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PREFACE 

This book has been prepared as a textbook for the use of Junior 

Engineering students and may thus be said to be on an inter¬ 

mediate level. It has been planned not only to give the student 

certain factual information which he will need in his profession, 

but also to form a logical transition from the elements of Dy¬ 

namics, as studied in the general physics course, to the more 

advanced courses in Dynamics which are now common in the 

engineering graduate schools. 

As a textbook, the main emphasis has been on method and on 

the development of fundamental principles, so that the book is 

not to be considered as a treatise or a reference work on the sub¬ 

ject. The fundamental principles, however, have been illustrated 

by a number of applications to important practical problems 

drawn from the various engineering fields. It is intended that 

the examples should not only clarify the principles but also 

indicate the broad applicability of the principles and methods of 

mechanics to all the fields of applied science. 

The book begins with the simplest elements of the subject. 

Although the student will have had an introduction to such topics 

as Newton’s Laws of Motion and the system of Units and Dimen¬ 

sions in his Freshman physics course, it is believed that the 

importance of a critical understanding of the elements is such 

that some review time can be profitably spent. The treatment of 

the text is intended to emphasize the fact that elementary dy¬ 

namics is based upon the equation of motion and its first integrals, 

the equations of momentum and energy. With this objective in 

mind, the first part of the book consists of a concise treatment of 

the dynamics of a particle. This permits the principles of dy¬ 

namics to be presented in their simplest forms, without being 

obscured by the geometry and algebra of more complicated 

problems. A logical extension then shows that the same methods 
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can be applied to the treatment of systems of particles and rigid 

bodies. 
The scope of the text is somewhat broader than has been 

customary for undergraduate courses in Engineering Mechanics. 

The elementary aspects of dimensional analysis are presented; 

the theory of mechanical vibrations is treated in some detail, 

and the mechanical-electrical analogy is discussed; the energy 

equation and the momentum-transfer equations for a fluid are 

developed; some discussion is given of electron motion, including 

an indication of the relativistic treatment and the equivalence of 

mass and energy. The final chapter is an introduction to the meth¬ 

ods of advanced dynamics and includes a discussion of some of the 

simpler aspects of Lagrange’s Equations of motion, the Calculus 

of Variations, and Hamilton’s Principle. The main emphasis of 

the text, of course, is placed upon rigid body dynamics. The 

other aspects of the subject have been included to show how the 

methods of classical mechanics are applied to the various branches 

of Dynamics. It is intended that this should develop in the 

student a sense of the essential unity of practically all of engineer¬ 

ing and should indicate that the branches of engineering are, for 

the most part, specializations of classical mechanics. 

The vector notation has been utilized in the treatment of rigid 

bodies because of its advantages of simplicity, clarity, and general¬ 

ity. Vector analysis beyond the addition and multiplication of 

vectors is not required, however, as a prerequisite. The course 

in dynamics, as it is given at the California Institute of Tech¬ 

nology, runs concurrently with a Junior course in advanced 

Engineering Mathematics, which includes some vector analysis 

and various topics in advanced calculus. There are, however, no 

purely mathematical topics involved in the book which cannot 

be explained to the student who has taken the usual Freshman 

and Sophomore courses in differential and integral calculus. 

The material covered in the first part of the text is presented 

in considerable detail whereas the latter portion is given a more 

concise treatment, it being thought that as the student becomes 

familiar with the methods some of the explanatory details may 

be omitted. The problems are an integral part of the text, certain 

phases of the subject being left for the student to develop in the 
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problem work. As a consequence, it is expected that it will be 

necessary for the instructor to supplement the text with consider¬ 

able classroom discussion. 

A number of subjects, such as fluid dynamics and the kinetics 

of gases, have been treated in a very brief fashion. It is realized 

that the treatments are superficial, and that the student will make 

a more complete analysis of these topics in specialized courses. 

It is believed, however, that the brief discussions help to combat 

the tendency toward a too rigorous compartmentalization of 

courses, which may prevent the student from attaining that broad 

general view of applied science which is so necessary. In all such 

instances care has been taken to use methods which can be 

extended later for the more complete treatment, and the student 

has been informed of the limitations of the analysis. 

An attempt has been made to view the subject of dynamics from 

several different standpoints. Mechanics is a growing science, 
and there is no reason to suppose that new formulations of basic 

laws may not be made, which may, for certain problems, be 

superior to the older methods. It would be unfortunate if any 

student were to suppose that the subject of Dynamics is in its 

complete and final form—devised once and for all by some super¬ 

human intelligence in the past and delivered to us entire, to be 

accepted on faith. 

One of the objectives of the Mechanics course is the develop¬ 

ment in the student of skill in the formulation and numerical 

solution of problems. The only way in which most students can 

develop this skill is to solve a large number of problems. When 

time is available, the instructor will wish to supplement the prob¬ 

lems in the text with additional problems suited to the interests 

and abilities of the students. Certain of the problems, which 

have been marked with an asterisk, require either more thought 

in the formulation, or more work in the numerical solution, than 

the others. Such problems should be examined by the instructor 

before being assigned to the students. A number of the problems 

involve demonstrations or proofs of general propositions. Impor¬ 

tant conclusions are thus sometimes given in the problems which 

are not specifically mentioned in the text. The student should 

always examine these problems and note the results, even though 
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the details of the proofs are not carried through. Problems of 

varying degrees of difficulty are included in each group. The 

problems are not arranged in order of difficulty, however, as it 

has been found that most students need practice in deciding 

whether or not a problem is difficult. 

The book may be adapted for shorter courses by the omission 

of certain chapters or sections. Chapters IV and V consist of 

applications, and may be partially or completely omitted. 

Chapters VIII and IX contain extensions of the subject and may 

be omitted in a shorter or more elementary course. 

The authors wish to express their appreciation to Dr. F. C. 

Lindvall, Chairman of the Division of Engineering, California 

Institute of Technology, for the assistance he has given and the 

interest he has taken in the development of this book. Thanks 

are also expressed to Mr. W. L. Johnson, Mr. Seba Eldridge, Jr., 

and Mr. Saul Kaplun for their assistance in the preparation of 

problems, and to Mrs. Ruth D. Toy for her assistance with the 

manuscript. 

G. W. H. 

D. E. H. 

Pasadena, Calif. 

January, 1950 
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CHAPTER I 

THE GENERAL PRINCIPLES OF DYNAMICS 

. . . the whole burden of philosophy seems to consist in this, from the phe¬ 
nomena of motions to investigate the forces of nature, and from these forces to 
demonstrate the other phenomena.—I. Newton, Principia Philosophiae (1686). 

The science of mechanics has as its object the study of the 

motions of material bodies, and its aim is to describe the facts con¬ 

cerning these motions in the simplest way. From this description 

of observed facts, generalizations can be formulated which permit 

valid predictions as to the behavior of other bodies. 

The motions occurring in nature are the result of interactions 

between the various bodies which make up the system under con¬ 

sideration. That portion of the subject of mechanics which 

describes the motion of bodies, without reference to the causes of 

the motion, is called kinematics, while that portion which studies 

the relationship between the mutual influences and the resulting 

motions is called kinetics. These two subjects are usually com¬ 

bined under the name dynamics, and it is this general problem 

that is to be treated in this book. 

1. The Laws of Motion. The principles of dynamics are founded 

upon extensive experimental investigations. The first noteworthy 

experiments were performed by Galileo (1564-1642). Other in¬ 

vestigators followed Galileo, among them being Newton (1642- 

1727), who, after carrying out a large number of experiments, 

formulated the statements which are now known as Newton’s 

Laws of Motion: 

(1) Every body persists in a state of rest or of uniform motion 

in a straight line, except in so far as it may be compelled 

by force to change that state. 

(2) The time rate of change of momentum is equal to the force 

producing it, and the change takes place in the direction in 

which the force is acting 
\ 

F = 4 (mv); or, for constant m, F = ma 
at 

1 
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(3) To every action there is an equal and opposite reaction, or 

the mutual actions of any two bodies are always equal and 

oppositely directed. 

These statements are interpreted as summing up the results 

of experimental investigations, and their validity rests upon the 

fact that all observations subsequent to Newton’s time are in 

agreement with them. The study of Dynamics consists of the 

development of techniques for interpreting the Laws of Motion, 

and of an understanding of the physical significance of the 

properties of motion. 
2. Definitions. The intuitive concepts which arise concerning 

such basic quantities of Dynamics as force, mass, and time must 

be put into a precise form before they can serve as a foundation 

for the development of the subject. The following definitions 

prescribe the sense in which these words will be used in this book. 

Force and Mass. The primary objective of the science of 

mechanics is the study of the interactions which occur between 

material bodies. These interactions are of various types and 

might be, for example, impacts, electrical or gravitational attrac¬ 

tions, mechanical linkages, etc. Experience shows that during 

these interactions the velocities of the interacting bodies are 

changed. We define force, by Newton’s first law, as an action 

which tends to change the motion of a body. The fact that forces 

arise from mutual interactions and thus occur in equal and oppo¬ 

site pairs forms the empirical content of Newton’s third law. The 

concept of force is made quantitatively precise by the definition 

that a unit force produces a unit acceleration of a specified 

standard body. 

The mass of a body may now be defined by Newton’s second 

law as the ratio of the force acting on the body to the resulting 

acceleration. Cy international agreement, the unit of mass is 

defined as the mass of a particular platinum-iridium cylinder, 

called the international prototype kilogram, which is in the posses¬ 

sion of the International Committee of Weights and Measures at 

Sevres, France. 

The force exerted upon a body by the earth’s gravitational field 

is called the weight of the body. The weight of a body is thus 

variable, depending upon the location of the body with respect to 
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the earth. The magnitude of the earth’s gravitational field is 

specified by the acceleration of gravity (g) which is the acceleration 

of an otherwise unrestrained body attracted to the earth. The 

gravitational acceleration has been determined experimentally 

and is given at a latitude (j> and an elevation h ft by the empirical 
formula 

g = 32.089(1 + 0.00524 sin2 0)(1 - 0.000000096/?) ft/sec2 

At sea level the maximum variation of g with latitude is of the 

order of 0.5%, while the variation from sea level to an altitude of 

25,000 ft is of the order of 0.25%. In engineering it is customary 

to use a constant value of g equal to 32.2 ft/sec2. 

The mass of any body can be determined by comparing the 

body with the standard kilogram. In practice the mass of a body 

is usually determined by means of the ordinary balance. The un¬ 

known mass m\ is balanced with a known mass ?n2 so that the 

weights IVi and TV2 are equal. Since mi = IVi/g and m2 = 

W2/g, it follows that mi = ?n». 

Experiment shows that for the bodies and motions with which 

the engineer is usually concerned, the mass of a body is a constant 

within the limits of accuracy of measurement. Experiments in 

atomic physics, however, show that at sufficiently high velocities 

the mass of a particle is not a constant, but, as predicted by the 

theory of relativity, is given by m = ?n0/Vl — (v/c)2y where 

c is the velocity of light, v the velocity of the particle, and m0 the 

mass of the particle at zero velocity. Because of the large mag¬ 

nitude of cy it is impossible to detect the variability of mass at even 

the highest velocities encountered in engineering practice. It is 

important to note that Newton’s Second Law refers to a specific 

body and does not refer directly to a system which is losing or 

gaining material. 
A number of different standards of mass have been defined in 

terms of the prototype kilogram. In the LJnited States t\vt pound- 

mass avoirdupois has been defined legally by Congress as the 

1/2.2046 part of the international prototype kilogram. The 

pound-force is defined as the gravitational force exerted on a 

standard pound-mass when g has the “standard” value of 

32.174 ft/sec2. In engineering the pound-force is taken as the 
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unit of force, but the pound-mass is not taken as the unit of mass. 

The engineering unit of mass is that mass which is given an accel¬ 

eration of 1 ft/sec2 by a force of 1 pound-force. This unit of mass 

is called a slug and is equal to 32.174 pound-mass. Since the 

multiplicity of standards of force and mass sometimes leads to 

confusion, a summary of the definitions of a number of the com¬ 

monly encountered terms is given in appendix II. 

Time. The unit of time is the second, which is defined as the 

1/86,400 part of a mean solar day. The mean solar day is the 

yearly average of the time intervals between successive transits 

of the sun past a meridian of the earth. 

Length. The international standard of length is the standard 

meter, which is defined as the distance, at zero degrees centigrade, 

between two lines on a platinum-iridium bar in the possession of 

the International Committee of Weights and Measures. The 

United States Yard is defined legally by act of Congress as the 

3600/3937 part of the standard meter, and the foot is defined as 

one-third of a yard. 

3. Frames of Reference. In the preceding discussion of acceler¬ 

ation, force, and mass, it has been implied that there exists a frame 

of reference with respect to which measurements can be made. 

In engineering, unless stated to the contrary, it is always under¬ 

stood that measurements are to be made with respect to a coor¬ 

dinate system which is fixed at the earth’s surface. In astronomy, 

distances may be measured with respect to certain stars. In any 

event it is always necessary to perform measurements in some 

coordinate system which is located with respect to some physical 

object. 

The fact that the coordinate system may be located in various 

ways naturally raises the question as to the effect its position 

might have on the equations of motion and the solution of prob¬ 

lems. It is possible to select a coordinate system with respect to 

which it is not permissible to write simply F = ma. An example 

is a coordinate system fixed with respect to an airplane which is 

making a turn. It then would be necessary to apply a force to a 

body in order to keep its observed acceleration equal to zero. The 

equation F = ma would not give a correct description of the 

motion if the acceleration were measured with respect to an 
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accelerating coordinate system, for it would be necessary to add 

correction terms which take into account the motion of the coor¬ 

dinate system. It is clearly an advantage to locate the coordinate 

system so that such correction terms are not required. It was 

formerly customary to define an absolute space and to refer all 

measurements to a coordinate system fixed with respect to abso¬ 

lute space. It is now recognized that all measurements are rela¬ 

tive, and the concepts of absolute space and time have been 

discarded. The location of the coordinate system is now based 

upon experience. We locate the system so that the equation 

F = ma describes the motion within the required limits of 

accuracy. 

The difficulties associated with the ideas of absolute space, 

absolute time, and the location of coordinate systems might seem 

to be chiefly problems of philosophy. It was just these difficulties, 

however, which led to the formulation of the Theory of Relativity, 

which has been of such importance in the development of modern 

physics. 
4. Fundamental and Derived Units. For the measurement of 

the physical quantities with which we are concerned, three inde¬ 

pendent units are used. In engineering it is customary to use the 

unit of length (foot), the unit offorce (pound), and the unit of time 

(second), as the three fundamental units. All other quantities can 

be expressed in terms of the three fundamental units. The unit of 

acceleration, for example, is written (ft/sec2), and the unit of mass, 

which, from the equation F = ma is seen to be equal to force 

divided by acceleration, is written (lb sec2/ft). Such units are 

called derived units to indicate the fact that they are expressed by 

combinations of the fundamental units. As a matter of con¬ 

venience the derived units are sometimes given special names. 

For example, the foregoing derived unit of mass is called a slug. 

Many of the derived units have no special names, however, 

velocities being referred to as so many ft/sec, accelerations as so 
many ft/sec2, etc. 

The system of units described in the preceding paragraph, in 

which length-force-time are the fundamental units, is called the 

(L-F-T) or gravitational system of units. In physics it is cus¬ 

tomary to take length-mass-time as the fundamental units. This 
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system is called the (L-M-T) or absolute system of units. The 

words “gravitational” and “absolute” are merely the names of 

the systems, and it should not be inferred that there is anything 

absolute about a system of units. 
The {L-M-T) system differs from the {L-F-T) system only in 

that the unit of mass instead of the unit of force is taken as the 

third fundamental unit. In the {L-M-T) system the fundamental 

units are named the centimeter, the gram, and the second. The 

derived unit of acceleration is cm/sec2, and the unit of force is 

that force which gives a mass of one gram an acceleration of one 

cm/sec2. This derived unit of force, the gram cm/sec2, is called 

the dyne. 

5. Dimensions. All the physical quantities used in mechanics 

can be expressed in terms of the three fundamental units. The 

particular fundamental units required to express a quantity are 

called the dimensions of that quantity. Thus, the fact that accel¬ 

eration is measured in units of length per unit of time per unit of 

time, is described by saying that the dimensions of acceleration 

are L'T~2. In the following table the dimensions of a number of 

common mechanical quantities are summarized: 

Quantity (L-F-T) System (L-M-T) System 
Length. L L 
Time. T T 
Force. F MLT~2 
Mass. FT2L~y M 
Velocity. LT~l LT~l 
Acceleration. LTLT~2 
Area. D D 
Volume. I? & 
Density. FTTr* ML~3 
Momentum. FT MLT~1 
Work, Energy, Heat. FL ML2T~2 
Power.'. FLT-1 MDT~3 
Pressure, Stress. FL~2 ML~lT~2 
Moment. FL MDT~2 
Viscosity. FL~2T ML~lT~l 
Angle. dimensionless 

The number of fundamental units is to a certain extent ar¬ 

bitrary. In the field of thermodynamics a fourth fundamental 

unit is commonly added. This is usually taken as temperature 0. 

In the field of electricity, a fourth fundamental unit is also com- 
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monly added* which is often taken as the electric charge Q. The 

dimensions of some common thermodynamic and electrical quan¬ 

tities follow: 

Quantity (<L-F-T) System (L-M-T) System 
Temperature. . 6 e 
Thermal Conductivity. . FT-'8~l MLT-W-1 
Entropy. . FLO-1 ML2T~2B~l 
Gas Constant. . DT-ty*1 DT-2d~l 
Electric Charge. . Q Q 
Current . . QT~l QT-1 
Voltage. . FQ-'L MQ-'DT-* 
Resistance. . FQ~2LT MQ-WT-1 
Inductance. . FQ-'tLT2 MQ-*L* 
Capacitance. . F-^L-' M-'Q>L-*T* 

A study of the dimensions of the quantities entering into a 

physical problem may furnish useful information. Every equation 

which describes a physical process must be dimensionally correct* 

that is* the dimensions on one side of the equation must be the 

same as the dimensions on the other side. In the dimensional 

equations that follow, we shall indicate the fact that it is the 

dimensions only which are equated by enclosing the dimensional 

expression in square brackets. For example* the equation for the 

radial force Fn acting upon a mass m which moves in a circle of 

radius r with velocity v is: 

^ mv2 
Fr = — 

r 

Dimensionally* Fr = [F] 

mv2 \FT2Lrr\\LT~1]2 rr^ 

T ‘-ilj-m 

The equation is thus dimensionally correct. If the dimensions of 

such an equation do not check, then we know that an error of some 

kind exists. 

As a second example* considef the equation describing the 

velocity of a particle falling through a resisting medium: 

v 
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where: 
v = velocity [LT~l] 

W = weight of the body [F] 

k = resistance factor [FTL~l] 

m = mass of the body [FT*L~l\ 

t — time [T\ 

The dimensions of 1 \ are 
\m ) 

IT] = [F°T°L°] 

and the dimensions off — ) are 

_ IZlI   \LT~n 
[FTLr1] 1 J 

Thus the equation is dimensionally correct. 

In the second example it will be noted that the exponent of 
_kt ... 

the term e «* is dimensionless. In any expression of the type 

log x, ex, sin x, cosh x, etc., the argument x can always be written 

as a dimensionless quantity. This follows from the fact that 

dimensional homogeneity of an equation involving transcendental 

functions can be maintained only if the arguments are dimen¬ 

sionless. This may be seen, for example, by examining the series 

expansion for a typical function of this kind: 

e* — 1 + x + \x- + • • • 

Having the arguments in a dimensionless form has the advantage 

that the terms are independent of the size of the particular 

fundamental units used (see Problem 5). 

It is always possible to write a dimensionally homogeneous 

equation in the form: 

TTl = 2, 7T3, • * *) 

where ti, ir2, . . . represent dimensionless quantities and <f> indi¬ 

cates that 7Ti can be written as a function of the other dimensionless 

quantities. For example, taking the equation used in the second 

example above, 

v — 
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we see that this can be put in the form: 

i , (k 
\m 

where the quantities (jpj and are both dimensionless. 

6. Dimensional Analysis. The variables of a dimensionally 

homogeneous equation can always be grouped so that the equation 

is expressed in dimensionless terms, as is illustrated in the pre¬ 

ceding example. By dimensional analysis it is possible to deter¬ 

mine each of the dimensionless terms which appear in an equation 

without making a mathematical analysis to determine the actual 

functional form of the equation. Often the mathematics of a 

physical problem is so complex that it is not feasible to work out 

the exact solution. It is then advantageous to know the dimen¬ 

sionless terms which would appear in the solution. 

Consider a problem involving n variables Vi, v2, • • • , We 

shall suppose there are three fundamental units L, F, and T, but 

it will be seen that the following method of analysis is applicable 

for any number of fundamental units. The exact solution of the 

problem would be a dimensionally homogeneous equation in¬ 

volving the n variables, which may be represented by 

01 = 0(02, 03, * ' ’, 0») 

It will be more convenient if we write the equation 

0(01, 02, * ' ’, 0») = 0 

for now both sides of the equation are dimensionless. The equa¬ 

tion may also be written 

0(tt 1, 7T2, • • •) = 0 (1) 

where each r represents a dimensionless term composed of a cer¬ 

tain number of variables. We wish to determine the number of 

ir terms which will appear and to determine the variables of which 

each 7T term is composed. 

The dimensions of the variables can be written as: 

Pi = [LaFe'T'} 
V,, = [La'Fe-r-‘] 

vn = [i>F^r-\ 
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The numerical exponents a, 0, 7 may be positive, negative, or zero. 

The variables are to be combined into terms having the dimen¬ 

sions [L0/'’0?’0] and this can be achieved only by combining them 

in products of the form xi = Viav2bV3e • • • or, since we do not dis¬ 

tinguish between ti and tti°, we may write: 

7ti = viv2bVie • • • = [La'F*'rf[La'Fff'Tyf[La>F^rf • • • 

The exponents of the dimensions are additive so that the numer¬ 

ical values of b, c, . . . can be determined to make the resultant 

exponent of each dimension equal to zero. This gives the following 

set of three equations, one for each dimension: 

on ba2 H* cot$ dcx.\ -)-••• = 0 

0i + b02 + c0z + + • • • = 0 

7i + hi + £73 + hi + • • • = 0 

These are three simultaneous equations which can be used to 

determine three unknowns so that if we limit consideration to four 

variables, we obtain: 

«i -f- boc2 -(- £Q!3 -f" d<xi — 0 
0i + b0 2 + c0s + d0 4 = 0 
7i + hi + £7s + <^74 = 0 

The values of the unknowns b, c, and d are determined uniquely by 

these equations and they insure the existence of a dimensionless 

term iri — Viv2kv$eV4d. We conclude, therefore, that with three 

fundamental units four variables are required to form a dimen¬ 

sionless term. It may happen that in some problems certain of 

the a, 0, y’s may be zero and hence some of the b, c, d’s may be 

zero.* However, recognizing the possible existence of the zeros, 

this is consistent with the general statement that with N funda¬ 

mental units, + 1 variables are required to form a dimensionless 

term. 

In order that a dimensionless term be unique it is necessary 

that it contain a variable that does not appear in any of the other 

dimensionless terms, otherwise it would be possible to express 

*If one should choose as the variable Vi, for which the exponent a — 1, 
a variable which should not appear in that particular a- term, one will obtain, of 
course, the anomalous answer 1=0 from the equations. 



DIMENSIONAL ANALYSIS 11 

this term by combinations of the other terms. Therefore, the total 

number of unique dimensionless terms which can be formed is 

determined by the number of variables. The first t requires four 

variables, thus leaving n — 4 unused variables which permits a 

total of 1 + (n — 4) = n — 3 dimensionless terms to be formed. 

The procedure is to select 3 variables to appear in every tt term, 

the remaining n — 3 variables then determine n — 3 terms. 

The preceding discussion can be summarized in the form of the 

so-called t theorem.* 

If there are n variables involving N fundamental units they can be 

combined to form n — N dimensionless parameters, each containing 

N + 1 variables. 

The following examples illustrate the use of dimensional anal¬ 

ysis. Three points should be particularly noted: first, it is 

necessary to know which variables are pertinent to a problem, so 

that a considerable insight into the physical processes is required; 

second, the results of the dimensional analysis must be inter¬ 

preted carefully so as to obtain as much useful information as 

possible; third, by its nature, dimensional analysis can never give 

a complete answrer to the problem. 

Example 1. A mass m moves in a circle of radius r with a 

constant velocity v. What can be concluded as to the force F 

which causes this motion? 

Solution. The variables which enter this problem, along with 

their dimensions, are: 

F = [DFlT] 

m = [L-^T2] 

r = [DF°T°] 

v = [DFQT~l] 

There are 4 variables and 3 fundamental units so that there is 

4 — 3 = 1 dimensionless term which can be formed. This term is: 

Fmavhrc = [Z.0^1 T^°]1 [Z--1^1 ^ 7"-1] b[Z-1i^10 X°]c 
_ [/,—a"f &-W?1 f-a 7^a-&] 

* Buckingham, E., “On Physically Similar Systems; Illustrations of the Use 
of Dimensional Equations/* Physical Review 2, 345 (1914). 
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For the term to be dimensionless it is required that 

1 4- a — 0 a — — 1 
2a - b = 0 b =-2 

—a + b + c = 0 c = 1 

Fr 
The dimensionless term is therefore —- and the equation de- 

. , . mv1 
scribing the motion is: 

\mv2J 

Since m, vy and r are constant, F must also be constant and the 

functional form of the equation must be 

- c -o 

where C is a dimensionless constant (pure number). We may 

therefore write 
F = C — 

r 

If the problem were to be solved completely by using the prin¬ 

ciples of dynamics it would be found that C — 1, but we cannot 

deduce this from dimensional considerations alone. 

Example 2. Consider the problem of a vibrating mass, as 

illustrated in Fig. 1-1. If the mass is displaced from its equilib¬ 

rium position a distance A 
and then released, it oscillates 
between -\-A and —A. The 

spring requires a force of kx 

lb to deflect it a? ft, that is, 

the spring constant is k lb/ft. 

Apply dimensional analysis to 

Fic. l-l this problem to investigate 

the motion. 

Solution. The variables in the problem and their dimensions are: 

x = [UFaTa] 
A = [DFaTa] 
k = [L-^T0] 

m - [L-'F'T*] 
t = \DF«T\ 
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The number of dimensionless terms which can be formed is 
5 — 3 = 2. We are chiefly interested in x and t, so that we choose 
A, k, and m to appear in both terms, and x and t to appear only 
in one term. This gives for the dimensionless terms: 

X! = xAakbm° = [DF^lDF^YiL^F^flL-^T^f 
— ^l+o—b—■rjpH'cyT2cJ 

■Xi = tAakhmc = [La_f^ci7W*cT1+2c] 

Equating the exponents to zero and solving, we obtain: 

The equation describing the motion is therefore: 

The displacement can therefore be expressed as: 

* = A<t>[^-t) 

Dimensional analysis cannot determine the function <f>, but if the 
problem is solved by the principles of dynamics it is found that: 

= A cos 4 
To illustrate the information that can be derived from dimen¬ 

sional analysis suppose that the mathematical solution of the 
problem was unknown and we had to construct a large oscillator 
weighing 1000 lb, restrained by a spring with spring constant 
2000 lb/ft. Before undertaking the expense of constructing it, we 
would like to know precisely the motion it will have. Not know¬ 
ing the mathematical solution we resort to experiment and con¬ 
struct a model which will have the same motion as the prototype. 

From the equation x = A<f> we see that if the dimensionless 

quantity m is made the same for the model as for the proto- 
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type the model will have the same motion as the prototype. We 

might thus use for the model a mass weighing one pound and a 

spring with spring constant of 2 lb/ft. 

After performing the experiment we compile the results in 

dimensionless form, that is, we plot the equation A — <t> 

as shown in Fig. 1-2. This graph describes the motion of all pos¬ 

sible oscillators with any values of A, k, and m. The experimental 

results can now be applied to any desired prototype. As illustrated 

by this problem, it is, in general, advantageous to present experi¬ 

mental results in dimensionless form. 

Example 3. A problem of considerable practical importance is 

that of determining the drag force Fd acting upon a body moving 

through a fluid. Consider a body of specified shape moving with 

constant velocity v through a fluid of density p and viscosity p, 
as in Fig. 1-3. 

Fio. 1-3 

Solution. The analysis is to apply to bodies having the spec¬ 

ified shape so that we may take the cross-sectional area A as a 

measure of the size of the body. The variables entering this prob¬ 

lem and their dimensions are: 
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Fd = [FlL«T0] 
v = [F^DT-1] 

A - [F°L2T°] 
p = [F1!-^2] 

v = [PL-2?71] 

The number of dimensionless terms which can be formed is 

5 — 3 = 2. We are particularly concerned with the force Fa so 

that we shall have it appear in only one dimensionless term. Let 

us choose the viscosity p as the other unique variable so that: 

7T1 = FdAapbVc; 7T 2 = JU Aapbvr 

Determining the exponents in the usual fashion we obtain: 

7Tl 

and we may write: 

or 

Fa . 

Apv2’ 

vAj) 

V>a\\ 
M / 

= 0 

It is customary to write this equation as: 

Fa = APv-<t> | 

where the drag coefficient Ca is a function of Reynolds number * 

Ct6)- Usually 
the drag is investi¬ 

gated experimentally, and the re¬ 
sults are plotted in a dimensionless 

form as shown in Fig. 1-4. In this 

form the experimental results are 

applicable to bodies of any size hav¬ 

ing the specified shape, and to fluids 

of any density and viscosity. 

0 r>_vA*p 

Fig. 1-4 

♦Named after Osburne Reynolds (1842-1912), a distinguished English in¬ 
vestigator in the field of fluid mechanics. 
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PROBLEMS 

1. A steel column with a moment of inertia of I in.4 and length of 
/ in. is loaded with an axial force of P lb. The modulus of elasticity of 

the steel is E lb/in.2 The magnitude of P 
is sufficient to buckle the column into the 
deflected shape: 

y = Ssm^Eix 

where y is the deflection in inches at point x 
and 8 is the deflection in inches at the center. 
Check the dimensions of this equation. 

2. A body falling through a certain resist¬ 
ing medium with a velocity v is subjected to a 
drag force that is proportional to the velocity 
squared, Fd = —kv2. If the body has a weight 
W and starts from rest at time / = 0, its 
velocity at any subsequent time is 

Check the dimensions of this equation. 

3. A certain problem in dynamics leads to the equation 

In this expression m is the mass of the body, x and y are the coordinates 
of the displacement, 0 is an angle measured in radians, t is the time, and 
k is a stiffness modulus measured 
in pounds per foot. Check the 
dimensions of the equation. 

4. A jet of water of cross- 
sectional area A and velocity v 
impinges upon a stationary flat 
plate as shown. The mass per 
unit volume of the water is p. By 
dimensional analysis, determine 
the expression for the force F ex¬ 
erted by the jet against the plate. 

5. Show that a dimensionally homogeneous equation is independent 
of the size of the fundamental units, e.g. that the relation expressed by 
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the equation is the same whether foot-pound-seconds are used or inch- 
ton-minutes are used. Show that this is not true of a dimensionally 
inhomogeneous equation. 

6. (a) A gun shoots a projectile with an initial velocity v> which makes 
an angle of 6 with the vertical. The projectile has a mass m and a 
range R. The gravitational acceleration is g. Find the expression for R 
by dimensional analysis. (Assume there is no air resistance.) 

(b) Suppose the projectile of part (a) were subjected to an air resist¬ 
ance proportional to the velocity squared; that is, the magnitude of the 
retarding force is kvl lb. Apply dimensional analysis to obtain an ex¬ 
pression for the range. 

7. (a) Ocean waves have a wave length from crest to crest of / ft 
and a height of h ft. The density of the fluid is p and the acceleration of 
gravity is g. Solve for the velocity of the wave by dimensional analysis. 

(b) If the form of the waves is preserved, that is, if ~ is a constant, 
h 

what is the solution given by dimensional analysis in terms of /, p, £? 
This problem illustrates the fact that the information that one obtains 
from dimensional analysis depends to a great extent upon what is known 
about the physical problem. 

8. (a) Experiment shows that for laminar flow of a fluid through a 
circular pipe the significant variables are D, the diameter of the pipe, 

v the mean velocity of the fluid, the rate of change of pressure along 
ax 

the pipe and p the coefficient of viscosity. Derive an expression for the 
velocity v by means of dimensional analysis. 

(b) If the flow through the pipe of part (a) is turbulent, then ex¬ 
periment shows that the density of the fluid is also a significant variable. 
By dimensional analysis derive an expression for the rate of change of 
pressure for turbulent flow. 
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9. In a certain problem in fluid mechanics it is determined that 
surface tension a is an important factor. The other significant variables 
in the problem are velocity vy force F> density p, and cross-sectional 
area A. By dimensional analysis derive an expression for the force F in 

y2 A^ 
terms of the other quantities. The dimensionless quantity —— which 

a/p 

appears in the analysis is called Weber’s number. 

10. When a body falls through a resisting medium, such as air, its 
velocity increases until the drag force counterbalances the gravity force. 
The resultant force on the body is then zero, the velocity does not change, 
and the body is said to have reached its terminal velocity. Consider a 
spherical body of radius r falling through a very rarefied atmosphere. 
Let the density of the body be p/>, and the density of the medium p,„. 
From dimensional analysis what can be concluded as to the effect of the 
size of the body on the terminal velocity? 

7. The Relation Between Theory and Experiment. Whenever 

the applications of any physical science are examined, we are im¬ 

pressed by the fact that perfect agreement between theory and 

experiment can never be obtained. By the theoretical approach, 

we mean the method of starting with a set of laws, axioms, or 

premises from which various conclusions are drawn. Thus in 

dynamics, conclusions are drawn from the Laws of Motion by 

means of mathematics. By experiment we mean the method of 

actually measuring the pertinent quantities and thus obtaining a 

solution of the problem. In the experimental work it is not pos¬ 

sible to achieve perfect accuracy of measurement; consequently 

errors of a certain magnitude are always present in the measured 

quantities. For example, we may be interested in the motion of a 

mass acted upon by forces. The motion can be computed for any 

specified mass weighing W lb, but when measurements are made 

on the physical system we are unable to determine the precise 

weight. The best that can be done is to determine, for example, 

that the weight is not greater than 1.005 lb, and is not less 

than 0.995 lb. This can be expressed by saying that it weighs 

W{ 1 ± 0.005) lb, where the decimal figure in the parenthesis 

depends upon the accuracy of the measuring device and the care 
used in making the measurement. The same situation arises in 

measuring forces, velocities, and all the other quantities involved 

in the study of mechanics. Whereas in a theoretical analysis we 
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may work with precise quantities such as x, v, and F, in experi¬ 

mental work we can only determine *(1 ± ex), &(1 ± ev), and 

F( 1 ± eF). These discrepancies will cause no serious difficulty 

as long as the e’s can be kept sufficiently small for any particular 
problem. 

If a number of experimental determinations can be made of a 

quantity, it is possible by the methods of mathematical statistics 

to reach some conclusions as to the most probable value of the 

quantity. In the following discussion we shall deal only with the 

upper and lower limits of error, and we shall thus have no informa¬ 

tion as to the actual error of a particular measurement, which will 

lie somewhere between those limits. 

The preceding discussion naturally raises the question of how 

it is possible to tell whether there is a satisfactory agreement be¬ 

tween theory and experiment. The procedure for investigating 

whether or not there is agreement is illustrated by the following 

example. 

Suppose that a theoretical analysis of a particular problem 

leads to the conclusion that the relation between the force F 

acting on a mass m, which moves in a circular path of radius r with 

a velocity v is 

p — VFF 
r 

To check this experimentally, we construct some equipment, 

and we measure the various quantities, obtaining .F(l ± eF), 

m{ 1 ± em), £>(1 i ev)> and K* ± £>•)■ If theory and experiment 
agree, the computed value of F should agree with the measured 

value, so that: 
mvz 

or 

E(1 ± e,) = 

F = 

T(i ± gsKi + gjn 
L (1 + eT) J 

mv~ ret + em)(l + ev) T r L(1 ± eF)(l 
±jan 
± er) J 

Expanding the expression in the square brackets, and neglecting 

second order and higher terms, since they are small compared to 

the first order terms, we obtain: 
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If the measured value of F differs from by more than 
r 

[1 ± {?m + 2ev + ep + *«■)], there is disagreement between theory 
and experiment. To illustrate the orders of magnitude which 
might be involved, suppose that each of the experimental measure¬ 
ments has an accuracy of 1%, that is, 

&171 CV ~ 

Then, substituting, we have: 

6f — €r — 0.01 

F = 
mv* 

(1 ± 0.05) 

Thus, if i^does not differ from by more than 5%, we would say 
r 

that there is no positive disagreement. 
A method of solving this problem which is sometimes more 

useful than the one given above is the following. Differentiating 

the expression F = —, and using the usual approximation for 

the differentials of the variables, we have, as a first order ap¬ 
proximation: 

a v dF , dF , dF 
dm av dr 

In this particular problem 

dF _ dF _ 2mv dF 

-* dv ~ r 
so that: 

Writing 

we obtain: 

dm 

2 mv 
A.F = — Am + 

r r 
AV 

dr 

mv* 
AT 

Am av a r 
— — & vy — 

m v r 

&F = — (em + 2ev - eT) 
r 

mv1 
r2 

Remembering that the errors can be either plus or minus, it will 
be seen that this result is identical with the preceding one. 

In a practical problem it may well be that an analysis of the 
kind given will indicate a disagreement between theory and 
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experiment. In this event, the following possibilities should be 

considered: 

(1) The experiment was performed improperly. 
(2) A mistake was made in deriving the theoretical solution. 

(3) Some significant factor was neglected which should have 

been included. 

(4) The laws or premises upon which the theory is based do 

not describe the physical phenomena with the requisite 

accuracy. 

Regarding the discrepancy between theory and experiment, it 

should be noted that it is very common to neglect factors when 

deriving a theoretical solution. For example, despite the fact that 

a body moving in air is always subjected to air resistance, the¬ 

oretical solutions are often worked out neglecting the forces due 

to air resistance. By neglecting certain factors the problem can 

be simplified to the point where it may be relatively easy to derive 

a solution, whereas, if all factors were included, it might be 

difficult, if not impossible, to obtain the desired solution. We 

thus have a deliberate discrepancy between theory and experi¬ 

ment. It would not be proper to say that the theoretical solution 

is incorrect, but rather that it is not strictly applicable to the 

problem. In making use of such a simplified solution there will 

always be a discrepancy between the answer predicted by the 

theory and that obtained by experiment. Properly the upper 

limit of this discrepancy should be determined either experimen¬ 

tally or otherwise so that it may be said that the theoretical solu¬ 

tion gives an answer correct to some specified degree of accuracy. 

When solving a problem we should state explicitly the assumptions 
that have been made or the conditions that have been imposed so that 
it is known under what limitations the solution is valid. 

PROBLEMS 

11. Show that the total error in a function of the type y = x\aX2hxzc 
can be found by taking the logarithm of each side, differentiating, and 
writing in terms of differentials. Apply this method to the example 

given above, F — —, and show that it leads to the result found there. 
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12.* In an impact experiment a mass m is dropped through a certain 
distance with an impact velocity v, and a precise value of mv is desired. 

The equation of motion is: 
ml1 TK 

Two procedures are possible: (1) By means of an electronic device the 
velocity just before impact may be measured, and the mass may also be 
measured; thus mv is determined within certain limits of error. (2) m9 gy 
ky ty may be measured and the corresponding impact velocity computed. 
Which is the more accurate method of determining mv} The measure¬ 
ments of the quantities are: 

Quantity Value 
m. 20(1 + 0.005) 
g. 32.18(1 ± 0.02) 
k. 0.1(1 ±0.04) 
t. 2(1 + 0.02) 
v. »(1 ± 0.05) 

13. Dimensional analysis indicates that for a certain flow condition 

the discharge Q in cubic feet per second through a circular pipe is: 

Q = 
CA^f 

dx 

Measurements are made over a range of values of Qy p, A, and dp/dx and 
the corresponding values of C are computed. Set up the expression for the 
total error in C\ How does one determine whether the values of C do or do 
not show satisfactory agreement between theory and experiment? 

14. Given that the range i? of a projectile fired from a gun with an 

angle of elevation 0 is: 2 
R = — sin 20 

g 

where vq is the initial velocity of the projectile and air resistance is neg¬ 
lected. The initial conditions are 6 = 30° ± 0.15°; Vq = 1000 ft/sec ± 15 

ft/sec;£ = 32.18 ft/sec2 ± 0.08%. What is the limit of error fori? in feet? 

IB. In a certain experiment in fluid mechanics the significant factor 
is Reynolds number: 

~ - m/p 
The limits of error for measurements of the quantities are: v> ±1%; 
Ay ±0.5%; fiy ± 1%; p, +0.8%. What are the limits of error for the cor¬ 
responding computed values of i?? 

* Problems marked with an asterisk require either more thought in the 
formulation, or more work in the numerical solution, than the others. 



CHAPTER II 

KINEMATICS: THE DESCRIPTION OF MOTION 

The circumstances of mere motion, considered without reference to the bodies 
moved, or to the forces producing the motion, or to the forces called into action 
by the motion, constitute the subject of a branch of Pure Mathematics, which 
is called Kinematics.—W. Thomson and P. G. Tait, Elements of Natural Phi¬ 
losophy (1872). 

For the development of Dynamics a concise and consistent 
notation is required for the description of the displacements, 
velocities, and accelerations of a body. The vector notation for 
these quantities will be presented first, and then various scalar 
components of these vectors will be developed. 

8. Displacement, Velocity, and Acceleration. The displacement 
of a point P (Fig. 2-1) is described by the magnitude and direc¬ 
tion of the radius vector r which extends from the origin of a 

coordinate system to the point P. At time /, let the dis¬ 
placement be r then at time t + At the displacement is r + Ar 
where Af is the vector from P to P'. Between P and P' the 
average change of r per unit time is at/At and the velocity at P 

23 
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is obtained by taking the limiting value of at/At as At approaches 
zero. 

v = lim — 
At —> 0 A/ 

dr 
dt 

The direction of v is tangent to the path of motion at P. At point 
P the velocity is v and at the point P' it is v + av. The change 
of velocity with time may be illustrated by a diagram in which 
the velocity v is drawn as a radius vector as in Fig. 2-2. The 

curve described by the end¬ 
point of v in this figure is 
called the hodograph of the 
motion. Let the velocity be 
v at time t and v + av at 
time t + At. In this interval 
the average change of ve¬ 
locity per unit time is av/a/, 

and the acceleration at time 
t is obtained by taking the 
limiting value of av/at. 

.. av dv cPr 
a = lim — = — = —rr 

Ai—*0 At dt dt2 

The direction of the acceleration vector a coincides with the direc¬ 
tion of the tangent to the hodograph, since the velocity of the 
endpoint of a vector in the hodograph plane is the time derivative 
of the vector. It should be noted that the acceleration is equal to 
zero only when both the magnitude and direction of v are constant. 
For example, a particle moving on a circular path can never have 
zero acceleration since the direction of v is always changing. 

In vector notation the equation of motion is written:* 

F = 
cPr 

m mr (2) 

It is often convenient to resolve the displacement, velocity and 
acceleration vectors into components. These components are 
usually taken in the principal directions of the coordinate system 

*We shall use a dot placed above a letter to indicate the derivative with 
respect to time, and two dots to indicate the second derivative. This is the 
notation originally adopted by Newton. 
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which is most appropriate for the particular problem involved. 
Three commonly used sets of components will now be discussed. 

(a) Rectangular coordinates (Fig. 2-3) are used to describe the 

displacement, velocity and acceleration vectors when they are 

resolved into components parallel to 

the orthogonal xyz axes. In terms 

of the unit vectors i, j, k, which are 

constant: 

r = xi + yj + zk 

f = ^ = *i + yj + zk (3) 

z<72 

f = -p - xi + yj + zk (4) 'Z 
Fig. 2-3 

i . dx 
where x = -y = vxy 

at 
etc., x 

d2x 

dfi 
ax:, etc. 

In rectangular coordinates the equation of motion is written 

Fx = mx\ Fv = my\ Fz = mi (5) 

where Fx> Fvy Fz are the x, yy z components of the resultant force 

acting on the particle. 
(b) Cylindrical coordinates zy ry <f> are used when suited to the 

geometry of the problem. In this system there are three mutually 

perpendicular components, one parallel to the z-axis, one with a 

direction parallel to the radius vector in the xy plane, and the 

third with the direction of increasing <t> as shown in Fig. 2-4a. 

Fig. 2-4 
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The unit vectors specifying these directions are designated by 

ez, er, and e*. The unit vectors er and are not constant, but 

change direction with time. The time derivative of a unit vector 

is perpendicular to the vector since the length of the vector is 

constant. As may be seen from Fig. 2-4b: 

Aer = (Atf>)(l)e* and Ae* = (a0)(1)( — er) 'A 

so that the derivatives are: 

er — pe#; e* = —per 

The displacement of point P is: 

fi = reT + ze. 

The velocity is obtained by taking the derivative with respect 

to t: 

v = reT + reT + zez + ze2 
= reT + rcpe^ + zez (6) 

The components of the velocity in the r, 0, and z directions are 

respectively r, r<p, and z. The acceleration is obtained by a second 

differentiation. 

a = reT + reT + r<t>e^ + ripe# + rcpe# + 'iez + zez 
= (r — rtf)er + (rip + 2 + zez (7) 

The equation of motion is written: 

Fr — m(r — rip2) 
F+ = m(rip + 2 rip) (8) 

F, = mi 

where Fr, F+, Fz are the components of the resultant force on the 

particle in the r, <p, z directions, and (r — rp2), (rip + 2r<p), and z 
are the components of acceleration. Since the expressions for the 

acceleration components are not as simple as for rectangular com¬ 

ponents, it is not desirable to use cylindrical coordinates unless 

the geometry of the problem is particularly suited to their use. 

(c) Tangential and normal components are used chiefly because 

they give a simple representation of acceleration in curvilinear 

motion. Let s be the arc length measured along the path of mo- 
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tion (Fig. 2-5a) and let p be the principal radius of curvature 

at the point P. The velocity 

is: 
v = set (9) 

where the unit vector has the 

direction of v, that is, tangent 

to the path of motion. The 

acceleration is obtained by dif¬ 

ferentiating the velocity with 

respect to the time: 

a = set + set 

To evaluate the time deriva¬ 

tive of the unit vector et note 

from Fig. 2-5b that since this 

vector changes direction but not length, Aet is perpendicular to 

eh so that: 

AS . ,. ACt 1 ,. AS 1 . 
* ACt =-en; et = lim — --en hm — =-sen 

p At—>0 A/ p A<—»0A/ P 

where the minus sign indicates that et is opposite in direction to en. 

Substituting this value of et in the foregoing expression for a 
gives: 

a = set — - en (10) 
P 

The acceleration vector a may thus be resolved into two per¬ 

pendicular components, a tangential acceleration of magnitude s 

and a normal acceleration of magnitude —s2/p. The minus sign 

indicates that the direction of the normal acceleration is toward 

the center of curvature. 

The equations of motion in terms of tangential and normal 

components of acceleration are: 

Ft — ms 

Fn=-~ (11) 
p 

In dynamics problems it is customary to make the direction of 

all positive vector components coincide with the positive direction 
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of the coordinate. With this convention the sign of a component 

determines its direction, that is, a plus sign means the component 

has a positive direction. 

Example 1. A particle moves along the parabolic path^y = ax* 
in such a way that the ^-component of the velocity of the particle 

remains constant. Find the acceleration of the particle. 

Solution. Since the conditions of the problem are stated in 

terms of a rectangular coordinate system, we shall probably find 

rectangular coordinates most convenient for this problem. Since 

x = c, we have x = 0. Also: 

y = ax2 
y — 2 axx — 2 acx 
y = 2 acx = 2 ac2 

so that the motion of the particle is: 

r = xi + ax2j 
r = ci + 2 acxj 
ir = 2 ac2j 

* Example 2. A particle P moves in a plane in such a way that 

its distance from a fixed point 0 is r = a + bt2 and the line con¬ 

necting O and P makes an angle 

<f> = ct with a fixed line O^, as 

shown in Fig. 2-6. Find the 

acceleration of P. 

Solution. The data for this 

problem are given in such a way 

that a plane polar coordinate 
riu.^ t,—x> * * 

\ system is convenient for the de¬ 

scription of the motion. The acceleration of the point P in plane 

polar coordinates is found from Equation (7): 

a = (r — r02)er + (r<j> + 2r<j!>)e* 
In this problem: 

r = a + bP <f> = ct 
r = 2bt <f> — c 
r = 2b $ = 0 

So that: 
a = [2b — c\a + ^2)]er + 4bcte+ 



DISPLACEMENT, VELOCITY, AND ACCELERATION 29 

Example 3. A particle moves along a path composed of two 

straight lines connected by a circular arc of radius r, as shown in 

Fig. 2-7. The speed along the path is given by i = at. Find the 

maximum acceleration of the particle. 

Solution. The form of 

the data in this problem 

makes the use of radial and 

tangential components of 

acceleration suitable. Us¬ 

ing Equation (10): 

i2 a 
Fig. 2-7 

we note that the normal component of acceleration is zero along 
i2 

the straight portion of the path, and — along the curved portion. 

The maximum acceleration will thus occur when s is a maximum 

on the curved path, that is, just at the end of the curve: 

a2t2 
&nihx ClQ i €n 

PROBLEMS 

16. The speed of a car increases from 2 mph to 32 mph in 10 sec. 
Find the time average acceleration if the car is traveling in a straight 
line. If s = ktz + cty what is the acceleration at the end of 10 sec? 
s = the distance along the path in feet; t = time in seconds. 

17. An auto starts from rest and completes one lap on a horizontal 
2-mile diameter circular track in / sec. Find t if the magnitude of the 
average speed vr is 88 ft/sec. Find the velocity of the car at the end 
of the lap if the magnitude of the tangential acceleration is uniformly 
increasing with time. Express v as a function of v'. 

18. A point moves along the *-axis with a constant acceleration a. 
Derive an expression for displacement as a function of acceleration and 
velocity if x = v0 and x = x0y when / = 0. 

19. Derive the r, <£, z components of acceleration in cylindrical coor¬ 
dinates without using unit vectors. Do this by starting with the x, yy z 
components of acceleration, first showing that 

ar — ax cos + ay sin <£, = — ax sin <f> + ay cos <t> 

In this way, check Equation (7). 
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20. Derive the expressions for the tangential and normal components 
of acceleration without using unit vectors. Deduce them by first deter¬ 
mining the normal and tangential components of av/a/ and then letting 
A/—» 0. 

21. * Referring to the figure, consider the effect of increments in <j> 
and 0 upon the unit vectors er, eand e0 of a spherical coordinate sys¬ 
tem. er is radial, out from the pole 0, e# is tangential to the circle of 
latitude, and eB is tangential to 
the expressions for er, eand eQ. 

meridian circle as shown. Derive 

22.* Using the results of Problem 
21 derive the r, <£, and 0 components 
of velocity and acceleration in spher¬ 
ical coordinates. 

23. A body moves in a straight line parallel to the x-axis with constant 
velocity v as shown in the diagram, (a) What are the components of 
acceleration when expressed in rectangular coordinates? (b) Referring 

to Equation (7), evaluate a term 
by term, showing that the coeffi¬ 
cients of er and e# vanish. 

9. Angular Velocity. Con¬ 

sider a rigid body rotating about 

an axis OA, as shown in Fig. 2-8. 

By the definition of rotation 

this means that all points of the 

body are, at a given instant, 

moving in circular paths about 

centers on the axis of rotation. 

The angular velocity of the body 

is described by the vector co, 

which has the direction of the 

axis of rotation, as given by the 
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right-hand screw rule, and which has a magnitude equal to the 

time rate of change of the angular displacement of any line 

in the body which is normal to the axis of rotation. Thus in 

Fig. 2-8, co would have the direction of OA, and the magnitude 

r ‘A « = urn — = 6. 
M—M)A/ 

There is a simple relation between the angular velocity of a 

rigid body rotating about a fixed axis and the linear velocity of 

any point in the body. Referring to Fig. 2-8, and the definition 

of the angular velocity, it will be seen that the velocity v of a 

point P located by the radius vector r is: 

v = co x r . (12) 

since v is perpendicular to the plane of co and r and 

,. acJ) 
d = lim- = ur sin a 

At —>0 At 

A summary of the algebraic properties of vector products is 

given in Appendix III, for the benefit of those who wish to review 

the subject. 

PROBLEMS 

24. A rigid body is rotating with an angular velocity of magnitude 
500 rpm about a fixed axis which has the direction and location of the 
radius vector 3* + 2/ — k. Find the linear velocity of the point 
i — 2j + 3k ft in the body. 

25. Given an orthogonal coordinate system having unit vectors 
*, j, k rotating with respect 
to a fixed system with an 
angular velocity co, show 
that: 

i = u x /; > = co xi; 
k = co x k 

10. Motion Referred 
to a Moving Coordinate 
System. Suppose that 
the position of a point P 
(Fig. 2-9) is determined 
with respect to an xyz Fio. 2-9 
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coordinate system, while at the same time this coordinate system 

moves with a translational velocity R and an angular velocity 

<*> with respect to a “fixed” XYZ coordinate system. This is 

the type of coordinate system which might become necessary, 

for example, in a long range ballistics problem for which the 

motion of the earth would have to be taken into account. In such 

a problem the measurements would be made with respect to the 

earth, and the motion of the earth relative to some coordinate 

system fixed with respect to certain stars would be considered. 

In the analysis to follow, we shall always measure the vectors 

R and r in the fixed XYZ system. The unit vectors i, j, k have 

always the direction of the moving coordinate axes, while the unit 

vectors V, j', k' have always the direction of the fixed coordinate 

axes. 

By the absolute displacement r of the point P is meant the dis¬ 

placement measured with respect to the fixed XYZ system. By 

differentiating this absolute displacement we obtain the absolute 
velocity r, and the absolute acceleration f. 

r = XV + Yf + Zk' 

r = XV + Yf + Zk' (13) 

r = XV + Yf + Zk' 

During these differentiations, the unit vectors V, j', k' are treated 

as constants, since neither their magnitudes nor their directions 

change with time. 

If we wish to express the absolute motion in terms of motion 

measured in the moving xyz system, we have: 

r = R + p = R + xi + yj + zk 

where the directions of the i, j, k unit vectors are known with 

respect to the fixed system. However, the unit vectors are 

changing direction with time, since they rotate with the xyz sys¬ 

tem. In taking the derivatives f and r, therefore, the time 

derivatives of these unit vectors must be included: 

r = R + p = R + &i + xi + yj + y} + zk + zk 

The derivatives of the unit vectors are (see Problem 25): 

i = uxi; j = « x j; k - taxk 
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so that: 

r = R + (xi + yj + zk) + 03 x (xi + yj + zk) 

The quantity (xi + yj + zk) represents the velocity of the point 

P, measured relative to the moving coordinate system, which we 

shall call the relative velocity pr. Using this notation, the expression 

for r becomes: 

r = R + pr + u x p (14) 

and it is seen that p = p, + u x p. 

The acceleration of P may be found by a second differentiation: 

r = R + p = R + (xi + yj + zk) + (xi + yj + zk) 

+ « x (xi + yj + zk) + 03 x (xi + yj -j- zk) 
+ 03 x (xi + yj + zk) 

Writing (xi + yj + zk) = pr which we call the relative acceleration 

of the point P, the expression for f can be written: 

r = R + 03 x (03 x p) + 03 x p + p, + 203 x p, (15) 

The first three terms in this expression for r represent the 

absolute acceleration of a point attached to the moving coordinate 

system, coincident with the point P at any given time. This may 

be seen by noting that for a point fixed in the moving system 

Pr = Pi — 0. The fourth term p, represents the acceleration of 

P relative to the moving system. The last term 203 x pr is some¬ 

times called the acceleration of Coriolis, after G. Coriolis (1792— 

1843), a French engineer who first called attention to the presence 

of this term in problems of this kind (See Problem 27). 

The equation of motion in terms of the moving coordinate sys¬ 

tem may thus be written: 

F = mR + mo3 x (« X p) + mot x p + m'pr + 2mo3 x pr (16) 

Some applications of this equation will be given in the chapter on 

rigid body dynamics. 

Example 1. A small body of mass m slides on a rod which is 

the chord of a circular wheel, as in Fig. 2-10a. The wheel rotates 

about its center 0 with a clockwise angular velocity u = 4rad/sec, 

and a clockwise angular acceleration u = 5 rad/sec2. The body m 

has a constant velocity of 6 ft/sec to the right, relative to the wheel. 

Find the absolute acceleration of m when p — 1.5 ft if R. — 3 ft. 
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Solution. We shall fix the moving xyz coordinate system to the 

wheel as shown in Fig. 2-10a. The angular velocity of the co- 

Fio. 2-10 

ordinate system is <o = 4 rad/sec and the angular acceleration 

(j) = 5 rad/sec2. Applying Equation (IS) 

f = R + « X (w X p) + « X p + Pf + 2(J) X Pr 

the terms may be evaluated as follows: 

H = — (3 ft) (4 rad/sec)2i + (3 ft) (5 rad/sec2)./ «= —48/ + 15/ ft/sec* 
» X (« X p) = (4 rad/sec)(4 rad/sec)(1.5 ft)j = + 24j 

« X p — (5 rad/sec2) (1.5 ft)/ — +7.5/ 
Pr ~ 0 

2w X pr =—2(4 rad/sec) (6 ft/sec) i = — 48i_ 
r = —88.5/ + 39i ft/sec2 

In some problems of this type the sum of the first three terms 

R + ux(«xp) + «x/> can be computed more directly by 

noting that this vector sum represents the absolute acceleration of 

a fixed point on the moving coordinate system which is coincident 

with the moving point. In the present problem, for example, this 

coincident-point acceleration is (see Fig. 2-1 Ob): 

’(«*) (t5) - M (|)] i + [r» (f) + M 

- l(1.5)(S) - (3)(4)2]i + [(3)(5) + (1-5)(16)]7 

- —40.5f + 39/ ft/sec2 
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which will be seen to be equal to the sum of the first three vectors 

of the solution by the other method. 

Example 2. A rigid straight bar of length / slides down a 

vertical wall and along a horizontal floor as shown in Fig. 2-1 la. 

The end A has a constant downward vertical velocity vA. Find 

the angular velocity and the angular acceleration of the bar as a 

function of 9. 

Solution. We shall take the fixed and moving coordinate axes 

in this problem as shown in Fig. 2-1 lb. Writing the equation for 

the absolute velocity of the point B, we have: 

rB = R + co x p = vA -f ulj 

Since we know that vA is vertical and that fB is horizontal, we may 

draw the vectors representing this equation 

as in Fig. 2-llc, from which we find: 

wl sin 6 = vA 
so that: 

Va 
03 

l sin 6 

Fig. 2-llc 
which gives the angular velocity of the 

bar. 
To find the angular acceleration we apply Equation (15): 

f u = R + « X (« X p) + co X p + p, + 2o> x fa 

which becomes: 
rB = 0 — (All + alj + 0 + 0 
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Drawing the vector diagram and substituting the value of to found 
above we obtain, from Fig. 2-1 Id, 

co2 _ Pa2 

tan 0 l2 sin2 0 tan 0 

___5i 
/2 sin2 0 tan 0 

Fig 2-1 id which determines the angular acceleration 
of the bar. 

Example 3. A simplified picture of the mechanism of a heli¬ 

copter blade is shown in Fig. 2-12a. The blade oscillates about 

the horizontal axis P-P', which is carried on a rotating disk OB 

so that the whole assembly rotates with a constant angular 

velocity <o. The blade has a mean position defined by the line BC, 

which makes an angle 0 with the horizontal. At any time t the 

blade makes an angle 0 with the line BC, where 0 is given by 

the equation 0 = 0o sin pt, p being the angular frequency of the 

“flapping” oscillation of the blade. Find the velocity and accel¬ 

eration of A, the tip of the blade, when 0 = 0. 

Solution. We shall first find the velocity and acceleration of A 

relative to a coordinate system which rotates with the disk OB 
with an angular velocity <o, and whose origin is located at B. We 
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orient the system so that R lies along the AT-axis (Fig. 2-12b). 

Since 

then 

<l> = <{>o sin pt 

<t> = <j>op cos pt 

<t> — —<t>op2 sin pt 

Thus, the magnitudes of the relative velocity and acceleration, 

when <f> — 0, are: 

Pr = ri4> = rrfop 

(pr) t = ri4> = 0 

(Pr)n = = ri4>a2p2 

Now, using Equation (14): 

r = R + pT + to x p 

where in this problem the terms become: 

R = -Ruk 

pT = —ri<f>op sin 8i + ri<t>op cos Oj 

to x p = — r\(o cos 6k 

So that: 

f = {—ri<t>ap sin 8)i + (n&p cos 6)j + (—Ru — riw cos 6)k 

To find the acceleration we use Equation (15): 

ir = R + to x (w X p) + w X p + pr + 2<o x pr 
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where in this problem the terms become: 

R = -Ro>H 
u x (w x p) = — nu2 cos 9i 

(ixp = o 
p, = — ri<p<fp2 cos 9i — ri<f>2p2 sin 9j 

2w xpr = 2(j>t>ripo) sin 6k 
So that: 

ir = (—2?co2 — riw2 cos 9 — r^-p2 cos 9)i + (—r^p2 sin 9)j 
+(2<j>tiTipu sin 9)k 

PROBLEMS 

26. A particle moves in a circular path of radius a with a constant 
angular velocity co as shown in the diagram, (a) Show that the accelera¬ 
tion term co X (<o X r) has a radial direction and a magnitude of 

2 0* 

a 

(b) The magnitude of the angular velocity of the particle varies 
with time according to the equation u = at, where a is a constant 

angular acceleration. The acceleration of the particle is given by a =* 

— ((0 X r) = coxr + coxr. Find the magnitude and direction of each 
at 
of the two terms (i X r and (a X f. 

27. Two concentric circular disks of radius r and R rotate about the 
same fixed center 0. The angular velocity of the large disk, measured in 
a fixed system, is 12. The angular velocity of the small disk relative to 
the large disk, that is, measured in a system attached to the large disk. 
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is 03. Find the acceleration of the point A, on the circumference of the 
small disk. What is the Coriolis acceleration term? 

28. A particle of water P moves outward along the impeller of a 
centrifugal pump with a constant tangential velocity of 100 ft/sec rela¬ 
tive to the impeller. The impeller is rotating with a uniform speed of 
1800 rpm in a counterclockwise direction. What is the acceleration of 
the particle at the point where it leaves the impeller? 

N 

Prob. 28 Prob. 31 

29. Using the method of Example 2 above, find the velocity and 
acceleration of the midpoint of the bar. Check these answers by writing 
the analytical expression for the position of the center of the bar in an 
xy coordinate system coinciding with the floor and the wall, and by 
differentiating this expression. 

30. * Referring to the helicopter blade of Example 3 above, find the 
acceleration of the blade tip A when the angle <t> has one-half of its 
maximum value <ft> = 6° and is increasing. The “coning angle” 0 is 7°, 
the radius to the tip of the blade is rx = 15 ft, the radius of the disk is 
R = 1 ft, and the assembly rotates at 225 rpm. The blades flap once per 
revolution of the rotor, that is, p = co. 

31. A river is flowing directly south along the surface of the earth at 
a uniform speed of 5 mph relative to the earth. What is the acceleration 
of a particle of water in the river when it crosses the 30° North latitude 
line? 



CHAPTER III 

DYNAMICS OF A PARTICLE 

Newton admits nothing but what he gains from experiments and accurate 
observations. From this foundation, whatever is further advanced, is deduced 
by strict mathematical reasoning.—William Emerson, The Principles of Me¬ 
chanics (1754). 

The equation of motion as given in Chapter I is theoretically 

sufficient for the solution of any of the solvable problems of 

classical mechanics. There are several other ways, however, of 

presenting the basic information contained in this equation. Each 

of these has advantages for the solution of certain types of prob¬ 

lems. In the present chapter we shall show first, in some simple 

examples, how the equation of motion can be integrated directly 

to give the solution of certain types of problems, and we shall then 

discuss several other general forms of the equation of motion. 

The problems treated in this chapter will be restricted to the 

dynamics of a particle. If rotational effects can be neglected for a 

particular body, then that body can be treated as though it were 

a single particle with the mass of the body concentrated at one 

point.* If the rotational effects need to be considered, then the 

problem must be treated by the more general methods of rigid 

body dynamics. It should be noted that the same body might 

in one problem behave as a particle, while in another problem it 

might have to be treated as a rigid body. For example, a cannon 

ball shot through the air could be treated as a particle; the same 

ball rolled along the ground would have to be considered as a rigid 

body of a given radius. 

In general, we shall consider any body as being made up of a 

number of particles, so that, once the basic laws describing the 

motion of a particle have been established, the theory may be 

extended to any body without the introduction of new principles. 

By studying first the behavior of a single particle, the various laws 

* See Section 39, Chapter VI. 
40 
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of dynamics can be exhibited in their simplest form, unencum¬ 

bered with the purely mathematical difficulties involved in the 

description of complex motions. 

11. Integration of the Equation of Motion for Particular Prob¬ 
lems. In many problems the known quantities and the informa¬ 

tion desired are such that a direct integration of the equation 

F = m'r, expressed in an appropriate coordinate system, will give 

the solution. 

Example 1. Consider a particle, of mass m, which at time 

/ = 0 is projected horizontally with an initial velocity Xo, and is 

subsequently acted upon by gravity and by air resistance. Find 

the position and velocity of the particle at any subsequent 

time. 

Solution. In Fig. 3-1 is shown a free-body diagram of the par¬ 

ticle with all the forces acting. The drag force produced by air 

resistance has been resolved in¬ 

to two rectangular components, 

and the gravity force is shown as 

a downward force mg. To de¬ 

scribe the motion we choose a 

rectangular xy coordinate system 

with the xy plane coinciding with 

the plane of motion. In this 

system the equation F — m'r be¬ 

comes: 

Fx — mx = —Dx 
Fy = my = Dv — mg 

In general, the drag forces Dx and Du will be functions of the 

velocities x and y, and these functions must be known before the 

equations can be integrated. In a later section we shall consider 

the nature of these functions and methods of integrating the 

resulting equations. For the present, as an illustration of the 

general method in its simplest form, let us suppose that the motion 

is taking place in a vacuum, so that Dx — Dv = 0. Then: 

x = 0 

y =s 
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Integrating once: 
x — Ci 

y = —gt + C2 

The constants of integration can be determined from the initial 

conditions * = Xo, y = 0 when / = 0; hence 

C\ — &0 

Ci = 0 

Performing a second integration: 

x = x<J + Ci 

= -£l + Ci 

Also, when / = 0; x = 0, y = 0, so C3 = C4 = 0, and we have the 

result: 
X = Xot 

y =-k'2 

Example 2. Suppose that the displacement of a particle is 

known as a function of time and that the forces which produce the 

motion are to be determined. Given a particle of mass m moving 

in a circular path of radius r with a velocity of constant mag¬ 

nitude v. Find the force required to maintain this motion. 

Solution. We shall describe the motion in a rectangular xy 

coordinate system located at the center of the circular path, as in\ 

Fig. 3-2a. In this coordinate system 

we have: 

x = r cos 6 

y — r sin 6 

To find 6 as a function of time, we note 

wis a constant, so that that 6 = - 
r 

d_e 

dt 
— toj 6 — cot C 

If 0 = 0 when / = 0, then C = 0 and 0 = ut so that: 

x = r cos ut 

y = r sin ut 
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Differentiating these expressions twice to find the components of 
acceleration, we obtain: 

x = — rw2 cos ait 

y = —rw2 sin ait 

From the equations of motion written in rectangular coordinates, 
we have: 

Fx — mx = — mrco1 cos cot 

Fy = my — — mrcx)2 sin ait 

The resultant force F has the 

magnitude and direction 

F — VF2 + Fy2 = mrar = m V— 
r 

p 
<f> = tan"1 ~ = tan-1 tan ait — 0 

r x 

So that the force is directed radi¬ 

ally toward the center, as in Fig. 

3-2b. 
It should be noted that a simpler description of the motion 

in this problem can be obtained by the use of plane polar coor¬ 

dinates (see Problem 32). 

PROBLEMS 

32. Check the results given in Example 2 above for the uniform cir¬ 
cular motion of a particle, by using plane polar coordinates to describe 
the motion. 

33. (a) In rectangular coordinates the motion of a particle of mass m 
is given by 

x — at — y = 0; 2 = 0 

What is the velocity and acceleration of the particle at any time/? What 
is the maximum positive displacement attained by the particle? 

(b) What is the force acting upon the particle of part (a) at any 
time /? Find the magnitude and direction of the force at t = 1.25 sec, 
if a = 4 ft/sec, b = 2 ft/sec8, and m has a weight of 10 lb. 

34. A particle of mass m moves along the path y - A — Bx2, z = 0. 
When x = a, the magnitude of the velocity of the particle is v. Find the 
x and y components of the velocity, and the component of acceleration 
normal to the path of motion, at x = a. 
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35. * J. V. Poncelet (1829) concluded on the basis of tests that when a 
projectile of mass m is fired into earth or masonry it experiences a re¬ 
tarding force Fd == — Ci — C202 where Ci and C2 depend upon the 
properties of the material and the shape of the projectile. If the impact 
velocity of the projectile is % what is its total penetration? 

36. An automobile of mass m travels on a straight level highway at 
a velocity 00. At time / = 0, the brakes are locked and the automobile 
skids to a stop. The length of the skid is / feet, and the coefficient of 
sliding friction between tires and highway is n. What is the expression 
for Po in terms of m, /, and n ? 

37. If in Problem 36 the highway has an a% grade, that is, drops 
a ft vertically for every 100 ft horizontally, what is the expression for 00? 

38. * A wheel of radius r rotates with a uniform angular velocity a>. 
A massless connecting rod of length / is fastened to the wheel, and moves 

a piston of mass M back and forth along the Ar-axis as shown in the 
figure. Show that the ^-component of the resultant force acting upon 
M is: 

22* = — Mno2 cos cot + 
rP cos 2at + r3 sin' 

(P — r2 sin2 at) 

in4 af 

A* - 

Find an approximate solution for 22* for ~ small compared to unity. 

39. (a) An elevator of total weight 3000 lb starts from rest and moves 
upward with a constant acceleration. At the end of 3 sec it has moved 
a distance of 9 ft. What is the force in the supporting cable? 

(b) If the maximum allowable force in the cable is 8000 lb, find the 
maximum allowable acceleration of the elevator. 

40. (a) A mass m slides down a frictionless inclined plane which 
makes an angle of 30° with the horizontal. If m starts from rest and 
moves down the plane under the action of gravity, how far will it have 
traveled at the end of 10 sec? 
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(b) If the coefficient of friction between m and the inclined plane 
of part (a) is m = 0.2, what distance would be traveled down the plane 
in 10 sec? 

41. A particle of mass m starts from rest and slides down the side of 
a hemispherical surface of radius r under the action of gravity. If there 
is no friction, and the particle starts from A> what force will be exerted 
on the surface by the particle at the 
instant when it is located at 5? 

42. A particle of mass m is pro¬ 
jected up a smooth inclined plane 
which makes an angle 6 with the 
horizontal. If the velocity is Vo at 
time / = 0, at what time will the 
velocity of m be zero? How far 
up the plane will the particle have 
traveled during this time? 

43. * A rocket starts from rest and rises vertically against the action of 
gravity. The propulsion force is a constant P lb. The mass of the rocket 
is m = mo — ct, where m0 is the initial mass and c indicates the rate 
at which the propellant is burned. When ct is equal to 0.6w0, the 
propulsion force ceases. What velocity will the rocket have attained 
at that time? What is the displacement of the rocket at any time /? 
(Neglect air resistance and the variation of the acceleration of gravity 

with height.) 

12. The Equation of Impulse and Momentum. If the force 

acting upon a particle is specified as a function of time, the direct 

integration of the equation of motion, as illustrated in the pre¬ 

ceding section, will give the solution of the problem. If a complete 

specification of the forces is not available, it may still be possible 

to obtain some information about the motion by obtaining a gen¬ 

eral first integral of the equation of motion. Two such general 

integrals can be obtained and we shall first derive the time in¬ 

tegral. 
Beginning with the equation of motion in the form 

F = mr 

and multiplying both sides by dt and integrating, we obtain: /<« ftt . 2 

F dt = I mr dt = mr = mr2 — mrx 
Jh 1 

F dt = mv2 — mvi (17) 
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The term J F dt is called the impulse of the force F and the 

term mv is called the momentum of the particle. Equation (17) thus 

states that the impulse is equal to the change in the momentum. 

Both impulse and momentum are vector quantities and hence 

can be written in terms of components in various coordinate sys¬ 

tems. In rectangular components, for example, the equations are: 

rt, 
/ Fx dt — mx<t — mx\\ etc. 

Jh 
It should be noted that the impulse-momentum equation is but 

another form of the equation of motion and that it furnishes no 

new information, although its use may simplify the solution of 

certain problems. In some problems the impulse applied to the 

system may be known whereas the forces are unknown. In such a 

problem the impulse-momentum equation gives the change of 

velocity directly. 

Example 1. A body of mass m falls in a vacuum under the 

action of gravity. The velocity at / = 0 is 5 ft/sec downward. 

Find the velocity at the end of 10 sec. 

Solution. In this problem the force is a constant, and the equa¬ 

tion of impulse-momentum assumes the particularly simple form: 

F(t2 — ti) = mv2 — mv j 

mg(\Q sec — 0) = mv2 — m(5 ft/sec) 

v2 = (10 sec)(32.2 ft/sec2) + 5 ft/sec = 327 ft/sec 

Note that this solution could have been obtained by an inte¬ 

gration of the equation F = mr, but that the use of the impulse- 

momentum equation leads directly to the required solution. 

Example 2. In some problems information concerning the 

forces acting can be deduced from the momentum changes which 

occur. Suppose, for example, that measurements have shown that 

the muzzle velocity of a projectile fired from a gun is v ft/sec and 

that tJ sec elapse from the time the shell is fired until the projectile 

leaves the barrel. The change in momentum of the projectile is 

(mv — 0) = mv, so that the equation of impulse-momentum is 

L1 
F dt = mv 
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We cannot give a value to F since we do not know the way in 

which F varies with time. We can, however, compute the time 

average value of the force during the At sec, as: 

== mv 

F = VE 
1V‘ At 

The relationship of this average force to the instantaneous force 
might be as shown in Fig. 3-3. 

13. Conservation of Momentum. If no force acts upon a 

particle, the equation of impulse-momentum is: 

mv 2 — mvi = 0 

mv 2 = mv i 

If no impulse is acting there is no change in momentum, and the 

momentum of the system may be said to be conserved. 

Consider two particles which exert a mutual action upon each 

other as, for example, in a collision (Fig. 3-4). From the Third 

Law of Motion we know that the forces experienced by ma and mb 

during this mutual interaction are equal and opposite. The im¬ 

pulse acting upon ma is therefore equal and opposite to the 

impulse acting upon mb. The total impulse for the system of two 

particles is thus zero, and hence the total change in momentum of 

the system must be zero. We may thus state that the total mo¬ 

mentum is a constant: 

mava + tnbVb = constant 

If there are more than two particles involved and all the 

forces acting upon the particles are due to mutual interactions. 
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that is, there are no external forces applied to the system, we can 

sa^' SffZiV,- = constant (18) 

This is a vector equation and in rectangular coordinates its com¬ 

ponents are: = constant, etc. 

This is the Principle of the Conservation of Momentum, which holds 

for any system upon which no external forces are acting. 

Example. A gun barrel is suspended from two long inexten- 

sible wires so that it is free to move through small displacements 

in the horizontal direction, as in Fig. 3-5. A projectile of mass m 

Fig. 3-5 

is fired from the gun. At the instant the projectile leaves the 

muzzle it is observed that the gun of mass m0 has a velocity of v„ 

to the left. Find the muzzle velocity of the projectile. 

Solution. As the explosive gases expand in the barrel the force 

exerted on the projectile is equal and opposite to the resultant 

force acting on the gun barrel. We may apply, therefore, the 

principle of the conservation of momentum to the system con¬ 

sisting of the gun, the projectile, and the gases. If we neglect the 

small momentum due to the mass of explosive gas, the equation 

becomes: 
—mgvg + mv = 0 

PROBLEMS 

44. A particle of mass m is traveling with a velocity A = D&; y = 0; 
2 = 0. At time / = 0, a constant force, Fx — -P, is applied to the 
particle in a direction such as to oppose the motion. What is the velocity 
of the mass at any subsequent time /? 
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45. (a) A bullet weighing 0.1 lb is fired horizontally into the side of 
a wood block weighing 10 lb which rests on a horizontal surface. If the 
block attains a velocity of 10 ft/sec, find the velocity of the bullet. 
(Neglect air resistance and sliding friction.) 

(b) How would the solution of the problem be altered if friction were 
included in the analysis? 

46. A particle weighing 10 lb moves in a straight line with a constant 
velocity £ = 10 ft/sec. Starting at time t = 0, a constant force, Fx = 5 
lb, acts for 3 sec. Starting at time / = 5 sec, a constant force, Fx = 
—41b, acts for 4 sec. Find the velocity of the mass at the time / = 9 sec. 

47. A ball weighing 1 lb is thrown vertically upward; neglecting 
air resistance, find: (a) The 
velocity at / = 1 sec, if the 
velocity at / = 0 is 30 ft/sec. 
(b) The velocity at / = 0, 
given that the ball reaches 
its maximum height after 2.5 
sec. 

48. A particle weighing 5 
lb bounces against a surface 
as shown in the diagram. If 
the approach velocity is 20 
ft/sec and the velocity of departure is 15 ft/sec, find the magnitude and 
direction of the impulse to which the mass is subjected. 

49. A jet of water impinges 
against a flat plate as shown in 
the diagram. The velocity of the 
water is v ft/sec, the density is p lb 
sec2/ft4. What is the force exerted 
by the jet against the plate ? Tak¬ 
ing the weight of water as 62.4 
lb/ft3, find the force for a jet hav¬ 
ing an area of 6 in.2 and a veloc¬ 
ity of 30 ft/sec. 

14. The Equation of Work and Energy. The first integral of 
the equation of motion with respect to time leads to the useful 
concepts of impulse and momentum. We shall now derive the first 
integral of the equation of motion with respect to displacement. 

We start with the equation of motion in the form: 

F = mr 
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Forming the dot product of each side with the displacement dr, 

and integrating, we obtain: 

f F • dr — f mr • dr = f mr • — dt 
Jn Jn Jti dt 

- tmf’j' (rr)*- M dt 

• dr = %mvt2 — \mv x2 (19) 

The integral on the left side of this equation is called the work 

done by the force F, and the term \mv2 is called the kinetic energy 

of the particle. Thus the equation states that the work done 
upon the mass m by the force F is equal to the change in the kinetic 
energy of the mass. 

The vector displacement dr is tangent to the path of motion 
of the particle, so that the scalar product F • dr represents the 

component of the force in the di¬ 

rection of the displacement mul¬ 

tiplied by the displacement. The 

total work done by the force in 

moving along a path from A to 

B (Fig. 3-6) is given by the line 

integral / F • dr. Expanding the 
* Ja 

dot product in terms of rectangu¬ 
lar coordinates we have: 

Work = J\fx dx + Fydy + F, dz) 

For each coordinate there will be an equation of the form, 

j^Fxdx = \mxij2 — \mxj? 

df 
The rate of doing work, F • -j = F • v, is called the power. It 

should be noted that work, kinetic energy, and power are scalar 
quantities, as defined by the dot-products, and are completely 
specified by their magnitudes. 

Since the equation of work and energy is simply a restatement 
of the original law of motion, it cannot furnish any new informa- 
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tion. In many problems, however, the work-energy equation 

leads directly to simple solutions. 

Example. A particle of mass m falls in a vacuum under the 

action of gravity. Find the velocity of the particle after it has 

fallen 25 ft, if it starts from rest. 

Solution. In this problem, the applied force mg is a constant 

and has the same direction as the displacement. The work-energy 

equation thus assumes the simple form: 

F(x 2 — ,*i) = \mx£ — %m£i2 

Setting = 0, a?2 = 25 ft, and xi = 0, we have: 

(mg) (25 ft) = \mx22 
x2 = (2)(25 ft)(32.2 ft/sec2) = 1610 ft2/sec2 

x2 = 40.1 ft/sec 

This problem could also have been solved by direct integration 

of the equation of motion, but the work-energy relationship gives 

the result immediately. 

PROBLEMS 

60. Integrate the equation of motion FJ -(- Fvj + FJk = mid + myj 
+ mzk term by term to obtain the equation of work-energy ex¬ 
pressed in rectangular coordinates. 

61. A projectile is fired vertically upward. It has a velocity of 
400 ft/sec when it leaves the gun barrel. What is its velocity when it 
has reached an elevation of 200 ft? (Neglect air resistance.) 

62. A spring which is initially unstretched is elongated x feet by a 
force F. What is the total work done by the force F during the elonga¬ 
tion? The spring constant of the spring is k, that is, a force of kx lb is 
required to stretch the spring x ft. 

63. A spring which has been initially stretched into the position AB 
is elongated and displaced into ^ 
the position A'B' as shown in the * 
diagram. Show that the total 
work done by the forces which 
elongate the spring depends only 
on the change in the length of the 
spring and on the average force in 
the spring: 

Work - (Faxg) (A'B* - AB) Prob. 53 Prob. 53 
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64. A spring of spring constant k whose unstretched length is / is 
fixed at one end, while the other end is fastened to a rigid bar of length r, 
as%shown in the diagram. How much work will be done by the force 

exerted by the spring on the bar as the bar is rotated about 0 into a 
vertical position? 

66. A spring whose unstretched length is / requires a force of kx lb 
to elongate it x ft. If three such springs having spring constants ki} k2, 

F 

Prob. 55 

and h are hooked together end-to-end, how much work would be done by 
a force F as it elongates the system of springs through a total distance 8? 

In such a system the springs are said to be in 
series. What is the equivalent spring constant 
for a system of springs in series in terms of the 
spring constants of the individual springs? 

66. The three springs of Problem 55 are 
arranged in parallel as shown in the figure. 
How much work is done by the force F as the 
assembly is stretched through a distance 8 ? The 
springs are initially in an unstretched position 
and the plates remain parallel. What is the 
equivalent spring constant for a system of 
springs in parallel in terms of the spring con¬ 
stants of the individual springs? 

1 0000 y— 
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67. A particle of mass m is acted upon by a force whose components 
are Fx = Aty Fv — Bty F» = 0. At time t = 0, the velocity of the mass 
is zero. What is the work done by the force in the first T sec? 

68. A body is projected horizontally with a velocity of 20 ft/sec. 
Supposing that only gravitational forces act, find its velocity when 
it is 25 ft below the original position. 

69. The force of gravity varies inversely as the square of the distance 
from the center of the earth. A projectile in space is thus acted upon by 

7*2 • . 
a gravitational force Fx ~—W —y where ^ is the weight of the projectile 

x2 
at the earth’s surface and r is the radius of the earth. How much work 
must be done against the gravitational force if the projectile is to 
reach a distance of (x — r) from 
the earth’s surface? Neglecting 
air resistance, what initial ve¬ 
locity must the projectile have 
in order to reach that distance? 
What initial velocity must the 
projectile have to escape from 
the earth’s gravitational field? 
Take the radius of the earth as 
4000 miles. 

16. Potential. The equation of work-energy for a particle of 
mass m acted upon by a force F is: 

J F • dr = \mvi? — \mvAi2 

The right side of this equation depends only upon the velocities 
of the particle at the two end-points A and B. The value of the 
left side, however, will depend in general upon the path of integra¬ 
tion followed between A and B. The value of the line integral 

J F • dr will depend only upon the limits of integration and not 

upon the path only if F • dr is an exact differential. If this is so, 
there exists some function such that cFb = F • dr and 

J*F • dr - * |f- $CB) - H4) 
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If the function $ exists, the force F is said to be derivable from a 

potential, for 

From which: 

F ■ dr — d$ 
F • dr = Fxdx + Fydy + F^dz 

di* j , 3<i> j , , 
d$ = — dx -\-dy -\-dz 

dx dy J dz 

d$ 
dx* dy' 

(20) 

This potential function $> is called a force function. 

When a force is derivable from a potential, the work done by 

the force is independent of the path of motion and depends only 

upon the end-points of the path. Since $ is a function of the space 

coordinates only, the magnitude and direction of the force are 

completely determined when its point of application is known. 

This will be true if the force is a function of the displacement only. 

If the force is a function of velocity, it cannot be derived from a 

potential, and the line integral representing the work is not inde¬ 

pendent of the path of integration. 

The concept of a potential function has much wider applica¬ 

tion than is suggested by the force potential. In fluid mechanics, 

for example, it is customary to define a velocity potential whose 

derivatives give the components of velocity, and in thermo¬ 

dynamics several potential functions are defined whose deriva¬ 

tives give certain thermodynamic variables. 

16. Potential Energy. Suppose that a force F, which is deriv¬ 

able from a potential, acts upon a particle that moves from 

point A to point B. We define the change in the potential energy 

of the force, (VB — Fa), as the negative of the work done by the 

force as it moves from A to B. 

Vb — Va = — j*F • dr (21) 

To specify the potential energy at a point it is necessary to select a 

datum point at which the potential energy is arbitrarily set equal to 

zero. Taking some point D as the datum point we have Vo — 0 and 

Va =J°F-dr (22) 



THE CONSERVATION OF ENERGY 55 

The datum point D is selected at any point that is convenient for 

the particular problem being considered. 

From the definition it is seen that the potential energy is the 

negative of the force function since F • dr — —dV. The com¬ 

ponents of the force may thus be expressed in terms of the poten¬ 

tial energy in the same way in which they were expressed in terms 

of the force function, and we have: 

Fx- — 
dVm 
dx’ 

Fy = 
dV F _ _ OF 
dy ’ 2 dz 

(23) 

The only difference between the potential energy V and the force 

function <£, other than sign, is that the potential energy usually 

involves an additive constant, since it is defined with respect to 

an arbitrarily chosen datum point; V = —+ C. The advantage 

of using a potential as a description of a force is that it permits an 

analysis of the force without bringing into the picture the mecha¬ 

nism causing the force or the bodies upon which the force acts. 

This advantage is particularly useful for forces which act at a 

distance, such as gravitational and electrical forces. 

If a force is not derivable from a potential function, as, for 

example, frictional forces or forces proportional to velocity, it is 

not possible to define a potential energy for the force. 

17. The Conservation of Energy. If a particle is acted upon by 

a force which has a ootential energy V, the equation of work- 

energy gives: 

FB- FA = -J*F - dr —— (§W - \mof) 

or 
Va + \mvA2 = FB + \mvBz 

This equation states that the sum of the potential and the kinetic 
energy remains constant. The energy is said to be conserved and 

we have: 
V + \mdl = constant (24) 

This is the principle of the conservation of mechanical energy. It is 

valid for any system for which a potential energy can be defined. 

Any system to which the principle of conservation of energy 

applies is said to be a conservative system, and the forces are said 

to be conservative forces. It should be noted that the principle of 
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the conservation of energy is a direct consequence of Newton’s 

Laws and the definitions of the terms involved. It introduces no 

new physical facts into the science of mechanics. 

The principle of conservation of energy is applicable only when 

the forces of a system have potential energies. If this is not 

true, for example if frictional forces are acting, the system is said 

to be non-conservative and the equation of work-energy must 

be used. The equation of work- 

energy is thus more general. The 

use of the principle of conserva¬ 

tion of energy is, however, very 

convenient where conservative sys¬ 

tems are involved. 

Example 1. Consider a body of 

mass m falling in a vacuum under 

’* the ac tion of a gravi ty force W, as in 

Fig. 3-7. We shall choose the pr¬ 

axis as a datum assumed to have a zero potential energy. The 

potential energy at any vertical distance y is then given by 

V = - fyFv dy =- fy(-JV) dy = Wy 
Jo Jo 

The equation of the conservation of energy is: 

Wy -f- \mv2 = C 

The constant C can be evaluated if the velocity at any given 

value of y is known. Suppose that when y — hy v = Vo, then 

Wh + %mvo2 = C 
and we have 

JVy + \mvi — Wh + \mvo2 

Thus, if we wish to know the velocity at any point: 

v = V 2g(h — y) + v02 

If the body falls in air with a drag force Ft*, we no longer have a 
conservative system, since it is not possible to define a potential 
energy for the frictional force. In this system energy would be 
dissipated, and we would have 

Wy + = C — J Fidy 

y 

w 

Fig. 3-7 
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Fa is in general some function of velocity, and a direct evaluation 

of the integral in this expression is usually rather difficult. 

Example 2. Consider the motion of a mass m restrained by 

a massless, elastic spring, as shown in Fig. 3-8. The horizontal 

surface on which the mass slides is frictionless so that the only 

forces acting on the mass are 

the weight Wy the vertical 

reaction Fn, and the spring 

force Fa. Take the equilib¬ 
rium position of the system as 

the datum point for zero po¬ 

tential energy and as the ori¬ 

gin of the coordinate system. 

Themagnitudeof thespring 

force is proportional to the 

displacement and is opposite 

in direction: 

. 
||—JjSOOO 

c 
m 

Fs = —kx 

if 
1 

n j 

Fig. 3-8 

The potential energy of the system due to the spring force Fs is, 

at any position xy 

V = — f ( — kx) dx = \kx2 
Jo 

and the energy equation is: 

%kx2 + \mtl = C 

If now the body is given some positive displacement x = A and 

is then released with a zero velocity, we can evaluate the con¬ 

stant C: 
\kA2 + 0 = C; C = \kA* 

The kinetic energy at any point is thus: 

\mv2 = \kA2 — %kx* 

When the body is at x - 0, the kinetic energy is equal to \kA}y 
so that the body oscillates between x = -\-A and x = — A. The 

energy is all kinetic energy at x = 0 and all potential energy at 

x = ±A. The sum of the energies is always a constant, but there 

is a transfer of energy between kinetic and potential. 
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PROBLEMS 

60. A particle of mass m slides without energy loss on a surface as 
shown in the diagram. When it is at the elevation hi9 it has an initial 
velocity V\. What should be the magnitude . 
of Vi if the particle is to reach the elevation | 

Prob. 60 Prob. 61 

61. A particle of mass m supported by a weightless string of length 
3 ft is released from rest when the string makes an angle of 30° with the 
vertical. What is the maximum velocity attained under the action of 
the gravitational force? Assume no energy loss during the motion. 

62. Two weights W\ and W2 are connected by a cable of length l 
which passes over a smooth shaft as shown. W2 is larger than W1. JV\ 
starts from rest and moves downward under the action of gravity. 
Assuming no energy loss during the motion, find the velocity of W2 after 

_ it has moved at ft. If there is a con- 
f ! stant friction force Fd between the 
*—|—' cable and the shaft, what would be the 
\oy velocity of W2 after it has moved x 

ft? 

w- 
—i— 
w 

2 1 i f: r 

Prob. 62 Prob. 63 

63. A beam is found to deflect 5 in. under the point of application of 
a static load W. It is also found that the magnitude of the deflection is 
proportional to the load. If the weight W is raised a distance of h ft 
and is dropped on the beam, what is the maximum deflection of the beam 
under the load? (Neglect the mass of the beam.) 
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64.* The force acting upon a particle is given by: 

Fx = Ax 
fu — Bx + cy 

(a) Calculate the work done by this force as the particle is moved 
from 0 around the triangular path OabO. Is this 
a conservative force system? 

(b) The condition that an expression of the 
form Mdx + Ndy is an exact differential is that 

= —• Applying this to the present problem, 

determine whether the system is conservative or 
non-conservative. 

(c) Repeat parts (a) and (b) if the force components are: 

Fx = Ax + By 
Fv = Bx + cy 

(d) What is the potential function $ for the system of part (c) ? 

18. The Solution of Problems in Dynamics. The solution of 

any problem in dynamics involves, in some form or another, the 

integration of the equation F — mr. For problems in which the 

forces are specified and the velocities and displacements are re¬ 

quired as a function of time, the direct integration of this equation 

may be the most convenient method of procedure. In other prob¬ 

lems, some labor may be saved by using the work-energy equation 

or the impulse-momentum equation. The decision as to which of 

these forms to use for a particular problem will depend upon the 

given data and the desired result. As the first step in solving a 

dynamics problem it is well to review the given data, the required 

result, and the various dynamical equations from the standpoint 

of determining which method will be the most suitable. 

Some of the characteristics of the methods which should be con¬ 

sidered in this connection are: 

(1) The impulse-momentum integral involves the velocity and 

force at specified times. Displacements do not appear in 

the expression. 
(2) The impulse-momentum equation is useful for problems 

involving large forces of indeterminate magnitudes acting 

for short times. A consideration of time-average values of 

the forces may suffice to solve such problems. 
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(3) The principle of the conservation of momentum can be 

used only for systems not acted upon by external forces. 

This principle is most useful when it can be recognized that 

by treating several bodies together as a system certain un¬ 

known forces will occur as equal and opposite pairs and 

will thus cancel. 

(4) The work-energy equation involves velocity and force at 

specified displacements. Time does not appear in the ex¬ 

pression. 

(5) The principle of the conservation of energy is applicable 

only to systems for which a potential energy can be de¬ 

fined. 

(6) Potential energy is defined only for forces which can be 

derived from potential functions. Forces, such as friction, 

which cause a dissipation of energy, have no potential. 

(7) The work-energy principle is more general than the prin¬ 

ciple of the conservation of energy in that it applies to non¬ 

conservative systems as well as conservative systems. 

PROBLEMS 

66. A 120-ton freight car on a level track hits a spring-type bumper 
with a velocity of 4 mph. The bumper has a spring constant of 12,000 lb 
per in. of compression, (a) What is the maximum compression of the 
spring? (b) If the brakes on the car are operated so that a constant 
braking force of 25 tons is set up, what is the maximum compression of 
the bumper spring? 

66. A body weighing 10 lb is projected up an inclined plane which 
makes an angle of 20° with the horizontal. The coefficient of sliding 
friction between the body and the plane is n — 0.3. At time t = 0, the 
velocity up the plane is 20 ft/sec. What will be the velocity at the end 
of 3 sec? 

67. A projectile weighing 100 lb strikes the concrete wall of a fort 
with an impact velocity of 1200 ft/sec. The projectile comes to rest in 
0.01 sec, having penetrated 6 ft of the 8-ft thick wall. What is the time 
average force exerted on the wall by the projectile? 

68. * The drag force exerted by the water on a ship weighing 12,000 
tons varies with speed according to the following approximate formula: 

Fd = —kon 
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For the range of speeds to be considered in the present problem, n may 
be taken as 3. If the drag force for a particular ship has been determined 
to be 80 tons at a speed of 16 ft/sec, find the distance which the un¬ 
powered ship would travel as its speed decreases from 15 ft/sec to 
12 ft/sec. What is the time re¬ 
quired for this decrease? 

69. The force acting on a body 
which weighs 150 lb and which 
moves in a straight line is given 
at any time by the accompa- 
nying graph. After t = 6 sec, 
F = 0. If the velocity of the 
particle is 25 ft/sec when / = 0, 
find the velocity of the particle 
and the distance that it has 
traveled at / = 8 sec. 

70. A projectile weighing 30 lb is fired from a gun. At the instant it 
emerges from the gun barrel it has a velocity of 2000 ft/sec. The distance 
traveled by the projectile in the gun barrel is 10 ft. What is the total 
work done on the projectile? What is the average force acting on the 
projectile over the 10-ft distance? (Assume that the projectile does not 
rotate in the barrel.) 

71. A weight of 3 lb rests on the top of a vertical spring which is com¬ 
pressed 5 in. When the spring is released, the weight is projected ver¬ 
tically into the air. How high will the weight rise above the point at 
which it leaves the spring, if the spring constant is 25 lb/in.? (Neglect 
air resistance and assume a massless spring.) 

72. An automobile with a total weight of 3000 lb runs into a heavy 
metal power-pole. After the accident it ils observed that the pole is un¬ 
damaged but that the front bumper of the car is bent. Experiment 
shows that it requires 30,000 ft-lb of work to put such a bend in the 
bumper. What was the impact velocity of the automobile? 

73. A particle carrying an electric charge ei is fixed at the origin of a 
coordinate system. A second particle of charge €2 is placed at a dis¬ 
tance r from the origin. The potential of the system is 

Find the radial force between the particles, and the ^-component of the 
force exerted on the second particle. 
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Wi 

w,; 

74. Two weights, W\ = 10 lb, and = 20 lb, are connected by an 
inextensible rope as shown in the diagram. W\ moves on a smooth 

horizontal surface. If the system starts from 
rest, what will be the velocity of W* after it 
has fallen 10 ft? What change of momentum 
has taken place during this motion? What time 
is required for this displacement to take place? 

76. The bar AB shown in the diagram has 
dimensions and elastic properties such that it 
requires a force of kx lb to elongate it x ft. A 
mass m drops through a distance of h ft and 

strikes the end of the bar. Find the maximum elongation of the bar 
and the maximum force produced in the bar. (Neglect the mass of the 
bar, assume that the mass remains in contact with the end of the bar, 
and assume that no energy is lost during the motion.) If the mass is 

dropped from h = 0, compare the elonga¬ 
tion with that which would be produced by 
m acting statically. 

Prob. 74 

A 

Qj h 
h 

Be = L-t ■ ct~ 

Prob, 75 Prob. 76 

76.* A long straight rod of uniform cross-sectional area is initially at 
rest. One end of the rod is suddenly given a velocity vy by the application 

of a foad which sets up a uniformly distributed stress cr -—- over the end 
in.2 

of the rod. At a time t later, a length ct of the bar will be compressed, 
where c is the velocity of propagation of the stress wave along the rod. 
It will be assumed that the stress in the rod is below the elastic limit of 
the material so that Hooke's law can be used; hence, <r = £c, where E 
is the modulus of elasticity of the material, and t is the strain, or unit 
deformation, of the rod. 

By applying the principle of impulse and momentum to the strained 
element of the rod, find the velocity of propagation of the elastic wave 
in the rod. Find also the relationship between the velocity of the end 
of the rod and the applied stress. Examine Problem 75 from this 
viewpoint. 



CHAPTER IV 

APPLICATIONS OF PARTICLE DYNAMICS 

An intelligent being who knew for a given instant all the forces by which 
nature is animated and possessed complete information on the state of matter 
of which nature consists—providing his mind were powerful enough to analyze 
these data—could express in the same equation the motions of the largest bodies 
of the universe and the motion of the smallest atoms. Nothing would be un¬ 
certain for him, and he would see the future as well as the past at one glance. 
—Marquis de Laplace, Theorie Analytique des Probabilites (1820). 

The principles of particle dynamics as developed in the pre¬ 
ceding chapter can be applied to the solution of a large number 
of interesting and important problems. In the present chapter the 
solution of such problems as the motion of a particle in a resisting 
medium, projectile motion, planetary motion, and some problems 
in electron dynamics will be given. These solutions will illustrate 
the application of the general principles to particular problems. 
It should be noted, however, that, although the principles in¬ 
volved in most problems in mechanics are relatively simple, the 
differential equations that are obtained may be of a type which 
cannot be integrated by elementary methods. 

19. The Motion of a Body Falling Through a Resisting Medium. 
In the preceding chapter the equations of motion were integrated 
for a body falling in a vacuum. It was also indicated at that 
point that such a solution is approximate for a body falling 
through a resisting medium. Experiment shows that frictional 
forces exert a drag which depends upon the shape of the body, 
the velocity of the body, and the density and viscosity of the 
medium.* In general there is a certain optimum shape for which 

the drag is a minimum. 
We shall suppose for the present example that the drag force 

is proportional to the velocity, FD = —kv. Experimentally it is 
found that this expression is satisfactory for small velocities. The 

* The drag force depends upon Reynolds number (see Fig. 1-4). 
<53 
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factor k must be determined experimentally. Choosing the posi¬ 
tive z-axis in the vertical downward direction (Fig. 4-1), we have 
for a particle of mass m and weight W\ 

W — kz = mi 

This equation may be integrated directly by putting it into the 
form: 

. W, r-*t 
z = — + Ce m 

k 

To evaluate the constant C, we take as the initial condition 

z = 0 when t = 0; this gives C = — so that the equation for 
k 

the velocity at any time becomes: 

Plotting this equation in dimensionless form in Fig. 4-2, we note 

that as increases, the quantity (Jjf*) a^so increases, but 

Fig. 4-2 
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k 
that it approaches a limiting value of -rp,z = 1. When the 

k ™ 
limiting value — s = 1 is reached, kz = W\ that is, the drag 

force has become equal to the weight of the body. The resultant 

force acting upon the body is then equal to zero; hence there is 

no acceleration and consequently no further increase in velocity. 

It will be seen that whenever the drag increases with velocity, a 

point will be reached at which the drag is equal to the weight and 

there will be no subsequent increase in velocity. This limiting 

value of velocity is called the terminal velocity of the body. 

We have supposed, in this example, that the falling body 

moves through a medium of uniform density. Since the density 

of the atmosphere decreases with altitude, the drag force must 

also be a function of the altitude, and this additional factor would 

have to be included in the analysis if a more accurate solution 

were required for a large altitude range. 

PROBLEMS 

77. A body of weight W falls through a resisting medium in which 
the drag is proportional to the velocity. Find the displacement at any 
cime, assuming that Zq == z0 = 0 when / = 0. 

78. For velocities above approximately 100 ft/sec the drag force is 
approximately described by taking it as proportional to the square of 
the velocity, Fd — — kit1. Proceeding in the same way as was done above 
for drag proportional to velocity, integrate the equation of motion and 
find the velocity and displacement of a falling body at any time /, if 
zq = Zo = 0 when t = 0. 

79. What is the terminal velocity for a falling body subjected to a drag 
proportional to velocity squared? 

80. Determine the velocity with which a rain drop would strike the 
ground falling from a height of 1 mile if air resistance is neglected. If 
measurements show that the terminal velocity of the rain drop is ap¬ 
proximately 20 ft/sec, find the drag constant k, assuming Fd = —kv. 
How far does the rain drop fall before its velocity is within 0.1% of the 
terminal velocity ? 

81. * The relation s = —k(s)n is assumed to describe the motion of a 
certain body in a viscous medium. 

(a) If the body has an initial velocity, Vo, find the highest value of n 
for which it is brought to rest within a finite period of time. Find the 
time required. 
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(b) Find the highest value of n for which the total distance traversed 
by the body before it conies to rest is finite. 

(c) Find the distance traveled by the body for n = 1. 

82. An airplane weighing 20,000 lb starts from rest and accelerates 
along a horizontal runway. Acting on the airplane is a constant propul¬ 
sion force of 2500 lb, and a drag force Fd = — 0.04p2 lb., where v is in 
ft/sec. How long a run must the plane make if it takes off at 150 mph? 

20. Projectile Motion. The preparation of ballistic tables 

requires precise calculations of the trajectories, velocities, and 

times of flight of projectiles. The chief difficulty in making such 

calculations arises from the fact that the drag is a complicated 

function of the velocity. For purposes of illustration some sim¬ 

plified problems that are amenable to mathematical treatment 

will be considered. We shall suppose that the projectile remains 

sufficiently close to the earth so that g may be taken as a constant, 

and we shall neglect the rotation of the earth and any spin or 

other motion of the projectile as a rigid body. All these factors 

would have to be taken into account in a precise calculation of 

the trajectory of a long-range projectile or guided missile. 

Consider first the two-dimensional motion of a projectile with 

zero drag. Let the projectile have 

an initial velocity v0 making an 

angle 0 with the #-axis of the 

rectangular coordinate system of 

Fig. 4-3. The equations of motion 

are: 

mx = 0 

my = — mg 

Integrating these equations and evaluating the constants in terms 

of the initial conditions = x0, vqv = yo, #o = Jo = 0, we have: 

X = Xot 

y=-\gt2 + yot 

The equation for the trajectory is obtained by eliminating / from 

these equations: 

which shows that the trajectory is a parabola. All the significant 

features of the motion can be determined from these equations. 
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A more practical approach to the ballistic problem must take 

into account the effect of air resistance. This leads to a complex 

mathematical problem which is usually solved by numerical 

integration or by special computing machines. A few special 

problems can be treated by simpler mathematical procedures and 

it is one of these which we shall treat in the following example. 

For an intermediate range of velocities, of approximately 100 to 

1000 ft/sec, it may be assumed that the drag force is approxi¬ 

mately proportional to the square of the velocity. If we further 

assume that the variation in altitude of the projectile is small, so 

that variations in air density may be neglected, we may write the 

equations of motion as: 

mx = — kv2 cos $ = — kx2 

my = — kv2 sin <f> — mg 

Since the problem of solving these equations is a complex one, 

we shall simplify them by restricting the problem to a considera¬ 

tion of relatively flat trajectories for which the ratio is small. 

This is consistent with the assumption that the variation in alti¬ 

tude of the projectile is small. It may be seen from Fig. 4-4 that 

Fig. 4-4 

small values of ^ mean that the slope of the trajectory is every¬ 

where small. With this assumption we have 

the differential equations become: 

mx = — kx2 

my = —kxy — mg 
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From these equations a relatively simple solution can be obtained 

which is satisfactory over a limited range of trajectories. The first 

equation can be readily solved by separating the variables: 

xz m 

-t + C\ 
m 

This equation is a linear differential equation for which the prin¬ 

ciple of superposition is valid, that is, if two expressions are found 

each of which satisfies the equation, then the sum of the two ex¬ 

pressions will satisfy the equation. The equation may thus be 

solved in two steps. Consider first the homogeneous equation, 

with the right side equal to zero instead of —g. The variables 

can be then separated and we have: 
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This expression is not the complete solution, however, because it 
gives zero instead of — £ when substituted into the original differ¬ 
ential equation. We must therefore add to this solution a term 
which will give — g when substituted into the differential equation. 

If, on the basis of an inspection of the differential equation, we 
try an expression of the form: 

we obtain upon substituting this into the differential equation: 

C3 + C3 = -g; C3 = 

So that the complete solution of the equation is: 

If y = y0 when t — 0, then: 

and 

So that: 

Cj _ mg 

m 2kx0 

kx0 

^ + 2kk 

(£' + *) 
This expression may now be checked by substituting it into 
the differential equation and verifying that the equation is satis¬ 
fied. The equations for A and y can be integrated to obtain ex¬ 
pressions for x and y. 

It must be kept in mind that these equations are satisfactory 

only for trajectories which satisfy the assumed condition that 

is small. The method of obtaining approximate solutions by 
dropping small terms from a differential equation is often a con- 



70 APPLICATIONS OF PARTICLE DYNAMICS 

venient procedure. The justification for it is that an analytical 

expression is obtained for the solution which is approximately 

correct over a particular range of interest in the variables. It 

might otherwise be necessary to perform a numerical or graphical 

integration which would not only be very laborious, but which 

would probably not exhibit the answer in a general form. Sim¬ 

plifications of this type will always have a physical interpretation 

which should be studied carefully, so that the exact nature of the 

limitations on the solution will be known. In the above example, 

the approximation is deduced by noting that there is only a small 

angle between the resisting force and the *-axis. From the differ¬ 

ential equations in their simplified form we can see that this is 

equivalent to saying that the small vertical velocity has no effect 

upon the horizontal drag, but that the large horizontal velocity 

does have an effect upon the vertical drag. Such solutions, of 

course, must be used with caution. 

PROBLEMS 

83. Find the horizontal range 
of a projectile having zero drag 
(Fig. 4-3), and find the angle 
6 which will make this horizon¬ 
tal range a maximum. 

84. Find the maximum range 
and the angle 0 for the maxi¬ 
mum, if the range is measured 
along a 45° slope, as shown in 

x the diagram, and zero drag is 
Prob. 84 assumed. 

85. Two particles are pro¬ 
jected from the same point 
with the same magnitude of 
velocity but with different an¬ 
gles of elevation, as shown in 
the diagram. The second par¬ 
ticle is fired a time A/ later than 
the first particle. What is the 
relation between v> 0\, 02, and At 

x for which the two particles will 
Prob. 85 collide? (Assume zero drag.) 



TWO-DIMENSIONAL HARMONIC MOTION 71 

86. In section 20 the equations are given for the x andy components 
of the velocity of a projectile which is subjected to a drag force propor¬ 
tional to the square of the velocity. These components were worked out 

for a flat trajectory for which the ratio is small. From these expres¬ 

sions find the x and y coordinates of the projectile as a function of time, 
under the same assumption of a flat trajectory. 

87. Assume that the total drag on an airplane is proportional to the 
square of the velocity. With a feathered propeller, the plane is put into 
a straight glide making an angle a with the horizontal. What is the 
expression for the velocity of the plane? What is the expression for the 
terminal velocity? 

88. For a relatively slow-speed projectile, the air drag force can be 
assumed to be proportional to the velocity. Find the horizontal dis¬ 
tance which such a projectile must travel before the tangent to the 
trajectory becomes horizontal. 

21. Two-dimensional Harmonic Motion. In this section we 

shall consider the motion of a particle of mass m which can move 

in the xy plane, and which is restrained by equal springs in the 

x andjy directions (Fig. 4-5). This is a problem frequently en¬ 
countered in mechanical vibrations. The mass w, for example, 
might represent a machine, and the springs the vibration isolating 
mount of the machine. 
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The motion of the mass is to be restricted to small displacements 
so that the spring force in the .v-direction can be considered to be 
independent of the ^-displacement and vice versa. One method 
of solution is to write the differential equations of motion and 
integrate in the customary fashion. For purposes of illustration, 
however, we shall analyze the problem from the energy stand¬ 
point. The potential energy of the system is: 

V = $*(#* +/) = \kr> 

where k is the spring constant of each pair of springs. The system 

has zero potential energy when the mass is at the origin (Fig. 4-6). 

The forces acting upon the mass are: 

= -kr 

= 0 

= - he 

= — ky 

Since the system is conservative, the energy equation is: 

\kr* + \mv2 = C = !&(#2 + y2) + \m{& + f) 

If the energy equation contains no terms involving products of 
displacements and velocities the equations of motion in terms of 
the accelerations can be derived by differentiating the energy 
equation with respect to time as follows: 

kxx + kyy + mxx + myy = 0 

Combining terms and multiplying by dt, this can be written: 
(mx 4- kx) dx 4- (my 4- ky) dy — 0 

Since it is a condition of the problem that dx and dy are inde¬ 
pendent, that is, the mass is not constrained to follow a pre¬ 
scribed path, the preceding equation must be satisfied for all 
possible values of dx and dy. This requires each of the two expres¬ 
sions within parentheses to be equal to zero, that is, 
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mx + kx = 0 
my + ky = 0 

These are the equations of motion. If dx and dy had not been 
independent, say the mass were constrained to move only along 
the path y = f(x), then the values of y, y, and dy, given by this 
equation would be substituted into the differentiated energy 
equation in order to obtain the equation of motion. 

The differential equations of motion may be integrated directly 
by means of an integrating factor. For the ^-equation, for ex¬ 
ample, multiply through by x and obtain:* 

Thus: 

mxx + kxx = 0 = — d* 

mx2 -f- kx2 = Ci 

Ci _ kx^ _ dx 

m in dt 

Introducing the two new constants 

which are to be determined from the initial conditions of the 
problem: 

In a similar way it is found that 

* The use of the integrating factor results in the energy equation so that we 
are retracing the steps by which we obtained the differential equation from the 
energy equation. 
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These expressions can be put into another form by expanding the 
sine and by introducing new constants, obtaining: 

= Ci sin / + C2 cos , 
Xm 

Cz sin \/— t + C4 cos \ i 
X m X m 

(25) 

A body having displacements x andy as given by these expressions 
is said to perform simple harmonic motiofi in two dimensions. 

In Chapter Y the physical significance of such solutions will be 
discussed in connection with vibration problems. More direct 
methods of integrating the equations of motion will also be taken 
up at that time. 

PROBLEMS 

89. Show that in two-dimensional simple harmonic motion the mass m 
describes an elliptical path about the origin. Take as the initial condi¬ 
tions y ~ x = 0, x = xq, y = yo when t = 0. 

90. Suppose that a particle of mass m is acted upon by a central 
k 

force Fr =-■, the magnitude of the force being inversely proportional 
r 

to the square of the distance from the origin. Find the potential energy 
of the system and write the equation of the conservation of energy. From 
this equation find the equations of motion in terms of accelerations in 

the x and y coordinates. 

91. A body moves in the xy plane 
under the action of a force whose po¬ 
tential energy is V = \k^x2 + \hy2. 
Derive the equations for the dis¬ 
placement of the system at any 
time. What physical problem does 
this potential energy describe? 

92. A two-dimensional simple 
harmonic motion can be produced 
mechanically by the device shown 
in the diagram. The frame A can 
move only in the ^-direction and the 
frame B can move only in the y- 
direction. Each frame is given a sim¬ 
ple harmonic motion of amplitude r 
by means of a scotch-yoke mecha¬ 
nism as shown. The frequency ratio 
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of the two motions is fixed by the ratio of Ri to R2y the radii of the two 
pulleys which are connected by a belt. The upper pulley is driven at a 
constant angular velocity w. The end of the rod C will describe various 
curves, called Lissajous figures, the shape of which will depend upon the 
ratios rfr2 and R\/R2. Suppose in the present problem that the pin 
driving the horizontal frame A is in its extreme top position when the 
pin driving the vertical frame B is in its extreme left position. 

(a) Write the equations for the x and y motion of the point C as a 
function of time. 

(b) What curve is described by C when Ri — R2y and r\ = 2r2i 
(c) What curve is described by C when r\ = r2y Ri = 2R2i 
(d) Show that if Ri and R2 are incommensurable, the curve traced 

by C never closes. 

22. Planetary Motion. As a second example of two-dimensional 

motion under a central force, we shall consider the problem of 

planetary motion. This problem is particularly interesting as an 

example of the method of deducing general laws from experi¬ 

mental observations. By studying a large amount of experimental 

data, Kepler determined the following three facts about the mo¬ 

tions of the planets:* 

(1) The orbit of each planet is an ellipse with the sun at one focus. 

(2) The radius vector drawn from the sun to the planet sweeps 

over equal areas in equal times. 

(3) The squares of the periods of the planets are proportional to 

the cubes of the semi-major axes of the elliptical orbit. 

It will be of interest to see how, from these statements of em¬ 

pirical facts, Newton was able to deduce the law of gravitation.f 

Fig. 4-7 

using tne notation oi 
Fig. 4-7, Kepler’s three 
statements may be written 
analytically in the form: 

* J. Kepler (1571-1630). The first two statements were published in 1609, 
and the third in 1619. 

t Certain letters of Newton indicate the methods he used. 
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(This is the equation of an ellipse in polar coordinates.) 

(3) T2/a* = constant, where T is the period of a complete 

revolution. 

In plane polar coordinates, the equations of motion of the planet 

are (Equations (8)): 

Fe = m{2rd + rS) 

Ft = m(r — r92) 

Differentiating (2) above gives: 

r29 = k 

A second differentiation gives: 

2 rd + r'e = 0 

It thus appears that Fe = 0, and we conclude that the h?rce on 
the planet must be radial. 

The radial force can be determined by differentiating (1), pro¬ 

ceeding as follows: 

r --*- 
1 + e cos 6 

■ _ sin 6 . 

T (1 + e cos 0)2 

In this expression for r, substitute r29 = k and (1 + e cos 6) — - 

obtaining: r 
• ek . a 
r = — sin 9 

P 

Differentiating this expression again, and substituting r26 = k, we 
have: 

r i A! 
p r2. 

; cos 9 

From the equation of the orbit cos 9 ~e ^ — 1 j, therefore: 

pr2\r * / r3 pr2 
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The expression for the radial force may thus be written: 

Ft = m(r — ii 
prl 

and the magnitude of the radial force is inversely proportional to 

the square of the distance. 

The force is now completely determined except for the factor k2 

which may depend upon the mass of the planet and the mass of 

the sun. From Kepler’s second statement, we have for one com¬ 

plete period T: 

So that: 

II II 
En ! < 

27rab 

2 T 

m \ira2b'1 _ 
- 4tt2 1 1 t m 

r2 

From Kepler’s third statement, that (a%/TT) is the same for all 

of the planets, it is clear that its value depends only upon the sun. 

Since the force is directly proportional to the mass of the planet, 

we assume it is also directly proportional to the mass of the sun. 

Writing ynti = — 47t2(a3/T2), where m-i is the mass of the sun, we 

have: 

Fr 
WlWj (26) 

where my is the mass of the planet, and y is a gravitational con¬ 

stant. Newton tested this result by computing, from the motion 

of the moon about the earth, the gravitational acceleration at the 

earth’s surface. He then was able to check the computation 

against observed values. 

PROBLEMS 

93. Compute the value of the acceleration of gravity g from the mo¬ 
tion of the moon about the earth, and compare this with values experi¬ 
mentally determined at the earth’s surface. Take the radius of the earth 
as R = 3950 miles, the radius of the moon’s orbit as 607?, and the 
period of the moon revolving about the earth as 39,000 minutes. The 

R2 
gravitational attraction on a body is W —, where W is the weight of 
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the body at the surface of the earth, and a is the distance of the body 
from the center of the earth. This attractive force is also given by the 

(ft ftl 
expression 4^ — —■ The value of g can be computed from the fact that 

these two expressions when equated should give W = mg, 

94. How much energy is required to establish motion of a rocket ship 
of mass m in a stable circular orbit of radius r about the earth? Take the 
radius of the earth as Ry and neglect air resistance. 

95. * A particle of mass m is attracted to the origin of a coordinate 
system by a force which is inversely proportional to the square of the 

distance; Fr =— 
r2 

(a) Show that the equation for the conservation of energy of the 
system becomes: 

~ m(r2 + r202) — ~~ = constant = C 

(b) From the fact that Fo = 0, we have r26 = k. Substituting this 

into the energy expression, and making the transformation u = show 
r 

that the differential equation of the orbit is: 

(du\2 = £ _ / _ IV 
\dd) p2 \ p) 

where 

p2 

l^K 

p k2 

^ - 1 + 
2 Ck2 

mK2 

(c) Integrating directly the differential equation of the orbit, show 
that the equation of the orbit is: 

JL_ r = 
1 + e cos 6 

This is the equation of a conic having one focus at the origin. If e < 1, 
the conic is an ellipse; for e = 1, the conic is a parabola; and for e > 1, 
the conic is a hyperbola. 

(d) Show that the form of the orbit, that is, the type of conic, 
depends on the total energy of the system and hence on the mag¬ 
nitude of the initial velocity, and not on the direction of the initial 
velocity. 
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23. Impact. The problem of impact Detween two bodies is 

characterized by the presence of forces of large magnitude and 

short time duration. Because of these forces sudden changes occur 

in the velocities of the bodies, and it is these velocity changes 

which are ordinarily observed and measured in impact experi¬ 

ments. If the forces acting on the bodies were known, the solution 

of an impact problem would require only the integration of the 

equation of motion. Experimental difficulties, however, make the 

precise measurement of impact forces difficult, so that a different 

method of solution of the problem is usually required. The motion 

of the bodies during impact must always satisfy the momentum 

equation, the energy equation, and the third law of motion, that 

action is equal and opposite to reaction. These are sufficient to 

determine all the features of the motion except those occurring 

during the time of impact. Since the impact time interval is 

usually very short, of the order of milliseconds, only small errors 

are introduced by assuming an instantaneous impact. If the time 

interval of impact is not short, the approximate nature of the 

solution must be kept in mind. 

As an illustration of the methods used in solving impact prob¬ 

lems, consider two smooth, spherical bodies colliding with known 

velocities, as in Fig. 4-8. At impact two equal and opposite forces 

act normal to the surface of 

each sphere at the point of 

contact. The location and 

direction of the forces can be 

determined from the geome¬ 

try of the problem, and hence 

the location and the direction 

of the impulses are known. 

Considering the two spheres 

together as a system, there are no external forces acting, and the 

equation of the conservation of momentum can be written: 

WxVi + m2Vi = ntiVx + t»2F2 (27) 

where Vi> v2 and V1} F2 are the velocities before and after impact, 

respectively. This vector equation is equivalent to three scalar 

equations containing six unknown velocity components. If there 
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is no energy loss during impact the equation of the conservation of 
energy must be satisfied, so that 

\mi»i2 + \m-tv? - \m\V? + \mtV? (28) 

We now have four equations for determining the six unknown 
velocity components. The two additional equations are obtained 
from the known directions of the impulses which act upon the 
bodies. Designating the rectangular components of the impulse 
by Ix, IV) /*, we have: 

L_h 
T,~kl 
J-f=h 

where k\ and k2 are known from the geometry of the system 

(Fig. 4-9). Since the impulse is equal to the change in momentum, 

we may write: 

V \z — Vlx 

Vu - Viz 

Vly _ ; 
7/ ^-2 

- Vu 

(29) 

total of six equations now 
the six unknown velocity 

From the 
Fig. 4-9 available, 

components can be determined. In 
this discussion rotation of the spheres was not involved, so that 
the spheres were treated as particles. If rotation were involved, 
as for the collision of rough spheres, six unknown angular velocity 
components would be introduced, and the momentum and energy 
equations for the angular motions would have to be considered. 
The problem would then involve twelve equations and twelve un¬ 
knowns. In most practical impact problems, however, it will be 
found that only a few unknowns are involved. 

Whenever there is an impact between actual bodies, there will 
always be some loss of energy. If the impact velocity is small, 
this energy loss, for many purposes, may be neglected and the 
equation of conservation of energy may be used as above. If, 
however, the impact forces are sufficiently large to produce per¬ 
manent deformations of the bodies, the work done in producing 
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these deformations represents an energy loss which may be too 
large to be neglected. The energy equation then becomes: 

+ \m2v£ — E = \m\Vx2 + £m2V22 

where E is the energy loss during impact. It was pointed out by 
Newton that the information in this equation could be stated in 
a more useful form by the following method. Consider a direct 
impact where the approach and rebound velocities are parallel to 
the .v-axis. Write first the energy and momentum equations for 
no energy loss: 

+ \m2x? = \mfX? + \m^X^ 

\m-&i + = \mxXi + \m2X2 

Recombining the terms gives: 

\mfxx — A"x)(tfx + Xi) = -|«2(*! — X2)(x2 + X2) 

%mi(xi — Xi) = — \m2{x2 — X2) 

Dividing the first equation by the second: 

or 
%1 + Xi = X2 + X2 

Xi — X2 — — (ii — £2) 

This equation states that the relative rebound velocity after im¬ 
pact is equal and opposite to the relative velocity of approach. 
This is equivalent to stating that there is no energy loss during 
the impact. If there is a loss of energy, the two relative velocities 
will not be equal, but (Xi — X2) will be smaller than (xi — x2). 
The energy loss, therefore, can be determined by measuring the 
relative velocities, and we may say: 

(Xi - X2) = -eft - x2) (30) 

where e is a number less than unity. The quantity <?, called the 
coefficient of restitution, is thus a measure of the energy loss. When 
e = 1, with no energy loss, the impact is said to be perfectly 
elastic. If e = 0, the impact is said to be plastic, and the two 
colliding bodies remain in contact after impact with zero relative 

rebound velocity. 
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PROBLEMS 

96. Show that for direct central impact, that is, direction of rebound 
same as direction of approach, the velocities after impact are given by 
the following equations if there is no energy loss: 

Tr Im.'fflz + {my — 
ri = -- 

m 1 + 7Yli 

r.r 2m\V\ + (rn2 — m i)v2 
r* = ; 

m i + 

97. Show that for direct central impact with coefficient of restitu¬ 
tion e> the velocities after impact are given by the following equations: 

7r m2v o(l + e) + {mi — em2)v \ I l = 
m i + m2 

Tjr miv\{ 1 + e) + {m2 — emx)v2 = --— -- 
m i + m 2 

98. Compute the percentage loss in kinetic energy which takes place 
in a direct central impact if mi = m2, Vi =— v2> and the coefficient of 
restitution is e. 

99. In a pile driving operation, a hammer of weight TVh falls through 
a height h and makes a plastic impact with the pile of weight /F7,. The 
penetration of the pile is resisted by a constant force R, which is chiefly 
due to the friction between the earth and the pile. Show that if the pile 

JV£h 
penetrates a distance x after impact then R = ' TT (This ex- 

{IVh + lrv)x 
pression neglects the work done by 
gravity forces after impact and also 
assumes instantaneous impact.) 

100. A golf ball dropped from 
rest from a height h rebounds from 
a steel surface to a height 0.85^. 
What is the coefficient of restitution ? 

101. A particle of mass m rebounds from a flat surface. What is the 
relation between $i and 02 if no energy is lost during the motion? What 
is the relation between 0i and 02 if the coefficient of restitution is el 
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102. If in Problem 101 the coefficient of restitution is e = 1 but 
sliding contact is made with coefficient of friction fxy what is the resulting 
motion ? (Note that e and m specify the normal and tangential impulses.) 

103. A particle of mass m re¬ 
bounds from the corner of a smooth 
box. 

(a) What is the relation between 
the direction of approach and the 
direction of departure if no energy is 
lost during the motion? 

(b) Find the relation between the 
direction of approach and the direc¬ 
tion of departure taking account 
of the energy loss during impact, 
assuming that the coefficient of resti¬ 
tution is the same for all surfaces. 

104. Four identical bodies each of mass m are set up in a straight line 
on a smooth horizontal plane. A fifth body, identical with the other 
four, approaches with a velocity v and makes an impact with the first 

d d d 

pROB. 104 

body. The impacts are all elastic, and all motion takes place along a 
straight line, (a) Describe the motion of the bodies, (b) If the dis¬ 
tances d approach zero, what is the resulting motion? (Assume instan¬ 
taneous impact, and no energy loss due to air resistance or friction.) 

1 24. Electron Dynamics. For our present purpose, the electron 

may be considered to be a particle having a mass Wo = 9.1 X 10~28 

grams and carrying a negative electric charge e = — 4.80 X 10~10 

electrostatic units. If the electron is subjected to a known force, 

its motion can be computed from Newton's law written in the 

form F = (mv). The equation of motion is written in this 
at 

form since it has been observed that when an electron is acceler¬ 

ated to a high velocity the apparent mass of the electron increases 

according to the equation m = w0/VT — v2/c2, where c is the 

velocity of light in vacuum (299,800 km/sec) and mo is the mass 
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of the electron when v = 0, the rest mass. Since v must exceed 

40,000 km/sec for the mass to be increased by 1%, it is only for 

very high velocities that the effect becomes appreciable. 

As a first example of a problem in electron dynamics we shall 

consider a simplified version of one of the basic experiments which 

first permitted a direct experimental verification of the variation 

of mass with velocity. That the apparent mass of a charged 

particle should increase with speed had been shown from the¬ 

oretical considerations by J. J. Thomson in 1881, and a direct 

experimental confirmation was obtained in 1901 by Kaufmann. 

In 1909 experiments of Bucherer made possible the accurate deter¬ 

mination of the relation between mass and velocity. The experi- 

Fig. 4-10 

mental method used by Bucherer is shown, in a simplified way, in 

Fig. 4?—10. Electrons are emitted, with all directions and speeds, 

from a radioactive source R, located between two plates. Only 

those electrons having velocities along the axis of the apparatus 

are used in this experiment. An electric field E, directed down¬ 

ward, is maintained between the plates and the whole apparatus 

is placed in a magnetic field H directed perpendicularly out of the 

paper. While the electron is betwee'n the two plates, it is sub¬ 

jected to a vertical upward force of magnitude Ee due to the 

electric field. The force acting on an electron moving with a 

velocity v in a magnetic field H is ev x H. In the present experi¬ 

ment v is perpendicular to H, so that a vertical downward force 

of magnitude evH acts on the electron. If the forces due to the 

electric and magnetic field are just equal in magnitude, the re- 
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sultant vertical force on the electron will be zero, and the electron 
will move horizontally with a velocity given by: 

Ee = evH; v = T} 

The apparatus is arranged with a small hole at A, so that only 
electrons which have this horizontal velocity a can emerge from 
the box. We thus have a method of producing specified electron 
velocities. 

After leaving the electric field E, in the region between the two 
plates, the electron is subjected only to the force of the mag¬ 
netic field. Since the force on the electron and hence the accelera¬ 
tion of the electron are always perpendicular to the velocity, the 
magnitude of the velocity does not change but the electron moves 
in a circular path of radius r, where: 

from which 
r 

e _ v 

m rH 

From this equation an experimental value of — for various veloc¬ 

ities can be determined by measuring the radius of curvature r of 

the electron path. Now, if the expression m = m0j-^1 — ^ or 

— = — \/l — — is correct, the same value of — should be com- 
m ma > cl mo 

puted from the experimental measurements for different values 
of v. Some typical results of Bucherer’s experiments are given in 
the following table: * 

0) — (emu/gram) 
Tfl o 

0.3173 1.752 X 107 
0.3787 1.761 
0.4281 1.760 
0.5154 1.763 
0.6870 1.767 

* Bucherer, A. H., Annalen der Physik 28, 513 (1909). 
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Since these values of— are constant within the limits of experi- 
m0 

mental error, it appears that the experimental results are in good 

agreement with the expression for the variation in mass, which is 

derived on the basis of the special theory of relativity. 

26. The Acceleration of Electrons. A number of frequently 

used instruments employ a stream of high-speed electrons, 

so that the problem of producing high-velocity electrons is of 

Fic. 4-11 

practical importance. Consider the apparatus shown schemati¬ 

cally in Fig. 4-11. A potential difference AV is maintained be¬ 

tween a cathode C and a plate anode A. Any free electron in the 

field will be accelerated toward A by a force whose components are 

eEx = 

eEv = 

—e 

—e 

bv 
dx 

dV 

dy 

eE. = —e 
BV 

dz 

If the cathode C is heated, as for example, by a resistance fila¬ 

ment, electrons will be “boiled” off and will then be accelerated 

by the electric field. If a plate P with a small opening is placed in 

front of the cathode as shown in the diagram, only those electrons 

traveling along the x-axis will be free to move to the anode. Such 

electrons will move toward the anode under the action of a force 

eEx- If now a hole is arranged in the anode at the x-axis, the 
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electrons can pass out of the electric field and continue on with 

the constant velocity v which they had attained at the anode. 

Knowing the potential difference between the cathode and the 

anode, the velocity may be computed by using the principle of 

work and energy: 

e{VA - Vc) = \mv2 
hence 

’ - VI 
We can compute the velocity for a potential difference of 1 volt = 

■g-J-Q esu for the electron as follows: 

r(2)(-4.8 X 10"10) ( 1 \T c n. v in7 , 
L~(9Txlr»T (“ 300/J " 5'94 x 10 cra/sec 

This velocity is of the order of 133,000 mph, which is sufficiently 

small compared to the velocity of light so that the variability of 

mass with velocity does not need to be taken into account. It is 

relatively easy, however, to accelerate electrons to high velocities 

because the mass of the electron is small compared to its charge. 

26. The Cathode-ray Oscilloscope. An electronic device which 

has wide applications is the cathode-ray oscilloscope, represented 

in simplified form in Fig. 4-12. By an arrangement of cathode and 

anode as previously described, electrons are accelerated to a 

suitable velocity and are focused into a narrow beam through A 

along the .v-axis. Two plates are arranged parallel to the tf-axis so 
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that an electric field E can be established over a length / of the 
beam. The whole apparatus is enclosed in an evacuated glass 
tube. If the electric field E is zero, the electron stream continues 
along the x-axis and impinges against the end of the tube at a, 
where a bright spot is formed on the fluorescent screen. If an 
electric field is set up, the electrons, as they pass between the 
plates, will be subjected to a force which will deflect the beam 
and so change the position of the bright spot on the screen. 

An enlarged view of the two plates with a single electron be¬ 
tween them is shown in Fig. 4-13. As a simplifying assumption, 

Fig. 4-13 

we suppose that E is zero outside the plates and uniform between 
the plates. Then an upward force of eE is exerted on the electron 
and the equations of motion are: 

m'x = 0 
my = eE 

subject to the conditions that x0 = yo = yo = 0 and £o = v when 
/ = 0. After the electron has passed through the parallel plates, 
an integration of these equations shows that the velocity com¬ 

ponents are: x = v 

■ = eEL 
^ mv 

As the electron leaves the plates, its path makes an angle 0 with 
the x-axis, where: 

tan 0 — 
eE[ 
mv2 

The effect of the two plates, therefore, is to deflect an electron 
beam through an angle 6. After the beam leaves the plates, no 
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force is exerted on the electrons, and the beam continues in a 
straight line at the angle 6. The luminous spot will thus be de¬ 
flected from its zero position a distance y, where: 

_ eEl'- eEl L 
^ 2 mv2 mv2 

The displacement of the luminous spot is thus directly propor¬ 
tional to E and can be taken as a measure of the potential differ¬ 
ence between the plates. 

If a second pair of deflecting plates, oriented at 90° to the first 
pair, is added to the cathode-ray tube of Fig. 4-12, the luminous 
spot will be deflected in the z-direction with a displacement 

z = CiEz 

where Ez is the electric field set up between the second pair of 
plates. The motion of the luminous spot on the face of the tube 
is thus given by the two equations: 

y = CiEy-, z = C2EZ 

If, for example, Ev = A sin ut and Ez — B cos ut, the path of the 
spot is the ellipse: 

v2 z2 —1-1-£— = i 
CM2 CiB- 

which appears on the screen as a luminous line. In general, if Ev 
is known, Et can be determined from the picture on the tube. 
The oscilloscope can thus be used to measure any quantity which 
can be converted into a potential difference. 

27. The Equivalence of Mass and Energy. We shall now 
investigate some of the consequences of the fact that the apparent 
mass of a particle increases with velocity. We shall start with 

Newton’s law in the form F — (mv) and shall take m as a 
at 

variable, m — m0 To simplify the analysis we shall 

consider only one-dimensional motion starting from rest, with 
F and v always parallel to the #-axis. 



90 APPLICATIONS OF PARTICLE DYNAMICS 

The impulse-momentum equation will be derived first. For the 
particular conditions specified above, we have 

/ = [Fdt = mv = —™f^= 

Solving for v in terms of the impulse I: 

%/' + 
It is seen that as I oo} v c> so that no matter how large the 
impulse, the velocity can never exceed the velocity of light. 

The equation of work and energy is obtained in the usual way 
except that m is now a variable: 

v d(mv) 

Integrating by parts the right side of this expression, and writing 
Ew for the work done by F, we obtain: 

Ew = mv2 — f mv dv 

Substituting the expression for mi 

= -[' V2 Jo 
fl r 

Evaluating the integral, this becomes: 

which is the relativistic expression for the kinetic energy of the 
particle. This expression can also be written in the form: 

= me* — 
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Since mo and c are constants, it appears from this equation that 

an increase in the work done on the particle requires a correspond¬ 

ing increase in the mass of the particle. This unexpected result 

gave rise to much speculation regarding our fundamental concepts 

of mass and energy. The Theory of Relativity which Einstein 

postulated in 1905 states that what we measure as mass is equiva¬ 

lent to energy, and that the term m0c2 represents the energy 

equivalent of the particle when it is at rest. If we write Ew -J- 

m^c2 = me2 and call Ew + m0c2 the total energy E, we have: 

E = me2 (33) 

This is the famous expression for the equivalence of mass and 
energy. To obtain an idea of the magnitudes involved, we shall 
compute the rest energy equivalent of a mass weighing one pound. 

- _ 2 _ _J lb_( 2.998 X 1010 cm/sec V f ,, 
m°C 32.2 ft/sec2 \2.54 cm/in. X 12 in./ft/ 

E = 3.0 X 1016 ft-lb 

This is roughly equivalent to the energy which would be obtained 
from the combustion of 1,500,000 tons of coal or 300,000,000 

gallons of gasoline. 
The first approximate experimental verification of the equiva¬ 

lence of mass and energy was obtained in 1932 by J. D. Cockroft 
and E. T. Walton by particle bombardment of lithium. The fact 
that large quantities of energy can be released by nuclear fission 
was demonstrated by the atomic bomb in 1945. Measurements 
have shown that the difference in mass between the fission prod¬ 
ucts and the original nucleus is just equivalent to the energy 
released. 

PROBLEMS 

105. An electron is accelerated from rest through a potential drop of 
100,000 volts. Compute its velocity assuming that its mass remains 
constant, and compare with the velocity obtained when the variability 
of mass with velocity is taken into account. This potential drop is small 
compared with the several million volts used in modern particle accel¬ 
erators. 

106. The basic elements of a cyclotron are shown in the accom¬ 
panying diagram. The device consists of two halves of a cylindrical box, 
placed in a uniform magnetic field H as shown. If a particle having a 
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-It- 

charge e and a velocity V in the plane of the box is introduced into the 
box, it is subjected to the force of the magnetic field which is given by 
F = ev X H. The two halves of the box are maintained at a potential 

difference A/7, so that as the particle travels from 
one half to the other it experiences a velocity 
change corresponding to A/4 By means of an 

/ oscillator this potential is varied periodically in 
/ such a way that the particle always experiences a 

potential drop. Show that the particle will move 
in a circular path whose radius increases with v, 
and that the time required for one-half a revolu¬ 
tion is independent of v. In this way the particle 
can be accelerated to a high velocity and can then 
be drawn off and used as a bombarding particle. 
The foregoing analysis is based on constant mass. 
If the velocity is so high that the variability of 
mass must be considered, the time of revolution is 
not independent of v and difficulties are encoun¬ 
tered in synchronizing the potential drop AV. 

107. The electric field between the y deflecting plates of a cathode- 
ray oscilloscope tube varies as shown in the diagram: 

(a) If a field Ez = Eq sin co/ is set up between the z deflecting plates, 
. » 2tt . 

what picture would be traced out on the screen if ti = —, and the time 
intervals are equal? ^ w 

(b) If in part (a) h = —, what picture would appear? 
CO 

(c) If Ez — /(/), what picture would appear on the screen during the 
time / = 0 to / = /i ? 

108. Work out the steps in the derivation of the expression for the 
relativistic kinetic energy of a particle, and show that for v<£ c this 
reduces to the familiar expression for the kinetic energy of a slow-speed 
particle. 



CHAPTER V 

DYNAMICS OF VIBRATING SYSTEMS 

First of all one must observe that each pendulum has its own time of vibra¬ 
tion, so definite and determinate that it is not possible to make it move with any 
other period than that which nature has given it. On the other hand one can 
confer motion upon even a heavy pendulum which is at rest by simply blowing 
against it. By repeating these blasts with a frequency which is the same as that 
of the pendulum one can impart considerable motion.—G. Galilei, Discorsi a 
Due Nuove Scienze (1638). 

The analysis of mechanical vibrations is a problem in dynamics 

which is often encountered by the engineer. Such problems arise 

in connection with the design of almost every type of machine or 

structure. The vibration of high-speed machinery, aircraft flutter, 

the vibration of buildings during earthquakes, and the design of 

dynamic measuring instruments are current problems which will 

indicate the wide scope of the subject. It is also found that the 

same mathematical theory which is used for the study of mechan¬ 

ical vibrations is applicable to certain problems of oscillations in 

electrical circuits. Such a similarity between the basic equations 

of mechanical and electrical systems has led to several useful 

methods whereby the results of analysis or experimental investiga¬ 

tions in one field have been applied to the other. 

In the present chapter we shall consider only the motion of 

systems having one degree of freedom. Such problems are excel¬ 

lent examples of the methods of particle dynamics, and they will 

also indicate the theory behind a large number of interesting, 

technical applications. 

28. The Vibration Problem. We shall first investigate the 

simplest possible mechanical system which contains all the sig¬ 

nificant features of a vibration problem. Consider a mass m which 

has one degree of freedom, that is, its location at any time is 

specified by the one coordinate x. The mass is restrained by a 

spring ky and an external force F(t) whose magnitude varies with 
93 



94 DYNAMICS OF VIBRATING SYSTEMS 

time is applied to the mass, as shown in Fig. 5-1 (a). In 

Fig. 5-1 (b) is shown a free-body diagram of the mass, when it 

has a positive velocity and displacement as measured from 

the position of static equilibrium 

(x = 0). The fact that a friction 

force opposes the motion of the 

mass is indicated by the force Fa, 
which is usually some function of 

the velocity of the system, de¬ 

pending upon the nature of the 

contacting surfaces and the con¬ 

ditions of lubrication. 

We observe that the forces act¬ 

ing upon the mass belong to three 

general classes. First there is the 

exciting force F(t), which is the 

externally applied force that causes 

the motion of the system. Second, 

there is the restoring force F„ which is the force exerted by 

the spring on the mass and which tends to restore the mass 

to its original position. Third, there is a damping force Fa, 
which is always in such a direction that it opposes the motion 

of the system, and which is thus responsible for a dissipation of 

energy. The equation of motion can be written as: 

mx = F, + Fd + F(t) (34) 

Three such forces, along with the equation of motion, characterize 

the vibration problem. When an analysis of a physical problem 

leads to Equation (34), many of the essential features of the mo¬ 

tion can be analyzed as in the following sections. 

29. The Characteristics of the Forces. From the definition of 

the restoring force it is known that its direction is always toward 

the equilibrium position of the system. If the restoring force is 

produced by a spring as in Fig. 5-1, it is known that: 

F, = —kx 

where the point x — 0 is the equilibrium position and k is the 

spring constant which indicates the stiffness of the spring. This 

1 rx 
-Fit) 

(a) 

■F{t) 

Fig. 5-1 
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spring force is called a linear restoring force because it is a function 

of x raised to the first power. In some instances the restoring force 

is not linear. To obtain the solution for non-linear restoring forces 

is difficult, so that it is customary to linearize the problem, if 

possible, by treating only small oscillations. For example, sup¬ 

pose that the restoring force is given by some function of x which 

can be expanded in a power series: 

Fs=-<f>(x) + + 

If x is small, the first term of this series is large compared to the 

sum of the following terms. Thus if the amplitude of the vibration 

is always sufficiently small, a satisfactory approximate solution 

can be obtained by taking for the restoring force only the first 

term of the series: 
F, = —kix 

We shall treat only linear restoring forces. In recent years 

considerable work has been done on the non-linear problem, 

but as yet no general solutions of a simple form have been deter¬ 

mined. 

The most important characteristic of the damping force is that 

its direction is always opposed to the direction of the motion. 

The work done by the damping force is thus always negative, and 

energy is dissipated from the system. In many instances the 

damping force is directly proportional to the velocity of the mass, 

so that 
Fd = —cx 

Damping which can be described by this equation is called viscous 
damping, and c is called the coefficient of viscous damping. Such 

a damping force may arise in a number of ways. The frictional 

force set up between two lubricated surfaces, under the usual 

conditions of velocity and pressure, is approximately propor¬ 

tional to the velocity, and air resistance at low velocities also 

may be assumed to be viscous in nature. Damping forces are 

often intentionally introduced into a system, and this is com¬ 

monly done by means of a dashpot filled with oil. Such a device 

can be designed to give viscous damping. In some problems in 

which the damping is not viscous, the concept of viscous damping 
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may still be used, by defining an equivalent viscous friction, for 

which the coefficient of viscous friction is determined so that the 

total energy dissipated per cycle is the same as for the actual 

damping during a steady state of motion. In the analysis to fol¬ 

low, we shall always assume viscous damping forces, and it should 

therefore be realized that the solutions may be approximate for 

some types of mechanical systems. 

Exciting forces may arise in many different ways. They may, 

for example, be transient forces such as would be caused by the 

impact of some external body, or they may be repetitive forces 

caused by a series of such impacts. 

Reciprocating or rotating machine 

parts often produce unbalanced alter¬ 

nating forces that have a sinusoidal 

variation. Consider the rotation of an 

unbalanced disk as shown in Fig. 5-2. 

This arrangement represents a typical 

vibration isolating mount for a ro¬ 

tating machine. The disk of mass m 

rotates about the center 0 with an 

angular velocity co. The center of mass 

of the disk is located at a distance r 

from the center of rotation. The rotating system is mounted on 

a larger mass M which can move only in a vertical direction. M is 

supported on a spring having a spring constant k, and a dashpot 

having a coefficient of viscous damping c connects the mass to the 

fixed support. If we assume that the motion of M is small com¬ 

pared to r, then the motion of m can be taken as circular, and the 

acceleration of the center of mass of the disk is ro?2. There is thus 

a force of magnitude mruP acting in a radial direction upon the 

large mass M. The component of the force in the y direction, 

that is, the component of force which causes motion of the system 

is mru? sin 6. Assuming that the disk rotates with a constant 

speed we have for the exciting force: 

F(t) = mru2 sin o>/ 

Since small amounts of unbalance are inevitably present in any 

rotating machine, sinusoidal exciting forces play an important 
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part in vibration theory.* A more fundamental reason for the 

importance of the sinusoidal force is the fact that any periodic 

force can be represented analytically as a series of sine and cosine 

terms, by a Fourier series expansion. Thus, if the behavior of the 

system is known for a sinusoidal force, the behavior of the system 

can be determined for any periodic force. 

30. The Differential Equation of the Vibration Problem. For 
the basic vibration problem we shall consider a system which 

consists of a linear restoring force, a viscous damping force, and 

a sinusoidal exciting force: 

Fa = —kx 
Fd = —cx 

F(t) = Fv sin ut 

Substituting these terms into the equation of motion gives: 

mx = — kx — cx + F0 sin ut 

We shall write this equation in the standard form 

p 
x + 2nx + p2x = — sin ut (35) 

m 
where: 

— — p2 and — = 2 n 
m m 

The term n is called the damping factor. A system described by 

this equation is said to be a single degree of freedom harmonic 

oscillator with viscous damping. In the following sections we 

shall derive the solution of the equation, and we shall examine its 

physical significance. 

31. Free Vibrations of an Undamped System. Of the three 

forces mentioned above, only the restoring force is necessary for 

the existence of a vibration problem. It may be that energy dis¬ 

sipation is so small that the damping force may be neglected, and 

the motion of the system may be started by initial displacements 

or velocities rather than by exciting forces. In this section we 

shall consider the solution of this simplest type of vibration prob- 

* If the motion of M is not small, m performs two-dimensional simple har¬ 
monic motion during a steady state and the resultant exciting force is again 
sinusoidal (see Problem 128). 
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lem as an illustration of method, the nomenclature to be used, 

and of the physical interpretation of the results. 

Setting the damping force and the exciting force equal to zero, 

the differential equation becomes: 

x + p2x = 0 

This is the same equation previously solved for harmonic motion 

(Section 21). The solution of the equation is thus known to be: 

x — Ci sin pt + C2 cos pt 

where C\ and Ci are constants of integration which must be 

evaluated from the initial conditions. That this expression is in 

fact a solution of the differential equation may be verified by direct 

substitution. 

When / = 0 let the initial displacement be x0 and the initial 

velocity x0. From these two initial conditions the constants Ci 

and Ci may be found: 

Ci = — and Ci = x0 
P 

The solution of the differential equation becomes: 

x — — sin pt + tfo cos pt (36) 
P 

We shall investigate the physical significance of this solution 

for Xo = A and io = 0. This means that the mass is moved a 

distance A from its position of equilibrium and is then released, 

at time / = 0, with zero initial velocity. The displacement is then 

given by: 

x = A cos pt 

The motion of the mass as a function of time is shown in Fig. 5-3, 

where it is seen that the mass performs oscillations about the 

position of equilibrium. Since there is no energy loss in this ideal 

system, the oscillation continues indefinitely with the same am¬ 

plitude A. The portion of the motion included between two points 

at which the mass has the same position, as B and C in Fig. 5-3, 

is called one cycle of the vibration. The time required for the 

completion of one cycle is called the period, r, of the vibration. 

The number of cycles which occur in one second is called the 
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frequency, f, of the vibration. To find the period, consider two dis¬ 
placements of the mass which are one cycle apart, as B and C in 
Fig. 5-3. Then: 

A cos pt = A cos pit + t) 
_ 2tt _ 2tt 

T ~ P ~ [k (37) 

f = £- = — 

J 2ir 2 w<m 

The period can also be found by an energy method in the follow¬ 
ing way. The potential energy of the system at any position is 

V — \kx2 and the kinetic energy is \tnx2. Since the motion is 
known to be harmonic, the displacement and velocity can be 
written: 

x = A sin ut 

x = Au cos cct 

When x — A, the potential energy is equal to \kA2 and the kinetic 
energy is zero. When x — 0, the kinetic energy is \mA2J1 and 
the potential energy is zero. Since energy is conserved: 

= \kA2 

This energy method is useful for obtaining approximate frequen¬ 
cies in more complicated problems when it is known that the 
motion can be assumed to be approximately harmonic. 
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PROBLEMS 

109. A pendulum having a mass m and a length / is supported by a 
string of negligible mass. Write the equation of motion for the pendulum, 

neglecting air damping, and show that for small oscilla¬ 

tions this equation is: 

# + £<#> = 0 

Find the period of small oscillations of the pendulum. 
If air resistance imposes a damping force proportional 
to the velocity, what is the differential equation of 
motion for small oscillations? What force plays the 
part of the restoring force in this problem? 

110. Write the equation of the conservation of 
energy for the pendulum of Problem 109. Obtain the 

differential equation of motion for small oscillations by differentiating 
the energy equation with respect to t. 

111. Show that the natural frequency of free vibrations of an un¬ 
damped simple harmonic oscillator is given by: 

3.13 
/ = —cycles per second 

V8at 

Prob. 109 

where 8at is the static deflection of the system, in inches. The static 
deflection of a system is defined as the deflection caused by a force of 
mg lb. 

112. A U-tube is partially filled with mercury and is supported in a 
vertical position as shown in the diagram. When the system is in equilib¬ 
rium, the height of the mercury is the same in each arm. The liquid in 
one arm is depressed a distance x thus raising the liquid a like distance 
in the other arm. The system is then released. Write the equation of 
motion for the liquid column, neglecting frictional damping forces, and 
find the frequency of the resulting oscillation. 

Pros. 113 
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113. Two parallel cylindrical rollers rotate in opposite directions as 
shown in the figure. The distance between the centers of the rollers is a. 
A straight, uniform horizontal rod of length / and weight W rests on top 
of the rollers. The coefficient of kinetic friction between the rod and the 
roller is \x. Taking x as the distance from the center of the rod to the 
midpoint between the rolls, write the equation of motion of the rod, sup¬ 
posing that it has been initially displaced from the central position. Find 
the frequency of the resulting vibratory motion. 

114. A piston of mass m fits in a closed cylinder of cross-sectional 
area A. When the piston is in the central position with x = 0, it is in 
equilibrium, and the pressure on each side is p. The air in the cylinder 
is assumed to follow Boyle's law, that is, the pressure times the volume 
is equal to a constant. The piston is moved through a distance x from 
the position of equilibrium and is then released. Write the differential 
equation of motion of the system, assuming that there is viscous friction 
between the piston and the cylinder. Find the frequency of small 
oscillations of the piston, assuming that the damping force can be 
neglected. 

115. Find the frequency of small vibrations of an inverted pendulum 
restrained by two springs of spring constant k as shown in the diagram. 
All the mass of the pendulum is assumed to be concentrated at a dis¬ 
tance / from the point of support, and the springs are sufficiently stiff so 
that the pendulum is stable. 

116. A particle of mass m slides 
on a smooth surface whose shape is 
given by the equation y = ax2. The 

particle is moved along the surface 
away from the position of equilib¬ 

rium and is then released. Find the 
equation of motion of the particle, 
and find the frequency of small 
oscillations about the position of 

static equilibrium. Prob. 116 

V 

\ JF 

\ 
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117. A spring-mounted mass, supported on a wheel, as shown in the 
diagram, moves with a velocity v along a wavy surface which has a 

v 

Prob. 117 

sinusoidal form. The vertical displacement of the wheel y can be found 
from the fact that y = A sin az 

where z = vt. The vertical motion of the mass is given by the coor¬ 
dinate x. A dashpot which introduces viscous damping into the system 
is connected between the wheel and the mass. Write the equation of mo¬ 
tion for the vertical movement of the mass, noting that the forces which 
act upon it are the elastic force, — k(x — y)y and the damping force, 
— c(x — y). Show that this equation reduces to the general form of the 
vibration equation, with a sinusoidal exciting force. 

118. Show that the equation x = Ci sin pt + C2 cos pt can be written 

in the form x = A cos {pt + a) where A = VCi2 + C22 and a = 

A is called the amplitude of the vibration, and a is called 

the phase angle. Changing the phase angle has the effect of shifting the 
whole curve representing the vibration to the right or left, as shown in 

the figure. 
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119. A mass m drops from rest through a height h and strikes the 
bottom of a rod. The rod elongates x feet when acted upon by a force of 
kx lb. Assuming that the mass remains in contact 
with the end of the rod after impact, find the mo¬ 
tion of the mass after the impact. (Neglect the 
mass of the rod and assume that no energy is lost.) 
If m weighs 20 lb, k = 100 lb/ft, and h = 2 in., find 
the amplitude and the frequency of vibration. 

32. Damped Vibrations. In an actual vibra¬ 

tion there will always be some damping present. 

Let us consider free vibrations with viscous 

damping, and compare the solution of this 

problem with that of the undamped oscillation. 

The differential equation of the free damped vibration is obtained 

from the general equation by setting the exciting force equal to 

zero. 

x + 2 nx + p*x = 0 (38) 

The solution of this equation must be a function which has the 

property that repeated differentiations do not change its form, 

since the function and its first and second derivatives must be 

added together to give zero. For such an equation, we take as a 

trial solution x = Ceml, which, upon substitution into the differ¬ 

ential equation, gives: 

CnPeml + 2 Cnmemi + p2Cemt = 0 

Cancelling the factor Cemt we have: 

m1 + 2»w + p2 = 0 

This equation has two solutions for m, each of which will make 

x = Cemt a solution of the differential equation. The general 

solution of the equation may thus be written as the sum of the 

two: * 
* = CVmi( + Ctf™1 (39) 

It should be noted that the superposition of solutions is valid only 

for linear differential equations, that is, equations which are 

linear in the dependent variable and its derivatives. 

* Since the differential equation is of the second order in its derivatives, the 
solution with two constants of integration is the complete solution. 
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Solving the algebraic equation we obtain the two values: 

mi — —n +v/«2 — p- 

m% = —n — Vtt2 — p2 

Hence the solution is: 

x = CV"" +v"s " + C2r(_n 

The physical significance of this solution depends upon the rela¬ 
tive magnitudes of n2 and p2, which determine whether the ex¬ 
ponents are real or complex quantities. 

Suppose first that n2 > p2 so that the exponent is a real quan¬ 
tity. Physically this means a relatively large damping, since n 
is a measure of the damping in the system. The solution is then: 

x = Cie~mt + C2e~mt (40) 

where ai and a2 are real quantities. The motion of the mass, in 
this event, is not oscillatory, but is an exponential subsidence. 
Suppose, for example, that the motion is started by giving 
the mass an initial displacement A and then releasing it 
from rest. The displacement-time curve is then as shown in 
Fig. 5-4. Because of the relatively 

If the damping is small, so that n2 

is negative, and we can write: 

x = 0(~ n + «'vp* - )( -| 

= e-nt[CieiVpa ~nU + 

Using the trigonometric relation 
placement may be written: 

large damping, the mass 
released from rest never 
passes the static equilib¬ 
rium position. So much 
energy is dissipated by the 
damping force that there 
is not sufficient kinetic en¬ 
ergy left to carry the mass 

t past the equilibrium posi¬ 
tion. Such a system is said 
to be overdamped. 

< p2y then the term «2 — p2 

Cte-iV^'t] 

ea — cos 9 + i sin 0, the dis- 

x o> er~nt[(Ci + Ci) cos y/p2 — «21 + i(Ci — C2) sin Vp2 — n2 /] 
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Since the constants Ci and C2 are arbitrary and are to be deter¬ 
mined by the initial conditions, we may simplify the expression 
by introducing new constants, C/ = i(Ci — C2) and C2' = Ci + 
C2; dropping the primes: 

x = e~nt[Ci sin Vp2 — «2 / + C2 cos Vp2 — n21] (41) 

This equation may be checked by setting n = 0, thus reducing it 

to: x = Ci sin pt + C2 cos pt 

which was previously derived for the undamped free vibrations. 
Comparing the two solutions we see that the effect of the damping 

is to increase the period of the vibration and to decrease the magni¬ 
tudes of successive peaks of the vibration, since the amplitude of 
the vibration decreases expo¬ 
nentially with time. The mo¬ 
tion of a typical underdamped 

oscillator is shown in Fig. 5-5. 
As a convenient measure of 

the damping we may compute 
the ratio of the amplitudes of 
successive cycles of the vibra¬ 
tion. 

*i 
■ nti 

X 2 —n(ti + 11 y 2ir~~ \ 
e \ - »v 

= e 

2irn 

The amount of damping is often specified by giving the logarithmic 

decrement 5, where: 
2ir n 

2irn 

S_log*.lo (42) 

For systems having small damping, a simple way of determining 
the logarithmic decrement from the free vibration curve is as 
follows: 

for small, the higher order terms may be dropped, and: 

X 
(43) 
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Thus the logarithmic decrement is approximately equal to the 
fractional decrease in amplitude during one cycle of the vibration. 

Another important quantity in damped vibration analysis is 
the energy lost per cycle due to the damping force. The total 
energy of the system when it is in one of its extreme positions with 

zero velocity is: W^ = \kx2 

The energy one cycle later is: 

JV* - \k{x - ax)2 

Therefore the energy loss per cycle is: 

AIV = W\ — Wi = \kx2 - \kx2 + kx(Ax) - \k{Ax)2 

Expressing this energy loss as a fraction of the total energy of the 

system gives: a/F _ 9 /ax) _ /axY 

IV [xj \xj 

If the damping is small the square term can be dropped, and we 
have: aw /ax\ 

w-2{f)-2S <44> 

Thus for small damping the fraction of energy lost per cycle is 
approximately equal to twice the logarithmic decrement. 

PROBLEMS 

120. At time / = 0, the initial displacement of a damped harmonic 
oscillator is x0> and the initial velocity is x0. Show that the free vibra¬ 
tions of the system are described by the equation: 

x = e~nt 
/To-o. , £o + nx<s . 
'p2 — «2 / H.....-.- sin — «2/J 

121. Critical damping is defined as that damping for which n = p. 
(a) If the damping is less than critical, show that the logarithmic 

decrement can be written: / v 

, 2,tj 

where nc — p — damping factor for critical damping. 
(b) Show that for small damping the logarithmic decrement can be 

* - *£) 
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122. A mass weighing 10 lb is restrained by a spring which has k = 
15 lb/ft and is acted upon by a viscous damping force. It is observed that 
at the end of four cycles of motion the amplitude is reduced by one-half. 
Find the damping factor n and the period of 
the vibration. 

123. * A drop hammer is found to transmit an 
objectionable shock to the surrounding ground. 
To eliminate this, the machine is mounted on 
springs, as shown in the diagram. To prevent 
undue vibration of the system after impact, 
damping is introduced as shown by the dash- 
pot. The constants of the system are: 

Wx = 2000 lb 
W2 = 30,000 lb 
h = 8 ft 
k (for all springs) = 250,000 lb/ft 
n = 0.8 sec-1 

The weight W\ falls through a distance h and makes a plastic (no re¬ 
bound) impact with /F2. The resulting motion of the system is a free 
vibration with damping. Find the maximum displacement of and 
the displacement three complete cycles after the maximum displace¬ 
ment occurs. 

124. Solve the differential equation of motion for the critically damped 
oscillator, n = p. Evaluate the constants of integration and determine 
whether the displacement can change sign during a free vibration. 

33. Forced Vibrations. Vibrations which are maintained by an 

exciting force are said to be forced vibrations. We shall now de¬ 

velop the complete solution for the motion of a damped, simple 

harmonic oscillator acted upon by the sinusoidal exciting force 

Fq sin cot. The differential equation of the motion (Equation 35) is: 

F 
x + 2nx + p2x = — sin cot 

m 

The solution of this equation may be written as the sum of two 

terms: _ _ 
x = e^l[Ci sin Vp2 — n2t + C2 cos Vp2 — n2 t] +/(/) 

for we have found from the preceding section that the first term, 

when substituted into the differential equation, gives zero. There¬ 

fore, a function /(/) must be added of such a form that it will 
p 

yield — sin cot when substituted into the equation. This second 
m 

[ 1m ill 
_1 L 

W2 

Prob. 123 
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term is called the particular solution. Since two arbitrary con¬ 
stants already appear in the first term, no further arbitrary 
constants need be included. 

The particular solution in the present problem may be found 
by taking a trial solution: 

x = A sin wt + B cos wt 

where the values of A and B are to be determined from the con¬ 
dition that the differential equation must be satisfied. Substi¬ 
tuting into the equation the expressions 

x = Aw cos wt — Bw sin cct 

x = — Aw2 sin wt — Bw2 cos wt 
gives: 

—Aw2 sin wt — Bw2 cos wt + In Aw cos wt — 2nBw sin wt 
p 

+ p2A sin wt + p2B cos wt — — sin wt 
or: m 

(—Aw2 — InwB + p2A) sin wt + { — Bw2 + In Aw + p2B) cos wt 

F0 ■ , = — sin wt 
m 

This equation must be identically satisfied, which means that the 
coefficient of the sin wt on the left side of the equation must equal 
the coefficient of the sin wt term on the right side of the equation, 
and the coefficient of the cosine term must equal zero; hence: 

(p2 - w2)A + (-2nw)B = & 
m 

(2nw)A + (/>2 - w2)B = 0 

These two algebraic equations determine the proper values of 
A and B: 

(— 
\m 

^ (—2 nw) 

0 (p2 - w2) 

(p2- w2) ( — 2no)) 1 
(2 nw) (p2 — w2) 

Fo 
m 

(p2 - w2) 

(p2 — w2)2 + 4 »*«* 
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■>(31 
— 2 nu '■ 

R_ |(2no) 0 | _ " « 
(p2 - CO2)2 + 4»V (p2 - co2)2 + 4»2to2 

Writing the solution x — A sin to/ + B cos to/ in the form x 
VJ+I2 sin (a>/ — <f>), we have: 

F0 

where 
to2)2 + 4«2co2 

sin (to/ — <t>) 

The complete solution of the differential equation is thus: 

x = e~nt[Ci sin Vp2 — «2 / + C2 cos Vp2 — «2 /] 

Eo 

4—-==JF.= sin (to/ — tf>) (48) 
V(p2 - to2)2 + 4w2to2 

Equation (48) represents a superposition of two motions. One has 

a frequency Vp2 — «2 and an exponentially decreasing ampli- 

tude, and the other has a constant amplitude and the frequency 

to. This motion is shown in Fig. 5-6 for p > to. Because of 
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e~nt the first term of the expression decreases with time, and 
after a sufficient time it can be considered to be damped out, 
leaving the motion described by the second term. For this reason 
the first is called the transient term, and the second the steady-state 

term. The character of the transient term depends upon the initial 
conditions of the motion, whereas the steady state vibrations are 
independent of the initial conditions and depend only upon the 
forcing function and the parameters of the system. 

The most important item in forced vibration problems usually 
is the amplitude of the steady forced vibration. Calling this am¬ 
plitude A (Fig. 5-6), we have 

F0 

V(p2 — «2)2 + 4«2co2 

Dividing numerator and denominator by p2, and remembering 
k 

that p2 = —, we obtain: 
m 

F0 

It is customary to express the damping as a fraction of critical 
damping, where critical damping nc is defined by nc — p (see 
Problem 121). We write: 

©■ nRSFFM 
It will be noted that the term is the deflection which the 

system would have under the action of a static load F0; that is, 
it is the deflection of the system under a forcing function with 
zero frequency. The expression on the right side of the equation 
thus represents a dynamic amplification or magnification factor 
and gives the ratio between the dynamic and static deflections. 
The variation of this magnification factor with frequency ratio 
and damping ratio is shown in Fig. 5-7. The most significant 
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feature of Fig. 5-7 is the fact that, near the frequency ratio 

(-) = 1, the magnification factor can become very large if the 
\P' _ _ _ /n\ 
damping ratio is small. The infinite value indicated at j = 0 

would, of course, not exist in practice, since it is impossible to 

0 1 2 3 4 5 6 7 
(<vp) 

Fig. 5-7 

reduce the damping to zero, and since it would require an infinite 
time to reach the infinite amplitude even if the damping were zero. 

The occurrence of large displacements near (^j = 1 is called 

resonance, and the frequency for which u = p is called the resonant 

frequency. 
If the damping is small, the maximum amplitudes occur very 

near i-i = 1, so that the maximum amplitude may be approxi- 
\pJ / V 

mated very closely by setting M = 1. Thus we have: 

F0 
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As an example, we might note that the damping ratio for an 

aircraft structure, such as a wing, has a magnitude of approxi¬ 
mately 0.03; thus the resonant amplitude would be approxi¬ 
mately 16 times the static deflection. This illustrates the danger 
of resonant conditions in structures and machines. However, if 
resonant vibrations of excessive amplitudes occur, it is possible 
to improve conditions by changing the frequency ratio or by 
increasing the damping in the system. 

The steady forced vibration is 

x = A sin (at — <t>) 

The angle <j> gives the phase relation between the motion and the 
exciting force. The phase angle is given by 

If « 1, that is, if the forcing frequency is relatively low, then 

<f> is small, and the motion is nearly in phase with the exciting 

force. If » 1, that is, if the forcing frequency is high, <j> is 

nearly 180°, showing that the motion is oppositely directed to the 

exciting force. At resonance = 1 and <f> — 90° for all values 

of the damping so that the exciting force is in the direction of the 
velocity. 

PROBLEMS 

125.* (a) Show that the energy input per cycle, W%, of the exciting 
force is equal to 

Wi — JFdx = Jf± dt - j(Fq sin o>t)[Au cos (ut — <£)] dt 

— ttFqA sin <f> 

(b) Show that the energy dissipated by the viscous damping force 
per cycle is 

Wd = arA*o> 
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(c) By equating the energy input and the energy dissipation, show 
that the steady state amplitude of a resonant vibration is 

CO) 

and that this reduces to the same expression as was previously derived 
for //res. Plot, on a graph of energy per cycle versus amplitude, the 
energy input and the energy dissipated at resonance and indicate the 
steady state amplitude. 

126. A mass m restrained by a spring with a constant k is initially at 
rest. At time t = 0, it is acted upon by an exciting force F(J) = Fq cos cot. 

Assuming no damping, and given that ~ = 10 cycles per second, 
2ir 

m weighs 10 lb, k = 20 lb/ft, Fq = 100 lb, find (a) the amplitude of the 
forced vibrations, and (b) the amplitude of the free vibrations. 

127. An undamped spring-mass system, which under gravity has a 
static deflection of 1 in., is acted upon by a sinusoidal exciting force 
which has a frequency of 4 cycles per second. What damping factor n is 
required to reduce the amplitude of the steady-state forced vibrations 
to one-half the amplitude of the undamped forced vibrations? 

128. An unbalanced rotating mass is supported by a spring of con¬ 
stant k across which a dashpot giving a viscous damping force cx is 
connected. The mass rotates with an angular velocity o>, and the center 
of mass of the rotating body is at a distance e from the axis of rotation. 
Find the amplitude A of steady-state forced vibrations and plot a curve 

of 0) versus^) for several values of the damping ratio The sys¬ 

tem is constrained so that the motion x is rectilinear. Note: The effect of 
the unbalanced mass is equivalent to a smaller mass m! at a larger 
distance r from the center of rotation. By assuming that the vibratory 
amplitude is small compared to r, the motion of the small mass mr can 
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129. A step function as shown in the diagram is applied to an un¬ 
damped harmonic oscillator; that is, when t = 0, a constant force of 

magnitude F is suddenly applied to the system. If the velocity and dis¬ 
placement of the oscillator are zero at time / = 0, find the subsequent 
motion. 

130.* At time / = 0, a step function of the type described in Prob¬ 
lem 129 is applied to an undamped, simple harmonic oscillator. After 
a time T the constant force F is suddenly removed, resulting in a forcing 
function of the type shown in the figure. The velocity and displacement 
of the mass are zero when / = 0. 

(a) Show that the displacement of the oscillator subsequent to the 
time T is given by: 

x sin {pt — yp) 

(b) The total impulse acting upon the system in this problem is 
I = FT. If I remains constant while T approaches zero, what is the 
amplitude of the resulting motion? Note that for T sufficiently small, 

Check this answer by treating the problem as a free vibration, with an 
initial velocity given by the impulse-momentum equation. 
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131. At time / = 0, a sinusoidal exciting force F(t) — Fo sin «/ is 
applied to an undamped, simple harmonic oscillator of mass m and 
spring constant k. The frequency of the exciting force is the same as 
the natural frequency of the system. If the mass is initially at rest, find 
the amplitude of vibrations as a function of time. 

Prob. 132 

132.* An automobile, without shock absorbers, may be represented 
approximately as a concentrated mass m supported by a spring having 
a constant k. The automobile runs with a velocity v over a hollow in the 
road which can be represented by the cosine curve 

Neglecting damping, find the vertical acceleration of m when x — l. 

34. Vibration Isolation. One of the useful applications of vibra¬ 
tion theory is to the vibration isolation of instruments and ma¬ 
chinery. As a first example, we shall consider the problem of 
mounting an instrument so as to minimize the transmission of 
vibration from the supporting structure to the instrument. In 
many applications delicate instruments must be used in structures 
which have appreciable amplitudes of vibration. Unless the 
instrument can be isolated from its 
support it may be impossible to make 
accuratemeasurements. Suppose that 
the support -S' in Fig. 5-8 has a motion 
y0 sin ut. The mass of the instrument 
is m, and it is attached to the support 
by a spring k. The damping in the 
system is represented by a dashpot Fro. 5-8 
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having a viscous damping constant c. Letting x be the amplitude 
of motion of the instrument m, we have as the differential equa¬ 
tion of motion: 

mx 4- c(x — y) + k(x — y) = 0 

mx + ci + kx = ky + cy = ky0 sin at + cyo a cos at 

x + 2 nx + p2x = ^ (k sin at + ca cos at) 
m 

Writing the right side of the equation as: 

^ (k sin at + ca cos at) — ^ Vk2 + (ca)2 sin (at — (3) 
m m 

we see that its effect is the same as a sinusoidal exciting force, so 
that this is an equation of the same type as Equation (35) and 
the same solution can be used. Putting F0 = yWk2 + (ca)2 in 
Equation (49), we have for the amplitude of the steady-state 
forced vibration: 

^ Vk2 + (cay 
SI — 1- 

4- ©T 
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Thus the effectiveness of the mounting in reducing the amplitude 
is measured by the expression on the right side of Equation (51). 

The appearance of this function for various values of and 

is shown in Fig. 5-9, where it will be noted that at any frequency 
ratio greater than V2 the amplitude of the mass will be less than 
the amplitude of the support. The main difference between this 

resonance curve and that given in Fig. 5-7 is that for 

the damped curves are above the undamped curves. This means 
that the presence of damping decreases somewhat the effectiveness 
of the mounting. A certain amount of damping, however, is essen- 
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tial in order to maintain stability under transient conditions and 
to prevent excessive amplitudes should the vibration pass through 

Fig. 5-9 

resonance during the starting or stopping of the motion of the 
support. 

A second type of vibration isolation problem is illustrated in 
Fig. 5-10. Suppose that a machine, as a result of unbalanced 
rotating masses, exerts an alternating force 
of m'nJ- sin wt upon its foundation where 
the mass of the rotating unbalance is m' and 
the effective radius r. If the machine is 
rigidly fastened to the foundation, the force 
will be transmitted directly to the founda¬ 
tion and may cause objectionable vibra¬ 
tions. It is desirable to isolate the ma¬ 
chine from the foundation in such a way 
that the transmitted force will be reduced. 
Letting x be the displacement of the total 
mass m of the machine, we have, from the analysis previously 
made (Problem 128): 

m'ru2 
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The only force which can be applied to the floor is the spring force 
kx and the damping force cx\ hence the total force acting on the 
foundation during the steady state forced vibration is: 

F = kx + ci = 
tn'ru2 

= sin (co/ — <£) 

cm'ru? 

+ == CO cos (co/ — <£) 

The amplitude of the resulting transmitted force is: 

Fa — m'roi1 
4 ‘+( «o\2 

k) 

L'/FW “12 

+ ~2I 

fn\ 

\nj w 
Since m'ru? is the amplitude of the force which would be trans¬ 
mitted if the springs were infinitely rigid, we have as a measure 
of the effectiveness of the isolation mounting the expression: 

Fa 
m'ru2 

1 + 
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N nmi (52) 

This is called the transmissibility of the system. It is exactly the 
same as Equation (51) obtained for the vibration isolated instru¬ 
ment, and Fig. 5-9 also represents the solution of the present 

problem. The frequency ratio and the damping have the same 

influence on the transmissibility as they had on the vibration 
isolation. 

PROBLEMS 

133. The amplitude of vibration in an airplane at the point at which 
it is desired to mount instruments is 0.015 in. and the frequency of the 
vibration is 1800 cycles per minute. The amplitude of the instruments 
is to be limited to 0.002 in. The instruments, along with the panel and 
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mounting bracket, weigh 50 lb. Four rubber shock mounts are to be 
used, spaced in such a way that they are all equally loaded. Find the 
spring constant required for the rubber mount, assuming that damping 
can be neglected. 

134. An instrument panel is mounted on a suspension system having 
a static deflection under gravity of \ in. It is subjected to vibrations 
whose frequency corresponds to one-half of the speed of an engine which 
runs at 2000 rpm. What percentage reduction in amplitude of vibra¬ 
tion is to be expected from this suspension system? (Neglect the effects 
of damping.) 

136. A machine having a total weight of 20,000 lb has an unbalance 
such that it is subjected to a force of amplitude 5000 lb at a frequency 
of 600 cycles per minute. What should be the spring constant for the 
supporting springs if the maximum force transmitted into the foundation 
due to the unbalance is to be 500 lb? (Assume that damping may be 
neglected.) 

136. An instrument whose total weight is 20 lb is to be spring- 
mounted on a vibrating surface which has a sinusoidal motion of am¬ 
plitude a** in., and frequency 60 cycles per second. If the instrument is 
mounted rigidly on the surface, what is the maximum force to which 
it is subjected? Find the spring constant for the support system which 
will limit the maximum acceleration of the instrument to \ the accelera¬ 
tion of gravity. (Assume that negligible damping forces have caused the 
transient vibrations to die out.) 

137. Show that a vibration isolation system is effective only if 

(cc/p) >\^2. 

36. The Design of Vibration Measuring Instruments. Suppose 
that the structure S in Fig. 5-11 is vibrating harmonically with 
an unknown amplitude yo and an un- p—2/-#0sinc*>t 
known frequency «. To measure jy0 
and o) we may attach to the structure 
an instrument which consists of a 
mass m> a spring k, and a viscous 
damping c. The output of the instru¬ 
ment will depend upon the relative s 

motion between the mass and the 
structure, since it is this relative motion which is detected and 
amplified by mechanical, optical, or electrical means. Taking x as 
the absolute displacement of the instrument mass, the output of 
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the instrument will be proportional to 2 = (x — y). The equation 
of motion of the instrument mass is: 

mx + c{& — y) + k(x — y) = 0 

Subtracting my from each side of the equation gives: 

mz + cz + kz = — my = my^ sin ut 

This equation is the same as Equation (35), so that the solution 
for steady forced vibrations is: 

The instrument will read the displacement of the structure directly 

if Q — 1 and <f> = 0. The variation of Q with and is 

shown in Fig. 5-12. It is seen that if is large, Q is approxi¬ 

mately equal to 1, and <t> is approximately equal to zero; we con¬ 

clude, therefore, that, to design a displacement pickup, should 

Fio. 5-12 
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be large, which means that the natural frequency of the instru¬ 
ment itself should be low compared to the frequency to be 
measured. . . 

We next consider the region of the diagram where f-) is small. 

<f> is then approximately equal to zero, and the quantity 

vFfFFHJ 
is approximately equal to 1. The expression z — Qy0 sin («/ — <f>) 
then becomes: 

Sincesin <0/ is the acceleration of the structure, the instrument 
output is proportional to the acceleration. We thus conclude that. 

to design an accelerometer, should be small, which means that 

the natural frequency of the instrument itself should be high com¬ 
pared to the frequency to be measured. 

Instruments designed according to the foregoing criteria will 
have characteristics which are independent of frequency. Such 
instruments can be used outside of the specified range if the exact 
curves of Fig. 5-12 are used. 

PROBLEMS 

138. It is desired to design an instrument to measure the vertical 
oscillations of the Golden Gate Suspension Bridge. The bridge has a 
vertical frequency of approximately \ cycles per second and the ampli¬ 
tude may at times reach 4 to 5 
ft. An instrument of the type 
shown in the diagram has been 
suggested. Would it be better 
to design this instrument as an 
accelerometer or as a displace¬ 
ment meter? What would be a 
satisfactory frequency for the 
spring-mass system in the instru¬ 
ment? 
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139. A simple instrument for determining the frequency of vibration 
is constructed on the principle indicated in the diagram. A flat strip of 
metal is mounted as a cantilever beam of length /. The free vibrations of 

-<-1 

Prob. 139 

the strip are given by x = A sin pt where p2 = — and where k is a con¬ 

stant depending upon the proportions and material of the strip. The 
instrument is constructed so that the length can be varied. If the 
instrument is mounted upon a vibrating body whose frequency is w, 
the amplitude will depend upon the ratio of the forced frequency and 
the natural frequency. At resonance this amplitude will be large, so that 
by varying / until the amplitude is a maximum the forcing frequency can 
be determined. Write the expression which gives the frequency of the 
vibrating body as a function of the length of the strip. 

140. For measuring the vertical vibrations of a machine foundation, 
an instrument of the type shown in Fig. 5-11 is used. The spring-mass 
system of the instrument has been designed so that the static deflection 
is f in. The frequency of the vibration corresponds to an engine speed 
of 1500 rpm. The amplitude of the relative motion between the instru¬ 
ment mass and the foundation is determined, from a dial gage reading, 
to be 0.008 in. Find the amplitude of the foundation. The damping 
in the instrument has a magnitude of 70% of critical damping. 

36. Vibrations with Non-periodic Forces. The analysis of the 
preceding sections is sufficient to treat vibrations with sinusoidal 
exciting forces. Since any periodic forcing function can be repre¬ 
sented in a trigonometric series, the analysis can be extended, by 
using the principle of superposition, to include the solution for a 
general periodic forcing function. For non-periodic exciting forces, 
however, it is desirable to develop a different method of approach. 
We shall limit the following analysis to undamped systems, al¬ 
though it is possible to extend the same method to damped sys¬ 
tems (see Problem 145). 

We shall consider first the motion of an undamped spring-mass 
system to which a single impulse is applied. Referring to Fig. 
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5-13, an impulse F^cJ will 
produce an initial velocity Xo 
which can be determined by 
the equation of impulse and 
momentum: 

F0a/ = m±o 

The displacement x of an un¬ 

damped system performing free vibrations 

(36). 

F 

|T 

it 
-> 

Fig. 5-13 

is given by Equation 

x = — sin pt + Xo cos pt 
P 

P f. 

We have xq — —— and Xo = 0 if we measure time from the point 
m 

of zero deflection, so that: 

x = ^-^sin pt (54) 
mp 

Having found the motion under the action of one impulse, we 

may now, by the principle of superposition, find the motion under 

the action of any arbitrary forcing function. It is only necessary 

to let the arbitrary function be represented by an infinite number 
of impulses. Suppose that the curve of Fig. 5-14 represents an 
exciting force, which is applied when / = 0, and that it is desired 
to determine the displacement at time T. Consider the force to be 
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divided into a large number of impulses, of which one, F(t) dt, is 
shown in the diagram. The displacement x at the time T due to 
this impulse can be determined from Equation (54). In Equa¬ 
tion (54), t represents the time which elapses between the applica¬ 
tion of the impulse and the measurement of the displacement. 
Thus at T, which is (T — t) after the impulse is applied, we have: 

dx = E&A sin p(T - t) 
mp 

We use the notation dx because this represents only the contribu¬ 
tion of one impulse to the displacement x. To find the total dis¬ 
placement, the effects of all of the impulses from 0 to T must be 
added, which means that the expression for dx must be integrated, 
giving: 

x = — [ F(t) sin/>(7' — /) dt (55) 
mp Jo 

With this equation, the motion can be computed for any un¬ 
damped system which has zero initial velocity and displacement. 
If F(t) is given as a graph or as numerical data, instead of in 
analytical form, the integration can be carried out by graphical 
or numerical methods, and one of the advantages of the equation 
is its adaptability to solutions of this type. 

A more formal derivation of the equation can be obtained in 
the following way. The differential equation of motion for an 
undamped system with an exciting force Fit) is: 

x + p'x = -F(t) 
m 

Multiplying through by the integrating factor sin piT — t) and 
integrating, this becomes: 

[T fT 
I x sin piT — t)dt + I p2x sin piT — t) dt 

= ~[ sin piT - t) dt 
m Jo 

Integrating the first term twice by parts reduces this to: 

t sin piT — t) + px cosp(7’ — t) — — f Fit) sin piT — t) dt 
o m Jo 
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Substituting the limits of integration and solving for x gives: 

x = / F(t) sin p{T — t) dt + ^ sin pT + x0 cos pT (56) 

If we take as the initial conditions Xo = £o = 0 when T = 0, this 
expression becomes: 

* = — fTF(t) sin p{T - /) dt 
mp Jo 

which is the solution derived by the superposition of impulses. 

Example. To illustrate the application of the method we shall 
solve a problem which we have already solved by other methods. 
Suppose that a sinusoidal exciting force F0 sin at is applied; then x 
is given by: 

P fT 
x — —- / sin at sin p{T — t) dt 

mp Jo 

Making use of the trigonometric relation 

sin A sin B = J[cos (A — B) — cos (A + £)] 

the displacement may be written: 

* = 2~ Jo { cos [(« + P)( ~ Pi1 “ cos l(“ — P)( + pT\} 

Carrying out the integration, we obtain: 

^sin aT — ^ sin pTj 

This solution represents the superposition of a free vibration of 
frequency p/2v and a forced vibration of frequency u/2ir, so that 
it contains both the transient and the steady-state terms. The 
amplitude of the steady forced vibration is: 

This is the same as Equation (49) with the damping set equal to 
zero. 
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PROBLEMS 

141. Carry out the integrations indicated in the preceding Example 
for a sinusoidal exciting force and check the result: 

142. Show that the solution for damped forced vibrations 

x = r~nl[ci sin Vp2 — »2/ + a cos Vp2 — «2/] 

■ Fo 

H--==—= = sin (w/ — <f) 
V(p2 - CO2)2 + 4»2«2 

reduces to the expression found in Problem (141) when damping is put 
equal to zero. 

143. An undamped vibrating system is at rest until time / = 0, when 
a step function F0 is applied, as shown in the diagram. Find the resulting 
motion by the integral method of the preceding section and show that 
the maximum displacement is twice the static deflection of the system. 

144. Suppose that a sinusoidal exciting force Fo sin pt having the same 
frequency as the natural frequency of the undamped oscillator is applied 
at time / = 0. Show that the displacement is given by: 

Thus the resonant amplitude of the system builds up with a linearly in¬ 
creasing amplitude. Use the integral method for this problem. 
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145. Show that for a system having viscous damping, the integral 
solution is: 

x = 

m Vp‘ 
L= fTF{t)e-<T-" sin Vp* - n\T - t) 
»2 — n2J o 

dt 

I cos p(T — /) dt 

146. * The integral form of the solution for the motion of a spring-mass 
system can also be derived from the differential equation by use of 
Lagrange's method of the “variation of parameters.” Carry through 
the solution of the equation mx + kx = F(t) by this method, and show 
that Equation (55) is obtained. 

147. * Show by integrating by parts that the integral solution for the 
undamped oscillator may be written: 

/F_ \ i rtdi 

\k 7 

where xo = x0 = 0 and F(t) 
when / = 0. 

Show that this method of 
solution is equivalent to cutting 
F into horizontal slices as shown 
in the figure, and summing the 
effect of the successive incremen¬ 
tal step functions. 

37. Oscillations in Electric 
Circuits. Oscillation problems 
of the type treated in this 
chapter are also of frequent 
occurrence in electrical circuit analysis. Consider an electrical cir¬ 
cuit consisting of an inductance L> a capacitance C, and a resist- 

II ance R as shown in Fig. 5-15. 
| ^SiSlSlSU—11These elements are connected in 

series with a source of alternating 
voltage with an amplitude EQ and 

Prob. 147 

R 

■0 E0amut a frequency^-* 
2tt 

The equation de- 

Fig 5_i5 scribing the behavior of the sys¬ 
tem is obtained by equating the 

applied voltage to the sum of the voltage drops across the three 
elements. If the current in the circuit is i, then the voltage drop 

across the inductance is L that across the capacitance is 
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d /''*• and that across the resistance is Ri. 

ls: i r 
E0 sin a>t = L-j( + Ri + - I 

If Q represents the electric charge, then 

The equation thus 

i dt 

and the equation may be written: 

1^ + *? + Sf?-£"sin"' (5 T) 

It will be seen that this equation has exactly the same form as 

Equation (35), which describes the motion of a mechanical vibrat¬ 

ing system, with the following analogous quantities: 

Electrical System 

Inductance, L 
Resistance, R 

Reciprocal of Capacitance, — 

Exciting voltage, E 
Electrical charge, Q 
Current, i 

Mechanical System 

Mass, m 
Coefficient of viscous damping, c 

Spring constant, k 

Exciting force, F 
Displacement, x 
Velocity, x 

The results of the analysis for the mechanical system can there¬ 
fore be applied to the electrical system, and the solution of the 
differential equation is: 

Q = e~ [Ci sin-^- (2^)V + C2 cos 

where 

VFWT 
+ A sin (ut — <t>) (58) 

A = 

Ec 

U2J + fX 
and 
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Just as in mechanical systems, the solution consists of a transient 
term and a steady-state term. Because of the resistance in the 
circuit the electrical transient vibrations die out in time, leaving 
the forced steady-state oscillations. 

To find the steady-state current i in the circuit, we write: 

The amplitude of the steady-state current is: 

The quantity ~~ ^ 's called the electrical imped¬ 

ance of the circuit, is called the capacitive reactance of the 
coG 

circuit, and uL is called the inductive reactance. It will be seen 

that resonance occurs when ^ = coL and that the magnitude of 

the resonant current is limited only by the resistance in the 
circuit. 

Because of the analogy between electrical and mechanical prob¬ 
lems, it is often possible to transfer solutions from one field directly 
to the other, thus saving duplication of work. Such analogies are 
also often used for experimental solutions. It is usually much 
easier to build an electrical circuit and to make measurements on 
it than it is to construct and test the analogous mechanical sys¬ 
tem. Electrical Analog Computers, which operate on this prin¬ 
ciple, have been constructed so that many different combina¬ 
tions of electrical elements can be set up, and in this way 
complex electrical, mechanical, and thermal problems have been 
solved.* 

* See, for example, Criner, H. E., McCann, G. D., and Warren, C. E., “A 
New Device for the Solution of Transient Vibration Problems by the Method of 
Electrical-Mechanical Analog.” Journal oj Applied Mechanics 12, 135, Sep¬ 
tember 1945. 



130 DYNAMICS OF VIBRATING SYSTEMS 

PROBLEMS 

148. At time / = 0, the switch S in the electrical circuit shown in the 
diagram is closed, applying a voltage E to the series inductance and 
capacitance. Show, graphically, the way in which the current in the 
circuit varies with time, assuming that the resistance in the circuit is 
negligible. What would be the effect of resistance in the circuit? 

Prob. 148 Prob. 149 

149. At time / = 0, a switch is closed applying a voltage E to an 
inductance and a resistance which are in series. Find the relation be¬ 
tween the current and time. Show that the time required for the current 

to reach ^1 — ^ times its final value is equal to L/R. This is called the 

time constant of the circuit. 

150. * Draw the circuit for the electrical analog of the mechanical 
system shown in the diagram. 

Prob. 150 



CHAPTER VI 

PRINCIPLES OF DYNAMICS FOR SYSTEMS OF 
PARTICLES 

. . . the same law takes place in a system consisting of many bodies as in a 
single body. For the progressive motion, whether of one single body, or of a 
whole system of bodies, is always to be estimated from the motion of the center 
of gravity.—I. Newton, Principia Philosophiae (1686). 

In most dynamics problems it is not possible to approximate the 
system by a single particle, but it must be treated as a collection 
of particles. The system itself may be a solid body, a fluid, or a 
gas, but in any event it may be thought of as a collection of parti¬ 
cles, each of which may be treated by the methods of particle 
dynamics. The type of interaction between the individual particles 
will depend upon the system being investigated, but certain 
general relations may be developed which apply no matter what 
these interactions may be. In the present chapter these general 
relations are developed, and in subsequent chapters the con¬ 
sequences of the special characteristics of the systems are treated. 

38. The Equation of Motion for a System of Particles. The 
equation of motion for a typical particle of a system is: 

mifi = Fi+ Si (60) 

The subscript indicates that the equation applies to the ith par¬ 
ticle. The resultant force acting upon the particle is written as 
the sum of an external force F and an internal force /. The 
external force originates outside of the system, and represents the 
action of some body or agency upon the system. The internal 
force originates within the system in the mutual actions and reac¬ 
tions between the particles. The reason for distinguishing be¬ 
tween these two types of forces is that when the system as a whole 
is under consideration, the sum of all the internal forces is equal to 
zero. This follows from the fact that internal forces always occur 
in equal, opposite, and collinear pairs and will thus cancel. An 

131 
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equation of motion for the entire system is obtained by adding 
the equations for the individual particles and setting S/< == 0: 

2 TTlifi = 2 F, 

Using the notation 2F< = F, this becomes: 

2 rrufi = F (61) 

39. The Motion of the Center of Mass. The center of mass of 
a system of particles is defined as a point located by the vector rc 

where , - 

c 2 mi 

We may introduce this quantity into the equation of motion of 
the system by writing equation (61) in the form: 

F = (2»*<r<) = (rc2m.) 

Setting 'Lrtii equal to M, the total mass of the system of particles, 
this becomes: 

F = Mfc (62) 

Thus we may conclude that the motion of the center of mass is the 

same as the motion of a particle, having a mass equal to the total mass 

of the system, acted upon by the resultant externalforce. The motion 
of the mass center is therefore a problem in particle dynamics. 
This is the justification for having treated finite bodies as 
particles in the preceding chapters. 

The equation of motion of the mass center may be integrated 
with respect to time and with respect to displacement, to give the 
impulse-momentum and the work-energy equations for the motion 
of the center of mass. These are: 

f; 
s: Fdt = Mrc 

F ■ dre = \Mvc 

(63) 

(64) 

It should be noted that these equations give only information as 
to the motion of the center of mass of the system. The term Mre 

has the magnitude and direction of the total momentum of the 
system, but the location of the line of action of the total mo- 
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mentum vector is not determined by this expression, for it does 
not necessarily pass through the center of mass. The term \Mvf 
does not represent the total kinetic energy of the system since the 
motion of the parts of the system with respect to the center of 
mass will contribute additional kinetic energy. 

40. The Total Kinetic Energy of a System of Particles. The 
total kinetic energy, T, of a system of particles is the sum of the 
kinetic energies of the indi¬ 
vidual particles. 

T = 2§w<£>,-2 

This expression may be put 
into another form, which is 
useful for many problems, by 
referring the motion of each 
particle to the center of mass 
of the system. As shown in 
Fig. 6-1, the vector p, repre¬ 
sents the displacement of the 
;th particle with respect to the center of mass. For each particle, 
fi = rc + therefore, 

Vi2 = (r») • (f<) = (rc + pi) ■ (rc + pt) 
= r2 + 2rc • pi + Pi2 

And the kinetic energy may be written: 

T = 2+ re ('Emipl) + 

Since pi is measured from the mass-center, we have Em,pi = 0 
and the second term drops out. The first term may be written: 

S\m,rc2 = rc2E\mi = \Mrc2 

where M is the total mass of the system. Thus the kinetic energy 
becomes: 

T - \Mr2 + E\mip> (65) 

The total kinetic energy may thus be said to be the sum of the energy 
which would be obtained if all the were located at the mass- 
center plus the kinetic energy of the system corresponding to the 
motion relative to the mass-center. 
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The work-energy equation for a system of particles may be put 
into a convenient form by using the same transformation. The 
total work done by all the forces of the system is: 

2 jf*(F< + fd ■ dti = jf2(F< + /,) • idrc + dp.) 

= jfV ■ drc ■ drc + jp2(F,- + /,) • dPi 

The sum of the internal forces is zero, 2/* = 0; hence the second 
term drops out. Equating the total work done to the change in 
total kinetic energy, we have: 

F-drc + 2(F* + fi) * dpi = \Mrt 2| + mfi? 
i 

We have already shown that the first term on the left is equal to 
the first term on the right, so that the second term on the left 
must equal the second term on the right. We may thus write the 
two independent equations: 

jf 
F • drc = \Mirf 

S(F< + fi) • dpi = Xlmipf 

(66) 

(67) 

The first of these equations describes the motion of the center of mass 
of the system, while the second describes the motion of the system with 
respect to the center of mass. The fact that these two equations can 
be written independently of each other simplifies the solution of 
problems by the energy method. 

PROBLEMS 

161. (a) Two particles of mass m, connected by a rigid weightless rod, 
are acted upon by a force Fx = constant. At time / = 0, the system is 
at rest as shown. What is the subsequent motion of the mass center? 

(b) Derive the motion of the mass 
center by setting up the equations of 
motion for each particle separately and 
integrating. This illustrates the advan- 

_x tage of using the principle of the motion 
Prob. 151 of the mass center. 
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152. An explosive projectile is traveling with a constant velocity v. 
At a certain instant the projectile explodes, scattering fragments in all 
directions. Neglecting air resistance, describe the motion of the center 
of mass of the system of fragments. 

153. A cart of mass M, initially at rest, can move horizontally along 
a frictionless track. When / = 0, a force F is applied to the cart as 
shown. During the acceleration of M by the force F> a small mass m 
slides along the cart from the front to the rear. The coefficient of friction 
between m and A1 is /z, and it is assumed that the acceleration of M is 
sufficient to cause sliding. 

(a) Write two equations of motion, one for m and one for M, and 
show that they can be combined to give the equation of motion of the 
mass center of the system of two 

Prob. 153 Prob. 154 

164. Three particles of mass, my 2m> and 3my are moving with constant 
velocities in the directions shown. The motion takes place in the 
xy plane. 

(a) Find the magnitude and the direction of the total momentum of 
the system of three particles. 

(b) Find the total kinetic energy of the system and compare with the 
energy which the system would have if all of its mass were concentrated 
at the mass center. 

(c) If at time t = 0, the particles are all located on the #-axis in the 
positions indicated, what is the subsequent path of motion of the mass- 
center? 

155. A handful of buckshot of total mass M is thrown against a wall. 
Show that the total impulse to which the wall is subjected is 2Mva, where 
va is the average value of the velocity of the shot normal to the wall. 
(Assume no energy is lost during impact.) 



136 PRINCIPLES OF DYNAMICS 

166. A man of mass m stands at the rear of a boat of mass M as shown. 
The distance of the man from the pier is S ft. What is the distance of 
the man from the pier after he has 
tance/? (Neglect friction between 
the boat and the water.) 

Prob. 156 

walked forward in the boat a dis- 

157. Two particles each having a mass m are connected by a rigid bar 
of length / whose mass is negligible. The system is initially at rest in the 
position shown. At time / = 0, a force F, of constant magnitude, acts 
normal to the bar as shown. Write the work-energy equation for the 

system with respect to the mass center, and show that 0 = \/—7 and 
fa ymi 

0 — -—y Note that these results are obtained without considering the 
2 ml 

motion of the mass center 

158. Suppose that the system of Problem 157 has an angular velocity 
0 = constant, the center of mass of the system is initially at rest, and 
at time / = 0 the system is released to fall under the action of 
gravity. What is the total kinetic energy of the system at a subsequent 
time? 

169. The system of Problem 157 moves with angular velocity 0 and 
the linear velocity of the center of mass is vy vertically downward. When 
the bar is in a horizontal position it makes an elastic impact as shown. 
Find the subsequent motion of the system, assuming that no energy is 
lost during the impact and assuming no gravitational force acting. 
Show that there is an interchange of translational and rotational kinetic 
energy. 

y/A ^ 

Prob. 159 Prob. 161 
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160. The system of Problem 157 is initially at rest when an impulse 
F&t, normal to the bar, acts upon one of the masses. If A/ is an infinitesi¬ 
mal, find the total energy imparted to the system and describe the sub¬ 
sequent motion. (Assume that no gravitational force is acting.) 

161. A mass m moving with a velocity v in a direction perpendicular 
to the bar strikes one of the masses in the system of Problem 157. 
Describe the subsequent motion of the mass-center of the bar, and find 
its angular velocity at any time, assuming that there is no energy lost 
during the impact and assuming no gravitational force acting. 

41. Moment of Momentum. Consider a particle of mass m and 
momentum mr, as shown in Fig. 6-2. The moment oj momentum * 
of the particle about the fixed point 0 is defined as the moment of 
the momentum vector about the point 0. Calling the moment 
of momentum vector H, we 
have: 

H = r xmr 

The total moment of momen¬ 
tum of a system of particles is 
the sum of the moments of mo¬ 
mentum of all the individual 
particles: 

H = 2r< x mu (68) 

The concept of the moment of momentum can be used to put the 
equation of motion into a new form, which is particularly con¬ 
venient for the treatment of systems of particles. To do this, we 
differentiate H with respect to time, and find: 

H = Sr, x mu + 2fi x mf{ 

Since u x U = 0 the first term drops out, giving: 

H = Su X mu 

Taking the cross product of each side of the equation of motion 
mfi — Fi + fi by r< and summing, we obtain: 

2r< x mu = Sfi x (Fi + /<) 

* The quantity moment of momentum is also called the angular momentum. 
Since no angular motion or rotation need be present in order that the moment of 
momentum should exist, the term moment oj momentum is preferred. 
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The left side of this, equation is H and the right side represents 
the moment of all the forces about the fixed point 0. Since the 
internal forces occur in equal, opposite, and collinear pairs, their 
moments cancel and the right side of the equation is just the sum 
of the moments of the external forces. Writing this moment sum 
as M, we have: 

H = M (69) 

H, the time rate of change of the moment of momentum of the system 
about the fixed, point 0, is equal to M, the resultant moment of the 
external forces about the same point O. This is called the equation 
of the moment of momentum. It is a restatement of the equation 
of motion in a form which, as we shall see in the next chapter, is 
particularly convenient for application to problems of rigid body 
dynamics. 

When there is no external moment acting on the system, the 
equation of the moment of momentum takes the form: 

H = 0 or H = constant (70) 

This is the principle of the conservation of moment of momentum, 
which states that, if there is no external moment of force about 
the fixed point, the moment of momentum about that point must 
remain constant. 

In the preceding paragraphs the moment of momentum was 
taken with respect to an arbitrary, fixed point. It is often con¬ 
venient to take the moving center of mass of the system as the 
point about which to write the moment of momentum equation. 
That it is permissible to do this may be shown as follows. Re¬ 
ferring again to Fig. 6-1, where rc is the vector which locates the 
center of mass of the system, we have: 

r, = rc + pi 

Writing the equation of moment of momentum about the fixed 
point O: 

H = M 
Sr,- x m\>i = Sr,- x F< 

2(re + x mbi = S(rc + />,-) x F< 
re x Smbi + Spi x mbi = rc x SF,- + 2p< x F,- 
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Since it has already been shown that 2mii — 2Fi, we may write 

the two independent equations: 

rc x 2mVi = re x F 
and 

2pt x mVi = 2pi x F< 

The first of these is the equation of moment of momentum, about 

the fixed origin, of the center of mass of the system treated as a 

particle. In the second equation, substituting = rc + p;, we 

have: 

2[pt- x w(rc + pi)] = Swpi xre + 2p, X mpi = 2p, x Ff 

Since p» is measured from the center of mass, 2wp» = 0 and the 

equation becomes: 
2pi X mpi = 2p, x F, 

j. Spi X mpi Sp, x Ff 

The left side of this equation is the time derivative of the moment 

of momentum Hc about the center of mass, and the right side is 

the moment of the external forces about the center of mass, so 

that: 

Hc = Mc (71) 

The equation of moment of momentum in the form H — M can thus 

be referred either to an arbitrary, fixed point or to the moving center of 

mass of the system. 

The equation of moment of momentum is often written in terms 

of rectangular coordinates as: 

Hx = Mx; 6V = Mb; fiz = M, ^ 

For example, for a single particle acted upon by a force ^ 

H = r x mv and M = r x F 

Writing r, v, and F in terms of their rectangular components gives: 

H — (xi + yj + zk) x m(xi + yj + zk) 

M = (xi + yj + zk) x (FJ + Fyj + Fzk) 

Carrying out the multiplications, remembering that i x i = 0, 

i X j = fe, etc., gives: 

H = m(yz — zy)i + m(zx — xz)j + m(xy — yx)k 

M = (yFz - zFv)i + (zFx - xF,)j + (xFv - yFx)k 
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The three component equations therefore are: 

m~(yz- zy) = yFz - zFv 

m 4 (z* - xz) = zFx - xF, (72) 
at 

mjt(xy- yx) = xFv - yFx 

These equations can also be obtained by taking moments about 

the x-, y-, and z-axes respectively. If a system of particles is in¬ 

volved, these equations can be summed over all the particles. 

42. Summary. It should be emphasized that the principles 

derived in this chapter are general in application, and that the 

system of particles need have no special properties. These prin¬ 

ciples are thus available for use in the analysis of rigid and de¬ 

formable solid bodies, liquids, and gases. The general conclusions 

can be summarized in the following statements. 

(1) The center of mass of any system of particles moves as 

though it were a particle, having a mass equal to the total 

mass of the system, acted upon by the resultant of the 

external forces applied to the system. All the methods of 

particle dynamics may thus be applied to the motion of the 

mass center. 

(2) The magnitude and direction of the total momentum of a 

system of particles are given by the product of the total mass 

of the system and the velocity of the mass center. The 

total impulse of all the external forces acting upon the 

system is equal to the change of the total momentum. 

(3) The work-energy principle for a system of particles may be 

written in the form of two independent equations. One 

equation describes the motion of the center of mass of 

the system, and the other equation describes the motion 

of the particles of the system with respect to the center of 

mass. 

(4) The equation of moment of momentum may be written 

with respect to an arbitrary fixed point or with respect to 

the moving center of mass of the system. 
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PROBLEMS 

162. A particle of mass m is acted upon by a force parallel to the 
Ar-axis as shown. The particle has a velocity parallel to the .v-axis. 
Write the equation for the moment of momentum of the system, and 
show that this equation may be reduced to the equation of motion in 
the form Fx = mx. 

0 

m 

Prob. 162 
m 

Prob. 163 

im 

163. A system of four particles of equal mass m rotates with an an¬ 
gular velocity co. The particles are at equal distances / from the center 
of rotation, and they are spaced at equal angles as shown. Find the 
magnitude and direction of the vector representing the moment of 
momentum of the system about the point of rotation. 

164. Two simple pendulums of mass mi and m2 and equal lengths / are 
suspended from the same point. The mass mi is raised through a dis¬ 
tance h as shown in the diagram and is then released. What are the 
velocities of mi and m2 immediately after impact, assuming no energy 
loss during the impact? 

166. A particle of mass m is restrained by the string abc to move in a 
circle of radius r on a horizontal frictionless plane. The particle moves 
with a constant angular velocity w. If the radius of the circle is reduced 
to n by pulling on the string at c> what will be the velocity of the particle? 
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166. Two particles of mass mi and m2 are connected by a stretched 
spring. The system is thrown into the air with the spring released so 
that the system translates, rotates, and vibrates. Describe qualitatively 
the motion of the mass center of the system, the rotation about the mass 
center, and the nature of the longitudinal vibration of the system. 

167. A particle is acted upon by a force which is always directed 
toward a fixed point. Show that the particle moves in a plane. 

168. Using the equation of moment of momentum, show that the 
area swept out per unit time by the radius vector drawn from the sun 
to a planet is a constant. 

169. A particle of mass m fastened to a massless string of length / 
rotates in a circular path of radius r as a conical pendulum. The force F 

is gradually increased, thus shortening the length of the pendulum so that 

finally the particle moves in a circle of radius -• Find the velocity of the 

mass after the string has been shortened. 



CHAPTER VII 

THE DYNAMICS OF RIGID BODIES 

It has been long understood that approximate solutions of problems in the 
ordinary branches of Natural Philosophy may be obtained by a species of 
abstractions, or rather limitations of the data, such as enables us easily to solve 
the modified form of the question, while we are well assured that the circum¬ 
stances (so modified) affect the result only in a superficial manner.—W. Thomson 
and P. G. Tait, Treatise on Natural Philosophy (1872). 

When applying the principles of dynamics to solid bodies it is 

usually assumed that the motion of the body is not influenced by 

the small deformations caused by the applied forces. This is 

equivalent to the assumption of a rigid body, and so far as the 

motion of the body is concerned this assumption introduces only 

negligible errors for the great majority of such problems en¬ 

countered in engineering practice. The equations of motion for a 

rigid body may be developed by treating the body as a collection 

of particles and applying the general principles of dynamics as 

formulated in the preceding chapter. The condition for a rigid 

body, that the distances between the particles remain fixed, is then 

used to simplify the general equations. As the first step in deriving 

the required equations of motion, it will be necessary to investigate 

the motion of each point in a rigid body. 

43. Kinematics of Rigid Body Motion. To describe the motion 

of a rigid body it is necessary to specify the motion of every point 

in the body. This is done by applying the general kinematic equa¬ 

tions of Chapter II. (Equations 14 and 15.) 

r = R + coxp + f>r 

r = R-f«x(wxp) + wx/)H-pr + 2wx/4r 

As shown in Fig. 7-1, R is the displacement of the point A in 

the body, that is, A is the origin of the moving xyz axes which are 
143 
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fixed in the body. The displacement, velocity, and acceleration 

of any other point B fixed in the body are: 

rB - R + P 
rB = R + w x p (73) 
fB = R + «x(«xp) + wxp 

where a is the angular velocity of the body. The motion of the 

body is thus specified completely when R and to are known as 

functions of time. This is equivalent to saying that the motion 

of a rigid body can be described as a translation of a point in the 

body plus a rotation of the body about the point.* 

Example 1. A rigid body performs plane motion, that is, all 

points of the body move parallel to the XY plane (Fig. 7-2). 

When the body is in the posi¬ 

tion shown, the velocities of two 

points, A and B, are known. 

What is the angular velocity of 

the body at this instant? 

Solution. Erect perpendicu¬ 

lars to Va and vB through points 

A and B and find the point of 

intersection C. Let Rc be the 

radius vector to the point C, 

then 

* This is known as the Theorem ojChaste, after M. Chaste (1793-1880), French 
mathematician. 
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Va = Rc + 0} X Pa, Vb = Rc + 0) X Pb 

But Va and « x pA have the same direction, so Rc cannot have a 

direction different from vA, and neither can it have a direction 

different from Vb- Rc is therefore equal to zero and 

a, = ^ = £» 
Pa Pb 

The point located by Rc has an instantaneous velocity equal to 

zero. This point is called the instantaneous center of rotation. At 

any particular instant the velocity of every point in the body is 

the same as if the body were rotating about the instantaneous 
center. 

Example 2. A four-bar linkage is shown in Fig. 7-3. Link 1 

is 5 ft long and link 4 is 3 ft long. Link 1 has an angular velocity 

of 2 revolutions per sec and an angular acceleration of 3 revolu¬ 

tions per sec2, both clockwise. Determine the velocities and 

accelerations of links 2 and 3. 

Solution. Since each link is a rigid body, we may express the 

motion of point A by the following equations, taking point O 
as the origin. 

Ta-Ri+P2\ rA = R\+oiiXpi\ fA = R1+u2xp2+o)iX((atXp2) 

Va — R4+P3; VA — p3', VA='pi 

These lead to three vector equations which determine the un¬ 

known velocities and accelerations: (a) Ri + p2 = R4 + p3, which 

determines the lengths of links 2 and 3; (b) Ri + o>2 X pi = p3, 

which determines and p3; (c) Ri + u2 x p2 + «2 X (w* X pi) 
— pi which determines w* and p3. 

Each of the preceding vector equations is equivalent to two 

scalar equations and determines two unknowns. The actual solu- 
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tion may be carried out graphically or algebraically. Fig. 7-4 

shows graphical solutions where the dotted lines indicate vectors 

whose directions are known but whose lengths are unknown. 

PROBLEMS 

170. A circular cylinder of radius R rolls without sliding along a 
horizontal plane. The horizontal velocity of the center of the cylinder 
is ±o, and Xo = 0. Find the velocities of the points A, B, C, and D on the 
periphery of the cylinder. 

Prob. 170 Prob. 171 
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171. A pair of wheels of diameter d% with a rigidly attached concentric 
axle of diameter d\ rolls without sliding along a horizontal plane. A rope 
wound around the axle is pulled with a constant horizontal velocity v 
as shown. Find the velocity of the center of the axle. 

172. A circular cylinder 
of radius R is supported be¬ 
tween two horizontal planks 
as shown in the diagram. 
The planks have horizon¬ 

tal velocities Xi and #2 as 
shown. Find the velocity of 
the center of the cylinder. 

173.* The mechanism of many useful machines can be reduced in 
its essentials to that of the four-bar linkage shown. In the particular 
example shown link 1 is 3 ft long, and link 4 is 6 ft long. Link 1 has a 
counterclockwise angular velocity of 100 rpm, and a clockwise angular 
acceleration of 50 rpm per minute. At the instant when link 2 is hori¬ 

zontal, find the angular velocities and accelerations of links 2 and 3. 

30° 4 45° 
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175.* A crank and connecting rod mechanism of the type commonly 
used in reciprocating engines is shown in the diagram, where r is the 
radius of the crank, and / is the length of the connecting rod. The 
piston P is constrained by the cylinder to move along the straight 
line AO. The center of gravity of the connecting rod is located a dis¬ 
tance c from the crank pin as shown. For a particular engine r = 4 in., 
/ = 8 in., c = 3 in., and the crank rotates clockwise with a constant 
angular velocity of 1000 rpm. 

(a) Find the instantaneous center of rotation of the connecting 
rod / at the instant when 9 = 60°. Using this instantaneous center, find 
the velocity of the center of gravity of the connecting rod. Find the 
required distances in this problem by laying out the diagram to scale 
and measuring the distances graphically. 

(b) Determine the acceleration of the center of gravity of the con¬ 
necting rod. 

176. A small disk of radius r rolls without slipping inside a larger 
fixed circular ring of radius R as shown. The small disk has an angular 
velocity 6 and an angular acceleration 6. Find the acceleration of the 
point on the small disk coinciding with the point of contact A. Find 
also the velocity and acceleration of the center of the small disk. 

Prob. 176 
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44. The Moment of Momentum of a Rigid Body. When 

analyzing the motion of a rigid body we can write the equation of 

motion of the mass center: 

F = mfe 

This equation describes only the translation of the mass center 

and in addition we require equations describing the rotation of the 

body. These can be derived by applying the equation of moment 

of momentum: 

H — M 

This equation may be written with respect to the origin of 

a coordinate system which satisfies either of the following re¬ 

quirements; the origin of the coordinate system is fixed in space, 

or the origin is at the center of mass of the body. Let us take 

the origin at the center of mass and first write the expression 
for H. 

Let the density of the body be p and let dV be a typical element 

of volume of the body located by the vector r (Fig. 7-5). Let the 

velocity of dV relative to the origin be v and the angular velocity 

of the body «. We then have: 

dH = r x p dVv 

H = jp(r xv) dV 
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The integration extends over the entire volume of the body. The 

velocity of an element relative to the origin is v = to x r, so that 

the equation becomes: 

H = Jp[r x (w X r)] dV 

Writing r = xi + yj + zk and a> = uxi + uyj + uzk we have 

0) X r = (2- yu,)i + (*«* - zwx)j + (yux - xuv)k 

So that 

f X (« x f) = [cox(y + 22) - Uy.xy — uzxz]i 
+ [—&xyx + co„(z2 + a:2) — cozyz]j 
+ [-o)xzx - uvzy + coz(at2 + y2)]k 

The rectangular components of the moment of momentum may 

thus be written: 

Hx = -\-uxJp(y2 + z2) dV — uyJ]pxy dV — a>ZJpxz dV 

Hv = pyx dV + UyJp(z2 + x2) dV — cozJpyz dV (74) 

77* = —uxJpzx dV — UyJpzy dV + coz Jp(x2+y2) ^ 

Introducing the following notation for the integrals which appear 

in these expressions: 

jp(y2 + z2) dV = 

J pxy dV — Ixy, etc. 

the equations become: 

Hx — ~f~ dxxfj}x ~~ dxytXy dxxQ)x 

ddy dyXC0X | dyyOiy dyz03x (75) 

77* = —dxx03X ~ dzyU)y + /**<*>* 

The terms /**, 7W, and dzz are called the moments of inertia, and 

the terms dxy, etc., are called products of inertia. dxx is often written 

as dx, etc., and it will be noted from the symmetry of the integrals 

that d%y “ 1yxy etc. 

The inertia integrals are defined with respect to the xyz axes. 

If the coordinate axes have fixed directions in space, then as the 
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body rotates the numerical values of the inertia integrals will 
change with time. On the other hand, if the coordinate axes are 
fixed in the body so that they rotate with it, then the inertia 
integrals are constants but the components Hx, Hv, and Ht are 
measured along rotating coordinate axes. Either type of coor¬ 
dinate system may be used, but in most problems the second type 
is more convenient. In the following sections we shall use a coor¬ 
dinate system that is fixed in the body and rotates with it, unless 
it is specifically stated to the contrary. 

Before treating the general equations of motion of a rigid 
body we shall consider the problem of determining the inertia 
integrals. 

46. The Calculation of Moments and Products of Inertia. 
Although the computation of moments and products of inertia 
requires only the evaluation of simple definite integrals it is found 
that unless the body has a very simple shape and orientation the 
limits of integration are such as to require an excessive amount 
of labor. The problem is very much simplified by the following 
three observations: 

(1) If the moments and products of inertia are known for a 
particular set of axes, they can be found for any parallel 
set of axes by a transformation of coordinates. 

(2) If the moments and products of inertia are known for a 
particular set of axes, they can be found for a rotated set 
of axes by a transformation of coordinates. 

(3) The moments and products of inertia of a body of com¬ 
plicated shape can be found by subdividing the body into 
a number of simpler parts, evaluating the integrals for each 
of these, and then summing them. 

The method of calculation is thus to subdivide the body into 
simple parts, choosing for each part coordinate axes which will 
make the integration easy. By transformation of coordinates the 
moments and products of inertia with respect to the desired axes 
can then be found. It should be noted that this and the following 
sections deal only with methods of calculation which shorten the 
labor of evaluating inertia integrals. 
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Before proceeding with the calculation of inertia integrals, we 
introduce some commonly used notation. Consider, in Fig. 7—6, 
any rigid body having a mass per unit volume p. Then by defini¬ 
tion of the moments of inertia, we have: 

I*=j P(y2 + z2) dF = J,pa? dV 

Iy=Jp(*2 + z2) dF = Jpa? dV (76) 

L =Jp(*2 + /) dV = j pa? dF 

Note that ax, av, az are the perpendicular distances from the 
respective axes to the volume element and are not the components 
of the radius vector to the element. These expressions are some¬ 
times written as Ix = mr?, Iv = mr?, Iz = mr?, where m is the 

total mass of the body, and the 
quantity rx is called the radius 
of gyration of the body about 
the x-axis, etc. The radius of 
gyration is thus given by 

The product of inertia integrals 
have the form: 

Ixy = f pxy dF 

Since x and y can be either positive or negative, the product of 
inertia can be either positive or negative. In particular, if the 
yz plane is a plane of symmetry for the body, there is a negative 
pxy dF for each positive pxy dF and the product of inertia is zero. 
As will be shown later, the product of inertia may be zero also 
when there is no plane of symmetry in the body. 

46. Translation of Coordinate Axes. Suppose that the moments 
and products of inertia are known with respect to one set of axes, 
and we wish to determine the moments and products of inertia 
with respect to a parallel set of axes. In Fig. 7-7, the x', y', zf 
system has its origin located at the center of mass of the body. 
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The moments of inertia with respect to this centroidal system are 
IX', Iy, and I,-, and the products of inertia are /*<„>> Iff, Iyf. In 
the parallel xyz system the center of mass is located at the point 
xe,yc, ze. We have then 

I, = fp(f 

Jp(*c2 

JpO'2 

+ yt) dF=Jp[(Xc + Xy + (yc + y'Y] dV 

+ 2xcx' + *'2 + Jc2 + 2ycy' + y*) dV 

+ /*) dV + (x* + y*) JPdF + 2 xcjpx' dV 

+ 

Since the origin of the x'y'z' system is at the center of mass, the 

axes, the moments of inertia with respect to any parallel axes can 
be obtained. 

The transformation of products of inertia for translation of 
coordinate axes may be derived in the same way. Referring again 
to Fig. 7-7, we have: 

/«v = Jpxy dV = Jp(xc + x')(jB + y') dV 

= Jpx'y' dV + xcycjpdF + xejpy' dF + yeJpx' dF 

And the transformation equation is: 

I*y = Ify + mxcyc (78) 
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47. Rotation of Coordinate Axes. Suppose that the moments 
and products of inertia of a body are known with respect to an 
x'y'z' set of axes. Let us determine the moments and products 
of inertia of the body with respect to an xyz set of axes which has 
been rotated with respect to the x'y'z' axes. In Fig. 7-8, the two 

coordinate systems are shown, and an element of volume dV of 
the body is located by the radius vector R. Considering first the 
transformation of a typical moment of inertia, we have: 

IXI = jpa'dV 

We shall now express the integral in terms of x', y', and z'. First, 

ax2 = R2 — x2 = xn + /* + z'2 — x2 
R = xi + yj + zfe = x'i' + y'j' + z'k' 

Also: 

x = i • R = i • (x'i' + y’j' + z'k') = x'(i • i') + y'(i ■ j') 
+ z'(i • k') 

We next note that the term (i • V) is equal to the cosine of the 
angle between the x-axis and the x'-axis. Denoting the direction 
cosines by /, we have: 

/*»'“<• i’i lVx> = j • etc. 
so that: 

x = x'lxx' + y’lxv' + z7«. 
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With this notation the moment of inertia becomes: 

/« = Ip[(*'2 + /2 + z'2) - (x'lxx. + y'lxy. + z'4,,)2] dV 

Since l2xx< + l2XV’ + Z2**' = 1, we may write: 

Ixx = Jp[(x'2 + y'2 + z,2)(/2xx- + ZV + /2«0 

— (#'4X/ + y'lxv, + z'/xz/)2] d?/7 

Multiplying out these expressions, and combining terms gives: 

Ixx - l\x>Jp(/2 + z'2) dV + /V jp(*'2 + z'2) 

+ p„>Jp(^'2 + /2) <z^ - 24^4,7P*y 

"" 24*'4*' jpx'z' dV — 2lxy>lXZ’Jpy'z' dV 

or 

Ixx = Pxx'Ix'x’ + Pxy'Iy’y' + /2**'/*V 

' 2tlxxdxy'lx'y* 2lxx'lxz'Ix'i' 2lXy'lxz'Iy'z’ (79) 

Corresponding expressions are obtained for Ivv and Izz. 
The products or inertia can be transformed in the same manner, 

giving: 

Ixy Ixx’lyx'Ix'xr T" txydyy’ly'y' lxz'lyz'Iz’z' 

(Jxx'lyy• + txydyx,S)Ix'y’ (Jzydyg* ^xz,^yy')Iyfzf (80) 

(Jxtdyx' ”1“ ^xxdyz'^lz'x' 

The large number of terms and subscripts involved in these 
expressions makes desirable a systematic method of writing the 
transformations. Let us arrange the moments and products of 
inertia in rows and columns as: 

xf__t! 

~f“ Ix'x' Ix'yr -4c V 

ly'x' “f* I y'y’ ly'z 

— Iz,xf —Iz’y* “f"I z’z• 

Note the similarity between this group of terms and the terms 
appearing in Equation (75). Such a systematic grouping of rows 
and columns is called an array, and the purpose of the array is to 
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present a large number of terms in an orderly and easily remem¬ 
bered system. The letters on the outside of the array are usually 
omitted, it being understood that the terms are arranged in that 
order. With respect to an xyz coordinate system the array is 
written: 

-\~Ixx Ixy -/«1 
Iyx + Iyy 

L-Izx Izy +/J 
(81) 

Note that the array is symmetrical about the main diagonal with 
all products of inertia terms being negative and all moments of 
inertia being positive. 

The procedure for expressing any of the moments or products of 
inertia of / in terms of the moments and products of inertia /' is 
as follows. Let 7a/S represent any one of the terms in the I array, 
where both a and /3 may assume the values x,y, z, depending upon 
the term under consideration. Similarly, let Iarepresent any 
term in the /' array. The direction cosines which relate the direc¬ 
tions of the two coordinate systems will be written lap. With 
this notation we observe that each term in the preceding trans¬ 
formation has the form laplfrlctpy and the transformation between 
the two coordinate systems may be written: 

Ia$ = SS latylfia'Ia'p (82) 
a'/S' 

To illustrate the meaning of this notation, we shall evaluate 
the term Ixy which we can then check with the previously deter¬ 
mined expression. 

Ixv — 2S Ixtflyatlatff 

Summing first with respect to 

Ixy — 2 (Jxx'lyct'Ia'x' "4” lxyiya.1a'y* "4" ^xslya'lafz*) 
o' 

Then summing with respect to a' we have the nine terms: 

Ixy = Ixz'tyx'Ix'x' “4“ ^xylyx'Ix'yf ”4” txzlyx'Ix'z' 

“4"txx'tyyly'x' “4" IxyJyy'Iyfyf *4“ Ixzlyy'Iy'z' 

“4" Ixx’lyz'Izrz' + Ixylyz’Iz’y' + Ixz'tyz'Iz’t* 

Referring back to the array of inertia integrals we note that all 
the terms lap, a j8 have negative signs, whereas the terms for 
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which a = \3 have positive signs.* Changing signs accordingly, 
collecting terms and remembering that = 1^, we have: 

Izy *“ 1 xx’lyz?^x'x’ txy’^yy'Iy'y' Izt'lyz'iz’z1 

-(4 •lyx* + Lx 'Lvf)Lx'y' (Lz'Lv* "I" Ly'Lz^Iy’z* 

(Jxz’Lx' H” Lx’LL)Ixfzf 

This is the same as Equation (80). 
With this transformation, the moments and products of inertia 

of any rigid body can be computed for any rotated coordinate axes, 
once the inertia integrals are known for one set of axes in the body. 

The array 

*\-Ixx Ixy 

Lyx +Iyv ~ lyz 

l-Izx Izy -\-Izz- 

where it is understood that the terms are defined as above, is 
called the tensor of inertia, and one may speak of transforming a 
tensor by means of the tensor transformation: 

«'/S' 

In general, if under a transformation of coordinates an expression 
transforms according to this equation, it is called a tensor of the 
second rank. 

48. Principal Axes. In the preceding transformations there 
were three products of inertia and three moments of inertia, so 
that the transformation formulas involved a correspondingly large 
number of terms. If, however, the initial set of axes is chosen in 
a special way, there is a substantial reduction in the number of 
terms. This is illustrated by the following considerations. 

If the unit vectors in the two coordinate systems are f, j, k and 
i\ j\ k' respectively, then the direction cosines are given by 
lxx> = i • i', etc. Thus: 

i = lXX'if + Ly'j' + Lz'kr 
j — Ivx'V + Lv'f + lyz# 
k == Igx'i' + Ly'j' + Lz'k' 

* It would have been more direct to have given the products of inertia 
negative signs immediately, and it is usually so done. 
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We have *'•*' = 1, etc., and * • j = 0, etc.; carrying out these 
dot products, using the above expressions for i, j, and k, we obtain 
the following six relations between the direction cosines: 

ftxx' "1“ ftxy' "4“ ftxz' ~ 1J Ixx'lyx' "I" Ixy'lyy' “1“ Ixz’lyz' “ 0 
ftyx' ”1“ ftyy' I ftyz' = 1; lxx'lzx' I fty'fty' “1“ ftz'lzz' ” 0 
ftzx’ + ftzy' + ftzz' — 1 ; lyx'lix' + lyy'lzy’ + lyz’ftz’ — 0 

Since there are nine direction cosines with these six relations be¬ 
tween them which must always be satisfied, there remain three 
independent relations which are required to specify the orienta¬ 
tion of the x'y'z' axes with respect to the xyz axes. We may take 
as these three additional relations the conditions that the three 
products of inertia with respect to the x'y'z' axes are to be equal 
to zero. In this way it is possible to find a coordinate system with 
respect to which the three products of inertia disappear, so that 
the inertia tensor becomes: 

~ftx’x' 0 0 " 

0 IvV 0 
_ 0 0 Iz’z'~ 

The coordinate axes which satisfy this condition are called prin¬ 
cipal axes. It is customary to use principal axes whenever possible 
because of the simplifications which they introduce. Since the 
products of inertia are all zero, the moments and products of 
inertia can be transformed to any other set of axes which is ro¬ 
tated with respect to the principal axes, by the simplified equa- 

Ixx — ftxx’Ix'x' + ftxy’Iy’y’ + ftxz'Iz'z' 

ftyy “ ftyx'ftx'x' “4" ftyyfty’y' "4" ftyzftz’z’ 

ft it — fttx’ftx'x’ + ftty'Iy'y' + ftzz'ftz’z’ 

Ixy = {Ixx'lytx'ftx'x' ”1” Ixy'lyy'fty'y’ “4" Ixz'lyz'ftz'z') 

ftyz = — ijyx'ftx’lx'x' + lyy'lzy'ft y'y' + lyz'lzz'ftz'z) 

ft-XZ ~ ~ (Jzx’txx’ftx'x' “I" Izy'lxy’fty'y' “I- Izz'lxz'ftz'z') 

where/*'*', /„v and I z’z' are the moments of inertia about the prin¬ 
cipal axes, the principal moments of inertia. 

Let us suppose that for a particular body the principal axes 
have been defined so that ftx>x> > ftv>u> > Then the moment 
of inertia of the body about some other axis, the x-axis, is: 

ftxx “ ftxx'ftx'x’ 4" ftxyft. y’y' “4“ ftxz'ftz’z' 
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Using the relation 

l"~xx' + l~xy’ + Pxt' ~ 1 
IXX — Pxx'Ix'x' + (1 — Rxz' — l~xx')Iy'y’ + I'xz'Iz'z' 

— [{Ix'x' — Iy'y')^xx'] — VJy'y' ~ Iz’z’)l2xz] + \Iy'v\ 

Each of the terms inside of the brackets is positive so that the 
maximum value of lxx must occur when l2xx> has its largest value 
of 1, and when l2xz< has its smallest value of 0, so that 

{I.zx)max ” Ix'x' Iv'v' “h ly'y' ~ Ix'x' 

Thus it is proved that the largest principal moment of inertia 
is also the largest moment of inertia that can be obtained by any 
orientation of the axes. In the same way it can be shown that 
the smallest principal moment of inertia is the smallest moment 
of inertia which can be obtained by any orientation of the axes. 
We thus see that the principal axes have not only the property 
that the products of inertia about these axes vanish, but in addi¬ 
tion the principal moments of inertia correspond to the maximum 
and minimum moments of inertia for any orientation of the axes. 
As has been shown above, the moment of inertia of a body may 
be obtained by adding a term to the moment of inertia about a 
parallel axis through the center of mass. Therefore, the minimum 
principal moment of inertia with respect to a coordinate system 
passing through the center of mass of the body is the minimum 
moment of inertia for any possible axis. 

If a body has two perpendicular planes of symmetry, a set of 
principal axes can be determined by inspection, since it is only 
necessary to make two of the coordinate planes coincide with the 
planes of symmetry in order that the products of inertia become 
equal to zero. If the body does not have such planes of symmetry, 
the orientation of the principal axes must be determined from 
the expressions for the products of inertia, by setting the products 
of inertia equal to zero. 

PROBLEMS 

177. Calculate I, for a homogeneous right circular cylinder of radius R 
and total mass m. The z axis coincides with the axis of symmetry of the 
figure. 
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178. A rectangular plate of total mass m has a length a width A, 
and a thickness c. The 2-axis is normal to the plane of a and b and 
passes through the midpoint of the face of the plate, (a) Find Iz for the 
plate, (b) Find the moment of inertia of the plate about an axis through 
the corner of the plate parallel to the 2-axis. 

179. Calculate the moment of inertia of a homogeneous circular disk 
of radius R and thickness / about a diametral axis passing through the 
center of mass of the disk. 

180. Calculate the moment of inertia of a slender rod about a normal 
axis passing through the midpoint of the rod. The rod has a uniform 
cross section and a uniform density. 

181. Calculate the moments of inertia Iv and Iz of the z-shaped body 
shown. The z-axis passes through the center of mass of the body and is 

parallel to the faces of the body. The body is homogeneous and has a 
density p lb sec2/in.4; b = 3f in.; c — \ in.; A = in.; / = 10 in. 

182. A solid right circular cone has a height A, a base of radius r, and 
a total mass m. (a) Calcu¬ 

late the moment of inertia 
of the body about the axis 
of symmetry, (b) Calculate 
the moment of inertia about 
a diameter of the base. 

183. A steel angle has the 

dimensions shown. Find 
the moment of inertia of the 
body about the 2-axis. Give 
a numerical answer in units 

of lb ft sec2. Pros. 183 
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184. A homogeneous circular cylinder of radius R and length l has 
a total mass m. The z-axis lies along the surface of the cylinder parallel 
to its axis, (a) The xy plane passes through the center of the cylinder. 

Find Ixyy Iyz and Ixt for the cylinder, (b) The x'y' plane coincides with 
the end of the cylinder. Find Ixy,Iv»z\ and /*v 

185. Show that 4J + lXU’ + Uz' — 1. 

186. * Derive the transformation for 7*y by the first method used in 
the text to derive Ixx. (See page 155.) 

187. By using the transformation formula: 

<*'ft 
derive the expression for Ixx which is given in the text (Equation 79). 

188. Compute 7^ for a slender rod of length / and mass m. The rod 
lies in the xy plane and makes an angle a with the .v-axis. For what 
values of a will 1^ = 0? The rod is homogeneous and of uniform cross 

section. i z 
/«' 

Prob. 188 Prob. 189 

189. A circular cylinder of radius Ry length /, and total mass m is 

oriented as shown. The xfz' plane coincides with the xz plane. Find /«'. 
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190. Compute and Iv>z> for the cylinder of Problem 189. 

191. Compute the moment of inertia of a cube about a body diagonal 
axis passing through two opposite corners. 

192. Find the products of inertia for a homo¬ 
geneous cube so oriented that both the y- and z- 
axes are face diagonals passing through corners 
of the cube. 

193. A thin circular disk of radius R and mass 
?n rotates about the #-axis which passes through 
the center of mass of the disk. The disk is skewed 
on the shaft so that the normal to the disk makes 

an angle a with the axis of rotation. Find Ixy for 
the disk. 

49. The General Equations of Motion for a Rigid Body. The 
general equation for the rotational motion of a rigid body is: 

M = H 
or 

M=lt+ HJ + H,k) 

where 
Hx ~~ i xx^x f Ixz^z 

Hy — Iyx^x + yyb7y I yz^z 

Hz ^ Izx07x Izytey + 1zzCOg 

The xyz axes are fixed in the body with the origin at the center of 
mass and are rotating with it so that Ixxy Ixyy etc., are constants. 
The unit vectors i, jy k rotate with the body so that i, j, k are not 
zero. The equation of motion is, therefore: 

M = Hxi + Hxt + Hvj + Hyj + Hzk + Hzk 

The derivatives of the unit vectors are: 

i = (O X 1 = («ai + OJyj + U>zk) X i = U)J — Uyk 

j = u)xk — uti; k = uvi — o)xj 

Substituting and collecting terms: 

M = (Hx — UzHy + ccvH,)i + (Hv — wxH, + 

“l- (Hf - 0)yHX "j- 0>%Hy)k 

y 

A 
A X 

I’rob. 193 
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This is the general vector equation of motion. The three scalar 
equations of motion are: 

Mx = Hx - 0>lHy + UyHt 

My = Hy — 0)XHZ + UxHx (84) 

Mx = Hx — WyHx + (0XHy 

The appropriate expressions for Hx, Hy and Hz must be substi¬ 
tuted in the equations. The resulting expressions are greatly 
simplified by locating the coordinate axes so that they coincide 
with the principal axes of the body. The products of inertia are 
then zero and Hx — IxxHv = Ht = /„«*. The equations 
then become: 

-ATc “ IXX^Z 4" ifZZ Tyy^WyOJz 
~M.y — 1yyO)y 4" (lXX 1zzj^X^Z (85) 
Mx = IxxCOx + (Iyy — Ixx)u>xWy 

These are called Euler's equations of motion of a rigid body. It 
should be noted that in Euler’s equations the xyz axes are the 
principal axes of the body, with origin at the center of mass of the 
body. 

Since the rotation of a rigid body is described independently of 
the motion of the mass center by the equation H = M, we may 
find the momentum and energy equations for the rotation alone 
by the usual first integrals. Integrating with respect to time, we 
obtain: 

/ Mdt = H (86) 

This states that the change in moment of momentum is equal to 
the moment of impulse. 

To obtain the work energy equation we note that a • M is the 
rate of doing work and the integral with respect to time is the work 
done. We have therefore: 

as • M dt — jfw • H dt 

This expression can be integrated in the following way: 

1 
2 / w • Hdt + 
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Integrating one of the terms on the right by parts and collecting 
terms: 

i: <a • M dt = %u) • H + hf\o> • A o) • H) dt 

The last term in this expression is equal to zero, since for a rigid 

body: 

H =JPr x(« X r) dV; II = jPr x~{u x r) dV 

b ■ H - Jpd) • r x (« X r) dV; a • H = Jpa • r x (w x r) 

Since in a double vector product the dot and the cross can be 

interchanged: 

(b ’ H — f p(db x f) • (« X f) dV = (t) • H 

The work-energy equation is therefore: 

f o) • M dt — • H (87) 

The left side represents the work done by M, and the right side 

represents the change in kinetic energy. 

The term • H represents only the kinetic energy of the mo¬ 

tion with respect to the origin of the coordinate system. If a 

point in the body is fixed, and the origin is taken at that point, 

then ' H is the total kinetic energy, but if the origin is at the 

mass center which is moving the total kinetic energy is: 

T = \mv? + iw * He 

The first term represents the kinetic energy of translation, and 

the second term represents the kinetic energy of rotation about 

the mass center; m is the total mass of the body and ve is the 

velocity of the mass center. 

By expanding the dot product the kinetic energy of rotation 

can be written as: 

^CO • H — + IyUy2 + — 2lxyUxUy ~ 2TyfCOyCOf 

2/<xw*yI) (88) 

The preceding analysis is intended to present an overall view 

of the equations of motion of a rigid body. In actual practical 
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applications we are seldom concerned with the most general mo¬ 

tion of a rigid body. Usually we investigate only very special 

types of motion and the analysis and equations are then much 

simplified. In the following sections we shall investigate certain 

special types of motion. 

Example 1. From the preceding equations we can draw the 

following conclusions with regard to a free body. Since the mo¬ 

ment M is zero, the moment of momentum equation states that 

H is a constant and the energy equation states that u • H is a 

constant. It follows, therefore, that « is not necessarily a con¬ 

stant. There may exist a component of w normal to H which 

may vary with time, although the component of « parallel to H 

is a constant. A physical example of this is the wobbling of a free 

spinning disk. 

Example 2. A rigid body has centroidal principal moments of 

inertia Ixx = 10, = 5, I zz = 2 lb ft sec2. Starting from rest, 

the body is acted upon by a total moment of impulse about the 

centroid of 30* + 40j + 20ft lb ft sec. Find the angular velocity 

and the kinetic energy acquired by the body. 

Solution. Apply the moment of momentum equation: 

JM dt = H 

30* + 40)j + 20ft = 10a>xi + So3vj + 2w,ft 

ux = f# = 3 rad/sec 

co„ = -V1 = 8 rad/sec 

«* = = lOrad/sec 

The kinetic energy is: 

|co • H = 

= |[10(3)2 + 5(8)2 + 2(10)2] 

- 315 ft-lb 

PROBLEMS 

194. Show that in the triple vector product a • b X C, the dot and 
the cross may be interchanged. 

195. Show that (a • H — « • / pr X (<i X r) dV for a rigid body. 
J 4 
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196. Starting with the fundamental definitions: 

T=hjPvidV 

H = Jpr x r dV 

where r is the absolute displacement of an element of volume dV9 show 
that the total kinetic energy of a rigid body is: 

T = \mv? + • He 

197. Show that the rate at which a moment M does work on a rigid 
body with angular velocity co is co • M. 

198. A rigid body having a mass of 50 lb sec2/ft is whirling through 
space; its center of mass has a velocity of 40 ft/sec. At a given instant, 

the moment of momentum Hc of the body is 1500/ + 1000j + 1200fe 
lb ft sec. The inertia integrals are given by: 

/.« 
0 

40 
-20 

0 
-20 

30 
lb ft sec2 

(a) What is the angular velocity of the body at the given instant? 
(b) What is the kinetic energy of the body at the given instant? 

60. Equations of Motion for a Translating Body. The simplest 

type of rigid body motion is that of translation. A body having 

translatory motion moves in such a way that any line in the body 

always remains parallel to its original position, that is, the angular 

velocity of the body is always zero. The moment of momentum 

equation written about the mass center is: 

Mc = He 

and since the angular velocity is zero, Hc = 0, and therefore: 

Mc = 0 

The equation of motion of the mass center is: 

F = mrc 

Writing these equations in rectangular coordinates, where xc, yc> 

zc are the coordinates of the center of mass, we obtain: 

Fx — mxc Mcx = 0 

Fy == my c MCy — 0 

Ft = mz0 Met = 0 

(89) 
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The force equations describe the motion of the mass center and 

the moment equations describe the reactive forces which prevent 

rotation of the body. 

Example. A body of total mass m moves along a horizontal 

plane under the action of a force F as shown in Fig. 7-9. The 

Fic. 7 9 

coefficient of kinetic friction between the body and the surface 

is n. Find the acceleration of the body as a function of the force F, 

and determine the reactions exerted by the surface on the body 

at A and B. 

Solution. We choose the x-axis in the direction of the motion 

of the body. The complete free-body diagram is then drawn. The 

Fio. 7-10 

fundamental equations F = mfc and Mc = Hc for this problem 

become: 

Fm — h(Na + Nb) = mxc 
Na + Nb - mg - Fy = 0 

FyQ - Fxa + Ns(j) - Na (D - m(A^ + Na)h =0 
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Eliminating (Na + Nb) between the first two equations gives the 

equation of motion of the body: 

mxc = Fx - n(mg + Fy) 

The reactions Na and Nb are found from the second and third 

equations: 

N.-a7F, + ^F, + n,e(\ + f) 

PROBLEMS 

199, A uniform, straight bar weighing 50 lb is fastened with a smooth 
pin at one end and rests at the other end against a smooth vertical 
surface. The bar is 5 ft long, and the centerline makes an angle of 30° 

with the horizontal. The whole arrangement is given an acceleration of 
10 ft/sec2 horizontally to the right as shown in the diagram. Determine 
all the forces acting on the bar. 

200. A homogeneous block having the dimensions shown weighs 
100 lb and rests on a car which can move along a horizontal plane. A 
20-lb weight is connected to the block by means of a cable and a friction- 
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less pulley as shown in the diagram. The coefficient of static friction 
between the block and the car is n = 0.25. If the car is given an accelera¬ 
tion to the right which starts from zero and gradually increases, which 
will occur first, slipping or tipping of the block? At what value of 
acceleration will this occur? 

201. A body weighing W pounds rests on a 30° inclined plane as shown. 
The coefficient of static friction between the body and the plane is ix. 
What is the maximum horizontal acceleration which the whole system 
can have without causing the body to move on the plane? 

202. The side-crank connecting rod of a locomotive drive system 
has the dimensions shown. Assuming that the side-crank is a straight 
uniform bar weighing 500 lb and that it is fastened by smooth pins at 
the ends, find the forces acting on the rod when the locomotive is run¬ 
ning at 60 miles per hour, when the rod is in the position shown. 

203. A homogeneous circular cylinder of radius r weighing W lb 
rests on a 30° inclined plane as shown. The coefficient of kinetic friction 
between the cylinder and the plane is /x* Where should a force F, parallel 
to the plane be applied, if the cylinder is to slide up the plane without 
rotation? Find the reaction of the 
plane on the cylinder under this con¬ 
dition. 

204. A car moves with a uniform 
acceleration along a horizontal surface. 
An instrument is required which will 
measure the magnitude of this accelera¬ 
tion. It is proposed that a small bar be 
mounted on a bearing attached to the 
car, and that the angle made by the bar with the vertical be 
measured as an indication of the acceleration of the car. Find the 
relationship between x and <£, assuming that the bar is uniform and 
homogeneous. Would it be better to use a concentrated mass at the end 
of a light rod? 
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61. The Rotation of a Rigid Body about a Fixed Axis. Take the 

z-axis as the axis of rotation, and let the x and y axes be attached 

to the body and rotate with it (Fig. 7-11). Since the origin of this 

coordinate system is fixed in space, we may write the equation: 

M = H 

In the expressions for H, Equation (75), ux = uv = 0, since the 

In addition, the equations for the motion of the center of mass are 

available: 
Fx = mxc 
Fy = mye 
F, = 0 

The rotation of the body about the fixed axis is described by 

the third moment equation, while the constraining forces which 

hold the axis of rotation stationary may be found from the first 

two moment equations and the equations of motion of the mass 
center. 

The impulse-momentum equation and the work-energy equa¬ 

tion for a rotating body may be derived directly from the third 

moment equation, Mt — Ixu. 

£ Mt dt — Iiu, (91) 
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The integral of Mt dt is the angular impulse or moment of impulse 

about the axis of rotation, and the term Izuz is the moment of 

momentum about the axis of rotation, as may be checked by 

referring to the general expression for Ht (Equation (75)). 

Similarly: 

-I 
'2Tlide . 1T , 
Iz$ ^ dt — 2^z^z (92) 

The integral of Mz dO represents the work done by Mz during 

the rotation, and the term ? represents the kinetic energy of 

rotation. This may be checked by the general expression for 

the kinetic energy, T = \w • H, where H = Izuzk and therefore 
T = 

Example 1. A flywheel of radius r, having a moment of 

inertia I about the axis of rotation, has an angular velocity u> 

rad/sec (Fig. 7-12). At time / = 0, a brake is applied with a 

normal braking force P. The brake 

coefficient of friction is y. How much 

time is required to reduce the angular 

velocity to «i rad/sec? 

Solution. If the normal braking 

force is P then the tangential brak¬ 

ing force is yP and the retarding 

moment is rjuP. Applying the equa¬ 

tion of moment of momentum: 

ry.Pt = I03 — Ioi i 

_ /(co — 0>i) 

ryP 

The number of revolutions during time t can be found by applying 

the work-energy equation: 

ryP6 = — i/coi2 

n 17- («2 - «12) 

0 - ryP 

Example 2. A homogeneous disk of radius R and of uniform 

thickness is supported by a thin rod or wire as shown in Fig. 7-13. 

The rod is rigidly attached to the disk and to the support. If the 

disk is rotated from its equilibrium position through an angle 0, 
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the rod exerts a restoring torque on the disk which is proportional 
to the displacement and oppositely directed. The disk is rotated 
through an angle 0O and is then released from rest. Describe the 
subsequent motion of the system. 

Solution. The disk will rotate about the axis of the rod under 
the action of a torque — kd, 
where k is the torsional spring 
constant in lb ft/rad. Writing 
the equation of motion about the 
fixed axis of rotation, we have, 
with I as the moment of inertia 
of the disk about the axis of the 
rod: 

IS = -k6 

s + ~e = o 

This is the differential equation of simple harmonic motion, the 
solution of which is: 

When 

0 = Cl sin yjj t + Ci cos 4 
t = o, 6 = 0; Ci = 0 
t = o. e = 0o; Ci = 00 

solution is: 

e = 0O cos t 

Thus the disk performs torsional oscillations with an amplitude 

second. Such an oscillator is 

called a torsion pendulum. Torsional oscillation problems are in 
every way similar to the linear oscil ation problems treated in the 
chapter on vibrations and the same methods may be used. Many 
practical examples of such problems in engineering can be found, 
such as the torsional oscillations of engine crankshafts and of 
propeller shafts. 

Example 3. Investigate the dynamic bearing reactions caused 
by the rotation of an unbalanced rotor. 

0o, auu 
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Solution. Consider a rotor of total weight TV supported hori¬ 

zontally on two bearings a distance / apart as shown in Fig. 7-14. 

The z-axis is taken as the fixed axis of rotation, and the xy axes 

Fig. 7-14 

are attached to the rotating body. During the rotation there will 

be dynamic reactions at the supports of the rotor. We shall de¬ 

termine these dynamic reactions Xi, Yi, Y2 in the rotating 

xyz system and it is to be understood that, if the total bearing 

reactions at any instant are required, the dynamic reactions, lo¬ 

cated in the correct direction at that instant, must be added to 

the static reactions caused by the weight of the rotor. The equa¬ 

tions of motion of the mass center give us directly: 

'ZFx = mxc\ Xi + Xz = —mxco? — myc6> 
~LFy = myc; Yi + Y2 = mxcu — myeu2 

The moment of momentum equations give: 

— YJ = Iyzcf — Ixz<j> 

XJ = — — Ivtu 

Knowing w, u, w, xc,yc, /*, and Iyi, we can find the four unknown 

dynamic reaction components from these four equations. 

If the products of inertia are zero, and if the center of mass lies 

on the axis of rotation so that xc — ye = 0, then it will be seen 

that there are no dynamic reactions. The rotating body is then 

said to be dynamically balanced. If the center of mass lies on the 
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axis of rotation so that the system is statically balanced, there is 

no gravity torque for any position of the body, but there may 

still be some dynamic unbalance because of the presence of 

products of inertia terms. Since for static balance the mass center 

has zero acceleration: 
X\ = X.2 
Yi = — Y2 

The dynamic reactions hence exert a couple on the rotor. 

It is thus seen that static balancing of a rotor is not in general 

sufficient to remove the dynamic reactions, since a rotating 

dynamic couple may still be present. Complete dynamic balance 

is achieved by adding to the system two balance weights, so 

located that the dynamic reactions set up by the balance weights 

are equal and opposite to the dynamic reactions due to the un¬ 

balanced rotor. This is equivalent to making the products of 

inertia of the rotating system zero, by the addition of the extra 

balancing weights. 

PROBLEMS 

206. A rigid body is rotating about a fixed axis with an angular 
velocity co. Starting with an element of volume dV of the body, show by 
integration over the volume of the body that the kinetic energy is 
f/co2 and that the moment of momentum about the axis of rotation 
is /o>. 

206. A rigid body rotates about a fixed axis. When / = 0, the an¬ 
gular displacement of the body measured from a fixed position is 0o, and 
the angular velocity is 0o- A torque Mz about the axis of rotation is 
applied to the body when / = 0. If Mz = A + Bt — C/2, find the angu¬ 
lar displacement of the body at any time. 

207. A flywheel with a moment of inertia I starts from rest under the 
action of a constant torque, M. What is the angular velocity of the disk 
after it has rotated through ^revolutions? Do this problem in two ways, 
first using the equation of motion of the disk, and then using the work- 
energy principle. 

208. A homogeneous circular disk of radius R and mass m is fixed on 
a shaft which coincides with the geometrical axis of the disk. Acting on 
the shaft is a torque due to bearing friction which is proportional to the 
velocity of the disk and always opposes the motion, Mp = —kd. At 
time / * 0, the disk has an angular velocity o>0. How much time is 
required for the disk to come to rest, and how many revolutions of the 
disk are made in this time? 
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209. A wheel having a moment of inertia I about its axis of rotation is 
acted upon by a constant torque M. If the motion is resisted by a torque 
Mp = —kd due to bearing friction and air resistance, find the maximum 
speed which will be attained by the wheel. 

210. A rotor with a moment of inertia A is driven at a constant 
angular velocity on. It is brought into contact with a second rotor 12, 
which is initially at rest. There is a constant normal force of P lb be¬ 
tween the rotors, and the coefficient of friction is At first there is 
slipping between the rotors until the second rotor has attained the 

angular velocity W2 = coi — How much time is required for the second 
^2 

rotor to reach this velocity? (Assume that the coefficient of friction is 
independent of velocity.) If the first rotor is free to decelerate after 
initial contact, how much time is required to overcome slipping? What 
will be the final angular velocities of the two disks under these conditions? 

Prob. 210 Prob. 211 

211. A torsion pendulum is mounted as shown. The point of suspen¬ 
sion A can be rotated by means of a lever. Suppose that the pendulum 
is initially at rest, and that starting at time / = 0 the point of suspension 
is given a rotation 

0 = 60 sin 0)t 

Find the resulting forced vibration of the pendulum. (Neglect damp¬ 
ing in the system.) 

212. A flywheel having a moment of inertia about its axis of rotation 
of 5000 lb ft sec2 is driven by an electric motor which does work at the 
rate of j horsepower. If the wheel starts from rest, what will be its 
kinetic energy at the end of one hour? If the flywheel is to be brought 
to rest in 30 sec from the speed attained at the end of one hour, what 
constant retarding frictional torque is required? 

213. A body free to oscillate about a fixed axis under the action of 
gravity is called a compound pendulum. Considering the compound 
pendulum shown, the total weight of which is find the period of small 
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vibrations of the pendulum about the equilibrium position. The distance 
from the point of support to the center of mass is R. What is the length 
of a simple pendulum with a mass concentrated at one point which 
would have the same period? 

214. A rigid body can rotate about a fixed point 0 as shown. The 
moment of inertia of the body about the point 0 is /0> and the distance 
between 0 and the center of mass of the body is R. A force F is applied 
to the body perpendicular to the line joining 0 and the center of mass, 
and located at a distance a from the center of rotation. Find a so that 
there will be no reaction at the point of support 0 in the direction of the 
force F. The point P, located by a, is called the center of percussion. 
(Neglect gravity forces.) 

216. A ballistic pendulum of mass M has a moment of inertia 1 about 
its axis of rotation. A bullet of mass m is fired into the pendulum as 
shown. It is observed that the pendulum then undergoes an angular dis¬ 
placement 0o- What was the velocity of the bullet ? 

216. A wheel of radius R and moment of inertia I about the axis of 
rotation has a rope wound around it which supports a weight W\ Write 
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the equation of conservation of energy for this system and differentiate 
to obtain the differential equation of motion in terms of accelerations. 
(Neglect the mass of the rope, and assume no energy loss during the 
motion.) Check the answer obtained by drawing separate free-body 
diagrams for the wheel and for the weight, writing the equations of mo¬ 
tion for each body, and solving the equations simultaneously. 

217. A thin, homogeneous, rectangular plate of uniform thickness is 
free to oscillate under the action of gravity about an inclined axis as 
shown. Write the equation of conservation of energy for this system 

and differentiate this equation to 
find the equation of motion in 
terms of accelerations. What is 
the period of the undamped 
oscillation, and how do changes 
in the angle a affect this period? 

218* A torsional pendulum is arranged as shown, so that various 
weights can be placed on the pendulum disk and oscillated about the 
axis of the pendulum. It is observed that with a mass M of known 
moment of inertia hy a torsional frequency of oscillation Ji is measured. 
If a body of unknown moment of inertia /2 is substituted for the known 
mass, the frequency is observed to be/2. The 
frequency of the pendulum alone, with no added 
weight, is /o. Show that the unknown moment 
of inertia is given by: 

/2 = /l W- 
fi -1 
fi 

219. A rigid wall of height h and width ah 
rests upon a horizontal surface. It is subjected 
to a uniform, constant blast pressure which acts 
for a short time te. With A/ given, what value 

ah 

Prob. 219 
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of p lb/ft2 will cause the wall to overturn about point assuming that 
there is no sliding? The wall has a weight of W Ib/ft of length. The 
time At is so small that it may be assumed that there is no motion of the 
wall during Aty the action of p being only to impart an initial angular 
velocity to the wall. 

220. A rectangular door of mass m is free to swing on two hinges. It 
is initially at rest when it is subjected to a uniform blast pressure from 
a bomb. The blast pressure acts for only a small fraction of a second 
but reaches a high maximum value of p lb/ft2. What is the maxi¬ 
mum dynamic hinge reaction? A 500-lb bomb detonating at a 
distance of 100 ft would produce a maximum blast pressure of 8 lb/in.2 
If the door is 2.5 ft by 7 ft, what is the maximum dynamic hinge 
reaction? 

221. Two bodies of moment of inertia I\ and Ii about the axis of rota¬ 
tion are connected by a shaft as shown. If equal and opposite moments 
are applied to the bodies, the ends of the shaft will be twisted through 

M 
a relative angular displacement 6, where 0 = —* If the moments are 

k 
suddenly released, the two bodies will then perform torsional vibrations. 
Apply the principle of the conservation of moment of momentum to the 
system to show that the two bodies always rotate in opposite directions. 
From this it may be concluded that there is a certain cross section of the 
shaft which does not rotate during the oscillatory motion. The location 
of this cross section may be found by noting that, if the system is divided 
into two simple torsional pendulums of length a and by the frequency of 
oscillation of the two must be equal. In 

Prob. 221 Prob. 222 
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222. Two equal particles of mass m are fastened to the ends of a 
straight rod of length 21 and of negligible weight. The rod is attached 
to the center of a vertical shaft of length L as shown. If the vertical 
shaft rotates at a constant angular velocity a>, find the dynamic reactions 
at the bearings. The system is to be dynamically balanced by the addi¬ 
tion of two concentrated weights of mass mi. These weights are to be 
located in planes at a distance a from the bearings. Show where these 
weights should be attached and find the radius at which they should be 
located. 

223. Show that if a rotating body is in static balance but not dynamic 
balance, and if the rotational speed is constant, the dynamic bearing 
reactions have the magnitude: 

R = j v7„2 + IJ 

224. A thin circular disk of radius r is skewed a small angle a with 
respect to the axis of rotation, as shown. If the angular velocity of the 

system is a constant, find the dynamic reactions at the bearings. The 
total mass of the disk is m9 and the center of mass of the disk is on the 
axis of rotation. If the shaft is horizontal, find the total bearing reactions 
in the position shown in the diagram. 

225. If in the preceding problem the rotating body is a solid cylinder 
of radius R and length /, find the dynamic bearing reactions. The center 
of mass of the cylinder is located on the axis of rotation, and the axis of 
the cylinder is inclined at an angle a with the axis of rotation. If the 
center of mass of the cylinder is located at a distance e from the axis of 
rotation, at the center of the shaft, in addition to the skew of the axis, 
what are the dynamic bearing reactions? 
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226. A thin, rectangular plate of mass m rotates about an axis coin¬ 
ciding with a diagonal of the plate. If the bearings are located at the 
two corners of the plate, find the dynamic bearing reactions. 

227. The diagram represents the two flywheels of a gas engine. The 
flywheels are 3 ft apart, and the center of the crank pin is located at a 
distance of 1 ft 4 in. from the left flywheel. The off-center crank pin and 

crank arms are equivalent to a concentrated weight of 80 lb at a distance 
of 8 in. from the bearing centerline. The system is to be balanced by 
two weights placed in the planes of the flywheels. If these weights are 
located at a radial distance of 1 ft from the center of the flywheel, what 
should be their magnitudes? 

62. Plane Motion of a Rigid Body. If every element of a body 

moves parallel to a fixed plane, the body is said to have plane 

motion. If the xy plane is taken as the plane of motion, the 

angular velocity of the body is o)zk and the velocity of the mass 

center is xci + yj- Let the xyz coordinate axes be fixed in the 

body with the origin at the center of mass. The general equation 

of motion Me = H0 then has the components: 

MX = IyZ^z2 — Izz&z 
My = Ixi&t lyx&a 

Mg = Igtbg 

(93) 
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In addition there are the independent equations for the motion 
of the mass center: 

Fx = mxc 
F„ = mjic 

F, = 0 

It will be noted that these six equations are identical with those 

obtained for the rotation of a body about a fixed axis. The origin 

of the coordinate system, however, is located at the center of mass 

for plane motion, whereas for rotation it is located on the fixed 

axis of rotation. 

Example 1. A circular cylinder of radius R and mass M is 

pushed along a horizontal plane by a horizontal force F. The 

coefficient of kinetic friction between the cylinder and the surface 

is ju. Describe the motion of the cylinder (Fig. 7-15). 

Solution. A free-body dia¬ 

gram of the cylinder is first 

drawn. The coordinate xc de¬ 

scribes the linear position of 

the center of the cylinder 

measured from a fixed point, 

Fig. 7—15 Fig. 7-16 

and the coordinate 6 describes the angular position. For the 

motion of the center of mass in the ^-direction, we have: 

2 Fx = mxc = F — / 

Taking moments about the z-axis, which passes through the center 

of mass, we obtain: 

M. = 1,8= - F{h -R)-JR 

This gives two equations relating the three unknowns xe, 8, 
and /. The additional equation to be used will depend upon 

whether or not there is slipping between the cylinder and the 
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plane. If there is no slipping, we may write RS = — xe> which, 

together with the first two equations, gives: 

•• FhR 
Xc I, + mR2 

it + mK) 

If the value of the friction force / computed in this way exceeds 

the value nlV, then slipping will occur, and R§ 9* xc. Then the 

third equation to be used is/ = \JV and the solution is: 

_ F - ilW 
xc — 

m 
, F(h -R)+ fJVR 

6 4 

Example 2. A cylinder of mass m, radius R, and moment of 

inertia I about its geometric axis rolls without slipping down a 

hill under the action of gravity 

(Fig. 7-17). If the velocity of 

the center of mass of the cylinder 

is initially v0, find the velocity 

after the cylinder has dropped 

through a vertical distance h. 
Solution. Since there is no 

energy loss during the motion of 

the cylinder, we may write the 

equation of the conservation of 

energy, which will lead at once 

to the desired result. Taking the final position of the cylinder 

as the point of zero potential energy, we have: 

\mvo2 + \I + mgh = \mv£ + \I 

from which: 

Vh - 

Example 3. Two uniform, homogeneous, circular disks of 
radius R and mass m are connected by a uniform straight bar of 
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length / (Fig. 7-18). The mass of 

the straight bar is M. The assembly 

rolls without slipping along a horizon¬ 

tal plane, the center of the disk having Top Vjgw 

a constant velocity v parallel to the 

plane. Find the forces exerted on the 

disks by the plane when the straight 

bar is parallel to the plane. 

Solution. We consider an xyz coor- £n(j view 

dinate system which is attached to the 

body and whose origin is located at 

the center of mass. The free-body 

diagram is shown in Fig. 7-19, where the frictional forces, f\ and 

/2, and the normal forces, N\ and 7V2, are indicated. The equa¬ 

tions of motion for the system become: 

Fig. 7-19 

2 Fx = mxc = 0 = —fi — /2 
2 Fy = myc = 0 = Ni + N2 — mg — mg — Mg 

Mx = = mga — N\a — mga + NiA = 

My = —IxzU,2 - M — IXX 

Mx — IxtWi = 0 = — (/i R +/s R) 



184 THE DYNAMICS OF RIGID BODIES 

Evaluating the products of inertia gives: 

Iyz = 0 
r MP . 
ixt = -jy sm a cos a 

From the first or fifth equation, j\ +/2 = 0, and from the fourth 

equation 

Thus 

Since 

MP !r 
= ~^Sinacosa 

/l=_/2= 24^SmaC°S“ 

a = V(0 “ R2; sm a = 2 f; 
COS I R2 

we have: 

/:=-/* = 
My2 
6/i 

From the second equation: 

Ni + N2 = 2 mg + Mg 

From the third equation: 

Ni - N* = 0 
hence: 

Ni = Ni = mg + 
Mg 

PROBLEMS 

228. A uniform, circular cylinder of weight W and radius R starts 
from rest and rolls without slipping under the action of gravity down a 
plane which makes an angle a with the horizontal. Find the acceleration 
of the cylinder. 

229. If in the preceding problem the coefficient of friction between 
the cylinder and the plane is ii, find the maximum angle of inclination of 
the plane for which the cylinder will roll without slipping. 

230. A uniform, circular cylinder of weight JV and radius R has a 
rope wrapped around it, one end of which is fixed as shown. The system 
is released from rest with the rope in a vertical position. Describe the 
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subsequent motion of the system and find the force in the rope. The rope 
is in the plane of the mass center. 

231. At what point should a billiard ball be struck with a horizontal 
impact in order that it will roll without sliding on a frictionless table 
surface? 

232. A wheel of weight W is unbalanced so that its center of mass lies 
at a distance kR from the center of the wheel. The wheel rolls without 
slipping with a constant velocity v. Determine the normal force exerted 
by the wheel against the ground. 

233. A sphere of radius r and mass m rolls on a circular surface of 
radius R under the action of gravity. Find the differential equation 
describing small oscillations of the 
system about the position of equilib¬ 
rium and show how this problem 
differs from that of the particle of 
mass m which slides on the surface. 

234. A body of mass m and mo¬ 
ment of inertia Ic about the center of 
mass is initially at rest when it is 
given an impulse Fbt as shown. The 
body moves in a horizontal plane, 
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and the force F is horizontal. Find the distance / from the center of mass 
to the point 0, whose instantaneous acceleration x0 is zero at time / = 0. 
Since the point 0 has a zero acceleration at / = 0, this point could be 

mounted on an axis of rotation without involving 
any reaction during the impact. The point P is 
called the center of percussion corresponding to 0. 
Show that the point 0 is the center of percussion 
corresponding to P. Show that the period of 
vibration of the body as a compound pendulum 
acted upon by gravity is the same whether 0 or 
P is the axis of rotation. Such a compound pendu¬ 
lum is called Katers Reversible Pendulum. 

236. A circular cylinder having a radius of 1 ft 
and a weight of 100 lb rolls without slipping along 
a horizontal surface. A rope wound around the 

cylinder passes over a frictionless pulley and supports a weight of 
200 lb which moves vertically as shown in the figure. If the 200-lb weight 
is released from rest, find the velocity of the system at the end of 3 sec. 
Do this first by drawing a separate free-body diagram for each mass, 
in this way determining the acceleration of the system. Check the 
answer by applying energy principles to the whole system. 

Prob. 235 Prob. 236 

236. A fixed pulley, a moving pulley, and a weight which can move 
vertically are assembled as shown. The sections of rope between the 
pulleys are vertical, and the frictional forces in the pulleys are assumed 
to be negligible. Find the equation of motion of Wi in terms of accelera¬ 
tions by differentiating the energy equation for the system. 

237. Two identical solid spheres of mass m and radius r are free to 
move on a horizontal surface. If one sphere is at rest and the other 
sphere makes an impact with it with a velocity v, describe the resulting 
motion of the system. Assume that no slipping occurs between the 
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spheres and the surface, and assume that no energy is lost during the 
process. The impact is a direct central impact, the direction of rebound 
being the same as the direction of approach. 

238. In Example 3, Art. 52 suppose that the system has rotated 
through 90°, so that the inclined bar lies in a plane which is perpendicular 
to the plane on which the disks roll. Solve for the forces on the disks. 

239. In Example 3, Art. 52 suppose that the centers of the disks 
have an acceleration x parallel to the plane as well as a velocity x. 
Find the forces on the disks. 

240. * A crank and connecting rod mechanism has the dimensions 
shown in the diagram. The piston weighs 20 lb, the connecting rod 
15 lb, and the center of mass of the connecting rod is located 3 in. from 

the crank-pin. The moment of inertia of the connecting rod about its 
center of mass is 0.2 lb ft sec2. The crank is rotating at a constant 
speed of 1200 rpm. Find all the forces acting on the connecting rod at 
the instant when the crank angle 0 = 30°. (Neglect friction and gravity.) 

241. A prism B rests on a prism A, which lies on a horizontal table 
as shown. The cross sections of the prisms are similar right triangles. 

A weighs four times as much as 5. The prisms and the table are smooth. 
B slides down A until it touches the table. Find the distance through 
which A moves during this time. 
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63. Rotation about a Fixed Point. The motion of a body ro¬ 
tating about a fixed point is somewhat more involved than the 
types of motion hitherto considered. The spinning top is an ex¬ 
ample of such a motion, in which a rigid body rotates about an axis 
which is itself rotating. Motions of this type are best described 
in terms of the coordinate systems illustrated in Fig. 7-20. 

The point 0 is the fixed point about which the motion occurs. 
The XqyoZo axes are fixed in direction, and the x'y'z' axes are fixed 
in the body with the z'-axis coinciding with the axis of spin. In 
order to describe the motion in the simplest way we shall specify 
the orientation of the x'y'z' axes by the so-called Eulerian angles 
6, V'j 4>y which may be explained by the introduction of a third 
set of coordinate axes xyz. The z-axis coincides with the z'-axis, 
and the x-axis lies along the intersection of the x'y' plane with the 
Xoyo plane. The angles 6 and \p describe the motion of the xyz axes, 
and the angle <f> describes the motion of the x'y'z' axes (the body) 
with respect to the xyz axes. 

In the following analysis the pertinent quantities will be ex¬ 
pressed in terms of their components in the xyz coordinate system, 
for which the unit vectors are f, j, k. The angular velocity of the 
xyz system is: 

co = uxi + uyj + u,k = 6i + 4/ sin Oj + ^ cos 6k 
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Since the body has an angular velocity of spin $ with respect to 
the xyz system, the angular velocity of the body is: 

Ub = + uvj + («» + 4>)k 

The expression (u, + <t>) represents the total spin velocity of the 
body and will be designated by Q. It should be noted that this 
expression for the angular velocity of the body is written in terms 
of components along the xyz axes, and not along the x'y'z' axes 
which are fixed in the body. 

The equations of motion are obtained in the usual manner by 
writing the equation of moment of momentum, H = M, about 
the fixed point O. As has been shown, this equation, in the ro¬ 
tating xyz system, is: 

Mx = Hx — HyUf + Hta)v 
Mv = Hv — Hxo)x + HX0)X 
MZ — H, — HXUy + HyUX 

The ux, uv, o)x, in these equations, are the angular velocity com¬ 
ponents of the coordinate system. Hx, Hv, Hz must be expressed 
in terms of the angular velocity components of the body. 

Hx = -}— IxyO)y — Ix£l 

Hy = — IXyUx + IyOiy — IylQ (94) 

Hz = —IXZU>X — IyzWy + IZQ 

The general equations of motion which are obtained by substi¬ 
tuting these values of Hx, Hv, Hz are rather complex. We shall not 
investigate the general equations since the applications to all the 
special problems which we shall now consider will involve con¬ 
siderable simplifications. 

64. The Gyroscope. Consider a body, symmetrical about the 
z-axis, and mounted so as to be free to rotate about a fixed point O 

as shown in Fig. 7-21. Because of the symmetry 7* = /„, Ixv = Ixt 

= Iy. = 0, and 7* is a constant even though the body is rotating 
with respect to the xyz axes. The components of H are, therefore: 

HX — IX0)X) Hy — JyUyy 77* — 7,12 
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Substituting these values into the equation of motion, and 
writing /* = /» = /, we have: 

MX = I(C}X ~ (l)y(l)z) + ISliOy 
My = /(«„ + «*«*) — IzQMx (95) 
Mz = Izil 

Examining these moment equations we see the usual terms in¬ 
volving the angular velocities and the angular accelerations which 

would be present even if the body 
were not spinning about its axis. In 
addition, we find the terms /2Qwy and 
—/jflw* which are consequences of the 
spin velocity. The moments associated 
with these spin components are called 
the gyroscopic moments, and if we call 
the resultant gyroscopic moment Ma, 

we have: 

Ma = Iz9.coyi — iSlWjj + iflk 

= — wxj) + l£lk 

= IM + Iz&k 

or, Ma = jt (IM) = Ha (96) 

y where Ha = IzQk, the spin moment of 

momentum. 

Referring again to Fig. 7-21, let us suppose that the spin ve¬ 
locity B is a constant, and let us determine what moment should 
be applied to give a constant angular velocity a>x, with cou = 0. 
Substituting these conditions in equations (95), we obtain: 

Mx = 0 
My = -4Qa>x (97) 
Mz — 0 

Thus it requires a moment in they-direction to produce an angular 
velocity in the ^-direction. A device which has such a character¬ 
istic, i.e., that the angular velocity is at right angles to the mo¬ 
ment causing it, is said to be a gyroscope. The angular velocity w* 
is called the angular velocity of precession of the gyroscope, and it 
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will be observed from equation (97) that as the spin velocity 
becomes large, the precessional velocity becomes small. 

A gyroscope is often mounted in gimbals so that all rotation is 
about the center of mass (Fig. 7-22). Since the equation H -■ M 

i 

may be written with respect to the center of mass, we see that the 
preceding equations are applicable to a gyroscope mounted in 
gimbals even though the center of mass is moving. 

55. The Gyroscopic Compass. Consider a gyroscope that is 
mounted at the earth’s surface in such a way that it is free to turn 
in any direction (Fig. 7-22). If no moment is applied, the axis of 
the gyroscope will maintain a fixed direction in space so that as 
the earth rotates about its axis the gyroscope axis will rotate rela¬ 
tive to the earth. This is illustrated in Fig. 7-23a, in which we are 
looking due south at a gyroscope which is mounted on the equator. 

Fio. 7-23 
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The direction of spin of the gyro rotor is indicated by the vector. 
If now a small weight is attached to the spin axis below the center 
of mass, a moment is impressed upon the gyroscope by gravity as 
indicated in Fig. 7—23b. This torque, whose vector direction is 
parallel to the earth’s axis, causes the spin axis to rotate toward 
the earth’s axis. A device of this type will, therefore, point to 
true north and can be used as a compass. The preceding discus¬ 
sion gives a qualitative indication of the behavior of the gyro¬ 
compass, and we shall now show in more detail how the per¬ 
formance can be predicted from the equations of motion. 

The effect of the pendulous mass is to constrain the spin axis 
of the gyroscope to move in a horizontal plane. We therefore take 
the xz plane (Fig. 7-23c) as the horizontal plane containing the 
spin axis, and the z-axis as the direction of spin of the rotating 
gyro disk. The location of the spin axis with respect to a meridian 
is given by the angle /3, and y is the latitude of the gyroscope, 
measured from the equator. The angular velocity of the earth 
is ue. The angular velocity of the xyz axes is then: 

wx = —we cos 7 sin /3 

wy = wE sin 7 + /3 
wz = we cos 7 cos 

To determine the motion of the spin axis in the horizontal plane 
with respect to the meridian, we use the general equation for the 
motion about the jy-axis: 

My = IyWy + IXWxWz ~ Wx 
which becomes: 

0 = Iyfi — IxWE2 cos2 7 sin /3 cos /3 + IzSlwE cos y sin /3 

Since the angular velocity of the earth, wE, is very small compared 
to the spin velocity Q, the term containing wE2 may be neglected, 
and the equation of motion may be written: 

j8 + Aw* cos 7^ sin /S = 0 

For small oscillations of the spin axis about the meridian we may 
put sin j8 = /3 and the equation becomes: 

^ + pjggCQS7^ = Q 
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This is the equation of simple harmonic motion, from which it 

may be concluded that the spin axis oscillates about the meridian 

with a period 

T 2 IT 4 h 
IgQcoE cos y 

In practical applications of the gyro-compass, sufficient damping 

is introduced so that the oscillations are damped out with the spin 

axis finally lined up with the meridian. 

The preceding discussion of gyroscopic motion illustrates a 

common procedure in the solution of dynamics problems. A com¬ 

pletely general solution of such problems, which, starting from the 

general equations would consider all possible motions of the sys¬ 

tem, often leads to very complex analysis. Since for particular 

practical problems we are concerned with very special conditions, 

such as large spin velocities, we make use of these special condi¬ 

tions to simplify the equations of motion at the outset. It must 

always be realized, however, that such analyses are approximate 

and are applicable only when their conditions are satisfied. 

PROBLEMS 

242. A gyroscope having a rotor of weight W and moment of inertia Iz 
rotates about a horizontal axis which itself rotates in a horizontal plane 
as shown in the figure. The spin velocity of the gyro rotor is 12, which is 

large compared with the other angular velocities of the system. Find the 
precessional angular velocity w of the spin axis in the horizontal plane 
and show that co 0 as 12 -»-a>. 

243. A spinning top has a weight W and moment of inertia about the 
spin axis /* and rotates about the fixed point 0 as shown in the diagram. 
Assuming that the spin velocity 12 of the top is large compared to the 
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other angular velocities involved, show that the top will precess about 
JVl . . 

the Zo-axis with an angular velocity —■, if 6 is constant. 

244. A gyroscope has a large constant spin velocity ft. It may there¬ 
fore be assumed that the total moment of momentum of the system is 

dJJ 
H = 7*ft with a direction along the axis of spin. By computing — (the 

velocity of the end-point of the H vector) show from the general equation 
dH 
dt 

— M that Mx = I&ty sin 6 

Prob. 245 
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245. The rotor of an electric motor is mounted in an electric locomo¬ 
tive as shown in the diagram. The locomotive travels with a velocity v 
around a curve of radius R. Find the gyroscopic forces exerted on the 
bearings of the rotor shaft. 

246. Large gyroscopes have been used to stabilize ships against 
rolling. Show by a sketch how a gyroscope should be mounted so as to 
exert a stabilizing torque against rolling. 

247. The propeller of an airplane has an angular velocity S2 and a 

moment of inertia /. The airplane is traveling with a velocity v in a 
horizontal circle of radius R. What are the magnitude and direction of 
the gyroscopic torque exerted by the propeller on the airplane? 

248. When an automobile is rounding a curve at high speed, does 

the gyroscopic effect of the wheels tend to stabilize the car or overturn 
it? 

249. Write the equation of conservation of energy for a gyroscope 
having a constant spin velocity and a potential energy V and obtain the 
equations: 

|/x(wx2 + uv2) + V = constant 
= constant 

250. * Write the equation of conservation of moment of momentum 

about the Zo-axis of the gyroscope, and obtain the equation: 

I sin2 0 + Iztt cos 0 = constant 
dt 

66. D’Alembert’s Principle. It was pointed out by D’Alembert 
that Newton’s Second Law of Motion could be considered from 
a slightly different viewpoint by writing it in the form 

F + {-mf) = 0 

and treating the term { — mf) as if it were a force. When this is 
done the terms {—mf) are called inertia forces, and it should be 
particularly noted that inertia forces are not actual forces in the 
sense that the word “force” has been used in the preceding por¬ 
tion of this book. The concept of the inertia force makes it 
possible to apply the general methods of statics to the solution 
of dynamics problems, since Newton’s Law may be written as 
SF = 0 if it is understood that inertia forces are to be included 
in the summation. 
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This viewpoint can be extended to systems of particles and to 

rigid bodies. For any system of particles we have 

+ 2( —7w»r<) = 0 

For a rigid body performing plane motion, the equations of mo¬ 
tion are: 

2 F — mfe 

2M„ = Ic6 
These may be written: 

2 F + (— mfc) = 0 

2Mc + (- Ic6) = 0 

where fe is the acceleration of the center of mass of the body, and 

Ic is the moment of inertia of the body about the center of mass. 

If we imply that the inertia force ( — mfc) and the inertia torque 

(—Ijf) are included in the summation, we have the equations in 
the same form as the equations of statics: 

2F = 0 

2M == 0 

It should be noted that in this moment equation, the moments 

can be taken about any axis, as in statics, since the inertia torque 

has already been included with the appropriate moment of inertia 
about the mass center. 

The introduction of the concept of an inertia force and an inertia 

torque does not, of course, represent any new information. For 

some problems, however, this method of writing the equation of 

motion leads to a convenient way of visualizing the dynamics of a 

situation, as will be illustrated in the following examples. 

The concept of an inertia force can be combined with the 

principle of virtual displacements to give Lagrange’s form of 

D’Alembert’s principle. For example, the equation of motion for 
a particle is: 

mf — F = 0 

If, according to D’Alembert’s notion, we consider this to be an 

equation of static equilibrium, the principle of virtual displace¬ 
ments states that: 

(mf — F) • Sr = 0 



D’ALEMBERT’S PRINCIPLE 197 

where Sr is a virtual displacement. Since F • Sr is the work done 

during the displacement Sr, and since 

-y- (%mr2) dt = -j (%mr • r) dt = mr • Sr 
dt dt 

represents the increment change in kinetic energy, the equation is 

but another form of the work-energy equation. The general state¬ 

ment of D’Alembert’s principle for a system of particles is: 

2[0nxi — Fxj5xi + (;mjii - FUt)Syi + (wzz, — FZt)SZi] = 0 (98) 

This is the equation from which Lagrange developed analytical 

mechanics. It introduces into dynamics the same advantage 

that the principle of virtual displacements introduces into statics 

—the conditions of equilibrium or of motion may be studied with¬ 

out introducing the constraining forces which may be acting. 

Example 1. Solve the problem of Example 1, Section SO, using 

the concept of the inertia force. 

Solution. We draw a free-body diagram indicating the forces as 

solid vectors and the inertia forces as dotted vectors (Fig. 7-24). 

The inertia force —mx is shown at the center of mass of the sys¬ 

tem. Since the body is translating, there is no inertia torque 

acting on the system. The problem has now been reduced to a 

problem in statics, and the equations may be written: 

2 Fx = 0 — Fx — /xNa — uNb — mx 
S Fv = 0 = —Fy + Na + Nb — mg 

2Ma = 0 = -Fx(a + h) - mg (0 + INB + hmx 
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These equations lead directly to the solution given in Example 1, 

Section 50. 

Example 2. A pulley of radius R and moment of inertia I sup¬ 

ports two masses mi and m« fastened together by a rope as shown 

in Fig. 7-25. Find the equation of motion of the system. 

Solution. We shall describe the 

motion of this single-degree of 

freedom system by the coordi¬ 

nate x, as shown in the free- 

body diagram. The inertia forces 

— m\X and — m<iX are shown as 

dotted vectors, and the inertia 

torque —IS is also indicated. 

The equation of motion can now 

be written: 
lx 

2Mo = m2xR + — + mxxR + 
K 

From which: 

mxgR — migR = 0 

(w; - m)i 

mi + m2 + 
R2 

Example 3. A thin hoop of 

radius R rotates about an axis 

through the center perpendicular 

to the plane of the hoop with 

a constant angular velocity u. 

Find the circumferential tension 

force in the hoop. 

Solution. We first draw a free- 

body diagram of one-half of the 

hoop (Fig. 7-26). Each element of mass of the hoop is acted 

upon by an inertia force directed as shown in the diagram. 

Consider an element of mass included by the angle d<j> and let 

p be the mass per unit length of the hoop; then the inertia 

force is p(Ru>2)Rd<t> directed radially outward. We may now 

write: 

Fig. 7-25 
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'LFy = 0 = J[Jr2u2p sin <£ d<j> - 2F 

From which: 

F = R2o}2p 

Example 4. A type of governor mechanism used for the control 
of the speed of rotating shafts is shown in Fig. 7-27. A simple 

pendulum having a concentrated mass m and a length / is mounted 

on the rim of a wheel of radius R which rotates with an angular 

velocity u. The pendulum is constrained by two springs which 

are also attached to the rim of the wheel. For small displace¬ 

ments x, of the pendulum, the restoring force of the springs can 

be taken as Fx = — kx. When the wheel is rotating with a con¬ 

stant angular velocity, the pendulum remains in a radial position, 

but if the wheel accelerates or decelerates the pendulum moves 

to one side or the other of its neutral position. By allowing the 

pendulum displacement to control the power input to the system, 

the angular velocity can be regulated. Find the differential equa¬ 

tion of motion of the pendulum with respect to the flywheel, in 

terms of angular velocity and acceleration of the flywheel. 

Solution. Since we wish to express the absolute acceleration of 

m in terms of the relative motion, we use Equation (15): 

r = R + u x (u x p) + u X p + pr + 2u x pr 

By D’Alembert’s method the equation of equilibrium is: 

F — m.ft — mu x {u x p) — mu X p — mpr — 2mu x pr = 0 
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Letting the xy axes be fixed on the wheel (Fig. 7-28), each term of 

the equation is as follows: 

F 
—mR 

—mu x (u x p) 

—mu x p 

mjpr 

— 2mu x pr : 

A free-body diagram with all 

Fig. 7-29. The force in the 

pendulum rod now can be 

determined by statics and 

Fig. 7-28 

- —kl sin4> i 
—mRui — mR<x?j 

?nlu2ep 

?nule4> 

ml(j>2ep — ml^e^ 

—2mul(j>ep 

the inertia forces is shown in 

Fig. 7-29 

the equation of motion can be derived by writing the moment 

equation 2Mo = 0. 

+ m!<j>) — /cos sin 0 + mRw) + /sin <t>mRu? = 0 

For small oscillations we may set cos <t> ~ 1, sin <£ = <j> and obtain: 

This equation has the same form as the equation describing the 

vibration of a pendulum about a fixed point. If the spring con- 

k Rofi 
stant is large so that — > —j— the pendulum will oscillate about 

its equilibrium position under the action of the term (——J &>> 

which acts like an exciting force. ' ' 
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For the complete analysis of a control system of the above type, 

one would have to take account of the fact that the mechanisms 

connected to the pendulum and operated by it have dynamic 

characteristics which affect the behavior of the system. Con¬ 

siderable work has been done in recent years on control systems 

of all types, and much of this work is summarized in books on the 

theory of servo-mechanisms. 

PROBLEMS 

251. Derive the equation of motion and the forces at the support 
of a compound pendulum by using the inertia force method. 

262. A slender steel rod of length / and radius r rotates about an axis 
through one end perpendicular to the bar with a constant angular 
velocity a. Find the maximum tension force in the rod using the inertia 
force method. Find the numerical value of this force if / = 3 ft, r — | in., 
and o> = 500 rpm. 

263. A steel beam of length / and weight w lb/ft is simply supported 
at each end. It is observed that the beam vibrates with a motion 

Find the expression for the maximum dynamic reaction which occurs 
at a support, using the concept of an inertia force. Find the numerical 
value of this force when / = 20 ft, to = 20 lb/ft, A = \ in., and the 
frequency of the vibration is 10 cycles per second. 

264. In tracking an airplane, a gun barrel swings with an angular 
velocity 6 and an angular acceleration 6. The projectile velocity is o 
with respect to the gun. Find the lateral force exerted by the projectile 
on the gun, when the projectile is at a distance l from the axis of rotation. 

266. Solve Problem 199 by using the concept of inertia force. 

266. Solve Problem 200 by using the concept of inertia force. 
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257.* Five weights are attached to a rigid horizontal shaft as shown 
in the figure. The weights, radii, and 
angles locating the weights are given in No. TV (lb) r (in.) 6 

the accompanying table. The system is ~fV\ 10 2 30°" 
to be balanced by the addition of two —- 
weights, one in the plane of Wi and the ^ ^ 90° 

other in the plane of Each balance JV* & l 135° 
weight has a radius of 2 in. Find the mag-- 
nitudes and the angular positions of the 4    ~ _ __  
balance weights. Show that the products Wh 15 1 300° 
of inertia are zero for the balanced system. __ 

&wx mw, 
ih._wA 1 

|*-4 inr->| 

Prob. 257 

No. IV {lb) r (in.) e 

Wi 10 2 30° 

IV2 5 3 

o O
 

O
s 

JVs 8 1 135° 

W4 8 2 225° 

W5 15 1 300° 

«—5 in;—*j 

~5 in;—> 
( bw< <i1 

W5 

268. A pulley having a moment of inertia I about its axis of rotation 
supports a rope which carries a mass m at one end, while the other end 
is connected to a spring of spring constant k as shown in the diagram. 
Find the period of oscillation of the system. (Assume that the rope does 
not slip on the pulley.) 

259. A governor is constructed as is shown in the diagram. The 
assembly of four linked bars of equal length / rotates with an angular 
velocity <o about a vertical axis. The mass m\ slides on the vertical axis 
and is restrained by a spring 
force —kx. Find the displace¬ 
ment x of the mass mi in terms 
of the constant angular velocity 
o) of the system. 

Prob. 258 Prob. 259 
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260. A governor is mounted on a rotating wheel as is shown in the 
figure. When operating in a steady-state condition (a> = constant) the 
angle between the spring and the pendulum is 90°. The total mass of 

the pendulum is m, and the moment of inertia of the pendulum about its 
suspension axis is I. Find the equation of motion of the pendulum for 
small displacements from the steady-state position. 



CHAPTER VIII 

NON-RIGID SYSTEMS OF PARTICLES 

But I consider philosophy rather than the arts and write not concerning 
manual but natural powers, and consider chiefly those things which relate to 
gravity, levity, elastic forces, the resistance of fluids, and the like forces, whether 
attractive or impulsive.—I. Newton, Principia Philosophiae (1686). 

The analysis of the dynamics of systems of particles is greatly 
influenced by the characteristics of the particular system being 
studied. For example, solid bodies, fluids, and gases are all sys¬ 
tems of particles and as such can be treated by the general 
methods of dynamics which have already been discussed. The 
physical characteristics of these various systems differ so greatly, 
however, that the analysis must be handled in a distinctive fashion 
for the various materials. The analysis is, of course, always based 
upon the equations of motion, but it is developed in different ways 
in order to take advantage of the particular characteristics of a 
given system. In the following sections we shall give a brief dis¬ 
cussion of some of the methods which can be applied to non-rigid 
systems of particles, such as fluids and gases. 

67. The Equations of Motion of a Non-viscous Fluid. In the 
analysis of fluid motion it is possible to introduce certain sim¬ 
plifications because of the special properties of fluids. First, it is 
not necessary to treat the fluid as being composed of discrete 
particles. Instead, we consider it to be composed of elements of 
volume dV, an element having a mass p dV, where p is the density 
of the fluid. Second, we make use of the fact that the pressure at 
a point in a fluid is the same in all directions: 

px — py — pz — p 

The equation of motion for an element of fluid is: 

ipiV)d-l = T 

204 

(99) 
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where v is the velocity of the element and F is the resultant force 

acting upon the element. In rectangular coordinates the equa¬ 

tions of motion are: 
(p dx dy dz)x = Fx, etc. 

In Fig. 8-la is shown a free-body diagram of a fluid element. 

If we assume a perfect or non-viscous fluid, there are no viscous 

shearing forces on the sides of the element, so that the only forces 

are the normal forces acting on the faces, and the gravity force 

acting at the center of the element. In Fig. 8-lb are shown the 

pressures exerted on two faces of the element. The pressure at 

the center of the element is taken to be p. Then on the right face 

dx 
of the element, at a distance — from the center, the pressure is 

(p + y), whereas on the left face the pressure is [p ~ 
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There are similar expressions for pressures on the other four sides 
of the element. Since the force in the ^-direction is given by 
the pressure multiplied by the area on which it acts: 

Fx=-&dxdy dz 
dx 

The minus sign occurs because for positive the resultant force 

acts in the negative ^-direction. The ^-component of the equation 
of motion now may be written: 

(p dx dy dz)x — dx dy dz 
ox 

or 

px 
dp 

dx 

In the y and z directions the equations are found in the same way 
to be: 

or, in vector notation: 

[S*+^+(l+«)‘] (100) 
With this equation it is possible to determine the motion when the 
pressure distribution is known, or to determine the pressure dis¬ 
tribution when the motion is known. 

There is an obvious difficulty in the practical application of 
this equation, since, in general, neither the motion nor the pres¬ 
sure in the fluid will be known. The only facts that are usually 
known are certain boundary values, such as the pressures at free 
surfaces or the directions of the velocity at a boundary, etc. The 
problem is to find the motion that will satisfy both the differential 
equation of motion and the particular boundary conditions. In 
general, this is a difficult problem, and many special techniques 
have been developed to analyze such fluid dynamics problems. 
These methods are treated in texts on Hydrodynamics and Aero- 
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dynamics. In the following paragraphs, we shall discuss only 

two of such special methods, that of the energy equation, and that 

of the momentum equation. 

68. The Energy Equation. The equation of motion for an 

element of the fluid can be integrated directly to obtain the work- 

energy equation. Assuming an incompressible fluid, i.e., p = 

constant, forming the dot product with dr and integrating, we 

obtain: 

j> - *=-jX* ‘+P+(*+k) k\ ■dr 
j-pv ■ dv = - dx + | dy + |£ dz + pg *] /2 r2 

dp — I pgdz 

= -(/>* ~ p\) ~ Pg(.z2 - Zl) 

Collecting terms, this equation may be written 

. \pvi2 + p\ + pgzi = lpv22 + p2 + pgz2 

This states that the sum of the three terms is the same at all 

points, or: 

+ p + pgz = constant (101) 

This equation applies to an element of fluid no matter what type 

of fluid motion is involved. In fluid-mechanics problems, how¬ 

ever, it is not in general possible to follow the motion of one 

particular element, and the usefulness of the above equation lies 

in the fact that, subject to certain restrictions, the equation can be 

applied from point to point in a fluid. The nature of these re¬ 

strictions may be shown in the following way. A stream-line in 

a fluid is defined as a line which has at every point the direction 

of the velocity of the fluid at that point. If we assume steady 

flow of the fluid, that is, no change with time, then at any point 

along a stream-line, successive fluid elements will have identical 

characteristics. The above equation can thus be applied between 

any two points on a stream-line in a steady flow. It will be seen 

that this leads to the well-known Bernoulli’s Equation, which 

is widely used in fluid-mechanics problems. 
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Example. There is a steady flow of fluid from a reservoir 

through a pipe as shown in Fig. 8-2. Assuming no energy lost in 

B 
Fig. 8-2 

the system, find the velocity vB with which the fluid issues from 

the pipe. 

Solution. Applying the energy equation to the two points A 

and B gives: 

§p^2 + p A + PgZA = yve2 + pB + PgZB 

At point A the velocity of the fluid is very small so that to a good 

approximation Va — 0. The pressure at A is atmospheric pressure, 

and we can assume with good accuracy that the pressure at B 
is also atmospheric. Thus: 

hPVb2 = pg(zA - zB) = pgh 
vB = V 2gh 

PROBLEMS 

261. A non-viscous incompressible fluid flows through a pipe of uni¬ 
form cross section with a velocity v. If the pressure at point A is p3 find 
the pressure at point B and at point C. 

A 

262. A non-viscous incompressible fluid flows through a pipe of cross- 
sectional area Ai with a velocity vi. If the pressure at A\ is pi find the 
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pressure at a point where the area is A2. (Neglect gravity forces in this 
problem.) 

Prob. 262 

263. Fluid flows over a weir as shown in the diagram. By applying 
the energy equation to elements in the top surface of the fluid, express 
the velocity at any point in the surface as a function of z. 

Prob. 263 

264. A pressure vessel is partly filled with liquid and partly with gas 
under a pressure pi. Find the discharge velocity v. 

Prob. 264 

69. The Momentum Equation. In the preceding treatment of 

fluid motion we selected a particular element of fluid and studied 

the forces on and the motion of that element. This procedure is 

called the Lagrangian method because of the extensive use made 

of it by Lagrange. It is also possible to adopt a somewhat differ¬ 

ent point of view, by considering a fixed point in space and 
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observing the motion of the fluid as it passes that point. This was 

the method used by Euler. For certain problems the Eulerian 

method has advantages, and we shall adopt it for the following 

development of the momentum equation. It should be noted that 

in this derivation no restrictions are imposed upon the compressi¬ 

bility or viscosity of the fluid. 

The equation of motion of an element of fluid of density p and 

volume dV is: j., 

where F is the resultant force acting upon the element, and v is 

the velocity of the element. Let us consider a number of such 

elements which lie along a stream-line in the fluid (Fig. 8-3). We 

select a volume element with cross-sectional area da, normal to 

the stream-line, and length ds along the stream-line. A volume 

having its length along a stream-line and an infinitesimally small 

cross-sectional area is called a stream-tube. At points along the 

stream-tube the velocity v is a function of both the space coor¬ 

dinate and the time, v = f(s, t) so that we may write: 

ds 

dy_dv.dyds__dy.dy 

dt dt ds dt dt ds 

where is the scalar magnitude of the velocity along the stream¬ 

line. The term — represents the time rate of change of v at a 
dt dv 

fixed point in space, and o represents the space rate of change 

of velocity at a fixed time. The equation of motion may thus be 

written: ,dv dv v 

'J‘dr)KSi + Ts°) = F 
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Referring to Fig. 8-4, consider a definite region of space of vol¬ 

ume V through which fluid is flowing. Integrating the preceding 

equation over this volume we obtain: 

SF = (p^dV + fpv^dads 
Jv ot Jy ds 

where SF is the resultant force acting upon the fluid within the 

volume Vy and da ds = dV is the volume of a length ds of the 

stream-tube shown in Fig. 8-4. We shall now transform these 

integrals into forms which can be readily evaluated. 

Using the formula for the derivative of a product, we have: 

dv d , N dp 
p—. = 7Tt (pO -V - dt dt dt 

pv~ da = (pvv da) — Vj- (pv da) 
as as as 

Substituting these expressions into the integrals gives: 

2F = /{| (pv) dr+ l~s (pvv da) ds-v^dF+^ (pv da) ds] j 

It can be shown that the term in square brackets is equal to 

zero, by virtue of the conservation of mass. Consider an element 

of volume dV and of length ds as shown in Fig. 8-5. The rate at 

which mass is accumulating in this element, due to changing p, is 

Fig. 8-5 
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dV. This must be equal to the difference between the rate 
at 

of inflow of mass and the rate of outflow: 

dV = pv da — [(pv da) + (pv da) ds] 
ot ds 

from which: 

% dr + %-(pv da) ds = 0 
Of OS 

This is usually called the continuity equation. 

The expression for the resultant force acting upon the fluid 

within V thus reduces to: 

ZF - f ~ (pv) dF + f (pvv da) ds 

J v J V 

The first integral may be written as: 

where 2R is the resultant momentum of the fluid within V. 

The second integral may be integrated along the length s of 

the stream-tube, to give: 

— (pvv da) ds 
as 

(pvv da)\ 

The notation indicates that this term is to be evalu¬ 

ated at the two end points of the stream-tube; that is, at the 

points where the stream-tube intersects the boundary of the 

volume. The resulting area integral is to be evaluated, therefore, 

over the areas of the ends of all the stream-tubes lying on the 

surface of the volume. We note that the direction of a stream- 

tube as it intersects the boundary is in general inclined at some 

angle to the normal to the boundary surface. If the vector dA, 

normal to the surface and directed out of the volume, describes 

the increment of surface area, then on the surface v da = v • dA 

and the area integral may be written: 

Jpv(v • dA) 
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Since pv • dA represents the mass flow out through dA per unit 
time, the term pv(v • dA) represents the rate at which momentum 
is flowing out through dA. The integral thus represents the net rate 
of outflow of momentum through the surface of V. 

We thus have obtained the following expression for the resultant 
force acting upon the fluid within the volume V\ 

2F = — +f/<v ' dA) (102) 

This equation is just Newton’s law applied to a system which is 
losing or gaining material. 

The foregoing analysis can be repeated, beginning with the 
equation of moment of momentum: 

rx(p Jr%-rxr 
and the following result will be obtained: 

2Mt = + Jr x Pv(v ' dA) (103) 

where 2Mt is the resultant moment acting on the fluid within the 
volume V, and H is the resultant moment of momentum of the 
fluid within V. 

The essence of the momentum flow method is that instead of 
observing a particular mass of fluid during its motion, attention is 
focused on a region of space. By noting the inflow and outflow of 
momentum and the change of total momentum within the volume 
it is possible to deduce the resultant force acting upon the fluid 
within the volume. 

Example 1. A pipe of uniform cross-sectional area A has a 
horizontal offset / as shown in Fig. 8-6a. Fluid flows through the 

pipe with a uniform velocity v. Find the moment exerted on the 
pipe by the fluid. 
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Solution. Considering the flow of momentum through the vol¬ 

ume of the pipe indicated in the figures, and evaluating the 

integral jpv(v • dA)y we obtain the two vectors of magnitude 

pv2A shown in Fig. 8-6a. Note that the directions are such that 

both these vectors are pointing out of the volume. There is thus 

Fig. 8-6b 

a counterclockwise moment of magnitude pv2Al exerted upon the 

fluid within the volume. This moment is the resultant of the 

moment due to the pressure forces, and the moment Mp which 

is applied to the fluid by the pipe (Fig. 8-6b). Thus: 

pirAl — —pAl T Mv 

The moment exerted on the pipe by the fluid is equal and opposite 

to Mp, and is hence a clockwise moment of magnitude (pv2 + p)Al. 
Example 2. Fluid flows with a uniform velocity v through a 

pipe of uniform cross-sectional area in a horizontal plane as shown 

in Fig. 8-7. Find the external force which must be applied to the 

pipe to maintain the system in equilibrium. 

Fig. 8-7 

Solution. In Fig. 8-8 are shown the momentum flow vectors 

Jpv(v • dA) and the pressure forces acting upon the volume of 

fluid. The resultant momentum-flow vector is equal to the force 

acting upon the fluid within the pipe as shown in (b). This re¬ 

sultant force is the sum of the two pressure forces, and the force Fp 
exerted by the pipe on the fluid. This force Fp can thus be found 

as shown in (c). The fluid exerts a force on the pipe which is 
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equal and opposite to Fp, and hence the external force which must 

be applied to the pipe in order to maintain it in equilibrium is FPi 
directed as shown in (c). a 

Fig. 8-8 

Example 3. Water is ejected from a container by means of gas 

pressure behind a piston (Fig. 8-9). What external force is re¬ 

quired to hold the container motionless? 

F_ 

Fig. 8-9 

Solution. The force F is equal to the resultant force on the 

fluid within the container so that we may write: 

F = + Jpv(v • dA) 

Neglecting the momentum of the gas and piston and assuming 

uniform velocity in the water, the total momentum within the 

container is m =A'Pxxi 

The rate of outflow of momentum is —pAvH, but since Av = A'x 
we may write 

’’ F = (PA'x±) — — C^'i)2]* 

If the orifice is small, that is, if ~r is large, then the first term in 
A 

the expression for F may be neglected. 
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PROBLEMS 

266. Fluid is discharged from a tank with velocity v through an outlet 
of area A. Show that in order to maintain equilibrium of the system an 
external force F = 2(j>b — Pa)A must act as shown in the figure, where 
Pa is the atmospheric pressure, and pi? is the pressure within the tank at 
the same elevation as the outlet, at a point where the fluid velocity is zero. 

266. A stream of fluid impinges on a stationary surface as shown in 
the diagram. Find the force exerted by the fluid on the surface, by the 
method of the preceding section. 

267. An incompressible fluid flows through a pipe which has a change 
in cross section as shown. Both ends of the pipe are at the same eleva- 

tion. Assuming that the velocity is uniform across the area of both 
sections, find the force exerted on the pipe by the fluid. 

268. Three pipes each of uniform cross section lie in a horizontal plane 
and converge at a point as shown in the figure. Fluid flows through A\ 
with a velocity v\9 and out of An and A% with velocities v2 and Vz. The 
dimensions of the system are such that A2v2 = \A&\. Find the resultant 
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force required to hold the joint in equilibrium, assuming that the veloci¬ 
ties are uniform across the sections of the pipe, and that the pressure 
in the fluid is negligible. A 

fv2 

Vl. 

Prob. 268 Prob. 269 

269. A tube of uniform cross-sectional area A is wound into a helix 
as shown in the figure. At the top of the helix the straight portion of the 
tube coincides with the axis of the helix. At the bottom the tube dis¬ 
charges water into the air with a horizontal velocity v normal to the 
radius Ry at a distance R from the axis. Find the torque about the axis 
of the helix exerted by the fluid on the tube, if the tube is held stationary. 

270. A frictionless compressible fluid flows through a straight pipe. 
An object B is held in a fixed position in the stream. Assuming that there 

Prob. 270 

is steady flow, find the relation between the force exerted by the fluid 
on By and the velocities, densities, and pressures of the fluid at the two 
ends of the pipe. 

271. A closed box of weight JF is suspended from a spring balance. 
A bird of weight P is placed on the floor of the box. The scale then reads 
fP +P. If the bird flies around in the box at a constant elevation, what 
will be the effect on the scale reading? 

2T2. An airplane weighing W pounds flies with a uniform horizontal 
velocity v. What is the effect of this motion upon the air pressure on 
the ground? 
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273. In Example 3 of the preceding section the expression for the 
resultant force is 

F = 4-pA'xx + pA'x? - - {A'xf 
A 

Explain the physical significance of these three terms. 

60. The Momentum Equation for an Accelerating Volume. In 
the preceding section we considered the problem of flow of a fluid 
through a stationary volume. We shall now consider the more 
general problem in which the volume itself is accelerating. This 
is, for example, the type of problem involved in an analysis of the 
dynamics of rocket flight. 

Let the absolute velocity of a point in the fluid be v and con¬ 
sider a coordinate system fixed in the moving volume. If vr is the 
velocity of a point in the fluid relative to the moving coordinate 
system and u is the absolute velocity of the corresponding point 
in the coordinate system, then v = vr + u. Let s be measured 
along a stream-line in the moving coordinate system. By a stream¬ 
line in the moving coordinate system we mean a line which has 
everywhere the direction of vr. We may now write: 

dv _ dv . dv ds __ dv . dv 
dt dt ds dt dt r ds 

The resultant external force acting upon the mass contained 
within the volume is: 

This integral may be transformed in the same way as the cor¬ 
responding integral was transformed for the stationary volume, 
and the result is: 

I:F = ~ + jMvr ■ dA) (104) 

where SB is the total momentum of the mass within the volume 
at any instant, and the integral represents the net rate of outflow 
of momentum from the volume. 

From the moment of momentum equation, we may derive the 
equation: 

2Me = ^ +jr x pv(vr • dA) (105) 
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where H represents the total moment of momentum of the mass 

within the volume under consideration, and 2Mt is the resultant 

external torque acting upon the material within the volume. 

Hand 2Mt may be measured either with respect to a fixed point 

or with respect to the moving center of mass of the system. If H 
and 2Mt are measured with respect to the moving center of mass, 

however, the velocity v appearing in Equation (105) is no longer 

the absolute velocity as used in the preceding analysis, but is the 

velocity of the element with respect to the center of mass. 

Example 1. A rocket travels in straight horizontal flight. The 

mass of fuel burned per unit time in the rocket is k, so that the 

total mass of the rocket at any time is m = m0 — kt. The exhaust 

velocity of the jet relative to the rocket is ve, and the pressure in 

the jet of area A is p. The mass of the shell of the rocket (total 

mass minus propellant mass) is M. Assuming that gravity forces 

and drag forces are negligible, derive the differential equation of 

motion of the rocket, and find the velocity of the rocket as a func¬ 

tion of time. 

Solution. We shall first find the equation of motion of the rocket 

by applying the momentum-flow principles to a volume which 

includes all the unburned propellant but excludes the shell of the 

rocket. We are therefore to consider 

only the volume enclosed in the 

dotted lines in Fig. 8-10. The mass 

within the volume is m — M, and 

we may write: 

2F = — \{m — M)vc] + jTp(« - • dA) 

where vc is the velocity of the center of mass of the fluid within 

the volume, which, to a very good approximation, may be taken 

as u, the velocity of the rocket. The forces acting upon the 

rocket include the pressure force pA and the force F, which the 

shell exerts upon the volume. We thus have: 

Fig. 8-10 

pA + F, = u ^{m — M) + (m — M)u + p(« — v^)veA 

but 4 [m — M) = —pveA, the rate at which mass is being ejected 
dt 
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from the volume, so that: 

pA + F, = (m — M)u — pv?A 

The force F,' exerted by the material within the volume upon the 

rocket shell is equal and opposite to Fa; hence: 

F= pA — {m — M)u + pve2A 

This force F,> is just equal to the mass of the rocket shell multi¬ 

plied by the acceleration of the rocket shell, so that: 

Mil = pA — mu + Mu + pve2A 

and the equation of motion finally becomes: 

mu = pv2A + pA 

This same equation can be ob¬ 

tained in a more direct manner by 

including the shell of the rocket 

within the volume under considera- 

Fig. 8-ll tion, as is shown by the dotted line 

in Fig. 8-11. The only external 

force now acting on the material within the volume is the pressure 

force pAy and we have: 

2F = ~ (mvc) +Jap(u ~ • dA) 

pA = mil — pv?A 
which gives directly: 

mil = pv?A + pA (106) 

This equation may be integrated by putting it into the form: 

du - Ips.'A + pA) 

from which, assuming that the rocket starts from rest, and putting 
k — pveA, we obtain: 

Example 2. A simplified water turbine made of two sections 
of curved pipe rotates with an angular velocity u and discharges 
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water at a rate of 2vrA ft3/sec. The turbine does work against a 

torque B as shown in Fig. 8-12. If v, and B are specified, what is 

Solution. The angular velocity « of the system can be deter¬ 

mined from the equation 

2Mt = ^ +Jr x pv(vr • dA) 

If we consider only the steady-state motion of the system, H = 

constant and = 0. The equation therefore becomes: 
at 

B = 2R x pv{vrA) 

The absolute velocity v is given by 

v = (vr + w x jR) 
so that 

B = 2R x p(vr + w x R)vrA 
B = 2Rvr2Ap sin a — 2R2u>vTAp 

in which the direction of « is taken as negative. From this equa¬ 

tion, the angular velocity is found to be 

and work is being done at a rate Bo>. For a device such as a lawn 

sprinkler, B = 0, and the angular velocity is given by 
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PROBLEMS 

274. Show that the jet thrust force acting upon an accelerating rocket 
is equal to the thrust force acting on the same rocket when it is held 
stationary in a test stand. The exhaust velocities and exhaust pressures 
are assumed to be the same in each case. 

275. A ramjet draws in air at the intake with a relative velocity Viy 
pressure pi, and density p*. After an internal combustion process, gas is 

exhausted with a relative velocity 
ve, pressure pe, and density pe. The 
intake and exhaust areas are A, 
and Ae. Find the propulsive force 
acting on the ramjet. 

276. A rocket having a total 
weight of 50 lb contains 2 lb of pro¬ 

pellant which is burned at a uniform rate in one second. The propellant 
has a “specific impulse” of 200 lb sec per lb of propellant; that is, a 
thrust force of 200 lb is produced by burning one pound of propellant in 
one second. Assuming that the rocket moves horizontally with negligible 
frictional resisting forces, find the velocity of the rocket at the end of the 
burning time. If the propellant is burned in 2 sec instead of one, would 
the velocity be different? 

277. A rocket travels with a velocity v. The exhaust gas issues from 
the rocket with a velocity ve relative to the rocket. If the mass of gas 
exhausted per second is mf, then the thrust force is m've, and the propul¬ 
sion power, which is the rate at which the thrust force does work, is given 
by m'vev. The kinetic energy lost in the exhaust gas per unit time, which 
represents a power loss, is \m\v — ve)2. Show that the propulsion 
efficiency is given by 

Prob. 275 

For typical propellants, ve = 4000-6000 ft/sec. What rocket velocities 
must be obtained in order to have 50% efficiency? 

278. A miniature jet-propelled auto is constructed using a “charged 
water” cartridge. The gas exhausts with a constant relative velocity ve 
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into the atmosphere, and the density of the exhaust gas may be assumed 
to be a constant p. The auto travels along a horizontal track and experi- 

Prob. 279 Prob. 280 

279. The turbine of Example 2 of the preceding section is to be used 

as a pump as shown in the accompanying figure. If a pumping torque 
B applied to the turbine gives an angular velocity co, find the quantity 

of water discharged per unit time. 

280. The turbine of Problem 279 discharges water under a head h. 
If the turbine is held stationary, what quantity of water is discharged per 
unit time? If the turbine is free to rotate with no energy loss, what is 

the discharge rate? (Assume the turbine rotates with a constant angular 

velocity.) 

61. The Dynamics of Gases. The analysis of the dynamics 

of gases can be carried out in several different ways. Under 

certain conditions the gas can be treated as a fluid in the same 

manner as in the preceding sections. In this treatment, however, 

it would be necessary to take into account the compressibility, 

the viscosity, and also the effect of variations of temperature. 

This represents an extension of the methods of fluid dynamics. 

A quite different approach is that in which the gas is considered 

to be composed of discrete particles. The gas is supposed to con¬ 

sist of molecules each of which may be treated as a particle, and 

the dynamics of the gas is thus treated as the dynamics of a 

system of particles. This viewpoint leads to the kinetic theory of 

gases, by means of which many of the phenomena of thermo¬ 

dynamics may be analyzed. In the following paragraphs we 
shall discuss a simple problem by this method to illustrate the 

way in which the principles of dynamics may be applied to such 
systems. 
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Consider a rectangular box of volume V containing N molecules 

of a gas. Each molecule has certain velocity components vx, vy, 
v„ as shown in Fig. 8-13. We suppose that the gas has reached a 

steady-state condition, that is, 
the center of mass of the system 

of molecules is at rest, and the 

average density is the same 

throughout the volume. Con¬ 

sidering now the ^-components 

x of velocity, we shall distinguish 

between the molecules which 

travel in the positive ^-direction 

and those which travel in the 

negative ^-direction. On the 

average, N/2 of the molecules 

will have the positive direction, and N/2 will have the negative 

direction. We also note that the total momentum of the mole¬ 

cules moving in the +*-direction must equal the total momentum 

of those moving in the —^-direction, since the mass center of the 

system is at rest. 

We now examine the molecules which have velocities in the 
-f-x-direction. Such particles will eventually collide with the end 

of the box and, after the impact, will rebound with reversed 

Fig. 8-14 

velocities. Let us first consider all the molecules in the box which 

have a specific velocity t\- in the -(-^-direction. If there is a total 

of «< of such molecules in the box, then on the average during a 

time U the number of molecules colliding with the end wall will be 

»< • This may be seen from Fig. 8-14, since any molecules 
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which are further from the wall than Vi At will not reach the wall in 

the time At. The total number reaching the wall is therefore 

multiplied by the ratio of the volume £>» At A to the total volume V. 

As each particle collides with the wall and rebounds, the velocity 

of the molecule is reversed, and the change in momentum, assum¬ 

ing no energy loss during impact, is — 2mvi per molecule, where m 

is the mass of the molecule. The total change in momentum 

during the time At is: 

— 2m 
n£i At A 

V 
Vi = 

2m 

V 
tliV?A At 

From the fact that the total impulse equals the total change in 

momentum, we have: 

2m 

V 
AtriiVi2 

If we let pi be the average force per unit area or pressure exerted 

by the molecules against the end wall, we have: 

Pi = 
2m 

V 
niVi 

A similar expression will be obtained for the molecules which 

have a different velocity, say v,\ summing up the pi over all the 

different velocities, we obtain: 

Zpi 

where 2pi — p — the total pressure on the end of the box, and 

2ntv? is equal to ^ (p*2)8v*., where (f*2)aVg. is the average value 

of vx2 taken over all y molecules which have velocity components 

+o*. We may therefore write: 

. 2m N, y. 
P ~ y 2 

or 
pV = Nm(vf)„t. 

We now note that the kinetic energy due to tlfe +#-components 

of velocity is equal to: j jy 

2 ~2 w?^e*2)ay*' 
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and that the kinetic energy of translation of all the components 

of velocity (±i>x, ±.vy, ±rz) is equal to: 

%Nm(vx2)lwt. 

since in a steady state (Oavg. = (^/W = W)&vf We may thus 
write the above expression for pV as: 

pV = §E (107) 

where E is the total kinetic energy of translation of the molecules. 

It will be noted that this expression is just a statement of Boyle’s 

law, which states that the product of the pressure and volume 

of a gas is constant at a constant temperature. From thermo¬ 

dynamics we know that the gas law for varying temperatures is: 

pV = RT 

where T is the absolute temperature, and R is the gas constant.* 

We thus obtain the following relation between temperature and 

the kinetic energy of a gas: 

£E = RT (108) 

For example, at a temperature of 100° C or 373° abs, the kinetic 

energy of one mol of gas is: 

E = (f)(8.314)(107)(373) = 4.65 x 1010ergs = 3430 ft-lb 

For oxygen molecules (32 grams per mol), the average value v2 
per molecule may be computed as follows: 

|(32 grams)(o2)avg. cm2/sec2 = (f) (8.314) (107) (373) ergs 

(t>2)avg. = 2.91 x 109 

V(d2),^ = 5.4 x 104 cm/sec = 1770 ft/sec 

The root-mean-square velocity is somewhat larger than the mean 

velocity. 

In the preceding derivation of Boyle’s law it was assumed that 

the gas molecules traveled from wall to wall without mutual inter¬ 

ference. This assumption seems reasonable for a gas with small 

density, but for a gas of high density it would be expected that 

there would be many collisions between molecules. The impacts 

* R = 8.314 X 107 ergs per degree per mol of gas. One mol is that volume 
which has a mass in grams equal to the molecular weight of the gas, and which 

contains 6.02 X 1053 molecules (Avogadro’s Number). R = X 1(H* N = 

kN, where k = Boltzmann’s Constant. 
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against the walls would then be different and if this is taken into 

account certain correction terms must be included in Boyle’s law. 

Experimental evidence confirms the fact that Boyle’s law is not 

satisfactory for high gas densities. Another factor must be con¬ 

sidered if the gas consists of complex molecules. If, for example, 

each molecule is formed of several atoms, the molecule can have 

an appreciable kinetic energy of rotation, which must be included 

in the analysis. A more complete analysis of the problem, as 

developed in the kinetic theory of gases, shows that in the steady- 

state condition the total kinetic energy is divided equally among 

the degrees of freedom. If the molecule has the form of a rigid 

multi-atom body it has six degrees of freedom—three in transla¬ 

tion and three in rotation. In a steady state ^ of the total kinetic 

energy would be associated with each degree of freedom. 

62. The Pressure-velocity Relations for a Jet. Using the pre¬ 

ceding analysis, we are able to derive the relation between the 

exhaust velocity and the exhaust pressure of a jet. Consider gas 

flowing from an orifice in a container, under steady-state condi¬ 

tions (Fig. 8-15). This is the type of problem which we have 

Fig. 8-15 

already encountered in connection with an analysis of rocket 

flight. We shall suppose that the pressure inside the container 

remains constant at pc, that the kinetic energy per unit mass of 

gas within the container has the constant value ECy and that there 

is no transfer of energy into or out of the system. We now con¬ 

sider an element of gas having a volume V flowing from the con¬ 

tainer. For convenience we choose a volume having unit mass, so 

that pV = 1. We call the pressure of the gas as it leaves the 

container p, the velocity v, and the kinetic energy E. The work- 

energy equation for the element may then be written: 

E + f p dV = constant 
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where Jp dV is the work done by the element of gas as it expands. 

Assuming a perfect gas for which pV = ■§■£, we have: 

$pF+JpdF = C 

Differentiating this equation gives: 

■§(p dV + V dp) + p dV = 0 

Rearranging this expression, it may be written: 

y — 4- ^2 = o 
7 V ^ p ’ 

where 7 = 

Integrating directly gives the well-known equation for the adi¬ 

abatic process pVy = constant (109) 

We now recognize y as the ratio between the specific heat of the 

gas at constant pressure to the specific heat at constant volume. 

The experimentally determined value of this ratio for monatomic 

gases is very close to ■§•. 

Consider now the equation of motion of a cylindrical element of 

volume V. 

We shall consider an element along a stream-line in the gas as it 

emerges from the container (Fig. 8-16). In general, v = f(s, t) so 

that: 
dv _ dv , dvds 

dt ~ dt ' ds dt 

P 

-ds->J 
Fig. 8-16 

dv 
If we restrict the analysis to steady flow, — = 0, the equation of 

motion becomes: 

pds da^-v — —dp da 

or 
po do = —dp 
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We may use this expression for dp to modify the energy equation 

by observing that: 

/p dV — pV —J'V dp = pV + JVpv dv = pV + Jiv dv 

= pF+ V + G 

Making this substitution the energy equation may be written: 

E + pV + %v* = C (110) 

The term-^represents the kinetic energy (per unit mass) of trans¬ 

lation of the element. When the element is within the container 

at a pressure pc, its velocity is zero, so that the equation may be 

written: 
E + pV + itf2 = Ec + pcVc 

Substituting E — %pV and solving for v gives: 

v2 - 5(pcEc — pV) 
or 

Since pVy — C, we have 

pV 
pcVi ;)]* 

- - W vc W 
and hence we may write: 

[2 7 Ml i Mn' L 7 - 1 Pc 1 \j fie) IJ (111) 

thus giving the relation between the exhaust velocity and the 

exhaust pressure. 

PROBLEMS 

281. How many foot-pounds of energy are required to give one gram 
of oxygen a temperature increase of one degree centigrade? 

282. Show that the work that is done by a gas as it expands under a 

variable pressure is given by J p dV. 

283. A cylinder contains one mol of gas at a temperature 7b degrees 
absolute. The volume of the cylinder is Al where A is the cross-sectional 
area. A piston compresses the gas uniformly (without inducing oscilla- 
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tions) to a volume A(l — x). Find the total kinetic energy of the gas in 
the compressed state and find the final temperature of the gas. Assume 

Prob. 283 

that no energy is lost through the walls of the cylinder. Do this problem 
by considering the work-energy relation. 

284. If in the preceding problem the gas is compressed very rapidly, 
so that an appreciable average acceleration is given to the gas molecules, 
then the force moving the massless piston must be larger than in the 
preceding problem. Suppose that the piston compresses the volume to 
A(J — x) in such a way that twice as much work is done on the gas; find 
the final temperature and pressure of the gas. 

285. A rocket with internal pressure p discharges a monatomic gas 
with exit velocity v. The gas discharges through a nozzle of area A with 
atmospheric pressure pa. How does the thrust compare with that which 
would be obtained if there were no atmospheric pressure? 



CHAPTER IX 

ADVANCED METHODS IN DYNAMICS 

When one obtains a simple result by means of complicated calculations, 
there must exist a more direct method of obtaining the result; the simplifications 
which occur and the terms which disappear during the course of the calculations 
are certain indications that a method exists for which these simplifications have 
already been made and in which these terms do not appear.—M. Lame, Thfarie 
de Elasticity (1866). 

As the problems in dynamics become more complex it naturally 

becomes increasingly difficult to work out the solutions. This 

difficulty is associated not only with the solution of the equations 

of motion, but applies particularly to the derivation of the differ¬ 

ential equations of motion. A number of methods, more powerful 

than those hitherto considered in this book, have been developed 

for deriving the differential equations of motion for complex prob¬ 

lems. Perhaps the most generally useful of the more advanced 

methods is that of Lagrange, who has put the basic equations of 

motion in such a form that the simplifying features of a problem 

may be utilized most advantageously. In the present chapter we 

shall derive Lagrange’s equations, and we shall illustrate their 

application by a number of examples. 

63. Generalized Coordinates. One of the principal advantages 

of Lagrange’s method is that one uses for each problem that 

coordinate system which most suitably describes the motion. We 

have already seen that the position of a particle can be described 

in a large number of different ways, and we have found in the 

problems already discussed that the choice of a proper coordinate 

system may introduce a considerable simplification into the solu¬ 

tion of the problem. In general, the requirement for a system of 

coordinates is that the specification of the coordinates must locate 

completely the position of each part of the system. This means 

that there must be one coordinate associated with each degree of 
231 
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freedom of the system.* We shall restrict the following treatment 

to systems whose coordinates are independent, in the sense that 

an increment change can be given to any one of the coordinates 

without changing any of the other coordinates.! By the gen¬ 

eralized coordinates (q 1, q-i ■ • ■ qn) we shall mean a set of inde¬ 

pendent coordinates, equal in number to the degrees of freedom of 

the system. We use the word “generalized” to emphasize the 

fact that such coordinates are not necessarily the simple xyz or 

rd<j> coordinates, and to indicate that they are not necessarily 

lengths or angles but may be any quantity appropriate to the 

description of the position of the system. 

In the application of Lagrange’s method we shall find it neces¬ 

sary to write the kinetic energy T of a particle as a function of 

the generalized coordinates. It is known that the kinetic energy, 

expressed in terms of the xyz coordinates of the particle is: 

T = \mijp + y"- + 32) 

We now wish to transform the coordinates from the xyz system 

to the qiq-iq-i system, where the q s are the generalized coordinates. 

In order to make the transformation, we need the relations 

between the two sets of coordinates. Let us suppose that these 

are:! 

* = 0i(?i, qn, qs) 5 y = fciqi, q2, ?s); z = 4>z{q\> qi, ?a) 

where the <j> s represent general functions. If, for example, we 

wish to transform from rectangular xyz to cylindrical rdz coor¬ 

dinates, these equations have the form: 

x — r cos 9, y — r sin 6, z = z 

* More exactly, there must be at least one coordinate associated with each 
degree of freedom. So-called “non-holonomic” systems exist, for which, due to 
the particular constraints involved, more coordinates are required than there 
are degrees of freedom. Such systems are not often encountered and will not be 
considered here. (See Appendix I, references 26, 27.) 

f It will, in some problems, be more convenient to use coordinates which are 
not all independent. For methods of extending the analysis to include such 
problems, consult the references given in the bibliography. (See Appendix I, 
references 4, 8, 26, 27.) 

t We have supposed that the relation between the coordinate systems does 
not involve the time. In the more general treatment in which x = <t>(qiy q*y q%y t) 
the analysis can proceed along essentially the same lines. (See Appendix I, 
reference 4.) 
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The velocities may now be written in terms of the generalized 

coordinates as: 
^ = d<fri dqi , d<f>i dq<i , d<t>i dqz 

dqi dt dqi dt dq$ dt 

with similar expressions for y and z. The kinetic energy of the 

particle thus becomes: 

T = X*2 + f + z2) = \nk (&igl + &lqs + g3J (112) 
dq 2 oqz / 

The form of this expression may be changed in the following way. 

We note that by taking the derivative of T with respect to qi and 

then multiplying by qi we obtain: 

Similar equations are obtained by differentiating with respect to 

qi and qi. Adding these three equations gives: 

3 * er. 

■i dqj 
9i -nil+ 

i=i\dqi dqi 
dfr.Y 

dq% qi) 

The right side of this equation is 2 T, hence 

T - 4dTh 
1 ~ IT qi 3=1 dqj 

(113) 

This expression will be useful in the succeeding analysis.* 

64. Lagrange’s Equation for a Particle. It is always possible to 

write the equations of motion in xyz coordinates and then to 

change the variables to any desired coordinates. This procedure, 

however, usually leads to rather involved algebraic manipula¬ 

tions. It was pointed out by Lagrange that the equations of 

motion in any coordinates can be written directly if the expression 

for the kinetic energy, in the desired coordinates, is known. To 

derive Lagrange’s equations we note that the particle will at all 

times move in such a way that the change in kinetic energy is 

* From the above expression for T it will be seen that T is a homogeneous 
dT 

quadratic function of the qs, Our result 2 — qj * 2T then follows directly 
j oq$ 

from Euler's theorem for homogeneous functions. 
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equal to the work done; thus the work-energy relation may be 

written; JT = dw 

In terms of the generalized coordinates q\, q2, qa, the increment of 

work is: dW = Qi dqi + q2 dqi + q3 ^ = zQ. dq. 

where a term Qidqi represents the increment of work done when 

the coordinate qi changes by the amount dqi9 The quantity Qi 

is called the generalized force corresponding to the coordinate 

The generalized force does not necessarily have the dimensions of 

a force; for example, if qi is an angle, dqi is dimensionless and Qi 

has the dimensions of foot-pounds. In this instance the gener¬ 

alized force is a moment. 

To express dT in terms of the generalized coordinates, we note 

that since T is a function of the q s and the q s, we have: 

dT 
i \dq, dt dqi dt) dt 

dt 

T=&'—qi 

We have from the preceding article Equation (113), 

ST 

dq{ 

Differentiating this we obtain: 

fd dT. 

dqi 

Subtracting the preceding expression for dT from this equation 

Equating dT and dJV and collecting terms, we have: 

IdT dt 
\ \dt dqi 1 dqi dt) 

Since the three coordinates qlt q2, qa are independent so that one 

can be given an increment change while the other two remain 

unchanged, the expression within the parenthesis must be iden¬ 

tically zero, so that: 

d /m _ dT 

dt \dqj dqi 
Qi (i = 1, 2, 3) (114) 
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These are Lagrange’s equations for the motion of the particle. 

They are an expression of Newton’s law in generalized coordinates. 

If the force acting on the particle is conservative, the generalized 
bV 

force can be written Qi = — -—, and since the potential energy is 
oqi 

dV 
not a function of the velocities q, it follows that — = 0, and we 

oq ' 

may write Lagrange’s equations in the form: 

d_ /dL\ _ dL 

dt \dqj dqt 
0 (115) 

where L = {T — V), which is the difference between the kinetic 

and the potential energies of the system. The quantity L is often 

called the Lagrangian Junction or the kinetic potential of the 

system. It should be noted that Equation (115) applies only to 

conservative systems, whereas Equation (114) applies to non¬ 

conservative systems as well. 

Because of the importance of Lagrange’s equations, we shall 

give another derivation in essentially the form in which Lagrange 

originally presented it in his Mechanique Analytique (1788). La¬ 

grange started with the combination of D’Alembert’s principle 

and the principle of virtual displacements which we discussed in 

a preceding chapter (Equation (98)). 

2[{mi&i - Fx) SXi + {myi — FVt) Sy< + (w<z,- - F,t) 8zt] = 0 

Writing this equation for a single particle, and rearranging the 

terms, we obtain: 

Fxhx + Fy Sy + Fz 5z = mx Sx + my 8y + mz 8z (98a) 

If we wish to transform from the xyz coordinates to the qiq-iqz 

coordinates, as in the preceding derivation, we have 

t dx . , dx . . dx . 
8x = -— 8q i + -— oq% + — oq3; etc. 

dqi dq2 dqs 

Let us work out the analysis, supposing that only one of the inde¬ 

pendent coordinates, qi, has been given a virtual displacement. 

Then hq% — hq3 = 0, and we have: 
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and Equation (98a) can be written: 

Qi dgi = (mx + ™y jj£ + mi 5?i (98b) 

The expression on the right side can be transformed in the follow¬ 

ing way. From the formula for the differentiation of a product: 

.. dx_ __ d_t. dx\ __ . _d dx_ 

X dqi dt \ dqj % dt dqi 

Since 

dx dx . . dx . . dx . 
^ = 3- = r-?1 + T~?2 + — qz 

dt dqi dq2 dqs 

we have: 

dx dx 
— = —; etc. 
dqi dqi 

Also: 

d_ (dx\ _ _d_ (dx\ _ dx 

dt\dqj ~ dqAdt) ~ dqi' ^ 

With these substitutions we may write: 

.. dx d f. dx\ . dx 

dqi dt\ dqj dqx 

_ d_ d_ (x*\_d_ /x\ 

~ dtdqXl) dq\2) 

Substituting this into the Equation (98b), along with similar 

expressions for the terms in y and z, and remembering that 

T = \m(^ + y2 •+• z2) we obtain: 

Qityi = Sqi 

Cancelling the 5qx, we obtain Lagrange’s equation: 

d_ /dT\ _ dT = Q 

dt \dqj dqi 1 

By permitting variations in the other coordinates instead of the 

qx, two similar equations involving qt and qz will be obtained. 

Several times in the preceding chapters we have derived the 

differential equations of motion of a system by differentiating the 
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energy equation. It is well to note that this is just the process 

which is done in general by Lagrange’s method. 

One of the advantages of Lagrange’s method is that the kine¬ 

matics of a problem is simplified to the extent that accelerations 

are not required; it is only necessary to find the velocities in order 

to write the kinetic energy of the system. Since these velocities 

always appear squared, some possible difficulties of sign are also 

eliminated. These advantages, of course, apply equally to any 

energy method. 

By the application of Lagrange’s equations, we automatically 

obtain as many differential equations of motion as there are 

degrees of freedom in the system, and 

hence the complete solution of the 

problem is indicated. 

Example 1. Derive the equations 

of motion for a particle in cylindrical 

coordinates, using Lagrange’s equa¬ 

tions. 

Solution. In this problem we have: 

Thus, Lagrange’s equation for the r-coordinate becomes: 

d_dT _ dT n 

dt dr dr Ur 

~ = mrP% Qrdr — FTdr\ Qr = Fr 

and the differential equation of motion is: 

m(r — rfi) = Fr 
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For the ^-coordinate: 

d_(B_ 
dt\B6 36 

d (b 
dt\B6 
BT 
dd 

— -j (mrH) — Imrrd + mr2S 
dt 

= 0; Qedd = Fer d6\ Qe = F«r 

and the differential equation of motion is: 

m(rS + 2 rd) = Fe 
For the z-coordinate: 

-21-ft 
Bz 

d 
dt\dz 

d IB 

BT 
Bz 

= 0; Q, dz = Fz dz; Qz = Fz 

and the differential equation of motion is: 

mz = Fz 

It will be noted that these are the same expressions derived in 
Chapter II, Equation (8). 

Example 2. A simple pendulum consisting of a concentrated 
mass m and a weightless string of length / is mounted on a massless 
support which is elastically restrained by means of a spring having 

a spring constant k, as shown in Fig. 9-2. 
Write the equations of motion of the 
system, using Lagrange’s equations. 

-Solution. We shall use as generalized 
coordinates for this problem the angle <t> of 
the pendulum, and the displacement x of 
the point of support. The kinetic energy 
T of the mass is given by: 

T — \mvl = \rn\%2 + P<i>2 + 2±l<l> cos <f>] 

The potential energy Vof the system is: 

V — mgl( 1 — cos <(>) + \kx2 
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Lagrange’s equation for the ^-coordinate is: 

where 

d Id 
dt \dx 

d_ IdT\ _ dT dV = 0 
dt\dxj dx dx 

dT 
— = mx + ml<f> cos <f> 
OX 

— mx + ml<i> cos 0 — mlft sin 0 

dT n dV 
— = 0; —— = kx 
dx dx 

So that the differential equation of motion becomes: 

mx + ml<t> cos 0 — ml<t>2 sin 0 + kx = 0 

Lagrange’s equation for the ^-coordinate is: 

where 

d_(dT\ _ 
dt \ d<t>) 

d-? + d-K = o 
d<t> d<f> 

d_ld 
dt \ <30, 

dT 

~2 = m!2<f> + mix cos 0 
d(p 

= ml2<j> + mix cos 0 — mlx4> sin 0 

dV 
b<t> = ~m^ sin = m& sin ^ 

So that the differential equation of motion is: 

ml24> + mix cos 0 + mgl sin 0 = 0 

If we limit ourselves to a consideration of small oscillations of the 
system, a simple solution of these equations can be obtained. 
Setting sin 0 = <t> and cos 0 = 1, and neglecting terms of higher 
than second order, the two differential equations become: 

mx + ml<f> + kx — 0 
mx + ml<j> + mg<f> — 0 

Subtracting these two equations, we have: 

kx = mg4> 

Differentiating twice with respect to time, this becomes 

kx = mg<f> 
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Eliminating the x from the second equation by means of this 

expression gives: 

+ # + g<t> = 0 

Thus the pendulum executes small sinusoidal oscillations of fre¬ 

quency 

co = 

If the point of support of the pendulum is fixed, k = oo and the 

frequency reduces to the known value for a simple pendulum. 

PROBLEMS 

286. By means of Lagrange’s equations derive the differential equa¬ 
tions of motion for a particle in spherical coordinates r, 0, <£. 

287. A spherical pendulum is formed by a particle of mass m supported 
by a weightless string of length /. Using the angles 0 and </> as the coor¬ 
dinates, derive the two differential equations of motion by means of 
Lagrange’s equations. Show that these equations reduce to previously 

known results when 0 and are suc¬ 
cessively held constant. 

288. A particle moves in a plane 
and is attracted toward the origin of 
a coordinate system by a force which 
is inversely proportional to the square 
of the distance from the origin. Find, 
by means of Lagrange’s equations, the 
differential equations of motion of the 
system in plane polar coordinates. 

65. Lagrange’s Equations for a System of Particles. The 

methods of the preceding section, which lead to Lagrange’s equa¬ 

tions for a single particle, can be extended directly to a system of 

particles. There will be q\> y2 • • • qn coordinates required, where 

n is the number of degrees of freedom of the system. We shall, as 

before, consider that the coordinates are independent. By sum- 

Prob. 287 
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ming over the individual particles, and taking T as the total 

kinetic energy of the system, Lagrange’s equations will be ob¬ 

tained in the same form as found for a single particle. The 

analysis proceeds in exactly the same way as before, except that 

the summations now extend over all the coordinates of the system 

which may be more than three in number. In this way the num¬ 

ber of equations obtained will be just equal to the number of 

degrees of freedom of the system. 

Example 1. A rigid body rotates about a fixed axis under the 

action of a torque Mt. Find the equation of motion of the body by 

means of Lagrange’s equations. 

Solution. The position of the rotating rigid body is specified 

completely by one angle, <t>; hence the system has one degree of 

freedom. As was shown in the chapter on rigid body motion the 

kinetic energy of a rigid rotating body is: 

T = \I& 

where I is the moment of inertia of the body about the axis of 

rotation. The work done by the torque Mt as the coordinate is 

changed by d<j> is Mtd<f>, therefore 

Q* = 

that is, the generalized force is the torque Mt. Lagrange’s equa¬ 

tion then is: 

d Id dT 

z U4) ~ M, - 0; Jif> = Mt 

This checks the result of the analysis 

made in the chapter on rigid body dy¬ 

namics. 

Example 2. A pulley of moment of 

inertia I about its axis of rotation is 

restrained by a spring of constant ki Flo 9_3 

as shown in Fig. 9-3. From the other 

side of the pulley a spring of constant kt and a mass m are sus¬ 

pended, as shown. Find the equations of motion of the system. 
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Solution. We choose as the two coordinates the clockwise ro¬ 

tation of the pulley <t> and the downward displacement x of the 

mass. There is no energy loss, and we may write the potential 

energy of the system as: 

V = \k\(r<£)2 + \k2{x — r<t>)2 

The kinetic energy of the system is: 

T = \I<j>2 + \m%2 

Substituting these expressions directly into Lagrange’s equations 

we obtain the two equations of motion: 

mx + k2x = k2r<f> 
I$ + (ki + k2)r2<t> = k2rx 

A method of finding the solution of such simultaneous differential 

equations* will be discussed in the next section. 

PROBLEMS 

289. A rigid body oscillates about a horizontal axis as a compound 
pendulum. The moment of inertia of the body about the axis of rotation 
is /, and the distance from the axis to the center of mass of the body is a. 
Derive the differential equation of motion of the system by Lagrange’s 

equations, and find the period of small oscillations. 

290. A double pendulum consists of two equal masses and two strings 
of equal length and of negligible mass. Using Lagrange’s equations, find 
the differential equations of motion of the system for small oscillations. 

291. A rigid, straight, uniform bar of 

length I and mass m is pinned at one end 
and is supported at a distance a from the 
pin by a spring having a spring constant 

k. Find the differential equation of motion 

Prob. 291 

describing small oscillations of the system about the position of equilib¬ 
rium, and find the period of the motion. 
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292. The string of a simple pendulum is assumed to be elastic with a 
spring constant k. Taking as coordinates of the mass the displacement x, 
in the direction of the spring, and the angle </> made with the vertical by 
the spring, find the differential equations of motion describing small 
oscillations of the system. 

293. A rope of negligible mass passes over a fixed pulley with moment 
of inertia ft, mass mh and radius ri, and supports a movable pulley with 
moment of inertia /2, mass m2, and radius r2 as shown in the diagram. 
A concentrated mass m3 is attached to the one end of the rope, and the 
other end is fixed. Find the differential equation for the motion of the 
mass 7»3, as the system moves under the action of gravity. 

294. A car of mass M moves along a frictionless horizontal plane. 
The car carries a simple pendulum of length / and concentrated mass m 

as shown in the diagram. Two eaual springs of spring constant k attach 
the pendulum, at a distance a from the axis of rotation, to fixed walls. 
Find the differential equations of motion describing small oscillations of 
the system about the equilibrium position. 



244 ADVANCED METHODS IN DYNAMICS 

295, A circular gear of radius r rolls around the inside of a fixed circular 
gear of radius R under the action of a torque Mt. What is the differential 

equation of motion? Consider that the driving arm of radius (R — r) is 
weightless and rotates in a horizontal plane. The small gear has a mass m 
and a moment of inertia I about its axis of symmetry. 

66. Oscillations of Two-degree-of-freedom Systems. Consider 

a conservative system consisting of two equal masses m> and three 

equal springs ky connected as shown in Fig. 9-4. This is the 

r'\ 
KiMH 

I—^ 

I 
Fig. 9-4 

simplest type of system which illustrates the new features which 

appear in a vibration problem when more than one degree of 

freedom is present. Taking xi and Xt, the displacements of the 

two masses from the equilibrium position, as the coordinates of 

the system, we have: 

T = \m{$ i2 + ^2J) 
V = \kx? + \k(xi - Xi)2 + \kxt2 

= kxi2 + kx S2 — kxxxt 



TWO-DEGREE-OF-FREEDOM SYSTEMS 245 

Substituting these expressions into Lagrange’s equations, we ob¬ 

tain the two differential equations of motion: 

.. . n k k _ 
m m 

.. , „ k k _ 

Both equations involve #i and x2. Since a displacement of Xi 
changes the force applied to #2, such coordinates are said to be 

statically coupled. 

From the form of the equations, and from the nature of the 

physical problem, we expect the oscillations of the system to be 

harmonic, so we shall try a solution of the form e"* — cos ut + 

i sin ut. Thus we take a trial solution: 

*i = Axe™ 
Xi = Ai.e™ 

Substituting these into the differential equations and cancelling 

common factors, we obtain: 

(2- - u2) Ax - - A2 = 0 
\ m ) m 

- - Ax + (2 - - J\Ai = 0 
m \ m J 

Each of these equations gives a value for the ratio Axl Ai\ equating 

the ratios obtained from each equation gives: 

k/m (2 j ~ “*) 
k/m 

This gives the frequency equation for determining w: 

From this equation, two frequencies are obtained: 

k 
m 
3k 
m 

2 — 

co22 = 



246 ADVANCED METHODS IN DYNAMICS 

The frequency equation can also be obtained by noting that, since 
the two simultaneous algebraic equations involving A\ and A* 
are homogeneous, they have a solution other than zero only if 
the determinant made up of the coefficients of the A’s disappears: 

(*M B) 
H) HBi 

This gives the same frequency equation. 
To find the configuration of the system corresponding to the 

two natural frequencies of vibration found above, we solve for the 
ratio A\/A-l from either of the algebraic equations; for example: 

A\ _ kjjn 
A 2 , ^ o 

Substituting w\ = k/m, we obtain: 

(ft- 
or the two masses move in phase with equal amplitudes. Substi¬ 

tuting a>\ = 3 k/m we obtain: 

M\ _ , (ft- 
or the two masses move with equal amplitudes but in opposite 
directions, that is, with a 180° phase difference. 

For this particular problem we can easily see the physical sig¬ 
nificance of these two motions. If Ai = At the two masses move 
together with equal amplitudes and the center spring connecting 
them is neither extended nor compressed; hence it cannot effect 
the motion. The frequency of this vibration should thus be the 
same as for one of the masses restrained by only one of the 
springs, that is, w2 = k/m. For the motion in which the two 
masses always move in opposite directions, we note that the dis¬ 
placement is symmetrical and that the center point of the center 
spring can be considered as fixed. We can thus represent the 
system, for this type of motion, as shown in Fig. 9-5, which is a 
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single-degree-of-freedom system having a spring of constant 3k, 
and hence a frequency «2 = 3k/m. 

I 
I: 

, J 
pfficfnr- 

i 
Fig. 9-5 

f— 

-J 
t.—, 

j.— 

I 
I i 
I 

« 
J 

The complete solution of the problem can be written as the sum 
of four terms for each coordinate: 

*i = A\eia'1 + + Ateia*‘ + A2e~ia*' 
x2 = Aieiai‘ + Ai'e-io,'‘ — A2eiUi‘ — A2e~ia*‘ ^ 

where the constants A\ and A2 are determined from the initial 
conditions of the problem. The first terms in each of the ex¬ 
pressions represent the in-phase motion of the two masses, and 
the second terms represent the 180° out-of-phase motion. The 
most general motion of the system can thus be thought of as a 
superposition of the motions corresponding to the two natural 
frequencies. 

67. Principal Modes of Vibration. The two configurations of 
the system in the preceding section, which correspond to motions 
each having one of the natural frequencies of vibration of the 
system, are called the two natural modes of vibration. In general, 
by the word “mode” we refer to a motion of the system which 
can be described by a single frequency. We have seen that the 
solution of the preceding problem is the superposition of two 
modes of vibration, each having its characteristic frequency. 
There is often a decided advantage in choosing for the system 
that set of coordinates for which the motion of each coordinate 
has only one frequency. In the present problem this can be done 
by introducing the new coordinates qi and q% where: 

Xl ~j~ Xj 
qi~ 2 

Xi — Xi 
qi - 
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If we write the equations: 

*1 = A\eiuxt + Ai'e~ia^ + A2eiuit + A2'e~iait 
x2 = Anr4"'1 + Aie~<a'‘ - A^e1^1 — A2e~iUit 

in terms of these new coordinates, we have: 

qi = Aieiait + Ax'e-^1 
q2 — A2eiat‘ +A2'e~i“ ^ (117) 

and each coordinate involves only one frequency and one mode of 
vibration. Coordinates which have this property are called normal 

coordinates, and the modes of vibration corresponding to them are 
called the principal modes or normal modes of the system. 

Once the normal coordinates of a system have been determined, 
the problem has been essentially reduced to a study of a set of 
independent single-degree-of-freedom systems. This is illustrated 
by the system of Fig. 9-4, with a force F = F0 sin ut applied to 
the left mass (Fig. 9-6). Since we have already seen that the 

coordinates q\ — —, q2 = describe the principal 

modes of the system, we shall use them as generalized coordinates. 
Substituting *1 = qi + qi, *2 = q\ — q-i in the equations fo? 
kinetic and potential energy of the preceding section, we obtain: 

T = m{qiz + q22) 
V = k{qj + 3?22) 

To find the generalized force Q associated with the force F, we 
note that the work done by F during the displacement dx 1 = 
dqi + dq2 is: 

F dx\ — F dq\ + F dqt = Qi dq\ + Qx dqx 

j?i - F; Qt ■ F 

Hence: 
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Lagrange’s equations are now used in the form: 

d_ (dT\ _ dT , dV_ = n 

dt \dq) dq dq * 

Note that some of the forces acting on the masses have been 

included in the potential energy, while some have been left as 

generalized forces. Substituting into this equation, we obtain the 

two equations of motion: 
P 

miji + kqi = sin wt 

mq2 + 3kq- -S, 

These are two independent equations, each involving only one un¬ 

known, which describe the forced oscillations of the system. They 

are of the same type as the equations which were treated in the 

chapter on vibrations, so that the conclusions reached in that 

chapter as to the behavior of a single-degree-of-freedom system 

can be applied to the motion of the present two-degree-of-freedom 

system. It should be noted that any system whose kinetic and 

potential energies are sums of squares of the coordinates and do 

not involve cross-product terms will have independent equations 

of motion. One of the ways in which the normal coordinates of a 

system can be found is to determine the transformation of coor¬ 

dinates required to make the cross-product terms in the kinetic 

and potential energies disappear. In most problems it is not 

possible to deduce the normal coordinates by inspection. 

The method of this section may be extended to problems in¬ 

volving more than two degrees of freedom. Thus, in general, 

there will be as many natural frequencies of vibration as there are 

degrees of freedom, and each frequency will correspond to a prin¬ 

cipal mode of vibration. The mode having the lowest frequency 

of vibration is called the first, or fundamental, mode. The higher 

modes are sometimes called the higher harmonics of the system. 

PROBLEMS 

296. Derive the differential equations of motion for the system of 
Fig. 9-4 by a direct application of Newton’s second law in the form 
F = ma. 
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^ 297. Find the natural frequencies of vibration of the two-mass system 
shown in the figure. 

Prob. 297 Prob. 298 

298. Two simple pendulums having equal lengths / and equal con¬ 
centrated masses m are connected by a spring of constant k as shown 
in the figure. Find the frequencies of vibration for small oscillations and 
the principal modes of vibration of the system. What initial conditions 
would be necessary to obtain free oscillations of the system in the first 
mode without exciting the second mode, and vice versa? 

299. Two equal masses are attached to a stretched string of length 3/ 
as shown in the diagram. The tensile force in the string is F and can be 
assumed to be constant during small transverse oscillations of the masses. 
Neglecting gravity forces and the mass of the string, find the principal 
modes of vibration of the system and their frequencies. 

Prob. 299 Prob. 300 

300* A mass m with a moment of inertia I about its center of mass is 
spring-mounted as shown in the diagram. Considering only plane oscil¬ 
lations of the system it will be seen that the body can vibrate vertically 
and can also perform rotational oscillations about an axis through the 
center of mass. The two identical springs have spring constants k. Find 
the natural frequencies of small oscillations and the principal modes. 

301.* (a) Show that the displacement Xi of Equation (116) can be 
written as #1 = C\ sin w\t + C2 sin C02/ if = 0 when / = 0. 

(b) Show that, if wi is nearly the same as W2, so that coi — a>2 = Acu, 

X\ varies between the values (Ci + C%) and (C\ — C2) with a frequency 
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A«, as shown in the diagram. Ao> is called the beat frequency. Note that 
if Ci = C2, *i passes through zero at times corresponding to the beat 
frequency. 

302.* Find the natural frequencies of vibration of the double pendu¬ 
lum of Problem 290. 

303. Show that if the coordinates of a system are selected so that the 
kinetic and potential energies can be written in the form: 

T = \(Aq? + B<?22 + • • 0 
v = + B'qi + • • •) 

The equations of motion will each involve only one unknown and hence 
can be solved directly. Note that q\> q2y • • • are the normal coordinates 
for the system. 

68. The Calculus of Variations. The techniques of the calculus 

of variations play an important part in the development of ad¬ 

vanced dynamics. Although we cannot give here a detailed treat¬ 

ment of this subject, we can indicate the nature of the problem 

and the usefulness of the methods. 

In ordinary maximum and minimum problems we are generally 

given a function of several variables in the form: 

y =/(*i> • • •) 
and we wish to find the values of the x’s for which the function y 
has an extreme value. The necessary conditions for the solution 

of this problem are given by the equations: 

J2L = 0; = 
dx\ dx2 

In the calculus of variations we also have the problem of finding 

an extremum, but now the expression to be investigated no longer 
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depends upon a finite number of independent variables, but de¬ 

pends instead upon the behavior of one or more dependent vari¬ 

ables. The particular expression of this type which we shall 

investigate here has the form: 

I = J f(x,y,&jdx, where y = <t>{x) (118) 

Given the function /, we are to determine the function which 

will give I a stationary value. 

A simple example illustrating this type of problem is that of 

finding the plane curve which has the minimum length between 

two points. Suppose, as in Fig. 

9-7, that we have given the two 

points A and B and we wish to find 

the plane curve y = <t>{x) joining 

the points, which will have the 

shortest length. The length L of 

the curve is given by: 

dx 

so that we are to minimize an expression of the form: 

This is a special form of Equation (118) above. We shall intro¬ 

duce the general method of solution and notation by solving this 

problem. If the length of the curve y = 4>(x) is a minimum, the 

length of any other slightly different curve between the two 

points must be somewhat greater. This slightly different curve, 

which we have illustrated in Fig. 9-7, is called the varied path. 

The varied path passes through the points A and B, and has the 

ordinates: 

y + Sy = 4>(x) + ed(x) 

where 8y is the variation in y, and the small quantity < indicates 

that the varied path is slightly different from the minimum path. 

As the path changes from the original path to the varied path. 
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the value of the integral will change by a small amount SL, called 
the variation of the integral. 

We can find SL by noting that the integral sign and the variation 

can be interchanged, without altering the summation process, and 

that, since the integral is a function of ^ = y' only, we have: 

SL -1!'•>/*+ 
from which we obtain: 

SL -/■ 

4i = 
dx 

Sy' dx 

Sy' dx 

JL 
(1 +/2)* 

This gives the variation in the integral due to the variation Sy'. 

The variation Sy' in the slope of the curve is not arbitrary, but 

depends upon the variation Sy as may be seen in the following way. 

The slope of the original curve is ^ = y', and the slope of the 

varied curve is C? + = thus the variation of 

the slope Sy' is equal to (Sy), or 5 (~fcj = — (Sy). The varia¬ 

tion 6 and the derivative -y-, therefore, are commutative, and the 
ax 

integral can be written: 

sL -f[ (1 + y'2)idx («y)] dx 

The integral may be transformed by integration by parts to 
give: 

SL-3—, Sy\‘-f‘U—3-—jl Sy dx 
(1 + /2)* U M dx L(1 + y'2)iJ 

Since by definition Sy vanishes at A and B, the first term is equal 

to zero. 

If the function y = <f>(x) makes the length of the curve a mini¬ 

mum, then L has a stationary value for y = <f>(x), and any in- 
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finitesimal variation in the curve does not change the value of 

the integral. The condition for the stationary value is 5L — 0: 

The only way in which this integral can vanish for arbitrary 

variations by is for the term in the brackets to vanish. 

-fCy?' )-0 
dx \vT+ y'V 

This can be integrated once to give 

y 
Vl + /* 

— constant 

Solving this equation for y' gives 

y — C\X + C2 

This is the function y = <j>(x) which makes the length of the curve 

between A and B a minimum. As expected, the required curve is 

a straight line. 

69. Euler’s Differential Equation. The procedure followed in 

the preceding example may be carried out for the general problem. 

We shall consider an integral which is a function oty,y', and x: 

I = /» x) dx. where y = 4>{x) 

The condition for an extreme value for the integral is: 

SfAS(y>y’> x)dx = 0 

As we move to a varied curve, we have, corresponding to a par¬ 

ticular value x, the variation by in the ordinate and the variation 

by' in the slope; thus 

*/>/, *)dx = sy + -!y syj dx = 0 
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As shown above: 

d 
by' = 5 

dx) dx 
(fry) 

hence we may write: 

r(fSj, + ^a<w)*-0 5y' dx 

Integrating the second term by parts: 

F-f, ~ (by) dx = by 
JA dy' dx J' dy' J 

Since 5y is zero at both A and B, 57 may be written: 

57-f[f“ Uv)]SyJx-0 

B r* d (df\t , 

Since by is arbitrary, the expression within the square brackets 

must be zero in order to insure the vanishing of the integral, so 

that we have finally, as the necessary condition for the extreme 

value: 

dx \dy'J dy 
(119) 

This is cal^jgd Euler’s differential equation, and its solution, 

y = <f>(x), extremizes the integral: 

1 =fAy’y,’x^ dx 
If the integral to be extremized is a function of more than two 

variables, such as: 

1 ==I/(t,X’y’Z> ^ dt 

where x,y,z are dependent variables and t is the independent 

variable, the same reasoning can be carried through, and the 

following result will be obtained: 
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If bx, by, and bz are independent, the only way in which the 

integral bl can vanish is for: 

1(1)-l-° <120> 
dt \dz) dz 

These are Euler’s equations for this problem. 

If the integral to be extremized contains derivatives higher 

than the first, as for example: 

I-f*J(y,y'>y",x)dx 

the condition for a stationary value becomes: 

Proceeding in the same way as above, integrating the second term 

by parts once and the third term twice, we obtain: 
H 

So that the necessary condition is: 

£(£f)+ £•($) =0 (121) 

Example 1. Find the equation of the plane curve which has 

a minimum length between two points, using Euler’s differential 

equation. 

Solution. In this problem, as shown above: 
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So that Euler’s equation becomes: 

£[|:V3T7i]-|[vT+75]-o 

A[. 
dx L(1 + 

= o 

= Ci 
(1 +/2)4 

As was shown above, the solution of this equation is: 

y — CiX -{- Ct 

Example 2. A particle, under the action of gravity, slides along 

a smooth curve which lies in a vertical plane. Find the form of 

the curve for which the time required for the particle to move 

from A to B is a minimum (Fig. 1 '—8). This is the famous problem 

of the Brachistochrone, which was formulated in 1696 by John 

Bernoulli and which began the modern development of the cal¬ 

culus of variations. 

Solution. The time required for the particle to traverse an arc 

length ds is ~ (Fig. 9-9), so that the total time required for the 

particle to travel from A to B is given by: 

M v 

From the principle of the conservation of energy we have v — 
V2£y, so that the integral becomes: 
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This integral is of the form: 

■jjO',/) 

If Euler’s differential equation is applied directly, we obtain: 

//fari -l. a n _i_ did 

1- 
V

 
+ v—

1 Lir 1 + y2l1 
dx \dyr L 2sy J 1 dy L 2&y . 

This leads to a rather complicated differential equation, which 

we may avoid by noting that whenever the integral to be mini¬ 

mized is not a function of the independent variable x one integra¬ 

tion of Euler’s equation can be performed in general terms as 

follows: 

1 = dx 

Substituting/^,y) in Euler’s equation gives: 

-3Ly + i!/- - if = o 
dy'dy* dy'2^ dy 

Now multiply through by yr, and add and subtract the term 

dy' 

y'l JPj— _1_ y'y" y" _ y" QL _ y> = Q 

J ayaj ay2^J ay J ay ajJ 
The first three terms of this expression are equal to — ^y' —-j 

and the last two terms are equal to — jjf, so that we have: 

Integrating this directly gives: 

y'H? c 

For the Brachistochrone problem: 

and i 
and ^_ 

dy/ [2gy(l +y# 
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and the differential equation is: 

(/)* _ n +/n* = c 
[2*7(1+/*)]* l 2gy ] 

Solving for/ gives: 

dy /l — 2C~gy 

dx ~ V 2C2*y 

This may be shown to be the equation of a cycloid which is the 

curve traced by a point on the circumference of a circle as the circle 

rolls along a straight line. In the coordinate system shown in 

Fig. 9-10, the coordinates of the point P which traces out the 

cycloid are: 
x = r(d — sin 0) 

y = r(l — cos 0) 

Substituting these into the equation for dy/dx, we obtain: 

sin 0 _ [1 - 2C2ffr(l — cos0)~|* 

1 — cos 0 |_ 2C2<gr(l — cos 0) J 
Squaring both sides and setting sin20 = 1 — cos2 0 = (1 — cos0) 

(1 + cos 0), we have: 

1 + cos 0 _ 1 — 2C2^r + 2C2jgr cos 0 

1 — cos 0 2C2gr(l — cos 0) 

If we put 2CPgr = this equation is identically satisfied, so that 

the Brachistochrone is a cycloid of radius r — 
1 

4 cy 
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PROBLEMS 

304. A flexible cable of span / hangs under its own weight. The shape 
which it assumes is such that the total potential energy is a minimum. 
Set up the integral for the potential energy of the system and minimize 
this integral to find the equation of the cable. 

306. A container of height h has a circular top and bottom, each of 
radius R. The surface of revolution of the container is axially sym- 

Prob. 305 

metrical. What should be the shape of the sides to give a minimum 
surface area? 

306.* In the Brachistochrone problem the stationary value of the /ds —— 
— is to be found. Substitute v = V2gy and ds = Vl xn dy 

dx 
where x' = —• Treating y as the independent variable and x as the 

dependent variable, show that this leads to the correct solution of the 
problem. 

70. Hamilton’s Principle. It will be observed that Euler’s 

differential equation, Equation (120), which is the condition for 

extremizing a certain integral, has the same form as Lagrange’s 

equations of motion. Writing Lagrange’s equation for a conserva¬ 

tive system in the form: 

IK(r-n]-^(r-r)-0 
we see that an equivalent form is: 

sJ\t -V)dt = 0 (123) 
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This is called Hamilton's principle, and it states that the actual 

path followed by a dynamical process is such as to make the 
integral of (T — V) a minimum. 

For non-conservative systems, Hamilton’s principle may be 
written: rh 

I (5 T + hW)dt = 0 (124) 

where hW = 2j5qt, Qi iqi being the increment of work corre¬ 

sponding to the variation hqt of the coordinate 

Example 1. Find by Hamilton’s principle the equation of 

motion for a single-degree-of-freedom, undamped harmonic 
oscillator. 

Solution. For such a system, T — \mx2 and V — \kx2\ thus: 

sj^ (%mx2 — \kx2) dt = 0 

Applying Euler’s differential equation to minimize the integral 

we have: / = \mx2 - \kx2 
hence: 

4- (mx) + kx = 0 
dt 

mx + kx = 0 

Example 2. A straight beam having a length /, a mass per 

unit length p, a cross-sectional moment of inertia /, and a modulus 

of elasticity E performs free transverse vibrations as indicated 

in Fig. 9-11. Using Hamilton’s principle, find the differential 

equation of motion of the system. 

Solution. From the theory of elasticity we know that the po¬ 
tential energy of bending of the beam is: 

1 PM* 
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where M is the bending moment in the beam, and M = Ely" = 

El The kinetic energy of the beam is T = \ [ py2 where 
u# yo 

Hamilton’s principle now states: 

Instead of applying Euler’s differential equation to the solution 

of the problem, we may go through the steps which lead to Euler’s 

equation. In some instances this procedure may be simpler than 

a direct substitution and solution of Euler’s equation. 

Performing the variation indicated by Hamilton’s principle, 

we have: 

(pyby — EIy"by") dx dt = 0 

Writing by = ~ 5j, by" = ~~~ and integrating by parts, we 
^ ' dt dx~ 

obtain: 

{—py — EIy1Y)by dx dt = 0 

The integrated terms disappear since they are all equal to zero. 

Now, since by is arbitrary the expression within the brackets must 

be zero, thus giving the differential equation for the vibration of 

the beam: 

EI^I + p^l 
E1 dx4 + P dt2 

As may be seen from the foregoing examples, Hamilton’s prin¬ 

ciple does not lead to simplifications when applied to the prob¬ 

lems with which we have been concerned in this book. In more 

advanced analysis, however, Hamilton’s principle is the starting 

point for a number of developments in the science of mechanics. 

It should be noted that Hamilton’s principle is a restatement of 

Newton’s laws and cannot, of course, introduce any new informa¬ 

tion into the subject. 
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UNITS OF MASS AND FORCE 

In principle a single unit of mass with its corresponding unit of force 
is sufficient for all purposes. In practice, however, a number of different 
units may be encountered. Since units are often used without a specific 
statement as to their definition, misunderstandings may result. 

Perhaps the greatest source of difficulty is associated with the fact 
that the same name “pound” is given both to a unit of force and to a 
unit of mass. It is customary among engineers to use the name “ pound,” 
without qualification, for a force. On the other hand, the only legal 
definitions existing in the United States define the pound as the unit of 
mass. The engineer should thus understand that any “standard weight ” 
calibrated by the U. S. Bureau of Standards will be essentially a standard 
of mass, and that any measurement of the weight of a body, which is 
made by means of a balance or spring which has been calibrated by such 
a “standard weight” will be actually a measure of the mass of the body. 
The possible error due to a confusion of the two units might seem to be 
negligible, since the variation of the acceleration of gravity is small. It 
is conceivable, however, that this error might be of concern in the 
calibration of high-precision testing machines or in the weighing of very 
expensive materials. It should be understood that the statement that 
one pound-mass has a weight of one pound-force is only approximate, 
and the fact that the error involved is small should not be permitted to 
obscure the fundamental difference between the concepts of force and 
mass. 

The following definitions will indicate the precise meanings which are 
to be attached to the various common terms. 

Units of Mass 

Standard Kilogram (kg)—The international standard of mass. The 
mass of a particular body in the possession of the International 
Committee of Weights and Measures in France. 

Gram (g)—One one-thousandth part of the standard kilogram. 
Pound, or Pound-Mass (U. S. Avoirdupois) (lb, lb-m.)—Legally de¬ 

fined as —-— part of the standard kilogram. The U. S. Bureau 
2.2046 * 

of Standards at present uses a more accurate definition which states 
that the pound is equal to 4S3.S924277 g. 

265 



266 APPENDIX II 

British Imperial Pound—The mass of a platinum cylinder kept in the 
Standards Office, England. The legal equivalent is 453.59243g. 
Hence it may be considered as practically equivalent to the U. S. 
Standard Avoirdupois Pound. 

Slug, or Geepound— A unit of mass having a magnitude such that a 
force of 1 lb applied to a body having a mass of 1 slug would result 
in an acceleration of 1 ft/sec.2 

Units of Force 

Pound) Pound-Force, Pound-Weight (lb, lb-f, lb-wt)—The force re¬ 
quired to give a mass of 1 lb an acceleration of 32.174 ft/sec.2 

Poundal—The force required to give a mass of 1 lb an acceleration of 
1 ft/sec.2 

Dyne—The force required to give a mass of 1 g an acceleration of 
1 cm/sec.2 

Gram-Weight—The force required to give a mass of 1 g an acceleration 
of 980.665 cm/sec.2 (32.174 ft/sec.2) 

The names of the following quantities are frequently used incorrectly. 
The definitions given are believed to represent the most commonly ac¬ 
cepted engineering practice. 

Specific Weight—The weight per unit volume of a material. 
Specific Mass—The mass per unit volume of a material. 
Density—Same as Specific Mass. 
Specific Gravity—The ratio of the specific mass of a material to the 

specific mass of some standard material. Unless otherwise stated 
the standard material is taken to be water at 4° C. 
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VECTOR PRODUCTS 

Two different vector products are defined and used in mechanics. 
The scalar or dot product of two vectors is defined as the scalar quantity 
having a magnitude equal to the product of the magnitudes of the two 
vectors multiplied by the cosine of the angle between the two vectors. 

a • b = ab cos 6 

Scalar multiplication is both commutative and distributive, that is: 

a b = b a 
a • (b + c) = a b + a • c 

Written in terms of the unit vectors i,jy k along an orthogonal coordinate 
system: 

a = axi + ayj + azk 
b = bxi bvj + bzk 

a • b = aj?x + avby + ajbt 
since 

i • i = j j = k k = 1 
i . j = j . i = i . k = k • i = j • k = k • j = 0 

The or product of two vectors is defined as a vector whose 
magnitude is given by the product of the magnitudes of the two vectors 

multiplied by the sine of the angle between the two vectors. The vector 
product is perpendicular to the plane containing the two vectors and has 

267 
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the direction of advance of a right-handed screw turned from the first 
vector to the second vector. 

a x b = ab sin 6el 

Vector multiplication is distributive: 

ax(b + c) = axb + axc 

but is not commutative: 
axb=-bxa 

Written in terms of the unit vectors i, j, k, we have: 

axb = (aj>, — atby)i + (a,bx — ajbc)j + (aj>y — aj>m)k 
since 

ixi=jxj=kxk=0 
i xj = —j X i = k 
i xk = —k x * = —j 
j xk = -ft xj = i 

This may also be written as: 

i j k 
a x b — (/j a* 

bx by b. 
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PROPERTIES OF PLANE SECTIONS 

The following symbols will be used: 

A — Area 
Xoy yc = Coordinates of centroid of section in xy coordinate system. 

Ixcy Iye = Moment of inertia about an axis through the centroid parallel to the 
xy axes. 

r*c, rVc = Radius of gyration of the section with respect to the centroidal axes 
parallel to the xy axes. 

Ixcyc = Product of inertia with respect to the centroidal axes parallel to the 
xy axes. 

Ix> ly = Moment of inertia with respect to the xy axes shown. 
rXy rv = Radius of gyration of the section with respect to the xy axes shown. 

I xy = Product of inertia with respect to the xy axes shown. 
IP = Polar moment of inertia about an axis passing through the centroid. 
Tp = Radius of gyration of the section about the polar axis passing through 

the centroid. 
G marks the centroid. 
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PROPERTIES OF HOMOGENEOUS BODIES 

The following symbols will be used: 

p = Mass density 
M = Mass 

xc>yey zc = Coordinates of centroid in xyz coordinate system. 

IXey IVc, IZc = Moment of inertia about an axis through the centroid parallel 

to the xyz axes shown. 
r*c, rv<*> r*c = Rac^us gyration of the body with respect to the centroidal 

axes parallel to the xyz axes shown. 
/*cyc, 7Xc*c, etc. = Product of inertia with respect to the centroidal axes parallel 

to the xyz axes shown. 
Ixy Iv> h = Moment of inertia with respect to the xyz axes shown. 

rVy rz = Radius of gyration of the body with respect to the xyz axes 
shown. 

IxV> Ixt, etc. = Product of inertia with respect to the xyz axes shown. 
IaAj taa = Moments of inertia and radii of gyration with respect to special 

axes shown. 
G marks the centroid 
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ANSWERS TO PROBLEMS 

10. 
12. 

14. 
15. 
16. 
17. 

18. 

21. 

22. 

24. 
26. 
27. 
28. 
30. 
31. 

33. 

Terminal velocity is proportional 

to Vr. 
Using measured velocity, 
mv( 1 ± 0.055) 
Using computed velocity, 
mv{ 1 ± 0.045) 
±912 ft 
R( 1 ± 0.0305) 
4.4 ft/sec2; 8.8 ft/sec2 
377 sec; v — 3v' 

Vo(v — t>o) (v — Vo)2 

34. * = 
vT+4^52 

— 2aBv 

Vl + 4asfl*’ 
— 

37. 
2^/ 

(100/* ± o) 
^10,000 + o2 

39. (a) 3186 lb; (b) 53.7 ft/sec2 
40. (a) 805 ft; (b) 526 ft 
41. 3mg 

42. / = Vo 

£sin 6’ 
/ = 

1 Vo* 
2 g sin 6 

43. for / < 0.6 
mo 

x = *o ■, . ~ 
a 2a 

er — 6eo + 0 sin 
= — <£ cos 0C0 — cf> sin 0<?r 

e# = — 0er + 0 cos 
v as f =5 rer + rde0 + r<p sin Oe# 
a — r ~ (r — rff1 — r<p2 sin26)er 

-±(2r0 + rti — rep2 sin 6 cos 6)e& 
+ (2r$ sin Q + r<j> .sin Q 
+ 2r<j>6 cos 9)e<p 

v - 56i — 140i — 112/? ft/sec 
(b) aaet; —cza)2e» 
0,1 = — (QV + co2r + 2cofir)en 
o = 79,900 ft/sec2 
a = -8730i-443j+264fe ft/sec2 
a = 5.34 X 10~% — 0.084er — 
0.049e# ft/sec2 
(a) x — a — 3bt2;y = 2 = 0 

X = — 6bt; y — z ~ 0; 

*max==fl\/£-*(&) 
(b) Fx = -4.66 lb; Fv = F. = 0 

V 

y = 
P/ 

? («0—c/) log \7W0 — f// CtJ 
si 
2 

44. 9 
P 

Vo-/ 
m 

45. 
46. 
47. 
48. 
49. 
61. 
52. 

54. 

65. 

56. 

67. 

1010 ft/sec 
6.78 ft/sec 
(a) —2.2 ft/sec; (b) 80.5 ft/sec 
2.61 lb sec; 0* = 102°50' 
F = pAv2\ F = 72.6 lb 
384 ft/sec 
\kx2 

- § (- /)2 

- _L 

2r i Ki 
k' = 2k 

£(^ + s.) 

44.9 ft/sec 
36,900 ft/sec_ 

58. 
59. 
60. =v/2^(^2 ~ Ai) + 022 
61. 5.09 ft/sec 

(b) 
-\W 

“•lsloe(‘+H 63-«[l+Vl+f] 
36. tfc = V2/tg/ 65. 16.1 in.; 12.4 in. 

fVi -wx- fd\ 
Wx+Wt J 
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66. 3.86 ft/sec 
67. 373,000 lb 
68. 317 ft; 23.7 sec 
69. 23.9 ft/sec; 212.8 ft 
70. 1.86 X 10s ft-lb; 

= 186,000 lb 
71. 8.25 ft 
72. 17.3 mph 

73. Ft = F* = ej^f 

74. 20.7 ft/sec; 14.4 lb sec; 0.965 sec 

76. ymax — ^static! 1 "1“ \j 1 H 
L \ ^static-. 

[E 
76. c = « = vrp 

78. 2 =■ j (leg cosh e) 

„„ . , W lb sec 
80. 584 ft/sec; k = — —; 73.5 ft 

81. (a) n < 1; t = 

(b) » < 2 

(C) ^.oo = j 

82. 11,600 ft 

83. — sin 26 

*(1 - n) 

0_ . mg sin a , 
87. * =-4/-£-tanh- 

sin a 

88. Xtfzmo = 

Vmg sin a 

77~ 
xoyo 

(i + ii) 
\ mg) 

90. + -—- - 0; 
(*2+y)* 

my H-——I = 0 
(*2+y)* 

91. x = At sin 1 + Fxj; 

y = Av sin t + By) 

92. (a) a: = r2 sin atf; 

= r1sin(|<o/) 

os/i 
84. R --to* cos* 8 (tan 0—1); 

Z 
0 R «max = 67| 

. (0x - ej\ 

85 8mV l ) Z*t 
(01 + 9,\ 2b# 

COSV 2 / 

“■'■flo8(v,+ 1) 

-S'(s-+‘) 

(b) j = 2x 

(c) x = — vy,2 — jy2 
ri 

93. £ = -32.4 ft/secs 

94. i»jr/?(l-~) 

98. ^ = 1 - 

100. 0.922 
101. tan 02 = —* tan 0i 
102. *2 = #1 — 2nyi 

103. Direction of approach = direc¬ 
tion of departure for both (a) and 
(b) 

105. 1.88 X 1010 cm/sec classical 
1.64 X 1010 cm/sec relativistic 

112. p2 =* 2^/(length of liquid column) 

113. f = — 
a 

Ul~ + ci + 2?i^^-0: 

116. f 

2ir \ mPo 

2k£_g 

" mP 1 
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116* 

119. 
122. 
123. 
124. 
126. 
127. 

(l+4a2x2)x+4a2xx2+2agx — 0; 

/=i-V2^ 

3.92 in.; 2.02 cycles per second 
n = 0.191 sec_1;r = 0.905 sec 
0.0825 ft; 0.032 ft 
* = (Ci + 
0.083 ft 
n — 8.42 sec”1 

131. x 

132. 

133. 
134. 
136. 
136. 
140. 

Fo /sin pt \ 
-(-'-/cosy>/ 

Imp \ p ) 

163. * = 

164. 

(ikl2 — AmTr2v 
k - 135 lb/in. 
83.7% 
k = 18,500 lb/in. 
115 lb; 588 lb/in. 
0.008 in. 

(F - timg)l 

166. 

168. 

169. 

160. 

161. 

163. 

w* 

m 4-M/ 

Kt)'+H 
P ,/A 

“(f 

F(a/) 
Vc - 

a 

H 

2m 

= 4m/2ci> 

164. vi - 

r2 = 

Wi *T* ^2 

-^-V2Th 
m i 4- m2 

r0 
166. — — t>o 

ri 
166. Deduce answer from the fact 

that Jf = constant, and mo¬ 
mentum is (mi 4- »22)vc = 
(mi 4" 0*2) [Ci* 4- (C2 — £/)./] 

169. v = 2y0 

170. vd = *o(f — i) 

171. o<7 = ° 

[F — mO 4- M)^] 
Smvj; 6.5mv2; 5.33*»y2; vc = 

*« * J (14- Hi) 

172. 

173. 

174. 

176. 

176. 

vc 

__(d£\ 

W 

C02 = 22.6 rad/sec; 
w3 = 10.5 rad/sec; 
d)2 = 746 rad/sec2; 
cb3 = 945 rad/sec2 

vA =25 (1 + -y)* 
4-12.57 ft/sec; 

va = —625/ ft/sec2 

vc — 430 in./sec; 
vc = 29,500 in./sec2 

va = 0 

™='(R-r)(Per 
vc = 

+ r0e* 

177. 

178. 

179. 

180. 

181. 
182. 

183. 

184. 

vc (R - r) 
\mr5 
j\m(a2 4- £2); ^twO*2 4“ #0 
xV^(3F2 4- F) 

Iy =2190p; 7z = 476p lb in. sec* 

+ 2^2) 
0.0518 lb ft sec2 

_ wF2 _ 
J-xy-« -**V 

Iy$ — Ixt 0 

= ~^mR!= Iv'.> 

188. -gVW2 sin 2a 
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189. ^01(32^ + 4Z2) sin2 a 
+ %mR2 cos2 a 

190. I*, = - jj sin 2a; 

191. 

//✓ = 0 
Ma1 
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216. [I + '-jR^j6 

/Wn 
217. e + 

219. p * 

RW 

(Wa . \ n 
(l7sin“/* = 0 

2#T(l+a2)(vT+^-l) 

192. 0 
193. \MF? sin 2a 
198. CO = 30* + 67.5j + 85ft 

T = 147,000 ft lb 

199. Fa = 51* lb; 
Fb = —35.5* + 50/ lb 

200. Slips at 1.34 ft/sec2; 
tips at 8.05 ft/sec2 

202. 9410 lb at each pin 

yWV3\ 
203. r 

Vs 
1 + /*’)* 

2F 

reaction force = 

204. x — g tan <t> 

^ rn ** ■ ^ ™ ™ 
206. Id-— + -g-— + 70o/+ 70o 

\AttNM 

" \ 7 
/coo 

207. 
\ / 

208. / = oo; ~~ revolutions 

209. Climax — 

mo / = fmh.t = m./. 
210 /tPr*2’ 

2?r£ 
M 

211. ^ « 0o sin co/ 
fe) 

i - 

212. 495,000 ft lb; 2350 ft lb 

213. t = 2ir. 
RfT mR 

214. a = 

216. oil 

mR 
2(m+M)(I+mP)g 

' mH 

:F At 

220. 25201b 
m P sin a cos a 

3gh T 

222. r - 
m i 

(H 
_ 1 mr1^2 . _ 

224. Y\ = — Yi = q —;— sin 2a 
8 / 

1 TWO)2 / A2\ . . 
226, i ~r _ jJsin 2a 

meu? 

F = 
mccPabia2 — P) 

12 (a2 + P)i 
227. left 29.6 lb, right 23.7 lb 

___ .. RW sin a 
228. fl =- 

9 (MR2 + 7) 

229. tan a = 3/x 

230. } = %g;F = j 

231. h = \R 

233. 6 + Y—; 0 = 0 

234. d = 

7 (R - r) 
L 
ml 

236. vc = 40.6 ft/sec; 
vw — 81.2 ft/sec 

fw2 
2 

236. c;3 

i l/ acv, 

(?--) 

237. 

238. IV — mg *4* 

/«*2 , , Ii , h \ 
U+m + 7s + w) 4 

0;*2 = v 
Mg Mu* 

2 ± 6R 

(l-cos0o) 

J 2Rl ~ 6R 

240. At piston, F = (—3200i 
— 710/) lb; at crankpin 

F - (5600/ + 150Q/) lb 
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241. 

242. 

246. 

246. 

247. 

248. 
262. 
263. 
264. 
267. 

268. 

269. 

260. 

261. 

262. 

263. 

264. 

266. 
267. 

268. 

a_ 
10 
m 

m 
r p/Q 
F RJ 

The gyro must be free to precess 
in the proper direction 

Magnitude of torque = V^ 

Overturn 

Stress in rod = 255 lb 
1601b 

mid + 2m v6 
Wr! = 12.3 lb, 9\ = 243°; 
#7 = 7.95 lb, 06 = 77.3° 

/ + mR2 M 
kR2 ) 

2 Imu2 — 2(^i + m)g 

R 

2t 
a- 

X = 

0 + 

2k + mu2 

0 

270. 
271. 

272. 

Pb = p + 
/>c = p + P^(/il — ^2) 

V —V Vy2 — 2g(z — h) 

•-yffif3)** 
F= pi?A 
F — pi(Ai — At) 

+ (^kd± _Ai\j\ 
\ 8 //2 4AjJ J 

piPAR 

Fa = [(pi ~P2)+(pitfi2—P2^22)]^ 
No effect if bird has zero accelera¬ 
tion 
Increases pressure by pi where 

JndA~W 

276. 

276. 

278. 

F = (pi + Piv?)Ai 
~(pt + p.v.2)A, 

263 ft/sec 

where c = 
pvcA 

+ V1 + ^wJ 

2AV27h.^M 280. 

281. 0.29 ft lb 

283. 

cos a 

284. 

286. 

287. 

288. 

289. 

290. 

291. 

292. 

'-AK-iM 
Fr — m(r — rd2 — r02 sin2 6) 
F$ = w(2r0-fr0—r02 sin 6 cos 6) 

m d 
F* = 
^ = ^7/(rasin2^ 

0 — sin 0 cos (fro2 = — 
ffsin 0 

/ 

4* 
(Z2 sin2 00) = 0 

*(?-**) 

r0 + 2f0 = 0 
Id + kVa sin 6 = 0 

20 + ^ = -^0; 

9 + <(> = 4> 

8+S1’-0 
r .. k k 

0 -f- — 0 = 0;# + # = Xo 
xq mm 

where #o = length of spring 
under gravity at 0 = 0 

293. vs 
(?-*) 



286 

294. (M+m)x+2kx=—ml<j>—2ka<t> 
mix + 2 kax = —mPij> 

— {mgl + 2ka')4> 

296. + £J(X - rye = Mi 

ANSWERS TO PROBLEMS 

. F 

297. 
2 \ mi m<ij 

4- 1 /a1 ^2 ^2 y _ 4^i^2 
“ 2 \ \ Wi ^2/ W1W2 

m“'-7 + S±S 

ml 
(2± 1) 

300. <oj = 
2* 

; o>2 = 

302. to* = j(2 ±V2) 

301 ^ = V(c)J" 1 
jy = c cosh ^ 

306. jy = C cosh 
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Absolute Motion, 32 
units, 6 

Acceleration, 23 
normal, 26 
of Coriolis, 33 
of electrons, 86 
of gravity, 3 
relative, 33, 38 
tangential, 26 

Accelerometer, 121 
Adiabatic process, 228 
Advanced dynamics, 231 
Amplitude of vibration, 102 

resonant, 111, 113 
steady-state, 110 

Angle, phase, 102 
Angular momentum, 137 

velocity, 30 
Anode, 86 
Apparent mass, 83 
Array, 155 
Avogadro’s number, 226 

Balance, dynamic, 174 
static, 174, 179 

Balancing of rotor, 173, 202 
Ballistic pendulum, 176 
Bar, dynamic loading, 62 
Beam deflection, dynamic, 58 

vibration, 261 
Bearing reactions, dynamic, 173 
Beat frequency, 251 
Bernoulli, John, 257 
Bernoulli’s equation, 207 
Biot, M. A., 263 
Blast wall, 177 
Bloch, E., 263 
Boltzmann’s constant, 226 
Boyle’s law, 226 
Brachistochrone, 257 
Bridgeman, P. W., 263 
British pound, 266 

Brown, F.L., 263 
Bucherer, A. H., 84 
Buckingham, E., 11 
Byerly, W. E., 263 

Cable, flexible, 260 
Calculus of variations, 251 
Capacitive reactance, 129 
Catenary, 260 
Cathode-ray oscilloscope, 87, 92 
Center of curvature, 27 

of mass, motion, 132 
of percussion, 176 

Central impact, 82 
Centroidal axes, 153 
Charge on electron, 83 
Chasle, M., 144 
Cockroft, J. D., 91 
Coefficient of restitution, 81 

of viscous damping, 95 
Compound pendulum, 175, 176 
Conic orbit, 78 
Coning angle, 39 
Connecting rod, motion, 44 
Conservation of energy, 55, 60 
— gyroscope, 195 
Conservation, moment of momentum, 

138 
— gyroscope, 195 
Conservation of momentum, 47 
— systems of particles, 48 
Conservative force, 55 

systems, 55 
Continuity equation, 212 
Coordinate systems, 25 
— moving, 4, 31 
Coordinates, generalized, 231 

independent, 232 
normal, 248 

Coriolis acceleration, 33, 38, 39 
Coupled pendulums, 250 
Coupling, static, 245 
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Courant, R., 263 
Critical damping, 106, 107 
Cross product, 267 
Cycle of vibration, 98 
Cycloid, 259 
Cyclotron, 91 
Cylindrical coordinates, 25 

D’Alembert’s principle, 195 
Damped vibrations, 103 

forced vibrations, 107 
free vibrations, 103, 106 

Damped, over, 104 
Damping, critical, 106 

equivalent viscous, 96 
factor, 92 
force, 94 
viscous, 95 

Dashpot, 95 
Daugherty, R. L., 263 
Degree of freedom, 93 
Den Hartog, J. P., 263 
Density, 266 
Differential equation, Euler’s, 254 

of beam, 262 
of vibration, 97, 107 

Differential, exact, 53, 59 
Dimensional analysis, 9 
— drag force, 14 
— derived units, 5 
— dimensional consistency, 7, 16 
— dimensionless graphs, 14, 15 
— dimensions of quantities, 6 
— experimental applications, 13, 15 
— fluid flow through pipe, 17 
— fundamental units, 5 
— independence of fundamental units, 

16 
— 7T—terms, 8 
— t—theorem, 11 
— Reynolds number, 15 
— terminal velocity, 18 
— transcendental functions, 8 
— wave velocity, 17 
— Weber’s number, 18 
Direction cosines, properties, 154, 158 
Displacement, description of, 23 

measuring instrument, 120 
Dot product, 267 

Double pendulum, 242 
Drag coefficient, 15 

force, 14, 60, 63, 65 
in rarefied atmosphere, 18 
of fluid, 15 

Drop hammer, 107 
Dynamic balance, 174 

beam deflection, 58 
bearing reactions, 173 
loading of bar, 62 

Dynamics of electron, 83 
of gases, 223 
of a particle, 40 
of vibration, 93 

Dyne, 6, 266 

Efficiency, propulsion, rocket, 222 
Einstein, A., 91 
Elastic impact, 81 
Electric charges, potential, 61 

circuit, equation, 128 
circuit, oscillations, 127 
field, force, 84 

Electrical impedance, 129 
Electrical analog computer, 129 
Electrical-mechanical analogs, 128 
Electron acceleration, 86 

apparent mass, 84 
charge, 83 
dynamics, 83 
mass, 83 
rest-mass, 84 

Ellipse in polar coordinates, 75 
Elliptic harmonic motion, 71 
Emerson, W., 40 
Energy, conservation, 55 

definition, 50 
Energy equation, 55 
— fluid, 207 
— rigid body, 164 
— systems of particles, 134 
Energy input per cycle, 112 

kinetic, 50 
loss in impact, 81 
loss per cycle, 106, 112 
mass, equivalence, 89 
method, 72 
potential, 54 
quadratic form, 251 
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Equation, frequency, 245 
Equation of motion, 24 
— integration, 41, 45, 49, 51 
— Lagrange, 234 
— relative, 33 
— rigid body, 162 
Equation of work-energy, 49, 60 
Equivalence of mass and energy, 89 
Equivalent viscous damping, 96 
Errors, analysis of, 19 

experimental, 18 
Escape velocity, 53 
Euler's angles, 188 

differential equation, 254 
equations of motion, 163 
theorem, 233 

Exact differential, 53, 59 
Exciting force, 94, 96 
Experiment-theory, agreement, 18 
Extremum, 251 

Factor, damping, 97 
Fixed axis, rotation about, 170 
Fluid drag, 15 
Fluid motion, 204 
— conservation of mass, 211 
— continuity equation, 212 
— energy equation, 207 
— equation of motion, 204, 206, 210 
— Eulerian method, 210 
— Lagrangian method, 209 
— jet, pressure-velocity, 227, 229 
— momentum equation, 209, 213, 218 
— momentum flow, 213 
— ramjet, 222 
— rocket equations, 219, 220 
— stream-line, 207, 218 
— stream-tube, 210 
— turbine, 221 
Foot, definition, 4 
Force, 2 

conservative, 55 
damping, 94 
definition, 2 
electric field, 84 
exciting, 94, 96 
function, 54 
generalized, 234 
inverse square, 74, 77, 78 

magnetic field, 84 
restoring, 94 
units, 265 

Forced vibrations, 107 
— solution, 109 
Forced vibrations, damped, 107 
— amplitude, 109, 110 
— differential equation, 97, 107 
Forced vibrations, undamped, 125 
— amplitude, 125 
— differential equation, 97 
Four bar linkage, 145 
Frames of reference, 4 
Free spinning disc, 165 
Frequency, beat, 251 

equation, 245 
of vibration, 99, 100 
gyro-compass, 193 
resonant, 111 
torsional, 172 

Functions, dimensions of, 8 
Fundamental mode, 249 

units, 5 

Galileo, 1, 93 
Gas constant, 226 

dynamics, 223 
kinetic energy, 226 
pressure, 225 

Geepound, 266 
Generalized coordinates, 231 
— kinetic energy, 233 
Generalized force, 234 
Gimbals, 191 
Governor, 199 
Gram, 265 
Gram-weight, 266 
Gravitational constant, 77 
Gravitational law, 75 

units, 5 
Gravity, acceleration, 3 

specific, 266 
variation of, 3 

Griffith, B. A., 264 
Gross, G. L., 264 
Gyroscope, 189 

conservation of energy, 195 
conservation of moment of momen¬ 

tum, 195 
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equations, 190 
moment of momentum, 190 

Gyroscopic compass, 191 
moment, 190 

Hamilton’s principle, 260 
Harmonic motion, 71, 74 
Harmonics, higher, 249 
Helicopter blade, 36 
Hodograph, 24 
Homogeneous functions, 233 
Houston, W. V., 263 
Hunsaker, J. C., 263 

Impact, 79 
central, 82 
elastic, 81 
energy loss, 81 
formulas, 82 
plastic, 81 

Impedance, 129 
Impeller, pump, 39 
Imperial pound, 266 
Impulse, 46 
Impulse-momentum, 59 
Impulse-moment of momentum, 137 
— rigid bodies, 163 
— rotating bodies, 170 
Inductive reactance, 129 
Inertia array, 155, 156 

forces, 195 
tensor, 157 

Instantaneous center, 144 
Integrating factor, 73, 124 
Integration of equation of motion, 41, 

45, 49, 51 
Inverse square force, 74, 77, 78 
Inverted pendulum, 101 
Isolation, vibration, 115 

Jeans, J. H., 263 
Jet, pressure-velocity, 227 

work-energy equation, 227, 229 
Joos, G., 263 

Karman, T., 263 
Kater’s reversible pendulum, 186 
Kaufmann, W., 84 
Kepler’s laws, 75 

Kilogram, prototype, 2 
standard, 265 

Kinematics of a point, 23 
— absolute motion, 32 
— acceleration, 24 
— angular velocity, 30 
— Coriolis acceleration, 33 
— cylindrical coordinates, 25 
— displacement, 23 
— harmonic motion, 42, 74 
— hodograph, 24 
— Lissajous figures, 75 
— moving coordinate system, 31 
— normal components, 27 
— rectangular coordinates, 25 
— relative motion, 32 
— spherical coordinates, 30 
— velocity, 24 
Kinematics, rigid body, 143 
— acceleration, 144 
— angular velocity, 40 
— Chasle’s theorem, 144 
— connecting rod, 44, 148 
— displacement, 144 
— Euler's angles, 188 
— four-bar linkage, 145 
— instantaneous center, 145 
— velocity, 144 
— wheel within wheel, 148 
Kinetic energy, 50 
— of gas, 226 
— generalized coordinates, 233 
— quadratic form, 251 
— rigid body, 164 
— rotation, 171 
— system of particles, 133 
Kinetic potential, 235 

theory of gases, 223 
Kinetics, definition, 1 

Lagrange, D'Alembert’s principle, 197 
Lagrange’s equations, 234 
Lagrangian function, 235 
Lam6, M., 231 
Laplace, S., 63 
Laws of motion, 1 
L-F-T units, 5 
Liepmann, H. W., 263 
Linkage mechanisms, 145 
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Lissajous figures, 75 
L-M-T units, 6 
Logarithmic decrement, 105, 106 
Logarithmic derivative, 21 

Mach, E., 263 
Magnetic field, force, 84 
Magnification factor, 110 
Mass center, motion, 132 
Mass, definition, 2 
Mass-energy, equivalence, 89 
Mass of electron, 83 

rest, 84 
specific, 266 
units, 265 

Maximum moment of inertia, 159 
Mechanical-electrical analogs, 128 
Meter, definition, 4 
Millikan, R. A., 263 
Minimum curve length, 252 

moment of inertia, 159 
Mode, fundamental, 249 

natural, 247 
normal, 248 
principal, 247 

Mol, 226 
Moment, gyroscope, 190 
Moment of momentum, 137 
— gyroscope, 190 
— rigid body, 149 
Moments and products of inertia, 

150, 152 
— calculation of, 151 
— direction cosines, relations, 157, 158 
— inertia array, 155 
— inertia tensor, 156, 157, 158 
— principal axes, 157 
— principal moments of inertia, 158 
— radius of gyration, 152 
— rotation formula, 156, 157, 158 
— rotation of axes, 154, 156 
— rotation from principal axes, 158 
— translation of axes, 152 
Momentum, conservation, 47 

definition, 46 
Momentum equation, fluid, 209, 213, 

218 
flow, 213 
system of particles, 132 

Motion, absolute, 32 
laws of, 1 
in resisting medium, 63 
of mass center, 132 
relative, 31 
rigid body, 144 

Moving coordinate system, 31 

Natural modes, 247 
Newton, Isaac, 1, 75 
Newton, R. R., 264 
Non-holonomic systems, 232 
Normal coordinates, 247 

acceleration, 27 

Ocean waves, velocity, 17 
Orbit, conical, 78 

rocket ship, 78 
Oscillation, helicopter blade, 36 
Oscillations, electrical, 127 

torsional, 172 
Oscilloscope, cathode-ray, 87 
Overdamped system, 104 

Page, L., 263 
Parallel axis theorem, 152 
Particle dynamics, 40 
— conservation of energy, 55 
— conservation of momentum, 47 
— conservative system, 55 
— differentiation of energy equation, 

72 
— equivalence of mass and energy, 89 
— impulse and momentum, 45 
— integration of equation of motion, 

41 
— kinetic energy, 50 
— potential, 53 
— potential energy, 54 
— power, 50 
— solution of problems in dynamics, 

59 
— work and energy, 50 
Particle dynamics, applications, 63 
— automobile impact, 61 
— automobile skid, 44 
— cathode ray oscilloscope, 87, 92 
— cyclotron, 91 
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— determination of projectile velocity, 
48 

— drag force on ship, 60 
— drag proportional to velocity, 63 

to velocity squared, 65 
— electron acceleration, 86 
— electron dynamics, 83 
— escape velocity of projectile, 53 
— harmonic motion, two dimensions, 

71, 74 
— impact, 79 
— measurement of variation of mass, 

84 
— motion in resisting medium, 63 
— motion of a rocket, 45 
— penetration of projectile, 44, 60 
— pile driver, 82 
— planetary motion, 75, 78 
— projectile motion, 66 
— stable orbit of rocket ship, 78 
— stress propagation in bar, 62 
— vibrating systems, 93 
Particular solution, 108 
Pendulum, ballistic, 176 

compound, 175, 176 
coupled, 250 
double, 242 
inverted, 101 
Kater’s, 186 
simple, 100 
torsion, 172, 177 

Penetration of projectile, 44, 60 
Percussion, center of, 176 
Period of vibration, 98 
Phase angle, 102, 109, 112 
tt—terms, dimensionless, 9 
w—theorem, 11 
Piston vibrations, 101 
Plane motion, rigid body, 180 
Planetary motion, 75 
Plastic impact, 81 
Poncelet, J. V., 44 
Potential, 53 
Potential energy, 54, 60 
— datum point, 54 
— quadratic form, 251 
Potential of electric charge, 61 
Poundal, 266 
Pound, British, 266 

Pound-force, 3, 266 
Pound-mass, 3, 265 
Pound-weight, 266 
Power, definition, 50 
Prandtl, L., 264 
Precession, velocity of; 190 
Pressure, gas, 225 
Principal axes, 157 

modes, 247 
moments of inertia, 158 

Principle of conservation of energy. 55 
— of momentum, 48 
Products of inertia, 150 
— rotation, 156, 158 
— translation, 152 
— vanishing, 158, 159 
Product, scalar, 267 

vector, 267 
Projectile motion, 66 

penetration, 44, 60 
trajectory, 66 

Propagation of stress, 62 
Propulsion efficiency, rocket, 222 
Prototype kilogram, 2 
Puckett, A. E., 263 
Pump impeller, 39 

Quadratic forms, T and V, 251 

Radius of gyration, 152 
Ramjet, 222 
Rebound velocity, 81 
Rectangular coordinates, 25 
Relative motion, 31, 38 
— absolute acceleration, 32 
— absolute displacement, 32 
— absolute velocity, 32 
— Coriolis acceleration, 33 
— moving coordinate system, 31 
— relative acceleration, 33 
— relative displacement, 32 
— relative velocity, 33 
Resisting medium, 63 
Resonance, 111, 115, 126 
Resonant amplitude. 111, 113 
Restoring force, 94 
Reynolds number, 15, 22 
Reynolds, O., 15 
Rightmire, B. G., 263 
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Rigid body dynamics, 143 
— D’Alembert’s principle, 195 
— equations of motion, general, 162 
— Euler’s equations of motion, 163 
— gyroscope, 189 
— impulse-momentum, general, 163 
— kinematics, 143 
— kinetic energy, general, 164 
— moment of inertia, 150 
— moment of momentum, 150 
— plane motion, 180 
— products of inertia, 150 
— rotation about fixed axis, 170 

about fixed point, 188 
— translation, 166 
— work-energy, general, 164 
Rocket motion, 45, 220 

propulsion efficiency, 222 
ship orbit, 78 
specific impulse, 222 
thrust, 220 

Roller, D., 263 
Root-mean-square velocity, 226 
Rosser, J. B., 264 
Rotation about fixed axis, 170 
— fixed point, 188 
Rotation of axes, 154 
Rotating body, impulse-momentum, 

170 
work-energy, 171 

Routh, E. J., 264 

Scalar product, 267 
Second, definition, 4 
Semat, H., 264 
Simple harmonic motion, 74 
Simplifications in analysis, 21 
Simultaneous differential equations, 

245 
Slug, definition, 4, 266 
Specific impulse, 222 

gravity, 266 
mass, 266 
weight, 266 

Spin moment of momentum, 190 
Spinning disc, free, 165 
Spinning top, 188 
Spherical coordinates, 30 

pendulum, 240 

Springs in parallel, 52 
in series, 52 

Static balance, 174, 179 
coupling, 245 
deflection, 110 

Stationary value, 254 
Steady state vibrations, 110 
Step function, 114, 126 
Stream-line, 207, 218 
Stream-tube, 210 
Stress propagation, 62 
Superposition of impulses, 123, 127 

of solutions, 103 
Synge, J. L., 264 
Systems of particles, 131 
— angular momentum, 137 
— equation of motion, 131, 132 
— impulse-momentum, 132 
— kinetic energy, 133 
— momentum, 132 
— moment of momentum, 137, 138, 

139 
— motion of mass center, 132 
— summary, 140 
— work-energy equation, 134 

of mass center 132 

Tait, P. G., 143 
Tangential and normal components, 26 
Tensor of inertia, 157 
Terminal velocity, 65 
Theory-experiment, agreement, 18 
Thompson, J. J., 84 
Thompson, W., 143 
Thrust force, 220 
Tietjens, O. G., 264 
Timoshenko, S., 264 
Time constant, 130 
Top, spinning, 188 
Torsion pendulum, 172, 177 
Torsional vibrations, 178 
Trajectory of projectile, 66 
Transient vibrations, 110 
Translating body, 166 
Translation of axes, 152 
Transmissibility of vibrations, 117 
Triple vector product, 165 
Turbine, water, 221 
Two-degree-of-freedom systems, 244 



294 INDEX 

Underdamped vibrations, 105 
Units, definition, 5 

of force, 266 
of mass, 265 

Unit vectors, 25, 30, 267 
— derivatives of, 31 
U-tube, oscillations, 100 

Validity of solutions, 21 
Variation of parameters, 127 
Variations, calculus of, 251 
Varied path, 252 
Vector product, 267 
— triple, 165 
Vectors in kinematics, 23 

unit, 267 
Velocity, angular, 30 

description of, 23 
of light, 83 
of ocean waves, 17 
of precession, 190 
of propagation, 62 
of rebound, 81 
relative, 33 
root-mean-square, 226 

Vibrations, 93 
— amplitude of vibration, 98 
— cycle of vibration, 98 
— damping coefficient, 95 

factor, 97 
force, 94, 95 

— dashpot, 95 
— differential equation, 97 
— electric circuit, 127 
— equivalent viscous friction, 96 
— exciting force, 94, 96 
— forced vibrations, 107, 122 
— free damped vibrations, 103 
— free undamped vibrations, 97 
— frequency of vibrations, 99 
— isolation of vibrations, 115 
— linearizing restoring force, 95 
— non-periodic exciting force, 122 
— period of vibration, 98 
— phase angle, 102 
— restoring force, 94, 95 
— static deflection, 100 
— transmissibility, 116, 118 

— vibration measuring instruments, 
119 

— viscous friction, 95 
Vibrations, forced, 107 
— amplitude, 109, 110 
— complete solution, 109 
— differential equation, 97, 107 
— displacement damped, 109 

integral form, 124, 127 
undamped, 125 

— energy input per cycle, 112 
loss per cycle, 112 

— exciting force, 94, 96, 113 
— frequency, 109 
— magnification factor, 110, 111 
— non-periodic exciting force, 122, 

127 
— particular solution, 108 
— phase angle, 109, 112 
— resonance, 111 
— resonant amplitude, 111, 113 

frequency, 111 
vibration, 115, 126 

— sinusoidal exciting force, 107, 108 
— steady state term, 110 
— step-function, 114 
— transient term, 110 
— transmissibility, 116, 118 
— trial solution, 108 
Vibrations, free damped, 103 
— complete solution, 106 
— critical damping, 106 
— damping coefficient, 95 

factor, 97 
force, 94, 95 

— dashpot, 95 
— differential equation, 97, 103 
— drop hammer, 107 
— energy loss per cycle, 106 
— equation of displacement, 105, 106 
— frequency, 105 
— logarithmic decrement, 105, 106 
— overdamped oscillator, 104 
— period of vibration, 105 
— trial solution, 103 
— underdamped oscillator, 105 
— viscous friction, 95 
Vibrations, free undamped, 97 
— amplitude, 98 
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— cycle of vibration, 98 
— differential equation, 97 

— frequency of vibration, 99, 100 

— pendulum, ballistic, 176 

compound, 175,176 
inverted, 101 

simple, 100 
torsion, 172, 177, 178 

— period by energy method, 99 
— period of vibration, 98 

— phase angle, 102 

— piston oscillation, 101 

— static deflection, 100 

— U-tube, 100 

Viscous damping, 95 

Wall, blast, 177 

Walton, E. T., 91 

Water turbine, 221 

Watson, E. C., 263 

Waves, ocean, velocity, 17 
Weber's number, 18 
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Weight, definition, 2 
specific, 266 

Whittaker, E. T., 264 

Work, definition, 50 
of a gas, 229 

in rotation, 171 

Work-energy equation, 56, 60 

— integration of, 51 
— of jet, 227, 229 

— of rigid body, 164 

— of rotating body, 171 

Yard, definition, 4 
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