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PREFACE

The material of this textbook has been accumulated by the
author over a period of several years and used in mimeograph
form as the basis of undergraduate courses in the field of trans-
mission line networks. It includes a rather wide variety of
subjects, the thought being that an undergraduate student
should be given a broad point of view of the general field and
that more detailed and exact studies should be left for graduate
work. For this reason some subjects are very briefly covered,
only enough of a discussion being given to whet the appetite
in the hope that the good student will thirst for more knowledge.

This volume covers two general fields, namely, the theory
and operation of power transmission systems under balanced
steady-state conditions, and system characteristics under un-
balanced or faulty operation. This choice of content was made
on the basis that most electrical engineering graduates who
enter the power field come into contact with lines already
built and in operation. They are not called upon to enter
the design rooms, but rather drift into the operating depart-
ments. A rather broad introduction to the major operating
characteristics of systems is therefore of benefit. With this
in mind, the text covers the following general topics:

I. A hurried review of line characteristics as they apply
to the detail problems at hand. Basic material of this type
should already be available through a fundamental course.

II. The derivation of the long-line equations, the general-
ized four-terminal network, and circle diagrams as applied to
steady-state performance.

III. An introduction to the very 1mportant problem of
system stability.

IV. Derivation of fundamental laws of symmetncal com-
ponents and simple application to networks, without going too
deeply into the theory of machine impedances.

v



vi PREFACE

V. An introduction to the very important operating
problems of alternator transients and the effect of line surges.
These problems are treated more from the qualitative point
of view rather than quantitatively.

The introductory material on inductance and capacity
presupposes that the student is well grounded in fundamental
electromagnetics and electrostatics. This material is as short
as is consistent with the complete plan of the text.

In order to limit the size of the volume, it was necessary to
omit such subjects as physical properties of conductor materials,
skin effect, economic aspects, choice of size of conductor, choice
of voltage, choice of span, conductor corona, insulators, under-
ground cables, lightning protection, mechanical design, con-
ductor and ground-cable installation, operation and maintenance,
and many other allied topics. A great dezl of this material is
of a statistical nature and can be obtained from many sources,
such as Section 13 of The Standard Handbook for Electrical
Engineers, Eighth Edition. The topics which appear in the
text form a generally connected development of the most im-
portant analytical or theoretical phases of electric transmission
systems. Enough theory covering the operation and details
of transformers is included in order that the subject of system
faults may be reasonably complete.

The text is designed for a full year’'s work. However, for
shorter periods, certain sections may be omitted without any
great difficulty. The author has attempted to cover only those
analytical theoretical phases which are quite permanent and
are not subject to change with time. All physical and con-
struction details which may change with the development of the
art have been omitted. It is suggested that students consult
other up-to-date sources of information on physical details as
a means of reinforcing the theoretical content of the course.

Whenever good material was available elsewhere in the
literature, it has been used. Suitable acknowledgment has
been given in all cases where a definite source was known.
Inspiration and material were obtained from Wagner and
Evans’ fine book on Symmetrical Components. Also Lyon’s
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volume on the Application of Symmetrical Components has
been a help. These two volumes have continually been used
by the author as reference volumes in classes on power trans-
mission, and are recommended to all who wish to study in this
field.

Very special thanks are due to Miss Edith Clarke of the
General Electric Company for suggestions concerning zero
sequence capacity of long lines. To the Westinghouse Electric
and Manufacturing Company the author is thankful for the
contribution of data on their short circuit analyzer.

The author is also deeply indebted to those persons who
were kind enough to review the manuscript and contribute
suggestions for its improvement.

J. G. TARBOUX
The University of Tennessee
October 1943
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CHAPTER 1

INTRODUCTION

1. Historical Data.—The commercial electrical systems of
the United States had their beginning in 1882 with the steam
plant known as the Pearl Street Station of the Edison Electric
Illuminating Company of New York City and a hydro station
in Appleton, Wisconsin. From those small beginnings the
electrical industry has developed to undreamed proportions,
both as to the physical results accomplished and as to the
financial investment involved. Instead of small isolated systems
serving only restricted areas, the country is now spanned by high
voltage lines connecting together large steam and hydro stations,
with the load centers tied into a vast high-tension network.

The original developments were made with direct current,
but in 1885 the alternating-current system received a tremen-
dous impetus with the development of the transformer.

Alternating-current transmission originated in 1886 with a
line 17 miles long supplying Rome, Italy. In 1887 the capacity
of the plant supplying this line was 2,700 hp. The first three-
phase line was put into operation in 1891 between Lauffen and
Frankfort, a distance of 112 miles, at a voltage of 12,000 volts.
Alternating-current transmission in the United States started
in 1889 at Oregon City. Power was generated by two 300-hp
Victor wheels, belted to 4,000-volt single-phase generators, and
was transmitted a distance of 13 miles to Portland. Following
this development came the Telluride Power Company in
Colorado. In this case two 150-kw single-phase generators,
direct connected to Pelton water wheels operating under a head
of 500 feet, supplied power at 3,000 volts to the city of Telluride
over a line 5 miles long. The first three-phase!line in the
United States was installed in 1893 in California by the Redlands
Electric Light and Power Company (now the Southern Cali-
fornia Edison Company).

Up to about 1890, the most common frequency was 133
cycles per second. In 1891, the advisability of a standard
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frequency was realized, and 60 cycles per second was established
as one standard; and, in 1893, 25 cycles was introduced. Today,
these two frequencies are considered as the standards for this
country. It is rather unfortunate that the final frequencies of
60 and 25 cycles per second were the ones chosen. There are
some definite advantages of a dual-frequency standard, but it
would have been much better if 60 and 30, or 50 and 25, cycles
per second had been chosen. With a ratio of 2 to 1, the inter-
change of power between systems of these two frequencies
would be more economical and practical than that obtained with
the 60- and 25-cycle systems. As a matter of fact, 50 cycles
per second has been introduced to a limited extent in this
country along with 25 cycles, thus obtaining the advantages
of the 2:1 ratio.

In 1895, the first 5,000-hp generators, which were then the
largest ever built, were installed at Niagara Falls. From that
date on, the growth of the electrical industry has steadily
progressed. In 1896, 25,000-volt transmission was used by
the Pioneer Electric Power Company of Utah; while, in 1903,
60,000 volts were used by the Guanajuato Power and Electric
Company of Mexico. The first company to use 110,000-volt
transmission was the Au Sable Electric Company of Grand
Rapids, Michigan. In 1913, the Pacific Light and Power
Company installed their first 150,000-volt transmission line,
which has since been raised to 220,000 volts.

Fig. 1 gives a graphical picture of the growth in transmission
line voltages from 1895 to 1940,

2. Boulder Dam-Los Angeles Transmission Line.—An
unusual step in power transmission in the United States came
in 1936 with the construction of the 266-mile Boulder Dam-
Los Angeles line which operates at 287,000 volts at the Boulder
Dam end and at 275,000 volts at the Los Angeles end.

A brief specification of the Boulder Dam-Los Angeles line
is as follows: ‘

Number of three-phase circuits............. -2

. Length of single-circuit tower section, in miles ~ 225.3
 Length of double-circuit tower section,inmiles = 408
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Total length of double-circuit line, in miles. . 266.1
Conductor diameter, ininches.............. 14
Type...covvviiiiniinn.. Segmental hollow copper
Cross-sectional area, in circ. mils. .......... 512,000
Flat spacing of conductors (single-circuit
towers), infeet......................... 325
Number of segments in conductor.......... 10
Spiral pitch of conductor, in inches......... 28
Weight of conductor per foot, in pounds. . . .. 1.57
Resistance per 1,000 feet, at 25° C and 60
cycles,inohms. ........................ 0.0214
280,000
240,000
200,000
= 160,000 g
[ o003
— TS
= 80,000
40,000
1895100905910 96— To20 T To30To%5 T340 °

Years

Fig. 1. Growth in Transmission Line Voltages.

Inductive reactance per phase per 1,000 feet at

60 cycles, in ohms...................... 0.1517
Shunt capacitive reactance to neutral per 1,000
feet at 60 cycles, in megohms............ - 1.025

The inductive and capacitive reactances are based upon the
equivalent transposed delta spacing.

Details of the single-circuit and double-circult tower sections
of the Boulder Dam-Los Angeles line are shown in Fig. 2.
A detailed description of this line is given in the issues of
Electrical Engineering for April and May, 1935.
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INTRODUCTION 5

The most recent step in transmission-line research was
taken in 1946 by the construction of a very short experimental
500,000-volt three-phase line. This circuit is energized from
the Tidd Substation of the Ohio Power Company at Brilliant,
Ohio.

A series of articles describing this line will be found in AIEE
Transactions, 1947.

3. Problems of Transmiesion Engineer.—With the rapid
increase in the capacity and length of transmission systems,
there have developed a good many important problems of
operation which do not exist in small isolated systems. The
subject of transmission lines cannot any longer be divorced
from the characteristics of the terminal equipment. Besides
the problem of the steady-state solution of long lines, there are
such topics as the stability behavior of systems, the operation
under all types of faults, and also the operation under the
effect of lightning. Other problems are also present, and the
field of the transmission engineer is a highly specialized one,
requiring nevertheless a broad understanding of electrical
equipment.
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RESISTANCE, INDUCTANCE, AND CAPACITY

4. General Nature of the Electrical Circuit.—Let a poten-
tial E, be applied to the sending end of a single-phase trans-
mission line composed of two parallel conductors, as shown in
Fig. 3. Analysis of this circuit will reveal three distinctly
different phenomena, as follows:

A N
r- A VAVAY A’A“ "AVA‘ ’A‘" NWVAVAVAVAVAVAVAVAVAWA' L 12 b R
VAV AVAVAVA ISRt a AR Al 0
)

[
&

|
! 1
] 1 1
1 1 =
IJ‘\ 1 { ] : 1 ] —.: Q
&) b Q| ! | Load —t-t-t—-3-
~ 1 1
r ° [ b
[ |
P /aVaVavo BB NN R v
L TAVAVAVAVAVIVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA' -

Fig. 3. Single-Phase Transmission Line.

(a) Associated with the potential applied between the two
conductors is a dielectric flux Q terminating on the two wires.
This dielectric field represents in effect a condenser, the capaci-
tance of which is uniformly distributed from the end near the
generator G to the load end of the line.

(b) The charging current required by this condenser,
together with the load current, sets up a magnetic flux ¢
around each conductor, which in turn is responsible for the
inductance of the circuit.

(¢) The conductors themselves offer electrical friction or
resistance R to the flow of current.

It will be noticed that these three phenomena occur in
distinctly different manners and affect the circuit as a whole in
different ways. These effects are independently classified as
follows:

(@) Dielectric circust, as that part of the circuit involving
the dielectric field or condenser action.

- (b) Magnetic circuit, as that part of the circuit involving the
magnetic field set up within and around the conductors. e
6 : : .
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(c) Electric circuit, as that part of the phenomena dealing
with the internal conductor resistance.

Thus we may represent Fig. 3 by the equivalent conven-
tional ladder circuit of Fig. 4, in which R represents the con-
ductor friction in the electric circuit, L represents the inductance
parameter of the magnetic circuit, and C stands for the capaci-
tance parameter of the dielectric circuit.

5. Mechanical Equivalents.—The three parameters just
described are in reality nothing abnormal. The same funda-
mental quantities are present in mechanics, being designated

T TTTTT

Fig. 4. Ladder Circuit for Single-Phase Transmission Line.

by the actions of friction, inertia, and elasticity. In mechanics
all three parameters affect the general motion of the device;
similarly, in electrical circuits the parameters R, L, and C affect
the resultant flow of current.

6. Fundamental Laws.—In a mechanical device possessing
only friction, we may define ohm’s law as follows:

f=uR 1)

where f is the pressure or force, v is the velocity, and R is the
coefficient of friction, expressed in some suitable units.
Similarly, ohm’s law for the electric circuit is

e=1R ¢ 7))

where e is the pressure, in volts; ¢ is the flow of current, in
amperes or in coulombs per second; and R is the resistance or
friction, in ohms,

In other words, ohm’s law applies to any circuit involving
force, motion, and friction. Equations similar to equation 2
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can be written in other fields, such as in hydraulics, heat flow,
etc. The similarity of units is very significant. Thus, f and
¢ are the pressure or force in mechanics and in electric circuits,
respectively; and v and ¢ can be defined as feet per second and
coulombs per second, both representing rates of motion. In
actual practice the equations of mechanics are seldom as simple
as equation 1, since the units chosen generally require the
introduction of constants of proportionality.
Passing on to the magnetic circuit, we define the voltage of
self induction as follows: 5
1

€a.i. = —La
Equation 3 states that, if the current (coulombs per second)
is changing with respect to time, there will be developed within
the circuit a force of reaction which is opposite to that change.
If we write equation 3 in mechanical units, we have the
following:

®3)

fuim =M @

Equation 4 is, of course, the fundamental law of inertia of
mechanical bodies, in which f,.;.=the reaction force of inertia,
while Z—:’=acceleration and M =mass.

Obviously the voltage or force necessary to overcome the
emf of self-induction or the force .of inertia is:

€a= Lé2

dt )

fo=MZ

Comparing these two equations, one sees a similarity between
L and M, from which we conclude that L has some of the

properties of mass.
The equation expressing the fundamental law of the dielec-

tric circuit is
i=c% | (6)
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This law may be stated as follows: In a circuit of elastance,
the displacement is directly proportional to the rate of change
of pressure or force. Imagine that the hydraulic system of
Fig. 5 is completely filled with liquid, the chamber A being
equipped with an elastic diaphragm. As long as the pressure
on the two sides is the same, there will be no motion of the
diaphragm; but, let the pressure on one side suddenly increase,
and there will then be a movement of the diaphragm and also
of the liquid. In other words, the velocity of the liquid will
be directly proportional to the rate of change in pressure.
Furthermore, the size and physical properties (or capacity C) of
thediaphragmwill also

influence the velocity //D"""""‘“‘\\A
of liquid motion. Thus, H
in mechanical units, A 4 —

we might write the
following relation:

,,=cg;f’ ) Fig. 5. Hydraulic System.

|
]
|
|
|

where v=velocity, C=capacity, and %’;—=rate of change of
pressure.
7. Energy Relations.—The energy content, in watt-

seconds, in any electrical circuit for a period of T seconds may
be given as follows:

T
Energy = f et dt (8)
0

This fundamental law may be applied to each of the three
circuits of Art. 4.
(a) Eleciric Circuit: In this case,

T
Energy-:feidt
(}

In the case of a constant voltage E and a constant current I,
this equation becomes:
Energy = EIT watt-seconds ‘ ®)
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The same general relationship exists in mechanics for a body
moving at a velocity v under force f; thus, the energy in foot-

pounds is:
T
Energy=ff1) dat
(1]

For a constant force F and constant velocity V, this equation
becomes:

Energy =FVT foot-pounds (10)

(b) Magnetic Circust: Applying equation 8 to the mag'netlc
circuit, we have:

Energy—/ ezdt—f tdt

Consider a circuit in which the current 7 is changed from zero,
at time =0, to the maximum value I, at time {=7T. Then,

T . I'm
Energy= / (Lg%) di= f Li di=3}LI? watt-seconds (11)
) 0

Remembering that a current I,, (coulombs per second)
corresponds to velocity V. (feet per second) and that inductance
L corresponds to mass M, we can write the equivalent equation
for mechanics. Thus, '

Energy= 3} MV’ (12)

Equation 12 is recognized as the formula for kinetic energy of
amoving mass. Hence, equation 11 is often called the “electro-
kinetic” energy equation of a magnetic circuit.

Energy is required in accelerating an electric current as well
as in accelerating a mechanical body. From the point of view
of the magnetic circuit, an amount of energy equal to that
given by equation 11 is stored in the magnetic field surrounding
the current-carrying conductors. Thinking of the inductance
L as electrical mass, we may say that the electro-kinetic energy
1sstoredmthemassLmthesamemanneraslunetmenergy
is'stored in the mechanical mass M. :
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(¢) Dielectric Circuit: The energy content of the dielectric
circuit may be obtained in the same general manner. Thus,

Energy=./o‘Teidt=[Te($

If the potential is zero at time =0 and is a. maximum E,, at
time ¢t=T, then,

T Foru '
Energy = f e(%)d = f Ce de=3CE? watt-seconds (13)
(1] 0

Equation 13 is known as the equation for “‘electro-potenti
energy of an electric circuit, or the energy necessary to charge a
condenser to a final voltage E,.. Inmechanics it represents the
potential energy required in stressing an elastic body, such as a
spring.

8. Energy Relations in Circuit Following Simple Harmonic
Variation.—Consider a sine wave of current flowing through a
series circuit of resistance, inductance, and capacity. The
relations of current and voltages are given in Fig. 6 (a), where
1=current, ¢, =voltage across the resistance, e¢;=voltage across
the inductance, and e.=voltage across the capacity. The
energy associated with the resistance, the inductance, or the
capacity can be obtained by direct application of equation 8.
The power curves are shown in Fig. 6 (b).

For the resistance, for one-half of a cycle,

=%

Energy = 7 EpmIn sin? ot dt=—22m Emla

=0 4f

in which f is the frequency in cycles per second. ,
Substituting the effective values of voltage and current and

noting that élf.is the time for one-half of a cycle, we find that

Energy in a resistance = E,I T watt-seconds (14)



12 INTRODUCTION TO ELECTRIC POWER SYSTEMS

Similarly, the energy stored in the magnetic field during
one-fourth of a cycle is:

“"i ¥ Eul
Energy= / "EimImcoswtsinwtdt= / f——ff—"'sm 2wt dt
t=0 t=0

Fig. 6. Curreni, Voltage, and Power Curves for Series Circuit.

Carrying out the integration, we obtain:
ElmI
Energy = 4nf watt-seconds
Since Eim=2xfLIna,
Energy =4LI% watt-seconds (15)

This result is seen to check with equation 11.
Similarly, the energy involved in charging a condenser is:
. ‘ o

| =t . ,
Energy=f v — EomIm cO8 wit sin wt= -Ea;'watb-seoonds
, - J | .

=0
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Energy = —}CE?, (16)

The energy of the magnetic circuit is indicated in Fig. 6 (b)
by the area with horizontal shading; and the energy of the
dielectric circuit, by the area with vertical shading. It will be
noticed that these values of energy are alternately positive and
negative, suggesting that energy is alternately stored in and
discharged from these circuits. Furthermore, when energy is
being stored in tnc magnetic field. it is being discharged from
the dielectric tield.

TABLE 1
SUMMARY OF BASIC INFORMATION

Electric Magnetic Dielectric
Motion I=amperes ¢ =magnetic flux Q=dielectric

I=coulombs/second ¢=lines Q= E:;ombs
Force E=volts F= axrp_:re-turns E=volts
Impedance R =resistance R=reluctance S=elastance

R =ohms
Ohm’s Law E=1IR F=¢R o E=QS
Admittance g=% P=-11§ c--’g

=conductance = permeance = capacitance
L =length; 4 =area
Impedance R=p§' R=K% S =K—‘LZ
Law p=onstant K =constant’ K = constant
Obm'sLaw  E=Iox FmgKs E=QK%
Gradients G =—LE— H= % G --Ll-':-
{
Densities D-£- =% p';,.%
Unit Ohm’s G=pD H=EKg1 G=KD
Law 4

Energy Kl LI iCE}

e e e
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9. Summary of Fundamental Relations.—A few of the
basic laws of electric, magnetic, and dielectric phenomena have
been reviewed in Arts. 4 to 8. These laws, together with other
pertinent basic information, are summarized in Table 1. It
would be quite worth while to expand this table to cover other
fields of engineering, such as mechanics and hydraulics. It is
very enlightening to see how these basic laws are applicable to
many fields of engineering.

In some major fields (such as mechanics), friction, inertia,
and elasticity are also fundamental parameters. They may
all be present in a certain mechanical device; or one—or even
two—of them may be absent or dormant, that is, its effect is
not observable from the over-all action of the device.

10. Systems of Units.—Various systems of units have been
used in electrical engineering. Until recently, the generally
accepted system was the CGS (Centimeter-Gram-Second)
system. This system has the distinct disadvantage of not being
consistent in the electromagnetic and electrostatic fields. Asa
result of this inconsistency, the MKS (Meter-Kilogram-Second),
or “practical,” system has been generally accepted as the most
basic and desirable system. The MKS is definitely desirable
whenever theoretical developments are carried out.

The system of units used throughout this text, in the fields
of electromagnetic and electrostatic phenomena, is neither one
of the foregoing systems, but is rather a mixed system which is
a modified CGS system. There is no criticism of the MKS and
CGS systems of units; on the contrary, the student should have
had a fundamental training in basic electromagnetic and
electrostatic theory, in which the value of the MKS system has
been definitely demonstrated, before attempting the work of
this volume.

To compare these three systems as they apply to electro-
magnetic theory, Table 2 is given. ‘

Notice that the units of length, time, magnetic flux, and
magnetic flux density are the same in the CGS system and the
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modified system. For all systems of units, the following funda-
mental law applies:

B=uH
TABLE 2
COMPARISON OF SYSTEMS OF UNITS
Quantity MKS CGS Modified
Length Meter Centimeter Centimeter
Time Second Second Second
Current Ampere Al ampere Ampere
Potential Volt Abvolt Volt
Magnetic flux Weber Mazxwe!l Lines
or Lines
Magnetic flux Weher per Gauss = Gauss =
density square meter  Maxwell per Lines per square
' v square centimeter centimeter
Magnetomotive Pragilbert Gilbert Ampere-turn
force
Magnetic intensity Praoersted Oersted = Ampere-turn
Gilbert per per centimeter
centimeter
Permeability, for
non-magnetic _ 4r
materials 1.257 10 1 T(—)==l 257

In the CGS system, with u=1, the magnetic intensity

becomes:
\

H.=B=gilberts per cm

In the modified system:

Hm=

P
1.257

=ampere-turns per cm

Furthermore, the total mmf in the CGS system is defined as

follows:

F=

4xNI
10

where NI=ampere-turns.
Notice the presence of the constant 1.257 as a proporttonahty
constant between gilberts and ampewtqms. Thus,

H¢=1.257 Hn

=1.257 NI gilberts



CHAPTER 3

TRANSMISSION LINE INDUCTANCE

11. Definition.—The coefficient of inductance of a circuit
of one single turn may be defined with the aid of the funda-
mental equation of induced voltage. Thus,

g% 9108
€si.= Ldt_ 7 X10 a7
This can be rearranged, as follows:
99, 9t 10-8=9 5 10~5 henri .
L—dt Xdz.XIO =% X 10~8 henries | (18)

Equation 18 will give the inductance in henries if the
magnetic flux linkage ¢ is measured in maxwells or lines and
the current 7 is in amperes. Furthermore, if ¢ involves all the
magnetic flux linkages around a particular conductor as pro-
duced by all possible sources, and the current 7 is the current
of the conductor in question, then equation 18 will give the
total conductor inductance.

For any magnetic medium having a straight-line saturation
curve, the conductor inductance becomes:

L=%x 10-8 henries (19)

If ¢ in equation 19 is the total flux linkage per centimeter
length of conductor, then the total inductance per centimeter
length becomes:

L= %X 10~8 henries/cm (20)

*If the CGS system of units were used in equation 17, e..:. would be
expressed in abvolts; L, in abhenries: and 4, in abam . ‘The main
question involved is whether 1078 should be introduced in the definition
of inductance, and at what point in the general development the constant
1.257 should be introduced.

The ‘author has no objection to other points of view. In fact, he
recognizes their historic and basic importance. However, he feels that,
in the type of work involved in the present volume, there is some advantage
in using the modified system of units because such a system mal y
simplifies the immediate problem.

16
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The inductive reactance, in ohms per centimeter, is:
X =2nfL=24fX$X 10~% ohms /cm 1)

Also, the inductive reactance voltage drop is:
E,=IX=2nf¢$X 108 volts/cm (22)

12. Inductance of Single Round Solid Conductor.—In Fig.
7 is represented a solid conductor of circular area with radius a,
carrying current which is assumed uniformly distributed over
its cross-section. The assumption of uniform current density,

<
\
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-~

Fig. 7. Flux Linkages.

although not absolutely correct, is satisfactory for most over-
head power circuits. Such a conductor will be subjected to
magnetic fields which are external to its area and also to
magnetic fields which are within the area of the conductor.
The external fields will link with all of the current flowing in
the conductor, and such fields are therefore known as iotal flux
linkages or extermal flux linkages. The flux th r,; the con-
ductor does not link with all of the current,?and :ts linkages
are known as partial flux linkages or internal flux linkages.

To apply equation 20, it is necessary to determine the
external flux linkages and then an egusvalent value of the partial
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flux linkages which may be considered as linking with the
entire current.

13. Partial Flux Linkages.—As an explanation of the
meaning of partial flux linkages, consider the simple coil
illustrated in Fig. 8, which is composed of six turns. The
current passes through all six turns, and we will assume that
in this case the conductor is quite small and no magnetic flux
exists within the cross-sectional area of the conductor.

The magnetic flux is illustrated by

lines linking with the individual turns -] g,
of the coil; thus, line 1 links with only
two turns, line 2 links with four turns, C?\ o s
and line 3 links with all six turns. In 0] 0] S
other words, the linkages of the flux %) () '
represented by line 3 are total flux &j <C)
linkage; while the flux represented by
line 1 and the flux represented by line &) Y]
2 link only with some of the turns, and O O
these linkages are partial flux linkage.

To compute the total inductance ™~ =

of the entire coil, it is necessary to Fig. 8. Partial Flux
take due account of the difference in Linkages.
linkages. Thus, applying equation 19 to this coil, we have:

L Sort it 2o o

The last two terms in the numerator of the fraction need
further study. If only internal flux linkages are considered,

Linteri= 22205102

This equation can be rearranged as follows:
Lisens= Y 22+ 2 Y10+

The total inductance is, therefore, _
LY onttort Zop10-8
where N'=6 turns. '
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From the last equation, we mlght1 say that the flux ‘¢ 1s 4

effective, and that the flux ¢, is = eﬁectlve, in producing the total

inductance. In general, whenever there is some magnetic flux
which does not link with all turns, or—in the case of a large-
cross-sectional area—does not link with all the current, then
such partial flux linkages will not be fully effective in setting
up the total inductance and must be suitably corrected in the
ratio of the current linked to th total current.

Consider now a tube of infinitesimal thickness dx and radius
x within the cylindrical conductor represented in Fig. 7. The
area contained inside this tube is wx%. If the flux density at
this tube is 8;, then:

B z= FH z

where H,=mmf per centimeter of magnetic path available to
maintain the flux density 8.. Also, if I is the total conductor
current, in amperes, then the current I, in area »x? assuming
uniform current densitv, is:

2
I.=I%
a
Therefore, the mmf per centimeter of the flux path is:
I. 1Ix

== Ongt 3 ampere-turns/cm

Since ﬁz = FHI’

B'—“Z';ra.’ gau

The flux within the elementary tube and a unit length of the
conductor is:

Ix
d¢t=ﬁz i‘;‘,‘dx
Since this elementary flux dé, links with onf} ‘a Portion of the
total conductor area, the equivalent partial flux linkage is:

Ix %%, Ix?
. “cc—ﬂmxa"' dx:l‘mdx
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Hence, the total equivalent partial flux linkages are:

_[ [ui | _ul
¢o= -[ “21ra‘d L81ra"]a 8w 23)

14. External Flux Linkages.—For an elementary tube of
flux outside of the conductor in Fig. 7, the flux density is
pI
T 2%

and the total magnetic flux outside the conductor up to a
distance D from the center of the conductor is:

D
= [ Loge=tl1,D ,
¢_[ “wadx—Zw Lna (24)

Therefore, the total flux linkage is:

Be=uH .=

¢T=¢,+¢=%+;—1{ Ln _&12 lines/cm (25)

By equation 20, inductance per centimeter of conductor is:
fror . D -8
L—(81r+ 7 Ln a) 10-8 henries/cm of conductor  (26)

15. Inductance in Terms of Conductor GMR.—Equation
26 has two terms, the first representing the inductance due
to partial flux linkages and the second representing the in-
ductance due to external flux linkages. This equation may
be converted into a simpler form by replacing the solid con-
ductor by a hollow tube of such small thickness that there are
no internal flux linkages.* The radius r of such a tube is known
as the geometric mean radius (GMR) of the conductor. Thus,
equation 26 can be rewritten as follows:

= D 8
L=y (0.25+Ln a) 10~
=—2'-‘4 (Ln ¢%+Ln Q) 1070=5- (Ln a——%—,,) 10-¢

"Th:s can be done if the permeability of the conductor and that of the
surrounding air are the same.
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Putting r=ae%%=the geometric mean radius of a solid circular

conductor, then:

L =§’:—T(Ln-lr—)-)10"° henries/cm of conductor 27)

Equation 27 is important because, assuming uniform current
density, it can be used for any type of wire—such as a stranded

Fig. 9. Flux Linkages Due to Several Conductors.

conductor—merely by using the proper value of the GMR.
For the solid circular conductor:

r=ae%%=0.779a (28)

The GMR of a circular area can be obtained by solving a
problem in geometry, as shown in Appendix II.

16. Flux Linkages Due to Any Number of Conductors.
Consider three conductors, such as those marked 1, 2, and 3 in
Fig. 9, which have a return circuit at distances X;, X3, and X;.
Let it be required to develop an equation for the total flux
linkage about conductor 1.

From equation 25, the flux linkage about conductor 1, due
to its own current, is:

on=E% I‘+“ L lmes/cm of conductor

By the aid of the GMR (see equation 27) this relation can be
written thus:

én="l‘ (29)
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The flux linkage about conductor 1 due to the current in
conductor 2 may be written from the fundamental relation of
equation 24 by using the proper limits. Thus:

Xo
_ piy plz &£
Qm—'/D‘ 2 . d 2 L 12 (30)

12

Notice that the lower limit of the preceding integral is taken as
Dy, This process assumes that the diameters of the conductors
are quite small compared to the spacing between conductors,
and ignores the partial flux linkage effect of ¢13 with conductor 1.
Similarly, the flux set up by conductor 3 and hnkmg with

conductor 1 is:
3
_ Is #Is
4’“‘/0; B3z = 3 11 D81 @1)
1

The flux linkages due to additional conductors could be
obtained by similar expressions. Thus, the total flux linkage
about conductor 1 due to all sources is:

ol X X X X,
w-zr(zl ZE A PP 3 LY U 8 2 D,,,)

If all conductors of a polyphase system are considered, then,
by Kirchhoff’s law:

In=—=Li—I—D—I.. . ....—Ilu

Therefore,

Qr‘“[z‘(l‘“ Priags )t il gi-la )+
Hiadi-to 2o . 4 LooLn 2 La )]
4,,,.,-{1, Ln Dﬂxx, +I{ L %’tx);?")"”

_Q_-g & ; Dnl Xn—l
z.(;.n D x,)+ 2 TR 7 )]
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Now, let X1=Xe=X3= . .... =X, — o that is, let each
of these distances approach infinity. Then:

K Dwn an Du Do
QT"-ﬂ(Il Ln e +I: Ln—= +Is Ln + Alaaln Dinn l)

_k 1_ 1 d_ 1 A
—ﬂ(lx Ln ; Ii Ln D,.1+I’ Ln Do I: Ln D,.1+I’ LnDu

)

Keeping in mind that [i+Le+L+ . ... ... I.=0, then:

Lilng

QT“‘—(II Ln"+Ian +I;Ln + Al Ln=— ) (32)

Equation 32 should be carefully exammed as it forms the
basis from which it is possi- -r

ble to evaluate the total 1

inductance of any system
of conductors. e

17. Inductance of Single-  Fig- 10. ’-“d""";ﬁ: of Single-Phase
Phase Line.—Consider the )
two conductors represented in Fig. 10; and assume that their
geometric mean radii are 7, and 7, and that they carry currents
I and — I, respectively.

According to equation 32, the effective flux linkages about
conductors a and b are:

_k 1 ;1.1
d;.—-Z_(I Ln T ILn D)

¢1,==T( —ILn —+ILnD)

Therefore, the inductance per centimeter of each conductor is:

D

7o

and

L.=§“;(Ln -'-'12)10-8 henries/cm of conductor,
3 : (33)
L.=2i,r(Ln ;1-);)10-' henries /cm of conductor
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The inductance of the entire line per centimeter of line is
obtained as the sum of L, and L;. Thus:

Ll-L,+Lb——(Ln —+Ln ) 10-8

or
2

L,=L.+L,,=~2% Dr )10"8 henries/cm of line  (34)
al' b

In case the two conductors have the same GMR, then:
.. __D__2 —8
L, —Z—l_(Ln o )10
or

L1=$(Ln ~rD—)10—3 henries/cm of line - (35)

18. Inductance of Three-Phase Lines.—Let a three-phase
line be composed of three identical conductors such as 1, 2, and
3in Fig. 9. According to equation 32, the flux linkages about
these conductors will be:

o= nta bt n L)
! 27 ! r 2 Do s Dy

B 1 1 1
@—Z(Iz Ln r+Il Ln Dm+Is Ln D”)

v

36)

omp(pLatthin 4010 g)

For lines which are not transposed, the quantities in equa-
tion 36 may be evaluated only if the complex values of all three
currents are known. Then, by dividing each complex flux
linkage by the particular complex current, it is possible to
obtain a complex expression for inductance for each conductor.
This complex inductance is, of course, a combination of self
inductance and mutual inductance. The complex inductance,
when multiplied by j(2#fI), will give the inductive reactance
voltage drop in its proper phase relation; or the inductive
rea»ctance voltage drop is, according to equation 22,

Ei=1(2xf¢$)10~® volts/cm
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19. Inductance of Transposed Three-Phase Line.—In this
case the effective flux linking each conductor can be obtained
as the average of the flux linkages of each conductor as it is
placed in each of the three tower positions. Considering con-
ductor number 1 in position number 1, we may write:

_E 1 1 1
Qu—zw(ll Ln r+Iz Ln Dm+Ia Ln Dal)

With conductor 1 in position number 2 and the orher con-
ductors rotated in position accordingly:

M 1 1
Qn’:—l;(.ﬂ Lo+ In m-l-ls Ln 5};)

Sinilarly, for conductor 1 in position 3:
_k 1 1 1
¢n=p(ILn J+hLn g+l In ;)

The average of these three equations will be:

1 1
o= (3,[1 Ln +Iz Ln DszaD31+Is Ln DszaDm) 37)

Since [z=—~I1— I,

s 1 a1
Ql-—67r(3'z1 La r IiLn DlanDsl)

3
¢ =2£r(1  Ln YDulula ,,,13 ”—D;) (38)

Therefore, the inductance per phase is:
3 r———-—-———-—-
L=%_(Ln -——&z—D'—’“ga—’)lO"8 henries/cm of conductor (39)

Equation 39 was derived for conductor number 1. It is
obvious, however, that the same equation will apply tb the other
two conductors. The term \!DnDuDu may be interpreted as
an effective spacing D..

20. Inductive Reactance in Ohms.—The inductive react-
ance, in ohms per mile, for single-phase lines and three-phase

and
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transposed lines may now be obtained from equations 35 and
39, since X;=2nfL. For a single-phase circuit, considering
both conductors:

Xy = pr(Ln _112

)10‘3 ohms/cm of line
For three-phase lines, considering only one phase:

Xs =pf(Ln ir)-f)IO‘8 ohms/cm of conductor

Reducing to ohms per mile, introducing u =%% =1.257, which

is the correct value for non-magnetic materials, and also chang-
ing to common logarithms, we have:

=2)(1.257f)<2.54x12)(5,280)(2.3026 D

X 108 log r
or D
X1=2X4.657X1073 f log - ohms/mile of line (40)
Similarly:

X;=4.657%10-2 f log % ohms/mile/phase  (41)

Thus, at 60 cycles,
X;=0.2794 log % ohms/mile /phase



CHAPTER 4

INDUCTANCE BY GEOMETRIC MEAN DISTANCES

21. Fundamental Derivation.—In Art. 15 the term geo-
metric mean radius was introduced and was given as equal to
ae0%=(.779a for a solid round wire of radius @. This con-
cept was found to have certain useful properties, particularly
in simplifying the general equations of inductance.

It was also suggested in Art. 15 that the method of geometric
mean radii was particularly useful in the analysis of inductance
for stranded and other odd cross-sectional conductor shapes.
Furthermore, the method is useful in handling problems of

4
7 Parts m Parts
Fig. 11. General Conditions for Determination of Inductance.

inductance when more than one conductor is used in parallel per
phase. This last feature is encountered in the solution of zero
sequence inductance, which involves the condition of all three
power conductors of a three-phase system beipg treated as
parallel wires of a single-phase circuit. “herefore, in this
chapter, we will be concerned in establishing a new basis for
the calculation of inductance, which will be adaptable to certain
special commercial situations. A few of these situations are
considered in later chapters of this volume.
‘ 27
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Consider two conductors, represented in Fig. 11 by the
irregular cross-sections marked x and y. The current in con-
ductor y is taken as the negative of the current in x. Let
conductor x be divided into # equal parts, and conductor y
divided into m equal parts. Assuming uniform current dis-

tribution, the current in each element of conductor x is -’1—;, and the
current in each element of conductor yis ’—f‘— From equation 32

we may now write the total flux linkage of element 1 as follows:

P/ TR S 1
¢"_2«[5(Ln r1+Ln Dm+Ln D31+ v.e..+Ln an)

I 1 1 1 1

m Da

The first set of terms in parenthesis includes the contribution
of all n# elements of conductor x, while the second set of terms
in parenthesis includes the contribution of all m elements of the
conductor y. This equation can be simplified to the following
form:

[lILn ‘J-D,.]DMDA ...... (42)

¢ri=7—- -
2z ‘\qlpzl Dm ......

Similarly, the flux linkage of element 2 is:

¢7'2 =£2‘_I Ln {DﬂD th‘l ..... (43)
T WZDIZD& .....
And for element # of conductor x,
“I Ln ‘J DauD annu ..... (“)

Pra=5— o
21 Jr”D[”DZ" -----

The average of the flux linkages around any one element in
the .conductor £ can be obtained by adding the results of
equations like 42, 43, and 44 and dividing that sum by the
number of elements. Thus, |



INDUCTANCE BY GEOMETRIC MEAN DISTANCES 29

_ U VDuDuDa......
PT avg= p) 20
™ WDMDSI ------
VDuaDwuDes . . .... ,
LY . e e
N2 DD . . .. ..
Ln {DGDD ancn ...... )
\[1'»1)1»02,. ...... 7
which can be reduced to
nwﬁDal‘D [ S Daszz ..... Da,,D Bn e s o e oo
¢1’ avg =™ 21!'

1/;11‘2. Tn .Dz1 D:n ..... DuDsz ..... D;,.Dz,. .....
This expression may now be written in the following simple form:

wl D '
¢T avg — 2 L _ (45)
where D, =geometric mean distance between conductors;
rm=geometric mean radius of single conductor or group
of parallel conductors.

Therefore, from equation 20:
L=2{1n Dn 102 henries/cm (46)
27 Tm

This equation is similar to equation 27, but D, appears instead
of D, and r,, instead of r. For solid round conductors, Dm=D
and r,,=r; and both equations are identical.

Equation 27 or equation 46 will give the inductance per
conductor or per group of conductors which may be in parallel,
but the equation does not take into account the effect of the
ground* when used as the return circuit.

22. Single-Phase Lines.—For s:ngle-pha.se lines thh
identical conductors, the inductance per unit length of line is
twice that given by equation 27 or 46. Thus,

'_- *For the effect of ground return, see the treatment under zero sequence
impedance. ' , :
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L= —(Ln D"‘) 0-8 henries/cm of line (47)

To illustrate the application of equations 34 and 47, con-
sider first the case of a single-phase line made up of three
conductors for each side of the circuit as indicated in Fig. 12.
Since conductors 1, 2, and 3 are in parallel, they must be replaced
by a single conductor (see Art. 21) whose radius is equal to the
geometric mean radius of the configuration 1, 2, and 3. Thus,

rz= .\‘ '1'2'ad1’zd:sd§1
Similarly,

[J
= 2 d2 42
ry= 11,7 d%d: d>

Group @ Group ¢
Fig. 12. Single-Phase Line with Identical Conductors.

And the equivalent distance between these two equivalent con-
ductors is:

Du=\D1oD1sD1.D2aD23D2.DsaDs 5D

If the value of r. is not the same as that of r,, then the react-
ance must be considered in two parts, as follows (see equation 34):

Xy =4.657X 10~ f(log 2=y log D‘*)

§

Xy =2%4.567 %10~ f log j;’,_}ohms/mnq . 48)
) . & .



InDucTANCE BY GEOMETRIC MEAN DISTANCES 31

In case the conductors of group y were reduced to only one
conductor, the geometric mean radius of that conductor would
be ry=7p, and, the value of r, remaining the same as before,

Dp= 1}. D1y Dy Dy

23. Three-Phase Lines.—The general application of the
foregoing method to a three-phase circuit of several conductor
elements per phase is similar to that for a single-phase line.
To illustrate, assume a three-phase system, each phase com-
posed of three conductors in parallel having the configurations
shown in Fig. 13. In this case,

o o' o}
Q o o
Oz Oe O
Phase A Phase B Phase C

Fig. 13. Three-Phase System.
ra=Arrrddidy
ra=1,5,7,d5d3 %,

Dyp=d1 01181 82s%2 0233 o33 133
Dic=Vdsaydadsds 008 Berdce

Dea=Vd13.0:63 18 40 Gndada

From the foreguing relations, the origina] sysiem is con-
verted into the arrangement shown in Fig. 14. If the system
is fully transposed and if ra=rp=rc, then the reactance per
phase is obtained from equation 41 by using the following value:

D,=VDasDscDea
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In using the method of Arts. 22 and 23, it must be remem-
bered that uniform current density is assumed in all parallei
elements. In case current density is not uniform, the method
will introduce errors.

24. Inductance of Stranded Conductors.—Most modern
transmission lines are built with stranded conductors instead of
solid wires. For this reason it is necessary to develop proper
methods of handling the calculation of inductance of such
conductors. This is done by replacing the actual conductor

T

Dy
A
Dg 2a
Dc;
a=radius of each
”c strand

Fig. 14. Simplified Three-Phase Fig. 15. Seven-
ystem. Strand Conductor.

by an equivalent cylindrical wire of equal geometric mean
radius. A stranded conductor can be considered as made up of
a number of parallel wires as was demonstrated in Art. 21.
Then it is only necessary to obtain the proper geometric mean
radius, as follows*

= n\zf(hrz ..... ) DuDs. . ... ) (DinDan. . - ... ) (49)

In this equation, r, 7, etc. refer to the geometric mean radii
of the several strands, each of which has been shown to be
equal to ae®%=0.779a, where a=radius of the strand; the
distances D refer to the distances between strands; and #» is
the number of strands.

The procedure is illustrated for a seven-strand conductor
shown in Fig. 15. First, we proceed to list all the terms in-
volved in equation 49, as follows:
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r=079a................ 7 terms

20 . 24 terms

203G o 12 terms

4a...... . 6 terms
Total.............. 49 terms

Therefore,
=9
r7=~(0.7792)"(2a) (2 3 a)'*(4a)* (50)

In this case, n="7 and n2=49.

Ordinarily, it is best to express the geometric mean radius
in terms of the outside radius b of the conductor. For the
seven-strand cable, b=3a and equation 50 will reduce to:

r;=0.726b (51)

The foregoing method can be used to obtain the geometric
mean radius of any non-magnetic conductor in which uniform

1.00
A
0.95 //
//
0.90 A
)
o
=
O
0.85
v
080 e
/
0.75
05 10
Inner Radius
Quter Radius

@ =Outer Radius

Fig. 16. GMR of Circular Tubes.

current density is probable. For steel-cored cables it is how-
ever possible to measure the inductance and then to obtain an
effective value for the geometric mean radius which will satisfy
the equations of inductance. In Table 3 are listed common
conductors with their corresponding geometric mean radii.
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TABLE 3*
CONDUCTOR GMR

Solid Round Conductor. .......cooviuiier i 0.7795
Full stranding:

Tstrands. . ... i e e 0.726b
19strands. . ...t 0.758b
BTstrands. . ..o e 0.768b
6lstrands...........cooiiiiii i e 0.772b
Olstrands. ..ottt e 0.774b

127 strands. . ... e 0.7766
Hollow stranded conductors and ACSR (neglecting steel strands)

30 (two laver) . . ..oviiiii e e, 0.8265

26 (two layer). ... ...t e 0.8095

54 (threelayer)...... ..ot e, 0.8106
Single layer ACSR......... ... it 0.556 to 0.70b
Rectangular section of sideseand B..................... 0.2235 (a+4B)
Circulartubes. .. ......vii e e See Fig. 16

* Prom Wagner and Evans, “Symmetrical Components,” p. 138.



CHAPTER 5

CONDUCTORS WITH EARTH RETURN

25. Inductance of Single Conductor with Earth Return.
Consider a conductor a with a geometric mean radius 7, located
a distance h above the surface of the ground, as indicated in
Fig. 17. The return side of the circuit is completed through
the earth. Such a circuit corresponds to the overhead ground
wires commonly used on high-tension lines, and also is the
simplified equivalent of the power con-
ductors in so far as zero sequence behavior —_— @a
is considered. I

Any analysis of such a circuit must in- .
clude a certain amount of empirical or test
data, even though the fundamental basis be
obtained from theoretical considerations.
The treatment generally used for such
circuits is based on the work of Carson.*
His results check experimental data quite
well for lines of such lengths that the end
effects are negligible.

The return currents will obviously
follow rather irregular paths through varying cross-sectional
areas. However, the basic idea involved in Carson’s work
involves the use of the general equation for the inductance
of a two-conductor line, with certain empirical modifications.
Thus, it is assumed that the return current can be concentrated
in a fictitious earth conductor g with a geometric mean radius
7o of 1 foot. A rather extensive experimental study was carried
out, and from it a final equivalent separation D, between the
overhead conductor and the fictitious earth conductor was
obtained. A number of factors are involved in obtaining the
proper value of D, the most important being earth con-

']ohn R. Carson, “Wave matwn in Overhead Wires with Ground
Return,” The Bell chkmcal J Vol. V, p. 529-554, October, 1926,
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ductivity, frequency, topography, and presence of bodies of
water.

An expression for the inductance of a single-phase line with
conductor separation D and conductor geometric mean radii
74 and 7, was derived in Art. 17 and given in equation 34. This
expression is:

L1=~”—( D )10—8 henries /cm of line (52)
27 Talp

To adapt this equation to the case of a grounded return circuit,
it is only necessary to substitute the fictitious conductor separa-
tion D, for D and 7,=1 foot for ;. Thus:

Ll—z‘(Ln D )10—8 henries /cm of line (53)

The line reactance will then become:
(54)

X1=4.

From the work of Carson, the value of the equivalent con-
ductor separation is given by the following empirical equation:

where A=absolute conductivity in mhos per cm cube, and
J={frequency.

* Some authors write equation 54 as follows:
X1=4.657X10-2 f log -;D.—'
Then, the following relation is obtained instead of equation 56:
D,=2,160 }'
The author prefers o use equation 56, since it conforms more definitely to

the fundamental equation of a single-phase line (see equation 34 or 52),
;and the depth D. has a much numerical value, which seems more

.‘m



ConpucTors WITH EARTH RETURN 37

Equation 55 may be expressed in terms of p, the resis-
tivity in ohms per meter cube, as follows:

D1=2,160 1/—?— (56)

Typical values of D,, as obtained by using equation 56 and
taking f as 60, are given in Table 4.

TABLE 4
VALUES OF D, FOR f=060
[} D} Fl:;t Medium
1 280 16.7 Sea water
100 2,800 52,9 Damp earth
1,000 8,840 94 Dry earth

26. Mutual Inductance.—The inductance of a trans-
mission-line conductor, in a magnetic medium of constant
permeability, has been defined by equation 20 as follows:

L =§10—8 henries

This equation may have a good many different interpretations,
depending on the source of the flux linkages and on the par-
ticular value of the current used. As far as the work of this
text is concerned, there are three interpretations which are
important; namely, self inductances, total inductances, and
mutual inductances. A

(a) By self inductance the foregoing equation would involve
only the flux linkages (internal and external) set up by the
current flowing in the conductor for which the induc¢tance is
desired. From this self inductance, the volta.ge of self in-

ductance is:

di
v' ' =""L’at"'

in which L =self inductance;
‘ t=current in the conductor which sets up 1ts own
flux linkages.
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(b) Equation 32 gives an expression for the total flux
linkages about conductor number 1, as set up by any number of
conductors including conductor number 1, for the special case
for which the vector sum of all the currents considered shall be
zero. 'This expression is:

L="”10—8

The value of L cannot be called the self inductance, but must
be denoted as the total inductance of conductor 1, since the
flux linkages ¢r include the flux set
up by all currents including the self
flux linkages.

(¢) Now, consider two overhead
conductors a and b with earth re-
turns, as in Fig. 18. There may be
considerable room for speculation as
to exactly what path and locality
the two earth return currents will
take. Since the area covered by
the return current is quite large,
there is probably good logic in
assuming that the conductors a and
b have a common earth return path —6 a’and b’
located at an average distance D,
from g and b. With this assumption, m"‘}i& n{x't?; %‘:“t.‘.’m““"“
the mutual flux set up by a and its
return o’ and linking with the circuit containing b and b’ can be
calculated along the same lines as given in equation 24, Art. 14.

The mutual flux due to the current in conductor g is:

élla Ic Ln dD.

The mutual flux due to the current in the earth return with
GMR equal to unity is:

Qllo"'z“";“'za Ln Dc
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Thus, the total mutual flux threading the circuit b and b’ is:
D:
e

Also, the mutual inductance of circuit a upon b is:

oM
Ya=210-8

or D?
My ab-"-'é‘f;(Ln a—f)lO"’ henries/cm of conductor

Similarly, the total flux set up by the currents in conductors
b and b’ and linking with the circuit composed of conductors
a and a’ will be:
D2
Q I b Ln=— d
Hence, the mutual inductance of circuit b upon circuit g is:

Mbu =2_10-8

2
or Yie f—(Ln dD )10“ henries/cm of conductor

The foregoing results conform to the generally known
relation among the mutual inductances, which may be expressed

as follows:

Ma=M.=Y* (57)
Therefore,

M -=—-(Ln D') 0 henries/cm of conductor (58)
Pinally, the mutual reactance per mile of lint is:
Xar=4.657X10- f log ED-% ohms/mile of line  (59)

*For of this statement, see Timbie and Bush, Principles of
Electrical Enginesring, 3rd Edition, p. 402.
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27. Impedance of Circuits with Earth Returns.—The re-
sistance of a circuit with earth return must take into account
the earth resistance as well as the conductor resistance. This
resistance cannot be computed very easily, but Carson has
introduced a factor in the impedance equation which has been
found to be satisfactory. Thus, the total self-impedance of a
circuit with earth return is:

Z=R.+1.588X10~* f+7 4.657X10~3 f log 1773 ohms/mile (60)

where R.=resistance of overhead conductor in ohms per mile,
and 1.588 10~ f=earth resistance

a
[ ]

1, 2 s N

bt A
Earth

y Common Earth Resistance

Fig. 19. Schematic Diagram of Coupled Circuit for Two Conductors
with Earth Return.

The total mutual impedance will also include a resistive
element, namely, that of the earth return which is common to
the conductors a’ and b’ in Fig. 18. This feature is more clearly
shown in Fig. 19, which gives a schematic representation of the
coupled circuit.

Thus, the mutual impedance is:

Zu=1.588X10-3 f+7 4.657X 10~ flog dp—é ohms/mile (61)

If conductor a is made up of three parallel strands called
1, 2, and 3, the value of d,; to be used in equation 61 becomes:

d¢b=addlbd2bdab

If, in addition, the conductor b is composed of two parallel
elements called » and y, then:

das= 101 y0s.ath Tny
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Other combinations of parallel elements per conductor can
be handled by the same general method, as outlined in Arts.
22 and 23.



CHAPTER 6

TRANSMISSION LINE CAPACITY

28. Dielectric Flux Density Around Circular Wire.*—In
Fig. 20, let the charge, or the dielectric flux, radiating from a
circular wire be denoted by Q coulombs per cm of wire. Assum-
ing an isolated wire, so that the flux
may be taken as wunmiformly dis-
tributed over the conductor surface,
we may then express the dielectric
density at any radius as follows:

-2
=75~ per sqcm (62)

Then, the potential across the ele-
ment dx is:

1pag=10
Gdx= KD dx= R f:::dx volts (63) Fig. 20. C%‘; %Vogle 'Iuolated

Also, the potential between two
points P; and P,, at distances R; and R from the center of
the conductor, is: R

2

Y R
E =K Ln R, volts

29. Single-Phase Transmission Line.—Before developing
an expression for the capacity of a single-phase line, it is quite

*In the solution of i:ﬁacity blems as well as in the solution of

inductance problems, modified CGS units are used in this text. The

classical electrostatic system of units is based on the concept of a unit

?herical point charge. In such a system the dielectric constant of air is

efined as unity; and, because of the spherical nature of the unit charge and
~6

the introduction of constants of proportionality, the term -1—9—;-(6:,2—-

0.08842 X 10~ mids ger cm cube is evolved.

In modified CGS units, the dielectric constant of air is defined as
0.08842 10, and one may look upon such a value purely as the equivalent
of a test coefficient, very much as one interprets the test value for the

resistivity of copper. For further details on the electrostatic system,
consult “Fundamentals of Electrical .Engmea;l;zg:" by Reed, or ‘Principles
of Blectrical Engineering,” by Timbie and B
‘ 42.
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important that we examine the dielectric field pattern produced
by two long circular conductors supported in a homogeneous
medium. In Fig. 21 are shown two small conductors a and b
with respective charges, per cm of length, of —Q and +Q
coulombs. The origin of coordinates is taken halfway between
the points of concentration of the charges. Since the dielectric
medium involved can be assumed to have a linear characteristic,
we may obtain the potential of point P by considering the
effects of the two charges as if they were acting independently.

R A

/ PR "4;

-0 o
S 8

Fig. 21. Potential of Point Due to Charges on Two Conductors.

Considering only the charge upon conductor a, the potential
difference between point P and some other remote second point
at a distance R from conductor a is:

N A .
EP— ZTK Ln 72

Similarly, the charge on conductor b will contribute a
potential difference between point P and a second point at a
distance R; from that conductor. This potential difference is:

_0 R
EP—E;'—K— Ln 71-

Notice that these potentials are from any points on the
circles of radii R, and R; to point P. With respect to each
individual charge, any circle represents a contour of constant
potential level. Thus, with respect to charge +Q upon con-
ductor b, the potential difference between ¢ and P is the same
as the potential difference between d and P. Therefore, the
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total potential difference between points d and P due to both

charges is:
e B 10 )
21!' (4}

or
] Q Ry,
Er=5k ' Ry

Now, let point d be removed to a very remote position,
so that the distances to it from conductors a and b approach

infinity. Then the ratio % will approach unity, and the final
1

form of the expression for the potential of point P becomes:

72
P=%K 17,
Notice particularly that, from the basic process followed in the
foregoing derivation, the expression for the potential of point
P really refers to its potential with respect to infinity where the
dielectric field intensity becomes equal to zero.

It is now of interest to investigate the possibility of the
presence of resultant contours of constant potential. Such
contours can be obtained if the point P is allowed to move in
space and at the same time maintains a constant potential level.
To satisfy this demand, it follows that:

=9 1.7
Ep= 2K Ln " constant

Since the conductor charges are constant, the foregoing con-
stant value of potential level can be obtained only if the ratio

:—: be kept equal to a constant as P occupies different positions.
Thus. for constant potential level,
ra=Fn

From the geometry of Fig. 21, we may express the values of
7, and 7, in terms of rectangular coordinates. Then,

VEFD TP =k =217
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Squaring both sides and expanding, we obtain:
St+4-2Sx+ 224y =k*(S?—2Sx+x2+9%)
Rearranging and collecting terms, the result is:
(1 — k%) 4 2x(S+E2S) +9*(1 — k%) =S?(k2—1)

Dividing throughout by 1—#&? and completing the quadratic
equation, we have:

1+k

(1-k%?
+k2 2 4k252
or (x+511—__—-2) +)‘2=(1—'_-k-7)z

This is the equation of a circle. The coordinates of its center are:

(142 o G(l+F)?
( __kz):z'*'il’2 -5

Xo= —ST—3 +k2 and y,=0
and its radius is: e 2 2%S
k2
Thus, the contours of constant potential are indicated by
circles with centers located on the horizontal axis, as shown in

Fig. 22. For the particular case of k= —-1 then xp=—« and
n

R= ., This circle will degenerate to the vertical straight line

through the origin of coordinates. It should be noticed that
all constant potential circles are not concentric.

In the foregoing development, it was assumed that the
charges were concentrated at points @ and ¢ which are 2S5 cm
apart; while in reality the charges will be carried by circular
conductors of radii r which are D cm apart. Since the con-
ductor forms an equipobential surface, we may now determine
the correct conductor spacing by introducing the followmg
limiting conditions:
2kS
T——-E—’-=V

14-k2
and ‘ 2x4= 251 i

R=

=D
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Hence,
25=Q_—73k_2)1
_ (=) 14k (1+E)
and D= A x(l—k’)'_ LT

Solving for k, we have:

D D?
2r 4r

Magnetic Field Constant Potential Circles
Electric Field .

Fig. 22. Contours of Constant Potential.

There are two possible values of k& =? which satisfy this last
equation. They are: !

D /D2 D D?
kb=-2-;+ Zﬁ—l and k¢=§;- W—l

The value of k; will apply wheniobtaining the potential level
of the surface of conductor b. Thus:

=2 1n(24+,/2_
E, 2:KL“(2r+1/ 4 1)

‘ Similarly, the value of k, will apply to the surface of con-
ductor @. Thus:

Q 1.(2_ /D
E-"m"ﬂ(“z;"Vw ‘)
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Finally, the voltage drop between conductors @ and b is:
Esw=Ey—E,

D2
+ -1
9 Ln 2r 4

“K D_ /23_1
2r 4r2

This can be arranged in the following form:

Eab

-2 1 (24 4/ 2 1)
E ab= T K + 1 (64.)
For most overhead lines, the term (ZDT" 1) is very nearly

2
equal to %7 Therefore, an approximate equation for the volt-

age between two circular conductors is:
_0Q 1.2
Eab_?TK Ln r (65)
Finally, the capacity of a single-phase line, according to the
result of equation 64, is:

R Py et (66)

Eab
D2
Ln(21+ 42 1)

An approximate value, which is quite correct for most cases, is:

-9 _ K N
Cab_Eub LnQ (67,

Cab=

Equations 65 and 67 can be obtained by a somewhat simpler
method, based upon the assumption of uniform dielectric flux
density around the surface of the two conductors.  This is
practically true when the spacing of conductorst.s la}ge com-
pared to the radii of the wires. The total veltage drop along
all lines of dielectric flux is the same; and, for the purpose of
this solution, it is convenient to take the line of flux along the
horizontal line between the two conductors. The left-hand
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conductor is assumed to have a charge of Q. coulombs, and the
right-hand conductor a charge of Q5 coulombs.

The voltage gradient at a point # cm from the center of the
left-hand conductor, due to the charge Q,, is:

G=1p=1Q:_1 Qs

K" KA K2
Also, the voltage across the element dx is:
=1 Qs
Gdx= % —dZn-x x
Therefore, the voltage between conductors @ and b, due to the
charge Q,, is:

D—r D—-r
= 1 Qa 1 Qa
Eab—-f Kz——d [KZ Lnx]

or E.= Il{g“L Dr r

In a similar manner, the voltage across dx, due to the charge
Qy, is: 7

1 O
Gdx= K—-—————d2 (D= )x

and the voltage between a and b, due to Qs, is:

D—r D—y
J— — — _!-_ Qb 1 Qb _
Eab—- Eba-—‘/‘ Kmdx [K 2 Ln (D x)]

____QbL LA 1 Qb
K 2n D -7 K21r r

Therefore, due to Q, and Q,, the voltage is:

Qa D- v—r Qb D—r
Ea=geg 0 7T 2k 12
But, since Qp=—0Q,,
=Qa 1 D=1
Eab—ﬂ'K Ln y
and C.5=EQ:° ==-'lDKT,: (68
% In:
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. 10X10-¢ e f g
Using K =—§61}—'=°'08842x 10~% mfds/cm cube, which is
the proper value for air, the capacity is:
-8
Car=2ZXIO ntds om o line (69)
Ln =1

r

For overhead lines, (D—r) is practically equal to D, and
equation 69 can be simplified as follows:

_0.278x10-8
D

Ln=
r

Cas mfds/cm of line

= 0'019;1 mfds /mile of line (70)

log 'r—

or Cay

This simplification might have been introduced earlier in the
foregoing procedure. Thus, due to each charge acting inde-
pendently, the voltage is:

D
Eo=22 102
2rK r ()
9 . D
Ea=—5gln7

30. Voltage Between Two Conductors Due to Charge on
Third Conductor.—The conditions in this case are represented
in Fig. 23, where there are three conductors, g, b, and ¢; and it
is required to determine the potential Eq; due to the charge of c.
Applying Kirchhoff’s law of voltages, in which all voltages must
be taken in vector form, the following relation may be written:

Eab = an+Ecb

As normally applied, Kirchhoff’s law refers to the voltages
existing when all charges are taken into account. However,
it is also permissible to apply Kirchhoff’s law for each charge
acting independently, as long as the circuit involved has linear
characteristics. . This procedure corresponds to the use of a
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form of superposition, by which the final behavior of the circuit
is the result of several effects taken individually.
From equation 71 the following relations are obtained:

;. __WQ_C__ _I_)_a_g _ Qc ch
Bao=—grgg ln =~ and Boo=5 5 In =

Therefore, due to the charge Q., the required voltage between
conductors a and b is:

- Qc Doc Qc Led
Eo=—g gln——t+; gln~

_ Qc ch
or Eap=7 pLn Do : (72)

Fig. Z%q uf::ndihon- for Fig. 24. Conditions for Equation 73.
31. Voltage Between Two Conductors Due to » Adjacent
Conductors.—In Fig. 24 is represented a system of # conductors.
It is required to determine the voltage between conductors a
and b due to the charges on all the conductors. From equations
71 and 72, we may write the general expression of the voltage
between conductors @ and b, due to all # charges, as follows:

E¢b=2‘wll?[(ga'_gb) Ln D¢b+gc g::

+04 Ln Ddb . +QnLn g::] (73)

32. Capacity of Three-Phase Equilaterally Spaced Line.
{The simplest three-phase example is that involving balanced
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voltages and equilateral conductor spacing, as indicated in
Fig. 25.

The so-called capacity per phase of a polyphase line is an
equivalent quantity which is conceived in order to facilitate
calculations. In the case of a single-phase line (see Art. 29),
the two conductors form the plates
or terminals of the condenser, and
the dielectric flux between these con-
ductors is represented by the sym-
metrical lines from conductor to
conductor in Fig 22.

If we consider the equilateral
arrangement of Fig. 25, the actual
capacity effect is somewhat altered.
Assuming that these three con-
ductors are locat.ed in a uniform Fig. 25. Equilateral
constant dielectric medium, then Conductor Spacing.
we should represent the condenser
of such an arrangement of conductors by three lumped capacitors
connected in delta between the three conductors, as in Fig. 25.
However, from fundamental circuit work, it is known that any
delta set of impedances can be represented by an equivalent set
of Y-connected impedances. Thus, it is more convenient to
think of the system of Fig. 25 as composed of three condensers
connected in Y, with phase voltage applied between the three
Y-connected conductors and the neutral point.

For known charges on the conductors, we now calculate the
capacity per phase as follows:

Cur=e (74)

in which E,, is the voltage of conductor a to neutral. For a
grounded system, the neutral may be taken at ground potential.

To evaluate this expression, it is obvious thaf the first step is
to obtain the value of charge J.. This step tnay be carried out
as follows. Applying equation 73 to this case, we obtain:

- *Cy will turn out to be a “real” number for a physically balanced
three-phase system of balanced line to neutral voltages (see equation 78).
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E.b=ﬁ[<g..—-gb) Lo 24Q.Ln %]

Ear=r2z(Qe=0Qs) Ln 2
Similarly:
Eempyor(@e=0) Ln 2

It will be noticed that dashes have been used under all values
of Q and also under the voltage symbols, indicating that these
quantities are considered as vectors. This, of course, is a
necessary procedure in all polyphase capacity probléms, just
as it was found necessary in Art. 16 in the solution of inductance
of polyphase systems.

The foregoing equations for Ea and E.. contain three
unknowns, namely, Qs, O, and Q.. Obviously, to solve for
Q., another equation is necessary. Assuming an ungrounded
three-phase system, then:

Qa +Qb+Qc =0
Substituting for Q. in the equation for E,. gives:

1 D
Eac='2—m—K(ZQ¢+Qb) Ln "
Therefore,
3 D
Eab+Eac=§;_7Qa Ln ry

and Qa=2_"i<(_EL"%E“_‘l (75)
3 Ln—r—

From equation 74,

Cao= ZWK(E¢b+gac) mfds/cm (76)

In the case of a balanced system, equation 76 may be
simplified somewhat. From the vector diagram of F&g 26,

it'is seen that: . ‘
‘ : Eu""'Eso"’sEu
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Thus, equation 76 becomes:

27K

Ln-D—
r

Cao =

If the value of K given in Art. 29 is introduced in the fore-
going equation, then:

—6
°—~—————~'556x1;° mfds /fem )
Ln -r'—

C¢o=

[
Fig. 26. Balanced Three-Phase Line.

Equation 77 will, obviously, apply to the other two phases.
Reducing this equation to the scale of miles, we have:
= 209852 1t emite (78)
log 7

Coao

It will be o’ ‘nterest to compare this result with equation 70
for the single-phase line.

33. Capacity of Unsymmetrical Three-Phare Iides.—Let
the three conductors of a three-phase line be spaced asindicated
in Fig. 27. Assuming that the line is not grounded, then:

Qe OiHQ.=0 )
From Pig. 27 and equation 73, we may write: ‘
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; QL Du]

=
1 Dy Dy
Eacam"‘ (Qa Qc)L ""‘+Qb 2.]

1

Eamst] Qi-go1n 22

(80)

A simple algebraic solution of equations 79 and 80 is not
possible. If, however, the values of line voltages, conductor
spacings, and conductor radii are known, then it is possible to
solve these equations for the values of Qa, Qb, and Q.; and from
these results the respective values of capacities can be obtained
by the application of equation 74. It will
be noticed that the capacities thus ob-
tained will be indicated by complex num-
bers, and the absolute value of capacity is
therefore obtained as the modulus of the
complex number.

The capacities computed by this
method are obviously equivalent star-con-

nected condensers. For an unbalanced Fig.27. U et-
three-phase system, the line voltages will m,};,h:.“' ¢

be different and the question may arise as

to what is the correct phase voltage, or voltage to neutral.
Such a question should not be given a general answer, but
should be clearly stated for each particular problem. If the
three-phase system is supplied from a Y-connected transformer
bank, then the neutral potential may be considered as the
potential of the transformer neutral. If the system is grounded,
then phase voltages might be taken as the voltages to ground.
Unless a definite clear statement is made, there is liable to be
considerable confusion in such calculations.

34. Capacity of Transposed Unsymmetrical Three-Phase
Lines.—The phase capacities, in an unsymmetrical system, can
be equalized by a system of conductor transpositions very much
as equalization of inductance was obtained in Chapter 3.
Rotating the positions of the three wires in Fig. 27, we have
the second conductor arrangement as shown in Fig. 28 (a).
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Thus, equations 80 become:
1 [ D D
E¢b=m (Qa_Qb) Ln —;22+Qc n 'D'i'] (81\

Eac=21|1_KF(Qa Q) Ln “—+QbL _g_ﬂ_l

Fmally, rotating the positions of the conductors a third time,
so as to obtain the arrangement shown in Fig. 28 (b), the
following equations may be written:

1 [ Dat

Eab“‘Zr‘E‘ (Qa—0Qs) In — +Q Ln Dn l

(82)
Eac=’2‘m (QG—QC) Ln "_'+QbL

1 i Dy
Dy

(@) (®)
Fig. 28. Transposed Three-Phase Line.

Assuming that each conductor is in each possible position
for a distance of one-third of the length of the line, and taking
the average of equations 80, 81, and 82, we now have:

1 DnDstm
Eub“B’;R"(Qu Qb)L

1
Eumgig(@.—0) Ln
If we substitute an equivalent separatxon D’—-(J);,;DnDu)
these equations become:

N D.,x
E.a=§-;g(Q¢—Qa) Ln=>

DmDaDn

(83)

1 D,
Eac::”“ 2’,K(Q¢_Q=) Ln‘ .

r
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where D¢== SV DanaDu.

Assuming balanced line voltages, we can solve equations 79
and 83 for the three values of charges and then for the capacity
per phase according to equa-

tion 74; we thus obtain the A\
following result:
Cau= 2 rntis mile  (84) )
log =
r
00
It will be noticed that this )

result is of the same form as  gig 29, Barth-Return Single-Phase
that given in equation 78 for Circuit.

an equilateral three-phase
line, with the introduction of the equivalent conductor
spacing D.,.

35. Capacity of Single-Phase Line with Earth PFeturn.
The capacity of any electrical circuit depends on the distribu-
tion of the charge or dielectric flux between positive and
negative potential elements of the circuit. Fig. 22 illustrates
the dielectric flux distribution between two circular conductors
located in a uniform dielectric. Consider now a system like
that shown in Fig. 29, which consists of a circular conductor
and a flat surface, as obtained in the case of an earth-return
single-phase circuit.

Since the flat surface can be treated as an equipotential
plane, all lines of dielectric flux enter this plane normal to the
equipotential surface. Comparing Figs. 29 and 22, it is obvious
that the previous solution of Art. 29 can be applied to the
present case by introducing a fictitious image conductor, as
shown in Fig. 30. ,

This assumption takes for granted that such a flat equi-
potential surface can be located. There are limitations to this
assumption, as caused by the irregular topography and varia-
tions in types of earth surfaces. Furthermore, the concept
of an image conductor located at the same distance below
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the reference plane as the conductor is located above this
reference plane holds true only for a homogeneous earth
having exactly the same di-
electric properties as air.
Obviously, all these as-
sumptions cannot possibly be
true; but the fact still remains
that we have systems con-
nected to earth, and the
earth potential or charge
must not be neglected. The
foregoing assumption, even
though it has its faults and
limitations, has been found
worthy of application. Thus,
adapting equation 70 to this
case, we have the follow-

Fig. 30. Earth-Return Circuit with

ing result; Fictitious Image Conductor.
Cao=22852 ot /mile of line (85)
log T

36. Effect of Earth on Three-Phase Lines.—In Fig. 31 let
three conductors a, b, and ¢ be charged to certain potentials
Eao, Eve, and E., above ground. The general distribution of
dielectric flux density between these conductors and also
between the conductors and the ground is quite complex; and,
as before, the method of solution is to obtain an equivalent
Y-connected set of condensers, which will account for all of the
charging current of the three conductors.

From the discussion of Art. 35, we may include in Fig. 31
the image conductors with their dielectric flux distribution.
We thus have the complex mapping of flux in a six-conductor
system, having charges Q,, 05, and Q. in the active conductars
and charges —Q, —Qs and —Q, in the image conductors.
The voltage between any two conductors is the sum of six sepa-
rate components, each of which is due to one of the six charges.
Applying equation 73 to Fig. 31, we may write:
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1 [ Dq D.
Eor=5,g] Q=00 Ln =24+0. La 52
H, H H,,
_Q¢ Ln H:_Qb Ln F.%—Qc Ln "ﬁi] (86)
Similarly,
1 Dao Dy,
Eac=m[(ga"gc) Ln T"l‘Qb Ln D:b
' HGC H Cc Hc
—QG Ln H. ‘—Qb Ln ?{—:';"Qe Ln T‘I:] (87)

Furthermore, we will assume the following relation:
Qat+0s+Q.=0 (88)

It is then possible to obtain from equations 86, 87 and 88 solu-
tions for Qa, 05, and Q. in terms of the dimensions and the line
voltages Ea and [E.. Finally, for known line to neutral
voltages, Eaor Eboy and Eco
the equivalent phase capac-
ities are of the following
form:

C¢a= Qa
37. Capacity of Other
Multi-Conductor Lines,
with Effect of Earth.—It is
common practice to operate
two three-phase circuits on
common towers, or in some '
cases to have lines of dif- Flg. 31. Emh-ﬁ;t:m Three-Phase
ferent voltages on the same
towers. It should be noticed from the preceding articles that
all conductors, regardless of their currents or voltages, will
affect the capacity of any one conductor. Furthermore, if
parallel lines on separate pole structures are close enough to
each other, it will be necessary to take into account all con-
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ductors of both pole structures when obtaining the capacity
of any one conductor. Also, if the earth is introduced, the
problem involves a system having twice as many conductors.



CHAPTER 7

THE LONG TRANSMISSION LINE

38. Derivation of Fundamental Steady-State Equations.
In low-voltage lines the shunt current between conductors is
generally small enough to be neglected, unless the line is par-
ticularly long. As the line voltage is increased, this shunt
current becomes more and more important. It is not possible
to distinguish definitely between so-called short lines and long
lines; but certainly a line is long if the shunt current amounts to
a definite percentage of the full-load current,

‘F_‘wﬁ'
[l P

Es, I Ey, I,

axr
Sending End 1 E Receiver End

| Yds |
L—d. 8

Fig. 32. One Phase of Three-Phase Line.

As pointed out at the outset of this volume, a transmission
line is distinguished by the fact that the series resistance and
inductance and the shunt capacity and conductance are fully
distributed along the entire length of the line. Therefore, no
method of circuit analysis dealing with lumped constants can
be used accurately to describe the general line behavior.

In Fig. 32 is illustrated one phase of a three-phase line.
Considering a balanced system, the return or neutral conductor
is omitted. Since the constants of the line are distributed over
the-entire length of the line, the fundamental equations must
be developed on the basis of an infinitesimal length of line ds.
On this basis we may proceed to define the basic quantities

involved.
60
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Let Z=R+3jX =series impedance per mile;
Y =G+jB =shunt admittance per mile.
Then, Z ds=series impedance of length ds;
Y ds=shunt admittance of length ds.
If the current flowing through the element ds is I, then the
voltage drop across ds is:

dE=IZ ds (89)

If the voltage across the line at the element ds is E, then the
current flowing through the shunt admittance is:

dI=EY ds (90)

Equations 89 and 90 form the foundation of the long-line
formulas; however, the results must be obtained in a more
usable form. The basic requirement is to obtain equations of
voltage and current at any point along the line in terms of the
terminal voitage, the terminal current, and the fundamental
line constants. Since the voltage E and the current I of
equations 89 and 90 are both unknown quantities, the first step
in the solution is to solve these two equations simultaneously
for the two unknowns. Thus, equations 89 and 90 become, by

differentiation:

ag

L2l (o1)
and Zsf YdE - (92)

Substituting the value from equation 90 in equation 91 and
the value from equation 89 in equation 92 will give:

L yE-wE (93)

L ovI-w1 04)

and

where m?=Z2Y.

These two results are recognizable as second-order dif-
ferential equations, and anyone familiar with differential
equations will immediately write down the answer by inspection.
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However, these equations are so important and of such a unique
form that a more detailed examination will be submitted. Both
of these equations are of the form:

dX —m2X

It should be kept in mind that X represents the unknown
voltage or current and must be some function of the terminal
voltage and current, of the impedance and admittance, and also
of the distance s from the receiver end ol the line.

The unique form of this equation is in the fact that the
second derivative of X must be equal to w?X. With this fact
in mind it becomes obvious that X must be defined by an
infinite-series equation of increasing exponential powers, and
must also be of factorial type; otherwise, the exponential powers
of the second derivative of X would be less and the coefficients
greater than those found in the initial equation for X. The
following expansion seems to fulfil these requirements:

303 404
¥=1+ms+ B+ BT et

This may be tested by taking the second derivative, which is:
3c3 4
m’(l+ +2- 2 +n;,s +m 2+ ete. )

The foregoing expansion for X can be written in two parts,
as follows:

mzsz mass wlsb
X= (l+ 4, + )+( + =+ - )
Applying this expansion to voltage, we have.
I O e I
The coefficients K, and K, are merely constants of propor-

tionality which are necessary in order to balance the equatmn
as to units.
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But,
ems ~—ms 202 £od
cosh s = *;‘ =142 e
. eml_ 308 beb
and sinh ms= 2‘ s “;,5 +"gf +... 97)
Therefore,
E =K cosh ms+ K, sinh ms (98)
Similarly,
I =K cosh ms+ K sinh s (99)

To determine the value of the four constants of propor-
tionality, proceed as follows: If s=0, then E=E, [=[.,
where E, and ], are the receiver voltage and current. Also,
cosh ms=1 and sinh ms=0 (see equations 96 and 97). There-
fore, for s=0:

Ki=E:and Ks=1[,

Substituting these results in equations 98 and 99 gives:

E= E: cosh ms+ K, sinh ws (100)
I=1I, cosh ms+K, sinh ws (101)

The last two constants, K: and K4, may be determined as
follows: Taking the first derivative of equation 100 gives:

%g= E. w sinh ws+m Ko cosh s (102)

But, according to equation 89, gd—? = [Z; or, using the value of [

from equation 101:

=],Z cosh ms+K.Z sinh ms (103)
Equations 102 and 103 are seen to represent identities.
Hence, , .
El=Emwand wkKi=1.Z
from which:

,==I Z—YI ,‘/- Slr=1:Zo (104)
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—g2_E_
and K= 77 EY, (10s)

where Zo= ¢_1_ characteristic impedance of the line.
Y Yo

Therefore:
E=E, cosh ws+I,Z, sinh s (106)
I=] cosh ms+ E.Y, sinh ms
Also:
E= A Er+ BIT
where:
A =cosh ws :
B=Z2, sinh ms
C = Yo sinh ms (108)
D=4

39. Vector Significance of cosh ws and sinh ws.—By
definition:

w= VZY¥ = (R+iX) (G+1B)
If Z=Z /¢, and Y=Y /gy, then: |
w= N oite= 2V [ 25 B=m/s,  (109)

Also, if ms =complex number = u+jv, then:
cosh ws=cosh (u+jv)
sinh ws=sinh (u-+4v)

But hyperbolic functions can be expressed in the following
exponential forms:
etelvf-eve 1Y

"cosh ms= 3
» (110
ULV s g% v
si.nhms=e € 2e €’

There are two types of operators in equation 110, namely,
et and e+ The first of these may be called a magnitude



THE LoNG TRANSMISSION LINE 65

operator, while the second is the rotational operator as used in
the exponential vector notation. The component parts of cosh
ms are shown diagrammatically in Fig. 33. In other words,

U T
< 26 represents a positively revolving vector of increasing magni-

tude, while < 3

decreasing magnitude. Generally, therefore, hyperbolic func-
tions combine the properties of vector rotation and change in
vector magnitude.

The following relations are general:

—Uc—jv

represents a negatively revolving vector of

e/?=cos v-+7 sin v and e~ *=cos v—7 sin v
e*=cosh u-}sinh % and e *=cosh u—sinh %
Also:

cosh ms=cosh # cos v+ sinh # sin v (111)
sinh s =sinh % cos v+j cosh u sin v

40. Modified Transmission-Line Equations.—The trans-
mission-line equations 106 and 107 are in the general form most
convenient for power network
computations. Equations 107
are in the so-called general-
1zed four-terminal network form,
which will be used as the basis
of the circle diagram analysis
in Chapter 9. However, in
order to get a better under-
standing of the reactions in-
volved within a long line, it is
convenient to obtain other forms Fig. 33. Component Parts
of these equations. The result of cosh ms.
desired either can be obtained
directly from the original differential equations 93 and 94 or can
be evaluated from the results of equatwns 106. The second
method will be chosen.

Substituting the values in equations 110 in the general forms
of equations 106 will give:
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E =—52:-:(e“e"’+e"“e"f") -I--'L'%’(e"ef’—- eve—iv)

I . '—‘(6"6"'"- e"‘e""’) 4= E'Yo(eueav_ G_"G—i")
With a slight rearrangement of terms, we have:

E=(Er+’21.rzo)eu€j"+(Er I’ZO) -“é—’."

I - (Ir+2ErY0)€u€iv+(Ir ErYD)e_ue_.h

These two expressions are of the same form. Hence, we will
consider only the first one in detail, the qualitative results
being applicable to the current equation also. Thus, the
voltage equation may be written as follows:

E=Ebiete*+ e e

For given load conditions of voltage E,, the current [, and
terms [E; and [E; are constants. The terms # and v are related
in the following manner:

u+jo=ms

where s=miles of line measured from the receiver end. Thus,
e will have its highest value greater than unity at the sending
end of the line and will drop to a value of unity at the receiver
end of the line. On the other hand, ¢ will be equal to unity
at the receiver end of the line and will drop off toward zero as
the sending end is approached. The rotating operators ¢/* and
e~# indicate unit vectors which are in phase at the receiver end, so
that e+®=1/0° Also, as the sending end is approached, e/
indicates positive or counter-clockwise rotation, while ¢~#* indi-
cates negative or clockwise rotation.

With these basic ideas in mind, we notice that the term
Ere'e’ indicates forward wave motion from the sending end to
the receiver end of the line. As the receiver is approached,
this term decreases in magnitude and rotates clockwise, becom-
ing Eie® at the receiver end of the line. Similarly, looking at
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the line from the receiver end, the term Ese*¢~7” represents a
traveling wave moving toward the sending end. Starting from
the receiver end with a value of Fye~®, it gradually decreases
in value and rotates clockwise as the wave travels toward the
sending end. ,

From the point of view of wave motion there are a few special
cases which it is worth while to investigate. These follow:

(a) Open-circuited line: For this case the receiver current
1. will be equal to zero. Therefore:

E __.E_._'euew.i_g_’.'e-u L)

The forward and reflected waves are seen to be equal in
magnitude at the receiver end. The actual receiver voltage
is equal to the sum of the two waves; while the receiver current
is seen to be equal to the difference between the two current
waves.

(b) Short-Circuited Line: In this case the receiver voltage
E. will be equal to zero, so that the two basic equations become:

E =Lé—z—°e"ef"—£—2-'ée"“e""

I= I eu 1v+I" ~%e—10

As before, the forward and reflected waves are equal at the
receiver end of the line; but in this case the two component
voltage waves neutralize each other, while the two component
current waves are additive.

(c) Line of no reflection: A very important special case in
communication networks is the line of zero reflection. Inspec-
tion of the general equations will reveal the fact that the
reflected term can only vanish under the following conditions:

Ee=1Zoor I,=EXo

But the receiver voltage and current are obviously related
through the load impedance Z,; thus, E,=].Z, Therefore,
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in order to eliminate reflection, the load impedance Z, must be
equal to the characteristic impedance of the line Z,. In this
case the general equations become:

E=E.eve”

I=1ee”
41. Equivalent = Circuit.—The two fundamental equations
107 are not in a suitable form for use in most symmetrical-

components problems. Either = or T equivalents are used.
The equivalent  circuit of Fig. 34 is derived as follows:

E0=Er+(Ir+ErY‘r)Zw= (1+YrZr) Er+ZrIr (112)

Zx
VVVVVW

< E,

Es
Yy Yr
Is Il
>

Fig. 34. Equivalent = Circuit.

Il = Ir+ ErYr+ (Er+IrZr+ ErYrZr)Yt
. (113)

or Ia= (2Y1+Y:Z1)Er+(1+Yth)Ir
Comparing equations 112 and 113 with the long-line equa-

tions 107, the following relations must hold if Fig. 34 is to be
the equivalent of the long line:

14-Yedr=4 =cosh s

&x»=DB=~&osinh ws (1149
Therefore:
_ —14-cosh ms

42. Equivalent T Circuit.—The T circuit is shown in Fig.
35, from which the following relations are obtained:
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E=EA1.Zo4+ 1A (E-+-1Zr)Y 1T

or Ei=(14Yrlr)E-+ (2Zr+Yr2?r) I,

L=1+(Et1Zn)Yr=YrE~+Q+YrZn)], (117)

Comparing equations 116 and 117 with equations 107, we
find that: :
Yr=(=Y,sinh ws (118)
and 1+YrZr=A =cosh ws

from which:

(116)

—1+4 cosh ms

Zr= Y. sinb ws (119)

43. Advantages of Equivalent Circuits.—By means of the
expedients of Arts. 41 and 42, a transmission line can be
accurately represented by an equivalent » or T circuit. In so far
as the terminal conditions E,, I,, E,, and I, are involved, the
solution of the line by 2 2
either the long-line equa- ,MA ,Nv\'N\
tions or the r and T cir-
cuit equivalents will of g % B,

¥y

course be identical.

The equivalent circuits 7,
have a distinct advantage
in that they may be more
conveniently used in con- Fig. 35. Equivalent T Circuit.
nection with network
problems than is possible with the actual distributed line. In
case long lines are to be introduced into the general circuit lay-
out of modern short-circuit analyzers (Art. 147), equivalent
circuits must be adopted, since the design of the circuits of such
a device can only be accomplished with lumped constants.

I




CHAPTER 8

GENERALIZED CIRCUIT EQUATIONS

44, General Statement.—In the preceding chapters the
author has presented a discussion of the parameters belonging
to transmission lines and also a development of the basic
equations defining long lines. Transmission lines constitute
only one small part of power networks. It is worth while to
investigate the possibility of generalizing certain features of the
operation of transformers, generators, loads, and transmission
lines into one single fundamental group of equations. There
will obviously be certain restrictions in the use of any mathe-
matical expression which is applied to both machinery and
circuits. The most important of these restrictions follow.

(a) First in importance is the assumption that a machine can
accurately be represented by an equivalent circuit. It is not
within the scope of this text to enter into a lengthy dis-
cussion of electrical machinery, and it will suffice to say that
within certain limitations most equipment—such as trans-
formers and generators—can be represented by some sort of
equivalent static circuit, the particular type chosen being
dictated by the accuracy required.

(b) The circuit equations commonly used are vector equa-
tions; that is, the equations involve complex numbers. This
implies that all operation is of single-frequency type.

(c) The constants involved in these equations imply that
the R, L, and C parameters of the equipment considered are
truly constants. In actual practice such may not be the case,
and the final results may be somewhat in error.

Because of the complexity of networks, such a general-
ization is quite worth while; and experience will determine how
far such an approach can be used and where and to what extent
errors may creep into the general results. The foregoing
requirements may be summarized by stating that such an
equivalent generalized treatment is possible if the machine or
circuit possesses qualities of linearity and is also bilateral.

10 ’
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These statements imply that the defining parameters are
actually constants and that the circuit will operate in a reversed
direction in the same general manner as in its normal direction.
For example, a transformer is bilateral in that it transmits
power of the same frequency equally well in either direction,
that is, from primary to secondary or from secondary to primary.
A rectifier, on the other hand, is not bilateral. With this
background of explanation, we should be ready to proceed
with the development of such a generalized theory.

All electrical circuits receive power at one end and deliver
power at the other. In Fig. 36 is shown such a power circuit,
the input voltage and current being denoted by E, and [,,
while the receiver voltage and current are indicated by E,
and [.. In conformity with the general plan and as will be
shown by several examples which follow, it is possible to
express E, aud [, in terms

of E, and ], as follows: ]
En AEr""BIr] E, L 4BCD E, I,
=CEA+DL| 130 —— |
where 4, B, C, and D are Fig. 36. Generalized Circuit.

known as the generalized
circuit constants. It is of interest to note that 4 and D are
numerics, B has the dimension of ohms, while ¢ has the dimen-
sion of mhos. These equations imply that the direction of
power flow occurs from the s terminals to the 7 terminals.

In some cases it is advantageous to express E, in terms of
E. and [,. This can be accomplished by solving equations
120 as follows:

I= L.—CE,
Therefore: b
, E.=AE. +BI. L?CEf |
from which: ; '
ETSHEU—KIC T (121)

where d=gp g™ E=gpope
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For simplicity, let N=AD—BC. Then:

Dp_B
E.= NE' NI. (122)

Substituting this value of E, in the expression for [,
we have:

L ¢ BC ¢ N+BC
L= D NE' NI’ NE' DN
=&

In the case of four-terminal networks which are linear and
bilateral, the term N=AD—BC will always be found to be
equal to unity. This statement can be proved with the aid of
the ‘‘reciprocity theorem,” in conjunction with two simple tests.

Test a: Apply voltage E tc the sending end of Fig. 36, the
receiver end being loaded with an impedance Z.. Then:

E = 4 Er+ -B I r
The transfer impedance Z:, from the sending end to the receiver

end is defined as the ratio —f— Thus:

Zu=£-451p

Since Z1= —E—f,

r

Zu=42.18B (124)

Test b: Insert the same voltage E at the load end of the
network in series with Z; and short-circuit the sending end.
This is illustrated in Fig. 37. Since power is now flowing from
the receiver end to the sending end of this line, equations 122
and 123 must be slightly modified by reversing the signs of all
current vectors, as follows:

D B
Er=NEa+NI¢

Cr. 4
If NEO"'NI‘
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But, in this case, E,=0and E,=E—I[.Z.. Therefore:
—17,=8
E I rZL NI!

and Ir=§'-[n

Substituting this last expression for [, in the preceding expres-
sion, we have:

E=EzuE I.—AZL+BI.

The transfer impedance between the receiver end and the
sending end is defined as follows:
_E_42.+8B

E
Es, Is ABCD Ey, I, ZL—%

Fig. 37. Generalized Circuit.

The reciprocity theorem states that in a linear, bilateral
four-terminal network Z,=Z:.. This means that

azu+y=442tE
or - AD-BC=1 (126)

Thus, for linear, bilateral networks, equations 122 and 123
become:

Er'—— DEI"'BI&
I= —-CE.+AI.} (127)

The generalized constants are generally complex in form,
and may be represented as follows: .

A=A/a L = a1+1'as
B=B/g=bi+ib
D=D/A=d+1ds
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As an example of the application of the generalized equa-
tions, a few of the circuits most commonly encountered in net-
work problems are given in Arts. 45 to 51. These examples are
sufficient to indicate the generality of the method.

45. Simple Series Circuit.—In Fig. 38 is shown a circuit
of resistance and inductance in series. This circuit may

st s ANMA— T e — ———
E, E, Es z, z, E,
Z:R+4X z,
I I, I I,
Fig. 38. Simple Series Circuit. Fig. 39. Simple T Circuit.

represent a short transmission line (capacity neglected) or the
simplified circuit of a transformer. In the case of a trans-
former, the total impedance is obviously based on a single
voltage. By inspection, it is evident that to satisfy equations
120, the following relations must be true:

I

{
g =R+iX (128)

'U““\llwl:b

1

46. Simple T Circuit.—A T circuit like that shown in Fig.
39 may represent a transmission line or a transformer. The
generalized constants for this circuit are:

A= 1+§-:
B=zx+z=+—z—2% ' .
. : (129
A
D=1+

N
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The proof of these results is left to the student. The T
circuit is generally used for the transformer or the induction
motor, but it may be used

also for a transmission line. z
-— ——
47, Simple = Circuit. k& E,
A transmission line may ¥s ¥ 1
4

sometimes be represented
by a = circuit in which the
capacity susceptance is Fig. 40. Simple r Circuit.
divided equally between Y,

and Y, The generalized constants for the = circuit of Fig. 40
are:

A = 1+ZY7‘
B=2
Q = Yo+ Yr+Z YUY" (130)
D =1 +ZYO
B, Iy 4, B, C, D, Ey, Iy 4; B, C, D, Ey, I,

Fig. 41. Series Network.

48. Long Transmission Line.—The fundamental equations
of the long line were developed in Chapter 7 (see equations 107
and 108). According to those results, the generalized con-
stants are:

4 =cosh mws

B=Zosinh ms

C=Yosinh s sy
D =cosh ms

49, Series Network.—Consider two systems in series as
shown by Fig. 41. Such a combination may represent a trans-
former connected to a transmission line or two different types
of lines connected in series. In this case it is convenient to
convert the transformer constant to the voltage scale of the
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transmission line; thus, E, and ], will be the transformer input

voltage and current referred to the transmission line base.
The foregoing two systems can be combined into a single

equivalent system, for which the resultant constants are:

A(): 4142+BIC2
Bo= 418+ B
Co=Cidzt DiCe (132)
Do=C1Bs+D1D:

The results in equations 132 can be verified by applying equa-
tions 120 to each section and then eliminating the voltage and
the current at the junction of the two sections.

Is, Irl
4, B, C, D,

I Ir

Az Bz 01 Dz

Es E r
Fig. 42. Parallel Network.

If a third network is connected in series with those of Fig.
41, a resultant may again be obtained by a second application
of equations 132. The same relative order of network notation
of Fig. 41 must be maintained. This proposition is very
valuable because it makes possible a single solution for a power
system which might include lines of different designs as well as
transforming equipment.

50. Parallel Network.—Parallel transmission systems may
be combined so as to obtain a set of generalized constants, as in
the case of a series circuit. For example, consider the circuit
of Fig. 42, in which the two parallel circuits are designated by
constants A;, By, Ci, D, and A,, B, C;, Ds. The generalized
equations for this circuit follow:



GENERALIZED Circultr EQUATIONS 77

Ee=01EvtBiln (@)

In=GE+Dln ()

Eo A2E+Bal e (c) (133)
=GB+ Deln @)

Furthermore, the total current is equal to the sum of the
currents to networks 1 and 2. Therefore:

I 8l + I a2 (a')
1, Intle (b)} (134)

Substituting the value of [, from equation 134 (b) in equa-
tion 133 (a) gives:

En AlEr‘{"BlIr BxI'a (135)

But, from equation 133 (¢),

El A2Er
I =B B (136)
Then, substituting equation 136 into equation 135, we have:
_Bip | 4B
AlEr+BlIr B a 'Bl Er
from which: :
(A1Ba+A4:81) » | BiB:
EJ BI+B EPTB+B Ir (137)
The sum of equations 133 (b) and (d) is:
Li=(C+C) E+Diln+D:lr (138)

Eliminating [, from equation 138, the result is:
= (CI+CS) Er+DlIr— (Dl _Dﬂ)Iﬂ

Finally, mtroducmg the value of [,2 as given by equation 136,
we have:

I = (Cl+ 62) Er+ DII r ‘%"Q"ZEO'I”-‘—“‘_‘—'A:(DI — D’) E;
2 B

Introducing the value of E, from equation 137 and rearrang-
ing, we obtain the following result:
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_ (41— 42)(D:—Dy) BiD:+D1B:
I.-[Cl-i-Crl-——————-——-—Bl ey ]E'-I__—_Bl s I,  (139)

Thus, for this case, the generalized constants are:

N

a-iige @
Begis Ol o
Co=Crt Gt il D) T

L @

51. Special Transformers.—A: Tap Changing.—Accord-
ing to Art. 49, it is very often convenient to combine a trans-
mission line with sending-end and receiver-end transformers
and to express the relations for 2, Z,n?

the entire circuit in terms of
generalized constants A, B, C,
and D, It has already been in- Zo
dicated that a transformer can

be represented by a T circuit; Fig. 43. Tap-Changing Trans-
and that, with some approxima- former.

tion, a simple series circuit is sufficiently accurate. The T
circuit, in which all secondary impedances have been referred
to the scale of the primary, is shown in Fig. 43. In this circuit,

Zi=primary leakage impedance;
Zo=shunt or exciting impedance;

br= seconda.ry leakage impedance;

n =%—'=ratio of primary to secondary turns.

Substituting these data in the formulas for 4, B, C, and D
of equations 129 gives:
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4-144 (@)
B=zrtzm+4E )
1 ! , (141)
=Z (©
p-1+4~ @

As will be seen from the next chapter, it is often convenient
to develop circle diagrams for constant sending and receiver

A PNV VA
. ™ \/

o
(a) ™) B

Fig. 44. Phase-Shifting Transformer.

voltages, but for different transformer taps. Such a procedure
can be carried out quite successfully by the aid of the results
of equations 141.

B: Phase Shifting.—It is not the purpose of this text to go
into the details of equipment connection or operation; but, in
order to understand the fundamental idea of a phase shifter,
the elementary circuit must be given, as illustrated in Fig. 44.

The method used to obtain a shift in the phase voltage of
phase A is illustrated A transformer secondary is connected
in series with line A, and this secondary is energized from a
primary coil connected across the line terminals B and C.
Thus, a small voltage can be added to or subtracted from the
phase voltage Vya, Fig. 44 (b); or the phase voltage is shifted
by a small angle 6 in either a positive or a negative direction,
depending on the relative connections made. Taps may also
be included in the shifting transformer, so that different amounts
of shifting are possible.
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Neglecting the losses incident to making such a transforma-
tion, the relation between the sending and receiver voltages is:

Ev=(Ercos 0)/=6 (142)

In equation 142 the plus sign is used for counter-clockwise
angular shifts, while the negative angle is used for clockwise
angular shifts.

Obviously, if the phase-shifting transformer impedances and
losses are neglected, the load power factor will be transmitted
through the shifter without any modification. Thus:

I‘=c£|; gL=0 - (148)

Prom equations 142 and 143, the generalized constants of a
phase shifter are:
A=(cos ) /=0
B=0and C'=0 (144)
1
D=gsal=?

Phase-shifting transformers are often used in transmission
networks in somewhat the same general manner as tap-changing
transformers to control the relative distribution of power and
reactive volt-ampere distribution as well as to make certain
inter-connections possible. In some cases the steady-state
solution of a problem of constant terminal voltages but with
variable phase-shifter angles may be desired. By means of
the results of equations 144, it is possible to set up circle dia-
grams for constant terminal voltages but variable angular shift,
and thus obtain a measure of the power and reactive volt-
ampere distribution as a function of phase shifting.

52. Power and Reactive Volt Amperes of Four-Terminal
Networks.—The voltage equation for a four-terminal network
has been defined as follows:

Ec’ AEr+BIr
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Solving this equation for [,, the receiver current, we have:
_ Ea - AEr
I rT -B

Notice that, if I,=1 5@2 and E,=E,/#0., and the conjugate
of the receiver voltage E,= E,/8,, then:

Pr+jQr*=ErIr=ErL_'__0_z_ Ir&
=E,.I, cos (8,—60.)+jFE.I. sin (6,—8.)

The real part of this product is equal to the power, while the

imaginary part equals the reactive volt-amperes of the circuit.
Applying this principle to the receiver end of a four-terminal

network, we obtain for the power and reactive volt-amperes:

Povig~5 1 -BEAEE

E.=E./0
E~E/¢
A=4/a
B=B/8

Let:

.

where ¢ =the angle between E, and E,.
Substituting these data in the last expression, we have:

P+iQ,= E'BE' cos (¢—§) ""%Ef cos (B—a)]

+1] B in (9-p)+- 5B sin (a—a)] (145)
In equation 145:
E.E,
B
Q#%@ sin (¢—ﬁ)+%E3 sin (—a)
*Capacitive reactive power is taken as positive, while inductive

reactive power is taken as negative. See Appendix III for a discussion of
reactive power. :

P,= cos (¢—ﬁ)-——g—E3 cos (B—a)

(146)
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These equations give the variation of receiver power and
receiver reactive volt-amperes as a function of the system
torque-angle ¢, and also the sending and receiver voltages
which are generally held constant.

In a similar manner (see equation 127):

E.=DE,— Bl

Solving for [,, we have:

_DE~E.
=5

Also, the expression for the sending-end power and reactive volt-
amperes is:

Pu+ch = E_III = DE‘E’B— E’E.

Substituting the respective polar values, we have:

Pc+le= DE.AB_-LBE'E"/E

___DBEf ap-BEe /5T
P.+7'Q.=[ ~Eer cos DB, (ﬁ-—A)]

+1[E'E n 6+8) -2 in (ﬂ—A)](l‘W)

In equation 147:

Pu= BBt o5 (-45) 422 cos (5-)

(148)
B o (o8- 222 sin (3-0)

Q.=

Equations 148 give the power and reactive volt-amperes at the
sending end as functions of the torque angle ¢, and sending and
receiver voltages.
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In case the circuit degenerates into a simple series impedance,
that is, Z=Z /8, then equations 146 and 148 become:

2
=227 cos (¢-—ﬁ)-——€5 cos 8
0.=EE in (4-p)+Z sin
A ()
7 cos (6+8) +——' cos 8
2
Q= EZE sin ($-+8)+2* sin 8

Finally, for the rather special case in which the series im-
pedance is taken as inductive only, that is, £=Z2/90=;X, then
cquations 149 become:

_EE, _EE, . |
2
Q.= E‘E ¢+ '
EE, T (150)
- 2
Q=—x cosé—% )

Coming back to the original equations 146 and 148, it is of
interest to notice what conditions correspond to maximum
received and maximum sending power. In equation 146, P,
will be a maximum when

=8 (151)
Also, from equation 148, P, will be a maximum when
¢=180—8 (152)

Substituting these requirements for maximum power into the
proper equations leads to the following results:

EoEr___é_El (ﬁ —- u')

E.Er

Pr max = 5
(153)

Pam“
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The implications involved in equations 153 are of tremendous
importance, and cannot be emphasized too strongly. Notice
that, in arriving at the expressions for maximum power, there
was no indication of the available load or generator capacity.
From the consideration of the four-terminal network it is found
that a certain maximum power can be delivered to the load,
and a certain maximum power is accepted by the input of the
network, regardless of the amount of generating capacity
available at the input terminals. In reality there might be
tremendous amounts of power at the input end, and yet the
network has a maximum limit. More will be said about this
maximum power limit in Chapter 9.

53. Equivalent Simple Series Impedance Line.—For some
problems of analysis, as well as for computational ease, it is
often desirable to replace the actual circuit of generalized
constants A, B, C, and D by a simple series impedance. Notice,
particularly, that the original circuit can be quite complex,
including long lines with distributed parameters and terminal
transformers or other equipment. This complex circuit may
be replaced by a = equivalent by putting the expressions of
equations 130 equal to the values of A, B, C, and D for the
actual circuit. Thus:

from which:

(154)

‘By this expedient the actual complex circuit is changed to
that of Fig. 45 (a). If Y, is considered as part of the received
load, and Y, as part of the generator equipment, a new simple
series impedance is obtained, as in Fig. 45 (b). Here:
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I’r=Ir+ErYr
I’.=In"‘EcYc
l'e=1''=1

(155)

The circuit may now be solved as a simple series circuit,
making suitable correction on the final results to account for
Y, and Y,. The vector diagram of Fig. 45 (b) is quite simple,
being represented by a voltage triangle of sides E,, E,, and IZ,
as shown in Fig. 46.

AAMAAMMM
—— I‘ — Is, I'/__._ T
Es X X K,
(a)
K AARA ¥
-—-h-l'ﬁ
E; Ef
)

Fig. 45. Simple Series Impedance Line.
Let it be required to obtain the conditions for maximum
power delivered when the ratio % is known but the exact values

of E, and E, are still to be chosen. This solution can be carried
out graphically as follows: Having the value of impedance
Z=Z /B, construct the impedance triangle R+jX=Z, as shown
in Fig. 47. Erect a perpendicular bisector of Z at S, and then

lay off the line a0 making an angle of (90—g) with the impe-
dance line Z. This line a0 will intersect the perpendicular
bisector of Z at 0. With O as a center, draw a cu'cle with
radius Oa =Ob.

Assume a series of values of E, and E,, all satisfying the par-

ticular ratio g— which is desired. From a as a center, strike arcs

equal to E,; and, from b as a center, strike arcs equal to E..
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These arcs will intersect at points on a curve of E, and E, for

constant ratio % The desired operating point is obtained at

r

the intersection of this curve with the circle at ¢. The proper

values of E, and E, are given
by the lengths ca and cb, re-
spectively.

Up to the present, Fig. 47
is to the scale of ohms im- E,
pedance, since it was started Fig- 46. Vector Diagram for Fig. 45.
by laying off the line ab=Z,
the impedance of the line. Now it is possible to choose any
particular values of E, and E,, provided these values satisfy the

ratio —g—' which was initially assumed. As soon as the choice of

r

E, is made, a new scale of voltage is automatically available for

Fig. 47. Thus, the distance ab is now the impedance drop along
the line. Dividing this voltage drop by the impedance Z will

a
1) $ %0-8
\
\
\
X---X €l vy S s .
X s s . ‘
A,// jX
7/ 90_
E, A s
g
) R

Fig. 47. Conditions for Maximum Power.

give the current. This current is obviously located parallel to
the resistance line and perpendicular to the reactance line,
as shown.

The receiver power factor, as well as the sending power
factor, can readily be found from Fig. 47, so that the power
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and reactive volt-amperes for both ends of the line are available.
As previously indicated, corrections should be applied to these
results to account for the receiver and sending shunt admittances
shown in Fig. 45 (a).

In order to completely justify the construction of Fig. 47,
it is still necessary to prove that the angle acb is equal to B;
that is, the torque angle of the system should be equal to the
line impedance angle for maximum power delivered. The
necessary proof is based on the geometry of Fig. 47. In the
triangle abc, the center O of the circle passing through a, b, and ¢
is located at the intersection of the perpendicular bisectors of
the sides of the triangle. The lengths of the lines connecting
the point O to the corners of the triangle are obviously all equal.
Thus, we have three isosceles triangles, a0b, bOc, and ¢cOa; and
therefore thc corresponding angles at each corner are equal,
as shown. The internal angles of the triangle abc must add
up to 180 degrees; thus:

2a+24+2(90—p8) =180
(a+4)+90—-8= 90
et+A=¢=4

Another equivalent simple series circuit may be obtained
by replacing the entire network by an equivalent generator
and suitable series impedance. Such a change can be readily
made by an application of Thevenin's Theorem. Looking
back from the receiver terminals toward the generator, we
must first determine the equivalent open-circuit voltage. This
can readily be obtained by putting I,=0 in the following
general equation:

E.=AE+BI.
from which:

E
Efﬂ A

Next replace the actual network by a single impedance,
which is equal to the looking-back impedance of the network.
To obtain the looking-back impedance of the network of Fig.
45, we must apply a source of voltage to the receiver terminals
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and connect an impedance across the sending terminals; and
this impedance must be equal to the internal generator im-
pedance. For power flow from the receiver to the sending end,

E.=DE.+Bl.
I,=CE.+ 4l

Therefore, the looking-back impedance is £rp= ggaj:f‘{.

Since the generator impedance is Z, =%,
8

z _DZ,+B
BT CZ+ 4

The equivalent circuit is shown in Fig. 48, for which

%_—' r+IrZLB

54. Method of Obtaining Generalized Constants from
Test.*—The problem of obtaining the generalized constants
A, B, C, and D by computational methods is of course the only
procedure in the case of
anengineering design proj- ____ s
ect in which the circuit is —I &
not as yet in existence.
However, when the prob-
lem is to obtain these con-  Fig. 48. Equivalent Impedance Line.
stants for circuits or net-
works which are already in operation, there is a possibility
that either computational or test methods may be chosen.
Computational methods can be no more reliable than the
accuracy of the circuit data which are available. Furthermore,
if the circuit includes a very long line, the variations in circuit
layout, the changes in topography, and other items of con-
struction may greatly complicate the possibility of obtaining
a high degree of accuracy in the data used for computational

*See also ““Measured Electrical Constants of 270-Mile, 154 KV Trans-

‘mission Line,” by Streifus, Roadhaus, and Gow, 41EE Trans. Vol. 63
July, 1944, p. 538.

po
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work. Particularly in the case of zero sequence networks, the
actual computational methods become quite complex and so
much of the work depends on the proper choice of initial data.
Thus, whenever possible, the test method should at least be
considered and carried out so as to reinforce the results
obtained by calculation.

To obtain the generalized constants, four measurements of
impedance are desirable. In communication work these tests
are quite common and are generally made by means of an
impedance bridge; however, in the power field the ammeter,
voltmeter, and wattmeter method must generally be used. In
case the circuits contain transformers or other iron-cored
devices, the test should be made as nearly at normal operating
voltage as possible If this is not possible, then a sufficient
amount of data should be taken so that the observer can extend
his calculations to include the conditions which would exist at
rated voltage. These tests include the measurement of im-
pedances as follows:

(a) Z.=sending-end impedance, with receiver open-cir-
cuited;

) Z..=sending-end impedance, with receiver short-cir-
cuited;

(¢) Zro=receiver-end impedance, with sending end open-
circuited;

(d) Z..=receiver-end impedance, with sending end short-
circuited.

These measured conditions are now imposed on the two

fundamental circuit equations, which are:

E=AE.+BI,
Il=CEr+DIr

(@) Receiver end open~circuited: Under this condition, I,=0
and the general equations become:

"Ev=AE,and II=CE' (156)
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Dividing E, by I,, we have:

4
£=Z. 157
C Z (157)
Furthermore, the magnitudes of A and C can readily be obtained
as follows:
E. — _I—..
A =% and C—E,. (158)

Ordinarily, in a field test, it would be impossible to obtain the
relative phase relations between E, and E, or between I, and
E,; and the results of equation 158 could only be applied as to
magnitude. However, even this limited application will be of
extreme value as a check on the constants as obtained later.

(b) Receiver end short-circuited: Obviously E, must be equal
to zero for this case, and the general equations become:

E.=Bl-and [,=Dl, (159)
Dividing E, by I, gives:
£-a. (160)
Also, in magnitude only:
E, _ L
B——E and D—I, (161)

(c) Sending end open-circuited: The general equations for
a four-terminal network, with power supplied to the receiver
end instead of at the sending end, are similar to the equations
already given; but there is an interchange of sending and receiver
quantities, and also an interchange in the roles played by the
constants A and D. Thus:

Er= DE.+ BI.

Ir"" CE."' AI-
Por the particular conditions of this test, [,=0. Therefore:
Er=DE, and I,r"CEo ‘ (162)
and 2.z. (163)

¢



GeNErALIZED Circuir EQuaTIONS 91

As before, in magnitude only:

Er — I
E and C= E (164)

(@) Sending end short-circuited: In this case, E,=0 and
the general equations become:

D=

E.=Bl, and Ir=AIo (165)
. § _
and A —Zﬂ-‘ (166)
Moreover, in magnitude only:
E, I,
B=7'and A=F i (167)
The four tests performed lead to the following relations:
g‘=Zw ’ g Zu
(168)
D B
"—=Zr¢ ’ "_=Zrc
¢ 4

From these four results, we notice that

1
‘{Zro(Zco "‘Zu)

Having obtained equation 169, it is then quite simple to
obtain the values of 4, B, and D by substitution into the proper
forms of equation 168.

In checking equation 169, it will be found that the quantity
AD~— BC was taken equal to unity, this being true for a linear
and bilateral four-terminal network.

In the next chapter, use will be made of certain ratios,
whlchcanbeexpressedmtermsofthetestoonstantsofequa
tions 168. These ratios are: ,

a_1 2.1
B Zre andB Zu '

C== (169)

()



CHAPTER 9

CIRCLE DIAGRAMS

55. Introduction.—Consider the two generalized circuit
equations, namely,
E.=AE+BI,
I.= QE -+ D I r .

As already indicated, the constants A, B, C, and D are known
quantities for any particular four-terminal network.

An elementary problem may involve the determination of
Es and [, for given values of E, and I,. Such a solution is
perfectly sensible and illustrates the general mechanism of the
four-terminal network; but, from a practical point of view, it
has exceedingly small importance, since the particular load
conditions E, and ], which were used may not again repeat
themselves for a considerable length of time. In other words,
an engineering solution of a problem must include the entire
behavior of the system. Such a solution must give all possible
trends and answers. Obviously, the best method of showing
these complete results is to develop suitable graphic plots or a
family of curves between major variables.

One of the most interesting results concerning the general
behavior of single frequency circuits is found in the fact that,
invariably, circuits will be found to behave according to a
circular function. To illustrate this principle, consider the
simple series circuit of a constant inductive reactance and vari-
able resistance connect®d to a source of constant voltage E of
constant frequency. The important problem involved in such
a circuit is to determine the envelope curve of the current vector
as the resistance is varied from zero to infinity. Such an en-
velope curve will indicate at a glance all the possibilities of the
circuit and also the impossibilities.

To prove this, we will start with ohm’s law for the circuit.
Thus:
E

I=-Z-

92
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‘where Z= VRE+XZ;
E =constant applied voltage;
R =variable resistance;
X =constant inductive reactance.

The circuit diagram and the vector diagram are shown in
Figs. 49 and 50. Notice from Fig. 50 that the circuit power-
factor angle 0 has such a value that

=X
sin 8
E
X I
e VTV ™ I
i 1,
E ] :
R 1
1 .
> J
s I,
Fig. 49. Generalized Circuit Fig. 50. Vector Diagram for

Diagram. Generalized Circuit.

Thus ohm’s law may now be written as follows:

This is the equation of a circle in polar coordinates, and the
result may be expressed in rectangular coordinates in the
following manner.

Multiplying each member of the last equation by I gives:
_EIsing
==

But from Fig. 50 the current I can be expressed in'terms’ of its
two components I, and I,. Thus:

n+n=Z,

I2
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Rearranging this expression, we have:

I:—§1,+(5EX)’+I:=(-ZEX)’

() or-(8)

This last expression is recognized as the equation of a circle, the
center of which has the coordinates I ,=2—EX— and I,=0 and the

radius of which is X

The envelope circle is shown in Fig. 50, illustrating that
the current vector must always terminate on the circle. If
conditions exist in which equivalent negative resistances are to
be included, then we need only complete the circle of Fig. 50,
thus having at a glance the complete operation of such a circuit
for —o <R<+o. It is not the purpose of this volume to
justify the meaning of the negative half-circle. Let it be
noticed, however, that the complete circle in Fig. 50 forms the
basis of the induction-motor and induction-generator circle
diagrams, which are of great assistance in the analysis of such
machines.

The simple case just used can be generalized to any four-
terminal network which is linear and bilateral and is loaded with
variable resistance, variable inductance, or variable capacity.
Notice particularly that, as long as only one parameter is
variable, the others being constant, a circle function is possible.
Other circle-diagram plots also can be made, such as those for
looking-in impedance and looking-in admittance. In com-
munication networks the looking-in impedance type of circle
diagram is very valuable, because in that field the engineer must
always have a clear picture of all circuit impedances under all
operating conditions.

In general terms, therefore, we must obtain a method of
analysis which will indicate a complete picture of the entire
range of the circuit operation, and this is not possible by the
original generalized equations. It is indeed a very fortunate
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circumstance that circle diagrams are a possibility. The ease
with which circles can be drawn makes the final problem of
steady-state analysis of a system quite simple and straight-
forward, even though a complete picture of conditions may
require many circles.

Four-terminal power networks are operated at sensibly
constant input and output voltages. As will be shown in the
next article, one may define the operation of such a network—
when operating at constant voltages—with the aid of two circles,
one circle for the receiver end and one circle for the sending
end. The particular scales used may depend on particular
requirements.

56. Receiver and Sending Circles.— Receiver Circles: Con-
sider the fundamental equation of sending voltage, or

E.=AE+BI:
in which A=A /e and B=B/8;
=E,/0 and I,=1./6;;
E.=E./é.

The relations of the foregoing equation are distinctly shown
in Fig. 51 (a). The vector relations chosen refer to E, as the
reference vector. For special reasons, which will be apparent
later, the vector E, is not drawn along the X-axis.

In drawing the vector diagram of Fig. 51 (a), the vector
BI, is located lagging the X-axis by the receiver power-factor
angle 6,, and the other components are located accordingly.
By simple geometry it can be shown that E, makes an angle 8
with the X-axis and AE, makes an angle (8—a) with the
X-axis. Thus, point M can be located by merely drawing the
vector AE, from the origin O, at an angle (8—a) with the
negative X-axis. It is therefore seen that the pomt M is
independent of the receiver power factor.

The important part of the vector diagram of Fig. 51 (a) is
the triangle MON. For constant E,, constant E,, and variable
receiver current I,, it will be seen that the only degree of
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freedom in the triangle MON is for the point N to move in a
circle whose radius is equal to E,. This can only be accom-
plished if the receiver power factor is free to vary, which means
that the receiving end of the line must be equipped with
synchronous condensers operating in parallel with the load.

A more rigorous mathematical proof of the circle diagram
may be given. From Fig. 51 (a) it follows that:

E.=—AE[—cos (ﬂ—“)‘l'i sin (B— a)]+BI.|cos or"‘iSin 6]

Now let AE, cos (B—a)=h;
AE, sin (B—a)=Fk;
BI, cos 0,=x;
BI, sin 0,=%.

Then, by substitution:
E=(@+h)+jiy—k)
The conjugate of this expression is:
E,=(x+h)—j(y—k)
and thus:
Ei=(@+h)’+(—F)’ (171)

Equation 171 is the equation of a circle with its center M
having the coordinates x=—h and y=Fk and with its radius
equal to E,.

Fig. 51 (a) is drawn to the scale of voltage. However, it is
possible to change this scale to that of volt-amperes by multi-
plying the different vectors by the term Thus, Fig. 51 (a)
is changed to Fig. 51 (b), in which:

AE’ _E.E,
B

B

The advantage of Fig. 51 (b) is rather obvious, since the projec-
tion of the point N on the X-axis indicates phase power received,
while the projection of point N on the Y-axis mdxca.tes the
reactive phase volt-amperes at the receiver. o



98 INTRODUCTION TO ELECTRIC POWER SYSTEMS

The synchronous condenser capacity may be easily deter-
mined if a load line is introduced. In Fig. 51 (b) this line is
drawn at an angle with the X-axis which corresponds to the
load power factor. Thus for a receiver load indicated by the
point 7, there is required a total lagging reactive volt-amperes
of ¥N. Of this amount the load takes care of an amount equal
to sN. In this case the condenser is operating under lagging
power factor.

Consider, however, a load indicated by 7 watts and 7S,
lagging reactive volt-amperes. For this particular load, the
synchronous condenser must operate at a leading power factor
with a total volt-amperes capacity indicated by the distance
N.S;, and must therefore counterbalance the load lagging
reactive volt-amperes. Thus it is possible to determine the
synchronous condenser requirements for any particular power
load. Furthermore, the net power factor of the receiver end of
the line is always given by the angle between the X-axis and
line ON as N moves around the circle.

The effect of different voltages may be conveniently deter-
mined by including in Fig. 51 (b) several circles at certain
selected voltages E, and E, which are thought worth while.
This feature will be discussed in greater detail later.

Sending Circles: The data obtained from Fig. 51 (a) refers
entirely to the conditions at the receiver end of the line. To
obtain the operating characteristics at the sending end, it is
necessary to carry out a similar development, starting with

equation 127 or
E.=DE.— Bl

where the coefficients D and B are defined in Art. 44. In this
equation, let

E.=E,/0 and [,=1./6,;

D=D/A and B= B[_

E=E./¢

The angle ¢ used here is the same angle as that used in the

discussion on receiver circles in connection with the expression
Ev=E,/$. We may now plot the vector diagram in F:g 52 (a)
as follows:



Y
X
Leading Reactive
Yolt-Amps
O \ Sending Power
: Watts
A 65 |
|
f-a E I, :
N
e
DE? &
B
[
Lagging Reactive
Volt-Amps
M-l (’) , .
Fig. 52. Vector Relations for Sending Circles.
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The vector — B, is located lagging the X-axis by the sending
power factor angle 6,, and the other components are located
accordingly. In a manner similar to that used in Fig. 51 (a)
it can be easily shown that the vector E, makes an angle 8
with the X-axis, while the vector DE, makes an angle (8—A)
with the X-axis. In other words, the point M’ can be located
without reference to the sending power-factor angle 6,.

Considering that E, and E, are held constant, there is left
only one degree of freedom in the triangle M’ON’, namely, in
the length BI,.. The point N’ can travel in a circle having the
radius E, and the center at point M’.

It will be observed that the projection of the vector BI,
onto the X-axis is proportional to power input. To convert the

triangle M’ON’ to a volt-ampere scale, a multiplier % must be

applied; thus, in Fig. 52 (b)) we have the sending diagram
plotted to a volt-ampere base, in which the scale of the
abscissas is power input and the scale of the ordinates is
reactive volt-amperes at the sending end.

Figs. 51 (b) and 52 (b) may now be combined as indicated in
Fig. 53. In this figure, points M and M’ are located in the
manner indicated in Fig. 51 (b) and Fig. 52 (b). The radii of

both the receiver circle and the sending circle are equal to EBE

Consider a certain load power point, as P, on the load line.
Since the receiver must operate on the circle, the length of line
PN represents the leading reactive volt-amperes which must be
supplied by a synchronous condenser operating in parallel with
the load. Also, the receiver power is given by the abscissa of
the point P, on the X-axis.

To obtain the operating point on the sending circle, lay off
the angle ¢ from the sending reference line as it also appears
between the receiver reference line and line MN. Drawing
line M’N’, the sending operating point is determined. - The
sendmg power is obtained by the abscissa of the point P, which
is the projection of point N’ on the X-axis. The efficiency of
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the line is obviously equal to A

factor is also found graphically as the angle 6,.

INTRODUCTION TO ELECTRIC POWER SYSTEMS

X100. The sending power

57. Example.—To illustrate the application of the circle
diagram, the following example is chosen.
A three-phase 110-Kv line is built with five types of con-

struction, as follows:

va-
Section Length Conductor E?::lt y perzMile per ];lile
Miles Specing per Circuit per Circuit
1 26.92 214 0.235 +30.796 j5.18X10-®
2 40.4 397,500 17.6 0.235 +70.773  j5.35X10-¢
3 9.35 ACSR 17.6 0.235 +370.773 j5.35X10-*
4 20.75 16.3 0.235 +3j0.763 j5.41X10-®
5 2799 2/0H.D.S. 11.34 0.4403+70.826 j5.194X10-¢
7 strands

The first step in the solution of this problem is to calculate
the generalized circuit constants A, B, C, and D for each section,
as indicated in equations 108. The next step is to combine the
five sections, thus obtaining the four generalized constants of
the entire line, as indicated in equation 132. The results
obtained for this example are:

A =0.95572+70.009147
B=28.4+185.95
C =0+70.000802

" D=0.973+70.00977

The following data are assumed:

Line voltage at sending end =113 Kv;
Line voltage at receiver end =105 Kv;
Power factor of load =95%, lagging.

Using these data, the circle diagrams of Fig. 54 were ob-

tained. From the results of Fig. 54, it is now possible to
determine the detailed characteristics of the line, as follows:
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Receiver Angle Between Sending
Sendi; n& and

Synch. Receiver Voltages Reactive

Load Kw Condenser Kva Degrees Power Kw Power Kva
0 —15,100 -1.5 300 —6,700
10,000 - 8,300 29 10,500 - 3,500
20,000 —-400 7.8 21,500 -1,000
30,000 8,500 13.0 33,500 200
40,000 18,000 18.5 45,400 1,000
50,000 29,700 24.3 58,000 800

>

P
(<]

10,000 .{t«/
/

4
£
s Torque-Angle, ¢ \"190
5,000 Ry
Receiver Circle | 5
® \o ) Sendir;g Circle
§ é 0 5,000 10,000 15000 20,000 25,000 ‘_——- 1
4 |1 o 35,000 40,000 45,000 50,000
® . / b Power-K W
5,000 \03
/Q( by
w 0 Load Line .
§ 10,000 20 95% P. F. Lagging
. ° _\/1:’/' — [~
15,000

Fig. 54. Circle Diagrams for Example.

In the tabulation, lagging Kva is indicated as a negative
quantity. Also, a positive angle indicates the angle by which
the receiver voltage lags the sending voltage.

This problem can be solved for other values of sending and
receiver voltages. As a suggestion, 5 per cent above and below
the values used might be tried. ‘

88. Special Form of Circle Diagram.—When several send-
ing and receiver voltages are to be investigated, there is a
special modification of the scales of Fig. 53 that is quite useful
The several distances of Fig. 53 are as follows:
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OM AE:MN Ea r

,ON=E,I,
D Ef INT? " ’
B M'N'= B , ON'=E,I,
If the first set is divided by E; and the second set is divided by
E}, then:

OM'=—=

A _1 E. E,I,
D . 1 E, ,_E.l,
oM’ —B’MN—FXE:’ON_D

By referring to Fig. 53 it will be realized that, if a family
of circles are drawn to a volt-ampere scale, they will overlap
each other, thus giving a resultant diagram which is hard to
use. By using the modified scale, the distances from the origin
O to the two circle centers are constant, and circles for different
voltages will be concentric, as shown in Fig. 55. As just shown,

ON= E.I, _ Receiver Volt-Amperes

E? E?
and ON’= EE {. Sending V;;lzt-Amperes

Then the projections of ON and ON’ on the X-axis and YV-axis

will be as follows:
P, Receiver Power

ONOOS 07—’E—2 Ez

_ P, _ Sending Power
E: E?

ON sin 6,= Q, Receiver REeftctlve V.I

ON'sin 6,= Qa Sending Rga;ctive V.1

Circles may be drawn for different voltage ratios. Thus:

1
Kaf"‘"‘ and Kﬂ E., Whel'e K.r 'E’;:
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Inspection of these results will indicate that this change reduces
the circles to the scale of admittances.
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The method of using a diagram like that ‘in'Fig."SS is
illustrated by the following example.

59. Example.—In this example a transmission line with
step down transformers at the receiver end 1s considered. .
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The data for the transmission line are as follovys:

Normal voltage =154 Kv;

Length =84.74 miles;

Conductor = 397,500 ACSR;
Equivalent spacing=21.4 ft;
Impedance =0.235+70.796 per mile;
Admittance =0+475.19X10~¢ per mile;
A =0.985-+70.00435;

B=19.65+767.1;

C=0+70.000438;

D=A

The data for the transformers are:

Single phase, auto-transformer with tertiary windings;
Voltages =89,000/63,600 volts;

Reactance =35 per cent;

Resistance =0.35 per cent;

Capacity = 75,000 Kva for three phases;

Exciting current negligible.

The first step in the solution is to combine the transmission-
line constants with those of the transformer, and to draw the
circle diagrams of Fig. 55 from these results. Such a method of
drawing the circle diagrams is quite advantageous, due to
obvious symmetry, which lends itself well to interpretation.
It will be noted that the specific voltages are not fixed, and that
any curve is applicable to any sending and receiver voltages
as long as the ratio of voltages corresponds to the particular
circle.

To illustrate the use of Fig. 55, assume that %=4 and the

4

. E,
ratio E= 1.104.

Then: 0

The angle between E, and E,=17.6°
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P,
a=35
g o5

For E,=105 Kv on the low side of the transformer or
147 Kv on the high side of the transformer,

E,=147X1.104=162 Kv
The corresponding phase voltages are:

E,=85 Kv and E,=93.6 Kv

Then: e
P,=4X85=28900 Kw

_2
P.=3.55X93.6=31,200 Kw
—2
Q,=+0.2X85 = 1,445 leading Kva
. —_—2
Q.= —0.5X93.6=4,380 lagging Kva

From these figures, the following pertinent results may be

obtained:
Efficiency of line= %’%X 100=92.6 per cent

1,445
1 -— -1_2 -
Receiver power factor = cos(tan 78, 9(1)) =0.999

4,380
3 = -1 )=
Sending power factor=cos{ tan 31,200) 0.99

Synchronous condenser capacity for a 959, power factor
toadis 1,445+ 28300 sin 6,=1,445-+30,400X0.312
. =10,845 Kva per phase

60. Another Form of Circle Diagram.—Another modifica-
tion of the circle diagram of Fig. 53 may be developed. This
is of particular value for problems in which either the sending
voltage or the receiver voltage is to be held absolutely constant.
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Thus, suppose a new line is designed to connect a new hydro-
electric development to an existing high-tension system. The
receiver voltage will, therefore, be sensibly constant; but, with
tap changing transformers at the sending end, the sending
voltage E, will be adjustable to any of several values.

In this case the distances of Fig. 53 may be divided by the
square of the constant voltage or E2. The results are:

oMt yneisBr oy Bl
OM——B,MN—BXEr,ON— E

Do (BN aar= Lo Ee opr Eele
oM —BX(E,)’MN—BXE,’ON— E

This method has the advantage that the x- and y-scales of
the circle diagrams may still be retained as power and reactive
volt-amperes, since E?is a constant. The receiver circles will be
concentric, while the sending circles will overlap.

Still another modification can be obtained for the condition
of E, being constant while E, is considered as a fundamental
variable. The proper scales and the appearance of the diagram
are rather obvious from the preceding discussion.

61. Maximum Power Limit.—Insofar as the electrical
characteristics are concerned, a transmission line does not
differ a great deal from a synchronous motor. Just as a syn-
chronous motor has a maximum power output limit, at which
it pulls out of step, so does the transmission line have a power
limit. Such a power limit is entirely independent of the power
supply; for constant sending and receiver voltages, it is merely
a function of the constants of the line.

The value of the maximum power limit can be readily ob-
tained from the circle diagram of Fig. 51 (b), which is modified
as shown in Fig. 56. As seen from Fig. 56, the maximum
power delivered for a particular sending and receiver voltage
is obviously indicated by the value P_,, which is:

Pmu=E!B%-'4'BE'; cos (ﬁ-—a) . (172)
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The torque angle between the sending and receiver voltages
is given by the angle ¢ of Fig. 51 (b). For the condition of
maximum receiver power, this angle becomes ¢max, Fig. 56,
which is seen to be equal to the angle 8. It will be recalled that
the angle B is defined by the generalized circuit coefficient B.
Thus:

B=B/B8=bi+ib,

El E'
/¢Mu

B

2 Receiver Circle
| A Er” for Constant
B Sending and

Receiver Power

Power B vax

&
B.
3
/ Max Power
\ Delivered

Fig. 56. Conditions for Maximum Power.

In commercial lines the value of b; is generally quite large com-
pared to bi; hence, the angle £ is less than 90°, approaching 90°
as a theoretical limit.

It will be noticed that the result of equation 172 is exactly
the same as was previously derived in equation 153, Art. 52.

Similar graphical interpretation for the maximum input
power can be obtained by analysis of the sending circles of
Fig. 52 (b).

62. Loss Circle Diagrams.—Circle diagrams for receiver as
well as sending power have been given in the last few articles.
It is now proposed to derive circle equations for constant power
loss in four-terminal networks. This proof starts with the two
fundamental circuit equations, or: :

Ec”AEr“l‘BIr
Ia=CEr+DIr
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As a preliminary problem, it is required to prove the follow-
ing relation:

Po=y(EL+ET)

where P,=sending power.

Let: E¢=Ealé_
E,=<E,[§
Ia= Ia&
Il= I./$
Therefore:

Po=y E/3L [+ E0(1,/3)
i
= EE.I.(/E:'—;+/6_¢)
- %(ZE.I. cos 8) = E.I, cos 6,

where 0, =5—¢ =sending power-factor angle.
Thus applying the foregoing proposition:

P,= %[EOIJ'{'EQ-L] .
= J(AE.+BL)CEA+DI)+(4E+BI)CEADL)]

=3[ACE*+BDI*+ ADE,I+BCE.1,
+ACE+BDI4+-4DE I +BCE 1]

=312AC cos (r—a) E*+2BD cos (8—a)I?

+(P.+70.) (AD+BC)+(P.—2:)(4D+BQ)]
—I[ZAC cos (r—a)E*+2BD cos (8—A)1!
+Pr(AD+AD+BC +BC)-0.(AD~ 4D+ BC—-B()]
=—{2AC cos (r —a)E}42BD cos (ﬁ-—A)I’

; +P,[2AD cos (a—A4)+2BC cos (8—1)]
—#2A2AD jsin(A—a)+2BC ssin(B—1)]}
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P.=AC cos (r—a)E2+BD cos (8—A)I2
+[AD cos (A—a)+BC cos (8—1)]P,
—[AD sin (A—a)+BC sin (8— )]0,

or P,=hE;+kI}+pP,+4q0, (173)
where C=C/;

h=AC cos (t1—a);

k=BD cos (8—A4);

p=AD cos (A—a)-+BC cos (B—7);

g=—AD sin (A—a)—BC sin (8—1).

The power loss P of a line is equal to the input power minus

the received power. Thus, P=P,— P, or

P=hE+kI+(p—1)Pr4q0: (174)
Pi+0;
E:
PE}=hE}+k(P}+Q0)+(p—1)E:P,+qEQ,

2 2
or P3+ (P— 1)% r+(Q§+Q%Qr)= “%E:""P'%}

Since I’'=

Completing squares in the above equation, we have:
t=1g oo s amfop] =02 ], B
[P T E] H oAl | =B @ s [T

from which

[P,+" N 1E{,’+ 0. +iE=]”=

2 N
%ED_;,HW(P-?“?E:HP]
Finally: [PrtmP+[Qr+n]t=Re )
where m=£2-i—1-E:: |

=L Es.
” ZkE:'



112 INTRODUCTION TO ELECTRIC POWER SYSTEMS

_E[p fomte ok I/u
R-?[kP+3 3 hk%Er} =E, %

Equation 175 represents a circle plotted to the scale of P,
and Q, with the coordinates of its center —m and —# and its
radius equal to R. In equation 175 all quantities are assumed
to be on a per-phase basis, as seen from the initial equations
used in setting up the proof. P, represents the receiver power
in watts per phase; Q,, the receiver reactive volt-amperes per
phase; and P, the loss in watts per phase.

Since the = circuit is quite often used in transmission-line

and network problems, it is well to apply equation 175 to this
special case. Thus, for the equivalent = circuit, we have:

A=142ZYr
B=Z
Q (YR + Ya +Z YRY.)
D=Q1+ZY.)
Also, Z=R+jX
Y,=Gr+iBr
Y.=G.,+jB,

By using these constants we may now obtain the necessary
data for equation 175, as follows:

h=Gr+G,+2RGrG,—2XBrG,+Y?%*

k=BD cos (8—A)=R42Z%G,

p=AD cos (A—a)+BC cos (8—7)
=142RGr+2RG,+22°GGr
=1+42RG,+2Grk

g= —2RBp+2XG,—22°G,Br=2XG,~2Bgk

hk =Grk+Gk-+2RGrGk—2X BrG e+ Y

G,
(R+z'G.+G")
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XG.
‘(R+Z‘2G,"B")
@=UHT e — RG~Ga(R+26.)
Therefore, substituting in equation 175, we obtain:
RG, XG,
[P +(R+ch +G">E’] [Q +(R+Z’G._BE)E2]

E(R+2°G,)P— { RG,+Gr(R+2°G,)} EY]

R+Z2%Gy)? (176)

63. Efficiency Circle Diagram.—Circle diagrams for con-
stant efficiency may be obtained in somewhat the same general
manner as were the constant loss circles. Thus, efficiency is:

_Pr_ b,
TP, T hE* kI pP,+4Q,

Rearranging:

1\E} Qo _ b
Prt(p= V5P O EQ, =~

Completing squares:

[p +(r- )Ez] [Qr+q§,:]2
[(p—l) +q ]fk by am)

Equation 177 represents a circle for constant efficiency 7.
The coordinates of the center of this circle are:

1\E; E“
‘(? )Zk and ~a3

and 1ts radius 1s equal to:

g gs
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Applying equation 177 to the special case of a = network,

we have:

2
[Pr+(1—1+2RG.+ZGnk)E5T+[Qr+
" %

1 E;
—;(RG.+Gnk)]7,

rersan)e]+ o (22
R+ZZG. +GE E Qr+ R+Z’G.

ek

Since k= R+27G,,

[ (22

2

(f-=)e]-

XG,

)z -

(178)

4y

[(n——l)2 RG+RGAZGGs| _E
1

[(R+2%G.)?

For constant efficiency 5, equation 178 will give a circle.
The values of P,, Q., and E, are, of course, for a single phase.

The particular value of
equations 176 and 177 is
that when these constant-
loss and constant-efficiency
circles are superimposed on
the sending and receiver
power circles of Fig. 53,
there is available at a glance
the general trend of loss and
efficiency as the operating
point N of the receiver
circle shifts.

The general appearances

-Amps.

Lead
Reactive Volt.

N

AARAN

g
g
N

of Loss
Circles

Lag

Constant Loss Circles

Fig. 57. Loss Circles.

of the loss and efficiency circles are indicated in Figs. 57 and 58.
It is evident from equation 176 that the loss circles are all con-
centric, while the efficiency circles have different centers, as

indicated.

‘In case the scale of the receiver power circle is changed to
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that of — and = Q-

E’ E as used in Fig. 55, it is then advisable to

make the same general transformation in the loss and efficiency
circles.

Lead Voit-Amperes
| v
3

Lag Voit-Amperes
m3
6

Fig. 58. Efficiency Circles.
Modifying equations 175 and 177, we have:

P p—1P 1Q g f_1] -1+
,:Ef' %% ]+[E3 ' 2k] ‘F["“T_“””' ] (179)

and
1
p. 23l o o (p—— ’+q
et o g ]

o

hl




CHAPTER 10

SYMMETRICAL COMPONENTS

64. Introduction.—The method of Symmetrical Com-
ponents is in a general sense a $pecial application of the general
proposition of ‘‘Superposition,” which is applied in many dif-
ferent forms in the computations of electrical circuits and in the
analysis of electrical machinery. As first proposed by Dr. C. L.
Fortescue in 1918, the method was applicable to an n-phase
system, but the discussion in this volume will be limited to
three-phase systems.* For most practical circuits, linearity
of the electrical parameters can be assumed. In electrical
machinery, linearity is not quite true because of effects of mag-
netic saturation and other
factors; but average con-
stants are often used,
approximating actual lin-
earity quite closely.

Consider the vectors A, Fig. 50, Highly Unbalanced Voltages
B, and Cin Fig. 59 as repre- or Currents of 3-Phase System.
senting highly unbalanced
voltages or currents of a three-phase system. For convenience,
the vector A is drawn along the reference axis, the other vectors
leading A by angles 8 and ¢, respectively. Thus,

’é: gé__%l (181)
¢=C/s|

The solutions of some problems involving unbalanced
systems of vectors may become quite cumbersome or nearly .
impossible with fundamental circuit methods. However, by
the method of Symmetrical Components it is proposed first to
break up the unbalanced system of vectors into groups of

e ymmetrical- . ystem ”
A, Bo?ajmn, AICEJE%M e‘golAgSal);)s‘s‘l ?f @ Four-Phase § by
116

c B
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balanced units, then to solve the circuit for each of these
balanced groups, and finally to superimpose the individual
answers, thus obtaining a solution of the unbalanced problem.

The general circuit considered in the following introductory
discussion is, with the exception of the actual faulted condition,
assumed to be composed of balanced impedances. Modifica-
tions to take into account circuits of different impedances are
discussed later. In other words, the system of vectors of Fig.
59 can be broken up into three individual systems, which are
known as the Positive-Sequence System, the Negative-Sequence
System, and the Zero-Sequence System.

A, Ap Ap
B, Bp By
Co Cp Ch
LT — AT
) \ )
7II0 ™ 7H000
\/ \-/
- Zero Positive Negative
= Sequence Seq S

Fig. 60. Individual Systems of General Three-Phase Circuit.

Before developing any mathematical relation, let us assume a
three-phase circuit, as shown in Fig. 60, which is composed of
three generators operating at absolutely the same frequency,
the first generator being of the single-phase type but having
three parallel circuits while the other generators are three-phase
but of opposite sequences. The vector diagrams of the phase
voltages of these machines might be given by Fig. 61. Adding
the voltages of the three windings gives the resultant diagram
in Fig. 62.

From Fig. 62 it is observed that the zero-sequence com-
ponent indicates the presence of uni-phase voltages or currents;
and the positive and negative sequences are individually
balanced, as shown in Fig. 61. Mathematically the resultant
vectors are:

. B=Bo+By+Ba

(182)
C= CO+Cp+Cn '

=404, 4n }
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65. Zero Sequence.—To determine the value of the zero-
sequence component, it is only necessary to take one-third of the
sum of 4, B, and {. Thus:

L84 B0 = J(4o+ Bort-CO+ (At Bot C)+ (At Bat C)]
Since Ap+Bp+Cp=0 and Au+Bu+Cn=01
do=Bo=Co=3(d+B+0) (183)

Cp

Positive
Sequence

61. Vector Diagrams of Fig. 62. Resultant Vectors.
e Phase Voltages.

Equation 183 indicates that each zero-sequence vector is equal
to one-third of the sum of the three original unbalanced vectors.

66. Positive Sequence.—We may define the positive-
sequence vectors as follows:

8,=4, '
By=4,/120 ‘ (184)
Cv" A»@ .
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The negative-sequence vectors can be defined similarly, as
follows:

An= An
Ba=44/120 (185)

Cn': Au/l—z_ﬁ

Also, remembering that 4o=Bo=Co and substituting in
equation 182, we have the following:

4 =AO+A::+‘A»
B= A0+Ap/l—%+du@ (186)
C=Au+ 4,/120+ 4./T0
Equation 186 may be modified as follows:
4 =40 +Ap+An
BZI_Z__O_=AO@+AD+40@ (187)
C@=Aoﬁ2_0+dr+dn/m

Adding these three equations, we have:

4+B/120+C/120=34,
from which:

8,=3( 8+8/120+C/T) (188)

Equation 188 may be solved analytically if the three un-
balanced vectors are expressed in complex form; otherwise, a
graphical solution may be obtained. In either case it will be
noticed that the vector B is first rotated 120° counter-clockwise,
and the vector C is rotated 120° clockwise. To illustrate this
procedure graphically, the vectors of Fig. 62 are handled aecord
ing to equation 188 in Fig. 63.

67. Negative Sequence.—Equation 186 is now modified in
such a manner that the zero-sequence and positive-sequence
terms disappear. Thus:
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"‘AO +Ap +Aa '
B/iT A0/120+ A,/240+ A, (189)
C/120=A0/1204 4,/240+ An

from which:
4.=3(4+B/T0

+C/120)  (190)

The solution of equation
190 is shown graphically
in Fig. 64.

68. Sequence Net-
works.—In the preceding
articles the general basic g 63. Positive-Sequence Component.
theory of Symmetrical
Components has been de-
veloped. In analyzing unbalanced systems for a particular
type of fault, it is also necessary to determine in what manner
the sequence components are to be superimposed. In other
words, it is now necessary to determine in what parts of the
system each of the three components is effective and how the
respective networks are to be treated. To establish the proper
network for each sequence, it is first necessary to determine
what impedances are effective to the flow of sequence currents
by our standard devices in power systems. Thus, Chapters
11 and 12 deal with sequence impedances of alternators and
transformers; Chapters 13 and 14, with transmission-line
impedances; and Chapters 1§ and 16, with sequence net-
works. Later chapters cover additional details.

69. Nature of Impedance.—The theory of Symmetrical
Components is used fundamentally for the computation of
sustained short-circuit currents, the study of the operation of
rotating machines, and relay operation. Since most equipment
of power systems has considerably more inductive reactance than
resistance, it is sometimes satisfactory to neglect the resistance
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in problems of system faults. Also, in order to simplify the
illustrative problems, resistance has generally been neglected.
The sustained current is then obtained on the basis that the
system impedance is purely inductive. The next problem is
to determine the reactances of different types of equipment

c

B
Fig. 64. Negative-Sequence Component.

which make up a system. The different parts of a system will
be taken up in the natural order from the generating source
toward the load; namely, alternators, transformers, and trans-
mission lines.

Since this is an introductory text, the detailed inner work-
ings of electrical equipment are given in very brief form, and
often in a general qualitative manner. As indicated in the
preface of this volume, an attempt is made to acquaint the
reader with an important general field of system operatton,
without investigating any one branch in detail.



CHAPTER 11

ALTERNATOR IMPEDANCES

70. Alternator as a Coupled Circuit.—For the present, we
shall consider a three-phase alternator delivering balanced
currents. This condition corresponds to positive-sequence
operation of the machine, and such a machine corresponds to a
peculiar type of coupled circuit. On the stator or armature
we find three windings, while on the revolving element there is

Field T 1 Revolving
Rotation MMF.

Sg‘.“,';" g Phase @
% Phase &

Phase ¢

Field Circuit

Fig. 65. Coupled Circuit for Three-Phase Alternator.

located the field winding. These four windings constitute a
four-unit coupled circuit, as shown in Fig. 65.

With balanced armature currents in the three phases, the
joint magnetic effect of the armature windings is to produce a
constant amplitude sinusoidal mmf which revolves at syn-
chronous speed in the same direction as the field pole rotates.
Thus the relative mmf reaction between the armature and field
circuit is fixed and constant for a given balanced current.
Different internal power-factor currents will merely change the
orientation of the armature mmf with respect to the field mmf,

From the field circuit as the observation point, one sees
only direct-current reactions, namely, constant current and a
constant mutual flux. However, observing the reactions from
any one-phase winding, one sees a typical alternating-current

122 ‘ :
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coupled circuit, with an alternating current flowing in the wind-
ing and alternating flux present in the magnetic circuit.

To make the equivalent coupled circuit complete, another
winding should be added to Fig. 65 to represent the action of
amortisseur or damper windings often found on the rotor of
an alternator.

71. Physical Nature of Reactance.—The inductive react-
ance of a circuit is given by the following basic equation:

X=2xnfL (191)

where X =reactance, in ohms;
f=frequency, in cycles per second;
L =inductance, in henries.

It has already been brought out in the first few chapters
of this volume that inductance is a measure of the flux linkages

per ampere. Thus:

,=-A§-10‘3 henries (192)

where N¢=1flux linkages;
I=current, in amperes.

This equation is not quite correct because it implies that
the magnetic circuit is non-saturable. In reality,

L =d._(_1d!ﬁ10—8
1

The immediate problem is one of a qualitative discussion
of the different types of machine reactances. Therefore equa-
tion 192 will be the one considered. For actual quantitative
measurements it is recognized that due precautions must be
taken to reach proper saturation effects in the iron circuiits.

The many different types of alternator reactances which
have been coined to aid in the proper statement of machine
operation depend entirely on the particular number of flux
linkages which are involved in the particular case. In all cases
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the reactances are defined from the basis of a single-phase
winding of the armature. Because of the peculiar type of
coupled circuit, one element of which is revolving, it is found
convenient to consider flux linkages of several different types,
primarily due to particular machine conditions and also to
particular magnetic reluctances.

We will consider the extreme case of a salient pole alterdator,
rather than the non-salient pole machine. The magnetic
circuit of such a machine is quite complex. The radial reluc-

Armature MM F
000000/000000 000000/000000
Direct Quadrature -ﬁ
Axis Axis -
Fig. 66. Zero Per Cent Fig. 67. Unity Power Factor.
Lagging Power Factor.

tance across the air gap varies from a minimum at the center
lines of poles to a maximum half way between poles. This
variation in air-gap reluctance introduces the first basic problem
in defining machine inductances. As the power factor of the
machine is changed, there will be introduced a shift in the
position of the armature mmf with respect to the poles of the
machine, with a corresponding change in flux linkages per
ampere. From the fundamental machine theory we know that
at zero per cent lagging power the armature mmf is demagne-
tizing, and at unity power factor the armature mmf is cross-
magnetizing. This difference is shown in Figs. 66 and 67. In
other-words, as the power factor varies from zero per cent to
unity, the degree of coupling of the circuit of Fig. 65 changes
considerably. Thus we are led to expect that the reactances
are functions of the power factor. To define the reactances in
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this way would be a complicated process, the advantage of
which would be questionable. However, for intermediate
power factors it is quite common practice to resolve the armature
current or mmf into two components, one acting along the
center line of poles or the direct axis (see Fig. 66) and the other
along the quadrature axis half way between poles. Following
this basic plan of mmf components, we proceed to define two
extreme values of reactances, namely, direct and quadrature
reactances. Direct reactance is defined on the basis of Fig. 66,
in which the armature mmf is in direct line with the center line
of poles; and quadrature reactance is defined on the basis of
Fig. 67, in which the armature mmf is in line with the quad-
rature axis.

72. Direct and Quadrature Synchronous Reactances.*
The term synchronous reactance might be called the looking-
back reactance, observed from a particular phase winding. It
is therefore the total reactance of the coupled circuit. In any
standard text on machinery there will be found more or less
elaborate discussions on the peculiarities and methods of
measurement of this reactance. In this analysis we will assume
that the armature is being supplied with balanced three-phase
currents from some external source. The rotor will be turned
at synchronous speed in the same direction as the revolving
armature mmf. By adjusting the armature currents, it is
possible to attain any desired degree of saturation in the mag-
netic circuit. This can be done without the presence of direct
current in the field, and therefore it is convement to leave the
field circuit open.

The two extreme conditions may now be obtained by pro-
ducing an alignment of the armature mmf first with the direct
axis and then with the quadrature axis. The complete flux
paths are illustrated in Figs. 68 and 69. The corresponding
reactances are equal to 2xf multiplied by the flux linkages per
ampere for each extreme case. The test procedure for obtain-

“’l‘he method of analysis offered in Arts. 72 to 75 follows the general

esented by Mr, Loyd P. Shildneck in “Synchronous Machine
f{eactgrnces," Gene);'al Electric Review, Nov., 1932, p. 560.
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ing these reactances would require that the rotor be operated
by an auxiliary synchronous motor with the same number of
poles as the machine under test. If the machine under test is
equipped with a movable stator operatedsby a suitable crank
mechanism, it would be a simple matter to obtain the two
extreme conditions of Figs. 68 and 69. i--‘f,‘l\‘he total impedance
of the machine could then be obtained by x‘ﬁans of phase meters

A

Stator MMF
Steady State
Stator
= Winding— 555
Xg 7 —Xiq
}x.q
- xad
Quadrature Axis
Fig. 68. Direct Synchronous Fig. 69. Quadrature Synchronous
Reactance Flux Paths. Reactance Flux Paths.

reading power, current, and voltage. The impedance would
obviously be:

z=_1,‘.'5(oos 6+7 sin 6) (193)

where E =phase voltmeter reading;
I=phase ammeter reading;
6=power factor angle.
Finally the reactances would be equal to —L;:- sin 6. The
standard notation used for these two constants is:
Xa=direct synchronous reactance;
X ¢=quadrature synchronous reactance.

73. Direct and Quadrature Leakage Reactances.—In basic
machine theory it is generally brought out that leakage in-
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ductance involves only that portion of the armature flux
linkages which is localized around the armature conductors and
does not extend into the body of the poles, so as to link also with
the field winding. The same general point of view is taken
in defining primary and secondary leakage inductances of
transformers. Thus in the present case we define direct leakage
reactance (Xu) and quadrature leakage reactance (X;,) as
those portions of the synchronous reactances Xs and X, which
are due to the leakage armature fluxes only. These leakage
reactances are illustrated in Figs. 68 and 69.

Stator MMF
Changing.
ﬂml“\ Stator A
= F/wmd‘“‘ O OO O[O0 |
~ —X14 =%
. —}x” }x'ﬂ
?3‘.% 'vcimdm‘:df
Direct Axis *Quadrature Axis
Fli 70. Direct Transient Fig. 71. Quadrature Transient
eactance Flux Paths. Reactance Flux Paths.

The remainders of the synchronous reactances are due to
the mutual fluxes. These remainders are indicated as X, and
Xaq. The final relationship between these several components
is as follows:

Xa=Xu+Xa
X¢=Xl'+X¢Q} (194)

The two components Xaa and X, account for the effect of
armature reaction in the direct axis and quadrature axis,

respectively.
74. Direct and Quadrature Transient Reactances.——Con
sider the same detailed set-up as suggested in Art. 72, with the

only exception that the field circuit is now short-circuited. It
will be assumed that the machine under consideration has no
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amortisseur windings or any other short-circuited circuit on
the field structure other than the field winding. When the
armature circuits are energized, there will be set up in the
magnetic circuit a transient component of armature mmf. The
armature mmf must build up from zero to the final value in-
dicated in Figs. 68 and 69. During this transient period there
will be induced opposing mmf’s in the field winding. The effect
of this opposing field mmf is to force the mutual flux into a
somewhat different path from that in Figs. 68 and 69, as shown
in Figs. 70 and 71.

With the two extreme orientations of the armature mmf,
we obtain in this case two additional reactances, known as

transient reactances. These are X in the direct axis and X’ in
the quadrature axis. Comparison of Figs. 68 and 70 will indicate
that the direct transient reactance must be considerably less
than the direct synchronous reactance. On the other hand,
the flux paths of Figs. 69 and 71 are somewhat similar, so that
it would be expected that the quadrature transient reactance
and the quadrature synchronous reactance are of about equal
magnitude.

As before, the leakage reactances may be thought of as
component parts of the transient reactances. Thus:

X; =de+de

- (195
X:I - Xl q+Xf q )
In these relations, X4 and X, indicate the contributions of the
mutual flux which threads the field winding.

75. Direct and Quadrature Subtransient Reactances.—In
the case of alternators equipped with amortisseur or damper
windings, all results outlined in Art. 74 are somewhat modified
because of the presence of a second short-circuited winding on
the field structure. Qualitatively, the results are of the same
general' nature as outlined in Art. 74, but the flux patterns and
the final reactance values are somewhat smaller in magnitude
than those obtained for the conditions of Art. 74. The flux
patterns of this case are indicated in Figs. 72 and 73.
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These reactances are defined as subtransient reactances
Xy and X7/, respectively, and they may be broken up into parts,
as follows:

Xy=xm+xw} 196

X=X, +X,,

The terms Xpg and Xp, take into account the effects of mutual
flux within the short-circuited field and damper windings.

76. Determination of Direct and Quadrature Synchronous
Reactances.—One method of determining the synchronous re-
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Fig. 72. Direct Sub~ Fig. 73. Quadrature Sub-
transient Reactance Flux transient Reactance Flux
Paths. Paths.

actances has already been suggested in Art. 72. This method
requires special equipment and therefore may not be possible
with most alternators.

Another method quite commonly used, which gives reason-
able results, is to connect the three-phase armature to a reduced-
voltage source of standard frequency. The rotor of the machine
is then driven at slightly below synchronous speed, in the same
direction as the revolving armature mmf, so that the unit will
have a small speed slip. The field circuit should be left open
during the test. Suitable meters should be inserted in the
armature circuit for the measurement of armature impedance,
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namely, a voltmeter, an ammeter, and a wattmeter. As the
rotor slips with respect to the synchronously revolving armature
mmf, the armature mmf axis will line up alternately with the
direct axis and the quadrature axis. The magnetic reluctance
will be a minimum when the mmf axis coincides with the axis
of poles, and will be a maximum when the two axes are at
quadrature. Oscillograms of the voltage, the current, and the
voltage across the field-circuit terminals are shown in Fig. 74.

b a 13 a'

Voltage
Across Field

Applied
Voltage

Armature
Current

a'

Fig. 74. Oscillograms for Synchronous Reactances.

When the magnetic reluctance is least, the required flux is set
up with minimum current; while, when the magnetic reluctance
is greatest, maximum current will be observed. With a certain
amount of care, it is possible to detect the modulated swing of
Fig. 74 on the ammeter, voltmeter, and wattmeter. The un-
saturated impedances can be computed from either the observed
meter readings or the oscillograms.

Since the test is made at reduced voltage, the values obtained
are unsaturated reactances. Saturated direct synchronous
reactances may be approximated reasonably well by the method
of “adjusted synchronous reactance” or still better by the
method of “saturated synchronous reactance.” Both of these
methods involve operating the machine as a generator, instead
of in the manner previously described.. These two tests give
a measure of the direct synchronous reactance because they are
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applied to the alternator operating at zero per cent lagging
power factor, in which case the armature mmf is lined up with
the direct axis of the machine, as illustrated in Figs. 66 and 68.

77. Adjusted Synchronous Reactance Method of Deter-
mining Direct Synchronous Reactance.—The first step involves
the determination of the no-load saturation curve,like that shown
in Fig. 75. Next the alternator is loaded with as near perfect
inductances as possible. The load should, of course, be per-
fectly balanced between the three phases. As the field current
is changed, the load inductance is also changed so as to maintain
rated armature current. The resultant curve plotted between
terminal phase voltage and field current is known as the zero
per cent lagging power factor, full-load characteristic. For
any field current I, the vertical difference between the two
curves of Fig. 75 can be taken equal to the IX; drop or the
difference between the excitation voltage E, and the terminal
voltage E. It will be left for the student to show that the
resistance will not ma-

terially affect the re- s'igfsggn
sult. Finally, any IXs

vertical difference in Szlf":'?'t
Fig. 75 can be divided Characteristic
by the rated current

of the machine to ob- & IX,

tain the corresponding

direct synchronous
reactance, X

Prior to 1940 this
method was very com- x
monly accepted, but /
more recent develop- T
ments have shown the  Fig. 75. Adjusted Synchronous Reactance
method to be some- Curves.
what incorrect. It
places the emphasis on the ‘“‘adjusted” synchronous reactance
as a function of field excitation and therefore does not correctly
picture the proper degree of saturation.

Xa
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78. Saturated Synchronous Reactance Method for Deter-
mining Direct Synchronous Reactance.—The adjusted syn-
chronous reactance method was discussed in Art 77, and its
great simplicity of application was outlined. It was, however,
pointed out that the method was not correct because it did not
indicate the true magnetic saturation. One method of obtain-
ing a corrected saturated direct synchronous reactance is as
follows: In Fig. 76 is shown a no-load saturation curve, or
induced emf characteristic curve. The point P represents any
particular induced voltage Ey. If the machine operated at
constant magnetic flux saturation, as indicated by this point P,
then the machine characteristic would be given by a straight
line passing through O and P. To obtain the saturated direct
synchronous reactance corresponding to operation at point P
and a particular load current, locate the Potier* triangle to the
right of point P, as shown in Fig. 76. The distance ab is the
saturated direct synchro-

nous reactance drop for ‘,:’
the particular load cur- , A
rent of the Potier triangle. & Induced EMF
Thus: 6‘?}/ / H C:r'\::,szer
Ry / 1
X=2  (or) 4 E Y 22
I g yZ A
. g i @
where I=armature cur- ° /e
rent corresponding to the & //
Potier triangle. § /
The same procedure = /
canberepeated forseveral /
points along the induced / z |
emf curve, and complete [/
data of saturated direct MME
synchronous reactance ¢

can be obt?,ined for all  pyg 76, Determination of Saturated
values of induced emf, Direct Synchronous Reactance.

as indicated in Fig. 77.

*For discussions of the Potier method of analysis, consult any standard
textbook on a-c machinery.
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79. Saturated Quadrature Synchronous Reactances.
Saturated quadrature synchronous reactances are somewhat
difficult to obtain. It might be suggested that, having deter-
mined the two synchronous reactances by the method of Art.
72 or Art. 76 and then having obtained the saturated direct
synchronous reactance by the method of Art. 77 or Art. 78, it
would be satisfactory to multiply the value of unsaturated
quadrature synchronous reactance by the ratio of the saturated
and unsaturated direct synchronous reactances.

For salient pole machines the magnetic reluctance of the
quadrature axis is quite high because of the large air gap (see
Fig. 69). Also, because of this large air gap, there is less
tendency for saturation effccts, and the unsaturated quadrature
synchronous reactance probably is reasonably accurate.

For non-salient pole machines the difference between the
direct and quadrature synchronous reactances should be small,
since there is little difference between the magnetic reluctances
of these two axes. Typical ratios of quadrature to direct syn-
chronous reactances are 0.6 to 0.7 for salient pole machines and
0.9 to 0.95 for non-salient
pole machines.

80. Method of Deter- x,,‘_\
mining Transient and Sub-

transient Reactances. Induced EMF  E,,
Thes.e reactax.lces. den.ne Fig. 77. Saturated Direct
transient operation in which Synchronous Reactance.

fundamental frequency cur-

rents are induced in the field winding. When the three armature
currents are initially set up, there will be created a transient
component of armature mmf (see Chapter 20) which is sta-
tionary in space. This transient mmf will gradually decrease
to zero in a few cycles. The transient stationary mmf will
produce a stationary transient flux which will induce funda-
mental frequency voltages in the field windings.. Thus, to
determine the values of these four reactances, it is firsh necessary
to arrange a test in which the coupled circuit of Fig. 65 will
operate with fundamental frequency currents in all windings.
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The method of test is the same for the transient and sub-
transient reactances. Transient reactances apply if the rotor
has no amortisseur windings, while subtransient reactances
apply in case amortisseur windings or any forms of damper
windings are present on the rotor.

The test corresponding to the foregoing requirements
involves connecting only one phase of the armature to a source
of reduced voltage and blocking the rotor, with the field winding
short-circuited. Meter readings of current, voltage, and power
will give the transient or subtransient impedance. Thus:

VA =%(cos 67 sin 6) (198)

W,
where cos 0——E—I,

W =power, in watts;
E=applied phase voltage;
I=phase current, in amperes.

The reactance is obviously given by the imaginary term of
equation 198.

If a series of readings are taken for different rotor positions,
the complete variation in reactance will be obtained. The
reactance is highest along the quadrature axis and lowest along
the direct axis. For a generator equipped with amortisseur
windings, the values obtained will generally be much lower and
also there will be very little difference between the direct and
quadrature reactances. These results are illustrated by Fig. 78.

81. DPositive-Sequence Impedance.*—In a general sense,
all the reactances discussed are of the positive-sequence variety.
However, we will define the positive-sequence reactance as a
synchronous reactance which is involved in obtaining sustained

*The nomenclature used in Arts. 81, 82, and 83 is not correct in the
strict sense. These three impedances should be referred to as impedance
to the flow of positive-sequence current, impedance to the flow of negative-
sequence current, and impedance to the flow of zero-sequence current.
The in tion given in these articles is acceptable for physically
balanced hase systems. For the general case, see Chapter 19,
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short-circuit currents. The question involved is merely which
of the two synchronous reactances (direct or quadrature) will
come nearest to representing the conditions of an alternator
under system faults. If the short circuit happens at the
generator terminals, the direct reactance would be the choice,
since the machine power factor is practically zero per cent
lagging. However, the operating power factor of an alternator
might be considerably better than zero per cent lagging for the
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Fig. 78. Transient and Subtransient Reactances.

condition of a remote fault. The quadrature reactance will
never be chosen because the operating power factor will hardly
be equal to unity under any system fault. The direct syn-
chronous reactance seems to be the best choice for the positive-
sequence reactance. '

82. Negative-Sequence Reactance.—Negative-sequence
currents will produce a synchronously revolving mmf in an
alternator, just like the effect produced by positive-sequence
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currents. In this case the rotor will be turning at synchronous
speed in the opposite direction to the revolving armature mmf.

Considering the machine as a coupled circuit (see Fig. 65),
negative-sequence operation produces a changing magnetic-
circuit reluctance, with alternating currents of double frequency
being induced in the field winding and in other damper or
amortisseur windings if they are present. Thus, the negative-
sequence reactance must be of a transient type and must
vary through the cycle of values shown in Fig. 78.

For purposes of short-circuit calculations, about the only
sensible method is to take some average value of reactance.
Neglecting wave-shape distortion, it is a general policy to take
the value of negative-sequence reactance as follows:

Xa=3(XJ+X) - (199)

That is, X,=average of direct and quadrature subtransient
reactances.

In case there are no dampers or amortisseur windings, then
transient reactances are used instead of subtransient reactances.

83. Zero-Sequence Reactance.—Zero-sequence operation
assumes that in-phase currents exist in each of the three phases
of an alternator. Such currents would produce a stationary
mmf, reacting with a revolving rotor to induce double-frequency
voltages in the field winding.

A convenient method of test s to connect the three phase
windings in series. This combination is then supplied from a
single-phase source, with wattmeter, ammeter, and voltmeter
connections. The field winding is short-circuited. This react-
ance is quite small and may be considered as the average of the
measured values for the rotor blocked in the direct axis and in
the quadrature axis, as suggested in previous tests. Since the
three windings are in series, the zero-sequence impedance per
phase is taken as one-third of the measured value.

84. Average Values of Sequence Reactances.—From the
foregoing discussions, it is seen that a number of factors enter
into the evaluation of sequence reactances and, therefore,
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average values should be used carefully. The values given in
Table 5 are obtained from page 99 of the book ‘‘Symmetrical
Components” by Wagner and Evans. All values are per-
centages, and in each case the two values indicate the range
of the constant.

TABLE 5
AVERAGE VALUES OF SEQUENCE REACTANCES
sy . . Direct
: Positi Negati Zero Direct
Machine Se:‘;e:&. Se?:en‘c': Sequence Tra:;'cent tms:st:ent

Turbine generator. .. .. 95145 7-17 1-14 12-26 7-17
Salient pole motors and
generators (with damper
winding)............. 60-145 13-35 2-20 20-51 13-35

Waterwheel generators
(no damper winding)... 60-145  30-70 4-22 2045 17-38

Condensers. .......... 150-220  17-37 2-15 27-55 18-38

85. Short-Circuit Method for Determining Negative-
Sequence Impedance.—1here are several methods of deter-
mining the negative-

sequence impedance, &

the one given here VoTTas E
being about the most 000 I
straightforward. In W

this method the al- 2

ternator is subjected Fig. 79. Circuit for Negative-Sequence
to a line-to-line fault Impedance.

with ammeter, volt-

meter, and wattmeter connected as shown in F1g 79. The
field current should be adjusted to a value sufficient to cause at
least rated current to circulate through the armature.



138 INTRODUCTION TO ELECTRIC POWER SYsSTEMS
From Fig. 79:
I¢=O) Ib=Ir Ic= '—I
E¢b= —El Ebc=0v Ec¢=
From fundamental negative-sequence laws:

Lw=3(Lo+13/240+1./120)

Thus:

1 — e
Lon=3(0+1/240—1/120) = 5-/90 (200)
Similarly: 1
=—3'(Ebc+Ec¢z 24O+E¢bL12_O)
from which:

1 E '
=§(0+EZ_2§-—EZ_13(_)) =‘—{,§—/93 (201)
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Fig. 80. Vector vanm of Fig. 81. Circuit for Zero-Sequence
Negative-Sequence Voltages. Impedance.

The vector diagram of negative-sequence voltages is shown
in Pig. 80. From this diagram:

E ben
90
Ea=22/90
From equation 201 it follows that:

E
Ean""g'

Ean_ '
o= dan L‘ \/3IZ" ' (202)

Then:
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a (W
If 6=cos™! (E—T)’

I=1/8

and In= 5_%/_ w/_I —(sin 8- cos 6) (203)

86. Short-Circuit Method for Determining Zero-Sequence
Impedance.—In Fig. 81 is shown a generator with a line to line
to neutral short circuit. A voltmeter E, indicates the voltage
of the open phase, an ammeter gives the neutral current, and a
wattmeter is connected with the current element in the neutral
and with the voltage element across the open phase.

From fundamental sequence relations, the zero-sequence
voltage is:

1
Eo = 3E a
Furthermore:
Lo
73
Since V= ES,
0
2o —%———(cos 647 sin 6) (204)

w
where cos 0=E¢—I-.

87. Summary of Alternator Impedances.—In this chapter,
methods are given for the calculation of the several types of
alternator impedance. A complete discussion of other test
methods, with example data for a large range of machine types
and sizes, is given in “Determination of Synchronous Machine
Constants from Test,” by S. H. Wright, AT E E Tronsactions,
Vol. 50, page 1331.



CHAPTER 12

TWO-WINDING TRANSFORMER IMPEDANCES

88. Series Impedances.—As an introduction to the trans-
former, simple series lumped impedances will be considered.
In Fig. 82 is shown a three-phase line with impedances in each
line. Aslong as these impedances are magnetically independent,
it is evident that the positive-, negative-, and zero-sequence
impedances are the same. Therefore:

lo=4n=00=C (205)

where Z,=positive-sequence impedance;
Z»=negative-sequence impedance;
Zo=2zero-sequence impedance;
Z =circuit impedance.

89. Shunt Impedances.—For three-phase circuits, loads
may be of either Y or delta
type. Delta impedances
should be converted to
equivalent Y loads, in order
that they may be handled
on a per-phase basis. As
long as these impedances
are magnetically independ- g o) Three-Phase Line with
ent, all sequence impedances Series Impedances.
are equal, as indicated by
equation 205; but the zero-sequence impedance can exist only
if the neutral is grounded.

90. Neutral Impedance.—A neutral impedance implies
that the neutrals of Y-connected circuits are grounded through
a single impedance, as illustrated in Fig. 83. It should be kept
in mind that positive- and negative-sequence currents will not
flow through the neutral to ground. Hence, neutral impe-
dances are not involved in positive- and negative-sequence net-
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works. The three zero-sequence currents, however, will flow
to ground, as shown in Fig. 83. It will be noticed that the
current through the neutral impedance is equal to 3I,, and the
voltage drop in the neutral is equal to 3IoZ. The phase zero-
sequence neutral impedance is therefore equal to 3Z.

91. Single-Phase, Two-Winding Transformers.—All trans-
formers in power networks are reducible to equivalent circuits,
either of the T type, as
illustrated in Fig. 84, or
with a series impedance,
asin Fig. 85, if the exciting
current can be neglected.
This last assumption is
generally satisfactory for
most steady-state fault
current calculations.

The values of impe-
dances indicateq inFigs.84 Fig. 83. Three-Phase Line with
and 85 are the impedance Neutral Impedance.

Z4 of the primary, the

impedance Zp of the secondary, and the exciting impedance Z,,
all being based on one winding. For most power transformers
it is permissible to neglect the exciting current when making
short-circuit calculations. Hence, the positive- and negative-
sequence impedances are equal. Thus:

Lo=4Zn=04u+Lr (206)
Z\ Zy Z Zs
Zs
. 84. T Circuit for ' g. 85. Series-Impedance
Fe Transformer. m&mﬂt for Tun-tormex.

Typical values of transformer impedances, as given by Wagner
and Evans on page 113 of the book “Symmetncal Components "
are shown in Table 6.
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The zero-sequence impedance of single-phase, two-winding
transformers is the same as the positive- and negative-sequence
impedances; but in three-phase circuits the zero-sequence net-
work depends on the specific type of transformer connection.
Several possible connections are taken up here.

TABLE 6
TYPICAL TRANSFORMER IMPEDANCES

Distribution. ......................... 3 per cent
Network............................. 5 per cent
Power
upto66Kv...................... 5-7 per cent
88and 110Kv.................... 6-9 per cent
132and 154 Kv...,............... 8-10 per cent
187and 220 Kv................... 10-14 per cent
Direct-current resistance. . ............. 0.35-0.5 per cent
o, T,
L o, I,

Fig. 86. Three-Phase Circuit with Y-Y Connection and
Interconnected Neutrals.

Case 1: Y-Y connection with primary and secondary neuirals
connected together but not grounded.—This type of connection is
shown in Fig. 86. Such a connection might not be encountered
in exactly the form shown; but, assuming such a possibility,
the connection serves as an interesting introduction to the field
of transformers. This circuit assumes that the primary and
secondary neutrals are solidly connected together but are not
grounded. Remembering that the primary and secondary
windings are magnetically coupled through a common magnetic
circuit, the magnitude of the resultant impedance to zero-
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sequence currents will depend on whether the transformers are
of additive or subtractive polarity. Thus, the primary and
secondary will act as a series choke coil insofar as the zero-
sequence currents are affected, and the resultant inductance will
be of the following magnitude *

Lo+ L,+2M or Ly+L,~2M

where L,=primary self-inductance;
L,=secondary self-inductance;
M =mutual inductance.

In case the primary and secondary coils are connected in
an additive polarity relation, the inductance is given by the
first relation. Such a value is quite high and is equivalent to
that for an open circuit, the impedance being greater than the
exciting impedance. However, if the subtractive-polarity
relation is used, the value of the resultant inductance is much

lower, as given by the second equation. It
z

will be helpful to recall that AAMA-
=k + Fig. 87. Single-
M=k NL,L, se Cirémgt
where  is slightly less than unity. Eﬂ‘;‘i;f‘gf to

Thus, the zero-sequence impedance equiv-
alent of Fig. 86 is represented by the series circuit of Fig. 87,
the impedance Z being very high for additive polarity and quite
low for subtractive polarity.

Case 2: Y-Y connection with neutrals grounded.—In this
case, which is illustrated in Fig. 88, the zero-sequence current
may flow between the fault and the secondary neutral, and a
primary equivalent current may flow between grounded neutrals
in the primary circuit. Thus the transformer does not act as
a simple series choke coil, as in the preceding case, but maintains
the transformer ratio features. Since currents may flow
through both primary and secondary, the zero-sequence impe-
dance is the normal series transformer impedance, the equiv-
alent smgle-phase circuit being that of Fig. 89. -

sFor detalls of this statement, see “Principles of Elettrical Engmeu‘-
ing” by Timbie and Bush, p. 216,
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Case 3: Y-Y connection with only one meutral grounded.
Insofar as the zero-sequence current is concerned, this connec-
tion, which is shown in Fig. 90, corresponds to three trans-
formers operating with open-circuited secondaries. Hence, the
only current flowing in the primary must be the exciting current,

——_{3) e I

——Iol 3101 —— Io?

mé}é = o

_.IJ_ — Iy

Fig. 88. Three-Phase Circuit with Y-Y F'%il89. Single-

Connection and Both Neutrals Grounded. ase Circuit
Equivalent to Fig. 88.

and the zero-sequence impedance is equal to the open-circuit,
or shunt, impedance Z,. The equivalent single-phase circuit
is shown in Fig. 91.

As has been stated, the open-circuit impedance Z, is so large
that the network in Fig. 91 may be assumed to be an open cir-
cuit when the flow of zero-sequence current is considered.

Zo=124
Fig. 90. Three-Phase Circuit with Y-Y Fig. 901, Single-
Connection and One Neutral Grounded. se Circuit
Equivalent to Fig. 90.

Case 4: Y-Y connection with both wneutrals ungrounded.
Such a circuit is obviously an open circuit in regard to the flow
of zero-sequence current.
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Case 5: Grounded Y to delta—See Fig. 92 for the circuit
representing this type of connection. Single-phase voltages

Fig. 92. Three-Phase Circuit with
rounded Y-Delta Connection.

acting in the closed delta will cause zero-sequence currents to
flow in the closed circuit; but, obviously, no current can flow
in the line connections to the delta winding. The equivalent
circuit is given in Fig. 93.

Case 6: Ungrounded Y-delta connections.—Since zero-
sequence currents cannot flow in the Y side of such a trans-

ol

Fi, Cg 93. Smgle-Phase Fig. 04. Zero-Sequence Network
ircuit Eqmvalent to for Delta-Delta Connections.

M—f ]
I

former, the impedance to zero-sequence current in the delta
winding must be equal to the exciting impedance; or, in case
such impedance is to be omitted, then an ungrounded Y-delta
transformer corresponds to an open circuit for zero-sequence
currents.

Case 7: Delta-delta connections.—Insofar as the external
connecting lines are concerned, the delta-delta windings corre-
spond to an open circuit for the flow of zero-sequence cur-
rents, since zero-sequence line currents must have a path to
ground. However, zero-sequence currents may, under certain
conditions, circulate within the deltas, the zero-sequence net~
work being shown in Fig. 94.
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92. Three-Phase, Two-Winding Transformers.—When
considering three-phase transformers, it is first necessary to
analyze the magnetic circuits as found in practice. In Fig. 95
are shown three single-phase transformers, and in Fig. 96 is
shown a shell type three-phase transformer. Assuming that
only the primaries are excited, it will be noticed that the

[ [ 1

=_

Fig. 95. Three Single-Phase Transformers.

magnetic fluxes set up will be independent of each other and
will follow the paths indicated.

A

e . kot
8
Fath LN Ao --f\(

v

Fig. 96. Three-Phase Shell Transformer.

Both the single-phase units and the three-phase shell trans-
former have complete magnetic circuits for each phase, whether
the currents flowing in the primary are of positive, negative,
or zero sequence. Therefore, the exciting impedance to the
flow of positive-, negative-, and zero-sequence currents is the
same. The series impedance of these two types of trans-
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formers is also the same for all sequences. A three-phase core-
type transformer, however, offers somewhat different conditions.

In Fig. 97 are shown the general arrangement of windings
and the magnetic circuit of such a transformer. For the case
of positive- and negative-sequence currents, the magnetic flux
of the third phase is equal in magnitude to the vector sum of the
other two phase fluxes. Thus, the positive- and negative-

lr., } llo ) 'I.,

Flux < 4 ' q ] Flux
Paths Paths

Fig. 97. Three-Phase Core Transformer.

sequence exciting impedances are quite high and are similar
to the value found in single-phase units. Also, the positive-
and negative-sequence series impedances are similar to those
found in single-phase units. However, when zero-sequence
currents flow in the windings of a core transformer, the three
iron cores will carry in-phase fluxes, which will be seen to oppose
each other. Thus, the exciting fluxes must complete their
circuits through the leakage paths between iron cores, and the
zero-sequence exciting impedance is therefore considerably less
than that for single-phase units. The 2zero-sequence series
impedance is also less than that for positive- and. negative-

sequence currents. . ‘



CHAPTER 13

SHORT TRANSMISSION LINE IMPEDANCES

93. Positive- and Negative-Sequence Impedances.—Short
transmission lines include all lines in which the charging capacity
current is small enough to be neglected. Such lines can be
treated as simple series impedances, while in long lines the
capacity current becomes important. Long lines are treated
in Chapters 7 and 14.

In Chapter 19 some discussion is given on the general phase
of the work dealing with three-phase circuits with unbalanced
impedances. However, up to the present point in this discus-
sion of symmetrical components, it has been assumed that we
were dealing with three-phase circuits composed of balanced.
impedances (with the exception of the faulted point imped-
ances), and that the unbalance referred to voltages or currents.
We will assume that transmission circuits are perfectly balanced
or, if they are unbalanced, that the conductors have been suit-
ably transposed, as is quite customary in major transmission-
line practice. In case the lines are not transposed or are not
balanced, it is still possible to obtain an approximate result by
assuming an average value for the impedance on the basis of
transposition. Thus, from equation 41, Art. 20, the positive-
and negative-sequence impedances can be expressed as follows:

Zu=Zs= R+14.657 10 f log 2 ohms /mile /phase (207)

in which R and 74.657X10-? f log ir?— are, respectively, the

resistance and the inductive reactance per mile per phase.
There are a considerable number of variables in an actual

installation which influence the accuracy of the solution, and

for exact results all these variables become quite involved and

difficult to apply. To any solution of this type there should

be coupled a large amount of engineering experience and judg-

ment before final results are accepted.

’ 148
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94. Zero-Sequence Impedances.—The three power con-
ductors of a three-phase system act as parallel wires insofar as
the zero-sequence currents are concerned, as shown in Fig. 98.

Equations 60 and 61 give the impedances of a single-phase
circuit with earth return. We may adapt those equations to
our case by converting the three parallel conductors to an equiv-
alent single conductor. The resistance of such a single con-
ductor would be one-third the resistance of one single wire.
The zero-sequence voltage drop may be obtained as the product

No. 1

No, 2

EL —

~Fig. 98. Three Wires in Parallel for Zero Sequence.'

of the ground current and the impedance of the single-conductor
equivalent, or as the product of the conductor curremt and an
impedance which is three times as great as the equivalent
single-circuit impedance. Since all three-phase circuits are
solved on a per-phase basis, this last method is the common
solution. Hence:

2

Zo=R+4.764X10-3 f+113.97X 103 f log % ohms/phase (208)

where R is the resistance of one conductor.
Also:

Zu=4.764X10~ f+713.97% 10~ f log % ohms/phase (209)

In comparing equations 208 and 209 with equations 60 and
61, a multiplier of 3 will be noticed. This takes into account
the fact that in the present case three conductors are in parallel,
and the impedance of one of these parallel circuits is three times
the impedance of the single-conductor equivalent.

95. Short Transmission Line (No Capacity) Zero-Sequence
Networks.—Before considering the zero-sequence network, it
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is well to investigate the circuit of a single conductor and ground
wire, as shown in Fig. 99. Such a circuit is fundamentally that
of a single-turn transformer, illustrated in Fig. 100. The cir-

cuit equations are as follows:

Ea IuZu+IbZM
Ev=Ilvt+1olu } (210)

where Z,=self-impedance of conductor a, which is the equiv-

alent power conductor;
Z»=self-impedance of conductor b, which represents the
ground wire;
&y =mutual impedance between conductors a and b.

a Cond. @ Zw Cond. b

RN

¥
; Ground Wire l ;

TO~ L
Fig.

99, Single Conductor and 100. Single-Turm
i¢l:u‘nd ‘Wire. F“Trmafori:nslr

In this case, E;=0. Therefore:

0=IvZvt+1alu
I 47
and Iv= 7,
. - Zu_(, Zu
AlSO Ea"IaZa_Iazb Iﬂ(Zd Zb)
and Eegg i (211)

The transformer equivalent circuit involving leakage reac-
tances is shown in Fig. 101. For a single conductor and ground

wire
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Z'e=Zo—Znu=Ra+1.588X 108 f-4+74.657X 10~ flog—rD-;

—1.588X10-® f—4.657X 10~ flogEDi:

Z' o= R4+74.657X 10~ f log idr—"—" (212)
Similarly: d
Z'v= Ry+74.657X 103 f log —rf;’! (213)

1;'1.'.&» Z;'.Zb ‘!u

F F
Flg 101. Transformer Equivalent Fig. 102. Resultant-
Circuit Involving Leakage Impedance Circuit.
Reactances.

The resultant circuit as given by equation 211 is shown in
Fig. 102. This circuit has a resultant impedance of:
Zo=Z' ot Z'vlu Z'aZ'b+Z’oZM+Z’bZM
Z'vten VAT A
_« a—&m)(Cv—2m)+ (Za—Zm)lu+(Cr—2Zu)lnu
v—LutLu
_&o&v—Zm)+(Za—2mln
VA

Zo=*—-°2;’*—=Za--Z'b— (214)

For the case of polyphase circuits in which zero-sequence
impedance networks are involved, the same performances will
apply per phase if the values of Zq, Z3, and Zu are those given
in equations 208 and 209.

For three-phase circuits:

d

Z'a=Ra+10.01397 f log -;1! (215)
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Z's=Ry+10.01307 7 log ‘i—:"
- (216)
Zu=0.004764 f-+70.01397 f log °

Several examples will be given to clarify the process. These
examples are obtained from the book ‘‘Symmetrical Com-
ponents’’ by Wagner and Evans.

96. Example 1. Single circuii, three-phase line with one
ground wire.
Dara: Conductors and ground wire=2397,500 c.m. ACSR;
GMR of conductors=0.0277 ft;
Resistance per mile of conductor=0.235 ohm;
Frequency=60;
Damp earth, p=100.

173

Cond. ¢
3

! 2 (a) )
Fig. 103. Circuits for Example 1.

SoruTioN: (a) ponvert the actual conductor configuration
of Fig. 103 (a) to an equivalent single conductor ¢ and a ground
wire, as in Fig. 103 (b).

re=" "oty diydady
=v/(0.0277)3(18)2(18)2(36)2 = 2.43 ft
and doy=V288X1345X13.45=17.3 ft

() Self and mutual impedances for the circuit in Fig. 104 (a),
as obtained from equations 215 and 216, are:

Z'.= R.+10.01397 f log 9;—'




SHORT TRrRANsMISSION LiNE IMPEDANCES 153

Z'.=0.235+70.8382 log %=0.235+j0.714

Z's=3R,+10.01397 flog%
g

=3X0.2354-70.8382 log 6%72'%73—7=0.705+j2.35

DZ
deg

=0.286-+71.85

Zu=0.004764 £470.01397 f log

2,800
17.3

(¢) For the equivalent circuit in Fig. 104 (b):

=().28584-70.8382 log

_ 7! Z’UZM — .
Zo=2 c+z-———,' ¥ ZM—0-46+11-75
z; zy

z3
Zu
z;

¥

(a) Equivalent Circuit (b) Resultant Circuit
Fig. 104, Equivalent and Resultant Circuits for Example 1,

Example 2. Single circust, three-phase line with two ground
wires.

Darta: Conductors and ground wires= 397,500 c.m. ACSR;
GMR=0.0277 ft;
Neglect resistance;
Frequency=60;
p=100.

SorutioN: The actual conductor configuration is shown in
Fig. 105 (a), and the equivalent circuit in Fig. 105 (b).

. 7.=2.43 ft (see Example 1)
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79="VTarsdardar="V0.0277 X 18=0.706 ft
d=V1345X13.45X28.8 X 13.45X 13.45X28.8=17.3 t

Therefore:

Z'.=170.8382 log %‘%= 70.714

Z',=10.8382 log (;7—7;()36= j1.16

Zu =0.8382 log 31'7;."—?= /1.85

G.W.
g(Q) 15=0706'
dc‘=17.3'

C
46 rc=2.43'
3
w)

Fig. 105. Circuits for Example 2.
According to the equivalent circuit of Fig. 105 (b):

iy (j1.16)(j1.85) .
Z°_70’714+——_——1'1.16+j1 <5 =1143

Fig. 106. Circuits for Example 3.

Example 3. Double circuit, three-phase line with two ground
wires. ,
Dara: Conductors and ground wire=397,500 c.m. ACSR;
GMR =0.0277 ft; p=100; f=60;
Neglect resistance.
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SorurioN: Fig. 106 (a) and (b) show the actual conductor
configuration and the equivalent circuit.

r,= V0.077X24=0.816 ft
= \(0.0277)%(18)4(22.47)5(24.08)4(16)*(8.544)"(24)* = 5.64 ft
dog= \(5.83X 13X 21.21 X 21.59 X 27-30 X 29.70)*

By proceeding as in Examples 2 and 1, the impedances are
found to be:
Z2'.=70.41, Z',=71.11, and Zn»=741.10

Also:

L (111)(j1.85)
Zo=0-4+"T 7T 8s

=71.10
97. Zero-Sequence Impedance by Self and Mutual
Voltages, for Three Conductors.—An alternate method which
may be used for the deter-

mination of the impedance to

zero-sequence current involves

the application of fundamental

self-impedance and mutual-
De D, i i

impedance voltage equations
to the original circuits without
resorting to the initial use of
geometric mean equivalents.
To illustrate this method, con-
sider the case of a three-phase
circuit of conductors 1, 2, and
3, the GMR of each of which
is 7, as illustrated in Fig. 107.
A common earth equivalent
return conductor, the GMR of which is r,=1 foot, is assumed.
The equivalent distance D, is assumed to be the same for each
of the conductors 1, 2, and 3.

Fig. 107 may be interpreted as three smgle-tum windings
of a coupled circuit, with a voltage V, applied to each winding
and a current I in each winding. Therefore, from funda-
mental self- and mutual-impedance laws,

Fig. 107. Three Conductors with
Earth Return.
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Vo=Iodu+IoZi2+IoZn (for winding 1)
Vo= IoZn+ IoZra+loZes (for winding 2)
Vo=IoZss+Ioda+IloZes (for winding 3)
in which Zy, Zs, and Zj are self impedances which can be
evaluated by a direct application of equation 60; and Zis, Zss
and Z; are mutual impedances which can be evaluated by the
method of equation 61.
Solving the foregoing equations for the ratio of Vy to o, we

have:

Vo Sutdntdss Zit+Zutisn
Zo= .= 3 +2 3
0

This relation indicates that the zero-sequence impedance is
equal to the average of the three self impedances plus twice the
average mutual impedance. One may interpret the result
just obtained to represent the zero-sequence impedance of a
three-phase line with transposed conductors. 4

For transposed three-phase lines or for average values of
self and mutual impedances, equations 60 and 61 may be used,
provided that 7, of equation 60 is interpreted as the geometric
mean of the conductor GMR'’s and provided that dg; of equation
61 is interpreted as the geometric mean of the spacings between
conductors, or Vdydssda.

Considering average impedances or a transposed line, we
may, therefore, write that

Zo=4Zu+22n - (217 a)

The student should determine that the foregoing result
corresponds to equation 208 in which the term 7 is equal to
the geometric mean equivalent of the three conductors.

98. Self- and Mutual-Impedance Solution with Ground
Wires.

Example 1. Single circuit, three-phase line with one ground
wire.

SoruTioN: Referring to Fig. 103 in which the ground wire
is labeled 7, we may write the following voltage equations:

Vo=1Iou+Iodu+Ilodu+ I
Vo= loln+ lor+ lolas+ I1dar
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Yo= IoZss+IoZai+ IoZes+ Indsr
0=I1Zr1+IoZvi+ Lodor+ IoZ s
As an average, or if conductors 1, 2, and 3 are transposed,
Iu=2Zn=2Ls
le =Z23=Z31
Zv=La=Ls
Then: .
Yo=IoZu+2L)le+I7ZU
0=1I7Z+1+31eZ11

from which:

2
C Gt a3 2171)
7
Example 2. Single circuit, three-phase line with two ground
wires.

SorutioN: The conditions are illustrated in Fig. 105.
This example will involve five equations, as follows:

Vo=Ilu+IoZu+ IoZan+ 11211+ Islis

Vo= IoZo+ Lo+ lodes+ I1dar+ Isds

Vo=IoZss+ lodn+ loles+ I1dsr+ Islss
0= [Zn+ Is& s+ [o(&rit+Zar+Ls7)
0=1IsZss+ I1d1s+ To(Z1s+Zas+Z3s)

In addition to the same previous assumption of average
impedances for transposed conductors, the following additional
simplifications are made:

Zl7 =Z27 =Z87 =Z18 =Z28 =ZSB
and Zri=Lss
Then:

Vo=Iodu+2lolre+ (14 Is)drr
0= (I74Is)(&r1+Z8)+610d1z

from which:

- _Zh

Zo=Zu+22x m . (217¢)

Example 3. Double circust, three-phase line with six con-

ductors, 1, 2, 3, 4, 5, and 6, and two ground wires, 7 and 8; see
Fig. 106.
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Sorution: This example will involve eight voltage equa-
tions, each equation having eight voltage-drop terms. Trans-
position of conductors is assumed within each circuit, but not
between circuits. Assuming that the zero-sequence current is
divided equally between the two circuits, we may write sample
voltage equations as follows:

For conductor 1,

Yo=%(2u + 21+ 2+ Zut+Zuw+Cw) + I1dvr+ Islis
For conductor 4,

Yo =Iz‘o(Zu-l'Zu+Z42+Z43+Z45+Zm) +IiZa+Islas
For ground wire 7,
O0=I:Zn+1 &Z7s+%(Zv1 +Zn+Ln+ZutZu+Ls)

For ground wire 8,

0= Zut T+ SGnt-Zut Zust-Zurt ZustZa)

Equations for conductors 2, 3, 5, and 6 follow patterns
similar to those shown for conductors 1 and 4.

Assuming transposition or average values of impedances,
we may write the following relations:

Zu=Zm=Zaa =Zu=Zu=4s
lu=Ldu=lu=lu=Ln=Cu
u=Zu=lre=lu="Llu=Los=Lu=Ls=_Lss

Zu =Zz7=Zs7 =Z4a =Zu =Zos
Zu=du=Ldu=Cu=Lui=Le

Zrn=Lss

Therefore:

Yo=129(Zu+ZZu+3Zu)+I1Zu+IaZm
yo=-gi’(zu+zzu+3zu)+11zm+zszu
0=I1Zn+1 sts+3'Iz'9(Zu+Zu)
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0=] aZ77+I7Z7s+3I22(Zn+Zu)

From the last four equations, it follows that:
Vo= Lo(&u~+2Z12+3214) +(I1+ Is)(Z11+2Z1s)
I+ Is)(Zrr+Zrs) = —3Io(Z11+Z1s)

Hence,

2
21!0:IO(ZH+ZZH+3ZM)—SIO(—ZZ1::EZZ?3—
Also, the zero-sequence impedance of the parallel combina-
tion of six power conductors is:

v

Vo

1 (Z17+ZIB)2
Z°=T; =§[Zu+2Zm+3ZM"3M}

If Zi7 is taken as an average value of the impedances Z7
and Zis, then

7,=1 g 4n
(o—-2<Zu+ZZm+3Zl'4 12277+Z78) (217 4d)

Correct values of geometric mean distances must be used
in applying the results of equations 60 and 61 in each of the
examples outlined in this article. These values are indicated
in the following table.

Impedance GMD
zl’ V’ dl%’dﬂl
Zu Vay180ds (one ground wire)

Vdyddsdadydss  (two ground wires)
Zu Vv drdasdin(didadn)®




CHAPTER 14

LONG LINE IMPEDANCES

99. Positive- and Negative-Sequence Constants.—The first
step in the sclution of any power network is the development of
the three sequence circuits (see examples in Chapter 16). A
long line must, therefore, be reduced to a form suitable for repre-
sentation in such a circuit. Equations 107, derived in Chapter
7, are not in a convenient form, since they involve distributed
admittances to neutral (or ground), which cannot be handled
along with other circuit elements involving lumped constants.
To overcome this difficulty, long lines are treated in terms of
equivalent 7 or T circuits, as derived in Arts. 41 and 42.

Positive- and negative-sequence constants of balanced long
lines are the same, since these components represent balanced
systems of voltages and currents. Either = or T equivalents
may be used, the choice depending on particular features of the
other component parts of the sequence networks.

Since long lines are quite often transposed, the solution of
equations 107 and corresponding equivalent = or T circuits are
carried out on a per-phase basis. The presence of ground wires
does not affect the distribution of the dielectric field sufficiently
to warrant any correction of the fundamental equations, insofar
as the positive and negative sequences are concerned. . Thus,
the procedure is as follows:

(a) Calculate the reactance per mile per phase according to
equation 41, which is:

X3=4.657X10 f log Pf ohms /mile (218)

* (b) Calculate the capacity and susceptance per phase accord-
ing to equation 84. Thus:
c _0.03882

log %

mfds/mile (219)

from which B=2xfC,,
160
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(c) After determining the conductor resistance and assuming
the shunt conductance equal to zero (perfect insulation
assumed), obtain the constants 4, B, C, and D of equations 108.

(@) From these values, the final step is to compute the equiv-
alent constants of the r or T circuit (see equations 114 and 115,
and 118 and 119), as the problem may demand. With these
last values, it is then possible to sketch the positive- and nega-
tive-sequence networks, from which the network impedances
can be determined by the step-by-step simplification of the
circuits.

Equivalent
Ground Wire

Equivalent
Conductor

Equivalent
Earth

Fig. 108. Zero-Sequence Series Impedance for Long Line.

100. Zero-Sequence Constants.—The zero-sequence con-
stants are handled somewhat in the same manner as the other
sequence constants; namely, by determining the four generalized
constants 4, B, C, and D (see equation 108) and then converting
these constants into an equivalent 7 or T circuit as in Arts. 41
and 42. However, in the positive- and negative-sequence net-
works, each phase may be treated separately; while, for the
zero-sequence case, all conductors are in parallel as one side of
the circuit and the ground wires and the earth are in parallel
as the other side of the circuit. It is therefore necessary to use
special means in determining the series impedance and shunt
admittance which go into the calculation of the four generalized
constants.

101. Zero-Sequence Series Impedance.—The method out-
lined in Chapter 13 is used in the determination of the zero-
sequence impedance for a long line, but the impedance must in
this case be calculated on a per-mile basis. As outlined in
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Chapter 13, the several power conductors are replaced by an
equivalent single conductor; similarly, the ground wires, if
there are more than one, are also replaced by a single ground
wire. Finally an equivalent circuit is developed in which the
impedances of the equivalent ground wire and earth return are
connected in parallel, the combination being in series with the
impedance of the equivalent conductors. This is shown in
Fig. 108. The three component impedances of Fig. 108 are
as given by equations 215, 216, and 217. Thus:

Z.=Ra+0.01397 f log 22 (220)
Zw=Rs+70.01397 f log —r—- (221)
Z,=0.004764 f+70.01397 f log f’ (222)
From these results it is obvious that:
_ Ly
ZO Zc+Zw+Za (223)

From Fig. 108 it is possible to determine how the zero-
sequence current will divide between the ground wire and the
earth return.

Let K,=ratio of earth current to total current;
and K,=ratio of ground-wire current to total current.

Then:

Z.
K=z 12, (224)
Z
K=z 37, (225)

It should be noticed that the ratios given in equations 224 and
225 are in complex form, since the impedances are complex
quantities.

102. Zero-Sequence Capacity of Three-Phase Lines With-
out Ground Wires.*—As suggested in Art. 100, the conductors

*The solutions for zero- sec&lence capac:ty given in this volume were
suggested by Edith Clarke of the General Electric Company.
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of a power line must be considered as connected in parallel
insofar as the zero-sequence action is concerned, the current
dividing equally among these conductors and then returning
through the earth. A standard method of calculating capacity
of earth return circuits is to consider the conductor images
located at a distance below the surface of zero potential which is
exactly equal to the height of the conductor above this zero-
potential surface. For general purposes, this distance may be
considered as the height of the conductors above the surface
of the earth. The ideal case
would involve a horizontal
arrangement of conductors,
so that the capacity offered
to the three conductors
would therefore be sym-
metrical. However, since
three-phase lines are gen-
erally transposed, it is suffi-
ciently accurate to consider
an average condition of all
three conductors, even for
the conditions of unsym-
metrical arrangements of
conductors,

Since the same current
flows in the three con-
ductors, we may define the Fig. mé_ Conditions for Earth
charge per conductor as Qo, Return Circuit.
namely, the zero-sequence
charge per phase. Obviously the charge on the image con-
ductors will be —Qo. The general notation is shown in Fig.
109, distances between conductors being denoted by the letter
D with suitable subscripts, and distances between conductors
and images being denoted by the letter H with suitable sub-
scripts. Radii of conductors are denoted by 7.

Using equation 73 as a guide, we may write the results
for the voltages between conductors and their respective images
as follows:
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N

_ l r Hu Hab HCG
Eaa—m ZQo Ln 7+2Qo Ln Dab+ZQ° Ln mJ
— 1 r Hb Hbc: Hub-
Ebb—m ZQo Ln —r—+2Qo Ln ‘D';:-FZQO Ln D:;_J r (226)
— 1 r Hc Hca Hbc-
Ecc—m? 2Qo Ln T+2Qo Ln E‘;'}'ZQO Ln —D_b;JJ
The average voltage between conductors and images is:

1 - _ 1 HaHbHc(Hﬂle"’H“)z
'S'(Eaa+Ebb+Ecv) ’"BR[QO Ln X Ts(DabDbcha)z ]

But the zero-sequence voltage is equal to one-half of the
average voltage between conductors and images. Hence:

E= 1o VH..HJL(H“H,,,H“)Z

2rK *(DapDvcDea)?

from which the zero-sequence capacity per phase is:

Co= Qo_ 22K mfds/em  (227)
Eo | 3 /HHHHapHuHeo)’
7'3(1)¢be1>(:1)011)2

where K=0.08842X 10—¢ mfds/cm?. Substituting the value of
K and reducing equation 227 to the basis of one mile, we have:

‘Coe 00388210~
o=
. VH.,H;,H.,(H@HMHM)?
og

fds/mile/phase (228)

1'3(-DabDl'n:l)tm)2

103. Zero-Sequence Capacity of Three-Phase Lines with
Ground Wires.—The procedure outlined in Art. 102 can be
followed also in case ground wires are present. These wires
introduce additional charges, but the voltage between ground
wires and their respective images is zero, since the wires are
solidly connected to ground throughout the length of the line.

*The results of equation 228 and of the other cases which are con-

sidered in this chapter can be reduced to the form given o:dfage 1189 of
the “Standard Handbook for Electrical Engineers,” eighth edition.
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Case A: One ground wire W.—In this case, equations 226
will be modified as follows:

-5 :K(zgo Lo 72420, Ln g: +200 Ln %420, Ln & “'”)

EGG

ca

D
Ebb——(ZQO Ln Hb+2Qo Hbc +2Qo H g )
H,,

1 Hr'a H c
Ew.—_m(zgo Ln=*+20 Ln 5 *+20, Ln D"c +2Q, Ln Dm)

EW—O——(ZQ,., +2Qo ""’+2Q0Ln +2QoLn )
But the zero-sequence voltage above ground is equal to one-

half of the average of the first three of these equations. Thus:

EO‘— Eaa+Ebb+Ec¢)

Q HaHbHc(HaberHca) Q Ln 3 Hawachw
° W(DubDbc ca)2 T DawwaDcw

From equation 227, the following relation is obtained for a
three-phase line without ground wires:

8 HaHbHc(Habecha)z_ZWK
P(DasDyDea)*  — Co

Ln

where C) is the zero-sequence capacity of a line without ground
wires.

Substituting this value in the last equation for E, gives:

1 He
Eu=%—:+§;a?g Ln (229)

where Ho= VHosHooHom:
and D= VDasDsuDom:

But, from the expression for E,w, we have:
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HmawaHm
DawwaDm
— 3 HawawH:_

== 4/ DDruD~ 10D,

QoLnZee g 1n

Substituting this result in equation 229 gives:

Hoo\?
Eomgd L3 (152)
0=L0) ~
Co 21"K LnI'rIw

Let C’o=zero-sequence capacity with one ground wire. Then:

1
Clo=2 -
& Hew?
13 (Lop
Co 27K Lnf—l‘-"
o Tw
Rearranging: C
Clo= °C mfds/cm (230)
5
where:
aeic LR
A’—%— HW 7 mfds/cm (231)
(Lopz

To convert equation 230 to read farads per mile, it is only
necessary that Co be given in farads per mile (equation 228)
and that the value of A’ be modified as follows:

log-f;ll
A’=0.01294 X 10—*——"—; fds/mile (232)

o

log=—
Case B: Two ground wires W and V.—Examination of the
equations for E,s, Es, and E.. for the case of one ground wire

will indicate that the effect of the ground wire is introduced by
the last terms in those three equations. If an additional
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ground wire V is introduced, another term must be added to
each equation. Thus equation 229 for the zero-sequence volt-
age will become:

w H v HW
]"7°=<Q:(.;+ ng Ln 5 ZQK In 5> (233)
where Ho,= NHoHpHo;
Dow= NDayD3Doy.
Furthermore:

1 'H, Hy, He,
Ew=0=§1—r—1—(~(29w Ln Tw—+2Qv Ln Dwv+6Qo Ln —D—;)

1 Hv wv HW
Ew=0=m(29u Ln ’;:"l"ZQw +6QO Ln

From these relations:

H ow
Qw Ln +Qv D Dew
H (234)
Q» Ln +Qw Ln D..,
For simplicity, introduce the following notation:
He ; + H,,
Lw =Ln _’,T;) Ll! =L T ’
Lo=Ln 525
Lu=Lo 3% L=l 3
Then equations 234 become:
QuLuw+QvLuwv=—3QLaw
QuLuAQuLon=—3QsLin @s8)

Multiplying the first equation by L, and the second equation
by L.., and then subtracting the second from the first, gives:
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LowLo—LosLuo

Q=30 F T =75 (236)

Again, multiplying the first equation by L., and the second

equation by L,, and subtracting the second from the first, gives:
LeyLiyw—LenLy

Q= 390-“‘51:17'”— (237)

Substituting the results from equations 236 and 237 in equa-
tion 233 gives:

1 3 (Lo(LasLo—LaLu) Lo(LeLue ,.,L.,)}]

B o-mr\” L.L-1r,

=0 1 3 (LeLy+LoLy—2LesLosLuw
Co 2nK\ LL-I,

Finally, let C=zero-sequence capacity with two ground
wires. Then:

Cl= Q__Co_ 44 /mile (238)
EO 1 —0 C
where: 4
2
0.01294 X 10‘“[log—l—{—— log—}!—-—(loglg ) ]
n._.

oew ev H H w H wv
(log Do ) log + (log D.. ) log -2 log—=— Do D log=— €D,
fds/mile (239)

Case C: Special case of two identical ground wires.—It will
be assumed that the ground wires are located above horizontally
spaced power conductors; and that the ground wires are equi-
distant from the center power conductor and are at the same
height above the ground. For these conditions:

Yw="10o, Hw=Hv, DW=DM, Hw=Hh;
Dow= D¢y, Haww=Hev, Doy = Dc, Hap=Hpe;
H¢=Hb=Hc, an"Hm, Dgyo= Daw,
Hy=Hgw, Dcu“Dam Hn""Hm; D= Dgp.
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Substituting these values in equation 239 will give for A’ the
following:

"n__ —
AT =000 g S Ry T
( gDm) g, (ogDm) 8-

,l- tog 22 +1oghes
_001294X1071 " "t _"Duw | tqe imile  240)

2 oalm\:
(407)
The value of A” from equation 240 can now be used in equa-

tion 238 in the same manner as the more general form of
equation 239.




CHAPTER 15

SEQUENCE NETWORKS

104. Introduction.—In Chapter 10 it was indicated that
the method of Symmetrical Components involved the applica-
tion of a form of ‘‘superposition” in which unbalanced three-
phase voltages and currents are considered in terms of the three
components; namely, positive, negative, and zero sequences.
In the present chapter it is proposed to develop specific laws of
superposition for the most common types of commercial applica-
tions. The method of Sym- : «
metrical Components is
adaptable to a good many
applications of wunbalance, b
but its use in the present
case will be limited to the

computation of fault cur- t
Tents. T o ! l

The actual three-phase =
network, with the exception z B, .
of the faulted point, will be Fig. 110. Three-Phase Line with
assumed to be composed of One Conductor Grounded.

balanced impedances. A
later chapter will give a brief discussion of impedance unbalance.
The common types of faults on a three-phase system are:

1. Single line to ground fault.
2. Double line to ground fault.
3. Line to line fault.

4. Three-phase fault.

105. Single Line to Ground Fault.—In Fig. 110 is shown
a three-phase line with conductor a grounded. Let I,, I3, and
I, be the ground currents of the lines, and E,, E,, and E, be the
voltages of the conductors above ground. Since conductor a
~ ig the only one that is grounded, it is obvious that:
C R |
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Eu=0
Iy =0 (241)
I. =0

From equation 183 we may obtain the zero-sequence current,
as follows:

Iao=%[1a+jb+1c]=%la (242)

From equation 188 the positive-sequence current is:

Lop=3LutIs/A20+ 1./TI0]= 31 (243)

Similarly, according to equation 190, the negative-sequence
current is:

Ian=’13[1a+lbﬁ—26+1c[_1_2_0_]=31'1a (244)
From equations 242, 243, and 244, it is evident that:
IaO=Iap=Ian=éIa (245)

Also, according to equation 182, the total voltage of conductor
a above ground is:

Ea=0= Eap+Eun+ an (246)

The only network which can possibly satisfy equations 245
and 246 is a series circuit
like that shown in Fig. 111.
As will be noticed in Fig.
111, three-phase balanced
generators contain only
positive-sequence induced

voltage, there being no gen- Pos. Neg. Zero
erator source in the nega- . 111. Series Circuit for
equence Components.

tive- and zero-sequence net-
works. ' From Fig. 111:

7. L o
Iap”Icu—Iw—Z’_'_z”_*_Zo (247)

- Also, from fundamental laws, the terminal voltage is equal
to the induced voltage minus the voltage drops. Thus:
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Eww=Ea—Iupis
Edﬂ—o IanZn
Ea=0—1Iao

(248)

Having determined the sequence components, the actual
line values are as follows:

Ia=Iap+Ian+Ia0 1
In=Dp+ It Ioo=Lop/1204 I 0n/1204+ oo =01 (249)
Ic= Icp+Icn+Ic0= IapAl_gg‘i'Ianﬁz_O-'*‘IaO:O

Similarly:
E¢= Enp+ Ean+ an

Eb=Eap/1§6+Eanl_l_£Q+an (250)
Ec = Eap[_l_zi)_"" Eunm"‘ an

But, with conductor a grounded, it is obvious that E,=0. This
can be shown to be true by proper substitution (see equations
248 and 250). Thus:

Ea=Eag'—Iapr—'IunZn"‘IaDZo

Also, from equation 247:

_ - Eaa — — —_
Ea—' Eau (Z _p+'zﬂ'_+z_0)(Zp+Zn+Zo) Eaa Eag—-o

106. Example of Line to Ground Fault.—To illustrate the
foregoing theory, consider a generator with the following data:
Induced voltage, Eqp=100/0 volts;
Positive-sequence impedance, Z,=1.0/90 ohms;
Negative-sequence impedance, Z,=0.5/90 ohms;
Zero-sequence impedance, Zo=0.1/90 ohms;
Generator neutral solidly grounded.

For a line to ground fault, we must solve the network of
Fig. 112, which is seen to be the same as Fig. 111. The calcula-
tions are as follows:
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Lop=Ion=Iuo= wa
ep— den=29071.0/90+0.5/90+0.1/90

_100/0 _
=169 62.5/90

Eop=100/0—62.5/90X1.0/90
=100/0—62.5/0=37.5/0

Ean=—62.5/90X0.5/90=—31.25/0

Ea=—62.5/90X0.1/90=—6.25/0

I'pl 2z

I
|

] § L

—— ]
/ N
Ey

JTao l Z, Exo Ia
Fig. 112. Conditions for Fig. 113. Results
ple in Art. 106. of Example in

Art. 106.

From these results, the following values are obtained:

=62.5/90+462.5/90+62.5 /90 =187.5 /60

Iv=0and [,=0

Eqa=0

Ew=37.5/120—31.25/120—6.25 /0

=—18, 75—132 5+15.625—-727.1-6.25= —9. 37a~—]59 6
E.=31.5/120+31.25/120-6.25/0
= —18.75+32.5+15.625+727.1— 6.25=—9.375+ 159.6

_The results are plotted in Fig. 113.
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107. Line to Ground Fault, Including Ground Impedance.
In this case, which is represented in Fig. 114, the relations that

apply are:

Ea=IaZ= (Iay+Ian+Ia0)Z (251)
and
In=1.=0 (252)
|
Eayg
. ‘ z Eqp

Za Ean -

Zo Eao

>
<
P4

I.l >Z Ep Ec‘
if’

z
¥
Fig. 114. Line to Ground Fault, Fig. 115, Series Circuit for
with Ground Impedance. Sequence Components.

The current relations will be the same as given by equation 245.
Thus:

Loy=lo=Ia=3l. (253)

This means that the three networks ‘are in series, as shown
in Pig. 115, with the impedance Z introduced in series with each
sequence network (see equation 251). In this case:

In=IM=I¢0=Z'+ “_l:'za_’_sz (2“)
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Also:

E ap— E ag ™ I apr

Eﬂﬂ - IanZ” (255)
Furthermore: Ea= —lIao

Ea = E¢p+ Ean+Ea0 = Eaa_ Iap(Zp+Zn+Z0)

Eaa(Zp‘I"Zn“I‘ZO) Eav(SZ)
ER 2w e s o e g w7 £

This result is seen to check with equation 251, in the light of
the results of equation 254.

Having determined the sequence values of current and
voltage in phase a, other values can be obtained by direct
application of equations 249 and 250,

a

| Zop } Zon } 7o

Iy ¥ (3 I

By Ey B

Fig. 116. Double Line to Fig. 117. Network for Sequence
Ground Fault. Components.

108. Double Line to Ground Fault.—It will be assumed
that phases b and ¢ are both grounded and conductor a is free,
as in Fig. 116. From the conditions of Fig. 116:

Bog=l @0

From the fundamental sequence relations:
Eup=3(Eot Bs[120+E./TH) =3E.
=@t B/TO+EL20) =380 81
Ew=j(Ect Evt B =3E
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From equation 257 it follows tnat:
E Ean an (258)

Therefore, the sequence networks must be considered as con-
nected in parallel, as in Fig. 117. From this figure, we have
the following:

Eaa

L= 22 #59)
P Zn+ZO

Iup=_Ian"'Iao (260)

Eap=Eaa—Iapr (261)

From equation 258 we may write:

E Ean an——lanZn="‘IuOZO

from which:
I an= =" gap
E" (262)
I a0 = — Zap
0

The final phase values are obtained according to equations
249 and 250.

109. Example of Double Line to Ground Fault.—The b
and ¢ phases of the generator of Art. 106 will be considered
grounded. The network circuit is given in Fig. 117. The
calculations follow:

' 100/0 100/0
Lop= 1 0/90.1. 03/900.1/%0) ~ 10833/%0 =923/
20455 /%0+0.1/90

Eop=100/0-92.3/90%1.0/90=100/0~92.3/0=17.7/0
Ea=Ew=1.7/0
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Tao=~— 770 _ —77.0/90

0.1/90

Iap= —Ian"IaO=92-4/9_0

From these values, the following results are obtained:

Ea= E¢p+ EawntEa= 3E¢y =23. 1[9_

Eb=Ec=0
Io=1¢p+1¢m+1a0=0

Ib= Iap/im'i‘lan[lz_o"‘lw
=92.4/210—15.4/30—177 /90

= —80+746.2—13.35—77.7+777= —93.35+7115.5

I.=Top/120+ L an/120+ Lo
=92.4/30~15.4/210~177/90

=80+746.2+13.35—77.7+777=93.35+7115.5

[ .

| ‘lx., -lIc

E, Ey E¢
Fig. 118, Line to Line Fault.

The ground current is:

?PW Ea Iml Zn

B J

Fig. 119. Network for Sequence
Components.

Io=IDvt+1.~=75231
It will be noticed that the ground current is equai to three

times the zero-sequence current.

This solution assumes that the neutral is solidly grounded.
If this is not the case, then the double line to ground fault

becomes a line to line fault.
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110. Line to Line Fault.—Such a type of fault is illustrated
in Fig. 118. The fundamental equations are seen to be as
follows:

I.=0 (263)
Eb=Ec (264)
Li=-1. (265)
Also,
To=3{Ie+Ii+1)=0 (266)
and Ew=0 (267)
Lop= 3(Iq+zb/1zo+zc/1‘2” Lo —/17 0)
I, |
p=-3--<LE+L_>=~3~< V3/90) = 15+/%0 (268)
Lan =3t Io/T00+ 1./ 120) =3 (/750 j120)
O S
I an = \/‘3’ /9(—) IGP (269)
Eur= b (Bt Eo/ 1204 E./T00) = Bt Bu(/120+ /T0)]
Eap=3l'(Ea"Eb) (270)

Eon= s Bt E/TIHE120)=XE~E) @)

Inspecting equations 268, 269, 270, and 271, we find that
Fig. 119 will satisfy the requirements of line to line fault. From
this figure we can now complete the necessary solution. Thus:

E“ﬂ
Aw=z 37 (@72)
I an= I ap (273)

Etw= Ea— IGPZP}
(274)

Ean = Ecp
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The actual line currents and voltages can now be obtained
as in previous articles.

111. Example of Line to Line Fault.—This type of fault
is illustrated with the generator data of Art. 106. The calcula-

tions follow:

00000
Iap—m%ﬁgzw* iS[gQ —66.0/66

Lon=—66.6/90
Ia=0
Ew=0
Eop=100/0—66.6/9GX1.0/90
=100/0—66.6/0=33.4/0
Ean=Eap=334/0
Therefore:
Eo=EartEaptEon=334/0+33.4/0=066.8/0
Ev=Eat Eap/120+ Ean/120
=33.4/120+33.4/120= —33.4/0
E:=EatEap/120+Ean/120
=33.4/120+334/120=—33.4/0
lo=la+IlaptIan=0
Ib=1ao+1apﬁ_2—6+1anﬂ_29
=66.6/210—66.6/30=115.5/180
L=l Iep/1204I0a/120
| =66.6/30—666/210=1155/0 .
' 112. Three-Phase Faults.—Fault ' calzulations, as  con-

sidered in this chapter, have involved circuits of balanced
impedances in the three phases. A three-phase fault is there-
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fore a case of absolutely balanced conditions, and only positive-
sequence quantities will be involved. This is illustrated in
Figs. 120 and 121.

The solution of Fig. 121 is quite obvious, the final currents
and voltages being equal to the positive-sequence quantities.
The fault of Fig. 120 could have been grounded without chang-
ing the interpretation of the problem.

a

\ |

j [ c . é):.
E. B JJrfIc L_.___J

Fig. 120. Three-Phase Fault. Fig. 121. Network for
Sequence Components.

113. Double Line to Ground Through Impedance.—From
Fig. 122 we have the following:

Ia =0
B=E=t1) 2 } @75)
Ea=3(Eot Bt E) = 5(Eot2E0) (276)

Eup=3(EatEs/120+E./T20)

Eup=NEAB(/120+ /TO)]=Y(E~ B0 (277)
Ean=%[Ea+Eb/i—2_6+E"Ll_gg]
Ean=3[Eot Eu(/T0+ [120)]=3(Ea—Ev) (278)

From equations 277 and 278:

Elp = Eon (279)

Equation 279 indicates that the positive- and negative-sequence
networks should be connected in parallel.
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Equation 276 may be changed to:
an=%(Ea—Eb+3Eb) =%(E¢_Eb)+Eb

From equations 275 and 277:

Ea= Eaz:+ (Ib+Ia)Z (280)
Also, 1 oy
Tao=3(Lut It 1) =5+ 1) (281)
Equation 280 becomes: |
Eaw=Eawpt+3lal (282)

I} 1.,{ .
= } (Tw+Ic) 2

Fig. 122. Double Line to Ground
Through Impedance.

Analyzing equations 279 and 282 will show that the sequence
networks must be in parallel with an impedance equal to 3Z
in the zero-sequence leg, as shown in Fig. 123. From Fig. 123,
it is evident that:

E ag
? Z,.+Z 32

Eop=Eas—Iaplp=Eon=—Iunln (284)

In=-E2 (285)



182 INTRODUCTION TO ELECTRIC POWER SYSTEMS

R
Zovt+32 } (286)
Loo=—1Iap—Lan
Eao=—1ado
Ew=Enp+321 ao} (287)

ﬂ I | Zon | 70

L
| %n 'y ? L

Fig. 123. Network for Sequence Components
a

1| z lfb z l"

E
a Ee

Ty

Fig. 124. Line to Line Fault
Through Impedance.

>

il

Having determined the sequence components of current
and voltage, the actual circuit currents and voltages can be

obtained according to equations 249 and 250.

114. Line to Line Fault Through Impedance.—This type
of fault is shown in Fig. 124, from which the following equations

are obtained:
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Ic=
Ebc=Eb—IbZ=Ec"'IoZ}
Ib= _Ic

Also: {
Iao=3(Ia+Ib+Ic) =0

L,,,=§(1..+Ib,1120+1f T0)
Iap=’[Ib(L20""/ “'O)]"" \/" /90
Idm=3‘(14+£ b/—r?-n"*‘ Ic&)

I 5o
Idﬂ 43 Iup

ﬂ Iap ] lIzn

Eag Eap Ean
Zn
Zp

— -

Fig. 125. Network for Sequence Components.
Since [40=0, it is obvious that E.,=0. But,

Eor=y(EutEs/120+ E./T)

in which:

Ev=Ew+Il
and Ec=EvtIZ=Ev—1Ivl
Therefore:

Eop= gl Eut (Bsct 1) [120-+ (En—11) /T50]
=HE.— Ewt \B1:2/90]

183

(288)

(289)

(290)

(291)
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E¢p=%(E¢"Ebc)+I¢pZ (292)
Eon=glEa—Eut \31:2/%0) |
Ean=3(Ea—Es)+ Il (293)

The circuit network which satisfies equations 289 to 293 is
given in Fig. 125. The solution of Fig. 125 is carried out in the
same manner as shown in preceding articles.



CHAPTER 16

SHORT-CIRCUIT CALCULATIONS OF
POWER NETWORKS

115. Introduction.—In the last few chapters the general
theory of symmetrical components and sequence impedances
has been introduced. It is now proposed to apply this material
to the solution of a few rather simple network problems. As has
been previously indicated, the present interest in this method of
circuit calculation is for the solution of steady-state currents
and voltages in faulted networks. The general procedure
may be outlined as follows:

(a) Inspect the original O I 2 § §1 Line v/
network, and prepare de- | ES Fauit

tailed individual sequence A
networks. ﬁ ﬁ
() Reduce each se- s

el e Fig. 126. Simple Network of
quence circuit to' the sim Gignentor, Tr&lform er, and
plest form, according to the Transmission Line.

method of equivalent par-
allel and series circuits and equivalent Y-delta transformations.

(¢) Connect the three sequence networks according to the
requirements of the particular fault (see Chapter 15).

(d) Obtain the total sequence currents and voltages.

(e) Obtain the distribution of the sequence current and
voltage in all parts of the original circuit.

(f) Combine the sequence currents and voltages, obtaining
currents and voltages in each phase at all points of the original
network.

116. Simple Network of Generator, Trankformer, and
Transmission Line.—In Fig. 126 it will be assumed that the
generator is Y-connected and the neutral is grounded. Also,
the transformer bank is composed of single-phase units, delta-Y

connected with solidly grounded neutral. The first step in
185
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analyzing the network is to determine how the three sequence
circuits are set up. These circuits are shown in Fig. 127.

The positive- and negative-sequence networks will naturally
include the impedances for all the component units of Fig. 126.

The zero-sequence circuit, however, will not include the gen-

Generator Transformer Line Fault
3 2 1 Lap=866+30
AN X
Ex J194.2 Jjli8.2 J60.6
(@) Positive-Sequence Network
¥ Generator Transformer Line Fault
3 » . Zan=866+30
A AAAAAAY ‘\/WWVV———Q(
! Jia12 ji1s2 Jjeos
= (%) Negative -Sequence Network
Generator Transformer Line

Fault

.2 1 Zao=866+J0 -

[ W
¥

=

(o) Zero-Sequence Network

Fig. 127. Sequence Circuits for Fig. 126.
erator.

Even though the generator neutral is grounded, it is
impossible for zero-sequence currents to flow between the
generator and the delta winding of the transformer, This is
obviously true because zero-sequence currents must find a
return circuit through the ground. However, since the trans-

former neutral is grounded, zero-sequence currents may flow
to the transmission line (see Art. 91, case J). ‘

117. Example for Fig. 126.—The following data may be
assumed for the network in Fig. 126:

K Per Cent Reactances

. Vﬂ: »

Device Capacity Line Voltage Positive | Negative Zero

Generator. .. .. 50,000 11,000 80* 50 20

Transformer 40,000 11,000,/110,000 6 6 6

Line.......... 20,000 110,000 10 10 40
* Synchronous reactances.
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The given values of per cent reactances are based on the
capacity and voltage of each particular device. It will be
noticed that the positive- and negative-sequence transmission-
line reactances have the same value, whereas the zero-sequence
reactance is somewhat larger. The first step is to convert all
per cent reactances to a common Kva base, preferably that of
the generator. These values are ‘abuluted as follows:

Per Cent. Reactances Based on 50,000 Kva

Device l |
‘ Posit.ve I Negative Zero
Generator. . .............. 80 50 20
Transformer.............. 7.8 7.5 7.5
Line..................... 25 25 100

As will be noticed in Fig. 127, the positive-, negative-, and
zero-sequence networks are made up of components in series.
Therefore, the total reactances are:

Positive sequence .. .... % Xp,=80+7.5+4+25=112.59,
Negative sequence...... % Xa=50+17.54+25= 82.59,
Zero sequence.......... % Xo=1.5+100=107.5%,

Commercial problems of this type are quite often carried
out in the percentage or per-unit notation. However, as the
first introduction to network calculations, it is probably worth
while to adopt the basic impedance method. The novice will
find this method somewhat easier to follow; and, after he has
mastered the basic features, he will find very little trouble in
adjusting himself to other methods of notation.

The values of per cent reactance can now be converted into
ohmic reactances by applying the relation:

_(RBX)E
X="1001,

where I,= 50;(1)(1) 0 =262 amps.
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Therefore, the ohmic reactances are:
Xp=4273 ohms
Xn=4200 ohms
Xo=3261 ohms

; Gen, 2 Trans. 1 Line Zap=866+30 v
—\VVVMVMWV MAVV MV
J 39%0

316,850 41560 J 5240

J 63,600 J 46,750 J 45,190

(@) Positive-Sequence Network

3 s . Tan=866+30

VAVAAMA/ W\/vvv———éf
410,500 I J1,560 T 45240
-4 11.500 -3 1I,ooo -j 17,100

(b) Negative-Sequence Network

1 Zyo=866+40

AATAAA'AY
‘=L J 1,560 ’ J21,000
-J1,560 «J 22,650
7 | |

(c) Zero-Sequence Network
Fig. 128. Sequence Voltage Drops and Phase Voltages.

118. Single Line to Ground Fault—The conditions are
similar to those considered in Arts. 105 and 106 and in Fig. 111.
For the network in Figs. 126 and 127:

163,600

I“’=I"=I"°=i(273+200+261) =86.6 amps

Jo=259.8 amps
Iy=0
Ie=0
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According to equations 248, the sequence voltages are:

E.p=763,600—86.6X 1273 =39,950
Ean= —86.6X1200=— 17,300
Eao=—86.6X7261= —722,650

The resultant voltages at tﬁe fault point X are:
Eaz=139,950—417,300 —522,650=-0
E».=139,950/120—117,300,120 — 122,650

= 34,600 — 719,975 4 15,0004 78,650 — 122,650
=49,600-—733,975
E..=139,950/120—{17,300/120 - 22,650
= —34,600—719,975—15,000+ 78,650 — 122,650
= —49,600—7533,975
These three voltages represent the potentials above ground of

the lines at the point of fault. The three line voltages at the
point of fault are:

Ea:=Ev— E.= 49,6m "‘]33,975
Evca= Ec—Ev= ""99,200+]O
Eca:;: Ea"" E.= 49,600""]33,975

To determine the potential of each line at points 1, 2, and 3
in Pigs. 126 and 127, the impedance drop for each sequence
must be computed. The actual ohmic impedance of each
part of Fig. 127 is given in the following table:

Ohmic Impedance Based on 50,000 Kva

Positive Negative Zero
Generator. ............... j194.2 ji2t2 not in cireuit
Transformer.............. j18.2 j18.2 j18.2
Line.......ocoievvvennnnes J60.6 J60.6 7242.

Total. .. eeineineanenns 7273.0 7200.0 7261.0
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The sequence component voltage drops and the conductor
voltages above ground are shown in Fig. 128.

The actual conductor voltages above ground at points 1, 2,
and 3, Fig. 128, may now be calculated. Thus:

Ea=745,190—712,060— 11,560 =331,570
Ea=746,750— 710,500 = 136,250

Ea3=163,600
Ew=145,190/120—712,060/120—j1,560 = 49,600 — 18,125
Ew»=746,750/120— 710,500 /120 = 49,600 — {18,125
E=163,600/120=55,100—731,800

Ea1=745,190 120—j12,060/1—26—j1,560=—49,600;j18’125
E»=146,750/120—710,500,/120 = —49,600— 118,125
Ea=763,600/120= —55,100—731,800

. / ~ _ \ .
c,,/ Bpex \

b
Fig. 129. Phase and Line Voltages.

The line voltages at these several points are:

Eas=49,600— 149,695
Ea1=49,600— 754,375
Ebcl = —9912m+j0
Era=—99,2004-70
Eeal = 49,600+1'49,695
" Eeaa=49,600+ 754,375
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These several phase and line voltages are shown in Fig. 129.
It is particularly interesting to examine this figure and detect
how the line-voltage triangle shifts from an isosceles triangle
at the point of fault to a balanced equilateral triangle within
the generator.

In computing the line currents, all three sequence im-
pedances were included for the transmission line and the trans-
former, but only positive- and negative-sequence impedances
in the generator circuits, since the ~enerator feeds into a delta-
connected transformer bank. ZThus, the equivalent Y trans-
former primary currents are:

Ia=Iap+Iun= 1732+]O
I5=86.6/120+86.6/120 = —86.6+70
1.=86.6/120+86.6/120= — 86.6+70

Fig. 130. Transformer Connections.

As would be expected, the sum of these three currents must be
equal to zero.

In the solution thus far, it has been assumed that the entire
circuit was at the same voltage as the transmission line. Also,
no account has been taken of the phase angles involved in a
delta-Y transformation. In other words the entire solution
has been based on equivalent Y connections of all circuits. It
should be remembered that the transformers of Fig. 126 were
connected in delta-Y, as indicated in Fig. 130, worrdsponding
windings being indicated by the letters x, y, and 2. -

The primary delta currents in the x, ¥, and 2 primary wind-
ings can be obtained by multiplying the secondary Y currents
by the inverse ratio of turns, namely, 5.8, Thus:
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I-=5.8(173.2+70) = 1,0044-70
I,=5.8(—86.6+70) = —502+50
I,=5.8(—86.6+70) = —502+70
The corresponding line currents are:
L= 1:—1,=1,004+470+4502—50=1,506+70
Li=I,—I.=—502+470—1,004—70= —1,506—40
Iy=1,—Iy=—5024-70+4502—70=0
The same values can be obtained from the resultant current,
I1,=259.8, flowing in the transmission line. Thus:

J12=259.8X5.8=1,506+70
11=1,506-+70
Io=—1,506—70

Again, applying the turns ratio of the transformer, the
prxmary voltages at the generator may be found as follows:

E”_w——?g——=11,mm/§0

o B _163600/120 _
1758~ 5.8 -

119. Double Line to Ground Fault.—See Arts. 108 and 109
and Fig. 117 for typical conditions. As indicated in Fig. 116,
conductors a and b are assumed to be grounded. Thus, con-
sidering the same circuit as in Arts. 117 and 118, we have,
according to equation 259:

763,600 563,600
. 72007261 7386.2
1213+ 300 7261

11,000/210

Lap= =164.5
From equation 261:
E op=763,600— 164.5 X273 = 163,600 — 45,000 = 118,600

and, from equation 258:
Eon=Ea=718,600
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Also, by equations 262: /18,600

I¢n= - 1200 =-93.0
/18,600
Iao— ]261 = 715

The sequence current and voltage distributions are shown
in Fig. 131, the detail computations and notation being similar
to those in the example of Art. 118.

Line Tpp=164.5

3 AN Z e AR}
V v \4
T 432,100 1 42920 | 79980
J63,600 J31500 j28.|500 18,600

) (a) Pbsilive-Sequence Network ’

E AMAM—2E aman— LA Tt B o
I 711,300 41680 -35620 T
¥ 411,300 J12,980 418,600

(b) Negative-Sequence Network

3 2 Tag*~715
l ! -4 1,300 -717,300 T
v J 1,300 31100

(¢) Zero-Sequence Network
Fig. 131. Sequence Currents and Voltages.
The actual currents in the three transmission lines are:
Js=164.5—93—-71.5=0

I3=164.5/120—93/120—71.5= —82.25—442.5446.5
—180.5—71.5= —107.25—7223

I,=164.5/120—93/120—71.5 = —82.25+7142.5446.5
+780.5—71.5= —107.25+45223
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The equivalent Y transformer primary currents are:
I.=164.5-93="71.5470
I:=164.5/120—93 /120 = —35.75—5223
I.=164.5/120—93/120 = — 35.754-7223

The actual primary delta currents are found as follows:
J12="5.8(71.5470) =415+70
J23=5.8(—35.75—4223) = —207.5—41,294
I51="5.8(—35.7544223) = —207.5+71,294

From these currents:
[1=415+470+4207.5—71,294=622.5—71,294
I=—207.5—71,294—415470= —622.5—41,294
Is=—207.5+11,2944207.5+471,294 =0--72,588

These values can also be obtained directly from the actual
secondary transformer currents, as follows:

L12=5.8(0+70) =0
Ins=5.8(—107.25—1223) = —622.5—71,294
In=5.8(—107.2547223) = —622.5471,204

From these results:

L1=0+4622.5—41,294=622.5—71,294
Iy=—622.5—71,294—0=—622.5—71,294
Js= —622.5+471,294+622.54-71,294 =0-52,588

The corresponding phase voltages are:
Eaz=3X718,600=455,800
E».=418,600/120+718,600/120+118,600=0
E..=718,600/120+118,600/120+718,600=0

Other voltages on points 1 and 2 of Fig. 131 are:
Ea1=728,580+712,980+41,300 = 542,860
Eun= j28,580/1%+j12,980ﬂ2_q+j1,300= 13,500—519,480
Ea= j28,580@+j12,980/'176+j 1,300 = — 13,500 — 719,480
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Ea=731,5004-711,300 = 742,800

Ew=731,500/120+11,300/120 = 17,500 — 21,400
E2=431,500/120-+711,300/120 = — 17,500 721,400
Ex=711,000=11,000/90

Exn=11,000/30

Ea=11,000/210

120. Solution of Network.—To further illustrate the
application of symmetrical components, the network illustrated
in Fig. 132 will be analyzed. Generator A, transformer a,
and transmission line x will be considered the same as in the
example relating to Fig. 126. The connections of other com-
ponent circuits are indicated in Fig. 132, and the corresponding
data are tabulated as follows:

- Per Cent Reactance
Devi va Line Vol

evice Capacity ne Yoltage Positive | Negative | Zero
Generator 4. .. .. 50,000 11,000 80* 50 20
Transformera.... 40,000 11,000/110,000 6 6 6
Linex........... 20,000 110,000 10 10 40
Generator B..... 50,000 11,000 90* 40 30
Transformer b.... 50,000 11,000/110,000 10 10 10
Liney........... 25,000 110,000 15 15 40
Linez........... 10,000 110,000 5 5 10
Transformer ¢c.... 40,000 110,000/44,000 12 12 12

* Synchronous reactances.

In practice, two-winding Y-Y connected transformers are
not generally used, but they are chosen here to illustrate the
procedure, since the treatment of three-windjng ﬁ.uwformers
will be given in a later chapter.

The first step is to convert all the given per cent reactances
to a common basis of Kva. For convenience the basis is taken
equal to 100,000 Kva, which is the total generator capacity.
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The converted per cent reactances are as follows:

Per Cent Reactances Based on 100,000 Kva

Device '

Positive Negative Zero
Generator 4. .............. 160 100 40
Transformera............. 15 15 15
Linex.................... 50 50 200
Generator B............... 180 80 60
Transformer b............. 20 20 20
Liney.................... 60 60 160
Lineg.................... 50 50 . 100
Transformerc............. 30 30 30

"% ,
vy

Fig. 132. Typical Power Network.

The corresponding ohmic reactances are shown in the
following table.

Ohmic Reactances Based on 44,000 Volts

Device

Positive Negative Zero
Generator 4................ 311 19.4 1.76
Transformer a......... PO 2.81 2.81 2.81
Linex.............. ...... 9.8 9.8 38.8
Generator B................ 34.9 15.5 11.65
Transformer b............... 3.88 3.88 3.88
Liney...................... 11.65 11.65 31.1
Lines.................c.... 9.8 9.8 19.4

Transformerc............... 5.82 5.82 5.82
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The three sequence networks are represented in Figs. 133,
134, and 135, in which the corresponding reactances are shown
with each device of the circuit.

J3ll J281 Jjos
A ANAY MMV
1582
3938 —./
7349 388 J1165
\'s MV~ VN
Fig. 133. Positive-Sequence Network.
1194 J281 a Jos8
1 VVW VVW— VAN g
J 582
Jos P
J155 J3ss J1165
é AAA VvV AAA %
T ]
Fig. 134. Negative-Sequence Network.
a J388
AAA %
5.82
J194 ¢ 7
J1168 388 J311
%’ — AW VA rec

Fig. 135. Zero-Sequence Network.

As done in the preceding example, it is now necessary to
simplify the three networks into an equivalent simple series
reactance. Examination of Figs. 133 and 134 reveal&?:t these
sequence networks involve circuits composed of L.ae ree trans-
mission lines «, 9, and 2. This combination must be converted
to an equivalent star or T circuit by the use of the following
equations (which can be obtained from any textbook on three-

phase-circuit theory):
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Z = Zacha
o an+Zbc+an

ZbO = ZboZab
Zub+Zbc+an

Z 0= anZbc
© Zav+Lrotdes

J365.

4365

J311 J281 a J307

(5 AAAA AA A% AAAA

0

4349 J38s 5, J365

: vV YAAA % VVVW

Fig. 136. Positive-Sequence Network.
J1o4 Jast o 4397
YAAA%S AAAA
0
1155 J388 » J365

=
¥

By applying these equations to the three networks, it is
possible to convert the networks to the forms given in Figs.
136 and 137. The zero-sequence network does not require
transformation since the zero-sequence circuit in Fig, 135 is

VW vV

Fig. 137. Negative-Sequence Network.

open between point a and generator A.

By series and parallel conversions, sequence networks will
resolve themselves into the forms shown in Figs. 138, 139,

and 140.

Finally Figs. 138, 139, and 140 can be reduced to the follow-

ing single impedances:

Z,=0+429.22
- Za=0+721.55
Zo=0+741.55

e 4582

o J582
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To continue the problem, a single line to ground fault
will be assumed on the load side of transformer ¢, Fig. 132.
The solution follows the outline given in Arts. 105 and 106.
The network circuit is as given in Fig. 141.

53698

72528

7947 AN

7947

J4243 — A

§23.03

=l"ig. 138. Positive-Sequence ) Fig. 139. Negative-Sequence

Network. Network.

———

Gen, j

I, p

Zp

II'\ % zn 'Elﬂ

Js82

11553 7582

Ty Eau

_I J311 %%
Ed 1
Fig. 140. Zero-Sequence Network. Fig. 141. Network
Circuit.

From equation 247: 44,000

V3 25,400
Loy=In=Iu= 533700 S57a155) ~02.32 ~216/%0

From equation 248: i
Eap=25,400—276 /90X 29.22/90=17 35°L

Eon=—276/90X21.55 /90 = 5,950 /0
Eao=—276/90X41.55/90= ~11,400/0
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From equation 249:
L.=3%276/90=2828/90
Iy=0and [,=0

From equation 250, the corresponding conductor voltages at
the faulted point are:

E.=17,350/0—5,920/0~11,430/0=0
E+=17,350/120+5,920/300— 11,430 /0
= —8,675—715,200+2,960— 15,130 — 11,430 = — 17,145 — 20,330
E.=17,350/120+5,920/60— 11,430 /0
= —8,675-+415,20042,960+75,130 — 11,430 = — 17,145+720,330
0534 Amp

WA VA
) 3.07
J3L1 j281 4307 L Amp
73598 ol

J3es © 5582

0.466 Amp

AN AAAS
J349 J3ss8 b 5365
ja243

Fig. 142. Basic Current Distribution for Positive-Sequence Network.

®

|

The results obtained for [4, [s, and [. and also for E,, Es,
and E. are, for the conditions in Fig. 132, the sustained fault

currents and line to ground voltages of the conductors at the
point of fault.

The next logical step in the solution of this type of problem
is to determine the current distribution throughout the entire
network. It is more convenient to obtain the relative current
distribution first, as follows.

Consider the positive-sequence network of Fig. 136, which
is reproduced in Fig. 142. For 1 ampere delivered to the fault,
it is obvious that 1 ampere must flow from point O, through.
point ¢ to the fault X. Assuming that the voltages of gen-
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erators A and B are equal and in time phase, it then follows that
the currents flowing from points a@ and b must be in the inverse
ratio of the total impedances in the two branches. Thus:

42.43
Ia-le=0.534
' 30.98
Iy= 1)(42 4313608 =(0.166

This assumption is not absolutely true; as a matter of fact,
the generating stations of a power network seldom have equal
and in time phase excitation voltages. However, the assump-
tion is justified in a problem of this type, since general current
trends are more important thau exact values. The results
obtained form the basis upon which the engineer must then
use judgment in the selection of equipment. In case the actual
absolute values aand phase displacements of the generator
voltages are known, exact values of I, and I can be obtained.

The section of the circuit included between the limits a, b,
and ¢ of Fig. 142 is the Y equivalent of a delta as seen in Fig.
133. The currents in the delta of Fig. 133 must have values
such that the voltage drops between the three points a, b, and ¢
of Fig. 133 are equal to the corresponding voltage drops in
Fig. 142. Thus:

Vae=0.534%3.0743.65X1=35.29 volts
and the current between @ and ¢, Fig. 133, is:

5.29

le=3g

Similarly, from Fig. 142:
Ve =0.466X3.65+3.65X1=>5.35 volts
and the current between b and ¢, Fig. 133, is:

5.35
In=17gg=046amp = ;.

These values are indicated on Fig. 143.

Examination of Fig. 143 will indicate that the current in
the line ab must flow from point b to point @ and is equal to
0.006 ampere. .

=0.54 amp
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shown in Fig. 146.
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Following the same procedure, the current distribution for
the negative-sequence network is shown in Figs. 144 and 145.

The current distribution in the zero-sequence network is
4311

0.534 Amp e 0.54 Amp
VVVWN Y VVV\— -
f 7281 798 :
1 Amp
0.006 A 9.8
006 Amp T J J5.82
- 0.466 Amp — 0.46 Amp
A AANAN—s WA
7349 J3s88 b J11.65
i Fig. 143. Current Distribution for Positive-Sequence Network.
—» 0.477 Amp @
vV AN v/
[ 9104 3281 4307
— 0.523 Amp
= J155

VAN
7388

3

-

1 Amp —>
J194

J3.65
—~ 0477 Amp

J365

(4

582
an 144. Basic Current Distribution for Negative-Sequence Network.
AAAA

(.2
J2s81

—~ 0523 Amp
= 4155
=

—— 0522 Amp

A AL
Jos
0.045 Amp I Jos

ANV

1Amp —
— 0478 Amp
~/ NV
J3ass b

1582
71165

Fig. 145. Current Distribution for Negative-Sequence Network.

The actual sequence currents can now be obtained from the
relative values shown in Figs. 143, 145, and 146 and the values
of positive-, negative-, and zero-sequence currents at the fault.
These results are shown in Figs. 147, 148, and 149,
The currents in the three lines may now be obtained by the

use of equations 249. These results are shown in Fig. 150,
Since the actual circuit of Fig. 132 includes three voltages

and transformers connected delta-Y and Y-V, it is now
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necessary to bring these particulars into the final values of
currents. The required modifications are shown in Fig. 151.

The line currents between generator A and the delta trans-
former primary can be determined by the aid of Fig. 152. Since

= 0.348 Amp
VAV
Jj3s8s8
1Amp —»
0.348 Amp 1 2104 P
J582
1 Amp - 0.€52 Amp
VWWWA - = VWV
J11.65 j3ss b 4311

Fig. 146. Current Distribution for Zero-Sequence Network.
—147/30

— 149/90
CS—dww VA AN
J311 j281 798
— 276/90
798 Tz/gﬁ ’—\N\/W‘-—XJ582

—129/90 — 127/90

4349 R J1165
Fig. 147. Positive-Sequence Currents.
—132/90 — 144/30
VAN
J194 J2s81 798
1 — 276/90
jos 12/30
j582
—144/50 —»132/50
—~AMAMA ~AAMVAN—
J155 J388 J1165
Fig. 148. Negative-Sequence Currents.
110
the turns ratio of the transformer is Tl—-=5.77, jt fol'ows that
the transformer primary currents are:
I.=646/90
Joe=30—4323

lee=—30—7323
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It will be noticed that the primary currents have been

reversed in phase. This feature is not absolutely important
and may not be needed. It is introduced in the problem to

— 96/90
AWAAA
4388
— 276/30
J194 1 96/30 AWK
4582
— 180/50 ‘

— 276/50
j388 J311
Fig. 149. Zero-Sequence Currents.
— 279/30 —> 389/30
—= 828/90
tuofﬁ
— 549/30 —» 439/50 =
VAN ANV ;
? Line (a)
A — ~13+51395 —» —43+4505
WV VAV
— o
1 8.7—489 A0
—> 13-41395 — 43~ §505

VVWWWA VvV
Line (b)
— 13+ 31395 — 4.3+ 4505
VVWV—
D s ']
F—vVV\W\\—o

5\/\/\/\/\/" vVVA
‘ 1—5.7- 789
—»—43-4505
NV vV

—=~13-41395

Line (o)

l"l

Fig. 150. Line Currents in Equivalent 44-Kv Network.
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bring out the fundamental fact that the primary and secondary
mmf’s of a transformer are in opposition.

AYa

= 112/30 156/
60/0 —» 110 Kv

= ~172+4202
— ) —
Y. a
-30-7969 -52+556
Ia.aa -4358
52 - 4560 , 52795

G — ' 1.72-4202

T mew

A @_- 17244202

——

a
\C-ao +5969 5.2+556
] -348-7358

-52—4 =52-~456

&

-172-4202

———

Y% -%—L_Y Y%— Phase (¢)

Fig. 151. Actual Line Currents.
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Using the notation of Fig. 152, the three generator line
currents are:

La=30—73234-30+7323=60/0
Tsr=—30—7323—7646 = —30—7969
1.1 =7646--30+7323 = —30+7969

These results are introduced in Fig. 151.
The ground or neutral currents are tabulated as follows:

Generator A....... Joa =60—30—7969 — 3047969 =0
Generator B. ... Jop= —352,200452—7560 — 52 — 7560 = — 13,320
Transformer a, secondary. Joa,= —7112—5.24756+5.2+756 =0
Transformer b, primary............... Jov,=lop=—713,320
Transformer b, secondary

Losy=—7220+5.2—756—5.2—756 = —7332
Transformer ¢, primary. . [oo, = —7332404-0= —7332
Transformer ¢, secondary. . [oo,= —828+4+0+0= —7828

—112/30
— I

)

11 Kv

e, I ¢
a
et ) 5.2+J 56
Generator Transformer

Fig. 152. Line Currents Between Generator and Transformer Primary.

The sequence-component voltage drops on the basis of 44 Kv
may be obtained by determining the products of the currents
and reactances, as indicated in Figs. 147, 148, and 149, These
voltage drops are shown in Fig. 153.

The voltages above ground for each sequence at all points
of the three networks of Fig. 153, all voltages. being based on a
44-Kv system, may now be obtained by adding successive
voltage drops to the sequence potentials at the point of fault.
These results are shown in Fig. 154, The sequence voltages
at the fault were found to be as follows:
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Eop=17,350/0, Ean=—5,950/0, and Eao=—11,400/0

The corresponding voltages above ground of each phase can
now be obtained by the application of equations 250 which are:

Ea= Eap+Ean+EaO
Eb= Eap/i—z_(—)"‘Eaniz_o_'{"an
Ec= Ew[l_g_g'l'Eau /m+ Eaﬂ

— —

—~AMANA— ~AAAAA--

4570 414 % 1,460
202 — AN

1,606

— ]

A AANA S AN

4,482 482 1,480

(@) Positive Sequence

N — e
YAA A% VAN

2,559 370 1415

—

120 M

1,606

———

—/VVVA VIV

- 2,240 569 1,535
N (b) Negative Sequence
et

VVVWA

3,699

————

1,850 ’—-VVV\N‘%(

. 1,606
Lamans od

———
VWWA VAV
3,185 1,060 5,549

(¢) Zero Sequence
Fig. 153. Sequence-Component Voltage Drops on Basis of 44 Kv.

~||”|

Applying this procedure will give the voltage% mdtcated

in Fig. 155.

The values of Fig. 155 can now be corrected to ‘take into

account the several voltage transformations and the particular
connections. These results are shown in the three circuits

of Fig. 156.
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One additional modification of Fig. 156 is still necessary
before the final results are correct. It will be noticed that
generator A is connected to the 110-Kv system through a
delta-Y bank of transformers. The values of voltages given

for generator 4 and point d in Fig. 156 are on the basis of a

17,350/

-4,344
= [0

>9.794/0

1, & AAN—T WAV

25400/0  20830/Q 20416/0 8955/

c W

5,400/0 2091800 20436/0

. —M— AN

(a) Positive Sequence

: d a

TNV AT VWA

! -2,559/0 22,929/0

(4

-2,240/0 > ~2809/0 -5,950/0

nfwvw LA > VA

¥ (b) Negative Sequence

a

-6,095/0

o

o -3,185/0 -4,245/0 -11,400/0
9 L—An VWA

b
(¢) Zero Sequence
Fig. 154. Sequence Potentials Above Ground on Basis of 44 Kv.

Y-Y transformer. A ratio of 1 =0.25 was used in obtaining the

voltages at point d. Since the primary is connected in delta,
the turns ratio is %=0.433 and the voltages obtained from this

V3 0.433
ratio are line voltages. A correction factor of W= 1.73 is
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therefore necessary. This modification will give the following
final values of line voltages:

Eoa= Eea= —(—2,284+15,055)1.73= 3,950 {8,760
Eo=Evs=— (—2,284—5,055)1.73 = 3,950+18,760
Ees=Eas=—(4,568/0)1.75 = —7,900/0

~—— AV e
1439200
¢ 0
—/V\V\A—0
AY
13382/0 481840
VWV
Phase (a)
) a
b AN AN
-9.135-720,200 -14,839-720,190 _ -
25,400/120 17,145-420,330
25,400/120 K
/ 12524 7420040 -10,218-$20,130 17,100~ 20,160
9 E—/VVA > VAN
Phase (D)
. a
di N £ M
- 9,135 +420,200 ~14,839+420,190 _
25,400/120 J 17,145+ 20,330
25,400/120 °K v
/ ~12,524 420,040 > 10218+720130 17,100+20,160
o e VVVWWA b AWV .
Phase (o)

Fig. 155. Phase Voltages above Ground.

The notation used in Fig. 157 corresponds®.o that used in
Fig. 152. The generator phase voltages have magnitudes of
6,350 volts, as shown in Fig. 156, but these phase voltages must
be shifted from the phase relations indicated because of the
shifting action of the delta-Y transformation.
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6,350/0 I é ; 2850000

4563@

11 Kv 110 Kv

3,874

6,350/0 / o
&—{—% [ 3]s

= E‘?(ﬁ' Phase (a)

Aﬁ =37,100- % 50,500

6,350/T20 :
d Ta]
-42800-450400

Y -2,284-45,055 -17,145-4 20,330

11 Kv 110 Kv
-3,131-45,010

\:.“KV

6350/'1'5',/;;_

_ﬁh =25,600-750,200

.v'
4“111

= = Phase (b)

6,350/120 A ¥:L_ ~37,100+4 50,500

@‘-'-—’dv% : ~42,800 +1 50,400

Y ) x—u,us +7 20330

2,284 +§ 5,055

11 Kv 110 Kv

6350 -La_m 7 5010 _]f( \L,_If Kv

ﬁs _LA(Y:L ~25,600 + 50,200

= i 7 Phase (o)

Fig. 156. Phase Voltages under Single Line to Ground Fault.
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This problem seems quite long, but it represents a rather
simple example of the problem of fault calculation in power

I, = 60/0

T =-30-3969

Jy=-30+5969

Generator 4 Transformer @

Fig. 157. Voltages Between Lines for Generator and Transformer.

networks. Other types of faults might be imposed on the same
circuit, the results being determined according to the methods
outlined in Arts. 106 to 114.



CHAPTER 17

THREE-WINDING TRANSFORMERS
121. Types of Three-Winding Transformers.—There are

two common types of three-winding transformers; namely, the
transformer of three entirely separate windings and the auto-

(a) Three Separate Windings (b) Auto-Transformer
Fig. 158. Three-Winding Transformers.

~<r<l] >+
s

(b) Y-Delta-Y
Fig. 159. Connections Used for Three-Winding Transformers.

{ransformer with tertiary winding. These two types are illus-

trated in Fig. 158. The notation used in both types is the same;

namely, H represents the high-tension circuit, T the tertiary

winding, and L the low-tension circuit. The common com-
212
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mercial applications of these two types of transformers when
applied to three-phase circuits are shown in Figs. 159 and 160.

In no case are the three windings connected in Y, since
such a connection would not provide a suitable path for the
third harmonic exciting current. The auto-transformer is con-
nected into an equivalent Y-Y-delta, the tertiary winding being
in delta. In both types, as shown in Figs. 159 and 160, the
tertiary winding is quite often used for no other purpose than

- Fiﬂ

Fig. 160. Auto-Transformer Connect:ons (Tertiary Winding in Delta).

-0

7
i -
()a\\

(¢

to provide the necessary third harmonic exciting current,
although it may be designed to carry an external load. In the
problems worked out in this text, the tertiary will be assumed
to be without external load.

122. Winding Impedances and Equivalent Circuit of Each
Phase.—The series characteristics of either type of transformer
in Fig. 158 are determined in the same manner. Three tests
are made, in each of which the impedance is measured across
one set of terminals, with a second winding short-circuited and
the third winding open-circuited. These three measured values
are then referred to one of the three windings, the L winding
being chosen as the reference circuit in this chapter. Details
covering the methods of these tests are found in any standard
text on machinery. The results of these three tegts will give
the following data:

[Zar=2r+2 L]L]
[Zer "'ZL"!‘ZT] (294)
(Zru=Zr+Zal"
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In equation 294 the subscripts refer to particular windings
designated by those letters. The exponent L used outside the
bracket is used to indicate that all impedances are based on the
L winding. Solving the three equations 294 will lead to the
following results:

[Zun=3Cnr+Lm—2 LT)]LI
[Z1=3Zr+Zur—Zra)1" 295)
[Zr=3(&ru +ZL7'—ZHI.)]LJ

Z, Zy
MMV AN
L H
° - r o
Fig. 162. Three-Winding Trans-
former (Positive- and Negative-
Sequence Network When
Fig. 161. Equivalent Transformer Tertiary Winding Has no
Circuit (Exciting Current Neglected). External Load).

From the results of equations 295, we have the approximate
equivalent transformer circuit shown in Fig. 161. This circuit
does not include the shunted impedance, which accounts for the
exciting current. In most cases the exciting current is small
enough to be negligible, but for special cases it can be intro-
duced between the points @ and b.

123. Positive- and Negative-Sequence Impedance.—The
values of impedance as given in equations 295 apply to all
balanced three-phase operation regardless of sequence; hence,
they apply for positive- and negative-sequence components.
In case a load is connected to the tertiary winding, the three-
winding transformer resolves itself to a simple junction in the
positive- and negative-sequence networks. However, in case
there is no external load connected to the tertiary, then Fig. 161
resolves itself into a simple series circuit insofar as the positive-
and negative-sequence networks are concerned, as md1cated
in Fig. 162,
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124. Zero-Sequence Network.—In order to permit the

evaluation of the zero-sequence impedance, it is necessary to
specify the connections involved and to show the presence of

) Three Windings (Cst Delta~Y)

(b) Three Windings (¥-Delta~Y, L and H Grounded) *

ﬁfii%@?.

(o) Three Windings (¥-Delta~Y. H Grounded)

Zy

. °
() Auto Transformer (¥-Delta~Y)

Fig. 163. Equivalent Zeto-Sequence Networks.

other equipment such as generators or othe trhasformers.
Also line impedances or neutral impedances will modify the
zero-sequence network. The simple equivalent zero-sequence
network for three-winding transformers or auto-transformers,
without taking into effect other equipment, is shown in PFig. 163.
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The circuits of Fig. 163 (a), (b), and (c) can be incorporated
into the general zero-sequence network, from which a simplified
value of impedance can be obtained without any special trouble,
the methods outlined in Chapters 15 and 16 being applicable.
The solution of auto-transformers will, however, lead to some-
what more involved results because of the effect of the common

Generator

Fig. 164. Y-Connected Generator and Auto-Transformer,

magnetic circuit. Particularly, the auto-transformer without
neutral ground is very special. This case is considered later in
this Chapter. Several common arrangements of auto-trans-
formers are taken up in the following articles.

125. Zero-Sequence Equivalent Impedance of Auto-Trans-
formers.—Consider a Y-connected generator with grounded

Zy 2y

Fig. 165. Equivalent Zero- Fig. 166. Equivalent Network of
Sequence Circuit for Fig. 164. . 164, with Impedance Z,,
in the Generator Neutr

neutral, connected through zero impedance lines to the L wind-
ing, the auto-transformer being grounded, as in Fig. 164. A
fault is assumed on the high-tension line H.

As will be noticed from Fig. 163, the tertiary delta corre-
sponds to a grounded impedance. The term Z, represents the
zero-sequence generator impedance. It will be recalled that
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the generator does not act as the source of zero-sequence
voltage. Zero-sequence current flows in networks due to zero-
sequence voltage components which are present at the faulted
point. Hence, in Fig. 164 the tertiary and low-tension circuits
must be considered as being in parallel. Thus:

7z lr&rtd,) I
[ v=&n ZT+ZL,+Z¢:, . (296)

The equivalent circuit of equation 206 is represented in Fig. 165.
If an impedance Z., is introduced in the generator neutral,

Fig. 167. Generator and Transformer Neutrals Solidly Connected and
Jointly Grounded Through Impedance Z,;.

then the equivalent circuit is changed to that of Fig. 166. For
this circuit:

o Lr(@LtZet+3Za0) |-
[Z°"Z’” ZT+ZL+Z,+3ZR,] @

The neutral impedance Z,, is multiplied by three as explained
in Art. 90.

Another modification of Fig. 164 is shown in Fig. 167, in
which the generator neutral is connected solidly to the trans-
former neutral and is grounded through an impedance Zgyn.
The equivalent network is shown in Fig. 168, #ad tl.e resultant.
zero-sequence impedance is as follows:

_ay 1 2r@tZ) T
[_ZO_SZ""+ZT+Zo+ZL+ZH] (298)
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In case impedances are introduced in lines H and L, then
equation 298 will become:

L ZT(Zﬂ+Zl+ZL) 1 o
[ v=3mt Tt Z"”"] (299)

where Z;=impedance in line L;
Zi=impedance in line H.

2,

Fig. 168. Equivalent Zero-Sequence Circuit
for Fig. 167.

126. Impedance in Transformer Neutral.—In Fig. 169 is
shown another possible condition which may at first sight not
appear to offer any special treatment. In case the neutral
impedance is incorporated in the transformer circuit when the
tests for Zu, Zr, and Z1 are made, then no additional problem
is introduced, since in such a method the effect of the neutral

Fig. 169. Impedance in Transformer Neutral.

impedance is absorbed as part of the transformer. However,
if such an impedance is considered independent of the originally
measured transformer impedances, then the solution is some-
what more complicated.

- In Fig. 170 are shown the circuits of an auto-transformer
and a three-winding transformer with neutral impedance Zn..
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In these diagrams the values of Zx, £1, and Zr are seen to apply
to the transformer circuit alone, Z»; being added. To determine
the proper relations, three impedance tests must be performed
with the circuit of Fig. 170, as follows:

Test No. 1: Low-tension winding short-circuited and
tertiary winding open.
Test No. 2: Tertiary winding short-circuited and low-

tension winding open.
é Z;
ZH
2

g !

4

IN

Znt

2
(4

Fig. 170. Circuits of Transformers with Neutral Impedance.

Test No. 3: High-tension winding short-circuited and low=
tension winding open.
The detail calculations are conducted in the foregoing

order. The neutral impedance is considered on the basis of
the low-tension winding. The letters H, L, and T, when used

as exponents of Z, indicate I T_. T,

the particular voltage refer-
ence of the impedance.

(@) Test No. 1. The Tn 1

conditions are shown in
Fig. 171. Let n=ratio of
turns of high-tension and -
low-tension windings. Then Fig. 171. Conditions for Test No. 1.

I.=nlg. The current
through the neutral impedance is:

Ie=Ir~Iu=m—-1)Ir ‘
The terminal voltage of the low-tension winding is:
Eav=Ilni=n—1)Iudn:
where Za¢ is to the scale of the low-tension winding.

Short-circuited

¥



220 INTRODUCTION TO ELECTRIC POWER SYSTEMS

The induced voltage in the low-tension winding is equal to:
(n—=1)IgZni+nlnlL

Also the induced voltage in the high-tension winding is:

Eav=[(n—1)IuZnitnlulrln
and the applied voltage of the high-tension winding is:

(=) InZne+nlnZ i In+Zi 1

I

E Short-Circuited

Open

Fig. 172. Conditions for Test No. 2.

As indicated in Fig. 171,
Er=Ean—Er
=[(n—1)InZn+nIuZ In+2Z8 In— (n—1) InZn:
=[n(n—1)Znt+nZ1+Z8— (n—1)Zn)ln
Since ZZ =Zin?, |
Zir=n(n—0)Zu+nZL+nZi— (n—1)Zu
= (n—1)Zn+nZ1+n"Zx

[ZHL = ;,l)zznrl"ZH +Z L]L (300)

(b) Test No. 2. Pig. 172 represents the conditions for this
test. The tertiary winding is assumed to have the same number
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of turns as the low-tension winding. Thus, [r=J];. Then:
Ev=ItZt+ 1121+ 112

and [Zir=2F +Z1+Zn]" (301)
(c) Test No. 3. For the conditions in Fig. 173:

Br= _d 'IZ;;+IIi-~l

~+IrZ-
Iu g — LI 1
N
Short-circuited s
'Open
Znt

Fig. 173. Conditions for Test No. 3.

Since IH=L’:,'

H
Er= ZH ZM+Z 1')

=1-(zy+z Z"‘)

[Z a=4&n+4& 1'+ZM] (302)

Applying equations 295:

[Zue=3(Zur+Era—Z1r)}* ¢ -
Substituting equations 300, 301, and 302, we have:

[ He=4I ]L (303)
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Also: [Zre=3(Zur+Zrr—Zru)]*
from which:
n—1 L
[ Le=ZL+ " Znt] (304)
Likewise:
[Zre=3Zra+Zrr—ZuL)]*
Lt [F
or Zre=4 T+_1;L (305)

Fig. 174. Equivalent Circuit for Fig. 170.

Therefore, the equivalent circuit of Fig. 170 is given by Fig.
174, the impedances having values given by equations 303, 304,
. and 305.

The equivalent circuit of Fig. 169 can now be obtained by
using Fig. 165, in which Zy., Z1., and Z1. are substituted for the
impedances Zx, Zr, and Z1, as shown in Fig. 175. It will be
noticed that the impedance Z,. is multiplied by three. This is
due to the fact that three times zero-sequence current flows
through this impedance, causing a voltage drop of 3JoZn:.
Thus, the zero-sequence impedance of Fig. 169 is:

(zr+ @)zt zte=1z.) |

Zr+ ¥z, 42,+3 1,

| Zo-ZH-'3”;, IZut } (306)
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127. Zero-Sequence Impedance of Auto-Transformer
Grounded Through Impedance Z,: and Generator Grounded
Through Impedance Z,,.—This case is the same as given in
Fig. 175 with the addition of the term 3Z., in series with Z,.
The zero-sequence impedance is as follows:

[20=2a-S 12t

L

(zr+3*—‘—"‘)(zL+ Zoout PN )

2+ 2142, 320t 1

(307)

Z\'*“"‘gu
AANA——AAAAAN ey
2-388 2,
O—AAMAA—AAAAA—

z,+24+302z,, *

Fig. 175. Equivalent Circuit for Fig. 169.

For Z,.:=0, equation 307 reduces to:
[ 2o ZT(ZL+Z,+3Z,.,)]L
0=~ &H™T

ZT+ZL+ZU+3Z'W

This is the same as equation 297.

128. Zero-Sequence Impedance of Isolated Auto-Trans-
former Neutral with Grounded Generator Neutral.—In this
case Znt=o. If Z, is put equal to infinity in equation 307, the
result will be indeterminate. Equation 307 may, however, be
slightly modified as follows: Let Zo=Zr+Z4 and Z=Z.+
Zot+3Zn;. Then:

3ZM) 3Zn¢)
3Zu | 3ZM 1 (ZT+ (Z+3Z i

Zi= :
PO g ¥y gt ag,) -




224 INTRODUCTION TO ELECTRIC POWER SYSTEMS

This reduces to:
Z 3Z1Ln(n*—2n+1)+Zrin’*+3ZLn:
4= nZr+Z+3Zm)
(n— 1) Z rZ Z
Z7'+Z +1
SZnt
Putting Zae= o,

ZA-‘(n- 1) Zr+é

9 L
and [Zo ?ZH ‘+(n; 1> Zr JrZL+Z,:;+ SZM]

(308)
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CIRCUITS FOR MEASUREMENT OF COMPONENT
CURRENTS, VOLTAGES, AND POWER

129. Measurement of Zero-Sequerce Volt.ages.—-It has
been shown that:

Eom4(Eut bt B (309)

where the voltages E., E» and E. are the respective line to
neutral voltages of conductors a, b, and ¢. If three potential
transformers are connected as indicated in Fig. 176, with the

a AAAAALD a
vvvvv

b AAAAAA Y

vvvvv

vvvvv

O/
Fig. 176. Measurement of Zero- Fig. 177. Measurement of Zero-
Sequence Voltages. Sequence Current.

secondaries connected in series through a voltmeter, a potential
reading is obtained which is proportional to the results of
equation 309.

130. Measurement of Zero-Sequence Current.—The zero-
sequence current of a three-phase system is:

L=yt It 1) (310)

A circuit which will comply with equation 310 is shown in Fig.

177. Since most systems require potential and current trans-

formers in order that standard 110-volt and S-ampere meters

can be used, it is obvious that the turns ratio chosen for Figs.
225
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176 and 177 should be three times the value used for standard

installations.

131. Measurement of Positive- and Negative-Sequence
Voltages.—The fundamental equation defining the relationship
of positive-sequence phase voltage in terms of the three phase

voltages to ground is as follows:

= J(Eurt En[120+ E./240)

R
1IHI"

5(0)

Fig. 178, Measurement of Positive~
or Negative-Sequence Voltages.

"‘Wﬂr

This equation may be changed to:
Ep=%(E..—Ea/6T)—Ec&0_)

or E,= 3 Ea— LEi 7—‘“—':-)

Dividing this equation by an impedance Z, we have:

B (B B B

Z-0\Z " z/60 Z/60
Y Z=Z,, Z/60=Zs, and Z /60=Z., then:
I=3(I.~I:~1)

(311)

(312)
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Equation 312 is the basis of the circuit of Fig. 178, in which
a common meter core has three windings, passing currents
I,, Iy, and I., respectively. To take care of the negative signs
in equation 312, the connections to the b and ¢ windings are
reversed. It should be noticed that the impedances of the
three meter circuits must be cof the same modulus but of different
angles. Thus if Z, is made ur of pure resistance, thea:

Za=R
Zv= R /60= R((.5+10.866)
=R /60 = R(0.5—70.866)

Similarly, the negative-sequence voltage is defined as follows:

Ea=3(Eo+ Es/240+E./120) (313)
This can be changed to:

EF%(E«-Eb[@— E./&)

Ev_E,
or En= Ea 760 L_>

It is therefore evident that the same meter of Fig. 178 can
be changed to read the negative-sequence voltage by merely
interchanging the impedances £, and Z..

In the connections just outlined, line to neutral voltages
areused. Itis, however, possible to read positive- and negative-
sequence components of voltage with a network utilizing line
voltages. Obviously, the three line voltages of a three-phase
system add up to zero, even if they are unbalanced, and there-
fore zero-sequence voltages are not present in line voltages.

Consider the circuit of Fig. 179 (@), in which two potential
transformers are used, the secondaries being gonngted to a
voltmeter of internal impedance Zm. Z. and Z, indicate im-
pedances used in the secondary circuits. The secondary circuit
is drawn in somewhat simpler form in Fig. 179 (b), from which
we have the followmg relations:
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Im =Iab+Ibc
Eab=ImZm+IabZ¢
Ebc=ImZm+IboZb

Using the current equation, we may eliminate 3. in the second
voltage equation. Thus:

Ebc=ImZm+ImZb"'Iabe

>

cLO.Q.QQr;\.QQQQ,a a e beo e b
-— -— ) p Ibe
3 Z. Zy
i\ & & | Zn
(@ ®)

Fig. 179. Circuit with Two Potential Transformers.

The current [.5 may now be eliminated by considering this
last voltage equation and the equation for E,s, the result being:

In(Zolv+ZolmtZmia) =Eads+Evla
Finally:

— EabZ b + E boZ a
In=7 712zt ZnZ: 314)

From fundamental relations, the positive-sequence com-
ponent of voltage between lines a and b is:

Eatp=3(Barrt Ese/ 120+ Eea/200)
Since Eca= — Eas— Ec, '
Ears=1( V3Eas/30+ V3E:/90) (315)
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But, from a simple positive-sequence vector diagram, it foliows
that:

Eabp = @Eapﬁg

where [Ea,=positive-sequence phase voltage of conductor a
above neutral. Thus:

Eup=3(Eart-E/60) (316)

If the meter impedance Z. is sroaii compared to impedances
Za and Z,, it can be neglected, and equation 314 becomes:

1., Easlot EnZe
" 2ol
from which: B
In= ‘;”+‘“;° (317)
Suppose that Z,=Z and Z,=Z/60. Then:
(Eab+ Ew/60) —3E = (318)

Comparing equations 316 and 318, it is obvious that the
meter current [ will be proportional to the positive-sequence
voltage Eap provided that Z,=Z and Z,=Z/60. It is quite
interesting to notice that the magnitudes of Z, and Z, must be
the same, but there is an unlimited choice in power factors which
can be employed.

Consider now the fundamental negative-sequence component
of line voltage. Thus:

Eatn=3(Eart-Ese/ T+ E.o/780)

This equation reduces to:
Em=31-( V3Ew/304- V3Ew/90) ' (319)

But, since Ean= V3Ean/30, |
E.,v=31-(E¢a+E»c/55) (320)
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In equation 317, suppose that Z,=Z and Zy=Z /60. Then:
In=3Easrt-Ese/50) 321)

Comparison of equations 320 and 321 will indicate that [, is
proportional to Eun, provided that Z,=Z and Z,=Z /60. From
these results it will be noticed that only one set of transformers
is necessary to obtain readings of positive- and negative-sequence
voltages. The connections are shown'in Fig. 180.

>

(2000000 ——0000000 J

® ©F fm i

Fig. 180. Connections for Positive- and
Negative-Sequence Voltages.

132. Measurement of Positive- and Negative-Sequence

Currents.—The positive-sequence current is:

Iy=3(L+I3/120+ 1,/240) (322)

where [4, I3, and [, are the three line currents. By proceeding
as in Art. 131, it can be shown that the meter current must be:

I=3(Le~Is/0~1./60) (323)
A circuit based on this equation is shown in Pig. 181.
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Referring equation 323 to Fig. 181, the equivalent parallel
impedances of the meter windings and the corresponding shunts
must have values which introduce the phase rotation required.
Thus the meter will read the following:

In=la—Iom—Ien

VVV

VA
> Zas
2.3
P
l _I am .Ibu jcu N'(‘:;rt:'

Fig. 181. Circuit for Positive- and Negative-Sequence Currents.

If Jou=Kla Ioe=KI»/60, and Iu=KI. /60, K bemng a con-
venient numerical coefficient less than 1, then the meter will read:
In=KIl.—KI:,/60—-KI./60 (324)

From Fig. 181:
Ia=Iu+IaM
In=Ivt+1lon
Ic=Ict+IcM

where the subscripts g, b, and ¢ refer to the total current {rans-
former currents, the subscript s indicates the shunts, and the
subscript M stands for the meter windings. Thereforg: -

La= (I-K)Ia
Iw=(1—-K/60)I,
) Iu= (1 "K@)Io
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Also:

2

Z,
— ANV A AAAAAAV
Ta- Iy
I,
&y—=

Fig. 182, Ungrounded System.

From the last three equations:

Z¢M= 1-K
Zw=1—K /60
ZcM= I_K@_
If K=0.5, then:
Zanw=0.5470

Zwm=0.75+74.33
Zene=0.75—74.33

For the negative-sequence ammeter connection, the im-
pedances Zyu and Zs. are interchanged with the impedances

ZcM and Zu-

The current circuit of Fig. 181 has no limitation as to its
applicability. It is therefore satisfactory, whether the three-
phase system is grounded or not. For ungrounded systems
(zero-sequence component current not present), simpler methods

Zaa:K
Zu=K/60
Zu=K&0_

Za=0.5 +]0
Z1e=0.25—74.33
ch =0-25+j4.33

may be used. - An example is shown in Fig. 182.
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As indicated in Fig. 182, the current through impedance Z,
is Ja—Im, and the current through impedance Zj is Io—Im.
Therefore, the voltage across the meter terminals is:

(Ia—Im)Za+(Ib+Im)Zb=Im«Zm
Solving for [n, we have:

Idza ] Ibe
‘ Im .‘¢+Zb'l"m (325)

But, from the fundamental relutionship of sequence com-
ponents, the positive-sequence component of current in line a is:

Top=5(Lo+ Io/120+1./240)

Neglecting the zero-sequence component of current,
I.=—1I.—1I, Therefore:

Loy=3( V3Lo/30+ \31,/%0)

or Lp= {,—3-(1a+1¢_) (326)
In equation 325, let Z,=Z and Z,=¢/60. Then:
Im I a+ I bL (327)
V3/30 /_+

If Zn is made quite small compared to &, so that the ratio
V4
1‘2 is negligible, then:

I u+I b[___

I="T730 =Iop/60 (328)
Thus it is seen that the meter reading will indicate a current
equal to the positive-sequence component. Thege is, ¥ owever,
a negative angular shift of 60 degrees. This angular shift is
of no particular importance unless the circuit is used in con-
nection with some positive-sequence voltage network for the

purpose of reading positive-sequence power.
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Considering the negative-sequence component of current,
we have:

Ian=%(Ia+Ib/i_26+Ic/74_0)

Again neglecting the zero-sequence component of current, we
have:

=é( \[3_ 10/364‘ ’\[3 IbF’O)‘_'%(IG"'Ib/B(—)) (329)

— da

— I

>
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c 0000000000
| T I
sbTScy yZa-Ip
2, 2z,
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——— el
Iy-I.-1, Iy-Ip-1,
) _
S —= 1’,‘

Fig. 183. Circuit with Four Current Transformers.

In equation 325, let Z.=Z and Zs=2Z/60 /60. Then:

Im I u+I b/_ (330)
V3/30 +
Again letting ZZ"‘ be negligible, then:
I Ia+ Ib/—— = IG’I[@_ (331)

K.

Thus, it is seen that the meter of Fig. 182 can be made to
read negative-sequence currents, provided that Z.,=Z and
Zy=2/60; and to read posttive-sequence currents, provided
that Z,=Z and Z,=2Z/60.
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For systems with grounded neutrals, it is necessary to use
either the method of Fig. 181 or some other method such as
that illustrated in Fig. 183, in which four current transformers
are used.

From Fig. 183, the potential drop across the meter is:

(Ta—Iv—Im)latTs—Ic—In)s=Indm
Solving this equation for the meter current, w» have:

_Ta=I)lat+Ts—1)Zs Aota—lo(da—2Z0)—ILs
==z 52 +2. Zotliti. 9%

The positive-sequence coriponent. of current in line a is:
1
Iap=§(Ia'+'IbA2_Q+Ic‘ 240)
ot Lay=5Iu—Is/80~1./60) (333)

Let Z,=Z and Z,=Z/60, from which Zo—Z,=Z/60. Then,

from equation 332:

P Ot OV éa@ (334)
V3/30+57
If, as before, the ratio gzl’ 1s made small enough to be neglgi-
ble, then the meter will read:
In= V314,/30 (335)

Also, the negative-sequence component of current in line a is*

Lon=3(L+1s/T00-+ ./780)

or Lon=3(Ie—Is/601./50) (336)

Comparing this equation with equation 332, and putting
Z.=Z and Z»=Z2/60, from which Za—25s =Z/60, we find that:

I.—I:/60—I./60
~J§/‘35+ZZ—'"

In= L.
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im

If we neglect the ratio 7 we have:
Im= 'ngan@ (337)

The proper impedances to be used in Fig. 183 are seen to be
the same as those used in Fig. 182, but the meter calibrations
and the angular relationships are different.

[

S

LA'A'A'Y

L AA A

ERGS

Fig. 184. Positive-Sequence Power.

133. Measurement of Positive- and Negative-Sequence
Power.—If the voltage and current of a circuit are given by
the vectors E and [, then the power is given by the real part of |
the vector product E], and the reactive volt-amperes are given
by the imaginary part of the product £], where E is the con-
jugate of E. In general:

P—jQ=EI cos B—jEI sin B
where P =real power;

Q=reactive volt-amperes;
p=power factor angle (lagging).

Thus, to measure the positive-sequence power, we must devise
a circuit which will read the real part of the product Eaplap.
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Suppose that a wattmeter is used, the potential element
being excited from the circuit of Fig. 179 while the current
element is supplied from the circuit of Fig. 182. Such a
wattmeter will read the real part of the product EnJa; or, as
seen from equations 318 and 328,

P—]Q = SEGPX Iaz‘/% = 3Earl:‘:p@
Z Z
a
| i\om_o,: &ml\g.mﬂ |
00000
60%) (0030T) I’W
Ly Eap | I Eca Lo
} Ioe
Y v dbe

Fig. 185. Potential Network for Positive-Sequence Power.

In case Z is made entirely resistive, that is, Z=R-j0,
there will be an extra phase shift of 60 degrees which must be
introduced in either the potential circuit or the current circuit.
Since such a meter circuit reads phase power of a balanced
system, it is possible to introduce any one of the three phase
currents by proper placement of the sequence networks in the
actual circuit. Thus suppose that the current network of Fig.
182 is connected so as to read the current [, instead of I,,.
Then the meter would read:

P "‘fQ =‘1‘32‘E¢m[ bp/@

Since Jpn==1I,,/120, then:
| P 3Eele/TE0 (®

P
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Finally the current element connections can be reversed so
that the wattmeter will read positive. The proper connections
for this purpose are shown in Fig. 184. It should be remem-
bered, however, that this circuit cannot be used unless zero-
sequence current is absent.

The scheme of Fig. 184 is by no means the only arrangement
possible. For example, the order of the potential connections
of Fig. 184 may be interchanged, a corresponding change being
made in the type of impedance in the metering circuit.

For grounded systems, the current network of Fig. 183 must
be used, since it eliminates the zero-sequence current. As
before, from equations 318 and 335:

P-—]’Q=3§°">< \31.,/30

In this case, if Z is made entirely resistive, that is, Z= R+70,
there will be some added complications in eliminating the addi-
tional 30-degree angle. However, there is no reason why Z
cannot be modified so as to cause a cancellation of the 30
degrees. The only limitation to the value of £ is that Z, and Z,
of the circuit of Fig. 179 shall not have negative real values.
Thus, if 2=Z/30, then:

P —]Q = 3Z__“{;-Eupl’ap (339)

and the meter will read an amount proportional to positive-
sequence power. In this case the impedances in the voltage
network of Fig. 179 will be Z,=Z/30 and Z,=Z/30.

In case a resistance is used for the value of Z, then a circuit
must be used in the potential network to counterbalance the
30-degree shift in the current network. Such a scheme is shown
in Fig. 185. From this figure, it follows that:

Im='Iab+Ibc
Eao—Eve=IndntIasa
Ebc"'Eca"ImZn'l"IboZb
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Eliminating the current [,. from the second voltage equation,
we have:

Ebc_Eca=Im(Zm+Zb) "'Ia.be

The current ., can now be eliminated by simultaneous
solution of this last expression for Ey.— E.. and the equation
for Esv— Es.. Thus:

Im(ZaZb+Zme+ZmZa) = (Eq.i - Ebc)ZI;+(Ebr_ Eca)Za

(B =Es)lrr Eve—Eca)da
R S (340)
Equation 340 is very much like equation 314. As a matter
of fact it might have been obtained by direct analyses with
equation 314 applied to Fig. 185 instead of Fig. 179.
If the meter impedance Zn. is quite small compared to the
impedances Z, and £, then equation 340 will reduce to:

I — (Eab- Ebc)Zb+ (Ebc_ Eca)Za =(Eob—' Ebv) 1 (Ebc""' Eec)
" ZaZb Za v Zb

Now, let Z.=Z and Z,=Z/60. Then:

In =%(E..»—Eu+5b,,@— E.a/60)

and Im

or In=}{Eurt Bue/120-+ Eoo/240) (341)

The expression in the parenthesis in equation 341 is recogniza-
ble as 3Eqs,. Thus:

Im =%Eabp
But, since Eqvp= ﬁE.,ﬁQ,
) Im=3é[3_Eap@ iy (3‘2)

»
Using this voltage circuit and the current circuit of Fig.
183 and equation 335, we would obtain:

P-jo= (3 Z‘BE.,,@) ) Wy
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Such a combination of potential and current networks would
obviously introduce a 60-degree phase shift. To overcome this
trouble, the current network may be shifted to indicate I,
instead of J.,. The power reading would then be:

P "fQ= (é‘zﬁEaﬂ/—s_O) ‘BI!'P/;TO
Remembering that [y, = I.,/120, we have: _
P=jQ=3E 1/ T (343)

\A'AA

(E.V.7. %\
AEAYAYAN (

I

Fig. 186. Positive-Sequence Power for Grounded Systems.

Finally, the current terminals can be reversed so that the
indication of equation 343 is made positive. This connection
is indicated in Fig. 186.

Corresponding negative-sequence wattmeter connections can
readily be obtained by using suitable negative-sequence poten-
tial and current networks in a manner similar to that used for
the measurement of positive-sequence power.



CHAPTER 19

CIRCUITS WITH UNBALANCED IMPEDANCES

134. Introduction.—The cutire discussion so far given
under the method of symmetrical components has involved
only balanced three-phase circuits: that is, the problems have
been set up on a per-phase basis, each phase having the sequence
components of voltage or current but having equal impedances
and admittances throughout the entire network from generators
to the faulted point. True, the fault introduces special types
of unbalanced conditions, but all iines and circuits from the
fault back 1o the power sources have been taken as balanced.
This limitation may at first appear unfortunate, and thus render
a fine method of approach somewhat narrow in its field of
application. As a matter of fact, however, the method of
symmetrical components is of most importance in the solution
of heavy power generating and transmitting networks, in which,
because of the wide diversity of loads in distribution systems,
the phases can be considered as carrying balanced resultant
loads and furthermore all transmission-line conductors can be
taken as transposed to eliminate unbalanced impedances and
admittances. For the sake of completeness, it is wise to look
into the problem of an unbalanced set of impedances and to see
how the method of symmetrical components might be intro-
duced.

135. Unbalanced Y Set of Impedances.—Let three un-
balanced impedances Z,, Z», and Z. be connected in Y, the
neutral being grounded. The corresponding voltages to ground
and the phase currents will be denoted by E,, s, !,, Ia, Ip

and I.. Then:

E¢=I¢Zm Ev=1:», and E.=].Z.

Also, according to the theory of symmetrical components:
241
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Ea = E0+ Ep+ En
Ev=Eot E,/120+ En/120
E.=Evt+ EpLIZ_0+ E./120

Ia=I0+Ip+In
Lv=Iot I/T0+1,/120

Ic=IO+Ipﬂ29_+In/—1E

Therefore:
Eot Ept En=ZaIo+ I+ 1) (@)
EovtE, /120+En/120=Zy(Io+1,/120+ 1,/120)  (b); (344)
Eot E/120+ E./TB0=Z.(Io+1,/120+I./TH) ()
Adding equations 344 (a), (b), and (c) gives:
3Eo=1IoZut+Zov+Z)+ 1p(Zat+Z0/120+Z./120)+
1.(Za+25/120+2./120) (345)
_ Multiplying equation 344 (b) by /120 and equation 344 (c)
by /120, and then adding the results gives:
3E,=1(Zs+2/120+Z:/120)+ I (Zat+Z1+Z2) +
1.(Za+25/120+2./120) (346)

Multiplying equation 344 (b) by /120 and equation 344 (c)
by /120, and adding the results gives:
3En=1Io(Za+25/120+Z,/120)+ I ,(Za+Zs/1204-2./120)
+In(Za+Zb+Zc) (347)

We now define the following as the sequence-component

impedances:
Zo=3Zat2rtz)

Zy=3(Zet2s/120+Z./T20) (348)
Zn= 3@t 2/ TIO+2./120)
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Substituting these results in equations 345, 346, and 347
gives:
Ev=1lp+ 1o+ 1l (349)
Eu IOZn+Ipr *_IWZO

It is apparent from equation 319 that all sequence-coinponent
currents are involved in setting up each ni the three sequence-
component voltages.

From the equations defining ¢te three scquence-component
impedances, we may also determine the following:

ZG=Z0+Z11"';"Zn

Eo=IZot1pZn+ Ind, }

Zy=40+2,/1204 2, /120 (350)
Z.=20+2Z,/120+2./120
Z,= 2, + Z, * Z,
LRt VAYA A A 'A Sumnnnend VAYAVAAYAY, NV
Z,=2, + Zp120 + Zl120
b ———e  AANNN e ANV NVVWVV
Z.=2, + Zp[120 + z,[120

¢ —————AMNAVN——————AAN— —AAVAMVAN
Fig. 187. System for Replacing Three Unbalanced Impedances.

Furthermore, in case the three Y impedances are all

balanced:
ZO=Z: Zp=0, and £,=0 (351)

where £=Z.=Zv=L..

In other words a balanced system can be considered as
having only zero-sequence impedances, positive and negative
sequences showing up only when the system impedances are
unbalanced. Thus a set of three unbalanced impedances can
be replaced by the system of Fig. 187.

In case no zero-sequence current is flowing,’ J:at 18, Jo=0,

then:
EO = IpZn+Ian '
Ep=IpZO+InZn (352)

En'_"I»Zp""InZO
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The results of equations 349 for Eo, Ep and E. may be
remembered by the aid of the simple cyclic chart shown in Fig.
188. Notice that the order of currents in the three voltage
equations is Jo, I, and [,. This is illustrated by the clockwise
order of the three points 0, p, and » in Fig. 188. It will then
be noticed that the cyclic order of the impedances is given by
counter-clockwise order of the same symbols in Fig. 188,
starting in each case with the proper voltage subscript. Thus,
for Eo the impedances are in the order Zo, Z», and Z,; for E,
the impedances are in the order Z,, Zo, I
and Z,; and for E,, in the order Z,, Z,,
and Zo.

136. Power Relations.—From the
preceding article it is apparent that in un-
balanced circuits all sequence currents
produce their corresponding effects on “es Z
each of the three sequence-component F1¥ 188. Cyclic Chart
voltages. It is now proposed to develop or Equations 349.
the general power relationships in unbalanced circuits. From
fundamental circuit laws it has been shown that:

P—j0=E]

C
W\ &
@z’b &

where P=real power;
Q=reactive (lagging) volt-amperes.

Therefore, for phase a: ,

Po—1Qe=Eulo=(Eot+Ep+En) Lo+ Ip+In)
or Po—iQa=(Eolo+E, L+ Enln)+ (Eolp+Epln+t Enlo)
+(EolntElo+ELI) (353)
Similarly for phase b:

Py—jQy=EpIy = (Ev+ E,/120+ B, /120) (Lo+1,/120+ I,/120)
or Pb "'"]Qb = (EOIO+EpIp+EnIn) + (EOIp'l"Epln + EnIO)m‘i'
(EOI n+EpI 0+ EnI p) @ (354)
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Also for phase ¢:
P.~jQc=E.I.= (Evt E,/120+ E, /120) (Io+ I,,/120+ 1., /120)
of Po—iQu=(Eolo+Eply+ Enln)+ (Eolpt+ Eplnt Ealo) /120+
(Bl EpIo+Edl,) /120 (355)

Inspection of equations 353, 354, ani 355 shows that all
sequence components are effective in setting -sp both real and
reactive power in each of the 1 .ree pbases. However, if
cquations 353, 354, and 355 arc added, the total three-phase
power is found to be:

Pl"th=3(EOIO+ EpIp+EnIn) (356)

Equation 356 indicates that the total real and reactive
powers are due to the intcraction of corresponding sequence
voltages and currents, voltages and currents of different
sequences not entering into the total results. The second and
third parenthesis terms of equations 353, 354, and 355 indicate,
therefore, the amount of power transfer from phase to phase.



CHAPTER 20

ALTERNATOR TRANSIENTS

137. Simple A-C Transient—The actual alternator tran-

sient may become quite complicated under certain conditions

of operation. The particular

N problem of present interest

g concerns the transient behavior

of the full three-phase short-

‘1 circuit of an alternator, the

L initial state being that of no

load. The analysis which is

Fig. 189. Simple Series Circuit. given in this chapter is not

rigorous and exact. Several

simplifying assumptions are made with the view of presenting

the qualitative picture, and finally certain equations as pro-
duced by Doherty and Nickle are given and discussed.

In Fig. 189 is shown a simple series circuit of resistance and

inductance, which is supplied from a source of constant sinu-

soidal voltage. Obviously there can be no current flow through

TN

Fig, 190. Voltage and Current Waves for Fig. 189,

Qe

the circuit when the switch is open. This condition of the
circuit may be defined as steady state number ome. In this
steady state there is, obviously, no energy stored in the in-

ductance of the circuit.
246
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Now, let the switch be closed. After the transient has
vanished, the current will take up a definite position with respect
to the voltage, as indicated in Fig. 190, the angle between the
voltage and current being determined by the circuit power
factor. This condition may be defined as steady state number
two. If the switch were closed at an instant of the cycle corre-
sponding to normal steady state zero current, then there would
be no transient, since at these instznis there is "o energy stored
in the magnetic circuit. Towever, uppose that the switch is
closed at an instant corresponding tv normal maximum current.
With maximum current, the cirevit would have a maximum of
stored energy. Obviously the stored energy cannot be suddenly

Steady
Stote
Current

[\

Transient
Current

1/

lﬂ-——-ahq ——]

Resultant
Current

Fig. 191. Transient in R and L Circuit.

changed from zero to maximum value, without an adjustment
taking place. This is shown in Fig. 191.

The initial value of the transient current is equal to the
current of steady state number one (in this case equal to zero)
minus the instantaneous current of steady state nur@ber two.
In the case of Fig. 191 the current before switét closure was
equal to zero; and, after switch closure, it should be equal to
the maximum value. Therefore the initial value of the tran-
sient current must be equal to the negative maximum value.
The transient current cannot sustain itself since there does not
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exist any corresponding voltage. Hence, its value will gradually
decrease to zero, in accordance with the following equation:

_E,

1:; = I mé€ L (357)
where R=resistance of the circuit, L =inductance, and t=time
in seconds measured from the instant of switch closure. The
resultant current of the circuit is the sum of the transient
current and the current of steady state number two, as shown
in Fig. 191.

o —
-—
-——
——— — —
——

Transient
Current

e e o —

—
—
——

Fig. 192. Envelope of Current.

In this discussion, the applied voltage was assumed to
remain constant; that is, successive amplitudes of the wave
have the same magnitude. Thus the current wave of Fig. 191
is found to be symmetrical with respect to the decremental
transient current axis, If it is assumed, however, that the
envelope of the voltage decreases in magnitude according to the
exponential law, then the current envelope will also decrease,
as shown in Fig. 192.

138. Derivation of A-C Transient.—Consider the circuit
of Fig. 189. The instantaneous voltage drop across the circuit is:

L, o di
e=Ri+L7 (358)
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Rearranging this expression gives:
§+ﬁ—£
R a' " L
where a =+
L
Multiplying this expression by €%t gives:
;_i_‘_:eut_l,aieat = ,Eeat
Now let u=1e*. Then:
du_di ., ..
dr =g o
and duU_€ o or du ==-eotdt
ai L i

Integrating this expression leads to the following:

u= f %—e“‘dt-l-K

where K is a constant of integration, the value of which must
be determined from the terminal conditions of the problem.

Since u=1e%,
i=eot f Fevdi+Ke et (359)

Equation 359 is perfectly general in that the form of the
voltage e is not as yet specified. For the present we will assume
that this voltage is a simple harmonic with respect to time.
Thus:

e=E, sin (wt+a) (360)

It is convenient, from a mathematical point of view, to

express this voltage in exponential form, as follows:

E eiwt+a)  g-i(wi+a)
== B S e Y i
€ m 2

Substituting this expression for e in equation 359 gives:

% =2_‘§E1—al | (eiae(¢+iu)t_. e fagla—iw) ')dt-l— Keot
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Integrating this expression gives:

. E, elaglatiw)t  c—jagla—jw)t
= ‘-—-at . — . —at
Y=L (a+]w - )+K‘

This may be rearranged as follows:

. Em _, ealei(wl-Hx) —eule—i(wth) —at
1= (aL+ij aL—joL )*’Ke
Since a=%, it is obvious that aL=R. Then:

aL+jwL=2Ze* and aL—juwl =Ze i

where Z= YR*+w?!L?=impedance in ohms; and ¢=power

factor angle.
. E,f @t ittt _
“'ﬁ(ﬂ‘“—z;:r)“‘ “

Therefore:
This expression may be changed to:

ita—g) — g=itwt-ra—s)
1 =%(€] '2; : >+Ke‘“‘

i=—EZ-ﬂ sin (wt+a—¢)+Ke ot (361)
The first term of equation 361 is recognizable as the current
for steady state number two, while the second term is obviously
the transient term.

To determine the value of K, it is now necessary to apply
the proper terminal conditions to equation 361. The current
will be assumed to be zero at t=0. Obviously at t=0, it follows
from equation 360 that ¢e=E, sin a. Substituting these con-
ditions in equation 361 gives:

Finally:

0=—§—"3 sin (a—¢)+K

from which:

K= —-g—"‘ sin (a—¢)
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Therefore, for the particular conditions assumed, the general
equation 361 becomes:

. Em. , o o
i=="sin (wt-l—a—qb)—-EZ—e’“ sin (a—¢) (362)

The first term of equation 362 is seen to be the steady-state
term, while the second term is the transient term. This equa-
tion will conform to the qualitativc: discussion associated with
Fig. 191.

139. A-C Transient with Decremental Voltage.—The actual
mechanism of operation going on inside of an alternator during
transients is quite complicaied, as will be shown by the brief
discussions in succeeding articles. The air-gap flux does not

Initial Voltage

E, =Emi- Emz Vollage Sustained

LAY ANSANY; Y
\/

———
-
——
-

Fig. 193. Generator Induced Voltage.

remain constant as a balanced three-phase fault progresses, but
gradually decreases from an initial value to some lower value,
according to some exponential law. Thus the induced voltage
per phase must drop off according to the same law. To illus-
trate the general nature of the problem, a hypothetical generator
of decremental voltage will be assumed connected to the circuit
of Fig. 189. This is illustrated in Fig. 193. From this figure
it is obvious that the equation of the alternator induced voltage
can be written as follows:
e=(E«*+Ey) sin (wi+a) » 7 (363)

where Eg =Em1—Emz;

E 1 =maximum value of initial voltage;

E s =maximum value of final voltage;

B=armature voltage decrement.
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By the theorem of superposition, we can consider the voltage
e as due to the effect of the following two voltages:

E«® sin (wi+a) and Ens sin (wi+a)
The current due to the second voltage can be written directly
from equation 362 and is:

2= dn @ta—g) - Lo sin a-¢)  (369)

To determine the current due to the first component of
voltage, it is necessary to go back to equation 359. As before,
it is convenient to express this voltage in exponential form.
Thus: -

= ._Z‘E_jfe—ﬂt (ei(uH-u) — e—i(uH'ﬂ))

or . el=%[eiu€(—ﬁ+iw)t_ —iag(~p—iu)t] (365)
Substituting this in equation 359 will give:
i1=§ie—¢¢ / (eiue(a—ﬂ+iw)t_ —iae(a-ﬂ—i«v)t)dt_l_ Keat

Integrating this expression gives:

. Et —at eizglo—B+iw)t  —iaglo—B—ijw)t o
h=gTe < e e Y2 <

Let (a—pB+jw)L=Seir;
and (a—B—jw)L=Sei",

Then:
. _E‘ -8 ei(wl-h)_e—!(wth) ot
1-1—2—]-6 SeiT Se—iT +Ke
Rearranging
. _E,_, e:’(«t-'-«-r)_e-—i(uﬁ-c—r)) o
% e % +Ke
Finally:

z'1=-1§—'c—" sin (wi+a—1)+Kee" (366)
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Again, K may be determined by applying the proper
terminal conditions to equation 366. Thus, for t=0, 4; will be
assurned equal to zero; and, from equation 365, e=E, sin a.
Substituting these conditions in equation 366 gives:

0=£S' sin (2—-7)+K

from which: -
K= -—-—:§1 sin (a-- 1)

Substituting this result in equation 366 gives, for the par-
ticular condition of the problim:

i1=.-gs——‘e"ﬂ‘ sin (wi+a—71) —%fe'“' sin (a—7) (367)

Finally, the actual current transient, which is due to the
sum of equations 367 and 364, is:

Eml E1n2
—'_""—G

1—-E—- sin (wi+a—¢)+ —Bt sin (wi+-a—17)

VA

—(Ezﬂ sin (a—¢)+§£}§ﬁ sin (a—f))—ut

Assuming that the inductive reactance is several times as great
as the resistance, it is then sufficiently accurate to consider that
the magnitude of the current is determined by the reactances,
and that the power factor angles ¢ and 7 are equal to 90 degrees.
Thus:

1= ——E—— COS(wt+ @) +—7Eﬁ

~Pt cos(wi-+a -—E)’E‘ —at cos a '(368)

The first term of equation 368 is the steady-state current,
the second term is due to the generator voltage decrement term,
while the last term is the transient or direct cusrentd-crement

140. Three-Phase Alternator Short-Circuit Transients.
In obtaining equation 368, the circuit of Fig. 189 was used. It
was assumed to possess constant reactance as well as constant
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resistance. An alternator is not a simple static circuit of con-
stant parameters, but is a rather complex coupled circuit; in
some cases, the degree of coupling changes continuously as in a
salient pole machine. Thus we encounter a difference in
reactances between the direct axis and the quadrature axis.
Furthermore, the reactances at the instant of short-circuit are
quite different from those under steady-state conditions. Thus
it is to be expected that the equations for a three-phase short-
circuit on an alternator should be more complicated. The
equations that follow contain, however, the same types of terms
as are given in equation 368 and also an additional term of
double frequency. These equations are found in a paper by
R. E. Doherty and C. A. Nickle*, and the following discussion
is taken from that paper.

“These equations cover the case of dead three-phase short-
circuit at the terminals of the machine. Only the internal
resistance of the machine windings is involved and this is
entirely negligible, in most cases, in determining the magnitude
of the short-circuit currents.

“The general method used is to set up the expressions for
the magnetomotive forces, Aq and A,, in the direct and quad-
rature axes of the machine for any time ¢ after the short-circuit
occurs, This is done by summing up the mmf’s in each axis
due to the phase currents, %, %, and ., each total phase mmf
being multiplied by a function of time to obtain the component
acting at any particular instant. The flux linkages in each
axis are then determined from the expressions for A4 and A,.
In the next step the total flux linkages in each phase are found.
These expressions for flux linkages at any instant after short-
circuit are then equated to the known linkages which existed
at the instant of short-circuit. This step is made according to
the principle of constant linkages since the resistance is assumed
to be negligible. The resulting three equations are then solved
for the phase currents 74, %, and ¢.. This results in expressions
for the currents, each made up of a d-c component, a positive-
phase sequence fundamental, and a positive-phase sequence second

*R, E. Doherty and C A. Nickle, Three-Phase Shori-Circuit Syn-
chronous Machines—V, 1930,
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harmowic. Each of these components actually exists only at
the initial instant of short-circuit and the next step is, there-
fore, to determine the decrement factors which govern their
decay. The positive-phase sequence fundamental does not decay
to zero but to the sustatned value of curremt. This sustained
current is found and subtracted from the expression for the
fundamental coniponent of the initial current sc {hat the
decrement factor may be applied to the remainder which decays
to zero. To make the expressions 1or total currents hold true,
the sustained current is then added so that the final expressions
have four component parts, eac!: ir terms of e, the terminal
voltage existing before short-circuit, Xz and X, the synchronous
reactances in the direct and quadrature axes, and X', the tran-
sient reactance of the direct axis. These expressions are:

=5 - Xa—Xa —Bt -
1g= X, cos(w? a)+eo—)—(:)—(?—e cos(wt—a)

Xat+X Xi—

’
-— g .—at d X g _—at -
2y Z*X;Xq—e cos a+eo—§—X—;~X—qf cos 2wt—a) (369)

RO S Y\ W 7 R
zb—)—(-dcos(wt a 3)+(»:o X,,X',,e cos{ wt—a 3

y 2
e cos(a+.g)

X:’ — X! —at — — 2_1[
+eo-ﬁ—;}—{; € CO 2wt—a 3 (370)
— X, 4
u=)% COS(wt—-— a.—%':)-i-ewg-{x-df;x-;—de“"‘ cos(wt— a—-%)
Xot+Xe ., s( 41)
- er——f‘“ CO a+—
XX, 3 -
Xa—X 4r
+20TXJ,—“—;¢€—“‘ COS(Zwt— a-——3-) @7)

“An expression for the field current is obtained by finding
the currents induced in the field winding by the mmf in the
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direct axis. This is found in terms of the currents ¢, s, and ¢,
whence the expressions given above are substituted to obtain
the current in terms of ey, Xg, and X'a.

‘“The final expression is:
Xa  Xa—Xa
I =ey—; — e——7— cos wt”’
Xy X
- B,
$=ds+(o-2s)e
o _L
- _—_— +

Fig. 194. Air-Gap Flux.

In the preceding expressions, the letters have the following
meanings:

Xag, R
P=xXL,’

a=7a(de+Xq) .
2X.X,
R=resistance of the field circuit;
L,s=inductance of the field circuit with the armature open-
circuited;
rq,=resistance of the armature;
t=time;
a=displacement between the armature winding axis and
the axis of the field pole at the instant of short-
circuit.

141. General Nature of Alternator Transient.—The equa-
tions given in the preceding article have been checked with
actual oscillographic records and found to give very accurate
results. However, it will be worth-while to examine qualita-
tively the internal workings of a simple alternator during a
balanced three-phase short-circust.
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If a three-phase generator is subjected to a three-phase short-
circuit, the initial currents will be quite large, and will decrease
gradually to the sustained value. Assuming that the setting
of the field rheostat is not changed, this decrease in current is
due primarily to the demagnetizing action of the armature.
Thus if Fig. 192 represents the current of one phase of a three-

Fig. 195. Alternating Armature Currents (Transient Currents Neglected).

phase machine, then the decrease in the current envelop 7, is
due to the decrease in generated voltage which in turn is due
to the decrease in air-gap flux. The decrease in air-gap flux
will follow some curve similar to Fig. 194.

The change in flux can be represented by the following

.equation:
Ry

b=dut(Go—0s)e I (372)

where R; and L; are the resistance and the inductance of the
field circuit.

I~

Fig. 196. A-C Armature MMF.

Pig. 194 neglects the effect of the transient currents entirely,
and it is assumed that the three alternating armature currents
of Fig. 195 were instantaneously cstablished, sthus* [roducing
the armature mmf curve of Fig. 196. ' ‘

With a sudden rise of armature demagnetizing mmf, as
indicated by the ordinate Fo of Fig. 196, there would be induced
in the field circuit a voltage which would cause a corresponding
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sudden rise in field current to counterbalance the demagnetizing
action; the resultant field current would then gradually decrease
to its original value in the same manner as the flux curve of
Fig. 194. The change in field current is illustrated in Fig. 197.

142, Armature MMF Transient.—The mmf produced by
steady state balanced three-phase armature currents is known
to be of constant magnitude and to revolve at constant syn-
chronous speed. This statement can be verified by con-
sulting any standard text on machinery.

Fig. 197. Field Current Transient (Armature Transient
Currents Neglected).

Consider now the three current waves of Fig. 195. These
current waves differ only from steady state waves in that all:
three decrease in magnitude according to the following law:

Rq

fa=1I¢ Lo 373)

Thus these three current waves, flowing through three
windings which are 120 degrees apart in space location, produce
a resultant mmf which will rotate at synchronous speed and
will decrease in magnitude as indicated by Fig. 196. Both of
these actions may be illustrated by the polar diagram of Fig.
198,

The change of revolving mmf may last for several cycles,
the number depending on the constants of the machine; in
Fig. 198, two and one-quarter cycles are indicated. However,
the three currents of Fig. 195 cannot be developed in the arma-
ture without the corresponding transient currents similar to the
action indicated in Pigs. 191 and 192. The three alternating
currents and the three transient currents are shown in Pig.
199 (a) and (b).
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ow in the armature.

The three transient currents will also fl
These three currents, not being alternating, cannot produce &
revolving mmf, but they will produce & transient mmf that is

ALTERNATOR TRANS

{nitial amplitude
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M

Fiual Ampiiturie
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Fig. 198. Resultant MMF (Transient
Cunents‘Neglected).

(a) Three Alternating Cutrents

62 and $3
(b) Three Transient Currents
Fig. 199 Component Armature Currents.

stationary in space and of decreasing amplitude.
varies according t0 the following luw:
RG
Fo=Fe @374)
The initial value of this transient mf wilfbe
to the initial revolving mmi. This is true
nd opposite 0

transient currents are equal a!

Its amplitude

equal and opposite
pecause the initi
the corresponding
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initial values of the alternating currents, as shown in Fig. 199.
The resultant armature mmf may be developed by the aid of
the polar diagram of Fig. 198, to which is added the correspond-

b 16 _ Rotating
Resultant TSN MMF
MMF <}

Transient
MMF

Fig. 200. Resultant Armature MMF.

ing values of transient mmf. The transient mmf is assumed to
vanish in two cycles. This construction is shown in Fig. 200.

The resultant values of armature mmf are obtained by
adding vectorially the corresponding rotating and transient
mmf’s, The resultant envelope of Fig. 200 may now be trans-

Fig. 201. Resultant Armature MMF,

ferred to rectangular coordinates, as shown in Fig. 201. It is
seen that the resultant armature mmf has a fundamental
frequency component, This fundamental frequency component
of armature mmf will introduce a corresponding voltage in the
field circuit, and will produce an alternating component in the
field current. Thus, the field current of Fig. 197 is modified
to the form shown in Fig. 202,

143. Single-Phase Armature MMF.—The armature cur-
rent of a single-phase generator or of a three-phase generator
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under single-phase operation may be represented by the wave
shown in Fig. 203, provided that all harmonics are omitted.
Since only one phase is carrying current, the mmf produced in
this case can be considered as made up of a unidirectional
component as produced by the transient current, with a super-
imposed pulsating component duc to the sine-wave component
of current.

Fig. 202. Resultant Field Current for Three-Phase Short-Circuit.

The transient component of current will induce a current
of fundamental frequency in the rotor circuit, while the sine-
wave component of armature current will induce a double
frequency component in the field circuit. These two com-

Aﬂﬂﬂﬂﬂﬂﬂﬂﬂn

VRVARVARVIRVARVAAVARV/

Fig. 203. Single-Phase Current.

ponents will result in a field-current wave like that indicated
in Fig. 204. The air-gap flux will obviously pulsate at the
composite frequencies shown in Fig. 204, and will induce third
harmonic voltages in the armature, thus causing a distortion in
the current wave of Fig. 203.

144. Leakage, Transient, and Subtransient 1i'R«a{:i:am:».
Consider the case of a three-phase short-circtit. s liscussed
in Arts. 141 and 142. Neglecting the presence of the field
circuit and the effect of the damper winding, the initial effective
alternating current will be determined by the leakage reactance
of the armature. . Thus:
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E
Io—-X—u; (375)
where E=phase induced voltage; and X,y=Ileakage reactance

per phase.

Equation 375 would hold, under the particular assumptions
made, provided the current transient were perfectly sym-
metrical, that is, if it did not contain a d-¢ decremental com-
ponent. For a completely offset transient the effective initial
value will depend on the magnitude of this d-¢c decrement.

Since the unidirectional current has an initial value equal
to the maximum a-¢ amplitude (maximum fault current),
then the resultant effective initial current is:

Li= J(I)*+(N2Io)*= 31, (376)

Fig. 204. TField Current under Single-Phase Fault.

However, as seen in Chapter 11, the reactance of an alter-
nator at the initial instant of short-circuit is not the leakage
reactance, but is the transient or subtransient reactance, the
last one being used in case the machine is equipped with damper
windings. Furthermore, the armature mmf is practically all
demagnetizing under short-sircuit conditions of modern gen-
erators. Hence, direct components of transient and subtran-
sient reactances should be used. Thus, for a machine without
damper winding, equation 375 should give way to the following
more accurate expression:

E .

I°=Y; (377)

Finally for a machine having damper windings;
=E
Xy

Ip (378)
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The value of the voltage E used in equations 375, 377, and
378 corresponds to open-circuit conditions.

145. Sustained Short-Circuit Current.—After the tran-
sient effect of a three-phase fault disappears, there remains
simply the sustained fault current, which is limited by the
synchronous reactance Xy Ttis reactance is niade up of the
leakage reactance and the effect of the deniagnetizing action of
armature reaction (see Chapte~ 11). The sustained current
for a balanced three-phase fault i» qdetermined as follows:

[y=-" (379)

— o —

-

Fig. 205. Symmetrical Component of Armature Current Transient.

Unbalanced sustained currents are defined in terms of
sequence impedances, as discussed in Chapter 11.

146. Determination of Transient and Subtransient React-
ance.—Transient and subtransient reactances may be deter-
mined by design constants or from test. The test procedure
involves taking oscillograms of short-circuit currents. For
conditions of single-phase faults or other unsymmetrical condi-
tions, transient and subtransient reactances must be further
subdivided into direct and quadrature components. The same
subdivision is, of course, also applicable to synchronous react-
ance. The terms direct and quadrature refer to Blondel's
theory of mmf action along the axis of field poles (direct), and
mmf action along the axis midway between poles (quadrature).*

* For a complete analysis of these components, see ‘“The Reactances of

Synchronous N&chims," by Park and Robertson, 4 I E E Trans., Vol.

47, p. 514; “The Calculation of the Armature Reactance of Synchronous

Machines,” b er, A I E E Trans., Vol. 47, p. 493; “Determination of

Synchronous id ine Constants by Test,”” by Wright, A I E E Trans.,
ol. 50, p. 1331.
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The discussion of this article will be confined to the initial
currents of balanced three-phase faults, which involve only the
direct transient and subtransient reactances. Furthermore it
will be assumed that the short-circuit takes place from the
initially open-circuited condition. The solution for transient
and subtransient reactances from the oscillograms of a short-
circuit from loaded conditions is slightly more involved.

In Fig. 205 is shown a typical symmetrical transient of
armature current. As has been indicated previously, the decay
of current in a circuit of resistance and inductance follows an
exponential law. If only one resistance and one inductance are
involved in the decay of current in Fig. 205, the envelope of
this wave, when transferred to semi-logarithmic paper, will
plot as a straight line. However, during the first few cycles,
the current changes much faster than indicated by a single
decrement. This is illustrated by the semi-logarithmic plot
in Fig. 206. If the straight line is extended back to the left,
it will give the maximum value of the initial alternating current
which would flow, neglecting the effect of damper windings.
Let this maximum current be designated as Iim. Then, if E
is the effective open-circuited phase voltage, the transient
reactance becomes:

- VE (380)

Xa

Also, if I,:» equals the maximum initial value of current, then
the subtransient reactance per phase is:

}/EE (381)
atm

The equation of the envelope of Fig. 205 is:

”".__
X)=

= '\/EI."*‘ (Igm'- om)ﬁ_F:_+ (I,;,,,-I;,,;)E_F:T (382)

where I,,=maximum value of sustained current;
I, =effective value of sustained current;
T, =transient time constant;
T,.=subtransient time constant
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Equation 382 can be changed to:

_t _t
i= V2I,4+Ale Ti4-Ale Ts (383)

where AIt =(Itm_Ilm);
AI,¢= (Iutm"'Itm)-

Tstm-

Tion—~- T=TimeCr . it

—~——

~ \
\-51— -
-—1'—-] ~ <DC Componer.!

0.368 x Max.Value

Log Current

Ism

Time

Fig. 206. Semi-Logarithmic Plot of Envelope of Fig. 205.

At t=0, the transient and subtransient increments of cur-
rents are AI, and Al,, respectively. At t=T,; and t=T,,
the relations are:

Al'=AIe rﬁ? ~0.368
¢
’
AI',=AL g or 2210 368

Al

Thus the time constants may be obtained by observing the
time ¢ corresponding to 36.8 per cent of the corresponding
increment currents Al and Al

The decrement of the direct-cutrent component may also
be plotted as a straight line on scmi-logarithmic paper, and
from the plot the direct-current time constant may be obtained
in the same manner as just outlined.



CHAPTER 21

SYSTEM STABILITY

147. Transient Stability.—The steady state behavior of
transmission networks is very conveniently analyzed by means
of circle diagrams, as outlined in Chapter 9. Certain basic
facts concerning maximum power limits were outlined in Art.
61. Furthermore, in Art. 52, certain power relations were
derived, the receiver and sending powers being given by equa-
tions 146 and 148. Thus:

P, —EBE cos(¢p—pB) — —E2 cos (8—a)

P,=— E'BE' cos(¢+8) +gE3 cos(8—4)

The notation used in these equations is the same as that
used throughout the text and is not again reviewed. However,
under normal operation the receiver and sending voltages may
be said to be constant, the only degree of freedom in the fore-
going equations being in the angle ¢ between E, and E,. This
angle has already been referred to as the system torque angle.

Maximum power received has already been given in Art. 52
and again in Art. 61, and will occur when the torque angle ¢
becomes equal to the generalized constant angle 8 (see equation
151). The power limit of equation 172 can only be obtained
provided the receiver load is increased very slowly so as to avoid
all possible effects of speed transients. When a load is suddenly
applied to a line, the angle ¢ between the sending and receiver
voltages tends to increase, and possibly to travel beyond the
final value. This is illustrated in Fig. 207, the angle ¢ being
plotted against time 2.

The maximum steady state torque angle cannot exceed the
angle B (see Art. 61). It might, therefore, be concluded that

the maximum transient torque angle (¢:m, Fig. 207) cannot be
266 .
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greater than 8. This conclusion is, however, not true; in fact,
maximum torque angles considerably in excess of the angle 8
are possible.

Transient stability might be defined as that value of maxi-
mum power which can be transmitied over a particular system
without the system falling out of sicp because of the effect of
line faults or sudden changes ¢t joad. T.sasient stability is
rather an indefinite quantity, and dcnends on - jarge number
of conditions of the lucal circuits ..d alsc of the terminal
machines, The manncr in whick the system is operated will

| SN
e 1

Fig. 207. Relation Between Torque Angle and Time.

have very marked effects on the results obtained. Automatic
speed control and automatic regulation materially affect the
results. When machines are involved, there are three important
elements which influence the system behavior. These elements
are:

(@) the inertia of rotating parts;

(b) the induction motor damping effect;

(¢) the static maximum tangential torque which the system
will transmit.

148. Theoretical Considerations.—Consider a power sys-
tem composed of several generator stations and also several
load centers. Under normal operation there is a definite angle
displacement between the excitation voltage vectors of all
generators or synchronous motors, as well as a definite angular
displacement between all voltage vectors at all di’erent points
in the network. The maximum angular displacement between
any two revolving units (holding constant voltage) under steady
state conditions has been shown to be limited to the value of 8
(see Art. 61).
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Transient instability may be due to several causes, such as
the sudden application of additional load or the sudden loss of
load, or it may be due to any one of the many types of faults
which may take place in practice. When a fault takes place
in such a network, the angles between all excitation voltages
are set into oscillation, coming to rest at some new value. This
oscillation is due to the effect of the stored energy in all revolving
masses and also the retarding torques developed between stators
and rotors. It is also due to the sudden attempt to change the
stored electro-potential and kinetic energy of the electrical
system. All governors are somewhat sluggish and take an
appreciable time to actuate. Therefore, at the first instant
after the disturbance, constant input power may be assumed.

Consider, for example, the sudden application of a load to
a system. The increase in load must be supplied from the
stored energy in all revolving masses. This will cause a
deceleration of rotors and a resultant drop in voltage due to
the sudden heavy flow of current. During the deceleration of
the rotors, a reaction is set up in the damper windings or even
in the field windings, and this reaction tends to oppose the
deceleration. In the meanwhile the governors may cause an
increase in input power, or the voltage regulators may cause
an increase in exciting flux, thus increasing the generator driving
torques which may actually cause an acceleration of the rotors;
or the governors in some cases may merely overcome the
decelerating effects of the load. As has already been pointed
out, there is a critical limit to which the angular displacement
between the voltages at the extreme ends of a particular line
can swing; if this critical value is exceeded, the system may fall
out of step.

One method which has been used for the study of instability
is that of torque-angle swing curves. This method is confined
entirely to the first alternation of the torque-angle transient of
the system. It involves the plotting of torque-angle curves
(from equations 146 and 148) for each different condition of
operation under investigation; and, by further means, noting
how a sudden transfer is made from one curve to the next.
A simple set of torque-angle swing curves consists of those
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obtained between a generator and a synchronous motor, these
two machines being connected by a short line of zero resistance.
Let E, and E,, be the excitation voltages of the generator
and the motor, respectively. If the resistances of the generator
and motor are neglected, the conditions involved will be given
by the vector diagram of Fig. 208.
If x=total reactance of the circuit, then:
¢

1=~
x

Also, the power delivered is:

. e s 6, e
P=F,I cos y=E; ~—=FE,~
x x
E‘
Eg E, A /€
K e
I ® \
\&Zgl Ew /
/
~ //
TS /
\\ /

Fig. 208. Generator and Motor Connected by Simple Line.
But, from Fig. 208,
¢=E,sin ¢

where ¢ =torque angle between generator and motor. Therefore:

P= E"f’" sin ¢ (384)

The results of equation 384 are illustrated in Fig. 209 for
three conditions of excitation and reactance. The scale of
ordinates is given as power, while the scale of abscissas is in
degrees. Since an ideal system of zero resistance has been
chosen, it is obvious that maximum power corresoond: to an
angle of 90°.

As a simple example, consider such a system undergoing a
change due to the sudden application of additional power,
AP, the initial load being indicated by Py, as in Fig. 210, It
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should be kept in mind that infinite prime-mover capacity is
assumed. This means that generated capacity is immediately
available, the instant an additional load is thrown onto the
system. For convenience the motor may be considered as an
infinite bus. Thus, assume that E,, is fixed and that E, must
forge ahead, thus increasing the angle ¢. If this interpretation

High Excitation or
Low Reactance

Low Excitation or
High Reactance

|

]

}

|

0 90 180
Degrees

Fig. 209. Power Delivered to Motor.

b0 ¥ P2 ®m
Fig. 210. System Subjected to Sudden Application of Additional Load.

seems awkward, the generator may be assumed as an infinite
bus, holding its speed absolutely constant, while the syn-
chronous motor drops back, thus increasing the angle ¢. Thus
the net power increase during the transient period is:

E,E, .
%

P1|=P1— SlIl¢

The torque angle must accelerate along the curve in Fig. 210.
During this process there is a change in the stored energy of the
revolving masses of the rotors, according to the fundamental
relation $M1? and the work done on the rotors is represented
by the shaded area A;. Because of this acceleration, the rotor
will travel beyond the angle ¢y, decelerating in speed until it
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reaches some angle ¢,. The area A, indicates the amount of
energy previously stored in the revolving mass of the rotor and
now being returned to the circuit. Obviously the areas A; and
A, must be equal, and the machine will oscillate along the curve
abc, finally settling at point b. At that point:

E,E,.
%

P1=

sin ¢

Tt should be noticed that ¢ should in- ess tha  ¢m, the critical
angle for steady stability.

In contrast with the preceding case, consider the system
operating at a load

- g~

Pr= ‘t“l—afr' Sin &g

as illustrated in Fig. 211.
Now let =he load be increased to P; and let the net power
increase be:
E,Enm
x

P n=P 3 sin ®

As previously mentioned the area A, indicates the amount
of energy stored during acceleration, while the area A, indicates
the energy returned to the
circuit during deceleration. | _ _4 <
If A;<A,, the rotor will fall "’
out of step and the system
reaches a condition of insta-
bility. It will be noticed that
the torque angle may mo-
mentarily exceed 90 degrees
without causing permanent zM%diﬁ on of System
instability. Fig. 211. Modification

Consider now the gen- ' of Fig. 210.\‘
erator supplying an infinite bus thrcugh two parallel ¥nes, as
in Fig. 212, First consider switch s closed. The equivalent
reactance is:

A,
c

i
R
]
Cad

P,

L

B ————

x.——
21+%2
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and the circuit is changed to that of Fig. 213. Again:

P=E"f"’ sin ¢

The swing curve of the system of Fig. 213 is similar to that
of a simple single line. Curve A in Fig. 214 is a typical curve
for a parallel system, and curve B is for a single line. The

&y

B, D000

X, 8

V000V e

Fig. 212. Generator Supplying Infinite Bus.

Eg ®
Em
Fig. 213. Simple Circuit for Fig. 212.
A 4 A
A4 2
1 o, Po _____ b = >
Py ~- ;
of : b , 'AZ B _pé—— A Al
Pi-fAa | | B
[ |
[ |
[ ]
%0 %o %o
Fig. 214. Swing Curves for Parallel  Fig. 215. Modification of System
System and Single Line. of Fig. 214.

reactance of a single line is obviously greater than the reactance
of the parallel system, and curve B is therefore lower.
Suppose the parallel system is operating at ¢o and Po. With
constant load, the switch is suddenly opened. The original
power which can be transmitted at an angle displacement of
¢oand on curve B is shown as P;. If the load power remains at
P,, the angular displacement must increase along the line abc
and will oscillate between points a and ¢ and will come to rest
at b with the areas A; and A; being equal. In case these two
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areas are not equal, a condition of instability will be obtained.
The resultant displacement angle will be &g

Suppose, however, that the conditions accompanying the
opening of the switch are as indicated in Fig. 215. In this case,
A;> A; and the system becomes unstable.

It should be noticed that the trancient angle may exceed 90
degrees. The problem is mereiy that of ‘ranster of energy
through acceleration and deceleratic * of moviug parts.

&

P 1 7

Fig. 216. Diagram for Mechanical Equivalent.

149. Mechanical Equivalent.—It has already been shown
that the power transfer for a simple case is:

1r>=—E—';;‘2 sin ¢ (385)

where E,,=motor excitation voltage;
E, =generator excitation voltage;
x =total reactance between machines;
¢ =angle between E, and E,.

Now consider two torque arms pivored at a common point
0, and connected together by means of a spring s, as shown in
Fig. 216. The elongation of the spring will be assumed directly

proportional to the spring tension F;. Thus:
The left arm represents the generator with force F, applied,

while the right arm represents the receiver of the system with
a force F, applied. From Fig. 216 it follows that:
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F,=F;sin 8 (387)
Substituting from equation 386,
F,=Kxsin 0
The receiver applied torque is:

T=Fm=Kmx sin 0 =Kmgx Et;—o

By fundamental trigonometry,

sinf _sin ¢
g %
Therefore:
T=Kgm sin ¢=Tn sin ¢ (388)

where T, =maximum torque which can be delivered by such a
system.

It will be noticed that this maximum torque will occur
when ¢=90°. Beyond this angle, the torque actually decreases.
The mechanical device here considered corresponds to the
electric circuit without resistance or damping. To complete
the analogy, the torque arms g and m should be considered as
radii of flywheels representing the masses of the rotating
equipment.

Assume now that the system of Fig. 216 is suddenly sub-
lected to an increase in torque, the magnitude of which is:

AT=T—=Tpnsin ¢ (389)

The inertia reaction set up in the mechanical system must
be equal to the change in torque. Thus,

T =T~ Tosing (390)
where J=moment of inertia of the system.

In case resilience (capacity) and damping or friction (resist~
ance), as well as inertia (inductance), are present in such a
]ystem, then the fundamental differential equation becomes:

a .
I Ht—f+K%+K¢= T—T, sin ¢ (@)
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where K4 and K are constants. The particular pecuhanty of
this last equation is the right hand member, T— T, sin ¢.
Except for this member, equation 391 is similar to the differ-
ential equation of an oscillatory electric circuit, which is:

&
LR A I, (392)

In terms of power instead of torgues, <quations 390 and
391 become:

d%
] ,dﬂ—P Pucin ¢=AP (393)
P, th-{-}' d¢+l’c¢=f‘»-P,,. sin ¢=AP (394)

where P,, Fa, and P, are constants.
The resilience term is of no practical importance. There-
fore, equation 394 becomes:

d%

"dt2

If radians and seconds of time are used in equation 395, then

P,=watts per radian per second per second, or power per

degree of angular acceleration; and Pa=watts per radian per
second, or power per degree of angular velocity.

. p d¢’_ P—P,sin ¢ (395)

2
The term P“%ti; represents the power component due to the
inertia of the revolving masses; Pd%? represents the power com-

ponent due to damping action by induction motor operation;
and P, sin ¢ represents the synchronous motor power com-
ponent. Unfortunately, equation 395 does not lend itself to
mathematical analysis; the standard method employed in its
evaluation is by the use of the “Integraph.”

150. Transient Torque-Angle Equation in Terms of Per-
Unit Torques.—Equation 390, which considers only the inertia
reaction set up in the mechanical system, may be written in the
following form:
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d
d;f+T sin ¢=T

In the mechanical analogue of Art. 149, for which this
equation applies, the angle ¢ refers to mechanical radians and
I=the moment of inertia of the mechanical system. In an
electrical system it is necessary to consider electrical radians.
Hence, if ¢ is now taken in electrical radians, the fundamental
equation becomes:

3%

p dt2

It should be noticed that the term sin ¢ remains unchanged

when converting ¢ to electrical radians, since this term is a

function of the vector relations of the machine and does not
depend. on the mechanical reactions.

Dividing the preceding equation throughout by T, gives the
general form of the transient torque-angle equation in per-unit
torque notation. Thus:

2
%TL,,. %—t‘il+sin ¢=—Tz::=K (396)

Now, let the power associated with the maximum torque

T be denoted by Pn. Then:

()
2NT, ) \60 /1"
. '"=°'746(33,000>" 7376

where N =revolutions per minute.
From equation 397,

———~4Tmsing=T

(397)

737.6Pm

)

-Therefore, the coefficient of 3 tf

Tw=

21 210 @0 |\ \e0
PT". p 737.6Pm 737.6P'n(ﬂ)
60
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2xN \?
60 N . .
Let M =537 6P.. =inertia constant in seconds. Since
f= 760~ normal frequency in cycles per second,
2 M
pTm 2nf
Therefore, equation 396 may be modified as follows:
Mdeo, 6 .
3af dPt +sin ¢=K (398)

Theoretical discussions of transient stability are generally
carried on from equation 398, since it is in a per-unit torque
form. This equation has its limitations. The most important
is that it considers the moment of inertia effect as concentrated
in a single rotating machine; whereas, in an actual system,
rotating masses are located at all generating stations and at
those load points which have rotating equipment.

In the simple case of a generator connected to a synchronous
motor through a transmission line, it has been found that
equation 398 can be used, provided that

MM,
M=11+14,

where M,=inertia constant of generator;
M=inertia constant of motor.

151. Energy Stored in Accelerating Machine.—When a
sudden change in load takes place, the readjustment of the
rotor position of all generators is mainly due to the amount of
stored energy in the revolving masses, since the governor
mechanisms cannot change the input power instantaneously.
From mechanics, the energy in foot-pounds stored in a revolving

mass is:
E=3}]u*

where I =moment of inertia

Since w= 21'-61%,
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2aN
E=yi( 2] )
Expressing this stored energy in Kw-sec, we have:

27N

21rN %I( )

E=} %X 3.766X10~7% 3,600 = 7376 —s=———Kw-sec  (399)
By introducing the inertia constant M, we may express the

kinetic energy as:

E=3iMP, Kw-sec (400)

where M is the time in seconds required to accelerate the rotor
from standstill to normal speed N when maximum input power
P, is suddenly applied. ‘

Since w=2nf=rotor angular velocity in electrical radians
per second, then the rotor angular velocity in electrical degrees
per second is:

wo=glfx360 =360f

Hence, the angular acceleration of the rotor is obtained as:

360f

a==3r electrical degrees per second per second

Solving for M from equation 400 and substituting its value

in the expression for acceleration gives a=§§6-.EiX P, or

a=l%ﬂ‘ X P,, electrical degrees per second per second (401)

Equation 401 can be applied to any transient condition
following a sudden change of power, AP, as follows:

a=-&XAP (402)

The term E refers, of course, to the rotor energy stored at
the time of the disturbance, and can be computed from equation
399. For some calculations it may be more convenient to
change equation 399 to the following form:
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E=23WR2N210~7" Kw-sec (403)

where WR?=moment of inertia in poundsXfeet squared.

In the studies of stability problems, it is natural to assume
that the machines are operating at their rated speeds prior to
the disturbance. Hence, the stored energy obtained from
equation 403 can be considered as a machine constant, so that
equation 402 may be rewritten as follows:

a=C AP electrical degrees per second per second (404)

180 .
where C =—-E—f =acceleration consiant.

In terms of the inertia constant M, we find that the accelera-
tion constant is:

_360f
~MP.

In other words, C is the acceleration per unit of power dis-
turbance.

152. Special Form of Transient Equation Suitable to Step-
by-Step Solution.—Again referring to Equation 390, we have:
a% .

I 7 T—T,sin ¢=AT (406)
in which ¢ is measured in mechanical radians. In equation
406, AT is the change in torque produced by the transient
imposed on the system. Assuming that AT is held constant
over a small angular swing, then equation 406 becomes:

¢
an=AT
Converting ¢ to electrical radians gives:
2.d%
;1‘;‘, —AT (o)

C =electrical degrees per second per second per Kw (405)

TN
But, from the results associated with the inertia constant
M, it was found that

2. M
5 2wl
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Therefore, equation 407 becomes:

M. d%

2f " dp

=AT

For small angular swings the speed may be assumed con-
stant. Therefore, the torques T, and AT can be taken as
directly proportional to power, and we have:

M d%
2 mae —AF
If now the angle ¢ is converted to electrical degrees instead of
electrical radians, we have: .

MP, d*% _
360f aer ~°F
From equation 4035, the preceding expression becomes:
1d%
Finally:
d*

7 e C AP electrical degrees per second per second (408)

This equation is, of course, identical with equation 404, which
was developed in the preceding article.

153. General Swing Curves.—The power delivered by a
transmission line of simple series reactance was given in equa-
tion 384, which is:

P=

E,E, .
p sin ¢

in which E,=generator voltage and E,,=receiving motor volt-
age. This result could have been obtained directly from the
first expression of equations 149 by putting Z=x, E,=E,,
E,=E,, and 8=90°. ‘

For general four-terminal networks defined by the constants
4, B, €, and D, the swing curves of power, as derived in Art.
52, are: ‘
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E,E, A
P,==%"" cos(¢—P) — 5 Er cos(8—a)
B B (409)

E}BE' COS(¢+B)+§E3 cos(8—A4)

in which the notation is the same as that used in Art. 52.
In case the four-terminal network can he represented by a
simple series impedance, ther: equaticns 409 become:

Pg='_

~

P,= E.E, cos(p—RY-- 2—5 cos B

“ . (410)
P,= -E 2E' vos(¢+5) %-—g—' cos f

By application of equalions 409 and 410, curves of the
general shape given it Fig. 209 can be drawn for any particular
four-terminal network.

The general problem of transient torque-angle fluctuation
under suddenly applied loads or other disturbances is quite
involved, and at present a rigorous mathematical solution is
not available. The solutions of important problems of this
type are, therefore, obtained by actual test on artificial models.
These models or equivalent circuits are generally known as
A-C Analyzers or Calculating Boards.

154. The Alternating-Current Calculating Board.*—This
article describes the mechanical and electrical features of the
various component parts of the Westinghouse Alternating-
Current Calculating Board. Other types of boards will be
similar in general operation and arrangement of parts.

The board consists of an assembly of resistors, reactors,
condensers, power units, transformers, and metering equipment.
It provides means for reproducing actual power systems on a
miniature scale and for obtaining voltage, current, agd phase-
angle readings produced by assumed normal, abaormal, and
transient conditions on a phase to neutral basis. Unbalanced
conditions are taken care of through the method of Symmetrical

* This material has been furnished by the Westinghouse Electric and
Manufacturing Company. . ‘
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Components. Power for the board is supplied from a 440-
cycle, 220-volt, three-phase, sine-wave alternator.

The A-C Calculating Board, shown in Fig. 217, consists
of a meter desk and an assembly of several vertical steel
cabinets, in which are located the various units of resistance,
reactance, and capacitance; autc-transformers; ‘‘power-units”
for simulating synchronous apparatus; cord-and-jack assemblies
to permit reproducing the system ametwork to be studied; and
suitable current and voltage receptacles wherehy the metering
equipment may be inserted into any circuit.

The metering equipment may re connected to any circuit
on the board through a three-wire metering bus connecting
the meter desk with the three-point polarized receptacles
located on the posts of the cord-and-jack cabinets. Connection
between these receptacles and the circuits is made by means
of a three-wire flexible cord which is fitted on either end with
suitable plugs, one for inserting into the polarized receptacles
and the other for plugging into the meter switches.

The load impedance units contain a resistance adjustable
in 2-ohm steps from 2 to 3,998 ohms and a reactance consisting
of a tapped reactor with steps of 20 ohms up to 280 ohms.
These units may be put in series with a variable air gap reactor
adjustable from 1 to 20 ohms and provided with a scale cali-
brated in fractional steps. - Small toggle switches are used to
obtain the desired setting of the resistors and the 20-ohm steps
on the fixed air gap reactor.

Banks of line and load impedances are similar in general
appearance to the load impedances, but the magnitudes are
quite smaller.

Power units to represent generators or other sources of emf
consist of a three-phase, 220-volt, 100% induction regulator
and a three-phase shifter with single-phase output. These
units are shown at the left in Fig. 217. o &

The base voltage to use for any given problem is determmde
from the conversion factors which establish the constants of
proportionality between the actual system quantities and the
calculating board quantities. - The adjustment of the voltage
regulators and phase shifters to give the desired bus voltages
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and distribution of current is quite simple and is very similar
to that procedure which goes on in the actual power system:

High-impedance reactor circuits are used to simulate the
magnetizing current of a large bank of transformers or the
reactive component of loads. These circuits are made up of a
tapped reactor which can be adjusted from 0 to 2,100 ohms in
300-ohm steps. Condenser circuits have a range from 0 to
4.1 microfarads in 0.01-microfarad steps.

Auto-transformers are used to represent tap-changing
equipment or the conditions where a double-loop system is
closed through two sets of transformers with different turn
ratios. They are especially designed, being made with' very
thin Hypernik punchings so that the exciting current can be
neglected for all normal problems. The range of settings
available is from 85 to 11939, in steps of 1%.

Instead of using the ordinary type of ammeter and volt—
meter, two coil dynamometer-wattmeters are used to measure
current and voltage, the greater per cent of the energy necessary
to operate them being supplied in their “field” coils from a
phase shifter. The arrangements for making the measurements
are shown in Fig. 218. The use of the phase shifter to supply
the “field” energy for the meters also makes possible its use to
measure the phase angle. Real and reactive components of
current and voltage with respect to any reference direction can
be obtained, since the phase position of the “field” or standardiz-
ing current is controlled by the position of the phase-shifter
rotor. These two meters, the ammeter and the voltmeter,
together with the phase shifter, suffice to take care of all
measurements which it is necessary to make for a system study.
Both real and reactive power are easily obtained from readings
of in-phase and out-of-phase current components.

In addition to the voltmeter and the ammeter, a stardardiz-
ing current milliammeter is also supplied. This measures the
current which supplies the energy to the field coils of the
ammeter and voltmeter, and should always be kept at the pre-
scribed mark. Adjustment of this current is obtained by means
of the standardizing current rheostat, which is in series with the
phase-shifter output,
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The phase shifter has a three-phase primary and a two-
phase, four-wire secondary. The secondary is connected to
the phase-shifter secondary switch, by which the phase position
of the standardizing current can be shifted 90° by throwing
this switch from the “in-phase” position to the “quadrature”
position.

There are two methods which heve been in general use for
transferring actual system quantities to calculating board
quantities. Thesc are the Kva bas¢, in which the impedances
are expressed in per cent; and the Kv base, in which the im-
pedances are expressed in ohms.

A single-line diagram of the system should be prepared, with
the impedances expressed as ohms to neutral on a common
voltage base. Actual impedances as obtained from the lengths,
sizes, spacings, and kinds of conductors are transferred from
their own voltage bases to another base by multiplying by the
square of the turn ratio of the transformers connecting them.
Thus:

Zl=sz~— (411)

where N, =turns of primary of transformer;

Ne=turns of secondary of transformer;

Z, =actual ohms at primary base voltage;

Z; =actual ohms at secondary base voltage.
It will be noted that the term ‘“turn ratio” is specifically used,
and not nominal voltage ratio. This latter expression is often
used for short-circuit studies, for which it is sufficiently accurate,
since very large voltage drops are involved and the difference
between the nominal voltage ratio and the turn ratio would
introduce only a very small error. However, when the voltage
drops considered are comparatively small, as for voltage regula-
tion studies, this is not the case; and, in order to av#: 1 large
errors, turn ratios must be used.

In order to set up the system on the calculating board, it is
necessary to establish definite ratios between the actual system
quantities and the similitude quantities of the calculating board.
In general, this is done by increasing the impedances and
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decreasing the voltages so that the current and power handled
on the board will be very small proportions of the actual values
and will be within the ratings of the various units. Each of
the four multipliers that are used to establish the ratios between
the actual and the calculating board quantities will be desig-
nated by the capital letter K with a subscript to indicate that
it refers to current, voltage, power, or impedance. Thus, K,
is the current multiplier; K is the voltage multiplier; K, is the
power multiplier; and K, is the impedance multiplier. These
multipliers are defined as follows:

K 4i=I=line current
Kge=Ej=line voltage
Kyet=Kva

K.Z (actual ohms to neutral) =2

- (412)

where small letters refer to calculating board quantities and
capital letters refer to actual system quantities. Note that
the first three of these multipliers are factors by which calculat-
ing board quantities are multiplied to get actual quantities;
and the impedance conversion factor, K,, is so defined that,
when it is multiplied by the actual ohms to neutral, the product
will be the calculating board ohms.

The relations among these multipliers are contained in two
independent equations. For three-phase systems, these are:

V3K K4
K = ‘1—;‘666— (413)
K,-Ka\B (414)

K

On account of the interdependence of the quantities, ¢ s
not always possible to have simple multipliers for all four quanti-
ties; therefore, it is desirable to pick out those quantities which
will be most useful in the solution of the problem and to assign
to them convenient multipliers. The other quantities will then
be determined from the equations.

In general, the A-C Calculating Board is used for solving
all types of problems where phase-angle considerations have to
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be taken into account. The four main classes into which such
types of problems can be divided are:

(a) voltage regulation and load control studies;

(b) steady state stability problems;

(c) transient stability problems;

(d) short-circuit studies (especially for ground reluy appli-
cation).



CHAPTER 22

TRANSMISSION-LINE SURGES

155. Types of Transients to Be Studied.—In this chapter
we are particularly interested in a study of those transients or
surges generally caused by lightning. Switching transients
due to the application of sinusoidal voltages are not included
in the scope of this text. Surges due to lightning are generally
of a non-oscillatory nature with a very steep wave front, and
are of gradually decreasing tail, as shown in Fig. 219. The
maximum voltage and its corresponding time #;, together with

t=0 Time
Fig. 219. Surge Due to Lightning.

half of the maximum voltage on the decreasing tail with its
associated time #;, supply enough data to designate the general
shape of such a wave. Waves are therefore labeled by a nota-
tion such as 1,000 Kv/3/20, which means that the maximum
voltage is 1,000 Kv at 3 micro-seconds from the forward toe of
the wave and that at 20 micro-seconds the voltage has dropped
to 500 Kv.

For any mathematical study it is first necessary that such
a wave be represented by a suitable mathematical equation.
An absolutely correct equation would involve an infinite number
of terms, but such a degree of accuracy is not necessary, since
a much simpler approximation is possible which is well within
the accuracy required in practical problems. As a matter

288



TRANSMISSION-LINE SURGES 289

of fact, the exact solution of the transient differential equations
is not as yet known except in special cases. Hence, exact
notation for the impressed potential would be of no avail.

The curve of Fig. 219 can be approximated by a double
exponential function, as follows:

e=E(eot— ¢ bt) (415)

A plot of equation 415, indicating how such an equation will
give a curve similar to Fig. 219, 1¢ <~ow= in rig. 220.
Equation 415 applies only for values of time 120, as the

- —

-E

Fig. 220. Equation of Curve of Fig. 219.

voltage e=0 for ¢<0. To completely define the curve, taking
into account the fact that e=0 for ¢<0, it is convenient to
introduce Heaviside's unit function. Thus:

e=E(et—e )1 (416)

156. Determination of Constants a, b, and E from an
Observed Wave.—It has already been indicated that the curve
of Fig. 219 has been obtained in actual field tests on trag«mission
lines. For purposes of mathematical analysis it is then neces-
sary to obtain the constants a, b, and E of equation 416 which
will satisfy the oscillographic test results. The procedure is
as follows:
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From Fig. 219 it is obvious that the slope of the curve is zero
at the maximum value of voltage. Applying this fact to equa-~
tion 415, we have:

de_ = e 1g—C —b
E;-O-— ae '+b€ ¢

from which: ge—oh = bedh

€%t b

et g

e(b"‘a)‘l —é

a

b—a)t= Lng

b b
a1 2| B
“b—a a 9—-—1 T a

a

(417)

Substituting equation 417 into equation 415, we have:
3
Ey=E(e2—¢ o)
where E, is the peak voltage at instant #,. Thus:

3
p=Baes e (418)

Furthermore, at the point at which the voltage is half of
the maximum, the relation is:
.Ei_l= E(G"“"—G—M')
from which: : ' .
E,

3 E‘)“e‘“"—e"‘--e—‘"‘—l—e 4
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Since at;= B and bt1=f—;B,

t t
-pl by
=—I—'l‘::-—‘= ( e @ ") (419)

To apply this material to a particular oscillographic record,
proceed as follows:
Lna
(a) Prepare a curve for the reiuvion Bm-b- for assumed

2-1
a

values of é
a

(b) From the actual oscillogram, record the values of # and
1, which are then substituted in equation 419.
(¢c) Prepare curves for equations 418 and 419 for assumed

values of g. The intersection point of these two curves will in-

dicate the correct values of g, B, and E which apply to the par-
ticular oscillogram studied.
(d) Since at,=B and b, = gB, it is now possible to obtain the

proper values of a and b, so that the complete equation may
then be written as follows:

e=E(e*—e )1

157. Fundamental Differential Equations.—The steady
state differential equations of a transmission line with sinusoidal
emf’s and currents were given as equations 93 and 94 in Art. 38.
Thus:

Tl | |
(420)
dl—mq

Since sinusoidal quantities were considered in these relations,
there was involved only one fundamental variable, namely, the
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distance s, measured from the receiver end. The time ¢ is also
a variable; but, by the choice of sinusoidal emf’s and currents,
the time variation enters only in the vectorial expression of the
voltages and currents.

In the case of transients, equations 420 take on a somewhat
more complicated form, since the voltages and currents must
be expressed as instantaneous quantities and there is a definite
dependance between the distance s and the time . Another
difference is introduced in the present problem; namely, the
distance s will be measured from the sending end. This choice

de

t-—=

L # f;
I

(a) )
Fig. 221. Conditions for Transmission Line.

is more logical in this case, since the point at which the transient
is initiated is more conveniently considered as the sending end
of the line. Consider, therefore, the segment of line indicated
in Fig. 221 (a).

The actual phenomenon of a line transient is more involved
than merely the establishment of current along the conductors
and potential between conductors. The current within the con-
ductors and the voltage between the conductors are, in a sense,
merely the means whereby more important phenomena take
place. Associated with the current in a conductor is a magnetic
field surrounding the conductor, and associated with the poten-
tial between conductors is a dielectric field terminating at the
two conductors. These fields are shown in Fig. 221 (b). If a
potential is suddenly applied at the sending end, there will be
set up a magnetic field and a dielectric field which will be propa-
gated over the extent of the line. This latter phenomenon will
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take place in the surrounding space, and the conductors form
merely a “‘track’ which guides the direction of this wave travel.
On reaching the receiver end of the line, there is a reflection
of this electromagnetic wave. Successive reflections between
the receiver and sending ends may take place before the tran-
sient state finally converges into the steady state of the circuit.
Before starting any derivatior.s, we must define the foilowing

terms:

R=resistance pc: .aile,

L =inductance per milc;

C'=capacity per mile;

G =condnclance per mile.

The resistance and inductance are series constants, while G and
C are shunt constants, in the same sense that Z=R+7X was
defined in Art. 38 as the series impedance and Y =G+7B as the
shunt admittance. The parameters for an element of line of
length ds are R ds, L ds, G ds, and C ds.

“Also, we will use the following notation:
' $=electromagnetic flux;
¥ =celectrostatic or dielectric flux;
d¢ = electromagnetic flux linking current 7 within the element
of length ds;
dy = electrostatic flux within the element of length ds.

In Fig. 221 there will be a voltage drop de across the distance
ds which will be made up of the resistance drop and also the drop
as set up by the rate of change of the magnetic flux d¢. Thus:

~de=1iR ds+:%(d¢) (421)

Similarly, there will be a current flowing between conductors
within the elementary length ds, which is due to the conductance
and capacity susceptance paths taken in parallel, Thus:

—di=eG ds+%(d¢) (422)

From the fundamental concepts of inductance and capacity,
these two constants, for the element ds, are:
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Lds=% and C ds=%
or d¢=1L ds and d¢=¢C ds (423)
Substituting these values in equations 421 and 422 gives:

—de=iR ds+‘%(£L ds)
(424)
d

t(eC ds)

—~di=eG ds+a—

Equations 424 may now be written in somewhat simplified
operational form as follows:

—-de=(R+ng)i ds=Z(p)i ds

(425)
-—di=<G+Cg—t-)e ds=Y(p)eds .
where Z@)=R+L%
(426)
and Y(p) =G+c-§

In equations 425 the partial derivatives apply to the current

1 and the voltage e, respectively.
But the voltage de is equal to the rate of change of voltage

with respect to s multiplied by the length ds, or:
de
—ade
Similarly %
d1=5;de
Therefore, from equations 425, we have:

de .
——=Z(p)t
ds (427)

&
—-'a-;= Y(P)R
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It is of interest to compare these two expressions with those
shown in equations 89 and 90. A definite similarity will be
noticed, the difference being merely that now we must consider
instantaneous values of voltage and current while in the pre-
vious solution vector quantities were used. Solving the two
expressions in equations 427, we obtain:

d% _ e
ds?

i
v | -

a5t =M

where m?=Z(p)Y (p) =[R+ La—‘:] [(;4-05‘;].

Again, equations 428 are similar to equations 93 and 94.
In the operational nutation of equations 426, ¢ indicates the
partial derivative with respect to time, or:

=9
=y

Hence:
m?=(R+Lp)(G+Cp)=Z(p)Y (p)
or m?= RG+(GL+CR)p+LCp? (429)

~ The general solution of equations 428 is somewhat similar
to that carried out for the steady state in Art. 38 and given in
equation 95. Thus:

E=K(1+%- L + L + )+Kz(ms+
which can be modified to the following:

e

Rearranging this expression, we have:

K1+K8 me KI-K -
w{ess o
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Finally:
E="f() () (430)

where £,(1) =§—‘:-’3—"3

fz(t) K1+K2.

As was seen in Art. 38, K; and K, were found to be equal to
the sinusoidal or vector expressions of receiver voltage and
impedance voltage drop, respectively; or these terms were
found to be functions of time. In the same manner we con-
clude that the voltage obtained from equation 428 must be:

o=, (1) +emhi(d) (431)

This result differs from equation 430 in two respects. First,
the value of m is now defined by equation 429, and is not a
complex number; second, the functions of time, fi(f) and fa(?),
cannot be definitely assigned, since these functions may take
on several forms.

That equation 431 is the solution of equation 428 may be
checked by actually carrying out the second derivative of
equation 431 and determining whether this derivative satisfies
equation 428. Thus, the first derivative of equation 431 is:

3 o —mem0) +mem (0
and the second derivative is:
d%
a 9.2
This result is seen to fulfill the requirements of equation 428.

To determine the solution for the current, we need merely
apply equation 427 to equation 431. Thus:

=mHe™f1(2) +e™fa() ]=m

or ‘ i=?’('—;;;[e-~flc)—e~fs<t)1 (432)
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In equations 431 and 432, fi(t) and f(f) are functions of
time only, their general form depending on the nature of the
terminal conditions, or the applied potential. Space or distance
variation is indicated by the exponential terms. From equation
429, the expression for the exponent m is:

m=IC g/ 9+ (F2E)p+ 5E (833)

It will be noticed that the term - 2"34 appears twice in this
(4 -

expression for m. Since m is an exponent, the problem is so
complicated that there is no yeneral inathematical solution for
equations 431 and 432. However, by making a slight assump-
tion, which will not greatly affect the accuracy of the problems
involved in commercial lines, it is possible to obtain a more
definite answer to the problem; at least a simpler form is
obtained which can then be interpreted, and the general trend
of the transient behavior can be followed to an understandable
conclusion.

Notice that the quantity which appears under the second
radical in equation 433 can be converted into a complete quad-
ratic if the following assumption is made:

R G

L C

Making this assumption corresponds to assuming that com-
mercial power lines are distortionless lines. Equation 433

then becomes:
m= JL—C<P+%) (434)

‘ore or less associated with the assumption just made is
wct that, in the case of standard lines, the effects of R and
quite small as compared to those of L and C. *Thus, we
n the following relation: '

m _NZP)Y@)_ /Y _ gic_f’=‘/:§ (435)

Z(p) Z(p) Z(p) V R+Lp
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Substituting equations 434 and 435 into equations 431 and
432, we have:

o= (P2) 10+ E) 19
(436)
i 1/%[;"“(’*%)',‘@)—e"r"(”*%)’fzm]

The general trouble with equations 436 is that most non-
mathematically minded individuals do not have much of a con-

ception as to the meaning of the exponential, p=%. Thus, our

problem is now to convert the expressions to a more under-
standable form. The term which causes the trouble is: -

R
p ES m( p-li)a
As already indicated, the difficulty is due to the presence of the
operator p =~gz asan exponent. This difficulty may be overcome

by the following transformation:
e f(t) =f(t+a)
The correctness of the transformation may be proved by
applying Taylor’s expansion theorem Thus:

f@+a) —f(t)+a S ®) +2, at,f(t)+ ......

= (1+at’+ ?’+ ...... (@®)
=€ f(t)
Ifa= VLCs,
e VEC 7 f,(t) =fy(t—VLC s)
eVEG  f,(8) =fo(t-+VLC s)
Using these relations, equations 436 become:

o= VF [, —NIC ) +¢ OE £yt VITS)

—VICR VICX (437)
i= ,‘/g: z f;(t- LCs)—e Z'fs(t-l- \/Z—Cs):l



TraNsMiIssION-LINE SUrcGEs 2909

By this mathematical device, we have eliminated the operator

=3 t’ which looked quite troublesome.

The next question involved is the significance of the two
terms of equation 437.

Returning to the initial basic ¢xpressions in equations 427,

we have:
de AT
~5§'(R+"”Fit)¢

.
0t | .3
~a (O é‘)"

In accordance with the previous assumption, R and G are
quite small and may be neglected. Then:
de 01 de as

—a§= —LEE or a—i= —Lgi‘—‘—' —L’D

where v =%§ =velocity of forward wave.

o de  Ode 10t 1
Also, as ‘aTuTCaT o

Therefore: 1 1
Ly= C’U —and v= *W (438)
. e as _S$
= — o ———
Since the velocity is constant, v e o \I—LC s % There-
fore:
VLCs= =t "(439)

It should be remembered that s is measured from the sending
end. Therefore, a positive value of v refers to a positive wave
or a wave traveling from the sending end to the receiver end of
the line. Conversely, 4 negative velocity must refar to a wave
which has been reflected and is traveling from the receiver end
to the sending end of the line. In equation 439, the plus sign
is used for the forward wave, and the minus sign for the reflected
wave. Thus, the voltage and current equations become:
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R
(440)
C

These equations may be written as follows:

e=erte, } 441)

1'=1l+1'r

R
= s ..
where e;=¢ L fl(t—q—}>=forward or incident wave:

R
er=¢€ Lff(t"‘%) =reflected wave;
and similarly for currents, except that 4, is negative.

Furthermore, the term % is the surge impedance of the

line and is generally denoted by Z,.
In equations 440, the attenuation is obtained by the exponen-

R
. . -3 .. . .
tial function ¢ £. In deriving the foregoing expressions, an
ideal line was assumed ; that is:

R G
L C
-9,

The attenuation factor could have been written as ¢ € ; or one
should actually consider the energy in the traveling wave as
being dissipated through both the resistance R and the con-
ductance G. Actually the electromagnetic (kinetic) energy
will dissipate itself in the resistance R while the electro-potential
energy will dissipate itself in the conductance. Hence, the two
damping factors should be taken as follows:

R
¢ Z for the electromagnetic energy

q
. _g, )
and e ¢ for the electro-potential energy
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For the ideal line, for which —%:g, we may state that the

damping factor for the entire energy content is:

lRG)
-F+Z )
ez(L c

This assumption considers that the energy of a traveling wave
is dissipated only in the resistance and coniuctaace of the line.
However, in power lines under the «ction of surges, there is
general indication that the dampiny ‘akes place through other
mediums, mainly in the corona which becomes very important
for voltage surges exceeding the .nagnitude of the critical
voltage breakdown.

There is not enough test evidence or theoretical information
available at present which indicates definitely the law of energy
dissipation in the corona. Consequently one must be satisfied
in writing the basic differential equations as follows:

e=f<t>[f1<t—§,)+f=(‘+§)] ws2)
f(t)[fl( ) ,(H— )}

ich f(#) is the damping term. For the special case in which

QIQE‘

in w
% and the corona is neglected, the damping term is:

-3

1fR, G R
f@® =e_2(L+"')t = L=¢C
For lines in which %#g, one may use the foregoing damping
factor as representing an average value.

158. Velocity of Wave Propagation.—In the preceding
article it was shown that the velocity of wave propagaion in a

distortionless line has a value equal to v= \/%f It is of in-

terest to investigate this relation further. The inductance per
centimeter of a single-phase line is given by equation 35. If
the internal conductor flux linkages are neglected,
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=k D\,
L—iLn 2 )10 henry

where D =conductor spacing, in centimeters,

The capacity per centimeter of a single-phase line is given by
equation 68. Since the conductor radius is quite small com-
pared to the conductor spacing, this equation becomes:

KD farads
Ln—=
a

C=

1

1
Therefore: v-—ﬁ = V(EXWK)I()—&
n

—12
Since u=‘—11% and K=10—>;—61—1?——,

I S
- 10-12 s
GE

For single-phase cables the approximate velocity is:

10
=§——>f/}K% cm/sec

where K=relative dielectric constant.

=3X 10 cm/sec

=985 ft /micro-sec

159. Forward (or Incident) and Reflected Waves.—In
equations 441 it was stated that:

e=e1+e,

1=101+1,

el'a

R
where ey=¢ f1<t

_R, ]
ep=¢ L fx(t+

)—forward wave of voltage;

)=reﬂected wave of voltage;

Qi
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. /C-E
a=p/Fe Ltfl(t_§>=forward wave of current;

_E
lp=— 1/:1:5 ¢ L f(t+§>=reﬂected wave of current.

Notice that the surge impeaance was 1nker equal to ,‘/g

Thus: o .
1= 7, and ¢, = — Z, (443)

p——— ]
Piston Gun

Flexible Diaphragm . Flexible Diaphragm

N\
Heavy Liquid \1 Medium Weight Liquid } Light Liquid

Fig. 222. Analogue of Electric Surge.

Considering the lightning surge as discussed in Art. 155,
then the first forward wave of voltage is:

_E,
er=¢ L[E(e—e 1]

Bewley, in ‘“Traveling Waves on Transmission Systems,”
has worked out a number of typical examples based on the
foregoing equation of incident voltage. In this text it is pro-
posed to cover only the more practical aspects of traveling
waves.

160. Nature of Surge on Conductors.—A lightning surge
is analogous to the surge produced in the device of Fig, 222.
This diagram represents an elastic pipe completdl:” filled with
three kinds of liquids of different weights; one heavy, one of
medium weight, and one light. These three liquids are sepa-
rated by means of flexible diaphragms. A large piston gun
suddenly injects a surge of liquid into the pipe at some point,
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thus causing waves of pressure and velocity to travel toward
the ends of the pipe. Reflection waves will be set up at all
points of discontinuity, such as at the flexible diaphragms.
Consider two circuits of surge impedances Z; and Z; con-
nected in series as indicated in Fig. 223. If voltage and current
surges are introduced into circuit 1, waves of voltage and cur-

1 o 4 2 Z, &, e; 2

e i
Fig. 223. Circuits of Surge Impedances in Series.

rent will travel down conductor 1 toward the point of discon-
tinuity. Let these waves be denoted by e; and 1, respectively.
Waves e; and 7, will be transmitted through the point of dis-
continuity into circuit number 2, while at the point of
discontinuity reflections will take place in both voltage and
current. Let these reflected waves be denoted by e, and i,.

-y - — - ‘1

- | ep 1 ‘2 —_—
€
e — - |4,

RIS R ——

€rmpy—0 trmds—4
Fig. 224. Voltage and Current Waves.

The foregoing results are illustrated in Fig. 224. The funda-
mental relations existing between the various quantities are:

01=’I:121 e2=i=Zg er= —1:121
€py=062—6€1 1:,=’l:z—1:1
From these relations it follows that:
e=¢,+e=—1,.Z1+ea=(h—h)Z:+e

=(%—Ze—:)zx+e1=291—€%

Finally:
-
VAR A

(444)
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It therefore follows that:

=2y
e=ez— (445)
From equation 444, we obtain:
. 2Z,
=l o
or 7.,= 1«12:‘ +“77: (446)
Hence:
. Zj ""1?
1= 11'2';;,_ TZf (447)
T
e
€, St
€p > md k7
4y ——r
s O' ] ‘l — [
_____ o !

]
Fig. 225. Voltage and Current Waves.

Several cases of equations 444 to 447 are of particular
interest. These follow:

Case (a): Z,<Z,. The conditions of this case are illus-
trated in Fig. 224, in which e, and e, are both positive, e; being
greater than e¢,. - The current wave 1 is less than 4, and ¢, is
negative.

Case (b): Zi=Z,. In this case:
e;=e, and e,=0
ie=1; and 7,=0
Case (c): Z:<Z,. In this case, e;<e; and e, will be nega-
tive, while 43> and ¢, will be positive. These conditions are
illustrated in Fig. 225.
Case (d): Zy=0. In this case:
e;=0 Op=—01
tg= 2"1 ir = 1:!
Case (¢): Z;=infinity. From equation 446 it follows that
i3=0, from which ¢,= —1;. Also, ee=2e; and e,=e;.
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Equations 444 to 447 may be abbreviated as follows:

ee=eiM and to=4N

e,=e1M’ and 1:r=‘l:1N'
where M and N are the transmission coefficients, while M’ and
N’ are the reflection coefficients.

+€,

+iy 0|/ AN ~ 41y

Io—— g
%____ ey

i e

Fig. 226. Star Diagram for Z, > Z;.

161. Energy of Traveling Waves.—The surge energy may
be stored as electrostatic or electromagnetic energy. These
two forms of stored energy are:

Electrostatic energy =% Ce? watt-sec
Electromagnetic energy =4 L:? watt-sec

But, since e=1Z=1 ,‘/g, these energies are equal. Thus:

3 Cet=% L2

Professor Karapetoff suggests the use of so-called star
diagrams* as a means of illustrating the actions of traveling
waves, as shown in Fig. 226. Currents and voltages are
measured along the x and y axes, as indicated. The diagonals
are drawn with slopes equal to the surge impedance Z;. Another
line of slope Z; is drawn through the origin.

Let ey=forward voltage and ¢, =forward current. For these
conditions, ¢ shows the operating point on the Z; line. Through

* AIEE Trans., April, 1929.
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¢, draw a line parallel to Z,, and complete triangle acd. Then:

cd=e,+e,=e;=transmitted voltage
and ad=1,+1,=1y=transmitted current wave

Also the triangle acd is proportional to the power transmitted;
triangle ocg is proportional to initial forward wave power; while
triangle oab is proportional to power refli-cled

Fig. 226 corresponds to the casc vhen Z,> 7, and therefore
e;>e while 73<4;.  Consider now iue case of Z;<Z,, as in Fig.
227, all construction details being the same as in Fig. 226.

o
i
1
! “2 2,
R
______ da T,
| v
| -7
1 /,/ \ er
+4, »! lg +4,
f
1, !
i T2
+er Z,

Fig. 227. Star Diagram for Z; < Z).

This case and three other special cases, shown in Figs. 228,
229, and 230, are left to the reader to analyze.

162. Traveling Waves at a Junction.—For the conditions
shown in Fig. 231, a voltage surge ¢ is initiated on line No. 1
and travels toward a junction 0. With respect to the incoming
wave, all outgoing feeders can be considered in parallel. There-
fore, the looking-in impedance at the junction is:

Zo(p) = (448)

n

1
)
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- In case the feeders are transmission lines of distributed
constants, then the line surge impedance is:

Zi(p) = ﬁ approximately
z

2 Z

+€l /

N -y - .

i +14, .
9 b
‘1=‘r ez=201
€r
=0
ad \
+er 2,
Fig. 228. Star Diagram for Z,=Infinity.
+e z,
P _Jed e=o
|
! |
! | e=er
+4, ShRAVAN +4
. 4 z,=0
‘2=2‘r|
%

Fig. 229. Star Diagram for Z;=Zero.

In applying equation 448, there is one marked difference
from the standard application of the law of parallel impedances.
Normally, the looking-in impedance of a network should include
all impedance elements which are connected in series or series
multiple to a single set of terminals. Thus, in Fig. 231 any one
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of the # circuits might be made up of several series elements.
In normal sinusoidal steady state problems, the looking-in
impedance of any one of these lines would have to consist of
all series impedances. However, in the present theory we are
considering lumped surges, which for a particular instant of

+¢ /Zl::Zz
— g
AT
ya X
fo3 ere
\ /. ll z
g .
iy b0 i e,=0 +h
1,=0 “ gd
YA
+ €,
‘ Z,=2,

Fig. 230. Star Diagram for Z,=2Z;.

Z>(p)

Z3(p)

e

___,/;——- Z(p [Tt
! 0 Z (P)_/)——-»— e
-~ |---- ST e

Fig. 231. Traveling Waves at Junction.

time are localized, so to speak, over a comparatjvely short
length of line. As a surge strikes a particular g ece uf equip-
ment, the only reaction offered to the progress of the surge
is the reaction due to the surge impedance of that particular
piece of equipment. Thus, in Fig. 231 and equation 448, the
n impedances connected to the junction may include the surge
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impedances of transformers, or the surge impedance of a
lightning arrester, or even the surge impedance of a tower.

Incidentally, it should be emphasized that the surge im-
pedance of equipment such as a transformer or some other
iron-cored device is not to be confused with the commonly
specified power frequency impedance. Much of the confusion
and misunderstanding of the problem of surges is due to a poor
understanding of what is involved in the surge impedance.
For example, at normal frequencies, a transformer is thought
to possess only resistance and inductance. For a very steep
wave front such as we are considering, the inter-turns capacity
effect of the transformer coils becomes important.

For Fig. 231 the total potential at the transition point is:

or e=e+e,= (i1+1'r)Zo(P)

Since 74, = Z_Te(lﬁ and 7,= — ZeTrp)’
1

ke [z @ Z (p)]z"“’)

(e1te)Z:(p) = (er—er) Zo(p)

Zip)=2:p),
“= 2D T Zp)" (449)

The total potential at the junction is:

Zo(p)—Z:\(p)
Zo(p)+Z:(p)"

2Zo(p)
ot CZp)+2:p)" (450)

The total current wave transmitted to the feeders is:

e=e+e.=e+

—————-——e (451)

. e
"SZ®)  Zon)t2p)
Since e, =u21(p),
2Z:(p) - (@as2)

AT Ew AL
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The transmitted voltage wave is:

- 2Z\(p)Zo(p) .
Dz 2

Since 'ilZl(P) =e,

2Zy(p) . :
€= Zap)+ Z—lme =¢ (see equation 450)

The incident or forward wave of ~Lrrem is:

&

n= D) (453)
The reflected current. iz:
& __2dp =Zilp)
TZp) Zop)+Zi(p) T Zi(p)
or i= 2R =Zp), (454)

Zi D) 12"

The transmitted current wave to one of the # lines lcaving
the junction is:
€t 27 O(P) €1

Lo =Zk(P) _Zo(P) +Z (ijmj

The total transmitted current is:

(455)

11

2Z4(p)
‘“z’”‘ AOESACK sz(p)

Since ﬁ———l—=L
72k(0)  Zo(p)' .

) 2
AR AP

It is seen that all currents and voltages can be expressed
in terms of the tncident or forward wave.

163. Example of Lightning Surge.—To illustrate the appli-
cation of the foregoing theory of incident and reflected waves,
consider the case of a direct lightning stroke to a ground wire
at exactly mid-span, as indicated in Fig. 232, the ground wire

Xer  (see equation 451)
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construction being symmetrical in both directions. The
lightning surge introduces potential energy into the ground wire.
It will travel both ways from mid-span, dividing in inverse pro-
portion to the surge looking-in impedances in the two directions.
At a point of discontinuity at a tower, part of the surge will be
transmitted to the second span and part to the tower footing;
and the remainder reflected back to mid-span. A reflection will
occur at each point of discontinuity, until all the energy is dis-
sipated in circuit resistance elements. The following notation
is used.

Z,=surge impedance of lightning stroke;

Z =surge impedance of line;

Z,=surge impedance of tower;

Z;=surge impedance of tower footing.

Fig. 232. Lightning Surge.

From equations 444 and 445, the transmission and reflection
coefficients are defined as follows:

. .27,
Transmission coefficient = Z1Z,

Zy—7)

VAR DA

where Z;=surge impedance of circuit number 1;
Z,;=surge impedance of second circuit, or group of cir-
cuits, to which wave is transmitted.

Reflection coefficient = =Trans. coeff.—1

For this problem, transmission coefficients are indicated A,
B, C, etc.; while reflection coefficients are indicated A;, B;, Ci,
etc. The following coefficients must be defined:
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A and A at mid-span for lightning striking ground wire;

B and B, at tower top for waves traveling from line to tower;

C and Ci at mid-span for waves returning to mid-span from
the towers;

D and D, at tower footing for waves traveling from tower top
to tower footing;

F and F; at tower top for waves travelirg up the tower.

The transmission coefficients are

A=2‘2127Z;2

Bty

c=, ZficZ_jr_Z - (456)
Pz, |

In arriving at the transmission coefficients, certain par-
ticulars are involved, as follows:
At mid-span the looking-in impedance from the lightning
stroke to the line involves the two half-spans in parallel, or
Z

Zz=-2'

At the top of a tower, in determining the coefficient B,

_ZZ:
. —Z +Z ¢t
" At the top of a tower, in determihing the coefficient F,

2l

Zy

In determining the coefficient C,

Y4

Z+Z

However, reflected waves will return to mid-span from both

Zz=
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directions, and the potential at mid-span will therefore be
doubled. To account for waves returning to mid-span from
both directions, the coefficient C has included an extra 2.

es=J(t)
7 h—
— A By B D, D
Y
o— 4
e (0 F- Fy
0
1 458
ABy ABD‘
ABD:F A8p, p
1
| 4B, 1 &

-

(3]

4 F,
ABD,FC 2 43‘ C,
"

pan

Q
!

Time in Micro-sec.

T

Number of Times Waves Reach Mid-S

i

-
»
Top of Tower  ——

Base of Tower

Mid span

Fig. 233. Lattice Network.

Each reflection coefficient can be obtained by subtracting
unity from the corresponding transmission coefficient.

The initial potential of the stroke will be transmitted along
the conductor in both directions toward the towers. At the
towers, this wave strikes a point of discontinuity, and a reflec-
tion wave will start back to mid-span, while two components
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will be transmitted beyond the top of the tower; one of these
waves is transmitted to the base of the tower, while the other
component is transmitted to the second span. The wave
flowing down the tower will in turn be reflected at the base.
Thus, there will be a series of reflections up and down the tower,
and each time a wave reaches the top a certain component will
be transmitted back to mid-span. Simiiaily, there will be a
series of waves traveling back and forth between mid-span and
the top of the tower.

$=0 Tower No. 1 Tower No.2

£=05
=07

. _Mid span

t=25
AB\B‘l

1 An‘ntp\l"
T =32

£=3.0

Fig. 234. Lattice Network.

In order to determine the resultant potertial at any one
point in the system, it is necessary that some suitable book-
keeping method be adopted for taking care of all the waves
and their many reflections. Mr, Bewley, in “Traveling Waves
on Transmission Systems,” has suggested the use of the so-called
“lattice network.” ‘This chart, as illustrated for the p:rticular
problem chosen, is shown in Fig. 233. Along the horizontal
are laid off the length of one half-span and also the height of

the tower, as indicated by —;— and A. The vertical scale of the

chart indicates time in micro-seconds.
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The stroke potential e,=f(#) is applied at mid-span, and is
indicated at the origin of the chart. The potential wave trans-
mitted to the conductor and traveling toward the tower is Ae,.
This wave is illustrated by the sloping line from the origin to
the vertical Jine marked “top of tower.” The slope of this line
is obviously the velocity of wave propagation. At the top of
the tower, this wave strikes a point of discontinuity and a
certain component is reflected, while transmission takes place to
the next span and also to the base of the tower. The com-
ponents transmitted to the next span are left out of Fig. 233 and
are shown in detail in Fig. 234. The reflected wave is e,AB’,
while the wave transmitted to the base of the tower is.¢,AB.

Waves Waves
Entering Entering
From From
Left B F Right
) - R
Waves Leaving Waves Leaving
to Left to Right
D
Entering Entering
Leaving Leaving

Fig. 235. Quadrant Chart.

For all practical purposes it is sufficient to include in such
a chart only those waves which return to the point at which
the resultant potential is required within a time period of about
3 micro-seconds. Furthermore, to simplify the work, attenua-
tion coefficients may be neglected within such a short period
of time.

Another form of chart which can be successfully used to
keep track of the many waves is illustrated by the form shown
in Pig. 235. This chart is based on the fact that any point of
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discontinuity between two circuits may have waves approaching
the point from both directions, and waves will leave the point
of discontinuity in either of two directions. To keep track of
all these waves, a series of X and Y axes is drawn for each time
a wave reaches the particular point of discontinuvity. Waves
entering the particular point are secorded in the first and second
quadrants, while waves leaving are recorded in the third and
fourth quadrants. Furtheimore, tle second and third quad-
rants pertain to waves in one circu:t, while the first and fourth
quadrants pertain to waves in the second circuit.

Diagonal vectors through the origin of these X and Y
coordinates indicate transmitted wuves; and, for convenience,
the respective transmission coefficicnts might well be indicated
along with these diagonal vectors. Reflection of waves takes
place along vertical lines in this chart, as illustrated by vectors
marked B;, D, and F,.

Such a chart carried out in detail for the problem in question
is shown in Fig. 236.

From Figs. 233 and 236, it is apparent that the distance
% has been taken equal to five times the height of the tower and
that the velocities of propagation along the conductor and
along the tower are assumed to be equal.

From Fig. 233 it is seen that a second wave will reach the
top of the tower at 1.5 micro-seconds and that additional waves
reach this point at successive time intervals of 0.1 micro-second.
Thus, in the “‘quadrant chart,” the first wave reaching the top
of the tower is shown as A and the next reaching the top of the
tower from the left is ABiC in the sixth line. This wave is
related to the first wave leaving the tower to the left by the
reflection coefficient Ci.

To avoid lengthy combinations of terms, certain combina-
tions of coefficients have been abbreviated with tHe ‘ctters L
and T with proper subscripts. The waves leaving the top of
the tower will move toward mid-span, and the voltages at
that point are obtained by multiplying the values of such waves
by C, as indicated in the following table with the corresponding

times in micro-seconds.
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No. of Top of Tower
Times Waves Waves &
Reach Tower
A B Entering
1 B,
AB, AB Leaving
.4 D,
/ — ABD,
2 -Fy
/ ABD\F ABD,F,
/ "
/ / —_— ABD!F,
3 ; F,
[Cn/ ABD? R F ABD} F}
“
/ _— ABD] F!
4 F
ABD} F'F ABD]F}
Dy
 — ABD! F}
s T F
c,\ ABD}F}F ABD} F}
{ "
\\‘ aBc, @ ABD} F}
6 B S = Fy
Ly=(AB}C,+ABD}FF) AB,C,B+ABD} F{ =T,
D,
N ABD,FC, D,
7 F\
Ly = ABB\C,D\F + T,D\F AB®D\FC, + T,D,F, =T,
Dy
ABD! F, FC, T,D,
8 Fy
Ly=ABD?F, FC,B+ T,D,F ABD? RFC,B+T, D\F, = Ty
D,
ABD} FEFC, 5D,
Ly=ABD; F} FC,B,+ T,D\F Ty D\F,+ ABD} F}FC,B=T,
D,
“1
ABD} F} FC, T,D,
10 Fy
Lyy=ABD} F} FC,B, + T,D,F T,D,F,+ ABD} F} FC,B=T,,
D.
N
LeCy %o Dy
n Py
Ly = LgByCy + o D\F ToDyFy + LeC\B=T;,
D,
LG, 5,0,
12 F,

L,C\B,+ T, D,F

Fig. 236. Application of Quadrant Chart.
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TIME WAvE

0 A

1.0 , AB,C

1.2 ABCDF

14 ABCD\F(D\F,)
1.6 ABCD\F(DyF,)®
1.8 ABCD\F(D\F,)3
20 Ly~

22 Lib

24 Lgt?

2.6 L4C

28 Lol

3.0 IyC

3.2 Ll

For purposes of calculation, the abbreviated values for
L and T are as follows:

Te = ABB\Ci+ AB(D\Fy)
T: = ABC,D\F+ A BB\C:(D\F,) + A B(DyF,)®
Ts = AB’C\DiFF,+ AB’CiD\F(D\Fy)+ ABB\Cy\(D\Fy) *
+AB(D\Fy)
Ty =2AB’C\DiFF,(D\F\)+ AB’C\D\F(D:\F))*
+ ABB\C\(D\F1)*+ A B(D\Fy)®
T10=3AB’C\DiFF\(D\F:)*+ AB*C,\D\F (D,F,)?
+ ABB\C\(D:\Fy)*+ A B(D\F;)?

T1u=4ABC,DiFF\(D\F) ’+AB’C;D1F(D,E1) ¢
+ ABBC\(D\Fy)*+ AB(D\F))"*+ ABBIC}
Le = ABICi+ABDFiF
L; = ABB\C.D\F+ ABB,\C\D,F+ A BD,F(D\Fy)*
Ls = ABB:\C,\DiF\F+ AB’C\DiF*+ ABB\C\D,\F (D¥F\)
+ ABDF(DFy)®

Lo = ABB\.C\DIFiF+ AB'C\DiF’F,
+AB*C\DFYD\Fy)+ ABB\C\D\F(DiFy)?
: + ABD\F(D\Fy)



320

INTRODUCTION TO ELECTRIC POWER SYSTEMS

Liww=ABB\C\D{F:F+2AB’C,DiF*F,(D,Fy)

+ AB*C,DiFY(DyF,)*+ ABB\C\D\F(D\F,)?
+ ABD\F(D/F,)8

Lu=ABCi4+ ABB\C,D{FiF+3AB’C,DIF*F\(D\F,)*

+ AB*C\DiFY(D\Fy)*+ ABB,CD\F (D Fy)*
+ABD\F(DF))"

L= ABBICiD\F+ ABBICiD\F+ ABB,C,D\F(D\Fy)®

+4AB’C\DiF°F,(D\F,)*+ AB*C\D{F*(D\Fy)*
+ ABB\C\D\F(D:Fy)5+ ABD,F(DyFy) 1
+ABBICGID/F

Therefore the waves reaching mid-span from ¢t=2.0 to 3.2
are as follows:

TmME

20
2.2
24
2.6

238
3.0

3.2

Wave

ABCD\F(D\Fy)*4+ABiCC,
ABCD\F[(D\F;)’+2B,C}]
ABCD,F[(D\F)¢4-2B:C\(D\F,)+ BC.DiF]
ABCDF[(D\F,)"+2B,Cy(DiF1)*+2BCy(DiFy) (DiF)]

ABCD\F[(DyF1)3+2ByCi(DiF1)*+3BC1(DyFy)*(DiF)]

ABCD\F[(D\F1)*+2BiCy(DiFy)*
+4BCy(DiF)}(DiF)]+ AB.C(BiC)*

ABCD\F[(DyFy)0+2B,Ci(D1Fy)®
+5BC{(DiF ) (DiF)+3(BiCy)?

To the preceding list must be added the waves which are
transmitted to the second tower and reflected back toward
the first tower and thence to mid-span. For the wave trans-
mitted to the second tower and reflected back toward tower
No. 1 and thence to mid-span, the values are:

t=30............ AB,CB?
1=32............ AB\CB*D\F
t=32............ ABCD\FB\B
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For the wave transmitted from mid-span to the top of the
second tower, thence to the footing of the second tower and
reflected back to the first tower and then to mid-span, the

value is:
t=32............ ABCD,F(B?

Thus, to the previous values must be udded the following
waves:

1=30........ AB(P
1=32........ ARCINF QBB+ BY)
7(t)
~~f(t-1)
f(t-1.2)
e
1 12 14

f(t-1.4)

-Time in Micro—sec.

Fig. 237. Total Voltage at Mid-Span.

If the initial stroke is dencted as e =f£(z), then the respective
traveling waves reaching mid-span would contribute the
following to the voltage at that point:

TIME COMPONENT VOLTAGE

0 f@)

1.0 ABC f(t—1.0)

1.2 ABCD/F f(t—1.2)

14 ABCDF(D:\Fy) f(t—1.4)
1.6 ABCD.F(DiFy)? f(t—1.6)
1.8 ABCD\F(D\Fy)® f(t—1.8)
2.0 L4 f(t—2.0)

2.2 L.Cf(t-2.2)

24 LsC f(t—24)

2.6 L f(t—2.6)

2.8 LyiC f(t—2.8)

3.0 (LuC+ABCB? f(t—3.0)
3.2 [LuC+ABCD\F(2BB,+B?] f(t—3.2)
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In the preceding table it is understood that any one term
such as K f(t—x) holds only for values of t>x; and that, for
i1sx,

K fit—=x)=0

A graphical representation of the total voltage at mid-span
is therefore obtained by the summation of the several functions
previously tabulated or as illustrated in Fig. 237.

As a result of a negative reflection or transmission coefficient,
it is possible for some of the waves to be negative. This in
turn may cause the potential at mid-span to take on positive
and negative values, and the potential may actually oscﬂlate
from positive to negative values.

As already indicated, attenuation was completely neglected
in the present problem. In case attenuation were taken into
account, it would have been necessary to apply the damping
coefficient for the conductors and tower each time a wave
traveled over these particular parts of the circuit. However,
the result obtained with attenuation would be somewhat lower
than the value shown, so that the solution given is at least on
the side of safety.

164. Comments on Surge Calculations.—The work out-
lined in Chapter 22 serves merely to introduce the student to
the problem of surge calculations. The reader is no doubt
impressed with the complexity of the problem and should have
noticed the lack of engineering data and of tried mathematical
methods.

Probably the most troublesome part of the solution is found
in the fact that no definite and accurate method is available
for calculating the surge impedances of towers, grounds, and
even lumped circuits. In dealing with lumped circuits, such
as transformers or choke coils, there is a general temptation
to use normal power frequency impedances for the surge im-
pedances. Such a practice is very dangerous, as the impedance
under high frequencies is quite different from that at power
frequencies. Under normal power frequency operation, the
effect of the circuit inductance is very often the only important
parameter. Under high-frequency operation, the distributed
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winding capacity cannot be neglected. Furthermore the cir-
cuit resistance is also quite different under the action of very
high frequencies.






PROBLEMS

CHAPTER 2

1. In Fig. 6 the power wave consumed in a 12sistanice is shown to be
sinusoidal and of double frequen.y. Thu,

p=FErpln sin ot

where E,,=maximum vollage acrnss resistance; I,=maximum current
flowing; w=_2xf; f=frequency; and ¢{=tia-e in seconds.

Derive equations for the instantaneus power waves of each phase
of a three-phase balanced load of power factor angle 6, and then show that
the total three-phase power is independent of time. What important
deduction do you make from this result?

2. The Boulder Dain-Los Angeles transmission line has a resistance
per mile per phase of 0.113 ohm and an inductance per mile per phase of
0.00212 henry. The frequency of the line is 60 cycles per second, and the
length of the complete line is 266 miles. Neglecting the linc capacity,
calculate the sending voltage, sending power, sending power factor, and
efficiency required to deliver 100,000 Kw at 275,000 line volts for power
factors of 809, lagging, unity, and 809, leading. Plot these results against
receiver power factor.

3. The capacity per mile per phase of the line of Problem 2 is
0.0136X10—¢ farads. Consider the total capacity of the 266 miles con-
centrated at the mid-point of the line. Calculate the sending voltage,
sending power, sending power factor, and efficiency required to deliver
100,000 Kw at 275,000 line volts, for receiver power factors of 809, lagging,
unity, and 80% leading. Plot these results against receiver power factor.
Determine also the receiver voltage and the charging Kva for each of the
particular sending voltages just obtained.

4. Repeat Problem 3 with the total capacity divided equally between

the sending and receiver ends.
Note: It will be of interest to compare the results of Problems 2, 3, and 4 of this
chapter with the exact line solution of Problem 13, Chapter

5. Determine the maximum energy storage in the line inductance and
capacity for the particular conditions of Problems 2, 3, and 4. x

6. Table 1 represents the general impedance laws for the electnc,
magnetic, and dielectric phases of the electrical circuit. Remembering
the analogies indicated in Chapter 2, see how far you can build up a
similar table for the field of dynamics.

7. Calculate the capacitance of a condenser made up of alternate
layers of tin-foil and paper, alternate sheets of tin-foil being connected

325 .
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together as the two line terminals. There are 126 sheets of tin-foil and
125 sheets of paper having a thickness of 3 mils and an area of 6 square
inches. The dielectric constant of paper is 3.

8. A storage battery is short-circuited by a conductor of uniform
size that has a length of x miles. Define current density and voltage
gradient along such a wire. OQutline a series magnetic circuit and explain
clearly the similar relations of flux density and mmf gradient. Consider
next the magnetic field produced by a long straight conductor. Refer to
Art. 105 of “Principles of Electrical Engineering” by Timbie and Bush,
and contrast the meaning of the “Circuital Law' with the example of
voltage gradient along the battery circuit, and indicate under what con-
ditions

FHdl=NI and F£H di=0
Is the circuital law a form of Kirchhoff's law? Explain.

9. In Table 1 the following relations are given for the electric and
dielectric phenomena:

I 0 E
D=='Z-, D_A' andG=z-

Contrast these relations and explain their meaning on the basis of electron
motion. Also contrast the general phenomena of electric and dielectric
behavior with the mechanical behavior of an elastic body.

10. A conductor is shaped like the frustum of a cone, the two extreme
cross-sectional areas being 4; and A4,;. The total length of the conductor
is X. Uniform current density is assumed throughout the conductor
cross-section. Derive an equation for the resistance voltage drop from
end to end of the conductor.

11. A toroid of rectangular cross-section is wound with N turns of
wire, carrying a current of I amperes. The outer radius #; is much larger
than the inner radius ;. The width of the toroid may be denoted by w.
Assuming uniform permeability of the magnetic circuit, derive the equation
for the total flux within the toroid. Compare this result with the value
of flux obtained by using the mean circumference. Repeat the solution,
assuming that the permeability is directly proportional to the radius.

CHAPTER 3

1. A cylindrical tube has an internal radius »; and an outer radius 7s.
Derive equations for the internal and external flux linkages, assuming a
current I flowing in the tube and uniform current density.

2. A solid round return conductor of radius 7 is placed inside of the
tube of Problem 1. Assuming uniform current density, derive an equation
for the inductance of this circuit per centimeter length of conductor.
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3. A toroidal ring of permeability u is uniformly wound with N turns
of wire in which I amperes flow. The inner and outer radii of the ring
are 1, and r;, respectively, and the radius of the circular cross-section of

the toroid is p=";r'. Assuming uniform permeability throughout the

cross-section of the ring, determine its inductance in henries.

4. The leakage flux about a condurto- inside of a slot, as indicated
in Fig. 238, may be considered as being divided iuto three parts: (1) that
part which crosses the slot abuve the condactor, (2) tha. part which crosses
the slot below the upper edge of the conrictor, and (&) that part which
passes between tooth tips. The mmf get up by the current in the con-
ductor will be assumed as concentrated in *he air or the non-magnetic
parts of the circuit, since the rejuctince of the flux paths is almost entirely
concentrated in the air {or non-magnetic material) of the slot and across
the tooth tips. Uniform current density in the conductor is assumed.

- e o ;‘\ ~<
~
1 S
¢c ] \\
—————————— +\ \\
: \)}/\
\ \
_____ Pa- — — — P,
e ] [ h,
—_— =ho
o—f |

Fig. 238. Conditions in Problem 4.

(a) Derive an equation for the inductance L, above the conductor, per
centimeter of conductor. (b) Derive an equation for the inductance L,
for the partial linkage section, per centimeter of conductor. (c) Derive
an equation for the inductance L. across the tooth tips, per centimeter

of conductor.

NotEe: _ The flux path is assumed to be circular s the flux leaves the {ooth tips, and
to be straight over the slot width s.

5. A rectangular copper conductor of thickness ¢ and width w, Fig.
239, carries a current I, which is assumed to be uniformly distributed over
the cross-sectional area. Assuming that the internal flux follows a
rectangular path similar to the conductor rectangie, derive an equation
for the internal inductance per centimeter length of conductor.

6. A three-phase line has its conductors a, b, and ¢ arranged so that
Dapym Dyem D and D.,=KD, where K is a constant not greater than 2.
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The GMR of the conductorsis 7. Determine equations for the inductance
in henries per mile for each conductor.

7. A sirngle-phase circuit is built with three conductors a, b, and c.
Conductors b and ¢ are connected in parallel to form the return circuit.
Let 7o =ry=7=GMR of conductors a and b, while 7.=GMR of conductor c.
The separations of the conductors are Dap, Dy and Dee. Determine the
ratio of current division between
conductors & and ¢, and then

ot determine the inductance of the

< —>"] circuit in henries per mile.
f B —= -~ 8. Two parallel three-phase
¢ Tl lines have the six conductors
l _ == =~ located at the corners of a hexa-
== ~~<. gon, as indicated in Fig. 240.

Fig. 239. Conductor in Problem 5.  Determine the equation for the
inductance of each conductor.

9. Solve Problem 8 with
the conductors @’ and ¢’ interchanged, thus putting corresponding phase
conductors at diametrically opposite corners of the hexagon.

10. Determine the inductance per conductor in the parallel three-
phase circuit shown in Fig. 241.

a0 d Oe

aQ D O D D
) %0 d ov’
Yo (014
D D
eO o¢ L]e) @ Oc¢
Fig. 240. Positions of Fig. 241. Circuit of
Conductors in Problem 10.
Problem 8.

11. Solve Problem 10 with the conductors ¢ and ¢ interchanged.

12. Consider four equally spaced conductors a, b, ¢, and d, Fig. 242.
Conductors a and b are in parallel, and conductors ¢ and d are in parallel.
All conductors are solid wires for which GMR =p. Determine the ratio

4 of current division between parallel con-

[ 3 b . 4 ductors and also the impedance of the

O D O DO DO oyt (See“Electric Power Transmission
Fig. 242. Conductors of and Distribution” by Woodruff.)

Problem 12. : 13. Check several of the values of induc-

tive reactance in the table of Appendix VI.

14. Check values of the inductive reactance given in Chapter 1 for
the Boulder Dam-Los Angeles line,
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15. A three-phase, 60-cycle, 220,000-volt line with horizontally spaced
conductors 32 feet apart is carrying a balanced load of 100,000 Kw at unity
power factor. Neglect the capacity current. As indicated in Fig. 243,
two conductors, 6 inches apart, a1e located in either position (a) or position
(0). Determine the resultant flux produced by the power line and linking
with one mile of the parallel circuit in each of the positions shown. What
voltage is set up per mile in this circuity

oaz’Taz':)

o
szj\f_ 1o O

7
(@) )
Fig. 243. Conductors of Problem 15.

16. A coil is made up of six turns, arranged as in Fig. 8. If 609, of
the total flux links with all the conductors, 809, links with four turns,
while 1009, links with only the two center turns, compute the inductance
ratio, that is, the ratio of the actual coil inductance to the maximum
inductance for a concentrated winding.

17. In the case of a three-phase line with horizontally spaced con-
ductors a, b, and ¢, the conductors are arranged so that distance Dg,=dis-
tance Dy, =D and distance D,,=2D. Currents are as follows: I, = 1/120,
Iv= IZQ, I.= I/’I_E. Determine: (@) an equation for the total flux linkages
about each conductor; (b) an expiassion for the total inductance of each
conductor; (c) the voltage drop for each conductor, the resistance being
neglected.

18. Sketch a vector diagram showing the three voltage drops and
the three currents in Problem 17. (@) Determine an expression for each
power, in watts, obtained from the product of the corresponding voltage
drop, current, and cosine of the angle between the voltage and the current.
(b) Explain these results.

19. Repeat Problem 17 for the reverse sequence of currents.

20. Repeat Problem 18 for the reverse sequence of currents.

21. The Boulder Dam-Los Angeles line operates with : lanced,
positive-sequence line voltages of 278,000 volts at the generator end of the
line. The conductors have a diameter of 1.4 inches. For the purpose of
this problem assume that these conductors are solid round wires, although
1hey actually are of the segmental hollow type (see Art. 2). Conductors
are horizontally spaced 324 feet apart, the phase-a conductor being at the
left and the phase-c conductor at the right. Resistance of conductors is
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0.0214 ohm per 1,000 feet at 25° C and frequency of 60 cycles per second.
Neglect the capacitance of the line.

Assume a balanced load of 150,000 Kva at unity power factor at the
sending end of this line. Use the following current notation: [, =1/120,

L=1[0, L=1[2%.

Calculate the resistance and inductance voltage drops and receiver line
voltages for the following two cases:

(a) Conductors fully transposed.

(b) Conductors not transposed.
What is the nature of the load at the receiver end for these two cases?

22. Repeat Problem 21 for the case of balanced, positive-sequence
line voltages of 275,000 volts at the receiver end and a balanced load at
the receiver end of 150,000 Kva at unity power factor, solving for the same
quantities applied to the sending end.

CHAPTER 4

1. A single-phase line is built with conductor ¢ as one side of the
circuit and with conductors b and ¢ operating in parallel as the other or
return side of circuit. Considering the geometric mean radii as 7,, 75, and
r. and the distances between conductors as Dgp, Dy, and D4, derive an
equation for the total single-phase inductance per centimeter of line, by
the use of equivalent GMR and GMD, according to the theory of Chapter
4. What limitations are involved in such a solution?

Note: Uniform current density throughout the conductor was assumed in Art. 21,

2. The terminal connections of a three-phase generator are made with
six conductors located as in Fig. 244. Applying the theory of GMR and
GMD equivalents, derive an equation for the inductance of each phase.
All conductors have the same GMR. Compare the result with the answer
for Problem 10, Chapter 3.

aQ a Oa
D D

 Jo) d oy
D D

(o] d Qo'

Fig. 244. Conductors
of Problem 2.

3. The Boulder Dam-Los Angeles line uses a hollow copper conductor
with an outside diameter of 1.4 inches and an approximate wall thickness
of 100 mils. Assuming perfectly smooth outside and inside surfaces,
apply the method of Appendix II and determine the conductor GMR.
Check this result with the value in Table 3.
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4. Assuming that the center strand of a standard seven-strand cable is
left out, derive the equation for the resultant geometric mean radius as
done in Art. 24.

5. Check the value in Table 3 for a 19-strand cable.

6. A single-phase line is composed of four conductors located at the
corners of a perfect square. Each side of the single-phase circuit is com-
posed of two conductors on one side of the square. Because of the sym-
metry of the arrangement, the current in each conductor may be assumed
to be equal to one-half of the total current. Using the basic law of flux
linkages of Chapter 3, derive equations for 1he inductance per conductor,
the inductance per pair of parallel conducvors, and the circuit inductance.
Also derive an equation for the circuit inductance by the law of GMR's.

CHAFTER 5
1. A current of 50 amperes, at 60 .ycies, flows through conductor
a, the return conductor being so far away that its effect can be neglected.

SHY s s THHT
;[ o) o)
4 N N
o 6" @) O
o7 3 4 O—— o0
Fig. 245. Circuits F|¥ 246. Lines Fig. 247. Coils of
of Problem 3. of Problem 4. Problem 5.

A second circuit composed of conductors y and y’ is installed so that
these conductors are 3 feet and 3.5 feet from conductor a. Determine
the voltage induced in the second circuit per mile of circuit.

2. Suppose the positions of y and ¥’ in Problem 1 are interchanged
at every mile. What will be the resulting effect of conductor a?

3. A three-phase circuit with horizontal spacing, as in Fig. 245,
carries currents as follows:

I.=100/0, I,=100/120, and Z,=100/249

Located directly below the center conductor is a telephone circuit of two
wires. Determine the resultant induced voltage in the telephone circuit
per mile of circuit for a frequency of 60 cycles per second.

4. Two single-phase power lines are installed on the same poles, as
indicated in Pig. 246. Conductors 1 and 2 belong to ong liney “nd con-
ductors 3 and 4 belong to the second line. Derive equations for the
mutual inductance of each circuit upon the second circuit. To be per-
fectly general, assume that all conductor spacings are different.

5. Two coils of turns N; and N, Pig, 247, are arranged so that their
axes coincide. Coil 1 carries a current of I, amperes. (a¢) Write equa-
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tions for the induced émf in both coils in terms of the time rate of change
of flux and also in terms of the self and mutual inductances. (b) Repeat
(a) for the case of coil 2 carrying current I;. In both (¢) and (b) neglect
the effect of partial linkages and assume that the mutual flux is equal
to K times the total flux of each coil, where K =coefficient of coupling.
(¢) Assume now that both coils are connected in series and carry the same
current . Write equations for the total induced voltages for the con-
ditions of additive and subtractive coupling and derive equations for total
inductances (see Case 1, Art 91).

CHAPTER 6

1. Derive an equation for the capacity of a single conductor con-
centric lead-covered cable having a single homogeneous dielectric of con-
stant k.

2. Repeat Problem 1 for the case in which three types of dielectrics
with constants k;, ks, and k3 are used. The dielectrics are assumed to be
applied in concentric layers.

3. Check several values of capacitive susceptance given in the table
of Appendix VI.

4, Check the capacitive susceptance given in Chapter 1 for the
Boulder Dam-Los Angeles line.

5. Three conductors 1.4 inches in diameter are located 32 feet apart
horizontally and 70 feet above the surface of the ground. Assuming
transposition of conductors and balanced three-phase voltages, determine
general equations for the capacity per phase; first neglect the effect of
the earth, and then take the earth into account. What is the earth
correction factor? From these equations determine the capacities in
farads per mile for the line with and without the effect of the earth.

6. Calculate the charging current per conductor for the Boulder
Dam-Los Angeles line, using data in Chapter 1. At a line voltage of
287,000 volts, how many Kva of charging capacity are required for one
three-phase line?

7. Equations 66, 67, and 68 are all applicable for the computation
of capacity between two wires. Compare the results of these three
equations for two wires that are 5 feet apart and 0.5 inch in diameter.

8. A double-circuit tower has its six conductors disposed at the
corners of a hexagon, each side of which has a length of D centimeters.
The two lines operate in parallel. The two top wires form one phase,
the two middle wires form the second phase, and the two bottom wires
form the third phase. The conductors of each circuit are transposed,
but there is no transposition between opposite sides of the tower. Derive
the equation for the capacitance per conductor to neutral. The current
per conductor is equal to one-half the total phase current.
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9. Repeat Problem 8 for the case in which corresponding phase wires
are diametrically opposite.

10. Plot a diagram similar to Fig. 22 for the case of two conductors
having a radius equal to 1 centimeter and spacing equal to 10 centimeters.
The voltage between conductors is 1,000 volts. Equipotential line at
100 volts difference should be drawn.

CHAPTER 7

1. A three-phase, 60-cycle, 275,000-vcit transmisrion line has the
following data:

Resistance permile.............. =0.1125 ohin;
Capacity permile. ... ........... =0.0136 microfarad;
Inductance per mile..... ... \...=-0.00212 henry.

Determine: (¢) The constant m (sce equation 94); and (b) the characteristic
or surge impedance Z.

2. By substituting the identities of equation 110 into equation 106,
derive equations for E and [ in terms of the exponentials e*e/? and e #e7v
and explain the significance of these results.

3. Modify the equations obtained in Problem 2, for the special case
when E.=Z.I,. Explain the significance of these results.

4. Tabulate the values of e*ei? and e *e~7* for the line of Problem 1
and the lengths of Problems 2 and 3, and plot a family of vectors showing
the initial, reflected, and resultant components of voltage and current
as the length of line is increased.

5. Determine the generalized constants 4, B, C, and D for lengths
of 100, 200, 300, 400, and 500 miles for the data of Problem 1.

6. Determine the equivalent 7 and T circuits for the line of Problem 1
for lengths of 100, 200, 300, 400, and 500 miles.

7. For the data of Problem 1 and a receiver voltage of 275,000 volts
across lines and a receiver power of 100,000 Kw at 909, lagging power
factor, determine the sending voltages for lengths of 100, 200, 300, 400,
and 500 miles.

8. From equation 106 derive formulas for the receiver voltage and
current in terms of the sending voltage and current.

9. For a receiver current equal to zero, determine equations for the
receiver voltage and sending current in terms of the sending voltage.
From these equations determine, for the line of Problem 1, the receiver
voltage, sending current, and sending Kva required to maiptain'h sending
voltage of 275,000 volts across lines for lengths of 100, 200, 300, 400, and
500 miles.

10. With a line voltage of 110,000 volts applied to line number 8 of
Appendix VII, determine the receiver voltage for the open-circuited con-
dition. '
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11. What would be the sending voltage for line number 8 of Appendix
VII, in order to maintain 110,000 volts at the receiver at no load?

12. Repeat Problem 11 for 10,000 lagging reactive Kva at the receiver
end operating at 110,000 volts.

13. A three-phase line has the following data:

Resistance per phase per mile. . ... =0.113 ohm;
Inductance per phase per mile. . .. =0.00212 henry;
Capacity per phase per mile. ..... =0.0136X 10" farad;
Prequency...................... =60 cycles per second.

Calculate the sending voltage, sending power, sending power factor, and
efficiency for a load of 100,000 Kw at 275,000 line volts at the receiver,
for power factors of 80% lagging, unity, and 80% leading. Plot these
results against the receiver power factor. Determine also the receiver
voltage and charging Kva for each of the particular sending volfages just
determined. (Compare these results with those of Problems 2, 3, and 4
of Chapter 2.)

14. In Art. 40 the following equations are given for a transmission line?

E.= %’(e"e"'+e“'e""’) +£L§~°-(E“e" v —eve i)
L E-X,

L= (eefo e i)+ Z5 (evelv— eve i)

Assuming a line of zero attentuation (that is, #=0) and a line of quarter
wave length (that is, v= g), derive equations for the receiver current and
voltage in terms of sending quantities, and explain the results. Notice
that zero attenuation is obtained if the series resistance and shunt con-
ductance are equal to zero, so that ms=j(Vab)s=jv and Zo= /%c
Determine also the equation for s in terms of the line inductance and
capacity. What length in miles will this correspond to for a 60-cycle line?

15. Write equations for the voltage and current of a line for the
special case of line loaded with an impedance which is equal to the surge
impedance of the line. Derive equations for the power and reactive volt-
ampere efficiency of such a line.

' CHAPTER 8

1. A transmission line with general circuit constants 4, B, C, and D
is connected to a receiver transformer of series impedance Zrgp (shunt
admittance omitted). Determine the generalized constants for the com-
bination.
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2. Solve Problem 1 for the case of a line in series with a sending-end
transformer of impedance Zrs (neglect shunt admittance).

3. Solve Problem 1 for the case of a line with sending and receiver
transformer series impedance.

4. Two transmission lines with constants 4,, By, Ci, Dy and 4,, By,
(s, D; are connected in series with a balanced load of impedance Zar
tapped off at the junction point of the ‘wo lines. Determine the general
constants for the combination.

5. Three transmission lines art: connected n series, li.c 1 being at the
sending end and line 3 at the recciver end  [)etermine veneral constants
for the combination.

6. Two lines are connected in parallel. Determine general constants
for the combination.

7. Determine enough data to plot curves for P,, P,, Q,, and Q, (see
equations 146 and 148) against torque angle fcr line number 7 in Appendix
VII when E,=E,=115,000 line volts.

8. Repeat Froblem 7 for line number 1 {or the following line voltages:
E,=2178,000 and E,=275,000 volts.

9. Determine the constants 4, B, C, and D for one of the lines of
Appendix VII.

10. Determine the Thevenin equivalent simple series line for one of
the lines of Appendix VII.

11. The following test data were obtained on a laboratory model
transmission line at the University of Tennessee:

Sending end impedance, receiveropen ............ =18.48/84.8
Sending end impedance, receiver short-circuited. . ..=13.67 /77.1
Receiver end impedance, sending end open ........ =18.65/85.2

Determine the generalized constants 4, B, C, and D,

12. From the results of Problem 11, obtain data and plot curves of
P,, Q, P,, and Q, for E,= E,=127 volts (see equations 146 and 148).

13. A four-terminal network is set up in the laboraiory. In such a
case both the sending and receiver terminals are accessible. Devise a
method for obtaining the constants 4, B, C, and D from the two sending-
end impedances, namely, Z,, and Z,. (see Art. 54).

14. For the circuit in Fig. 39 of Chapter 8, assume the following data:

N
W

Zi=1.25475.5, Zy=1+45.0 and Y“"zlo =0.05— 7608
Determine the constants 4, B, C, and D for this circuit. If the receiver
voltage and current are given as E,=2,300+4-j0 and [,=80—3;60, deter-

mine the sending voltage and current: (a) by using generalized cu'cmt
equations; and (b) by direct solution of the T circuit.
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15. The impedance and admittances of Fig. 40, Chapter 8, are as
follows: .
Z=1.254j52.5 and Y,=Y,=0.02—;0.08

Determine the generalized constants 4, B, C, and D. If the receiver
voltage and current are E,=2,300470 and I,=100—;50, determine the
sending voltage and current: (a) by using the generalized circuit equations;
and (b) by direct solution of the = circuit.

16. Derive equations for the generalized constants 4, B, C, and D
for the simple series circuit in Fig. 38. See equations 128, Art. 45.

17. Derive equations for the generalized constants 4, B, C, and D
for the T circuit in Fig. 39. See equations 129, Art. 46.

18. Derive equations for the generalized constants 4, B, C, and D
for the = circuit in Fig. 40. See equations 130, Art. 47. .

o v’VzVV‘ 0
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| z
E, ; E,
IS If
(c) N

Fig. 248. Circuits for Problem 19.

19. Derive equations for the generalized constants 4, B, C, and D
for the circuits shown in Fig. 248. For each of the three circuits, verify
the statement that N=4 D — BC=1 (see equation 126).

20, Verify that N=4D— BC=1 for each circuit of Arts. 45 to 48,
inclusive.

21. A transmission line is defined by the following constants (see
equations 131);

d =cosh ms, B=Z, sinh ms,
C=Yosinh ms, and D=4
Determine the equivalent T circuit for this line.
22, Solve problem 21 for an equivalent = circuit.

23. Verify that N=4 D— BC=1 for the case of tap-changing trans-
formers and phase-shifting units (see Art. 51).
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CHAPTER 9

1. Draw circle diagrams for the line of the example of Art. 57, but
assume a sending line voltage of 125 Kv and a receiver line voltage of 115
Kv. From these circles determine the synchronous condenser capacity,
torque angle, sending power, sending power factor, and cfficiency as
functions of the receiver power. What is the static power limit of this
line?

2, Using theline data of the exa-nple of A1+, 57, set up ~i-cle diagrams,
according tc the method outlined in Aris. 58 - 1d 9, for voltage ratios of
1.1, 1.0, and 0.9. Obtain all pertinent dut « vor a receiver line voltage of
115,000 volts. '

3. Solve Problem 2 by the methd ouikned in Art. 60 for a receiver
line voltage of 115,000 volts.

4, Start with the following generalized equations:

E.=dE+B8I
and L.=CE+DI

Also, utilize the following relation for the receiver power and reactive volt-
amperes:

-Pr"'jQr = Erlr

where E,=conjugate receiver voltage.

Solve for P,—jQ,. Then, taking the term for receiver power, deter-
mine the maximum power limit and the corresponding torque angle by
obtaining a solution of the derivative of P, with respect to the torque
angle ¢. Check this result with that of Art. 61.

5. A circuit with constants 4, B, C, and D isloaded on an impedance
Z so that E,=[,Z. Obtain an equation for [, in terms of F,, the con-
stants 4, B, C, and D, and the impedance Z; then show that the resultant
equation represents a circle diagram for constant voltage E..

6. A simple line of impedance Z= R+jX is loaded with a variable
resistance r. With constant voltage applied at the sending end, determine

conditions for maximum power delivered to the receiver end.

Nore: Set the expression for the receiver power in terms of the variable lJoad
resistance, and t‘llagn set the derivative of the mﬁ'& power with respect to the load
resistance equal to zero.

7. Repeat Problem 6 for the case of a load of variable impedance Zy,
of variable power factor.

8. Solve Problem 6 when the line is defined by the congtantsis’, B,
G, and D. :

9. Solve Problem 7 when the line is defined by the constants 4, B,
C and D.

10. In power transmission, the torque angle must not exceed the
angle 8 (see Art. 61); wharaas, in the field of electrical communication.
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there seems to be no such limitation of the electrical length of a line. Why
is this true?

11. Determine the Thevenin equivalent simple series circuit for the
line of Art. 59.

12. Determine the necessary data and plot loss and efficiency circles
for the line of Art. 57.

13. Plot circle diagrams for line number 1 of Appendix VII for
E,=287,000 and E,=275,000 line volts. From this chart, obtain data
and draw curves of sending power, sending power factor, receiver power
factor, efficiency, reactive Kva at sending end, reactive Kva at receiver
end, and torque angle, all these quantities being plotted against receiver
power.

14. The line of Problem 13 is supplied at the generator end
with a bank of single-phase transformers with 120,000 Kva total capacity
and 109, impedance and 19, resistance (based on 120,000 Kva). The
generator voltage is 18,000 volts across lines. The normal high-tension
voltage of the transformer is 275,000 volts. The transformers are equipped
with taps in steps of 5 and 10 per cent, plus and minus. Construct a
family of circle diagrams for the composite system for each of the fore-
going transformer ratios, the generator voltage being held constant at
18,000 and the receiver voltage being held constant at 275,000 volts. From
this chart indicate changes in operation obtained by tap changing.

15. The system of Problem 14 is also supplied with a phase shifter
between the generator and the sending-end transformer. Assume no
additional impedance. The phase shifter gives plus and minus 10-degree
shifts in voltage. For normal voltage taps, develop circle diagrams for
=10 and =5 degree phase shifts for constant generator and receiver
voltages. Contrast this chart with the results of Problem 14 and discuss
the feasibility of phase shifters.

16. A four-terminal network is loaded with a variable resistance R.
Using the two generalized equations and noting that E,=[I.R and
AD—BC=1, determine the equation for the looking-in impedance and
show that such an equation represents a circle envelope, in which resistance
appears along the x-axis and reactances appear along the y-axis.

17. Solve Problem 16 for the case of a simple series circuit of constant
inductive reactance and variable resistance (see Fig. 49).

18. Develop a circle diagram of current similar to Fig. 50 for a series
circuit of constant capacity reactance and variable resistance. Include a
circle showing the individual voltage drops.

19. Solve Problem 18 for a series circuit of constant resistance and
variable reactance, both inductive and capacitative.

20. In Art. 56 the following equation based on the receiver circle of
Fig. 51 (a) is given:

Eu=AE.[cos (8—a)—j sin (8—a)]+BI,[cos 6,—j sin 6]
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Using this equation, prove the following (which is another form for the

receiver circle equation):
2 2
(P IEY + (Qr—mED? =%.’f4
where P, =receiver power;

Qr=receiver reactive volt-amperes;

A A .
l=§ cos (B—a) and m=2 sin B—-a).

21. Using the result of Problem: 20, d¢termine the equation of the
envalope of all possible receiver circles for variable receiver voltage and

constant sending voltage. E E}
Ansuer. (mP...-!-lQ,)2+F;(lP.-— mQ,) = ZF.‘

Nore: This can be accomplished by differentiating the result of Problem 20 with
respect to Er. From the derivative, an exp:ussion for Er may be obtained, which should
then be substituted in the result of Problem 20.

22. A transmission system has the following constants:

A =0.917470.017
B=30.6+7151.05

For a value of E,=89,000 volts determine the necessary data and plot
the receiver circle envelope to the scale of P, and Q.

23. If the receiver power factor angle is 6,, the value of which is such
that Q,= — P, tan 6,, obtain the equation of the receiver envelope in terms

of the receiver power factor. Ei[—(l+m tan 6,) = 5 c:i)s 0J
Answer: P,= 2B%(m—1 tan 6,)?

24. Using the data of Problem 22 and taking E, as 89,000 volts,
determine the data and plot receiver power against power factor angle
from the result of Problem 23.

25. Using the result of Problem 20, determine an equation of the

envelope of all possible receiver circles for variable receiver voltage and
constant sending voltage, expressing the resultant receiver power in terms

of E, and E, and eliminating Q.. 4/ 12
Answer: P,= —lEf—'rlEztm 4:.4?'1?—}2:

res; to Er. From the derivative an expression of Qr may be obtained, which
then be substituted 1n the result of Problem 20, '

26. Using the data of Problem 22 and taking E, as 89,000 volts,
determine data for receiver power-voltage curves, based on the result of

Nors: This can be accomplished by differentiating the result of Problem m
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Problem 25. Repeat the solution for E,=80 per cent, 90 percent, 110
per cent, and 120 per cent, assuming E,=289,000 volts to be 100 per cent.
Plot these data as curves, using voltages as the ordinates and powers as the
abscissas,

27. Obtain an equation similar to the result of Problem 20, but for
sending power P, and sending reactive volt-amperes Q.. See Fig. 52 ().

28. Repeat Problem 21, but for the sending circles.

29. Repeat Problem 23, but for the sending circles.

30. Repeat Problem 25, but for the sending circles.

CHAPTER 10

1. The three line voltages of a three-phase system have been obtained
by voltmeter readings as 2,100 volts between conductors a¢ and b, 2,300
volts between conductors b and ¢, and 2,500 volts between conductors
¢ and a. Positive sequence is assumed. Determine the sequence com-
ponents, and check the results vectorially.

2. A three-phase system is delivering power to a single-phase load.
In this case, Jo=] and [y=—]. Determine the sequence components of
current.

3. A three-phase balanced set of positive sequence voltages is applied
to a circuit, the line impedances being Z=0.1+70.5. The supply voltages,
neutral to lines, are: Foa=6,350/0, Eo»=6,350/120, and Ey=6,350/120.
The currents are: [,=1,000/0, [,=1,200/120, and [.=1,500/270. Deter-
mine: (a) the receiver voltages, using the given currents in computing
voltage drops; (b) the sequence component currents; and (¢) the sequence
component voltage drops and the corresponding receiver voltages.

4. A three-wire single-phase system has the following voltages:
Eu;=110/0, Ep.=110/0, and E..=220/180. Determine sequence com-
ponent voltages.

5. A three-wire single-phase system may be considered as a special
type of three-phase system with phase voltages as follows: Eo=110/180,
Ew=0, and Ew=110/0. Determine the sequence component phase
voltages,

6. The phase a of a three-phase circuit is open, so that Iym —I,.
Determine the sequence component current.

. 7. A balanced delta-connected distribution system is grounded at one
corner of the delta. Determine the equivalent sequence phase voltages.

8. The currents in a three-wire system are: J,=100/0 and [ym[o=
50/180. Determine the sequence currents.

9. In a laboratory test, three voltage sources are connected in series
as indicated in Fig. 60 of Chapter 10. The sequence voltages of phase a are:
Ea=100/0, Eqp=100/30, and Eqen=100/0. Determine the resultant phase
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voltages and line voltages. From these line voltages, calculate the sequence
phase and line voltages.

CHAPTER 11

1. The saturation curve of an iron-cored reactor is given by the
following data:

Iin amperes.... 5 10 2 34 55 85

¢ in lines........ 8,000 12,000 14,000 15000 16000 19,000

Neglecting hysteresis, determine and plot w..ues of inductance against
current., The reactor may be assumed tc nave 500 turns. What are the
maximum, minimum, and average values.of the inductance?

2. (a) Plot the no-load chara~teristics and the zero per cent lagging
power factor full-load characteristics for the three-phase alternators listed
in the accompanying table. Then determine values of adjusted direct
synchronous reactance. Plot the results against field current and also
against induced emf (induced emf = terminal voltage plus leakage react-
ance drop). (&) Determmne values of saturated direct synchronous
reactance for each machine listed in the table. Plot the results against
induced emf. Compare values of saturated and adjusted synchronous
reactances. (c) Specify the positive-sequence reactance for each machine.

Nore: The Potier triangle must be used in plotting zero per cent lagging power

factor characteristics.
THREE-PHASE ALTERNATOR DATA

Machine A B C D
Type Oil Engine | Steam Engine | Verk, Water | Vert, Water
Capacity, Kva 500 938 750 16,000
Terminal line volts 2,300 2,300 600 11,000
Speed, rpm 225 180 200 133.3
Frequency, cycles/sec 60 60 60 60
Pole arc/pole pitch 0.62 0.614 0.648 0.71

Iy Ep 1y Ey Iy E, Iy E,

23 867 33 810 34 251 100 3,700
29 1,040 60 1,270 51 318 150 5,200
No-load Sat. 38 1,270 80 1,500 64 376 250 17,050
I;=field current 50 1,500 125 1,730 87 433 . 350 8,060
E,=phase voltage { 71.5 1,730 163 1,850 132 490 500 8,950
90.0 1,850 220 1,960 164 520 600 9,400
118 1,960

Zero % F. L.
Lagging 35, o0 51 0 57 0 190 ]

P. F. Sat. 103 1,500 164 1,500 147 376 550 6,350
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3. The test data in the accompanying tabulation were obtained on
a 11-Kva, 220-volt, 1,200-rpm, 60-cycle, salient pole alternator. Deter-
mine values of adjusted synchronous reactance (Xg), and plot the results
against field current. What is the unsaturated synchronous reactance?
Plot the same results against induced voltage.

SALIENT POLE ALTERNATOR DATA

NO-LOAD SATURATION CHARACTERISTIC

Field current 1.2 20 3.0 40 5.2 7.2 9.0 10.75
Phase Voltage 39.0 65.5 95.0 120 140 163 177 186

ZERO PER CENT LAGGING POWER FACTOR FULL-LOAD (30 AMPERES)
SATURATION CHARACTERISTIC

Field Current 33 40 5.0 6.0 70 8.0 90 10.0
Phase Voltage 0 210 520 80 100 114 124 132

4. TUsing the data of Problem 3, determine the Potier triangle, and
obtain the leakage reactance and armature reaction. Determine values
of saturated synchronous reactance (Xa), and plot the results against
induced voltage.

5. The generator of Problem 3 was operated at synchronous speed,
while the stator was connected to a three-phase source of power. The
field current was left open-circuited. In this manner a synchronously
revolving mmf was provided, which rotated in the same direction as the
field structure. The alternator was equipped with suitable means of vary-
ing the relative angular position between the revolving armature mmf
and the field poles. Input power to the armature was measured by means
of a voltmeter, ammeter, and two wattmeters. The following data were
obtained for different relative angles between the revolving mmf and the
field poles:

Angle, elec. deg. 0 10 20 30 40 50 60 70 80 90

Phase voltage 68 68 68 63 68 68 68 68 68 68

Current,
amperes 19.0 20.0 21.1 229 248 26.7 28.3 29.6 30.3 30.4
Watts 514 820 1,110 1,300 1,400 1,360 1,180 960 634 220

Determine values of synchronous impedance, and plot values of syn;
chronous reactance against relative angular position. Specify the values
of direct and quadrature synchronous reactances. How do these values
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of direct synchronous reactance compare with the results obtained in
Problems 1 and 2?

6. The alternator of Problem 3 was tested for subtransient reactance
according to the method outlined in Art. 80. The test data are as follows:

Angle, elec. deg. 0 10 20 30 40 50 60 70 80 90

Current, amperes 30 30 30 30 30 30 30 30 30 30
Phase voltage 14.1 14.2 14.3 14.45 15.4 16.6 17.45 18.25 19.0 19.0
Watts 204 208 212 228 258 300 336 364 390 395

Determine the corresponding value. +f subtra~sicnt reactances and plot
the results against angwular disnincement. What are the direct and
quadrature subtransient reacliaces? From these values determine the
negative-sequence reactance

7. The alternator or Problem 3 was tested according to the method
of Art. 85 for negative-sequence impedance. The following data were
obtained: ‘

Field Current 1.6 1.9 21 235 24 2.7 2.9
Voltage 23.7 280 31.1 338 363 408 44.1
Current 220 257 286 31.0 330 37.2 400
Watts 440 610 754 890 1020 1295 1500

Determine values of negative-sequence impedance,.

8. The alternator of Problem 3 was tested according to the method
of Art. 86 for zero-sequence impedance. The following data were
obtained:

Field Current 1.6 2.0 2.2 24 2.7 3.2 3.6 4.0

Voltage 9.3 120 127 142 158 19.0 216 23.8
Current 29.7 379 404 450 500 610 68.6 75.6
Watts 180 290 330 418 520 745 962 1,180

Determine values of zero-sequence reactance.

CHAPTER 12

. 3

1. Determine the transformer T circuit for t ansformer .... from

the data in the following table: (z) based on the high-voltage side; (b) based
on the low-voltage side.
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2. Determine the positive- and negative-sequence impedance for
transformer . ... from the table. Specify the impedance to the scale of
‘he high-tension and low-tension windings.

3. Determine the zero-sequence impedance based on the high-tension
and low-tension windings for transformer .... for each of the following
three-phase connections:

(a) Y-Y, both neutrals grounded;

(b) Y-Y, primary neutral grounded, secondary neutral open;
(¢) Y-Y, both neutrals ungrounded;

(d) Y—delta, neutral grounded;

(e) Y—delta, neutral ungrounded;

(f) Delta—delta.

For each of these cases indicate how the transformer impedance is intro-
duced into the system network.

TRANSFORMER DATA

Voltage No-Load |Per Cent | Load Cop- | Per Cent
;f)rr:’n:; Kva Losses ei'xc, per Losses Iiftpleeg
H V. L. V. Watts Current Watts ance
667 2,300 240 2,500 7.0 7,500 5

1,000 13,200 600 3,500 6.0 10,500
2,000 22,000 2,300 6,300 5.5 18,900
5,000 38,200 12,000 14,300 5.5 42,900
10,000 76,400 11,500 27,000 5.0 81,000
25,000 127,000 13,800 70,000 5.0 182,000 15

MW
© ® o o

4. A generator is connected to a load through a Y-Y bank of trans-
formers with interconnected neutrals, as indicated in Fig. 249, The

% e
i T

Generator, 1,000 Kva Transformer
1,000 Kva

rig. 249. Connections for Problem 4.

primary line voltage is 13,200 volts, while the secondary line voltage is
2,300 volts. The generator zero-sequence reactance is 10 per cent. The
transformer exciting current may be taken as 7 per cent on either the high-
or low-voltage windings. The transformer coefficient of coupling may be
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taken as 90 per cent. Neglecting all transformer resistances, determine
the zero-sequence impedance of the circuit for both additive and subtrac-
tive polarity transformers.

5. Solve Problem 4 with a resistance of 10 ohms inserted in the gener-
ator neutral.

6. A three-phase transformer of the shell type has the following rating:
10,000 Kva, 11,500 to 132,000 line voltage, no-load loss per phase = 27,000
watts, per cent exciting current=35, load copper losses per phase = 81,000
watts, and per cent series impedance per phase=:9. The low-voltage
windings are delta-connected while the high-voltage windings are Y-con-
nected with neutral grounde:i. Determine the positive-, negative-, and
zero-sequence impedance: and inliate the sequeuce circuits.

7. Repeat Problem 6 for a wuie-type three-phase transformer having
the same detail rating.

CHAPTER 13

1. The zero-sequence self reactance of a three-phase transmission
line is:
DI
X0=0.01397f log -r—'- (see equation 208)
The mutual reactance to the ground wire is:
2

Xn=0.01397f log 1;’ (see equation 209)

Determine the equation for the coefficient of coupling between the power
conductors and the ground wire.

2. Two coils have self inductances of 0.4 henry and 0.2 henry and
mutual inductance of 0.15 henry. Determine their coefficient of coupling.

3. Two coils have the following self impedances:
Zs=2+j715 and Zy=243520

The mutual impedance is:
Zn=1.5+4+710.0
Determine the equivalent T circuit and the resultant looking-in im-
pedance with the winding b short-circuited.
4. The coupled circuit of Problem 3 has a load applied across the
terminals of the coil 5. The voltage and current delivered by the coil b are:
Ev=50+440 and [p=10—j10

Determine the applied voltage E, and the currént [, .

5. Three conductors are located in a horizontal arrangement with a
spacing of 20 feet. A single ground wire is located 15 feet directly above
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the middle power conductor. All power and ground wires are of the same
type with GMR =0.03 foot. The conductor resistance =0.235 ohm per
mile. The frequency is 25 cycles per second. The line crosses a desert
with p=500. Determine the zero-sequence impedance per mile.

6. Repeat Problem 5 for p =10.

7. Repeat Problem 5 for p =100.

8. Repeat Problem 5 for 60 cycles per second.
9. Repeat Problem 6 for 60 cycles per second.
10. Repeat Problem 7 for 60 cycles per second.

11. Three horizontally spaced power conductors of GMR =0.03 foot
have a spacing of 20 feet. Two ground wires are located 15 feet above
and 15 feet to each side of the two outside conductors. The ground wires
are of the same material and size as the power conductors. Resistance per
mile =0.235 ohm. If p=100 and f=60 cycles per second, determine the
zero-sequence impedance.

12. Derive an equation for the zero-sequence impedance of a parallel
two-circuit three-phase line without ground wires by the method outlined
in Art. 98.

13. Repeat Problem 12 for the case of one ground wire.

14. By applying the basic laws given in Art. 98, develop expressions
for the ratio of the ground-wire current to the total fault current, for
single-circuit and double-circuit three-phase lines with one ground wire
and also with two ground wires. (See Standard Handbook for Electrical
Engineers, eighth edition, page 1189.)

15. Prove that the result given in Art. 97 for the zero-sequence
impedance of a three-phase line without ground wires is identical to equa-
tion 208.

16. Prove that the results obtained in Art. 98 for each example are
identical to the solutions of these same examples in Art. 97.

17. One section of the Boulder Dam-Los Angeles double-circuit line
has its conductors located on two towers with horizontal disposition of
conductors. Each tower is equipped with two ground wires. Assuming
+hat the two circuits are close enough to each other to involve mutual
coupling effects between circuits, write the necessary voltage equations,
as outlined in Art. 98, for the determination of the zero-sequence imped-
ance of the parallel combination.
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CHAPTER 14

1. A three-phase line has its conductors located in a horizontal plane
60 feet above the ground, the two outer conductors being 20 feet from the
center conductor. Conductors are 397,500 cir. mil ACSR, with a GMR of
0.0277 foot and an outside diameter of 0.806 inch. The resistance per mile -
of conductor is 0.235 ohm. For a frequency ot 60 cycles, calculate the
positive- and negative-sequence constants 4, B, C, and D for a line 200
miles long. Transposition of conductors is assumed.

2. Determine the positive- and negativ c-sequence r-nircuit equivalent
for the line of Problem 1

3. Determine the positive- and -egative-se juence T-circuit equivalent
for the line of Problem 1.

4. Assuming an earth resistivity p of 100 meter-ohms, determine the
zero-sequence impedance per miile jou the line of Problem 1.

5. Determine the zero-sequence capacity per mile for the line of
Problem 1.

6. Determine the zero-sequence constants A, B, C, and D for the
line of Problem 1.

7. Determine the equivalent zero-sequence = and T circuits from the
data of Problem 6.

8. Solve Problem 4 for the case of one ground wire of the same mate-

rial as the power conductor, but located 12 feet above the horizontal plane
of the power conductors, and half-way between the center and right-hand

conductors.

9. Determine the zero-sequence capacity per mile for the data of
Problem 8.

10. Solve Problem 6 for the data of Problems 8 and 9.

11. Solve Problem 7 for the data of Problems 8 and 9.

12. Repeat Problem 8 for two ground wires, symmetrically placed
12 feet above the horizontal power conductors and 20 feet apart.

13. Repeat Problem 9 for the data of Problem 12.
14. Repeat Problem 10 with the data of Problems 12 and 13.
15. Repeat Problem 11 with the data of Problems 12 and 13.

16. Show that the results of equations 228 and 230 are in agreement
with those given on page 1189 of the “Standard Handbook for Electrical
Enginecrs,” eighth edition, for corresponding circliit~.
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CHAPTER 15

1. The balanced induced emf of a generator is 6,350 volts from line
to neutral (Y connected). Under a three-phase short-circuit, it delivers
a current of 1,000 amperes; with a line-to-line fault, it delivers 1,500
amperes; and, with a line to neutral short-circuit, a current of 2,100
amperes is obtained. Determine the positive-, negative-, and zero-
sequence impedances. Neglect resistance.

2. A generator is operated, as shown in Fig. 250, with phases b and ¢
connected together and then connected to terminal a through ar imped-
ance Z. Determine the equivalent circuit and derive equations for the
positive-sequence, negative-sequence, and zero-sequence currents. (See
Wagner and Evans, “Symmetrical Components,” page 51, example 4.)

a

4 z

$+—TOOTOOOT

L
T —
Fig. 250. Connections for Problem 2.

3. Using the data of the example of Art. 106, obtain a complete solu-
tion for a line-to-ground fault with a ground or neutral resistance Z = 1.0[(_)
onm,

4, Using the data of the example of Art. 106, obtain a complete solu-
tion for a double line-to-ground fault with a ground impedance Z = 1.0&

5. Using the data of the example of Art. 106, obtain a complete solution
for a line-to-line fault through an impedance Z = 1.0@

6. Solve Problem 5 for a line-to-line impedance Z =1.0/0.

CHAPTER 16
1. The circuit in Fig. 251 is subjected to a line-to-ground fault at X.
The data follow.
Generator: 50,000 Kva; 11,000 volt;
% Xp=80%; % Xn=50%; % Xo=20%.
Sending Transformer: 40,000 Kva; 11,000/154,000 volts;
% X =10%,
Receiver Transformer: 40,000 Kva; 154,000/44,000 volts;
% X =12%,
Load: 25,000 Kva; 44,000 volt; 809, lagging power factor.
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Neglect the resistances of the generator and the transformers. Using
the = circuit of Problem 7, Chapter 14, for the transmission line, determine
all currents and voltages for the line-to-ground fault at X.

2. Repeat Problem 1, using the transmission line T circuit of Problem
7, Chapter 14.
3. Repeat Problem 1, using the line data of Problem 11, Chapter 14.

4. Repeat Problem 2, using the line data of Problem 11, Chapter 14.

w ¥ a

Fig. 251. Circuit for Problem 1.

Solve Problem 1!, 1..ing the line data of Problem 15, Chapter 14.
Solve Problem 2, using thie line data of Problem 15, Chapter 14.
Solve Problem 1 for a line-to-line fault at X.

Solve Problem 1 for a line-to-line ground fault at X.

9. Solve the network of the example of Arts. 117 to 119 for a line-to-
ground fault with a ground impedance Z =100+-70.

10. Solve the network of the example of Arts. 117 to 119 for a line-
to-line fault.

® N a®m

Fig. 252. Conditions for Problem 13.

11. Solve Problem 10 for the case of a double line-to-ground fault
through an impedance Z =100+j0 (see Art. 113).

12. Solve Problem 10 for the case of a line-to-line fault through an
impedance Z =100+-50 (see Art. 114). o,

13. Given a generating station with the circui’ as shown in Pig. 252.
Generators have the following ratings: 4 =15,000 Kva, B=35,000 Kva,
and C=50,000 Kva. The positive-sequence reactance of each machine is
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equal to 80%, based on the rating of that machine. Two reactors of 159,
reactance, based on 100,000 Kva, are introduced in the bus, The rated
no-load bus voltage is 11,000 volts across lines. Determine the current
flowing into a three-phase fault at X. Neglect the resistances of the
machines and reactors.

14. The negative- and zero-sequence reactances, in per cent, for the
circuit of Problem 13 are as follows:

GENERATOR NEGATIVE Zero Base Kw
A 60 50 15,000
B 60 50 35,000
C 60 50 50,000
Reactors 15 15 100,000

Determine the line current and the voltages above ground throughout the
circuit for a line-to-ground fault at X.

Fault

Fig. 253. Networks for Problem 23.

15. Repeat Problem 14 for a line-to-line fault at X.

16. Repeat Problem 14 for a line-to-line ground fault at X.

17. Solve the network of the example of Art. 120 for a line-to-ground
fault through an impedance Z =200 (see Art. 107).

18. Solve Problem 17 for the case of a double line-to-ground fault
(see Art. 108).
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19. Solve Problem 17 for the case of a line-to-line fault (see Art. 110).

20. Solve Problem 17 for a three-phase fault (see Art. 112).

21. Solve Problem 17 for a double line-to-ground fault through an
impedance & =20+j0 (see Art, 113).

22. Solve problem 17 for a line-to-line fault through an impedance
£ =20+470 (see Art. 114).

23. Outline in detail the various steps in the solution for the network
of each of the sketches in Fig. 253 for the different types of faults.

24. Solve Problem 23 for the circuit in Fig. 253 (b), for faults half-
way between stations B and (.,

25. Solve Problem 23 for the .+icuit in Pig. 253 (b), with faults half-
way between stations B and (, bu« with a tie lin. between stations B and D.

CHAPTEK 17

1. A three-winding single-r.iiase transformer has the following data:

High voltage = 38,200 volts;
iow voltage = 6,360 volts;
Tertiary = 2,300 volts.

Short-circuit reactances are as follows: H to L, 12 per cent on 20,000 Kva;
H to T, 5 per cent on 10,000 Kva; L to T, 15 per cent on 1,000 Kva.
Determine equivalent star diagrams based on each of the three voltages.
Magnetizing current is neglected.

2. Auto-transformers with tertiaries are used to connect a 275,000-
volt system to a 220,000-volt system. The tertiary winding is designed
for delta connection, while the other common winding is designed for
Y conductors. The following data apply:

Hwinding.............. 20,000 Kva, 159 Kv;
L winding.............. 15,000 Kva, 127 Kv;
T winding.............. 10,000 Kva, 11 Kv,

The short-circuit reactances are as follows: H to L, 10%; H to T, 15%;
L to T, 15%, based on each particular Kva capacity. Determine equiva-
lent star diagrams based on each of the three voltages.

3. A 50,000-Kva, 11,000-volt generator is connected to a 22,000-volt
system by means of a bank of auto-tertiary transformers of 60,000 Kva
total capacity, as shown in Pig. 164. The impedances are as follows:
Generator, zero-sequence reactance=7%, based on 50,000 Kva; L to H
short-circuit reactance=159%, based on 20,000 Kva; L to T short-circuit
reactance = 10%, H to T short-circuit reactange=129, Determine the

zero-sequence reactance for the combination,

4. A resistance of 0.25 ohm is now introduced in the ge.mrator neutral
of Problem 3. Determine the zero-sequence impedance of the combination.
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5. If the resistance of 0.25 ohm is connected as shown in PFig. 167,
compile the resultant circuit zero-sequence impedance. All data are the
same as given in Problem 3.

6. Determine the zero-sequence impedance of the circuit of Fig. 169
with a resistance of 0.25 ochm in the transformer neutral.  All other data
are to be the same as given in Problem 3.

7. Solve Problem 6 with an additional resistance of 0.25 ohm in the
generator neutral.

8. Determine the zero-sequence impedance of the circuit of Fig. 169
with the transformer neutral isolated and the generator neutral solidly
grounded. Use data of Problem 3.

CHAPTER 20

1. A d-c source of voltage E is suddenly impressed upon a circuit of
R and L in series. Determine the equation for the current of the circuit,
the voltage drop across R, the voltage drop across L, the power input to
resistance, the power input to inductance, and the total energy stored in
inductance.

2. Repeat Problem 1 with a capacity in place of the inductance.

3. Solve Problem 1 for a circuit of resistance, inductance, and capacity,
obtaining corresponding data for all parts of the circuit. Note that there
are three special cases for this problem; namely, non-oscillatory, critical,
and oscillatory.

4. A sudden change in the exciter field causes the exciter voltage to -
increase according to the following law: e=E—Ee¢®. Determine the
equation for the increase in the alternator field current. The field circuit
is assumed to have constant R and L.

5. The voltage of an exciter is decreased according to the law e= Ee~¥,
Determine the equation for the decrease in the alternator field current.

6. An alternator short-circuit was observed to have the following
properties: The sustained short-circuit current was 100 amperes, maximum
value; the initial projected value of the oscillographic envelope indicated
a current of 2,000 amperes; the transient was completely offset so that the
d-c decrement appeared to be 1,000 amperes. Plotting the d-c component
and the difference between the a-c envelope and the maximum sustained
current, lead to the information in the following table. Determine
X'a) X"ay X4, Ty, Ty, and the d-c decrement time constant. Write a
complete equation for the entire current envelope, including the d-c
decrement term.
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RECORD OF TRANSIENT CURRENT

T 0 0.2 0.4 0.6 0.8 2.8
log ia 3 1.08
log Adae 2.9542 2.5 2.3 2.1 2.0 1.4

Logarithms are to 10 as base.
Atge=maximum alternating current—maximum sustair.ed alternating
current.

?. The contacts of a vibratine type alters.utor voltage regulator are
closing and opening at a certair (efinite terrpo, resulting in the exciter
voltage wave shown in PFig, 254. During the closing period, the voltage

AE

\E

e ty tc Lo

Fig. 254. Exciter Voltage Wave in Problem 7.

is given by the equation ec=E+AE(1—¢%); and, during the opening
period, by the equation e,=E+AEe ., Determine the current wave in
the field circuit of the alternator. By the process of wave analysis, find
the equivalent direct current and the first three frequency alternating
component currents.

CHAPTER 21

1. An artificial three-phase line at the University of Tennessee is
available for torque angular demonstrations. On this line, 5 Kva at
230 volts across lines is approximately equivalent to 300,000 Kva at 275,000
line volts. Determine the approximate ratio of actual to artificial line
current, and also the ratio of artificial to actual impedance. On the
assumption that this line was built to represent the Boulder Dam-Los
Angeles line, the data for which are given in Chapter 1, determine the
artificial line series impedance and the shunt susceptance per mile. Also
determine the artificial line generalized constants A,i8, C, and D,

2. A 60-cycle, 266-mile transmission line of nugligibie series resistance
and negligible shunt susceptance has an inductance per mile per phase of
0.002 henry. Sketch the swing curves for E,= 166,000 and E,= 159,000
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volts. With the line initially unloaded, determine the transient power
limit by sudden application of loads. Solve this problem graphically as
outlined in Figs. 210 and 211. Plot the curve between the load applied
and the peak torque-angle swing. What are the limitations of this solu-
tion?

3. Two identical lines having data as of Problem 2 are operating in
parallel. By the equal-area method of Figs. 214 and 215, determine the
transient power limit if one line is suddenly opened. Use the graphical
construction. Plot the line power against the peak angular swing.

4. Sketch receiver swing curves for actual line number 1 of Appendix
VII (see Equations 409), and carry out a solution similar to Problem 2.

5. Repeat Problem 3 with the data of Problem 4. State and explain
the limitations to the method used in the solutions of Problems 4 and 5.

6. Replace the actual circuit of line 1, Appendix VII, with its Thevenin
equivalent (see Art. 53 and Fig. 48). Carry out the same solution for this
Thevenin equivalent circuit as called for in Problem 2,

7. In Art. 150 it is suggested that an equivalent inertia constant
_ MM,
T M+M,
finite machines at each end of the transmission network. Prove this
statement.

HINT. Rewrite equation 398 as the following two expressions:

M, d*¢, M, d*p,

Znf dp ~Kr— Trand gy

M can be used in the application of equation 398 to the case of

=K2'—T2

in which ¢; =torque angle of machine 1, and ¢ =torque angle of machine 2,
both being measured from a synchronously revolving reference; and T,
and T; indicate unit magnetic torques, Ky — T and K;— T representing
the unit accelerating torques for the machines.

8. Determine a similar equation in which the torque angle ¢ is now
equal to ¢:—¢2. (See ‘‘Power System Stability,” Vol. I, by Kimbark,
page 132.)

9. Consider the circuit of Fig. 212, with the following operating
schedule:

Initial condition, both lines operating in parallel.

Second condition, one line with a three-phase fault at its center.

Final condition, faulty line cleared by the opening of circuit breakers
at both ends ot the line.

Sketch typical swing curves similar to Figs. 214 and 218§ for these three
cases, and indicate conditions for stability by the equal-area criterion.
Derive an equation for the critical clearing torque angle for a given fixed
system load. (The critical clearing torque angle locates the dividing
line between the two areas involved in the equal-area criterion.)
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CHAPTER 22
1. A voltage surge of 1,000 Kv/3/20 is to be represented by the follow-
ing equation:
e=E(eot—e7d)
Determine the values of E, a, and b.
2. The voltage equation ot a transmission line under sinusoidal wave

operation is:
E = (LE_r_-'—z.é_Z") éuéi"+ (EL%I_'_Z_") € Ue™it

where u-+jv=ms. m=vZT, Zo= - 52 =R+ k, and ¥ =G+7B.
X

Modify this equation fm & distortionless line, for which %=%, and
explain what important. re-ults arc involved.

3. Give a clear statement comparing the physical properties of simple
harmonic impedance, or Z=K-+7X, and operational impedance, or
Z(p)=R+pL.

4. In surge problems the term surge impedance is used. Compare
this term with the surge impedance Z, of sinusoidally operating trans-
mission lines.

5. Contrast the meaning of the following exponentiuls: e*=, e*i,
and etor,

6. Prove that e? f(t) =f(t+a).

7. Plot curves representing the function

f=A4 cos (0 =wt)
where 6 =distance or space measured in radians;
t =time in seconds;
w =angular velocity.
Explain what such a function represents.
8. Plot curves representing the function
f=A4 cosh (8=wt)
where 6=hyperbolic space radians;
t =seconds;
w =hyperbolic radians per second.
Indicate what such a function represents.
9. Repeat Problem 8 for the very general form
f=(sma)
where s =space;
t=time;
v =velocity.
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10. Prove that the velocity of wave propagation, for the case of
negligible resistance and conductance, is v= *Vlzzs.

11. Plot curves for the function f=e7% cos (§=ut), and explain their
meaning.

12, If f(t) = E(e-%t—¢b*)1, what is the form of f (t-—;’:)? Sketch this
function for different values of s. What is the form of the function

R

e_“'f(t—-;i)? Explain,

13. A surge passes from a circuit with surge impedance of unity to a
circuit with impedance twice as great. Sketch the star diagram and

explain all features of the diagram.
14. In Fig. 226 the energy of each wave is represented by the follow-

ing areas:
Initial forward wave............... =area ogc; |
Reflected wave.................... =area oba;
Transmitted wave................. =area acd.

Prove that area ogc =area oba+area acd, thus demonstrating that the
energy in the initial forward wave is equal to the reflected energy plus the
transmitted energy.
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GEOMETRIC INTERPRETATION OF HYPERBOLIC FUNCTIONS

In the unit circle in Fig. 255, with its center at the origin O and its
radius 04 equal to unity, consider the central angle AOP, whose value in
radians we denote by 6. Obviously,

AR
Lu; #= ‘b"z— AR
and tan :—;-)I=PT
Therefore: Ak=PT
Y
R Q(x,y)
V4
/7
— P V
~
U]
7] 4 7 X

Fig. 255. Hyperbolic Functions.

Construct TQ so that TQ=AR and let the coordinates cf Q be (x,).

Then
! oT
——— = = ]
0P OT =sec 8 or x=sec
AR
= = W e BT = /]
and ymTQ=AR oA tan 6 or y=tan

But, sec? 9=1-tan? §, and hence #?=1+-y? or

xi—yt=1

The point Q therefore moves on the rectangﬁlm hyperbola x*~y*=1 as

the point P moves on the unit circle.7
35
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By definition:
ey

2
e

2
Hence, cosh? y--sinh? y=$% (e*42+e~2) — (e —2-4-¢~M) or

cosh? y—sinh? =1
We have then: x2—y?=1 and cosh? u—sinh? =1, If we let x=cosh 4

and y=sinh %, then x and y satisfy the necessary condition that x?—y2=1,
Hence, a geometric interpretation of sinh « and cosh # is as follows:

sinh =

cosh =

sinh u=TQ=y
coshu=0T=x
This, however, leaves unanswered the question as to what u itself is,
that is, what the geometric interpretation of « is. We have:,
ev—e

sinh 4= 7 =2
cosh u = e“-';_“=x
Hence, x=2-2ﬂ:
and y=¢u—26-u
From these relations: ity=es
and x—y=e ¥

Now, consider the area of sector 04(Q, which is the figure bounded by
the segments 04 and OQ and the arc AQ. Denote this area by S. Then:

S=W—fy dx
1
Sincey-s\lx'-—i,

%
28=xy—2f Vx’—ldx=xy—2/qwlt‘—ldt
1 1

I=x
2S=zy—[ tyF=1-Ln (:+J'—‘:=—1)]
(=1

2S=xxi—1 —xyxi—14Ln (x+2*—1)
2S=Ln (x4 x*—1)

But, x-+ %=1 =x+y=ev;and Ln (x+ 4 x*—1) =Ln e*=u. Hence, 2S=u,
or u=2 area OAQ. We see, then, that # measures twice the area of the

hyperbolic sector 0A4Q.



" ApPENDIX I 359

On the other hand, if we let K =area of the circular sector O4 P (with
radius 1), we have: ,
K=130
Hence, 8 measures twice the area of the circular sector OAP. The analogy
between 8 and # is then expressed through the areas of the circular sector
OAP and the hyperbolic sector 04Q. The angle 6 is called the “Guder-
mannian” of u, denoted by gd . It is also called the “hyperbolic ampli-

tude” of #, denoted by amh «.

APPENDIX II

GEOMETRIC PROOF OF THE GMR FOR A CIRCULAR AREA

In Fig. 256, consider two small areas A4; and AA,, such that Ad,=A4,.
Then: .

xa? wa? . cine 2
n= A, EZZ; =qnumber of small areas within area =a
2o _ral
and "= AAnd,
From Pig. 256:

d= v u+v2=2uy cos 0

Fig. 256. GMR of Circular Area.
By definition, the geometric mean radius R is:
n? e
R= 1 / I1:

Taking logarithms of both sides: ¢ g .
ne

n? 1 ns ln’ .
Ln R-Ln1/ Hd=-n-, Ln"d=;;ZLn d
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Substituting the value of n*, we have:

2
AA A4
wigt
n’

or %t Ln R=Y,Ln d(A4,:A45)

Now, as n? approaches infinity, the areas A4, and A4, will approach
the infinitesimals # d« d9 and v dv d¢, and the summation expression will
converge into an integral. Thus:

x%ad Ln R=2ffff(Lnd)udud¢vdvd0

In the transfer from a finite summation to an integral form, it is necessary
to consider the length from A4, to A4, as well as the length from A4, to
AA4,. Since the integral form includes this distance only once, the total
expression must be multiplied by 2.

Substituting the value of d and mtroducmg the proper limits, we have:

wxfat Ln R-f u dufﬂv dv[ Ln(u’+u’-2uv cos 6) df

Since f Ln (c=b cos 6)df=2x Ln “"‘“ e+ Ve hen a2b, then:

x%a‘Ln R=2nr f / v dy f d¢[Ln “’+"’+W:ﬁ’—v_’]
2
U
or a‘LﬂR’4fa‘uduf vdy Ln 42 (l)
0 0 ‘

It should be noticed that there are two possible solutions of the first
integral, obtainable as the positive and negative values of the radical.
These results are, respectively, Ln «? and Ln 9. Continuing with the
first of these possibilities, we have, as the next step:

u »
a«LnR-4fuLnu=du("—2’)- fu‘Lnudu
0 0o Jo
a‘LnR-4 L-ﬂ l)]o-a‘(Lna——

Returning to the second possibility previously indicated, we have:

a‘LnR-4fvdvfpuduan @)
Jo 0 .

The solution of this expression will give the same result as before.

Ln R= Lnd

Finally:
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It should be noticed that the expressions (1) and (2) evaluate the
integral over a circular area; in the first case the radius is %, while in the
second case the radius isv. Thus, we finally have:

In R=Ln a-—i=Ln a—Ln %E=Ln -eo%;

a
and Rz — =00 %
eo.zs

which corresponds to equation 28 in Chapter 3.

APPENNDIX III
SIGN OF REACTIVE POWER

In Art. 52 the expressicn for ‘‘vector power’” was computed in the
following manner:

P+jQ=El=EI cos 6+jEI sin 6

in which E=E/6,, E=E[b,, =1I[6,, and 0=0,—~6,. In this derivation a
positive value of j/) signifies capacitive reactive vars, while a negative value
of jQ signifies inductive vars.

A similar solution can be obtained by taking the product of the vector
voltage and the conjugate vector current, the result being:

P—jQ=EI=FEIcos §—jEIsin 6

In this case a positive value of jQ signifies inductive reactive vars, while a
negative value of jQ signifies capacitiye reactive vars.

The first convention, namely, positive reactive power for capacitive
reactive power (leading current), is the one used throughout this text.
This convention has been in accordance with the ASA standards; however,
recent studies presented in the November, 1946, issue of Electrical Engs-
neering indicate a tendency to reverse previously accepted practice,
inductive reactive vars being considered as the positive quantity. This
convention is the normal result obtained from the product of vector
voltage and conjugate vector current.

The foregoing two forms for ‘“‘vector power' are defined without any
reference to a particular convention of the direction of power flow. Either
form can be applied with equal ease to the input or output of a network.
In the study of a single transmission line it is often convenient to define
the input to the line as P,+jQ, and to define the output of the line as
P,+70. (see equations 145 and 147). In this case the transmission line
as & network is considered as having input at bre tér.ainal point and
output at the other terminal point. However, in problems dealing with
large networks it is more convenient to consider all loads as component
parts of the network and to treat all synchronous machines as sources.
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In these problems the ‘“vector power” expression in either one of the
foregoing conventions is considered as an input quantity. Negatives of
either of those conventions would obviously signify *‘vector power’’ output.

The reader should clearly realize that real power and reactive vars are
quite different intrinsically. Real or true power having a definite average
value per cycle can very properly be considered as having direction of
flow. On the other hand, the average value of the reactive vars per cycle
is zero, and the reactive vars represent a process of cyclic oscillation of
energy interchange into and out of a given network in the period of one-
half cycle. Thus, any convention of sign or any convention of “in"” and
“out’’ reactive power depends entirely on the particular definition chosen.

Generator Action

Jiead

(]

]

]

1

i

]

e )
T 0r !
]

]

1

1

1]

L

y 3¢ In!

Tiag

Motor Action

Fig. 257. Vector Diagram for Synchronous Machine.

The question of relative sign of reactive power is therefore of minor
importance from the point of view of the power-system operating engineer
who is concerned with metering these quantities. A standard notation
of “in’’ and “out’’ power seems to be desirable when applied to real power,
but such a notation is not so definite when applied to reactive power.
In fact, the convention as applied to reactive power is just as arbitrary
as the convention chosen for the sign of reactive power. It is quite in
order to assign a direction to real power flow, since average real power as
indicated by a wattmeter is a definite quantity which is delivered by the
generating sources to the loads of the system. In contrast, the average
value of reactive power is always zero, irrespective of whether it is capaci-
tive or inductive in nature.

" To illustrate how the convention of ‘in" and “out” reactive power may
be established, consider a synchronous machine operating with terminal
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voltage V and current I. For simplicity the armature resistance is
neglected. For the generator action, the voltage behind synchronous
reactance is obtained by adding the synchronous reactance drop to the
terminal voltage. For motor action the reactance drop must be sub-
tracted from the terminal voltage. The operation of a synchronous
machine as a generator or as a motor may be illustrated in one common
vector diagram, as indicated in Fig. 257, in which the terminal voltage V
is used as the reference vector. A set of coordinate reference axes is
chosen with the origin at 0. The I.X voltage drops for lagging and leading
currents are shown, full lines Leing used frr generator action and dashed
lines for motor action. From the geometry of the diagram it will be found
that the angles between the IX vectors and th» vertical axis or y axis are
equal, respectively, to the power-fartor angies #, and 6.

PC'/ OutI AAAAA P@ow AAAAA
\

Gen. Load

Gen. —+ Load
(a) Q@ow["vm (b) '"O —{—
\

Qo Q)

Load . Gen. Load Gen.
fova 2 @ ——e ®m

(c) (d)

Fig. 258. Metering at Transfer Point in Transmission System.

The scale of the lines Oa, 0b, Oc, and Od may be changed from that of
voltage to that of volt-amperes by the application of a constant multiplier

equal to % It will then be noticed that the projections of lines Oa, Ob,

Oc, and Od on the y axis indicate true power (VI cos 6), while the corre-
sponding projections of these lines on the x axis will indicate reactive
power (V1 sin 6).

In line with standard convention, projections on the positive x axis
and positive y axis are considered positive, while projections on the nega-
tive x axis and negative y axis ate considered negative quantities.

Purthermore, generator real power is very logicall nower output or
“out” power, while motor real power is power input or “in” power. Thus,
the projections of the lines Oz and Ob on the positive ¥ axis indicate “‘out’’
power, while projections of the lines Oc and Od on the negative y axis
indicate “in"’ power.
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If the same geometric pattern is followed, it is logical to say that
projections of lines Oz and Od on the positive x axis indicate “‘out’’ reactive
power, while projections of lines Ob and Oc on the negative x axis indicate
“in"’ reactive power.

Inspection of the vector diagram will indicate that ‘out’ reactive
power is obtained when the synchronous machine is over-excited, while
“in" reactive power is obtained when the synchronous machine is under-
excited. .

Consider now the specific problem of metering at a transfer point in
a transmission system, as indicoted in Fig. 258. The use of zero-center
wattmeters and reactive meters is implied. It is assumed that the con-
nections of the meters to the circuit are made in such a manner that both
read to the right or in the “‘out’ direction in diagram (¢), which indicates
a generating source supplying power to a composite load of resistance and
inductance. Meter deflections are shown for three other circuit conditions
in (b), (¢), and (d), respectively.

It has been suggested that inductances may be considered as ‘“‘sinks’
of reactive power, while condensers may be considered as ‘‘sources’ of
reactive vars. As previously pointed out, this concept is erroneous; but
it does supply a rule of thumb by which one may interpret the meanings
of the meter deflections. Thus, the wattmeter and the reactive meter
will deflect in the same direction when both components of a load are
considered as ‘‘sinks,” such as resistance and inductance or their equiva-
lents. These two meters will deflect in opposite directions when the load
applied to the system is composed of resistance and capacity or their
equivalents.
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APPENDIX V
COMMON LOGARITHMS OF NUMBERS

N 0 1 2 3 4 5 6 7 8 9

10 | 0000 [ 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0294 | 0334 | 0374
11 0414 | 0453 | 0492 | 0531 | 0569 | 0607 | 0645 | 0682 | 0719 | 0755
12 | 0792 | 0828 |.0864 | 0899 | 0934 | 0969 | 1004 | 1038 | 1072 | 1106
13 ] 1139 | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 | 1399 | 1430
14 | 1461 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732
15 1761 | 1790 | 1818 | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 | 2014
16 | 2041 | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 | 2253 | 2279
17 | 2304 | 2330 | 2355 | 2380 | 2405 | 2430 | 2455 | 2480 | 2504 | 2529
18 | 2553 | 2577 | 2601 | 2625 | 2648 | 2672 | 2695 | 2718 | 2742 | 2765
19 | 2788 | 2810 | 2833 | 2856 | 2878 | 2900 | 2923 | 2945 | 2967 | 2989
20 | 3010 | 3032 | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 | 3181 | 3201
21 | 3222 | 3243 | 3263 | 3284 | 3304 | 3324 | 3345 | 3365 | 3385 | 3404
22 | 3424 | 3444 | 3464 | 3483 | 3502 | 3522 | 3541 | 3560 | 3579 | 3598
23 | 3617 | 3636 | 3655 | 3674 | 3692 | 3711 | 3729 | 3747 | 3766 | 3784
24 | 3802 | 3820 | 3838 | 3856 | 3874 | 3892 | 3909 | 3927 | 3945 | 3962
25 [ 3979 3997 ! 4014 | 4031 | 4048 | 4065 | 4082 | 4099 | 4116 | 4133
26 | 4150|4166 | 4183 | 4200 | 4216 | 4232 | 4249 | 4265 | 4281 | 4298
27 | 4314|4330 | 4346 | 4362 | 4378 | 4393 | 4409 | 4425 | 4440 | 4456
28 | 4472 | 4487 | 4502 | 4518 | 4533 | 4548 | 4564 | 4579 | 4594 | 4609
29 | 4624 | 4639 [ 4654 | 4669 | 4683 | 4698 | 4713 | 4728 | 4742 | 4757
30 | 4771|4786 | 4800 | 4814 | 4829 | 4843 | 4857 | 4871 | 4886 | 4900
31 [ 4914 | 4928 | 4942 | 4955 | 4969 | 4983 | 4997 | 5011 | 5024 | 5038
32 | 5051 | 5065 | 5079 | 5092 | 5105 | 5119 | 5132 | 5145 | 5159 | 5172
33 | 5185|5198 | 5211 | 5224 | 5237 | 5250 | 5263 | 5276 | 5289 | 5302
34 | 53155328 5340 | 5353 | 5366 | 5378 | 5391 | 5403 | 5416 | 5428
35 | 5441|5453 | 5465 | 5478 | 5490 | 5502 | 5514 | 5527 | 5539 | 5551
36 | 5563 | 5575 | 5587 | 5599 | 5611 | 5623 | 5635 | 5647 | 5658 | 5670
37 | 5682|5694 | 5705 | 5717 [ 5729 | 5740 | 5752 | 5763 | 5775 | 5786
38 | 5798 | 5809 | 5821 | 5832 | 5843 | 5855 | 5866 | 5877 | 5888 | 5899
39 | 5911|5922 | 5933 | 5944 | 5955 | 5966 | 5977 | 5988 | 5999 | 6010
40 | 6021|6031 | 6042 | 6053 | 6064 | 6075 | 6085 | 6096 | 6107 | 6117
41 | 6128|6138 | 6149 | 6160 | 6170 | 6180 | 6191 | 6201 | 6212 | 6222
42 | 6232 | 6243 | 6253 | 6263 | 6274 | 6284 | 6294 | 6304 | 6314 | 6325
43 | 6335|6345 | 6355 | 6365 | 6375 | 6385 | 6395 | 6405 | 6415 | 6425
44 | 6435|6444 | 6454 | 6464 | 6474 | 6484 | 6493 | 6503 | 6513 | 6522
45 |6532 | 6542 | 6551 | 6561 | 6571 | 6580 | 6590 | 6599 6618
46 | 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | 6684 | 6693 | 6702 | 6712
47 | 672167306739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803
48 | 6812 | 6821 | 6830 | 6839 | 6848 | 6857 | 6866 | 6875 | 6884 | 6893
49 | 6902 | 6911 | 6920 | 6928 | 6937 | 6946 | 6955 | 6964 | 6972 | 6981
50 | 6990|6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067
51 | 7076|7084 | 7093 | 7101 | 7110 | 7118 | 7126 | 7135 | 7143 | 7152
52 7160|7168 | 7177 | 7185 | 7193 | 7202 | 7210 | 7218 | 7226 | 7235
53 | 7243|7251 | 7259 | 7267 | 7275 | 7284 | 7292 | 7300 | 7308 | 7316
84 | 732473327340 | 7348 | 7356 | 7364 | 7372 | 7380 | 7388 | 7396
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APPENDIX V

COMMON LOGARITHMS OF NUMBERS—(Continued)

379

N [ 1 2 3 4 5 6 7 8 9

55 | 7404 | 7412 | 7419 | 7427 | 7435 | 7443 | 7451 | 7459 | 7466 | 7474
56 | 7482|7490 | 7497 | 7505 | 7513 | 7520 | 7528 | 7536 | 7543 | 7551
57 | 7559 | 7566 | 7574 | 7582 | 7589 | 7597 | 7604 | 7612 | 7619 | 7627
58 | 7634 | 7642 | 7649 | 7657 | 7664 | 7672 | 7679 | 7686 | 7694 | 7701
59 | 7709|7716 | 7723 | 7731 7738 | 7745|7752 | 1760 | 7767 | 7774
60 | 77827789 | 7796 | 7803 | 7810 | 7218 | 7825 | 7832 | 7839 | 7846
61 | 7853 | 7860 | 7868 | 7875 | 7382 | 7389 | 71896 | 7903 | 7910 | 7917
62 | 7924|7931 17938 | 7945 { 7752 | 7959 ! 7966 | 7973 | 7980 | 7987
63 | 7993 | 8000 | 8007 | 8014 | .1 [ 3028 ' 8035 | 8041 | 8048 | 8055
64 | 8062 j 8069 ' 8075 | 8082 , 3789 | 8096 | 8102 | 8109 | 8116 | 8122
65 | 81298136 | 8142 8149 8156 | 3162 | 8169 | 8176 | 8182 | 8189
66 | 8195 | 8202 | 8209 ; 215 ) 3222 | 8228 | 8235 | 8241 | 8248 | 8254
67 |826: 8267|827+ 8280 ' 3287 | 8203 | 8299 | 8306 | 8312 | 8319
68 | 8325|8331 | 8338|8344 i 8351 | 8357 | 8363 | 8370 | 8376 | 8382
69 | 8388 | 8395 | 8401 | 8407 | 8414 | 8420 | 8426 | 8432 | 8439 | 8445
70 | 8451 | 8457 | 8463 | 8470 | 8476 | 8482 | 8488 | 8494 | 8500 | 8506
71 18513 | 8519 | 8525 | 8531 | 8537 | 8543 | 8549 | 8555 | 8561 | 8567
72 {8573 8579 | 8585 | 8591 | 8597 | 8603 | 8609 | 8615 | 8621 | 8627
73 | 8633 | 8639 | 8645 | 8651 | 8657 | 8663 | 8669 | 8675 | 8681 | 8686
74 8692 | 8698 | 8704 | 8710 ( 8716 | 8722 | 8727 | 8733 | 8739 | 8745
75 18751 | 8756 | 8762 | 8768 | 8774 | 8779 | 8785 | 8791 | 8797 | 8802
76 | R808 | 8814 | 8820 | 8825 | 8831 { 8837 | 8842 | 8848 | 8854 | 8859
77 | 8865 | 8871 | 8876 | 8882 | 8887 | 8893 | 8899 | 8904 | 8910 | 8915
78 18921 | 8927 | 8932 | 8938 | 8943 | 8949 | 8954 | 8960 | 8965 | 8971
79 | 8976 | 8982 | 8987 | 8993 | 8998 | 9004 | 9009 | 9015 | 9020 | 9025
80 | 9031|9036 |9042 | 9047 | 9053 | 9058 | 9063 | 9069 | 9074 | 9079
81 | 9085|9090 | 9096 | 9101 [ 9106 | 9112 | 9117 | 9122 | 9128 | 9133
82 |9138 9143|9149 | 9154 | 9159 | 9165 | 9170 | 9175 | 9180 | 9186
83 |9191 9196 | 9201 | 9206 | 9212 | 9217 | 9222 | 9227 | 9232 | 9238
84 |9243 9248|9253 | 9258 | 9263 | 9269 | 9274 | 9279 | 9284 | 9289
85 9294|9299 | 9304 | 9309 | 9315 | 9320 | 9325 | 9330 | 9335 | 9340
86 | 9345|9350 | 9355 | 9360 | 9365 | 9370 | 9375 | 9380 | 9385 | 9390
87 |9395 9400 | 9405 | 9410 | 9415 | 9420 | 9425 | 9430 | 9435 | 9440
88 | 9445 | 9450 | 9455 | 9460 | 9465 | 9469 | 9474 | 9479 | 9484 | 9489
89 | 9494 | 9499 | 9504 | 9509 | 9513 | 9518 | 9523 | 9528 | 9533 | 9538
00 | 95429547 | 9552 | 9557 | 9562 | 9566 | 9571 | 9576 | 9581 | 9586
91 [ 9590 | 9595 | 9600 | 9605 | 9609 | 9614 | 9619 | 9624 | 9628 | 9633
92 | 9638|9643 | 9647 | 9652 | 9657 | 9661 | 9666 | 9671 | 9675 | 9680
93 | 9685 | 9689 | 9694 | 9699 | @703 | 9708 | 9713 | 9717 | 9722 | 9727
94 | 97319736 | 9741|9745 | 9750 | 9754 | 9759 %ZGS 9768 | 9773
95 1977719782 |9786 | 9791 | 9795 | 9800 odbr | 980v | 9814 | 9818
06 | 9823|9827 | 9832 | 9836 | 9841 | 9845 | 9850 | 9854 | 9859 | 9863
97 | 9868 | 9872 | 9877 | 9881 | 9886 | 9890 | 9894 | 9899 | 9903 | 9908
08 [9912 | 9917 | 9921 | 9926 | 9930 |'9934 | 9939 | 9943 | 9948 | 9952
09 [ 9956 | 9961 | 9965 | 9969 | 9974 | 9978 | 9983 | 9987 | 9991 | 9996




INTRODUCTION TO ELECTRIC POWER SYSTEMS

380

o'6zL 018 19 0'szL 0'vo1 1g 00521 1150°0 0200 000°00%
0'€LL 658 19 0'zLL £011 is 0'06¢T LLZ0'O 0FZ0'0 000°05¥
0's18 506 153 0¥18 T91 ig 0'0¥ST 6200 9120'0 000°00S
0'SS8 LLL 16 0°$S8 0'S6 19 000L1 92200 96100 000°0SS
0'€68 zi8 16 0'€68 766 19 0'0s8T L0Z0°0 08100 000009
0'0£6 578 16 0'626 z:501 19 0’010z 26100 9910'0 000059
0596 8 16 0796 ¥201 19 0'091Z 84100 ¥S10'0 000002
0'666 806 16 0'866 6011 19 0'0zeT 9910°0 ¥10'0 000052
01501 8'€6 16 0’1501 ST 19 0'047C 9510°0 SE10°0 000'008
0°£901 996 16 0'z%01 0’81 19 00292 9¥10°0 1710°0 000058
0'¥601 66 16 0'€601 S'1Z1 19 0'08LZ 8£10°0 0z100 000°006
o¥ell 701 16 0'€Z1l 8%l 19 0'0£6C I€10°0 #1100 000°0S6,
0'€sTI £701 16 o'zstt 0'sZi 19 0'060¢ #7100 80100 000'000'
0'01z1 16 1z 0'601 6601 16 0'00%E ¥110'0 18600°0 000'001°F
0F9TI 16 yi3 0’8921 511 16 ooLE #0100 668000 000'00Z'F
o'SIET z'101 Py 0'sicT 611 16 0'010% 85600'0 0£800°0 000'005°
0’95 0's01 Iz 0FOET 0721 16 0'0zey 68800'0 0L£00°0 000'00¥"F
[ E2541 L7801 L1 [1xAs4s '8zt 16 0'0£9% 0£800°0 612000 000°00S°¥
009%1 €16 691 0'6s¥1 T2 121 0'0v6y 822000 ¥£900°0 000'009'
0F0ST £:001 691 0F0ST rsu Pt 0'0szs 7£L000 69000 000'002'
0'8¥ST €01 691 0'8¥ST 1611 244 0°09sS 26900°0 66S00°0 000°008°Y
0'06S1 0'90% 691 0'0651 £721 risl 0'0288 $5900°0 £9500'0 000'006'T
0'Ze91 8'801 691 0'1e91 sst I3t 0’0819 22900°0 6£500'0 000'000'7
b4 SN | smmgo | SENT | SEI T | sonp g0 Cdo6b1=) | Cdotr=) ‘oN

uspmeny | senm jo | SoF “wjowery | ‘sanp jo | T L Lo oy | ST TR
spEng | e | PN | opming | ssemeiq | BTN | g D 059 L oAV

E spunog

Burpueng OHIUS0UCD) JqRMI | BUIpUENS OMRUSOUC) PrEpUEIS 1990 000% 33d sUIQ 219%0 30 oz

¥YAddOD QITVANNV QUVANVIS 40 STTAVD AVI-DILLNIONOD HAVE

*STTAVI TIMA
IA XIAON"AdV



381

ArpeNnDIX VI

*ou] ‘4uog pue
430M BYOf 4q poysTIqnd “gRIpoop ‘g T 4q ,'UORNGHISK] PUT UORSSTESURI], JoMOJ SHRSIY JO SIHOUNG,, WOs) ‘uomsrmnd 4q ‘PAULMIY »

g
(o
‘to¥ .

Aq sonfea pajemqe; 2aoqe 33 Surs! 1 £q PIIEMOTED O AUTS SSUUT 20 SOTVISISAI ‘M UL | 03
Tenbo ‘Ae] Jay10 Auv Jog  °L°GY UI | JO Ae] © SulALY SS[qEO JO} 309LI00 3IB SIN{RA I} Jey} SURIW U0 Jad 7 JO JUSWIAIDMI SIYY, ‘I[QLD Y3 JO SAUAM
973 JO UOLIIS $5010 [€303 3y5 0 [enDO UONOAs $SO1D Jo POl PIIOS © JOj UPY3 1338318 Juad Jad g are , 3933 QO] Jod Spunog,, pue , 339§ 000 —d suQ,, 30§
U3AL3 sanjea 9 ‘SSJIA 343 3G JSIM] 97} 03 NP SSBW DU OUBISISAI JO ISLAIOU] JOJ UOIIGLI0D o3 0] 3333531 Ul pUe , SAILM JO Joquumy,, a3 03 309dsar

Ul g30q ‘s13auLsuy _.wo_._uooﬁuunme. “NINSU] ULOLISUTY 3y} JO 393IUIt0g) SPIEPUTIS SY) Aq P3dope SPIEpUe)S Yjim PIGITE Uy St I|qE) SEEL—F TLON
°1933WIru3d JqNd smresd 68°'g SI Ay1Sudp ay], *(3uipuens 0} anp Y13ud] PISEIIOU] J0] MO[[e 03 Judd Jad z £q paseadm) ‘) .0C I° (Wesd

‘I239UT) WO 8ZESTQ “ziA ‘PIEpURIS Jaddo)) pI[esuUY [BUOHIEUIU] oy} ST 3[qE} Iy} 3unjenored Ul pasn A}IAYSISAI [Bjudmvpuny oy L- I ZION

0Ly s'6z 0i 0’91 '8y L o1s ss1'0 ¥59'0 8 005'91
0991 1eE o1 091 §¥S L £%9 665°0 6150 L 0080
0'981 vis of 0'¥81 z19 L 018 £17'0 o170 ] 009
060z L 6l 0902 8'89 L o'zot 9150 9750 s 001'ss
ovEL 6ov o | oum TLL /3 0'62 6620 6520 H 00L°T¥
069z 9zs of ' emz | rom L 0'€91 1570 S0z'0 £ 009'ZS
0962 T'és of | wweL | vie L 0's0z 810 7910 z 00¥'99
- N ]
osee 9Ly e GZeE %90 o1 0'8sz 6+1°0 6210 1 00L'58
ovLE ¥s b3 0'se S¥L or o'9zs Liro 010 0 000'901
0'0zy 009 n '8ty ree 61 o1y 9£60'0 1180°0 00 000's51
oLy £19 is 0'0L¥ o'¥o 61 0'sIs 1%£0°0 900 000 000’891
0°£ES 'St i€ 082S §'sot or 0°£s9 1850°0 60500 0000 000212
o'oLs 0¥ 19 o'sis 78 I 0zLL 86¥0°0 15500 000'05Z
0159 ToL 19 0'0£9 006 is 0526 STYO'0 09£0'0 000'00¢
0'z89 Lst 19 0189 £L5 I3 00807 95£0'0 80600 00005
T oy | SELTE fsemmro | STNT ) SIN T | sony o Cdo6v1=) | Cdotr=) "oN
. ST, 0 & . “ o - 22 . £ o orN AR BT
pmmg | g | PITON | hmnel | sty | RamnN i D 059 D oST omy | ST TR
. spunog
BurpuexS OMUGON0) ARG | BUIpUENS SLMUAOUOD PIEpUES 3904 0001 3d SWHO o1gE) Jo omg




STANDARD ANNEALED COPPER WIRE
American Wire Gage (B. & S.)

Cross Section Ohms per 1000 Feet
. Pounds
Gage l?mgﬁer per 1000
o n Mils Circular Square 25° C. 65° C. Feet
Mils Inches (=77°F.) | (=149°F.)
0000 460.0 212,000.0 0.166 0.0500 0.0577 641.0
000 410.0 8, 0.132 0.0630 0.0727 508.0
00 365.0 133,000.0 0.105 0.0798 0.0917
0 3250 ,000.0 0.0829 0.100 0.116 319.0
1 289.0 83,700.0 0.0657 0.126 0.146 253.0
2 258.0 ,400.0 0.0521 0.159 0.184 201.0
3 229.0 52,600.0 0.0413 0.201 0.232 159.0
4 204.0 41,700.0 0.0328 0.253 0.292 126.0
5 182.0 33.100.0 0.0260 0.319 0.369 100.0
6 162.0 26,300.0 0.0206 0. 79.5
7 44, 0,800.0 0.0164 0.508 0 63.0
8 128.0 16,500.0 0.0130 0.641 0.739 50.0
9 1140 13,100.0 0.0103 0.808 0.932 39.6
10 102.0 10,400.0 0.00815 1.02 1.18 314
11 91.0 8,230.0 0.00647 1.28 148 249
12 81.0 6,530.0 0.00513 1.62 1.87. 19.8
13 72.0 5,180.0 0.00407 2.04 2.36 15.7
14 64.0 4,1100 0.00323 2.58 2.97 12.4
15 57.0 3,260.0 0.00256 3.25 3.75 9.86
16 51.0 2,580.0 0.00203 4.09 4.73 7.82
17 45.0 2,050.0 0.00161 5.16 5.96 6.20Q
18 40.0 1,620.0 0.00128 6.51 7.51 4.92
19 36.0 1,290.0 0.00101 8.21 9.48 3.90
320 1,020.0 0.000802 10.4 11.9 3.09
21 28.5 810.0 0.000636 13.1 15.1 2.45
22 25.3 642.0 0.000505 16.5 19.0 1.94
23 226 509.0 0.000400 20.8 24.0 1.54
24 20.1 404.0 0.000317 26.2 30.2 1.22
25 179 320.0 0.000252 33.0 38.1 0.970
26 159 254.0 0.000200 41.6 48.0 0.769
27 14.2 202.0 0.000158 52.5 60.6 0.610
28 12.6 160.0 0.000126 66.2 76.4 0.484
29 11.3 127.0 0.0000995 834 96.3 0.384
30 10.0 101.0 0.0000789 105.0 121.0
31 89 79.7 0.0000626 133.0 153.0 0.241
32 8.0 63.2 0.0000496 167.0 193.0 0.191
33 71 50.1 0.,0000394 211.0 243.0 0.152
34 6.3 39.8 0.0000312 266.0 307.0 0.120
35 5.6 31.5 0.0000248 335.0 387.0 0.0954
S. 25.0 0.0000196 4. 488.0 0.0787
37 4.5 19.8 0.0000156 533.0 616.0 0.0600
4.0 18.7 0.0000123 673.0 776.0 0.0476
39 3.5 12.5 0.0000098 848.0 979.0 0.0377
3.1 9.9 0.0000078 1070.0 1230.0 0.0299

Nore 1.—The fundamental resistivity used in calonfating the tables is the International
Annealed Copper. Standard, viz., 0.15328 ohm (meter, ) at 20° C. The femperature
mﬁdnu for this parucuhr resistivity is asom=0.00393, or ao=0.00427. However. the

ture eoeﬁctent is proportional to the conduchvlty. and hcnce change of
n wﬂy perwme 3 . i8 a constant, 0000597 ohm (meter, gram). The ‘“‘constant mass”
en

"of any sam
[X 000597+0 000005
resistivity in chms (metet. gram) at ° c.

The density is 8.89 grams cubic centim
Note 2.—The gr::up.;'renm ublamoniyiornnnuledoopperofmslhmrd

The user of the tabl st apply the f ther
ruisﬁvig Hnrd-dnwn eopperog:y wp&m mgut 2.7 per eent mhe: m vity

L)

th:?‘m 3 -e—dOlmu pounds mil be obtained by multipl: the
mile, or e, ma; o m
respective values abovo by 5.28. pet Y plying
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INDEX

A
Alternating current transmission (. -¢
Transmission line)
Alternator
impedances, 123
transients, 246
Appleton, 1

B
Boulder Dam-Lo: Angeles line, 2

(o}
Calculating board, 281
Capacity
Effect of adjacent conluctors on, 49, 50
Effect of earth on, 56, 58
Nature of, 6
of single-phase line, 42, 47-49
of three-phase line, 50-53, 162
of transposed conductors, 54
of unsymmetrical three-phase line, 53-
56
Zero-sequence, 162-169
Carson, John R., 35
CGS units, 14
Circle diagrams
Admittance form of, 104
Basic, 93
Combined receiver and sending, 101
Efficiency, 113
Loss, 109
Receiver voltage, 95
Receiver volt-ampere, 95
Sending voltage, 98
Sending volt-ampere, 98
Special form of, 107
Conductors
Circular tube, 33
Stranded, 32
with earth return, 3%

D
Depth of current, 37
Dielectric
circuit, 11, 13
flux, 42

E
“orth rowen, 35
~facieney cirele diagram, 113
- lectrie circu’t. 7, 13
racrgy relations, 9, 11

F
Faults

Double line to ground, 175, 192

Line to line, 178
Network, 184, 195

Single line to ground, 170, 188

Three phase, 179
Flux linkages

by GMR, 27

External, 20

Partial, 18

Total, 215
Frequencies, 1

G

Generalized circuit equations

Constants for, 71

for long lines, 75

for parallel networks, 76

for phase shifters, 79

for series network, 75

for simple » circuit, 75

for simple series circuit, 74

for simple T circuit, 74

for tap changers, 78

for test for constants, 88
Geometric mean radius

Meaning of, 20

of conductors, 33

Use of, 27

H

Historical data, 1
Hyperbolic functions, 64

I
Impedance
Alternator, 123
Nature of, 120
Negative-sequence, 135
Neutral, 141

of circuit with earth return, 40
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Impedance—Continued
of long line, 156
of single-phase transformer, 141
of transmission line, 148
Positive-sequence, 134
Series, 141

Short-circuit methods for, 137-139

Shunt, 141

Test methods for, 89

Transfer, 72

Transmission line, 148

Unbalanced, 241

Zero-sequence, 136, 155
Inductance

by GMR, 20, 29

Mutual, 37

Nature of, 6

of conductor with earth return, 35

of round solid conductor, 17
of single-phase line, 23, 29
of stranded conductor, 32

~ three-phase line, 24, 31
of transmission line, 16

of transposed lines, 25

L
Loss circle diagram, 109

M
Magnetic circuit, 10, 13
Measurement
of negative-sequence current, 230
of negative-sequence power, 236
of negative-sequence voltage, 226
of positive-sequence current, 230
of positive-sequence. power, 236
of positive-sequence voltage, 226
of zero-sequence current, 225
Mechanical equivalents, 7
MKS units, 14

N

Network

faults, 184, 195

Four terminal, 80

Parallel, 76

Sequence, 169

Series, 75
Niagara Falls, 2

P

Pearl Street station, 1
Potential

contours, 46

of point, 43
Power

equations, 81

limit, 108
Practical system of units, 14

INDEX

R

Reactance
Adjusted, 131
Average values of, 136
Determination of, 129
Direct, 125
Direct leakage, 126, 261
Direct transient, 127, 133, 261
Inductive, 17, 25
Mutual, 39
Negative-sequence, 135
Physical nature of, 123
Positive-sequence, 134
Quadrature, 125
Quadrature leakage, 126
Quadrature transient, 127, 133
Saturated, 132
Sub-transient, 128, 133, 261
Zero-sequence, 136

Reactive vars, 81

Resistance, 6

S
Sequence networks, 169
Short-circuit calculations, 184
Stability, 266
Surges
Analogy of, 303
Example of, 311
in lattice network, 314
Nature of, 288
Quadrant chart for, 316
Swing curve, 280
Symmetrical components
Measurement of, 225
Nature of, 116
Negative-sequence, 119
Positive-sequence, 118
Zero-sequence, 118

T

Transformer

Auto, 215

impedances, 141, 213

Phase shifting, 79

T circuit for, 74

Tap changing, 78

Three winding, 212
Transient

in accelerating machine, 277

in alternator, 246

Mechanical equivalent of, 273

Special equation for, 279

Stability of, 266

torque angle, 275
Transmission engineer, 5



INDEX

Transmission line

Boulder Dam, 2

Capacity of, 6

Derivation of equations for, 60

Equivalent » circuit for, 68

Equivalent T circuit for, 69

Generalized equations for, 64

Inductance of, 6

Lightning surge in, 288

Modified equations for, 64

Negative-sequence impedance of, 1'%,
160

of no reflection, 67

Open circuited, 67

Positive-sequence impedance of, 148,
160

Power limit of, 108

Resistance of, 6

Short circuited, 67

Simple series, 84

Torque angle for, 266

Towers for, 4

Voltages ¢, 3
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Transmission line—Continued
Zero-sequence capacity of, 162
Zero-sequence circuit for, 149
Zero-sequence impedance of, 149, 155,

161
Unbalanced impedances, Circuits with,
241
\'%
velocity »f wave, 301
Jultage
induative, 7
of gelf induction, 8
w
Waves

at junction, 307
Current, 304

Energy, 306

Forward, 302
Reflected, 302

Star diagrams for, 306
Voltage, 304









