert.

The use of the tables of areas of circles may be extended by applying the following rule :-If the diameter be multiplied or divided by any number, the area must be multiplied or divided by the square of that number. Thus, Diameter $=D . \quad$ Area $=A$.

$$
\begin{array}{ll}
\text { Diameter }=n D . & \text { Area }=n^{2} A . \\
\text { Diameter }=\frac{D}{n} . & \text { Area }={ }_{n^{2}}^{A} .
\end{array}
$$

Areas of Small Circles.

(Diameters advancing by 64ths.)

am.	Area.	Diam.	Area.	Diam.	Area.	Diam.	Area.
$\frac{1}{64}$.00019	$\frac{17}{8}$	-05542	${ }^{8} 8$	$\cdot 20881$	${ }^{\frac{8}{4}}$	$\cdot 46039$
$5{ }^{3} \frac{3}{3}$	$\cdot 00077$	${ }^{\frac{9}{32}}$	-06213	${ }^{1 \frac{17}{3}}$	-22166	$\frac{25}{3}$	-47937
${ }^{3} 8$	-00173		-06922	$\frac{85}{84}$	-23489		- 49874
$\frac{1}{18}$	-00307	${ }_{5}^{56}$	$\cdot 07670$	${ }^{\text {P }}$	$\cdot 24850$	$\frac{13}{18}$	$\cdot 51849$
${ }^{6} 4$	-00479		$\cdot 08456$	$\frac{3}{67}$	$\cdot 26250$		$\cdot 53862$
$\frac{3}{32}$.00690	$\frac{1}{3 \frac{1}{2}}$. 092818	$\frac{18}{8}$	$\cdot 27688$	$5_{5} 5^{\frac{2}{3}}$	-55914
	-009427		-10143	${ }^{\frac{3}{84}} \frac{8}{85}$	- 29165	${ }_{8}^{85}$	-58004
$\frac{9}{84}$	-01553	$\frac{2 \pi}{8}$	-11984	41	-32233		-62299
$\frac{5}{3}$	-01917	$\frac{18}{3}$	$\cdot 12962$	$\frac{21}{32}$	-33824	$\frac{29}{32}$	-64504
$\frac{1}{8}$	-02320	${ }_{6}^{27}$	-13978	$4{ }^{4}$	$\cdot 35454$	$\frac{8}{89}$	-66747
${ }^{\frac{3}{16}}$	-02761	${ }^{7} 8$	$\cdot 15033$	$\frac{13}{17}$	- 37122	$\frac{18}{18}$	-69029
${ }^{\frac{13}{4}}$. 03241	299 ${ }^{\frac{1}{4}}$	$\cdot 16126$	${ }^{4} \frac{5}{4}$	-38829	${ }^{81}$. 71349
${ }^{15}{ }^{\frac{7}{32}}$.03758	$3^{\frac{15}{85}}$	- 1725427	$4^{\frac{23}{83}}$	-40574		$\cdot 73708$
${ }^{\frac{15}{8}}$.04314	$\frac{31}{81}$	-18427	動	-42357	${ }^{\frac{6}{88}}$.76105 .78540

Areas of Circles.

(Diameters advancing by 32nds.)

Diam	0			3	1	5	Diam.
		78540	$3 \cdot 1416$	7.06×6	12:566	19•6:35	
$\frac{1}{512}$	$\cdot 00077$	83525	$3 \cdot 2405$	$7 \cdot 2166$	12.763	$19 \cdot 881$	$3^{\frac{1}{2}}$
${ }^{1 / 8}$	$\cdot 00307$	-88664	$3 \cdot 3410$	$7 \cdot 3662$	$12 \cdot 962$	$20 \cdot 129$	$1{ }^{10}$
3^{3}	-00690	-93956	$3 \cdot 4430$	7:5173	$13 \cdot 162$	20:378	
$\frac{1}{8}$	01227	-99402	3-5466	76699	13364	$20 \cdot 629$	$\frac{1}{8}$
${ }^{3}{ }^{6} 2$	-01917	1 r 500	3•6516	7×241	$13 \cdot 567$	20.881	$\frac{5}{37}$
$1^{3} 5$	-02761	1-1075	3.7583	$7 \cdot 9798$	13•772	$21 \cdot 135$	$\frac{3}{6}$
3^{7}	-03758	$1 \cdot 1666$	3.8664	$8 \cdot 1370$	$13 \cdot 978$	21:391	
4	-04909	$1 \cdot 2272$	3.9761	$8 \cdot 2958$	$14 \cdot 186$	21.648	$\frac{1}{4}$
$5^{3} 8$	06213	$1 \cdot 2893$	$4 \cdot 0473$	$8 \cdot 1561$	$14 \cdot 396$	$21 \cdot 906$	
${ }^{5} 8$	$\cdot 07670$	$1 \cdot 3530$	$4 \cdot 2000$	$8 \cdot 6179$	$11 \cdot 607$	$22 \cdot 166$	${ }^{5}$
312	-09281	$1 \cdot 4182$	$4 \cdot 3143$	$8 \cdot 7 \times 13$	$14 \cdot 819$	$22 \cdot 428$	
8	-11045	$1 \cdot 4849$	$4 \cdot 4301$	¢ 9462	15.033	$22 \cdot 691$	\%
$\frac{13}{3}$	-12962	1.5532	$4: 5475$	$9 \cdot 1126$	$15 \cdot 249$	$22 \cdot 955$	
${ }^{7}{ }^{78}$	-15033	$1 \cdot 6230$	4.6664	9.2806	$15 \cdot 466$	$23 \cdot 221$	
$\frac{1}{3}$	- 17257	1-6943	4.7868	$9 \cdot 4501$	$15 \cdot 684$	$23 \cdot 489$	
$\frac{1}{2}$	-19635	1.7671	4.9087	9.6211	$15 \cdot 904$	23.758	$7^{\frac{7}{2}}$
${ }^{\frac{17}{3}}$	- 22166	1.8415	5.0322	97937	$16 \cdot 126$	24.029	
$\frac{9}{18}$	$\cdot 24850$	$1 \cdot 9175$	$5 \cdot 1572$	$9 \cdot 9678$	$16 \cdot 349$	$24 \cdot 301$	$\stackrel{9}{16}$
$\frac{1}{3} \frac{1}{2}$	-27688	1.9949	$5 \cdot 2838$	$10 \cdot 143$	16:574	24.575	
$\frac{5}{8}$	-30680	2.0739	$5 \cdot 4119$	10321	16800	$24 \cdot 850$	$\frac{5}{8}$
13 $\frac{2}{3}$	-33824	$2 \cdot 1545$	$5 \cdot 5415$	$10 \cdot 499$	17.028	$\underline{95 \cdot 127}$	${ }_{3}^{2 \frac{2}{2}}$
$1 \frac{1}{6}$	-37122	$2 \cdot 2365$	56727	10.680	$17 \cdot 2.57$	$25 \cdot 406$	$1 \frac{1}{8}$
$\frac{2}{3} \frac{3}{2}$	-40574	2:3201	$5 \cdot 8053$	$10 \cdot 861$	17488	$25 \cdot 686$	
3	44179	$2 \cdot 4053$	5.9396	11.045	17.721	$25 \cdot 967$	${ }^{\frac{3}{4}}$
$1{ }^{\frac{25}{3}}$	$\cdot 47937$	$2 \cdot 4920$	$6 \cdot 0753$	11.230	17.954	26.250	
13	. 51849	2:5802	6.2126	$11 \cdot 416$	$18 \cdot 190$	26.535	$27^{\frac{13}{18}}$
㗔	-55914	26699	$6 \cdot 3514$	11.604	$18 \cdot 427$	$26 \cdot 821$	${ }_{3} \frac{27}{2}$
7	-60132	2.7612	$6 \cdot 4918$	11.793	18.665	$27 \cdot 109$	\%
${ }^{\frac{2}{39}}$	$\cdot 64504$	$2 \cdot 8540$	$6 \cdot 6337$	11.984	$18 \cdot 906$	$27 \cdot 398$	
$1{ }^{18}$	$\cdot 69029$	$2 \cdot 9483$	6.7771	$12 \cdot 177$	$19 \cdot 147$	27.688	${ }^{\frac{18}{18}}$
${ }^{81}$	$\cdot 73708$	3.0442	$6 \cdot 9221$	$12 \cdot 371$	$19 \cdot 390$	$27 \cdot 981$	31
Dlam.	0	1	2	3	4	5	Diam.

AREAS OF CIRCLES

Areas of Circles.

(Diameters advancing by Eightis.)

Areas of Circles.

(Diameters advancing by Eighths.)

D.	$\cdot()$							7/8
36					$1046: 3$		$1060 \cdot 7$	
37	1075.2	10×2 \%	$1089 \cdot 8$	$1097 \cdot 1$	1104.5	1111.8	$1119 \cdot 2$	$1126 \cdot 7$
38	$1134 \cdot 1$	11416	1149	$1156 \cdot 6$	1164.2	$1171 \cdot 7$	11793	1186.9
39	1194.6	$1202 \cdot 3$	12100	$1217 \cdot 7$	12254	12333	1241	1248
40	$1256 \cdot 6$	1264\%	127\% 4	$1280 \cdot 3$	1288.2	12966	13304.2	1312.2
41	132	132	13:3	13			1369.()	1377.2
42	1.3854	139337	$1102 \cdot 0$	1410:3	1418.t	14270	14:3\% - 1	$1443 \cdot 8$
$4: 3$	$1452 \cdot 2$	$1460 \cdot 7$	$1469 \cdot 1$	1477 .	14	$1494 \cdot 7$	1503	1511.9
44	1520 5	$1529 \cdot 2$	1537.9	1546	1555\%3	1564*)	15	$1581 \cdot 6$
45	$1500 \cdot 4$	16993	16082	$1617 \cdot 0$	$1626 \cdot 0$	1634.9	16	1652.9
46	16619	$1670 \cdot 9$	$1680 \cdot 0$	1	169*.2	$1707 \cdot 4$	1716.5	$1725 \cdot 7$
47	$1734 \cdot 9$	$1744 \cdot 2$	1753:	1762.7	1772-1	1781.4	$1790 \cdot 8$	$1800 \cdot 1$
48	$1809 \cdot 6$	18190	1828:	$1837 \cdot 9$	$1817 \cdot 5$	1857.0	186	$1876 \cdot 1$
49	$1885 \cdot 7$	1895.4	19050	$1914 \cdot 7$	$1924 \cdot 4$	1934.2	1943	$1953 \cdot 7$
50	19635	$1973 \cdot 3$	$1983 \cdot 2$	$1993 \cdot 1$	200.3.0	20129	$2022 \cdot 6$	$2032 \cdot 8$
51	2042•8	$2052 \cdot 8$	$2062 \cdot 9$	$2073 \cdot 0$	$2083 \cdot 1$	2093*2	2103:3	2113.
52	$2123 \cdot 7$	$2133 \cdot 9$	$2144 \cdot 2$	2154.5	2164•8	$2175 \cdot 1$	2185	$2195 \cdot 8$
5	$2206 \cdot 2$	$2216 \cdot 6$	22270	$2237 \cdot 5$	22480	225 5	2269	2279.6
54	$2290 \cdot 2$	$2300 \cdot 8$	2311-5	2322-1	2332-8	2343\%	2354	2365.0
55	$2375 \cdot 8$	$2386 \cdot 6$	$2397 \cdot 5$	$2408 \cdot 3$	$2419 \cdot 2$	$2430 \cdot 1$	2441	
56	2463*	$2474 \cdot 0$	2485.0	249	25	$2518 \cdot 3$		25406
57	2551-X	$2563 \cdot 0$	$2574 \cdot 2$	258	25	$2608 \cdot 0$	2	$2630 \cdot 7$
58	$2642 \cdot 1$	$2653 \cdot 5$	$2664 \cdot 9$	$2676 \cdot 4$	$2687 \cdot 8$	$2699 \cdot 3$	$2710 \cdot 9$	$2722 \cdot 4$
59	2734.0	2745.6	$2757 \cdot 2$	$2768 \cdot 8$	27805	2792.2	2803	$2815 \cdot 7$
60	$2827 \cdot 4$	$2839 \cdot 2$	$2851 \cdot 0$	$2862 \cdot 9$	28748	$2886 \cdot 6$	28	- 5
61	2922•5	$2934 \cdot 5$	$2946 \cdot 5$	$2958 \cdot 5$	$2970 \cdot 6$	2982.7	2994. X	$3006 \cdot 9$
62	$3019 \cdot 1$	$3031 \cdot 3$	$3043 \cdot 5$	$3055 \cdot 7$	$3068{ }^{\circ}$	3080:3	30926	$3104 \cdot 9$
63	3117.2	3129.6	$3142 \cdot 0$	$3154 \cdot 5$	$3166 \cdot 9$	$3179 \cdot 4$	$3191 \cdot 9$	$3204 \cdot 4$
64	3217*)	3229.6	$3242 \cdot 2$	$3254 \cdot 8$	3267•5	3280•1	$3292 \cdot 8$	3305.6
65	$3318 \cdot 3$	3331	$3343 \cdot 9$	3356.7	$3369 \cdot 6$	$3382 \cdot 4$	$3395 \cdot 3$	3408-2
66	$3421 \cdot 2$	343	$447 \cdot 2$	34602	3473 2	3486.3	$3499 \cdot 1$	$3512 \cdot 5$
67	3525.7	3538.8	3552.0	3565.2	$3578 \cdot 5$	3591.7	$3605 \cdot 0$	$3618 \cdot 3$
68	$3631 \cdot 7$	3645.0	$3658 \cdot 4$	$3671 \cdot 8$	$3685 \cdot 3$	$3698 \cdot 7$	$3712 \cdot 2$	$3725 \cdot 7$
69	$3739 \cdot 3$	$3752 \cdot 8$	$3766 \cdot 4$	3780\%	3793.7	$3807 \cdot 3$	$3821{ }^{\circ} 0$	$3834 \cdot 7$
70	$3848 \cdot 5$	$3862 \cdot 2$	$3876 \cdot 0$	$3889 \cdot 8$	$3903 \cdot 6$	$3917 \cdot 5$	$3931 \cdot 4$	$3945 \cdot 3$
D.	- 0	1/8	1/4	$3 / 8$	$1 / 2$	78	$3 / 4$	7/8

Areas of Circles.

(Diameters advancing by Eighths.)

D.	$\cdot 0$	1/8	1/4	3/8	1/2	58	$3 / 4$	7/8
71	$3959 \cdot 2$	3973•1	$3987 \cdot 1$	$4001 \cdot 1$	40152	4029.2	4043:3	$4057 \cdot 4$
72	4071-5	$4085 \cdot 7$	$4099 \cdot 8$	41140	4128.2	$4142 \cdot 5$	$4156 \cdot 8$	4171.1
73	$4185 \cdot 4$	4199.7	4214.1	$4228 \cdot 5$	$4242 \cdot 9$	$4257 \cdot 4$	$4271 \cdot 8$	$4286 \cdot 3$
74	$4300 \cdot 8$	$4315 \cdot 4$	4329.9	43415	$4359 \cdot 2$	$4373 \cdot 8$	$4388 \cdot 5$	$4403 \cdot 2$
75	4417:9	$4432 \cdot 6$	$4447 \cdot 4$	$4462 \cdot 2$	$4477 \cdot 0$	$4491 \cdot 8$	$4506 \cdot 7$	4521.5
7	4536.5	$4551 \cdot 4$	$4566 \cdot 4$	$4581 \cdot 3$	$4596 \cdot 3$	$4611 \cdot 4$	4626.4	$4641 \cdot 5$
77	$4656 \cdot 6$	4671.8	$4686 \cdot 9$	$4702 \cdot 1$	4717:3	$4732 \cdot 5$	4747•	$4763 \cdot 1$
78	$4778 \cdot 4$	4793.7	4809.0	48244	$4839 \cdot 8$	4855.2	$4870 \cdot 7$	4886.2
79	$4901 \cdot 7$	4917.2	4932.7	4948:3	$4963 \cdot 9$	$4979 \cdot 5$	$4995 \cdot$	5010.9
80	5026:5	50423	$5058 \cdot 0$	$5073 \cdot 8$	$5089 \cdot 6$	5105^{4}	$5121 \cdot 2$	5137
81	5153.0	$5168 \cdot 9$	5181.9	$5200 \cdot 8$	5216:8	$5232 \cdot 8$	5248.9	$5264 \cdot 9$
82	$5281 \cdot 0$	52971	$5313 \cdot 3$	$5329 \cdot 4$	$5345 \cdot 6$	$5361 \cdot 8$	$5378 \cdot 1$	$5394 \cdot 3$
83	$5410 \cdot 6$	5426:9	5143:3	$5459 \cdot 6$	5476.0	$5492 \cdot 4$	$5508 \cdot 8$	552
84	$5541 \cdot 8$	5558.3	5574.8	$5591 \cdot 4$	$5607 \cdot 9$	5624-5	5641.2	5657
85	$5674 \cdot 5$	$5691 \cdot 2$	5707:9	$5724 \cdot 7$	5741	575	57	
8	$5808 \cdot 8$	$5825 \cdot 7$	$5842 \cdot 6$	5859.6	5876.5	5893.5	$5910 \cdot 6$	$5927 \cdot 6$
87	5944.7	5991-8	$5978 \cdot 9$	5996.0	$6013 \cdot 2$	$6030 \cdot 4$	$6047 \cdot 6$	$6064 \cdot 9$
88	6082•1	6099•4	6116.7	6134 1	$6151 \cdot 4$	$6168 \cdot 8$	$6186 \cdot 2$	$6203 \cdot 7$
89	$6221 \cdot 1$	$6238 \cdot 6$	$6256 \cdot 1$	$6273 \cdot 7$	$6291 \cdot 2$	6308.8	$6326 \cdot 4$	$6344 \cdot 1$
90	$6361 \cdot 7$	$6379 \cdot 4$	$6397 \cdot 1$	6414	6432	6450	646	
91	$6503 \cdot 9$	$6521 \cdot 8$	$6539 \cdot 7$	65576	$6575 \cdot 6$	$6593 \cdot 5$	$6611 \cdot 5$	$6629 \cdot 6$
92	$6647 \cdot 6$	$6665 \cdot 7$	$6683 \cdot 8$	$6701 \cdot 9$	6720•1	$6738 \cdot 2$	$6756 \cdot 4$	$6774 \cdot 7$
93	$6792 \cdot 9$	$6811 \cdot 2$	$6829 \cdot 5$	$6847 \cdot 8$	$6866 \cdot 1$	$6884 \cdot 5$	$6902 \cdot 9$	$6921 \cdot 3$
94	6939•8	69582	$6976 \cdot 7$	6995-3	70138	$7032 \cdot 4$	$7051 \cdot 0$	706
95	$7088 \cdot 2$	7106:9	7125.6	714	7163.	71	720	
96	$7238 \cdot 2$	$7257 \cdot 1$	7276.0	$7294 \cdot 9$	$7313 \cdot 8$	$7332 \cdot 8$	$7351 \cdot 8$	$7370 \cdot 8$
97	$7389 \cdot 8$	$7408 \cdot 9$	$7428 \cdot 0$	7447-1	$7466 \cdot 2$	$7485 \cdot 3$	7504-5	$7523 \cdot 7$
98	$7543 \cdot 0$	$7562 \cdot 2$	7581.5	$7600 \cdot 8$	$7620 \cdot 1$	$7639 \cdot 5$	$7658 \cdot 9$	7678:3
99	$7697 \cdot 7$	7717-1	7736.6	$7756 \cdot 1$	$7775 \cdot 6$	$7795 \cdot 2$	$7814 \cdot 8$	$7834 \cdot 4$
100	7854.0	$7873 \cdot 6$	$7893 \cdot 3$	$7913 \cdot$	$7932 \cdot 7$	7952.5	$7972 \cdot 2$	7992.0
101	$8011 \cdot 8$	$8031 \cdot 7$	$8051 \cdot 6$	$8071 \cdot 4$	$8091 \cdot 4$	$8111 \cdot 3$	8131.3	$8151 \cdot 3$
102	$8171 \cdot 3$	$8191 \cdot 3$	$8211 \cdot 4$	$8231 \cdot 5$	$8251 \cdot 6$	8271.7	8291.9	$8312 \cdot 1$
103	$8332 \cdot 3$	$8352 \cdot 5$	8372-8	$8393 \cdot 1$	$8413 \cdot 4$	8433.7	$8454 \cdot 1$	$8474 \cdot 5$
104	$8494 \cdot 9$	$8515 \cdot 3$	$8535 \cdot 8$	8556.2	8576.7	$8597 \cdot 3$	$8617 \cdot 8$	8638
105	$8659 \cdot 0$	$8679 \cdot 6$	$8700 \cdot 3$	8721.0	8741.7	$8762 \cdot 4$	$8783 \cdot 2$	880
D.	. 0	1/8	4	3/8	1/2	5/8	3/4	7/8

Areas of Circles. (Diameters advancing by Tenths.)

Diam.	- 0	$\cdot 1$	$\cdot 2$	$\cdot 3$	$\cdot 4$	-5	$\cdot 6$	- 7	$\cdot 8$	$\cdot 9$	Diam.
1	$\cdot 785398$.950332	1-13097	$1 \cdot 32732$	1.53938	$1 \cdot 76715$	$2 \cdot 01062$	$2 \cdot 26980$	254469	$2 \cdot 83529$	1
2	$3 \cdot 14159$	3-46361	3-80133	$4 \cdot 15476$	$4 \cdot 52389$	$4 \cdot 90874$	5-30929	$5 \cdot 72555$	$6 \cdot 15752$	$6 \cdot 60520$	2
3	7.06858	7-54768	8.04248	8-55298	9.07920	$9 \cdot 62113$	$10 \cdot 1788$	10.7521	$11 \cdot 3411$	11.9459	3
4	$12 \cdot 5664$	$13 \cdot 2025$	$13 \cdot 8544$	$14 \cdot 5220$	$15 \cdot 2053$	$15 \cdot 9043$	16.6190	$17 \cdot 3494$	$18 \cdot 0956$	$18 \cdot 8574$	4
8	. $19 \cdot 6350$	20-4282	$21 \cdot 2372$	22.0618	$22 \cdot 9022$	23•7583	$24 \cdot 6301$	$25 \cdot 5176$	$26 \cdot 4208$	27.3397	5
6	28.2743	$29 \cdot 2247$	$30 \cdot 1907$	31-1724	32-1699	$33 \cdot 1831$	34-2119	$35 \cdot 2565$	36.3168	37-3928	6
7	$38 \cdot 4845$	39-5919	$40 \cdot 7150$	$41 \cdot 8539$	$43 \cdot 0084$	$44 \cdot 1786$	$45 \cdot 3646$	$46 \cdot 5663$	47-7836	$49 \cdot 0167$	7
8	50.2655	51.5300	$52 \cdot 8102$	54-1061	$55 \cdot 4177$	56.7450	$58 \cdot 0880$	594468	$60 \cdot 8212$	62.2114	8
9	$63 \cdot 6172$	65.0388	$66 \cdot 4761$	67.9291	$69 \cdot 3978$	70.8822	$72 \cdot 3823$	$73 \cdot 8981$	75.4296	76.9769	9
10	$78 \cdot 5398$	80-1184	$81 \cdot 7128$	83-3229	$84 \cdot 9486$	86.5901	88.2473	$89 \cdot 9202$	91.6088	$93 \cdot 3131$	10
11	95.0332	96.7689	$98 \cdot 5203$	$100 \cdot 287$	$102 \cdot 070$	103•869	$105 \cdot 683$	107-513	$109 \cdot 359$	$111 \cdot 220$	11
12	113.097	114.990	116.899	$118 \cdot 823$	$120 \cdot 763$	$122 \cdot 718$	124690	$126 \cdot 677$	$128 \cdot 680$	$130 \cdot 698$	12
13	$132 \cdot 732$	$134 \cdot 782$	$136 \cdot 848$	$138 \cdot 929$	$141 \cdot 026$	$143 \cdot 139$	$145 \cdot 267$	147411	$149 \cdot 571$	151.747	13
14	\| $153 \cdot 938$	$156 \cdot 145$	$158 \cdot 368$	$160 \cdot 606$	$162 \cdot 860$	$165 \cdot 130$	$167 \cdot 415$	$169 \cdot 717$	$172 \cdot 034$	$174 \cdot 366$	14
15	$176 \cdot 715$	$179 \cdot 079$	$181 \cdot 458$	$183 \cdot 854$	186-265	$188 \cdot 692$	$191 \cdot 134$	193.593	196.067	198.556	15
16	201.062	203583	206 120	$208 \cdot 672$	211.241	213•825	216.424	$219 \cdot 040$	221-671	224-318	16
17	226.980	$229 \cdot 658$	$232 \cdot 352$	$235 \cdot 062$	$237 \cdot 787$	240:528	$243 \cdot 285$	246.057	$248 \cdot 846$	251.649	17
18	254.469	257304	260-155	263.022	$265 \cdot 904$	268•802	271.716	$274 \cdot 646$	277•591	280.552	18
19	$283 \cdot 529$	$286 \cdot 521$	$289 \cdot 529$	$292 \cdot 553$	295•592	$298 \cdot 648$	301.719	304-805	$307 \cdot 907$	$311 \cdot 025$	19
20	314•159	317•309	$320 \cdot 474$	$323 \cdot 655$	326.851	$330 \cdot 064$	333-292	$336 \cdot 535$	$339 \cdot 795$	$343 \cdot 070$	20
Diam.	$\cdot 0$	$\cdot 1$	$\cdot 2$	$\cdot 3$	$\cdot 4$	-5	$\cdot 6$	$\cdot 7$	$\cdot 8$	$\cdot 9$	Diam.

Areas of Circles. (Diameters advancing by Tenths.)

Diam.	0	$\cdot 1$	$\cdot 2$	3	'4	$\cdot 5$	$\cdot 6$	7	$\bigcirc 8$	$\cdot 9$	Diam.
21	$346 \cdot 361$	$349 \cdot 667$	352.989	356.327	359681	363.050	$366 \cdot 435$	$369 \cdot 836$	373253	376685	21
22	$380 \cdot 133$	383.596	$387 \cdot 076$	$390 \cdot 571$	394081	397.608	$401 \cdot 150$	404.708	408.281	$411 \cdot 871$	22
23	415.476	419.096	$422 \cdot 733$	426385	$430 \cdot 053$	433.736	$437 \cdot 435$	441150	$444 \cdot 881$	$448 \cdot 627$	23
24	$452 \cdot 389$	$456 \cdot 167$	459.961	$463 \cdot 770$	$467 \cdot 595$	471.435	475292	479.164	$483 \cdot 051$	48695.5	24
25	$490.87 \pm$	$494 \cdot 809$	$498 \cdot 759$	$502 \cdot 726$	$506 \cdot 707$	$510 \cdot 705$	514.i19	518.74	522.792	526.853	25
26	530929	535.021	$539 \cdot 129$	543.252	$547 \cdot 391$	551.546	555•716	559.902	$564 \cdot 104$		26
27	572.555	576-804	581.069	Ј85.349	$589 \cdot 646$	$593 \cdot 957$	$598 \cdot 2 \times 5$	602.628	606.987	611-362	27
28	$615 \cdot 752$	$620 \cdot 158$	$624 \cdot 580$	$629 \cdot 018$	$633 \cdot 471$	637.940	642424	616.925	6a1-441	$655 \cdot 972$	28
29	$660 \cdot 520$	665.083	$669 \cdot 662$	$674 \cdot 256$	$678 \cdot 867$	683493	$6 \times 8 \cdot 134$	692792	$697 \cdot 465$	$702 \cdot 154$	29
30	706858	711:579	716.314	721.066	725.834	730617	735.415	740230	$745 \cdot 060$	749.906	30
31	754.768	759.645	$764 \cdot 538$	$769 \cdot 447$	774.371	779311	$784 \cdot 267$	$789 \cdot 239$	79 ± 226	$799 \cdot 229$	31
32	$804 \cdot 248$	$809 \cdot 282$	814.332	819.398	$824 \cdot 479$	829.57\%	$83+690$	$839 \cdot 61 \times$	844.963	850.123	32
33	855.298	$860 \cdot 490$	$865 \cdot 697{ }^{1}$	870.920	$876 \cdot 159$	$881 \cdot 413$	$886 \cdot 683$	891.969	897.270	902-587	33
34	907.920	913.269	$918 \cdot 633$	$924 \cdot 013$	929 409	934.820	$940 \cdot 247$	94.) 690	$951 \cdot 148$	956.623	34
35	$962 \cdot 113$	967-618	973•140	978.677	984.229	9×9.798	$995: 3 \times 2$	'1000.98	1006.60	1012.23	35
36	1017.88	1023.54	1029•22	$1034 \cdot 91$	$1040 \cdot 62$	1046-35	105209	1057•84	1063.62	$1069 \cdot 11$	36
37	$1075 \cdot 21$	1081.03	108687	1092.72	1098-58	110447	111036	1116.2	$11192 \cdot 21$	1128•15	37
38	$1134 \cdot 11$	$1140 \cdot 09$	1146.08	115209	$1158 \cdot 12$	116416	1170.21	$1176 \cdot 28$	118237	$1188 \cdot 77$	38
39	$1194 \cdot 59$	$1200 \cdot 72$	$1206 \cdot 87$	1213.04	1219.22	$1225 \cdot 42$	1231.63	$1237 \cdot 66$	$1244 \cdot 10$	$1250 \cdot 36$	39
40	125664	1262.93	$1269 \cdot 23$,1275.56	1281.90	$1288 \cdot 25$	129462	$1301 \cdot 00$	$1307+11$	$1313 \cdot 82$	40
Dism.	$\cdot 0$	$\cdot 1$	$\cdot 2$	3	$1 \cdot 4$	- 5	$\cdot 6$	-7	- 8	$\cdot 9$	Diam

Areas of Circles．（Diameters advancing by Tenths．）

䣷				息
\％		10 		9
$\stackrel{\infty}{\square}$		 		∞
\bigcirc		両 		\div
\bullet		स 		9
10				9
＊	$\dot{\sim} \dot{\sim} \dot{\sim} \dot{0} \dot{0}$ －－～～～			\pm
\cdots				$\stackrel{\square}{9}$
¢				9
7	응 －잉ㄷ 꾺 いーがい		－NOM 동 キ㑒 た NGNGN	\cdots
\bigcirc	오 숭 ๗om －－－－	 		\bigcirc
曾				昜

Areas of Circles. (Diameters advancing by Tenths)

Areas of Circles.

Diam.			$\cdot 2$	$\cdot 3$	-4	$\cdot 5$	$\cdot 6$	$\cdot 7$	- 8	$\cdot 9$	Diam.
81	5153.00	$5165 \cdot 73$	517848	$5191 \cdot 24$	520402	5216.81	$5229 \cdot 62$	$5242 \cdot 45$	5255.29	5268•14	81
82	5281.02	5293 91	530681	5319•73	5332•67	$5345 \cdot 62$	$5358 \cdot 58$	$5371 \cdot 57$	$5384 \cdot 56$	$5397 \cdot 58$	82
83	$5410 \cdot 61$	5423-65	$5436 \cdot 71$	$5449 \cdot 79$	5162-88	5475.99	$5489 \cdot 12$	5502•26	$5515 \cdot 41$	5528.58	83
84	$5541 \cdot 77$	5554•97	5568-19	$5581 \cdot 42$	$5594 \cdot 67$	$5607 \cdot 94$	$5621 \cdot 22$	$5634 \cdot 52$	$5647 \cdot 83$	$5661 \cdot 16$	84
85	5674.50	$5687 \cdot 86$	5701-24	5714.63	5728.03	$5741 \cdot 46$	5754.89	576835	$5781 \cdot 82$	$5795 \cdot 30$	85
86	$5808 \cdot 80$	5822 32	5835-85	584940	$5862 \cdot 97$	5876.55	$5890 \cdot 14$	5903•75	5917.38	$5931 \cdot 02$	86
87	$5944 \cdot 68$	5958-35	5972•04	5985•\%	$5999 \cdot 47$	601320	$6026 \cdot 96$	$6040 \cdot 72$	$6054 \cdot 51$	6068.31	87
88	6082-12	$6095 \cdot 95$	6109-80	6123'66	$6137 \cdot 54$	$6151 \cdot 43$	$6165 \cdot 34$	$6179 \cdot 27$	6193 21	6207 $\cdot 17$	88
89	6221-14	$6235 \cdot 13$	$6249 \cdot 13$	$6263 \cdot 15$	$6277 \cdot 18$	6291 24	$6305 \cdot 30$	$6319 \cdot 38$	$6333 \cdot 48$	$6347 \cdot 60$	89
90	6361-72	$6375 \cdot 87$	$6390 \cdot 03$	$6404 \cdot 21$	$6418 \cdot 40$	6432 61	$6446 \cdot 83$	$6461 \cdot 07$	$6475 \cdot 32$	648960	90
91	6503•88	$6518 \cdot 18$	6532-50	$6546 \cdot 84$	$6561 \cdot 18$	6575.55	658993	$6604 \cdot 33$	6618.74	$6633 \cdot 17$	91
92	$6647 \cdot 61$	$6662 \cdot 07$	$6676 \cdot 54$	$6691 \cdot 03$	$6705 \cdot 54$	$6720 \cdot 06$	$6734 \cdot 60$	$6749 \cdot 15$	676372	$6778 \cdot 31$	92
93	6792-91	$6807 \cdot 52$	6822•16	6836-80	$6551 \cdot 47$	$6866 \cdot 15$	$68 \times 0 \cdot 84$	$6895 \cdot 55$	6910.28	$6925 \cdot 02$	93
94	$6939 \cdot 78$	$6954 \cdot 55$	$6969 \cdot 34$	$6984 \cdot 14$	6998-97	7013•80	7028.65	7043•52	$7058 \cdot 40$	$7073 \cdot 30$	94
95	7088-22	7103•15	$7118 \cdot 09$	$7133 \cdot 06$	$7148 \cdot 03$	$7163 \cdot 03$	717804	$7193 \cdot 06$	7208•10	7223•16	95
96	+ 7238-23	7253'32	$7268 \cdot 42$	$7283 \cdot 54$	7298.67	7313-82	7328.99	$7344 \cdot 17$	$7359 \cdot 37$	737438	96
97	$7389 \cdot 81$	7405•06	$7420 \cdot 32$	7435-59	$7450 \cdot 88$	$7466 \cdot 19$	$7481 \cdot 51$	749685	7512.21	7527-58	97
98	7542.96	$7558 \cdot 37$	$7573 \cdot 78$	$7589 \cdot 22$	$7604 \cdot 66$	$7620 \cdot 13$	7635 61	$7651 \cdot 10$	766662	7682 14	98
99	$7697 \cdot 69$	$7713 \cdot 25$	7728-82	7744.41	$7760 \cdot 02$	7775.64	$7791 \cdot 27$	$7806 \cdot 93$	7822 60	7838.28	99
100) 7853.98	$7869 \cdot 70$	7885.43	$7901 \cdot 17$	$7916 \cdot 94$	7932-72	$7948 \cdot 51$	$7964 \cdot 32$	$7980 \cdot 15$	7995-99	100
Diam.	${ }^{\circ} 0$	$\cdot 1$	'2	$\bullet 3$	$\cdot 4$	$\cdot 5$	$\bullet 6$	$\cdot 7$	$\cdot 8$	$\cdot 9$	Diam.

Area of a Flat Circular Ring.-Area of ring = area of larger circle - area of smaller

$$
\begin{aligned}
\text { circle } & ={ }_{4}^{\pi}\left(D_{1}^{2}-D_{-}^{2}\right)=A \\
& ={ }_{4}^{\pi}\left(D_{1}+D_{2}\right)\left(D_{1}-D_{2}\right) \\
\cdot D_{2} & =\sqrt{ } D_{1}^{2}-\frac{4}{\pi} A . \quad D_{1}=\sqrt{D_{2}^{2}}+\frac{4}{\pi} A .
\end{aligned}
$$

The above formulx are true whether the circles are concentric or not, provided the smaller is enturely within the larger.

Area of a Sector of a Circle.-Area of sector $=\frac{1}{2}$ length of anc $A B C \times$ radius r. If $n=$ number of degrees in angle $A O C$, then area of sector $=\begin{gathered}n \\ 360^{\wedge}\end{gathered}$ ^ πr^{2}.

Area of a Segment of a Circle-Area of segment $A C B$-area of sector $A O C B$-area of triangle $A C O$.
$D=$ diameter of circle.
$H=$ height of segment.
Area of segment $=D^{2} \times M$.
Values of M corresponding to various values of $\frac{H}{D}$ are given in the table on pages 181 to 183.

If $L=$ length of chord, then $D=H+\frac{L^{2}}{4} \vec{H}^{\prime}$

Area of the Portion of a Circle between two Chords.-Area of figure $A B C D=$ area of circle - the sum of the areas of the seg. ments $A E B, C P D$.

Area of a Figure contained by two Arcs of Circles. Area of figure $=$ sum or difference of areas of the segments $A B C, A D C$.

Areas of Segments of a Circle.

$D=$ diameter of circle. $H=$ Height of segment.
Area of segment $=D^{2} \times M$. The following table gives values of M corresponding to various values of $\frac{H}{D}$.

II D	M	$\frac{H}{D}$	M	$\begin{gathered} H \\ J \end{gathered}$	M	$\frac{H}{D}$	M
$\cdot 001$	$\cdot 000042$	$\cdot(040$	-010538	$\cdot 079$	-(028894	-118	-052090
$\cdot 002$	$\cdot 000119$	-()11	$\cdot 010932$	-080	-(029435	$\cdot 119$	-052737
-003	- 000219	042	-(1)1331	$\cdot() 81$	-(029979	$\cdot 120$	-(),93385
$\cdot 004$	-()00337	$\cdot() 43$	-()11734	-(082	-(030526	$\cdot 121$	-()54037
-(0)5	-(0)0471	$\cdot(14$	${ }^{(0) 12142}$	$\cdot 083$	()31077	-122	- 0546980
$\cdot 006$	-00)619	$\cdot() 45$	$\cdot(012555$	$\cdot 084$	-031 630	$\cdot 123$	-()55346
007	$\cdot 000779$	$\cdot(046$	-()12971	085	-032186	$\cdot 1 \geq 4$	-()56004
.008	$\cdot 000952$	$\cdot() 47$	- 013393	$\cdot 1080$	- 032746	$\cdot 125$	0.56664
$\cdot 009$	$\cdot 001135$	-()48	-(013818	$\cdot 187$	-0,33308	$\cdot 126$	057327
$\cdot 10$	-()01329	-()49	-(014248	-(1) 88	-0.3:3873	$\cdot 127$	057991
011	$\cdot 001533$	$\cdot 050$	-014681	-()49	-()34411	$\cdot 128$	058658
$\cdot 012$	$\cdot(0) 1746$	$\cdot 051$	$\cdot(015119$	$\cdot 090$	-(030) 012	$\cdot 129$	059328
$\cdot 013$	-()01969	$\cdot 052$	$\cdot 015.561$	091	-035586	$\cdot 130$	-059999
()14	-002199	$\cdot 0.53$	$\cdot 016008$	$\cdot(092$	0.36162	$\cdot 131$	O6)673
015	$\cdot 002438$	$\cdot 054$	-(016458	$\cdot() 93$	-0,36742	132	-061349
$\cdot 016$	$\cdot 002685$	$\cdot 055$	-()16912	$\cdot 094$	-(0)37324	$\cdot 133$	$\cdot 062027$
-017	-002940	$\cdot() 56$	-017369	$\cdot(095$	037909	$\cdot 134$	$\cdot 062707$
$\cdot 018$	$\cdot(0) 3202$	$\cdot 057$	$\cdot 017831$	$\cdot() 96$	- 038497	135	$\cdot 063389$
$\cdot 019$	$\cdot(0) 3472$	$\cdot 058$	$\cdot 018297$	$\cdot 097$	$\cdot 0.39087$	$\cdot 136$	$\cdot 064074$
-020	-(0)3749	$\cdot 059$	$\cdot 1) 18766$	098	$\cdot 039681$	$\cdot 137$	-064761
$\cdot 021$	$\cdot 004032$	$\cdot() 60$	$\cdot 019239$	$\cdot(099$	$\cdot 040277$	138	-065449
$\cdot(022$	- 004322	-()61	$\cdot 019716$	-10)	-040875	$\cdot 139$	-()66140
.023	'(004619	$\cdot 062$	$\cdot 020197$	-101	$\cdot 041477$	140	-066833
$\cdot 024$	$\cdot 004922$	$\cdot 063$	-()20681	-102	$\cdot 042(8)$	$\cdot 141$	-067528
$\cdot 025$	$\cdot 005231$	$\cdot() 64$	-021168	$\cdot 103$	$\cdot 042687$	$\cdot 142$	-()68225
$\cdot 026$	-005516	$\cdot(6) 6$	-021660	- 104	$\cdot 043296$	$\cdot 143$	-068924
$\cdot 027$	$\cdot 005867$	$\cdot 066$	-022155	-105	-0433904	$\cdot 144$	-069626
$\cdot 028$	-006194	$\cdot 067$	$\cdot 022653$	$\cdot 106$	-044523	$\cdot 145$	-()70329
. 029	$\cdot 006527$	$\cdot 068$	-()23155	-107	$\cdot 045140$	-146	$\cdot() 71034$
. 030	-006866	-069	$\cdot 023660$	-108	$\cdot 045759$	-147	-071741
. 031	-(007209	$\cdot 070$	$\cdot 024168$	-109	$\cdot 046381$	-148	$\cdot 072450$
-032	-007559	$\cdot 071$	-024680	-110	$\cdot 047006$	-149	$\cdot 073162$
$\cdot 033$	-007913	$\cdot 072$	$\cdot 025196$	$\cdot 111$	$\cdot 047633$	-150	$\cdot 073875$
. 034	-008273	-073	-025714	$\cdot 112$	-048262	$\cdot 151$	-074590
. 035	-008638	$\cdot 074$	-026236	- 113	-048894	-152	$\cdot 075307$
-036	-009008	$\cdot 075$	$\cdot 026761$	-114	-049529	$\cdot 153$	$\cdot 076026$
. 037	-009383	$\cdot 076$	- 027290	-115	-050165	$\cdot 154$	$\cdot 076747$
-038	$\cdot 009763$	$\cdot 077$	-027821	-116	-050805	$\cdot 155$	$\cdot 077470$
. 039	$\cdot 010148$. 078	$\cdot 028356$	-117	$\cdot 051446$	-156	$\cdot 078194$

Areas of Segments of a Circle (continued).

$\frac{H}{D}$	M	$\frac{11}{D}$	M	$\frac{H}{D}$	M	$\frac{H}{1)}$	M
-157	$\cdot(07 \times 921$	200	-111821	$\cdot 243$	$\cdot 147513$	$\cdot 286$	$\cdot 185425$
$\cdot 158$	$\cdot 079650$	-201	-112625	$\cdot 244$	$\cdot 148371$	-287	-186329
-159	-080380	-20)	-113427	$\cdot 245$	-149231	-288	-187235
-160	$\cdot(081112$	-203	-114231	-246	-150091	\cdots	-188141
-161	$\cdot 081847$	-204	-115036	$\cdot 247$	-1509\%3	$\cdot 290$	-189048
$\cdot 162$	-(082582	205	-115812	-248	-151816	$\cdot 291$	-189956
$\cdot 163$	-(083320	-206	$\cdot 116651$	-249	$\cdot 152681$	$\underline{292}$	$\cdot 190865$
-164	-084060	$\cdot 207$	- 117460	-2.0)	-153546	$\cdot 293$	-191774
-165	084801	-208	-118271	$\cdot 251$	-154413	-294	-192685
-166	-085545	-209	-11908:3	$\cdot 252$	-155281	-295	-193597
$\cdot 167$	-086290	$\cdot 210$	-119898	253	$\cdot 156149$	$\cdot 296$	$\cdot 194509$
-168	-087037	-211	-120713	254	$\cdot 157019$	$\cdot 297$	-195423
$\cdot 169$	$\cdot 087785$	$\cdot 212$	-121530	$\cdot 255$	$\cdot 157891$	$\cdot 298$	-196337
$\cdot 170$.0885:36	$\cdot 213$	122348	$\cdot 256$	-158763	$\cdot 299$	-197252
$\cdot 171$	-089288	'214	-123167	$\cdot 257$	$\cdot 159636$;300	-198168
'172	$\cdot 090042$	-215	-123988	$\cdot 258$	$\cdot 160511$	-301	-199085
-173	$\cdot 090797$	-216	124811	259	-161386	$\cdot 302$	200003
$\cdot 174$	-091555	$\because 217$	-125634	-26)	162263	$\cdot 303$	-200922
$\cdot 175$	-092314	'218	-126459	$\cdot 261$	$\cdot 16: 3141$	$\cdot 304$	-201841
$\cdot 176$	$\cdot 093074$	$\cdot 219$	-127286	-262	-164020	$\cdot 305$	$\cdot 202762$
$\cdot 177$	$\cdot 093887$	-220	$\cdot 128114$	$\cdot 263$	-164900	$\cdot 306$	$\cdot 203683$
$\cdot 178$	-094601	$\cdot 221$	-128913	-264	$\cdot 165781$	-307	-204605
$\cdot 179$	$\cdot 095367$	$\cdot 222$	-129773	-265	-166663	$\cdot 308$	$\cdot 205528$
-180	$\cdot 096135$	-223	-130605	-266	-167546	$\cdot 309$	-206452
-181	-096904	$\cdot 224$	-13143k	- 267	-168431	-310	$\cdot 207376$
-182	$\cdot 097675$	$\cdot 225$	-132273	- 268	-169316	$\cdot 311$	-208302
$\cdot 183$	$\cdot 098447$	$\cdot 226$	-133109	-269	$\cdot 170202$	$\cdot 312$	$\cdot 209228$
-184	$\cdot 099221$	-227	-133946	$\cdot 270$	$\cdot 171090$	$\cdot 313$	$\cdot 210155$
-185	$\cdot 099997$	-228	-134784	$\cdot 271$	-171978	$\cdot 314$	$\cdot 211083$
-186	$\cdot 100774$	$\cdot 229$	-135624	$\cdot 272$	-172868	$\cdot 315$	$\cdot 212011$
$\cdot 187$	-101553	$\cdot 230$	-136465	$\cdot 273$	-173758	$\cdot 316$	$\cdot 212941$
$\cdot 188$	-102334	. 231	-137307	$\cdot 274$	-174650	$\cdot 317$	-213871
-189	-103116	$\cdot 232$	-138151	$\cdot 275$	-175542	$\cdot 318$	- 214802
-190	- 103900	$\cdot 233$	-138996	$\cdot 276$	-176436	$\cdot 319$	$\cdot 215734$
-191	- 104686	$\cdot 234$	-139842	$\cdot 277$	-177330	$\cdot 320$	$\cdot 216666$
-192	-105472	$\cdot 235$	-140689	$\cdot 278$	-178226	$\cdot 321$	$\cdot 217600$
-193	-106261	$\cdot 236$	-141538	$\cdot 279$	-179122	$\cdot 322$	-218534
-194	-107051	$\cdot 237$	-142388	-280	-180020	$\cdot 323$	-219469
-195	-107843	$\cdot 238$	-143239	-281	-180918	$\cdot 324$	- 220404
-196	-108636	$\cdot 239$	-144091	-282	-181818	$\cdot 325$	$\cdot 221341$
-197	-109431	$\cdot 240$	- 144945	$\cdot 283$	-182718	$\cdot 326$	- 222278
-198	- 110227	$\cdot 241$	- 145800	$\cdot 284$	-183619	$\cdot 327$	- 223216
-199	-111025	$\cdot 242$	$\cdot 146655$. 285	-184522	$\cdot 328$	-224154

Areas of Segments of a Circle (concluded).

$\begin{gathered} I I \\ J \end{gathered}$	M	$\begin{gathered} H \\ D \end{gathered}$	M	$\begin{aligned} & H \\ & J \end{aligned}$	M	$\begin{aligned} & H \\ & I \end{aligned}$	M
-329	$\cdot 225094$	$\cdot 372$	-266111	$\cdot 415$	308110	-458	$\cdot 350749$
$\cdot 330$	-2260)34	$\cdot 373$	$\cdot 267078$	416	$\cdot 309096$	-459	$\cdot 351745$
-331	-226974	$\cdot 374$	-268046	$\cdot 117$	$\cdot 310082$	-460)	-352742
$\cdot 332$	$\cdot 227916$	-375	-269014	$\cdot 418$	$\cdot 311068$	$\cdot 461$	-353739
$\cdot 333$	-228858	-376	-269982	$\cdot 419$	$\cdot 312055$	-462	$\cdot 354736$
$\cdot 334$	$\cdot 229801$	$\cdot 377$	$\cdot 270951$	-120	$\cdot 313042$	$\cdot 463$	$\cdot 355733$
$\cdot 335$	$\cdot 230745$	$\cdot 378$	$\cdot 271921$	$\cdot 421$	$\cdot 314029$	-464	$\cdot 356730$
$\cdot 336$	$\cdot 231689$	$\cdot 379$	$\cdot 272891$	$\cdot 422$	$\cdot 315017$	-465	- 357728
$\cdot 337$	-232634	-380)	$\cdot 273861$	$\cdot 423$	$\cdot 316005$	- 466	$\cdot 358725$
-338	-233580	-381	$\cdot 274832$	-424	$\cdot 316993$	$\cdot 467$	$\cdot 359723$
-339	$\cdot 234596$	-382	-2758(1)	-425	$\cdot 317981$	-468	$\cdot 360721$
-340	-235473	$\cdot 383$	$\cdot 276776$	-426	-318970	$\cdot 469$	-361719
-341	-236421	-384	-277748	$\cdot 427$	$\cdot 319959$	$\cdot 470$	-362717
$\cdot 342$	$\cdot 2.37369$	-385	$\cdot 278721$	-428	-320949	$\cdot 471$	-363715
$\cdot 343$	$\cdot \underline{2} 3 \times 319$	-386	$\cdot 279695$	-429	$\cdot 321938$	$\cdot 472$	-364714
$\cdot 344$	-239268	$: 387$	-280669	$\cdot 430$	-322928	$\cdot 473$	-365712
$\cdot 345$	$\cdot 240219$	$\cdot 388$	$\cdot 281643$	$\cdot 431$	$\cdot 323919$	$\cdot 474$	-366711
$\cdot 346$	$\cdot 241170$	$\cdot 389$	-2×2618	-432	$\cdot 324909$	$\cdot 475$	-367710
$\cdot 347$	-242122	-390	-283593	$\cdot 433$	- 325900	-476	-368708
$\cdot 348$	$\cdot 243074$	$\cdot 391$	$\cdot 284569$	$\cdot 434$	$\cdot 326891$	$\cdot 477$	-369707
-349	-244027	$\cdot 392$	-285545	-435	-327883	$\cdot 478$	- 370706
-350	-244980	-393	-286521	$\cdot 436$	$\cdot 328874$	$\cdot 479$	-371705
$\cdot 351$	$\cdot 245935$	-394	$\cdot 287499$	$\cdot 437$	- 329866	-480	-372704
-352	$\cdot 246890$	-395	-288476	-438	-330858	$\cdot 481$	- 373704
$\cdot 353$	$\cdot 247845$	-396	$\cdot 289454$	$\cdot 439$	$\cdot 331851$	$\cdot 482$	-374703
$\cdot 354$	-248801	-397	-290432	$\cdot 440$	- 332843	-483	$\cdot 375702$
-355	$\cdot 249758$	-398	$\cdot 291411$	$\cdot 441$	-333836	-484	-376702
- 356	$\cdot 250715$	-399	$\cdot 292390$	$\cdot 442$	-334829	-485	377701
$\cdot 357$	- 251673	$\cdot 400$	-293370	$\cdot 443$	-335823	$\cdot 486$	-378701
-358	- 252632	$\cdot 401$	-294350	$\cdot 444$	-336816	-487	-379701
-359	-253591	$\cdot 402$	$\cdot 295330$	$\cdot 445$	-337810	-488	-380700
-360	-254551	$\cdot 403$	$\cdot 296311$	$\cdot 446$	-338804	$\cdot 489$	-381700
-361	$\cdot 255511$	$\cdot 404$	-297292	$\cdot 417$	-339799	-490	382700
-362	$\cdot 256472$	- 405	-298274	$\cdot 448$	$\cdot 340793$	$\cdot 491$	- 383700
-363	$\cdot 257433$	$\cdot 406$	-299256	$\cdot 449$	$\cdot 341788$	$\cdot 492$	-384699
-364	-258395	407	$\cdot 300238$	-450	$\cdot 342783$	$\cdot 493$	-385699
-365	$\cdot 259358$	-408	-301221	$\cdot 451$	- 343778	$\cdot 494$	-386699
-366	-260321	$\cdot 409$	$\cdot 302204$	$\cdot 452$	-344773	$\cdot 495$	-387699
-367	- 261285	$\cdot 410$	$\cdot 303187$	$\cdot 453$	$\cdot 345768$	- 496	-388699
-368	- 262249	-411	$\cdot 304171$	$\cdot 454$	$\cdot 346764$	- 497	- 389699
-369	-263214	- 412	- 305156	-455	-347760	$\cdot 498$	- 390699
-370	-264179	$\cdot 413$	- 306140	$\cdot 456$	- 348756	-499	- 391699
$\cdot 371$	$\cdot 265145$	$\cdot 414$	$\cdot 307125$	$\cdot 457$	-349752	-500	'392699

Circumferences of Circles．

$D=$ diameter of circle．$\quad C=$ circumference of circie．

$$
\begin{aligned}
& C=\pi D=3 \cdot 141593 D . \\
& D={ }_{\pi}^{C}=\cdot 31831 C .
\end{aligned}
$$

The use of the tables of circumferences of circles may be extended by applying the following rule：－1f the diameter be multiplied or divided by any number，the circumference must be multiplied or divided by the same number．

Thus，\quad Diameter $=D . \quad$ Circumference $=C$.
Diameter $=n D . \quad$ Circumference $=n C$.
Diameter $=\frac{D}{n} . \quad$ Circumference $={ }_{n}^{C}$ ．

Circumferences of Small Circles．
（Diameters advancing by 64tils．）

Diam	Circum．	Diam	Cricum．	Diam．	Crrum	Diam．	Circum
${ }^{8}{ }^{2}$	$\cdot 04909$	17	－83449	0	1－6199		$2 \cdot 4053$
${ }^{81} \frac{1}{3} \frac{1}{2}$	－09817	${ }^{18}{ }^{\frac{3}{2}}$	－88357	12	$1 \cdot 6690$	325	$2 \cdot 4544$
$\frac{3}{86}$	$\cdot 14726$		－93266	${ }^{35}$	1.7181	$\frac{61}{64}$	$2 \cdot 5035$
8	－19635	1	98175	${ }_{17}{ }^{9} 8$	1.7671	${ }_{50}^{13} 1$	$2 \cdot 5525$
${ }^{8} 5$	－2454		1.0308	$\frac{37}{84}$	1.8162		$2 \cdot 6016$
$3^{3} 2$	$\cdot{ }^{-29452}$		1.0799 1.1290	${ }^{19}$	1.8653 1.9144	碞	2.6507 26998 2.6489
$\frac{1}{8}$	－39270	$\frac{3}{8}$	$1 \cdot 1781$	8	1.9635	${ }^{18}{ }^{7}$	26998 2.7489
${ }^{\text {8 }}$	－ 44179	$\frac{28}{6}$	$1 \cdot 2272$	$\frac{41}{4}$	$2 \cdot 0126$	施	2.7980
$4^{\frac{8}{3} 2}$	－49087	${ }^{\frac{1}{3} \frac{7}{2}}$	$1 \cdot 2763$	$\frac{21}{3}$	$2 \cdot 0617$	$\frac{29}{5}$	$2 \cdot 8471$
4	－53996		$1 \cdot 3254$	${ }_{6} 4^{3}$	$2 \cdot 1108$	$\frac{88}{89}$	$2 \cdot 8962$
${ }_{18}{ }^{\frac{3}{18}}$	－ 588905	29^{16}	1.3744	${ }^{15}{ }^{1 \frac{1}{6}}$	$2 \cdot 1598$	${ }_{15}^{15}$	$2 \cdot 9452$
$\frac{18}{84}$	－63814		$1 \cdot 4235$		$2 \cdot 2089$		2.9943
$3^{\frac{7}{2}}$	－68722	${ }^{15}$	1.4726	$4{ }^{\frac{23}{32}}$	$2 \cdot 2580$	$\frac{3}{3}$	3.0434
4	$\cdot 73631$.78540	新	1.5217 1.5708	$8{ }^{4} 4$	$2 \cdot 3071$ $2 \cdot 3562$		3.0925

Circumferences of Circles.

(Diameters adyancing by 32nds)

Diam.	0	1	2	3	1	¢	Diam.
		$3 \cdot 1416$	6.28:32	9.12 1 h	12506	15.708	
$3^{1}{ }^{1}$	-09817	3-2398	$6: 3414$	$9 \cdot 5230$	$12 \cdot 665$	15.806	$3^{1 / 2}$
$1^{1} 6$	-19635	3:3379	$6 \cdot 1795$	96211	$12 \cdot 763$	$15 \cdot 904$	${ }_{1}^{16}$
$\frac{3}{32}$	$\cdot 29452$	$3 \cdot 4361$	65777	$9 \cdot 7193$	12.861	$16 \cdot 002$	
$\frac{1}{8}$	-39270	3.5313	6.6759	$9 \cdot 8175$	12.959	$16 \cdot 101$	${ }_{8}^{1}$
$5^{5} 5$	- 190×7	3-6:325	6.7711	$9 \cdot 91.57$	$13 \cdot 057$	$16 \cdot 199$,
${ }^{3}{ }^{3} 6$	-58905	3.7306	$6 \cdot \times 722$	$10 \cdot 014$	$1: 3 \cdot 155$	$16 \cdot 297$	$7^{\frac{3}{6}}$
3^{72}	-68722	$3 \cdot 8288$	$6 \cdot 9704$	$10 \cdot 112$	$13 \cdot 254$	16:39\%	
${ }_{4}^{1}$.78540	$3 \cdot 9270$	7.0686	$10 \cdot 210$	13:3.52	$16 \cdot 493$	I
$\frac{8}{32}$	-88357	$4 \cdot 0252$	$7 \cdot 1668$	10:308	13450	$16 \cdot 592$	
$1{ }^{56}$	-98175	$4 \cdot 1233$	7.2649	10107	13:518	$16 \cdot 690$	${ }^{\frac{5}{6}}$
$\frac{1}{3}$	$1 \cdot 0799$	$4 \cdot 2215$	$7 \cdot 3631$	$10 \cdot 505$	13.646	16.788	
${ }_{8}^{3}$	$1 \cdot 1781$	43197	$7 \cdot 4613$	10.603	13.744	$16 \cdot 8 \times 6$?
${ }_{7}{ }^{13}$	$1 \cdot 2763$	$4 \cdot 4179$	7 75595	$10 \cdot 701$	13843	$16 \cdot 984$	13
$1^{7} 0$	13744	45160	$7 \cdot 6576$	10799	13941	17080	1^{7}
135	$1 \cdot 4726$	$4 \cdot 6142$	7.7558	$10 \cdot 897$	$11 \cdot 039$	$17 \cdot 181$	3 3 砍
$\frac{1}{2}$	1:5708	$4 \cdot 7124$	$7 \cdot 8540$	10.996	$14 \cdot 137$	$17 \cdot 279$	$\frac{1}{2}$
$3 \frac{7}{2}$	$1 \cdot 6690$	$4 \cdot 8106$	$7 \cdot 9522$	11.094	$14 \cdot 235$	$17 \cdot 377$	$17 \frac{1}{2}$
$\stackrel{9}{16}$	$1 \cdot 7671$	$4 \cdot 9087$	$8 \cdot 0503$	$11 \cdot 192$	14:334	$17 \cdot 475$	
$\frac{19}{3}$	$1 \cdot 8653$	$5 \cdot 0069$	$8 \cdot 1485$	$11 \cdot 290$	14.432	17-573	
8	$1 \cdot 9635$	$5 \cdot 1051$	$8 \cdot 2467$	11.388	14-530	17.671	$\frac{5}{8}$
$\frac{2}{3} \frac{1}{2}$	$2 \cdot 0617$	5.2033	$8 \cdot 3449$	$11 \cdot 486$	$14 \cdot 628$	17.770	$\frac{21}{3} \frac{1}{2}$
$\frac{11}{17}$	$2 \cdot 1598$	$2 \cdot 3014$	$8 \cdot 4430$	$11 \cdot 585$	14.726	17.868	$17 \frac{1}{8}$
$\frac{2}{3} \frac{3}{2}$	$2 \cdot 2580$	$5 \cdot 3996$	$8 \cdot 5412$	$11 \cdot 683$	14.824	$17 \cdot 966$	$\frac{23}{3}$
$\frac{8}{4}$	2-3562	$5 \cdot 4978$	$8 \cdot 6394$	11.781	14.923	$18 \cdot 064$	$\frac{3}{4}$
年5 ${ }^{5}$	$2 \cdot 4544$	$5 \cdot 5960$	$8 \cdot 7376$	11.879	$15 \cdot 021$	$18 \cdot 162$	$\frac{2}{5 \frac{5}{2}}$
$\frac{18}{18}$	$2 \cdot 5525$	$5 \cdot 6941$	$8 \cdot 8357$	$11 \cdot 977$	$15 \cdot 119$	$18 \cdot 261$	18
$\frac{27}{32}$	$2 \cdot 6507$	$5 \cdot 7923$	8.9339	$12 \cdot 075$	15217	$18 \cdot 359$	${ }_{3}^{27}$
7	2.7489	5.8905	$9 \cdot 0321$	$12 \cdot 174$	$15 \cdot 315$	18.457	$\frac{7}{8}$
${ }^{\frac{2}{3}}{ }^{\frac{1}{2}}$	$2 \cdot 8471$	5.9887	$9 \cdot 1303$	$12 \cdot 272$	$15 \cdot 413$	$18 \cdot 555$	$\frac{2}{3} \frac{1}{2}$
$\frac{15}{18}$	$2 \cdot 9452$	6.0868	$9 \cdot 2284$	$12 \cdot 370$	$15 \cdot 512$	$18 \cdot 653$	$\frac{18}{18}$
$\frac{8}{3} \frac{1}{2}$	$3 \cdot 0434$	$6 \cdot 1850$	$9 \cdot 3266$	$12 \cdot 468$	$15 \cdot 610$	18.751	$\frac{31}{32}$
Diam.	0	1	2	3	4	5	Diam.

Circumferences of Circles.

(Diameters advancing by Eighths.)

D.	'0		14		$1 / 2$	58	$3 / 4$	7/8
0		3427	7854	$1 \cdot 1791$	708	19635	$2 \cdot 3562$	$2 \cdot 7489$
1	$3 \cdot 1416$	3:5343	\| $3 \cdot 9270$	43197	$4 \cdot 7124$	$5 \cdot 1051$	$5 \cdot 1978$	$5 \cdot 8905$
2	6.283	66675!	7.0646	7-1613	7×510	8.2467	8•6394	! 0321
3	$9 \cdot 4214$	$9 \cdot 8175$	$10 \cdot 210$	110603	10:996	11388	11.781	12•174
4	1256\%	$12 \cdot 959$	13352	$13 \cdot 714$	$14 \cdot 137$	11:530	11928	$15 \cdot 315$
5	15708	$16 \cdot 101$	$16 \cdot 19.3$	$16 \cdot 886$	17×279	$17 \cdot 671$	18.064	18.457
6	18	$19 \cdot 24$	19	20.028	20120	$20 \cdot 813$	21.206	8
7	$21 \cdot 991$	$22 \cdot 391$	22.777	23169	23562	23.055	24:347	40
8	$25 \cdot 133$	$25 \cdot 525$	25.914	26311	26.704	$27 \cdot 096$	27189	$27 \cdot 882$
9	$28 \cdot 274$	$28 \cdot 667$	29.060	29•1.2	$29 \cdot 845$	30.238	30.6331	22
10	\|31-416	31809	$32 \cdot 201$	32594	32:9x7	33:379	33.772	165
11		()	35313	35.736	28	$36 \cdot 521$	36	$37 \cdot 306$
12	$37 \cdot 699$	$38 \cdot 092$	$3 \times \cdot 18.5$:38•87	$39 \cdot 270$	$39 \cdot 663$	$10 \cdot 055$	$40 \cdot 448$
13	$40 \cdot 841$	41233	$41 \cdot 626$	1 ± 019	42412	$42 \cdot 801$	43•197	43:590
14	$43 \cdot 982$	$44 \cdot 375$	11.768	15.160	$45 \cdot 553$	45:946	46:338	$46 \cdot 781$
15	$47 \cdot 124$	$47 \cdot 517$	09	48302	$48 \cdot 695$	49.087	$49 \cdot 480$	49.873
16	$50 \cdot 265$	$50 \cdot 658$	51		51-836	52.229	52.622	53.014
17	$53 \cdot 407$	53800	54192	51.585	54.978	55:371	55	56
18	56.549	$56 \cdot 941$	57334	57.727	58.119	$58 \cdot 512$	58.905	59•298
19	59690	$60 \cdot 083$	60-476	$60 \cdot 868$	61-261	61.654	$62 \cdot 046$	$62 \cdot 439$
20	32	$63 \cdot 225$	$63 \cdot 617$	61.010	64403	61795	$65 \cdot 188$	$65 \cdot 581$
21	$65 \cdot 973$	$66 \cdot 366$	$66 \cdot 759$	67152	$67 \cdot 544$	$67 \cdot 937$	-	68.722
22	69•115	69.508	$69 \cdot 90$	70.293	$70 \cdot 686$	$71 \cdot 079$	$71 \cdot 171$	
23	72-257	$72 \cdot 649$	73.012	$73 \cdot 435$	$73 \cdot 827$	71•220	$74 \cdot 613$	$75 \cdot 006$
24	$75 \cdot 398$	75791	$76 \cdot 184$	76.575	76969	$77 \cdot 362$	77.754	78-147
25	78	$78 \cdot 933$	$79 \cdot 325$			80:503	80.896	81•289
26	81.681	82.074	$82 \cdot 467$	82.860	$83 \cdot 252$	83615	84038	$84 \cdot 430$
27	84-823	8.5216	85.608	86.01	$86 \cdot 394$	86.787	$87 \cdot 179$	$87 \cdot 572$
28	87.965	88357	88.750	89•143	89.535	89928	$90 \cdot 321$	90
29	91-106	91-499	91-892	92-284	$2 \cdot 677$	93.070	93-462	8.85
30	94:248	94.640	95-033	95-426	5819	$96 \cdot 21$	96.6	96.997
31	97-389	97782	98-175		98.960	$99 \cdot 353$	99.746	$100 \cdot 14$
32	100	$100 \cdot$	$101 \cdot 32$	$101 \cdot 71$	102-10	$102 \cdot 49$	$102 \cdot 89$	103-28
33	103	104.0	104	$104 \cdot 85$	105*24	105•64	106.03	$106 \cdot 42$
34	106.81	10721	107.60	107.99	108.38	108.78	$109 \cdot 17$	$109 \cdot 56$
35	109.9	110.35	110.74	111 1	111	$111 \cdot$	$112 \cdot$	112
D.	-	1/8	1/4			5/8	$3 / 4$	7/8

Circumferences of Circles.

(Diameters advancing by Eighths.)

D.	-	1/8	1/4	3/8	1/2	5/8	3/4	/8
36	$113 \cdot 10$	$113 \cdot 49$	$113 \cdot 88$	114.28	$114 \cdot 67$	$115 \cdot 06$	$115 \cdot 45$	$115 \cdot 85$
37	$116 \cdot 24$	$116 \cdot 63$	$117 \cdot() 2$	$117 \cdot 42$	$117 \cdot 81$	118.20	$118 \cdot 60$	$118 \cdot 99$
38	$119 \cdot 38$	$119 \cdot 77$	$120 \cdot 17$	$120 \cdot 56$	120.95	$121: 34$	$121 \cdot 74$	$122 \cdot 13$
39	122-52	$122 \cdot 91$	$123 \cdot 31$	$123 \cdot 70$	12409	$124 \cdot 49$	$124 \cdot 88$	$125 \cdot 27$
4)	$125 \cdot 66$	$126 \cdot 06$	$126 \cdot 45$	$126 \cdot 84$	$127 \cdot 23$	$127 \cdot 63$	$128 \cdot() 2$	$128 \cdot 41$
41	128.81	$129 \cdot 20$	129.59	$129 \cdot 98$	$130 \cdot 38$	$130 \cdot 77$	$131 \cdot 16$	$131 \cdot 55$
42	131.95	$132 \cdot 34$	132.73	$133 \cdot 12$	13352	$133 \cdot 91$	$1: 34: 30$	134.70
43	135.09	135.48	$135 \cdot 87$	$136 \cdot 27$	$136 \cdot 66$	137 (05	$137 \cdot 44$	$137 \cdot 84$
44	138.23	$138 \cdot 62$	139.02	$139 \cdot 41$	$139 \cdot 80$	$140 \cdot 19$	$140 \cdot 59$	$140 \cdot 98$
45	$141 * 37$	141.76	$142 \cdot 16$	142-5\%	142.94	$143: 34$	14373	$144 \cdot 12$
46	$144 \cdot 51$	$144 \cdot 91$	145:30)	$145 \cdot 69$	$146 \cdot 08$	$146 \cdot 4 \mathrm{~s}$	$146 \cdot 87$	$147 \cdot 26$
47	$147 \cdot 65$	$148 \cdot 05$	148.44	148.83	$149 \cdot 23$	$149 \cdot 62$	$150 \cdot 01$	$150 \cdot 40$
48	$150 \cdot 80$	$151 \cdot 19$	151.58	151.97	$152 \cdot 37$	152.76	$153 \cdot 15$	$153 \cdot 55$
49	15394	$154: 33$	154.72	15512	$155 \% 1$	$155 \cdot 90$	$156 \cdot 29$	$156 \cdot 69$
50	$157 \cdot 08$	15747	157.86	15826	158.65	$159 \cdot 04$	159.44	$159 \cdot 83$
51	$160 \cdot 22$	$160 \cdot 61$	161 (0)	16140	161.79	16	162.58	$162 \cdot 97$
52	$163 \cdot 36$	$16: 376$	164'15	$164 \cdot 54$	$164 \cdot 93$	$165: 33$	$165 \cdot 72$	$166 \cdot 11$
53	$166 \cdot 50$	166.90	$167 \cdot 29$	$167 \cdot 68$	$168 \cdot 08$	$168 \cdot 47$	$168 \cdot \times 6$	$169 \cdot 25$
54	$169 \cdot 65$	170.04	17043	$170 \cdot 82$	$171 \cdot 22$	171'61	$172 \cdot 00$	$172 \cdot 39$
55	172.79	$173 \cdot 18$	$173 \cdot 57$	173•7	$174 \cdot 36$	$174 \cdot 75$	$175 \cdot 14$	$175 \cdot 54$
56	$175 \cdot 93$	$176 \cdot 32$	176.71	177-1]	$177 \cdot 50$	$177 \cdot 89$	$178 \cdot 29$	$178 \cdot 68$
57	$179 \cdot 07$	$179 \cdot 46$	$179 \cdot 86$	$180 \cdot 25$	$180 \cdot 64$	$181 \cdot 03$	$181 \cdot 43$	181.82
58	$182 \cdot 21$	$182 \cdot 61$	183.00	$183: 39$	183.78	18.18	184.57	184.96
59	$185 \cdot 35$	185.75	$186 \cdot 14$	186.53	186:92	$187 \cdot 32$	$187 \cdot 71$	$188 \cdot 10$
60	188.50	$188 \cdot 89$	18928	18967	$190 \cdot 07$	$190 \cdot 46$	$190 \cdot 85$	$191 \cdot 24$
61	$191 \cdot 64$	$192 \cdot 03$	192.42	192.82	$193 \cdot 21$	193•60	$193 \cdot 99$	194.39
62	194•78	$195 \cdot 17$	$195 \cdot 56$	$195 \cdot 96$	$196 \cdot 35$	$196 \cdot 74$	$197 \cdot 13$	$197 \cdot 53$
63	$197 \cdot 92$	$198 \cdot 31$	$198 \cdot 71$	$199 \cdot 10$	$199 \cdot 49$	$199 \cdot 88$	20028	$200 \cdot 67$
64	201.06	$201 \cdot 45$	$201 \cdot 85$	202.24	20263	$203 \cdot 03$	$203 \cdot 42$	$203 \cdot 81$
65	20420	$204 \cdot 60$	$204 \cdot 99$	$205 \cdot 38$	$205 \cdot 77$	$206 \cdot 17$	$206 \cdot 56$	206.95
66	207-35	207.74	$208 \cdot 13$	208.52	$208 \cdot 92$	$209 \cdot 31$	$209 \cdot 70$	$210 \cdot 09$
67	$210 \cdot 49$	$210 \cdot 88$	$211 \cdot 27$	211.66	212.06	212.45	212.84	213.24
68	$213 \cdot 63$	21402	214.41	214.81	215\%20	$215 \cdot 59$	215.98	216.38
69	21677	$217 \cdot 16$	$217 \cdot 56$	217.95	218:34	$218 \cdot 73$	$219 \cdot 13$	$219 \% 2$
70	$219 \cdot 91$	$220 \cdot 30$	$220 \cdot 70$	221.09	$221 \cdot 48$	221-87	$222 \cdot 27$	222.66
D	$\cdot 0$	18	1/4	3/8	1/2	5/8	3/4	7/8

Circumferences of Circles.

(Diameters advancing by Eighths.)

D.	$\cdot 0$	1/8	1/4	3/8	$1 / 2$	58	$3 / 4$	7/8
71	223.05	$223 \cdot 45$	22384	20.123	$224 \% 6$	22	22.541	
72	22619	226:59	22698	227-37	22777	228•16	22x-5.5	$228 \cdot 94$
73	22931	29973	23012	230:51	230491	231.30	$231 \cdot 69$	-()9
74	$232 \cdot 48$	$232 \cdot 87$	23326	233.66	$23+05$	\| 23144	231.8	$235 \cdot 23$
7	$235 \cdot 62$	2.3601	236.40	$236 \cdot \times 1$	23719	237.58	237.98	$238 \cdot 37$
76	$238 \cdot 76$	$239 \cdot 15$	23955	23:91	21033	24072	$241 \cdot 12$	$241 \cdot 51$
77	$241 \cdot 90$	$212 \cdot 30$	24269	243.08	$213 \cdot 47$	$213 \cdot 87$	2446	24165
78	$245 \cdot(4$	$245 \cdot 14$	2588	246.22	2466	24701	94740	24779
79	248.19	248	24897	249-36	24976	$250 \cdot 15$	$251 \cdot 54$	$250 \cdot 93$
80	25	251.72	2.5211	23251	$252 \cdot 90$	253י29	$253 \cdot 6$	2.54.08
81	$254 \cdot 47$	$251 \cdot 46$	2.55.25	'255-65	2.5604	$256 \cdot 43$	256×3	257.22
82	257.61	258.00	254•40	258.79	25.118	2.5957	259.97	$260 \cdot 36$
83	260.75	26114	261:54	26193	2623	262 72	$263 \cdot 11$	$263 \cdot 50$
84	$263 \cdot 89$	26429	$264 \cdot 68$	26507	26546	265.86	$266 \cdot 25$	$266 \cdot 64$
85	26704	267.13	2678.82	268.21	26	269.00	269-39	$269 \cdot 78$
86	270.18	270.57	27096	$271 \cdot 36$	271.75	272•14	272.53	$272 \cdot 93$
87	$273 \cdot 32$	27371	274•10	274.50	274.89	$275 \cdot 28$	27567	$276 \cdot 07$
88	$276 \cdot 16$	276.85	277.25	$277 \cdot 64$	27803	$27 \times \cdot 42$	$278 \cdot 82$	$279 \cdot 21$
89	$279 \cdot 60$	$279 \cdot 99$	28039	$280 \cdot 78$	$281 \cdot 17$	28157	$281 \cdot 96$	$282 \cdot 35$
90	282.74	$2 \times 3 \cdot 14$	$283 \cdot 53$	$283 \cdot 92$	2×1.31	2×4.71	$285 \cdot 10$	$285 \cdot 49$
91	285.88	286-28	$286 \cdot 67$	$287 \cdot 06$	$2 \times 7 \cdot 46$	$287 \cdot 85$	$288 \cdot 24$	$288 \cdot 63$
92	289.03	$289 \cdot 42$	28981	290.20	$290 \cdot 60$	$290 \cdot 99$	$291 \cdot 38$	291.78
93	292-17	292:56	292-95	$293 \cdot 35$	29374	294-13	294:52	294.92
94	295.31	295.70	296.10	296:49\|	296:88	29727	$297 \cdot 67$	298.06
95	29	29	$299 \cdot 2$	63	300.02	300	300.81	$301 \cdot 20$
96	$301 \cdot 59$	301.99	$302 \cdot 38$	30277	$303 \cdot 16$	$303 \cdot 56$	303.95	$304 \cdot 34$
97	304.73	$305 \cdot 13$	$305 \cdot 52$	305.91	$306 \cdot 31$	306.70	307.09	$307 \cdot 48$
98	307.88	308.27	30866	$309 \cdot 05$	$309 \cdot 45$	$309 \cdot 84$	$310 \cdot 23$	310.62
99	311.02	$311 \cdot 41$	311.80	312.20	$312 \cdot 59$	312.98	$313 \cdot 37$	313.77
100	314•16	314.55	314.94	315:34	315.73	316.12	316.52	316.91
101	$317 \cdot 30$	317.69	318.09	318.48	318.87	31926	319.66	320.05
102	$320 \cdot 44$	$320 \cdot 84$	$321 \cdot 23$	321.62	322.01	$322 \cdot 41$	$322 \cdot 80$	$323 \cdot 19$
103	$323 \cdot 58$	$323 \cdot 98$	324•37	324.76	:325-15	32555	325.94	326.33
104	326.73	$327 \cdot 12$	$327 \cdot 51$	$327 \cdot 90$	$328 \cdot 30$	328.69	329.08	$329 \cdot 47$
105	$329 \cdot 87$	$330 \cdot 26$	$330 \cdot 65$	$3: 3104$	$331 \cdot 44$	33188	332:22	332.62
D.	$\cdot 0$	1/8	1/4	$3 / 8$	1/2	5/8	$3 / 4$	7/8

Circumferences of Circles. (Diameters advancing by Tenths.)

Diam.	$\cdot 0$	$\cdot 1$	$\cdot 2$		$\cdot 4$	-5	6	-7	- 8	$\cdot 9$	Diam.
1	$3 \cdot 14159$	3.45575	376991	$4 \cdot 08407$	$4 \cdot 39823$	4.71239	$5 \cdot 02655$	$5 \cdot 34071$	$5 \cdot 65487$	5.96903	1
2	$6 \cdot 28319$	6.59735	6.91150	7.22566	7-03982	$7 \cdot 85398$	8-16814	$8 \cdot 48230$	$8 \cdot 79646$	$9 \cdot 11062$	2
3	$9 \cdot 42478$	9.73894	10.0531	10.3673	$10 \cdot 6814$	10.9956	$11 \cdot 3097$	$11 \cdot 6239$	11.9381	12.2522	3
4	12.5664	$12 \cdot 8805$	$13 \cdot 1947$	13:5088	138230	$14 \cdot 1372$	144513	147655	15.0796	$15 \cdot 3938$	4
5	$15 \cdot 7080$	16.0221	16.3363	16.6504	16.9646	$17 \cdot 2788$	17.5929	17.9071	18-2212	$18 \cdot 5354$	5
6	18.8496	$19 \cdot 1637$	$19 \cdot 4779$	19.7920	20-1062	204204	20.7345	21.0487	21-3628	21.6770	6
7	21.9912	22-3053	22.6195	22.9336	232478	$23 \cdot 5619$	\|23-8761	$24 \cdot 1903$	$24 \cdot 5044$	24.8186	7
8	25.1327	25.4469	$25 \cdot 7611$	260752	26.3894	26.7035	27.177	$27 \cdot 3319$	$27 \cdot 6460$	$27 \cdot 9602$	8
9	28.2743	28:5885	28.9027	29.2168	29:5310	29-8451	30•1593	$30 \cdot 4735$	30.7876	$31 \cdot 1018$	9
10	314159	$31 \cdot 7301$	$32 \cdot 0442$	$32 \cdot 3584$	$32 \cdot 6726$	$32 \cdot 9867$	\|33.3009	33.61.50	33.9292	$34 \cdot 2434$	10
11	\| 34.5575	$34 \cdot 8717$	$35 \cdot 1858$	35.5000	$35 \cdot 8142$	361283	'36.4425	36.7566	$37 \cdot 0708$	37.3850	11
12	37.6991	38.0133	$38 \cdot 3274$	38.6416	$38 \cdot 9558$	$39 \cdot 2699$	395841	39-8982	40:2124	$40 \cdot 5265$	12
13	40.8407	$41 \cdot 1549$	$41 \cdot 4690$	417832	42.0973	$42 \cdot 4115$	42.7257	43.0398	433540	43.6681	13
14	$43 \cdot 9823$	44.2965	44.6106	$44 \cdot 9248$	45.2389	$4 \check{5531}$	458673	46.1214	$46 \cdot 4956$	$46 \cdot 6097$	14
15	47-1239	$47 \cdot 4381$	$47 \cdot 7522$	$48 \cdot 0664$	$48 \cdot 3805$	$48 \cdot 6947$	49.0089	$49 \cdot 3230$	49.6372	49.9513	15
16	50.2655	, 50.5796	50.8938	51-2080	$51 \cdot 5221$	- $1 \cdot 8363$	52.1504	52.4646	52.7788	53.0929	16
17	$53 \cdot 4071$	'53.7212	54.0354	5 ± 3496	54.6637	54.9779	55.2920	556062	55.9204	56.2345	17
18	56.5487	56.8628	$57 \cdot 1770$	57. 4912	57.8053	$58 \cdot 1195$	58-4336	58.7478	$59 \cdot 0619$	59.3761	18
19	59.6903	600044	$60 \cdot 3186$	606327	60.9169	612611	$61: 5752$	61-9894	$62 \cdot 2035$	62 5177	19
20	$62 \cdot 8319$	$63 \cdot 1460$	1 $63 \cdot 4602$	63.7743	$64 \cdot 0885$	$64 \cdot 4027$	$6 \pm \cdot 7168$	65.0310	$65 \cdot 3451$	65.6593	20
Diam.	$\cdot 0$	$\cdot 1$	$\cdot 2$	$\cdot 3$	$\cdot 4$	$\cdot 5$	$\cdot 6$	$\cdot 7$	- 8	$\cdot 9$	Diam

Circumferences of Circles. (Diameters advancing by Tenths.)

Diam.	- 0	$\cdot 1$	$\cdot 2$	$\cdot 3$	$\cdot 4$	-5	$\cdot 6$	$\cdot 7$	-8	$\cdot 9$	Diam.
21	$65 \cdot 9735$	66.2876	$66 \cdot 6018$	66.9159	67.2301	67.5442	$67 \cdot 9594$	$68 \cdot 1726$	684×67	$68 \cdot 8009$	21
22	$69 \cdot 1150$	$69 \cdot 4292$	$69 \cdot 743 \pm$	70.0575	$70 \cdot 3717$	$70 \cdot 6858$	71.0000	71.3142	71.6283	71.9425	22
23	, 72.2566	72.5708	72.8850	731991	\| $73 \cdot 5133$	$73 \cdot 8274$	741416	$74 \cdot \pm 558$	$74 \cdot 7699$	75.0841	23
24	175.3982	$75 \cdot 7124$	$76 \cdot 0266$	$76 \cdot 3107$	766549	76.9690	77.2832	$77 \cdot 5973$	$77 \cdot 9115$	78.257	24
25	$78 \cdot 5398$	$78 \cdot 8510$	$79 \cdot 1681$	$79 \cdot 4823$	79•7965	$80 \cdot 1106$	$80 \cdot 4248$	80.7389	$81 \cdot 0531$	¢13673	25
26	$81 \cdot 6814$	81-9956	$82 \cdot 3097$	$82 \cdot 6239$	$82 \cdot 9381$	83.2522	$83 \cdot 566 \pm$	$83 \cdot 8805$	$84 \cdot 1947$	84.5089	26
27	$84 \cdot 8230$	$85 \cdot 1372$	$85 \cdot 4513$	857655	$86 \cdot(796$	86.3938	86.7080	$87 \cdot 0221$	873363	$87 \cdot 6504$	27
28	87-9646	$88 \cdot 2788$	$88 \cdot 5929$	$88 \cdot 9071$	$89 \cdot 2212$	895351	$89 \cdot 8496$	901637	$90 \cdot 4779$	90.7920	28
29	91-1062	91•4204	91.7345	$92 \cdot 0487$	92.3628	92.6770	$92 \cdot 9912$	933053	$93 \cdot 6195$	$93 \cdot 9336$	29
30	94-2478	945619	, 94.8761	$95 \cdot 1903$	95.5044	$95 \cdot 8186$	961327	96.4469	96.7611	$97 \cdot 0752$	30
31	97-3894	97.7035	980177	$98 \cdot 3319$	98.6460	$98 \cdot 9602$	$99 \cdot 9743$	$99 \cdot 5885$	$99 \cdot 9027$	$100 \cdot 217$	31
32	$100 \cdot 531$	100.845	,101•159	$101 \cdot 473$	$101 \cdot 788$	'1(12.102	$102 \cdot 416$	102730	$103 \cdot 044$	$103 \cdot 358$	32
33	$103 \cdot 673$	103.987	$104 \cdot 301$	$104 \cdot 615$	104.929	'105.243	105558	105.872	106.186	106500	33
34	$106 \cdot 814$	107•128	$107 \cdot 442$	$107 \cdot 757$	108071	1108385	108.699	$109 \cdot 013$	$109 \cdot 327$	$109 \cdot 642$	34
35	109.956	$110 \cdot 270$	$110 \cdot 584$	$110 \cdot 898$	$111 \cdot 212$	111-527	111.841	$1112 \cdot 155$	$112 \cdot 469$	112.783	35
36	$113 \cdot 097$	$113 \cdot 412$	$113 \cdot 726$	$114 \cdot 040$	1114.354	114.668	114.982	,115.296	$115 \cdot 611$	115.925	36
37	\|116.239	116.553	116.867	117.181	117.496	$117 \cdot 810$	118.124	118.438	$118 \cdot 752$	'119066	37
38	119•381	$119 \cdot 695$	120.009	$120 \cdot 323$	$120 \cdot 637$	120.951	121-265	121.580	121-894	$122 \cdot 208$	38
39	122.522	122-836	${ }^{1} 123 \cdot 150$	$123 \cdot 465$	$123 \cdot 779$	124.093	$124 \cdot 407$	$124 \cdot 721$	$125 \cdot 035$	$125 \cdot 350$	39
40	$125 \cdot 664$	$125 \cdot 978$	${ }^{\prime} 126 \cdot 292$	126.606	126.920	1127.235	$127 \cdot 549$	127-863	$128 \cdot 177$	128.491	40
Dism.	${ }^{\circ} 0$	$\cdot 1$	1 -2	$\cdot 3$	$\cdot 4$	$\cdot 5$	$\cdot 6$	$\cdot 7$	$\cdot 8$	$\cdot 9$	Diam.

Circumferences of Circles. (Diameters advancing by Tenths.)

Diam.	$\cdot 0$	$\cdot 1$	$\cdot 2$	$\cdot 3$	$\cdot 4$	-5	$\cdot 6$	$\cdot 7$	$\cdot 8$	$\cdot 9$	Diam.
41	128.805	$129 \cdot 119$	129.434	$129 \cdot 748$	$130 \cdot 062$	$130 \cdot 376$	$130 \cdot 690$	131.004	131319	131-633	41
42	131.947	$132 \cdot 261$	132.575	$132 \cdot 889$	$133 \cdot 204$	$133 \cdot 518$	$133 \cdot 832$	$134 \cdot 146$	$13+\cdot 460$	$134 \cdot 774$	42
43	$135 \cdot 088$	$135 \cdot 403$	$135 \cdot 717$	$136 \cdot 031$	$136 \cdot 345$	$136 \cdot 659$	$136 \cdot 973$	$137 \cdot 288$	$137 \cdot 602$	$137 \cdot 916$	43
44	$138 \cdot 230$	$138 \cdot 544$	$138 \cdot 858$	139173	$139 \cdot 187$	$139 \cdot 801$	$140 \cdot 115$	$140 \cdot 429$	$140 \cdot 743$	$141 \cdot 058$	44
45	141-372	$141 \cdot 686$	$142 \cdot 000$	142 -314	142628	$142 \cdot 942$	$143 \cdot 257$	143.571	143.885	$144 \cdot 199$	45
46	$144 \cdot 513$	$144 \cdot 827$	$145 \cdot 142$	$145 \cdot 456$	$145 \cdot 770$	146.084	146.398	146.712	147.027	147•341	46
47	$147 \cdot 655$	$147 \cdot 969$	$148 \cdot 283$	148.597	$148 \cdot 912$	$149 \cdot 226$	$149 \cdot 540$	$149 \cdot 854$	$150 \cdot 168$	$150 \cdot 482$	47
48	$150 \cdot 796$	$151 \cdot 111$	$151 \cdot 425$	151.739	$152 \cdot 053$	$152 \cdot 367$	$152 \cdot 681$	$152 \cdot 996$	$153 \cdot 310$	$153 \cdot 624$	48
49	$153 \cdot 938$	$154 \cdot 252$	$154 \cdot 566$	$154 \cdot 881$	155195	$155 \cdot 509$	155-Q23	156.137	$156 \cdot 451$	156.765	49
50	157.080	157394	157.708	$158 \cdot 022$	$158 \cdot 336$	$158 \cdot 650$	$158 \cdot 965$	$159 \cdot 279$	159-593	159.907	50
51	160.221	$160 \cdot 535$	160.850	$161 \cdot 164$	$161 \cdot 478$	161-792	162-106	$162 \cdot 420$	162 735	$163 \cdot 049$	51
62	${ }^{1} 163 \cdot 363$	163.677	$163 \cdot 991$	$164 \cdot 305$	$164 \cdot 619$	164.934	$16 \pm .248$	165. 562	$165 \cdot 876$	$166 \cdot 19$	52
63 54	$166 \cdot 504$ $169 \cdot 646$	$166 \cdot 819$ $169 \cdot 960$	$167 \cdot 133$ $170 \cdot 274$	$167 \cdot 147$ 170.388	$167 \cdot 761$ 170.903	168.075	$168 \cdot 389$	168.704	169018	169332	53
54 55	$169 \cdot 646$ 172.788	$169 \cdot 960$ $173 \cdot 102$	170.274	$170 \cdot 588$	$170 \cdot 903$	171.217	171: 331	$171 \cdot 845$	$172 \cdot 159$	172473	54
55	172.788	$173 \cdot 102$	$173 \cdot 416$	$173 \cdot 730$	$174 \cdot 044$	$174 \cdot 358$	$174 \cdot 673$	174.987	$175 \cdot 301$	175615	55
56	$175 \cdot 929$	$176 \cdot 243$	176:958	176.872	175.186	177500	177.814	178 124	$178 \cdot 442$	178.757	56
57	${ }^{1} 179 \cdot 071$	$179 \cdot 385$	179.699	$180 \cdot 013$	$180 \cdot 32$ \%	180642	1×0.956	181270	181.584	181898	57
58	' $182 \cdot 212$	$182 \cdot 527$	$182 \cdot 841$	$183 \cdot 155$	$183 \cdot 469$	183.783	184.097	184.412	184.726	$145 \cdot 040$	58
59	$185 \cdot 354$ $188 \cdot 496$	$185 \cdot 668$ $188 \cdot 810$	185.982	186.296	186.611	$146 \cdot 92.5$	187.239	187-553	187.867	1 cx 181	59
60	$188 \cdot 496$	$188 \cdot 810$	$189 \cdot 124$	$189 \cdot 438$	$189 \cdot 752$	$190 \cdot 066$	$190 \cdot 381$	190695	191.009	$191 \cdot 323$	60
Diam.	$\cdot 0$	$\cdot 1$	$\cdot 2$	$\cdot 3$	$\cdot 4$	$\cdot 5$	$\cdot 6$	$\cdot 7$	$\cdot 8$	$\cdot 9$	Diam.

Circumferences of Circles. (Diameters advancing by Tenifis.)

Circumferences of Circles.

Diam.	$\cdot 0$	$\cdot 1$	$\cdot 2$	$\cdot 3$	$\cdot 4$	$\cdot 5$	$\cdot 6$	-7	- 8	$\cdot 9$	Diam.
81	254.469	$254 \cdot 783$	$255 \cdot 097$	$255 \cdot 412$	255•726	256.040	256.354	256.66	$256 \cdot 982$	$257 \cdot 296$	81
82	257.611	$257 \cdot 925$	$258 \cdot 239$	258.553	$258 \cdot 867$	$259 \cdot 181$	$259 \cdot 496$	259810	260-124	$260 \cdot 438$	82
83	260.752	$261 \cdot 066$	$261 \cdot 381$	261.695	$262 \cdot 009$	262-323	262.637	$262 \cdot 951$	$263 \cdot 265$	263'580	83
84	263.894	264-208	264:522	264.836	$265 \cdot 150$	$265 \cdot 465$	265779	266093	266407	266721	84
85	$267 \cdot 035$	267-350	26i•664	267-978	268-292	$268 \cdot 606$	268.920	$269 \cdot 235$	269-549	$269 \cdot 663$	85
86	$270 \cdot 177$	$270 \cdot 491$	$270 \cdot 805$	271-119	$271 \cdot 434$	271.748	$272 \cdot 062$	272.376	$272 \cdot 690$	$273.004^{\text {i }}$	86
87	$273 \cdot 319$	$273 \cdot 633$	$273 \cdot 947$	274-261	274.075	274.889	275-204	275:519	$275 \cdot 8.32$	$276 \cdot 146$	87
88	$276 \cdot 460$	$276 \cdot 774$	$277 \cdot 089$	277.403	277•17	278.031	$278 \cdot 345$	$278 \cdot 659$	278.973	279.288	88
89	$279 \cdot 602$	$279 \cdot 916$	280.230	280.544	$280 \cdot 958$	281-173	$281 \cdot 487$	$281 \cdot 801$	2¢2.115	242.429	89
90	282.743	$283 \cdot 058$	2×3.372	283.686	$284 \cdot 000$	$284 \cdot 314$	$2 \sim \pm 628$	$284 \cdot 942$	$2 \bigcirc 5 \cdot 257$	$2 \times 5 \cdot 371$	90
91	285.885	286-199	286.513	286.827	287•142	287.456	2×7.770	$2 \times 8 \cdot 0 \downarrow 4$	288.398	248.712	91
92	289.027	$289 \cdot 341$	$289 \cdot 655$	$289 \cdot 969$	290-283	$290 \cdot 597$	$290 \cdot 912$	291.226	291.540	2915	92
93	292-168	$292 \cdot 482$	$292 \cdot 796$	293111	$293 \cdot 425$	293•39	294053	$294: 367$	$294 \cdot 681$	$294 \cdot 996$	93
94	$295 \cdot 310$	295.624	295.938	296-252	296.9366	$296 \cdot 8 \times 1$	$297 \cdot 195$	297-509	$297 \cdot 823$	298137	94
95	$298 \cdot 451$	$298 \cdot 765$	$299 \cdot 080$	299-394	299.708	$300 \cdot 022$	300336	$300 \cdot 650$	$300 \cdot 965$	301279	95
96	301-593	301.907	302-221	302-535	$302 \cdot 850$	303-164	30.3478	$303 \cdot 792$	$30+106$	$304 \cdot 420$	96
97	$304 \cdot 735$	$305 \cdot 049$	305-363	$305 \cdot 677$	\| 305.991	$306 \cdot 305$	$306 \cdot 619$	$306 \cdot 934$	307.248	$307 \cdot 562$	97
98	307.876	$308 \cdot 190$	$308 \cdot 504$	$308 \cdot 819$	309-133	$309 \cdot 447$	$309 \cdot 761$	310.075	$310 \cdot 389$	$310 \cdot 704$	98
99	311.018	$311 \cdot 332$	$311 \cdot 646$	$311 \cdot 960$	$312 \cdot 274$	312-589	312903	$313 \cdot 217$	$31.3 \cdot 531$	313845	99
100	$314 \cdot 159$, 314-473	314.788	$315 \cdot 102$	$315 \cdot 416$	$315 \cdot 730$	316044	316.35	316.673	316 9ヶ7	100
Diam.	- 0	$\cdot 1$	$\cdot 2$	$\cdot 3$	4	$\cdot 5$	$\cdot 6$	$\cdot 7$	- 8	$\cdot 9$	Diam.

Surfaces of Tubes or Cylinders.

$D=$ diameter of tube or cylinder in inches.
$L=$ length of tube or cylinder in inches.
$A=$ area of surface of tube or cylinder in square feet.
$A=\frac{3 \cdot 1416 D L}{144}$.
The following example illustrates the use of the table given on pages 195 to 199.

The diameter of a tube is $1 \frac{7}{8}$ inches, and its length is 11 feet $7 \frac{5}{8}$ inches: to find the area of the surface of the tube in square feet

Area of surface of tube 11 ft . long and $1 \frac{7}{9}$ in. diam. $=5 \cdot 4000 \mathrm{sq}$. ft .

"	,	,	7 in.	,	,'	,,	$=2863$	
',	,'	,	${ }_{8}^{5} \mathrm{in}$.	"	"	"	$=0256$	
99	9		t. 75 g in.	"	"	,	$=5.7119$	

Surfaces of Tubes or Cylinders in Square Feet.

$\begin{gathered} \text { Diam. } \\ \text { in } \\ \text { Inches } \end{gathered}$	1/8	Length in Inches.						$\begin{gathered} \text { Diam } \\ \text { in } \\ \text { Inches. } \end{gathered}$
		1/4	3/8	1/2	5/8	3/4	7/8	
$\frac{1}{2}$	$\cdot 0014$	$\cdot 0027$	$\cdot 0041$	-0055	$\cdot 0068$	-0082	$\cdot 0095$	$\frac{1}{2}$
${ }^{9} 8$	-0015	$\cdot 0031$	-0046	-0061	-0077	$\cdot 0092$	-0107	16
	-0017	-0034	$\cdot 0051$	-0068	-0085	$\cdot 0102$	$\cdot 0119$	5
$1 \frac{1}{18}$	-0019	$\cdot 0037$	-0056	$\cdot 0075$	-0094	$\cdot 0112$	$\cdot 0131$	
$\frac{3}{4}$	-0020	$\cdot 0041$	$\cdot 0061$	-0082	$\cdot 0102$	$\cdot 0123$	$\cdot 0143$	$\frac{3}{4}$
$\frac{13}{16}$	0022	$\cdot 0044$	-0066	$\cdot 0089$	$\cdot 0111$	$\cdot 0133$	$\cdot 0155$	$\frac{1}{1} \frac{8}{6}$
7	-0024	-0048	-0072	-0095	$\cdot 0119$	-0143	$\cdot 0167$	7
$1 \frac{15}{6}$	-0026	$\cdot 0051$	$\cdot 0077$	$\cdot 0102$	-0128	$\cdot 0153$	$\cdot 0179$	$\frac{1}{1} \frac{5}{6}$
1	$\cdot 0027$	$\cdot 0055$	$\cdot 0082$	$\cdot 0109$	$\cdot 0136$	$\cdot 0164$	-0191	1
$1 \frac{1}{8}$	-0031	$\cdot 0061$	-0092	$\cdot 0123$	$\cdot 0153$	$\cdot 0184$	$\cdot 0215$	$1 \frac{1}{8}$
14	-0034	$\cdot 0068$	$\cdot 0102$	$\cdot 0136$	-0170	-0205	$\cdot 0239$	14
$1 \frac{3}{8}$	$\cdot 0037$	$\cdot 0075$	$\cdot 0112$	$\cdot 0150$	$\cdot 0187$	-0225	-0262	13
$1 \frac{1}{2}$	$\cdot 0041$	-0082	-0123	$\cdot 0164$	-0205	-0245	-0286	$1 \frac{1}{2}$
15	$\cdot 0044$	$\cdot 0089$	-0133	$\cdot 0177$	-0222	$\cdot 0266$	-0310	15
18	$\cdot 0048$	$\cdot 0095$	$\cdot 0143$	$\cdot 0191$	-0239	-0286	. 0334	18
178	$\cdot 0051$	-0102	-0153	-0205	-0256	-0307	-0358	178
2	$\cdot 0055$	$\cdot 0109$	-0164	$\cdot 0218$	$\cdot 0273$	$\cdot 0327$	-0382	2
21	$\cdot 0061$	0123	$\cdot 0184$	$\cdot 0245$	$\cdot 0: 307$	-0368	-0430	24
$2 \frac{1}{2}$	-0068	$\cdot 0136$	-0205	-0273	-0341	-0409	-0477	$2 \frac{1}{2}$
$2 \frac{3}{4}$	$\cdot 0075$	$\cdot 0150$	-0225	$\cdot 0300$	$\cdot 0375$	- 0450	$\cdot 0525$	$2 \frac{3}{4}$
3	-0082	$\cdot 0164$	$\cdot 0245$	-0327	. 0409	-0491	-0573	3
34	-0089	-0177	-0266	-0355	- 0443	-0532	-0620	34
$3 \frac{1}{2}$	-0095	-0191	-0286	-0382	-0477	-0573	-0668	$3 \frac{1}{2}$
$3{ }^{3}$	$\cdot 0102$	-0205	-0307	-0409	$\cdot 0511$	-0614	-0716	$3{ }^{3}$
4	$\cdot 0109$	$\cdot 0218$	$\cdot 0327$	$\cdot 0436$	$\cdot 0545$	-0654	$\cdot 0764$	4
41	-0116	-0232	-0348	-0464	-0580	-0695	. 0811	44
$4 \frac{1}{2}$	-0123	$\cdot 0245$	-0368	-0491	-0614	-0736	-0859	$4 \frac{1}{2}$
$5^{4 \frac{9}{4}}$	$\cdot 0130$	-0259	-0389	-0518	-0648	$\cdot 0777$	$\cdot 0907$	$4{ }^{4}$
5	-0136	$\cdot 0273$	-0409	-0545	-0682	-0818	-0954	5
$5 \frac{1}{2}$	$\cdot 0150$	$\cdot 0300$	$\cdot 0450$	-0600	$\cdot 0750$	-0900	-1050	$5 \frac{1}{2}$
6	-0164	-0327	-0491	-0654	-0818	-0982	- 1145	6
7	-0191	-0382	$\cdot 0573$	$\cdot 0764$	-0954	-1145	- 1336	
8	-0218	$\cdot 0436$	-0654	-0873	-1091	-1309	-1527	8
9	-0245	. 0491	-0736	-0982	-1227	- 1473	-1718	9
10	$\cdot 0273$. 0545	$\cdot 0818$	-1091	-1364	-1636	-1909	10

Surfaces of Tubes or Cylinders in Square Feet.

	Length in Inches.						
	1	2	3	4	5	6	
$\frac{1}{2}$	$\cdot 0109$	$\cdot 0218$	-0327	$\cdot 0136$	-(0)545	-()654	$\frac{1}{2}$
${ }^{9} 9$	$\cdot 0123$	-(0245	$\cdot(368$	$\cdot 0.91$	-()614	$\cdot 0736$	$\mathrm{t}^{\frac{9}{6}}$
	$\cdot 0136$	$\cdot 0273$	$\cdot 0409$	-0545	-(06882	-()8I8	$\frac{8}{8}$
116	-(0150	-(036)	$\cdot(0450$	-0600	$\cdot 0750$	-0900	$1 \frac{11}{6}$
3	$\cdot 0161$	$\cdot 0327$	$\cdot 0491$	$\cdot 0654$	-0818	-0984	$\frac{3}{4}$
$1{ }^{1} \frac{1}{6}$	$\cdot 0177$	-0355	-05.32	$\cdot 0709$	-0886	$\cdot 1064$	${ }_{1}^{1} \frac{3}{6}$
	${ }^{0} 10191$	$\cdot 0382$	-0573	$\cdot 0764$	-()954	-1145	7
15	- 0205	$\cdot 0409$	$\cdot 0614$	$\cdot 0818$	-1023	-1227	16
1	$\cdot() 218$	$\cdot 0436$	-0654	$\cdot 0873$	-1091	-1309	1
$1{ }_{8}^{1}$	$\cdot 0245$	$\cdot 0491$	$\cdot 0736$	$\cdot 0982$	-1227	$\cdot 1473$	$1 \frac{1}{8}$
$1 \frac{1}{4}$	$\cdot 0273$	-0.54\%	$\cdot 0818$	$\cdot 1091$	-1364	-1636	$1 \frac{1}{4}$
18	$\cdot 0300$	- 06600	$\cdot 0900$	-1200	-150)	-1800	13
13	-0327	$\cdot(65.54$	$\cdot 0982$	-1309	-1633	-1963	$1 \frac{1}{2}$
$1 \frac{5}{8}$	$\cdot 0355$	-0709	$\cdot 1064$	-1418	-1773	-2127	15
$1 \frac{8}{4}$	$\cdot 0382$	$\cdot 0764$	-114.)	$\cdot 1527$	$\cdot 1909$	-2291	14
$1 \frac{7}{8}$	$\cdot(0409$	-0818	- 1227	$\cdot 1636$	$\cdot 2045$	$\cdot 2454$	17 $\frac{1}{8}$
2	$\cdot 0436$	$\cdot 0873$	$\cdot 1309$	$\cdot 1745$	${ }^{2} 182$	-2618	2
21	$\cdot 0491$	-0982	$\cdot 1473$	$\cdot 1963$	$\cdots 2454$	-2945	$2 \frac{1}{4}$
$2 \frac{1}{2}$	-0545	$\cdot 1091$	$\cdot 16: 36$	$\cdot 2182$	$\cdot 2727$	- 3272	23
23	-0600	$\cdot 1200$	$\cdot 1800$	$\cdot 2400$	-3000	$\cdot 3600$	$2 \frac{3}{4}$
3	$\cdot 0654$	$\cdot 1309$	-1963	-2618	$\cdot 3272$	$\cdot 3927$	3
34	$\cdot 0709$	-1418	$\cdot 2127$	-2836	- 3545	-4254	$3 \frac{1}{4}$
$3 \frac{1}{2}$	$\cdot 0764$	$\cdot 1527$	$\cdot 2291$	$\cdot 3054$	$\cdot 3818$	-4581	32
34	$\cdot 0818$	$\cdot 1636$	$\cdot 2454$	$\cdot 3272$	-4091	-4909	$3 \frac{3}{4}$
4	$\cdot 0873$	$\cdot 1745$	$\cdot 2618$	$\cdot 3491$	$\cdot 4363$	$\cdot 5236$	4
$4 \frac{1}{4}$	-()927	$\cdot 1854$	$\cdot 2782$	$\cdot 3709$	-4636	$\cdot 5563$	41
$4 \frac{1}{2}$	-0982	$\cdot 1963$	$\cdot 2945$	$\cdot 3927$	-4909	$\cdot 5890$	$4 \frac{1}{2}$
$4 \frac{3}{4}$	-1036	$\cdot 2073$	$\cdot 3109$	-4145	$\cdot 5181$	-6218	48
5	$\cdot 1091$	$\cdot 2182$	-3272	-4363	$\cdot 5454$	$\cdot 6545$	5
$5 \frac{1}{2}$	$\cdot 1200$	$\cdot 2400$	$\cdot 3600$	$\cdot 4800$	-6000	-7199	$5 \frac{1}{2}$
6	-1309	$\cdot 2618$	$\cdot 3927$	$\cdot 5236$	$\cdot 6545$	$\cdot 7854$	6
7	-1527	$\cdot 3054$	$\cdot 4581$	-6109	$\cdot 7636$	-9163	
8	- 1745	-3491	-5236	-6981	-8727	1.047	8
9	-1963	- 3927	-5890	$\cdot 7854$	-9817	$1 \cdot 178$	
10	$\cdot 2182$	$\cdot 4363$	$\cdot 6545$	-8727	1.091	$1 \cdot 309$	10

Surfaces of Tubes or Cylinders in Square Feet.

$\begin{gathered} \text { Diam. } \\ \text { in } \\ \text { Inches. } \end{gathered}$	Length in Inches.						
				10)	11	12	
		8		10	11	12	
$\frac{1}{2}$	$\cdot 1764$	-(0873	${ }^{(0982}$	$\cdot 1091$	$\cdot 1200$	$\cdot 1309$	$\frac{1}{2}$
${ }^{18}$	$\cdot 08.9$	-0982	$\cdot 1104$	-1227	$\cdot 1350$	$\cdot 1473$	
	-0954	$\cdot 1091$	-1227	$\cdot 1364$	-1500)	$\cdot 16: 36$	${ }_{8}^{8}$
	$\cdot 1050$	-1200	$\cdot 1350$	-1500	-1650	$\cdot 1800$	
$\frac{3}{4}$	$\cdot 1145$	-1309	$\cdot 1473$	$\cdot 1636$	$\cdot 1800$	-1963	4
16	-1241	-1418	$\cdot 1595$	$\cdot 1773$	$\cdot 1950$	-2127	
	$\cdot 1336$	$\cdot 1527$	-1718	-1909	$\cdot 2100$	-2:91	${ }^{7}$
$1{ }^{\frac{5}{6}}$	$\cdot 1432$	$\cdot 16336$	-1841	2045	-2250	2454	15
	$\cdot 1527$	$\cdot 1745$	$\cdot 1963$	$\cdot 2182$	-2400	-2618	1
$1{ }_{8}^{11}$	-171¢	-1903	-2209	-2454	${ }^{2} 700$	-2945	11
14	$\cdot 1909$	-2182	. 2454	$\cdot 2727$	-3000	-3272	14
$1{ }_{8}^{3}$	-2100	-2100	-2700	$: 3000$	3300	:3600	
$1 \frac{1}{2}$	-2291	2618	-2945	:3272	:3600	-3927	$1 \frac{1}{2}$
	'2482	-28:36	:3191	:3545	3900	-42.54	
13	-2673	-3054	-3436	$\cdot 3818$	4200	-4581	13
17 $\frac{7}{8}$	-2x63	-3272	-3682	-4091	-4500	-1909	$1 \frac{7}{8}$
	-3054	-3491	-3927	-4363	-4800	\%236	2
2 2	-34:36	-3927	-4418	-4909	-:4400	$\cdot 5890$	24
21	-3818	-4363	-4909	-5454	-6\%)0	-6545	$2 \frac{1}{2}$
23	-4200	$\cdot 4800$	-5400	-6000	-6600	$\cdot 7199$	
3	-4581	$\cdot 5236$	-5890	$\cdot 6545$	-7199	.7854	3
34	-4963	-5672	-6381	$\cdot 7090$	-7799	. 8508	
$3 \frac{1}{2}$	-5345	-6109	6872	.7636	-8399	-9163	31
$3 \frac{3}{4}$	-5727	-6545	$\cdot 7363$	-8181	-8999	-9817	
4	$\cdot 6109$	$\cdot 6981$	$\cdot 7854$	-8727	-9599	$1 \cdot 047$	4
44	-6490	7418	$\cdot 8345$. 9272	$1 \cdot 020$	$1 \cdot 113$	
$4 \frac{1}{2}$	$\cdot 6872$. 7854	.8836	.9817	$1 \cdot 080$	1178	412
4	$\cdot 7254$	-8290	-9327	1.036	$1 \cdot 140$	1244	
5	.7036	-8727	-9817	$1 \cdot 091$	$1 \cdot 200$	1:309	5
$5 \frac{1}{2}$	-8399	-9599	$1 \cdot 080$	$1 \cdot 200$	1:320	$1 \cdot 440$	$5 \frac{1}{2}$
6	. 9163	$1 \cdot 047$	$1 \cdot 178$	$1 \cdot 309$	$1 \cdot 440$	1.571	6
7	$1 \cdot 069$	$1 \cdot 222$	$1 \cdot 374$	$1 \cdot 527$	$1 \cdot 680$	$1 \cdot 833$	7
8	1-222	$1 \cdot 396$	1-571	1.745	1.920	$2 \cdot 094$	8
9	1-374	1.571	1.767	1.963	2.160	$2 \cdot 356$	9
10	1.527	1.745	$1 \cdot 963$	2-182	2•400	$2 \cdot 618$	10

Surfaces of Tubes or Cylinders in Square Feet.

$\begin{gathered} \text { Diam. } \\ \text { in } \\ \text { inches } \end{gathered}$	2	Length in Feet						$\begin{aligned} & \text { Diam. } \\ & \text { inches. } \end{aligned}$
		3	4	5	6	7	8	
$\frac{1}{2}$	2618	:3927	-5236	-6545	7854	$\cdot 9163$	$1 \cdot 047$	$\frac{1}{2}$
${ }^{9}$	-2945	- 4418	:5890	-7363	-88.36	1 (031	1-178	
$\frac{5}{8}$	-3272	$\cdot 4909$	-6545	-8181	$\cdot 9817$	$1 \cdot 145$	1309	星
	-3600	-5400	$\cdot 7199$	-8999	$1 \cdot 080$	$1 \cdot 260$	$1 \cdot 440$	
$\frac{3}{4}$	-3927	$\cdot 5890$	$\cdot 7854$	$\cdot 9817$	$1 \cdot 178$	1374	1.571	$\frac{3}{4}$
	$\cdot 4254$	-6381	-8508	1.064	1276	$1 \cdot 489$	1.702	
$\frac{7}{8}$	-1581	-6872	$\cdot 9163$	$1 \cdot 145$	1374	$1 \cdot 604$	1.833	${ }^{\frac{7}{8}}$
$\frac{15}{15}$	-4909	$\cdot 7363$	$\cdot 9817$	1227	1473	1.718	1963	
1	-5236	7854	1.047	$1 \cdot 309$	1.571	1833	$2 \cdot 094$	1
$1 \frac{1}{8}$	-5890	-88.36	$1 \cdot 178$	1473	$1 \cdot 767$	2062	$2 \cdot 356$	$1 \frac{1}{8}$
14	$\cdot 65$	$\cdot 98$	$1 \cdot 309$	1.63	1.963	$2 \cdot 291$	$2 \cdot 618$	14
$1 \frac{1}{8}$	$\cdot 7199$	1.080	$1 \cdot 440$	1.800	$2 \cdot 160$	$2 \cdot 520$	$2 \cdot 880$	$1 \frac{1}{8}$
$1 \frac{1}{2}$	$\cdot 7854$	$1 \cdot 178$	1.571	$1 \cdot 963$	$2 \cdot 356$	$2 \cdot 749$	$3 \cdot 142$	$1 \frac{1}{2}$
185	-8508	1.276	1.702	$2 \cdot 127$	$2 \cdot 553$	$2 \cdot 978$	$3 \cdot 403$	
18	$\cdot 9163$	1-374	1.833	2291	$2 \cdot 749$	$3 \cdot 207$	3.665	$1 \frac{3}{4}$
17	$\cdot 9817$	1.473	$1 \cdot 963$	2454	$2 \cdot 945$	$3 \cdot 436$	$3 \cdot 927$	\%
2	1.047	$1 \cdot 571$	$2 \cdot 094$	$2 \cdot 618$	$3 \cdot 142$	$3 \cdot 665$	$4 \cdot 189$	2
24	$1 \cdot 178$	1.767	$2: 356$	$2 \cdot 945$	$3 \cdot 534$	4123	4.712	21
21	$1 \cdot 309$	1.963	$2 \cdot 618$	$3 \cdot 272$	3.927	4.581	$5 \cdot 236$	$2 \frac{1}{2}$
23	$1 \cdot 440$	$2 \cdot 160$	$2 \cdot 880$	$3 \cdot 600$	4:320	5.040	$5 \cdot 760$	$2 \frac{3}{4}$
3	1.571	$2 \cdot 356$	$3 \cdot 142$	3.927	4.712	$5 \cdot 498$	6.283	3
31	1.702	$2 \cdot 553$	$3 \cdot 403$	4.254	$5 \cdot 105$	$5 \cdot 956$	6.807	34
$3 \frac{1}{2}$	1.833	$2 \cdot 749$	$3 \cdot 665$	$4 \cdot 581$	$5 \cdot 498$	$6 \cdot 414$	$7 \cdot 330$	$3 \frac{1}{2}$
$3 \frac{3}{4}$	$1 \cdot 963$	$2 \cdot 945$	$3 \cdot 927$	4.909	$5 \cdot 890$	$6 \cdot 872$	7.854	$3 \frac{3}{4}$
4	$2 \cdot 094$	$3 \cdot 142$	$4 \cdot 189$	$5 \cdot 236$	6.283	$7 \cdot 330$	$8 \cdot 378$	4
44	$2 \cdot 225$	3:338	$4 \cdot 451$	$5 \cdot 563$	$6 \cdot 676$	7.789	$8 \cdot 901$	
412	$2 \cdot 356$	$3 \cdot 534$	$4 \cdot 712$	$5 \cdot 890$	7.069	8.247	$9 \cdot 425$	412
$5{ }^{4 \frac{3}{4}}$	$2 \cdot 487$	$3 \cdot 731$	4.974	6.218	$7 \cdot 461$	8705	9.948	
55	2.618 2.880	$3 \cdot 927$ $4 \cdot 320$	5.236 5.760	6.545	$7 \cdot 854$ 8.639	$9 \cdot 163$ 10.08	$10 \cdot 47$ $11 \cdot 52$	${ }_{51}{ }^{5}$
6	$3 \cdot 142$	$4 \cdot 712$	6.283	7.854	$9 \cdot 425$	11.00	12.57	6
7	3.665	$5 \cdot 498$	$7 \cdot 330$	$9 \cdot 163$	11.00	12.83	14.66	
8	$4 \cdot 189$	6.283	$8 \cdot 378$	$10 \cdot 47$	12.57	14.66	16.76	8
9	4.712	7.069	$9 \cdot 425$	11.78	$14 \cdot 14$	$16 \cdot 49$	18.85	
10	$5 \cdot 236$	7•854	$10 \cdot 47$	13.09	$15 \cdot 71$	18.33	$20 \cdot 94$	10

Surfaces of Tubes or Cylinders in Square Feet.

$\begin{gathered} \text { Diam. } \\ \text { in } \\ \text { Inches } \end{gathered}$	Length in Feet							$\begin{gathered} \text { Diam. } \\ \text { m } \\ \text { Inches. } \end{gathered}$
	9	10	11	12	13	14	15	
$\frac{1}{2}$	1-174	1309	1440	1571	1702	1.833	1.963	2
1	$1 \cdot 325$	$1 \cdot 473$	1.620	1.767	1.914	$2 \cdot 062$	$2 \cdot 209$	${ }^{9}{ }^{9}$
5	$1 \cdot 473$	$1 \cdot 636$	1800	$1: 963$	$2 \cdot 127$	$2 \cdot 6!1$	2454	${ }^{5}$
10	$1 \cdot 620$	18800	1.980	$2 \cdot 160$	2340	$2 \cdot 520$	$2 \cdot 700$	
3	1767	$1 \cdot 963$	2160	$2: 356$	$2 \cdot 553$	2.749	$2 \cdot 945$	$\frac{3}{4}$
16	1 914	$2 \cdot 127$	2-34($2 \cdot 553$	$2 \cdot 765$	$2 \cdot 978$	$3 \cdot 191$	16
8	2062	2.291	$2 \cdot 520$	$2 \cdot 749$	$2 \cdot 978$	3207	3436	$\frac{7}{8}$
18	$2 \cdot 209$	$2 \cdot 454$	$2 \cdot 700$	$2 \cdot 945$	$3 \cdot 191$	$3 \cdot 436$	3.682	
1	$2: 356$	$2 \cdot 618$	$2 \cdot 880$	$3 \cdot 142$	$3 \cdot 403$	$3 \cdot 665$	3.927	1
$1 \frac{1}{8}$	$2 \cdot 6.31$	$2 \cdot 945$	$3 \cdot 240$	$3 \cdot 534$	$3 \cdot 829$	$4 \cdot 123$	$4 \cdot 418$	$1 \frac{1}{8}$
14	$2 \cdot 945$	$3 \cdot 272$	$3 \cdot 600$	$3 \cdot 927$	$4 \cdot 254$	$4 \cdot 581$	4909	14
13	$3 \cdot 240$	$3 \cdot 600$	3.960	4320	$4 \cdot 680$	$5 \cdot 040$	5.400	$1 \frac{3}{8}$
12	$3 \cdot 534$	$3 \cdot 927$	$4 \cdot 320$	4.712	5105	$5 \cdot 498$	$5 \cdot 890$	$1 \frac{1}{2}$
11^{5}	$3 \cdot 829$	$4 \cdot 254$	$4 \cdot 680$	$5 \cdot 105$	$5 \cdot 531$	$5 \cdot 956$	6:381	15
13	$4 \cdot 123$	4581	$5 \cdot 040$	$5 \cdot 498$	$5: 956$	$6 \cdot 414$	$6 \cdot 872$	$1 \frac{3}{4}$
17 $\frac{7}{8}$	$4 \cdot 418$	4.909	$5 \cdot 400$	$5 \cdot 890$	6.381	6.872	$7 \cdot 363$	178
2	$4 \cdot 712$	5.236	5.760	6.283	$6 \cdot 807$	$7 \cdot 330$	7-854	2
21	$5 \cdot 301$	5890	$6 \cdot 480$	$7 \cdot 069$	$7 \cdot 658$	$8 \cdot 247$	$8 \cdot 836$	24
21	$5 \cdot 890$	6545	$7 \cdot 199$	$7 \cdot 854$	$8 \cdot 508$	$9 \cdot 163$	9.817	$2 \frac{1}{2}$
28	6.480	$7 \cdot 199$	$7 \cdot 919$	$8 \cdot 639$	$9 \cdot 359$	$10 \cdot 08$	10.80	23
3	$7 \cdot 069$	$7 \cdot 854$	$8 \cdot 639$	$9 \cdot 425$	10.21	11.00	11.78	3
34	$7 \cdot 658$	8-508	$9 \cdot 359$	$10 \cdot 21$	11.06	11.91	$12 \cdot 76$	34
31	8.247	$9 \cdot 163$	$10 \cdot 08$	11.00	11.91	12.83	$13 \cdot 74$	$3 \frac{1}{2}$
$3 \frac{3}{4}$	$8 \cdot 836$	$9 \cdot 817$	$10 \cdot 80$	11.78	$12 \cdot 76$	$13 \cdot 74$	14.73	
4	$9 \cdot 425$	$10 \cdot 47$	11.52	$12 \cdot 57$	$13 \cdot 61$	$14 \cdot 66$	$15 \cdot 71$	4
41	10.01	11.13	$12 \cdot 24$	$13 \cdot 35$	14.46	$15 \cdot 58$	16.69	
$4 \frac{1}{2}$	$10 \cdot 60$	11.78	$12 \cdot 96$	$14 \cdot 14$	$15 \cdot 32$	$16 \cdot 49$	$17 \cdot 67$	43
$4 \frac{3}{4}$	$11 \cdot 19$	$12 \cdot 44$	$13 \cdot 68$	14.92	$16 \cdot 17$	$17 \cdot 41$	18.65	
5	11.78	1309	$14 \cdot 40$	$15 \cdot 71$	$17 \cdot 02$	18.33	19.63	5
$5 \frac{1}{2}$	$12 \cdot 96$	$14 \cdot 40$	$15 \cdot 84$	17.28	$18 \cdot 72$	20-16	21.60	$5 \frac{1}{2}$
6	$14 \cdot 14$	$15 \cdot 71$	17-28	18.85	$20 \cdot 42$	21-99	23.56	6
7	$16 \cdot 49$	$18 \cdot 33$	$20 \cdot 16$	21.99	$23 \cdot 82$	$25 \cdot 66$	$27 \cdot 49$	
8	18.85	20.94	23.04	25-13	27.23	29-32	31.42	8
9	21.21	23.56	25.92	28.27	30.63	32.99	35-34	
10	$23 \cdot 56$	26-18	28-80	31.42	34.03	$36 \cdot 65$	39.27	10

Capacity of Pipes per Foot of Length, or Discharging Capacity of Pumps per Foot Travel of Piston, in Imperial Gallons.
$D=$ diameter of pipe or pump barrel in inches.
$C=$ cajacets per foot length in impeual gallons* $=\cdot 03397996 D^{2}$.

D	-()	1	$\frac{1}{4}$	3	1	5 8	${ }_{4}^{3}$	$\frac{7}{8}$
0		$\cdot 000.5$	$\cdot 00 \cdot 1$	-0048	-0085	- ()133	.0191	. 0.260
1	-(0)340	-0430	$\cdot 0531$	-(0)42	-()764	-0897	- 1040	- 1194
2	-1359	-1534	-1720	-1916	$\cdot \cdot 123$	$\cdot 2311$	$\cdot 2569$. 9808
3	-30.58	$\cdot 3: 318$	- 35 5 8	$\cdot 3870$	- 416	-4464	-4777	. 5101
4	-5436	- 5781	-6136	-6503	-6880	-7267	-7665	. 8074
5	-8493	- 8923	-9304	-9815	$1 \cdot 028$	1.075	$1 \cdot 123$	$1 \cdot 173$
6	1-2.3	$1 \cdot 275$	$1 \cdot 327$	1.381	1435	$1 \cdot 491$	1548	1.606
7	1-665	1.725	1.786	1848	$1 \cdot 911$	1-975	$2 \cdot 041$	$2 \cdot 107$
8	$2 \cdot 174$	$2 \cdot 243$	$\because 312$	$2 \cdot 383$	24.5	$2 \cdot 927$	$\cdots \cdot 601$	$2 \cdot 676$
9	$\because 75 \%$	$2 \cdot 8.99$	$2 \cdot 907$	9.986	3-066	$3 \cdot 147$	3230	$3 \cdot 313$

Diameters advancing
by Qiarters.

D	$\cdot 0$	1	$\frac{1}{2}$	$\frac{3}{4}$
10	$3 \cdot 397$	$3 \cdot 569$	$3 \cdot 746$	$3 \cdot 926$
11	$4 \cdot 111$	$4 \cdot 300$	$4 \cdot 493$	$4 \cdot 690$
12	$4 \cdot 892$	$5 \cdot 098$	$5 \cdot 308$	$5 \cdot 523$
13	$5 \cdot 7+1$	$5 \cdot 964$	$6 \cdot 19 \cdot$	$6 \cdot 4 \cdot 3$
14	$6 \cdot 659$	$6 \cdot 899$	$7 \cdot 143$	$7 \cdot 391$
15	$7 \cdot 644$	$7 \cdot 901$	$8 \cdot 16 \cdot$	$8 \cdot 427$
16	$8 \cdot 697$	$8 \cdot 971$	$9 \cdot 249$	$9 \cdot 532$
17	$9 \cdot 818$	$10 \cdot 11$	$10 \cdot 40$	$10 \cdot 70$
18	$11 \cdot 01$	$11 \cdot 32$	$11 \cdot 63$	$11 \cdot 94$
19	$12 \cdot 26$	$12 \cdot 59$	$12 \cdot 92$	$13 \cdot 25$
20	$13 \cdot 59$	$13 \cdot 93$	$14 \cdot 28$	$14 \cdot 63$
21	$14 \cdot 98$	$15 \cdot 34$	$15 \cdot 70$	$16 \cdot 07$
22	$16 \cdot 44$	$16 \cdot 82$	$17 \cdot 20$	$17 \cdot 58$
23	$17 \cdot 97$	$18 \cdot 36$	$18 \cdot 76$	$19 \cdot 16$
24	$19 \cdot 57$	$19 \cdot 98$	$20 \cdot 39$	$20 \cdot 81$
25	$21 \cdot 23$	$21 \cdot 66$	$22 \cdot 09$	$22 \cdot 53$
26	$22 \cdot 97$	$23 \cdot 41$	$23 \cdot 86$	$24 \cdot 31$
27	$24 \cdot 77$	$25 \cdot 23$	$25 \cdot 69$	$26 \cdot 16$
28	$26 \cdot 63$	$27 \cdot 11$	$27 \cdot 59$	$28 \cdot 08$
29	$28 \cdot 57$	$29 \cdot 07$	$29 \cdot 56$	$30 \cdot 07$

Diameters aivancing
by Inches.
*The gallon is taken as 277.420 cubic inches (see p. 2).

Volumes and Surfaces of Solids.

$\nabla=$ volume of solid. $A=$ area of surface of solid.

For each of the above solids, $I^{\prime}=$ area of base $c d \lambda$ perpendicular height H
$=$ area of section $a b$ perpendicular to sides \times length L.
$A=$ perimeter of section $a b \times$ length $L \mid$ sum of areas of the two ends.
In a right pism or right cylinder the normal section $a b$ is equal in all respects to the base $c d$.

Frustum of Prism.

Frustum of Prism

Frustum of Cylinder.

The following rules apply to the frustum of a prism whose normal section is either a triangle, square, rectangle, parallelogram, or any regular polygon, and to the frustum of a cylinder whose normal section is a circle :-
$V=$ area of normal section $a b \times$ length of axis H.
$A=$ perimeter of normal section $a b \times$ length of axis $H+$ sum of areas of the two ends.
The axis mentioned above is the line joining the centres of gravity of the ends. This line is parallel to the parallel edges of the solid, and its length H is the mean of the lengths of the parallel edges, i.e. $H=$ sum of lengths of parallel edges \div number of parallel edges.

If the prism whose frustum is under consideration be such that the above rules do not apply, it may be divided into a series of frustums of triangular prisms whose volumes may be determined separately by the rule above, and then added together for the whole volume of the solid. The area of the surface may be obtained by adding together the areas of the separate faces.

For each of the above sollds,
$V=$ area of base $\times \$$ perpendicular height H
For the right pyramid when the base circumscribes a circle, and for the right circular cone,
$A=$ perimeter of base $\times \frac{1}{2}$ length of slant side $L+$ area of base. For the right circular cone whose base has a radius r,

$$
L=\sqrt{ } r^{2}+H^{2}, \text { and } A=\pi r(L+r)=\pi r\left(r+\sqrt{r^{2}+H^{2}}\right)
$$

In a right pyramid L is measured from the vertex in a direc. tion at right angles to one side of the base.

The volume of a frustum of a pyramid or cone, i.e. the volume of the portion of the pyramid or cone lying between the base and a plane section of the solid, as shown above, is equal to the difference between the volume of the solid whose height is H and the volume of the solid whose height is h, the base of the first solid being the base of the original solid, and the base of the second solid being the section mentioned above.
$A=$ area of slant surface of solid of height H-area of slant surface of solid of height $h+$ area of lower end + area of upper end.

If the ends of the frustum are at right angles to the axis, and therefore parallel to one another, then

$$
\begin{aligned}
& V=(\text { sum of areas of two ends }+\sqrt{\text { product of areas of two ends })} \\
& \times \frac{1}{\frac{3}{2}} \text { height of frustum. }
\end{aligned}
$$

If $a_{1}=$ area of one end, $a_{2}=$ area of other end, and $h_{1}=$ height of frustum, then $V=\left(a_{1}+a_{2}+\sqrt{a_{1} a_{2}}\right) \times \frac{1}{3} h_{1}$.

Volumes and Surfaces of Solids (concluded).

Sphere.

$$
\begin{aligned}
& V={ }_{6}^{\pi} D^{3} \\
& A=\pi D^{2} .
\end{aligned}
$$

Segment of a Sphere.

$$
\begin{array}{rl|l}
V & =\frac{\pi H}{6}\left(\frac{3}{4} D_{1}^{2}+H^{2}\right) & V={ }_{6}^{\pi I}\left(\frac{3}{4} D_{1}^{2}+\frac{3}{4} D_{2}^{2}+H^{2}\right) \\
& =\pi H^{2}(3 D-2 H) . & A=\pi D H+\frac{\pi}{4}\left(D_{1}^{2}+D_{2}^{2}\right) . \\
A & =\pi D H+\frac{\pi}{4} D_{1 .}^{2} &
\end{array}
$$

Zone of a Sphere.

If a cone, sphere, and cylinder have the same diameter, and the cone and cylinder each bave a height equal to their diameter ; then if the volume of the cone be denoted by 1 , the volume of the sphere will be denoted by 2 , and the volume of the cylinder by 3 . Also, the area of the surface of the sphere will be equal to the area of the curved surface of the cylinder. Again, the area of the curved surface of a zone or segment of the sphere will be equal to that of a zone of the cylinder of the same height.

Prolate Spheroid. $V=\frac{\pi}{6} a^{\circ} b .$	$\left(\begin{array}{c}\pi \\ i \\ 0 \\ -\cdots L E V A T I O N \\ \text { ELE }\end{array}\right)$ Oblate Spheroid. $V=\frac{\pi}{6} a b^{2} .$	Ellipsoid. $V=\frac{\pi}{6} a b c .$

The volume of a spheroid or ellipsoid is equal to two-thirds of the volume of the oircumscribing cylinder.

The Theorems of Guldinus.

(1.) If a line $a b$, straight or curved, whose centre of gravity is G, be made to revolve about an axis $X Y$ in its plane, the area of the curved surface traced out by ab is equal to the length of $a b$ multiplied by the length of the path of θ.

(2.) If a plane figure $a b$, whose centre of gravity is G, be made to revolve about an axis $X Y$ in its plane, bit not cutting the figure, the volume of the solid swept out by the figure is equal to the area of the figure $a b$ multiplied by the length of the path of G.

Centre of Gravity.
The centre of gravity is indıcated by the letter G.

Centre of Gravity (continued).

Triangle

$$
A b=b C . \quad B n=a C .
$$

G is at the intersection of $A a$ and Bb

$$
\begin{aligned}
& a G=\frac{1}{3} A a . \\
& b G={ }_{3} B b
\end{aligned}
$$

a
Semicircle.
$O A=$ radius $=r$.
$O B$ is perpendicular to $O A$.

$$
O G=\frac{4 r}{3 \pi}=\cdot 4244 r .
$$

Quadrilateral.
a, b, c, and d are the centres of grav lty of the triangles $A B D, B C A,(D) B$, and $D A C^{(}$respectively G is at the intersection of ac and $b d$.

Make $C \bar{F}=A E$
G, the centre of gravity of the triangle $B D F$, is also the centre of gravity of the quadrilateral $A B C D$.

Quadrant of a Circle.	Segment of a Circle.
$O A=O B=$ radıus $=r$. Angle $A() B=90^{\circ}$.	O is the centre of the circle.
Ga is perpendicular to $0 A$. $G b$ is perpendicular to $O B$.	$O D$ is perpendicular to $A B$. $a=$ area of segment.
$O b=O a=\frac{4 r}{3 \pi}=4244 r$	$O G=\frac{c^{3}}{12 a}$.
$O G=\frac{4 r}{-\sqrt{ } 2} \frac{3}{3}=6002 r$.	

The centre of gravity of a regular plane figure, such as an equilateral triangle, a square, a rectangle, a parallelogram, or any regular polygon, or a crrcle, or an ellipse, is at the gcometrical oontre of the figure.

Centre of Gravity (continued).

Sector of a Circle.
Chord $A B=c$.
Length of arc $A D B=l$.
Radius $O A$ or $O B=r$. $O D$ is perpendicu-
lar to $A B$.
$O G=\frac{2 c r}{3 l}$.

Half of an Ellipse
OA is semi major axis.
$O B$ is semi-minor axis $=b$.
$O G=\frac{4 b}{3 \pi}=\cdot 4244 b$.

Quarter of an Ellipse
$O A$ is semi-majoraxis.
OBissemi-minoraxis.
$G a$ is perpendicular to OA.
$G b$ is perpendicular to $O B$.
$O a=\frac{4 O A}{3 \pi}=.4244 \times \overline{O A}$.
$O b=\frac{4 \overline{O B}}{3 \pi}=4244 \times \overline{O B}$.

Parabola and Semi-Parabola

B is the vertex and $O B$ the
 axis.
$A O C$ is perpendıcular to $O B$. $G a$ is perpendicular to $O A$. $G b$ is perpendicular to $O B$.
For parabola, $O G=\frac{2}{5} \overline{O B}$.
$O b=\frac{2}{5} \overline{O B} . \quad O a=\frac{3}{8} \overline{O A}$.
$A B C D$ is any plane figure. G is the centre of gravity of the whole figure. G_{1} is the centre of gravity of the part AEFD. $\quad G_{2}$ is the centre of gravity of the remaining part BEFC.
$a=$ area of part $A E F D . \quad b=$ area of part BEFC.
$G_{1} G G_{2}$ is a straight line.
$a \times G_{1} G=b \times \overline{G_{2} G}$.
$(a+b) \times \overline{G G_{1}}=b \times \overline{G_{2} G_{1}}$.
$(a+b) \times \overline{G G_{2}}=a \times \overline{G_{1} G_{2}}$.
Hence if the centres of gravity of the whole figure and one part be known, the centre of gravity of the remaining part may be found. Also if the centres of gravity of the parts be known, the centre of gravity of the whole may be found. The areas a and b are supposed to be known in each case.

Centre of Gravity (continued).
Axy Plane Figure, by Experiment.
Cut the figure out of a piece of cardboard of uniform thickness. Make a pinhole at any point A near the edge. Suspend the figure in a vertical plane on a pin through A. To the pin attach a thread carrying a weight C at its lower end. Draw a line $A D$ on the figure in the direction of the thread. Repeat the experiment,
 suspending the figure from another point B. The intersection of the lines $A D$ and $B E$ is the centre of gravity of the figure.

This method gives excellent results, and is specially useful for irregular figures.

Prism or Cylinder.

Right or oblique, regular or irregular.
Centre of gravity of surface, excluding or including both ends. ${ }^{*} G$ is at the centre of the line joining C and c, the centres of gravity of the parallel ends. This is also the centre of gravity of the solid.

Pyramid or Cone.

Right or oblique, regular or irregular. Centre of gravity of surface, excluding the base.* G is in the line joining the vertex v with c, the centre of gravity of the base. $\quad c G=\frac{1}{3} c v$.

Centre of gravity of solid is in same line $c v$. $c G=\frac{1}{4} c v$.

[^4]
Centre of Gravity (continued)

Frustum of Pyramid or Cone.

Right or oblique, regular or irregular, ends parallel. $M=$ perimeter or circumference of lower end.

$m=$ perimeter or circumference of upper end.
$S=$ length of one side of lower end
$s=$ length of corresponding side of upper end.
$k=$ radius of lower end if circular.
$r=$ radius of upper end of curcular.
$A=$ area of lower end.
$a=$ area of upper end.
Centre of gravity of surface, excluding both ends.* G is in the line joining C and c, the centres of gravity of the ends.

$$
C G=\frac{C c}{3} \times \frac{M+2 m}{M+m}=\frac{C c}{3} \times \frac{S+2 s}{S+s}=\frac{C c}{3} \times \frac{R+2 r}{R+r}
$$

Centre of gravity of solvd. G is in same line $C c$. $C G=\frac{C c}{4} \times S^{2}+3 s^{2}+2 S s=\frac{C c}{4} \times R^{2+3 r^{2}+2 R r} S^{2}+r^{2}+R r \quad \frac{C c}{4} \times \begin{gathered}A+3 a+2 \sqrt{ } A a \\ A+a+\sqrt{A} \bar{a}\end{gathered}$.

Segment of a Sphere.

Centre of gravity of curved surface.*

$$
C G=\frac{1}{2} H .
$$

Centre of gravity of solvd. $O G=\frac{3}{4} \times \frac{(2 R-H)^{2}}{3 R-H}$. $C G=\frac{H}{2} \times \frac{2 r^{2}+H^{2}}{3 r^{2}+H^{2}}=\frac{H}{4} \times \frac{4 R-H}{3 R-H}$.

Hemisphere.

Centre of gravity of curved surface.*

$$
O G=\frac{1}{2} R .
$$

Centre of gravity of solid. $\quad O G=\frac{3}{8} R$.
The centre of gravity of a regular solid, such as a cube, a right circular cylinder, a sphere, a spheroid, or ellipsoid, is the geometrical centre of the solid.

Centre of Gravity (continued).

Zone of a Sphere.

Centre of gravity of curved surface.* $\quad C G=\frac{1}{2} I I$.
Centre of gravity of solid.

$$
C G=\frac{H}{2} \times \begin{aligned}
& 2 r_{1}^{2}+4 r_{2}^{2}+H^{2} \\
& 3 r_{1}^{2}+3 r_{2}^{2}+H^{2}
\end{aligned}
$$

To Determine the Centre of Gravity by "Projection."
If one figure is a parallel projection \dagger of another, the centre of gravity of the one is the corresponging projection of the centre of gravity of the other. For example, an ellipse is a parallel projection of a circle, the ciameter of the circle being equal to the major axis of the ellipse. g, the centre of gravity of a sector of of an ellipse, is the corresponding projection of G, the centre of
 gravity of the corresponding sect or $O E F$ of the circle.

* If it is required to include the base of the segment of a sphere, or if it is required to include one end or both ends of a zone of a sphere, apply the rule given below.
$S=$ area of the surface of any solid $A B C D$.
$S_{1}=$ area of a part $E A B F^{\prime}$ of the surface of the solid.
$S_{2}=$ area of the remaining part $F C D E$ of the surface.
G is the centre of gravity of whole surface of solid.
G_{1} is the centre of gravity of the part $E A B F$ of the surface.
G_{2} is the centre of gravity of the remaining part $F C D E$ of the surface.
G_{1}, G, and G_{2} are in a straight line, and $S_{1} \times G_{G} G=$ $S_{2} \times G_{2} G$. Also, $S_{1} \times G_{1} G_{2}=S \times G G_{2}$, and $S_{2} \times G_{2} G_{1}=$ $S \times G G_{1}$.

$V=$ volume of any solid $A B C D$.
$V_{1}=$ volume of a part $A B F^{\prime} E^{\prime}$ of the solid.
$V_{2}=$ volume of the remaining part EFCD.
G is the centre of gravity of the whole solid.
G_{1} is the centre of gravity of the part ABFE.
G_{2}^{1} is the centre of gravity of the remaining part EFCD.
G, G_{1} and G_{2} are in a straight line, and $V_{1} \times G_{1} G=V_{2} \times G_{2} G \quad$ Also, $V_{2} \times G_{1} G_{2}=V \times G G_{2}$, and $V_{2} \times G_{2} G_{1}=V \times G G_{1}$.
Hence if the areas of the parts of a surface of a solid, or the volumes of the ppics of a solid, be known, and also the positions of their centres of gravity, the position of the centre of gravity of the whole surface, or the whole solid, may be determined. Likewise, the position of the centre of stavity of one part may be determined if the positions of the centres of gravity of the whole and the other part be known.
+ In parallel projection the projectors are parallel to one another, but may be either inclined or perpendicular to the plane of projection.

Centre of Gravity (concluded).

To Determine the Centre of Gravity of any Structure, such as a Complete Machine.
Select three planes of reference, $O Y A Z, O X B Z$, and $O X C Y$, perpendicular to one another. Let G_{1}, G_{2}, G_{3}, etc., be the centres of gravity of the various parts of the structure. w_{1}, w_{2}, x_{3}, etc. = the weights of the parts whose centres of gravity are G_{1}, G_{2}, G_{3}, etc., respectively. x_{1}, x_{2}, x_{3}, etc. = distances of G_{1}, G_{2}, G_{3}, etc., fiom the plane OYAZ. y_{1}, y_{2}, y_{3}, etc. $=\operatorname{distances}$

of G_{1}, G_{2}, G_{3}, etc., from the plane $O X B Z . z_{1}, z_{2}, z_{3}$, etc. $=$ distances of G_{1}, G_{2}, G_{3}, etc., from the plane OXCY. G is the centre of gravity of the complete structure. x, y, and $z=$ distances of G from the planes $O Y A Z, O X B Z$, and $O X C Y$ respectively. $w=$ total weight of structure $=w_{1}+w_{2}+w_{3}+$ etc.

$$
\begin{aligned}
& x=\frac{w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+\text { etc. }}{w} . \\
& y=\frac{w_{1} y_{1}+w_{2} y_{2}+w_{3} y_{3}+\text { etc. }}{w} . \\
& z=\frac{w_{1} z_{1}+w_{2} z_{3}+w_{3} z_{3}+\text { etc. }}{w} .
\end{aligned}
$$

If the points G_{1}, G_{2}, G_{3}, etc., are not all on the same side of any one of the planes of reference, then if distances measured on one side are positive, those on the other side must be taken as negative.

Moments of Inertia.

Moment of Inertia.-Let w_{1}, w_{2}, w_{3}, etc., be the weights of the material particles making up a rigid body, and let their distances from a given axis be respectively r_{1}, r_{2}, r_{3}, etc., then,

Moment of inertia of body about given axis $=I$.

$$
I=w_{1} r_{1}^{2}+w_{2} r_{2}^{2}+w_{3} r_{3}^{2}+\text { etc. }
$$

Again, let a_{1}, a_{2}, a_{3}, etc., be the areas of the small parts making up the surface of a given figure, and let the distances of these small parts from a given axis be respectively r_{1}, r_{2}, r_{3} etc., then,

$$
\text { Moment of inertia of surface about given axis }=I \text {. }
$$

$$
I=a_{1} r_{1}^{2}+a_{2} r_{2}^{2}+a_{3} r_{s}^{2}+\text { etc. }
$$

If I_{1}, I_{2}, I_{3}, etc., be the moments of inertia of the parts of a solid or surface about a given axis, then,

Moment of inertia of whole solid or whole surface $=I$.

$$
I=I_{1}+I_{2}+I_{3}+\text { etc. }
$$

Radius of Gyration. - Let $W=$ total weight of rigid body mentioned above.

Let $A=\operatorname{total}$ area of surface mentioned above; and let k be such a length that,

$$
\begin{aligned}
& W k^{2}=I=w_{1} r_{1}^{2}+w_{2} r_{2}^{2}+w_{3} r_{3}^{2}+\text { etc., or, } \\
& A k^{2}=I=a_{1} r_{1}^{2}+a_{2} r_{2}^{2}+a_{3} r_{3}^{2}+\text { etc. }
\end{aligned}
$$

then k is called the radius of gyration of the body or surface.
Moments of Inertia about Parallel Axes.-Let $I=$ moment of inertia of a body or surface $E F$ about an axis $A B$, passing through its centre of gravity G.
$I_{1}=$ moment of inertia of same body or surface about an axis $C D$, parallel to $A B$, and at a distance r from it.
$W=$ weight of body. $A=$ area of surface.
$I_{1}=I+W r^{2}$ for the body.
$I_{1}=I+A r^{2}$ for the surface.

Momont of Inertia of a Plane Figure about an Axis at right

 angles to its Plane. $-O X$ and $O Y$ are axes at right angles to one another, and in the plane of the figure $E F . \quad O Z$ is an axis at right angles to the plane of the figure $E F$.$\mathcal{I}_{x}=$ moment of inertia of $E F$ about axis $O X$.
$I_{y}=$ moment of inertia of $E F$ about axis $O Y$.
$I_{x}=$ moment of inertia of $E F$ about axis $O Z$.

$$
I_{z}=I_{\sigma}+I_{v}
$$

Areas, Moments of Inertia, and Moduli of Various Sections.

$A=$ area. $\quad I=$ moment of inertia. $\quad Z=$ modulus $=\frac{I}{y}$.
The axin of moments is the neutral axis of the section, and passes through the centre of gravity of the section. $y=$ distance of axis of moments from the top or bottom of the section. Where no value is given for y, it is equal to half the total depth of the section. Where the section is not symmetrical about the neutral axis, there are two values for the modulus, $z_{1}=I-y_{1}$, and $Z_{2}=I \div y_{2}$.
Radius of gyration $=k=\sqrt{\frac{I}{A}}$.

$\begin{array}{rl} A & =B I I . \\ I & =1 \\ 12 \\ Z & B I^{3} . \\ Z & =\frac{1}{6} B D^{2} . \end{array}$	
$\begin{aligned} & A=-\frac{3 \sqrt{ } 3}{2} B^{2}=2 \cdot 598 B^{2} . \\ & \text { AlP } \quad I=\frac{5 \sqrt{3} 3}{16} B^{4}=5413 B^{4} . \\ & Z=\frac{5}{8} B^{3} . \end{aligned}$	$\begin{aligned} & A=3^{3} 3 \\ & 2 \end{aligned} B^{2} .$
$\begin{aligned} A & =2(\sqrt{ } 2-1) D^{2} . \\ & =8284 I^{2} . \end{aligned}$ $\begin{aligned} I & =\frac{1}{12}(4 \sqrt{ } 2-5) D^{4} \\ & =0547 D^{4} \\ Z & =\frac{1}{6}(4 \sqrt{ } 2-5) D^{3} \\ & =\cdot 1094 D^{3} \end{aligned}$	$\begin{aligned} A & =\frac{1}{2} B D . \\ I & =\frac{B D^{3}}{48} . \\ Z & =\frac{B D^{2}}{24} . \end{aligned}$

Areas, Moments of Inertia, and Moduli of Various Sections (continued).

Areas, Moments of Inertia, and Moduli of Various Sections (continued).

$\left.A=\frac{1}{2} B I\right)$.
$I=B D D^{3}$.
$y_{1}=\frac{2}{3} D$.
$y_{2}-\frac{1}{3} D$. $Z_{1}=\frac{I}{y_{1}}=\frac{B D D^{2}}{24} . \quad Z_{2}=\frac{I}{y_{2}}=\frac{B D^{2}}{12}$.

$$
\begin{array}{ll}
A=\frac{1}{2} D(B+b) . & y_{1}=\frac{D(2 B+b) .}{3(B+b)} \\
y_{2}=\frac{D(B+2 b)}{3(B+b)} . & I-\frac{\left(B^{2}+4 B b+b^{2}\right)}{36(B+b)}-
\end{array}
$$

$$
Z_{1}=\frac{I}{y_{1}}=\frac{\left(B^{2}+4 B b+b^{2}\right) J^{2}}{12(2 B+b)}
$$

$$
Z_{2}=\frac{I}{y_{2}}=\begin{gathered}
\left(B^{2}+4 B b+b^{2}\right) D^{2} \\
12(B+2 b)
\end{gathered}
$$

Clollo

$$
A=\frac{\pi r^{2}}{2}=1.5708 \gamma^{2}
$$

$$
y_{1}=\left(1-\frac{4}{3 \pi}\right) r=5756 r . \quad y_{2}=\frac{4 r}{3 \pi}=\cdot 4244 r .
$$

$$
I=\left(\begin{array}{rr}
\frac{\pi}{8} & -9 \\
9 \pi
\end{array}\right) r^{4}=\cdot 1098 r^{4}
$$

$$
Z_{1}=\frac{I}{y_{1}}=1907 r^{3} . \quad Z_{2}=\frac{I}{y_{2}}=\cdot 2586 r^{3} .
$$

$a_{1}=$ area of top flange.
$a_{2}=$ area of bottom flange.
$a=$ area of web.
$y_{1}=\frac{a_{2}\left(2 D-t_{2}\right)+a_{1} t_{1}+a\left(d+2 t_{1}\right)}{2\left(a_{1}+a_{2}+a\right)}$.
$y_{2}=\frac{a_{1}\left(2 D-t_{1}\right)+a_{2} t_{2}+a\left(d+2 t_{2}\right)}{2\left(a_{1}+\overline{a_{2}}+a\right)}$.
$I=\begin{gathered}a_{1} t_{1}^{2}+a_{2} t_{2}^{2}+a d^{2} \\ 12\end{gathered}+\frac{a_{1} a_{2}(\underline{D}+d)^{2}+a_{1} a\left(t_{1}+d\right)^{2}+a_{2} a\left(t_{2}+d\right)^{2}}{4\left(a_{1}+a_{2}+a\right)}$.

$$
Z_{1}=\frac{I}{y_{1}} . \quad Z_{2}=\frac{I}{y_{2}}
$$

In actual practice it is often sufficiently accurate to take $Z_{1}=a_{1} h$, and $Z_{2}=a_{2} h$, where h is the perpendicular distance between the centres of the flanges.

Areas, Moments of Inertia, and Moduli of Various Sections (concluded).

Radii of Gyration of Various Solids.

$k_{x}=$ radius of gyration of body about axis $X X$.
$k_{y}=$ radius of gyration of body about axis $Y Y$.
The axes $X X$ and $Y Y$ pass through the centre of gravity of the solid in each case

Rectangular Prism.

Sides of rectangle, a and b. Length of solid, $2 l$.

$$
\begin{aligned}
& k_{x}^{2}=\frac{a^{2}}{12}+\frac{l^{2}}{3} . \\
& k_{y}^{2}=a^{2}+b^{2} . \\
& 12
\end{aligned}
$$

Rhombic Prism.

Diagonals, a and b.
Length of solid, $2 l$.

$$
\begin{aligned}
& k_{x}^{2}=\frac{a^{2}}{24}+\frac{l^{2}}{3} \\
& k_{y}^{2}=\frac{a^{2}+b^{2}}{24}
\end{aligned}
$$

Radii of Gyration of Various Solids (continued).

Solid Circular Cylinder.
Radius, r.
Length, $2 l$.

$$
\begin{aligned}
& h_{2}^{2}-r^{2} l^{2} \\
& 3^{0} \\
& h_{11}^{2}=r_{2}^{2}
\end{aligned}
$$

Hollow Circular Cylinder.

External radus, r_{1}.
Internal radius, r_{2} Lengt $h, 21$.

$$
\begin{aligned}
& k_{x}^{\prime}=\frac{r_{1}^{2}+r_{2}^{2}}{4}+\frac{r^{2}}{3} \\
& k_{1 \prime}^{2}=\frac{r_{1}^{2}+r_{2}^{2}}{2}
\end{aligned}
$$

Elliptic Cylinder.

Semi-axes of ellıpse, a and b. Length of cylinder, $2 l$.

$$
\begin{aligned}
& h_{x}^{2}-a^{2}+l^{2} \\
& \frac{3}{3} \\
& k_{v}^{2}=\frac{a^{2}+b^{2}}{4} .
\end{aligned}
$$

Circular Cone.
Radius of base, r.
Height, h.

$$
\begin{aligned}
& k_{x}^{2}=\frac{3}{20}\left(r^{2}+\frac{h^{2}}{4}\right) \\
& k_{y}^{2}=\frac{3}{10} r^{2}
\end{aligned}
$$

Radii of Gyration of Various Solids (concluded).

Frustum of Circular Cone.
Radii of ends, t_{1} and r_{2}.

$$
h_{\eta}^{2}=\frac{3}{10}\binom{r_{1}^{5}-r_{2}^{5}}{r_{1}^{3}-r_{2}^{3}} .
$$

Polar Moment of Inertia

$I_{v}=$ moment of mertia of plane figure about an axis at right angles to ts plane and passing through its geometrical centre or centre of gravity.
$k_{o}=$ corresponding radius of gyration.

Circle.
Diameter $=d$.

$$
\begin{aligned}
& I_{n}=\begin{array}{c}
\pi d^{4} \\
32 \\
k_{0}^{2}=\frac{d^{2}}{4}
\end{array} .
\end{aligned}
$$

Hollow Circle.

Diameters $=D$ and d.

$$
\begin{gathered}
I_{\Lambda}=\frac{\pi\left(D^{4}-d^{4}\right)}{32} . \\
k_{o}^{2}=\begin{array}{c}
D^{2}+d^{2} \\
8
\end{array} .
\end{gathered}
$$

Ellipse.
Major axis $=a$. Minor axis $=b$.

$$
\begin{aligned}
& I_{o}=\frac{\pi a b\left(a^{2}+b^{2}\right)}{64} . \\
& k_{0}^{2}=\frac{a^{2}+b^{2}}{16} .
\end{aligned}
$$

Rectangle. Sides $=b$ and h.

$$
\begin{aligned}
& I=\begin{array}{l}
b h\left(b^{2}+h^{2}\right) . \\
12 \\
h_{0}^{2}={ }^{b^{2}} \frac{h^{2}}{12} .
\end{array} .
\end{aligned}
$$

Square.
Sides $=\boldsymbol{s}$.

$$
I_{o}=\frac{s^{4}}{6}
$$

$$
k_{o}^{2}=\frac{s^{2}}{6}
$$

Equilateral Triangle.
Sides $=b$.

$$
\begin{aligned}
& I_{o}=b^{6} b^{4} \\
& k_{0}^{2}=\frac{b^{2}}{12} \cdot
\end{aligned}
$$

STATICS-The Equilibrium of Forces.

Force is that which moves or tends to move a body, or which changes or tends to change the motion of a body.

The Unit of Force used by engineers is the attraction which the earth exerts in the latitude of London upon a certain piece of platinum kept in the Exchequer Office. This unit is called a pound, or the "Imperial standard pound avoirdupois." Multiples and submultiples of the pound are also used as units of force.

The single force which would produce the same effect as a number of forces acting together is called the Resultant of these forces, and the forces are called the Components of their resultant.

The resultant of a number of forces acting in a straight line is equal to the algebraical sum of the forces. (If forces acting in one direction along a line are positive, those acting in the opposite direction are negative.)
Pacallelogram of Forces.-If the straight lines $O A$ and $O B$
 represent in magnitude and direction two forces acting at the point O, the diagonal $O C$ of the parallelogram $O A C B$ will represent their resultant in magnitude and direction. Conversely, if a parallelogram () $A C B$ be described on $O O$ as diagonal, $O A$ and $O B$ will represent components of the force represented by $O C$.

Triangle of Forces. - If three forces, P, Q, and R, acting at a
 point O, can be represented in magnitude and direction by the sides of a triangle $A B C$ taken in order, the forces are in equilibrium. Conversely, if three forces acting at a point are in equilibrium, they can be represented in magnitude and direction by the sides of a triangle taken in order.

If three forces acting on a body are in equilibrium, their lines of action must meet at a point, or be parallel.

Polygon of Forces.-If any number of forces acting at a point can be represented in magnitude and direction by the sides of a polygon taken in order, the forces are in equilibrium. Conversely, if any number of forces acting at a point are in equilibrium, they can be represented in magnitude and direction by the sides of a polygon taken in order.

The above statements are true whether the forces act in the same plane or not, provided they all act at the same point.

Forces are considered to act at the same point when their lines of action intersect at the same point.

If any number of forces acting in the same plane, but not at the same point, are in equilibrium, they can be represented in
magnitude and direction by the sides of a polygon taken in order. The converse of this is, however, not necessarily true.

Lettering of Forces- Bow's Notation.-The diagram (1) shows the lines of action of a number of forces which act at a point on a rigid body, and which are in equilibrium. The diagram (2) is the corresponding polygon of forces. In one system of lettering each force isdenoted by a single letter, as
 P. In Bow's notution each force is denoted by two letters, and they are placed on opposite sides of the line of action of the force in diagram (1), and at the angular points of the polygon in diagram (2). In Bow's notation the force P is referred to as the force $A B$. In like manner the force Q is referred to as the force $B C$. Bow's notation is of great value in graphic statics.

The Moment of a Force about a point is the product of the magnitude of the force and the perpendicular distance of its line of action from the point.

The moment of a force about an axis which is at right angles to the line of action of the force is the product of the magnitude of the force and the perpendicular distance of its line of action from the axis. If the axis is not at right angles to the line of action of the force, then the moment of the force about the axis is the product of the rectangular component of the force at right angles to the axis, and in a plane parallel to the axis, and its perpendicular distance from the axis.

Principle of Moments. - When a number of forces acting on a rigid body are in equilibrium, then, the moments of all the forces about any given axis being taken, the sum of the moments of those forces which tend to turn the body in one direction about the axis is equal to the sum of the moments of those forces which tend to turn the body in the opposite direction about the same axis.

Couples.-A couple consists of two equal parallel forces acting in opposite directions. The arm of a couple is the perpendicular distance between the two parallel forces. The moment of a couple is the product of the magnitude of either of the equal forces and the arm of the couple. A couple causes or tends to cause a body to rotate.

Two couples will balance one another when (1) they are in the same plane or in parallel planes, (2) they have equal moments, and (3) their directions of rotation are opposite.

Force required to Move a Body on a Horizontal Plane against the Resistance of Friction.

$W=$ weight of body, or force pressing the body on the plane.
$R=$ reaction of the plane on the body.
The direction of R makes an angle with the normal to the plane equal to ϕ, the "limiting angle of resistance."
$\mu=$ coefficient of friction $=\tan \phi$. (For values of μ see p . 239.)
$P=$ force necessary to move the body agamst the resistance of friction
I. $P=W \tan \phi=\mu \mathrm{W} . \quad R=\begin{gathered}W \\ \cos \phi\end{gathered}$.
II. $P=W_{\cos (\theta-\phi)}^{\sin \phi}=$ minimum when $\theta=\phi . \quad R=W_{\cos (\theta-\phi)}^{\cos \theta}$.

1II. $P=W_{--\sin \phi}^{\cos (\theta+\phi)}=$ maximum when $0=90-\phi . R=W \frac{\cos \theta}{\cos (\bar{\theta}+\bar{\phi})}$.

The Inclined Plane.

a-inclination of plane. $\quad h=$ height of plane.
$l=$ length of incline. $\quad b=$ length of base.
$P=$ force necessary to move the body along the plane.
$W=$ weight of body. $\quad R=$ reaction of plane on body.
The direction of R makes an angle with the normal to the plane equal to ϕ, the "limiting angle of resistance." When friction is neglected the direction of R is perpendicular to the plane.
$\mu=$ coefficient of friction $=\tan \phi$.
$\theta=$ acute angle between the direction of P and the plane.

I. $P=W \sin \alpha=W \frac{h}{l}$.

$$
R=W \cos a=W_{l}^{b}
$$

The Inclined Plane (continued)

II $P=W \tan a=W_{b}^{h} \quad \cdot \quad{ }_{2-} \quad \begin{gathered}W \\ \cos a\end{gathered}=W_{b}^{l}$
III $P=W_{\cos \theta}^{\sin a} \quad R=W_{\cos (a \mid \theta)}^{\cos \theta}$
IV $P U_{\cos \theta}^{\sin a} \quad R=W^{\left(\cos \left(a \theta^{\theta}\right)\right.} \cos \theta$.

Fraction considered Motion up the plane

$$
\because \quad \frac{f}{1} d_{2}
$$

Friction considered Motion down the plane.
I $P=W^{\mathrm{hn}(\phi-a)} \frac{b \mu-h}{\cos \phi}=W$
$R=W \frac{\cos a}{\cos \phi}=W_{b}^{b} \sqrt{1+\mu^{2} .}$
II. $P=W \tan (\phi-a)$.

$$
R=\frac{W}{\cos (\phi-a)}
$$

$$
\begin{aligned}
& \text { I } P=W^{\operatorname{con}(\alpha+\phi)} \cos \phi \quad W_{l}^{l+b \mu} \quad R=W^{\cos \alpha}=U_{l}^{b} \sqrt{1+\mu^{2} .} \\
& \text { II } P^{\prime}=W \tan (a+\phi) F_{\text {fores }} \mid \sigma^{2^{a \alpha^{10}}} R-\cos (\alpha \mid \phi) \\
& \text { III } P=W^{\sin (a+\phi)} \cos _{(\theta-\phi)} \quad R \quad \| \frac{\cos (\alpha ; \theta)}{\cos (\theta \phi \phi)^{\circ}} \\
& \text { IV } P=W^{\sin (a+\phi)} \cos (\theta+\phi) \quad R=W \frac{\cos (\alpha \quad \theta)}{\cos (\theta+\phi)}
\end{aligned}
$$

The Inclined Plane (continued).
$\begin{array}{lr}\text { III. } P=W^{\frac{\sin (\phi-a)}{\cos (\phi-\theta)}} \\ \text { IV. } P=W^{\sin (\phi-a)} & R=W^{\frac{\cos (\theta-a)}{\cos (\overline{\theta-\phi})}} . \\ \cos (\phi+\theta)^{\circ} & R=W_{\cos (\theta+\phi)^{\circ}}^{\cos (\theta+\alpha)}\end{array}$
The Wedge, Key, or Cotter.-The diagrams show the wedge as used to separate two pieces A and B which move within suitable guides.
$P=$ force required to drive the wedge.
$Q, Q=$ forces pushing the pieces A and B against the wedge.
$R_{1}, R_{2}=$ reactions of wedge on pieces A and B.
$P_{1}, P_{2}=$ reactions of the guides on the pieces A and B.
a_{1}, a_{2}, or $a=$ angles which acting faces of wedge make with the direction of the force P
$\phi=$ limiting angle of resistance.
$\mu=$ coefficient of friction $=\tan \phi$.

Friction neglected. Driving wedge in.
I. $P=Q \tan a$.
II. $P=P_{1}+P_{2}=Q\left(\tan \alpha_{1}+\tan \alpha_{2}\right)$.

Friction of the wadye considered. D, iving wedge in.
I. $P=P_{1}+P_{2}=Q\{\tan (\alpha+\phi)+\tan \phi\}$.
II. $P=P_{1}+P_{2}=Q\left\{\tan \left(a_{1}+\phi\right)+\tan \left(a_{2}+\phi\right)\right\}$.

The Wedge, Key, or Cotter (continued).

Friction of the wedge considered. Irıing wedge out.
I. $P=P_{1}+P_{2}=Q\{\tan (\phi-\alpha)+\tan \phi\}$.
II. $P=P_{1}+P_{2}=Q\left(\tan \left(\phi-a_{1}\right)+\tan \left(\phi-a_{2}\right)\right\}$.

If the friction is just sufficient to prevent the wedge coming out under the action of the forces Q, Q, then $P=0$, and $\alpha=2 \phi$, and $a_{1}+a_{12}=2 \phi$.

In the above, the friction between the guides and the pieces A and B is neglected.

Equilibrium of a Body on an Axle.
$P=$ force acting on the body at a perpendicular distance a from the centre of the axle.
Q-force acting on the body at a perpendicular distance b from the centre of the axle.
$r=$ radius of the axle.
$\mu=$ coefficient of friction $=\tan \phi$.
$\phi=$ limiting angle of resistance.
$\theta=$ angle between the directions of P and Q.
If motion is about to take place in the direction of the arrow, i.e. if P is on the point of overcoming Q and the resistance of friction, then the
 equation of equilibrium is,

$$
P a=Q b+r \sin \phi \sqrt{ } P^{2}+Q^{2}+2 P Q \cos \theta
$$

If $\theta=0$, i.e. if the directions of P and Q are parallel, $\cos \theta=1$,
and $P a=Q b+\imath \cdot \sin \phi(P+Q)$;

$$
\text { hence, } P=\frac{Q(b+r \sin \phi)}{a-r \sin \phi} . \quad \sin \phi=\frac{\mu}{\sqrt{1+\mu^{2}}} .
$$

If ϕ is a small angle, $\sin \phi$ is nearly equal to μ.

Levers

L_{1} and $L_{2_{2}}$ are the perpendicular distances of the lines is action of P and Q respectively from the fulcrum.

Pressure on fulcrum $=F=1$ esultant of P and Q.
When P and Q are parallel and in the same direction. $F=P+Q$.
When P and Q are parallel and in opposite directions, $F=P-Q$, or $Q-P$.

When the lines of action of P and Q are inclined to one another, F is determined by the parallelogram of forces, and is equal to the resultant of P and Q. The line of action of F passes through the intersection of the lines of action of P and Q and through the fulcrum. When the lines of action of P and Q are at right angles to one another, $F=\sqrt{P^{2}+Q^{2}}$.

Simple Machines

Friction neglected

Simple Machines (continued).

Single Purchase Crab.
$L=$ length of crank arm
$r=$ radius of barrel
$n_{1}=$ number of teeth in pinion. $n_{2}=$ number of teeth in wheel.

$$
\frac{P}{W}-n_{n_{-}}^{n_{1}} \times{ }_{L}^{r}
$$

Double Purchase Crab.

$L=$ length of crank anm
$r=$ radius of barrel.
$n_{1}=$ number of teeth in pinion A.
$n_{2}=$ number of teeth in wheel B
$n_{3}=$ number of teeth in pimon C $n_{4}=$ number of teeth in wheel D.

$$
\frac{P}{\tilde{n}^{r}}={ }_{n_{-}}^{n_{1}} \times{ }_{n_{4}}^{n_{3}} \times \stackrel{r}{L}
$$

Endless Screw, or Worm and Worm Wheel.

$n=$ number of teeth in worm wheel
A single threaded worm makes n revolutions for one revolntion of the worm wheel.

A double threaded worm makes $\frac{n}{2}$ revolutions for one revolution of the worm wheel.

Endless Screw, or Worm and Worm Wheel (continued).

In the machine shown at (a), friction being neglected,
$\underset{W}{P}=\underset{2 L n}{D}$ for a single threaded worm.
$\stackrel{P}{W}=\frac{D}{\operatorname{Ln}}$ for a double threaded worm.
T'aking friction into account,
$\stackrel{P}{W}=3 I$, approximately, for a single threaded worm.
$\underset{W}{P}=\frac{27}{L n}$, approximately, for a double threaded worm.

Simple Screw Jack (b).

$p=$ pitch of screw.
$L=$ length of lever, measured from axis of screw to point where power P is applied.
Neglecting friction, $\underset{W}{P}=\frac{p}{2} \pi \bar{L}$.
Taking friction into account, $\underset{W}{P}={ }_{2 \pi L}^{7 p}$ to $\frac{35 p}{2 \pi L}$.
Screw Jack, with Worm and Worm Wheel (c).
$p=$ pitch of upright screw. $n=$ number of teeth in worm wheel. Neglecting friction,
$\stackrel{P}{W}=\stackrel{p}{2 \pi L n}$ for a single threaded worm.
$\underset{W}{\boldsymbol{P}}=\frac{p}{\pi I n}$ for a double threaded worm.
Taking friction into account,
$\underset{W}{P}=\frac{15 p}{2 \pi L n}$, approximately, for a single threaded worm.
$\underset{W}{\boldsymbol{P}}=\frac{10 p}{\pi L n}$, approximately, for a double threaded worm.

Fluid Pressure.

The direction of the pressure of a fluid on any surface with which it is in contact is, at any point, at right angles to the surface at that point.

If a fluid completely fills a closed vessel, and if a pressure be applied to the fluid at any part of its surface, that pressure will be transmitted equally in all directions through the fluid to every part of the surface of the vessel.

The Pressure of a Liquid due to its Weight.-The intensity of the pressure at any point of a liquid due to its weight is directly proportional to the depth of the point below the upper surface of the liquid.

The total pressure on any surface immersed in a liquid is equal to the weight of a right prism of the liquid whose base is equal in area to the given surface, and whose height is equal to the depth of the centre of gravity of that surface below the upper surface of the liquid.

Let $A=$ area of surface in square feet.
$H=$ depth of centre of gravity of surface below upper surface of liquid, in feet.
$w=$ weight of a cubic foot of liquid in lbs.
Total pressure on surface in lbs. $=A H w$.
The resultant of the pressure of a liquid on the wetted surface of a rigid body is the single force which, acting at a point on that surface, would produce the same effect on the body as the liquid pressure on it. In the case of a plane surface, the magnitude of the resultant pressure is equal to the total pressure on it

The centre of pressure of a surface subjected to fluid pressure is the point on it at which the resultant pressure acts.

The following are the cases of most frequent occurrence in practice. g is the centre of pressure in each case :-
(1.) A rectangle or parallelogram with its highest side on the surface of the liquid. g is in the line which bisects the horizontal sides of the rectangle or parallelogram. $h=\frac{2}{3} a$.
(2.) A rectangle or parallelogram with its highest side below and parallel to the surface of the liquid. g is in the line which bisects the horizontal sides of the rectangle or parallelogram.

$$
h=\frac{2}{3}\left(\frac{3 b^{2}-3 a b+a^{-}}{2 b-a}\right)=\frac{2}{3}\left(\frac{b^{2}+b c+c^{2}}{b+c}\right), \text { where } c=b-a .
$$

(3.) A triangle with its base on the surface of the liquid. g is in the line joining the vertex C with the middle point D of the base $A B$. $\quad D g=\frac{1}{2} D C . \quad h=\frac{1}{2} a$,
(4.) A triangle with its base parallel to and its vertex on the surface of the liquid. g is in the line joining the vertex with the middle point K of the base $E F . \quad H g=3 H K . \quad h=3 a$.

(5.) A triangle with its base below and parallel to the surface of the liquid, the vertex being below the base. g is in the line joining the vertex with the middle point of the base.

$$
h=\frac{3 a^{2}-8 a b+6 b^{2}}{6 \bar{b}-4 \bar{a}}=\frac{b^{2}+2 b c+3 c^{2}}{2 b+4 c} \text {, where } c=b-a .
$$

(6.) A triangle with its base parallel to the surface of the liquid, the vertex being above the base and below the surface of the liquid. y is in the line joining the vertex with the middle point of the base. $\quad h=\frac{a^{2}-4 a b+6 b^{2}}{6 b-2 a}$.
(7.) A circle with its highest point on the surface of the liquid. $h=\frac{5}{8} d$.
(8.) A circle entirely immersed, its centre being at a distance c from the surface of the liquid. $h=c+\frac{d^{2}}{16 c i}$.
(9.) A semicircle of diameter d, with the diameter on the surface of the liquid. $h=\frac{3 \pi d}{32}=\cdot 2945 d$.

Note.-When the area of a surface is small compared with its depth below the surface of the liquid, its centre of pressure hearly coincides with its centre of gravity.

A general method of determining the centre of pressure of a plane surface abed immersed in
 a liquid is as follows:-Produce the plane $K L$ of the surface to meet the surface of the liquid in the line ΠK. Take a plane $/ I M$ containing the line $H K$ and inclined to the plane $K L$. On abcd as base construct a prism whose parallel edges $a A, b B$, $c C$, and $d D$ meet the plane $H M$ at A, B, C, and I respectively. Determine G the cen're of gravity of the solid abedD('BA. A line through G parallel to the parallel edges of the prism and meeting the plane of the figure alcd at g determines the centre of pressure of abcd.

Floating Bodies. - When a body floats in a liquid the weight of the body is equal to the weight of the liquid which it displaces, and the straight line which joins the centre of gravity
 of the body with the centre of gravity of the displaced liquid is vertical.

The annexed figure shows a floating body slightly displaced from its position of equilibrium. WG is the line which joins the centres of gravity of the displaced liquid and the body when the latter is in its position of equilibrium. W^{\prime} is the new position of the centre of gravity of the displaced liquid. A vertical line through W^{\prime} meets the line $W G$ at M. The point M is called the metacentre of the floating body. The equilibrium of the floating body is more stable the higher the point M is above G the centre of gravity of the body, and the equilibrium is unstable when M is below G.

A floating body which is in stable equilibrium will tend to right itself after being slightly displaced from its position of equilibrium, while a floating body which is in unstable equilibrium will tend to become still further displaced after it has been turned slightly from its position of equilibrium.

KINEMATICS-The Science of Motion.

Motion is change of position. Velocity is rate of motion or rate of change of position. Velocity is either uniform or variable, and is generally expressed either in feet per scromd, fet per minute, or miles per hour. When velocity is variable the rate at which it changes is called acceleration if the velocity is increasing, and retardution if it is diminishing. Retardation may be regarded as negative acceleration. Acceleration may be uniform or variable.

Notation.--The following symbols are used in this section in dealing with the motion of a particle or small body :-
$v_{1}=$ initial velocity.
$v=$ velocity after an interval of time, t.
$f=$ uniform accelcration.
$s=$ space described or distance moved in time, t.
(If s is measured in feet and t in seconds, then v_{1} and v are measured in feet per second and f in feet per second per second.)
For Uniform Velocity-

$$
s=v_{1} t=v t .
$$

For Uniform Acceleration-

$$
\begin{array}{cl}
v=v_{1}+f t . & \text { If } v_{1}=0, \text { then } v=f t . \\
s=v_{1} t+\frac{1}{2} f t^{2} . & \text { If } v_{1}=0, \text { then } s=\frac{1}{2} f t^{2} . \\
v^{2}=v_{1}^{2}+2 f s . & \text { If } v_{1}=0, \text { then } v^{2}=2 f s .
\end{array}
$$

For Falling Bodies, under the free action of gravity the acceleration is denoted by g, which varios from a minimum of 32.088 feet per second per second at the equator to a maximum of 32.258 feet per second per second at the poles. At the latitude of London $g=32.191$ feet per second per second. The above values of g are only strictly true at the level of the sea. In all engineering calculations it is sufficiently accurate to take $g=32 \cdot 2$. The above formula applied to falling bodies become-

$$
\begin{array}{ll}
v=v_{1}+g t . & \text { If } v_{1}=o, \text { then } v=g t . \\
s=v_{1} t+\frac{1}{2} g t^{2} . & \text { If } v_{1}=o, \text { then } s=\frac{1}{2} g t^{2} . \\
v^{2}=v_{1}^{2}+2 g s . & \text { If } v_{1}=o, \text { then } v^{2}=2 g s .
\end{array}
$$

It must be remembered that these formulæ for falling bodies are only strictly true when the body falls freely in a racuum. The air has a retarding effect, which is greater the greater the surface presented by the body to the air compared with its weight. The retarding effect of the air also depends greatly on the shape of the body.

Velocities may be compounded, or resolved into components in exactly the same way as forces (see p. 218).

Angular Velocity.-If a point P moves in a plane, and $O X$ is a fixed line in that plane, then the rate at which the angle POX changes is called the angular velocity of P about O.
Motion in a Circle.-If a point P moves along the circumference of a circle of radius r with a linear velocity v, and if the angular velocity of the point about O the centre of the circle be denoted by ω (omega), then $\omega=\frac{v}{r}$, and $v=\omega r$. (ω is the circular measure of the angle described by $O P$ in a unit of time.)

If P makes n revolutions in a unit of time, and the angular velocity is uniform, then $v=2 \pi r n$, and $n=\frac{v}{2 \pi r}=\stackrel{\omega}{2 \pi}$.

Instantaneous Axis.-Let A and B be two points in a rigid body, and at a given instant let A be moving in the direction $A C$, and let B be moving in the direction $B D$
 at the same instant. Draw $4 O$ perpendicular to $A C$ and $B O$ perpendicular to $B D$, and let these perpendiculars meet at O. An axis through O at right angles to the plane $A O B$ is called the instuntaneous axis of the body for its given position. At any instant a body may be considered to be rotating about its instantaneous axis at that instant. The point O is called the instantaneous centre.

It follows that if V_{1} is the velocity of A in the direction $A C$, and V_{2} is the velocity of B in the direction $B D$, then $\frac{V_{1}}{V_{2}}=\frac{A O}{B O}$.

KINETICS.

The science which considers the relation of force to motion is called Kinetics.

The Mass of a body is the quantity of matter which it contains. The unit of mass used by engineers is the standard pound.

The Momentum of a body is the product of its mass and velocity. If $W=$ the weight of a body in standard pounds, and $v=$ its velocity, then its momentum $=W v$.

If a force of P lbs. acts, in the direction of motion, on a mass
weighing W lbs., the acceleration f produced, is given by the formula, $f=\frac{P}{W} g$. Having determined f, the space moved through and the velocity acquired in a given time are determined by the formulæ on p . 231.

Newton's Laws of Motion.-Law I.-Every body continues in its state of rest, or of uniform motion in a straight line, except in so far as it may be compelled by impressed forces to change that state.

Law 11.--Change of motion, or change of momentum, is proportional to the impressed force, and takes place in the direction of the straight line in which the force acts.

Law III.-To every action there is always an equal and opposite reaction; or, the mutual actions of any two bodies are always equal and oppositely directed.

Work.-When a force acting on a body canses that body to move, the force is said to do work. The Unit of Work generally used by engineers is the foot-pound, and is the work done by a force of one pound acting through a distance of one foot. The other units sometimes used are the inch-pound and the foot-ton. An inch-pound is the work done by a force of one pound acting through a distance of one inch. A foot-ton is the work done by a force of one ton acting through a distance of one foot.

The work done by a force is found by multiplying the magnitude of the force by the distance through which it acts.

The Work done by a Variable Force is equal to the average magnitude of the force multiplied by the distance through which it acts.

The Work done in Raising a System of Weights is equal to the sum of the weights multiplied by the distance through which their centre of gravity is raised.

Rate of doing Work-Horse-Power.-The working power of an agent is measured by the amount of work which it can do in a unit of time. A working agent is said to be of one horsepower when it can do 33,000 foot-pounds of work in one minute, or 550 foot-pounds in one second.

The horse-power of any working agent is obtained by dividing the number of foot-pounds of work which it does in one minute by 33,000 .

The Approximate Working Power of Men and Beasts is given in the following table:-

1 Kind of Work.	Duration of labour in hours per day.	Force everted in lbs	Work done per minute in footpounds.
Man raising his own weight, as in walking up a stair or ladder .	8	140	4,30)
Man pushing or pulling horizon-1 tally, as at an oar or capstan . 1	8	2.5-60	3,200
$\begin{aligned} & \text { Man turning a crank or winch } \\ & \text { handle } \end{aligned}$	8	18	2,700
Man raising weights with rope and single pulley	6	40	1,800
Man raising weights by hand .	6	41	1,500
Man carrying load on his back up stairs and returning unloaded . 1	6	140	1,1(0)
$\begin{aligned} & \text { Man shovelling earth to a height } \\ & \text { of } 5 \text { feet . } \end{aligned}$	10)	6	470
Average draught horse drawing a) load.	8	120	26,010
Ox drawing a load	8	120	17,000
Mule drawing a load	8	60	12,000
Ass drawing a load	8	30	6,000

The force exerted will depend on the speed. If the speed is increased, the force must be diminished; and if the speed is diminished, the force exerted may be increased within certain limits.

The work done in moving a body up an inclined plane is equal to the work done in drawing the body along the base of the plane against the resistance of friction plus the work done in raising the body against the resistance of gravity through a distance equal to the height of the plane.

The work done in moving a body down an inclined plane is equal to the work done in drawing the body along the base of the plane against the resistance of friction minus the work done in raising the body against the resistance of gravity through a distance equal to the height of the plane.

Energy is capacity for performing work.
Potential Energy is the energy which a body possesses by virtue of its position in relation to other bodies, or to the positions of its molecules.

Kinetic Energy is the energy which a body possesses by virtue
of its motion. If W is the weight of a body in lbs., and v its velocity in feet per second, then its kinetic energy is $\frac{U v^{2}}{\overline{2 g}}$ footpounds.

Energy of a Rotating Body.-Let $W=$ weight of body in lbs., $k=$ radius of gyration of body, about axis of rotation, in feet, $n=$ number of revolutions per second, $v=$ linear velocity of a point, at a distance r feet from the axis, in feet per second,

Encrgy in foot-pound $=\begin{gathered}2 \pi^{2} n^{2} W k^{2} \\ g\end{gathered}=\begin{gathered}W h^{2} r^{2} \\ 2 g r^{2}\end{gathered}$.
($\pi^{2}=9.87$ nearly, and $g=32 \cdot 2$.)
Centrifugal Force.--When a particle of weight W lbs. moves in a circle of radius R feet, with a uniform linear velocity of v feet per second, it must be pulled or pushed towards the centre of the circle by a force F whose magnitude in lbs. $=\frac{W v^{2}}{g R}$. This force F is called the centripetal or centrifugal force, according as the force impelling the particle towards the centre, or its reaction, is considered.

For a body of considerable size R is the distance of its centre of gravity from the axis of rotation, and v is the velocity of the centre of gravity.

Centrifugal Tension in a Thin Revolving Hoop. - The hoop is supposed to revolve about its geometrical axis. The centrifugal forces of the particles of the hoop act outwards in radial directions, and, like the pressure of a fluid inside a pipe, cause a tension at each cross section of the hoop.
$R=$ radius of hoop in feet.
$V=$ linear velocity of hoop in feet per second.
$n=$ number of revolutions of hoop per second.
$w=$ weight of one cubic inch of material of hoop, in lbs.
$g=$ accelerating effect of gravit $y=32 \cdot 2$.
$s=$ centrifugal tension in hoop, in lbs. per square inch of cross section.

$$
s=\frac{12 w V^{2}}{g}=\frac{48 w \pi^{2} R^{2} n^{2}}{g}
$$

The centrifugal tension in the rim of a revolving wheel or pulley may be determined, with sufficient accuracy for practical purposes, by using the above formula, R being the mean radius of the rim.

[^5]$l=$ length of rod in feet.
$s=$ centrifugal tension in rod at a distance x feet from the axis.
n, v, and g are the same as in the preceding article.
$$
s=\stackrel{24 w \pi^{2} n^{2}\left(l^{2}-x^{2}\right)}{g}
$$

A Simple Pendulum consists of a heavy particle attached to one end of a fine thread, the other end of the thread being attached to a fixed point. When the particle is displaced from its lowest position and left to swing under the action of gravity, the time of an occillation is found to be independent of the length of the arc described, provided the arc is small compared with the length of the thread. The length of the thread is the length of the pendulum An oscillation is a movement of the particle, or bob of the pendulum, from one end of the arc in which it swings to the other end and back.
$t=$ time of one oscillation in seconds.
$l=$ length of pendulum in inches.

$$
t=2 \pi \sqrt{\frac{l}{g}}, \quad l=\frac{g t^{2}}{4 \pi^{2}}, \quad g=\frac{4 \pi^{2} l}{t^{2}}
$$

If $t=2$ seconds, $l=39 \cdot 1393$ inches, and $g=32 \cdot 191 \times 12$ inches per second per second, at the latitude of London.

A Compound Pendulum is a body of any size or shape which is made to ovcillate about a fixed axis.
$A B$ represents a compound pendulum which oscillates about
 a fixed axis or centre of suspension $O . \quad G$ is the centre of gravity of $A B . \quad O G=R . \quad P$ is a point in $O G$ produced such that $O P=l$ the length of a simple pendulum which has the same time of oscillation as the compound pendulum $A B . \quad K$ is a point in $O P$ such that $O K=k$ the radius of gyration of $A B$ about O.
$t=$ time of one oscllation (in seconds) of the compound pendulum about 0 .

$$
t=2 \pi \sqrt{\frac{l}{g}}=2 \pi \sqrt{\frac{k^{2}}{g R}} \text { and } l=\frac{k^{\mathbf{a}}}{R^{.}}
$$

The point P is called the centre of oscillation. If P be made the centre of suspension, O will become the centre of oscillation, hence the centres of oscillation and suspension are interchangeable.

The point P is also the centre of percussion, and is the point of the body at which if a blow be received no jar will be felt at the axis of suspension.

The Ballistic Pendulum is used to determine the momentum of a projectile, or the impulse of a blow. It consists of a heavy block suspended by rods from an axis. The blork may be of
wood, or it may be a box filled with moist clay. The projectile is fired into the block, and the pendulum swings forward through an angle which is measured by a light pointer, which moves forward with the pendulum but does not return with it.
w= weight of projectile in lbs.
$v=$ velocity of projectile in feet per second.
$r=$ perpendicular distance of the axis of the pendulum from the line of flight of the projectile in feet.
$W=$ joint weight of pendulum and projectile in lbs.
$l=$ length in feet of simple pendulum equivalent to compuand pendulum of weight W.
$k=$ distance of axis of pendulum from common centre of gravity of pendulum and projectile in feet.
$\phi=$ angle through which pendulum is moved.

$$
v=\frac{2 W R \sin \frac{\phi}{2} \sqrt{g l}}{w r}
$$

Revolving Simple Pendulum.- A is a small body revolving about a vertical axis $O Y^{*}$, to which it is connected by a fine thread or slender rod $A O$. AO describes the surface of a right circular cone of height h feet. $n=$ number of revolutions of A in one second. $t=$ time of one revolution in seconds.

$$
t=2 \pi \sqrt{\frac{h}{g}} \quad h=\frac{g t^{2}}{4 \pi^{*}} \quad n=\frac{1}{2 \pi} \sqrt{\frac{g}{h}} \quad h=\frac{g}{4 \pi^{2} n^{2}} .
$$

Revolving Compound Pendulum. $-A B$ is the compound pendulum, 0 the point of suspension, $O Y^{\prime}$ the axis of rotation, and G the centre of gravity of $A B$.
$k_{1}=$ radius of gyration of $A B$ about the axis $G O$.
$k_{2}=$ radius of gyration of $A B$ about an axis $G X$ at right angles to $G O$.
$\phi=$ angle $G O Y$. $R=G O$.
$n=$ number of revolutions of pendulum in one second.
$h=$ height of equivalent revolving simple pendulum.

$$
h=\underset{4 \pi^{2} n^{2}}{g}=\frac{R^{2}+k_{2}^{3}-k_{1}^{2}}{R} \cos \phi .
$$

Motion of a Gun and Projectile. $-W=$ weight of gun (including whe carriage), $w=$ weight of projectile, $V=$ initial velocity of recoil of the gun, $v=$ initial velocity of projectile. $W V=w v$, or the momentum of the gun and carriage = momentum of the projectile.

Collision or Impact of Bodies.-The following formulæ apply to cases of direct impact, e.e. to cases where the common normal to the surfaces of the bodies at their point of contact is the line of motion of the bodies:-

$$
\begin{aligned}
W & =\text { weight of body } A . \quad w=\text { weight of body } B . \\
V & =\text { velocity of } A \text { before impact. } \\
v & =\text { velocity of } B \text { before impact. } \\
V^{\prime} & =\text { velocity of } A \text { after impact. } \\
v^{\prime} & =\text { velocity of } B \text { after impact. } \\
\varepsilon & =\text { coefticient of restitution. }
\end{aligned}
$$

The following are some values of e :-Glass and glass, or ivory and ivory, $e=\cdot 94$; cork and cork, $e=\cdot 65$; iron and iron, $e=\cdot 66$; brass and brass, $e=\cdot 36$; lead and lead, $e=\cdot 2$; lead and iron, $e=13$.
For perfectly elastic bodies, $e=1$; for inelastic bodies, $e=0$.
CASE I. The bodies Λ and B move in the same direction, and A overtake, B.

$$
V^{\prime}=V^{\prime}-(1+e) \stackrel{w\left(V^{\prime}-v\right)}{W+w} . \quad v^{\prime}=v+(1+e)^{\frac{W}{W}} \frac{W}{W^{\prime}+\frac{v}{w}}
$$

Case II. The bodies A and B move in opposite directions.

$$
V^{\prime}=V-(1+e) \frac{w(V+v)}{W+w} . \quad v^{\prime}=(1+e) \frac{W\left(V^{\prime}+v\right)}{W+w^{-}-v}
$$

Case III. One body B is at rest before impact $(v=0)$.

$$
V^{\prime}=V-(1+e) \underset{W+w^{*}}{w} \quad v^{\prime}=(1+e) \underset{W}{W} .
$$

Case IV. One body B is rigidly connected to the earth, and therefore becomes a part of the latter, hence w is infinite compared with $W . \quad\left(v=0\right.$, and $\left.v^{\prime}=0.\right) \quad V^{\prime \prime}=-e V$.

Note.-If a velocity is positive (+) when a body is moving in one direction, it will be negative (-) when the body moves in the opposite direction.

The total kinetic energy before impact $=\frac{W V^{2}}{2 g}+\frac{w v^{2}}{2 g}$, and the total kinetic energy after impact $=\begin{aligned} & W V^{\prime 2} \\ & 2 g\end{aligned}-\frac{w v^{\prime 2}}{2 g}$.

The difference between these two totals is the amount of energy converted into vibration and heat.

The following two theorems form the foundation of the theory of impact :-
(1) The relative velocity after impact $=\frac{V^{\prime}-v^{\prime}}{V_{-}^{\prime}}=-e$.
(2) Sum of momenta after impact =sum of momenta before impact, or $W V^{\prime}+w v^{\prime}=W V+w v$.

FRICTION.

Work done in Overcoming Friction.

$P=$ resultant load on bearing surface in lbs.
$\mu=$ coefficient of friction
$N=$ number of revolutions per minnte.
$U=$ work done per minute on fuction in foot-pounds.
Horse-power $=\begin{gathered}U \\ 33000\end{gathered}$.
Body sliding on a flat surface I/ $\mu P V$,
where $V=$ velocity of shding in feet per minute.
CylindAcal journal. $\quad U=\frac{\pi}{12} \mu P d N$,
where $d=$ diameter of journal in inches.
Footstep or pivot with flat end. $\quad U={ }_{18}^{\pi} \mu P d N$,
where $d=$ diameter of pivot in inches.
Footstep or pirot with conical and.
$I^{\prime}=\frac{\pi}{18} \mu P d N \operatorname{cosec} a={ }_{18}^{\pi} \mu P N \sqrt{d^{2}} \overline{-4} \overline{4 h^{2}}$,
where $d=$ diameter of pivot in inches.
$a=$ semi-vertical angle of conc.
$h=$ height of cone in inches.
Collar bearing, or square threaded screw.
$U=\frac{\pi}{18} \mu P N^{d_{1}^{2}+d_{1} d_{2}+d_{2}^{2}} d_{1}+\overline{d_{2}}=\frac{\pi}{24} \mu P N\left(d_{1}+d_{2}\right)$, nearly,
where $d_{1}=$ greater diameter, and $d_{2}=$ smaller diameter in inches.

Coefficients of Sliding Friction of Solids.
For small and moderate pressures and low speeds.
Wood on wood, dry
$\cdot 25$ to $\cdot 5$

Leather on metal, dry

The foregoing values of the coefficient of friction must be taken as approximate only. The results of experiments on friction are very discordant. It has been fourd that the coefficient of friction depends on the material of the sliding bodies, the state of their surfaces as regards smoothness, the intensity of the pressure between the surfaces, the velocity of sliding, the nature and quantity of the lubricant, and the manner in which it is applied, and also on the temperature.
The friction at starting from rest or statical friction is greater than the friction of motion, and depends on the hardness of the bodies and the length of time during which they have been in contact.

The so-called laws of friction are-
(1.) The force of friction is directly proportional to the pres sure between the surfaces in contact.
(2.) The force of friction is independent of the extent of the surfaces in contact.
(3.) The force of friction is independent of the velocity of sliding.

The above "laws" are approximately true when the intensity of the pressure between the surfaces is small, and when the speed of sliding is low.

Friction of Journal Bearings. -The results of Mr. Beauchamp Tower's experiments * showed, according to Unwin, \dagger that the coefficient of friction is approximately proportional to the square root of the velocity, and inversely proportional to the intensity of the pressure when the journal runs in an oil bath. Thus, $\mu=c \frac{\sqrt{ } v}{p}$, where μ is the coefficient of friction, v the velocity of the surface of the journal in feet per second, and p the intensity of the pressure in lbs. per square inch of projected area of the bearing.

The following values of c may be used for the lubricants mentioned :-Olive oil, 289 ; lard oil, 281 ; mineral grease, $\cdot 431$; sperm oil, $\cdot 194$; rape oil, 212 ; mineral oil, $\cdot 276$.
For syphon lubrication, $\mu=\frac{c^{\prime}}{p}$, where $c^{\prime}=2 \cdot 02$ for rape oil.
For pad lubrication, μ is approximately constant, and $=01$ for rape oil.

The following results were obtained by Mr. Tower with a steel journal, 4 inches in diameter and 6 inches long, at a speed of 150 revolutions per minute, or 157 feet per minute. The "brass" was of gun-metal, and embraced nearly one-half of the circum-

[^6]ference of the journal, and was placed on the top. The lubricant used was rape oil :-

Method of Lubrication.		Actual Load in Lhs per Square inch.	Coefficient of Friction.
Oil bath		263	-00139
Syphon lubricator		252	-(00980
Pad under journal		272	. 00900

With the same journal Mr. Tower obtained the following results at a speed of 20 revolutions, or 21 feet per minute in a bath of mineral oil :-

Chord of arc of contact of brass, 39 inches. Temperature, 90° Fahr.

The nominal load per square inch is the total load divided by the product of the diameter and length of the journal. Actual load per square inch $=$ nominal load per square inch $\times 4 \div 3 \cdot 9$.

Mr. Tower's experiments on friction, at different temperatures, indicate a very great diminution in the friction as the tempera. ture rises. Thus, in the case of lard oil, taking a speed of 450 revolutions per minute, the coefficient of friction at a temperature of 120° was only one-tbird of what it was at a temperature of $60^{\circ} \mathrm{Fahr}$.

The following figures show the comparative friction with various lubricants tried by Mr. Tower, under as nearly as possible the same conditions. Temperature, 90° Fahr. Lubrication by oil bath :-

Sperm oil	.	.	$\cdot 484$	Lard oil	.	.	652
Rape oil	.	.	.512	Olive oil	.	.654	
Mineral oil	.	.	-623	Mineral grease	.	1.048	

These figures are the means of the actual frictional resistances at the surface of the journal (4 inches diameter) in lbs. per square inch of bearing, at a speed of 300 revolutions per minute (314 feet per minute), with all nominal loads from 100 to 310 lbs per square inch. They also represent the relative thickness or body of the various oils, and also in their order, though perhaps not exactly in their numerical proportions, their relative weight-carrying power. Thus sperm oil, which has the highest lubricating power, has the least weight-carrying power; and though the best oil for light loads, would be inferior to the thicker oils if heavy pressures or high temperatures were to be encountered.

Previous to the publication of the results of Mr. Tower's experiments it was usual to take much higher values for the coefficient of journal friction. Morin gave the coefficient of friction for a lubricated journal bearing at from 045 to 08 .

For mill shafting Mr. S. Webber * gave $\mu=\cdot 066$ for ordinary oiling, and $\mu=\cdot 044$ for continuous oiling.
For railway axles Kirchweger gave $\mu=\cdot 009$ to 014 when the journals were lubricated with oil.

Bokelberg and Welkner obtained values of μ ranging from $\cdot 003$ for small pressures and low velocities to 013 for great pressures and high velocities.

Friction of Pivot or Footstep Bearings. - The table below gives the results of the experiments on the friction of a pivot bearing carried out for the Institution of Mechanical Engineers by the Research Committee on Friction.t The pivot experimented with was of steel 3 inches in diameter, and flat ended. The bearing was of manganese bronze. The bearing is shown in the adjoining illustration. The oil was introduced, as shown, through a central hole, and distributed over the bearing by a single diametrical groove, terminating at each end within ${ }^{1 / 6}$ inch of the circumference of the bearing. It was found that the oil circulated automatically, the pivot and bearing acting like a centrifugal pump.

Load in Lbs. per Sq. Inch.

[^7]The coefficients of friction in the foregoing table were calculated from the observed frictional moments, on the assumption that the mean leverage of the friction was two-thirds of the radius of the pivot, which would be correct if the pressure on the bearing was uniformly distributed.

Friction of Collar Bearings. - In the third report of the Research Committee of the Institution of Mechanical Engineers on Friction, the experiments of Mr. Beauchamp Jower on the filiction of a collar bearing are described * The results showed that the coefficient of friction in this type of bearing is practically independent of the speed. The following table gives the mean values of the coefficient of friction (μ) obtained with different intensities of pressure (p) on the bearing ring, in lbs. per square inch.

p	15	30	45	60	$67 \cdot 5$	75	$82 \cdot 5$
μ	$\cdot 0542$	$\cdot 0463$	0369	$\cdot 0361$	$\cdot 0355$	$\cdot 0349$	$\cdot 0336$

It was found in the above experiments that the greatest load which the bearing would carry was 75 lbs. per square inch at the highest speed, and 90 lbs . per square inch at the lowest speed.

The friction of a collar bearing is much greater than that of a cylindrical bearing, because of the greates difficulty of properly lubricating the former.

Friction of Cotton Mill Engines and Gearing.-The following table contains a summary of results obtained by Mr. Alfred Saxon, and given by him in a paper read to the Manchester Association of Engincers in October 1892 :-

	$\underset{\text { Gearing }}{\text { Spur }}$	Rope Gearing	$\begin{gathered} \text { Belt } \\ \text { Gearing. } \end{gathered}$
Number of examples	10	8	2
Friction of engine and) maximum	$35 \cdot 6$	$32 \cdot 8$	28.2
gearing in per cent. ${ }_{\text {minimum }}$	$18 \cdot 17$	$23 \cdot 3$	27.0
of full load I.H.P. of engine . $\int_{\text {mean }}$.	$25 \cdot 96$	29.6	$27 \cdot 6$

Friction of Steam Engines.-Experiments have shown that the amount of power consumed in overcoming the friction of the mechanism of a steam engine is very nearly the same for all loads. According to Professor Thurston, the friction of steam engines varies from about 4 lbs. per square inch on the piston in small engines (25 to 50 horse-power), down to 1 lb . per square inch in very large marine engines. This gives power consumed

[^8]in friction, ranging from 16 per cent. to 3 per cent. The crank shaft bearings are responsible for the largest part of the work lost in friction, in some cases as much as one-half.

Mechanical Efficiency of Machines.-
${ }^{P}=$-forec acting at the driving point --the effort.
$W=$ force acting at the working point $=$ the resistance.
$r=$ velocity ratio of machine.
$=\frac{\text { displacement of driving point }}{\text { displacement of working point }}$.
$M=$ mechanical advantage of machine $=\frac{W}{P}$.
$E=$ mechanical efficiency of machine $=\frac{\text { mechanical advantage }}{\text { velocity ratio }}$.
When friction is neglected $P=\frac{W}{r}$ and $E=\frac{M}{r}=1$.
When friction is taken into account and the machine has a straight line law, $P=m W+k$, where m and k are constants determined from experiments with the machine, then

$$
E=\frac{M}{r}=\frac{W}{r(m W+k)}
$$

Friction Brake Dynamometer.-The effective horse-power of
 an engine is best determined by absorbing all the power at the crank shaft by means of a friction brake. The simplest and most reliable form of friction brake dynamometer is the rope brake, shown here. One, two, or more lengths of rope are passed once round the rim of the fly-wheel or the rim of a pulley fixed on the crankshaft. The different lengths of rope are kept in position by blocks of wood, as shown, the blocks being laced to the rope. The upper ends of the several lengths of rope are united and attached to a suspended spring balance B, while the other ends are united
and attached to the weight W. (Note.-The length of hanging rope from A to the weight should be greater than is shown in the illustration.)
W = hanging weight (including portion of rope, etc., hanging from A) in lbs.
w - -tension registered by spring balance, less the weight of rope, etc., between A and the balance, in lbs.
$R=$ effective radius of wheel $=$ radius of wheel + radius of rope, in feet.
$N=$ number of revolutions of haft per minute.
B.H.P. =effective, actual, or brake horse-power.
B.H.P. $=\frac{2 \pi R N}{33000}(W-w)=0001904 R N(W-w)$.

Where the amount of power to be absorbed is large, the rim of the brake wheel is cooled by water. In that case the rim is of a channel section, and the water is held in it by centrifugal force.

STRENGTH AND STIFFNESS OF MATERIALS.

Load, Strain, and Stress.

The load on a piece of construction is the combination of external forces acting on it. A dead load is one that remains constant. A live load is one that varies continually.

Strain is the change of form produced in a piece by the action of the load. Tensile and compressive strains are measured by the ratio of the increase or decrease in length to the length of the unloaded piece.

If a rectangular piece $A B C D$ is distorted by a load P so that it assumes the shape $a B C d$, the piece is subjected to shearing, and the shearing strain is measured by the ratio of $A a$ to $A B$, that is, by the tangent of the angle $A B a$.

When a bar is lengthened or shortened by a load, it at the same time becomes narrower or wider. The ratio of this strain in the direction of the width to the simultaneous strain in the direction of the length is called Poisson's Ratio. The following are values of Poisson's ratio :-

Copper	.	.	.	38	Steel	.	.	31
Brass	.	.	.	33	Wrought-iron	.	.	-28
Glass	.	.	.	33	Cast-iron .	.	.	27

Stress is the combination of internal forces which are called into play in the material of a structure to resist the tendency of the load to produce strain. Stress is usually measured either in lbs. per square inch or in tons per square inch.

Moduli or Coefficients of Elasticity.

Modulus of direct elacticity $=E=$ tensle or compressive stress
If S be the tham produced in a bar, whone cross section is A square inches, by a direct load of W lbs., then

$$
S=\begin{gathered}
W \\
E A
\end{gathered}, E=\frac{W}{S A}, W=S E A, \text { and } A=\underset{S E}{W} .
$$

E is usually determined from expermments on the deflection of beams (see p. 251).

Modulus of thansverse elasticity $-C=$ shearing stress shearing train
C is bent determined from experiments on the torsion of shafts (see p. 427)

Average l'alues of E in Lbs per Square Inch.

Average Values of C in Lbs. per Square Inch.

Material.		Material.	c.
Brass wire	5,300,000	Steel, f untempered	12,000,000
Copper, rolled	5,600,000	cast $\$ tempered & 14,000,000 \hline Iron, cast & 6,300,000 & Steel plates & 13,000,000 \hline Iron, \{bars & 10,500,000 & Steel, forged & 13,000,000 \hline wrought (plates & 14,000,000 & Wood $\{$ Ash and elm	76,000
Phosphor-bronze .	5,300,000	Wood $\{$ Oak	82,000

Examples of Bending Moments and Shearing Loads on Beams.

$M=$ bending moment. $\quad F=$ vertical shearing force.
One Concentrated Load w .
M at $A=W x \quad F$ at $A=W$. M greatest at B, and $=W L$. F uniform throughout.

Two Concentrated Loads W_{1}, W_{2}
M at $A=W_{1} x_{1}+W_{2} x_{2}$.
F at $A=W_{1}+W_{2}$.
M greatest at B, and $=W_{1} L_{1}+W_{2} L_{2}$. F uniform throughout length L_{1}

Uniform Load W, or w per unit of length of beam.

$$
\begin{aligned}
& M \text { at } A=\frac{w x^{2}}{2}=\frac{W x^{2}}{2 L} . \\
& F \text { at } A=w x=\frac{W x}{L} .
\end{aligned}
$$

M greatest at B, and $=\frac{w L^{2}}{2}=\frac{W L}{2}$.
F greatest at B, and $=w L=W$.
Uniform Load W, or w per unit of length and a Concentrated

Load W_{1}.
M at $A=\frac{w x^{2}}{2^{-}}+W_{1} x_{1}$.
F at $A=w x+W_{1}$.
M greatest at B, and $=\frac{W L}{2}+W_{1} L_{1}$.

F greatest at B, and $=W+W_{1}$.
One Concentrated Load W at middle of beam.
M at $A=\frac{W}{2}\left(\frac{L}{2}-x\right) . F$ at $A=\frac{W}{2}$.
M greatest at B, and $={ }_{4}^{W} L$.
F uniform throughout.

Examples of Bending Moments (continued)

Examples of Bending Moments (concluded).
Beam fixed at the ends, and loaded uniformly.
M is a maximum at A and B, and $=\frac{W}{12} \frac{1}{2}$ at these points.

$$
M \text { at } C^{r}=\frac{W L}{24}
$$

Beam fixed at one end, supported at the other, and loaded at the centre.

Reaction $R=\frac{5}{16} W$.
M is a maximum at A, and $=3 W L$
at that point. M at $C={ }_{32}^{5 W L}$.

Beam fixed at one end, supported at the other, and loaded uniformly.

Reaction $R=\frac{3}{8} W$.
M is a maximum at A, and $=\begin{gathered}W L \\ 8\end{gathered}$ at that point. M at $C=\begin{gathered}9 W L \\ 128\end{gathered}$.

Moment of Resistance of a Beam to Bending.-The neutral axis of a transverse section of a beam passes through the centre of gravity of the section, and is at right angles to the plane in which the beam bends.

The stress on one side of the neutral axis is tensile, and on the other side compressive. The stress varies uniformly from zero at the neutral axis to a maximum at that part of the section which is farthest from the neutral axis.

Let f denote the maximum stress, then the moment of resistance of the beam to bending at the section under consideration is denoted by $f z$, where z is a quantity, called the modulus of the section, depending on the form of the section.

Where the section is not symmetrical about its neutral axis there are two values of z, one, z_{1}, corresponding to the part on one side of the neutral axis, and the other, z_{2}, corresponding to the part on the other side. If f_{1} is the greatest stress on the part of the section to which z_{1} refers, and f_{2} is the greatest stress on the side to which z_{2} refers, then the moment of resis-
tance is equal to $f_{1} z_{1}$ or $f_{2} z_{2}$. If f_{1} is tensile stress, f_{2} is compressive stress, and vice versa.

For values of $z_{1} z_{1}$, and z_{2} corresponding to various forms of sections, see pp. 212 215.

The above remarks only apply to cases where the beam is not strained beyond the clastuc limut.

Safe Working Strength of a Beam.-If the bending moment at any section of a beam be denoted by M, the safe working strength is given by the following equations:-
$M=f z$ for symmetrical sections,
$M=f_{1} z_{1}$ or $f_{2} z_{2}$ for unsymmetrical sections,
where f, f_{1}, and f_{2} are the safe working stresses.

Where the moment of resistance has two values, the smaller must be taken.

Breaking Strength of a Beam. -The relation between the bending moment and the moment of resistance just given, viz. $M=f z$, only applie, when the beam is not strained beyond the elastic limit; and if f denotes the breaking stress determined by direct experiment on a piece in tension or compression, the above equation does not give the breaking strength of the beam when it is broken by bending.

Let M^{\prime} denote the bending moment which actually breaks the beam, and let $M=f z$ where f is the breaking stress determined by direct experiment on a piece in tension or compression, then the ratio $\frac{M^{\prime}}{M^{\prime}}$ depends on the form of the section, and also on the material of the beam.
M^{\prime} is greatest for a circular section. For flanged beams M^{\prime} may be taken equal to M.

The following values of $\frac{M^{\prime}}{\bar{M}}$ for rectangular sections are given by Mr. Lineham in his "Text-Book of Mechanical Engineer-ing":-Fir, $\cdot 52$ to $\cdot 94$; oak, $\cdot 7$ to 1 ; pitch pine, 8 to $2 \cdot 2$; cast-iron, 1.57 to 2.3 ; wrought-iron, $1 \cdot 21$; forged steel, 1.47 to $1 \cdot 6$; gun-metal, 1 to 1.9 .

Beams of Uniform Strength.-Economy of material is obtained when each section of a beam is so proportioned that its moment of resistance to bending is equal to the bending moment at the section, and the beam is then said to be of uniform strength so far as resistance to bending is concerned. Care must, however, be taken to see that each section is sufficient to resist the shearing load at the section.

Deflection of Beams of Uniform Section -

W-load on beam in lbs
$L=$ effective length of beam in inches
$I=$ moment of inertia of cioss section of beam (see pp 212-215).
$d=$ deflection of beam in inches
$L=$ modulus of elasticity (see p 216)

Combined Straining Actions.

Tension or Thrust combined with Bending.-
$A=$ area of section at $a b$.
$f_{1}=$ stress at side a of section $a b$.
$f_{2}=$ stress at side b of section $a b$.
$y_{1}=$ distance of centre of gravity of section $a b$ from side a.
$y_{2}=$ distance of centre of gravity of section $a b$ from side b.
$r=$ perpendicular distance of point of application of load P from neutral axis. (Neutral axis passes through centre of gravity of section $a b$).
$I=$ moment of inertia of section $a b$ about an axis perpendicular to the plane of the paper and passing through the centre of gravity of the section
Z_{1} and $Z_{2}=$ moduli of section $a b . \quad Z_{1}=\frac{I}{y_{1}}$, and $Z_{2}=\frac{I}{y_{2}}$.

Case I.

$$
\begin{gathered}
f_{1}=\frac{P}{A}+\frac{p r}{Z_{1}} \\
f_{2}=\frac{P}{A}-\frac{P r}{Z_{2}} \\
P=\begin{array}{c}
A Z_{1} f_{1} \text { or } A Z_{2} f_{2} \\
Z_{1}+A r
\end{array} \\
f_{1}, f_{2}, \text { and } P \text { are independent of } x .
\end{gathered}
$$

Case II.

$$
\begin{aligned}
f_{1} & =\frac{P \cos \phi}{A}+P x \sin \phi \\
f_{2} & =\begin{aligned}
P \cos \phi & P x \sin \phi \\
P & =Z_{1} \cos \phi+A x \sin \phi \\
& =\frac{A Z_{1} f_{2}}{Z_{2} \cos \phi-A x \sin \phi}
\end{aligned} \\
& \\
&
\end{aligned}
$$

Case III.

$$
\begin{aligned}
f_{1} & =\frac{P \cos \phi}{A}+\frac{P r \cos \phi+P x}{Z_{1}} \frac{\sin \phi}{f_{2}} . \\
f_{2} & =\frac{P \cos \phi}{A^{-}-\cos \phi+P x \sin \phi} \\
P & =\frac{A Z_{1} f_{1}}{Z_{1} \cos \phi+A r \cos \phi+A x \sin \phi} \\
& =\frac{A Z_{2} f_{2}}{Z_{2} \cos \phi-A r \cos \phi-A x \sin \phi}
\end{aligned}
$$

Twisting combined with Bending.-

$T=$ twisting moment at section $a b$.
$B=$ bending moment at section $a b$.
$T=P r . \quad B=P x$.
$T_{e}=$ equivalent twisting moment at $a b$.
$B_{s}=$ equivalent bending moment at $a b$.
$T_{e}=B+\sqrt{ } B^{2}+T^{2}$.

$$
=P\left(x+\sqrt{x^{2}}+r^{2}\right) .
$$

$B_{c}=\frac{1}{2} B+\frac{1}{2} \sqrt{ } B^{2}+T^{2}$.
$=\frac{1}{2} P\left(x+\sqrt{x^{2}+\imath^{2}}\right)$.

The plece subjected to twisting and bending is designed to resist the equivalent twisting moment or the equivalent bending moment.

Strength of Long Columns,

Fig. I. Column fixed at one end and free at the other.
Fig. II. Column with both ends free, but guided in the direction of the load.

Fig. III. Column with one end fixed, the other free and guided in the direction of the load.

Fig. IV. Column with both ends fixed in direction.
In each Fig. the thick line diagram shows the manner in which the column bends when loaded.
$l=$ length of column in inches.
$A=$ area of cross section in square inches.
$I=$ least moment of inertia of cross section about an axis passing through its centre of gravity. (Thrs axis will be at right angles to the plane in which the column will most easily bend.)
$k=$ least radius of gyration of cross section $=\sqrt{\frac{I}{A}}$.
$E=$ modulus of elasticity of the material in lbs. per square inch (see p. 246).
$n=$ factor of safety $=5$ for wrought-iron or steel, 6 for castiron, and 10 for wood.
$W=$ working load in lbs.

Euler's Formulæ. -

Column fixed at one end and free at the other (Fig. I.),

$$
W=\frac{\pi^{2}}{4} \times \frac{E I}{n l^{2}}=\frac{\pi^{2}}{4} \times \begin{gathered}
E k^{2} A \\
n l^{2}
\end{gathered} . \quad\left(\begin{array}{c}
\pi^{2} \\
4
\end{array}=24674 .\right)
$$

Column with both ends free, but guided in the direction of the load (Fig. II.),

$$
W=\pi^{2} \frac{E I}{n l^{2}}=\pi^{2} \frac{E k^{2} A}{n l^{2}} . \quad\left(\pi^{2}=9 \cdot 8696 .\right)
$$

Column with one end fixed, the other free and guided in the direction of the load (Fig. III.),

$$
W=2 \pi \pi^{2} \frac{E I}{n l^{2}}=2 \pi^{2} E L^{2} A . \quad\left(2 \pi^{2}=19 \cdot 7392 .\right)
$$

Column with both ends fixed in direction (Fig. IV.),

$$
W=4 \pi^{2} \frac{E I}{n l^{2}}=4 \pi^{2} \frac{E 2^{2} A}{n l^{2}} . \quad\left(4 \pi^{2}=39 \cdot 4784 .\right)
$$

In each case W must not exceed $A f$, where f is the safe crushing stress in lbs. per square inch.

Gordon's Formulæ as modified by Rankine. -

Column with both ends free, but guided in the direction of the load (Fig. II.),

$$
n W=\frac{A c_{1}}{1+\frac{4 l^{2}}{c_{2} k^{2}}}
$$

Column with one end fixed, the other free and guided in the direction of the load (Fig. III.),

$$
n W=\frac{A c_{1}}{1+\frac{16 u^{2}}{9 c_{2} k^{2}} 2^{2}}
$$

Column with both ends fixed in direction (Fig. IV.),

$$
n W=\frac{A \boldsymbol{c}_{1}}{1+\frac{l^{2}}{c_{2} k^{2}}} .
$$

For wrought-iron or mild steel . $c_{1}=36,000, c_{2}=36,000$
For cast-iron $c_{1}=80,000, \quad c_{2}=6,400$
For dry timber, strong kinds $\quad c_{1}=7,200, c_{2}=3,000$

Springs.
Deflection of Flat Springs. -
$t=$ thickness in inches.
$b=$ breadth in inches.
$I=$ length in inches.
$W=$ load in lbs.
$E=$ modulus of elasticity in lbs. per square inch.
$\delta=$ deflection in inches.

section. $\delta=\begin{gathered}W l^{3} \\ 4 E b t^{3}\end{gathered}$
(2.) Spring of uniform strength and uniform breadth. $\delta=\frac{W}{2 E} l^{3}$, $b t^{3}$, where t is the thickness at the centre.

For uniform strength the thickness at a point which is at a distance x from the end nearest to that point is $y=t \sqrt{\frac{2 x}{l}}$.

The bottom being straight, the ontline of the top is two parabolas, with their vertices at the ends.

It will be observed that the deflection of (2) is double the deflection of (1) for the same stress in the material.

The form (2) may be approximated to by tapering the spring uniformly from the centre to the ends, as shown at (3), the thickness at the ends being half the thickness at the centre.

If f is the maximum tensile or compressive stress in the spring corresponding to a deflection δ, then

$$
\begin{aligned}
& \delta=\frac{f l^{2}}{6 E t^{\prime}} \text {, and } f=\frac{6 E t \delta}{\frac{l^{2}}{}} \text { for spring (1). } \\
& \delta=\frac{f l^{2}}{3 E t^{\prime}} \text { and } f=\frac{3 E t \delta}{l^{2}} \text { for spring (2). }
\end{aligned}
$$

For steel, E varies from $30,000,000$ to $40,000,000$.

Locomotive Bearing Springs.-

$l=$ span of spring in inches.
$b=$ breadth of plates in inches.
t_{1} and $t_{2}=$ thickness of plates in inches.
$n_{1}=$ number of plates of thickness t_{1}.
$n_{2}=, \quad, \quad, \quad, \quad t_{2}$.
$\underset{W}{E}=$ modulus of direct elasticity of material in lbs. per sq. in.
$W=$ working load on spring in tons.

$$
W=\frac{c b\left(n_{1} t_{1}^{2}+n_{8} t_{2}^{2}\right)}{l}
$$

where c is a multiplier which is generally between 18 and 26, and has an average value of 23 .

If the cping has n plates all of the same thickness t, then $W=\frac{c b n t^{2}}{l}$.
The following table gives particulars of a number of locomotive beaing-springs fiom actual practice -

The deflection of locomotive bearing-springs may be found approximately from the formula,

Deflection in inches per ton of load $=\frac{l^{3}}{k b\left(n_{1} t_{1}^{3}+n_{2} t_{2}^{3}\right)}$,
where k varies from 40,000 to 48,000 .
The theory of the deflection of beams gives the following
formula,

$$
\delta=\begin{gathered}
840 W l^{3} \\
E b\left(n_{1} t_{1}^{s}+n_{2} t_{2}^{3}\right)
\end{gathered}
$$

neglecting the friction between the plates. Comparing this
formula with the preceding one, $k=\begin{gathered}E \\ 840^{\circ}\end{gathered}$. If $E=30,240,000$, $h=36,000$.

If $f=$ maximum stress in lbs. per square inch (the maximum shess is the same in each plate), then

$$
f=\frac{33360 W l}{b\left(n_{1} t_{1}^{2}+n_{2} t_{2}^{2}\right)}
$$

If W is the safe working load in tons, then substituting from the formula already given for $W^{\gamma}, f=3360 c$, which gives $f=77,280$ when 23 , the average value of c is taken.

Helical Springs. $-D=$ diameter of cylindrical surface passing through the centres of colls, in inches
$n=$ number of effective colls in spring.
$p=$ pitch of helix, in inches.
$\theta=$ angle of inclination of helix.
$\cos \theta=\begin{gathered}\pi I \prime \\ \sqrt{\prime}^{\prime} \pi^{2} D^{2}+p^{2^{*}}\end{gathered} \quad \sin \theta=\begin{gathered}p \\ \sqrt{ } \pi^{2} D^{2}+p^{2}\end{gathered}$.
$l=$ length of wire forming effective coils of spring, in inches.

$$
l=n \sqrt{ } \pi^{2} D^{2}+p^{2}
$$

$I=$ moment of inertia of a transverse section of the wire about an axis in the plane of the section, and passing through its centre in a direction pardllel to axis of spring.
$I_{0}=$ moment of inertia of a transverse section of the wire about an axis at right angles to the section, and passing through its centre. (Polar moment of inertia.)
$A=$ area of transverse section of wire, in square inches.
$K=$ constant depending on form of section of wire.
$=4 \pi^{2}$ for circular and elliptical sections $(=39478)$.
$=42 \cdot 66$ for a square section.
$=42$ for a rectangular section when the longer side is not greater than $3 \frac{1}{3}$ times the shorter side.
$W=$ load on spring in lbs., acting along axis of spring, and not greater than greatest safe load.
$W_{1}=$ greatest safe steady load, in lbs.
$f_{1}=$ greatest shearing stress produced by load W_{1}, in lbs. per square inch.
$R_{1 g}, A_{1}=1$
$C=$ modulus of transverse elasticity, in lbs. per square inch.
$E=$ modulus of direct elasticity.
$\delta=$ deflection of spring (extension or compression), in inches.
The greatest safe suddenly applied load is half of the greatest safe steady load.

The principal strain on the spring is torsional, but there is also 2 bending strain and a small transverse shearing strain.

The third of these may always be neglected, and in most cases the second also.

The following formulæ give the deflection when the torsional and bending strains are considered .-

$$
\left.\begin{array}{rl}
\delta & =\begin{array}{c}
W I I^{2} \\
4
\end{array}\left(\begin{array}{c}
K I_{o} \cos ^{2} \theta \\
\bar{C} A^{4}
\end{array} \sin ^{2} \theta\right. \\
E I
\end{array}\right) .
$$

If p is less than 41 , that is, if θ is less than 5°, the bending action may be neglected, and the following simpler formulæ may be used:-

$$
\delta=\frac{W I D^{2} K I_{o}}{4 C A^{4}}=\begin{gathered}
W n \pi l D^{3} K I_{o} \\
4 C A^{4}
\end{gathered}
$$

The latter formula is used in obtaining the results given below.

(1) For coils of round section

$$
\delta=-\frac{8 W n D^{3}}{\overline{C d} d^{4}} . \quad W_{1}=\frac{\pi d^{8} f_{1}}{8 D},
$$

(2) For coils of elliptical section

$$
\delta=\frac{4 W n D^{3}\left(a^{2}+b^{2}\right)}{C a^{3} b^{3}} . \quad W_{1}=\frac{\pi b a^{2} f_{1}}{8 D},
$$

where b is the major axis of the ellipse.
(3) For coils of square section

$$
\delta=\frac{5 \cdot 584 W n D^{3}}{C s^{4}} . \quad W_{1}=\stackrel{-4168^{3} f_{1}}{D} .
$$

(4) For coils of rectangular section

$$
\delta=\frac{2 \cdot 75 W n D^{3}\left(b^{2}+h^{2}\right)}{C b^{3} h^{3}}, \quad W_{1}=\frac{b^{2} h^{2} f_{1}}{(1 \cdot 6 b+8 h) D}
$$

where b is not greater than $3 t h$, and h is less than b.

If h is small compared with b, then

$$
\delta=\frac{2 \cdot 36 W n D^{3}}{C b}, \quad \text { and } W_{1}=\frac{2 b h^{2} f_{1}}{3 D}
$$

The greatest stress f_{1} is at the points on the boundary line of the section which are nearest to the centre of the section.
Mr. Wilson Hartnell found from his experments on springs such as are used for governors and safety-valves that C varied from $13,000,000$ for $\frac{1}{4}-1 \mathrm{nch}$ wire to $11,000,000$ for $\frac{8}{8}$-inch wire, and he gives the sate stress f_{1} as 60,000 to 70,000 for $\frac{8}{8}$-inch wire, and 50,000 for $\frac{1}{2}$-inch wire.
For springs made of wire less than $\frac{3}{8}$-inch in diameter Mr. Hartnell gives the following rules :-

$$
W_{1}=\frac{24,000 d^{3}}{D}, \text { and } \delta=\begin{gathered}
n J^{3} W \\
1,440,000 d^{4}
\end{gathered}
$$

The Board of Trade rules for safety-valve springs are,

$$
W_{1}=\frac{8000 d^{3}}{D} \text { for round steel, }
$$

and

$$
W_{1}=\frac{11,000 d^{3}}{D} \text { for square steel. }
$$

These rules correspond to $f_{1}=20,371$ for round steel, and $f_{1}=26,442$ for square steel.

Conical Spiral Springs.-For notation used, see p. 257 and the Hllustrations below.

For coils of circular section

$$
\delta=\frac{W\left(D_{1}^{4}-D_{2}^{4}\right)}{C c d^{4}} . \quad W_{1}=\frac{\pi d^{3} f_{1}}{8 D_{1}}
$$

For coils of elliptical section

$$
\delta=\frac{W\left(a^{2}+b^{2}\right)\left(D_{1}^{4}-D_{2}^{4}\right)}{2 C c a^{8} b^{3}}, \quad W_{1}=\frac{\pi b a^{2} f_{1}}{8 D_{1}},
$$

where b is the major axis of the ellipse.

For coils of rectangular section

$$
\delta=\begin{gathered}
3 \pi W\left(I I_{1}^{4}-1 D_{2}^{4}\right) . \\
32 C c b h^{3}
\end{gathered} \quad W_{1}=\frac{2 b h^{2} f_{1}}{3 \overline{D_{1}}} .
$$

The greatest stress f_{1} is at the points of the boundary line of the section which are nearest to the centre of the section.

Spiral Springs in Torsion.

One end of the spring is fixed, and the other end is attached to the axle which is turned by the force W, which acts at a distance R from the axis of axle.
$\phi=$ angle turned through by axle under the action of W, in circular measure.
$\delta=$ distance moved by W while the axle turns through the angle ϕ.
$Z=$ moment of resistance of section of spring to bending, see p. 212.
$f=$ greatest tensile or compressive stress in material of spring due to bending moment.
For the rest of the notation employed, see p. 257.

$$
\delta=\underset{E I}{W R^{2} l}=R \phi . \quad f=\frac{W R}{Z}
$$

Straight Bars in Torsion as Springs.-
$\phi=$ angle of twist of bar by load W, in circular measure.
$\delta=$ distance moved by W while the bar twists through the angle ϕ.
For the rest of the notation employed, see p. 257 and the figures on the opposite page.

General formular

$$
\begin{aligned}
W R & =A^{4} C \phi \\
K I_{o} l & =\frac{A^{4} C \delta}{K I_{o} l R} \\
\delta & =\begin{array}{c}
R^{2} K I_{o} l \\
A^{2} C
\end{array}=R \phi .
\end{aligned}
$$

(1) For bar of circular section

$$
\delta=\frac{32 W R^{2} l}{\pi d^{4} C} \cdot \quad W_{1}=\frac{\pi d^{3} f_{1}}{16 R}
$$

(2) For bar of elliptical section

$$
\delta=\begin{gathered}
16 W R^{2} l\left(a^{2}+b^{2}\right) \\
\pi a^{3} b^{3} C
\end{gathered} \quad W_{1}=\pi b a^{2} f_{1}
$$

(3) For bar of rectangular section

$$
\delta=\begin{gathered}
3 \cdot 5 W R^{2}\left(b^{2}+h^{2}\right) l \\
b^{3} h^{3} C^{r}
\end{gathered} \quad W_{l}=\begin{gathered}
b^{2} h^{2} f_{1} \\
2 R(16 b+\cdot 8 h)^{\prime}
\end{gathered}
$$

where b is not greater than 3$\} h$, and h is less than b.
If h is small compared with b, then

$$
\delta=\begin{aligned}
& 3 W R^{2} 7 \\
& b h^{3} C^{r}
\end{aligned}
$$

(4) For bar of square section

$$
\delta=\frac{7 \cdot 11 W R^{2} l}{s^{4} C} . \quad W_{1}=\frac{-2088^{3} f_{1}}{R}
$$

Note on the Deflection of Springs.-In consequence of the uncertanty of the values of the moduli of elasticity, the deflection of springs for given loads on them can only be determined approximately by the formulæ beforehand. If it is necessary to know the exact deflections, as in the cases of springs for dynamometers, spring balances, etc., then, after the springs are constructed, they should be carefully tested with known weights and the deflections observed.

Elastic Energy of Springs -

$U=$ work stored up in spring, in inch lbs
$U_{1}=$ work stored up in 1 cubic inch of spring, in inch lbs.
$U_{2}=$ work stored up in 1 lb . weight of spring, in inch lbs.
$V=$ volume of spring, in cubic inches.
$w=$ weight of 1 cubic inch of spring, in lbs.
$W=$ load on spring, in lbs.
$f=$ greatest stress due to load W, in lbs. per square inch.
$\delta=$ distance moved by W, in inches, when spring is deflected.
$E=$ modulus of direct elasticity of material of spring, in lbs. per square inch.
$C=$ modulus of transverse elasticity, in lbs per square inch.

$$
U=\begin{array}{cc}
W \delta \\
2
\end{array} \quad U_{1}=\underset{V^{*}}{U} \quad U_{2}=\begin{gathered}
U \\
V_{w}
\end{gathered}
$$

The values of U_{1} and U_{2} in the table below are for tempered steel under the greatest safe steady load; f berng taken at $80,000, E$ at $32,000,000, C$ at $12,800,000$, and w at 284 .

Kind of Spr	and Manner ding	Form of Section of Spring	U	U_{1}	U_{2}
(1) \downarrow	Stranght bar supported at the ends, and loaded at the centre.	Circle or ellipse	$\frac{V f^{2}}{24 E}$	$8 \cdot 3$	$29 \cdot 3$
		Square or rectangle.	$\frac{V f^{2}}{18 E}$	$11 \cdot 1$	$39 \cdot 1$
$t(2)$	Compound plate spring .	Rectangle.	$\left\|\begin{array}{c} V f^{2} \\ 6 \cdot 3 E \\ \text { (approx.) } \end{array}\right\|$	$31 \cdot 7$	111.8
(3)	Helical sprıng in torsion.	Circle or ellipse.	$\frac{V f^{2}}{8 E}$	25	88
		Square or rectangle	$\frac{9}{6 E}$	$33 \cdot 3$	$117 \cdot$
$\stackrel{(4)}{(5)}$	Straight bar in tension or compression.	Any form.	$\frac{V}{2} \underline{E}^{2}$	100	$352 \cdot 1$
Straight bar in torsion, or helical spring in ten-sion or compression.		Circle.	$\frac{V f^{2}}{4 \bar{C}}$	125	$440 \cdot 1$
		Square.	$\frac{V f^{2}}{6 \cdot 5 C}$	76.9	$270 \cdot 9$

In (1), (2), and (3) the material of the spring is subjected to bending, in (4) to tension, in (5) to compression, and in (6) and (7) to twisting.

CHAINS.

(From data suggested by E. Baylie \& Co. Ltd., Stourbridge.)
Classification.-Welded chain can be classified under two main headings: lifting chain and cable chain. Lifting chain is made in short link, long link, and block or pitched chain. Cable chain is made in stud link and short or open link and is used to attach a ship to its mooring.

Short link lifting chain is normal for cranes without seated wheels and for sling chains. It is made from wrought iron of 21 to 24 tons/sq. in. ultimate strength. It can be of any length and is generally sold by weight.

Chain size is designated by the nominal diameter of the iron; the actual diameter is normally slightly oversize. Exact size chain can be obtained.

Short Link Wrought-iron Crane Chain.*

Nominal Size of Chain.	Weught per Fathom.	Proof Load.	Test Load.		Elongation at Test Load on 36 In.	
			Standard Quality.	Spectal Quality.	Standard Quality.	Special Quality.
In.	Lb.	Tons.	Tons. Cut.	Tons. Cwt.	In.	In.
$\frac{6}{16}$	$7 \frac{1}{2}$	$1 \frac{1}{8}$	$2 \quad 19$	3 3	5	$6 \frac{1}{2}$
$\frac{3}{8}$	104	18	43	48	$5 \frac{1}{4}$	$6{ }^{4}$
$\frac{7}{16}$	132	21	510	$5 \quad 17$	54	$6 \frac{3}{4}$
$\frac{1}{2}$	171	3	$7 \quad 2$	$7 \quad 10$	51	$6 \frac{3}{4}$
$\frac{9}{16}$	$22 \frac{1}{2}$	$3{ }^{3}$	$8 \quad 17$	98	$5 \frac{1}{2}$	7
8	27	$4 \frac{5}{8}$	1016	1110	$5 \frac{1}{2}$	7
18	32	55	130	$13 \quad 16$	$5 \frac{1}{2}$	7
$\frac{3}{4}$	37	$6 \frac{3}{4}$	157	166	$5 \frac{1}{2}$	7
13	43	8	1718	190	$5 \frac{1}{2}$	7
$\frac{7}{8}$	51	918	$20 \quad 13$	$21 \quad 18$	$5 \frac{1}{2}$	7
18	57	101	2312	$25 \quad 1$	$5 \frac{1}{2}$	7
1	66	12	2614	288	$5 \frac{1}{2}$	7
$1 \frac{18}{16}$	73	131	301	$\begin{array}{ll}31 & 18\end{array}$	$5 \frac{1}{2}$	7
$1 \frac{1}{8}$	82	$15 \frac{1}{8}$	3312	$35 \quad 14$	$5 \frac{1}{2}$	7
$1 \frac{3}{18}$	89	17	376	$39 \quad 13$	54	63
14	98	$18 \frac{3}{4}$	415	4316	51	$6 \frac{3}{4}$
$1 \frac{5}{18}$	107	20흥	$45 \quad 7$	$48 \quad 4$	51	$6{ }^{4}$
1咅	118	22\%	$49 \quad 14$	5216	5	$6 \frac{1}{2}$
178	129	$24 \frac{8}{4}$	$54 \quad 4$	5712	5	$6 \frac{1}{2}$
$1 \frac{1}{2}$	140	27	5818	$62 \quad 12$	5	61

* Extracted from B.8. 394 : 1944.

Short Link Wrought-iron Crane Chain (continued).-The outside dimensions of a link shall be not more than $4 \frac{1}{2}$ by $3 \frac{1}{4}$ times the actual diameter of the iron used. The actual diameter may be up to $\frac{1}{T / 2}$ in. greater than the nominal diameter.

Normally the safe working load should not exceed half the proof load, and for hazardous conditions it should be less than half.

The whole of a short link chain is subjected to the proof load, which is approximatcly $12 d^{2}$ tons, where d is the nominal diameter of the iron in inches. The test load is applied to selected 36 -inch samples which have been marked accurately after subjection to the proof load. Test loads produce a stress of 16 tons/sq. in. in standard quality chain and 17 tons/sq. in. in special quality chain, calculated on iron $3^{\frac{1}{2}} \mathrm{in}$. larger than the nominal size and considering the sum of the cross-sectional areas of both sides of a link. The elongation is measured after removal of the test load. The samples are finally tested to destruction. Hot bend, cold bend, and nicked fracture tests are also made.

Pitched or Calibrated Wrought-iron Load Chain for Hand-operated Pulley Blocks.*

NominalSize of Chain.	Proof	Safe Working Load.	Unpolished.		Polished.	
			Test Load	$\left.\begin{array}{\|c\|} \text { Min. } \\ \text { Elong. } \\ \text { on } 36 \mathrm{In} . \\ \text { at T. Ld. } \end{array} \right\rvert\,$	Test Load.	Min. Slong. on 36 In. at T. Ld.
In.	T. ©. Q.	T. O. Q.	T. C. Q.	$\mathrm{In}^{\text {a }}$	T. o. Q.	In.
3^{7}	.. 81	.- 52	$1{ }^{1} 22$	$3 \frac{1}{2}$	$1 \begin{array}{lll}1 & 1 & 0\end{array}$	$2 \frac{1}{2}$
$\frac{1}{4}$. 111	.. 72	$\begin{array}{lll}1 & 9 & 2\end{array}$	$3 \frac{1}{2}$	172	$2 \frac{1}{2}$
${ }^{3}{ }^{9}$.. 132	.. 90	1172	$3 \frac{1}{2}$	1143	$2 \frac{1}{2}$
${ }^{16}$	$\ldots 170$.. 111	$\begin{array}{llll}2 & 6 & 0\end{array}$	$3 \frac{1}{2}$	230	$2 \frac{1}{2}$
$3^{\frac{1}{2}}$	110	.. 140	2152	32	2120	$2 \frac{1}{2}$
$\frac{8}{8}$	142	. 161	360	$3{ }^{3}$	313	$2{ }^{3}$
$\frac{1}{4} \frac{3}{2}$	182	.. 190	3180	4	3122	3
7	1133	122	4100	4	441	3
${ }^{\frac{1}{3} \frac{1}{2}}$	1192	$1{ }^{1} 61$	$\begin{array}{llll}5 & 3 & 2\end{array}$	4	4161	3
$\frac{1}{2}$	250	1100	5180	4	5101	3
$\frac{9}{16}$	$3 \quad 00$	200	790	4	6191	3
5	3150	2100	940	4	8113	3
年	4100	300	$11 \quad 22$	4	1073	3
$\stackrel{3}{4}$	5122	3150	1350	4	$\begin{array}{ll}12 & 71\end{array}$	3
13	6150	4100	15110	4	14101	3
$\frac{7}{8}$	7100	500	1810	4	16163	3
$1{ }^{\frac{15}{6}}$	$\begin{array}{lll}9 & 72\end{array}$	$6 \quad 50$	20140	4	19 6	3
1	1150	7100	23110	4	21193	3

[^9]Pitched or Calibrated Wrought-iron Load Chain for Handoperated Pulley Blocks (continued). -This chain is used exclusively with pocketed sheaves and, although commonly termed "block chain," is used for other purposes than with chain pulley blocks. Actual diameter of iron in the links shall be not greater than, and not more than 5 per cent. less than, the nominal diamoter. Overall length of a link shall be not more than 6 times, and width not more than 34 times, the nominal diameter.

Short Link and Pitched Steel Chain, Electrically Welded Mild Steel.*-The diameter of the material shall not vary by more than plus 0003 m . or minus 0002 in . from the sizes in col. 1 of table.

Size of Cham.	$\begin{aligned} & \text { Weight } \mathrm{per} \\ & \text { rer } \\ & \text { 'athom. } \end{aligned}$		Proof	$\begin{array}{\|c\|} \text { Safe } \\ \text { Working } \\ \text { Load. } \end{array}$	Tes' Load.		$\begin{aligned} & \text { Min. } \\ & \text { Elong. } \\ & \text { on } 36 \mathrm{In} \text {. } \end{aligned}$	
			Standard Quality.		Special Quality.			
S.w G. In.	Ll.			т. ©. Q	T. C Q	т. ${ }^{\text {c }}$	T. 0.	In.
${ }_{6} 60.192$	2	1	.. 80	.. 40	11	16	4	
$5 \quad 0212$	2	5	. 100	.. 50	15	111	4	
$4 \quad 0232$	3	0	. 120	.. 60	110	118	4	
30252	3	6	. 150	.. 72	116	24	4	
$2 \quad 0.276$	4	3	$\ldots 180$.. 90	23	213	4	
10.300	5	1	100	. 100	211	31	4	
$\frac{5}{16}$	5		122	. 111	215	37	4	
$\frac{78}{3}$	6	7	180	.. 140	37	42	5	
$\frac{3}{8}$	8		1122	.. 161	40	417	5	
$\frac{1}{3} \frac{3}{3}$	9		1180	$\ldots 190$	413	514	5	
$\frac{7}{16}$	11		250	$\begin{array}{lll}1 & 2 & 2\end{array}$		613	5	
${ }^{15}$	12		2122	$1{ }_{1} 61$		712	5	
$\frac{1}{2}$	14		$3 \quad 00$	1100		813	5	
$\frac{1}{3}$	16	0	$3 \quad 72$	$\begin{array}{lll}114 & 0\end{array}$		915	5	

The outside dimensions of the links, in terms of the diameter of the material, shall be not more than 5 by $3 \frac{1}{2}$ for short link chain and not more than 6 by $3 \frac{1}{2}$ for pttched or calibrated chain.

Chain Slings.-Nominal length is measured from inside the ring or link at one end to inside the link or hook at the other end. In two-, three-, or four-leg slings, the legs should be equal in length within $\frac{1}{4}$ in. The load lifted must be reduced as the angle between each leg and the vertical is increased. If P is the total safe load when all legs are vertical and θ is the angle between each leg and the vertical when they are inclined, then, assuming equal load distribution, the safe load is $P \cos \theta$. Examples are given for two-leg slings in the following table:-

[^10]Safe Working Loads for Two-leg Slings.

$\begin{gathered} \text { Size } \\ \text { of } \\ \text { Slung } \\ \text { Cham. } \end{gathered}$	Angle between each Leg and the Vertical.									
	0°		15°		30°		45°		60°	
In.	Tons	Cut.	Tons.	Cwt.	Tons.	Cut.	Tons.	Cwt.	Tons.	Cwt.
$\frac{5}{16}$	1	2	1	2		19	.	16	.	11
$\frac{1}{2}$	3	0	2	18	2	12	2	2	1	10
1	12	0		12		8		10	6	0
$1 \frac{1}{2}$	27	0	26	1	23	8	19	2	13	10

Rings and Alternative Links for Chain Slings.*-The proof load for a single sling ring, or alternative link, is equal to that of the

Ring. sling chain, and the proof loads for two-, three-, and four-leg sling rings, or alternative links, are respectively two, three, and four times that of the sling chain. The safe working load should not exceed half the proof load.

Rings.-Dimensions (see fig.) in terms of d_{c}, the size of the short link chain in the sling, are tabulated.

sung.	d	D		${ }^{\text {d }}$ D	${ }^{\text {d }}$	D
Single	$1 \cdot$	6.5d	$1.91 d_{c} 88 d_{c}$	$1.98 d_{\text {d }} 98 d_{c}$		
Two-leg.			$2 \cdot 42 d_{c} 8 d_{c}$	$2 \cdot 51 d_{\text {c }} 9 d_{\text {c }}$	$2 \cdot 60 d^{\circ}$	$10 d_{\text {c }}$
Three-leg	.			$2 \cdot 89 d_{\text {c }}{ }^{9} 9 d_{\text {c }}$	2.98d ${ }_{\text {c }}$	$10 d_{\text {c }}$
Four-leg					$3 \cdot 29 d_{\text {c }}$,	$10 d_{\text {。 }}$

Proof Load $=14 \cdot 8 d^{3} /(D+0 \cdot 3 d)$ tons, approx., where d and D are in inch units and the ratio D / d is between 2 and 7.
Links Alternative to Rings.-Dimensions (see fig.) in terms of d_{c}.

Sling.	d	L	B	Slug.	d	L	8
Single . Two-leg	$\begin{aligned} & 1 \cdot 60 d_{c} \\ & 2 \cdot 18 d_{c} \end{aligned}$	$\begin{aligned} & 6 \cdot 5 d_{c} \\ & 8.0 d_{c} \end{aligned}$	$\begin{aligned} & 3 \cdot 9 d_{c} \\ & 4 \cdot 8 d_{c} \end{aligned}$	Three-leg Four-leg	$\begin{aligned} & 2.60 d_{e} \\ & 3.06 d_{0} \end{aligned}$	$\begin{array}{r} 9 d_{c} \\ 10 d_{0} \end{array}$	$\begin{aligned} & 5 \cdot 4 d d_{c} \\ & 7 \cdot 0 d_{c} \end{aligned}$

For non-standard links geometrically similar to the above standards $d=K \sqrt{\text { Proof load inches, approx., where } K}$ is $0 \cdot 46$, $0 \cdot 445,0 \cdot 435$, and 0.44 for single, two-leg, three-leg, and four-leg slings respectively, and the proof load is in tons.

[^11]Crane Hooks．＊－A few dimensions are tabulated below；others will be found in B．S． 482 ： 1945.

Trapezoidal Sections．				Circular Sections．		
	Shank	Hooks．	Eye Hooks．		Shank Hooks．	Hye
C	$1.5 \sqrt{\bar{W}}$	$1.84 \sqrt{ } / \bar{W}$	$\begin{aligned} & 4 \cdot 5 d_{0} \\ & =1.84 \sqrt{ } \bar{W} \end{aligned}$	C	$1.5 \sqrt{W}$	$1.5 \sqrt{W}$
A	2．75C	2．46C	$10 \cdot 10 d$ 。	A	$2 \cdot 67 C$	$2 \cdot 47 \mathrm{C}$
B	$1.31 C$	$1 \cdot 17 \mathrm{C}$	7．00d。	B	1.35 C	1.750
D	1.44 C	1．29C	$5.83 d^{\circ}$	D	$1.32 C$	1.32 C
E	$1 \cdot 25 \mathrm{C}$	$1 \cdot 13 C$	$5 \cdot 0 d_{\text {。 }}$	．		
a	0.55 C	0．45C	$4.0{ }^{\text {d }}$ 。	G	$0.55 C$	1.00 C
H	$0.93 C$	0.78 C	$3 \cdot 5 d_{\text {。 }}$	H	0.82 C	0．82C
J	0.750	0.75 C	3．4d ${ }_{\text {o }}$	J	0．77C	0.79 C
M	0．60C	0.51 C	$2 \cdot 3 d_{\text {c }}$	Q	0．54C	0．54C
T	．．	．	$1.5 d_{\text {c }}{ }^{\circ}$	T	．．	0.44 C

$W=$ safe working load in tons．C is in inches．$d_{c}=$ nominal diameter in inches of appropriate chain iron．Proof load $=2 W$ ， up to $W=50$ tons．Over this value a modified proof load may be necessary．

Second column under trapezoidal sections，shank hooks，is the alternative for hooks of increased internal diameter for small loads．

Extracted from B．S． 482 ：1945．Wrought Iron and Mild Steel Hooks for Oranes，Ohains，Slings and General Engineering Purposes，Excluding Building Operations．

ROPES.

Construction of Hempen Ropes.-Yarns are made by spinning or twisting the fibres together with a right-handed twist. A strand is made by twisting yarns together left-handed. A hawser-laid rope or hawser is made by twisting three strands together right-handed. A shroud-laid rope has four strands twisted round a core. A cable-laid rope or cable consists of three hawsers twisted together left-handed.

The size of a rope is its circumference or girth. The size of a rope which is used for transmitting power is, however, generally taken as the diameter.

Weight and Strength of Hempen Ropes.-

$C=$ girth of rope in inches.
$W=$ weight of rope per fathom (6 feet) in lbs.
$S=$ breaking strength of rope in tons.

$$
\begin{aligned}
W & =\cdot 16 C^{2} \text { to } \cdot 20 C^{2} . \\
S & =18 C^{2} \text { to } \cdot 54 C^{2} .
\end{aligned}
$$

The following simple rules for the weight and strength of hempen ropes may be used in making rough calculations:-

$$
W=\frac{C^{2}}{5}, \quad S=\frac{C^{2}}{3} .
$$

Tarred ropes have only about three-fourths of the strength of untarred ropes of the same material. Tarred ropes, however, retain their original strength longer than white ropes, and they are more impervious to water.

The working load is generally from one-sixth to one-tenth of the breaking load, except for ropes used for transmitting power, when the working load is generally much less (see p. 483).

British Standard Manila Ropes*-3-Strand, Plain or Hawser Lald.

Cricum- fert nec		Weght per 120 I athoms			Breshmg Lond								
		Grade 1	Grauk 2		Grial 3								
In	Mm				Cwt	Qr	Lb	Tons	(nt	Iom	(n 1	'tons	c wt
${ }_{8}^{7}$	22		.	17		74		$6 \frac{1}{2}$		5			
1	25	\cdots	.	26	.	104	\ldots	$9 \frac{1}{2}$..	81			
14	32	.	1	6	.	14		121	\cdots	11			
$1 \frac{3}{8}$	35	.	1	15		173		$15{ }^{3}$	\cdots	133			
$1 \frac{1}{2}$	38	.	1	24	1	1		183	.	$16 \frac{1}{2}$			
18	41	\cdots	2	4	1	49	1	2		194			
13	44		2	13	1	$8 \frac{1}{2}$	1	51	1	2			
2	51		3	10	2	0	1	$15 \frac{1}{2}$	1	11			
21	57	1	0	0	2	8	2	$2 \frac{1}{2}$	1	17			
$2 \frac{1}{2}$	64	1	1	6	3	$3 \frac{1}{2}$	2	161	2	912			
$2 \frac{3}{4}$	70	1	2	4	3	$15 \frac{1}{2}$	3	7	2	$18 \frac{1}{2}$			
3	76	1	3	10	4	10	4	0	3	10			
37	83	2	0	16	5	412	4	13	4	$1 \frac{1}{2}$			
$3 \frac{1}{2}$	89	2	2	3	5	193	5	$6 \frac{1}{2}$	4	13			
$3 \frac{3}{4}$	95	2	3	8	6	162	6	$1 \frac{1}{2}$	5	6			
4	102	3	1	5	7	131	6	$16 \frac{1}{2}$	5	1912			
4	108	3	2	20	8	11	7	12	6	13			
42	114	4	0	15	9	112	8	10	7	9			
$4{ }_{4}^{3}$	121	4	2	11	10	11	9	$7 \frac{1}{2}$	8	4			
5	127	5	0	15	11	13	10	7	9	11			
51	140	6	0	23	13	19	12	8	10	17			
6	152	7	1	12	16	9	14	12	12	15			
61	165	8	2	18	19	3	17	0	14	17			
7	178	10	0	4	22	1	19	12	17	3			
8	203	13	0	12	28	7	25	4	22	1			
9	229	16	2	6	35	9	31	10	27	11			
10	254	20	1	24	43	9	38	12	33	15			
11	279	24	3	0	52	4	46	8	40	12			
12	305	29	1	20	61	18	5.5	8	48	2			
13	330	34	2	7	72	5	64	4	56	3			
14	356	40	0	9	83	5	74	0	64	15			
15	381	45	3	26	95	13	85	0	74	7			
16	406	52	1	10	108	11	96	10	84	9			
17	432	59	0	10	122	1	108	10	94	19			
18	457	66	0	24	136	14	121	10	106	6			

Weights include an allowance of approximately $2 \frac{1}{2}$ per cent. for wrappers. 1 fathom $=6$ feet. 1 ton $=2240 \mathrm{lb}$.

* Extracted from B.S. 431 : 1946.

Steel Wire Ropes.

Minimum Diameters of Barrels and Sheaves.
(British Ropes Ltd., Charlton, S.E. 7.)

RopeOircum-ference ference(Inches).	Diameters of Barrels and Sheaves (Inches).				
	Constructions.				
	6×12	6×19	6×24	6×37	6×61
1	6	7	${ }^{6}$	51	-
14	71	9	71	$6 \frac{1}{2}$.
$1 \frac{1}{2}$	9	11	9	8	.
$1 \frac{13}{4}$	1012	13	101	9	-
2	12	15	12	$10 \frac{1}{2}$	-
${ }_{2}$	$13 \frac{1}{2}$	$16 \frac{1}{2}$	$13 \frac{1}{2}$	12	
$2 \frac{1}{2}$	15	18	15	13	$10 \frac{1}{2}$
$2 \frac{3}{4}$	161	20	162	$14 \frac{1}{2}$	$11 \frac{1}{2}$
3	18	22	18	16	122
34	20	24	20	17	131
$3 \frac{1}{2}$	21	254	21	188	$14 \frac{1}{2}$
3	221	$27 \frac{1}{2}$	22 2	20	$15 \frac{1}{2}$
4	24	29	24	21	$16 \frac{1}{2}$
$4 \pm$	26	31	26	$22 \frac{1}{2}$	$17 \frac{1}{4}$
$4 \frac{1}{2}$	27	33	27	231	$18 \frac{1}{2}$
43	281	35	$28 \frac{1}{2}$	25	$19 \frac{1}{2}$
5	30	$36 \frac{1}{2}$	30	26	$20 \frac{1}{2}$
51	32	$38 \frac{1}{2}$	32	$27 \frac{1}{2}$	22
$5 \frac{1}{2}$	33	$40 \frac{1}{2}$	33	29	23
53	35	42	35	30	24
6	361	44	$36 \frac{1}{2}$	311	25

To convert inohes into millimetres multiply by $25 \cdot 4$.
The above table should only be taken as a guide, as hard and fast figures cannot be stated, but depend on local conditions. The recommendations cover speeds up to 120 feet per minute.

Descriptions of Steel Wire Ropes.

Tensile Breaking strength.	Trade Description.
Tons per Sg. In.	
$80-90$	
$90-100$	Best patent steel.
$100-110$	Special improved patent steel.
Best plough steel.	
$1115-120$	Special improved plough steel.
Extra special improved plough steel.	

British Standard Steel Wire Ropes.* $6 \times 6,5 \times 7,6 \times 6$, and 6×7 Constructions.

Oircumference.	Weight. \dagger		Actual Breaking Load.				
			80-90	90-100	100-110	110-120	115-125
	Per	Per	Tons/	Tons/	Tons/	Tons/	Tons/
			Sq. In.				
Inches.	Lbs.	Kg.	Tons.	Tons.	Tons.	Tons.	Tons.
$\frac{3}{4}$	9	$\cdot 134$	$1 \cdot 9$	$2 \cdot 1$	$2 \cdot 4$	$2 \cdot 5$	$2 \cdot 6$
$\frac{7}{8}$	12	$\cdot 178$	$2 \cdot 5$	2.8	$3 \cdot 2$	$3 \cdot 4$	$3 \cdot 6$
$1{ }^{\text {b }}$	19	-283	$3 \cdot 3$	$3 \cdot 8$	$4 \cdot 2$	$4 \cdot 5$	$4 \cdot 7$
118	24	-357	$4 \cdot 2$	$4 \cdot 6$	$5 \cdot 1$	$5 \cdot 5$	$5 \cdot 8$
14	27	$\cdot 402$	$5 \cdot 0$	$5 \cdot 6$	$6 \cdot 2$	$6 \cdot 7$	$7 \cdot 1$
$1 \frac{1}{8}$	34	. 506	$6 \cdot 2$	$6 \cdot 9$	$7 \cdot 7$	$8 \cdot 4$	$8 \cdot 8$
$1 \frac{1}{2}$	40	-595	$7 \cdot 3$	$8 \cdot 1$	$9 \cdot 0$	$9 \cdot 9$	$10 \cdot 3$
15	47	-699	$8 \cdot 4$	$9 \cdot 4$	$10 \cdot 5$	11.4	11.9
$1 \frac{3}{4}$	54	-804	10.0	$11 \cdot 1$	$12 \cdot 3$	$13 \cdot 5$	$14 \cdot 1$
$1 \frac{7}{8}$	60	-893	11.3	12.7	$14 \cdot 0$	$15 \cdot 3$	15.9
2	72	1.07	$13 \cdot 0$	14.6	$16 \cdot 2$	$17 \cdot 7$	18.5
21	80	$1 \cdot 19$	$14 \cdot 6$	16.3	$18 \cdot 0$	19.7	$20 \cdot 6$
21	87	1.29	$16 \cdot 2$	$18 \cdot 1$	$20 \cdot 0$	21.9	$22 \cdot 8$
$2 \frac{3}{8}$	97	1.44	$18 \cdot 3$	$20 \cdot 4$	$22 \cdot 6$	$24 \cdot 8$	25.8
$2 \frac{1}{2}$	107	1.59	$20 \cdot 1$	22.5	$24 \cdot 8$	$27 \cdot 2$	$28 \cdot 4$
2%	120	1.79	$22 \cdot 5$	$25 \cdot 1$	$27 \cdot 7$	$30 \cdot 3$	$31 \cdot 6$
2	132	1.96	24.9	$27 \cdot 8$	$30 \cdot 7$	$33 \cdot 7$	$35 \cdot 1$
$2 \frac{7}{8}$	140	2.08	26.5	$29 \cdot 6$	$32 \cdot 7$	$35 \cdot 8$	$37 \cdot 4$
3	154	2.29	$29 \cdot 1$	$32 \cdot 6$	$36 \cdot 0$	$39 \cdot 4$	41.2
31	168	$2 \cdot 50$	$31 \cdot 3$	$35 \cdot 0$	$38 \cdot 7$	$42 \cdot 4$	$44 \cdot 3$
31	184	$2 \cdot 74$	34.3	38.2	$42 \cdot 3$	$46 \cdot 4$	$48 \cdot 3$
3흫	198	2.92	$36 \cdot 7$	41.0	$45 \cdot 3$	$49 \cdot 6$	51.8
31	217	3.23	$39 \cdot 8$	$44 \cdot 5$	$49 \cdot 3$	53.9	56.3
3 雱	232	3.45	$43 \cdot 1$	$48 \cdot 1$	53.2	$58 \cdot 3$	60.9
$3{ }^{3}$	247	$3 \cdot 68$	$45 \cdot 8$	51.2	56.7	62.0	64.7
37	262	3.90	$48 \cdot 6$	$54 \cdot 3$	$60 \cdot 1$	$65 \cdot 8$	$68 \cdot 7$
4	275	4.09	51.5	57.6	$63 \cdot 7$	69.7	72.7
41	297	$4 \cdot 42$	$55 \cdot 3$	61.7	68.2	$74 \cdot 8$	$78 \cdot 0$
41	308	$4 \cdot 58$	$58 \cdot 3$	$65 \cdot 2$	$72 \cdot 1$	$78 \cdot 9$	$82 \cdot 4$
4要	336	$5 \cdot 00$	61.5	$68 \cdot 7$	75.9	$83 \cdot 2$	86.8
412	350	$5 \cdot 21$	$65 \cdot 5$	$73 \cdot 2$	$81 \cdot 0$	88.7	92.5
48	364	$5 \cdot 42$	$68 \cdot 9$	$77 \cdot 0$	$85 \cdot 1$	$93 \cdot 2$	$97 \cdot 3$
43	392	5.83	$73 \cdot 1$	81.7	$90 \cdot 4$	98.0	$103 \cdot 3$
47	406	6.04	76.6	$85 \cdot 7$	$94 \cdot 8$	$103 \cdot 7$	$108 \cdot 3$
5	420	6.25	$80 \cdot 3$	89.8	99.2	108.6	$113 \cdot 4$

- Extracted from B.8. $330: 1941 . \quad+$ If wire main core add fth. Dertain restaictions made in October 1941 are not indicated above.

British Standard Steel Wire Crane Ropes.* 6×19 Construction.

Circumference.	Aprirox. W cight.			Actual Breaking Load.			
	Per Fathom.	$\begin{gathered} \text { Per } \\ 100 \mathrm{Ft} . \end{gathered}$	Per Metre.	80-90 'Tons/ Sq. In.	90-100 Tons/ Sq. In.	100-110 Tons/ Sq. In.	110-120 Tons/ Sq. In.
In.	Lb.	Lb.	Kg .	Tons.	Tons.	Tons.	Tons.
1	108	18	0.268	$2 \cdot 8$	$3 \cdot 0$	$3 \cdot 4$	$3 \cdot 7$
$1 \frac{1}{8}$	$1 \cdot 26$	21	$0 \cdot 312$	$3 \cdot 3$	$3 \cdot 7$	$4 \cdot 1$	$4 \cdot 4$
14	1.50	25	$0 \cdot 372$	$4 \cdot 3$	$4 \cdot 7$	$5 \cdot 2$	$5 \cdot 8$
$1 \frac{3}{8}$	1.80	30	$0 \cdot 446$	$4 \cdot 9$	$5 \cdot 5$	$6 \cdot 1$	$6 \cdot 6$
$1 \frac{1}{2}$	$2 \cdot 16$	36	$0 \cdot 536$	$6 \cdot 0$	$6 \cdot 7$	$7 \cdot 4$	$8 \cdot 2$
$1 \frac{5}{8}$	$2 \cdot 58$	43	$0 \cdot 640$	$7 \cdot 2$	$8 \cdot 1$	$9 \cdot 0$	$9 \cdot 9$
13	$3 \cdot 00$	50	0.744	$8 \cdot 1$	$9 \cdot 1$	$10 \cdot 1$	11.0
2	$3 \cdot 96$	66	0.982	$11 \cdot 1$	$12 \cdot 4$	$13 \cdot 7$	15.0
$2 \frac{1}{8}$	$4 \cdot 44$	74	$1 \cdot 10$	$12 \cdot 1$	$13 \cdot 6$	$15 \cdot 0$	$16 \cdot 5$
21	$5 \cdot 04$	84	$1 \cdot 25$	$13 \cdot 9$	$15 \cdot 6$	$17 \cdot 2$	$18 \cdot 8$
$2{ }^{8}$	$5 \cdot 52$	92	$1 \cdot 37$	$15 \cdot 7$	$17 \cdot 6$	$19 \cdot 4$	$21 \cdot 3$
$2 \frac{1}{2}$	$6 \cdot 12$	102	$1 \cdot 52$	$17 \cdot 0$	$19 \cdot 1$	$21 \cdot 1$	$23 \cdot 1$
$2 \frac{3}{4}$	$7 \cdot 38$	123	$1 \cdot 83$	$20 \cdot 5$	22.9	$25 \cdot 3$	$27 \cdot 7$
3	$9 \cdot 24$	154	$2 \cdot 29$	$25 \cdot 8$	$28 \cdot 9$	31.9	34.9
31	$10 \cdot 08$	168	$2 \cdot 50$	$27 \cdot 5$	$30 \cdot 7$	33.9	$37 \cdot 2$
$3 \frac{1}{4}$	11.04	184	$2 \cdot 74$	$30 \cdot 0$	$33 \cdot 6$	$37 \cdot 1$	$40 \cdot 6$
$3 \frac{3}{8}$	11.76	196	$2 \cdot 92$	$32 \cdot 7$	$36 \cdot 6$	$40 \cdot 4$	$44 \cdot 3$
$3 \frac{1}{2}$	$13 \cdot 02$	217	$3 \cdot 23$	35.5	$39 \cdot 6$	$43 \cdot 8$	$48 \cdot 0$
$3 \frac{3}{4}$	$14 \cdot 82$	247	$3 \cdot 68$	$40 \cdot 4$	$45 \cdot 1$	$49 \cdot 9$	$54 \cdot 6$
37	$15 \cdot 72$	262	3.90	$43 \cdot 5$	$48 \cdot 6$	$53 \cdot 7$	58.8
4	$16 \cdot 50$	275	$4 \cdot 09$	$45 \cdot 6$	50.9	$56 \cdot 3$	$61 \cdot 7$
44	$18 \cdot 48$	308	$4 \cdot 58$	51.1	$57 \cdot 1$	$63 \cdot 1$	$69 \cdot 1$
$4 \frac{3}{8}$	$20 \cdot 16$	336	5.00	$54 \cdot 6$	61.0	$67 \cdot 4$	$73 \cdot 8$
$4 \frac{1}{2}$	21.00	350	$5 \cdot 21$	$58 \cdot 1$	$65 \cdot 0$	71.8	$78 \cdot 7$
$4 \frac{3}{4}$	$23 \cdot 52$	392	5.83	$64 \cdot 3$	71.9	79.5	87•1
5	$25 \cdot 20$	420	$6 \cdot 25$	$70 \cdot 9$	$79 \cdot 2$	$87 \cdot 6$	95.9
$5 \frac{1}{8}$	$26 \cdot 88$	448	$6 \cdot 67$	$75 \cdot 0$	$83 \cdot 7$	$92 \cdot 6$	$101 \cdot 4$
54	28.56	476	$7 \cdot 09$	79.1	$88 \cdot 5$	$97 \cdot 7$	$107 \cdot 1$
$5 \frac{1}{2}$	31.38	523	$7 \cdot 79$	$86 \cdot 4$	96.5	$106 \cdot 7$	$116 \cdot 8$
$5 \frac{3}{4}$	$34 \cdot 44$	574	8.54	93.9	104.9	116.0	$127 \cdot 0$
6	$37 \cdot 56$	626	$9 \cdot 32$	$103 \cdot 3$	$115 \cdot 5$	$127 \cdot 7$	$139 \cdot 8$
64	$40 \cdot 32$	672	$10 \cdot 00$	111.6	124.7	137.8	$150 \cdot 9$
61	$43 \cdot 68$	728	$10 \cdot 84$	$120 \cdot 1$	134.3	148.4	$162 \cdot 6$

[^12]
STRESS DIAGRAMS FOR BRACED STRUCTURES.

The assumptions which are usually made in determining the stresses in the members of a braced structure are: (1) that the members are connected together at their ends by pin joints; (2) that the various loads are placed at the joints. If a bar carries a load uniformly distributed over its length, this load is divided into two equal parts, and one part is placed at each end of the bar. If a bar carries a load concentrated at a point between its ends, this load is divided into two parts, which are to one another as the distances of the load from the ends of the bar; these parts are then placed one at each end of the bar, the greater part being at that end of the bar which is nearest to the original load.

The General Method of Drawing Stress Diagrams for Braced Structures is illustrated by the diagrams below, which show the method applied to a simple triangular frame loaded at the

corners. mno Fig. (1) is the frame, and $A B, B C$, and $C A$ are the loads acting at its corners. Fig. (2) is the polygon of forces for the loads, and may be called the load diagram or load polygon. If the external forces acting on the frame are parallel, the load polygon becomes a straight line.

Figs. (3), (4), and (5) are the polygons of forces acting at the points m, n, and o respectively. Fig. (6) shows the polygons of Figs. (2), (3), (4), and (5) combined in one diagram, which is called the stress diagram or force diagram for the loaded frame shown in Fig. (1). The complete stress diagram Fig. (6) may be drawn without first drawing the separate diagrams, but Figs. (2), (3), (4), and (5) are drawn here to make the construction of Fig. (6) quite clear.

To determine whether a particular bar in a structure is in tension or compression.-Examine the polygon of forces for one end of the bar. If this polygon shows that the force in the bar acts towards the end which is being considered, then the bar is in compression; and if the force acts in the opposite direction, the bar is in tension.
It is usual to show bars which are in compression by thick lines on the frame diagram, while those which are in tension are indicated by thin lines.

Examples of Stress Diagrams for Roof Trusses.

Examples of Stress Diagrams for Roof Trusses.

The above stress diagram may be drawn as follows:-First draw $a h$, the line of loads. $a b=A B, b c=B C$, etc. The loads being symmetrical about the centre line of the truss, the reactions $H J$ and $J A$, at the points of support, must be equal, therefore j is at the middle point of $a h$. Now draw the polygon of forces abkja for the point $A B K J A$. Next add the lines to complete the polygon bclkb, which is the polygon of forces for the point $B C L K B$. Proceeding next to the point $C D M L C$, the polygon odmlc is completed. The next point to be considered is the point $L M N J K L$, and the polygon lmnjkl is completed. This completes the stress diagram for one half of the truss, and the diagram for the other half may be drawn in the same way.

When a truss is loaded symmetrically, it is only necessary to determine the stresses in the bars of one half of the truss, because the stresses in the corresponding bars of the other half will be the same.

Examples of Stress Diagrams for Roof Trusses.

Examples of Stress Diagrams for Roof Trusses.

In the two examples above the trusses are supposed to be symmetrical and symmetrically loaded, and only a little more than one half of the truss is considered in each case.

Approximate Weight of Roof Trusses.

The following formula for the approximate weight of wroughtiron roof trusses is given by Merriman in his "Roofs and Bridges":-

$$
w=\frac{3}{\frac{3}{1}} a l\left(1+\frac{1}{10} l\right) .
$$

[^13]
Approximate Weight of Roof Coverings.

In lbs. per square foot of roof surface.

Allowance for Weight of Snow on Roofs.

In England it is usual to allow 6 lbs. per square foot of area covered for the weight of snow.

In the United States the allowance varies from 10 lbs . to 30 lbs . per square foot of area covered.

Inclinations of Roofs.
Pitch of roof $=$ rise \div span.

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{6}$

Inclination of roof to horizontal in degrees.

$$
\begin{array}{llllllll}
18 \cdot 4 & 21 \cdot 8 & 26 \cdot 6 & 33.7 & 45 & 53 \cdot 1 & 56.3 & 58
\end{array}
$$

The minimum slope of a roof depends on the nature of the covering, and is about 4° for sheet lead, sheet zinc, or corrugated iron. For slates or tiles the minimum slope is from 22° to 27°.

Pressure of Wind.

The pressure of the wind on a convex cylindrical surface, the direction of the wind being at right angles to the axis of the cylinder, is about half the pressure on a plane rectangular surface whose length and width equal the length and diameter respectively of the cylinder.
$V=$ velocity of wind in miles per hour.
$P=$ pressure of wind, in lbs. per square foot, on a plane surface at right angles to the direction of the wind.

$$
P=\frac{V^{2}}{200^{\circ}}
$$

The above formula also gives the resistance to the motion of a plane surface through the air, the surface being at right angles to the direction of motion.

Velocity of Wind.			Pressure in Lbs. per Square Foot.	Description of Wind.
Miles per Hour.	Feet per Minute.	Feet per Second.		
5	440	$7 \cdot 33$	$\cdot 125$	Gentle breeze.
10	880	$14 \cdot 67$	$\cdot 5$	\} Moderate breeze.
15	1320	22	$1 \cdot 125$	$\}$ Moderate breeze.
20	1760	$29 \cdot 33$	2	Strong breeze.
30	2640	44	$4 \cdot 5$	High wind.
40	3520	$58 \cdot 67$	8	Heavy gale.
50	4400	$73 \cdot 33$	12.5	Storm.
60	5280	88	18	
70	6160	$102 \cdot 67$	24.5	$\}$ Violent storm.
80	7040	117:33	32	
90	7920	132	40.5	Hurricane.
100	8800	$146 \cdot 67$	50	

Normal Pressure of Wind on an Oblique Plane Surface.

$P=$ pressure of wind on a plane at right angles to the direction of the wind, in lbs. per square foot.
$p=$ normal pressure of wind on a plane surface inclined to the direction of the wind at an angle θ degrees, in lbs. per square foot.

$$
\begin{aligned}
\frac{p}{P} & =(\sin \theta)^{184000-1} \quad \text { (Hutton's formula.) } \\
\log _{\bar{P}}^{p} & =(1 \cdot 84 \cos \theta-1) \log \sin \theta .
\end{aligned}
$$

Angle θ in Degrees.	$\stackrel{p}{\boldsymbol{P}}$	Values of p when $P=$			
		30	40	50	56
5	$\cdot 131$	$3 \cdot 93$	$5 \cdot 24$	$6 \cdot 55$	$7 \cdot \overline{34}$
10	$\cdot 241$	$7 \cdot 23$	$9 \cdot 64$	12.05	13.50
15	$\cdot 350$	10.50	14.00	$17 \cdot 50$	$19 \cdot 60$
20	$\cdot 457$	13.71	18.28	22.85	$25 \cdot 59$
25	$\cdot 563$	16.89	$22 \cdot 52$	$28 \cdot 15$	31.53
30	$\cdot 663$	$19 \cdot 89$	26.52	$33 \cdot 15$	$37 \cdot 13$
35	$\cdot 754$	22.62	$30 \cdot 16$	37.70	$42 \cdot 22$
40	-834	25.02	$33 \cdot 36$	41.70	46.70
45	. 901	27.03	36.04	45.05	$50 \cdot 46$
50	-952	$28 \cdot 56$	38.08	47.60	53.31
60	1.012	$30 \cdot 36$	$40 \cdot 48$	$50 \cdot 60$	56.67
70	1.023	30.69	40.92	$51 \cdot 15$	57.29
80	1.010	$30 \cdot 30$	$40 \cdot 40$	$50 \cdot 50$	56.56

When $\theta=90^{\circ} . \quad p=P$.

The following formulæ are sometimes preferred to Hutton's :-

$$
\begin{aligned}
& \underset{\bar{P}}{p}=\frac{2 \sin \theta}{1+\sin ^{2} \theta} \cdot \quad \text { (Duchemin's formula.) } \\
& \frac{p}{P}=\frac{(4+\pi) \sin \theta}{4+\pi \sin \theta} . \quad \text { (Rayleigh and Gerlach's formula.) }
\end{aligned}
$$

Stresses Due to Wind Pressure on a Roof Truss.

The direction of the wind may be assumed to be horizontal, and its pressure on a plane at right angles to its direction may be taken at 50 lbs. per square foot. The inclination of the roof being known, the normal pressure of the wind on it may be determined by one of the formulæ in the preceding article. The wind is assumed to act on one side of the roof only at one time. The total load due to the wind pressure is divided up into parts, which are placed at the joints, as explained on p.273, for a distributed load.

The upper figures on page 281 show the stress diagrams for a roof truss (1) when the wind acts on the right-hand side, and (2) when the wind acts on the left-hand side. In this example the truss is supposed to be fixed at the right-hand end, and supported on friction rollers, or attached to the top of a long column at the left-hand end. The reaction at the left-hand end must therefore be vertical, and the line of the reaction at the other end must pass through the point where the resultant of the wind pressure cuts the line of the reaction at the left-hand end.

The directions of the reactions having been fixed, the load polygon abcde can be drawn, and upon this the stress diagram is built, as in previous examples. It will be noticed that the wind pressure causes no stress in the bar $H K$.

In the example shown by the lower figures on p. 281 the truss is supposed to be fixed at both ends, and the reactions are assumed to be parallel to the normal wind pressure. The magnitudes of the reactions are determined by the rules for parallel forces, or by the principle of moments. In this case it is only necessary to draw the stress diagram for the wind on one side, because the diagram for the wind on the other side will be similar to the first, but reversed.

Maximum Stresses.-The maximum stress in any member of a truss is obtained by adding the greatest stress due to the wind pressure to the stress due to the dead load. (The dead load includes the weight of the truss, the weight of the roof covering, and an allowance for the weight of snow.) For convenience the stresses are tabulated, as in
 the following example (+ denotes compression, and - denotes tension) :-

Member	Dead Load W.	Wind on Right P.	Wind on Left. Q	Maximum Stress.	
$\mathbf{1}$	+6760	+3230	+4570	$+W+Q$	+11330
2	+4370	+3230	+2600	$+W+P$	+7600
3	-1880	-1420	-1420	$-W-P$	-3300
4	+2190	none	+3300	$+W+Q$	+5490
5	-5940	-2200	-5190	$-W-Q$	-11130

Examples of Stress Diagrams for Bridge Trusses.

The adjacent figure shows the stress diagram for a Warren girder or half-lattuce girder carrying a single load $A B$ concentrated at one of the joints in the top boom.

The reactions $B C$ and $C A$ (equal to $b c$ and $c a$ respectively) are first determined either by taking moments, or by the graphic method explained on p. 286. The stress diagram is then built up on bc and ca, starting with the forces acting at one of the points of support.

The left-hand figure below shows the stress diagram for a Warren girder when loaded equally at the intermediate joints of the bottom boom, and the right-hand figure shows the stress diagram for the same kind of ginder when loaded equally at the joints of the top boom.

Lattice Girders.-If two elementary braced girders (Figs. 1 and 2, p. 284) be placed side by side and joined together, a lattice girder (Fig. 3) is obtained. The stresses in the bars of the elementary girders are determined by means of the stress diagrams shown. When the elementary girders are put together to form the compound girder, if any bar of the one coincides with a bar of the other, the stress in the compound bar so formed is equal to the algebraical sum of the stresses in the bars of the elementary girders of which it is made up, and the stresses in those bars of the elementary girders which remain distinct in the compound girder will be unaltered. A lattice girder which is made up of more than two elementary girders is treated in a similar manner.

Note.-Bars shoun by dotted lines are not subjected to stress with the assumed manner of loadmg.

Approximate Weight of Bridges.

The following formula is given in Unwin's "Iron Bridges and Roofs":-

$$
w=\frac{W l r}{C s}-l r .
$$

$W=$ total external distributed weight in tons (exclusive of girder).
$w=$ weight of girder itself in tons.
$l=$ clear span in feet.
$s=$ average stress in tons per square inch of the gross section of the booms, at the centre, usually 4.
$r=$ ratio of span to depth.
$C=a$ coefficient depending on the description of girder.

Values of C in Different Bridges.

Conway, tubular . . $1700 \mid$ Cannon Street, box girder 1540
Britannia ", . . 1461 ". plate girder 1598

Torksey ", . . 1197 Charing Cross, lattice . 1880
Crumlin, Warren . . 1820 Lough Ken, bowstring . 1490
For small plate girders, 30 feet to 60 feet $\operatorname{span} C=1500$.
For Highway Bridges, Merriman, in his " Roofs and Bridges," gives the following formula:-

$$
w=140+12 b+0 \cdot 2 b-0 \cdot 4 l
$$

$w=$ weight of bridge in lbs. per linear foot.
$l=$ span in feet.
$b=$ width in feet.
For Ruilway Bridges of less than 100 feet span, Merrimangives the formulæ:-

$$
\begin{aligned}
& w=560+5 \cdot 6 l, \text { for single track. } \\
& w=1070+10 \cdot 7 l, \text { for double track. }
\end{aligned}
$$

$w=$ total dead load of bridge in lbs. per linear foot.
$l=\operatorname{span}$ in feet.
Method of Sections.-Suppose that a braced structure is cut transversely into two parts by a plane $X Y$, the plane cutting three bars a, b, and c. Next suppose that one part is removed, and that external forces P, Q, and S are applied to the bars a, b, and c respectively, so as to keep the remaining part of the structure in equilibrium.

Taking moments about the point of intersection of the bars a and b,

$$
S y_{1} \quad R x_{1}-W_{1} x_{1}-W_{2} x_{2}
$$

since the external forces are in equilibrium, hence the stress in the bar c is determined.

Then, in like manner, by taking moments about another point in the bar b, the force P is determined. Lastly, taking in like manner moments about a third point, the force Q is determined.

Shearing Force and Bending Moment Diagrams.

The illustration shows a borizontal beam carrying three vertical loads $A B, B C$, and $C D$, the
 reactions at the supports being $D E$ and $E A$.

Shearing Force Diagram.-Draw $a d$, the line of loads. Through the points a, b, c, d, and e draw horizontals across the spaces lettered A, B, C, D, and E respectively. The shearing force at any section S is equal to $p q$, measured with the force scale.

Bending Moment Diagram. Select a point o. Join oa, ob, oc, and od. Across the space A draw 12 parallel to oa, across the space B draw 23 parallel to $o b$, across the space C draw 34 parallel to oc, and across the space D draw 45 parallel to od. The closing line 15 across the space E will be parallel to oe. (Note.-This construction may be used for finding the point e, and therefore the magnitudes of the reactions $D E$ and EA.) The bending moment at any section S is equal to $m n$ (measured with the force scale) multiplied by the perpendicular oH on the line of loads (measured with the linear scale). Hence $m n$, measured with a suitable scale, measures the bending moment at S.

PROPERTIES OF ROLLED STEEL SECTIONS.

The tables on pp. 288-321 are reproduced with the kind permission of Messrs. Dorman, Long \& Co., Ltd., Middlesbrough, from their Handbook for Constructional Engineers, and with the consent of the British Standards Institution.

Dimensions and Properties

Complete tables are given of dimensions and properties of the various sections illustrated, dimensions being in inches and properties in inch units.

The areas and properties have been carefully calculated on correct profiles and full sections without holing. In the case of beams, however, the net moment of inertia is also given. All fillets, rounded corners, taper of flanges, etc., have been taken into consideration. In the tables of properties of channels the sections marked with an asterisk are obtained by lifting the rolls. In the tables of unequal and equal angles the sections printed in Roman figures are the standards with true profiles, and the sections printed in italics are obtained by adjusting the rolls.

Least Radii of Gyration.

The least radii of gyration have been determined for all sections, and will be found in the tables, the values being given in inches.
In sections such as beams, channels, tees, and equal angles, which have an axis of symmetry, this radius is either about that axis or one at right angles to it. In the case of unequal angles, having no axis of symmetry, the position of the axis, about which the radius is least, has been calculated and is given in the tables; this axis is shown in the diagrams as "Minor Axis" and is the "Major Axis" of the "Ellipse of Inertia," or axis $V-V$ in the case of unequal angles.

DORMAN,									
BEAMS Dimensions and Propertie									
Roference	$\begin{gathered} \text { Size } \\ A \times \times B \\ \text { ins. } \end{gathered}$	$\|$Weight part foot lbs.	${ }_{\text {Sta }}$	dard nesses Flange t_{2}	$\begin{gathered} \text { Root } \\ \mathbf{r}_{1} \end{gathered}$	$\frac{111}{\substack{\text { Toe } \\ r_{2}}}$		$\begin{gathered} \text { Con- } \\ \text { trea } \\ \text { of } \\ \text { holes } \\ \text { C } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Dia. of } \\ \text { rivet } \\ \text { or } \\ \text { bolt } \end{gathered}\right.$
BSB 140	$24 \times 7 \frac{1}{2}$	95	. 57	1.011	. 73	. 36	20.22	41	7
" 139	22×7	75	. 50	. 834	. 69	. 34	18.68	4	1
11 138	$20 \times 7 \frac{1}{2}$	89	. 60	1.010	. 73	. 36	16.22	$4 \frac{1}{2}$	"
" 137	$20 \times 6 \frac{1}{2}$	65	. 45	. 820	. 65	. 32	16.81	33	11
" 136	18×8	80	. 50	. 950	. 77	. 38	14.23	44	"
" 135	18×7	75	. 55	. 928	.69	. 34	14.50	4	1
" 134	18×6	55	- 42	. 757	.61	. 30	15.03	34	4
11133	16×8	75	. 48	. 938	$\cdot 77$. 38	12.26	43	7
" 132	16×6	62	. 55	. 847	.61	. 30	12.86	$3 \frac{1}{2}$	4
1131	16×6	50	- 40	. 726	.61	. 30	13.09	$3 \frac{1}{2}$	"
11 130	15×6	45	. 38	. 655	. 61	. 30	12.23	31	"
11 129	15×5	42	$\cdot 42$. 647	. 53	. 26	12.46	23	"
11128	14×8	70	. 46	. 920	. 77	. 38	10.29	43	7
1127	14×6	57	. 50	. 873	. 61	. 30	10.80	31	$\frac{3}{4}$
" 126	14×6	46	. 40	. 698	.61	. 30	11.14	31	"
" 125	13×5	35	. 35	. 604	. 53	. 26	10.54	24	"
1124	12×8	65	. 43	. 904	. 77	. 38	8.32	41	7
1123	12×6	54	. 50	. 883	. 61	. 30	8.78	31	4
1122	12×6	; 44	. 40	. 717	. 61	. 30	9.12	31	"
1121	12×5	32	. 35	. 550	. 53	. 26	9.65	24	11

DORMAN, LONG \& CO., L! :TED								
BEAMS Dimensions and Properties Note.-One hole is deducted from each flange In calculating the Nett Moment of Inertia about X-X.								
	$\begin{gathered} \text { Area } \\ \text { sq. } \\ \text { Ins. } \end{gathered}$	Moments of Inertia			Radili ef Gyration		Scetion Modull	
		Aboue X -X		${ }_{Y-Y}{ }^{\text {About }}$	$\begin{aligned} & \text { About } \\ & \text { X-X } \end{aligned}$	About		A_{Y-Y}
		Max.	Nest					
$24 \times 7 \frac{1}{2}$	27.94	2533.04	2290	62.54	9.52	150	211.09	1668
$22 \times$	22.06	1676.80	1505.	41.07	8.72	1.36	152.14	11.73
$20 \times 7 \frac{1}{2}$	26.19	1672.85	1507.	62.54	7.99	1.55	167.29	16.68
$20 \times 6 \frac{1}{2}$	19.12	1226.17	1088.	32.56	8.01	1.31	122.62	10.02
18×8	23.53	1292.07	1167.	69.43	7.41	1.72	143.56	17.36
18×7	22.09	1151.18	1026.	46.56	7.22	1.45	127.91	13.30
18×6	16.18	841.76	752.	23.64	7.21	1.21	93.53	7.88
16×8	22.06	973.91	878	68.30	6.64	1.76	121.74	17.08
16×6	18.21	725.05	647.	27.14	6.31	1.22	9063	9.05
16×6	14.71	618.09	551.	22.47	6.48	1.24	77.26	7.49
15×6	13.24	491.91	439.	19.87	$6 \cdot 10$	1.23	65.59	6.62
15×5	12.36	428.49	375.	11.81	5.89	. 98	57.13	4.72
14×8	20.59	705.58	634.	66.67	5.85	1.80	$100 \cdot 80$	16.67
14×6	16.78	533.34	473.	27.94	5.64	1.29	76.19	9.31
14×6	13.59	442.57	394.	21.45	5.71	1.26	63.22	7.15
13×5	10.30	283.51	246.	10.82	$5 \cdot 25$	1.03	43.62	4.33
12×8	19.12	487.77	437.	65.18	5.05	1.85	$81 \cdot 30$	16.30
12×6	15.89	375.77	332.	28.28	4.86	1.33	62.63	943
12×6	13.00	316.76	281.	22:12	4.94	1.30	52.79	7.37
12×5	9.45	221.07	192.	9.69	4.84	1.01	36.84	3.88

DORMAN, LONG \& CO., LIMITED									
		BEAMS Dimensions and Properties							
			Stan				Dopth	$\begin{gathered} \text { conn- } \\ \text { tres } \end{gathered}$	$\left\lvert\, \begin{gathered}\text { Dina of } \\ \text { rivat }\end{gathered}\right.$
Reference		$\left\lvert\, \begin{aligned} & \text { per } \\ & \text { port } \\ & \text { bos } \end{aligned}\right.$	$\underset{\mathbf{t}_{1}}{\mathbf{w}_{\text {eb }}}$	$\left\|\begin{array}{c} \text { Fliange }_{\mathrm{t}_{2}} \end{array}\right\|$	${ }_{\substack{\text { Root } \\ r_{1}}}$	$\begin{gathered} \substack{\text { Toe } \\ \mathbf{r}_{\mathbf{2}}} \end{gathered}$	$\begin{gathered} \text { eweon } \\ \text { Fillets } \\ \text { D } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { oid } \\ \text { hoiles } \\ c \end{gathered}\right.$	bort
BSB 120	10×8	55	40	783	77	$\cdot 38$	6.56	4	1
" 119	10×6	40	. 36	. 709	. 61	. 30	7.13	$3 \frac{1}{2}$	4
" 118	10×5	30	. 36	. 552	. 53	. 26	7.64	27	4
" 117	$10 \times 4 \frac{1}{2}$	25	30	505	49	. 24	7.84	$2 \pm$	4
" 116	9×7	: 50	. 40	825	69	. 34	3.69	4	7
" 115	9×4	21	. 30	. 457	45	. 22	7.04	24	1
11114	8×6	35	35	648	. 61	. 30	5.25	$3 \frac{1}{2}$	4
" 113	8×5	28	. 35	. 575	. 53	26	5.60	27	4
" 112	8×4	18	. 28	. 398	. 45	. 22	6.16	24	1
" 111	7×4	16	. 25	. 387	. 45	. 22	5.18	$2 \frac{1}{4}$	1
" 110	6×5	25	. 41	. 520	. 53	26	3.72	27	4
" 109	$6 \times 4 \frac{1}{1}$	20	. 37	. 431	. 49	. 24	4.00	$2 \frac{1}{2}$	4
" 108	6×3	12	23	. 377	. 37	. 18	4.41	1	\pm
" 107	$5 \times 4 \frac{1}{2}$	20	29	. 513	- 49	24	2.83	24	4
" 106	5×3	11	22	. 376	. 37	$\cdot 18$	$3 \cdot 40$	13	\pm
4 105	$4 \frac{1}{4} \times 12$	6.5	. 18	. 325	. 27	$\cdot 13$	3.52	t	\pm
" 104	4×3,	10	24	. 347	$\cdot 37$	$\cdot 18$	2.47	14	\pm
. 103	4×14	5	$\cdot 17$. 239	. 27	$\cdot 13$	2.94	t	\pm
- 102	3×3	8.5	. 20	. 332	. 37	$\cdot 18$	1.50	1	t
\cdots	3×14	4	. 16	.249	. 25	. 12	1.97		\pm

DORMAN, LONG \& CO.. LIMITED									
SPECIAL BEAMS Dimenslons and Properties									
Reforence	$\begin{gathered} \text { Size } \\ \mathbf{A}_{\text {ins. }} \mathbf{B} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Waight } \\ \text { poer } \\ \text { foot } \\ \text { lbs. } \end{gathered}\right.$	Standard Thicknesses		RadII		$\begin{gathered} \text { Depth } \\ \text { be } \\ \text { tween } \\ \text { Fillets } \\ \mathbf{D} \end{gathered}$	$\begin{gathered} \text { Cont } \\ \text { cros } \\ \text { of } \\ \text { holes } \end{gathered}$	Dia. of rivat orbolt
			$\begin{gathered} \text { Web } \\ t_{1} \end{gathered}$	$\left\|\begin{array}{c} \text { Flange } \\ \mathbf{t}_{2} \end{array}\right\|$	Root r_{1}	$\begin{gathered} \mathbf{T}_{00} \\ r_{2} \end{gathered}$			
BSB 30	$24 \times 7 \frac{1}{2}$	100	. 60	1.07	70	. 35	20.16	$4 \frac{1}{2}$	1
BSB 26	15×6	59.	. 50	. 888	. 60	. 30	11.82	$3 \frac{1}{2}$	3
DLB 25a	$15 \times 5 *$	39.5	. 40	. 59	. 52	$\cdot 26$	-	23	3
NBSB 12	$14 \times 5 \frac{1}{2}$	40.	. 37	. 627	. 57	. 28	11.39	3\$	2
DLB 20a	12×5	39.	. 44	664	. 54	. 27	9.41	23	4
NBSB 10	12×5	30.	. 33	. 507	. 53	. 26	9.74	23	4
BSB 19	10×8	70.	. 60	. 970	. 70	.35	6.32	43	t
BSB 18	10×6	42.	. 40	. 736	50	. 25	7.27	31	4
BSB 16	9×7	58.	. 55	. 924	. 65	. 325	5.58	4	7
NBSB 6	$7 \times 3 \frac{1}{2}$	15.	. 25	. 398	. 41	. 20	$5 \cdot 26$	2	$\frac{1}{2}$
BSB 7	$5 \times 4 \frac{1}{2}$	18.	. 29	. 448	. 39	. 195	$3 \cdot 12$	212	4
NBSB 4	$5 \times 2 \frac{1}{2}$	9.	. 20	. 347	. 33	- 16	3.57	18	4
BSB 4	4×3	9.5	. 22	. 336	. 32	. 16	$2 \cdot 58$	11	$\frac{1}{2}$

DJRMAN, LONG \& CO.. LIMITED								
SPECIAL BEAMS Dimensions and Properties Nore.-One hole is deducted from each flange in calculating the Nett Moments of Inertia.								
$\begin{gathered} \text { Size } \\ \mathbf{A}_{\mathbf{A}} \mathbf{i n}_{\mathbf{i n s}} \end{gathered}$	$\begin{gathered} \text { Area } \\ \text { sq. } \\ \text { ins. } \end{gathered}$	Moments of Inertia			Radil of Gyration		Section Modul:	
		About X-X		${ }^{\text {Y bout }}$	$\begin{aligned} & \text { About } \\ & \mathbf{X}-\mathbf{X} \end{aligned}$	$\underset{Y-Y}{ }$	$\begin{aligned} & \text { About } \\ & \mathbf{X} \cdot \mathbf{x} \end{aligned}$	
		Max.	Nett					
$24 \times 7 \frac{1}{2}$	29.4	2654	2397.	66.92	9.50	1.50	221.1	1734
15×6	17.35	628.9	559.	28.22	6.02	1.27	83.85	9.406
5	11.62	399.03	-	10.60	5.86	. 955	53.2	$4 \cdot 242$
$14 \times 5 \frac{1}{2}$	11.77	$377 \cdot 1$	333.	14.79	$5 \cdot 66$	1.12	5387	$5 \cdot 377$
12×5	11.47	260.9	226.	12.16	4.77	1.03	$43 \cdot 48$	4.86
12×5	8.827	206.9	180.	$8 \cdot 77$	4.84	. 997	34.49	3.508
10×8	20.6	3449	309.	71.67	4.09	1.86	68.98	17.91
10×0	12.25	211.5	186	22.95	$4 \cdot 13$	$1 \cdot 36$	$42 \cdot 3$	7.65
9×7	17.06	229.5	-	$46 \cdot 3$	3.66	1.64	51.0	13.22
$7 \times 3 \frac{1}{2}$	4.416	$35 \cdot 90$	-	2.408	2.85	. 738	10.26	1.376
$5 \times 4 \frac{1}{2}$	5.29	22.69	-	5.664	2.07	1.03	9.076	2.517
$5 \times 2 \frac{1}{2}$	2.647	10.91	-	.789	$2 \cdot 03$. 546	4.364	.631
4×3	2.794	7.52	-	1.281	1.64	. 677	*	

DORMAN, LONG \& CO., LIMITED										
CHANNELS Dimensions and Properties										
Roference	$\begin{gathered} \text { Slize } \\ \text { A }{ }^{\text {Anches }} \end{gathered}$	Weight per poot lbs.	Stan Thick Web t_{1}	dard Flange \mathbf{t}_{2}	$\begin{gathered} \text { Argle } \\ \text { of } \\ \text { Flange } \\ X \end{gathered}$	Root r_{1}	$\frac{\text { dil }}{\substack{\text { Too } \\ r_{2}}}$	$\begin{gathered} \text { Depth } \\ \text { be. } \\ \text { tween } \\ \text { fillet } \\ \text { D } \end{gathered}$	Back Mark for C	$\begin{gathered} \text { Dia. } \\ \text { of } \\ \text { Rivet } \\ \text { or } \\ \text { Bolt } \end{gathered}$
BSC 120a	17×4	51.28	.60*	. 68	95°	. 60	. 30	14.24	2!	7
" 120	17×4	44.34	. 48	. 68	1	. 60	. 30	14.23	"	"
" 119a	15×4	42.49	.53*	. 62	"	. 60	. 30	12.36	"	"
" 119	15×4	36.37	. 41	. 62	1	. 60	. 30	12.35	"	1
11 118a	13×4	38.92	-53*	. 62	1	. 60	$\cdot 30$	10.36	"	1
" 118	13×4	3318	. 40	. 62	"	. 60	. 30	10.35	"	"
11 117a	12×4	36.63	-53*	. 60	1	. 60	$\cdot 30$	9.40	"	"
1. 117	12×4	31.33	. 40	. 60	"	. 60	$\cdot 30$	9.39	"	"
" 116a	$12 \times 3 \frac{1}{2}$	$30 \cdot 45$	-48*	. 50	"	. 54	. 27	9.75	2	"
" 116	$12 \times 3 \frac{1}{2}$	26.37	. 38	. 50	"	. 54	$\cdot 27$	9.74	"	"
11155	$11 \times 3 \frac{1}{2}$	30.52	-48*	. 58	"	. 54	- 27	8.59	"	"
11115	$11 \times 3 \frac{1}{2}$	26.78	. 38	. 58	"	. 54	. 27	8.58	"	1
" 114a	$10 \times 3 \frac{1}{2}$	28.54	-48*	. 56	"	. 54	. 27	7.63	"	"
11114	$10 \times 3 \frac{1}{2}$	24.46	. 36	. 56	"	. 54	- 27	7.62	"	"
" 113a	10×3	21.33	-38*	. 45	"	. 48	$\cdot 24$	7.99	12	4
" 113	10×3	19.28	. 32	. 45	"	. 48	- 24	7.99	"	"
" 112b	$9 \times 3 \frac{1}{2}$	25.63	-45*	. 54	"	. 54	- 27	6.66	2	1
" 112a	$9 \times 3 \frac{1}{2}$	23.49	. $38 *$. 54	"	. 54	- 27	6.66	"	"
11112	$9 \times 3 \frac{1}{2}$	22.27	. 34	. 54	"	. 54	$\cdot 27$	6.65	"	'
" 111a	9×3	19.91	-38*	. 44	"	. 48	. 24	7.01	14	4
" 111	9×3	17.46	. 30	. 44	"	. 48	. 24	7.00	"	11
* Web thickness obtained by raising the rolls.										

DORMAN, LONG \& CO., LIMITED										
CHANNELS Dimensions and Properties										
Reference	$\begin{array}{\|c} \text { Size } \\ \text { Anche } \\ \text { inches } \end{array}$		$\begin{gathered} \text { Standzrd } \\ \text { Thicknesses } \end{gathered}$		$\left(\begin{array}{c} \text { Angle } \\ \text { Filinne } \\ \times \text { Se } \end{array}\right.$	Radil		$\|$Depth twen twilen filet D	$\left\lvert\, \begin{gathered} \text { Back } \\ \text { Mark } \\ \text { for } \\ \text { Holes } \\ \text { C } \end{gathered}\right.$	
			$\begin{gathered} w_{e b} \\ t_{1} \end{gathered}$	$\left\|\begin{array}{c} \text { Flange } \\ \mathbf{t}_{2} \end{array}\right\|$		$\overline{\substack{\text { Root } \\ r_{1}}}$	$\left\lvert\, \begin{gathered} \mathbf{r o p e q}^{\prime} \\ \mathbf{r}_{8} \end{gathered}\right.$			
BSC 110a	$8 \times 3 \frac{1}{2}$	23.20	-43*	52	95	. 54	. 27	5.70	2	7
" 110	$8 \times 3 \frac{1}{4}$	20.21	- 32	. 52	"	. 54	. 27	5.69	2	t
" 109a	8×3	18.68	-38*	. 44	$"$. 48	24.	6.01	13	3
" 109	8×3	15.96	. 28	. 44	\cdots	43	. 24	6.00	13	$\frac{7}{7}$
" 108a	$7 \times 3 \frac{1}{1}$	2018	.38*	. 50	$"$. 54	. 27	4.74	2	7
" 108	$7 \times 3 \frac{1}{2}$	18.28	-30	. 50	"	. 54	. 27	4.73	2	7
" 107a	7×3	17.07	.38**	. 42	"	. 48	. 24	5.05	\square	4
" 107	7×3	14.22	. 26	. 42	"	. 48	. 24	5.04	13	4
" 106a	$6 \times 3 \frac{1}{2}$	1852	- $38{ }^{*}$. 48	"	. 54	. 27	3.78	2	7
" 106	$6 \times 3 \frac{1}{2}$	16.48	-28	. 48	"	. 54	. 27	3.77	2	7
" 105a	6×3	17.53	.43*	. 48	"	. 48	. 24	3.94	13	\pm
(1) 105	6×3	16.51	. 38	. 48	"	. 48	. 24	3.93	13	1
" 1042	6×3	13.64	-31*	. 38	"	. 48	. 24	4.13	13	3
" 104	6×3	12.41	. 25	. 38	"	. 48	. 24	4.12	13	4
" 103a	$5 \times 2 \frac{1}{2}$	11.24	-31*	. 38	"	. 42	. 21	3.28	18	4
" 103	$5 \times 2 \frac{1}{2}$	10.22	. 25	. 38	"	. 42	. 21	3.27	17	4
" 102a	4×2	7.91	-30*	31	"	. 36	-18	2.57	18	5
" 102	4×2	7.09	. 24	. 31	"	. 36	$\cdot 18$	2.57	14	t
" 101a	$3 \times 1 \frac{1}{2}$	5.11	-25*	. 28	"	. 30	$\cdot 15$	1.78	7	$\frac{1}{2}$
-111	$3 \times 1+$	4.60	. 20	. 28	\cdots	. 30	. 15	1.78	3	t

DORMAN, LONG \& CO., LIMITED										
SPECIAL CHA Dimensions and \mathbf{P}										
Reference Mark	$\begin{aligned} & \text { Size } \\ & A \times B \\ & \text { inches } \end{aligned}$		$\begin{gathered} \text { Stan } \\ \text { Thich } \\ \hline \begin{array}{c} \text { Web } \\ \mathrm{t}_{1} \end{array} \end{gathered}$	$\begin{aligned} & \text { didard } \\ & \text { chesses } \\ & \left\lvert\, \begin{array}{cl} \text { clange } \\ t_{2} \end{array}\right. \end{aligned}$	$\begin{gathered} \text { Angle } \\ \text { of } \\ \text { Flange } \\ \mathbf{X} \end{gathered}$	$\frac{R_{\text {ad }}}{\substack{\text { Rnot } \\ r .}}$		Depth teiween fillet D	$\begin{gathered} \text { Back } \\ \text { Mark } \\ \text { for } \\ \text { Holes } \\ \text { Co } \end{gathered}$	
BSC 27	15×4	41.94	. 53	. 63	92°	.63	. 44	12.40	21	7
NBSC 14	$12 \times 3 \frac{1}{2}$	25.25	. 35	. 50	95	. 54	. 27	9.74	2	7
BSC 22	$11 \times 3 \frac{1}{2}$	2982	. 8	. 58	92	. 58	. 40	8.61	2	7
BSC 21	10×4	30.16	. 48	. 58	11	. 58	. 40	7.60	$2 \frac{1}{4}$	7
DLC 21a	10×4	1886	.31	.31	"	. 60	20	8.09	2 \downarrow	7
BSC 12	8×3	19.30	. 38	. 50	1	. 50	. 35	5.94	13	3
DLC 9a	$7 \times 2 \mathrm{t}$	9.75	-23	. 33	"	.33	. 23	5.64	11	4
BSC 6	6×3	14.49	$\cdot 31$. 44	"	. 44	. 30	4.18	13	4
DLC 5a	51 $\times 2 \frac{1}{6}$	1508	. 44	. 50	1	. 50	. 35	3.07	$1 \frac{1}{2}$	4
BSC 4	$5 \times 2 \frac{1}{2}$	10.98	. 31	. 38	"	. 38	. 26	3.43	13	4
Special	$4 \frac{1}{2} \times 1 \frac{1}{2}$	13.48	. 63	.63	95	. 44	$\cdot 13$	2.36	7	$\frac{1}{2}$
DLC 3a	4×3	14.20	. 38	. 50	92	. 50	. 35	1.94	13	$\frac{3}{4}$
DLC 3b	4×3	11.89	. 38	. 38	"	. 38	. 26	2.41	13	4
Special	$4 \times 2 \frac{1}{2}$	10.66	. 38	. 38	95	. 38	- 22	2.36	18	$\frac{3}{4}$
BSC 3	4×2	7.96	- 25	.38	92	. 38	. 26	2.45	18	1
BSC 2	$3 \frac{1}{2} \times 2$	6.75	- 25	.31	"	. 31	. 22	$2 \cdot 22$	$1 \frac{1}{8}$	1
BSC I	$3 \times 1 \frac{1}{2}$	$5 \cdot 27$. 25	.31	${ }^{\prime \prime}$.31	. 22	1.74	$\frac{7}{8}$	$\frac{1}{2}$
DLC 2a	$2 \frac{1}{2} \times 1$	4.14	. 31	.31	"	. 25	. 20	1.37	H	$\frac{1}{4}$

DORMAN, LONG \& CO., LIMITED								
SPECIAL CHANNELS Dimensions and Properties								
$\begin{gathered} \text { Sire } \\ \text { A } \times \text { B } \\ \text { inches } \end{gathered}$	Area square inches	$\left\|\begin{array}{c} \text { Dimen- } \\ \text { sion- } \\ p \end{array}\right\|$	Moments of Inertia		Radif of Gyration		Section Moduli	
			$\begin{aligned} & \text { About } \\ & \text { X-X } \end{aligned}$	Absut Y.Y	$\begin{aligned} & \text { About } \\ & \mathbf{x - x} \end{aligned}$	About Y-Y	$\begin{aligned} & \text { Aboute } \\ & \mathbf{x}-\times \end{aligned}$	$\begin{aligned} & \text { Aboute } \\ & \text { A.Y } \end{aligned}$
15×4	12.33	. 94	377.00	14.55	5.53	1.09	50.27	4.75
$12 \times 3 \frac{1}{2}$	7.43	. 85	156.39	7.07	4.59	.98	26.07	2.67
$11 \times 3 \frac{1}{2}$	8.77	$\cdot 90$	148.61	8.42	4.12	. 98	27.02	3.23
10×4	8.87	1.10	136.72	12.02	3.84	1.16	26.14	4.15
10×4	5.55	. 93	82.58	7.14	3.86	1.13	16.52	2.32
8×3	5.68	. 84	53.43	4.33	3.07	$\cdot 87$	1336	2.01
$7 \times 2 \mathrm{f}$	2.86	. 55	20.48	1.07	2.67	.61	5.85	.68
6×3	4.26	. 94	24.01	3.50	2.37	. 91	8.00	1.70
$5 \frac{1}{6} \times 2 \mathrm{t}$	4.73	. 92	18.13	3.39	1.96	$\cdot 85$	7.08	1.73
$5 \times 2 \frac{1}{2}$	3.23	:76	12.13	1.77	1.94	. 74	4.85	1.02
$4 \frac{1}{2} \times 1 \frac{1}{2}$	3.96	. 48	9.04	. 55	1.51	$\cdot 37$	4.02	. 54
4×3	4.18	1.08	10.15	3.43	1.56	. 91	5.08	1.79
4×3	3.50	. 99	8.54	2.84	1.56	. 90	4.27	1.41
$4 \times 2 \frac{1}{2}$	314	. 77	7.34	1.78	1.53	.75	3.67	1.03
4×2	2.34	. 66	5.71	. 84	1.56	$\cdot 60$	2.86	.63
$3 \mathrm{t} \times 2$	1.99	. 65	3.70	.71	1.37	$\cdot 60$	$2 \cdot 12$. 53
$3 \times 1 \frac{1}{2}$	1.55	. 48	1.99	-30	1.14	. 44	1.33	. 29
2×1	1.22	.33	.93	. 09	$\cdot 87$. 26	. 74	- 13

DORMAN, LONG \& CO., L'MITED											
UNEQUAL ANGLES Dimensions and Properties											
Sixe and Thickness $\mathbf{A} \times \mathbf{B} \times \mathbf{t}$	Momant of Inertia About				Radil of Gyration About				Minimum Section Moduli About		TanO
	X-X	Y-Y	U-U	v-v	X-X	Y-Y	u.u	v-v	\mathbf{x}-x	Y-Y	
$9 \times 4 \times 8$	86.13	$10 \cdot 60$	89.48	7.25	2.85	1.00	2.90	. 83	$10 \cdot 47$	3.47	$\cdot 21$
$9 \times 1 \times 18$	80.86	9.99	84.06	6.79	2.86	1.00	2.91		14.46	3.25	$\begin{aligned} & .21 \\ & .21 \end{aligned}$
$9 \times 4 \times 1$	75.45	9.37	78.4972.78	6.33	$\begin{aligned} & 2.87 \\ & 2.87 \end{aligned}$	1.01	2.92	. 83	1239	3.02	
$9 \times 4 \times 12$	69.31	8.73		5.86		1.02	2.93	-83		2.79	-21
$9 \times 4 \times 8$	64:23	8.06	69.91	$5 \cdot 38$	2.88	1.02	2.94	. 83	11.33	2.56	. 21
$9 \times 4 \times 9$	58.42	7.37	60.5854.70	$\begin{aligned} & 4.90 \\ & 4.41 \end{aligned}$	$\begin{aligned} & 2 \cdot 89 \\ & 2 \cdot 89 \\ & 2 \cdot 90 \end{aligned}$	1.031.03	$\begin{aligned} & 2.95 \\ & 2.95 \\ & 2.96 \end{aligned}$. 84	$\begin{array}{r} 10.2 .5 \\ 9.16 \end{array}$	2.322.08	. 21
$9 \times 4 \times \frac{1}{2}$	52.46	6.65									
$8 \times 6 \times 8$	71.49	34.29	87.16	18.63	2.49	1.73	2.75	$1 \cdot 27$	18.22	7.79	. 54
$8 \times 6 \times 18$	$6 \% 10$	32.24	81.90	$\begin{aligned} & 17.44 \\ & 16.24 \end{aligned}$	2.50	1.73	2.76	1.28	$12 \cdot 35$	7.28 -55	
$8 \times 6 \times 1$	62.60	$30 \cdot 14$	76. 99		$2 \cdot 51$	1.74	2.77	1.28	11.47	6.77 . 55	
$8 \times 6 \times 11$	57.99	27.972524	-0.93	15.03	$\begin{aligned} & 2.52 \\ & 2 \cdot 52 \end{aligned}$	1.751.75	$\begin{aligned} & 2.78 \\ & 2.70 \end{aligned}$	1.281.28	$\begin{gathered} 10.58 \\ 0.67 \end{gathered}$	6.25	
$8 \times 6 \times 6$	53.27		$\begin{aligned} & 65 \cdot 21 \\ & 59 \cdot 33 \end{aligned}$	13.80						572	55
$8 \times 6 \times 8$	$\begin{array}{r} 48 \cdot 43 \\ 43 \cdot 47 \end{array}$	23.4421.08		$\begin{aligned} & 12.54 \\ & 11.26 \end{aligned}$	$\begin{aligned} & 2 \cdot 53 \\ & 2.54 \end{aligned}$	$\begin{aligned} & 1.76 \\ & 1.77 \end{aligned}$	$\begin{aligned} & 280 \\ & 2.81 \end{aligned}$	1.2 .91.29	$\begin{aligned} & 87.5 \\ & 7.82 \end{aligned}$	5.18	. 55
$8 \times 6 \times \frac{1}{2}$			$\begin{aligned} & 59 \cdot 33 \\ & 53.28 \end{aligned}$							4.63	
$8 \times 4 \times 4$	54.35	9.14	57.52	5.98	$2 \cdot 54$	1.04	2.61	. 84	10.739.90	2.90	. 25
$8 \times 4 \times 16$	$\begin{aligned} & 50 \cdot 42 \\ & 46 \cdot 37 \end{aligned}$	$\begin{aligned} & 8.52 \\ & 7.87 \end{aligned}$	$\begin{aligned} & 53 \cdot 40 \\ & 49 \cdot 15 \end{aligned}$	$5 \cdot 54$	$\begin{aligned} & 2.55 \\ & 2.55 \end{aligned}$	1.05	: 69			2.772.54	-26
$8 \times 4 \times$ 客				$5 \cdot 10$		1.05	2.63	.81	9.06		
$8 \times 4 \times 8$	$\begin{aligned} & 42.22 \\ & 37.95 \end{aligned}$	$\begin{aligned} & 7.20 \\ & 6.50 \end{aligned}$	$\begin{aligned} & 44 \cdot 78 \\ & 40 \cdot 28 \end{aligned}$	$\begin{aligned} & 4 \cdot 64 \\ & 4 \cdot 18 \end{aligned}$	$\begin{aligned} & 2 \cdot 56 \\ & 2.57 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.06 \end{aligned}$	2.642.65	. 85	$8 \cdot 21$	$\begin{aligned} & 2.30 \\ & 2.06 \end{aligned}$	-26
$8 \times 4 \times \frac{1}{2}$									7.34		
$8 \times 3 \frac{1}{} \times \frac{8}{81}$	44.24	5.28	45.95	3.57	2.55	. 88	2.60	. 72	8.85	1.93	21
$8 \times 31 \times 96$	$\begin{aligned} & 40 \cdot 30 \\ & 36 \cdot 24 \end{aligned}$	$\begin{aligned} & 4 \cdot 84 \\ & 4.38 \end{aligned}$	$\begin{aligned} & 41.88 \\ & 37.69 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 2.93 \end{aligned}$	$\begin{aligned} & 2 \cdot 56 \\ & 2.57 \end{aligned}$. 89	$2 \cdot 61$	78.73	8.02		21.21.21.21
$8 \times 3 \frac{1}{2} \times \frac{1}{2}$							2.622.63		7.17 6.31	1.571.39	
$8 \times 31 \times \frac{3}{16}$	32.08	3.89	33.38	2.59	2.57	. 90		73	6.31		
$8 \times 3 \frac{1}{2} \times \frac{1}{8}$	27.79	3.39	28.93	2.25	2.58	. 90	$2 \cdot 63$. 73	5.4.	120	1
$7 \times 4 \times \frac{1}{4}$	37.42	8.86	40.72	5.57	$\stackrel{2}{21}$	1.07	$2 \cdot 30$. 85	8.30	2.95	32
$7 \times 4 \times \mathrm{H}$	34.75	8.26	37.86	$5 \cdot 16$	2.21	1.08	2.31	. 85	7.67	$2 \cdot 73$. 32
$7 \times 4 \times$ 娄	32.00	7.64	34.90	4.74	2.22	1.09	$2 \cdot 32$. 86	7.02	2.51	33
$7 \times 4 \times$ 7×4	29.17	7.00	$\begin{array}{r} 31.85 \\ 28.69 \\ \hline \end{array}$	4.32	2.23	1.09	2.33	-86	6.37	2.28	- 33
$7 \times 4 \times 1$	26.26	6.33		3.89	2.24	$1 \cdot 10$	2.34	. 86	5.70	2.04	

DORMAN, LONG \& CO., LIMITED							
UNEQUAL Dimensions and							
Reference Mark	$\begin{aligned} & \text { Size and } \\ & \text { Thickness } \\ & A_{\wedge} B t \in t \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { sq. ins. } \end{gathered}$	Weight per foot lbs.	Radii		Dimensions	
				Root \mathbf{r}_{1}	$\begin{aligned} & \text { Toe } \\ & \mathbf{r}_{2} \end{aligned}$	J	p
BSUA 118 $" 11$ 118 $" 118$ $" 118$ $"$ 118	$\begin{aligned} & 7 \times 3 \frac{1}{6} \times \frac{6}{6} \\ & 7 \times 3 \frac{1}{2} \times 16 \\ & 7 \times 3 \frac{1}{2}>\frac{1}{2} \\ & 7 \times 3 \frac{1}{2} \times \frac{7}{16} \\ & 7 \times 3 \frac{1}{16} \times \frac{1}{6} \end{aligned}$	$\begin{aligned} & 6.17 \\ & .759 \\ & 5.00 \\ & 440 \\ & 3.80 \end{aligned}$	2093	. 41	$\cdot 31$	2.93	. 81
			19.01	+	,	2.53	.79
			17.00	"	"	2.50	. 76
			1497	"	"	247	. 74
			1~91	"	"	$2 \cdot 44$	$\cdot 71$
BSUA 117	$6 \times 1 \times 8$	6.91	83. 39	-42	. 29	206	1.07
" 117	$6 \times 4 \times 16$	6.10	2177	2	."	$2 \cdot 14$	1.0 .5
" 117	$6 \times 4 \times \frac{5}{8}$	5.86	1993	"	-"	2.02	1.02
11117	$6 \times 4 \times \frac{3}{18}$	5.31	1406	"	"	1.99	1.00
" 117	$6 \times 4 \times 18$$6 \times 4$$6 \times 4$	475	16.16	"	"	1.97	. 97
" 117		4.19	14.23	"	"	1.94	. 37
$\cdots \quad 117$		3.61	12.28	"	1	1.91	.92
BSUA 116	$\begin{aligned} & 6 \times 3 \frac{1}{2} \times \frac{8}{8} \\ & 6 \times 3! \\ & \hline 16 \end{aligned}$	$5 \cdot 55$$5 \cdot 03$	$\begin{aligned} & 18.86 \\ & 17.09 \end{aligned}$	-4I	$\cdot 29$	$2 \cdot 11$. 87
11116				"	"	2.09	- 8.85
116	$\begin{aligned} & 6 \times 31 \times{ }^{9} \\ & 6 \times 3 \frac{1}{2} \times \frac{16}{2} \end{aligned}$	4.50	$15 \cdot 30$	"	"	2.06	. 82
116		3.96	13.4811.63	"	"	2.01	
" 116		3.42		"	"	2.01	. 77
" 116	$\begin{aligned} & 6 \times 3 \frac{1}{2} \times \frac{36}{8} \\ & 6 \times 3 \frac{8}{8} \times \frac{1}{6} \end{aligned}$	$2 \cdot 87$	$\begin{array}{r} 11.63 \\ 8.76 \end{array}$	"	"	1.98	.75
BSUA 115	$6 \times 3 \times 8$	5.24	$17.81)$. 39	. 27	2.22	.73
" 115	$6 \times 3 \times{ }^{9}{ }^{6}$$6 \times 3 \times 8$$\times 18$	4.7 .54.25	16.1114.45	"	"	$\begin{aligned} & 2 \cdot 20 \\ & 2 \cdot 17 \end{aligned}$.71
115				"	"		
115	$6 \times 3 \times 16$$6 \times 3 \times 8$	$\begin{aligned} & 3.75 \\ & 3.24 \end{aligned}$	$\begin{aligned} & 12.74 \\ & 11.00 \end{aligned}$	"		$\begin{aligned} & 2.17 \\ & 2.15 \end{aligned}$. 66
115				"	"	$\begin{aligned} & 2.12 \\ & 2.09 \end{aligned}$. 63
1115	$6 \times 3 \times \frac{8}{16}$	2.72	9.24	"	"		
BSUA 114	$5 \times 4 \times 5$	5.24	17.80	. 39	$\cdot 27$	1.61	$1 \cdot 11$
" 114	$5 \times 4 \times \frac{9}{10}$$5 \times 4 \times \frac{1}{2}$	$\begin{aligned} & 4 \cdot 7.5 \\ & 4 \cdot 25 \end{aligned}$	16.1414.45	"	"	$\begin{aligned} & 1.58 \\ & 1.56 \end{aligned}$	1.091.06
114				"11	"		
" 114	$5 \times 4 \times \frac{1}{2}$$5 \times 4 \times 8 \times{ }^{2}$$5 \times 4 \times \frac{8}{86}$	$\begin{aligned} & 4.25 \\ & 3.75 \\ & 3.24 \end{aligned}$	$\begin{aligned} & 14.45 \\ & 12.74 \\ & 11.00 \end{aligned}$			$\begin{aligned} & 1.53 \\ & 1.51 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 1.01 \\ & \hline \end{aligned}$
11114							

DORMAN, LONG \& CO., LIMITED											
UNEQUAL ANGLES Dimensions and Properties											
Slie and Thickness $A \times \operatorname{ct}$	Moment of Inertia About				Radil of Gyration				Minimum Section Modull About		$\begin{gathered} \operatorname{Tan} \\ \boldsymbol{\propto} \end{gathered}$
	\mathbf{X}-x	Y.Y	U.	v.v	x-x	Y.Y	U.U	v.v	\mathbf{x}-x	Y-Y	
$7 \times 32 \times 1$	30.53	$5 \cdot 14$	32.31	3.35	2.22	. 91	2.29	. 74	6.86	1.91	$\cdot 26$
$7 \times 31 \times 9$	27.84	4.71	29.50	3.06	$2 \cdot 23$. 92	$2 \cdot 30$. 74	6.22	1.74	- 26
$7 \times 3 \frac{1}{2} \times \frac{1}{2}$	25.07	$4 \cdot 27$	26.59	2.75	2.24	- 92	2.31	. 74	5.57	1.56	- 26
$7 \times 3 \frac{1}{2} \times \frac{7}{18}$	22.22	3.80	23.58	2.44	$2 \cdot 25$. 93	2.31	. 74	4.91	1.38	. 26
$7 \times 31 \times 1$	19.28	3.31	20.47	2.12	$2 \cdot 25$. 93	$2 \cdot 32$. 75	4.23	$1 \cdot 19$. 26
$6 \times 4 \times 7$	24.26	8.53	27.75	5.04	1.87	1.11	2.00	. 85	$6 \cdot 16$	2.91	. 43
$6 \times 4 \times 18$	22.57	7.96	25.86	4.67	1.88	$1 \cdot 12$	2.01	. 85	5.70	2.70	$\cdot 43$
$6 \times 4 \times \frac{5}{8}$	20.82	7.37	23.90	4.29	1.88	$1 \cdot 12$	2.02	. 86	$5 \cdot 23$	2.48	- 43
$6 \times 4 \times 8$	19.01	6.76	21.85	3.91	1.89	$1 \cdot 13$	2.03	- 86	4.74	2.25	$\cdot 43$
$6 \times 4 \times \frac{1}{2}$	17.14	6.11	19.73	3.52	1.90	1.13	2.04	- 86	4.25	2.02	. 44
$6 \times 4 \times 7$	15.21	$5 \cdot 44$	17.53	3.13	1.91	$1 \cdot 14$	2.05	. 86	3.75	1.78	$\cdot 44$
$6 \times 4 \times 1$	13.21	4.74	$15 \cdot 24$	2.72	1.91	$1 \cdot 15$	2.05	. 87	3.23	1.54	. 44
$6 \times 31 \times 8$	19.85	4.96	21.73	3.08	1.89	.95	1.98	. 75	$5 \cdot 11$	1.89	. 33
$6 \times 3 \frac{1}{2} \times 1$	18.13	$4 \cdot 55$	19.87	2.81	1.90	. 95	1.99	.75	4.63	1.72	. 34
$6 \times \frac{1}{4} \times \frac{1}{2}$	16.36	4.13	17.95	2.53	1.91	. 96	2.00	$\cdot 75$	4.15	1.54	. 34
$6 \times 3 \times 2$	14.52	$3 \cdot 68$	$15 \cdot 59$	2.25	1.91	. 96	2.01	-75	3.66	1.36	. 34
$6 \times 3 \frac{1}{2} \times \frac{1}{8}$	12.62	3.21	13.87	1.96	1.92	. 97	2.01	. 76	3.16	$1 \cdot 18$. 34
$6 \times 3 \frac{1}{2} \times \frac{1}{16}$	$10 \cdot 65$	2.72	11.72	1.65	1.93	. 97	2.02	. 76	2.65	. 99	. 34
$6 \times 3 \times 1$	18.80	$3 \cdot 14$	19.86	2.07	1.89	. 77	1.95	-63	4.98	1.38	. 25
$6 \times 3 \times 18$	17.18	2.88	18.18	$1 \cdot 89$	1.90	. 78	1.96	-63	4.52	$1 \cdot 26$. 26
$6 \times 3 \times \frac{1}{2}$	15.51	2.62	16.43	1.70	1.91	. 78	1.97	. 63	4.05	1.13	26
$6 \times 3 \times 7$	13.78	2.34	14.61	1.51	1.92	. 79	1.97	-64	3.58	1.00	- 26
$6 \times 3 \times 1$	11.99	2.05	12.72	1.32	1.93	. 80	1.98	. 64	3.09	. 87	- 26
$6 \times 3 \times \frac{6}{16}$	10.13	1.74	10.76	$1 \cdot 12$	1.93	. 80	1.99	. 64	$2 \cdot 59$. 73	. 26
$5 \times 4 \times 1$	12.44	$7 \cdot 02$	15.79	$3 \cdot 67$	1.54	$1 \cdot 16$	1.74	. 84	$3 \cdot 67$	2.43	. 62
$5 \times 4 \times 18$	11.39	6.44	14.48	3.34	1.55	$1 \cdot 16$	1.75	-84	3.33	2.21	-62
$5 \times 4 \times 1$	10.29	5.83	13.11	3.01	1.56	1.17	1.76	-84	2.99	1.98	. 62
$5 \times 4 \times 8$	9.15	6.19	11.68	2.67	1.56	1.18	1.77	-84	2.64	1.75	. 68
$5 \times 4 \times 1$	7.97	4.53	10.18	$2 \cdot 32$	1.57	1.18	1.77	. 85	2.28	1.52	. 63

DORMAN, LONG \& CO., LIIAITED							
UNEQUAL ANGL Dimensions and Propert							
RoforenceMark	Size and Thickness A) B t	$\begin{aligned} & \text { Area } \\ & \text { sq. } \end{aligned}$	Weight per foot lbs.	Radii		Dimensions	
				$\begin{gathered} \text { Root } \\ \mathbf{r}_{1} \end{gathered}$	Toe ra	J	P
BSUA 113 $" 113$ $" 11$ 113 $" 11$ 113 $" 113$ $" 113$	$5 \times 3 \frac{1}{2} \times$	492	1674	34	. 26	1.69	. 94
	$5 \times 3 \frac{1}{} \times \frac{9}{18}$	$4 \cdot 47$	$15 \cdot 19$	"	"	1.66	. 92
	$5 \times 3 \frac{1}{2} \times \frac{1}{2}$	400	13.61	"	"	1.64	. 90
	$5 \times 3 \frac{1}{2} \times \frac{7}{18}$	3.53	1200	"	"	1.62	. 87
	$5 \times 3 \times \frac{1}{2}$	3.05	10.37	"	"	1.59	. 85
	$5 \times 3 \frac{1}{2} \times \frac{8}{16}$	$2 \cdot 56$	8.71	"	1	1.56	8.8
BSUA 112 " 112 $" 1$ 112 $" 1$ 112 $"$ 112	$5 \times 3 \times 19$	$4 \cdot 18$	14.23	. 36	. 25	1.76	. 77
	$5 \times 3 \times \frac{1}{2}$	3.75	12.75	1	"	1.73	. 74
	$5 \times 3 \times 7$	331	11.25	"	"	1.71	. 72
	$5 \times 3 \times 7$	2.86	9.73	"	"	1.68	. 69
	$5 \times 3 \times \frac{5}{16}$	2.40	8.17	"	"	1.66	. 67
BSUA II " II " II " 111 $"$ 111	$4 \frac{1}{2} \times 3 \times \frac{18}{18}$	3.90	13.27	. 35	. 24	1.55	. 80
	$41 \times 3 \times \frac{1}{2}$	3.50	11.91	1	11	1.52	. 78
	$4 \frac{1}{4} \times 3 \times 1$	3.09	10.51	"	"	1.50	.75
	$41 \times 3 \times \frac{5}{8}$	2.67	9.09	"	"	1.47	. 73
	$4 \frac{1}{2} \times 3 \times \frac{5}{6}$	2.25	7.64	"	"	1.44	. 70
BSUA 110 $" 110$ $" 1$ 110 $"$ 110 $"$ 110 $"$ 110	$4 \times 3 \frac{1}{1} \times 1$	430	14.61	.35	. 24	1.29	1.04
	$4 \times 31 \times \frac{1}{81}$	390	13.27	"	"	1.26	1.01
	$4 \times 3 \frac{1}{2} \times \frac{1}{2}$	3.50	11.91	"	"	1.24	. 99
	$4 \times 3 \frac{1}{2} \times \frac{7}{78}$	3.09	10.51	"	"	1.21	. 97
	$4 \times 3 \frac{1}{2} \times \frac{1}{6}$	2.67	9.09	"	"	1.19	. 94
	$4 \times 3 \frac{1}{2} \times \frac{5}{16}$	2.25	7.64	"	1	$1 \cdot 16$. 92
BSUA 109 " 109 " 109 " 109 " 109	$4 \times 3 \times \frac{1}{16}$	3.62	12.31	. 33	$\cdot 23$	1.34	. 84
	$4 \times 3 \times \frac{1}{2}$	3.25	11.05	"	"	1.32	. 82
	$4 \times 3 \times 7$	2.87	9.76	"	"	1.29	. 80
	$4 \times 3 \times 1$	2.49	8.45	"	"	1.27	. 77
	$4 \times 3 \times \frac{5}{16}$	2.09	7.11	"	"	$1 \cdot 24$. 75
BSUA 108 $" 11$ 108 $"$ 108 $"$ 108	$4 \times 2 \frac{1}{2} \times \frac{7}{78}$	$2 \cdot 65$	9.02	. 32	. 22	1.38	64
	$4 \times 2 \times 1 \times$	$2 \cdot 30$	7.81	"	2	1.36	. 61
	$4 \times 2 \times \frac{1}{4} \times$	1.93	6.58	"	"	1.33	. 59
	$4 \times 2 \frac{1}{2} \times \frac{1}{4}$	1.56	$5 \cdot 32$	"	"	1.30	. 56

UNEQUAL ANGLES Dimensions and Properties											
Sixe andThickness $A y B \times$	Moment of InertinAbout				Radil of Cribrition				$\begin{array}{\|c} \text { Minimum } \\ \text { Soction } \\ \text { Modinl } \\ \text { About } \end{array}$		$\stackrel{\text { Tan }}{\sim}$
	x-x	Y.Y	u-u	v.v	x-X	Y-Y	U.U	v.v	x	Y-Y	
5×318	11.89	4.74	13.91	2.72	1.55	. 98	1.68	. 74	3.59	1.86	47
$5 \times 31 \times 8$	10.88	$4 \cdot 36$	12.76	2.48	1.56	. 98	1.69	${ }^{75}$	326	1.69	47
$5 \times 3 \times 1$	9.84	3.96	11.56	2.24	1.57	. 99	1.70	75	2.93	1.52	. 48
	${ }_{7.63} 8$	3.53 3.09	${ }_{8.99}^{10.30}$	1.99 1.73	1.58	1.00	1.81	.75 .75	2.69	1.34	. 48
	$8 \cdot 46$	2.62	7. 61	1.47	1.59	1.01	1.72	.76	J. 88	. 98	. 48
$5 \times 3 \times 8$	10.31	2.96	11.37	171	1.57	. 81	1.65	. 64	3.18	$1 \cdot 24$	35
$5 \times 3 \times \frac{1}{1}$	9.33	2.51	10.31	1.54	1.58	. 82	1.66	. 64	2.86	1.11	. 35
${ }_{5}^{5} \times 3 \times 38$	$8 \cdot 31$	2.25	9.19	1.37	1.58	. 82	167	61	2.53	99	-36
$5 \times 3 \times 1$	7.25	1.97	8.03	119	1.59	$\cdot 83$	1.68	. 55	2.18	85	. 36
$5 \times 3 \times \frac{5}{6}$	6.14	1.68	6.80	1.01	1.60	-84	1.68	. 65	1.84	. 72	. 36
$4{ }_{4} \times 3 \times 3 \times 8$	7.66	2.69	8.766	1.59	1.40	. 83	150	. 64	2.59	1.22	- 43
4×3 4×3 4×3 $\times 1$	6.94 6.19	2.45	7.96 7.11	1.43	1.41	. 84	1.51	. 64	${ }_{2}^{2.33}$	$\begin{array}{r}1.10 \\ \hline 8 \\ \hline\end{array}$. 43
4, $4 \times 3 \times 1$	8.4	2.92	7.12 6.22	1.11	1.42	-85	1.53	. 64	1.79	. 88	. 44
$4 \frac{1}{4} \times 3 \times \frac{3}{16}$	4.59	1.64	5.28	. 94	1.13	. 85	1.53	. 65	$1 \cdot 50$	71	. 44
$4 \times 37 \times 1$	6.28	4.45	8.55	2.19	1.21	1.02	1.41	. 71	$2 \cdot 31$	1.81	. 74
$4 \times 31 \times 8$	5.72	4.09	7.87 7.16	1.79	1.22 1.22	1.02	1.42 1.43	. 71	$2 \cdot 11$	1.65	75
	5.24 4.68	3.72	7.16 6.41	${ }_{1}^{1.59}$	1.22	1.03	1.43	.72	1.90	1.48	75 75
$4 \times 31 \times{ }^{1}$	4.09	$2 \cdot 91$	5.61	1.39	1.24	1.04	1.45	. 72	1.68	1.14	7
$4 \times 3+5$	3.47	2.47	4.71	1.18	1.24	1.05	1.46	. 72	$1 \cdot 22$. 96	. 75
$4 \times 3 \times 8$	5.48	2.60	6.64	1.44	1.23	. 85	1.35	. 63	2.06	1.21	. 54
	4.97	2.37	6.04	1.30	1.24	. 85	1.36	. 63	1.85	1.09	. 54
$4 \times 3 \times$ 4×3 $4 \times$	4.44	2.13	$5 \cdot 71$	1.16	1.25	${ }^{.86}$	1.37 1.38	. 64	1.64	. 89	${ }^{\text {P }} .54$
$4 \times 3 \times 18$	3.30	1.59	4.04	. 86	1.26	. 87	1.39	. 64	1.20	71	. 55
$4 \times 2 \times 8$	4.18	1.24	4.67	.75	1.25	. 68	1.33	. 53	1.59	${ }^{67}$. 38
$4 \times 2 \times 1$	3.66	$\begin{array}{r}1.10 \\ \hline\end{array}$	4.49	. 56	1.26	. 69	1.34 1.34 1.3	. 53	11.17	. 58	. 38
$4 \times 2+1 \times$	2.54	. 97	2.85	. 46	1.27	. 70	1.35 1.34	-54	1.94	. 40	. 39

DURMAN, LONG \& CO., LIMITED							
UNEQUAL ANGLE Dimensions and Properti							
Reference Mark	Size and Thickness A×Bxt	Arez sq. ins.	Weight per foot tbs.	Radii		Dimensions	
				$\begin{gathered} \text { Root } \\ \mathbf{r}_{1} \end{gathered}$	$\begin{aligned} & \text { Toe } \\ & \mathbf{r}_{2} \end{aligned}$	J	P
BSUA 107 $" 11$ 107 $" 1$ 107 $" 11$ 107 $" 1$ 107 $"$ 107		3.31	11.36	-32	. 22	$1 \cdot 14$. 89
		300	10.20	"	1	$1 \cdot 12$	787
		$2 \cdot 65$	90%	"	"	1.09	. 84
		$2 \cdot 30$	7.81	"	"	1.07	. 82
		1.93	6.58	"	"	1.04	.79
		1.56	532	11	"	1.01	. 77
BSUA 106 $" 1$ 106 $" 1$ 106 $" 1$ 106	$3 \frac{1}{2} \times 21 \times 7$$3 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{7}{6}$$3 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{3}{6}$$3 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{4}$	2.43	98	$\cdot 30$.21	$1 \cdot 17$.68
		2.11	7.17	"	"	1.15	. 65
		178	$6 \cdot 04$	"	11	1.12	. 63
		1.44	4.89	1	"	1.09	. 60
BSUA 105 $" \prime$ 105 $" \prime$ 105 $"$ 105	$3 \times 2 \frac{1}{2} \times \frac{7}{76}$$3 \times 2 \frac{1}{2} \times \frac{3}{6}$$3 \times 2 \frac{1}{2} \times \frac{5}{16}$$3 \times 2 \frac{1}{2} \times \frac{1}{4}$	$2 \cdot 22$	7.53	.29	. 20	. 97	. 72
		1.92	6.54	\cdots	"	. 94	. 70
		1.62	5.51	"	"	. 92	. 67
		1.31	4.47	"	"	. 89	. 65
BSUA 104		2.00	679	$\cdot 27$	$\cdot 19$	1.05	. 56
		1.73	5.90	"	"	1.03	. 53
" 104	$3 \times 2 \times 2$ $3 \times 2 \times \frac{3}{6}$	1.46	4.98	1	"	1.00	. 51
" 104	$3 \times 2 \times \frac{1}{4}$	1.19	4.04	"	"	. 98	. 48
" 104	$3 \times 2 \times \frac{3}{16}$.90	3.07	"	"	.95	$\cdot 46$
BSUA 103	$2 \frac{1}{2} \times 2 \times \frac{3}{8}$$2 \frac{1}{6} \times 2 \times 8$$2 \frac{5}{1} \times 2 \times \frac{1}{6}$$2 \frac{1}{2} \times 2 \times \frac{3}{16}$	1.55	5. 26	$\cdot 26$	- 18	. 82	57
$"$ 103 $" 1$ 103 $"$ 103		1.31	4.45 *	${ }^{\prime}$	11	. 80	. 55
		1.06	3.61	"	"	$\cdot 77$. 53
		. 81	2.75	"	11	. 75	. 50
$\begin{array}{cc} \text { BSUA } & 102 \\ " 102 \\ " & 102 \end{array}$	$2 \frac{1}{2} \times 12 \times \frac{5}{60}$$2 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{1}{3}$$2 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{3}{16}$	1.15	3.92	-24	$\cdot 17$. 89	. 39
		. 94	3.19	"	"	. 86	. 37
		. 71	2.43	"	11	. 83	. 34
$\begin{array}{ccc} \text { BSUA } & 101 \\ " \prime & 101 \\ " & 101 \end{array}$	$2 \times 1 \frac{1}{2} \times \frac{8}{81}$$2 \times 1 \frac{1}{2} \times 1$$2 \times 12 \times \frac{3}{10}$	1.00	3.33	\& 0	-16	68	. 43
		.81	2.76	.	"	65	. 41
		.62	2.11	"	"	.63.	. 38

DORMAN, LONG \& CO., LIMITED											
UNEQUAL ANGLES Dimensions and Properties											
Size and Thicknes: $A \times B \times$	Moment of Inertia About				Radii or Gyration				Minimum Saction Moduli About		$\underset{\sim}{\text { Tan }}$
	X-X	Y-Y	U.U	v-v	x-x	Y.Y			x-x	Y.Y	
$31 \times 3 \times 9$	3.74	2.51	4.98	1.26	1.06	. 87	1.22	. 61	I.88	1.191.67	
$3 \frac{1}{2} \times 3 \times \frac{1}{2}$	3.40	$2 \cdot 28$	4.55	1.13	1.06	. 87	1.23	. 61	1.43		.71 .71
$33 \times 3 \times 16$	3.04	$2 \cdot 0.5$	4.08	1.01	1.07	. 88	$1 \cdot 24$. 62	1-26	.9.5	.72
$31 \times 3 \times 1$	2.67	1.80	3.59	. 88	1.08	. 88	1.25	. 62	1.10	. 83	. 72
$3 \times 3 \times 3 \times \frac{5}{16}$	2.27	1.54	3.06	. 75	1.08	. 89	1.26	. 62	. 92	. 70	. 72
dit $\times 2 \times \frac{1}{6}$	1.86	1.26	$2 \cdot 50$. 61	1.09	. 90	1.27	. 62	. 75	. 56	. 72
$3 \mathrm{t} \times 2 \frac{1}{2} \times \frac{16}{}$	2.86	120	3.38	. 69	1.08	. 70	1.18	. 53	1.23	. 66	. 49
$3 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{8}$	2.51	1.06	2.98	. 59	1.09	. 71	1.19	. 53	1.07	. 57	. 49
$3 \frac{1}{4} \times 2 \frac{1}{2} \times \frac{5}{16}$	2.14	. 91	2.55	. 51	1.10	. 71	$1 \cdot 20$. 53	. 90	. 48	. 50
$3 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{6}$	1.75	. 74	2.08	41	$1 \cdot 10$. 72	$1 \cdot 20$. 54	. 73	. 39	. 50
$3 \times 2 \frac{1}{2} \times \frac{7}{16}$	1.84	1.15	2.41	.59	91	.72	1.04	. 52	91	. 65	. 67
$3 \times 2 \frac{1}{2} \times \frac{1}{8}$	1.621.39	1.02	2.13	. 51	. 92	. 73	1.05	. 52	. 79	. 56	. 67
$3 \times 2 \frac{1}{4} \times \frac{5}{16}$. 87	1.82	. 44	. 93	. 73	1.06	. 52	. 67	. 48	. 68
$3 \times 2 \frac{1}{2} \times \frac{1}{8}$	1.14	. 72	1.50	.36	. 93	. 74	1.07	. 52	. 54	. 39	. 68
$3 \times 2 \times 2$	1.71	. 59	1.94	. 36	. 92	. 55	. 99	- 42	. 88	. 91	. 42
$3 \times 2 \times 1$	1.50	. 53	172	. 31	. 93	. 55	1.00	. 42	. 76	. 36	. 42
$3 \times 2 \times \frac{5}{6}$	1.29	. 45	1.48	. 26	. 94	. 56	100	43	. 65	. 30	. 43
$3 \times 2 \times 1$	1.06	. 38	1.22	. 22	. 94	. 56	1.01	. 43	. 52	. 25	. 43
$3 \times 2 \times \frac{1}{10}$. 81	. 29	. 94	$\cdot 17$. 95	. 57	1.02	-13	$\cdot 40$. 19	- 43
$21 \times 2 \times 1$. 89	. 50	$1 \cdot 13$.27	. 76	. 57	. 85	- 11	. 53	-35	. 61
$21 \times 2 \times \frac{5}{16}$. 77	. 43	. 98	. 23	. 77	. 57	. 86	. 42	. 45	. 30	. 62
$2 \frac{1}{2} \times 2 \times \frac{1}{6}$. 36	. 81	. 19	. 77	. 58	. 87	- 42	. 37	. 24	. 62
$2 \frac{1}{2} \times 2 \times \frac{3}{16}$. 49	. 28	. 62	.14	. 78	. 58	. 88	. 42	. 29	. 18	. 62
$21 \times 1 \frac{1}{4} \times 6$$2 \frac{1}{2} \times 1 \frac{1}{2} \times 1$$2 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{1}{16}$	$\begin{aligned} & .70 \\ & .58 \\ & .45 \end{aligned}$	$\cdot 18$.77	$\cdot 11$. 78	$\cdot 40$. 82	. 32	$\cdot 43$	$\cdot 17$. 35
		$\cdot 15$. 64	. 09	. 78	. 40	. 82	. 32	. 35	.14	. 35
		$\cdot 12$. 49	. 07	. 79	. 41	. 83	. 32	. 27	- 10	. 35
$2 \times 11 \times 8$$2 \times 17 \times \frac{1}{4}$$2 \times 17 \times 8$	$\begin{aligned} & .37 \\ & .31 \\ & .24 \end{aligned}$	$\cdot 17$	-44	- 10	$\cdot 61$	$\cdot 42$. 67	. 31	. 28	$\cdot 16$	- 53
		$\cdot 15$	$\cdot 37$. 08	.61	. 42	68	. 31	. 23	$\cdot 13$. 54
		. 11	. 29	. 06	. 62	. 43	. 68	. 32	.17	- 10	. 54

DORMAN, LONG \& CO., LIMITED							
SPECIAL UNEQUAL Dimensions and Prop							
$\begin{aligned} & \text { Reference } \\ & \text { Mark } \end{aligned}$	Size and Thickness $\mathrm{A} \times \mathrm{B} \times \mathrm{t}$	Area sq. ins.	Weight per fost Ibs.	Radi		Ditnonision:	
				$\begin{gathered} \text { Root } \\ r_{1} \end{gathered}$	Toe re	J	P
BSUA 24	$6 \frac{1}{2} \times 4 \frac{1}{2} \times \frac{7}{1}$	7.69	26.13	. 45	325	$2 \cdot 18$	1.19
" 24	$6 \frac{1}{2} \times 4 \frac{1}{2} \times \frac{1}{1}$	6.48	22.04	"	"	2.13	1.14
11 24	$6 \frac{1}{2} \times 4 \frac{1}{2} \times \frac{1}{2}$	5.25	17.84	"	"	2.08	1.09
" 24	$6 \frac{1}{2} \times 4 \frac{1}{2} \times \frac{3}{1}$	3.98	13.54	"	"	2.03	1.04
BSUA 22	$6 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{4}$	6.94	23.59	. 425	$\cdot 30$	2.38	. 89
" 22	$6 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{8}{8}$	586	19.92	"	"	2.33	. 84
" 22	$6 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{2}$	4.75	16.15	"	"	2.28	. 79
1122	, $6 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{3}{8}$	3.61	12.27	"	"	$2 \cdot 22$. 74
BSUA 19	$5 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{5}{8}$	5.24	17.80	. 40	- 275	1.90	. 91
" 19	$5 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{2}$	4.25	14.46	"	"	1.85	. 86
" 19	$5 \frac{1}{2} \times 3 \frac{1}{4} \times \frac{4}{8}$	3.24	11.00	"	"	1.80	. 81
" 19	$5 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{5}{16}$	2.72	9.24	"	"	1.77	. 78
BSUA 18	$5 \frac{1}{2} \times 3 \times \frac{1}{5}$	4.93	16.75	. 375	. 25	2.00	. 76
" 18	$5 \frac{1}{2} \times 3 \times \frac{1}{2}$	4.00	13.61	"	"	1.95	. 71
118	$5 \frac{1}{2} \times 3 \times \frac{3}{8}$	3.05	10.37	"	"	1.90	. 66
118	$5 \frac{1}{2} \times 3 \times \frac{5}{16}$	2.56	8.71	"	"	1.87	. 64
BSUA 14	$4 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{4}{4}$	4.61	15.67	. 35	. 25	1.48	. 99
" 14	$4 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{2}$	3.75	12.75	"	"	1.44	. 94
114	$4 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{1}$	2.86	9.72	"	"	1.39	. 89
$\cdots 14$	$4 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{8}{16}$	$2 \cdot 40$	$8 \cdot 17$	*	"	1.36	.87
Special	$14 \times 14 \times t$	69	$2 \cdot 34$. 21	-18	. 50	. 36
"	$1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{3}{16}$.53	179	1	"	. 57	. 32

DORMAAN, LONG \& CO., LIMITED											
SPECIAL UNEQUAL ANGLES Dimansions and Properties											
Sire and Thickneos $A \times B \times t$	Monent of Irertia About				Radii $\underset{\substack{\text { Ahout }}}{\substack{\text { Gyration }}}$				Minimum Section Modull About		$\begin{gathered} \operatorname{Tan} \\ \infty \end{gathered}$
	X-X	Y-Y	u.U		x-x	Y-Y	U.U	v-v	X-X	Y-Y	
$6 \frac{1}{2} \times \frac{4}{2} \times \frac{3}{4}$	31.66	$12 \cdot 32$	36.90	7.07	$2 \cdot 13$	1.27	2.19	. 96	7.33	3.72	. 46
$6 \frac{1}{2} \times 4 \frac{1}{2} \times 1$	27.09	1060	31.67	6.02	204	1.28	2.21	. 96	6.20	3.16	. 47
$6 \frac{1}{2} \times 4 \frac{1}{2} \times \frac{1}{3}$	22.24	8.75	26.06	4.93	2.06	1.29	2.23	. 97	5.03	2.57	. 47
$6 \frac{1}{4} \times 4 \frac{1}{2} \times 2$	17.08	6.76	20.04	3.79	2.67	1.30	2.24	. 98	3.82	1.95	. 47
$6 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{4}$	28.96	5.84	31.01	3.79	2.04	. 92	211	. 74	7.03	2.24	. 29
$6 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{3}{8}$	24.83	5.06	26.66	3.23	2.06	. 93	2.13	. 74	5.95	1.90	. 29
$6 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{2}$	20.43	4.20	21.98	2.65	2.07	. 94	2.15	. 75	484	1.55	. 30
$6 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{3}{8}$	15.73	$3 \cdot 27$	16.95	2.05	2.09	. 95	2.17	. 75	3.68	1.18	. 30
$5 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{5}{8}$	15.55	4.86	17.49	2.92	1.72	. 96	1.83	. 75	4.32	1.87	. 39
$5 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{2}$	12.84	4.05	14.49	2.40	1.74	$\cdot 98$	1.85	.75	3.52	1.53	. 40
$5 \frac{1}{2} \times 3 \frac{1}{4} \times \frac{1}{8}$	9.93	3.15	11.23	185	1.75	. 99	1.86	. 76	2.68	1.17	. 40
$5 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{5}{16}$	8.39	2.68	9.50	1.57	1.76	. 99	1.87	. 76	2.25	. 98	. 40
$5 \frac{1}{2} \times 3 \times$ 年	14.74	$3 \cdot 88$	15.83	1.98	1.72	. 79	1.79	. 63	4.21	1.37	. 29
$5 \frac{1}{2} \times 3 \times \frac{1}{2}$	12.19	2.57	13.14.	1.63	1.75	$\cdot 80$	1.81	. 64	3.41	$1 \cdot 12$. 30
$5 \frac{1}{2} \times 3 \times \frac{1}{8}$	9.45	2.02	$10.2{ }^{\prime}$	1.26	1.76	. 81	1.83	. 64	262	86	. 30
$5 \frac{1}{2} \times 3 \times \frac{5}{6}$	8.00	1.72	8.62	1.07	1.77	82	1.84	. 65	2.20	. 73	. 31
$4 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{5}{8}$	8.81	4.61	10.93	2.48	1.38	1.00	1.54	. 73	2.92	1.83	. 58
$4 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{2}$	7.31	3.84	9.12	2.04	1.40	1.01	1.56	. 74	2.39	1.50	. 59
$4 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{3}{1}$	5.69	3.01	7.12	1.58	1.41	1.03	1.58	. 74	1.83	1.15	. 59
$47 \times 3 \frac{1}{2} \times \frac{1}{10}$	4.82	2.55	6.04	1.33	1.42	1.03	1.59	$\cdot 75$	1.53	. 97	. 59
$13 \times 17 \times 1$. 20	. 08	0.23	. 05	. 53	. 34	. 58	$\cdot 26$	$\cdot 17$. 09	. 48
$13 \times 14 \times \frac{2}{16}$	$\cdot 15$. 06	0.18	. 04	. 54	. 35	. 59	. 26	$\cdot 13$. 07	. 49

DORMAN, LONG \& CO, LIMITED						
 EQUAL ANGLE Dimensions and Prope						
Reference	Size and Thickness $A \times B \times t$	$\begin{gathered} \text { Area } \\ \text { sq. } \\ \text { Inches } \end{gathered}$	Weight per foot ibs.	Radii		Dimension
				$\begin{gathered} \text { Root } \\ r_{1} \end{gathered}$	$\begin{gathered} \text { Too } \\ \mathrm{r}_{3} \end{gathered}$	
BSEA 115 $\prime \prime$ 115 $" \prime$ 115	$\begin{aligned} & 8 \times 8 \times 1 \\ & 8 \times 8 \times 1{ }^{5} 6 \\ & 8 \times 8 \times \frac{7}{6} \\ & 8 \times 8 \times 18 \\ & 8 \times 8 \times \frac{18}{18} \\ & 8 \times 8 \times 11 \\ & 8 \times 8 \times \frac{16}{6} \end{aligned}$	15.00	51.01	. 60	. 42	$2 \cdot 3 ;$
		$14 \cdot 12$	48.02	\cdots	"	$2 \cdot 33$
		13.24	45.00	"	"	$2 \cdot 30$
		12.34	41.96	"	1	2.88
		11.44	38.89	"	"	2.25
		$10 \cdot 53$	$35 \cdot 80$	"	"	2.23
		9.61	32.68	"	1	2.20
BSEA 114 $" \prime$ 114 $" \prime$ 114 $" \prime$ 114 $"$ 114 $" \prime$ 114 $" \prime$ 114 $" \prime$ 114 $" \prime$ 114	$\begin{aligned} & 7 \times 7 \times 1 \\ & 6 \times 7 \times 1 \frac{18}{6} \\ & 7 \times 7 \times \frac{6}{6} \\ & 7 \times 7 \times 18 \\ & 7 \times 7 \times \frac{18}{4} \\ & 7 \times 7 \times \frac{18}{4} \\ & 7 \times 7 \times \frac{5}{6} \\ & 7 \times 7 \times \frac{9}{96} \\ & 7 \times 7 \times \frac{16}{2} \end{aligned}$	13.00	44-20	. 54	. 38	2.10
		12.25	41.64	"	"	208
		11.48	39.05	"	"	2.06
		10.72	36-4.3	"	"	$2 \cdot 0.3$
		9.94	33.79	"	"	2.01
		9.15	31.12	"	"	1.98
		8.36	28.42	"	"	1.96
		7.56	25.70	"	"	1.93
		6.75	22.95	"	"	1.91
BSEA 113 $" \prime$ 113 $" \prime$ 113 $" \prime$ 113 $\prime \prime$ 113 $" \prime$ 113 $" \prime$ 113 $\prime \prime$ 113 $\prime \prime$ 113		9.73	31.10	-18	. 34	1.81
		9.09	$30 \cdot 90$	"	"	1.78
		8.44	28.69	"	"	1.76
		7.78	26.14	"	"	1.74
		7.11	24.17	-	"	1.71
		6.13	21.87	"	"	1.69
		5.75	19.55	"	"	1.66
		5.015	17-20	"	"	1.64
		4.36	14.82	"	"	1.61
BSEA 112 $" \prime$ 112 $" \prime$ 112 $" 1$ 112 $" 1$ 112 $" 1$ 112 $"$ 112		6.97	23.59	. 12	29	1.51
		$6 \cdot 69$	21.77	"	,	$2 \cdot 19$
		5.86	19.93	"	"	1.47
		$5 \cdot 31$	18.06	"	"	1.44
		4.75	16.16	"	"	1.42
				"	,	7.39
		3.61	12.28	"	"	1.37

DORMAN, LONG \& CO., LIMITED							
EQUAL ANGLES Dimensions and Properties							
Size and Thickness	Moment of Inertia			Radil of Gyration			Minimum Section Modulus About $X=X$
	$\begin{aligned} & \text { About } \\ & \mathbf{X}-\mathbf{X} \end{aligned}$	$\begin{aligned} & \text { About } \\ & \text { U.U } \end{aligned}$	$\begin{aligned} & \text { About } \\ & \text { V.V } \end{aligned}$	$\begin{aligned} & \text { About } \\ & \mathbf{X} \cdot \mathbf{X} \end{aligned}$	$\text { About }_{\text {Ab }}$	About V.V	
$\begin{aligned} & 8 \times 8 \times 1 \\ & 8 \times 8 \times 10 \\ & 8 \times 8 \times 8 \\ & 8 \times 8 \\ & 8 \times 8 \times 1 \\ & 8 \times 8 \times 16 \\ & 8 \times 8 \times 8 \end{aligned}$	87.8;	$13.9 \cdot 10$	36.31	2.12	3.05	1.56	$15 \cdot 55$
	$83 \cdot 20$	$132 \cdot 12$	34.28	2-13	3.06	1.56	$14 \cdot 66$
	78.44	124.65	32.23	2.43	3.07	1.56	13.77
	$73 \cdot 57$	116:95	3 3) 16	2.44	3.08	1.j0	12.86
	68.58	109.11	28.06	$2 \cdot 45$	3.09	1.57	11.94
	6.3 .48	101.103	2.9 .93	$2 \cdot 46$	3.10	1.57	11.00
	58.26	92.75	23.78	2.46	3.11	1.57	10.05
$\begin{aligned} & 7 \times 7 \times 1 \\ & 7 \times 7 \times 10 \\ & 7 \times 7 \times 5 \\ & 7 \times 7 \times 10 \\ & 7 \times 7 \times 1 \\ & 7 \times 7 \times 16 \\ & 7 \times 7 \times 6 \\ & 7 \times 7 \times \frac{10}{6} \\ & 7 \times 7 \times \frac{10}{2} \end{aligned}$	$57 \cdot 16$	90.97	23.96	$2 \cdot 10$	$2 \cdot 65$	1.36	11.73
	-1.00	86.37	22.62	$2 \cdot 11$	$2 \cdot 60$	1.36	11.07
	51.15	81.61	21.27	$2 \cdot 12$	2.67	$1 \cdot 36$	$10 \cdot 11$
	48.33	76.75	19.91	$2 \cdot 12$	2.68	${ }^{1.36}$	9.73
	$45 \cdot 12$	71.72	18.53	$2 \cdot 13$	$2 \cdot 69$	1.37	9.04
	11.83	66.5.3	17.14	$2 \cdot 14$	2.70	1.37	8.34
	38.45	61.19	15.72	2.14	2.71	1.37	7.63
	31.98	5.568	$11 \cdot 2.9$	$\stackrel{2}{2} 15$	2.71	1.37	6.90
	31.42	50.02	12.82	2.16	2.72	1.38	6.17
	31.51	19.56	13.16	1.80	$2 \cdot 26$	1.16	\% 51
	29.65	46.99	12.31	1.81	2.27	$1 \cdot 16$	7.03
	27.74	44.01	11.47	1.81	2.28	1.17	6.54
	27.77	$40 \cdot 92$	10.61	1.82	2.29	$1 \cdot 17$	6.0 .1
	23.73	37.73	9.74	1.83	2.30	1.17	5.54
	$21 \cdot 64$	31.4?	$8 \cdot 86$	1.83	2.31	$1 \cdot 17$	$5 \cdot 02$
	19.48	30.99	7.96	1.84	2.32	1.18	4.49
	17.9.5	27.45	7.04	1.85	2.33	1.18	3.95
	14.95	23.79	6.11	1.85	2.34	$1 \cdot 18$	$3 \cdot 40$
	15.51	24.57	6.50	1.50	1.88	. 97	$4 \cdot 46$
	$11 \cdot 47$	22.93	6.02	1.50	1.89	. 97	$4 \cdot 12$
	13.37	21.21	5.53	1.51	1.90	. 97	3.78
	12.22	19.42	5.03	1.52	1.91	. 97	3.44
	11.04	17.55	4.53	1.52	1.92	. 98	3.08
	9.81	15.60	1.01	1.53	1.93	. 98	3.72
	8.53	13.57	3.49	1.54	1.94	. 98	2.35

DORMAN, LONG \& CO., LIMITED						
EQUAL ANGL Dimensions and Prop						
$\begin{aligned} & \text { Reforence } \\ & \text { Mark } \end{aligned}$	Size and Thicknes: $A \times B \times t$	$\begin{gathered} \text { Area } \\ \text { sg. } \\ \text { Inches } \end{gathered}$	Weight per foot lbs.	Radil		Dimenz ion
				Root r_{1}	$\begin{gathered} \mathrm{Too} \\ \mathrm{r}_{2} \end{gathered}$	
BSEA il $" 1$ 11 $" 1$ 111 $" 1$ 11		$6 \cdot 19$	21.03	. 39	. 27	
		$5 \cdot 7 \%$	12.11		"	
		5.24	17.80	"	,	1.37 1.34
		4.75	16.14	. 1		$1 \cdot 32$
		425	14.45	\sim		$\begin{aligned} & 1.29 \\ & 1.27 \end{aligned}$
		3.75	12.74	"		
		3.24	11.00	* "		$\begin{aligned} & 1 \cdot 27 \\ & 1.24 \end{aligned}$
		2.72	9.24	"	"	1.22
BSEA $110 \times 4 \times 4$		5.445.03	18.48	-36	. 25	1.26
" 110	$1 \times 1 \times 16$		$17 \cdot 10$	"	"	1.24
" 110	$4 \times 4 \times 8$	$4 \cdot 61$	15.68	"	"	$1 \cdot 22$
" 110	$4 \times 4 \times 3$	4.18	14.2312.75	"	"	1.201.17
" 110	$4 \times 4 \times \frac{1}{2}$	3.75		"	"	
" 110	$4 \times 4 \times 78$	3.31	11.25		"	1.15
" 110	$4 \times 4 \times \frac{1}{8}$	2.86	$\begin{aligned} & 9.73 \\ & 8.17 \end{aligned}$	"		1.121.10
" 110	$4 \times 4 \times \frac{6}{16}$	2.40			"	
BSEA 109 " 109 $"$ 109 $" \prime$ 109 $" \prime$ 109 $" \prime$ 109 $" 1$ 109		3.99	13.55	. 33	. 23	1.09
		3.62	$\begin{aligned} & 12.31 \\ & 11.05 \end{aligned}$	"	${ }^{\prime \prime}$	1.07
		3.25			${ }^{\prime \prime}$	1.051.02
		2.87	$\begin{gathered} 11.05 \\ 9.76 \end{gathered}$	"	"	
		2.49	8.45	"	"	1.00
		2.09	$\begin{aligned} & 7.11 \\ & 5.74 \end{aligned}$	"	"	.97.95
		1.69				
BSEA 108 $" \prime$ 108 $\prime \prime$ 108 $\prime \prime$ 108 $\prime \prime$ 108 $\prime \prime$ 108		3.06	$\begin{array}{r} 10.40 \\ 9.35 \\ 8.28 \\ 7.17 \\ 6.04 \\ 4.00 \end{array}$	-30	. 21	.95.92
		2.75				
		2.43			"	. 80
		2.11				
		1.78 1.44			"	. 88

DORMAN, LONG \& CO., LIMITED							
EQUAL ANGLES Dimensions and Propertits							
Size and Thickness	Moment of Inertia			Radii of Gyration			Minimum Section Modulus About X-X
	$\begin{aligned} & \text { About } \\ & \mathbf{X}-\mathbf{x} \end{aligned}$	About	About	$\begin{aligned} & \text { About } \\ & \mathbf{X} \cdot \mathbf{X} \end{aligned}$	$\begin{gathered} \text { About } \\ \mathbf{U}-{ }^{2} \end{gathered}$	$\begin{aligned} & \text { About } \\ & \text { v-V } \end{aligned}$	
	11.08	17.47	4.68	$1 \cdot 34$	$1 \cdot 68$	$\cdot 87$	3.53
	10.34	16.34	$4 \cdot 33$	$1 \cdot 31$	$1 \cdot 69$	$\cdot 87$	330
	9.56	15.15	3.98	1.35	1.70	. 87	3.03
	8.76	1390	362	$1 \cdot 30$	1.71	. 87	2.75
	7.92	12.59	326	$1 \cdot 7$	1.72	. 88	2.47
	7.05	11.22	2.89	1.37	1.73	. 88	$2 \cdot 19$
	6.15	9.78	2.52	1.38	1.74	88	1.89
	$5 \cdot 21$	827	$2 \cdot 14$	1.38	1.75	. 89	1.59
	7.57	11.89	3.25	$1 \cdot 18$	1.48	. 77	2.77
	7.88	11.15	3.00	$1 \cdot 19$	1.49	.77	2.57
	6.56	10.37	2.76	1.19	1.50	$\cdot 77$	2.36
	6.02	9.54	2.51	1.20	1.51	$\cdot 77$	$2 \cdot 15$
	5.46	8.66	2.26	1.21	1.52	78	1.93
	4.87	7.74	2.00	1.21	1.53	.78	1.71
	4.26	6.77	1.75	1.22	1.54	.78	1.48
	3.61	5.74	1-48	1.23	1.55	.78	1.84
	$4 \cdot 27$	6.72	1.82	1.03	$1 \cdot 30$	$\cdot 68$	1.77
	3.93	6.20	1.65	1.04	$1 \cdot 31$. 68	$1 \cdot 62$
	3.57	$5 \cdot 65$	1.49	1.05	1.32	. 68	1.46
	3.20	$5 \cdot 07$	1.32	1.05	1.33	. 68	1.29
	2.80	4.45	1.15	1.06	1.34	. 68	1.12
	2.38	3.79	. 88	1.67	$1 \cdot 35$. 68	. 94
	1.94	3.09	. 80	1.07	1.35	. 69	$\cdot 76$
	2.39	3.75	1.02	. 88	$1 \cdot 11$. 58	1.16
	$2 \cdot 18$	3.44	. 92	. 89	1.12	. 58	1.05
	1.96	8.09	. 82	. 90	$1 \cdot 13$. 58	. 93
	1.72	2.73	. 71	. 90	$1 \cdot 14$	- 58	.81
	$1 \cdot 47$	2.33	. 60	. 91	1.15	. 58	. 68
	1.20	1.91	.49	.91	1.15	. 59	. 55

DORMAN, LONG \& CO., LIMITED								
 EQUAL ANGL Dimensions and Prop								
Reforence Mark		Size and Thickness A×B×t	Area sq.inches	Welght per foot lbs.	Radil		$\underset{j}{\text { Dimension }}$	
		Root r_{1}			$\begin{gathered} \text { Too } \\ \mathbf{r}_{2} \end{gathered}$			
BSEA	' 107		$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{2}$	2.25	7.65	$\cdot 27$	$\cdot 19$. 80
"		$21 \times 22 \times 18$	2.00	6.79	"	"	. 78	
"		$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{3}{6}$	1.73	5.90	"	1	. 75	
"		$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{5}{16}$	1.46	4.98	1	"	. 73	
"	107	$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{4}$	1.19	4.04	"	"	. 70	
BSEA	106	$23^{2} \times 24 \times 8$	1.55	5.26	$2 \dot{6}$	$\cdot 18$. 69	
"	106	$2 \frac{1}{4} \times 2 \frac{1}{4} \times \frac{5}{16}$	1.31	4.45	"	"	. 67	
"	106	$2 t \times 2 t \cdot x \frac{1}{4}$	1.06	3.61	"	"	. 64	
"	106	$2 \frac{1}{1} \times 24 \times \frac{3}{16}$.81	2.75	"	"	. 62	
BSEA	105	$2 \times 2 \times \frac{2}{8}$	1.36	4.62	. 24	$\cdot 17$. 63	
"	105	$2 \times 2 \times \frac{5}{16}$	1.15	3.92	"	"	. 61	
1	105	$2 \times 2 \times \frac{1}{4}$. 94	3.19	"	"	. 58	
0°	105	$2 \times 2 \times \frac{3}{16}$.71	$2 \cdot 43$	"	"	. 56	
BSEA	104	$18 \times 17 \times \frac{8}{18}$	1.00	3.39	. 23	-16	. 64	
"	104	$13 \times 1 \frac{13}{4} \times \frac{1}{4}$. 81	2.76	"	"	. 52	
1	104	$1 \frac{1}{4} \times 13 \times \frac{3}{16}$. 62	2.11	"	"	. 49	
BSEA	103	$1 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{5}{16}$. 84	2.85	.21	$\cdot 15$. 48	
"	103	$1 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{1}{4}$. 69	2.34	0	"	. 46	
"	103	$1 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{3}{16}$.53	1.79	"	"	. 43	
BSEA	102	$1 \frac{1}{4} \times 14 \times 1$. 56	1.91	. 20	$\cdot 14$. 40	
1"	102	$\begin{aligned} & 1 \frac{1}{1} \times 1 \frac{1}{4} \times \frac{3}{16} \\ & 1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{1}{2} \end{aligned}$	$\begin{aligned} & .43 \\ & .30 \end{aligned}$	$\begin{aligned} & 1.47 \\ & 1.01 \end{aligned}$	"	"	$.37{ }^{\prime}$	
"	102						.34	

DORMAN. LONG \& CO., LIMITED							
EQUAL ANGLES Dimensions and Properties							
Size and Thickness	Moment of inertia			Radil of Gyration			
	$\begin{aligned} & \text { About } \\ & \mathbf{X}-\mathbf{x} \end{aligned}$	About U.U	$\begin{aligned} & \text { About } \\ & \mathrm{V}-\mathrm{v} \end{aligned}$	$\begin{aligned} & \text { About } \\ & \mathbf{X}-\mathbf{X} \end{aligned}$	About U.U	About V-V	
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{2}$	1.21	1.89	$\cdot 52$	73	. 92	$\cdot 48$. 71
$2 \frac{1}{2} \times 2 \frac{1}{2} \times 10$	1.09	1.71	$\cdot 16$.74	. 93	. 48	. 63
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{\text { 籴 }}{}$. 96	1.52	40	. 74	. 94	. 48	. 55
$21 \times 2 \frac{1}{2} \times \frac{5}{16}$. 83	1.31	34	. 75	. 95	. 48	. 47
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{4}$. 68	1.08	. 28	76	. 95	. 49	. 38
$24 \times 24 \times 8$. 69	1.08	$\cdot 29$. 67	84	. 43	-44
$2 \frac{1}{6} \times 2 \frac{1}{4} \times \frac{6}{6}$. 59	. 94	. 25	67	. 85	.43	. 37
$2 \frac{1}{4} \times 2 \frac{1}{4} \times \frac{1}{4}$. 49	77	. 20	. 68	. 85	. 44	. 30
$2 \ddagger \times 2 \frac{1}{4} \times \frac{3}{16}$.38	. 60	.16	.68	. 86	. 44	. 23
$2 \times 2 \times 8$	$\cdot 47$.74	$\cdot 20$. 59	.74	.39	-34
$2 \times 2 \times \frac{5}{76}$. 40	64	17	59	75	- 38	- 29
$2 \times 2 \times \frac{1}{4}$. 34	. 53	14	. 60	.75	. 39	. 24
$2 \times 2 \times \frac{3}{16}$	26	. 41	11	. 60	76	. 39	. 18
$14 \times 18 \times 18$. 6	. 41	11	51	. 64	- 34	-22
$13 \times 14 \times \frac{1}{4}$. 22	. 35	. 09	. 52	. 65	- 34	. 18
$1 \frac{1}{4} \times 1 \frac{13}{4} \times \frac{3}{16}$.17	. 27	. 07	. 52	. 66	. 34	. 14
$12 \times 11 \times 3$	- 16	. 25	.07	41	. 55	-29	. 16
$1 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{1}{4}$. 13	.21	. 06	. 44	55	. 29	. 13
$1 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{3}{16}$	- 10	. 17	. 04	. 45	. 56	29	$\cdot 10$
$14 \times 14 \times 1$. 07	. 12	.03	$\cdot 36$	-43	- $2 \cdot$.09
$1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{3}{16}$. 06	. 09	. 02	. 37	. 46	. 24	. 07
$1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{1}{6}$. 04	. 06	. 02	$\cdot 37$. 47	. 24	. 05

SPECIAL EQUAL ANGLES Dimensions and Properties							
	Moment of Inertia			Radii of Gyration			$\underset{\substack{\text { Minimum }}}{\text { Section }}$
	About $\mathbf{X - X}$	About U.U	About $\mathbf{v}-\mathbf{v}$	$\underset{\text { About }}{\text { X-X }}$	About U.U	$\begin{aligned} & \text { About } \\ & V-v \end{aligned}$	
$12 \times 12 \times 1 \frac{1}{4}$	381.43	606.48	156.38	3.56	4.62	2.34	44.53
$12 \times 12 \times 1$	313.36	498.88	127.84	3.69	4.66	$2 \cdot 36$	36.17
$12 \times 12 \times \frac{7}{8}$	277.71	$442 \cdot 23$	113.19	3.70	4.67	2.36	31.87
$23 \times 24 \times 1$	1.64	2.59	.70	.81	1.02	. 53	.87
$2 \frac{3}{4} \times 2 \frac{1}{4} \times 1$	$1 \cdot 30$	2.07	. 54	.82	1.07	. 53	.67
$2 \frac{1}{4} \times 2 \frac{4}{4} \times \frac{1}{4}$. 92	1.46	$\cdot 38$. 84	1.05	. 54	. 46

DORMAN, LONG \& CO., LIMITED								
TEES Dimensions and Propert								
Reference Mark	Size and Thickness B<A<t	Area square inches	Weight per foot lbs	$\begin{gathered} \text { Root } \\ r_{1} \end{gathered}$	Toe r_{2}	$\begin{array}{\|c} \text { Centres } \\ \text { of } \\ \text { Holes } \\ \text { C } \end{array}$	Dia. of Rivet or Bolt	$\begin{array}{\|c} \text { Dimen- } \\ \text { sion } \\ j \end{array}$
BST 119	$6 \times 6 \times 5$	$7 \cdot 13$	2423	. 48	. 34	$3 \frac{1}{2}$	$\frac{1}{4}$	1.69
" 118	$6 \times 6 \times \frac{1}{2}$	5.77	19.62	. 48	. 34	31	"	1.63
" 117	$6 \times 4 \times 5$	$5 \cdot 88$	1999	. 42	. 29	$3 \frac{1}{2}$	"	1.02
1 116	$6 \times 4 \times \frac{1}{2}$	4.77	16.22	. 42	- 29	$3 \frac{1}{2}$	"	. 97
" 115	$6 \times 3 \times \frac{1}{2}$	4.27	1452	. 39	. 27	31	"	. 68
" 114	$6 \times 3 \times \frac{7}{8}$	3.26	11.08	. 39	. 27	$3 \frac{1}{2}$	"	. 63
" 113	$5 \times 4 \times \frac{1}{2}$	4.27	14.50	. 39	. 27	23	"	105
" 112	$5 \times 4 \times \frac{3}{8}$	3.25	11.06	. 39	. 27	23	"	1.00
" 1111^{-}	$5 \times 3 \times \frac{1}{2}$	3.77	12.80	. 36	. 25	23	"	. 74
" 110	$5 \times 3 \times \frac{7}{8}$	2.88	9.79	- 36	. 25	23	"	. 69
ì 109	$4 \times 4 \times \frac{1}{2}$	3.76	12.79	. 36	. 25	21	t	$1 \cdot 16$
" 108	$4 \times 4 \times$ 䂞	2.87	9.77	- 36	. 25	$2 \frac{1}{4}$	"	$1 \cdot 10$
" 107	$4 \times 3 \times \frac{1}{2}$	3.26	11.09	. 33	- 23	2 ${ }^{1}$	"	. 82
" 106	$4 \times 3 \times \frac{3}{8}$	2.50	8.49	. 33	- 23	21	1	. 77
" 105	$3 \times 3 \times \frac{3}{8}$	$2 \cdot 12$	7.20	. 30	-21	$1 \frac{1}{2}$	$\frac{1}{2}$. 87
- 104	$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{3}{8}$	1.74	5.92	-27	$\cdot 19$	13	3	. 75
" 103	$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{4}$	1.20	407	-27	$\cdot 19$	13	"	. 70
" 102	$2 \times 2 \times \frac{1}{4}$. 94	3.21	- 24	$\cdot 17$	18	$\frac{1}{4}$. 58
1101	$\frac{1}{1} \times 1 \frac{1}{2} \times \frac{1}{4}$.69	2.36	-21	$\cdot 15$	3	n	46

DORMAN, LONG \& CO., LIMITED						
TEES Dimensions and Properties						
Size and Thickness $B \times A \times t$	Moments of Inertia		Radil of Gyration		Section Modull	
	$\begin{aligned} & \text { About } \\ & \mathbf{X}-\mathbf{X} \end{aligned}$	About	$\begin{aligned} & \text { About } \\ & \text { X-X } \end{aligned}$	$\begin{aligned} & \text { About } \\ & \mathbf{Y - Y} \end{aligned}$	$\begin{aligned} & \text { About } \\ & \mathbf{X}-\mathbf{X} \end{aligned}$	About Y-Y
$6 \times 6 \times \frac{7}{8}$	23.31	1087	1.81	1.23	$5 \cdot 40$	$3 \cdot 62$
$6 \times 6 \times \frac{1}{2}$	19.04	8.56	1.82	1.22	4.36	2.85
$6 \times 4 \times \frac{7}{8}$	7.33	10.93	1.12	1.36	2.46	3.64
$6 \times 4 \times \frac{1}{2}$	607	8.64	1.13	1.35	2.00	2.88
$6 \times 3 \times \frac{1}{2}$	2.63	8.67	.78	1.42	1.14	2.89
$6 \times 3 \times \frac{3}{8}$	2.06	6.40	. 80	1.40	. 87	2.13
$5 \times 4 \times \frac{1}{2}$	5.77	5.02	1.16	1.09	1.96	2.01
$5 \times 4 \times 3$	4.47	3.70	$1 \cdot 17$	1.07	1.49	1.48
$5 \times 3 \times \frac{1}{2}$	2.51	5.04	.82	1.16	$1 \cdot 11$	2.01
$5 \times 3 \times 8$	1.97	3.72	. 83	1.14	. 85	1.49
$4 \times 4 \times \frac{1}{2}$	$5 \cdot 40$	2.59	1.20	.83	1.90	1.30
$4 \times 4 \times$ 乭	4.19	1.90	1.21	.81	1.45	. 95
$14 \times 3 \times \frac{1}{2}$	2.37	2.60	.85	. 89	1.08	1.30
$4 \times 3 \times \frac{8}{8}$	1.86	1.91	. 86	. 87	. 83	. 96
$3 \times 3 \times 8$	1.71	.81	. 90	.62	. 80	. 54
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{3}{1}$. 96	.47	. 74	. 52	. 55	. 38
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{4}$. 68	.30	. 75	. 50	. 38	. 24
$2 \times 2 \times \frac{1}{4}$. 34	$\cdot 16$. 60	.41	. 24	. 16
$1 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{1}{4}$	$\cdot 14$. 07	.44	.31	.13	. 09

DORMAN, LONG \& CO., LIMITED								
SPECIAL TEES Dimensions and Properties								
Reference Mark	Sixe and Thickness $\mathbf{B} \times \mathbf{A} \times \mathbf{t}$	$\begin{aligned} & \text { Area } \\ & \text { square } \\ & \text { Inches } \end{aligned}$	Weight per lbs.	Radii		$\begin{gathered} \text { Centres } \\ \text { of } \\ \text { Holes } \\ \text { C } \end{gathered}$	Dia. of Rivet or Bolt	$\begin{gathered} \text { Dimen- } \\ \text { sion- } \\ j \end{gathered}$
				$\begin{gathered} \text { Root } \\ \mathbf{r}_{1} \end{gathered}$	$\begin{gathered} \text { Toe } \\ \mathbf{r}_{\mathbf{g}} \end{gathered}$			
BST 21	$6 \times 4 \times 3$	363	12.36	. 43	. 30	$3 \frac{1}{2}$	$\frac{1}{4}$.92
- 13	$3 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{2}$	3.26	11.08	. 33	. 23	2	$\frac{1}{2}$	1.04
113	$3 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{7}{8}$	2.50	8.49	. 33	. 23	2	$\frac{1}{2}$. 99
111	$3 \times 3 \times \frac{1}{2}$	2.76	9.38	. 30	. 20	$1 \frac{1}{2}$	$\frac{1}{2}$. 92
NBST 5	$3 \times 3 \times \frac{5}{16}$	1.79	6.07	. 30	-21	$1 \frac{1}{2}$	$\frac{1}{2}$. 84
BST 10	$3 \times 2 \frac{1}{2} \times \frac{1}{2}$	2.51	8.52	. 28	- 20	$1 \frac{1}{3}$	$\frac{1}{1}$	74
110	$3 \times 2 \frac{1}{2} \times \frac{3}{8}$	1.93	6.56	. 28	- 20	$1 \frac{1}{2}$	$\frac{1}{2}$	70
NBST 4	$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{5}{16}$	1.47	$5 \cdot 00$. 27	$\cdot 19$	13	$\frac{7}{8}$.72
BST 7	$2 \frac{1}{4} \times 2 \frac{1}{4} \times \frac{7}{8}$	1.55	$5 \cdot 28$. 25	$\cdot 18$	12	7	. 69
17	$2 \frac{1}{4} \times 2 \frac{1}{4} \times \frac{1}{4}$	1.07	3.64	. 25	$\cdot 18$	$1 \frac{1}{4}$	-	. 64
NBST 3	$2 \times 2 \times \frac{3}{8}$	1.37	4.64	. 24	$\cdot 17$	1t	t	. 63
113	$2 \times 2 \times \frac{5}{16}$	$1 \cdot 16$	3.94	24	$\cdot 17$	$1 \frac{1}{6}$	$\frac{1}{4}$.60
DLT 6a	$2 \times 1 \frac{1}{2} \times \frac{3}{8}$	1.18	4.01	.23	. 15	1%	\pm	. 46
116	$2 \times 1 \frac{1}{2} \times \frac{1}{4}$. 82	2.79	. 23	15	18	$\frac{1}{1}$.41
BST 4	$1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{5}{16}$	1.00	3.40	23	$\cdot 15$	7	\ddagger	.54
114	$1 \frac{13}{4} \times 1 \frac{3}{4} \times \frac{1}{4}$. 82	2.79	.23	$\cdot 15$	1	\pm	. 52
4	$1 \frac{13}{4} \times 1 \frac{1}{4} \times \frac{3}{16}$.63	2.14	. 23	. 15	1	\downarrow	49
5	$1 \frac{1}{2} \times 2 \times \frac{5}{16}$	1.00	3.41	.23	$\cdot 15$	4	*	. 67
115	$1 \frac{1}{2} \times 2 \times \frac{1}{4}$. 82	2.79	.23	. 15	3	\pm	. 65
NBST 2	$1+\times 14 \times 3$. 53	1.81	. 21	.15	3	$\frac{1}{2}$	43

DORMAN, LONG \& CO., LIMITED						
SPECIAL TEES Dimensions and Prope						
Size and Thickness BxA.	Momente of Inercia		Radii of Gyration		Section Moduli	
	$\begin{aligned} & \text { About } \\ & \text { X-X } \end{aligned}$	About Y-Y	$\begin{aligned} & \text { About } \\ & \mathbf{x}-\mathbf{x} \end{aligned}$	About Y.Y	About X-X	About $\mathbf{Y}-\mathbf{Y}$
$6 \times 4 \times 1$	4.70	6.34	1.14	1.32	1.52	2.11
$3 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{2}$	3.54	1.75	1.04	. 73	1.44	1.00
$3 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{4}$	2.77	1.28	1.05	. 72	1.10	.73
$3 \times 3 \times \frac{1}{2}$	2.17	1.12	89	.64	1.04	.74
$3 \times 3 \times \frac{5}{16}$	1.46	.67	. 90	. 61	. 67	. 44
$3 \times 2 \frac{1}{2} \times \frac{1}{8}$	1.28	1.11	. 71	. 67	. 73	.74
$3 \times 2 \frac{1}{2} \times \frac{1}{8}$	1.02	.81	.73	. 65	. 56	. 54
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{16}$. 82	.39	. 75	. 51	. 46	. 31
$2 \mathrm{f} \times 2 \mathrm{t} \times \mathrm{f}$. 69	. 35	.66	. 47	. 44	.31
$2 \frac{1}{4} \times 2 \frac{1}{4} \times \frac{1}{4}$. 49	- 22	. 68	.46	. 30	- 20
$2 \times 2 \times \frac{1}{4}$. 47	. 25	. 59	.43	. 34	. 25
$2 \times 2 \times \frac{5}{16}$	-41	. 20	. 59	. 42	-29	. 20
$2 \times 1 \frac{1}{2} \times 1$	- 20	. 25	. 41	. 46	.19	. 25
$2 \times 1 \frac{1}{2} \times \frac{1}{4}$. 15	. 16	.43	. 44	.14	.16
$14 \times 1 \frac{18}{13} \times 18$. 27	. 14	. 52	.37	. 22	.16
$13 \times 14 \times 1$	- 22	. 11	. 52	.36	$\cdot 18$. 12
$12 \times 14 \times 18$	$\cdot 17$. 08	. 52	.35	$\cdot 14$. 09
$1 \frac{1}{2} \times 2 \times 18 \times \frac{8}{16}$.37	. 09	.61	. 30	. 28	$\cdot 12$
$1 \frac{1}{2} \times 2 \times \frac{1}{4}$.31	. 07	.61	. 29	.23	. 09
$1+\times 1+\times$ t	.11	. 05	.45	.30	$\cdot 10$. 07

Weldless Steel Tubes-Moments of Inertia.

Calculated from data supplied by Accles \& Pollock, Birminyham.
From p. 213, $I=\frac{\pi}{64}\left(D^{4}-d^{4}\right)$ for bending. Values of I in inch ${ }^{4}$.

Thickness.		External Diameter in Inches.							
I.s.w.a.	Inch.	1	1	1	1	1	11	1)	18
26	. 018	. 0008	. 0016	. 0028	. 0045	. 0067	. 0096	0132	0177
25	- 020	. 0009	-0017	. 0031	-0049	. 0074	-0106	. 0146	. 0195
24	. 022	. 0009	-0019	. 0033	. 0054	-0081	-0116	. 0160	-0214
23	. 024	. 0010	. 0020	. 0036	. 0058	-0088	. 0126	. 0174	. 0232
22	. 028	. 0012	. 0023	. 0041	-0067	. 0101	- 0145	. 0201	. 0269
21	. 032	-0013	- 0026	. 0047	. 0075	. 0114	. 0164	. 0227	. 0305
20	. 036	-0014	- 0029	. 0052	. 0084	-0127	-0183	. 0253	. 0340
19	. 040	. 0015	. 0032	-0056	- 0092	. 0139	. 0201	. 0279	-0374
18	. 048	. 0018	. 0036	. 0066	. 0107	-0163	. 0236	. 0328	0441
17	. 056	. 0020	. 0041	. 0074	- 0121	-0186	. 0269	. 0375	. 0506
	$\frac{1}{10}$. 0021	. 0044	. 0080	. 0132	. 0203	. 0295	. 0412	. 0556
16	. 064	. 0021	. 0045	. 0082	. 0135	- 0207	. 0301	. 0420	. 0568
15	. 072	. 0023	-0049	- 0089	- 0148	- 0227	. 0332	. 0464	. 0627
14	. 080	-0024	. 0052	-0096	. 0159	-0246	. 0361	. 0506	. 0685
13	. 092	. 0026	. 0056	. 0105	- 0176	. 0273	. 0401	. 0565	. 0767
	$\frac{3}{32}$. 0026	. 0057	. 0106	. 0178	. 0277	. 0407	. 0573	- 0778
12	-104	. 0027	. 0060	. 0113	. 0191	. 0298	. 0439	. 0620	. 0844
11	- 116	. 0028	. 0063	- 0120	. 0204	- 0320	. 0474	- 0671	. 0917
	$\frac{1}{8}$. 0029	- 0065	- 0125	- 0213	. 0336	- 0499	. 0708	. 0968
10	-128	-0029	. 0066	. 0126	- 0216	. 0340	- 0506	. 0719	. 0985
9	- 144	. 0030	. 0069	. 0133	- 0229	. 0365	. 0545	. 0778	-1089
	${ }^{8}$. 0030	. 0070	. 0137	- 0239	. 0381	. 0572	. 0819	- 1129
8	-160	. 0030	-0071	- 0139	. 0241	. 0386	. 0580	. 0831	- 1147
7	-176	. 0030	-0072	. 0143	. 0251	. 0404	. 0611	- 0879	-1217
. .	${ }^{8} 8$. 0031	. 0073	- 0146	- 0257	- 0416	. 0631	. 0911	- 1264
6	-192	. 0031	. 0073	. 0147	. 0259	. 0420	. 0638	- 0922	- 1281
5	. 212	. 0031	-0074	- 0150	- 0267	. 0437	. 0668	. 0970	-1353
	$\frac{7}{53}$		-0074	- 0151	-0270	- 0442	. 0677	-0984	1375
4	-232	\cdots	. 0075	. 0152	. 0274	. 0450	. 0693	- 1011	-1417
.	t	\cdots	. 0075	. 0153	- 0278	. 0460	. 0711	- 1043	-1467

Weldless Steel Tubes-Moments of Inertia (continued).

Thickness.		External Dameter in Inches.							
I.s.w.a.	Inch.	11	11	14	12	2	${ }^{21}$	${ }^{21}$	${ }^{24}$
26	. 018	0230	0293	. 0367	. 0453	0550	. 0661	. 0786	$\cdot 1081$
25	. 020	. 0255	. 0325	- 0407	. 0501	0610	. 0733	-0871	$\cdot 1198$
24	-022	- 0279	- 0356	. 0446	. 0550	-0669	. 0804	. 0956	-1315
23	. 024	-0303	. 0387	- 0485	. 0598	. 0727	. 0874	-1040	$\cdot 1431$
22	. 028	- 0351	. 0448	-0562	. 0693	0843	-1014	-1206	-1661
21	-032	. 0398	- 0508	- 0637	. 0787	0958	- 1152	$\cdot 1371$	-1889
20	. 036	. 0444	- 0567	. 0712	. 0880	1071	-1289	-1535	2115
19	- 040	- 0489	-0626	. 0786	-0971	-1183	- 1424	-1696	-2339
18	- 048	-0578	. 0740	. 0930	-1150	1403	- 1690	2014	-2780
17	. 056	-0663	. 0850	- 1070	- 1325	-1617	-1949	- 2324	-3212
	${ }^{2}$	-0730	. 0938	- 1181	- 1463	1787	- 2155	- 2571	- 3557
16	-064	-0746	. 0958	-1206	- 1495	1826	-2202	-2628	- 3636
15	. 072	- 0825	- 1061	- 1338	- 1660	2029	-2450	- 2924	$\cdot 4051$
14	. 080	-0902	-1162	- 1467	-1821	2227	-2691	-3215	-4457
13	-092	-1013	- 1306	- 1652	-2053	2515	-3042	-3637	-5052
	3^{3}	- 1028	-1327	- 1678	- 2086	2556	- 3092	-3698	-5137
12	-104	1117	-1444	- 1829	-2276	2792	-3380	-4046	. 5628
11	$\cdot 116$	-1216	- 1575	-1997	-2490	3058	-3706	-4440	. 6187
	${ }^{8} 8$	-1287	-1668	- 2119	-2644	3250	-3942	-4727	-6594
10	$\cdot 128$	-1309	-1699	- 2158	- 2694	3313	-4020	-4820	$\cdot 6728$
9	$\cdot 144$	- 1426	- 1854	- 2361	-2953	3637	-4419	- 5307	$\cdot 7423$
	${ }^{-3}$	-1509	- 1966	-2508	. 3141	-3873	-4712	-5663	. 7935
8	-160	- 1533	- 1999	-2551	- 3197	-3944	-4799	- 5770	-8088
7	-176	-1632	-2134	-2729	- 3426	-4233	-5159	- 6210	. 8725
	${ }^{\text {\% }}$	- 1699	- 2224	-2849	-3582	- 4431	. 5405	. 6514	. 9165
6	-192	- 1724	- 2259	- 2895	-3641	- 4506	- 5499	- 6629	. 9334
5	$\cdot 212$	-1827	-2402	- 3086	-3891	-4826	. 5900	. 7123	1.0057
	${ }^{7}$	-1859	- 2447	-3147	-3971	-4928	-6029	. 7283	1.0292
4	-232	-1920	2531	- 3261	- 4121	- 5122	-6273	-7586	1.0740
	\downarrow	-1994	- 2637	-3405	-4312	- 5369	-6587	. 7977	1-1321

Atomic Weights, 1987.

(The Chemical Society, London.)

Element.	Symbol.	At. No.	Atomic Weight.	Element.	Symbol.	$\begin{aligned} & \text { At. } \\ & \text { No. } \end{aligned}$	Atomic Weight.
Aluminium	AI	13	26.97	Neon	Ne	10	20.183
Antimony	Sb	51	121.76	Nickel	N1	28	58.69
Argon .	A	18	$39 \cdot 944$	Niobium	$\mathrm{Nb},\}$	41	92.91
Arsenic.	As	33	74.91	(Columbium)	$(\mathrm{Cb})\}$	41	82.91
Barium	Ba	56	$137 \cdot 36$	Nitrogen .	N	7	$14 \cdot 008$
Beryllium	Be	4	$9 \cdot 02$	Osmium	Os	76	191.5
Bismuth	Bi	83	$209 \cdot 00$	Orygen	0	8	$16 \cdot 0000$
Boron	B	5	$10 \cdot 82$	Palladium	Pd	46	106.7
Bromine	Br	35	79.916	Phosphorus	P	15	31.02
Cadmium	Cd	48	$112 \cdot 41$	Platinum	Pt	78	195.23
Cxsium	Cs	55	132.91	Potassium	K	19	39.096
Calcium	Ca	20	40.08	Praseodymium	Pr	59	140.92
Carbon .	0	6	12.01	Protoactinium	${ }^{\mathrm{Pa}}$	91	231
Cerium .	Ce	58	$140 \cdot 13$	Radium	Ra	88	226.05
Chlorine	Cl	17	35.457	Radon	Rn	86	222
Ohromium	Cr	24	52.01	Rhenium	Re	75	186.31
Cobalt .	00	27	58.94	Rhodium	Rh	45	102.91
Copper	Cu	29	63.57	Rubidium	Rb	37	85.48
Dysprosium	Dy	66	$162 \cdot 46$	Ruthenium	Ru	44	101.7
Erbium	Fr	68	$167 \cdot 64$	Samarium	Sm	62	150.43
Europium	Fu	63	152.0	Scandium	Sc	21	$45 \cdot 10$
Fluorine	F	9	$19 \cdot 00$	Selenium	Se	34	78.96
Gadolinium	Gd	64	156.9	Silicon .	Si	14	28.06
Gallium	(${ }^{\text {a }}$	31	69.72	Silver	Ag	47	107.880
Germanium	Ge	32	72.60	Sodium	Na	11	22.997
Gold	Au	79	197.2	Strontium	Sr	38	$87 \cdot 63$
Hafnium	Hf	72	$178 \cdot 6$	Sulphur	S	16	32.06
Helium .	He	2	$4 \cdot 002$	Tantalum	Ta	73	180.88
Holmium	Ho	67	$163 \cdot 5$	Tellurium	Te	52	$127 \cdot 61$
Hydrogen	H	1	$1 \cdot 0078$	Terbinm	Tb	65	159.2
Indium .	In	49	114.76	Thallium	Tl	81	204-39
Iodine	I	53	126.92	Thorium	Th	90	$232 \cdot 12$
Iridium	Ir	77	$193 \cdot 1$	Thulium	Tm	69	$169 \cdot 4$
Iron	Fe	26	55.84	Tin	Sn	50	118.70
Krypton	$\mathrm{Kr}^{\text {r }}$	36	83.7	Titanium	Ti	22	+7.90
Lanthanum	La	57	138.92	Tungsten	W	74	$184 \cdot 0$
Lead	Pb	82	207.21	Uranium	\mathbf{U}	92	$238 \cdot 07$
Lithinm	\underline{L}	3	$6 \cdot 940$	Vanadium	V	23	50.95
Lutecium	Lu	71	175.0	Xenon.	Xe	64	131.8
Magnesium	$\mathrm{Mg}^{\mathrm{Mg}}$	12	24.32	Ytterbium	$\underset{\mathbf{Y}}{ }$	70	173.04
Manganese	$\mathrm{Mn}^{\mathbf{M g}}$	25	54.93	Yttrium	Y	39	88.92
Mercury	Hg	80	$200 \cdot 61$	Zinc	Zn	30	65.38
Molybdenum	Mo	42 60	$\begin{gathered} 96 \cdot 0 \\ 144 \cdot 27 \end{gathered}$	Zirconium	Zr	40	91-22

Specific Gravity.-The specific gravity of a substance (solid or liquid) is the ratio of the weight of a given volume of the substance to the weight of an equal volume of pure water. The specific gravity of a gas is generally given in terms of air or hydrogen.

Weight of Materials. Metals and Alloys.

Material.	Specifle Giavity.	$\begin{aligned} & \text { Weight in Lbss } \\ & \text { of one } \end{aligned}$ Cubic Ft /r'ubic In.		Cubic In. mone Lb.
Aluminium, cast	2.569	160	$\cdot 093$	$10 \cdot 80$
wrought	$2 \cdot 681$	167	$\cdot 097$	$10 \cdot 35$
bronze	7.787	485	$\cdot 281$	3:56
Antimony	6712	418	-242	$4 \cdot 13$
Arsenic .	5.748	358	$\cdot 207$	$4 \cdot 83$
Bismuth.	98827	612	$\cdot 354$	$2 \cdot 82$
f from	7×688	490	284	3.53
Brass, cast . . to	¢ 4330	525	-304	$3 \cdot 29$
(average	${ }^{8} \cdot 109{ }^{\prime}$	505	-292	$3 \cdot 42$
,, Muntz-metal . .	8.221	512	$\cdot 296$	$3 \cdot 37$
", naval (rolled)	$8 \cdot 510$	530	-307	$3 \cdot 26$
", sheet	$8 \cdot 462$	527	$\cdot 305$	$3 \cdot 28$
", wire	${ }_{8}^{8.558}$	533	$\cdot 308$	$3 \cdot 94$
Brone (gun-metal) $\left\{\begin{array}{l}\text { from }\end{array}\right.$	8.178	528	-306	$3 \cdot 27$
Bronze (gun-metal) $\{$ to .	8.863	552	-319	$3 \cdot 13$
Coper cast average	$8 \cdot 735$	544	-315	$3 \cdot 18$
Copner, cast .	$8 \cdot 622$	537	:311	$3 \cdot 22$
" hammered	$8 \cdot 927$	556	-322	$3 \cdot 11$
" sheet	8×15	549	:318	$3 \cdot 15$
wire	$8 \cdot 895$	554	:321	$3 \cdot 12$
Gold (pure)	19:316	1203	-696	$1 \cdot 44$
,, standard 22 carat fine (Gold 11, copper 1)	17.502	1090	$\cdot 631$	$1 \cdot 59$
from	$6 \cdot 904$	430	$\cdot 249$	$4 \cdot 02$
Iron, cast . . to	$7 \cdot 386$	460	$\cdot 266$	$3 \cdot 76$
average	7.209	449	$\cdot 260$	$3 \cdot 85$
Iron, from	$7 \cdot 547$	470	$\cdot 272$	$3 \cdot 68$
Iron, wrought. . to	$7 \cdot 803$	486	$\cdot 2 \times 1$	$3 \cdot 56$
(average	7.707	480	$\cdot 278$	$3 \cdot 60$
Lead, cast	11.368	708	$\cdot 410$	$2 \cdot 44$
M, sheet	$11 \cdot 432$	712	$\stackrel{-412}{ }$	$2 \cdot 43$
Manganese	$8 \cdot 012$	499	$\cdot 289$	$3 \cdot 46$
Nickel, cast	8.285	516	'299	$3 \cdot 35$
, , rolled.	8.687	541	-313	3•19
Platinum	21.516	1340	$\cdot 775$	$1 \cdot 29$
Silver	10.517	655	-379	$2 \cdot 64$
Stel from	7×20	487	-282	$3 \cdot 55$
Steel . . . to	7.916	493	-285	3.51
Tin. ${ }^{\text {average }}$	$7 \cdot 868$	490*	$\cdot 284$	3.53
White metal (Babitt's)	$7 \cdot 418$	462	$\cdot 267$	$3 \cdot 74$
Winc, metal (Babbitt's)	$7 \cdot 322$	456	-264	$3 \cdot 79$
Zinc, cast	$6 \cdot 872$	428	-248	4.04 3.85
"] sheet	7209	449	-260	$3 \cdot 85$

- A widely accepted value is 489.6 lb . per cu. th.

Weight of Materials.
Woods (Dry).

Material.	$\begin{gathered} \text { Weight } \\ \text { in Lbs. } \\ \text { of One } \\ \text { cub. Foot. } \end{gathered}$	Material.	$\begin{gathered} \text { Weight } \\ \text { in Lbs. } \\ \text { of One } \\ \text { Cub. Foot. } \end{gathered}$
Ash	43-53	Larch .	31-37
Beech	43-53	Lignum-vitæ	83
Birch	40-46	Mahogany, Honduras .	35
Boxwood.	57-83	, ${ }^{\text {Spanish }}$	53
Cork	15	Oak, American red	54
Ebony	70-83	, English .	48-58
Elm	34-45	Pine, red .	30-44
Fir, spruce	30-44	white	27-34
Greenheart	70	yellow	29-41
Hornbeam	47	Teak	41-55
stones, Earths, etc.			
Asphaltum	64-112	Grindstone .	134
Brick, common	100-125	Lime, quick	52
, fire	137-150	Limestones andmarbles	150-179
Cement, Portland	80-90	Mortar, hardened	88-118
Clay	120	Mud, dry and close	80-110
Concrete.	120-140	", wet and fluid	104-120
Earth	77-120	Sand, dry	88-110
Glass, crown	156	S", wet	118-129
, flint	187	Sandstone -	130-170
Granite plate	${ }_{164-175}$	Victoriastone(crushed	
Granite Gravel	$\begin{array}{r} 164-175 \\ 90-125 \end{array}$	granite, Portland cement, silica)	\} 144
Miscellaneous Substances.			
Bone	119	Ivory	117
Grain, barley	40	Lard	59.2
,, oats	33	Leather	60
, wheat	50	Rosin .	69
Guttapercha	61	Sulphur	125
Ice	$57 \cdot 4$	Tallow	58
Indiarubber	58	Wax	$60 \cdot 5$

Specific Gravity and Bulk of Coal.
Anthracite coal has a specific gravity varying from $1 \cdot 3$ to $1 \cdot 8$, and a ton stowed in the ordinary way occupies from 40 to 45 cubic feet.

Bituminous coal has a specific gravity varying from 1.2 to $1 \cdot 5$, and the bulk of one ton is from 43 to 48 cubic feet.

Relative Weights of Metals.

Metal.	Weight of One Inch.	Relative Weights.					
		$\begin{array}{\|c\|c\|} \text { Alum } \\ \text { num } \end{array}$	$\begin{aligned} & \text { Cast- } \\ & \text { iron } \end{aligned}$	Wrought-	$\stackrel{\text { Steel }}{=1}$	Brass	Copper
$\overline{\text { Aluminium }}$	${ }^{\circ} \mathrm{O97}$	1.000	:373	349	342	$\cdot 318$	-305
Cast-iron	$\cdot 260$	$2 \cdot 680$	1.000	. 935	$\cdot 915$	-852	-818
Wrought-iron	$\cdot 278$	$2 \cdot 866$	1.069	1.000	-979	$\cdot 911$	-874
Steel	-284	2.928	1.092	$1 \cdot(22$	1.000	-931	-893
Brass	-305	3 144	1-173	$1 \cdot 097$	$1 \cdot 074$	1.000	$\cdot 959$
Copper	-318	3×278	1-223	$1 \cdot 144$	$1 \cdot 120$	1.043	1.000
Lead	-412	4247	$1 \cdot 585$	$1 \cdot 482$	$1 \cdot 451$	$1 \cdot 351$	1.296

Weight of Square Wrought-iron Bars in Lbs. per Foot of Length.

$\mathbf{S}=$ side of square in inches.
Weight of bar per foot of length, in lbs. $=3.336 \mathbf{S}^{2}$.
The weight of a cubic inch of wrought-iron is taken as 278 lb .

S	-	1/8	$\overline{1} / 4-3 / 8$		[1/2 ${ }^{1 / 8 / 8}$			$\frac{7 / 8}{2.554}$
0		$\bigcirc 0521$	2085	-4691	-8340	1.303	$1 \cdot 87 \overline{6}$	
1	$3 \cdot 336$	$4 \cdot 222$	$5 \cdot 212$	$6 \cdot 307$	$7 \cdot 506$	8.809	$10 \cdot 22$	11.73
2	$13 \cdot 34$	15.06	16.89	18.82	20.85	22.99	25.23	27-57
3	$30 \cdot 02$	32.58	35.24	$38 \cdot 00$	$40 \cdot 87$	$43 \cdot 84$	46:91	50.09
4	$53 \cdot 38$	56.76	60.26	63.85	67.55	$71 \cdot 36$	$75 \cdot 27$	79.28
5	$83 \cdot 40$	$87 \cdot 62$	$91 \cdot 95$	96.38	$100 \cdot 9$	$105 \cdot 6$	$110 \cdot 3$	$115 \cdot 1$
6	$120 \cdot 1$	125.2	$130 \cdot 3$	135.6	$140 \cdot 9$	146.4	152.0	157.7
7	$163 \cdot 5$	$169 \cdot 4$	$175 \cdot 3$	181.4	187.6	194.0	$200 \cdot 4$	$206 \cdot 9$
8	213:5	$220 \cdot 2$	$227 \cdot 1$	234.0	241.0	248.2	255.4	$262 \cdot 8$
9	$270 \cdot 2$	$277 \cdot 8$	$285 \cdot 4$	293.2	$301 \cdot 1$	309.0	317.1	$325 \cdot 3$

Weight of Square Steel Bars in Lbs. per Foot of Length.
\mathbf{S} = side of square in inches
Weight of bar per foot of length, in lbs. $=3 \cdot 408 \mathbf{S}^{2}$.
The weight of a cubic inch of steel is taken as 284 lb .

S	$\cdot 0$	1/8	1/4	3/8	1/2	5/8	$3 / 4$	7/8
0		-0532	$\bigcirc 130$	${ }^{-4792}$	8520	$1 \cdot 331$	1.917	2609
1	$3 \cdot 408$	4.313	$5 \cdot 325$	$6 \cdot 443$	$7 \cdot 668$	8:999	$10 \cdot 44$	$11 \cdot 98$
2	13.63	$15 \cdot 39$	17.25	$19 \cdot 22$	$21 \cdot 30$	$23 \cdot 48$	$25 \cdot 77$	$28 \cdot 17$
3	$30 \cdot 67$	$33 \cdot 28$	3600	38.82	41.75	44.78	47.92	$51 \cdot 17$
4	$54 \cdot 53$	57.99	61.56	65.23	69.01	72.90	76.89	80.99
5	85.20	89.51	93.93	98.46	$103 \cdot 1$	$107 \cdot 8$	1127	117.6
6	1227	$127 \cdot 9$	$133 \cdot 1$	138.5	144.0	149.6	$155 \cdot 3$	$161 \cdot 1$
7	167.0	173.0	$179 \cdot 1$	185.4	191.7	$198 \cdot 1$	204.7	$211 \cdot 3$
8	218.1	225.0	$232 \cdot 0$	239.0	246.2	$253 \cdot 5$	$260 \cdot 9$	$268 \cdot 4$
9	276.0	$283 \cdot 8$	291.6	299.5	307.6	315.7	324.0	$332 \cdot 3$

Weight of Round Wrought-iron Bars in Libs. per Foot of Length.

$\mathrm{D}=$ diameter of bar in inches.
Weight of bar per foot of length, in lbs. $=262 \mathrm{D}^{2}$.
The weight of a cubic inch of wrought-iron is taken as 278 lb .

D	()		1/4	3/8	1/2	5/8	$3 / 4$	7/8
0		. 0409	$\cdot 1638$	$\cdot 3684$	$\cdot 6550$	1023	1.474	$2 \cdot 006$
1	$2 \cdot 620$	$3 \cdot 316$	$4 \cdot 094$	4.953	$5 \cdot 895$	$6 \cdot 918$	8-024	$9 \cdot 211$
2	$10 \cdot 48$	11.83	$13 \cdot 26$	$14 \cdot 78$	$16 \cdot 37$	18.05	1981	$21 \cdot 66$
3	23.58	$25 \cdot 59$	$27 \cdot 67$	$29 \cdot 84$	3209	$34 \cdot 43$	$36 \cdot 84$	$39 \cdot 34$
4	41.92	$44 \cdot 58$	$47 \cdot 32$	$50 \cdot 15$	$53 \cdot 05$	$56 \cdot 04$	$59 \cdot 11$	62:27
5	65:50	$68 \cdot 82$	$72 \cdot 21$	$75 \cdot 69$	$79 \cdot 25$	82.90	$86 \cdot 62$	$90 \cdot 43$
6	$94 \cdot 32$	98.29	$102 \cdot 3$	$106 \cdot 5$	$110 \cdot 7$	1150	$119 \cdot 4$	1238
7	128.4	$133 \cdot 0$	$137 \cdot 7$	$142 \cdot 5$	$147 \cdot 4$	$152 \cdot 3$	$157 \cdot 4$	$162 \cdot 5$
8	$167 \cdot 7$	1730	178:3	$18: 3 \cdot 8$	$189 \cdot 3$	194.9	$200 \cdot 6$	2064
9	$212 \cdot 2$	218*2	221.2	$230 \cdot 3$	2:36.5	242.7	$249 \cdot 1$	255.5
10	$262{ }^{\circ}$	268.6	275:3	$282 \cdot 0$	288.9	2958	$302 \cdot 8$	309.9
11	317.0	$324: 3$	$331 \cdot 6$	$339 \cdot 0$	$346 \cdot 5$	$354 \cdot 1$	361.7	$369 \cdot 5$
12	$377 \cdot 3$	$385 \cdot 2$	$393 \cdot 2$	$401 \cdot 2$	$409 \cdot 4$	$417 \cdot 6$	425 9	$434 \cdot 3$
13	$442 \cdot 8$	451:3	$460 \cdot 0$	4687	477\%	$486 \cdot 4$	$495 \cdot 3$	$504 \cdot 4$
14	$513 \cdot 5$	$522 \cdot 7$	532.0	$541 \cdot 4$	550:9	$560 \cdot 4$	570.0	$579 \cdot 7$

Weight of Round Steel Bars in Lbs. per Foot of Length.

$D=$ diameter of bar in inches.
Weight of bar per foot of length, in lbs. $=2 \cdot 6766 \mathrm{D}^{2}$.
The weight of a cubic inch of steel is taken as 284 lb .

D	0	1/8	1/4			5/8	$3 / 4$	7/8
0		. 0418	1673	3764	'6692	1.046	$1 \cdot 506$	$2 \cdot 049$
1	2.677	$3 \cdot 387$	4-182	$5 \cdot 060$	$6 \cdot 022$	7.068	$8 \cdot 197$	$9 \cdot 410$
2	10.71	12.09	$13 \cdot 55$	$15 \cdot 10$	16.73	18.44	20.24	$22 \cdot 12$
3	24.09	$26 \cdot 14$	$28 \cdot 27$	$30 \cdot 49$	32.79	3517	$37 \cdot 64$	40•19
4	42.83	$45 \cdot 54$	$48 \cdot 35$	51.23	5420	57.25	$60 \cdot 39$	$63 \cdot 61$
5	66.91	$70 \cdot 30$	73.77	$77 \cdot 33$	80.97	84.69	$88 \cdot 50$	92-38
6	$96 \cdot 36$	$100 \cdot 4$	104.6	108.8	$113 \cdot 1$	117.5	122.0	$126 \cdot 5$
7	131.2	$135 \cdot 9$	$140 \cdot 7$	145.6	$150 \cdot 6$	155.6	$160 \cdot 8$	$166 \cdot 0$
8	171.3	176.7	182.2	$187 \cdot 7$	$193 \cdot 4$	$199 \cdot 1$	$204 \cdot 9$	$210 \cdot 8$
-	216.8	$222 \cdot 9$	229.0	$235 \cdot 2$	241.6	248.0	$254 \cdot 4$	261.0
10	$267 \cdot 7$	$274 \cdot 4$	$281 \cdot 2$	$288 \cdot 1$	$295 \cdot 1$	$302 \cdot 2$	$309 \cdot 3$	316.5
11	323.9	$331 \cdot 3$	338.8	$346 \cdot 3$	$354 \cdot 0$	361.7	$369 \cdot 5$	$377 \cdot 4$
12	$385 \cdot 4$	$393 \cdot 5$	401.7	$409 \cdot 9$	418.2	426.6	$435 \cdot 1$	$443 \cdot 7$
13	452.3	$461 \cdot 1$	$469 \cdot 9$	478.8	$487 \cdot 8$	$496 \cdot 9$	$506 \cdot 0$	$515 \cdot 3$
14	524.6	534.0	$543 \cdot 5$	553.1	562.8	572.5	$582 \cdot 3$	$592 \cdot 2$

Weight of Flat Wrought-iron Bars in Lbs. per Foot of Length.

Weight per foot of length $=$ width \times thickness $\times 3.336$.
The width and thickness are both in inches.
The weight of a cubic inch of wrought-iron is taken as 278 lb .

Width	Thickness in Fractions of an Inch.							
Ins.	1/16, $1 / 8$	1/4	3/8	1/2	5/8	3/4	7/8	1
	-104 208	-417	625	834	1042	$1 \cdot 251$	$1 \cdot 459$	$1 \cdot 668$
$\stackrel{8}{8}$	-130 2661	-521	$\cdot 782$	1042	$1 \cdot 30: 3$	$1 \cdot 564$	1.824	2.085
	-156 313 142 -315	-625	-938	$1 \cdot 251$	1.564	$1 \cdot 876$	$2 \cdot 189$	$2 \cdot 502$
${ }_{8} 7$	-182 365	730	1.095	$1 \cdot 459$	1.824	2-189	$2 \cdot 554$	2:919
1	-20\% 417	-834	1.251	$1 \cdot 668$	$2 \cdot(185$	2.502	$2 \cdot 919$	$3 \cdot 336$
$1{ }_{8}^{1}$	-235 ${ }^{2} \mathbf{4 6 9}$	-938'	$1 \cdot 407$	1.876	2:346	$2 \cdot 815$	$3 \cdot 284$	$3 \cdot 753$
1	261.521	1.042	1.561	$2 \cdot 050$	2 -610t	$3 \cdot 127$	$3 \cdot 649$	$4 \cdot 170$
$1 \frac{3}{8}$	-287 573	$1 \cdot 147$	1.720	$2 \cdot 293$	$2 \cdot 867$	$3 \cdot 440$	$4 \cdot 014$	4.587
$1 \frac{1}{2}$	-313 -625	1.2.51	1×76	2:502	$3 \cdot 127$	$3 \cdot 753$	4:378	5.004
15	-339 ${ }^{\text {•678 }}$	$1 \cdot 355$	$2 \cdot(33$	2.710	33×8	4.066	$4 \cdot 743$	$5 \cdot 421$
19	-36: 730	$1 \cdot 159$	$2 \cdot 189$	$2 \cdot 919$	$3 \cdot 649$	$4 \cdot 378$	$5 \cdot 108$	
	$\cdots 391$	1.564	$2 \cdot 346$	$3 \cdot 127$	$3 \cdot 909$	4-691	$5 \cdot 473$	6.255
2	-417 ${ }^{4631}$	1.668	$2 \cdot 502$	$3 \cdot 336$	$4 \cdot 170$	5.004	5838	6.672
21	-469 938	1.876	$2 \cdot 815$	$3 \cdot 753$	$4 \cdot 691$	$5 \cdot 629$	6.568	7.506
$2 \frac{1}{2}$	-521 1.042	2.085	$3 \cdot 127$	4-170	$5 \cdot 212$	$6 \cdot 255$	7"297	$8 \cdot 340$
23	$\cdot 573$ 1-147	$2 \cdot 293$	$3 \cdot 440$	$4 \cdot 587$	5.734	6.880	$8 \cdot 027$	9•174
3	${ }^{6} 625$ 1-251	2.502	$3 \cdot 753$	5.004	6.255	$7 \cdot 506$	8.757	$10 \cdot 008$
31	$\cdot 678$ 1-355	2.710	4.066	$5 \cdot 421$	6.776	$8 \cdot 131$	$9 \cdot 487$	$10 \cdot 842$
$3 \frac{1}{2}$	$\cdot 730 \mid 1 \cdot 459$	$2 \cdot 919$	$4 \cdot 378$	$5 \cdot 838$	$7 \cdot 297$	$8 \cdot 757$	$10 \cdot 216$	$11 \cdot 676$
$3{ }_{4}^{3}$	782 1.564	3.127	4.691	6.255	$7 \cdot 819$	$9 \cdot 382$	10.946	12.510
4	-834 1-668	$3 \cdot 336$	5.004	6.672	$8 \cdot 3401$	10.00	11.6	3.344
44	-886 1-772	$3 \cdot 544$	$5 \cdot 317$	7.089	8.861	10.633	$12 \cdot 4$	$14 \cdot 178$
$4 \frac{1}{2}$	-938 9 1-876	3.753	$5 \cdot 629$	7.506	$9 \cdot 382$	11.259	$13 \cdot 135$	15.012
$4{ }^{3}$	990 1.981	3.961	$5 \cdot 942$	$7 \cdot 923$	$9 \cdot 9041$	11.88	$13 \cdot 865$	$15 \cdot 846$
51	$1 \cdot 042{ }^{-085}$	$4 \cdot 170$	$6 \cdot 255$	8.340	51	12	14:595	
$5 \frac{1}{2}$	$1 \cdot 147$ 2.293	$4 \cdot 587$	6.880	$\cdot 174$	$11 \cdot 467$.76	16.054	$18 \cdot 348$
6	1.251 2.502	5.004	$7 \cdot 5061$	$10 \cdot 008$	$12 \cdot 5101$	15.01	$17 \cdot 514$	20.016
$6 \frac{1}{2}$	1.355 2.710	$5 \cdot 421$	$8 \cdot 1311$	$10 \cdot 842$	13.552	16.26	$8 \cdot 97$	21.684
7	$1 \cdot 459$ 2-919	5.838	8.7571	11.676	14.5951	17.51	$20 \cdot 433$	$23 \cdot 352$
$7 \frac{1}{2}$	$1 \cdot 564$ 3.127	6.255	$9 \cdot 382$	$12 \cdot 510$	$15 \cdot 6371$	18.76	$21 \cdot 892$	25.020
8 1	1.668 3.336	6.6721	$10 \cdot 008$	$13 \cdot 344$	$16 \cdot 680$	20.01	$23 \cdot 352$	26.688
9	$1.876{ }^{3} 753$	7-506	$11 \cdot 2591$	15.012	18.765	$22 \cdot 51$	$26 \cdot 271$	0.024
10	2.085 4.170	$8 \cdot 340$	$12 \cdot 510$	$16^{\circ} 680$	$20 \cdot 850$	$25 \cdot 02$	$29 \cdot 190$	$33 \cdot 360$
11	$2 \cdot 293{ }^{4} \cdot 587$	$9 \cdot 1741$	13.7611	$18 \cdot 348$	$22 \cdot 935$	27.52	32-109	36.696
12	$2 \cdot 502$ 6. 004	10.008	$15^{\circ} \cdot 12{ }^{2}$	20.016	25.02	30.02	35.028	40.032

Weight of Flat Steel Bars in Ibs. per Foot of Length.

Weight per foot of length, in lbs. $=$ width \times thickness $\times 3.408$. The width and thickness are both in inches.
The weight of a cubic inch of steel is taken as $\mathfrak{E r 4} \mathrm{lb}$.

Width in Ins.	Thickness in Fractions of an Inch.								
	1	1/8	$1 /$			5		8	1
$\frac{1}{2}$	-106	-213	-426	-68	8.2	$1 \cdot 065$	$1 \cdot 278$	$1 \cdot 491$	1.704
冎	-133	-260	-532	79	$1 \cdot 06$	$1: 331$	1.597	1.864	$2 \cdot 130$
$\frac{8}{4}$	$\cdot 160$	-319	-639	-958	1.278	1.597	1.917	2-2:36	556
$\frac{7}{8}$	-186	$\cdot 373$	$\cdot 745$	$1 \cdot 118$	$1 \cdot 491$	1-864	$2 \cdot 236$	$2 \cdot 6$	82
1	-213	-426	-852	1278	$1 \cdot 704$	$2 \cdot 130$	$2 \cdot 556$	2-982	88
18	'240	$\cdot 479$	958	$1 \cdot 438$	1.17	$2 \cdot 396$	2.875	$3 \cdot 3$	I
	-26i6	-532	$1 \cdot 065$	1597	$2 \cdot 130$	$2 \cdot 662$	$3 \cdot 195$	$3 \cdot 727$	260
$1 \frac{3}{8}$	-293	-586	$1 \cdot 171$	1.757	$2 \cdot 343$	$2 \cdot 929$	$3 \cdot 514$	$4 \cdot 100$	-686
$1 \frac{1}{2}$	-319	-639	1278	$1 \cdot 917$	$2 \cdot 556$	$3 \cdot 195$	3.834	$4 \cdot 473$	$5 \cdot 112$
18	-346	$\cdot 692$	$1 \cdot 384$	$2 \cdot 077$	$2 \cdot 769$	$3 \cdot 461$	$4 \cdot 153$	$4 \cdot 846$	8
13	-373	$\cdot 745$	$1 \cdot 491$	2.236	$2 \cdot 982$	3.727	$4 \cdot 473$	$5 \cdot 218$	$5 \cdot 9$
$1 \frac{7}{8}$	-399	$\cdot 799$	1597	2396	$3 \cdot 195$	$3 \cdot 994$	$4 \cdot 792$	5.591	390
2	-426	-852	1.704	2.556	3.408	$4 \cdot 260$	$5 \cdot 112$	$5 \cdot 96$	6.816
21	$\cdot 479$. 958	1.917	$2 \cdot 875$	3.834	4792	$5 \cdot 751$	$6 \cdot 70$	668
21	-532	$1 \cdot 065$	$2 \cdot 130$	$3 \cdot 195$	$4 \cdot 260$	5.325	6.390	$7 \cdot 4$	520
$2 \frac{3}{4}$	$\cdot 586$	171	$2 \cdot 343$	$3 \cdot 514$	4.686	5	$7 \cdot 029$	$8 \cdot 20$	$9 \cdot 372$
3	-639	$1 \cdot 278$	$2 \cdot 556$	$3 \cdot 834$	$5 \cdot 112$	$6 \cdot 390$	$7 \cdot 668$	$8 \cdot 94$	$10 \cdot 224$
$3 \ddagger$	-692	$1 \cdot 384$	$2 \cdot 769$	$4 \cdot 153$	$5 \cdot 538$	$6 \cdot 922$	8-307	$9 \cdot 69$	$11 \cdot 076$
31	$\cdot 745$	$1 \cdot 491$	2-982	$4 \cdot 473$	5.964	$7 \cdot 455$	8-946	$10 \cdot 43$	11.928
$3 \frac{3}{4}$	$\cdot 799$	15597	3-195	$4 \cdot 792$	$6 \cdot 390$	$7 \cdot 987$	9.585	$11 \cdot 18$	780
4	-852	$1 \cdot 704$	$3 \cdot 408$	$5 \cdot 11$	6.816	$8 \cdot 520$			2
44	-905	$1 \cdot 810$	3.621	$5 \cdot 431$	$7 \cdot 242$	$9 \cdot 05$	$10 \cdot 86$	12	84
$4 \frac{1}{2}$	-958	$1 \cdot 917$	$3 \cdot 834$	$5 \cdot 751$	$7 \cdot 668$	$9 \cdot 58$	$11 \cdot 50$	$3 \cdot 4$	336
43	1.012	$2 \cdot 023$	$4 \cdot 047$	$6 \cdot 070$	8.09	$0 \cdot 11$	12-14		188
5	$1 \cdot 065$	$2 \cdot 130$	$4 \cdot 260$	$6 \cdot 390$	$8 \cdot 520$	$0 \cdot 65$	12.78	1	
$5 \frac{1}{2}$	$1 \cdot 171$	$2 \cdot 343$	$4 \cdot 686$	7.029	9	$11 \cdot 715$	$14 \cdot 058$		
6	$1 \cdot 278$	$2 \cdot 556$	5-112	$7 \cdot 668$	0-224	$2 \cdot 780$	$15 \cdot 3$	$7 \cdot 8$	$0 \cdot 448$
$6 \frac{1}{2}$	1-384	$2 \cdot 769$	5.538	$8 \cdot 30$					52
7	1.491	$2 \cdot 982$	5.964	8.94	1.928	4	$17 \cdot 89$	$0 \cdot 87$	
$7 \frac{1}{2}$	1.597	$3 \cdot 195$	6•390	$9 \cdot 585$	$2 \cdot 780$	$15 \cdot 975$	$19 \cdot 17$	$22 \cdot 365$	
8	1.704	$3 \cdot 408$	$6 \cdot 816$						
9	1.917	3-834	$7 \cdot 668$. 502	$5 \cdot 336$	9.17	$23 \cdot 00$	-838	672
10	2-130	$4-260$	$8 \cdot 520$	$2 \cdot 78$	-040	1300	-56	-820	080
11	$2 \cdot 343$	$4 \cdot 686$	$9 \cdot 372$	14.05	P 74			-80	488
12	2.556	$5 \cdot 112$							10898

Weight of Sheets or Plates of Various Metals in Lbs. per Square Foot.

Thicknesses advancing by 32nds of an Inch.
Weight of sheet per square foot, in lbs. $=$ thickness in inches $\times C$. $C=40.032$ for wrought-iron, $=40.896$ for steel, $=45.76$ for copper,$=43 \cdot 92$ for brass,$=59 \cdot 328$ for lead,$=37 \cdot 44$ for zinc.

Thickness.	Wroughtiron	Steel	Copper	Brass.	Lead	Zinc.
$3^{\frac{1}{2}}$	$1 \cdot 25$	1.28	1.43	$1: 37$	$1 \cdot 85$	$1 \cdot 17$
${ }_{1}^{10}$	$2 \cdot 50$	$2 \cdot 56$	$2 \cdot 86$	$2 \cdot 74$	$3 \cdot 71$	2:34
$3^{3} 2$	$3 \cdot 75$	$3 \cdot 83$	$4 \cdot 29$	$4 \cdot 12$	$5 \cdot 56$	$3 \cdot 51$
	500	$5 \cdot 11$	$5 \cdot 72$	$5 \cdot 49$	$7 \cdot 42$	$4 \cdot 68$
$\frac{5}{32}$	$6 \cdot 25$	$6 \cdot 39$	$7 \cdot 15$	$6 \cdot 86$	$9 \cdot 27$	$5 \cdot 85$
1_{16}^{36}	$7 \cdot 51$	$7 \cdot 67$	$8 \cdot 58$	8.23	$11 \cdot 12$	$7 \cdot 02$
$\frac{7}{32}$	$8 \cdot 76$	$8 \cdot 95$	$10 \cdot 01$	$9 \cdot 61$	12.98	$8 \cdot 19$
4	$10 \cdot 01$	$10 \cdot 22$	$11 \cdot 44$	$10 \cdot 98$	14.83	$9 \cdot 36$
$3{ }^{9}$	11.26	11:50	$12 \cdot 87$	$12 \cdot 35$	$16 \cdot 69$	10.53
18	12.51	$12 \cdot 78$	$14^{\circ} 30$	$13 \cdot 72$	18.54	11.70
$\frac{1}{3} \frac{1}{2}$	$13 \cdot 76$	$14 \cdot 06$	1573	$15 \cdot 10$	$20 \cdot 39$	12.87
$\frac{3}{8}$	$15 \cdot 01$	$15 \cdot 34$	$17 \cdot 16$	$16 \cdot 47$	$22 \cdot 25$	$14 \cdot 04$
$\frac{1}{3} \frac{1}{2}$	$16 \cdot 26$	$16 \cdot 61$	18:59	$17 \cdot 84$	$24 \cdot 10$	15.21
$\mathrm{I}^{7} \delta$	$17 \cdot 51$	$17 \cdot 89$	$20 \cdot 02$	$19 \cdot 21$	$25 \cdot 96$	$16 \cdot 38$
$\frac{18}{3}$	$18 \cdot 76$	$19 \cdot 17$	$21 \cdot 45$	$20 \cdot 59$	$27 \cdot 81$	$17 \cdot 55$
$\frac{1}{2}$	$20 \cdot 02$	2045	$22 \cdot 88$	$21 \cdot 96$	$29 \cdot 66$	$18 \cdot 72$
$\frac{1}{8} 7$	$21 \cdot 27$	$21 \cdot 73$	$24 \cdot 31$	$23 \cdot 33$	31.52	19.89
${ }^{9}$ ¢	22.52	$23 \cdot 00$	$25 \cdot 74$	$24 \cdot 70$	$33 \cdot 37$	21.06
$\frac{1}{8} \frac{1}{2}$	$23 \cdot 77$	2428	$27 \cdot 17$	$26 \cdot 08$	$35 \cdot 23$	$22 \cdot 23$
8	$25 \cdot 02$	$25 \cdot 56$	$28 \cdot 60$	$27 \cdot 45$	$37 \cdot 08$	$23 \cdot 40$
$\frac{2}{3} \frac{1}{2}$	26.27	26.84	30.03	2882	38.93	$24 \cdot 57$
1\%	$27 \cdot 52$	$28 \cdot 12$	$31 \cdot 46$	$30 \cdot 19$	$40 \cdot 79$	$25 \cdot 74$
$\frac{2}{3} \frac{3}{2}$	$28 \cdot 77$	2939	$32 \cdot 89$	$31 \cdot 57$	$42 \cdot 64$	26.91
${ }_{4}^{3}$	$30 \cdot 02$	$30 \cdot 67$	$34 \cdot 32$	$32 \cdot 94$	$44 \cdot 50$	28.08
$\frac{2}{3} \frac{5}{2}$	$31 \cdot 27$	31.95	35•75	34-31	$46 \cdot 35$	$29 \cdot 25$
18	32.53	$33 \cdot 23$	$37 \cdot 18$	$35 \cdot 68$	$48 \cdot 20$	$30 \cdot 42$
$3 \frac{3}{2}$	$33 \cdot 78$	$34 \cdot 51$	$38 \cdot 61$	37.06	$50 \cdot 06$	31.59
$\frac{7}{8}$	$35 \cdot 03$	35.78	$40 \cdot 04$	$38 \cdot 43$	51.91	$32 \cdot 76$
3 $\frac{3}{2}$	36.28	37.06	$41 \cdot 47$	$39 \cdot 80$	$53 \cdot 77$	33.93
$1{ }^{18}$	$37 \cdot 53$	$38 \cdot 34$	$42 \cdot 90$	$41 \cdot 17$	$55 \cdot 62$	35•10
- $\frac{8}{3}$	$38 \cdot 78$	$39 \cdot 62$	$44 \cdot 33$	$42 \cdot 65$	$57 \cdot 47$	$36 \cdot 27$
1	$40 \cdot 03$	$40: 90$	$45 \cdot 76$	$43 \cdot 92$	$59 \cdot 33$	37-44

Weight of sheets or Plates of Various Metals in Lbs. per Square Foot.

Thicknesses by Imperial Standard Wire Gange.

$\begin{array}{r} \text { Thin } \\ \text { I.S.W. } \end{array}$	Inch.	Wrought- iroun	Steel.	Copper.		Lead.	Zinc.
7/0	500	$20 \cdot 02$	$20 \cdot 45$	22.88	$21 \cdot 96$	$29 \cdot 66$	18.72
60	$\cdot 464$	$18 \cdot 57$	18.98	$21 \cdot 23$	20:38	27.53	$17 \cdot 37$
$5 / 0$	$\cdot 432$	17×2	$17 \cdot 67$	19.77	$18 \cdot 97$	$25 \cdot 63$	$16 \cdot 17$
4/0	$\cdot 400$	$16 \cdot 01$	16:36	$18 \cdot 30$	$17 \cdot 57$	$23 \cdot 73$	14.98
3,0	$\cdot 372$	$14 \cdot 89$	15.21	17.02	$16 \cdot 34$	$22 \cdot 7$	$13 \cdot 93$
$2 / 0$	348	$13 \cdot 93$	14.23	15.92	15.28	$20 \cdot 65$	13.03
0	-324	$12 \cdot 97$	$13 \cdot 25$	14.83	14.23	$19 \cdot 2$	$12 \cdot 13$
1	$\cdot 300$	12.01	$12 \cdot 27$	$13 \cdot 73$	$13 \cdot 18$	$17 \cdot 80$	$11 \cdot 23$
2	-276	110.5	11.29	1263	$12 \cdot 12$	$16: 37$	$10 \cdot 33$
3	$\cdots 25$	$10 \cdot 09$	10:31	11:53	11.07	1495	$9 \cdot 43$
4	232	9'29	$9 \cdot 49$	$10 \cdot 62$	$10 \cdot 19$	13.76	8.69
5	$\cdot 212$	$8 \cdot 49$	$8 \cdot 67$	$9 \cdot 70$	$9 \cdot 31$	12.58	7.94
	-192	769	$7 \cdot 85$	$8 \cdot 79$	$8 \cdot 43$	$11: 39$	$7 \cdot 19$
7	$\cdot 176$	$7 \cdot 05$	$7 \cdot 20$	$8 \cdot 05$	7.73	$10 \cdot 44$	$6 \cdot 59$
8	$\cdot 160$	$6 \cdot 41$	$6: 54$	$7 \cdot 32$	7.03	$9 \cdot 49$	$5 \cdot 99$
9	$\cdot 144$	$5 \cdot 76$	5.89	6.59	$6 \cdot 32$	8.54	5.39
10	'128	$5 \cdot 12$	$5 \cdot 23$	$5 \cdot 86$	562	7-59	$4 \cdot 79$
11	$\cdot 116$	$4 \cdot 64$	$4 \cdot 74$	$5 \cdot 31$	$5 \cdot 09$	6.88	$4 \cdot 34$
12	$\cdot 104$	$4 \cdot 16$	$4 \cdot 25$	$4 \cdot 76$	$4 \cdot 57$	$6 \cdot 17$	3.89
13	$\cdot 092$	$3 \cdot 68$	$3 \cdot 76$	$4 \cdots 1$	$4 \cdot 04$	5.46	3.44
14	. 080	320	$3 \cdot 27$	$3 \cdot 66$	$3 \cdot 51$	4.75	3.00
15	-072	$2 \cdot 88$	$2 \cdot 94$	$3 \cdot 29$	$3 \cdot 16$	$4 \cdot 27$	$2 \cdot 70$
16	-064	$2 \cdot 56$	$2 \cdot 62$	$2 \cdot 93$	$2 \cdot 81$	$3 \cdot 80$	$2 \cdot 40$
17	-056	$2 \cdot 24$	$2 \cdot 29$	$2 \cdot 56$	$2 \cdot 46$	$3 \cdot 32$	$2 \cdot 10$
18	$\cdot 048$	$1 \cdot 92$	$1 \cdot 96$	$2 \cdot 20$	$2 \cdot 11$	285	$1 \cdot 80$
19	-040	$1 \cdot 60$	$1 \cdot 64$	1.83	1.76	$2 \cdot 37$	$1 \cdot 50$
20	-036	$1 \cdot 44$	$1 \cdot 47$	$1 \cdot 65$	$1 \cdot 58$	$2 \cdot 14$	$1 \cdot 35$
21	-()32	$1 \cdot 28$	$1 \cdot 31$	$1 \cdot 46$	$1 \cdot 41$	$1 \cdot 90$	$1 \cdot 2$
22	-028	$1 \cdot 12$	1-15	$1 \cdot 28$	1.23	$1 \cdot 66$	1.05
23	-024	96	98	$1 \cdot 10$	1.05	1.42	$\cdot 90$
24	$\cdot 022$	88	$\cdot 90$	$1 \cdot 01$	97	131	$\cdot 82$
25	$\cdot 020$	80	$\cdot 82$	92	$\cdot 88$	$1 \cdot 19$	$\cdot 75$
26	-018	72	$\cdot 74$	82	$\cdot 79$	1.07	$\cdot 67$
27	. 0164	$\cdot 66$	$\cdot 67$	75	$\cdot 72$	$\cdot 97$	$\cdot 61$
28	$\cdot 0148$	-59	$\cdot 61$	$\cdot 68$	65	$\cdot 88$	$\cdot 55$
29	. 0136	$\cdot 54$	$\cdot 56$	$\cdot 62$	60	81	51

Weight of Nuts and Bolt Heads.

$d=$ diameter of bolt in inches.
Width of nut or bolt head across the flats $=1 \frac{1}{2} d+\frac{1}{8}$ inch.
Height of nut = height of bolt head =d.
The weight in lbs. is given approximately by the fullowing formulæ:-

Weight of hexagonal nut $=(\cdot 37 d+\cdot 09) d^{2}$.
Weight of square nut $=(\cdot 45 d+\cdot 11) d^{2}$.
Weight of hexagonal bolt head $=(\cdot 55 d+09) d^{2}$.
Weight of square bolt head $=(633 l+11) d^{2}$
The nuts are supposed to be screwed.
The above weights are for wrought-iron or steel nuts. For brass nuts add about 10 per cent.
The following table of weights of nuts and bolt heads has been calculated by means of the above formulæ:-

d	Nuts.		Bolt Heads.		d	Nuts.		Bolt Heads.	
	Hex.	Stı.	Hex	Sq		Hex.	Sq.	Hex.	Sq.
$\frac{1}{2}$	$\cdot 07$	- 08	$\cdot 09$	$\cdot 11$	2	$3 \cdot 3$	$4 \cdot 0$	$4 \cdot 8$	$5 \cdot 5$
$\frac{3}{4}$	-21	$\cdot 25$	$\cdot 28$	$\cdot 33$	24	$4 \cdot 7$	$5 \cdot 7$	$6 \cdot 7$	$7 \cdot 7$
1	$\cdot 46$	$\cdot 56$	-64	$\cdot 74$	$2 \frac{1}{3}$	$6 \cdot 3$	$7 \cdot 7$	$9 \cdot 2$	$10 \cdot 5$
$1 \frac{1}{4}$	-86	1.05	$1 \cdot 21$	$1 \cdot 40$	23	$8 \cdot 4$	$10 \cdot 2$	$12 \cdot 1$	$13 \cdot 9$
$1 \frac{1}{2}$	$1 \cdot 45$	$1 \cdot 77$	$2 \cdot 06$	$2 \cdot 37$	3	$10 \cdot 8$	131	$15 \cdot 7$	$18 \cdot 0$
$1 \frac{13}{4}$	$2 \cdot 26$	$2 \cdot 75$	$3 \cdot 22$	$3 \cdot 71$	34	$13 \cdot 7$	$16^{\circ} 6$	$19 \cdot 8$	$22 \cdot 8$

Weight of Tubes, Pipes, or Cylinders.
$D=$ external diameter, in inches.
$d=$ internal diameter, in inches
$t=$ thickness, in inches $=\frac{1}{2}(D-d)$.
$w=$ weight, in lbs., of one cubic inch of material.
$w=26$ for cast-iron.
$=-278$ for wrought-iron.
$w=\cdot 308$ for brass.
$==284$ for steel.
$=321$ for copper.
$=-412$ for lead.
$W=$ weight, in lbs., of one lineal foot of tube, pipe, or cylinder.
$W=12 \pi w t(D-t)=12 \pi w t(d+t)$.
$=9.8 t(D-t)=9.8 t(d+t)$ for cast-iron.
$=10 \cdot 48 t(D)-t)=10 \cdot 48 t(d+t)$ for wrought-iron.
$=10 \cdot 7 t(D-t)=10 \cdot 7 t(d+t)$ for steel. See also p. 336.
$=11 \cdot(i t(D-t)=11 \cdot 6 t(d+t)$ for brass.
$=12 \cdot 1 t(D-t)=12 \cdot 1 t(d+t)$ for copper.
$=15 \cdot 5 t(D-t)=15 \cdot 5 t(d+t)$ for lead.
The tables on pp. 334-341 have been calculated by means of the above formulm.

Weight of Wrought-iron Tubes in Lbs. per Foot of Length.

For formula see p. 333.

Weight of Wrought-iron Tubes in Lbs. per

 Foot of Length.For formula see p. 333.

Thickness. 1		Internal Diameter in Inches.						
IS W G Ins.		$1 / 2$ $5 / 8$	$3 / 4$	7/8	1	$11 / 4$	$11 / 2$	13/4
18	$\cdot(18$	$\begin{array}{ll}276 & 339\end{array}$	-101		$\cdot 527$	$\cdot 6.53$	$\cdot 779$	04
17	(156	$\cdots 326$	$\cdot 17.3$	$\cdot 516$	(6is)	$\cdot 766$	913	1.060
16	(164	$\cdots 378$:546	-630)	$\cdot 714$	-841	$1 \cdot 049$	$1 \cdot 217$
15	72	-432 -526	-620	$\cdot 715$	-809	$\cdot 998$	$1 \cdot 186$	$1 \cdot 375$
14	-(180	${ }^{-486} \quad-591$	$\cdot 696$	-801	. 905	$1 \cdot 115$	1-325	1:534
13	.192	$\cdot 571$	-812	-932	$1 \cdot 053$	$1 \cdot 291$	$1 \cdot 5$	$1 \cdot 776$
12	$\cdot 104$	-658 -795	-931	1.067	$1 \cdot 203$	$1 \cdot 476$	1748	$2 \cdot 021$
11	-116	-749 901	1 -05:	120.	$1 \% 57$	$1 \cdot 661$	1.965	$2 \cdot 268$
10	-128	-812 1-010	$1 \cdot 178$	$1 \cdot 345$	$1 \cdot 513$	$1 \cdot 849$	$2 \cdot 181$	$2 \cdot 519$
9	$\cdot 144$	-972 1-161	$1 \% 349$	1-5:38	1.726	$2 \cdot 104$	$2 \cdot 481$	$2 \cdot 858$
		Internal Danmeter in Inches						
		$2,2{ }^{1}$						$33 / 4$
13	-092	$2 \cdot 017$ 2-258 2	$2 \cdot 499$	$2 \cdot 740$	$2 \cdot 981$	$3 \cdot 222$	$3 \cdot 463$	3•704
12	$\cdot 10$	2.293 $2 \cdot 566$	$2 \cdot 838$	3•111	3:383	$3 \cdot 656$	$3 \cdot 928$	$4 \cdot 201$
11	$\cdot 116$	2.572 $2 \cdot 876$	$3 \cdot 180$	$3 \cdot 484$	$3 \cdot 788$	$4 \cdot 092$	$4 \cdot 396$	$4 \cdot 700$
10	$\cdot 128$	2.855 3•190	$3 \cdot 525$	$3 \cdot 8 \cdot 61$	$4 \cdot 196$	$4 \cdot 531$	$4 \cdot 867$	5-202
9	$\cdot 144$	3.236 3.613	$3 \cdot 990$	$4 \cdot 367$	$4 \cdot 745$	$5 \cdot 12$	$5 \cdot 499$	$5 \cdot 877$
8	-160	$3 \cdot 6224 \cdot 041$	$4 \cdot 460$	$4 \cdot 879$	$5 \cdot 299$	$5 \cdot 718$	$6 \cdot 137$	6.556
7	$\cdot 176$	$4 \cdot 0144 \cdot 475$	$4 \cdot 936$	5-397	$5 \cdot 858$	$6 \cdot 319$	6.780	$7 \cdot 241$
6	-192	$4 \cdot 4114.914$	$5 \cdot 4175$	$5: 920$	6.423	6.926	7-429	7.932
5	$\cdot 212$	$4 \cdot 915$ 5-470	6 -025	6-581	7-136	7-692	8.247	$8 \cdot 803$
4	$\cdot 232$	$5 \cdot 4276.0356$	$6 \cdot 642$	7•250	$7 \cdot 858$	$8 \cdot 466$	9.074	$9 \cdot 682$
		Internal Diameter in Inches.						
		$41 / 2$	5		6	$61 / 2$	7	71/2
10	-128	5.54 6.21	6.88	$7 \cdot 55$	$8 \cdot 22$	$8 \cdot 89$	$9 \cdot 56$	10.23
9	$\cdot 144$	6.25 7.01	$7 \cdot 76$	$8 \cdot 52$	$9 \cdot 27$	10.03	10.78	11.54
8	$\cdot 160$	6.98 7-81	$8 \cdot 65$	$9 \cdot 49$	$10 \cdot 33$	$11 \cdot 17$	12.01	$12 \cdot 84$
7	$\cdot 176$	$7 \cdot 70$ 8.62	9.55	$10 \cdot 47$	11.39	$12 \cdot 31$	13.24	$14 \cdot 16$
6	-192	$8.43{ }^{8.44}$	$10 \cdot 45$	$11 \cdot 45$	$12 \cdot 46$	$13 \cdot 47$	$14 \cdot 47$	$15 \cdot 48$
5	-212	9.36 $10 \cdot 47$	11.58	$12 \cdot 69$	$13 \cdot 80$	$14 \cdot 91$	16.02	17-13
4	-232	$10 \cdot 2911 \cdot 51$	$12 \cdot 72$	$13 \cdot 94$	$15 \cdot 15$	$16 \cdot 37$	17.58	$18 \cdot 80$
3	-252		$13 \cdot 87$	$15 \cdot 19$	16.51	$17 \cdot 83$	$19 \cdot 15$	$20 \cdot 47$
2	-276	$\begin{array}{llll}12 \cdot 37 & 13 \cdot 81\end{array}$	$15 \cdot 26$	16.71	$18 \cdot 15$	19.60	21.05	$22 \cdot 49$
1	$\cdot 300$	13.5215 .091	$16 \cdot 661$	18.24	19.81	21-38	22.95	$24 \cdot 52$

Weight of Steel Tubes in Lb. per Foot of Length.
For formula see p. 333. If wt. of steel is taken as 489.6 lb ./cu. ft., $W=10.6814 t(D-t)$, and tabulated wts. are high by $1.74 \mathrm{lb} . \mathrm{m} 1000 \mathrm{lb}$.

Thuchess		External Inameter in Inches							
I.s W G		1/2	5/8	$3 / 4$	7/8	1	$11 / 4 \mid 11 / 2$		13/4
${ }^{1 \times}$	(04*	232							74
17	. 056	266	341	416	491	-566	715	865	1.015
16	. 064	299	-384	470	-555	$\cdot 641$	$\times 12$	9983	$1 \cdot 155$
15	-072	$\cdot 330$	-426	-522	$\cdot 619$	715	$\cdot 908$	$1 \cdot 100$	
14	080	-360	$\cdot 467$	-574	. 681	$\cdot 7881$	1.002	$1 \cdot 216$	$1 \cdot 430$
13	-092	-402	-525	$\cdot 648$. 771	- $\times 94$	1.140	1.386	$1 \cdot 632$
12	-104	-441	. 580	719	-858	-997	1275		
11	-116	$\cdot 478$	-632	74	-942	$1 \cdot 097$	$1 \cdot 408$	1.71	
10	-12x	-509	${ }^{6} 61$	8.521	10231	1.194	1.537	$1 \cdot 879$	2.221
9	$\cdot 144$	-549	.741	.934 1	$1 \cdot 1261$	$1: 319$	1.704	$2 \cdot 08$	475
		External Dlameter in Iuches							
	. 092	1.878	$\frac{21 / 4}{2 \cdot 124}$						$3 \cdot 601$
12	$\cdot 104$	2-110	$2 \cdot 388$	2.666	$2 \cdot 944$	3.223	$3 \cdot 501$	3.779	4.057
11	-116	$2 \cdot 338$	2.649	$2 \cdot 9593$	$3 \cdot 269$	$3 \cdot 580^{\prime}$	$3 \cdot 890$	$4 \cdot 200$	4.511
10	-128	$2 \cdot 561^{1}$	2.906	$3 \cdot 2493$	3.591	3.9331	4-276	$4 \cdot 618$	
9	-144	$2 \cdot 860$	$3 \cdot 245$	$3 \cdot 6304$	4.015	$4 \cdot 401$	4786	$5 \cdot 171$	
	-160	$3 \cdot 150$	$3 \cdot 578$	$4 \cdot 006$	$4 \cdot 434$	4.862	$5 \cdot 290$	5.718	$6 \cdot 146$
7	$\cdot 176$	$3 \cdot 435$	3.906	$4 \cdot 3774$	4.847	5.318	5.789	${ }^{6} 2.260$	6.731
6	-192	$3 \cdot 714$	4-228	4.7425	$5 \cdot 255$	5.769	6.282		$7 \cdot 310$
5	212	4.056	4.623	$5 \cdot 1905$	5.757	6.324	6.891	$7 \cdot 458$	8.026
4	. 232	4.389	5.009 5	$5 \cdot 630$	6.251	6.871	$7 \cdot 492$	8.112	
		External Diameter in Inches.							
		4	$41 / 2$	55	$51 / 2$	6	$61 / 2$	7	$71 / 2$
10	-128	$5 \cdot 30$	5.99	6.67	7.36	8.04	8.73		$10 \cdot 10$
9	-144	5.94	6.71	7.48	8.25	9.02	9.79	$10 \cdot 56$	$11 \cdot 33$
8	${ }^{160}$	6.57	$7 \cdot 43$	$8 \cdot 29$	9.14	10.00	$10 \cdot 85$	11.71	$12 \cdot 57$
7	$\cdot 176$	7.20	8.14	9.08	10.03	$10 \cdot 97$	$11 \cdot 91$	$12 \cdot 85$	13.79
6	192	7.82	$8 \cdot 85$	9.88	$10 \cdot 901$	11.93	$12 \cdot 96$	$13 \cdot 99$	15.01
5	212	8.59	$9 \cdot 73$	10.86	12.00	13.13	$14 \cdot 26$	$15 \cdot 40$	16.53
4	$\stackrel{232}{ }$		10.59	11.84	13.08	14.32	$15 \cdot 56$	$16 \cdot 80$	18.04
3	$\stackrel{252}{2}$	$10 \cdot 11$	11.45	$12 \cdot 80{ }^{\prime}$	14.15	15.50	16.85	$18 \cdot 20$	19.54
${ }_{1}^{2}$	-276	11.00	$12 \cdot 47$	$13 \cdot 951$	$15 \cdot 43$	$16 \cdot 9$	$18 \cdot 38$	1986	21.22
1	. 300	11.88	$13 \cdot 48$	15.091	$16 \cdot 69$	$18 \cdot 30$	$19 \cdot 90$	21	23•11

Weight of Steel Tubes in Lb. per Foot of Length.

For formula see p. 333. For note on weight of steel and tabulated weights see p. 336 .

Thickness.		nternal Diameter in Inches.							
I.s. W.G	Ins		58	$3 / 4$	7/8	11		11/2	13/4
18	.04×	$\cdot 281$		$\cdot 410$	474		-667		923
17	$\cdot 056$	$\cdot 333$	-408	-48:3	-5.58	-63:3	-783	933	1.082
16	$\cdot 064$	$\cdot 386$	-472	-557	$\cdot 643$	-729	$\cdot 900$	1.071	1.242
15	$\cdot 072$	-441	-337	-633	$\cdot 730$	-826	$1 \cdot 018$	$1 \cdot 211$	$1 \cdot 404$
14	$\cdot(88)$	-496	-603	$\cdot 710$	- $\times 17$	924	$1 \cdot 138$	$1-352$	$1: 566$
13	$\cdot 092$	-58,	$\cdot 706$	-829	-952	$1 \cdot 075$	$1 \cdot 321$	$1 \cdot 567$	1.813
12	$\cdot 104$	$\checkmark 672$	-811	$\cdot 950$	1 (0x9	$1 \cdot 229$	$1: 507$	1.785	$2 \cdot 063$
11	$\cdot 116$	-765	.920 1	1 - 75	1.230	$1 \cdot 38$.	1 1-695	$2 \cdot 006$	$2 \cdot 316$
10	-128	- 66	$1 \cdot 0: 31$	$1 \cdot 203$	1:374	$1 \cdot 545$	$1 \cdot 887$	$2 \cdot 230$	$2 \cdot 572$
9	$\cdot 144$	992	$1 \cdot 18.51$	$1: 377$	$1: 570$	$1 \cdot 763$	2.148	$2 \cdot 3.33$	2.918
		2	${ }_{2}^{21 / 4}$	Interval $21 / 2$	1 Dhame $23 / 4$	cter in 3	Inches.	31	$\frac{33 / 4}{782}$
13	$\cdot 092$	$2 \cdot 159$	2-305	$2 \cdot 552$	$2 \cdot 798$	$3 \cdot 044$	$3 \cdot 290$	$3 \cdot 536$	
12	$\cdot 104$	2:341	2 -620 2	$2 \cdot 898$	$3 \cdot 176$	$3 \cdot 454$	3-732	$4 \cdot 011$	$4 \cdot 289$
11	$\cdot 116$	$2 \cdot 626$	2.937	$3 \cdot 247$ 3	3-557	$3 \cdot 468$	4.178	$4 \cdot 488$	4-798
10	$\cdot 128$	$2 \cdot 915$	3-257	3-539	$3 \cdot 942$	$4 \cdot 284$	$4 \cdot 627$	$4 \cdot 969$	5.311
9	$\cdot 144$	3•303	$3 \cdot 6894$	$4 \cdot 074$	4-439	$4 \cdot 844$	5-229	$5 \cdot 615$	析
8	-160	3.698	$4 \cdot 1264$	$4 \cdot 554$	$4 \cdot 9821$	$5 \cdot 410$	$5 \cdot 838$	$6 \cdot 266$	$6 \cdot 694$
7	$\cdot 176$	4.098	$4 \cdot 569$	5.039	$5 \cdot 510$	$5 \cdot 981$	6.452	$6 \cdot 923$	7-393
6	-192	$4 \cdot 503$	$5 \cdot 0175$	$5 \cdot 530$	$6 \cdot 044^{1}$	'6.558	$7 \cdot 071$	$7 \cdot 585$	8.098
5	$\cdot 212$	$5 \cdot 018$	5.585	6.152	$6 \cdot 719$	7-286	$7 \cdot 85.3$	8.420	8.987
4	$\cdot 232$	5:541	6.161 6	6.782	7-40318	$8 \cdot 023$	8.644	$9 \cdot 264$	9.885
		Internal Diameter in Inches.							
		4	$41 / 2$	5	$51 / 2$	6	$61 / 2$		$71 / 2$
10	$\cdot 128$	$5 \cdot 65$	$6 \cdot 34$	7.02	7.71	$8 \cdot 39$	9.08	$9 \cdot 76$	$10 \cdot 45$
9	-144	$6 \cdot 39$	$7 \cdot 16$	$7 \cdot 93$	$8 \cdot 70$	$9 \cdot 47$	$10 \cdot 24$	11.01	11.78
8	-160	$7 \cdot 12$	$7 \cdot 98$	$8 \cdot 83$	9.69	10.55	$11 \cdot 40$	12.26	$13 \cdot 11$
7	$\cdot 176$	$7 \cdot 86$	8.81	$9 \cdot 75$	$10 \cdot 69$	11.63	12:57	$13 \cdot 51$	$14 \cdot 46$
6	-192	$8 \cdot 61$	$9 \cdot 641$	$10 \cdot 67$	11.69	12.72	13.75	14.78	8
5	$\cdot 212$	$9 \cdot 55$	$10 \cdot 691$	11.82	$12 \cdot 96$	14.09	15.23	$16 \cdot 36$	$17 \cdot 49$
4	$\cdot 232$	$10 \cdot 51$	11.751	$12 \cdot 99$	14.23	15.47	16.71	17.95	$19 \cdot 19$
3	$\cdot 252$	11.47	$12 \cdot 81$	$14 \cdot 16$	$15 \cdot 51$	16.86	18.21	19.55	$20 \cdot 90$
2	$\cdot 276$	$12 \cdot 63$	$14 \cdot 101$	15.58	17.06	$18 \cdot 53$	20.01	$21 \cdot 49$	22-96
1	$\cdot 300$	$13 \cdot 80$	$15 \cdot 411$	17.011	18.62	20-22	21.83	$23 \cdot 43$	25.0

Weight of Copper Tubes in Lbs. per Foot of Length.

For formula see p. 333.

Thickness.		External Diameter in Inches.							
I.S.W.G.	Ins	1/2	5/8	$3 / 4$	7/8		$11 / 4$	$11 / 2$	13/4
18	-1)48	$\cdot 263$	$\cdot 335$	-408	-480	$\cdot 553$	$\cdot 698$	-843	-989
17	$\cdot(0) 5$	$\cdot 301$	$\because 386$	-470	-555	$\cdot 640$	-809	$\cdot 978$	$1 \cdot 148$
16	-(64	$\cdot 338$	$\cdot 434$	-5.31	-628	$\cdot 725$	$\cdot 918$	$1 \cdot 112$	$1 \cdot 306$
15	-072	$\cdot 373$	-482	-591	$\cdot 700$	-808	$1 \cdot 026$	$1 \cdot 244$	$1 \cdot 462$
14	-080	$\cdot 407$	-528	$\cdot 649$	$\cdot 770$	-891	$1 \cdot 133$	$1 \cdot 375$	$1 \cdot 617$
13	$\cdot 092$	-451	- 593	$\cdot 732$	-872	$1 \cdot 011$	$1-289$	$1 \cdot 567$	-846
12	-104	-498	$\cdot 656$	- 813	$\cdot 970$	$1 \cdot 128$	$1 \cdot 442$	$1 \cdot 757$	$2 \cdot 071$
11	$\cdot 116$	-5:39	. 714	- $\times 90$	$1 \cdot 065$	$1 \cdot 241$	$1 \cdot 592$	$1 \cdot 943$	$2 \cdot 293$
10	-128	-576	$\cdot 770$	-963	$1 \cdot 157$	$1: 351$	1.738	$2 \cdot 125$	$2 \cdot 512$
9	$\cdot 144$	$\cdot 620$	-888	$1 \cdot 056$	$1 \cdot 274$	$1 \cdot 491$	1:927	$2 \cdot 363$	$2 \cdot 798$
		External Diameter in Inches.							
		2	21/4	$21 / 2$	23/4		$31 / 4$	$31 / 2$	33/4
13	-092	$2 \cdot 124$	$2 \cdot 402$	$2 \cdot 681$	$2 \cdot 959$	$3 \cdot 237$	$3 \cdot 515$	$3 \cdot 794$	$4 \cdot 072$
12	-104	$2 \cdot 386$	$2 \cdot 700$	$3 \cdot 015$	3-330	$3 \cdot 644$	$3 \cdot 959$	$4 \cdot 274$	$4 \cdot 588$
11	-116	$2 \cdot 644$	$2 \cdot 995$	3-346	$3 \cdot 697$	$4 \cdot 048$	4-399	$4 \cdot 750$	5-101
10	-128	$2 \cdot 899$	$3 \cdot 2 \times 7$	$3 \cdot 674$	$4 \cdot 061$	$4 \cdot 448$	$4 \cdot 835$	5-223	$5 \cdot 610$
9	-144	3 2334	$3 \cdot 669$	$4 \cdot 105$	$4 \cdot 541$	$4 \cdot 976$	$5 \cdot 412$	5-847	$6 \cdot 283$
8	-160	$3 \cdot 562$	4.046	$4 \cdot 530$	$5 \cdot 014$	$5 \cdot 498$	5-982	6•466	6.950
7	-176	$3 \cdot 884$	$4 \cdot 417$	$4 \cdot 949$	$5 \cdot 482$	$6 \cdot 014$	$6 \cdot 546$	$7 \cdot 079$	$7 \cdot 611$
6	-192	4×200	$4 \cdot 781$	5-362	$5 \cdot 943$	6.524	7-104	$7 \cdot 685$	$8 \cdot 266$
5	'212	$4 \cdot 587$	5-228	5.869	$6 \cdot 510$	7-152	7.793	$8 \cdot 434$	$9 \cdot 076$
4	-232	$4 \cdot 963$	$5 \cdot 665$	$6 \cdot 367$	$7 \cdot 069$	$7 \cdot 770$	$8 \cdot 472$	$9 \cdot 174$	9.876
		External Diameter in Inches.							
		4	41/2	5	$51 / 2$	6	$61 / 2$	7	$71 / 2$
10	-128	6.00	6.77	$7 \cdot 55$	$8 \cdot 32$	$9 \cdot 09$	$9 \cdot 87$	$10 \cdot 64$	11.42
9	-144	$6 \cdot 72$	$7 \cdot 59$	$8 \cdot 46$	$9 \cdot 33$	$10 \cdot 20$	$11 \cdot 07$	11.95	12.82
8	-160	$7 \cdot 43$	$8 \cdot 40$	$9 \cdot 37$	$10 \cdot 34$	$11 \cdot 31$	$12 \cdot 27$	$13 \cdot 24$	$14 \cdot 21$
7	-176	$8 \cdot 14$	$9 \cdot 21$	$10 \cdot 27$	$11 \cdot 34$	$12 \cdot 40$	$13 \cdot 47$	$14 \cdot 53$	$15 \cdot 60$
6	-192	8.85	$10 \cdot 01$	$11 \cdot 17$	$12 \cdot 33$	$13 \cdot 49$	$14 \cdot 65$	$15 \cdot 82$	16.98
5	- 212	$9 \cdot 72$	11.00	12.28	$13 \cdot 56$	$14 \cdot 85$	$16 \cdot 13$	$17 \cdot 41$	$18 \cdot 70$
4	-232	10.58	11.98	$13: 38$	14.79	$16 \cdot 19$	$17 \cdot 60$	19.00	$20 \cdot 40$
3	-252	11.43	$12 \cdot 95$	14.48	16.00	$17 \cdot 53$	19.05	20.58	$22 \cdot 10$
2	-276	$12 \cdot 44$	$14 \cdot 11$	$15 \cdot 78$	$17 \cdot 45$	$19 \cdot 12$	$20 \cdot 79$	$22 \cdot 46$	$24 \cdot 13$
1	- 300	13.43	15.25	17.06	$18 \cdot 88$	$20 \cdot 69$	$22 \cdot 51$	24.32	$26 \cdot 14$

Weight of Copper Tubes in Lbs. per Foot of Length.

For tormula see p. 333.

Thickness.		Internal Dameter m Inches							
I S.W.G.		1/2	5/8	$3 / 4$	7/8	1	11/4	$11 / 2$	13/4
18	$\cdot 048$	318	391	-463	-536	-609	754	899	$1 \cdot 044$
17	$\cdot 056$	$\cdot 377$	-461	[516	-6331	-716	.885	$1 \cdot 54$	$1 \% 224$
16	$\cdot(064$	$\cdot 137$	$\cdot 534$	-630	$\cdot 727$	- 24	$1 \cdot(18$	1.211	$1 \cdot 405$
15	$\cdot 072$	-498	-607	-716	-825	. 934	$1 \cdot 152$	$1 \cdot 370$	1-587
14	$\cdot(18)$	$\cdot 561$	-682	-803	- 21	$1 \cdot 04.5$	$1 \because 287$	$1 \cdot 529$	$1 \cdot 771$
13	$\cdot 092$	-659	-798	933.	$1 \cdot 076$	$1 \cdot 216$	1-191	$1 \cdot 772$	$2 \cdot 051$
12	$\cdot 104$	-760	$\cdot 917$	$1 \cdot 075$	1×232	$1 \cdot 389$	1.704	$2 \cdot(1 \times$	$2 \cdot 333$
11	$\cdot 116$	-865	1.040	$1 \cdot 216$	$1: 391$	$1: 566$	$1 \cdot 917$	$2 \cdot 268$	$2 \cdot 619$
10	$\cdot 128$	$\cdot 973$	$1 \cdot 166$	$1: 360$	$1 \cdot 5.3$	1.747	$2 \cdot 134$	$2 \cdot 521$	$2 \cdot 909$
9	$\cdot 144$	$1 \cdot 122$	1.340	$1 \cdot 5.8$	1.776	10993	$2 \cdot 429$	$2 \cdot 86.5$	$3 \cdot 300$
				Internal Diameter in Inches.					
		2	21/4				$31 / 4$	$31 / 2$	/4
13	-092	$2 \cdot 329$	$2 \cdot 607$	2.885	$3 \cdot 164$	$3 \cdot 142$	$3 \cdot 720$	4.00	-28
12	-104	$2 \cdot 648$	$2 \cdot 962$	3.277	$3 \cdot 591$	$3 \cdot 906$	$4 \cdot 221$	$4 \cdot 54$	$4 \cdot 85$
11	-116	$2 \cdot 970$	$3 \cdot 321$	$3 \cdot 672$	$4 \cdot(23$	$4: 374$	$4 \cdot 7.25$	5.0	$5 \cdot 43$
10	-128	$3 \cdot 296$	$3 \cdot 683$	$4 \cdot 070$	$4 \cdot 457$	4×15	$5 \cdot 232$	5.62	6.01
9	-144	$3 \cdot 736$	$4 \cdot 171$	$4 \cdot 607$	$5 \cdot 043$	$5 \cdot 478$	$5 \cdot 914$	$6 \cdot 35$	6.78
8	-160	4-182	4-666	$5 \cdot 150$	$5 \cdot 634$	$6 \cdot 118$	6.602	$7 \cdot 09$	7.57
7	$\cdot 176$	$4 \cdot 634$	5.166	$5 \cdot 699$	6.231	6.764	7×296	$7 \cdot 83$	$8 \cdot 36$
6	-192	$5 \cdot 092$	$5 \cdot 673$	$6 \cdot 2.54$	6.835	7 -416	7-996	$8 \cdot 58$	$9 \cdot 16$
5	-212	$5 \cdot 674$	$6 \cdot 316$	6.9.7	7-598	$8 \cdot 239$	$8 \cdot 8 \times 1$	$9 \cdot 52$	$10 \cdot 16$
4	$\cdot 232$	$6 \cdot 266$	6:967	$7 \cdot 669$	8:371	$9 \cdot 073$	$9 \cdot 775$	10.48	$11 \cdot 18$
		Internal Diameter in Inches.							
		4	41/2		1/2	6	61/2	7	71/2
10	$\cdot 128$	639	$7 \cdot 17$	$7 \cdot 94$	$8 \cdot 72$	$9 \cdot 49$	$10 \cdot 27$	$11 \cdot 04$	11.81
	$\cdot 144$	$7 \cdot 22$	$8 \cdot 09$	$8 \cdot 96$	$9 \cdot 83$	$10 \cdot 71$	11.58	$12 \cdot 45$	$13 \cdot 32$
8	$\cdot 160$	$8 \cdot 05$	$9 \cdot 02$	$9 \cdot 99$	$10 \cdot 96$	11.93	$12 \cdot 89$	$13 \cdot 86$	14.83
	$\cdot 176$	8.89	$9 \cdot 96$	11.02	12.09	$13 \cdot 15$	$14 \cdot 22$	15.28	$16 \cdot 35$
6	-192	9.74	$10 \cdot 9$	12.06	$13 \cdot 22$	$14 \cdot 39$	$15 \cdot 55$	16.71	17.87
5	-212	$10 \cdot 80$	12.09	$13 \cdot 37$	14.65	15.94	$17 \cdot 22$	$18 \cdot 50$	19.78
4	$\cdot 232$	11.88	13.28	14.69	16.09	$17 \cdot 49$	$18 \cdot 90$	$20 \cdot 30$	21.71
3	'252	$12 \cdot 97$	$14 \cdot 49$	16.01	$17 \cdot 54$	19.06	$20 \cdot 59$	$22 \cdot 11$	23.64
2	$\cdot 276$	14.28	15.95	$17 \cdot 62$	$19 \cdot 29$	$20 \cdot 96$	$22 \cdot 63$	$24 \cdot 30$	25•97
1	-300	15.61	$17 \cdot 42$	$19 \cdot 24$	21.05	22.87			$28 \cdot 31$

Weight of Cast-iron Pipes in Lbs. per Foot of Length.

For formula see p. 333.

	uchness in Juches								
员	3/8	1/2	5/8	34	7/8	1	1/8	$1 / 4$	13/8
1		7.35	95	$12 \cdot 86$	1608	$19 \cdot 60$	43	$27 \cdot 56$	00
11	6×9	$9 \cdot 80$	$13 \cdot 02$	$16 \cdot 54$	2()$\cdot 37$	$21: 50$	28.94	$33 \cdot 69$	$38 \cdot 74$
2	$8 \cdot 73$	12.25	16.08	$20 \cdot 21$	2465	29-40	34-45	3981	$45 \cdot 48$
$2 \frac{1}{2}$	11057	11.70	$19 \cdot 14$	$23 \cdot 89$	$24 \cdot 94$	34:30	39.97	45.94	52 22
3	$12 \cdot 40$	$17 \cdot 15$	22.20	27:56	33.23	$39 \% 2$	$45 \cdot 4 \mathrm{~K}$	52.06	58.95
$3 \frac{1}{2}$	$1+24$	$19 \cdot 60$	$25 \cdot 27$	31.24	37-52	$44 \cdot 10$	50.99	58.19	$65 \cdot 69$
4	1608	22.05	28\%3	$34 \cdot 91$	41.80	$49 \cdot 00$	$56 \cdot 50$	64:31	$72 \cdot 43$
$4 \frac{1}{2}$	17.92	$21: 50$	3139	38.59	46.09	$83 \cdot 30$	62.02	$70 \cdot 14$	$79 \cdot 17$
5	19.7.	$26 \cdot 95$	$31 \cdot 45$	12.26	$51 \cdot 38$	58 80	67:53	76:56	85.90
$5 \frac{1}{2}$	21:39	$29 \cdot 40$	37:32	$15 \% 94$	$54 \cdot 67$	63.70	$73 \cdot 04$	82.69	92.64
6	23:4:	31-85	40:38	49.61	58.95	68.60	$7 \times \cdot 55$	88.8	$99 \cdot 4$
$6 \frac{1}{2}$	$2.5 \cdot 27$	34:30	$43 \cdot 64$	$53 \cdot 29$	63:24	73:50	8407	91.9	$106 \cdot 1$
7	$27 \cdot 10$	36.75	46.70	56\% 96	67.53	$78 \cdot 40$	89\% 8	101.1	$112 \cdot 9$
$7 \frac{1}{2}$	28.91	$39 \cdot 2)$	$49 \cdot 77$	60.64	71.82	83:30	95.09	$107 \cdot 2$	1196
8	30.78	$41 \cdot 65$	52.83	64:31	76.10	88.20	$100 \cdot 6$	113.3	$126 \cdot 3$
$8 \frac{1}{2}$	$32 \cdot 62$	$44 \cdot 10$	55.89	67.99	80 :	93.1	$106 \cdot 1$	$119 \cdot 4$	13
9	$34 \cdot 45$	46:5	58.95	$71 \cdot 66$	84.6x	98.0	1116	125.6	$139 \cdot 8$
91	$36 \cdot 29$	49.())	62.02	75:34	88.97	102:9	$117 \cdot 1$	131.7	146.5
10	$38 \cdot 13$	$51 \cdot 45$	65.08	$79 \cdot(1$	93.25	$107 \cdot 8$	122.7	$137 \cdot 8$	153.3
$10 \frac{1}{2}$	$39 \cdot 97$	53.90	$68 \cdot 14$	$82 \cdot 69$	97.51	112.7	128.2	1439	$160 \cdot 0$
11	41.80	56.35	$71 \cdot 20$	86.4	$101 \cdot 8$	$117 \cdot 6$	$133 \cdot 7$	$150 \cdot 1$	166.8
$11 \frac{1}{2}$	43'64	58.80	74.27	$90 \cdot 0$	$106 \cdot 1$	122:5	$139 \cdot 2$	$156 \cdot 2$	173.5
12	$45 \cdot 48$	61.25	77-33	93.7	1104	$127 \cdot 4$	144.7	$162 \cdot 3$	$180 \cdot 2$
13	$49 \cdot 15$	$66 \cdot 15$	$83 \cdot 45$	$101 \cdot 1$	119.0	137.2	155.7	174.6	$193 \cdot 7$
14	52:83	71.05	80:58	108.4	$127 \cdot 6$	147.0	166.8	$186 \cdot 8$	$207 \cdot 2$
15	56.50	75.95	95.7	$115 \cdot 8$	$136 \cdot 1$	$156 \cdot 8$	$177 \cdot 8$	$199 \cdot 1$	$220 \cdot 7$
16	60.18	$80 \cdot 85$	$101 \cdot 8$	123•1	144.7	$166 \cdot 6$	188.8	$211 \cdot 3$	234.1
17	$63 \cdot 85$	85.75	108.0	$130 \cdot 5$	$153 \% 3$	$176 \cdot 4$	199.8	$223 \cdot 6$	$247 \cdot 6$
18	$67 \cdot 53$	$90 \cdot 65$	$114 \cdot 1$	137.8	$161 \cdot 9$	$186 \cdot 2$	$210 \cdot 9$	$235 \cdot 8$	$261 \cdot 1$
19	20	95.55	$120 \cdot 2$	145.2	$170 \cdot 4$	196	221	248	274.6
20	74.88	100\%	126.3	152.5	179.0	$205 \cdot 8$	$232 \cdot 9$	260:3	288.0
21	78.55	105.4	132.5	169.9	$187 \cdot 6$	215.6	$243 \cdot 9$	$272 \cdot 6$	$301 \cdot 5$
22	82.23	110:3	$138 \cdot 6$	167.2	$196 \cdot 2$	$225 \cdot 4$	255.0	284.8	315.0
23	8.90	115.2	$144 \cdot 7$	$174 \cdot 6$	$204 \cdot 7$	235.2	266.0	$297 \cdot 1$	$328 \cdot 5$
24	89:58	$120 \cdot 1$	150.8	181.9	2133	245.0	2770	309•3	341.9

Weight of Brass Tubes in Lbs. per Foot of Length.

For formula see page 333.

Thuckness.		External Dameter in Inches.							
$1 \mathrm{SH}^{\text {W }}$ (lus.	1/2	5/8	3/4	7/8		$11 / 4$	$11 / 2$	13/4
20	$\cdot(036$	-194	$\cdot 246$	-298	-350	-103	$\cdot 507$	$\cdot 611$	$\cdot 716$
19	$\cdot() 40$	$\cdot 213$	$\cdot 271$:329	$\cdot 387$	-44.)	-561	$\cdot 677$	-793
18	-()4	$\cdot 252$	$\cdot 321$	$\cdot 391$	-460)	-530	-664	. 808	$\cdot 948$
17	$\cdot 056$	$\cdot 288$	$\cdot 370$	$\cdot 451$	$\cdot 532$	$\cdot 61: 3$	-776	$\cdot 938$	$1 \cdot 100$
16	-()64	-324	$\cdot 416$	-509	(6)2	$\cdot 695$	-880	$1 \cdot 066$	$1 \cdot 252$
15	$\cdot 072$	$\because 357$	$\cdot 462$	-566	$\cdot 671$	-775	-981	$1 \cdot 19 \%$	1.401
14	$\cdot(180$	-390	-506	$\cdot 622$	$\cdot 738$	-854	$1 \cdot 086$	$1: 318$	1 1.550
13	$\cdot 092$	$\cdot 435$	-569	$\cdot 702$	-836	$\bigcirc 969$	$1 \cdot 236$	1-50.3	1.769
12	-104	$\cdot 478$	-629	$\cdot 779$	-930	$1 \cdot 081$	$1 \cdot 38: 3$	$1 \cdot 684$	$1 \cdot 986$
11	-116	. 517	-68.)	.853	$1 \cdot() 21$	$1 \cdot 190$	$1 \cdot 526$	$1 \cdot 862$	2-199
10	-128	55\%	-738	$\cdot 924$	$1 \cdot 109$	1295	$1 \cdot 666$	$2 \cdot 037$	$2 \cdot 408$
9	$\cdot 144$	$\cdot 595$.803	$1 \cdot 012$	$1 \cdot 221$	$1 \cdot 430$	$1 \cdot 847$	2-265	$2 \cdot 683$

Weight and Volume of Water at Various Temperatures.*

Temperature m Degrees.		Relative Volume.	Relative Densaty.	Werght in Lbs of One Cubic Foot.	Weight in Lbs of One Gallon.
Cent.	Fahr.				
0	32	$1 \cdot 00013$. 99987	62.3512	10.0101
4	$39 \cdot 2$	1.00000	$1 \cdot 00000$	$62 \cdot 3593$	10.0114
10	50	$1 \cdot 00027$. 99973	62.3425	10.0087
$16 \cdot 67$	62	1.00114	-99886	$62 \cdot 2882$	10.0000
20	68	1.00177	-99823	$62 \cdot 2489$	$9 \cdot 9937$
30	86	1.00435	. 99567	62.0893	$9 \cdot 9681$
40	104	1.00782	. 99224	61.8754	9.9337
50	122	1.01207	. 98807	$61 \cdot 6153$	$9 \cdot 8920$
60	140	$1 \cdot 01705$. 98324	61-3141	98436
70	158	1.02269	. 97781	60.9755	9.7893
80	176	1.02899	. 97183	$60 \cdot 6026$	9.7294
90	194	$1 \cdot 03590$. 96534	$60 \cdot 1979$	$9 \cdot 6644$
100	212	1.04343	. 95838	59.7639	$9 \cdot 5947$

Relative densities are the same as densities in grammes per millihtre. Relative volumes are the reciprocals of relative densities.

It is important to realize that, whereas a litre contains 1 kilogramme of pure water at $4^{\circ} \mathrm{C}$. and 760 mm ., a gallon only appears to contain 10 lbs . of water at $62^{\circ} \mathrm{F}$. and with the barometer at 30 inches. The weighing of the litre is adjusted to vacuum conditions, and the apparent weight in air at $4^{\circ} \mathrm{C}$. and 760 mm . would be less than 1 kilogramme. In the case of the gallon the apparent weight in air, at $62^{\circ} \mathrm{F}$. and 30 inches, is 10 lbs . and the weight in a vacuum would be more than 10 lbs .
Taking the weight of a cubic foot of pure water at $62^{\circ} \mathrm{F}$. as $62 \cdot 2882$ lbs., the following results are obtained:-

1 ton of pure water at 62° F. contains 35.9619 cubic feet.

1 pound	$"$	$"$	$"$	27.7420 cubic inches.
1 ton	$"$	$"$	$"$	224 gallons.
1 cubic foot	$"$	$"$	$"$	$6 \cdot 22882$ gallons.
1 gallon	$"$,	$"$	weighs	277.4220 cubic inches.
1 cubic inch	" 0360464 pound.			

[^14]
Pressures Corresponding to given Heads of Water.

Water at maximum density. Temperature $39 \cdot 2^{\circ} \mathrm{F}$.
$H=$ head in feet. $P=$ pressure in libs. per sq. inch $=\mathbf{4 3 3} H$.

H		II				H	P	H	P
1	-433	21	$9 \cdot 09$	41	$17 \cdot 75$	61	26.41	81	$35 \cdot 07$
2	866	22	$9 \cdot 5.3$	42	$18 \cdot 19$	62	$26 \cdot 85$	82	$35 \cdot 51$
3	$1 \cdot 299$	23	$9 \cdot 96$	43	$18 \cdot 62$	63	$27 \cdot 28$	83	$35 \cdot 94$
4	1.732	24	10:39	44	$19 \cdot 05$	64	$27 \cdot 71$	84	$36 \cdot 37$
5	2-16.5	25	$10 \cdot 42$	45	$19 \cdot 48$	6.)	$28 \cdot 14$	85	$36 \cdot 80$
6	2.598	26	$11 \cdot 26$	46	$19 \cdot 92$	66	$28 \cdot 58$	86	$37 \cdot 24$
7	$3 \cdot 0.31$	27	11.69	47	$20 \cdot 35$	67	$29 \cdot 01$	87	$37 \cdot 67$
8	3-464	28	12.12	48	20.78	68	$29 \cdot 14$	88	$38 \cdot 10$
9	3•897	29	$12 \cdot 56$	49	21.22	69	$29 \cdot 88$	89	$38 \cdot 54$
10	$4 \cdot 3: 30$	30	1299	50	$21 \cdot 65$	7)	$30 \cdot 31$	90	$38 \cdot 97$
11	$4 \cdot 76.3$	31	$13 \cdot 42$	511	22.08	71	$30 \cdot 74$	91	$39 \cdot 40$
12	$5 \cdot 196$	32	$13 \cdot 86$	52 ,	$22 \cdot 52$	72	$31 \cdot 18$	92	$39 \cdot 84$
13	$5 \cdot 629$	33	129	53	22.95	73	$31 \cdot 61$	93	$40 \cdot 27$
14	$6 \cdot 062$	34	14.72	54	23:38	74	$32 \cdot(1$	94	$40 \cdot 70$
15	$6 \cdot 495$	35	$15 \cdot 15$	55	$23 \cdot 81$	75	$32 \cdot 47$	95	$41 \cdot 13$
16	6-428	36	15.59	56	$24 \cdot 25$	76	32.91	96	$41 \cdot 57$
17	7:361	37	$16 \cdot 02$	57	$24 \cdot 68$	77	$33 \cdot 34$	97	$42 \cdot 00$
18	7794	38	$16 \cdot 45$	58	$25 \cdot 11$	78	$33 \cdot 77$	98	42.43
19	$8 \cdot 227$	39	$16 \cdot 89$	59	$25 \cdot 55$	79	$34 \cdot 21$	99	$42 \cdot 87$
20	$8 \cdot 660$	40	$17: 32$	60	$25 \cdot 98$	80	$34 \cdot 64$	100	$43 \cdot 30$

Pressures Corresponding to given Heads of Water.
Water at maximum density. Temperature $39 \cdot 2^{\circ} \mathrm{F}$.
$h=$ head in inches. $P=$ pressure in lbs. per sq. inch $=03608 h$.

h.	-	$\cdot 1$	'2	'3	4	5	${ }^{6}$	$\cdot 7$	'8	$\cdot 9$
0		. 004	$\cdot 007$	$\cdot 011$	-014	-018	-022	$\cdot 025$	$\cdot 029$. 032
1	-036	. 040	$\cdot 043$	-047	-051	-054	-058	-061	-065	-069
2	-072	$\cdot 076$	$\cdot 079$	$\cdot 083$	-087	-090	-094	-097	-101	-105
3	$\cdot 108$	-112	$\cdot 115$	$\cdot 119$	-123	$\cdot 126$	$\cdot 130$	$\cdot 133$	-137	-141
4	$\cdot 144$	- 148	$\cdot 152$	-155	$\cdot 159$	-162	$\cdot 166$	$\cdot 170$	-173	177
5	-180	-184	-188	-191	$\cdot 195$	-198	$\cdot 202$	-206	-209	$\cdot 213$
6	-216	-220	-224	-227	- 231	-235	$\cdot 238$	$\cdot 242$. 245	$\cdot 249$
7	-253	-256	-260	-263	- 267	-271	-274	$\cdot 278$	$\cdot 281$	-285
8	-289	-292	$\cdot 296$	-299	-303	-307	- 310	-314	-318	-321
9	-325	- 328	-332	-336	-339	-343	-346	-350	-354	-357
10	-361	-364	-368	-372	- 375	-379	-382	- 386	-390	-393
11	-397	$\cdot 400$	-404	- 408	$\cdot 411$	-415	$\cdot 419$	$\cdot 422$	$\cdot 426$	$\cdot 429$

Weight of One Cubic Inch of Mercury at Various Temperatures.

Temperature in Degrees		Weight of One Cuble Inch in	Temperature in Dcgrees		Weaght of One Cubic Inch in
Cent.	Hahr	Pounds	Cent	Fahr	Pounds
0	32	-49056	120	248	48007
10	50	-48968	1.30	266	-47920
20	68	-48880	140	284	-47833
30	¢6	-48792	150	302	-47746
40	104	-48705	160	320	-47660
50	122	-48til 7	170	338	$\cdot 47573$
60	140	-485.30	180	356	$\cdot 47487$
70	158	-48442	190	374	-47400
80	176	-48355	200	392	-47314
90	191	-48268	210	410)	-47228
10)	212	-48181	220	428	-47141
110	330	-481094	230	446	-47055

Pressure Corresponding to a given Column of Mercury.

$h=$ helght of column in inches.
$P=$ pressure in lbs. per square inch corresponding to the column of height h.
$t=$ temperature of mercury.
$w=$ weight of one cubic inch of mercı ry at temperature t. $P=w h$.

Pressures, in Lbs. per Square Inch, Corresponding to Various Heights of the Barometer, at Various Temperatures.

Height in Inches	Temperature in Degrees Fahrenheit.				
	32°.	50°.	68°.	86°.	104°.
$28 \cdot 2$	$13 \cdot 834$	$13 \cdot 809$	$13 \cdot 784$	13.759	13.735
$\cdot 4$	$13 \cdot 932$	$13 \cdot 907$	13882	$13 \cdot 857$	$13 \cdot 832$
$\cdot 6$	$14 \cdot 030$	$14 \cdot 005$	13.980	$13 \cdot 955$	$13 \cdot 930$
$\cdot 8$	$14 \cdot 128$	$14 \cdot 103$	$14 \cdot 077$	$14 \cdot 052$	$14 \cdot 027$
$29 \cdot 0$	$14 \cdot 226$	$14 \cdot 201$	$14 \cdot 175$	$14 \cdot 150$	14-124
$\cdot 2$	$14 \cdot 324$	$14 \cdot 299$	$14 \cdot 273$	$14 \cdot 247$	$14 \cdot 222$
$\cdot 4$	$14 \cdot 422$	$14 \cdot 397$	$14 \cdot 371$	$14 \cdot 345$	$14 \cdot 319$
$\cdot 6$	$14 \cdot 521$	$14 \cdot 495$	$14 \cdot 468$	$14 \cdot 442$	$14 \cdot 417$
-8	$14 \cdot 619$	$14 \cdot 592$	$14 \cdot 566$	$14 \cdot 540$	$14 \cdot 514$
$30 \cdot 0$	$14 \cdot 717$	$14 \cdot 690$	$14 \cdot 664$	$14 \cdot 638$	$14 \cdot 611$
$\cdot 2$	$14 \cdot 815$	$14 \cdot 788$	14.762	$14 \cdot 735$	$14 \cdot 709$
$\cdot 4$	14.913	$14 \cdot 886$	14.860	14.833	14.806
$\cdot 6$	15.011	14.984	14.957	14.930	14.904

Weight of Acids and Acid Solutions.

Temperature $15^{\circ} \mathrm{C} .=59^{\circ} \mathrm{F}$.

Weight of Oils.
Temperature $15^{\circ} \mathrm{C} .=59^{\circ} \mathrm{F}$.

Name of Oil.	Class of Oil.	Sp. Gravity. Water at $39 \cdot 2^{\circ} \mathrm{F} .=1$.	Weight of One Cubic Foot in Lbs.	Weight of One Gallon in Lbs.
Castor	Vegetable	$\cdot 970$	$60 \cdot 48$	$9 \cdot 71$
Colza.	Vegetable	$\cdot 914$	56.99	$9 \cdot 15$
Cotton-seed	Vegetable	$\cdot 925$	57.67	$9 \cdot 26$
Linseed	Vegetable	$\cdot 935$	$58 \cdot 30$	$9 \cdot 36$
Naphtha	Mineral	-848	$52 \cdot 87$	$8 \cdot 49$
Neat's-foot	Animal	$\cdot 914$	56.99	$9 \cdot 15$
Olive	Vegetable	$\cdot 915$	$57 \cdot 05$	$9 \cdot 16$
Petroleum	Mineral	-878	54.74	$8 \cdot 79$
Rape-seed	Vegetable	$\cdot 915$	57.05	$9 \cdot 16$
Sperm	Animal	-880	54.87	$8 \cdot 81$
Turpentine .	Vegetable	-870	54.24	$8 \cdot 71$
Whale	Animal	-925	57.67	$9 \cdot 26$

Specific Gravity, Weight, and Volume of Gases.

Pressure $=1$ atmosphere ($14 \cdot 7 \mathrm{lbs}$. per square inch).
Temperature $=32^{\circ}$ Fahr. unless stated to be otherwise.

Gas.		$\left\lvert\, \begin{gathered} \text { Weight } \\ \text { of OOne } \\ \text { Cub Foot } \\ \text { in Lhs } \end{gathered}\right.$	Volume of One Lb in Cubic Feet. F'eet
Air, dry and pure, at $32^{\circ} \mathrm{F}$.	1.00000	-080728	$12 \cdot 387$
$\left(62^{\prime} \mathrm{F}\right.$.	0.94263	-076097	$13 \cdot 141$
Carbonic acid (CO_{2})	1-52901	$\cdot 123434$	$8 \cdot 101$
Carbonic oxide (CO)	0.96780	.078129	12.799
Coal gas (16 candle)	$0 \cdot 370$	-029869	$33 \cdot 480$
", (19 ",)	$0 \cdot 425$	034309	$29 \cdot 147$
,, (20) ,"	$0 \cdot 455$	-036731	27×225
$" \quad(36),, \quad)$ from Boghead $\left.\begin{array}{c}\text { Cannel }\end{array}\right\}$	$0 \cdot 750$	$\cdot 060546$	16.516
Cyanogen ($\mathrm{C}_{2} \mathrm{~N}_{2}$)	1-80640	$\cdot 145827$	6.857
Hydrogen	006926	-005591	$178 \cdot 859$
Marsh gas (CH_{4})	0:55900	$\cdot 045127$	$22 \cdot 160$
Nitrogen	$0 \cdot 97137$	-078417	$12 \cdot 752$
Olefiant gas ($\mathrm{C}_{2} \mathrm{H}_{4}$)	$0 \cdot 97840$	$\cdot 078984$	$12 \cdot 661$
Oxygen	1-10563	-089255	11×204
Steam, at $212^{\circ} \mathrm{F}$.	$0 \cdot 47034$	-037970	$26 \cdot 337$
Sulphurous acid (SO_{2})	$2 \cdot 21126$	$\cdot 178511$	$5 \cdot 602$

Weight in Lbs. of a Cubic Foot of Air containing a Standard Amount of Carbonic Acid.
(Board of Trade, Standards Department.)

Condition of Air.	Temperature in Degrees Fahr.		
	32°	62°	80°
Dry air	$\cdot 08098$	$\cdot 07633$	-07377
Ordinary air (saturation $=\frac{2}{3}$)	. 08093	$\cdot 07596$	$\cdot 07313$
Moist air (saturation=1) ${ }^{\text {a }}$.	$\cdot 08080$	$\cdot 07578$	$\cdot 07281$

The standard amount of carbonic acid mentioned above is 6 volumes of carbonic acid to 10,000 volumes of air.

NOTES ON MATERIALS.

(Revised by A. E. W. Smith, B.Sc., Ph.D.)

Ferrous Alloys.
When iron ore is dug from the earth and smelted in the blast furnace, the metal produced is a crude iron called pig-iron. This is very impure, only about $90-95$ per cent. iron, the foreign elements present being chiefly carbon, silicon, manganese, sulphur, and phosphorus. This material is the starting-point for making every kind of engineering iron and steel. The cheapest way of dealing with it is simply to remelt and cast it into shapes, and in this form it is called cast-iron.

Cast-iron is an admirable material for foundry work, because it melts much more easily than does steel, and flows well in the mould. It is cleaner and more uniform than pig-iron, but nevertheless still contains most of the impurities, notably $2 \frac{1}{2}-4 \frac{1}{2}$ per cent. of carbon. A small part of this carbon (up to 0.9 per cent.) is in a complex combined form which strengthens the iron, but the rest may be there cither as free carbon, in the form of graphite flakes, which are weak and soft, or as chemically combined carbon, in which case it is present as the compound iron carbide, which is hard and brittle. In the former case the cast-iron is grey and has a dark fracture; whereas in the latter it is white, so called from its brighter fracture; and mottled irons occur as a cross between these two, i.e. they are partly grey and partly white. It is the ratio of combined carbon to free carbon which determines the quality and hardness of the iron; the greater the quantity of combined carbon, the harder and whiter the iron.
Grey irons are relatively soft, are machinable, and may wear well owing to the self-lubricating action of the graphite flakes; but they tend when very grey to be weak and porous. White irons are very hard and may be stronger than the grey variety; but they are also brittle and practically unmachinable. Within these limitations, however, each kind gives excellent service if correctly used. Control of the degree of greyness is largely attained by the chemical composition of the iron.

Silicon may be present up to 4 per cent., and it has the effect of decomposing the iron carbide to liberate graphite, and therefore the greyness increases with the silicon content. This is shown by the typical analyses of pig-irons in Table 1, where the softest irons are seen to contain the most silicon, and the hard, white irons contain the least. White irons of low silicon content do not make good castings, as the metal is too viscous to flow well, and is also liable to produce blowholes in the casting.

The presence of phosphorus in cast-iron makes it more fusible, and causes it to remain longer in the fluid state when poured;

Table 1.*

Typical Analyses of some (East Coast) Pig-irons, showing Relation of Silicon to Combined Carbon.

	Com- bined Carbon.	Craphitic Oarbon.	Silicon.	Sulphur.	Phosphorus.	Manganese.
No. 1	0.30	3.73	2.50	0.02	0.05	1.00
$\#, 2$	0.45	3.53	2.25	0.03	0.05	1.00
$\# 3$	0.56	3.18	2.00	0.04	0.05	1.00
$\#, 4$	1.00	2.75	1.50	0.10	0.05	1.00
M, 5	1.55	2.45	1.00	0.20	0.05	0.75
Mottled	2.05	1.50	0.75	0.25	0.05	0.50
White	3.15	trace	0.65	0.30	0.05	0.50

but it also induces brittleness. For this reason the phosphorus content is rarely as high as 1 per cent. This type of iron is useful, however, for castings of thin section or of intricate design, and for many light engineering castings.

Sulphur tends to make cast-iron hard and brittle, and is generally regarded as detrimental; it should be kept well below 0.1 per cent. for most foundry purposes.

Manganese also tonds in a different way to whiten and harden a cast-iron, and is therefore often kept below 0.75 per cent. But it helps to exert a controlling influence over the harmful effect of sulphur, and for any particular purpose these two impurities should be considered in conjunction.

The grey irons have a higher melting-point than the white irons, but they are more fluid in the molten state. They also expand during solidification and therefore take a good impression of the mould, a property not possessed by the white varieties. After cast-iron has solidified it contracts in cooling, about oneeighth of an inch per foot of length. Allowance for this contraction must be made in patterns for the foundry. The shrinkage is less in the softer than in the harder irons.

A part of a casting may be chilled by having the corresponding part of the mould lined with cast-iron, protected by a thin coating of loam. The chilled (i.e. more rapidly cooled) portion is found to contain more combined carbon, and is therefore harder. The hard skin produced in this way may be up to 1 inch thick; for instance, the wearing surface of a chilled iron roll.

Castings of hard white iron may be converted into malleable castinge by embedding them in powdered hoematite (an oxide of

[^15]iron) and keeping them at a bright red-heat for several days, the time depending on their size. They are then cooled very slowly. By this process most of the iron carbide is decomposed and a large part of the carbon oxidised away, this variety of malleable iron being called white-heart. A similar kind of treatment, but without the surrounding oxide, leaves all the carbon embedded in the iron, collected into graphite "nodules," and this is called black-heart malleable from its darker fracture.

An idea of the strength of ordinary cast-irons is obtained from the following figures, and from the fact that the B.S.S., No. 321, 1928, called for a tensile strength of only 11 tons per square inch (on the 1.2 inch-diameter bar).

	Maximum Stress. Tons/Sq. In.	Crushing Strength. Tons/Sq. In.	Transverse Tests. $36-\mathrm{m} . \times 2$-in. $\times 1$-in. Bars.
Average	8-11	40	28 cwt.
Very good .	14-16	50	30-40 "
Poor .	5	30	18 ",

In recent years, howover, really outstanding improvements have been made in cast-iron, and this material can no longer be regarded as the Cinderella of metals. Not only in composition, but especially in melting practice in the cupola and in casting procedure, far greater control has been created by research, resulting in irons of much finer texture and greater uniformity. A great many irons have been patented. The general improvement is indeed so great that new specifications have been required, and the B.S.S., No. 786, 1938, demands in these high-duty irons a tensile strength as follows:-

$$
\begin{array}{ccccc}
& \text { Grade I. } & \text { Grade II. } & \text { Grade III. } \\
1.2 \text { inch-diameter bar } & 14 & 17 & 20 & \text { tons/sq. in. }
\end{array}
$$

It should be remembered that these are minimum figures, and indeed a strength of 30 tons per square inch is by no means unusual in practice. With these high-duty irons it is often worth while to employ heat-treatment (as with steels) for further improvement, as in applications such as cylinder liners, cams, etc.

Alloy additions also are now frequently made to cast-irons, the commonest being nickel, chromium, and silicon. These may produce greater wear-resistance, or strength, as in Grades II. and III. above, or resistance to growth. Ordinary cast-irons, when repeatedly heated and cooled (as in travelling fire-grates), are gradually altered in their internal structure, and actually inorease in length in the process. This growth causes buckling.

The new non-magnetic alloy irons have almost completely overcome this phenomenon and can be heated with safety. Table 2 gives the properties of some of these irons.

Table 2.*

Physical Properties of Nickel Alloy Austenitic Cast-irons.

	Typical Composition. Per Cent.					Tensile Strength. Tons/ Sq. In.	Transverse Stress. Tons/ Sq. In.	$\begin{gathered} \text { Brinell } \\ \text { Hard- } \\ \text { ness } \\ \text { Number. } \end{gathered}$	Machinability.
	0	Si	Ni	Cr					
"Nomag"	2.8	1.5	11		Mn 6	14-17	\cdots	200-220	Good
"Ni-Resist",	2.8	1.5	14	2	Cu 6	12-16	\cdots	180-220	Good
"Nicrosilal"-									
A. Hard		5.0	18	5 2		16-18	36-40	(320-350	Difficult
$\left.\begin{array}{c} \text { Unalloyed } \\ \text { engineering } \\ \text { cast-iron } \end{array}\right\}$	3.2	1.8	1	2	.	12-16	26-30	180-210	($\begin{aligned} & \text { Poossibly } \\ & \text { difficult } \\ & \text { at corners }\end{aligned}$

The properties of other alloy irons, such as may be used for cast crankshafts, are shown in Table 3, with a nickel-chromium alloy steel for comparison.

Wrought-iron. \dagger-Wrought-iron is nearly pure iron, and is made from pig-iron. Although pig-iron can be cast into shapes and has moderate strength, it cannot be forged or bent; but it is made forgeable or malleable by removing the impurities picked up in the blast furnace.

Wrought-, or "puddled," iron is made in a shallow hearth furnace at a high temperature ($1200^{\circ}-1400^{\circ} \mathrm{C}$.) by melting down certain varieties of pig containing the most suitable amounts of impurities, and then oxidising this metal by a blast of air, together with iron ore or scale. Some iron is lost as oxide, but the impurities are almost all removed by preferential oxidation. The removal of the impurities raises the melting-point, so that during the refining the iron solidifies to a pasty mass, which is raked and worked into balls by the puddlers. The ball, whilst still white-hot, is taken to a hammer forge and beaten, to squeeze out most of the still fluid slag. The ball is rolled down to plates or billets, which are then packed into piles (piling) or bent back (doubling) and re-rolled, so that the final product is laminated but perfectly welded together. Good wrought-iron is thus nearly pure iron in which the original droplets of slag are rolled out into fibres; hence wrought-iron breaks with a fibrous

[^16]
Table 3.*
 Physical Properties of Crankshaft Cast-irons.

| Property. | | |
| :---: | :---: | :---: | :---: | :---: | :---: |

(a) Steel billet annealed at $860^{\circ} \mathrm{O}$. ($1575^{\circ} \mathrm{F}$.) ; test-pieces cut and oil-quenched from $850^{\circ} \mathrm{O}$. $\left(1560^{\circ} \mathrm{F}\right.$.), and tempered at $650^{\circ} \mathrm{O}$. ($1200^{\circ} \mathrm{F}$.).
(b) Heated to $900^{\circ} \mathrm{O}$. ($1650^{\circ} \mathrm{F}$.) for 20 minutes, air-cooled to $650^{\circ} \mathrm{O} .\left(1200^{\circ} \mathrm{F}\right.$.), re-heated to $760^{\circ} \mathrm{O} .\left(1400^{\circ} \mathrm{F}\right.$.) for 60 minutes, furnace-cooled to $540^{\circ} \mathrm{O} .\left(1000^{\circ} \mathrm{F}\right.$.), and thence in air.
(c) Using the N.P.L. "combined stress fatigue testing machine."
fracture. The amount of slag (ferrous silicate) is very small, but it is a characteristic feature of this metal, and makes it slightly stronger in its length than across the fibre.

The pig-iron used is called "forge iron," and is intermediate between the hard mottled irons and the grey soft irons generally used for making cast-iron castings. The carbon and silicon contents must be such that the process of puddling just eliminates

* H. J. Gough and H. V. Pollard, "Properties of Some Materials for Cast Orankshafte," Proc. I.A.E., vol. xxal. (1937), p. 821.
them without too much burning of the iron itself. Moreover, since phosphorus and sulphur are both deleterious, these elements must not be over specified amounts. In wrought-iron excess silicon, not removed, gives hard and brittle metal. Wroughtiron should contain less than 0.35 per cent. silicon. Phosphorus, similarly, should be less than 0.25 per cent. Sulphur makes the wrought-iron brittle at welding temperatures (red short), and should be less than 0.03 per cent.

Many cheap varieties of "wrought-iron" have been made by enclosing mild steel bars, containing considerable quantities of manganese, in the presence of slag, between wrought-iron plates and hot-rolling the whole mass to give a coherent "wroughtiron" plate. The material is, however, by no means as satisfactory, partly due to its lack of ductility, and has probably been responsible for the supposed deterioration in the quality of genuine wrought-iron. Consequently, material should not be regarded as good wrought-iron if it contains manganese in excess of 0.15 per cent.

The excellence of wrought-iron depends on its easy and reliable weldability, its good toughness and ductility. Typical tests show a tensile strength of 22-24 tons per sq. inch and 10-25 per cent. elongation. Wrought-iron should pull out or extend if it is overloaded, and thus give warning before failure occurs. It is the best material for chains and hooks for heavy duty. It is better in ductility than even the best black-heart malleable iron, as a comparison of the properties of the malleable irons shows.

Structure.	White-heart.	Black-heart.	Wroughtiron.	Mild Steel.
	Iron + Pearlite.	Iron + Temper Oarbon + some Pearlite.	Iron + Slag Filaments.	Iron + Pearilte.
Tensile strength, tons/sq. inch.	19-29	16-26	23	25-35
Elongation, per cent.	6-2	15-41	26	35-30
Reduction in area, per cent.	6-2	15-41	40	65-60

When it is exposed to corrosive conditions it wears away uniformly, whereas steel corrodes badly at some points more than others, and this causes pitting. The actual loss is about the same, but the wrought-iron will last longer. In use, if wrought-iron is hammered cold, it beoomes hard and brittle,
so that chains and hooks exposed to shooks should be periodically annealed at a bright heat, to recrystallise the metal that has been hardened by the "cold work."

Wrought-iron, by its laborious method of manufacture, is very expensive, and has been ousted by the cheaper mild steel from many of its original applications. Its peculiar properties, however, give it a place which substitutes cannot fill. In fact, a new process has been developed by an American company for "synthesising" wrought-iron from an artificial mixture of molten "dead mild" steel and fluid silicate slag. This material is quite as good as genuine puddled iron, and is cheaper to make, and it meets the best American specifications for wrought-iron for naval requirements.

Steel.-About four-fifths of the pig-iron produced goes to the manufacture of steels. Pig-iron is refined to stcel by various methods, all having the common feature that the impurities are oxidised away in the molten condition and liquid steel is left, providing the complete climination of the slag, a contrast with wrought-iron. Further, after the iron is thus purified, controlled quantities of useful carbon, etc., are added to give the desired strength and hardness. Thus steel is really an alloy of purified iron and carbon, with which the iron combines. In good steel the amount of the sulphur and phosphorus impurities left should not exceed 0.05 per cent.

The first steel was made by strongly heating wrought-iron while surrounded with carbon, whereby cementation occurred and the iron absorbed some of the carbon. Several of these slabs were then welded together and the composite block reduced to any desired size by hot forging, giving what is called shear steel, a material which is very little made now. The cemented bars may also be melted in crucibles, adding more ingredients if necessary, and cast into ingots, called cast steel. These may be rolled hot into small sections, also called cast steel, but as they are mainly used for cutting tools, tool steel is a better name, as many other grades of steel are used for casting purposes nowadays. It is a high-grade product, clean, and uniform in carbon content.

Modern structural steels, however, are made on a much larger scale, in either the Bessemer converter or the open-hearth (Siemens-Martin) furnace. Each of these may use either an acid or basic refractory lining for the furnace, according to the type of pig being melted, and this gives the so-called acid and basic steels. Basio linings are becoming the more popular, as the by-product slag is useful for fertilising, but acid open-hearth steel has been regarded as the best grade of them all.

Bessemer steel is made by pouring melted pig-iron into a vessel called a converter, through which a blast of air is then blown. By this means the carbon and other impurities are burnt away
and comparatively pure iron remains. To this may be added the necessary quantities of carbon, silicon, and manganese, in various forms, and the molten steel cast into ingots or into prepared moulds in the foundry.

Open-hearth steel is made by melting pig-iron, together with up to 50 per cent. of steel scrap, in the shallow hearth of a reverberatory furnace fired by producer gas, and the impurities are oxidised away as before, but from the surface of the bath, which therefore takes much longer. The composition of the steel is adjusted as before, and the metal is cast into large ingotsfor forging.

In addition to these methods there are the two newer electrical melting furnaces, of the arc and the high frequency induction types, used mainly for obtaining the very high temperatures necessary for making steels of high alloy content, e.g. stainless, high-speed, etc. The high-frequency furnace is now ten years old industrially, has almost superseded the older crucible melting plant, and gives far better control over the cleanliness and thorough mixing of the alloy steels.

Strength of Steel.-Pure iron is a soft and ductile metal. As the carbon content gradually increases so that the iron becomes first mild steel, then medium carbon steel, and finally high carbon steel, its tensile strength gradually increases also, reaching a maximum of about 65 tons per sq. inch at 0.9 per cent. carbon. The hardness goes up continuously with the percentage of combined carbon, whilst the percentage elongation falls steadily, as the following figures for high-grade normalised steels show:-

Oarbon. Per Oent.	Oondition.	Approximate Physical Properties.			
		Tons/Sq. In.		Elongation. Per Dent.	Brinell Hardnese Number.
		Yield.	Ulti-		
Pure iron	Annealed	13	20	40	96
0.15	Normalised at $880^{\circ} \mathrm{O}$.	15	24	35	120
0.25	$" \quad \# 850^{\circ} \mathrm{C}$.	18	30	32	145
0.35	" \quad " $830^{\circ} \mathrm{C}$.	23	35	28	170
0.45	$" \quad \# 830^{\circ} \mathrm{C}$.	30	42	25	195
0.55	$" \quad$ " $820^{\circ} \mathrm{C}$.	32	47	23	220

With higher carbon contents approaching 1 per cent., the steel is not only hard but has become almost devoid of elongation, i.e. is brittle. Structural steels are therefore limited to the lower carbon varieties, and typical uses of the various grades are shown in Table 4.

Table 4.
Typical Applications of Carbon Steels.

	Oarbon. Per Oent.	$\begin{gathered} \text { Approxi- } \\ \text { mate } \\ \text { Tensile } \\ \text { Strenth. } \\ \text { Tons/Sq. In. } \end{gathered}$	Use.
	$\left\|\begin{array}{c} \text { Below } 0 \cdot 1 \\ \cdot 10-\cdot 18 \\ \cdot 15-\cdot 25 \\ \\ \cdot 25-\cdot 35 \end{array}\right\|$	$\begin{aligned} & 20-25 \\ & 24-28 \\ & 26-32 \\ & 32-38 \end{aligned}$	Tinplate, galvanised iron. Boiler plates, ships' plates, general, case-hardening for gear wheels, cams (hard case, tough core). Structural for buildings, bridges, general engineering purposes, crank axles, shafting. Turbine rotor shafts, hydraulio cylinders, rams, spindles, marine shafts.
Medium oarbon	$\begin{aligned} & .35-\cdot 45 \\ & .45-\cdot 55 \end{aligned}$	$\begin{aligned} & 35-45 \\ & 45-55 \end{aligned}$	Railway and tramway axles, rails, turbine discs, crankpins, connecting-rods. Steel mill rolls, gear wheels, rifle barrels, gun parts, shells.
High carbon (tool steels)	$\begin{gathered} .55-.65 \\ .65-75 \\ .75-.85 \\ .85-1.0 \\ 1.0-1.2 \end{gathered}$	$\begin{aligned} & 50-60 \\ & 60-70 \\ & 60-70 \\ & 60-70 \\ & 55-65 \end{aligned}$	Wheel tyres, die blocks, gears, mandrels. Crusher rolls, hammers, general tools. Ball mill parts, hand chisels, scissors. Taps, drills, dies, ball races, wood tools. Tools, drills, razors, wire dies, pens.

It is not only the carbon content, however, that determines the strength of a steel, because by adopting various heat-treatments any one steel can be put into a number of different conditions, each showing its own combination of strength, toughness, etc. For instance, if a carbon steel be heated to a good red-heat (suitable to its composition) and quenched in water, it will become
very hard, probably brittle, and may be cracked or distorted. Less drastic cooling may be obtained by oil-quenching, with correspondingly less severe results. Slow cooling in the furnace, or in still air, on the other hand, will soften the material. Gentle heating after quenching can be used to remove the brittleness and make the metal tough while still being very hard; this is called tempering (or in America, "drawing"). Some typical contrasting properties are shown in Tables 5 and 6.

Table 5.*
Effect of Various Heat-treatments on Carbon Steels.

Oarbon. Per Cent.	Heat-treatment.	B.H.	Y.P.	M.S.	E.\%.	R.\%	Izo
$0 \cdot 06$	norm. at $920^{\circ} \mathrm{C}$. w.q. at $920^{\circ} \mathrm{C}$. o.q. at $920^{\circ} \mathrm{C}$.	$\begin{aligned} & 121 \\ & 167 \\ & 137 \end{aligned}$	19	$\begin{aligned} & 26 \\ & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 41 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 71 \\ & 67 \\ & 69 \end{aligned}$	32 51 90
0.20	$\begin{aligned} & \text { norm. at } 900^{\circ} \mathrm{C} . \\ & \text { w.q. at } 900^{\circ} \mathrm{C} ., \\ & \text { and t. at: } 300^{\circ} \mathrm{C} . \\ & 400^{\circ} \mathrm{C} . \\ & 500^{\circ} \mathrm{C} . \\ & 600^{\circ} \mathrm{C} . \end{aligned}$	$\begin{aligned} & 167 \\ & 241 \\ & 223 \\ & \check{217} \\ & 212 \end{aligned}$	$\begin{gathered} 24 \\ \cdots \\ \because \\ \ddot{35} \\ 34 \end{gathered}$	$\begin{aligned} & 36 \\ & 52 \\ & 48 \\ & 49 \\ & 46 \\ & 44 \end{aligned}$	$\begin{aligned} & 34 \\ & 18 \\ & 20 \\ & 20 \\ & 23 \\ & 25 \end{aligned}$	$\begin{aligned} & 60 \\ & 46 \\ & 52 \\ & 52 \\ & 57 \\ & 63 \end{aligned}$	$\begin{aligned} & 82 \\ & 33 \\ & 33 \\ & 45 \\ & 61 \\ & 79 \end{aligned}$
$0 \cdot 45$	norm. at $870^{\circ} \mathrm{C}$. w.q. at $870^{\circ} \mathrm{C}$., and t. at: $300^{\circ} \mathrm{C}$. $400^{\circ} \mathrm{C}$. $600^{\circ} \mathrm{C}$. $700^{\circ} \mathrm{C}$.	$\begin{aligned} & 192 \\ & 321 \\ & 311 \\ & 302 \\ & 277 \\ & 235 \\ & 207 \end{aligned}$	$\begin{gathered} 27 \\ \cdots \\ \hdashline \ddot{4 B} \\ 42 \\ 36 \\ 31 \end{gathered}$	$\begin{aligned} & 44 \\ & 67 \\ & 65 \\ & 64 \\ & 59 \\ & 52 \\ & 45 \end{aligned}$	$\begin{aligned} & 27 \\ & 12 \\ & 15 \\ & 17 \\ & 21 \\ & 25 \\ & 28 \end{aligned}$	$\begin{aligned} & 54 \\ & 28 \\ & 38 \\ & 47 \\ & 55 \\ & 62 \\ & 67 \end{aligned}$	$\begin{aligned} & 31 \\ & 14 \\ & 16 \\ & 19 \\ & 34 \\ & 48 \\ & 59 \end{aligned}$
0.55	ann. at $700^{\circ} \mathrm{C}$. norm. at $820^{\circ} \mathrm{C}$. o.q. at 850° C., and t. at $400^{\circ} \mathrm{C}$.	\because \cdots \cdots	$\begin{aligned} & 24 \\ & 32 \\ & 75 \end{aligned}$	$\begin{aligned} & 35 \\ & 48 \\ & 80 \end{aligned}$	$\begin{array}{r} 30 \\ 25 \\ 8 \end{array}$	\cdots	\cdots

B.H. = Brinell hardness.
Y.P. = yield point, tons/sq. inch.
M.S. = maximum stress, tons/sq. inch.
E. \% =elongation, per cent.
R. \% = reduction in area, per cent.
norm. $=$ normalised.
ann. =annealed.
w.q. =water-quenched.
o.q. =oil-quenched.
t. =tempered.

Izod = energy absorbed in ft.-lbs.

[^17]
Table 6.*

Effect of Heat-treatment on some Alloy Steels.

Composition. Per Cent.	Heat-treatment.	B.H.	Y.P.	M.S.	E.\%.	R.\%.	Izod.
Oase-hardening.							
$\begin{array}{ll}0 & 0.15 \\ \mathrm{Ni} & 2.6\end{array}$	norm. at $880^{\circ} \mathrm{O}$.	143	24	32	37	69	95
Ni $2 \cdot 6$	w.q. at $880^{\circ} \mathrm{C}$., and t. at $600^{\circ} \mathrm{O}$.	179	30	38	31	75	115
$\begin{aligned} & \bar{O} 0.07 \\ & \text { Ni } 5.1 \end{aligned}$	norm. at $860^{\circ} \mathrm{O}$.	143	26	31	39	72	$1 \overline{04}$
	w.q. at $860^{\circ} \mathrm{O}$., and t. at $600^{\circ} \mathrm{O}$.	163	29	34	36	77	114
	$\text { o.q. at } 860^{\circ} \mathrm{O} \text {., }$	163	29	34	36	77	
	and t. at $600^{\circ} \mathrm{O}$.	159	28	32	38	77	116

31 Per Oent. Nickel.

O 0.37	norm. at $860^{\circ} \mathrm{O}$.	196	27	44	28	56	36
Ni $3 \cdot 65$	w.q. at $860^{\circ} \mathrm{O}$.	544		124	9	25	4
	and t. at : $400^{\circ} \mathrm{O}$.	340	67	75	16	56	8
	$500^{\circ} \mathrm{O}$.	285	54	61	21	61	52
	$600^{\circ} \mathrm{O}$.	248	45	53	25	63	72
	$650^{\circ} \mathrm{O}$.	228	39	48	28	65	81
	o.q. at $860^{\circ} \mathrm{O}$. ,	495		116	10	\cdots	6
	and t. at : $500^{\circ} \mathrm{O}$.	293	54	63	20	60	50
	$650^{\circ} \mathrm{O}$.	235	40	49	27	66	82

$1 \frac{1}{2}$ Per Cent. Nickel-chrome.							
Ni 1.52 Cr 0.80	norm. at $850^{\circ} \mathrm{O}$.	174	29	40	33	65	74
O 0.28	and t. at: $500^{\circ} \mathrm{O}$.	302	¢6	64	18	58	50
	$650^{\circ} \mathrm{O}$.	229	40	47	27	69	93
	o.q. at $850^{\circ} \mathrm{O}$. ,	302	. .	64	16	34	17
	and t. at: $400^{\circ} \mathrm{O}$.	291	\cdots	60	17	51	32
	$500^{\circ} \mathrm{O}$.	262	44	54	21	62	70
	$600^{\circ} \mathrm{O}$.	223	37	46	27	68	90
	$650^{\circ} \mathrm{O}$.	212	35	44	29	70	93
3 Per Cent. Nickel-chrome.							
Ni 3.27	norm. at $820^{\circ} \mathrm{O}$.	341		76	15	40	6
Or 0.82	o.q. at $820^{\circ} \mathrm{O}$. ,	495	\ldots	116	14	37	11
$0 \quad 0.31$	and t at : $400^{\circ} \mathrm{O}$.	388	75	85	16	54	8
	$500^{\circ} \mathrm{O}$.	331	65	71	19	56	28
	$600^{\circ} \mathrm{O}$.	285	Б4	60	22	62	59
	$650^{\circ} \mathrm{O}$.	269	48	57	24	65	74
Air-hardening.							
Ni 3.70	air-hardened from						
Or 1.42	$850^{\circ} \mathrm{O}$.	477	-	115	13	40	18
O 0.32	" from $820^{\circ} \mathrm{O}$.,	477		114	11	39	17
	and t. at: $400^{\circ} \mathrm{O}$.	418	80	90	14	52	14
	$500^{\circ} \mathrm{C}$.	351	67	74	18	56	34
	$650^{\circ} \mathrm{O}$.	262	46	56	25	67	83
	o.q. at $820^{\circ} \mathrm{C}$., ${ }^{\circ}$						
	and t. at: $400^{\circ} \mathrm{O}$.	418	87	91	13	52	17
	$500^{\circ} \mathrm{O}$.	364	71	78	16	56	37
	$650^{\circ} \mathrm{O}$.	262	47	57	24	67	86

* Mainly from Automoblle Steel Reearch Report of the I.A.‥, 1820.

The effects of heat-treatment become more pronounced with the higher carbon contents, as is seen with the 0.55 per cent. carbon steel, whose tensile strength of only 35 tons per sq. inch in the fully softened condition may be raised to 80 tons per sq. inch by suitable treatment. Another method of increasing the tensile strength is by cold-working, such as rolling or drawing through a die; and hence great strength may be induced in wires, such as piano wire, by selected combinations of drawing and heat-treatment, e.g.

Spring Wire. 0.7 per Cent. Oarbon.	$\begin{gathered} \text { Yield } \\ \text { Point. } \\ \text { Tons/Sq. In. } \end{gathered}$	$\underset{\text { Stress. }}{\text { Maximum }}$ Tons/Sq. In.	Elongation. Per Cent. on 10 In .	Reduction in Area. Per Cent.
Hard-drawn	62	103	2	30
Patented	$44 \cdot 5$	69		40
Annealed	$24 \cdot 5$	49	10	55
Oil-quenched and tempered	$84 \cdot 5$	106	3	40

Case-hardening is an application of the cementation process of making steel. If a mild steel article, after it is machined and finished, be heated in contact with substances rich in carbon, the iron at the surface will be converted into steel, which may be hardened by quenching in water, so as to produce a wearresisting surface. In addition to solid carburising mixtures, molten cyanides are now also used, or the articles may be heated in a gas mixture which contains carbon monoxide. In all cases the carbon content of the surface reaches 0.9 to 1.0 per cent., and is therefore capable of developing full hardness in the later heat-treatment, while at the same time the lower carbon centre is put into a tough condition to resist shocks.

A newer kind of hard case is made by allowing active nitrogen, derived from ammonia gas, to penetrate the surface of the steel. This is called nitriding, and was formerly applicable only to cortain patented alloy steels, but it is now finding wider use. It is also applicable to certain cast-irons. The case is much harder, equivalent to $900-1000$ Brinell, thinner and more resistant than the carbon case, and no after-treatment is necessary. The process is advantageous in many ways but is somewhat more costly. Fig. 1* shows results produced by different hardening processes.

Alloy Steels.-The addition of small amounts of other elements to carbon steels is now very commonly used to produce materials of greater all-round strength than can oonveniently be obtained with plain carbon steels; e.g. $1 \frac{1}{2}, 3$, or 5 per cent. of nickel, with

[^18]or without $\frac{1}{2}$ or 1 per cent. of chromium, are quite usual in engineering steels. Often a combination of desirable properties is attainable with low alloy steels which is not possible with carbon steel. These steels respond to heat-treatment in a similar way to the carbon steels (each composition requiring its own peculiar temperatures), but in general the alloy additions ease the rate at which the internal alterations occur, so that hardening may be produced by oil-cooling or even air-cooling instead of

Fig. 1.
Water-quenching. Thus with suitable amounts of nickel and chromium, or other elements, there are the oil-hardening and the air-hardening types of steel. Furthermore, this more gentle rate of internal change eliminates the distortion and cracking so liable to occur with plain steels, and gives more uniform hardness throughout thicker sections. Similarly, where ordinary case-hardening steels do not provide a strong enough core, low nickel additions may be used to give greater strength. Table 6 gives the properties of typical steels of these kinds and the effects of some heat-treatments on them, while Table 7 gives a fuller list of commercial steels. In general, nickel may be

regarded as a strengthener, whereas ohromium, in small amounts, is primarily a hardener. Like most alloying additions, they both also give a finer grain to the steel. Other small additions may be employed for many reasons: to assist in the melting and casting procedure, to ensure soundness and a cleaner steel, to improve resistance to shock or promote greater elastic properties. For instance, up to $\frac{1}{2}$ per cent. molybdenum markedly improves fatigue properties, amongst other benefits, and a like quantity of vanadium will often be put into spring steels, while copper is found to gencrate better weather-resistance.

Since the properties of steels can be altered by heat-treating, it follows that they cannot maintain their full strength if used under conditions where they get hot, as in steam plants. In the range $350^{\circ}-500^{\circ}$ C. $\left(665^{\circ}-930^{\circ} \mathrm{F}\right.$.) carbon steels lose almost all their tensile strength, but some alloy steels are much less affected. Notable among these resistant steels are some combinations of molybdenum and chromium; molybdenum also counteracts the embrittlement to which many other steels are liable when heated for long periods in the $350^{\circ}-500^{\circ} \mathrm{C}$. range. "Durehete" is a steel of this type, and the effect of high-temperature tempering on bars ($1 \frac{1}{8} \mathrm{in}$. dia.) which have been oil-hardened from $840^{\circ}-$ $860^{\circ} \mathrm{C}$. is as follows :-*

$\begin{gathered} \text { Tempering } \\ \text { Temperature, } \\ { }^{\circ} \mathrm{O} . \end{gathered}$	Maximum Stress. Tons/Sq. in.	$\underset{\text { Yield }}{\text { Point. }} \begin{gathered} \text { Tons/Sq. In. } \end{gathered}$	Elongation. Per Cent. on 2 In .	Reduction of Area. Per Cent.	$\begin{gathered} \text { Izod } \\ \text { Impact. } \\ \text { Ft.-lbs. } \end{gathered}$
500	90.5	$84 \cdot 0$	11.5	24	27
600	$74 \cdot 3$	$69 \cdot 3$	17.5	52	47
650	$64 \cdot 8$	$58 \cdot 0$	$20 \cdot 5$	55	63
700	$54 \cdot 1$	$47 \cdot 7$	23.0	59	70

These figures are not maintained, of course, if the steel be held at the temperature for long periods, but gradually fall away. The stress which the metal will stand is a more useful figure, and on the Barr-Bardgett creep testing machine it is possible to furnish results approximating closely to safe working stresses, that is, stresses which will produce negligible initial deformation, and permanence of dimensions for long life. As seen from the table \dagger on p. 362, the molybdenum steels are far superior to carbon steel; but the higher chromium contents are not so effective as the lower. Work on the choice of the best creep-resisting steels is still going on.

[^19]| Type of Steel. | Oondition. | Tested at | Safe Working Stress. Tons/Sq. In. |
| :---: | :---: | :---: | :---: |
| Mild steel, 012 per cent. C. | Normalised, $910^{\circ} \mathrm{C}$. | $\begin{array}{cc}{ }^{\circ} \mathrm{O} . & { }^{\circ} \mathrm{F} . \\ 500 & (930)\end{array}$ | $1 \cdot 1$ |
| $\frac{1}{2}$ per cent. Mo. | Annealed, $910^{\circ} \mathrm{C}$. | $500 \quad(930)$ | $2 \cdot 5$ |
| $\frac{1}{2}$ per cent. Mo, 1 per cent. Cr. | Normalised, 910 ${ }^{\circ} \mathrm{C}$. | 510 (950) | $3 \cdot 5$ |
| $\frac{1}{2}$ per cent. Mo, 6 per cent. Cr. | $\left\{\begin{array}{c} \text { Air-cooled, } 950^{\circ} \mathrm{C} . \\ ", 750^{\circ} \mathrm{C} . \end{array}\right\}$ | 500 (930) | $1 \cdot 6$ |

To obtain other specific properties, larger additions of special elements are employed, usually with one element predominating, and these produce steels which behave quite differently from ordinary steels, so that their heat-treatment must always follow the instructions supplied by their particular maker. For instance, stainless steels of the hardenable cutlery variety contain 13 per cent. of chromium, and the non-magnetic, austenitic varieties, including the "Staybrite" range, have 18 per cent. chromium and 8 per cent. nickel; high-speed steels contain around 19 per cent. tungsten, and permanent magnet steels may have up to 35 per cent. cobalt, though these latter are being rivalled by the newer nickel-aluminium magnet steels. Manganese in proportions of $12-13$ per cent. has long been used to provide exceptional resistance to wear, as in rail and tramway crossings; for heat-resistance, chromium and silioon additions are made, as shown in Table 8.

Steels for exhaust valves supply an example of the special application of alloying elements, because in this field the conditions are severe and the metal must possess a combination of properties which it has been hard to obtain. The table on p. 364 * shows the hot and cold strengths of various steels which have been used for valves, and it is seen that the high nickel-chromium steels are vastly superior. This type of steel, being austenitic, is not susceptible to hardening (and consequent embrittlement) on overheating, as may be the case with steels used previously. In other words, it has that important attribute, permanence of properties after many re-heatings. The nickel content varies from 8 to 30 per cent., and the chromium from 12 to 25 per cent. Silicon up to 2 per cent. has been found to improve still further the resistance to oxidation, and the presence of tungsten up to 4 per cent. improves the hot strength. Thus at the present time the heat-resisting nickel-chromium steels oontaining silioon
STEEL
Table 8.*
Typical Heat-resisting Steels manufactured by Messrs. Hadfields, Ltd., Sheffield.

Approximate Analysis.					Treatment.	Mechanical Properties.										Coeff. of Expansion 10^{-6} per ${ }^{\circ} \mathrm{C}$. at 20°.	
					Room Temperature.	$800^{\circ} \mathrm{C}$.											
0	Or	Ni	W	Si		Y.P. Tons per Sq. Inch.	M.S. Tons per Sq. Inch.	$\begin{aligned} & \text { E1. } \\ & \text { Per } \\ & \text { Cent. } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { R.A. } \\ & \text { Per } \\ & \text { Cent. } \end{aligned}\right.$	Brinell Hardness No.	$\begin{aligned} & \text { Izod } \\ & \text { Ft.- } \\ & \text { lbs. } \end{aligned}$	M.S.TonsperSq.Inch.	EI.PerCent.		Creep		
														R.A.	10^{-6} per		
															$\underset{\text { Hours }}{\text { (40 Days). }}$		
0.40	$13 \cdot 5$	$13 \cdot 5$	2.5	1.5		Forged	37	60	37	42	260	50	24	32	60	1.0	$15 \cdot 1$
0.30	20	7	$4 \cdot 0$	1.5	,,	38	61	34	41	260	35	25	36	60	$1 \cdot 2$	$13 \cdot 3$	
0.25	20	7		1.5	",	30	56	42	46	190	50	23	38	61	0.5	$15 \cdot 7$	
0.45	14	28	$4 \cdot 0$	1.5	",	32	50	30	45	200	35	21	32	43	0.55	$14 \cdot 1$	
0.43	10	37	\cdots	$0 \cdot 25$	",	28	48	30	50	200	50	17	44	61		$7 \cdot 3$	
0.25	25	18	.	2.0	",	33	50	29	46	195	50	20	33	48	0.5	$14 \cdot 3$	
0.50	30			1.5	"	25	45	18	30	215	5	Sam	me or		$0 \cdot 28$	$8 \cdot 7$	
					"								for stee				
0.50	12	60	\cdots	1.5	-	25	51	33	47	185	50	23	43	53	$0 \cdot 48$	$11 \cdot 0$	

- "Heat-resisting Steels"-Publication No. F 4.-The Bureau of Information on Nickel.
and tungsten provide a material which is not only the strongest available, but also the one with the best resistance to oxidation.

Steel.	$\begin{gathered} \text { Maximum } \\ \text { Stress. } \\ \text { Tons/Sq. In. } \end{gathered}$	Izod Impact. Ft.-1bs.	Maximum Stress. Tons/Sq. In.	
	At $20^{\circ} \mathrm{O}$.	At $20^{\circ} \mathrm{O}$.	At $750^{\circ} \mathrm{C}$.	At $850^{\circ} \mathrm{C}$.
3 per cent. nickel-chromium	56.5	66	11.2	$6 \cdot 9$
High-speed steel (19 per cent. tungsten).	61	5	$16 \cdot 8$	7.7
Stainless steel (13 per cent. chromium).	48.3	50	8.0	$5 \cdot 6$
Chromium steel (10 per cent. chromium).	51	28	13.0	7.2
Silicon - chromium - tungsten $\left(2 \frac{1}{2} / 8 / 2\right) .$	63	9	17.8	7.2
Cobalt-chromium (4/13)	58	48	13.6	5.8
High nickel-chromium	68	55	$28 \cdot 6$	$19 \cdot 4$

The subject of alloy steels is far too large to be dealt with in a few lines, and further reference should be made to fuller accounts.* It may be mentioned, however, that alloy steels should not be welded without a full knowledge of the material, as they may not respond well to this treatment. Special grades of some steels, e.g. stainless, are available for welding purposes.

Non-ferrous Alloys.

Copper.-Pure copper is a soft and ductile metal, and it has its greatest electrical conductivity in the pure state. Conductivity copper for cables is therefore over 99.9 per cent. copper. This material in the annealed condition has a tensile strength of only about 14 tons per sq. inch, with a very low yield and high elongation. By sufficient cold-working the tensile strength may be nearly doubled, but in this condition the metal is naturally more sensitive to local overworking, e.g. bending. It may be softened by annealing above $350^{\circ} \mathrm{C}$. The electrical and thermal conductivity of copper are both reduced by alloying, but this loss may be more than balanced by improvement in other properties. The reduction caused by silicon is not so serious as with most other additions, and the presence of up to 0.2 per cent. silicon is acceptable in the copper for telegraph and telephone wires on account of the marked improvement, about 50 per cent., which

[^20]it produces in the tensile strength. The addition of $\frac{1}{2}$ per cent. of arsenic reduces the conductivity by more than 50 per cent., but slightly increases tensile strength, resistance to fatigue, and helps the metal to retain its strength at elevated temperatures and to resist oxidation. Hence, this arsenical copper is used for fireboxes, boiler tubes, stay bolts, rivets, etc. The oxygen content, usually between 0.05 and 0.1 per cent., must be carefully controlled in these alloys if good mechanical properties are to be obtained. It should be possible to hot-forge a bar until it is flat, cool it in water, and then double it back and flatten it on itself without any cracks appearing at the bend.

Alloys of Copper.-The mechanical weakness of copper is overcome by alloying, and the alloys may be endowed with a wide range of properties by varying their composition and the mechanical and heat treatment to which they are subjected. Hence, they rank next to steel in importance to the engineer.

Copper can dissolve a certain amount of most elements and still retain its own simple structure, but above a certain limit the structure becomes duplex. Thus in all copper alloy series there is a division between those which behave like copper and can be cold-worked, and those more complicated alloys, harder and stronger, which can only be worked hot. Alloys of copper and zinc are brasses; those of copper and tin are bronzes.

Brasses.-Up to about 36 per cent. zinc added to copper provides a long range of ductile alloys, whose tensile strength gradually increases with zinc content, and which will withstand a very great amount of deformation before cracking. The brass called 70/30, i.e. 70 per cent. copper and 30 per cent. zinc, or cartridge brass, is typical of this series, and it is eminently suitable for rolling, pressing, and spinning operations. When it becomes hardened with work it may be annealed at $550^{\circ}-600^{\circ} \mathrm{C}$. under carefully controlled conditions, whereby it becomes softened again. The properties of this alloy are:

Material.	$\begin{gathered} \text { Yield } \\ \text { Point. } \\ \text { Tons/Sq. In. } \end{gathered}$	$\begin{aligned} & \text { Maximum } \\ & \text { Stress. } \\ & \text { Tons/Sq. In. } \end{aligned}$	ElongaPer Oent.	$\begin{aligned} & \text { Brinell } \\ & \text { Hardness } \\ & \text { Number. } \end{aligned}$
Cartridge brass:				
Chill castings	6	16	60-70	60
Hard-rolled sheet	>20	30-40	10-15	150-200
Annealed sheet .	6	20-23	65-70	60

Fig. 2* shows the effect of cold work, as represented by peroentage reduction in thickness, on the mechanical properties of $70 / 30$ brass, and the curves are similar for all alloys of this

[^21]type. No metal should be put into service in too highly a stressed condition. This is particularly so in the case of brasses, which are liable to develop spontaneous "season cracking" during

PERCENTAGE REDN. IN THICKNESS.
Fig. 2.
service; but this may be obviated by heating for $\frac{1}{8}$ hour at $270^{\circ}-$ $280^{\circ} \mathrm{C}$., a treatment which relieves the internal stress (the cause of the cracking) without losing strength or hardness. Table 9 shows the effect of increasing temperatures on drawn brasses.

Table 9.*
Effect of Temperature on Brasses.

[^22]Table 9* (continued).

Naval Brass.	Method of Cooling.	Maximum stress. Tons/Sq. In.	Elongation. Per Cent.
Annealed for 30 min.			
at-			
$450^{\circ} \mathrm{C}$.	Quenched	29.18	20
$475^{\circ} \mathrm{C}$.	$\#$	28.74	31
$500^{\circ} \mathrm{C}$.	"	27.70	47
$550^{\circ} \mathrm{C}$.	Slowly	27.86	31
$550^{\circ} \mathrm{C}$.	Quenched	28.40	36
$600^{\circ} \mathrm{C}$.	Slowly	$24 \cdot 02$	39
$600^{\circ} \mathrm{C}$.	Quenched	24.44	57
$700^{\circ} \mathrm{C}$	Slowly	$25 \cdot 10$	41
$700^{\circ} \mathrm{C}$.	Quenched	25.56	51

The ductility may be seriously impaired by certain impurities, and for this reason the specification for cartridge brass places the limit at 0.05 per cent. for lead and at 0.006 per cent. for bismuth.

With as much as 40 per cent. zine, the solution limit mentioned on p .365 is passed. This alloy is harder and stronger, and can

Fig. 3.
only be hot-worked. Fig. 3 shows the sudden increase in tensile strength which occurs with zinc contents in this region, and Muntz metal or $60 / 40$ brass is typical of this kind of brass. It will be noticed that with still higher zinc contents both the

[^23]tensile and elongation figures drop very suddenly, and these alloys are therefore not of engineering use. In order to take advantage of this peak in the curve, the alloys in this range are made very carefully with accurate compositior.

Typical properties of Muntz metal are:

Material.	Proof Stress. Tons/Sq. In	$\begin{gathered} \text { Maximum } \\ \text { Stress. } \\ \text { Tons/Sq. In. } \end{gathered}$	ElongaPer Cent.	Brinell Hardness Number.
Muntz metal:				
Hot-rolled and cold-drawn.	$14 \cdot 8$	25.8	$48 \cdot 5$	116
Extruded and cold-drawn.	21.6	28.5	31.0	126
Extruded and rolled.	$11 \cdot 1$	27.6	33.5	116

Many other alloying elements are added to both the 70/30 and 60/40 kinds of brass, for various reasons, and the varieties and trade names are legion. For instance, 1 per cent. tin assists resistance to sea-water corrosion, and when added to the 70/30 alloy gives Admiralty brass, or to $60 / 40$ gives Naval brass. The latter is widely used for marine and engineering castings. Similarly, up to 2 per cent. of aluminium is often added to con-denser-tube brass to resist corrosion.

Free-machining, or leaded, brasses are of the 60/40 type, containing up to 3 per cent. of lead, and are particularly suitable for hot extrusion into lengths of rod to be machined later on automatic lathes, for such products as screws, nuts, and small instrument parts. The lead provides ease of machining, but at the sacrifice of other mechanical properties.

Extruded leaded brass (58 per cent. oopper, 2 per cent. lead) has a yield point of 12 and maximum stress of 26.5 tons per sq. inch, with an elongation of 28 per cent.

The $60 / 40$ brasses are frequently strengthened by additions of small percentages of such elements as manganese, aluminium, iron, tin, nickel, and silicon, to a total of about 4 per cent., and are then called high-tensile brasses. Those containing manganese, though really manganese brasses, are usually incorrectly termed manganese-bronzes. A typical manganese-bronze * in extruded or hot-rolled form has a tensile strength of about 35 tons per sq. inch, with 22 per cent. elongation and proof stress (0.15 per cent.)

[^24]of 17 tons per sq. inch. Manganese-bronze can be hot-stamped and extruded easily, and is used for bushes, pinions, etc. It is also used in the cast condition, especially for propellers. Manganese is beneficial first of all as a deoxidant, giving clean and sound castings, but to obtain its maximum benefit about 1 per cent. excess manganese should be left in the final metal. Aluminium in conjunction with manganese gives a greater improvement, and nickel additions give a still higher combination of physical properties which make the brass especially resistant to erosive action. This is particularly necessary in marine propellers, and these elements are seen to be present in turbadıumbronze (Table 10), which was used for the propellers of the Queen Mary.

Delta metal is another excellent brass of the 60/40 type. Its chief alloying ingredient is iron, up to 3 per cent., but nowadays it may also contain small amounts of manganese or other elements. It develops a strength of over 30 tons per sq. inch after being extruded or hot-worked above $550^{\circ} \mathrm{C}$., and is also considerably resistant to corrosion, so that it may be used to replace mild steel under conditions where corrosion is also a consideration. Those alloys which contain small amounts of several added elements, particularly manganese, aluminium, iron, silicon, and nickel, seem to possess resistance to corrosion far superior to that of the straight brasses. Tungum is a high copper alloy of this type, which can actually bo used for certain acid pans.

The presence of nickel in brasses and in bronzes is useful in giving an all-round improvement in properties, and in larger proportions it is especially beneficial in maintaining the strength at elevated temperatures. Tables 11 and 12 demonstrate these points.

Bronzes.-Tin is more powerful than zinc as an alloying element in copper, l per cent. tin being roughly equivalent to 3 per cent. zinc. Up to 10 per cent. tin the bronzes may be coldworked, but are stiffer and stronger than the corresponding brasses, as well as being darker in colour, more expensive, and somewhat more resistant to corrosion. Coinage bronze, 95 per oent. copper, 5 per cent. tin, is an example. To assist deoxidation and ensure casting sound ingots, 1-2 per cent. zinc may be added to these tin alloys. Admiralty gun-metal, for instance, has 88 per cent. copper, 10 per cent. tin, and 2 per cent. zinc, and is generally known as $88 / 10 / 2$. With tin contents much over 10 per cent., the alloys are harder and must be hot-worked.

Gun-metal is used chiefly for castings, and has a yield point of about 11 and a maximum stress of 17 tons per sq. inch, with 12-13 per cent. elongation on 2 inches. In the cast state it may be used for bearings, but if annealed and quenched from $700^{\circ} \mathrm{C}$., the tensile strength will be raised and the elongation improved. but the bearing properties impaired.
Table 10．＊
Mechanical Properties of Sand－cast High－tensile Brass．

－zequin N sяupisf आөய！й		式：\＃
－sequat \bar{z} ио －पоп788닢		
－uI ${ }^{6}$ b／suow －вร972 unumess		
\cdot uI $_{I} \cdot \mathrm{~b}_{S} / \mathrm{suog}$ २и！		
$\begin{aligned} & \text { 蔮 } \\ & \text { 品 } \\ & \text { 品 } \\ & \text { 营 } \\ & \text { 品 } \end{aligned}$	昌	：：00：：：
	搨	
	$\stackrel{\sim}{*}$	「¢0¢
	污	
	を	مீ 잉 :
	ํํ	
	8	
家		

＊＂Modern Non－ferrous Engineering Castings＂－Publication No．D 11．－The Bureau of Information on Nickel．
t Turbadium－bronze．
BRONZES
Table 11.*
Effect of Nickel on Strength of Bronzes.

Alloy.		Composition. Per Cent.					Mechanical Properties.			
		Ca	Sn	Zn	$\mathbf{P b}$	Ni				
Gear bronze .	-	$87 \cdot 5$	$11 \cdot 5$	-	\cdots	\cdots	$10 \cdot 7$	$18 \cdot 5$	$15 \cdot 5$	83
		$87 \cdot 0$	11.5	\cdots	.	$1 \cdot 5$	$12 \cdot 6$	$24 \cdot 6$	$19 \cdot 8$	95
Gan-metal	-	88.0	$8 \cdot 5$	$3 \cdot 5$.		9.9	$19 \cdot 3$	$19 \cdot 8$	78
		88.0	$8 \cdot 0$	$3 \cdot 5$	\cdots	0.5	$10 \cdot 4$	$21 \cdot 1$	26.0	77
Gun-metal (red brass)	-	84.0	$5 \cdot 0$	5.0	$6 \cdot 0$		$6 \cdot 3$	11.3	$11 \cdot 3$	52
		82.5	$5 \cdot 0$	$5 \cdot 0$	$6 \cdot 0$	1.5	$8 \cdot 3$	$15 \cdot 3$	$20 \cdot 3$	61
Leaded bronze	-	$78 \cdot 5$	10.0	.	11.5		$8 \cdot 5$	$11 \cdot 1$	$10 \cdot 0$	58
		78.0	$10 \cdot 0$		$11 \cdot 5$	0.5	$9 \cdot 3$	$13 \cdot 1$	$7 \cdot 5$	64
High leaded bronze	-	$67 \cdot 5$	6.0	1.5	$25 \cdot 0$		$7 \cdot 4$	$12 \cdot 3$	18.8	56
		$70 \cdot 0$	$7 \cdot 0$	1.5	$21 \cdot 0$	0.5	$7 \cdot 9$	12.8	16.8	58

[^25]* "Modern Non-ferrous Engineering Castings"-Publication No. D 11.-The Bureau of Information on Nickel.
Properties of Non-ferrous Alloys at Elevated Temperatures.

Alloy.	Composition.								Room Temp.		$\begin{gathered} 205^{\circ} \mathrm{C} . \\ \left(400^{\circ} \mathrm{F} .\right) . \end{gathered}$		$\begin{gathered} 315^{\circ} \mathrm{C} . \\ \left(600^{\circ} \mathrm{F} .\right) . \end{gathered}$		$\begin{aligned} & 427^{\circ} \mathrm{C} \\ & \left(800^{\circ} \mathrm{F} .\right) \end{aligned}$	
	Cu	Zn	Al	Ni	Fe	Mn	Sn	Pb					\% ${ }_{\text {\% }}^{\text {a }}$			
Manganese brass (extruded).	$55 \cdot 1$	41.89	0.07	0.28	$0 \cdot 84$	$0 \cdot 36$	0.77	0.52	40	21	24	35	15	50	5	60
Gun-metal (cast).	86.28	$5 \cdot 10$..	$0 \cdot 23$			5.99	$2 \cdot 33$	15	20			11		6	2
Gun-metal (cast)	88.0	$2 \cdot 0$..			\cdots	10.0		17	17	15	15	12	4	8	2
Bronze (cast) .	86.52	1.29		0.09	$0 \cdot 01$		11.86	$0 \cdot 17$	19	17	18	15	13	4		2
$\begin{aligned} & \text { Bearing bronze } \\ & \text { (east). } \end{aligned}$	79.50	free				..	$\|10.25\|$	$10 \cdot 15$	15	21	.		8			.
Bearing bronze (cast).	$70 \cdot 30$				\cdots	\cdots		$24 \cdot 70$	10		9	12	6			\cdots
Low nickel bronze (cast).	$82 \cdot 0$	$4 \cdot 0$		$3 \cdot 5$.	.	$10 \cdot 00$	\cdots			14		12		11	8
High nickel bronze (cast).	32.55	..	0.32	53.8		\cdots	12.72	\cdots				: \quad.			30	2

Phosphorus is added to bronzes first as a deoxidant, and then any excess phosphorus left in the bronze improves the tensile strength and gives added resistance to corrosion by sea-water. With low alloy contents, up to 6 per cent. tin and 0.3 per cent. phosphorus, the alloys may be wrought into sheet and wire, with a tensile strength of 24 tons per sq. inch and 13 per cent. elongation.

Cast phosphor-bronzes for bearings, etc., contain 10-13 per cent. tin and $0.5-1.0$ per cent. phosphorus. These may also be used for gears. Their maximum stress should be $\nless 10$ tons per sq. inch, and the elongation per cent. $\nless 1 \cdot 5,>4$. The structure of most bearing alloys consists of particles of a hard constituent, which actually resists the wear, dispersed through a matrix of a softer but tough material which beds down well. The phosphorus serves to build up the hard particles, and hence there must be the correct amount present. It is highly necessary that these particles should be not only of the right size but correctly distributed, and the casting technique with bearing materials is as important as the composition.

Aluminium Bronzes.-These are really aluminium-copper alloys and have no tin content. With 7-8 per cent. aluminium the alloys are fairly ductile, and possess a beautiful golden colour. The more useful engineering alloys have $10-12$ per cent. aluminium, possibly with small amounts of other elements, and are remarkable for their strength and toughness. They respond to heat-treatment rather like steels, and also maintain their strength quite well as working temperatures rise in service. The 10 per cent. aluminium alloy has a strength of 33 tons per sq. inch at 300° C. They are used for die-castings, pump-rods, etc., and even in place of steel for "non-sparking" chisels. The properties of the alloys are:

Material.	$\begin{aligned} & \text { Yield } \\ & \text { Yoint. } \\ & \text { Tons/ } \\ & \text { Sq. In. } \end{aligned}$	Maximum Stress. Tons/ Sq. In	Elongation. Per Cent.	Brinell HardNumber
Aluminium bronze:				
7 per cent. aluminium -				
Hard-rolled	38.7	$39 \cdot 8$	17.5	195
$\begin{aligned} & 30 \text { min. at } 650^{\circ} \mathrm{C} \text {. and } \\ & \text { air-cooled. } \end{aligned}$	$7 \cdot 0$	27.5	71	75.5
10 per cent. aluminium-				
Water-quenched from	19.6	$43 \cdot 2$	1.5	-
$\begin{aligned} & 900^{\circ} \mathrm{C} \text {. } 900^{\circ} \mathrm{C} \text { and } \\ & \text { Quenched at } 900^{\circ} \text { tempered at } 650^{\circ} \mathrm{C} \text {. } \end{aligned}$	17.6	38.6	24.0	.

Silicon has a very powerful effect on copper, small percentages producing very tough alloys, which have also a fair resistance to corrosion. These may or may not have tin in them, but are all called silicon bronzes. They are being developed especially in America, and they are likely to be of wider importance in future, as the silicon can be used to replace the more expensive tin.

Nickel and copper will blend together in all proportions, giving a long and useful series of alloys. Nickel soon removes the copper colour, and cupro-nickel with 20 per cent. nickel is almost white. Higher up the series the colour becomes quite steel-like. Increasing nickel content increases the toughness of the alloys, their electrical resistance, corrosion resistance, and price. All the alloys can be worked without complications to form sheet, wire, and tubes. They are also suitable for hot-forging and stamping. The following table* shows a few of the uses of typical alloys:-

Alloy.	Nickel. Per Cent.	Copper. Per Cent.	Special Uses.
	10	90	Locomotive stay rods.
	15	85	Ooinage alloy.
"Cupro-nickel" as commonly known	20	80	Bullet envelopes, drop forgings, solid drawn tubes.
	25	75	Coinage alloy, automobile radia-
Constantan"	40		tor sheets (not plated).
"Constantan"	40	60	Electrical resistance and thermoelectric work.
"Monel metal"	65/70	30/35	General engmeering.

The strength * of alloys of this series is:

Nickel. Per Cent.	Maximum Stress. Tons/Sq. In.	Elongation. Per Cent.
5	$18 \cdot 0$	50
10	$21 \cdot 5$	30
15	20	$35 / 40$
20	23	$40 / 45$
25	$23 \cdot 5$	$39 / 42$
40	30	45
$65 / 70$	40	40

Monel metal is a rather special alloy because it is made, not by melting down the pure metal ingredients together, but by smelting the mixed nickel-copper ore direct. It contains approximately $2 / 3$ rds nickel and $1 / 3$ rd copper, together with essential

[^26]small quantities of iron and manganese, etc. It is resistant to many chemicals, oils, salts, etc., as well as to the atmosphere, sea-water, and to superheated steam, and this, combined with its malleability and toughness, enables it to be used for a very wide range of engineering applications. All the nickel-copper alloys keep their strength reasonably well at high temperatures, but Monel is better than the others, having a tensile strength at $300^{\circ} \mathrm{C}$. of over 30 tons per sq. inch.

Where nickel and zinc are added together to copper within certain wide limits, there is produced a range of cheaper, softer alloys, pale yellow or silver white, which are really a cross between $70 / 30$ brass and cupro-nickel. During the War their name of German silvers was changed to nickel silvers, but, as they contain no silver, the more correct modern name is nickel brasses.

$$
\begin{aligned}
& \text { The nickel content varies from } 5-35 \text { per cent. } \\
& \text { ", zinc } \quad \text { ", ", ", } 35-20 \text { " } \\
& \text { ", copper ", " } \quad \text { " }
\end{aligned}
$$

All these alloys are of similar constitution and can be worked and rolled. Their strength varies from 15-25 tons per sq. inch, and the elongation from 45-25 per cent. They do not readily oxidise or corrode, and are used as the basis for electro-plated silver goods, and for innumerable automobile, railway, and shipping fittings, as well as for electrical resistance wires.

Light Alloys.-The specific gravities of the common commercial metals are as follows:-

Magnesium	1.75	Tin	7.3	Copper	8.8
Aluminium	2.68	Steel	7.8	Niokel	8.9
Cast-iron	7.2	Brass	8.4	Lead	11.3
Zino	7.2	Bronze	8.6		

Magnesium and aluminium are therefore the only common metals available for providing the reduction in weight so keenly sought in aeroplane and automobile construction.

Aluminium and its Alloys.-Aluminium conduots eleotricity and heat well. Its specific conductivities are about 60 per cent. those of oopper, but weight for weight it is better. It is mechanically a weak metal, however, its tensile strength being only 6-7 tons per sq. inch. Therefore when making cables of aluminium a steel wire is incorporated to provide strength. As in the case of conductivity copper (p. 364), it is possible to improve the tensile strength without undue loss of conductivity by making small alloy additions, e.g. $\frac{1}{\frac{1}{2}}$ per cent. magnesium, $\frac{1}{\frac{1}{2}}$ per cent. silicon, and $\$$ per cent. manganese. Such an alloy may be strengthened alao by heat-treating, and is more resistant to corrosion.

Commercially pure aluminium always contains tra0es of iron
and silicon from its mode of preparation, but good quality metal is about 99.8 per cent. aluminium. It is largely used for sheets, wire, and tubes, and its mechanical properties are:

Tensile Strength. Tons/Sq. In.	Elongation. Per Cent.
. $6-7$	3
.	12

Even in the worked and annealed condition, however, it is not strong enough for structural purposes, and alloys have been developed for castings, also for producing greater strength, and for resistance to sea-water corrosion, these representing three fields where pure aluminium falls short.

Casting alloys contain copper, and/or zinc. The alloys with zinc alone are more fluid than the copper alloys, but are hotshort. Therefore copper is added with the zinc. All these alloys have high contraction on setting, but alloys with about 12 per cent. silicon flow well and have only a small contraction, and are therefore useful for thin section castings. The strength of typical casting alloys is shown in Table 13. The 12 per cent. copper (L.8) alloys have found considerable application for pistons.

Alloys containing copper are capable of being heat-treated by the process known as "age-hardening" to improve their strength. This is more effective when some magnesium and silicon are also present, and the process was first developed with duralumin. This has approximately 4 per cent. copper, and $\frac{1}{2}$ per cent. each of magnesium, silicon, iron, and manganese. The treatment takes place in two stages : first, heating to a relatively high temperature (about $500^{\circ} \mathrm{C}$.) to make the alloys homogeneous, and quenching, in water to retain this condition. This is called "solution" or "homogenising," and leaves the metal in a soft condition. Sccond, on keeping the alloys at room temperature for several days, or somewhat above room temperature for some hours, an internal change gradually proceeds which brings the alloy to its maximum strength. This is called "ageing." It is inconvenient to have the metal changing while it is being handled, and this has been overcome in two ways: either the metal, after solution treatment, may be kept at a low temperature in a refrigerator until required, as practised with duralumin rivets, or different alloy compositions may be used so that the change will only occur when warmed. Duralumin is used mainly in the forged condition, and the surprising improvement effected by ageing is shown by the following figures:-

Condition.	Y.P. Tons/ Sq. ln.	M.S. Tons/ Sq. In	$\begin{gathered} \text { Elonga- } \\ \text { tion. } \\ \text { Per Oent. } \end{gathered}$		Brinell Hardness No.
Air-cooled from $500^{\circ} \mathrm{O}$.	7	18	21	44	65
Quenched in water from $500^{\circ} \mathrm{O}$.	7	17	20	41	63
Quenched and aged . .	15	26	20	35	98

Y alloy is similar to duralumin, but having 4 per cent. copper, 1.5 per cent. magnesium, and 2 per cent. nickel. It is used largely for castings, but may also bo forged, and retains its strength above $200^{\circ} \mathrm{C}$. rather better than duralumin does. Table 13 shows its properties when cast and heat-treated. Forging plus heat-treating produces a maximum stress of about 22 tons per sq. inch, with an elongation of 15 per cent.

Table 13.*
Aluminium Casting Alloys.

Common Designation.	Nominal Composition (Remainder Aluminum). Per Cent.	Treatment.	Minimum Tensile Strength. Tons/ Sq. In.		Proof Stress (0.1 per Cent.). Tous/ Sq. In.		$\begin{aligned} & \text { Elonga- } \\ & \text { tion. } \\ & \text { Per } \\ & \text { Cent. } \\ & \text { on } 2 \text { In. } \end{aligned}$		B.S. Specification No.
			$\begin{aligned} & \text { at } \\ & \text { aja } \\ & \text { nu } \end{aligned}$	$\left\lvert\, \begin{gathered} \pm \\ 3 \\ 3 \\ 0 \\ 0 \end{gathered}\right.$				豆淢	
Y alloy	Ou 3.5-4.5 Ni 1.8-2.3 Mg 1.2-1.7	As cast	10	12	8.5		.	.	$\begin{gathered} 703 \\ (2 \mathrm{~L} .24) \end{gathered}$
		Heattreated \ddagger	14	18		14	.	2	$\begin{gathered} 704 \\ (\mathrm{~L} .35) \end{gathered}$
4 L. 11.	$\begin{array}{\|l\|} \text { Cu } 6 \cdot 0-8 \cdot 0 \\ \text { Su } 1 \text { (optional) } \end{array}$	As cast	7.5	9	$3 \cdot 5$	$3 \cdot 5$	1.5	3	$\begin{gathered} 361 \\ (4 \mathrm{~L} .11) \end{gathered}$
3 L. 8	Cu 11-13	As cast	7	9	4.5	$4 \cdot 5$..	.	$\begin{gathered} 362 \\ (3 \mathrm{~L}, 8) \end{gathered}$
3 L. 6	$\begin{aligned} & \operatorname{Zn~12\cdot 5-14\cdot 5} \\ & \operatorname{Cu} 2 \cdot 6-3 \cdot 0 \end{aligned}$	As cast	9	11	$3 \cdot 5$	3.5	2	3	$\begin{gathered} 363 \\ (3 \mathrm{~L} .5) \end{gathered}$
$\begin{aligned} & \text { Alpax } \\ & \text { Wilmil } \\ & \text { BA/40 D } \\ & \hline \end{aligned}$	Si 10.0-13.0	As cast			3.5	$4 \cdot 5$	5	8	$\begin{gathered} 702 \\ (\mathrm{~L} .33) \end{gathered}$

[^27]A large number of age-hardening alloys have been produced by Messrs. Rolls-Royce, Ltd., and Messrs. High Duty Alloys, Ltd., and are known as the Hiduminium $R R$ alloys. These may be regarded as superior alloys of the duralumin type, and they give rather greater strengths which are retained over a wider working range of temperature. They contain iron and a small amount of titanium for refining the grain. The heat-treated alloys as a class have the strength of steel, although their specific gravity is less than 3, and they are likely to find very much wider application for purely structural purposes in the future. The latest alloy, RR 77, provides the highest strength to weight ratio of any available light alloy.

The Mechanical Properties of RR Alloys.

	Proof Stress (0.1 per Oent.). Tons/ Sq. In.	Yield Point. Sq. In.	Maximum Stress. Tons/ Sq. In.	$\begin{gathered} \text { Elonga- } \\ \text { tion. } \\ \text { Per } \\ \text { Oent. } \end{gathered}$	Reduction in Area. Yer Oent.	Brinell Hardno.
RR 50, as cast " heat-treated	$\stackrel{7}{12-14}$	$\begin{array}{r} 8 \\ 14 \end{array}$	$\begin{gathered} 14-15 \\ 16 \end{gathered}$	$\begin{aligned} & 7-10 \\ & 4-8 \end{aligned}$	12	72 80
RR 53, as cast " heat-treated	12 22	13 23	$\begin{gathered} 14 \\ 23-25 \end{gathered}$	3 1	4	$\begin{gathered} 80 \\ 132-152 \end{gathered}$
RR 56, heat-treated	21-23	22-24	27-32	16-10	14-20	125-148
RR 59, heat-treated	19.2	21	24	8	17.8	127
RR 77, annealed . Solution-treated and naturally aged.	$\begin{gathered} 4-8 \\ 18-21 \end{gathered}$	\cdots	$\begin{aligned} & 12-14 \\ & 29-32 \end{aligned}$	$\begin{aligned} & 20-14 \\ & 21-16 \end{aligned}$	\cdots	$\left\|\begin{array}{c} 45-65 \\ 130-140 \end{array}\right\|$
Solution-treated and artificially aged.	28-33	.	33-38	16-10	.	160-180

It must be remembered that the melting-point of aluminium is only $660^{\circ} \mathrm{C}$., and therefore the whole range of temperatures within which its alloys may be heat-treated and used is much narrower than with the steels. This means, first, that the treatments are extremely delicate, and it is foolish for anyone to attempt them who has not a full knowledge of the alloy concerned, combined with the necessary accurately controlled apparatus. Secondly, the alloys cannot be expected to remain stable at any high temperatures. One of the most popular alloys is RR 56, which is used in the form of tubes, ohannels, and sheets in much constructional work, e.g. Imperial Airways liners,

London Transport buses, crane booms and fire brigade escapes. The effect of temperature on this heat-treated alloy is shown by the following figures:-*

Temperature of Test, ${ }^{\circ} \mathrm{O}$.	Maximum Stress. Tons/Sq. In.	Brinell Hardness at TTest Temperature.	Brinell Hardness after Cooling.
Normal	29.0	138	\ldots
100	27.0	130	138
150	25.5	120	138
200	24.0	107	138
250	20.0	80	120
300	16.75	37	85
350	8.50	16	66

The effect of temperature on other alloys is demonstrated by the table \dagger below, which shows the softening developed when the load is maintained.

Oreep Brinell Tests-Six hours, load 250 kilos at $100^{\circ} \mathrm{C}$. and $250^{\circ} \mathrm{C}$.

Alloy.	Heat-treatment.	Original Brinell Hardness (Cold).	Brinell Hardness after 6 Hours. $100^{\circ} \mathrm{O}$. Loaded.	Brinell Hardness after 6 Hours. $250^{\circ} \mathrm{O}$. Loaded.
RR 59.	Solution and precipitation.	138	121	67
\mathbf{Y} alloy	-	118	104	62
RR 53.	" ${ }^{\prime}$	142	124	69
RR 50.	Precipitation only.	72	69	53
8 per cent. copper .	Solution and precipitation.	93	82	48
12 per cent. zinc ${ }_{2}$ copper $\}$	Air-aged 7 days.	96	48	23
12 " silicon.	" "	58	51	26

All the aluminium alloys have relatively high thermal conductivity (0.39 C.G.S. units average, as compared with 0.11 for steel and 0.052 for cast-iron), and this is very useful in cast pistons and forged connecting-rods. But the expansion of the alloys is also rather high, and this must be allowed for in the design. The

[^28]coefficients are $22-27 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$., as compared with 11-15 $\times 10^{-6}$ for steel and $8-14 \times 10^{-6}$ for cast-iron.

The alloys normally do not resist corrosion well, and many processes are developed which satisfactorily treat the surface to produce a protective anodised film. Also pure aluminium is better than its alloys against atmospheric corrosion, and the pure metal may be welded and rolled on to the surfaces of an alloy sheet, e.g. duralumin, giving what is effectively three-ply metal, thus providing strength plus better corrosion resistance. These are termed "clad" alloys.

For sea-water corrosion the compositions contain either around 12 per cent. silicon, which have already been mentioned, giving low expansion alloys of the Alpax type; or magnesium, up to 10 per cent., with other special additions. These alloys are strong and resistant, but do not normally respond to ageing treatment.

The alloys MG 7 and RR 66 are of this class, and the casting alloy "Birmabright" has manganese in addition to the magnesium. The corresponding German type of alloy is the Seewasser alloy, which contains small amounts of antimony.
Magnesium Alloys.-These alloys, being lighter than aluminium, are coming rapidly to the fore, and are likely to be extended in use considerably as new methods of producing magnesium metal are just now being exploited. Tho fire hazard in casting and machining this material is not now considered at all serious if reasonable precautions are taken. The alloys-commonly known by the German name Elektron-usually contain aluminium, zinc, and manganese. Some of them may be heattreated in a manner similar to aluminium alloys. Typical casting alloys are as follows:-*

Composition. Per Cent. Maximum.			Application.	D.T.D. Specification.
A1 4.5	${ }_{3}{ }^{\text {Ln }}$	Mn 0.4	Sand castings	59
8.0	1.5	0.4	Sand castings	59a
$3 \cdot 25$	1.25	$0 \cdot 4$	$\left\{\begin{array}{c}\text { Sand and gravity die } \\ \text { castings }\end{array}\right\}$	136A
10.0	1.5	0.4	$\left\{\begin{array}{c} \text { Sand, gravity, and } \\ \text { pressure die castings } \end{array}\right\}$	136A

The 4.5 per cent. aluminium alloy has a tensile strength of 16 tons per sq. inch with 7 per cent. elongation, and the 8.0 per cent. aluminium alloy may be heat-treated to give 25 tons per sq. inch with 10 per cent. elongation. Magnesium alloys are quite commonly used for cylinder heads, crank-cases, etc.

* Magnesium and its $\mathrm{Allog}_{\text {l }}$, H.M. Stationery Oflloe, 1937.

The average properties of typical wrought alloys are as follows:-*

Approximate Composition. Per Vent.	Condition.	$\begin{aligned} & \text { Maximum } \\ & \text { Stress. } \\ & \text { Tons/sq. In. } \end{aligned}$	Elongation. Per Cent.
Al 6.5 Zn Mn I $\mathbf{0 . 5} \mathbf{5}$	Extruded	19	12
$\left.\begin{array}{ll} \text { Al } & 9 \cdot 0 \\ \mathrm{Zn} & 0.5 \\ \mathrm{Mn} & 0.3 \end{array}\right\}$	Forged .	22	12
Mn 2.5 max. $\{$	Sheet annealed. Extruded rod.	$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$

The last-named alloy with 2.5 per cent. manganese (D.T.D. 118) is obtainable in sheet form and is useful for fuel tanks. It may be welded better than the other alloys, and possesses satisfactory strength and ductility. "Leaded" fuels, however, may cause corrosion.

Silver and cadmium have been added to magnesium alloys to produce greater strength. An alloy with 8.5 per cent. aluminium and 2.5 per cent. silver may have the following properties:- \dagger

Maximum	Elongation.
Stress.	
Tons/Sq. In.	Per Oent.

Annealed at 350° C. for 1 hour . . $22 \quad 7 \cdot 2$
Annealed at $410^{\circ} \mathrm{C}$. for 2 hours and $21.8 \quad 8.4$ quenched.
Annealed at $410^{\circ} \mathrm{C}$. for 2 hours and $27.1 \quad 4.8$ aged at $175^{\circ} \mathrm{C}$. for 2 days.
Annealed at $410^{\circ} \mathrm{C}$. for 2 hours and $\quad 28.7 \quad 4.8$ aged at $175^{\circ} \mathrm{C}$. for 3 days.

Magnesium alloys unfortunately lose strength at high temperatures even more rapidly than aluminium alloys. Attempts have been made to find alloys which will keep more of their

[^29]strength up to as high as $300^{\circ} \mathrm{C}$. for internal combustion engine parts. One such attempt contains 10 per cent. cerium and about 1.5 per cent. each of cobalt and manganese; its hot strength is as follows:-

Temperature of Test, ${ }^{\circ} \mathrm{O}$.	Maximum Sorsesss.	Mlongation. Per Oent.
20	20	0
100	16	$2 \cdot 4$
200	13	2.0
300	7.6	152.0

This alloy, though considerably weaker than other alloys at room temperature, is better at higher temperatures. The silver-bearing alloy mentioned above has a strength at $300^{\circ} \mathrm{C}$. of only 4.7 tons per $s q$. inch and an elongation of 60 per cent.

As a protection against atmospheric corrosion, all magnesium alloys need surface treatment similar to that of the aluminium alloys. Treatment in chromate solutions gives the well-known golden finish, and in nitric acid solutions a black finish.

White-metals. White-metal alloys for bearings* are either tin base or lead base, the former type covering the range of Babbitt metals. The tin base are in most ways superior to the lead base, but are more costly.

The hardening constituents necessary for the wear-resistance are provided by the presence of antimony, up to 15 per cent., and of copper, usually limited to 4 per cent. In the tin-base alloys it is desired to produce two well-defined compounds, which will be embedded in the softer tin-rich matrix: (a) A compound of tin and copper which crystallises from the molten alloy in the form of needles and forms a sort of network; (b) a hard compound of tin and antimony which separates in the form of characteristio cuboids. The melting procedure, casting temperature, etc., must be carefully controlled so that these two compounds are correctly arranged or the bearing will not wear uniformly. For cheaper bearings lead may be substituted for part of the tin. Lead-base alloys contain anything over 50 per cent. lead, and these are also hardened with antimony and copper. Where loads are not excessive and speeds are slow they are exceptionally good. Table 14 gives the properties of a wide range of white-metals.

Lead-base alloys have also been made with other alloy additions; e.g. the German Bahnmetall \dagger (railway axle-box bearing metal) is lead base with 0.7 per cent. calcium, 0.6 per cent. sodium, and 0.04 per cent. lithium.

[^30]Table 14．＊－Properties of some White－metal Bearing Alloys．

Composition．Per Cent．				Tensile Properties．		Compression Test Values． Tons／Sq．In．		Brinell Hard－ ness Number	Remarks．
官	守完		ت̆			家淢			
93－0	3.5	3.5	\cdots	$5 \cdot 12$	$11 \cdot 6$	3.6	14.7	$24 \cdot 9$	Combines maximum toughness with strength－probably ideal for big end bearngs．
86．0	10.5	3.5	\cdots	6.65	$7 \cdot 1$	$4 \cdot 4$	17.2	$33 \cdot 3$	Harder than the above but still tough－very useful for
83.0	$10 \cdot 5$	2.5	$4 \cdot 0$	$5 \cdot 60$	nil	$4 \cdot 3$	$17 \cdot 6$	34.5	Lead reduces elongation to nil，yet alloy still has excellent shock－resisting properties．
80.0	11.0	$3 \cdot 0$	6.0	5.70	nil	$4 \cdot 6$	17.5	$32 \cdot 1$	Very useful for heavy loads with high speeds：Diesel engines，turbines，rolling－mills，locomotives．
60．0	10.0	1.5	28.5	5.04	nil	$4 \cdot 0$	$12 \cdot 9$	$27 \cdot 1$	For I．C．engines of all types，steam－engines，dynamos， locomotives．
40	10.0	1.5	48.5	4.58	nil	3.7	11.3	21.8	Generally useful for heavy pressure and medium speed， or medium pressure and high speed：automobile engines，railway and tramway bearings．
20	$15 \cdot 0$	1.5	$63 \cdot 5$	$5 \cdot 48$	nil	$4 \cdot 0$	12.2	31.3	Also useful for medium pressure and speed，or light pressure and high speed．
78.0	11.0	11.0	\cdots	6.36	nil	4.6	17.9	37.0	＂Plastic metal＂－has a long range of solidification，and used extensively by millwrights and marine engineers for repair work；hard and durable and self－tinning．
$5 \cdot 0$	$15 \cdot 0$	\cdots	$80 \cdot 0$	$4 \cdot 69$	2.8	$3 \cdot 6$	$13 \cdot 4$	$24 \cdot 9$	＂Magnolia metal＂type－capable of carrying load and continuing duty under increased temperatures to a greater extent than many tin－base bearing metals in similar circumstances．

＊Gregory，Metallurgy，1932，Blackie \＆Son，Ltd．
Load in tonsisq．inch which produced 0.001 inch permanent deformation－original length of test－piece 0.564 inch．
Load required to compress piece to half－length．

Other Bearing Alloys.-With the continued increase in bearing loads and speeds there is a constant search for new mixtures that will serve at higher temperatures than the lower melting-point white-metals. Cadmium alloys, with small amounts of silver or nickel, have been found satisfactory in some fields. In the nickel alloy * the Brinell hardness of the hard constituent is 260 and of the matrix 55 , whilst the melting-point is $310^{\circ} \mathrm{C}$. as against 230° C. for the tin-base alloys. The cadmium alloy also withstands greater crushing loads than the white-metals, but it has its own difficulties, because cadmium is a very volatile metal which may introduce casting troubles.

Lead added to copper alloys gives a plasticity which can be utilised in bearings. Lead helps a bronze to resist wear, but does not increase its coefficient of friction. Alloys of this type, called lead-bronzes, contain 5-10 per cent. tin, 8-10 per cent. lead, and up to 0.5 per cent. phosphorus for deoxidation.
Higher lead contents, around 30 per cent., are also used with copper, and the alloys are called plastic bronzes even though they may contain no tin. Lead and copper do not alloy together but remain as two separate metals, i.e. the mixture is a mechanical one with the lead dispersed throughout the copper. Hence it is difficult to prevent segregation of the lead occurring, and the bearings must be specially cast as a thin lining on a steel shell. One satisfactory composition \dagger used on crankshaft and other driving-shaft bearings is :

Copper 69-74 per cent.	Iron	$0-25$ per cent.
Lead 26-31	Nickel	
Silver 1.5 per cent. max.	Tin	0-15

Tin may be added up to 5 per cent., and this forms genuine bronze with the copper, but this harder material is likely to wear the shaft away unless this is made of a harder steel, such as nitralloy. These alloys will stand heavier loads and higher temperatures, up to $650^{\circ} \mathrm{C}$., than the white-metal bearings.

A new alloy recently introduced claims to have overcome the two difficulties associated with other copper-base bearing metals, namely, that they are available only in the cast form and that they have low ductility. This is a wrought chromium-bronze alloy, which-was produced in Messrs. Stone's foundry in 1936. It can be prepared in cast or wrought forms, in both of which the hard constituent is very stable, due to its chromium content, and this enables the bearings to retain their characteristios even after heating as high as $850^{\circ} \mathrm{C}$. The following characteristics are claimed-as compared with phosphor-bronze:-

[^31]| Properties at Ordinary Temperatures. | Ohromium- bronze. | Ohill-cast
 Phosphorbronze. |
| :---: | :---: | :---: |
| $0 \cdot 1$ per cent. proof stress (tension), tons/sq. in. | 10-14 | 10-12 |
| Ultimate tensile stress, tons/sq. in. | 23-27 | 18-20 |
| Elongation on $4 \sqrt{ }$ Area, per cent. . | 30-40 | 1-5 |
| Brinell hardness number | 90-130 | 90-120 |
| Izod value, ft.-lbs. | $62-65$ (unbroken) | 2-5 |
| $0 \cdot 1$ per cent. proof stress (compression), tons/sq. in. | 10-12 | 10-12 |

Pressure Die-castings.-During the last fifteen years the casting of metal under pressure has been very extensively developed, and is now widely used to produce sound and strong castings of such accurate dimensions that they need no final machining to size. The surface also is smooth and good. This is a great saving, and innumerable small engineering massproduction parts are cast in this way.

Special varieties of aluminium and magnesium alloys, and even of brass, have been developed for this work, but the most generally used alloys of all are those of a zinc base. Two of the most prominent* have the following alloy additions: (a) 4 per cent. aluminium, 2.7 per cent. copper, $0.1-0.3$ per cent. magnesium; (b) 4 per cent. aluminium, 0.05 per cent. magnesium. The first is more generally used in this country, as it is harder and stronger and rather more easily die-cast than the copperfree alloy.

The mechanical properties of two of the zinc-base "Mazak" alloys are given below, and it will be seen that they have tensile and shock-resisting properties very considerably superior to castiron and other similar materials.

Mechanical Properties of Pressure-cast Mazak Alloys. \dagger

Propertiea.	Mazak No. 3.	Mazak No. 5.
Tensile strength (tons/sq. in.)	18	20
Elongation, per cent. (on 2 in.) .	4.5	3
Impaet strength, ft.-lbs. (1 in . sq. unnotched bar).	20	17.5
Compressive strength (tons/sq.in.)	27	39
Brinell hardness number	62	73

*A. O. Street, "An AB O of Dle-casting," Metal Industry, 1937. \dagger Niational Alloys Litc. (Imperial Smelting Corporation).

Wood. -The principal woods used by mechanical engineers are ash, beech, boxwood, elm, fir, hornbeam, lignum-vite, mahogany, oak, pine, and teak.

Ash, a straight-grained, tough, and elastic wood, is largely used where sudden shocks have to be resisted, as in the handles of tools, shafts of carriages, and the framing and other portions of agricultural machinery, when such are not made of metal. This wood is very durable if it is protected from the weather.

Beech takes a smooth surface, and is very compact in its grain. It is largely used for joiners' tools.

Boxwood is very hard and heavy, and takes a very smooth surface. It is of a bright yellow colour, and is used for sheaves of pulley-blocks, bearings in machinery, small rollers, eto.

Elm is valuable on account of its durability when constantly wet, and is used for piles, floats of paddle-wheels, etc.

Fir and pine are largely used for various purposes, because they are cheap, easy to work, and possess considerable strength. White or yellow pine is much used for pattern-making.

Mahoyany is a durable, strong, straight-grained wood, and is less liable to crack or twist in seasoning than almost any other wood. It is used to a considerable extent by pattern-makers for light patterns.

Lignum-vite is a very hard wood of very high specific gravity, being one and one-third times the weight of the same volume of water. It is very valuable for bearings of machinery which are under water. It is also used for sheaves of pulley-blocks, and for other purposes where great hardness and strength are required.

Oak is one of the strongest and most durable of woods. It is tough and straight-grained, and is durable in either a wet or dry situation. It is good for framing or for bearings of machinery. English oak is considered the best.

Teak is also a very strong and durable wood, possessing considerable toughness. It is also valuable for many purposes, on account of the small amount of shrinkage which takes place with seasoning. The oil which this wood contains prevents the rusting of bolts or other iron parts which may be used in framing it.
Strength of Bridge and Trestle Timbers.
From a Report of a Committee of the Amerivan Association of Railuay Superintendents of Rridges and Buildings, October 1895.

TABLES OF STRENGTH OF MATERIALS.

Ultimate Tensile Strength.

Approximate average values in tons per square inch.

Cast-iron . . . 11	Phosphor-bronze-	
Wrought-iron-	Wrought	24
Along the grain . 21	Cast	12
Across ," . . 19	Manganese-bronze	
Steel-	Extruded	25
Castings . . . 35	Tin-	
Forgings . . . 40	Zinc-	
Mild steel, normalised . 30	Cast	1.5
Copper-	Wrought	$7 \cdot 0$
Cast . . . 10	"Monel" metal-	
Wrought . . . 20	Annealed.	. 30
Annealed . - . 14	"Staybrite" steel-	
Brass (70/30)-	Annealed .	. 40
Cast . . . 16	Duralumin	. 26
Wrought . . . 35	Aluminium alloy-	
Annealed . . . 22	RR 77	. 38
Muntz metal-	MG 7.	- 29
Cast . . . 18	Magnesium alloy	. 20
Extruded. . . 25	(Elektron)	
Naval brass-	Wood (along the fibres	
Annealed . . . 24	Ash .	
Delta metal-	Elm	
Extruded . . . 30	Fir and pine	- $5 \cdot 1$
Bronze gun-metal (90/10) 17	Lignum-vitæ	
Aluminium-bronze-	Mahogany	
Chill-cast . . . 36	Oak. .	
Quenched and tempered 38	Teak	

Ultimate Tensile Strength of Wire.

In tons per square inch.

Material of Wire.			Unannealed.
Wrought-iron	\cdot	\cdot	-
Anealed.			
Mild steel .	\cdot	$30-45$	$20-30$
Crucible cast-steel	\cdot	\cdot	\cdot
Copper	$40-80$	$27-55$	
Phosphor-bronze	\cdot	\cdot	\cdot
Delta-metal	$90-150$	$26-30$	$15-20$
Silicon-bronze	\cdot	\cdot	\cdot

The tenacity of wire per square inch is greater the smaller the diameter of the wire, especially when it is not aunealed.

> Breaking Strength of Wires at Low Temperature.* Diameter of wires, 0.098 inch.
> Mat rial of Wires. $\quad 15^{\circ}$ Breaking Load in Lls.

Wires that were cooled to the temperature of $-182^{\circ} \mathrm{C}$., and allowed to regain the ordinary temperature, were in no way changed as regards their tenacity.

Ordinary Working Stresses (for a Steady or Dead Load).

In lbs. per square inch,
Tension.

Cast-iron . . . 4,000	Gun-metal	6,000
Wrought-iron-	Phosphor-bronze .	. 10,000
Bars or forgings. . 14,000	Manganese-bronze	. 12,000
Plates, along the grain 14,000	Brass	- 4,000
" across ", 12,000	Muntz-metal	- 7,000
Steel-	Naval brass .	8,000
Castings or forgings . 20,000	Delta-metal, cast.	. 10,000
Mild steel . . . 18,000	W , rolled	. 13,000
Copper, cast. . . 4,000	Wood".	2,000
$\begin{array}{ll}\text { " forged } \\ \text { sheet } & \text {. } \\ \text {. } \\ \text { 5,000 }\end{array}$	Leather	800

* From a paper by Professor Dewar, read before the Royal Institution in 1806, on the "Scientific Uses of Liquid Air."

Ordinary Working Stresses (for a Steady or Dead Load)-continued.

Compression.

Shearing.

Cast-iron	3,000	Copper, rolled .	2,500
Wrought-iron	. 11,000	Wood, across the grain	500
Mild steel	11,000	along	100

For a live load which produces a stress always of the same kind or in the same direction, the working stress may be taken at two-thirds of the working stress for a steady or dead load.

For a live load which produces equal stresses in opposite directions, the working stress may be taken at one-third of the working stıess for a steady or dead load.

Strength to Weight Ratios.

Material.	Tensile Strength. Tons/Sq. In.	Average Specific Gravity.	Strength to Weight Ratio.
Steel plano wire, drawn very fine	160	7.84	20.4
RR 77 aluminium alloy, heat-treated	38	$2 \cdot 8$	13.57
Alloy steel, heat-treated. . .	100	7.85	12.74
RR 56 aluminium alloy, heat-treated	32	2.75	$12 \cdot 40$
Aluminium alloy MG7	29	2.6	11.20
Magnesium alloy (Elektron)	20	1.86	10.76
Stainless steel, $18: 8$, hard-rolled	85	7.93	10.72
Duralumin, forged and aged.	26	$2 \cdot 8$	$9 \cdot 30$
Alloy steel, heat-treated.	65	7.85	7.01
"Monel" metal, rolled.	50	8.86	$5 \cdot 64$
Mild steel, normalised	30	7.85	3.82
Aluminium, hard-rolled.	10.5	2.71	3.95
" annealed.	5.5	2.71	$2 \cdot 04$
Wrought-iron .	21	$7 \cdot 80$	$2 \cdot 67$
Brass, hard-rolled.	32	$8 \cdot 4$	3.81
" annealed.	18	8.4	$2 \cdot 14$
Spruce for aircraft.	$4 \cdot 4$	$0 \cdot 485$	10.1

Brinell Hardness Testing.*

The Brinell hardness number is the quotient of the applied load divided by the spherical area of the impression, and is given by

$$
H=\frac{P}{\frac{1}{2} \pi D\left\{D-\left(D^{2}-d^{2}\right)^{\frac{1}{2}}\right\}}=\frac{P}{D^{2}}\left\{\frac{2 / \pi}{1-\left\{1-(d / D)^{2}\right\}^{\frac{1}{2}}}\right\},
$$

where $P=$ load in kilogrammes, $D=$ diamoter of ball in millimetres, $d=$ diameter of impression in millimetres, $H=$ Brinell hardness number.
The value of d is to be the average of two readings at right angles.

Standard Balls and Loads.

Diameter of Ball.	Load.			
	$\frac{P}{D^{2}}=1$.	$\frac{P}{D^{2}}=5$.	$\frac{P}{D^{2}}=10$.	$\frac{P}{D^{2}}=30$.
	Kg.	Kg.	Kg.	Kg.
1	1	5	10	30
2	4	20	40	120
5	25	125	250	750
10	100	500	1000	3000

The same Brinell hardness number is given by tests on the same uniform material with balls of different diameters when the same value of P / D^{2} is used.

The centre of the impression shall be not less than $2.5 d$ from any edge of specimen.

The thickness of specimen shall be at least ten times the depth of impression as given by: Depth in mm. $=P / \pi D H$. Lower values may be permitted in some instances.

For guidance in specifying an appropriate value for P / D^{2}, approximate values for representative materials are as follows: Steels, cast-iron, 30; copper alloys, aluminium alloys, 10; copper, aluminium, 5 ; lead, tin, and their alloys, 1.

The load shall be applied slowly and progressively to the specimen in a direction normal to the surface. The full load to be maintained for 15 seconds.

The approximate tensile strength of steel, in tons per sq. inch, may be found by multiplying the Brinell hardness numbers by 0.22 .

A table showing values of H corresponding to various values of d is given on p. 392 for the case where $P / D^{2}=30$. This and similar tables for other values of P / D^{2} are to be found in B.S. 240 : 1937.

- Extracted mainly from B.S. 240 : 1937.

Brinell Hardness Numbers.

Diameter of ball $=10 \mathrm{~mm} . \quad$ Load $=3000 \mathrm{~kg}$.

$$
\frac{P}{D^{2}}=30 .
$$

$\begin{gathered} \text { Diameter } \\ \text { of } \\ \text { Impression. } \\ \mathrm{Mm} . \end{gathered}$. 01	. 02	. 03	. 04	. 05	.06	. 07	$\cdot 08$. 09
2.00	945	936	926	917	908	899	890	882	873	865
$2 \cdot 10$	856	818	840	832	824	817	809	802	794	787
2.20	780	772	765	758	752	745	738	732	725	719
$2 \cdot 30$	712	706	700	694	688	682	676	670	665	659
2.40	653	648	643	637	632	627	621	616	611	606
$2 \cdot 50$	601	597	592	587	582	578	573	569	564	560
2.60	555	551	547	543	538	534	530	526	522	518
2.70	514	510	507	503	499	495	492	488	485	481
2.80	477	474	471	467	464	461	457	454	451	448
2.90	444	441	438	435	432	429	426	423	420	417
3.00	415	412	409	406	404	401	398	395	393	390
$3 \cdot 10$	388	385	383	380	378	375	373	370	368	366
8.20	363	361	359	356	354	352	350	347	345	343
3.30	341	339	337	335	333	331	329	326	325	323
8.40	321	319	317	315	313	311	309	307	306	304
8.50	302	300	298	297	295	293	292	290	288	286
8.60	285	283	282	280	278	277	275	274	272	271
3.70	269	268	266	265	263	282	260	259	257	256
3.80	255	253	252	250	249	248	246	245	244	242
8.80	241	240	239	237	236	235	234	232	231	230
4.00	229	228	226	225	224	223	222	221	219	218
4.10	217	216	215	214	213	212	211	210	209	208
4.20	207	205	204	203	202	201	200	199	198	198
$4 \cdot 30$	197	196	195	194	193	192	191	190	189	188
$4 \cdot 40$	187	186	185	185	184	183	182	181	180	179
4.50	179	178	177	176	175	174	174	173	172	171
4.60	170	170	169	168	167	167	168	165	164	164
4.70	163	162	161	161	160	159	158	158	157	156
4.80	156	155	154	154	153	153	152	161	150	150
4.90	149	148	148	147	146	146	145	144	144	143
5.00	143	142	141	141	140	140	139	138	138	137
5.10	137	136	135	135	134	134	133	133	132	132
5.20	131	130	130	129	129	128	128	127	127	126
5.30	126	125	125	124	124	123	123	122	122	121
5.40	121	120	120	119	119	118	118	117	117	116
5.50	116	115	115	114	114	114	113	113	112	112
5.60	111	111	110	110	110	109	109	108	108	107
5.70	107	107	106	108	105	105	105	104	104	103
5.80	103	103	102	102	101	101	101	100	99.9	99.5
5.90	99.2	98.8	98.4	98.0	97.7	97.3	96.9	96.6	96.2	95.9
6.00	95.5	. \cdot	.	. \cdot	\cdots		. ${ }^{\text {d }}$.	.	. \cdot

Note.-This table is correct for a ball of 1 mm . diameter and a load of 30 kilogrammes if the decimal point in the value (diameter of impremsion) moved one place to the left.

SGREWS, BOLTS, AND NUTS.

British Standard Whitworth (B.S.Whit.) Screw Threads.-The angle of the \mathbf{V} is 55°, and an amount, C, equal to one-sixth of the total depth, B, is rounded off at the top and bottom, as shown.

$D=$ major diameter $=$ diameter of screw over thread, in inches.
$D_{1}=$ minor diameter = diameter at bottom of thread, in inches.
$P=$ pitch of screw thread, in inches.
$N=$ number of threads per inch.

$$
D_{1}=D-\frac{1 \cdot 2806: 54}{N} . \quad P=\frac{1}{N} . \quad N=\frac{1}{P}
$$

Brtısh Standard Whituorth (B.S.Wht.) Screw Thrtads.*

Nomunal Dlam.	$\begin{gathered} \text { Threads } \\ \text { per } \\ \text { Inch. } \end{gathered}$	Minor Diam.	Area at Bottom of Thread.	Nominal Diam.	Threads per Inch.	Minor Diam.	Area at Bottom of Thread.
In.		In.	Sq. In.			In.	Sq. In.
$\frac{1}{8}$	40	0.0930	$0 \cdot 0068$	$1 \frac{1}{2}$	6	1.2866	1.300
$\frac{3}{16}$	24	$0 \cdot 1341$	$0 \cdot 0141$	$1 \frac{3}{4}$	5	1.4938	1.753
	20	$0 \cdot 1860$	$0 \cdot 0272$	2	$4 \cdot 5$	$1 \cdot 7154$	2.311
$\frac{5}{16}$	18	$0 \cdot 2413$	$0 \cdot 0457$	21	4	1.9298	2.925
震	16	$0 \cdot 2950$	0.0683	$2 \frac{1}{2}$	4	$2 \cdot 1798$	3.732
$\frac{7}{16}$	14	$0 \cdot 3461$	$0 \cdot 0941$	23	35	$2 \cdot 3840$	$4 \cdot 464$
	12	$0 \cdot 3932$	0.1214	3	$3 \cdot 5$	$2 \cdot 6340$	$5 \cdot 449$
${ }^{9} 8$	12	0.4557	$0 \cdot 1631$	$3 \frac{1}{4}$	$3 \cdot 25$	2.8560	$6 \cdot 406$
- $\frac{5}{8}$	11	$0 \cdot 5086$	$0 \cdot 2032$	$3 \frac{1}{2}$	$3 \cdot 25$	$3 \cdot 1060$	$7 \cdot 577$
$\frac{18}{16} \dagger$	11	0.5711	$0 \cdot 2562$	38	3	$3 \cdot 3232$	8.674
8	10	0.6220	0.3039	4	3	$3 \cdot 5732$	10.03
$\frac{7}{8}$	9	0.7328	0.4218	41	2.875	$4 \cdot 0546$	12.91
	8	0.8400	0-5542	5	$2 \cdot 75$	$4 \cdot 5344$	$16 \cdot 15$
$1 \frac{1}{8}$	7	0.9420	$0 \cdot 6969$	$5 \frac{1}{2}$	$2 \cdot 625$	5.0122	19.73
11	7	1.0670	0.8942	6	$2 \cdot 5$	$5 \cdot 4878$	23.65

* Extracted from B.S. 84 : 1940.
\dagger To be dispensed with wherever possible.

In the Square Screw Thread (a) the thickness and depth of the thread are each equal to half the pitch. The number of threads per inch for a square-threaded screw is usually half the number for a triangular-threaded screw of the same diameter.

The leading screw of a lathe is frequently made, as shown at (b), to permit the nut, which is divided into two parts, to readily disengage or engage with the screw.

The edges of the square thread are often more or less rounded, so that they shall not be so easily injured; in the Knuckle Thread (c) this rounding is carried to excess.

The Buttress Thread (d) is designed to combine the smaller friction of the square thread with the greater strength of the triangular thread. The load on the thread should act as shown by the arrows. Angle of section of thread, 45°. The points and roots of the thread may be cut off straight or rounded. The amount C cut off may be from one-eighth to one-sixth of the total depth B.

Multiple-Threaded Screws.-When the pitch of a screw is required to be larger than usual for a given diameter, the loss of strength in the rod upon which it is cut may be diminished by making the screw multiple-threaded; the several threads

being parallel to one another, and of the same pitch. The total working surface of a screw, for a nut of a given length, is increased by making the screw multiple-threaded. The divided pitch $\left(P_{1}\right)$ of a multiple-threaded screw is the pitch (P) divided by the number of threads.

British Association (B.A.) Screw Threads.-The British Standards Institution recommends the B.A. form of thread for screws below 4 inch diameter. An exception is the 3^{7} inch B.S.F. screw, which is slightly smaller than No. 0 B.A. and should be used in preference to it.

The thread is V -shaped, the angle of the V being $47 \frac{1}{2}^{\circ}$, with the top and bottom rounded off to two-elevenths of the pitch.

Each size of screw has a distmguishng number (n), which is connected with the pitch (P) by the formula, $P=(\cdot 9)^{n}$, and the diameter (D) is given by the formula, $D=6 P^{8}$, the dimensions being in millimetres. The standard dimenstons are taken as the results of the above formula expressed correctly to two significant figures. The following table gives the standard dimensions in millimetres, and their approximate equivalents in inches:-

Dimensions of British Association (B.A.) Screw Threads.

Number.	Dimensions in Mullimetres.		Inmensions in Inches.		Threads per lnch.
	Diameter.	Pitch.	Diameter.	Pitch.	
0	6.0	1.0	$\cdot 23 \overline{6}$	-0394	$25 \cdot 4$
1	$5 \cdot 3$	90	-209	$\cdot 0354$	28.2
2	$4 \cdot 7$	$\cdot 81$	$\cdot 185$	-0319	$31 \cdot 4$
3	$4 \cdot 1$	$\cdot 73$	$\cdot 161$	-0287	$34 \cdot 8$
4	$3 \cdot 6$	$\cdot 66$	$\cdot 142$	-0260	$38 \cdot 5$
5	$3 \cdot 2$	-59	$\cdot 126$	-(1232	$43 \cdot 0$
6	$2 \cdot 8$	$\cdot 53$	$\cdot 110$	-0209	$47 \cdot 9$
7	2.5	$\cdot 48$	$\cdot 098$	-0189	$52 \cdot 9$
8	$2 \cdot 2$	$\cdot 43$	-087	-0169	$59 \cdot 1$
9	$1 \cdot 9$	-39	$\cdot 075$	$\cdot 0154$	$65 \cdot 1$
10	1.7	$\cdot 35$	$\cdot 667$	$\cdot 0138$	$72 \cdot 6$
11	1.5	$\cdot 31$	$\cdot 059$	$\cdot 0122$	$81 \cdot 9$
12	13	-28	-051	-0110	$90 \cdot 7$
13	$1 \cdot 2$	$\cdot 25$	-047	$\cdot 0098$	101.0
14	1.0	$\cdot 23$	$\cdot 039$	$\cdot 0091$	110.0
15	-90	$\cdot 21$	-035	.0083	121.0
16	$\cdot 79$	$\cdot 19$	$\cdot 031$. 0075	134.0
17	$\cdot 70$	$\cdot 17$	-028	.0067	149.0
18	$\cdot 62$	$\cdot 15$	$\cdot 024$	-0059	169.0
19	$\cdot 54$	$\cdot 14$	$\cdot 021$	-0055	1810
20	$\cdot 48$	$\cdot 12$	019	-0047	212.0
21	$\cdot 42$	$\cdot 11$. 017	.0043	231.0
22	$\cdot 37$	-10	015	$\cdot 0039$	259.0
23	-33	-09	-013	$\cdot 0035$	285.0
24	-29	. 08	011	-0031	317.0
25	25	-07	010	. 0028	353.0

British Standard Fine (B.S. Fine) Screw Threads.*

Nominal 1) iatm.	$\begin{gathered} \text { Threands } \\ \text { per } \\ \text { lawh. } \end{gathered}$	1'tch.	Depth of Thireal.	Major 1)iam.	Effertive Diam.	Minor Diam.	Area at Bottom of I'hread.
-							
In.		In.	In.	In.	In.	In.	Sq. In.
${ }^{3} 16$	32	0.03125	$0 \cdot 0200$	$0 \cdot 1875$	$0 \cdot 1675$	$0 \cdot 1475$	$0 \cdot 0171$
${ }_{8}^{78}$	28	$0 \cdot 03571$	0.02229	$0 \cdot 2188$	$0 \cdot 1959$	0.1730	0.0235
$\frac{1}{4}$	26	$0 \cdot 03846$	0.()246	0.2500	0.2254	$0 \cdot 2008$	0.0317
$3^{3} 2$	26	$0 \cdot 03846$	$0 \cdot 0246$	0.2812	$0 \cdot 6566$	0.2320	$0 \cdot 0423$
16	22	0.04545	0.0291	$0 \cdot 3125$	$0 \cdot 2834$	$0 \cdot 2543$	$0 \cdot 0508$
$\frac{3}{8}$	20	$0 \cdot 05000$	$0 \cdot 0320$	$0 \cdot 3750$	$0 \cdot 3430$	0.3110	$0 \cdot 0760$
$\frac{7}{16}$	18	$0 \cdot 055.56$	0.0356	(1.4375	$0 \cdot 4019$	$0 \cdot 3663$	$0 \cdot 1054$
$\frac{1}{2}$	16	$0 \cdot 06250$	$0 \cdot 0400$	$0 \cdot 5000$	$0 \cdot 4600$	$0 \cdot 4200$	$0 \cdot 1385$
8	16	$0 \cdot 06250$	$0 \cdot 0400$	$0 \cdot 5625$	0.5225	0.4825	$0 \cdot 1828$
8	14	$0 \cdot 07143$	$0 \cdot 0457$	0.6250	0.5793	$0 \cdot 5336$	$0 \cdot 2236$
116	14	$0 \cdot 07143$	$0 \cdot 0457$	0.6875	0.6418	0.5961	$0 \cdot 2791$
3	12	$0 \cdot 08333$	$0 \cdot 0.0534$	0.7500	$0 \cdot 6966$	$0 \cdot 6432$	$0 \cdot 3249$
18	12	$0 \cdot 08333$	$0 \cdot 0534$	0.8125	0.7591	0.7057	$0 \cdot 3911$
8	11	0.09091	$0 \cdot(0582$	0.8750	$0 \cdot 8168$	0.7586	$0 \cdot 4520$
1	10	$0 \cdot 10000$	$0 \cdot 0640$	$1 \cdot 0000$	0.9360	0.8720	$0 \cdot 5972$
118	9	$0 \cdot 11111$	0.0711	$1 \cdot 1250$	$1 \cdot 0539$	$0 \cdot 9828$	0.7586
$1 \frac{1}{4}$	9	$0 \cdot 11111$	$0 \cdot 0711$	1.2500	$1 \cdot 1789$	$1 \cdot 1078$	0.9639
$1 \frac{3}{8}$	8	$0 \cdot 12500$	$0 \cdot 0800$	$1 \cdot 3750$	1-2950	1-2150	$1 \cdot 159$
$1 \frac{1}{2}$	8	$0 \cdot 12500$	$0 \cdot 0800$	$1 \cdot 5000$	$1 \cdot 4200$	$1 \cdot 3400$	$1 \cdot 410$
15	8	$0 \cdot 12500$	0.0800	$1 \cdot 6250$	$1 \cdot 5450$	$1 \cdot 4650$	$1 \cdot 686$
] $\frac{3}{4}$	7	$0 \cdot 14286$	0.0915	$1 \cdot 7500$	1-6585	$1 \cdot 5670$	1.928
2	7	0-14286	$0 \cdot 0915$	$2 \cdot 1000$	1.9085	1.8170	$2 \cdot 593$
21	6	$0 \cdot 16667$	$0 \cdot 1067$	$2 \cdot 2500$	$2 \cdot 1433$	$2 \cdot 0366$	$3 \cdot 258$
21	6	$0 \cdot 16667$	0-1067	$2 \cdot 5000$	$2 \cdot 3433$	$2 \cdot 2866$	$4 \cdot 106$
23	6	$0 \cdot 16667$	$0 \cdot 1067$	2.7500	$2 \cdot 6433$	2.5366	$5 \cdot 054$
3	5	$0 \cdot 20000$	$0 \cdot 1281$	$3 \cdot 0000$	2.8719	$2 \cdot 7438$	$5 \cdot 913$
34	5	0. 20000	$0 \cdot 1281$	3-2500	$3 \cdot 1219$	2.9938	$7 \cdot 039$
$3 \frac{1}{2}$	$4 \cdot 5$	$0 \cdot 22222$	$0 \cdot 1423$	3.5000	3-3577	$3 \cdot 2154$	8-120
$3{ }^{3}$	$4 \cdot 5$	$0 \cdot 22222$	$0 \cdot 1423$	$3 \cdot 7500$	$3 \cdot 6077$	$3 \cdot 4654$	$9 \cdot 432$
4	$4 \cdot 5$	$0 \cdot 22222$	$0 \cdot 1423$	$4 \cdot 0000$	$3 \cdot 8577$	$3 \cdot 7154$	10.84
41	4	$0 \cdot 25000$	$0 \cdot 1601$	$4 \cdot 2500$	$4 \cdot 0899$	3.9298	$12 \cdot 13$

Note.-It is recommended that for larger diameters in this series four threads per inch be used.

* Extracted from B.S. 84 : 1940.

British Standard Pipe (B.S. Pipe) Screw Threads.*

Note.-Tubes 7 in . and upwards. The ends shall be specially sized prior to screwing, in order to ensure ample thickness below the root of the thread. This condition shall be complied with for the screwing of cut tube at site.

Gauge diameter is the basic major diameter of the thread, whether external or internal, parallel or taper. For taper threads the gauge diameter is theoretically located at the face of the internal screw (coupling) or at a distance equal to the basic gauge length from the small end of the external screw (pipe-end).

Gauge plane is the plane in which the gauge diameter is located.
Gauge length is the distance of the gauge plane on an external taper sorew (pipe-end) from the small end of the screw.

[^32]Sellers Screws.*-The Sellers screw thread is the standard form of triangular thread used by American engineers. The angle of the V is 60°, and an amount, C, equal to one-eighth of the total depth, B, is cut off at the top and bottom, parallel to the axis of the screw, as shown.

$D=$ diameter of screw over the thread, in inches.
$D_{1}=$ diameter of screw at bottom of thread, in inches.
$P=$ pitch of screw thread, in inches.
$N=$ number of threads per inch.

$$
D_{1}=D-\frac{1 \cdot 29904}{N} . \quad P=\frac{1}{N} . \quad N=\frac{1}{P} .
$$

Dimensions of Sellers Screws.

$\begin{array}{\|l} \text { Diam. } \\ \text { of } \\ \text { Screw. } \\ \text { D } \end{array}$	$\begin{array}{\|c} \text { Number } \\ \text { of } \\ \text { Threads } \\ \text { per Inch. } \end{array}$	Diam. at Bottom Thread. D_{t}	Area at Bottom Thread. A	$\begin{gathered} \text { Diam. } \\ \text { of } \\ \text { ocrew. } \\ \text { D } \end{gathered}$	$\left\|\begin{array}{c}\text { Number } \\ \text { of } \\ \text { Threads } \\ \text { per Inch. } \\ N\end{array}\right\|$	Diam. at Bottom Thread D_{1}	Area at Buttom of Thread. A
Inches.	Threa	Inches	Sq. In.	Inches.	Threads.	Inc	
	20	185	269	2	$4 \frac{1}{2}$	1.71	$2 \cdot 3001$
$\frac{5}{18}$	18	-240	-0454	24	$4 \frac{1}{2}$	1.961	$3 \cdot 0212$
	16	-294	-0678	$2 \frac{1}{2}$	4	2-175	3.7161
$\frac{7}{18}$	14	-345	$\cdot 0933$	$2{ }^{3}$	4	$2 \cdot 425$	$4 \cdot 6194$
	13	$\cdot 400$	-1257	3	$3 \frac{1}{2}$	$2 \cdot 629$	$5 \cdot 4276$
$\frac{9}{16}$	12	-454	-1620	34	$3 \frac{1}{2}$	2.879	$6 \cdot 5090$
	11	-507	-2018	$3 \frac{1}{2}$	34	3.100	$7 \cdot 5491$
$\frac{8}{4}$	10	$\cdot 620$	-3020	$3{ }^{3}$	3	3•317	$8 \cdot 6413$
	9	$\cdot 731$	$\cdot 4193$	4	3	3.567	9•9930
	8	-838	-5510	4	27	$3 \cdot 798$	$11 \cdot 3304$
	7	$\cdot 939$	-6931	$4 \frac{1}{2}$	$2{ }^{3}$	4.028	12.7404
14	7	$1 \cdot 064$	-8898	4	$2 \frac{5}{8}$	$4 \cdot 255$	14.2203
18	6	$1 \cdot 158$	1.0541	5	$2 \frac{1}{3}$	$4 \cdot 480$	15.7661
	6	1.283	1.2938	$5 \dot{4}$	$2 \frac{1}{2}$	$4 \cdot 730$	17.5746
15	$5 \frac{1}{2}$	$1 \cdot 389$	1.5148	$5 \frac{1}{2}$	$2{ }^{\frac{8}{8}}$	4.953	19.2676
	5	$1 \cdot 490$	1.7441	万ั	$2{ }^{3}$	$5 \cdot 203$	21.2617
17	5	1.615	2.0490	6	24	5.423	23.0943

[^33]American Standard Screw Threads.-The form of thread for all American Standard threads is known as the American National Form, and is the same as that previously known as the United States Standard (or Sellers).

Coarse Thread Series.

- Major diameter is largest diameter; minor diameter is smallest diameter.

American Standard Screw Threads (continued).
Fine Thread Series.

$\begin{gathered} \text { Bize No. } \\ \text { or } \\ \text { Diam. } \end{gathered}$	$\begin{array}{\|c\|} \text { Threads } \\ \text { per } \\ \text { Inch. } \end{array}$	Major Diam.	Minor Diam.	$\begin{gathered} \text { Size } \\ \text { Diam. } \end{gathered}$	$\begin{gathered} \text { Threads } \\ \text { per } \\ \text { Inch. } \end{gathered}$	Major Diam.	Minor Diam.
		Inches.	Inohes.			Inches.	Inchea
0	80	0.0600	0.0438	$\frac{3}{8}$	24	$0 \cdot 3750$	$0 \cdot 3209$
1	72	0.0730	0.0550	$1^{7}{ }_{8}$	20	0.4375	$0 \cdot 3725$
2	64	0.0860	0.0657	$\frac{1}{2}$	20	0.5000	$0 \cdot 4350$
3	56	0.0990	0.0758	9	18	0.5625	0.4903
4	48	0.1120	0.0849	8	18	0.6250	0.5528
5	44	0.1250	0.0955	3	16	0.7500	0.6688
6	40	0.1380	$0 \cdot 1055$	8	14	0.8750	0.7822
8	36	0.1640	0.1279	8	14	1.0000	0.9072
10	32	0.1900	$0 \cdot 1494$	18	12	1.1250	1.0167
12	28	$0 \cdot 2160$	$0 \cdot 1696$	14	12	1.2500	1-1417
	28	0.2500	0.2036	18	12	1.3750	$1 \cdot 2667$
18	24	0.3125	0.2584	11	12	$1 \cdot 5000$	$1 \cdot 3917$

Wood Screws.
Mild Steel-Countersunk Heads and Gimlet Points.
(Guest, Keen \& Nettlefolds, Ltd., Birmingham.)

Screw Gauge.	Equivalent in Parts of an Inch.	Length, Inches.		Screw Gauge.	Equivalent in Parts of an Inch.	Length, Inches.	
		Shortest Screw.	Longest Screw.			Shortest Screw.	Longest Screw.
4/0	- 054	$\frac{1}{8}$	8	12	. 220	$\frac{1}{2}$	6
3/0	-057	$\frac{1}{8}$	$\frac{1}{2}$	13	-234	5	6
2/0	. 060	$\frac{1}{8}$	$\frac{3}{4}$	14	- 248	${ }_{8}$	6
0	-063	1	$\frac{3}{4}$	15	-262	$\frac{3}{4}$	6
1	. 066	$\frac{1}{8}$	1	16	- 276	3	6
2	. 080	$\frac{1}{8}$	$1 \frac{1}{2}$	18	-304	1	7
3	- 094	${ }^{3}{ }^{3}$	2	20	-332	1	7
4	- 108	$\frac{1}{4}$	$2 \frac{1}{2}$	22	-360	1	7
5	- 122	4	3	24	-388	14	7
6	$\cdot 136$	$\frac{1}{4}$	$3 \frac{1}{2}$	26	$\cdot 416$	14	7
7	-150	$\frac{8}{8}$	31	28	- 444	$1 \frac{1}{2}$	7
8	-164	$\frac{8}{8}$	4	30	-472	$1 \frac{1}{2}$	7
9	- 178	$\frac{8}{8}$	41	32	-500	2	7
10	- 192	$\frac{1}{8}$	5	36	-556	3	7
11	-206	$\frac{1}{2}$	$5 \frac{1}{2}$	40	-612	3	7

Longer or shorter lengths than those given in the table can be made to suit special requirements.

The principal dimensions of a countersunk head wood screw are as shown in the figure. Diameter (B) of head is twice diameter (D) of screw. Angle of countersunk head is 45°. Length of threaded portion is two-thirds the length of the screw.

Wood screws of various types are obtainable in mild steel, brass, "staybrite" stainless steel, copper, gun-metal, aluminium alloy, nickel silver, eto.

Forms and Proportions of Bolt-heads. -

$D=$ diameter of bolt in inches.
(a) Hexagonal head. (b) Square head. (c) Hexagonal head, with collar or flange formed on it to increase its bearing surface. (d) Cylindrical or cheese head. (e) and (f) Spherical heads. (g) Spherical head, with spherical bearing surface to permit of bolt canting over slightly. (h) Conical or counter-sunk head. (i) T-head. (j) Wedge-shaped head. (k) Hook-bolt head.

The usual proportions for the above forms of bolt-heads are as follows:-

Hexayonal head.-
Width across flats $=1 \frac{1}{3} D+\frac{1}{8}$ inch.
Width across angles $=$ width across flats $\times 1 \cdot 155$.
Height =from $\frac{2}{s} D$ to D.
For table of dimensions of Whitworth standard hexagonal bolt-heads, see p. 407.

Square head.-
Width across flats $=1 \frac{1}{2} D+\frac{1}{8}$ inch.
Width across angles = width across flats $\times 1.414$.
Height $=$ from $\frac{2}{3} D$ to D.
Checse head.-
Diameter $=$ from $1 \cdot 3 D$ to $1 \cdot 5 D$.
Height $=$ from $\cdot 5 D$ to 8.

Spherical head.-
Diameter $=1 \cdot 5 D . \quad$ Height $=75 \mathcal{D}$.
Other forms.--

$$
\begin{aligned}
& C=751) . \quad E=15 D . \quad F=\text { from } \cdot 75 D \text { to } D . \\
& H=1 \frac{1}{2} D+\frac{1}{8} \text { inch. }
\end{aligned}
$$

A bolt may be prevented from rotuting by making a portion of it next the head square, as shown at (b), the square portion fitting into a square hole. A pin, screwed or driven into the bolt, as shown at (d) and (h), or a snug formed on the bolt, as shown at (f), serves the same purpose; the pin or snug fitting into a recess, as shown.
(l)

(l) Eye-bolt head. $-A=$ from D to $1 \cdot 2 D . \quad B=\frac{D^{2}}{2 \bar{A}}$.
$D_{2}=$ from $8 D$ to D when the pin is supported at both sides of the bolt.
$D_{2}=1.2 D$ when the pin is overhung.
(m) Taper bolt.-This is easier made a tight fit in the hole, and is easier to withdraw, than a parallel bolt. Usual taper, threeeighths of an inch, on the diameter, per foot of length.

Stud and Tap Bolts.-A Stud or Stud-bolt (a) is screwed at both ends. One end is screwed into one of the pieces to be connected, and the other end carries an ordinary nut.

At (b) is shown a stud with a collar, which may be circular or square.

A Tap-bolt (c) is a bolt with a head, and is screwed into one
of the pieces to be connected while the head presses on the other piece.

Tap and stud bolts combined are shown at (d) and (e).
Bolts with Nuts at each End.-

Foundation Bolts.-(a) Bolt with jagged head. The head is wider at the bottom than at the top, and is let into a tapered hole in a large stone. The space between the head of the bolt and the sides of the hole is filled with molten lead or molten sulphur.

The form shown at (b) is an improvement on (a), in that it can easily be removed on taking out the key.
The form shown at (c) has a cotter or gib which presses on a cast-iron plate. The area of the surface of the plate pressing on the foundation, multiplied by the safe compressive stress of the material of the foundation, should be equal to the safe load on the bolt.

Bolts of Uniform Strength.-The weakest part of the bolt (a)

is the screwed portion. A bolt is better able to resist suddenly applied loads when the area of its cross section is uniform throughout its length. The unscrewed portion may be forged or turned down, as shown at (b), but a portion at each end should be left of the full diameter, so that the bolt may not shake in the hole through which it passes. D_{1}, the diameter of the reduced part, hould be equal to the diameter of the screwed part at the bottom of the thread.

The unscrewed portion may have flats forged or cut on it, as shown at (c), so that the cross section is a square with the corners rounded off. For bolts above half-inch in diameter, B, the breadth across the flats is given very approximately by the formula,

$$
B=1 \cdot 414 D-\sqrt{D^{2}-A},
$$

where A is the area of the section of the bolt at the bottom of the screw thread.

The cross section of the unscrewed portion may be reduced by drilling a hole from the head to near where the screw ends, as shown at (d). The diameter of the hole is given by the formula,

$$
D_{2}=\sqrt{D^{2}-} D_{1}^{2},
$$

where D_{1} is the diameter of the bolt at the bottom of the screw thread.

The following table gives the values of B and D_{2} for various sizes of bolts, with Whitworth screw threads and Sellcrs screw threads :-

	D	1	14		13	2	21	$2 \frac{1}{2}$	23	3	34
	B	$\cdot 75$. 95	1.15	$1 \cdot 33$	$1 \cdot 53$	1.72	$1 \cdot 9$.	$2 \cdot 13$	$2 \cdot 36$	2.56
	D_{2}	$\cdot 54$	'65	$\cdot 77$	$\cdot 91$	1.03	$1 \cdot 16$	$1 \cdot 22$	$1 \cdot 37$	$1 \cdot 44$	$1 \cdot 55$
	D	31	38	4	41	$4 \frac{1}{2}$	$4{ }^{3}$	5	54	51	5
	B	$2 \cdot 79$	2.98	321	342	365	$3 \cdot 86$	$4 \cdot 10$	$4 \cdot 30$	4.53	4.74
	D_{2}	$1 \cdot 61$	1.74	$1 \cdot 80$	1×9	1.95	$2 \cdot 05$	$2 \cdot 11$	2×21	226	$2 \cdot 37$
	D	1	$1 \ddagger$	$1 \frac{1}{2}$	14	2	24	$2 \frac{1}{2}$	23	3	34
	B	$\cdot 74$	$\cdot 95$	1-14	$1: 33$	$1 \cdot 52$	175	1.94	$2 \cdot 17$	2:35	2.58
	D_{2}	. 55	'66	78	-92	1.03	1.10	$1 \cdot 23$	$1 \cdot 30$	$1 \cdot 44$	1.51
	D	31	$3{ }^{3}$	4	44	$4 \frac{1}{2}$	$4{ }^{3}$	5	54	$5 \frac{1}{2}$	59
	B	2.78	$2 \cdot 97$	3.21	$3 \cdot 42$	3.62	383	4.03	$4 \cdot 26$	4.46	4.70
	D_{2}	1.62	1.75	181	1.91	$2 \cdot 01$	$2 \cdot 11$	$2 \cdot 22$	$2 \cdot 28$	$2 \cdot 39$	$2 \cdot 45$

Set-Screws.-A set-screw is a screw or bolt which presses on a piece so as to prevent the rotation or sliding of that piece. Set-screws are generally made of steel, and their points should be hardened. In cases where the piece to be locked is not secured permanently in one position, the point of the set-screw

should press on the bottom of a shallow groove in the piece, as shown at (a), so that the bur raised by the point of the set-screw shall not interfere with the rotation or sliding of the piece when the latter has to be shifted. The piece to be locked may be protected from the damaging action of the set-screw by a metal pad, as shown at (b) and (c).

Forms and Proportions of Nuts.-

$D=$ diameter of screw, over
 the threads, in inches.
(a) Hexagmal nut, chamfered on top. (b) Hexagonal nut, chamfered on top and bottom. (c) Square nut. (d) Flanged nut. (e) Nut with spherical bearing surface, which permits of bolt canting over slightly. (f), (g), (h), ((i), and (j) Circular nuts.
(k) and (l) Cap nuts. These being closed at their outer ends, the leakage of a liquid or gas past the screw threads is prevented.

The usual proportions for nuts are as follows :-
Hexagonal nut.-
Width across flats $=1 \frac{1}{2} I f+\frac{1}{8}$ inch. Height $=I$.
Width across angles $=$ width across flats $\times 1 \cdot 1 \% 5$. Square nut.-

Width across flats $\left.=1 \frac{1}{2} I\right)+\frac{1}{8}$ inch. Height $=D$.
Width across angles $=$ wilth across flats $\times 1.414$. Circular nuts.-

Diameter $=$ from $1 \frac{1}{2} D+\frac{1}{8}$ inch to $1 \frac{1}{4} D . \quad$ Height $=D$.
Dimensions of Whitworth Standard Herayonal Nuts and Bolt-heads.

Diameter of Bolt.	Width of Nut or Bolt-head across Flats.	Heipht of Bolt-head.	nameter of Bolt.	Width of Nint or Bolt-head across Flats.	Height of Bult-head.
$\frac{1}{8}$	-338	- 109	14	2. 048	1.094
${ }^{13} 8$	$\cdot 48$	$\cdot 164$	18	2.215	1203
	-525	$\cdot 219$	$1 \frac{1}{3}$	$2 \cdot 413$	1312
${ }^{5} 8$	6101	$\cdot 273$	18.	2.576	$1 \cdot 422$
8	.709	$3{ }^{2 \times}$	13	2758	1.531
$\mathrm{I}^{7} 8$	-820	383	17	3018	1641
	$\cdot 919$	$\cdot 437$	2	$3 \cdot 149$	1.750
${ }^{\text {18 }}$	$1 \cdot 101$	$\cdot 492$	$2 \frac{1}{8}$	$3 \cdot 337$	1.859
-	$1 \cdot 101$	$\cdot 547$	21	$3 \cdot 546$	1.969
12	$1 \cdot 201$	601	$2{ }^{3}$	$3 \cdot 750$	2.078
3	$1: 301$ $1: 390$.656	$23^{2 \frac{1}{2}}$	3.894 4.049	$2 \cdot 187$ 2.297
$\frac{7}{8}$	1.479	$\cdot 766$	23	$4 \cdot 181$	$2 \cdot 406$
18	1.574	.820	27	$4 \cdot 346$	$2 \cdot 516$
	1.670 1.860	.875 .984	3	$4 \cdot 531$	2625

The height of the nut is in each case equal to the diameter of the bolt.

The proportions of "United States Standard" square and hexagonal nuts and bolt-heads are as follows :-

Width across flats $=1 \frac{1}{2} D+\frac{1}{8}$ inch.
Height of nut $=D$. Height of bolt-head $=\frac{3}{4} D+\frac{1}{16}$ inch.
Common Lock Nut. -The lower nut is first screwed up tight. The upper nut is next screwed almost as tight as it can be made against the lower nut. The upper nut is then held with one spanner, while the lower is screwed back tight against the upper by another spanner. Or, instead of proceeding as above, the lower nut may be first screwed up almost as tight as it can be made, and then, while the lower nut is held by one spanner, the upper is screwed as tight as possible against the lower by another spanner. In any case the nuts are wedged tight against one another on the screw, and the outer nut carries the load.

Hence the thicker of the two nuts should be on the outside, as shown at (a). In practice the thin nut is often on the outside, as shown at (b), for the reason that ordinary spanners are generally too thick to act on the thin nut when placed under

the other. Sometimes a compromise is made by having each nut of a thickness equal to three-fourths of the thickness of an ordinary nut, as shown at (c).

$$
\left.\left.\Pi=7) \quad H_{1}=\frac{1}{2} l\right) \quad H:=\frac{3}{3} I\right) .
$$

Locking Nuts by Set-screws -

$D=$ diameter of bolt.
$A=1 \frac{1}{2} D+\frac{1}{8}$ inch.
$B=1 \frac{1}{3} D-\frac{1}{18}$ inch.
$C=$ diameter of set-screw at bot-
tom of thread $+\frac{1}{18}$ inch. Depth of groove $=\frac{1}{3} \mathrm{~J}$.

$E=1 \frac{1}{8} D+\frac{1}{8}$ inch.
$F=\frac{1}{8} D+\frac{1}{16}$ inch.
$G=2 J$.
$H=D$.
$H_{1}=$ from $D-\frac{1}{2}$ in. to $D-\frac{1}{1}$ in
$J=\frac{1}{8} D+\frac{1}{8}$ inch.

Miscellaneous Locking Arrangements for Nuts.-

Split Pins for Bolts.-Frequently the end of a bolt projects a little beyond the nut, and this portion has the screw thread turned off, and a hole drilled across it to receive a split pin, which prevents the nut coming off.

Diam. of bolt in inches	\pm	$\frac{1}{2}$	3	1	14	$1 \frac{1}{2}$	13	2	2
Diam. of pin No.I.S.W.G.	14	12	10	8	6	4	2		
Diam. of bolt in inches	27	21	21	3	31	31	33		
Diam. of fin in inches	${ }^{5} 6$	${ }^{5} 6$		8	3	is	${ }^{7} 8$		

Washers.-Ordinary washers are usually made of wrought-iron$D_{1}=$ diameter of nut across the angles $\times 1 \frac{1}{8}$.
$t=$ from $\cdot 1 D$ to $\cdot 2 D$.

For small punched or stamped washers $t=14 B W G=083$ inch.
For cast-iron washers for wood $D_{2}=$ from $3 D$ to $6 D, t_{1}=\frac{1}{6} D_{2}$, and $D_{1}=$ diameter of nut across angles $\times 1 \frac{1}{8}$.

Spanners.-The best spanners are made of wrought-iron or forged steel, and the jaws are case hardened. Cheap spanners are made of malleable cast-iron.

The forms and proportions of ordinary spanners are shown on the next page. $d=$ diameter of screw in inches. $A=$ width of nut across the flats $=1 \frac{1}{2} d+\frac{1}{8}$ inch. The graphic construction shown at (a) gives good proportions for the head of an open spanner. The angle a between the centre line of the head and the axis of the arm varies from 0° to 45°.

If a spanner is used as a hammer, which is frequently the case, it is better to form it as shown at (b), where the angle $a=45^{\circ}$.

A box spanner is shown at (c). For large nuts the outer end of the box spanner has an eye to receive a lever, as shown at (e).
For very large nuts which require to be screwed up very tight, the closed spanner shown at (f) is used. The outer end has an eye, through which a rope may be passed at which several men may pull at the same time.

KEYS.

(a) Saddle key. (b) Flat key or key on a flat. (c) Sunk key. (d) Round or pin key. (e) Sunk key secured by set-screws. (f) Key with gib-head. (g) Section of a large key showing a shallow groove to diminish the surface to be filed in fitting the key into its key-way. (h) Cone keys, generally made of cast-iron. These are made in one piece, and after being bored and turned the piece is divided into three parts, as shown.

The illustrations at the bottom of the opposite page show various forms of "feather" or "sliding" keys.

Proportions of Keys.-

$B=$ breadth of key in inches.
$L=n D=$ length of key in inches.
$t=$ mean thickness of key in inches.
$D=$ diameter of shaft in inches.
$T=$ twisting moment, in inch lbs, which is transmitted by the piece which is keyed to the shaft.
$B=\frac{T}{5500} D L$ for a steel key.
$B=\underset{4 \overline{5} 00 D L}{T}$ for a wrought-iron key.
If the key is to be capable of transmitting the full power of the shaft, then,
$B=\frac{\cdot 32}{L} D^{2}={ }_{n}^{321}$ for a steel key and wrought-iron shaft.
$B=-\frac{39 D^{2}}{L}={ }^{-}={ }_{n} \quad \begin{aligned} & \text { when the key and shaft are both of wrought } \\ & \text { iron or both of steel. }\end{aligned}$
An empirical rule often used is, $B=\frac{1}{4} D+\frac{1}{8}$ inch
$t=\frac{3}{3} B+\frac{1}{8}$ inch.
For sliding or feather keys, $t=B$.
The taper of keys varies fiom $\frac{1}{8}$ inch to x^{3} inch per foot of length, or 1 in 96 to 1 in 64.

Sliding or feather keys have no taper.

COTTERS.

$B=1 \ddagger D]$ when the bar and cotter are both made of wrought-
$\left.t=\frac{1}{4} D\right\}$ iron or both of steel.
$B=D\}$ when the bar is made of wrought-iron and the $\left.t=\frac{1}{4} D\right)$ cotter of steel.
$C=\frac{1}{2} D$ to $D . \quad D_{1}=82 D . \quad D=1 \cdot 22 D_{1}$.
$E=1 \frac{1}{2} D . \quad F=\frac{1}{3} D$ to $\frac{1}{2} D . \quad D_{2}=2 D$.
The taper of cotters is usually from 1 in 24 to 1 in 48 . If the taper is greater than 1 in 24 , special means should be adopted to lock the cottor to prevent it from slackening back.

PIPES AND PIPE JOINTS.

Strength of Pipes and Cylinders Subjected to Internal Pressure.-
$D=$ external diameter, $d=$ internal diameter, and $t=$ thickness, in inches. $p=$ excess of internal over external prossure, in lb. per sq. in. $f=$ allowable working tensile stress, in lb. per sq. in. $e=$ efficiency of longitudinal joint.

Case I.-Thin pipes, cylinders, or cylindrical boiler shells.

$$
p=\frac{2 t f e}{d}, \quad t=\frac{p d}{2 f,},
$$

where $e=1$ when there is no longitudinal joint. For efficiencies of riveted joints, see section on riveted joints.

In practice minimum pipe thicknesses are calculated from the formula

$$
t=\frac{p D}{2 f e}+c .
$$

Examples of values of f, e and c are given below, but see B.S. specifications for full information.*

Cast-iron steam or water pipes. f=3000. $e=1$. $c=0.015 D+0.25$.
Cast-steel pipes. Up to $550^{\circ} \mathrm{F} ., f=10,000$; over $600^{\circ} \mathrm{F}$. up to $650^{\circ} \mathrm{F} ., f=8000$; over $800^{\circ} \mathrm{F}$. up to $850^{\circ} \mathrm{F}$., $f=6300$; over $875^{\circ} \mathrm{F}$. up to $900^{\circ} \mathrm{F} ., f=4400 . \quad e=1 . \quad c=0.015 D+0.25$.
Cold drawn weldless steel pipes. Up to $550^{\circ} \mathrm{F} ., f=11,200$; over $600^{\circ} \mathrm{F}$. up to $650^{\circ} \mathrm{F}$., $f=8900$; over $800^{\circ} \mathrm{F}$. up to 850° F., $f=7000$; over $875^{\circ} \mathrm{F}$. up to $900^{\circ} \mathrm{F}$., $f=4880$. $e=1 . \quad c=0.09$.
Butt welded steel pipes. Up to $500^{\circ} \mathrm{F} ., f=10,000$. $e=0.9$ for values of t up to $\frac{7}{8}$ in., 0.85 for values of t over $\frac{7}{8} \mathrm{in}$. up to $1 \frac{1}{8}$ in., 0.80 for values of t over $1 \frac{1}{8} \mathrm{in} . \quad c=0.09$.
Solid drawn copper pipes. $f=\mathbf{2 5 0 0}$ for steam, $\mathbf{3 0 0 0}$ for feed. $e=1 . \quad c=0.03$.

- B.S. 806 : 1942. Ferrous Pipes and Piping Installations.

B.S. 1306 : 1946. Non-ferrous Pipes and Piping Installationg.

Case II.-Thick pipes or cylinders.
Lamé's formula. $\quad \frac{p}{f}=\frac{D^{2}-d^{2}}{D^{2}+d^{2}} \quad$ and $\quad t=\frac{d}{2}\left\{\sqrt{\left.\left(\frac{f+p}{f-p}\right)-1\right\} . ~}\right.$
Steel Tubes (Stewarts \& Lloyds, Ltd.).-The principal classes are welded and weldless. Welded is made from strip formed into shape and then either butt welded or lap welded. There is no ridge, the finish being smooth and continuous outside and inside. Weldless is mado from a billet and the tube may be finished by hot rolling or cold drawing, the latter producing a slightly smoother surface with slightly less tolerances.

Steels used are Bessemer steel and open hearth low tensile steel with 22 to 30 tons/sq. in. ult. tensile strength and high tensile steel with 35 to 41 tons/sq. in. ult. tensile strength. Tubes may be untreated, oiled, painted, or coated with coal tar or bitumen.
Steel Tubes Suitable for Screwing to B.S. 21 Pipe Threads.* Tubes all hydraulically tested to $700 \mathrm{lb} . / \mathrm{sq}$. in.
Three thicknesses, designated Class A, B, and C, for each size.

NominalBore.	Appiox. Outside Diametor.	Thicknesses.			Ordinary son hets.	
		Class A.	(${ }^{\text {lass }} \mathrm{B}$.	Class C.	Approx. Cutside Dameter.	Minıunum Length.
In.						
$\frac{1}{8}$	$\frac{1}{3} \frac{3}{2}$	0.072	0.080	$0 \cdot 104$	$1{ }^{12}$	${ }_{4}$
4	17	0.072	$0 \cdot 080$	$0 \cdot 104$	3	1
$\frac{5}{8}$	111	0.072	0.092	$0 \cdot 116$	${ }^{3} 9$	$1 \frac{1}{8}$
$\frac{1}{2}$	$\frac{2}{3} \frac{7}{2}$	$0 \cdot 080$	$0 \cdot 104$	$0 \cdot 128$	$1{ }^{3}{ }^{3}$	$1 \frac{1}{2}$
4	118	0.092	$0 \cdot 116$	$0 \cdot 144$	$1 \frac{1}{3} \frac{1}{2}$	15
1	$1 \frac{1}{31}$	$0 \cdot 104$	$0 \cdot 128$	$0 \cdot 160$	127	17
14	11%	$0 \cdot 104$	$0 \cdot 144$	$0 \cdot 176$	$2{ }^{1}$	21
$1 \frac{1}{2}$	$1{ }^{2}{ }^{\text {\% }}$	$0 \cdot 116$	$0 \cdot 160$	0.192	$23^{9} 5$	21
2	$2 \frac{3}{8}$	$0 \cdot 116$	$0 \cdot 160$	$0 \cdot 192$	$2 \frac{9}{3}$	$2 \frac{1}{2}$
$2 \frac{1}{2}$	3	$0 \cdot 128$	$0 \cdot 176$	$0 \cdot 212$	$3 \frac{7}{16}$	23
3	31	$0 \cdot 128$	$0 \cdot 176$	0.212	4	3
$3 \frac{1}{2}$	4	$0 \cdot 144$	$0 \cdot 176$	$0 \cdot 212$	$4 \frac{1}{2}$	31
4	412	$0 \cdot 144$	$0 \cdot 176$	$0 \cdot 212$	$5 \frac{1}{16}$	$3 \frac{1}{2}$
5	$5 \frac{1}{2}$. .	$0 \cdot 176$	$0 \cdot 212$	$6 \frac{1}{8}$	$3 \frac{3}{4}$
6	$6 \frac{1}{2}$	-	$0 \cdot 176$	$0 \cdot 212$	71	$3 \frac{3}{4}$

- Extracted from B.S. 1387 : 1947.

Weights of Steel Tubes Suitable for Screwing to B.S. 21 Pipe Threads.*

Nommal Bure.	Welghts per Foot of Black Tube.					
	Plam Eud.			Screwed and socketed. \dagger		
	Olass A.	Class B.	Class 0.	Class A.	Class B.	Class C.
In.	$\begin{gathered} \text { Lb. } \\ 0 \cdot 244 \end{gathered}$	$\begin{gathered} \text { Lb. } \\ 0 \cdot 973 \end{gathered}$	$\begin{gathered} \text { Lb. } \\ 0 \cdot 328 \end{gathered}$	$\stackrel{\text { Lb. }}{0 \cdot 247}$	$\begin{aligned} & \text { Lb. } \\ & 0 \cdot 276 \end{aligned}$	$\mathrm{Lb} .$
$\frac{1}{8}$	(). 348	$0 \cdot 391$	0.482	0.351	$0 \cdot 393$	$0 \cdot 484$
$\frac{3}{8}$	$0 \cdot 455$	0.573	0.693	$0 \cdot 459$	$0 \cdot 577$	$0 \cdot 696$
$\frac{1}{2}$	$0 \cdot 643$	$0 \cdot 825$	0.982	$0 \cdot 650$	0.831	0.987
8	0.941	$1 \cdot 173$	$1 \cdot 413$	0.951	$1 \cdot 182$	$1 \cdot 421$
1	1-349	$1 \cdot 651$	$2 \cdot 009$	1-364	$1 \cdot 664$	$2 \cdot 020$
$1 \frac{1}{4}$	$1 \cdot 729$	$2 \cdot 357$	2.821	1.751	$2 \cdot 375$	2.836
$1 \frac{1}{2}$	$2 \cdot 201$	$2 \cdot 988$	$3 \cdot 520$	$2 \cdot 233$	$3 \cdot 015$	$3 \cdot 544$
2	2.779	$3 \cdot 795$	$4 \cdot 488$	$2 \cdot 827$	3.836	$4 \cdot 524$
$2 \frac{1}{2}$	$3 \cdot 893$	$5 \cdot 301$	$6 \cdot 304$	$3 \cdot 979$	$5 \cdot 375$	$6 \cdot 370$
3	$4 \cdot 577$	$6 \cdot 246$	$7 \cdot 442$	$4 \cdot 700$	$6 \cdot 354$	$7 \cdot 540$
31	$5 \cdot 878$	$7 \cdot 172$	$8 \cdot 557$	6.006	$7 \cdot 288$	$8 \cdot 660$
4	$6 \cdot 647$	$8 \cdot 117$	$9 \cdot 695$	6.831	$8 \cdot 286$	$9 \cdot 847$
5		$10 \cdot 006$	11.971	. .	$10 \cdot 262$	$12 \cdot 205$
6	.	11.891	$14 \cdot 241$.	$12 \cdot 301$	$14 \cdot 625$

* Extracted from B.S. 1387 : 1947.
\dagger Based on a length (measured from end of tube to end of socket) of: $\mathbf{1 5} \mathrm{ft}$. for $\frac{1}{8} \mathrm{in}$. nominal bore; 19 ft . for $\frac{1}{\mathrm{i}} \mathrm{in}$. to 6 in . nominal bore inclusive.

Tubes should be described by the number of the specification (B.S. 1387) and the class of tube.

The term tube denotes a straight tube of uniform bore and is synonymous with the term pipe.

The term socket denotes the screwed coupling utilised in jointing the tubes and is synonymous with the term coupler.

Lengths of Steel Tubes Suitable for Screwing to B.S. 21 Pipe Threads.*

Lengths.	Size $\frac{1}{8} \mathrm{In}$.	Sizes $\frac{\mathrm{In} .}{}$ to 6 In.
Random	10 to 17 ft.	15 to 23 ft.
Exact	All sizes within $+\frac{1}{4} \mathrm{in} . ~$	0 in. of specified length

* Extracted from B.S. 1387 : 1947.
 bore some short random lengths are permitted. See B.S. 1387 for details.

The length of a screwed and socketed "random length" tube is the overall length when one socket has been screwed on.

The length of a screwed and socketed "exact length" tube is the length of the tube exclusive of the socket.

Steel Tubes for Gas, Water, Air, and Sewage.*
 (Stewarts \& Lloyds, Ltd.)

Sizes 2 in. to 72 in. Four thicknesses, designated Class A, B, C, and D, for each size. Welded or weldless up to 16 in ., welded only for larger sizes.
" Steel" Sizes.

Nominal Bore.	Outside Diameter.	Class A.			Class B.		
		Thickness.	Weight per Ft.	Test Head.	Thickness.	Weight per Ft .	Test Head.
In.	In.	In.	lb.	Ft.	In.	Lb.	Ft.
2	23	$0 \cdot 104$	$2 \cdot 52$	2300	$0 \cdot 116$	2.80	2300
$2 \frac{1}{2}$	3	$0 \cdot 116$	$3 \cdot 57$	2300	$0 \cdot 128$	$3 \cdot 93$	2300
3	31 $\frac{1}{2}$	$0 \cdot 116$	4-19	2300	$0 \cdot 144$	$5 \cdot 16$	2300
4	$4 \frac{1}{2}$	$0 \cdot 128$	5.98	1900	$0 \cdot 144$	$6 \cdot 70$	2200
5	$5 \frac{1}{2}$	$0 \cdot 144$	$8 \cdot 24$	18C0	$0 \cdot 160$	$9 \cdot 13$	2000
6	$6 \frac{1}{2}$	$0 \cdot 144$	9.78	1500	$0 \cdot 176$	11.9	1800
7	$7 \frac{1}{2}$	$0 \cdot 176$	$13 \cdot 8$	1600	$0 \cdot 192$	$15 \cdot 0$	1700
8	$8 \frac{1}{2}$	$0 \cdot 176$	$15 \cdot 6$	1400	0-192	$17 \cdot 0$	1500
9	$9 \frac{1}{2}$	$0 \cdot 192$	$19 \cdot 1$	1300	$0 \cdot 212$	$21 \cdot 0$	1500
10	102	$0 \cdot 192$	$21 \cdot 1$	1200	$0 \cdot 212$	$23 \cdot 3$	1300
12	121	0.192	25.2	1000	0.212	27.8	1100
14	$14 \frac{1}{2}$	0.192	$29 \cdot 3$	750	$0 \cdot 219$	$33 \cdot 4$	900
15	$15 \frac{1}{2}$	$0 \cdot 192$	$31 \cdot 4$	700	$0 \cdot 219$	$35 \cdot 7$	800
16	16⿺𠃊	0.192	$33 \cdot 4$	650	$0 \cdot 219$	$38 \cdot 0$	750
18	181	$0 \cdot 192$	$37 \cdot 5$	550	$0 \cdot 219$	$43 \cdot 7$	700
20	$20 \frac{1}{2}$	$0 \cdot 219$	47-4	600	$0 \cdot 25$	$54 \cdot 1$	700
21	21 $\frac{1}{2}$	0.219	$49 \cdot 7$	600	$0 \cdot 25$	$56 \cdot 7$	700
22	$22 \frac{1}{2}$	0.25	$59 \cdot 4$	650	$0 \cdot 281$	$66 \cdot 8$	750
24	$24 \frac{1}{2}$	0.25	$64 \cdot 8$	600	0.313	$80 \cdot 7$	800

- In accordance with requirements of B.S. 534.

Steel Tubes for Gas, Water, Air, and Sewage.*
(Stewarts \& Lloyds, Ltd.)
" Steel" Sizes (continued).

$\underset{\text { Bore. }}{\substack{\text { Nominal } \\ \text { Bor }}}$	Outside Diameter.	Class 0.			Class D .		
		Thick- ness.	Weight per Ft.	Test Head.	Thick- ness.	Weight per Ft.	Test Head.
In.	In.	In.	Lb.	Ft.	In.	Lb.	Ft.
2	$2{ }^{3}$	$0 \cdot 128$	3.07	2300	$0 \cdot 144$	3.43	2300
21	3	$0 \cdot 144$	$4 \cdot 39$	2300	$0 \cdot 160$	$4 \cdot 85$	2300
3	$3 \frac{1}{2}$	$0 \cdot 176$	6.25	2300	$0 \cdot 192$	6.78	2300
4	$4 \frac{1}{2}$	$0 \cdot 176$	8.13	2300	0.192	8.84	2300
5	$5 \frac{1}{2}$	$0 \cdot 176$	$10 \cdot 0$	2200	$0 \cdot 192$	$10 \cdot 9$	2300
6	$6 \frac{1}{2}$	0.192	$12 \cdot 9$	2000	$0 \cdot 212$	$14 \cdot 2$	2300
7	$7 \frac{1}{2}$	0.212	16.5	1900	\pm	$19 \cdot 4$	2300
8	$8 \frac{1}{2}$	0.212	18.8	1700	4	22.0	2000
9	$9 \frac{1}{2}$	\pm	24.7	1800	${ }^{\frac{9}{32}}$	27.7	2000
10	$10 \frac{1}{2}$	4	$27 \cdot 4$	1600	${ }^{\frac{8}{2}}$	30.7	1800
12	$12 \frac{1}{2}$	4	32.7	1300	3^{9}	36.7	1500
14	$14 \frac{1}{2}$	4	$38 \cdot 1$	1100	${ }^{\frac{8}{812}}$	42.7	1200
15	$15 \frac{1}{2}$	$\frac{1}{4}$	40.7	1000	$\frac{3}{32}$	45.7	1100
16	$16 \frac{1}{2}$	4	$43 \cdot 4$	900	${ }^{98}$	48.7	1000
18	$18 \frac{1}{2}$	4	48.7	800	${ }_{15}$	60.7	1000
20	201	${ }^{\frac{2}{2}}$	60.7	850	$\frac{5}{16}$	67.4	950
21	$21 \frac{1}{2}$	${ }^{\frac{9}{32}}$	63.7	800	$\frac{5}{16}$	$70 \cdot 7$	900
22	$22 \frac{1}{2}$	$\frac{5}{16}$	74-1	850	3	88.6	1000
24	$24 \frac{1}{2}$	$\frac{11}{2}$	88.7	900	$\frac{8}{8}$	96.6	950

- In accordance with requirements of B.S. 634.

For "cast-iron" sizes see p. 419.
Lengths of "Steel" and " Cast-iron" Sizes.

Lengths.	Sizes 16 In . and under.	Sizes over 16 In.
Random	16 to 25 ft.	18 to 25 ft.
Average	Not less than 20 ft.	About 25 ft.

Steel Tubes for Gas, Water, Air, and Sowage.* (Stewarts \& Lloyds, Ltd.)
"Cast-iron" Sizes.
Interchangeable with Cast-iron Pipes to B.S. 78.

Nominal Bore.	Outside Diameter.	Class A.			Class B.		
		Thickness.	Weight per E't.	Test Head.	Thickness.	Weight per Ft.	Test Head.
In.	In.	In.	Lb.	Ft.	In.	Lb.	Ft.
3	$3 \cdot 76$	$0 \cdot 116$	$4 \cdot 51$	2100	$0 \cdot 144$	5.56	2300
4	$4 \cdot 80$	$0 \cdot 128$	$6 \cdot 39$	1800	$0 \cdot 144$	$7 \cdot 16$	2000
5	$5 \cdot 90$	$0 \cdot 144$	8.85	1600	$0 \cdot 160$	$9 \cdot 80$	1800
6	$6 \cdot 98$	$0 \cdot 160$	11.7	1500	$0 \cdot 176$	12.8	1700
7	$8 \cdot 06$	$0 \cdot 176$	$14 \cdot 8$	1500	$0 \cdot 192$	$16 \cdot 1$	1600
8	$9 \cdot 14$	0.176	16.9	1300	0.192	$18 \cdot 4$	1400
9	$10 \cdot 20$	$0 \cdot 192$	$20 \cdot 5$	1200	$0 \cdot 212$	$22 \cdot 6$	1400
10	$11 \cdot 26$	$0 \cdot 192$	$22 \cdot 7$	1100	$0 \cdot 212$	$25 \cdot 0$	1200
12	$13 \cdot 14$	$0 \cdot 192$	$26 \cdot 6$	950	$0 \cdot 212$	$29 \cdot 3$	1000

"Cast-iron" Sizes.—Interchangeable with C.I. Pipes (continued).

$\underset{\substack{\text { Nominal } \\ \text { Bore. }}}{ }$	Outside Diameter.	Class O .			Class D.		
		Thickness.	Weight per Ft.	Test Head.	Thickness.	Werght per F't.	Test Head.
In.	In.	In.	${ }^{\text {Lb }}$ b	Ft.	In.	Lb.	Ft.
3	$3 \cdot 76$	$0 \cdot 176$	6.74	2300	$0 \cdot 192$	$7 \cdot 32$	2300
4	$4 \cdot 80$	$0 \cdot 176$	8.69	2300	$0 \cdot 192$	$9 \cdot 45$	2300
5	$5 \cdot 90$	$0 \cdot 176$	$10 \cdot 8$	2000	$0 \cdot 192$	11.7	2200
6	6.98	0.192	13.9	1900	0.212	$15 \cdot 3$	2100
7	$8 \cdot 06$	0.212	$17 \cdot 8$	1800	$0 \cdot 250$	$20 \cdot 9$	2100
8	$9 \cdot 14$	0.212	$20 \cdot 2$	1600	0.250	23.7	1900
9	$10 \cdot 20$	0.250	26.6	1600	0.281	29.8	1900
10	11.26	$0 \cdot 250$	$29 \cdot 4$	1500	0.281	33.0	1700
12	13.60	0.250	$35 \cdot 6$	1200	0.281	$40 \cdot 0$	1400

- In accordance with requirements of B.S. 534 .

Joints for Steel Tubes conveying Gas, Water, Air, and Sewage. (Stewarts \& Lloyds, Ltd.)

Spigot and Socket Joint (Fig. 1) for lead and yarn. Sizes 2 in. to 72 in . Maximum working water pressure 350 lb ./sq. in. up to $12 \mathrm{~m} . ; 300 \mathrm{lb} . / \mathrm{sq} . \mathrm{in}$. for larger sizes.

Sleeve Welded Joint (Fig. 2) and Butt Welded Joint (Fig. 3). Sizes 2 in. to 72 in . Not usually adopted for water services; specially suitable for gas and air mains at usual working pressures.
Fig. 3.

Johnson Coupling (Fig. 4). Sizes 3 in . to 72 in . Used on tubes with plain ends. Maximum working water pressure $350 \mathrm{lb} . / \mathrm{sq}$. in.

Fia. 4.

Fia. 5.

Fig. 6,
Victaulic Joint (Fig. 5). For tubes up to 12 in., but can be supplied on larger sizes. Pres. sures up to about 1500 lb ./sq. in.

Stewarts Loose Flange Joint (Fig. 6) and Albion Loose Flange Joint (Fig. 7). Sizes 2 in . and larger. Standardised up to 10 in .
for working water pressures up to $300 \mathrm{lb} . / \mathrm{sq}$. in., but larger sizes are obtainable.

Fig. 7.

Flanges Welded On (Fig. 8). For all diameters and thicknesses of pipes.

Fig. 8.
Flanges Screwed and Expanded On (Fig. 9). Usually limited to sizes up to 12 in . and to pipes of thicknesses suitable for scrowing.

Fig. 9.

SHAFTING.

Shafts for transmitting power are usually made of mild steel. They are generally circular in cross-section, but are sometimes square. Large shafts are frequently made hollow. Ordinary mill shafting is made in lengths usually not exceeding 20 feet, and the standard diameters advance by quarters of an inch.

Shafts are subjected to twisting, and generally also to bending.
An axle is a shaft which is subjected to bending only.
The parts of a shaft or axle which rest on the bearings or supports are called journals, pivots, or collars. In journals the supporting pressure is at right angles to the axis of the shaft, while in pivots and collars the pressure is parallel to that axis.

Transmission of Power by Shafts.-

$P=$ force in lbs. acting at a perpendicular distance of R inches from the centre of the shaft.
$T=$ twisting moment on the shaft in inch-lbs $=P R$.
$N=$ speed of shaft in revolutions per minute.
$M=$ horse-power which is being transmitted.

$$
\begin{aligned}
& H=\frac{2 \pi T N N}{12 \times 3 \overline{3} 0100}=\frac{T N}{63025}=00001587 \mathrm{TN} . \\
& T=63025{ }_{N}{ }_{N} \quad N=63025 \frac{H}{T},
\end{aligned}
$$

Resistance of a Shaft to Twisting.-When a shaft is subjected to twisting, the stress induced is a shearing stress, which varies uniformly from nothing at the centre to a maximum at the circumference.
$D=$ diameter of shaft in inches.
$f=$ maximum shearing stress in lbs. per square inch.
$T=$ twisting moment on shaft in inch-lbs.
Moment of resistance of shaft to twisting $=\frac{\pi}{16} D^{3} f$.

$$
\begin{aligned}
& T={ }_{16}^{\pi} D^{3} f=\cdot 19635 D^{3} f \\
& D=\sqrt[3]{16 T}=1 \cdot 72 \sqrt[3]{\frac{\pi}{f}}
\end{aligned}
$$

The formula $T={ }_{16}^{\pi} D^{3} f$ shows that the strength of a shaft to resist twisting is directly proportional to the cube of its diameter. Hence if T_{1} is the twisting moment on a shaft of diameter D_{1}, and if T_{2}^{\prime} is the twisting moment on a shaft of diameter D_{2} when both shafts are strained to the same extent, then,

$$
\frac{T_{1}}{T_{2}}=\frac{D_{1}^{3}}{D_{2}^{3}}=\left(\frac{D_{1}}{D_{2}}\right)^{8}, \text { and } \frac{D_{1}}{D_{2}}=\sqrt[8]{\frac{T_{1}}{T_{2}}}
$$

Values of $\frac{\pi}{16} D^{3}$.

D	'0	1/8	1/4	$3 / 8$	1/2	5/8	3/4	7/8
1	$\cdot 1963$	2796	$\cdot 3835$	5104	6627	. 8425	$1 \cdot 052$	$1 \cdot 294$
2	1.571	1.884	2237	$2 \cdot 6.30$	3.068	$3 \cdot 552$	$4 \cdot 083$	$4 \cdot 666$
3	$5 \cdot 301$	$5 \cdot 992$	6.740	7:548	8.418	$9 \cdot 353$	$10 \cdot 35$	$11 \cdot 42$
4	12.57	13.78	15.07	16.44	17-89	$19 \cdot 43$	$21 \cdot 4$	22.75
5	24:54	26.43	28.41	$30 \cdot 49$	$32 \cdot 67$	31.95	37:33	39•82
6	42.41	$45 \cdot 12$	$47 \cdot 94$	$50 \cdot 87$	53.92	$57 \cdot 09$	$60 \cdot 39$	$63 \cdot 80$
7	$67 \cdot 35$	71.02	74.82	78.76	$82 \cdot 83$	87.05	$91 \cdot 40$	95.89
8	1(0).5	$105 \cdot 3$	$110 \cdot 3$	$115 \% 3$	$120 \cdot 6$	126.0	131.5	$137 \cdot 3$
9	1431	149.2	$155 \cdot 4$	$161 \cdot 8$	$168 \cdot 3$	$175 \cdot 1$	182.)	$1 \times 9 \cdot 1$
10	$196 \cdot 3$	203.8	211.4	219:3	$227 \cdot 3$	235.5	24.3	$252 \cdot 5$
11	$261 \cdot 3$	$270 \cdot 4$	$279 \cdot 6$	$289 \cdot 0$	$298 \cdot 6$	$308 \cdot 5$	318.5	$328 \cdot 8$
12	$339 \cdot 3$	350.0	$360 \cdot 9$	$372 \cdot 1$	383.5	$395 \cdot 1$	$107 \cdot 0$	$419 \cdot 1$
13	431.4	443.9	$456 \cdot 7$	$469 \cdot 8$	48:31	$496 \cdot 6$	$510 \cdot 4$	524.5
14	$538 \cdot 8$	$553 \cdot 3$	56×2	583.2	$598 \cdot 6$	614.2	$630 \cdot 1$	$646 \cdot 3$
15	662.7	$679 \cdot 4$	696.4	$713 \cdot 6$	731.2	749.0	$767 \cdot 1$	785.5
16	804.2	823.2	$842 \cdot 5$	$862 \cdot 1$	882.0	$902 \cdot 2$	922.7	$943 \cdot 5$
17	964.7	986.1	1008	1030	1052	1075	1098	1121
18	1145	1169	1193	1218	1243	1269	1294	1320
19	1347	1374	1401	1428	1456	1484	1513	1542
20	1571	1600	1630	1661	1692	1723	1754	1786
D	\bigcirc	1/8	1/4	3/8	1/2	5/8	$3 / 4$	7/8

The safe twisting moment for a shaft of a given diameter is found by multuplying the corresponding number in the above table by the safe stress.

To find the proper diameter of shaft for a given twisting moment proceed as follows :-Divide the given twisting moment by the safe stress, and find the number in the above table which is nearest to the quotient ; the diameter corresponding to this number is the diameter required.

The moment of resistance of a square shaft to twisting is $-2088^{8} f$, where s is the length of the side of the square in inches.

To diminish the bending action on a shaft the power should be taken off as near to a bearing as possible. Couplings should be placed near to a bearing for the same reason.

Safe or Working Stress in Shafting (Unwin).

	Steel	Wrought iron.	Cast-iron.
Stress changing little during work and not reversing . . . J	13,500	9,000	3,600
Part of the stress reversing at each revolution	9,000	6,000	2,400
Stress constantly changing be-) tween equal and opposite values	4,500	3,000	1,200

Strength of Shafts.
Calculated by the formula $T=\frac{\pi}{16} L^{\prime 3} f^{\prime}$ 。

Diameter of Shaft, D. Inches.	I wisting Moment, in Inch-lls, when the Stress f in Lbs. per Square Inch is-				
	,000		6,000	9,000	13,500
1	589	884	1,178	1,767	2,651
14	1,150	1,726	2,301	3,451	6,177
12	1,988	2,982	3,976	5,964	8,946
1星	3,157	4,735	6,314	9,471	14,206
2	4,712	7,069	9,425	14,137	21,206
24	6,710	10,064	13,419	20,129	30,193
21	9,204	13,806	18,408	27,612	41,417
23	12,250	18,376	24,501	36,751	55,127
3	15,904	23,856	31,809	47,713	71,569
34	20,221	30,331	40,442	60,663	90,994
$3 \frac{1}{2}$	25,255	37,883	50,511	75,766	113,650
$3{ }^{3}$	31,063	46,595	62,126	93,189	139,784
4	37,699	56,549	75,398	113,097	169,646
$4 \frac{1}{2}$	53,677	80,516	107,354	161,031	241,547
5	73,631	110,447	147,262	220,893	331,340
$5 \frac{1}{2}$	98,003	147,004	196,006	294,009	441,013
6	127,234	190,852	254,469	381,703	572,555
$6 \frac{1}{2}$	161,767	242,651	323,535	485,302	727,953
7	202,044	303,065	404,087	606,131	909,196
712	248,505	372,757	497,010	745,514	1,118,272
8	301,593	452,389	603,186	904,778	1,357,168
$1{ }^{9}$	429,416	644,125	858,833	1,288,249	1,932,374
10	589,048	883,573	1,178,097	1,767,145	2,650,718
11	784,024	1,176,035	1,568,047	2,352,071	3,528,106

Horse-power of Shafts.

$D=$ diameter of shaft in inches.
$f=$ maximum shearing stress in lbs. per square inch.
$T=$ twisting moment on shaft in inch-lbs.
$N=$ speed of shaft in revolutions per minute.
$H=$ horse-power transmitted.

$$
\begin{aligned}
& I \\
& N
\end{aligned}=\frac{T}{63025} \quad T=\frac{\pi}{16} D^{3} f .
$$

Diameter of Shaft in Inches.	Values of $\frac{H}{N}$ when the Stress f in Lbs. per Square Inch is-				
	3,000	4,500	6,000	9,000	13,500
1	-0093	$\cdot 0140$	$\cdot 0187$	1)280)	$\cdot 0420$
14	$\cdot 0183$	$\cdot 0274$	-0365	-0548	$\cdot 0821$
$1 \frac{1}{2}$	$\cdot 0315$	-0473	$\cdot 0631$	-0946	$\cdot 1419$
13	-0501	$\cdot 0752$	-1003	$\cdot 1504$	$\cdot 2256$
2	-0748	$\cdot 1122$	-1493	-2243	-3365
$2 \ddagger$	$\cdot 1065$	$\cdot 1597$	-2129	3194	$\cdot 4790$
21	-1460	-2190	-2921	$\cdot 4381$	$\cdot 6571$
24	-1944	-2916	-3887	$\cdot 5831$	$\cdot 8747$
3	$\cdot 2523$	-3785	-5047	-7570	$1 \cdot 136$
34	$\cdot 3208$	$\cdot 4813$	-6417	-9625	$1 \cdot 444$
31	$\cdot 4007$	$\cdot 6011$	-8014	$1 \because 02$	1.803
$3{ }^{3}$	-4929	$\cdot 7393$	-9857	$1 \cdot 479$	$2 \cdot 218$
4	-5982	-8972	1-196	1.794	$2 \cdot 692$
$4 \frac{1}{2}$. 8517	1.278	1.703	2:55.5	3.833
5	$1 \cdot 168$	1.752	- 333	$3 \cdot 505$	5257
$5 \frac{1}{2}$	1.555	2:332	$3 \cdot 110$	4.665	6.997
6	$2 \cdot 019$	3028	$4 \cdot 038$	6.057	+ 9.085
612	2:567	3850	5.13:3	7.700	, 11.55
7	3.206	$4 \cdot 809$	6.412	$9 \cdot 617$	14.43
71	3:943	5.914	$7 \cdot 886$	$11 \cdot 83$	17.74
8	4.785	-7.178	9:571	$14 \cdot 36$	21.53
9	6.813	$10 \cdot 22$	13.63	$20 \cdot 44$	$30 \cdot 66$
10	9:346	14.02	18.69	28.04	42.06
11	$12 \cdot 440$	18.66	24.88	$37 \cdot 32$	55.98

Span between Bearings of Shafts. $-D=$ diameter of shaft in inches. $S=$ span between bearings in feet. $S=C \sqrt[8]{ } D^{2}$, where C is equal to from 5 to 6 for shafts which carry their own weight only, and from 4.5 to 5 for shafts carrying an ordinary number of pulleys or wheels.

Hollow Shafts.-

$D_{1}=$ external diameter of hollow shaft.
$D_{2}=c D_{1}=$ internal diameter of hollow shaft.
$D=$ diameter of solid shaft of same strength as hollow shaft.
T '= twinling moment on shaft in inch-lbs.
$f=$ maxımum shearing stress in lbs. per square inch.
Moment of resistance of hollow shaft

$$
={ }_{16}^{\pi}\binom{I_{1}^{4}-D_{2}^{4}}{D_{1}} f .
$$

Moment of resistance of solid shaft $={ }_{16}^{\pi} n^{3} f$.

$$
\begin{aligned}
& D_{1}^{4}-D_{2}^{4}=D^{3} . \quad D_{1}=D \sqrt[3]{D_{1}}\left(\frac{1}{1-c^{4}}\right)=c_{1} D . \\
& T^{\prime}=\pi_{16}^{\pi}\left(\frac{D_{1}^{4}-D_{2}^{4}}{D_{1}}\right) f=\frac{\pi}{16} D_{1}^{3}\left(1-c^{4}\right) f . \\
& D_{1}=\sqrt[3]{\wedge^{\prime}}\left(\frac{16 T}{\pi\left(1-c^{4}\right) f}\right)=1 \cdot 72 c_{1} \sqrt[3]{f^{2}} .
\end{aligned}
$$

c	c_{1}	c	c_{1}	c	c_{1}
-25	$1 \cdot 0013$	$\cdot 45$	$1 \cdot 0141$.65	$1 \cdot 0677$
.3	1.0027	$\cdot 5$	1.0218	$\cdot 7$	$1 \cdot 0958$
.35	1.0051	$\cdot 55$	1.0325	$\cdot 75$	$1 \cdot 1352$
$\cdot 4$	$1 \cdot 0087$	$\cdot 6$	1.0474	$\cdot 8$	$1 \cdot 1920$

Resistance of a Shaft to Combined Twisting and Bending.$T^{\prime}=$ twisting moment on shaft.
$B=$ bending moment on shaft.
$T_{1}=$ equivalent twisting moment.

$$
T_{1}=B+\sqrt{ }\left(B^{2}+T^{2}\right) .
$$

The equivalent twisting moment must be used in determining the diameter of the shaft.

$$
\text { If } p=\frac{B}{T}, \text { then } T_{1}=T\left(p+\sqrt{p^{2}+1}\right)
$$

If $q=\left(p+\sqrt{p^{2}+1}\right)$, then $T_{1}=q T$.
If $D=$ diameter of shaft for twisting moment T,
$D_{1}=$ diameter of shaft for twisting moment T_{1}, then $D_{1}=D \sqrt[8]{q}$.

The following table gives the values of q and $\sqrt[8]{q}$ for various values of p.-

p	q		p	7	$\sqrt[3]{q}$	p	q	$3^{3 / q}$
$\cdot]$	$1 \cdot 105$	$1 \cdot 034$	$1 \cdot 1$	2-587	1:378	$2 \cdot 1$	$4 \cdot 426$	1612
$\cdot 2$	$1 \cdot 220$	1.068	$1 \cdot 2$	2.762	$1 \cdot 403$	$2 \cdot 2$	$4 \cdot 617$	$1 \cdot 665$
$\cdot 3$	$1: 344$	$1 \cdot 104$	$1: 3$	2.940	$14: 33$	$2 \cdot 3$	$4 \cdot 808$	1.688
$\cdot 4$	1.477	$1 \cdot 139$	$1 \cdot 4$	$3 \cdot 120$	1.461	24	$5 \cdot(k) 0$	1.710
. 5	1.618	$1 \cdot 174$	1.5	$3 \cdot 303$	$1 \cdot 4 \times 9$	2\%	$5 \cdot 193$	1.732
$\cdot 6$	1.766	$1 \cdot 209$	$1 \cdot 6$	$3 \cdot 4 \times 7$	1.516	2.6	$5 \cdot 386$	1.753
$\cdot 7$	1.921	$1 \cdot 243$	$1 \cdot 7$	$3 \cdot 672$	$1 \cdot 543$	$2 \cdot 7$	$5 \cdot 579$	1.774
$\cdot 8$	$2 \cdot 081$	$1 \cdot 277$	1.8	$3 \cdot 859$	1:569	$2 \cdot 8$	$5 \cdot 773$	1.794
$\cdot 9$	$2 \cdot 215$	$1: 309$	19	$4 \cdot 047$	1:594	$2 \cdot 9$	5968	1.814
1.0	2.414	$1 \cdot 342$	$2 \cdot()$	$4 \% 336$	$1 \cdot 618$	$3 \times$	$6 \cdot 162$	1.833

Angle of Torsion. -

$D=$ diameter of solid shaft in inches.
$D_{1}=$ external diameter of hollow shaft in inches.
$D_{2}=$ internal diameter of hollow shaft in inches.
$T=$ twisting moment on shaft in inch-lbs.
$L=$ length of shaft in inches.
$\theta=$ angle moved through by one end of shaft in advance of the other end, in circular measure.
$n=$ same angle in degrees.
$C=$ modulus or coefficient of transverse elasticity of the material of the shaft (see p. 246).
$f=$ greatest shearing stress in lbs. per square inch.
For solid shafts,

$$
\begin{aligned}
& \theta=\frac{32 T L}{\pi C D^{4}}=10 \cdot 186 \frac{T L}{C D^{4}}=\frac{2 f L}{C D} . \\
& n={ }_{\pi^{2} C D^{4}}^{180 \times 32 T L}=58361 \frac{T L}{C} D^{4}=114 \cdot 59 \frac{f L}{C D} .
\end{aligned}
$$

For hollow shafts,

$$
\begin{aligned}
& \theta=10 \cdot 186_{c\left(D_{1}^{4}-D_{2}^{4}\right)}^{T L}=\frac{2 f L}{C D_{1}} . \\
& n=583.61 \frac{T L}{C\left(D_{1}^{4}-D_{3}^{4}\right)}=114 \cdot 59 \frac{f L}{C D_{1}}
\end{aligned}
$$

$C=9,000,000$ to $11,000,000 \mathrm{lbs}$. per square inch for wroughtiron.
$C=11,000,000$ to $13,000,000 \mathrm{lbs}$. per square inch for steel.
Shafts of Ships (Board of Trade and Lloyd's Rules). Turbinedriven Shafting.-

$$
d=\sqrt[8]{\frac{\text { S.H.P. }}{D} \times F_{0}}
$$

d is diameter of the intermediate shaft in inches.
S.H.P. is maximum designed shaft horse-power.
R is number of revolutions per minute at that power.
$F=64$ for ocean-going and home-trade vessels.
$F=58$ for vessels trading on estuaries, rivers, lochs, or lakes.
Wheel shafts of geared turbine-driven installations shall be not less than $1.05 d$ in diameter; but where there is only one pinion gearing into the wheel, or where there are two pinions set to subtend an angle at the centre of the shaft of less than 120°, the diameter of the wheel shaft at the wheel and the adjacent journals shall be not less than $1 \cdot 1 d$. Abaft the journals the shaft may be tapered to $1 \cdot 05 d$.

Shafting of Steam Reciprocating Engines.-

$$
d=\sqrt[3]{\frac{D^{2} \times S \times p}{f(r+2)}}
$$

d is diameter of the intermediate shaft in inches.
D is diameter in inches of the low-pressure cylinder, or the equivalent diameter where two or more low-pressure cylinders are used.
S is stroke of piston in inches.
p is working pressure in the boiler in lbs. per sq. inch.
r is ratio of the swept volume of the low-pressure cylinder or cylinders to that of the high-pressure cylinder or cylinders.
f is a coefficient given in the following table:-

Compound, Triple, or Quadruple Expansion Reciprocating Engines.	Values of f.	
	Ocean-going and Home-trade Vessels.	Vessels Trading on Estuaries, Rivers, Lochs, and Lakes.
2 cranks at 90°	1900	2100
2 cranks at 180°	1350	1500
3 cranks at 120°	2150	2400
4 cranks balanced	2150	2400
4 cranks at 90°	2100	2300

The diameter of the crank shaft is not to be less than $1.05 d$.
Crank webs of built shafts should have dimensions not less than the following:-

$$
h=0.625 d_{c} . \quad t=\sqrt{\frac{0 \cdot 12 d_{c}^{3}}{h}} .
$$

h is thickness, in inches, of the web measured parallel to the axis.
t is thickness, in inches, of metal around the eyeholes, measured radially.
d_{0} is diameter of the crank shaft in inches.
Crank webs should be securely shrunk on the body-pieces and crank pins, or forced on by hydraulic pressure. One or two keys or cylindrical dowels should be fitted at the junctions of the body-pieces and webs.

Thrust Shafts.-The diameter at the collars of thrust shafts transmitting torque should not be less than $1.05 d$. Thrust shafts may be tapered down outside the collars to the diameter d required for the intermediate shaft.

Tube Shafts (shafts passing through stern tubes but not carrying the screw propellers).-Diameter should not be less than $1 \cdot 05 d$, and any part of the shaft within the tube which may be exposed to sea-water should not be less than $1 \cdot 075 d$.

T'ail or Screw Shafts (shafts oarrying the serew propellers).-

$$
d_{t}=d+\frac{P}{K}
$$

d_{t} is diameter of tail shaft in inches or mm.
d is diameter of intermediate shaft in inches or mm.
P is diameter of screw propeller in inches or mm .
$K=144$ when a continuous liner is fitted.
$K=100$ when a continuous liner is not fitted.
Tail shafts which run in stern tubes may have the end forward of the stern gland tapered down to a diameter at the coupling flange equal to $1 \cdot 05 d$.

Bronze Liners on Shafts.-The thickness of liners fitted on tail shafts or on tube shafts, in way of the bushes, should not be less than

$$
t=\frac{d_{t}+9 \cdot 25}{32} \text { or } t_{m}=\frac{d_{t}+235}{32}
$$

t is thickness of liner in inches, t_{m} is thickness of liner in mm . d_{t} is diameter, in inches or mm ., required for the tail or tube shaft within the liner.
Thickness of a continuous liner at the part between the bushes should be $\frac{3}{t}$ or $\frac{8}{4} t_{m}$. Liners must be carefully shrunk on or be forced on to the shafts by hydraulic pressure, and are not to be secured by pins.

The length of the bearing in the stern bush next to the propeller should be not less than four times the diameter required for the shaft within the liner.

SHAFT COUPLINGS.

Ooupling Flanges and Bolts (Board of Trade and Lloyd's Rules).-
$\left.\begin{array}{l}\text { Diameter of coupling bolts, } \\ \text { in inches or mm. }\end{array}\right\}=\sqrt{\frac{d^{3}}{3 \cdot 5 \times n \times r}}$.
d is diameter of intermediate shaft, in inches or mm . n is number of bolts in the coupling.
r is radius of pitch circle of the bolts, in inches or mm .
The thickness of the coupling flanges at the pitch circle of the bolt holes is not to be less than the diameter of the coupling bolts at the face of the coupling. The thickness of the screw shaft coupling flange is not to be less than 0.25 of the diameter of the intermediate shaft.

The radius of curvature at the fillet where the flange starte from the shaft is not to be less than 0.125 times the diameter of the shaft adjaoent to the flange.

When couplings are separate from the shafts, provision is to be made to resist the astern pull.

Box or Muff Couplings．－（a）Ordinary muff coupliny，in which the shafts butt against one another．The box or muff is made of cast－iron，and is secured to the shafts by sunk keys．

（b）Fairbairn＇s half－lap coupliny．－The box is made of cast－iron， and is secured to the shafts by a suldle key．

$$
\begin{array}{rlrl}
D & =\text { diameter of shaft in inches. } & & T=4 D+.5 \text { inch. } \\
D_{1} & =1.375 I)+.25 \text { inch. } & & L=2.5 D+2 \text { inches. } \\
l & =875 D+\cdot 125 \text { inch. } & L_{1}=2.25 D+.75 \text { inch. }
\end{array}
$$

Slope of lap 1 in 12．For proportions of keys see p． 413.

D	12	2	$2 \frac{1}{2}$	3	33	4	$4 \frac{1}{3}$	5	$5 \frac{1}{2}$	6
D_{1}	$2{ }^{11^{6}}$	3	317	48	$5{ }_{1}{ }^{18}$	$5{ }^{3}$	$6{ }^{7}{ }^{7} 8$	$7 \frac{1}{8}$	\ldots	．．．
l	$1{ }_{1}{ }^{78}$	17	$22^{\mathrm{F}_{4}}$	23	$3{ }^{3} \mathrm{fa}$	35	$4{ }^{4} 7^{2} 8$	$4 \frac{1}{2}$		
T	$1 \frac{1}{8}$	${ }_{1}{ }_{7}^{58}$	$1 \frac{1}{2}$	1星	$11 \frac{5}{8}$	2 k	$2{ }^{68}$	$2 \frac{1}{2}$	23	$2 \frac{1}{19} 8$
L	$5{ }^{\text {a }}$	$7{ }^{1}$	84	$9{ }^{2}$	$10{ }^{3}$	12	134	$14 \frac{1}{2}$	159	17
L_{1}	$4 \frac{1}{8}$	54	6 ${ }_{8}^{\text {s }}$	$7 \frac{1}{2}$	85	93	$10 \frac{8}{8}$	12	．．．	－．

Split Muff Couplings．－The box or muff gripes the shaft firmly．The keys have no taper，and they fit on the sides only．

D	$1 \frac{1}{2}$	18	2	24	$2 \frac{1}{2}$	$2{ }^{4}$	3	31	4
D_{1}	4 12	53		6	$6 \frac{1}{2}$	71	$7{ }^{7}$	98	107
L	6	7	8	9	10	11	12	14	16
$\stackrel{d}{N}$	$\frac{1}{4}$	8	愿	$\frac{8}{4}$ 4	娄	7 4 4	$\begin{array}{r}7 \\ 7 \\ 4 \\ \hline\end{array}$	7 8 8	7 8

$N=$ number of bolts．

Another design of split muff coupling is shown below.

Unit for proportions $=D$.
$A A$ are wrought-iron or steel rings shrunk on, or driven on to the cast-iron box B. Sometımes the key is dispensed with. The key has no taper, and it fits on the sides only.

$$
b=1_{18}^{3} D+\frac{1}{2} \text { inch. } \quad t=\frac{1}{8} D+\frac{1}{8} \text { inch. }
$$

Cast-iron Flange and Pulley Couplings.-

$$
\begin{aligned}
& n=\text { number of bolts }=\text { from } \frac{2}{3} D+2 \text { to } D+2 \text {. } \\
& B=1 \cdot 8 D+8 \text {. } \quad b=5 D+1 \text {, but not less than } \\
& L=1 \cdot 2 D+8 \text {. } \\
& \cdot 3 D+1 \cdot 3 d+3 \text {. } \\
& d=\frac{\cdot 423 D}{\sqrt{ } n}+3 \text {. } \\
& c=\cdot 1 D+\cdot 1 \text {. } \\
& f=1 \cdot 5 d \text {. } \\
& O=B+3 \cdot 2 d \text {. } \\
& t=25 D+25 \text {. } \\
& F=B+6 d \text {. } \\
& T=\cdot 35 D+35 \text {. } \\
& a=\cdot 2 D+\cdot 2 \text {. } \\
& t_{1}=3 D+3 . \\
& t_{2}=\cdot 1 D+2 . \\
& \text { For proportions of keys see p. } 413 .
\end{aligned}
$$

Dimensions of Cast-iron Flange and Pulley Couplings.

All the dimensions in the above table are in inches.
The outside of the section of the rim of the pulley coupling may be either straight or curved; if curved, the radius of the curve may be from $6 b$ to $10 b$.

Marine or Solid Flange Coupling.

 -If the bolts are made of the same material as the shaft, which is the usual practice, then the bolts and shaft will have the same strength when $2 n d^{2} C=D^{3}$ for solid shaft, or $2 n d^{2} C=\frac{D_{1}^{4}-D_{2}^{4}}{D_{1}^{-}}$for hollow shafts, where $n=$ number of bolts, $d=$ diameter of bolts, $C=$ diameter of bolt circle, $D=$ diameter of solid shaft, $D_{1}=$ external diameter of hollow shaft, and $D_{2}=$ internal diameter of hollow shaft.

In practice C varies from $D+1 \frac{1}{2} d$ to $D+2 \frac{1}{2} d$, and is on the average equal to $D+2 d$. Hence, for solid shafts, $2 n d^{2}(D+2 d)=D^{3}$, and for hollow shafts

$$
2 n d^{2}\left(D_{1}+2 d\right)=\frac{D_{1}^{4}-D_{3}^{4}}{D_{1}} .
$$

The following table gives the values of d corresponding to suitable values of n for solid shafts from 3 inches to 24 inches in diameter -

The bolts may either be parallel or tapered. In tapered bolts the heads are often dispensed with.

Taper of bolts $=\frac{8}{8} \mathrm{inch}$ (on the diameter) per foot of length.
Diameter of screwed part of bolt $=d_{1}=\frac{7 d+1 \mathrm{nch}}{8}$.
Thickness of nut $=\frac{3}{4} d_{1}$ to $\frac{7}{8} d_{1}$.
Thickness of tlange $=T=\cdot 27 D+2$ inch for solid shafts.

$$
=-29 \sqrt[3]{D_{-1}^{4}-D_{2}^{4}} D_{1} \text { for hollow shafts. }
$$

Diameter of flange $=F=C+1 \cdot 9 d=D+3 \cdot 9 d$.
Sellers' Cone Coupling.-This couphng consists of a cast-iron muff, bored out to a double concal form, and two split cast-iron conical sleeves, which are pulled together by bolts, as shown.

The friction between the sleeves and the shaft may be quite sufficient to prevent slipping, but as an additional security a side-fitting sunk key without taper is generally added.

A	${ }_{1}^{1} \frac{1}{2}$	$1{ }^{18}$	2	$2 \overline{4}$	2	24	3		4	5
B	$4 \frac{1}{2}$	54	$6 \frac{1}{8}$	$6 \frac{1}{6}$	71	75	$8{ }_{2}$	93	11	127
C	6	7	8	$8{ }^{3}$	93	103	$11 \frac{3}{3}$	$13 \frac{1}{3}$	154	189
D	$3 \frac{1}{2}$	4	$4 \frac{3}{4}$	5	5	6	6	73	8	104
E	24	2 g	3	33	$3{ }^{3}$	4	$4 \frac{1}{2}$	5	6	$7 \frac{1}{2}$
F	$\frac{7}{78}$	1	$\frac{5}{5}$	\%		4	7	1	$1 \frac{1}{8}$	1

Taper of cones 3 inches on the diameter per foot of length.
All the dimensions in the above table are in inches.
Hooke's Joint or Universal Coupling.-This form of coupling is used to counect two shafts whose axes intersect, and it has the advantage that the angle between the shafts may be varied while they are in motion.

The diagram (a) shows the main features of the coupling. $A B$ and $C D$, the shafts to be coupled, are forked at their ends. The forks carry between them a cross $E K F H$, the arms of which are at right angles to one another. The arms of the cross are jointed to the forks so that they may turn freely about their axes.

The angular velocities of the shafts $A B$ and (11) are unequal except at every quarter of a revolution, and this inequality is greater the greater the acute angle between the shafts.

By using a double joint, as shown at (b), the shafts A and B have the same angularvelocities, provided they make equal angles with the intermediate shaft C, and are in the same plane with it.

The illustration below shows the details of the construction of one form of Hooke's joint, the parts being made of wroughtiron or steel.

Oldham's Coupling.-This coupling is used for connecting shafts whose axes are parallel and at a comparatively short distance from one another. The grooved discs are secured to the shafts, and a third disc is placed between them. This third disc has two cross bars, one on each face, and at right angles to one another. These cross bars fit into the grooves on the other discs. All the discs are made of cast-iron.

The angular velocities of the two shafts and the intermediate disc are equal to one another at every instant.

$D=$ diameter of shaft in inches.
$C=$ distance between axes of shafts in inches.

$$
\begin{array}{lll}
B=1 \cdot 8 D+8 \text { inch. } & F=3 D+C . & L=75 D+5 \text { inch. } \\
b=4 I)+\cdot 15 U . & a=t=25 D+1 C . & T=\cdot 6 D+25 C .
\end{array}
$$

Claw Couplings. -

$B=1 \cdot 7 D+1$ inch.
$E=\cdot 4 D+\cdot 4$ inch.
$F=2 D+2$ inches.
$L=6 D+6$ inch.
$T=3 D+3$ inch.
$t=\cdot 1 D+2$ inch.
The dimensions are in inches.

Conical Friction Coupling.-

$$
\begin{aligned}
& B=2 D+1 \text { inch. } \\
& B_{1}=2 D+5 \text { inch. } \\
& C=1.5 D . \\
& E^{\prime}=4 D+4 \text { inch. } \\
& F=1 \cdot 8 D . \\
& H=\cdot 5 D . \\
& L=2 D . \\
& T=3 D+3 \text { inch. } \\
& t=23 D+2 \text { inch. } \\
& \alpha= \text { from } 4 \text { to } 10 \\
& \quad \text { degrees. }
\end{aligned}
$$

Mean diameter of conical part may be from four to eight times the diameter of the shaft, being larger the greater the amount of power which
 the coupling has to transmit.

Shifting Gear for Clutch Couplings.

The dimensions E and T are made to suit the groove on the coupling.

BEARINGS FOR SHAFTS.

Area of a Bearing.-The area of a bearing is the area of its projection on a plane at right angles to the direction of the load on the bearing.

Let $a=$ area of bearing.
For a cylindrical journal bearing of diameter d and length l, $a=d l$.

- For a pivot bearing of diameter $d_{0} a=7854 d^{2}$.

For a collar bearing having n collars of outside diameter D_{1} and inside diameter $D_{2}, a=\cdot 7854\left(D_{1}^{2}-D_{9}^{2}\right)_{n}$, when the bearing
surface is all round the collars. When horse-shoe collars, such as are shown on p. 449, are used, the total area of the bearing is approximately $n\left(D_{1}-D_{2}\right)\left(\cdot 78 D_{1}+\cdot 17 D_{2}\right)$.

Intensity of Pressure on Bearings. -

$R=$ load on bearing in lbs.
$a=$ area of bearing in square inches.
$p=$ intensity of pressure on bearing in lbs. per square inch.
$p=\frac{R}{a}$, and $R=p a$.
p varies greatly in different cases. It is generally smaller the greater the speed; and, in cases where the load is intermittent or changes from one side of the bearing to the other during each revolution, p may be greater than in cases where the load is a steady load.

For the main journal bearings of steam-engines, the maximum value of p is 600 for slow and 400 for fast going engines; but where space will permit, it is desirable to make the bearings of such a length that p is from 200 to 300.

For railway axles p varies from 160 to 300 . According to the late Mr. Joseph Tomlinson, p should not exceed 280 for railway axles.

For the thrust bearings of propeller shafts, $p=40$ to 70 .
For pivot bearings which have to run continuously at moderate and high speeds, p should not exceed 250.

Brasses or Steps for Bearings. -

Unit $=t=09 d+15$ inch.

Ordinary Plummer or Pillow Block.

$d=$ diameter of bearing in inches.
$A=1 \cdot 05 d+5$ inch.
$B=\cdot 8$.
$C=7 l$.
$E=-3 d+3$ inch.
$F=3 d+\cdot 4$ inch.
l varies considerably. One rule is, $l=d+1$ inch. Another rule is, $l=1 \cdot 5 d$.

Sole Plates. -

The width B and the length between the joggles must be made to suit the particular pillow block or pedestal to be supported. The distance h may be made to suit the height to which it is required to raise the pillow block, but it must not be less than the thickness of the heads of the bolts used to secure the block to the sole plate. The height of the sole plate may be reduced by adopting the design shown at (a).

Standard and Bearing.-The height h is made to suit the height of the shaft from the floor to which the standard is attached.

For the proportions of the brasses see p. 438.

The standard may be bolted directly to the Hoc, but preferably it should be mounted on a sole plate such as is shown at (a) on p. 440; this will permit more readily of accurate lateral adjustment.

Standards for Pillow Blocks.-The height of the standard must be made to suit the height H of the shaft and the height A of the pillow block. The length L_{1} between the joggles and the width B must be made to suit the particular pillow block to be supported. For proportions of pillow blocks see p 439.

The second illustration on the opposite page shows a heavier design than the preceding one As before, the height of the standard depends on H and A. The dimensions B, L_{1}, and K are made to suit the pillow block.

Unit for proportions $=d+\frac{1}{2}$ inch. $d=$ diameter of bearing in inches.

Wall Box for Pillow Block.-

$d=$ diameter of bearing of pillow block in inches.
The length between the joggles and the width B must be made to suit the particular pllow block which has to be supported.

Pillar Bracket.

-This design of bracket has a minimum amount of overhang, and is suitable for supporting a horizontal shaft from a pillar or column where there is no wall in the way of the wheels or pulleys on the shaft. It may also be used as a wall bracket in cases where the shaft does not carry wheels or pulleys which would be interfered with by the wall. For the proportions of the brasses see p. 438.

Wall Bracket for Pillow Block.

The dimensions marked B and L_{1} must be made to suit the partionlar pillow block which the bracket is designed to carry,
so also must the distance between the holes for the bolts which secure the block to the bracket. For proportions of pillow blocks see p. 439.

Unit for proportions $=1 \cdot 15 d+\cdot 4 \mathrm{inch}$.
$d=$ diameter of bearing in inches.

Hanger with Adjustable Swivel Bearing. -

Unit for proportions $=d+\frac{1}{2}$ inch. $d=$ diameter of bearing in inches.

With the exception of the bolts and set screws, all the parts are made of cast-iron.

The distance a may be varied within wide limits, but it usually lies between $6 d$ and $12 d$.

Sling Hanger with Bearing.-The drop H usually varies in different cases from five to nine times the unit. On the average it is about seven. For the proportions of the brasses see p. 438.

Sling Hanger for a Pillow Block. The dimensions K, L_{1}, and A depend on the particular pillow block to be carried by the hanger. For proportions of pillow blocks see p. 439. Usually $H=$ from four to eight times the unit, average about six.

Ordinary Footstep Bearing.-The footstep end of the shaft should be of steel, and it may be quite flat or slightly convex.

Unit for proportions $=1 \cdot 15 d+4 \mathrm{inch}$.
$d=$ diameter of bearing in inches
Divided Footstep Bearing -

Unit for proportions $=1 \cdot 15 d+\cdot 4$ inch.
$d=$ diameter of bearing in inches.

Thrust of a Screw Propeller.-

$H=$ indicated horse-power of engines.
$K=$ speed of ship in knots.
$F=$ speed of ship in feet per minute.
$R=$ thrust of propeller, or total load on thrust bearing in lbs.
$E=$ mechanical efficiency of engines and propeller, or ratio of power used to propel the ship to the indicated horse-power.

$$
R \times F=H \times 33000 \times E . \quad R=\frac{H \times 33000 \times E}{F^{-}}=\begin{aligned}
& H \times 33000 \times E \\
& K \times 101 \cdot 33^{-} .
\end{aligned}
$$

E may be taken equal to $\cdot 7$.
Thrust Bearings for Screw Propeller Shafts.*-Small shafts up to 8 inches diameter have often only one thrust collar, but sometimes comparatively small shafts have several thrust collars. In the latter case the bearing may have a brass bush in halves containing grooves to receive the collars on the shaft, or the bearing may contain a number of rings in halves which fit between the collars on the shaft. The general practice now, especially with large shafts, is to place between the collars cast-iron or cast-steel horse-shoe shaped pieces faced with brass or white metal. For steel shafts the horse-shoe pieces should be faced with white metal.

The illustrations below and on the following page show a design for a thrust bearing by Messrs. David Rollo \& Sons,

Liverpool. The proportions marked on the illustrations are in terms of the unit $D+\frac{1}{2}$ inch, where D is the diameter of the shaft in inches. These proportions have been deduced from the dimensions of a bearing of this design for a shaft $16 \frac{1}{2}$ inches in diameter, given in Engineering, vol. lvi. p. 206. The shoes are of cast-steel, and are hollow, water for cooling parposes circulating through them. The sides of the block are double, and wacer is - For Michell thrust bearings see p. 467.

passed through these also. The longitudinal screws for adjusting and holding the shoes are of manganese-bronze.

For the area of the bearing surface of thrust collars, and for the working pressure allowed on them, see pp. 437 and 438.

The number of collars is generally about $\begin{aligned} & D \\ & 2\end{aligned}-2$, where D is the diameter of the shaft in inches.

Mr. G. R. Bate gives the following rule * for the surface of thrust collars :-

$$
S=\frac{217}{K P}, \text { where }
$$

$S=$ surface of thrust collars in square inches per indicated horse-power.
$K=$ speed of vessel in knots.
$P=$ pressure on thrust collars in lbs. per square inch.
In ordinary practice P varies from 50 to 60 in naval work, and 40 to 50 in mercantile steamers. Where white metal is fitted these loads may be safely increased by 25 per cent.

* The Practical Engineer, vol. x. p. 344.

Hoffmann Ball Bearings.*

The Hoffmann Manufacturing Co. Ltd., Chelmsford.
Deep Groove Ball Journals-Light Type.

Dimensions in Inches.				$\underset{\text { Weight. }}{\text { Approx. }}$ Lbs.	Working Load, Lbs.					
				R.P.M.						
B	D	w	r		100	300	600	1000	1500	
$\frac{2}{2}$	$1_{1}{ }^{\text {b }}$ 6	$\frac{8}{8}$	${ }^{\frac{1}{2} 2}$. 08	390	270	220	180	160
8	$11^{2} 8$	${ }^{\frac{7}{8} 8}$	${ }^{\frac{1}{2} 2}$	$\cdot 14$	510	350	280	240	210	
$\frac{8}{4}$	17	$\mathrm{T}^{\text {P }}$	$\frac{18}{18}$	$\cdot 25$	800	560	440	370	330	
$\frac{7}{8}$	2	${ }^{9} 8$	${ }^{\frac{1}{16}}$	$\cdot 32$	860	600	470	400	350	
1	24	${ }^{5}$	${ }^{\frac{1}{8}}$	$\cdot 41$	890	620	490	410	360	
11	$2 \frac{1}{2}$	喜	${ }^{\frac{1}{16}}$	- 53	930	640	510	430	370	
14	23	$\frac{18}{18}$	$\frac{1}{18}$	$\cdot 7$	1100	780	620	520	450	
138	3	12	$\frac{1}{10}$.83	1350	930	730	620	540	
112	34	8	$3^{3} 2$	1.01	1720	1200	950	800	700	
15	37	$\frac{8}{4}$	512	$1 \cdot 19$	1800	1250	990	840	730	
17	$3{ }^{3}$	4	${ }^{\frac{3}{32}}$	1.48	2250	1550	1250	1050	910	
$1 \frac{7}{8}$	4	18	${ }^{\frac{5}{3}}$	1.72	2350	1650	1300	1100	960	
2	4	13	3^{3}	1.77	2700	1850	1450	1250	1100	
$2 \downarrow$	$4 \frac{1}{2}$	7	${ }^{\frac{3}{32}}$	$2 \cdot 4$	3350	2350	1850			
$2 \frac{1}{2}$	5	15	${ }^{\frac{3}{3}}$	$3 \cdot 28$	4100	2850	2250			
$2{ }^{4}$	54	48	${ }^{3}$	$3 \cdot 46$	4500	3100	2450			
3	5	$1{ }^{1}{ }^{\frac{1}{8}}$	${ }^{\frac{3}{32}}$	4.74	4850	3350	2650			
34	6	$1{ }^{1} 1{ }^{1} 6$	${ }^{\frac{3}{32}}$	$5 \cdot 06$	5100	3550	2800			
$3{ }^{3 \frac{1}{2}}$	$6 \frac{1}{2}$	$1 \frac{1}{8}$	$\frac{1}{5}$	6.28	6000	4150	3300			
$3{ }^{2}$	63	1%	$\frac{1}{8}$	6.53	6500	4500	3600			
4	74	14	.	$8 \cdot 5$	7600	5000	4150			
41	${ }_{8}^{71}$	14	$\frac{1}{8}$	8.76	8100	5600	4450			
41	8	$1{ }_{1}^{56}$	$\frac{1}{8}$	10.57	8600	5800	4700			

Load Tables.-The load tables are based on the manufacturers' experience, and may be used without reservation in many cases where conditions are normal. For shook loads and dead weights roller bearings are preferable, and a factor of safety of 1.5 to 2 should be allowed. For continuous running, 24 hours a day, a factor of safety of 1.2 to 1.5 is advised.

[^34]Hoffmann Ball Bearings．
Deep Groove Ball Journals－Medium Type．

Dimensions in Inches．				Approx． Wembt， Lbs．	Working Load，Lbs．					
				R．P．M．						
B	D	W	r		100	300	600	1000	1500	
$\frac{1}{4}$	$1{ }_{1}{ }^{6} 8$	${ }^{9}{ }^{9} 8$	$1^{\frac{1}{6}}$		$\cdot 15$	510	350	280	240	210
8	$1 \frac{1}{2}$	${ }^{\frac{9}{8}}$	$\mathrm{I}^{1} \frac{1}{6}$	$\cdot 22$	640	450	350	300	260	
$\frac{1}{2}$	15	息	${ }^{1} 16$	$\cdot 24$	790	550	430	370	320	
$\frac{8}{8}$	$1{ }_{1}^{18}$	$\frac{5}{8}$	${ }^{1} \frac{1}{8}$	－29	820	570	450	380	330	
\％	2	$\frac{17}{17}$	${ }_{1}^{18}$	－38	990	690	550	460	400	
$\frac{7}{8}$	21	$1 \frac{1}{6}$	${ }_{18}^{18}$	$\cdot 49$	1050	720	570	480	420	
1	$2 \frac{1}{2}$	8	$3{ }^{3} \frac{3}{2}$	$\cdot 61$	1600	1100	890	750	650	
118	218	18	$3^{\frac{3}{2}}$	－85	2100	1450	1150	980	860	
$1 \frac{1}{4}$	31 ${ }^{8}$	$\frac{7}{8}$	$8^{\frac{3}{2}}$	1.12	2700	1850	1470	1250	1090	
$1 \frac{3}{8}$	31	$\frac{7}{8}$	3^{3}	$1 \cdot 62$	2800	1930	1530	1300	1130	
$1 \frac{1}{2}$	38	18	${ }^{3}$	2.01	3100	2150	1700	1450	1250	
1唇	4	18	${ }^{3}$	$2 \cdot 31$	3450	2400	1900	1600	1400	
13	$4 t$	$1_{1}^{1}{ }^{1}$	$3^{3} \frac{2}{2}$	2.92	3800	2600	2100	1750	1550	
$1 \frac{3}{3}$	$4 \frac{1}{2}$	$1{ }_{1}^{18}$	3 ${ }^{\frac{8}{2}}$	$3 \cdot 26$	4550	3150	2500	2100	1850	
2	$4 \frac{1}{2}$	$11^{\frac{1}{6}}$	产	$3 \cdot 18$	4550	3150	2500	2100	1850	
24	5	14	$\frac{1}{8}$	$4 \cdot 52$	5300	3700	2950	2450	2150	
$2 \frac{1}{8}$	$5 \frac{1}{2}$	14	$\frac{1}{8}$	5.49	6700	4700	3700	3100	2700	
23	64	$1 \frac{18}{8}$	$\frac{1}{8}$	$8 \cdot 02$	8800	6100	4850	4100	3550	
3	7	$11^{2} 8$	${ }^{81}$	11.54	11000	7600	6100	5100	4500	
31	71	$1{ }^{18} 8$	3^{6}	13.33	11000	7600	6100	5100	4500	
$3{ }^{3}$	$7 \frac{1}{2}$	$1{ }_{18}{ }^{9}$	$\frac{8}{52}$	13.02	11000	7600	6100	5100	4500	
31	88	$1{ }^{3}$	${ }^{8}{ }^{8}$	$17 \cdot 64$	13500	9400	7500	6300	5500	
$3{ }^{3}$	$8 t$	13	${ }^{6} 8$	$17 \cdot 54$	13500	9400	7500			
4	$8 \frac{1}{3}$	13	88	18.29	14500	9900	7900			
41	83	18	5\％	$19 \cdot 12$	14500	9900	7900			
$4 \frac{1}{8}$	9\％	2	${ }^{3}$	25	15600	10800	8600			
4	10	2	${ }_{18}{ }^{3}$	$29 \cdot 25$	17000	12000	9300			
5	10	2	${ }^{18}$	28	17000	12000	9300		0	
$5 \frac{1}{2}$	11	2	18	34．25	19500	13500	11000			
6	12	24	$\frac{18}{18}$	$45 \cdot 5$	25800	17900	14200			
64	18	21	$\frac{18}{18}$	60.25	27000	18800	14900			
7	131	23	18	63	29000	20000		06	$\mathbb{Z 1}$	

Hoffimann Single Thrust Ball Bearings－Medium Type．

 Fig．1．Flat seating．Fig．2．Spherical seating，with
Fig．3． $\begin{aligned} & \text { housing．} \\ & \text { seating seating，with }\end{aligned}$
seat． Fig． 1.

Dimensions in Inches．												Workng Load，Lbs．					
												R．P．M．					
B	c	D	D_{1}	E	θ	W	W_{1}	\underline{L}	\boldsymbol{R}	I	r	＊	100	300	600	1000	2000
$\frac{3}{4}$	18	$1{ }_{18}{ }^{9}$	13	112	1	${ }^{\frac{23}{3}}$	${ }^{3} 7$	${ }^{\frac{1}{6}}$	$1{ }^{\frac{3}{18}}$	${ }^{\frac{3}{8}}$	${ }^{\frac{1}{32}}$	2490	900	520	370	280	200
$\frac{7}{8}$	1	118	2	$1{ }^{\frac{3}{4}}$	$1{ }_{1}{ }^{\frac{3}{8}}$	${ }^{3}$	$\frac{3}{3} \frac{3}{7}$	${ }^{3}$	$1{ }^{18}$	$\frac{2}{2}$	${ }^{\frac{1}{3}}$	3750	1280	740	520	400	280
1	$1 \frac{1}{8}$	2	21	$1 \frac{1}{8}$	${ }_{1}{ }^{\frac{5}{18}}$	星	㕺等	${ }^{3}$	188	$\frac{3}{4}$	${ }^{1}{ }^{\frac{1}{6}}$	3750	1280	740	520	400	280
11	$1{ }^{1}$	24	$2{ }^{2}$	$2 \frac{1}{8}$	$1 \frac{1}{2}$	${ }^{\frac{7}{8}}$	$1{ }^{14}$	${ }^{\frac{3}{2}}$	$1{ }^{\frac{8}{8}}$	\％	${ }_{1}^{1{ }^{1} 8}$	214 tons	1710	980	690	540	380
11	1量	21	$2{ }^{\text {2 }}$	$2 \frac{3}{3}$	148	1	$1{ }_{1} \frac{1}{86}$	$\frac{1}{8}$	2	$\frac{1}{18}$	${ }_{1}^{1} 8$	3	2180	1260	890	690	480
11	15	27	3	23	2	11	$1{ }^{\text {l }}$	$\frac{1}{8}$	$2 \frac{3}{16}$	${ }^{\frac{1}{1} \frac{3}{8}}$	${ }^{\frac{1}{16}}$	$3{ }^{3}$	2650	1530	1080	830	590
${ }_{2}^{13}$	$1 \frac{1}{4}$	$3{ }^{3}{ }^{6}$	$3 \frac{1}{2}$	$3{ }^{\frac{3}{18}}$	$2{ }^{18}$	11	$1 \frac{1}{4}$	$\frac{1}{8}$	$2{ }^{\frac{9}{68}}$	$1{ }^{\frac{1}{2}}$	${ }^{1}{ }^{1}$	4.0	3130	1810	1280	990	700
${ }_{2}^{2}$	${ }^{2}$	311 41 18	37 41	${ }_{4}{ }^{18}$	$2{ }^{2}$	$1{ }^{\frac{5}{1}}$	1 tz	$\frac{8}{3}$	$2{ }^{3}$	$1{ }^{\frac{1}{3}}$	${ }^{3} 3$	$5 \frac{1}{2}$＂，	3650	2110	1490	1150	810
21	${ }^{2}$	$4{ }_{4}^{4}$	$4 \frac{1}{2}$	$4 \frac{1}{8}$	3	$1+4$	2	${ }^{\frac{3}{16}}$	${ }^{3} \frac{1}{18}$	$1{ }^{19}$	${ }^{\frac{3}{2}}$	71 ${ }^{\frac{1}{2}}$	4860	2800	1980	1530	1080
21	$2{ }^{\text {2 }}$	4	51	4 4	3 ${ }^{\text {3 }}$	2	$2{ }^{18}$	${ }^{\frac{7}{3}}$	4	$1{ }^{\frac{2}{3}}$	${ }_{3}^{3}$	10^{2}＂	6090	3510	2480	1920	
24	27	5	5	47	35		$2{ }^{\frac{3}{88}}$	${ }^{7}{ }^{7}$	4	$1{ }^{19}$	${ }^{\frac{3}{32}}$		6090	3510	2480	1920	
3	31	55	6	51	4	24	$2{ }^{\frac{5}{8}}$	4	41	$1 \frac{18}{3 \frac{1}{2}}$	${ }^{2}$	$12 \frac{1}{2}$＂	7480	4320	3060	2370	

＊The loed given in the first column is only Euitable where an occasional revolation is required，such as the pirot of a crane or a crane hook．

Hoffmann Roller Bearings. Rigid Roller Journals-Light Type.

Dimensions in Inches.				Approx. Lbs.	Working Load, Ibs.					
				R.P.M.						
B	D	w	r		100	300	600	1000	1500	
$\frac{1}{2}$	$1{ }^{6} 6$	${ }^{\frac{8}{8}}$	$3^{\frac{1}{2}}$		$\cdot 1$	800	610	510	450	410
厚	$1{ }_{10}{ }^{9}$	${ }^{7} 8$	$3^{1 / 2}$	$\cdot 17$	890	680	570	500	450	
4	17	\%	${ }^{1}{ }^{1 / 6}$	$\cdot 3$	1500	1150	970	860	770	
$\frac{7}{8}$	2	${ }^{\prime}{ }^{\prime}$	${ }^{1} 10$	$\cdot 32$	1600	1200	1000	890	810	
,	$2 \ddagger$	${ }^{\frac{5}{8}}$	${ }_{1}^{10}$	$\cdot 46$	1650	1250	1050	930	840	
$1 \frac{1}{8}$	$2 \frac{1}{2}$	${ }^{\text {若 }}$	${ }^{2} 8$	$\cdot 57$	1800	1350	1150	1000	920	
$1 \pm$	$2{ }^{2}$	18	${ }^{18}$	-74	2750	2050	1750	1550	1400	
$1{ }^{\frac{3}{8}}$	3	14	$1{ }^{10}$. 9	2950	2250	1900	1650	1500	
$1 \frac{1}{2}$	31	3	3 mb	$1 \cdot 1$	3950	3000	2500	2200	2000	
18	$3 \frac{1}{2}$	4	${ }^{5}$	$1 \cdot 34$	4100	3100	2600	2300	2100	
18	$3 \frac{3}{4}$	18	${ }^{\frac{7}{3}}$	1.58	4250	3250	2700	2400	2150	
17	4	18	${ }^{3} \frac{3}{7}$	1.87	4400	3350	2800	2450	2250	
2	4	18	$3{ }^{3}$	1.75	4400	3350	2800	2450	2250	
$2 \downarrow$	$4 \frac{1}{1}$	$\frac{7}{8}$	$3^{\frac{3}{7}}$	$2 \cdot 45$	6000	4550	3850	3400	3050	
27	5	18	$3^{\frac{3}{2}}$	$3 \cdot 2$	7500	5750	4800	4250	3850	
23	$5 \downarrow$	18	${ }^{3}{ }^{3}$	$3 \cdot 4$	7800	5900	5000	4400	4000	
3	$5 \frac{3}{3}$	$1 \frac{1}{18}$	S	4.62	9900	7500	6300	5600	5100	
34	6	$1_{1}{ }^{1}{ }^{1}{ }_{6}{ }^{\text {a }}$	$\frac{3}{13}$	4.84	10200	7800	6500	5700	5200	
$3 \frac{1}{2}$	$6 \frac{1}{2}$	$1 \frac{1}{8}$	$\frac{1}{6}$	6.04	12500	9600	8100	7100	6400	
$3 \frac{3}{4}$	64	17	$\frac{8}{8}$	6.37	13000	10000	8400	7400	6700	
4	71	$1 \pm$	$\frac{1}{4}$	8.14	15500	11500	9800	8600	7800	
47	$7 \frac{1}{8}$	$1{ }^{1}$	$\frac{1}{t}$	8.51	16500	12500	10500	9200	8400	
$4 \frac{1}{2}$	8	$1{ }_{1}{ }^{8} 8$	1	10.36	19000	14500	12000			
4	84	$\mathbf{1}^{1{ }^{\text {f }}}$	$\frac{1}{8}$	10.82	20000	15000	12500			
5	8	12	t	14-19	23000	17500	14500			
51	$9 \frac{18}{}$	$1{ }^{1}$	1	$15 \cdot 14$	23500	18000	15000			
6	101	$1_{18}{ }^{8}$	${ }^{5}$	$21 \cdot 19$	28500	21500	18000			
$6 \frac{1}{2}$	11	$1{ }^{188}$	${ }^{\frac{5}{2}}$	$22 \cdot 57$	29000	22000	18500			
7	12	13	g^{88}	$30 \cdot 25$	37000	28000	23500			
71	121	14	${ }^{8 / 5}$	32	38000	29000	24500			
8	13	18	${ }_{8}$	$34 \cdot 5$	39000	29500	25000			
81	14	2	${ }^{5}$	46.25	49500	37500	32000			

> Hoffmann Roller Bearings.
> Rigid Roller Journals-Medium Type.

Dimensions in Inches．				Approx． Lbs．	Working Load，Lbs．					
				R．P．M．						
B	D	W	r		100	300	600	1000	1500	
\ddagger	$1{ }_{1}{ }^{5} 8$	${ }^{188}$	${ }_{1}^{18}$		$\cdot 14$	1100	840	700	620	560
${ }^{\frac{3}{8}}$	$1 \frac{1}{2}$	i^{8}	$\mathrm{i}^{2} \mathrm{~d}$	$\cdot 21$	1250	970	810	710	640	
8	$1{ }^{\text {龺 }}$	${ }^{5}$	${ }^{1}{ }^{18}$	$\cdot 26$	1250	970	810	710	640	
${ }^{\frac{8}{8}}$	148	$\frac{5}{8}$	${ }^{\frac{1}{18}}$	$\cdot 32$	1450	1100	920	810	730	
$\stackrel{8}{4}$	2	18	${ }_{18}^{18}$	－41	2300	1750	1450	1300	1150	
$\frac{7}{8}$	24	tf	${ }^{1}$	$\cdot 53$	2400	1850	1550	1350	1200	
1	$2 \frac{1}{2}$	${ }^{3}$	${ }^{3}{ }^{3}$	$\cdot 67$	3300	2500	2100	1840	1660	
$1 \frac{1}{8}$	213	$1{ }^{\frac{3}{8}}$	${ }^{3}$	． 98	3400	2600	2200	1920	1740	
14	31	${ }^{7}$	${ }^{\frac{3}{2}}$	1.23	4400	3350	2800	2450	2250	
$1 \frac{3}{8}$	$3 \frac{1}{2}$	$\frac{7}{8}$	${ }^{\frac{3}{2}}$	1.67	4900	3700	3150	2750	2500	
$1 \frac{1}{2}$	$3 \frac{3}{4}$	78	${ }^{\frac{3}{3}}$	1.97	6400	4900	4100	3600	3250	
$1 \frac{5}{8}$	4	教	${ }^{3}{ }^{\frac{3}{4}}$	2.23	6400	4900	4100	3600	3250	
17	4	$11^{1 / 8}$	弪 ${ }^{2}$	2.79	8100	6200	5200	4550	4150	
$1 \frac{7}{8}$	4 4	11_{18}^{18}	$\frac{3}{32}$	$3 \cdot 16$	8500	6500	5400	4800	4350	
2	$4 \frac{1}{2}$	$11^{\frac{1}{18}}$	${ }^{\frac{3}{32}}$	3.04	8500	6500	5400	4800	4350	
24	5	11	$\frac{1}{8}$	4．27	10000	7600	6400	5600	5100	
21	$5 \frac{1}{2}$	14	t	$5 \cdot 3$	11500	8700	7400	6500	5800	
$2{ }^{2}$	64	$1{ }^{1}$	t	7.79	17000	12500	10500	9400	8500	
3	7	$11^{\circ}{ }^{\circ}$	${ }^{3} 5$	11.14	22000	16500	14000	12500	11000	
34	71	$1{ }_{18}{ }^{88}$	${ }^{5} 5$	12.97	23000	17500	14500	13000	11500	
38	71	$1{ }_{1}{ }^{2} 8$	${ }^{3} 8$	12.65	23000	17500	14500	13000	11500	
$3 \frac{1}{2}$	81	$1{ }^{3}$	${ }_{8}^{85}$	17.04	28500	21500	18000	16000	14500	
34	84	$1{ }^{\text {P }}$	${ }^{5} 5$	17.07	28500	21500	18000			
4	87	$1{ }^{\text {¢ }}$	\％	17.66	29500	22500	10000			
41	88	14	${ }^{5}$	18.42	29500	22500	19000			
$4 \frac{1}{4}$	$9{ }^{9}$	2	$\frac{3}{18}$	24.5	36000	27000	23000			
4	10	2	${ }^{3} 8$	28	39000	29500	25000			
5	10	2	${ }^{\frac{3}{18}}$	27	39000	29500	25000			
$5 \frac{1}{2}$	11	2	${ }^{2} 8$	33.75	40000	30500	25500			
6	12	24	${ }^{1} 8$	44.5	47500	36000	30500			
61	13	2	$\frac{18}{18}$	58.25	57000	43500	36500			
7	131	21	\％${ }^{\text {a }}$	62	62000	47500	40000			

Hoffmann Needle Roller Bearings.

Complete Bearings.

Dimensions in mm.					
B	D	W	E	r	
12	30	20	$18 \cdot 4$	1	
15	35	20	$22 \cdot 3$	1	
17	37	20	$24 \cdot 7$	1	
20	42	20	$28 \cdot 7$	1	
25	47	22	$33 \cdot 5$	1	
30	52	22	$38 \cdot 2$	1	
35	58	22	44	1	
40	65	22	$49 \cdot 7$	$1 \cdot 5$	
45	72	22	$55 \cdot 4$	$1 \cdot 5$	
50	80	28	$62 \cdot 1$	2	
55	85	28	$68 \cdot 8$	2	
60	90	28	$72 \cdot 6$	2	
65	95	28	$78 \cdot 3$	2	
70	100	28	$83 \cdot 1$	2	
75	110	32	$90 \cdot 8$	2	
80	115	32	$95 \cdot 5$	2	
85	120	32	$101 \cdot 2$	2	
90	125	32	105	2	
95	130	32	$110 \cdot 8$	2	
100	135	32	$115 \cdot 5$	2	
110	150	40	127	3	
120	160	40	137	3	
130	180	52	$151 \cdot 5$	3	
140	190	52	$161 \cdot 7$	3	
150	200	52	$171 \cdot 9$	3	

The bearing consists of one plain cylindrical race and one lipped race, having between them a sufficient number of rollers of almost needlelike proportions to fill practically the whole of the space between the two. It is useful for oscillating motion or where loads and speeds fluctuate continuously.

These bearings can be supplied, as specials, with rollers retained in the outer race, but this entails extra width.

Needie Rollers.

Diameter Length	mm.	2 9.8	$\begin{gathered} 2 \\ 15 \cdot 8 \end{gathered}$	2.5 7.8	2.5 9.8	2.5 13.8	2.5 15.8
Diameter Length	mm.	3 11.8	3 15.8	$\begin{gathered} 3 \\ 19.8 \end{gathered}$	3 23.8	$\begin{array}{r} 3 \cdot 5 \\ 29 \cdot 8 \end{array}$	4 39.8

SKF Spherical Roller Bearings.

The Skefko Ball Bearing Co. Lid., Luton.
Medium Type, Self-aligning Radial Roller Bearings.

Millimetres.				Weight. Lbs.	$\left.\begin{array}{\|c\|} \text { Basic } \\ \text { Load at } \\ 1-15 \mathrm{R} . \mathrm{P} . \mathrm{M} . \\ \text { Lbs. } \end{array} \right\rvert\,$	Max. Catalogue Speed. R.P.M.
d	D	B	$\stackrel{r}{\text { approx. }}$			
40	90	33	2.5	$2 \cdot 27$	18000	5000
45	100	36	$2 \cdot 5$	$3 \cdot 08$	22000	5000
50	110	40	3	$4 \cdot 20$	31000	5000
55	120	43	3	$5 \cdot 28$	36500	5000
60	130	46	$3 \cdot 5$	$6 \cdot 61$	45000	5000
65	140	48	$3 \cdot 5$	$7 \cdot 92$	48500	5000
70	150	51	$3 \cdot 5$	$9 \cdot 59$	64000	5000
75	160	55	$3 \cdot 5$	11.88	66000	3000
80	170	58	$3 \cdot 5$	$14 \cdot 04$	77000	3000
85	180	60	4	16.28	86000	3000
90	190	64	4	$19 \cdot 40$	100000	3000
95	200	67	4	$22 \cdot 66$	110000	3000
100	215	73	4	$28 \cdot 65$	130000	1500
110	240	80	4	$40 \cdot 00$	160000	1500
120	260	86	4	$48 \cdot 70$	195000	1500
130	280	93	5	$63 \cdot 00$	220000	1500
140	300	102	5	$78 \cdot 46$	240000	750
150	320	108	5	$93 \cdot 70$	275000	750
160	340	114	5	113	295000	750
170	360	120	5	132	340000	750
180	380	126	5	155	375000	750
190	400	132	6	179	405000	500
200	420	138	6	207	440000	500
220	460	145	6	269	520000	500
240	500	155	6	340	610000	300
260	540	165	8	423	700000	300
280	580	175	8	516	780000	300

Permissible loads when the bearings are at rest are about t wo-thirds of the tabulated loads for 1-15 r.p.m. The permissible load P at a speed of n r.p.m. may be found approximately from the formula $P=K_{1-15} / f$, where K_{1-15} is the tabulated load and f is the speed factor. Values of f are given for a number of speeds.

R.P.M.	f	R.P.M.	f	R.P.M.	f	R.P.M.	f
30	1.26	100	1.88	300	2.71	1500	4.62
50	1.49	150	2.16	500	3.21	3000	5.83
75	1.71	200	2.37	750	3.68	5000	6.92

The tabulated loads are based on a life of 500 hours. For other lengths of life, a life factor s is used. Some values of s are given below.

Life-Hours.	500	4000	13000	30000	60000
8	1	2	3	4	5

In practice P is known, and a load near the value given by $K_{1-15}=8 f P$ is then found in the table, and so the right size of bearing is selected.

When radial and thrust loads act simultaneously on a radial bearing, $P=R+y A$, where P is the equivalent radial load, R is the actual radial load, A is the actual thrust load, and y is a coefficient depending on the type of bearing. For the bearing illustrated on p. 458, $y=2$, provided the actual thrust load is small compared with the radial load. The value of y is $2 \cdot 3$ when the thrust load is 50 per cent. of the radial load, $2 \cdot 5$ when the thrust load is equal to the radial load, and 2.7 when the load is purely thrust.

Notes on a Few Types of Skefko Bearings.*

Deep groove, single row ball bearing (Fig. 1).-Deep ball tracks give full support to the balls, even under thrust load. No filling slot. Light but strong cage, suitable for relatively high speeds. Thrust load taken in either direction, alone or in combination with radial load. For thrust duty some slackness is necessary in the bearing, so that, when thrust is applied, a line through the contact points between the balls and tracks will make an angle with the axis of rotation. Axial and radial play can be eliminated by providing initial thrust between two bearings. Misalignment up to about $\frac{t^{\circ}}{}{ }^{\circ}$ can be dealt with.

Double row, self-aligning ball bearing (Fig. 2).-There are two tracks of normai form in the inner ring, but the outer ring track is spherical, the radius of curvature having its centre at the

[^35]geometrical centre of the bearing. This bearing is partioularly valuable where misalignment is expected. It is also supplied with taper bores and adapter sleeves for secure fixing on a shaft without shoulders. In addition to radial load, thrust in either direction may be taken, but the single row type has a greater thrust capacity. A wide double row series is made, and this takes a fairly high thrust.

Fig. 1.

Fig. 2.

FIG. 3.

Double row, spherical roller bearing (Fig. 3).-This bearing is intended for heavy loads, as in rolling mills, railway axle-boxes, etc. The rollers are barrel-shaped and make line contact with the inner ring. The outer ring has a spherical race-way, common to both rows of rollers. The axes of the rollers converge to a point on the main axis of the bearing. The bearing is self-contained, and can accept both radial and thrust loads in either direction.

Fig. 4.

Fig. 5.

Fig. 6.

Cylindrical roller bearing. - The two main types have either a flanged inner ring (Fig. 4) or a flanged outer ring (Fig. 5). The flanged inner ring is the more common. All types are made in light, medium, and heavy series.

Tapered roller bearing (Fig. 6).-The bearing takes thrust in one direction as well as radial load. The large ends of the rollers are spherical in form, and the inner ring flange against which they bear is also a sphere of the same radius; this prevents the rollers from skewing and reduces the frictional resistance.

Timken Tapered Roller Bearings.*

British Timken Ltd., Birmingham. Single Row Bearings-Light Type.

Dimensions in Inches.					Capacity at 500 R.P.M. with 500 Hours Life.	
4	B	C	D	\boldsymbol{E}	Radial Lbs.	Thrust Lbs.
$\frac{1}{8}$	$1 \frac{1}{2}$	$\cdot 5245$. 550	16	780	420
$\frac{5}{8}$	$1 \frac{5}{8}$	P\%	- 578	${ }^{7} 8$	840	515
8	1.850	- 566	- 562	${ }^{7} 6$	995	695
7	2	$\frac{18}{29}$	$\cdot 557$	$\frac{1}{2}$	1045	825
1	2	118	-709	$\frac{17}{2}$	1410	900
118	212	$\frac{1}{18}$	$1{ }^{\frac{8}{6}}$	8	1920	1320
11	2.717	\% ${ }^{\frac{1}{6} 8}$. 771	$\frac{6}{8}$	1960	1450
$1{ }^{\text {最 }}$	2.717	$\frac{8}{8} \frac{8}{6}$.771	\%	1960	1450
$1 \frac{1}{2}$	$3{ }^{\frac{6}{3} 2}$. 8268	-8244	8	2280	1790
11	$3 \cdot 3465$. 748	$\cdot 7545$	$\frac{8}{8}$	2370	2070
2	31 \%	. 875	. 875	暑	3220	2135
24	37	. 8268	. 889	. 7018	3355	2325
$2 \frac{1}{2}$	$4 \cdot 333$. 866	-866	- 6786	3475	2645

- The tables give a selection from the ranges of bearings which are generally available. A few other types are shown in the Figs. on pp. 464 and 465. This firm, who also make ball and parallel roller bearings, should be consulted for further particulars.

Timken Tapered Roller Bearings.
Single Row Bearings-Medium Type.

Dimensions in Inches.					Oapacity at 500 R.P.M. with 500 Hours Life.	
A	B	c	D	E	Radial Lbs.	$\begin{aligned} & \text { Thrust } \\ & \text { Lbs. } \end{aligned}$
$\frac{5}{8}$	13	$1{ }^{\frac{3}{8}}$. 888	${ }^{88}$	1330	635
$\frac{8}{4}$	1.938	${ }_{3}{ }^{3} 8$. 848	48	1440	755
$\frac{7}{8}$	$2 \cdot 240$	${ }^{\text {蒝 }}$	-781	量	1735	1045
1	21	$1{ }^{18}$	18	\%	1920	1320
118	$2 \cdot 8346$. 748	$\cdot 745$	\%	2075	1465
11	$2 \cdot 615$	1	-973	12	2945	1580
$1 \frac{1}{2}$	3	18	1.010	$\frac{3}{4}$	3100	1845
14	$3{ }^{\frac{7}{8}}$	$1{ }_{1}^{17}$	1.466	+8	4230	2540
2	3.6719	$1_{1}{ }^{\frac{3}{6}}$	1-193	188	4620	3065
24	41	$13^{\frac{3}{7}}$	1-162	7	4900	3220
21	$4{ }_{1}{ }^{7}$ \%	$1{ }_{1}{ }^{3} 6$	1-183	48	5155	4060
28	4.7244	1-1417	1-142	- 923	5510	4155
3	$5 \frac{3}{8}$	$1{ }_{1}{ }^{3} 8$	148	${ }^{7}$	6075	5285
34	5.5118	$1{ }_{1}{ }^{7}$	1.4212	$1 \frac{18}{8}$	7655	6060
31	6	11^{98}	1.430	$1{ }^{\frac{3}{18}}$	8450	7320
$3{ }^{4}$	68 ${ }^{8}$	178	$1 \cdot 422$	$1{ }^{3} 2$	8685	8080
4	$6{ }^{8}$	15	$1{ }^{1}$	$1{ }^{\frac{3}{18}}$	10400	9610
41	$7 \frac{1}{6}$	$1 \frac{7}{8}$	$1 \frac{18}{6}$	$1{ }^{18}$	14490	11805
5	91	$2 \frac{1}{2}$	21	148	22910	16595

Timken Tapered Roller Bearings.
Single Row Bearings-Heavy Type.

Dimensions in Inches.					Oapacity at 500 R.P.M. with 500 Hours Life.	
A	\boldsymbol{B}	\boldsymbol{O}	D	\boldsymbol{E}	Radial Lbs.	$\begin{aligned} & \text { Thrust } \\ & \text { Lbs. } \end{aligned}$
$\frac{3}{4}$	$2 \cdot 240$	${ }^{6} 8$. 781	$\frac{5}{8}$	1735	1045
$\frac{7}{8}$	$2 \cdot 240$	$\frac{15}{18}$	$\cdot 975$	18	2475	1125
1	2.615	18	. 976	$\frac{3}{4}$	2790	1390
$1 \frac{1}{8}$	23	18	. 973	$\frac{3}{4}$	2945	1580
14	2.8594	$11^{3} 6$	1-1811	48	3690	2160
$1{ }^{3}$	$3{ }^{5}{ }^{5}$	$13^{6}{ }^{2}$	$1 \cdot 1965$	18	4030	2190
$1 \frac{1}{2}$	$3{ }_{18}{ }^{7}$	$1 \frac{3}{16}$	1.216	$1 \frac{5}{6}$	4230	2400
$1 \frac{5}{8}$	$3 \cdot 4844$	$1 \frac{1}{16}$	$1 \cdot 145$	$\frac{7}{8}$	4250	2450
$1{ }^{4}$	$3 \cdot 6719$	$11_{1}{ }^{\text {\% }}$	$1 \cdot 193$	+ ${ }^{\frac{6}{8}}$	4620	3065
17	4	$1{ }^{\frac{8}{8}}$	1.420	$11^{1 / 8}$	6205	3465
2	$4 \frac{8}{8}$	$1 \frac{1}{2}$	1.455	$1{ }_{18} \frac{3}{6}$	6510	3785
21	$4 \frac{1}{8}$	$1 \frac{1}{2}$	1.444	$1{ }_{16}{ }^{3}$	7105	4830
$2 \frac{1}{2}$	5	$1{ }^{18}$	1.444	$1{ }_{18}^{8}$	7395	5270
24	$5{ }^{\text {最 }}$	$1{ }^{18}$	15	14	9060	6435
3	5.596	13	1.815	$11^{6} 8$	9420	7130
37	5.909	18	1.838	$11_{1}{ }^{7}$	12040	7680
31	$6{ }^{\frac{8}{8}}$	$1 \frac{1}{8}$	1.9	$1 \frac{1}{2}$	12550	8390
3	71	$1 \frac{1}{8}$	17	$1 \frac{1}{2}$	13040	9850
4	71	21	2.265	$1 \frac{3}{4}$	17850	11705
$4 \frac{1}{2}$	$8 \frac{8}{8}$	$2{ }^{6}$	2 䂞	21	21020	13420
5	1018	$3 \frac{1}{18}$	31	24	28435	17915

Timken Tapered Roller Bearings.

 Single Row Bearings-High Thrust Type.

Dimensions in Inches.					Oapacity at 500 R.P.M. with 500 Hours Life.	
4	B	C	D	\boldsymbol{E}	Radial Lbs.	Thrust Lbs.
1	$2{ }^{\frac{1}{6} 6}$	$\frac{7}{8}$. 845	$\frac{5}{8}$	1930	2805
118	2.8594	$\frac{3}{8}$. 955	+18	2635	3120
14	31	1	. 9478	1\%	2935	3845
$1 \frac{1}{2}$	3.4844	1	. 933	$\frac{1}{1} \frac{1}{6}$	3030	4635
13	37	137	$1 \cdot 114$	18	3680	5345
2	47	$1{ }_{1}{ }^{7} 6$	$1 \cdot 291$	1	5765	8330
21	$5 \cdot 513$	1.437	$1 \cdot 3085$.926	6855	11635
3	7	$21^{3}{ }^{3}$	2	$1 \frac{18}{8}$	11200	16765
4	$7 \cdot 874$	$2{ }^{68}$	115	1%	15435	19135
$4 \frac{1}{2}$	9	21	1.946	$1 \frac{1}{2}$	15780	22780
5	124	31	34	24	33235	47670

Other types of tapered roller bearings are shown in the illustrations on p. 465.

Apeed Factors.-For bearing rating at any speed, multiply factor by the rating at 500 r.p.m. Factors not in the table may be obtained approximately by drawing a graph of the given values.

R.P.M.	Factor.	R.P.M.	Factor.	R.P.M.	Factor.	R.P.M.	Factor.
100	1.621	500	1.000	1500	0.719	3000	0.584
200	1.317	750	0.885	1750	0.687	3500	0.558
300	1.166	1000	0.812	2000	0.660	4000	0.536
400	1.069	1250	0.760	2500	0.617	5000	0.501

Service Factors.-In selecting a tapered roller bearing a service factor must be taken into account. This is a product of a factor appropriate to the application and one giving a selected number of life-hours. This factor varies from 1.75 for household appliances to 7 for paper mill machinery. A good average value is 3.5.

Selection of Bearings.-The tabulated radial and thrust ratings are to be oonsidered separately. Calculate the required load on the bearing, then-
Required rating at 500 r.p.m. $=\frac{\text { Caloulated load } \times \text { Service faotor }}{\text { Speed factor }}$.
When radial and thrust loads are carried simultaneously, oalculate the equivalent radial load from the formula-

Eqquivalent radial load $=0.66 \times$ Radial load $+k \times$ Thrust load, where $k=\frac{\text { Radial rating }}{\text { Thrust rating }} . \quad$ For a first trial take $k=1.5$.

Timken Railway Axle-boxes for Outside Journals.

Leading Dimensions-Inches.					Weight, Lbs.	Radial Rating at 500 R.P.M., Lbs.
A	B	$C=D$	E	F		
2.875	7.000	3.625	4.750	4.625	70	4850
3.000	$7 \cdot 250$	3.750	5.000	4.875	80	5140
3.125	7.500	3.875	5.250	5.125	95	7720
3.750	$8 \cdot 375$	4.375	5.500	$5 \cdot 375$	120	8700
4.000	$9 \cdot 250$	4.750	6.375	6.250	160	11300
4.750	10.250	$5 \cdot 250$	6.500	6.375	190	12720
4.875	$10 \cdot 625$	5.500	6.750	6.625	225	14960
5.000	11.250	5.875	7.000	6.875	260	18640
5.375	$12 \cdot 000$	6.375	$7 \cdot 125$	7.000	300	26000
6.000	13.500	6.875	7.250	$7 \cdot 125$	350	30600
7.000	14.500	7.500	$7 \cdot 625$	$7 \cdot 500$	400	32360

Timken Bogie Centre Pivot Bearings.

The design incorporates a rubber pad of oil-resisting and highloading qualities. This pad prevents uneven loading of the bearing and absorbs vibration and noise.

Dimensions-In.			Ioad, Lbs.	Welght, Lbs.	Dimensions-In.			Load, Lbs.	Weight, Lbs.
4	B	C			A	B	C		
4	$7{ }^{7}$	$1{ }^{18}$	23100	15	${ }^{67}$	141	3.	83650	99
47	8.	$1{ }^{1}$	26800	17	7	14	3.	88550	104
4	81	148	30800	20	8	16.	34	114450	153
5	101	${ }^{2} 8{ }^{8}$	46830	89	7	17	4	131950	190
61	127	31	59150	78	9	19	4	154000	280

MICEELL BEARINGS.

Michell Bearings Ltd., Newcastle-on-Tyne.

The Michell bearing makes use of the principle that bearing loads should be carried completely by the lubricating oil, instead of the oil acting merely to reduce friction between metallic surfaces. The bearing takes its name from the inventor, Mr A. G. M. Michell.

In all Michell bearings there are two elements: the shaft (either journal or thrust collar), and the six or eight bearing parts which are pivoted and known as pads. These two elements never come into contact, being forcibly separated and kept apart by automatically generated tapered oil films drawn from the normal oil supply. There is no metallic friction, no wear, and no renewal of parts so long as good clean oil is present in sufficient volume to carry the load.

Figs. 1 and 2 illustrate the action in a Michell thrust block

tharust pag
Fig. 1.

sourivl Pad
Fig. 2.
and a Michell journal bearing respectively. The tapered pressure oil film, or wedge of lubricant, is self-generated by the motion of the shaft or collar and is not dependent on any extraneous pressure from an oil pump. The pads are so designed that they tilt and float on their own oil films, and they have white metal faces, as white metal is less liable to damage from foreign matter which may be present in the oil.

In the thrust bearing, as the thrust collar revolves in its oil bath, the oil adhering to its surface is carried round and lifts every pad at its leading edge to admit the tapered oil film. Thus every pad generates a tapered pressure oil film of a thickness appropriate to the load, the speed, and the viscosity of the lubricating medium. For maximum efficiency, the pivot is "off-set" from the centre of the circumferential width of the pad, and this off-set is right-handed or left-handed to suit the direction of rotation. When necessary, the pads can be pivoted centrally to suit both directions of rotation, with a slight reduction in effioienoy.

The Michell thrust bearing is a simple single-collar unit
capable of carrying at least twenty times the load per square inch of a flat multi-collar thrust bearing. Thrust shafts may be disposed at any angle and standardised designs are available.

The Michell journal bearing usually has six pads surrounding the shaft journal. Each pad is free to tilt, and is prevented from cross-winding by suitable flanges. Oil is automatically introduced between each pair of pads from an annulus in the housing.

Load-carrying Capacity. - The working load depends on several factors, mainly diameter, length, peripheral speed, and viscosity. The capacity increases with the speed, and loads of several thousand pounds per square inch have been sustained in prolonged tests. For bearings which do not start under full load, up to 500 lbs . per square inch may be used, but 350 lbs . per square inch is taken as the limit when starting under full load. However, it is to be noted that bearings will work satisfactorily with considerable overloads.

The formula for the thrust of a propeller is given on p. 449.
Friction. - Experiments with a Michell bearing loaded to 560 lbs. per square inch gave a coefficient of friction $\mu=0.0020$, and the calculated figure was 0.0022 . The coefficient of friction of a good ordinary bearing is $\mu=0.036$, about eighteen times as much.

Lubricating Oil.-Any good quality pure mineral oil is recommended. In average cases a mineral oil having the following approximate viscosity at a temperature of $140^{\circ} \mathrm{F} .\left(60^{\circ} \mathrm{C}\right.$.) is suitable: 0.2 absolute viscosity in C.G.S. units, corresponding to 92.5 Redwood seconds, or 111 Saybolt seconds, or $3 \cdot 3$ Engler number. Forced lubrication is never required.

Dimensions.-Drawings and sizes of typical bearings are shown on pp. 469 to 472.

Michell Horizontal Thrust Bearings.

$\begin{gathered} \text { Shaft } \\ \text { Diameter. } \\ \text { Inches. } \end{gathered}$	Thrust Sq. In.	Inches.							
		F	${ }^{*}$	θ	${ }^{H}$	s	B	L	E
${ }^{\frac{7}{7} \text { to } 1 \frac{1}{8}}$	$2 \frac{1}{2}$	$5 \frac{1}{2}$	4	1.722	14	$1{ }^{18}$		1	${ }^{1 \frac{3}{6}}$
$1 \frac{1}{8}$ to $1 \frac{8}{8}$	$3 \frac{1}{2}$	68	4	1.975	$1 \frac{1}{2}$	$2 \frac{1}{2}$	$\frac{8}{8}$	$1 \pm$	$\frac{18}{6}$
$1{ }^{1} \frac{8}{4}$ to $1 \frac{5}{8}$	$4 \frac{3}{7}$	$7 \frac{8}{8}$	$5 \frac{3}{2}$	2.35	$1{ }^{\frac{8}{4}}$	3	1	$1{ }^{1} \frac{8}{8}$	$1 \frac{1}{8}$
${ }^{18} 8$ to 2	64	$8 \frac{1}{2}$	$6 \frac{1}{2}$	2.789	2	$3{ }^{3}$	11	$1 \frac{1}{2}$	$1{ }^{\frac{8}{8}}$
2 to 21	9	10	74	$3 \cdot 193$	2¢	$4 \frac{1}{2}$	1量	2	$1 \frac{1}{2}$
$2 \frac{1}{2}$ to 3	14	111	88	3.757	3	$5 \frac{1}{2}$	2	24	$1{ }^{3}$
3 to 31	19	$13{ }^{\text {d }}$	$10 \frac{1}{2}$	$4 \cdot 442$	31 ${ }^{\frac{1}{2}}$	$6 \frac{1}{2}$	2 2	$2 \frac{1}{2}$	2 t
31 to 4	26	$14 \frac{8}{6}$	$11 \frac{3}{8}$	5.01	4	$7 \frac{1}{2}$	23	3	$2 \frac{8}{3}$
4 to 5	40	17\%	$14 \frac{1}{2}$	6.07	$4 \frac{1}{8}$	9	37	$3 \frac{1}{2}$	$2 \frac{1}{8}$
5 to 6	55	204	174	$7 \cdot 012$	5	11	$4 \frac{1}{2}$	4	34
6 to 7	80	234	193	7.891	6	13	51	41	3 $\frac{8}{8}$

[^36]
Michell Vertical Thrust and Journal Bearinge.

Shaft Diam. Inches.	Thrust Surface. Sq. In.	Inches.											
		F	0	G	H	h	Δ	B	L	E	J	D	N
Eto 7	27	6	4	2!	${ }^{2}$	148	31	H	4	28	13	24	17
最 to 18	37	67	$4 \frac{1}{4}$	$2{ }^{4} 8$	1	$2{ }^{\circ}$	34	$\frac{7}{8}$	1	278	21	3	2
$1{ }^{1}$ to 18	4	84	$6{ }^{6}$	$3{ }^{3}$	\%	21	4	1	1	$3{ }^{3}$	$2{ }^{2}$	31	21
$1{ }^{\text {a }}$ to 18	64	9	67	4	$\underline{7}$	3	4!	1	11	4		4	3
14 to 21	9	10%	8	4	11	31	5	11	1\%	4	3!	5	$3{ }^{3}$
22^{2} to 21	14	124	91	${ }^{6}$	1 1	4	51		$1 \frac{18}{2}$	${ }^{61}$	41	6	35
$2{ }^{2}$ to 3	19	14	11	64	11	4	61		2	${ }^{6}$		7	4
3 to 31	26		$12 t$					24			6	8	稱
31 to 41	40	181	15	89	21	$6{ }^{8}$	9	3	3	$7{ }^{\text {7 }}$	71	10	8
47 to 5	55	21	18	9	2	8	11	4	$3{ }^{3}$	97		12	6
bit to 6	80			11	3	$9{ }^{\text {a }}$	18	B1	4		101	14	78

Michell S-Type Marine Thrust Block.

Diameter of Shaft. Inches.	Shaft Dimensions. Inches.			Block Dimensions. Inches.					Thrust Surface. Sq. In.
	Δ	B	\boldsymbol{C}	F	a	H	J	K	
$1 \frac{1}{2}$ 2 to 18	5	${ }^{3}$				33		$4{ }_{4}^{4}$	2.8 4.4
24 to $2 \frac{3}{2}$	6	$1{ }_{1}$	$\stackrel{9}{101}$	4	${ }_{6}^{68}$	${ }_{5}^{42}$	$3{ }^{3}$	45	4.4 6.6
3 to $3 t$	7	$1{ }^{1}$	114	6	7	6	$5{ }^{\text {最 }}$	5	9.2
31 to 3 \%	8	1 1	121	$6 \frac{1}{2}$	$7{ }^{7}$	7	${ }^{5 \frac{7}{8}}$	$6 \frac{1}{2}$	$12 \cdot 0$
4 to $4 \frac{1}{2}$	10	$1{ }^{\text {18 }}$	$15 \frac{1}{2}$	8	9	8	${ }^{7}$	71	18.6
5 to 6	12	$2{ }^{2}$	18	$9 \frac{1}{4}$	101	9	8 8	8	27.0
6 to 7	141	$2 \frac{1}{2}$	19	11	12	101	919	91	36.2

BELT GEARING.

Transmission of Motion by Bands. -

$1_{1}=$ diameter of driving pulley, or driver, in feet.
$D_{2}=$ diameter of following pulley, or follower, in feet.
N_{1} =speed of driver in revolutions per minute.
$N_{2}=$ speed of follower in revolutions per minute.
$V=$ speed of band in feet per minute.

$$
\begin{array}{ll}
V=3 \cdot 1416 D_{1} N_{1}=3 \cdot 1416 D_{2} N_{2} . \\
D_{1} N_{1}=D_{2} N_{2} & N_{2}=D_{1} .
\end{array}
$$

The effective diameter of a pulley carrying a band is equal to the nominal diameter plus the thickness of the band. The above formule are only strictly true when D_{1} and D_{2} are the effective diameters of the pulleys.

When motion is transmitted from a pulley A to a pulley P, through a number of intermediate pulleys B, C, D, E, of which B and C are fixed to one shaft and D and E fixed to another, then,

$$
\begin{aligned}
& N_{6} \\
& \bar{N}_{1} \\
& =\frac{D_{1}}{D_{2}} \times \frac{D_{3}}{D_{4}} \times \frac{D_{5}}{D_{6}},
\end{aligned}
$$

where $D_{1}, D_{2}, D_{2}, D_{4}, D_{6}$, and D_{6} are the diameters of the pulleys A, B, C, D, E, and F respectively, and N_{1} and N_{6} are the speeds of A and F respectively. To be exact, the diameters taken should be the effective diameters, as explained above.

Length of a Belt connecting Two Pulleys. -

Crossed band

Open band.

The length (L) may be obtained by measurement from a scale drawing, or by calculation, as follows :-

First calculate $\sin \phi$ from

$$
\begin{aligned}
& \sin \phi=\frac{D+d}{2 c} \text { for a crossed band, } \\
& \text { or } \sin \phi=\frac{D}{2 c} \text { for an open band. }
\end{aligned}
$$

Next find from a table of sines the angle ϕ in degrees, and then find $\cos \phi$ from the table of cosines.

If n is the number of degrees in the angle, its circular measure is $\frac{\pi n}{180}$; let this be denoted by ϕ, then,

$$
L=\left(\frac{\pi}{2}+\phi\right)(D+d)+2 c \cos \phi \text { for a crossed band }
$$

$$
L=\frac{\pi}{2}(D+d)+\phi(D-d)+2 c \cos \phi \text { for an open band }
$$

$$
=\frac{\pi}{2}(D+d)+\begin{gathered}
(D-d)^{2} \\
4 c
\end{gathered}+2 e \text { nearly, when } \phi \text { is a small angle. }
$$

Stepped Pulleys. - Stepped pulleys must be designed so that the same belt will be equally tight on each pair of opposite steps.
$N=$ speed of driving shaft $A B$ in revolutions per minute.
n_{1}, n_{2} etc. $=$ speeds at which shaft $C D$ may be required to run, in revolutions per minute.
D_{1}, D_{2}, etc. = diameters of steps of pulley on $A B$.
d_{1}, d_{2}, etc. $=$ diameters of steps of pulley on $C D$.

$$
\frac{d_{1}}{D_{1}}=\frac{N}{n_{1}} \frac{d_{2}}{D_{2}}=\frac{N}{n_{2}}, \text { etc. }
$$

Assume the diameter D_{1}, then $d_{1}=\frac{N D_{1}}{n_{1}}$.
For a crossed band, $D_{2}+d_{2}=l_{1}+d_{1}$,

$$
\text { hence } D_{2}=\frac{n_{2}\left(D_{1}+d_{1}\right)}{N+n_{2}} \text {, and } d_{2}=\frac{N\left(D_{1}+d_{1}\right)}{N+n_{2}}=\frac{N)_{4}}{n_{2}} \text {. }
$$

For an open band, determine D_{2} and d_{2} as above for a crossed band, and use their difference $D_{2}-d_{2}=x$ in the following formulæ to determine more approximate values of D_{2} and d_{2} :-

$$
\begin{aligned}
& \left.D_{2}=\stackrel{n_{2}}{N+n_{2}}\{1)_{1}+d_{1}+\frac{\left(D_{1}-d_{1}\right)^{2}-x^{2}}{2 \pi c}-x^{2}\right\} \\
& d_{2}=\frac{N}{N+n_{2}}\left\{D_{1}+d_{1}+\frac{\left(D_{1}-d_{1}\right)^{2}-x^{2}}{2 \pi c}\right\}=N D_{2} .
\end{aligned}
$$

The equations for a crossed band are correct, but those for an open band are not quite exact ; they are, however, sufficiently approximate for all practical purposes.

Pulleys on Shafts which are not Parallel. Guide Pulleys -

The pulleys marked \boldsymbol{A} are guide pulleys.
The important rule to be observed in arranging the positions of the pulleys is this, the point at which the band leaves one pulley must be in the central plane of the next pulley.

Speed of Belts. -For main driving belts the lineal velocity should be from 3000 to 4000 feet per minute. In America a speed as high as 6000 feet per minute has been attained in a main driving belt, but such a high velocity is unusual.

Strongth of Leather Belts.-The tenacity of the leather used for belting may be taken at from 3000 to 5000 lbs . per square inch. The strength of a riveted joint is about half the strength of the solid leather, and the strength of a laced joint is only about one-third of the strength of the solid leather.

The working stress is usually taken at from one-fourth to onethird of the ultimate strength of the weakest part of the belt. It will be found in practice that the working stress is generally from 200 to $\mathbf{3 5 0}$ lbs. per square inch of solid belt section.

The following table gives the working strength per inch of width for belts of different thicknesses :-

Thickness of Belt in Inches.	3/16	7/32	1/4	9/32	$5 / 16$
Safe tension in lbs. 200	37	44	50	56	62
per inch of width 250	47	55	62	70	78
when the safe stress $\{300$	56	66	75	84	94
is 350	66	77	87	98	109

Leather Link or Chain Belting.-The links are made of leather, and are connected by wrought-iron or steel pins. The belt may be made of any width, and it works freely on pulleys of small diameter It works well at high speeds.

When a link belt of considerable width works on a curved pulley rim, the section of the belt should be made to suit the carvature of the rim, as shown at (a), or it should be hinged longitudinally in the centre, as shown at (b). In the latter case it is best to make the rim of the pulley of a double conical form, so that the section consists of two straight portions instead of the usual curve.
$b=$ breadth of links in inches.
$t=$ thickness of links in inches.
$d=$ diameter of pins in inches.
$n=$ number of links in extreme width of belt.
$f=$ safe working stress on leather in lbs. per square inch.
Safe load on tight side of belt $=\frac{n}{2}(b-d) t f$ when n is an even number, and $=\frac{n-1}{2}(b-d) t f$ when n is an odd number.

Friction of a Band on a Pulley.-

$T_{1}=$ tension on "tight" or driving por tion of band.
$T_{2}=$ tension on "slack" portion of band
$\theta=$ angle of contact $A O C$ between banc and pulley, in circular measurc

$$
={ }^{\operatorname{arc} A B C} .
$$

$n=$ angle $A O C$ in degrees.
$\mu=$ coefficient of friction between band and pulley.
$e=$ base of Napierian system of logarithms.
When the band is on the point of slipping, $\frac{T_{1}}{T_{2}}=e^{\mu \theta}$.

$$
\begin{aligned}
& \log \frac{T_{1}}{\bar{T}_{2}}=\mu \theta \log e=\cdot 4343 \mu \theta . \\
& ={ }^{-00758 \mu n .}
\end{aligned}
$$

The following table gives values of the ratio $\frac{T_{1}}{T_{2}}$ for various values of μ and θ when the band is on the point of slipping :-

Angle of Contact ($A O C$).		Ratio of Tensions $\frac{T_{1}}{T_{3}}$ when the Band is on the Point of Slipping.			
Measure (θ).	(n).	$\mu={ }^{-2}$	$\mu=3$	$\mu={ }^{\prime} 4$	$\mu=\cdot 5$
-3491	20	$1 \cdot 072$	$1 \cdot 110$	$1 \cdot 150$	$1 \cdot 191$
-6981	40	$1 \cdot 150$	1.233	1.322	$1 \cdot 418$
1.0472	60	1.233	$1 \cdot 369$	1.520	1.688
$1 \cdot 3963$	80	1.322	$1 \cdot 520$	1.748	$2 \cdot 010$
1.7453	100	$1 \cdot 418$	1.688	$2 \cdot 010$	$2 \cdot 393$
2.0944	120	$1 \cdot 520$	1.874	$2 \cdot 311$	$2 \cdot 850$
$2 \cdot 4435$	140	$1 \cdot 630$	2.081	$2 \cdot 658$	$3 \cdot 393$
$2 \cdot 7925$	160	1.748	$2 \cdot 311$	$3 \cdot 056$	$4 \cdot 040$
3.1416	180	$1 \cdot 874$	$2 \cdot 566$	$3 \cdot 514$	$4 \cdot 811$
$3 \cdot 4907$	200	2.010	$2 \cdot 850$	4.040	5.728
$3 \cdot 8397$	220	$2 \cdot 155$	3.164	$4 \cdot 646$	$6 \cdot 820$
4.1888	240	$2 \cdot 311$	$3 \cdot 514$	5.342	$8 \cdot 121$
$4 \cdot 7124$	270	$2 \cdot 566$	$4 \cdot 111$	6.586	10.551
5•2360	300	2.850	4.811	$8 \cdot 121$	$13 \cdot 709$

For a leather belt on an iron pulley, μ may be taken at 3 or 4 ; but if the pullay and belt are greasy, μ will not exceed 2 .

Slip of Belts. - Professor Lanza found by careful experiments that under ordinary working conditions the speed of slip between bands and pulleys was from 3 to 12 feet per minute, and that the coefficient of friction had then a mean value of 27 .

Driving Force in a Belt connecting Two Pulleys. -

$T_{1}=$ tension on tight or driving portion of belt in lbs.
$T_{2}=$ tension on slack portion of belt in lbs.
$P=$ driving force in lbs.
$P=T_{1}-T_{2}$.
If P is given, then $T_{1}=\frac{P x}{x-1}$, and $T_{2}=\frac{P}{x-1}$, where $x=\frac{T_{1}}{T_{2}}=e^{\mu 0}$.
In many cases in practice T_{1} may be taken equal to $2 T_{2}$, then $P=\frac{1}{2} T_{i}$, and $T_{1}=2 P$.

Centrifugal Tension in Belts.-The centrifugal force of a belt as it rotates with a pulley causes an additional tension in it. The amount of this centrifugal tension is $\frac{w v^{2}}{g}$ in lbs. per square inch of belt section, where $w=$ weight of a portion of belt one foot long, and one square inch in section $=\cdot 4$ for leather, and $v=$ velocity of belt in feet per second.

The total tension on the tight side of the belt is therefore

$$
T_{1}+\frac{w b t v^{2}}{g}=T_{1}+\frac{b t v^{2}}{8 \overline{0}} \text { for leather belts, }
$$

where $b=$ width, and $t=$ thickness of belt in inches.
At a speed of 3000 feet per minute the centrifugal force increases the stress in the belt by about 31 lbs. per square inch. At 6000 feet per minute the increase would be 125 lbs . per square inch with a leather belt.

Power Transmitted by Belts, Centrifugal Tension Neglected. -
$V=$ velocity of belt in feet per minute.
$P=$ driving force in lbs.
$H=$ horse-power transmitted.

$$
H=\frac{V P}{33000} .
$$

If the belt passes over a pulley of diameter D (in feet) which makes N revolutions per minute, then,

$$
H=\frac{\pi D N P}{33000}
$$

Assuming $T_{1}=2 P$, and taking the safe working stress on the belt at 300 lbs . per square inch, then $P=150 \mathrm{bt}$, where $b=$ width, and $t=$ thickness of belt in inches.

For rough calculations the following rules may be used :-

$$
\begin{aligned}
& H=\begin{array}{l}
B V \\
800
\end{array} \text { for single leather belts. } \\
& I==_{450}^{B V} \text { for double leather belts. }
\end{aligned}
$$

Power Transmitted by Belts, allowing for Centrifugal Tension. $b=$ width of belt in inches.
$t=$ thicknes of belt in inches.
$w=$ weight of belt per foot of length and one square inch section, in lbs.
$v=$ velocity of belt in feet per second.
$V=$ velocity of belt in feet per minute.
$F=$ centrifugal tension on belt, in lbs.
$T_{1}=$ tension on driving side of belt, exclusive of centrifugal tension, in lbs.
$T_{2}=$ tension on slack side of belt, exclusive of centrifugal tension, in lbs.
$T=$ total tension on driving side of belt, in lbs.
$P=$ driving force, or driving tension, in lbs.
$H=$ horse-power transmitted by belt.

$$
\begin{array}{ll}
P=T_{1}-T_{2} . & T_{1}=T-F . \\
F=\frac{w b t v^{2}}{32 \cdot 2} & I=\frac{P v}{550}=\frac{P V}{330(W)} .
\end{array}
$$

For leather belts with laced joints, $T=300 b t, w=44$, and $T_{1}=2 T_{2}$. Using these valuea, the following formulx are obtained :-

$$
\begin{align*}
& P=\frac{T_{1}}{2}=\frac{T-F}{2}=\frac{\left(24150-v^{2}\right) b t}{161} . \\
& H=P v=\frac{\left(24150-v^{2}\right) b t v}{585}= \tag{1}
\end{align*}
$$

The horse-power calculated by the above formula will be a maximum when the velocity of the belt is 89.7 feet per second, or 5382 feet per minute.

For leather belts with riveted joints T may be taken at 400 lbs. per square inch, and the formula for the borse-power then becomes

$$
\begin{equation*}
H=\frac{\left(32200-v^{2}\right) b t v}{88550} \tag{2}
\end{equation*}
$$

which will become a maximum when the velocity is 103.6 feet per second, or 6216 feet per minute.

The diagram at the top of the next page shows the horsepower of leather belts per square inch of section for various speeds of belt, (1) when $T=300 \mathrm{lbs}$. per square inch, (2) when $t=400 \mathrm{lbs}$. per square inch.

The following table has been calculated by the formula (1) on the preceding page :-

Horse-power of Leather Belts per Inch of Width.

$t=$ Thickof Belt in Inches	$v=$ Velocity of Belt in Feet per Second.						
						80	90
			$V=$ Velocity of Belt in Feet per Minute.				
	1800	2400	3000	$360 \overline{0}$	4200	4800	5400
$\frac{3}{10}$	$1 \cdot 48$	$1 \cdot 91$	2.29	$2 \cdot 61$	$2 \cdot 85$	3.01	3.06
${ }^{7} 8$	1.72	$2 \cdot 23$	2.67	3.05	3.33	$3 \cdot 51$	$3 \cdot 57$
4	$1 \cdot 97$	$2 \cdot 55$	$3 \cdot 06$	$3 \cdot 48$	$3 \cdot 80$	4.01	4.08
$\frac{9}{32}$	$2 \cdot 22$	$2 \cdot 86$	$3 \cdot 44$	$3 \cdot 92$	$4 \cdot 28$	$4 \cdot 51$	$4 \cdot 59$
$\frac{5}{10}$	$2 \cdot 46$	$3 \cdot 18$	3.82	4.35	$4 \cdot 76$	5.01	$5 \cdot 10$
	$2 \cdot 95$	$3 \cdot 82$	4.58	5.22	$5 \cdot 71$	6.01	6.12
${ }^{\frac{7}{18}}$	$3 \cdot 45$	$4 \cdot 46$	5.35	6.09	$6 \cdot 66$	7.02	$7 \cdot 14$
16	3.94	5•09	$6 \cdot 11$	6.96	$7 \cdot 61$	8.02	$8 \cdot 16$

Thickness and Width of Belts of One Square Inch Section.-
$t=$ thickness in inches.
$b=$ width in inches.

Rims of Pulleys.-The rim of a pulley for a belt which has to be shifted to different parts in the width of the rim should be straight on the outside of its cross section. Wrought-iron rims are nearly always straight.

When the rims are curved, the radius of curvature may be from 3 to 5 times the breadth of the rim. Various authorities give the rise at the centre of a curved rim at from one-tenth to one-ninety-sixth of the breadth of the rim.

In the Van den Kerkove form of rim section a portion at the centre of the width is straight and parallel to the axis of the pulley, and the parts on each side of this slope slightly. In one example of this form the rim of a belt fly-wheel, $18 \frac{1}{2}$ inches broal, was straight in the middle for about one-fifth of the width, and the outside portions sloped straight down to - 18 inch below the crown. The wheel was about 16 feet $4 \frac{1}{2}$ inches in diameter. The pulley driven from the wheel was about 4 feet 11 inches in diameter, and the slope on the outer portions of the section of the rim was about half that on the wheel.*

For cast-iron rims the thickness at the edge may be,

$$
\begin{aligned}
& \frac{1)}{\frac{2}{200}}+\frac{1}{8} \text { inch for single belts, } \\
& \text { and } \frac{D}{200}+\frac{1}{4} \text { inch for double belts, }
\end{aligned}
$$

where D is the diameter of the pulley in inches
Arms of Cast-iron Pulleys. -

$R=$ radius of pulley in inches.
$b=$ breadth of arm (measured at centre of pulley) in inches.
$m=$ number of arms in pulley.
$f=$ working stress in lbs. per square inch.
$P=$ driving force in lbs. at the circumference of the pulley, that is, the difference between the tensions in the tight and slack sides of the belt.

[^37]The bending moment on each arm is approximately $\frac{P R}{m}$.
The moment of resistance of the oval-shaped arm to bending is approximately ${ }^{\circ} 05 b^{3} f$,

$$
\begin{aligned}
& \text { therefore } \frac{P R}{m}=05 b^{3} f, \text { and } b=\sqrt[3]{\frac{2 \overline{0} p \bar{R}}{m f}} \\
& \text { taking } f=2000, b=\sqrt[3]{\frac{P}{P} \bar{R}} .
\end{aligned}
$$

The breadth and thickness of the arms at the rim may be twothirds of the breadth and thickness respectively at the centre.

If P cannot be conveniently determined, it may, for the purpose of designing the arms of the pulley, be taken equal to $50 B$ for single belts and $100 B$ for double belts, where B is the width of the belt in inches; then

$$
\begin{aligned}
b & =\sqrt[3]{\frac{B R}{2} m} \text { for single belts, } \\
\text { and } b & =\sqrt[3]{\frac{B R}{m}} \text { for double belts. }
\end{aligned}
$$

Bosses of Pulleys. -

$D=$ diameter of pulley in inches.
$B=$ breadth of rim in inches.
$d=$ diameter of shaft in inches.
$t=$ thickness of boss in inches.

$$
\begin{aligned}
& t=14 \sqrt[3]{B D}+\frac{1}{4} \text { inch for single belts. } \\
& t=\cdot 18 \sqrt[3]{B D}+\frac{1}{4} \text { inch for double belts }
\end{aligned}
$$

The above rules are given by Unwin.
Box gives the following rule in his "Mill Gearing":-

$$
t=\frac{D}{96}+\frac{d}{8}+\frac{5}{8} \text { inch. }
$$

Length of boss $=\frac{8}{3} B$ to B.
The above rules apply to pulleys keyed to their shafts.
For loose pulleys the bosses should be longer, and they need not be so thick. It is a good plan to line the boss of a loose pulley with a brass bush.

Centrifugal Tension in Wheel and Pulley Rims. - As the rim rotates each portion tends to fly outwards, and produces a tension in the rim, and if the speed is high enough the rim will burst.
$v=$ velocity of rim in feet per second.
$w=$ weight of one cubic inch of material of rim, in lbs.
$g=$ accelerating effect of gravity $=32 \cdot 2$ feet per sec. per sec.
$f=$ stress in rim due to centrifugal force, in lbs. per sq inch.

$$
f=\frac{12 w v^{2}}{g} .
$$

The stress f is independent of the area of the section of the rim.

A rim speed of 100 feet per second, or 6000 feet per minute, produces a centrifugal tension in the rim $=970 \mathrm{lbs}$. per square inch for cast-iron, 1040 lbs. per square inch for wrought-iron, and 1060 lbs . per square inch for steel.

For toothed wheels the centrifugal tension is greater than that given by the above formula, because the teeth add to the centrifugal force without increasing the area of the section of the rim.

ROPE GEARING.

Ropes.-The material used for the ropes in the rope gearing of mills is either hemp or cotton. Formerly hemp was much preferred, but cotton is now the material most used. The ropes are white or untarred, and are usually "hawser laid," that is, they consist of three strands twisted together. Four-strand ropes are also often used.

The ropes most commonly used are from $1 \frac{1}{2}$ inches to 2 inches in diameter. Of late years ropes of $1 \frac{5}{8}$ inches or $1 \frac{8}{4}$ inches in diameter have been largely used.

The weight of the ropes when dry is given approximately by the formula $W=3 D^{2}$, where W is the weight per foot of length in lbs., and D the diameter in inches.

The breaking strength of the ropes is from 7000 to $12,000 \mathrm{lbs}$. per square inch, but the working load is seldom greater than one-thirty-sixth of the breaking load, and it is often as small as one-sixtieth. A small working load on a rope ensures great durability. A good rope should run well for ten years.

The splice should be made with great care, and should have a length not less than siaty times the diameter of the rope.

The speed of the ropes varies in practice from 3000 to 6000 feet per minute. The advantage of running at a higher speed than 5000 feet per minute is very doubtful.

Cotton rope provides a constant speed drive; no allowance need be made for slip, and heavy loads can be transmitted with little or no tension in the slack side of the drive.

Pulleys.-The pulleys are made of cast-iron, and the rims are grooved, as shown below. The angle of the grooves is generally 45°.

The following proportions are for grooves having an angle of 45° :

$$
\begin{array}{ll}
D=\text { diameter of rope in inches. } & \text { Width }=1 \frac{1}{12} D . \\
\text { Pitch }=1 \frac{1}{2} D . & \text { Mid-feather }=\frac{1}{2} D . \\
\text { Depth }=1 \frac{1}{2} D . & \text { Bottom radius }=\frac{1}{2} D .
\end{array}
$$

The diameter of a rope pulley, measured to the centre of the rope, should not be less than that given by the following rule :-

Minimum diameter of pulley $=(10 D+16) D$,
where D is the diameter of the rope.
The line joining the centres of two pulleys connected by ropes should not be inclined at more than 45° to the horizontal.

Whenever possible the driving side of the rope is placed on the bottom and the slack side on the top, in order to increase the arc of contact between the rope and the pulleys.

Friction of Rope on Pulley. - If $\mu=$ coefficient of friction between the rope and a cylindrical pulley, and $\mu_{1}=$ coefficient of friction between the rope and a wedge-shaped groove, the angle of the groove being ϕ, then $\mu_{1}=\mu$ cosecant $\frac{\phi}{2}$.

For hemp or cotton ropes on iron pulleys, μ vaises from 15 to $\cdot 35$, and, therefore, for grooves with the usual angle, $45^{\circ}, \mu_{1}$ varies from 4 to 9 . The value $\mu_{1}=4$ is for greasy pulleys. For ropes and pulleys in ordinary working condition μ_{1} may be taken at 7 , the angle of the grooves being 45°.
$T_{1}=$ tension on driving side of rope.
$T_{2}=$ tension on slack side of rope.
$\theta=$ angle of contact between rope and pulley in circular measure.
$n=$ number of degrees in angle of contact.
$\mu_{1}=$ coefficient of friction between rope and pulley.
Then as for belt gearing (see p. 477),

$$
\log \frac{T_{1}}{T_{2}}=\cdot 4343 \mu_{\mathrm{r}} \theta=00758 \mu_{1} n .
$$

Angle of Contact in	Ratio of Tensions $\frac{T_{1}}{T_{2}}$ when the Kope is on the Pont of Slipping.					
$\begin{array}{\|c} \text { Degrees. } \\ n \end{array}$	μ_{1}	$\mu_{1}=5$	$\mu_{1}=6$		8	
60	$1 \cdot 52$	$1 \cdot 69$	$1 \cdot 87$	2.08	$2 \cdot 31$	2:7
90	1.87	$2 \cdot 19$	$2 \cdot 57$	$3 \cdot 00$	3.51	$4 \cdot 11$
120	$2 \cdot 31$	$2 \cdot 85$	$3 \cdot 51$	433	$5 \cdot 31$	$6 \cdot 59$
150	$2 \cdot 85$	$3 \cdot 70$	$4 \cdot 81$	$6 \cdot 25$	$8 \cdot 12$	$10 \cdot 55$
180	3:51	$4 \cdot 81$	$6 \cdot 59$	902	$12 \cdot 35$	$16 \cdot 90$
210	$4 \cdot 33$	$6 \cdot 25$	$9 \cdot 02$	$13 \cdot 01$	$18 \cdot 77$	$27 \cdot 08$

Centrifugal Tension in Ropes. -

$W=$ weight of rope per foot of length in lbs.
$v=$ velocity of rope in feet per second.
$F=$ centrifugal tension in lbs.

$$
F=\frac{W r^{2}}{g}=\frac{W v^{2}}{32 \cdot 2} .
$$

Power Transmitted by Ropes.-
$D=$ diameter of rope in inches.
$W=$ weight of rope per foot of length in lbs.
$v=$ velocity of rope in feet per second.
$V=$ velocity of rope in feet per minute.
$F=$ centrifugal tension on rope in lbs.
$T_{1}=$ tension on driving side of rope, exclusive of centrifugal tension, in lbs.
$T_{2}=$ tension on slack side of rope, exclusive of centrifugal tension, in lbs.
$T=$ total tension on driving side of rope in lbs.
$t=$ total tension on slack side of rope in lbs.
$P=$ driving force, or driving tension, in lbs.
$\boldsymbol{H}=$ horse-power transmitted by one rope.

$$
\begin{array}{cc}
T=T_{1}+F . & t=T_{2}+F . \\
F=W v^{2} & H=\frac{P v}{550}=\frac{P V}{33000^{\circ}}
\end{array}
$$

From numerous examples in actual practice, it may be taken that $T=195 D^{2}, T_{1}=1 \cdot 3 P, T_{2}=3 P$, and $W=3 D^{2}$. Substituting these values in the above formulæ, the following practical rules are obtained:-

$$
\begin{aligned}
& P=\frac{T-F}{1 \cdot 3}=\frac{\left(62790-3 v^{2}\right) D^{2}}{418 \cdot 6} . \\
& H={ }_{550}^{P v}=\frac{\left(62790-3 v^{2}\right) D^{2} v .}{230230} .
\end{aligned}
$$

The horse-power will be a maximum when the speed of the rope is 83.5 feet per second, or 5010 feet per minute. Above that speed the power transmitted diminishes, until at a speed of 8680 feet per minute it is zero.

The following table has been calculated by the above rules:-

D	W	T	$\begin{gathered} v=50 \\ V=3000 \end{gathered}$			$\begin{aligned} \bar{v} & =60 \\ V & =3600 \end{aligned}$			$\begin{aligned} v & =70 \\ V & =4200 \end{aligned}$		
			F	P	H	F	P	H	F	P	\bar{H}
1	. 30	195	23	132	12.0	34	124	135	46	115	$4 \cdot 0$
11	-38	247	29	167	$15 \cdot 2$	42	157	$17 \cdot 1$	58	145	$18 \cdot 5$
$1{ }_{1}$	$\cdot 47$	305	36	206	18.8	52	194	21.2	71	180	$22 \cdot 8$
188	$\bigcirc 7$	369	44	250	$22 \cdot 7$	63	235	$25 \cdot 6$	86	217	$27 \cdot 6$
$1 \frac{1}{2}$.68	439	52	297	27.0	75	279	30.5	103	258	$32 \cdot 9$
$1{ }^{5}$	$\cdot 79$	515	61	349	31.7	89	328	$35 \cdot 8$	121	303	$38 \cdot 6$
$1{ }^{\frac{3}{4}}$	$\cdot 92$	597	71	404	36.8	10:	380	41.5	140	352	$44 \cdot 8$
17	$1 \cdot 05$	686	82	464	42.2	118	437	$47 \cdot 6$	160	404	$51 \cdot 4$
2	$1 \cdot 20$, 780	93	528	48.0	134	497	$54 \cdot 2$	183	459	58.5
D	W	T	$\begin{gathered} v=80 \\ V=4800 \end{gathered}$			$\begin{gathered} v=90 \\ V=5400 \end{gathered}$			$\begin{aligned} & v=100 \\ & V=6000 \end{aligned}$		
			F		H	F	p	H	F	P	H
1	$\cdot 30$	195	60	104	$15 \cdot 1$	75	92	15.0	93	78	14.2
$1 \frac{18}{8}$	$\cdot 38$	247	75	132	$19 \cdot 2$	96	116	19.0	118	99	18.0
14	$\cdot 47$	305	93	163	$23 \cdot 7$	118	144	23.5	146	122	$22 \cdot 3$
$1{ }^{8}$	-57	369	113	197	28.6	143	174	$28 \cdot 4$	176	148	$26 \cdot 9$
$1 \frac{1}{2}$	$\cdot 68$	439	134	234	$34 \cdot 1$	170	207	$33 \cdot 8$	210	176	32.0
$1{ }^{8}$	$\cdot 79$	515	157	275	40.0	199	243	39.7	246	207	$37 \cdot 6$
$1{ }^{8}$. 92	597	183	319	$46 \cdot 4$	231	282	$46 \cdot 1$	285	240	$43 \cdot 6$
$1{ }^{8}$	1.05	686	210	366	$53 \cdot 2$	265	323	$52 \cdot 9$	328	275	$50 \cdot 1$
2	$1 \cdot 20$	780	239	417	$60 \cdot 6$	302	368	$60 \cdot 2$	373	313	56.9

Best Speed for Ropes.-Values of $H \div D^{2}$ (or the horse-power of a rope one inch in diameter), for various values of v, are plotted in the diagram below. This diagram shows that the

horse-power increases very slowly as the speed for maximum horse-power (83.5 feet per second) is approached. For example, as the speed increases from 75 to $83 \cdot 5$ feet per second, the horse-power is only increased about $1 \frac{1}{2}$ per cent., and this is without taking into account the additional loss of power due to the increased friction of the ropes in passing through the air. It would seem, therefore, that there is little, if any, advantage in running the ropes at more than 75 feet per second, or 4500 feet per minute. Many engineers are of the opinion that the most efficient speed is 4800 feet per minute.

Deflection or Sag of Ropes.-The deflection of the rope corresponding to a given tension is found by the formulæ on p. 490.

TELODYNAMIC TRANSMISSION.

This is the name given to the system of transmitting power to long distances by means of pulleys and wire ropes.

The ropes are made or iron or steel wires A rope has from six to ten strands twisted on a central hempen core. Each strand has usually a hempen core surrounded by from six to twelve wires. The cores are saturated with tar or boiled oil free from acid.

The wires have a diameter varying from 02 to 088 inch, and the diameter of the ropes varies from : 36 to $1 \cdot 28$ inch.

If $D=$ diameter of rope, $d=$ diameter of wires, and n - number of wires in rope, then from a number of examples it has been
found that

$$
\frac{D}{d} \text { varies from } \frac{n}{6}+3 \text { to } \frac{n}{7}+2 .
$$

The weight of the rope, in lbs. per foot of length, is about $3 \cdot 3 d^{2} n$.

The speed of the rope varies from 3000 to 6000 feet per minute, the average being about 4010 .

The pulleys are of large diameter (6 to 18 feet), and each carries one rope, unless it is a relay pulley, when it carries two.

The distance between the pulleys varies from 80 to $5(10$ feet. When it is required to transmit power to a greater distance than 500 feet (the distance may amount to several miles) it is done either by relays, as shown at (a), or by introducing guide pulleys, as shown at (b), so that the rope is supported at intervals not exceeding 500 feet. The guide pulleys under the tight or driving side have a diameter equal to that of the driving pulley, but those under the slack side may be of half that diameter.

Each pulley is fixed on a shaft, which is supported on bearings at each end. These bearings are carried by masonry, iron, or wood-framed piers, which are sufficiently high to prevent the rope touching the ground.

The direction of the rope may be changed by means of a horizontal guide pulley A, as shown at (c), but bevel wheels, as shown at (d), are generally used.

If $T_{1}=$ tension on tight side, $T_{2}=$ tension on slack side, $P=$ driving force, $V=$ velocity of rope in feet per minute, and $H=$ horse-power transmitted, then $H=\frac{P V}{33000}$.

In practice $T_{1}=2 T_{2}$, and therefore $P=T_{1}-T_{2}=T_{2}$.
Tensions in a Suspended Flexible Rope.-The curve in which a flexible rope $A C B$ hangs when suspended from points A and B is a catenary, but for questions on rope gearing it is sufficiently accurate to substitute for this curve a parabola. If the points A and B are at the same level (horizontal transmission), the vertex C of the parabola is vertically under the middle point E of $A B$. The construction for drawing the parabola is given on p .15 i

If the points A and B are at different levels (inclined transmission), the position of the vertex C is given by the following equations :-

The tension in the rope due to its weight varies from a minimum at its lowest point to a maximum at its highest point. Let $w=$ weight of rope in lbs. per foot of length, and let all distances be measured in feet.

$$
\begin{aligned}
& T=\text { tension, in lbs., at lowest point } C . \\
& T=\frac{w L^{2}}{8 \bar{h}} \text { for horizontal transmission. } \\
& T=\frac{w l_{1}^{2}}{2 h_{1}}=\frac{w l_{2}^{2}}{2 h_{2}} \text { for inclined transmission. }
\end{aligned}
$$

When a rope or ohain hangs in a catenary curve, the difference
between the tensions at any two points in the curve is equal to the weight of a portion of the rope or chain whose length is equal to the difference between the levels of the two points. Hence, neglecting the difference between the catenary and the parabola,

$$
\begin{array}{ll}
Q-T=w h . & Q=T+w h=\frac{w L^{2}}{8 h}+w h . \\
Q_{1}-T=w h_{1} . & Q_{1}=T+w h_{1}=\frac{w l_{1}^{2}}{2 h_{1}}+w h_{1} . \\
Q_{2}-T=w h_{2} . & Q_{2}=T+w h_{2}=\frac{w l_{2}^{2}}{2 h_{2}}+w h_{2} .
\end{array}
$$

Also, $Q_{2}-Q_{1}=w\left(h_{2}-h_{1}\right)$.

$$
\begin{aligned}
& h=\begin{array}{c}
Q \\
2 \ldots
\end{array}-\sqrt{Q_{1}} \begin{array}{c}
Q^{2} \\
4 w^{2}
\end{array}-\frac{L^{2}}{8} . \\
& h_{1}=\begin{array}{l}
Q_{1} \\
2 w
\end{array}-\sqrt{Q_{1}^{2-} l_{1}^{2}} \begin{array}{l}
4 w^{2}-\frac{l_{2}^{2}}{2}
\end{array} \quad \quad h_{2}=\begin{array}{l}
Q_{2} \\
2 w^{\prime}
\end{array}-\sqrt{\begin{array}{c}
Q_{2}^{2-} \bar{l}_{2}^{2} \\
4 w^{2-}
\end{array} .}
\end{aligned}
$$

Stresses in a Wire Rope when Transmitting Power.-
$f_{w}=$ stress, in lbs. per square inch, due to weight of rope per foot of length, the distance between the pulleys and the depth of the curve in which the rope hangs.
$f_{b}=$ stress, in lbs. per square inch, due to the bending of the rope on the pulley rim.
$f_{c}=$ stress, in lbs. per square inch, due to centrifugal force.
$f_{w}=\stackrel{4 Q}{\pi} d^{2} n=\frac{w\left(L^{2}+8 h^{2}\right)}{2 \pi d^{2} n h}$ for horizontal transmission,

$$
=\frac{4 Q_{2}}{\pi d^{2} n}=\begin{gathered}
2 w\left(l_{2}^{2}+2 h_{2}^{2}\right) \\
\pi d^{2} n h_{2}
\end{gathered} \text { for inclined transmission. }
$$

If $w=3 \cdot 3 d^{2} n$, then
$f_{w}=-\frac{525}{-2}\left(L^{2}+8 h^{2}\right)$ for horizontal transmission,
$=\frac{2 \cdot 1\left(l_{2}^{2}+2 h_{2}^{2}\right)}{h_{2}}$ for inclined transmission.
$f_{b}=\frac{E d}{2 R}$, where R is the radius of the pulley in inches, and
E the modulus of elasticity $=29,000,000$ for wroughtiron wire, and $30,000,000$ for steel wire.
$f_{c}=\frac{4 w v^{2}}{\pi d^{2} n g}=\cdot 13 v^{2}$, where v is the velocity of the rope in feet per second.
$f_{w}+f_{b}+f_{c}$ should not exceed $25,600 \mathrm{lbs}$. per square inch.

Horse-power Transmitted by a Wire Rope.-To find the horsepower which a wire rope will transmit, first determine f_{b} and f_{c} by the formulæ in the preceding article, then

$$
f_{w}=25600-\left(f_{b}+f_{c}\right), \quad \text { and horse-power }=I I=\frac{\pi d^{2} n f_{u} v}{26} 1000,
$$

where $d=$ diameter of wires, $n=$ number of wires in rope, and $V=$ speed of rope in feet per minute.

For rough calculations the following formula may be used :-

$$
H=\frac{d^{2} n}{7} V .
$$

Efficiency of Telodynamic Transmission.-According to the results of experiments by Ziegler, the efficiency of one relay is $\cdot 962$, and if there are altogether m stations, the efficiency of the whole $=e=\sqrt{ } \cdot 962^{m}$.

$m=$	2					
$e=962$	3	4	5	6	7	8
.944	.925	.908	89	.873	.856	

Horse-power Transmitted for each Wire of a Wire Rope.-

Diameter ofWire.	Suitable Diameter of Pulley.	Speed of Rope in Feet per Mmute.					
		3000	3600	4200	4800	5400	6000
I.S.W.G. Inch.		Horse-power Transmitted for each wire.					
	Ft. In						
$25 \cdot 020$	40	$\cdot 182$	216	-249	280	-309	-337
24.022	43	-220	-262	-301	-339	:374	$\cdot 408$
23 .024	49	262	311	$\cdot 358$	403	-446	-485
22 - 028	56	$\cdot 357$	-424	-488	. 549	$\cdot 697$	660
21.032	63	-467	$\cdot 554$	-638	$\cdot 717$	793	863
20	73	91	701	-807	. 908	1.00	1.09
$19 \quad 040$	80	$\cdot 730$. 866	-997	$1 \cdot 12$	1.23	$1 \cdot 34$
$18 \quad .048$.	1.05	1.24	$1 \cdot 43$	$1 \cdot 61$	1.78	$1 \cdot 94$
17 : 056	113	1.43	$1 \cdot 69$	$1 \cdot 95$	$2 \cdot 19$	$2 \cdot 42$	$2 \cdot 64$
16.064	12	1.86	$2 \cdot 21$	2•55	$2 \cdot 87$	$3 \cdot 17$	$3 \cdot 45$
$15 \quad .072$	143	$2 \cdot 36$	$2 \cdot 80$	$3 \cdot 23$	3.63	$4 \cdot 01$	$4 \cdot 36$
14.080	160	$2 \cdot 92$	3.46	$3 \cdot 98$	$4 \cdot 48$	$4 \cdot 95$	$5 \cdot 39$
13 .092	183	$3 \cdot 86$	$4 \cdot 58$	$5 \cdot 27$	$5 \cdot 93$	$6 \cdot 55$	
Stress Due to Weight and Curve of Rope.							
Tight side		12775	12632	12463	12268	12047	11800
Slack side		6387	6316	6231	6134	6023	5900

The horse-power transmitted by the whole rope is obtained by multiplying the horse-power transmitted by one wire by the total number of wires in the rope.

The foregoing table has been calculated a, follows :-
Stress due to bending $=f_{b}=E \times \begin{gathered}d \\ 2 \bar{R}\end{gathered}=30 \Leftrightarrow \mu O O O O \times \begin{gathered}1 \\ 24(0)\end{gathered}=12500$.
Stress due to centrifugal force $=f_{c}=13 v^{2}$.
Total stress $=25600$.
Stress on tight side due to weight of wire and the curve in which it hangs $=f_{u}=25600-12500-\cdot 13 v^{2}=13100-\cdot 13 r^{2}$.
Load on tight side due to weight and curve of wire $=T_{1}=\frac{\pi}{4} d^{2} f_{w}$.
Load on slack side due to wenght and curve of wire $=T_{2}=\frac{1}{2} T_{1}$.
Driving force $=P=T_{1}-T_{2}=\frac{\pi}{8} d^{2} f_{w}$.
Horse - power $=\begin{aligned} & P V^{r} \\ & 33(1) 0\end{aligned}=\frac{d^{2} f_{w} V^{r}}{84000}=\frac{d^{2} f_{w} v}{1400}$
Deflection of Ropes in Telodynamic Transmission. - The formula, given on p. 490, for the deflection of the rope is-

$$
\begin{aligned}
& h=\frac{Q}{2 w^{-}}-\sqrt{Q^{\overline{2}}} 4 w^{2}-\frac{\overline{L^{2}}}{8}, \\
& \text { but } Q={ }_{4}^{\pi} d^{2} n f_{u} \text {, and } w=3: 3 d^{2} n \text {, } \\
& \text { hence } h=\frac{f_{w}}{\psi \cdot 4}-\sqrt{\left(\frac{f_{w}}{8 \cdot 4}\right)^{2}}-\frac{L^{2}}{8} . \\
& h \text { is nearly equal to } \stackrel{\stackrel{5}{0} 252 L^{2}}{f_{w}} \text {. }
\end{aligned}
$$

The following table gives values of h for the tight and slack sides of the rope for the stresses corresponding to speeds of 3000 and 6000 feet per minute given in the table on the preceding page :-

Stress. (f_{w})	Span in Feet (L)						
	100	150	200			350	400
	Veflection in Feet (h).						
\{ 12775	$\cdot 41$. 93	$1 \cdot 64$	2.57	$3 \cdot 70$	$5 \cdot 04$	$6 \cdot 58$
6387	$\cdot 82$	185	3:30	5-16	$7 \cdot 44$	$10 \cdot 14$	$13 \cdot 27$
\{ 11800	$\cdot 45$	1.00	1.78	2.78	$4 \cdot 02$	$5 \cdot 47$	7-14
$\{5900$	$\cdot 89$	2.00	3.57	5.58	$8 \cdot 06$	10.98	14.38

Pulleys for Telodynamic Transmission.-These are usually from 6 to 18 feet in diameter, or from 2000 to 2800 times the diameter of the wires forming the rope. They may be made entirely of cast-iron, or they may have wrought-iron arms and cast-iron rims and bosses. The form of the rim of a pulley carrying one rope is shown at (a), and the form of the rim of a pulley for two

ropes at a relay station is shown at (b). The dovetailed recess at the bottom of the groove is generally filled with leather, but wood, guttapercha, tarred oakum, and tarred jute yarn are also used. When leather is used for filling the recess, it may be cut into pieces from the hide or from scrap by means of a die to the shape of the recess, and then placed in on edge.

Weight of Pulleys for Telodynamic Transmission. -According to M. Achard,* the weights of the most ordinary sizes of pulleys employed, including their shafts, are on an average as given in the adjoining table.

Diameter.	Single- Groove Pulley.	Ibuble- Groove Pulley.	
Ft.	In.	Lbs.	Lbs.
7	0	798	1164
12	4	2425	4078
14	9	5180	6988
18	0	6232	8267

FRICTION GEARING.

The driving power of friction wheels is increased if one of a pair is faced with wood, as shown at (a) for cylindrical, and at (b) for bevel wheels. The grain of the wood should lie in a tangential direction to the working surface. The different layers of wood are nailed together and further secured by glue or white lead. Maple is the best wood for this purpose. Instead of wood, leather or paper may be used, put on in layers, the edges of the layers forming the working surface. The wheel which

[^38]is faced with wood, leather, or paper should be the driver, the follower being made of cast-iron.

In Robertson's friction gearing the wheels are made of castiron, and they are grooved, as shown at (c). The angle between the sides of the grooves is usually 40°. When first introduced, the inventor recommended a pitch of $\frac{1}{8}$ inch to $\frac{9}{4}$ inch, but a much larger pitch has been used in some cases.

Friction gearing is most efficient when the force to be trans. mitted is comparatively small and the speed high.
Force Required to keep Friction Wheels in Gear.-

$P=$ tangential driving force.
$\mu=$ coefficient of friction between the surfaces in contact.
$=\frac{1}{6}$ for metal on metal, and $\frac{1}{8}$ for wood on metal.
$Q=$ force pressing wheels together.
For cylindrical wheels, $Q=P$, and $P=\mu Q$.
For Robertson's friction gearing, $Q=3 P$ when the angle of the grooves is 40°.

For bevel wheels,

$$
Q_{1}=\frac{P D_{1}}{\mu \sqrt{D_{1}^{2}+D_{9}^{2}}} \text { and } Q_{2}=\frac{P D_{2}}{\mu \sqrt{D_{1}^{2}+D_{3}^{2}}}
$$

Power Transmitted by Friction Gearing. -

$V=$ velocity of surfaces in contact, in feet per minute.
$P=$ tangential driving force, in lbs.
$H=$ horse-power transmitted.

$$
H=\frac{P V}{33000} .
$$

When the driver is faced with soft maple, P may be taken at about 30 lbs . per inch width of face, and at about 15 to 20 lbs . per inch width of face when the driver is faced with basswood or pine.

TOOTHED GEARING.

(Revised by David Brown \& Sons (Hudd.), Ltd., Huddersfield.)
Gears are used to transmit motion positively from one shaft to another.

Types.-(1) Spur or helical gears for parallel shafts.
(2) Straight bevel or spiral bevel gears for shafts whose axes intersect.
(3) Spiral gears, hypoid gears, or worm gears for shafts whose axes are not parallel and do not intersect.

Gears for Parallel Shafts.

Shape of Tooth. -The essential requirement is that the ratio of angular velocities of the gears is the same in all phases of engagement. This is satisfied if the common normal to the tooth surfaces at any point of contact passes through a fixed point. There are several curves which meet the fundamental requirement, but in modern practice the involute tooth form is
 almost universal.

Let $A B$ and $C E$ be the pitch circles, and P the pitch point. Through P draw the straight line MPN, and draw circles S_{1} and S_{2} concentrio with the pitch circles to touch MPN. Teeth whose curves are involutes of the circles S_{1} and S_{2} will work correotly together. The line $L K$, part of $M N$, is the path of contact, that is, the line which contains the point where the two involutes touch one another.
If the centres of the gears be pushed further apart or closer together, the wheels will still work correotly together. This is a special property of involute teeth, and is a valuable one in
cases where the distance between the axes of two wheels cannot be kept constant.

The involute is the curve traced by the end of a taut string unwound from a circular disc which represents the base circle, S_{1} or S_{2}. The curvature at any point on an involute gear tooth depends on the distance of the point from the base circle. A rack is a part of a gear of infinite diameter; the teeth of an involute rack have infinite radius of curvature, i.e. they are straight-sided. The angle between the side of the tooth and a line perpendicular to the length of the rack is called the pressure angle (ψ).

Such rack teeth describe involute gear teeth on the plane of any pitch circle of radius r rolled along a straight line parallel to the length of the rack. The radius of the base circle is $r \cos \psi$.

Should any part of the rack tooth come within the base circle, part of the gear tooth profile is ineffective. Should any part of the rack tooth come within a distance $r \cos ^{2} \psi$ of the centre of the circle, the gear tooth is undercut. The rolling circle is the pitch circle.

The process of cutting gear teeth by rolling the blank with a cutter in the form of a rack (or other gear) or its equivalent is called generation. Nearly all modern gear-cutting machines operate on the generating principle, and with them it is unnecessary, so far as gear production is concerned, to draw the desired tooth shape. It may be done, however, by rolling a sector of the required pitch radius along a straight edge to which is fixed a template in the shape of the rack tooth and tracing the form of the rack tooth (in numerous positions) on a card attached to the sector. A flexible metal strip attached to sector and straight edge ensures rolling without slip.

Proportions of Teeth.-The nominal or circular pitch (p) of a gear is the distance between similar flanks of adjacent teeth measured along the pitch circle.

The addendum is the radial length of tooth lying outside the pitch circle, the dedendum is the radial length lying inside the
 pitch oircle.
For spur and helical gears the addendum (a) and dedendum (b), corrected to prevent undercutting, are given by

$$
\begin{array}{ll}
a_{p}=\frac{p}{\pi}\left[1+0.4\left(1-\frac{t}{T}\right)\right], & a_{w}=\frac{p}{\pi}\left[1-0.4\left(1-\frac{t}{T}\right)\right] \\
b_{y}=0.716 p-a_{\infty} & b_{\omega}=0.716 p-a_{w}
\end{array}
$$

where the suffix p refers to the pinion (the gear with the smaller number of teeth) and w to the mating gear or wheel.
$t=$ number of teeth in pinion.
$T=$ number of teeth in wheel.
The old Brown and Sharpe standards are given by

$$
a_{p}=a_{w}=\frac{p}{\pi} \text { and } b_{p}=b_{w}=\frac{1 \cdot 157 p}{\pi} .
$$

The British Standard pressure angle is 20°, although an older standard ($14 \frac{1}{2}^{\circ}$) is frequently employed because of existing cutter stocks.

The diametral pitch (P) is the number of teeth divided by the pitch circle diameter (D) in inches.

Since $t p=\pi D$ and $P=t / D$, therefore $P=\pi / p$.
Integral values of P up to 8 are standardised, together with $1 \frac{1}{4}, 1 \frac{1}{2}, 1 \frac{4}{4}, 2 \frac{1}{4}, 2 \frac{1}{4}, 2 \frac{3}{4}, 3 \frac{1}{2}, 10,12,14,16,20,24$.

The module is the pitch circle diameter, in inches or millimetres, divided by the number of teeth, and the units intended should be specified.

Relation between Number and Pitch of Teeth and Diameter of Pitch Circle.
$D=$ diameter of pitch circle. $\quad p=$ pitch (circular) of teeth. $t=$ number of teeth in wheel. $\pi=3 \cdot 14159265$.

$$
t p=\pi D . \quad t=\frac{\pi}{p} D . \quad p=\frac{\pi}{t} D . \quad D=\frac{p}{\pi} t .
$$

The table below will simplify the use of the above formule -

p	$\frac{\pi}{p}$	$\frac{p}{\pi}$	p	$\frac{\pi}{p}$	$\frac{p}{\pi}$
$\frac{1}{2}$	6.2832	$\cdot 1592$	3	1.0472	. 9549
$\stackrel{\square}{18}$	$5 \cdot 5851$	$\cdot 1790$	31	1.0053	-9947
8	$5 \cdot 0265$	-1989		$\cdot 9666$	$1 \cdot 0345$
37	$4 \cdot 5696$	-2188	38	-9308	1.0743
8	$4 \cdot 1888$	-2387	32	-8976	1.1141
18	$3 \cdot 8666$	$\stackrel{-2586}{ }$	$3{ }^{38}$	-8666	$1 \cdot 1539$
7	$3 \cdot 5904$	$\stackrel{2785}{ }$		-8378	1-1937
18	$3 \cdot 3510$	-2984	37	-8107	1.2335
1	$3 \cdot 1416$	-3183	4	$\cdot 7854$	$1 \cdot 2732$
${ }_{17}^{1 \frac{1}{18}}$	$2 \cdot 9568$	$\cdot 3382$	418	$\cdot 7616$	1.3130
118	$2 \cdot 7925$	-3581		$\cdot 7392$	$1 \cdot 3528$
$1{ }^{18}$	$2 \cdot 6456$	-3780	48	$\cdot 7181$	$1 \cdot 3926$
11	$2 \cdot 5133$	-3979	42	-6981	1.4324
$1{ }_{18}^{88}$	$2 \cdot 3936$	$\cdot 4178$	488	-6793	1.4722
18	$2 \cdot 2848$	$\cdot 4377$		-6614	1.5120
$1{ }_{18}^{18}$	$2 \cdot 1855$	$\cdot 4576$	47	$\cdot 6444$	1.5518
11 ${ }^{1}$	2.0944	$\cdot 4775$	5	-6283	1.5916
18	2.0106	${ }^{-4974}$	54	-5984	$1 \cdot 6711$
15	1.9333	$\cdot 5173$		-5712	1.7507
$1+8$	1.8617	$\cdot 5371$	54	-5464	1.8303
18	1.7952	$\cdot 5570$	6	-5236	1.9099
174	1.7333	- 5769	64	-5027	1.9894
17	16755	${ }^{5} 5968$		$\cdot 4833$	2.0690
$14 \frac{5}{8}$	$1 \cdot 6215$	$\cdot 6167$	69	$\cdot 4654$	$2 \cdot 1486$
2	1.5708	-6366	7	$\cdot 4488$	$2 \cdot 2282$
$2{ }^{21}$	$1 \cdot 4784$	$\cdot 6764$	73	$\cdot 4333$	$2 \cdot 3077$
21	1.3963	$\cdot 7162$		-4189	$2 \cdot 3873$
2 ${ }^{\text {a }}$	1.3228	$\cdot 7560$	$7 \frac{8}{4}$	-4054	$2 \cdot 4669$
21	12566	-7958	8	-3927	2.5465
28	1-1968	. 8385	$8 \frac{1}{2}$	-3696	$2 \cdot 7056$
28	$1 \cdot 1424$	-8754		-3491	2.8648
27	1.0927	-9151	91	-3307	3.0239

Helical Teeth. -Smoother action in gears connecting parallel shafts may be secured by setting the teeth at an angle to the axes of the shafts. Such gears are called single helical gears. The teeth are in the form of helices which are right-handed on one gear and left-handed on the other. The ratio of the leads of the helices must be the ratio of the numbers of teeth.

Single helical gears whose helix angles are not equal and opposite may be meshed together with shafts making an angle equal to the sum of the helix angles (reckoning right hand as positive and left hand as negative). Such gears are known as spiral gears, except in the special case where the shafts are parallel, when they are described as helical gears.

A rack which meshes with an involute helical gear has straightsided teeth. A section of the rack on a plane perpendicular to the axis of the gear shows a rack form whose pressure angle is the transverse pressure angle of the gear. A section on a plane perpendicular to the direction of the rack teeth shows a rack form whose pressure angle is the normal pressure angle of the gear.
If $L=$ lead of helix,
$r=$ radius of pitch circle,
$r_{0}=$ radius of base circle,
$\sigma=$ helix angle at pitch circle,
$\psi_{t}=$ transverse pressure angle,
$\psi_{n}=$ normal pressure angle,

$$
\begin{gathered}
\cos \psi_{t}=r / r_{0}, \quad \tan \sigma=\frac{2 \pi r}{L}, \\
\tan \psi_{n}=\tan \psi_{t} \cos \sigma
\end{gathered}
$$

In British Standard practice, $\psi_{n}=20^{\circ}$ and $\sigma=30^{\circ}$.
Double Helical Gears (Range of ratio-unity to 12).-By making each of the gears connecting parallel shafts in the form of two helical gears of equal lead and opposite hand, the total end thrust on each shaft is zero. This assumes that one of the shafts is mounted with some axial float so that it may adjust

CONTNUOLS

etaggered

ON-LINE
itself to the axial position which gives equal tooth load on each helix.
The teeth of such gears may be continuous, but if not, they may be either staggered or in-line. The most accurate process (hobbing) for producing the teeth demands a gap between the
helices to provide clearance for the hob. Hobbed double helical gears are successfully used at pitch circle speeds up to 15,000 feet per minute.

Triple Helical Teeth.-Occasional use of triple helical teeth is due to imaginary advantages. These teeth cannot be produced with the accuracy practicable in double helical gears.

Gears for Non-parallel Shafts.

Bevel Gears (Range of ratio-unity to 8).-The pitch surfaces of bevel gears are portions of cones having the intersection of the shaft axes as a common vertex. The tooth elements (pitch, addendum, dedendum) diminish as the vertex is approached. The nominal elements are those applying to the outermost section of the tooth.

If corresponding points on different sections of a tooth lie on a straight line passing through the point of intersection of the shaft axes, the gear is a straight tooth bevel gear.

If they lie on a line or curve inclined to straight lines passing through the vertex, the gear is a single helical bevel or spiral bevel gear.

Gears of these types have the advantage of quieter operation. The Gleason process, in which the teeth are approximately circular arcs, is the most widely used method of producing spiral bevel gears.

Double helical bevel gears have been used, but they cannot be produced with any very high degree of accuracy.
A bevel gear of 90° pitch angle is known as a crown wheel.

A pair of bevel gears may be regarded as meshing simultaneously with an imaginary crown wheel whose teeth are straight-sided.

Hypoid Gears (Range of ratio-unity to 6).-This is a modification of the spiral bevel gear, the axes of the mating gears being perpendicular but not intersecting. The offset or distance between the axes is usually limited to about one-tenth of the diameter of the wheel. Production of hypoid gears demands highly specialised plant and experience.

The hypoid type of gear was primarily developed for automobile rear axles, the chief advantage being that it permits of a lower propeller shaft line than does the normal spiral bevel drive. In industrial service the hypoid gear is also occasionally advantageous in that it permits the two shafts to be extended past each other, a condition which is of course impossible with spiral bevel gears.

Worm Gears (Range of ratio-unity to 100).-This type of gear is used for shafts whose axes do not intersect; in nearly every case they are perpendicular to each other. The worm gear was originally used only for high reduction ratios, but the useful range extends down to unity.

The worm is nearly always the smaller member, and is usually parallel, i.e. of uniform external diameter, although hollow-faced or hour-glass worms are still used. The mating gear, the worm wheel, generally has teeth curved to match the circular orosssection of the worm.

One form of worm thread used is straight-sided on a section containing the axis of the worm, but the British Standard worm thread is involute in a section perpendicular to the axis of the worm, the normal pressure angle being 20°.

The worm wheel teeth are of complicated form, and they are generated by a cutter (or hob) which corresponds in dimensions to the mating worm.

The worm is essentially a helical gear with helix angle usually greater than 45°. The complement of the helix angle is called the lead angle.

The teeth of a worm are described as threads, and the reduction ratio is $\frac{\text { Number of teeth in worm wheel }}{\text { Number of threads in worm }}$.

Highest efficiency requires a lead angle in the neighbourhood of 45°, but this is impractioable in high-ratio worm gears because it would require an excessively slender worm.

The amount of relative sliding of the contacting surfaces is comparatively large in worm gears, and it is therefore important to minimise the coefficient of friction between them. The best combination of load capacity and low friction is obtained by making the worm from oase-hardened ateel and precimion.
grinding the threads, the worm wheel being of phosphor-bronze. To reduce cost, large worm wheels are often made in the form of a bronze ring fixed to a cast-iron centre.

Velocity Ratio or Reduction Ratio.-
$\binom{$ Reduction ratio R of }{ train of gears }$=\frac{\text { Revolutions of driving gear }}{\text { Corresponding revolutions of driven gear }}$.
If axes of gears are fixed,

$$
R=\frac{\text { Product of numbers of teeth in driven gears }}{\text { Product of numbers of teeth in driving gears }}
$$

In epicyclic gear trains not all the axes are fixed. Let gears be A, B, C, etc. Assuming axes to be fixed in position, gear A is imagined to turn through angle a. Let b, c, d, etc., be corresponding angles of rotation of B, C, D, etc.

Now, if in the actual assembly gear P is fixed, relative angular movements are

$$
a-p, \quad b-p, \quad c-p, \quad \text { etc., }
$$

and reduction ratio between any two members, say C and E, is

$$
\frac{c-p}{e-p}
$$

Example of Epicyclic Gear Train.-The member F rotates and carries a spindle G on which the double gear $B D$ rotates freely. The internal gear C is fixed. Rotation of A causes rotation of F and of all the other gears except C.

To find the reduction ratios of the train, assume F to be fixed and C free. Then if A rotates through an angle a, and the letters A, B, C, D, E denote the numbers of teeth in the respective gears, the angular movements are those shown in the second column of the table below.

A	a	$a\left(1+\frac{A}{C}\right)$
$B D$	$-\frac{A}{B} a$	$a\left(\frac{A}{\bar{C}}-\frac{A}{\bar{B}}\right)$
C	$-\frac{A}{\bar{C}} a$	0
E	$-\frac{A}{B} \frac{D}{\bar{K}} a$	$a\left(\frac{A}{\bar{C}}-\frac{A}{B} \frac{D}{E}\right)$
F	0	$a \frac{A}{\bar{D}}$

Since C is stationary in the actual assembly, $-\frac{A}{\bar{C}} a$ is subtracted from each of the quantities in the second column, giving those in the third column. Hence the reduction ratio between (say) A and E is $\left(1+\frac{A}{\bar{C}}\right) /\left(\frac{A}{\bar{C}}-\frac{A}{B} \frac{D}{E}\right)$.

Load Capacity of Gears.

The safe load for a pair of gears is limited either by surface pressure on the teeth or by bending stress near the roots of the teeth. For a given effective driving force per unit face, the surface pressure is determined largely by the diameter of the gear, and is almost independent of pitch. The bending stress depends largely on pitch, and is only slightly affected by changes in diameter.

Permissible stress depends on frequency of application (i.e. rotational speed) and length of life expected. In worm gears the permissible stress is also controlled by rubbing speed.

Spur and Helical Gears.-Permissible load (lbs.) per inch width of face on basis of surface pressure $=V M A \frac{d^{0.8}}{1+r}$,
where $V=$ speed factor (Table 1).
$M=$ material factor (Table 2).
$A=$ type factor (Table 3).
$d=$ pitch diameter (in.) of pinion.
$r=\frac{\text { pitch diameter of pinion }}{\text { pitch diameter of wheel }}$.
Formula (1) must be worked out for both pinion and wheel, with appropriate values of V and M.

Permissible load (lbs.) per inch width of face on basis of bending stress $=V N B F m$,
where $V=$ speed factor (Table 1).
$N=$ material factor (Table 2).
$B=$ type factor (Table 4).
$F=$ strength factor (Table 5).
$m=\frac{\text { pitch diameter }}{\text { number of teeth }}$.
Formula (2) must be worked out for both pinion and wheel, with appropriate values of V, N, and F.

Bevel Gears.-The load capacities are determined by the above formulm with these modifications. In (1), write $d \sqrt{ }\left(1+r^{2}\right)$ instead of d and r^{2} instead of r. In finding F from Table 5 , use as the number of teeth in the pinion the actual number
multiplied by $\sqrt{ }\left(1+r^{2}\right)$, and for the wheel multiply the number of teeth by $\sqrt{\left(1+\frac{1}{r^{2}}\right) \text {. }}$

$$
\text { Take } m=\frac{\text { Diameter at mid-point of face width }}{\text { Number of teeth }} .
$$

The permissible load thus calculated is taken as acting at the mid-point of the face width.

Worm Gears.-Permissible load (lbs.) per inch width of wheel $\mathrm{face}=G H D^{0.8}$
on basis of surface pressure, where $D=$ pitch diameter of worm wheel (in.).
$G=$ surface stress factor (from Table 6).
$H=$ load application factor (from Table 7).
Those material-combinations, for which no value of G is given in Table 6, are not recommended.

Permissible load (lbs.) per inch width of wheel face on basis of tooth breakage $=13 V M p_{n}$.
where $V=$ speed factor (Table 1).
$M=$ breaking stress factor (Table 6).
$p_{n}=$ normal pitch.
The values of V and M are to be taken for both worm and worm wheel, and the lower of the two results is to be used.

Table 1.
Speed Factors V.

R.P.M.	V.	R.P.M.	V.
1	420	300	158
5	345	400	150
10	300	500	144
20	275	750	132
40	250	1000	125
60	209	1250	118
80	201	1500	113
100	194	2000	105
150	179	3000	99
200	170	4000	93
250	165	5000	79

Table 2.
 Material Factors M and N.

	$\begin{aligned} & \text { Tensile } \\ & \text { Strength } \\ & \text { (tons per } \\ & \text { sq. m.). } \end{aligned}$	$\begin{aligned} & \text { Brinell } \\ & \text { No. } \end{aligned}$	M.	N.
$3 \frac{1}{2} \% \mathrm{Ni}$ case-hardened steel	40	550	6.7	2.7
$3 \frac{1}{2} \% \mathrm{Ni} .1 \% \mathrm{Cr}$ steel	55	240	2.0	2.0
0.55\% carbon steel	45	200	$1 \cdot 3$	1.5
0.4% carbon steel	35	145	1.0	1.3
Phosphor-bronze	15	80	0.55	0.55
Cast-iron .	12	180	0.75	$0 \cdot 4$

Table 3.
 Type Factors A.

Type of Gear.				
Helix Angle.	Normal Pressure Angle.		Normal Pressure Angle.	
	20°	147°	20°	141°
0°	0.75	0.68	0.56	0.5
$22 \frac{1}{2}^{\circ}$	0.87	0.8	0.66	$0 \cdot 6$
30°	1.0	0.9	0.75	0.68
45°	1.0	0.9	$0 \cdot 75$	0.68

Table 4.
Type Factors B．

Type of Gear．			Bevel．	
Helix Angle．	Normal Pressure Angle．		Normal Pressure Angle．	
	20°	$14 \frac{1}{2}^{\circ}$	20°	14i ${ }^{\circ}$
0°	31	28	29	$23 \cdot 5$
$22 \frac{1}{2}^{\circ}$	28.5	$25 \cdot 7$	$26 \cdot 7$	21.5
30°	26	$23 \cdot 5$	$24 \cdot 5$	19.5
45°	$17 \cdot 5$	$15 \cdot 5$	16.5	$13 \cdot 0$

Table 5.
 Strength Factors F．

岗告，	Number of Teeth in Mating Gear．									
言苟可	14	17	20	25	30	40	50	75	100	400
14	0.86	0.90	0.94	1.02	$1 \cdot 10$	$1 \cdot 17$	1.20	1.24	1.26	$1 \cdot 4$
17	$0 \cdot 88$	0.96	1.00	1.07	$1 \cdot 15$	$1 \cdot 22$	$1 \cdot 27$	1.31	1.35	$1 \cdot 44$
20	0.90	1.0	1.08	1－16	$1 \cdot 22$	1.28	1.33	1－38	$1 \cdot 40$	1.48
25	1.0	1.06	$1 \cdot 16$	1－24	$1 \cdot 28$	1.34	1.39	$1 \cdot 44$	$1 \cdot 46$	1.52
30	1.1	1.16	$1 \cdot 25$	$1 \cdot 30$	$1 \cdot 35$	$1 \cdot 40$	$1 \cdot 45$	1.50	1.52	1.60
40	1.2	1.25	$1 \cdot 30$	1.36	1.4	1.44	$1 \cdot 50$	1.54	1.57	1.70
50	1.25	1.30	1.35	$1 \cdot 40$	1.44	1.48	1.54	1.57	1.60	1.73
75	1.3	1.35	$1 \cdot 40$	1.43	1.47	1.50	1.56	$1 \cdot 60$	1.64	1.75
100	1.35	1.39	1.43	1.46	1.49	1.52	1.57	$1 \cdot 62$	1.68	1.77
400	1.4	$1 \cdot 42$	1.46	1.48	1.50	1.54	1.58	$1 \cdot 64$	1.70	1.8

Table 6.

Breaking Stress Factors M and Surface Stress Factors \mathbf{G} for Worm Gears.

Material.	M	G when working with			
		(Oase-	$\stackrel{0}{0.55 \%} \mathbf{O}$ Steel.	Phosphorbronze.	Oast-iron.
Case-hardened steel	6.7	34	-•	115	69
0.55% carbon steel	$1 \cdot 3$			34	19
Phosphor-bronze	0.55	27	$15 \cdot 5$		13.5
Cast-iron	0.75	13	10	15.5	10

Table 7.
Load Application Factors H for Worm Gears.

R.P.M.	Rubbing Speed (Ft. per Min.).										
	0	5	10	25	50	100	250	500	750	1000	1500
0	20	18	15	13.6	$12 \cdot 8$	11.8	$10 \cdot 4$	$9 \cdot 5$	8.8	$8 \cdot 4$	7.8
5	18	14-5	13.6	$12 \cdot 6$	11.6	10.6	$9 \cdot 6$	$8 \cdot 6$	8.0	$7 \cdot 5$	$7 \cdot 0$
10	15	13	12.0	11.4	$10 \cdot 6$	9.8	$8 \cdot 6$	$7 \cdot 6$	$7 \cdot 2$	6.8	$6 \cdot 4$
25	12	11.2	10.3	$9 \cdot 8$	9.0	8.1	$7 \cdot 3$	$6 \cdot 6$	$6 \cdot 2$	5.9	$5 \cdot 6$
50	11	10.6	$9 \cdot 6$	9.2	8.4	$7 \cdot 6$	6.8	$6 \cdot 2$	$5 \cdot 8$	$5 \cdot 5$	$5 \cdot 1$
100	10	$9 \cdot 2$	$8 \cdot 6$	$7 \cdot 8$	$7 \cdot 2$	6.8	6.0	$5 \cdot 4$	$5 \cdot 0$	4.7	$4 \cdot 4$
250	8	$7 \cdot 4$	6.7	$6 \cdot 1$	$5 \cdot 7$	5.5	4.9	$4 \cdot 4$	$4 \cdot 1$	3.8	$3 \cdot 5$
500	6.5	$6 \cdot 1$	5.8	$5 \cdot 1$	4.7	$4 \cdot 5$	$4 \cdot 0$	$3 \cdot 6$	$3 \cdot 4$	$3 \cdot 2$	2.9
750	$5 \cdot 5$	$5 \cdot 3$	$5 \cdot 0$	$4 \cdot 4$	4.0	$3 \cdot 9$	$3 \cdot 5$	$3 \cdot 1$	$2 \cdot 95$	$2 \cdot 8$	$2 \cdot 6$
1000	$5 \cdot 3$	$4 \cdot 8$	4.5	$4 \cdot 1$	$3 \cdot 8$	$3 \cdot 5$	$3 \cdot 1$	$2 \cdot 8$	$2 \cdot 6$	2.5	$2 \cdot 3$
1500	4.7	$4 \cdot 4$	$4 \cdot 1$	3.7	$3 \cdot 4$	$3 \cdot 1$	$2 \cdot 7$	2.5	$2 \cdot 4$	$2 \cdot 2$	$2 \cdot 0$
2000	$4 \cdot 2$	$3 \cdot 8$	3.9	2.2	3.0	2.8	$2 \cdot 5$	$2 \cdot 2$	$2 \cdot 1$	$2 \cdot 0$	1.8

Rims of Gear Wheels. -

The proportions marked on the above illustrations are in terms of the pitch p of the teeth.

The adjacent illustrations show examples of the rims of gear wheels which are made in segments.

Arms of Gear Wheels. -
$P=$ driving force at pitch line in lbs.
$R=$ radius of pitch circle in inches.
$p=$ pitch of teeth in inches.
$b=$ breadth of teeth in inches.
$m=$ number of arms in wheel.
$f=$ working stress in lbs. per square inch.
The bending moment on each arm is approximately $\frac{P R}{m}$, and this must be equated to the moment of resistance of the arm to bending.

For the oval section shown above the moment of resistanoe to bending may be taken equal to $\cdot 05 B^{3} f$.

For the other sections shown it will be sufficiently accurate to take their moment of resistance to bending equal to $\frac{1}{6} B^{2} t f$.

For the oval section $\frac{P R}{m}={ }^{\circ} 05 B^{3} f$, and $B=\sqrt[s]{\frac{20 P R}{m f}}$.
For the other sections $\frac{P R}{m}=\frac{1}{6} B^{2} t f$, and $B=\sqrt{\frac{6 P R}{m t f}}$.
Putting $P={ }_{17 \cdot 5}^{b p f}, t=48 p$ in the + and T sections, $\frac{t}{2}=48 p$ in the I section, and taking the stress in the arms equal to fivesevenths of the stress in the teeth, to allow for the initial straining actions due to unequal contraction in the mould, and also for the possible unequal distribution of the bending action on the arms, we get,

$$
\begin{aligned}
& B=\sqrt[8]{\frac{1 \cdot 6 b p R}{m}} \text { for the oval section, } \\
& B=\sqrt{\frac{b R}{m}} \text { for the }+ \text { and } T \text { sections, and } \\
& B=\sqrt{\frac{b R}{2 m}} \text { for the } I \text { section. }
\end{aligned}
$$

In each case B is measured at the centre of the wheel, supposing the arm to be produced to that point.

The breadth measured at the pitch line may be $B-04 R$.
The mean thickness of the ribs or web may be $4 p$.
The number of arms is approximately $m=\frac{D}{36}+4$, where D is the diameter of the pitch circle in inches m is generally an even number.

Wheel Bosses.-

Thickness of boss $=t_{1}=\frac{\sqrt[3]{b p R}}{3}$.
Another rule is, $t_{1}=\cdot 8 p+\cdot 02 R$.
Length of boss $=l=b$ to $1 \cdot 4 b$.

Steel or wrought-iron hoops shrunk on to the bosses of large wheels, as shown above, may have the following proportions:-

$$
t_{8}=\frac{2}{3} t_{1} ; \quad b_{1}=\frac{7}{8} t_{3}
$$

Thickness of boss under the rings $=t_{2}=\frac{3}{4} t_{1}$.

ORANKS.

Overhung Crank Pins.-

$d=$ diameter of pin in inches.
$l=$ length of journal in inches.
$P=$ load on pin in lbs.
$p=$ pressure on journal in lbs. per square inch of " projected area." (Projected area of journal $=d l$.)
 inch.

$$
d=\frac{1 \cdot 5 \sqrt{ }}{\sqrt[4]{p f}}=K \sqrt{ } P . \quad \frac{l}{d}=\frac{4}{9} \sqrt{\frac{f}{p}}=0
$$

The following table gives values of K^{\prime} and C for various values of p and f :

p	$f=6500$		$f=8000$		$f=9500$		$f=11,000$		$f=12,500$	
	k	0	K	c^{\prime}	K	C	K	C^{\prime}	K	${ }^{\prime}$
200	${ }^{0} 1{ }^{\prime}$	2:\%	$\cdot(12$	$2 \cdot 81$	$\cdot 010$	$3 \cdot 6$	-(039	330	()38	$3 \cdot 51$
300	-(040	$2 \cdot 0$	-038	2:30	$\cdot 037$	$2 \cdot 50$	-0:3\%	$2 \cdot 69$	-134	2×7
400	$\cdot 0: 37$	179	-035	$1 \cdot 99$	-031	$2 \cdot 17$	$\cdot 1033$	2-3:3	$\cdot 1032$	$2 \cdot 48$
500	-0,35	160	- 034	1.78	-0:32	$1 \cdot 94$	- 031	$2 \cdot 08$	1130	2×22
600	-034	146	-032	162	$\cdot 031$	177	(130)	190	$\cdot(029$	2.03
700	$\cdot 032$	$1 \cdot 35$	-031	1.50	${ }^{\circ} 030$	$1 \cdot 64$	-(1)9	1.76	(028	1.88
800	-0,31	127	-(3)	1.4]	$\cdot 029$	$1 \cdot 53$	-128	165	$\cdot(027$	1.76
900	$\cdot 030$	$1 \cdot 19$	$\cdot 029$	132	. 02×1	1.41	- 027	1.55	-026	$1 \cdot 66$

For small high-speed engines, $p=200$.
For large low-speed engines, $p=900$.
For wrought-iron, $f=6500$ to 950$)$.
For steel, $f=8000$ to 12,500 .
If it is desired to make the length of the crank pin less than that given by the foregoing rules, the diameter must be increased so as to satisfy the equation $p d l=P$.

If $l=n d$, then $d=\sqrt{\frac{P}{n p}}$. The crank pin proportioned by this rule will have an excess of strength when n is less than $\frac{4}{9} \sqrt{\frac{f}{p}}$.

Overhung Cranks -The following rules are based on the assumption that the crank is made of wrought-iron or steel, and that the material of the shaft is the same as that of the crank.

$L=C D . \quad C$ varies from $\cdot 7$ to $1 \cdot 1$. Average value of C is 9 .
$T=K D . \quad K$ varies with C as follows :-

$Y=-7$.8	.9	$1 \cdot 0$	$1 \cdot 1$.
$K=.44$.40	.37	.34	-31.

$l=c d$. $\quad c$ varies from 9 to 14 . Average value of c is $1 \cdot 2$.
$t=k d$. k varies with c as follows :-
$\begin{array}{llllll}c=9 & 1 & 1 \cdot 1 & 1.2 & 1: 3 & 14 .\end{array}$
$\begin{array}{llllll}k= & -62 & \cdot 5 & \cdot 41 & \cdot 35 & \cdot 30\end{array} \quad \cdot 26$.
$D_{1}=D+2 T$.
$H=7 D_{1}$ to D_{1}

$$
\begin{aligned}
d_{1} & =d+2 t . \\
h & =7 d_{1} \text { to } d_{1} .
\end{aligned}
$$

To determine B. First assume $B=\frac{1 \cdot 18 D^{3}}{H^{2}}$, and find m, the distance of the centre of the crank pin journal from the centre line of the crank web. Let $P=$ load on crank pin at right angles to crank arm. This force produces a bending moment on the $\operatorname{arm}=M_{b}=P R$, and also a twisting moment $=M_{t}=P m$. Combining these, the equivalent bending moment is

$$
M_{e}=\frac{1}{2} M_{b}+\frac{1}{2} \sqrt{M_{\iota}^{2}}+\bar{M}_{t}^{2}
$$

Then $B=\begin{aligned} & 6 M_{e} \\ & H^{2} \dot{f}\end{aligned}$, where f is the safe tensile stress.
Width of key $=\frac{1}{4} 1$) for large cranks, and $\frac{1}{4} D+\frac{1}{8}$ for small cranks.

Thickness of key $=\cdot 4$ to $\cdot 7$ of its width.

Forged Crank Shafts.-

$T=-6 D$ to $8 D$. Average value, $T=\cdot 7 D$.
$T W^{2}=8 D^{3}$ to $1.06 D^{3}$. Average value, $T W^{2}=9 D^{3}$.
If $T=7 D$, and $T W^{2}=9 D^{3}$, then $W=1 \cdot 134 D$.
D_{1} generally $=D$, but sometimes as large as $1 \cdot 05 D$.
$L=D$ to $1 \cdot 3 D$.

Locomotive Crank Axles.-

Lxamples from Actual Practice.
$D=$ diameter of cylinders. $\quad L=$ stroke of pistons.

All the dimensions in the above table are in inches.
Built-up Crank Shafts.-

A	$=-75 D$.
B	$=42 D$.
C	$=\cdot 4 D$.
D_{1}	$=D$ to $1.03 D$.
D_{2}	$=1.02 D_{1}$.
D_{3}	$=1.06 D$.
d	$=-12 D$ to $2 D$.
d_{1}	$=75 d$ to d
\mathcal{E}	$=95 D$ to $1.12 D$.
F	$=1.3 D$.

Cast-iron Crank Discs. -

Eccentric Sheaves or Pulleys.-

The breadth B is first determined from the force required to work the valve which the eccentric has to drive.

Let $l=$ length of slide valve in inches.
$b=$ breadth of slide valve in inches.
$p=$ steam pressure on back of valve in lbs. per square inch.
$B=c \sqrt{l o p}$.

For locomotive engines c varies from 017 to 02 , and has an average value of 0185 .

For marine engines $c=01$.
B may also be determined as follows :-
$D=$ diameter of st eam cylinder in inches.
$p=$ initial steam pressure in lbs. per square insh.
$B=\cdot 0132 D \sqrt{ } / p$ for locomotive engines.
$B=\cdot(092 D \sqrt{ } p$ to $015 D \sqrt{ } p$ for marine engines.

For stationary engines the breadth of the eccentric should not be less than that given for locomotive or marine engines, and if space will permit, B may be made from ${ }^{\circ} 13 D \sqrt{ } p$ to $\cdot 03 D \sqrt{ } p$.

$$
\begin{aligned}
& A=\cdot 55 B \text {. } \\
& d=4 B \text {. } \\
& E=4 B \text { (minimum for wrought- } \\
& \text { iron or steel). } \\
& C=\cdot 65 B . \\
& S=32 B \text { for two set-screws. } \\
& S=4 B \text { for one set-screw. } \\
& F=43 \text {. } \\
& H=\cdot 13 B \text {. } \\
& L=B \text { to } 1 \cdot 6 B \text {. }
\end{aligned}
$$

Thickness of key $=2 B$ to $3 B$.
Breadth of key $=1$ to 2 times its thickness, generally $1 \frac{1}{2}$ times.
Breadth of cotters in bolts $=d$ to $1 \frac{1}{4} d$.
Thickness of cotters in bolts $=\cdot 25 d$.
Diameter of sheave $=d_{1}+2 r+2 E$, where r is the radius or eccentricity of the eccentric.

Eccentric Straps. - Eccentric straps may be made of cast-iron, brass, malleable cast-iron, wrought-iron, or steel. When made of cast-iron or brass no liner is necessary, but when made of the other materials a brass or white metal liner is required.

$B=$ breadth of strap=breadth of eccentric sheave.

Thickness of strap if of cast-iron $=A=7 B$ to $9 B$.
Thickness of strap if of wrought-iron or steel $=A=5 B$ to $\cdot 6 B$.
Thickness of strap if of brass or malleable cast-iron $=A=\circ 6 B$ to $8 B$.
Diameter of bolts or studs $=d=\cdot 4 B$ to $\cdot 5 B$.
Thickness of palm on end of eccentric rod $=t_{1}=45 \mathrm{~B}$.
Breadth of eccentric rod (if rectangular) at strap end $=b=1 \cdot 3 B$ to $1 \cdot 5 B$.
Thickness of eccentric rod (if rectangular) $=t=4 B$.
Diameter of eccentric rod (if round) at strap end $=9 B$ to B.

CONNECTING-RODS.

$I)=$ diameter of piston in inches.
$L=$ length of stioke of piston in inches.
$l=$ length of connecting-rod in inches, measured from the centre of the crosshead pin or gudgeon to the centre of the crank pin.
$d=$ diameter of rod in inches, at the middle of its length, if of circular section.
$b=$ breadth or thickness of rod in inches if of rectangular section.
$h=$ depth of rod in inches, at the middle of its length, if of rectangular section (h being greater than b).

$$
r=\frac{l}{d} \text { or } \frac{l}{b} \quad n=\frac{l}{L} . \quad m=\frac{b}{h} .
$$

$p=$ maximum effective pressure of steam on piston in lbs. per square inch.
$Q=$ effective load on piston in lbs.
$T=$ thrust or pull on connecting-rod in lbs.
$V=$ velocity of crank pin in feet per second.

Thrust or Pull on Connecting-rod.-

A is the centre of the crank pin, B is the centre of the crosshead pin or gudgeon, O is the centre of the crank shaft, and C is the foot of the perpendicular from A on $B O$.

The greatest possible value of T is when $A O$ is at right angles to $B O$, then,

$$
\begin{aligned}
& T={ }_{B O}^{A B} \times Q=\frac{l Q}{\sqrt{r^{2}-\frac{L^{2}}{4}}}=\frac{2 n Q}{\sqrt{ } 4 n^{2}-1}=c Q . \\
& \begin{array}{lllll}
n=1.75 & 2 & 2.5 & 9.75 & 3 \\
c=1.044 & 1.033 & 1.021 & 1.017 & 1.014 .
\end{array}
\end{aligned}
$$

For stationary engines, $n=2 \cdot 5$ to 3 , but it is sometimes as small as 2, and sometimes as large as 3.75 .

For ordinary marine engines, $n=2$, but it is sometimes as large as $2:$.

For the engines of war-ships, n is sometimes as small as $1 \cdot 75$.
For locomotives, $n=3$, but it is sometimes as small as $2 \cdot 7$, and in some exceptional cases as large as 4.8 .

For portable engines, $n=35$.
Strength of Connecting-rods.-Round Rods.-The following empirical formula is based on numerous examples from actual practice :-

$$
d=\begin{gathered}
\sqrt{300+r^{2}} \sqrt{ } T \\
1000
\end{gathered}=c_{1} \sqrt{ } / T
$$

Putting $T=1 \cdot 025 Q=1.025 \times 7854 D^{2} p$, then,

$$
d=\frac{\sqrt{300+r^{2}}}{1115} D \sqrt{ } n=c_{2} D \sqrt{ } p
$$

The material of the rod is supposed to be wrought-iron or mild steel.

$r=$	8	10	12	14	16	18
$c_{1}=019$	-020	$\cdot 021$	022	.024	025	026
$c_{2}=\cdot 017$.018	.019	.020	.021	.022	.023

Messrs. Seaton and Rounthwaite, in their pocket-book of marine engineering, recommend an empirical formula, of which the following is a slight modification :-
$d=0418 \sqrt{ } l / 4$ for mercantile engines.
$d=0371 \sqrt{l} \sqrt{4} Q$ for naval engines.

The stress in a connecting-rod due to the thrust or pull is,

$$
\frac{T}{7854 d^{2}} ;
$$

and the stress due to the bending action caused by the inertia of the rod is approximately,

$$
\frac{103 V^{2} l^{2}}{L d}
$$

The sum of these two stresses should not exceed 6000 for wrought-iron. and 7000 for mild steel.

If, as is generally the case, the crank-pin end of the connect-ing-rod is much heavier than the crosshead end, the rod is made with a straight taper ; the diameter at the crosshead end being not less than $9 d$. Sometimes a rod with a straight taper has a diameter at the crosshead end equal to $95 d$, but generally it is about $92 d$.

When the two ends of the rod are equally heavy and the rod is comparatively short, it is usually made parallel. Long rods with equally heavy ends are generally made barrel-shaped, and the diameter of each end is then from $\frac{3}{4} d$ to $\frac{7}{8} d$.

Sometimes the rod is tapered from the crosshead end to the middle, and is parallel for the remainder of its length.

The smallest diameter of the rod should not be less than $\cdot 0146 \sqrt{ } / T$ or $\cdot 013 D \sqrt{ } p$ for wrought-iron, and not less than $\cdot 0135 \sqrt{ } T$ or ${ }^{\circ} 012 D \sqrt{ } p$ for mild steel.
Rectangular Rods.-The following empirical formula is based on examples of locomotive connecting-rods :-

$$
h=\begin{gathered}
\sqrt{ } 5800+r^{2} \sqrt{\prime} T \\
6500
\end{gathered} \sqrt{ } / n={ }^{c_{3}} \sqrt{\prime}^{\prime} T \mathrm{~T} .
$$

Putting $T=1.014 Q=1.014 \times 7854 D^{2} p$, then,

$r=35$	40	45	50	55
$c_{3}=0.0129$	0132	0136	0140	0145
$c_{4}=0115$	0118	0121	0125	0129

In practice m varies from 42 to $\cdot 67$, an average value being $\cdot 5$.
The rod is either uniform in depth or it has a straight taper. In the latter case the depth at the crosshead end is from $\frac{3}{4} h$ to, h. The thickness b is nearly always uniform throughout the length of the rod.
The stress in the rod due to the thrust or pull is $\frac{T}{b \bar{h}}$; and the stress due to the bending action* caused by the inertia of the rod is approximately $\frac{.079 V^{2} l^{2}}{L h}$.

The sum of these two stresses should not exceed 6000 for wrought-iron, and 7000 for mild steel.

Coupling-rods. -

$l=$ length of coupling-rod in inches, measured between centres of crank pins.
$R=$ radius of cranks in inches.
$V=$ velocity of crank pins in feet per second.
$4=$ area of cross section of rod in square inches.

*The bending moment is greatent at about $\leqslant 2 l$ from the crank pin.

$Z=$ modulus of section of rod (see p. 212).
$T=$ thrust or pull on rod in lbs.
The greatest bending moment due to the inertia of the rod is at the middle of its length, and is $=0.013{ }_{k}^{r^{2} l^{2}}$.

The stress due to the greatest bending moment is $=0.013 \begin{aligned} & V^{2} \tau^{2} \\ & R Z\end{aligned}$.
The stress due to the thrust or pull is $=\frac{T}{A}$.
The sum of these two stresses should not exceed 6000 for wrought-iron, and 7100 for mild steel.

Locomotive coupling-rods are usually of uniform section throughout, and are either of rectangular or I section.

CONNECTING-ROD EENDS.

Common Strap End. $-T=$ maximum pull on the connectingrod. $f=$ safe tensile stress for material of strap in lbs. per square inch $=6000$ for wrought-iron, and 7000 for steel.

t_{3} should be such that the area of the cross section at the cotter hole is not less than $b t_{1}$.

The area of the cross section of the gib and cotter combined should not be less than $b t_{1}$.

The thickness of the cotter is generally $25 b$, then t_{3} should not be less than $1 \cdot 33 t_{1}$.
A may equal $2 t_{1}$, and B may equal $2 \cdot 5 t_{1}$.

Fixed Strap End.-The dimensions t_{1}, t_{2}, and t_{3} are determined as for a common strap end.

$$
\begin{array}{lcc}
d_{1}=009 \sqrt{ } T \text { for wrought-iron }=008 \sqrt{ } T \text { for steel. } \\
d_{2}=7 t_{1} . & t_{1}=1 \cdot 9 t_{1} . & t_{4}=1 \cdot 3 t_{1} .
\end{array}
$$

The thickness of the cotters may be $25 b$.
The thickness of the steel bearing piece sometimes introduced to distribute the pressure of the cotter on the brass may be equal to the thickness of the cotter.

The cotters marked a are subjected to compression only.

Solid or Box End- t_{1}, t_{2}, and t_{3} are found as for a common strap end. The cotter is in compression only.
$d_{3}=2 d_{4}$ to $\cdot 3 d_{4}$.
The slope of the block B next the brass equals 1 in 4 to 1 in 7 , generally 1 in 6.

Brasses for Connecting-rod Ends. -
$t=$ thickness of brass or step at bottom in inches.
$d=$ diameter of bearing in inches.
$t=\frac{1}{8} d+\frac{1}{4}$ inch for bearings up to 8 inches in diameter.
$t=\frac{1}{18} d+\frac{3}{4}$ inch for bearings above 8 inches in diameter.
The thickness at the sides is generally from $5 t$ to t, but is sometimes as small as $2 t$.

Marine Type of Connecting-rod End.-This is largely used for stationary as well as for marine engines.

Diameter of bolts at bottom of screw thread $=d_{1}=8 \sqrt{\frac{T}{f}}$.
For bolts 2 inches in diameter and upwards $f=5000$ for wrought. iron, and 7000 for steel. For smaller diameters f must be diminished. For bolts under 1 inch in diameter f should not exceed 3000 for wrought-iron, and 4200 for steel.

The bolts are generally made of mild steel, and the nuts of wrought-iron.

The breadth B of the rod end is generally a little greater than the diameter of the adjacent part of the rod. β should not be less than $1 \cdot 73 d+15$ inch, where d is the diameter of the bolt over the screw thread in inches.

$$
A=1 \% 86 l_{1} \sqrt{\frac{D_{1}}{B}}
$$

$$
A_{1}=A \text { to } 1 \cdot 2 A
$$

O varies from $9 d$ to d, but should not be less than half the minimum value of B, given above.

Forked Ends. - $a=$ area of cross section of adjacent part of rod $=7854 I j^{2}$. The total area of the section of the jaws is usually from $1.25 a$ to $1.8 a$, and in the case of the solid forked end the total area of the section through the eyes is usually from $1 \cdot t a$ to $1 \cdot 9 a$. The following proportions make the total section through the jaws about $1 \cdot 4 a$, and the total section through the eyes about $1 \cdot \tilde{v} a$:-

$B=D$ to $1 \cdot 2 D$, average value $=1 \cdot 1 D$.
$C=5 D$ when $B=1 \cdot 1 D$.
$E=C$ to $1 \cdot 35 C$, average value $=1 \cdot 2 C=6 D$ when $C=\cdot 5 D$.
$F=5 D$ when $E \cdots \cdot 6 D$.
For the design shown to the right B and C are generally greater than for the design shown to the left.

Diameter of each of the four bolts at the bottom of the screw thread $=d_{1}=564 \sqrt{\frac{T}{f}}$, where f has a value equal to 90 per cent of the value given in the preceding article for two bolts.
$d=$ diameter of bolts over the screw thread in inches.
$H \times d . \quad H_{1}=d$ to $1 \cdot 2 d$.
b should not he less than $1 \cdot 73 d+\cdot 15$ inch.

CROSS-HEADS.

Rubbing Surface of Slide Block.

$D=$ diameter of piston in inches.
$L=$ length of stroke of piston in inches.
$l=$ length of connecting-rod in inches, measured from the centre of the cross-head pin or gudgeon to the centre of the crank pin.
$n=l \div L$.
p-maximum effective pressure of steam on piston in lbs. per square inch.
$Q=$ effective load on piston in lbs.
$R=$ reaction of the guide bar on the slide block in lbs.
q = pressure on the rubbing surface of the slide block in lhs. per square inch.
$a=$ area of rubbing surface of slide block in square inches.
$S=$ speed of piston in feet per minate.

A is the centre of the crank pin, B is the centre of the crosshead pin or gudgeon, O is the centre of the crank shaft, and C is the foot of the perpendicular from A on $B O$.

The maximum value of R is when $A O$ is at right angles to $B O$, then

$$
\begin{aligned}
& R={ }_{B O}^{A O} \times Q=\frac{L Q}{2 \sqrt{l^{2}-\frac{L^{2}}{4}}=\frac{Q}{\sqrt{1 / 4 n^{2}-1}}=k Q .} \\
& \begin{array}{lllll}
n=175 & 2 & 2.3 & 2.75 & 3 \\
k=-298 & & 25 x & \cdot 204 & \cdot 185 \\
\cdot 169
\end{array} \\
& a=\frac{R}{q} .
\end{aligned}
$$

For stationary engines, $q=\frac{12(0) 0}{S}$, but should not be less than 30 or more than 60 .
For locomotive engines, $q={ }_{S}^{45010}$, but should not be less than 40 or more than 60.
For marine engines, $q=\frac{50000}{S}$, but should not be less than 50 or more than 80 .

Cross-head Pin or Gudgeon.-

$D=$ diameter of piston in inches.
$P=$ maximum effective pressure of steam on piston in lbs. per square inch.
$d=$ diameter of pin journal in inches.
$t=$ length of pin journal in inches when supported at both ends, as shown in Fig. (a).
$\frac{1}{2} l=$ length of pin journals in inches when the pin is fixed at the middle, as shown in Fig. (b).
$n=l \div d$, and therefore $l=n d$.
$p=$ pressure on projected area of journal
 $(d \times l)$ in lbs. per square inch.
$f=$ maximum safe stress in lbs. per square inch.
The pin will have sufficient bearing area when

$$
d=\frac{9 I)}{\sqrt{\prime} n p} \sqrt{\prime}^{\prime P}=k^{I /} \sqrt{\prime}_{(N)}^{\prime P} \text {, where } k=\stackrel{90}{\sqrt{m p}} \text {. }
$$

The pin will have sufficient strength when

The following table gives values of k and k_{1} corresponding to various values of n and p or $f:-$

In practice n generally varies from 1 to $1 \cdot 3$ for pins supported at the ends, as in Fig. (a), and from 13 to 2 for pins overhung, as in Fig. (b).
p does not generally exceed 1200 .
f may be taken at 5000 for wrought-iron, and 7000 for steel.

Wrought-iron or mild steel pins should be case hardened and afterwards ground true.

If when the pin has sufficient bearing surface it is found to have an excess of strength, it may be lightened by drilling a hole through it of a diameter $d_{1}-\mathcal{V}\left\{d^{4}-d\left(\frac{D \sqrt{P_{n}}}{\sqrt{\prime} f}\right)^{3}\right\}$.

Types of Cross-heads. -

Wrought-iron or steel cross-head, with cast-iron or brass slide blocks. Approximate proportions are marked on the Figs., in terms of d_{1}, the diameter of the piston-rod.

Cast-steel cross-head faced with brass. The cross-head pin is
cast in one piece with the cross-head. The brass facings are connected to the cross-head with brass rivets. This type is chiefly used in America on locomotives and high-speed engines.

Types of Cross-heads (continued). \rightarrow

When slide blocks are made of wrought-iron or steel, their sliding surfaces should be faced with a softer metal. In American practice it is common to tin the sliding surfaces of wrought-iron or steel slide blocks to a depth of ${ }_{10}^{1}$ inch.

Guide Bars for Cross-heads. - R, the maximum load on the Q gaide bar, cannot exceed $\cdots \overline{\sqrt{/}} \overline{n^{3}-1}$, where Q is the greatest effective load on the piston, and n is the ratio of the length of the connecting-rod to the stroke of the piston. If R is assumed to act at the middle of the length of the bar, then the greatest bending moment on the bar is $\frac{R S}{4}$, where S is the distance between the supports of the bar. If the load R is carried by two bars, then the greatest bending moment on each is $R S$. The bending moment must be equated to the moment of resistance of the bar, as explained on p. 250. The stress f may be taken at 3000 lbs . per square inch for cast-iron, and 6000 for wroughtiron or steel.

Cast-iron bars are usually of \perp section, while wrought-iron bars are of rectangular section.

PISTONS.

Small and Medium Sized Pistons.-

Unit for proportions $=\frac{D \sqrt{ } P}{100}$, where $D=$ diameter of piston in inches, and $P=$ initial steam pressure in lbs. per square inch.

Large Cast-iron Pistons. -

Unit for proportions $=\frac{D \sqrt{ } P}{10 \overline{0}}$, where $D=$ diameter of piston in inches, and $P=$ initial steam pressure in lbs. per square inch.

The junk ring bolts are made of wrought-iron or steel, and the nuts of brass. Diameter of junk ring bolts $=\frac{28 D \sqrt{ } P}{100}+\frac{1}{4}$ inch. Pitch of junk ring bolts $=7$ to 10 times their diameter.

Number of internal ribs about $\frac{D}{10}+2$.

Cast-steel Pistons.-

The following rules are based on examples from triple expansion marine engines:-

Unit for proportions $=\begin{gathered}D_{,} / P \\ 100\end{gathered}$, where $D=$ diameter of high pressure piston in inches, and $P=$ boiler pressure (above the atmosphere) in lbs. per square inch.

```
\(A=4 \times\) for h. - p. piston. \(\quad C=33\) for h.-p. piston.
\(A=\cdot \pi 4\) for i.-p. piston. \(\quad C=\cdot 34\) for i.-p. piston.
\(A=64\) for \(1 .-\mathrm{p}\). piston. \(\quad C=\cdot 38\) for \(1 .-\mathrm{p}\). piston.
\(B=1 \cdot 8\) to \(3 \cdot 1\), average \(2 \cdot 2\).
\(P=74\).
```

$E=3 \cdot 8$ to $5 \cdot 4$, average $4 \cdot 6$, and is generally such as will make the sloping part of the low-pressure piston inclined at about 20°.
$H=1.5$ to 2.7 , average 1.7 .
The annexed illustrations show the form and proportions of cast-steel pistons introduced by the Rogers Locomotive Company, of Paterson, N.J., for their compound locomotives. The unit for the proportions is that already given, viz., $\underset{100}{D} \sqrt{ } / P$. The Ramsbottom packing-rings are of cast-iron, $\frac{3}{4}$ inch square in section. The cutting of the cylinder which sometimes takes place with cast-steel pistons is prevented by a broad cast-iron ring placed between the packing-rings. This ring is split at the top, and sprung on to the piston, to which it is secured by six $\frac{1}{2}$-inch copper rivets.

The packing-rings of pistons
 which work in cylinders fitted with forged-steel liners should be made of hard bronze.

Piston-rods. -

$$
d=\text { diameter of piston-rod in inches. }
$$

$l=$ length of piston-rod in inches.
l
$I=$ diameter of piston in inches.
$p=$ greatest effective pressure on piston in lbs. per square inch,

$r=10$	15	20	25	30
$c-0164$	0171	01×1	0193	0.0207

To calculate d, first assume a value for r, and use the corresponding value of c, to find the approximate value of d. Dividing l by this approximate value of d, a more correct value of r is obtained ; and using the corresponding value of c, a sufficiently exact value of d is found.

For the piston-rods of oscillating cylinders, $d=-(1221), ~ p p$.
Let $d_{1}=$ diameter of the screwed end of the rod at the bottom of the screw thread.
$d_{1}=k I /, ~ / p$.
k - 013 for large screws (d_{1} greater than 2 inches) of wrought-iron.
$=011$ for large screws (d_{1} greater than 2 inches) of steel.
For smaller screws, k is increased until
$k={ }^{\circ} 18$ for small screws (d_{1} less than $\$$ inch) of wrought. iron.
$=\cdot 016$ for small screws (d_{1} less than $\frac{3}{4}$ inch) of steel.

STUFFING-BOXES.

The proportions of stuffing-boxes and their glands vary considerably in actual practice. The following rules are based on a large number of examples:-

$$
\begin{array}{rlrl}
d & =\text { diameter of rod. } & t & =\cdot 1 d+\cdot 6 . \\
d_{1} & =1 \cdot 22 d+6 . & t_{1} & =1 \cdot 4 t=\cdot 14 d+\cdot 84 . \\
l_{1} & =\cdot 4 d+1 . & t_{2} & =t . \\
l_{2} & =d+1 \text { to } 1 \cdot 3 d+1 . & t_{3} & =\cdot 04 d+\cdot 2, \text { but not to exceed } \frac{1}{2} \text { inch. } \\
l_{3} & =\cdot 75 l_{2} . & t_{4} & =\cdot 1 d+\cdot 13, \text { but not to exceed } 1 \text { inch. } \\
d_{2} & =\text { diameter of bolts }=\cdot 12 d+\cdot b \text { when two are used. }
\end{array}
$$

For n bolts, $d_{2}=\frac{1 \cdot 6}{\sqrt{n}}(\cdot 12 d+5)$, when n is greater than two.

The annexed illustration shows a form of brass stuff-ing-box and gland suitable for small rods.

$$
\begin{aligned}
& d \text {-diameter of rod. } \\
& d_{1}=13 d+6 \text {. } \\
& d_{2}=\cdot 15 d+\cdot 5 \text {. } \\
& l_{1}=4 d!1 \\
& l_{2}=d+1 \% \\
& l_{3}=\cdot 6 d+1 \text {. } \\
& t=\cdot 1 d+\cdot 3 . \\
& t_{1}=\cdot 15 d+5 \\
& t_{2}=13 d+4 . \\
& h=6 d+1 . \\
& h_{1} \cdot 1 \mid d+\cdot 1 \text {. } \\
& h_{2}-67 d+1 \cdot 2 \text {. } \\
& h_{s}=3 d+7 .
\end{aligned}
$$

VALVES.

Flap or Clack Valves.-At one time flap or clack valves were very common, but they are now used to a very limited extent. These valves may be made entirely of brass or other metal, but they are generally made of leather stiffened by metal plates.

Single Flap Valve.

Double Flap Valve.

Large flap valves work very much smoother if made double, as shown above, the area of the opening of the inner valve being about one-third of the area of the opening of the main valve. Mr. Henry Teague states * that double flap valves 15 inches in diameter have worked incessantly for five years without changing a leather, and without showing the least sign of leakage, under 350 feet head of water, and without the slightest concussion. For a velocity of 160 feet per minute of the pump piston, Mr. Teague found that the weight of the flap should be about 2 lbs. per square inch. The width of the seat for a flap valve may be from one-eighth to one-twelfth of the diameter of the valve, and the flap should open about 35°.

[^39]

India-rubber Disc Valves.-The thickness of the india-rubber is generally $\frac{\theta_{8}}{8}$ inch to $\frac{1}{2}$ inch for small, and $\frac{8}{8}$ inch to ${ }_{8}^{7}$ inch for large valves. The area of the seat or grating in contact with the indiarubber should be sufficient to prevent the pressure between them exceeding 40 lbs . per square inch. The perforated guard which limits the lift of the valve may be either conical or spherical. If conical the slant side may slope to the valve seat at an angle of 30°, and if spherical its radius may be equal to three-fourths of the diameter of the india-rubber disc.

Single-beat Direct-lift Valves. - (c), (b), and (c) are conical disc valves. The face of the valve and its seat are parts of the surface of a cone whose slant side usually makes 45° with its axis. (d) is a disc valve with a flat face, and (e) is a ball valve.

(a) and (b) are guided in rising and falling by feathers on their under sides, which fit into the cylindrical parts of their seats. The feathers on (b) are of a screw form, which enables the fluid to give the valve a rotary motion as it rises, and thus prevents the parts of the valve face from always beating on the same parts of the seat, and secures more uniform wear. (c) and (d) are guided by a central spindle, as shown.

The lift of a single-beat valve should not exceed one-fourth of its diameter, and when the valve is controlled automatically by the action of the fluid the lift is generally much less than this. When the pressure on the valve is great, the lift should not exceed $\frac{1}{4}$ inch.

The width of the valve seat may be as small as $\frac{1}{82}$ inch, and it is sometimes as much as $\frac{1}{3}$ inch. The narrower the seat the easier is it to make the valve tight, but the area of the seat must be sufficient to prevent the material of the valve and seat from being crushed.
These valves and their seats are generally made of brass.

These valves and their seatings are made of brass or bronze.
Let D_{1} and D_{2} be the diameters (in inches) of the larger and smaller seats of a double-beat valve, $I I$ the lift (in inches) which gives the maximum opening, and P the effective pressure of the fluid in lbs. per square inch. Then, $H=\frac{D_{1}^{2}}{4\left(D_{1}+D_{2}\right)}$, and the force required to open the valve is $7854\left(D_{1}^{2}-D_{2}^{2}\right) P$, neglecting the width of the meats and the weight of the valve.

Stop Valves.-Stop valves on steam boilers are generally single-beat valves operated by a hand-wheel on a screwed spindle which passes through a stuffingbox in the valve casing. The valve and its seat are made of brass or gun-metal. The casing may be made of cast-iron, gunmetal, or cast-steel. The nut into which the screw on the spindle works may be at the bottom of the stuffing-box, but in large valves it is generally in a crosshead outside the casing.

The valve is full open when it is raised a distance equal to one quarter of its diameter.

The area of the valve must be sufficient to allow the steam to
 pass through at a velocity not exceeding 8000 feet per minute.

The above illustrations show two forms of stop valve with a
pilot, relief, or by-pass valve in the centre. The relief valve, being small, is easily opened, and when opened it allows the steam to surround the main valve, and thus place it in equilibrium ; the main valve is then easily opened.

Turnbull's is a good design of stop valve, and is illustrated below. The special features of this design are-(1) gradual

opening due to the curved ring on the under side of the valve, (2) free expansion seating, and (3) a seating which is easily removed.

All large stop valves of the single-beat design, without relief valves, should be fitted with a second hand-wheel and differential screw arrangement to press the valve to its seat in closing, and to start it in opening. This arrangement is shown at (a) in the illustration of Turnbull's valve. The lower hand-wheel, or powerwheel, is fixed upon a screwed bush, the inside of which fits the screw on the valve spindle, while the outside fits into the screw in the cross-head. The outer screw on the bush being of greater pitch than the inner screw, the motion of the valve for one revolution of the power-wheel will be equal to the difference
between the pitches of the two screws; and, as this may be made much smaller than the pitch of the screw on the valve spindle, a much smaller force at the circumference of the wheel will be sufficient to exert a great force on the valve. The smaller wheel on the valve spindle is used for rapidly opening or closing the valve.

Heat.

Thermometric Scales.-The standard freezing temperature is the temperature of a mixture of water and ice under ordinary atmospheric pressure.

The standard boiling temperature is the temperature of steam from water under a pressure of 14.7 lbs . per square inch, or 99.9 mehes of mercury at the standard freczing temperature.

On the Fahrenheit scale the freezing point is marked 32°, and on the centidrate seale it is marked 0°, or zero. On the fahrenheit scale the boiling point is marked 212°, and on the centigrade scale it is marked $1\left(\mathrm{Kr}^{\prime}\right.$. The zero point on the Fahrenheit scale is 32° below the freezing point. Temperatures below the zero point on either scale are distinguished from those above the zero point by prefixing the sign - (minus) to them. Thus -10^{2} means 10 degrees below zero.

Conversion of Thermometric Scales.-

F =temperature on the Fahrenheit scale.
$C^{\prime}=$ equivalent temperature on the centigrade scale.

$$
C^{\prime}=\frac{5}{9}(F-32) . \quad F=\frac{9}{5} C+32 .
$$

Examples.
(1) To convert 191° Fahr. into degrees cent.

$$
C^{\prime}=\frac{5}{9}(194-32)=5_{9}^{5} \times 162=90^{\circ}
$$

(2) To convert 11° Fahr. into degrees cent.

$$
\cdot \frac{5}{9}(1132) \frac{5}{9} \times(1 \times) \quad 10 .
$$

(3) To convert 20 cent. into degrees Fah.

$$
F=\frac{9}{5} \times 20+32=36+32=68^{\circ} .
$$

Equivalent Temperatures-Centigrade to Fahrenheit.

For differences of $10^{\circ}, 20^{\circ}, 30^{\circ} \mathrm{C}$., etc., multiply the given values by 10 .
Differences.

$$
\begin{array}{r}
\text { Examples.- } \\
-156^{\circ} \mathrm{C}= \\
781^{\circ} \mathrm{C}= \\
1650^{\circ} \mathrm{C}= \\
= \\
=
\end{array}
$$

[^40]Equivalent Temperatures－Fahrenheit to Centigrade．

$\begin{aligned} & \text { \&i } \\ & \circ \\ & \text { 8 } \\ & 1 \end{aligned}$		8			
$\begin{aligned} & \text { Fio } \\ & \circ \\ & \text { ob } \\ & 1 \end{aligned}$		$\begin{aligned} & \text { 40 } \\ & \circ \\ & \hline 8 \end{aligned}$	0 무우ำのロ へががが		©ixisio がすため
$\begin{aligned} & \stackrel{4}{\circ} \\ & \stackrel{\circ}{8} \end{aligned}$		ai 0 8			－बiomos にO゚が
$\begin{aligned} & \text { 8. } \\ & 08 \\ & 88 \\ & 1 \end{aligned}$		－8			$\rightarrow-0000$ $\dot{-} \dot{\text { ¢ }}$ になo゚N
$\begin{aligned} & \text { 40 } \\ & 0 \\ & 08 \\ & 1 \end{aligned}$		$\begin{aligned} & \text { Bi } \\ & \text { Bo } \end{aligned}$			$0 \rightarrow \rightarrow \infty$安安
$\begin{aligned} & \text { mic } \\ & \stackrel{8}{\circ} \\ & 1 \end{aligned}$		品		ペかったが がmがだか	
		䦡		－ペーmo －$\dot{\sim}$ 	
盛		風		－T－ 두우웅 －	
$\begin{aligned} & \text { •10 } \\ & 0 \\ & 0 \\ & 1 \end{aligned}$		aid 哃		四製等	
4 8 8		8			∞ のロサ゚ シmion Mimenc
	ainicusinis $88.88^{\circ}{ }^{\circ}$ ¢8\％		\＆	Fiximinixi 웅야야	

Equivalent Temperatures-Fahrenheit to Centigrade (continued).

	0° F.	$10^{\circ} \mathrm{F}$	$20^{\circ} \mathrm{F}$	$30^{\circ} \mathrm{F}$.	$40^{\circ} \mathrm{F}$.	$50^{\circ} \mathrm{F}$.	$60^{\circ} \mathrm{F}$.	$70^{\circ} \mathrm{F}$.	$80^{\circ} \mathrm{F}$.	$80^{\circ} \mathrm{F}$.
$1800{ }^{1}$	$815.6^{\circ} \mathrm{C}$.	$821.1^{\circ} \mathrm{C}$.	$826.7^{\circ} \mathrm{C}$.	$832.2^{\circ} \mathrm{C}$.	$837.8^{\circ} \mathrm{C}$.	$843 \cdot 3^{\circ} \mathrm{O}$.	$848 \cdot 9^{\circ} \mathrm{C}$.	$854 \cdot{ }^{\circ} \mathrm{C}$.		
1090\% F.	871.1	876.7	882.2	887.8 .	893.3 C.	8898.9	$904 \cdot 4$	910.0	$815 \cdot 6$	$\begin{aligned} & 865 \cdot 6^{\circ} \\ & 9.1 .1 \end{aligned}$
1700\% 7.	926.7	${ }^{932.2}$	937.8	943.3	$\begin{array}{r}948.9 \\ \hline 1004\end{array}$	$954 \cdot 4$	960.0	$96 Ј .6$	$971 \cdot 1$	976.7
${ }^{1800}{ }^{\circ} \mathrm{F}$.	982.2	987.8	993.3	998.9	1004-4	$1010 \cdot 0$	$1015 \cdot 6$	1021.1	1026.7	1032.2
1000	1037.8	1043•3	1048.9	1054-4	1060.0	1065.6	1071 -1	1076.7	1082-2	1087.8
	$0^{\circ} \mathrm{F}$.	$100^{\circ} \mathrm{F}$.	$200^{\circ} \mathrm{F}$.	$300^{\circ} \mathrm{F}$.	$400^{\circ} \mathrm{F}$.	$500^{\circ} \mathrm{F}$.	$600^{\circ} \mathrm{F}$.	$700^{\circ} \mathrm{F}$.	$800^{\circ} \mathrm{F}$.	$900^{\circ} \mathrm{F}$.
290e 7.	$1093 \cdot 3^{\circ} \mathrm{O}$.	$1148.9^{\circ} \mathrm{C}$.	$1204 \cdot 4^{\circ} \mathrm{C}$.	$1260.0^{\circ} \mathrm{C}$.	$1315 \cdot 6^{\circ} \mathrm{C}$.	$1371.1^{\circ} \mathrm{C}$.	$1426 \cdot 7^{\circ} \mathrm{C}$.	$1482.2{ }^{\circ} \mathrm{C}$.	$1537.8{ }^{\circ} \mathrm{C}$	$1593.3^{\circ} \mathrm{C}$.
$8000{ }^{\circ} \mathrm{P}$.	1648.9	$1704 \cdot 4$	1760.0	1815.6	1871.1	1926.7	1982.2	2037.8 .	2093.3	21489 .
	2204-4	2280.0	$2315 \cdot 6$	$2371 \cdot 1$	2426.7	$2482 \cdot 2$	2537.8	2593.3	2648.9	2704.4
$5000^{\circ} \mathrm{F}$.	$2760 \cdot 0$	$2815 \cdot 6$	2871.1	2926.7	2982.2	3037.8	$3093 \cdot 3$	3148.9	3204-4	$3260 \cdot 0$
$6000^{\circ} \mathrm{F}$.	$3315 \cdot 6$	3371.1	3426.7	3482-2	3537.8	3593-3	3648.9	37044	37600	38156

Differences.

For differences of $10^{\circ}, 20^{\circ}, 30^{\circ} \mathrm{F}$., etc., multiply the given values by 10 .

The Practical Measurement of Temperature (Abstracted from the Cambridge Instrument Co., Ltd., publication: Accurate Mcasurement of Temperature). -The gas thermometer is of fundamental importance in determining standard temperatures, but it is too elaborate and difficult to be used in the majority of laboratories or workshops. Other means of measuring temperature have therefore to be devised. Any property of a substance which varies with temperature can theoretically form the basis of a temperature-measuring instrument. Many properties have been used, but those generally employed are as follows:-

1. The expansion of liquids.
2. The vapour pressure of liquids.
3. The electrical resistance of metal wires.
4. The thermo-electric potential between two dissimilar wires.

In addition, certain instruments do not measure temperatures directly, but measure the radiation emitted by the hot body, from which value the temperature of the body can be determined. The table on p. 545 classifies the main types of instruments, together with the ranges for which they are suitable.

Mercury-in-glass thermometers are still in general use, and within their range may be read to a high degree of accuracy. Mercury-in-steel and vapour-pressure thermometers are robust, and the dial may be in a convenient position at a distance from the heat-receiving bulb and a number of instruments may be grouped together. Resistance thermometers are robust and accurate, and suitable for centralised readings; they have advantages over the thermo-electric type for measurement of low temperatures. Thermo-electric thermometers are the most generally useful type for temperatures between $400^{\circ} \mathrm{C}$. and $1200^{\circ} \mathrm{C}$., being simple and reliable to a high degree of accuracy when properly installed and maintained. Radiation and optical pyrometers have a much higher range than the other types.

All temperature problems resolve themselves into dealing with a gas, a liquid, or a solid.

For gas temperatures it is usually only necessary to immerse the sensitive part of the thermometer in the gas and allow it to acquire the temperature. If the gas is not in motion there may be a time lag due to the small thermal capacity of the gas and the large capacity of the thermometer, while if it is in rapid motion the pressure and temperature changes will necessitate a very sensitive thermometer to follow them; in such cases the sensitive bulb should be placed parallel to the gas stream.
Liquids have a greater heat capacity and do not present the same difficulties.
The accurate measurement of the temperature of a solid body

Type.	Description.	Range and Remarks.	
Liquid expansion . Iiquid expansion - Vapour pressure Vapour pressure Electric resistance (change in resistance of a platinum wire with temperature).	Toluol or pentane in glass.	$-200^{\circ} \mathrm{C}$. to $+30^{\circ} \mathrm{C}$.	Indicating.
	Mercury-in-glass.	$-30^{\circ} \mathrm{C} . \text { to }+500^{\circ} \mathrm{C}$	Indicating.
	Mercury-in-steel.	$-40^{\circ} \mathrm{C}$. to $600^{\circ} \mathrm{C}$. Readings can be transmitted up to distances of 120 feet.	Indicating and recording.
	Ether or other organic liquid.	$-50^{\circ} \mathrm{C}$. to $400^{\circ} \mathrm{C}$. Readings can be	Indicating and recording.
	Mercury-in-steel.	transmitted up to distances of 200 feet. 350° C. to 800° C. Readings can be	Indicating and recording.
	Mica frame-	transmitted up to distances of 120 feet. -200° C. to $+1000^{\circ}$ C. Suitable for	
	(in which the wire is wound on mica and has a resistance of 2.5ω or 25ω at $0^{\circ} \mathrm{O}$.).	accurate laboratory work.	Subdivided into two groups of direct deflection or null measurement, can be indicating or recording.
	Steatite spool- (in which the wire is wound on steatite and then glazed, and has a resistance of 100ω at $0^{\circ} \mathrm{C}$.).	$-100^{\circ} \mathrm{C}$. to $500^{\circ} \mathrm{C}$. Particularly suitable for the direct reading of air temperatures in buildings, power plants, ships, etc.	$"$
	Copper tube- (in which the wire covered with silk is drawn through a thin-walled copper tube).	$-100^{\circ} \mathrm{C}$. to $140^{\circ} \mathrm{C}$. for the quick measurement of temperature of liquids or for obtaining the mean temperatures of large enclosures.	"
Thermo-electric	Platinum, platinum-rhodium. Base-metal titan wires. " iron constantan. " copper constantan.	$-200^{\circ} \mathrm{C}$. to $1500^{\circ} \mathrm{C}$. $-200^{\circ} \mathrm{C}$. to $1200^{\circ} \mathrm{C}$. $-200^{\circ} \mathrm{C}$. to $800^{\circ} \mathrm{C}$. $-200^{\circ} \mathrm{C}$. to $500^{\circ} \mathrm{C}$.	Subdivided into groups of direct deflection or null measurement, either indicating or recording.
Radiation (total)	Féry"pyrometer.	600° C. upwards. Particularly useful for recording temperatures above $1000^{\circ} \mathrm{C}$.	cating or recording. Indicating or recording.
Optical .	Wanner type (polarised light). Disappearing filament.	$700^{\circ} \mathrm{O}$. upwards without limit. $700^{\circ} \mathrm{C} . \text { to } 4000^{\circ} \mathrm{C}$	Indicating. Indicating.

is much more difficult. A thermocouple can sometimes be inserted in a small hole drilled into the body, but errors due to conduction along the thermocouple must be considered. In many cases the solid body is situated in a furnace, and unless the temperature is high enough for a radiation pyrometer to be used, it is the temperature of the gas surrounding the body that must be measured. There are now available many special forms of pyrometers designed for measuring the surface temperatures of solids, in cases where the temperatures do not exceed $800^{\circ} \mathrm{C}$., and where it is possible to bring the pyrometer in to actual contact with the surface.

Quantity of Heat-Unit of Heat.-A unit of heat is the quantity of heat required to raise a unit mass of pure water one degree in temperature.

The British thermal unit of heat (B.Th.U.) is the $1 / 180$ th part of the heat required to raise one pound of water from $32^{\circ} \mathrm{F}$. to $212^{\circ} \mathrm{F}$. This may be called the pound-degree Fahrenheit unit.

The pound-degree centigrade unit is the $1 / 100$ th part of the heat required to raise one pound of water from $0^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$. This unit is called either the centigrade heat unit (C.H.U.) or the poundcalorie (lb.-cal.).

In the gramme-degree unit the gramme is the unit of mass, and the centigrade scale of temperature is used. This unit is called the gramme-calorie, or French unit of heat.

In the kilogramme-degree unit the kilogramme is the unit of mass, and the centigrade scale is used. This unit is called the major calorie or kilogramme-calorie, but frequently it is called simply the calorie.

The Eirst Law of Thermodynamics-The Mechanical Equivalent of Heat.-Heat and mechanical work are mutually convertible, and one unit of heat is equivalent to a definite amount of mechanical work called the mechanical equivalent of heat.

The meohanical equivalent of heat is usually denoted by the letter J in honour of Joule, who did most to determine its numerical value.

If a quantity of work W is converted into H units of heat, then the first law of thermodynamics is expressed by the equation $W=J H$.

The value of J is 778 ft .-lbs. per B.Th.U., or 1400 ft .lbs. per C.H.U.

Specific Heat of Solids and Liquids.-The specifio heat of a substance is the ratic of the amount of heat required to raise its temperature 1° to the amount of heat required to raise the same weight of water 1°.

Substance. Speciffo	Substance. ${ }_{\text {a }}$ Specific
Aluminium 214	Glass- 198
Antimony 051	Stones from '208
Bismuth -031	Stones • . . to -218
Brass091	Coal, anthracite . . . 201
Copper 095	Coke 202
, from 32° to $572^{\circ} \mathrm{F} . \quad 101$	Charcoal 241
Gold 032	Sulphur -203
Iron, cast -130	Ice 504
wrought . . . 114	Mercury '033
Lead1 -031	, from 32^{\prime} to $5722^{\circ} \mathrm{F} . \quad$ '035
Nickel -109	Olive oil 310
Platinum 033	Water, near $32^{\circ} \mathrm{F}$. . . 1.0000
", from 32° to $900^{\circ} \mathrm{F} .1$ (0,35	,, from 32° to $104^{\circ} \mathrm{F} .11 \cdot 0013$
, 32° to 2000$)^{\prime} \mathrm{F}$. 038	
Silver 0) J_{6}	., 32° to $248^{\circ} \mathrm{F} .1 \cdot 0067$
Steel 117	, 32° to 320 ${ }^{\text {r }} \mathrm{F} .1 \cdot 0109$
Tin 056	, 32° to $392^{\circ} \mathrm{F} .1 \cdot 0160$
Zinc 0994	, 32^{\prime} to $446^{\circ} \mathrm{F} . \mid 1 \cdot(204$

The specific heats given in the above table are the mean specific heats between the temperatures 32° and 212° Fahr., except in the case of ice and where other ranges of temperatures are stated.

The specific heat of a substance increases with the temperature.

The amount of heat required to raise the temperature of a given weight (w) of a substance, whose specific heat is s, through a given number of degrees (t), is equal to $w t$.

Specific Heat of Gases.-Gases have two specific heats: (1) specific heat at constant pressure, and (2) specific heat at constant volume. The former is greater than the latter, because when the pressure is constant the volume of the gas increases when heat is applied, and this heat has not only to raise the temperature, but it has to do work in expanding the gas against the external pressure.

The following table gives the specific heats of equal weights of various gases at constant pressure:-

Specific Heats of (Hases at Constant Pressure.

Air	$\cdot 2374$	Carbonic acid	$\cdot 2169$
Hydrogen	$3 \cdot 4090$	Carbonic oxide	$\cdot 2450$
Oxygen .	$\cdot 2175$	Ammonia	-5084
Chlorine	- 1210	Marsh gas .	-5929
Nitrogen	- 2438	Olefiant gas	-4040
Steam (gaseous).	-4805	Sulphurous acid.	$\cdot 1554$

The simple gases air, hydrogen, oxygen, and nitrogen have the same specific heat per unit of rolume.

Ratio of the two specific heats.-
Specific heat at constant pressure
Specific heat at constant volume $=1.40 \mathrm{~s}$.
Latent Heat of Fusion.-The latent heat of fusion is the amount of heat required to convert a unit weight of a solid into the liquid state withont raising its temperat ure.

Non-metallic Substances.	Melting Point. Fahr.	Latent Heat. B.Th.U	Metals.	$\begin{array}{\|c\|} \text { Melting } \\ \text { Point. } \\ \text { Fahr. } \end{array}$	Latent Heat. B.Th.U
	32°	144	Bismuth	516°	$23 \cdot 4$
Nitrate of soda	591	$113 \cdot 3$	Cadmium.	610	$24 \cdot 6$
Nitrate of potass	642	85.3	Lead	621	9
Phosphorus.	111	$9 \cdot 1$	Mercury	-37.8	$5 \cdot 4$
Spermaceti.	120	148	Silver	1733	$37 \cdot 9$
Sulphur.	239	16.9	Tin	450	$25 \cdot 2$
Wax.	149	175	Zinc	784	$50 \cdot 4$

M. Person gives the following formula for the latent heat of fusion of non-metallic substances:-

$$
l=\left(s^{\prime}-s\right)(t+256),
$$

where $l=$ latent heat of fusion in British thermal units.
$s=$ specific heat of substance in the solid state.
$s^{\prime}=$ specific heat of substance in the liquid state.
$t=$ temperature of fusion in degrees Fahrenheit.
Latent Heat of Evaporation.-The latent heat of evaporation is the amount of heat required to convert a unit weight of a liquid into the gaseous state without raising its temperature.

Latent Heat of Evaporation of rarious Liquids under a Pressure of one Atmosphere, or 14.7 Lbs . per Square Inch.

Liquid.		Specific Heat of Liquid.	Boiling Point. Fahr.	Latent Heat. B.Th.U.
Water	- •	1.000	212°	$970 \cdot 7$
Alcohol 624	$172 \cdot 8$	369
Bisulphide of carbon	.	. 235	115	180
Ether . . .	- .	. 516	94.1	162
Oil of turpentine	- .	-463	315	124
Wood spirit	- .	-601	150	475

Specific Gravities and Boiling Points of Salt Water.-

Proportion of Salt in Water.	Specific Gravity.	Boiling Point. Fahr.	Proportion of salt in Water.	Specifle Gravity.	Boiling Point. Fahr.
32	1 -129	213%	8.8	1-20;	$220 \cdot 3$
32	$1 \cdot 058$	211°	$3{ }^{\text {¢ }}$	1-2:3	221.5°
3.3	$1 \cdot 087$	215%	9	$1 \because 61$	222.7°
- 34	1-11t	216.7	10 32	$1 \cdot 290$	$223 \cdot 8^{\circ}$
$3^{5} 2$	$1 \cdot 14.5$	217.9 ${ }^{\circ}$		$1: 319$	$225.0{ }^{\circ}$
8	$1 \cdot 171$	2191°	32	$1 \cdot 34 \mathrm{~N}$	226.1°

The water is supposed to be under ordinary atmospheric pressure, corresponding to 30 inches of mercury in the barometer.

Ordinars sea water usually contains about $\frac{1}{32}$ of its weight of salt.
The freezing point of ordinary sea water is about 27° Fahr.
A saturated solution of salt water freezes at about 4° Fahr., and it contains about $\frac{8}{2} \frac{2}{2}$ of its weight of salt.

Before the introduction of surface condensation the boilers of steam-ships were fed with sea water, and it was then the practice to prevent the proportion of salt in the boiler water from increasing beyond $3^{3} \frac{3}{2}$. This necessitated blowing off from the boiler $\frac{1}{3}$ of all the water fed into it.

Melting Points or Temperatures of Fusion,-

solid.	Cent.	Fahr.	sold.	Cent.	Fahr.
Aluminium	659	1218	Steel, mild.	1475	2687
Antimony .	630	1166	hard.	1420	2588
Bismuth	271	520	Tin	232	450
Brass	1030	1886	Zinc	419	787
Bronze.	920	1688	Carbonic acid	-65	-85
Copper.	1083	1981	Glass	1100	2012
Gold	1063	1945	Mercury	-38.9	-38.0
Iron, cast, groy	1220	2228	Nitro-glycerine	$7 \cdot 2$	45
white	1135	2075	Paraffin wax	54	129
,	1530	2786	Sulphur	115	239
Lead	327	621	Sulphurous acid	-76	-105
Manganese	1230	2246	Tallow	$33 \cdot 3$	92
Platinum	1775	3227	Turpentine	-10	14
Silver	961	1761	Beeswax	65	149

Oonduction of Heat.-
Relative Conductivity of Metals.

Silver			$100 \cdot 0$	Iron.				11.9
Copper	-		92.0	Steel.				$11 \cdot 6$
Gold			53.2	Lead.				$8 \cdot 5$
Aluminium	\bullet		48.0	Platinum				$8 \cdot 4$
Zinc			27.0	Antimony				$4 \cdot 0$
Brass			23.6	Bismuth				1.8
Tin			14.5	Mercury				13

Transmission of Heat through Boiler Plates and Tubes. -

$$
q=\frac{\left(t_{1}-t_{2}\right)^{2}}{a} \text { (Rankine's approximate formula), }
$$

where q is the number of Britioh thermal units of heat transmitted through one square foot of plate or tube in one hour, t_{1} and t_{2} the temperatures of the hotter and cooler sides of the plate respectively in degrees Fahrenheit, and a is a number which hes between 160 and 200 .

Radiation and Absorption of Heat.- "The rate of radiation of heat by the hotter of a pair of bodies, and of its absorption by the colder, are increased by darkness and roughness of the surfaces of the bodies, and dimmished by smoothness and polish" (Ranh inc)

Coefficients of Linear Expansion of Solids by Heat.-The coefficient of linear expansion of a solid by heat is the ratio of its increave in length for 1° to its length at $0^{\circ} \mathrm{C}$. or $32^{\circ} \mathrm{F}$.

> Cocfficients of Linear Expansion at T'emparatures betuecn 32° Fahr. and 212° Fahr.

Material.		For 1° Cent	For 1° Fahr.
Aluminium, cast	- -	$\cdot 0000222$	-0000123
Aluminium, rolled.	. .	- ())(0)207	-(00)0115
Antimony	- -	-00001110	-0000061
Bismuth .	. .	-0000139	-0000077
Brass	. . .	$\cdot 0000189$	0000105
Copper	- • -	-000)171	-0000095
Gold	. .	-0000153	-00)00085
Iron, cast	. .	$\cdot 0000108$	-0000060
Iron, wrought	- •	$\cdot(0000117$	-0000065
Lead .	. .	$\cdot 0000284$	-0000158
Nickel	- . .	-0000126	-0000070
Platinum	- -	-()000087	-0000048
Silver	. . .	$\cdot 0000198$	-0000110
Steel, untempered	- -	$\cdot 0000108$	-0000060
Steel, tempered	- . -	$\cdot 0000126$	-0000070
T'in.	$\cdot 0000207$	-0000115
Zinc	- • -	-0000288	-0000160
Brick, best stock	- . -	-0000055	-0000031
Fire-brick	. . .	$\cdot 0000049$	-0000027
Building stones	$\{$ from	$\cdot 0000072$	-0000040
	1 to	$\cdot 0000144$	-0000080
Glass	. . .	-0000088	-0000049
Porcelain	. . .	-00000.36	-0000020
Roman cement, dry	- -	-0000144	-0000080
Slate	. .	-0000104	-0000058
Wedgwood ware	. \cdot	$\cdot 0000088$	-0000049

Let $a=$ coefficient of linear expansion.
$L=$ length of solid at $0^{\circ} \mathrm{C}$. or $32^{\circ} \mathrm{F}$.
$L_{1}=$ length of solid at t_{1}° above $0^{\circ} \mathrm{C}$. or $32^{\circ} \mathrm{F}$.
$L_{2}=$ length of solid at t_{2} above $0^{\circ}\left(\mathrm{O}\right.$. or $32^{\circ} \mathrm{F}$.

$$
\begin{array}{lr}
L_{1}=L_{1}\left(1+a t_{1}\right) . & L_{2}-L_{L}\left(1+a t_{2}\right) . \\
L_{1}=L_{2}\binom{1+a t_{1}}{1+a t_{2}} . & L_{2}=L_{1}\binom{1+a t_{2}}{1+a t_{1}} .
\end{array}
$$

It is, however, generally sufficiently accurate to take

$$
L_{2}=L_{1}\left\{1+a\left(t_{2}-t_{1}\right)\right\}, \text { and } L_{1}-L_{2}\left\{1-a\left(t_{2}-t_{1}\right)\right\} \text {. }
$$

That is, the increase or decrease in length is equal to the product of the rise or fall in temperature, the coefficient of expansion, and the original length.

Cubic Expansion of Solids by Heat.-The coefficient of cubic expansion of a solid by heat may, for all practical purposes, be taken as equal to threc times the coefficient of lincar expansion.
Real and Apparent Expansion of Liquids by Heat.-When heat is applied to a liquid the vessel contaming the liquid is also heated, and both will undergo a change of volume. If the expansion of the liquid is determined from the rise of the level of the liquad in the vessel, neglecting the expansion of the vessel, this is called the apparent expansion of the liquid

Let $E_{u}=$ coefficient of apparent expansion of a liquid,
$E_{r}=$ coefficient of (cubic) expansion of containing vessel,
$E_{r}=$ coefficient of real expansion of liquid, then $E_{r}=E_{a}+E_{v}^{\prime}$ (very nearly).
If V is the volume of a vessel, and a the coefficient of linear expansion of the material of the vessel, then when its temperature is raised t° its volume will become approximately $V(1+3 a t)$.

Absolute						
Temperature (t) in Degrees.		Whole Expansion from $0^{\circ} \mathrm{C}$	Mean Coefficient of Expansion between $0^{\circ} \mathrm{C}$. and t°		True Coefflcient of Expansion at t°.	
Cent.	Fahr.		Cent.	Fahr	Cent.	Fahr.
0	32				$\cdot 0001791$.0000995
50	122	-009013	-0001803	-0001001	-0,01815	$\cdot 0001008$
100	212	$\cdot 018153$	-0001815	-0001008	$\cdot 0001841$	$\cdot 0001023$
150	302	-027419	-0001828	-0001016	-0001866	$\cdot 0001037$
200	392	-036811	-0001841	. 0001023	$\cdot 0001891$. 0001051
250	482	-046329	-0001853	-0001030	$\cdot 0001916$	-0001064
300	572	-055973	-0001866	-0001037	$\cdot 0001941$	-0001078
350	662	-065743	. 0001878	-0001044	$\cdot 0001967$	$\cdot 0001093$

For absolute expansion of water see p. 342.

> Change of Volume and Density of Solids and Liquids by Heat. -
> Let $A=$ real coefficient of cubic expansion of solid or liquid.
> F_{1}-volume at temperat ure $t_{1}{ }^{\circ}$ above $0^{\circ} \mathrm{C}$. or $32^{\circ} \mathrm{F}$.

$$
\begin{aligned}
& =1+A\left(t_{2}-t_{1}\right) \text { nearly. } \quad=1-A\left(t_{2}-t_{1}\right) \text { nearly. }
\end{aligned}
$$

Relations between the Volume, Pressure, and Temperature of a Gas. - The following formula are nearly true for the more permanent gases, such as oxygen, nitrogen, hydrogen, and atmospheric air:-
(1) Temperature constant.

Let V_{1} denote the volume of a given quantity of a gas, and P_{1} its pressure. Let the volume V_{1} be changed to V_{2}, then P_{1} will change to P_{2}, and

$$
\frac{V_{1}}{r_{2}^{\prime}}=\frac{P_{2}}{P_{1}} \text {, or } P_{1} V_{3}=P_{2} V_{2}^{\prime} \text { (Boyle's law), }
$$

(2) Pressure constant.

Let l_{1} denote the volume of a given quantity of a gas, and t_{1} its temperature. Let the temperature t_{1} be changed to t_{2}, then V_{1} will change to V_{2}, and

$$
\begin{aligned}
& V_{1} \\
& r_{2}^{\prime}
\end{aligned}=\frac{1+a t_{1}}{1+a t_{2}}((\text { 'harles' or Gay Lusac's law }),
$$

where a is the cocfficient of expansion of the gas for 1° of temperature. Values of a for different gases are given in the table on the opposite page.
(3) Volume constant.

Let P_{1} denote the pressure of a given quantity of a gas, and t_{1} its temperature. Let the temperature t_{1} be changed to t_{2}, then P_{1} will change io P_{2}, and $\frac{P_{1}}{P_{2}}=\frac{1+c t_{1}}{1+c t_{2}}$,
where c is the coefficient of change of pressure of the gas for 1° of change of temperature. Values of c for different gases are given in the table on the following page.

If the gas conforms strictly to Boyle's law, then $a=c$.
In the above formulx the temperatures are in degrees above the freezing temperature of water; hence, if the temperatures t_{1} and t_{2} are on the Fahrenheit scale, $t_{1}-32$ and $t_{2}-32$ must be substituted for t_{1} and t_{2} respectively in the formula. The pressures are absolute pressures.

The values of a and c given in the following table are those determined by Regnault:-

In ordinary calculations on the more permanent gases it is usual to take $a=c={ }_{2}{ }_{2} \overline{3}$ for temperatures on the centigrade scale, and $=\frac{1}{49 \sqrt{2}}$ for the Fabrenheit scale.

The Air Thermometer-Absolute Temperature.-A thermometer in which the expanding substance is air has the following advantages over the mercurial thermometer:-

It is much more sensitive, since the expansion of air is more than twenty times that of mercury for the same change of temperature.

The variation of volume of air for a given variation of temperature is the same at all temperatures.

The expansion of air is so great compared with that of the vessel containing it, that the expansion of the latter has very little effect on the reading of the air thermometer.

The specific heat of air is the same at all temperatures.
Air requires much less heat to change its temperature than an equal bulk of any liquid.

The air thermometer may be used for very high or very low temperatures.

The great objection to the use of the air thermometer is that it must be used in conjunction with the barometer, and a calculation has to be made before a temperature is determined. The air thermometer is therefore not used for ordinary observations of temperature.

A volume of air equal to 273 cubic inches at $0^{\circ} \mathrm{C}$. becomes 373 cubic inches at $100^{\circ} \mathrm{C}$., hence on the air thermometer it is convenient to denote the freezing point of water by 273 and the
boiling point by 373. The zero on the air thermometer is therefore $273^{\circ} \mathrm{C}$. below the freezing point of water. This is called absolute zero Temperatures on the air thermometer are called absolute temperatures, because they correspond very closely to the absolute scale of temprrature which is based on thermodynamic considerations.

The absolute zero by Fahrenheit's scale is $492^{\circ} \mathrm{F}$. below the freezing point of water, or $460^{\circ} \mathrm{F}$. below the zero on that scale.

Absolute temperature in centigrade degrees is obtained by adding 273 to the ordinary temperature centigrade.

Absolute temperature in Fahrenheit degrees is obtained by adding 460 to the ordinary temperature Fahrenheit.

The numbers 273 and 460 given above may be used for all oldinary purposes; but the former is probably barely large enough, and the latter rather too large.

It has been stated (p. 552) that

$$
\begin{aligned}
& r_{1}=\frac{1+a t_{1}}{\Gamma_{2}}=\frac{1+2 \frac{1}{2}, t_{1}}{1+a t_{2}}=\frac{273+t_{1}}{1+{ }_{2}^{4} t_{2}} t_{2}=\frac{273}{273}+t_{2},
\end{aligned}
$$

using the centigrade scale.
But $273+t_{1}$ and $2 \pi 3+t_{2}$ are the absolute temperatures corresponding to the ordinary temperatures t_{1} and t_{2}, and if these absolute temperatures are denoted by T_{1} and T_{2}, then
also $\frac{P_{1}}{P_{2}}=\frac{T_{1}}{T_{2}}$ when the volume is constant,

$$
\text { and } \begin{aligned}
& P_{1} V_{1} \\
& P_{2} V_{2}^{\prime}
\end{aligned}=\frac{T_{1}}{T_{2}} \text { when the pressure and volume both vary. }
$$

For weight and volume of air and other gases see p. 346.

Isothermal Expansion or Compression of a Gas.-When a given quantity of a gas has its volume and pressure changed under such conditions that its temperature remains constant, the change is said to take place isothermally, and the curve which exhibits the relation between the volume and pressure is called an isothermal curve.

When a gas is compressed slowly in a metal cylinder, the beat produced during the compression is dissipated and the temperature remains nearly constant, so that the compression takes place nearly isothermally.

The isothermal curve for a perfect gas is a rectangular
 hyperbola, the axes $O X$ and $O Y$ being the a symptotes of the curve.

The equation to the curve is $P l^{\prime}=$ constant.

If a volume of gas V_{1} having a pressure P_{1} be expanded isothermally until its volume is V_{2} and its pressure P_{2}, or if a volume of gas V_{2} having a pressure P_{2} be compressed isothermally until its volume is V_{1} and its pressure P_{1}, then the work done during the expansion or compression is given by the formula,

$$
\begin{aligned}
\text { work done } & =P_{1} V_{1} \log _{e} \frac{V_{2}}{\Gamma_{1}}=P_{2} V_{2} \log _{e} \frac{V_{2}}{\Gamma_{1}}, \\
& =m P_{1} V_{1} \log _{10} \frac{V_{2}}{\Gamma_{1}}=m P_{2} V_{2} \log _{10} \frac{V_{2}}{\Gamma_{1}}
\end{aligned}
$$

where $n=2 \cdot 302585$.
If the pressures be stated in lbs. per square foot, and the volumes in cubic feet, the work done will be expressed in footpounds.

Adiabatic Expansion or Compression of a Gas.-When a given quantity of a gas has its volume and pressure changed under such conditions that no heat enters or leaves the gas during the operation, the change is said to take place adiabatically, and the curve which exhibits the relation between the volume and pressure is called an adiabatic curve.

In practice the expansion or compression of a gas is approximately adiabatic when the change of volume takes place rapidly, and the change is more approximately adiabatic the better the non-conducting power of the containing vessel.

Let the volume of a given quantity of gas be V_{1}, its pressure P_{1}, and its absolute temperature T_{1}. Now suppose this quantity of gas to change adiabatically so that its volume becomes V_{2}, its pressure P_{2}, and its absolute temperature T_{2}, then,

$$
\begin{aligned}
& P_{1} V_{1}^{n}=P_{2} V_{2}^{n} \quad \begin{array}{c}
\text { which gives the relation between the } \\
\text { pressure and volume, }
\end{array} \\
& T_{1} V_{1}^{n-1}=T_{2} V_{2}^{n-1} \begin{array}{c}
\text { which gives the relation between the } \\
\text { temperature and volume, }
\end{array} \\
& \left(\frac{T_{1}}{T_{2}}\right)^{n}=\left(\frac{P_{1}}{P_{2}}\right)^{n-1} \begin{array}{c}
\text { which gives the relation between the } \\
\text { temperature and pressure, }
\end{array}
\end{aligned}
$$

where $n=$ ratio of the specific heat at constant pressure to the specific heat at constant volume $=1 \cdot 408$.

The foregoing equations require logarithms for their solution, thus,

$$
\begin{aligned}
& \log P_{1}+n \log V_{1}=\log P_{2}+n \log V_{2} \\
& \log T_{1}+(n \quad 1) \log V_{1}=\log T_{2}+(n-1) \log V_{2} \\
& n \log T_{1} \quad n \log T_{2}^{\prime}=(n-1) \log P_{1} \quad(n-1) \log P_{2} .
\end{aligned}
$$

The work done when the volume changes from V_{1} to V_{2} is given by the formula,

$$
\text { work done }=\begin{gathered}
P_{1} V_{1}-P_{2} I_{2} \\
n-1
\end{gathered}
$$

The Critical Temperature of a Gas.-Any gas may be liquefied by pressure, provided its temperature is not higher than a certain temperature called its critical temperature. Above the critical temperature the substance can only exist as a gas, however gieat be the pressure.

If a gas is to be liquefied by pressure, it must therefore have its temperature reduced at least to its critical temperature. The lower the temperature of the gas is, the smaller is the pressure required to liquefy it.

The following table gives (approximately) the critical tem. peratures of various gases:-

COMBUSTION AND FUEL.

Constituents of Fuel.-The combustible constituents of fuel are carbon and hydrogen, and in coal there is generally also a small quantity of sulphur. The incombustible constituents are oxygen and nitrogen, and the various mineral substances which go to form the ash which is left after the fuel is burned.

When a fuel contains oxygen this element is in combination with hydrogen in the form of water, and this water is either combined with other constituents of the fuel, or it is present as moisture, which may be expelled by drying.

Fuels which contain any considerable quantity of water, either combined or free, are objectionable, because when they are burned in a furnace in the ordinary way a large amount of heat passes away with the waste gases as latent heat in the steam formed.

Combustion in Oxygen. -1 lb . of hydrogen (H) combines with 8 lbs . of oxygen (O) to form 9 lbs . of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ or steam.

1 lb . of carbon (C) combines with $1 \frac{1}{3} \mathrm{lbs}$. of oxygen (0) to form $2 \frac{1}{3}$ lbs. of carbonic oxide (CO).

1 lb . of carbon (C) combines with $2 \frac{2}{3} \mathrm{lbs}$. of oxygen (O) to form $3 \frac{2}{3} \mathrm{lbs}$. of carbonic acid $\left(\mathrm{CO}_{2}\right)$.

1 lb . sulphur (S) combines with 1 lb . of oxygen (O) to form 2 lbs. of sulphurous acid $\left(\mathrm{SO}_{2}\right)$.

Composition of Air. -For all questions on combustion, atmospheric air may be taken as composed of 23 parts by weight of oxygen and 77 parts of nitrogen.

Weight of air containing 1 lb . of oxygen $=\frac{100}{23}=4.348 \mathrm{lbs}$. Hence, weight of air required for the combustion of any fuel equals $4: 348$ times the weight of oxygen required.

Air required for Combustion of Fuel.-1 lb. of hydrogen requires 8 lbs . of oxygen, or 34.78 lbs . of air, say, 35 lbs .

1 lb . of carbon requires $2 \frac{2}{3} \mathrm{lbs}$. of oxygen, or 11.6 lbs . of air, say, 12 lbs. , for the complete combustion of the carbon to carbonic acid.

1 lb . of sulphur requires 1 lb . of oxygen, or 4.35 lbs . of air.
In estimating the amount of oxygen or air required for the combustion of fuel, the amount of oxygen already in the fuel must be taken into account.

Let $C=$ weight of carbon in 1 lb . of fuel.
$H=$ weight of hydrogen in 1 lb . of fuel.
$O=$ weight of oxygen in 1 lb of fuel.
$W=$ weight of air required for combustion of 1 lb . of fuel.

Then neglecting the sulphur, which is usually smail in amount or entirely absent,

$$
W=12 C+35\left(H-\frac{O}{8}\right) .
$$

This is the minimum amount of air required. In actual practice it is seldom possible to ensure that all the oxygen in the air supphed shall combine with the constituents of the fuel, and a considerable excess of air is usually necersary. The excess of air varies from 50 to 100 per cent., so that the actual weight of air supplied to a furnace is generally from $1 \frac{1}{2} W$ to $2 W$.

For coal and coke W may be taken as 12 lbs.
12 lbs . of air at 62° Fahr., and under a pressure of one atmosphere, occupies about 158 cubic feet.

The following table gives, approxinately, the minimum weight of air required for the combustion of 1 lb . weight of various fuels, and its volume at the normal temperature and under a pressure of one atmosphere ($14 \cdot 7 \mathrm{lbs}$. per square inch) :-

Fuel.	Weight of Aır in Lbs	Vol. of Air at $62^{\circ} \mathrm{F}$. in Cubic Feet.
Straw, with 16 per cent. of water	$4 \cdot 4$	57.8
Wood, dry	$6 \cdot 1$	$80 \cdot 2$
Peat, dry	$7 \cdot 6$	$99 \cdot 9$
Charcoal, from wood, dry	$10 \cdot 8$	141.9
Charcoal, from peat, dry	$9 \cdot 7$	$127 \cdot 5$
Coal: Lignite, air dried	$9 \cdot 3$	1222
Coal: Bituminous, average	11	144.6
Coal: Anthracite, average	$11 \cdot 7$	$153 \cdot 7$
Coke, average	11	$144 \cdot 6$
Petroleum .	14.5	1905

Total Heat of Combustion, or Calorific Value of a Fuel.-The calorific value of a fuel is the number of units of heat produced by the combustion of 1 lb . weight of it. The unit of heat is the amount of heat required to raise 1 lb of water $1^{\circ} \mathrm{Fahr}$.

The calorific value of a fuel is independent of the rate of combustion.

The calorific values of various fuels are given in the table on p. 560 .

The calorific value of a fuel may be determined experimentally by burning a sample of it, of known weight, in a specially constructed calorimeter in which the products of combustion are cooled by passing them through water. The weight of the water and its increase of temperature being known, the total amount of heat given out by the combustion of the sample is determined.

The caloricic value of a compound of carbon and hydrogen, as determined by experiment, is generally a little less than the sum of the calorific values of its elements. In the case of olefiant gas ($C_{2}^{\prime} I_{4}$) there is practically no such difference, but with marsh gas ($\left({ }^{\curlyvee} H_{4}\right)$ the calorific value, as determined by experiment, is 23513 , and, by calculation from the calorific values of its elements, the result is 26416 , or a difference of 2903 heat units.

In calculating the calorific value of a fuel fiom its chemical composition it is usual to assume that it is equal to the sum of the calorific values of its elements. In estimating the heating value of the hydrogen, care must be taken to neglect as much of it as is in combination with the oxygen in the fuel.

When the calorific value of hydrogen is determined by experiment, the steam formed gives up its latent heat to the water in the calorimeter; but when the hydrogen is burned in an ordinary furnace, the latent heat of the steam formed is not available, and must therefore be deducted from the total heat of combustion of the hydrogen. 1 lb . of hydrogen combines with 8 lbs . of oxygen to form 9 lbs . of steam whose latent heat $=966 \times 9=8694$. Deducting this from 62032, the total heat of combustion of hydrogen gives 53338 units of heat per lb. of hydrogen.

Let $C=$ weight of carbon in 1 lb . of fuel.
$H=$ weight of hydrogen in 1 lb . of fuel.
$S=$ weight of sulphur in 1 lb . of fuel.
$0=$ weight of oxygen in 1 lb . of fuel.
$h=$ calorific value of 1 lb . of fuel.

$$
\begin{aligned}
h & =14544 C+53538\left(H-\frac{O}{8}\right)+3996 S . \\
& =14544\left\{C+3 \cdot 667\left(H-\frac{o}{8}\right)+275 S\right\} .
\end{aligned}
$$

Carbon Value of Fuel. -The carbon value of any fuel is the weight of carbon in lbs. having the same heating value as 1 lb . of the fuel. Carbon value equals calorific value of fuel divided by calorific value of carbon.

Theoretical Evaporative Power of Fuel.-The theoretical evaporative power of fuel is stated in lbs. of water evaporated from and at 212° Fahr., and is obtained by dividing the calorific value of the fuel by 971.

Actual Evaporative Power of Coal in Steam Boilers.-From numerous experiments on steam boilers it appears that the actual evaporative power of coal varies from 50 per cent. to

85 per cent. of the theoretical evaporative power. An average of a considerable number of tests gave the actual evaporative power equal to 70 per cent. of the theoretical evaporative power of the coal.

Calorific Value, Carbon Value, and Evaporative Power of Various Fuels.-

Combustuble	Calorific value in Rutish Thermal C'mits.	$\begin{aligned} & \text { Carhon } \\ & \text { lalue } \end{aligned}$	Evaporative Power in Lhs. of Wate from and at 212° Falr.
Carbon, burned to carbonic acid	14544	1 . 0	15.0
Carbon, burned to carbonic oxide	4451	-306	$4 \cdot 61$
Carbonic oxide	4325	$\cdot 297$	$4 \cdot 48$
Marsh gas	23513	$1 \cdot 617$	$24 \cdot 34$
Olefiant gas	21344	$1 \cdot 168$	$22 \cdot 10$
Hydrogen	(i2032	$4 \cdot 265$	$64 \cdot 22$
$\left.\begin{array}{l}\text { Hydrogen, deducting latent } \\ \text { heat in stean formed }\end{array}\right\}$	53338	$3 \cdot 667$	65.22
Sulphur	3996	-27.)	$4 \cdot 14$
Straw, with 16 per cent. water	5200	-3:78	$5 \cdot 38$
Wood, kiln dried	8000	-550	$8 \cdot 28$
$\left.\begin{array}{l}\text { Wood, air dried, with } 20 \text { per } \\ \text { cent. water }\end{array}\right\}$	56010	-385	$5 \cdot 80$
Peat, kiln dried.	10000	$\cdot 688$	$10 \cdot 35$
$\left.\begin{array}{l}\text { Peat, air dried, with } 20 \text { per } \\ \text { cent. water }\end{array}\right\}$	6500	$\bullet 447$	6.73
Charcoal from wood, dry	13000	-894	$13 \cdot 46$
Charcoal from peat, dry	11600	$\cdot 798$	12.01
Coal : Lignite, air dried	11000	-756	$11 \cdot 39$
from	13000	-894	$13 \cdot 46$
Coal : Bituminous . \quad to	15700	$1 \cdot 079$	16.25
average	14100	$\cdot 969$	14.60
from	14000	$\cdot 963$	$14 \cdot 49$
Coal: Anthracite . ${ }^{\text {to }}$	16200	$1 \cdot 114$	16.77
average	15000	1.031	15.53
Coke from	12000	825	$12 \cdot 42$
	13700	942	$14 \cdot 18$
Block fuel . . . average	15000	1.031	15.53
Petroleum	20000	1.375	20.70
Natural gas (Pennsylvanian)	26000	1.788	26.92

Mean Specific Heat of Products of Combustion. -

Let w_{1}, w_{2}, w_{3}, etc., be the weights of the separate gases and the ash making up the products of the combustion of 1 lb . of fuel, including surplus air.
s_{1}, s_{2}, s_{3}, etc., the specific heats of these gases and ash respectively.
$w=w_{1}+w_{2}+w_{3}+$ ctc., the total weight of the products of the combustion of 1 lb . of fuel, including surplus air. s, the mean specific heat of the products of combustion.

$$
s=\frac{s_{1} w_{1}+s_{2} u_{2}+s_{3} v_{3}+\text { etc. }}{w}
$$

The following are the specific heats of gases (under constant pressure) found in the products of combustion of fucl: Air, $\cdot 238$; oxygen, $\cdot 218$; nitrogen, $\cdot 214$; carbonic oxide, $\cdot 245$; car. bonic acid, 217 ; steam, $\cdot 475$; sulphurous acid, $\cdot 155$.

The specific heat of the ash is about 2.
Calorific Intensity, or Temperature of Combustion.-
$h=$ total heat of combustion of 1 lb . of fuel.
$w=$ total weight of products of combustion of 1 lb . of fuel, including surplus air.
$s=$ mean specific heat of products of combustion.
$t=$ ideal temperature (in degrees Fahr.) of products of combustion, and the surplus air mixed with them at the instant that the combustion is complete, measured from the initial temperature.

$$
t=\begin{gathered}
h \\
s w
\end{gathered}
$$

Examples of Calorific Intensity of Fuels.

Varieties of Fuel.

(Revised by J. W. Farmery, M.A., A.I.C., D.I.C.)

Wood.-Thoroughly dried wood contains about 50 per cent. of carbon, 6 per cent. of hydrogen, 43 per cent. of oxygen, less than 1 per cent. of nitrogen plus sulphur, and a trace of ash. On account of the large amount of oxygen present, less than l per cent. of hydrogen is available for combustion, and the heat of combustion of wood is almost entirely due to the carbon it contains.

Ordinary air-dried firewood usually contains about 20 per cent. of moisture, so that its composition per cent. is: carbon, 40; hydrogen, $4 \cdot 8$; oxygen, $34 \cdot 4$; less than 0.8 of nitrogen plus sulphur; a trace of ash; and water, 20.

Newly felled wood contains from 20 to 50 per cent. of moisture.

Peat, or turf, consists of the decomposed remains of vegetable matter, generally mosses and aquatic plants. As found, it usually contains over 90 per cent. of moisture, but after airdrying about 20 per cent.

The mean composition of perfectly dry peat is approximately: carbon, 57 ; hydrogen, 6; oxygen, 32 ; nitrogen and sulphur, 1.5 ; and ash, 3.5 per cent.

The specific gravity of peat in its ordinary state varies from $\cdot 3$ to 1 , and when compressed it varies from $\cdot 9$ to 1.8 .

Coal is the product of vegetable matter which has, during the course of ages, been decomposed and solidified under great pressure.

The principal varieties of coal are as follows:-I. Lignite. II. Bituminous coals, including long-flame non-caking coals, caking coals, and cannel coals. III. Semi-bituminous (noncaking) coals. IV. Anthracitic coals and true anthracite.

The gradual conversion of woody fibre into peat and the different kinds of coal is shown in the following table:-

	Oarboa.	Hydrogen.	Oxygen.
Wood	100	12	88
Peat	100	10.5	56
Lignite	100	$7 \cdot 7$	52
Bituminous coal	100	6	21
Anthracite	100	3	$3 \cdot 5$

Lignite or brown coal is intermediate in appearance and properties between peat and true coal. It burns with a very long smoky flame, and it is generally non-caking. After drying in the air lignite contains from 15 to 20 per cent. of moisture. If thoroughly dried in a stove and again exposed to the air it
reabsorbs the water which it lost in drying. The composition of lignite varies considerably. A sample of good quality when thoroughly dried contained 57 per cent. of carbon, $5 \cdot 7$ per cent. of hydrogen, 32 per cent. of oxygen, 1.6 per cent. of nitrogen plus sulphur, and 3.7 per cent. of ash. The specific gravity varies from 1.2 to 1.3 .

Cannel coal burns with a long flame, and gives off large quantities of smoke. It contains a relatively large amount of disposable hydrogen. Specific gravity $1 \cdot 27$ to $1 \cdot 32$.

Caking bituminous coal softens and swells when heated, and the parts adhere together, forming a pasty mass. It burns with a fairly long flame, and requires careful stoking to avoid smoke. Specific gravity 1.26 to $1-36$.

Non-caking or dry bituminous coal burns with a shorter flame than that of the caking coal, and it gives off little or no smoke. Specific gravity $1 \cdot 28$ to $1 \cdot 42$.

Anthracite burns without flame or smoke, and with an intense local heat, but it requires a strong draught for its combustion. It is hard and brittle, and many varieties decrepitate considerably when heated, especially when the heat is applied suddenly. Care has therefore to be taken that the fire is so managed that the small pieces do not fall through between the fire-bars and get lost. Specific gravity 1.35 to 1.7 .

Briquette fuel is usually made by mixing coal dust with pitch or some other binding material, the mixture being pressed and formed into hard blocks of rectangular shape. Good briquette fuel contains about 7 per cent. of ash, 8 per cent. of pitch, and 3 per cent. of moisture. Its calorific value is about 14,500 B.Th.U. per lb. One ton of briquette fuel occupies about 37 cubic feet of space.

For full information on the manufacture of briquette fuel see Minutes of Proceedings of the Institution of Civil Engineers, vol.cxviii.

Wood charcoal is made by heating wood out of contact with the atmosphere, or with only a limited supply of air, to a temperature not lower than 550° Fahr. The higher the temperature, the blacker and harder is the chaicoal produced. The yield of charcoal varies from 15 to 25 per cent. by weight of the wood from which it is produced, the yield being lower the higher the temperature. Dry charcoal contains from 80 to 95 per cent. of carbon, 5 to 3 per cent. of available hydrogen, and 1 to 5 per cent. of ash, the remainder being nitrogen and combined oxygen and hydrogen. Charcoal which has been exposed to the air usually contains from 5 to 12 per cent. of moisture.

Peat charcoal is prepared from peat in the same manner that wood charcoal is made from wood. Good peat charcoal when perfectly dry contains from 80 to 90 per cent. of carbon, and 10 to 15 per cent. of ash. It is usually extremely friable.

Coke is the solid carbonaceous material left after coal has been heated out of contact with air. High temperature coke is made at $1200^{\circ}-1300^{\circ} \mathrm{C}$., and low temperature coke or semi-coke at $500^{\circ}-750^{\circ} \mathrm{C}$.

The best coke for fuel is prepared from bituminous coals. It is hard, brittle, and porous, of a dark grey colour and slightly metallic lustre.

The yield of coke from bituminous coals is from 50 to 80 per cent. of the weight of the coal. Anthracite yields from 80 to 95 per cent. of powdery residue, of no commercial value.

Good dry coke contains from 85 to 95 per cent. of carbon, $\cdot 25$ to 2 per cent. of sulphur, and 4 to 12 per cent. of ash. Exposed to the air, it absorbs from 10 to 20 per cent. of moisture.

Petroleum, or natural mineral oil, contains from 82 to 87 per cent. of carbon, 11 to 15 per cent. of hydrogen, and $\cdot 1$ to 5 per cent. of oxygen.

The following table gives the specific gravity, composition, gross calorific value, and flash point of various oil fuels and, for the purpose of comparison, particulars for average English coal:-

Fuel.	$\begin{aligned} & \text { Specific Gravity } \\ & \text { at } 60^{\circ} \mathrm{F} \text {. } \end{aligned}$	Composition. Per Cent.				Flash Point.
		$\begin{aligned} & \text { ig } \\ & \text { 品 } \\ & \text { on } \end{aligned}$				
Kerosene .	0.792	86.4	$13 \cdot 5$	$0 \cdot 1$	20,050	$100^{\circ} \mathrm{F}$. (Abel)
Gas oil .	0.870	86.3	12.7	1.0	19,760	$170^{\circ} \mathrm{F} .(\mathrm{P} .-\mathrm{M}$.
Light fuel oil.	0.895	86.1	$12 \cdot 3$	1.6	19,260	$175^{\circ} \mathrm{F}$. (P.-M.)
Heavy fuel oil	0.950	86.0	11.8	$2 \cdot 2$	18,900	$232^{\circ} \mathrm{F}$. (P.-M.)
$\left.\begin{array}{l} \text { Good English } \\ \text { coal, mean of } \\ 98 \text { samples } \end{array}\right\}$	1.380	$80 \cdot 0$	$5 \cdot 0$	$8 \cdot 0+1 \cdot 25$	14,112	..

Natural gas issues from strata at depths from 500 feet to 2000 feet, and reaches the surface at a mean pressure of 150 to 200 lbs. per square inch. When first reached the pressure is very high (1000 lbs. per square inch is not unusual). The density is from 45 to 75 (air $=1$); calorific value 750 to 1600 B.Th.U. per cubic foot.

Natural gas is important as the source of natural petrol, and is used locally to provide heat and light.

STEAM.

Saturated Steam.-Steam at a given temperature is said to be saturated when it is of maximum density for that temperature. Steam in contact with water is saturated steam.

Wet or Supersaturated Steam.--Steam which has water (in the form of small drops) suspended in it is called wet or supersaturated steam. If wet steam be heated until all the water suspended in it is evaporated, it is said to be dried.

Superheated Steam. -If dry saturated steam be heated when not in contact with water, its temperature is raised and its density is diminished or its pressure is raived. The steam is then said to be superheated.

Dryness Fraction of Steam.-Let W =weight of a given quantity of wet steam, $w=$ weight of water suspended in this steam, then dryness fraction $=\frac{H-w}{W^{r}}$.

Under ordinary conditions and good stoking the dryness fraction is about 95 per cent.

Steam Tables.

The table of Properties of Saturated Steam (pp. 566-574) is given in the form in which it was arranged by D. A. Low some years ago, with Centigrade and Fahrenheit values on each page. With the exception of the figures in the column headed w the figures in the tables on pp. 566-582 are taken, by permission of Messrs. Edward Arnold \& Co., from the Abridged Callendar Steam Tables, to which reference should be made for fuller information.

On pp. 566-574 the columns to the left of the first thick line and the columns between the thick lines apply to degrees Centigrade and C.H.U. Also, the columns to the right of the second thick line and the columns between the thick lines apply to degrees Fahrenheit and B.Th.U.
Symbols.-
$t=$ saturation temperature.
$h=$ sensible heat of 1 lb . of steam, or the total heat in 1 lb . of water at temperature t.
$H=$ total heat of 1 lb . of steam.
$L=$ latent heat of 1 lb . of steam.
$v=$ volume of 1 lb . of steam, in cubic feet.
$w=$ weight of 1 cubic foot of steam $=1 / v$, in pounds.
$p=$ pressure of steam in lbs. per sq. inch, absolute.
$\phi_{w}=$ entropy of 1 lb . of water.
$\phi_{1}=$ total entropy of 1 lb . of steam.
Properties of Saturated Steam．

$\begin{aligned} & \text { 离 } \\ & \text { is } \end{aligned}$		ゃみмッ○ 		
官		がmoo © 0		$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\infty}{\infty} \underset{\infty}{\infty}$
官				
宊				
θ^{∞}				
2^{2}				
8	or	Rom óo ó		
§				
จ	000∞ 		－ONロー $\dot{+\infty} \dot{0} \dot{\circ} \dot{\alpha}$ ๗ึ ๗ో	
が				
	oi gio			$\dot{\varphi} \dot{0} \dot{1}$ －10
官	 	15 © O O 	 	
$\begin{aligned} & \text { ن } \\ & \stackrel{\circ}{\sim} \end{aligned}$		NENOO 	© 웅욱	

Properties of Saturated Steam（continued）．

$\begin{aligned} & \text { i } \\ & \text { io } \end{aligned}$		－ $0 \infty \infty$ $\dot{\circ} \dot{\infty} \dot{\alpha} \dot{\infty}$ 시굮 M M M		$000 \infty 0$ in 10.908 ーッーーテ
		0200001 	HOHNO がールーか	
$\pm \underset{~}{\text { in }}$				
ウ	$-\infty \times 4$ $\dot{\infty} \dot{\infty} \dot{1} \dot{+} \dot{\sim}$ gio 엉엉	GIGM10 0 6		
θ^{∞}			옹NNN $\infty \infty \times N$ $\stackrel{\infty}{\infty} \stackrel{\infty}{\infty} \underset{\sim}{\infty} \stackrel{\infty}{\infty} \underset{\sim}{\infty}$	
θ^{2}				
8	مبَ		－ ஸ் ஸ் ஸ் ஸ் ஸ்	0 OR世 ＋
३			$\begin{aligned} & \text { H2 } 20 \\ & \infty \\ & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	910 个品 8 －－N M － 6.06 ○́óóó
จ				On m இ்
－¢				会 $\dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\circ}$ 10 10151010210
官				 $\dot{-} \dot{0} \dot{\sim} \dot{\infty}$ Noy ${ }^{\circ} 9$
官		คั่ ำ 동	品오웅 	
$\begin{aligned} & 0 \\ & \circ \\ & \hline \end{aligned}$		ติ से		

Properties of Saturated Steam（continued）．

$\begin{aligned} & \text { fi } \\ & \text { in } \end{aligned}$				
N			$\infty 10000$ $\dot{1} \dot{10} \dot{\theta} \dot{\theta}$ －～ー～ー～	OTHOO $\mathfrak{O} \dot{\circ} \dot{\circ} \dot{\sim} \dot{\sim}$
	00000 		∞ N ∞ 10 -1 $\dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty}$ $\infty_{\infty}^{\infty} \propto \infty$	－NONO が心だ心
θ°				
-2^{2}			G1600 $\dot{\mathrm{o}} \dot{\text { ó } \dot{0}}$	
8	ONWCO 		م100 ∞ か o 입	
3			¢ 뚜웅 띵Nㅇㅇㅇㅇ －$\dot{0} \dot{0} \dot{0} \dot{0}$	$00_{0}^{0} 0_{0}^{\infty} 0_{0}^{\infty}$ ∞ O －0்0் $\dot{0}$
స				
ジ்				
シ	응ㅇㅇ 수숭 ¢ 1018	๗゙すNが品 		
が		下oor ம் ゆ்		M
$\begin{aligned} & \text { ن゙ } \\ & \stackrel{y}{*} \end{aligned}$		NGOM N 	∞ வ்க் க்	우ㅇㅕㅕㄴㅇㅇㅇ

Properties of Saturated Steam（continued）．

$\begin{aligned} & \text { İ } \\ & \stackrel{\circ}{i} \end{aligned}$		\oplus－लें जลANㅓㅅ		
Fi		100010 m $\dot{\infty} \dot{0} \dot{\theta} \dot{\theta}$		
品				
$\xrightarrow[\sim]{\mathrm{H}}$			motocis －000	
θ		10世た ウッウゥウ		
θ		－00000	－0 ÓÓ0	191020.409 $17.10{ }^{2} 108$ ¢
8		MN:		
3				
ล				
		N 1020100 		＋ $0 \times \pi$ H $\dot{\infty} \dot{\sim} \dot{0} \dot{1}$ 겅NN
品	$\dot{\infty} \dot{0} \dot{\sigma} \dot{0}$ โొ $\mathfrak{\circ}$			
－		内่ ㅓㅇ 엉ㅇㅇ		
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$				

Properties of Saturated Steam（continuea）．

480				
	क下 $10 \% 0$ 엉 $+\infty$内肉N N	HMOOH ล～が 	－ 000 O ๓ボ ボN゙N	ーN MON 이우웅 ลิञ คึ
in				
N昂				
θ°		$\begin{aligned} & 8_{0}^{\infty}=8 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	心8 His NR 	$\begin{aligned} & \bullet 6 \\ & \hline \end{aligned}$
θ^{3}	「110 －0000	$\infty \infty \infty$ －$\dot{0} \dot{0} \dot{0} \dot{0}$		
8		¢ ¢ ¢ ¢ ¢ ¢ \％		
3		○たがずす － 0 N O O O －íóó		
$จ$	No $\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$			
家	$\stackrel{F}{-10 \infty} \underset{\sim}{\circ}$ ボํํํ 10	190005N 		
官	1000000 $\dot{\sim} \dot{\sim} \dot{\infty} \dot{\infty}$ 			
تِنتِ	$\infty \infty \infty \infty$ 	No $19+\mathrm{H}$ ーーーー	010010 	
$\begin{aligned} & \text { نٌ } \\ & \circ \end{aligned}$	 	$9 O O C$ R亡் $\dot{\omega} \dot{9} \dot{\sim}$ 	 －man	

Properties of Saturated Steam（continued）．

$\begin{aligned} & \text { 伿 } \\ & \stackrel{y}{2} \end{aligned}$	OOOOQ N N ल M			$0 \infty \infty \infty$
＋	H10015 HeB ORN Nललज	－ 10 か m－ ＋${ }^{\infty} \dot{\infty}$ N心N N N arer	ocomor $\operatorname{Min}_{\infty}^{1} \times \infty$ जNGNG1	
		010 Q 10 $\dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty}$ ショヨヨコ HO O NO 둥웅ㅇㅇ 용ㅇㅇㅇ		
-0°				
-2^{3}			 $11_{10}{ }^{\circ} 9$ 	
8		NKNRNO		א゙ザロロロO
※				
2	CM 1000 ف் ف் ف் ف்		엉ㅇㅇ がニ रें 10 रे रें	
N	が品の 1510410			
نِّ	a co oc ar 12in 106 101810	∞ ¢ $\dot{-1}$ 181898	0 N10 $0-1$ $\dot{\infty} \dot{\infty} \dot{\infty}$ ${ }^{1} 10^{10} 10{ }^{10}$	
官		－ONTN 	－ 	
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		0 0 0 0 0 	10 20 ザ ザ ¢ －19	N 0∞ © 90900

Properties of Saturated Steam（continued）．

$\begin{aligned} & \text { c. } \\ & \stackrel{\circ}{\circ} \end{aligned}$		ャ ค O间间白 		
$\approx \frac{\dot{H}}{H}$		$\infty 00 \infty 0$ $\infty \dot{\infty} \dot{\sim} \dot{\sim} \dot{\sim}$ 		－ ゆi win in in
$\underset{\sim}{i n}$				－$+\infty$ w 10 $\dot{\circ}_{\circ}^{\infty} \dot{\circ}$ © ココニコニ
	0.110 or －が心灾 $\infty \infty$		ハー○のロ $\dot{0} \dot{8} \dot{0}$ in ∞	
-2				
-0^{5}			的的㿽的 00000	会1700 00000
2				
३				
2			 	
		0 जब 0 m ${ }_{\infty}^{10} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty}$ 		
-品		－Oみ心O $00_{0} 00$	м بorat सें － 0	$0 \infty 0 \sim 4$ 00000
\approx			N下ーTRO $\dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{8}$ $\stackrel{\infty}{\sim} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$	
$\stackrel{\circ}{\circ}$	HNOM． B © 웅 －－Hー～	is오웅 N心N゙が	∞ NuTO OT N－ －1～ー -1	

Froperties of Saturated Steam（continued）．

$\begin{aligned} & \text { 促 } \\ & \sim \end{aligned}$	
$\underset{\sim}{\text { E. }}$	
官	
\sim^{∞}	
-0^{8}	N
8	
2	
2	
ヘ晏	
官	
$$	

Properties of Saturated Steam (concluded).

$t^{\circ} \mathrm{C}$.	$\stackrel{h}{\text { C.H.C. }}$	$\begin{gathered} H \\ \text { C.H.U. } \end{gathered}$	$\begin{gathered} L \\ \text { C.H.U. } \end{gathered}$	v		p	ϕ_{1}		$\stackrel{L}{\text { B.Th. }}$	$\begin{gathered} H \\ \text { 3.Th. }{ }^{\top} \end{gathered}$	$\begin{gathered} h \\ \mathrm{Th} \end{gathered}$	$t^{\circ} \mathrm{F}$.
226	$232 \cdot 6$	$669 \cdot 5$	$436 \cdot 9$	1.222	0.8183	380	${ }^{1} 0.6185{ }^{\prime}$	$1 \cdot 4904$	7867	1205.3	418.6	$439 \cdot 6$
$227 \cdot 8$	234.3	$669 \cdot 6$	$435 \cdot 3$	$1 \cdot 191$	0.8396	390	$0 \cdot 6186$	14880	$784 \cdot 0$	$120.5 \cdot 4$	4214	$442 \cdot 1$
$229 \cdot 2$	235.8	$669 \cdot 6$	$433 \cdot 8$	$1 \cdot 161$	$0 \cdot 8613$	400	, $0 \cdot 6216$	14857	$781 \cdot 3$	1205.5	$424 \cdot 2$	444.6
$230 \cdot 5$	$237 \cdot 3$	$669 \cdot 7$	$432 \cdot 4$	$1 \cdot 133$	08826	410	10.6945	14834	778.6	1205.5	426.9	$447 \cdot 0$
231.8	$238 \cdot 8$	$669 \cdot 7$	$430 \cdot 9$	$1 \cdot 106$	09042	420	06274	$1 \cdot 4811$	$775 \cdot 9$	$1205 \cdot 5$	$429 \cdot 6$	$449 \cdot 4$
$233 \cdot 2$	$240 \cdot 2$	$669 \cdot 7$	429.5	$1 \cdot 080$	0.9259	430	0.6303	1.4789	$773 \cdot 3$	1205.5	$432 \cdot 2$	$451 \cdot 7$
234.5	$241 \cdot 6$	$669 \cdot 8$	$4.88 \cdot 2$	$1 \cdot 056$	0.9470	440	0.6331	$1 \cdot 4767$	$770 \cdot 8$	$1205 \cdot 6$	$434 \cdot 8$	$454 \cdot 0$
$235 \cdot 8$	$243 \cdot 0$	$669 \cdot 8$	426.8	1.032	0.9690	450	0.6358	$1 \cdot 4746$	768.2	$1205 \cdot 6$	$437 \cdot 4$	$456 \cdot 3$
237.0	$244 \cdot 4$	$669 \cdot 8$	$425 \cdot 4$	1.009	0.9911	460	0.6385	1.4725	$76.5 \cdot 7$	$1205 \cdot 6$	$439 \cdot 9$	$458 \cdot 5$
$238 \cdot 2$	245.8	$669 \cdot 7$	423.9	0.988	1.012	470	0.6412	$1 \cdot 4705$	$763 \cdot 2$	$1205 \cdot 6$	$442 \cdot 4$	$460 \cdot 7$
$239 \cdot 4$	$247 \cdot 2$	$669 \cdot 7$	422.5	0.967	1.034	480	$0 \cdot 6438$	$1 \cdot 4685$	$760 \cdot 7$	1205.5	$444 \cdot 8$	$462 \cdot 8$
$240 \cdot 6$	$248 \cdot 5$	669•7	$421 \cdot 2$	0.947	1.056	490	0.6464	$1 \cdot 4665$	758.3	1205.5	$447 \cdot 2$	464.9
$241 \cdot 7$	$249 \cdot 8$	$669 \cdot 7$	419.9	0.928	1.078	500	0.6489	$1 \cdot 4646$	755.8	$1205 \cdot 4$	$449 \cdot 6$	$467 \cdot 0$
$247 \cdot 2$	256.3	$669 \cdot 4$	$413 \cdot 1$	0.843	$1 \cdot 186$	550	0.6614	$1 \cdot 4553$	$743 \cdot 9$	$1204 \cdot 9$	$461 \cdot 0$	476.9
$252 \cdot 3$	$262 \cdot 1$	$669 \cdot 0$	406.9	$0 \cdot 770$	1.299	600	0.6722	$1 \cdot 4466$	$732 \cdot 4$	$1204 \cdot 2$	$471 \cdot 8$	$486 \cdot 2$
$261 \cdot 7$	$273 \cdot 2$	667.9	394.7	$0 \cdot 655$	1.527	700	0.6927	1.4308	$710 \cdot 5$	$1202 \cdot 2$	$491 \cdot 7$	$503 \cdot 1$
$270 \cdot 1$	$283 \cdot 3$	666-4	$383 \cdot 1$	$0 \cdot 509$	1.757	800	0.7110	$1 \cdot 4165$	689.7	$1199 \cdot 6$	$509 \cdot 9$	$518 \cdot 2$
$284 \cdot 8$	$301 \cdot 4$	662.7	$361 \cdot 3$	$0 \cdot 446$	$2 \cdot 242$	1000	0.7432	$1 \cdot 3909$	$650 \cdot 2$	$1192 \cdot 8$	$542 \cdot 6$	$544 \cdot 6$
$313 \cdot 4$	$339 \cdot 8$	$649 \cdot 5$	$309 \cdot 7$	0.277	$3 \cdot 610$	1500	0.8086	$1 \cdot 3360$	$5 \overline{77} \cdot 5$	$1169 \cdot 1$	$611 \cdot 6$	596.2
$335 \cdot 4$	373-2	631.2	258.0	$0 \cdot 188$	5-319	2000	0.8620	$1 \cdot 2857$	464-3	$1136 \cdot 1$	$671 \cdot 8$	$635 \cdot 8$
$353 \cdot 4$	405.8	606.7	200.9	$0 \cdot 132$	$7 \cdot 576$	2500	0.9128	1.2323	$361 \cdot 5$	$1092 \cdot 0$	$730 \cdot 5$	$668 \cdot 1$
$368 \cdot 6$	$446 \cdot 2$	$564 \cdot 7$	118.5	0.086	$11 \cdot 63$	3000	0.9728	$1 \cdot 1580$	$214 \cdot 1$	$1016 \cdot 4$	802.3	$695 \cdot 4$

Total Heat of Superheated Steam-C.H.U. per 1b.

$\begin{gathered} \text { Abs. } \\ \text { Press. } \\ \text { Lb. } / \mathrm{In} .^{2} \end{gathered}$	Saturation.		Degrees of Superheat (Centigrade).						
	$t^{\circ} \mathrm{C}$.	H	10°	20°	30°	40°	50^{-}	60°	70°
15	$100 \cdot 6$	$639 \cdot 5$	645.6	649-4	6554-3	$659 \cdot 0$	$663 \cdot 7$	668.5	$673 \cdot 2$
20	108.9	642.6	647-8	$652 \cdot 6$	6574	$662 \cdot 2$	$667 \cdot 0$	671.9	$676 \cdot 7$
30	$121 \cdot 3$	$647 \cdot 1$	652.4	657.2	6620	666.9	671.9	676.8	$681 \cdot 6$
40	$130 \cdot 7$	650.4	655.6	$660 \cdot 5$	665.4	$670 \cdot 4$	675.4	$680 \cdot 3$	68.5.2
50	138.3	$652 \cdot 8$	658.0	663.0	$668 \cdot 1$	673-1	678.1	683-1	$688 \cdot 0$
60	144.9	$654 \cdot 8$	$660 \cdot 0$	$665 \cdot 2$	$670 \cdot 3$	6754	$680 \cdot 4$	$685 \cdot \frac{1}{}$	$690 \cdot 4$
70	150.6	656.5	$661 \cdot 7$	$667 \cdot 0$	$672 \cdot 2$	677.3	682-4	$687 \cdot 4$	$692 \cdot 4$
80	155.6	$657 \cdot 8$	$663 \cdot 2$	668. 5	$673 \cdot 8$	$679 \cdot 0$	684•1	6892	694.3
90	$160 \cdot 3$	$659 \cdot 1$	664. \mathfrak{z}	669.9	675.2	$680 \cdot 5$	68.5 .7	6909	$696 \cdot 1$
100	164.4	$660 \cdot 1$	665.7	671-1	6765	681.8	687.0	6922	$697 \cdot 4$
120	171.8	661.9	$667 \cdot 6$	$673 \cdot 3$	678.7	684.1	$689 \cdot 5$	6948	$700 \cdot 0$
140	$178 \cdot 3$	$663 \cdot 4$	$669 \cdot 2$	$675 \cdot 0$	$680 \cdot \tilde{3}$	686.0)	691.5	6969	$702 \cdot 2$
160	$184 \cdot 2$	$664 \cdot 6$	$670 \cdot 6$	676.5	682.1	$687 \cdot 7$	693.2	6986	703.9
180	189.5	$665 \cdot 6$	671.8	677.7	683-5	$689 \cdot 1$	$694 \cdot 6$	$700 \cdot 1$	705.5
200	$194 \cdot 3$	$666 \cdot 4$	672.7	678.7	684.6	$690 \cdot 3$	69.59	$701 \cdot 5$	707.0
250	204.9	$668 \cdot 2$	674.5	6808	6870	$692 \cdot 9$	6987	$704 \cdot 4$	$710 \cdot 0$
300	$214 \cdot 1$	$668 \cdot 9$	$675 \cdot 6$	6822	6887	$694 \cdot 8$	$700 \cdot 8$	$706 \cdot 6$	7124
400	229.2	$669 \cdot 6$	677.0	6841	691.0	$697 \cdot 4$	703.7	7099	$715 \cdot 9$
500	241.7	669.7	677.2	68.50	6920	6989	$705 \cdot 6$	$712 \cdot 0$	$718 \cdot 3$
600	$252 \cdot 3$	$669 \cdot 0$	677.3	$685 \cdot 2$	$692 \cdot 7$	7000	707.0	713.6	7201
700	261.7	$667 \cdot 9$	$677 \cdot 0$	$685 \cdot 2$	$693 \cdot 0$	$700 \cdot 6$	$707 \cdot 7$	$714 \cdot 7$	721.4
800	$270 \cdot 1$	$666 \cdot 4$	676.2	$684 \cdot 9$	$693 \cdot 1$	$700 \cdot 9$	$708 \cdot 3$	$715 \cdot 5$	722.4
1000	$284 \cdot 8$	662.7	$673 \cdot 5$	$683 \cdot 4$	692.5	$701 \cdot 0$	$709 \cdot 0$	716.7	$724 \cdot 0$
2000	$335 \cdot 4$	631.2	$651 \cdot 6$	$667 \cdot 2$	$680 \cdot 7$	$692 \cdot 7$	$703 \cdot 6$	$713 \cdot 6$	722.9

Total Heat of Superheated Steam-G.H.U. per lb. (continued).

Abs. Press. Lb./In. ${ }^{2}$	Degrees of Superheat (Centigrade).							
	80°	90°	100°	120°	140°	160°	180°	200°
15	677.9	$682 \cdot 6$	$687 \cdot 2$	$696 \cdot 7$	$706 \cdot 2$	$715 \cdot 7$	725.2	$734 \cdot 7$
20	$681 \cdot 4$	$686 \cdot 1$	$690 \cdot 7$	$700 \cdot 2$	$709 \cdot 8$	$719 \cdot 3$	728.9	$738 \cdot 5$
30	686.4	$691 \cdot 1$	$695 \cdot 8$	$705 \cdot 4$	$715 \cdot 1$	$724 \cdot 7$	$734 \cdot 4$	$744 \cdot 1$
40	$690 \cdot 0$	694.8	$699 \cdot 5$	$709 \cdot 2$	718.9	728.6	$738 \cdot 4$	$748 \cdot 2$
50	692.9	697.8	$702 \cdot 6$	712.4	72.2	731.9	$741 \cdot 7$	751.6
60	$695 \cdot 3$	$700 \cdot 2$	$705 \cdot 1$	714.9	$724 \cdot 7$	$734 \cdot 5$	$744 \cdot 4$	$754 \cdot 3$
70	$697 \cdot 4$	$702 \cdot 3$	$707 \cdot 3$	$717 \cdot 1$	$727 \cdot 0$	736.9	746.8	7.56.7
80	$699 \cdot 4$	$704 \cdot 4$	709-3	$719 \cdot 2$	729.1	$739 \cdot 0$	748.9	758.9
90	$701 \cdot 2$	$706 \cdot 2$	$711 \cdot 1$	721.0	$730 \cdot 9$	$740 \cdot 8$	$750 \cdot 7$	760.7
100	$702 \cdot 6$	$707 \cdot 7$	712.7	722.8	$732 \cdot 8$	742.7	7.52.5	762.5
120	705.2	$710 \cdot 3$	$715 \cdot 4$	725.5	$735 \cdot 6$	$745 \cdot 7$	755.7	765.7
140	$707 \cdot 4$	$712 \cdot 6$	717.7	727.9	$738 \cdot 1$	$748 \cdot 2$	$758 \cdot 3$	$768 \cdot 4$
160	$709 \cdot 2$	714.5	$719 \cdot 8$	$730 \cdot 1$	$740 \cdot 3$	750.5	$760 \cdot 7$	770.9
180	710.9	716.3	$721 \cdot 6$	$732 \cdot 0$	$742 \cdot 3$	75.6	762.9	$773 \cdot 1$
200	$712 \cdot 4$	717.8	$723 \cdot 1$	733.5	-744.0	$754 \cdot 4$	$764 \cdot 8$	775.0
250	$715 \cdot 5$	$721 \cdot 1$	$726 \cdot 6$	$737 \cdot 3$	747.9	$758 \cdot 4$	768.9	779.2
300	718.0	$723 \cdot 6$	729-3	$740 \cdot 1$	750.9	$761 \cdot 5$	$772 \cdot 2$	78.7
400	$722 \cdot 0$	$727 \cdot 7$	$733 \cdot 5$	744.7	75.5	$766 \cdot 7$	777.5	788.4
500	$724 \cdot 6$	$730 \cdot 6$	$736 \cdot 6$	$748 \cdot 1$	759.5	$770 \cdot 7$	781.8	$792 \cdot 8$
600	726.5	732.8	$739 \cdot 0$	$750 \cdot 6$	$762 \cdot 2$	773.7	785.0	$796 \cdot 3$
700	728.0	734.6	$741 \cdot 0$	753.0	$764 \cdot 9$	$776 \cdot 5$	788.0	799.3
800	$729 \cdot 2$	735.9	$742 \cdot 4$	755.0	$767 \cdot 2$	$779 \cdot 2$	$790 \cdot 9$	$802 \cdot 2$
1000	731-1	737.9	$744 \cdot 6$	757.4	$770 \cdot 0$	$782 \cdot 2$	$794 \cdot 1$	805.8
8000	$731 \cdot 6$	739.8	747-8	762.9	777-1	$790 \cdot 7$	803.9	816.6

Total Heat of Superheated Steam-B.Th.U. per lb.

Abs. Press. Lb./In. ${ }^{2}$	Saturation.		Degrees of Superheat (Fahrenheit).						
	$t^{\circ} \mathrm{F}$.	H	20°	40°	60°	80°	100°	120°	140°
15	213.0	$1151 \cdot 2$	$1161 \cdot 2$	$1170 \cdot 9$	$1180 \cdot 5$	1190.0	1199.5	1208.9	$1218 \cdot 4$
20	228.0	$1156 \cdot 7$	$1167 \cdot 0$	$1176 \cdot 7$	1186.3	1195.8	$1205 \cdot 3$	1214.8	12.24 .3
30	250.3	$1164 \cdot 6$	$1175 \cdot 1$	1184.9	1194-7	$1204 \cdot 4$	$1214 \cdot 0$	$1223 \cdot 6$	$1233 \cdot 2$
40	$267 \cdot 2$	$1170 \cdot 5$	1181.0	1190.9	$1200 \cdot 8$	$1210 \cdot 7$	$1220 \cdot 6$	$1230 \cdot 3$	$1240 \cdot 0$
50	281.0	1174.8	1185.5	1195.7	1205.7	$1215 \cdot 6$	1225.5	$1235 \cdot 3$	$1245 \cdot 1$
60	292.7	$1178 \cdot 4$	$1189 \cdot 3$	1199.5	1209.7	$1219 \cdot 8$	$1229 \cdot 7$	$1239 \cdot 6$	$1249 \cdot 5$
70	302.9	$1181 \cdot 4$	$1192 \cdot 5$	$1202 \cdot 8$	$1213 \cdot 0$	122.5	$1233 \cdot 3$	$1243 \cdot 3$	$1253 \cdot 4$
80	$312 \cdot 0$	$1184 \cdot 0$	1195.2	1205.6	$1215 \cdot 9$	$12.6 \cdot 2$	$1236 \cdot 5$	$1246 \cdot 7$	$1256 \cdot 8$
80	$320 \cdot 3$	$1186 \cdot 2$	1197•	$1208 \cdot 0$	$1218 \cdot 5$	12.8 .9	$1239 \cdot 3$	$1249 \cdot 6$	1259.8
100	327.8	1188.2	$1199 \cdot 3$	$1210 \cdot 2$	$1220 \cdot 9$	$1231 \cdot 4$	$1241 \cdot 8$	1252.2	$1262 \cdot 5$
120	$341 \cdot 3$	$1191 \cdot 4$	$1202 \cdot 8$	$1214 \cdot 0$	12.24 .9	$1235 \cdot 7$	$1246 \cdot 3$	12.56	$1267 \cdot 2$
140	$353 \cdot 0$	$1194 \cdot 0$	$1205 \cdot 8$	1217.1	$1228 \cdot 2$	$1239 \cdot 1$	1249.9	$1260 \cdot 6$	$1271 \cdot 2$
160	$363 \cdot 6$	$1196 \cdot 1$	$1208 \cdot 3$	1219.7	1231.0	$1242 \cdot 1$	12.3.1	1263.9	$1274 \cdot 6$
180	373-1	$1198 \cdot 0$	$1210 \cdot 3$	$1222 \cdot 0$	1233.5	1244.7	1255.9	1266.8	$1277 \cdot 7$
200	$381 \cdot 8$	1199.5	$1212 \cdot 1$	$1224 \cdot 0$	$1235 \cdot 6$	1247.0	$1258 \cdot 2$	1269.3	$1280 \cdot 2$
250	401.0	$1202 \cdot 1$	$1215 \cdot 3$	$1227 \cdot 6$	$1239 \cdot 7$	$1251 \cdot 7$	1263 -4	1274.9	1286.2
300	$417 \cdot 3$	$1203 \cdot 8$	$1217 \cdot 3$	$1230 \cdot 3$	1242.9	12.5. 1	$1 \because 67 \cdot 2$	$1278 \cdot 9$	$1290 \cdot 3$
400	$414 \cdot 6$	120.5	1219.9	1234•1	$1947 \cdot 5$	$1260 \cdot 5$	$1273 \cdot 1$	1285.3	$1297 \cdot 2$
500	$467 \cdot 0$	$1205 \cdot 4$	$1220 \cdot 8$	$1235 \cdot 7$	$1250 \cdot 0$	$1263 \cdot 6$	$1277 \cdot 0$	$1289 \cdot 7$	$1302 \cdot 1$
600	$486 \cdot 2$	$1204 \cdot 2$	$1220 \cdot 7$	$1236 \cdot 5$	$1251 \cdot 7$	1266.0	1279.7	$1292 \cdot 7$	$1305 \cdot 5$
700	503.1	$1202 \cdot 2$	$1220 \cdot 0$	$1236 \cdot 6$	1252.2	1267.0	$1281 \cdot 3$	1295.0	1308•1
800	$518 \cdot 2$	$1199 \cdot 6$	1218.7	$1236 \cdot 1$	$1252 \cdot 2$	$1267 \cdot 4$	128.1	$1296 \cdot 3$	1309.9
1000	544.6	$1192 \cdot 8$	1214•5	$1233 \cdot 9$	1251.6	$1268 \cdot 4$	$1283 \cdot 9$	$1298 \cdot 9$	$1313 \cdot 2$
2000	635.8	$1136 \cdot 1$	$1176 \cdot 1$	$1206 \cdot 6$	1232.9	$1256 \cdot 0$	1276.7	1295.6	$1313 \cdot 5$

Total Heat of Superheated Steam-B.Th.U. per 1b. (continued).

Abs. Press. Lb./In. ${ }^{2}$	Degrees of Superheat (Fahrenheit).							
	160°	180°	200°	240°	280°	320°	360°	400°
15	$1227 \cdot 7$	$1237 \cdot 0$	$1246 \cdot 2$	1265.0	$1284 \cdot 0$	1303•1	$1322 \cdot 3$	1341.5
20	$1233 \cdot 7$	$1243 \cdot 1$	1252.5	$1271 \cdot 5$	$1290 \cdot 6$	$1309 \cdot 8$	$1329 \cdot 1$	$1348 \cdot 5$
30	$1242 \cdot 8$	$1252 \cdot 3$	$1261 \cdot 8$	$1281 \cdot 1$	$1300 \cdot 5$	1319.9	$1339 \cdot 3$	$1358 \cdot 7$
40	$1249 \cdot 7$	$1259 \cdot 3$	1268.9	$1288 \cdot 3$	1307.7	$1327 \cdot 2$	$1346 \cdot 7$	$1366 \cdot 3$
50	$1254 \cdot 9$	$1264 \cdot 7$	$1274 \cdot 4$	12939	1313-4	1332.9	13526	$1372 \cdot 4$
60	$1259 \cdot 4$	$1269 \cdot 3$	$1279 \cdot 1$	$1298 \cdot 7$	1318.3	$1338 \cdot 0$	$1357 \cdot 8$	$1377 \cdot 6$
70	$1263 \cdot 4$	$1273 \cdot 3$	$1283 \cdot 1$	13028	1322.5	$1342 \cdot 3$	$1362 \cdot 1$	1382.0
80	$1266 \cdot 9$	$1276 \cdot 9$	$1286 \cdot 8$	1306.5	1326-2	$1346 \cdot 0$	1365.8	$1385 \cdot 7$
90	$1270 \cdot 0$	$1280 \cdot 1$	$1290 \cdot 1$	1309.9	$1329 \cdot 7$	1349.5	$1369 \cdot 3$	$1389 \cdot 2$
100	$1272 \cdot 7$	$1282 \cdot 9$	1293.0	1313.0	$1332 \cdot 9$	$1352 \cdot 7$	$1372 \cdot 6$	1392.5
120	1277.5	1287.8	1298.0	$1318 \cdot 2$	$1338 \cdot 2$	$1358 \cdot 1$	1378•1	1398.0
140	$1281 \cdot 7$	$1292 \cdot 0$	$1302 \cdot 3$	$1322 \cdot 6$	1342.8	$1362 \cdot 9$	1383.0	$1403 \cdot 0$
160	$1285 \cdot 2$	$1295 \cdot 7$	$1306 \cdot 0$	1326.3	$1346 \cdot 6$	$1366 \cdot 9$	1387.2	$1407 \cdot 5$
180	1288.3	$1298 \cdot 8$	1309.2	1329.7	$1350 \cdot 2$	$1370 \cdot 7$	$1391 \cdot 1$	1411.5
200	1291.0	$1301 \cdot 6$	$1312 \cdot 1$	$1332 \cdot 9$	$1353 \cdot 7$	1374.3	1394.9	$1415 \cdot 3$
250	$1297 \cdot 1$	1307.7	$1318 \cdot 5$	$1340 \cdot 0$	1361.2	1382.0	$1402 \cdot 6$	$1423 \cdot 1$
300	1301.6	$1312 \cdot 6$	$1323 \cdot 4$	$1345 \cdot 1$	13665	$1387 \cdot 6$	$1408 \cdot 6$	$1429 \cdot 4$
400	1308.9	$1320 \cdot 3$	$1331 \cdot 6$	1353.9	1375.9	$1397 \cdot 5$	$1418 \cdot 7$	$1439 \cdot 8$
500	$1314 \cdot 0$	$1325 \cdot 8$	1337-5	$1360 \cdot 5$	$1383 \cdot 4$	$1405 \cdot 3$	$1427 \cdot 0$	$1448 \cdot 3$
600	$1317 \cdot 9$	$1330 \cdot 1$	$1342 \cdot 1$	$1365 \cdot 5$	1388.6	$1411 \cdot 2$	1433.5	$1455 \cdot 3$
700	$1320 \cdot 9$	$1333 \cdot 5$	$1345 \cdot 9$	1369.9	1393.4	$1416 \cdot 3$	$1438 \cdot 8$	$1460 \cdot 9$
800	$1323 \cdot 2$	$1336 \cdot 2$	$1349 \cdot 0$	$1373 \cdot 6$	1397.5	$1420 \cdot 9$	$1443 \cdot 7$	$1465 \cdot 8$
1000	1326.8	$1340 \cdot 0$	$1353 \cdot 2$	1378.5	$1402 \cdot 8$	$1426 \cdot 9$	$1450 \cdot 2$	$1473 \cdot 1$
2000	$1330 \cdot 1$	$1346 \cdot 0$	1361-4	1390-4	$1417 \cdot 9$	$1444 \cdot 4$	1469.7	$1494 \cdot 0$

Entropy of Superheated Steam—C.H.U. per $1 \mathrm{~B} . /{ }^{\circ} \mathrm{C}$.

Abs. Press. Lb./In. ${ }^{2}$	Saturation		Degrees of Superheat (Centigrade).						
	$t^{\circ} \mathrm{C}$.	ϕ_{s}	10°	20°	30°	40°	50°	60°	70°
15	$100 \cdot 6$	1.7556	1.7692	1.7811	1.7930	1.8049	1.8166	1.8279	1.8388
20	108.9	1.7327	$1 \cdot 7460$	1.7578	$1 \cdot 7698$	1.7815	1.7930	1.8040	1.8149
30	121.3	1.7004	1.7133	1.7252	1.7370	$1 \cdot 7484$	1.7596	1.7704	1.7809
40	$130 \cdot 7$	1.6776	1.6900	1.7019	1.7135	1.7250	1.7358	1.7464	1.7568
50	138.3	$1 \cdot 6597$	1.6716	$1 \cdot 6834$	$1 \cdot 6950$	1.7063	1.7172	1.7277	1.7379
60	$144 \cdot 9$	1.6450	1.6570	$1 \cdot 6688$	1.6803	1.6916	1.7026	$1 \cdot 7129$	1.7233
70	$150 \cdot 6$	1.6327	1.6448	$1 \cdot 6566$	1.6681	1.6794	$1 \cdot 6905$	$1 \cdot 7009$	1.7112
80	$155 \cdot 6$	1.6219	1.6341	$1 \cdot 6460$	1.6575	1.6688	1.6798	1.6902	1.7005
90	$160 \cdot 3$	1.6124	1.6248	$1 \cdot 6368$	$1 \cdot 6484$	1.6597	1.6705	1.6809	$1 \cdot 6912$
100	$164 \cdot 4$	1.6038	1.6163	1.6285	$1 \cdot 6401$	1.6513	1.6621	1.6728	$1 \cdot 6830$
120	171.8	1.5891	1.6014	1.6137	1.6253	1.6366	1.6474	1.6579	$1 \cdot 6680$
140	$178 \cdot 3$	$1 \cdot 5763$	1.5886	1.6010	1.6127	1.6241	1.6348	1.6453	1.6554
160	184.2	$1 \cdot 5652$	1.5773	1.5898	$1 \cdot 6015$	1.6131	1.6240	1.6345	1.6447
180	189.5	1.5554	$1 \cdot 5674$	1.5799	$1 \cdot 5917$	1.6032	$1 \cdot 6142$	1.6247	1.6349
200	$194 \cdot 3$	$1 \cdot 5466$	1.5585	1.5710	$1 \cdot 5827$	$1 \cdot 5942$	1.6052	1.6158	1.6261
250	$204 \cdot 9$	1.5276	1.5403	1.5531	1.5651	1.5767	$1 \cdot 5879$	1.5987	$1 \cdot 6091$
300	$214 \cdot 1$	1.5117	1.5250	1.5381	$1 \cdot 5503$	1.5062	1.5737	1.5846	1.5951
400	229.2	1.4857	1.5002	1.5135	1.5261	1.5382	1.5498	1.5608	1.5714
500	$241 \cdot 7$	1.4646	1.4796	1.4934	1.5066	1.5189	1.5310	$1 \cdot 5416$	1.5528
600	$252 \cdot 3$	$1 \cdot 4466$	1.4616	$1 \cdot 4762$	1.4899	$1 \cdot 5030$	1.5151	1.5264	1.5377
700	$261 \cdot 7$	1.4308	1.4469	1.4621	$1 \cdot 4763$	1.4894	1.5019	1.5135	$1 \cdot 5248$
800	$270 \cdot 1$ 984.8	1.4165	1.4337	1.4494	1.4641	1.4776	1.4904	1.5021	1.5135
1000	$284 \cdot 8$ 335.4	1.3909 1.2857	1.4100 1.3174	1.4274 1.3430	1.4429	1.4572 1.3833	1.4703	1.4828	1.4948
2000	$335 \cdot 4$	$1 \cdot 2857$	$1 \cdot 3174$	$1 \cdot 3430$	1.3645	1.3833	$1 \cdot 4000$	1.4148	1.4286

Entropy of Superheated Steam-C.H.U. per 1b. $/^{10}$ C. (continued).

Abs.	Degrees of Superheat (Centıgrade).								
Lb. In. ${ }^{3}$	80°	90°	100°	120°	140°	169^{3}	1	180°	200°
15	1.8493	1.8596	1.8694	$1 \cdot 8891$	1.9079	1.9261		1.9435	1.9604
20	1.8252	1.8352	1.8451	1.8646	$1 \cdot 8832$	1.9011		19184	1.9350
30	1.7912	1.8011	1.8109	1.8300	1.8482	1.8658		1.8830	18995
40	1.7670	1.7768	1.7865	1.8053	1.8233	1.8408	1	1.8577	1.8741
50	1-7480	1.7578	1.7675	1.7860	1.8040	1.8215		1.8383	18546
60	1.7334	$1 \cdot 7432$	1-7528	1.7712	1.7890	1.8063		1.8230	1.8394
70	1.7213	1.7310	$1 \cdot 7404$	1.7587	1.7764	1.7936	1	1.8102	1.8265
80	1.7106	1.7202	1.7297	1.7480	1.7655	1.7826		1.7991	1.8153
90	1.7013	1.7109	1.7203	1.7384	$1 \cdot 7559$	1.7730	1	1.7894	1.8057
100	1.6930	1.7026	$1 \cdot 7119$	1.7302	$1 \cdot 7477$	1.7645		1.7808	$1 \cdot 7969$
120	1.6780	1.6877	$1 \cdot 6971$	1.7154	1.7328	1.7496		1.7660	1.7817
140	1.6654	1.6751	1.6846	1.7028	1.7201	1.7369		1.7533	1.7689
160	1.6548	1.6646	1.6738	1.6921	1.7094	1.7261		1.7424	1.7579
180	1.6450	1.6548	$1 \cdot 6643$	1.6825	1.7000	1.7165		1.7327	1.7482
200	$1 \cdot 6362$	1.6460	$1 \cdot 6555$	$1 \cdot 6737$	$1 \cdot 6913$	$1 \cdot 7080$		1.7241	$1 \cdot 7396$
250	1.6192	1.6290	$1 \cdot 6385$	$1 \cdot 6568$	$1 \cdot 6742$	$1 \cdot 6909$		1.7069	$1 \cdot 7224$
300	1.6052	1.6150	$1 \cdot 6247$	$1 \cdot 6428$	$1 \cdot 6603$	1.6770		1.6931	1.7085
400	1.5815	1.5916	1.6015	1.6196	$1 \cdot 6370$	$1 \cdot 6537$	1	1.6696	$1 \cdot 6850$
500	1.5633	1.5735	1.5834	1.6016	1.6191	$1 \cdot 6358$		1.6520	1.6675
600	1.5484	1.5585	$1 \cdot 5683$	1.5869	1-60.43	$1 \cdot 6212$	$!$	1.6375	$1 \cdot 6533$
700	1.5356	1.5458	1.5578	$1 \cdot 5745$	$1 \cdot 5922$	1-6093	$!$	1.6252	1-6414
800	1.5245	1.5348	$1 \cdot 5450$	1.5638	1.5816	$1 \cdot 5997$		1.6148	$1 \cdot 6308$
1000	1.5058 1.4416	1.5164 1.4536	1.5266 1.4646	1.5458 1.4848	1.5638	1.5809		1.5972 1.5389	$1 \cdot 6129$
2000	$1 \cdot 4416$	1.4536	1-4646	1.4848	$1 \cdot 5041$	$1 \cdot 5220$		1.5389	$1 \cdot 5548$

Entropy of Superheated Steam-B.Th.U. per lb. ${ }^{\circ} \mathbf{F}$.

Abs. Press. Lb./In. ${ }^{2}$	Saturation.		Degrees of Superheat (Fahrenhert)						
	$t^{\circ} \mathrm{F}$.	ϕ_{s}	20°	40°	60°	80°	100°	120°	140°
15	$213 \cdot 0$	1.7556	$1 \cdot 7706$	1.7844	1.7969	1.8101	1.8230	1.8353	$1 \cdot 8470$
20	228.0	1.7327	1.7475	$1 \cdot 7610$	17742	1.7867	$1 \cdot 7991$	1.8110	$1 \cdot 8227$
30	$250 \cdot 3$	1.7004	$1 \cdot 7148$	1.7281	1.7410	1.7534	1.7655	1.7773	1.7887
40	$267 \cdot 2$	$1 \cdot 6776$	$1 \cdot 6912$	1.7045	$1 \cdot 7172$	1.7295	1.7416	1.7531	1-7644
50	280.9	1.6597	$1 \cdot 6729$	1.6861	1.6987	$1 \cdot 7109$	1.7228	1.7344	$1 \cdot 7457$
60	292.7	1.6450	1.6580	1.6713	$1 \cdot 6839$	$1 \cdot 6961$	1.7084	1.7200	1.7312
70	302.9	1.6327	$1 \cdot 6459$	$1 \cdot 6593$	$1 \cdot 6719$	$1 \cdot 6840$	1-6962	1.7078	$1 \cdot 7189$
80	312.0	$1 \cdot 6219$	$1 \cdot 6353$	$1 \cdot 6488$	$1 \cdot 6615$	$1 \cdot 6736$	$1 \cdot 6855$	1.6971	$1 \cdot 7082$
90	$320 \cdot 3$	1.6124	1.6261	1.6396	$1 \cdot 6524$	$1 \cdot 6645$	$1 \cdot 6763$	1.6878	$1 \cdot 6989$
100	$327 \cdot 8$	1.6038	$1 \cdot 6176$	1.6311	$1 \cdot 6440$	1.6561	$1 \cdot 6680$	1.6795	16906
120	341.3	1.5891	1.6031	1.6166	1.6296	$1 \cdot 6417$	16537	$1 \cdot 6652$	$1 \cdot 6762$
140	353.0	1.5762	1.5903	1.6038	1-6169	1.6290	1.6411	1.6326	$1 \cdot 6635$
160	$363 \cdot 6$	1.5652	1.5791	1.5926	$1 \cdot 6058$	1.6179	$1 \cdot 6301$	$1 \cdot 6416$	$1 \cdot 6527$
180	$373 \cdot 1$	1.5554	1.5690	1.5825	1.5958	1.6080	1-6203	1.6318	1.6429
200	381.8	1.5466	$1 \cdot 5598$	1.5735	$1 \cdot 5865$	1.5990	1.6111	1.6228	1.6339
250	$401 \cdot 0$	$1 \cdot 5276$	1.5417	1.5557	$1 \cdot 5690$	1.5818	1.5939	1.6057	$1 \cdot 6169$
300	$417 \cdot 3$	1.5117	1.5264	$1 \cdot 5408$	$1 \cdot 5545$	1.5675	1.5798	$1 \cdot 5918$	$1 \cdot 6031$
400	$444 \cdot 6$	1.4857	1.5015	1.5164	1.5302	$1 \cdot 5434$	$1 \cdot 5560$	$1 \cdot 5680$	1.5794
500	$467 \cdot 0$	1.4646	1.4810	1.4959	1-5107	1.5240	1.5372	1.5594	1.5612
600	$486 \cdot 2$	1.4466	1.4632	1.4793	1.4943	1.5084	1.5216	$1 \cdot 5341$	$1 \cdot 5459$
700	$503 \cdot 1$	1.4308	1.4486	1-4654	$1 \cdot 4807$	1.4950	15085	$1 \cdot 5211$	1.5333
800	518.2	1.4165	$1 \cdot 4353$	1.4529	$1 \cdot 4677$	1.4832	14969	$1 \cdot 5099$	1-3221
1000	$544 \cdot 6$	1.3909	$1 \cdot 4119$	1.4307	1.4477	1.4630	1.4772	$1 \cdot 4906$	$1 \cdot 5031$
2000	$635 \cdot 8$	1.2857	$1 \cdot 3206$	1.3481	$1 \cdot 3710$	1.3908	$1 \cdot 4082$	1.4241	1.4387

Entropy of Superheated Steam-B.Th.U. per 1b. $/^{\circ}$ F. (continued).

Abs. Press. Lb./In. ${ }^{2}$	Degrees of Superheat (Fahrenheit).							
	160°	180°	200°	240°	280°	320°	360°	400°
15	1.8584	1.8694	1.8802	$1 \cdot 9015$	1.9220	1.9415	1.9604	1.9786
20	1.8340	1.8450	1.8556	1.8770	1.8973	1.9166	1.9352	1.9529
30	1.8000	1.8108	1.8213	1.8422	1.8621	1.8812	1.8996	1.9173
40	1.7755	1.7865	1.7969	1.8176	1.8374	1.8 .563	1.8745	1.8920
50	1.7567	1.7675	1.7778	1.7980	1.8175	1.8363	1.8546	1.8724
60	1.7422	1.7529	$1 \cdot 7628$	1.7829	1.8023	1.8210	1.8392	1.8569
70	1.7299	1.7406	1.7503	1.7702	1.7895	1.8080	1.8261	1.8437
80	$1 \cdot 7192$	$1 \cdot 7298$	1.7397	1.7595	1.7787	1.7970	1.8150	1.8325
90	$1 \cdot 7099$	1.7204	1.7302	1.7500	1.7691	1.7874	1.8054	1.8228
100	1.7015	1.7120	1.7220	1-7418	1.7607	1.7789	1.7969	1.8142
120	1.6870	1.6974	$1 \cdot 7073$	1.7270	1.7460	$1 \cdot 7639$	1.7818	1.7990
140	1.6744	1.6848	1.6947	$1 \cdot 7144$	1.7333	1.7512	1.7690	1.7861
160	1.6636	1.6740	1.6840	1.7036	1.7224	1.7402	$1 \cdot 7579$	1.7749
180	1.6539	$1 \cdot 6643$	$1 \cdot 6743$	1.6939	1.7128	1.7305	1.7482	1.7632
200	1.6449	1.6554	1.6655	$1 \cdot 6854$	1.7042	1.7220	1.7395	1.7563
250	1.6280	1.6384	1.6485	$1 \cdot 6684$	1.6872	1.7050	1.7225	1.7390
300	$1 \cdot 6142$	$1 \cdot 6246$	1.6349	$1 \cdot 6547$	1.6734	$1 \cdot 6914$	1.7086	$1 \cdot 7250$
400	1.5905	1.6011	$1 \cdot 6114$	$1 \cdot 6313$	$1 \cdot 6501$	$1 \cdot 6679$	1.6851	1.7016
500	1.5724	1.5831	1.5935	1.6133	1.6320	$1 \cdot 6502$	1.6675	1.6842
600	1.5574	1.5682	1.5785	$1 \cdot 5986$	$1 \cdot 6176$	1.6358	1.6532	1.6698
700	1.5448	1.5558	1.5664	1.5864	$1 \cdot 6056$	$1 \cdot 6236$	1.6410	1.6578
800	1.5338	1.5449	1.5557	1.5759	1.5951	1.6133	1.6306	1.6472
1000	1.5151	1.5264	1.5374	1.5579	1.5771	1.5954	$1 \cdot 6129$	1.6296
2000	1.4522	$1 \cdot 4648$	$1 \cdot 4768$	1.4988	1.5191	$1 \cdot 5380$	1.5557	1.5720

Equivalent Evaporation from and at 212° Fahr.-For the purpose of comparison it is usual to state the weight of steam produced in a boiler on the assumption that the feed water is supplied at a temperature of 212 Fahr., and that it is evaporated at that temperature.
$W=$ weight of steam produced at an! given temperature or pressure.
$H=$ total heat in 1 lb . weight of this steam above that in water at 32°.
$t_{1}=$ temperature of feed water.
$h_{1}=$ heat in 1 lb . weight of feed water above that in water at 32° (h_{1} is nearly equal to $t_{1}-32$).
$W_{1}=$ equivalent weight of steam at 212^{\prime} temperature produced from feed water at 212°.
$9706=$ latent heat of steam at 212° temperature.

$$
W_{1}=\frac{W^{\top}\left(I I-h_{1}\right)}{970 \cdot 6}=\begin{gathered}
W^{\top}\left(H-t_{1}+32\right) \\
970 \cdot 6
\end{gathered} \text { nearly. }
$$

The quantity ${ }_{970^{-6}}^{I T} h_{1}$ or its approximate value $H-t_{1}+32$ is called the Factor or Equivalent Evaporation, or simply the Factor of Evaporation.

Factors of Equivalent Evaporation.

	(nler Pressure (Absolute) in Pounds per Square Inch.							
	40	50						120
3.5	1.201	1 $\because 06$	1210	$1 \% 131 \cdot$	*			
40	$1 \cdot 196$	1.201	1×04	$120 \times 1 \cdot 210$	1213	15		
4.	191	193	$1 \cdot 199$	1 1-202 1-20.j	1204	1210		
5	$1 \cdot 186$	19	194	1.1971 .200	1×23	120		
55		185	$1 \cdot 189$	$1 \cdot 192 \quad 1 \cdot 195$	195	(0)		
(6)	176	$1 \cdot 180$	131	$871 \cdot 190$				
65	$1 \cdot 170$	1.17.	1-179	$1 \cdot 182 \quad 1 \cdot 185$	$1 \cdot 18$	90		
70	$1 \cdot 165$	$1 \cdot 170$	$1 \cdot 173$	$\begin{array}{lll}1.177 & 1.179\end{array}$	11	81		
75	1-160	1-16t	$1 \cdot 16 \mathrm{i}$	$1 / 1714$	$1 \cdot 17$	79		
80		159	163	$\begin{array}{llll}1 / 1666 & 1169\end{array}$				
8.5	$1 \cdot 150$	1-154	1.5	$\begin{array}{lll}1 \cdot 161 & 1 \cdot 161\end{array}$	$1 \cdot 166$	$1 \cdot 169$	1	
90	$1 \cdot 145$	$1 \cdot 149$	$1 \cdot 1: 3$	$1 \cdot 1.8$ 1-159	$1 \cdot 161$	$1 \cdot 164$	166	
9.5	$1 \cdot 139$	$1 \cdot 141$	$1 \cdot 147$	$1 \cdot 1.51 \quad 1 \cdot 1.53$	$1 \cdot 156$	$1 \cdot 1.59$	61	$1 \cdot 16$
100	1-134	$1 \cdot 133$	142	1-145 1-148	$1 \cdot 151$	$1 \cdot 153$	$1 \cdot 156$	$1 \cdot 1.57$
105		33		140				
110	$1 \cdot 12+$	128		3.) $1 \cdot 138$	$1 \cdot 141$	$1 \cdot 143$	145	
11	$1 \cdot 119$	$1 \cdot 123$	$1 \cdot 127$	$1 \cdot 130 \quad 1 \cdot 133$	$1 \cdot 135$	$1 \cdot 138$	140	$1 \cdot 142$
120	$1 \cdot 113$	$1 \cdot 118$	$1 \cdot 121$	$1 \cdot 125 \quad 1 \cdot 127$	1-130	$1 \cdot 133$	135	
125	1	$1 \cdot 113$	$1 \cdot 116$	$1 \cdot 1201 \cdot 122$	1-125	$1 \cdot 127$	130	
130				1141117		$1 \cdot 122$		
140	$1 \cdot 093$	$1 \cdot(1) 7$	$1 \cdot 101$	1041 107	$1 \cdot 109$	1-112		
145	1.087	$1 \cdot 092$	1.095	$1 \cdot 0991 \cdot 101$	1-104	$1 \cdot 106$	$1 \cdot 109$	龶
150	1.0×2	1.086	1.090	1.0931 .096	$1 \cdot 099$	$1 \cdot 101$	$1 \cdot 103$	$1 \cdot 105$
155				1.0881 .091				
	107	$1 \cdot 076$	180	1.0831 .086				
165	1.	1.071		1.0781 .081		,		
175	1.061	$1 \cdot 106$	069	1.0721 .075	1.078	1.080		
175	1.036	$1 \cdot(\mathrm{KjO}$	1.064	$1.067 \quad 1.070$		075		
18	1.05	1.05						
185	$1 \cdot 046$	$1 \cdot 050$. 057 1.060	1.062	1065		69
190	1.04	1.045	. 018	1.0521 .054	$1 \cdot 057$	1.060	1.062	-
195	1.035	1.040	043	. 0461.049	1.052	1.054	1.057	1.059
200	1.030	1.034	(1)38	1.041	1.047	1.049	$1 \cdot 051$	1.053
205	$1 \cdot 025$	1.029	33	$1.036,1.039$	1.04	1.044	1.046	

Factors of Equivalent Evaporation.

	Boiler Pressure (Alsolute) in Pounds per Square Inch.								
	130	140	150	160	170	180	190	$200)$	210
35	1.227	1-229		1.232	-233	1-235	,	38	
40	1.222	1.223	1×25	1×27	1×22	1×30	1×31	$1 \cdot 233$	$1 \cdot 234$
45	$1 \cdot 216^{\prime}$	$1 \cdot 218$	1×20	$1 \cdot 222$	1223	$1 \cdot 225$	1×226	$1 \cdot 227$	1229
50	1×11	$1 \% 13$	1215	1216	$1 \because 15$	$1 \% 19$	1221	$1 \cdot 222$	$1 \cdot 223$
55	1.208	1208	1.210	$1 \cdot 211$	1213	1.214	$1 \because 216$	1217	1.218
60	1201	$1 \cdot 203$	1204	$1 \cdot 206$	$1 \cdot 208$	1209	$1 \cdot 210$	-212	$1 \cdot 213$
65	$1 \cdot 196$	$1 \cdot 197$	$1 \cdot 199$	$1 \cdot 201$	11.202	$1 \because(4)$	$1 \cdot 20.5$	$1 \cdots$	1208
70	$1 \cdot 191$	1-192	$1 \cdot 194$	$1 \cdot 196$	$1 \cdot 197$	$1 \cdot 199$	1×20	1-201	$1 \cdot 203$
75	$1 \cdot 185$	$1 \cdot 187$	$1 \cdot 1 \times 9$	$1 \cdot 19{ }^{1}$	${ }^{1} 192$	$1 \cdot 194$	1.195	1-196	$1 \cdot 198$
80	1.180	1-182	1.184	$1 \cdot 185$	$1 \cdot 187$	$1 \cdot 188$	$1 \cdot 190$	$1 \cdot 191$	1-192
85	1.175	175	$1 \cdot 179$	$1 \cdot 180$	$1 \cdot 182$	$1 \cdot 1 \times 3$	1.185	$1 \cdot 186$	$1 \cdot 187$
90	$1 \cdot 170$	$1 \cdot 172$	1-173	$1 \cdot 175$	$1 \cdot 177$	$1 \cdot 178$	$1 \cdot 179$	$1 \cdot 181$	$1 \cdot 182$
95	$1 \cdot 16.5$	1-16t	$1 \cdot 168$	$1 \cdot 170$	$1 \cdot 171$	$1 \cdot 173$	$1 \cdot 174$	$1 \cdot 176$	$1 \cdot 177$
100	$1 \cdot 159$	$1 \cdot 161$	$1 \cdot 163$	$1 \cdot 165$	$1 \cdot 166$	1-168	1-169	$1 \cdot 170$	$1 \cdot 172$
105	$115{ }^{\prime}$	$1 \cdot 156$	$1 \cdot 158$	1-159	1-161	$1 \cdot 162$	$1 \cdot 164$	$1 \cdot 165$	$1 \cdot 166$
11	$1 \cdot 149$	$1 \cdot 151$	$1 \cdot 153$	$1 \cdot 154$	$1 \cdot 156$	$1 \cdot 157$	$1 \cdot 159$	$1 \cdot 160$	$1 \cdot 161$
115	$1 \cdot 144$	$1 \cdot 146$	$1 \cdot 147$	$1 \cdot 149$	$1 \cdot 151$	$1 \cdot 152$	$1 \cdot 153$	$1 \cdot 15.5$	$1 \cdot 156$
120	$1 \cdot 139$	$1 \cdot 14$)	$1 \cdot 142$	$1 \cdot 144$	1-145	$1 \cdot 147$	$1 \cdot 148$	1-1.50	$1 \cdot 151$
125	$1 \cdot 133$	$1 \cdot 135$	$1 \cdot 137$	$1 \cdot 139$	$1 \cdot 140$	$1 \cdot 142$	$1 \cdot 143$	$1 \cdot 144$	$1 \cdot 146$
130	$1 \cdot 128$	$1 \cdot 130$	$1 \cdot 132$	$1 \cdot 133$	$1 \cdot 135$	$1 \cdot 136$	$1 \cdot 138$	1	$1 \cdot 141$
135	$1 \cdot 123$	$1 \cdot 125$	$1 \cdot 127$	$1 \cdot 128$	$1 \cdot 130$	$1 \cdot 131$	$1 \cdot 133$	$1 \cdot 134$	$1 \cdot 135$
140	$1 \cdot 118$	$1 \cdot 120$	$1 \cdot 121$	$1 \cdot 123$	$1 \cdot 125$	$1 \cdot 196$	1127	$1 \cdot 129$	$1 \cdot 130$
145	$1 \cdot 113$	1-114	$1 \cdot 116$	$1 \cdot 118$	$1 \cdot 119$	$1 \cdot 121$	$1 \cdot 122$	$1 \cdot 124$	$1 \cdot 125$
150	1-107	1•109	$1 \cdot 111$	1-113	$1 \cdot 114$	$1 \cdot 116$	$1 \cdot 117$	$1 \cdot 118$	$1 \cdot 120$
155	1-102	1-104	$1 \cdot 106$	$1 \cdot 107$	1-109	$1 \cdot 110$	1112	$1 \cdot 113$	$1 \cdot 114$
160	$1 \cdot 097$	1.099	1-100	$1 \cdot 102$	1-101	$1 \cdot 105$	$1 \cdot 106$	1-108	- 109
165	1.092	1.093	$1 \cdot 095$	1.097	$1 \cdot 098$	$1 \cdot 100$	$1 \cdot 101$	$1 \cdot 103$	$1 \cdot 104$
170	$1 \cdot 086$	$1 \cdot 088$	1.090	1.092	1.093	$1 \cdot 095$	1.096	$1 \cdot 097$	1.099
175	1.081	1.083	$1 \cdot 185$	1.086	1.088	$1 \cdot 089$	1.091	1.092	1.093
180	1076	1.078	1.080	1081	1.083	1.084	1.086	1.0871	1.088
185	1.071	$1 \cdot 073$	$1 \cdot 074$	1.076	1.078	$1 \cdot 079$	1.080	$1 \cdot 082$	1.083
190	1.066	$1 \cdot 167$	1.069	1071	1.072	1.074	1.075	1.077	1.078
195	1.060	1.062	1.064	1.066	1.067	1.069	1.070	1.071	1.073
200	1.055	$1 \cdot 057$	1.059	1.060	1.062	1063	1.065	1.066	. 067
205	1.050	1.052	1.054	1.055	1.057	1.058	1.060	1.061	1.062

STEAM BOILERS.

Cochran-Kirke Sinuflo Gas-fired Vertical Boiler.-

Gas is burnt in a number of jets (A) fitted to a tubular frame (B) arranged on a swivel (C), so that the frame can be withdrawn from under the boiler when the jets are lighted or cleaned. The gas jets are for a gas pressure of $2 \frac{1}{2}$ inches water gauge, and a gas pressure regulator (D) maintains this pressure.

The hot gases passing up the Sinuflo tubes impinge upon the sides, and heat is thus conducted to the water surrounding the tubes more efficiently than would be possible with straight tubes. The gas supply to the jets is automatically controlled, it enters at the main gas cock (E) and then passes through the main gas control valve (F), which is opened or shut by a pilot valve (G) as the pressure in the boiler rises or falls. In the case of hotwater boilers the pilot valve is actuated by a rise or fall in temperature.

The automatic flue damper (H) prevents cold air passing through the boiler when the gas supply is shut off. It opens automatically when the gas is on. Should the level of the water fall below the bottom gauge cock, the low water-level gas cutoff (J) reduces the gas supply to a minimum until the waterlevel is restored, when the gas automatically comes on again. The flame failure thermostat (K) is a safety device which outs off the gas to the burners if the main supply fails temporarily. It closes the main gas control valve (F), and ensures its remaining olosed until the operator relights the jets.

Standard Sizes.
Pressures 60 to 120 lbs . per sq. inch.

Diam.	Height.	Evaporation. Lbs. of Steam per Hour.		Gas Oonsumption per Hour.	
		From and at $212^{\circ} \mathrm{F}^{\prime}$.	$120 \mathrm{lbs} . / \mathrm{sq}$. in. from Feed-water at $60^{\circ} \mathrm{F}^{\prime}$.	Therms.	Cubic Ft.*
Ft. In.	$\underset{6}{\text { Ft. }}$ In.	140	120	$1 \cdot 89$	378
19	66	230	190	$3 \cdot 10$	620
20	66	285	240	$3 \cdot 84$	770
23	69	380	315	$5 \cdot 12$	1024
26	69	500	420	6.75	1350
29	69	620	515	$8 \cdot 35$	1670
30	70	760	635	$10 \cdot 25$	2050
40	76	1000	830	13.50	2700
46	76	1330	1110	17.90	3580
50	79	1665	1390	$22 \cdot 40$	4480
	80	2130	1770	28.80	5760
60	83	2700	2250	36.40	7280
66	89	3140	2610	$42 \cdot 40$	8480
		3750	3120	50.50	10100
	90	4300	3580	57.80	11560
		4800	4000	$64 \cdot 50$	12900
86	96	5600	4670	75.50	15100
	96	6450	5370	86.90	17400

Assuming a calorifle value of 500 B.Th.U. per cubic foot.

The Sharpe-Palmer Vertical Boiler.

(Abbott \& Co., Newark-on I'rent.)

					$\begin{aligned} & \text { xoq ail:I } \\ & \text { jo ssauyolich } \end{aligned}$			¢ ${ }_{\text {¢ }}^{\text {¢ }}$	
Ft. In.' 'Ft. In.	Ft. In.		In.	In.	In.	In	Sq Ft .	'Sq. Ft.	Cwts
$5{ }_{5}^{5} 00206$	30	22	$1 \frac{1}{2}$	$1^{5} 8$	${ }^{5}$	$\frac{5}{16}$	45	$3 \cdot 1$	10
5 6 2 9	39	28	$1 \frac{1}{2}$	$\frac{3}{B}$	$\frac{3}{8}$	$\frac{3}{8}$	55	$3 \cdot 7$	14
$6{ }_{6} 0,30$	40	34	$1 \frac{1}{2}$		$\frac{3}{8}$	$\frac{8}{8}$	70	$4 \cdot 6$	18
7 0 3 3	46	38	$1 \frac{1}{2}$	8	$\frac{3}{8}$	$\frac{3}{8}$	80	$5 \cdot 6$	24
$\begin{array}{llll}8 & 0 & 3 & 6\end{array}$	$5 \quad 3$	28	2	$\frac{3}{8}$	3	${ }^{2} 8$	100	6.7	29
$\begin{array}{llll}8 & 6 & 3 & 9\end{array}$	59	30	\bigcirc	$\frac{8}{8}$	8	17	120	7.9	33
$\begin{array}{ll:ll}9 & 0 & 4 & 0\end{array}$	60	34	2	$\frac{8}{8}$	8	${ }^{7}{ }^{7}$	134	$9 \cdot 0$	37
10 0 4 6	63	42	$2 \frac{1}{2}$	7^{7}	$1^{7} 8$	h	200	$12 \cdot 0$	54
10 0 5 0	66	44	$2 \frac{1}{2}$	$\frac{7}{18}$	$\frac{7}{16}$	$\frac{1}{2}$	250	$14 \cdot 7$	65
11.66506	$7 \quad 0$	56	$2 \frac{1}{2}$	$\frac{7}{18}$	$\frac{1}{2}$	$\frac{1}{2}$	330	$18 \cdot 3$	80
12 0 6 0	7 7	74	21	${ }_{18}^{18}$	$\frac{1}{2}$	$\mathrm{I}^{8} 8$	440	$22 \cdot 3$	92
13 6 6	80	108	$2 \frac{1}{8}$	$\frac{7}{18}$	$\frac{1}{2}$	$\frac{9}{16}$	560	$26 \cdot 0$	123

Computation of Heating Surface of Boiler Tubes.-A formula is given on p. 194, and tables are given on pp. 195-199, for determining the surface of tubes. There is a difference in practice in estimating the heating surface of boiler tubes. The most common practice is to take the external surface of the tube as the heating surface, the length of the tube being measured between the tube-plates. Some engineers, however, prefer to take the internal surface when the furnace gases pass through the tubes. In boiler tubes the external surface is from 10 to 20 per cent. greater than the internal surface, according to the diameter and thickness of the tubes.

Let $A=$ external surface of tube. $D=e x t e r n a l$ diameter of tube. $a=$ internal surface of tube. $d=$ internal diameter of tube.

$$
\text { Then } A=\frac{a D}{d} \text {, and } a=\frac{A d}{D} .
$$

Lancashire and Cornish Boilers.-The Lancashire boiler has two internal cylindrical flues extending the whole length of the boiler, the furnaces being in these flues at their front ends.

Lancashire Boiler.

Cornish Boiler.

The Cornish boiler has one internal flue extending the whole length of the boiler, the furnace being in this flue at its front end.

The majority of boilers of these types built to-day are of the Lancashire variety.

Lancashire boilers may be subdivided as follows:-
(1) Flat end with gusset stays.
(2) Double dished end of the Continental variety.
(3) Unidish boiler (made by Daniel Adamson \& Co., Ltd.), which has a dished end at the front and a flat stayed end at the back.

These boilers are set in briokwork, and care must be taken to ensure that air leakages do not occur between the metal shells and the bricks. Various expansion joints are on the market, and one of those manufactured by Daniel Adamson \& Co., Ltd., consists of a partial ring of asbestos which presses against the boiler shell, but is free to move radially in a groove in a metal casing attached to the brickwork.

Approximate Evaporation for Lancashire Boilers. (Hand Fired.)
(Made by Daniel Adamson \& Co. Ltd., Dukinfield.)

No.	Slize		Size of Flues.		$\begin{gathered} \text { Grate } \\ \text { Area } \\ \text { In } \\ \text { Sq. Ft. } \end{gathered}$	Evaporation. Lbs. per Hour.		ApproximateHeatingSurface.	
	$\left\|\begin{array}{c} \text { Length. } \\ \text { Ft. } \end{array}\right\|$	Diam. Ft. In.	No.	Diam. Ft. In.		$\begin{gathered} \text { Feed } \\ \text { at }^{\circ} \mathrm{F} . \end{gathered}$	$\begin{array}{\|c\|} \hline \text { From } \\ \text { and } \mathrm{at} \\ 212 \mathrm{~F} . \end{array}$	Sq. Ft.	Sq. M
1	18		2		$22 \cdot 5$	2580	00	0	$43 \cdot 0$
2	20		2	24	22.5	860	430	510	47.5
3	22		2	24	$22 \cdot 5$	25	900	50	$54 \cdot 0$
	24	60	2	24	22.5	530	4230	630	8
5	18	66	2	2	25.0	288	346	05	47.0
6	20	66	2	27	25.0	190	383	60	$2 \cdot 0$
7	22	6	2	7	25.0	530	423	20	57.5
8	24	66	2	27	27.5	3850	462	675	62.5
9	26	66	2	7	27.5	4190	5050	735	68.5
0	24	70	2	29	29.5	4290	5150	740	69.0
11	20	70	2	29	32.0	4640	5570	800	$74 \cdot 5$
12	28	70	2	29	32.0	980	5980	860	. 0
13	30	70	2	9	32.0	70	6450	925	86.0
14	24	76	2		32.5	4800	5750	800	$4 \cdot 5$
15	26	76	2		35.5	220	6280	870	81.0
16	28	76	2	30	35.5	5640	6760	940	87.5
17	30	76	2	0	$35 \cdot 5$	00	7200	1000	3.0
18	24	80	2	3	38.0	5420	5500	860	$0 \cdot 0$
19	26	80	2	3	38.0	5900	7090	935	87.0
20	28	80	2	33	38.0	6360	7610	1010	94.0
21	30	80	2	3 3	38.0	850	22	1085	101.0
22	24	86	2	36	1.	07	7300	920	85.5
23	26	86	2	36	1.0	660	790	1000	93.
24	28	86	2	36	$1 \cdot 0$	13	58	1080	$100 \cdot 5$
5	30	86	2	36	41.0	765	200	1160	108.0
6	24	90	2	39	4.0	760	100	80	91.0
7	26	90	2	39	$44 \cdot 0$	400	890	1070	99.5
88	28	90	2	39	$44 \cdot 0$	50	95	150	107.0
9	30	90	2	3	$4 \cdot 0$	8500	10200	1230	114.5
30	24	96	2	40	47.0	7630	9200	1060	98.5
31	26	96	2	40	47.0	8200	9810	1140	106.0
32	28	96	2	0	$47 \cdot 0$	8800	106	220	113.5
33	30	96	2	40	7.0	9450	11350	1310	122.0
	26	10	2	40	50.0	9150	11000	122	113.5
	30	10	2	4	50.0	10400	12500	1385	29.

Note.-The figures in the above table are based on coal having a oalorifio value of $13,500 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. per lb.

Approximate Evaporation for Cornish Boilers. (Hand Fired.)

(Made by Daniel Adamson \& Co. Ltd., Dukinfield.)

No.	Size.			$\begin{gathered} \text { Grate } \\ \text { Area } \\ \text { in } \\ \text { Sq. Ft. } \end{gathered}$	Evaporation. Lbs. per Hour.		ApproximateHeatingSurface	
	$\begin{aligned} & \text { Length } \\ & \text { Ftt. } \end{aligned}$	Diam. Ft. In.	Diam.			From and at $212^{\circ} \mathrm{F}$.	Sq. Ft.	Sq. M
1	18	0		16.0	2150	2580	390	36.0
2	20	60	3	16.0	2370	2840	430	$40 \cdot 0$
3	22	60	$\begin{array}{ll}3 & 3\end{array}$	16.0	2680	3220	470	43.5
4	24	60	$\begin{array}{ll}3 & 3\end{array}$	17.5	2830	3400	515	48.0
5	18	66	36	17.0	2400	2880	420	39.0
6	20	66	36	17.0	2650	3180	465	43.0
6	22	66	$\begin{array}{ll}3 & 6\end{array}$	19.0	2910	3500	510	47.5
8	2	66	3	19.0	3160	3790	510	51

Note.-The figures in the above table are based on coal having a calorific value of $13,500 \mathrm{~B}$.Th.U. per lb.

Brickwork Setting for Lancashire Boilers.*-(See illustrations on opposite page.)

Width E of side flues at top $=12$ inches.
Width F of bottom flue $=$ half diameter of shell of boiler.
Depth G of bottom flue from bottom of shell not less than 2 feet 6 inches, and is usually made 3 feet.

The dimensions of the seating blocks and side flue covers are shown in the illustrations. The seating block at (1) is for boilers less than 8 feet diameter, and that at (2) is for boilers of 8 feet diameter and over.

Seating blocks, flue covers, and all brickwork in contact with boiler to be set in lime mortar, but no mortar should come in contact with the boiler plates, fireclay being used at these points.

All flues should be faced with firebricks forming a lining $4 \frac{1}{2}$ inches thick, suitably bonded into the walls.

The short partition wall (a) at the back end is frequently omitted, but this is bad practice, and may lead to severe "humming" and vibration of the boiler.

The boiler shell should slope downwards towards the front end at the rate of about $\frac{1}{\frac{1}{2}}$ inch in 10 feet, and the floors of the flues should also have this slope.

Width H of downtake at back end $=2$ feet 6 inches.
Width K of gap at front end $=3$ feet 6 inches.
Width N of blow-out pit $=3$ feet 6 inches to 4 feet.

[^41]Floor of blow-out pit 6 inches to 9 inches below floor of bottom flue.

In the plan view, the groove round the top of the brickwork of the blow-out recess wall is for asbestos rope.

Cochran Sinuflo Economic Boiler.-This boiler is of the horizontal multitubular dry-back type with induced draught provided by a fan which is usually mounted with its prime mover on a platform fixed to the top of the boiler shell. No external brick setting is required and the boiler shell is made in two strakes or belts, with the mid-circumferential seam treble-riveted. The primary heating surface consists of one or more horizontal furnaces, above which is arranged a single pass of patent horizontal Sinuflo tubes. These tubes, which are similar to those illustrated in the vertical boiler on p. 586, ensure that much of the remaining heat in the gases is transmitted to the surrounding water.

There is a large brick-lined combustion chamber into which brick arches project from the ends of the furnaces; thus the hot gases are compelled to travel round the combustion chamber before entering the Sinuflo tubes, and smokeless combustion is ensured.

The rated outputs listed below are obtained with suitable coal when the boilers are fitted with mechanical stokers of the Coking, Sprinkler, or Underfeed type, usually driven by electric motor or, in the case of a battery of boilers, from overhead shafting.

Satisfactory results may also be obtained with oil fuel, cokeoven gas, or other fucls.

Boiler Diam.	Overall Length.	No. of Flucs.	niam. of Flues.	Maximum Working Pressure. Lbs. per Sq. In.	Evaporation. Lbs. per Hour.	
					From Feed at $60^{\circ} \mathrm{F}$.	From and at $212^{\circ} \mathrm{F}$.
Ft. In.	Ft. In.		Ft. In.			
66	187	1	29	250	4800	5800
70	217	1	30	250	5700	6800
76	217	1	36	250	6700	8000
80	217	1	40	225	7600	9100
$\theta 0$	227	1	46	200	8500	10200
$9 \quad 0$	227	2	29	250	10400	12500
96	227	2	30	250	11300	13600
106	227	2	36	250	13300	16000
116	227	2	40	225	15200	18200
119	227	3	30	250	17100	20500
126	227	3	36	250	20000	24000
130	227	4	30	250	22900	27500
136	227	4	3 3	250	25000	30000

Daniel Adamson's Patent Super Lancashire Boiler -This plant consists of a cylindrical boler having furnace tubes similar to a Lancashire boiler but with smoke tubes arranged beneath them. A superheater of the Adamson sectional type is fitted in the downtake, if required. There are no external flues, and the gases from the smoke tubes pass through two arr heaters, one at each side, which heat the air supply to the furnaces. Finally, the gases are delivered to a short steel or brick chimney by means of an induced draught fan. The boiler is also provided with forced draught.

The fuel (coal, onl, coke, timber, etc.) is fed into the furnaces by hand, mechanical stoker, jet or pulveriser, etc. The downtake
 Heater.

Section through Front Gas and Aur Boxes.

Longitudinal Sectional Elevation through Boiler and Superheater.
chamber is constructed of steel and is lined with insulating bricks. No other bricks are required, for the boiler is arranged on cast-iron chairs on a concrete base without brickwork setting, thus avoiding possible losses due to defective brickwork. The connection between the boiler and the downtake chamber is made with a patent flexible air-excluding device.

The makers claim, amongst other things, economy of space, quiok steaming, high overall efficiency, balanced draught (no cold air entering furnace whether hand or stoker fired), and practically the entire elimination of smoke.

The boiler is usually made 20 feet long, and there are eight sizes in the diameter, from 8 feet to 12 feet. The working pressures range up to 260 lbs. per sq. inoh.

Boiler Trial.

An Abstract of the Report of a Test made by the National
Boiler \& General Insuranoe Co., Ltd., of the Adamson
Patent Super Lancashire Boiler Unit.

General Description of Unit.

Boiler.
Type and size-Super Lancashire, 8 ft .6 in . diam., 20 ft . long. Permissible working pressure . . . lbs. per sq.in. 260 Total grate area sq. ft. 38 Heating surface ,, 1427
Superheater.
Heating surface (effective) , 285
Air Heaters (2).
Heating surface (effective) , 1060
Draught Plant-Mechanical draught.
Fans.
Induced draught fan direct-coupled to small highspeed engine $\dot{\text { en }}$. $\quad . \quad$ direct-coupled to $5 \dot{\text { B.H.P. }}$ electric motor r.p.m. 390

Forced draught fan direct-coupled to 5 B.H.P. 765

Mean Observations and Derived Data.

Duration of test hours 12.117
Temperature of outside air ${ }^{\circ} \mathrm{F}$. 58.5
Temperature of air at inlet to forced draught fan $\quad{ }^{\circ} \mathrm{F} . \quad 65.9$ Furnace.
Description of fuel . . . "Manton Cobbles."
Method of stoking

Rate of firing lbs. per hour $1078 \cdot 5$
Ultimate analysis of fuel as fired-
Moisture per cent. 7.40
Ash , 6.12
Carbon " 71.35
Hydrogen " 4.53
Nitrogen " 1.29
Sulphur $\quad 0.63$

Oxygen, etc. (by difference) . . . " 8.68
100.00

Calorific value of fuel as fired . Gross, B.Th.U. perlb. 12835
" " " . Net. " " 12330

Method and time of clearing and clean. Clinker broken up ing grates. and removed by hand at intervals of 6 hours.
Residue (ashes and clinker) formed lbs. per hour 42.1
Combustible matter in residue . . . per cent. 12.82
Calorific value (gross) of residue
B.Th.U. per lb. 1859

Boiler and Superheater.
Feed-water-Rate of feed lbs. per hour 8773
Mean temperature of feed-water at boiler . . ${ }^{\circ} \mathrm{F}$. $113 \cdot 1$
Steam.
Pressure in saturated steam space . lbs. per sq. in. 138.3
Moisture in steam entering superheater . per cent. 1.05
Temperature of saturation ${ }^{\circ} \mathrm{F} .360 .0$
Steam superheated . . . lbs. per hour 8078
Pressure at superheater outlet . . lbs. per sq. in. 137.8
Temperature of superheated steam . . . ${ }^{\circ} \mathrm{F}$. $680 \cdot 4$

Air Heaters.

Temperature of air at entry ${ }^{\circ} \mathrm{F}$. 65.9
" " " exit ${ }^{\circ} \mathrm{F}$. $255 \cdot 8$

Draught Plant.
Temperature of air supply at inlet to forced draught fan ${ }^{\circ} \mathrm{F} . \quad 65 \cdot 9$
Pressure at air heater-
Flue gas inlet . . . inches suction(W.G.) 1.03
", outlet . . . , , ", 2.27 Air inlet . . . inches pressure (W.G.) 1-14
, outlet . . . ", " 0.67
Mean power to operate induced draught fan " . B.'H.P. 4•48
," ,, ,, forced ,, ., K.W. 2•11

Total power to operate induced and forced d̈raught
fans K.W.
Flue Gases.
Average temperature in downtake . . . ${ }^{\circ} \mathrm{F} .1234$
", ", at inlet to air heaters . ${ }^{\circ} \mathrm{F} .590 \cdot 2$

Analysis of dry flue gases at air heater outlet-
Carbon dioxide (by volume) . . . per cent. 12.9
Oxygen " 6.2

Carbon monoxide " 0.0
Nitrogen, etc. (by difference) . . . " 80.9

Conclusions.

Thermal Efficiency.

Gross overall thermal efficiency 84.13
Heat absorbed by induced and forced draught plant $\quad 0.82$
Net overall thermal efficiency 83.31
Daniel Adamson's "Unidish" Boiler -This boiler is of the Lancashire type, with a dished end at the front and a flat end at the back, as shown in the figure. The makers claim the advantages of both the dished end and flat-end types. The flat back end gives "breathing space" to take up the difference in

expansion of the flues and the shell of the boiler, and makes it more convenient to install a superheater than is the case with a dished back end. The dished front end overcomes any possibility of leakage at gusset angle rivets, as there are none. There are, of course, gusset stays at the back end, but there the temperature conditions are less severe than at the front end.

The boiler is made in various sizes and for working pressures up to 260 lbs. per sq. inch.

The Dry-back or Economic Boiler.-This boiler is of the shell type with one or more internal flues, and, in addition, smoke tubes are provided above the main flue or flues, and it may be either brick-set or self-contained. It is used for hotels, institutions, or small works, or other buildings where space is limited. The heating surface is large, and the steam is generated quickly and with reasonable efficiency. Working pressures from 60 to 260 lbs. per sq. inch are obtainable. Sizes and evaporation rates are given in the tables (p. 600).

Ordinary Marine Boilers.

Furnaces.-Boilers up to 9 feet in diameter may have one furnace in an end. Boilers from 8 feet to 13 feet in diameter may have two furnaces in an end. Boilers from 11 feet 6 inches to 15 feet 6 inches in diameter may have three furnaces in an

Approximate Evaporation for Dry-Back or Economio Boilers.
(Brick-set or Self-contained. Hand Fired.)
(Made by Daniel Adamson \& Co. Ltd., Dukinfield.)

No.	Size.		Size of Flues.		$\begin{gathered} \text { Grate } \\ \text { Area } \\ \text { in } \\ \text { Sq. Ft. } \end{gathered}$	Evaporation. Lbs. per Hour.		Approximate Heating Surface.	
	Leneth.	Diam.	No.	Diam.		$\begin{gathered} \text { Feed } \\ \text { at } \\ 60^{\circ} \mathrm{F} . \end{gathered}$	From and at $212^{\circ} \mathrm{F}$.		
	Ft. $\overline{\mathrm{ln}}$.	Ft. ${ }^{-1} \overline{\text { n }}$		$\overline{\mathrm{Ft}} . \mathrm{In}$.				Sq. Ft.	Sq. M.
1	96	${ }_{6} 6$	1	210	13.75	2100	2520	420	$39 \cdot 0$
2	110	63	1	211	14.7	2425	2910	485	$45 \cdot 0$
3	126	66	1	30	$16 \cdot 0$	2950	3510	590	$55 \cdot 0$
4	126	70	2	24	$22 \cdot 5$	3450	4140	690	64.0
5	126	76	2	-	26.5	3975	4770	795	74.0
6	110	76	2	2	29.0	4475	5370	895	83.0
7	140	80	2	29	$32 \cdot 0$	5875	7050	1175	$109 \cdot 0$
8	140	86	2	210	$34 \cdot 0$	6700	8040	1340	$124 \cdot 5$
9	156	89	2	30	$35 \cdot 0$	7650	9180	1530	$142 \cdot 0$
10	$15 \quad 6$	90		-	36.0	8370	10044	1674	155.5
11	15	96	2	33	38.0	9130	10956	1826	169.5
12	$15 \quad 6$	99	2	35	$40 \cdot 0$	10250	12300	2050	190.5
13	160	100	2	37	42.0	11085	13302	2217	$206 \cdot 0$
14	160	$10 \quad 6$	2	39	$44 \cdot 0$	12505	15066	2511	233.0
15	160	110	2	40	47.0	13440	16128	2688	$250 \cdot 0$

Approximate Evaporation for Dry-Back or Economic Boilers.
(Double Return. Hand Fired.)
(Made by Daniel Adamson \& Co. Lid., Dukinfield.)

No.	Size.		Size of Flues.		Grate Area in Sq. Ft	Evaporation. Lbs. per Hour.		Approximate lleating Surface.	
	Length.	Diam.	No.	Diam.		Feed at $60^{\circ} \mathrm{F}$.	From and at $212^{\circ} \mathrm{F}$.		
	Ft. In.	Ft. In.		$\overline{\mathrm{Ft} .1 \mathrm{ln}}$.	9.75	1800	2160	$\overline{\text { Sq. Ft. }}$	$\underset{\substack{\text { Sq. M. } \\ 33.5}}{ }$
2	80	6 6	1	2	10.75	2105	252	421	39.0
3	83	70	1	30	11.75	2580	3096	516	48.0
	86	76	1	32	14.0	3070	3684	614	57.0
5		7	2	2	20.0	3695	4434	739	68.5
6	93	80	2	2	22.0	4330	519	866	80.5
7	96	86	2	28	$23 \cdot 5$	4780	5736	956	89.0
8	6	90	2	10	27.5	6110	7332	1222	113.5
9	9	96	2	3	$32 \cdot 0$	6705	8046	1341	124.5
10	c	-	2	32	315	150	8580	1430	133
11	100	100	2		38.0	8880	10656	1776	165.0
12	106	110		36	$40 \cdot 0$	10730	12876	2146	198.5
13	106	120	2	,	44.0	13345	16014	2669	248.0

Note.-The figures in the above tablea are based on coal having a calortilo value of 13,500 B.Th.U. per lb.
end; and boilers above 14 feet 6 inches in diameter may have four furnaces in an end.
$D=$ diameter of shell in inches.
$d=$ diameter of furnace in inches.
$d=\frac{1}{2} D$, when there is one furnace in an end.
$d=\frac{1}{4} D+5$ inches, when there are two furnaces in an end.
$d=\frac{1}{4} D-1$ inch, when there are three furnaces in an end.
The above rules need not be strictly adhered to, although they represent average practice.

Combustion Chambers.-The height of the crown of the combustion chamber above the centre of the boiler is usually about one-sixth of the diameter of the shell. The length G of the combustion chamber should not exceed $\frac{7}{8} d$; it is generally about d d, but in boilers having not more than two furnaces in an end it is sometimes as small as $\frac{1}{2} d$.

Water Spaces. $-E=4 \frac{1}{2}$ inches to 6 inches. $F=5$ inches to 7 inches.
$K=5$ inches to 7 inches. K^{\prime} must be at least equal to K, and is sometimes as much as 12 inches. These are all inside dimenaions between the platea.

Tubes.-The tubes are generally of wrought-iron or steel, and they are usually from $2 \frac{1}{2}$ inches to $3 \frac{1}{2}$ inches in external diameter. They are arranged in horizontal and vertical rows. The pitch, measured from centre to centre, is about $1 \frac{8}{8}$ times the external diameter of the tubes. The clear space $I I$ between the nests of tubes varies from $10 \frac{1}{2}$ inches to $12 \frac{1}{2}$ inches, the average being about 11 inches.

The common tubes are swelled at their front ends T_{1}^{1} inch larger in diameter, and they are secured to the tube plates by expanding them at their ends with a tube expander.

The stay tubes are screwed into both tube plates. The diameter over the screw thread at the front end is $\frac{1}{8}$ inch larger than the diameter over the thread of the back end. The screws have 10 or 11 threads per inch.

The length of the tubes between the tube plates varies from 5 feet 9 inches to 7 feet 6 inches, the average being about 6 feet 9 inches. For steam pressures up to about 285 lbs. per square inch the thickness of the common tubes may be No. 8 S.W.G. ($\cdot 16$ inch). The thickness of the stay tubes varies from ${ }_{1}{ }^{\frac{3}{8}}$ inch to $\frac{8}{8}$ inch at the bottom of the screw thread. About one-third of all the tubes are stay tubes.

The Howden-Johnson Air-jacketed Improved Scotch Boiler.

The designers claim that while this boiler possesses ample water reserve, it is 30 per cent. lighter and appreciably smaller than the standard Scotch boiler of the same heating surface. It is suited for the burning of powdered coal or oil, and also for coal burning by hand firing or mechanical stokers. The maximum working pressure is 300 lbs . per sq. inch, and the superheater gives temperatures up to $800^{\circ} \mathrm{F}$.

The boiler consists of a cylindrical shell in which furnaces and return tubes are fitted. There is a dry-back combustion chamber in which is arranged a series of tubes forming a water wall, and these tubes maintain a rapid circulation in the boiler. The furnaces have bellows ends at the back to give flexibility and are welded to the back plate, and both the front and back plates, where not made in one piece, have welded butt joints instead of riveted lap joints.

The combustion chamber is common to all the furnaces, and the nests of tubes are arranged so that there is one more than the number of furnaces. The vertical lanes between the tube nests are above the furnace crowns, thus permitting easy liberation of the steam bubbles formed on the furnace crowns. The whole boiler and combustion chamber are enclosed in a lagged casing in which the air for combustion circulates from the air heater to the furnace.

There is a combustion chamber type of superheater, and the superheat is controlled by regulating the gas flow with dampers in the combustion chamber baffle. Steam flows through the

Longitudinal Sectional Elevation showing general construction. The watertubes, superheater, desuperheater, and superheat damper control are shown, aliso the air-jacket and brick-lined combustion chamber.
superheater under all circumstances, and steam required for suxiliaries is subsequently passed through a desuperheater.

A summary of results of tests on one of these boilers, when burning coal and when burning oil, is given at the top of p. 604.

Forced Draught.-By the use of forced draught the combustion of the fuel is effected with a less quantity of air in excess

Fuel	Coal. Hand-fired.		Mexican Oll.	
Gross calorific value . . B.Th.U./lb.	13580.		18510.	
	Low. ${ }^{\text {High. }}$		Low. High.	
Steam press. Saturated . lh./sq. in.	270	269	273	
Superheated lb./sq. in.	265	254	266	248
Steam temp. Superheated - ${ }^{\circ} \mathrm{F}$.	767	790	743	772
Feed temp. - \cdot - ${ }^{\circ} \mathrm{F}$.	43	42	44	
Actual evap./sq. ft. H.S. - lb./hr.	4.69 8.38	6.89	5.71	8.79
Actual evap./lb. of fuel - . lb.	8.38	$8 \cdot 16$	11.60	$11 \cdot 11$
Equiv. evap. from and at $212^{\circ} \mathrm{F} . / \mathrm{sq} . \mathrm{ft}$. H.S. lb./hr.	6.75	$9 \cdot 99$	$8 \cdot 13$	12.67
Equiv. evap. from and at $212^{\circ} \mathrm{F}$. lb . of fuel .	12.07	11.85	1654	16.02
Coal per sq. ft. grate area ${ }^{\text {a }} \mathrm{lb}$./hr.	23.5	36.0		
Boiler efficiency on gross O.V. per cent.	$85.7 *$	81.2*	86.0 *	83.2*

* Apparent discrepancy between effictency and equivalent evaporation per ib. of fuel from and at $212^{\circ} \mathrm{F}$. is due to a small percentage of steam produced being subsequently desuperheated and therefore some heat given back by desuperbeater.
of that theoretically required, hence less heat will be carried away through the chimney by the excess air. Also, a larger quantity of fuel is burned on a given grate in a given time, and therefore a smaller boiler will produce the same quantity of steam. An inferior quality of coal may be used economically when forced draught is used. Another advantage of forced draught is that the draught being produced by a fan is under control, and may be varied to suit the state of the atmosphere and the rate of combustion required.

Forced draught also allows higher gas velocities through the boiler, resulting in greater heat transfer, and hence a higher rating and efficiency. It also permits the use of air preheaters to heat the air for combustion by recovering some of the heat from the waste gases. In cases where high efficiency air heaters of the Howden-Ljungstrom rotary type are used, the resultant gas temperature may be so low (say $230^{\circ} \mathrm{F}$.) that the pull of the funnel, due to the temperature difference, is diminished to such an extent that induced draught fans may be necessary. This balanced draught arrangement consisting of both forced and induced draught fans, in conjunation with high efficiency air heaters, is almost universally adopted in important land boiler plants, and is becoming quite a normal feature of high efficiency marine steam installations.

The reduction in the consumption of fuel per I.H.P., due to the use of forced draught, has been shown to be about 15 per cent., while in the steam-producing power of a given boiler there is an increase of from 30 to 50 per cent.

The air pressure in ordinary stationary and marine boilers is from $\frac{1}{2}$ inch to 2 inches of water. In torpedo boats the air pressure ranges up to 5 inches.

Babcock and Wilcor Water-tube Boilers.-

Longitudinal Multiple Drum Sectional Header Boiler with Natural Draught Stoker and Superheater.-This boiler is composed of seamless steel tubes placed in an inclined position, and connected to one another by forged steel headers of serpentine form, so that the tubes are arranged zigzag. The headers are connected by tubes with the steam and water drums, as shown in the above illustration. The rear headers are also connected to a forged steel mud drum at their bottom ends. The tubes are expanded into bored holes in the headers. The handhole openings in the headers opposite the ends of the tubes are closed by internal handhole caps with gaskets and secured by bolts and clamps (all of forged steel). The boiler is suspended, entirely independent of the brickwork, from girders resting on columns.

The products of combustion pass from the furnace up between the tubes into a combustion chamber under the steam and water drums; from thence they pass down between the tubes, then once more up between the tubes, and off to the chimney.

The water circulates from the back to the front in the inclined tubes, up through the front headers into the drums above, then along the drums and down the back tubes into the rear of the inclined tubes again.

The soot is removed from the tubes by soot blowers.

Babcock and Wilcox Water-tube Boilers. Some Standard Sizes of the Longitudinal Drum Sectional Header Type.

Babcock and Wilcox Water-tube Boilers Some Standard Sizes of the Longitudinal Drum Sectional Header Type (continued).

Spare Occupied (Hand-fired).	Space Orcupned (Stoker-ired).						$\stackrel{\square}{\bullet}$
Width over Brickwork.	$\stackrel{\otimes}{\mathrm{O}}$	莒岳		ath over kwork.	$\begin{gathered} \text { Hand- } \\ \text { fired } \end{gathered}$	Style 6	*
					Area.		$\stackrel{0}{\square}$
Ft. ln. Ft. In.	F't.	t. 1 ln	t.	I't.	Sq. Ft.	t. In. Ft. In.	In.
4 4 711					$5 \cdot 20$		2
4 4 711	\cdots				$6 \cdot 25$		2
$\begin{array}{llllll}4 & 4 & 7 & 11\end{array}$					7.28		2
4 4 7 11					8.33		2
4 11 9 1	\ldots	\cdots		.	10.64	.	2
4 11 9 1				.	$10 \cdot 64$	-	2
$\begin{array}{lllll}4 & 11 & 9 & 1\end{array}$	\cdots				11.97		2
4 11 9 1					$13 \cdot 30$		2
5 8 10 7	8	190	5	810	16.00	$\begin{array}{lll}2 & 0 \times 7 & 0\end{array}$	2
5 8 10 7	8		5	810	16.00	20×86	2
$6{ }_{6} 311100$	8	190	6	3110	19.50	27×86	$2 \frac{1}{2}$
$\begin{array}{llllllllllll}6 & 10 & 12 & 2\end{array}$	8	210	610	12	26.85	30×86	$2 \frac{1}{2}$
6 10 12 2	8	210	610	12	$26 \cdot 85$	30×86	$2 \frac{1}{2}$
6 10 12 2	8	210	610	12	26.85	30×100	$2 \frac{1}{2}$
$61012 \quad 2$	8	230	610	12	26.85	30×100	3
7 5 13 4	8	230	7	513	30.91	38×100	3
7 5 13 4	8	230	7	5134	$30 \cdot 91$	40×100	3
7 5 13 4	8	230	7	5134	$30 \cdot 91$	40×100	3
8 0 4146	8	230	80	$14 \quad 6$	34.98	40×120	$3 \frac{1}{2}$
$\begin{array}{llll}10 & 4 & 19 & 2\end{array}$	8	210	$10 \quad 4$	419	51.31	50×100	$3 \frac{1}{2}$
$\begin{array}{lllll}8 & 0 & 14 & 6\end{array}$	8	230	8	14	34.98	$4 \quad 0 \times 120$	$3 \frac{1}{2}$
8 7 15 8	8	230	87	715	39.08	$4 \quad 5 \times 120$	32
10 4 19 2	8	210	104	419	51.31	$5 \quad 6 \times 100$	32
8 7 15 8	8	230	87	75	39.08	$4 \quad 5 \times 12$	$3 \frac{1}{2}$
10 4 19 2	8	210	104	419	$51 \cdot 31$	60×100	4
9 2 1610	-	230	92	1610	$43 \cdot 16$	$5 \quad 0 \times 12$	4
$\begin{array}{lllll}10 & 4 & 19 & 2\end{array}$	-	230	104	4192	51.31	56×12	4
11 6 21 6	9	230	116	621	$59 \cdot 46$	$6 \quad 0 \times 12$	4
$\begin{array}{llll}10 & 4 & 19 & 2\end{array}$	-	230	104	4192	51.31	68×12	5
11 6 21 6	9			6216	59.46	66×120	5

Babcock and Wilcox Water-tube Boilers. Some Standard Sizes of the Longitudinal Drum Sectional Header Type (continutd).

Pressures.-From 350 to 400 lbs. per square inch represents the usual maximum final steam pressure of these boilers. Where higher pressures are required, the cross drum sectional header boiler must be installed.

Hand-fired Grate Sizes.-In selecting the size of boiler, care must be taken to choose a unit having sufficient grate area to burn the necessary quantity of the particular fuel available. The grate areas tabulated do not allow for any stepping out of the side walls to accommodate a larger area. Where no grate size is given, hand-firing is not recommended.

Stoker Sizes.-The above remarks re selection of a boiler also apply here. Stoker sizes may be modified by using special settings, etc. Boiler sizes which have no stoker sizes allocated should receive special consideration, as the largest atoker that can be fitted with a normal setting will not carry the usual evaporation.

Babcock and Wilcox Water-tube Boilers (continued).

Space Occupied (Hand-fired).		Space Occupied (Stoker-fired).				Handfired Grate Area.	Style 6 Stoker Size.	
Width over Brickwork.				Width over Brickwork.				
安				$\stackrel{\vdots}{\text { ¢ }}$	安			
Ft. In.	Ft. In.	Ft.	Ft. In.	Ft. In.	Ft. In.	Sq. Ft.	Ft. In. Ft. In.	In.
116	216	9	230	116	216	59.46	$6 \quad 6 \times 120$	5
		9	230	116	216		$6 \quad 0 \times 140$	5
		9	230	128	2310		$7 \quad 6 \times 120$	5
		9	230	128	2310		86×120	5
\cdots	-	9	230	$13 \quad 10$	$26 \quad 2$.	$8 \quad 6 \times 120$	5
\cdots	-•	9	23 0	1310	$26 \quad 2$		$8 \quad 0 \times 140$	5
	.	9	230	150	$28 \quad 6$		$9 \quad 0 \times 140$	6
		11	230	1310	$26 \quad 2$	-	86×160	6
		9	230	15 0	$28 \quad 6$		${ }_{5}^{8} 80 \times 140$	6
		11	236	1310	$26 \quad 2$		$9 \quad 0 \times 16 \quad 0$	6
			236		.	.		7
		9	230	191	.	.	${ }_{7}^{7} \quad{ }_{0}^{0} \times 140$	7
			236	.	.			7
.		11	236	19 1 1	.		$7{ }_{7}^{7} \times 160$	7
		11	236	$20 \quad 10$			$8{ }_{8}^{8}$	8

Baboock and Wilcox Water-tube Boilers-Cross Drum Types.The categories of cross drum boilers may be listed briefly as follows: Marine, portable, cross type, and power station boilers.

Marine Water-tube Boilers are made in sizes up to evaporative capacities of about $60,000 \mathrm{lbs}$. of water per hour, and for working pressures up to about 625 lbs. per square inch. They are used on warships, ocean-going liners, tugs, and other craft. An illustration of an oil-fired marine boiler with superheater is shown on p. 6I1.

Portable Boilers range in evaporative capacity from 500 to 6000 lbs . of water per hour, and for working pressures up to 200 lbs. per square inch. They can be constructed so that no single part weighs more than 280 lbs., thus facilitating transport in diffioult country.

Cross Type Boilers range in evaporative oapacity from 360 to 8770 lbs. of water per hour, and for working pressures up to 205 lbs. per square inch. The weight of the steam and water drum, which is the heariest part, does not exceed 8 owt . in the smaller sizes of these boilers.

Power Station Boilers, known as the C.T.M. type, have been manufactured to give an evaporation of over $1,000,000 \mathrm{lbs}$. of water per hour, and for working pressures exceeding 1500 lbs . per square inch. For such high pressures, welded drums and seamléss forged steel drums are used in place of riveted drums, and the water tubes are reduced in diameter.

Fire-bars.-These are generally made of cast-iron, and are usuaily of the form shown in the annexed illustration. The following are approximate rules for proportioning common cast-iron fire-bars:-

$L=$ length of fire-bar (usually from 2 feet to 3 feet).
$D=\frac{L}{16}+1 \frac{1}{4}$ inches.
$d=\frac{L}{32}+\frac{3}{4}$ inch.
$t=\frac{8}{4}$ inch to $\frac{7}{8}$ inch.
$t_{1}=\frac{1}{2} t$.
$b=\frac{8}{8}$ inch to $\frac{5}{8}$ inch, depending on the kind of fuel and the force of the draught.
The area of the air spaces between the fire-bars varies from $\cdot 15$ to 4 of the grate area. The average of a large number of examples gave area of air spaces equal to 28 of grate area.

Gain Due to Heating the Feed-water in Steam Boilers.-
$t_{1}=$ temperature of feed-water before heating, in degrees Fahr.
$t_{2}=$ temperature of feed-water after heating, in degrees Fahr.
$h_{1}=$ heat in feed-water (above that in water at $32^{\circ} \mathrm{F}$.) before heating, in British thermal units.
$h_{2}=$ heat in feed-water (above that in water at $32^{\circ} \mathrm{F}$.) after heating, in British thermal units.
$H=$ total heat in steam at boiler pressure (above that in water at $32^{\circ} \mathrm{F}$.), in British thermal units.
Gain per cent $t_{0}=\frac{100\left(h_{2}-h_{1}\right)}{H-h_{1}}=\frac{100\left(t_{2}-t_{1}\right)}{H-t_{1}+32}$ very nearly.
It is assumed that the feed-water is heated by waste gases, the heat of which would otherwise be lost.

The following table shows the gain per cent. due to heating the feed-water to various temperatures for various pressures of steam:-

$\begin{aligned} & \text { Temp. } \\ & t_{2} \text { in } \\ & \text { Degrees } \\ & \text { Fahr. } \end{aligned}$	Absolute Pressure of Boiler Steam in Lbs. per Square Inch					
	45	135	225	45	135	225
	- Gain per Cent. due to Heating Feed-water to Temp. t_{2}.					
	When $t_{1}=60^{\circ}$ Fahr.			When $t_{1}=100^{\circ}$ Fahr.		
100	$3 \cdot 02$	$3 \cdot 45$	$3 \cdot 41$	-		-
150	$7 \cdot 91$	$7 \cdot 75$	$7 \cdot 67$	$4 \cdot 56$	$4 \cdot 46$	$4 \cdot 41$
200	12.31	12.06	11:93	$9 \cdot 11$	$8 \cdot 92$	$8 \cdot 82$
250	16.70	$16 \cdot 37$	1619	13.67	$13 \cdot 38$	15.23

Hydranlic Tests for Steam Boilers.-Lloyd's Rules.-In all new boilers working at pressures up to 100 lbs . per square inch the hydraulio test is to be twice the working pressure. For boilers working at pressures greater than 100 lbs . per square inch the hydraulic test pressure is to be $1 \frac{1}{2}$ times the working pressure plus 50 lbs . per square inch.

Board of Trade Rules.-All new boilers to be tested by hydraulic pressure to $1 \frac{1}{2}$ times the working pressure plus 50 lbs . per square inch. The tests to be made before the boilers are in the vessel and before they are lagged. This latter instruction applies also to evaporators, superheaters, and steam chests, but these should be tested to twice the working pressure, except that when a superheater forms an integral part of a boiler it should be tested to the same pressure as and with the boiler of which it forms a part.

RIVETED JOINTS.

Rivets and Rivet Holes.--For the proportions marked on the figures below the unit is d, the diameter of the rivet.

The length of rivet required to form a rivet head is about $114 d$ for conical and snap heads. For countersunk heads the allowance is from ${ }_{4}^{8} d$ to d.

[^42]As the rivet expands when heated, its diameter when cold should be less than that of the hole. In practice, the diameter of the rivet is generally one-sixteenth of an inch less than that of the hole for rivets $\frac{3}{4}$ inch in diameter and upwards.

In all calculations on the strength of riveted joints, and in all rules and tables, the diameter of the hole is taken as the diameter of the rivet.
In boiler work the rivet holes are drilled after the plates have been bent or flanged and put together in their proper plaoes. After drilling the plates are taken asunder, and any burs whioh have been formed at the edges of the holes are removed.

Notation for Formulæ for Riveted Joints.-All dimensions are in inches, unless otherwise stated.
$t=$ thickness of plates.
$t_{1}=$ thickness of butt straps; when inner and outer straps have different thicknesses, $t_{i}=$ thickness of inner strap, $t_{0}=$ thickness of outer strap.
$d=$ diameter of rivets, after riveting.
$p=$ greatest pitch of rivets.
$n=$ number of rivets in a width of joint equal to p in lap joints.
= number of rivets on each side of the butt in a width of joint equal to p in butt joints.
$l=$ distance from edge of plate to oentre line of nearest row of rivets.
c, c^{\prime}, c_{1}, and $c_{1}^{\prime}=$ distances between rows of rivets.
$f_{t}=$ tensile strength of plates in lbs. per square inch.
$f_{s}=$ shearing strength of rivets in lbs. per square inch.
$\frac{f_{s}}{f_{t}}=\frac{3}{8}$, or say 0.8 , for steel plates and steel rivets, but varies according to ultimate strength of plate.
$C=$ ratio of shearing strength of rivet in joint to shearing strength of rivet in single shear.
$=1$ for lap joints.
$=1.875$ for butt joints with double cover straps (Board of Trade and Lloyd's rules).
$R_{t}=$ resistance of plate to tearing between the rivets of pitch p, expressed as a percentage of the resistance of the solid plate.
$\boldsymbol{R}_{s}=$ resistance of rivets of joint to shearing expressed as a percentage of the resistance of the solid plate to tearing.
$R_{1}=$ resistance of rivets of outer row to shearing combined with the resistance of the plate between the inner row of rivets to tearing, expressed as a percentage of the resistance of the solid plate to tearing. (For joints in which the pitch of the rivets in the inner row is half the pitch of the rivets in the outer row.)
$R=$ the least of the quantities R_{t}, R_{\imath}, R_{1}.
$E^{\prime}=$ efficiency of the joint $=\begin{gathered}\boldsymbol{R} \\ 1(\%)\end{gathered}$
Single Riveted Lap Joints.-

$$
\begin{aligned}
& R_{t}=\frac{100(p-d)}{p} \\
& R_{s}=\begin{array}{c}
100 \times \cdot 7854 d^{2} \\
p t
\end{array} \times \frac{f_{s}}{f_{t}}
\end{aligned}
$$

If $R_{t}=R_{\mathrm{s}}$, then $p=\stackrel{.7854 d^{2}}{t} \times \frac{f_{s}}{f_{t}}+d$.
For joints which have to be made steam-tight the pitch of the rivets is generally less than that given by the above formula.

The following table gives proportions of single riveted lap joints suitable for boiler work, when $f_{t} / f_{t}=0.8$:-

Double Riveted Lap Joints.-

In each case R_{t} is nearly equal to R_{s}, and the value under R is the smaller of the two.

$$
l=1 \frac{1}{2} d .
$$

t	Steel Plates and Steel Rivets.				
	d	p	c		R
8	$\frac{7}{8}$	31	15	24	72.0
118	$\frac{15}{16}$	$3 \frac{3}{8}$	14	$2 \frac{3}{8}$	$71 \cdot 4$
$\frac{3}{4}$	1	32	$11 \frac{3}{6}$	$2 \frac{1}{2}$	71.4
$\frac{1}{1} \frac{3}{6}$	$1{ }_{1}^{18}$	314	1156	28	$71 \cdot 0$
7	$1 \frac{1}{8}$	37	2	$2 \frac{3}{4}$	$70 \cdot 4$
$1{ }^{15}$	$1{ }_{1}{ }^{3} 8$	4	$2 \frac{1}{16}$	27	$70 \cdot 3$
1	14	$4{ }^{\frac{3}{18}}$	$21_{6}{ }^{3}$	3	$70 \cdot 1$
$1 \frac{1}{16}$	$1{ }^{18}{ }^{6}$	$4 \frac{1}{8}$	21	31	$69 \cdot 9$
$1 \frac{1}{8}$	$1 \frac{3}{8}$	$4 \frac{1}{2}$	$2{ }^{8}$	34	$69 \cdot 4$

In each case R_{t} is nearly equal to R_{s}, and the value under R is the smaller of the two. $\quad l=1 \frac{1}{2} d$.

Treble Riveted Lap Joints in which the Pitch of the Rivets of the Inner Row is half the Pitch of the Rivets in the Outer Rows. -

The resistance of this joint to the shearing of the rivets of an outer row, and the tearing of the plate between the rivets of the inner row, expressed as a percentage of the strength of the solid plate, is $R_{1}=\begin{gathered}\left.1000_{i} \cdot 7854 d^{2} f_{s}+(p-2 d) t f_{t}\right\} \\ p t f_{t}\end{gathered}=\frac{R_{F}}{4}+\frac{100(p-2 d)}{p}$.
If $R_{1}=R_{t}=R_{s}$, then $p=\begin{gathered}4 \times 7854 d^{3} \\ t\end{gathered} \times \frac{f_{s}}{f_{t}}+d$, as before, and

$$
\begin{aligned}
d=\frac{t}{.7854} \times \begin{aligned}
f_{t} & =1.27 t \text { for iron plates and iron rivets. } \\
f_{s} & =1.59 t \text { for steel plates and steel rivets. }
\end{aligned} .=\text {. }
\end{aligned}
$$

If the diameter of the rivets is greater than that given by the above formula, the strength of the joint must be taken as \boldsymbol{R}_{t} or \boldsymbol{R}_{s}; but if the diameter is less, which is generally the case, then the strength of the joint must be taken as R_{1}.

General Formula for Lap Joints.-

$$
\begin{aligned}
& R_{t}=\frac{100(p-d)}{p} . R_{s}=\frac{100 \times n \times \cdot 7854 d^{s}}{p t} \\
& \text { If } R_{t}=R_{s}, \text { then } p=\frac{n \times \cdot 7854 d^{2}}{t} \times f_{f t}+d .
\end{aligned}
$$

When the pitch of the rivets in the inner rows is half the pitch of the rivets in the outer rows,

$$
R_{1}=\frac{R_{s}}{n}+\frac{100(p-2 d)}{p}
$$

Butt Joints with Single Butt Straps.-A butt joint with a sover strap on one side only is made up of two lap joints, and may therefore be proportioned by the rules for lap joints.

Thickness of butt strap $=$ thickness of plate $\times 1 \frac{1}{8}$.
Single Riveted Butt Joints with Double Butt Straps. -

$$
\begin{aligned}
& R_{t}=\begin{array}{l}
100(p-d) \\
p
\end{array} \\
& R_{9}=-\frac{100 \times C \times 7854 d^{2}}{p t} \times \frac{f_{s}}{f_{t}^{*}}
\end{aligned}
$$

If $R_{t}=R_{s}$, then

$$
p=\frac{C \times \cdot 7854 d^{2}}{t} \cdot{ }^{f_{b}}+d .
$$

The diameter of the rivets may be-
$d=t+\frac{1}{4}$ inch for iron plates and iron rivets.
$d=t+\frac{5}{18}$ inch for steel plates and steel rivets.
$t_{1}=\frac{5}{8} t$.

Double Riveted Butt Joints with Double Butt Straps.-

If $R_{t}=R_{\text {st }}$ then $p=\frac{2 C \times \cdot 7854 d^{2}}{t} \times{ }_{\frac{f_{s}}{f_{f}}}+d$.

The diameter of the rivets may be,
$d=t+\frac{3}{16}$ inch for iron plates and iron rivets.
$d=t+\frac{1}{4}$ inch for steel plates and steel rivets.

$$
c=\frac{1}{1} \theta=(\overline{11} p+\overline{1 d})\left(p+\frac{1}{4} d\right) . \quad t_{1}=\frac{5}{8} t_{0} \quad l=1 \frac{2}{2} d .
$$

For Fig. ($) . \quad R_{t}=\begin{gathered}100(p-d) \\ p\end{gathered} . \quad R_{1}=\begin{gathered}100 \times 3 C \times \cdot 7854 d^{2} \\ p t\end{gathered}{ }_{f t}^{f}$

$$
\text { If } R_{t}=R_{\varsigma} \text {, then } p=\frac{3 C \times}{} \frac{7854 l^{2}}{t}{ }_{\lambda} f_{f_{t}}+d .
$$

The diameter of the rivets may be,
$d=t+\frac{1}{8} 1 \mathrm{nch}$ for iron plates and iron rivets.
$d=t+\frac{3}{10}$ inch for steel plates and steel rivets.

$$
\begin{aligned}
& c=\sqrt{ }\left(\begin{array}{l}
1 \\
2
\end{array} \bar{p}-\bar{p}+d\right)\left(\frac{1}{2} p+d\right) . \quad t_{1}=\begin{array}{l}
5 t(p-d) \\
K(p-2 d)
\end{array} \quad l=1 \frac{1}{2} d . \\
& R_{1}=\frac{100\left\{\left(0 \times 7854 d^{2} f_{\mathrm{s}}+(p-2 d) t f_{t}\right\}\right.}{p t f_{t}}=\frac{R_{\mathrm{y}}}{3}+\begin{array}{c}
10)(p-2 d) \\
p
\end{array} .
\end{aligned}
$$

With rivets of ordınary diameter R_{1} will be greater than \boldsymbol{R}_{t} or \boldsymbol{R}_{s}.

Treble Riveted Butt Joints with Double Butt Straps. -

For Fig. (a).

$$
\begin{aligned}
& R_{t}=\frac{100(p-d)}{p} . \\
& R_{s}=\frac{100 \times 3 C \times}{p t} \cdot 7854 d^{2} \times \frac{f_{s}}{f_{i}}
\end{aligned}
$$

If $R_{t}=R_{z}$, then
$p={ }^{3 C \times} \cdot 7854 d^{2} \times{ }_{f_{t}}^{f_{9}}+d$.
$\left.c=1_{1}^{1} \sqrt{(11} p+4 d\right)(p+4 d)$.
$t_{1}=\frac{5}{8} t . \quad l=1 \frac{1}{2} d$.
The diameter of the rivets may be,
$d=t+\frac{1}{18}$ inch for iron plates and iron rivets.
$d=t+\frac{1}{8}$ inch for steel plates and steel rivets.

For Fig. (b). $\quad R_{t}=\frac{100(p-d)}{p}, \quad R_{s}=\begin{gathered}100 \times 5 C \times 7854 d^{2} \\ p t\end{gathered} \frac{f_{s}}{f_{t}}$

$$
\text { If } R_{t}=R_{s} \text {, then } p^{\prime}=\frac{5 C \times}{} \frac{78 \Sigma 4 d^{\prime \prime}}{t} \times f_{f}^{f_{s}}+d
$$

d may be from $t+\frac{2}{8}$ inch for plates $\frac{5}{8}$ inch thick to t for plates 1 inch thick and upwards.

$$
\begin{array}{rlrl}
c & \left.=\sqrt{\left(\frac{1}{2} b p+d\right)\left(2_{2}^{1} 5\right.} p+d\right) . & c^{\prime} & =\frac{1}{2} \sqrt{(11 p+8 d)(p+8 d)} . \\
t_{1} & =\frac{5 t(p-d)}{8(p-2 d)} . & l=1 \frac{1}{2} d . \\
R_{1} & =\frac{100\left\{C \times 7854 d^{2} f_{s}+(p-2 d) t f_{t}\right\}}{p t f_{t}}=\frac{R_{3}}{5}+\frac{100(p-2 d)}{p} .
\end{array}
$$

With rivets of ordinary diameter R_{1} will be greater than R_{t} or \boldsymbol{R}_{s}.

For Fig. (c). $\quad R_{t}=\frac{100(p-d)}{p} . \quad R_{s}=\frac{100 \times 4 C \times \cdot 7854 d^{2}}{p t} \times \frac{f_{s}}{f_{t}}$.

$$
\text { If } R_{t}=R_{s,} \text { then } p=\frac{4 C \times \cdot 7854 d^{2}}{t} \times \frac{f_{s}}{f_{t}}+d
$$

d may be from $t+\frac{1}{8}$ inch for plates $\frac{\delta}{8}$ inch thick to t for plates 1 inch thick and upwards.

$$
c=\sqrt{\left(\frac{3}{2} t p+d\right)\left(\frac{1}{20} p+d\right)} . \quad t_{1}=\frac{5}{8} t . \quad l=1 \frac{1}{2} d
$$

Combined Lap and Butt Joints.-

Strength of joint of width $=p$.
Resistance to tearing at A or $D=(p-d) t f_{t}$
Resistance to shearing at A and tearing at B

$$
\begin{equation*}
\left.=\frac{\pi}{4} d^{2} f_{s}+i p-2 d\right) t f_{t} \tag{1}
\end{equation*}
$$

Resistance to shearing at B and D (first figure) $=\frac{3 \pi}{4} d f_{s} \quad$ ($3 a$)
Resistance to shearing at B, C, and D (second figure)

$$
\begin{equation*}
=\frac{5 \pi}{4}-d^{2} f_{s} \tag{3b}
\end{equation*}
$$

From (1), (2), and ($3 a$), $p=4 d$, and $d=\frac{4}{\pi} \times \frac{f_{t}}{f_{s}} \times t=1 \cdot 6 t$ for steel plates and steel rivets, which are the proportions for the first design.

From (1), (2), and (3b), $p=6 d$, and $d=\frac{4}{\pi} \times{ }_{f_{s}}^{f_{t}} \times t=1 \cdot 6 t$ for steel plates and steel rivets, which are the proportions for the second design.
Efficiency of joint $=\frac{p-d}{p}={ }_{4 d}^{4 d-d}=\frac{3}{4}=75$ per cent. for first design.
Efficiency of joint $=\frac{p-d}{p}={ }_{6 d-d}^{6 d}=\frac{5}{6}=83.3$ per cent. for second design.

The thickness of the cover strap is usually the same as the thickness of the plates.

The above proportions give the maximum efficiency, but in practice they have to be modified for thick plates becanse the rivets would be too large to be conveniently riveted.

The addition of a cover strap, in the manner shown by the ilustrations on the opposite page, is a simple way of increasing very considerably the efficiency of an existing lap joint.

Butt Joint with Cover Straps of Unequal Width. Srength of joint of width $=p$. Resistance to tearing at outer row of rivets $=(p-d) t f_{t} .(1)$
Hesistance to shearing of outer row of rivets and to tearing at second row of

$$
\begin{equation*}
\text { rivets }=\frac{\pi}{4} d^{2} f_{s}+(p-2 d) t f_{t} . \tag{2}
\end{equation*}
$$

Resistance of rivets to shear-
ing $=\frac{9 \pi}{4} d^{2} f_{s}$

plates and steel rivets.
Efficiency of joint $=\frac{p-d}{p}=\frac{10 d-d}{10 d}=\frac{9}{10}$, or 90 per cent.
The above proportions give the maximum efficiency to the joint, but in practice they would have to be modified. The pitch would in general be too great to ensure a steam-tight joint, and for thick plates the rivets would be too large to be conveniently riveted.

For maximum pitches of rivets allowed by the Board of Trade and Lloyd's rules for joints in steam boilers, see p. 627.

Board of Trade and Lloyd's Rules for Riveted Joints of Cylindrical Boiler Shells.

Joints with Drilled Holes.

Joints.	Steel Plates, Rivets, and Straps.
1 to 20	$\begin{aligned} & R_{t}=\frac{100(p-d)}{p} . \quad p=\frac{100 d}{100-R_{t}} . \quad l=1 \frac{1}{2} d . \\ & R_{t}=\frac{100 \times S_{2} \times a \times n \times C}{S_{1} \times p \times t}, \text { where } a=0.7854 d^{2}, \end{aligned}$ $S_{1}=$ minimum tensile strength of plate in tons per square inch, $\Delta_{2}=$ shearing strength of rivets, which is taken generally to be 23 tons per square inch, and may be 85 per cent. of the minimum tensile strength of the rivet bars. For meanings of other symbols on this page see pp. 614, 615, and illustrations on opposite page.
13 to 20	$R_{1}=\frac{100(p-2 d)}{p}+\frac{R_{s}}{n}$ The values which follow are minimum values.
$\left\{\begin{array}{r} 1 \text { to } 12, \text { and } \\ 14 \text { and } 18 \end{array}\right\}$	For double butt straps, $t_{0}=\frac{5}{8} t$ and $t_{i}=t_{0}+\frac{1}{8}$ inch.
$\left.\begin{array}{l}15,16,19, \\ \text { and } 20\end{array}\right\}$	For double butt straps, $t_{0}=\frac{5 t(p-d)}{8(p-2 d)}$ and $t_{i}=t_{0}+\frac{1}{8}$ inch.
2, 4, 6, 9, and 11	$c_{1}=2 d$.
3, 5, 7, 10, and 12 $\}$	$c=0.33 p+0.67 d$.
$\left.\begin{array}{l}\text { 13, 14, } 15, \\ \text { and } 16 \\ 17,18,19,\end{array}\right\}$	$c_{1}=0.33 p+0.67 d$, or $c_{1}=2 d$, whichever is the greater.
and $20{ }^{\circ}$,	$c=0 \cdot 2 p+1 \cdot 15 d$
15 19	$\begin{aligned} c_{1}^{\prime} & =2 d . \\ c^{\prime} & =0.165 p+0.67 d . \end{aligned}$

Steel plates subjeot to direct tensile stress may be welded in cases where the weld is covered by a riveted butt strap or straps. All plates which are welded, dished, flanged, or locally heated are to be afterwards efficiently annealed. Butt straps are to be out from plates and not from rolled strips.

Illustrations of joints referred to on the opposite page.

Riveted Jaints for Bars or Narrow Plates in Tension.

Lap Joint.
Resistance to tearing at A $=(b-d) t f_{t}$
Resistance to shearing at A and tearing at B

$$
={ }_{4}^{\pi} d^{2} f_{s}+(b-2 d) t f_{t} . .
$$

Resistance to shearing a ${ }^{+} A$ and B and tearing at C

$$
\begin{equation*}
=\frac{3 \pi}{4} d^{2} f_{s}+(b-3 d) t f_{t} \tag{3}
\end{equation*}
$$

Resistance of rivets to shear-

$$
\begin{equation*}
\text { ing }=\frac{n \pi}{4} d^{2} f_{s} \tag{4}
\end{equation*}
$$

where $n=$ total number of rivets in joint.*
From (1) and (2),

$$
\begin{equation*}
d=\left(\frac{4}{\pi}\right)\left(\frac{f_{t}}{f_{s}}\right) t \tag{5}
\end{equation*}
$$

$d=1 \cdot 6 t$ for steel plates and steel rivets.
From (1), (4), and (5),

$$
n=\left(\frac{b}{t}\right)\left(\frac{\pi}{4}\right)\left(\frac{f_{s}}{f_{t}}\right)-1 \quad . \quad .(6)
$$

$n=63\left(\frac{b}{t}\right)-1$ for steel plates
and steel rivets.

Butt Joint.
Resistance to tearing at \boldsymbol{A} $=(b-d) t f_{t}$.
Resistance to shearing at A and tearing at B
$=\frac{2 \pi}{4} d^{2} f_{s}+(b-2 d) t f_{t}$
Resistance to shearing at A and B and tearing at C

$$
\begin{equation*}
=\frac{6 \pi}{4} d^{2} f_{s}+(b-3 d) t f_{t} . \quad .(3) \tag{4}
\end{equation*}
$$

Resistance of rivets to shear-
ing $=\frac{n \pi}{4} d^{2} f_{s}$
where $n=$ total number of rivets in joint.*
From (1) and (2),

$$
\begin{equation*}
d=\left(\frac{2}{\pi}\right)\left(\frac{f_{t}}{f_{s}}\right) t \ldots \ldots . \tag{5}
\end{equation*}
$$

$d=88 t$ for steel plates and steel rivets.
From (1), (4), and (5),
$n=\pi\left(\frac{b}{t}\right)\left(\frac{f_{s}}{f_{t}}\right)-2$ •• (6!
$n=2.5\left(\frac{b}{t}\right)-2$ for steel plates and steel rivets.

A more efficient joint is obtained by making the rivet at A smaller than the rivets at B, and the rivets at B smaller than the rivets at C.

* The total number of rivets must also be $=x(x+1)$, where x is the number of rows of rivets on each side of the centre of the joint. $x=\sqrt{n+\frac{1}{2}}-$ If x comes out a number and a fraction, the next whole number above it may be taken.

The rules deduced on the opposite page for the diameter of the rivets would probably be modified in practice. For thick plates the rule, $d=1 \cdot 6 t$, would give too large a rivet to be conveniently riveted. The other rule, $d=\cdot 8 t$, gives smaller diameters than would be found in practice.
Maximum Pitch of Rivets in Longitudinal Joints (Board of Trade and Lloyd's Rules).-
$t=$ thickness of plate in inches.
$p=$ maximum pitch of rivets in inches.

$$
p=(k \times t)+1 \frac{5}{8} .
$$

Circumferential Joints (Board of Trade and Lloyd's Rules).The strength of the seams joining the end plates to the cylindrioal shell is not to be less than 42 per cent. of that of the solid shell plate. Where the shell plates exceed $\frac{5}{8}$ inch in thickness the seams connecting the shell plates to the end plates are to be at least double riveted. Where the shell plates exceed $\frac{1}{d}$ inch in thickness the intermediate circumferential seams of double-ended boilers are to be at least double riveted.

The circumferential seam at or near the middle of the length of single-ended boilers is to have a strength of joint not less than 60 per cent. of the solid plate. The inner circumferential seams of double-ended boilers are to have a strength of joint not less than 62 per cent. of the solid plate. In any case there are to be at least three rows of rivets where single-ended boilers have shell plates over 18 inches in thickness and where double-ended boilers have shell plates over $1 \frac{3}{18}$ inches in thickness.

The circumferential seams of the shells of vertical boilers are to have a strength of not less than 42 per cent. of the solid plate. Where these seams are not complete oircles, and where the shell plates exceed $\frac{5}{8}$ inch in thickness, the riveting is to be at least double.

Strength of Oylindrical Boiler Shells.-
$D=$ greatest internal diameter of shell in inches.
$t=$ thickness of shell plates in inches.
$E=$ efficiency of riveted joints (longitudinal seams), see p. 615.
$f_{t}=$ tensile strength of plates in lbs. per square inch.
$P=$ safe working pressure of steam in lbs. per square inch.
$F=$ factor of safety.

$$
P=\frac{2 t f_{t} H}{D P} . \quad t=\frac{P D F}{2 f_{t} H I} .
$$

Cylindrical Boiler Shells (Board of Trade and Lloyd's Rules).-
If the thickness of the shell plates does not exceed $1 \frac{3}{4}$ inches,

$$
P=\frac{(t-2) \times S \times J}{C \times D} .
$$

If the thickness of the shell plates exceeds $1 \frac{3}{4}$ inches, and the longitudinal seams are made with double butt straps,

$$
P=\frac{t \times S \times J}{2.85 \times D} .
$$

In the above formula
P is working pressure in lbs. per square inch.
t is thickness of the shell plates in 32nds of an inch.
S is minimum tensile strength of shell plates in tons per square inch.
J is percentage of strength of longitudinal seams, and its value is erther the least of the quantities R_{t}, R_{s}, and R_{1} (see p. 624), or the least of the quantities R_{i} and R_{s}, depending on the type of joint.
C is a coefficient, which is 2.75 where longitudinal seams are made with double butt straps, 2.83 where longitudinal seams are made with lap joints and are treble riveted, 2.9 where they are made with lap joints and are double riveted, and 3.3 where they are made with lap joints and are single riveted.
D is inside diameter of outer strake of plating of cylindrical shell measured in inches.

Superheaters (Board of Trade Rules).-
Tubulous Superheaters attached to Cylindrical Boilers.-The headers should be of wrought- or cast-steel.

The minimum thickness of heating tubes is given by

$$
t=\frac{P \times d}{75}+5 .
$$

P is working pressure in lbs. per square inch.
t is thickness of tubes in 100ths of an inch.
d is external diameter of tubes in inches.
The tubes should be solid drawn. Superheaters should be tested by hydraulic pressure to double the working pressure.

Superheaters of Water-tube Boilers.-Superheaters forming part of a water-tube boiler should comply with the requirements of boilers of that type as regards drums, headers, construction, and material. Tubes which have only steam within them should be situated in a position shielded from direct radiant heat, and where only hot gases and not flame can impinge upon any part. Working pressure on the tubes should not exceed that obtained from the formula for the upper tubes of water-tube boilers (see p. 639).

The completed superheater should be tested with and to the same hydraulic pressure as the boler of which it forms part.

Strength of Spherical Boiler Shells - A spherical thell has twice the strength of a cylindrical shell of the same diameter and thickness, hence,

$$
P=\begin{aligned}
& 4 t f_{t} E \\
& D F
\end{aligned} \quad t=\frac{P D P}{4 f_{t} E},
$$

where the letters have the meanings given on p .627.
The foregoing formulæ also apply to the hemispherical ends of borler shells.

Strength of Dished Ends of Boiler Shells

$$
P=\begin{array}{ll}
2 t f_{t} \\
r F & t=- \\
y f_{t} F
\end{array}
$$

The dished end will have the same strength as the cylindrical shell of the same thickness when

$$
r=\frac{d}{E}
$$

In practice r is generally equal to d.
In the above formula it is assumed that the dished end is in one piece.

$$
\begin{aligned}
r=\begin{array}{c}
d^{2}+1 h^{2} \\
\delta h
\end{array} \quad h & =r-\sqrt{4 r-d^{2}} \\
\text { If } r=d, \text { then } h & =\cdot 134 d .
\end{aligned}
$$

Hemispherical Ends and Dished Ends (Board of Trade and Lloyd's Rules).-

When the end is a hemisphere without stays,

$$
P=\frac{(t-2) \times S \times J}{C \times R} .
$$

P is working pressure in lbs. per square inch.
t is thickness of plates in 32nds of an inch.
S is minimum tensile strength of plates in tons per square inch.
J is minimum strength of riveted joints per cent. of solid plate.
R is inner radius of curvature in inches.
$C=3.3$ for single riveting, 2.9 for double riveting, 2.83 for treble riveting.

When end is dished outwards to partial spherical form and without stays,

$$
P=\frac{15 \times S(t-1)}{R} .
$$

R is not to exceed diameter of shell. Inside radius of curvature at flange not to be less than four times the thickness of end plate and in no case less than $2 \cdot 5$ inches.

When end has a manhole in it, the thickness of plate is to be increased by $\frac{1}{8} \mathrm{mch}$, and total depth of flange of manhole from the outer surface, in inches, is to be at least

$$
\sqrt{T \times w},
$$

where T is plate thickness in inches, and w is minor axis of hole in inches.

Plain Furnace Tubes. -
$D=$ outside diameter in inches.
$t=$ thickness in inches.
$L=$ length in feet. (The length is measured between the rings, if the furnace is made with rings.)
$P=$ working pressure of steam in lbs. per square inch.

$$
P=\frac{46552 t^{219}}{D^{2}} L
$$

$=$	$\frac{5}{10}$	${ }^{\frac{1}{3} \frac{1}{2}}$	$\frac{3}{8}$	$\begin{array}{l:l}\frac{19}{32} & \frac{7}{16}\end{array}$	$\frac{1}{3} \frac{5}{2}$	$\frac{1}{2}$	$\frac{17}{3}$	${ }^{\circ} \mathrm{P}$
$t^{219}=$	$\cdot 078$	$\cdot 096$	$\cdot 117$	-139 -164	-190	$\cdot 219$	$\cdot 250$	$\cdot 284$

Board of Trade and Lloyd's Rules for Plain Furnaces.-
The working pressure allowed on plain furnaces or furnaces strengthened by Adamson or other joints, and on the cylindrical bottoms of combustion chambers, is determined by the following formulæ, the lesser pressure obtained being taken :-

$$
P=\frac{C(t-1)^{2}}{(L+24) \times D} \quad \text { or } \quad P=\frac{C_{1}}{D} \times[10(t-1)-L] .
$$

P is working pressure in lbs. per square inch.
D is external diameter of furnace or combustion chamber in inches.
t is thickness of furnace plate in 32nds of an inch.
L is length, in inches, of furnace or combustion chamber bottom between points of substantial support, measured from centres of rivet rows or from the commencement of flange curvature, whichever is applicable.
$C=1450$ where the longitudinal seams are welded, and 1300 where they are riveted.
$C_{1}=50$ where the longitudinal seams are welded, and 45 where they are riveted.

When plain vertical furnaces are tapered, the diameter for calculation purposes shall be the mean of that at the top, and at the bottom where it meets the substantial support from flange
or ring. The length for the same purpose shall be the distance from the centre of the row of rivets, connecting the crown to the body of the furnace, to the substantial support at the bottom of the furnace, or to a row of sorewed stays connecting the furnace to the shell, provided the pitch of stays at the furnace does not exceed 14 times the thickness of the furnace plate when the stays are riveted at their ends, and 16 times when they are fitted with nuts. The diameter over the threads of such screwed stays must be not less than $\mathbf{2 \cdot 2 5}$ times the thickness of the furnace plate.

No furnace shall exceed $\frac{13}{8}$ inch in thickness.
Corrugated Furnaces (Board of Trade and Lloyd's Rules).-

$$
P=\frac{C(t-1)}{D} .
$$

P is working pressure in lbs. per square inch.
D is external diameter, in inches, measured at the bottom of the corrugations.
t is thickness of furnace plate in 32nds of an inch, measured at the bottom of the corrugation or camber.
$C=480$ for the Fox, Morison, Deighton, Purves, and similar furnaces, and is 510 for the Leeds Forge Bulb Suspension furnace.

No furnace shall exceed $\frac{13}{18}$ inch in thickness.
Spherical Furnaces (Board of Trade and Lloyd's Rules).-
When furnaces are spherical in form and convex upwards at their tops, and are without support from stays of any kind,

$$
P=\frac{275(t-1)}{R} .
$$

P is working pressure in lbs. per square inch.
t is thiokness of top plate in $32 n d s$ of an inch.
R is outer radius of curvature of furnace in inches.
Ogee Ring (Board of Trade and Lloyd's Rules).-
For the ogee ring which connects the bottom of the furnace to the shell, and sustains the whole load on the furnace vertically,

$$
P=\frac{140(t-1)^{2}}{D \times(D-d)} .
$$

P is working pressure in lbs. per square inch.
t is thickness of ogee ring in 32nds of an inch.
D is inside diameter of boiler shell in inches.
d is outside diameter, in inches, of lower part of furnace where it joins the ogee ring.

BOILER STAYS.

Direct Stays.-

$d=$ smallest diameter of stay in inches.
$A=$ area of plate supported by one stay in square inches.
$P=$ working ptessure of steam in lbs. per square inch.
$f=$ safe stress allowed on stay in lbs. per square inch.

$f=4500$	5000	5500	(30)	6.500	7000	7500	8000	500	9000
$C_{1}=\cdot 0168$	(160	-0152	-0116	-1110	.0135	0130	$\cdot 0126$	-0122	-0119
$C_{2}=35334$	3927	4320	4712	5105	5498	5890	628:3	6676	7069

For copper stay, $f-1000$ to 5000 .
Board of Trade and Lloyd's Rules.-Symbols P and A as above, also
$d^{\prime}=$ diameter of stay over thread in inches,
$d_{1}=$ diameter of stay at bottom of thread or at smallest unscrewed part,
$S=$ minimum tensile strength of steel in tons per square inch.
For screw stays with threads not coarser than nine threads per inch, made of steel or special wrought iron,

$$
P=\frac{8250\left(d^{\prime}-0.267\right)^{2}}{A}
$$

but stress must not exceed 9000 lbs . per square inch.
For steel longitudinal stays with threads not coarser than six threads per inch,

$$
P=\frac{9500\left(d^{\prime}-0.340\right)^{2}}{A} \times \frac{S}{28}
$$

but stress must not exceed $11,000 \mathrm{lbs}$. per square inch when steel of a minimum tensile strength of 28 tons per square inch is used.

When longitudinal stays have enlarged ends or when the threads are coarser than six threads per inch,

$$
P=\frac{9500\left(d_{1}-0.125\right)^{2}}{A} \times \frac{S}{28} .
$$

On stay tubes, of wrought-iron or steel, a working stress of 7500 lbs . per square inch of net sectional area at bottom of thread is allowed.

Minimum thickness of stay tubes, measured under threads, is to be $\frac{1}{4}$ inch for marginal stay tubes and $\frac{3}{18}$ inch for other stay tubes. Thickening of ends of stay tubes is to be attained by upsetting and not by any welding process, and the tubes are to be annealed after the upsetting.

Stay tubes are to be expanded by roller expanders and not made tight by caulking only.

Illustrations of girder stays, mainly from marine and locomotive practice.

Diagonal and Gusset Stays.-The area of the cross section of a diagonal stay is found as follows: Find the area of a direct stay to support the same area of plate, and multiply it by the length of the straight part of the diagonal stay, and divide by the length of its projection on a plane at right angles to the surface supported.

The area of a gusset stay should be in excess of that found by the above rule.

Girders supporting Combustion Chamber Tops (Board of Trade and Lloyd's Rules).-

$$
P=\frac{C \times d^{2} \times t}{(L-p) \times D \times L} \times \frac{S}{28} .
$$

P is working pressure in lbs. per square inch.
d is depth of girder at centre in inches.
t is effective thickness of girder at centre in 32nds of an inch.
L is length in inches, measured between the tube plate and back chamber plate inside, or between tube plates in chambers common to two opposite furnaces.
\boldsymbol{p} is pitch of stays supported by girder, in inches.
D is distance apart of girders, contre to centre, in inches.
S is minimum tensile strength of steel plates forming the girder, in tons per square inch. With forged girders S is taken as 24 for iron and 28 for steel.
$C=\frac{495 n}{n+1}$ when n is odd, $C=\frac{495(n+1)}{n+2}$ when n is even.
n is number of stays in a girder.
Plain Smoke Tubes (Board of Trade and Lloyd's Rules).Wrought Iron or Mild Steel.

Outside Diameter. Inches.	Standard Thicknesses. S.W.G.				Working Pressures. Lbs. per Sq. Inch.			
	A	B	C	D	A	B	c	D
2	\cdots	11	10	9	\cdots	155	215	300
21	11	10	9	8	140	190	260	315
$2 \frac{1}{2}$	11	10	9	8	125	175	230	300
$2 \frac{3}{4}$	11	10	9	8	110	160	215	275
3	10	9	8	7	140	190	250	300
31	10	9	8	7	130	180	230	280
31	10	9	8	7	120	165	215	260

Flat Plates supported by Stays (Board of Trade and Lloyd's Rules).-

$$
P=\frac{C(t-1)^{\mathbf{2}}}{a^{2}+b^{2}}
$$

P is working pressure in lbs. per square inch.
t is thickness of plate in 32nds of an inch.
a is distance apart of rows of stays in inches.
b is pitch of stays in the rows in inches.
C is a coefficient which depends on the method of fixing stays.

Method of Fixing.	C	
	Plates exposed to Flame.	Plates not exposed to Flame.
Stays screwed and ends riveted. Thickness of plate to be at least half diameter of stay measured at bottom of thread.	50	57
Stay tubes screwed and expanded -	.	52
$\left.\begin{array}{l}\text { Stay tubes screwed into plate, expanded } \\ \text { and fitted with nuts. }\end{array}\right\}$.	72
Stays screwed into plate and fitted with nuts on outside.	75	86
$\left.\begin{array}{l}\text { Stays passing through plate and fitted } \\ \text { with nuts on inside and outside. }\end{array}\right\}$	84	96
Plate with flange, the inner radius of which is not greater than $2 \frac{1}{2}$ times plate thickness. Pitch to be reckoned from commencement of curvature.	98	110

Where stays are irregularly pitched, d^{2} is to be used instead of $a^{2}+b^{2}, d$ being the diameter of the largest circle which can be drawn through any three points of support without enclosing another point of support. When parts of the plate are supported in different ways, C is to be taken as the mean of the values appropriate for the methods of support at the various points.

Where plates are supported by stays passing through them and are fitted with nuts inside and washers and nuts outside, the diameter of the washers being at least 3.5 times that of the stay, and their thickness at least two-thirds that of the plate,

$$
P=\frac{100}{a^{2}+b^{2}}\left[(t-1)^{2}+0 \cdot 15 t_{w}^{2}\right],
$$

where t_{v} is thickness, in $32 n d s$ of an inch, of washers, strips, or doublings, and the other symbols are as before.

Where washers have a diameter of at least two-thirds of the pitch of the stays and a thickness of at least two-thirds of that of the plate and are riveted to the plate in an efficient manner,

$$
P=\frac{100}{a^{2}+b^{2}}\left[(t-1)^{2}+0 \cdot 35 t_{w}^{2}\right] .
$$

Where plate is stiffened by strips at least two-thirds of pitch of stays in breadth and having a thickness at least two-thirds of that of the plate and are riveted to the plate in an efficient manner,

$$
P=\frac{100}{a^{2}+b^{2}}\left[(t-1)^{2}+0 \cdot 55 t_{w}^{2}\right] .
$$

Where the plate is fitted with a doubling plate having a thickness at least two-thirds that of the plate and riveted to it,

$$
P=\frac{100}{a^{2}+b^{2}}\left[(t-1)^{2}+0 \cdot 85 t_{\mathrm{w}}^{2}\right] .
$$

If steel of less tensile strength than 26 tons per square inch is used for flat plates, the working pressure allowed is to be correspondingly reduced.

Tube Plates (Board of Trade and Lloyd's Rules).-
For the portions of tube plates in the nests of tubes,

$$
P=\frac{C(t-1)^{2}}{p^{2}}
$$

P is working pressure in lbs. per square inch.
t is thickness of tube plate in 32 nds of an inch.
p is mean pitch in inches of stay tubes supporting any portions of the plate (being the sum of the four sides of the quadrilateral divided by 4).
$C=38$ when stay tubes are screwed and expanded into tube plates and no nuts are fitted.
$C=49$ when stay tubes are screwed and expanded into tube plates and are fitted with nuts.
For the wide water spaces of tube plates between the nests of tubes and between the wing rows of tubes and the shell,

$$
P=\frac{C\left[(t-1)^{2}+0 \cdot 55 t_{\mathrm{w}}^{2}\right]}{a^{2}+b^{2}}
$$

\boldsymbol{t}_{w} is thickness of doubling plate, when fitted, in $32 n d s$ of an inch.
a is horizontal pitch of stay tubes in inches, measured across the wide water space from centre to centre.
b is vertioal pitch of stay tubes in bounding rows, in inohes, measured from centre to centre.
$C=52$ when stay tubes are sorewed and expanded into the tube plates and no nuts are fitted.
$C=72$ when stay tubes are screwed and expanded into the tube plates and nuts are fitted to each stay tube.
$C=63$ when stay tubes are screwed and expanded into the tube plates and nuts are fitted only to alternate stay tubes.
$C=45$ for each of the foregoing conditions when there are wide spaces in the back tube plate exposed to flame (not in Lloyd's rules).
In cases where tube plates are in compression, the working pressure is obtained from the formula

$$
P=875 \times \frac{(D-d) \times t}{W \times D}
$$

P is working pressure in lbs. per square inch.
t is thickness of tube plate in $32 n d s$ of an inch.
D is horizontal pitch of tubes in inches.
d is inside diameter of plain tubes in inches.
W is width of combustion chamber, in inches, from tube plate to back chamber plate.

Tube Plates of Vertical Boilers (Board of Trade and Lloyd's Rules). -When vertical boilers have a nest or nests of horizontal tubes so that there is direct tension on the tube plates due to the vertical load on the boiler ends, or to their acting as horizontal ties across the shell, the thickness of the tube plates and the spacing of the tubes are to be such that the section of metal taking the load is sufficient to keep the stress within that allowed on shell plates. Also each alternate tube in the outer vertical rows of tubes is to be a stay tube.

The tube plates between the stay tubes must be designed according to the rule $P=\frac{C(t-1)^{2}}{p^{2}}$ as given in the preceding Art., and in addition

$$
P=\frac{(t-2) \times S \times(p-d) \times 100}{2.9 \times D \times p}
$$

P is working pressure in lbs. per square inch.
S is minimum tensile strength of steel plate in tons per square inch.
t is thickness of tube plate in 32nds of an inch.
D is twice the radial distance of the centre of the outer row of tube holes from the axis of the shell in inches.
p is the vertical pitch of tubes in inches.
d is the diameter of the tube holes in inohes.

Tube Plates of Water-tube Boilers (Board of Trade and Lloyd's Rules).-For tube plates forming portions of cylindrical drums of water-tube boilers

$$
P=\frac{(t-4) \times S \times(p-d) \times 100}{3 \times D \times p}
$$

P is working pressure in lbs. per square inch.
D is internal diameter of drum in inches.
t is thickness of tube plates in $32 n d s$ of an inch.
S is minimum tensile strength of plate in tons per square inch.
p is pitch of tubes, in inches, on lines parallel with axis of drum.
d is diameter of tube holes in inches.
Tubes of Water-tube Boilers (Board of Trade and Lloyd's Rules). -For pressures up to 250 lbs. per square inch, the minimum thickness of tubes is given by

$$
t=\frac{P \times d}{F}+7 .
$$

P is working pressure in lbs. per square inch.
d is external diameter in inches.
t is thicknoss in 100ths of an inch.
$F=55$ for the two rows of tubes next the fire and round the gaps formed in the nests of tubes for the outflow of hot gases from the fire.
$F=75$ for all other tubes, including superheater tubes.
For pressures above 250 lbs. per square inch up to 650 lbs. per square inch, and a designed steam temperature not exceeding 750° Fahr., the minimum thickness of tubes is as follows:-

For the two rows of tubes next the fire and round the gaps formed in the nests of tubes for the outflow of hot gases from the fire,

$$
t=\frac{d}{200}(P+400)+9
$$

For all other tubes, including superheater tubes,

$$
t=\frac{d}{200}(P+400)+6
$$

The maximum thiokness of any tube is not to exceed 1 S.W.G. (0.3 inoh).

Man-holes.-The principal man-hole in a boiler should be 16 Inches in diameter if round, and 16 inches by 12 inches if oval. The joint for the cover should be a faced joint. The stand-pipe should be wrought steel. The cover for a circular man-hole 16 inches in diameter is generally secured by 16 bolts $\frac{7}{8}$ inch or

1 inch in diameter, and the cover is $\frac{7}{8}$ inch or 1 inch thick. Manholes in the ends may be from 14 inches by 12 inches to 15 inches by 11 inches. Mud-holes and sight-holes are from 6 inches by 4 inches to 9 inches by 6 inches.

Safety-valves (Board of Trade and Lloyd's Rules).-At least two safety-valves are to be fitted to each boiler. They are to be arranged so that the springs and valves are cased in, that the valves cannot be overloaded when steam is up, that they can be lifted by easing gear, and turned round on their seats by hand, and in case of fracture of springs they cannot lift out of their seats. Easing gear is to be arranged to lift all the safety-valves on a boiler together, and is to be workable from some accessible place, free from steam danger.

Vertical boilers having 100 square feet, or more, of total heating surface are to be fitted with two safety-valves each not less than 1.5 inches diameter; those having less than 100 square feet may have one valve not less than 2 inches diameter.

All the safety-valves of each boiler may be fitted in one chest, which is to be separate from any other valve chest and is to be connected direct to the boller by a strong and stiff neck, the passage through which is to be of not less cross-sectional area than one-half the aggregate area of the safety-valves in the chest. Each safety-valve chest is to be provided with a means by which it can be drained; the drain-pipe is to be led to the bilge or to a tank, clear of the boiler.

The minimum aggregate area of the safety-valves of the ordinary type for saturated steam fitted to each boler, whether coal fired or oil fired, and whether working under natural, forced or induced draught, is to be found by the following formula:-

$$
A=\frac{\text { T.H.S. } \times E}{(p+15) \times 4.8}
$$

A is aggregate area of safety-valves in square inches.
T.H.S. is total external surface, in square feet, of the tubes and other parts of the boiler exposed to heat, so as to cause evaporation.
p is working pressure in lbs. per square inch.
\boldsymbol{E} is estimated evaporation in lbs. per square foot of heating surface (T.H.S.) per hour with a minimum of 6.

For superheated steam, the aggregate area of the safety-valves is to be

$$
A_{s}=A \times\left(1+\frac{T}{1000}\right)
$$

A_{s} is aggregate area of the safety-valves for superheated steam in square inches.
T is degree of superheat in degrees Fahr.

An approved type of safety-valve of equally good and reliable design may be fitted in lieu of those described in the Rules.

In the case of high lift safety-valves of approved type, the aggregate area of safety-valves, as calculated from either of the above formulæ, may be reduced by not more than 50 per cent.

The waste-steam pipe and the passages leading to it are to have a cross-sectional area not less than $1 \cdot 1$ times the combined areas of the safety-valves given by the formula.

All safety-valves are to be set to the required pressure under steam. During a test of 15 minutes with the stop valves closed and under full firing conditions the accumulation of pressure is not to exceed 10 per cent. of the loaded pressure. During this test no more feed-water should be supplied than is necessary to maintain a safe-working water level.

STEAM-ENGINES.

Indicated Horse-power.-The term "indicated horse-power" denotes the power developed in the cylinder of an engine.

$D=$ diameter of cylinder in inches.
$d_{1}=$ diameter of piston-rod in inches.
$d_{2}=$ diameter of tail-rod in inches.
$A=$ nominal area of piston in square inches.
$=7854 D^{2}$.
$A_{1}=$ effective area of front of piston in square inches.
$=\cdot 7854\left(D^{2}-d_{1}^{2}\right)$.
$A_{2}=$ effective area of back of piston in square inches.
$=7854\left(D^{2}-d_{2}^{2}\right)$.
$\boldsymbol{P}_{1}=$ mean pressure on front of piston during the backward stroke in lbs. per square inch.
$p_{1}=$ mean pressure on front of piston during the iorward stroke in lbs. per square inch.
$\boldsymbol{P}_{\mathbf{2}}=$ mean pressure on back of piston during the forward stroke in lbs. per square inch.
$p_{2}=$ mean pressure on back of piston during the backward stroke in lbs. per square inch.
$L=$ length of stroke of piston in feet.
$N=$ number of strokes per minute $=$ twice the number of revolutions of the crank shaft per minute.
$S=$ mean speed of piston in feet per minute $=L N$.
I.H.P. = indicated horse-power.

The mean total effective force on piston during the backward stroke is $A_{1} P_{1}-A_{2} p_{2}$.

The mean total effective force on piston during the forward stroke is $A_{2} P_{2}-A_{1} p_{1}$.

The mean total effective force on piston during two consecutive strokes is $A_{1}\left(P_{1}-p_{1}\right)+A_{2}\left(P_{2}-p_{2}\right)$.
$P_{1}-p_{1}$ and $P_{2}-p_{2}$ are the mean heights of the indicator diagrams taken from the front and back ends of the cylinder respectively, these beights being measured by the pressure scale.

Let $P_{1}-p_{1}=Q_{1}$, and $P_{2}-p_{2}=Q_{2}$, then,

$$
\text { I.H.P. }=\frac{\left(A_{1} Q_{1}+A_{2} Q_{2}\right) L N}{2 \times 33000}
$$

If the areas of the piston-rod and tail-rod are neglected, and if $P_{1}-p_{1}=P_{2}-p_{2}=P$, then,

$$
\text { I.H.P. }=\frac{P L A N}{33000}=\frac{7854 D^{2} P L N}{33000^{-}}=\frac{.7854 D^{2} P S}{33000} .
$$

The error introduced through neglecting the area of the pistonrod (when there is no tail-rod) is to make the I.H.P. from $\frac{1}{2}$ per cent. to 4 per cent. too large in extreme cases. If there is a tail-rod, and its area is also neglected, the error will be nearly doubled.

If an engine has more than one cylinder, the total I.H.P. of the engine is the sum of the I.I.P.'s of the separate cylinders.

Diameter of cylinder $=I=\sqrt{\begin{array}{c}33000 I . \overline{H . P} \\ \cdot 7854 P S\end{array}}=205 \sqrt{\frac{I . \bar{H} . \bar{P}}{P S}}$
Mean Piston Speed. 'The following table gives speeds of pistons to be met with in ordinary steam-engine practice:-

$$
\begin{array}{lc}
\text { Class of Lngine. } & \begin{array}{c}
\text { Mean Speed of } \\
\text { Piston in Feet } \\
\text { per Minute. }
\end{array}
\end{array}
$$

Ordinary direct-acting pumping engines(non-
rotative) 90 to 130
Ordinary horizontal engines 200 to 400
Compound and triple expansion engines . 400 to 800
Ordinary marine engines 400 to 650
Locomotive engines (express) . . . 800 to 1500
For locomotive engines $S=\begin{gathered}56.02 M L \\ D\end{gathered}$, where $S=$ mean speed of pistons in feet per minute, $M=$ speed of train in miles per hour, $L=$ stroke of pistons in feet, and 1$)=$ diameter of driving wheels in feet.
Clearance and Clearance Volume.-Clearance in enginecylinders is the linear distance between the piston and the cylinder cover or cylinder end when that distance is least. The amount of the clearance varies with the size of the engine, being about $\frac{8}{8}$ inch in small engines and fors in large engines. In horizontal engines the clearance is generally the same at both ends of the cylinder, but in vertical engines the clearance at the lower end is usually about one and a half times the clearance at the upper end.

Clearance volume is the volume of the space between the piston and the valve when that space is least-that is, when the piston is at the beginning of its stroke. The clearance volume is generally expressed as a percentage of the volume swept through by the piston in one stroke.

The following table gives values of the clearance volume to be met with in steam-engine practice :-

Tyie of Valve.
Ordinary slide valve 5 to 13
Piston valve 8 to 15
Slide value at each end of cylinder . . 3 to 5
Corliss valves 2 to 3

The clearance volume is best determined by filling the space with a measured quantity of water.

The clearance volume may be determined approximately from
 an indicator diagram as follows: Select two points P and Q on the expansion curve or on the compression curve. Draw the rectangle $P R Q S, P R$ being parallel to $O X$, the line of no pressure. Produce the diagonal RS to meet $O X$ at O. Then, if $A B$ represents the volume swept through by the piston in one stroke, OA will represent the clearance volume. The result will be exact if the curve $P Q$ is an hyperbola.

Theoretical Diagram of Work in a Steam Cylinder.-A $B=$
 length of stroke or volume swept through by piston during one stroke.
$O A=$ clearance volume to same scale.
$A C^{\prime}=$ initial steam pressure (absolute) on piston.
$C D$ is the steam admission line, and D the point of cut off.
$D N E$ is the expansion line, which is usually assumed to be a rectangular hyperbola, axes $O X$ and $O Y$.

The exhaust opens and the pressure falls from E to F.
During the return stroke the exhaust pressure is shown by the height of $F H$ above $O X$. At H the exhaust closes and compression begins, the back pressure rising from H to K. The compression line $H S K$ is assumed to be a rectangular hyperbola, axes $O X$ and $O Y$.

The curves $D N E$ and $M S K$ may be drawn by means of the construction given on p. 155, or points may be obtained by calculation, thus

$$
M N=\frac{O L \times L D}{O M}, B E=\frac{O L \times L D}{O B}, R S=\begin{gathered}
O Q \times Q H \\
O R
\end{gathered}, A K=\frac{O Q \times Q H}{O A}
$$

If the compression curve is required to rise to C, then

$$
O Q=\frac{A O \times A C}{Q H} .
$$

The area of the diagram CDEFHK represents the work done during one stroke of the piston, and its average height represents the mean effective pressure on the piston during one stroke.

The Curve $\mathrm{PV}^{n}=$ constant. -If $K Q L$ is a curve such that the co-ordinates P and V of any point Q in it satisfy the condition $P \Gamma^{\prime n}=$ constant, then the area of the figure $K L M N$ bounded by two ordinates, a part of the curve and a part of the axis $O X$, is given by the formula, area $=\frac{P_{1} V_{1}-P_{2} V_{2}}{n-1}$. Also, since

$$
P_{2} V_{2}^{n}=P_{1} V_{1}^{\prime n}, \quad P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{n} .
$$

For saturated steam $n=\frac{17}{16}$, or more exactly 1.0646 .
If $n=1$, the curve $K Q L$ is a rectangular hyperbola and the above formula fails; in this case, area $K L M N=P_{1} V_{1} \log , \frac{V_{2}}{V_{1}}$.

Theoretical Mean Pressure of Steam used Expansively. - The steam is assumed to expand according to Boyle's law, namely, $P V=$ constant.
As before, $A B=$ length of stroke or volume swept through by piston during one stroke, and $O A=$ clear-
 ance volume to same scale.

Case I. No Compression or Cushioning.
Area of $D E B L=D L \times O L \log \frac{O B}{O L}=D L(O A+A L) \log \begin{gathered}O A+A B \\ O A+\bar{A} L\end{gathered}$.
Area of $C D E F G=$ area $D E B L+$ area $C D L A$ - area $G F B A$.

$$
=D L(O A+A L) \log \begin{aligned}
& O A+A B \\
& O \overline{A+A L}
\end{aligned}+D L \times A L-B F \times A B .
$$

Let $A B=l, \quad \begin{array}{ll}O A \\ A B\end{array}, \quad \frac{A L}{A B}=r, \quad D L=A C=P_{1}, \quad B F=P_{2}$.
Area of $C D E F G=P_{1} l(c+r) \log \frac{c+1}{c+r}+P_{1} l l-P_{2} l$.
Mean height of $C^{\prime} D E F G=$ area of $C D E F G \div l$.

$$
\begin{aligned}
& =P_{1}\left\{r+(c+r) \log \frac{c+1}{c+r}\right\}-P_{2} \\
& =P_{1} q_{1}-P_{2}
\end{aligned}
$$

The logarithms to be used are the Napierian or hyperbolic logarithms.

The following table gives values of q_{1} for various values of c and r.

The nominal ratio of expansion, $R=\frac{1}{r}$. The actual ratio of expansion is equal to $\frac{1+c}{r+c}$.

Case II. With Compression or Cushioning. - Cushioning reduces the area of the diagram by the amount of the shaded area GHK. $\frac{G H}{A B}=x$, and the other letters have the same meanings as in Case I.
The cushioning diminishes the
 mean effective pressure by the amount $P_{2}(x+c) \log { }^{x+c}{ }_{c}-P_{2} x$.

Hence the mean effective pressure in Case II.

$$
\begin{aligned}
& =P_{1}\left\{r+(c+r) \log \frac{c+1}{c+r}\right\} \\
& =P_{1} q_{1}-Y_{2} q_{2} .
\end{aligned}
$$

Values of q_{1} have already been given, and the following table gives values of q_{2} :-

Pointof $\mathbf{C o m}$ pression x	Clearance Volume, c							
	$\cdot 01$	${ }^{\circ} \mathrm{O} 2$	- 1	-OO	. 08		$\cdot 12$	$\cdot 14$
				Values of q_{2}.				
'5	$2 \cdot 505$	$2 \cdot 194$	1505	1.751	$1 \cdot 649$	$1 \cdot 575$	1518	$1 \cdot 473$
$\cdot 4$	$2 \cdot 123$	1.879	$1 \cdot 6.55$	1-3:37	$1 \cdot 460$	$1 \cdot 105$	$1 \cdot 363$	$1 \cdot 329$
$\cdot 3$	1.76.)	1.587	$1 \cdot 428$	$1: 345$	1992	125%	1-206	$1 \cdot 204$
$\cdot 2$	1.439	1-328	1230	$1 \cdot 141$	$1 \cdot 1.51$	$1 \cdot 130$	$1 \cdot 114$	$1 \cdot 102$
$\cdot 1$	$1 \cdot 16 t$	1-115	$1 * 75$	$1 \cdot(157$	$1 \cdot 046$	1 (039	$1 \cdot 033$	$1 \cdot 029$

The mean effective pressure on the piston may also be obtained from the theoretical diagram of work, or from the actual diagram drawn hy a steam-engine indicator by either of the following methods:-
(a) Find the area of the diagram by means of a planimeter or other area-measuring instrument, and divide this area by the length of the diagram to obtain the mean height of the figure. This mean height multiphed by a factor corresponding to the scale of pressures for the diagram gives the mean effective pressure. Thus, if the mean height of the diagram is $1 \frac{1}{4}$ inches, and the scale of pressures is 1 inch -32 lbs . per square inch, the mean effective pressure would be $1 \frac{1}{4} \times 32=40 \mathrm{lbs}$. per square inch.
(b) Divide $A B$, the length of the diagram, into ten equal parts, and through the middle points of these parts draw ordinates across the diagram, as shown. The lengths of the parts of these ordinates intercepted by the diagram being added together, and the sum divided by ten, the result is approximately the mean height
 of the diagram from which the mean effective pressure is obtained, as already explained.

Mean Pressure referred to Low-pressure Cylinder in Compound and Multiple 8tage Expansion Engines.-Neglecting the losses due to condensation and wire-drawing of the steam, the total work done in the cylinders of a compound or multiple stage expansion engine is the same as if the steam was used in the low-pressure cylinder only; the initial pressure and total ratio of expansion being the same in both cases. If P_{1} is the absolute initial pressure in the high-pressure cylinder, and P_{9} is
the absolute terminal pressure in the low-pressure cylinder, then the total ratio of expansion is $P_{1} \div P_{2}$.

If now a diagram of work be drawn for the low-pressure cylinder with the initial pressure equal to P_{1}, a ratio of expansion equal to $P_{1}-P_{2}$, and a back pressure equal to that in the low-pressure cylinder, then the mean effective pressure determined from this diagram is the theoretical mean effective pressure referred to the low-pressure cylinder.

The actual mean effective pressure referred to the low-pressure cylinder is determined from the formula,

$$
P=\frac{33000 \times I . I . P^{\prime} \cdot}{-785 \overline{4} D^{2} S} \text {, where }
$$

$P=$ actual mean effective pressure in lbs. per square inch referred to low-pressure cylinder.
I.H.P. = total indicated horse-power of engine.
$D=$ diameter of low-pressure cylinder in inches.
$S=$ mean speed of low-pressure piston in feet per minute.
If P is known, then the diameter of the low-pressure cylinder is given by the formula,

$$
D=205 \sqrt{\frac{I . H . \vec{F}}{P S}}
$$

- Diagram Factor.-The ratio $\begin{gathered}\text { actual mean pressure } \\ \text { theoretical mean pressure }\end{gathered}$ is called the diagram factor. If, therefore, the diagram factor for a particular case is known, and the theoretical mean pressure be determined, the actual mean pressure is found by multiplying the theoretical mean pressure by the diagram factor for that case.

Examples of Diagram Factors.

Simple engines working expansively . . 7 to 9 Compound or two stage expansion engines 6 to 8 Triple expansion engines 6 to $\cdot 7$
The diagram factor is higher the greater the expansion ratio. It is also higher with jacketed than with unjacketed cylinders. Valves such as those of the Corliss type, which open and close quickly, cause the factor to be higher than simple slide valves driven by eccentrics.

Compound and triple expansion engines of the Woolf type, where there are no receivers, have higher diagram factors than those which require receivers between the cylinders.

In large slow-speed pumping engines with jacketed cylinders the diagram factor is sometimes as high as $1^{\circ} 0$.

All the above values of the diagram factor are given on the assumption that in determining the theoretical mean pressure clearance and cushioning are neglected.

Determination of Steam Consumption from Indicator Dia-gram.-Select a point P on the expansion line near to the point of cut-off, and measure the absolute pressure PM at that point. Determine from the table of properties of saturated steam the weight w_{1} of a cubic foot of steam having a pressure PM. Select a point Q on the compression line, and measure the absolute pressure $Q N$ at that
 point. Determine the weight w_{2} of a cubic foot of steam having a pressure $Q N$.

If $A B$ represents the volume swept through by the piston during one stroke in cubic feet, and $O A$ represents the clearance volume in cubic feet, then weight of steam in cylinder after cut-off $=w_{1} \times O M$, and weight of steam in cylinder after exhaust $=w_{2} \times O N$. Therefore, weight of steam used in one stroke $=w_{1} \times O M-v_{2} \times O N$.

If $V=$ volume swept through by piston in one stroke, then weight of steam used in one stroke $=r\left\{w_{1} \times \frac{O M}{A B}-w_{2} \times \frac{0 N}{A B}\right\}$.

The above operations must be repeated on the diagram from the other end of the cylinder. The two results added together gives the weight of steam used in one revolution, and this multiplied by the number of revolutions in a given time gives the weight of steam used in that time.

It is important to note that the consumption of steam determined as above does not include steam which may have condensed in the cylinder before cut-off or in the pipes and passages leading to the cylinder.

Steam Consumption per Indicated Horse-power.-The following table shows approximately the weight of steam consumed per indicated horse-power per hour in various types of engines under ordinary working conditions :-

Type of Engine.

Simple non-condensing engines 22 to 40
Simple condensing engines, with steam at 60 lbs . pressure, and fitted with expansion gear.

19 to 22
Compound condensing engines, with steam at 60 lbs. pressure

18 to 20
Compound condensing engines, with steam at 100° lbs. pressure
$16 \frac{1}{2}$ to $18 \frac{1}{2}$
Triple expansion condensing engines, with steam at 160 lbs . pressure

13 to 16
Locomotives, simple 24 to 30
Locomotives, compound 22 to 27

Proportions of High-speed Engines.-The following formulæ, given in a paper by Prolessor John H. Barr, read before the American Society of Mechanical Engineers in 1897, are based on the dimensions of about eighty engines by thirteen different American engine builders. The sizes of the engines ranged from 20 to 240 horse-power. The engines here classed as "high speed" have, generally, a stroke of from one to one and a half diameters, with a rotative speed of 200 to 300 revolutions per minute.
$D=$ diameter of piston.
$L=$ length of stroke.
$A=$ area of piston.
$H=$ indicated horse-power.
$P=$ steam pressure, taken at 100 lbs. per square inch above exhaust as a standard pressure.
$V=$ mean piston speed in feet per minute.
$L_{1}=$ length of connecting-rod.
$D_{1}=$ diameter of fly-wheel.
$N=$ number of revolutions per minute.
All dimensions in inches and areas in square inches.
Thickness of cylinder walls $\cdot 01 D+3$ to $\cdot 061)+3$, mean $\cdot 05 D+3$.
Area of ports $\begin{gathered}A V \\ 4500\end{gathered}$ to $\frac{A V}{6500}$, mean ${ }_{5500^{\circ}}^{A V}$.
Area of steam-pipe $\begin{gathered}A V \\ 5800\end{gathered}$ to $\frac{A V}{7000}$, mean $\frac{A V}{6500}$.
A rea of exhaust-pipe $\frac{A V}{2500}$ to $\frac{A V}{55 C(0)}$, mean $\frac{A V}{4400 .}$
Width of face of piston $3 D$ to $6 D$, mean 46 D .
Diameter of piston-rod $\cdot 12 \sqrt{D L}$ to $\cdot 175 \sqrt{D L}$, mean $\cdot 145 \sqrt{D L}$.
Mid section of connecting-rod, rectangular, height h, thickness b. b varied from $045 \sqrt{\bar{D}} L_{1}$ to $\cdot 07 \sqrt{D L_{1}}$, mean ${ }^{\circ} 057 \sqrt{ } D L_{1} . ~ h$ varied from $2 \cdot 2 b$ to $4 b$, mean $2 \cdot 7 b$.

Projected area of cross-head pin (diameter \times length) $06 A$ to $\cdot 11 A$, mean 08A.

Length of cross-head pin \div diameter 1 to 2, mean 1•25.
Projected area of crank pin $\cdot 17 \mathrm{~A}$ to $\cdot 44 \mathrm{~A}$, mean $\cdot 24 \mathrm{~A}$.
Projected area of main journal (or of each of the two journals of a centre crank engine) $\cdot 37 \mathrm{~A}$ to $\cdot 7 \mathrm{~A}$, mean $\cdot 46 \mathrm{~A}$.

Length of main journal \div diameter 2 to 3, mean 2.2.
Diameter of main journal $6.5 \sqrt[3]{H \div N}$ to $8.5 \sqrt[3]{H \div N}$, mean $7 \cdot 3 \sqrt[3]{H \div N}$.

Average piston speed 530 to 660 , mean 600 feet per minute.

Weight of reciprocating parts (piston, piston-rod, cross-head, and one half of connecting-rod) $1,200,000 \frac{D^{2}}{L N^{2}}$ to $2,300,000 \frac{D^{2}}{L N^{2}}$, mean $1,860,000 \frac{D^{2}}{L N^{2}}$ lbs.

Weight of fly-wheel rim (lbs.) $650,000,000,000\left(H \div D_{1}^{2} N^{3}\right)$ to $2,000,000,000,000\left(H \div D_{1}^{2} N^{3}\right)$, mean $1,200,000,000,000\left(H \div D_{1}^{2} N^{3}\right)$.

Mean speed of rims of fly-wheels about 4200 feet per minute.
Weight of engine (including fly-wheel) 100 H to 135 H , mean $115 H$ lbs.

Cylinder Barrels and Cylinder Liners.-

$P=$ maxımum steam pressure in cylinder in lbs. per sq. inch.
$D=$ internal diameter of cylinder in inches.
$t=$ thickness of cylinder barrel in inches.
$t_{1}=$ thickness of cylinder liner in inches.
The following formule agree with the average results given by the rules of a considerable number of authorities:-
$t=\frac{D P}{3500}+\frac{3}{8}$ inch.
$t_{1}=\frac{D P}{4000}+\frac{1}{4}$ inch, for a cast-iron liner.
$t_{1}=\frac{D P}{5000}+\frac{3}{8}$ inch, for a forged steel liner.
Messrs. Seaton and Rounthwaite give the following rules in their pocket-book for marine engineers:-
$t=\frac{D(P+50)}{6000}+\cdot 2$ inch, for cylinders fitted with liners.
$t=\frac{D(P+50)}{6000}+\cdot 4$ inch, for cylinders without liners.
$t_{1}=8\left\{\frac{D(P+50)}{6000}\right\}+35$ inch, for cast-iron liners.
$t_{1}=\cdot 65\left\{\frac{D(P+50)}{6000}\right\}+\cdot 3$ inch, for forged steel liners.

The annexed illustration shows a common method of securing the liner to the cylinder. The liner has an internal flange at one end, which is bolted to the front end of the cylinder.

Cylinder Covers. -

$D=$ diameter of cylinder in inches.
$P=$ greatest steam pressure in cylinder in lbs, per square inch.
$t=$ thickness of metal in inches.

Single dished cast-iron covers, Fig. (a).

$$
t=\frac{D \sqrt{ } P}{400}+\frac{1}{2} \text { inch. }
$$

Double cast-iron covers, Figs. (b) and (c).

$$
t=\frac{1)}{500} \sqrt{l P}+\frac{3}{8} \text { inch. }
$$

Depth of cover $=d=5 t$ to it.
Cast-steel covers, single thickness, weth ribs, Figs. (d) and (e).

$$
t=\frac{7)^{\prime P}}{500}+\frac{1}{4} \text { inch. }
$$

$$
\text { Number of radial ribs }={ }_{8}^{D}+4 \text { (roughly). }
$$

Large cylinder covers generally have man-holes, as shown at (d) and (e) ; these vary in diameter from 14 inches to 20 inches.

The inside face of a cylinder cover or cylinder end is generally of the same shape as that of the piston, in order that the clearance volume of the cylinder may be as small as possible.

The steam port is generally formed in the cylinder, as shown in Fig. (e) ; but a shorter cylinder and a saving of weight is obtained by forming the port in the cylinder cover, as shown in Fig. (d).

Flanges of Cylinder and Cylinder Cover.-Thickness of flange $=1.2$ to 1.4 times the thickness of the cylinder barrel.

Distance from centre of bolts or studs to outside of flange not less than $d+\frac{1}{4}$ inch, and not more than $1 \frac{1}{2} d$, where d is the diameter of the bolts over the threads, in inches.

Bolts for Cylinder Cover. -

$d=$ nominal diameter of bolts in inches.
$d_{1}=$ diameter of bolts at bottom of screw thread in inches.
$n=$ number of bolts.
$f=$ stress on bolts in lbs. per square inch of net section.
$D=$ diameter of cylinder in inches.
$\boldsymbol{P}=$ maximum pressure of steam in cylinder in lbs. per square inch.

$$
\left.d_{1}^{2} n f=I^{2} P, \text { and } d_{1}=I\right) \sqrt{\frac{P}{n f}} .
$$

f should vary with the diameter d, and may be taken equal to $4000 d$, but should not exceed 6000 .

Bolts of less than $\frac{5}{8}$ inch nominal diameter should not be used for cylinder covers.

In practice d generally varies from ${ }^{9} t$ to t, where t is the thickness of the flange.

The pitch of the bolts may be from $4 \sqrt{ } d$ to $6 \wedge^{\prime} d$.
Areas of Steam-pipes, Ports, and Passages.-Let V^{\prime} be the mean velocity of the steam in feet per minute, A the area of the pipe, port, or passage at right angles to the direction of flow, in square inches, D the diameter of the piston in inches, and S its mean speed in feet per minute. Then $A={ }^{7} 7854 D^{2} S$. If the pipe, port, or passage be circular, and of a diameter d inches,

$$
\text { then } \cdot 7854 d^{2}=\frac{7854 D^{2} S}{V} \text {, and } d \simeq D \sqrt{\frac{S}{V}} .
$$

The following table gives the values of V usually taken in different cases:-

Main steam-pipes	5000 to 8000
Exhaust pipes, ports, and passages	4000 , 6000
Stop and throttle valves	4000 ,, 6000
Steam ports and passages	4000 , 7000
Steam port opening. Ordinary slide	6000 , 9000
Steam port opening. Quick cut-off	9000 „ 12000

Jet Condensers. -The total heat contained in 1 lb . of steam, as it leaves the low-pressure cylinder of a condensing engine, is about 1138 B.T.U. above that contained in 1 lb . of water at $32^{\circ} \mathrm{F}$., and the weight of water required to condense this steam is $\frac{1138+32-T}{T-t}=\frac{1170-T}{T-t}$, where T is the temperature of the hotwell, and t the temperature of the injection water. T is usually from 100° to 120°.

Tempera-	Correspond-	Temperature of Injection Water, Deg. Fahr.					
ture of Hot-well.	Pressure in 'ylinder.	40	50	60	70	80	90
	Lbs. per	Ratio of Werght of Injection Water to Weight of Steam.					
Deg. Fahr 100	Sy. Inch. 0.94	17.8	21.4	$26 \cdot 8$	$35 \cdot 7$	$53 \cdot 5$	$107 \cdot 0$
110	$1 \cdot 27$	$15 \cdot 1$	17.7	21.2	26\%	$35 \cdot 3$	53.0
120	$1 \cdot 6$	$13 \cdot 1$	15.0	$17 \cdot 5$	$21 \cdot 0$	$26 \cdot 3$	$35 \cdot 0$
130	$2 \cdots 1$	11.6	$13 \cdot 0$	14.9	$17 \cdot 3$	$20 \cdot 8$	$26 \cdot 0$
140	2.78	$10 \cdot 3$	114	$12 \cdot 9$	$14 \cdot 7$	$17 \cdot 2$	20.6

The volume of a jet condenser is usually proportioned according to the volume of the low-pressure cylinder. Many authorities give the volume of a jet condenser as one-quarter to one-half the volume of the low-pressure cylinder, but an examination of the proportions of jet condensers in a number of recent examples of mill-engines showed a ratio of volume of condenser to volume of low-pressure cylinder varying from one-half to one and onequarter, the average being about three-quarters.

The area of the injection pipe is approximately $\frac{W}{130 \sqrt{/ h}}$, where $W=$ weight of injection water required per minute in lbs., and $h=$ head of water in feet.

Illustrations of jet condensers are shown on pp. 615 and 616 in connection with air-pumps.

Surface Condensers. - A surface condenser should be used when the cooling water is of such a character as to be injurious to the boiler when used as feed-water. The shell of a surface condenser is generally either rectangular or cylindrical, and may be made of cast-iron, brass, wrought-iron, or steel. The tube plates are made of rolled brass. The tubes are made of brass and are solid drawn, and they are generally tinned outside and inside. They vary in diameter from $\frac{1}{2}$ inch to 1 inch, but generally they are $\frac{8}{4}$ inch in diameter outside. The thickness of the tubes is from 16 to 19 I.S.W.G. Tubes $\frac{3}{4}$ inch in diameter are generally No. 18 I.S.W.G. (048 inch) in thickness.

The tubes are generally secured to the tube plates by screwed glands and stuffing boxes packed with cotton cord or a ring of thick tape. The tubes are placed zigzag, and their pitch, measured from centre to centre, may be from $1.5 d$ to $1.7 d$, where d is the external diameter of the tubes.

Thickness of tube plates $=$ diameter of tubes in inches, $+\frac{1}{2}$ inch.

In the surface condensers of modern triple expansion marine engines the amount of cooling surface is from 1.1 square feet to

1.5 square feet per indicated horse-power. Professor Whitham's rule for the amount of cooling surface is, $S=\frac{W L}{180\left(T^{\prime}-t\right)}$, where
$S=$ cooling surface in square feet.
$W=$ weight of steam to be condensed per hour, in lbs.
$T=$ temperature of steam to be condensed.
$t=$ mean temperature of circulating water $=$ arithmetical mean of the initial and final temperatures.
$L=$ latent heat of steam of temperature T.
If T is 135°, and t is about 75°, then $S=\frac{17 W}{180}$.
The cooling water in most cases passes through the tubes.
The amount of cooling water required is determined in the same way as for jet condensers, except that it must be noted that the temperature of the cooling water as it leaves the condenser is not the same as that of the condensed steam.
$H=$ total heat in 1 lb . of steam above that contained in 1 lb . of water at 32°.
$T_{1}=$ temperature of condensed steam.
$t=$ temperature of circulating water as it enters the condenser.
$t_{1}=$ temperature of circulating water as it leaves the condenser.
$W_{1}=$ weight of circulating water (in lbs.) required for each lb. of steam condensed.

$$
W_{1}=\frac{H+32-T_{1}}{t_{1}-t}
$$

Circulating Pumps. - Reciprocating Pumps.-These may be either single or double acting, but the latter are more often used than the former.
$D=$ diameter of barrel in inches.
$L=$ length of stroke in inches.

- $n=$ number of working strokes per minute.
$w=$ total weight of circulating water required per minute, in lbs.
Then $n l^{2} L=35 w$.
The valves should have a clear waterway sufficient to prevent the velocity of the water exceeding 450 feet per minute, and the pipes should be large enough to prevent the velocity of the water in them exceeding from 500 to 600 feet per minute.

These pumps may be driven by the main engines or by separate and independent engines.

Centrifugal Pumps.-These are always driven by separate and independent engines.

The velocity of the water in the inlet and outlet pipes should not exceed 450 feet per minute, hence the diameter of these pipes should not be less than $0 x \sqrt{v}$, where w is the weight of circulating water required per minute, in lbs. The diameter of the wheel may be from two and a half to three times the diameter of the pipes.

Air-pumps. -The most efficient and most common form of air-pump is the vertical single-acting bucket-pump. When it is desirable that the air-pump should be horizontal, it is usually a double-acting piston-pump.

For a jet-condensing engine the capacity of a vertical singleacting air-pump varies from one-eighth to one-fourth of that of the low-pressure cylinder. The average of twenty-five examples
from recent practice gave the capacity of the air-pump as 18 of the capacity of the low-pressure cylinder.

Horizontal Double-acting Air-pump and Jet Condenser.
For a surface-condensing engine the capacity of a vertical single-acting air-pump varies from one-tenth to one-twentieth of that of the low-pressure cylinder. The average of a number of examples from recent practice gave the capacity of the air-pump as one-fifteenth of the capacity of the low-pressure cylinder.

The capacity of a double-acting pump should be from fiveeighths to two-thirds of the capacity of a single-acting pump for the same work.

All the above proportions relate to pumps whose buckets or
 pistons make the same number of strokes per minute as the piston of the low-pressure cylinder. In each case the capacity is taken as the area of the pist on or bucket multiplied by the length of stroke

The annexed illustration shows a form of air-pump designed by Mr. Frederick Edwards. This pump is single-acting, and has no foot or bucket valves. A similar design is used by Messrs. Bates and Co., Sowerby Bridge, in their horizontal mill-engines.

Air-pump buckets need not be provided with packing rings. If packing is used, the ordinary rope-packing is the best. On this point Mr. Michael Longridge, in his report to the Engine and Boiler Insurance Company for the year 1895, remarks that the cause of failures of air-pump arrangements is the vicious practice pursued by
many makers of fitting the buckets with brass packing-rings, which rapidly wear out and break; and he adds that these rings are utterly useless, a plain bucket without any packing whatever, or a bucket or plunger packed with rope, being as cffective as the most elaborate system of metallic rings and springs.

Slide Valve. - The diagrams (1) to (9) below show the relative positions of the slide valve and the eccentric which drives it, as the latter revolves. The effect of the oblquity of the eccentricrod is neglected.

(6)

(7)

(8)

(9)

(1) Valve in its middle position.
(2) Valve just about to open to steam.
(3) Valve open to steam by an amount equal to the "lead."
(4) Valve full open to steam, and at one end of its travel.
(5) Steam just cut off.
(6) Valve returned to its middle position.
(7) Valve just about to open to exhaust.
(8) Valve at other end of its travel.
(9) Exhaust just cut off.

$$
\begin{aligned}
& a=\text { outside lap. } \\
& d=\text { lead. } \\
& e=\text { width of exhaust port. }
\end{aligned}
$$

$$
\begin{aligned}
& c=\text { inside lap. } \\
& s=\text { width of steam port. } \\
& f=\text { maximum opening to steam. }
\end{aligned}
$$

$r=$ radins of eccentric.
$\theta=$ angular advance of eccentric. $b=$ width of bar between steam and exhaust ports.
Travel of valve $=2 r=2(a+f)$.
$\sin \theta=\frac{a+d}{r} . \quad c$ should not be less than $2 r-b$.
The illustration below shows transverse and longitudinal sections of a steam cylinderfitted with the ordinary simple slide valve.

Zouner's Diagram for a Simple Slide Valve.$A B=$ travel ot valve. $O A=$ radius of eccentric.
$O C$ is perpendicular to $A B$.
Angle $C O E=$ angle of advance of eccentric.

EO is produced to K, and circles are described on $O E$ and $O K^{\prime}$ as diameters.
$O a=$ outside lap of valve.
$a b=$ lead of valve.
Angle ob $E=90^{\circ}$.
$h k c$ is an arc of a circle, with centre O and radius $=O a$.
$p q r$ is an arc of a circle, with centre O and radius=inside lap of valve. (If inside lap is negative, points r and p are on circle ECoh).

$O L, O F, O H$, and $O D$ are positions of crank of engine, when steam is admitted, when steam is cut off, when exhaust opens, and when exhaust closes, respectively. The probable indicator diagram is shown at the bottom of the figure, the effect of the obliquity of the connecting-rod being neglected.

The line $F L$ touches the arc $k k c$ at k. FL is also perpendicular to $O E$. A perpendicular $B e$ on $F L$ is equal to $a b$ the lead.

Governors.-The Common Governor. (See also p. 237.)
$N=$ speed of rotation in revolutions per minute when the height $=h$.
$h=$ height in feet when the speed $=N$.
$N_{1}=$ speed of rotation in revolutions per minute when the height $=h_{1}$.
$h_{1}=$ height in feet when the speed $=N_{1}$.

$$
\begin{array}{ll}
h=\frac{2936 \cdot 3}{N^{2}} . & h_{1}=\frac{2936 \cdot 3 .}{N_{1}^{2}} . \\
N=\frac{54 \cdot 19}{\sqrt{1 h}} & N_{1}=54 \cdot 19 .
\end{array}
$$

The Porter or Loaded Type of Governor.-The illustration shows one form of this type. In this example (Tyrrel and Deed's Patent) there is a dash-pot in the sliding weight to give steadiness to the governor.
$P=$ weight, in lbs., of each pendulum ball.
$Q=$ weight, in lbs., of the central weight.
The proportions of the arms are generally such as to make the rise of Q twice that of P, then

$$
\begin{aligned}
h & =\left(\frac{P+Q}{P}\right)^{2936 \cdot 3} \frac{\bar{N}^{2}}{} \\
h_{1} & =\left(\frac{P+Q}{P}\right)^{2936 \cdot 3} \frac{N_{1}^{2}}{2} \\
N & =\frac{54 \cdot 19}{\sqrt{h}} \sqrt{\frac{P+Q}{P}} \\
N_{1} & =\frac{54 \cdot 19}{\sqrt{1 h_{1}}} \sqrt{\frac{P+Q}{P}}
\end{aligned}
$$

More exact Formula for Pendulum Governors.-
a_{1}, a_{2}, and $a=$ minimum, maximum, and normal inclinations of pendulumrods to vertical.
β_{1}, β_{2}, and $\beta=$ corresponding inclinations of lifting links to vertical.
N_{1}, N_{2}, and $N=$ speeds of governor in revolutions per minute corresponding to the inclinations a_{1}, a_{2}, and a, when sleeve is being raised.
n_{1}, n_{2}, and $n=$ corresponding speeds of governor when sleeve is being lovered.

$P=$ weight, in lbs., of one ball plus one-half of the weight of the rod to which it is attached.
$Q=$ weight, in lbs., of the sleeve and sliding weight (if there is one) plus the weight of one lifting link.
$R=$ resistance, in lbs., to motion of sleeve due to friction of governor and gear.
Let the governor be in its normal position, and suppose it to be rising.

$$
S=\text { centrifugal force }=\frac{(d+l \sin a) P N^{2}}{2936}
$$

The force $\frac{Q+R}{2}$ causes a tension in the lifting link $=\frac{Q+R}{2 \cos \beta}$.
Considering the forces acting on the pendulum-rod, and taking moments about its point of suspension, the following formula is obtained, the linear dimensions being in feet :-

$$
N^{2}=\frac{2936}{d+l \sin \alpha}\left\{\tan \alpha+\frac{(Q+R) a \sin (\alpha+\beta)}{2 P l \cos \alpha \cos \beta}\right\}
$$

The angle β is dependent on the angle α and on the dimen sions a, b, c, and d, and it is obtained from the formula,

$$
\sin \beta=\frac{d-c+a \sin \alpha}{b} .
$$

Generally $c=d, a=b$, and $a=\beta$, then,

$$
N^{2}=\frac{2936 \tan a}{d+l \sin a}\left\{1+\frac{(Q+R) a}{P l}\right\} .
$$

In the porter governor $l=a$.
In the crossed arm governor d is negative.
To find n^{2}, change R into $-R$, in the above formulæ.
To find N_{1}^{2}, change α into a_{1}, and β into β_{1}.
To find N_{2}^{2}, change a into a_{2}, and β into β_{2}.
To find n_{1}^{2}, change α into α_{1}, β into β_{1}, and R into $-R$.
To find n_{2}^{2}, change a into α_{2}, β into β_{2}, and R into $-R$.
The diagram $A B 7) C$ is the speed diagram for the governor $A B=1$ lift of sleeve. $A C=N_{1} . \quad A E=n_{1} . \quad B D=N_{2} \quad B F=n_{2}$ $H L=N . \quad H K=n$.

The mean normal speed of the governor is $\begin{gathered}N+n \\ 2\end{gathered}$, and this is practically the speed obtained from the formulx above when R is made $=0$

Steam-engine Fly-wheels.

$W=$ weight of wheel, in tons. $\quad R=$ radius of gyration, in feet. $N=$ mean speed; $N_{1}=$ max. speed; $N_{2}=$ min. speed, in r.p.m. $\left(N_{1}-N_{2}\right) / N=1 / n=$ coefficient of fluctuation of speed.
$H=$ indicated horse-power of engine.
$r=$ ratio of the work to be stored up by fly-wheel, in changing its speed from the minimum to the maximum, to the work done in one revolution.

$$
W=\frac{43257 H r n}{R^{2} N^{3}}
$$

Approximate Values of r.
For single cylinder condensing engines-

For single cylinder non-condensing engines-
$\begin{array}{rlcccc}\text { Point of cut-off } & =1 & \underset{r}{ }=\cdot 125 & \cdot \frac{1}{2} & \stackrel{1}{8} & \underset{1}{\frac{1}{2}} \\ \cdot 186 & \cdot 209 & \cdot 232\end{array}$
For two similar engines working on cranks at right angles to each other on the same shaft, the value of r is about one-fourth of its value for one engine.

$$
\text { Approximate Values of } n .
$$

Pumps, and shearing and punching machines 20 to 30 Flour-mills 25 , 35
Looms, paper-making machines . . . 30 " 40
Spinning machinery 50 ", 100
The diameter of the fly-wheel is usually from three to five times the stroke of the piston.

LOCOMOTIVES.

(By W. J. Reynolds.)

Locomotive design is influenced by the following conditions:-
Nature.-Humidity and dryness affect adhesion of the driving wheels. Impurities in water supply require extra facilities for boiler wash-outs. Lack of water supply calls for extra tank capacity. Type of fuel dictates fire-box design.

Civil Engineering.-British rail gauge is practically standard at $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$., but maximum overall width and height govern moving dimensions. Permissible total weight and individual axle load are governed by permanent way and underline bridges. Inclines and their relation to easier grades affect boiler steaming, and radii of curves determine maximum rigid wheel base. Turntables limit the maximum overall length of engine and tender.

Traffic Department.-Account must be taken of load to be hauled, average speed required, and length of run without intermediate stops.

Maximum Availability.-Locomotives must be standardised to work over the maximum number of route miles, and must be capable of a variety of duties to enable them profitably to work home, and they must operate on minimum shed hours and maintenance.

Tractive Force.-The power rating of locomotives, unlike other prime movers (ships, motor vehicles, etc.), is reckoned in terms of tractive effort (T.E.), not horse-power (H.P.).

Assuming the work done in the cylinders and at the draw-bar are equal, then for two, three, and four cylinders respectively-

$$
T_{D}=\frac{D^{2} S P}{W}, \quad T_{D}=\frac{3 D^{2} S P}{2 W^{-}}, \quad T_{D}=\frac{2 D^{2} S P}{W}
$$

where $T_{D}=$ tractive force at draw-bar in lb., neglecting work done in moving engine.
$D=$ diameter of cylinder in inches.
$S=$ stroke of piston in inches.
$P=$ mean effective pressure on pistons in lb . per sq. in.
$W=$ diameter of driving wheels in inches.
Mean effective pressure is usually taken at 85 per cent. boiler pressure at starting, and varies with boiler pressure, steam-chest pressure, percentage of cut-off, and speed of the locomotive. With modern locomotives with long travel valves, large steam passages, and driven with wide-open regulator and early cut-off, the steam-chest pressure and boiler pressure are approximately equal.

Adhesion of Locomotives.-Adhesion weight is load on driving wheels (including coupled wheels). Adhesive force is the sum of the forces between driving wheels and rails, along the rails, at which slip would begin, and is the maximum possible value of the tractive force. Normally adhesive force is greater than tractive force. Adhesion may be stated either as an adhesive force in lb. per ton of load or as the ratio of adhesive force divided by adhesion weight, and this varies from about one-third when rails are clean and sanded to about one-ninth when rails are damp or greasy. When running it is generally assumed to be one-sixth, or at starting, one-fourth. The figures in general use (British practice) for adhesion per ton of load on driving wheels (Molesworth) are as follows:-

Ordinary English weather	.	450 lb.	Coef. $0 \cdot 2$	
Misty (rails greasy)	.	.	300 lb	Coef. 0.13
Frost and snow	.	.	200 lb.	Coef. 0.09

Permanent way, underline bridges, etc. determine the number of coupled axles over which the necessary adhesive weight has to be carried.

Let $R=$ weight of rails in lb . per yard.
$L=$ maximum load in tons per axle.
$N=$ number of coupled axles.
$T=$ tractive force in lb .
Then-

$$
L=\frac{R}{5} . \quad \begin{aligned}
& \text { Maximum load on coupled axles in tons }=L N . \\
& \\
& \text { Maximum adhesive force in tons (Coef. } 0 \cdot 2)=0 \cdot 2 L N .
\end{aligned}
$$

$$
T=2240 \times 0.2 L N \text { and } N=\frac{5 T}{2240 L}
$$

Total weight in excess of the necessary and permissible adhesive weight must rest on carrying axles and wheels.

Weight of Locomotives.-This is a laborious business to calculate by estimating the weight of the various components, but in many instances the weight can be satisfactorily estimated from the known weight of a similar type of locomotive with the necessary adjustments for detail differences. To determine the weight to be carried on each axle, the longitudinal position of the centre of gravity of the total weight carried on the springs must be ascertained. The weight of axles, axle boxes, side rods, wheels, etc. are the dead weights, and the distribution of these can be adjusted.

Resistance of Trains.-On straight level track the experiments made by Sir Daniel Gooch were used by D. K. Clark to deduce the following formulæ:-

$$
R=\frac{V^{2}}{240}+6 . \quad R_{1}=\frac{V^{2}}{171}+8 .
$$

$V=$ speed of train in m.p.h.
$R=$ resistance of train (only), lb. per ton.
$R_{1}=$ resistance of engine, tender, and train, in lb. per ton.
$l=$ train length in feet.
With modern heavy vehicles the following formula are more satisfactory:-

$$
R=3.5+0.1 V+0.0015 V^{2}
$$

(The Engineer, 10th February 1928.)
$R=2 \cdot 5+\frac{V^{\frac{5}{3}}}{50 \cdot 8+0 \cdot 0} \overline{78 l}$.
(Sir J. Aspinall's formula.)

On inclines the resistance due to gravity may be expressed as follows, with + sign signifying ascending and - sign descending:-

$$
G= \pm \frac{2240 h}{5280}= \pm \frac{14 h}{33}
$$

where $h=$ rise of incline in feet per mile.
$G=$ resistance in lb. per ton.
On curves.-In American practice it is usual to allow a traction of $\frac{1}{2} \mathrm{lb}$. per ton per degree of curvature to overcome the resistance due to the curve. One degree of curvature corresponds to a radius of 5730 feet-the radius being very nearly inversely proportional to the number of degrees of curvature.

The maximum load in tons that a locomotive can haul may be expressed as-

$$
L=\frac{T_{D}}{R_{R C}+R_{G}}
$$

where $T_{D}=$ draw-bar tractive effort in lb.
$R_{R C}=$ rolling resistance on straight level line at constant speed in lb. per ton.
$R_{G}=$ resistance of stock due to gradient in lb. per ton.
Streamlining.-The air resistance of a train is proportional to the square of the train speed and to its "effective surface," which represents the front of the first vehicle as well as all the parts of the train which project beyond.

$$
P=0.003 V^{2}
$$

where $P=$ air resistance in lb. per sq. ft .
$V=$ speed in miles per hour.

The demand for high-speed trains led to the introduction of streamlined locomotives, and Sir Nigel Gresley stated that with his streamlined Pacifics, hauling the superspeed trains scheduled at average speeds approximating to $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. continuously over 200 to 400 miles, a saving of about 10 per cent. in horse-power and 4 lb . of coal per mile was effected. The question is also bound up with the necessity of lifting smoke and exhaust gases clear of the driver's cab when locomotives are working with an early cut-off. Streamlining effected this satisfactorily.

Boiler Power.-The locomotive boiler must raise quickly and efficiently an adequate volume of steam under all conditions of working, withstand a pressure in excess of that at which it nominally works, and be so designed to transfer the maximum amount of the heat generated in the fire-box to the water and steam.

Boiler power is the ultimate maximum power of any given locomotive, and the tractive effort formula is based on the assumption that the boiler power will make the rated tractive effort effective, and the amount and quality of fuel burned over a given distance is the limitation of that power. The rating is stated as pounds of fuel per mile. There is no high economy standard for this rating as in other forms of steam engine practice, as locomotives work under such varying conditions. From experimental tests made from time to time it may be assumed that 35 to 50 lb . of good coal per mile is a satisfactory average for a modern locomotive using superheated steam, correctly driven, and with a well-designed front end (i.e. long travel valves and large free steam passages).

The amount of fuel that can be dealt with is rated in terms of pounds of fuel per hour per sq. ft. of grate, and the amount of heat dealt with is rated in terms of pounds of water evaporated per hour per sq. ft. of total heating surface.

Balancing.-The parts of a locomotive which move relative to the frame fall into two classes: those which revolve and those which reciprocate. The revolving parts can be fully balanced by masses in the wheels, and the degree of balance remains constant at all angular positions during rotation of the wheels, but reciprocating parts can only act in the plane of reciprocation, which for this purpose can be assumed to be horizontal. Neglecting obliquity of the connecting-rod, the reciprocating parts can be fully balanced by revolving balance weights in the wheels. These revolving masses, however, set up hammer blow on the track as the reciprocating forces have no component in the vertical plane, but unbalanced reciprocating masses tend to shake the locomotive, so the whole matter of counterbalancing is a matter of compromise. This position can be met by reduoing
to a minimum the proportion of reciprocating parts balanced, distributing the balance weights evenly amongst the coupled wheels, and reducing the weight of the reciprocating parts to the minimum by the use of high tensile steels for connecting-rods.

RODS	CONNECTING RODS			COUPLING RODS		
	$\begin{aligned} & \text { NTCKEL } \\ & \text { CHROME } \end{aligned}$ STEEL	ORDINARY CARBON STEEL		NTCKEL CHROME SIEEL	ORDINARY CARBON STEEL	
SECTIONS						
	3 CYLOS.	2 CYLDS	2 CYLDS.	3 CYLDS	2 CYLDS.	2 CYLOS.
LENGTH OF ROO	$8-1^{\circ}$	$8-1{ }^{\circ}$	$10^{\circ}-0^{\circ}$	8-9*	9-0'	$6-10^{\circ}$
WEVGHT PER FT, LET	16.4	$27 \cdot 7$	27.1	17.6	$25 \cdot 3$	25.4

British practice is to balance the whole of the revolving and a part of the reciprocating masses. The even torque of 3 -cylinder locomotives enables a great reduction to be made in the balance weights, and in the case of the Southern Railway Pacifics the reciprocating parts are entirely unbalanced without ill-effects.

Boiler and Fire-box Design.-The size of the grate is governed by the necessity of keeping the firing at a rate at which the air stream passing through the fuel resting on the fire-bars can ensure complete combustion without unburned fuel being drawn through the tubes and up the chimney. The British computation averages about 60 lb . coal per sq. ft. grate area per hour. About 40 to 45 per cent. of the total heat of combustion is retained by the fire-box heating surface, and the remainder passes through the tubes, of which 15 per cent. escapes into the smoke-box. The ratio of evaporative heating surface to grate area varies from 53 to 67.

The tubes must be so proportioned and the number provided to enable the greatest amount of gas which can be produced by the given grate area to be passed without throttling.

All-steel fire-boxes are universal in America, but British practice is to use copper for the inner fire-box. Higher working pressures and consequent increase in fire-box temperature affect copper, which loses its elasticity and sets up leakage at the tube connections. Steel tubes in copper fire-box plates set up electrolytic action. In the Southern Pacific, using a 280 lb . per sq. in. working pressure, an all-steel fire-box has been designed with a saving in weight of $1 \frac{1}{2}$ tons.

Calculations for Heating Surface and Grate Area.-(a) Tubes.The outside area of both flues and tubes to be taken and calculated on uniform diameters. Length to be reckoned between tube plates.
(b) Superheater Elements.-The inside area to be taken and the length both to and from the smoke-box end of the flue.
(c) Fire-box.-The outside area of the inner box plates to be taken. Allowance must be made for fire-hole ring, foundation ring, and tube openings. No allowance is to be made for stays.
(d) Smoke-box Tubc Plate.-Not to be included in the area.
(e) Grate Arca.-This is measured between the inner fire-box sides at top face level of the grate.

Stays.-The flat sides of the inner and outer fire-box require to be stayed to prevent distortion. This area in a modern locomotive is about 100 to 120 sq. ft. The pressure load may be as high as 1200 tons, while the crown may have to withstand a downward pressure of as much as 820 tons when the boiler pressure is 250 lb . per sq. in. The pitch of the side fire-box stays varies between $3 \frac{1}{2} \mathrm{in}$. and 4 in ., that is about 9 stays per sq. ft., and they number anything from 1000 to 2000 in the latest express engines. Direct staying is preferable to the girder type, which complicates washing out. Stays are made of copper, steel, or monel metal, and the maximum stress in any material should not exceed 6000 lb . per sq. in. Experiment has shown that, with copper stays screwed and riveted, the plates show the first sign of bulging at an approximate pressure of 515 lb . per sq. in. with complete failure at 1600 lb . per sq. in. The barrel is stayed with a few longitudinal stays between smoke-box and fire-box front plate.

Injectors.-To overcome the pressure within the boiler and feed water into the boiler, the water must acquire kinetic energy and pressure energy.

A locomotive boiler will evaporate 3 to 7 tons of water per hour according to the size, and this must be replaced by the injectors.

Velocity is obtained by a steam supply admitted to a cone, the diameter of which is progressively reduced so that the steam obtains a high velocity. Having attained a high velocity, it is discharged into a conical water space which surrounds the steam nozzle and is condensed. The steam by its velocity has already imparted sufficient impetus to the water and condensed steam to overcome the boiler pressure. The condensation of the steam induces a vacuum sufficient to lift the water supply a reasonable height. The steam attains a velocity of about 1700 ft . per sec. ($1160 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.) according to boiler pressure, and carries forward about 12 times its own weight of water at 131 ft . per sec. (90 m.p.h.), which is sufficient to carry the water into the boiler through the clack valve.

Locomotives are fitted with two types of injector: the live steam type and the exhaust steam type. The former is worked entirely by steam from the boiler, while the latter depends on a supply of exhaust steam taken from the blast pipe together
with a small supply of live steam. Normally, when the locomotive is running, the exhaust injector is always on. The live steam combination injector for hot or cold water, at boiler pressure 180 to 225 lb . per sq. in., will deliver 2350 to 2200 gallons per hour (steam pipes $1 \frac{1}{2} \mathrm{in}$. diameter and based on an initial feed-water temperature of $60^{\circ} \mathrm{F}$.).

The live steam injector augments the initial feed-water temperature by 90° to $100^{\circ} \mathrm{F}$., and the average boiler steam consumption is about 10 per cent. of the total boiler evaporation,

The Lave Steam
Injector.
$A=$ Steam
Delivery Nozzle.
$B=$ Combming Cone.
$C=$ Delivery Cone.
but the thermal efficiency of the injector nearly approaches unity. The exhaust steam injector requires a live steam augment of about $2 \frac{1}{2}$ per cent. of the total boiler evaporation when delivering against boiler pressures in excess of 150 lb . per sq. in., but in effect it is the simplest form of feed-water heater. The Davies \& Metcalfe Type H exhaust injector, which is controlled by the operation of a single external valve, will feed water up to $230^{\circ} \mathrm{F}$., but the normal temperature ranges from 190° to $200^{\circ} \mathrm{F}$. Water economy due to return of condensate is 10 to 12 per cent., with a similar percentage of fuel economy. To set against these advantages the smoke-box vacuum is reduced by about 5 per cent. The most convenient location for injectors is beneath the footplate on either side of the engine, operated from the cab.

Safety-valves.-Modern practice is to fit "Pop" safety-valves exclusively to locomotives, as these give a large lift rapidly as soon as they open. The discharge area is directly proportional to the diameter of the valve and is taken as $\pi d l$, where $d=$ valve diameter and $l=$ lift. In locomotive design d may be varied, but l is regarded as constant. The area of the valve should be directly proportional to the grate area and, owing to a decrease in specific volume when the velocity of the steam increases as its pressure rises, the volume of discharge in a given time varies inversely as the pressure.

The makers of the "Ross" safety-valve recommend the following dimensions for their valves:-

Grate Area. Sq. Ft.	Boiler Pressure. Lb /Sq. In.	No. and Diameter of Valves. In.	Grate Area. Sq Ft.	Boiler Plessure. Lb./Sq. In.	No. and Dlameter of Valves. In.
27	175	$2 \times 2 \frac{1}{2}$	42	180	$3 \times 2 \frac{1}{2}$
30	170	2×3	44	200	$2 \times 3 \frac{1}{2}$
30	200	$2 \times 2 \frac{1}{2}$	46	200	$2 \times 3 \frac{1}{2}$
35	200	2×3	50	180	3×3
38	180	$2 \times 3 \frac{1}{2}$	50	200	2×4
41	175	2×4	56	200	3×3

On the foregoing data $A=\frac{x G}{P}$,
where $A=$ area of " Pop " valves in sq. in.
$G=$ grate area in sq. ft .
$P=$ pressure in lb. per sq. in.
and the average value of x is 81 .
The Ross valves are made to a standard pattern with an average height of about 11 in ., but special designs are available from 64 in. to $8{ }^{3} \mathrm{in}$. for use when there are severe height restrictions imposed by large modern boilers.
Valve Gears.-Practically all modern locomotives are now fitted with radial gears in place of the former link motions. With radial gears the lead is constant and must be determined in relation to the normal cut-off. Link motions have practically no lead in full gear, but the lead is increased as the engine is notched up.

Radial gears give an appreciable saving in weight, improved steam distribution, and the elimination of eccentrics which have great inertia and excessive friction losses. For inside cylinders the link moves through a small angle, and the link trunnion is a fixed fulcrum, the movement of the link being derived from a single eccentric. The drive is more direct than with link motion, but the trunnions must be of more robust construction to stand
up to the total reaction of the valve drive. The phase angle between the main and the return cranks approximates to 90°. Walschaert's valve gear is mainly used in Britain, but is subject to

Walschaert Valve Gear with Return Crank.
$A=$ Return Crank.
$D=$ Radius Rod.
$G=$ Crosshead Arm.
$K=$ Connecting-rod.
B - Wecentric Rod.
$B=$ Combination Lever.
$H=$ Reversing Arm.
$L=$ Link for Inside Cylnder Gear.
('- Radius Link.
F - I'non Link,
$J=$ Reversing Rod.

Walschaert Valve Ciear with Eccentric.

Bulleid Valve Gear with Chain Drive.
variation in design to suit the requirements of different engineers. Churchward (G.W.R.) introduced a single eccentric in place of the return crank-the outside valve being driven through a rocking shaft. Gresley (L.N.E.R.) incorporated his conjugate gear for the inside cylinder of his numerous 3 -cylinder engines, which is driven conjointly by the two sets of Walschaert's valve gear through two unequal armed rocking levers. The longer 2 to 1 lever has a fixed fulcrum, and the shorter equal-armed lever has a moving fulcrum.

With Walschaert's valve gear the motion is obtained by two independent movements. From the crosshcad, a movement equal to twice the steam lap plus the lead on either side of the central position of the valve is obtained. The remainder of the travel which provides the port opening on each end greater than the lead is derived from a return crank on a crank-pin, or with inside motion, from an eccentric attached to the driving axle.

An entirely new type of valve gear has been designed by Mr. O. V. Bulleid for the Southern Pacifics. This motion is entirely enclosed, and requires no attention between plant overhauls. Each of the three valves is operated by independent motion, and these three sets of gears are operated by a three-throw secondary crank which oscillates its quadrant link by a vertical connecting-rod pinned to an arm extending backward from the link. Simultaneously it reciprocates the foot of the combination lever by a horizontal link pinned to the big-end of the vertical connecting-rod. The upper end of the combination lever is operated by the quadrant link. The valve rods convey the combined motion through a plunger working in a guide to the operating rocker shaft. To revolve the three-throw crankshaft in phase with the crank-axle a silent rocker chain drive is used. The whole of the motion is enclosed and is lubricated by flood lubrication by two reversible gear pumps, chain-driven from the crank-shaft.

Valves.-The slide-valve has now been almost entirely superseded by the piston type. High superheat and pressures made a new type of valve essential, which could be more efficiently lubricated and at the same time relieved of the high degree of unbalanced pressure on the steam-chest valve face. In addition, the " D " slide-valve required a large amount of power to drive. The piston-valve consists of two pistons attached to one spindle with a distance-piece between, securely held in position by a castellated nut and split-pin. The valve slides in cylindrical liners, with holes cut around the circumference to connect them to the steam ports. In modern valves four Ramsbottom rings are fitted to each of the pistons, which reduce the bearing surfaces and wear. Inside admission valves are usually fitted now. A
new method of operating has recently been introduced consisting of driving each pair of piston-valves by a rocker in the exhaust cavity. No valve spindles are used, enabling the glands to be suppressed.
The rocker is placed across the cylinders and, when uncoupled, the arm in the exhaust cavity drops clear, allowing the piston - valves to be withdrawn.

The chief point affect-

A Typical Modern Cylinder and Piston Valve. ing steam flow is length of travel of the piston-valves, which in modern British practice varies from 6 in . to 7 in . Wide steam ports require a long valve travel, and the diameter of the valve liners regulates the number of openings that can be cut in them. The valve chest is extended beyond the ends of the cylinder bore, giving direct passages between valve ports and cylinder. The streamlining of internal surfaces exposed to steam eliminates cavities and ledges, which collect carbon deposits.

Cylinders.-Cylinder castings vary in size and shape to suit the particular design. The materials used are pig and selected irons and steel scrap mixed in the cupola to produce a hard close-grained metal. Cylinders are usually cast separately and bored out to the required diameter, and also bored for pistonvalves. Steam and exhaust ports are accurately machined, stud and bolt holes drilled and tapped, studs inserted and covers fitted in position. The piston is turned slightly smaller in diameter than the cylinder bore. An efficient piston should be of sufficient strength to withstand the considerable pressure to which it is subjected, and to prevent leakage of steam from one end of the cylinder to the other, piston rings are fitted. British practice is to fit Ramsbottom piston rings of cast-iron with an outside diameter $\frac{1}{8} \mathrm{in}$. to $\frac{3}{8} \mathrm{in}$. larger than the cylinder bore, a portion being cut away to enable the ends to be pressed together and sprung into the cylinder. Two or more grooves are turned in the piston block into whioh the rings fit. The tendency of the rings to spring outwards is sufficient to resist the steam
pressure. To prevent leakage where the rings have been severed, the gaps are staggered and the rings are secured by pegs inserted in the grooves to prevent them turning.

Pistons are made of cast-iron or steel. A clearance space of $\frac{8}{8} \mathrm{in}$. to $\frac{7}{16} \mathrm{in}$. between the piston head and the inside of the cylinder cover when the limit of the stroke has been reached, compensates for the alteration in position of the rods due to wear, and allows for water duo to condensation and for a certain amount of steam which is compressed. This compression has a cushioning effect, bringing the piston gradually to a standstill before the commencement of the next stroke. A strong boss is cast in the centre of the piston, which is secured by nut and pin riveted at both ends to prevent the nut from working back. The rod is maintained steam-tight by gland packings in a stuffing-box. Fibrous packings are now gıving place to metallic gland packings, which are of two main types, viz. those which are maintained steam-tight by the end-on pressure exerted by the gland nuts, and those by the action of springs fitted inside the stuffing-boxes. The modern packing consists of three rings of Babbitt metal.

Superheating.-Practically all modern British locomotives aro now fitted with superheater equipment. The temperature of steam in contact with water cannot be raised without an increase of pressure, but it may be superheated without a rise in pressure provided it can expand as heat is added. With the locomotive the regulator must be opened and the engine running before the steam can be superheated, because the demand for steam in the cylinder enables steam to expand in the superheater. Saturated boiler steam at 200 lb . per sq. in. has 124 times the volume of an equal weight of water at the same temperature, and is subject to a loss of nearly $\frac{1}{3}$ of its volume, due to condensation between the boiler and the cylinder face. To overcome such serious loss and still further to increase the work available in each 1 lb . of steam, the boiler steam is reheated after it leaves the boiler and before it enters the cylinder steam chest. The effect of superheating the steam as it passes through the elements at practically boiler pressure is to increase its volume, and this volume is approximately proportional to the value of the absolute temperature ($\mathrm{F} .{ }^{\circ}+460^{\circ}$).

Therefore the volume of any weight of superheated steam at, say, $600^{\circ} \mathrm{F}$. compared with the volume at, say, $400^{\circ} \mathrm{F}$. and at the same pressure is $\frac{600+460}{400+460}$, or approximately 14 times as great. Thus, comparing the temperature and volume of 1 lb . of saturated steam at 200 lb . per sq. in. with the corresponding values when it is superheated to $700^{\circ} \mathrm{F}$. at the same pressure;

The additional volume of the superheated steam is nearly 48 per cent., but it requires an increase of 173 B.Th.U., or nearly 15 per cent., to heat it. Most of the added heat is given up by the steam to heat the walls of the cylinder during the admission period, raising the temperature of these walls above that at which boiler-pressure steam will commence to condense.

Assuming $650^{\circ}-700^{\circ} \mathrm{F}$. superheat temperature, economies of 15-25 per cent. fuel and $25-35$ per cent. water are achieved. The range of operation of locomotives is increased, and under-boilered engines can have their sphere of usefulness extended.

Superheating is regarded as low or high as follows:-
Low . . 10-50 F. of superheat. High . . above $200^{\circ} \mathrm{F}$. of superheat.
Below $200^{\circ} \mathrm{F}$. of superheat slide-valves can be retained, but above this value it is necessary to use either balanced slide-valves or piston-valves. The type of lubricant and method of feeding must reccive special attention.

Proportions for superheaters are governed by the length and diameter of the boiler barrel, but the cross-section area through the superheater elements must be greater than that of the main steam pipe to allow for volumetric increase and also to allow for flow friction. The ratio varies from $1: 1$ to $5: 1$ of the main steam pipe. The superheater reduces the evaporative heating surface of the boiler from 25 to 30 per cent. The flucs occupy 30 to 35 per cent. of the total tube heating surface. The superheater elements should terminate about 1 ft . from the fire-box tube plate. Elements are cold-drawn weldless steel tubes of an internal diameter 1 to $1 \frac{1}{2}$ in., with a thickness of 9 S.W.G. The Superheater Co. specification for tensile strength is $20-26$ tons per sq. in. Headers are made of cast-iron $\frac{3}{4} \mathrm{in}$. thick except at the tube face, which is increased to 1 in . thick.

Regulators.-It is essential to use the highest possible steam pressure on the pistons. The position of the regulator valve on the ports of the regulator head determines how far this can be achieved. The valve is governed by the setting and movement of the driver's handle in the sector. The "full open" area
through the regulator valve should be equal to the cross-section area of the main steam pipe. The area of a $6 \frac{1}{2}-\mathrm{in}$. diameter main steam pipe is 33 sq. in.

(1) Regulator Rod.
(2) Short Crank Arm.
(3 and 4) Actuating Levers.
(5) Starting Valve
(6) Regulator Head (Top).
(7) Regulator Head (Bothom).
(8) Main Valve.
(9) Spring.
(10) Fulcrum Pin.

Position of Regulator Handle.	Area of Openng. Sq. In.	Percentage of Opennug.
4 open (from shut)	266	8
$\frac{1}{2}$ open (", ")	$13 \cdot 84$	42
$\frac{3}{4}$ open (", ")	$24 \cdot 40$	74
FULL OPEN	$33 \cdot 00$	100
$\frac{4}{4}$ shut (from open)	$30 \cdot 05$	91
$\frac{2}{2}$ shut (", ")	$21 \cdot 93$	66
$\frac{10}{4}$ shut (", ")	1046	32

The tabulated values of the area of the regulator valve opening, expressed in sq. in. and as percentages of the steam-pipe area, for various positions of the regulator handle, are typical of a modern design of regulator valve with $6 \frac{1}{2}-\mathrm{in}$. diameter steam pipe.

Smoke-box.-The smoke-box is constructed of steel wrapper plates $\frac{1}{4} \mathrm{in}$. to $\frac{3}{4} \mathrm{in}$. thick, with an angle iron stiffener $3 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. section at the front tube-plate and a smokebox door $\frac{3}{8} \mathrm{in}$. thick (dished approximately 4 in .). In modern practice its length varies from 5 ft .6 in . to 8 ft ., and is usually of drumhead formation and not the horseshoe type as in the past. Its cubic capacity should be such that it can maintain a degree of vacuum between exhaust beats and modify their intermittent character and thereby maintain an even draught on the fire. With 3 cylinders the degree of vacuum is lower, but the more rapid beats (6 per rev.) compensate for this. The smoke-box is a reservoir for the combustion gases before expulsion up the chimney, and a receptacle for ash. It houses the blast-pipe with blower ring around the top, petticoat and steam pipes, the superheater header and in some designs the regulator. Its
structural function is to resist the lateral movement of the boiler when the locomotive is running.

Blast-pipes and Chimneys.-The blast-pipe, taken in conjunction with the chimney, has a most important bearing on the efficiency of the locomotive. High fire-box temperature with a moderate draught through the fire is the ideal to be aimed at in design and dimensions. Modern practice is to fit a petticoat and a low position for the blast nozzle. The area of the opening of the blast-pipe should be of a dimension to avoid back pressure in the cylinder when the exhaust is heavy, but must retain enough energy to carry away the gases when the locomotive is working under easy steam. A free passage to the orifice to reduce eddying is essential. The minimum height of the true cone inside the blastpipe is 12 in ., and branches feeding should be below and directed towards the orifice. To improve the blast various types of blastpipe tops are in extensive use. The G.W.R. jumper top provides an extra exit for the exhaust when the engine is working heavily.

The multiple jet divides the exhaust into a number of jets; in British practice 5 jets inclined outwards at 1 in 12 are used with 25 -in. diameter nozzles, an increase in area over the normal $5 \frac{1}{2}$-in. orifice of 13 per cent. This achieves a reduction of back pressure in the cylinder but entails the fitting of a larger diameter chimney and petticoat 2 ft . 1 in . diameter at choke. A higher smoke-box vacuum, however, is maintained, notwithstanding the lower velocity of the mingled gases of exhaust owing to the larger surface presented by the multiple jets.

The "Kylchap" has much the same effect as the multiple jet, namely breaking up of the exhaust, but consists of branching the blast-pipe with two separate chimneys and two petticoats for each

of the branches, one above the other and covering the orifice.
The blast-pipe must be co-axial with the chimney, and the orifice should be about 8 in . below the boiler centre line, and the

Jumper Top Blast mpe (${ }^{1} \mathrm{~W}$ IR.). $A=$ Extia Exhaust Holes. $B=$ Rang whuch lifts. $C=$ seat. D - Stops.

Multuple Jet Blast-mie (Southern Ralway).
area should be such that the mean velocity of the blast will not exceed 1000 ft ./sec. The area opening of the chimney should be 8.6 times the area of the blast orifice, and it should have its lowest extremity at a distance from the orifice of about eight orifice diameters.
\checkmark Lubrication.-Cylinder and valve lubrication may be effected either by sight-feed lubricators or by the pump type of mechanical lubricator. With the latter an atomiser is fitted to ensure that the oil is broken up into small globules and carried forward with the steam as oil haze, and that a constant film of oil is deposited on all working surfaces of the valves and pistons. The sight-feed lubricator effects lubrication by feeding the cylinder oll into the steam in the regulator-box and thence to the cylinder; the oil is displaced through the sight-feed glasses by steam from the boiler condensing, forming a vacuum. The feed passes through a combining valve, where the oil is mixed with steam from the boiler and passes to the smoke-box steam pipes and thence to the cylinders. The mixing valve is operated by moving the regulatorhandle, and is so arranged that oll can also be fed to the cylinder when the regulator-valve is shut. Oil reservoirs for big-ends and coupling-rods must be large enough for the longest non-stop runs. (For a mileage of 300 it should be not less than $\frac{1}{2}$ pint for big-ends and $\frac{1}{8}$ pint for coupling-rods.) Wire trimmings are more economical in oil than worsted trimmings and pads. The wires should be of hard steel (120 tons per sq. in. tensile, 13 S.W.G. for big-ends and 12 S.W.G. for coupling-rods), and should extend within $\frac{1}{4} \mathrm{in}$. of the journals. The nipples should be of similar steel and cupped to trap the oil.

Coupled axle-boxes are most satisfactorily lubricated by mechanical lubricators, as oil can be introduced at the point of maximum pressure, preparation of the engine is simplified, the feed is proportional to the speed and is capable of easy adjustment should the box heat. When running, the oil pressure is about 300 lb . per sq. in. Hornfaces absorb about 20 per cent. of the total oil fed to the whole box, the consumption being about 2 oz . per box.

If gravity feed is used, the oil-boxes should be located on the back-plate of the fire-box to maintain the viscosity of the oil and make them accessible for replenishment and examination. Each box should have flexible connections.

Wheels and Tyres.-Modern locomotive wheel centres are now exclusively made of east-steel, wrought-iron being obsolete. The spokes number 3 per foot of the diameter at the rim. The thickness of the metal of the boss is approximately half the diameter of the axle, and the maximum diameter of the boss is 2 to $2 \frac{1}{4}$ times the diameter of the axle. The rim of the whecl centre is rectangular in section, rounded on the inside, about 2 in. thick and $3 \frac{3}{4} \mathrm{in}$. wide, and is turned to gauge for reception of the tyre. Tyres are 3 in . thick when new, and are turned slightly smaller in diameter on the inside than the wheel centres to allow for shrinking on after heating, the allowance varying from 1/1200 to $1 / 750$ times the diameter. Screwed studs in alternate spaces are now obsolete, and the more usual practice is to leave a flange suitably turned on the inside edge of the tyre and socured to the wheel rim by $\frac{3}{2}-\mathrm{in}$. rivets opposite the centre of each spoke. A recent innovation in wheel centres is known as the B.F.B. disc type, made of cast steel, the web being corrugated with bridge pieces, supporting the tyre opposite each corrugation. The weight of these wheels is 10 per cent. less than the spoked type.

A new type of tyre fastening has been introduced in conjunction with B.F.B. whereby the contact between rim and tyre is much greater. Fixing is effected by heating to $450^{\circ} \mathrm{F}$. to expand it sufficiently for the inside lip to pass over the driving-wheel lip. The tyre material used in the Southern Pacifics is nickel-molybdenum-chromium steel, tempered at $600^{\circ} \mathrm{F}$.

Springs.-Both laminated and helical springs are used on locomotives. Laminated springs are generally fitted to driving and coupled wheels, the number of plates varying with the conditions demanded. For a modern express locomotive, 15 to 20 plates about 5 in . wide by $\frac{1}{2} \mathrm{in}$. thick is a good average. Helical springs of about 11 in . free length and 6 in . diameter of Timmis section may be fitted to driving wheels. Bogie trucks are fitted with helical springs 10 in . to 12 in . free length, 5 in . to $5 \frac{\mathrm{in}}{\mathrm{in}}$. diameter, Timmis section. Where trailing wheels are fitted,
either laminated or helical springs can be used. Independent suspension is usual.

Examples of inverted laminated springs have been included in some modern designs, notably the L.M.S. Pacifics designed by Sir Wm. Stanier.

Brakes.-The energy stored up in a train travelling at $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. (88 ft ./sec.), assuming the weight of engine and train to be 300 tons, is

$$
\frac{W v^{2}}{2 g}=\frac{300 \times 88^{2}}{2 \times 32 \cdot 2}=36074 \mathrm{ft} . \text { tons. }
$$

The average resistance F to be provided by the brakes to bring the train to rest in, say, 1500 ft ., neglecting wind resistance, etc., is,

$$
F=\frac{36074}{1500}=24 \text { tons }
$$

Two main types of brake are in use on locomotives and trains, viz. the Vacuum and the Westinghouse. Both are automatic, that is, their normal state at atmospheric pressure is " brakes on." Modern British practice is to use the Vacuum, but abroad the Westinghouse finds considerable favour, especially in America.

A steam brake is fitted to a number of British locomotives, both in combination with the Vacuum train equipment and separately for engines employed on unbraked goods service.

The principle of the Vacuum automatic brake is the maintenance of a continuous state of exhaustion throughout the system to keep the " brakes off," and any admission of air, intentionally or by accident, results in the application of the brakes. For the purposes of this brake a vacuum of 21 in . for passenger trains and 18 in . for goods trains is used, with minimum values of 18 in . and 16 in . respectively. The system applied to locomotives and trains consists of a continuous pipe throughout the train in conjunction with brake cylinders and vacuum chambers on each vehicle to be braked. The brake cylinder is provided with a piston kept in a state of equilibrium by the exhaustion of space above and below it. Air admitted to the continuous pipe is allowed to exert its pressure on the underside of the piston, but not above, and by this means the piston is raised $3 \frac{1}{2}$ to 4 in. and the brakes applied through suitable rigging and blocks.

To create the vacuum an ejector is fitted in the locomotive cab, using dry live steam in the form of a jet and exhausting into the smoke-box.

The power employed by the Westinghouse air brake is compressed air which is pumped by a steam pump located on the engine. Air is forced by the pump into a main reservoir, passing through a reducing valve in the driver's brake valve into the
train pipe to the triple-valve reservoir on each vehicle. The application of the brake allows air to enter the train pipe, causing the triple valves to move and allowing the compressed air in the reservoirs to pass through these valves into the brake cylinder, forcing the blocks on to the wheels. When the brake is released the reverse action takes place, air flowing from the main reservoir into the train pipe and forcing the triple valve to its former position. This allows air in the brake cylinder to escape through the triple valve into the atmosphere.

The triple valve is so called because it has three functions: (a) to charge the auxiliary reservoir, (b) to apply the brake, (c) to release the brake.

Welding.-Welding was until recently mainly used in repair work, but has now become a standard practice in new construction. An advantage with fabricated units is a saving in weight, and Bulleid has introduced an all-steel welded fire-box in his Pacific design. Fabricated stretchers are now replacing cast steel.

The diagram of a standard L.M.S. 2-6-4 tank engine indicates the extent to which fabricated components are now being introduced.

$\Lambda=$ Smoke-box Door, Bar, and Hinged Brackets.
$B=$ Front Lamp Bracket.
$C=$ Filling Hole and Manhole Cover.
$D=$ Sandboxes.
$\boldsymbol{E}=$ Reversing Shaft.
$\boldsymbol{F}=$ Driving and Trailing Splashers.
$G=$ Tank and Air Vents.
$H=$ Pads on Boiler for Studs.
$I=$ Sandbox for Sand Gun.
$J=$ Firedoor Frame.
$K=$ Ashpan Handles and Support.
$\boldsymbol{L}=$ Fire-box Steadying Bracket and Support.
$M=\mathrm{Cab}$ and Bunker.
$N=$ Footstep.
$0=$ Frame Gussets.
$P=$ Bogie Frame-end Stay,
$Q=$ Frame Stretcher at Bogie.
$R=$ Frame Stretcher in front of Bunker.
$S=$ Tank Support.
$T=$ Pick-up Shaft.
$U=$ Handbrake Lever Bracket.
$V=$ Water Pick-up Shaft Support.
$W=$ Breeches Pipe Support.
$X=$ Frame Stretcher behind Firebox.
$Y=$ Expansion Angle.
$Z=$ Ashpan.
$A A=$ Foundation Ring.
$B B=$ Frame Stretcher in front of Fire-box.
$C C=$ Frame Stretcher to Spring Link Brackets.
$D D=$ Side Tonks.
$E E=$ Crosshead Oil-box.
$h^{\prime} h^{\prime}=$ Radial Arm.
$G G=$ Frame Stretcher at Pony Truck Centre.
$H H=$ Front Drag Box to Pony Truck Centre.
$K K=$ Smoke-box Saddle and Frame Stretcher with Exhaust Branches.

INTERNAL COMBUSTION ENGINES.

(By W. Steeds, B.Sc., and R. F. Pattenden, B.Sc.)
Useful Data-1 cu. cm. $=0.061 \mathrm{cu}$. inch. 1 litre $=1.761$ pints. 1 h.p. -hour $=1414$ C.H.U. $=2545$ B.Th.U. 1 C.H.U. $=1400$ ft. -lbs . 1 B.Th.U. $=778$ ft.-lbs.

An internal combustion (I.C.) engine is one in which ignition, and more or less complete combustion, of the fuel occurs inside the working cylinder. Such engines may be divided into two main groups:

1. Spark-ignition engines.
2. Compression-ignition (C.I.) engines.

In the former, ignition of the fuel is brought about by means of an electric spark, while in the latter, which are commonly called Diesel engines, ignition is obtained by raising the temperature of the cylinder contents by compressing them. In engines of the Hot Bulb type ignition is assisted by maintaining the hot bulb, or some portion of the cylinder head or piston, at a relatively high temperature.

Thermodynamic Cycles.-Thermodynamically there are several cycles on which, theoretically, I.C. engines may be made to work, the differences between them being in the methods used for adding and abstracting heat from the working fluid, but only two cyoles are of prac-

(b)

(a) of the working fluid remains constant and the ideal indicator diagram is as shown at (a). In what is commonly called the Diesel cycle heat is supposed to be added at constant pressure and abstracted at constant volume and the indicator diagram is as at (b). In both cycles the compression and expansion curves are adiabatics.

Working Cycles.-Two principal working oycles are used, namely-
(1) The four-stroke cycle.
(2) The two-stroke cycle.

The Four-stroke Oycle.-This is completed in four strokes of the piston as follows. First (outward) stroke, air or air-fuel mixture is drawn into the cylinder through the inlet valve or port. Second (inward) stroke, the charge is compressed into the clearance space in the head of the cylinder. Third (outward) stroke, heat having been added to the charge either by injecting
fuel into it or by igniting it, and its temperature and pressure having been thereby raised, it expands and forces the piston outwards; this is the power stroke of the cycle. Fourth (inward) stroke, the products of combustion are expelled from the cylinder by the inward motion of the piston. The four strokes are usually called respectively the induction or suction, compression, firing or power, and exhaust strokes.

The Two-stroke Cycle.-This is used in two ways, namely-

1. With crankcase scavenging.
2. With pump or blower scavenging.

Considering the former, on the outward stroke of the piston the charge in the cylinder, having been ignited when the piston was nearing the inner dead centre, expands and does work on the piston, simultancously a new charge of either air or air-fuel mixture (which had been drawn into the crankcase by the previous inward stroke of the piston) is compressed in the crankcase, its pressure being raised a few pounds per square inch above atmospheric. Towards the end of the outward stroke of the piston the exhaust port is uncovered, or the exhaust valve is opened, and the products of combustion begin to escape from the cylinder. Almost immediately the transfer port is uncovered, or the transfer valve is opened, and the new charge is transferred from the crankcase to the cylinder and completes the expulsion of the products of combustion. The inward stroke of the piston ensues, the transfer and exhaust ports or valves are closed, the new charge is compressed into the clearance space of the cylinder, and a fresh charge is drawn into the crankcase and the cycle is repeated.

When pump or blower scavenging is used the cycle is essentially the same as the above, but the charge instead of being compressed in the crankcase is compressed in a soparate pump or blower. The chief advantages of this method are that a better volumetric efficiency is obtained, and hence a greater power for a given cylinder size, and that certain lubrication difficulties are obviated.

Soavenging and aspiration of the new charge into the cylinder are sometimes obtained by using the wave effects set up in the exhaust pipe on the opening of the exhaust valve or port.

Compression Ratio (r).

$$
r=\frac{v+V}{v},
$$

where $v=$ the clearance volume (the volume enclosed in the cylinder when the piston is at T.D.C.),
and $V=$ swept volume of cylinder $=0.7854 d^{2} l(d=$ cyl. diameter, $l=$ piston stroke).
Hence

$$
v=\frac{V}{r-1}
$$

Volumetric Efficioncy (η_{0}).—
$\eta_{0}=\frac{\text { Volume of air drawn into the cylinder, reduced to N.T.P. }}{\text { Swept volume of cylinder }}$.
It varies from nearly 1.0 at low speeds down to 0.7 at high speeds. Occasionally, due to wave effects in the exhaust pipe, it may slightly exceed unity even with natural aspiration.

Power Rating of Engines.-Definitions and Symbols.-
I.H.P. $=$ Indicated horse-power $=$ B.H.P. $/ \eta_{m}$.
B.H.P. $=$ Brake horse-power $=\eta_{m} \times$ I.H.P.
$\eta_{m}=$ Mechanical efficiency $=$ B.H.P./I.H.P.
$p=$ I.M.E.P. $=$ Indicated mean effective pressure $=$ B.M.E.P. $/ \eta_{m}$.
B.M.E.P. $=$ Brake mean effective pressure $=\eta_{m} \times$ I.M.E.P.
$T=$ Mean engine torque in $\mathrm{lb} . \mathrm{ft}$.
$N=$ Revolutions per minute.
$n=$ Number of cylinders.
$d=$ Cylinder diameter in inches.
$l=$ Piston stroke in inches.
$V=$ Swept volume of cylinder $=0.7854 d^{2} l \mathrm{cu}$. ins. $S=$ Mean piston speed $=\frac{l N}{6}$ feet per minute.
Then,

$$
\begin{aligned}
\text { I.H.P. } & =p \times 0.7854 \times d^{2} \times \frac{l}{12} \times N \times \frac{n}{33000} \times f \\
& =0.000001983 p d^{2} l N n f \\
& =p d^{2} l N n f / 504200 \\
& =0.0000119 p d^{2} S n f \\
& =p d^{2} S n f / 84033 \\
& =p V N n f / 396090
\end{aligned}
$$

where f is a factor which equals
$\frac{1}{2}$ for single-acting four-stroke engines.
1 for single-acting two-stroke or double-acting four-stroke engines.
2 for double-acting two-stroke engines.
Brake Horse-power.-B.H.P. $=\frac{2 \pi N T}{33000}$
$=0.0001904 N T$
$=N T / 5252$.

Oorrections to B.H.P. for Atmospheri Conditions.-The horse-power an engine develops varies with variations of atmospheric pressure and temperature, and test results are sometimes adjusted to show the horse-power that would have been developed under standard conditions, namely, 760 mm . barometric pressure and $15^{\circ} \mathrm{C}$. temperature. Some disagreement exists as to the correct basis on which the adjustment should be made, and the following formulæ are both used:-

$$
\text { B.H.P. }{ }_{o}=\text { B.H.P } ._{\cdot a} \times \frac{P_{o}^{o}}{P_{a}} \times \frac{T_{a}}{T_{o}},
$$

and

$$
\text { B.H.P } ._{o}=\text { B.H.P. }{ }_{a} \times \frac{P_{o}}{P_{a}} \times \sqrt{\frac{T_{a}}{T_{o}}}
$$

where
B.H.P. $._{o}=$ B.H.P. under conditions of pressure and temperature P_{0} and T_{0},
B.H.P. $._{a}=$ B.H.P. under conditions of pressure and temperature P_{a} and T_{a},
these pressures and temperatures being absolute.

$$
\left(T_{0}^{\circ} \mathrm{C} .=273+t_{0}^{\circ} \mathrm{C} ., \quad T_{0}{ }^{\circ} \mathrm{F} .=460+t_{0}^{\circ} \mathrm{F} .\right)
$$

The second formula is the more commonly accepted one. According to Gagg and Farrar (Trans.S.A.E., 1934) it is sufficiently accurate for temperatures between $0^{\circ} \mathrm{C}$. and $30^{\circ} \mathrm{C}$., but gives erroneous results at higher temperatures.

It has been suggested (Automobile Engineer, March 1935) that the formula should be used to correct I.H.P. and not B.H.P., since the mechanical efficiency is unaffected by variations of pressure and temperature. This gives

$$
\text { B.H.P. }{ }_{o}=\text { B.H.P. }\left[1-\frac{1}{\eta_{m}}\left\{1-\frac{P_{o}}{P_{a}} \sqrt{\frac{T_{a}}{T_{0}}}\right\}\right] \text {, }
$$

and the mechanical efficiency η_{m} will usually have to be estimated.
Variations of Atmospheric Pressure and Temperature with Altitude.-The American Bureau of Standards uses the formula $H=62000 \log _{10} \frac{760}{P}$ to relate the barometer reading P (millimetres) with the altitude H (feet). The standard temperatures and densities used by the British Air Ministry are given in the graphs on p. 688.

The temperature may be calculated approximately on the assumption that it deoreases at the rate of $1^{\circ} \mathrm{C}$. per 700 feet
up to 15,000 feet. and at 1° C. per 900 feet from 15,000 up to 25,000 fees. Dorand's formula for the temperature is $t^{\circ} \mathrm{C}=15-0-0198 H$, the altitude H being in feet.

Mechanical Efficiency (η_{m}).-This is the ratio, B.H.P./I.H.P. and is determined in low-speed engines by taking indicator cards and thus deriving the I.H.P., while the B.H.P. is obtained either from the brake test or from a shaft dynamometer. In high-speed engines the I.H.P. cannot be obtained directly by means of indicator cards, unless a Farnboro or similar type of indicator is used, and the friction horse-power is generally determined by motoring the engine by means of a swung-field electrio motor, the assumption being made that the friction under motoring conditions will be the same as when the engine is running. At full load η_{m} varies from as low as 70 per cent. up to as high as 90 per cent., but for
 high-speed petrol engines is usually about 80 per cent. The torque required to motor an engine varies with the speed, and the nature of this variation is shown in the graph, which gives the mean effective pressure corresponding to the motoring torque at various speeds in a sixcylinder engine. The friction horse-power is almost independent of the load, and so the mechanical efficiency falls off as the load decreases, the example shown in the graph on p. 689 being for a Fullagar opposed piston engine running at 200 r.p.m.

For the same reason the mechanical efficiency of a supercharged engine will generally be somewhat higher than that of an unsupercharged engine, and will increase with the amount of boost,

up to a limit. This is illustrated by the results tabulated below, which relate to a Vickers-Armstrong submarine engine of 21 -inch bore by 21 -inch stroke.

R.P.M.	.	.	.	350	385	400
Intake pressure, lbs.	per		14.7	18.2	19.7	
sq. inch abs.	\cdot	\cdot	14.7			
I.H.P.	\cdot	\cdot	\cdot	3810	5525	6088
B.H.P.	\cdot	\cdot	\cdot	3000	4506	5000
η_{m}	\cdot	\cdot	\cdot	78.8	81.6	$82 \cdot 2$

B.M.E.P in Terms of Torque. -
B.M.E.P. $=\eta_{m} p=\frac{48 \pi T}{V n}$ lbs. per sq. inch, for single-acting fourstroke engines

$$
=\frac{24 \pi T}{V n} \text { for single-acting two-stroke engines. }
$$

Engine Ratings. - For taxation purposes motor vehicle engines in Britain are rated according to the R.A.C. formula B.H.P. $=\frac{d^{2} n}{c}$ where $c=2.5$ for d in inches and $c=1613$ for d in millimetres. This formula assumes $S=1000 \mathrm{ft} . / \mathrm{min} ., \eta_{m}=75$ per cent., I.M.E.P. $=90 \mathrm{lbs}$. per sq. inch, and these figures are still applicable to low-speed stationary and marine engines, but are largely exceeded in automobile and aero engines, for which limiting values of these factors are $\mathcal{S}=3500 \mathrm{ft} . / \mathrm{min}$., $\eta_{m}=90$ per cent., I.M.E.P. $=150 \mathrm{lbs}$. per aq. inch, it being understood that maximum values of each factor are not obtained simultaneously.

The Society of Motor Manufacturers and Traders formula (which is little used) is B.H.P. $=0.45(d-1 \cdot 18)(l+d)$, and takes
the stroke l into account. Motor-car manufacturers sometimes designate their cars by the maximum b.h.p. figure, but marine and stationary engines are usually rated at the b.h.p. they will develop continuously.
Aero engines have two, and sometimes three, distinct ratings, namely-(1) take-off power rating; (2) cruising rating; and (3) emergency rating. The first is the maximum power the engine can develop for short periods at ground level. The second is the power the engine can develop for protracted periods at the altitude at which the aeroplane is expected to fly. The third is the power the engine can develop for moderately long periods, such as might be necessary if failure of one engine of a multi-engined machine occurred. The cruising rating is usually about two-thirds of the take-off rating.

Thermal Efficiency $\left(\eta_{t}\right)$.-

$$
\eta_{t}=\frac{\text { Useful work done in time } T}{\text { Heat supplied in same time } T}
$$

both quantities of energy being measured in the same units.
Air Standard Efficiency. - The thermal efficiency of an ideal engine working on the constant volume cycle with air as the working fluid, and assuming the ratio (γ) of the specifio heat at constant pressure to that at constant volume to be constant, can be shown to be given by $\eta_{t}=1-\left(\frac{1}{r}\right)^{\gamma-1}$. The value of γ is usually taken as $1 \cdot 4$.
Effect of Mixture Strength.-Tizard and Pye ("Empire Fuels Report," Proc. I.A.E., 1923-24) have shown that for all ordinary hydrocarbon fuels the theoretical efficiency obtainable with the constant volume cycle depends on the mixture strength of the cylinder charge. For chemically correct mixtures they find that $\eta_{t}=1-\left(\frac{1}{r}\right)^{0.268}$, while for 20 per cent. weak mixtures $\eta_{t}=1-\left(\frac{1}{r}\right)^{0.206}$. Values of these efficiencies and of the air standard efficiency for various values of r are given below.

r	.	4.	6.	6.	7.	8.
$1-\left(\frac{1}{r}\right)^{0.4}$.4257	.4747	.5116	.5408	.5646	.5848
$1-\left(\frac{1}{r}\right)^{0.298}$.3366	.3790	.4116	.4248	.4596	.4782
$1-\left(\frac{1}{r}\right)^{0.858}$.3007	.3398	.3702	.3947	.4152	.4314

r	.	10.	12.	14.	16.	18.
$1-\left(\frac{1}{r}\right)^{0.4}$.6019	.6299	.6520	.6701	.6853	.6983
$1-\left(\frac{1}{r}\right)^{0.206}$.4942	.5208	.5421	.5599	.5750	.5880
$1-\left(\frac{1}{r}\right)^{0.258}$.4479	.4733	.4938	.5110	.5256	.5383

Goodenough and Baker (Illinois University) have deduced empirical formulæ for the value of n in the formula $\eta_{t}=1-\left(\frac{1}{r}\right)^{n}$, giving the theoretical thermal efficiency obtainable with actual working fluids. For the constant volume cycle with chemically correct or rich mixtures $n=0.524-\frac{24 \cdot 6}{a}$,
for weak mixtures $n=0.3867-\frac{6 \cdot 5}{a-35}-\frac{0.043}{r}$,
and for the Diesel cycle $n=0 \cdot 434-\frac{19 \cdot 5}{a-r}-\frac{0.7}{r}$,
where a is the ratio (expressed as a percentage) of the air supplied per cycle to the air required for the chemically correct mixture.

The theoretical efficiency of the Diesel cycle, assuming γ to be constant, is given by $\eta_{t}=1-\left(\frac{1}{r}\right)^{\gamma-1}\left(\frac{1}{\gamma} \cdot \frac{\rho^{\gamma}-1}{\rho-1}\right)$, where ρ is the cut-off ratio, the ratio of the volume enclosed in the cylinder at the end of the constant pressure period to the clearance volume (see Fig. (b), p. 684).

Relative Efficiency. -The ratio of the actual thermal efficiency of an engine to the theoretical efficiency of an ideal engine having the same compression ratio and using the same working fluid is called the relative efficiency, and is useful as a criterion of the thermodynamic performance of the engine. The ideal engine efficiencies will be those given by Tizard and Pye's formula $\eta_{t}=1-\left(\frac{1}{r}\right)^{0.895}$ and tabulated above and on p. 690.

In practice relative efficiencies range from about 65 per cent. to 85 per cent.

The Tookey Factor.-This was evolved by W. A. Tookey as a convenient means of comparing I.C. engines of various sizes running at different speeds and operating on a variety of fuels.

It is given by

$$
T_{m}=\text { Tookey factor }=\frac{p}{Q_{i}}
$$

where

$$
p=\text { I.M.E.P. in lbs. per sq. inch, }
$$

and
$Q_{t}=$ "Mixture Strength" in B.Th.U. per cubic foot of total cylinder volume,
i.e.

$$
Q_{t}=\frac{\text { Cal. val. of fuel (higher) } \times \text { wt. of fuel per min. }}{\text { (Clearance vol. }+ \text { swept vol. of cyl.) } \times n \times \mathrm{N} / 2}
$$

the clearance and swept volumes being in cubic feet.
The Tookey factor is related to the indicated thermal efficiency thus,

$$
\text { Indicated thermal efficiency }=\frac{T_{m}}{5 \cdot 4} \times\left(\frac{r-1}{r}\right)
$$

Combustion Factor.-This was introduced by the Admiralty Engines Laboratory, and is defined as B.M.E.P. (lbs. per sq. inch) \times fuel consumption (lbs. per b.h.p. hr.).

Heat Balance in I.C. Engines.-Typical figures for this at full load are as follows:-

Heat to b.h.p. . . . 26 to 35 per cent.
Heat to exhaust . . 40 to 35 per cent.
Heat to jackets . . . 28 to 20 per cent.
Heat to friction h.p. . . 3 to 5 per cent.
Heat to radiation, etc. . Remainder.
At lower loads the percentages to exhaust, jackets, and friction will of course be greater, but the actual heat flow will be less. The heat to friction h.p. is of course ultimately passed to the cooling water or is dissipated by radiation. A Fullagar opposed piston engine gave the following figures:-

Heat to b.h.p.	36 per cent.
Heat to exhaust	30 per cent.
Heat to cooling water, etc.	28 per cent.
Heat to scavenge pump h.p.	2.5 per cent.
Heat to compressor h.p. .	$3 \cdot 5$ per cent.

All the above percentages are of the total heat supplied to the engine in the fuel.

Pressures and Temperatures during the Oycle,-Suction stroke. -With the throttle closed a vacuum of 20 inches mercury is possible, but with the throttle wide open the pressure during the suction stroke will usually be only 2 to 3 lbs. per sq. inch below atmospherio. The temperature at the end of the suction stroke
may be somewhat above atmospheric temperature, but for calculation of compression pressures and temperatures is usually taken as atmospheric. Temperatures lower than atmospheric may be obtained when using fuels with high values of the latent heat (e.g. alcohol) without pre-heating.

Compression stroke.-The pressure and temperature at the end of this stroke will depend on those at the beginning and on the compression ratio, the tightness of the piston ring seal, and the heat losses or gains during the stroke. They can be calculated sufficiently accurately for most purposes from the relation $P V^{1.3}=k$. Assuming atmospheric pressure (14.7 lbs . per sq. inch) and a temperature of $15^{\circ} \mathrm{C}$. at the commencement, the pressures and temperatures at the end of the stroke, as calculated by the above formula, for various values of the compression ratio r, are given in the table below.

		4.	5.		7.	8.	10.	12.	14.	16.	18.	
				151	184				$4: 5$	540		
$t_{c}{ }^{\circ} \mathrm{C}$.			194	220	243	264	302			389	412	

In some experiments, reported by Day (Proc. I.Mech.E., 1931), on a Diesel engine the first compression when starting from cold followed the law $P V^{1.26}=k$, the second compression $P V^{1 \cdot 28}=k$, the third $P V^{1.30}=k$, and when settled conditions had been obtained the relationship was $P V^{1 \cdot 35}=k$.

Compression Ratios in Actual Engines.- Since the maximum thermal efficiency depends on the compression ratio, this is made as high as circumstances permit. The value is limited in sparkignition engines by the tendency of the fuel to detonate and, except with special fuels, does not exceed 8. It is now rarely less than 4. The size of cylinder affects the tendency to detonate and so the ratios used with small cylinders are usually higher than with large ones. Ricardo gives the following as practical limiting values:-

Cylinder dia., inches .	$2-2 \frac{1}{2}$	$2 \frac{1}{2}-3$	$3-4$	$4-5 \frac{1}{2}$
Compression ratio	\cdot	8	$7 \cdot 5$	7

Another factor which tends to set a limit to the increase in compression ratio is the consequent increase in the maximum pressures attained, which necessitate heavier scantlings throughout the engine.
In compression-ignition engines the compression ratio ranges from as low as 9 in large slow-speed marine engines with air injeotion up to as high as 20 in small high-speed engines with mechanical injeotion.

Maximum Pressures.-These depend more on the rate of pressure rise than on the compression ratio. In spark-ignition engines they range from 250 lbs . per sq. inch to 1000 lbs . per sq. inch with normal combustion, but may be higher whon detonation or pre-ignition occurs. In C.I. engines they range from about 650 lbs. per sq. inch to 1200 lbs . per sq. inch. Ricardo gives the following as typical of the maximum pressures in petrol engines:-

Comp. ratio	4	5	6	7	8
Max. press., lb./in.	360	490	625	770	930

The above values will be increased if supercharging is used. The table below illustrates this for a petrol engine having a compression ratio of 5 :-

Intake press., lb./in. ${ }^{2}$ abs.	15	$22 \cdot 5$	30	34
Max. press., ib./nn. ${ }^{2}$ abs. .	400	630	940	1050
B.M.E.P., Ib./in. ${ }^{2}$..	99	178	258	297

Maximum Temperatures. - The maximum temperatures attained after the ignition of the charge can be calculated, as shown by Tizard and Pye ("Empire Motor Fuels Report," Proc. I.A.E., 1923-24), allowance being made for dissociation. They vary more with mixture strength than with the compression ratio, being a maximum with mixtures about 20 per cent. richer than the chemically correct strength. The highest value quoted by Tizard and Pye is with benzene as fuel, and is $2701^{\circ} \mathrm{C}$., the compression ratio being 5 . With the same fuel, but with a compression ratio of 10 , the highest temperature is $2760^{\circ} \mathrm{C}$. approximately, these being calculated temperatures. The flame temperature as measured by Lloyd-Evans and S. S. Watts (B.A. Report, 1934) for a compression ratio of 5 was $2200^{\circ} \mathrm{C}$. For details as to the calculation of maximum temperatures reference should be made to the "Empire Motor Fuels Report" mentioned above, and to a paper by Hershey, Eberhardt, and Hottel in the Transactions of the Society of Automotive Engineers, vol. xxxi., 1936.

Detonation.-If a fuel is tested in a variable-compression engine at gradually increasing compression ratios, detonation will, sooner or later, set in, and the characteristic "pinking" sound it produces will become more and more audible. On an indicator diagram detonation is shown by an increased rate of pressure rise on ignition and by somewhat increased maximum pressures. Detonation in a given engine will oocur at different
ratios with different fuels, but the actual engine design, as regards shape of combustion chamber, position of sparking plugs, etc., also influences the tendency towards detonation. Many attempts have been made to rate fuels according to their detonation tendencies, the earliest attempt being that of Ricardo, who determined the Highest Useful Compression Ratio (H.U.C.R.) for a number of fuels. The H.U.C.R. of a fuel is the compression ratio at which the detonation reaches some definite amount. The results obtained differ somewhat with differing designs of engine and methods of measuring the detonation, and for results to be comparable a standard engine and method must be adopted. A large number of authorities have agreed to accept as standard the engine design and testing method developed by the Cooperative Fuels Research Committee in America, which engine is commonly referred to as the C.F.R. engine (see Trans. Amer. Soc. for Testing Materials, 1933). The British Air Ministry, however, does not use this engine, and other engines are also used by other bodies. Thus the H.U.C.K. values of fuels will not agree within closer limits than about $\pm 0 \cdot 5$, unless they are obtained in exactly similar engines using the same test procedure.

Octane Number of a Fuel. -This is used as a criterion of the liability to detonation of the fuels used in spark-ignition engines, a good fuel in this respect having a high octane number. It is the percentage by volume of iso-octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ in a mixture of octane and heptane ($\mathrm{C}_{7} \mathrm{H}_{16}$) which gives the same detonation characteristics in a C.F.R. engine as does the fuel in question. Octane does not detonate readily, whereas heptane is prone to detonation; and a mixture of the two can be made to match any fuel, thus giving the octane number. Other engines than the C.F.R. engine, and different test procedures, are used by some experimenters; and thus octane numbers, like H.U.C.R. values, are not strictly comparable unless they have been obtained in similar engines by similar methods. The octane number determined in any engine will not usually differ from that obtained with the C.F.R. engine by more than 3 or 4 . Although the octane number is a reliable criterion of the tendency of a fuel to detonate when used in ordinary motor-car engines, considerable variations have been found when the fuels have been used in aero engines. The C.F.R. octane number tends to be too low for fuels having a high proportion of aromatics, these fuels performing much better in aero engines than their octane numbers would lead one to expect.
Ignition-lag or Delay Period (C.I. engines).-This is the time that elapses between the introduction of the first particle of fuel into the cylinder and the start of inflammation of the fuel. It depends upon the nature of the fuel, the degree of atomisation and distribution of the fuel spray, the temperature of the cylinder
charge, the amount of air swirl, and other factors. In general, a fuel having a long delay period will give a poor performance and the maximum pressures will be higher than with a fuel having a short delay period.

Rating of Diesel Fuels. - Attempts have been and are being made to find some satisfactory method of rating Diesel fuels, much as the octane number rates spark-ignition fuels, but so far no altogether satisfactory method has been developed, although one or two methods are giving quite good results, e.g. the Cetane Number, Aniline-point, and Diesel Index.

Cetane Number.-This is the percentage of cetane $\left(\mathrm{C}_{18} \mathrm{H}_{86}\right)$ in a mixture of cetane and alpha-methyl-naphthalene which will give the same ignition characteristics in a standard engine as does the fuel in question. Originally cetene $\left(\mathrm{C}_{16} \mathrm{H}_{32}\right)$ was used, but cetane has been found to give more consistent results. A standard engine and testing procedure have not yet been agreed on.
Aniline-point.-This is the lowest temperature at which a mixture of equal parts of a fuel and of aniline will form a clear solution. It is considered by many authorities to be almost as good an index to the ignition qualities of Diesel fuels as is the cetane number. Le Mesurier and Stansfield give the following results correlating the aniline-points and the cetene numbers for a number of fuels:-

Fuel No.	1.	2.	3.	4.	5.	6.	7.	8.
Aniline-point ($\left.{ }^{\circ} \mathrm{C}.\right)$.	74.0	$71 \cdot 5$	68.0	64-5	61.0	56.5	51.5	$45 \cdot 0$
Cetene number	70	65	60	55	50	45	40	35

The Diesel Index.-This is defined as
Aniline-point (deg. F.) \times A.P.I. gravity

$$
100
$$

and is considered by some authorities to be the best criterion of the suitability of a fuel for use in a Diesel engine. The A.P.I. (American Petroleum Institute) gravity is measured by means of the A.P.I. hydrometer and the specific gravity is related to it thus:

$$
\text { Sp. gr. }=\frac{141 \cdot 5}{131.5+{ }^{\circ} \text { A.P.I. }}
$$

Spontaneous Ignition Temperature (S.I.T.).-Apart from the difficulty of determining this, it has been found to be unsuitable as a criterion of the performance of Diesel fuels except that it can be fairly definitely stated that if the S.I.T. is above $300^{\circ} \mathrm{C}$. the fuel will not be suitable.

Some idea of the correlation between cetane numbers, aniline. points, and Diesel indexes may be obtained from the table below.

Fuel No. .	1.	2.	3.	4.	5.
Sp. gr., A.P.I.	$36 \cdot 1$	$34 \cdot 0$	$23 \cdot 1$	$29 \cdot 4$	45.5
Viscosity (Saybolt universal at $100^{\circ} \mathrm{F}$.)	32	33	53	34	32
Aniline-point (${ }^{\circ} \mathrm{F}$.)	126.2	$119 \cdot 2$	131.5	124.6	152.4
Diesel index .	$45 \cdot 6$	$40 \cdot 7$	$30 \cdot 3$	36.6	69.3
Cetane number	29.6	39.7	37.7	51.6	$51 \cdot 1$

The fuels were: 1. Straight-run, S. Texas; 2 and 3. Cracked, Mid-continent; 4. Straight-run, Mid-continent; 5. Straight-run, Pennsylvania.

Fuels for I.C. Engines.-A great variety of fuels is available for use in I.C. engines, but the vast majority of engines use fuels consisting of a mixture of various hydrocarbons, the types and proportions of the different hydrocarbons varying with the different sources from which the crude oils are obtained and according to the amount of blending done by the refinery. Hydrocarbons can be divided into: 1. Paraffins, comprising substances whose composition is represented by the formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2} ; 2$ 2. Olefines and Naphthenes $\left(\mathrm{C}_{n} \mathrm{H}_{2 n}\right)$; 3. Benzenes (Aromatics) $\left(\mathrm{C}_{n} \mathrm{H}_{2 n-6}\right)$. Alcohol and blends of alcohol with petrol are also sometimes used. The chief properties of the fuels used in I.C. engines are given in the tables on pp. 698, 699. The calorific values are seen to vary considerably, but Tizard and Pye have pointed out that for all the liquid hydrocarbons, and for alcohol, the heat liberated by the complete combustion of 1 lb . of air is 720 C.H.U. ($1300 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$.) to an approximation of 5 per cent. For all petrols the value is 716 C.H.U. (1290 B.Th.U.) to an approximation of 1 per cent., and Ricardo has suggested that thermal efficiencies should be calculated from the air consumptions of engines, on the assumption that any fuel supplied in excess of that required for chemically correct combustion is to be debited to inefficiency in carburation or distribution and not to thermal inefficiency. It follows that

$$
\eta_{t}=\frac{\text { B.H.P. }}{\text { libs. of air per hour } \times C}
$$

where C is 1.96 for petrol and 2.02 for ethyl alcohol.
Assuming the value of 720 C.H.U. for the heat of combustion of 1 lb . of air it follows that

$$
\text { Swept volume per cylinder }=\frac{1414 \times \text { B.H.P. }}{N \eta_{t} \eta_{m} \eta_{\theta}} \text { cu. ins. }
$$

and this formula may be used to derive the major dimensions of
Properties of Fuels．－I．Liquid．

－ $\mathrm{BqI} /$＇sqTI $\cdot \mathrm{Pan} / \mathrm{H} / \mathrm{IIV}$		
	辿	
	萣	8888 영ㅇㅇ용ㅇ 융ㅇㅇㅇ
－sqi／$\Omega \cdot \mathrm{H} \cdot \mathrm{O}$ 		$\mathscr{O}: \text { : }$
－ $47!$ IIasip ou！əds		か
䖝		

Properties of Fuels. -II. Gaseous.

Fuel.		Calorific Value at N.T.P. C.H.U./Cu. Ft.		Air/Fuel.	
		IIigher.	Lower.	$\begin{gathered} \mathrm{Cu} . \mathrm{Ft} . / \\ \mathrm{Cu} . \mathrm{Ft} . \end{gathered}$	Lbs./ Lbs.
Hydrogen, H_{2}.	178.0	193	166	$2 \cdot 38$	34-3
Carbon monoxide, CO	12.8	190	190	$2 \cdot 38$	$2 \cdot 46$
Methane, CH_{4}	$22 \cdot 4$	594	543	$9 \cdot 52$	$17 \cdot 2$
Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$	12.7	931	890	$14 \cdot 28$	14.8
Town gas .	31	170-360	160-330	$5 \cdot 0$	12
Blast-furnace gas .	12.6	60	58	$0 \cdot 78$	0.8
Coke-oven gas	31	313	280	4.5	11.4
Producer gas	15	80-90	72-82	1.0-1.2	1-2-1.4

a petrol engine to develop a given horse-power at a given speed, suitable values being assumed for the thermal, mechanical, and volumetric efficiencies.

Air/Fuel Ratio.-Finlayson (Proc. I.A.E., 1924) gives the formula Air/Fuel $=0 \cdot 116\left\{C+3\left(H-\frac{O}{8}\right)\right\}$, where C, H and O are the percentages, by weight, of carbon, hydrogen and oxygen in the fuel. For hydrocarbons this becomes $0 \cdot 116(C+3 H)$. For a hydrocarbon whose formula is $\mathrm{C}_{a} \mathrm{H}_{b}$ the ratio is given by $1 /\left[0.0292+\frac{0.2305}{4+b / a}\right]$. These air/fuel ratios are by weight.

According to the American Bureau of Standards (Report No. 97), the percentage (by weight) of hydrogen in the hydrocarbon fuels used in petrol and Diesel engines is equal to

26 - ($15 \times$ specific gravity at $60^{\circ} \mathrm{F}$.).
Maximum power is generally obtained with mixtures about 20 per cent. rich, while maximum economy is obtained with mixtures between 10 per cent. and 20 per cent. weak. In multioylinder engines the mixture strength usually has to be richer than in single-cylinder engines because of variations in the distribution to the cylinders.

Petrol Engines on Producer and Town Gas.-The Fuel Research Station at Greenwich have run petrol engines on producer gas made from (a) charcoal and (b) low temperature coke, the b.h.p. obtained being respectively 90 per cent. and 70 per cent. of that with petrol. The gases have calorific valuea of 89 and 72 C.H.U. per cubio foot respeotively. When a petrol
engine is run on town gas, experiments have shown that about 120 cubic feet of gas (C.V. 375 C.H.U. per cubic foot) is equivalent to one gallon of petrol. One gallon of butane was found to be equivalent to about 145 cubic feet of town gas.

Engines Running on Hydrogen.-The Erren engine is designed to run on hydrogen and oxygen or hydrogen and air mixtures. With oxygen the hydrogen consumption per b.h.p. per hour is from 30-35 cubic feet and with air from $35-40$ cubic feet.

Exhaust Gas Analyses.-The chemical composition of the exhaust gases of engines may be obtained in various ways, and can be used as a means of determin-
 ing the air/fuel ratio of the cylinder charge. In addition to nitrogen the constituents of the exhaust from engines running on hydrocarbon fuels are carbon dioxide, oxygen, carbon monoxide, hydrogen, and methane. The percentages of these gases for various airlfuel ratios are shown in the diagram for a fuel whose composition can be assumed equivalent to $\mathrm{C}_{8} \mathrm{H}_{17}$; this is a reasonable assumption for all petrols. According to a report (No. 476) of the National Advisory Committee for Aeronautics (U.S.A.), the ratio of the percentages of hydrogen and carbon monoxide in the exhausts of engines using petrol or Diesel fuels is 0.51 . Traces of aldehydes are also often found in the exhaust gases.

Temperature in I.C. Engines.-The hottest part of most engines is the exhaust valve, for which temperatures up to $800^{\circ} \mathrm{C}$. have been recorded. Normally exhaust valves run at between $600^{\circ} \mathrm{C}$. and $750^{\circ} \mathrm{C}$. on full load, the highest temperatures occurring with approximately chemically correct mixture strengths, late ignition, high speeds, and high water-jacket temperatures. In high output acro engines exhaust valves are frequently cooled by making them hollow and partly filling them with a material having a suitable melting-point, sodium being often used. Valve temperatures are increased by having large amounts of uncooled valve guide, the design shown at (a), p. 705, being superior to that at (b) in this respect. Sparking plugs also run at high temperatures, values of $550^{\circ} \mathrm{C}$. to $800^{\circ} \mathrm{C}$. having been measured in a petrol engine at 1500 r.p.m. Piston heads are the next hottest spot, cast-iron pistons running at much higher temperatures than aluminium alloy pistons. Temperatures up to $460^{\circ} \mathrm{C}$. have been measured at the centre of cast-iron
pistons, while in the same engine under the same conditions aluminium alloy pistons reached only $240^{\circ} \mathrm{C}$. Cylinder head temperatures in water-cooled engines may reach $200^{\circ} \mathrm{C}$. to $250^{\circ} \mathrm{C}$., and in air-cooled engines may be as high as $350^{\circ} \mathrm{C}$. Aluminium and copper-aluminium alloy heads run at lower temperatures than cast-iron heads in water-cooled engines, and their use in place of cast-iron will usually permit the raising of the compression ratio by about one ratio. Forged aluminium pistons and cylinder heads (air-cooled engines) have been found to be much superior to cast alloys for aero engines, and those parts are now usually made as forgings machined all over.

Horse-power per Litre. -The horse-power per litre figure is a quantity that is useful only to compare engines whose designs are fairly similar. In naturally aspirated engines for small cars, from 20 to 50 b.h.p. per litre may be obtained, and with supercharging 150 b.h.p. per litre has been recorded. The higher values cannot be sustainod for long periods, however. In aero engines the b.h.p. per litre calculated on the take-off rating varies between 35 and 50 , but in special engines over 70 b.h.p. per litre has been obtained.

Engine Proportions.-Weights of Engines. (1) Automobile. (a) Cars.-From 5 to 20 lbs. per b.h.p., the lower values in small sports car engines and the higher in large engines running at comparatively low speeds (2500 r.p.m. max.). Vee-type engines show fairly low weights per b.h.p.
(b) Jorries.-From 10 to 30 lbs. per b.h.p. Diesel engines are usually about 10 per cent. heavier than petrol engines of similar design by the same maker, but the difference is becoming less and in some cases is already negligible.
(2) Aero.-From 1.8 to 2.5 lbs. per b.h.p. dry and without air-screw. The lower figure is attained in highly developed engines, and the higher in low-powered engines for small aeroplanes.
(3) Marine. (a) Medium speed (500-1500 r.p.m.).-From 20-80 lbs. per b.h.p. for engines designed for marine purposes. Automobile and aero type engines are sometimes used, however, and the weights will then be towards the upper limits of (1) or (2).
(b) Slow speed ($80-300$ r.p.m.).-From 150 to 400 lbs. per b.h.p. A figure of 250 lbs . per b.h.p. is common.

Great reductions (up to 40 per cent.) in weight can be effected in medium and high-powered engines running at moderate speeds by the use of welded instead of cast frames.

Stroke/Bore Ratio.-This lies between 0.9 and 1.8 , the lower values obtaining in some aero and automobile engines and the higher in stationary and marine engines. Many automobile engines have a ratio between 1.5 and 1.6. Rowell (Engincering,
$7 / 3 / 30$) gives the curve shown for the variation of stroke/bore ratio with the bore. Present tendency in automobile practice
 seems to be towards ratios of about 1-3.
Connecting Rod/Crank Ratio.-In some aero engines this is as low as $2 \cdot 5$, but usually it ranges from 3 to $5 \cdot 5$, common values being between 3.7 and $4 \cdot 5$. Multicylinder engines generally have a lower value than single-cylinder engines.

Crankpin Diameters.-In petrol engines, with the cylinders in line, these are from $0.6 D$ to $0.7 D$ where D is the cylinder diameter, in Vee engines from $0.7 D$ to $0.8 D$, and in Diesel engines they are from $0.65 D$ to $0.8 D$.

Main Bearings.-These vary from 0.5 D to 0.8 D in line engines, but usual values are between 0.6 D and 0.77 D . In Vee engines they are from $0.8 D$ to $0.87 D$. In Diesel engines they are from $0.6 D$ to $0.85 D$, but values below $0.65 D$ are not common. Most Diesel engines have a main bearing on each side of every crank throw, but four-cylinder petrol engines have two or three, and six-cylinder engines often have only four main journals.

Gudgeon Pin.-Diameter $=0 \cdot 18 D$ to $0 \cdot 4 D$, a common value being $0.25 D$. With pins free to turn in both rod and piston the ratio Length of little-end bush/Dia. of pin varies from 1.25 to 2.25, and is usually about $1 \cdot 6$. When the pin is fixed in the rod the ratio Total length of bearing/Dia. of pin varies from 1.5 to $2 \cdot 4$, an average value being 1.75 . Loads up to 6000 lb ./sq. in. of projected area are used with floating pins, but with fixed pins $4000 \mathrm{lb} . / \mathrm{sq}$. in. is seldom exceeded.

Piston Length.- In aero engines this may be as low as 0.75 D , but in most medium and high-speed engines it is about $1 \cdot 5 D$. Lorry Diesel engines may have rather longer pistons, and in stationary and marine engines the piston length may be as much as $2 \cdot 5 D$.

Piston Clearances.-The clearances recommended, per inch of diameter, by the makers of Covmo pistons are as follows:-

	Standard Alloy.	Low-expansion Alloy.	Oast-iron.
Solid skirt; water-cooled engines	0.0014	0.0010	0.0008
Solid skirt; air-cooled engines	0.0022	0.0016	0.0011
Solid skirt; two-stroke engines	0.0028	..	.
Split skirt; water-cooled engines	0.0008	.	.

The coefficient of expansion of the standard alloy is 0.000023 per ${ }^{\circ} \mathrm{C}$., for the low expansion alloy it is 0.000018 , and for castiron it is 0.000011 .

Piston Ring Gaps.-
Water-cooled engines, 0.002 inch per inch diameter. Air-cooled engines, 0.004 inch per inch diameter.
Racing air-cooled engines, not less than 0.005 inch per inch diameter.
Piston Ring Clearances.-
(1) On sides.-Cast-iron pistons, 0.0015 inch. Aluminium pistons, 0.0025 inch.
(2) At back.-0.010 to 0.015 for all sizes up to 6 inches diameter.

Valve Diameters.-These vary from $0 \cdot 35 D$ to $0.55 D$, but in medium and high-speed engines are usually about $0 \cdot 4 D$. Inlet and exhaust valves are usually the same in size, but if they are not then the exhaust valve is generally the smaller. Stem diameters are usually between 0.18 and 0.3 of the valve head diameter, an average value being $0 \cdot 22$.

Gas Velocities.-The speed of the gases through the inlet valve ports of car engines at the speed corresponding to maximum torque is round about 130 ft ./sec., maximum power being then obtained at a gas speed of from $200-250 \mathrm{ft} . / \mathrm{sec}$. In the other parts of the induction system the gas speed at maximum torque is about $80-90 \mathrm{ft}$./sec., except for the carburettor choke, where it is about $230-300 \mathrm{ft}$./sec. These gas speeds are calculated from the mean piston speeds and the ratios of cylinder and port areas.

Valve Timings.-Inlet opening.-In racing motor-cycle engines this may be as early as 25° before T.D.C., and in stationary engines it may be as late as $5-10^{\circ}$ after T.D.C. Common values are from 10° before to 5° after T.D.C.

Inlet closing.-This is usually from 30° to 50° after B.D.C. Exhaust opening.-This may be from 50° to 40° before B.D.C.

Exhaust closing.-This varies from about T.D.C. to 15°, or sometimes as much as 20°, after T.D.C.

Ignition Timing.-The ignition timing must be adjusted to suit the prevailing conditions of load and speed if the best results are to be obtained, and may be from as little as 8° to as much as 40° before T.D.C. In practically all automobile engines the ignition timing is controlled automatically, partly by a centrifugal control which varies the timing according to engine speed and partly by a vacuum control, which varies the timing according to the intake manifold pressure (advancing the timing with increasing vacuum), and a hand control may also be fitted.

Bearing Materials.-Bronze is still used occasionally in marine engines, but white-metal, lead-bronze, or aluminium alloys are almost universal for big-ends and main bearings. Whitemetal, which has numerous compositions (a typical one being Sn 87 per cent., Sb 9 per cent., Cu 3 per cent., Pb 1 per cent.), is generally used in bronze or steel shells, but in big-ends of motor-cars is often cast direct in the connecting rod. Clearances of 0.001 to 0.015 inch per inch diameter are used, and oil pressures range from $30-60 \mathrm{lbs}$. per sq.inch. The thickness of the white-metal lining varies from as little as 0.015 inch upwards, but 0.020 inch is considered preferable as a minimum. For motor-car engines the steel shells are sometimes made very thin (0.030 to 0.040 inch), and are then pressed up from strip. Lead-bronzes are commonly used in Dicsel engines, and are becoming common in car engines where the duty is severe. A.E.C. use a composition of Cu 74 per cent., Sn 1 per cent., Pb 25 per cent., and the Ford Motor Co. use Cu 63-68 per cent., $\mathrm{Pb} 30-35$ per cent., Fe 0.5 per cent. max., Ni 1-1.5 per cent. in a thin steel shell pressed to shape. Clearances of 0.002 to 0.005 inch per inch diameter are used. In Diesel engines lead-bronze is often used for the rod half of the big-end bearing, and white-metal for the cap, partly because of cost considerations and partly because white-metal can absorb small abrasive particles better than leadbronze. The main journals also may have lead-bronze lower halves and white metal upper halves. Alloys containing cadmium and silver have also been used, but not extensively. Various aluminium alloys have been developed for bearings, and are likely to come into extensive use. High Duty Alloys Ltd., in conjunction with Rolls-Royce Ltd., have been responsible for this development in England, and much work has also been done in Germany. Rolls-Royce use these alloys as standard practice in their car engines. They are used without shells and with clearances of about 0.0008 inch per inch diameter. Quarzal, a German alloy containing from 2 to 15 per cent. Cu and other elements in small quantities, is being used in Germany with loads up to 2000 lbs. per sq. inch at speeds up to 33 ft ./sec. and with clearances of 0.012 inch per inch diameter. Case-hardened journals are generally used with these alloys, and frequently with the lead-bronze materials. According to Fedden a chromemolybdenum steel is the best for case-hardening. An alternative to case-hardening is hardening by the Tocoo process, this being now fairly common practice in motor-car engines. For details of this process see the Automobile Engineer for July 1937.

Checking Bearing Clearances.-This is best done by using an overaize mandrel, but alternatively the bearing may be assembled with copper-foil of suitable thickness inserted, the bearing being machined or scraped until it is just movable
when tightened up. In large bearings it is usual to employ lead wire to measure the clearances.

Bearing Temperatures. -The actual temperatures of the main bearings and crankpins of a petrol engine have been measured at the I.A.E. Research Station (Proc. I.A.E., 1938) by means of thermocouples inserted into the white-metal of the main bearing and into the crankpin respectively. Temperatures up to $140^{\circ} \mathrm{C}$. were recorded, and when the engine speed and rate of oil flow were kept constant the bearing temperatures varied linearly with the temperature of the oll at the inlet to the main bearing. When the inlet oil temperature and rate of oil flow were constant the bearing temperatures varied linearly with engine speed. The variation of bearing temperature with rate of oil flow followed approximately an hyperbolic law.

Combustion Chambers for Petrol Engines.-A large number of different forms of combustion chamber have been tried for petrol engines, but most modern engines use one of the forms

shown in the illustration. At (a) is shown a turbulent type in which the last part of the piston stroke, in forcing the charge into the clearance space, produces considerable turbulenoe in the charge, thus producing rapid inflammation when the charge is ignited. In the type shown at (b), which is commonly used, the turbulence is much less than in type (a). Both these types are generally used with side-by-side valves but sometimes with the exhaust valve in the flat portion of the cylinder head over the piston. Types (c) and (d) are for overhead valve engines, the former for ordinary cars and the latter chiefly for racing
cars and motor cycles. The position of the sparking plug is of considerable importance, and should be such that the flame travel is from the hottest towards the cooler parts of the combustion chamber, otherwise the liability to detonation will be increased. To obtain good volumetric efficiency the incoming charge should be kept out of contact with very hot spots such as exhaust valves.

Sparking Plugs.-Two sizes are standardised, namely-the $18-\mathrm{mm}$. and the $14-\mathrm{mm}$. ; the pitch of the thread of the $18-\mathrm{mm}$. plug is 1.5 mm . and that of the $14-\mathrm{mm}$. plug is 1.25 mm . The thread form in both cases is the Système International.

Diesel Combustion Chambers.-A great variety of types has been developed for high-speed Diesel engines, but those that have survived fall roughly into three groups. These are shown in the illustration. At (a) is shown the open type of chamber, the injection being direct into the disc-shaped space between the piston and cylinder head. Overhead valves (not shown) are used, placed vertically in the oylinder head. This

arrangement is also fairly typical of large slow-speed engines. At (b) is shown a pre-combustion type of chamber, the injeotion being into the pre-chamber which communicates with the cylinder by the holes shown. The air that is forced into the pre-chamber on the compression stroke is considerably heated on its way through the holes, and this helps to reduce the delay period when the fuel is injected. The design at (c) is that developed by Rioardo and A.E.C. and known as the Comet; injection is into the air cell, the air in which is given considerable swirl because of the tangential position of the entrance passage from the cylinder. The lower half of the air cell is fairly well heat-inumated
and maintains a fairly high temperature. At (d) is shown a variation of the open type chamber which is used in comparatively slow-speed engines with success; its chief drawback is that the valve gear is rather difficult to arrange.

The open type chambers usually give easier starting than types (b) and (c) with which heating plugs generally have to be used, they also show slightly better fuel consumptions. It is claimed that types (b) and (c) give smoother running than open type chambers.

Injection Systems.-The earliest Diesel engines employed air injection, the fuel, which was fed to the injectors by plungertype pumps, being forced into the cylinder by a blast of air, at a pressure between 600 and 1000 lbs . per sq. inch, when the injector needle valve was lifted by its cam. The blast air produced good atomisation of the fuel and also increased slightly the amount of oxygen available for combustion. It had, however, a cooling effect. Air injection gives a muoh closer approach to constant-pressure combustion than does mechanical injection, and the maximum cylinder pressures are not greatly in excess of the compression pressures. The necessity for having a threestage air compressor makes air injection unsuitable for small engines, and even in large ones mechanical injection is replacing air injection largely because of the reduction in space occupied.

Mechanical or Solid Injection.-The fuel is sprayed into the cylinder by the direct action of a plunger pump, the pressure in the pipe to the injector ranging from 1000 to 4000 lbs. per sq. inch. The system can be used in two ways-(a) the common-rail system and (b) the jerk-pump system. In (a) the fuel is fed at full injection pressure (about 2500 lbs . per sq. inch) to mechanically or electrically operated injectors. The timing of the beginning of injection is determined by the cam that lifts the injector valve (or closes the electrical contacts), and the amount of fuel injected is determined by the height and duration of the valve lift. The latter is a very critical control, and this system in consequence is difficult to apply to small engines. In (b) there is a plunger pump for each cylinder, this plunger being operated by a quick-lift cam. The sudden lift of the plunger produces delivery of the fuel through the injector and determines the timing of the injection, while the quantity of fuel injected is controlled by mechanism embodied in the pump itself and described in the next paragraph.

Fuel Injection Pumps.-Two kinds are in use, variable spill and variable stroke types. In the former, variations in delivery are obtained by varying the point during the plunger atroke at which the suction valve is allowed to close or at which the spill ports are opened. In the second type the delivery is varied by altering the strole of the pump plunger, this type is used in
slow－speed engines，but in medium and high－speed engines the first type is almost universal．Variable delivery is usually con－ trolled by a helical slot formed either in the plunger or the pump barrel，this part being rotated to uncover the spill ports earlier or later in the delivery stroke of the plunger．The maximum delivery of pumps is governed by the plunger diameter and the extent of the delivery stroke during which the suction and spill ports remain closed，this being usually less than half the total plunger stroke．The table below gives the maximum deliveries for C．A．V．－Boseh pumps．

C．A．V．－Bosch Fuel Injection Pumps．

Maximum Useful Output per Stroke of Each Element．

$\begin{aligned} & \dot{\oplus} \\ & \stackrel{y}{4} \\ & \dot{\mathscr{O}} \end{aligned}$			Output．		$\begin{aligned} & \dot{\mathscr{E}} \\ & \stackrel{y}{0} \\ & \text { in } \end{aligned}$	品 	夏	Output．	
							．${ }^{\text {d }}$		
			Ou．Mm．	Ou．In．			㤟	Ou．Mm．	Cu．In．
A	7	4	25	． 0015	C	15	10	550	． 0336
		5	40	． 0024			11	650	． 0396
		6	60	． 0038			12	800	． 0488
B	10	5	65	.0041			13	950	． 0518
		6	100	．0061			14	1100	－0670
		$6 \cdot 5$	125	． 0076			15	1250	． 0762
		7	135	． 0082			16	1400	． 0854
		$7 \cdot 5$	160	． 0098	D	30	14	2300	$\cdot 1400$
		8	180	． 0109			16	3000	． 1830
		9	230	． 0143			18	4000	． 2440
		10	280	． 0171			20	5000	$\cdot 3050$

Size of Pump for given Engine．－The best size is usually found by trial．The use of a larger pump than the minimum possible tends to give a shorter delivery period，and this is often an advantage although it usually makes steady idling more difficult to obtain．

Timing Injection Pumps．－For consistent results it is best to time on the closing of the suction port．The pipe conneoting the pump cylinder to the injeotor nozzle is removed and the delivery valve is taken out．On rotation of the pump shaft，fuel wif then flow out of the delivery pipe union until the suction port
is covered. This point is the commencement of delivery and can be accurately observed. The actual point of injection into the cylinder will be somewhat later, the injection lag being governed by the length and diameter of the delivery pipes and on the injection nozzle characteristics.

Pre-heaters.-C.I. engines using swirl chambers, air cells, or pre-combustion chambers usually require heater plugs to enable a start to be made from cold, unless a very high compression ratio is used. Heater plugs are standardised with the same threads as sparking plugs.

Injection Nozzles.-When air injection is employed the injection nozzles are operated by a cam provided on the camshaft, and mechanically operated injection nozzles are sometimes used with mechanical injection, usually when this is arranged on the common rail system. When the jerk-pump system is used the nozzle operation is automatic; two types of nozzle are used(1) closed and (2) open, the distinction being according to whether the injection pressure is controlled by a spring loaded needle valve or whether a valve is dispensed with. Open nozzles are not much used. Closed nozzles may have an outlet in the form of one or more holes drilled in the nozzle cap; the diameter of these holes may be as small as 0.2 mm ., and their length/dia. ratio controls the penetration of the spray to some extent. Alternatively the outlet may be in the form of an annular space between a pin or pintle on the end of the needle valve and a relatively large hole in the nozzle cap. The pintle has an inverted conical end which can direct the spray into a cone of from 4° to 60° depending on the angle to which the pintle is ground. The ratio Pump plunger area/Nozzle hole area controls the maximum pressure attained during injection, and also, to some extent, the duration and degree of atomisation of the spray. Rates of rise and fall of the injection pressure greatly affect "dribble" from the nozzles, a low valve closing rate being usually accompanied by some dribble, which is prejudicial to eoonomy.

The Hesselman Engine. - In this engine air alone is compressed, as in a Diesel engine, but the compression ratio is only from 6 to 9 . The fuel is injected during the compression stroke, commencing about 50° before T.D.C. Ignition is by a sparking plag, and is timed to occur about 15° before T.D.C. The engine is started on some volatile fuel, and at part load the air intake is throttled. These engines are being built under licence in several countries, and in America considerable numbers are being
 61 -inoh bore, and the horse-powers from 25 to 170. A brake m.e.p. of 104 lbs . per sq. inch is claimed for a production engine of $8 \frac{1}{8}$ inch bore, and fuel consumptions of 0.58 lb . per b.h.p.-hour on
full load and 0.52 lb . per b.h.p.-hour on three-quarter load. The engines are claimed to combine the ability to use the cheap fuels of the Diesel engine with the smoothness of running and flexibility of the petrol engine.

Supercharging. - This is a means of obtaining a higher pressure in the cylinder, at the moment of closing of the inlet valve, than would be obtained with normal aspiration, thereby increasing the weight and heat content of the charge and thus the power output. This is done by putting a pump or blower between the atmosphere and the intake of the engine. The pump or blower may be a centrifugal, Roots, eccentric vane, or piston type. The latter is used chiefly in two-stroke and in large slowspeed engines. For motor-cars the other types are all used, but for aero engines the centrifugal type is almost universal, and may be driven either mechanically by gearing from the crankshaft or by an exhaust gas turbine, whose blades are acted on by the exhaust gases as they leave the cylinders. In car engines the blowers are either driven directly off the end of the crankshaft or, more usually, through tooth or chain gearing. In large stationary and marine engines the blower may be a completely separate unit with its own prime mover, or it may be driven direct from the crankshaft or by an exhaust gas turbine. The last is adopted in the Büchi system used on large stationary and marine engines, in which the pressure of the exhaust entering the turbine is about $2 \frac{1}{2}$ to $3 \frac{1}{2}$ lbs. per sq. inch, and the pressure of the charging air entering the engine cylinder is from 3 to 5 lbs. per sq. inch. A valve overlap of about 120° is used, and as muoh as 20 per cent. of the charging air may pass straight through the cylinders, thus giving excellent scavenging. The arrangement and number of exhaust manifolds must be carefully considered in this system when more than four cylinders are used.

Supercharging is also called boosting, and the difference between the intake pressure and atmospheric pressure is the amount of boost. In marine engines supercharging is usually called pressure charging. It may be used in two fairly distinct ways-(a) to increase the intake pressure at all engine speeds, and thus shift the whole power-speed curve upwards, or (b) to inorease the manifold pressures at high engine speeds so as to maintain the volumetric efficiency at or about the value it has at low speeds, and thus obviate the falling off in power which occurs with normal aspiration, or at least to bring the peak of the powerspeed curve to a higher speed. Similarly in aero engines supercharging may be used to increase the power output at ground lovel, or, more usually at present, to maintain it at increasing altitudes when it would with normal aspiration fall off because of the reduction in atmospheric pressure and density.

Boosts up to as much as five atmospheres have been used in
experimental engines, but in ordinary practice from 2 to 25 lbs. per sq. inch is the range used, and the higher values only in racing engines.

Supercharging increases the maximum and indicated mean effective pressures, these quantities being fairly closely proportional to the absolute intake pressures. Thus

$$
\frac{(\text { I.M.E.P. })_{a}}{(\text { I.M.E.P. })_{b}}=\frac{P_{a}}{P_{b}},
$$

where P_{a} and P_{b} are the absolute manifold pressures. The mechanical efficiencies of supercharged engines are usually rather higher than those of unblown engines and, for moderate boost ($5-10 \mathrm{lbs}$. per sq. inch), the brake thermal efficiencies are the same in both cases.

Supercharging has the effect of reducing the range of mixture strength over which satisfactory running can be obtained, but it simplifies distribution difficulties in multi-cylinder engines. It also increases the tendency to detonation, partly because it increases the compression pressure and partly because (unless an inter-cooler is used, which is unusual) it raises the temperature at the beginning of the compression stroke and thus at the end also. If an engine, which is on the verge of detonation with a given fuel and normal aspiration, is supercharged, detonation will occur, and to avoid it the compression ratio will have to be lowered or a higher octane number fuel used. The requisite lowering of the compression ratio is given, according to 0 . Thornycroft (Proc. I.A.E., vol. xxx.), by the relation

$$
r_{2}=r_{1}\left(\frac{P_{2}}{P_{1}}\right)^{0.6500 .75},
$$

r_{2} being the ratio with intake pressure P_{2}, and r_{1} that with pressure P_{1}, both pressures being absolute. According to McEvoy (loc. cit.), the index of the pressure ratio term should be $0 \cdot 5$.

The heat flow in a supercharged engine will be greater, and the flow of cooling water to valve and sparking plug areas must be better, than in an unsupercharged engine. The mean temperature at the end of the power stroke will, however, be somewhat lower in the supercharged than in the unsupercharged engine.

COMPRESSED AIR.

(Revised by R. F. Pattenden, B.Sc.)
Definition of Terms.-Free Air Delivered (F.A.D.).-Tho volume of free air at intake pressure and temperature, expressed in cubic feet per minute, which a compressor will take in, compress and deliver at the stated delivery pressure.

Displacement.-The volume swept by the pistons of a compressor, in cubic feet per minute, under normal running conditions. In a compound compressor this refers only to the first stage.

Volumetric Efficiency (η_{1}). -The ratio F.A.D. to Displacement, under the given pressure conditions. This is the common definition. More correctly, Volumetric Efficiency is the ratio weight of air taken into the cylinder per cycle to that weight which would fill the swept volume at normal temperature and pressure.

Indicated Air Horse-Power $\left(U_{1}\right)$.-The horse-power necessary to compress air as shown by the indicator diagram of the compressor.

Brake Horse-Power (U). -The horse-power necessary to drive the compressor at the stated working pressure and speed.

Adiabatic Horse-Power.-The theoretical horse-power necessary to compress the F.A.D., assuming adiabatic compression.

Isothermal Horse-Power (U_{2}). -The theoretical horse-power necessary to compress the F.A.D., assuming isothermal compression.

Compression Efficiency $\left(\eta_{c}\right)$.-The ratio Isothermal Horse-Power to Indicated Air Horse-Power.

Mechanical Efficiency $\left(\eta_{m}\right)$.-The ratio Indicated Air HorsePower to Brake Horse-Power.

Overall Efficiency $\left(\eta_{0}\right)$.-The ratio Isothermal Horse-Power to Brake Horse-Power.

Combined Efficiency $\left(\eta_{\tau}\right)$.-The ratio Isothermal Horse-Power to Horse-Power required by the Driving Unit.

Methods of Air Compression.-(1) Piston Compressors.-Air is compressed by pistons working in cylinders. The compression may be performed in one or more stages. These compressors are capable economically of a pressure ratio of about 8 per stage, and are therefore suited to high delivery pressures.
(2) Centrifugal- or Turbo-Compressors.-Air is compressed by energy imparted to it by rotating vanes. They are always multistage machines since the pressure ratio per stage can seldom exceed 1-2. They are thus suited to large volumes at relatively low delivery pressures.
(3) Rotary Pumps and Blowers.-Air is compressed either by gear or vane pumps or by single-stage fans. Such blowers are suitable only for low delivery pressures, and are much used for supplying the air blast to foundry cupolas, eto.

Action of an Air Compressor.-During the suction stroke a volume of air $A B$ at, say, atmospheric pressure $O A$ is drawn in.
 During the return or compression stroke this air is compressed. If the air neither rejects heat nor receives heat from an external source during compression, it is compressed adiabatically, and the relation between the pressure and volume is represented by the curve $B C$ and by the equation $P V^{r n}=$ a constant, where $n=1 \cdot \overline{4}$. When compressed adiabatically the temperature of the air rises.

If the air remains at constant temperature during compression, it is compressed isothermally, and the relation between the pressure and volume is represented by the curve $B D$, and by the equation $P V=$ a constant.

In actual practice the relation between the pressure and volume during compression is represented by a curve $B E$, which lies between the curves $B C$ and $B D$, and is expressed by the equation $P^{\prime} V^{n}=$ a constant, where n lies between 1 and $1 \cdot 4$ (generally $1 \cdot 3$). After compression the air is discharged at the constant pressure OF.

Mean Effective Pressure and Work done in the Cflinder of a Compressor.-
$P_{1}=$ absolute pressure during suction stroke.
$P_{2}=$ absolute pressure at end of compression.
$P=$ mean effective pressure.

$$
P=P_{1}\left(\frac{n}{n-1}\right)\left\{\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}-1}\right\}
$$

For isothermal compression

$$
P=P_{1} \log _{e}\left(\frac{P_{2}}{\bar{P}_{1}}\right)
$$

$A=$ effective area of piston.

$L=$ length of stroke.
Work done in two strokes or one revolution $=2 A P L$, if the compressor is double acting, and half this amount if single acting. If A is in square inches, P in lbs. per square inch, and L in feet, the foregoing formula gives the work done in footpounds.

Temperature at End of Compression.-
T_{1} and $P_{1}=$ absolute temperature and absolute pressure respectively at beginning of compression.
T_{2} and $P_{2}=$ absolute temperature and absolute pressure respectively at end of compression.

$$
T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}
$$

The compression is assumed to be performed adiabatically.

Effect of Clearance.-At the end of the compression stroke the clearance space $O A$ is full of air at the pressure $A B$. During the next suction stroke the air in the clearance space expands until its pressure equals $C D$. The suction valve then opens, the piston being at C, and air is drawn in until the stroke $A E$ is completed. The principal effect of the clearance space is to diminish the amount of air passing through the cylinder. The amount passing through per revolution is cqual to ${ }^{\prime} A E^{\prime} \times$ volume
 swept through by the piston in one stroke for a single acting compressor, and double this for a double acting compressor.

The clearance does not affect the amount of work done in compressing a given quantity of air to a given pressure, but the cylinder must he larger in the ratio of $A E$ to $C E$.

The clearance volume in a compressor cylinder is generally small (from 1 to 2 per cent. of the volume swept through by the piston in one stroke).

Necessity of Cooling the Air during Compression.-In most cases where air compressors are used, the air is transmitted after compression to some distance before it is used in a motor, and it has time to cool down to the temperature of the surrounding atmosphere, and in consequence it shrinks to the volume which it would have had had it been compressed isothermally; hence any work which is done in the compressor cylinder in addition to that required to compress the air isothermally is lost. The compression curve should therefore be kept as near to the isothermal curve as possible. This is done by cooling the air during compression, either by a water-jacket round the cylinder or by a water spray injected into the cylinder.

Compound Compressors.-A higher efficiency is obtained by compressing the air in two or more stages in separate cylinders, the air being cooled on its way from the larger to the smaller cylinder. The air can be cooled much more effectively in this way, because it can be passed through a long coil of pipe which presents a large surface to the cooling water which surrounds it.

The advantage of compounding is shown by the adjacent diagram. $A B$ represents the volume of the low-pressure cylinder,
 and $B C F$ is the compression curve, assuming that all the compression is produced in the low-pressure cylinder. When the pressure has been raised from P_{1} to P_{3} the volume has been reduced from $A B$ to $C L$. The air is then delivered to the high-pressure cylinder, bat on its way it is cooled, as explained above, and its volume is reduced to $D L$. which is the volume
of the high-pressure cylinder, the point D being on the isothermal $B D H$. In the high-pressure cylinder the volume is reduced from $D L$ to $E K$, and the pressure is raised from P_{2} to P_{3}. The area $C D E F$, as compared with the whole area $A B C F K$, represents the saving due to compressing the air in two cylinders instead of in one

The best results are said to be obtaned when the proportions are those given by the formulx below:-
$P_{1}=$ absolute pressure of air during the suction stroke in the low-pressure cylinder.
$P_{2}=$ absolute pressure of , air delivered from low-pressure cylinder.
$P_{3}=$ absolute pressure of air delivered from ligh-pressure cylinder.
$\boldsymbol{V}_{1}=$ volume of low-pressure cylinder.
$V_{2}=$ volume of high-pressure cy linder.

$$
P_{2}=\sqrt{ } P_{1} P_{3 .} \quad \frac{V_{2}}{V_{1}}=\sqrt{\frac{P_{2}}{P_{2}}}
$$

Available Work in the Air in the Air Main. -
Let
$U=$ brake horse-power of compressor.
$U_{1}=$ indicated air horse-power $=\eta_{m} U$, where $\eta_{m}=$ mechanical efficiency, and varies from 0.85 to 0.9 .
$U_{2}=$ available indicated horse-power of the air delivered into the air main, assuming that the air cools down to atmospheric temperature.
$U_{2}=\eta_{c} U_{1}=\eta_{m} \eta_{c} U$, where $\eta_{c}=$ compression efficiency and varies from 0.5 to 0.75 for single-stage compressors (in a good example η_{c} may be taken as 0.7). For a two-stage compressor η_{c} varies from 0.85 to 0.95 and may be taken as 0.9 .
U_{2} would be the indicated horse-power of the compressor cylinder if the air were drawn in at atmospheric pressure, compressed isothermally, and delivered at a uniform pressure, as shown by the full line diagram annexed. The probable actual indicator diagram, representing the indicated horse-power U_{1}, is shown dotted. The suction and delivery lines are outside the suction and delivery lines of the theoretical diagram
 because of the resistance offered by the valves and passages, and the compression line of the actual diagram is outside the isothermal line because of the heating of the air during compression.

Power Developed in Compressed Air Motor.-The maximum power is obtained when the air expands adiabatically in the cylinder of the motor.
P_{2} and $V_{2}=$ absolute pressure and volume respectively of air taken from air main by the motor in one stroke.
$P_{3}=$ absolute pressure to which the air is expanded in the motor.
Maximum work done in one stroke $=\frac{n}{n} \frac{n}{-1} P_{2} r_{2}\left\{1-\left(\frac{P_{3}}{P_{2}^{\prime}}\right)^{\frac{n-1}{n}}\right\}$
If $n=1 \cdot 41$, then $\frac{n}{n-1}=3 \cdot 44$, and $\frac{n-1}{n}=\cdot 29$.
If before using the air in the motor the air be reheated so that its absolute temperature is raised from T_{2} to T_{3}, then the theoretical maximum work done in one stroke will be increased to

$$
\frac{n}{n-1} P_{2} V_{2}\left\{1-\left(\frac{P_{3}}{P_{2}}\right)^{n-1}\right\}_{T_{2}^{\prime}}^{T_{3}}
$$

If P_{2} is in lbs. per square foot, and V_{2} is in cubic feet, the work done will be expressed in foot-pounds.
Advantage of Reheating the Air.-If the air is reheated before passing into the motor, the available work is increased in the ratio of the absolute temperature after reheating to the absolute temperature before reheating. For example, if the absolute temperature before reheating is 520°, and the absolute, temperature after reheating is 760°, then the available work will be $760 \div 520=1.46$ times what it was before reheating. This great increase of work may be obtained by the expenditure of a comparatively small quantity of fuel in a suitable heater.

Besides increasing the work done in the motor, the reheating of the air obviates the inconvenience which attends a low temperature in the exhaust pipe of the motor.

Turbo-Compressors.-As the impeller rotates, it carries air
 round with it, and this air acquires the velocity of the impeller. Its kinetic energy is therefore increased as it travels from the centre to the edge. Its pressure will also increase, and the figure shows approximately the distribution of pressure and velocity of air in the impeller and diffuser.

If r_{1} and r_{2} be inner and outer radii of the impeller, and ω its angular velocity, then the tangential velocities of air at inlet and outlet are $u_{1}=\omega r_{1}$ and $u_{2}=\omega r_{1}$.

Let P_{1} and P_{2} be inlet and outlet pressures, and v_{1} and v_{2} velocities of whirl at inlet and outlet, then the pressure rise per stage is $P_{2}-P_{1}=P_{1}\left[\left\{\frac{v_{2} u_{2}-v_{1} u_{1}}{K_{p} g T_{1}}+1\right\}^{\frac{n-1}{n}}-1\right]$, where T_{1} is the absolute temperature at inlet, and K_{p} the specific heat of air at constant pressure in foot-pounds per degree.

Temperature at outlet, $\quad T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}$.
Work done per lb. of air, $W=\frac{1}{g}\left(v_{2} u_{2}-v_{1} u_{1}\right)$.
For one stage the pressure ratio does not usually exceed $\mathbf{1 . 2}$. Any number of stages can be used, but about 12 is the usual limit. Since the pressure rise is reduced as the inlet temperature increases, cooling is essential on multi-stage compressors.

Blowers. - For very low pressures, e.g. 20 inches of water, singlestage centrifugal fans are often used.

If fan outlet is A sq. in., and pressure and velocity in the outlet pipe are P lbs. per sq. in. and $v \mathrm{ft}$. per sec. respectively, then horse-power of fan $=\frac{P A v}{55} \overline{0}$.

If ρ is density of air at pressure P,

$$
P=\frac{v^{2} \rho}{2 g} ; \text { hence horse-power }=\frac{A v^{3} \rho}{550 \times 2 g}, \propto v^{3} .
$$

The efficiency of such fans is usually low.
Turbo blowers and compressors have the advantage that their necessarily high speed enables them to be driven directly by steam-turbines or high-speed electric motors.

Roots Blower.-This is a type of gear pump having only two teeth or lobes per rotor. The rotors revolve in opposite directions, and the air trapped between rotor and casing is delivered to the outlet pipe. It will be seen that the volume of each rotor is approximately equal to the volume of air so trapped, so that the air delivered per revolution is $V=\frac{1}{4} \pi d^{2} l$, where d is diameter of rotor, and l its length. If the pressure exceeds about 5 libs. per sq. in. (gauge), the leakage due to the essential working clearances will reduce the output considerably.

Testing of Air Comprensors, -For most purposes, the assessment of F.A.D., and brake horse-power necessary to supply this, is the test required by the user.

The F.A.D. is detormined by the British Standard Method, as
 laid down in B.S. No. 726-1937. The set-up for testing is shown in the figure. The pressure difference across a calibrated nozzle and that between the downstream side of the nozzle and the atmosphere are measured by water manometers. The pressure at inlet is measured by a meroury barometer and air temperature is observed at inlet and outlet.
At inlet. Atmospheric pressure, in inches of mercury $=P_{i}$. Air temperature (${ }^{\circ} \mathrm{F}$.) $=\boldsymbol{t}_{\boldsymbol{i}}$.
At nozzle. Head across nozzle, in inches of water $=h$. Difference in pressure between downstream side of nozzle and atmosphere $=m$ inches of water $=m / 13 \cdot 6$ inches of mercury. Absolute pressure on downstream side of nozzle $=m_{2}$ inches of mercury. $m_{2}=$ atmospheric pressure $\pm(m / 13 \cdot 6)$.

The temperature of air in the pipe line (${ }^{\circ} \mathrm{F}$.) $=t$.
Then F.A.D. $=K\left(\frac{T_{i}}{P_{i}}\right) \sqrt{h} \sqrt{\frac{m_{2}}{T}}$ cubic feet per minute, where $T_{i}=459 \cdot 6+t_{i}$ and $T=459 \cdot 6+t$, while the value of K is obtained from the following table *:

Nozzle. in Inches.	SuitablePipe Line. Internal Diam. Inches.	Approx. P.A.D., Cu. Ft./Min.			$\begin{gathered} \text { Constant } \\ \boldsymbol{I} . \end{gathered}$
		$h=0.4 \mathrm{In}$.	$h=4 \mathrm{In}$.	$h=40 \mathrm{In}$.	
$\frac{8}{1}$	$1{ }^{\frac{7}{4}}$	\cdots	$\stackrel{6}{16}$	18 50	0.73 2.03
$1{ }^{8}$	$2 \frac{1}{2}$.	46	$\begin{array}{r}18 \\ 130 \\ \hline\end{array}$	2.03 5.18
$1 \frac{1}{2}$	$3 \frac{1}{2}$	30	90	300	11.65
21	6	80	260	800	$32 \cdot 4$
4	10	210	660	2100	82.8
6	15	470	1500	4700	187
10	24	1300	4100	13000	618
15	36	3000	9250	30000	1165

Transuifsion of Power by Compressed Air.
$P_{a}=$ pressure in lbs. per square foot . .) of air admitted $p_{a}=$ pressure in lbs. per square inch . . from the atmos$\nabla_{a}=$ volume of 1 lb . in cubic feet . . . $\}$ phere to the
$T_{a}=$ absolute temperature in degs. Fahr.) compressor.
P_{1}, p_{1}, V_{1}, and T_{1}, the corresponding quantities for air dilcharged from the compressor into the main.

- Extracted tram B.B. Mo. 798-m1987.
P_{2}, p_{2}, V_{2}, and T_{2}, the corresponding quantities for air arriving at the point of consumption in the main.
$U=$ brake horse-power of compressor.
$U_{1}=\eta_{m} U=$ indicated air horse-power.
$U_{2}=\eta_{\mathrm{c}} U_{1}$ =isothermal horse-power.
$U_{3}=$ adia batic horse-power of motor.
Taking $P_{a}=2116.8, p_{a}=14.7, V_{a}=13.09, T_{a}=521^{\circ}$, $P_{a} V_{a}=27710$
$W=$ weight of air compressed, in lbs., per second, by U horse-power in driving unit.
$550 \eta_{m} \eta_{c} U=27710 W \log _{e} \frac{p_{1}}{p_{a}} . \quad W=\frac{\eta_{m} \eta_{c} U}{50 \cdot 4 \log _{0} \frac{p_{1}}{p_{a}}}$

$$
P_{1} V_{1}=27710 .
$$

$$
p_{1} V_{1}=192 \cdot 3
$$

$v_{1}=$ initial velocity of air in main in feet per second.
$d=$ diameter of main in feet. $l=$ length of main in feet.

$$
\begin{align*}
\frac{\pi}{4} d^{2} v_{1} & =W V_{1}=192 \cdot 3 \frac{W}{p_{1}} . \quad d=15 \cdot 64 \sqrt{\frac{W}{p_{1} v_{1}}} . \tag{4}\\
\frac{p_{2}}{p_{1}} & \left.=\sqrt{\{1-} \begin{array}{r}
v_{1}^{2} l \\
71,3 \Leftrightarrow,(0) d(d) d
\end{array}\right\} . \tag{5}
\end{align*} .
$$

If the air is used in the motor without reheating, then,

$$
\begin{equation*}
U_{3}=\frac{95600 \mathrm{~W}}{550}\left\{1-\left(\frac{p_{a}}{p_{2}}\right)^{029}\right\} \tag{6}
\end{equation*}
$$

If the air is reheated to temperature T_{3} before admis. sion to the air-motor, then,

$$
\begin{equation*}
U_{3}^{\prime}=\frac{95600 W}{550}\left(\frac{T_{3}}{T_{a}^{\prime}}\right)\left\{1-\left(\frac{p_{a}}{p_{2}}\right)^{029}\right\} \tag{7}
\end{equation*}
$$

Pneumatic Tools.-The following gives a few applications of compressed air for tools used in workshops, together with the air consumption of representative types. The working pressure is usually of the order of 80 lbs . per square inch:-

Type of Tool.	Duty.	$\|$Speed of Opera tion. Revs. or Strokes per Minute.	Air Consumption. Oublo Air per Minute.
Drill Grinder Grinder Hammer, chipping	Light	1000-1500	18-20
	Heavy	350-600	30-50
		3000-6000	25-45
	Extra light	4500	6
	Light	2000-3000	15-18
	Heavy	1500	18
Hammer, riveting	Light	${ }^{3500}$	8
	Medium	1500-3000	15-20
	Heavy	1000-1600	20-30
Sand rammers	..	750-1000	12-22

The Flow of Gas or Steam through Pipes.-In Engineering, vol. lxiii. p. 361, Mr. Arthur J. Martin examines the best-known formulæ for the flow of gas or steam through pipes, and finally approves of Unwin's formula, with a slight change in the constant. Mr. Martin then derives from the fundamental formula the other formulæ given below, so that if all the factors but onf are known, that one can be determined.
$p=$ loss of pressure in lbs. per square inch.
$w=$ delivery of fluid in lbs. per minute.
$Q=$ delivery of fluid in cubic feet per minute.
$r=$ velocity in feet per second.
$d=$ diameter of pipe in inches.
$L=$ length of pipe in feet.
$1)=$ density of tluid in lbs. per cubic foot.
$F=$ loss of pressure in feet of fluid.
$H=$ loss of pressure in inches of water $=2 \pi \cdot i p$.
$M=$ loss of pressure in inches of mercury $=2.04 p$.

$$
\begin{aligned}
& p=\frac{u^{2} L\left(1+\frac{3 \cdot 6}{d}\right)}{7\left(000 D d^{5}\right.}=-\frac{Q^{2} D L\left(1+\frac{36}{d}\right)}{7000 d^{5}}=-\frac{r^{2} D L\left(1+\frac{36}{d}\right)}{65360 \bar{d}} \\
& u=\sqrt{\frac{70(1) D d^{5}}{L\left(1+\begin{array}{c}
3 \\
d
\end{array}\right)}}=Q D={ }_{3 \cdot D d^{2}}^{3 \cdot 056} . \\
& Q=\stackrel{u \prime}{\nu}=\sqrt{\frac{\pi 0 \overline{0} \bar{p} d^{5}}{D L\left(1+\frac{3 \cdot 6}{d}\right)}}=\frac{v d^{2}}{3} \cdot \overline{056} . \\
& v=\frac{3 \cdot 056 w}{D \bar{d}^{2}}=\frac{3056 Q}{d^{2}}=256 \sqrt{\frac{p d}{D L\left(1+\frac{3 \cdot 6}{d}\right)}} . \\
& =\sqrt{\frac{454}{L\left(1+\frac{3.6}{d}\right)}} . \\
& \dot{x}=\sqrt[5]{\frac{0002 w^{2} L}{p} \bar{D}}=\sqrt[5]{\frac{0002 Q^{2} \overline{D L}}{p}} \text { approximately } \\
& L=\frac{7000 p D d^{5}}{\left(1+\frac{3 \cdot 6}{d}\right) w^{2}}=\frac{7000 p d^{5}}{\left(1+\frac{3 \cdot 6}{d}\right) Q^{2} D} .
\end{aligned}
$$

$$
\begin{aligned}
& F=\begin{array}{c}
w^{2} L\left(1+\frac{3 \cdot 6}{d}\right) \\
49 D^{2} d^{5}
\end{array}=\begin{array}{c}
Q^{2} L\left(1+\frac{3 \cdot 6}{d}\right) \\
49 d^{v}
\end{array} \\
&=v^{2} L\left(1+\frac{3 \cdot 6}{d}\right)= \\
& 454 d
\end{aligned}
$$

Mr. Martin adds, where the loss of pressure in a pipe is but a small proportion of the original pressure, no great inaccuracy will result from using the density due to the original pressure, or preferably that due to the mean of the original and terminal pressures if both are known. But in long mains, where the loss of pressure is very great, it is better to ascertain the initial velocity by means of the following formula :-

$$
\left.u=\sqrt{\left\{\begin{array}{c}
4800000 d\left(P_{1}^{2}-P_{2}^{2}\right) \\
\left(1+\begin{array}{c}
3 \cdot 6 \\
d
\end{array}\right) L D_{a} P_{1}^{2}
\end{array}\right\}}\right\}
$$

where $u=$ initial velocity in feet per second.
$P_{1}=$ absolute initial pressure in lbs. per square inch.
$P_{2}=$ absolute terminal pressure in lbs. per square inch.
$D_{a}=$ density of the gas at atmospheric pressure.
$d=$ diameter of pipe in inches.
$L=$ length of pipe in feet.
The weight of gas delivered can then be ascertained by substituting the value of u thus arrived at for v in the equation,

$$
w=\begin{gathered}
v D d^{2} \\
3 \cdot 056^{\circ}
\end{gathered}
$$

The loss of pressure given by the foregoing formule is for a straight pipe.

Mr. Martin concludes by giving the following table, calculated from Hurst's formulæ :-

Length in feet of straight pipe equivalent to a square elbow and to a bend of radius=diameter.

Diam.	Elbow.	Bend.	Diam.	Elbow.	Bend.	Diam.	Elbow.	Bend.
Inches.	Feet.	Feet.	Inches.	Feet.	Feet.	Inches.	Feet.	Feet.
1	1.5	$\cdot 23$	7	32.0	4.8	16	$90 \cdot 1$	$13 \cdot 5$
2	4.9	$\cdot 74$	8	38.0	$5 \cdot 7$	18	104	$15 \cdot 5$
3	$9 \cdot 4$	$1 \cdot 41$	9	$44 \cdot 4$	6.7	20	117	$17 \cdot 5$
4	14.5	$2 \cdot 2$	10	$50 \cdot 7$	$7 \cdot 6$	22	130	$19 \cdot 6$
5	20.0	$3 \cdot 0$	12	63.7	$9 \cdot 6$	24	144	$21 \cdot 6$
6	$25 \cdot 9$	$3 \cdot 9$	14	76.7	11.5	...		

The loss of pressure at a screw-down valve is about $1 \frac{1}{2}$ times that due to a square elbow.

HYDRAULIC TRANSMISSION OF POWER

In low-pressure systems the water is stored in reservoirs, ana the pressure is obtained by "head" of water, the head being the altitude of the surface of the water in the reservoir above the point at which the power is used. If $I=$ head of water in feet, and $p=$ pressure in lbs. per square inch corresponding to the head H, then, neglecting friction, $p=\cdot 433 H$.

Generally $I I$ does not exceed 600 feet, which corresponds to a pressure of 260 lbs . per square inch.

In the ordinary water mains of towns the water pressure is generally from 50 to 100 lbs . per square inch.

In high-pressure systems with accumulator storage the pressure of the water is obtained by means of pumps, and is usually from 700 to 800 lbs . per square inch. In the systems at work in Manchester and Glasgow, the pressure of the water is 1120 lbs , per square inch.

The velocity of the water in the mains does not generally exceed 3 feet per second, but is in some cases as high as 5 feet per second.

The energy transmitted by a pipe having a diameter d inches, carrying water at a pressure of p lbs. per square inch at a velocity of v feet per second is, ${ }_{4}^{\pi} d^{2} p v$ foot-lbs. per second, and the horse-power is $\frac{\pi d^{2} p v}{4 \times \tilde{5} 50}$.

If $p=$ pressure of water in lbs. per square inch, then,
1 lb . weight of water used produces $2 \cdot 3 p$ foot-lbs. of work.
1 gallon of water used produces $23 p$ foot-lbs. of work.
1 cubic inch of water used produces ${ }_{1}^{1} \frac{1}{2} p$ foot-lbs. of work.
1 cubic foot of water used produces $144 p$ foot-lbs. of work.
The pipes used are made of cast-iron, and for a working pressure of 800 lbs . per square inch they do not exceed $7 \frac{1}{2}$ inches in diameter.

The loss of pressure due to friction in the pipes, per mile of length, at a velocity of 3 feet per second, is, according to Unwin, about $\frac{107}{d}$ lbs. per square inch, where d is the diameter of the pipe in inches.

The pumping engines used are generally of the direct acting triple expansion type. The following are the particulars of the pumping engines at the Glasgow hydraulic power station.* The engines are of the vertical, inverted cylinder, triple expansion type. Diameter of H.P. cylinder, 15 inches. Diameter of I.P.

[^43]cylinder, 22 inches. Diameter of L.P. cylinder, 36 inches. Stroke of pistons, 2 feet. Each cylinder is steam-jacketed. Depth of pistons, $7 \frac{1}{4}$ inches. Diameter of piston-rods, 3 inches. The L.P. cylinder can either exhaust into the atmosphere or into a surface condenser having 530 square feet of cooling surface. Diameter of crank shaft, 7 inches. Angles between cranks, 120 degrees. Diameter of fly-wheel, 7 feet. Weight of fly-wheel, 2 tons. The crank shaft is below the pumps, and the connecting-rods are made double so as to clear the pump bodies.

The air, circulating, and feed pumps, each having a stroke of 16 inches, are driven from the cross-head of the intermediate cylinder by a rocking lever and links. Diameter of air pump (single acting), 13 inches. Diameter of circulating pump (double acting), 8 inches. Diameter of feed pump (single acting), 2 inches.

Each steam cylinder drives a single-acting ram pump, the piston-rod and ram being cottered to the same cross-head. The pump bodies are of cast-iron. The rams are of gun-metal, $4 \frac{1}{2}$ inches in diameter, with conoidal ends.

The indicated horse-power of each set of engines is 200 , and each set is capable of delivering 230 gallons of water per minute against an accumulator pressure of 1120 lbs . per square inch, with a steam pressure of 120 lbs . per square inch, and a piston speed of 240 feet per minute. Weight of feed water, 15 lbs . per I.H.P. per hour.

Tranaverse Section and Elevation.
Hydraulic Stop Valve.

Hydraulic Accumulator used at Manchester and Glasgow.
Dismeter of ram, 18 inches; stroke, 23 feet; total lomd, 127 tons, inclusive of ram and osuing.

The accumulators at hydraulic power stations have rams, which are generally from 18 to 20 inches in diameter, and the stroke is from 20 to 23 feet. Where two accumulators are used, one is loaded to about 20 lbs . per square inch more than the other, so that one does not rise until the other is at the top of its stroke.
If $D=$ diameter of the ram in inches, $h=$ stroke of ram in feet, $W=$ load on ram in lbs., and $p=$ pressure of water in lbs. per square inch, then, neglecting friction, $W=\frac{\pi}{4} D^{2} p$, and the number of foot-lbs. of work which may be stored up in the accumulator $=W h={ }_{4}^{\pi} D^{2} p h$.

The mechanical efficiency of the pumping-engines may be taken at from 75 to 80 per cent. The efficiency of an hydraulic press with one ram and one gland or packing leather is about 90 per cent. The efficiency of lifts and cranes fully loaded is about 55 per cent.

The efficiency of a ram with a chain and pulley multiplying gear of good design, and well lubricated, is given approsimately by the formula -

Efficiency per cent. $=84-2 m$,
where m is the ratio of multiplying power.

HYDRAULICS.

Pressure due to Head of Water. -
$h=$ head of water in feet.
$w=$ weight of one cubic foot of water in lbs.
$p=$ pressure of water in lbs. per square foot due to head h.

$$
p=w h . \quad h=p \div w .
$$

Pressure in lbs. per square inch $=p \div 144$.
For weight of water see p. 342.
For table of pressures of water corresponding to various heads see p. 343.

Velocity due to Head of Water.-
$h=$ head of water in feet.
$v=$ velocity of water in feet per second due to head h when there are no resistances.

$$
v=\sqrt{2} \overline{2} h .
$$

Energy and Pressure of Water in Motion in a Pipe.-The adjacent illustration shows a tank, open at the top, from which a plpe conveys water to some datum level, say, the level of the sea. H and h are heights in feet above the datum level. Consider a mass of water weighing 1 lb . At A this mass of water has H foot-lbs. of potential energy, and it has no velocity and no pressure. At the level B the 1 lb . mass of water has h footlbs. of potential energy, and $\frac{v^{2}}{2 g}$ foot-lbs. of kinetic energy, where v is the velocity of the water at B in feet per second. If v is less than $\sqrt{2 g H_{1}}$ the mass of water at B will exert a pressure of p lbs. per squaie foot such that, $\frac{v^{2}}{2 g}+\frac{p}{w}=H_{1}$, or $p=w\left(H_{1}-\frac{v^{2}}{2 g}\right)$, where $w=$ weight of 1 cubic foot of water in lbs. H_{1} is called the equivalent head of water having a velocity v and pressure p. $\frac{p}{v}$ is called the pressure energy of the water.

The total energy in the 1 lb . mass of water at B is,

$$
\frac{v^{2}}{2 g}+\frac{p}{w}+h=H
$$

Which is equal to the energy in the same mass of water at 4 . It is assumed that there is no loss of emergy due to friction of the water in the tank or pipe.

If the sectional area of the pipe varies, the velocity of the water will vary inversely. Thus if the sectional area changes from a_{1} to a_{2}, the velocity will change from v_{1} to v_{2} such that $v_{1} a_{1}=v_{2} \alpha_{2}$; also, the pressure will change from p_{1} to p_{2}, and if the potential head or potential energy changes from h_{1} to h_{2}, then,

$$
\frac{v^{2}}{\frac{1}{\Xi}}+\frac{p_{1}}{w}+h_{1}=\frac{v_{2}^{2}}{2 y}+\frac{p_{2}}{w}+h_{w} .
$$

Discharge of Water through Small Orifices.-
$I=$ head of water in feet.
$v=$ velocity of discharge in feet per second, resistances neglected.
$v_{1}=$ actual velocity of discharge in feet per second.
$c=$ coefficient of velocity $=v_{1} \div v$.
$A=$ area of orifice in square feet.
$A_{1}=$ area of smallest section of jet in square feet.
$h=$ coefficient of contraction $=A_{1} \div A$.
$C=$ coefficient of discharge $=c k$.
$Q=$ quantity of water discharged per second in cubic feet.

$$
\begin{array}{lr}
v=\sqrt{2 g H} . & v_{1}=c v=c \sqrt{2 g H} . \\
Q=v_{1} A_{1}=c k v A=c k A \sqrt{2 g H}=c A \sqrt{2 g} 2 .
\end{array}
$$

(a)

Values of the coofficients c, k, and C.

(c)

(a) Sharp edged orifices.

Rectangular. $c=97 . \quad k=6$ to $063 . \quad C=.58$ to 061 . Circular. $\quad c=97 . \quad k=64 . \quad C^{\prime}=\cdot 62$.
(b) Square edged orifice and external pipe.
$c=1$ (nearly). $k=815 . \quad C=815$.
(c) Square edged orifice and internal pipe.
$c=98 . \quad k=\cdot 5 . \quad C=49$.
(d) Rankine gives the following empirical formula for determining k where a pipe $E F$ of sectional area S discharges into the atmosphere through an orifice of sectional area A :-

$$
\frac{1}{k}=\sqrt{2 \cdot 618-1 \cdot 618 \frac{A^{2}}{S^{2}}}
$$

Formulm for Friction of Water in Pipes.-Of the formule given below, Unwins is probably the most exact, but Darcy's has been most used.
$d=$ internal diameter of pipe in feet.
$v=$ velocity of water in feet per second.
$l=$ length of straight pipe in feet.
$h=$ loss of head in feet, due to friction of water in pipe, or head necessary to overcome friction.
Unvin's formula :-

$$
h=\frac{m}{d^{x}} \times l \times \frac{v^{n}}{2 g} .
$$

Values of m, x, and n are given in the following table:-

	Kind of Pipe.			m	x	n
Wrought-iron (gas)$(0226$
New cast-iron.	$1 \cdot 21$	$1 \cdot 75$				
Cleaned cast-iron.0215
Incrusted cast-iron0243

Darcy's formula :-

$$
h=z\left\{1+\frac{1}{12 \bar{d}}\right\} \times \frac{4 l}{d} \times \frac{v^{2}}{2 g} .
$$

$z=\cdot 005$ for new cast-iron pipes.
$z={ }^{\circ} 01$ for old incrusted cast-iron pipes.
Weisbach's formula :-

$$
h=\frac{2 l}{d}\left\{\cdot 0072+\frac{.0086}{\sqrt{v}}\right\} \times \frac{v^{2}}{2 g} .
$$

Weisbach's formula for the loss of head due to a bend in a pipe is as follows :-

$$
h=\cdot 131+1 \cdot 847\left(\frac{d}{2 R}\right)^{3.3} \times \frac{v^{2}}{2 g} \times \frac{a}{180},
$$

where $R=$ radius of curvature of centre line of bend in feet, and $a=$ angle, in degrees, subtended by the bend at its centre of curvature. The other symbols have the same meanings as before.
The loss of energy due to loss of head is equal to the weight of water delivered in lbs. multiplied by the loss of head in feet.

General Formula for Hydraulic Resistances.-
$v_{1}=$ actual velocity of water in feet per second at the point
where the resistance is encountered.
$h=$ loss of head, in feet, due to resistance.
$F=$ coefficient of resistance.

$$
h=F \frac{v_{1}^{*}}{2 g} .
$$

Professor Cotterill in his "Applied Mechanics," fourth edition, p. 486, gives the following values of F : -

Orifice in a thin plate, $F=0.06$.
Square-edged entrance of a pipe, $F=\cdot 5$.
Sudden enlargement of a pipe in the ratio $m: 1, F=(m-1)^{2}$, referred to velocity throngh larger part of pipe.
Bend at right angles in a pipe, radius of bend $=$ three times diameter of pipe, $F=-14$.
Quick bend at right angles, radius of bend $=$ diameter of pipe, $F=\cdot 3$.
Common cock partially closed, handle turned tbrough 15°, $30^{\circ}, 45^{\circ}$ from position when full open. $F=75,5 \circ$, and 31 respectively.
Knee in a pipe at right angles, $F=1$.
Surface friction of a pipe, the length of which is n times the diameter, $F=4 f n$. For a clean cast-iron pipe d inche in diameter, $4 f=\frac{.036}{\sqrt[6]{d}}$

Impact of Water Jets.-
$V=$ velocity of water before impact in feet per second.
$W=$ weight of water delivered per second in lbs.
$P=$ reaction of plate on jet in lbs.

(a) Plate at right angles to direction of jet.

$$
P=\frac{W V}{g}
$$

(b) Plate inclined at an angle θ to direction of jet.

$$
P=W V \sin \theta
$$

(c) Jet impinges at the centre of a cup.

$$
P=\frac{W V(1+\cos \theta)}{g}
$$

Os the angle between the tangent at A and the centre line of the jet.

Turbines.

Classification of Turbines.-Considering the action of the water on the vanes, turbines are either reaction wheels or inipulse wheels. In reaction turbines the motive power is obtained mainly from the pressure energy of the water, while in impulse turbines the motive power is obtained from the kinetic energy of the water.

In reaction turbines all the passages in the guide and wheel are filled with water, and the turbine is said to be drowned. It follows that in this type of turbine the product, velocity of water across any section of the passage, multiplied by the area of that section, is constant. Reaction turbines are generally used where there is a large quantity of water available under a small or moderate head.

In impulse turbines the buckets are not filled by the water passing through them, and they must be so constructed that the atmosphere has free access to the spaces in the buckets not occupied by the water. Impulse turbines are suitable for moderate or small quantities of water under a great head.

Turbines may also be classed according to the direction in which the water flows through them, into, radial flow, axial or parallel flow, and combined or mixed flow. Radial flow turbines are again divided into two classes, viz., outward flow and inward flow.

The axis of a turbine may be either vertical or horizontal.
Formulm for Reaction Turbines.-Water enters the fixed guide wheel at A, and is guided by the fixed guide vane $A B_{1}$, which delivers the water in the direction $V_{1} B_{1}$ on to the vane or bucket

Outward fow turbine. Section perpendicular to axis of wheel.

Inward Alow turbine. section perpendfcular to axis of whech
$B_{1} B_{2}$ of the revolving wheel at B_{1}. The water leaves the revolving wheel at B_{2} in the direction $B_{2} U_{2}$.
$B_{1} C_{1}$ and $B_{2} C_{2}$ are tangents to the wheel circles at B_{1} and B_{2} respectively. $\quad B_{1} V_{1}$ is a tangent to the guide vane at B_{1}. $\quad B_{1} U_{1}$ and $B_{2} V_{2}$ are tangents to the wheel vane at the points B_{1} and B_{2} respectively. $\quad V_{1} W_{1}$ and $U_{2} W_{2}$ are perpendiculars to $B_{1} C_{1}$ and $B_{2} C_{2}$ respectively.

Note.-A turbine has a considerable number of guides and buckets, but in the illustrations only one of each is shown. The number of guides is generally not the same as the number of buckets.
$v_{1}=V_{1} B_{1}=$ absolute velocity of outflow of water from guide passages.
$u_{2}=B_{2} U_{2}=$ absolute velocity of outflow of water from wheel passages.
$c_{1}=C_{1} B_{1}=$ tangential velocity of wheel at B_{1}.
$c_{2}=B_{2} C_{2}=$ tangential velocity of wheel at B_{2}.
$c=$ tangential velocity of wheel at mean radius r.
$u_{1}=U_{1} B_{1}=$ relative velocity of inflow of

Parallel flow turbine.
Section parallel to axis of wheel at mean radius. water.
$v_{2}=B_{2} V_{2}=$ relative velocity of outflow of water.
$w_{1}=W_{1} B_{1}=$ tangential velocity of water, or velocity of whirl, at entry.
$v_{2}=B_{3} W_{2}=$ tangential velocity of water, or velocity of whirl, at exit.
$r_{1}=$ radius of wheel at B_{1} in radial flow turbines.
$r_{2}=$ radius of wheel at B_{2} in radial flow turbines.
$r=$ mean radius of wheel in parallel flow turbines.
$\theta_{1}=$ guide angle, or angle of entrance of water.
$\phi_{1}=$ vane angle at entrance.
$\theta_{2}=$ vane angle at exit.
$\phi_{2}=$ angle of exit of water.
$\boldsymbol{A}_{1}=$ area of guide passages at exit, at right angles to directron of flow.
$d_{2}=$ area of wheel passages at exit, at right angles to diractimon of flow.
$\boldsymbol{H}=$ available head of water.
$Q=$ quantity of water available per second in cubic feet.
$g=$ accelerating effect of gravity $=32 \cdot 2$.
$\boldsymbol{E}=$ efficiency of turbine.
$\overline{\boldsymbol{H}-\boldsymbol{P}}=$ effective or brake horse-power of tarbine.
$K_{1}=$ coefficient of velocity.
$K_{2}=$ coefficient of wheel speed.
All velocities are in feet per second, linear dimensions are in feet, and areas are in square feet.

The following formule give the relations between the various velocities:-
$u_{1} \sin \phi_{1}=v_{1} \sin \theta_{1}$.
$w_{1}=v_{1} \cos \theta_{1}$.
$u_{1} \sin \phi_{1} \cos \theta_{1}=w_{1} \sin \theta_{1}$.
$c_{1}=w_{1}+u_{1} \cos \phi_{1}$.
$c_{1}=w_{1}\left(1+\tan \theta_{1} \cot \phi_{1}\right)$.
$c_{1}=w_{1} \frac{\sin \left(\theta_{1}+\phi_{1}\right)}{\cos \theta_{1} \sin } \frac{\phi_{1}}{}$.
$c_{1}=v_{1} \frac{\sin \left(\theta_{1}+\phi_{1}\right)}{\sin \phi_{1}}$.
$\tan \phi_{1}=\frac{v_{1} \sin \theta_{1}}{c_{1}-v_{1} \cos } \theta_{1}$.

$$
\begin{aligned}
& u_{2} \sin \phi_{2}=v_{2} \sin \theta_{2} . \\
& w_{2}=u_{2} \cos \phi \\
& r_{2} \sin \theta_{2} \cos \phi_{2}=w_{2} \sin \phi_{2} . \\
& c_{2}=w_{2}+v_{2} \cos \theta_{2} . \\
& c_{2}=w_{2} \sin \left(\theta_{2}+\phi_{2}\right) \\
& \sin \theta_{3}
\end{aligned}
$$

In parallel flow turbines $c_{2}=c_{1}=c$.
If $\phi_{2}=90^{\circ}$, then $w_{2}=0$, and $c_{2}=v_{2} \cos \theta_{2}=u_{2} \cot \theta_{2}$.

Work done per lb . of water passing through wheel $=\frac{c_{1} w_{1}-c_{2} w_{2}}{g}$. This will become $\frac{c_{1} w_{1}}{g}$ when $w_{2}=0$, which is the case when $\phi_{2}=90^{\circ}$.

Values of the angles.-The angles θ_{1} and θ_{2} are assumed in commencing the design of a turbine. In practice θ_{1} varies from 15° to 30° in radial outward flow turbines, and from 10° to 25° in radial inward flow and parallel flow turbines. θ_{2} varies from 10° to 25°.

Ratio of area A_{1} to area A_{2}.-The ratio $A_{1} \div A_{2}$ is also assumed. In practice $A_{1} \div A_{2}$ varies from 5 to 1 in radial outward flow turbines, and from 6 to 1.5 in radial inward flow turbines. In parallel fow turbines $A_{1}-A_{2}$ is usually about 1.

Ratio of radius r_{1} to radius r_{2}.-The ratio $r_{1} \div r_{2}$ is also assumed. For outward flow $r_{1} \div r_{2}$ varies from 7 to $\cdot 85$, and for inward How from 1.2 to 2.

Efficiency.-The efficiency E of a turbine of good design is usually from 75 to 85 , and for purposes of design it may be taken at 8.
Coefficient of vclocity. $-K_{1}=\sqrt{\frac{E}{2 \frac{A_{1} r_{1}}{A_{2}} \cos \theta_{3}} \cos \theta_{2}}$.
For parallel flow turbines the ratio $\frac{r_{1}}{r_{2}}=1$.
Velocity of outtion from guide passages. $-v_{1}=R_{1} \sqrt{2 g म \text {. }}$

Coeficient of wheel speed.-

$$
\begin{aligned}
& K_{2}=K_{1} \frac{A_{1}}{A_{3}} r_{2} \cos \theta_{2}=K_{1} \frac{\sin \left(\theta_{1}+\phi_{1}\right)}{\sin \phi_{1}} \text { for radial flow. } \\
& K_{2}=K_{1}^{\prime} A_{1}{ }_{A_{2}} \cos \theta_{2}=K_{1}^{\prime}
\end{aligned}
$$

Wheel speed. - Circumferential speed at radius $r_{1}=c_{1}=K_{2} \sqrt{2 g H}$ in radial flow turbines.

Circumferential speed at mean radius $r=c=K_{2} \sqrt{ } 2 y \bar{H}$ in parallel flow turbines.

Revolutions of wheel per minute $=\begin{gathered}60 K_{2} \sqrt{2} g \\ 2 \pi r_{1}\end{gathered} \underline{H}_{-}=\frac{76 \cdot 63 K_{2} \sqrt{ } H}{r_{1}}$ for radial flow turbines. For parallel flow turbines substitute r for r_{1}.

Area of guide passages. $-A_{1}={ }_{v_{1}}^{Q}$.
Effective or brake horse-power. $-\overline{H-P}=\frac{62 \cdot 3 E Q H}{550}$.

PUMPS.

Reciprocating Pumps. -

$D=$ diameter of plunger, piston, or bucket, in inches.
$d=$ diameter of piston-rod or bucket-rod, in inches.
$L=$ length of stroke, in inches.
$C=$ discharging capacity, in cubic feet, for two consecutive strokes.
$G=$ discharging capacity, in gallons, for two consecutive strokes.
$G=6.23 C$, for water.
$H=$ delivery head, in feet.
$h=$ suction head, in feet.
$F=$ load on pump, or force required to move planger: piston, or bucket, in lbs. (friction neglected).
Discharging Capacity of Reciprocating Pumps.-
Plunger pumps. $-C=\frac{\pi}{4} \times \frac{D^{2} L}{1728}=\frac{D^{2} L}{2200}$.
Double-acting piston pumps.-C $C=\frac{\left(2 D^{2}-d^{2}\right) L}{2200}$.
Single-acting piston pumps. $-C=\frac{D^{2} L}{2200}$ or $\frac{\left(D^{2}-d^{2}\right) L}{2200}$, depending on whether the outer or inner side of the piston is next the liquid.

Single-acting bucket pumps.- $C=\frac{D^{2} L}{22 \overline{0} 0}$. In practice this may be considerably exceeded if the bucket is worked rapidly, on account of the inertia of the water preventing the suction valve closing when the bucket commences its return stroke. The flow of water through the pump therefore continues at a diminishing rate during a portion of the return or idle stroke of the bucket.

Combined bucket and plunger pumps.-The discharging capacity for two consecutive strokes is the same as for the bucket without the plunger, viz., $\frac{D^{2} L}{22} 00^{\prime}$, where D is the diameter of the bucket. The presence of the plunger causes a portion of the water raised by the bucket to be delivered during the up stroke and the remainder during the down stroke. If the delivery is to be uniform the alea of the plunger should be half that of the bucket, or $d=D \div \sqrt{ } 2=707 D$, where $d=$ diameter of plunger, and $D=$ diameter of bucket.
Load on a Pump. -
Plunger pump.-
Suction stroke. $F=\frac{\pi}{4} D^{2} \times 433 h=34 D^{2} h$.
Delivery stroke. $F=34 D^{2} I I$.
Double-acting piston pump.-
Forward stroke. $F=\cdot 34\left\{D^{2} h+\left(D^{2}-d^{2}\right) H\right\}$.
Return stroke. $\quad F=\cdot 34\left\{D^{2} I+\left(D^{2}-d^{2}\right) h\right\}$.
If d the diameter of the piston-rod is neglected, then for each stroke $F=34 D^{2}(H+h)$.

Single-acting piston pump.-
Suction stroke. $F=\cdot 34 D^{2} h$, or $\cdot 34\left(D^{2}-d^{2}\right) h$.
Delivery stroke. $F==^{34} D^{2} H$, or $\cdot 34\left(D^{2}-d^{2}\right) H$.
The formule to the right are to be used when the water is on the piston-rod side of the piston.

Single-acting bucket pump.-
Up stroke. $\quad F=34\left\{D^{2} h+\left(D^{2}-d^{2}\right) H\right\}$.
Down stroke. $\quad F=34 d^{2} H$.
If d is neglected, then $F=34 D^{2}(H+h)$ for the up stroke, and $F=0$ for the down stroke.

Combined bucket and plunger pump.-
Up stroke, suction and delivery. $F=34\left\{D^{2} h+\left(D^{2}-d^{2}\right) H\right\}$.
Down stroke, delivery only. $\quad F=34 d^{2} H$.
Where $D=$ diameter of bucket, and $d=$ diameter of plunger.
In vertical pumps the weight of the parts raised must be added to F in the foregoing formule for the up stroke, and deducted for the down stroke.

Friction in Pipes.-The "loss of head" due to friction in the pipes may be determined by one of the formulæ on p. 728, and if this be added to the actual head in the foregoing formulx, the force F_{1} required to overcome the pressure due to the weight of the water and the friction in the pipes will be found.

Friction of Pumps.-The friction of the moving parts of a pump will increase the force required to work it by from ${ }_{1}^{18} F_{1}$ to $\} F_{1}$.

Speed of Reciprocating Pumps.-The speed of a pump plunger, piston, or bucket is generally from 50 to 200 feet per minute; speeds of 100 to 150 feet per minute are very common. The speed may be increased as the length of the stroke is increased. A safe rule is, speed in feet per minute $=45 \sqrt[3]{L}$, where L is the length of the stroke in inches.

The air and circulating pumps of marine engines generally run at speeds of 200 to 400 feet per minute.

Diameter of Pipes. - Velocity of Water in Pipes. -'The suction and delivery pipes generally have a diameter equal to threefourths of the diameter of the pump barrel. This makes the velocity of the water in the pipes $1 \cdot \tau 8$ times the speed of the plunger or piston. Sometimes the suction pipe is made larger than the delivery pipe.

Air Vessels.-The delivery of water is more uniform, and the shocks at the beginning of a stroke are reduced by placing an air vessel near to the delivery valie. The volume of the air vessel varies greatly in practice. The volume of the air vessel may be from two to six times the capacity of the pump barrel, sometimes it is as much as ten times.

An air vessel on the suction pipe near the suction valve is also desirable when the suction pipe is long. The capacity of this vessel may be from two to four times the capacity of the pump barrel. The air in this vessel has. of course, a pressure less than that of the atmosphere.

Size of Steam Cylinder for Direct-acting Steam Pump.$D=$ diameter of steam cylinder.
$d=$ diameter of pump barrel.
$P=$ mean effective pressure of steam on steam piston.
$p=$ mean effective pressure of water on water piston.

$$
\cdot 75 D^{2} P=d^{2} p . \quad D=1 \cdot 15 d \sqrt{ } \frac{p}{P} .
$$

This allows 25 per cent. of the work done in the steam cylinder for the friction of the machine. In large modern pumping engines an allowance of 10 per cent. for the friction of the machine would be sufficient.

Centrifugal Pumps. -

$d=$ diameter of suction and delivery pipes in inches,
$D=$ diameter of fan or wheel in inches,
$C=$ water discharged per minute in cubic feet.
$H=$ total height to which water is raised in feet.
$v=$ circumferential speed of wheel in feet per second.
$N=$ number of revolutions of wheel per minute.
$V^{\prime}=$ velocity of water in pipes in feet per minute.
V is generally between 300 and 500 feet per minute.

$$
\frac{7854 d^{2} V}{144}=C . \quad \therefore d=\frac{1354}{V} / C .
$$

If $V=350$, then $d=72 \sqrt{ } C$. If $V=450$, then $d=63 \sqrt{ } C$.
$D=2 d$ to $3 d$.
v varies from $8 \sqrt{ } H$ in small pumps to $10 \sqrt{ } H$ in large pumps.

$$
N=\frac{229 \cdot 2 v}{D}
$$

Efficiency of Pumps.-With lifts of 2 or 3 feet the efficiency of a centrifugal pump of moderate size is about 50 per cent. As the lift increases the efficiency increases, and reaches a maximum of about 70 per cent. when the lift is from 15 to 20 feet. Beyond this the efficiency diminishes. With a lift of 50 feet the efficiency is about 50 per cent. The efficiency of large pumps is greater than the efficiency of small ones. Centrifugal pumps are best adapted for low lifts.

The efficiency of reciprocating pumps is small with low lifts. With a lift of 10 feet the efficiency is only from 20 to 30 per cent.* The efficiency increases with the lift. With a lift of 100 feet the efficiency may reach 85 per cent. Reciprocating pumps are therefore best adapted for high lifts.

[^44]
ARDOLOY CUTTING TOOLS.

Alfred Herbert Ltd., Coventry.

Ardoloy is a hard high-speed cutting alloy capable of cutting steel, cast-iron, and non-ferrous metals at very high speeds. Its tensile strength is low, and it can be used for cutting only in the form of tips brazed on to carbon steel shanks. Both tips and standard tipped tools are obtainable.

Standard ardoloy tips are made in three different top rakes: 13° for mild steel; 8° for steel castings, alloy steels, and light cuts in cast-iron; $3 \frac{1}{\frac{1}{\circ}}$ for manganese steel, chilled iron, gunmetal, phosphor-bronze, and roughing cuts in cast-iron.

Whilst ardoloy will cut at very high speeds and is remarkably durable when used under proper conditions, its cutting edge is rapidly destroyed by vibration.

It is made in six grades:-
Grade 1a (Brown).-For light cuts. For fine boring and finish-turning hard cast-iron. For turning chilled-iron rolls and machining aluminium alloys, bakelite, and non-ferrous metals. For tipping reamer and counterboring blades.

Grade 2a (Red).-For general purpose work on cast-iron and malleable iron, semi-steel, non-ferrous metals; for tipping milling cutters and dead centres.

Grade 2 (Blue).-For general purpose work involving intermittent cutting on cast-iron and non-ferrous metals. Also for planing.

Grade 3 (Yellow).-For drawing dies, work guides for machines, such as oentreless grinders, and for wood-outting tools.

Grade S (Green).-For general purpose work on steels.
Grade W (Tips painted White).-For gauges, steadies, micrometer measuring anvils, faces on fixtures, guides, and other parts subject to wear.

Ardoloy Cutting Speeds.-As cutting speeds vary with conditions under which they are used, the following should be taken only as a general guide :-

ARDOLOY OUTTING SPEEDS.

Material.	Feet per Minute.
Mild steel (28-35 tons tensile)	300-1000
Cast steel ($40-90$ tons tensile)	80-750
Stainless steel: Bar .	100-300
Castings	60-150
Chrome nickel steel ($40-90$ tons tensile)	$80-750$
High-speed steel (annealed) .	80-250
Manganese steel (12 per cent. manganese)	10-40
Cast-iron: 200 Brinell	200-700
Close-grained iron	150-400
10 per cent. nickel iron	20-45
Chilled-iron rolls	10-50
High silicon iron	20-70
Pearlite iron	150-400
Malleable iron .	100-450
Copper, soft brass	500-1200
Cupro-nickel	350-500
Hard brass, phosphor-bronze, gun-metal	400-1000
Aluminium bronze, Admiralty bronze, ma ganese bronze	300-750
Aluminium .	1000-2000
Aluminium alloys	300-750
Plastics, erinoid, ebonite, hard rubber	500-1000
Porcelain, marble	10-65
Slate	50-100
Glass	30-70

HINTS ON MILLING CUTTERS.

B.S.A. Tools Lid., Birmingham.

Speed of Cutters.-High-speed cutters, to be efficient, must be run at suitable speeds. It is impossible to specify definite speeds and feeds for various cutters, as much depends upon the circumstances in which they are used. As a guide, to be used only in a general sense, however, the following cutting speeds are suggested:-

By referring to the tables on pp. 740, 741 the correct speeds, in revolutions per minute, for any cutter can be obtained, based on the above surface speeds.

Lubrication and Cooling.-High-speed steel is more efficient than ordinary carbon steel because it will cut faster, not being so susceptible to tempering or softening resulting from the heat generated by outting. A milling cutter should be cooled in order to preserve its cutting edges as long as possible.

Rigidity of Machine.-Tests show that a cutter will stand up to its work better on a machine that is rigid than if performing the same work on a less rigid machine. Uneven feeding, due to backlash, causes the edges of the cutter to wear away rapidly and stresses the cutter unnecessarily.

Grinding.-High-speed steel milling cutters should be ground on a fairly soft wheel, and a supply of water may be used with advantage to obviate the heating of the cutter. An efficient cuttergrinding machine soon repays its cost.

Storage.-Careless storage may cause cutting edges to become damaged and chipped. Milling outters should be inspeoted and ground before they are stored, in order that they may be in a fit condition for use when next required.

Relation between Circumferential Speed and Revolutions.$D=$ diameter of revolving tool or piece of work in feet.
$d=$ diameter of revolving tool or piece of work in inches.
$N=$ number of revolutigns per minute of tool or piece of work.
$V=$ circumferential speed in feet per minute of tool or piece of work.

$$
\begin{array}{llll}
\pi D N=V . & N={ }_{\pi}^{1} \times \frac{V}{D} . & \pi=3.1416 . & \frac{1}{\pi}=3183 . \\
\frac{\pi}{12} d N=V . & N=\frac{12}{\pi} \times \frac{V}{d} . & \frac{\pi}{12}=\cdot 2618 . & \frac{12}{\pi}=3.82 .
\end{array}
$$

The tabulated values on the two following pages have been calculated from the formula

$$
N=\frac{12}{\pi} \times \frac{V}{d},
$$

and give the speeds in revolutions per minute corresponding to various circumferential speeds in feet per minute, for diameters ranging from \Varangle inch to 24 inches.

OUTTING SPEEDS

Cutting Speeds*-Ft./Min. and Equiv. R.P.M.

Diam.	Feet per Minute.							
	10	15	20	25	30	35	40	45
	Revolutions per Minute.							
\pm	153	229	\| 306	382	458	535	611	688
暑	102	153	204	255	306	357	407	458
$\stackrel{7}{2}$	76.4	115	153	191	229	267	306	344
$\frac{8}{8}$	$61 \cdot 1$	91.7	122	153	183	214	244	275
$\frac{8}{4}$	50.9	76.4	102	127	153	178	204	229
$\frac{7}{8}$	43.7	65.5	87.3	109	131	153	175	196
1	38.2	57.3	$76 \cdot 4$	95.5	115	134	153	172
11	$34 \cdot 0$	50.9	67.9	84.9	102	119	136	153
14	30.6	45.8	61.1	$76 \cdot 4$	91.7	107	122	138
$1{ }^{\frac{3}{8}}$	27.8	41.7	55.6	$69 \cdot 4$	$83 \cdot 3$	97.2	111	125
$1 \frac{1}{2}$	25.5	38.2	50.9	63.7	76.4	89.1	102	115
$1{ }^{\frac{3}{4}}$	21.8	32.7	$43 \cdot 7$	54.6	65.5	76.4	87.3	98.2
2	19.1	28.6	38.2	47.7	57.3	66.8	$76 \cdot 4$	$85 \cdot 9$
2	$17 \cdot 0$	25.5	34.0	$42 \cdot 4$	50.9	$59 \cdot 4$	67.9	$76 \cdot 4$
2	15.3	22.9	30.6	38.2	$45 \cdot 8$	$53 \cdot 5$	$61 \cdot 1$	68.8
23	13.9	$20 \cdot 8$	27.8	34.7	41.7	$48 \cdot 6$	$55 \cdot 6$	62.5
3	12.7	19.1	25.5	31.8	38.2	$44 \cdot 6$	50.9	57.3
34	11.8	$17 \cdot 6$	23.5	29.4	$35 \cdot 3$	41.1	$47 \cdot 0$	$52 \cdot 9$
$3 \frac{1}{2}$	$10 \cdot 9$	$16 \cdot 4$	21.8	27.3	32.7	38.2	$43 \cdot 7$	49.1
$3 \frac{3}{4}$	$10 \cdot 2$	$15 \cdot 3$	20.4	25.5	30.6	35.7	40.7	$45 \cdot 8$
4	9.5	$14 \cdot 3$	$19 \cdot 1$	23.9	28.6	$33 \cdot 4$	38.2	43.0
$4 \frac{1}{2}$	8.5	12.7	17.0	21.2	25.5	29.7	34.0	38.2
5	7.6	11.5	$15 \cdot 3$	19.1	22.9	26.7	30.6	$34 \cdot 4$
$5 \frac{1}{2}$	6.9	10.4	13.9	17.4	20.8	24.3	27.8	31.3
6	6.4	$9 \cdot 5$	12.7	15.9	19.1	$22 \cdot 3$	25.5	28.6
$6 \frac{1}{2}$	5.9	$8 \cdot 8$	11.8	14.7	17.6	$20 \cdot 6$	23.5	26.4
7	$5 \cdot 5$	8.2	10.9	13.6	$16 \cdot 4$	$19 \cdot 1$	21.8	24.6
71	$5 \cdot 1$	7.6	$10 \cdot 2$	12.7	$15 \cdot 3$	17.8	20.4	22.9
8	4.8	7.2	9.5	11.9	$14 \cdot 3$	16.7	$19 \cdot 1$	21.5
$8 \frac{1}{2}$	$4 \cdot 5$	6.7	9.0	11.2	13.5	15.7	18.0	20.2
9	$4 \cdot 2$	6.4	$8 \cdot 5$	10.6	12.7	$14 \cdot 9$	17.0	19.1
10	$3 \cdot 8$	$5 \cdot 7$	$7 \cdot 6$	$9 \cdot 5$	11.5	$13 \cdot 4$	$15 \cdot 3$	$17 \cdot 2$
12	3.2	$4 \cdot 8$	6.4	8.0	9.5	11.1	12.7	14.3
14	2.7	$4 \cdot 1$	$5 \cdot 5$	6.8	8.2	$9 \cdot 5$	10.8	12.3
16	$2 \cdot 4$	$3 \cdot 6$	$4 \cdot 8$	6.0	$7 \cdot 2$	8.4	9.5	10.7
18	$2 \cdot 1$	$3 \cdot 2$	$4 \cdot 2$	$5 \cdot 3$	$6 \cdot 4$	$7 \cdot 4$	8.5	9.5
20	1.9	$2 \cdot 9$	$3 \cdot 8$	4.8	5.7	6.7	$7 \cdot 6$	$8 \cdot 6$
22	1.7	$2 \cdot 6$	$3 \cdot 5$	$4 \cdot 3$	$5 \cdot 2$	6.1	6.9	$7 \cdot 8$
24	1.6	$2 \cdot 4$	$3 \cdot 2$	4.0	$4 \cdot 8$	5.6	6.4	$7 \cdot 2$

* The use of the tables may be extended by multiplying by 10.

Cutting Speeds-Ft./Min. and Equiv. R.P.M. (cont.).

$\begin{aligned} & \text { Diam. } \\ & \text { Inches. } \end{aligned}$	Feet per Minute.							
	50	60	70	180	90	1100	110	120
	Revolutions per Minute.							
1	764	917	\|1070	1222	\|1375	1528	1681	1833
害	509	611	713	815	916	1019	1120	1222
t	382	458	535	611	688	764	840	917
8	306	367	428	489	550	611	672	733
8	255	306	357	407	458	509	560	611
$\frac{7}{8}$	218	262	306	349	393	437	480	524
1	191	229	267	306	344	382	420	458
11	170	204	238	272	306	340	374	407
1	153	183	214	244	275	306	336	367
$1 \frac{13}{8}$	139	167	194	222	250	278	306	333
12	127	153	178	204	229	255	280	305
$1 \frac{3}{4}$	109	131	153	175	196	218	240	262
2	95.5	115	134	153	172	191	210	229
24	$84 \cdot 9$	102	119	136	153	170	187	204
21	76.4	91.7	107	122	138	153	168	183
23	$69 \cdot 4$	$83 \cdot 3$	97.2	111	125	139	153	167
3	63.7	$76 \cdot 4$	$89 \cdot 1$	102	115	127	140	153
34	58.8	70.5	$82 \cdot 3$	94.0	106	118	129	141
$3 \frac{1}{2}$	54.6	65.5	$76 \cdot 4$	87.3	98.2	109	120	131
$3 \frac{3}{4}$	$50 \cdot 9$	61.1	$71 \cdot 3$	81.5	91.7	102	112	122
4	47.7	57.3	66.8	76.4	85.9	$95 \cdot 5$	105	115
41 ${ }^{2}$	42.4	50.9	59.4	67.9	$76 \cdot 4$	84.9	$93 \cdot 4$	102
5	38.2	45.8	53.5	$61 \cdot 1$	68.8	$76 \cdot 4$	$84 \cdot 0$	91.7
51	34.7	41.7	48.6	55.6	62.5	$68 \cdot 4$	$76 \cdot 4$	$83 \cdot 3$
6	31.8	38.2	44.6	50.9	57.3	63.7	$70 \cdot 0$	$76 \cdot 4$
61	$29 \cdot 4$	35.3	41.1	$47 \cdot 0$	52.9	58.8	$64 \cdot 6$	70.5
7	27.3	32.7	38.2	43.7	$49 \cdot 1$	54.6	60.0	$65 \cdot 5$
71	$25 \cdot 5$	$30 \cdot 6$	35.7	40.7	$45 \cdot 8$	50.9	56.0	61.1
8	23.9	28.6	$33 \cdot 4$	38.2	$43 \cdot 0$	47.7	52.5	$57 \cdot 3$
$8 \frac{1}{2}$	22.5	$27 \cdot 0$	31.5	36.0	$40 \cdot 4$	44.9	$49 \cdot 4$	53.9
9	21.2	25.5	29.7	34.0	38.2	$42 \cdot 4$	46.7	50.9
10	$19 \cdot 1$	22.9	26.7	30.6	$34 \cdot 4$	38.2	42.0	$45 \cdot 8$
12	15.9	$19 \cdot 1$	$22 \cdot 3$	25.5	28.6	31.8	35.0	38.2
14	13.6	$16 \cdot 4$	$19 \cdot 1$	21.8	$24 \cdot 6$	27.3	30.0	$32 \cdot 7$
16	11.9	$14 \cdot 3$	16.7	19.1	21.5	23.9	26.3	28.6
18	$10 \cdot 6$	12.7	14.9	17.0	19.1	21.2	23.3	25.5
20	$9 \cdot 5$	11.5	$13 \cdot 4$	$15 \cdot 3$	$17 \cdot 2$	19.1	21.0	22.9
22	$8 \cdot 7$	10.4	12.2	13.9	$15 \cdot 6$	$17 \cdot 4$	19.1	20.8
24	8.0	9.5	$11 \cdot 1$	12.7	14.3	15.8	17.5	19.1

GRINDING WHEELS.

Norton Grinding Wheel Co., Ltd.

The abrasives used by the Norton Grinding Wheel Co., Ltd., are known by the trade-marks Alundum, 19 Alundum, 38 Alundum, and Crystolon. Five distinct bonds are employed-vitrified, silicate, shellac, rubber, and bakelite-and wheels are made in many shapes and sizes, from ${ }^{3}$ 多 inch to 60 inches in diameter and from $\frac{1}{64}$ inch to 20 inches thick. Segmental wheels are made as large as 72 inches in diameter and 14 inches thick.
In general, Alundum abrasives are used for grinding materials of high tensile strength, and Crystolon abrasive is used for those of low tensile strength. Roughly, $50,000 \mathrm{lbs}$. per sq. inch may be taken as the dividing line between high and low tensile strengths in this instance.

Vitrified bonded wheels are of exceedingly strong bond, and are standard for most grinding operations. Silicate bonded wheels have a less harsh grinding action, and are used for work requiring a delicate edge, such as edged tools and cutlery. Shellac bonded wheels produce a high degree of finish, and are used in saw sharpening and in the grinding of granite and marble. In some cases they are used for grinding aluminium pistons. Bakelite bonded wheels, operating at 9000 surface feet per minute, are used for snagging of steel and malleable castings, and for billet and ingot grinding. Rubber bonded wheels are used where thin wheels of great strength are wanted, as in the grinding of grooves.

Grain, Grade, and Structure.-Grain size denotes the size of the cutting particles or abrasive. Sizes range from 8 to 600 , 8 being the coarsest and 600 the finest. The numbers refer to the meshes per linear inch in the screens through which the various sizes will pass. Grade is a term used to denote the hardness of a wheel. It refers to the strength of the bond and not to the hardness of the abrasive. A soft wheel may have a hard abrasive. Norton grades are designated by the letters \mathbf{E} to \mathbf{Z}, E being the softest wheel and Z the hardest. Structure is the arrangement of the constituent parts of a grinding wheel as to the exact degree of its density or abrasive spacing. The various structures are denoted by the numbers 1 to 12, number 1 representing the closest spacing and number 12 the most open.

Grinding Wheel Markings.-The five characteristics which determine the grinding action of Norton wheels are: (1) Abrasive (type), (2) Grain (size of abrasive), (3) Grade (strength of wheel), (4) Structure (grain spacing), and (5) Bond (type).

A typical wheel marking is 3846-M5BE. Here 38, 46, M, 5,
and BE refer to the characteristics (1), (2), (3), (4), and (5) respectively.

Determination of Grinding Wheel Specifications.-The following factors must be taken into consideration:-
(1) Material to be ground.
(2) Amount of material to be removed, degree of accuracy, and finish required.
(3) Area of contact.
(4) Type of grinding machine.

A few rules which must be regarded as flexible are given in the following paragraphs :-

Selection of abrasive.--Alundum abrasive is suitable for carbon steels, alloy steels, high-speed steel, annealed malleable iron, wrought-iron, tough bronzes, etc. Crystolon abrasive is suitable for grey iron, chilled iron, brass and soft bronze, aluminium and copper, marble and other stone, rubber, leather, very hard alloys such as tungsten carbide, etc.

Selection of grain size.-Coarse wheel for fast cutting, except in case of very hard materials where depth of grain penetration is small. Fine grain for fine finish. Coarse grain for soft ductile materials and fine grain for hard and brittle materials.

Selection of grade.-Hard wheels on soft materials and vice versa. The smaller the area of contact, the harder the wheel should be. The higher the ratio of work speed to wheel speed, the harder the grade should be, and vice versa. Vibration and worn grinding machines usually necessitate using a harder wheel than would be required on a machine in good condition.

Selection of structure.-Soft, tough, and ductile materials require a wheel with a wide spacing of abrasive grains. Hard and brittle materials require a wheel with close spacing of abrasive grains, with the exception of tungsten carbides. Fine finish requires close spacing of particles of fine grain size.

Snagging and other operations, with flexible application of pressure, require wide grain spacing. Surface operations require wide grain spacing. Cylindrical and centreless work, also tool and cutter grinding, are usually done with medium grain spacing. Heary pressures which tend to destroy the form of shaped wheels require close grain spacing.

Selection of bond.-Vitrified type of bond is generally used, but, in some cases, unusual operating and performance requirements make the selection of other types advantageous.

Thin cutting-off wheels and others subjected to bending require bakelite, shellac, or rubber bonds. Solid wheels over 36 inches diameter require silicate bond.

Vitrified wheels are best for speeds below 6500 surface feet per minute; bakelite, shellac, and rubber wheels are best for higher speeds.

Shellac or rubber bonds are best for high finish where production is not a factor.

Recommended Wheel Speeds in Surface Feet per Minute.

Norton Grinding Wheel Co., Ltd.

Cylindrical grinding	5500-6500
Internal grinding	2000-6000
Snagging, offhand grinding (vitrified wheels)	5000-6000
Snagging (rubber and bakelite wheels)	7000-9500*
Surface grinding	4000-5000
Knife grinding	3500-4500
Hemming cylinders	2100-5000 \dagger
Wet tool grinding	5000-6000
Cutlery wheels .	4000-5000
Rubber, shellac, and bakelite cutting-off wheel	9000-16000*

Work Speed. - In general, the faster the work speed the faster the wheel wear. This is not necessarily a drawback, but it must be understood.

Wheel wear is dependent upon the ratio of wheel speed in s.f.p.m. to work speed in s.f.p.m. The higher the ratio, the less work the wheel is required to do in a given time; hence the wheel wears at a slower rate. If the ratio is decreased by increasing the work speed, the wheel will be required to do more work in a given time and will wear faster.

In general, the longer the aro or the larger the area of contact in precision grinding operations, the faster should be the speed of the work, in order that the wheel may cut properly.

In offhand grinding, the rate at which the work is forced against the wheel exerts an influence upon grade selection. The harder the grinding wheel is forced, the harder should be the wheel if abrasive economy is to be expected. This relation also exists in precision grinding of a semi-automatio and high production nature.

[^45]
Grinding Wheel Speeds-Feet per Minute and Equivalent R.P.M.

Wheel Diam. Inches.	Feet per Minute.					
	4000	4500	5000	5500	6000	6500
	Revolutions per Minute.					
1	15279	17189	19099	21008	22918	24828
2	7639	8594	9549	10504	11459	12414
3	5093	5730	6366	7003	7639	8276
4	3820	4297	4775	5252	5730	6207
5	3056	3438	3820	4202	4584	4966
6	2546	2865	3183	3501	3820	4138
7	2183	2456	2728	3001	3274	3547
8	1910	2149	2387	2626	2865	3104
10	1528	1719	1910	2101	2292	2483
12	1273	1432	1592	1751	1910	2069
14	1091	1228	1364	1501	1637	1773
16	955	1074	1194	1313	1432	1552
18	849	955	1061	1167	1273	1379
20	764	859	955	1050	1146	1241
22	694	781	868	955	1042	1129
24	637	716	796	875	955	1035
26	588	661	735	808	881	955
28	546	614	682	750	819	887
30	509	573	637	700	764	828
32	477	537	597	657	716	776
34	449	506	562	618	674	730
36	424	477	531	584	637	690

Grinding Wheel Speeds-Feet per Minute and Equivalent R.P.M. (continued).

Wheel Diam. Inches.	Feet per Minute.					
	7000	7500	8000	8500	9000	9500
	Revolutions per Minute.					
1	26738	28648	30558	32468	34377	36287
2	13369	14324	15279	16234	17189	18144
3	8913	9549	10186	10823	11459	12096
4	6685	7162	7639	8117	8594	9072
5	5348	5730	6112	6494	6875	7257
6	4456	4775	5093	5411	5730	6048
7	3820	4093	4365	4638	4911	5184
8	3342	3581	3820	4058	4297	4536
10	2674	2865	3056	3247	3438	3629
12	2228	2387	2546	2706	2865	3024
14	1910	2046	2183	2319	2456	2592
16	1671	1790	1910	2029	2149	2268
18	1485	1592	1698	1804	1910	2016
20	1337	1432	1528	1623	1719	1814
22	1215	1302	1389	1476	1563	1649
24	1114	1194	1273	1353	1432	1512
26	1028	1102	1175	1249	1322	1396
28	955	1023	1091	1160	1228	1296
30	891	955	1019	1082	1146	1210
32	836	895	955	1015	1074	1134
34	786	843	899	955	1011	1067
36	743	796	849	902	955	1008

Twist Drill Sizes.

Above $\frac{3}{f}$ inoh, sizes advance by 64ths to 2 inches. Millimetre sizes are also available.

SANDBLASTING.

H. G. Sommerfield, Ltd., London.

Sandblasting is a general term used to describe the projection of abrasive materials on to surfaces, primarily for the purposes of cleaning, etching, or buffing. Sand was formerly the standard abrasive, and hence the designation. Graded flint was also used for heavier work, but now the most popular abrasive consists of graded metallic shot, round or crushed (angular).

Pulverisation occurs with all abrasives, the extent being governed by the material. This gives rise to dust formation, and it is necessary to exhaust the dust-laden atmosphere from the blasting chamber or zone and to collect the dust. Sands and flints generate dust of a siliceous nature, and, owing to the consequent danger of silicosis, the Home Office is influencing employers to substitute metallic abrasives for sands and flints. As a further precaution, it is decreed that operators working inside a sandblast room must wear a helmet fitted with an air line and supplied with a constant supply of fresh air. Induced ventilation must ensure that the atmosphere of any sandblast room, wherein an operator works, shall be changed at least five times per minute, and most manufacturers prefer considerably to exceed this rate of exhaust; purification of the atmosphere may be further assisted by a system of abrasive cleaning.

Apart from the dust which arises through pulverisation of the abrasive, the blasting away of moulding sands and cores and, in some cases, the breaking up of scale or the skin of castings, further complicates the problem. Removal by air separation or other means of such of this material as becomes mixed with the abrasive before the latter is reintroduced into the system is then essential.

The original types of sandblast plant operated through the medium of steam, but contemporary designs favour the use of either compressed air or centrifugal foroe to impart the high velooity to the stream of abrasive. Compressed air has the advantage of comparative simplicity, and allows of manual control of the abrasive through the medium of a flexible hose and nozzle directed on to the work, and is the best system where large surfaces have to be treated, or, conversely, where the conditions call for a moderate output only. Up to the present, the centrifugal machine is limited to repetition work, as manual control is not practicable and prime cost is heavy.

In addition to the operating medium, there is a great diversity in types of sandblast machines. Room plants, wherein the operator shuts himself inside a chamber with his work and, wearing a helmet and protective clothing, directs the abrasive on to the surfaces to be treated, form the most prectical way af dealing with large castinge. Tumbling barrela, alowly rotating
and partially filled with parts to be treated, having one or more jets projected through the central axis, are admirable for repetition work. In the same way, where great numbers of parts presenting flat surfaces have to be treated, the most practical method is the rotating table, on which the parts are carried into a screened-off blasting zone and then emerge again to be reversed or exchanged for fresh parts as conditions demand. Finally, a popular machine for small works and small components is the cabinet, the operator remaining outside and directing the flow of abrasive through a sight window, and operating the flexible hose through arm-holes.

The chief uses of sandblasting are etching and frosting glass; cleaning castings, both ferrous and non-ferrous; cleaning and "cutting a key" on surfaces preparatory to enamelling or metallising; de-enamelling; and removing scale after heat-treatment.

Sand and shot abrasive is supplied in a wide range of grades (sieve meshes). The following table will assist in the selection of the most suitable abrasive grade and air pressure, which must ultimately be determined by trial, for different purposes:-

Abrasive.	Grade.	$\begin{gathered} \text { Air } \\ \text { Pressure. } \\ \text { Lbs./Sq.In. } \end{gathered}$	Purpose.
Sharp sand	16 to 32	15 to 25	Cleaning castings.
"	$24, \mathrm{AA}$	2,20	Frosting and stencilling glass.
"	$\begin{gathered} \text { AA or } \\ \text { "Flour" } \end{gathered}$	5 ,, 10	Grindery (leather).
Graded flint	10 to 24	15,30	Cleaning heavy castings;
"	$24,{ }^{40}$	15, 30	Cleaning light castings; re-
Metallic shot	10 , 20	15	moving cores. Dull cleaning heavy ferro
(round)		upwards	castings.
"	24 , 40	15 to 50	Cleaning light ferrous castings.
"	24 ,, 40	10 , 20	Cleaning or buffing nonferrous castings.
"	40 , 80	10,20	Special non-ferrous work where skin must not be penetrated.
Metallic shot (angular)	6 , 10		Cleaning steel castings.
"	12,30	20 , 80	Cleaning and cutting key on
"	40 ,, 80	15,40	iron castings. Cleaning light non-ferro
,	50 ,, 80	$5, \ldots 10$	castings. Glass stencilling.

Table of Theoretical Air Discharge for Nozzles of Different Diameters, Air Velocities, and H.P. of Compressor required.

		Volume of Free Air (Ou. Ft./Min.) and Compressor H.P.							
		Nozzle Diameter-Inch.							
		\pm							
		Vol.	H.P.	Vol.	H.P.	Vol.	H.P.	Vol.	H.P.
5	552	15.4	. 54	$34 \cdot 6$	$1 \cdot 2$	61.6	$2 \cdot 2$	96.5	$3 \cdot 4$
10	780	21.8	1.3	49	2.9	87	$5 \cdot 2$	136	8.2
20	1030	$30 \cdot 8$	2.8	69	$6 \cdot 3$	123	11.2	193	$17 \cdot 6$
30	1100	40	$4 \cdot 8$	90	$10 \cdot 7$	161	$19 \cdot 1$	252	30
40	1143	49	6.9	110	$15 \cdot 5$	196	$27 \cdot 5$	307	43
60	1196	67	11.6	151	26.1	268	$48 \cdot 4$	420	73
80	1230	85	16.7	191	$37 \cdot 6$	340	67	532	105

Note.-In considering the H.P. of driving motors, etc., an adequate margin should be allowed over the theoretical requirement of the compressor.

Given formal requirements, compressor makers generally stipulate the necessary allowance. It is important that oil and water precipitation should be minimised in the sandblast system, otherwise trouble may arise through coagulation of shot. For this reason inter-coolers should be provided in 2 -stage compressors, and after-coolers and moisture and oil extractors are sometimes fitted. In cold, moist atmospheres, a gas jet is often fitted beneath pressure chambers to maintain air temperatures and prevent deposition of moisture in the system.

The above table is intended as a practical guide, and is based on more complete figures given by Cox, in respect to air volumes passing through a range of nozzle bores at various pressures, and on theoretical velocities given by Hiscock.

MISCELLANEOUS NOTES AND DATA.

Roman and Ordinary Notation.

II.	1	X.	10	XX.	20	CC.	200
II.	2	XI.	11	XXV.	25	CCC.	300
III.	3	XII.	12	XXX.	30	CCCC.	400
IIII.	4	XIII.	13	XL.	40	D.	500
or IV.	4	XIV.	14	L.	50	DC.	600
V.	5	XV.	15	LX.	60	DCC.	700
VI.	6	XVI.	16	LXX.	70	DCCC.	800
VII.	7	XVII.	17	LXXX.	80	DCCCC.	900
VIII.	8	XVIII.	18	XC.	90	M.	1000
IX.	9	XIX.	19	C.	100	MDCCCXCVI.	1896

The Greek Alphabet.-As Greek letters are frequently used in mathematical formulæ, they are here given for reference.

A α. alpha	l \quad. iōta	P ρ	rbo
$\mathrm{B} \beta$. bēta	K к . kappa	$\Sigma \sigma$	sigma
$\Gamma \gamma$. gamma	$\Lambda \lambda \cdot$ lambda	T τ	- tau
$\Delta \delta$. delta	$\mathrm{M} \mu$. mu	Υv	- upsilon
E ¢ - epsilon	$\mathrm{N} \boldsymbol{v}$. nu	$\Phi \quad \phi$	- phi
Z § . zeta	家 $\boldsymbol{\xi}$. xi	X $\quad \chi$	- chi
H η - ēta	$\bigcirc{ }^{\circ} \mathrm{o}$. omicron	$\Psi \quad \psi$	- psi
$\theta \theta$. thēta	$\Pi \pi \cdot \mathrm{pi}$	$\Omega \quad \omega$. ōmega

The Pantagraph.-Four bars are connected together by pin joints to form a parallelogram $A B C D$. The whole frame can be made to rotate in its plane about a fixed pin which passes through the bar $E B$ at any point O in it. p is a point in the bar $A D$, and P is a point in the bar $F B$ such that $O p P$ is a straight line. If the frame be moved (O being fixed) so that the point p traces out the figure $m n$, the point P
 will describe a figure $M N$ similar to $m n$, and the linear dimensions of $M N$ will be to the corresponding dimensions of mn as $O B$ is to $O A$; also, the area of $M N$ wirl be to the area of man as the square on $O B$ is to the square on OA.

Parallel Motions.-(a) Watt's Parallel Motion.-AC and BD are bars which can oscillate about fixed axes at A and B respectively, and which are connected by pin joints at C and D to a link $C D$. A point P in $C D$ describes a figure of eight when the mechanism receives all the motion of which it is capable. Two portions of this figure are approximately straight lines. The straight portions of the figure described by P are longest when the position of P is such that $D P: C P:: A C: B D$.

(b) The bars $A C$ and $B D$ are here shown on the same side of the link $C D$. The point which describes the closest approximation to a straight line is the point P, in $C D$ produced, whose position is such that $D P: C P:: A C: B D$.
(c) This shows the application of the pantagraph to the mechanism $A C D B$ shown at (a) for the purpose of guiding a point Q in a line parallel to that described by P. The parallelo$\operatorname{gram} C D Q E$ is proportioned so that A, P, and Q are in a straight line. $\triangle C E$ is one bar.
(d) Scott Russell's Parallel Motion.-AC is a bar which can oscillate about a fixed axis at $A . \quad P D$ is a bar one end of which is guided in a straight line $A D, A C$ is connected to $P D$ by a pin joint at $C . \quad A C=P C=C D . \quad P$ moves in a straight line $A P$ which is at right angles to $A D$.
(e) Roberts's Parallel Motion. $-A C$ and $B D$ are equal bars which can oscillate about fixed axes at A and B respectively. $C P D$ is a frame connected by pin joints at C and D to the bars $\triangle C$ and $B D . \quad P C=P D$. Part of the path described by the point P is an approximation to a straight line.

The Peaucellier Mechanism. - The Peaucellier mechanism consists of seven bars connected by pin joints as shown. The axes of the pins at A and O are fixed. $A B=A C . \quad B D=D C=C P=B P$. When the mechanism is moved the point P describes either an exact straight line or an arc of a circle.

If $O D=O A$, the path of P is an exact straight line.
If $O D$ is greater than $O A$, the path of P is an arc of a circle concave towards O, and having a radius given by the formula,

$$
R=O D_{O D^{2}-O D^{2}}^{A B^{2}-B D^{2}}
$$

If $O D$ is less than $O A$, the path of P is an arc of a circle convex towards O, and having a radius given by the formula

$$
R=O D_{O A^{2}-O D^{2}}^{A B^{2}}
$$

The most important form of the Peaucellier mechanism is that for describing an exact straight line. The other forms may be used for describing circular arcs of large radii when the centres of the circles are inaccessible.

Useful Functios

accelerating effect
per second; then

$$
\begin{array}{llll}
g=32 \cdot 2 . & \frac{1}{g}=031 . & \sqrt{ } g=5 \cdot 675 . & \frac{1}{\sqrt{ } g}=\cdot 176 . \\
2 g=64 \cdot 4 . & \frac{1}{2 g}=\cdot 0155 . & \sqrt{2 g}=8 \cdot 025 . & \frac{1}{\sqrt{2 g}}=\cdot 1246 .
\end{array}
$$

Sizes of Drawing-paper.

	20		In
Demy .	$20 \times 15 \frac{1}{1}$	Imperial	30×22
Medium	$22 \times 17 \frac{1}{1}$		34×26
Royal	24×19	Double elephant	40×27
Super roy	$27 t \times 19 z$	Antiquarian	53×31

Colours on Drawings.

Materials.
Cast-iron .
Wrought-iron
Wral . Prassian blue.
Steel Purple (mixture of Prussian blue and crimson lake).
Brass Gamboge, with a little sienna, or a very little red added.
Copper A mixture of crimson lake and gamboge, the former colour predominating.
Lead
Light Indian ink, with a very little indigo added.
Brick-work . . . Crimson lake and burnt sienna.
Firebrick Yellow and Vandyke brown.
Grey stones . . . Light sepia or pale Indian ink, with a little Prussian blue added.
Brown freestone . Misture of pale Indian ink, burnt sienna, and carmine.
Soft woods . . . For ground work, pale tint of sienna.
Hard woods . . . For ground work, pale tint of sienna, with a little red added.
For graining woods, use darker tint, with a greater proportion of red.
Section Lining on Drawings.-On drawings in black and white different materials may be distinguished by differences in "section lining." Examples are given below.

SELECTED BRITISH STANDARD SPECIFICATIONS.*
B.S.
4 : 1932. Channels and Beams for Structural Purposes, Dimen-sions and Properties of.
4a: 1934. Equal Angles, Unequal Angles, and Tee Bars for Structural Purposes, Dimensions and I'roperties of.
21 : 1938. Pipe Threads. Part 1. Basic Kizes and Tolerances.
$78: 1938$. Cast-Iron Pipes for Water, Gas, and Sewage.
$84: 1940$. Screw Threads of Whitworth form.
93 : 1919. Screw Threads, British Association, with Tolerances.
240: 1937. Brinell Hardness Testing, Method and Tables for.
275 : 1927. Dimensions of Rivets ($\frac{1}{2}$ inch to $1 \frac{3}{4}$ inch diameter).
302 : 1938. Round Strand Steel Wire Jopes for Cranes.
330 : 1941. Steel Wire Ropes for Colliery Haulage Purposes.
394 : 1944. Nhort Link W'rought-Iron Crane Chain.
425: 1943. Forms and Dimensions of Boiler Rivets (as manu- factured) ($\frac{1}{2}$ inch to 2 inch diameter).
431: 1946. Manila Ropes for General Purposes.
436 : 1940. Machine-Cut Gears. A. Helical and Straight Spur.
465: 1932. Pitched or Calibrated Wrought-Iron Load Chain for Hand-Operated Pulley Blocks.
482: 1945. Wrought-Iron and Mild Sterl Hooks for Cranes, Chains, Nlings and General Engineering Purposes, Excluding Building Operations.
534: 1934. Steel Spigot and Socket Pipes and Specials for Water, Gas, and Sewage.
545: 1934. Machine-Cut Gears. B. Bevel (with Helical, Curved, and Straight Teeth).
590 : 1935. Short Link and Pitched Steel Chain, Electrically Welded Mild Steel.
664 : 1936. Cast-Iron Shaft Couplings, Rigid Flanged Type with recessed Bolt-Heads and Nuts.
721 : 1937. Machine-Cut Gears. C. Worm Gearing.
781 : 1938. Wrought-Iron Chain Slings and Rings, Links Alter- native to Rings, Egg and Intermediate Links.
806 : 1942. Ferrous Pipes and Piping Installations.
1306: 1946. Non-ferrous Pipes and Piping Installations.
1387: 1947. Steel Tubes and Tubulars Suitable for Screwing to B.S. 21 Pipe Threads.
1452 : 1948. Grey Iron Castings.

[^46]
INDEX

Abrasives, grinding wheel, Alloys, cadmium, 384 742
sand and shot, 749
Abscissa of a point, 160
Absolute expansion of mercury, 551
temperature, 553
Acceleration, 231
Accumulators, hydraulic, 724, 725
Acid steels, 353
Acids, weight of, 345
Adamson Lancashire boiler, 595
Addendum, 497
Adhesion of locomotives, 666
Adiabatic expansion, 555
Ageing of alloys, 376
Air, composition of, 557
compressor, aotion of, 713
compressors, testing of, 717
for combustion of fuel, 557
Air/fuel ratio, 699
pumps, 657
specific heat of, 561
standard efficiency, 690
thermometer, 553
vessels for pumps, 735
weight of, 346
Algebraical formula, 36
signs, 35, 36
Aliquot parts, tables of, 137
Alloy steels, 358
effect of heat-treatment on, 357
Alloys at elevated temperatures, properties of nonferrons, 372
clad, 380
copper, 365
Eleiktron, 380
ferrous, 347
light, 375
magnesium, 380
non-ferrous, 364
weight of, 325
Alphabet, Greek, 751
Altitude, pressure and temperature variations with, 687
Aluminium, 375
alloys, effect of temperature on, 379
expansion of, 379
thermal conductivity of, 379
bronzes, 373
casting alloys, 377
American standard screw threads, 399, 400
wire gauge, 34
Analyses of exhaust gas, 700
Angle of torsion, 427
pressure, 497, 500
Angles, dimensions and properties of equal, 310
of unequal, 300
measurement of, 40, 48
Angular velocity, 232
Aniline-point, 696
Anthracite, 562
A.P.I. gravity, 696

Apothecaries' weight, 2
Aro of cirole, 141

Arcs, lengths of circular, 163
Ardoloy cutting tools, 737
Area of bearing, 437
of flat circular ring, 180
of polygon, 43
of sector of circle, 180
of segment of circle, 180
of triangle, 43, 161, 168
Areas of circles, 170
of plane figures, 168, 212
of sections, 212
Arithmetic, graphic, 166
Arithmetical mean, 37
progression, 37
signs, 35,36
Arms of cast-iron pulleys, 481
of gear wheels, 509
Asymptotes of an hyperbola, 155
Atmospheric conditions, corrections to B.H.P. for, 687
Atomic weights, 324
Auxiliary circle of ellipse, 153
Avoirdupois weight, 2
aliquot parts of, 137
Axis, instantaneous, 232
of conic, 150
Axle, equilibrium of body on, 223
-boxes, railway, 466
Axles, locomotive crank, 514
Babbitt metals, 382
Babcock and Wilcox boilers, 605
Bahnmetall, 382
Ball bearings, 452
journal bearings, 452
thrust bearings, 454
Ballistic pendulum, 236
Band on pulley, friction of, 477
Barometer, pressures corresponding to heights of, 344
Barrels for wire ropes, diameters of, 270
Bars in toraion as springs, 260
riveted jointa for, 626

Basic steels, 353
Beam, strength of, 250
Beams, bending and shearing of, 247
deflection of, 251
dimensions and properties of, 288
of uniform strength, 250
Bearing, area of, 437
clearances, checking, 704
materials, 704
temperatures, 705
Bearings, ball journal, 452
thrust, 454
bogie centre pivot, 466
brasses for, 438
footstep, 448
friction of, 239
I.C. engine main, 702

Michell, 467
needle roller, 457
of a shaft, span between, 425
pressure on, 438
roller journal, 455, 457, 458, 461, 466
shaft, 437
spherical roller, 458
tapered roller, 460, 461
thrust collar, 449
Belt, driving force in, 478
gearing, 473
length of, 474
Belting, chain, 476
Belts, centrifugal tension in, 478
power transmitted by, 478, 479, 480
slip of, 478
speed of, 475
strength of, 475
Bending and twisting of a shaft, 426
combined with tension or thrust, 252
with twisting, 253, 426
moment diagrams, 286
moments on beams, 247
Bensemer ateel, 353

Bevel gears, 501
load capacity of, 504
Binomial theorem, 39
Birmabright alloy, 380
Birmingham gauge, 34
wire gauge, 34
Blast-pipes, 679
Block and tackle, 225
Blowers, 712, 717
B.M.E.P. in terms of torque, 689

Board of Trade Rules-
boilers, 612, 624
shaft couplings, 430
shafts of ships, 427
Bodies, collision of, 238
falling, 231
floating, 230
Bogie centre pivot bearings, 466
Boiler, dry-back, 594, 599
economic, 594, 599
gas-fired, 586
locomotive, 669
power, locomotive, 668
Scotch, 602
shell, strength of, 627, 629
shells, cylindrical, 628
stays, 632
trial, 696
tubes, heating surface of, 590
Unidish, 590, 599
Boilers, brickwork for, 592
Cornish, 590, 592
hydraulic tests for, 612
Lancashire, 590, 591
man-holes for, 640
marine, 599
riveted joints of, 624
steam, 586
strength of dished ends of, 629
tube plates for, 637
vertical, 586
water-tube, 605
Boiling points of salt water, 549
Bolt-heads, 402
weight of, 333
Whitworth, 407

Bolts, 393
foundation, 404
of uniform strength, 404
stud and tap, 403
Boosting, engine, 710
Bosses of gear wheels, 510
of pulleys, 482
Bow's notation, 219
Box couplings, 431
Boyle's law, 646
Braced structures, stress diagrams for, 273
Bracket and bearing, 443
for pillow block, 444
Brake horse-power, 686, 712
corrections to, 687
Brakes, locomotive, 682
Brass, properties of, 370
tubes, weight of, 341
Brasses, 365
effect of temperature on, 366
for bearings, 438
for connecting-rods, 522
Breaking strength of a beam, 250
Brickwork setting for boilers, 592
Bridge trusses, stress diagrams for, 282
Bridges, weight of, 284
Brinell hardness testing, 391, 392
Briquette fuel, 563
British and C.G.S. units, 32
and metric measures, equivalents of, 5
Association screw threads, 395
measures, 1
Standard fine screw threads, 396
manila ropes, 269
pipe screw threads, 397
specifications, 755
steel wire ropes, 271, 272
Whitworth screw threads, 393
thermal unit, 548
Bronzes, 365, 369

Bronzes, effect of nickel on strength of, 371
plastic, 384
properties of, 371
Bulk of coal, 326
Buttress thread, 394
Cadmium alloys, 384
Calorific intensity, 561
value of fuels, $558,560,564$, 698, 699
Capacity, measures of, 2, 4
of pipes, 200
Carbon steel, 354
steels, applications of, 355
effect of heat-treatment on, 356
value of fuel, 559, 560
Cartridge brass, 365
Case-hardening, 358
Cast-iron, 347
contraction of, 348
pipes, weight of, 340
pulleys, arms of, 481
sizes of steel tubes, 419
weight of, 325
Cast-irons, alloy additions to, 349
properties of, 349, 350, 351
Cast steel, 353
Catenary, 158
Centigrade heat unit, 546 scale, 540
Centre, instantaneous, 232
of curvature, $154,155,156$, 158, 159
of gravity, 204
by experiment, 207
by projection, 209
of any structure, 210
of oscillation, 236
of percussion, 236
of pressure, 228
Centrifugal force, 235
pumps, 735
tension, 235
in belts, 478

Centrifugal tension in ropes, 485
in wheels and pulleys, 483
Cetane number, 696
Cetene number, 696
C.G.S. units, 32

Chain belting, 476
calibrated, 264
crane, 263
mild steel, 265
pitched, 264
pulley block, 264
short link, 263, 265
slings, 265
welded, 265
wrought iron, 263
Chains, 263
Chambers, combustion, 705, 706
Channels, dimensions and properties of, 294
Characteristic, 49
Charcoal, 563
Chimneys, locomotive, 679
Chord of a circle, 141
Chromium-bronze alloy, 384
Circle, 141
circumscribing, 43, 141, 160
equation to, 162
escribed, 43
inscribed, 43
moment of inertia of, 213, 217
the nine points, 145
Circles, areas of, 170
circumferences of, 184
Circular arce, lengths of, 163
measure, 40
pitch, 497
ring, area of, 180
Circulating pumps, 657
Circumference of a circle, 141
Circumferences of circles, 184
Circumferential speed and revolutions, 739, 740, 741, 745, 746
Circumscribing circle of a polygon, 43, 160
of a triangle, 43, 141
Clad alloys, 380

Claw couplings, 436
Clearance, 644, 714
volume, 644, 685, 714
Clearances, piston, 702
Clutch couplings, shifting gear for, 437
Coal, 562
bulk of, 326
calorific value of, 560,564
carbon value of, 560
composition of, 564
evap. power of, 559, 560
specific gravity of, 326,564
Cochran boilers, 586, 588, 594
Coefficient of restitution, 238
Coefficients of elasticity, 246
of friction, $220,239,484$.
of linear expansion, 550
Coke, 564
Collar bearings, friction of, 239, 243
Collision of bodies, 238
Colours on drawings, 754
Columns, strength of, 253
Combinations and permutations, 39
Combined straining actions, 252
twisting and bending of a shaft, 426
Combustion and fuel, 557
chambers, 705, 706
factor, 692
heat of, 558
in oxygen, 557
of fuel, air for, 557
temperature of, 561
Common logarithms, 49
Composition of air, 557
Compound compressors, 714
pendulum, 236
Compressed air, 712
motor, power in, 716
power transmission by, 718
Compression efficiency, 712, 715
ratio, 685
highest useful, 695
ratios in actual engines, 693

Compressors, centrifugal, 712
compound, 714
piston, 712
testing of, 717
turbo-, 712, 716
for sandblasting, horse-power of, 750
Condensers, jet, 654
surface, 655
Conductivity of metals, 549
Cone, centre of gravity of, 207
coupling, 434
development of, 166
radius of gyration of, 216
volume and surface of, 202
Confocal ellipses, 152
Conic sections, 150
Conical friction coupling, 497
spiral springs, 259
Conjugate axis of an hyperbola, 155
diameters of an ellipse, 152
Connecting-rod/crank ratio, 702
end, forked type, 524
marine type, 523
ends, 520
Connecting-rods, 517, 669
brasses for, 522
forces on, 517
strength of, 518
Constantan, 374
Contraction of cast-iron, 348
Conversion of thermometric scales, 540
tables, various-See "Equivalents of"
Co-ordinates of a point, 160, 161
Copper, 364
alloys, 365
tubes, weight of, 338, 339
Cornish boilers, 590
evaporation for, 592
Corrugated furnaces, 631
Cotters, 222, 413, 414
Coupler, 416
Couples, 219

Coupling, cone, 434
friction, 437
Oldham's, 436
universal, 435
Coupling-rods, 519, 669
Couplings, box or muff, 431
claw, 436
flange and pulley, 432
shaft, 430
Crab, 226
Crane chain, 263
hooks, 267
ropes, steel wire, 272
Crank axles, locomotive, 514
discs, cast-iron, 515
pin diam., I.C. engine, 702
pins, overhung, 511
shafts, built-up, 514
forged, 513
Cranks, 511
overhung, 512
Critical temperature of gas, 556
Cross-head, forces on, 525
pin, 526
Cross-heads, 525
guide bars for, 529
types of, 527
Crown wheel, 501
Cube roots of fractions, 136
of numbers, 105
Cubes of fractions, 136
of numbers, 105
Cubic centimetres in cubic inches, 23
equations, 37
expansion of solids by heat, 551
feet in cubic metres, 24
inches in cubic centimetres, 23
measure, 2, 4
metres in cubic feet, 24
Cupro-nickel, 374
Curvature, centre of, 154, 155, $156,158,159$
Cutting speeds, 738, 740, 741
tools, 737
Cycle, constant volume, 684

Cycle, Diesel, 684
four-stroke, 684
two-stroke, 684
Cycles, thermodynamic, 684
Cycloid, 157
Cycloidal curves, 156
Cylinder barrels, 652
centre of gravity of, 207
covers, 653
development of, 165
diagram of work in, 645
liners, 652
volume and surface of, 201
Cylinders, intersection of, 165
locomotive, 675
radii of gyration of, 216
strength of, 414
surfaces of, 194
weight of, 333
Cylindrical boiler shells, 628
Dead load, 245
Decimal equivalents of fractions, 138
Dedendum, 497
Deflection of beams, 251
of flat springs, 255
of ropes, $487,490,492$
of springs, note on, 261
Delta metal, 369
Detonation, 694
Development of cone, 166
of cylinder, 165
Diagram factor, 649
of work in a steam cyl., 645
Zeuner's, 661
Diameter of a circle, 141
of an ellipse, 152
of a parabola, 156
Diametral pitch, 498
Die-castings, pressure, 385
Diesel cycle, 684
fuels, ratings of, 696
index, 696
Differential pulley-block, 225
Dimensions of rolled steel sections, 287

Direct elasticity, modulus of, 246
Directrix of a conic, 150
Discharge of water through small orifices, 727
Discharging capacity of pumps, 200
Draught, forced, 603
Draw-bar pull of loco., 665
Drawing-paper sizes, 753
Drawings, colour on, 754
section lining on, 754
Drill sizes, 747
Dryness fraction of steam, 565
Duchemin's formula for wind pressure, 280
Duralumin, 376
effect of ageing on, 376, 377
Durehete steel, 361
Dynamometer, friction brake, 244
Dyne, 32
Earths, weight of, 326
Eccentric sheaves, 515 straps, 516
Eccentricity of a conic, 150
Efficiency, air standard, 690
compression, 712, 715
meohanical, 244, 688, 712, 715, 725
of pumps, 736
of telodynamic transmission, 491
relative, 691
thermal, 690
volumetric, 686, 712
Elasticity, moduli of, 246
Elektron alloys, 380
Elements, 324
Ellipse, 150, 151
centre of gravity of part of, 206
construction of, 153, 154
equation to, 163
moment of inertia of, 213, 217
Ellipsoid, volume of, 203
Energy, 234

Energy of rotating body, 235 of springs, 261
of water in motion, 726
Engine, Hesselman, 709
proportions, I.C., 701
ratings, 689
weights, I.C., 701
Engines, internal combustion, 684
power rating of, 686
proportions of steam, 651
steam, 643
Entropy of steam and water, 565
Epicyclic gear, 503
Epicycloid, 157
Equal angles, dimensions and properties of, 310
Equation to circle, 162
to ellipse, 163
to hyperbola, 163
to parabola, 163
to straight line, 161, 162
Equations, cubic, 37
quadratic, 37
to lines, 161
Equilibrium of body on axle, 223
of forces, 218
Equivalent evaporation, 583
temperatures, 541
Equivalents of British and C.G.S. units, 32
of cubio centimetres in cubio inches, 23
feet in oubic metres, 24
inches in cubic centimetres, 23
metres in cubic feet, 24
of feet in metres, 17
of foot-pounds in kilogrammetres, 30
of force de cheval in horsepower, 31
of fractions in decimals, 138 of an inch in millimetres, 15,16
of gallons in litres, 25

Equivalents of horse-power in force de chevel, 31
of inches in millimetres, 15 , 16
of kilogrammes in pounds, 26 per square centimetre in pounds per square inch, 28
of kilogrammetres in footpounds, 30
of kilometres in miles, 18
in nautical miles, 18
of litres in gallons, 25
of metres in feet, 17
of metric and British measures, 5
of miles in kilometres, 19
in nautical miles, 19
of milliers in tons, 27
of millimetres in inches, 10
of nautical miles in kilometres, 20
in miles, 20
of pounds in kilogrammes, 26 per square inch in kilogrammes per square centimetre, 29
of square centimetres insquare inches, 21
feet in square metres, 22 inches in square centimetres, 21
metres in square feet, 22
of tonnes in tons, 27
of tons in tonnes, 27
Erg, 32
Erren engine, 700
Escribed circle, 43, 143
Euler's formulm for long columns, 254
Evaporation, equivalent, 583
factors of, 583, 584
for Cornish boilers, 592
for dry-back boilers, 594, 600
for Lancashire boilers, 691
latent heat of, 548
Evaporative power of fuel, 559, 560

Exhaust gas analyses, 700
Expansion, coefficients of linear, 550
of aluminium alloys, 379
of gas, adiabatic, 555
isothermal, 554
of liquids by heat, 551
of mercury, 551
of water, 342
Exponential series, 39
Factors, 36
of evaporation, 583, 584
Fahrenheit scale, 540
Falling bodies, 231
Feed-water, gain due to heating, 610
Feet in metres, 17
Ferrous alloys, 347
strength of, 350, 388
Fire-bars, 610
-box, locomotive, 669
stays, 670
Flange couplings, 432
Flanges, steel tube, 420, 421
Flash point of fuels, 564
Flat springs, deflection of, 255
Floating bodies, 230
Flow of gas or steam through pipes, 720
Fluid pressure, 228
Flywheels, steam engine, 664
Focus of a conic, 150
Foot-pounds in kilogrammetres, 30
Footstep bearings, 448
friction of, 239, 242
Force, 218
centrifugal, 235
de cheval in horse-power, 31
in belt, 478
moment of, 219
Forced draught, 603
Formula, algebraical, 36
trigonometrical, 41
Foundation bolts, 404
Four-stroke cycle, 684

Fractions, decimal equivalents of, 138
of an inch in decimals, 138
in millimetres, 15,16
Friction, 239
brake dynamometer, 244
coefficients of, 220, 239, 484
coupling, 437
gearing, 493
power transmitted by, 495
in bearings, 239
laws of, 240
of band on pulley, 477
of collar bearings, 243
of footstep bearings, 239 , 242
of journal bearings, 240
of mill engines and gearing, 243
of pumps, 735
of rope on pulley, 484
of steam engines, 243
of water in pipes, 728
resistance of, 220
statical, 240
work done on, 239
Frustum of cone, 202, 208
radius of gyration of, 217
of cylinder, 201
of prism, 201
of pyramid, 202, 208
Fuel, air for combustion of, 557
and combustion, 557
calorific value of, 558,560 , 564, 698, 699
carbon value of, 559, 560
constituents of, 557
evaporative power of, 559, 560
injection pumps, 707
octane number of a, 695
oil, 564, 698
varieties of, 562
Fuels, calorifio intensity of, 561
flash point of, 564
gaseous, 690
I.C. engine, 697

Fuels, liquid, 698
rating of Diesel, 696
Functions of $g, 753$
of $\pi, 139$
Furnace tubes, 630
Furnaces, corrugated, 631
marine boiler, 599
spherical, 631
Fusion, latent heat of, 548
temperature of, 549
Gallons in litres, 25
g, functions of, 753
Gas, adiabatic expansion of, 555
analyses of exhaust, 700
critical temperature of, 556
isothermal expansion of, 554
natural, 564
oil, 564
relations between volume, pressure, and temperature, 552
velocities, 703
Gaseous fuels, 699
Gas-fired boiler, 586
Gases, specific heats of, 547, 561
weight and volume of, 346
Gauges, wire, 33, 34
Gear, epicyclic, 503
Gearing, belt, 473
friction, 493
rope, 483
toothed, 496
Gear wheel arms, 509
bosses, 510
rims, 509
Gears, bevel, 501
for non-parallel shafts, 501
for parallel shafts, 496
helical, 500, 501
hypoid, 502
load capacity of, 504
spiral, 500
bevel, 501
spur, 496

Gears, valve, 672
worm, 502
Generation of teeth, 497
Geometrical mean, 38
progression, 37
Geometry, notes on, 141
Gerlach's formula for wind pressure, 280
German silvers, 375
Girder, half-lattice, 282
lattice, 283
stays, 635
Warren, 282
Gordon's column formulæ, 254
Governors, 662
Gramme, 32
Graphic arithmetic, 166
Grate area, 669
Gravity, 32, 231
A.P.I., 696
centre of, 204
specific, 324, 696
Greek alphabet, 751
Grinding wheel specifications, 743
speeds, 744, 745, 746
wheels, 742
Gudgeon pin, 526, 702
Guldinus, theorems of, 204
Gun-metal, 369
Gusset stays, 635
Gyration, least radii of, 287
radius of, 211, 215
Half-lattice girder, 282
Hanger, "J," 445
with swivel bearing, 446
Hangers, sling, 447
Hardness numbers, Brinell, 392 testing, 391
Harmonical mean, 38
progression, 38
Heads of water, pressures of, 343
Heat, 540
balance in I.C. engines, 692
conduction of, 549

Heat, expansion by, 550, 551
mechanical equivalent of, 546
of combustion, 558
radiation of, 550
transmission through plates, 550
unit of, 546
Heating feed-water, gain due to, 610
surface of boiler tubes, 590 , 669
Helical gears, 500, 501
load capacity of, 504
springs, 257
teeth, 500
Helix, 164
Hemisphere, centre of gravity of, 208
Hempen ropes, 268
Hesselman engine, 709
Hiduminium RR alloys, 378
Hollow shaft, moment of resist. ance of, 426
Hooke's joint, 435
Hooks, crane, 267
Hoop, centrifugal tension in revolving, 235
Horse-power, 233, 643, 686, 712
in force de cheval, 31
measurement of, 244
of belts, 480
of shafts, 425
per litre, 701
transmitted by friction gearing, 495
by rope, 485, 491
Howdon-Johnson boiler, 602
Hutton's formula for wind pressure, 279
Hydraulio accumulators, 724, 725
resistances, general formula for, 728
stop valve, 723
tests for boilers, 612
transmission of power, 722
Hydraulics, 726

[^0]: The litre is the volume of 1 kilogramme of pure water at its maximum density ($4^{\circ} \mathrm{C}$.) and at 760 mm ., he weighing being reduced to in vacuo conditions. 1 litre $=1.000027 \mathrm{cu}$. decimetres $=1000 \cdot 027 \mathrm{cu} . \mathrm{cm}$. $=61 \cdot 02571$ cu. inches. By legal sanction (1898) 1 gallon $=4.54596(31)$ litres. The N.P.L. states that 1 gallon $=4 \cdot 54596$ litres, which is reliable only to the fifth decimal place. Confusion occurs between the millilitre and the cubic centimetre which are nearly equal. The Joint Committee for the Standardisation of Scientific Glassware recommended: The litre (l.) and millilitre (ml.) shall be used as the standard units of volame and that standard volumetric glassware shall be graduated in terms of these units and marked "ml." instead of "c.c."

[^1]: * 1 force de cheval $=4500$ kilogrammetres per minute.
 if 1 B.Th.U. is the amount of heat required to raise one pound of water $1^{\circ} \mathrm{F}$. See p. 546 .

 Un=
 $\dagger 1$ calorie is the amount of heat required to raise one kilo-
 gramme of water 1°. See p. 546 . $\ddagger \mathbf{\$ 5 \cdot 2}$ francs $=\Sigma 1$ (in 1914).

[^2]: - Based on 1 natatical mille $=6080$ feet.

[^3]: $\frac{1}{18}$ inch $=005208$ foot $; \frac{1}{8 \frac{1}{2}}$ inch $=002604$ foot $; \frac{1}{8}$ inch $=001302$

[^4]: *If in the case of the prism or cylinder it is required to include one end, or if in the pyramid or cone it is required to include the base, or if in the truatum of a pyramid or cone it is required to include one end or both ende, apply the rule at the bottom of palie ecoe.

[^5]: Centrifugal Tension in a Thin Revolving Rod.-The rod is supposed to revolve about an axis at right angles to the rod, and passing through one end.

[^6]: *Proceedings of the Institution of Mechanical Engineers, 1888 and 1885. + Unwin's "Machine Design," Part 1. p. 184.

[^7]: * Journal of the Franklin Institute, 1874.
 \dagger Proceedings of the Institution of Mechanical Engineers, 1801.

[^8]: * Proceedinge of the Institution of Mechanical Engineers, 1888.

[^9]: - Extracted from B.S. 465 : 1932.

[^10]: - Extracted from B.S. 590 : 1935.
 \dagger These weights do not apply to pitched or calibrated chain.

[^11]: - Extracted from B.S. 781:1938. Wrought-iron Chain Slings and Ringe, Links Alternative to Rings, Egg Links and Intermediate Links.

[^12]: - Extracted from B.S. 302 : 1938. Oertain restrictions made in November 1841 are not indicated above.

[^13]: $w=$ total weight of one truss in lbs.
 $l=$ span in feet.
 $a=$ distance between adjacent trusses.

[^14]: - The water is free from air and at atmospheric presare.

[^15]: - Gregory, Metallurgy, 1932, Blaokie \& Son, Ltd.

[^16]: * "Nickel Cast-Iron for Engineers"-Publication No. B 27.-The Bureal of Information on Nickel.
 \dagger Notes summarised partly from Wrought-Iron and Malleable Cast-Iron, by B. O. Tucker.

[^17]: - Mainly from Automobile Steel Research Report of the I.A.B., 1930.

[^18]: * "Nickel Alloys in Aeronautical Engineering"-Publiostion No. H 87.The Bureau of Information on Niokel.

[^19]: * Samuel Fox \& Co., Ltd., assooiated with The United Steel Companies Ltd.
 \dagger Alloy Metals Review, June 1938. Review of paper on "Special Steels in Engineering and Shipbuilding," by Dr T. Swindon.

[^20]: * See Simons and Gregory, The Structure of SLeel, 1988, Blackie \& Son, Ltd., for a aimple account of alloy steels.

[^21]: *D. P. O. Neava, "Oopper and its Alloys in Automobile Design," Proc. I.A.E., vol. xEl . p. 624.

[^22]: - Attchison and Barclay, Engineering Non-ferrous Metals and Alloys, Oxford Univeraity Pross.

[^23]: * Aitchison and Barciay, Engineering Non-forrous Metals and Alloys, Oxford Univanity Prem.

[^24]: * D. P. O. Neave, "Copper and its Alloys in Automobile Dealgn," Proc. I.A.S., vol. $\mathbf{x x y}$. p. 624.

[^25]: Note.-The above bronzes were de-oxidised with phosphorus and contain a residual percentage
 of from 0.02 to 0.04 of this element.
 *) N. B. Pilling and T. F. Kihlgren, "Some Effects of Nickel on Bronze Foundry Mixtures," Trans. Amer. Found. Assn., 1931,

[^26]: * Aitchison and Barclay, Eingineering NYon-farrous Metals and Alloys, Oxtond University Prem.

[^27]: * The British Aluminium Co., Ltd.
 \dagger The values given in these columns are not specification requirements, but may be regarded as reasonable minima.
 I Six hours at $500^{\circ}-520^{\circ} 0$. and quenched. Aged at room temperature for five days, or bolling water two hours.

[^28]: *"RR 56 Aluminium Alloy-Propertles, Heat-treatment, and Uses"Publication No. D 8.-The Burear of Information on Nickel.
 \dagger "Nickel Alloys in Aeronautioal Engineering"-Publication No. H 27.-The Burean of Information on Niokel.

[^29]: * Magnesium and its Alloys, H.M. Stationery Office, 1937.
 \dagger J. L. Haughton, "Developments in Magnesium Alloys," Proc. Inter. Asen. for Teasting Materials, London, 1987.

[^30]: * Notes taken partly from M. Melhulah, "White-metal and Bronze Bearinga from the Manufacturers' Point of View," Proc. I.A.E., vol. xxx.
 \dagger H. N. Bassett, Braring Metals and Alloys, 1937, Zdward Arnold \& Op.

[^31]: * Imperial Smelting Corporation.
 † "Aircraft Engine Materials," S.A.E. Journal, April 1937. See also "Bearing Materiale," Δ utomotive Industries, March 1938, p. 419.

[^32]: - Extracted from B.S. 21 : 1938.

[^33]: - Still in use, but the American Standard screw threads are now as given on pp. 309, 400.

[^34]: - The tables give a selection from the ranges of bearings availabie. The manutacturen thould be consaltod for further particulars of bell and rolle bearing

[^35]: - The manufacturars should be oonsulted for fall partioulars of their ball and roller bearinge.

[^36]: - The dimension O is the outside diameter of the casing over the water jacket which extends only about 270°.

[^37]: - Proceedinge of the Institution of Mechanical Engineers, 1895, p. 648

[^38]: * Procsedings of the Institution of Mechanical Enginsers, 1880.

[^39]: - Proceedings of the Institution of Mechanical Enginoers, 1887.

[^40]: $=2912^{\circ}+90^{\circ} \mathrm{F} .=3002^{\circ} \mathrm{F}$

[^41]: - Bevised from information supplied by the National Boller \& General Insurance Co., Itd., Manchester.

[^42]: - For particulars of British Standard Riveta, see B.S.S., No. 275, Dimenaiona of Riveta, and B.8.S., No. 425, Forms and Dimensions of Boller Riveta.

[^43]: * Engincering, vol. 1vili. p. 84.

[^44]: * Professor Hood of Michigan, who has made many experiments on pumps: states that for the cylinder and valve arrangement alone this is very low for a good modern pump at reasonable speed, and he believes that the maximum efficiency is reached at lifts of 25 to 50 ft . for many pumps. Also for lower lifts and slow speeds 70 to $\$ 5$ per cerit. is not wecommon.

[^45]: - Higher speed recommended only where bearings, protection devices, and machine rigidity are adequate.
 \dagger This higher apeed is recommended only where sultable bearings are employed.

[^46]: - British Standards Institution, Sales Dept., 24 Victoria Street, London, S.W.1.

