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PREFACE 

The present work is not just another treatise on the apparently 
inexhaustible subject of electric power. It is neither intended 
to survey existing practice in the generation, transmission, or 
distribution of alternating current, nor concerned with the 
many problems associated with the design and operation of 
individual power stations and distribution networks. Both 
these aspects of electric power are adequately dealt with in a 
number of already standard textbooks and works of reference. 
On the contrary, the object of this new book is to acquaint 
the practising engineer, as well as the advanced student, with 
the several analytical and semi-graphical methods that have 
been developed, during the last two decades, for calculating 
the performance of interconnected power systems. And it has 
been the author’s aim throughout to present in this volume 
just the bare minimum of theoretical material necessary not 
only to an understanding of the special problems involved in 
power system interconnection, but also to the formulation of 
appropriate solutions to these problems. 

The view is commonly expressed that, as the British “Grid” 
is, in effect, a vast 132 kV. busbar system, it does not lend 
itself to study from this particular aspect of power system 
operation, and that in consequence those studies of power 
system interconnection which are usually associated with the 
transport of electricity on a continental scale can only be of 
academic interest so far as this country is concerned. Such a 
point of view is, to say the least, short-sighted. It completely 
overlooks the fact that the linking up of large selected stations 
through the medium of the “Grid” can, and sometimes does, 
reproduce conditions which are a commonplace, say, in 
America. The fact that the Boulder Dam line is 270 miles long 
and operates at 287 kV. does not mean to say that the problems 
connected with its operation are fundamentally different from 
those arising in the case of the interconnection of, say, Hams 
Hall and Nechells. Although there exists a wide difference in 
order of magnitude, the relative scale to which system behav¬ 
iour must be referred is more or less the same for both. 

As indicated by its sub-title, the present volume has been 

vii 



PREFACE vili 

purposely limited in scope to a consideration of the basic 
transmission problems underlying the technique of power 
system interconnection as we know and understand it to-day. 
That technique, however, is intimately bound up with the 
solution of other no less vital problems centring upon a variety 
of extraneous factors which involve the operational behaviour 
of electrical machines per se. Although these aspects are not 
stressed, the present volume gives a sufficiently comprehensive 
treatment of the subject as a whole to enable an adequate 
quantitative examination to be made of any but the most 
complicated interconnected systems. 

The bulk of the material included in the book has been 
based on articles by the author which have already appeared 
in the technical press, and upon notes on the subject collected 
by him during recent years. The treatment of power limits in 
Chapter III is nevertheless original, and, in particular, the 
analysis underlying the geometrical construction of the power- 
limit parabola and of the power-circle envelope has not been 
previously published. Where the work of others has been 
drawn upon, due acknowledgment is made at the end of the 
chapter concerned. In addition, to facilitate further study of 
the subject, a bibliography of all the most important refer¬ 
ences in the English language, together with a few foreign 
references, has been compiled and arranged in chronological 
sequence. 

1949. 
H. R. 
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POWER SYSTEM 
INTERCONNECTION 

CHAPTER I 

LfUNDAMENTAL CONCEPTIONS AND PRINCIPLESll 

When considering the transmission of electric power in general 
it is necessary at the outset to distinguish between synchronous 
and asynchronous transmission systems. By the term “trans¬ 
mission system” is to be understood the composite electrical 
system formed by a generating station, a distant load network, 
and the overhead line or underground cable (including terminal 
transformers) constituting the intervening power-transmitting 
link. 

The majority of power transmission problems discussed in 
standard texts on generation and transmission are concerned 
with essentially asynchronous systems, that is to say, trans¬ 
mission systems of the type represented by a synchronous 
generator supplying power, through a circuit combination of 
series impedance and shunt admittance, to an asynchronous 
load consisting, say, partly of static impedance (e.g. lighting) 
and partly of dynamic impedance (e.g. induction motors). The 
characteristic feature of such a transmission system is that the 
terminal voltage at the load is not an independent factor, but 
is determined by the induced e.m.f. of the generator as well 
as by the amount of power transmitted. The general behaviour 
of an asynchronous transmission system is accordingly con¬ 
ditioned by the fundamental characteristics of a generator 
supplying a simple impedance load. As the result, problems 
which centre upon this type of transmission system may be 
solved with the aid of vector diagrams and their attendant 
analysis—in short, by the straightforward application of 
conventional a.c. theory. 

Problems of power system interconnection, on the other 
hand, concern a transmission system which is essentially 
synchronous in character. The very term “interconnection” 
implies a linking-up of power systems having independent 



2 POWER SYSTEM INTERCONNECTION 

existence. And when two such systems are linked by a general 
network of series impedance and shunt admittance, the aggre¬ 
gation constitutes a synchronous transmission system. In its 
most elementary form such a system comprises a synchronous 
generator supplying power to a synchronous motor through a 
simple reactive tie. But the most general form of a syn¬ 
chronous transmission system is typified by two otherwise 
independent synchronous systems connected together by a 
power-transmitting link of some kind, e.g. a busbar, a cable 
interconnector, or a transmission fine. The characteristic 
feature of such a transmission system is that the voltages at 
the two ends of the power fink exist independently of one 
another as well as of the amount of power interchanged 
between the terminal systems. The general behaviour of a 
synchronous transmission system is accordingly determined by 
the characteristic mode of power flow between individual syn¬ 
chronous machines. Consequently the problems peculiar to 
power system interconnection cannot usefully be approached 
from the standpoint of conventional a.c. theory, nor can they 
be solved by the methods usually associated with vector 
analysis. 

It is the purpose of this opening chapter to outline the 
several elements of the analytical framework within which 
such problems can be readily confined, and their solution in 
consequence becomes a matter of the routine application 
of certain principles and methods of attack. Some of these 
methods are of a graphical nature; others, again, are purely 
analytical. All, however, involve concepts that are often 
foreign to the average engineer who, while being an fait with 
the many problems of everyday electrical practice, is, as a 
rule, not familiar with the theoretical approach that is charac¬ 
teristic of power transmission technique. This general un¬ 
familiarity with power transmission, considered as a special 
branch of electrical engineering practice, is all the more un¬ 
fortunate in that many of the analytical tools employed, e.g. 
equivalent circuits and circle diagrams, are only too well 
known in their application to the solution of the more common 
electrical power problems. Particularly is this the case, for 
example, in determining the power limit of a synchronous 
transmission system operating under normal steady-load con¬ 
ditions. For this important problem lends itself, as will be 
shown later on, to a semi-graphical method of solution that 
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makes a ready appeal to the electrical engineer versed in the 
diagrammatic representation of technical questions in general. 

Representation of Vector Quantities. In nearly all problems 
connected with power system interconnection the main vari¬ 
ables are vector quantities, that is to say, alternating quantities 
which can be represented graphically by means of rotating 
vectors. The conventional method of vector analysis employed 
in a.c. theory makes use of the so-called symbolic or algebraic 
method of vector notation in which vector quantities are 
represented by complex numbers. By this method a vector 
quantity is defined completely, i.e. in magnitude and direction, 
with reference to a system of rectangular or xfy co-ordinates 
in which the abscissae (x) lepresent 4‘datum” values and the 
ordinates (y) represent “quadrature” values, that is, “datum” 
values operated upon by a 90° anticlockwise rotation. This 
unit operator is customarily denoted by the symbol j, algebra¬ 
ically equivalent to y'— 1. 

This system of notation is illustrated in Fig. 1 (a), in which 
the vector quantity A* is regarded as the resultant of two 
component vector quantities—the one along datum and of 
magnitude A±, the other in quadrature and of magnitude A2. 
The vector quantity is thus completely defined by the relation 

A = Ax -f jA2 . . (!) 

In this system of notation the conjugate A' of the vector A 
is defined by the corresponding relation 

A ' = A1-jA% ... (2) 

and is represented in Fig. 1 (a) by the image of the vector A 
as seen reflected in the x- or datum-axis. 

It is seen from Fig. 1 (a) that the quadrature component jA2 
of the vector quantity A is obtained by rotating a vector 
representing the datum quantity A2 in the positive (anti¬ 
clockwise) direction of rotation through the angle 7r/2. Opera¬ 
tion by j thus denotes the rotation of a vector through a 
positive right angle. Conversely, division by‘the unit operator 
j denotes rotation through a negative right angle, since l/j = 
j/j2 = —j. For example, referring to Fig. 1 (a), the quadrature 
component — jA2 of the conjugate vector quantity A' is 
obtained by rotating a vector representing the datum quantity 

* All vector quantities and vector operators are indicated by Clarendon 
type, thus: E, z, B, i. 

2—(T.180) 



4 POWER SYSTEM INTERCONNECTION 

A2 in the negative (clockwise) direction of rotation through 
the angle 7t/2. 

This conception of rotating vectors at once leads to the 
trigonometric method of vector notation, illustrated in Fig. 1 (6), 
by which a vector is completely defined with reference to a 
system of polar or r-0 co-ordinates. In this system the radius 
vector A represents the modulus, while its angular displace¬ 
ment a from the zero axis of vector reference represents the 
argument of the complex quantity A = Ax + jA2. Comparing 
diagrams (a) and (6) of Fig. 1 it is evident that A1 = A cos a and 

(CO (b) 

Fig. 1. Conventions in Vector Representation 

(a) Rectangular co-ordinate system. 
(b) Polar co-ordinate system. 

A 2 = A sin a, so that the vector quantity A is completely 
defined by the relation 

A = Ax + jA2 = A cos a + jA sin a 

= A (cos a + j sin a ) = Aej<x . . (3) 

Multiplication by the operator ejct thus signifies rotation of a 
vector representing the real quantity A through the positive 
angle a. Hence the operator e^2 must be identical with the 
unit operator j. That this is actually the case may be shown 
by putting .4 = 1 and a = tt/2 in equation (3). Similarly, 
application of the operator e~j(X signifies the rotation of a 
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vector through the angle — a. For example, the conjugate 
vector quantity A' is defined by the relation 

A' = Ax — jA2 = A cos a — jA sin a 

= A [cos (— a) + j sin ( — a)] = A e~i<x . (4) 

The operator ejeis customarily abbreviated to |_^, so that the 
vector A is written A |_a and its conjugate A' is similarly written 
A IzJ?. The advantage of this trigonometric notation is that 
it facilitates the multiplication and division of vector quantities. 
Take the case of the voltage vector E = E |_0_ and the current 
vector I — I | w_. The vector impedance is then simply 

E_ 

11 

9 

¥ 

E 

I 

0)6 
- — ZL . — — . eH0-v) 

clV 

E 

I = 71— v) 

= Z \$_ (where Z — E/I and (f> = d — y>) 

— R + jX (where \/(R2 + X2) = Z and tan-1 (X/R) = (f>) 

Provided 6> ip, that is, provided the voltage leads the current, 
the impedance angle </> is positive and the reactance X is then 
inductive. Conversely, a negative value of </> corresponds to a 
leading current and thus to capacitive reactance. 

On considering power as the product of voltage and current 
it is found, however, that the vector power is given not by 
the product of the current vector I and the voltage vector 
E but by the vector product of I and E', the conjugate of E, 
because we then have— 

Vector power = E'l = E\-zA x /1 v. 
= Ee-1° X le* = EleXv-V 

= El cos (ip — 6) + jEI sin (ip — 6) 

= P +jQ 
where P = El cos (ip — 0) is the active power, and Q — El sin 
(ip — 0) is the reactive power. In this case Q is positive if 
ip > 0, that is, provided the current I leads the voltage E. 
This is the converse of the impedance case, where X is positive 
so long as 0 > ip. 

In other words, an impedance (R ± jX) corresponds to a 
vector power (P jQ). Positive or inductive reactance (+ X) 
thus corresponds to negative or lagging reactive power (— Q); 
while negative or capacitive reactance (— X) in turn corresponds 
to positive or leading reactive power (+ Q). 
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The General Transmission Netwoife To appreciate the 
nature of power transmission problems as a whole it is necessary 
not only to be clear as to the electrical behaviour of a trans¬ 
mission system, when regarded as a vehicle for the transport 
of electrical energy in bulk, but also to visualize the kind of 
picture which such a system presents when looked upon as an 
electrical circuit pure and simple. In fact, unless and until one 
can represent a given transmission system by a comparatively 
simple and familiar circuit diagram, any analysis of specific 
power transmission problems becomes unnecessarily difficult. 

The starting-point in the solution of problems relating to 
power system interconnection is therefore the reduction of the 
transmission system to an equivalent network. In the last 
analysis, the power-transmitting element of a synchronous 
system is a generalized circuit, compounded of series impedance 
and shunt admittance, to one end of which—the so-called 
sending end—power is supplied, and at whose other end— 
termed the receiving end—power is withdrawn. Such a general¬ 
ized circuit is known as a network, and the points where power 
is supplied and withdrawn are called the terminals of the 
network.(1)* No matter how complicated its structure, pro¬ 
vided that all the elements of a network are inert and linear 
and that it has two sets of terminals, then the current and 
voltage at one end can be expressed as simple linear functions 
of the current and voltage at the other end. A synchronous 
transmission system may therefore be represented by an 
electrical network connecting two pairs of terminals across 
which are applied voltages that are quite independent as regards 
magnitude and phase relationship, but are interdependent in 
the sense that they are synchronous. At the same time, the 
corresponding currents flowing into and out of the network are 
not independent, for they are determined as much by the 
magnitudes and phases of the terminal voltages as by the 
electrical characteristics of the network. The several current 
and voltage relations of this general transmission network may 
be explained with reference to Fig. 2. In diagram (a) the 
sending-end and receiving-end terminals are designated by (8) 
and (R) respectively. If Es and I3 denote the vector voltage 
and current at the sending end, and Er and Ir those at the 
receiving end, then the electrical characteristics of the network 
determining the relation between them can be expressed in 

* All numbered references are given at the end of each chapter. 
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terms of four constants, A, B, C, and D, through the funda¬ 
mental network equations— 

E, = AEr -f- BIr (5a) 

I5 = CEr Dir • (56) 

or their equivalents— 

Er = DE, — BI5 (6a) 

Ir = — CES + AIa . . . (66) 

In the above equations Es and Er are the independent variables 
and Is and Ir the corresponding dependent variables. The four 
vector operators, A, B, C, and D, which take into account the 
composition of the power transmitting circuit as well as the 
electrical frequency of the synchronous system, are complex 
constants of the type A = (Ax + jA2), and are known as the 
general network constants oi parameters of the transmission 
system. 

It is clear that A and D are complex numeric operators, 
whereas B is a vector impedance and C is a vector admittance. 
For, referring to equation (5a), if Ir = 0, then A — Es/Er; that 
is to say, the constant A is the vector ratio of the sending-end 
voltage to the receiving-end voltage when the receiving end is 
open-circuited. Similarly, from equation (56), if Er = 0, then 
D = Is/Ir. In other words, the constant D is the vector ratio 
of the sending- and receiving-end currents when the receiving 
end is short-circuited. Again, by the same reasoning, B is the 
ratio of the sending-end voltage to the receiving-end current, 
when the receiving end is short-circuited. This vector im¬ 
pedance is known as the transfer impedance of the system and, 
as will be shown later, is a factor of vital importance in limiting 
the amount of power which can be transmitted between (S) 
and (R). Finally, the constant C is the ratio of the sending-end 
current to the receiving-end voltage when the receiving end is 
open-circuited, and is accordingly termed the transfer admittance 
of the system. These four network constants are bound by the 
universal relation 

AD - BC s 1 . (7) 

so that only three of the four are independent.* 
Two further relations of importance are to be derived from 

* The equivalence of equations (5) and (6) is based on this relation. 
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equations (5a) and (&&). If the receiving end is short-circuited, 
so that Er — 0, then the sending-end impedance becomes 

(8) 

Similarly, if the sending end is short-circuited, so that Es = 0, 
then the receiving-end impedance becomes 

Zr 
B 
A 

(9) 

The minus sign in front of Ir indicates that, as seen from the 
receiving end, the direction of power flow through the network 

Fig. 2. The General Transmission Network 

(а) Network diagram. 
(б) Vector diagram. 

is reversed. These two impedances are termed the driving-point 
impedances of the system. 

The vector diagram for the general transmission network is 
shown in Fig. 2 (6). It is customary to take the receiving-end 
voltage as being along the datum of vector reference, so that 
Er = Er10_ = Er. The vector angle Q between E8 and Er is 
commonly known as the transmission angle. The sending-end 
voltage is thus E3 = Ea|JL The power-factor angles of the 
currents at the sending and receiving ends are respectively </>$ 
and <j>r) so that the currents are I8 = Is |(fl + <t>8) and Ir = /r]K. 
The receiving-end power output is consequently 

Pr + jQr — E/Ir == ErIr \K . . (10a) 

while the vector power input at the sending end is 

P,+jQ, = E/I. ^EJ, \ts . (106) 
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y^ansmission-line Constants. The fundamental voltage and 
current equations for a long transmission line with uniformly 
distributed constants are— 

Es = Er cosh 0 + ZqIj- sinh 0 . . (11a) 
E 

I a = nT sinh 0 + Ir cosh © . . (116) 
"0 

where 0 = \/(ZY) is the complex angle subtended by the line 
and Z0 = \Z(Z/Y) is its characteristic impedance.(2) Here 
Z = (R + jX) is the total series impedance and Y = (O + jB) 
is the total shunt admittance of the line. Comparing equations 
(11) and (5) it is evident that the network constants of the trans¬ 
mission line are— 

A = D = cosh 0 — 

B = Z0 sinh 0 = Z 

sinh 0 

cosh \/(ZY) \ 
sinh 0 ^ sinh y'(ZY) I 

C = 
Z0 

= Y 

0 ~ VZY 
sinh 0 sinh \/(ZY) 

0 = Y V(ZY) J 

(12) 

Charts I and II* provide a rapid means of determining the 
complex values of cosh 0 and (sinh 0)/©, as they are plotted 
in terms of ZY = 02, instead of 0 as in the case of Kennedy’s 
unique Chart Atlas of Complex Hyperbolic and Circular Functions. 
These two charts cover a transmission range up to 350 miles at 
50 cycles.(3) 

As an example of their use, consider the case of a single- 
circuit 132 kV. grid line, 100 miles in length, for which 
Z = 71*45|69*4° vector ohms and Y = 0*0004425 |90° vector 
mhos.(4) We have 

ZY = 71*45 [69*4° X 4*425 X 10~4 [90° = 0*0316 [159*4^ 

Entering Chart I with this value of ZY, we find that 
cosh 0 = 0*9853 |0*32°. Similarly, Chart II gives (sinh 0)/0 = 
0*9951 |0*11°. 

In the case of short lines, i.e. under about 50 miles in length 
at 50 c/s, cosh 0 and (sinh 0)/0 may be taken as being equal 
to unity. Also both the capacitive susceptance B = coC 
and the conductance C (due to leakage and corona) are 

* Reprinted by permission from Electric Power Transmission, by L. F. 
Woodruff (John Wiley & Sons Inc.). 
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negligible, so that Y = 0. The network constants then become 
simply— 

A = D = 1 
B = Z = R+jX) . . . (13) 

C = o 
and hence Es = (Er + ZIr) and Is = Ir. Under these circum¬ 
stances the transmission line may be represented by a series 
circuit containing only the lumped impedance Z. 

Transformer Constants. The equivalent circuit of a trans¬ 
former is shown in Fig. 3. It is an asymmetrical T circuit with 
lumped impedances in the two arms and lumped admittance 

Fig. 3. Equivalent T Circuit of a Transformer (Exact) 

in the staff. Zx = (Bx + jXx) represents the primary imped¬ 
ance due to resistance and leakage reactance, Z2 = (R2 + jX2) 
the secondary impedance, and Y —(G — jB) the no-load 
admittance of the transformer.* 

Denoting the voltage across the staff by E, we have 

E = Er + Z2Ir; Es = E + ZXIS; I, = Ir -f- YE 

Consequently 

■ I* = Ir + Y (Er + Z2Ir) = YEr + (1 + Z2Y) Ir 
and Ea = (Er + Z2Ir) + Zx [YEr + (1 + Z2Y) Ir] 

= (1 + ZXY) Er + (Zx + Z2 + ZxZ2Y) Ir 
Hence the network constants for the transformer are— 

A = 1 + ZXY 

B = Z2 + Z2 + ZxZ2Y 
C == Y 
D = 1 + Z2Y 

As the primary and secondary impedances of the transformer 
are as a rule not obtainable from test data, it is permissible to 

* The minus sign indicates that the magnetizing susceptanee B is inductive. 
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put Zx = Z2 = Z/2, where Z = (R + jX) is the equivalent 
transformer impedance. In that case equations (14) become— 

A = D = 1 + ZY/2^ 

B = Z (1 +ZY/4) ... (15) 

C - Y i 

These formal expressions for the general network constants 
are, however, cumbersome to use in practice. They are greatly 

R X 

(b) 
Fio. 4. Equivalent Cantilever Circuit of a Transformer 

(Approximate) 

(a) Sending end. (b) Receiving end. 

simplified when the transformer is represented by its approxi¬ 
mate ‘‘cantilever” circuit as shown in Fig. 4. The errors intro¬ 
duced by this simplification are less than 1 per cent, so that 
the approximation is justifiable in practical calculations. In 
the case of the sending-end transformer of Fig. 4 (a) the 
network constants are— 

A= 1 B = Z 
C = Y D = 1 + ZY 

For the receiving-end transformer of Fig. 4 (b) they are 

A = 1 + ZY B = Z\ 
C = Y D = 1 / 

The values of Z = (R + jX) and Y = ((? 
from the usual transformer data as follows— 

10 x (%/2i?loss) x (kV.)2 

(16) 

. (17) 

jB) are found 

R 
Transformer kVA. 

ohms, 

X = 
10 X (% reactance) x (kV.)2 

Transformer kVA. 

(% core loss) X kVA. 
0 = ——/i tt xo . .-^K-mhos, 

ohms, 

B = 

(kV.)2 x 106 
(% magnetizing current) x kVA. 

(kV.)2 X 106 
mhos. 
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Synchronous Machine Constants. The equivalent circuits of 
synchronous machines are shown in Fig. 5, in which R is the 
series resistance representing armature copper loss, X8 is the 
series reactance representing the synchronous reactance of the 
machine, and 0 is the shunt conductance representing iron loss 
at no load. For the synchronous generator, Fig. 5 (a) gives— 

A=1 B = R + jXa \ 
n — a n_'1 C = D = 1 + 0(R+jXs)j ‘ 

while, in the case of the synchronous motor, Fig. 5 (b) gives— 

A=1 +0(R+jXs) B = B+jXs\ 

C = 0 D = 1 j (' 
The values of R, X8, and 0 may be found in the same way as 
for a transformer. 

Series and Parallel Networks. If Av Bl5 Cv B1 are the constants 
of one network and A2, B2, C2, D2 are those of a second network 

O— —i—A'WvV'—'TflWiT'-o o VvW^V-^^CT-—o 
I X xs X Xs 

(a) (b) 
Fia. 6. Equivalent Circuits of Synchronous Machines 

(a) Generator. (6) Motor. 

connected in series with it, then the network constants of the 
series combination are— 

A = AjAo -|- BA \ 
B = AA + BA I 
C = C,A2 + DA * 
D = CA + DiD2 J 

In the case of two networks connected in parallel, the general 
network constants become— 

AiB2 + AA 
B* + Ba 

BiB 

®i + Bg 

f! 4- c (Al 
-Ag) (Dx-Dg) 

■ W -f i/g Bi + B2 
BiD2 + BgDx 

Bx + Ba 
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It is useful to note that, if the two parallel networks are 
identical (e.g. a double-circuit transmission line), the constants 
become A, B/2, 2C, and D. 

A frequently recurring case is that of three networks in 
series. Here the general network constants are— 

A — A>i (A2A3 4" B2C3) ~l~ (C2A3 + D2C3) > 
B = Ax (A2B3 + B2D3) + Bx (C2B3 + D2D3) 
C = Cx (A2A3 + B2C3) + Dx (C2A3 -f D2C3) • W 
D = Cx (A2B3 + B2D3) + Dx (C2B3 + D2D3p 

An example of this particular case is afforded by what is 
probably the most common type of transmission circuit, viz. a 
long transmission line with transformers at each end. Such a 
circuit may be regarded as an “equivalent transmission line” 
having constants which are simple functions of the constants 
of the actual transmission line and of its terminal transformers. 
If the actual line constants are A^, B^, C^, D^, and if the sending- 
and receiving-end transformers have series impedances ZTS, 
ZTR and shunt admittances YTS, YTR respectively, then the 
network constants of the equivalent line become— 

A/ = AL (1 + ZtrYtr) + B^Yrfl 
4~ CLZTa (1 -j- ZT1^YTR) 4- B^ZT^lTR 

Bx = Pi.jZTR -f Bl 4- 4~ Bj*ZT3 

Cl = AjJYra (1 4“ ZT^lTR) 4- BlYtsYtr 
4- C£ (1 4- ZTaYTS) (1 4“ ZTRYTR) 
4" BlYtr (1 + 2jtsYts) 

T)l — hJLT]^iTa 4~ B^YTa 4~ C^Z-yyj (1 4" ZraYTa) 
4- D/, (1 4" ZTaYTa) 

Moreover, if, as is usually the case, the actual line is sym¬ 
metrical, so that Al = Dl, and if, in addition, the terminal 
transformers are identical, so that ZTS = ZTR = ZT and 
Yy5 = Ytr = Yr, then the above expressions for the equivalent 
line constants reduce to the form— 

AL* — DL* = A^ (1 4" ^ZtYt) + BLYr 4" CLZT (14-Z2.Yr)>| 
B/ = 2A.Z, + B, 4- C,Z,2 (24) 
0/ = 2A£Yt (1 4- ZtYt) 4- BLYr2 + C*(l + Z,Y,)2 ) 

The Equivalent T and n Circuits. In the same way that 
it is possible to represent the electrical characteristics of any 



C
h

a
r
t
 III. 

H
y
p
e
r
b
o
lic

 
T

a
js

tq
e
n
t d

/2
 





FUNDAMENTAL CONCEPTIONS AND PRINCIPLES 15 

denotes the equivalent series impedance and Y' the equivalent 
shunt admittance of such a line, then equations (25) give— 

7/_ 
2 

= Z( 
cosh 0 

0 sinh 0 

Z 
= Z0 tanh |0 = — 

2 cosh2 |0 

0 2 sinh £0 cosh £0 

tanh £0 

~w~ • • 

sinh 0 sinh 0 

= "zT = ~ 

. (28a) 

. (286) 

while equations (27) give the corresponding relations— 

^ _ sinh 0 _ v 
Z = Z0 sinh 0 = Z —q— .... (29a) 

Y' cosh 0—1 Y . tanh £0 

“2 “ Z0 sinh © “ 2 ’ "|0“ * * * (296) 

Charts (3) II and III* enable values of the correction factors 
(sinh 0)/0 and (tanh ^0)/i0 to be obtained directly in terms 
of the product ZY = 02. 

In the case of short transmission lines, i.e. under about 
50 miles in length, these correction factors differ negligibly 
from unity, so that then Z' = Z and Y' = Y. Figs. 6 (a) and 
6 (6) in this case become the circuits of the so-called nominal 
T and II lines in which the electrical constants are lumped 
instead of being uniformly distributed. 

The Star/Delta and Delta/Star Transformations. In the 
simplification of complicated networks it is often a great 
convenience to be able to replace a star-connected group of 
three impedances by an electrically equivalent group of three 
delta-connected impedances, and vice versa. Particularly is 
this the case when determining the transfer impedance of a 
transmission system under fault conditions.f 

The general equivalence of three-cornered star and mesh 
circuits was first established by Kennelly,(6) and the principle 
was subsequently extended by Rosen(8) to the general trans¬ 
formation from a star circuit to a mesh circuit. In the general 
case, however, the converse transformation from a mesh circuit 
to a star circuit is no longer possible. If the star has n rays of 

* Reprinted by permission from Electric Power Transmission, by L. F. 
Woodruff (John Wiley & Sons Inc.). 

t Of. Chapter V. 
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impedance Zv Z2, Z3, . . . Zn5 then the impedances of the 
\n(n— 1) sides of the equivalent mesh are given by— 

n 

zm„ = zmz„(^- + 5 + • • • g-J = z“z"2(i) (30) 
1 

Equation (30) expresses the so-called starjmesh transformation 
in its most general form. 

For the particular case where n — 3 it becomes the star/delta 
transformation— 

z„ = zx + z2 + 

Z23 = Z2 + z3 + ■ . 

Z31 = Z3 + Zx + ^ 

. (31) 

The corresponding delta!star transformation is as follows— 

nr __ Z31Z12 
1 Z12 + Z23 + Z31 

Z = Zi2Z23 ^ 
2 Z12 + Z23 + Z31 

ry _ Z23Z31 
3 Z12 + Z23 + Z31 

(32) 

As an example illustrating the use of these transformations (7) 
let us take the case of the equivalent T line. This is a simple 
star circuit in which, from equations (28a) and (286), 

Z' /cosh© - ly „ 1 

11 “ Za — 2 “Z°V sinh'0-)’ Z® ~' Y7 
Z, 

sinh 0 

The architrave of the equivalent II line, which in turn is a 
simple delta circuit, is then given by equations (31) as— 

rtrF / cosh 0 — 1 \ sinh 0 n Q ( cosh 0 — 1 \2 

= 2ZoV~sinh0 j + ~zrz° V sinh© ) 

Z» 
sinh @ 

(cosh* 0 — 1) = Z0 sinh 0, 
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which is the same result as equation (29a), as is to be expected. 
Similarly, the pillars of the equivalent II line are given by— 

z _Z 1 Z^ 2_V 2 
^23 - ^31 - 2 "t" Y' 2Y' * Z' ~~ 2 fY' 

_ /cosh 0-1 \ 2Z0 

°\ sinh 0 / ‘ sinh 0 

/ cosh 0 + 1 \ Z0 sinh 0 

~ 0 \ sinh 0 / — cosh 0 — 1 * 

alternatively— 
__ cosh 0—1 1 , _ 

Y23 = Y31 = Zo sinh 0 - ^tanh ; 

which, in turn, is the same result as equation (296). Conversely, 
taking the case of the equivalent II line, the lumped constants 
of this simple delta circuit are— 

Zia = Z' = Z0 sinh 0 ; Y23 = Y31 = * 
cosh 0—1 

Z0 sinh 0 

The arms of the equivalent T line, which in turn is a simple 
star circuit, are then given by equations (32) as— 

Zx = Z2 
Z' . 2/Y' 

2 2 
Zy + + Y' 

2Z' 

4 + Z Y' 

Z0 sinh 0 

_ / cosh 0 — 1 \ 
2 + Zosmhe(ZoS^h0-j 

/ cosh 0 — 1\ 

Z°V sinh 0 J-Z° 
tanh |0 

Z0 sinh 0 

cosh 0 + 1 

which is the same result as equation (28a). Similarly the staff 
of the equivalent T line is given by— 

2/Y'. 2/Y' 4 

3“z' + i + i”Y'(4 + Z'T) £ + y' ■ y' 

__ Zo sinh 0 _ Z0 

— cosh2 0 — 1 ~ sinh 0 ’ 

alternatively, Y3 = sinh 0/Zq, which in turn is the same result 
as equation (286). 
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CHAPTER II 

CIRCLE DIAGRAMS IN POWER SYSTEM STUDIES 

Just as the vector diagram is the key to the solution of 
practically every normal a.c. circuit problem, so the circle 
diagram is a sine qua non in the quantitative as well as quali¬ 

tative analysis of kindred phenomena occurring in the realm 
of power transmission and, in particular, of power system 
interconnection. The representation of circuit phenomena in 
graphical form by means of a circle diagram, that is, a diagram 
consisting of a family of circles each of which is the terminal 
locus of a vector, is of course a familiar means of studying the 
behaviour of the induction motor and the synchronous motor. 
At the same time it is seldom realized that the circle diagram 
of the induction motor, or the family of so-called O-curves of 
the synchronous motor, are but highly specialized forms of the 
general circle diagram of a linear network. From the point of 
view of power transmission problems the most important 
applications of this fundamental network diagram are derived 
from that particular form of it known as the 'power-circle 
diagram. 

The power-circle diagram of a transmission line was first 
developed by Philip,(1) but in a form restricting its application 
to the study of short lines in which the effects of shunt capaci¬ 
tance could be neglected. This new analytical method was 
later extended by Dwight (2) to include the general case of the 
long transmission line with uniformly distributed constants. 
Dwight (3) subsequently developed the power-circle diagram to 
a still further stage, while Evans and Sels (4) presented the 
results of a semi-graphical analysis in a series of articles 
published in the Electric Journal at about the same time. 
Mention should also be made of an independent development 
of network circle diagrams by Thielemans,(5) outlined in a 
slightly earlier series of articles published in the Revue generale 
de Velectricite. Later still, Fortescue and Wagner (6) gave a 
proof of the power-circle diagram of a transmission system in 
which the idea of an angular displacement between the sending- 
end and receiving-end voltages was maintained, and which 
constituted a marked step forward in the analytical study of 

3—(T.180) 19 
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power system interconnection. Finally, Terman<7) has 
co-ordinated the graphical and mathematical methods of 
constructing the power-circle diagram in an important paper 
which discusses inter alia a generalized circle diagram on which 
may be drawn circles representing almost any conceivable 
locus, the construction being carried out with the aid of com¬ 
putations made from relatively simple formulae. Terman has 
indicated how any errors in the mathematical or graphical 
work that lead to an incorrect diagram can be simply and 

quickly uncovered by applying the numerous geometrical 
checks given in the paper. The result is a diagram easy to 
obtain, almost error-proof, and of extreme usefulness. 

The Fundamental Power Equations. The network voltage 
equations (6a) and (6a) may be put in the form 

. _E,_AEr 
r “ B B 

_E,_E, 
“ Z, zr • 

(33) 

and 
_ HE, _ Er 

B B 

_E>_I?£ 
~ZS Zt 

(34) 

where Z, = Z,\pt = B\P_= B, the transfer impedance of the 
system; Zr = ZT\Pr = (B/A) [(ft —a) = B/A, the receiving-end 
driving-point impedance; and Zs = ZS\PS — BID |(ft — <5) = 
B/D, the sending-end driving-point impedance. 

As was explained in the preceding chapter, vector power is 
given by the product of the vector current and the conjugate of 
the vector voltage. The receiving-end vector power is accord¬ 
ingly found from equation (33) to be— 

Pr+j<3r = E/Ir = EsEr ^ 
Z< Zr 

-[■ 

E,E. 

EjEr 
Zt 

E 2 
COS (0 — pt) — COS pr 

(35 a) 

] 
. E.E. . Er2 

+ j ~S7n (® Pt) + s^n Pr 
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rE,Er . v E* . I 
= sin (e + °t) ~ sin<T’-J 

. rE* T EsEr ~\ 
+ J COS <Tr - -COS (0 + fff)J 

= [Pm sin (0 + <r() - Pr0] 

+ i [$ro — Pm COS (0 -f- ^i)] • • • (356) 

where at = (77/2 — pt) = (77/2 — /0), and ar = (77/2 — pr) = 

(77/2 -f- a — /0). Similarly, the sending-end vector power is 
found from equation (34) to be— 

p.+m. = e,i„ = ^ 

E* E,Er 
Z, I—* Z, I ■ - + p|> 

(36a) 

= [l^ C0S |0' “ 008 ^ + 
+ j [^r sin (0 + P<) - ^ sin p,J 

[ z sin as + sin (0 

. reset /n k ps2 1 
+ J COS (0 — <rt) - cos <T,J 

= [PSo + P,n sin (0 — (7()] 
+ j [Pm cos (0 - at) - #s0] . (366) 

where a, = (77/2 — ps) = (77/2 + 0-/0), and a, = (77/2 — pt) = . 
(77/2 — (0) as before. Equations (356) and (366) finally give the 
following expressions for the receiving- and sending-end powers, 

Pr and Ps— 
_ EsEr . jn s Er2 . 
Pr = sm (0 + °t) ~ sm ar 

= Pm sin (0 + Ot) — Pro ■ • (37) 
E3^ . EsEr . 

P> = ~Z~ sin °s + ~Z^~ sin ^ ~ at^ 

= -P„„ + Pm sin (0 — at) . . . (38) 

in which Pm = EsEr/Zt is the maximum transfer power of 
the system, and Pro and Ps0 are the driving-point powers at 
the receiving and sending ends respectively. These relations 
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between the transfer and driving-point powers of a general 
transmission network are shown diagrammatically in Fig. 7. 

It ought here to be pointed out that in actuality the transfer 
impedance Zt and the driving-point impedances Zr and Zs are 
predominantly reactive. As the result, the angles au or, and a8 
are all very small, of the order of a few degrees only. Moreover, 
in the case of the shorter transmission distances, where the 
effects of line capacitance and conductance (due to corona and 
insulator leakage) may be neglected, the transmission network 

[ —: i 
°s 

Piso Pro 

Fig. 7. Power Flow in a Transmission System 

approximates very closely to a simple circuit containing series 

impedance only, and for which A = D = 1, B = Z, and C = 0. 
Under these circumstances the system impedances Zt, Zr, and 
Zs are all equal to the series impedance Z = Z |p_= (R + jX), 
so that equations (37) and (38) reduce to the simple form— 

and 

Pr = Pm £sin (0 + a) — ^ sin aj 

P. = Pm \jjr sin a + sin (0 — cr)J 

These are at once recognized as expressing the same relations as 
those which obtain between the external and internal powers 
and the load angle 0 of a synchronous generator.(8) In that 
case Es is the air-gap voltage or induced e.m.f. of the machine, 

Er is the terminal voltage, Z = \Z(P2 + X32) is the synchronous 
impedance, and a — tan-1 (R/Xs) is the complement of the 
impedance angle. This particular case is of interest in that it 
illustrates the applicability of network analysis to purely 
machine problems. In fact, and as Terman has shown,(9) the 
general network circle diagram based on equations (35) and 
(36) can be applied to any machine problem by substituting the 
equivalent network of Fig. 2 for the conventional equivalent 
circuit of the machine. 

It is seen from equations (37) and (38) that the average 
transmitted power is 

P = \ (Pr + P8) = \ (P80 - Pr0) + Pm COS ot sin e . (39) 
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In the case of a symmetrical transmission network, such as a 
transmission line with identical transformers at each end, for 

which A = D, and if Es = Er = E, say, then Pso = Pro, so 
that the above expression reduces to 

P — Pm cos at sin 0 = 

E2 sin 0 

E2 cos ot 
sin 0 

(40) 

where P* — Zt sin ot and Xt~Zt cos crt. P* is the transfer 
resistance and Xt the transfer reactance of the transmission 
network. Furthermore, if the transmission network contains 
series impedance only, then Rt is the total series resistance R 
and Xt the total series reactance X of the power transmitting 

link. Finally, if the resistance of the link be neglected, then 
equation (40) reduces to the simple form 

E2 
P = sin 0 . . . . . . . (41) 

On referring to equations (37) and (38) it is seen that this last 
relation is but a particular case of the general relation 

Pr = Ps = Pm sin 0 = sin 0 ... (42) 

expressing the synchronizing power transmitted by a simple 
reactive tie in terms of the angle between the voltages at its 
two ends. Because if the resistance R is assumed to be zero, 
the driving-point powers Pro and Pso also become zero, so that 
the sending- and receiving-end powers are then both equal to 
the transfer power Pm sin Q. Equation (42) is of fundamental 
importance, as it leads directly to the so-called powerfangle 
diagram of a synchronous system in its simplest possible form. 

Equations (37) and (38) similarly give rise to an expression 
for the 'power loss, namely— 

Pt = P,— Pr= {Pso + Pro) —ZPm sin at cos 0 . (43) 

In the case of a simple series-impedance network this expression 
reduces to 

P_?_ 
1 ~ i?2 + X2 

(.E * + Er2- 2 E„Er cos 6) = I2R . (44) 
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since then Is = Ir = I (say), and IZ = Es — Er. Equation (43) 
is of importance in that it forms the basis of the so-called 
straight-line loss diagram discussed towards the end of the 

present chapter. 
The Basic Vector Diagrams. The fundamental transmission 

network equations (5) and (6) may be represented graphically 
in the form of voltage and current vector diagrams. The 
relation expressed by equation (5a), for example, gives rise to 
the receiving-end voltage vector diagram of Fig. 8. Here the 

\ 

Fig. 8. Receiving-end Voltage Vector Diagram 

receiving-end voltage is taken as the vector datum, so that 

Er = Er |0. The vector OR then represents the open-circuit 

sending-end voltage Eso = AEr = Er. A [a = Er (Ax -f- jA2), 
and is thus the vector sum of a datum component AxEr and a 
quadrature component jA2Er. The vector RM in turn repre¬ 
sents the transfer impedance voltage BIr = Ir . B \£ = 
lr (B, + jB2), and may be regarded as the vector sum of a 
voltage component BJ,r in phase with Ir, and a voltage com¬ 
ponent jB2Ir in leading quadrature with Ir. The vector result¬ 
ant OM then represents the sending-end voltage under load 
conditions, Es = ES\Q. 

Assuming E8 and Er to be fixed in magnitude, then any 
variation of the load current Ir must be simultaneously in 
magnitude and phase such as will cause the terminus of the 
sending-end voltage vector to follow the circular locus shown 
dotted in Fig. 8. These conditions are represented by a syn¬ 
chronous transmission system in which the sending-end voltage 
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is held constant by appropriate generator field regulation, and 
the receiving-end voltage is similarly held constant by field 
regulation of the synchronous machines—whether generators, 
motors, or synchronous phase modifiers*—at the receiving end. 

Fig. 9 shows the corresponding sending-end voltage vector 
diagram derived from equation (6a). In this case the sending- 

end voltage is taken as the vector datum, so that Es = E. |0. 

The vector OS then represents the receiving-end voltage when 

the sending-end current is zero, namely, Er0 = DES = E, . D\t 
= Es (D, - jD2), while the vector SN represents the transfer 

Fig. 9. Sending-end Voltage Vector Diagram 

impedance voltage — BIS = — Is. B \P = — Is (Bx + jB2), com¬ 
prising the in-phase and quadrature components — BJig and 
— jB2Is respectively. The vector resultant ON then represents 
the receiving-end voltage, Er = Er |— ft. 

In the same way equations (56) and (66) can be represented 
by corresponding current vector diagrams, but as these are 
relatively unimportant they will not be considered here. 

An interesting modification of Figs. 8 and 9 arises in the 
case of a network containing series impedance only, for which 
Is = Ir (= I, say), because it leads to a semi-graphical method 

* The general term “synchronous phase modifier” signifies a synchronous 
machine designed to supply only reactive volt-amperes to a transmission 
system. When the reactive VA. to be supplied is lagging—as is generally the 
case—the machine is termed a “synchronous condenser.” When leading 
reactive YA. is to be supplied—as in the case of a long transmission line on 
open circuit—the machine is usually referred to as a “synchronous reactor,” 
although the term “synchronous inductor” would be more explicit. 
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of determining the power relation expressed by equation (40). 
The vector diagram illustrating this particular case—e.g. a 
short transmission line in which the effects of capacitance and 
conductance are negligible—is shown in Fig. 10. The current 
I = (Ip — jIQ) lags the receiving-end voltage by the power- 
factor angle <f>. If the transfer impedance of the network (i.e. 
the series impedance in this case) be Zt = (Rt jXt), then 
the vector impedance drop (RM in Fig. 10) between the sending 
and receiving ends is— 

e = Es — Er = IZ* = (Iv — jla) (Rt + jXt) 

— (I*Rt + IqXt) + j (IpXt— IQRt) 

= e+je 

Here e is the “magnitude” difference and e the “displacement” 
difference between the sending-end voltage Es and the receiving- 
end voltage Er. If Es and Er are the same and equal to E, 

M 

Fio. 10. Vector Diagram for an Impedance Tijs 

say, then e~Q and e~E sin 0 ; that is to say (IvRt + IQXt) ~ 0 
and (IpXt — IqRt) — E sin 0. The first relation gives 
IQ = — Iv (Rf/Xt). Substituting this value of Iq in the second 
relation then gives Ip(Xt + Rt2/Xt) = E sin 6. The power 
transmitted to the receiving end is P = ErI cos </>, and is thus 
equal to EIV. Hence— 

_ E2 sin Q 

Xt{1 + h) 
which is the same result as equation (40). 

In its simplest possible form Fig. 10 becomes Fig. 11, which 
shows the vector diagram of a purely reactive transmission 
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circuit./The average power transmitted and the sending- and 
receiving-end powers are in this case all equal, so that 
P = ESI cos c/)s = Erl cos </>r.* But from the trigonometry of 
the /ector diagram we have 

IX_ _ Es __ Er 

sin 0 — sin (77/2 + </>r) ~~ sin (77/ 2 — <f>3) 

The transmitted power is con¬ 
sequently given by 

sin 0 

which is the same result as 
equation (42).* 

The Power-circle Diagram. 
The fundamental vector dia¬ 
grams of the general transmis¬ 
sion network given in Figs. 8 
and 9 lead, by way of a simple 
transformation, to two modified 
vector diagrams, which in turn 
form the basis of the all- 

Fig. 11. Vector Diagram for a 

Simple Reactive Tie 

important power-circle diagram of a synchronous transmission 
system. It has long been recognized that graphical or semi- 
graphical methods constitute one of the most valuable means 
available to the electrical engineer for attacking the many 
problems with which he is constantly faced. In no field of 
operation is this more true than in that of power system inter: 
connection. In fact, many problems arising in this branch of 
electrical engineering practice are so complex, and the number 
of possible variables in a given problem are often so large, that 
purely analytical methods of solution are totally inadequate or, 
at best, involve a disproportionate amount of valuable time and 
labour. The power-circle diagram of a transmission system, 
along with its subsidiary loss- and efficiency- circle diagrams, 
provides a graphical method of solution to power transmission 
problems which is as elegant as it is labour-saving and which, 
moreover, can be made to give results of an accuracy com¬ 
parable to that of the data on which the problem is founded. 

* A little consideration will show that in all cases the power transmitted 
is equal to twice the area of the voltage vector triangle divided by the system 
reactance. 
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The analytical approach to the power-circle diagram given 
here is not that usually followed in textbooks on power trans¬ 
mission,(10) but is one which does not—as does the orthodox 
method of approach—lose sight of the main feature of syn¬ 
chronous power transmission, namely, the angular displacement 
between the independently generated voltages at the two ends 
of the transmission system. Consider for a moment the funda¬ 
mental vector diagram of Fig. 8. If the scale of the diagram is 

. , altered by dividing each vec- 
tor by the complex quantity 
B — BlP, the modified diagram 
of Fig. 12 is obtained. It is 
seen that the diagram as a 
whole is thereby rotated 
through the angle — f}, so that 
the active component of the 
receiving-end current now be¬ 
comes the zero axis of vector 
reference. As the result, the 
dotted circle is now the locus 
of the end of the current vec¬ 
tor Ir. The modified diagram 
is thus a receiving-end current- 
circle diagram in which the 
current vectors corresponding 
to different receiving-end load 

conditions all radiate from a common point and terminate on 
a circle whose radius is proportional to the sending-end voltage, 
and the position of whose centre is fixed by the receiving-end 
voltage. Not only so, but the common point of origin of the 
current vectors is actually the origin of a system of rectangular 
co-ordinates in which the abscissae represent active current and 
the ordinates represent reactive current. 

The significance of these relationships is perhaps best 
realized by stating them somewhat differently. If the sending- 
end and receiving-end voltages are fixed in magnitude, then, in 
a system of active and reactive current co-ordinates, the vector 
representing the receiving-end current is constrained to ter¬ 
minate on a circle whose radius is proportional to the sending-end 
voltage and whose centre is determined by the receiving-end 
voltage. Referring to Fig. 12, it is seen that the radius of any 
receiving-end current circle is Ea/B; while the centre O' of the 

Fig. 12. The Receiving-end 

Current-circle Diagram 
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circle lies at the end of the vector — AErIB~{AErIB) |(”~ + a — P) 
and thus has the co-ordinates Iv = — (AEr/B). cos (j3 — a) and 
/„ = (AEt/B) . sin (fi - a). 

If now the scale of the diagram be altered once more, this 
time by multiplying each vector by Er) then one obtains the 
receiving-end power-circle diagram of Fig. 13. In this diagram 
each circle expresses graphically a particular relation between 
the active power Pr and the reactive power Qr in terms of the 
sending-end voltage E8, the receiving-end voltage Er) and the 
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constants of the transmission network. The nature of this 
relation is a^ertainable from the constants of the power-circle 
diagram.'HFor, comparing Figs. 12 and 13, it is seen that the 
radius of any power circle is EsEr/B = EsEr/Zt — Pm, the 
maximum transfer power of the transmission system; while 
the co-ordinates of the power-circle centre (R in Fig. 13) are 
P = — (AEr2/B) . cos (p — a) = — (E2/Zr) . cos pr = — Pr0, 

the receiving-end driving-point power, and 

Q = (AE2/B) . sin (p — a) = (E2/Zr) . sin pr = Qro. 

A little consideration of the geometry of Fig. 13 will show that 
the co-ordinates (P, Q) of any point on a power circle must 
then satisfy the relation 

(P+Pro)2+(Q-Qro)2^Pm2 • • (45) 

This is the so-called power-circle equation of a transmission 
network and is, in fact, the equation of a circle referred to a 
system of rectangular co-ordinates in which the abscissae 
represent active power (P) and the ordinates represent reactive 
power (#). Moreover it is identical with equation (356), 
which was derived analytically from a consideration of the 
vector power at the receiving end of the transmission system; 
whereas equation (45) has been derived graphically from a 
consideration of the receiving-end vector diagram. The 
equivalence of (356) and (45) may be demonstrated by putting 
(356) in the form of two equations—the active power equation 
of (37) and the corresponding reactive power equation: 
Qr = Qro — Pm cos (0 + o t)—and then eliminating the sine and 
cosine factors by means of the relation cos2 x + sin2 x = 1. 

From the point of view of setting up the power-circle diagram 
from the known network constants A and B, however, it is 
more convenient to express the power-circle centre in the polar 
co-ordinate form, viz.— 

Sr |yv=—AE2/B = — E2/Zr = — {Er2/Zr) \zJr={Er2IZr) \"-_Pr 

The distance to the centre from the origin of the diagram is 
then Sr = E2/Zr, while the angle which the vector radius to 
the centre makes with the reference axis is 

V>r = (» — Pr) = (w/2 + Or) = (n + a — /?) 

Hence Pr0 = Sr sin ar and Qro — Sr cos ar are the rectangular 
co-ordinates of the receiving-end power-circle centre in the 
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second quadrant (see Fig. 13). Referring to equation (35a), it 
is seen that the second term is nothing other than Sr \vr, the 
position of the power-circle centre expressed in polar co¬ 
ordinates; while the first term similarly represents a circle of 
radius Pm = EsEr/Zh traced out by a vector whose zero position 
(given by 0 = 0) is an axis making an angle—pt = — ft with the 
zero axis of vector reference. 
13 it is evident that this axis 
coincides with the receiving- 
end voltage. In other words, 
equation (35a) is the equation 
of the receiving-end power 
circle expressed in polar co¬ 
ordinates and, in particular, 
in terms of the angle 0 be¬ 
tween the sending-end and 
receiving-end voltages. * 

The circle diagrams for 
the sending end are derived 
from the vector diagram 
of Fig. 9 in exactly the 
same way. Fig. 14 shows 
the sending-end current- 
circle diagram (obtained by 
dividing each vector in 
Fig. 9 by the impedance 
B = B |ft*), in which the 
dotted circle has become the 

On comparing Figs. 8, 12, and 

?ig. 14. The Sending-end Current- 
circle Diagram 

terminal locus of the current vector Ir In this case the 
radius of the current circle is proportional to the receiving- 
end voltage; at the same time the distance of the current- 
circle centre from the origin of the diagram is proportional to 
the sending-end voltage. For the radius of the circle is Er/B, 
while its centre lies at the end of the vector DES/B = (DEJB) 
|(<5 — ft) and thus has the co-ordinates 

Iv = (DES/B) . cos (ft - 3) and Iq = - (DEJB) • sin (ft - 3). 

The corresponding power-circle diagram, obtained by 
multiplying each vector in^Fig. 14 by the sending-end voltage 
E3, is given in Fig. lS.Moie radius of any power circle is thus 

* N.B. In this case, however, the angle + 0 is measured in the opposite 
direction, so that rotation through — ft means an anti-clockwise rotation of 
the vector diagram. 
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again E8Er/B = EaEr/Zt — Pm, that is, the maximum transfer 
power of the transmission system for any given values of E8 
and Er. The co-ordinates of the power-circle centre (S in 
Fig. 15) are in this case ^ 

P = (PEs2/B). cos (p - 6) = (EsyZa). cos Pt = P30i 

the sending-end driving-point power, and 

Q =-(DEa2/B). sin (p - d) = - (E2/Zs) . sin p8 = - 

Here, again, it is seen that the co-ordinates (P, Q) of any point 
on a power circle must in consequence satisfy the relation 

(P-P80)2+(Q + Qso)2 = PJ • • (46) 

which is identical with (366). 
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In order to set up the sending-end power-circle diagram 
from the known network constants D and B it is in this case also 
more convenient to express the power-circle centre in the polar 

co-ordinate form, viz. S3 |v\ = DEs2/B — .E52/Z5 — (EsVZg) Ps. 
The distance to the centre from the origin of the diagram is 
then Ss ~ ES2IZS, while the angle which the vector radius to 

the centre makes with the reference axis is 

y>s = — ps = K — 77/2) = (d— /?). 

Hence, and as may be seen at once from Fig. 15, Pso = Ss sin as 
and Qso — Ss cos as are the rectangular co-ordinates of the 
sending-end power-circle centre in the fourth quadrant. 

Again, referring to equation (36a), it will be observed that 
the first term is Ss |vs, the position of the power-circle centre 
expressed in polar co-ordinates; while the second term simi¬ 
larly represents a circle of radius Pm = E&ErjZu traced out by 
a vector whose zero position (given by 6 = 0) is an axis making 
an angle — pt = — with the zero axis of vector reference.* 
Hence equation (36a) is the polar equation of the sending-end 
power circle expressing the variation in sending-end vector 
power (Ps + jQs) with the angle 6 between the sending- and 
receiving-end voltages. 

The power-circle diagrams of Figs. 13 and 15, then, furnish 

a graphical interpretation of the basic network power equa¬ 
tions (35) and (36) and are thus of the utmost importance to 
an understanding of the electrical behaviour of synchronous 
transmission systems, quite apart from their utility in cal¬ 
culating the performance of an interconnector. For they show 
at a glance the alterations in terminal voltage necessary to 
permit system load changes to occur without altering the 
reactive power requirements at the termini and, conversely, they 
will indicate the variation in terminal power factor required in 
order that the system may accommodate itself to load changes 
without altering the sending- and receiving-end voltages. In 
addition, and as will be shown in the following chapters, they 
can be successfully used to determine the power limits of an 
interconnector, and to calculate the maximum load which a 
synchronous system can carry without loss of stability under 
normal conditions of operation. 

The Loss- and Efficiency-circle Diagrams. The two circle 
diagrams described in the preceding section may conveniently 

* This is the same angle as in the case of the receiving-end power-circle 
diagram. The zero-0 axes of the two diagrams are therefore always parallel. 
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be combined into a single chart, as shown in Fig. 16, having a 
common set of axes representing active and reactive power. It 
will be observed, however, that there is no single point on the 
combined chart which defines a particular operating condition 
in the transmission system. The reason for this is that the 
chart lacks a common voltage axis, besides which the two power 
circles are traversed in opposite directions.* Hence any oper¬ 
ating point on the receiving-end chart, such as M, corresponding 

to a receiving-end power Pr = OK, is always associated with 
a corresponding operating point on the sending-end chart, such 
as N, for which the sending-end power is given by Ps = OL. 
The unique feature of the combined chart of Fig. 16 is that it 
at once enables one to find the operating point N corresponding 
to the point M (and vice versa) by virtue of the characteristic 
relationship between Ps and Pr, implicit in the fundamental 

power equations (35) and (36). For the angle URM in the 
receiving-end chart is the angle 0 between the terminal voltages 
Es and Er, since the vectors RM and RU represent these 
voltages in magnitude and direction. But in the sending-end 
chart the vectors and SN also represent the terminal 
voltages Eg and Er in magnitude and direction, so that the 
angle NSV is again identical with the angle d between these 
two voltages. Hence if M is known, the corresponding value 
of 0 can be read off from the receiving-end chart. The required 
operating point N is then readily found by entering the sending- 
end chart with this value of 0. 

The combined chart of Fig. 16 thus fulfils the dual function 
of power chart and vector diagram. But it can do much more 
besides. A little consideration will show that it can be made to 
serve as a general performance chart from which the trans¬ 
mission losses, the transmission efficiency, and the net reactive 
power demand of the system may be readily obtained, in 
addition to the active power, reactive power, and power factor 
at the sending and receiving ends under load and no-load 
conditions. For the transmission losses are 

Px = (Ps - Pr) = (OL - OK) = KL 

while the transmission efficiency is r\ — Pr/Ps = OK/OL. 
Furthermore, for the operating condition shown in Fig. 16 (viz. 
6 = 40°), the vector power loss is 

MN = V[(Pg - Pr)2 + (Qs - Qr)2l = VtfV + Gl2) 
* Cf. footnote on p. 31. 
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where the co-ordinates of M and N are (Pr, Qr) and (P8, Qs) 
respectively, so that the net reactive power demand is 

Qi = (Qs-Qr) = (LN-KM) 

Fig. 16. Combined Sending- and Receiving-end Chabt 

If Qi is negative—as in this case—the transmission system 
takes a net lagging reactive power; if Qt is positive—as in the 
case where the operating points are M' and N'—the net reactive 
power taken by the system is leading.* The active power 
difference Pt is evidently always positive, R being in the 
second quadrant and S in the fourth quadrant, so that OL is of 

* Leading reactive power is reckoned positive; lagging reactive power, 
negative. 

4—(T.180) 
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necessity greater than OK, no matter what are the relative 

positions of the corresponding operating points M and N. 
It is interesting to note that the special condition of no 

load at the receiving end can also be examined on the com¬ 

bined chart of Fig. 16. Here the operating point on the 
receiving-end chart is if", corresponding to Pr = 0, so that 
an amount of lagging reactive power represented by OM" is 
required at the receiving end if the sending-end voltage is to be 

maintained at the value Es corresponding to the power circle 
U'M'M'M. The operating point on the sending-end chart for 
this condition is N", where Z_V'SN" = /_JJ’RM". Hence 

OL" represents the power loss due to the charging current of the 
transmission system, while L"M" represents the leading reactive 
power demand at the sending end. The net reactive power 
taken by the system is in this case 

(L"N" - OM") = (L"N"+ M"0) 
and is therefore leading, as is to be expected. 

The use of the combined sending- and receiving-end chart 
in determining the transmission loss P^, although simple and 
convenient, is not altogether satisfactory from the standpoint 
of accuracy in the results obtained. For the power loss Pt is 
read from the chart indirectly, as the difference of two powers 
individually many times larger than Px. It is possible, of 
course, to overcome this difficulty by calculating P3 from Pr, 
making use of the real parts of equations (356) and (366). For 
the first enables 0 to be found in terms of Pr, Pw, Pr0, and a u 
which value, substituted in the second, then gives P8 in terms 
of P80y Pm, ot, and 6. But this method of determining Pt is too 
laborious if more than one or two operating conditions are 
considered. An alternative method consists in performing the 
integration Ji2rdx* where i is the current at any point on the 
transmission system (regarded as an “ equivalent transmission 
line,, having distributed constants) and x is the distance of the 
point from the sending end.(11) This method is perhaps even 
more laborious, as it leads to an exceedingly cumbersome 
formula for Pu unless resort is had to the “position angle” 
transformation developed by the author to facilitate the 
analysis of transmission-line performance.(12) 

It will be appreciated, therefore, that any graphical method 

* Strictly speaking, the total power loss is the sum of the leakage loss 
lv*gdx and the resistance loss JiVcta, but in practice the former component of 
Pt is negligible. 
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for determining Pt not indirectly, as the difference of Ps and 

Pr, but directly in terms of Ea and Er, has a tremendous 
practical advantage over the analytical methods mentioned 
above. And it is most fortunate that the analysis underlying 
the power-circle diagram lends itself, by way of the combined 
loss- and efficiency-circle diagram, to an elegant modification 
which leads to a direct graphical determination not only of the 
transmission losses but of the transmission efficiency as well. 

The derivation of the loss-circle diagram is as follows: 
Referring to the fundamental network equations (5) and (6), 
and taking Er as vector datum, it is seen that the vector 

powers at the sending and receiving ends are given by 

Ps +jQs = E.% = (ATE/ + BT/) (CEr + DIr) 

= [A'Er + B'(Iv-jIq)] X [CEr + D(Iv+jIQ)] (47a) 
and Pr + jQr = E/Ir = Er (IP -f jla) .... (476) 

respectively. The power loss Pt is then real part of the complex 
power representing the vector difference of equations (47a) and 
(476). That is to say— 

Pi ~ {Es — Pr) = \ ES'IS | — | Er'Ir | 

= Real part of [(A1 — jA2) Er + (Bl — jB2) {Iv — jIQ)] 
X [(Ci + jC2) Er + (Dx + jD2) (Cj, + jIQ)] — ErIv 

On multiplying out and collecting the real terms, one finds— 

Pi = kEr2 -f* lErIv -f- mErIq -f- u (Iv2 -h IQ2) 

= kEr2 + lPr + mQr + (P2 + Q2) . (48) 

where* k = A1Cl -f- A2C2, 
l — AiD1 -)- A^Pz -|- BXCX -f- B2C2— 1) 
= 2 (A2D2 + B.C,), 

m = A2Dx - A,D2 + B,C2 — B2C„ 
— 2 (A2D, — B2Cx), 

n — BJ), -f- B2D2 
* The relation between the four network constants is AD — BC == 1, giving 

rise to tho subsidiary relations 
A1D1 — A2D2 B2G2 = li 

AxD2 + A2Dx - BxC2 - B2Cx = 0/ 

These in turn lead to the further relation 

(l 4- l)a - (4kn - m2) = 1 . . . (49) 

which is of such vital importance in simplifying the structure of the loss-circle 
and efficiency-circle equations (see below). It will be observed that l and m 
are numerics; but that k is the sum of a conductance and a susceptance 
while n is the sum of a resistance and a reactance, so that the product kn is 
also a numeric. 
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Equation (48) may be rearranged to give* 

^r+or^r2 ) +( QrJrm^Z^r 
PiEr2 , m , , AJ ,Er 

:__ + (j2 + m2_ tkn)- 

p — - E 2 
1 2 n r 

It will be observed that this is the equation of a circle, referred 
to a system of Pr-Qr co-ordinates, whose centre is fixed (for 
a given receiving-end voltage) and whose radius is a function 
of the power loss Pt. Equation (50) is the fundamental loss- 
circle equation, and may be written 

(P + p)z + (Q + q)* = r* . . (51) 

in which P = Pr is the transmitted power, Q = Qr is the re¬ 
active power at the receiving end, r is the radius of the loss 

circle corresponding to a given power loss Ph and — p and — q 
are the co-ordinates of the common loss-circle centre. Equations 
(50) and (51) are equivalent, provided 

— E 2 
2 n r B1D1 + B2D2 

. (52a) 

( ^2^1 — B2Gx\ , 

Ua + ba/ r 
. (526) 

Equation (50) may thus be represented by a family of con¬ 
centric circles whose common centre lies in the third quadrant 
of a system of rectangular P-Q co-ordinates, j* The family 
constitutes the loss-circle diagram of the transmission system 
and may be included along with the power-circle diagram in a 
general receiving-end chart. The power loss associated with a 
particular value of transmitted power is then represented by 
the radius of the loss circle passing through the “ operating 
point” on the power circle (e.g. M, M' and M" in Fig. 16). In an 
actual loss-circle diagram a series of loss circles is usually calcu¬ 
lated from equation (52c) for equal increments in Ph and these 
circles are then drawn in and marked with their appropriate 

* See footnote on previous page. 
t If is interesting to note that in the case of a short transmission line, which 

may be represented by a simple series impedance, and for which in consequence 
A1 — Dx — 1, A%y D2, Clf and C2 are all zero, = R, and B2 — X, one 
finds from equations (52) that p — 0, q = 0, and r = Er . \Z(Pt/R). Hence 
the loss-circle equation becomes P2 -f Q2 — EfiPtfR). This is evident 
from the fact that in this case Pt = I 2R — (Iv2 -f Iq2)R- 
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Px values. As it is but seldom that any particular opera¬ 
ting point in the power-circle diagram happens to fall on a 
loss circle, the distance of the operating point from the loss- 
circle centre will usually have to be measured, on the power 
scale of the diagram, and the corresponding value of Px cal¬ 
culated from equation (52c). In order to avoid this calculation 
and, at the same time, the necessity for including loss circles 

Fig. 17. Loss- and Efficiency-circle Diagram 

on the receiving-end chart, it will be found more convenient 
to compute a separate power-loss scale from equation (52c) 
and to place this scale, graduated directly in terms of Pu at 
the bottom of the diagram. The actual distance between the 
given operating point and the loss-circle centre can then be 
transferred to this scale so as to give the corresponding value 
of the power loss directly (cf. Fig. 17). 

The practical value of such a general receiving-end chart is 
considerably enhanced by providing a means of determining 
from it not only the total power loss inherent in the transmission 
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of a given amount of power, with given sending-end and receiv¬ 
ing-end voltages, but also the corresponding efficiency of the 
transmission system. The latter, being defined as the ratio 
of the receiving-end and sending-end powers, is given by r] 
= Prl(Pr + Pi)> 80 that Pt = Pr (l/rj — 1). On substituting 
this value of Pu in equation (50) one obtains after some trans¬ 
formation the corresponding efficiency-circle equation which may 

be written in the standard form— 

(P - pr + (Q + q'Y = (r1)2 . . (53) 

where . (54a) 

. (546) 

and 

. (65a) 

It will be observed that (53) is thus the equation of a circle 
whose radius depends upon the transmission efficiency rj. It 

is to be noted, too, that the vertical displacement of the centre 
is fixed and equal to that of the loss-circle centre. Also, the 
horizontal displacement is a function of rj, so that the efficiency 
circles are eccentric. Hence their centres lie on a straight line 
through the loss-circle centre and parallel to the P axis, in the 
fourth quadrant, as shown in Fig. 17. 

An examination of equation (55a) reveals that the radius of 
the efficiency circle diminishes as the efficiency rj increases. 
The transmission efficiency is a maximum for that operating point 
on the chart which coincides with the particular point representing 
the efficiency circle of zero radius. The value of this maximum 
efficiency is accordingly obtained by putting rt = 0 in (55a). 
This gives 

PJ = 2l) E* = jVC1 + 2/0 • • (56) 

as the abscissa of the maximum efficiency point. On substi¬ 
tuting this value of p' in equation (54a), one finds for the maxi¬ 
mum transmission efficiency— 

VmaX = (l + 1) + Vt(* + 1)*- 1] ' ‘ ^ 
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A corresponding substitution in equation (55a) then gives for 

the efficiency-circle radius— 

r' = V[(P')2-(PJ)2] • • .(556) 

Equation (556) at once leads to the simple geometrical con¬ 

struction of the efficiency circles shown in Fig. 17. The abscissa 
pj of the maximum-efficiency operating point rjmax is first 
determined from equation (56), and a quadrant of a circle of 

radius pm' is then drawn from this point to the Q axis as shown. 
The abscissae p' of the efficiency-circle centres are next deter¬ 
mined from equation (54a) for a range of r\ values, and the 

centres marked on the locus parallel to the P axis, as indicated 

at 1, 2, 3, etc. If a semicircle be erected on this locus between 
the Q axis and the appropriate efficiency-circle centre, then the 
required efficiency circle must pass through the point of inter¬ 

section of this semicircle and the quadrant drawn through rjmax, 
because this point is the apex of a right-angled triangle hav¬ 
ing the abscissa pf as its hypotenuse, and pm' and r' for the 

remaining two sides. And the three sides of such a triangle 

obey the relation expressed by (556). By erecting a num¬ 
ber of such semicircles a series of points of intersection, 
1, 2, 3, etc., are found which determine the radii of the 

several efficiency circles. 

The Straight-line Loss Diagram. The main drawback in the 
use of loss or efficiency circles is that their inclusion on the 

power-circle diagram is apt to make the chart as a whole 
confusing and thus awkward to read. This difficulty may be 
overcome by the use of the so-called straight-line loss diagram, 
in which the family of concentric loss circles is replaced by a 

single line corresponding to each power circle in the chart, i.e. 
to each value of sending-end voltage Es for a given receiving-end 
voltage Er. By the choice of a suitable loss scale the power loss 
corresponding to any particular operating point on the 
receiving-end chart is then represented simply by the per¬ 
pendicular distance from the operating point to the appropriate 
loss line. 

Reverting to the basic power equations (37) and (38), it is 
evident that the power loss is given by 

Pi = (P.—Pr) = [P30 + Pm9in(d-aJ]—[Pmsin(0 a,)-Pr0] 

= (P,o + Pro) — 2 Pm sin at cos 6 . , . . (58) 
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The power loss of the transmission system can thus be repre¬ 

sented graphically as the difference between a length (Pso -f- Pro) 
and the projection of a vector 2Pm sin at on an axis with which 
that vector makes an angle 0. This relationship is illustrated 
in Fig. 18, in which the loss line is the perpendicular to the 
zero 0 axis passing through a point distant (Pso + Pro) from 

the loss-circle centre. 
It will be observed that the radius of the loss circle is 2 sin a t 

times that of the power circle, whereas the angular variable 0 
is the same for both. Hence by choosing a power-loss scale 
such that the radius of the loss circle, measured on that scale, 

j Loss L/ne 

Fia. 18. The Straight-line 

Loss Diagram 

The distance RT, equal to 

is equal to the radius of the 
power circle, measured on the 
power scale of the receiving-end 
chart, it becomes possible to 

use the power circle itself in the 
manner shown in Fig. 18. A 
little consideration will show 

that under these circumstances 

the loss scale must be greater 
than the power scale in the ratio 
1/2 sin ot* while the zero-0 axis 
of Fig. 18 must coincide with 
the vector representing the re¬ 
ceiving-end voltage in the power- 
circle diagram. The resulting dual 
diagram is shown in Fig. 19. 

>30 + Pro) units of the power-loss 

scale, or 
PSo + Pro 

2 sin ot 
units of the power scale, is measured off on 

the zero-0 axis of the power-circle diagram and a perpendicular 
erected at the point T. By drawing a parallel through the 
operating point M to meet RT at W, the power loss Px — TW 
can be read directly on the power-loss scale. 

The Universal Power-Transmission Chart. The circle dia¬ 
grams for active and reactive power transmitted, system power 
loss, and transmission efficiency that have been developed in 
the preceding sections, and which in practice are usually 
co-ordinated to form a comprehensive receiving-end chart, are 

* It will be remembered that ait being the complement of the transfer 
impedance angle pt — /?, is very small, of the order of a few degrees only, so 
that 2 sin at will be much less than unity. 
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all premised on constant terminal voltages Es and Er. It is 

often necessary, however, to investigate the performance of a 
transmission system under conditions of varying sending-end 
or receiving-end voltage. In the former case, with Er fixed, 
the effect of varying Es can be studied without much difficulty 
on a single receiving-end chart, for the power-circle diagram 
then consists of a family of concentric circles each of which 

Fig. 19. The Combined Power-circle and Loss-line Diagram 

corresponds to one definite value of Ea, while the loss-circle 
diagram is in this case also a single family of concentric circles. 
Moreover, the efficiency circles are independent of Es> both as 
regards magnitude and in respect of their location on the chart. 
Finally, the alternative straight-line loss diagram then consists 
of a series of parallel loss lines, each pertaining to a particular 
power circle, since the distance RT in Fig. 19 is a function of 

E8 as well as of Er. 
On the other hand, if the sending-end voltage is fixed and 

the receiving-end voltage is the variable, a number of charts 
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are required, one for each chosen value of Er. For the co¬ 

ordinates of the power- and loss-circle centres are functions of 
Eri so that the power-circle diagram consists of a family of 
eccentric circles* and the loss-circle diagram comprises several 
families of concentric circles, each family corresponding to a 
particular value of Er. In fact, the several power-circle centres 
all lie at distances from the P-Q origin proportional to Er2 
on an axis passing through it at an angle 

Wr = (tt/2 + ov) = tan-1 
A2BX — A1B2 
A1B1 -f- A2B2 

while the several loss-circle centres lie in the same way on a 
similar axis at an angle 

Vi 
a2dx - b2c1 
A2D2 4- B1C1 

Furthermore, the co-ordinates of the efficiency-circle centres are 
also functions of Er, so that the efficiency-circle diagram in this 
case consists of several families of eccentric circles, each family 
corresponding to a particular value of Er. 

To include all these diagrams on a single chart would lead 
to well-nigh hopeless confusion in obtaining practical results. 
And as the case of variable receiving-end voltage is often of 
considerable importance in transmission system studies— 
especially in the study of system stability, where the problems 
involve changes in the angle 0 accompanied by changes in the 
magnitudes of both Es and Er—it becomes necessary, therefore, 
to compute a series of receiving-end charts, each chart relating 

to a specific value of the receiving-end voltage.f 
The necessity for computing a series of charts to cover a 

given voltage range at the receiving end can be avoided, for¬ 
tunately, by the use of a modified chart in which the positions 
of the several diagram centres are quite independent of the 
receiving-end voltage. This modified chart is, in effect, a 
universal power-transmission chart, and is applicable at any 

value of terminal voltage at the sending and the receiving ends 
of the transmission system. 

* Cf. Chapter III 
t The above arguments, of course, apply equally to the sending-end charts 

except that there each chart would relate to a specific value of E9 and would 
contain a power-circle diagram in which each of the concentric circles refers 
to one definite value of Er. (Cf. Figs. 13 and 15.) 
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Referring to the fundamental power equations (35) and (36), 
it is seen that if these be divided throughout by E2 and E2 
respectively, one obtains the modified power-circle equations— 

[(Pr/Er2)a + ar2l + [(Qr/Er2)2 - K2] = (Es/Er)2 . (59) 

[(Ps/Es*)2 - as2] + [(Qs/Es)2 + b*] = c* (Er/Ea)* . (60) 

where ar = 
sin ar 

~z7 
sin o8 

~z7 

br = 
cos ar 

~%7 
cos o8 
~z7 

l 

z; 

Equations (59) and (60) are in each case those of a family 
of concentric admittance circles referred to a system of 
rectangular co-ordinates in which the abscissae represent 
conductance (P/E2) and the ordinates susceptance (Q/E2). 

Moreover, in this co-ordinate system the common centre of the 
admittance' circles is fixed, for its position is entirely independent 
of voltage and is determined only by the network constants of 
the transmission system; and the circle radius depends on the 
ratio of the terminal voltages rather than on the actual magnitude 
of either. In the modified chart based on equation (59) or (60) 
therefore, the circle centre has the constant co-ordinates, 
(— ar, br) or (a89 — bs), while the circle radius is given by the 
constant c multiplied or divided by the terminal voltage 
ratio EJEr, depending upon whether the chart relates to 
conditions at the receiving or sending end of the transmission 
system. 

Such a chart is consequently of universal application, as the 
active and reactive powers corresponding to any given operating 
point and voltage ratio may be obtained simply through 
multiplication of the co-ordinate readings by the appropriate 
value of E2 or E2. Furthermore, as the radii of the modified 
power circles are proportional to a voltage ratio, these circles 
will be evenly spaced, thus facilitating interpolation and in 
consequence making the chart easy to read. Two actual 
examples of this universal power transmission chart are given 
in Figs. 22 and 23. 

Examples of Power Chart Construction and Utilization. 
All the charts discussed in the present chapter are premised 
on the transmission system being single-phase. That is to say, 
in a polyphase system Es and Er represent line-to-neutral 
voltages, while Pr, P8 and Qri Qs represent active and reactive 
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powers respectively per phase. These charts remain applicable 
to three-phase transmission systems, however, provided certain 
precautions are observed in the choice of units. A little con¬ 
sideration will show that if in this case the symbols Es and ER 
denote line voltages expressed in kilovolts, while PRy Ps and 
QRf Qs similarly denote three-phase powers expressed in mega¬ 
watts and megavars respectively, then, in spite of the change in 
units, equations (45) to (58) remain valid when the lower-case 
subscripts s and r are changed to the capital subscripts S and R. 
This fortuitous circumstance arises by virtue of the relations— 

Single-phase power in VA. 

Three-phase power in MV A. 

(Phase voltage in V.)2 ' 

Impedance per phase in Q. 
(Line voltage in kV.)2 

Impedance per phase in fi, 

For example, the universal charts of Figs. 22 and 23 will 
indicate MW. and MVAr. if the co-ordinates of any operating 
point are multiplied by the square of the appropriate terminal 
line voltage in kilovolts. Alternatively, they will equally well 
indicate watts and reactive volt-amperes per phase if the same 
co-ordinates are multiplied by the square of the corresponding 
terminal phase voltage expressed in volts. From the practical 
standpoint, however, it is more convenient to work in terms of 
MW., MVAr., and kV. when applying circle diagrams to the 
solution of power system problems. 

Example 1. A selected generating station supplies power over a single- 
circuit three-phase 132 000 V. transmission line of the British Grid system, 
hwpipjg the following constants per mile— 

^ Resistance = 0*251 ohm Conductance — 0 mho 

Reactance — 0*669 ohm Susceptance = 4*425 micromhos 

If the length of the transmission line is 200 miles and the voltage at each 
end is maintained constant at 132 000 V. by power-factor control, determine 
by means of a combined sending- and receiving-end chart (a) the line loss 
and transmission efficiency for a transmitted power of 50 000 kW., (b) the 
reactive power requirements and the power factors at the two ends of the 
line for this value of receiving-end load, and (c) the charging current at 
the sending end and the power loss in the line due to this current when the 
receiving end is on no load. 

Solution. 
Z = (R -f jX) = 200(0*251 -f j0*669) = 142*9 |69*4° 

Y = (G -f jB) = 200(0 + 2*4*425 X 10-•) = 0*885 x 10"8 |90^ 

ZY = 142*9 X 0*885 X 10-8|69»4° 4- 90° = 0*1264 |159*4° 
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Entering Chart I with 0*1264 as the size of ZY and 159*4° as the 

angle of ZY, one finds cosh VZY = 0*942 |1*3°. Similarly from Chart II 

one finds (sinh VZY)/VZY = 0*9804 |0*4°. Hence the network con¬ 

stants of the transmission line are— 

A = D = cosh VZY == 0*942 |l-3° 

B = Z(sinh VZY)/v'ZY = 142-9 x 0-9804|69-4° + 0-4° 

= 140-1 |69-8° 

C = Y(sinh VZYj/VZY = 0-885 X 10"3 X 0-9804|90° + 0-4° 

= 0-8676 X 10"3)90-4° 

The transfer and driving-point impedances of the system are accord¬ 
ingly— 

Z, = T 

B = 140-1 |69-8° ohms 

B 140-1 |69-8^ 

Z„ = = = 

A 0-942 110$° 

B 140-1 |69^ 

148-7 168-5° ohms 

0-942 11-3° 
148-7 168-5° ohms 

The power-circle centres are then given by— 

jE 3 1323 
Sr = -£ = iTg:f = 117-2MYA.; yr=(ir- Pr) = ( 180°-68-5°)= 111-6° 

E s2 1322 
Sb = Y~ = 148^7 = 1172 MVA* 5 V. = - Ps = “ 68*5° 

Hence + Pr0 = 117*2 X cos 111*5° 

= - 43 MW. 

and + P80 = 117*2 X cos (- 68*5°) 

= 43 MW. 

+ Qro = 117*2 X sin 111*5° 

= 109 MVAr. 

- Qso = 117*2 x sin (- 68*5°) 

= - 109 MVAr. 

Finally, 
EsEr 132 X 132 

140*1 
124*4 MVA. 

The receiving- and sending-end power circles based on the above 
constants are shown in Fig. 20. 

(a) The receiving-end power circle gives 0 = 28° for PR = 50 MW. 
Transferring this value of 0 to the sending-end power circle gives 
Ps — 60 MW. The power loss is thus— 

PL = (Ps - PK) = (60 - 50) = 10 MW. - 10 000 kW. 

and the transmission efficiency is— 

Pr 50 
^ _ o-833 = 83*3 per cent 

Jr s oO - 

(6) The operating point on the receiving-end power circle for 
Ph = 50 MW. has the ordinate QR = 25*5 MVAr., while that on the 
sending-end power circle for Ps = 60 MW. has the ordinate Qs = 14*5 
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MVAr. The reactive power requirements at the two ends of the line 
are accordingly— 

Sending end: 14*5 MVAr. = 14 500 kVAr. leading 

Receiving end: 25-5 MVAr. = 25 500 kVAr. leading 

Transmission Line 

The net reactive power taken by the transmission line is thus 

Ql = (Qa ~~ Qr) = - 11 MVAr. = 11 000 kVAr. lagging 

The receiving-end power-factor angle is— 

<kr = tan-1 (Qr!Pr) = tan-1 (25-6/50) = tan'1 0-61 == 27° 
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while the corresponding angle at the sending end is— 

<f>8 = tan-1 (QJPs) = tan"1 (14-5/60) = tan"1 0-241 = 13-5° 

Hence the terminal power factors are— 

Sending end: cos 13-5° = 0-072 leading 

Receiving end: cos 27° = 0-891 leading 

(c) The receiving-end power circle gives 0 — 0-2° for Pn — 0. On 
transferring this value of 0 to the seriding-end power circle one finds 
P8 = 0-5 and Qs — 8-5. The sending-end (charging) current is thus— 

Iso 
1_000Q., 

V 3ES 

8 500 

V3 x 132 
= 37 A. leading 

and the power loss due to this current is— 

P8 = 0-5 MW. = 500 kW. 

Incidentally, it will be seen from the receiving-end power circle when 
Pr — 0, Qu — — 7-5. That is to say, in order to maintain 132 kV. 
under no-load conditions it is necessary to supply 7 500 kVAr. lagging 
at the receiving end. 

Example 2. Verify the figures for power loss and transmission efficiency 
obtained in the preceding example by means of (a) the loss-circle diagram, 
(b) the efficiency-circle diagram, and (c) the straight-line loss diagram. 

Solution, (a) Reverting to Example 1, the general network constants, 
expressed in the rectangular form, are— 

Al -j- jA2 — A cos a -f- jA sin a = 0-942 cos 1*3° + jO-942 sin 1-3° 

= 0-9419 + j0-02138 

Bx + jB2 = B cos p -f jB sin ft = 48-4 + j‘131-6 

C'l + jC2 = C cos y + jC sin y = (- 0-00606 + /0-8676) X 10”3 

I>i + jD2 = D cos <5 + jD sin S = 0-9419 + jO-02138 

The auxiliary constants are thus— 

k = AXCX + A2C2 = (0-9419 x - 0-00606 X 10~3) 
+ (0-02138 X 0-8676 X 10~3) 

= (- 5-705 + 18-545) X 10"6 = 12-84 X 10~« 

l = 2{A2D2 + BjCj = (2 X 0-02138 X 0-02138) 
4- (2 X 48-4 X - 0-00606 X 10“3) 

= (0-9136- 0-5863) X 10~3 = 0-3273 X 10"3 

m = 2(A2D1 — B%Cj) = (2 X 0-02138 X 0-9419) — 
- (2 x 131-6 X - 0-00606 X 10“8) 

= 40-27 4- 1*594 X 10"3 = 0-04186 

n = B1Dl -f B2D2 = (48-4 X 0-9419) 4- (131-6 X 0-02138) 

= 45-56 4- 2-81 = 48-37 
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The co-ordinates of the loss-circle centre are accordingly— 

~ V = 2nE*' = 

-q = -¥nER> = - 

0-3273 X 10~3 x (132) 

2 X 48-37 

0-04186 X (132)2 

2 X 48*37 " ~ 

- = - 0-06 MW. 

7-55 MVAr. 

The loss-circle radius is— 

' - 5s - ^-»»- vi»7 • ^ - °'0<» 
= 18-98y/{PL - 0-06) MVA. 

Below are tabulated corresponding values of r and PL. 

PL MW.. 1 2 3 4 5 6 7 8 9 10 11 12 

r MVA. . 18-4 26-4 32-5 37-7 42-2 46-3 50-0 53-5 56-6 59-8 62-8 65-6 

The loss-circle diagram is shown in Fig. 20. It is found that the loss 
circle for which PL — 10-1 MW. passes through the operating point 
on the receiving-end power circle for which PR — 50 MW. This value 
of power loss agrees with that found under (a) in Example 1. 

(6) The locus of the efficiency-circle centres is the horizontal axis 
Q — — q' = — q = — 7-55 MVAr. The maximum transmission effici¬ 
ency as given by equation (57) is— 

Vmax = 1-0003273 + V[(1-0003273)a- 1] = 99-7 per cent 

and occurs at a load whose value is given by equation (56)— 

p'm = 0-059 V(1 4- 2/1-000327) = 0-10 MW. = 103 kW. 

The abscissae of the several efficiency-circle centres as given by equation 
(54a) are— 

132a /I \ /i \ 

*>' = 2-x~48^37 {v ~ 1-°00327; = 180 - 1-°0033) MW- 

while the corresponding efficiency-circle radii as given by equation (556) 
are— 

r‘ = -^[32 400 Qj - 1-00033^* — 0-01J MVA. 

The receiving-end power- and efficiency-circle diagrams are shown 
in Fig. 21. It will be observed that the efficiency circle for which 
rj — 83 per cent would pass through the operating point on the power 
circle corresponding to PR — 50 MW. This value of efficiency is in 
close agreement with that found under (a) in Example 1. 

(c) The distance of the loss line from the centre of the receiving-end 
power circle is (P80 -f Pro) = (43 + 43) = 86 MW. in units of the loss 
scale. The loss-scale unit is 

11 1 

2 sin at~ 2 x sin 20-2° ~ 2 x 0-3463 = 1-448 

times the power-scale unit. The loss line is thus perpendicular to the 
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zero 0-axis at a point on it distant 1*448 X 86 = 124*3 MW., measured 
in units of the power scale. 

The straight-line loss diagram based on the above data is shown in 
Fig. 21. It is seen that the parallel to the loss line passing through 

Fig. 21. Receiving-end Power, Loss, and Efficiency Chart 

for 200-mile 132 kV. Transmission Line 

the operating point on the power circle for which Pn — 50 MW., meets 
the loss scale at I*L — 10 MW. This checks with the values for the 
power loss already obtained by alternative methods. 

Example 3. Find the value of transmitted power that will relieve the 
synchronous plant at the receiving end of the line in Example 1 of all 
reactive power loading if the load power factor is (a) unity, and (b) 0*9 

5—(T.i8o) 
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lagging. What would he the reactive power demand at the receiving end 
in the case of a load of 40 000 kW, at 0-9 lagging power factor 7 

Solution. A straight line in the fourth quadrant passing through 
the origin of the power-circle diagram and making an angle of cos-1 (0*9) 
= 25*8° with the power axis is the locus of all points representing loads 
at 0*9 lagging power factor. Similarly the power axis is the locus of all 
load points for which cos <f> — 1*0. 

(a) The required power value is given by the abscissa of the point 

0 10 20 30 40 SO 60 70 80 90 100 110 

Active Power\ P^(^^zin MW. 

Fig. 22. Universal Receiving-end Chart for a 200-mile 132 kV. 
Transmission Line based on a Nominal Voltage of 132 kV. 

where the power circle crosses the power axis of the diagram. As will 
be seen from either Fig. 20 or 21, this value is Plt = 17 MW. In other 
words, if the power transmitted to the receiving end be 17 000 kW. 
and Es = ER =132 kV., then the receiving-end power factor will be 
unity. 

(6) In this case the required value of PR is given by the point of 
intersection of the power circle and the load line corresponding to a 
power factor of 0-9 lagging. From Fig. 21 it is seen that the co-ordinates 
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of this point are PR = 8*5 MW., QR — — 4-5 MVAr. In other words, 
with a load of 8 500 kW. the reactive power required by the line at the 
receiving end in order that Elt — Es =132 kV. is 4 500 kVAr. lagging, 
which amount is supplied by the reactive power component of the 
load kVA. The net reactive power taken is (Q — P tan </>), where Q is 
the reactive power demand at unity power factor (i.e. the ordinate of 
the operating point on the power circle) and P tan <j> is the reactive 
power component of the load. With P = 40 MW., Fig. 21 gives 
Q — 17 MVAr. and P tan <j> = — 20 MVAr. The net reactive power 
demand is, therefore, 37 MVAr. leading. 

Example 4. Investigate the effect of varying the sending-end 
voltage within a range of ± 20 per cent upon the power loss, the 
transmission efficiency, and the net reactive power taken, for the trans¬ 
mission line of Example 1, assuming the potver transmitted to he 
50 000 klV. at unity power factor. Determine also the sending-end 
voltage which will give a terminal voltage at the receiving end of 132 kV. 
on open circuit. 

Solution. It is necessary to prepare two universal power transmission 
charts based on the modified power-circle equations (59) and (60). 
As explained in the preceding section, these charts are really admittance- 
circle diagrams and thus their scales require to be multiplied by either 
Es2 or EJt2 in order that they may be used as power-circle diagrams. 
That is to say, they are power-circle diagrams which are direct-reading 
at unity voltage instead of at Es or ER volts. From a practical point of 
view, however, it is more convenient to make these charts direct- 
reading at some nominal terminal voltage, say F, rather than at unity 
voltage. To obtain correct power values from such charts it is then 
necessary to multiply the scale readings by (Es/V)2 in the case of the 
sending-end chart, and by (A\JF)2 in the case of the receiving-end chart. 

In this present example evidently the best value to choose for the 
nominal voltage is V = 132 kV., for then the power scales will be the 
same as for Example 1, where Es — EIt = 132 kV. Also, as will be 
seen from equations (59) and (60), the co-ordinates of the power-circle 
centres are in this case (— arV2, brV2) and (a8V2, — bsV2), and thus 
have the same values as in Example 1. The universal charts can 
therefore be set up directly from the data underlying Fig. 20. 

Fig. 22 shows the receiving-end chart, and Fig. 23 the sending-end 
chart. Each power circle corresponds to a definite terminal voltage 

pjpr 

% 

Pr 

MW. 

R.E. Chart Qr 

MVAr. 

6 Er/Er 

% 

S.E. Chart Ps 

MW. MVAr. 

Pi 

MW. 

V 

% MVAr. P Q P Q 

120 50 50 - 8 - 8 18 83 39 - 5 56-2 - 7-2 6-2 89-0 0*8 
115 50 50 0 0 20 87 42 - 0-5 55-5 - 0-7 5-5 90-0 - 0-7 
no 50 50 8 8 22 91 46 4-5 55-8 5-5 5-8 89-6 - 2-5 
105 50 50 17 17 25 95 63 9'5 58-4 10-4 8-4 85-7 - 6-6 
100 60 50 25-5 25-5 28 100 60 14-5 600 14-5 100 83-3 - 110 

95 50 50 85-5 35-5 31 105 675 20 61-7 18-2 11-7 811 - 17*3 
90 50 50 46 46 35 111 78-5 25-5 63-6 20-6 13-6 78-5 - 25-4 
85 50 50 58-5 58-5 41 118 95 28-5 68-6 20-6 18-6 730 - 37-9 
80 50 50 74 74 48-5 125 117 28-5 74-9 18-2 24-9 66-8 - 55-8 
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ratio, the ratios being ES/ER in Fig. 22 and ER/ES in Fig. 23. The 
results of the investigation are given in the table on p. 53. The given 
value of PR is first converted to its corresponding scale value, viz* 
P = Pn{VjER)2, and the receiving-end chart is entered with this value. 
A succession of operating points is thus found corresponding to the 
series of EsjER ratios chosen. For example, the value ES/ER = 120 
per cent gives Q = — 8 MVAr. and 0 — 18°. The reactive power 

0 10 20 30 40 50 60 70 80 90t/100 VO 120 130 140 150 160 170 180 190 200 
Active Power, Ps (p )2 in MW. 

*•3 

Fig. 23. Universal Sending-end Chart for a 200-mile 132 kV. 
Transmission Line based on a Nominal Voltage of 132 kV. 

required at the receiving end is then Qn = Q(P*/F)2, which in this case 
is the same as Q, since V — 132 kV. = E1{. 

For the sending-end chart the inverse voltage ratio is ER/ES = 83 
per cent. Entering the chart along the angle line 0 = 18°, the required 
operating point is found where this line intersects the 83 per cent 
voltage-ratio circle. For this point one finds P = 39 MW. and Q 
= — 5 MVAr. in terms of the scale values of the sending-end chart, 
based on the nominal voltage V — 132 kV. On multiplying these 
values by (Es/V)2f where Es is here 120 per cent of EH9 i.e. 158 kV., 
one finally obtains PL = 56-2 MW. and Qa = — 7-2 MVAr. Hence 
the power loss is Ps = 6-2 MW. = 6 200 kW., while the net reactive 
power taken is QL = [- 7-2 — (— 8)] = 0-8 MVAr. = 800 kVAr. lead- 
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ing. Finally, the transmission efficiency is rj = PjJPg = (50/56*2) 
== 89 per cent. The same procedure is followed for the remaining 
values of the terminal-voltage ratio Es/Ek> 

Referring to Fig. 22, it is seen that the voltage-ratio circle passing 
through the origin of the receiver chart—the operating point corre¬ 
sponding to open-circuit conditions—is that for EsjER — 94 per cent. 
Hence the sending-end voltage giving 132 kV. on open circuit at the 
receiving end ia Es = 0*94 X 132 = 124 kV. There is thus a 6 J per cent 
voltage rise along the line under open-circuit conditions—a character¬ 
istic transmission phenomenon known as the “Ferranti effect.” 
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CHAPTER III 

THE POWER LIMITS OF A SYNCHRONOUS 
INTERCONNECTOR 

In the case of electrical machines and apparatus the criterion of 
limiting power is intimately bound up with mechanical and 
thermal considerations and, in general, is in no way determined 
by purely electrical, i.e. circuit, characteristics. On the other 
hand, in the case where a synchronous generator supplies 
power to, say, a static impedance load of variable magnitude, 
the criterion of limiting power is essentially of an electrical 
character. For, assuming the generator excitation and the load 
power factor both to be maintained constant, the power 
supplied to the load by the synchronous machine will be a 
function of its terminal voltage as well as of the load current. 
But the former depends upon the latter, in virtue of the finite 
impedance of the machine ; so that the operative variable is the 
load current, which in turn depends on the machine voltage 
and the magnitude of the impedance load. Here the criterion 
of limiting power is a relatively simple one. In fact, and as is 
well known, it is that the load impedance should equal the 
internal impedance of the synchronous machine.(1) In the 
last analysis, therefore, although it is the load itself which 
determines the power supplied by the machine, the power 
limit is determined by the electrical characteristics of the 
machine. 

It is clear that in the simple asynchronous power transmission 
system considered above the conception of maximum power, or 
a power limit, is not associated with a possible loss of syn¬ 
chronism. For there is obviously no question of synchronism 
being lost by a system containing only a single synchronous 
machine. On the other hand, when considering transmission 
systems of a synchronous character, in which the power trans¬ 
mitted is mainly a function of the angular displacement between 
two synchronous but otherwise independent voltages, the 
maximum value of transmitted power is reached with the final 
breakdown of the system, when the synchronous machines fall 
out of step. That is to say, the criterion of maximum or 
limiting power here is that synchronism should finally be lost 

56 
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when the displacement angle between the terminal voltages of 
the system exceeds a certain critical value.* 

The Maximum-power Concept. When considering power 
system interconnection in general, it is necessary to distinguish 

between three possible values of the maximum power trans¬ 
mitted (or power limit, as it is more commonly termed) 
namely— 

1. The power limit of the interconnector alone, i.e. the 

steady-state stability limit of a transmission link between two 
infinite buses,f which is a function of the interconnector 
impedance. In practice this limit is applicable in the case of 
two metropolitan supply systems, each having a large installed 
capacity, connected by a tie line. 

2. The power limit of the transmission system as a whole— 
that is, taking into account the limiting effect of the syn¬ 

chronous machines at each end of the interconnector—when 
the system load is increased very slowly, and the machine 
terminal voltages are maintained constant by regulator action. 
This is termed the steady-state stability limit of the transmission 
system, and is a function of the impedances of the synchronous 
machines as well as of the interconnector. 

3. The power limit of the system during sudden changes in 
load or upon the incidence of a disturbance, when the air-gap 
voltages of the machines remain sensibly constant. This is 
known as the transient stability limit, and is a function of the 
machine inertias as well as of the system impedances. 

In Case 1, with which the present chapter is concerned,J.the 
existence of a power limit is most easily demonstrated by means 
of the fundamental power-circle diagram—in particular, the 

receiving-end power chart. Its construction is based on the 
equivalent network of the interconnector in its most general 
form, that is to say, including sending-end and receiving-end 

* This particular criterion of limiting power is the so-called steady-state 
stability criterion, and is defined by (dP/dO) = 0, from which condition the 
critical value of 0, and thus the corresponding power limit PM, may be 
determined. The general question of steady-state stability is discussed in 
Chapter IV. 

t By the term “infinite bus” is understood a point at which the voltago is 
constant in magnitude, phaso, and frequency and is independent of the 
active and reactive power flowing past the point. This condition is approached 
when the capacity of the synchronous plant connected to the point is 
extremely large in comparison with the power flow under consideration. 
From the point of view of power system stability an infinite bus may be 
represented by a synchronous machine of zero impedance and infinite inertia. 

t Cases 2 and 3 are discussed in Chapters IV and V respectively. 
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terminal transformers. Equations (23) or (24) may be used to 
find the constants of this equivalent network. Considering the 
typical circle diagram of Fig. 24, for example, representing the 
relation between active power P and reactive power Q trans¬ 
mitted by an interconnector whose terminal voltages are 
Es and ER) the maximum value of transmitted power 
(PM) is defined by the operating point if, i.e. the point lying 
on the appropriate power circle, farthest away from the 

Q-axis.* 
In other words, the power limit is represented in the circle 

diagram by the abscissa of the vertical tangent to the power circle, 

Q 

Fig. 24. The Circle Diagram 
for Transmitted Power 

because any power value 
greater than this, since it 
is represented by a point 
lying outside the power 
circle, does not correspond 
to a possible operating con¬ 
dition, based upon the given 
terminal voltages which de¬ 
termine the size of the power 
circle and its position in the 
P-Q diagram. However, as 
the power-circle radius is 
proportional to the product 
of these voltages, a little 
consideration will show that 

the power limit can be raised by increasing the sending-end 
voltage Es or the receiving-end voltage ER, or both. 

Referring to the circle diagram in Fig. 24, the equation to 
the power circle is— 

(P + aE *)* +(Q- bEa2)2 = (cEsER)2 . . (61) 

Here the co-ordinates of the centre are — aER2 MW. and 
+ bER2 MVAr., and the circle radius is cE8EK MVA. where Es 
and Er are line pressures expressed in kV., and a, 6, and c are 
circuit constants defined by— 

* As mentioned in Chapter II, the term “transmitted jxjwer” is synonymous 
with “receiving-end power.” The former term, however, is used throughout 
the present chapter as the sending end of the interconnector is of no particular 
interest where power limits are concerned. For the same reason the circle 
diagram is drawn, and referred, simply to P — Q, rather than to PR — Q„ 
co-ordinates. 



THE POWER LIMITS OF A SYNCHRONOUS INTERCONNECTOR 59 

A A. ^ A ,, 
— a + jb = — g= — R !(« — /?) = ^ 1(tt + « — ft) 

^4 ^4 
= — ^ cos (/?— a) +j £ sin (/9— a) . . (62a) 

_ _ / ^1^1 ^2^2 \ , • / ^1^2 ^2^1 \ 
- V Bf + BJ ) + J \ Bf + Bf ) 

and c = b= \/(B^ + Bj) 

where A = A |a = Ax + jA2 and B = B \P = Bx -f- jJ52 are the 
appropriate constants of the equivalent network. 

From the circle diagram it is seen by inspection that the 
maximum value of transmitted power, given by the abscissa 
of the vertical tangent at M is— 

PM = cEsER-aE* . . . (64) 

while the amount of reactive power which must be drawn over 
the interconnector in order that the transmitted power may 
reach this maximum value, under the given terminal voltage 
conditions, is similarly seen to be— 

Q* = bE*.(65) 

The above relations may be established formally by considering 
the limiting power criterion—the transmitted power cannot 
exceed that value which corresponds to the operating point 
lying on the vertical tangent to the power circle. This point 
is defined by the condition (dP/dQ) = 0. Differentiation of 
equation (61) with respect to Q gives— 

2 (P + aE *) ~ + 2 (Q-bE *) = 0 

which, with dPfdQ == 0, becomes Q = bER2 as given by 
equation (65). Substitution of this limiting value of Q in 
equation (61) then gives P = cEsER— aER2 for the limiting 
power. As is to be expected, this is the relation of equation (64). 

Equation (64) is thus the power-limit equation of the inter¬ 
connector, expressing the relation between the limiting 

transmitted power, and the voltages at the sending and 
receiving ends. When determining the power limit of an 
interconnector this fundamental equation must be considered 

. (626) 

. (63) 
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in the light of three possible conditions of power transmission, 
viz. constant receiving-end voltage, equal sending- and 
receiving-end voltages, and constant sending-end voltage. 

Case 1 (ER = constant). Here equation (64) becomes 

PM = kxEs — k2 . . . (66) 

where k1 and k2 are constants. In this case, therefore, the 
limiting transmitted power is a linear function of the sending- 
end voltage Ea and is restricted only by the maximum possible 
value of this voltage. Moreover, the co-ordinates of the several 

power-circle centres are constant, so that the power circles are 
concentric, while their radii are directly proportional to Es. 
Furthermore, it is seen from equation (65) that QM is constant. 
Hence the power-limit locus is the straight line passing through 

the common centre of the power circles and parallel to the 
P axis. The power-circle diagram for this condition of operation 
is shown in Fig. 25. 

Case 2 (E8 = ER = E). Equation (64) becomes in this case 

PM = {c-a)E* . . . (67) 

Hence with equal sending- and receiving-end voltages the 

power limit of an interconnector is directly proportional to the 
square of the transmission voltage. Also, the co-ordinates of 
the power-circle centres and the radii of the power circles both 
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vary as the square of the terminal voltage E. Hence the locus 
of the power-circle centres is the straight line making the angle 
tan- 1(b/a) with the negative P-axis and passing through the 
origin of the circle diagram, as shown in Fig. 26. The distance 

of any centre from the origin is then E2\/(a2 + b2) MVA. 
Referring to equation (65), it is seen that in this case 

a 

Fig. 26. Power-circle Diagram for Es = ER — E 

Qm = bE2. This relation, in conjunction with equation (67), 
then gives 

= • • • (68) 

as the equation to the power-limit locus, i.e. the locus of the 

points on the several power circles corresponding to maximum 
transmitted power. Equation (68) represents a straight line 
in the first quadrant passing through the origin, as shown in 

Fig. 26. 
Case 3 (Es = constant). In this case equation (64) becomes 

PM = a [k>2 — (k— Er)2] . . . (69) 
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where k = (c/2a) Es. It is at once seen from this equation that 
PM is zero when ER is either zero or equal to 2k. Hence there 
must be some value of ER intermediate between 0 and 2k for 
which PM reaches a finite maximum value. This unique value 
of Ea is thus determined by the condition that 

dPMldER = — 2a (k — ER) = 0 

which gives ER = k. Denoting this critical value of receiving- 

end voltage by Ea, we have— 

E, = ±E, .... (70) 

On substituting ER = k in equation (69), one finds for the 
maximum value of the power limit— 

PB = ak* =C~a E, . . .(71a) 

This is the so-called ultimate power limit of the interconnector. 
The corresponding value of reactive power, required in order 
that this limit may be reached, is found from equation (65) 

to be— 
be2 

Qa = bk* = --2E* . . . (716) 

The existence of an ultimate power limit, having a finite value 
given by equation (71a), is also clear from a consideration of 
the power-circle diagram for constant sending-end voltage, 

shown in Fig. 27. For the co-ordinates of the power-circle 
centres are proportional to ER2, while the radii are proportional 
to Er. The power circles are thus eccentric, their centres lying 
on an axis through the origin, making the angle tan*~1 (6/a) 
with the negative P-axis. Beyond a certain value of ER—the 
critical value Ea—the abscissa of the power-circle centre 
(— aEs2) increases more rapidly than the circle radius (cE8ER)y 
so that the value of PM begins to decrease. 

The Power-limit Parabola. In Cases 1 and 2, considered 
above, the locus of maximum power in the circle diagram is a 
straight line, either parallel to the P-axis or passing through the 
origin at an angle to that axis. On the other hand, in Case 3 
the power-limit locus is a parabola lying in the first and second 
quadrants of the power-circle diagram, j 
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The equation to this parabolic locus is found by eliminating 

Er between equations (65) and (69), which gives— 

(bPM + aQMf = bc2E2QM . . . (72) 

The above equation may be put in the form 

(PM sin ip + Qm cos ip)2 = 2R sin ip ,QM, . (72a) 

where tan ip = b/a and R — c2Es2/2y/(a2 + 62). Equation (72a) 
represents a parabola whose axis is inclined at an angle ip to 
the negative P-axis, i.e. is parallel to the line of power-circle 
centres, and crosses the Q-axis at the point Q = R sin ip. 
Fig. 28 shows this power-limit locus to scale, the extent of the 
usual power-circle diagram being indicated by the dotted 
rectangle. A typical power circle is that for ER == E8i whose 
centre is shown at CM. As may be seen from the diagram, for 
this oircle PM is given by OL, and QM by LM. 



ir\ 

Fig. 28. The Parabolic Locus of Maximum Power 
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The power circle corresponding to the critical value of 
receiving-end voltage, ER = EU9 is shown with centre at CU9 U 

being the operating point corresponding to the ultimate power 
limit. HencePu = OT =%CaU, since C0U == cEaEa — (c2E32/2a); 
also Qv = TU. The power-limit parabola touches the P-axis 
at the origin and crosses the Q-axis at the point W, where 
OW = 4Qv. This value of the ordinate at W is at once obtained 
by putting PM — 0 in equation (72), for this gives either 
Qm = 0 or Qm = (bc2Es2/a2). The power circle passing through 
W must consequently be that for En = 2EU9 in order that its 
radius CwW may be 4{\CVU) = \PV = 2cE8ED. 

The form of locus equation given by equation (72a) is, 
however, more convenient to use in practice in that it leads at 
once to a relatively simple geometrical construction of the 
parabolic power-limit locus. This construction makes use of 
two well-known properties of the parabola, viz. that the length 
of the subnormal is constant and equal to half the latus rectum, 
and that the two ends of the normal to the parabola at any 
point are equidistant from the focus. Referring to Fig. 29, 
OCn is the line of power-circle centres, making the angle 
y) = tan-1 (6/a) with the negative P-axis. Make OC = R, and 
draw CD parallel to the P-axis meeting the Q-axis at D. Then 
OD = R sin y, so that the axis of the parabola is the parallel 
to OCCjj passing through D. At P, where OD = DE, draw EY 
parallel to the P-axis and intersecting OY, perpendicular to 
the line of centres, at Y. Through Y draw WZ parallel to the 
line of centres, meeting the Q-axis at W and the P-axis at Z. 

Then, since OE = 2R sin y>, we have OY = 2P tan yj and 
thus— 

_ 2fltany> _ c2Es2 b V(a2 + b2) _ bc2E2 _ 

cos y) V(a2 + 62) a a a2 ^u 

Hence W is the point where the parabola crosses the Q-axis 
(see Fig. 28). 

To find the point U of Fig. 28, bisect WZ at X and join OX. 

Then U is the mid-point of OX. For the ordinate TU is one- 
quarter of OW, and is thus equal to Qu. Similarly, the abscissa 
OT is one-quarter of OZ, and is hence equal to Pl}, since 
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To construct the parabola it is first of all necessary to locate 
the focus. Its position is given by F, the point where OX 
intersects the axis of the parabola. For F is the mid point of 
DO, since DO and WZ are parallel, and hence ODO and OWZ 
are similar triangles. Consequently OF = DF = \R, since 

Fig. 29. Geometry of the Power-limit Parabola 

DO = CO — R. But DO is the normal to the parabola at the 
point 0. Hence F must be the focus. The subnormal at 0 is 
DH — (DO) X sin xp = R sin2 xp, and for all other points on 
the parabola it has this same value. Hence a point M, say, on 
the parabola may be found by taking any point K on the axis, 
making the intercept KL equal to DH, and drawing an arc 
with centre at F and radius FL to meet the perpendicular at 
K in the point M. Then LM is the normal to the parabola at 
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M, while CmM, drawn parallel to the P-axis, is the radius of 
the power circle for which M is the “limiting” operating point. 

The vertex of the power-limit parabola is located at V where 
FV = \R sin2 ip* Referring to the inset diagram of Fig. 29 
it is seen that V must then be the mid point of HO. For 

FJ = \(DO) — \R sin ip, 
so that FV — (FJ) X sin ip = \R sin2 ip. 

But FJ bisects 00 at J, since F is the mid point of DO. Simi¬ 
larly, JV must bisect HG at V. 

The parallel to the P-axis through F meets the line of centres 
in C0, where OG0 — \(0C) = \R. The point C0 is consequently 
the centre of the particular power circle whose radius is equal 
to R. That this must be so is clear from consideration of the 
relation between the radius of any power circle and the distance 
of its centre from the origin. If ER be the receiving-end voltage 
corresponding to the power circle in Fig. 29 having CM for its 
centre, then OCM — EI2\/(a2 -f b2) and CmM = cE8ER. Hence 

OCM = (CMm)* x x ^ 

Thus the radius of the power circle whose centre is C0 must 
be \/(2R x OC0) — \/(2R X \R) = R. If E0 be the value of 
the receiving-end voltage to which this power circle relates, 
then cEsE0 = P, so that 

R cE 
E° = cEs = 2 V(«2 + b2) = Eocosy>- ■ (73) 

This particular power circle also is shown in Fig. 28. 
^ Regulated and Unregulated Interconnectors. The power-circle 
diagram of Fig. 27 clearly shows that a given amount of power 
P can be transmitted over an interconnector under different 
receiving-end conditions. The ordinate for a given P cuts 
many power circles, each of which corresponds to a par¬ 
ticular value of Er, and becomes a tangent to the one circle 
for which ER — \/(P/a), when P represents the maximum 
power (PM) that can be transmitted at that voltage.f These 

* In the parabola y2 = 4ax the latus rectum is 4a, the subnormal is 2a, and 
the distance from the focus to the vertex is a. 

t It should be noted here that each power circle, except the limiting one 
for which P — PM, is intersected twice by the ordinate at P. As explained 
in Chapter IV, however, the upper point of intersection (i.e. that for which 
Q > Qm) corresponds to an unstable operating condition and in consequence 
need not be considered. 

6—(T.x8o) 
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several points of intersection are characterized by differing 
values of the reactive power demand Q. 

In the same way the amount of power P that can be trans¬ 
mitted at a given value of ER depends on the reactive power Q 
available at the receiving-end, since the operating point (P, Q) 
must lie on the power circle. This property of the power circle 
is made use of in so-called regulated systems of power trans¬ 
mission by power-factor control of the receiving-end voltage 
under conditions of varying system load. The almost universal 
form in which this method of voltage control occurs in practice 
is that where synchronous phase modifiers at the receiving end 
are used to adjust Q in accordance with P so that the operating 
point (P, Q) remains on the power circle defined by the given 
values of Es and En.(2) It will be observed from the power-circle 
diagram that this method of voltage control necessitates a very 
rapid increase in synchronous phase-modifier capacity when 
the transmitted power approaches the limiting value for the 
given voltage conditions. For one finds from the power-circle 
equation (61) that 

dQ P + aE2 
dP = Vlc2Es2ER2-(P + aER2)2] 

which becomes infinite when P = (cEsER — aE2) = P M. 
As for the power limit of such a regulated transmission system, 

it is implicit in the criterion of limiting power established in the 
preceding section that sufficient reactive power be available at 
the receiving end to enable the power limit PM to be reached. In 
other words, the jpower-limit parabola is based on the assumption 
of virtually unlimited synchronous phase-modifier capacity at the 
receiving end and represents, in effect, one extreme condition of 
operation—the regime of “regulated interconnection.” The 
other extreme is represented by the converse regime of 
“unregulated interconnection,” which is based on the assump¬ 
tion that the reactive power available at the receiving ejid is 
determined solely by the power factor of the load.(3) \ ^ 

In the case of an unregulated interconnector, therefore, the 
power locus is perforce represented in the circle diagram of 
Fig. 27 by the “load line” whose equation is Q = P tan<£, 
where cf> is the power-factor angle of the load.* On substituting 

* Following the usual convention, </> is negative for lagging and positive 
for leading power factors. The load line of Fig. 27 thus represents a varying 
load of constant lagging power factor equal to cos <j>. 
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this value of Q in the power-circle equation (61) one obtains 
for the basic power relation of the unregulated interconnector— 

(P + aE/)2 + (P tan (f> - bE2)2 = c2E2E2 

which, after some transformation, reduces to— 

[P sec (f> + (a cos (j> — b sin </>) ER2]2 
-f- (a sin </> -f- b cos <j>)2EB2 = c2E82EB2 . (74) 

The condition for maximum transmitted power may be 
found by differentiating equation (74) with respect to EB and 
putting dP/dEB = 0 in the derived equation, which gives— 

P sec (f> + (a cos <£ — b sin (f))EB2 

— c2ffis2 — 2 (a sin -f 6 cos <f>)2EB2 
2 (a cos </> — 6 sin <£) • v / 

Eliminating P between equations (74) and (75) then gives the 
particular value of P* corresponding to the power limit of the 
unregulated interconnector. Denoting this limiting value by 
Ee, one obtains— 

Eb 
-f b2) — a cos <f) + b sin <f>) 

\/(a2 -f- b2) . (a sin </> -f* b cos </>)2_ 
.cEs (76) 

which, on substitution in either equations (74) or (75), finally 
gives the power limit of the unregulated interconnector as— 

~ CQS (V(a2 + b2) — a cos <f> -f b sin <f>) 2 
2 (a sin </> + 6 cos </>)2 C 5 

== E2\J(a2 + b2) . cos 

. (77) 

. (77a) 

In the special case of a unity power factor load, for which 
(f> = 0, equations (77) and (77a) become— 

_vV+_6VIa 
~ 262 C 

= + 62) 

• (78) 

. (78a) 

Another special case of interest is that for which </> = tan-1 (6/a), 
when equation (76) becomes— 

E‘ = E° = Eu • (79) 
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and equation (77a) consequently gives for the power limit— 

Pa = *E* = Pu . . . (80) 

This result is to be expected, since the load line which passes 
through the operating point corresponding to the ultimate 
power limit of the interconnector must have the slope— 

b 
a 

The Power-circle Envelope. It will be observed from Fig. 27, 
relating to the case of constant sending-end voltage, that a 
curve can be drawn which is a tangent to all the power circles. 
This curve, known as the power-circle envelope, actually repre¬ 
sents the boundary of the power-circle diagram. A power P, 
transmitted over the interconnector to a load of power factor 
cos <(>, is represented in the diagram by a point whose co¬ 
ordinates are (P, P tan </>). If this point falls inside the envelope, 
then two power circles can be drawn which will intersect at 
that point. In other words, for any operating point within the 
power-circle envelope there are two values of ER which will 
satisfy the given conditions of transmitted power P, load power 
factor cos <f>, and sending-end voltage Es, i.e. which will satisfy 
equation (74). For an operating point on the envelope, only 
one value of ER will satisfy the given conditions, namely, that 
corresponding to the power circle to which the envelope is a 
tangent at that point. Finally, in the case of a point lying 
outside the envelope, there is no value of ER, which will satisfy 
the given conditions of power transmission. That is to say, 
such a point represents an imaginary operating condition. 

For an unregulated interconnector, therefore, the limiting 
transmitted power is evidently the abscissa of the point of 
intersection of the load line and the power-circle envelope, 
because there is no value of receiving-end voltage that will yield 
an operating point lying on the load line and, at the same time, 
corresponding to a transmitted power in excess of this limiting 
value. Hence the value of ER corresponding to the envelope 
power limit—as the above limiting value of transmitted power 
is termed—is determined by the radius of the power circle to 
which the envelope is a tangent at the point where it is inter¬ 
sected by the load line. 

To find the equation of the power-circle envelope, resort 
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must be had to the following well-known theorem in the differ¬ 
ential calculus: If a series of curves represents the loci of a 
function having a certain parameter which determines the 
consecutive loci, then the envelope of the curves represents a 
derived function whose equation is obtained by differentiating 
the equation of the original function with respect to that para¬ 
meter, and eliminating the parameter between the resulting 
and original equations. In the present case, therefore, it is 
necessary to differentiate the fundamental power-circle equa¬ 
tion with respect to the parameter ER, and then to eliminate 
Er between this derived equation and the original power-circle 
equation. The resulting equation, expressing the relation 
between P and Q in terms of Es and the auxiliary network 
constants a, b, and c, is then the equation of the power-circle 
envelope. 

The fundamental power-circle relation expressed by equation 
(61) may be put in the more convenient form— 

P2 + Q2-]- (a2 + b2) Er* 
= 2y/(a2 + b2) . (R — P cos ip + Q sin ip) ER2 . (81) 

where, as before, R = c2Es2f2\/(a2 + b2) and tan ip = fc/a. 
Differentiation of equation (81) with respect to ER gives— 

4 (a2 + b2) E/ = 4 V(a2 -f b2) . (R — P cos ip + Q sin ip) ER 
i.e. R — P cos ip + Q sin ip = E2 \/(a2 + b2) . (82) 

On eliminating ER between (81) and (82) one then obtains— 

P2 + Q2 = (R — P cos ip + Q sin ip)2 . . (83) 

as the equation of the power-circle envelope. Equation (83) 
represents a parabola whose focus is the origin of the power- 
circle diagram, whose axis is the line of power-circle centres 
(making the angle ip with the negative P-axis), and whose 
vertex is distant |P from the focus.* Furthermore, the value 
of Er determining the power circle to which the envelope is a 
tangent at any given point (P, Q) is given by equation (82) or, 

* If ip — 0, for example, the envelope equation becomes simply— 

pa + = (R - P)a 

i.e. Q* = 4(*P)(*P - P) 

which is of the form y2 = 4a(a — x). This latter equation represents a parabola 
about the a-axis whose focus coincides with the origin of co-ordinates and 
whose vertex coincides with the point on the a:-axis for which x = a. 
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more conveniently, by eliminating 11 between equations (82) 
and (83), which gives— 

P2 + Q2 
+ 62 

(84) 

In the case of a regulated interconnector, where unlimited 
synchronous phase-modifier capacity is assumed, the operative 
power limit is the ultimate power limit (Pv) of the interconnector. 
A little consideration will show that it is represented on the 
power-circle envelope by the point where it is met by the 
tangent parallel to the Q-axis, its value being given by the 
abscissa of this point, defined by the condition (dP/dQ) — 0. 
Differentiation of equation (83) with respect to Q gives— 

2 P 
dP 

dQ 
+ 2Q = 2 (R — P cos xp + Q sin xp) ^ sin y) — cos xp ^ ^ 

On putting 
dP 

dQ 
0 in the above expression, one obtains— 

Q = sin y> (R — P cos xp + Q sin xp) = y^P2 + Q?) sin V 

= P tan xp which reduces to Q. 

Hence Qv = Pv tan xp is a condition determining the ultimate 
power limit. In other words, the operating point in the power- 
circle diagram corresponding to this limit lies on the load line 
whose slope is tan xp = (6/a). On substituting P0 tan xp for Qv 
in the power-circle envelope equation (83), one obtains, finally— 

i.e. 

or 

Pv sec xp = R — Pv cos xp + Pv sin xp tan xp 

Pv (1 + cos2 xp — sin2 xp) = E cos xp 

p l + fr2) c2 F, 
0 2 cos xp 2y/(a2 + 62j 2a 4a 8 

as the ultimate value of the limiting transmitted power under 
conditions of varying ER and constant Es. As is to be expected, 
the above result is identical with equation (71a). The critical 
value of receiving-end voltage Ev corresponding to this ultimate 
power limit is found from equation (84) to be— 

P* (1 + tan2 xp) If Pn2 a2 + 62\ IP, 

a2 + 62 /y \ a2 + 62 a2 / /sj a 

a result which, in turn, is identical with equation (70). 
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In the case of the unregulated interconnector, where the 
reactive power available at the receiving end is determined by 
the load power factor cos </>, the operative power limit is the 
envelope power limit (PE), already defined as the value of trans¬ 
mitted power given by the abscissa of the point where the 
load line intersects the power-circle envelope. This limit is 
accordingly to be evaluated by putting QE = PE tan <f> in the 
equation of the power-circle envelope (83). The substitution 
gives— 

PE sec <f> = R— PE cos y> + PE tan <f> sin y) 

i.e. PE (1 + cos y) cos </> — sin y) sin <f>) = R cos cf> 

from which 

R cos cf) 
B 1 + cos (\p + </>) 

(85) 

cos $ \/{a2 + b2) 
2 v7(a2 + b2) V(«2 + b2) + a cos <f> — b sin (f> 

cos (f> (V(a2 + b2) — a cos <f> + b sin (f>) 

2 (a sin </> + b cos </>)2 
c2E2 (8 5a) 

Here again, this result is the same as (77), which was obtained 
from the basic power relation (74) of the unregulated inter¬ 
connector. 

Referring to the envelope equation (83), the point where the 
power-circle envelope crosses the P-axis may be found by 
putting Q = 0 in the equation. The abscissa of this point is 
accordingly given by the relation P = (R — P cos yj), from 
which— 

P = 
R 

1 + cos y> 

c2E2 

2 V(«2 + b‘ 

V(a2 + b2) 
2 b2 

V(«2 + b2) 
\J(d2 -f- 62) -f- a 

- c*E* 

(86) 

(86a) 

This value of P is the same as that given by equation (78), the 
reason being that the P-axis is the load line for cos <f> = 1. 
Similarly, by putting P = 0 in equation (83), one finds for the 
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ordinate of the point where the power-circle envelope crosses 
the Q-axis— 

0 = 

R 
1 + sin y> 

V(«2 + b2) 
2 V(a2 + b2) V(«2 + &2) + & 

6 — V(a2 + &2) 
2a2 

lc2E, 

(87) 

(87a) 

Finally, the co-ordinates of the vertex, whose distance from 
the origin is \R, are given by— 

Pr = £R cos yj = Pv cos2 y) . . (88a) 

and Qv = \R sin y> = Q0 cos2 \p . . (886) 

The locus of the envelope function expressed by equation 
(83) leads to the same general method of geometrical construc¬ 
tion for the power-circle envelope as was developed for the 
power-limit parabola. The construction of the envelope para¬ 
bola is shown in Fig. 30 and, like that of Fig. 29, is based on 
the constants R = c2E2/2\/(a2 + 62) and y> = tan_1(6/a). The 
procedure is as follows: Take any point CM on the line of 
power-circle centres, and from it lay off the distance CMN = R 
in the direction CM0. At N erect a perpendicular to the line of 
centres. With 0 as centre and OCM as radius draw an arc to 
meet this perpendicular at M. Then M is a point on the power- 
circle envelope. In fact, it is the point where the envelope is a 
tangent to the power circle whose centre is CM and whose 
radius is consequently CmM. 

As before, the construction is based on the property of the 
parabola that the subnormal (CMN) is constant and equal to 
the semi-latus rectum (R). Its validity may be shown by 
considering the projections on the line of centres of the co¬ 
ordinates of the point M. It is seen from Fig. 30 that the 
projection of the abscissa P is P cos y), while the corresponding 
projection of the ordinate Q is Q sin y>. Hence 

ON = VN — VO = (Q sin ip — P cos y>) 

and, since NCM = R, and OCM = (ON + NCM), 

OCM = (JB + Q sin y> — P cos ip). 
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Also OM = \/(P2 + Q2). But, by construction, OM = 

so that V(p2 + Q2) = + 6 sin xp — P cos y>, 

which is the envelope equation of (83). Again, CmM is the 

normal to the parabola at the point M, since OCM = OM and 
0 is the focus. Hence CM is the centre of the circle to which the 
parabola is a tangent at M, i.e. of the power-circle whose radius 
is CmM. If Eb be the value of the receiving-end voltage to 
which this power circle corresponds, then OCM — Es2\/(a2 + 62). 
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Consequently 

\/(P2 + Q2) = ER2'\/(a2 + b2) = R — P cos tp + Q sin ip 

as given by (82), (83), and (84) conjointly. 
C0 is then the centre of the power circle to which the envelope 

is a tangent at the vertex F, for OC0 = OV = bR. The 
corresponding value of receiving-end voltage is found from 
equation (84) to be— 

E, = JPr' + Qr'=J 

a2 -f- b2 \ ai 

cE 

\R2 

+ 

2 V«2 + 
= Ev cos y>. 

This result agrees with equation (73), established by an alter¬ 
native method. This particular power circle is, incidentally, 
the smallest circle which touches the envelope. 

It is evident, too, from Figs. 29 and 30, that the power-circle 
envelope, the power-limit parabola, and the limiting power 
circle for which ER = Eu all meet at a common point of tan- 
gency, namely, the operating point in the power-circle diagram 
corresponding to the ultimate power limit of the interconnector. 

The Universal Power-limit Chart. It will be observed from 
equations (72a) and (83) that the maximum-power locus and 
the power-circle envelope both have R — c2Es2/2\/(a2 + b2) as 
parameter. The equations thus represent two families of para¬ 
bolas, each parabola in either family corresponding to a par¬ 
ticular value of sending-end voltage. To determine the power 
limits of an interconnector for several values of Es thus entails 
a considerable amount of labour in constructing the appropriate 
families of parabolas. 

The necessity for drawing a number of these parabolic loci to 
cover a given range of sending-end voltage is avoided, however, 
by the use of a modified chart in which the co-ordinates are 
conductance and susceptance instead of active and reactive 
power. If equations (72a) and (83) are divided throughout by 
Ea*, one obtains the modified power-limit locus— 

(&*■* +' <89> 
and the corresponding modified power-circle envelope— 

/ p V , / Q V / c* p , Q . V 
\E*J +\E*) _VV(«a + <>a) + E*smw) (90) 
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Equation (89) represents a parabolic admittance locus whose 
latus rectum is b2c2/(a2 + b2)\ while equation (90) represents 
a similar locus whose latus rectum is c2/\/(a2 + &2), both being 
referred to a co-ordinate system in which the abscissae represent 
conductance (P/Es2) and the ordinates susceptance (Q/Es2). 
These two loci thus together constitute a universal power-limit 
chart, as the active and reactive powers corresponding to a 
given power limit under conditions of constant sending-end 
voltage and variable receiving-end voltage may be obtained 
simply through multiplication of the co-ordinate readings by 
the appropriate value of Ea2. 

Under these circumstances the power-circle radii will be 
proportional to the voltage ratio ERjE8, the circle radius at the 
ultimate power limit being simply c2/2a and the limiting voltage 
ratio (Ec/Es) = c/2a. The co-ordinates of this limiting point 
in the chart are then (P^E/) — c2/4a and (Qv/Es2) = 6c2/4a2. 
Similarly, the co-ordinates of any point on the power-limit 
parabola become {PM/^s2) = c (ER/ES) — a (ER/ES)2 and 
(QJE*) = b (En/Es)2, while the power circle to which the 
envelope is a tangent at any given point becomes that for 
which the voltage ratio is— 

Er , IHP/E*)* + (Q/E/n 
Es ~ V L a2 + &2 J 

Finally, the construction of the two universal power-limit 
loci will remain unchanged except that the starting-point is no 
longer the parameter R but the constant c2/2\/(a2 + b2). 

Examples on the Use of Power Limit Charts. The following 
examples on power limits refer to an interconnector consist¬ 
ing of a single-circuit three-phase transmission line of the 
British Grid system having a length of 150 miles and termin¬ 
ating at each end in a 60 000 kVA. three-phase transformer 
whose characteristics* are as follows:— 

Per cent 

Reactance . . . . . .9*5 
Full-load I2R loss .... 0-63 

Magnetizing current . . . .3*81 

No-load core loss . . . . .0*27 

* Vide Table 3 on p. 717 of the Joum. I.E.E., 1929, Vol. 67. 
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The sending-end and receiving-end voltages of this inter¬ 
connector are considered as referring to the low-tension sides 
of the terminal transformers. 

Considering Example 1 of Chapter II, it is seen that for the 
150-mile line ZY = 0-07111159-4°. Charts I and II (between 

pp. 8 and 9) then give cosh VZY = 0-967 [O'1?0 and (sinh 

VZY)/VZY - 0-989 [Q-250. 

Hence the network constants of the transmission line are— 

Ax = D* = 0-96710-7° = 0-967 + j0-0118 

B£= 107-2169-4° X 0-98910-25° = 36 -f j99-4 

Ci =0-664xl0-3[90^x 0-989 (0-25° =(-0-0028+jO-656) X 10~3 

Referred to a base voltage of 132 kV. the transformer constants 
become— 

Rt = 

XT = 

0T = 

Bt = 

10 X 0-63 X (132)2 
60 000 

10 X 9-5 X (132)2 

60 000 

0-27 X 60 000 

1322 X 10® 

3-81 x 6 000 

1322 X 10B 

= 1-83 ohms 

= 27-59 ohms 

= 9-15 x 10-6 mho 

= 131-2 X 10~6 mho 

and hence ZT= 1-83-(-j27-59 and Yr = (9-15 —jl31-2) X 10~6. 
The network constants of the interconnector are then found 

from equations (24) to be— 

A = D = 0-969 + j0-00923 = 0-969[0-5^ 

B = 38-83 + jl52-22 • = 157 |75-7° 

C = (4-24 + j405-45) X 10~6 = 405-45 X 10~9l89-4° 

[Check:— AD = 0-9388 |1° = 0-9385 + j0-0164; 

BC = 0-06366 [165-1° = - 0-0616 + jO-0164; 

/. AD - BC = 1 + j0.] 

Example 1. Construct the universal power-limit chart for the above 
interconnector and determine the ultimate power limits for sending-end 
voltages of 132 kV. and 120 kV. Determine also the corresponding values 
of receiving-end voltage and reactive power demand. 
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Solution. Referring to equations (62) and (63), the auxiliary con- 
stants are— 

/ 

v 

A 0*969 
a = — cos (fi — a) = ‘ cos 75*2° = 0-001576 mho 

jd 157 - 

6 = — sin {B — a) = sin 75*2° = 0-005967 mho 
Jt> 15 / - 

c = -4 = 0-00637 mho 

Also \/(a2 + &2) — 0-969/157 = 0-006172 mho and ip = tan-1(&/«) 
= 75-2°. Hence the fundamental constant of the universal power-limit 
chart has the value— 

c2 0-006372 

2V(«2 + &2) = 2 X 0-006172 = °'003287 111110 

As in the case of the universal power transmission charts of Figs. 
22 and 23, it is more convenient to make the power-limit chart direct- 
reading at some nominal voltage V rather than at one volt. The 
power limits for any given value of sending-end voltage are then found 
from the chart by multiplying the scale readings by (EJV)2. Choosing 
V = 132 kV., we have— 

R = c2F2/2V(a2 + b2) = 0-003287 X 1322 = 57-3 MYA. 

The construction of the power-limit parabola and the power-circle 
envelope then proceeds as previously described (see Figs. 29 and 30). 
The resulting power-limit chart is shown in Fig. 31. 

From the chart we find for the operating point U— 

Pv(V/Es)2 = 112-5 MW.; Qu(V/Es)2 = 425 MVAr. 

Hence with Es = 132 kV. the ultimate power limit is 112*5 MW. and 

the corresponding reaction power demand is 425 MVAr. Also we have 

Ec = VlT = V0-001676 = Yl 

[Check. Pv — R/2 cos ip and Qv = Pv tan ip. Hence with Es = V we 
have— 

pu = 57-3/2 cos 75-2° = 112-2 MW. 

and Qv = 112-2 x tan 75-2° = 424-5 MVAr.] 

Again, with Es — 120 kV., the ultimate power limit is— 

Pv = 112-5(132/120)2 = 136 MW. 

while the corresponding reactive power demand is— 

Qu = 425(132/120)2 = 514 MVAr. 

the receiving-end voltage imder these conditions is then— 

Ev = 267(132/120) = 294 kV. 
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Example 2. Determine from the chart of the previous example the 
power limit of the interconnector under the following operating condi¬ 
tions; (a) Scnding-end voltage = 132 k V.; receiving-end voltage = 
120 k V. (b) Sending-end voltage= 120 k V.; receiving-end voltage 
= 132 k V. 

If in each case the load power factor is 0*9 lagging, what amount of reactive 
power must he supplied by synchronous phase modifiers at the receiving 
end in order that this power limit may actually he reached l 
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Solution, (a) The centre of the appropriate power circle is located 
at CM2 where— 

OCM2 = W(«2 4- 62). (V/Es)2 = 1202 x 0-006172(F/^)2 

= 88-9(F/P*)2 MVA. 

Draw CM2M2 parallel to the P-axis to meet the power-limit parabola 
at M2. Then M2 is the operating point corresponding to the required 
power limit. From the chart we find for the point M2— 

PuiVlE,? = 76 MW. 

so that with Es — 132 kV. the power limit of the interconnector is 
70 MW. Through M2 draw the load line M2Q2, making an angle <f> 

— cos-1 (0-9) with the P-axis to meet the Q-axis at Q2. Then the 
ordinate OQ2 represents the required synchronous phase modifier 
capacity, for— 

Q2 ~ Qm2 4 Pm2 tan (f> 

where QM2 is the reactive power demand at M2, and PM2 tan <f> is the 
reactive power component of the apparent load Q2M2. The chart 
gives— 

Q2(V/Es)2 = 113-5 MVAr. 

so that with Es =132 kV. the required synchronous phase modifier 
output is 113-5 MVAr. leading. 

(b) In this case the centre of the limiting power circle is at CM1 where 

OCM1 = 1322 X 0-006172(F/Ps)a = 107-5(F/PS)2 MVA. 

The operating point is then at Mv where the abscissa is 

PtAV/Es)* = 83-5 MW. 

Hence with Es — 120 kV. the power limit of the interconnector is 
83-5 X (132/120)2 = 101 MW. The load line M^ for cos <f> = 0-9 

meets the Q-axis at Qx where the i-eactive power is Q^V/Eg)2 = 145 
MVAr. With EiS =120 kV. the required synchronous phase modifier 
capacity at the receiving end of the interconnector is consequently 
145 X (132/120)2 = 175-5 MVAr. leading. 

Example 3. If the power transmitted over the interconnector is 
40 000 kW. at 0-8 lagging power factor, find the optimum sending-end 
voltage when no synchronous phase modifiers are installed at the receiving 
end. What is then the value of the receiving-end voltage ? What would 
he the corresponding voltages if the load power factor were 0-8 leading 2 

Solution. The optimum sending-end voltage is that for which the 
given power represents the envelope power limit. 

(a) The load line for $ = — cos_1(0-8) = — 36-9° meets the envelope 
at the point M' whose abscissa is P(V/E^)2 = 25 MW. The required 
sending-end voltage is thus— 

e*=v vS= 132 VS= 132 x 1-266 = 167 kv- 
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Also, \/(P2 + Q2) = Psec <f> = (40/0-8) == 50 MVA. The correspond¬ 
ing receiving-end voltage is then given by equation (84) as— 

Er = J>006172 = 90 kV: 

[Check. Equation (85) gives for the envelope power limit 

Pe(V/Es)2 
57-3 X 0-8 

1 + cos (75-2° - 36-9°) 

45-84 

1-8808 
24-4 MW.] 

(b) The load line for </> = -f cos-1 (0-8) = + 36-9° meets the envelope 
in Fig. 31 at the point M" whose abscissa is P{VjEh)2 = 74 MW. 
The required sending-end voltage in this case is accordingly— 

Es = vjlfi = 132 X = 132 X 0-727 = 90 kV. 

Here again \/(P2 + Q2) = Psec (f> = (40/0-8) = 50 MVA., so that 
the receiving-end voltage in this case is also En = 90 kV. * 

[Check. Equation (85) gives for the envelope power limit 

pe{V!es? - 
57-3 X 0-8 

1 -f cos (75-2° + 36-9°) 

45-84 

0-6243 
73-4 MW.] 

It may be mentioned here that the British “grid” lines are 
designed for a working current density of 1 250 A. per square 
inch for the equivalent copper section, corresponding to a full- 
load current of 220 A., i.e. a transmitted power per circuit of 
40 000 kW. at 0-8 power factor. At 132 kV. the ultimate power 
limit of 112 500 kW. thus represents an overload of some 180 
per cent and is never likely to be reached in practice. 

* That this must necessarily bo so is at once clear from equation (77a), 
for the power factor is here the same in both cases, viz. cos <f> — 0-8. 
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CHAPTER IV 

STEADY-STATE STABILITY 

The stability of a power system is defined as the ability of the 
system to operate intact both under steady load conditions 
and during disturbances—that is, to remain in synchronous 
equilibrium in the steady state and to regain that equilibrium 
after a disturbance to the system has taken place. What is 
known as the steady-state stability limit of a transmission system 
is thus the maximum value of transmitted power when the 
load is increased very slowly. The transient stability limit, on 
the other hand, is the maximum power the system can carry 
when it is subjected to a transient disturbance such as a sudden 
change in load, a system fault, or a switching operation. 
vThe investigations of Chapter III were concerned with the 

power limitations of the interconnector alone, i.e. considered as 
a power-transmitting link between two infinite buses. In an 
actual transmission system, however, the interconnector cannot 
be regarded in isolation but must be considered in association 
with the synchronous machines between which it serves as an 
electrical power-transmitting link. That is to say, the size and 
characteristics of the machines as well as the nature of the 
loads supplied by them must be taken into account in deter¬ 
mining the maximum amount of power which can be trans¬ 
mitted by the interconnector under stable operating conditions. 

This question of system stability is, in fact, of vital impor¬ 
tance even in the case of power systems or generating stations 
interconnected by tie lines which, having regard to their econ¬ 
omic purpose, would otherwise be electrically weak. In the 
past such interconnectors were designed to ensure a maximum 
operating economy for the systems or stations concerned and, 
as under normal conditions of power interchange the amount 
of power to be transferred was never very large, they were as 
often as not of a relatively light character. As the result, the 
limit of stable operation could be, and sometimes was, exceeded 
when load fluctuations occurred on the interconnected systems. 
In fact, instances are known of steady-state instability having 
arisen with interconnectors of this type. It has been realized 
in recent years, however, that in order to prevent loss of 

7—(T.x8o) 83 
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synchronism during unforeseen load fluctuations or system dis¬ 
turbances an interconnector must be designed to permit the 
transfer of adequate synchronizing power. In other words, it 
is the stability of the transmission system, of which the inter¬ 
connector forms the principal part, rather than the economics 
of the interconnection, which will constitute the basis for design 
in the majority of cases. 

Synohtoniziiig Power. Mention has already been made of 
the faqt that power transmission by means of alternating 
currgmi can take place in one or other of two fundamental ways. 
The almost universal way is that based on synchronous opera¬ 
tion, in which the machines at the two ends of the transmission 
system run at fixed speeds corresponding to a definite system 
frequency and independently of the power interchanged 
between them. The synchronous tie, whether embodied in an 
underground cable or overhead line, may suddenly break 
asunder if called upon to carry an excessive amount of power. 

Asynchronous operation, on the other hand, is obtained 
when neither or only one end of the transmission system has 
synchronous machines connected to it. Here the speed relation 
between the machines at the two ends of the interconnector is 
no longer fixed but depends upon the power transmitted. The 
asynchronous tie between generator and load is inherently 
flexible, and it is capable of transmitting power to an extent 
limited solely by the capacity of the machines. This inestimable 
advantage of asynchronous power transmission systems is a 
noticeable counterweight to the technical disadvantages of 
induction generators, and explains why consideration has 
recently been given to the possibility of employing such a 
system for long-distance power transmission.(1) 

Although the property of electrical rigidity is inherent in and 
fundamental to the operation of present-day power systems, a 
quantitative, and even a qualitative analysis of synchronism— 
as this vital property is termed—often eludes the grasp of the 
power system engineer, who inclines to the view that this 
question is the concern of the machine designer. And so it is, 
up to a point. Beyond that point, however, the essentials .of, 
synchronous operation become bound up with the phenomenon 
of synchronizing power, and it is this particular kind of power 
with which the system engineer is primarily concerned. For it 
is upon the ability of his power system interconnectors to 
transmit this power under all possible conditions of operation, 
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both normal and abnormal, that the commercial utility of that 
system ultimately depends. 

To appreciate the true significance of synchronizing power it 
is necessary to bear in mind that the concept of a perfectly 
rigid electrical tie implicit in the synchronous interconnection of 
machines, generating stations, or power systems as described 
above is not quite accurate. For synchronism is strictly main¬ 
tained only in the narrow sense that there is no continuous slij3 
between the rotating magnetic field due to the excitation 
of the rotor, and the revolving magnetic field set up by the 
polyphase currents flowing in the stator windings of a syn¬ 
chronous machine. Although these fields are in synchronism, 
the link between them is not absolutely rigid, but elastic; and 
it is the elasticity of this invisible link which is the basis of 
synchronous operation per se. The torque exerted by or on the 
rotor shaft of a synchronous machine depends directly upon 
the amount of stretch of this elastic link. The one is a measure 
of the other. In fact, the existence of such a torque is the 
physical manifestation of the forces brought into play by the 
mutual displacement of these two synchronous magnetic fields. 

The field due to the rotor excitation is set up in a direction 
along the rotor-pole axis. The corresponding field flux then 
produces a voltage at right angles to this axis* which is, in 
effect, the no-load e.m.f. or excitation voltage of the machine. 
The field set up by the stator current, however, and the arma¬ 
ture flux to which it gives rise, will have a direction depending 
on the machine load. For the direction as well as the magnitude 
of this field depends partly upon the phase displacement 
between the stator current and the voltage to which it is due, 
and which appears at the machine terminals; and partly upon 
the further phase displacement between this terminal voltage 
and the induced e.m.f. or air-gap voltage to which it corresponds. 
It is this latter voltage which is generated by the resultant 
field of the machine, i.e. the vector difference of the rotor and 
stator fields.(2) 

In a synchronous machine under load conditions, then, the 
reaction of the stator field upon the rotor field—known as 
armature reaction—causes the rotor-pole axis to be displaced 
from its no-load position by an angular amount depending on 
the magnitude and power factor of the load current. This angle 
is termed the torque angle and is represented in the vector 

* I.e. when employing the usual vector-diagram convention. 
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diagram (Fig. 32) by the angle A between the excitation 
voltage E and the air-gap voltage E'. The voltage drop sub¬ 
tended by this angle is always at right angles to the load 
current(3) and is consequently regarded as being due to a 
fictitious reactance known as the armature-reaction reactance 
Xa of the machine. Also, as mentioned above, a further 
angular displacement arises between the air-gap voltage 
E' and the terminal voltage F, this angle in turn being 
subtended by the aggregate voltage drop in the armature 

resistance R and leakage reactance X0. The overall displace¬ 
ment angle 0 between the excitation and terminal voltages— 
termed the load angle of the machine—is then subtended by 
the impedance drop IZ, where Z is the synchronous impedance 
defined by— 

z = Vr2 + x2 = Vr2 + (x0 + xa)2. 
The reactance X = (X0 + Xa) is known as the synchronous 
reactance. 

Referring to Fig. 32, it is seen that the electrical equivalent 
of the power at the shaft of the machine is 

Pg = El cos (0 ± <f>) = / (F cos <f) + IR) 

= VI cos t +PR 

= Terminal output + load loss 
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in the case of a generator, and 

PM ~EI cos (0 </>) = / (V cos $ — IR) 

= VI cos <f> — I2R 

= Terminal input — load loss 

in the case of a motor. By considering the projections of the 
several voltages of Fig. 32 on an axis making the angle 
p — tan"1 (X/R) with the terminal voltage V one finds,(4) after 
some transformation, for the electrical output of the generator 

E2 EV 
P0 = -g cos p — ^ cos (6 + p) 

E2 
= sm a + 

EV 
sin (0 — a) 

= P0o + Pm sin (0 — a) . . . . (91) 

and for the electrical input to the motor 

EV E2 
PM — ~yr cos (p — 0) — y cos p 

EV E2 
= ^ sin (0 + a) — -g sin o’ 

= Pm sin {0 + a) — PM0 . . . . (92) 

where a = (7t/2— p) = tan*1 (R/X). If the armature resistance 
is neglected, so that a = 0, the above two equations reduce to 

P„ = 
EV 

sin 6 = Pm sin 0 . (93) 

The analysis above refers to machines with non-salient-pole 
rotors, and assumes the synchronous rejictance to be constant. 

It will be observed that equations (91) and (92) are of the same 
form as the general network power equations (37) and (38) and, 
in fact, may be derived from them directly by considering the 
equivalent network of a synchronous machine, in which 
A = D=1,B=Z = Z/_p = (R + jX), and C = 0*; while 
equation (93) is but a special case of equation (42) which 
indicated that, if all resistance be neglected, the power trans¬ 
ferred between any two points on an a.c. system is a simple 
function of the difference in phase angle of the voltages at 
those two points. 

* See page 10. 
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Now let us consider a synchronous machine connected to an 
infinite bus, i.e. to an ideal machine of zero impedance and 
infinite inertia, so that the terminal voltage V in Fig. 32 is 
rigidly fixed in magnitude and in phase. The interchange of 
electrical power between the machine and the infinite bus 
may then be followed with reference to Fig. 33, in which Ix is 
the initial load current and Ex the corresponding excitation 
voltage. The vector Ex may also be regarded as indicating the 
direction of the rotor-pole axis, when the vector V will similarly 
coincide with the corresponding axis of the ideal machine 
representing the infinite bus.* Suppose now the shaft power 
be increased slightly. The increment of torque momentarily 

Fig. 33. Synchronous Machine on Infinite Bus 

destroys the synchronism between the machine and the 
infinite bus, and will accelerate the rotor if the machine is a 
generator, but will retard it in the case of a motor. As a result, 
the rotor-pole axis will come to occupy a new position, for which 
the corresponding excitation voltage vector is E2. This change 
in position is accompanied by a change in the impedance drop 
between E and F, indicated by the difference vector 6E in 
Fig. 33. This latter change is in turn accompanied by a change 
in load current indicated by the vector 81, lagging behind 8E 
by the impedance angle p. As the machine impedance is pre¬ 
dominantly reactive, and thus p ~ 90°, the current increment 
81 is very nearly either in phase or in anti-phase with E1 and 
E2) so that the" change in electrical power is 8P = ± E . 8L In 
the case of a generator the power increment 8P is positive, i.e. 

* Actually the motor-pole axes lie 90° ahead of the voltages E1 and V. 
It is their relative position, however, rather than their absolute positions 
with which we are concerned in stability studies, so that this angular difference 
is of no moment. 
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generated, and slows up the machine, pulling it back into 
synchronism with the infinite bus. In the case of a motor the 
power increment is negative, i.e. supplied, and speeds up the 
machine, urging it forward into synchronism again. In both 
cases synchronism is restored when the electrical power cor¬ 
responding to the new load current I2 (i.e. E2I2 cos \p2) balances 
the increased power at the shaft of the machine. 

It is clear from the foregoing considerations that the incre¬ 
ment 6P is essentially one of synchronizing power, and that the 
development of this power is entirely dependent on the fact 
that the synchronous impedance of the machine is preponder- 
atingly reactive. In other words, the interchange of power 
between synchronous machines takes place by virtue of a process 
tending normally to keep the machines in synchronism and depend¬ 
ing for its action upon the existence of reactance between them. 
Furthermore, the concept of synchronizing power is intimately 
bound up with the angle separating the excitation voltages of 
the machines or, what amounts to the same thing, the angle 
between the machine rotors, for they are actually the physical 
elements of the power-transmission system between which 
synchronism is maintained. In fact, the synchronizing power 
of a machine may be defined as that portion of its internal 
electrical power which varies with the load angle. Referring to 
equations (91) and (92), it is seen that in the case of a generator 
the synchronizing power is Pm sin (6 — o), while in the case of a 
motor it is Pm sin (0 -f or). Also, the invariable element of the 
electrical power is seen to be 

E2 . E2 R 
Z sm a — Z z ~ P = Isa2P • (94) 

that is, the power lost in the machine due to the short-circuit 
current obtained with the same field excitation as that giving 
the excitation voltage E on open circuit.* 

The Power/Angle Diagram. Equations (91) and (92) at once 
lead to the so-called powerjangle diagram of a synchronous 
machine, expressing the relation between its internal electrical 
power, i.e. the electrical equivalent of the mechanical power 
exerted at the shaft of the machine rotor, and the load angle 0. 
The diagrams for both generator and motor are shown in 

* The synchronous impedance of a machine is defined as the ratio of open- 
circuit terminal voltage to short-circuit current, for the same value of field 
excitation. 
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Fig. 34, and it is seen that actually they are displaced sinusoids, 
the axes of symmetry being defined by P = Pao and P = — PM0 
respectively. The significance of the power/angle diagram as a 
power characteristic is that it provides a graphical illustration 
of the all-important phenomenon of synchronism. Consider, for 
example, the upper curve of Fig. 34, relating to a synchronous 
generator connected to an infinite bus. Assuming the mechan¬ 
ical power exerted at the rotor shaft to be such that the 
corresponding electrical power developed is, say, Pal, then the 

P 

Fig. 34. Power/Angle Diagrams of a Synchronous 

Generator and Motor 

load angle will be 0X under equilibrium or steady-state con¬ 
ditions. Suppose now the prime mover gradually supplies a 
small increase in shaft power. Under the influence of the 
increased mechanical torque the machine rotor will forge 
ahead out of synchronism with the infinite bus, and conse¬ 
quently (see Fig. 32) the excitation voltage E will gain on the 
isynchronous busbar voltage V. As the result, the load angle 
will increase by an amount <50, say, from 0X to 02. The 
power/angle diagram of Fig. 34 indicates that this increase in 
load angle is accompanied by an increase in electrical power 
developed, the increment being dP = (Pa2 — P01). This increase 
in electrical power delivered to the infinite bus in turn causes 
the machine to slow up and regain synchronism at a new 
load angle 02, for which the electrical power Pq2 is equal to the 
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increased shaft power. Conversely, if the initial load angle had 
been d2, then a gradual reduction in mechanical power supplied 
by the prime mover would cause the generator to slow up 
slightly, allowing the busbar voltage V to overtake the 
machine excitation voltage E and so reduce the load angle 
from 02 to 0V In this case the negative increment — 66 produces 
a drop in synchronizing power, and thus in the electrical power 
developed by the machine, so that equilibrium is once more 
established and synchronism regained at a smaller load angle 
Oj, where the new value of electrical power balances the reduced 
shaft power. 

Consider, now, the lower curve of Pig. 34, relating to a 
synchronous motor connected to an infinite bus. Assuming, as 
before, equilibrium to be initially established at the same load 
angle 6V for which the electrical power developed is PMV a 
value in this case beyond the point of maximum power: suppose 
the shaft load of the motor to increase by a small amount. 
Under the influence of the increased mechanical torque 
the machine rotor will drop back out of synchronism with 
the infinite bus, and consequently (see Fig. 32) the excita¬ 
tion voltage E will lose on the isynchronous busbar voltage 
F. The load angle will again increase by an amount 66, 

say, from 6X to 02. In this case, however, the power/angle 
diagram indicates that the increase in load angle is accom¬ 
panied by a drop in synchronizing power and thus a decrease 
in electrical power developed, the increment being — 6P 
= (PM2 — PMi) numerically. This reduction in electrical power 
implies a still greater discrepancy between the electrical and 
mechanical torques applied to the rotor shaft, so that the rotor 
continues to drop back out of synchronism. It will be seen 
from Pig. 34 that the process is cumulative and that the 
machine inevitably falls out of synchronism altogether. In 
fact, the initial assumption of equilibrium at the load angle 6X 
is in this case false for the conditions illustrated by the lower 
characteristic of Fig. 34. This particular angle does not repre¬ 
sent a stable operating condition. 

We therefore arrive at the conclusion that the condition for 
steady-state stability—the maintenance of synchronism during 
gradual load changes, that is—is simply that the increment of 
synchronizing power 6P, and the incremental change 66 to 
which it is due, should both have the same algebraic sign. 
In other words, the synchronizing power coefficient dP/dd must be 
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positive. Referring to the basic power equations (91) and (92), 
it is seen that in the case of a generator this coefficient has the 
value Pm cos (0 — a) = Pm sin (0 + p), which is positive for 
0 < 0 < (tt — p); while for a motor its value is Pm cos (0 + <*) 
—Pm sin (p — 0), which is positive for 0 < 0 < p. 

The steady-state stability limit is then reached when dP/dd = 0, 
which occurs when 0 = (77 — p) and 0 = p for generator and 
motor respectively. Reference to Fig. 34 shows that this limit 
is nothing other than the maximum power as given by the 
power/angle diagram.* The limiting power at which a machine 
will still remain in synchronism is therefore determined by the 
synchronous impedance angle p = tan-1 (X/E). 
v Transmission stability. Having discussed the behaviour of 
synchronous machines from the aspect of steady-state stability, 
it is necessary to examine, finally, the general problem of trans¬ 
mission stability under normal, steady-state conditions of 
system operation. In the case of present-day a.c. power systems 
the fundamental power limit is that at which one or more 
synchronous machines, or machine groups, fall out of step when 
the power interchanged is increased so slowly that any transient 
phenomena may be neglected. It is this fundamental power 
limit which is termed the steady-state stability limit, and, in a 
complex power system, it will be different for each of the several 
synchronous ties that link up the various machine groups 
throughout the system. The determination of these several 
power limits is thus intimately bound up with the resolution 
of the power network into a number of interconnected trans¬ 
mission systems, each comprising two groups of synchronous 
machines (together with their connected loads) electrically 
coupled by an interconnector. 

On reducing each such group to an “ equivalent ” machine, 
i.e. one whose electrical and mechanical characteristics are 
sensibly the same as those of the machine group considered as 
a whole, and on replacing each interconnector (including any 
terminal transformers) by an equivalent electrical network, 
the problem resolves itself into the determination of the 

* It is evident that this limit is identical with the power limit as given by 
the power-circle diagrams of Figs. 13 and 15. For the power/angle diagram 
is based on the same equations, and is thus merely a specialized form of the 
circle diagram. The counterpart to the power/angle diagram is then the 
reactive power/angle diagram, but this is of no great practical interest. It is 
worth noting, however, that power/angle diagrams can be derived from 
power-circle diagrams merely by plotting corresponding values of active 
power P and transmission or load angle 0. 
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steady-state stability limits of a number of simple two-machine 
systems. 

The existence of a power limit in the case of a synchronous 
machine connected to an infinite bus, established in the 
preceding section, is reflected in the behaviour of an elementary 
two-machine system such as that of Fig. 35 (a), in which G 
represents a synchronous generator supplying power to a 
synchronous motor M over an interconnector. Es and ER are 
the sending- and receiving-end voltages of the interconnector, 

©-441 f!^ ® 
i-«--Interconnector- 

(a) 

Network Network 

(b) 

Network 

Equivalent Network 

(c> 
Fig. 35. The General Two-machine System 

and E0 and EM the excitation voltages of the machines, i.e. 
the voltages behind their synchronous impedances. 

Neglecting for the moment all shunt admittances, then at no 
load E0i Es, Er, and EM are all in phase. On the application of 
a load to the shaft of the synchronous motor the excitation 
voltage Em drops back in phase with respect to the terminal 
Er by a certain angle 0M. The vector difference between these 
two voltages causes a load current to flow in the impedance of 
the machine, and the latter thus draws electrical power from 
the generator equal to the product of En and the component of 
the load current in phase with it. This load current, in travers¬ 
ing the impedance of the interconnector, requires a further 
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angular displacement 07 between the terminal voltages Eg and 
Eb. Moreover, before the generator can supply the electrical 
power required, its mechanical input must be increased. This 
increase is manifested by the rotor forging ahead of its no-load 
position, so that the excitation voltage E0 is made to lead the 
terminal voltage Es by an angle 0O, which continues to increase 
until the vector difference between Ea and Es becomes suffi¬ 
cient to drive the load current through the synchronous 
impedance of the machine. Under load conditions, then, the 
excitation voltages of the two synchronous machines are dis¬ 
placed by an aggregate angle 0 = (60 + 0Z + 0M). The inter¬ 
change of power between the machines, that is to say, the 
transmission of power over the interconnector, accordingly 
takes place by virtue of an angular displacement between the 
excitation voltages Eg and EM or, more fundamentally, between 
the machine rotors which are the physical elements that are, 
in actuality, synchronously tied. 

The interchange of power between generator and motor may 
be followed with reference to the system vector diagram of Fig. 
36, in which Ix is the initial load current and Euly EMl are the 
initial machine excitation voltages, Qx being the corresponding 
system angle. An increase in the motor load will cause the 
motor excitation voltage to assume a new position EM2, calling 
for an increment in current equal to dEMIZM and lagging 
behind the voltage difference 6EM by the impedance angle pM. 
This current is approximately in anti-phase with EM, and thus 
makes the motor draw power from the generator over the 
interconnector. The corresponding increment in generated 
power can only be obtained by the. prime mover accelerating 
the generator rotor through a small angle, so that its excitation 
voltage changes from Eol to Eo2. The voltage difference 6E0 
produces an increment in current which is approximately in 
phase with E0, being equal to 6Ea/Za and lagging by the 
impedance angle pQ. Hence the generator will supply the power 
increment required by the motor. The aggregate increment in 
current dl causes the load current to reach a new value I2 such 
that the transfer impedance drop I2Z is equal to the difference 
voltage between Eu2 and EM2. The new load angle of the system 
is then 02. 

Here, also, the interchange of power is bound up with the 
concepts of synchronizing power and steady-state stability. 
The analysis in this case proceeds from a consideration of the 
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basic network equations of the transmission system. Fig. 35 (6) 
shows the three networks, connected in series, representing the 
three components of the two-machine system. The network 
constants of the generator and motor are given by equations 
(18) and (19) respectively, while those of the interconnector 
are given by equations (23) or (24). As explained in Chapter I, 

these three networks may be replaced by a single equivalent 
network, indicated in Fig. 35 (c), having constants A, B, C, 
and D which are functions of the twelve subsidiary network 
constants. For example, the transfer impedance of the two- 
machine system is— 

B = A0 (AyBj/ + ByD^) + B0 (CJJ^ + D/D^) 

as given by the second of the four network equations (22). 
The fundamental power equations of the system of Fig. 35 

are then— 

P0 = sin a0 + —~ sin (0 — a). . (95) 

P* = f^sina*-^sin(0 + a) . 
"If " 

and . (96) 
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where PQ is the electrical power output of the generator, and 
is positive; while PM is the electrical input to the motor and is 
negative.* Here ZG\po = B/D, the generator driving-point 
impedance, and ZM \pm = B/A, the motor driving-point im¬ 
pedance ; while Z \p = B, the transfer impedance between the 
machine excitation voltages Ea and EM. Also, the angles cr0, 
Ox, and o as usual denote the complements of the several 
impedance angles pG) pMf and p. Equations (95) and (96) may 
be written in the more convenient form— 

P0 = Poo + Pm sin (0 — a) . . . (99) 

and PM = PM0 — Pm sin (0 + a) . . . (100) 

where PG0 and PM0 are the driving-point powers of the generator 
and motor respectively, and Pm is the maximum transfer power. 
In the special case where all series resistance and shunt admit¬ 
tance is neglected, so that only reactance is considered as 
being in circuit between the machine voltages, both the above 
equations reduce to the simple form— 

Pn = - P« 
EaEu 

- xQ + xI + XA 

= Pm sin 0 

sin 0 

. (101) 

as then oa — oM = a — 0, and Za = X0, ZM = XM, and ZI = Xt. 
It will be observed that equations (99) and (100) again 

represent displaced sinusoids in a diagram where electrical 
power is plotted against the angle 6. The power/angle diagram 
of the two-machine system is accordingly as shown in Fig. 37. 
The axes of symmetry are defined by the driving-point powers 

* This is the usual convention for the algebraic sign of the electrical power 
of a synchronous machine. In the general case, where two generators supply¬ 
ing their own load networks are interconnected, their power outputs may be 
expressed in the form— 

Pi = p- sin <r„ + sin (0„ - d„) . . (97) 
^11 ^ia 

and P2 — ~- sin g22 -j- sin (021— o.n) . . (98a) 
"!2 ^21 

= p- sin sin (0„ + <r„) . . (986) 
"M ^12 

where Zn |(«/2—on) and Z%% [W2-g««) are the driving-point impedances, and Ex 
and E2 the excitation voltages of the two machines. Z1% |(W2-gn) = Z%1 |(^/2~a,i 
is the transfer impedance between the machines and 018 is the angle by 
which Ex is ahead of E% (so that 0tl = — 0l8), on the assumption that machine 1 
is transmitting power to machine 2. 
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P — P00 and P = PM0 (the invariable parts of the electrical 
powers of the two machines) while the symmetrical sinusoid 
representing the synchronizing power of the machines (that part 
of the electrical power which varies with the angle 6) is defined 
by P = Pm sin (0 — a) for the generator and P = Pm sin (0 + a) 
for the motor.* The average synchronizing power transmitted 

Fig. 37. Power/Angle Diagram of the Two-machine System 

by the interconnector is thus numerically equal to- 

P = Hpm sin (0 — a) + Pm sin (6 + o)] 

Prn cos a sin 6 = 

EaEM sin 6 

X (l + R2/X2) 

Z 
— cos a sin 6 

(102) 

where the transfer impedance is expressed in the form 
Z = (R + jX). The above result is basically the same as 

* The motor power/angle diagram has actually been drawn in the opposite 
sense to the generator diagram, so that for the motor P = Pm sin [(— 0) — a] 
in Fig. 37. 
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equation (40), expressing the average electrical power trans¬ 
mitted by an interconnector in terms of the sending- and 
receiving-end voltages. 

On applying the stability criterion developed in the preceding 
section, it will be observed that there are two limiting con¬ 
ditions for which the transmission system can become unstable 
and synchronism be lost, corresponding to maximum power at 
the motor and generator respectively. The lower of these two 
limits of steady-state stability is given by dPM/dd =.0 when 
0 = p; the upper limit is defined by dPJdd = 0, and is reached 
when 0 = (7t — p). Also, in the particular case where only 
system reactance is considered, and hence equation (101) 
applies, these two limits coincide as both are reached when 
0 = 7t/2. In practice, the steady-state stability limit of the system 
is reached when the electrical 'power input to the motor attains its 
maximum value, that is, when the angle between the machine 
excitation voltages becomes equal to the impedance angle of 
the system: because under practical conditions of system 
operation the power transmitted must correspond to the load 
at the motor end, for it is only at that end that variations in 
system load can occur. In other words, the power limit of the 
system is defined by the maximum load which the motor can 
carry without being pulled out of synchronism. 

Under such conditions of system operation the upper limit 
of stability, corresponding to maximum power developed by 
the generator, is of theoretical interest only. For, although in 
the region p < 6 < (tt — p) the synchronizing power coefficient 
dP/dd is positive for the generator, it is negative for the motor 
(see Fig. 37). This region is thus one in which the motor power 
is decreasing with 0, but the generator power is still increasing. 
It is therefore essentially one of transmission instability under 
normal operating conditions in which the increase in angle 
takes place by virtue of a gradually increasing load on the 
motor. Assuming, however, an operating condition in which 
the motor were prevented from falling out of synchronism at 
0 = p, then the system would eventually break down at 
0 = (tt — p)f when the generator would be driven out of 
synchronism by its prime mover. 

The Dynamic Stability Criterion. The criterion of stability 
established earlier in this chapter inevitably implies a dynamic 
concept of transmission stability. For, although the general 
problem of steady-state stability is concerned with equilibrium 
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conditions, the successive steady states of system operation 
are necessarily reached as the result of equilibrating processes 
which, in turn, arise through momentary differences between 
the mechanical power exerted at the shaft of a machine and 
the electrical power developed by it. No matter how small these 
differences are, or how slowly they are adjusted, the fact 
remains that the electrical transmission of varying amounts of 
power can only take place by reason of their finite existence. 
In other words, machine inertia is a factor which, strictly 
speaking, enters into the problem of steady-state stability as 
well as that of transient stability. But whereas in the latter 
case it plays an important, if not the leading part, in the former 
case its role is a minor one. 

To appreciate the significance of machine inertia as a deter¬ 
mining factor in problems of transmission stability it is neces¬ 
sary to consider the motion of a body rotating under the 
influence of differentially applied torques. In the first place, 
the fundamental equation of motion of such a body is— 

. , . . net accelerating torque 
Angular acceleration =--—7:-:——7- 

0 moment of inertia 

d20 _ AT 

dt2 ~ J 
. (103) 

This equation may be put in the alternative form— 

angular velocity x net accelerating power 
Angular acceleration= 

i.e. 
d2Q 

dt2 

2 x stored kinetic energy 

co x (co . AT) co . AP 

2 X (\Jco2) 2 W 
(104) 

In the case of an electrical machine, if 6 is expressed in electrical 
radians, then w — /, so that equation (104) becomes— 

dt2 W 
. (105) 

where / is the electrical frequency, W is the kinetic energy 
stored in the rotor of the machine at synchronous speed, and 
AP is the power differential acting in the direction of rotation. 
Hence— 

W d20 
— AP = (mechanical power) — (electrical power) (106) 

8—(T.180) 
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Referring to equations (99) and (100), and denoting the 
mechanical powers exerted on the machine rotors by P0M and 
PMMi and the corresponding electrical powers developed in the 
air-gap by PQE and PMS) then under steady-state conditions 

Pom — Pas = P0o + Pm sin (6— a) \ 

Pum = Pms = Pmo — Pm sin (d + a)j 

Suppose now that, as the result of some change in circuit 
conditions, the steady-state angle 0 between the excitation 
voltages E0 and EM increases by the small amount A. Under 
these circumstances the electrical powers developed by the 
machines change to the new values— 

P'gb — Pqo + Pm sin (0 + A — cr) 1 

P'me = Pm — Pm sin (0 + A + or)/ 

The steady-state balance between electrical and mechanical 
power is thereby destroyed, and the machine rotors in con¬ 
sequence experience the power differentials— 

APu = P0M ~ P'oe = Pm [sin (0 — a) — sin (0 + A — a)] 

= Pm [sin (0 — a) . (1 — cos A) — cos (0 — or) . sin A] 

= — Pm cos (0 — a) . A 

APM = PMM — P'me = Pm [sin (0 + A + a) — sin (0 + or)] 

= Pm [cos (0 + a) . sin A — sin (0 + a) . (1 — cos A)] 

= Pm cos (0 + or) . A 

since for small angles cos A = 1 and sin A = tan A = A. 
Moreover, if da and 0M are the angular positions of the excita¬ 

tion voltages with reference to some voltage vector rotating at 
synchronous speed, then the angle between the machine rotors 
is initially 0 = (0a — 0^), but subsequently becomes (0 — A) 
= (0a — Aff) — (0M — Am), where A0 and A^ are the absolute 
changes in angular position of Ea and EM. The relative change 
in angle is thus A = (Ae — A*). The relative acceleration of 
the machine rotors is then— 

d2 A d? Aq /A P0 A PM\ 

dfi ~ dt* dt2 ~nJ\W0 WMJ 

as given by equation (106), where Wa and WM are their stored 
energies at synchronous speed. 
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Hence- 

d2A __ 
dt2 ~ 

cos (6 — a) cos (0 + a) 

WG + (0 + <7)] 
wM 

cos a --^[((T. + w;)0089 

+ ( — f-jsmSsiiKr] . A . (107) 

This equation is of the form d2/\/dt2 = — &A, which is the 
equation of simple harmonic motion provided the constant 
coefficient k is positive. The condition that the relative motion 
of the machine rotors be oscillatory, i.e. that any small change 
A in their relative position will bring into play forces tending to 
restore them to their initial relative position, is therefore that 
the expression in square brackets in equation (107) be positive, 
since the remaining factor 7rfPm is always positive. In other 
words, the criterion of steady-state stability is defined by 
the relation— 

i.e. 

or 

( “ -f ^ cos 0 cos a + ( 7b ) sin 0 sin a > 0 

W0+WM, 
> tan 0 tan a 

tenO<(^+^)t.n>, . (108) 

The steady-state stability limit of the transmission system is 
thus reached at a critical value of 6 defined by 

tan 0 — 
(W'+ WM\X 
\wa-wj R • 

. (109) 

where X and R are the reactance and resistance components 
respectively of the transfer impedance Z and p = tan-1 (X/R) is 
the impedance angle. 

Equation (108) expresses the so-called dynamic stability 
criterion established originally by Wagner and Evans,(5) and 
subsequently by Dahl(6) in a somewhat different manner. The 
resulting stability limit, defined by equation (109), is then the 
maximum power which can be interchanged between the two 
machines without loss of synchronism, when the angle between 
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the machine rotors is increased slowly. Equation (109) leads 
to the following conclusions regarding the critical angle for 
stability:— 

1. If the inertia of the generator is very large compared 
to that of the motor, so that WM is negligible in comparison 
with WGi then 0 = p. 

2. If the inertia of the motor is very large compared to that 
of the generator, so that Wa is negligible in comparison with 
WM) then 0 = (tt— p). 

3. If the machine inertias are equal, so that W0 — WM, 
then 0 = 7t/2. 

4. If WQ > WM, then p <0 < 77/2. 
5. If Wa < WM, then 77/2 <6 < (n— p). 
6. If the transfer impedance of the system has negligible 

resistance, so that E = 0, then 0 — 77/2 and is independent of 
the machine inertias. 

Condition 1 clearly corresponds to the case of a synchronous 
motor connected to an infinite bus, where synchronism is lost 
when the pull-out angle, defined by dP/dd — 0 in conjunction 
with equation (92), is reached. Similarly, condition 2 repre¬ 
sents the converse case of a generator connected to an infinite 
bus, where the system breaks down due to the machine being 
driven out of synchronism as soon as the load angle attains 
the critical value defined by dP/dd =■= 0 in conjunction with 
equation (91). Condition 6 in turn corresponds to the special 
case of a transmission system whose power/angle equation is 
given by equation (93), for which dP/dd = 0 gives 6 = 77/2 as 
the limiting angle consistent with transmission stability. The 
intermediate conditions, for which the critical angle lies between 
p and (77 — p), are to be interpreted as follows:— 

The relative acceleration of the machines, that is to say, the 
rate of change of the relative speed of generator and motor, is 
the resultant of their absolute accelerations; in other words, 
of the rate of change of their individual speeds from those 
corresponding to the system frequency. The individual 
accelerations d2dQ/dt2 and d26M/dt2 depend on the machine 
inertias as well as upon the power differentials tending to 
accelerate the machine rotors. For values of 0 < p these 
accelerations are of opposite sign, and the relative acceleration 
of the machines is negative. Or, to put the matter in another 
way, up to this point any increase in 6 produces acceleration 
of the motor and retardation of the generator, both effects 
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acting to prevent any further increase in the angle 0. For 
values of 0 lying between p and (tt — p) the individual accelera¬ 
tions d2B0/dt2 and d20M/dt2 are both negative, that is to say, 
in this region any increase in 0 produces retardation of the 
motor as well as of the generator. Provided the resultant rate 
of change of the individual machine speeds is such as to produce 
a net acceleration of the motor relative to the generator, the 
system will remain stable. It is clear that this resultant 
acceleration depends on the relative inertias of generator and 
motor, and a little consideration will show that it is possible 
for stability to be retained up to a value of 0 = (tt — p) so 
long as the generator retards more rapidly than the motor, pro¬ 
vided the system as a whole can drop somewhat below normal 
synchronous speed. Finally, for values of 0 > (tt — p) the 
absolute accelerations of the machines again become of opposite 
sign, but their relative acceleration is now positive. Hence any 
increase in 0 beyond this point produces acceleration of the 
generator together with retardation of the motor, so that the 
angle 0 will continue to increase and synchronism will be lost. 

In considering the possibility of stable operation with values 
of 0 beyond p, the pull-out angle of the motor, it must be borne 
in mind that such operation can only arise under circumstances 
in which the increase in angular displacement is brought about 
by a change in the constants of the system under conditions of 
constant load, the inertias of the machines being such that 
stability can be regained. These circumstances, however, 
never arise under practical conditions of system operation, so 
that this regime of operation can be demonstrated only in the 
laboratory. In practice the increase in angular displacement 
arises, under steady-state conditions at least, from an incre¬ 
ment of load, so that the system cannot regain stability once 
the angular displacement has exceeded the pull-out angle of 
the motor, defined by 0 — p. 

The Calculation of Steady-state Stability. In determining the 
steady-state stability limit of a transmission system consisting 
of equivalent generator, interconnector, and equivalent motor, 
the given conditions of operation are generally those of constant 
voltage at the ends of the inter connector, i.e. at the terminals of 
the synchronous machines. The machine excitation voltages 
are then assumed to vary in accordance with the requirements 
of system angle and synchronous impedance drop, the adjust¬ 
ment being effected by either manual or automatic field 
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regulation. Under these circumstances the excitation voltages 
are functions of the system load, so that the power/angle 
equations (99) and (100) are not applicable directly to any 
simple construction or calculation of the appropriate power/ 
angle curves. 

Generally speaking, there are four main methods by which 
the steady-state power limit may be evaluated:— 

1. By actual construction of the system power/angle 
diagram, involving step-by-step calculation. 

2. By trigonometrical analysis of the voltage vector diagram. 
3. By the construction of the power-circle diagrams for the 

interconnector, the equivalent generator, and the equivalent 
motor networks. 

4. By means of a mechanical model which is an exact 
mechanical analogue of the electrical transmission system. 

Method 1 is instructive, but the actual computation of the 
power/angle diagram is laborious. Briefly, the procedure is as 
follows: For a chosen value of receiving-end power the cor¬ 
responding load current is calculated from the given sending- 
and receiving-end voltages and the several component impe¬ 
dances of the transmission system. By a converse method the 
machine excitation voltage values corresponding to this load 
current are then calculated. These values are then substituted 
in the power/angle equation, and the system angle found 
corresponding to the chosen power value. In this way a point 
on the power/angle characteristic is determined. By choosing 
a succession of receiving-end power values and repeating the 
above procedure, the complete power/angle characteristic can 
be plotted. The steady-state stability limit is then given by 
the maximum receiving-end power, corresponding to the peak 
of the power/angle characteristic. 

Method 2 is useful only in the special case where all series 
resistance as well as shunt admittance is neglected, that is to 
say, where the transmission system as a whole is considered as 
having reactance only. Method 3 is generally applicable and 
may in fact be used to plot the system power/angle diagram. 
The alternative semi-graphical methods due to Edith Clarke (7) 
and to Dwight,(8) and based on the system vector diagram, as 
well as the corresponding approximate method developed by 
Rissik,(9) are also generally applicable, but as these are not so 
convenient to use as method 3 they will not be considered here. 
Method 4 is of considerable interest in that it affords a striking 
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illustration of the close analogy which often obtains between 
mechanical and electrical engineering problems. These last 
three methods of evaluating the steady-state stability limit of a 
transmission system are considered in detail below. 

(a) Analytical Method based on the System Vector Diagram. 
In the particular case where the transmission system contains 
reactance only, the system vector diagram is as shown by Fig.38. 
Here Ea and EM are the machine excitation voltages, Es and ER 
the corresponding terminal voltages, and X0, Xn XM the 
several reactances acting between these voltages. da and dM 
are the machine load angles and is the transmission angle, 
subtended by the reactance drop IXj of the interconnector. 

ixx 

Fia. 38. Stability-limit Vector Diagram for a Transmission 
System containing Reactance Only 

The system angle is then the sum total of the machine load 
angles and the transmission angle, viz. 0 = (0a + 07 + and 
the steady-state stability limit is defined by 6 — 7t/2. The 
vector diagram of Fig. 38 has actually been drawn to illustrate 
this condition. In the majority of power-transmission systems 
the terminal voltages Es and Es (referred to the low-tension 
sides of the transformers at either end of the interconnector) 
will be more or less equal, so that the receiving end will operate 
at leading power factor and the sending end at lagging power 
factor. Consequently at some point on the interconnector the 
voltage will be in phase with the load current I. In Fig. 38 
this voltage is indicated as E. The interconnector reactances 
considered as acting between the voltage E and the terminal 
voltages Ea and ER are denoted by X1 and X2, where (Xx -f- X2) 

= X,- 
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Under these circumstances the power interchanged between 
the machines* is given by— 

P= y v Bind . . . .(110) Xe + X^X* 
EaE„ . „ E„Ea 
-j~ sin 0, = -jp 

. . erem . . 
sin 60 = ~jjjr ~ sm 6* 

The above alternative forms of equation (101) respectively 
express the power transmitted by the interconnector as given 
by equation (42), and the electrical powers of the generator 
and motor as given by equation (93). In the absence of all 
resistance there can be no power lost in transmission, so that 
from energy considerations alone all three powers must be 
equal. The identity between the four equations for the system 
power is but an expression of the following axiom, whose 
validity can be established from the trigonometry of the vector 
diagram:— 

In a transmission system containing reactance only, the power 
transmitted is given by the product of the voltages at any two points 
on the system divided by the intervening reactance and multiplied 
by the sine of the angle between the two voltages. 

The maximum power occurs when 6 — tt/2 and is equal to— 

P =-_qjfo- (in) 
m X0 + X1 + XM • • • 

Denoting by Xa = X0 + Xx the reactance acting between E0 
and E, and by Xb — X2 + XM the reactance acting between 
E and EM, Fig. 38 then gives— 

E2 = (IXa) x (IXb) = 72 . XaXb 

so that E/Ii= 'v/(ZaZh). 
Furthermore, Z02 - (Z2 + 72Za2) and Ef = (£2 + 72X&2) Furthermore, Z02 - (Z2 + 72Xa2) and Z*2 = (£2 + 72X&2) 
from which— 

E0 = iVX'Xt + X? = iVxa (Xa + xtj, 

and Eu = lVXaX„ + Xb2 = lVXb (Xa + Xh). 
Hence the maximum power as given by equation (111) becomes 

p _ Mjl _12 • <*. + Xb)V(XaXb) 
■1 m - xa + xb- xa + xb 

1* • V(XttXb) = I*. J = El 

Of, Equation (101). 
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which is a result only to be expected, since E and I are in phase. 
Again, Fig. 38 gives Ea2 = E2 + I2Xx2 and E/ = E2 + I2X22, 

from which— 

and 

cos <f>g = 

COS — 

E j XaXb 
Es~ X2 + XaXh 

E / XaXb 

Ea ” V ^22 + 

where </)s and <f>R are the sending- and receiving-end power- 
factor angles. Also cos2 </> + sin2 <f> — 1, so that 

X 
sin <j>„ = VC ~ cos2 <f>a) = +l xoX6) 

an(i *f*R = VC cos2 (f>B) ~ 2 | ~x ~X ) 

Finally, 0, = <f>a -f <f>R, so that— 

sin 0, = sin (<f>a -f- <f>R) = sin <f>a cos <j>R + cos <f>a sin <f>R 

xx V(Xaxb) + x2 V(Xax») 
~ vtW* + xax„) (Xa2 + xaxb)] 
_x,y(xaxb)_ 
- VW + xaxb). vw + xaxb) 

The power transmitted by the interconnector is consequently 

EsEa . EV(Xx* + XaXb) EV(X* + XaXb) 
x, ama'- V(X„xb) • V(Xaxb) 

1 x, V(xaxb) 
• Xj • V(^12 + xaxb). V(X2* + Xaxb) 

E2 

V(Xaxb) E*-E = EI 

which is the same result as equation (112), thus establishing 
the validity of the axiom on p. 106 for the special case in 
which 0 = w/2.* 

* The general validity of this axiom can be established in a similar manner, 
but this will not be gone into here. 
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The maximum power is found from equation (112) to be 

Pm — EI = E2 • £ 

El. x„x» 1 e,MjW 
- X2* + XttXb' V(XaXb) - X2* + xaxb 

_ El V[(X0 + XI (X2 + X J] 

- X2* + (X0 + X,) (X2 + XM) ■ ■ • ^ 

In the particular case where the transmission system operates 
with equal sending- and receiving-end voltages so that 
Es = Eh and thus Xx = X2 = the above equation 
becomes— 

t> EM*V[(X0 + iXi)(XM + iX,)] 
Pni = 

(Xa + IX,) (X, 
. (114) 

a well-known result already established by Nickle, Edith 
Clarke, and others.(10) Again, when the system operates with 
unity power factor at the receiving end, so that ER — E and 
thus Xz = 0, and X1 — XJ} equation (113) reduces to— 

P =-—- (115) 
m VIXm {X0 + X,)]. 

another well-known result.(11) 
As only the terminal voltages Es and ER and the system 

reactances X0) XI3 and XM are known, it is necessary to evalu¬ 
ate Xx and X2 in terms of these five constants. Denoting the 
terminal-voltage ratio ES/ER by r, then— 

* Es2 E2 + I2Xx* XaXh + Xx* 
r ~ E*~ E* + I2X2 ~ XaXb + X2 

from which, with (X, + X2) = X„ one obtains the relation— 

X, r2X/ + (r* -l).Xe {X, + Xu) 
X2- X2-{r2-\).XM (X1 + Xa) ‘ 

Assuming Xx > X2, one may write— 

X, = \X, + »\ 
Xt = \X,-z) 

where x = \ (X, — X2). After some transformation one finds— 

„ (Xg + *X,) (XM + *X,) + (£X,)* 

(5±i)* + X.-XJ, 

. (117) 
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Equation (113) then gives, finally, for the maximum power— 

p„ = !r‘~2x> £,‘ • (X. + m (X, + iX.) 

It is sometimes required to know also the angle between Ea 
and Er when this power limit is reached. It has already been 
demonstrated that— 

Pm = El = 
P>sPr 
Xi 

sin Oj. 

The required angle is thus given by— 

sin 0I = 
PmXj PmXj 

vEr 

= r>2r ■ y[? (x«+ s*') <x, + ixj 
_(i + i-x_,)] (ll9) 

(b) Semi-graphical Method based on System Power-circle 
Diagrams. The following method of determining the steady- 
state stability limit of a transmission system, due to Wagner 
and Evans,(12) furnishes an apt illustration of the value of 
power-circle diagrams as a means of attacking power trans¬ 
mission problems. As in the previous case, the method assumes 
Es and En to be known, as also the circuit constants of the 
transmission network as a whole. 

Referring to Fig. 39, the combined sending- and receiving-end 
power-circle diagram of the interconnector is first constructed 
as described in Chapter II. The centre of the receiving-end 
power circle is defined by— 

s.\v* = - (A,IB,)E/ = (A,E/IB,) |(« + q,-ft) 

and thus has the co-ordinates— 

A E 2 
SB cos y>s --- cos Q9, — a,) | 

A E 2 
SK sin y>s = + sin (/?, - a,)J 

• (120) 



no POWER SYSTEM INTERCONNECTION 

while the centre of the sending-end power circle is similarly 
defined by S8\fs = (]D,/B7) Es2 = (DjEg^Bj) |(3/- &), and 
thus has the co-ordinates— 

D E 2 \ 
8a cos xp„ = + ~~ cos (ft — ft) 

•O/ 

D E 2 
8t sin y>, --^-2- sin (ft — ft) 

. (121) 
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where Ay, B;, and D7 are the interconnector network constants 
as found from equations (23) or (24). The radii of the two power 
circles are both equal to EgEJBj. The combined circle diagram 
is shown by the full lines in Fig. 39. The zero-0, reference axis 
is in each case a line passing through the centre of the power 
circle (0B and Oa in the diagram) and making the angle 
with the power axis. 

For a given value of transmitted power (i.e. receiving-end 
power), the angle between Es and ER will be 0y and the operating 
points will be M and N on the receiving- and sending-end 
power circles respectively, as shown in Fig. 39. Considering 
the equivalent network of the “generator,” the point N must 
lie also on the receiving-end power circle for that network, as 
the sending end of the interconnector is at once the receiving 
end of the generator. Now, the centre of this receiving-end 
power circle (shown dotted in Fig. 39) is defined by— 

S, \vg = - (AJBJE* = (A0ES2/BG) [(* + ««-&) 

and thus has co-ordinates— 

AqE2 
SG cos y)0 = — —D— COS (pG — oca) 

A E 2 
SQ sin \pQ = + sin — aj 

no 
where A0 and B0 are network constants of the equivalent 
generator. The zero-60 axis is in this case a line passing through 
the power-circle centre (0o in Fig. 39) and making the angle 
fiG with the power axis. The load angle 0G of the equivalent 
generator, corresponding to the angle 0y between Ea and ER, 
is then the angle between this axis and the radius vector OaN. 

In the same way, considering the equivalent network of the 
“motor,” the operating point M on the receiving-end power 
circle of the interconnector must lie also on the sending-end 
power circle for the motor network. The centre of this power 
circle (shown dotted in Fig. 39) is in turn defined by— 

SM\VM = {VmIBm)E2 = (DMERyBM) 

and thus has co-ordinates— 

dme2 
SM cos yM = H--g— cos — djt) 

. DmEs2 
SM sin %pM = — —g— sin (pM — oM)J 

• (123) 
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where D* and B* are network constants of the equivalent 
motor. Here the zero-0M axis is a line passing through the 
power-circle centre (0M in Fig. 39) and making the angle ftM 
with the power axis. The load angle 0M of the equivalent motor 
is then the angle between this axis and the radius vector OmM. 

The system angle 6 corresponding to the given value of 
transmitted power is then simply— 

6 = 0o -f- Oj -f- 0M . . . (124) 

the individual angles being obtained directly from the diagram. 
By choosing a number of power values, a succession of operating 
points such as M and N are located in the diagram, and the 
corresponding values of 0U, 0n and 0M are then read off. A 
curve is then plotted showing the relation between transmitted 
power P and system angle 0. The steady-state power limit is 
then given by the value of P for which 0 — ftf where ft is the 
angle of the transfer impedance B of the transmission system 
as a whole, which may be found from the relation— 

B |£ = B = A^AJBjf + B.D*) + Ba(CiBM + D,DM) . (125) 

as given by equation (22). 
It will be observed that this method does not require a 

knowledge of E0 and EM. These excitation voltages can, how¬ 
ever, be obtained subsequently from the composite power-circle 
diagram. For, referring to Fig. 39, the radius of the generator 
power circle is OaN = E0EsIBa, from which— 

eo = ysx {0°N) ■ • • (126> 

Similarly, the radius of the motor power circle is 8mM == 
ErExIBx, from which— 

= Yr X (OmM) . . . (127) 

It is then possible to check the accuracy of the construction, for 
the transmitted power P, given by the abscissa of the operating 
point My is also the power input to the equivalent motor and 
thus has the value— 

P — jg cos (ft# dM) ~*g cos {0M -f- ftM) 

= cos + (OmM) . sin (dM + ftM— 7r/2) 

= (abscissa of centre 0M) 
+ (projection of radius OmM on power axis). 
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By inserting the appropriate values of the vector radius 0mM 
and the load angle 0M in the above expression, values of P 
should be obtained which check with those given by the 
abscissae of the several operating points such as M. 

Again, knowing Ea and EM, it is possible to construct the 
power angle diagram of the transmission system from the 
fundamental power equation (96) or (986). It will be found that 
the peak value of motor power is reached at the pull-out angle 
0 = ^ = p, the transfer impedance angle. 

Fig. 40. Mechanical Analogue of an Electrical 

Transmission System 

^c) Method based on the Use of a Mechanical Model. This 
interesting and instructive method makes use of a model which 
is, in effect, a mechanical transmission system that simulates 
very closely the action of a synchronous system of electric 
power transmission. The idea of a mechanical analogue is due 
to Griscom,(12) and the model illustrated diagrammatically in 
Fig. 40 is strictly analogous to the equivalent two-machine 
system represented by the vector diagram of Fig. 38. 

The mechanical model consists essentially of four arms, 
A, B, C, and D, pivoted independently on a common axis 0. 
Arms A and B have large hubs in which are pulley grooves, 
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these being spanned by a loop of cord which also passes round 
a small jockey pulley to which a variety of weights can be 
attached. The arms are linked by three springs at E, F, 0, 
and H. The spring ends at E and F are fixed while those at 
G and H are free to slide in radial slots. If the arm lengths OE 
and OF are adjusted in proportion to the motor air-gap 
voltages,* E0 and EM) then the spring extensions EG, GH, and 
HF will equal, to the same scale, the several reactance drops 
IXa, IXj, and IXM of Fig. 38. Similarly, the distances of the 
sliding pivots G and H from the axis 0 will represent the 
terminal voltages Es and ER. The spring tension acting between 
E and F is then equivalent to the load current /, while the 
torque exerted by either arm A or B, being equal to the 
product of the arm length and the component of spring tension 
perpendicular to the arm, thus represents the electrical power 
(P = El cos xp) at the air gap of the machine. 

If now the system be gradually loaded by adding weights W 
to the jockey pulley, all four arms will swing stably farther 
and farther apart, the relative separations depending on the 
strengths of the several springs, until the net restoring torque 
due to the spring tension (i.e. the synchronizing power of the 
system) begins to diminish with increasing angle 0 between 
arms A and B. A little consideration will show that this must 
occur when 6 — 90°. For, although the spring tension (load 
current) increases with increasing system angle up to 0 = 180°, 
the torque (electrical power) corresponding to the product of 
arm length and the component of spring tension at right angles 
to the arm increases up to 0 = 90° only, beyond which angle 
it commences to decrease again. In fact, if the load W is raised 
slightly above the value required to produce a displacement 
angle of 0 = 90° the system at once becomes unstable; the 
springs then suddenly go on stretching under the influence of 
this fixed load, and the whole system of levers falls out of 
balance. In other words, synchronism is lost. 

The power limit of such a mechanical system can be raised 
by employing stronger springs, corresponding to deceased 
reactances X0, Xlf and XM in the electrical system; and by 
increasing the lengths of the arms, corresponding to higher 

* I.e. the voltages behind the transient reactances of the machines, these 
being the constant elements in the majority of stability studies. In the case 
of steady-state stability as considered in the present chapter, OE and OF 
represent the excitation voltages, i.e. the voltages behind the synchronous 
reactances of the machines. 
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transmission voltages. An alternative way of increasing the 
power limit is to insert a rigid mechanical prop between 0 
and Hy corresponding in the electrical system to the provision 
of an intermediate synchronous condensor station on a long 
transmission line. Transient effects due to suddenly applied 
loads may be studied by adding increments of weight W 
suddenly, but without impact, while line faults may be simu¬ 
lated by deflecting the middle spring towards the axis O. 
Mechanical models of the type installed in Fig. 40 have, in 
fact, been successfully used to obtain quantitative as well 
as qualitative solutions to a number of power transmission 
problems.(13) 

Examples of System Stability Studies. The methods of 
determining the steady-state stability limit of a transmission 
system described above relate to relatively simple systems 
which can be represented by an equivalent generator, an 
interconnector, and an equivalent motor. In many cases it 
is not possible to reduce a given system to such a simple 
equivalent. In fact, it is more than likely that the transmission 
system will reduce instead to an interconnector linking two 
equivalent generators, each with its own load. In that case 
it is necessary to take into account the characteristics of these 
loads as well as of the machines themselves. To do so, however, 
would be exceeding the scope of the present work. Two 
approximate methods of dealing with such loads are, however, 
given in the examples at the end of Chapter V. 

Moreover, the assumption has been made that the machine 
reactances (i.e. X = Xa + X0 in Fig. 32) are circuit constants, 
like the interconnector reactance, and are thus independent 
of the system load. That is to say, synchronous reactance has 
been taken as the power-limiting factor in the case of the 
machines; and synchronous reactance takes no account of 
saturation. In actual fact, however, when considering the 
steady-state stability limit, the inevitable saturation of the 
machines produces a stiffening effect equivalent to the action 
of a machine reactance considerably lower in value than the true 
synchronous reactance. This reactance is usually referred to as 
the “ saturated synchronous reactance.” Various empirical 
methods have been proposed for adjusting the synchronous 
reactance to a value commensurate with the saturation of the 
machine under load.a4) Here, again, it is beyond the scope of 
the present volume to enlarge upon these methods. Suffice it to 

9—(T.x8o) 



116 POWER SYSTEM INTERCONNECTION 

say that the saturated value in practice varies roughly from 
60 to 80 per cent of the unsaturated value. 

Example 1. The interconnector considered in the three examples at the 
end of Chapter III serves to link a station containing a 60 000 kVA. 
generator with another station which may he regarded as being equivalent 
to two 26 000 kW. motors designed for full-load operation at 0*8 p.f. 
The generator has a synchronous reactance of 110 per cent; that of the 
motors is 90 per cent. Assuming 132 kV. to he maintained at the two 
ends of the interconnector (referred to the low-tension sides of the terminal 
transformers), determine the steady-state stability limit of the system. 
By how much would this limit he increased if all series resistance and 
shunt admittance were neglected 1 

Solution. Referring to p. 78, the network constants of the inter- 
connector are— 

A7 = Dj = 0-969 + j0-00923 = 0-969 |0d£ 

B7 = 38-83 + jl52-22 = 157-0 |75*7° ~~~" 

C7 = (4-24 + j'405-45) X 10"8 = 405-5 X 10-6 [89-4° 

As the interconnector is symmetrical about its mid point (indicated 
by the fact that A7 = D7), the auxiliary constants a and h evaluated 
on p. 79 apply to both sending- and receiving-end power circles. The 
co-ordinates of their respective centres are thus— 

Pso-jQ^o = (a-jb)E,2 - (1-576-j5-967) X 10~3 X 132* 

= 27-5-jl04-0 MVA. 

or S8 |vg = E82y/(a2 -f- b2) |tan_1(— b/a) 

= 107-51- 75-2° MVA. 

and - PKo + IQ*o = (- a + jb)EIt2 =(- 1-576 + j5-967) X 10~3 X 132a 

= - 27-5 -f j!04-0 MVA. 

or Sh |v>g = Eu2\/(a2 + 62) [tan-1 (6/- a) 

= 107-5 |104-8° MVA. 

The power-circle radius is in each case— 

cEsEh = 0-00637 X 132 X 132 = 114-5 MVA. 

Fig. 41 shows the power-circle diagram in which the receiving- and 
sending-end circle centres are Or and Os respectively. 

To locate the centres of the equivalent generator and motor power 
circles in the diagram it is first of all necessary to evaluate the appro¬ 
priate network constants. Assuming a saturated reactance value equal 
to 70 per cent of the synchronous reactance proper, the generator 
reactance is— 

Xo 
0-7 X 1-1 X 132* 

60 
223-6 ohms 

while the equivalent motor reactance is— 

0-7 X 90 X 132* 
2 x (26/0-8) 

176-66 ohms 
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As the machine networks in this case are simple reactances, we have— 

A# = Dtf — 1 *, Cq — 0; By = Rg + jXG — 0 -j- j223*0 

Ajf = = 1; Qm = 0; Bm = Rm + jXM = 0 + ^175*05 

The centre of the generator output circle 0G thus has co-ordinates— 

.E&2 . 1322 
- Pao + iQoo = 0 + } ~ = 0 + } 223^ = 0 + j77-9 MYAr. 

while the corresponding centre 03I has co-ordinates— 

,Ej? . 1322 
Pmq~ jQmq — 0 — i -j£~ = 0 — j pyg.gg = 0 — j99*2 MVAr. 

The zero-0 reference axes for the generator output and motor input 
power circles are thus the same, namely, the Q-axis of the diagram. 
In the case of the sending-end and receiving-end power circles they are 
the axes passing through the centres 0s and Ou and inclined to the 
P-axis at the transfer impedance angle fij = 75*2°, as shown in Fig. 41. 

By choosing successive values of 07 at 5° intervals a series of operating 
points is obtained, such as M and N. On joining the former to 0M 
and the latter to Oa the corresponding values of 0M and 0o may be read 
off directly from the diagram. For example, with 07 = 30°, as shown in 
Fig. 41, the vector radius OmM gives 0V = 23*75°, while OaN gives 
0Q — 39*75°. The system angle is thus— 

0 - 39*75° + 30° + 23*75° - 93*5° 

corresponding to a transmitted power PR — 52*5 MW. as given by the 
abscissa of the operating point M. The results are tabulated below, 
and the relation between Pn and 0 is shown plotted in Fig. 42. 

1*0 105 200 290 37-3 45-4 52 5 59-8 66-0 71-3 760 800 83-2 85-2 86-7 87-0 86-9 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75-7 80 

-0-5 7-5 160 23*5 30-5 360 39-8 430 450 46-5 470 47-5 47*5 47-0 46-5 45-5 45-0 

0-5 6-5 11*5 15-5 190 21*5 23-8 25-0 260 26-5 26-5 26-3 25-8 25-3 24-5 23-5 22-5 

0 190 37-5 54-0 69-5 82-5 93-5 1030 111*0 1180 123 5 128-8 133 3 137-3 141-C 144-7 147-5 

The value of 0 corresponding to the steady-state stability limit of 
the system is 0 = /?, where ft is the angle of the system transfer imped¬ 
ance B. As only XG and XM occur in the equivalent machine networks, 
it is more convenient in this case to evaluate B by transforming the inter¬ 
connector network into its equivalent T and then adding the machine 
reactances to the two arms to give an overall T, than to use equation 
(125). Referring to equation (25), we have, since A/ = D7— 

Zi - Z, - 
A/ — 1 B, 

C7 “ A, + 1 
38*83 + J152-22 

1*909 + j0*00923 
= 19*72 + j77*2 ohms, 

Y = C/ = (4*24 + j405*4) x 10-*mhos. and 
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Fig. 41. Power-circle Diagram of Example 1 

Equations (14) then give for the transfer impedance of the overall 
equivalent T-circuit— 

B = (jXa + Zx) + (Z, + jX„) + (jX0 + Zi) (Z, + jXM)Y 
= (19-72 + j'300-8) + (19-72 + j252-85) 

+ (19-72 + j'300-8) (19-72 + j'252-86) (4-24 + i405-4) X 10"* 
= (39-43 + j'563-06) - (4-62 + j20-OO) 
= 34-81 + j'527-05 ohms. 

Hence the pull-out angle of the system is— 

P = tan~1(627-05/34-81) = tan"1 (16-10) = 80-26° 
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Fig. 42 then gives Pm = 48*25 MW. as the limiting power for steady- 
state stability. 

If all series resistance and shunt admittance be neglected, then the 
interconnector may be replaced by a lumped reactance Xj = (Xrs 
-f- XL -{- XTU). Referring to Example 1 on p. 78, it is seen that— 

XTH = 27*59 + (150 x 0*069) -f 27*59 = 155*54 ohms 

Equation (114) then gives for the steady-state power limit— 

132V[(223*6 + 77*77) (175*65 + 77*77)] 

Pm - 77*772 -f (301*37 X 253*42) 

1322 x a/76 385 

82 434 
== 58*43 MW. 

0° 50° 8625° 700° 150° 
System Angle O 

Fig. 42. Relation between Transmitted Power and System Angle 

By considering reactance only, therefore, the maximum transmitted 
power consonant with steady-state stability appears 21 per cent greater 
than is actually the case. 

Example 2. Plot power/angle diagrams for the case of the previous 
example, (a) for the interconnector alone, and (b) for the transmission 
system as a whole. Hence determine the power limits of the interconnector 
and the systemy and the corresponding pull-out angles. 

Solution, (a) The interconnector power/angle diagram may be 
plotted directly from the tabulated data of the previous example, for 
the transmitted power is— 

E.E 
- COB (9, — /S;) 

iA' B, cos (a, - p,) 

132lg7132 cob (9t- 76-7°) - 0-963 *7 13211 cos (0-6° - 76-7°) 

= 114-6 sin (9, + 14-3°) - 27-6 

167 
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which is the equation of the receiving-end power circle of Fig. 41. 
The power/angle diagram is shown in Fig. 43, from which Pwax — 87MW. 
and 6, = 75*7°. 

(6) Here it is necessary to find E0 and E for the equivalent motor 
power output is given by— 

pti— E'g W cos (0 — P) — COS (a — P) 

= mi 008 {e ~ 86'250) - cos (0-65° - 86'250)* 

+ • • • • a28) 

Fig. 43. Power/Angle Diagrams for System and Interconnector 

The pull-out angle is here clearly 0 — 86*25°, but this angle does not 
necessarily correspond to any maximum value of PM. For, with condi¬ 
tions of constant Es and ER9 the excitation voltages Ea and EM are 
variable, i.e. are themselves functions of the power transmitted. The 
appropriate values of EG and EM can be obtained from the power-circle 
diagram of Fig. 41 and equations (126) and (127), the latter giving— 

223*6 
Eg = 132~ X OgN = 1*694 X OgN 

175*65 
and Em — ±32 X OmM = 1*393 x OmM 

The results are tabulated below and shown plotted in Fig. 43. With 
6 = 86*25° one finds PM — 48 MW., which is in close agreement with 

* The network constant A = A |* is found from equations (22) to be 
A - Aj 4 jXgCj - 0*878 + ^0*0102"= 0*878 |0°»65. 
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the value obtained previously. Actually, in this particular case, 
PQ — Ps an(l Pm — Pr> because the machines have been assumed to 
have no losses, so that this power/angle curve should be identical with 
that of Fig. 42, which gives Pmax — 87 MW. 

0° 0 19-0 37-5 540 69-5 82-5 93-5 1030 

Eq kV 120 116 118 123 132 143 156 180 

em kV 128 132 139 149 160 173 184 197 

p m MW 0-9 92 18*9 280 36-6 44-9 51-9 64-3 
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CHAPTER V 

TRANSIENT STABILITY 

The problem of transient stability is concerned with the 
behaviour of a transmission system during disturbances or 
under abnormal conditions of operation. What is termed the 
transient stability limit is simply the maximum power that 
can be transmitted without loss of synchronism when a sudden 
change occurs that radically alters the transmission system in 
some way. The distinction between the concepts of steady- 
state and transient stability is thus nothing other than That 
between continuity and discontinuity in the process of power 
interchange. Under steady-state conditions synchronism may 
be lost as the result of a continuous change in the direction of 
increasing system load. Whereas under transient conditions 
loss of synchronism may, and not infrequently docs, occur as 
the result either of a discontinuous change in the amount of 
power transmitted, or else of a change in value of the electrical 
constants of the transmission system which, in the last analysis, 
determine the power transmitting capacity of the system. 

Discontinuous changes making for transient instability may 
thus be grouped in three categories— 

1. Sudden changes in load, i.e. load switching or loss of a 
synchronous machine. 

2. Circuit operations, e.g. switching out a section of a multi¬ 
circuit transmission line. 

3. System faults, i.e. the incidence and subsequent clearing 
of a short circuit, whether occurring directly, or indirectly as 
the result of a lightning stroke. 

The limit of transient stability during such system changes 
may in certain circumstances coincide with the steady-state 
stability limit although in general it will be much less. For 
example, if the circuit arrangements of an interconnected 
system are such that the continued loss of any synchronous tie 
can be tolerated, then the maximum power that can be trans¬ 
mitted over the interconnector is limited only by considerations 
of steady-state stability. This situation has arisen in many 
instances in America where “synchronizing at the load” has 
been applied to metropolitan power systems. With this 

122 
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particular method of interconnection there are no direct ties 
between the synchronous machines of the system, but only 

indirect ties through a multiplicity of connections at substation 
or utilization voltages. The same principle has been considered 
in connection with long-distance transmission projects, when it 
involves bussing of the system on the low-voltage side only at 
the receiving end. Since the operation of such a system con¬ 
templates the disconnection of an entire unit, comprising 
generator and interconnector (including terminal transformers), 

on the occurrence of any fault, it is evident that transient 
instability need scarcely be considered and that each unit may 
be operated close to its steady-state stability limit. 

In the vast majority of power systems, however, the limit of 
steady-state stability can serve only as a guide to the power 
limit that may actually be approached by improvements in 
apparatus and in the circuit and operating arrangements of the 

transmission system. Past experience has gone to show that 
the maximum power that can be transmitted without loss of 
synchronism throughout the incidence and subsequent clearing 
of a severe fault on the system, such as a line-to-line or a 

double line-to-ground fault near the generators, is seldom 
more than about 70 per cent of that determined from con¬ 
siderations of steady-state stability. In other words, when the 

change in power transmitted—whether direct; or indirect, as 
the result of an alteration in the transfer impedance of the 
system—is of a transient nature, the limit of stability for the 
transmission system is of necessity lower than the steady-state 
stability limit. And it is not too much to say that the intensity 
of research devoted in recent years to the study of transient 
stability problems has been inspired by the thought of closing 
the gap between these two power limits.(1) 

Fundamental Conceptions. In general, system stability, 
under fault conditions, or any other conditions which alter the 
system network, depends upon— 

1. The ability of the system circuits to transmit adequate 
synchronizing power, and 

2. The inertias of the various machines. 
When a fault occurs on the system, the short-circuit currents 

flowing into the fault are predominantly reactive, so that the 
generator outputs suddenly change from active to reactive 
power. The abrupt fall in synchronizing power output causes 
a momentary acceleration of each machine whose magnitude 
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is determined by the rotor inertia. The net result is an increase 
in system angle which may or may not be checked. If it is 
checked by the flow of sufficient synchronizing power, the 
system angle will oscillate about its future normal position, 
corresponding to the new circuit conditions obtaining when the 
fault is cleared, and the system will remain stable. On the 
other hand, if the increase in system angle continues unchecked, 
then synchronism will ultimately be lost as the result of 
system instability. 

Under transient conditions of this kind, as contrasted with 
conditions of steady-state operation, the incremental changes in 
machine speed are so rapid that the field flux-linkages remain 
sensibly constant. Hence the air-gap voltage, i.e. the voltage 
behind the so-called transient reactance of the machine, is 
virtually fixed in magnitude during a disturbance; only its 
phase relationship to some arbitrary reference vector is 
susceptible of change. In considering abrupt changes in this 
phase relationship the effect of machine inertia is paramount. 
For, during the period under investigation, the governor of the 
prime mover has not sufficient time to alter the mechanical 
input to the generator, while the effect of asynchronous 
damping torques may be neglected. It is not often realized 
that the moments of inertia involved in transient stability 
problems are of very considerable magnitude. For example, 
the kinetic energy stored in a 50 000 kVA. turbo-alternator 
running at 1 500 r.p.m. is about the same as that of a train 
weighing 300 tons and travelling at a mile a minute, viz. of the 
order of 350 000 kW.-sec. And it would take some 14 seconds 
for such a machine to come to rest under the influence of an 
opposing torque equal to that developed at full load. 

The concept of transient stability, then, is bound up with the 
storage and release of kinetic energy during the very brief 
interval of time in which a system disturbance occurs, and is 
thus primarily concerned with the behaviour of rotating masses 
as influenced by sudden changes in applied torque. As explained 
in Chapter IV, when discussing the dynamic criterion of steady- 
state stability, the equation of motion of a machine rotor is— 

d2° “>-&P /10n x 
dta ~ 2W ' ‘ ' • (129a) 

= (180//tfP„) AP . .(1296) 
= AP/M .... (129c) 
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where AP is the instantaneous power differential causing 
acceleration, W is the kinetic energy stored in the rotor at 
synchronous speed, Pn is the machine rating, H is the energy 
stored per unit of machine rating, and M is the so-called inertia 
constant of the machine. The angular acceleration (PO/dt2 is 
expressed in electrical degrees per second per second* and the 
machine rating in kVA., so that the inertia constant has the 
dimensions kW./deg./sec.2 It is, in fact, the power differential 
that will give unit acceleration to the machine rotor. A little 
consideration will show that M is equal to the angular momen¬ 
tum of the rotor at synchronous speed; while 2H is nothing 
other than the time taken for the rotor to come to rest from 
synchronous speed under the influence of an opposing torque 
equal to that developed at full load.f The stored energy W is 
expressed in kilowatt-seconds, and is given by— 

W = 0*231 J (N/\ 000)2 kW.-sec. 

where J is the moment of inertia of the rotor in lb.-ft.2, and N 
is the synchronous speed of the machine in r.p.m. 

The power differential AP is, by definition, the instantaneous 
difference between the mechanical power exerted at the rotor 
shaft and the electrical power developed in the air gap, that is— 

A P = PM-PE . . . (130) 

As mechanical power (input) and electrical power (output) are 
both reckoned positive, in the case of a generator an excess of 
PM over PE will make AP positive, and hence will give rise to 
acceleration of the rotor. Conversely, in the case of a motor, 
for which mechanical power (output) and electrical powfcr 
(input) are both negative, if PM is numerically greater than 
PE, then AP will be negative, resulting in retardation of the 
machine rotor. Substitution of equation (130) in equation 
(129c) gives— 

M d*0 
dt2 

(131) 

as the fundamental equation of motion of a synchronous 
machine. Solution of this equation enables the angle 6 between 
the air-gap voltage and some arbitrary reference voltage to be 

* This is the most practical form of expression. If 6 is in radians instead of 
in degrees, then the factor 180 in equation (1296) must be replaced by rr. 
(See also footnote on p. 158.) 

2W 2(4Jcoa) x 2 W Jco* Joy t For M — —- = = Joy. Similarly, 2H — — = ^ 
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evaluated in terms of time t. As already mentioned, the relation 
between 6 and t is of paramount importance to the transient 
stability of a synchronous system. In fact, the ultimate criterion 
of system stability is that 0 should be a periodic function of t for 
all machines in the system. 

As a rule, an interconnected system will contain a number of 
machines (or machine groups that can be replaced by equivalent 
machines), in which case the complexity of the transient 
stability problem increases with the number of actual or 
equivalent machines being considered as separate entities. For 
one thing, the electrical output PE of any given machine is a 
function of the phase position of its air-gap voltage relative 
to the air-gap voltages of all the other machines: while it also 
depends upon the magnitudes of these voltages, as well as upon 
the transfer impedances between them and the air-gap voltage 
of the machine considered. As the result, the establishing of a 
transient stability criterion for a multi-machine system is 
fraught with immense practical difficulties, and the problem is 
virtually insoluble if the number of machines exceeds four. 
Equations have been developed for the power output of a 
generator in the multi-machine case,(2) and examples of their 
application to the three-machine and four-machine problems 
have been published.(3) In all such cases, however, a solution 
of equation (131) is only possible by step-by-step methods 
involving the expenditure of a great deal of time and labour, 
even when certain simplifying assumptions are made. Hence 
when considering the transient stability of an interconnected 
system the endeavour should always be made to reduce the 
problem to that of a two-machine system. For then, and only 
then, is it possible to establish a simplified stability criterion 
based on the power/angle diagram. 

When discussing this simple transmission system in the 
preceding chapter it was assumed throughout that the 
receiving-end machine was an equivalent motor. In the tran¬ 
sient analysis which follows, this assumption will be abandoned, 
and the general case will be considered where two generators, 
supplying their own load networks, are free to interchange 
power over a general impedance network representing the 
synchronous interconnector between them. Corresponding 
quantities appropriate to the two machines will be denoted 
by the subscripts 1 and 2, and it will furthermore be assumed 
that the air-gap voltage of machine 1 leads that of machine 2, 
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i.e. that machine 1 sends power over the interconnector to 
machine 2. The fundamental machine equations are then— 

Mx (d%(dP) = PMl - PEi = APd 

M2 (d*02/dP) = PUi - PSi = AP j • • 

The angle between the air-gap voltages of the machines—in 
other words, between the machine rotors—is 0 — (01 — 02)* 
The relative acceleration of the machine rotors is thus given 
by— 

dM_VO_id?0.i_&P1_AP1 
dP ~ dP dP ~ Ml M2 ■ ' [ > 

which gives— 

d (d0\2 _9d0 <m (A Px A PA d6 
dt'\dt ) ~ 2 df dP ~ 2 V Ml ~ M2 ) dt' 

Integrating both sides, one obtains— 

w* rv^i_ 
v* / k v m. 

APA 
mJ do 

where 0o is the steady-state system angle at time t = 0. The 
angular velocity with which the machines swing apart as the 
result of their relative acceleration is consequently— 

dO _ 

dt 

The machines will continue to swing apart, i.e. the angular 
separation 0 between their air-gap voltages will go on increasing, 
unless and until their relative velocity dd/dt becomes zero: 
Hence the machines will come to rest with respect to each other 
if and when: 

AA 
Mx 

AP2\ 

MJ 
dO = 0 (134) 

Equation (134) expresses the fundamental criterion of transient 
stability in a two-machine system, established originally by 
Park and Bancker in their classic paper (4) entitled “ System 
Stability as a Design Problem,” for it specifies the condition 
that must be satisfied if the system angle is to be a periodic 
function of time. This simplified stability criterion may be 
stated as follows— 

//, as the result of a discontinuous change in the system transfer 
power, the machines of a two-machine system swing apart, then 
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the system mil remain stable, provided the machines come to rest 
with respect to each other * 

The stability criterion expressed by equation (134) is applic¬ 
able to any two-machine system. We shall first of all consider 
its application in the ideal case where the system contains 
reactance only, deferring consideration of the general two- 
machine system to a later section of the present chapter. 
Equations (95) and (96) then give for the power outputs of the 
two machines— 

PMl = sin 6 = Pm sin 6 . . (135) 

E E 
P£i = — sin 0 = — Pm sin 0 . (136) 

where El and E2 are the air-gap voltages of the machines, 6 is 
the angle between them, X is the total system reactance, and 
Pm is the maximum transfer power. Also, as under steady-state 
conditions PMl — PE1 and PM2 = Ps2, equations (135) and (136) 
lead to the further relation Pm = — PM2 = PM (say). Hence 

APX = — AP2 = PM — Pm sin 0 . . (137) 

The equation of motion of the system is then— 

d*6 

dt2 

A Pj AP2 / 1 1 \ /n „ . m 

~ M\ ~ M~ ~\ M1 + Pm sm 0) 

Pm sin d) 
1 

- M 

or MWi = 

where M = 

P« ~ Pm sin 0 

Ml + M2 ■ 

(138) 

(139) 

Equation (138) is at once recognized as the equation of motion 
of a synchronous machine, whose inertia constant is defined by 
equation (139) and whose air-gap voltage is separated by the 

* Tho implication here is that they come to rest at the end of the first swing 
of the damped oscillation which, under conditions of transient stability, 
characterizes the change in system angle from the initial to the future steady- 
state value. Or, to put the matter in another way, the above stability 
criterion is based on the assumption that, if the system disturbance does 
result in instability, then synchronism will be lost during the attempted 
first swing. Experience goes to show that, in the majority of cases, this 
assumption is justifiably made. 
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system angle 6 from the arbitrary reference voltage.* In other 
words, it is the equation of motion of a synchronous generator 
located at the sending end of the system and supplying power 
to an infinite bus at the receiving end. This fictitious or “ equiva¬ 
lent ” machine has the same mechanical input and electrical 
output as the actual machines, and differs from them only in 
its inertia constant, which has a value obtained by “parallel¬ 
ing” the inertia constants of the actual machines. The absolute 
acceleration of this fictitious machine is then the same as the 
relative acceleration of the actual machines. 

Thus a two-machine system containing reactance only can 
be replaced by an equivalent system having a single generator at 
the sending end and an infinite bus at the receiving end. This 
equivalence theoremf is of immense practical importance, for 
it leads at once to a graphical expression of the stability 
criterion defined by equation (134), based on the power/angle 
diagram of a synchronous machine connected to an infinite bus. 

The M Equal Area ” Stability Criterion. In general, if we put 
APx = — AP2 = AP, where AP is defined by equation (138), 
the equation of motion of the equivalent machine replacing 
the two machines in an ideal transmission system containing 
reactance only becomes simply— 

<m_ AP 
dt2 “ M ’ 

. (140) 

where M is the equivalent inertia constant defined by equation 
(139). The angular velocity with which the actual machines 
swing apart then becomes the angular velocity with which this 
equivalent machine separates from an idealized machine of 
infinite inertia and zero impedance which is the physical 
representation of an infinite bus. Or, putting the matter some¬ 
what differently, the rate of separation of the machine air-gap 
voltages Ex and E2 is unaffected by considering Ex as the 
air-gap voltage of the equivalent machine and E2 as the voltage 
of the infinite bus. This velocity of separation is defined by 
the relation— 

(d6\2 _ _2_ f0 
\dt) - M)e% 

kP.dd . (141) 

* Of. Equation (131). 
t As will b© shown later, this theorem also holds in the case of the general 

two-machine system, for which the machine inputs and outputs at the two 
ends of the system are no longer the same. 
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The integral in equation (141) represents an area, namely, the 
area under the differential power/angle curve AP = F (6) 
between the limits 0o and 6. The physical meaning to be 
attached to this representation is not far to seek. For the 
inertia constant M is nothing other than the angular momentum 
of the equivalent machine rotor at the synchronous speed 
co = 360/, and is thus equal to Joy, where J is its moment of 
inertia. Equation (141) may thus be put in the form— 

‘■'(sT-siy•<u2) 
It is at once seen that the left-hand side of this equation is the 
gain in kinetic energy of the machine rotor due to the accelera¬ 
tion d26/dt2; while the right-hand side is the area under the 
differential torque/angle curve AT — (1 /u>) F(0) between 
the limits d0 and 0, and is thus the work done on the machine 
rotor in accelerating it from its initial angle 0O to the new 
angle 0. 

The fundamental stability criterion expressed by equation 
(134), when applied to the ideal two-machine system, i.e. a 
transmission system containing reactance only, thus reduces to 
the simple form— 

f AP . dO = 0 . . . (143) 
Jo0 

This is, however, still an implicit criterion, for the angle of 
separation reached by the two machines when they come to 
rest with respect to each other at the end of their first swing 
apart—the upper limit of integration 0 in equation (143), that 
is—still remains to be defined. An explicit criterion of tran¬ 
sient stability is accordingly to be obtained only by introducing 
a further condition, defining the specific angle 0 at which the 
machines come to rest with respect to each other. A little 
consideration will show that this condition is simply that the 
power differential AP be negative or, in the limit, zero. Because 
if AP is still positive when the machines have come to rest with 
respect to each other, they will commence to swing apart once 
more, eventually falling out of synchronism. On the other 
hand, if AP is negative, then relative retardation will occur 
after the machines have come to rest with respect to each 
other, with the result that they will swing together and the 
system will remain stable; while if AP is zero the stability will 
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be critical, for the oscillation of the machines will have died out 
completely at the end of their first swing apart, i.e. it is 
aperiodic. 

(a) Transient Stability with Increased System Load. The 
conditions necessary for transient stability according to the 
criterion expressed by equation (143) in conjunction with 
A P > 0, are most easily studied by considering the case where 
the steady-state equilibrium of the system is disturbed by a 
sudden increase in the steam supply to the prime mover of the 

Fig. 44. Transient Stability during Sudden Increase in 
System Load 

equivalent generator. Referring to the upper diagram of 
Fig. 44 (a), the undisplaced sinusoid PR = Pm sin 6 represents 
the power/angle curve of the equivalent generator, with 
Pm = ExE2/X where Et and E2 are the air-gap voltages of the 
sending- and receiving-end machines and X is the aggregate 
system reactance acting between them. Under steady-state 
operating conditions the system angle is 60 and the power input 
to the generator is P0 = Pmsin 0o>* represented by the 
operating point 0 in the power/angle diagram. Suppose now 
the mechanical input be suddenly increased from P0 to Plf for 

* In the ideal system here considered, where PXi = — PBi and PMi = — PM%, 

all these four quantities are numerically equal to Pn, since initially APo =0. 

io—(T.180) 
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which the new steady-state angle is 6V This condition is repre¬ 
sented in the power/angle diagram by the point 1, and is 
defined by Px = Pm sin 6V The instantaneous power differ¬ 
ential producing acceleration of the machines is thus— 

AP = P* - P* = Pm (sin 01 - sin 0) . (144) 

The differential power/angle curve represented by equation (144) 
is shown plotted in the lower diagram of Fig. 44 (a). 

Assuming the machines to come to rest with respect to each 
other when 0 — 02, represented by the operating point 2 in the 
power/angle diagram of Fig. 44 (a), equation (143) gives as 
the criterion of transient stability— 

re, re, 

AP .d0=\ Pm (sin — sin 0) dO — 0 
JO, J60 

i.e. (02 — 0O) sin 0X + cos 02 — cos 0O = 0 

or cos 02 + 02 sin Qx — cos 0O -f 0O sin 0X . . (145) 

The angle 02 at which the machines finally come to rest during 
their first swing apart is then defined by the condition that 
AP > 0 when 0 — 02, i.e. that sin 0X > sin 02 or 0X> (?r — 02)- 
The limit of transient stability is reached (see Fig. 44 (6) ) when 
02 attains the critical value (n — 0X). The stability limit is thus 
explicitly defined by equation (145) with 02 = (tt — 0X), 
giving— 

(tt — 01— 0O) sin 01 = cos 0X + cos e0 • (146) 

or, approximately— 

sin 0X = 0-724 + 0-276 sin 0O . . (146a) 

For any given value of 0O, corresponding to a given input p0> 
there is thus a limiting value of Px which, if exceeded, results 
in loss of synchronism through transient instability. Or, to 
put the matter in another way, if the system is initially trans¬ 
mitting a certain power P0 = Pm sin 0O, the limiting value to 
which the power transmitted can be suddenly raised without 
the shock causing synchronism to be subsequently lost is— 

Px = Pm sin 0X == 0-724 Pm + 0-276 P0 
( 0-724 \ 

-(°'2,6 + .ct0K ■ ■ • <147> 

This critical relation between Px and P0 is shown by Fig. 45. 
The physical significance of the explicit stability criterion 

expressed by equation (146) will be understood by considering 
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the mechanism of the disturbance to the system caused by the 
sudden increment in power input AP = (P1 — P0). As the 
result of the excess* of power input Px over the initial steady- 
state power output P0 — Pm sin 0Oi the rotor of the equivalent 
generator will accelerate and thus advance in phase (relative 
to the infinite bus) towards some new equilibrium position for 
which Px == Pm sin 6V where 61 is the new steady-state system 

Sin 0o 
Fia. 45. Relation between Suddenly Applied and Initial 

Loads for System Stability 

angle. Now, the acceleration of the machine rotor from 60 to 0X 
occupies a finite time, during which the rotor gains in kinetic 
energy. The amount of gain is— 

1 /•“><! ] C°l 
AP . eft = - AP . d(wt) = - AP.dS 

t0 MJcoto coje o 
= «\fe (Fl~ P”>sin^d0 

* Due to an assumed increase in the steam supply to the prime mover of 
the equivalent generator. 
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which is proportional to the area between the input line 
P = Px and the power/angle curve P = Pm sin 0 between the 
limits 60 and 0l9 shown vertically shaded in Fig. 44 (a). This 
gain in kinetic energy is manifested by a corresponding increase 
in speed, so that by the time the rotor reaches its future equi¬ 
librium position it will be revolving at something more than 
synchronous speed. The rotor consequently overshoots this 
position and tends to reach a still further advanced position 
which may lie beyond the limiting angle for steady-state stability, 
6 — 90°. However, during this part of the swing the power 
differential AP is negative,* as may be seen by reference to the 
lower diagram of Fig. 44 (a), so that the rotor is being retarded. 
Retardation continues, becoming more and more rapid as 0 
increases, as the result of which the rotor slows down and 
eventually regains the original synchronous speed. By this 
time the rotor has advanced to some angle 02. During its 
advance from 0X to 02 the deficiency of mechanical input to the 
machine rotor was being made good by the release of the 
kinetic energy stored during the preceding interval. The loss of 
kinetic energy is— 

1 r«>tt 1 re, 
A P.dt=- A P . d(cot) = - A P. dO 

et coJei 

= 1 J*8 (pi - pm sin 0) dO 

which is proportional to the area between the input fine P = Px 
and the power/angle curve P — Pm sin 0 between the limits 6X 
and 02, shown horizontally shaded in Fig. 44 (a). In the absence 
of rotor damping, all the kinetic energy stored during the 
interval from 0o to 0X is released during the subsequent interval 
from 81 to 02. The net gain in kinetic energy between the 
instants when the rotor was initially revolving at synchronous 
speed (at 0 = 0Q) and when it has subsequently regained 
synchronous speed (at 6 = 02) is therefore nil. Hence— 

or 

1_ 
(O 

— Pm sin 0) dd + — Pm sin 0) dO — 0 

AP . dd = 0 

which is the fundamental stability criterion of equation (143). 

* i.e. the electrical output of the machine PB = Pm sin 6 is greater than 
its mechanical input Px = Pv 
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The amount of overshoot from 6X to 02, before the rotor of 
the equivalent machine returns to synchronous speed—that is, 
before the actual machines have come to rest with respect to 
each other—is thus determined by the condition that the two 
shaded areas in Fig. 44 (a) be equal or, what amounts to the 
same thing, that the input line P = Px should be the mean 
ordinate to the power/angle curve P — Pm sin 0 between the 
limits 0 = 0o and 0 = 02. Hence— 

r°» 
Pi (®2 — 0o) = Pm sin 0 . dO — Pm (cos 0O — cos 02) 

Jd0 

which, with Px = Pw sin 01} is the same result as equation (145). 
Furthermore, it will be observed from Fig. 44 (a) that the 
machine rotor, having reached the end of its first swing at 
0 = 02) will only seek to return to its future equilibrium 
position provided that at that instant it is still undergoing 
retardation, i.e. that the operating point 2 on the power/angle 
curve is still above the input line (AP < 0). The limiting 
position of the operating point in Fig. 44 (a) is thus 2', where 
the power differential producing retardation becomes zero. 
Hence transient stability is only assured provided the area 
under the power/angle curve and above the input line is greater 
than or, in the limit, equal to the area between the power/angle 
curve, the input line, and the ordinate through the initial operating 
point. This is the so-called “equal area” criterion of transient 
stability. Expressed in another way, it states that the limit of 
transient stability is reached when the input line is the mean 
ordinate to the power/angle curve between the ordinate 0 = 0O 
and the ordinate through their point of intersection, where 
02 = (tt— 0x). This means that— 

Pm sin 0 .dd = Pm (cos 0X + cos 0O) 

which is the same result as equation (146), as is to be expected. 
Under transient conditions, then, the maximum swing of the 

machines consistent with stability is not limited to the peak of 
the power/angle curve as is the case under steady-state con¬ 
ditions. At the same time the extreme angle of separation may 
not exceed the value (7r—0^, where 0X is defined by 
equation (146). 

(6) Transient Stability with Circuit Switching. Having dis¬ 
cussed the “equal area” criterion of transient stability in the 
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elementary case of a transmission system subjected to a 
sudden increase in load,* let us next apply this criterion to the 
important practical case of a disturbance to the system brought 
about by a switching operation. The fact that a transmission 
system including a double-circuit inter connector may become 
unstable when one of the parallel circuits is switched out, even 
though the system load may be less than the steady-state 
power limit of the system under the new circuit conditions, is 
illustrated by Fig. 46. The upper power/angle curve 
PE = P^sin O shows the initial relation between transmitted 
power and system angle. The lower curve PB' = Pm' sin 6 

Fig. 46. Transient Stability during Switching of a Parallel 

Transmission Circuit 

shows the relation between the two after the transmission 
system has been changed by switching out one interconnector 
circuit. Here Pm — ExE2IX is the maximum transfer power 
before switching, while P'm = ExE2IX' is the lower value 
attained by it after switching. For the result of the switching 
operation is to increase the system transfer reactance from its 
initial value X to some new value X' which is considerably 
greater. 

In the power/angle diagram of Fig. 46 the initial equilibrium 
position is represented by the operating point 0, for which the 
mechanical power input to the equivalent generator P0 is 
balanced by the electrical power output Pm sin 0O. After 

* The two-machine system considered above may equally well be represented 
by an equivalent motor at the receiving end and an infinite bus at the sending 
end, when an increase in mechanical power from P0 to Px corresponds to a 
direct increase in the system load. In that case the power/angle diagrams of 
Fig. 44 are reversed with respect to the 0-axis, since both PM and Px are 
negative for a motor. The analysis is the same in either case. 
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switching (assumed to occur instantaneously) the operating 
point becomes O', corresponding to the lower value of transfer 
power PJ sin 0O. The effect on the system is the same as if 
the initial equilibrium position had been at O', for which 
P0f = PJ sin 0O, and the generator input had suddenly been 
increased by the amount AP0 = (P0 — P0'). The stability limit 
is thus given by equator (146) when referred to the lower 
power/angle curve. If r denote the peak transfer-power ratio 
Pm/Pm> that is— 

transfer reactance before switching 

transfer reactance after switching 

then the maximum load P0 which the system can carry 
throughout the switching operation, without loss of synchronism 
occurring as the result, is— 

PQ = PJ sin = rPm sin 0X 

= rPm (0-724 + 0-276 sin 0O) 

as given by equation (146a). Hence— 

sin 0O = P0/Pm = r (0-724 + 0-276 sin 0O) 

0-724r 
from which sm0o= - _ Q 

0-724rE1E2 
giving Po (1 - 0-276r)X • 

(148) 

(149) 

as the transient stability limit. The relation expressed by 
equations (148) and (149) is shown in Fig. 47. It is evident 
that for 0 < r < 1 the transient stability limit is always less 
than the steady-state stability limit. 

(c) Transient Stability with System Faults. Probably the 
most important type of transient disturbance to which a 
transmission system may be subjected is the discontinuous 
change in power transfer brought about by a fault on the 
system. From the point of view of applying the “equal area” 
stability criterion to this type of disturbance it is necessary to 
distinguish between a fault on a feeder and a fault on one of two 
or more parallel transmission circuits. In the former case the 
transmission system reverts to its initial steady-state condition 
upon the clearing of the fault. In the latter case it operates 
under a new steady-state condition brought about by the 
switching out of the faulty circuit. 
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The transient conditions obtaining throughout the incidence 
and subsequent clearing of a fault on a feeder, whether at the 

r-Pk/Pk-W 
Fig. 47. Transient Stability Characteristic for a Discontinuous 

Change in System Transfer Reactance 

sending or receiving end of the system, are shown by the 
power/angle diagram of Fig. 48. As before, the operating point 
0 corresponds to the initial steady-state condition for which 

% o, *9 

Fig. 48. Transient Stability with Fault on a Feeder 

P0 = Pm sin 0O. Upon the occurrence of the fault the transfer 
reactance of the system increases from X to X', so that the 
operating point becomes O', for which the available synchron¬ 
izing power is only P0' = PJ sin 6»0 = rPm sin 60, where 
r — PmlPm — X/X' as before. The instantaneous power 
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differential AP = (P0 — PJ sin 6) then causes a relative 
acceleration of the machines at the two ends of the system, the 
aggregate kinetic energy gained being represented by the area 
between the “separating-power line” P — P0 and the “syn¬ 
chronizing power/angle curve” P = Prn' sin 6. Assuming the 
fault to be cleared at the instant when the angle separating the 
machines has reached the value 6 — du corresponding to the 
operating point 1' in Fig. 48, the transfer reactance at once 
reverts to its initial value, so that the operating point suddenly 
changes to 1. As the result, the power differential becomes 
AP = (P0 — Pm sin 6), which in this case is negative, causing a 
relative retardation of the machines. This retardation continues 
until the machines reach the end of their first swing apart, 
represented by the operating point 2, when they finally come 
to rest with respect to each other. The system will be stable if 
the kinetic energy released during the interval from 0 = 6X to 
6 = 02 is greater than the kinetic energy gained during the 
preceding interval from 0 = 0o to 0 = 0V The stability limit 
is reached with that value of 0X which makes the net gain of 
kinetic energy during the first swing zero, i.e. which makes the 
vertically and horizontally shaded areas of Fig. 48 equal. 

The “equal area” stability criterion in this case implies that 
the separating-power line P = P0 should be the mean ordinate 
to the operative portions of the two power/angle curves. 
Pg — Pm' sin 0 and PE = Pm sin 0. Hence— 

roi rot 
P0 (02 — 0o) = I sin 0 . d6 -f- Pm sin 0 . dd 

Jo0 Jol 

i.e. (tt — 20o) Pw sin 0O = Pm J sin 6 . dO + J sin 0 . dOJ 

or (tt — 20o) sin 60 = r (cos 0o — cos 0X) + cos 60 + cos 

= (1 + r) cos 0o + (1 — r) cos 6X 

The limiting value of 0l9 the angle of separation reached by the 
machines when the fault is cleared, is thus given by— 

(77 — 20o) sin 0O — (1 + r) cos Q0 
cos dx = 

(1 -r) 
(150) 

This is termed the critical clearing angle for transient stability. 
It is evident that if the fault is sustained, so that 0X > 02, 

there is only one discontinuity (viz. at 6 = 0o), and the con¬ 
ditions illustrated in Fig. 46 then apply. The value of P0 is 
then determinate. But in the general case illustrated in 
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Fig. 48, P0 is a function of 0V Clearly if P0 is increased, then 
Bx must be decreased if the two shaded areas in Fig. 48 are to 
remain equal, that is to say, the greater the system load, the 
quicker must the fault be cleared if the system is to remain stable. 
This is perhaps self-evident; but it cannot be definitively 
proved except by transient stability analysis. Curves relating 
the limiting system load P0 to the critical clearing angle 6X 
or, more precisely, to the time interval between 6 = 60 and 
0 = 0V are known as “ stability curves” and are of great impor¬ 

tance in the practical 
study of interconnected 
systems under transient 
conditions. 

The most general case 
to which the “equal 
area” stability criterion 
can be applied is, how¬ 
ever, that of a fault 
occurring on one circuit 
of a double-circuit inter¬ 
connector. Here the 
clearing of the fault 
results in one of the two 
circuits being isolated, so 
that a new condition of 

steady-state operation thereafter obtains. This case is illus¬ 
trated in Fig. 49. As before, the initial steady-state condition 
is represented by the operating point 0 in the power/angle 
diagram, for which P0 = Pm sin 0o. The occurrence of the 
fault brings about the first discontinuity in power transfer, as 
the result of which the operating point becomes O', for which 
iy = Pm sin 0O = rxP0) where rx = Pw'/Pm = X/X' or— 

transfer reactance before the fault 

1 transfer reactance during the fault 

Fig. 49. Transient Stability with 

Fault on a Transmission Circuit 

The power differential AP = (P0 — rxPm sin 6) then produces 
relative acceleration of the machines so that they swing apart 
to some angle o = e» when the fault is cleared by the opening 
of the circuit-breakers at the two ends of the circuit (i.e. a 
transmission line, or a section thereof if the line is sectionalized). 
The clearing of the fault brings about a second discontinuity 
in power transfer, namely, the sudden increase in available 
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synchronizing power from the value rYPm sin 0X to a new value 
r2Pm sin 0X, where r2 = Prn"/Prn = X/X" or— 

transfer reactance before the fault 

7 2 transfer reactance after the fault 

The operating point in the power/angle diagram thus changes 
from 1' to 1", the latter point lying not on the initial power/angle 
curve as in Fig. 48, but upon the curve P/ = Pm" sin 0, cor¬ 
responding to a value of system reactance X" intermediate 
between the faulted value X' and the pre-fault value X. The 
synchronizing power demand is henceforward greater than the 
power input to the system, resulting in a relative retardation 
of the machines, which finally come to rest with respect to 
each other at a maximum angle of separation 02 defined by 
P0 = Pmn sin 02, corresponding to the operating point 2" in the 
power/angle diagram. 

The angular separation of the machines at the end of their 
first swing apart is thus given by— 

i.e. 

Pm sin 0O 

V'iF m 

(151) 

which reduces to 02 = (n — 0O) when r2 = 1, as in the preceding 
case where X" = X. The “equal area” stability criterion is 
then that— 

( (P0 — PJ sin 0)dd + f (P0 — Pm" sin d)dO == 0 
Jo0 Jo, 

i.e. P0 (0X - 0O) - rxPm (cos 0O - cos 0X) + P0 (02 - 0X) 
— r2Pm (cos 0X — cos 02) = 0 

which, with P0 = Pm sin 0O, gives— 

(®2 — 0o) s^n 0o ~ ri cos 0o + r2 cos 02 
cos0! = (152) 

r2-rx 
sin 0O [tt — 0O — sin ~1 (sin 0o/r2) ] — rx cos 0O— \/(r22 — sin2 0O) 

r2_ri (152a) 
an expression which reduces to the form given by equation 
(150) when r2 — I. 

The stability criterion established by equation (152) or (152a) 
defines the critical clearing angle 0X as that particular value 
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of 0 at the second discontinuity which makes the horizontally 
shaded area in Fig. 49, representing the kinetic energy of the 
system released during the retardation interval, equal to the ver¬ 
tically shaded area representing the kinetic energy acquired by 
the system during the preceding acceleration interval, which 
followed upon the incidence of the fault. In other words, the 
critical angle 0X must be such that the separating power line 
P = P0 is the mean ordinate to the operative portions of the 
power/angle curves PE' = Pm' sin 0 and PE" — Pw" sin 0. If the 
mean ordinate lies above the separating power line, the system 
will be stable; if it lies below this line, the system will be un¬ 
stable. This is tantamount to expressing the transient stability 
criterion as equality between the fixed separating power P0 and 
the average synchronizing power (1 / A0) J PdO throughout the 
interval represented by the increase in angular separation AO 
during the first swing apart of the machines. The “equal area” 
stability criterion may accordingly be stated thus:— 

A transmission system can only regain synchronism after a 
disturbance provided the average synchronizing power during the 
first swing of the machines exceeds the separating power* during 
the same period. 
For then, and only then, will the machines oscillate about 
their future relative position in the steady state. 

A special case which is of considerable importance is that of 
a three-phase busbar fault at either the sending or receiving 
end of the transmission system. In that case all flow of power 
past the fault is cut off, for the fault reactance is zero and the 
transfer reactance of the system X' is in consequence infinite.| 
Hence Pm' and rx = Pm'/Pm are both zero. When the fault is 
cleared, by switching out of the appropriate bus section and the 
interconnector circuit connected to it, the transfer reactance 
again falls to some value X" intermediate between X' (= oo ), 
and X. This case, is illustrated by Fig. 50. 

The critical clearing angle is given by equation (152) with 
rx = 0, which becomes— 

««», = <*•-^ ft+ r«c”?* . . (153) 
r2 

* Strictly speaking, the average separating power. For it is only in the 
ideal case here considered, in which the transmission system contains reactance 
only, that the separating power remains constant. (Cf. Figs. 49 and 56.) 

t See p. 173, equation (204), in which X0 becomes zero. 
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or cos 0X = (02 — 0O) sin 02 + cos 02 . . (154) 

where 02 is given by equation (151). 

The General Two-machine System. As already mentioned, 
the fundamental stability criterion expressed by equation (134) 
is applicable to any two-machine system. In the ideal case so 
far considered, the series reactance of the system alone has been 
taken into account, an assumption which can only give an 
approximation to the actual conditions obtaining in practice 
but which, nevertheless, is very frequently made in stability 
studies by reason of the simplicity of the resulting transient 
analysis. Where greater accuracy is required, the series 
resistance as well as the shunt admittances of the system must 
also be taken into account, in which case the “equal area” 

Fig. 50. Transient Stability with Three-phase Busbar Fault 

criterion of limiting transient stability at first sight does not 
appear to be directly applicable as such. For equation (137), 
upon which is based the reduction of the actual two-machine 
system to an equivalent machine connected to an infinite bus, 
is then no longer valid. As the result, it would seem necessary 
to establish a simplified stability criterion from equation (134), 
making use of two actual power/angle diagrams in place of the 
one equivalent diagram. 

As will be shown later, however, it is still possible to establish 
an equivalence that makes it possible in turn to apply the 
“equal area” stability criterion directly to the general two- 
machine case. Consequently the earlier method, based upon an 
analysis which treats the two machines separately, may now 
be regarded as having been superseded by a later and much 
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less laborious method based upon a generalized equivalent 
machine connected to an infinite bus through an impedance 
network of a quite general character. The earlier method of 
transient analysis is, nevertheless, of importance in that it 
brings home more clearly the essentials of the problem involved 
in the determination of transient stability, namely, the joint 
action of the two machines in the storage and release of kinetic 
energy and the dependence of synchronizing power on the 
characteristics of both machines as well as of the interconnector 
between them. A brief discussion of this fundamental method 
of analysis is thus not out of place here, if only as an intro¬ 
duction to the more practical method making use of an 
equivalent single-machine system. 

In the general case of a two-machine system the electrical 
outputs of the two machines are no longer given by equations 
(135) and (136), but become*— 

^ . E,E2 . , 
P,t = 7j sin ax + —sm (0 — a) 

= Pj>i + Pm sin (0 — a) . . . (155) 
E ^ E E 

and P#t — ~~ sin <r2-sin (0 + a) 

= Pd2 — Pm sin (0 + a) . . . (156) 
Here Pdi and are the driving-point power outputs of the 
two machines and Pm is the maximum transfer power between 
them, i.e. the maximum synchronizing power of the system. If 
PMl and P denote the mechanical inputs to the machines, 
then— 

APj — (PMi - PB1) — Pm sin (0 — a) 

= P0l ~ pm sin (6 - ff) . . . (157) 
and t±Pt = (PMi — PD2) + Pm sin (0 + a) 

= P0t + Pm sin (0 + or) . . . (158) 

where Pox and ^02 are the so-called separating powers of the two 
machines. Hence equation (134) becomes— 

Pox — Pm sin (0 - 3os + Pm sin (0 + a)' 
M, 

0 (159) 

To apply the “equal area” stability criterion it is first of all 
necessary to plot the power/angle curves for the conditions 
obtaining (a) before the fault, (b) during the fault, and (c) after 

* Of. Chapter IV, equations (95) to (100) inclusive. 
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the fault, from equations (155) and (156). By including the 
input lines P = PM1 and P = Pm2 on the resulting power/angle 
diagram (see Fig. 51) the power differentials APx = (PM1— PS\) 
and AP2 — (Pm2 — P*2) can be read off for successive values of 

system angle 0, and hence curves 
APi 

Mx 
APA 
MJ 

can be plotted 

Fig. 51. Power/Angle Diagram for the General 

Two-machine System 

in terms of 6. The actual curves required depend on the nature 
of the problem. Taking the case illustrated in Fig. 49 for the 
ideal two-machine system, one curve is required for condition 
(6) above and one for condition (c). These two curves are 
shown in Fig. 52. The second curve intersects the zero axis at 
0 = 02 in accordance with the requirement that, for critical 
stability, the relative acceleration as given, by equation (133) 
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should be zero at the end of the first swing. The critical 
clearing angle 6X is then that particular value of 0, lying 
between 0O and 02, which makes the vertically and horizontally 
shaded areas in Fig. 52 equal. 

It is seen that this indirect method of applying the “equal 
area” stability criterion is essentially a graphical method, 
requiring the plotting of eight separate curves. The time and 
labour involved in determining the critical clearing angle are 
accordingly considerable, even when the power/angle diagram 
is plotted from three power-circle diagrams, corresponding to 
the three conditions enumerated above, instead of from three 

Fig. 52. The “Equal Area” Stability Criterion applied 

to the General Two-machine System 

sets of equations such as (155) and (156). The only possibility 
of calculating the critical angle 0X directly is that the bracketed 
expression in equation (159) be reducible to the elementary 
form A PI M9 where AP is some simple function of the actual 
machine inputs and outputs and M is a function of the actual 
machine inertias. In that case the stability criterion would 
refer to an equivalent single machine, as in the ideal two- 
machine system considered in the preceding section. 

It will be remembered that the reduction of the ideal 
two-machine system to an equivalent single-machine system, 
comprising a generator at the sending end and an infinite bus 
at the receiving end (or vice versa), was rendered possible by 
the fact that, when the transmission system contains reactance 
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only, the sending-end machine operates as a generator and 
the receiving-end machine as a motor.* As the result, the 
equivalent machine must have the same mechanical input as the 
actual machine which it replaces; and the electrical character¬ 
istics of the equivalent circuit are the same as those of the 
actual transmission circuit linking the two machines. As was 
first shown by Dahl,(6) it is possible to establish a similar 
equivalence in the case of the general two-machine system. In 
other words, the solution of any two-machine stability problem 
can be based on a single power/angle curve, but with the dis¬ 
tinction that in the general case the input to the equivalent 
machine is a function of the inputs to the two actual machines, 
and that the power/angle curve relates to a modified trans¬ 
mission circuit whose characteristics depend on the machine 
inertias as well as upon the electrical characteristics of the 
actual transmission system. This general equivalence, then, 
makes it possible to apply the “equal area” stability criterion 
directly to any two-machine system. 

The acceleration of the equivalent generator is in this general 
case obtained by putting equation (133) in the form— 

d20 APx AP2 M2 . AP1 - M! . AP2 AP t v 

g-Tff-ii-;-* -~ u ■ <160> 
where M = M1M2l(Ml + M2) is the inertia constant of the 
equivalent machine, as before, and AP is the equivalent power 
differential defined by— 

M2 , AP, — Mx. AP2 

M1 + Mt 

M 
= Mi f [PMl - Pm— pm sin (6 - a)} 

M 
- Mi f [PM2- Pj>2 + Pm sin (6 + a)] 

= MiPm — MyPui _ M2PDl — MiPm 

Mx + M2 M1 + M 2 

~^r+LM;[lf28in(0_a) + JlfiSin(0 + ff)] • (161) 

* That this must be so is evident from energy considerations alone. For 
other loads, represented by shunt impedances at the two ends of the system, 
are by hypothesis excluded from a system containing reactance only, 

ii—(T.180) 



148 POWER SYSTEM INTERCONNECTION 

The first term in equation (161) is the equivalent mechanical 
input— 

_ M^Pm1 — M^Pjh 2 

P*~ m, + m2.(162) 

while the second term is the equivalent driving-point power— 

p _jfjPga 

* ~~ 2f! + i/o 
p22 

M2~rT s^n ai ~~ -^i ~nr sin u2 
_ ——- „ Z-- . . . (163) 

+ JUfj, 

The third term in (161) is the equivalent synchronizing power— 

= ^m(si 
Ml-Mi 

sin 0 cos a + "if cos 0 sin 
JVL j -j- JM 2 

in or^ 

(164) 

where 

and 

= P„ sin (fl + //) 

P„ = MlP+ m/{M* + ^ cos 2 

4i/2 
— Pm VO — M~ltrsin2 cr) . . . (166) 

tan p 

MXM2 

( Mx — M2\ 

\-M^+rw2rna 

(166) 

The equation of motion of the equivalent generator is thus— 

PD — P; sin (0 + p) 

. (167) 

M — = AP = P 
dt2 * 

where 

= P0 Sin (0 + //) • 

%P ol ilf jP o2 
Pn — P Pfl 

Mx + M% 
(168) 

is the equivalent separating power. Fig. 53 shows the power/angle 
diagram of the actual two-machine system, based on equations 
(155) to (158). The corresponding diagram for the equivalent 
generator, based on equations (162) to (167), is shown in Fig. 54. 

Equations (161), (163) and (164) give for the equivalent 
electrical output— 

PB = PD -(- PM sin (6 -\- p) . . (169) 

which is the usual form of power/angle equation for a generator 
supplying power to an infinite bus. The steady-state power 
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limit of the equivalent system is attained when the equivalent 
synchronizing power reaches its maximum value, which occurs 
when 6 — (n/2 — fj,), i.e. when— 

(Ml + M,,\ 
tan 6 = cot /n = I ^ j cot < 

(M. + MAX 

[m.-mJr- 
(170) 

Fig. 53. Power/Angle Diagram of the General Two-machine 
System 

where X and R are the reactance and resistance components 
of the transfer impedance of the system, Z = Z p. This 
steady-state stability criterion is nothing other than the 
dynamic criterion established in Chapter IV, for equation (170) 
is identical with equation (109).* 

* Except that equation (109) is stated in terms of stored energy W = io)M 
instead of M. 
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It will be observed that in the special case where Mx = M2 
(— \M)y the equivalent input becomes PM — \ {PM1 — PM*)> 
the equivalent driving-point power becomes PD= \ (PD1 — P/>2)> 
and the equivalent synchronizing power becomes— 

E E 
Pa = Pm cos a sin 6 = —1 2„2 ^ sin 6 . (171) 

X{1 + X^) 

which is the average synchronizing power of the system as 
given by equation (102). 

Fio. 54. Power/Angle Diagram of the Equivalent System 

In order to apply the “equal area” criterion of stability on 
the basis of equation (167) it is first of all necessary to evaluate 
the equivalent separating power as given by equation (168) for 
the three system conditions governed by the transfer impedances 
Z, Z', and Z* and the corresponding driving-point impedances 
Zv Zi and Z/, and Z2, Z2', and Z2". Under pre-fault con¬ 
ditions the separating power is— 

P° = M[ + Pm1 )— M\( sm )] 
= - W) - M* (P** - WH (172) 
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where Yx = sin a1/Z1 and Y2 = sin a2/Z2. Under fault con¬ 
ditions the separating power changes to the value— 

P0 + 

p» ={pu-pJ>) + {pD-pD') 
m2e* (Y,- Fj') — JW (Y2- y2') 

M1 + M% 
(173) 

Similarly, the separating power after the fault has been cleared 
becomes— 

Po= Po + 
jW (Fx - jV) - - y2") 

M1 + 
(174) 

Fig. 55. Tkansient Stability with System Fault 

(Equivalent System) 

Here Yx and Y2, and Y/ and Y2 , are respectively the values 
of Yx and Y2 while the fault is on the system and after the 
fault is cleared. 

Referring to Fig. 55, the accelerating power differential while 
the fault is on is— 

A P' 

where rx 

and sx 

= Po - Pi! sin (6 + //) 

= sxPo - sin (0 + /*') 

maximum synchronizing power during the fault 

~ maximum synchronizing power before the fault 

separating power during the fault 

~~ separating power before the fault 

while // is the displacement angle of the synchronizing-power 
sinusoid during the fault. 
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Similarly, the retarding power differential after the fault is 
cleared is— 

AP' = P0* - P; sin (0 + fi") 

= HP* — *2Pp sin (0 + /*'), 

where r2 
maximum synchronizing power after the fault 
maximum synchronizing power before the fault 

and 
separating power after the fault 

separating power before the fault ’ 

while ii is the displacement angle of the synchronizing-power 
sinusoid after the fault. The initial system angle 0O is given by 
the steady-state condition AP0 = 0, i.e P0 = P^ sin (0O + p)> 
from which— 

60 = sin-1 (Po/P„) -ix . . . (175) 

The system angle 02 at the end of the first swing is similarly 
given by the condition that AP2 < 0 or, in the limit, AP2 = 0. 
This limiting condition leads to the relation 

82Po = r2p» sin (0 + //) 

from which— 

e2 = 77 - ft" - sin-1 jj? sin (0o + . (176) 

The “equal area,J conception of the transient stability limit 
then defines the critical clearing angle 0X by the relation— 

AP* . dd = 0 

The first integral is the area between the “faulted” separating- 
power line P = P0' and the “faulted” power/angle curve 
P = P' sin (6m — yu'), representing the kinetic energy gained by 
the system during the acceleration interval from 0 = 0O to 

. 0 = 0X, and shown vertically shaded in Fig. 55. The second 
integral in turn is the area between the “cleared” separating- 
power line P = P0" and the “cleared” power/angle curve 

/*0i /*0* 

A P'.dO+ \ 
J», Je, 
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P — Pq sin (0 — /*"), representing the kinetic energy with¬ 
drawn from the system during the subsequent retardation 
interval from 0 = 0X to 0 — 02, and shown horizontally shaded 
in Fig. 55. Evaluation of the integrals gives as the criterion of 
limiting transient stability— 

Po (®i — 0o) “ P^ [cos (0o + !*') ~~ cos (0i + /Ol 
+ P0" (02- 0X) - p; [cos (0X + //) - cos (02 + //')] - 0 

which, after some transformation, reduces to— 

cos 0X (r2 cos jx" — rx cos /,i ) — sin 0X (r2 sin jx" — rx sin fi') 

= [«2°2 + (si ~ s2) 0i ~ *i0o] sin (0o + Z*) — ri cos (0O + zO 
+ r2 cos (02 + fx”). 

On putting tan y = 

r2 sin jx" — r± sin \x 

r2 cos fx" — rx cos /1 

one obtains, finally— 

cos (0X + y) = 

[^202 s^Qq -f- (sx s2) 0j] sin (0O -j- fx) 
— rx cos (0O + jx') + r2 cos (02 + /x") 

Vlri2 + r2 - 2rir2 cos (fxn - fx')] 
(177) 

Equation (177) expresses the critical clearing angle 0X in its 
most general form, corresponding to equation (152) in the ideal 
case where reactance only is considered. A simplified form of the 
above general expression results from an approximation which 
neglects the displacement angles of the synchronizing power 
sinusoids, /xy jx', and (xThese angles are, in general, small, so 
that their sines may be taken as being zero and their cosines 
as unity. This approximation then gives the critical clearing 
angle in the form— 

cos 0X [$202 + 510Q ~ (51 ““ 52) 0l] SU1 0Q “ ri COS 00 + r2 COS 02 

r2-rx 
• (178) 

where 0O = sin-1 (PJPJ and 02 = 77 — sin-1 {s2P0/r2Pfi). This 
approximate expression is the same as that established in a 
somewhat different manner by Kroneberg and Macferran.(6) 
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The approximation is generally justified in practice, for the 
error involved is small.(7 > 

Angle/Time or “ Swing ” Curves. The problem of transient 
stability very often presents itself in the following form: If a 
fault occurs at a certain point on an interconnected system and 
the fault is cleared by circuit-breaker action in a certain time, 
will the system remain stable ? The solution of this problem is 
significant, for it has actually influenced the trend of high- 
voltage circuit-breaker design. The Boulder Dam transmission 
system may be cited as an example. This system, which went 
into service towards the end of 1936, was in the nature of a 
vast experiment, without precedent in the sphere of inter¬ 
connection, for it was designed to operate at 287 kV. and the 
interconnector has a length of no less than 280 miles. The 
transient stability requirements of the system called for the 
interruption, under the worst possible fault conditions, of some 
2 million kVA. in not more than 5 or 6 cycles, a condition which, 
with carrier current relaying, implied a maximum allowable 
operating time of 3 to 4 cycles for the circuit-breakers. The 
development of the so-called “Boulder Dam” type of impulse 
circuit-breaker is directly attributable to this fundamental 
requirement. 

The above problem is clearly bound up with a determination 
of the time elapsing between the incidence of the fault and its 
subsequent clearing, i.e. the duration of the acceleration inter¬ 
val from 0 = 0o to 0 — dlt where 0o is the initial system angle 
under steady-state conditions and 0X is the increased angle 
reached at the instant the fault is cleared. In other words, this 
important transient stability problem involves the relation 
between time t and system angle 0—a relation usually expressed 
in the form of an angle/time or so-called “swing” curve. The 
equation of this curve is nothing other than the formal solution 
of the fundamental equation of motion— 

d20 
M^ = Pm~Px = AP . . (179) 

which may apply either to the individual machines of a multi¬ 
machine system, or to the equivalent machine in the case of 
the simplified two-machine system discussed in the preceding 
sections of this chapter. Such swing curves express the angular 
displacements of the machine rotors as a function of time, and 
their inspection will indicate whether synchronism will be lost 
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or whether the oscillations in angle brought about by the 
discontinuities in power interchange will ultimately die away 
and so lead to a new position of equilibrium. 

In general, a formal mathematical solution of the swing 
equation expressed by (179) is not possible, so that a step-by- 
step method of solution must be resorted to. Probably the 
simplest and most widely used method of this kind is that 
which assumes the power differential AP to remain constant 
throughout successive small intervals of time At. For each 
such interval, then, equation (179) may be integrated twice, 
giving— 

AP 
0 = 0o + wot + mt* . . . (180) 

As at time t — 0, corresponding to the initial angle of displace¬ 
ment 0 = 0O, the machine is running at synchronous speed, its 

relative angular velocity is zero, so that eo0 = 0. Hence 
equation (180) becomes simply— 

9 = °o + mt2 • • • • (181) 

Assuming successive time intervals At, 2At, 3At, . . . nAt 
equation (181) may be written in the form— 

A0n = A0n_1 -f- k (APn-i + APw_2) • (1S2) 

(At)2 
where k = .... (183) 

is the so-called acceleration constant and the subscripts refer to 
the end of each interval considered. Equation (182) at once 
leads to the following method of tabulation, enabling a rapid 

(1) 
Interval 
Number 

(2) 

t 

(3) (4) 

PK 

(5) 

AP 

(6) 

k . AP 

(7) 

AO 

(8) 

0 

0 0 tc . A P0 0 9, 
1 At k . A Pl A6x 0i 
2 2 At k . A A 02 02 

3 3 A t AO3 0, 

etc. etc. (a) (6) 

Note, (a) Col. (7)n - Col. (7)^ + Col. (6).^ + Col. (6)n.8 
(6) Col. <8)n = Col. (7)n + Col. (8)n_1 
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step-by-step solution of the swing equation to be made. In 
order to avoid a cumulative error the time interval At should 
not exceed 0-05 sec., a value which gives on the average some 
10 to 15 points on the curve throughout the first swing. The 
stepped line indicates a discontinuity occurring at the com¬ 
mencement of the fourth interval, due to a sudden change in 
output PB. Quantities below this line hold only after (or just 
after) the occurrence of the discontinuity. Stability is assured 
if at some time t — nAt, 0n < dn^1; for this indicates that the 
extreme angle of swing has been reached. 

Fig. 56 shows three typical swing curves relating to the case 

Fig. 56. Power/Angle and Angle/Time Curves relating 
to a Fault on a Feeder 

of a transient disturbance due to the incidence of a feeder 
fault (c/. Fig. 48) at time t0 == 0, corresponding to an initial 
system angle 6 = 0O, and its subsequent clearing at some 
specified time t = tl9 by which time the system angle has 
increased to a value 0 = dx as the result of the relative 
acceleration— 

dfi = M (P° ~ Pm' sm ^ 

Diagram (a) shows the oscillatory condition for the case of 
stability with an ample margin, consequent upon a rapid 
clearing of the fault. Here the “equal area” stability criterion 
gives a maximum angle (at the end of the first swing) 02, which 
is less than the critical value (n —- 60) so that the power 
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differential AP = (P0 — Pm sin 0) after the fault is cleared is 
still negative. Diagram (b) shows the aperiodic condition for the 
limiting case where the critical angle is reached just as the fault 
is cleared. Here 02 = (77 — 0o) and the power differential AP 
is thus zero at the end of the first swing, so that the system 
will attempt to remain in equilibrium at this new angle* 
instead of returning to the original steady-state angle 0O. 
Finally, diagram (c) shows the unstable condition in which the 
net gain in kinetic energy, represented by the difference 
between the vertically and horizontally shaded areas, is positive. 
In this case the fault is cleared too late to prevent the machines 
from continuing to swing apart after reaching the relative 
angle 02 = (tt — 0o), so that synchronism is inevitably lost. 

An important solution of the swing equation expressed by 
(179) arises in cases where PE varies sinusoidally with 0, while 
PM remains constant. Consider, for example, the case of the 
ideal two-machine system where PE = Pm sin 0 is the electrical 
output of the equivalent machine, P0 — Pm sin 0o is the initial 
mechanical input, and P1 — Pm sin 0r is the final mechanical 
input, 0O and 6X being the corresponding system angles under 
steady-state conditions. Equation (179) then becomes— 

d20 
M r.2 = — Pm sin 0 = Pm (sin 0X — sin 0) . (184) 

Introducing a generalized time r related to actual time t by— 

T 
I Pm __ 

V M “ t 
180/ P^\ 
E'PJ 

. (185) 

where Pn is the machine rating and H is the kinetic energy 
stored in its rotor at synchronous speed in per unitj* of the 
machine rating, equation (184) reduces to the general form— 

d20 
^2 + sin 0 = T . . . (186) 

in which the constant T is here equal to PJPm = sin 0V It 
will be observed that this generalized swing equation is inde¬ 
pendent of the inertia of the machine and of the electrical 

* Evidently if >(7r/2) — /1 in the case of a general two-machino system 
steady-state instability will then result. 

f The term per unit signifies a fraction having unity in the denominator. 
Thus x per unit is the same as 100# per cent or 1 000a; per thousand. 
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characteristics of the transmission system. Its solution, giving 
0 in terms of generalized time r, is governed only by the power 
ratio T and, of course, by the initial angle 0O. On separating 
the variables and integrating both sides one finds— 

= \/[2T (6 — 0o -f 2 (cos 6 — cos 0O)] 

which gives V -J^ v[CT(fl_9c) +2^0,8-,^)] 087) 

as the general solution of equation (186). 
The solution of equations of this type may be obtained 

directly on the integraph(8) or differential analyser, and 
appears in the form of families of curves representing the 
function r = F (0, T, sin 0O), known as pre-calculated angle/time 
curves. The standard curves obtained by Summers and Mc- 
Clure(9) on the integraph at the Massachusetts Institute of 
Technology comprise ten families for values of sin 0o from 
0 to 0-9 at intervals of 0*1, each family consisting of a number 
of r — 0 curves (all radiating from the initial point t = 0, 
Q — 0Q) for values of T ranging from 0*05 to 3*00. For given 
values of T and sin 0o the time taken for a machine rotor to 
accelerate from 6 — 0o to 6 = 0V say, is then obtained by 
multiplying the modified generalized time t/, corresponding 
to the angle 01 and found from the appropriate curve, by the 
modified constant y/(M'/Pm).* Fig. 57 shows the family of 
curves for sin 0o = 0-7 corresponding to the initial angle 
0o = 44*5°. 

The most important use of these generalized swing curves 
is in connection with transient analyses based on the “ equal 

* Here M' is the inertia constant expressed in kW. per radian per sec.2, 
so that itM' = 180ikf = HPJf. The introduction of the factor n in place of 
180 in the fundamental relation between actual and generalized time thus 
leads to a modified time— 

T' = V(7r/180).r = 0132r 

where r is defined by equation (187). This relation underlies the precalculated 
angle/time curves published by Summers and McClure, in spite of the fact 
that these curves show 6 in electrical degrees and not radians. However, this 
modification has the advantage that it makes for a convenient generalized 
time scale, as will be seen from Fig. 57. The same remark applies to Figs. 58 
to 74 inclusive, discussed in the following section. 
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area” stability criterion. In the case of a system fault the 
power ratio T is given by— 

II II O
D

 

,
?
 

&
 

<F
> 

. (188) 

while the generalized time r is given by— 

ii ii i 
^

 

. (189) 

Fio. 57. Family of Pre-calculated Angle/Time Curves for 

Sin 60 — 0-7 (Summers and McClure) 

These curves are applicable also to the general two-machine 
case, for which the swing equation is no longer given by (184), 
but by— 

= Po ~ PJ sin (d + n') 

= s^q — sin (0 + /*') . . (190) 

which may be put in the modified generalized form— 

dW 
dr'2 

+ sin 6’ = T ■ (191) 
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where 0' = (0 + //'), and 

SjPo 

riP„ 
while the modified time is here— 

T 7 sin (0O + (i) 

'-J9-AIW ■ 

. (192) 

. (193) 

In the special case of a three-phase busbar fault, for which 
r1 = 0, the time t as given by equations (189) and (193) is 
indeterminate. Under these circumstances the swing equation 
becomes simply 

d20 
Jf^ = P0 . . . . (194) 

since the flow of all synchronizing power is cut off as long as 
the fault persists. The corresponding generalized swing 
equation is— 

d20 . „ 

df= ° 
. (196) 

whose solution is— 

-y 

2 

sin 6n 
(196) 

where the generalized time p is in this case given by— 

180/ Prn\ 

H -PJ 
(197) 

The result expressed by these last two equations may, of 
course, be obtained directly from the swing equation which in 
this particular case admits of a formal mathematical solution. 
By direct integration of equation (194) one obtains— 

6 = 60 + co0t+ . . . (198) 

As co0 (= dB/dt at time t — 0) is zero, for the machines then 
have zero relative angular velocity, equation (198) gives— 

where 0 and 0o are expressed in degrees, as in equations (187) 
and (196). 
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By means of the pre-calculated angle/time curves and 
equation (189), (193) or (199), therefore, the latest time of 
clearing a fault that will allow the system to regain stability 
may be found when the critical clearing angle 0X is known. 
This angle is given by equation (150), (152), (154), (177), or 
(178), as the case may be, derived from a consideration of the 
“equal area” stability criterion. 

Switching Time or “ Stabilityw Curves. Probably the most 
convenient form in which the results of transient stability 
studies may be presented is the family of switching time or 
so-called “stability” curves whose abscissae are the times of 
fault clearance, and whose ordinates are the maximum powers 
that can be carried by the system prior to the incidence of the 
fault without instability arising therefrom, assuming the fault 
to be cleared not later than the time indicated by the abscissa. 
This mode of presenting the results of system studies arises 
naturally from the methods of calculation involved in transient 
analysis. Each curve of the family is, in effect, a graphical 
representation of the function P0 = F(tx) for a particular type 
or location of fault, where tx is the time of fault clearance 
corresponding to the critical clearing angle 0V 

In the ordinary way the computing of such curves involves 
the repeated determination, either graphically or by direct 
calculation from the appropriate equations, of the critical 
clearing angle 0X in accordance with the “equal area” concept, 
each determination being based on a different value of initial 
system load Po> and thus of initial system angle 0o. It further 
involves the determination of the corresponding times of fault 
clearance tv either from pre-calculated angle/time curves or 
else by step-by-step methods. This process of computation is 
clearly laborious, especially where a number of different fault 
or system conditions are to be compared. 

An alternative method of determining tx due to Byrd and 
Pritchard(10) avoids the necessity of having first to evaluate 
the critical clearing angle, and gives the generalized time r 
directly in terms of rv r2, and sin 0O. The function 

t' = F {rv r2, sin 0O) 

is shown in Figs. 58 to 73* in the form of seventeen families of 

♦ The author is indebted to the editor of the General Electric Review for 
ermission to reproduce these curves from the article by Messrs. Byrd and 
'ritchard. 
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generalized switching-time curves for values of sin 0O from 0*1 
to 0-9 at intervals of 0*05. The r'-r2 curves of each family 
are arranged in a series of increasing r1 values, ranging from 
0*05 to 0-9, all the curves radiating from the point— 

f sin 0O 
t =0, r2 = 0.724 + o-276 sin 0O‘ 

These master curves enable the maximum initial system load, 
P0 = Pm sin 0O, consonant with transient stability, to be 
rapidly determined for any value of switching time t between 
zero and infinity, according to the relation— 

Jw = ‘J{y-rjK) ■ ■ ,200) 

between modified generalized time and actual time, where M' 
is the inertia constant expressed in kW. per radian per sec.2, 
as before. 

Fig. 75 shows the characteristic relation between r and 
sin 60 given by equation (148). With r — rv Fig. 75 gives the 
sine of the maximum initial angle at which the machines could 
have been operating if the fault were not cleared during the 
first swing of the machines, from which the corresponding 
maximum system load can be found. This value of PQ is that 
for t = oo and thus gives the asymptote to the stability curve. 
Similarly, with r = r2, Fig. 75 gives the sine of the maximum 
initial angle at which the machines could have been operating 
if the switching operation necessary to clear the fault were 
made simultaneously with the incidence of the fault, from which 
the corresponding maximum system load can again be found. 
This value of P0 in turn gives the point where the stability 
curve meets the axis t = 0. 

Finally, Fig. 76 shows a family of curves expressing the 
function p = F (r2, sin 0Q) applicable to the special case of a 
three-phase busbar fault, for which rx = 0. The relation 
between modified time and actual time is in this case— 

"'■-‘Jw-’Jii-k) ■ ■ (201) 
The master curves of Fig. 76 enable the switching time to be 
found for a given value of system load in the same way as for 
the curves given in Figs. 58 to 74. 

The Calculation of Transient Stability. The first step in the 
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study of any interconnected system is its simplification to an 
equivalent system that will substantially represent the actual 
one, particularly as to reactance and flywheel effect. In general, 
the process of simplification involves replacing parts of the 
system, e.g. a load or a generating station, by equivalent 

rx ob ra 

Fio. 75. Characteristic Relation between rl or ra and Sin 0o 
for Critical Stability 

machines, and reducing the interconnecting network to a 
number of synchronous ties between these machines. It is 
often permissible to reduce a group of machines to a single 
equivalent machine, for the individual machines of a group 
may be so closely coupled as to make any local oscillations 
between them insufficient to influence the inter-group oscilla¬ 
tions of the system as a whole. The selection of the machines 
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in a given system which may be grouped into an equivalent 
machine is largely a matter of applied logic, and cannot be 
subjected to hard-and-fast rules. For a given system, however, 
the location of the fault with respect to the group to be 
combined plays a very important part in determining how 
closely the machines of that group swing together. Bearing 
this consideration in mind, it will in many cases prove possible 
to reduce the actual system to an equivalent two-machine 
system whose behaviour can be studied according to the 
methods already described, with results which, although con- 

0 20 40 to BO 100 
GFNEGATOR RATiNG — ME GAv/OlT-AMPERES 

Fig. 77. Inertia Constants of Large Turho-generators, 

Turbine Included 

A — 1 800 r.p.m. condensing. B = 3 600 r.p.m. condensing. 
C — 3 600 r.p.m. non-condensing. 

stituting only a first approximation, will give a fair idea as to 
the correct solutions to the transient stability problems involved 
in the system study. 

(a) System Inertia. To represent the real system, the equiva¬ 
lent machines in the first place should have the same flywheel 
effect as the machine groups which they severally represent. 
If H is the stored energy of the equivalent machine expressed 
in per unit of some arbitrarily chosen kVA. base (e.g. the 
short-circuit kVA. of the system at some important point, or 
the steady-state power limit of the system) and Ha, Hb) Hc, 
etc., are the corresponding stored energies of the actual 
machines in per unit of the same base power, then— 

H = Ha + Hb + Hc + . . . etc. . . (202) 

As the H value of a machine is always expressed in kilowatt- 
seconds per kVA., i.e. in per unit of the machine rating, the 
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H values to be inserted in equation (202) must be found from 
the relation— 

machine rating 
X -r-- . . (203) 

base power N ' 
Hn = H„ 

where Hm is the stored energy in per unit of machine kVA. 
Figs. 77 and 78 enable appropriate values of Hm to be obtained 
for turbo-alternators and water-wheel alternators respectively.* 
Average values for other machines are given in Table I. 

TABLE I 

Type of Machine H 
sec. 

Synch ronous condensers 

Synchronous motors Uni ah 

Rotary converters 
Induction motors. 

1- 25 

10 
2*25 

20 
2- 0 
0-5 

(6) System Reactance.f One of the essential elements in the 
calculation of transient stability is the determination of the 

Fig. 78. Inertia Constants of Large Vertical-type 

Water-wheel Generators, including Allowance of 

15 per cent for Water-wheels 

A = 450-514 r.p.m. C = 13S-180 r.p.m. 
li 200-400 r.i>.m. /> =* 80-120 r.p.m. 

electrical outputs of the synchronous machines involved. This 
implies that the impedances of the network to which the 

* Taken from the A.I.E.E. First Report on Power System Stability (see 
Reference (1) ). 

t Vide H. Rissik: “The Calculation of Unsymmetrical Short Circuits,” 
BEAM A Joum.f April-August, 1940. 
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machines are connected must be found for each of three con¬ 
ditions, viz. before the fault occurs, while the fault is on the 
system, and after the fault is cleared. (As a general rule, it is 
necessary to take into account only the reactance of the 
network, resistance playing a minor role in transient phenomena 
of the type here considered. It is permissible to assume, also, 
that the resistance of the fault itself is zero.) The value of 
transfer impedance Z or reactance X in the first and last 
cases is to be found by “solving ” the network as for symmetrical 
three-phase short-circuit calculations.(11) In the second case, 
when the fault is not symmetrical, the network currents and 
voltages become unbalanced and symmetrical component 
theory must be employed in the solution of the network.(12) 
The problem of determining the maximum synchronizing power, 
Pm = EXE2/Z ~ ExE2/Xy in these three cases thus resolves 
itself into establishing and solving not only the normal, 
positive-sequence network but also the negative-sequence and 
zero-sequence networks. This in turn requires a knowledge of 
the negative- and zero-sequence reactances of the machines, 
transformers, and transmission lines or cables which make up 
the system network. 

A simplified reactance diagram of the system should thus 
first be drawn up, the machines themselves being represented 
by their transient reactances, and all transient reactance values 
being calculated in per unit on the chosen kVA. base. In this 
case the relations that apply are— 

base kVA. 
X = X% X 77^-T7--TxtIT Per Unit /0 100 x machine kVA. r 

or x — X ohms x 
kV.2 

base MVA. 
per unit 

The simplified reactance network must then be reduced by 
repeated star/delta and delta/star transformations* to a simple 
reactive tie between the two equivalent machines of the 
system, this tie constituting the initial transfer reactance X 
under steady-state conditions. 

Next, the negative and zero phase-sequence reactance 
diagrams must be drawn up and each reduced to a single 
reactance, when viewed from the point of fault. As is well known, 
a system fault may be represented by an equivalent fault 
reactance XF connected as a shunt in the positive-sequence 

* See Chapter I. 
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network at the point of fault. The value of XF depends upon 
the nature of the fault, and is a simple function of the negative- 
sequence and zero-sequences reactances of the network, X2 and 
X0, viewed from the point of fault. The several values of XF 
are tabulated below. This reactance is then included in the 

Typo of Fault 

Single line-to-ground X2 + 

Double line-to-ground x2 -f x0 
Line-to-line ..... x2 
Three-phase short circuit . 0 

original positive-sequence reactance diagram of the system 
network, which is finally reduced by a corresponding series of 
transformations to a simple T network. The top or bar of this 
T is thus connected 
between the air-gap 
voltages of the two 
equivalent machines 
of the simplified two- 
machine system, while 
the leg or staff of the 
T includes the equiva¬ 
lent fault reactance XF, 
as shown in Fig. 79. 
If Xa and Xb denote the reactances forming the arms of the 
T, and Xc the reactance forming the staff of the T, then the 
transfer reactance of the system under fault conditions is—. 

Y' = X0 + X6 + ^-6 . . (204) 

If the transfer reactance after the fault is cleared is different 
from the corresponding reactance before the occurrence of the 
fault, so that, due to the discomiection of part of the system 
when the fault is cleared the transfer reactance does not fall 
from its “faulted” value X' to the pre-fault value X, but to 
some intermediate value X\ then this final value of transfer 
reactance must also be determined from the appropriate 
positive-sequence diagram. In this way the factors rx = X/Xr 
and r2 = X/X” may be found. 

(c) Transient Reactance Values * In the foregoing calculations 
* Vide H. Rissik: loc. tit. 

(V/— 
x* 

-d) 

-}*c 

Fig. 79. Equivalent T Network of 

System under Fault Conditions 
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it is the transient reactance of the synchronous machines which 
must be taken into consideration. This lias a lower value than 
the synchronous reactance employed insteady-state analysis and 
in the determination of sustained short-circuit currents under 
fault conditions. Table II gives representative per unit values 
for the transient reactances of synchronous machines to positive- 
sequence currents (a/), negative-sequence currents (x2), and zero- 
sequence currents (#0). The table also gives some typical values 
which may be taken in the absence of further information. 

In the case of transmission lines and cables, the negative- 
sequence reactances is the same as the positive-sequence 
reactance. The calculation of the zero-sequence reactance is 
a matter of some complexity and has been treated very fully 
by Monseth and Robinson.(13) It is customary, however, to 
take it as being 3*5 times the positive-sequence reactance, the 
effect of mutual reactance between the two circuits of a double¬ 
circuit line being negligible.* 

So far as two-winding transformers are concerned, the 
positive- and negative-sequence reactances are also the same. 
The zero-sequence reactance, on the other hand, is either 
infinite or the same also depending on the connection of the 
transformer windings and whether or not there is a grounded 
neutral anywhere on the system.* Summers and McClure (14) 
have published simplified zero-sequence diagrams for several 
combinations of transformers and transmission lines. Some are 
reproduced in Table III. Three-winding transformers may be 
treated by the method developed by Boyajian,(15) while auto¬ 
transformers have been dealt with by Summers and McClure.(16) 
Monseth and Robinson have given numerous examples of 
zero-sequence circuits for three-winding transformers <17) and 
auto-transformers.(18) 

(d) Maximum Synchronizing Power. Having determined rx 
and r2, it is necessary to evaluate the maximum synchronizing 
power Pm corresponding to the initial steady-state condition for 
which the system load is given by P0 = Pm sin 0O. In general, 
the sending- and receiving-end busbar voltages Ea and ER are 
held constant. Hence the air-gap voltages of the equivalent 
machines at the two ends of the system, Ex and E2, will varyf 
with the system load P0 and thus with the initial steady-state 

* Vide H. Rissik: loc. cit. 
t Under steady-state conditions, that is to say. Under transient conditions 

El and E% are assumed to remain constant. 
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IX 

system angle 0O. As the result, Pm will also be a function of 0O. 
If the transient stability of the system is to be studied under 

different conditions 
of initial steady-state 
load, it will therefore 
be necessary to deter¬ 
mine Pm and 0O for 
each value of P0. In 
most cases it will be 
desirable to plot Pm 
and sin 0O (rather 
than 0O) in terms of 
P0 for values ranging 
from, say, 25 to 200 
per cent of the 
normal system load. 
Here also it is con¬ 
venient to specify 
both Prn and P0 in 
per unit of the chosen 

base power. Similarly, Ex and E2 may conveniently be expressed 
in per unit of some arbitrary base voltage, e.g. the nominal 
transmission pressure. 

Referring to the system vector diagram shown in Fig. 80, 
we have— 

Fio. 80. System Vector Diagram for 

Initial Steady-state Condition 

(P0 = pin Sin 0o) 

sin 0o = p° 
P0X 
\ E2 

(205) 

where X is the system transfer reactance, made up of Xx and 
X2, the transient reactances of machines 1 and 2, and XIy the 
reactance of the interconnector between them. Also— 

(IX)2 = E2 + E2 - 2ExE2 cos 0O 

= E2 + E2 - 2^(E2E2 - P02X2) . (206) 

Similarly, one finds 

(IX,)2 = E2 + E2 - 2 y/{E*E* - P<?X2) . (207) 
(IXx)2 = E2 + Ea2 - 2^(E2E2 - P02Xi2) . (208) 

(IX2)2 = E2 + E22 - 2a/(Eh2E22 - P 2X 2) . (209) 

The per unit load current I can thus be found from equation 
(207), since Eg and ER are given, as are also P0 and Xr This 
value of / when substituted in equations (208) and (209) then 
enables Ex and E2 to be found. Then, finally, Pm = ExEJXt 
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while sin 0O = P0/Pm- Alternatively, with I known from 
equation (207), the vector diagram of Fig. 80 can be drawn to 
scale, thus enabling Ely E2> and 0O to be obtained directly. 

Two curves should then be plotted of Pm and sin 0O in terms 
of P0, covering the range of system loads required. These 
curves form the starting-point in the computation of switching¬ 
time curves in accordance with the methods described in the 
preceding section. Taking successive values of sin 0O which are 
multiples of 0*05 (corresponding to the several families of 
generalized switching-time curves given in Figs. 58 to 74), the 
corresponding values of P0 and Pm are tabulated along with the 
values of modified time r found from the appropriate generalized 
switching-time curves, with r2 and r1 as determined under (6) 
above. Values of Pm' = rxPw and of the factor c^/^P^, where 
c = <y/(-nf/HPn), H = H1H2/(H1 + H2), and Pn is the base 
power,* are also tabulated. Multiplication of r by this factor 
then gives the critical switching time t = tt in seconds. 

(ie) Inclusion of Resistance. The foregoing method of pro¬ 
cedure assumes that the system contains reactance only. The 
effect of series resistance and shunt admittance, including loads 
represented by constant shunt impedances instead of by 
equivalent synchronous machines,*)- may be taken into account 
by adopting the general method of equivalence established 
earlier in this chapter for the two-machine system. The 
impedance network of the system under fault conditions may 
be reduced to an equivalent T circuit having impedances Za' 
and Zb' in the two arms and an impedance Z/ in the staff, 
where Zc' includes the equivalent fault impedance Zf. Then 
the driving-point impedances of the system are given by— 

Zl'= Zo'+ zT+i? • ■ • (210) 

Zi' = z»' + z/+zc' • • • (211) 
while the transfer impedance of the system is— 

Z'=Z0'+Z»'+^-' . . (212) 

* Taken as unity, if all other power values are expressed in per unit of Pn. 
t This latter method, due to Park and Bancker,(1#) is assumed to underly 

the process of network simplification outlined under (a) and (6) above. The 
figures usually taken for a composite load are H = 1*95 kW.-sec. per kVA. 
and x um 0*6 per unit of kW. rating, i.e. (0*5/cos per unit of load kVA. 

13—(T.x8o) 
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Under the initial and final steady-state conditions, on the other 
hand, the impedance network is defined by its general network 
constants, so that— 

Z„ = Za = 5; z = B . . (213) 

and = Z,' = p; Z' = B* . . (214) 

Equations (210) to (214) enable the several separating powers 
P*,Po ', and P0* to be calculated. Ex and E2, as well as and 
sin (0O + /i), are then found as before. 

Examples of System Stability Studies. The following three 
examples may be taken as typical of the more elementary 
stability problems that can be solved by the several methods 
of analysis outlined in the present chapter. Consideration of 
the more complex problems, such as those involving three or 
four machine-groups or equivalent machines, or those in which 
BlondePs two-reaction theory of synchronous machines has 
to be applied in evaluating the effective machine reactances, 
are beyond the scope of this volume. 

Example 1. A three-phase interconnector having a reactance of 0*67 ohm 
per mile and operating at a nominal voltage of 132 kV. between lines 
normally transmits 30 000 kW. at 0*95 p.f. lagging from a steam power 
station to a transforming station 300 miles distant. The generating station 
may be represented by a 60 000 kVA. turbo-alternator set running at 
1 600 r.p.m., while the distant load may be considered as two synchronous 
motors designed for a full-load output of 25 000 kW. at 0*8 p.f. The 
step-up and step-down transformers at the two ends of the interconnector 
are each rated at 60 000 kVA. with a reactance of 9£ per cent. They are 
connected in deUajstar, and the neutral points on the h.t. sides are directly 
earthed. 

Assuming the voltage to be held constant at the terminals of the equivalent 
synchronous motor load, determine the relation between the power transmitted 
and the latest time of fault clearance consistent with transient stability for 
(a) a single line-to-earth faulty and (b) a double line-to-earth fault, at 
a point distant 200 miles from the generating station. 

Solution. From Table II the per unit positive-sequence and negative- 
sequence reactances of the generator and equivalent motor are taken 
to be 0*23 and 0*14, and 0*6 and 0*4 respectively; while Fig. 77 and 
Table I give Ha = 7*5 and HM = 3*6 kW.-sec./kVA. Fig. 81 (a) shows 
the transient reactance diagram with all reactance values in per unit 
referred to a 60 000 kVA. base. The per unit reactance of the trans¬ 
mission line, for example, is here— 

300 x 0*67 X 60 
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The per unit stored energies at the two ends of the system ane— 

Hx — 7-6, and Ht = 3*5 X 
50 000/0-8 _ 

60 000 — 3'84 

so that the energy constant of the “equivalent” generator is 

HtH2 7-5 X 3-64 
H + H2 ~ 11-14 

2-40 

To find the air-gap voltages Ea and EM and the steady-state system 
angle 60 between them we can take the receiving-end terminal voltage, 
Er — 132 kV. = 1-0 per unit, as our axis of vector reference, i.e. 
ER — 1*0 |0° = 1-0 + j0. At full load and cos = 0-95 lagging, we 

XfO-23 Xjf 0 095 XL-0-692 ^nnas XJ'0-46^' Xt#0O95 XtfO-46 

have PR — 30 000 kW. and QR — — Ph tan <f> = — 10 000 kVAr., so 
that— 

Pr oQr — 

30 000 - ilO 000 

60 000 
0-5 — jO-167 per unit. 

Hence the full-load current is— 

I = / \i = — — = 0-627 I- 18-4° per unit*. 
&R I- 

Denoting by IA the total reactance between the points Q and R in 
Fig. 81 (a), we have— 

-f Xjj + X-i ■+■ == 1*112 per unit 

and thus— 

E0 = E* + KiV = 1-0 jl-112(0-5 - jO-107) = 1-309 [25-15° 

Similarly— 
Ejf = E*— IX* = 1-0 - jf0-48(0-6 - jO-167) = 0-9611- 14-6° 

* The use of per unit current values eliminates the phase faetor ^3 in 
three-phase calculations. 
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The initial system angle is thus 0O = 25*15° -f 14*6° = 39*76°, giving 
sin 0O = 0*0395. The maximum transfer power is 

EqEm 1*309 X 0*951 

X "" 1*112 + 0*48 
0*782 per unit 

The full-load vector diagram is shown in Fig. 81 (b). 

[Check. P0 — Pm sin0o = 0*782 X 0*0395 = 0*5 per unit = 30 000kW.] 

By taking several values of I ranging from, say, one-quarter to twice 
full load (P0 = 0*125 to 1*0 per unit), and determining the corresponding 
values of sin 0O and Pm, the fundamental transfer-power curves of Fig. 82 
are then plotted. The data for these two curves are tabulated below. 

Po Pm 0o sin 0O pn 

0125 1*068 0*982 110 0*1897 0*659 
0*250 1*128 0*968 21*5 0*3649 0*685 
0*375 1*213 0*957 31*0 0*5143 0*729 
0*500 1*309 0*951 39*8 0*6395 0*782 
0*626 1*414 0*949 47*9 0*7417 0*843 
0*750 1*526 0*951 55*3 0*8234 0*911 
0*875 1*645 0*957 62*2 0*8847 0*989 
1*000 1*765 0*968 68*8 0*9323 1*073 

The next step in the calculation is to determine the transfer reactance 
of the system under fault conditions. As already explained, the fault 
can be represented by an appropriate reactance Xf9 connected as a 
shunt at the point of fault, whose value is a simple function of the 
negative- and zero-sequence reactances of the system (X2 and X0) 
viewed from the point of fault. Fig. 83 (a) shows the negative-sequence 
reactance diagram of the system, all reactance values being calculated 
in per unit on a 00 000 kVA. base, as before. Denoting reactances 
between G and the point of fault by the subscript a, and reactances 
between M and the point of fault by the subscript 5, we have— 

Xat = 0*14 + 0*095 + 0*401 = 0*090 

Xhi = 0*384 + 0*095 + 0*231 = 0*710 

and hence, since Xa% and Xbg are in parallel when viewed from the 
point of fault— 

0-690 X 0-710 

* - Xa% + X„t - 1-406 
0-352 

The corresponding zero-sequence reactance diagram is shown in 
Fig. 83 (b). The reactance of the transmission line to zero phase- 
sequence currents is taken as 3*5 times the positive phase-sequence 
value. As the neutral points of the transformers are earthed and 



TRANSIENT STABILITY 183 

their l.t. windings are delta-connected, they both provide paths for the 
zero phase-sequence currents. Hence in this case we have— 

Xao = 0-095 + 1-615 = 1-710 

XbQ = 0-095 + 0-807 = 0-902 

so that, since these are in parallel as viewed from the fault, 

*0 
Xa0 + Xba 

1-71 x 0-902 
0-590 

2-612 
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For a single line-to-earth fault the equivalent fault reactance is— 

XF = Xa 4 X0 = 0-352 4 0-590 = 0-942 

while for a double line-to-earth fault— 

X2X0 0-352 X 0-590 

Xf “ X2 4 X0 ~ 0-942 
0-220 

In the former case the negative- and zero-sequence networks are 
connected in series at the point of fault; in the latter case they are 
connected in parallel, as shown in Fig. 83 (c). The positive-sequence 

0‘f4 0-095 0692 0095 0-364 / X 

0-095 2-422 

U-1615 
(b) 

0-095 

(C) 

network under fault conditions thus becomes a simple T circuit, as 
indicated in Fig. 83 (d), for which— 

Xa = 0-23 -f 0-095 + 0-461 = 0-786 

Xh = 0-48 4 0-095 4 0-231 = 0-806 

|= 0*942 for a single line-to-earth fault 
and Xc- XF\^ Q'220 ^ double ^ 

The transfer reactances of the system under these two fault conditions 
are given by equation (204) and have the values— 

(a) X' = 0-786 4 0-806 4 

and (b) X' » 0-780 4 0-800 4 

0-780 X 0-800 

0-942 

0-780 X 0-800 

— 2*204 per unit 

= 4-471 per unit 
0-22 
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The transfer reactances before the incidence and after the clearing 
of the fault are the same, namely— 

X = X" = Xa 4- xb = 0-780 4- 0-806 = 1-592 per unit 

so that r2 = X/X" — 1*0. The values of rx = X/X' for the two types 
of fault are then— 

(a) rx = 1-592/2-204 = 0-703 

and (b) rx = 1-592/4-471 = 0-356 

The maximum values of transmitted power which can be carried 
through a sustained fault of each type are found from Fig. 76, by putting 
r = rv Similarly the maximum power which can be transmitted 
without instability occurring, if the fault is cleared instantaneously, is 
given by putting r = r2. The results are tabulated below. 

Switching 
Time 

r sin 60 p„* 
(per unit) 

Limiting 
Transmitted Power 

(kW.) 

00 rx = 0-356 0-292 0-195 11 700 
00 rx = 0-703 0-635 0-496 29 750 
0 r2 = 1-000 1-000 1-250 75 000 

The final step in the calculation is the evaluation of the constant 
c = y/(rrflHPn) in the basic relation r = . t between gener¬ 
alized time and actual time. In this case— 

c v 3-1410 X 50 

2-46 X 1-0 
7-99 

Values of r corresponding to rx and r2 as already found, and to 
successive values of sin 0O, are extracted from the generalized switching¬ 
time curves given in Figs. 58 to 74. Values of P0 and Pm corresponding 
to the same values of sin 60 are then taken from Fig. 82. The corre¬ 
sponding switching times are readily calculated from r', rv and Pm. 
The results are tabulated below for the two types of fault considered* 

(a) Single Line-to-earth Fault (rx = 0-703; ra = 1-0) 

sin 0O p. p„ Pn' = 7-9 9VrlP„ r' t 

1-00 1-250 — — — — 0 

0-913 1-015 0-714 5-390 1-06 0-197 
0-797 0-940 0-661 5-190 1-54 0-297 

0-887 0-624 5-032 2-06 0-409 
!K3 0-636 0-848 0-596 4-931 2-69 0-546 

0-572 0-817 0-575 4-840 3-61 0-746 
0-512 0-788 0-554 4-752 (6-0) (1*26) 

0-635 0-496 — — — — 00 

* From Fig. 82. 
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(b) Double Line-to-earth Fault (rx = 0-356; r2 = 1*0) 

sin 60 P 
■* 0 pm Pm = r,Pm 7-99 V(rxPm) T t 

1-00 1-250 — — — — 0 

0-90 0-913 1015 0-361 3-838 0-30 0-078 
0-85 0-797 0-940 0-335 3-694 0-50 * 0-135 
0-80 0-710 0-887 0-316 3-587 0-64 0-178 
0-75 0-636 0-848 0-302 3-508 0-80 0-228 
0-70 0-572 0-817 0-291 3-443 0-95 0-276 
0-65 0-512 0-788 0-281 3-382 1-15 0-340 
0-60 0-458 0-763 0-272 3-332 1-35 0-405 
0-55 0-409 0-744 0-265 3-286 1-58 0-481 
0-50 0-362 0-723 0-257 3-240 1-85 0-571 
0-45 0-319 0-708 0-252 3-206 2-20 0-686 
0-40 0-278 0-695 0-248 3-184 2-57 0-807 
0-35 0-238 0-682 0-243 3-147 3-25 1-033 
0-30 0-202 0-673 0-240 3-122 5-00 1-602 

0-292 0-195 — — — — QO 

The required relation between transmitted power (P0) and the 
critical clearing time (t) is shown by the switching-time curves of Fig. 84. 

Fio. 84 
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Example 2. The interconnection of two selected stations of the British 
“Grid" system is shown by the single-line circuit diagram of Fig. 85. 
Station A is a base load station the bulk of whose energy output is trans¬ 
mitted via two 132 kV. transmission lines to station B, which supplies a 
large industrial load area. Station A is also linked to stations C, D, E> 
and F by means of four 132 kV. interconnectors tied together at the high- 
tension busbars of the “Grid" substation at A, The outputs of the two 
stations are as follows:— 

Station A 

Export to station B. . . . .180 000 kW. 
Export to stations C, D, E, and F .10 000 kW. 
Local load demand ..... 30 000 kW. 

Station output ..... 220 000 kW. 

STATION A STATIONB 

Fig. 85 

Station B 

Station load demand .... 230 000 kW. 
Import from station A . . 180 000 kW. 

Station output ..... 50 000 kW. 

The interconnector transformers T19 T2, T3, and Tv and the “Grid1* 
substation transformers Tb and TQ each have a reactance of 10 per cent 
and are rated at 45 000 kVA. The two transmission lines each have a 
reactance of 7-8 ohms at 50 c/s. The ratings, speeds, and transient 
reactances of the several generators are as follows— 

Station A 

(Gx)i Two 37 600 kVA. units. N = 1 600 r.p.m. x' — 22 per cent 
(Gg): Three 62 500 kVA. units. N *= 1 500 r.p.m. xf = 28 per cent 

Station B 

(Ga): Two 23 435 kVA. units. N = 1 500 r.p.m, x' — 20*4 per cent 
(Ga) : One 22 500 kVA. units. N = 1 500 r.p.m. x' = 29 per cent 
(G8): One 31 260 kVA. units. N == 3 000 r.p.w. a?' = 23 per cen* 
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Rated voltage is maintained at the 11 JcV. busbars of the two stations. 
A flashover occurs on the high-tension side of one of the “Grid” sub¬ 

station transformers and immediately develops into a short circuit between 
all three phases. 

(a) Determine the time within which the fault must be cleared if stations 
A and B are to remain in synchronism. 

(b) Using the step-by-step method, plot the appropriate swing curves 
for fault durations of 0*2, 0*35, and 0*5 second respectively. 

Fig. 86 

Solution. It is first of all necessary to convert all reactances and 
U values to per unit on, say, a 100 000 kW. base. The station loads 
may be represented by synchronous machines having a reactance of 
60 per cent on the kW rating and H = 1*96 per unit.* The results are 
tabulated below. Fig. 86 (a) shows the per unit reactance diagram of 
the system, which reduces to the simple reactive tie of Fig. 86 (6). 
8 and R are the station busbars, where the voltage is maintained 
constant at 11 kV. Referred to the nominal transmission pressure, 
Et = 132 kV., as a voltage base, we thus have Es = En = 1*0 per unit. 
The initial transfer power is P0 = 180 000 kW. = 1*8 per unit. Fig. 

* See footnote on p. 179. 
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Item kVA. Rating 

Machine kVA. Base System kVA. Base 

x' H* H 

Gt 75 000 0*22 8.25 0*293 6*19 
g! | 187 600 0*28 7*40 0*149 13*87 
Li 30 000 0*50 1*95 1*667 0*59 
G8 46 870 0*204 8*70 0*435 4*08 
G< 22 500 0*29 8*80 1*289 1*98 
G# 31 260 0*23 5*50 0*736 1*72 
L, 230 000 0*50 1*95 0*217 4*28 
T 45 000 0*10 — 0*222 — 

80 (c) shows the system vector diagram from which, with P0 = El and 
E2 = E2 - (i/Xy)a, one finds— 

I* = — - VET* - PJX*) 

= oir« [1'° “ v'l-O - (1-8 X 0-244)*] 

= 34-16 (1-0 - VO-8103) = 3-408 

and E1 = 4(£?r* + Vet* - P0X,2) = 0-5(l-0 + 0-9002) = 0-9501 

Hence E02 = -f 7a(Xw + JX,)2 = 1*1062; E0 = 1*052 per unit 

and Em2 = P2 + I2(XM + JXy)a = 1*1135; EM == 1*065 per unit 

(a) The transfer reactance of the system before the incidence of the 
fault is— 

X = 0*093 + 0*244 + 0*111 = 0*448 per unit 

For a three-phase short circuit the equivalent fault reactance is 
zero, so that (Fig. 79) the transfer reactance during the fault is simply— 

X' = 0*093 + 0*355 + 
0*093 X 0*355 

0*111 
0*748 per unit 

After the fault is cleared the system returns to its pre-fault configura¬ 
tion, so that X" = X. Hence— 

rx = 0*448/0*748 = 0*599; and r% = 1*0 

The maximum transfer power before the fault occurs is— 

P m 
1*052 X 1*065 

0*448 
= 2*51 per unit 

so that the initial system angle is given by— 

sin 60 = PJPm = 1*80/2*51 = 0*717 

from which 60 = 45*8°. The maximum transfer power during the fault is 

Pm' = rxPm = 0*599 X 2*51 = 1*50 per unit 

* The figures for the generators are taken from Fig. 77. 
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The critical clearing angle is defined by equation (160), which gives— 

cos o, = 
[no<18“ 91-6) X 0-717 - [1-599 X 0-697] 

1*106- 1-114 

0-401 

0-401 

0-008 _ 

0-401 ~ 
0-01995 

Thus 0X = (180 — 88-8) = 91*2 degrees. Also we have from equation 

(188)— “ 
T = 0-717/0-599 = 1-19 

Using pre-calculated angle/time curves (e.g. Fig. 57) one finds 
r — 1-92 for sin 0O = 0-717, T = 1-19, and 0X = 91-1°. Alternatively, 
with rx = 0-599 and r2 = 1-0, the pre-calculated switching-time curves 
of Figs. 70 and 71 give— 

sin 0O ==0-70 .... r' = 2-ll\ 
sin 0O = 0-75 . . . . r' = 1-72/ 

from which r' — 1-98 with sin 0O = 0-717. Taking the mean of these 
two values for the generalized time, we have r — 1-95. The aggregate 
per unit stored energy of station A is— 

Hx = 6-19 + 13-87 + 0-59 = 20-65 

while that of station B is— 

H2 = 4-08 + 1-98 + 1-72 + 4-28 = 12-06 

The corresponding figure for the equivalent generator at A when B 
is considered as an infinite bus is then— 

II1H2 20-65 X 12-06 

H ~ Hx + h2 vPfi 
= 7-61 per unit 

X = 5-56 

The generalized time r' is related to actual time t by the factor 

F5 

V0 

Hence the time within which the fault must be cleared i 

t — 1-95/5-56 = 0-35 seconds 

FjrC\ _ /SO^r 
V PmJ ™ V 7-61 

(6) In the step-by-step method of transient stability analysis a time 
interval of At = 0-05 sec. does not generally lead to a large cumulative 
error in the computation of the appropriate swing curves, and this 
interval will accordingly be used for the present example. The inertia 
constant in this case is— 

or 

M = 
HPn 7-61 X 100 000 

180/ 180 X 50 

M = jET/180/ = 8-455 x 10“* per unit, 

= 84-55 kW.-sec.a/deg., 

so that the acceleration constant is— 

(A*)» 0-05a x 10* 

k ~ 2M ~ 2 X 8-455 ~ 
1-48 per unit. 

The step-by-step calculation schedules, based on equation (182), 
are given below. The three swing curves are shown in Fig. 87. 



1. Fault cleared at time t — 0*2 sec. 

1-8 1-504 
1-8 1-504 
1-8 1-504 
1-8 1-504 
1-8 2-511 
1-8 2-511 
1-8 2-511 
1-8 2-511 
1-8 2-511 

0-604 
0043 

- 0-159 
- 0-209 

0-000 
0-444 
1-057 

1-8 — 

- 13-66 13-21 
- 10-93 2-26 

6-58 - 4-32 
- MO - 5-42 

4-70 - 0-72 
10-22 9-50 
14-78 24-28 
17-88 42-16 

2. Fault cleared at time t — 0-35 sec. 

Pm \P = Pw sin 0 AP = P0 - P \k . AP I 

191 
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3. Fault cleared at time t — 0*5 sec. 

t Pc pm P — Pm sin 6 A P = PC-P k. AP A0 6 

0*30 1-8 1-504 1-483 0-317 0-47 9-76 80-49 
0-36 1*8 1-504 1-503 0-297 0-44 10-79 91-28 
0-40 1-8 1-504 1-466 0-334 0-49 11-70 102-98 
0-45 1*8 1-504 1-356 0-444 0-66 12-63 115-61 
0-50 1-8 2-511 1-940 - 0-140 - 0-21 13-78 129-39 
0-55 1-8 2-511 2-511 0-346 0-51 14-23 143-62 
0-60 1-8 2-511 0-905 0-895 1-32 17-63 161-16 
0*65 1-8 2-511 0-232 1-568 2-31 19-36 180-51 
0-70 1-8 — 

1 
— 22-99 203-50 

Example 3. The transmission system shown in Fig. 88 (a) represents 
a hydro-electric generating station supplying power over a double-circuit 
220 kV. transmission line to a power system whose effect is simulated hy 

an equivalent generating station and an equivalent load connected directly 
to the receiving-end busbars. The high-tension neutral points of the sending- 
end transformer banks are grounded through resistance, while those of 
the transformer banks at the receiving end are solidly earthed. The two 
transmission circuits are sectionalized by a bus-coupler at the mid point 
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of the line. The impedances of the several elements of the system, expressed 
in per unit on a 202 000 kVA. base, are as follows:— 

Hydro-electric Station (H) 

Transient impedance (ZUl) — 0*004 -f ;0*30 

Negative-sequence impedance (Z#2) = 0*12 + jO-334 

Steam Station (S) 

Transient impedance (Z^) = 0*0026 + jO-131 

Negative-sequence impedance (Z^2) = 0*0020 + j0*0851 

Transformer Banks 

Sending-end transformer impedance (ZiTS) — 0*005 -f* jO‘100 

Earthing resistance (R0) — 0*10 

Receiving-end transformer impedance (ZTIi) = 0*0055 + j‘0*109 

Transmission Line (two circuits in parallel) 

Positive-sequence impedance (ZTLi) = 0*043 + jO-288 

Negative-sequence impedance (Z//2) = 0*0043 + jO-288 

Zero-sequence impedance (ZrjrQ) = 0*075 -f i0*504 

Under steady-state conditions the operating data of the system are as 
follows:— 

f 

Normal voltage at receiving-end busbars (E/;) = 1*00 per unit 

Active power supplied by transmission line (PRl) = 200 000 kW. 

Reactive power supplied by transmission line (QRl) = 39 000 kVAr. 

Active power supplied by equivalent steam station 
(P*a) = 282 000 kW. 

Reactive power supplied by equivalent steam 
station (Qr2) = — 264 000 kVAr. 

Active power demand of equivalent load (PL) = 482 000 kW. 

Reactive power taken by equivalent load (QL) = — 225 000 kVAr. 

A double line-to-earth fault occurs on one of the transmission circuits 
near the sending-end busbars. Determine the time within which this fault 
must be cleared in order that the system may remain stable. Find also the 
steady-state power limit of the system. 

Solution, (a) The positive-sequence network is a simple T-circuit, 
as shown in Fig. 88 (6), the impedances of which are 

Z0 — (Z^ 4*- Z4~ Z 4“ Z 27f)» Zb = Zv and Zc ~ Z^ 

Taking the receiving-end busbar voltage as the axis of reference, we 
may write = 1*0 |0° = 1*0 4“ JO per unit. Converting active and 

reactive power values to per unit on a 202 000 kVA. base, we find— 
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Thus— 

Za = (0-004 -1- J0*300) + (0-005 + J0-100) + (0-043 -f JO-288) 
+ (0-0055 + j0-109) 

= 0-0575 + JO-797 = 0-799 |85-9° 

Z6 = 0-0020 + J0131 = 0-131 |88*6° 

Zc = 0-446 + JO-208 = 0-492 |2frO° 

so that the driving-point impedances are- 

Zi = Za + 
zbz, b*c 0-799 

Z6 + Ze v I-— + 0-449 + 30-339 

= (0-0575 + 30-797) + (0-0268 + jO-lll) = 0-0842 + 30-908 
= 0-913 |84-7° 

0-131 188-6° x 0-492 |25-0j> 

and 

Z2 z* + 
z„z„ 

0-131 
'r Z^TK “ u’101 + 0-504 + 31-005 

= (0-003 + 30-131) + (0-237 + 3-0-259) = 0-240 + 30-390 

= 0-458 [58-4° 

0-799 185-9° X 0-492 |25-0° 

while the transfer impedance is— 

Z = Za + Z„ + = 0-061 + 30-928 + 
0-799 |85-9° x 0-131188-6° 

= (0-061 +30-028) + (- 0-183 + j0-108) 
= 1-043 196-75° 

0-492 |25-0° 

0-123 +31-036 

(b) The negative-sequence network is shown in Fig. 88 (c). The 
impedance of the load ZL2 is not known, but may be assumed infinite 
without much error, as it is shunted by the low impedance Z.^2* The 
impedance between 1 and the point of fault is— 

Z1F = Zu2 + Z„ = (0-12 + JO* 334) + (0*005 + JO* 100) 

= 0*125 + JO-434 

while the impedance between 2 and the point of fault is— 

z,2z,2 
'•* + Z™ + zi + Z„ ^ Zrt2 + ZlR + Z-'2 Z2F — ZTLs> 

"''2 1 “«2 

= (0*043 + JO-288) + (0*0055 + JO-109) -f (0*0026 + JO-0851) 

= 0*051 + JO* 482 

The negative-sequence impedance of the system viewed from the 
point of fault is ZN, where 

111 1 1 

ZN~ Zw + Z2F ~ 0*125 + JO-434 + ; 0*051 + JO-482 

= (0*01 - J2-13) + (0*22 - J2-05) = 0*83 - J4-18 

The zero-sequence network is shown in Fig. 88 (d). As the zero-sequence 
current in the neutral is the sum of the zero-sequence currents in all 
three phases, any neutral impedance has an effective value per phase 
of three times its actual value. The impedance per phase equivalent 

14—(T.z8o) 
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to the neutral earthing resistance Ra is thus 3Rg. The impedance to 
the left of the point of fault is— 

Z1F = SZo + ZT8 = (0-3 + jO) + (0*005 + jO-100) = 0*305 + i0*100 

while the impedance to the right of the point of fault is— 

Za, = ZTLq + Z„ = (0*075 + j0*504) + (0*006 + 2*0*109) 

= 0*081 + 2*0*613 

The zero-sequence impedance of the system viewed from the point of 
fault is Z0, where 

111 1 1 

Z0 ” Z1F + Z2F ~ 0*305 + 2*0*100 + 0*081 + i0*613 

= (2*96 - 2*0*97) + (0*21 - 2*1*60) = 3*17 - 2*2*57 

For a double line-to-ground fault the equivalent positive-sequence 
fault impedance ZF is given by— 

% = + 2“= (0‘83 ” i4*18) + (3’17 ~ j2*57) 

= 4*00 - 2*6*75 

whence ZF = l/(4*00 - j6*75) = 0*065 + j0*110 = 0*128 |59*5° 

The positive-sequence network under fault conditions is accordingly 
as shown in Fig. 88 (e), in which the equivalent impedance ZF is con¬ 
nected as a shunt at the point of fault. The delta-connected system 
of impedances ZFt (Z7L1 + ZTR), ZLl may be replaced by the equivalent 

star-connected system ZA, ZB, Za> as shown in Fig. 88 (/). On putting 

ZT = ZTLl + Zru = (0*043 + j0*288) + (0*006 + j0*109) 

= 0*049 + 2*0*397 = 0*400 |83*0^ 

and LZ = ZF + Z7 + ZZj = 0*560 +"2*0*715 = 0*908 |51*jF 

we then have— 

ZJ5r 0*128 X 0*400 
= -M =.0:908 ■ 83:0°~-61:9- 

= 0-0564 |90-6° = - 0-0006 + j0-0664 

ZTZL 0-400 X 0-492 
Z' = -SZ1 = .0 908 |83-0°;i-25-0°-5_lj 

= 0-2167 |56-1° = 0-1207 + i0-1800 

ZtjZj. 0-492 X 0-128 
z° ~ “2Z“ ~ wm \— ° + 6?.5. 

= 0-0693 [32-6° =* 0-0584 + j0-0374 

Fig. 88 (f) represents a simple T-circuit whose impedances are— 

SB,' = ZB1 + ZTS + Zj - 0-0084 + iO-4564 = 0-467 |88-8° 

Z>' = ZB + ZSJ = 0-1233 + jO-3110 = 0-334 |68-8° 

Zc' = Z0 = 0-0684 + j0-0374 = 0-0693 [32-6° 
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The driving-point impedances of the system while the fault is on are 
thus— 

Z/ = Z a + = (0-0084 + jO-4564) + (0-0457 + j0-0370) 
2it + Z,. 

= 0-0641 + j0-4934 = 0-406 [83-7° 

and Z2' = Zb' + = (0-1233 + jO-3110) + (0-0502 + j0-0396) 
Al “T A 

= 0*1735 + iO*35O0 = 0*349 |63*7° 

while the corresponding transfer impedance is— 

Z = Za' + Z*' + 

= (0*1317 + j0*7674) + (- 1*260 + jl*799) 

= - 1*128 + j2*56G = 2*803 [113*7° 

(c) After the fault is cleared the impedance network of the system 
reverts to its original form, as shown by Fig. 88 (6), but the driving- 
point and transfer impedances are changed in value through the 
switching out of the faulty line section. The impedance of each double¬ 
circuit section is normally £(0*043 + j0*288) = 0*0215 + j0*144. After 
the faulty circuit is cleared the impedance of the affected section 
becomes twice the pre-fault value, viz. 0*043 + j0*288. The new value 
of transmission-lino impedance is thus— 

ZTL* = (0*0215 + j'0-144) + (0*043 + j0*288) = 0*0645 + j0*432 

Hence Za* — Z+ Z TS + Z ti" + %tr 

= (0*004 +i0*300) -f (0*005 + j0*100) 
+ (0*0645 + jO-432) + (0*0055 +^0*109) 

= 0*079 + j0*941 = 0*945 [85*2° 

The remaining impedances are unchanged in value, so that 

Zb" = Z„ = 0-003 + j'0-131 = 0-131 [88-8° 

and Z0" = Zc = 0-446 + j'0-208 = 0-492 |25-0° 

The driving-point and transfer impedances are thus— 

Z/ = Z.' + ZZ'*+i~' = 0-9451— + 0-1146176-55° 
= 0-108 + jl-052 = 1-058 |84-1° 

Z»* = Zb' + %7-^zP = 0-131188-6° + 0-3679 144-8° 

= 0-265 + j0-390 = 0-472 |55-8° 

Z" = Z0" + Zb" + = (0-082 + >1-072) + 0-2611148-8° 

= - 0-133 + >1-202 = 1-210 |96'8° 
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(d) The air-gap voltages of the generators (see Fig. 88 (6) ) are given 

by— 

vhere Ix = 

and I2 = 

Hence Ei = 

and E2 = 

E/2 4* IlZ0 
E* 4- I2Z b 

Pjtx + oQrx 0-704 + jO-149 

E~r “ 1-010^ 

0-764 + jO-149 = 0-778 |ll-0° per unit* 

-Pjr2 + 3Qr2 1-077 - jl’008 

WR " 1-0 |0^ 

1-077 - j1-008 = 1-475 |- 43-1° per unit* 

1-0 |0° + (0-778 |ll-0° X 0-799 |85-9°) 

(1-0 + jO) + (- 0-075 + jO-618) 

0-925 4- jO-618 -= 1-112 [33-75° per unit 

1-0 |0^ 4- (1*475 |- 43-1° X 0-131 [88-6°) 

(1-0 4- j0) 4- (0-135 4- j0-138) 

= 1-135 4- jO-138 = 1-142 [6-9^ per unit 

The initial system angle is thus— 

0o — 33*75° — 6-9° = 20-85 electrical degrees 

The air-gap powers of the generators are then— 

Pi 4- jQi = Exli = 1*112 [- 33-75° X 0-778 [11*0° 

= 0-865 [- 22*75° = 0-798 - jO-335 per unit 

P2 + 3Q2 = E2'I2 = 1*142 |- 6-9° X 1-475 |- 43-1° 

= 1-086 |- 50-0° = 1-080 - jl-191 per unit. 

The mechanical inputs to the generators under these conditions are 
accordingly— 

PM = Px = 0-798 per unit = 209 000 kW. 

Pm2 = P2 = 1-080 per unit = 283 000 kW. 

The assumption will here be made that the hydro-electric station 
contains five 50 000 kVA. generators whose aggregate output is thus 
(0*865 X 202 000) = 226 500 kVA. at a power factor of cos (22-75°) 
= 0-923 lagging, and that the steam station contains ten 45 000 kVA. 
units supplying (1*080 X 262 000) = 441 400 kVA. at a power factor 
of cos (50°) = 0*043 lagging. Taking Hx = 3-5 and H2 — 8-1 kW.-sec. 
per kVA. from Figs. 77 and .78, we have— 

Hx = 3*5 x 0-805 = 3-0 per unit 

H2 = 8-1 X 1-080 =.13-7 per unit 

„ HxH2 3x13-7 _ 

H=wr+5r ~w = 2-46perunit 

* See footnote on p. 181. 
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Equation (162) then gives for the equivalent mechanical input— 

HiPUl~ H1PMt (13-7 x 0-798)- (3-0 X 1-080) 

Pu ~ fl, + - 3-0 + 13-7 

= 0*460 per unit 

(e) The per unit air-gap powers of the two generators before the fault 
occurs are given by equations (156) and (156) as— 

Pi* . _ , ^1^2, 
Pkx = -£■ sin ffj + —£~ sin (6 — a) 

1-1122 
sin 5-3° + 

1-112 X 1-142 

and 

0-913 1 1-043 

= 0-125 + 1-217 sin (0 + 6-75°) 

= E* 
~ Z, 

1-142* 

sin (0 + 6-76°) 

I/O” . _ E-lEn . 
2 • sm a2-- sm (0 + a) 

^2 " 

sin 31*6° - 1-217 sin (0 - 6*75°) 
0*458 

= 1*493 - 1*217 sin (0 - 6*75°) 

[Check. When 0 = 0O, the air-gap powers become— 

PM = 0*125 + 1*217 sin (26*85° + 6*75°) = 0*80 = PMi 

PH = 1*493 - 1*217 sin (26*85° - 6*75°) = 1*08 = P 

corresponding to the initial steady-state conditions of operation.] 
The corresponding air-gap powers during the fault are, similarly— 

P ' - 1-1122 sin ft 3° 4- 1-112 X 1-142 sin ,f> 4- 23-7°i 
0-496 8 6 3 "*■ 2-803 sin (0 + 23 7 ) 

and 

= 0*264 + 0-453 sin (0 + 23*7°) 

1-1422 
iV - M sin 26*3° - 0*453 sin (0 - 23*7°) 

= 1*655 - 0*4^3 sin (0 - 23*7°) 

while after the fault has been cleared they become 

1-1122 . Q 1*112 x 1*142 _ 
P*i' = 1-058 Sin 5-9 + -1-210 ~" 8“ <0 + 6-3 > 

and 

0*120 + 1*050 sin (0 + 6*3°) 

1*050 sin (0 - 6*3°) 
1-1422 

P* " = r^r^r sin 34*2 
0-472 

= 1*551 - 1*050 sin (0 - 6*3°) 

(/) Before the fault occurs the per unit separating powers are thus— 

P0i = 0*798 - 0*125 = 0*673 

Po2 = 1*080 - 1*493 = - 0*413 

and during the fault they become— 

PH' = 0*798 - 0*264 = 0*534 

P0j' = 1*080 - 1*655 = - 0*575 
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After the fault is cleared the corresponding values are— 

P0j" = 0-798 - 0-120 = 0-078 

P„a’ = 1-080 - 1-551 = - 0-471 

Equation (168) then gives for the equivalent separating powers— 

a*p»i - HjP0a (13.7 x 0-073) + (3-0 x 0-413) 

P* ~ “ 3-0 + 13-7 

= 0*625 per unit 

, - aipot' (13-7 X 0-534) + (3-0 x 0-576) 

P° ~ H1 + Ht ~ 3-0 + 13-7 

= 0*546 per unit 

„ H2P0j" - (13-7 X 0-678) + (3-0 X 0-471) 

P° ~ Ht + Ht ~ 3-0 + 13-7 

= 0*640 per unit 

so that the per unit equivalent driving-point powers are— 

PD = PM- PQ = 0*460 - 0*625 = - 0*166 

PD' = PM - P0' = 0*460 - 0*546 = - 0*086 

PD* = PM - P00 = 0*460 - 0*640 = - 0*180 

The equivalent synchronizing-power maxima are found from equation 
(165) to be— 

P» = PmJ(l - 
4 H2 

sinJ cr , 

= 1*217. Vfr- 
BiH 2 

(2 X 2*46 X sin O^S0)2"1 

3*0 X 13*7 
1*212 per unit 

P/ = 0*453 V[1 ~ 0*5895 (sin 23*7°)2] = 0*431 per unit 

P/ = 1*050V[1 - 0*5895 (sin 6*30)2] = 1*046 per unit 

while equation (166) gives for the corresponding equivalent displace¬ 
ment angles— 

fHx-H.\ f 3*0 — 13*7\ 
tan * “ KWT+hJ tan * = tan (- 6*75°) 

==- 0*6408 X - 0*1184= 0*0759; ft = 4*3° 

tan n' = - 0*6408 tan (- 23*7°) = 0*2813; p' = 15*7° 

tan n* = - 0*6408 tan (- 6*3°) = 0*0708; ft" = 4*0° 

The per unit air-gap powers of the equivalent generator are accord¬ 
ingly— 

Ps = - 0*166 + 1*212 sin (0 + 4*3°) 

PK' = - 0*086 + 0*431 sin (0 + 15*7°) 

P/ = - 0*180 + 1*046 sin (0 + 4*0°) 

[Check. When 0 = 0O, the air-gap power of the equivalent generator 
becomes— 

Ps = - 0*166 + 1*212 sin (26*85° + 4*3°) = 0*46 = PM 

corresponding to the initial steady-state condition of operation.] 
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(g) Fig. 89 shows the equivalent power/angie diagram of the two- 
machine system of Fig. 88. To determine the critical clearing angle 
we have— 

= 

r2 = 

*1 = 

0*431 
= 0*356 

= 0*863 

0*626 

0*640 

0 626 

= 0*872 

= 1*022 

Also, equation (176) gives— 

02 = 180° - 4*0° - sin-1 (0*640/1*046) = 176*0° - 37*7° = 138*3° 

r2 sin ti" — 7*! sin 0*038 
tan y Hence 

r2 cos H — rx cos fX 
= - 0*073 

so that y — — 4*2°. Furthermore— 

rx cos (0O -f n') = 0*356 cos 42*5° = 0*260 
ra cos (0a + n') = 0*863 cos 142*3° = - 0*683 

(«A - «,0O) sin (0O + /<) = (141-4 - 23-4) X ^ X = 1-064 

(«i - ««) 0a • sin (0„ + /.) = - 0-160, X j0X = - 0-001360,° 

V'lTi* + U* ~ 2r,r, cos (/*' - /u')] = V[(- 0-038)*+(0-620)*] = 0-621 
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Equation (177) accordingly gives for the critical clearing angle— 

1-064 - 0-001350,° - 0-200 - 0-683 
cos (0,° - 4-2°) =-o4l- 

= 0-231 - 0-00200! 

the solution of which is 6X = 95-0°. Introducing the variable O' 

— (0 -f- ju'), we have— 

sin 60' = sin (26-85° + 15-7°) = sin 42-55° - 0-676 

T - *lP° _ Pq/ _ 0,546 
TiPfx 0-431 

0/ = (0X + fx') = (95-0° + 15-7°) 

1-24 

110-7° 

From pre-calculated angle/time curves (e.g. Fig. 57) one finds 
' = 2-24 for the generalized time. Equation (193) finally gives— 

-2,21 * VK 2-46 0-431 

507T ^ 

•431“| ^ 

1-0 J ” - 43 sec. 

If the system is to remain stable, therefore, the fault must be cleared 
within 21 \ cycles. 

The steady-state power limit is reached when 0 = (90° — 4-3°) 
= 85-7°, and its value is— 

pmax = - 0-i66 + 1*212 = 1-056 per unit 

= 1-056 X 262 000 = 276 700 kW. 
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CHAPTER VI 

LIMITATIONS OF A.C. POWER TRANSMISSION AND 
INTERCONNECTION 

Towards the end of 1938 the American Press commented upon 
an address given by the late Mr. J. D. Ross, President Roose¬ 
velt’s chief technical adviser on power generation, transmission, 
and distribution, to the Engineers’ Club of Seattle, the subject 
being the future possibility of linking all the varied sources of 
electric power in the United States by means of a trans¬ 
continental “grid.” The climax to Mr. Ross’s almost revolu¬ 
tionary exposition was the broad hint that such a vast inter¬ 
connecting power network would, in all probability, operate 
as a super-tension d.c. system.* This statement coupled with 
the fact that tests have already been carried out on a 5 000 kW. 
experimental d.c. system, operating at 30 000 volts and trans¬ 
mitting power over a distance of 17 miles, once more raises 
doubts in the engineering mind as to the future of alternating 
current for the transport of electrical energy in bulk and over 
long distances. 

For more than half a century the supremacy of alternating 
current in this sphere has remained unchallenged. The “battle 
of the systems ” ended in the ’eighties of last century, and has 
been almost forgotten. But the question now arises whether 
that battle was decisive, in an absolute sense, or whether— 
as Lord Rayleigh prophesied to Kelvinf at the time—direct 
current will have its revenge in a final encounter, after which 
it will once more come into its own. We are living in a revo¬ 
lutionary age, an era of renaissance, embracing the whole 
complex of human achievement—economics, politics, science, 
technology. In the engineering sphere we are to-day witnessing 
the decline of electro-dynamics as the motivating factor in 
electrical development and its supersession by electronics. And 
it seems likely, therefore, that a future victory of direct current 
over alternating current in the field of power transmission 

* See inter alia the Scientific American, December 1938. 
t Kelvin himself declared as. late as 1907: “I have never swerved.from 

the opinion that the right system for long-distance transmission of power by 
eleetrioity is the direct-current system.” 

204 
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will only be achieved by the aid of electronic devices of some 
kind. The advantages in favour of direct current are still 
largely theoretical.(1) In fact, at the moment d.c. transmission 
on the grand scale is barely a technical possibility, let alone 
an economic alternative to the present system of power trans¬ 
mission. Why, then, should responsible engineering opinion 
in the United States be giving serious consideration to high- 
tension direct current for this purpose ? The answer is undoubt¬ 
edly that the power limitation of a.c. transmission systems is 
no longer a matter of economics, but has become a question of 
a purely technical nature. 

When considering the future possibilities of the present 
system of power transmission, it is necessary not only to bear 
in mind this change in emphasis from economic to technical 
considerations, but also to investigate its causes. In the past 
the economic limitation has been closely bound up with the 
attainment of higher transmission pressures. At first, no diffi¬ 
culty was experienced in utilizing the transmission-line con¬ 
ductors to the full extent of their power-carrying capacity. 
Transmission distances were short, and the amount of power 
transmitted was only a few thousand kilowatts. As time went 
on transmission pressures and distances gradually increased, 
and from accumulated experience it was found that the 
optimum economy from the points of view both of capital 
cost and of transmission losses was obtained with a line pressure 
of some 1 000 V. for every mile of transmission distance, and 
it was generally felt that any technical limitation was to be 
sought in the characteristics of generating plant and trans¬ 
formers rather than in those of the transmission line itself. 

But the subsequent development in the United States, by 
1920, of such long-distance transmission systems as the Big 
Creek and Pit River schemes, involving distances of 240 miles 
and operating at a pressure of 220 kV., for the first time clearly 
showed that the characteristics of the transmission line imposed 
a prior limitation. This new limitation arose from the fact 
that with transmission lines of such length sufficient power 
could not be transmitted—at any rate, not with the requisite 
degree of reliability—to justify the cost of the transmission 
system. Nearly twenty years ago, then, the accepted theory 
and practice of power transmission indicated that 250 miles 
represented about the maximum distance over which electrical 
energy could be transported in bulk; while subsequent 
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technical advance, as reflected in the Boulder Dam scheme, for 
example, which came into operation in 1936, and which involved 
a transmission voltage of 287 kV. and a distance of 267 miles, 
has done nothing to vitiate that conclusion. The reason for 
this purely technical limitation in the case of the present 
system of power transmission arises partly from considerations 
of finite system reactance and partly from the excitation 
requirements of the transmission line. Let us examine the 
latter aspect first, for a qualitative analysis brings out clearly 

the influence of line excita¬ 
tion upon the economics of 
the transmission problem. 

Economic Aspects of the 
Transmission Problem. It 
is not generally realized 
that a transmission line 
requires excitation no less 
than a generator ora trans¬ 
former. This excitation 
varies with the load, as in 
the case of a dynamo- 
electric machine, and its 
supply must be regulated 
by the generators or by 

Fig. 90 additional synchronous 
condensers, or by both 

means. Moreover, it has a direct influence on the voltage at the 
receiving end of the transmission line, and it is precisely this 
interdependence between power transmitted, line voltage, and 
line excitation which leads to the difficulty of operating long¬ 
distance transmission lines. In this connection it is to be borne 
in mind that the excitation requirements of the line may be 
met partially, and in the case of very long lines wholly, by the 
charging current due to line capacitance. This charging 
current, being wattless, contributes only to the transmission 
losses, and for a given line there is an optimum value of trans¬ 
mission pressure for which these losses are a minimum. For line 
pressures below this value the power current is then too great, 
while for higher pressures the charging current becomes exces¬ 
sive. The bigger the line susceptance due to capacitance, the 
lower will be the optimum transmission pressure. As the 
capacitive susceptance is proportional to the length of the line 
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as well as to the system frequency, it is at once seen that the 
optimum value of the transmission voltage (i.e. the value for 
which the power losses are a minimum) can be raised, thus 
increasing the power-transmitting capacity of the line, by 
lowering the frequency. Here, then, we have the first indication 
as to the economic use of direct current as a means of long¬ 
distance power transmission. 

The influence of the charging current on the transmission 
losses may, perhaps, be seen more clearly from Fig. 90. If E 
be the transmission pressure and Ip the load (power) current, 
then the power transmitted is \/3EIv. If Iq be the charging 
(quadrature) current, then the exciting kVAr. is, similarly, 
\/2>EIq. The power losses are then 312R = 3.R (Iv2 + Iq2), 
where R is the line resistance per phase. By doubling the 
transmission voltage the charging current will be doubled 
also, but the load current will be halved (for the same trans¬ 
mitted power). The resultant line current will thus be reduced 
from Ix to I2. On raising the transmission voltage still further 
a point is eventually reached where the line current becomes 
a minimum, as shown at I3 in Fig. 90. Any increase in voltage 
beyond this optimum value will result in an increase in the 
total current carried by the line, due to the preponderating 
effect of the charging current. Suppose now the length of the 
transmission line be, say, doubled. If E remains unchanged 
at the above optimum value, it is clear that the charging current 
IQ will also be doubled. Consequently the line current I will 
be increased, and the line will no longer be operating under the 
most favourable conditions. To reduce the line current to the 
optimum value necessitates a decrease in transmission voltage. 
But such a decrease would defeat its object, for it would require 
a corresponding increase in the load current Iv if the power 
transmitted were to remain the same. This would in turn 
result in increased line losses, over and above the doubling of 
these losses due to the twofold increase in transmission distance, 
and thus of the line resistance. 

The only way out of this technical dilemma is to increase 
the conductor cross-section. By this means the condition of 
optimum transmission voltage may be retained, but at the 
expense of increased line material and supports, that is to 
say, of an increase in cost of the transmission line. The charg¬ 
ing current thus directly enters into the economics of the 
transmission problem. This aspect of long-distance power 
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transmission is best shown by deriving an expression for a figure 
of merit for the transmission line which takes into account not 
only the line losses, but also the amount of line material. This 
figure of merit may be termed the “costliness factor” of the 
transmission line, and is then defined as the geometric mean 
of the per unit transmission losses and the weight of line 
material per kilowatt transmitted. The former term is a 
measure of the operating cost of the line, while the latter term 
is a measure of the capital outlay. The resistance per phase 
is R = pD/A, where p is the resistivity, A the cross-sectional 
area of the conductors, and D the transmission distance. If P 
be the power transmitted, then the per unit power loss is— 

V?(7 
AP ( v + V) . (215) 

The weight of line material is W = 3 AD A, where A is the 
density of the conductor material. The weight per kilowatt 
transmitted is thus— 

W 3A DA 
w~ P~ p . (216) 

From (215) and (216) the costliness factor of the transmission 
line is— 

F — Vpw = -p VpA(Iv2 + I*) 

WKtoH2^^)] <2i7) 
That is— 

. (217a) 

. (2176) 

sphere kv k2, and kz are constants, / is the system frequency, 
D is the transmission distance in miles, E is the line pressure 
in kilovolts, P is the transmitted power in kilowatts, and C is 
the line capacitance to neutral in microfarads per mile. 

It is at once seen that in the case of d.c. transmission (when 
/ = 0) or of short a.c. lines (for which CD ~ 0) the second term 
in the above expressions becomes zero, so that the figure of 
merit for the transmission line is then determined solely 
by the ratio of distance to voltage. As has already been 
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mentioned, past experience has gone, to show that the optimum 
value of this ratio is in the neighbourhood of one mile per kV. 
The second term in equation (2176) becomes of importance 
whenever the effect of capacitive reactance begins to make 
itself felt, that is, as soon as the question of frequency enters 
into the transmission problem. The occurrence of this second 
term in the expression for the overall figure of merit F is in 
itself an indication that the transmission of power cannot 
take place so economically with alternating current as with 
direct current at the same voltage. Furthermore, as C is 
practically a constant, it is evident that with increasing 
transmission distance D the transmission of power becomes 
ever less economical. 

Take, for example, the Boulder Dam line, for which E 
— 287 kV., D — 267 miles, and P = 240 MW. If the trans¬ 
mission distance were increased to 500 miles, the line voltage 
would have to be raised to 540 kV. in order that the first 
term in equation (2176) should remain unaltered. The simul¬ 
taneous increase in D and E, however, raises the second term 
in equation (2176) to 6-5 times its former value. Hence P 
would have to be increased to 1 560 MW. in order to restore the 
costliness factor of the transmission line to the original figure. In 
the case of a 750-mile transmission line, the new values would 
be E = 810 kV. and P = 5 250 MW. Under these circum¬ 
stances we arrive at a state of affairs where with distances of 
500 miles, let alone 750 or even 1 000 miles, the necessary trans¬ 
mitted power becomes fantastically large if the transmission 
system is to operate upon an economic basis. It is clear, there¬ 
fore, that the question of line excitation is the determinating 
factor in the economics of the transmission problem. 

Technical Aspects and Limitations. Let us now consider this 
problem from its technical aspects. In the first place, there is 
a limit to the transmission voltage, imposed by considerations 
of insulation. Probably the maximum figure attainable to-day 
is in the region of 500 kV. Secondly, there is a limit to the 
amount of power which can be transmitted over a given line, 
this limit being determined in the last analysis by its inductive 
reactance. As explained in Chapter IV, the maximum power 
which can be carried by a transmission line is— 
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where X is the total line reactance, Ex and E2 are the voltages 
at the two ends of the line, and 0 is the angle of displacement 
between them. The latter depends in a complicated manner 
on the ratio between the line reactance X and the generator 
and load reactances, as well as upon the inertias of the syn¬ 
chronous machines at the two ends of the line. Average values 
of the transmission angle 6 lie between 30 and 60 electrical 
degrees, according to the length of the line. Such values 
correspond to the steady-state power limit of the transmission 
system, which is reached when the phase angle between the 
voltages behind the synchronous machine reactances attains 

90°.* For example, the 
stability limit might be 
reached with an angle of 
25° between the air-gap 
and terminal voltages of 
the generators, 36° 
between the terminal volt¬ 
ages at the two ends of 
the line (including trans¬ 
formers), and 29° between 
the terminal and air-gap 
voltages of the syn¬ 
chronous machinery at the 
receiving end of the line. 

Fig. 91 Assuming that the receiv¬ 
ing-end plant, whether 

generators or synchronous motors or condensers, provides for 
the necessary line excitation so that the two line terminal volt¬ 
ages are kept the same, and taking average figures of 0-7 ohm 
per mile for the line reactance and 35° for the transmission 
angle, then equation (218) becomes— 

E2 E2 
P” = MDX 0<56 = 0 8 D • ' (218a) 

This relation is shown graphically in Fig. 91. In the case 
of a 400-mile transmission line operating at 400 kV., for 
example, the power limit would thus be 320 000 kW. On the 
other hand, at 132 kV. the power limit for the same transmission 
distance would only be 36 000 kW. Assuming the same 
“costliness factor” as for the Boulder Dam line, the minimum 

* Assuming all circuit resistance to be neglected, as in equation (218). 
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powers that can be economically transmitted in these two cases 
are, respectively, 1 370 000 kW. and 92 000 kW., as given by 
equation (217a), when taking / = 50 cycles and G — 0*014 jlcF. 
per mile as an average value for modern high-tension trans¬ 
mission lines. The prior limitation imposed by stability 
considerations in the case of long-distance transmission is here 
clearly apparent. 

The requirements of line excitation, which, as has already 
been shown, constitute the determining factor in the economics 
of long-distance transmission lines, are also reflected in the 

voltage at the receiving end of the line. Due to the combined 
effect of capacitance and inductance, the receiving-end voltage 
depends to a very large extent upon the transmitted power 
and the load power factor.* Consider, for example, the case of 
a 600-mile line operating at 200 kV. and carrying a load of 
45 000 kW. at 0*87 lagging power factor. Fig. 92 shows the 
variation in line voltage, line current, and line power-factor 
angle in terms of distance in miles from the receiving end. It 
is seen that the line current rapidly changes in magnitude, 
reaching a minimum value of 80 per cent of the normal at a 
distance of 150 miles. Due to the heavy lagging reactive 
component of the load current (50 per cent) and the high 
capacitance of the line, the phase angle between current and 
voltage also changes rapidly, passing through zero where the 

* See Chapter I, Reference (4). 

15—(T.180) 
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ourrent is a minimum, and reaching nearly 50 degrees leading 
at the sending end of the line, where the current has risen to 
over 160 per cent of its normal value. The considerable effect of 
the charging current taken by long-distance transmission lines 
is clearly demonstrated by this rapid change, and it is seen 
that the low power factor at the sending end of the line results 
in a leading reactive kVA. requirement amounting to no less 
than 125 per cent of the power transmitted. Consideration 
of the variation in line voltage, on the other hand, reveals 
that the total variation is less than 20 per cent, the maximum 
increase above the receiving-end voltage being only about 
7 per cent. This favourable variation is due to the highly 
inductive load. 

Fig. 92 illustrates the general tendency of long high-tension 
transmission lines to show an overall rise in voltage from the 
sending end to the receiving end, provided the load is less than 
that corresponding to the so-called natural load condition of 
the line—a condition representing the maximum economy in 
the transmission of power. Consider for a moment an ideal 
transmission line having negligible resistance and leakage 
conductance. If the load could be gradually increased from 
zero, it would be found that there was a definite value of trans¬ 
mitted power for which both the current I and the voltage E 
remain constant in magnitude at all points along the line. This 
critical load is termed the natural load of the transmission line. 
The natural load condition is then defined by 1 = Z0 = 
constant, where Z0 is the characteristic impedance of the line. 
The natural load is therefore— 

E2 

P0=VdEI = y- . . . (219) 

and is thus a function of the transmission pressure only, since 
the characteristic impedance ZQ varies but little for different 
overhead transmission lines. The latter quantity is defined by— 

/Z_ /(B+jwO\ jL 
V Y~ aJ\G +j(0CJ~ aJc 

and in general has a value of some 400 ohms. Under natural 
load conditions, then, the voltage and current along the line 
each undergo the same increasing phase displacement with 
respect to their receiving-end vector positions, but remain 
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unchanged in relative phase displacement and, neglecting 
losses, in magnitude. 

This relation may be expressed as— 

E* I* 
Es_E^ 
Is “ I 

V 3Z0 = constant; 

where 0 = pD and p ~ 2rrf\/(LC) is the propagation constant 
of the transmission line in radians per mile (if L and C are 
expressed per mile), while the subscripts S and R refer to the 
sending and receiving ends, respectively. The radical term 
\/{LC) is the reciprocal of v, the velocity of propagation, which 
is nearly that of light, viz. 186 000 miles per second for an 
overhead line. Hence the value of p for a 50-cycle trans¬ 
mission line is 0-17 radian, or 10*3 electrical degrees per 100 
miles. The transmission angle 0 between the sending- and 
receiving-end voltages (and currents also) is thus given by— 

where A is the natural wavelength of the transmission line, 
amounting to 3 700 miles at 50 c/s. The effect of resistance 
and leakage conductance, which has so far been neglected, 
is to cause an attenuation of the voltage and current along the 
line in accordance with an exponential law, due to the appear¬ 
ance of a real term in addition to the imaginary term j0 in 
the index of the exponential e. That is to say, in addition to a 
gradual and simultaneous shifting in phase of the voltage and 
current vectors, at the rate of 1° for every 10 miles of line, 
there occurs an exponential reduction in magnitude of these 
vectors which is also at the same rate for both. 

When operating under “natural” load conditions, therefore, 
a transmission line behaves as a theoretically perfect conductor, 
permitting a specific amount of power to be transmitted over 
any desired distance. In fact, with unity load power factor 
at the receiving end, the electrical behaviour of such a line is 
almost the same as that of a d.c. line. However, in practice 
we are faced with the very real difficulty that the power to be 
transmitted can seldom be maintained at the value correspond¬ 
ing to the natural load of the line, which, putting Z0 = 400 
in equation (219), is given by P0 = 2-5P2, where P0 is in kilo¬ 
watts and E in kilovolts. Any considerable deviation from this 
critical value upsets the delicate balance between line drop 
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due to inductance, and charging current due to capacitance. 
And as with long lines the reactance drop and charging current 
assume enormous proportions,* it is clear that any substantial 
deviation from the natural load condition will have a disastrous 
effect upon the sending-end voltage and reactive power con¬ 
sumption. If the power transmitted falls below the critical 
value, the reactive voltage drop decreases, but for the same 
sending-end terminal voltage, the charging current will remain 
unaltered. The latter, then, generates in the inductance of 
the line an in-phase voltage component which effects a rise 
in pressure at the receiving end—known as the “Ferranti 
effect.” (In the case of a 600-mile line at no load, for which the 
charging current is equal to the natural load current, the 
voltage at the receiving end would be double the transmission 
pressure.) Conversely, if the load rises above the critical value, 
the reactive drop increases and results in a fall in voltage 
towards the receiving end. 

A comparison of equations (218) and (219) reveals that there 
is a given transmission distance for which the maximum load 
determined by considerations of system stability (Pm) is equal 
to the natural load (P0) and that this distance is independent 
of the transmission voltage. The limiting transmission distance 
is defined by— 

Z0 sin 0 sin 6 
‘27tfL ~ p 

(220) 

= 590 sin 0 miles 

Taking 6 = 35° as an average value for the transmission angle, 
it is seen that the limiting distance over which power can be 
transmitted under the most favourable conditions from the 
operating standpoint is about 350 miles. This “natural load 
limit” is shown in Fig. 91, along with the “stability limit” 
curves based on equation (218a). 
^/The Future Trend in Power System Interconnection. The 
future of the present system of power transmission is intimately 
bound up with the possibility of increasing the transmission 
distance beyond the limit of 300 to 400 miles. For it is but 
seldom that sources of cheap water power are within easy 
reach of industrial load centres, while the linking of existing 

* A little consideration will show that the reactive voltage drop is Em — E0, 
while the charging current is similarly I0 = I©, where 0 is expressed in 
radians. 
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power systems in the United States or in Europe, as was dis¬ 
cussed at the 1930 World Power Conference, involves the 
construction of certain key tie lines whose length would 
considerably exceed the present limiting distance of some 
350 miles. As already explained, this economic limit is dictated 
by considerations of stability, that is to say, by the maintenance 
of synchronism between the machines located in the generating 
stations at the two ends of the line. The synchronizing power 
keeping the two groups of machines in step is transmitted 
over the line by virtue of an angular displacement between the 
air-gap voltages (i.e. the e.m.f.’s behind the synchronous 
reactances) of the machines, and there is a critical angle 
beyond which synchronism is lost. It is this displacement 
angle upon which the stability of the transmission system as a 
whole, under steady load conditions, ultimately depends. 

Considering the transmission system as a whole, therefore, 
the relation expressed by equation (218) for the transmission 
line alone becomes— 

pm = 
EgEm sin £ 

x°(1+i?) 
(221) 

where E0 and EM are the generator (sending-end) and motor 
(receiving-end) air-gap voltages respectively, and 6 is their 
mutual displacement.* 

jB0 and XQ are the resistance and reactance components of 
the transfer impedance of the transmission system. For 
purposes of discussion, however, the effect of resistance on 
system stability may be neglected, so that, with R0 — 0, the 
critical angle is d = 90°. Equation (221) then becomes simply— 

P _ EqEm EqEm 
X0 + X + XA 

(222) 

where X0 and XM are the synchronous reactances of the 
generators and motors respectively, and X is the reactance of 
the intervening transmission line, including its terminal 
transformers. 

The circuit parameter which particularly limits the amount 
of power that can be transmitted is the system reactance JST0. 
Usually the line reactance is not the most important element; 
for much more reactance is, as a rule (i.e. where the line is not 

* Cf, Equation (40). 



216 POWER SYSTEM INTERCONNECTION 

very long), associated with the terminal apparatus. The 
synchronous machines at each end of the system thus contribute 
to the power limitation of a transmission system to a very 
considerable extent. This is clearly shown by the example of 
Fig. 93, where the machine reactances are equivalent to an 

mLQMJgXQJMQ. 121t000m 

Fig. 93 

extension of the transmission line amounting to 490 miles, or 
no less than 270 per cent of the line itself. 

From the point of view of increasing the transmitted power 
as limited by stability considerations, it is therefore advan¬ 
tageous to employ low-reactance machines at both ends of the 
system. But this entails greater size, increased capital cost, 
and thus greater installed cost and lower efficiency as compared 
with synchronous machines of normal design. In addition, 
such special machines would give rise to fresh problems in 
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that under fault conditions the short-circuit currents would be 
greatly increased, thus necessitating circuit-breakers designed 
for much heavier duty. 

The only remaining possibility of increasing the limiting 
power transmitted, therefore, lies either in reducing the total 
line reactance X or in neutralizing its effects by some means. 
Apart from the fact that little is to be gained from a reduction 
in transformer reactance, since this represents but a fraction 
of the total line reactance, this reactance is more or less fixed 
by other requirements of transformer design; while the line 
reactance itself, being proportional to the transmission distance 
and inversely proportional to the number of parallel circuits, 
can only be reduced by adding one or more circuits. This in 
turn makes the transmission line uneconomic; besides which, 
the increased charging current, due to the increase in line 
capacitance, upsets the stable operation of the generators and 
thus lowers the stability limit of the system as a whole. 

So far consideration has only been given to the steady-state 
stability limit of the transmission system as determined by 
the angle <5 of equation (221). It is obvious that under 
conditions of steady-load operation, a certain margin must 
be provided between the actual operating angle and the pull-out 
angle defined by d — tan-1 (XJRq) ^ 90°, as otherwise syn¬ 
chronism may be lost during a disturbance. The determination 
of the maximum operating angle consonant with the main¬ 
tenance of system stability during disturbances, such as faults 
or switching operations, is a matter of considerable difficulty, 
and is involved in the general problem of transient stability 
which has been receiving so much attention in recent years. 
With modern systems of high-speed excitation, employing 
exciters having a build-up rate of 6 000 V. or more per second, 
the transient power limit can be raised to some 80 per cent of 
the steady-state limit given by equations (221) or (218), so 
that the curves of Fig. 91 must be looked upon as representing 
the ultimate power limits of a transmission system rather than 
limits actually attainable at the present time. 

Methods o! Compensating Transmission-line Reactance. It is 
by now generally recognized that the only hope for the a.c. 
system of power transmission lies in the possibility of extending 
these steady-state power limits to some new ultima thule> by 
providing special means for neutralizing the power-limiting 
effects of line reactance. The first attempt to solve this problem 
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was made in 1921 by F. G. Baum, whose paper entitled “ Voltage 
Regulation and Insulation for Large-power Long-distance 
Transmission Systems ” (2) was hailed as an especially important 
contribution to the art of power transmission and inspired a 
series of theoretical studies and experimental investigations, 
undertaken during the following five years, which laid the 
foundations of steady-state stability theory. 

Baum’s system of transmission rests on the principle of the 
intermediate synchronous condenser station, a principle which, 
broadly speaking, involves supplying to the transmission line, 
at intervals along it, the lagging reactive power necessary to 
compensate for the lagging reactive-power consumption due 
to line inductance. In Baum’s view, moreover, these inter¬ 
mediate condenser stations are to be regarded as an integral 
part of the transmission system, and therefore their cost must 
be met by the increased economy of operation which their 
inclusion makes possible; but any similar equipment installed 
at the receiving end for the purpose of correcting the power 
factor of the load should not enter into the cost of transmitting 
power, for the reactive power consumption in that case is a 
characteristic of the receiving-end (load) network, and not of 
the transmission line. 

One of the outstanding features of the Baum system of 
power transmission, in fact the main outstanding feature, is 
that the transmission line as a whole acquires the electrical 
characteristics of its individual sections. As the direct result 
of the reactive power compensation maintained by the several 
intermediate condenser stations, the voltage at each point of 
section is maintained constant and equal to the transmission 
pressure. The vector voltage difference between the sending- 
end and receiving-end voltages is thus subdivided into a number 
of successive voltage drops, each corresponding to a transmis¬ 
sion angle 0 which is only a fraction of the angle represented 
by the total voltage drop along the line (see Fig. 94). The 
consequent reduction in the angle d between the internal 
voltages of successive synchronous machines means very greatly 
increased system stability, while for a given operating angle 
the amount of power which can be transmitted without danger 
of instability is a function of the distance between successive 
synchronous condenser stations, and not of the total trans¬ 
mission distance. In other words, with the Baum system of 
transmission the distance over which power may be transmitted 
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is no longer limited by technical considerations, but becomes 
purely a question of economics. 

The Baum system of power transmission is, in effect, a 
method of “shunt excitation” of the transmission line. Apart 
from the vital question of the transient stability characteristics 
of the intermediate synchronous condensers, a question which 
does not as yet seem to have been satisfactorily answered, (3) 
there remains a fundamental drawback to the use of such 
shunt-connected machines: their size, and therewith their 
cost, increase as the square of the transmission voltage. And 
as a long-distance transmission line has to operate at really 
high voltages to justify its existence on economic grounds, it 

<a) 
Transmt^sunt Lin* 

C'Cenerntor 

straightaway transmission C* Generator S*Syruhrs. Condenser 

BAUM SYSTEM OF TRANSMISSION 
(d) 

is self-evident that there must be a prior limitation to the 
economic transmission distance imposed by the rapidly in¬ 
creasing cost of intermediate condenser stations. 

Recognition of this prior limit some twenty years ago led 
to the investigation of alternative methods of compensating 
the inevitable line inductance, and culminated in the develop¬ 
ment of “series excitation” schemes, involving the insertion 
of capacitance in series with the line. Line compensation is in 
this case direct, being based on the principle of voltage reson¬ 
ance, and is obtained by the addition, at intervals along the 
line, of a series voltage equal and in phase opposition to the 
voltage drop due to the load current acting in the inductance 
of the individual line sections. 

The first application of this method of line compensation 
to an actual transmission system was a series capacitor or 
static condenser installation for the voltage regulation of a 
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33 kV. line in 1928, (4) and the general circuit arrangement 
for one phase is shown in Fig. 95. Protection against fault 
conditions, such as a short circuit of the line on the load side, 
which would impress the full line voltage on the condenser 
bank, or a breakdown of the condenser dielectric, which would 
allow the load current to arc through the faulty section, is 
provided by a combination of a special sphere gap and a shunt¬ 
ing contactor of high-speed type. The protective equipment 
is arranged to operate as soon as the voltage across the capacitor 
rises to 150 to 200 per cent of its rated value, thus affording 
overload protection as well. The high-speed contactor short- 
circuits the capacitor in under 10 milliseconds, and its rapid 

Hiyh-zpeed. 
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operation ensures that under fault conditions the full line 
reactance is almost immediately available to limit the short- 
circuit current. 

The success attending this installation led, in 1930, to the 
investigation of the effects of series capacitors upon the power 
available and the steady-state stability in the case of a 250-mile 
transmission line operating at 110 kV., and having a total 
inductive reactance (including transformers) of 263 ohms, 
necessitating a series capacitance of 10 pF. per phase. The 
results of this theoretical study indicated that the power limit 
could be raised from 53 000 kW. to 113 000 kW., representing 
an increase of 110 per cent. 

The rather elaborate protective system required by such 
static condenser installations is done away with in an alter¬ 
native method of series compensation put forward by T. H. 
Morgan in 1930, and illustrated in Fig. 96. Morgan’s method 
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employs a synchronous motor-generator set, comprising a 
synchronous motor supplied from the transmission line through 
a transformer bank, and an “ inductive compensating gener¬ 
ator” from which a leading quadrature voltage, identical both 
in magnitude and phase with that produced by series capacitors, 
is obtained and, via a current-transformer bank, is injected 
into the transmission line. As this series voltage must at all 
times be proportional to the line current, a polyphase mercury- 
arc rectifier unit can be used to provide the excitation of the 

compensating generator, the rectifier being fed from special 
current transformers connected in series with the primary 
windings of the main current transformer bank. 

The rapid response in machine excitation obtained by this 
means is ideal from an operating standpoint, (5) while the 
magnetic saturation occurring under system short-circuit condi¬ 
tions limits the compensating effect of the machine and thus 
reduces the fault current by allowing the line reactance to 
exert a very considerable current-limiting influence. In fact, 
this inherent characteristic of the inductive compensating 
generator enables full compensation to be obtained up to a 
critical value of the line current, but almost no appreciable 
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increase in compensation will occur if the current exceeds this 
value. 

Dual Compensation Systems. The kVAr requirements in 
compensating plant are the same whether the system of com¬ 
pensation is based on shunt or series excitation of the trans¬ 
mission line, (6) so that on that account there is little to choose 
between the two alternatives. From the operating standpoint, 
however, the series methods have the advantage that, being 
direct, the amount of compensation is automatically adjusted 
to the line current. Yet none of the foregoing systems of 
compensation attempts to nullify the effects of the charging 
current taken by long high-voltage transmission lines. As 
has already been shown, this wattless component of the total 
line current adversely affects the economic limit of power 
transmission, and only ceases to enter into the transmission 
problem in the case where, by appropriate compensation of 
line inductance, the stability limit is extended so as to make 
the maximum transmissible power coincide with the natural 
load of the transmission line for distances exceeding the present 
limiting value of some 350 miles. Hence, although compensa¬ 
tion of line inductance enables us, technically at any rate, to 
transmit power over any distance we choose, the charging 
current will impose its own limitation on the transmission 
distance, because of the rapidly diminishing economy with 
which power transmission takes place under these circum¬ 
stances. 

Proposals taking into account this ultimate economic limita¬ 
tion were first put forward in 1932 by H. H. Skilling (7) on the 
basis of the tuned transmission line, that is, a power line 
operating under natural load conditions, and having a length 
equal to half or one-quarter of the natural wavelength (3 700 
miles at 50 c/s). Skilling’s original proposals envisaged the 
adoption of higher transmission frequencies so as to reduce 
the length of the half-wave or quarter-wave line to the par¬ 
ticular transmission distance required. His subsequent pro¬ 
posals (1936) adhered to normal-frequency transmission, and 
provided for series capacitor compensation of line inductance 
together with what may be termed “shunt inductor” com¬ 
pensation of the line capacitance. In this way the transmission 
line may be artificially loaded so as to have a natural wave¬ 
length many times the actual transmission distance. 

Skilling’s view is that the shunt inductance of the terminal 
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transformers can be made to compensate the capacitance of 
the line. This is no doubt correct where relatively short lines 
are concerned. But the enormous charging currents taken by 
really long transmission lines—and we are here considering 
distances of the order of 500 to 1 000 miles—which necessarily 
would have to operate at pressures of from 400 to 600 kV., 
place such a proposal right out of court. 

The most interesting method of dual compensation, and one 
which would appear to offer a complete solution of the trans¬ 
mission problem, is that put forward some years ago by Major 
A. M. Taylor, (8) and recently extended to cover the problem of 
transient instability (9) as described by him at the 1937 Congress 
of the C.I.G.R.E., where it created considerable interest. 

Taylor’s system* of power transmission makes use of special 
transformers, termed 44 quadrature boosters,” which at intervals 
transfer the capacitance of the line from its natural shunt 
position between each line and neutral to the required 
position in series with the line inductance of each phase. In 
other words, the quadrature booster transformer converts the 
inherent shunt capacitance of the line into the series capacitance 
needed to compensate the line inductance. 

As is well known, a three-phase transformer can be arranged 
so as to give a secondary voltage in leading phase quadrature 
with the voltage impressed on the primary. Quadrature 
booster transformers of this type have recently been used to 
obtain proper load sharing between two parallel branches of a 
transmission system, one of which also formed part of a trunk 
transmission line.(10) The essential feature of the quadrature 
boosters in the Taylor system of power transmission is -the 
relationship between the secondary voltage neutralizing the 
inductive pressure drop in the line, and the primary current 
neutralizing the charging current of the line, whereby voltage 
resonance on the secondary side and current resonance on the 
primary side are simultaneously obtained, and thus complete 
“tuning” of the transmission line is effected. 

This fundamental relationship is illustrated by Fig. 97, 
which represents one phase of a quadrature booster connected 
between two sections of line. If C is the line capacitance to 
neutral per section and L is the corresponding line inductance, 
then the charging current per section is Ia == jcoGE, while the 
inductive voltage drop in each section of line is Ex — IX 

♦ Brit. Pat. No. 459,121, 1938; U.S.A. Pat. No. 2,180,264, 1939. 
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— jcoLI. Complete compensation of the line inductance then 
necessitates a quadrature boosting voltage from the transformer 
secondary defined by EB = — Ez. Similarly, compensation of 
the charging current requires that the booster primary draws 
a current defined by IB — — 10. (The former will be a leading 
voltage and the latter a lagging current.) For these conditions 
to be fulfilled simultaneously, the reactive volt-amperes on 

Fig. 97 

the primary and secondary sides of the quadrature booster 
must be equal. Hence— 

EIb = IEX ; or — jcoCE2 = — jooLI2; 
that is— 

\l_7 
i ~ v C 01 

so that complete dual compensation is only to be obtained when 
the load impedance is equal to the characteristic impedance 
of the transmission line; that is, when the line is operating 
under natural load conditions. 

In the case of very long lines, with their enormous charging 
currents, it may not be possible—due to the increase in E 
necessitated on economic grounds by the increasing transmis¬ 
sion distance—to obtain sufficiently high values of the load cur¬ 
rent I to maintain the requisite balance between the secondary 
and primary kVA. values of the quadrature booster. In other 
words, under these conditions the booster primary current— 

.coLI* 
E 

. (223) 
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will tend to become less than the charging current I0 = joGE. 
Fortunately, however, in the case of super-power long¬ 

distance trunk lines, transmission is not commercially possible 
unless the amount of power transmitted is very large—of the 
order of megawatts—so that there is then in most cases a wide 
enough range within which balance between charging current 
and booster primary current can be maintained. For those 
somewhat extreme cases where, in spite of high values of trans¬ 
mitted power, IB is yet less than ic, Taylor’s proposals include 
the insertion of ballast inductance in the line in order artificially 
to increase the value of L in equation (223) and so to obtain 
the requisite balance between IB and I0. 

At first sight it would appear that at loads lower than full 
load the transmission pressure would have to be reduced in 
the same ratio as the load current in order to maintain the 
above balance. For example, if the load current I is halved, 
the booster secondary output kVAr. is reduced to one-quarter 
of its normal value. The corresponding reduction in primary 
input would thus involve halving the voltage E, and this 
reduction would have to be maintained throughout the whole 
length of the transmission line. This difficulty may be readily 
overcome, however, by raising the sending-end voltage some¬ 
what above the value corresponding to the above ratio of 
reduction. The resulting unbalance between booster primary 
current and line-charging current then leaves a slight excess of 
leading quadrature current, which generates an in-phase voltage 
in the line inductance. (11) 

The cumulative effect of this in-phase voltage rise along the 
line is to raise the receiving-end voltage to the normal value 
corresponding to the full-load condition. Fig. 98 is a numerical 
illustration of the Taylor system of power transmission applied 
to the problem of transmitting 1 000 MW. at unity power 
factor over a distance of 1 000 miles by means of a double¬ 
circuit 440 kV. line, and with five intermediate quadrature 
booster stations at 200-mile intervals. Diagram (a) shows the 
current and voltage relations at full load, while diagram (b) 
gives the corresponding relations at half-load* and with equal 
sending- and receiving-end voltages. Finally, diagram (c) 
depicts the “imbalanced condition” of half-load operation in 

* i.e. 50 per cent load current. As the voltage is also 60 per cent below 
normal, the transmitted power is then one-quarter the full-load value, or 
126 MW. per circuit. 
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which the sending-end voltage is two-thirds instead of one-half 
normal. It is seen that there is an excess charging current 
averaging 122 A. per 200-mile section which, in traversing the 
line reactance of 140 ohms per section, generates an in-phase 
voltage rise amounting to 86 kV. per phase for the five sections; 
so that the receiving-end voltage remains at its normal value 
in spite of the sending-end voltage being one-third less. 

A comparison of the several methods of line compensation 
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is given in Fig. 99. Diagram (a) shows the normal transmission 
fine in which all the circuit characteristics are operative. 
Diagram (6) illustrates the series method of line compensation, 
in which voltage resonance occurs between the line inductance 
L and the series capacitance C", so that the line behaves as if 
it possessed no inductance. The line capacitance, however, 
remains uncompensated, and the charging current therefore 
contributes seriously towards the line losses. Diagram (c) 
represents the so-called tuned transmission line, that is, a 
line operating under natural load conditions, in which mutual 
compensation of L and C takes place. 
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With such a line there remains, nevertheless, a displacement 
between Ea and ER, amounting for 50 c/s to 360 degrees in 
3 720 miles. Finally, diagram (d) illustrates Taylor’s system of 
transmission, in which both series and shunt compensation 
occur, and in such a manner that the necessary compensating 
equipment is embodied in one piece of apparatus, namely, the 
quadrature booster transformer. The primary winding of the 
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booster is represented by the shunt inductance Lwhile the 
secondary winding is represented by the series capacitance C'. 
It is seen that with this arrangement complete compensation 
of L and C takes place, so that the circuit is equivalent to a 
d.c. line whose only characteristic is the resistance R. 
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Acceleration constant, 155 
Admittance, transfer, 7 
-, vector, 7 
Angle, complex line, 9 
-, critical clearing, 139 
-, pull-out, 113 
-, transmission, 8, 213 
Angle/time curves, 154 
-, precalculated, 168 
Argument of a vector quantity, 4 
Asynchronous power transmission, 

56, 84 
- transmission system, 1 

Baum system of transmission, 218 

Chart, combined sending and re¬ 
ceiving, 16 

-, universal power-limit, 76 
-,-power-transmission, 42 
Charts, complex hyperbolic function, 

9 
Compensation, reactance, 217, 220, 

226 
Conjugate vector quantity, 3 
Constant, acceleration, 155 
-, propagation, 213 
Constants, network, 7 
-, synchronous machine, 12 
-, transformer, 10 
-, transmission-line, 9 
Current-cirole diagram, 28, 31 

Diagram, current-circle, 28, 31 
-, efficiency-circle, 40 
-, loss-circle, 38 
-, power/angle, 23, 89, 97, 145 
-, power-circle, 19, 25, 27, 29 
-, straight-line loss, 41 
-, voltage vector, 24 
Driving-point impedance, 8, 20 
- power, 21, 148 
Dynamic stability criterion, 98, 101, 

124, 149 

Economics of power transmission, 
206 

Efficiency, transmission, 40 
Effioienoy-oircle diagram, 40 
Envelope, power-circle, 70, 74 
-- power limit, 70, 73 

Equal-area stability criterion, 129, 
135 

Equivalent cantilever cirouit, 11 
- fault reactance, 172 
- load, 179 
- machine, 92, 129 
- v circuit, 14 
- system, 129 
- T circuit, 10, 14, 173 
- transmission line, 13 

Fault reactance, equivalent, 172 

Generalized time, 167 
-, modified, 158 

H-values, determination of, 171 

Impedance, characteristic, 9, 212, 
224 

-, driving-point, 8, 20 
-, receiving-end, 8 
-, sending-end, 8 
-, synchronous, 86, 89 
-, transfer, 7, 20 
-, veotor, 5 
Inertia constant, 125, 168 
-, moment of, 99, 124 
-, system, 170 
Interconnector, regulated, 68 
-, unregulated, 68 

Kinetic energy, stored, 99, 125 

Limit, power, 57, 69, 209 
-, steady-state stability, 57, 83, 

92, 98, 210 
-, transient stability, 57, 83, 122 
Load, equivalent, 179 
-, natural, 212 
Locus, power-limit, 60, 61, 62 
Long-distance transmission, 205 
Loss diagram, straight-line, 41 
- line, 42 
-, power, 23 
-, reactive power, 3 5 
-, transmission, 34 
-, vector power, 34 
Loss-circle diagram, 38 

Modulus of a vector quantity, 4 
Moment of inertia, 99, 124 
Multi-machine system, 126 
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Network constants, 7 
-of synchronous machines, 
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-:— of transformers, 10 
-of transmission lines, 9 
- terminals, receiving-end, 6 
-, sending-end, 6 
-, transmission, 6 
Networks, series and parallel, 12 

Operator, vector, 4 

Parabola, power-limit, 62, 65, 68 
Per unit system, 157 
Phase modifiers, synchronous, 25 
Phase-sequence networks, 195 
- reactance, 172 
Power, average transmitted, 22 
- differential, 125, 130 
-equivalent, 147 
-, driving-point, 21, 148 
- limit, 57, 69, 209 
-- -, envelope, 70, 73 
-, ultimate, 62, 72 
- loss, 23 
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-, separating, 139, 142, 144, 148 
-, synchronizing, 84, 89, 95, 97, 
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-, vector, 5 
Power/angle diagram, 23, 89, 97, 145 
Power-circle diagram, 19, 25, 27, 29 
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-, construction of, 74 
Power-limit chart, universal, 76 
- locus, 60, 61, 62 
- parabola, 62, 68 
-, construction of, 65 
Power-transmission chart, universal, 
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Quantity, vector, 3 

Reactance compensation, 217, 220, 
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-, equivalent fault, 172 
-, phase-sequence, 172 
-, saturated synchronous, 115 
-, synchronous, 12 
-, system, 171, 215 
-, transfer, 23 
-, transient, 124, 173 
Reactive power compensation, 217, 

220, 226 
-demand, 35 
Resistance, effect of, 179 
-, transfer, 23 

Stability criterion, dynamic, 98, 
101, 124, 149 

-, equal-area, 129, 135 
-, steady-state, 57 
-, transient, 126, 127, 135, 

137 
- curves, 161 
—— limit, steady-state, 57, 83, 92, 

98 210 
-, transient, 57, 83, 122 
-, stoady-state, 83 
-, system, 83, 123 
-, transient, 83, 122, 131 
-, transmission, 92 
Steady-state stability, 83 
-, calculation of, 103, 109, 

113, 115 
-- critorion, 57 
-limit, 57, 83, 92, 98, 210 
Step-by-step method, 155 
Swing curves, 154 
-, generalized, 158 
Switching-time curves, 161 
-, generalized, 167 
Symmetrical components, theory of, 

172 
Synchronism, 84 
Synchronizing at the load, 122 
- power, 84, 89, 95 
-, average, 97, 142, 150 
-, equivalent, 148 
-- -, maximum, 144, 174 
Synchronizing-power coefficient, 91 
Synchronous impedance, 86, 89 
- machine constants, 12 
- machines, operation of, 85 
-, powers of, 22, 87 
-, power/angle diagram of, 
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- reactance, 12 
-, saturated, 116 
- transmission system, 2 

Taylor’s system of transmission, 
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Terminals, network, 6 
Transfer admittance, 7 
- impedance, 7 
- reactance, 23 
- resistance, 23 
Transformations, star/delta and 

delta/star, 15 
Transformer constants, 10 
Transformers, equivalent circuits of, 

10 
Transient reactance, 124, 173 
- stability, 83, 122, 131 
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Transient reactance—cont. 
-, calculation of, 167, 180 
-criterion, 126,127,135,137 
-limit, 57, 83, 122 
Transmission angle, 8, 213 
- efficiency, 40 
- line, equivalent, 13 
-, excitation of, 206,211, 219 
-, network constants of, 9 
-, tuned, 222, 223, 226 
- loss, 34 
- stability, 92 
- system, asynchronous, 1 
-, mechanical analogue of, 113 
-, synchronous, 2 
Two-machine system, equivalent of, 

129 
-, general, 93, 143 
-, power/angle diagram of, 97 

Ultimate power limit, 62, 72 
Universal power-limit chart, 76 
- power-transmission chart, 42 

Vector admittance, 7 
- impedance, 5 
- operator, 4 
- power, 5 
-loss, 34 
- quantity, 3 
-, argument ot, 4 
-, conjugate of, 3 
-, modulus of, 4 
Voltage, air-gap, 85, 124 
-, excitation, 85 
-, receiving-end, 6 
-, sending-end, 6 
Voltage vector diagram, 24 
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