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PREPACK TO THJi THIRD EDITION 

The call for a third edition has given rae an opportunity to add 

a chapter on tlie conduction of electricity through gases. The 

properties of electrons, X-rays, and radioactive substances arc 

matters of such general interest and sci^‘ntific importance as to 

justify this addition, I have to thank Dr. J. A. Orowther for 

permission to use some of the simpler Figs, drawn for his book on 

“ Ions, Electrons, and Ionizing Radiations.” 

Manciiesteb, 

R. S. W. 



PREFACE TO THE FIRST EDITION 

Although there is no lack oi Text-books of Physics of an advanced 
character I have frequently found a difiSculty in choosing for 
students a book of a more elementary nature, such as is roughly 
represented by the standard of the Intermediate Examinations 
of the various Universities and of the Civil Service Commission. 
The present book was designed to fill what appeared to be a gap 
in the literature of the subject. It will be found to contain what 
a student usually requires at such a stage in Heat, Light, Sound, 
Blagnetism and Electricity. As far as possible the treatment is 
based on experiment; usually a number of simple phenomena are 
described which lead up to the enunciation of some general law, 
and methods are then given by means of which the law may be 
proved more accurately. A large number of simple exercises which 
can be readily carried out by the student are shown in smaller 
type. In classes where the lectures are run concurrently with a 
laboratory course it is sometimes troublesome to keep the theory 
ahead of the practical work; the order of treatment which has 
been followed here is such as to provide a large number of experi¬ 
ments at an early stage in each branch of the subject, so lessening 
this difficulty in some degree. With the same end in view I have 
relegated the greater part of the Electrostatics to the end of the 
course on Electricity. I have found this arrangement to work 
admirably in my own teaching experience. 

For alternative methods of carrying out some of the experiments, 
or when additional details are desirable, references have been given 
to Barton and Black’s small volume on “ Practical Physics.” 

My best thanks are due to my colleague, Mr. F. J. Harlow, 
B.Sc., for his care and skill in making the drawings for the figures 
and also for much helpful criticism. I have also to thank various 

students for help in verifying the examples, and the authorities of 
London University for permission to include a number of questions 
set at the various examinations. 

K. S. W. 
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MECHANICS 

CHAPTER I* 

UNITS AND LENGTH MEASUREMENTS 

Mechanics is the science wliich deals with the simplest effects arising 
from the application of force to matter. As such it may be regarded 
as introductory to Physics, in that the forces and the matter on 
which they act are taken for granted, while it is the object of Physics 
to study more complicated cases in order to explain not only the 
origin of the forces, but the structure of matter itself. As the simple 
must be dealt with before the complex, so must the principles of 
Mechanics be understood before the student is ready to begin the 
study of Physics. 

The branches of Mechanics with which we shall deal in these 
introductory pages arc (1) Kinematics, in which motion is studied 
without reference to the forces which cause it. (2) Dynamics, with 
its subdivisions Kinetics and Statics, Of these. Kinetics deals with 
the motion of bodies, taking into account the forces and masses 
concerned, and Statics has to do with the conditions for the equi¬ 
librium of bodies, or their state of rest. (3) Hydrostatics, in which 
the properties of fluids at rest are the subject of inquiry. 

Units.—One of the main objects of physical science, because it 
is a condition for future progress, is to obtain accurate measure¬ 
ments of the quantities dealt with. As a preliminary, it is necessary 
to decide in what units the results are to be expressed. The state¬ 
ment that a certain body weighs 25 grams ’’ contains two ideas : 
one is the unit—^the gram; the other, the measure, states how 
many times the unit is repeated—in this case 25. Each physical 
quantity must be expressed in terms of its appropriate unit. It is 
possible, however, to express the more complicated units in terms 
of some of the simpler ones, when it will evidently be an advantage 
to have the relation between them of the simplest kind. For example, 
when the unit of length is the foot, the simplest unit of area is the 
square foot, and of volume the cubic foot. A unit like the gallon 
is not only entirely arbitrary, but bears no simple relation to othei 

* 
1 



2* MECHANICS 

units. The principle can be carried further, inasmuch as it is found 
that many physical quantities can be expressed in terms of three 
properly chosen units. These are called the fundamental units, 
while all others bearing a more or less simple relation to them are 

called derived units. Such a system is called an absolute system 
of units. The fundamental units in most scientific work are those 
of length, mass and time, and the units taken are the centimetre, 
the gram and the second; hence the system is referred to as the 

cm.-gm.‘Sec. (C.6.S.) system. 
The centimetre is the ^ metre, the latter being 

defined arbitrarily as the length of a certain platinum bar, preserved 
in Paris, when its temperature is that of melting ice. 

The metric standard of mass is the kilogram. It is the mass 
of a piece of platinum kept in Paris. Originally it was intended to 
be connected with the standard of length by being defined as the 

mass of a cubic decimetre ^ of distilled water at a temperature of 
4° Centigrade ; now it is defined arbitrarily as above. 

The gram is toWt ^ kilogram. 
The unit of time is the mean solar second, and is the §;.|ool^h part 

of the mean solar day. The solar day is the period between successive 
transits of the sun across the meridian. For various reasons this 

interval is not constant, so an average is taken over a whole year, 
and this is called the mean solar day. 

In the British system of units, which is still used by engineers, 
the units corresponding to the centimetre, gram and second are 

the foot, pound and second. We shall refer to this system as the 
F.P.S. system. 

Co-ordinates.—The position of a point on a plane is known if its 
perpendicular distances from two lines at right angles to each other 

are given. Thus in Fig. 1* the lines OX, OY are called the X and 
Y axes, 0 the origin, and the positions of P is known when PN and 
PM or OM and ON are given. OM is called the abscissa, ON the 
ordinate of P, and the two together are referred to as the co-ordinates. 
If OM == 2 and ON = 3 units, P is referred to as the point (2, 3), the 
abscissa being written first. If the abscissa is drawn to the left 
of OY it is taken as negative; similarly the ordinate is negative 
when drawn below OX. Thus the co-ordinates of P^ are (— 2,3), 
of P2 {— 2, — 3), and of P3 (2, — 3). 

^ A decimetro is of a metre ; 1 cub. docim. = 1 litre — 1000 cu. cms. 
It follows that a litre of water at 4® Cent, weighs 1000 gma. very nearly. A litre 
»1’76 pints; I inch=s2*5400 ozns.; 1 lb »*4536 kilograms. 
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Angles.—Two units of angle are in common use, the degree and 
the radian. If the right angle XOY of Fig. j* is divided into 90 
equal parts, each is called a degree. The degree is further divided 
into GO minutes, and each minute into 60 seconds. Nine degrees, 
six minutes, twelve seconds is written 9° 6' 12^. The radian is 
defined as the angle subtended at the centre of a circle by an arc oi 
length equal to the radius. Thus in Fig. 2* if arc PX = OX, the 
L d = l radian. The number of radians in L P'OX, called its 
circular measure, is found by dividing the arc P'X by the radius 

Fig. !♦.—Co-ordinates. Fig. 2*.—^Angular Measure. 

of the circle; and generally, if 6^ is the circular measure of an 
angle, 0 = arc/radius. 

If r is the length of the radius of a circle and C the circumference, 
it can be proved that C/r is the same for ail circles. This ratio is 
denoted by 27r; hence C/r = 2tt, or C = 27rr.^ 

The value of tt is 31416 or 22/7 very nearly. In Fig. 2* arc XPY 

= C/4 = 7rr/2, 
. / arc XPY nrj tt 
/. AXOY =-i^adians 

r 2/ 2 

radians = 1 rt. L 

and 1 radian — - rt. Z.s =67®‘2958. 
TT 

If an angle contains c radians and d degrees, then, expressing 
each as a fraction of 2 rt. As, 

c d 

This is a convenient equation to convert from one system to the other. 

1 The following results should be remembered :—area of a circle = vr*; 

surface of a sphere = 4’rr*; volume of a sphere = 
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Example.—Find tho number of radians in 120®. 
c 120 
~ “ whence, putting in the v'aliie of tt, c == 2 09 radians. 
v 180 ^ 

Trigonometrical ratios.—few results from trigonometry arc 
inserted hero for future reference. Let a revolving line OP start 
fiom OX (Fig. 3*^0 and sweep out the Z. XOP. Draw PM ± OX, 
produced if necessary as in (h). Let Z.XOP = 6 ; OP is the hypo¬ 

tenuse of the A POM. Then we have the following definitions : 

PM side opposite the angle 
, (written sin 6^), 

OM side adjacent to angle 
cosine e = =--.{ 

tangent 6 ■ 
PM side opposite to angle 

cos 6)j 

tan 0). 
® OM side adjacent to angle’ ' ” 

In Fig. 3* (6) if OM' is taken positive OM must be negative, and 

Fio. 3* 

vice vena. The values of these ratios for all angles up to 90® have 
been tabulated. 

^ sin 0 PM OM PM 

cos0~OP • 

Hence when sin d and cos 6 are known, tan 6 can be calculated. 

», „„ PM2 . OM2 P3I2 + OM2 , 
Also sin- e + cos- e = + Qpa. = 1- 

(Euclid I. 47.) 

Tho three interior angles of a triangle = 2 rt. L s. 

(Fig. 3* (a)) Z 0 + Z 0PM = 1 rt. Z = f 

and ZOPM=|-fl, 

sin (I - 0) = sin 0PM = OM/OP cos 9. 

Similarly cos 
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In Fig. 3* (6) let L ; make L POM = OP' = OP, 
and draw PM, P'M' ± OX, Then P'M' = PM, 
and 

akso 

L POM' = 2 rt. £ .s - 0 = ,r - 0, 
PM_ P'JM' 

mi 
op"" 

sill (n — 0) — 

cos (tt -- 6) -■ 

= sin 0, 

- n 

(As OM is taken positive, O.M', drawn in the opposite direction, is 
negative.) For example, sin 120“ = sin (180° — 60°) = sin 60°. 

In Fig. 2* let 0 be a very small angle; then both P and M arc 
near X, and arc PX = semi-chord PM very nearly. Hence for small 
values of 0 wo may put 0 = P.M/OP which is frequently useful. In 
like circumstances sin 0 = PM/OP = 0, and tan 0=PM/OM = PM/OX 
(nearly) = 0. 

When P coincides with X, 0 = 0; also PM = 0, and M coincides 
with X. Hence 

sin 0“ = PM/OP = O/OP = 0, 
cos 0“ = OM/OP = OX/OP = 1. 

Similarly (Fig. 2''‘)- when Z.P'OX = 90“, P' coincides with Y, 
P'M' = OP' and OM' = 0. 

and 

sin 90“ = 
P'M' 

OP' 

OP'_ 

OP'"" ' 

cos 90“ 
OM' 

OP' 
=0. 

In Fig. 4* («) let A C = 45“, then A.A is 45“ if B is a right angle, 
and BC = AB. Also AC2 = AB2 -f BC2; hence if AB = BC = 1, 

AC = V2. and from the AABC the trigonometrical ratios for 45“ 
can be found at once. In (h) let ABC be an equilateral triangle. 
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and AD be ±BC. Then ZC = 60“, and A CAD = 30”. Also if 
CD = 1, AC = 2; and, as AC2 = CD2 + AD2, AD = ^3. Hence 
all the sides of A ACD are known, and therefore the trigono¬ 
metrical ratios for 30® and 60®. The student should calculate the 
ratios for 120®, 135® and 150® from the formulae sin (tt — 0) = 
sin (180® —6) =sin 6, &c., by putting ^ ™ 60®, 45® and 30® in 
succession. The results for sin 0 and cos 6 are here tabulated. 

o o
 30® 45® GO” 90° 

sin 0 
1 
2* 

1 V3 
2 

1 

cos 1 
1 

/ 
1 

0 
w j V- 2 

a\J 

Q 
nXiMn^Ti 

l/B 
Fia. 5*.—Calliper Gauge. 

The Vernier,—It scarcely ever happens in practice that a length 
to be measured is equal to an exact number of divisions on the 
measuring scale. The vernier is a device which enables a fraction 
of a division to be estimated with accuracy^ and it applies equally 

j_j well to circular scales. Fig. 5* repre¬ 
sents a rough model of a calliper 
gauge; Q is the scale, and the part 
V attached to the movable jaw B is 
the vernier. The zeros of the two 
scales coincide when the jaws A, B 
are in contact, so that the position 
of the vernier zero gives the length 

of the body P between the jaws. In the Fig. 10 vernier divisions 
are equal to 9 scale divisions, hence 1 v. div. = fo scale div., 
and the difference between a vernier and scale division is i^th 
of a scale division. It is seen that 7 on the vernier coincides with 
a scale division; hence 6 on the vernier is ^th division to the 
right of its corresponding scale division, number 5 is ^th to the 
right of the next scale division, and so on, until we reach the vernier 
zero, which is found to be ‘7 of a scale division to the right of number 
7 on the scale. The length of P is, therefore, 7*7 scale divisions. If 
8 on the vernier had coincided with a scale division the required 
length would have been 7’8. And generally, if n divisions on the 
vernier are equal to (n —1) on the scale, it will be seen, by similar 
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reasoning, that the difference between two divisions is th of a 
scale division. This is the least count of the vernier, and is the 
fraction to which it enables us to read. 

. The Micrometer Screw.—An t? ?curate screw is frequently used in 
one form or other for length measurements. As an example, suppose 
the pitch of the screw is 1 mm., i.e. for each revolution the screw 
advances 1 mm. Let also the screw have a large circular head, 
divided into 100 equal parts. Then it is evident that the screw 
can be turned through x^th. of a revolution, and its point advanced 
or drawn back by 0*01 mm. Fig. 6* shows the application of this 
principle to the screw gauge. The screw Q is advanced through the 
nut N by turning the milled head H, which is divided into 50 equal 
parts by the scale S. Suppose the pitch is *5 mm. A J mm. scale 
R is engraved on the nut, and when the jaws P and Q are in contact 

Fig. 6*.—Micrometer Screw Gauge, 

the zeros of S and R should coincide. For each complete turn of 
the screw the bevelled edge at S moves over one division of scale R ; 
fractions of a turn are given by the circular scale S. One division 
on S corresponds to a movement on the part of Q of Bo of | a mm., 
i.e. to *01 mm. Hence the diameter of a piece of wire in contact 
with the jaws P and Q is given to the nearest *5 mm. by the scale R, 
while the scale S gives the amount to be added to this, in iJoths of 
a mm., to get the diameter accurately. 

In the spherometcr (Fig. 7*) T is the circular head, divided into 
100 divisions, B is the screw of known pitch, say ‘5 mm., and the 
J mm. scale A gives the number of com]>lete revolutions, as in the 
preceding case. One division of T, therefore, corresponds to —ob of 
i mm. = nim. = *005 mm. The points of the legs P, Q, R are all 
in one plane and the lines joining them forni an equilateral triangle 
(Fig. 8* (b)). The spherometer is placed on a flat sheet of glass and 
the screw is turned until S is a little lower than P, Q, R; if it be 
pushed at A the whole instrument then revolves about S. The centre 
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leg is screwed upwards until this just ceases ; P, Q, R and S are then 

in the same plane, and the zeros of scales T and A should be oi>posite 
each other. If a thin piece of glass Ls now placed under the cenlre 
leg, the spherometer again revolves louud tS. The adjustment is 

made as before, when the thickness of the glass can bo read. E.fi. 

if A reads 2 divs. (each *5 mm.), and T reads 45, the tliickjiess i- 
1 mm. + (45X’005) == 1*225 mm. Applications of the vernier in- 

screw are shown in Figs. 1, 2, 21, 142 and 206. 

The spherometer is also used to measure the radii of spheiical 

Fins. 7* and 8*.—'J’ho Spherometer. 

surfaces, of which only a portion need be given, such as the faces of 

lenses. The instrument is placed on the surface and the centre 

leg screwed in or out, according as the surface is concave or convex, 

until it just ceases to revolve round S, when the reading of each 

scale is noted. Fig. 8* (6) represents a horizontal plane through 

P, Q, and R, and the point C vertically under S is shown ; (a) repre¬ 

sents a vertical section through P and S. Evidently the spherometer 

has measured the distance CS = A. Let the distance SP in Fig. 7* be 
a and the radius of the sphere required be R. Then in Fig. 8* (a), 

OP2 = OC2 + CP2^ 
t.e. R2 = (R - //)2 + a2 = R2 _ 2B/i -f A2 + ^2, 

whence 
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EXAMPLES ON CHAPTER I* 

1. Find <lio nunilx r of radiaiiB in 30", 30®, 130®. 

'2. Caloulalr llio tan,;'('ats of 120®, *30®, 30®. 

3. A liaroiii' UT soair is LMadnatoJ in nuns., and 20 v< rni»T divisions C(iual 
10 Pi alo diviFi(‘ns. 'I’o wliat fraction of a nun. can it be read ? 

4. The circular scale' of a spe'ctrornctcr is graduated in half degrees, and 30 
vernier divisions corres[)ond to 20 scale divisions. Wliat is the least angular 
distance that can be read on the instrument ? 

5. A microscope scat' is divided into half mms.; what kind of vernier will 
enable one to read to ’01 mm. ? 

6. The circular scale divisions of a polarimeter are each equal to one quarter 
of a degree, and 25 divisions on the vernier are equal to 24 on the scale. What 
fraction of a degree can be read on this instrument ? 



CHAPTER IP 

KINEMATICS AND KINETICS 

In order to simplify matters as much as possible it will often be 
supposed that the bodies dealt with in this chapter are concentrated 
into such small volumes that any effects arising from their dimensions 
can be neglected. Such concentrated masses are called material 
particles. A rigid body is one whose particles remain at fixed dis¬ 
tances from each other when it is acted upon by forces. Actually 
no body is perfectly rigid. 

Velocity.~When a particle undergoes a displacement from one 
position to another, both the distance it has moved and the direction 
of its displacement must be given in order to define completely its 
new position. Such quantities which involve direction as well as 
magnitude are called vector quantities. Those which have magni¬ 
tude only are called scalars. The velocity of a body is its rate of 
displacement; it is therefore a vector quantity, since it involves 
direction. A particle has a uniform, or constant, velocity when it 
moves over equal distances in equal intervals of time, however 
small these intervals are taken. If an aeroplane has a constant 
velocity of 90 miles/hour it must travel 132 ft. every second, '132 ft. 
every thousandth of a second, and so on. A particle is said to have 
unit velocity when it passes over unit distance in unit time. In C.6.S. 
units this is 1 cm./sec. When the velocity of a body is variable, it 
is still possible to define its velocity at any point. Take a short 
length s of its path including the point, and let t be the time taken 
to traverse it. Then the average velocity over this distance is sjt. 
The velocity at the point is defined as the value of sjt when $, and 
therefore t, are made very small. This really means that we find 
the average velocity over a smaller and smaller length, until finally 
any change of velocity in the small distance s becomes inappreciable. 

Acceleratioo.—When the velocity of a body is changing it is 
said to be accelerated. The acceleration is the rate of change of 
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veloelty. It may be positive or negative ; in the latter case it is 
sometimes called a retardation. When the velocity changes by the 
same amount every second the acceleration is said to be constant, 
and it is measured by the increo ^e in velocity per second. A body 
has unit acceleration, in the C.G.S. s5^stem, when its velocity increases 
1 cm. per sec. every sec. Students should note that a velocity is 
measured in cms.per sec., but an acceleration in cms. per sec. per sec.; 
this is often written cms./sec.2. 

Kinematical equations.—If a body moves for t secs, with a 
uniform velocity u cms./sec., the distance it travels $ == ut. Let a 
body move in a straight line, starting with velocity u ; let its constant 
acceleration be a, the velocity after time t be v, and the distance 
from the starting point after time t be s cms. There are three 
important relations between these quantities which will now be 
derived. 

The increase in velocity each second = a 
the increase in t secs. = at 
v = u+at.(1) 

As the increase in velocity is uniform the average velocity = 
(u + v)/2. 

(t/ -f- v)t 
/. space passed over, s = —-—, 

Substitute the value of v from (1) and 

(2u^at).t 

i.e, 5 = ..(2) 

These equations give v and s in terms ott; if the velocity after 
passing over a distance s is required the quantity t must be elimi¬ 
nated. Square both sides, of (1), then 

v2 = 1^2 ^ 2uat + a2f2 

1/2 _|_ 2a{ut “f* ^at^)m 

The quantity in brackets is s, 

/. i;2 = t/22(W . ...... (3) 

If the body starts from rest i/ =0; also a may be negative in these 
equations. In solving problems, when the student may not be 
certain which equation to use, it should be noted that (1) gives the 
final velocity V after a given time, while (3) gives it when the body is 
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a distance s from its starting point. Experiments show that if the 
resistance of the air can be neglected, a body falling freely to earth 
has a constant downward acceleration of 981 cms./per sec. per sec. 

approximately, or 32 ft./per sec. per sec., in England. This is called 

the acceleration due to gravity and is denoted by the loiter g. Its 

value varies slightly from place to place; at the poles ^~--983’2l 

cms./sec.2, and at the equator 7 = 979'99 cms./sec.-. The most 

accurate method of finding g is from observations of tlie time of 

swing of a pendulum (p. 255). The equations above suffice to solve 

problems on falling bodies if 7 be substituted for a. 

Example.—A body ia thrown vertically upwards with a velocity of 100 
ft./soc. How high will it rise ? How long will it bo before it returns to »'artli 
and what will then be its velocity ? 

At its highest point v — 0 momentarily and s is required ; hence use equation 
(3), putting «=100, —32, since u is upwards and g directed downwards. 

0=-100»-2.32.5, 
and s ™ 156*2 ft. 

When it returns to earth s, the distance from the starting point, is zero, and 
in the 2nd part of the question t is required. Hcnco use (2). To lind its velocity 
on return note that.? = 0 and v is required. Hence use (3). v* = 100- — 2.32.0 
and V = 100. It then?fore returns with the velocity of projection. 

Parallelogram of Velocities and of Accelerations.—Since vector 
quaniitie.s include both magnitude and direction, they can be repre¬ 
sented by straight lines drawn in the proper direction, and to scale, 
60 that a unit of length represents one or more units of the quantity 
in question. A velocity 10 railes/hour due E. can be represented 
by drawing from 0 (Fig. 9*) a line OA due E., and 10 unils in length. 
A body may have several velocities at the same time. A man 
walking across a ship in motion is an instance of two velocities 
(actually of several if the motions of the earth be taken into account). 
It is found possible to replace two or more velocities by one single 
velocity which produces the same effect as the others acting simul¬ 
taneously. This is called the resultant velocity. Let a particle 
have two velocities u and v, represented in magnitude and direction 
by OA, OB (Fig. 9* [a)); what is the resultant ? Complete the 

OACB. Imagine a ring being pulled along a stick with a velocity 
represented by OA, and ler the stick move parallel to itself from 
OA to BC with a velocity represented by OB. Then in 1 sec., 
if the stick were at rest, the ring would move from 0 to A, but 
during this time 0 has moved to B and A to C. Hence in 1 sec. 
the ring moves from 0 to C, and OC is the resultant velocity. This 
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proposition is called the ])arallelograi]ii of velocities :—If a body has 
two velocities represented by the adjacent sides of a parallelogram, 
the resultant is represented by the diagonal drawn through the 
same point. 

bimilarly OA and OB might Tcprcseiit changes in velocities per 
sec. and a similar proposition would hold. But change in velocity 
])er sec. is an acceleration : hence the parallelogram law holds also 
for accelerations. 

Conversely, the velocity OC can be replaced by the two velocities 
OA, OB ; it is then said to be lesolved into its two components. 

Fig. 0* {(() and [h).—Parallelogram of Velocities. 

Any number of parallelograms can be formed on OC as diagonal, 
but the most important case is that in which the two components 
arc at right angles to each other, (Fig. 9* (6)), when they arc called 
the rectangular components. Let one of them, say OA, make 
an angle 6 with the resultant, and let OC = V. ThcnOA/00 = cos 9, 
and OA = OC . cos 0 = Vcos 6, Similarly OB = AC == V sin 0. Hence 

the rectangular com])oneuts can be written down at once if the 

Fig. 10*.—Resultant Velocity. 

direction of one of them is known. Also fiom the Fig., = u® -f- v2 • 

showing how to calculate V, being given the rectangular components. 
If the components are inclined to each other at an angle ^ the re¬ 
sultant can be found as follows:—In Fig. 10* («) and {h) draw 
CD -LOA, Then in (a) AD == AC . cos CAD == v. cos 
and OC^-OD2+CD2 

= (OA + AD)2 ,lcD2 
0A2 + 20A . AD + AD2 + CD^. 
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Noticing that the sum of the last two terms equals AC^, and sub¬ 
stituting for AD = V cos we have 

V2 = w2 2uv. cos ^ + V-. 

In (6) AD == V cos CAD = v cos {w — — v cos 
and OD = OA — AD. 

Making these changes, the proof proceeds as before and the same 
result is obtained. 

Triangle and polygon of velocities.—In Fig. 9^ the velocity OB 
can be replaced by AC, when it is seen that the resultant of two 
velocities, represented by the two sides OA, AC, of a triangle taken 
in cyclic order, is the third side OC taken in the opposite direction. 
Hence also the resultant of three velocities represented by the sides 
OA, AC, CO, of a triangle taken in cyclic order is zero. This is 

called the triangle of velocities. Similar 
propositions hold for a polygon. For 
instance, the resultant of velocities repre¬ 
sented by OA, AB, BC, CD (Fig. !!♦), 
the sides of a polygon taken in cyclic 
order, is the remaining side OD taken in 
the opposite direction. For the resultant 
of OA and AB is OB, of OB and BC is OC, 
and of OC and CD is OD. Similarly, 
velocities represented by the sides of a 

closed polygon taken in cyclic order have a resultant equal to zero; 
€,g. the velocities represented by the sides of OABCDO. This 
is called the polygon of velocities. 

Kinetics.—The beginnings of kinetics are largely duo to Galileo, 
but the first general statement of its laws is due to Newton in his 
laws of motion. Its growth is a good illustration of the methods 
by which science gradually extends its bounds. First come observa¬ 
tions, of perhaps the roughest nature, but sufficient to indicate that 
all the results can be simply described by a few short statements 
called scientific laws. Once formulated, these laws are applied to 
more complicated cases, and their truth is proved not so much by 
the original observations as by the fact that the consequences de¬ 
duced from them agree with experience. In the present instance, 
the best proof of Newton’s laws is the fact that the motions of the 
moon and the planets can be predicted years in advance by calcula¬ 
tions based upon those laws. 

Fio. 1 !♦.—Polygon of 
Velocities, 
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Mass And Weight.—^The mass of a body is frequently defined as 
the quantity of matter it contains, but this definition has no meaning 
unless a method is given of comparing masses. The weight of a body 
is not necessarily a correct measure of its mass, as is shown by the 
following facts. Weighed on a spring balance, a body which weighs 
1 gm, in England would weigh between 2 and 3 mgms. more at 
the N. pole, and approximately the same amount less at the equator. 
Even on a sensitive balance of ordinary type it appears to weigh 
more when a large lump of metal is placed just below the pan. It 
also weighs less at the top of a high building than at the bottom 
(p. 2), and less in a deep mine than at the earth’s surface. Later 
on it will be shown that if weighed under exactly the same conditions 
the weights of bodies are correct measures of their masses; at 
present we shall take another test for the equality of two masses 
which is independent of place. Let two bodies move along the 
same straight line in opposite directions v/ith equal speeds, and let 
them collide and stick together. If they are reduced to rest by the 
collision we shall take their masses as equal. An apparatus for 
performing such an experiment is described on p. 22’*'. Experiment 
shows that the result does not depend on their actual velocities so 
long as these are equal. Being given a standard gram, other equal 
masses could be fashioned by this test and so masses of 2, 3, 4 gms., 
&c., built up. Hence the mass of a body could be found, theoreti¬ 
cally at any rate, by building up another mass equal to it and testing 
by collisions. The student can easily see how a gm. could be split 
up into known fractions. The definition above can now be com¬ 
pleted. The mass of a body is the quantity of matter it contains, 
and two masses are equal when, colliding with equal and opposite 

velocities and sticking together, they are reduced to rest. 
The case where the velocities are unequal is dealt with later. 
If a mass m is moving with a velocity v the product mv is called 

its momentum. It is evidently a vector quantity. 

Newton’s Laws of Motion.—The following three laws are called 
Newton’s laws of motion, although the* first and part of the second 
were discovered by Galileo. 

(1) Every body continues in its state of rest or of uniform motion 
in a straight line unless acted upon by some impressed force. 

(2) Rate of change of momentum is proportional to the impressed 
force and takes place in the direction in which the force acts. 

(3) To every action there is an equal and opposite action, ox 
action and reaction are equal and opposite. 
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Newton’s 1st Law.—This really consists of two parts. The 
fii'st states that no body changes its state of rest or of uniform motion 

in a straight line unless compelled to do so. This is called the 
principle of inertia. Evidently such a law cannot be proved by 

direct experiment, nevertheless, as far as experience goes, the more 

resisting forces are removed the longer does the motion of a body 

continue. It is difficult to slide on a rough pavement, easier on a 

polished floor, and easier still on smooth ice. One can free-wheel 

on a bicycle with ball bearings much further than on a child’s 

“ scooter ” which has not got them, and so on. The second part 
says that if a change of motion does occur it is the result of force. 

This is really a definition of what force is. Since a change in either 
the magnitude or the direction of the velocity involves a change in 

momentum—considered as a vector—the definition can be restated 

in the following form:—Force is that which produces or tends to 
produce change of momentum. “ Tends to produce ” is introduced 

to cover cases where the action of one force is neutralized by other 
forces. 

Newton’s 2nd Law.—This law tells us how forces are to be 

compared, viz. by the rate at which they can generate or destroy 

momentum. For the sake of simplicity between the units (p. 1), 

forces are taken not as merely proj)ortional to the momentum they 

can generate in 1 sec., but as equal to this momentum. Unit force 
is then dchned as that force which in 1 sec. can generate unit 
momentum. Let a body of mass m change its velocity uniformly 

from w to t? in ^ secs, under the action of a force F. 

, mu — mu miv — u) 
Then change m momentum per sec. =-^-= —^--, 

But force = change of momentum per sec. 

/. F == m(v — u)jt 

Also if a is the acceleration 

V = u + a* 
or (u — u)lt = a 

F = ma. 

This is the most important equation in dynamics, connecting 

as it does force and mass with acceleration, and hence, through the 

formulae of p. 11*, with the kinematical quantities. If m is 1 gm. 

and a = 1 cm. per sec. per sec.,F is the unit force in the C.G.S.system, 

and is called the dyne. The dyne Is that force which can give to a 
mass of 1 gm. an acceleration of 1 cm. per sec. per sec. Replace the 
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gm. by the lb. and the cm. by the ft. and we have the unit force in 

the F.P.S. system, called the poundal. 

According to this law, if several forces act on a body simul¬ 

taneously, each produces its appropriate change of momentum, 

in its own direction, independently of all the others. In Fig. 9* let 

OA and OB represent the accelerations that two forces P and Q 

can produce in unit mass; then these lengths are proportional to 

P and Q. Similarly OV represents the resultant acceleration, and 

hence the force producing it, thus the parallelogram law applies to 

forces also. The resultant and 1 he components of forces can there- 

fore be obtained by the formuljc on pp. 13*, 14*. Similarly the 

])ropositions called triangle and ])olygon of velocities are true if 

“ velocities ** is replaced by “ forces.*' 

Experimental prouc of the cd”* law.—strings are knotted together 
at O (Eig. .2*), and weights of P, Q, and R grams arc hung from the other ends. 
Two strings ])as3 over pulleys as in the Fig. ^ 
The whole is just in front of a vertical draw¬ 
ing board. 'The point 0 is in ciiuilibriiim 
uiulcr the action of fhn'e forces, P, Q, and R 
gins., acting in the diri'ctions OA, OR, and 
OD ; henc(^ one of them, say It, must be 
equal and opposite to th<5 resultant oI the 
other two, i.c. the ro.sultant of P and Q must 
l)c a force R grns. acting vertically upwarvls. 
Draw on the board lines OA, OP> to scale to Fig. 12*.—Experimental Proof 
represent tlie forces P and Q, and eomplele of the Parallelogram of Forces, 
the a”*. It will be found that OC is vertical 
and that, on the same scale as OA and OR, it represents R gms. Hence the 
proposition is proved. Also tlio three forces in equilibrium are represented by 
OB, BC, CO—llio sides of a triangle taken in cyclic order—hoiice the triangle 
of forces is established. 

If a constant force F acts for a time t secs, the product F^ is called 

the impulse of the force, or, more briefly, 1 he impulse. From above, 

F m{v — 

/. F/ — inv — mu. 

or the impulse is measured by the change of momentum it produces. 

F may be a large force acting for a very short time, i.e. of the nature 

of a blow, but in every case the impulse is measured by the change in 

momentum. 

Mass and Weight.—The relation between mass and weight can 

now be cleared up. According to Newton the weight of a body 

lepresenls the force with which the earth allructs it in accordance 
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with the law of gravitation (p. 12*). Weight is therefore a force. 

Let a body of mass m gms. fall freely to earth, with acceleration g 
(p. 12*). The force producing motion is its weight. Substituting in 

the equation F = ma, we have, P = weight w in dynes, and a = 

w~ mg dynes. 

In England g = 981, hence a force of 1 gram’s-weight = 981 dynes, 

and 1 dyne=1/981 of a gm. 
In the F.P.S. system m is 1 lb. anig = 32; whence 1 Ib’s.-weight 

= 32 poundals. 
The fact that g is the same at a given place for both light and 

heavy bodies shows that the ratio w/in is constant, or the weight of 
a body is proportional to its mass, if weights are always taken under 
the same conditions. In that case we may dispense with the collision 

method of comparing masses and take their weights instead. Engi¬ 

neers frequently express forces in grams or lbs. weight: such units 

are called gravitational units, and will vary from place to place; 

the dyne, on the other hand, is an absolute unit, and is the same 

everywhere, since both mass and the unit of acceleration in the equa¬ 

tion F = ma are invariable. 

Work and Power.—When a force, acting on a body, causes a 

displacement of its point of application it is said to do work. The 
amount done is measured by the product 

Fs of the magnitude of the force and of 

the displacement measured parallel to the 
direction in which the force acts. In Fig. 

13* let a force F act along OA and move 

its point of application from 0 to M. 

Draw MN± OA. ON is called the projection 
of OM on OA. Then the work done is, by 

definition, F . ON. This work can be calculated in another way; 

for ON/OM = cos 0, and ON = OM . cos 0. 

work = F . OM cos 0 = F cos 0 . OM. 

But F cos 0 is the component of F along OM (p. 13*), hence the work 

is obtained by multiplying the total displacement OM by the com¬ 

ponent of the force in this direction. If the displacement is in the 

opposite direction to a force, that force is said to do negative work, 

or work is done against the force. Thus when a miller raises a sack 

of corn from a lower to a higher floor he does work against the force 
of gravity. 

Notice that the work does not depend on the time taken to do 
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it. The unit of work is that done by unit force when its point of 
application is moved over unit distance parallel to the direction of 
the force. 

In the C.G.S. system this unit is called the erg. It is the work 

done by 1 dyne in moving its point of application over 1 cm. The 

corresponding unit in F.P.S. units is called the foot-poundal. If forces 

are measured in gravitational units—gms.or lbs.—the units are called 

gms.-cms. or foot-pounds respectively. Evidently a gravitational 

unit is g times an absolute unit. One ft.-lb. of work is done when 

I lb. is raised vertically through 1 ft. The erg is too small for con¬ 

venience in electrical engineering, so another unit, called the joule, 
is frequently used. One joule = 10^ ergs of work. 

The power, or activity, of an agent is its rate of doing work. An 

activity of one joule per second is called a watt. This and its mul¬ 

tiple the kilowatt (=1000 watts) are largely used in engineering. 

Another unit of activity is the horse power, equal to 550 ft.-lbs./sec. 

Example.—To find the relation between horse power and watts, being given 
the relations 1 in.—2*54 cma., 1 lb, — 453*6 gras, 

650 ft. Ibs./flcc. = 550 x (2*54 X 12) x 453*6 gra. cms./scc. 
= 550 X 2*54 X12 x 453*6 x 981 ergs/scc. 

650 X 2*54 X 12 X 453*6 X 981 . , , 
---joules/pcr see. 

.% 1 H.P, = 746 joules/sec, = 746 watts. 

Kinetic and Potential Energy.—Bodies may be capable of doing 
work on account of their motion or their position or state. The 

capacity of a body for doing work is called its energy. If it possesses 

this capacity in virtue of its motion its energy is called kinetic energy. 
Thus a train can move some distance after steam is shut ofi against 
the frictional resistances it experiences: it does work against such 

forces. To find the kinetic energy of a mass m gms. moving with a 
velocity u cms./sec., let us suppose its motion is opposed by a force 
F dynes, which brings it to rest after it has moved over $ cms. From 

definition, its kinetic energy = Fs ergs, since this is the work it can 

do on account of its velocity. From equation (3) (p. 11*) the final 

velocity v is given by 
— 2as, 

where a is the retardation produced by F. Also final velocity 0. 

u2 — 2as sK 0, 
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Multiply by m. 
mas = Imw®. 

Also F = nia, 
Ys ^ hnu^. 

Hence the kinetic energy is ergs. 
If the force acts so as to increase the body's velocity from u to v, 

while it traverses a distance s, the work done by the force is equal 
to the change in kinetic energy. For 

t’2 == ^2 _j. 2as. 

as = — w2), 

and work done = F^ = mas — \mv^ — .(4) 

This is a most important result of the 2nd law of motion. 

A body maybe devoid of kinetic energy and may yet possess the 

capacity for doing work on account of its position or condition. It 
is then said to have potential energy. As instances :—a compressed 
spring can overcome resistance while resuming its normal length ; a 

volume of compressed gas can be made to move a piston during'^ 
expansion; a raised Aveight can, by the intervention of pulleys, be^ 
made to raise other weights while it falls to the floor. In the last' 

instance more work could be done by allowing the weight to pass' 

through a hole in the floor to the room below, showing that the 
potential energy of a body is to be measured 
by the work it can do in coming to some 

standard position or state. The earth’s sur¬ 
face is usually taken as the zero position. 

When m gms. are raised vertically h cms. 
X the force opposing motion i^w = mg dynes, 

and the work done is mgh ergs; this is the 

potential energy. If the mass falls freely this 

Fio. 14*.—Theory of the is converted into kinetic energy ; for its 
Bahifitic Balancx). velocity at earth is given by = 2gh (equa¬ 

tion (3), p. 11*), and its kinetic energy = 
mglL This is a simple illustration of conservation of energy (p. 113). 

The following example will be made use of in the next paragraph. 
A (Fig. 14*) represents a mass m suspended from 0 by a long string 
of length R, the whole constiluling a simple pendulum. The weight 

is pulled aside a short distance to P and released ; it is required to 

find its velocity at A, its lowest point. When it is at P the particle 
is moving in the direction of the tangent PQ, and therefore in a 
direction at right angles to OP, so that during a small movement 
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the tension in the string does no work, for the displacement parallel 

to the direction of the force ” is zero (p. 18*). This is true at every 

point, hence the tension does no work, and the increase in kinetic 

energy, from equation (4) above, arises from the work done by the 

only other force acting, viz. the weight mg. If the vertical displace¬ 

ment is NA = A, the work done in moving from P to A is mgh, 

increase in K.E. ~ = mgh (eqn. (4), p. 20*) 

or = 2gh^ 

just as if the particle had fallen freely. Exactly as on p. 8* we have 

PN2 = 2RA - 

and if A is small compared with R the term is small and can be 

neglected. 
A = PN2/2R, 

and = I. PN^. 
K 

c = V'(^).PN. 
This shows that when the string is long and h is small the velocity 

at A is proportional to PN, the distance the particle is pulled aside 
horizontally before being released, 

Newton’s 3rd Law.—Newton gave various meanings to the 

terms ‘‘ action ” and “ reaction.” When the hand is pressed on a 

table the table presses back with equal force; the attraction of the 

earth on the moon is equal and opposite to the attraction of the 

moon on the earth ; the pull of the coupling on the railway carriages 

is equal and opposite to the pull it exerts on the engine which moves 

them. In the last instance students frequently wonder why, if the 

3rd law be true, there should be any motion. The difficulty generally 
arises from the fact that they are not clear which body’s motion it 

is they are considering. The horizontal forces acting on the carriages 

are the pull at the coupling and the friction at the rails, and the 

carriages move forward because the first is greater than the second. 

As the engine forces its wheels round, the friction at the rails tends 

to move both the rails and the earth backward, but the reaction 

corresponding acts on the engine and is forward. The horizontal 
forces acting on the engine from outside are the pull of the coupling 

backward and the reaction at the rails forward, and it is because the 

latter is the greater that the engine moves. If the train is considered 

as a whole the only horizontal impressed forces acting, i.e. those from 

outside, are the reaction at the rails and the frictional resistances, 
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and motion takes place because the reaction is the greater. In 

these instances action and reaction refer to forces, but if the forces 

are equal, the momenta they generate are also equal. For example, 

the forward momentum of a bullet is equal to the backward 

momentum of the rifle ; pull the rifle tightly to your shoulder and you 

become part of the backward moving mass, and for equal momentum 

the velocity of “ kick is reduced. When a man springs from an 

unmoored boat the effects of the action and reaction are seen—the 

man goes in one direction and the boat in the other with equal 

momenta—but when the boat is moored it becomes part of a much 

larger body—^the earth, and its motion then is not apparent. Action 

and reaction, then, can be interpreted to mean momentum. Fig. 15* 

shows an apparatus, called Hicks’ ballistic balance, by means of 

which the 3rd law can be verified. It consists of two carriages, 

A and B, hung by strings so that no rotation can take place, and so 

arranged that they are in contact at their lowest points of swing. 

Various masses can be placed on the carriages, which are then pulled 

apart and allowed to collide. Springs, not shown in the fig., prevent 
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them separating after collision. A horizontal scale shows how far 

the carriages have been displaced horizontally, and hence, from the 

last paragi'aph, what are their velocities at collision. If OA (Fig. 

14*) is 109 cms., v = \/• PN = 3PN, so that one cm. on the 

scale corresponds to a velocity at collision of 3 cms./sec. If after 

collision a body swings through x cms. its velocity immediately 
after collision was 3x cms, sec. 

Experiment.—Put unequal masses on the carriages ; let and be the 
total masses, and their velocities, with proper signs, at collision, v their 
common velocity alter collision. Prove -f* ^2X^2 ~ “b This shows 
that the algebraic sum of the momenta is unchanged by collision; what one 
loses the other gains, proving the 3rd law. The fact that the momentum is 
unchanged in amount is called the principle of conservation of momentum. 

Motion in a Circle.—Let a particle of mass m be revolving with 

uniform speed v in a circle of radius r, and let P2, Po, etc. (Fig. 16*), 

represent successive positions at intervals 

of t secs. From Newton’s 1st law, as the 

direction of motion is changing there must 

be a force acting on the particle, otherwise 

it would move along the tangent PiAi- 

From centre O draw OQi, OQ2, etc., to 

represent the velocity of the particle when 

it is at Pj, ?£) J points Q2, Qg, 
etc,, all lie on a circle of radius OQi = v. 

We shall prove that the acceleration of the 

particle at Pj is represented in magnitude 

and direction by the velocity of the corresponding point Q2 on the 

second circle. While it passes from Pi to P2 the particle changes 

its velocity from OQ2 to OQ2 : but OQ2 is the resultant of velocities 

represented by OQi and Q1Q2 (p-14*); hence the change in velocity 

in time t is represented by Q1Q2, and the average rate of change is 

QiQz/^* Now take t very small; when P2P2 and Q1Q2 also become 
small, and Q1Q2A becomes the rate of change of velocity of the 

particle very near and finally at Px, if t is taken small enough. Or, 

as rate of change of velocity is acceleration, QiQ^/t represents the 

acceleration of the particle at Pi. But, when t is small, QiQ2ft 

also represent? the velocity of Qi; hence the acceleration of Pi is 

represented in magnitude and direction by the velocity of Qi. 

Now the instantaneous velocity of Qj is along the tangent QiBi, 

Fig. 16*.—Motion in 
a Circle, 
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which is parallel to PjO; showing that the acceleration of the 

particle is towards the centre along PjO. 

vel. of Qi circumference of circle Q1Q2 
A -- -- sss —2. . —^-— 

vel. of Pi circumference of circle PiP* 

vel. of Qi _ 27rv 

accel. of the particle = vel. of Qi = v-/r, 

and the force urging it towards the centre ma = mv-/r dynes, 

in C.G.S. units. This is the tension in the string when a particle 

is whirled in a horizontal circle. Similarly when a fly-wheel revolves 

a call is made on the tensile strength of the material to keep it from 

flying to pieces. In a cream separator the new milk is put in a closed 

vessel which revolves at great speed, the heavy milk particles fly off 

to the circumference, thereby forcing the lighter cream particles to 

the centre, whence they can be drawn off. 

EXAMPLES ON CHAPTER IT* 

1. After moving over 626 ft. from rest, a body has a velocity of 125 ft./sec.; 
6n(l its acceleration. * (L. *88.) 

2. A jet of water is projected against a wall so as to strike it at right angles. 
If the velocity of the jet be 80 ft./scc. and 100 lbs. of water strike the wall every 
second, what pressure will bo exerted against the wall, (1) when the water dors 
not rebound, (2) when it rebounds with a velocity of 10 ft./sec. f (L. *83.) 

3. A bullet weighing 25 gms., and moving with a velocity of 300 mctres/sec., 
is stopped by impact against a bone, being brought to rest in a distance of 3 cms. 
from first striking. Calculate the average force exerted by the bullet on the 
bone. (L. 1900.) 

4. A cage weighing 240 lbs. is lowered with uniform acceleration down the 
vertical shaft of a pit, the velocity changing from 100 to 200 ft. per sec. while 
the cage descends 600 ft. Determine the force exerted by the cage on the rope 
by which it is lowered. (L. *84.) 

5. A mass of 1 gm. hangs over the edge of a smooth horizontal table, and is 
attached by a string to a mass of 980 gms., which slides without friction on the 
table. Find the potential energy, in gms.-cms., lost by the system in 10 secs., 
starting from rest. (^=981.) (L. *93.) 

6. A bullet of mass 20 gms. is shot horizontally from a rifle, the barrel of 
which is 1 metre long, with velocity 400 metres/sec. into a mass of 60 kgms. of 
wood floating on water. If the bullet buries itself in the wood, find the velocity 
of the latfer directly after it is struck. Also find the average force in gnus, 
weight exerted on the bullet by the powder. (L. ’85.) 
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y. What is the horse power of an engine which can pump 1000 gallons of water 
per minuUi from a well and project it with a velocity of SO ft./sec. through a 
nozzle which is at a height of 40 ft. above the surface of the water in the well ? 
[A gallon of water weighs 10 lbs.] (L. *82.) 

8. A reservoir of water of area 330,000 sq. ft. is initially at a depth of 10 ft. 
How many ft.-lbs. can it supply to a turbine on a level with the bottom, and what 
horse power can it maintain on the average if it is emptied in 10 hours ? 
[1 cu. ft. of water weighs 62 4 lbs,] (L. *94.) 

2 



CHAPTER III* 

STATICS 

Three Forces at a Point.—In order to specify a force completely 
there must be known :—(1) its magnitude, (2) its direction, (3) its 
point of application. Tliese can be represented on a diagram by 
drawing from the given point a line to the proper scale in the given 

direction. 
For the purpose of calculating the conditions of equilibrium in 

certain cases, the following proposition—which is the converse of 
the triangle of forces—^is important:—If 
three forces acting at a point are in equi¬ 
librium they can be represented by the sides 
of a triangle taken in cyclic order. In 
Fig. 17* one of the forces, say R, is equal 
and opposite to the resultant of the other 
two—for this reason it is called their equi- 

libriant. The three forces are therefore in 
the same plane and R is represented by CO. 
Hence the forces P, Q, R are represented 
by the sides OB, BC, CO of the triangle 

OBC taken in order. If another triangle 
be drawn with its sides parallel to those of 
triangle OBC, its sides will be in the same 

ratio as those of the original triangle, and can still represent the 
forces. But when there are more than three forces their ratio cannot 
be fixed by drawing a polygon with its sides parallel to them; for 

having made such a polygon, draw a line inside the figure parallel to 

one side, and another polygon is formed whose sides are in different 
ratios. 

Several Forces at a Point.—It will be supposed that the forces 

are all in one plane. Take two axes at right angles, OX and OY, 

and resolve each force into its rectangular components along them. 

Fig. 17*.—Converse of 
Triangle of Forces. 
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Let the algebraic sum in the two directions be X and Y respectively; 

these can replace the original forces, and the resultant is given by 
R2 = (p. 13*). For equilibrium R must be zero, and there¬ 
fore both X = 0 and Y = 0. Hence the condition for equilibrium 

is that the sum of the components in any two directions at right 
angles shall vanish. 

Inclined Plane.—^As an application of the results of the last two 

paragraphs, let us find the conditions for the equilibrium of a particle 

resting on a smooth inclined plane (Fig. 18*). By a smooth plane is 
meant one in which there is no frictional 
force parallel to the plane; the particle 
of weight W presses on the plane with a 

force R, and the reaction, also R, is normal 
to the plane. Let the height AB = 
the base BC = 6, the length AC = Z, the 

inclination = , and let the force P parallel 
to the plane just keep the particle at 

rest. The forces acting are P, R, and W 

as shown. As there is equilibrium they 

can be represented by the sides of a 
triangle taken in order. From any point L in OL draw LM parallel 
to CA, and produce the line representing R to M. Then the AOLM 
has its sides, taken in order, parallel and in the same direction as 
the forces ; so that OL represents W, LM represents P, and MO in 

like manner R. Also LO and MO are perpendicular to BC and AC 

respectively, therefore L LOM = 0, 

and P/W = LM/OL = sin 6. 

P = WBm& = W.j. 

Also ll/W = OM/OL = cos 0. 

K = W.cos0 = \V.^-. 

Now apply the method of the preceding paragraph. Resolve 

II and ± to AC. (The advantage of choosing these directions is 
that R does not appear in the first nor P in the second result.) 

j| to plane, P — W . cos COL = 0. 

P = W . cos COL = W cos (90 - ») = W sin 0 (p. 4*). 
X to plane, R — W sin COL = 0, 

R = W.sinCOL = W.cos0. 

Pio. 18*.—^Xnolined Plane. 
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IS 

Let P be parallel to the base as in Fig. 19*. Each siflo of A ABC 

± to a force, so that if it were turned through 90°, as in the small 
fig. to the right, each side 
would be parallel to and 

ill the same direction as a 
force. Hence A ABC can 
be taken as the triangle of 
forces, the side perpen¬ 

dicular to a force being 
taken to represent that 
force. (This principle 

should be remembered.) 
Fig. 19*.—Inclim^d Plane. 

and 

P/W = hlh = tan e, 
R/w - z/6 = 1/cos e. 

In cither case, if a force slightly greater than P were applied, the 

weight would move up the plane. The formulae show the advantage 
of such an arrangement in raising a weight, as, by proper inclination, 

P can be made much less than W. It is much easier to push a barrow 

up an inclined plank than to raise it vertically, but the work done 
against gravity is the same in each case, viz. ingli ergs, where m is 
the mass raised in gms. (p. 20*). This suggests a still simpler method 
of obtaining the results; for the gain in potential energy must be 

equal to the work done. Suppose the mass is dragged from C to A : 
the gain in energy, in gra idtational units, is W/i ; the work done by 

R is zero, since the displacement is perpendicular to it; and in Fig. 
18* the work done by P = PL 

P/==WA or P = W . A/Us before. 

In the second case the work done by P = P6, because h is the dis¬ 
placement parallel to P’s direction. 

P6 = WA or P = W,A/6. 

Moment of a Force.—When it is a question of the equilibrium of 
particles attention can be confined to the possibility of motions of 

translation, but with rigid bodies^ w'hose dimensions affect the result, 
it is necessary to take into account rotations also. Let AC (Fig. 20*) 

be the line of action of a force whose magnitude is P, and OL the 
perpendicular from 0 to AC ; then P . OL is called the torque or the 

moment of the force round 0. To see its physical significance let 
a weight W gms. be hung from a lever supported at 0 (Fig. 21*), and 
let another weight P be moved until a balance is obtained. Alter 
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P in amount and get a balance as before. It will be found in every 
case that W . AO == P . OB, fr. the moments of the forces P and W 
round 0 are equal and tend to turn the lever in opposite directions. 

But the lever balances when the turning effects neutralise each 
other ; the moment of P round O is therefore a measure of its turning 

effect. Moments are taken of opposite sign according as they tend 
to turn a body in a clockwise or anti-clockwise direction. If a force 

O 

L 

Fig. 21*.—Illustration of a Moment. 

is not perpendicular to the lever, awS P' in Fig. 21*, it may be resolved 

into its components along and perpendicular to OB : the former 
passes through 0 and has no moment round that point; the latter 

is equal to P'. sin 0, and its moment round 0 is P' sin 0 . OB. Instead 
of this we might have drawn OL±P', when tlie moment is P'. OL, 

but as OL = OB . sin 0, the result is the same as before. In Fig. 
20* let AB represent P in size ; then the moment P . OL = AB . OL 

= twice area of AOAB, showing that a moment can be represented 
graphically by an area. 

Moment of the Resultant of Two Forces.~Let OA, OB, be the 
lines of action of two forces and 

OC that of their resultant (Fig. 
22*). We will prove that the 
sum of the moments of the two 

forces round any point jM is 
equal to the moment of their 

resultant round the same point. 

Di’aw FME || OB and EL || OA. 

The three forces are now repre- 22*.-ItesuItant Moment, 
sented by OF, OL and OE, and 
their moments by 2AOFM, 2AOLM, and 2AOEM. The last two 

moments are opposite in sign to the first. We have to prove that 

2AOLM - 2AOF'\I 20EM. 
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As AOLM is on the same base and between the same parallels as 

□ FL, 

2AOLM = □ FL = 2A0FE. 

2A0LM - 2A0FM = 2A0FE - 2AOFM 
= 2 AOEM, 

so proving the proposition. Being true for two forces, it is true for 
their resultant and a third force, and so on for any number of forces. 

It follows from this proposition that the sum of the moments of any 
number of forces about any point in the line of action of their resultant 

is zero. 

Parallel Forces.—In the last fig. let 0 be supposed to move away 

to a very great distance along OC, then OF and OL become parallel, 
and their resultant OB becomes equal 

to their sum or difference, according 

as they are in the same or opposite 

directions. In the first case they are 

called like and in the second unlike 
parallel forces. The position of the 

resultant is found by the theorem of 
the last paragraph. Let two parallel 

forces P and Q act at A and B (Fig. 
23*), and let their resultant R act at 
C. The forces are like in (a) and un¬ 

like in (h). In (a) R = P + Q, and in (b) R = Q — P (if Q > P). 

To find the position of C, remember that the moments of P and Q 
round this point are equal and opposite, 

/. P.AC = Q.BC or AC/BC = Q/P 

in both cases. Evidently in (h) the point C must fall outside AB if 
the forces are to have oppositely directed moments, and the result 

just obtained shows it is nearer the larger force. It is often more 

convenient to take moments round some other point 0, and to 
express that the sum of the moments of P and Q is equal to the 
moment of R. 

Then in (a) R . OC = (P + Q)0C = P . OA + Q . OB, 
and in (b) (Q P)OC = Q . OB - P . OA, 

and again the position of C is found. Next suppose the directions 
of the forces are changed so that they all make an angle 6 with 00. 

To get their moment round 0 each force is resolved perpendicular 

o A 0 B 
(a) 

IT 
Fio. 23*.—Parallel Forces. 
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to OC (p. 29*), and this component is multiplied by its distance 

from 0. The components are P sin 6, etc., and the last equation 
becomes 

(Q — P)OC . sin 0 == Q . OB . sin 0 — P . OA . sin 0. 

Dividing out by sin 0 it is seen that the result is the same as before, 

and the position of C is unchanged. C is called the centre of the 

parallel forces. The centre of parallel forces acting at fixed points 

is the point at which their resultant acts however their direction 
is changed. 

Centre of Gravity.—On p. 318 an example is given of a number 

of parallel forces acting on a magnet. Another system is of special 

importance. Any body can be regarded as being built up of in¬ 

numerable small particles, the weight of each being equivalent to 

a force acting vertically downwards. The resultant of these is the 

weight of the body, and the point where it acts—^the centre of parallel 

forces—is called the centre of gravity of the body. If it be supported 

at this point the body will be in equilibrium in all positions. For 

many purposes the whole mass of a body can be supposed to be 

concentrated at its centre of gravity. 

Couples.—A system of two equal but unlike parallel forces is called 
a couple. The resultant of such a system is zero 

and it can produce no motion of translation; 

there may, however, be rotation. In Fig. 24* 

draw AB perpendicular to the direction of the 

two forces P, and take moments about any point 

0 in this line. The resultant moment is 

in (a) P . AO + P . OB = P . AB, 

and in (6) P . AO ~ P . OB = P . AB. 
Fig. 24*.—A Couple. 

This constant moment is called the moment of the couple, and 

AB is its arm. If a couple produces rotation work will be done. To 

find its amount suppose AB (Fig. 24* (a)) to make one complete 

revolution round 0, P remaining ± AB. The angle turned through 
= 4 rt. Z. s = 277 radians (p. 3*); also B describes a circle of radius 

OB and circumference 277 . OB, and A one whose circumference is 

277. OA. 

Work done s= P(277 . OA + 277. OB) = P . AB. 27r 

/. Work = (mom. of couple) x angle in radians described by arm. 

This will be in ergs if P is in dynes and AB in cms. 
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Conditions of Equilibrium.—For purposes of reference the con¬ 

ditions for equilibrium are collected here, it being assumed that the 

forces are all in one plane. 
(1) For a Particle.—If there are two forces they must be equal 

and opposite. If there are three forces they must either (a) be 

parallel and their resultant zero, or (h) if not parallel, they must be 

capable of being represented by the sides of a triangle taken in cyclic 

order. No matter how many forces there are, if there be equilibrium, 

the components in two directions at right angles must vanish. 

(2) For a Rigid Body.—(Both translation and rotation to be 

taken into account.) For no translation the resultant must be 

zero ; for no rotation the sum of the moments round an?/ point must 

be zero. If all the forces pass through one point they cannot produce 
rotation, and the conditions are tlie same as for a particle. If they 

do not all pass through the same point, the simplest condition is 

that the sum of the components in two directions at right angles 

should vanish, and the moments round any point should vanish. 

Machines.—A machine is a contrivance for overcoming a resist¬ 

ance at one point by the application of a force, usually at another 

point. The jesistance W to be overcome is called the weight or 

the load, and the applied force P the power (not to be confused 

with power defined on p, 19*). If P is the force that just balances 

W, the ratio W/P is called the mechanical advantage of the machine. 

The inclined plane has already been dealt with. 

Levers are divided into three classes according to the position 

of the point about which they turn—called the fulcrum. ThcdifTerent 

types are indicated in Fig. 25*, where 0 is the 

fulcrum, P the power, and W the load. In 

addition to P and W the only other force 

acting on the lever is the reaction R at the 

fulcrum. Hence the resultant of P and W 

must act at C and be equal and opposite to R 

(no translation). Also the sum of the 
Fio. 25*,-™Lovcr8. moments of P and W about an}" point on 

the line of action of Ihcir resultant is zero, 
that is, in all three cases 

P. AO = AV . BC, 

and R is the algebraic sum of P and W. Examples of the lever of 

the first class are a pump handle, the lover used by tramwaymen 

to move a tram over dead points, the pole and cradle used to raise 
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sliecp into the tub holding sheep dip, and the common balanoe. 
Double levers are a pair of scissors or pincers. Examples of the 
second class are a pair of mit-crackers and a wheelbarrow. In the 
third class W<P, and there is always mechanical disadvantage, 
but in many cases space is saved. The forearm is an example ; the 
fiilcnnn is the elbow joint, the power is a]>plied obliquely by the 
biceps muscle at a })oint below the elbow, and the weight is held by 
the hand. Double levers are the forceps in a box of weights and 
sugar tongs. If the weight of the lever, Wj, has to be taken into 
account, there is an additional force acting at the centre of 
gravity G of the lever, but the sum of the moments round C is still 
zero. 

The wheel and axle is shown in Fig. 26*. Examples are the 

one complete revolution when W is raised, the work done by P =* 

work done on W (p. 28*), i,e, P . 27ra = W . 27rfe, or Pa = W6. 
Of the various systems of pulleys we will deal with two only, 

and for the sake of illustration two methods of calculating the 

2* 
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mechanical advantage will be used. In the Archimedes system (Fig. 
27* (a)) a separate string passes round each pulley. Let W ascend 
X cms.; then A2 ascends 2x cins.; A3 goes 2^ . x cms., and P de¬ 
scends 2^ .X cms. Also work by P = work done on W, 

P.23.a:== W.2; or W/P = 2^ 

In the common system (Fig. 27* (6)), the pulleys of the top block 
are usually all mounted on the same axis, and similarly with those 
of the bottom block. The same string passes round all the pulleys, 
and, since it supports the power, its tension is P. As there are six 
strings going to the lower block the upward pull is 6P. If there 
are n pulleys W == n. P. The weights of the pulleys have been 
neglected in each case. 

The Balance.—In principle the common balance is simply a lever 
of the first class with equal arms. The beam AB (Fig. 28*) turns 

round a fulcrum C, which, to 
diminish friction, is made of an 
agate or steel knife-edge resting 

on a smooth agate plane. Let 
W be the weight of the beam 
and pointer, G be their centre of 
gravity, and suppose that nearly 
equal weights P and Q hang 
from the arms of length a. Let 

CG = h. Suppose the beam is 

Fio. 28*.—The Balance. 

tilted through an L 6. Taking moments round 

P. CM = W. CL + Q . CN. 
Also CM = CN = a cos d and CL = GR = 6. sin d. 

Pacosd = W6sin0 + Qacosd . , 

cos d W . h • . . . 

(1) 

(2) 

/H ^ ^od balance should have the following characteristics:— 
(1) It should be true; i.e. the beam must be horizontal when equal 
weights, or no weights, are in the pans. This is secured by making 

the arms exactly equal in length and weight, and the pans equal in 
w«ght. (2) It must be sensitive. This means that for a small 
difference between P and Q the angle of tilt, 6, must be large. For 
a given difference between P and Q the equation shows that tan 6 
and therefore 6, is large when a is large, and W and b are small. Hence 

the beam must be long and light, and its centre of gravity near C. 
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(3) It must be stable, i.e. it must return quickly to its position of 

rest when deflected, with equal weights in the pans. Equation (1) 
shows that when P and Q are equal the only restoring couple arises 
from the weight of the beam. Hence for stability W6 must be 

large. (Of course the O.G. must be below C.) It can also be shown 
that for a quick swing a light beam is required. Evidently the 
conditions for (2) and (3) are at variance and in practice a compromise 

must be effected. The scientist requires sensitivity even at the 

sacrifice of some speed in weighing, while for a grocer a less accuracy 
combined with speed is sufficient. 

Suspended Bodies.—When a body is suspended so that it can 
turn freely round its point of suspension 0 (Fig. 29*), it 

will come to rest with its centre of gravity G vertically 
under 0. For if its C.G. were at Gi, the weight would 

have a moment round 0, causing the body to turn. 

Experiment.—Hang up a sheet of cardboard by a string 
at one point 0 and draw the vertical. Repeat for another 
point of support. The intersection of the two verticals is 
the C.G. Fio. 29*.— 

Suspended 
Body. Similarly when a body rests on a plane, horizontal 

or inclined, there are two forces acting on it, its weight 
at the C.G. and the resultant reaction of the plane, and for 
equilibrium these must act in the same straight line. The vertical 

through the C.G. must therefore pass through the area of contact 

of the base of the body with the plane. If the C.G. 
of the body shown in Fig. 30* were at Gi, the body 

would topple over, but there is equilibrium when it 

is at G2. When a body returns to its rest position 

after a slight displacement, it is said to be in stable 
equilibrium; if it moves still further away after 

the displacement its equilibrium is called unstable. 

When, like a sphere on a table, it rests indifferently in any position 
it is said to be in neutral equilibrium. 

Fro. 30*. 

EXAMPLES ON CHAPTER III* 

1. A particle slides down a smooth inclined plane inclined to the horizontal 
at an angle 6, Show tnat its acceleration is g. sin d, 

2. Find graphically and by calculation the resultant of forces of 10 and 16 
gms., acting at an angle of (a) 30°, (b) 60°. 
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3. Find tbc rosultant of forces of 4, 5, and 6 gms. making angles of 120^ 

with each other, (a) graphically, (6) by resolving them along two directions at 

right angles. 

4. The arms of a balance arc not quite equal in length. When a body ia 

placed in one pan it appears to weigh Wp but when placed in the other its 

apparent weight is W^. Show that its true weight is and that the 

lengths of the arms arc in the ratio \^Wj: VWj. 

5. A weight of 240 gms. is .supported from 0 by two strings, OA, OB, 30 and 

40 cms. long respectively. The other ends of the strings are atta{‘h('d to points 

A and B 50 cms. apart horizontally. Find the tension in each string. 

6. Prove tliat the work done on a particle by a system of forces during any 

displacement, such that the forces do not alter, is equal to the work done by 

their rc'sultant. If the forces are in equilibrium their resultant is zero ; hcricc 

deduce the work principle (p. 28) for machines. 

7. A uniform plank, 5 ft. long and weighing 20 lbs., li(‘s symmetrically on 

the top of a cube of 1 ft. face. What force must be applied at one end in order 

to tip up the plank ? What force must be thus applied to tip it up after a weight 

of 5 lbs has been hung on the other end of the plank ? (L. ’1)8.) 
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HYDROSTATICS 

Fluids.—Solids are substances which can oppose a big resistance to 

any change in their size or shape. Fluids, on the other hand, are 

substances, like water and air, which can offer no resistance to shape 

changes when they take place slowly. For rapid changes internal 

friction—called also viscosity—comes into play. This accounts for 

the large horse power required in fast steamers and in aeroplanes. 

For many purposes, as in the following pages, these frictional effects 

can be neglected. The term fluids includes both liquids and gases. 

Liquids differ from gases in being very difficult to compress. A gas 

will expand until it fills the containing vessel, however large it may 

be. On account of the absence of friction it is clear, (1) that the 

surface of a liquid at rest must be horizontal; if it were inclined, the 

particles would slide down the inclined plane. (2) The pressure on 

any solid surface in contact with a fluid at rest is normal to that 

surface. For if it were not so, it could be resolved into components 

perpendicular and parallel to the surface, and the latter component 

would cause motion to take place. 

Pressure in a Fluid.—^If a fluid exerts the same pressure on every 

cm.2 of a surface its pressure is said to be uniform, and is expressed 

in dynes or gms. per cm.® Strictly this should be called the intensity 

of the pressure. When it is not uniform, a point is taken and a plane 

area S is described around it so small in extent that the pressure on 

it can be regarded as uniform. If p is the total pressure on this 

area, then p/S is called the pressure at the point. It is evidently the 

pressure that would be exerted on unit area if it were everywhere of 

the same intensity as it is over S. The pressures at two points in the 

same horizontal plane and connected by fluid at rest are equal. 

For imagine the points A and B (Fig. 31*) to be connected by a 
smooth tube; if the pressures on the ends were different the fluid 
would flow to the left or right. ALo the pressme at any point is the 
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same in all directions. For imagine the end A to be turned in any 

directi n keeping at the same depth; the liquid can be at rest in 
_ _ the tube only if the pressures along the axis 

^ ® equal, and altering the 
I direction of A will not cause motion. On 

r account of the freedom with which liquids 
move, an increase of pressure at one point 

- is transmitted equally in all directions. For 

Pia. 31*.—Pressure in example, when the piston of the pump is 
a Fluid. pushed in the pressure in the bicycle tyre is 

increased everywhere to the same extent. 

Density and Specific Gravity.—It is frequently necessary to 
know the relative weights, bulk for bulk, of different materials. 

Tables of densities or specific gravities are used for this purpose. 

The density of a substance is its mass per unit volume. It is ex¬ 
pressed in gms. per c.cm., or lbs. per cub. ft., etc. The units used 
should be stated in every case. The density of water is 1 gm./cm.3, 

or 62’5 Ibs./cu. ft. approximately. If d is the density of a substance 
whose volume w v, then its mass 

m = vd. 

The specific gravity is the ratio of the weight of a certain volume 
of that substance to the weight of an equal volume of some standard 
substance.—The standard substance is usually taken to be water 

at 4® Cent. As at this temperature the density of water is 

1 gm./cm.3, the numbers representing densities and specific gravities 
are the same in the C.G.S. system. It should be noticed that the 

specific gravity is the ratio of two weights and is therefore a number^ 
which will be the same in all systems of units. 

Variation of Pressure with Depth.—Let C and D (Fig. SI’*') be 
two points in a fluid in the same vertical line. Suppose they are 

connected by a narrow, smooth cylinder. Then, in order that there 
shall be no downward flow, the pressme on the end D must be greater 

than that on C by an amount equal to the weight of the liquid in 

the cylinder. Suppose the section of the cylinder to be 1 sq. cm., 
then if d is the density of the liquid and CD = A, it is seen that the 

difference in pressure at the points C and D is p = M gms./cm.^ 

The density of gases is so small that this difference of pressure can be 

neglected in ordinary closed vessels, though it must be taken into 
account in large scale operations, such as mountain ascents or 

balloon voyages (p. 44’"). Neglecting the weight, the pressure of a 
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gas is the same at all points in a vessel. When a U-tube contains 

liquid (Fig. 32* (a)) the pressure at B = pressure at C, and therefore 
the height AB = height CD, although the 
vertical limbs may have different sectional 

areas. If the U-tube contains two liquids 
which do not mix, as in Fig. 32* (6), let B 
be the interface where the liquids meet, di 

and d2 the densities of the liquids on the 

left and right respectively, and hi and 7^2 
the lengths of the columns AB and CD. 

Then the pressure at B = the pressure at 
C (in the same horizontal plane). 

liidi = 7/2^2* 

This result can be used to compare the densities. A U-tube contain¬ 

ing liquid can also be used as a pressure gauge. For example, suppose 
the gas mains are connected to the right limb of the U-tube shown 
in Fig. 32* (a): the liquid is forced downwards in this limb, and 

upwards in the other. Let it come to rest at E and F ; then the gas 
just balances the column of liquid of height EL, and this accordingly 

measures its pressure. 

Principle of Archimedes.—When a body is partly or wholly im¬ 

mersed in a fluid the pressure on its surface gives rise to an upward 
thrust and the body apparently loses weight, as, c.^., in swimming. 

This apparent loss can easily be found both 

theoretically and experimentally. Let A (Fig. 

33*) represent the body. Imagine it to be 
removed and the space it occupies filled with 

the fluid. The forces arising from the sur¬ 
rounding fluid are unaltered, but now it is seen 
that the resultant upward thrust just supports 

the weight of the volume A. Hence the loss 

of weight of the original body is equal to 
the weight of the fluid that would fill the space A. This is known 
as the principle of Archimedes, after its discoverer. When a body 
is immersed in a fluid there is an upward thrust on it of an amount 
equal to the weight of fluid it displaces, and the body apparently 
loses weight by this amount. 

Experiment.—In Fig. 34* B is a solid metal cylinder which just fits in the 
hollow cylinder A. Weigh the two together and then let B be totally immersed 
in water, as in the fig. Balance is destroyed, but it may be restored by filling 

Fig. 33*.—Principle 
of Archimedes. 

Pig. 32*.—Pressure in a 
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A will) water, showing that the loss of weight of B is equal to the weight of 
water it (Iis2)lace8. (lorresponding to the upward thrust tiu're is a downward 

“ reaction,’' aiul the \\« ii;lit of the wuti r in the beaker is 
apparently increased, 'riu* following <‘\|)0rinient .sho\A.^ 
how much this inerease is. 

Kxi‘ERIMi:nt.—Kiml JiV loss of w<'i^-ht in gins. ; tli. n 
renu>vi' it and place the hr-aker C on the hal.tie *-. Sus¬ 
pend B from a staiuJ Mtih lhr(‘;ol to ih.it it is again 
immersed. 'J’h.- beaker gains in weiLjht and ils gain will 
be found equal to B's a}>paivnt loss, 

Jn accurate work the weight of a body and 
the balance weights must both bo corrected for 
the ail' they displace. 

Fig. 34*.—Proof 
of Archimedes' 
Principle. 

Determination of Specific Gravity. — The 
strengths of solutions and the purity of sub¬ 
stances are frequently tested by finding their 
specific gravities. If the specific gravity of a 
ring, said to be gold, is determined and is found 
to be less than that of pure gold, then it is 
certain that either the ring is not solid through¬ 
out or it is made of some lighter alloy. The 
specific gravity of a solid is found from Archi¬ 
medes’ princij)le by weighing the body first in 
air and then when hanging completely immersed 
in water. Let these weights be \V and 
respectively. Then 

loss of wt. in water = wt of water displaced = 
W ~ Wi gins. 

«nd S.G. _- 
Wt. of an equal vol. of water W — VVi 

As 1 gm. of water occupies 1 c.cm., it is evident that the volume of 
the body is (W — W^) c.cms. This is the most accurate method 
of finding volumes. 

Suppose the same body is now weighed in another liquid, and that 
its apparent weight is W2- Then the weight of liquid it displaces 
is (W — W2) and, as the weight of the same volume of water is 
(W — Wi) gms., 

the S.G. of the liquid = . 
>V — \\ I 

If in the first case the solid is soluble in water, it must be weighed 
in air and in some other liquifl, of known specific gravity s, in which 
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iL is insoluble. If the weiglits are W and as before, the weight 

of liquid displaced is (W — Wj) gms.; and, as 1 c.cm. of the liquid 

weighs s g!ns., the volume of liquid displaced is (W — Wi)/.S‘ c.cms. 

But I he weight of this volume of water is (W — Wi)/.s' gnis., 

/. S.(j. of the solid 
W_JW 

(\Y~Wi)is ~ \\ - w, ■ 
'J’hul is, to hud the speciiic giavity of a body soluble in water we 

first find the specific gravity referred to some other liquid, then 

multiply this by the specific gravity of the liquid. 

The best method of finding the specific gravity of a liquid is to 

find in succession the weights of liquid and of water required to fill 

a small narrow'-necked bottle; the S.G. of the liquid is the ratio of 

these weights. The specific gravity bottle method is also used when 

the body is in the form of a powder. ^V gms. of the powder are 

weighed in the bottle, which is then filled up with water. Let the 

contents—powder and water—weigh gms. Next the weight of 

the water alone required to fill the bottle is found ; let this be W2. 

If it were possible to add the powTler to t he bottleful of water without 

any liquid escaping, the combined weight of the contents would be 

W + Wo; actually water escapes and the w^eight is lesjl than this, 

viz. Wi. Hence water displaced by powder = W + W2 — W2, 

S.G. of powder = 
W+ Wo 

The methods described above are all used, with additional 
precautions, in accurate work. The following are much less accurate 

and, wfith the exception of the common hydrometer, are used only 

to illustrate and verify the principles already developed in earlier 

pages. On account of the accuracy with which weighings can be 

effected balance methods are usually to be preferred to all others. 

Nicholson's Hydrometer consists of a hollow cylinder A (Fig. 

35* (a)), carrying upper and lower pans C and B. It is suitably 

weighted to float upright in a liquid. To find the specific gravity 

of a solid, the hydrometer is floated in water and weights are added 

to C until a mark P is just in the surface. The solid is then placed 

in the upper pan and weights Wj are removed to bring P again in 

the surface; the weight of the solid is Wi. The body is then removed 

to the lower pan when, on account of the up-thrust, further weights 

W2 must be removed from C to keep the mark in the surface. The 

weight of water displaced by the solid is W2, and the specific gravity 
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required is W1/W2. To find the specific gravity of a liquid, the 
hydrometer is floated first in the liquid and secondly in water, weights 

being added to C in each case to bring P in the 
surface. Let W2 and W2 be the weights re¬ 
quired, and W the weight of the hydrometer 
alone. From Archimedes’ principle the weights 
of liquid and water displaced are (W + Wj) 
and (W + W2), and the volume is the same for 
each, 

W' 4. 
hence the S.6. of the liquid = , — 

W + W2 

The common hydrometer shown in Fig. 35* (h) 

is frequently used in works’ practice. It con¬ 
sists of a hollow glass bulb surmounted by a 
slender cylindrical stem, on which a scale is 
engraved ; a lower bulb C is weighted so as to 
make the instrument float in an upright position 
when placed in a suitable liquid. When it is 
placed in a liquid to be tested, the hydrometer 

sinks until it displaces its own weight of the liquid; the specific 
gravity of the liquid is then given directly by the scale reading in 
the surface. 

The U-tube method (Fig. 32* (6)) can be used to find the specific 
gravity of a liquid which does not mix with water. When the 
liquids are miscible the U-tube is inverted and the liquids are sucked 
up the limbs (Fig. 36*). The pressure on the liquid in the beakers 
is the same in each case, viz. atmospheric pressure, and this just 
balances the weights of the liquid columns. Hence, as before, 
hidi = *2^2, whence, if di refers to water, d^ can be found. Used in 
this manner the U-tube is called Hare’s apparatus. 

Pressure of the Atmosphere.—Gases differ from liquids in being 
less dense, more compressible, and less viscous. If a litre flask 
closed by a stopcock be exhausted of air and weighed, it can easily 
be shown that the readmission of the gas increases its weight. A 
litre of dry air at a temperature of 0° Centigrade, and a pressure of 
76 cms. of mercury (see below), weighs 1-293 gms. Any one who 
uses a bicycle pump knows that air is compressible, and the slow rate 
at which fog particles fall to earth is a result of the viscosity of the 
air acting in combination with a relatively large surface. (A number 
of particles have a much larger surface than if they are all collected 

\a) (b) 

Fio. 35*.—^Hydro¬ 
meters. 
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into one liquid drop.) As air has weight the atmosphere should 
produce a pressure, and this, in fact, it can be readily shown to do. 
If a glass tube 5 mms. in diameter and 80 cms. or more in length 
be closed at one end, filled with mercury, and then inverted with its 
open end under mercury, it is found that a column of the liquid about 
76 cms. long remains in the tube (Fig. 37* (a)). As the pressure at 
the level of B must be the same inside and outside the tube, the 
pressure of the atmosphere just balances that of a column of mercury 

Fig. 37*.—Barometers. 

of vertical height AB. If the tube be inclined the mercury runs up 
it until its vertical height is the same as before, since the pressure 
at B depends only on the vertical depth of this point below A 38*). 
This height AB is called the height of the barometer. The space 
above A is called the Torricellian vacuum; actually it is filled with 
mercury vapour, but this exerts a very small pressure. The normal 
barometric height is 76 cms., so that the pressure of the atmosphere 
per sq. cm. is that due to 76 c.cms. of mercury. Taking the density 
of mercury as 13*6 gms./cm.^, this is (76 X 13*6) gms. weight« 
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1033*6 gms./cm.2. To bring it to dynes multiply by g (= 981). For 

many pui’poses gas pressures are expressed in cms. of mercury, i.e. 

in terms of the length of the column they are capable of balancing. 

For convenience the vessel in (^) is frequently replaced by a bend in 

the tube (Fig. 37* (b)); it is then called a siphon barometer. As the 

height of the barometer is found to be connected with the probable 

state of the weather, the instrument in this form is frequently used 

as a weather glass. A thin string, carrying a weight at each end, 

passes round the axis of a pointer P. One of the weights floats on 

the surface of the mercury at B and, as this rises or falls, its move¬ 

ments are communicated to the pointer. An accurate form of 

barometer is described on p. 5. If water were used instead of 
mercury in a barometer its height would have to be 13*6 times as 

large to produce the same pressure; this gives the height of the 

water barometer as approximately 34 ft. Just as the pressure in 
a liquid varies with the depth, so does the pressure of the atmosphere 

decrease as we ascend (see p. 91). The height of a balloon, indeed, 

is calculated from this decreased pressure as measured by a portable 

barometer. For this and similar purposes an aneroid barometer is 

used. This consists of an airtight metal box closed on one side by 

a thin metal sheet. Variations in pressure produce movements in 

the sheet which, by suitable gearing, are magnified and communi¬ 

cated to a pointer moving over a dial on which the values of the 

pressures or heights are marked. 

Boyle’s Law.—The law governing the compressibility of a gas 

is called Boyle’s law, after its discoverer Robert Boyle. In the 

form of an equation it states that piVi = where pi and Pq are 

the pressures of a given mass of gas and Vi and ^2 are the corre¬ 

sponding volumes. For the method of proving the law see p. 7. 

Lift and Force Pumps and Brahmah Press.—The common pump 

depends for its action on atmospheric pressure. The piston B 

(Fig. 38*) carries a valve C which opens upwards; lower down in 

the barrel is another valve D opening in the same direction, and below 

this a narrower pipe goes to the water reset voir. Normally C and D 

are closed by their own weight. Let us consider the action from the 

start:—When B is raised the pressure of the air between C and D 

is reduced, D opens on account of the air pressure below, and air 

from the pipe passes into the space CD. The piston is then lowered, 

when the increased pressure closes D and opens C, thus allowing 
air to escape upwards. These operations are repeated until all the 
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air is removed from the pipe, and the atmospheric pressure on the 

reservoir forces water up above D to take its place. At the succeeding 
downward stroke this water closes D and escapes above C. On 
now raising the piston the water closes C and is carried upwards to 

esca})c at S. Evidently DE mus' be less than the height of the 
water barometer—about 34 ft.—otherwise the atmospheric pressure 
could not force the water above D. If it be rec^uired to raise water 

1o a greater height, as with a fire engine, a force pump must be used. 

One form of this is showm in Fig. 30*, where it forms part of a Brahmah 
press. The.only additional part is the valve B opening upwards. 

Suppose the cylinder L to be full of w'ater. When the solid plunger 

V is raised, atmosi^heric pressure forces water from the reservoir, 

Fia. 38*.—Lift Pump. 

past the valve A, into L. When P descends A is closed; at the 

same time B is opened by the increased pressure and water is forced 
upwards, whence it may be led away in any direction. In the fig. 
it is shown as being led into a second strong iron cylinder D, forming 

part of the Brahmah press. A large cylinder C, called the ram, 

moves up and down in this chamber, suitable packing at E preventing 
leakage. The packing takes the form of a well-oiled leather collar, 

placed in the groove near E, and of the shape shown at X; the 

pressure of the water on the concave side then presses it strongly 

against the metal on either side. When valve B is open the pressure 
on the plunger P is transmitted to the ram, and as the sectional area 

of this is n times that of the plunger, where n is a large number, the 

total upward pressure on the ram is n times that on P. By this 

means very large pressures can be produced. 
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Air Pumps.—^The simplest form of air pump is the ordinary glass 
filter pump shown in Fig. 40*. The side tube C leads to the vessel 
to be exhausted, while A is connected with the water mains. When 
a strong jet of water is forced down A the air surrounding the narrow 
nozzle becomes entangled and is carried away down B ; thus a partial 
vacuum can be produced in a vessel joined to C. Even when a current 
of air is sent down A a suction effect is produced, as can readily be 
shown by blowing down it while a tube from C leads into a vessel 
of water. The liquid immediately rises and passes down B. If steam 

be used instead of air we have an illustration of the action of the 
steam injector used to force water into boilers. There is also a piston 
and valve air pump, but as this operates in a similar manner to the 
lift pump of Fig. 38*, no further description is necessary, except to 
say that the narrow tube below D goes to the vessel to be exhausted, 
and it is the expansive force of the gas which opens this valve at each 
stroke of the piston. If each valve in Fig. 38* opened downwards, 
air could be compressed in any vessel fixed on to the end of the 
narrow tube DE. This is the action of a bicycle pump, except that 
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the valve corresponding to D is in the tyre. It is evident that with 
a piston and valve air pump the exhaustion cannot be pushed beyond 
the stage where the pressure of the gas becomes too feeble to raise 
the valve D. For further exhaustion another type must be used; 
one such, called a Topler pumj), is illustrated in Fig. 41*. The 
apparatus is made of glass, except for the rubber connection tube F. 
The reservoir D and the vessel L contain mercury, and the length 
of each of the tubes FE and LC is slightly greater than the baro¬ 
metric height. The lower end of C is under mercury. The apparatus 
to be exhausted is sealed on just beyond the valve B, whose purpose 
is to prevent the passage of mercury upwards. When the reservoir 
D is raised mercury passes up the side tubes at E and closes the 
valve; it also flows into A and down the narrow tube C, sweeping 
the air along and causing it to escape through the mercury in L. 
The reservoir is then lowered, when the valve falls by its own weight, 
but on account of its shape does not close the tube leading down¬ 
ward, so that the air in G expands and again fills A. Meanwhile 
the lower end of C is sealed from the atmosphere by mercury, some 
of which rises up the tube. The stroke is then repeated, each time 
removing air of volume A. Pressures as low as *0001 mm. of mercury 
can be produced by this pump. Dewar has shown that still lower 
pressures can be produced by sealing on to the apparatus a small 
bulb containing coco-nut charcoal; when this is immersed in liquid 
air it is found that the charcoal rapidly absorbs most gases. 

The Siphon.—The siphon (Fig. 42*) is a convenient device for 
emptying a vessel of liquid when taps are not in use. It consists 
of a bent tube with a long and a 
short limb. Suppose the tube is 
filled with some of the liquid in the 
vessel; then the pressure at B, being 
equal to that at A in the same hori¬ 
zontal plane, is that due to the 
atmosphere, plus the weight of a 
column of liquid of height DA, and 
the downward pressure at C is greater 
than the atmospheric pressure owing 
to the liquid column BC. Hence liquid 
escapes and atmospheric pressure forces more up the short limb 
to take its place. It is clear that the siphon will not work if the 
vertical distance between D and £ is greater than the height of a 
barometer made of the liquid in question. 

B 
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EXAMPLES Ox\ CHAPTER IV* 

L Tlio specific gravity of gold is 19'3 ; that of silver is 10*4. What is ihe 
composition of an alloy of gold and silver whose specific gravity is 17*0 ? (L. ’80.) 

2. A cu. ft. of water weighs 1000 oz. A man weighing 100 lbs. floats with 
4 cu. in. of his body above the surface. What is his volume ? (L. ’81.) 

3. A piece of lead weighing 17 gms. and a ph ee of sulphur have equal 
apparent weights when suspended from the arms of a balance and immersed in 
water. When the water is replaced by alcohol of demity *9, 1 *4 gms. must be 
added to the pan from which the lead is suspended to restore equilibrium. De¬ 
termine the weight of the sulphur, the density of lead being 11 *333. (L. ’80.) 

4. A bottle whose volume is 500 c.os, is sunk mouth downwards below the 
surface of a pond. How far must it be sunk for 100 c.cs. of water to run into the 
bottle ? The height of the barometer at the surface is 70 cms., and the specific 
gravity of mercury is 13*0. (L, ’93.) 

6. A flask, which when filled with water weighs altogether 410 gms., has 
80 gms. of a solid introduced, and being then fill(?d up with wat(‘r weighs 470 
gms. Find the s.g. of the solid and the volume of a kgm. of it. (L. ’90.) 

C). Some air is in the space above the mercury in a barometer. When the 
mercury stands at 29 in., the space above the mercury is 4 in. long. The tube 
is then pushed down into the cistern so that the space above the mercury is only 
2 in. long, and now the mercury stands at 28 in. At what height would it stand 
in a perfect barometer ? (L. ’94.) 

7. Show that if a piston is moved along a cylinder against a constant pressure 
the work done in a stroke is equal to the product of the pressure into the volume 
swept out by the piston. (L. ’97.) 

8. A closed cylindrical vessel 3 ft. in diameter and 1 ft. high is connected 
with a vertical tube of 1 sq. in. and 10 ft. high from the top of the vessel. Cal¬ 
culate (a) the weight of water that will fill the vessel and tube ; (6) the force 
tending to burst off the bottom of the cylinder; and (c) the pressure on the 
bottom. (1 cu. ft. of water weighs 62*5 lbs.) (L. ’98.) 

9. A man 1*7 metre high changes from the vertical to the horizontal position. 
If the density of the blood be 1*03, calculate the change in blood pressure in hia 
head, assuming that it stays constant in his feet. (L. 1900.) 



PHYSICS 

CHAPTER I 

GENERAL PROPERTIES OF MATTER 

The study of Mechanics has shown that a frequent result of the 
action of force on matter is the generation of energy, either kinetic or 
potential. It is found, however, that energy may manifest itself in 
other and more complicated forms; although these would probably 
be reducible to the simpler forms if our knowledge were more 
complete. The study of these various forms of energy, their modes 
of propagation from place to place, and the conversion of one form 
into another is the province of Physics. Properly to understand 
these, it is found necessary to investigate the properties of the 
smallest particles of which all matter is built up; consequently the 
structure of matter is one of the main problems of Physics. The 
types of energy dealt with in the following pages are those asso¬ 
ciated with Heat, Light, Sound, Magnetism and Electricity; but 
before beginning their study it will be convenient to deal with 
some of the general properties of matter, which do not fall strictly 
under any of the above heads, as these properties are frequently 
met with in experimental work, 

Newton’s Law of Gravitation,—Matter may be defined as that 
which occupies space. This definition does not make any hypothesis 
as to the structure of matter; in fact, this question is one of the 
main problems of Physics, In addition to occupying space, all matter 
possesses mass and is subject to the law of gravitation. This law, 
discovered by Sir Isaac Newton, states that every particle of matter 
attracts every other particle with a force which is proportional to the 
product of the masses and inversely as the square of the distance 
between them. Thus if m and are the masses and R the distance 
between them, the force of attraction 

Foe 
mm' 

or F = jfc. mm' 
W 

where A; is a constant. Thus the earth attracts the moon, and vice 
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versdy and each attracts and is attracted by the sun and other 
astronomical bodies. As illustrations of laboratory experiments 
that have been made to detect and measure the attractive force 
between bodies, the two following may be quoted. Prof. Krigar- 
Menzcl weighed a body on the top of a high building, then he attached 
it to the balance by a long vertical wire, which passed through the 
rooms below, and weighed it again. In the second position it was 
nearer the earth and should be more strongly attracted, i.c. its 
weight should be greater; this was found to be the case. Similarly 
Prof. Poynting attached equal masses to the arms of a balance and 
found that one was attracted downwards when a large block of lead 
was placed immediately beneath it. From experiments of this 
type the value of the constant k in the above equation can be 
found, for all the quantities except h can be measured. Once 
this value is known the mass of the earth and of the planets can be 
calculated. 

Elasticity.—When force is applied to a body it may move it as a 
whole or it may merely alter the relative positions of the particles 
composing it. In the latter case the size or shape of the body is 
changed and it is said to be strained. If it tends to recover its 
original size or shape after the forces are removed the body is said 
to be elastic. Consider any small plane area in a strained elastic 
body: there will be attractive or repulsive forces between the 
particles on opposite sides of the plane tending to move them back 
to their original positions ; the magnitude of this force per unit area 
is called the stress. Bodies which tend to recover their original 
volume after a deformation are said to possess volume elasticity, 
those which tend to recover their shape, after a twist, are said 
to possess simple rigidity. So long as their volume is unaltered, 
liquids and gases do not permanently resist change of shape ; they 
have only volume elasticity. Solids, on the other hand, have elas¬ 
ticity of both types. If we consider only alterations of length, the 
strain is measured by the change in length per unit length ; thus if 
a wire of length L cms. is strained unt’l its length is (L ± /) cms., the 
strain is IfL. When the volume varies the strain is measured by 
the change in volume per unit volume, i,e, if the volume V is altered 
by forces to (V ± v), the strain is v/V. If the strain exceeds a certain 
value, which varies with the material, the body is permanently 
deformed and is incapable of recovering its original configuration; 
it is said in such cases that the elastic limits have been exceeded. 
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For smaller strains, within the elastic limits, experiment shows that 
the strain is proportional to the stress; hence 

stress oc strain 

stress _ 
or r- =E 

strain 

where E is a constant. This ratio is called the modulus of elasticity. 
For volume changes E is called the bulk modulus of elasticity; if 
we are concerned only with variations of length, E is called Young’s 
modulus. Let a wire of length L and radius R cms. be stretched by 
a force of P d3mes, and suppose the increase of length is I cms. Across 

F 
each section of the wire there acts a force F, hence the stress = 

ttR* 

Also the strain is 2/L, and Young’s modulus, which we shall denote 
by Y, is 

Y_F/irR2 

IIL 

The ratio l/L is a mere number independent of the units of length, 
hence Y is given in dynes/cm.* If the force is applied by hanging a 
weight of M gms. to the lower end of a vertically suspended wire 

and 

F = Mg 

7rR2 j 

Suppose that a body of volume V cms.® is subjected at every 
point of its surface to an increase of pressure P dynes/cm.® at right 
angles to the surface, and let v be the volume change produced. 
Then the stress is P, the strain is t?/V, and the bulk modulus 

v/V V 

As in the previous case v/Y is a number and the bulk modulus 
is expressed in dynes/cm.® 

Hooke’s Law.—Young’s Modulus for a Wire.—^It has already been 
stated that within certain limits stress and strain are proportional; 
for alterations in length this is known as Hooke’s law. This law 
states that the linear extension is proportional to the stretching force. 
The spring balance is a common application of this rule, the extension 
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of the spring is proportional to the weight of the body hung from its 
lower end. The student should verify in a similar manner that 
Hooke’s law holds for a piece of rubber band. When we come to 
metal wires the extensions to be measured are very small, and either 
a sensitive apparatus must be used to determine them or they must 
be made larger by using a long wire. The latter alternative is 
generally ruled out, as it is difficult to keep the temperature ^ of a 
long wire constant, and any variation may cause an alteration in 
length as large as that produced by stretching. 

Experiment.—Searle’s Apparatus.—With this apparatus a wire about 
2 m. long can be used. Two wires A, B (Fig. 1) are hung from the same support, 

and each carries at its lower end a 
brass rectangle to the lower sides of 
which suitable w'eights can be hung. 
Stretching across from one rectangle to 
the other is a spirit level; this turns 
freely round a hinge at one end and at 
the other rests on the point of a vertical 
screw C. The pitch of the screw, t,e. 
the distance it advances with one 
complete turn, is 1 mm., and its large 
circular head is divided into 100 
divisions. Thus if it is turned through 
one division the point advances or re¬ 
treats 0*01 mm. Each wire is stretched 
taut by a kgm. weight and the screw 
reading is taken when the air bubble is 
at the middle of the level. An ad¬ 
ditional kgm. is then added to one 
wire, this stretches it slightly and the 
bubble is displaced ; it is brought back 
to its standard position by turning the 
screw. Evidently the amount the 
latter advances measures the extension. 
Readings are taken with increasing and 
decreasing loads and the average exten¬ 
sion for 1 kgm. is found. This is I of 

Fig. 1.—Searlcs Apparatus for finding the last paragraph when M = 1000 gms. 
Young’s Modulus. The diameter of the wire is taken at 

different points with a screw gauge, the 
length L can be measured with a metre rule, and hence Y can be found. As the 
wires are suspended from the same support, any yielding of this affects both 
wires equally and is without influence on the spirit level. If the extensions are 
plotted against the load the points will lie very approximately on a straight line, 
thus proving Hooke’s law. The stress at which Hooke’s law ceases to be true 

‘ Temperature is dealt with in Chap. II, 
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is called the yield-point; beyond this the elastic limits are exceeded and the 
wire is permanently stretched.^ 

Bulk Modulus of Solids and Liquids.—The 
measurement of this quantity is difficult and will j 
not be dealt with, but the volume elasticity of gases '', , 
can easily be determined. Before giving the iieces- i r!: 
sary experiments it will be convenient if some form y j h*:i 
of standard barometer is described. It is assumed I Bt! 
that the student already knows the principle of the |' l;j 
barometer. i 

Fortin’s Barometer.—To construct a barometer j!l|| 
a glass tube 80 cms. or more in length is closed at ' ^1^ 
one end, filled with mercury, and its lower, open, end 
is placed in a vessel of the same liquid. The height In, i'lj 
of the mercury surface in the tube over that outside | 'j 
is the height of the barometer, and the pressure the t I' if ' ' 
column produces per cm 2 is the atmospheric pressure. I || i 
It is convenient to read the height by a scale fixed i 
to the column, but as the pressure varies, mercury | ij 
flows into or out of the cistern and the scale zero ,; ;j;| 
must constantly be shifted to coincide with the 1; || j| 
mercury surface. This difficulty is overcome as j'; | 
follows in the Fortin barometer. The bottom of ^i| j 
the cistern is made of wash-leather which rests on ; I | 
the broad end of a vertical screw S, while imme- ' i|!| 
diately above the mercury there is a small ivory J li| 
pointer P (Fig. 2) whose tip coincides with the zero f 
of the scale. When a reading is to be taken the 
screw is turned until the mercury just touches the 
bottom of the pointer, the scale zero is then on the 
liquid surface. The length of the column is read by | ^ ;| |i 
a vernier V which is moved over the graduated Ik Mi' 
scale by a rack and pinion. Even when the pressure . Il |; 
is constant the height varies with the temperature xJjJjjL 
on accoimt of the expansion of the liquid ; in giving 
barometric heights it is therefore usual to reduce the ^ , 
observed height to what it would be at 0® Centi- * Bar^eter.^*^" 
grade. A thermometer T attached to the column 
gives the necessary temperature; the method of calculating the 

^ For another apparatus, see Barton and Black, “Practical Physics,” p. 41. 
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correction is explained on p. 56. To diminisli the effects of sur¬ 
face tension (p. 9), the diameter of the glass tube should be 
large, 5-10 mm, at least. 

Boyle’s Law.—To investigate the elasticity of a gas we have to 
determine how the volume depends on the pressure. This point 

Fio. 3.—Boyle’s 
l4tw Apparatus. 

may be investigated with the apparatus shown in 
Fig. 3, due to Dr. Baillie.^ Two wide glass tubes, 
A and B, containing mercury are connected by 
flexible rubber tubing. Each can be moved along 
vertical iron guides by a string and pulley arrange¬ 
ment, and the difference in level of the mercury 
surfaces is read on a movable scale D. Vessel A is 
graduated in c.cms. from the tap C. This part of 
the apparatus must flrst be filled with well-dried air 
or other gas. With this object some calcium chloride 
is placed in the funnel above the tap, the latter is 
opened, and the reservoir B is raised, thus ex¬ 
pelling the air from A. The reservoir is next 
lowered very slowly and air, dried by the calcium 
chloride, enters A through the tap. This operation 
is repeated several times; finally the tap is closed. 
Suppose mercury stands at the same level in each 
limb, the pressure of the gas in A is then equal to 
the pressure at the surface of B, i.e. to the atmo¬ 
spheric pressure, which is measured by the height 
of the barometer. Let this be H cms. at the room 
temperature. The volume of the enclosed gas is 
given by the graduations on A. B is next raised 
and A lowered until the mercury stands at A', B'. 
The gas pressure P is now (H +A'B') cms. of 
mercury; A^B^ is read on the scale D, and the 
volume V is found as before. A series of readings 
is taken in this manner. If B is lower than A, the 
pressure of the confined gas is (H — difference in 

level in the two limbs), hence observations can be made with 
pressures greater and less than that of the atmosphere. Careful 
experiments of this type have shown that the product (pressure 
X volume) is constant, provided the temperature does not vary. 
This relation was first discovered by Robert Boyle in 1662 and 

> Barton and Black’s ** Practical Physicsi” p* 37« 
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is called Boyle law. On the Continent it is known as Marriotte’s 
or as the Boyle-Marriotte law. Put in the form of an equation it is 

PV=constant 

or if P2, Vi represent a second pressure and volume 

PV^PiVj 

The equation shows that if the pressure on a gas is doubled its 
volume is halved. More extended and elaborate experiments have 
shown that the law is not strictly true for any gas, but the deviations 
are so small in the case of gases like air, hydrogen, oxygen, nitrogen 
and helium that we shall assume it is obeyed accurately. Other 
gases such as sulphur dioxide, carbon dioxide, and ammonia are more 
compressible than the law requires; their volume is reduced to less 
than half when the pressure is doubled. When we state the volume 
of a gas it is clear we must give also the temperature and pressure at 
which this is measured; the normal temperature and pressure 
(N.T.P.) are taken as the melting-point of ice, and a pressure of 
76 cms. of mercury at 0*^ Centigrade. The above equation may be 
written in a slightly different form. Let p be the density of the gas 
when its pressure is P and volume V. Since density is the mass of 
unit volume the mass of the gas 

m = Vp 
or V = m/p 

P 
P PV 

or - = — = const. 
p m 

since m is constant while we deal with the same mass of gas. 
Any change which takes place at constant temperature is called 

an isothermal change. Thus Boyle’s law gives the isothermal 
relation between the pressure and volume of a gas. 

Isothermal Elasticity of a Gas which obeys Boyle’s Law.—Let a 
mass of gas occupy a volume V at a pressure P, and suppose when the 
pressure is altered by a small amount to (P + V) the volume 
becomes (V — v), the temperature remaining constant. The increase 
in stress is p and the strain it produces is v/V, hence the isothermal 
bulk elasticity is 

V 
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But (P + ^?)(V — = PV from Boyle’s law 
or — Pv + pV — pu = 0 

Now and v can be made as small as we please, hence their 
product pv can be made so small as to be negligible compared with 
the other, terms of this equation (see p. 40). We may therefore 
neglect the third term, and 

pY = Ptj 

V 

Thus the isothermal elasticity of the gas is equal to its pressure. 
E is usually given in dynes/cm.^, while the pressure P per cm.2 is 
measured in cms. of mercury, P must therefore be expressed in 
dynes/cm.2 Taking the normal pressure we have to find the 
weight in dynes of a column of mercury 76 cms. high and 1 cm.2 
in section. Since the density of mercury is 13'6 and g = 980, 

P = 7G X 1 X 13-6 gms./cm.^ 

= 76 X 1*36 X 980 dynes/cm.2 

— 1,013,000 approximately 

Tliis result will be required later. 

Kinetic Theory of Matter,—In order to connect and explain the 
many facts that have been accumulated by experiment, some 
hypothesis as to the structure of matter is necessary. The kinetic 
theory is the one which has proved most fruitful in these respects. 
According to this theory it is supposed that all substances are built 
up of very small particles called molecules, just as a handful of sand 
is composed of fine granules. We may suppose, for simplicity, that 
the molecules are small spheres; then, even when the spheres are in 
contact, the substance is not continuous, but there are interspaces 
between the molecules which are unoccupied by matter. It is 
further supposed that the molecules are not generally in contact 
with their neighbours, but that each is moving to and fro in a con¬ 
tinuous state of agitation, sometimes moving freely, at other times in 
collision with surrounding molecules. In gases the average separa¬ 
tion of the molecules is large compared with the dimensions of a 
single molecule, so that considerable freedom of motion is possible. 
In liquids the molecules are supposed to be closer together; thus, 
although a molecule may thread its way through the mass like a 
person in a crowd, collisions are more frequent than in gases. Within 



GENERAL PROPERTIES OF MATTER 9 

solids the motion is still more restrictod; a molecule now oscillates 
to and fro round a mean position and is never far removed from it. 
If the molecules in a solid possessed great freedom of movement the 
shape, of solid bodies would constantly be changing; gases, as we 
know, occupy the whole volume of the containing vessel, no matter 
how this is varied. It is easy to see that the molecular separation is 
greater in gases than in liquids, for when a gas is converted to liquid 
there is usually a large decrease in volume. Thus 1700 c.cms. of 
steam, which is water in gaseous form, condense to form 1 c.cm. of 
water. The theory supposes also that the hotter a body is, the 
more violent does the molecular agitation become ; in fact, in the 
simplest case of gases, it is assumed that the temperature is pro¬ 
portional to the average kinetic energy of the molecules. An increase 
of temperature, which means an increase of heat within the sub¬ 
stance, thus corresponds to an increase in the kinetic energy of the 
molecules, and we are lead to make a further supposition, viz. that 
heat is merely energy. This is a view of which the correctness will 
be established in later chapters. The kinetic theory gives a qualita¬ 
tive, and in some cases a quantitative, explanation of a number of 
properties of matter. Thus the pressure of a gas is due to the 
bombardment of the walls of the containing vessel by the rapidly 
moving molecules. When a body is compressed the molecules are 
moved closer together. Again, in solution it is supposed that mole¬ 
cules of the solid become detached and wander away through the 
molecules of the liquid, so that if we could examine a minute quantity 
of a solution we should find it far from homogeneous. Similarly 
porous bodies are those in which the particles are so far apart that 
the molecules of other substances can find their way into the inter¬ 
stices. Or take diffusion : if a feW c.cms. of copper sulphate solution 
are placed in the bottom of an upright tube and the remainder is 
filled with water, it is found after some days that the salt molecules 
have gradually wandered throughout the whole mass of liquid, in 
spite of the fact that copper sulphate is heavier than water. This 
process is called diffusion. Gases diffuse more rapidly than liquids 
on account of the greater freedom of the molecules. Other applica¬ 
tions will appear later. 

Properties op Liquids. 

Surface Tension.—^It has been stated that liquids do not perma¬ 
nently resist change of shape when their volume is unaltered ; this is 

3 
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only approximately correct and it ceases to be true when most of the 
liquid is in or near the surface layer, as in the case of a thin film. 
Thus air has to be forced into a soap-bubble to make it expand, and, 
if the mouth be removed from the pipe stem, the bubble contracts 
and forces the gas out again. In this case the volume actually 
occupied by the liquid is constant, but the extent of its surface is 
changed. The liquid film behaves, in fact, like a football bladder— 
it resists an increase in its area and decreases in size directly the 
external force is removed. Numerous experiments can be given 
to show that the surface of a liquid acts as if it were a stretched 
membrane. 

Experiment.—Dip a camel-hair brush in a beaker of water; the single hairs 
project in all directions. Remove it from the liquid and the hairs are all drawn 

together as if connected by a stretched membrane. This 
experiment and many others are given by Prof. Boys in 
his book on Soap-Bubbles.*' 

Experiment.—Place a needle carefully on a water 
surface; it rests in a small depression just as a heavier 
body would do if placed on a sheet of stretched rubber. 
The ability of certain insects to walk on water depends 
on the same property. 

Experiment.—^Make a shallow dish about 2 inches 
square from fine copper gauze and cover its bottom with 
a loose piece of paper. Pour water in and then remove 
the paper ; the liquid does not flow out because it must 
increase its surface before it can escape through the fine 
holes. 

Experiment.—^The formation of a water drop at the 
end of a vertical tube can be imitated exactly by fastening 
to a circle of wire a sheet of thin rubber, such as part of 
a toy balloon. When water is gradually poured on to the 
rubber it forms a pendant drop very similar to the water 
drop, and finally contracts like the liquid into a narrow 
nock before it breaks. When the liquid drops at the end 
of the tube are large, and if they are caused to form 

Eia. 4.—^Darling's slowly, the similarity becomes more striking. This is 
Experiment on the done in the next experiment. 
Formation of Drops. Darling's Experiment.-—The formation and rupture 

of a drop can bo more easily observed if, by some means, 
the effective weight of the drop is diminished. A convenient arrangement for 
doing this is shown in Fig. 4. At 64’’ aniline has a density equal to that of 
water, while at temperatures just below this it is slightly the denser of the 
two ; hence if a drop of aniline be formed in water at a temperature near 60^ 
most of its weight will be supported by the surrounding liquid. The funnel 
shown in Fig. 4 contains aniline, and its lower end, which should have a 
diameter from 5--10 mms,, is immersed in water whose temperature is about 60*. 
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By opening the tap slightly a large drop of aniline may be formed at the 
exit; this finally forms a narrow neck and ruptures. The similarity in the 
behaviour of liquid and rubber surfaces then becomes very stiiking. 

All these experiments show that the surface of a liquid acts like 
a stretched membrane. Imagine a line 1 cm. long drawn on the 
surface, the tension tends to pull the liquid apart on opposite sides 
of this line, and the magnitude of the force per unit length is called 
the surface tension of the liquid. This force is confined to an ex* 
tremely thin skin of the liquid ; hence in the case of a soap-bubble or 
isolated film there is a fully developed surface tension on each side. 
When the area of such a film is extended more liquid goes from the 
interior into the surface, but the tension remains constant until the 
point of rupture is nearly reached. In this respect a liquid surface 
differs from a stretched membrane. The 
student will perhaps understand more ^ 
clearly the definition given above from 
the following illustration: Suppose we 
have a wire rectangle (Fig. 5) with a 
soap film ABCD stretched across it, and 
suppose the side AB can slide along the 
other wires as guides. On account of the ^ 
surface tension the film tends to contract 
and pull the wire towards CD; if T is 
the surface tension, the force that must 
be applied to hold it in position is 
2T.AB. The multiplier 2 comes in since both sides of the 
film have to be taken into account. For water at 0® T is about 
75 dynes per cm., for clean mercury it is about 430. The illustration 
just given shows a typical effect of surface tension, viz. the tendency 
that a liquid surface has to contract its area unless hindered by other 
forces. Thus raindrops are spherical because that shape has the 
least surface for the same volume. This circumstance is turned to 
account in the manufacture of lead shot. Molten lead is made to 
fall from the top of a tower into water some distance below; during 
its descent it takes the form of small spheres which rapidly solidify. 
The surface tension of mercury is so large that small drops of mercury 
spilt on the table are spherical in spite of their weight. The surface 
tension of oil is less than that of water, hence when an oil drop is 
placed in a beaker of water it is pulled in all directions until it is 
spread over the entire surface. 
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Experiment.—Place a film of water on a glass plate and let a single drop 
of alcohol fall on it. The surface tension is diminished and the film is pulled 
away in all directions. 

Methods of measuring Surface Tension.—1st method.^ When a 
glass tube of fine bore is held vertically with its lower end in a liquid 
which wets it, it is found that the liquid rises in the tube to a definite 
height which depends on the nature of the liquid and on the internal 
diameter of the tube. The upper end of the column is hemispherical 
with its convex face downwards, as in Fig. 6, A. This upper surface 

(A) (B) 
Fig. 6.—^Riso of Water in a Capillary Tube. 

clings to the glass and by means of its surface tension it supports 
the weight of the column below it; this gives a method of ^ding 
the surface tension T. Let d be the density of the liquid, h the 
height which it rises, and R the radius of the tube. Then the surface 
tension acts along a length 27rR and the upward force is 27rR. T dynes; 
the weight of liquid it supports, in dynes, is TrBfihdg, 

hence 27rRT = rrR^hdg 

2 

To carry out the experiment the glass tube is thoroughly cleaned 
and washed out with the liquid ; it is then fixed to a graduated scale 

^ Barton and Black, “ Practical Physios,’’ p. 48, 
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and placed in a vertical position in the liquid, as shown in Fig. 6, B. 
The quantity h can thus be found. The diameter of the bore is next 
measured with a microscope or by other means, and the density of 
the liquid is found with a specific gravity bottle. 

Mercury may be taken as typical of those liquids which do not 
wet a solid placed in contact with them; these liquids do not rise 
in capillary tubes like tlie water in the last experiment. 

Experiment.—Push a capillary tube into mercury; it will be found that the 
liquid is lower inside the tube than outside, exactly the reverse of what happens 
with water. It will also be noticed that the surface is convex towards the air. 

Experiment.—Pour mercury into a glass U-tubc one limb of which is wide 
while the other consists of a fine capillary. The liquid surface is low’er in the 
narrow tube. If the bore is very fine a considerable pressure will be required 
to force the mercury along it. An instance of this is given in the next chapter 
in connection with the filling of a thermometer. 

The rise of a liquid up blotting paper is due to surface tension; 
the interspaces between the fibres form a large number of capillary 
tubes through which the liquid 
ascends. The ascent of a liquid 
through a lump of sugar is due to a 
similar cause. 

2nd method. In this method the 
pull due to surface tension is deter¬ 
mined directly by means of a 
balance. A plate of glass, such as 
a microscope slide, is fixed in a strip 
of wmod and hung with its plane 
vertical from one arm of a balance 
over a vessel of water, as in Fig. 7. 
An equal weight is placed in the other pan. The vessel is 
raised until the water just touches the glass, when the surface tension 
pulls down the arm. The height of the liquid and the weights in 
the other pan are altered until the lower edge of the plate is just in 
the liquid surface when the beam of the balance is horizontal. Let 
I be the length and c the thickness of the plate, m the additional 
weight required to balance the downward pull of the liquid. Taking 
into account each side of the glass, the surface tension acts on a 
length 2(1 -f* c). Hence the pull is 

2(1 -f- c)T = wzflf dynes 

Fig. 7.—Method of finding Sur¬ 
face Tension by Weighing. 

whence T can be found* 
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Examplib.—^To increase the pull six plates were fixed in two wooden strips 
and the additional weight required was 6*82 gms. Length of plate = 7*6 cms., 

thickness =■ 2 mm., hence 

I e = 7-8 cms. 
and 7*8 X 2 X 6 X T == 6*82 X 980 

whence T for water = 71*4 dynes/cms. 
When six plates are used a sensitive balance is unnecessary. 

Diffusion.—We have already given an example of diffusion and 
have shown how the process is to be pictured according to the 
kinetic theory. Let us return to this example (p. 9). Imagine a 

horizontal plane drawn across the tube just 
above the copper sulphate some time after 
the diffusion has begun. As the salt is 
more concentrated below than above this 
plane more of its molecules will wander 
across in an upward than in a downward 
direction. It can be shown that the excess 
is proportional to the difference in the con¬ 
centrations of the salt immediately above 
and below the plane. The rate at which 
diffusion proceeds depends on the velocity 
of the molecules, it accordingly takes place 
more rapidly as the temperature rises and 
is quicker for light than for heavy molecules. 
Owing to their greater freedom of motion 

Fig. 8.--Liffusiou of gases diffuse much more rapidly than 

Gasea. liquids. 

Expebimsnt.—The glass tube A (Fig. 8) is closed at its upper end with a 
plug of plaster of Paris. Fill it with hydrogen and invert it with its open end 
under the surface of water. Hydrogen is lighter than air and therefore diffuses 
more rapidly; owing to this the gas escapes through the porous plug more rapidly 
than air can enter and water rises in the tube. If the tube contains air and is 
surrounded by an atmosphere of hydrogen the latter gas diffuses inwards and 
increases the pressure. 

The time required for a given volume of a gas to diffuse through 
the plug, i,e, the rate of diffusion, varies inversely as the square root 
of the density of the gas.i When a mixture of two gases is passed 
through a porous tube, such as the stem of a clay pipe, the lighter 
of the two diffuses most rapidly through the walls, hence the mixture 

^ This is Graham's law. 
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which escapes at the exit is richer in the heavier gas. By this 
means the mixture may, to a great extent, be separated into its two 
constituents. 

Viscosity.—When the hand is placed in a large vessel of water 
and is moved slowly through the liquid it experiences little resistance, 
but if it is moved rapidly it is opposed by a considerable force. The 
different layers of liquid are caused to slide over each other and this 
motion is opposed by frictional forces between adjacent layers. 
These forces arise from the viscosity or internal friction of the water. 
The case is very similar to that of a 
block of wood being dragged across 
a floor, except that the friction arises 
between adjacent layers of the same 
substance. Tims tlie layer of water 
on the bed of a river is at rest and 
the upper layers slide over it, the 
velocity gradually increasing as the 
surface is approached. 

Osmosis.—The process of diffusion 
is found to be greatly modified if the 
two liquids are separated by certain 
membranes. This is illustrated by 
the following experiment. 

Experiment.—The tube A (Fig. 9) is 
closed at its wide lower end with a piece of Fia. 9.—Apparatus to show 
parchment and a strong solution of sugar Osmosis, 
is poured into it. It is then immersed in 
water, as shown in the figure, with the liquids at the same level inside and 
outside. After a short time the liquid is found to stand the higher inside the 
tube. 

At first sight this appears to be analogous to the diffusion illus¬ 
trated in Fig. 8, but there is this important difference, no sugar passes 
from the interior to the exterior. The membrane allows water to 
pass through it freely but opposes the passage of the sugar molecules. 
Membranes which behave in this manner are called semi-permeable. 
There is doubt as to the mechanism, but we may perhaps picture 
the process as follows: The water molecules hit the membrane 
on each side and pass through; but a less number hit the 
inner side, since some of the molecules of the solution are sugar. 
Hence, on the whole, water passes to the interior. If the 
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solution in A is subjected to pressure by means of a piston, the inward 
diffusion of the water can be stopped. The pressure necessary for 
this is called the osmotic pressure of the solution, and the whole 
process is called osmosis. 

EXAMPLES ON CHAPTEH I 

1. Give an account of the phenomena of diffusion in liquids and gases and 
describe some experiments to illustrate them. How is diffusion explained 

theoretically? (L. *08.) 

2. How would you show that different substances diffuse at different rates 
through the same liquid 7 How would you account for the difference and for 
the fact that the rate of diffusion depends on the temperature ? (L, ’10.) 

3. Taking 10 lbs. as the unit of mass, one minute as the unit of time, and a 
yard as the unit of length, compare the unit of force with that belonging to the 
ft.-lb.-sec. system. (L. ’80.) 

4. An engine of 1 horse-power is capable of doing 33,000 ft.-lbs. of work 
per minute. What is the H.P. of an engine that can pump 1000 gallons of water 
per minute from a well and project it with a velocity of 80 ft. per second through 
a nozzle which is 40 ft. above the surface of water in the well ? (L. ’82.) 

6. Describe a good form of standard barometer. What is the effect of surface 
tension or “ capillarity ” upon the height of the mercury in the barometer tube ? 
On what does the magnitude of this effect depend, and how may a barometer 
reading be corrected for this error ? (L. ’83.) 

6. Describe how to measure the relation between the pressure and volume 
of a mass of gas at constant temperature. If 310 c.c. of a gas at a pressure of 
230 mm. of mercury are subjected to a pressure of 700 mm. what will be the 
resulting volume ? (L. ’88.) 

7. A narrow glass tube is closed at one end and contains air which is shut off 
from the atmosphere by a long thread of mercury. Show how to obtain the 
height of the barometer from observations of the lengths of the air and mercury 
columns when the tube is (1) horizontal, and (2) vertical. 

8. Some air is in the space above the mercury in a barometer of which the 
tube is uniform. When the mercury stands at 29 in. in the tube the space 
above the mercury is 4 in. long. The tube is then pushed down into the cistern 
60 that the space above the mercury is only 2 in. long, and now the mercury 
stands at 28 in. At what height would it stand in a perfect barometer ? (L. *94.) 

9. State the laws of diffusion of gases through a plug of porous material. 
A mixture of hydrogen and oxygen in equal proportions is contained (1) In a 

vessel in which there is a porous plug, (2) In a vessel in which there is a hole, 
say, 1 mm. in diameter; the mixture is allowed to escape into a vacuum. How 
will the proportion of hydrogen and oxygen be affected, if at all, when the 
escape has been going on lor a short time ? (L. ’96.) 
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10. Describe an experiment showing how the density of gases affects their 
rate of diffusion through a porous septum. Do changes of pressure and tempera¬ 
ture affect the quantity of gas that disappears in a given time 7 If so in what 
ways do they affect it 7 (L. *98.) 

11. If a lump of sugar be held just below the surface of tea in a cup it dis¬ 
solves much more rapidly than it does if it is allowed to drop to the bottom of 
the cup, but not so fast as if it is well stirred. How do you account for this 7 
(L. *02.) 

12. In measuring the surface tension of a liquid, as on p. 12, it is usual to 
measure h to the lowest part of the concave surface of the liquid in the tube; 
hence a correction is necessar}' for the liquid raised above this point. Show 
that the correct formula for T is then T =* -f- 

3* 



CIIArTER II 

THERMOMETRY 

We are all familiar with the sensations of hotness and coldness; 
the physical agent which produces these sensations is called heat. 
If one body is hotter than another, as indicated by our sensations, 
we say that the temperature of the one is higher than that of the 
other. Temperature is defined as a number denoting the hotness of 
a body measured according to some arbitrarily chosen scale. It is 
easy to show that our sensations do not enable us to compare tem¬ 
peratures accurately. 

Experiment.—Take three bowls of water, the first cold, the second tepid, 

the third hot. Place the left hand in No. 1 and the right hand in No, 3; after 

half a minute transfer both hands to No. 2. It appears hot to the left hand 

but cold to the right. Our sensations then are greatly influenced by contrast, 

and other means must be used to measure temperature. 

An instrument used for measuring temperatures is called a 
thermometer. An important part of the study of heat is concerned 
with temperature measurement or thermometry. When the tempera¬ 
ture of a body changes it is assumed that it has lost or gained heat. 
Thus if a block of hot copper is placed in a beaker of cold water the 
copper becomes cooler and the water hotter; these changes are 
ascribed to a transfer of heat from the hot to the cold body, and 
generally, as later experiments will show, heat tends to flow 
from places where the temperature is higher to those where it is 
lower. 

A system of thermometry in order to be scientifically useful must 
enable two observers at different places to measure temperatures 
that shall be comparable with one another. Thus if observer A 
finds that a substance melts at a temperature of 60®, as recorded by 
his thermometer, observer B should know what temperature this 
corresponds to on his thermometer, although the two instruments 
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may not have been compared directly, and may be altogether 
different in construction. To construct such a temperature scale there 
must be some zero of temperature that can be easily reproduced, 
and also some standard temperature difference in terms of which 
any other temperature interval can be expressed. Before showing 
how this is arranged let us examine first some of the effects produced 
by a temperature change; we shall then be in 
a position to apply one or more of them to 
temperature measurement. 

General Effects produced by Heat.—When 
bodies are heated they generally increase in 
length, area, and volume. The well-known ex¬ 
periment with Gravesande’s ring illustrates 
this. A metal ball is made of such a size that 
it just passes through a round hole in a sheet 
of metal when both are at the same tempera¬ 
ture ; if the ball is heated it can no longer pass 
through, showing that it has expanded. 

Liquids and gases also expand 
temperature is raised, but the observations 
here complicated by the expansion 
vessel in which they are contained. This is 
shown in the following experiment. 

when their I ^^ 
^rvations are 
sion of the ^ 

Fio. 10,—Apparatus 
to show Expansion 
ol a Liquid and ol 
the Flask contain¬ 
ing it. 

Experiment.—^Fill a small glass flask with cold 
water which has been coloured and pass through the 
cork a narrow bore glass tube about 30 cms. in length; 
press in the cork until the liquid rises halfway up the 
tube and mark the position of the surface (Fig. 10). 
If the flask is plunged into warm water it will be 
noticed that the liquid in the tube falls momentarily, 
then comes to rest, and finally rises above the mark. 
The reason for this is apparent. As the flask is heated 
from the outside the glass expands first, and if this alone 
took place the index would fall, but after a short time heat reaches the liquid 
also through the glass walls and its expansion more than counterbalances that 
of the flask. If this is the correct explanation we ought to get rid ol the initial 
fall by raising the temperature of the liquid before allowing heat to reach the 
flask. The expansion of the latter will then be masked at every stage by the 
larger expansion of the water. This can be done by immersing a coil of iron 
wire in the water, as shown in the figure, and passing an electric current through 
it. As will be seen later, this heats the wire, and the liquid consequently expands 
before the flask. No fall of the index is then observed. 

Experiment.—Fill the flask of the last experiment with air or other gas. 
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but leave a drop of liquid in the tube to act as an index. A very slight warming 
now produces a big expansion, showing that gases are more expansible than 

liquids. 

When a gas is heated while its volume is kept constant, it is 
found that its pressure increases. This can be demonstrated con¬ 

veniently by the apparatus shown in 
Fig. 34, p. 65. The bulb A, which contains 

^ air, communicates by rubber tubing with 
the mercury reservoir B. When the air is 
heated it tends to expand, but its volume 
can be kept constant by raising the reservoir 
until the mercury in the left-hand limb 
returns to its original position. The 
mercury in B then stands higher than in A, 
and the difference in levels shows by how 
much the pressure of the gas exceeds the 
atmospheric pressure. 

The electrical properties of bodies are 
also altered by heat, but the discussion of 
these is deferred for the present. 

Any of the above changes produced by 
beat might be used as a means of measuring 
temperature; at present we will consider 
the expansion of a liquid contained in 
a glass bulb. The liquid most generally 
chosen is mercury. 

Mercury Thermometers.—Our object, in 
the first place, is to construct an apparatus 
which will enable us to observe readily the 
expansion of mercury. The usual form of 
the thermometer is shown in Fig. 11, B. 
It may be constructed as follows; Into a 
carefully cleaned piece of capillary glass 
tube is introduced a column of mercury 
about 2 cms. long, and the length of this is 
carefully measured by means of a micro¬ 

scope at different parts of the tube. If the bore is uniform 
this leogth will be constant. Having by this means selected 
a suitable piece of tubing, bulbs of convenient size are blown 
on it as shown in Fig. 11. A. The cylindrical bulb at the lower 
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end has the great advantage over a spherical one that it can be 
readily passed through corks. Dry, clean mercury is placed in the 
upper reservoir, and the bulb is slightly heated so as to expel some 
air. It is then allowed to cool; this reduces the pressure inside and 
mercury runs into the bulb. This procedure is necessary because, 
owing to the effects of surface tension, the mercury will not flow 
down the stem except under pressure. By alternate heating and 
cooling the whole is filled with mercury and this is finally boiled to 
expel the last traces of air and moisture. It is now heated to a 
temperature rather above the highest it is to be used to measure, 
and the glass at C is sealed off in a small blowpipe flame. By this 
process it is ensured that no air is present above the mercury, 
so that it can expand freely, and the stem being closed the mercury 
surface will not become fouled with dirt or moisture. If we now 
mark the positions of the end of the mercury thread which correspond 
to two fixed temperatures that can easily be reproduced, and divide 
the distance between them into a number of equal divisions, the 
instrument could be used as a means of measuring temperature. 
The interval between the two fixed temperatures is called the funda¬ 
mental interval. Let us divide this into 100 equal divisions and 
number them, starting below, from 0 to 100. If when the thermo¬ 
meter is put into water the mercury stands at the 15th division, it 
could be said that the temperature is 15 degrees, meaning that the 
difference between the lower fixed temperature and the temperature 
of the water is 15/100 of the fundamental interval. In this way 
temperatures read by different thermometers would be directly 
comparable, provided, of course, that the same fixed points were 
used. We now proceed to show how the fixed points are chosen. 

Determination of the Fixed Points.—Thermometers filled as above 
are usually left for some weeks in order that certain irregularities 
may disappear which are caused by the heating necessary to blow 
the bulb. If one of these thermometers is placed in pure melting ice 
on successive days it is found that the mercury stands at the same 
point on each occasion. Melting ice therefore provides ns with a 
standard temperature which can readily be reproduced. In a 
similar manner, if the thermometer is closely surrounded by steam 
coming from boiling water it is found that the mercury always 
stands at another fixed point on the stem, provided that the height 
of the barometer is the same in each experiment. Accordingly the 
temperature of melting ice, and of the steam coming from water 
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boiling under a normal atmospheric pressure of 760 mm. of mercury 
are taken as the fixed points. If this fundamental interval is divided 
into 100 equal divisions, starting from zero at the ice point, the 
thermometer is called a Centigrade thermometer. This is the one 
usually used for scientific purposes. When the mercury expands 

from one division to the next we say a rise 
of temperature of one degree Centigrade 
(1° C.) has taken place. Thermometers made 
in this manner will evidently record tem¬ 
peratures that are comparable with each 
other, provided the expansion of the glass is 
regular. 

Until recent years the ice point was first 
determined; for reasons given later the 
reverse order is now commonly adopted. 

Experiment.—^Take two largo distillation flasks 
and half All one with distilled water, the other with 
a solution of salt in water. Make each liquid boil 
and place a thermometer in the neck of the first so 
that the bulb is 5 cms. above the water. Note the 
temperature, then transfer the thermometer to a 
similar position in the other flask; it will be found 
to show practically the same temperature in each 
case, and this coincidence will be still more exact 
if the flasks are replaced by the vessel shown in 
Fig. 12. Now put the thermometer bulb right in 
the liquids, the temperature is probably higher 
in each case than it was before, and the temperature 

Fio. 12.—^Apparatus for of the salt solution may be considerably higher, 
finding the Steam ■« , . 
Point. For this reason thermometers are im¬ 

mersed in the steam of boiling water when 
the upper fixed point is determined, since the temperature is then 
independent of any impurities dissolved in the liquid. If a 
thermometer is placed in ice, and salt is then added, the temperature 
falls considerably; pure ice must therefore be used for determining 
the lower fixed point. 

A simple apparatus for determining the steam point is shown in 
Fig. 12.^ Water is boiled in the copper vessel A, and steam, after 
circulating as shown by the arrows, escapes by the vent B, which 
should be wide, otherwise the rapid production of steam may create 

* See also Barton and Black, ” Practical Physios,*’ p. 61. 
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a pressure in excess of that outside; the water gauge D shows 
whether this is the case or not. The thermometer is placed in the 
inner tube C with the exposed end of the mercury thread just above 
the cork. As this tube is surrounded by steam the whole arrange¬ 
ment evidently secures that its walls are at the same temperature as 
the steam and the thermometer, and there is no 
tendency for heat to pass from the bulb to the 
outside by radiation (p. 116). Let us assume 
that the barometer stands at 760 mm. After a 
quarter of an hour the temperature becomes 
steady and the position of the mercury thread is 
marked on the stem. The lower fixed point is 
now determined at once. The thermometer is 
placed in shavings of melting ice ^ contained in a 
glass funnel (Fig. 13). The mercury at first falls 
rapidly, then more slowly, and may finally rise 
by a small amount. The lowest position it 
reaches is marked. The interval between the 
two marks is then divided into 100 equal parts, 
and the divisions may be extended above and 
below to enable us to read temperatures above 
100° C. or below 0° C. A small bulb is usually 
made at the top of the stem to diminish the risk 
of breakage, if, by accident, the apparatus is 
heated too strongly. 

As mercury freezes at —40° C. a mercury 
thermometer cannot be used below about — 30° ; 
for lower temperatures other liquids, such as 
alcohol or toluene, must be employed. These Fio. 13.—Appara- 

thermometers should be compared with some loe 
form of standard thermometer. Mercury boils 
at 350°, but before this temperature is reached considerable 
evaporation takes place which reduces the amount of liquid in the 
stem; there is also a tendency for bubbles of mercury vapour to 
form and break the thread. For these reasons mercury thermo¬ 
meters cannot be used to measure temperatures accurately much 
above 230° C. Some thermometers, intended for high temperatures, 
contain an inert gas like nitrogen in the upper part of the stem, 

^ A convenient machine for breaking up ice into fine shavings is made by 
Messrs. Avery. 
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This, by its pressure, raises the boiling point (Chap. VIII.) and hinders 
the breaking of the column by bubbles of vapour. The bulb must 
be made strong to withstand this pressure. 

In the determination of the upper fixed point it was assumed that 
the water was boiling under a pressure of 7C0 mm. of mercury ; if 
this is not the case the temperature of the steam will not be 100° C., 
and a correction must be made. Experiments showing how the 
boiling point varies with the pressure are described in Chap. VIII, 
Let us suppose the pressure is 750 mm.; from tables giving the 
boiling point it is found that under this pressure water boils at 
99 63° C. The distance between the marked points, supposing the 
ice point accurately determined, corresponds therefore to 99*63°, 
We may calculate by simple proportion where the mark corresponding 
to 100° should be placed and make it accordingly. 

Errors in Mercury Thermometers.^—Even when a thermometer 
has been constructed as described above, certain corrections have 
to be applied when it is used for accurate work. 

Zero Correction.—Expeeiment.—Test the zero of a common thermometer, 
that has not been used for some weeks, by means of the apparatus shown in 
Fig. 13. The mercury will usually stand at a point above the zero of the scale. 
If it is kept for some hours at a temperature considerably below 0® the error 
will be increased. This is due to a slow contraction in the volume of the bulb, 
usually called the secular change, which may take years to complete. 

Expbbimbkt.—Keep the thermometer at 100® for 30 mins, and again deter¬ 
mine the freezing point. The mercury stands lower than it previously did owing 
to a temporary increase in the volume of the bulb. Experiment shows that 
the zero determined in the latter case is fairly constant on different days; it is 
for this reason that the lower fixed point is found immediately after the steam 
point. These zero changes are due to the fact that, after being heated, glass 
takes a long time, extending in some cases to years, to regain its initial volume. 
They are largely reduced by the use of special kinds of glass. It has recently 
been found that they are entirely absent if the envelope is made of fused silica. 
Evidently if the zero has risen 0*1® every temperature read on the thermometex 
will be too high by this amount. 

Other errors which have to be considered are due to (1) change 
in the size of the degree owing to the distance between the two fixed 
points becoming slightly difierent from 100 divs.; (2) Irregularities 
in the bore of the tube; (3) Changes in the volume of the bulb 
caused by pressure, either internal or external; (4) The mercury in 
the stem being at a different temperature from that in the bulb; 
this is called the exposed stem ** correction. 

Nos. (2) and (3) need a long and laborious series of corrections 
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too complicated for the present book. To test No. 4 the following 
experiment may be performed :— 

Experiment.—Place a thermometer in the boiling point apparatus (Fig. 12), 

leaving the stem from 50® to 100® exposed above the cork ; note the temperature 
when it becomes steady. Now push the thermometer through the cork until 
merely the top of the mercury is visible. The reading will be slightly greater 
because the mercury between the 50® and 100® divisions has become hotter and 
has expanded. 

Let ti be the temperature of a bath as read on a thermometer 
when n divisions of the thread are cx])OGed above the surface ; let 
be the mean temperature of the exposed column, and or the apparent 
coefficient of expansion of mercury in glass (p. 48). Then the true 
temperature of the bath t = ^i + wcr(^i — <2)* I'or a proof of this 
formula see p. 57. This correction is uncertain since is not 
known accurately; it should be made small by immersing the 
tliermometer as far as possible; cr may be taken to be 0 0(X)15. If 
^2 = 20° and ti = 99*4° in the above experiment, the true temperature 
is 100°. 

Experiment.—To test the trustworthiness of the correction immerse the 

thermometer in the last experiment to different depths, read ig 5y another 
thermometer placed near the middle point of the exposed stem, and calculate f. 
Compare the results with the reading obtained when all the stem is immersed. 

Nearly all the corrections given above can be found by direct 
comparison with a standard thermometer. The two instruments 
are placed in the same bath and their corresponding readings ob¬ 
served at different temperatures. A table is now drawn up showing 
the amount that must be added to or subtracted from the reading 
of the incorrect thermometer to make its readings agree with those 
of the standard. From these a curve can be plotted as in Fig. 14, 
which enables us to determine the correction for any reading. The 
reading of the incorrect thermometer is shown on the horizontal 
line, and the amount to be added or subtracted to get the true 
temperature is indicated by the vertical distance of the curve from 
the axis of temperature. Thus if the reading is 80° the curve shows 
that 0*18° must be added. 

Thermometers for Special Purposes.—Maximum and Minimum 
Thermometers, For some purposes thermometers are required which 
will show the highest or lowest temperature to which they have been 
subjected during a certain time. They are called maximum or 



26 HEAT 

minimum thermometers and may take various forms. In Fig. 15, a is 
a maximum and h a minimum thermometer. 

The bulb of a is filled with mercury, Q is a dumb-bell shaped 
piece of coloured glass. We have seen, p. 10, that the surface of a 
liquid offers a resistance to rupture; if the mercury expands it 
therefore pushes Q along. When cooling takes place the index is 
left in position and shows the maximum temperature reached. The 
liquid in h is coloured alcohol, and the glass index P, in a manner 
similar to Q above, is pulled to the right when the temperature falls. 
If the temperature rises afterwards P is left in position showing 
the minimum temperature experienced by the thermometer. The 

Fig. 14.—Correction Curve for a Thermometer. 

instruments are set ready for use by shaking the index into contact 
with the surface of the liquid. 

Fig. 15, c, shows a clinical thermometer used by doctors. At A 
the bore is constricted, the mercury expands past this, but when 
cooling takes place the liquid column breaks at the constriction and 
the further end of the thread shows the maximum temperature. 

Six's maximum and minimum thermometer^ largely used by 
gardeners, is shown in Fig, 16, d. The bulbs, A and B, containing 
alcohol freed from air, are separated by a column of mercury B. 
Two dumb-bell shaped iron indexes, D and C, are pressed lightly 
against the glass by weak springs. If the temperature rises the 
liquid in A expands and D is pushed upwards; a fall in temperature 
similarly causes an upward movement of C. The springs hold each 
index in its extreme position when the mercury retreats. A magnet 
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may be used to bring the indexes into contact with the mercury 
surface when the thermometer is set for use. 

Until the invention of electrical thermometers the differential 

Fio. 15.—Maximum and Minimum Thermometers. 

air thermometer (Fig. 16) was very largely used for measuring 
temperature differences, especially in radiation experiments. The 
two glass bulbs contain air, C is a small index of coloured liquid. 
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The bulbs are first put in communication with each other by the 
tap B, which is then closed ; if now one bulb be slightly heated the 
air in it expands and the index moves. Other thermometers will be 
described later when the changes produced by heat have been further 
studied. 

Other Thermometric Scales.—The division of the fundamental 
interval into 100 degrees is not the only system used. In the 

Fahrenheit thermometer the 
melting point of ice is called 
32°, and the boiling point 
of water 212°, so that 
the fundamental interval is 
divided into 180°. This is 
the thermometer in common 
use in England for non- 
scientific purposes; it is 
also frequently used by 
engineers and metallurgists. 

On the Reaumur scale, 

Fio. 16.-Diffetential Air Thermometer. 
Continent, the fixed points 

are marked 0° and 80°, the fundamental interval being divided 
into 80°. 

Suppose we require to convert from one' scale to another. Let 
the temperature of the same bath, as read by Centigrade, Fahrenheit 
and Reaumur thermometers be C, F, and R respectively. The 
distance of the end of the mercury thread from the lower fixed 
point, measured in degrees, is C, (F — 32), and R; this distance must 
evidently be the same fraction of the fundamental interval in each 
case; hence 

J^^F—32_R 

100 180 ““ 80 

C F-~32 R 
or - =-= — 

5 9 4 

Example.—Convert 80® F. into degrees Cent. 
In the above equation put F » 80, then 

C_ 80-32 

6“” 9 
C «= 26-6® whence 
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EXAMPLES ON CHAPTER II 

1. What is meant by a scale of temperature, and on what does the definition 
of any particular scale depend ? (L. *07 ) 

2. Convert the following temperatures from the Centigrade to the Fahrenheit 
scale: 80®, 49®, — 273, 1000®. Also find at what temperature the two scales 
agree. 

3. The temperature of a living room is 66® F., that of the blood is 98® F., and 
the temperature on a hot summer*s day is 88® F. Find the corresponding 
readings on the Centigrade scale. 

4. A thermometer which has been tested in the usual way is sunk to its 20® 
mark in a liquid and reads 90®. The mean temperature of the rest of the stem 
is 25®. Find the true temperature of the liquid, the coefficient of expansion of 
mercury in glass being 0*00015. (L. *08.) 



CHAPTER III 

CALORIMETRY AND SPECIFIC HEAT 

Heat as a Quantity.—Up to the present we have considered various 
efiects caused by changes of temperature without inquiring whether 

it is possible to measure the quantities of heat involved. Let us 

now consider this point. When 100 gms. of water at a temperature 
of 40° are mixed with an equal quantity at 20°, the temperature of 
the mixture is very approximately 30°. The hot water has lost heat 

and the cold water has gained it. When 300 gms. of hot water, 

whose temperature is 40°, are poured into 100 gms. at a temperature 

20°, the resulting temperature is 36°. The cold water has gained 

more heat than in the first experiment; we are thus led to the idea 

of different amounts of heat and therefore of heat being a measurable 

physical quantity. The first point to be settled is what shall be 
taken as the heat unit. Any physical change that heat produces 

may be used to define this; it is merely a matter of convenience in 

measurement that influences our choice. Thus the heat required to 

melt one gram of ice might be taken as the unit; we should then be 

justified in assuming that it takes two units to melt two grams and 

m units to melt m grams. It is, however, found more convenient to 

define the unit quantity of heat as that required to raise the tempera¬ 

ture of 1 gm. of some standard substance, such as water, through 1°. 

To raise 10 gms. through 1° will then require 10 units, but we are 

not justified in assuming that 50 units must be supplied to beat 1 gm. 
through 60°, for the heat necessary to raise the temperature from 10° 

to 11° might differ from that required to heat the same mass from, 
say, 40° to 41°. It must therefore be specified at which part of the 

temperature scale the 1° interval is to be taken. Although there is 

no general agreement on this point, that most usually chosen is from 

15° to 16° C. The unit of heat is then defined as the quantity ol heat 

necessary to raise the temperature of 1 gm. of water from 15° to 16°. 
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This unit is named the calorie or therm. When a gram of water 
cools from 16® to 15° it gives out, or loses, one calorie. It has been 
stated above that the heat lost by 100 gms. of water in cooling from 
40° to 30° is just capable of raising the temperature of an equal mass 
from 20° to 30°. This, if strictly true, would prove that the average 
quantity of heat required to change the temperature of a gram of 
water by 1° is the same between 20°-30° as between 30°-40°, More 
accurate experiments, how¬ 
ever,- show that this is not 
quite true, but as the difier- 
ence is very small, even when 
other temperatures are taken, 
it will be assumed in the 
following pages that the ad¬ 
dition of one calorie will 
change the temperature of 
one gram of water by 1°, no 
matter what is its initial 
temperature, so long as it is 
between 0° and 100°. To 
raise the temperature of m 
gms. through 1° will then 
require m calories, and to 
heat the same mass from ti 
to m{t2 — h) calories must 
be supplied. This also is the 
number of units of heat given 
out by m gms. in cooling 
through the same temperature I’.-Looscr’s Thermoscope. 

range. The measurement of 
quantities of heat is called calorimetry, and the vessels in which 
the measurements are carried out are called calorimeters. 

Thermal Capacity and Specific Heat.—The number of calories re¬ 
quired to change the temperature of a body by 1° is called its thermal 
capacity. It varies with the mass of the body and depends also on 
the nature of the substance. A lecture experiment shows this: 
as we shall find the apparatus to be used very convenient at a later 
stage a full description of it is given here. Fig. 17 illustrates a 
Looser’s thermoscope ; it consists of two separate air thermometers, 
but into the bulb of each there is fused a graduated test-tube 
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(A in Fig.)* Each bulb communicates through rubber tubing with 
one of two U-tubes containing coloured water for an index. These 
tubes are open at their further ends to the external air. By means 
of taps either bulb may be put directly in communication with the 
atmosphere when necessary. When a bulb becomes hot the air it 
contains expands, and the temperature change is proportional to the 
movement of the corresponding liquid index in the narrow limb of 
the U-tube, as in the mercury thermometer (Chap. IL). 

Experiment.—Half fill each test-tube with cold water. Suspend equal 
masses of copper and lead in a beaker of boiling water; when they have taken 
up the temperature of the bath transfer them quickly one into each test-tube 
80 that they are completely immersed. I’he hot bodies lose their heat to the 
water, which in turn heats the thermometer bulbs. It will be found that the 
rise in temperature is roughly three times greater in the bulb containing the 
copper than in the other, showing that when equal masses of these metals cool 
through approximately the same range of temperature, copper emits three times 
as much heat as lead. 

Experiment.—Vary the experiment by putting equal masses of turpentine 
and water in the test-tubes and then drop into them equal masses of copper at 
100®. The bulb containing turpentine rises in temperature about twice as much 
as the other, showing that this liquid requires less heat to raise its temperature 
than water does, or its thermal capacity is less, taking equal masses. 

The number of calories required to change the temperature of one 
gram of a substance by 1'’ is called the specifle heat of the substance at 
the given temperature. It follows from this definition that the specific 
heat of water is unity at 15°, since one calorie is necessary to change 
the temperature of 1 gm. by 1°; according to what has been said 
on p. 31, we shall assume that it is unity at all temperatures between 
0° and 100°, The first of the two experiments given above shows 
that the specific heat of copper is greater than that of lead, and the 
second that turpentine has a less specific heat than water. From 
the definition, if the specific heat of a substance is $ (assumed constant 
at all temperatures), we have that 

To heat 1 gm. of it through 1° requires 8 cals. 
)t ff >> 1 Tus cals. 
„ „ „ from fi° to M — ^i) cals. 

This expression is a fundamental one in calorimetry. When put 
into words it tells us that:—When the temperature of a body changes, 
the number of calories absorbed or emitted is obtained by multi¬ 
plying the mass of the body by the specific heat and by the 
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temperature change. From the definition given above it lollowa 
that the thermal capacity of a body is m X 5 X 1 = ms. 

Measurement of Specific Heat.—The following example will best 
illustrate how the specific heat of a solid can be found by what is 
called the method of mixture. 

Example.—A block of copper weighing 93*5 gma. was heated in boiling 
water to 100®. It was then dropped into a calorimeter containing 200 gms. of 
water at 16*4®. The temperature of the mixture was 20®; find the specific heat, 
8, of the copper. 

We have to express that all the heat given out by the copper goes into the 
water in the calorimeter. 

The heat absorbed by the water = 200(20 — 16*4) = 720 cals. 
Heat lost by the copper c= 93-5(100 — 20)a =« 93*5 X 80 X a caLs. 

and these quantities are equal. 

.% 93-6 X 80 X a = 720 
and a = 0096 

There are several sources of error in this experiment which must 
be eliminated in accurate work: (1) The metal cools while it is being 
transferred from the hot to the cold water; it also carries with it 
some of the hot liquid so tliat all the heat given up does not come 
from the copper; (2) Part of the heat emitted by the copper goes 
to raise the temperature of the calorimeter itself; (3) Directly the 
calorimeter and its contents become hotter than surrounding bodies 
they begin to lose heat by conduction and radiation (p. 115). 

To eliminate the first error as far as possible the substance must 
be heated without coming in contact with the hot liquid, and a more 
convenient method of transferring it from the heater must be 
employed. The apparatus described below shows how this is done. 
The second source of error can be allowed for in the calculation, for 
if m2 is the mass of the calorimeter and ^2 specific heat of its 
material, the heat absorbed by the calorimeter alone when its tempera¬ 
ture is raised from to <2° is m^ S2{t2 — <i) cals. The heat absorbed 
by the cold liquid is miSi(t2 — fi), if mi is its mass and Si its specific 
heat. The heat emitted by the hot body is similarly M5{T —• <2), if T 
is its initial temperature and t2, as before, the temperature of the 
whole calorimeter after mixture. Equating the heat emitted to the 
heat absorbed, we have the equation 

M5(T — ^2) ^ miSi(Jt2 — ^1) “}" — ^1) 

from which s can be found if Si and ^2 known. The last term is 
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usually small, hence an approximate value of ^2 will suffice; for 
copper calorimeters it may be taken as 0 095. That mass of water 
which has the same thermal capacity as the calorimeter is called the 
water equivalent of the calorimeter. From the last paragraph it is 
seen that the thermal capacity in question is ^2^2 calories. This 
quantity of heat raises the temperature of the calorimeter 1°, it 
would also raise the temperature of gms. of water by V ; the 
water equivalent is therefore ^2^2 gms. When we calculate the heat 
absorbed by the calorimeter and the water it contains, we may 
therefore add ^2^2 gnis. to the weight of the water and multiply this 
quantity by the rise in temperature. The product will give the heat 
absorbed by the calorimeter and its contents. If the whole of the 
calorimeter is not raised from ti^ to <2° water equivalent must 
be found experimentally under the conditions in which it is to be 
used. The following experiment, in which it is assumed that the 
calorimeter is to be used two-thirds filled, will show the method. 

Experiment.—^The weight of the empty calorimeter was 74*8 gms. Some 
cold water was poured in and a reweighing showed that the amount added was 
81‘7 gms. The liquid was well stirred, so as to take up the temperature of the 
vessel, and the temperature found to be 15*4®. Hot water at a temperature 36*6° 
was then poured in from a beaker until the calorimeter was two-thirds full, 
after stirring well the temperature was 24*6®. A final weighing showed that 
67*2 gms. of hot water had been added. 

The heat given out by the hot water in cooling from 36*6® to 24*6® = 806*4 cals. 
And the heat absorbed by the cold water = 81 *7x9 *2 =761*6 cals. 
.*. Heat absorbed by calorimeter = 806*4 751*6 = 64*8 cals. 
.*. The calorimeter requires 54*8 cals, to raise its temperature 9*2®, and the 

heat required to raise its temperature 1® = 5*9 cals. 
The water equivalent is therefore 6*9 gms.' 

The third error mentioned above is reduced by hanging the 
calorimeter by three threads inside a larger vessel; this screens it 
from air currents, and, as will be understood later, lessens the heat 
conduction. The radiation losses are smaller if both vessels have 
well-polished surfaces (p. 125), In addition it is arranged that the 
initial temperature of the calorimeter is slightly below and its final 
temperature nearly an equal amount above that of its surroundings. 
During the early stages of the experiment the calorimeter thus 
receives heat from the room, but, as its temperature rises, it gives 
out heat and the two may be made to balance approximately* 

A convenient form of heater is shown in section in Fig. 18. It 
consists of two concentric brass tubes ; in the inner one the substance 
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to be heated is suspended in contact with the bulb of a thermometer, 
and the tube is closed by corks at each end to prevent air currents. 
Steam is made to circulate in the annular space between the tubes. 
The substance is thus heated without being wetted. It should be 
used in the form of thin sheet in order that it may acquire more 
quickly the temperature of the heater and of the cold water in the 
calorimeter. When the temperature of the hot body has remained 
steady for 16 mins, the temperature of 
the calorimeter is taken, the vessel is 
brought under the heater, the lower cork 
is removed, the upper one loosened, and 
the body is lowered rapidly into the water. 
The calorimeter is then removed some 
distance away, and, after stirring, the 
temperature of the mixture is noted. The 
specific heat is calculated from the equa¬ 
tion already given. If the solid is in the 
form of a powder, or is soluble in water, 
it is enclosed in a copper case and the 
heat emitted by this is allowed for in the 
calculation. 

Specific Heat of Liquids,—If the specific 
heat, 5, of the solid is known the same 
method may be used to find that of a 
liquid ; the liquid in this case replaces the 
water in the calorimeter and it is Si which 
is calculated from the equation. When 
the liquid does not react chemically with 
water direct mixture may be used, A 
known weight of liquid is placed in the calorimeter and its temperature 
observed, water at a known temperature near 35° is added, and the 
temperature of the mixture is found. The calorimeter is then 
weighed to get the amount of water added and the calculation per¬ 
formed as in the previous case. Other methods which can be used 
for liquids are given on pp. 127 and 406.^ 

Specific Heats of Gases.—Consider a quantity of gas placed in a 
cylinder which is closed by a movable piston; the gas expands as 
its temperature is raised and pushes back the piston against the 

* Barton and Black, ‘‘ Practical Physics,” pp. 63-66. 

Fig. 18.—Heater for use in 

Specific Heat Determina¬ 
tions. 
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atmospheric pressure, t.e. it does work. It would push back the 
surrounding atmosphere just the same if the piston were removed, 
hence whenever a gas is heated at constant pressure it performs 
work. As will be seen in Chap. X it can do this only by using up 
some of the heat supplied to it, and this heat does not go to raise its 
temperature. It follows that when a gas is allowed to expand, more 
heat must be supplied to it to raise its temperature 1® than is neces¬ 
sary when its volume is kept constant, the excess is expended in the 
performance of work. In other words, we must consider two specific 

Fio. 19.—Eegnault’s Apparatus for measuring the Specific Heat of Gases. 

heats m the case of a gas : (1) that at constant pressure, ; (2) that 
at constant volume, C„, the former being the larger of the two. For 
solids and liquids the expansions are so small that the two specific 
heats are practically equal. 

Specific Heat of a Gas at Constant Pressure.—As in so many other 
cases the classical experiments on this subject are those of Eegnault, 
his apparatus is shown, partly in section, in Fig. 19. The gas to be 
used was compressed in a reservoir, A, which was kept at a constant 
temperature in a tank of water. Experiments were first made to 
determine how the quantity of gas in the reservoir varied with the 
pressure, so that from any future reading of the manometer, B, the 
mass of the contained gas would be known. From A the gas flowed 
in succession through a regulating cock, 0, the heater D, the 
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calorimeter E, finally escaping into the atmosphere at F. The gas flow 
was kept steady by altering the cock C so that the pressure indicated 
by the manometer G was constant. The heater consisted of a long 
spiral of fine copper tubing immersed in a liquid maintained at a 
steady, high, temperature. The gas thus entered the calorimeter at 
a known temperature T. Here it passed through another copper 
spiral immersed in water and was cooled to the temperature of the 
calorimeter. Let ti and «£ the initial and final temperature^ of 
the calorimeter, then the first portion of the gas was cooled from T® 
to ti° and the final portion from T® to <2° » the average temperature 

of the calorimeter during the passage of the gas was therefore 

and the heat lost by the gas was m^T—- if m is its mass 

and s its specific heat. The heat gained by the calorimeter and its 
contents was calculated in the usual way and hence s was found. 
Owing to the time the experiment lasted the losses by conduction 
and radiation were large ; an error in their determination appears 
to have caused a 2 per cent, inaccuracy in the final result. (See 
also p. 406.) 

Table of Specific Heats. 

Air (C^) . . 0-2417 Ice . 0-602 
Air(C,) . 0-1715 Iron . 0-119 
Aniline . 0-514 Lead . 0-032 
Bismuth . 0-0304 Mercury . 0-033 
Copper . . . 0-094 Turpentine . 0-43 
Glass 
Hydrogen 

. 0-19 

. 3-402 
Zinc . 0-093 

Applications.—Calorimetry has some important scientific and 
technical applications other than the determination of specific heats. 
For example, it is important to the chemist to know how much heat 
is absorbed or evolved when chemical changes take place, and for 
the engineer it is necessary to know how much heat is evolved by 
burning a known weight of different kinds of fuel. These processes 
are made to take place in special kinds of calorimeter, where the 
heat evolved may be measured as in the preceding pages. 

Dulong and Petit’s Law.—Dulong and Petit, from their investiga¬ 
tions of the specific heats of various chemical elements, were able to 



38 HEAT 

deduce the law that the product of the specific heat and the atomic 

weight is constant. Regnault found that the law was approximately 

true if the substances were in the solid state; the mean value of the 

product (atomic weight X specific heat) is 6’2. Since the specific heat 

of a substance is found to vary with the temperature it is clear that 

the law cannot be universally true; in fact, recent experiments show 

that the specific heats of many substances are very much smaller at 

—250®C. than they are at the temperature of the laboratory. 

EXAMPLES ON CHAPTER III 

1. A mass of 200 gms. of copper, whose specific heat is 0*095, is heated to 100® 
and placed in 100 gms. of alcohol at 8® contained in a copper vessel whose mass 
is 25 gms. and the temperature rises to 28*5®. Find the specific heat of alcohol. 
(L. *89.) 

2. A copper vessel contains 100 gms. of water at 12®. When 56 gms. of 
water at 30® are added the resulting temperature of the mixture is 18®. What 
is the water equivalent of the vessel ? A calorimeter with water equivalent 12 
contains 100 gms. of water at 12®. When 100 gms. of metal at 100® are added 
the resulting temperature of the mixture is 20®. Find the specific heat of 
the metal. (L. *93.) 

3. Why is it difficult to measure the specific heat of a gas by the method of 
mixtures ? What weight of gas of specific heat 0*25 entering at 100® would 
require to pass through an apparatus of which the heat capacity was 50 cals, 
per degree before raising the temperature from 15® to 17® ? (L. *10.) 

4. Eighty gms. of water at 35® are poured into a calorimeter containing 120 
gms. of turpentine whose temperature is 15®. The calorimeter weighs 70 gms. and 
its specific heat is 0*1. The specific heat of turpentine is 0*45; find the tempera¬ 
ture of the mixture 



CHAPTER IV 

LINEAR EXPANSION 

Coeffleient of Expansion.—It has already been shown that an 
increase in the temperature of a body is frequently accompanied by 
expansion; there are, however, exceptions to this rule. Below 
— 80^^ a rod of silica decreases in length when heated, and silver 
iodide contracts in volume up to a temperature of 142°. In the 
case of solids we may have to consider changes in length, area, or 
volume; with fluids we are concerned with volume changes alone. 
This arises from the fact that a fluid takes the shape of the con¬ 
taining vessel and an increase in one dimension depends upon how 
much it is allowed to alter in the other two. The linear expansion 
of a liquid is therefore an indefinite quantity, but its volume is 
independent of the shape of the vessel and is perfectly definite at a 
given temperature. 

When a bar is heated experiment shows that the increase in 
length is proportional to tlie original length and to the temperature 
change, provided the latter is not too large. Suppose we have a bar 
whose length at 0° is Lq cms., and that when heated to its length 
becomes Li, then each cm. has expanded (Li-"Lo)/Lo, and for 1° the 
expansion is (Li—Lq)/LqL The ratio of the increase in length for 
1° rise in temperature to the length at 0° is called the eoelQcient of 
linear expansion. Denoting this by Z, 

or Li = Lo( 1 “f" It) 

When the temperature decreases, t must be put negative in this 
formula. If it is desired to compare the relative expansibilities of 
different solids we have merely to compare their coeflicients of linear 
expansion. These coeiBcients are very small quantities, e,g, a bar 
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of brass 100 cms. long at O'^ if heated to 50^ expands to about 
100*09 cms., whence we find that I = 0 000018. This smallness makes 
it possible to simplify the calculations, for by division or the binomial 
theorem we find 

:= 1 ~ 2;+ — et( 
1 + a; 

- ^ = 1 + a;-— x® _j_ et 
1 — X 

(l + x)(l + 2/)= 1 + x+y + xy 

l + X—x2_j_ etc. 

Suppose now x = 0 00002 and y = 0*00003, i.e. quantities of the same 
order of magnitude as I above, then j/2, xy, etc., are very 
small quantities indeed, and we may neglect them in comparison 
with X and y, 

1 xx 
l±<c 

{l + x)(l-Jpy)=l + x + y 

(r+7)(r+7)'" r+X■ i+~y""d-i-®-y 
As an example, let the lengths of a bar at 0°, ti° and be Lq, Li, 

and L2 respectively, and I its coeflScient of linear expansion. 

Then Li = Lo(l + Iti) 
Jj2 == Lo(l + ^2) 

• 1^0(1 + ^^1) _ ^ ^2 

L| Lo(l “)- ^2) i H” 

accurately, or, using the above approximations, when U2 and Iti are 
small quantities, 

^2= (1 + fta). = (1 + ft,)(l - fti) = 1 + /(<2- ti) 

Suppose we require the ratio of the length at 100° to that at 20° 
of a bar whose coefficient of linear expansion is 0 00002, The 
accurate formula gives 1'001599, the approximate formula 1001600, 
practically the same result. From the last equation we get 

Li(«2— ti) 
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showing that, with these approximations, we need not refer the 
original length to 0° in order to calculate I; all that is required are 
the lengths at two known temperatures. IIow these are found is 
explained in the next paragraph. 

Measurement of Coefficient of Linear Expansion.—^A simple ap¬ 
paratus is shown in Fig. 20; it will also illustrate what errors are 
likely to arise in such an experiment. The rod AB to be experi¬ 
mented upon passes through corks up the centre of a wider tube C. 
Near the end A it is clamped between two metal knife-edges pro¬ 
jecting slightly from wooden blocks fixed to a base-board. The end 
B, which is flat, can be made to touch a screw D of known pitch, say 
0*5 mm. The large circular head of this screw is divided into 100 
equal divisions ; if it is turned through one division it will advance 
1/200 mm. Steam is passed through C by the side tubes E, F, and a 

Fig. 20.—Simple Apparatus for Linear Expansion. 

thermometer placed in the exit tube gives the temperature. The 
screw D is now brought into contact with B and the reading at the 
pointer 6 is taken. Cold water is next passed through tube C, 
causing the rod to contract. The contraction can be measured by 
noting how far the screw D has to be turned to bring it again in 
contact. The temperature of the water is noted, and finally the 
length of the rod from the knife-edges to B is measured by a scale; 
I can then be calculated from the last formula. 

Example.—^For a glass rod 80 cms. long the screw had to be turned through 
110 divisions on the circular head; the temperature of the steam was 100^ 
and that of the water 15^ Hence — Lj » 110 X 0*005 0*55 mm. 

n.AKK 

and I« ~ *= 0*0000081. 
80 X 85 

There are several sources of error in this experiment: (1) Part 
of the rod is exposed to the outside air and will probably not reach 
the proper temperature ; (2) The screw may become heated and so 
alter in length, this is minimised by having it in contact only when 
the reading is being taken, especially at the higher temperature; 
(3) The base-board may expand and alter the position of the screw. 

4 
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Lost time in the screw is avoided since it is always turned in the 
same direction. These errors are eliminated in the method now to 
be described, which, in principle, is that used at the International 
Bureau of Weights and Measures.^ 

Comparator Method.—The experimental bar (Fig. 21) is placed 
on rollers in one compartment of a metal trough, which is divided 
throughout the greater part of its length by a vertical division ; in 
the other compartment a screw, worked by a motor, keeps water 
circulating past the bar. The temperature is read by two or more 
thermometers placed horizontally in the liquid. A second similar 

Fio. 21.—Comparator Method of measuring Expansions. 

trough contains a standard bar having fine marks near the ends 
exactly one metre apart. Marks separated by approximately the 
same distance are also made on the experimental bar. There are, 
in addition, arrangements for levelling and for giving slight lateral 
or longitudinal displacements to either bar. The troughs can be 
run to and fro on a small tramway so that either rod can be brought 
beneath two vertical microscopes A, A, which are supported in¬ 
dependently of the rest of the apparatus. Each microscope carries 
cross-wires in the eye-piece which can be moved by a micrometer 
screw with divided head, similar to the one already described. A 
movement of the marks as small as 0*001 mm. can be measured. 
The troughs having been filled with ice-cold water, the standard bar 

^ For a simple modifioatioDf see Barton and Black, ** Practical Physios/’ p. 52. 
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is placed beneath the microscopes and the cross-wires are adjusted so 
that they appear to coincide with the marks when seen through the 
instruments. The second trough is now brought into position and 
the cross-wires adjusted as before by moving the micrometer screws. 
The amount of this movement shows at once by how much the 
distance between the marks on the experimental bar difEers from one 
metre and hence the length at 0® is found. The water is next heated 
to a known temperature and the resulting expansion of the bar is 
measured by the cross-wires and screws. The standard bar, still at 0®, 
is finally brought under again to ensure that the distance apart of the 

Fio. 22.—To show Stress caused by Cooling. 

microscopes has remained unaltered. The length being known at two 
temperatures the coeflScient of linear expansion can be calculated. 

Table I. 

Coefficients of Linear Expansion. 

Brass . . • 0 0000188 Nickel steel (45% 
Copper • • . 0 0000172 nickel) . . 0*0000082 
Glass (tube) • . 0 0000084 Platinum . . 0*0000084 
Iron (soft) . . 0*0000122 Porcelain . . 0*0000088 
Invar. (Nickel steel, Fused silica . . 0*00000059 

36% nickel) . 0 00000087 Steel (untempered) 0*0000108 
Zinc . . . 0*0000294 

(The above numbers represent average values.) 

Applications.—The fact that bodies expand when heated has 
frequently to be allowed for, or is made use of, in industrial applica¬ 
tions. Thus when the metals on a railway are laid a small space is 
left between successive sections so that on hot days expansion may 
take place; otherwise the rails would buckle. The iron tyxea of 
cart wheels are fitted on while they are red hot; when they cool they 
grip the wheel much more tightly. The forces exerted on account of 
expansion or contraction may be very large. The apparatus shown 
in Fig. 22 illustrates this. The bar A is heated and then screwed up 
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as tightly as possible; when it cools the stress is so great that the 
small bar, B, which passes through a hole in the end of A, is broken. 

The time of swing of a pendulum depends upon its length; if, 
therefore, the temperature changes, the rate of a clock will be altered 
unless we can arrange to keep the pendulum bob at a fixed distance 
from the point of suspension. This is done in various ways. Fig. 23 

Fio. 23.—Gridiron 

shows a form of Harrison’s gridiron pendulum. 
The middle and two outer rods are made of 
iron, the remaining pair of zinc. The middle 
rod passes freely through the cross-piece B. 
Expansion of the iron alone will evidently 
lower the bob, expansion of the zinc alone 
will raise it, since Z can only expand upwards. 
When the temperature of the whole alters 
these changes may be made to balance each 
other. Denoting the lengths of the rods by 
the letters on them in the figure, the distance 
of the bob from A = I — Z + S. 

When the temperature rises by t® this 
becomes 

(I + S)(l + 000001220 — Z(1 + 0 00002940 
from Table I. 

This must be equal to the original length if 
the time of vibration is to remain unaltered. 
Hence 

(14- S)(l + 0 00001220 — Z(1 + 0 00002940 
=I-Z+S 

whence we find readily 

I-f S_294 
Z 122 

Pendulum, 
showing that the ratio of the lengths of the 

iron and zinc rods is inversely as their coefficients of linear 
expansion. 

The rate of a watch is regulated by the elasticity of the spring 
and the size and mass of the balance wheel. A rise in temperature 
decreases the elasticity and increases the size of the wheel, each of 
which causes the watch to lose time, though it is the former which is 
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chiefly effective. This is counterbalanced by causing the expansion 
to bring the weight of the wheel rim nearer the centre. 

Experiment.—Rivet a strip of zinc 20 cms. long and 1 cm. wide to a similar 
strip of iron to form a compc^und strip of the same length and heat it in a flame. 
It becomes curved with the zinc on the outside. This is because zinc expands 
more than iron and the metals can only take up their appropriate lengths by 
curving in this manner. 

The same principle is applied to the balance wheel of a watch 
(Fig. 24). The rim is made of a compound strip of two or more 
metals with the more expansible metal 
outside; as the temperature rises the 
strip curves inwards, and compensation 
may be attained by properly distributing 
the weight of the rim. 

It will be noticed from Table I. that 
invar has a very small coefficient of 
expansion; it should, therefore, prove 
useful for clock pendulums, standards of 
length, etc. If a piece of iron wire is 
sealed through a glass tube, the joint 
usually fractures as it cools owing to the 
unequal contraction of the two substances. Platinum and nickel 
steel (45 per cent, nickel) have, as shown in Table I., about the same 
expansion as glass; hence they may be used more safely for the 
purpose, e.g. in the construction of incandescent electric lamps. 

Thick-bottomed drinking-glasses frequently crack if hot water 
is poured into them owing to the unequal expansion of the inner and 
outer layers. Glass is a bad conductor of heat (p. 115) and so 
hinders the rapid equalisation of temperature in the different portions. 
Fused quartz or silica has a very small expansion ; vessels made of 
this substance may be plunged into a very hot bath without fear of 
breakage. 

EXAMPLES ON CHAPTER IV 

1. A base line 2 miles long is to be laid out by means of an iron chain whose 
length is known at 0®. Find the percentage error caused by neglecting the 
expansion of the iron if the coefficient of linear expansion is 0'000012 and the 
average temperature is 16®. 

2. A rod is found to be 100 cms. long at 50® and 100*1 cms. long at 100®, 
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Assuming that it expands uniformly, obtain a formula giving its exact length 

at any temperature and calculate its coefficient of cubical expansion. (L. 'OG.) 

3. If it takes a force of 20,000 kilos./cm.* to produce a 1 per cent, diminution 

of length in an iron bar, what force would you expect it to require to prevent a 

bar 8 cms. long, 3 cms. wide, and 2 cms. deep, from expanding lengthways when 

raised 500® ? Coefficient of expansion of iron = 0 0000122. (L. ’04.) 

4. The height of the barometer at 18® is found to be 76 cms. when measured 

with a brass scale which is correct at 0®. Find the actual length of the mercury 

column. Coefficient of expansion of brass is 0*0000182. 



CHAPTER V 

CUBICAL EXPANSION 

Volume Expansion of Solids and Liquids.—When a homogeneous 
body is heated it is found, as the result of experiment, that the 
increase in volume due to a small rise of temperature is proportional 
to the temperature change and to the original volume of the body. 
The increase in volume when the temperature is raised I"" divided 

by the volume at 0^ is called the coefficient of cubical expansion. 

Denoting this by c, if Vo= vol. at 0°, V= vol. at 

or V = Vo{l + ct) 

In the case of linear expansion, on account of the smallness of i, 
we saw that it did not introduce serious error if the original length 
was measured at some temperature other than 0®. The coefficient 
of cubical expansion is a much larger quantity, especially in the case 
of liquids and gases; it is better, therefore, to refer our definition to 
the volume at 0°, although the difference will not be large in the case 
of liquids and will be still smaller for solids. 

Consider a cube of a solid body 1 cm. in side at 0®, and let the 
coefficients of linear and cubical expansion of the material be I and c 

respectively. If the temperature be raised 1® each side becomes 
(1 + aiid the volume becomes (1 + = 1 + 3/ + 3i2 -f. js. From 
what has been said about small quantities we may take this as being 
(1 + 3Z), and the increase in volume is thus Zl. But this, from 
definition, is the coefficient of cubical expansion c, hence c== ZL 

For solid homogeneous bodies the coefficient of cubical expansion is 

three times the coefficient of linear expansion. 

Suppose we have a spherical glass flask filled with a solid eore of 
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the same material; when heated they will expand as if they formed 
a solid body. The flask would expand by an equal amount if the 
core were absent. It is seen from this that hollow bodies increase 
in volume by the same amount as solid bodies of the same dimen¬ 
sions. Thus a glass tube and a glass rod of the same diameter at 
one temperature will still have equal diameters if the temperature of 
each is changed by the same amount. 

Effect of Temperature on Density.—The density of a body is 
defined as the mass of unit volume. If do is the density of a body 
at 0® when the volume is Vq, the mass is Vodo* At another tempera¬ 
ture, fy let the volume be V and the density d. The mass being 
constant, 

Vodo=Vd 

d^Vp 

rfo V 

V-Vo(l + cf) 

•‘do Vo(l + cO l^Ct 

This result is important in dealing with the expansion of fluids; 
it shows that we can calculate the coefBcient of cubical expansion c 
if we can compare the densities at 0® and 

Apparent and True Coefficient of Expansion of a Fluid.—We have 
already seen, p. 19, that the expansion of a liquid is partly masked 
by that of the vessel containing it. The expansion observed under 
such conditions is called the apparent expansion. Similarly the 
coefficient of apparent expansion of a fluid, which we will denote by 
Ca, is the apparent increase in volume for 1® rise of temperature 
divided by the volume at 0®. The true coefficient c will be greater 
than this since it takes into account the increase in volume of the 
vessel. Suppose we have a glass bulb, whose volume at 0® is Vq cm.®, 
surmounted by a stem graduated in c.cms., and let the coefficient 
of cubical expansion of the glass be g. Let the bulb be filled at 0® 
with a liquid whose true coefficient is c. At 1® the true volume of 
the liquid is Vo(l + c), but owing to the expansion of the glass the 
graduations are incorrect and the volume as read on the stem will 
be less than this; it will apparently be Vo(l + Ca)- At this tempera¬ 
ture each c.cm. of the vessel has expanded to (1 -f g), so that we 

or 

But 
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may also get the true volume of the liquid by multiplying its 
apparent volume by (1 + g)- 

true volume of the liquid Vo(l + c) = Vo(l + Ca)(l + <;) 

or 1 +C = 1 +Ca 

The coefficients being small the term Cag may be neglected and 

To get the true coefficient of expansion of a liquid we must add 
the apparent coefficient to the coefficient of cubical expansion of 
the vessel. 

The apparent coefficient can readily be observed in the dilato- 
meter, Fig. 25. This consists of a glass bulb, whose 
volume is known at 0® C., attached to a stem gradu¬ 
ated in c.cms. Liquid is placed in the apparatus and 
its apparent volume at two different temperatures is 
noted by the graduations, the apparent coefficient of 
expansion can then be calculated. If we add to this 
apparent coefficient three times the linear coefficient for 
glass we should expect to get the true coefficient for the 
liquid. This procedure, however, is faulty, since glass 
is usually far from homogeneous, and after determining 
I for a glass tube a bulb must be blown on it, which 
might greatly alter its expansibility. The method is 
therefore inaccurate. If c could be determined for some 
liquid independently of the envelope, we could afterwards 
observe for the same liquid in the dilatometer, and, 
using the above equation, calculate g. The dilatometer 
could then be used to find for any other liquid, and 
hence c.^ We proceed to show how the true (or absolute) 
expansion of a liquid is found. 

JC IW. i&U.-— 

Absolute Expansion of Mercury.—The apparatus Dilatometer* 
shown in Fig. 26 is a simplified form of that used by 
Dulong and Petit. BAA'B' represents a glass tube containing 
mercury which is at different temperatures in the upright limbs; 
AA' is horizontal. From a well-known hydrostatical principle, the 
intensity of pressure at A must equal that at A' when there is 
equilibrium, independently of whether the tubes have equal 

* Barton and Black, “ Practical Physics,** p. 64. 

4 
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diameters or not. If Hq and H are the lengths of the columns in 
AB and A'B' respectively, do ^ corresponding densities, then 

Hd = Hodo 

Fio. 26.—Duloog and Petit's Apparatus. 

if the temperatures of the limbs are 0^ and and o is the true 
coefficient of expansion of the liquid; 

Hot 
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Hence if the heights of two balancing columns are measured when 
they are at different temperatures, c can be found without any 
knowledge of the expansion of glass. 

To carry out the measurements in a form suitable for a simple 
laboratory experiment the columns are surrounded by wider tubes 
as in the figure. Through these a stream of ice-cold water is first 
run, and the quantity of mercury is adjusted until the ends of the 
columns are just visible above the corks B, B'. The heights of the 
surfaces above the axis of AA' are measured, corresponding with Hq 
above. Steam is next passed round A' B'; the temperature in each 
case is given by thermometers projecting through the corks at B', B, 
The length of the warm column is again measured, giving H — Hq, 
and c is calculated as above. 

The apparatus in this simple form has several disadvantages: 
(1) It does not give a continuous series of temperatures in the hot 
limb ; this can be obviated by having the column A'B' surrounded 
by an oil bath, which must be well stirred; (2) The thermometer 
may not give the mean temperature of the hot column; (3) The 
surfaces are exposed and may change in temperature while the 
observations are being made. 

Fig. 27 shows the principle of an apparatus used by Regnault, 
and more recently improved by Callendar, to overcome these 
defects. 

The vertical tubes AB, A'B', from one to two metres long and 
a cm. in diameter, are bent twice at right angles so that the portions 
BC, B'C' are horizontal. AA' is made of narrow bore to prevent 
the circulation of currents of mercury from one vertical tube to the 
other. Water cooled to 0° by ice in M is steadily passed through 
the wide tube surrounding AB; we will suppose also that it drips 
on blotting paper wrapped round CD and C'D'. A'B' is surrounded 
by oil, which is first heated by passing an electric current through the 
wire coil Q and is then forced past the mercury column in the direc¬ 
tion of the arrows by a small centrifugal pump R. The mean 
temperatures of the long columns are given by platinum thermo¬ 
meters P' and P (p. 389), whose bulbs extend the whole lengths of 
AB, A'B'; that of the short tubes CD, C'D' by mercury thermo¬ 
meters placed in contact with them. The heights of the various 
colunms are measured by a cathetometer. This consists of a hori¬ 
zontal telescope, having cross-wires in the eye-piece, which moves up 
and down a vertical graduated bar. The telescope is first focussed 
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BO that the cross-wires appear to coincide with the axis of AA'; it 
is then moved so that they appear to coincide with the axis of B'C'. 
The distance it has been displaced gives the vertical length A'B', 
and similarly for the other columns. Let A', H, A and Hq be the 

Fig. 27.—Callendar’s Apparatus. 

lengths of C'D', A'B'^ CD and AB respectively, when A'B' has a 
temperature f and the others are at 0°. If d and dQ are the densities 
of mercury at these temperatures the pressure at A' is (A'^Q-f Hi), 
and that at A is (Aio+ Hoio). 

h'd Hi = Aio -f- Hoio 

Hi=(Ho + A--A')rfo that is, 
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Ho + A-A'“ 

(aIq "h ^ ^ 

Between O'* and 100® c is found to be 0*000182, as the temperature is 
raised the coefBicient increases. 

Methods of determining the Apparent Expansion of Liquids.— 
(1) The Dilatometer method already mentioned is chiefly used when 
volatile liquids are concerned, as there is 
little opportunity for evaporation owing to 
the small surface exposed. 

(2) Weight thermometer. The glass appa¬ 
ratus shown in Fig. 28 has a reservoir about 
6 cms. long which is continued by a capillary 
tube bent twice at right angles. It is 
cleaned, dried, and weighed, and is then 
supported by copper gauze with the end of 
the tube under the surface of the liquid. 
It is filled by alternate heating and cooling, 
and during the final cooling is placed in 
melting ice; it is thus completely filled 
with liquid at 0®. It is next transferred to 
a bath which can be heated to any suitable 
temperature f; on account of expansion 
some of the liquid overflows and is received 
in a weighed beaker. A further weighing 
of the beaker and its contents gives the 
mass that has overflowed. The bulb and 
remaining liquid are also weighed ; sub¬ 
tracting the weight of the glass we have the mass of liquid left in. 
Let m be the mass that overflows, M the mass left in, and io 
density of the liquid at 0®. Since we are finding the apparent ex¬ 
pansion the increase in volume of the glass is neglected. The mass 
of liquid filling the thermometer at 0® is (M-f m), 

volume of thermometer = (M+ wi)/do 

But a mass M of liquid, whose volume at 0® is M/do, fills the thermo¬ 
meter at f® when the volume is (M+ m)/do. Hence the apparent ex¬ 
pansion of this mass between 0® and f®= (M+ m)ld^-^ M/do 

Fio. 28.—^Weight Ther¬ 
mometer. 

or 

whence 
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Dividing by the volume of the liquid at 0®, M/do, by the 
temperature change t°, we get the coefficient of apparent expansion c, 

m 

4 _ »» 

do 

The method is useless for volatile liquids, since obviously a large 
proportion of the mass overflowing will evaporate. 

The apparatus may be replaced by a small flask with a narrow 
neck, or a specific gravity bottle, and the liquid adjusted to a fixed 
mark upon it by means of a pipette. If mercury is the liquid used, 
since c is known from the last paragraph, we can calculate the cubical 
expansion of the glass from c = Ca-\-g. The apparatus can then be 
used to find Ca for any other liquid, and as g is known the true 
coefficient can be found. 

(3) Hydrostatic method. Let a solid be weighed (1) in air, (2) 
completely immersed in a liquid at 0®, (3) in the same liquid at f. 
Let the loss of weight at 0° be and at be m; these represent 
the masses of liquid having the same volume as the solid at 0° and f 
respectively. The volume of liquid displaced at 0° is mo/rfo» 
f is m/d, where d© d are the corresponding densities of the liquid. 
Hence the volume of the solid at 0® is mo/do, and at t® this has ex¬ 
panded to mo(l + gt)/dQ, g being the coefficient of cubical expansion 
of the solid. (See equation p. 47.) 

Equating the volume of the solid at to that of the displaced 
liquid at the same temperature, 

and 

since 

a (Iq 

m d 
t(1 

m-o uq 

m _ l+gt 

mo 1 + ct 

d _ 1 

d() 1 (A 

where c = coeff. of expansion of the liquid. 
We can therefore find either c or g, provided the other is known. 

The solid can be made in the form of a glass bulb and its coefficient g 
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determined by the dilatometer method. It is then partially filled 
with lead shot to make it sink, the neck is sealed, and the whole 
hung from the arm of a balance by a thin wire and immersed in the 
liquid. In these methods it would be better to replace the glass by 
quartz since its expansion is more definite.^ 

Expansion of Water.—If a dilatometer containing water at 0® is 
gradually heated the liquid is seen to contract until a temperature 
near 4® is reached, after which it continually expands, showing that 
water has a maximum density near 4°. The exact temperature 
observed will depend on the expansion of the glass. Joule’s method 
gives the temperature of maximum density directly. Two cylin¬ 
drical vessels. A, B (Fig. 29), contain¬ 
ing water, communicate below through 
a tube which can be closed by a tap, 
above through an open trough. Their 
temperatures are adjusted so that one 
is below and the other above 4®. If 
the density of the liquid is greater in A 
than in B, when the tap is opened a 
current sets in in the direction ACDBA, 
because the pressures at C and D are 
unequal. This is rendered evident by 
a small bead floating in the trough. 
Two temperatures are found at which 
water has the same density; these are 
altered until they are nearly equal and Fio. 29.—Joule’s Method of 

their m.». t^ » the temperetur. 
of maximum density. 

This singular behaviour of water has an important influence on 
animal and vegetable life. During a frost the surface layers of a 
pond are first cooled, they increase in density and sink, and are 
replaced by the warmer layers from below. This proceeds until the 
whole is reduced to 4°, when any further cooling produces a decrease 
in density. The water which is cooled below 4° consequently floats 
on the surface and is finally frozen, while the lower portions have a 
uniform temperature of 4^, thus protecting plants and animals from 
being frozen. 

The currents set up in a cooling liquid are well shown in Hope’s 

» See also Barton and Black, “ Praotioul Physics,” p. 60. 
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apparatus, Fig. 30. Water at the room temperature is placed in 
the upright cylinder into which two thermometers project, and a 
freezing mixture of ice and salt is placed in the trough A. This 
causes the temperature of the lower thermometer to fall to 4®, without, 
at first, seriously affecting the upper one. The reading of the lower 
thermometer then remains stationary and that of the upper falls 
rapidly until it reaches zero. 

Correction of a Barometer for Temperature.—The observed height 
of a barometer will vary with 
the temperature on account of the 
expansion of the scale and of the 
mercury; it must therefore be 
reduced to a standard temperature 
of 0®. Let H, Ho cms. be the 
observed heights at t® and 0® respec¬ 
tively, d and the corresponding 
densities of mercury, I the coefficient 
of linear expansion of the scale, c the 
coefficient of cubical expansion of 
mercury. The graduations on the 
scale being supposed correct at 0®, 
the true length of the warm 
mercury column at f® is H(1 + It), 

Fm. 30.—Hope’s Apparatus. atmospheric pressure in gms. 
per cm.2 is thus H(1 + lt)dy while 

if it were measured by a barometer at 0® it would be Ho^o* 

and 

But 

or approximately 

mm Hq^O = H(1 lt)d 

»o 
S 1 
do 1 -f- cf 

. „ H(1 + U) 
..Ho= 

Ho = H{1 - <{c - 1)} (p.40) 

To get some idea of the magnitude of this correction suppose 
the scale is brass, for which I = 0 000018, the temperature 15°, and 
take the coefficient of cubical expansion of mercury to be 0 000181. 
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Then when the observed height H is 76 cms. the true height, reduced 
to 0° c, is 75'81 cms.i 

Exposed Stem Correction for a Thermometer.—With the notation 
of p. 25 it is seen that if the mercury occupying n divisions is heated 
from ^2 t, so as to be at the same temperature as the rest of the 
liquid, it will expand n(T(t — divisions. This 
is the amount to be added to the observed 
temperature ti to get the true temperature t, 
or i + n(T{t — ^2)* correction should 
never be large as it is not very trustworthy, 
hence it will be sufficiently near the truth if 
t on the right side is replaced by the nearly 
equal temperature fi, and the formula becomes 
i 4- n(T(ti — h). 

Applications.—The expansion of a liquid is 
used to regulate the supply of heat to a bath 
which it is desired to maintain at a constant 
temperature. Fig. 31 shows one form of gas 
regulator. The glass bulb A is filled with a 
highly expansible liquid like toluene, the lower 
part of A and the narrow tube to B arc filled 
with mercury. The apparatus is placed in the 
bath, which should be well stirred, and gas 
from the main enters at D, travels in the path 
shown by the arrows, and goes from B to the 
burner underneath the bath. When a certain 
temperature is reached the expansion of the 
toluol causes the mercury to close the tube 
B and cut off the gas. To save it from being 
extinguished a small bye-pass is provided at C 
which allows sufficient gas to pass to keep the flame alight. When 
the temperature falls the toluol contracts and the full supply of gas 
again passes through B. The temperature can be kept nearly 
constant for days by this device. 

EXAMPLES ON CHAPTER V 
1. Describe a method of measuring the coefficient of expansion of a metd 

rod. A solid at 0° when immersed in water displaces 600 cub. in.; at 30® it 

Regulator. 

^ For further corrections see Barton and Black, “ Practical Physics, p. 68. 
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displaces 503 cub. in. Find its mean coefficient of linear expansion between 
0® and 30®, (L. *80.) 

2. Find the value in grams weight, and in dynes per cm.*, of a pressure 
able to sustain a 50 cm. column of mercury at 0®. Find what pressure would 
be exerted by the same height of mercury at 100®, if its density at 0® be 13*0 
and its mean coefficient of expansion be 0 00018. (L. *90.) 

3. A glass bulb with a fine uniform stem weighs 10 gms. when empty, 117*3 
gms, when the bulb only is filled with mercury, and 119*7 gms. when a length 
of 10*4 cms. of the stem is also filled with mercury. Calculate the relative 
coefficient of expansion for temperature of a liquid which, when placed in the 
same bulb, expands through the length from 10*4 to 12*9 cms. of the stem when 
warmed from 0® to 28®. The density of mercury is 13 *6 gms. per cm. • (L. *89.) 

4. A mercury thermometer at 0® contains 2 c.c. of mercury and the distance 
between the fixed points is 30 cms. Calculate the diameter of the tube at 0® 
given the coefficient of cubical expansion of mercury is 0*00018 and of glass is 
0*00003. (L. *09.) 

6. A specific gravity bottle holds 50 gms. of water at 4®. How much will 
it hold at 40® if the mean coefficients of cubical expansion for glass and water 
between 4® and 40® are 0*00003 and 0*00027 respectively T 

6. Describe some method by which the expansion of water has been studied. 
If S be the expansion of water between 4® and 0® and A its expansion between 
4® and f®, show what is the density of water at f® referred to water at 0®. 
(L. *84.) 

7. The height of a barometer as read by a brass scale at a temperature 18® 
was 760 mm. Find the true height reduced to 0®. The coefficients of cubical 
expansion of brass and mercury respectively arc 0*0000552 and 0*000181. 



CHAPTER VI 

EXPANSION OF GASES. GAS THERMOMETERS 

Volume and Pressure Coefficients.—Since the volume of solid or 
liquid bodies depends but slightly on the pressure to which they are 
subjected, any pressure variations can be neglected when we are 
dealing with their thermal expansion. This is not so for gases, as 
Boyle’s law shows, hence the effect of a rise in temperature on the 
state of a gas is usually observed under two different conditions: 
(1) The pressure is kept constant and the alteration in volume is 
observed, or (2) the volume is kept constant and the variation in the 
pressure is measured. In the first case we measure the coefficient 
of expansion at constant pressure, or, more briefly, the volume 
coefficient; in the second we find the coefficient of pressure increase 
at constant volume, or the pressure coefficient. Experiment shows 
that these coefficients are much larger than any with which we have 
dealt in the preceding chapters, hence the approximate methods of 
calculation (p. 40) are no longer applicable ; the increase in volume 
or pressure must be compared with the volume or pressure, as the 
c^e may be, at O^’C. The coefficient of expansion at constant 
pressure is defined as the ratio of the increase in volume for I'’ rise 
in temperature to the volume at 0°, the pressure remaining constant. 
If V is the volume at a temperature f and Vq that at 0°, the co- 

V — Va 
efficient a = —-—?, or V = Vo(l + a^). Similarly the pressure 

VQt 

coefflelent is the ratio of the increase of pressure for 1° rise of tempera¬ 
ture to the pressure at 0°, the volume being kept constant. Denoting 
this by )8, and the pressures at 0® and t® by Pq and P respectively, 

we have jS = or P = Po(l + jSt). 

Expansion at Constant Pressure.—Before describing the more 
elaborate experiments of Regnault we will give two simple laboratory 
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methods for measuring the e3q)ansion of air at constant pressure; 
the first corresponds to the dilatometer method of p. 49, the second 
to the specific gravity method of p. 54. 

Expeeiment.—The apparatus consists of a piece of fairly wide capillary 
tube, about 70 cms. long, closed at one end ; to the other end a wider tube is 
attached as in Fig. 32. The tube is heated in a Bunsen flame to dry it thoroughly 
before the end is closed, after closing it is slightly heated and a few drops of 
mercury or strong sulphuric acid are introduced into the wide portion. As the 
air cools a thread of liquid about 2 cms. long is sucked into the capillary ; this 
serves as a piston to confine the gas and as an index to show its volume. The 
tube is now fastened to a graduated scale and placed horizontally in a long trough 
where it is surrounded with melting ice. The length of the air column is noted 

Fig. 32.—Apparatus to determine the Coeifficient of Expansion of a Gas 
at Constant Pressure. 

at this temperature, then the trough is heated and the volume of the air is noted 
at different temperatures. The coefficient may be calculated from the preceding 
formula. Measure in this manner the expansion of air, hydrogen, and carbon 
dioxide. 

Gay Lussac used apparatus which, in principle, was the same as 
this; the figure he obtained for a was 0*00375. Regnault afterwards 
showed that this was too high, chiefly on account of the insufficient 
drying of the tube. When damp air is heated the particles of water 
are converted into steam which occupies a much larger volume, the 
expansion is therefore too large. 

Expxbiment.—A flask of about 60 cm.* capacity is tightly closed by a rubber 
stopper through which is passed a short piece of capillary tube. The latter 
carries at its outer end a piece of rubber tube about 3 cms. long which may be 
closed by a pinch-cock. The apparatus is weighed after thoroughly drying, 
and is then placed, neck upwards, in a large beaker of water which is gradually 
brought to a temperature of about 60® C. as measured by a thermometer. 
Keeping the temperature as steady as possible the flask is pushed down until 
the hot water rises just below the level of the stopper, it is held there for a minute 
and the pinch-cook is closed. It is then taken out and inverted as quickly as 
possible, with the neck well immersed, in a large vessel of cold water. The 
pinch-cock is then opened. Owing to the fall of temperature the contained air 
contracts and water runs into the flask. Ice is added'to the vessel until a large 
excess remains unmelted, when the temperature should be 0®. The flask is 
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now immersed to such a depth that the level of the water is the same inside and 
outside and the pinch-cock is closed. (To prevent heating by the hand during 
this operation the flask should bo held by a cloth which has been thoroughly 
wetted in the ice-cold water.) The confined air is now at atmospheric pressure 
and at 0®. The flask is rem-ived, dried c irefully on the outside and reweighed ; 
finally it is completely filled with water and its weight again determined. Let 
m be the mass of water in gms. that runs in when the cock is opened in the 
vessel at 0°, and M that required to fill the flask. Then the volume of air in 
the flask at 0® is (M — m) c.cms., and this completely filled it when the cock was 
closed at 60®. Hence a mass of air, whose volume at 0® is (M — w) c.cms. expands 
to M c.cms. at 60®, the pressure remaining constant. The expansion is 

M — (M — m)*= m c.cms., and the coefficient a = nT—- 
(M — m)60 

Regnault used a more elaborate apparatus based on this principle, 
but great precautions were 
taken to dry the air and the 
flask. He obtained a value 
a = 0 00366. In each of the 
above experiments the coeffi¬ 
cient of cubical expansion of 
glass should be added to the 
calculated result, p. 49. We 
will now describe one method 
used by Regnault to deter¬ 
mine a. 

Regnault’s Experiments.— 
The bulb A, whose volume 
had previously been found by 
filling it with mercury, was 
attached by capillary tubing 
to a three-way cock B (Fig. 
33), and a graduated glass 
cylinder C immersed in water. 
The cylinder could be made 
to communicate with the ex¬ 
ternal air by means of a cock 
D. E was closed, B was turned into the position shown at (1), and the 
bulb A and the space above the mercury in C was thoroughly 
exhausted of air through the tap. Air was then readmitted through 
drying tubes, and the process of exhaustion and refilling was repeated 

' See also Barton and Black, “ Practical Physios,” pp. 69—63. 

Pressure. 
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several times, the bulb being heated in the meantime to ensure that 
the last traces of moisture were removed. Tap B was next turned 
into the position shown at (2), so that the tubes E and C and bulb A 
were all in communication and E was opened. The bulb was then 
surrounded with melting ice, and, by adding mercury to E or running 
some out through D, the level in C was adjusted to be near the top 
of the graduations. The difference in level of the mercury in E and C 
was finally read by a cathetometer; by adding this to or subtracting 
it from the barometric height the pressure of the gas at 0® was 
found. A was then placed in steam ; the air expanded and mercury 
was run out through D into a vessel placed immediately below 
until the pressure was the same as before. The amount of expansion 
was then given directly by the graduations on G. Corrections had 
to be made : (1) Because the gas that expanded into C was not at 
the same temperature as that in the bulb; (2) For the air in the 
capillary tube; (3) For the expansion of the bulb. Evidently 
the initial pressure could be increased by adding more mercury 
to E, hence the expansion under different pressures could be 
measured. Some of the results at atmospheric pressure are given 
on p. 63. 

Increase of Pressure at Constant Volume.—Regnault measured 
the increase of pressure at constant volume by a similar apparatus, 
except that the water-bath and the graduations on C were un-- 
necessary. The bulb was filled with dry gas in the manner already 
described, and the mercury in C was adjusted so that the surface 
just touched the tip of a small enamel pointer when the temperature 
was 0®. This pointer is shown at F, Fig. 33. The pressure on the 
gas at 0® was then found as in the previous experiment. Steam was 
next passed round the bulb, and, as the pressure increased mercury 
was poured into E until the surface in C resumed its former position. 
The gas was thus brought back to its initial volume, except for a 
small correction arising from the expansion of the bulb, and the 
new pressure was noted. The pressure coeffeient was calculated 
from the formula P = Po(l + Its value for different gases is 
shown in the table below. 
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Table showing a and for Different Gases, 

Name of gas. Coefficient at constant 
pressure (a). 

Coefficient at constant 
volume O). 

Air. 000367 000367 
Nitrogen .... 0 00367 000367 
Hydrogen 000366 000366 
Oxygen .... — 000367 
Carbon dioxide . 000374 0 00372 
Sulphur dioxide 000391 0 00386 
Helium .... 0 00366 

A glance at the table shows that the coefficient of expansion 
under constant pressure is practically the same for all gases. This 
was first noted by Charles, who expressed his results in the law 
known by his name : At constant pressure the coefficients of expan¬ 
sion of all gases are equal. As the table shows, this common co¬ 
efficient is 0*00366 or 1/273. The law is not quite true as the numbers 
show; those gases which depart most widely from Boyle’s law are 
more expansible than the law requires, e.g, carbon dioxide and 
sulphur dioxide. More extensive experiments establish the fact 
that at lower pressures or higher temperatures these gases also 
approximate to a condition in which both Boyle’s and Charles’ laws 
are obeyed. We are thus led to the notion of an ideal gas which obeys 
each of these laws accurately; such a substance is called a perfect 
gas. Although there is no substance which actually fulfils these 
conditions, yet for many purposes the more permanent gases like 
air, hydrogen, nitrogen, oxygen and helium may be treated as such. 
Accordingly in the following pages, unless otherwise stated, we shall 
regard these gases as perfect. Further reference to the above table 
also brings out the fact that for perfect gases the volume and pressure 
coefficients are equal. 

Gas Thermometers.—The expansion of a gas at constant pressure 
may be used to measure temperature. In this respect it possesses 
various advantages over mercury; the expansion being larger it is 
more easily observed and the possibly irregular expansion of the bulb 
has less effect. In addition it could be used for much higher or 
lower temperatures, and two thermometers in which different gases 
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were used would agree over a very wide range of temperature. The 
latter is not usually the case with liquids. For example, let two 
liquid-in-glass thermometers be constructed and graduated as in 
Chap. IL, one containing mercury, the other, say, heavy petroleum 
oil. From the method of graduation they will, of course, agree at 
the fixed points, but very probably not at any other temperature. 
This is because the ratio of the coefficients of expansion of the two 
liquids varies with the temperature, and hence a rise in temperature 
sufficient to make the mercury expand from the 100th to the 200th 
degree mark on the scale might be insufficient to cause the oil in its 
thermometer to do likewise. The ratio of the coefficients of expan¬ 
sion of gases is much nearer being constant. The student is especially 
warned against making the statement that mercury is used as the 
usual thermometric substance because its expansion is uniform. 
If the expansion of mercury is measured, using a gas thermoineter to 
read the temperaturesy its coefficient increases as the temperature 
rises. The apparatus of Fig. 33 could be used as an air thermometer, 
but it would be very cumbersome, and a considerable fraction of the 
gas, viz. that in C, w’ould be at a lower temperature than the bulb, 
thus involving a troublesome correction similar to that for the 
exposed stem (p. 25). The latter disadvantage is largely overcome 
if the increase of pressure at constant volume is measured instead of 
the volume expansion. For these reasons the constant volume 
hydrogen thermometer is used as the standard to w'hich all other 
thermometers are referred for comparison; its unwieldiness is not 
then a serious disadvantage, since it can be set up once for all in 
the standardising laboratory. Fig. 34 shows a simple apparatus for 
measuring the pressure of a gas at different temperatures, the volume 
being kept constant. The mercury reseryoir B, which is connected 
to C by rubber tubing, can be raised or lowered in order to keep the 
volume of the gas constant. The difference in level of the mercury 
in the two limbs can be read directly off the graduated scale. This 
difference added to or subtracted from the barometric height gives 
the gas pressure in cms. of mercury. 

Experiment.—Measure with this apparatus the coefficient $ for air between 
and 100® cent. Then exhaust with an air-pump through the three-way tap, fill 

with dry hydrogen and repeat the observations. Neglect in each case the 
expansion of the bulb. The volume of the space above the mercury in C should 
be small in order that practically ail the gas may be at the same temperature. 

Assuming we have no other thermometers let us see how such an 
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apparatus can be used to construct a temperature scale and act as a 
thermometer whose indications shall be comparable with those of 
any other similar arrangement. Having filled the bulb with dry 
air or hydrogen, immerse it first in melting ice, then in the steam 
from boiling water, and observe the pressure at constant volume in 
each case. Let these pres¬ 
sures be represented on the 
diagram (Fig. 35) by AC and 
BD respectively. As in 
Chap. II., we will call these 
temperatures 0° C. and 
100" C. Join CD by a 
straight line and draw CO 
parallel to AB; then DO 
represents the increase in 
pressure due to a rise in 
temperature of 100". Just 
as we did with mercury 
thermometers we may now 
divide this fundamental in¬ 
terval DO into one hundred 
equal parts, and define 1" of 
temperature as that neces¬ 
sary to raise the pressure by 
one of these divisions. Let 
the bulb be now immersed 
in a bath whose temperature 
it is desired to read, and 
suppose the pressure of the 
gas to be represented by 
QB ; then the temperature 
is above 0" by an amount 
measured by OQ, where 

DO represents 100", It is 

Fio. 34.—Simple Constant Volume Air 
Thermometer. 

OQ 
therefore equal to j^^.lOO". We 

should get the same result by drawing QE parallel to AB and 
EF parallel to CA, the temperature would then be represented by 
AF, where AB represents 100" and A is the zero point, for 
OQ/OD == CE/CD = CM/CO = AF/AB. If Pq, Pioo, and P are 
the pressures at 0", 100", and respectively, then the unknown 
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QQ p   p 
temperature < = . 100 ^ ^^. 100; hence to determine 

()JJ Jt'lOO — -^0 
it we have merely to observe the pressure P after the fundamental 
interval has been determined once for all. Evidently the same 
formula could be used to measure temperatures beyond the limits 
0®~100® ; e,g. if QB is greater than BD or less than OD the point F 
will lie on AB produced. A thermometer based on this principle 
is the standard to which all others are referred; one such is 
described on p. 67. 

Experiment.—Place a few scraps of paraffin wax in a thin capillary tubc^ 
fasten it to the bulb of a constant volume air thermometer (Fig. 34) and immerse 
the two in a beaker of water. Heat the water slowly, keeping the volume of 

the air constant, and note the difference of level of the mercury in the two limbs 
at the moment the wax melts. Let it cool, or add small amounts of cold water 
if this is too slow, and read the pressure when the wax solidifies. Take the mean 
of these as the pressure of the gas at the melting point of paraffin wax. Deter¬ 
mine the fundamental interval (Pioo'~ Po) ^he last experiment and calculate 

the temperature at which wax melts from the formula f» r--. 100. 
*100 *0 

Absolute Zero.—Whether we use the volume or the pressure of a 
gas to measure temperatures it is easily seen that theoretically there 
is a minimum temperature below which the thermometer cannot be 
used. Thus if Pj and Pq are the pressures at and 0® respectively, 

» OQ « BQ - OB = P - Po, OD « BD - OB « Pioo - P#. 
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P == Po(l + ijf. 0 ; let the temperature be supposed to decrease to 
—273°C., then the pressure would be P = Po(l — 1) = 0, provided the 
qas were perfect throughout this range. This temperature is therefore 
the lowest that could possibly be read on such a thermometer, it is 
called the absolute zero of the perfect gas thermometer. Tempera¬ 
tures within a few degrees of this have actually been reached in 
recent years, but such extreme cold is found to liquefy or even 
solidify all gases when, of course, they cease to behave in the manner 
supposed. No stage is realised in practice at which the pressure of 
a gas is zero, nevertheless tlie idea of such a zero of temperature is 
found to be very useful. According to the kinetic theory the gas 
molecules at this temperature are absolutely devoid of heat, it is 
therefore the lowest conceivable. The temperature of a body 
reckoned from this point as zero is called its absolute temperature ; 
on tliis scale ice melts at 273® absolute, water boils at 373® absolute, 
and generally, if T and t are the corresponding absolute and Centi¬ 
grade temperatures of a substance, T = 273 +1. 

Standard Gas Thermometer.—To measure the pressure with the 
apparatus shown in Fig. 34 four readings of mercury surfaces are 
necessary, viz. those in B and C, and the zero and upper surface of 
the barometric column. They are reduced to two in the standard 
gas thermometer shown in Fig. 36, and the possible error is thus 
halved. In this apparatus the vessel B of the simpler form is made 
the reservoir of the barometer H, and the barometer tube is bent 
round so that the upper end of the mercury column is vertically 
above the index at C. When the gas pressure in the bulb is equal 
to that of the atmosphere the mercury stands at the same level in 
the three limbs C, B, E, and the vertical distance CH is the height 
of the barometer. As the temperature of the bulb A increases, the 
reservoir E is raised to keep the volume of the gas constant; the 
level of the mercury therefore rises to B', E' and H' respectively in 
the other tubes, and B'H' is now the barometric height. The 
gas pressure is then CH' cms. of mercury, and this can readily be 
measured by a cathetometer. The bulb A, about one litre in 
capacity, is made of an alloy of platinum and iridium; it com¬ 
municates with C through a very fine metal tube. When it is 
desired to obtain a correction curve for a mercury thermometer the 
bulb A and the thermometer are immersed in a well-stirred bath and 
their readings at different temperatures are compared : a curve can 
then be constructed as on p. 26. 
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The Gas Equation.—Let and V2 be the volumes of a given mass 
of gas at temperatures and Cent., the pressure remaining 
_ constant, then from Charles’ law, if Vq is 

the volume at 0°, 

= ^o(l + • ^1) 

^ H V2 = Vo(l + ^ 7 • ^2) 

t Vi 273 ~f" Tj 

V2 273 +12 T2 

where T^, T2 are the absolute temperatures 
[A corresponding to ti and ^2- Thus at con¬ 

stant pressure the volume of a perfect 
gas is proportional to its absolute tem¬ 
perature. Similarly if Pi and P2 are the 
pressures at and t2, the volume being 
kept constant, 

171 ^1 ^ Pi = Po(l + • ^1) 

L1P2 = Po(l + 27:? • ^2) 
B . = = 

f "Pz 273 + «2 Ti 
, 'Cv. yx..^ 

1^ -.- _h._) These results may be 
'4 JL combined with Boyle’s 
p 0 law in one equation. 
^ Let the pressure, volume and tempera- 
^ i ture initially be pi, Vi, ti respectively, and 
l| S let these be changed to P2» ^2* <2 J if' 

Jisii required to find an equation coimecting 
these six quantities. Let a be the co- 
efficient of volume expansion. We may 
suppose the change to take place in two 
steps : (1) Keep the temperature constant 

ji and change the pressure to its final value 
\ JJ P2i f^be new volume v will be given by 
. ... Boyle’s law 

Fio. 36.—Standard Hydro- P2P ~ Pl^l 
gen Thermometer. 

or t; = 
P% 
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(2) Keep the pressure constant at and heat the gas to a 
temperature changing the volume from v to its final 
value ^2. Then, as above, 

i) I "4 

1^2 i "4" ^^2 

or 
1 + at2 p2 

when the value previously obtained for v is substituted, 
be written 

Pi^i ^ JP2^ _ 
1 + a^2 • • • • 1 +a(i 

If a = becomes 

This may 

. (1) 

Vi^i 
273 ^2 

or (2) 

273 + 

Ti T2 
where T| and T2 are absolute temperatures. If the quantities on 
the riglit-hand side refer to 0® Cent. 

Vi^ ^ 
Ti 273 

The second fraction is constant for a given mass of gas, hence the 
pressure, volume, and absolute temperature of a perfect gas obey 
the equation 

pv 

T 
= R 

where R is a constant quantity called the gas constant. The equa¬ 
tion (2) is called the gas equation ; it should be used for all questions 
relating to the pressure, volume, or temperature of a perfect gas 
which arise on the subject matter of this chapter. If a is not equal 
to 1/273 equation (1) above must be used instead. It is easily seen 
to contain all the results we have previously obtained, for if T is 
constant the equacion becomes pv = const., which is Boyle’s law. 
Similarly if p is constant the equation shows that the volume is 
proportional to the absolute temperature, or if v is constant the 
pressure is proportional to the absolute temperature. 

Example.—A mass of gas which occupies one litre at 20® C. under a pressure 
76 cms. of mercury is heated to 100® C. and the pressure is reduced to 75 cms.; 
find the new volume. 
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The absolute temperatures are 293° and 373°. Using the gas equation and 

calling V| the volume required, 

whence 

76^ _ 76 X 1 

373 293 

Vg = 1*29 litres. 

EXAMPLES ON CHAFIER VI 

1. A litre of air at 0* and 76 oms. pressure weighs 1*293 gms. Find the 
weight of 6 litres when the temperature is 20® and the pressure 75 cms. 

The weights of a litre of air under the two sets of conditions are proportional 

to the densities. Writing the gas equation in the form 

Pi P* /. 
““'P = --Tir ( since v « - ) 
Pill Pali \ PJ 

if a; is the weight of a litre under the second conditions 

273 

1*293 Pi Pi'T, 76*293 

the weight of 5 litres =: 5a; = 6 X 1*293 X X f J| 

2. Determine the height of the barometer when a mgm. of air at 27® C. 
occupies a volume of 20 cms.'in a tube over mercury, the mercury standing at 
73 cms. higher inside the tube than outside. [1 gm. of air at N.T.P. measures 
773*4 cms.'.] (L.’85.) 

3. At the sea-level the barometer stands at 750 mm. and the temperature 
is 7®, while on the top of a mountain the barometer stands at 400 mm. and the 
temperature is —13®. Compare the weights of a cubic metre of air in the two 
places. The barometer readings may be taken as corrected for temperature. 
(L. ’89.) 

4. A given volume of air is at 740 mm. pressure at 17® C. What is i^he 
temperature when its pressure is 1850 mm. 7 (L. ’93.) 

5. State in symbols and in words the two laws which, if a gas obeys, it is 
called a perfect gas. One lb. of air at a temperature 0® and at a pressure of 
1033 gms. per cm.' has a volume of 0*3555 cub. metres. At what pressure will 
its volume be 403,700 c.c. if measured at 27® C. 7 (L. *97.) 

6. Explain how the apparent weight of a body in air varies with its rise of 
temperature. A piece of iron measuring 1000 c.c. is weighed at 0® and again at 
100® C. What will be its apparent change in weight 7 Coefficient of expan¬ 
sion of air » 0*00367, of iron (linear)» 0*000012, mass of 1000 c,o., of air at 
0®« 1*293 gms. (L.’86.) 
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7. Define the coefficient of increase of pressure of a gas. Show that^ if a 
gas obeys Boyle’s and Charles* laws, this coefficient is equal to the coefficient 
of expansion. (L. 1900.) 

8. Find the number of feet in a steel bottle to hold at 120 atmospheres 
pressure, when the temperature is 25® C.. 20 cub. ft. of oxygen under normal 
conditions. (L. *03.) 

9. The mercury in a barometer containing some air stood at a height of 
70 eras, and the volume of the tube above the mercury was 20 c.c. The tube 
was then lowered into the reservoir until the volume above the mercury was 
10 C.C., when the barometer indicated 65 cms. only. Calculate (1) the true 
barometric height, and (2) what the reading of the barometer in question would 
be if its tube were raised until the volume above the mercury became 100 c.c. 
(L. ’06.) 

10. A sample of gas was found to have a volume of 100 c.c. at 18® and 72 cms. 
pressure, and a volume of 200 c.c. at 90® and 45 cms. pressure. Assuming that 
the gas obeys Boyle’s law and expands uniformly at constant pressure, calculate 
at what temperature it would have a volume of 400 c.c. at 100 cms. pressure. 
(L; ’07.) 

11. A volume of 50 c.cs. of air at 15® is expelled from the bulb of a constant 
pressure air thermometer by changing the temperature from 0® to 100® C. 
Given the coefficient of expansion of air is 1/273, calculate the temperature of 
the thermometer when 10 c.cs. are expelled, neglecting the expansion of the bulb. 
(Lu ’08.) 



CHAPTER VII 

CHANGE OF STATE 

Melting and Boiling Points.—When a solid like ice or paraffin wax 
is continually heated a temperature is finally reached at which it 
liquefies; this temperature is called the melting point of the sub¬ 
stance. Provided the pressure is unchanged a substance always 
melts at the same temperature, this provides the chemist with a 
means of identification. Similarly when a liquid is continually 
heated a stage is reached where the temperature remains steady 
and the liquid is continuously converted into vapour.^ The liquid 
is then said to boil. The temperature at which boiling takes place 
is called the boiling point. It also is characteristic of the substance 
but varies greatly with the pressure. These changes can take place 
in the inverse order; thus if steam is cooled it finally condenses into 
liquid, and the water so formed, if its temperature is sufficiently 
reduced, at last solidifies or freezes. Except when chemical change 
is produced the condensing point coincides with the boiling point, 
and the freezing point with the melting point. Certain substances, 
such as glass, have no well-defined melting point, in changing from 
the solid to the liquid state they pass through an intermediate pasty 
condition; it is this property which makes it possible to work with 
glass in the blow-pipe flame. Other substances, such as iodine, 
when heated pass directly from solid to vapour without becoming 
liquid; they are said to sublime. The reverse change, directly 
from vapour to solid, occurs in the case of hoar frost. 

Experiment.—Put a quantity of melting ice in a beaker, in a second beaker 
place an equal weight of cold water, and place each of them over Bunsen burners. 
It will be found that the temperature of the water rises continuously to the 
boiling point, but the temperature in the other beaker remains steadily at 0° 
until all the ice is melted, after which it increases as in the other vessel. 

> A vapour may be defined as the gaseous form of a liquid. 
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This is a typical case of melting ; the temperature of the melting 
substance is constant during the process. As heat is entering from 
the flame it is clear that the solid absorbs heat without changing its 
temperature ; this heat is said to be latent. 

The number of calories required to convert one gram of a solid 
into a liquid without changing its temperature is called the latent heat 
of fusion of the substance.—For example, the latent heat of fusion 
of ice is 80 calories ; i.e, the heat necessary to liquefy one gram of 
ice would raise the temperature of a gram of water from 0° to 80°. 
Other solids behave in a similar manner, but the actual value of the 
latent heat of fusion varies with the substance. Before a liquid at 
the freezing point can solidify it must part with its latent heat of 
fusion, wliile it is doing this its temperature remains steady; upon 
this fact is founded a method of determining the freezing point 
(p. 74). Similar absorptions or evolutions of heat are shown at 
the boiling point. 

Expebiment.—Heat over Bunsen burners two small flasks, one containing 
mercury, the other water. When 100® C. is reached the water is gradually 
converted into steam and its temperature is constant, that of the mercury 
steadily rises beyond this point. Heat is absorbed in each case, that entering 
the mercury causes a rise in temperature, while that absorbed by the water at 
100® becomes latent; this latent beat is used in producing steam. Finally at 
a temperature near 350® the mercury also boils and absorbs latent heat. 

The number of calories required to convert one gram of a liquid 
into vapour without changing its temperature is called the latent heat 
of vaporisation of the liquid. 

Methods of determining the Melting Point.—When a substance 
shows a clearly defined melting point, or is obtainable only in small 
quantities, the following method may be used. 

Experiment.—A few small particles of the substance are placed in a thin 
walled capillary glass tube which is attached to a thermometer bulb by rubber 
bands. This is mounted in a test-tube and placed in a beaker of water as in 
Fig. 37. The water is slowly heated and the temperature at which the substance 
melts is observed; the whole is then allowed to cool and the temperature of 
solidification noted. These observations are repeated until the two tempera¬ 
tures differ by only a few tenths of a degree, when their mean is taken as the 
melting point. The air currents in the test-tube ensure that the bulb and 
capillary tube are at the same temperature. 

Another method is used where it is difficult to tell by the eye when 
melting actually takes place. The substance is thoroughly melted 

5 
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and allowed to cool slowly, the temperature being observed every 
10 secs,, a cooling curve is then plotted showing the temperature at 
different times. When solidification begins the liquid gives out its 
latent heat of fusion and the temperature remains steady for some 
time, this is shown clearly on the cooling curve. The method is 

largely used by metallurgists to find the freezing 
points of metals; as the temperatures are much 
higher than can be read by a mercury ther¬ 
mometer a thermo-couple is used in place of it. 
(See p. 431.) 

Experiment.—Some tinman's solder was melted in 
a large crucible and a hard-glass test-tube containing 
mercury was pushed into it. A thermometer was placed 
in the mercury and the cooling curve shown in Fig. 38 
was obtained. The mercury provided good contact with 
the solder and yet preserved the thermometer from 
breakage when solidification took place. Owing to solder 
containing two metals, freezing takes place in two steps 
at temperatures near 194° and 178°. The student 
should obtain by this method the melting point of 
paraffin wax. 

The curve shows that it is possible to cool 
a liquid below its freezing point without causing 
it to solidify, but directly solidification begins the 
temperature rises to that of the normal freezing 
point and remains steady until the change of 
state is completed (at 194° in Fig. 38). A 
substance cooled below its freezing point, yet 

^ . remaining fluid, is said to be supercooled. The 
to determine Melt- used by photographers shows super- 
ing Points. cooling exceedingly well. 

Experiment.—Powder some “ hypo ” in a mortar and place it round the 
bulb of a thermometer in a test-tube. Heat it in a beaker of water until it 
melts in its own water of crystallisation; this takes place at about 48°. The 
test-tube may then be removed from the beaker and allowed to cool, a cooling 
curve being obtained in the usual way. If it is not shaken the temperature 
may fall to 30° without the “ hypo ” solidifying. Finally when solidification 
begins the temperature rises suddenly to 48° and remains steady for some 
minutes. If a solid crystal is dropped into the supercooled liquid solidification 
begins at once. The absence of dissolved air from a liquid makes it more 
capable of being supercooled. 

Latent Heat of Fusion.—The latent heat of fusion of ice can be 
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determined by the method of mixtures. A known weight of water 
is placed in a calorimeter, which is protected in the usual way, and 
its temperature is taken. Lumps of melting ice half the size of 
a walnut are carefully dried with blotting paper and are then shot 
into the calorimeter. The lowest temperature of the mixture is 
noted when all the ice has melted, and the calorimeter is reweiglied 
to get the amount of ice added. Let Wi and be the masses of the 

water and the calorimeter respectively, the specific heat of the 
latter, L the latent heat of ice, ii and the initial and final tempera¬ 
tures of the calorimeter and its contents, M the mass of ice added. 
The ice absorbs heat from the water to melt it and to raise its 
temperature from 0® to We may suppose this absorption takes 
place in two steps :— 

(1) To melt M gms. without changing its temperature requires 
ML cals. 

(2) To raise the water so formed from to requires cals. 
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Also heat lost by the water originally in the calori¬ 
meter = mi(ti — ^2) cals. 

And heat lost by the calorimeter = m252(^i — ^2) cals. 
Hence ML + M^2 = '^lih — <2) + ^12.52(^1 — ^2)* which L 

can be found. Accurate experiments show that L for water is very 
nearly 80 cals. If the ice is not thoroughly dry the water added with 
it will not absorb its latent heat and the final result will be too low. 
To render the radiation correction small the calorimeter should be 
4° above the room temperature and sufiicient ice should be added 
to cool it by an equal amount below. 

Change of Volume produced by Melting.—Since ice floats in water 
at 0° its specific gravity must be the smaller of the two; in other 
words, a c.cm. of water at 0® will expand to more than a c.cm. when 
it freezes. It is due to this expansion that water-pipes are frequently 
burst during a frost. On the other hand solid paraflEin wax sinks 
when thrown into its liquid at a temperature just above the melting 
point. Paraffin tlierefore contracts when* it solidifies. Substances 
which are to be cast should expand at the moment of solidification 
in order to retain the shape of the mould. 

Expeeiment.—To find the Specific Gravity of lu. Pour about 50 c.cms. of 
methylated spirit into a small beaker and drop into it a small lump of ice. Add 
water until the ice is nearly wholly immersed. Stir the mixture; ico gradually 
melts, at the moment it sinks below the surface remove it as quickly as possible. 
By mixing two liquids, one having a greater the other a less specific gravity, 
a mixture has been made in which the ice floats, its specific gravity, which 
equals that of ice, may now be found by means of a specific gravity bottle.^ 

According to Bunsen 1 gm. of ice at 0® occupies P0908 cm.^, and 
a gm. of water at the same temperature has a volume 1*0001 cm.3 
The expansion when a gm. of water freezes is therefore 0*0907 cm.^ 

Bunsen’s Ice Calorimeter.—^Bunsen has utilized this volume 
change in the construction of a very delicate calorimeter. A tube P 
(Fig. 39) is fused into the upper end of a wider tube Q, shaped as 
shown in the figure, and the space between them is filled with water 
from which the dissolved air has been removed by boiling. Mercury 
is then poured in until it rises to the top of the narrow tube at S. 
K is a capillary tube, graduated in c.cms., which is pushed through a 
rubber stopper at S until the mercury extends to near its middle 
point. A block of ice is next made to form round the bottom of the 

‘ Barton and Black, “ Practical Physics,” p. 34. 
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tube P, With this object the apparatus is placed in ice, but as 
the water is free from air it may be greatly supercooled before freezing 
begins. To start the freezing a little ether is placed in P and is 
caused to evaporate quickly by bubbling air through it. The 
evaporating liquid absorbs its 
latent heat of vaporisation from 
the water and so causes it to 
freeze; once begun this will con- q 

tinue for some hours. When 
sufficient ice has been formed, 
water cooled down to 0° is placed 
in P, and the hot body whose 
specific heat is required is dropped 
into it after noting the position 
of the mercury thread. It cools 
from T® to 0® and emits MsT 
calories of heat, thereby melting 
some ice. The volume of the 
water in Q is thus altered and —Bunsen’s Ice Calorimeter, 

the change is read off on the 
graduated tube R. Let v be the volume change, then the number 
of gms. of ice melted is, from the last paragraph, v/0*0907, and 
the heat it absorbs is 80t;/0*0907, since the latent heat is 80. 

Hence 

and 

M5T = 
SOv 

0 0907 
SOv 

00907MT 

Instead of bringing into the calculation the latent heat of ice, a 
quantity about which there is some uncertainty, the instrument may 
be standardised by pouring into the tube P a mass m gms. of water 
at a temperature The heat it emits in cooling to 0® is mt cals.; 
if this causes the mercury in R to move over n divisions then one 
division corresponds to an emission of m^/w cals., hence the heat 
emitted in any subsequent experiment is known from the movement 
of the mercury column. 

Solution. Freezing Mixtures.—When a solid substance is dis¬ 
solved in a liquid it absorbs its latent heat of fusion from the solvent, 
and, unless chemical actions occur, the temperature falls. To ensure 
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that this temperature change is entirely due to the act of solution 
the solid must be initially at the same temperature as the solvent. 

Experiment.—Place some powdered “ hypo ” in a test-tube and immerse 
it for 30 mins, in water contained in a calorimeter. The temperatures of solid 
and liquid should then be equal. Note the temperature of the water and pour 
the contents of the test-tube into the calorimeter ; the temperature falls. It is 
for this reason that the fixing solution used in photography should be made up 
some time before it is required for use, otherwise its temperature will be low and 

its action correspondingly slow. 

When snow and salt are mixed together they mutually dissolve 
each other, and, in accordance with what has just been said, a very 

This is the principle of freezing mixtures. 
After a fall of snow salt is frequently 
thrown on the pavements to make the 
snow melt; it produces the attendant 
discomforts of a slush whose temperature 
is below 0°. If 33 parts by weight of 
sodium chloride are mixed with 100 parts 
of ice a temperature as low as — 20® C, 
can be reached. 

Effect of Pressure on the Melting- 
Point.—Since ice contracts in volume 
when it melts we should perhaps expect 
that an increased. pressure, which renders 
a contraction more liable to take place, 
would cause it to melt more easily, or, in 
other words, would cause it to melt at a 
temperature below 0®. Similarly when a 

substance expands on melting it is possible that an increased pressure 
would raise the melting point. This, in fact, is what actually takes 
place. When a strong steel cylinder at 0® is filled with pieces of ice 
and these are subjected to great pressure they partially melt, if the 
pressure is then relieved the water freezes, since its temperature is 
0®, and the whole is found to have formed a solid block of ice. This 
effect of pressure is called regelation. The following experiment, 
due to Tyndall, may be explained in the same manner. Weights 
are hung over a block of ice by means of a copper wire in a room 
where the temperature is 0® (Fig. 40). Owing to the pressure under 
the wire ice melts, and the water which is formed escapes to the upper 
side of the copper, where, being relieved from the pressure, it freezes 

low temperature results. 

Fio. 40.—Tyndall’s Experi¬ 
ment on Kegelation. 
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again, giving out its latent heat. This heat, if transmitted through 
the wire, will assist the pressure in melting more ice ; the wire thus 
works its way through the block which nevertheless remains whole. 
If an iron wire is substituted for copper its rate of progress is slower 
owing to its being a worse conductor of heat (p. 119). It is due to 
regelation also that skating on ice is possible; the pressure of the 
steel edge causes ice to melt and so allows the skate to “ bite.** 
Similarly the lower portions of glaciers melt under the great pressure 
to which they are subjected. In the case of ice the lowering of the 
melting point is very small, about 0'(X)72° per atmosphere, hence it 
is unnecessary to allow for variations in the barometric height when 
the lower fixed point of a thermometer is being found. 

Boiling Point. Latent Heat of Vaporisation.—When liquid is 
heated in a beaker bubbles of air and vapour of the liquid are formed 
on the glass which finally rise to the surface and burst, causing a 
sound. The “ singing ** of a kettle is due to this. When a certain 
temperature is readied the supply of bubbles is very copious and the 
temperature remains steady; the liquid is then said to boil. If 
it has been previously freed from dissolved air its temperature 
may rise above the normal boiling point before it actually com¬ 
mences to boil, it is then said to be superheated; finally a bubble 
of air or vapour is formed and violently bursts. This “ bumping ** 
may be hindered if a supply of air bubbles is provided by putting 
into the liquid some broken pieces of earthenware. As the tempera¬ 
ture of a boiling liquid depends slightly on the vessel in which it is 
contained, the boiling point is determined by a thermometer whose 
bulb is placed in the vapour above the liquid. The latent heat of 
vaporisation is most easily determined by Berthelot’s apparatus 
(Fig. 41). The liquid is heated in a special form of flask through 
the bottom of which projects a glass tube open at both ends, this 
is connected by a ground joint to a glass bulb and spiral immersed 
in water in a calorimeter. The calorimeter and its contents are 
protected from heat coming from the gas burner by a wooden cover, 
and a stirrer and thermometer are passed through holes in the wood. 
When the liquid boils its vapour passes down the vertical tube and 
is condensed in the spiral, at the same time giving up its latent heat. 
The amount condensed may be found by weighing the spiral at the 
beginning and the end of the experiment. As the vapour passes 
down through the upper part of the tube any drops of liquid that it 
carries with it are vaporised, if this did not happen the particles 
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would not have to part with their latent heat to the calorimeter, and 
the final result obtained would be too low. Let M be the weight of 
liquid condensed, T° its boiling point, L its latent heat of vaporisa¬ 
tion, and s its specific heat. Let m be the total water equivalent of 

the calorimeter and its contents, in¬ 
cluding the spiral and stirrer, ti° its 
initial and <2° its final temperature. 

Then the heat given out by the 
vapour in condensing = ML cals, 

and the heat emitted by M gms. 
in cooling from T° to 

= Ms(T — t^) cals. 

Also the heat absorbed by the 
calorimeter and its contents 

= m(^2 — ^i) cals. 

Hence 

ML -j- M5(T — ^2) = ^(^2 — ^1) 

from which L can be found if the 
specific heat of the liquid and its 
boiling point are known. The latent 
heat of vaporisation of water is 539 
calories. This large latent heat is 
turned to a useful purpose in the 
heating of buildings by steam. Evi¬ 
dently much less material is required 
than if hot water alone were used. 

Experiment.—Drop a little ether on the hand and note that a cooling sensa¬ 
tion is experienced. The liquid is very volatile and evaporates very quickly; 
to do this it absorbs its latent heat of vaporisation. 

Joly*s Steam Calorimeter.—Prof. Joly in his steam calorimeter 
has worked out a very simple and accurate method of determining 
specific heats which depends on a knowledge of the latent heat of 
steam. A simple form of the calorimeter is shown in Fig. 42. It 
consists of a metal enclosure, called the steam chamber, into which 
a rapid supply of steam can be admitted through a wide tube near 
the top ; at the bottom of the chamber the exit tube is placed. A 
thin vertical wire passes through a small hole at the top and is 
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attached at its upper end to one arm of a balance. The body whose 
specific heat is required is placed on a small copper pan which hangs 
from the lower end of the wire in the middle of the chamber; a 
thin copper guard shields it from drops of condensed water which 
might otherwise fall on to it from the roof of the enclosure. The 
substance is allowed to hang in the calorimeter for some minutes 
and its temperature is then taken. 
Steam is now admitted through the 
wide tube and condenses on the 
body and pan ; after a few minutes 
the mass condensed is found from 
the increased weight of the pan and 
its contents. Let m be the mass 
of steam which condenses, mj and 
m2 the masses of the substance and 
the pan, Si and .^2 their specific 
heats, and L the latent heat of 
steam. The enclosure is finally at 
the temperature of the steam, 
hence the heat given out during 
condensation is mL, and the heats 
absorbed by the body and pan 
respectively are — h) and 
m2«2(^2 — ^i)- Therefore 

mJj = miSi{t2— ^i) + — <i) 

The specific heat can be 
calculated from this equation if S2 

is determined by a preliminary ex- ^2.—Joly’s Steam Calorimeter, 

periment. In practice it is found 
that steam condenses on the suspending wire where it leaves the 
steam chamber; surface tension then makes an accurate weighing 
impossible. To overcome this difficulty the wire is passed along the 
axis of a small spiral of platinum which is heated by passing an 
electric current through it; sufficient heat is thus developed to 
hinder condensation. When a liquid is to be experimented on it is 
enclosed in a small copper sphere. The most novel application of 
the apparatus was in the determination, for the first time, of the 
specific heats of gases at constant volume. For this purpose two 
equal copper spheres were hung from the opposite arms of the 

5 
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balance in the same steam chamber. One sphere contained the 
experimental gas while the other was exhausted; the difference in 
the weights of steam condensed was thus due to the contained gas. 
The specific heat of air at constant volume under a mean pressure 
of 19*5 atmospheres was found to be O’1721, hence from the table 
on p. 37 C„/C, = 1*4. 

EXAMPLES ON CHAFIER VII 

1. The open end of the capillary of a Bunsen calorimeter is placed under 
the surface of mercury. When 25 gms. of water at 15° are placed in the inner 
tube of the calorimeter it is found that 6*8 gms. of mercury are draw’n in. 
Assuming the density of mercury to be 13*6 and the latent heat of ice as 79, 
determine the density of ice. (L. ’86.) 

2. A calorimeter whose capacity for heat is 48 water-gms.-degrees has 
352 c.c. of water in it and the whole weighs 882 gms. Into this steam at atmo¬ 
spheric pressure is condensed till its temperature rises from 12*2° to 18*7°, and on 
weighing again the calorimeter w'cighs 886*2 gms. Calculate the latent heat of 

vaporisation of water. 

3. If a boiler receives 30,000 units of heat per min. through every square 
metre of its surface, the total surface being, say, 5 sq. m., and if its temperature 
be 140° while it is fed with condenser water at 45°, what weight of steam 
would you expect to be able to draw off regularly per hour ? The latent heat 
of vaporisation of water at 140° is 609, (L. ’91.) 

4. One hundred gms. of iron at 50° C. are placed in a vessel containing 1000 
gms. of water at 0°; how many gms. of ice at 0° must be added to reduce the 
temperature of the mixture to 0° ? All the ice is supposed to be melted. 
[Sp. ht. of iron =0113; lat. ht. of fusion of ice = 80.] (L. *96.) 

5. One gm. of metal heated to 100° is dropped into a Bunsen ice calorimeter 
in which the weight of mercury required to fill 1 cm. of the index tube has been 
found to be 0*026 gm. The thread of mercury moves through 62*5 mms. What 
is the mean specific heat of the metal ? One gm. of water in freezing expands 
0*0907 c.c. and its latent heat of fusion is 80*02. The density of mercury is 13*6. 
(L. *02.) 

6. A mass of 200 gms. of copper (sp. ht. 0*1) is hung in a closed chamber at 
a temperature of 60° F. Steam is then admitted at the normal atmospheric 
pressure. Calculate the mass of water condensed by the copper. [Lat. ht. of 
steam = 536.] (L. *03.) 

7. Steam at 100° is passed into a copper calorimeter, weighing 100 gras, 
and containing 500 gms. of water at 15°, until the temperature of the calorimeter 
and its contents rises to 25°. Calculate the weight of steam condensed, given 
the sp. ht. of copper = 0*1 and latent heat of steam = 536. (L. *06.) 
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8. If the latent heat of fusion of ice is 80 and its density at 0* is 0*917, find 
the travel of the mercury in the tube of a Bunsen^s ice calorimeter when 10 cals, 
are given to the ice, the diameter of the tube being 0*4 mm. (L. ’08.) 

9. The boiling point of a liquid is 156^ its mean specific heat is 0*46 and its 
latent heat is 68 gm. cals. Find the quantity of vapour at the boiling point 
that must bo passed into a copper vessel (sp. ht. 0*1) weighing 30 gms., which 
contains 250 gms. of the liquid at 15^ in order to raise the temperature of the 
Utter to 27®. (L.’09.) 



CHAPTER VIII 

VAPOUR PRESSURE. CHANGE OF STATE {coniinutd) 

Vapour Pressure.—A solid changes into liquid at one temperature 
only, the melting point, but a liquid can assume the form of vapour 
at any temperature. Thus a pool of water on the road dries up 
under the sun’s rays ; although the temperature is below the boiling 
point the water evaporates, i.c. is converted into vapour. 

Experiment.—Set up a barometer and introduce a small drop of alcohol 

at the lower end of the tube by means of a curved pipette ; the bubble of liquid 
rises up the column and is at once converted into vapour when it reaches the 
surface. The vapour exerts a pressure just as a small quantity of air would 

do and the mercury is depressed by an amount equal to the vapour pressure. 

If additional alcohol is introduced more vapour is formed and the height of the 
column is decreased still further, but at length a stage is reached when the 
added liquid floats on the surface and no further evaporation takes place. 

When a space contains the maximum amount of vapour it can 
hold under the given conditions of temperature the vapour is said 
to be saturated and the pressure it exerts is called the saturated or 
maximum vapour pressure. If less than this maximum amount is 
present the vapour is said to be unsaturated or superheated* The 
term “ vapour tension is sometimes used instead of vapour 
pressure.” 

Experiment.—Use barometer tubes of different diameters and lengths so 

that the volume occupied by the vapour is varied ; it will be found that while 
more liquid is evaporated in the larger tubes the maximum depression is the 
same in every case provided the temperature is constant. 

If diflerent liquids are used it will be found that the maximum 
pressure varies from one to another; also when the temperature is 
raised more liquid evaporates and the maximum vapour pressure is 
increased. These results show that to every liquid there corresponds 
a maximum vapour pressure varying with the nature of the 
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substance but otherwise depending on the temperature alone. When 
an unsaturated vapour is gradually cooled a point is reached where 
its pressure is equal to the maximum vapour pressure corresponding 
to that temperature ; tlie vaporr is then saturated and any further 
cooling is accompanied by partial condensation. _ 
Similarly if an unsaturated vapour is compressed at -- C 
constant temperature, as, for example, by pushing tip 
down the barometer tube containing it into a deep i 
cistern of mercury, a state of things is eventually 
arrived at where the vapour actually present is I: 
sufficient to saturate the space ; further compression | - 
then causes condensation but the vapour pressure | ’ 
remains constant, | : 

Vapour Density.—^Unsaturated vapours obey j: 
Boyle’s and Charles’ laws very approximately if i : 
the temperature is well above that at which con- |' 
densation would begin. This is best proved by 
measurements of the vapour density at different ^ 
pressures and temperatures. The method is to find ^ 
by experiment the mass of vapour in a c.cm.—this : 
is the density as usually defined ; the volume t; of : 
a gram of vapour can then be calculated under the : 
pressure and temperature prevailing in the experi- ; 
ment. It will be found, as in the case of gases, that i 

pv . . ^ 
— =s constant. One method of experiment is shown J 

. i 
in Fig. 43. A long barometer tube graduated in | 
c.cms. contains mercury and is surrounded by a A 

steam-jacket. A known weight of liquid enclosed in 
a small stoppered bottle is placed in the open end 
of the tube and rises to the top of the mercury yiq, 43.—Hoff, 

column where, owing to the diminished pressure and man’s Vapour 

the high temperature, the stopper is ejected and the p^.^^tu3. 

liquid forms an unsaturated vapour. The depression 
of the mercury column measures the vapour pressure ; this may 
be found at once by a cathetometer. The volume is read off from 
the graduations and the temperature is given by a thermometer in 
the steam-jacket, hence as the mass of the vapour is known, being 
equal to the liquid introduced, its density can be calculated. Using 
different amounts of the substance, and the vapours of different 
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boiling liquids in the steam-jacket, it can be proved that 7)r/T 
= const., where v is the volume of one gm. of vapour at a 
pressure p anil temperature (absolute) T. 

Similar experiments in which different substances are used 
at the same temperature, bring out further the important fact 
that the vapour density is proportional to the molecular weight of 
the substance used. This result is important from the chemical 

point of view as it enables molecular weights to be found from 
vapour density determinations. 

Isothermal Curves.—We can now show the general shape of an 
isothermal curve which gives the relation between the pressure and 
volume of a substance at a constant temperature. Starting with 
the vapour in the unsaturatcd state pv = const, until saturation is 
nearly reached-; this part of the curve is shown at AB (Fig. 44). 
When the volume is reduced to the amount represented by OM 
condensation begins and. the vapour pressure remains constant until 
all the vapour is converted to liquid. This part of the curve, shown 
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at BC, ia parallel to the axis of volume. At C all the substance has 
condensed, and, as the volume of a liquid varies very little with 
pressure, the remaining part CD of the curve is very nearly parallel 
to the pressure axis. Summarising these results we see that along 
AB the substance is wholly vapour, along 
BC liquid and vapour in contact, and along 
CD wholly liquid. 

Methods of measuring Maximum Vapour 
Pressure.—The methods used to measure 
the maximum vapour pressure vary with 
the temperature, a procedure which is useful 
at 20*^ may be inconvenient at 80°. The 
apparatus shown in Fig. 45 was used by 
Regnault to measure the vapour pressure of 
water below 0°. Bulb A, which contains 
the water, forms the upper part of a baro¬ 
meter tube; it is placed in a freezing 
mixture of calcium chloride and snow. The 
vapour pressure is the same at all points in 
this space and is equal to the maximum 
pressure corresponding to the temperature 
of the freezing mixture ; if it were higher 
than this condensation would take place 
in A. On the left is shown an ordinary 
barometer ; the difierence in heights of the 
two columns gives the vapour pressure in 
cms. of mercury. The vapour pressure of 
ice, which is quite appreciable, can be 
measured by this means. 

Fig. 46 shows Regnault’s apparatus for 
water between 0° and 50°. One vertical {_ 
tube forms a standard barometer, in the Fio. 45.—Regnault’s Ap- 

other a little water floats above the mercury. paratus for measuring 

ihe upper part of each tube is surrounded Water below 0®. 
by a water-bath which is kept well-stirred 
and can be heated from below. The difference in heights of the two 
columns is read by a scale, or, in Regnault’s experiments, by a 
cathetometer ; this gives the vapour pressure at the temperature of 
the bath in cms. of mercury. As the mercury is warm the pressure 
must be given in terms of the length of a mercury column at 0®; 
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the diflerence in level must therefore be divided by (1 + where c 

is the coefficient of cubical expansion of mercury (p. 50). It is diffi¬ 
cult to get accurate results by this method as a small amount of 
impurity in the tube may greatly affect the pressure ; in addition it is 
very difficult to ensure that the vapour is not mixed with air. For 
higher temperatures a different principle is used (see next paragraph). 

Vapour Pressure of a Liquid at its Boiling Point.—If a barometer 

Fig. 46,—^Regnault’s Apparatus for Pio. 47. 
Temperatures between 0® and 60®. 

containing a little water above the mercury is surrounded by a 
steam-jacket and heated it is found that, when the liquid boils, the 
mercury stands at the same level inside and outside the tube, t.e, the 
vapour pressure of water at its boiling point is equal to the external 
pressure of the atmosphere. The boiling point may thus be defined 
as the temperature at which the pressure of the vapour is equal to 
the external pressure on the liquid, 

£xPEitiMXNT.<>-The shorter closed limb of the U-tube shown in Fig. 47 
contains water in its upper part, the lower portion is filled with mercury which 
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reaches just beyond the bend. It is placed in the steam rising from water 
boiling in a wide-necked flask. When the water in the tube reaches its boiling 
point the mercury is depressed until it stands at the same level in each limb, 
showing that the pressure of the steam is equal to the atmospheric pressure. 

If the pressure on a water surface is sufficiently reduced the liquid 
will boil at temperatures much lower than 100*^. 

Expkrimint.—Boil water in a flask for some minutes until most of the air 
ia expelled; while boiling is still in progress close the flask tightly with a rubber 

Fio. 48.—Ramsay and Young’s Apparatus. 

stopper and remove the flame. After it has cooled for several minutes pour 
cold water on it; the vapour in the flask is condensed^ this reduces the pressure 
on the liquid and causes boiling to begin again quite vigorously. 

These experiments show that by varying the pressure the boiling 
point can be altered within wide limits, but in each case the vapour 
pressure is equal to the pressure on the surface of the liquid. Hence 
the maximum vapour pressure can be found by measuring the 
pressure under which the liquid boils. The best method for doing 
this is due to Ramsay and Young. A wide boiling tube, A, is tightly 
closed by a rubber stopper through which project the stem of a thistle 
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funnel and a thermometer (Fig. 48). The funnel contains the liquid 
to be experimented on and the lower end of its stem is drawn ofi to 
a fine point which is near the thermometer bulb. The latter is 
wrapped round with cotton wool or asbestos. In communication 
with A is a bottle B immersed in ice, a large bottle C and a mano¬ 
meter M; the tube F goes to an air or filter pump. A convenient 
pressure having been established by the pump tap D is closed. The 
bath surrounding the boiling tube is then heated to a temperature a 
few degrees higher than the boiling point of the liquid under the 
given pressure, and liquid is allowed to drip slowly on to the thermo¬ 
meter bulb. As a large surface is exposed boiling takes place 
quite regularly; when the thermometer reading is steady the 
temperature and pressure are read. This gives the vapour pressure 
at the temperature shown by the thermometer. By varying the 
pressure a series of measurements of the vapour tension at different 
temperatures can be found. The bottle B is for the purpose of 
condensing the vapour so that the liquid may be recovered, while C 
serves to lessen the pressure variations due to accidental causes such 
as a slight leakage of air into the apparatus. If the vapour pressure 
is greater than that of the atmosphere air must be compressed into 
the apparatus which should then be made correspondingly stronger. 
In this form it may be used for water above 100"'. This dynamical 
method is much more accurate and easier to work than the one 
given in the last paragraph which is usually called the statical 
method. 

Vapour Pressure of Salt Solutions.—The dynamical method as 
already described cannot be used to determine the vapour pressure 
of a salt solution because as the liquid boils off the concentration of 
the solution is altered. The statical method (p. 87) is, however, 
available, and another arrangement (p. 103) is also frequently used. 
If some salt solution is introduced into the space above a barometer 
column it is found to produce a smaller depression of the mercury 
than the pure liquid does at the same temperature, hence the 
vapour pressure of a solution is less than that of the pure solvent. 
It follows that at 100° the vapour pressure of an aqueous solution 
will not be equal to the atmospheric pressure and the liquid must be 
heated to a higher temperature to make it boil. This has already 
been noted on p. 22. As the vapour leaves the liquid it cools very 
quickly to 100°, hence to find the boiling point of a solution the 
thermometer bulb must be placed in the liquid itself and not in the 
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vapour. The vapour pressure of volatile liquids like ether and 
alcohol is mucli greater than that of water and becomes equal to the 
atmospheric pressure at temperatures below 100®. Such liquids 
have consequently a low boiling point, e.g, ether boils at 34*5° under 
normal pressure. 

Determination of Heights by the Hypsometer.—The pressure at a 
point in a barometer tube becomes less as the point in question is 
taken nearer the top of the mercury column. In the same way, 
during the ascent of a mountain, as the different layers of air are 
passed through and the limits of the atmosphere are more nearly 
approached the pressure becomes less and the length of the baro¬ 
metric column is reduced. The height of the mountain can be 
calculated if the barometric pressure at its summit is measured. 
Instead of using a barometer for the purpose the temperature at 
which water boils may be observed, and from a table of maximum 
vapour pressures the corresponding pressure of the atmosphere 
can be found. An instrument used for this purpose is called 
a hypsometer. At great altitudes the boiling point may be 
lowered to such an extent that it is impossible to cook food. 
An arrangement for boiling under increased pressure must then 
be employed. 

Dalton’s Law for Mixed Vapours.—Let us next investigate how 
the pressure of a saturated or unsaturated vapour is modified by the 
presence of a gas or other vapour with which it does not react chemi¬ 
cally. According to Dalton the total pressure produced by such a 
mixture is the sum of the pressures that each component would 
produce if it alone were present. This is usually known as Dalton’s 
law. It is only approximately true in most cases ; if it held in every 
instance it would be possible to produce a pressure as great as we 
pleased by introducing a suflBcient number of different components 
into the mixture. Regnault tested the law by means of apparatus 
similar to that in Fig. 46. 

Experiment.—Having set up a barometer in the usual manner introduce 
a email quantity of air. Suppose the column is depressed h cms. and let the 
total length of tube occupied by the air be L cms. Next add ether until the 
space above the mercury is saturated, and suppose the total depression is H cms. 
Then (H — h) does not measure the vapour pressure of the ether, for the air is 
now diffused through a larger volume and its pressure is therefore less than A. 
Call the new air pressure A'. Let U cms. of the tube be occupied by air and 
ether vapour and suppose the sectional area of the tube is S. The volumes ot 
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the air before and after admission of the ether are LS and US c.cms. respeotirely, 
and the corresponding pressures are h and h\ hence by Boyle’s law 

/I'L'S = ALS 
or h' = *L/L' 

giving the new pressure of the air. The pressure of the mixture being H cms, 

that of the ether is H — A' = H — Working in this manner it will be found 
Lt 

that the maximum vapour pressure of ether is the same as it would have been in 
the absence of air, thus proving Dalton’s law. 

An easier method of performing the experiment is indicated in 
Fig. 49. The'flask contains air and a small, closed, thin-walled bulb 
filled with ether. Having noted the air pressure on the manometer 
the flask is shaken to break the bulbi and after some minutes the 
new pressure is noted. The section of the manometer tube being 
small we may suppose the volume of the air constant, the increase 
in pressure is thus due to the ether alone ; this will be found equal 
to the maximum vapour pressure of the liquid at the temperature of 
the experiment, if some liquid ether still remains in the flask. 
It will be noticed that the ether evaporates much more slowly when 
another gas or vapour is present. 

Cooling produced by Evaporation.—During evaporation it is only 
the more rapidly moving molecules that escape from the liquid surface 
to form vapour. The average velocity of the remaining molecules 
is thus reduced, or, in other words, the liquid is cooled. This is 
merely another method of stating that the latent heat of vaporisa¬ 
tion is absorbed when a liquid evaporates. If the space above is 
crowded with air molecules it will be more diificult, owing to collisions, 
for molecules to escape from the liquid, this accounts for the 
relative slowness with which evaporation takes place in presence of 
a gas. The cooling produced by evaporation may be shown in 
various ways. 

Experiment.—Dip a thermometer in ether and note the temperature, if 
it is then removed the adherent film of liquid evaporates and the thermometer 
temperature falls. 

Experiment.—The bulb E (Fig. 50) contains ether and is connected with a 
second bulb N from which the air has been removed before sealing. When N 
is placed in ice ether vapour is condensed and more evaporates from the surface 
of the liquid in F, a cooling is thus produced which is readily shown if F is 
immersed in vessel A (Fig. 17) of the Looser thermoscope. If the bulb contains 
water instead of ether the fall in temperature may be sufficient to cause it to 
freeze. In the latter form the apparatus is called Wollaston’s cryophorus. 
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Experiment.—Pour a little water into a shallow depression in a wooden 
block and place on it a small copper vessel containing ether. If the ether is 
evaporated quickly by blowing a current of air through it the cooling produced 
may be great enough to freeze the water. 

In the case of ponds, lakes, elc., evaporation is continuously 
taking place from the surface, at least in the summer months. From 
what has been said in the preceding pages it will readily be seen 
that the conditions favourable to the process are: (1) A high tempera¬ 
ture; (2) Little vapour already present in the air; (3) The vapour must 
be removed by air currents as rapidly as it is formed; (4) A large 
surface. 

Condensation. Liquefaction of Gases.—Since an unsaturated 

Fia. 49,—Apparatus to prove 
Dalton’s Law. 

vapour becomes saturated if the temperature or volume is sufficiently 
reduced, any vapour may be made to condense into liquid by one or 
other of these processes or a combination of the two. Steam escaping 
from a jet is invisible near the orifice where it is purely vapour, but 
at a greater distance it becomes cooled and condenses into a large 
number of small particles of water which form a readily visible cloud. 
Not only vapours but gases also may be liquefied by great pressures 
if the temperature is low enough. Faraday liquefied a number of 
gases by such means in 1823. Chlorine may be taken as a typical 
example. Charcoal absorbs a large amount of chlorine gas; some 
charcoal saturated with chlorine is placed in one limb of a bent glass 
tube which is then closed at both ends and the other limb is sur¬ 
rounded by a freezing mixture. Gas is evolved by heating the 
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charcoal, and, when the pressure reaches about 2 atmospheres, it is 
condensed in liquid form in the cold limb. While experimenting 
with carbon dioxide Andrews found that unless it was cooled below 
30*9® C. it was impossible to liquefy it, no matter how great the 
pressure applied. This is called the critical temperature of carbon 
dioxide ; the pressure required to produce liquefaction at the critical 
temperature is called the critical pressure. The behaviour of carbon 
dioxide is typical of all gases. It is impossible to liquefy a gas unless 
it is first cooled below its critical temperature. This accounts for the 
difficulty in liquefying helium—a gas whose critical temperature is 
only a few degrees above the absolute zero. What we have hitherto 
regarded as vapours behave in a similar way; thus steam cannot 
be liquefied by any pressure, however large, if its temperature is above 
365® C. Except that the pressure necessary to liquefy it is larger 
there is thus no reason why we should regard carbon dioxide at 3U® 
as a gas and steam at 101® as a vapour, the pressure being one atmo¬ 
sphere in both cases. We may regard gases as merely unsaturated 
vapours far removed from the temperature of condensation. A test 
for distinguishing scientifically between a gas and a vapour is, however, 
provided by the critical temperature. A vapour may be defined as 
a gaseous substance which can be liquefied by pressure alone, t.c. a 
substance below its critical temperature. On the other hand a gas 
can be defined as a substance at a higher temperature than its critical 
temperature. 

Wroblewski’s apparatus for liquefying oxygen is shown dia- 
grammatically in Fig. 51. The gas was first compressed into a steel 
cylinder A to a pressure of 120 atmospheres. This cylinder com¬ 
municated through a metal capillary with a strong glass tube B which 
was surrounded by a wider tube C. To cool the gas below its critical 
temperature several steps were necessary. Liquid carbon dioxide 
was first obtained ; this was allowed to evaporate quickly and the 
cooling produced caused the remainder to solidify. Solid carbon 
dioxide was next mixed with ether and rapid evaporation reduced 
the temperature of the mixture to about —80°, which was low enough 
to liquefy ethylene gas. The liquid ethylene was stored in the 
reservoir D, from here it flowed through a copper spiral S immersed 
in solid carbon dioxide and ether into the tube C. Ethylene vapour 
was quickly pumped off through the small hole 0, the rapid evapora¬ 
tion causing the temperature to fall to — 150®C. or lower. At 
this temperature the oxygen in tube B was liquefied. A still lower 
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temperature can be produced if liquid oxygen is made to evaporate 
quickly. Such temperatures are measured either by a platinum or a 
hydrogen thermometer. 

Distillation.—A liquid which has been vaporised at one part of 
an apparatus may be condensed in another part, such a process is 
called distillation ; it is of great use in freeing a liquid from dissolved 
impurities either solid or liquid. For example, if an aqueous solution 

y 
Fra. 61.—Wroblewski’a Apparatus for Liquefying Gases. 

of salt is boiled the vapour consists of water only which can be con¬ 
densed in any suitable receiver. Pure water can be obtained from 
sea-water by this means. Similarly if a mixture of alcohol and 
water is distilled at a suitable temperature the first portions con¬ 
densed are relatively rich in the more volatile component alcohol. 
By repetitions of the process two liquids can be entirely separated 
if their boiling points are not too close together. 

EXAMPLES ON CHAPTER VIII 

1. A and B are two barometers. A has a little air above the mercury while 
B has a little air and a drop of water. The readings of the barometers happen 
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to be equal at the temperature of the room. Will they still be equal when the 

temperature is raised or lowered, and if not which will give the higher readings ? 

(L. *93.) 

2. A bubble of air is stuck on the side of a vessel in the interior of a mass of 

liquid. Show that its volume tends to become very great as the boiling point 

of the liquid is approached. 

3. Describe carefully the difference between evaporation and boiling. What 

effect has the presence of air above the liquid in each case T Why does ether 

boil at a lower temperature than water 1 (L. *97.) 

4. A barometer tube dipping into a mercury reservoir contains a mixture 

of air and saturated vapour above a column of mercury which is 70 cms. above 

the tube in the reservoir, the atmospheric pressure being 76 cms. What is the 

height of the mercury column when the tube is depressed so as to reduce the 

volume occupied by the air to half its original value, the pressure of the saturated 

vapour being 1*6 cms. ? (L. *08.) 

5. A quantity of air saturated with aqueous vapour occupies a volume of 

120 c.cs. at 18® under a pressure of 74 cms.; the pressure is increased to 150 cms., 

the temperature remaining constant, and the volume is found to bo halved. 

Find the vapour pressure. 



CHAPTER IX 

HYGROMETRY 

Relative Humidity.—In popular language we frequently speak of 
the atmosphere as dry or moist, but it is easy to see that our sensa¬ 
tions may lead us into error concerning its physical state. Thus on 
a summer morning when there is a slight mist and dew we say the 
air is moist, while later in the day we call it dry, in spite of the fact 
that it then contains more water vapour owing to the evaporation 
of the particles of dew. We are evidently influenced in our judg¬ 
ment by the fact that in the early hours the air is saturated with 
moisture, but later, owing to the rise in temperature, it is far removed 
from this condition. To be accurate we must compare the masses 
of water vapour contained by a given volume of air at the two 
different times. The ratio of the mass of water vapour in a given 
volume of air to the mass required to saturate it at the same tempera¬ 
ture is called its relative humidity. This is usually expressed as a 
percentage ; thus if a certain volume contains 1 gm. of the vapour, 
while the amount it would contain if it were saturated is 8 gms., the 
relative humidity is 1/8 X 100 = 12*5 per cent. Instruments used to 
determine this ratio are called hygrometers. 

The Chemical Hygrometer.—The relative humidity can be found 
directly by the chemical hygrometer (Fig. 52). The U-tubes are 
filled with dry calcium chloride, weighed, and connected to an 
aspirator, which is merely a large bottle full of water with holes 
closed by stoppers at the top and bottom. When the water is run 
out air is drawn over the chloride into the bottle; as it passes 
through the tubes its moisture is abstracted by the drying agent and 
the amount m absorbed is found by reweighing the tubes. The 
experiment is then repeated, but the air is made to bubble through 
water at the temperature of the room, so as to become saturated 
before it reaches the drying tubes. A further weighing gives the 
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amount of moisture m' in tlie saturated air; the relative humidity 
is 100 7nlm\ This apparatus is little used, for, although it is capable 
of very accurate results, the simpler methods given below provide 
an accuracy which is sufficient for most purposes and require much 
less time and trouble. 

The Dew-point.—Since unsaturated vapours obey Boylc/s law 
very approximately the vapour pressure of the moisture in the 
atmosphere will be proportional to the amount present. If this 
holds up to the saturation point the ratio m/m' of the last para¬ 
graph can be found by first measuring the pressure / of the 
vapour in the air, and then, from Regnauit’s results (p. 88), finding 
the maximum vapour pressure F at the same temperature; then 

m/m' Experiments with the chemical hygrometer show 
that this relation holds with sufficient accuracy for determinations 
of the relative humidity. When damp air is cooled a temperature 
is reached at which the moisture it contains is sufficient to pro¬ 
duce saturation; any further cooling causes the water vapour 
to be condensed on surrounding objects in the form of dew. The 
temperature at which this occurs is called the dew-point. The 
following considerations show that by determining the dew-point 
we can find the pressure / of the vapour in the air. Let a 
quantity of air in communication with the rest of the atmosphere 
be cooled; gas and vapour contract according to the same law, 
and as the joint pressure is equal to that of the atmosphere the 
pressure of each is unchanged. Hence the vapour pressure at 
the dew-point is the same as in the original uncooled air. But 
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the vapour pressure at the dew-point is known from Regnault’s 
tables, since it is the maximum vapour pressure at that temperature, 
hence f can be found. 

Example.—The temperature of the air is 16® and the dew-point is 8®; find 
the relative humidity. 

From Tables we find that the maximum vapour pressures at these 
temperatures are 13*51 mms. and 7*99 mms. respectively; hence the relative 
, . . 7*99 X 100 , 
humidity is * = 59*1 per cent. 

13*ol 

Three types of dew-point instrument are described below. 

Danieirs Hygrometer.—This is very similar in principle to the 
cryophorus. The two communicating bulbs (Fig. 53) contain ether 

and have been exhausted of air before being sealed. To find the 
dew-point all the ether is run into one bulb, A, which contains a 
thermometer, the second bulb is wrapped in muslin and a little ether 
is poured on it. The rapid evaporation from the wet material cools 
the bulb and the ether vapour inside it is condensed. As in the 
cryophorus, this results in a rapid distillation of ether from the 
other bulb and its temperature falls to the dew-point. In order that 
the deposit of moisture may be seen easily a bright band of metal is 
wrapped round the glass. The temperature at which dew begins to 
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form is read by the enclosed thermometer, the apparatus is then 
allowed to heat up and the temperature at which the film moisture 
disappears is also noted. If the two do not differ by more than a 
fraction of a degree their mean is taken as the dew-point. The 
original air temperature is given by a second thermometer on the 
stand of the instrument. From 

Fio. 64.—Regnauit’e Hygrometer. 

these observations the relative 
humidity can be found as in 
the example given. A Daniell’s 
hygrometer is incapable of 
giving accurate results for (1) 
The enclosed thermometer gives 
the temperature at the middle 
of the liquid while evaporation 
takes place at the surface; (2) 
Since glass is a bad conductor of 
heat (Chap. XI.) the tempera¬ 
tures inside and outside the bulb 
may differ appreciably; (3) The 
ether that evaporates from the 
muslin may influence the dew¬ 
point; (4) Unless the bulb is 
observed through a telescope 
water vapour may be deposited 
from the observer’s breath; (5) 
The rate of cooling cannot be 
controlled. These chances of 
error are largely removed in 
the two instruments described 
below. 

Regnault’s Hygrometer.—The lower end of a test-tube, A (Fig. 54), 
is replaced by a thin silver cap in which is placed some ether sur¬ 
rounding the bulb of a thermometer. A piece of quill tubing passes 
through a cork at the upper end and extends nearly to the bottom 
of the tube. A side tube is connected with an aspirator placed at a 
distance. When water is run out a current of air is drawm through the 
ether in the direction of the arrows ; this serves the double purpose 
of causing a fall of temperature through rapid evaporation, and at 
the same time keeps the liquid well stirred. Bubbling is continued 
until dew is deposited on the silver; the temperature is then noted 
and the air current stopped. As the temperature rises again the 
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thermometer is read at the moment when the dew disappears. The 
observations are made through a telescope, and, in order that the 
film of moisture may be more easily detected, a second tube, B, is 
provided similar to the first, so that the two silver surfaces may be 
compared. A thermometer in the second tube gives the temperature 
of the air. As silver is a good conductor of heat the temperature of 
the ether is very little different from that of the outer surface of the 
cap. An additional advantage of the instrument lies in the ease 
with which the rate of cooling can be controlled by regulating the 
outflow of water from the aspirator. 

Dines’ Hygrometer.—This is a very simple and eflicient form of 
apparatus; a section is shown in Fig. 55. The reservoir A com¬ 

municates through a tube with a shallow chamber B which has an 
upper and lower compartment. Into the upper division the bulb 
of a thermometer projects, and the chamber is closed above either by 
a thin piece of black glass or silvered mica on which the deposit of 
dew may easily be seen. To make an observation the reservoir is 
filled with a mixture of ice and water and the cold liquid is allowed 
to flow below the thermometer chamber until dew appears, the 
temperature is then taken. The flow is stopped at once and the 
temperature is observed at which the dew disappears. The rate of 
cooling can be regulated by the tap. In some forms a second 
reservoir is provided from which tap water is allowed to flow past 
the thermometer when the disappearance of the dew is being 
observed. 

Wet and Dry Bulb Hygrometer.—For many purposes the dew-point 
can be obtained with sufficient accuracy by means of a wet and dry 

bulb hygrometer. This consists of two ttermometers (Fig. 56), 
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round the bulb of one is loosely wrapped some muslin or cotton wool 
which dips into a small vessel of water placed immediately below; 
the second thermometer gives the temperature of the air. Owing to 
evaporation from the large surface exposed by the muslin the 
temperature of the wet bulb is lower than that of the other 

thermometer. It is easily seen that this 
temperature difierence is connected with the 
humidity of the atmosphere, for if the air is 
dry evaporation will be rapid and the differ¬ 
ence of temperature will be large; when no 
evaporation takes place the two thermometers 
will read alike. By comparison with one of 
the instruments described above a table may 
be constructed from which the dew-point 
can be found when the temperatures of the 
two thermometers are known.^ 

Weight of a given Volume of Moist Air.— 
Since a body apparently loses weight when 
immersed in a fluid it will weigh more in 
vacuo than in air. In very accurate work 
all weighings must be reduced to vacuo; to 
do this we must calculate the weight of air 
displaced. Experiments with Hoffmann’s 

_ _ apparatus show that the density of water 
Fio. 66._Wet and Dry vapour is 0*62 that of dry air at the same 

Bulb Hygrometer. temperature and pressure, and the weight of 
a litre of dry air at N.T.P. is known to 

be 1*293 gms. Suppose the vapour pressure obtained from dew¬ 
point observations is/ cms., the height of the barometer is H cms., 
the temperature C., and that we require the weight of V litres of 
this moist air. The pressure of the air alone is (H — /), hence its 
weight is (see Ex. p. 70) 

mi = 1-293V X 
273 

273+ f 

(H-/) 
76 ” 

gms. 

Also the pressure of the vapour is/, hence its weight alone is 

•»= = 062Xl-293V.^,./gm.. 

1 See also Barton and Black, “ Practical Physics,” pp, 72-76, 
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The weight of V litres of moist air is (mi + m2), if therefore the 
volume of a body is known the mass of air it displaces can be calcu¬ 
lated and its weight in vacuo found. 

Vapour Pressure of Solutions.—The principle of the chemical 

hygrometer is used in measuring the vapour pressure of solutions. 

The experiment is conducted in the manner described on p. 98. A 

certain volume of air is bubbled through pure water and the vapour 

it contains is absorbed by calcium chloride and 

weighed. An equal volume is next passed through 

the solution, which is at the same temperature 

as the water, and tlie mass of vapour found as 

before. From p. 98 these masses are propor¬ 

tional to the vapour pressures, and as this 

quantity is known for water that of the solution 

can be calculated. 

Formation of Cloud and Fog.—When the 
temperature of a moisture-laden atmosphere is 
sufficiently reduced the aqueous vapour it contains 
>8 condensed into small droplets of water forming 
a mist or fog. If the drops are at a high 
altitude they form clouds. The necessary cooling 
may be caused by the air expanding as it gradually 
rises to the upper layers of the atmosphere ; it 
is found also that dust particles make it easier 
for a fog to form. 

Experiment.—Replace one of the bulbs of a Looser thermoscope (p. 31) by 
the glass vessel shown in Fig. 67. The inner tube is connected to the thermo¬ 
scope and the outer vessel to a bicycle pump. Pump in air, the compression 
raises the temperature and the index moves. Close the connection to the pump 
by a pinch-cock; the pump is now removed and the compressed air allowed 
to attain a steady temperature, when this is reached open the cock quickly, 
the gas expands and the temperature falls. 

Experiment.—Shake a litre flask containing a little water so as to saturate 
the air. Pass through the rubber stopper two glass tubes, one connected with 
a bicycle pump the other closed with a pinch-cock. Compress the air with two 
strokes of the pump, then, after waiting a few seconds, allow it to expand suddenly 
by opening the cock. The air is cooled and a fog is formed. If a tube about 
a foot long tightly plugged with wet cotton wool is introduced betw^een the 
pump and flask, so as to remove dust particles from the air which enters, the 
fog is largely reduced. On the other hand it is much denser if some smoke 
from burning paper is first introduced. It is doubtless due to this effect of dust 
particles that fogs are so common in large towns, 
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EXAMPLES ON CHAFPER IX 

1. One hundred c.cs. of oxygen, saturated with water, are collected at a 
pressure of 740 mm. and a temperature 15®. Find the volume of dry oxygen 

at 0® and 760 mm. pressure, having given that the maximum vapour pressure 

of aqueous vapour at 15® is 12-7 mm. (L. ’87.) 

2. Find the weight of 10 litres of laboratory air from the following data : 

Temperature 15°, pressure of the aqueous vapour present = 8 mm., height of 

the barometer 770 mm., density of dry air at 0® and 760 mm. ~ 1*293 gms, per 

litre, density of aqueous vapour is 0*6 of the density of air under similar 

oonditions. 



CHAPTER X 

FIRST LAW OF THERMODYNAMICS. MECHANICAL EQUIVALENT 

OF HEAT 

In the preceding pages we Lave frequently supposed that there is 
some connection between the heat contained by a mass of gas and 
the kinetic energy of its molecules. It has also been found necessary 
in the case of an expanding gas to assume some relation between 
heat and work to account for the difference between the specific heat 
at constant pressure and that at constant volume (p. 35). It will 
be shown in this chapter that heat is a form of energy and that 
other forms of energy may be converted into heat. 

Units.—In the centimetre-gram-second (C.G.S.) system of units 
the unit of force is the dyne ; it is that force which, acting on 1 gm. 
for 1 sec., gives to it a velocity of 1 cm. a second. In the English 
system the unit is that force which, acting for 1 sec., imparts to 
1 lb, of matter a velocity of 1 ft. per second ; it is called the poundal. 
When a force F moves a body through a distance 8, measured parallel 
to the direction in which the force acts, Fs units of work are expended. 
If F is in dynes and s in cms. the work is given in ergs ; when F is in 
poundals and s in feet the work is expressed in foot-poundals. The 
weight of 1 lb. is sometimes used as the unit of force. It is shown 
in books on mechanics that 1 lb. = ^ poundals, where g is the accelera¬ 
tion due to gravity. W^hen a force of 1 lb. moves its point of applica¬ 
tion through 1 ft. in a direction parallel to the force 1 ft.-lb. of work 
is done. Work is expended against the force when the motion is in 
the opposite direction to that in which the force acts. Thus if a 
flywheel of radius R cms. is forced round in opposition to a frictional 
force of F dynes applied to its rim, during each revolution a point on 
the rim is moved through a distance 2wR cms., and the work done is 
F. 27rR ergs. Let two equal and opposite forces F be applied to the 
ends of a lever of length d and at right-angles to it. During a 

6 
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revolution each force docs 27r. -. F units of work, and the whole 

work done by the couple is Fd. 27r, i.e. it is equal to the product of 
the moment of the couple and the angle in radians through which 
the arm is turned. 

The calorie has already been defined, but another unit of heat is 
sometimes used : it is the amount of heat required to raise 1 lb. of 
water through 1°, either Fahr. or Centigrade; this is called the 
lb.'degree unit. 

Experiments showing that Heat Is a Form of Energy.—Numerous 
experiments show that heat may be generated by the expenditure 
of work. Thus a hundred years ago Davy showed that two blocks 
of ice could be melted by rubbing them together, the heat generated 
by moving them against the frictional forces was sufi&cient to cause 
melting. Similarly Count Eumford observed that during the process 
of boring a cannon from a solid block of metal sufficient heat was 
generated to boil a large quantity of water. The amount of heat 
gained was conditioned entirely by the amount of work expended in 
driving the drill. The method used by some savage tribes to light 
a fire is a parallel case, a blunt wooden point is caused to rotate 
rapidly in a shallow hole cut in a block of wood, enough heat is 
thus produced to kindle a flame. A block of metal is appreciably 
warmed by hammering, and the lower end of a bicycle pump is 
heated on account of the work expended in compressing the air. 

Expxrimekt.—Compress the air in the experiment with a Looser’s thermo* 
scope, p. 103; notice that its temperature rises. This is an instance of a 
nearly adiabatic compression (p. 113). 

Mechanical Equivalent of Heat.—The first experiments to show 
the numerical relation between the work done and the heat produced 
are due to Joule; the object was to expend a known amount of 
work in the production of heat and to measure the heat developed. 
The results showed that no matter how the work was done, the ratio 
of work done to the heat generated was constant. This is the first 
law of thermodynamics. In symbols, if W is the work expended in 
the production of H units of heat then W/H = J, or W = HJ, where 
J is a constant called the mechanical equivalent of heat. Modern 
experiments show that J = 4'18 X 10^ if W is measured in ergs 
and H in calories. The equation therefore tells us that to generate 
one calorie (H= 1)418 X 10^ ergs of work must be done. 
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Joule’s Experiments*—In these experiments work was expended 
in churning water contained in a calorimeter and the resulting 
temperature rise 0 was measured. If M was the total water equiva¬ 
lent in grams of the calorimeter and its contents the heat generated 
was Md calories. The apparatus shown in Fig. 58 was used to 
measure the work expended. The water was churned by a paddle 
carrying a number of vanes, these passed between a system of fixed 
vanes attached to the walls of the calorimeter (see figure below). 
To prevent conduction of heat from the vessel as its temperature 

Fig. 58.—Joule’s first Apparatus foi determining the Mechanical Equivalent. 

rose, the metal axis of the paddle was interrupted at B by a boxwood 
cylinder. A flexible cord passed round the wooden drum C and its 
ends were wound on to two large pulleys supported on friction 
wheels. The pulleys carried equal weights, which were supported by 
strings wound round the axles, their height from the ground could 
be read off vertical scales. When the weights were allowed to fall 
they made the pulleys revolve and the paddle was put in motion. 
The pin D was then quickly removed, when the weights could be 
wound up again by a handle without turning the paddle. The fall 
experiment was repeated a large number of times and the tempera¬ 
ture of the water was read at frequent intervals. Let m be the mass 



108 HEAT 

in grams of each of the weights, h the height in cms. through which 
they fell, then their joint potential energy in their highest position 
was 2mg}i ergs. If all this was expended in churning the water the 
total work done in n falls was W = 2nmgh ergs, hence 

W _ 2nmqh , . 
= J = - ergs per calorie. 

H Mo 

To obtain an accurate result several corrections must be applied 
of which the following are the chief:— 

(1) As the calorimeter is at a higher temperature than its sur¬ 
roundings it will lose heat by radiation and conduction during the 
half-hour or so that the experiment lasts. The observed rise in 
temperature will therefore be too small. The necessary correction 
can be found by noting the rate of cooling at the beginning and end 
of the other observations. Conduction losses are reduced by standing 
the vessel on a badly conducting base. 

(2) The weights are moving with a velocity o cms./sec. when 
they reach the ground, and each has kinetic energy ergs ; this 
must be subtracted from their original potential energy to get the 
work done in turning the pulleys and paddle. Hence the work done 
in n falls is 2n{mgh — As it was found that the weights moved 
with a uniform velocity before they reached the ground, v could be 
observed by noting the time taken to move over a measured distance 
near the end of their path. 

(3) A certain amoimt of work is spent in overcoming friction in 
the moving parts outside the calorimeter. To determine the frictional 
force the drum C was disconnected from the paddle at D and the cord 
from the puUeys was passed round it in such a manner that when 
one weight fell it caused the other to rise. A mass gms. was 
placed on one weight to make it fall, this additional mass being so 
chosen that the motion was uniform. The frictional resistance was 
therefore dynes and the total work done against it was nh . 
ergs. Hence the total work expended in churning the water was 

{2n(mgh •— — nm-^gh] ergs. 

Actually Joule took as the unit of work the ft.-lb. and for the 
heat unit the quantity of heat required to change the temperature 
of 1 lb. of water by 1® Fahr. With these units J was found to be 
772, In other experiments he used an iron paddle to stir mercury 
in an iron vessel; he also measured the work spent in compressing 
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air into a reservoir immersed in a calorimeter. The value found 
for the mechanical equivalent was practically the same in every 
case. 

Rowland’s Experiments.—Considering the small rise of tempera¬ 
ture obtained, which was about half a degree, Joule’s results are 
surprisingly consistent, but the most accurate experiments by the 
method of churning water are those of Prof. Rowland. In these 
the temperature rose at the rate of 0 5® per minute. The calorimeter 
and stirrer were similar to Joule’s except that the paddle projected 
through the base and was turned by a steam engine (Fig. 59). The 

top of the calorimeter was fastened to a circular wooden disc which 
hung from the end of a thin wire. When the paddle turned the 
friction of the water tended to move the calorimeter in the same 
direction, but its motion was prevented by passing a string round 
the disc and hanging equal weights from the ends. If d is the 
diameter of the disc and m the mass of one weight, the moment of 
the couple which stops the motion is mgd» Now the water exerts 
equal and opposite couples on the calorimeter and. the paddle, hence 
the moment against which the latter is forced round mg .d^ and 
the work done in one revolution is 2tt . mgd (p. 106). The work 
expended during n revolutions is therefore known, and as the heat 
developed can be measured, J can be found as before. The radiation 
losses are relatively much smaller than in Joule’s experiments. 
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A Laboratory Method of determining the Mechanical Equivalent.-- 
A simple apparatus can be used for this purpose. An outer brass 
cone, A, shown in section in Fig. 60, is fixed in ebonite to the base of 
a brass cylinder and is held in position by a ring of ebonite near the 
top (this substance is a bad conductor). A second brass cone, B, 
fits smoothly in the first and is attached at its upper end to a circular 
wooden disc of diameter i. The inner cone contains a known mass 
of water, a stirrer, and thermometer. By means of an endless band 
going to a small motor the outer cone is rapidly rotated; the friction 

Fio. 60.—Laboratory Method of finding the Mechanical Equivalent. 

between the two tends to make the inner cone follow in the same 
direction, but this is prevented by a weight of m gms. fastened to a 
string passing round the wooden disc. By suitably adjusting the 
speed and the weight the latter can be kept floating in the air, and 
as the couples on the cones are equal and opposite the motion of the 
inner cone is opposed by a couple whose moment is . d, and the 
work done in n revolutions is mgd. 27rn ergs. Knowing the total 
water equivalent of the two cones and their contents, the heat 
developed by the friction in n revolutions can readily be found and 
J calculated. 
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Work done by a Gas expanding against a Uniform Pressure.—Let 
a quantity of gas be confined in a cylinder which is closed by a light 
piston of area S, and suppose the gas to expand, pushing the piston 
out a distance x cms. against the atmospheric pressure of p dynes. 
The increase in volume of the gas is xS cms.^ Also the total external 
pressure on the piston is pS dynes, and the work done during the 
expansion is pS. x ergs (force X displacement); i.e. the work = p. 8v, 
where Sv is the increase in volume. Let us make use of this result 
to calculate the work done against the atmospheric pressure when 
a gram of water at 100*^ is converted into steam. If the barometer 
stands at 76 cms. it is known that the increase of volume is 1690 
cms,* approximately, and this expansion takes place against the 
atmospheric pressure. The density of mercury being 13*6, the 
atmospheric pressure in dynes/cm.* is 13*6 X 76 X 980= 1,013,000, 
hence the work done = 1,013,000 X 1690 ergs. The equivalent of 

this m calories, taking J = 42 X 10®, is ---—-= 40*7 cals. 
^ 42 X 10® 

This accounts for part of the latent heat of vaporisation, the re¬ 
mainder is spent in pulling the molecules of water apart against 
their mutual attraction. 

Calculation of J from the Two Specific Heats of Air.—Let a gram of 
air at a pressure pi dynes and absolute temperature TJ occupy 
I’l cms.*. To raise its temperature V requires cals, if the volume 
is kept constant, being the specific heat at constant volume. On 
the other hand, if the pressure is constant the gas expands to a new 
volume V2, and work equal to Pi(v2 — Vi) ergs is done on account of 
this expansion; an amount of heat Cj, cals, must be supplied in 
this case, Cp being the specific heat at constant pressure. The 
difference (Cp — C^) cals, is used to provide the work done in 
expanding; multiplying by J to bring this to ergs we have two 
expressions for the work done, and these must be equal, hence 

«i) = J(C,—c.) 

But from the gas equation (p. 69) 

PiVi = RT, and piV^ = RfT, -j-1) 

hence Pi{vz — c,) = R and J(C,, — C,) = R 

But R = PiUi/T, = po^(,/273, where po, Vq, are the pressure and volume 
of 1 gm. of air at 0° C. or 273° absolute. From measurements of the 
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density of air it is known that 1 cm.^ at N.T.P. weighs 0 00129 grms., 
hence the volume of 1 gm. under these conditions is ^ 1/0*00129 
cms.* = Vq, Also = 1,013,000 dynes, 

. T> __ 1>013,000 
^ 273 X 0'00129 

Now Cp = 0-2375 cals, and = 0-169 cals. ; substituting these 
three values in the equation R = J(Cp — C^) we get J == 42*0 X 10® 

In making this calculation we have assumed that all the work 
done by the gas in expanding is spent against the external pressure. 

It is, however, possible that some 
work is done in pulling the molecules 
apart against their mutual attractions, 
just as work has to be done when a 
weight is raised from the ground 
against the attraction of the earth. 
Joule was the first to show that this 
efiect was negligible ; his apparatus is 
shown in Fig. 61. A metal reservoir, 
A, was filled with dry air at a pressure 
of 22 atmospheres; another reservoir, 
B, was exhausted and joined to the 
first through a tube furnished with 
a stop-cock. The two were placed in 
a calorimeter containing water and 
when the temperature had become 
steady the stop-cock was opened. 

No work was done against the external pressure since B was 
exhausted, but if the molecules exercised an appreciable attraction 
on each other work would be spent in increasing their distance 
apart. This internal work would use up some of the heat energy of 
the gas and the temperature would fall. As it was found that the 
temperature did not change appreciably Joule concluded that no 
internal work was done; the calculation just given is therefore 
justifiable. Later experiments by Joule and Thomson, in which a 
more delicate method was used, have shown that this conclusion 
is not strictly true. These experiments we shall not attempt to 
describe. 

Other Methods of finding J. Conservation of Energy.—Several 
methods other than those already given have been used to determine 

Fio. 61.—Joule’s Apparatus to 
•how that the luternal 
Work done by an Expand¬ 
ing Gas is Zero. 
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the mechanical equivalent. Thus when an electric current passes 
along a wire heat is generated, the energy in ergs can be measured 
electrically, and hence J can be found; this method is described on 
p. 406. The nett result of all such experiments is to show that 
energy in all its forms, chemical, mechanical, potential, or electrical, 
may be converted into heat, and to generate one calorie requires the 
expenditure of 4*18 X 10^ ergs. We may regard heat as a kind of 
common denominator to which all other forms of energy can be 
reduced. Also experiment shows that the various forms of energy 
are interchangeable; thus the potential energy of water at the top 
of the Zambesi Falls is convertible into the kinetic energy of a water 
turbine, and this is made to drive a djmamo which generates electrical 
energy; the chemical potential energy in coal is transformed into 
mechanical energy in the steam engine and so on. In all cases, as 
far as experiment goes, it is found that no energy is lost, it merely 
changes its form. This statement is called the law of conservation 
of energy; it is one of the most important discoveries of modern 
science. 

Isothermal and Adiabatic Changes.—Any variation in the state of 
a system which takes place at constant temperature is called an 
isothermal change. The fusion of a solid at its melting point and the 
vaporisation of a liquid at its boiling point are instances of such* 
Similarly Boyle’s law gives us the isothermal relation between the 
pressure and volume of a perfect gas. An adiabatic change is one 
that takes place without heat entering or leaving the system in 
question. Thus the expansion of a gas as in the experiment on p. 103 
is an adiabatic expansion because it takes place so quickly that heat 
cannot flow into the gas from the surroundings while the change in 
volume is proceeding. As work is done in this expansion and no 
heat is supplied, a portion of the heat energy of the gas is converted 
into work and the temperature falls. The converse happens when 
air is suddenly compressed in a bicycle pump, work is done on the 
gas and, as no heat leaves it, its energy is increased ; this appears as 
a rise in temperature. It can be shown that if the pressure and 
volume of a gas are changed adiabatically from pi, Vi to p2» ^2» 
respectively, these quantities are connected by the equation 

s=: p2V2^i where y = Cp/C^, the ratio of the specific heats. This 
is the adiabatic relation corresponding to the isothermal one given 
by the Boyle’s law equation. We shall meet with adiabatic changes 
in the section on sound. 

6 
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Example.—A quantity of air at 76 cme. pressure is suddenly compressed 
to half its volume, calculate the new pressure. 

Here Vj/v, = 2 and y = 1*4. 

Pi = Pi(^y = 70 (2)‘-* 

log Pt = log 76 -f- 1*4 log 2 

From a table of logarithms we find log pi = 2*3022 and p, == 200*5 cms. 
Had the compression taken place iso thermally the final pressure would have 

been 152 cms.; we sec then that the resistance to an adiabatic change is greater 
than it is to one which takes place at constant temperature. 

EXAMPLES ON CHAPTER X 
1. An engine consumes 40 lbs. of coal of such calorific power that the heat 

developed by the combustion of 1 lb. is capable of converting 16 lbs. of water 
at 100“ into steam at the same temperature, and during the process the engine 
performs 16 X 10* ft.-lbs. of work. What percentage of the heat produced is 
wasted ? [Lat. ht. of steam = 536.] (L. *81.) 

2. Describe Joule’s method of determining the mechanical equivalent of 
heat from the expansion of compressed air. Explain what happens when air 
is allowed to expand into a vacuum. (L. *82.) 

3. Distinguish between the specific heat of air at constant pressure and at 
constant volume, and show how to determine the latter when the former, together 
with the mechanical equivalent of heat, are known. (L. *83.) 

4. One gm. of air is heated under constant pressure from 0“ to 10“, determine 
the work in ergs and in gms.-ems. due to the expansion. [Coefficient of 
expansion = 1/273, 1 c.c. of air at N.T.P. = 0*001293 gms., 1 c,c. of mercury at 
0“ = 13-596 gm., g = 981 cm. secs. (L, *84.) 

5. When temperatures are expressed on the Centigrade scale the latent heat 
of fusion of ice is represented by 80, and the mechanical equivalent of heat by 
423-9 (metre-gms.). Express the same quantities on the Fahr. scale and explain 
why one is represented by a larger and the other by a smaller number. (L. *85.) 

6. Water oozes slowly from under a pressure of 20 atmospheres and is coL 
lected in a vessel. How much hotter is this water than it was inside ? (L. *90.) 

7. A quantity of damp air under pressure is suddenly allowed to expand. 
Describe what happens, and show what has become of the energy of the com¬ 
pressed air. (L. *91.) 

8. A lb. of coal in burning can raise 8000 lbs. of water 1^ Used in an engine 
the coal supplies 1,400,000 ft.-lbs. of work per lb. burnt. What fraction of the 
heat is transformed to work ? [Mech. equiv. = 1400 ft.-lbs.-deg. Cent.] (L. *04.) 

9. Water at 15“ C. and 1000 atmospheres pressure is passed through a porous 
plug and escapes at 1 atmosphere pressure. Calculate the temperature of the 
escaping water, given 1 atmosphere » 10* dynes per cm.*, and the mechanical 
equivalent of heat » 4*2 X 10^ erga 
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PROPAGATION OF HEAT. CONDUCTION AND CONVECTION 

Conduction, Convection, Radiation.—Heat travels from one point 
to another by three processes named respectively (1) Conduction, 
(2) Convection, (3) Radiation. As a typical instance of the first 
we may take the case of an iron bar heated at one end. According 
to the kinetic theory of matter the molecules of a substance are 
supposed to be oscillating to and fro, the motion becoming more 
vigorous as the temperature rises. Owing to collisions the molecules 
at the hot end share their energy with their slower moving neighbours, 
these in turn carry energy to the next layer, and so a rise of tempera¬ 
ture travels down the bar, although the molecules themselves do not 
move from their mean positions. In the process of convection the 
heated particles wander through the substance carrying their heat 
with them, and by frequent collisions the rise in temperature is 
diffused throughout the whole mass. Convection currents can 
occur only in liquids and gases. 

Expeuiment.—Fill a largo beaker with cold water and drop down the 
middle of it a single crystal of potassium permanganate. Heat the beaker 

immediately under the crystal by a small flame, convection currents can be 

clearly seen rising up the central portions and returning by the colder sides. 

Experiment.—Make a complete rectangle out of glass quill-tubing, fill it 

with water and drop in a crystal of potassium permanganate. Hold it with 

its plane vertical and gently heat one side ; a convection current rises from the 

heated part and travels round the tube. 

In each of these processes heat is propagated through the inter¬ 
vention of particles of matter; in the third process, radiation, it 
travels through space from which all matter is removed. For 
example, at a height of a few hundred miles the density of the atmo¬ 
sphere must be practically nil, yet heat reaches us from the sun 
through millions of miles of this vacuous space. It is known that the 
particles of a hot body emit certain waves which carry off its heat 
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energy ; when these fall on matter part of the energy they carry is 
absorbed causing the molecules of the cold body to oscillate more 
vigorously, t.e. the temperature rises. As we cannot conceive waves 
travelling through empty space it is supposed that the universe is 
filled with some medium called the ether ; concerning the properties 
of this medium, beyond its capacity for transmitting waves, we know 
very little. It is known that the distance between successive waves, 
the wave-length as it is called, is very small, only a fraction of a mm, 
(see Chap. XXIII. for an exact definition of wave-length). The efiects 
produced by the waves are dependent on the wave-length, the longer 
ones produce heating efiects, others produce the sensation of light 
when they fall on the retina of the eye, while the shortest are chiefly 
notable for the chemical changes they promote. Heat propagated 
in this manner is sometimes called radiant heat,’* but the term is 
not a good one, for the energy does not appear as heat except when 
the waves fall on matter ; in addition light waves produce heat, and 
the only difierence between the two is in their wave-length. A 
better term is radiant energy, or merely radiation. Owing to the 
similarities just mentioned the study of radiation will be deferred 
for the most part until we come to the section on light. 

Expebiment.—Cover the bulb of a thermometer with soot by holding it 
near a smoky flame. Place it at the centre of a small glass flask olosed by a 
rubber stopper, and pump out as far as possible all the air. No matter how far 
the exhaustion is pushed the thermometer rises in temperature when held near 
a hot body, showing that radiation can travel across from the flask walls 
without the aid of matter. 

Examples of Heat Conduction.—Silver, copper, and metals generally 
are good conductors of heat; powders, liquids, and gases are poor 
conductors. Thus on a frosty morning a metal door-knob feels 
colder than the wood because it rapidly conducts heat away from 
the hand, but if the door is exposed to a hot sun the metal part feels 
hotter than the wood because it conducts more heat to the body. 
If a piece of thin paper is wrapped round a brass rod it may be held 
in a flame for a few seconds without being scorched ; if the brass is 
replaced by wood it is scorched at once because the latter substance 
does not conduct heat away with sufficient rapidity. A sphere of 
solder can be melted in a small paper bag and water can be boiled 
in a similar receptacle; in the last instance the heat is carried away 
by convection currents. It is owing to bad conduction that a lighted 
match can be held in the hand and glass tube worked in a blow-pipe 
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flame ; for the same reason the lower end of a lighted candle is not 
melted. 

Exfsrimekt.—Replace the bulbp of a Looser thermoscope (Fig. 17) by 
flat-bottomed flasks with the flat parts uppermost. On one flask place a disc 
of copper, on the other an equal disc of iron. When a flask of boiling water 
is placed on each the thermoscope shows that the most heat passes through 
the copper. If a disc is replaced by a shallow, hollow vessel filled with water 
very little heat passes through ; liquids are very bad conductors. This is 
strikingly shown by the next experiment. 

Experiment.—Attach a small lump of ice to a sinker and drop it to the 
bottom of a test-tube nearly filled with water. The tube may now be held 
in an inclined position and heated near its upper end until the water boils, but 
sufficient heat is not conducted downwards to melt the ice. If the tube had 
been heated from below convection currents would have equalised the tem¬ 
perature throughout the mass. 

Gases also are bad conductors ; woollen clothing is warmer than 
cotton largely because of the air it entangles, convection currents 
are set up with diflSculty among the fibres of the material, hence heat 
cannot get through except by conduction. The feathers of birds 
and down quilts owe their efficacy to a similar cause. 

Experiment.—LeidenJrosVs phenomenon. Heat a clean sheet of metal to 
redness and let a few drops of water fall on it. They run to and fro over the 
surface like mercury on clean glass, but do not boil away furiously as we might 
expect. At the first contact with the plate a cushion of vapour is formed which 
prevents heat reaching the liquid except by conduction through this layer or 
by radiation. With care it is possible to pass a beam of light between the 
liquid and the plate. Remove the flame; as the plate cools the cushion of 
vapour becomes unable to support the drop, contact with the plate follows and 
the liquid boils away rapidly. Owing to the bad conduction of a layer of 
vapour it is possible to lift a piece of red-hot coal with the fingers without 
injury provided the hand is first thoroughly wetted. 

Experiment.—Lower a piece of fine copper gauze into a Bunsen flame; 
the flame appears to bo pushed down and does not get to the upper side of 
the gauze unless it is very hot. 

Experiment.—Fix the gauze in position a couple of inches above the top 
of the burner before the tap is turned on. If the gas is now lighted above the 
gauze the flame is unable to penetrate below. 

In order that gas may be ignited it must be raised to a certain 
minimum temperature, but the metal conducts heat away so rapidly 
that this temperature is not reached above the gauze in the one 
experiment or below it in the other. This principle is applied in 
the Davy lamp used by miners. It sometimes happens that mines 
contain an explosive mixture of gases, if these came in contact 
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with a naked flame an explosion would follow. To hinder this the 
flame is entirely surrounded by a mantle of copper gauze, then, owing 
to conduction, the temperature outside never becomes high enough 
to ignite the mixture except in extreme cases. 

Instances of Heat Convection.—When a building is heated by hot 
water a boiler is placed in the basement and pipes slightly inclined 
to the horizontal go from this to a cistern in the top storey. The 
hot water in the boiler has a smaller density than that in the pipes, 
it therefore rises, carrying heat with it. As it passes through the 
various rooms its heat is radiated from the surfaces of the pipes, and 
by the time it reaches the cistern it is cool. From here it sinks 
through vertical pipes to the boiler again and a continuous circula¬ 
tion is thus brought about by convection. The draught of a chimney 
is due to convection currents of hot air. On a hot summer’s day 
land near the sea is at a higher temperature than the water, owing 
to the larger specific heat of the latter. An upward current of hot 
air is produced over the land which is replaced by a colder one coming 
off tlie sea, thus causing a sea-breeze. In the evening the land cools 
more quickly and the conditions are reversed ; the prevailing breeze 
is then from land to sea. Joule’s apparatus (p. 55) depends for its 
action on convection currents. 

Temperature at any Point in a Bar.—When a cylindrical bar is 
heated at one end some time elapses, it may be several hours, before 
the temperature at every point becomes steady. Let us consider 
what conditions influence the temperature of a small slice of the bar 
not far away from the hot end before and after this steady state is 
established. If the substance is a good conductor much heat will 
travel to the slice ; of this a part flows away across the colder end, 
a further amount is lost by radiation from the curved surface, and 
part is retained, in the earlier stages, to raise its temperature. The 
change in temperature will be great in proportion as the thermal 
capacity (mass X specific heat) is small. After some time the tem¬ 
perature becomes steady at every point. When this state is reached 
thermal capacity has no further influence, the heat a slice receives at 
its hot end now either flows away by conduction or is lost to the 
surroundings from the curved surface. The latter losses are said to 
be due to surface emission. If we have two equal bars of copper 
and iron for which we may regard the surface losses as negligible, 
the ratio of the temperatures at two corresponding sections will 
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depend partly on the conducting powers and partly on the thermal 
capacities until the steady state is reached; afterwards it will depend 
on conduction alone, the better the conductor the higher the tempera¬ 
ture. If heat is lost from the surface the temperature will be reduced 
at every point because there is less heat to be transmitted. 

Experiment,—Take equal wires of copper and bismuth, coat them with 
paraffin wax and put one end of each in a Bunsen flame. The wax melts more 
quickly along the bismuth in the early stages, but in the end more is melted 
on the copper. The latter metal is therefore the better conductor, but the 
small thermal capacity of bismuth more than compensates for this while the 
temperature is rising. It can be shown that the ratio of the thermal con¬ 
ductivities, as defined in the next paragraph, is equal to the ratio of the squares 
of the lengths along which the wax is melted. 

These remarks show that in comparing conducting powers we 
must heat the bars long enough for the steady state to be reached, 
otherwise the results depend on the thermal capacity. It simplifies 
matters also if the surface emission can be neglected. Now, if a thick 
bar is split up into two others of half the section more surface is 
exposed, hence the surface losses are of less importance in thick bars. 

Thermal Conductivity. Searle’s Apparatus.—We must now define 
more exactly the conducting power, or, as it will be called in future, 
the thermal conductivity of a substance. Consider a plate of the 
substance of thickness I cms., whose opposite faces are kept at 
temperatures dj and ^2- H^at will flow from the hotter to the 
colder side, and if we consider an area S some distance away from 
the edges the lines of flow will be perpendicular to the faces. The 
quantity of heat that flows across this area in t seconds can be shown 
to be— 

(1) Proportional to the area S. 
(2) Proportional to the time t. 
(3) Proportional to the difference of temperature (6i — ^2) 

between the faces. 
(4) Inversely proportional to the thickness /. 
If we denote the quantity of heat in calories by Q, 

then Q cjc S . t 

or Q = ~ ^^(cal8. 

where £ is a constant called the thermal conductivity of the material 
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The physical meaning of h is easily seen ; for if the plate is of unit 
thickness and the difference of temperature between its faces is 1®, 
the heat flowing across an area of 1 sq. cm. in a second is 

Q = A;. X 1 j cals. 

The thermal conductivity is therefore the quantity of heat that flows 
in 1 second through 1 sq. cm. of a plate of unit thickness when there 

Fio. 62.—Scarle’e Apparatus for measuring Thermal Conductivity, 

is 1® difference of temperature between its faces. The quantity 
{di — O^jl is called the temperature gradient; it shows by how much 
the temperature falls when we pass over a distance of 1 cm. in the 
direction in which the heat is flowing. Thus if a plate is 5 cms. 
thick and the temperature difference between its faces is 20®, for 
every cm. we pass into the plate the temperature falls 4®. 

Fig. 62 shows an apparatus due to Searle by means of which we 
may prove that the flow of heat is proportional to the temperature 
gradient and then measure the conductivity by using the equation 
given above. A thick metal bar projects at one end into a steam 
chamber A where it is heated. The fartlier end, B, is wrapped 
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round with several turns of thin copper tubing through which a steady 
stream of cold water flows. The bar is thickly lagged with felt so 
that the surfaces losses can be neglected. When the steady state is 
reached all the heat which enters at the hot end flows along the bar, 
and running into the water at B raises its temperature as it passes 
tlirough the copper tubes. Let m gms. of water flow through the 
tubes per second, be its temperature at entrance, and 0^ at exit, 
then the heat absorbed by it in this time is m[0^ — ^3) cals.; this is 
the quantity of heat Q that passes any point of the bar in one second. 
As the necessary temperatures can be measured by the thermometers 
shown in the figure, Q is determined. At C and D two thick copper 
pieces are let in, they are bored to carry thermometers whose bulbs 
reach to the level of the bar. Let the temperatures at C and D be 
01 and 02 respectively, and let CD be I cms. These quantities are 
easily found, hence we know also the temperature gradient (0i—6o)IV 
By using different vapours, or steam at difierent pressures, to heal 
the bar we can readily prove that Q oc (0i — d^jl when the steady 
state is reached. If, in addition, we measure the section of the bar, 
the conductivity can be calculated from the equation already given. 

Measurements of the conductivity of liquids and gases are com¬ 
plicated by the presence of convection currents; these can be 
eliminated, at least in part, by applying heat to the substance at 
its upper boundary. The details of such experiments are too com¬ 
plicated to be included in an elementary book. 

It might be supposed that the conductivity of a solid could be 
determined by some such means as the following: Make a calori¬ 
meter with the substance in question forming the base of the vessel, 
and fill it with cold water. Blow steam at the base for some minutes ; 
from the rate at which the temperature rises inside the calorimeter 
the amount of heat flowing through in one second can be calculated 
if the weight of the contained water is known. As the temperatures 
above and below can be measured, also the thickness and area of the 
base, the conductivity can be calculated. Experiments of this type 
only give good results in the case of poor conductors owing to the 
difficulty of finding the exact temperature of the faces. The follow¬ 
ing modification can be used to find the conductivity of a thin glass 
tube. 

Experiment.—AB is the tube in question (Fig. 63). Its thickness d and 
its external and internal radii arc found. Let R be the mean of the two radii. 
The tube is connected to a vessel of water in which the head is kept constant, 
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it is further surrounded by a steam jacket C. Water enters at the end A at 
a temperature and leaves at B at a temperature If m is the mass in 
gms. that flows through in 1 sec. the number of calories that pass through the 
walls from the steam to the water is — By). The temperature of the 
external wall is, say, 100®, the mean temperature inside is {Bi + ^®®ce the 

temperature gradient is---The mean area through which the 

heat flows is 27rK. h where {is the length in the steam-jacket. Hence substituting 
in the formula on p. 119 we have 

- Oi) ■■ 

All the quantities in this equation are known except k. In order that all the 

water may bo brought into contact with the heated wall a bent piece of wire 
is fixed along the axis of AB ; this throws the liquid into eddies and keeps it 
well mixed. 

EXAMPLES ON CHAPTER XI 

1. Define conductivity for heat and show how the fundamental units of 
length, mass, and time enter into its numerical specification. Taking the 
conductivity of iron as 0*17 C.G.S. units, what diflerence of temperature would 
exist between the surfaces of an iron wall, 3 cms. thick, through every square 
metre of which heat is streaming, from a furnace on one side to boiling water 
on the other, at the rate of 30,000 GLG.S. units per minute T (L. *01.) 

2. Radiation has long been falling on a slab with a blackened surface, each 
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iq. decimetre of which absorbs 10,000 ergs per second; and the energy is 
transmitted to a back surface, 0*5 cm. distant, where it is removed by water. 
What steady difference of temperature must exist between the two surfaces 
of the slab if its conductivity is 0*02 C.O.S. units ? (L. ’92.) 

3. A metal vessel, 1 sq. metre in area, and whoso sides are 0’5 cm. thick, 
is filled with melting ice, and is kept surrounded by water at 100®. How much 
ice will be melted in an hour ? The conductivity of the metal is 0*02 and the 
latent heat of fusion of ice is 80. (L. ’95.) 

4. Suppose 10 cms. of ice to have already formed on a pond, and that the 
air is at ~5®. How long approximately will it take for the next mm. to form T 
(Conductivity of ice = 0 005, latent heat = 80.] (L. ’04.) 



CHAPTER XII 

PROPAGATION OF HEAT. RADIATION 

Instruments used.—It has been seen that when radiation falls on 
a body part of it is absorbed, causing a rise in temperature. Any 
apparatus whose condition is appreciably changed by the reception 
of a small quantity of heat can therefore be used as a detector of 
radiation. No substance is known which absorbs all the radiation 
which falls upon it, but lamp-black, or soot, absorbs more than 90 per 
cent., and, what is more important, it absorbs all radiations equally 
no matter what their source. A differential air thermometer with 
one bulb covered with lamp-black was used as a detector by the 
early experimenters, but it is now superseded by electrical methods. 
The principles on which these are based will not be fully understood 
without some knowledge of electricity, but it may be briefly stated 
that when two dissimilar metal rods are joined together at their ends 
and one junction is heated, an electrical current flows through them. 
This can be measured by a galvanometer. A set of such antimony- 
bismuth junctions are covered with lamp-black and arranged so 
that the eiffects of the separate junctions are added, such an arrange¬ 
ment is called a thermopile. It is usually placed inside a metal cone 
to screen it from all radiations except those coming in a definite 
direction, when these fall on the junctions they are heated and a 
current passes through the galvanometer (see Chap. XL.). Another 
detector consists of a thin strip of platinum covered with lamp-black. 
When its temperature rises, owing to incident radiation, its electrical 
resistance is increased ; this is measured by suitable means such as 
a Wheatstone’s bridge (p. 382). An apparatus of this type is called 
a bolometer. 

Emissive Power.—^The rate at which a body loses heat by radia¬ 
tion may depend (1) On the nature of the surface; (2) On the 
temperatures of the body and of its surroundings; (3) On the 
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material of which the body is composed. When radiation coming 
through air falls on a surface some of the waves may merely be 
turned back or reflected ; this is especially the case when the surface 
is bright. A good reflector is therefore a bad absorber. But re¬ 
flexion takes place equally when the waves are travelling from the 
interior of the substance towards the air; hence, if the surface is a 
good reflector, most of the heat is returned to the interior. Thus 
good reflectors emit very little radiation. 

Example.—A bright kettle takes longer to heat but retains its heat better 

than a black one. 

A substance which absorbs all the radiation which falls upon it 
is called a perfectly black body. Practically we may treat lamp¬ 
black as such. The ratio of the quantity of radiation emitted per sec. 

Fiq. 64.—Apparatus for the Comparison of Emissive Powers. 

by a cm.2 of a surface to the quantity emitted by a cm.2 of a perfectly 
black body under equal conditions is called the emissive power of 
the surface. Emissive powers can be compared by the method of 
la Provostaye and Desains. A metal cube, L (Fig. 64), usually 
called a Leslie’s cube, is filled with boiling water or other liquid and 
its vertical faces are covered with the substances to be compared. 
About 50 cms. away is a thermopile T (the galvanometer used with 
this is not shown), and between this and the cube is a double metal 
screen MM', The sides of the screen facing the cube and thermopile 
are covered with lamp-black while the inner faces are bright. If 
the left face of M were bright it would be possible for radiation 
falling on it to be reflected back to the cube and from thence to the 
thermopile ; the bright face behind hinders direct radiation from M 
to the thermopile, while M' acts as an additional check to this and 
also prevents the reflection of radiation coming from the right. 
The emissive powers are proportional to the currents produced. It 
is found that a lamp-black surface is the best radiator, but bright 
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metal surfaces emit very little radiation; the relative emissive 
powers vary also with the temperature of the source L. 

Newton’s Law of Cooling.—Next let us investigate how the tem¬ 
perature of a body and its surroundings influences the rate at which 
heat is emitted. Unless the body is placed in a vacuum part of the 
heat losses will arise from conduction and convection through the 

surrounding air, but these are less im¬ 
portant if the radiation losses are large. 
This is arranged for by covering the 
radiating surface with lamp-black. 

Experiment.—Take a small, thin-walled, 
calorimeter which can be closed with a metal 
lid provided with holes for a stirrer and ther¬ 
mometer ; cover it with lamp-black by holding 
it in a smoky flame, then fill with water at a 
temperature about 50°. Hang it in a double- 
walled vessel (Fig. 65), the space between the 
double walls being filled with water in which a 
thermometer is placed. (Instead of this we may 
put a heavy weight in a calorimeter and sink 
it in a large beaker of water.) Keep the warm 
water well stirred and note its temperature 
every half-minute. Plot a curve showing the 
difference of temperature between the inner 

nm A ^ 4. and outer vessels at different times. From 

\ewton’» Cooling! temperature during 
any minute, i.e. the rate of cooling, and also 
the temperature at the middle of each minute. 

Tabulate these results and plot a new curve showing rate of cooling and the excess 
of temperature of the hot water over that of its surroundings. This wnll be 
found to be a straight line if the temperature excess is not more than a few 
degrees, hence within these limits the rate of cooling of a body is proportional 
to its excess of temperature over that of its surroundings. This is called 
Newton’s law of cooling although Newton’s experiments were carried out 
under very different conditions. 

For large temperature difierences the law does not hold, as the 
curve shows. It holds sufBciently well, even when convection 
currents are present, to enable us to calculate the radiation losses 
from the vessels used in calorimetry; in these cases the excess of 
temperature is usually small. Within the limits in which Newton’s 
law is true the rate of cooling is independent of the actual tem¬ 
peratures of the hot body and its surroundings, it depends 
only on the difference of temperature between the two. Thus 
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the rate of cooling when the small calorimeter is at 60® and the 
outer vessel at 45® is the same as if the respective temperatures 
were 20® and 16®. 

Effect of the Nature of the Liquid on the Rate of Cooling.—If the 
small calorimeter of the last experiment is filled with turpentine 
instead of water it is found that the rate of cooling is faster although 
the blackened surface has remained unaltered. The results take a 
very simple form if instead of comparing the rates of cooling we 
compare the amounts of heat lost. To make the comparison the 
specific heat of turpentine must be known. Suppose with water in 
the calorimeter it takes ti seconds for the temperature to fall from 
25® to 20®. If m is the mass of the calorimeter, s its specific heat, 
and 7ni the mass of water contained, the heat lost is b(mx + ms) cals., 
and the heat lost per second is 5(mi + Repeat the experiment 
through the same interval of temperature when the water is replaced 
by turpentine. Let be the mass of turpentine, ^2 specific 
heat, and the time required. Then the heat lost per second is 
6(m2.92 + '^)lh ^3.1s. It will be found that the heal lost per second is 
the same in each case, hence 

mi -f ms m^s^ + 

If the surface is unaltered the heat lost per second Is Independent 
of the nature of the liquid. 

Specific Heat from the Rate of Cooling.—The principle just given 
can be used to find the specific heat of a liquid. Using the appara¬ 
tus shown in Fig, 65 the time taken to cool from, say, 35® to 30° is 
observed, first with water in the small calorimeter, next when it 
contains an equal volume of the liquid. (Equality of volume ensures 
that the cooling surfaces will be equal in the two experiments.) The 
specific heat is calculated from the equation just given, where m^ 
and 52 refer to the liquid. Regnault found that the method was 
useless for powders or solid bodies. The reason for this is obvious ; 
the rate of cooling depends on the rapidity with which heat is con¬ 
ducted from the interior to the surface, t.e. upon the thermal con¬ 
ductivity. For liquids it is very convenient, especially when but a 
small quantity of the substance is available; thermal conductivity 
does not enter in this case since the liquid is well stirred. In order 
that the surface may not be altered it is well to heat the liquids to 
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a suitable temperature in a beaker before placing them in the 
calorimeter. 

ExPEBiMBNT.-:-tCompare the emissive powers of bright and black surfaces 
by noting the rate of cooling of a bright calorimeter containing water, then 
smoke its surface and observe the rate of cooling over the same temperature 
interval as before. The emissive powers are inversely proportional to the 
times of cooling. 

Experiment.—Calculate the heat emitted in 1 sec, from a sq, cm. of surface 
when its mean temperature is 25°. The time taken for the calorimeter in the last 
experiment to cool from 27° to 23° is found, the heat emitted per sec. is then 
i{mi 4* ms)lti cals. This must be divided by the area of the calorimeter surface. 
The heat emitted in 1 sec. per cm.* when the body is 1° hotter than its sur¬ 
roundings is sometimes called the surface emissivity. Calculate this for the 
calorimeter surface. 

Absorption of Radiation.—Let a quantity of energy equal to 
Q ergs fall on a surface in a second and let Q' be the amount ab¬ 
sorbed ; the ratio Q'/Q is called the absorptive power, or coefiheient 
of absorption, of the surface. It is difficult to measure absorptive 
powers directly, but they may easily be compared by a method due 
to la Provostaye and Desains. A thermometer bulb coated with 
one of the substances in question is placed in a closed box and the 
radiation allowed to fall on it through a suitable lens. The tempera¬ 
ture rises until the heat lost by radiation is equal to that gained by 
absorption; let the steady temperature be A cooling curve is 
now plotted for the thermometer starting at a temperature slightly 
higher than ; from this we can determine as on p. 126 the rate of 
cooling when the mean temperature is ti°j let it be per second. 
Then if M is the thermal capacity of the bulb the heat lost per second 
is M^i, But if Q is the radiation falling on it per second when 
exposed to the source and A^ the absorbing power, the heat absorbed 
in a second is AiQ, hence 

AiQ = M0i 

Similarly for a second substance exposed to the same source 

hence 
A2 62 

The results show that substances with large emissive powers 
have also large absorptive powers. By means of Ritchie's apparatus 
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it may in fact be proved that the emissive power of a surface, as 
defined on p. 125, is equal to its absorptive power. The bulbs of a 
differential air thermometer are formed from cylindrical metal boxes 
(Fig. 66), the surface P is covered with lamp-black, T is made of 
bright metal. A box containing hot water is placed between and 
equidistant from them. If the surface R is bright but S is lamp- 
blacked it is found that there is no movement of the index when 
the box is placed in position. 
If Q is the heat emitted from 
8 and A the absorptive power 
of T, then the heat absorbed 
by the right-hand bulb is AQ. 
Also if E is the emissive power 
of R the heat it emits is Q' 
where, from the definition of 
emissive power (p. 125), Q'/Q 
= E or Q' = EQ. Tlie whole 
of this is absorbed by P, 
hence, as the index docs not 
move, EQ = AQ or E = A. 

Prevost’s Theory of Ex¬ 
changes. Stefan’s Law.—Tlie 
experiments described in the 
last paragraph show that a Fio. 66.—Ritchie’s Apparatus, 
thermometer has a steady 
temperature when its losses arising from emission are just balanced 
by the radiation it absorbs from surrounding bodies. According to 
Prevost’s tlieory of exchanges this is true for every case of tempera¬ 
ture equilibrium. When a hot body is brought near a thermometer 
each is emitting radiation, and the temperature of the thermometer 
rises because it receives more than it loses. Similarly when a block 
of ice is brought near, the temperature of the thermometer falls 
because it does not gain as much radiation from the ice as it sends 
to it. Stefan has shown that the amount of radiation emitted by a 
body is proportional to the fourth power of its absolute temperature. 
For a perfectly black body this law has been proved to hold over a 
very wide range. Taking the case of a black body at an absolute tem¬ 
perature Ti placed in an enclosure whose walls, also black, are at an 
absolute temperature T2, the heat the body loses by radiation in a 

given time is cTJ, where c is a constant depending on the nature of 
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the surface. During the same time it gains radiation from the walls 

equal to cTo ; the rate of cooling is therefore = c(TJ — T2). If 

is much greater than T2 this is practically equal to cTj. Suppose, 
on the other hand, Ti and T2 are nearly equal so that Tj = T2 + 
wliere t is very small compared with either. The rate of cooling 

is then 

c[(T2 +1)^ — T2] 

But + = + 

= T2( 1 + 4 . “ -f terms containing higherpowers of ^ ^ 

by the binomial theorem. 
As ^/T2 is small these higher powers may be neglected, and the 

rate of cooling is 

cT^(l + 4,j‘j-cT2 = 4c<T2 

This shows that the rate of cooling is proportional to the tempera¬ 
ture excess t in accordance with Newton’s law. The calculation 
shows clearly that Newton’s law of cooling can hold only when the 
temperature of the hot body is slightly above that of its surroundings. 
To calculate the rate of cooling in other cases Stefan’s law must be 
used. 

EXAMPLES ON CHAPTER XII 

1. In what respects does radiant heat differ from light ? Why are rock 
salt lenses employed for experiments with radiant heat coming from a source 
at a low temperature, while glass lenses suffice when the sun or an electric lamp 
is employed as a source of heat ? (L. ’80.) 

2. How are the radiating and absorbing powers of a surface connected T 
Describe experiments to verify the connection. (L. ’88.) 

3. A piece of ice is placed in front of a thermopile and the needle of its 
galvanometer is seen to move. Describe as fully as you can aU that is going 
on. (L. ’90.) 

4. How do you account for the fact that on a frosty night it is often colder 
at the bottom of a valley than on the neighbouring hill sides 7 (L. ’02.) 

5. How would you show that a large amount of the energy radiated by a 
gas flame consists of non-luminous heat rays, and how would you measure the 
percentage stopped by a sheet of glass T (L. ’09.) 



CHAPTER XIII 

RECTILINEAR PROPAGATION OF LI3HT 

The TOrd “ light is used in two senses ; we speak of the sensation 
of light, and the same term is used to denote the physical cause of 
this sensation. It is in the second sense that the word is used in the 
following pages. 

Geometrical and Physical Optics.—Light may be studied from two 
points of view; in the first method certain simple laws are first estab¬ 
lished by experiment, and from them by mathematical and physical 
reasoning we proceed to deduce other, probably more complicated, 
results. From this standpoint we are not concerned with the 
physical nature of light, nor with the reason why the fundamental 
laws are obeyed: this branch of the subject is called Geometrical 
Optics. In the second method an attempt is made to go further and 
to form some hypothesis as to the nature of light; from this certain 
consequences are deduced which can again be subjected to the test 
of experiment. This is the province of Physical Optics. The two 
methods cannot be kept separate without falling into error. In the 
following pages light is studied by the first, or geometrical, method, 
but it is advantageous to assume one of the chief results of the 
physical optical theory, viz. that light consists of extremely short 
waves. Any substance through which light travels is called a 
medium; this term also includes the non-material ether which is 
supposed to fill all space (p. 116). Bodies which emit light are called 
self-luminous bodies. They are known to contain certain particles 
which vibrate rapidly to and fro, thus setting up disturbances in 
surrounding media which, for want of a better name, are called waves. 
The distance which a wave travels while the particle makes one 
complete vibration is called the wave-length. These wave-lengths 
are extremely small; if they lie between 4 X 10 ^ and 8 X 10 ^ cms. 
the waves produce the sensation of sight when they enter the eye. 
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Other waves of longer and shorter wave-length are also given out 
which do not produce this sensation; as the laws governing their 
propagation are the same as for light waves they may conveniently 
be studied together. 

The three laws on which the study of Geometrical Optics is based 
are— 

(1) The rectilinear propagation of light, i.e. the fact that light 
travels in straight lines. 

(2) The laws of reflexion. 
(3) The laws of refraction. 

Rectilinear Propagation of Light.—Some of our commonest notions 
are based on the assumption that light travels in straight lines. 
Thus in sighting a gun we point it in the direction in which the light 
reaches us from the object mark, and we assume that the moon is 
actually situated in the direction in which it is seen. 

Expbbiment.—Place three pieces of cardboard in vertical poBitions behind 
each other and 6 ins. apart. Make a small hole in each and arrange these 
in the same straight line by threading the cards on a knitting needle. If 
a lamp is placed behind the first hole light travels through each of the others 
and may be received on a screen placed behind the last. If one screen is 
slightly displaced sideways light no longer gets through. 

In a darkened room which has a small hole in the shutter the 
path of the light is shown by particles of dust floating about; it is 
seen to be a straight line. 

The pin-hole camera provides a simple illustration of the same 
law. A candle is placed a short distance behind a screen of card¬ 
board in which a small pin-hole has been made ; light travels in 
straight lines from the different points of the flame, passes through 
the hole, and falling on a screen behind produces a series of illuminated 
patches. Fig. 67 shows how this results in an inverted picture of the 
flame being formed on the screen. The size of this picture will evi¬ 
dently depend on the relative distances of screen and candle from 
the hole. If a second pin-hole is made, not far from the first, another 
candle flame will be seen on the screen; if the two overlap the 
resultant picture will be blurred. Hence we see that a large hole, 
which we may regard as a number of small holes near together, will 
not produce a clear picture. If three pin-holes are made close 
together so as to form a small triangle, the three pictures produced 
coincide so nearly on a distant screen that there ia little loss of 
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clearness, i.e, the shape of the small hole does not affect the form of 
the picture ; but if the screen is close to the hole the picture produced 
by each part is very small, and, as there is very little overlapping, an 
illuminated spot is seen of the same shape as the hole itself. 

A homogeneous medium is one whose properties do not vary 
from point to point. It will be seen later that when light travels 
from one medium to another its path is usually bent at the surface 
of separation; bearing this in mind the first law of Geometrical 

Optics can be stated in the following terms : Light travels in straight 
lines in a homogeneous medium. 

Dehnition of Terms.—The straight lines along which light travels 
are called rays. A collection of rays forms a beam or pencil of light. 
If the rays converge to or diverge from a point the beam is said to 
be convergent or divergent respectively ; when the rays are parallel 
we have a parallel beam. Rays diverge in all directions from any 
point of a luminous body, but when it is very distant the rays 
with which we deal are inclined at such a small angle that they may 
be regarded as parallel. Thus the rays coming from a star to the eye 
form a parallel beam. 

Shadows.—The formation of shadows is a direct consequence of 
the faot that light travels in straight lines. 

Experiment.—^Take a small source of light, such as the arc-light, fix it some 
distance away from a vertical piece of brass tube several inches in diameter, 
and notice that a well-defined shadow is thrown on a screen held a few feet 
away. 
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Fig. 68, A, shows how this is produced. The opaque tube prevents any light 
from the arc reaching the part BC of the screen, an eye placed between B and C 
would not see the arc. Evidently if light travels in straight lines we shall 
have from the triangles OBC, OPQ. 

Diameter of tube : width of shadow 
= distance of tube from arc : distance of screen from arc. 

Measure these distances and verify the relation. 
Experiment.—Replace the arc-light by the broad gas flame of a bat’s-wing 

(A) 

Fia. 68, A and B.—Illustration of how Shadows are formed. 

burner. The shadow is now clear at the centre but becomes indistinct towards 
the edges. 

Fig. 68, B, shows how the shadow is formed when such an extended 
source is used, AB represents the flame, CD the brass tube and EH 
the screen. Any straight line drawn from the flame to a point on 
the screen between F, 6, must pass through the tube. Hence the 
part FG receives no light, it is the region of complete shadow or 
umbra. Outside this there are regions EF, GH, which receive light 
from some parts of the flame but not from the whole ; they are the 
regions of half-shadow or penumbra. Thus the part OF receives no 
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light from any part of the flame nearer to A than M, the rays starting 
from AM in the direction of OF are stopped by the tube. If an 
observer looks towards the flame through a hole at 0 he will see only 
the part BM, if the hole is between F and G no part of the source 
will be seen. Beyond E and H the screen is fully illuminated. The 
difference between this and the preceding ca e is seen to be due to 
the extended source of light that is used. The relative and actual 
sizes of umbra and penumbra depend on the relative positions of 
source, tube and screen. If the screen is placed near the tube the 
penumbra is small, while if it is placed at PQ there is scarcely any 
umbra. 

Eclipses are results of the formation of shadows by the moon or 
the earth. It happens at certain times that the moon moves into a 
position between the sun and some portion of the earth’s surface, 
the sunlight is intercepted and the sun is said to be eclipsed. At 
points on the earth which are in the umbra the eclipse is total, where 
only the penumbra occurs the eclipse is partial. Fig. 68, B, illustrates 
what may happen if AB is taken to represent the sun, CD the moon, 
and EH the earth. Lunar eclipses are caused by the earth getting 
into a position between the sun and moon. Fig. 68 B illustrates 
this case if CD now represents the earth, and part of the screen EH 
the moon. The moon is not self-luminous, the light we receive from 
it is reflected sunlight, hence if it is in the shadow cast by the earth 
no light can be sent back and it is eclipsed. If it is in the umbra, 
FG in the figure, the eclipse is total, if in the penumbra a partial 
eclipse takes place. 

EXAMPLES ON CHAPTER XIII 

1. On a clear, sunny day a flag-staff casts a shadow on the ground and it 
is found that the portion due to the lower end is the best defined; explain this. 

How would white clouds affect the shadow ? 

2. Why are well-defined circular shadows sometimes seen on the ground 

beneath an arc lamp ? 

3. A strip of wood 1 cm. in width is held in a vertical position between a 

gas flame and a screen, its distance from the former is 50 cms. and from the 

latter 30 cms. If the flame is 2 cms. wide And the diameter of the umbra and 

the width of the penumbra on one side of the shadow. 



CHAPTER XIV 

REFLEXION OF LIGHT FROM PLANE SURFACES 

Diffusion and Reflexion.—When light falls on the surface of separa¬ 
tion of two media which differ in their optical properties the rays 
are divided into two portions: one part is returned into the first 
medium—this is said to be reflected; another part enters the second 

medium and is there absorbed if the medium is opaque, or is trans¬ 
mitted if it is transparent. We will confine our attention at present 
to the reflected rays. The direction in which these rays travel is 

governed by definite laws—the laws of reflexion. When the surface 

of the second medium is not highly polished each of the small irregu¬ 
larities on it will reflect light, and, as these irregular surfaces may be 
inclined at all angles, rays will be reflected in all directions. The 

light is then said to be diffused or scattered. It is owing to diffused 
light that the surfaces of bodies are visible; thus it is difficult to 
see the surface of a brightly polished mirror because of the absence 

of diffused light, it is much easier to see if we breathe upon it. Taking 

advantage of diffusion we can easily make apparent the path of rays 

in a transparent medium. 

Experiment.—Fill a flask with distilled water which has been filtered, 
and focus on it a beam of light from a lantern. The path of the rays is seen 
with difficulty, but the addition of a few drops of milk renders it quite easy 
to follow because the milk particles diffuse light in all directions. This effect 
is one of the most delicate tests for the presence of suspended particles in what 
may appear at first sight to be a homogeneous liquid. Note also that the path 
of the beam from the lantern is made visible in the air by the dust particles 
floating about in it; a cloud of smoke makes it still clearer owing to the 
increased number of diffusing particles. 

In what follows we are concerned with the rays which are reflected 

from a brightly polished surface or mirror. Well-polished silver is 

the best reflector of light-waves; ordinary looking-glasses are backed 
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by an amalgam of mercury and tin to improve their reflecting 
qualities. 

The Laws of Reflexion.—Some of the terms used must be first 
explained. Let AB (Fig. 69) represent a plane mirror, EO a ray of 
light travelling towards it, and OF the path of the reflected light. 
EO is the incident and OF the reflected ray. Draw OP perpendicular 
to the mirror at the point where the incident ray meets it; OP is 
the normal. The plane containing the incident ray and the normal 
is called the plane of incidence; that containing the reflected ray 
and the normal the plane of 
reflexion. Also the Z.EOP 
between the incident ray and 
the normal is called the angle 
of incidence, Z.FOP is the 
angle of reflexion. The laws 
of reflexion then state— 

(1) The incident ray, the 
reflected ray, and the normal 
lie in the same plane, or the 
planes of incidence and re¬ 
flexion coincide. 

(2) The angle of incidence is equal to the angle of reflexion. 
The truth of these laws may be proved by the two following 

experiments, a more accurate proof is given later when certain 
optical apparatus has been described. Each experiment illustrates 
an apparatus or principle that will frequently be used in later 
sections. 

Experiment.—To prove the laws of reflexion by HartVa optical disc.—^This 

apparatus is a very convenient one for showing the path of the rays in various 
experiments. It consists of a white cardboard, circular, disc graduated in 
degrees, to the centre of which mirrors, lenses, or prisms may bo fixed by 
screws (Fig. 70). The disc is held in a vertical plane and can be rotated round 
a horizontal axis. To the right is a circular screen pierced with one or more 
slits to admit light from an arc-lamp or distant window; the path of the rays 
is made evident by the bright lines they trace on the cardboard. Fix a strip 
of plane glass mirror, AB, at the centre of the disc with its length along a marked 
diameter; a line perpendicular to this shows the direction of the normal and 
coincides with the zero mark of the graduations. Pass a beam of light through 
a single slit so that it falls on the mirror at the centre ; the paths of the incident 
and reflected rays can be seen and the angles they make with the normal read 
off. The angle of incidence is varied by rotating the graduated disc. It is 
found in all cases that the angles of incidence and reflexion are equal; the 
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first law also is true since the incident ray, the normal, and the reflected ray 
lie in the plane of the cardboard. 

Experiment.—Fix a large sheet of wliite paper to a drawing-board and 
place on it a strip of looking-glass, AB (Fig. 71), with its plane vertical. Stick 

two pins vertically in the board 
in the positions indicated by P 
and Q. 'I’lic straight line through 
these points may be taken to 
represent the path of an incident 
ray ; we require the path of the 
corresponding reflect(‘d ray. Since 
the ray is bent back at reflexion 
it will appear to come from two 
pins P', Q', apparently behind 
the mirror; looking into the 
mirror fix two pins at R, S so 
that they ap])ear to l)e in a 
straight line with P', Q'. KS is 
then the reflected ray. Rule in 
the outline of the mirror and 
draw the normal ON with the 
help of a set-square, the angles 
of incidence and reflexion can 
then bo measured wdth a pro¬ 
tractor. A number of rays should 
be traced in this manner and the 
corresponding angles found. Since 

the points of the four pins are in the plane of the paper the planes of incidence 
and reflexion coincide. 

Images.—When a pin is held in front of a plane mirror we see a 
picture of it which appears to be behind the reflecting surface ; this 
picture is called the image of the pin. If rays of light starting from 
one point afterwards appear to pass through another point the 
second point is called the image of the first; if the rays actually 
pass through the second point it is a real image, if they only appear 
to pass through it the image is called virtual. In the example just 
given the image of the pin is behind the mirror, as the rays do not 
actually come from this place, but only appear to do so on account 
of reflexion, the image is virtual. The images formed by a pin-hole 
camera are real. We shall meet with other instances of each kind. 

Experiment.—To find the. position of a virtual image formed hy a plane 
mirror. Use the apparatus of the last experiment. Fix a pin at P a few inches 
in front of the mirror (Fig. 71); it sends out rays in all directions and it is 
required to find the point from which these rays appear to diverge after reflexion. 
Fix a second pin, R, just in front of the mirror and place a third pin at S in 
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such a position that S, B, and the imago of P all appear to be in the same 
straight line. BS is one reflected ray. Move the pin B to the right or left 
and find other reflected rays in a similar manner. Rule in the position of the 
mirror, then remove it and produce the reflected rays backwards; they will 
meet approximately at a point which is the position of the image. Measure¬ 
ments will show that the imago P' lies on that normal to the mirror which 
passes through P, and is as far behind the mirror as toe object is in front. Since 
the light is reflected chiefly from the back surface the measurements must be 
made from this edge. 

The result obtained from this experiment should be remembered. 

Method of Parallax.—This is a method of finding the position of 
an image when it is impossible or inconvenient to trace the paths of 

Fia. 71.—Apparatus to prove the Laws 
of Reflexion. 

Fig. 72.—To illus¬ 
trate Parallax. 

the rays. It consists in placing a pointer so that it does not appear 
to shift relatively to the image when the observer changes his posi¬ 
tion, image and pointer then coincide. 

Experiment.—Stick a pin vertically in a drawing-board, and about 
5 mms. behind it fix a larger pin. Shut one eye and get into such a position 
that the pins appear in the same straight line. Now move the head to the 
right; the pins shift relatively to each other and appear no longer to be in line. 
Fig. 72 shows the new appearance ; P, Q, are the pins, 0 the first and O' the 
second position of the eye. Exactly the same relative motion would have been 
produced if the head had remained fixed at 0 and the farther pin had been 
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moved to P'. That is, when the head is moved to one side, the farther pin 
appears to move relatively to the nearer one in the same direction as the head. 

This principle is made use of to place a pointer so as to coincide 
with an image; the two can only be coincident when no relative 
motion takes place; imtil this position is obtained we can determine 
as above which is the more distant. 

Experiment.—Place a mirror strip vertically on a drawing-board and fix 
a pin 6 ins. in front of it. Look into the mirror in such a direction that the 
pin covers its own image, fix behind the mirror a second larger pin in this 

straight line so that its upper 
part can be seen over the edge. 
Find by the parallax method 
which is the further away, the 
image or the second pin, hence 
arrange finally that the two 
coincide. Confirm the results of 
the last paragraph. 

The same results can be 
deduced theoretically from 

, the laws of reflexion. Let 
Q'' OM (Fig. 73) be the mirror 

Pjq 73, and P the object pin. 
Draw PO perpendicular to 
OM and produce it to Q, 

where OP = OQ. Join P, Q, to any point N on OM, and produce 
QN to S. Draw NR normal to the mirror. Then 

AQON= APON 
/. Z.QNO= Z.PNO 

hence Z.PNO= Z.MNS 
A Z.PNR==: Z.SNR 

Hence if PN is any ray starting from P, NS is the corresponding 
reflected ray, since the angles of incidence and reflexion are equal. 
But NS passes through Q, and the same is true of any other reflected 
ray MA. Hence the image is at Q, where PQ is normal to the mirror 
and OP = OQ. 

Path of the Rays by which an Image is seen.-~-Let a small object P 
be placed in front of a mirror and let us trace the rays by means of 
which the image P' is seen. Of the rays starting from P (Fig. 74), a 
narrow pencil enters the eye after being reflected at the mirror, this 
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appears to come from P'. Join P' to the edges of the eye-pupil. 
The part P'S of the pencil has no actual existence. Join the points 
where the rays cut the mirror to P, the pencil PSE shows the path 
of the rays. In the same manner we can construct the path of the 
rays by which the image of an 
extended object is seen; the 
rays from each point must be 
found separately. If the object 
P is placed between two parallel 
mirrors A, B (Fig. 76), a suc¬ 
cession of images is seen. Thus 
in mirror A an image is formed 
at Pi, where PA = PiA; the 
reflected rays now appear to 
come from this image and 
when they fall on the second 
mirror they will form a further 
image at P2 as if they actually 
came from Pi; hence PiB 
= P2B. Similarly P2 gives 
rise to an -image Ps, where P2A = P3A, and so on. Another 
series is formed starting from the mirror B; the first is at Qi where 

Fig. 75.—Formation of Images by Parallel Mirrors. 

PB = QiB, this is imaged in A at Q2, hence QiA = Q2A, etc. Let us 
draw the rays by which a given image, say Ps, is seen. Draw from 
P3 a divergent pencil entering the eye at E; before their final 

Fig. 74.—Showing the Path of the 
Rays to the Eye. 
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reflexion at mirror A these rays apparently came from P2, hence join 
the points where they cut the left-hand mirror to P2. But P2 is the 
image of Pj, thus Pi must be joined to the points where the rays 
from P2 cut mirror B. Finally Pi is the image of P, hence P must 
be joined to the points where the pencil from Pi intersects mirror A. 
The figure shows the complete path of the rays. 

Experiment.—Find by the parallax method the position of Ps using a pin 
as object and verify that P3A = P2A. 

The mirrors at the opposite sides of a barber’s shop show a large 

Fio. 70.—Formation of Imageg by Inclined Mirrors* 

number of images formed in this manner. When a person stands 
before a looking-glass it is found that bis right side corresponds to 
the left side of the image. This is called lateral inversion ; it results 
from the fact that the image of a point is on the normal drawn from 
the object point to the mirror. 

Inclined Mirrors.—Let AB, AC (Fig. 76) represent two plane 
mirrors fixed at right angles, and let P represent a small object 
placed in the angle between them. As for the parallel mirrors 
there will be two series of images, but the number in this case is 
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limited. Thus AC forms an image at Pi and this in turn gives rise 
to an image at P2 which is formed by the mirror AB. As the rays 
apparently coming from 1^2 of each mirror, no 
further image of this series can be formed. Similarly the mirror AB 
forms an image of P at Qj, and, as this is in front of AO, an image is 
formed in the latter at Q2 ; this coincides willi J^2. It also is the 
last image of the series. Only one of the images r2, Q2, can be seen 
at the same time. For example, let the observer’s eye be placed 
anywhere in the angle PAB; join Q2 to tlie eye by a narrow pencil. 
From where this cuts a mirror draw rays to Qi and Pi- The figure 

shows that the eye will not receive the rays apparently coming from 
Qi; hence it is the image P2 that is seen in this case. To see Q2 the 
eye must be placed in the angle PAG, 

Similar but more complicated results are obtained when the 
mirrors are inclined at any angle (Fig. 77). Thus mirror OA forms an 
image of P at Pi, and since OA bisects PPi at right angles OP = OPi. 
Also Pi gives rise to an image P2 in OB, and PiN = P^N where P1P2 
is perpendicular to OB. Hence Op2= OPi = OP, showing that all 
the images lie on the circumference of a circle whose centre is O and 
radius OP, As in the previous case, the final image of the series is 
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that which is formed behind each mirror, t.e. which lies in the angle 
vertically opposite to the angle AOB. There is, of course, a second 
series formed by P giving rise to an image Qi in OB, etc. The 
number of images formed in any instance, and whether the last of 
each series coincide, is best determined by a figure drawn to scale 
or by calculating in succession the angles AOPi, AOP2, etc. 

Experiment.—^Trace the rays by which the image P4 is seen. 

The child’s toy called the Kaleidoscope is an application of the 
principle ol inclined mirrors. Three strips of mirror inclined to 
each other at angles of 60® are placed in a tube, and a glass box at 
one end encloses some bits of coloured glass. Light from the sky 
passes through the box, and, after a series of rePexions, enters the 
eye which is placed at the other end of the tube. Beautiful patterns 
arising from reflexions in two or more mirrors are formed in this way. 

Rotating Mirror.—If the mirror of Fig. 69 is turned through an 
angle 6 the reflected ray is turned through an angle twice as large if 
the direction of the incident ray remains the same. For the angle 
between the incident and reflected rays is 2i, if t is the angle of 
incidence; turn the mirror through an angle the normal turns 
through the same angle, hence the angles of incidence and reflexion 
are now (i + 0), and the angle between the incident and reflected rays 
is 2(i + 0)« As the original angle between the rays was 2i, the 
reflected ray has been deflected through an angle 26. 

Experiment.—Verify this result experimentally by the pin method. 

This principle is employed in the measurement of small angles, 
e.g. the angular deflexion of a galvanometer needle (p. 369). In 
order to measure such a deflexion accurately a long pointer must 
move over a graduated scale, by using rays of light we get the 
advantage of a pointer as long as we please without adding to the 
weight of the needle. Fig. 78 illustrates one method of use. The 
needle is attached by a suitable suspension to a small piece of plane 
mirror, AB, which faces a well-illuminated mm. scale placed hori¬ 
zontally at a distance of one metre or more. Above the scale is a 
telescope focussed on the image of the divisions seen in the mirror. 
Suppose that initially the rays from some point P on the scale strike 
the mirror at nearly normal incidence and are reflected into the 
telescope. An image of the division P will be seen on looking into 
the instrument; this can, by slight adjustment, be made to coincide 
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with a vertical wire in the eye-piece. When the mirror turns 
through an angle 0 into the position A'B' rays from some other 
point P' enter the telescope and form an image on the wire. If we 
suppose the path of the light reversed, so that the rays start from the 
wire and strike the scale at P or P', the case is identical with that 
given above, and the angle between the rays OP and OP' in the 
two positions of the mirror is 29, The distance PP' is known from 
the readings in the telescope and OP can be measured, hence 

Fia. 78.—Telescope and Scale ^Icthod of measuring an Angular Deflexion. 

tan POP' = tan 29 can be calculated and 9 found from tables. If 
the deflexions are small, as is often the case, they may be taken as 
being proportional to distances such as PP', they can then be 
compared without a book of tables. Other applications of this 
principle will appear in later chapters. 

EXAMPLES ON CHAPTER XIV 

1. Straight lines are drawn from a luminous point to a plane mirror and 
from thence to the eye. Of the possible paths from the point to the eye by 
way of the mirror show that that taken by the rays of light is the shortest. 

2. Two mirrors are inclined at an angle of 60® and a small object is placed 
between them so that it is twice as far from one mirror as from the other. 
Find the total number of images in each scries and whether the last of each 

coincide. 

3. In Fig. 76 prove that a ray which has been reflected from each mirror 
is parallel to its original direction. 

4. Two parallel mirrors are 19 ft. apart and a candle is placed between 
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them 7 ft. from one mirror. Find the distance between the 3rd and 4th images 

seen in each mirror. 

6. Find the inclination of two mirrors when a ray incident parallel to one 

is, after two reflexions, made parallel to the other. 

6. Two mirrors are inclined at an angle B and a ray falls on one of them 

at an angle of incidence — A^; prove that the deviation of the ray after 

the Ist, 2nd, and 4th reflexions is 2A, 2B, and 4B respectively. Hence find 

the angle between the mirrors when a ray returns along its path after four 

reflexions. 

7. In the telescope and scale method of measuring deflexions the distance 

from scale to mirror in a certain instance was 2 metres. If the di'flexion along 

the scale was 50 mms. flnd, in degrees, the angle through which the mirror 

turned. Supposing that the scale can be read to 0*5 mm. calculate the least 

angular deflexion that can be measured. 

8. How would you arrange two mirrors so as to be able to sec the side of 

your head when looking straight forward ? Give a drawing showing the 

complete course of the ray. (L. ’02.) 



CHAPTER XV 

REFLEXION FROM SPHERICAL MIRRORS 

In dealing with the subject matter of this chapter the following 
mathematical results will be found useful. 

(1) Let ABC (Fig. 79) be any triangle, then it is shown in books 
on trigonometry that 

AB sm C 

BC sin A 

(2) Let the line bisecting the angle B divide the side AC into the 
segments AD, CD, 

then 

For, from A ABD, 

and from A CBD 

and 

AB AD 

BC~ CD 

AB sin D 

AD“ . B 
sm- 

BC sin D 

CD“ . B 
sm- 

AB BC 

a'd"" CD 

AB AD 

BC~ CD 

(3) Similarly if BE is the bisector of the external angle at B 
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For L EBD is a right angle and in A EAB 

AB sin E sin E sin E 

EA~ sin EBA " cos ABD B 
cos - cos- 

T>p sin E _ sin E sin E 
AliU 1X1 /\ - 

sin EBC . /TT , B\ B 

. AB 
E A~ 

AB 

BC 

BC 

EG 

EA 

EC 

(2 +2) 
cos- 

Principal Focus.—Let MAN (Fig. 80, A and B) represent a 
spherical mirror cut from a sphere whose centre is C. C is called the 
centre of curvature, or briefly the centre, of the mirror. CA is the 
radius of curvature, or simply the radius. The middle point. A, of 
the mirror is called the pole (not to be confused with the centre 
defined above), and the straight line passing through C and A is the 
principal axis. Any line drawn from C to the mirror is a radius and 
therefore cuts it normally. If we are working only in one plane, as 
in pin experiments, cylindrical mirrors may be used in place of 
spherical ones. 

Expsbimbkt.—^Fasten a concave mirror on the HartPs optical disc (p. 138), 
and allow a beam of parallel rays coming through the slits to fall on it parallel 
to the principal axis. Provided the rays strike the mirror not far from the 
pole it will be seen that after reflexion they meet at a point F as in Fig. 80 (A), 
If a convex mirror is used the path of the light is that shown in Fig. 80 (B); 
the rays are made to diverge by reflexion, but if produced backwards they 
pass through a point F as in the previous case. 
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Confining our attention to the small part of the mirror situated 
round the pole, it is seen that if a beam of rays falls on it in the 
direction of the axis they all pass through a point F after reflexion. 
This point is called the principal focus, or focal point, and the distance 
FA is called the focal length of the mirror. The figures show that 
the focal point is real for a concave and virtual for a convex mirror. 
Measurements show that F is midway between A and C, i,e, the 
focal length is half the radius of curvature. This result can be 
established theoretically from the laws of reflexion, for, take any ray 
PM in the figure parallel to the axis and join C to M. Then CM 
(Fig. A) is the normal at the point M and Z.CMP is the angle of 
incidence. Since PM is parallel to CA, Z.PMC= Z.ACM, but 
L PMC = L FMC, from the laws of reflexion, hence L ACM = L FMC 

Fio. 80.—Principal Focus of Spherical Mirror. 

and FM = FC. But if M is near A, FM = FA very nearly, and 
FC = FM = FA. The student should notice that it is only when 
the incident rays are limited to the part of the mirror near A that 
this result is true. It is left as an exercise for the reader to prove 
the corresponding proposition for a convex mirror. 

Experiment.—Place a strip of cylindrical mirror on a drawing board and 
fix a pin vertically just in front of it. Fix a second pin some distance away 
so that the two pins and their images all appear in the same straight line. The 
line joining the pins represents an incident ray, and since the reflected ray 
returns along this path it is a normal to the mirror and therefore passes through 
C. Find two other normals in a similar way; the point where they meet is 
the centre of curvature. Next draw parallel lines to represent parallel rays, 
falling on the mirror; if two pins are fixed in tiiese in succession the corre¬ 
sponding reflected rays can be found as on p. 138, the point where they 
meet is the focal point. Rule in the outline of the mirror and measure 

CA and FA. 
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Image of any Point on the Axis. Conjugate Points.—In Fig. 81 
let rays be supposed to start from some point P on the axis of a con¬ 
cave mirror wliose centre is C and focal point F. We require to find 
where these rays meet after reflexion; this point will be the image 
of P. Let PM be one incident ray, draw the normal CM and make 
Z.QMC= Z.PMC ; then MQ is the reflected ray. In the A PMQ, 
CM bisects the angle at M, 

. 
‘^‘QC'^QM 

If, as we shall suppose in all that follows, M is near A, then 
PM = PA and QM = QA approximately. 

Hence 
PC_PA 

QC'^QA 

Putting PA = II, QA = v, CA = r, FA =/, and measuring all 
distances from A as origin, we get 

PA-CA^M 
CA-QA’^QA 

u — r u 

i.e. ur-{~vr~ 2uv 

Dividing throughout by uvr, 

V u r 

But 

hence 

The same formula is true for any ray from P provided its point 
of incidence is near A, hence all the rays from P meet at Q after 
reflexion, and Q is the image of P. Evidently if the rays start from 
Q they will meet at P after reflexion and P will be the image of Q. 
Two points P and Q such that the rays starting from one pass after 
reflexion through the other are said to be conjugate. The formula 
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just given should be remembered ; v and u are the distances of image 
and object respectively from the pole of the mirror. 

The image is virtual when a convex mirror is used, but its position 
is given by the same formula if a suitable convention is made with 

Fio. 81.—Showing the Position of Conjugate Points for a ConcaTe Mirror. 

regard to the signs of the different lengths. If distances are measured 
from the pole as origin, lines drawn in opposite directions must be 
looked upon as being positive or negative. We shall adopt the 
usual rule and call all distances positive when they are measured 

Fio. 82.—Showing the Position of Conjugate Points for a Convex Mirror. 

from the mirror in a direction opposite to that in which the incident 
light is travelling ; distances measured in the same direction as the 
incident light is going are to be taken as negative. Hence r and / 
are negative for a convex mirror. In Fig. 82, PM is the incident and 
MS the reflected ray ; draw the normal CM and produce 8M to cut 
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the axis at Q. Since CM bisects the L PMS of the A PMQ, we have 
(p. 147) 

PC PM PA 

And PC = AP + AC=w+(-r) = w~-r 

QC = AC-AQ= 

with the rule as to sign. 

Hence 

and, as before, 

u — f u 

V — r —1> 

1 

f 
Example.—k gas flame is placed 35 cms. in front of a convex mirror whose 

radius is 24 cms.: And the position of the image. 

Hero 

and 

and 

t/ = 35 

/--12 

'*• v'^35" ■^12 
V = —9 07 cms. 

That is the image is 9 07 cms. behind the mirror. 
Experiment.—Fix a pin in a drawing board 6 in. in front of a strip of 

cylindrical mirror and find as on p. 138 the direction of the reflected rays. 
The point where these meet is the image; show that the above formula is 
true. 

Experiment.—Find also the position of the image by the parallax method. 

When a small object is placed at the centre of curvature of a 
concave mirror all the rays are normals; after reflexion they will 
retrace their paths and form an image coinciding in position with 
the object. This follows also from the formula when w = r. 

Experiment.—Support a concave mirror on a stand, use a bit of white 
card as object and arrange it by the parallax method to be at the same distance 
from the mirror as its real image; this distance is the radius of the mirror. 

Graphical Construction of Images.—^According to our approxima¬ 
tion (dl the rays coming from a point on the axis meet after reflexion 
at the conjugate point; hence the point of intersection of two re¬ 
flected rays is the position of the image. Now the directions of three 
reflected fays are known for— 
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(1) Those rays which before incidence are parallel with the axis 
pass after reflexion through the focus F. 

(2) By supposing the path of the light to be reversed it follows 
that those incident rays which pass through the focus will be parallel 
with the axis after reflexion. 

(3) Incident rays which pass through the centre of curvature 
strike the mirror normally and retrace their path. 

Let us make use of this to find the image of a small object PQ 
(Fig. 83). Draw from Q a ray parallel to the axis; after reflexion 
this passes through F. Draw a second ray through C; after re¬ 
flexion it retraces its path and the point Q' where the two reflected 

Fig, 83.—Formation of an Imago by a Concave Mirror. 

rays meet is the image of Q. The image of P is found in a similar 
manner, and P'Q' is the complete image. The figure shows that it 
is real, inverted, and smaller than the object. If the object is placed 
at P'Q' evidently the same drawing will give the image PQ ; in this 
instance the rays which pass through F are parallel with the axis 
after reflexion and the second ray is found by joining Q' to C and 
producing it to meet the mirror, whence it retraces its path. Fig. 84 
(A) shows the image of an object placed between the principal focus 
and the concave mirror. In this case the reflected rays have to be 
produced backwards in order to cut each other and the image is 
virtual, erect, and larger than the object. It illustrates the use of 
a concave shaving mirror. Fig. 84 {B) shows how an image is formed 
when a convex mirror is used. 

Relative Positions of Image and Object.—The equation - 4- - = ? 
V u f 

enables us to calculate the position of the image for any given 
position of the object, hence we can find how the image moves 
when the object approaches the mirror starting from a great distance 
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away. For this purpose, however, a simpler formula, first given by 
Newton, is preferable. In Fig. 85 the image of a small object has 
been found by drawing two incident rays, one parallel with the axis, 
the other through the principal focus. The arcs AB', AB may be 
regarded as practically straight lines. Let all distances be measured 

from F instead of from A, using the same sign convention as before, 
and let PF = x, P'F == x', then from A’s P'Q'F, AB'F we have 

linear size of image P'Q' P'Q' FP' ^ x' 

linear size of object PQ AB' FA —/ 

FA being negative since it is measured from F in the same 
direction as the incident light. 

Similarly from A’s PQF, ABF, we have 

linear size of image AB FA —f 

linear size of object PQ FP x 

X'_f 
Hence 
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The same result can be deduced from the equation ~ 4- - = - for 
V u f 

in the figure u =/-!“ x, v=f-];-x\ if these values of u and v are sub¬ 
stituted we get xx' =/2. The student should show by each method 
that this equation is true for a convex m rror. Since is positive 
no matter what the sign of f we conclude that x and x' have the 
same sign as each other, i.e, image and object are either both to the 
right or both to the left of F. The following conclusions can now 
be drawn for a concave mirror:— 

(1) When X is very large x' is very small, i.e. when the object is 
very distant the image is at the principal focus. 

(2) As X decreases x' increases ; as the object moves towards the 

mirror the image moves to meet it. While x is greater than /, x' is 
smaller than /, if the object is further from the mirror than C the 
image is between F and C. 

(3) When x =/ then x' = /, i.e. the object and image meet at the 
centre of curvature as we have already found. 

(4) If X < /then x' >/; if the object is situated between C and F 
the image is further from the mirror than the centre of curvature. 

(5) When x is very small, x' is very large, i.e. if the object is 
close to F the object is a very great distance away. 

(6) When x </ and is negative, meaning that the object is 
between F and A, x' > / and is also negative; the image is there¬ 
fore behind the mirror. 

(7) If X = — / then x' = — /, i.e. image and object meet at A. 
In ordinary circumstances only the first three cases can be 

realised for a convex mirror, in (3) when x =/ the object is at the 
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surface of the mirror and image and object coincide. If a beam of 
convergent light is allowed to fall on the mirror we may regard the 
point to which the rays converge as a virtual object and the position 
of the image can be found from the equation. The student should 
work out the results for a convex mirror corresponding to cases 4-7. 

Magnification.—The ratio of the length of a straight line in the 
image to the length of the corresponding line in the object is called 
the linear magnification. In Fig. 85 join Q to C and produce this 
line to meet the mirror ; the ray QC returns along its path and there¬ 
fore passes through Q' the image of Q. Distances measured in 
opposite directions must be taken to be of opposite sign ; thus P'Q' 
is negative if PQ is positive. From A’s CPQ, CP'Q' we have 

-P^Q^ -CP' 
■“"PQ “~’ CP 

distance of image from centre 

distance of object from centre 

Join Q to A ; the ray QA gives rise to a reflected ray Q'A and the 
AQAP= Z-Q'AP', hence A’s QAP, Q'AP' are similar, the angles 
P, P' being right angles, and 

— Image 

Object 

or magnification = 

— Image — P'Q' _ P'A ^ v 

""Objecr ^ “PQ “ ”” PA u 

magnification -.(1) 
u 

Also from A’s FP'Q', FAB' 

- Image _-P'Q' FP' v-/ 

Object kW ^ Vk~^~ f 

. V — f 
or magnification = — ~ y ~. 

Finally from A’s FAB and FPQ 

— Image ' AB _ FA / 

Object PQ FP u —f 
f 

and magnification = — -.(3) 

It is left as an exercise for the student to show that the same 
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expressions hold when the mirror is convex. By equating any two 
oi these formulae for the magnification we get at once the equation 
111 
- When numerical values of m, v, / are substituted they 

must be put in with their proper sign; if the magnification comes out 
a negative quantity it signifies that the image is real and inverted, 
for in that case v and u in (1) have the same sign, i,e. image and 
object are on the same side of the mirror. 

Optical Bench.—The formulae given in this chapter may be most 
accurately verified on an optical bench, of which a simple form is 
shown in Fig. 86. A number of stands to hold various pieces of 

Fio. 86.—Simple Optical Bench. 

apparatus slide to and fro along a straight, graduated, wooden bar 
about two metres long. In one stand is fixed a white cardboard 
screen containing a circular hole across which two wires are stretched 
at right angles, these are well illuminated by a lamp placed behind 
and form the object whose image is to be found. Other stands 
carry the mirror and a screen to receive the real image ; their positions 
are given by pointers moving over the scale. 

Methods of finding the Focal Lengths of Mirrors.^ 

Experiment.—^AIlow a beam of light from a distant object to fall on a 

concave mirror, the rays coming from any point are parallel and the distance 
of the image from the mirror is the focal length. This image can be received 
on a screen and the distance measured. If the experiment is to be done in a 
small room a distant object may not bo available, another mirror (or lens, 
p. 188) of known focal length may then be used to produce a parallel beam. 
Fix a candle at the focus of this auxiliary mirror, the reflected rays are parallel, 
and if they fall on the mirror whose focal length is required an image of the 
flame will be formed at its principal focus. 

Experiment.—Place a concave mirror on the optical bench facing the 
cross-wires, move it to and fro until an image is formed on the screen near the 

* See also Barton and Black, Practical Physics,” pp. 81 and 92. 
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circular hole ; the wires are then at the centre ol curvature, for v = tc in the 
ordinary formula, hence u = r. 

Experiment.—Use the same apparatus but move the mirror further from 
the cross-wires; a real image is formed as in Fig. 83. This may be received 
on a small screen placed between the mirror and source. The distance of the 

cross-wires and image from the mirror are u and v of the formula i -f i = 
V u f 

whence / can be found ; different positions of the mirror should be used. In 
performing the calculations much time is saved by a set of tables giving the 
reciprocals of numbers. Thus in an experiment u = 85*6 cms., v « 42*4 cms.; 
from tables. 

reciprocal of 85*6 = 0 01168 
42*4=0 02358 

sum = 0*03526 =- 

.•. / = reciprocal of 0*03526 = 28*5 cms. from the tables. 

If the formulao are correct we should get the same value of the 
focal length by all methods, within the limits of experimental error. 

To verify the formulae for magnification the cross-wires are re¬ 
placed by a rectangular slit about 2 cms. wide and the sizes of the 
image and of the slit are measured. If in addition to measuring the 
magnification the distance of image or object from the mirror is 
found we can calculate/ from the formulae 

magnification - 
/ ■ 

/ 
M—/ 

With convex mirrors there is the difficulty that the image is virtual 
and therefore cannot be received on a screen. The following methods 
can be used in this case (see also p. 199). 

Experiment.—In Fig. 87 P represents the cross-wires on the bench, A the 
convex mirror, B a small piece of plane mirror with its reflecting face towards 
A. Bays from P pass by B and form an image at Q. The rays apparently 
coming from Q are reflected in the plane mirror, and, to an observer on the 
left of B, appear to come from Q', where BQ = BQ'. By suitably moving B 
the image Q" shifts until the distance BQ' becomes equal to BP; in this 
position Q' will not appear to shift relatively to a point on the screen as the 
observer moves his head sideways. When this position has been found measure 
BP and BA, then v = AQ = BQ — BA = BP — BA, and u = PA = BP -f BA, 
whence / can be calculated. The following variation can also be used;— 
Replace the cross-wires by a knitting needle and turn the plane mirror with its 
reflecting face to the right, an image is formed at Q as before. Place a second 
needle between B and P and arrange by the parallax method that the image of 

this seen in the plane mirror coincides with the image already at Q. Then BQ 
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is equal to the distance of the second needle from B and this can be measured 
directly, also AQ = BQ — BA = v and PA = w. 

Reflexion of Waves other than Light Waves.—For experiments on 
these waves a thermopile must be used as detector, since they do not 
cause the sensation of sight. The position of the image formed by a 
concave mirror has been deduced from the laws of reflexion, if there¬ 
fore it is found that other radiations (so-called heat waves, p. IIG) 
are brought to a focus at the same point, these radiations must obey 
the same laws. Concave metal mirrors may be used in place of glass. 

Experiment.—Find the focal length of such a mirror for rays of light, then 
use as source of radiation a Bunsen burner with a rose top placed some distance 

P 

Fio. 87.—Method of finding the Focal Length of a Convex Mirror. 

in front of the mirror. Let the reflected rays fail on a thermopile which is 
connected to a sensitive galvanometer, move this up to the mirror until the 
maximum deflexion of the needle is produced. The image of the burner is 
now on the blackened junctions of the thermopile ; if the distances of image 
and object from the mirror are measured the focal length can be calculated from 
the usual formula. It will be found to bo practically equal to that found by 
optical methods. As the conical reflector on the thermopile collects rays which 
would not otherwise fall on the junctions it is best removed for this experiment. 

Experiment.—Arrange two concave mirrors to face each other about 10 ft. 
apart; fix at the focus of one a thermopile, at the focus of the other a lighted 
candle or a Bunsen burner. The rays from the source are made parallel by 
reflexion at one mirror and are focussed by the other on the thermopile; a 
considerable deflexion is produced, but this is greatly reduced if cither source 
or thermopile is moved to one side. 

Experiment.—Arrange two long brass tubes 2-3 inches in diameter as shown 
in Fig. 88, place a ro.se burner at the end of one and a thermopile at the corre¬ 
sponding end of the other. Protect the instrument by a wooden screen from 
direct radiation from the flame. Very little deflexion is produced in these cir¬ 
cumstances* Place a reflecting surface at the distant ends of the tubes; when 
they are equally inclined to it a considerable deflexion of the needle follows. 
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These experiments show that the long heat waves are reflected 
according to the same laws as light. 

Fia. 88.—Showing Reflexion of Heat Rays. 

Measurement of an Angular Deflexion.—Instead of the telescope 
method of measuring an angular deflexion a concave mirror may be 

Fio. 89.—Lamp and Scale Method of measuring an Angular Deflexion. 

used. The mirror (Fig. 89) is attached to the body whose deflexion 
is required, and the telescope is replaced by a narrow vertical slit 
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illuminated from behind by a lamp. The slit is fixed at a distance 
from the mirror equal to the radius of curvature, and immediately 
above or below it a divided scale is placed. In these circumstances 
an image of the slit is thrown on the scale, and the movements of 
the spot of light are used as in the previous method to measure the 
deflexion of the mirror. It must be remembered that the angle 
through which the reflected ray is turned is twice the angular dis¬ 
placement of the mirror. 

EXAxMPLES ON CHAFIER XV 

1. A candle flame ia placed 25 cms. away from a concave mirror whose 
radius of curvature is 80 cms.; And the position and nature of the image. 

Hero M = 25, / = 40, 

i+»- 
V 25 

I 

40 

whence, from a table of reciprocals, 

Hence 

The magnification 

- = 0 025 - 0 04 = -0 015 
V 

V =r --06*7 cms. 

’u“ 25 

The image is therefore 60*7 cms. behind the mirror end is virtual, enlarged, 
and erect (magnification positive), 

2. Where must the candle be placed in order that a real image, five times 
as large as the object, may be formed ? 

As the image is real v and u have the same sign and v/u == 5, or t = 5tt, 

Hence 

and 

-1+1 = 
5u u 

1 

40 

u = i8 cms. 

3. In what positions must the candle be placed to give rise to an image 
four times as large as the object ? 

4. An object 2 cms. in length is placed 35 cms, in front of a mirror and the 
real image is found to be 4 mms, high; find the focal length of the minor. 
What is the focal length if the image is virtual ? 

5. When a gas flame is placed 32 cms, in front of a minor it is found that 
the image is 12 cms. behind the mirror. Find the radius of curvature. 

6. Show that the image formed by a convex minor is always smaller than 
the object. (L. *80.) 
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7. An object is placed 28 cms. from a concave mirror whose focal length 

is 10 cms.; find where the image is. Is it real or virtual, erect or inverted ? 

What is its size if the object be 4*2 mms. broad by 14 mras. long ? (L. ^91.) 

8. A ray parallel to the principal axis meets a concave mirror at an angle 

of incidence 6, Prove that the reflected ray cuts the axis at a distance 

R/2 cos $ from the centre, where R is the radius of curvature. 

9. A narrow strip of plane mirror is placed between a vertical knitting needle 

and a convex mirror. The distance between the mirrors is 8 cms. AVhen the 

needle is 14 cms, from*thc strip it is found that the two virtual images appear 

to coincide. What is the focal length of the mirror ? If the needle is moved 

5 cms. nearer to the convex mirror where must the strip be placed for coincidence 

of the images to occur ? 



CHAPTER XVI 

LAWS OF REFRACTION. MEASUREMExTT OF REFRACTIVE 

INDICES 

Refraction.—When a beam of light falls on the surface of separa¬ 
tion of two media we have seen that part is reflected while the 
remainder continues its course in the second medium; it is with 
this transmitted portion that we have now to deal. 

Experiment.—Fix a semicircular plate of glass on the Hartl disc with its 
diameter along that of the graduated circle and arrange that a ray of light 
PN (Fig. 90) travels from a slit towards the centre. The ray NQ which enters 
the glass is bent towards the normal 00' as in the figure ; this bending of the 
ray is due to refraction. At points where the ray strikes the surface 
normally no bending takes place. 

In the figure PN is the incident and NQ the refracted ray; if 
ONO' is the normal at N, Z.0NP is the angle of incidence and 

Z.0'NQ the angle of refraction. It is found generally when a ray 

goes from a rare into a denser medium that the refracted ray is bent 
towards the normal, making the angle of incidence greater than the 
angle of refraction. If the slit is moved round to Q the ray travels 

in the direction QNP, i.e. the path of the light is reversible. 

Experiment.—Place a coin in the bottom of a basin and arrange a slit at 
E (Fig. 91) 80 that on looking through it only the extreme edge of the coin 
can be seen. When water is poured into the vessel the whole coin is visible; 
the emergent ray is bent away from the normal at the surface and appears to 
come from Q. The eye cannot teU, of course, that the ray has been bent. 

Laws of Refraction.—The laws of refraction are concerned with 

the position of the refracted ray. Calling the plane containing the 
refracted ray and the normal the plane of refraction, the two laws of 

refraction are the following:— 

(1) The plane of incidence coincides with the plane of refraction, 
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ue, the incident ray, the refracted ray, and the normal all lie in one 
plane. 

/ftv rrn sine of the angle of incidence . ^ ^ ^ 
(2) The ratio >.--,—;—?-:— is a constant for two 

smc of the angle of refraction 
media while the same coloured light is used. 

The truth of the first law is evident since in the first experiment 
both rays and the normal lie in the plane of the graduated circle. 
Denoting the angles of incidence and refraction by i and r respectively 

the second law states that = u, where u is a constant called the 
sm f 

refractive index of the second medium relatively to the first. If 

Fig. CO.—Showing Refraction. Fio. 91.—Coin in a Basin of Water. 

the first medium is a vacuum this constant is called the absolute 
refractive index, or simply the refractive index, of the second 
medium ; as the angle of refraction in this case is usually less than 
the angle of incidence the refractive index of most media is greater 
than unity. For most purposes in giving values of [i it is sufficiently 
accurate to take air as the first medium, the numbers differ very 
little from their true values. As regards the colour of the light and 
its effect on the refractive index more will be said in a subsequent 
chapter. The numbers in the second table below refer to the yellow 
light obtained by putting a bead of common salt in a Bunsen flame. 

The most accurate proof of the second law lies in the fact that 
the refractive index of a medium measured by widely different 
methods does actually come out constant; an approximate proof 
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may be obtained with the apparatus used in Fig. 90, the angles i 
and r being read off directly from the graduated circle. The follow¬ 
ing table contains some values of i, r, and jjl = sin z'/sin r obtained in 
this manner. 

t. f. 

31“ 

o O
 1-50 

39“ 25“ 1-49 
60“ 30“ 1-50 
60“ 35“ 1-52 
76-5“ 40“ 151 
90“ 41-5“ 1-51 

In taking these numbers the path of the light was in the direction 
QNP (Fig. 90), since the path of the rays is reversible this does not 
matter. The numbers in the third column show that /u is a constant 
no matter what the angle of incidence. 

Table of Refractive Indices, 

Substance. Refractive 
index. Substance. Refractive 

Index. 

Methyl alcohol . . . 1-33 Glycerine .... 1-47 
Ethyl alcohol . . . 1-36 Turpentine .... 1-47 
Aniline. 1-59 Water. 1-33 
Canada balsam . . . 1-53 Crown glass . . . 1-51 

The refractive index depends on the temperature, at higher 
temperatures the refractive index of a liquid is decreased. If cf is 
the density of a substance it is found that as and d alter the fraction 
(/Li—l)/d remains constd.nt; this result is known as Gladstone and 
Dale’s law. 

Experiment.—To trace rays through a block of gl-aas and to find its refractive 
index. For this experiment a large block of glass with parallel sides is required, 
the cutting shapes used in trimming photographic prints, ^-plate size, answer 
admirably. Lay the glass flat on a drawing board and fix pins at P, Q (Fig. 92), 
this line represents an incident ray. Look through the glass from S and 
arrange two other pins B, S, to be apparently in the same straight line as PQ. 
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RS is the ray after passing through the block Rule in the outline of the glass 
and produce PQ, SR to meet it at N and N'; the line NN' represents the ray 
in the block. Draw the normal at N; with centre N arul a large radius describe 
a circle, from the points where the incident and refracted rays cut it drop 
perpendiculars PC, ML, on ON. Then 

_ sin I _ sin ONP _ OP /ML _ OP 

^ “ sin'f “ SirMKlL ^ PN/ AIN “ ML 

Measure these lines and prove that jn is independent of the angle of incidence. 

Ray passing in succession through Several Media.<-A second 
important conclusion can be drawn from the last experiment, it 
will be found that the emergent ray RS is parallel to the incident 
ray PNT. This follows also from the reversibility of the light path, 
for the angle of incidence in the glass at N' is f and hence that of 
emergence is t. If ^ag represents the refractive index going from 
air to glass and figa from glass to air, then ^ RR^ 

fjkga = sin r/sin i = —. Hence when rays traverse a slab of a 
f^ag 

medium whose sides are parallel the rays which emerge are parallel 
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to tlieir original direction, but they are displaced sideways through 
a distance ST (Fig. 92). For example, if a straight pole is viewed 
through such a block of glass, held so that the rays strike it 
obliquely, the part seen 
through the block is dis¬ 
placed relatively to the 
remainder. Tlic emergent 
and incident rays are still 
parallel, even when the light 
traverses several slabs of 
diflterent media with parallel 
sides, provided the first and 
last media are the same. 

Experiment.—Prove this 
using a thick*sided glass vessel 
containing water. 

Suppose the first and last 
media are air and let /X|2, 
/x23, fJLzi represent the refrac¬ 
tive indices in the direction 
in which the light is travel¬ 
ling, t.e. fioz is the refractive 

Fia. 93.—Light passing through several 
Media. 

index when the light passes 
from the second to the third medium and so on. Then (Fig. 93) 
since the incident and emergent rays are parallel 4 == and 

fh2 == 

sin ii 

sin r./ 

sin rt sin u sin u 
--• , /^31 = -■“ = ^ 
sm r.2 sin sm 

sin ii 
/. fli2 . /X23 • /^31 — - 

^ sin fi 

sin Ti 

sin r2 

sin fg 

sin ii 

A similar relation holds no matter how many media there are. 
If tliere are only two, as in Fig. 92, 

• /^21 = 1 

or fii2 == as we have already found. 

For three media 
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Stated in words, this equation tells us that the refractive index 
of the third medium relatively to the second is obtained by dividing 
the absolute refractive index of the third medium by that of the 
second. 

Examples.—-The refractive indices or water and glass relatively to air as 
the first medium arc and f respectively ; hence when light passes from water 
to glass the refractive index = g, and the index going from glass 
to air is 

= jL L ^ 2 
M., - 3/2 “ 3 

Geometrical optics furnishes no reason for the laws of refraction, 
for this we must refer to books on Physical Optics, where it is shown 
that 

_ velocity of light in the 1st medium 

velocity of light in the 2nd medium 

As the refractive index varies with the colour of the light it follows 
that different coloured lights generally travel with different velocities. 

Image formed by Refraction at a Plane Surface.—Let 0 (Fig. 94) 
represent a small object in any medium, ON the normal to AB the 
surface of separation of two media; we require to know where 0 
will appear to be to an eye placed above N. On account of the size 
of the eye-pupil the rays to be considered must emerge near N. 
Suppose, for example, that the media above and below AB are air 
and glass respectively; a ray OQ starting from 0 is bent away from 
the normal at Q and travels in the direction QM. Produce MQ 
backwards to meet ON at O'. The normals to AB at Q and N being 
parallel 

Moa = figure 
sm f ® 

__ sin QON 

sin^WN 

••• Na - QO/- QQ - qY 

since Q is near N, and therefore OQ = ON, and O'Q = O'N approxi¬ 
mately. This gives the position of O' the point at which the emergent 
ray intersects the normal; if any other ray is taken coming from 0 
and incident near N it will be found that it cuts ON at the same 
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point, hence all the emerging rays appear to diverge from O' and 
this point is the image of O. Calling u the distance of the object 
and V the distance of the image from the surface AB, we have 17 = /xu, 
where /i is the refractive index 
in the direction in which the light 
%3 travelling. 

The object appears to be 
displaced from its true position 
by an amount 00'= ON — O'N 
= 0N(1 — ji). Owing to this 
effect of refraction a swimming 
bath appears to be less deep than 
it really is. If the position of 
0' can be found experimentally 
the above result can be used to 
find the refractive index 

Experiment.—Pin method. Place 
the photographic cutting shape on a 
drawing board and stick a pin im- Fio- 94.—Image formed by Refraction 
mediately behind and in contact with ^ Plane Surface, 

it to serve as the object O. View 
the pin through the glass and fix two other pins at Q, M (Fig. 94) to appear 
in the same straight line with this image. QM fixes the direction of one 
emergent ray, others can be found in a similar way; the point where they 
meet is O'. Measure the distances of 0 and O' from AB along the normal 
ON, then 

1 ON actual thickness of the block 

P911 apparent thickness 

Experiment.—Microscope method.^ A microscope whose objective has a 
focal length of from one to three inches is required; it should be capable of 
movement along a vertical graduated scale attached to the stand and its position 
relatively to this scale should be given by a vernier. Make a pencil mark on 
a piece of paper and stick it to the bench; focus the microscope with its axis 
vertical on this mark and read the vernier. Put a thick block of glass on the 
paper, e.g. a cubical paper weight; as the mark is now apparently raised through 
a distance 00' (Fig. 94) it is no longer in focus. Move the microscope along 
the scale until the mark is clearly seen and again read the vernier. Finally 
scatter a few grains of chalk on the upper surface of the block, focus the micro¬ 
scope on these and read the vernier. The instrument has now been focussed 
in succession on points corresponding to O, O', N (Fig. 94), hence the difference 
between the first and last vernier readings gives the distance ON, and that 

8 
> Barton and Black, ** Praotioal Physics,** p. 86. 



170 LIGHT 

between the second and third readings the length O'N, can thi'refore be found. 
The same method can be applied to find the refractive inilex of a liquid. A 
piece of marked paper is stuck to the inner side of the bottom of a beaker and 
the microscope focussed on it as before. Liquid is poured in and the micro¬ 
scope focussed in succession on the mark and on the upper liquid surface. 
The calculation is made as in the last case. 

It is only when we limit ourselves to the rays emerging near N 
that a definite image is formed. If we find the position of a number 

Fig. 95.—Caustic by Refraction at a Plane Surface. 

of refracted rays, by the pin method given above, results arc obtained 
similar to those shown in Fig. 95. The extreme rays do not diverge 
even approximately from a point, and the apparent thickness of the 
block varies with the position of the observer. Thus if the eye is 
placed as shown in the figure the pin appears to be at P. The curve 
joining the points of intersection of adjacent refracted rays is called 
the caustic by refraction ; it is shown by the thickened line in the 
figure. 

Total Reflexion.—When light passes from a rare into a dense 
medium the refracted ray is bent towards the normal, so that even 
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when the angle of incidence is nearly 90® a refracted ray is possible. 
It is otherwise when the first medium is denser than the second. 
Thus in Fig. 90, if the liglit is travelling in the direction QNP and 
the angle of incidence O'NQ is gradually increased, a stage is arrived 
at where the angle of refraction is 90®, the refracted ray then travels 
parallel with the surface of the glass. If the angle of incidence is 
increased still more there is no refracted ray, all the light is reflected 
back again into the first medium; this is called total internal re¬ 
flexion. The angle of incidence at which total reflexion begins is 
called the critical angle. The table on p. 165 shows that the critical 
angle for the* glass used is 41*5®. If jigg, is the refractive index from 
glass to air and 6 is the critical angle 

sin 9 

Bin 

= sin 0 

hence the refractive index of the glass 

flag = - - = 1/sin 0 = cosec 0 

H'ga 

In Fig. 95 the ray OQ is incident at the critical angle, the ray OS 
is totally reflected. It follows from this that if we stand on the side 
of a swimming bath we shall not be able to see the more distant 
points at the bottom ; the rays coming from such points in the direc¬ 
tion of the eye are totally reflected at the surface of the water. A 
crack in a window-pane looks brightly reflecting for a similar cause ; 
rays travelling in the glass strike the air film at an angle greater than 
the critical angle and are totally reflected. 

Experiment.—Hold an empty test-tube in an inclined position in a beaker 
of water and view it from above. The sides of the tube look like a brightly 
polished mirror owing to the light which comes through the sides of the beaker 
being totally reflected. 

Whenever light is reflected from a glass mirror a certain amount 
of it is lost since part is refracted ; this loss can be avoided by making 
use of total reflexion. Fig. 96 shows a total reflexion prism in a 
form frequently used to turn the path of a beam of light through 90®. 
It is a right-angled isosceles prism of glass having a refractive index 
about 1*51; for such a glass, as the table on p. 165 shows, the 
critical angle is 41*5®. Rays fall normally on one of the short faces 
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and travel on without retraction; they meet the hypotenuse at an 
angle of 45°, which is greater than the critical angle, and are there¬ 
fore totally reflected without loss. 

Application of the Critical Angle to the measurement of Refractive 
Index.—The last paragraph shows that the refractive index of the 

denser medium referred to air is 
given by /X = cosec 0, where 0 is the 
critical angle for light travelling 
from the medium into air. This 
equation provides a simple and at 
the same time most accurate 
method of measuring refractive 
indices. It is the method which is 

most commonly used for liquids. Fig. 97 shows a section of a simple 
form of apparatus which may be used. D is a rectangular glass 
vessel containing the experimental liquid; in this is immersed a thin 
film of air AB enclosed between two glass plates. This part of the 
apparatus is made by separating two glass plates at their edges by a 
narrow strip of tin-foil and smearing their whole perimeter with 

Fio. 97,—MeaBurement of liefractive Index by Total Reflexion. 

shellac varnish so as to make an air-tight seal. The plates are 
supported by a vertical rod which carries a horizontal pointer 
moving over a graduated circle. Light coming from a salted Bunsen 
flame passes into the liquid and through the film into a telescope T. 
Suppose the air-film to be initially in the position AB perpendicular 
to the path of the light; the normal to AB is along the rays and the 
angle of incidence on the film is zero. If the plates are turned to 
AjBi the angle of incidence is equal to L AOAj[; when this is the 
critical angle for water-air no light enters the telescope. The plates 
are next turned through their first position into that shown at A2B2 

where total reflexion again occurs. Evidently the L A2OA2 is twice 
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the critical angle hence this can be found from the graduated circle 
by noting the positions of the pointer when the light is suddenly cut 
off, then fjL = cosec 6. In order that the light shall disappear suddenly 
it is necessary that all the rays shall strike the film at the same 
angle ; to ensure this they are made parallel by means of a collimator 
C. This consists of a tube carrying a vertical slit at one end and a 
convex lens at the other; it will be seen later that when the slit is 
at the principal focus of the lens the transmitted rays are parallel. 
It should be noticed that the glass plates have no influence on the 

Fiq. 98.—Principle of the Pulfrich Refractometer. 

result since (p. 166) they do not alter the direction of the rays but 
merely displace them sideways. 

Exfebiment.—Use the apparatus to measure the refractive index of water 
for red and yellow light. Suitable red light is obtained by placing a bead of 
lithium chloride in a Bunsen flame. It will be found that the refractive index 
is less for the red than for the yellow light. ^ 

Another method is shown in Fig. 98. A cubical block of glass 
(e.j. a paper weight) has cemented to one face a metal plate BD and 
a piece of glass AB to form a small chamber ; the shape of this is 
immaterial provided it does not project beyond the edge at D. 
Water is poured into this chamber, the block is fixed on a drawing- 
board, and a well-illuminated white card is placed a short distance 
to the left of AB. Those rays which are incident on the water-glass 

^ For a simpler apparatus, see Barton and Black, ** Practical Physics/* p, 97. 
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surface at an angle just less than 90° are refracted into the glass at 
the critical angle d for these substances and travel in the direction 
CPQ. All other rays enter the glass at an angle of refraction smaller 
than 0, Just as the eye of an observer focusses into a point all the 
parallel rays coming from a star, so will an eye placed at Q focus 
into a straight line all the rays which emerge parallel to PQ. The 
face AD of the cube will therefore be divided into bright and black 
halves, and the rays coming from the line of division enter the glass 
at an angle 6, Let N and /x be the refractive indices of glass and 
water respectively, be the refractive index going from water to 
glass. 

Then = - (p. 167) 

. TT 

2 1 

sin d = jx/N 

But N = sin t/sin r (sec figure) 

and as the angle at D is a right angle 

sin r == cos 0 
sin i 

N = 
cos 9 

or cos 9 = —- 
N 

Squaring and adding the expressions for sin 9 and cos 9 we get 

N2 
sin2 9 -1- cos2 0 = 1 

or fi^ 4“ sin2 i = N2 

Hence if the angle i is measured we can calculate either /x or N 
provided the other is known. Usually we shall know N, and tlie 
apparatus can then be used for different liquids. To measure i pins 
are placed at P and Q, about 30 cms. apart, so that they appear in 
line with the dark edge of the field, a ruler is placed along DF and 
this straight line produced. From Q the line QG is drawn perpen¬ 
dicular to DF, then cos QPG = sin % can be found by measuring PG 
and PQ. 
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Example.—In a certain experiment water was placed in the chamber, and 
the following measurements (in inches) were made. PG = 10*9, PQ = 15*5, 
hence sin i=0’703. Taking/t 1*333 wo find from a book of squares 
N == 1*507. This value can then be used to find /a for other liquids. 

This simple apparatus illustrates the principle of the Pulfrich 
refractometer, one of the best means for the determination of re¬ 
fractive indices. In this instru¬ 
ment the angle i is measured by 
means of a telescope moving over 
a graduated circle as in the 
spectrometer (p. 238). 

Illustrative Experiments.—The 
following two experiments are to 
be regarded as exercises on the 
laws of refraction rather than 
means of measuring refractive 
indices. 

Experiment.—To measure the 
refractive index of water with a concave 
mirror. Place a concave mirror of 
40-60 cms. radius of curvature on the 
floor and arrange a bit of white card- 

board to be at the centre C (Fig 99) gg.-McaBnrcment of Refractire 
by the parallax method (p, 139). j^dex with a Concave Mirror. 
Pour water on to the mirror and 
again arrange the pointer to be at 
the same distance from the mirror as its image, let C' in the figure be its 
new position. Then the refractive index of water ft = CA/C'A, measure these 
distances and find ft. Let NPR be a normal to the water surface; if the axis 
of the mirror is vertical this line is parallel to CA. A ray CT is refracted along 
PQ, and since it retraces its path to C'after reflexion at Q it must strike the 
mirror normally, hence QP if produced backwards passes through C. 

»T.i C'PN sin C', . „ 
Then m = = - — (since NR and CA are parallel) 

sin QPR Bin C 

PC'/pC-pC' 

As the depth of the water is small and Q is near A we may put CP CQ = CA, 
and similarly CT == C'A, hence ft = CA/C'A. 

Experiment.—Fig. 100 shows a wooden box in which two equal, upright, 
pieces of brass PN', QN, are fixed; between these, at the bottom of the box, 
is a mm. scale with its zero at Q. Pour water into the box and level by the 
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screw A until the liquid surface is just above N and N', the scale is then hori¬ 
zontal. liook through a cardboard slit B over the top of QN and note the 
division O that can just be seen, ONB is the path of the ray. Run the water 
out through a hole in the bottom of the box and again look through B, note 
the division M which is now just in view, BNM is a straight line. Supposing 

^ p M 6 Q V 

Fio. 100.—Measurement of Refractive Index by a Displacement Method. 

the path of the light to be reversed we see that a ray travelling along BNM 
is refracted by the water along NO, hence 

— QNM 
^ sin QNO ** sin QNO 

Measure QN and make a large drawing to scale of the part QOMN. Draw 
QL', QL perpendicular to MN, ON 
respectively, then 

QL' /QL _ QW 

^“qn/qn~ qi, 

hence fi can be found. 

Images in a Thick Mirror.— 
When a lighted candle is held in 
front of a thick mirror a number 
of images placed one behind the 
other can be seen, especially if the 
light strikes the reflecting surface 
very obliquely. Fig. 101 shows 

T? T> n • I tow these images arise. A ray is 
Fio. 101.—Reflexion by a „ n fj xxi r i./ 

Thick Mirror. partially reflected at the first face 
but the rest of the light enters the 

glass and is reflected to and fro between its faces; each time one 
of these multiply-reflected rays strikes the front surface of the 
mirror a portion of the light emerges into the air. It is to these emer¬ 
gent rays that the images are due. When the candle is very distant, 
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and the front and back surfaces of the mirror are parallel, the images 
are not seen, for in that case the incident and therefore the emergent 
rays are parallel, hence they appear to come from a single distant 
image. If in any instance a distant candle is used and the series of 
images is still visible it shows that the faces of the mirror are not 
parallel; this, in fact, provides a simple means of testing the 
parallelism of the front and back faces. 

EXAMPLES ON CHAPTER XVI 

1. An object ia viewed through a thick plate of glass so that the rays meet 
the plate at nearly normal incidence. Provo that its apparent displacement 
towards the observer is independent of its small distance from the glass. 

2. A ray of light passes obliquely through a plate of glass with parallel 
sides. Show that the distance between the emergent ray and the incident 

ray produced is where c is the thickness of the plate, and i and r 
cos r 

are the angles of incidence and refraction respectively. 

3. Explain why a thick plate of glass produces no appreciable displacement 
in the apparent position of a distant object viewed through the plate. The 
rays are supposed to meet the plate normally. (L. ’88.) 

4. A substance has a refractive index ^3. Draw as nearly as you can to 
scale the path of a ray incident on a parallel plate of the substance 1 in. 
thick, the angle of incidence being 60°, What is the distance between the 
incident ray produced and the emergent ray ? (L. ’95.) 

5. A pencil of light from a point is incident on a plate of a refracting sub¬ 
stance, Show that, if the pencil is nearly normal, then within the plate it 
proceeds as if it came from an image fn times as far from the surface as the 
luminous point. Draw a figure for the case in which /x = 2. (L. ’96.) 

6. Draw to scale a diagram showing the directions in water in which a ray 
of light, incident at 45° on the surface of the water, will travel, assuming that 
the refractive index of water is J. (L. ’97.) 

7. Show that if a horizontal concave mirror is filled with liquid its apparent 
radius of curvature is diminished in the ratio of the refractive index of the 
liquid. (L. ’07.) 

8. Prove that to an eye under the surface of water all objects that can 
be seen above the surface appear in a cone whose semi-vertical angle is the 
critical angle. 

9. A cubical block of glass is placed on a black glass plate with a film of 
water between them and the whole is placed before a window with one face of 
the cube vertical. On looking through the opposite vertical face from a certain 
position the base is seen to divided into bright and dark halves. Explain 

B* 
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this. If the ray coining from the dividing line of the two halves emerges into 
the air making an angle i with the horizontal, show that /z* =* N* — sin* 
where /Jt and N are the refractive indices of water and glass respectively. 

10. The refractive indices of water and turpentine are 1*33 and 1*47 respeo* 
lively; find the critical angle for a ray passing from the latter to the former 
liquid. 

11. A vertical microscope is focussed on a mark on the bench, a plate of 
glass 2 in. thick is then interposed. Find how much the microscope must be 
raised for the mark still to be in focus. (fi for glass = 3/2.) 

12. A beaker containing liquid is placed on the table underneath a micro* 
scope which can be moved along a vertical scale. The microscope is focussed 
through the liquid on to a mark on the table when the reading on the scale 
is a. It is next focussed on the upper surface of the liquid and the reading 
is 6. More liquid is added and the observations are repeated, the corresponding 
readings being c and d. Show that the refractive index of the liquid is 

_d - b_ 

o 4- if — A — • 



CHAPTER XVII 

APPLICATIONS OF THE LAWS OF REFRACTION 

Passage of Light through a Prism.—A portion of a medium between 

two plane faces inclined to each other at an angle is called, for optical 
purposes, a prism. The line of intersection of the faces is called the 
refracting edge, and a section perpendicular to this line is a principal 
section. The angle between the faces is called the angle of the 
prism. In what follows we shall deal only with rays in a principal 
section and we shall further suppose the light is such as is obtained 
from a salted Bunsen flame. The general features attending the 

passage of light through a prism are best studied on the llartl disc. 

A 

Expekiment.—Fix a prism ABC (Fig. 102) on the disc and arrange the slit so 
that a ray OP falls on one face; the path through the prism is shown by OPQR, 
and the ray is bent away from the refracting edge. The angle between the 
initial and final directions of the ray, 8 in the figure, is called the deviation pro¬ 
duced by the prism. If the prism is rotated round the point A the deviation 
changes; turn it continually in that direction which causes the deviation to 
diminish, it is found that the emergent ray QR gradually approaches a direc¬ 
tion parallel to OP, but before reaching this position it stops and finally moves 
back again. Hence for a particular angle of incidence the deviation is a 
minimum, when this is reached it can easily be shown by measurement that the 
ZOPB»ZRQC, i.e. in the minimum deviation position the light passes 
symmetrically through the prism. 



180 LIGHT 

Experiment.—To plot a curve showing how the deviation varies with the 
angle oj incidence on the first face,^ Pin a sheet of paper on a drawing-board 
and rule lines OX, YY' at right angles to each other (Fig. 103). Draw also lines 
OP„ OPj, etc., making angles of 10®, 20°, etc., with OX. Place the prism 
with one face along OX and its refracting edge vertical at A. Let YO represent 
a ray incident normally on the face AB, this tay travels straight along to E 
and, unless total reflexion occurs, emerges in the direction NM. The angle 
between NM and OY' is the deviation produced. Stick two pins some distance 
apart on OY, and, looking through the prism in the direction MN, fix two 
other pins at M and N to be in the same straight line as the images of the first 
two. The line joining the second pair of pins is the emergent ray. Remove 

Fig. 103.—Change in the Deviation when the Angle of Incidence is varied. 

the prism and measure the deviation with a protractor. Next fix the prism 
with its face AB along OPi, the angle of incidence of the ray along YO is 10° 
and the emergent ray and deviation can be found as before. Repeat with the 
face AB along OPf, OP„ etc.; plot a curve showing the deviation for different 
angles of incidence. Read from your curve what is the angle of incidence at 
minimum deviation, place the prism in the corresponding position and find 
the emergent ray. By joining the points at which the incident and emergent 
rays meet the prism get the path of the ray in the glass; show that it is 
equally inclined to the prism faces. Rule in the outline of the prism and 
measure its angle for future use. 

^ I am indebted to Mr. F. J. Harlow for this method of carrying out the 
experiment. 
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Experiment.—^Trace a ray through a prism as in the last experiment, draw 
the normal to one face at the point where the ray intersects it and measure the 
angles of incidence and refraction; hence calculate the refractive index of 

the glass. 

Image produced by a Prism.—Let P (Fig. 104) represent a source 
of light and let the ray PQ pass through a prism with minimum 
deviation. Two near rays PR, PS, are incident at slightly different 
angles, but an inspection of the curve obtained above shows that 
near the minimum the deviation varies very slowly with the angle 
of incidence, hence the deviation of these rays is practically equal 
to that of PQ. It follows that the inclination of the rays to each 
other is unaltered by their passage through the prism, hence if the 

Fia. 104.—Formation of on Imago by a Prism. 

emergent rays are produced backwards they will meet at a point P^ 
whose distance from the prism is equal to that of P. (This is not 
quite true unless the thickness of the glass is neglected, P should 
be a considerable distance away.) P' is the virtual image of P. 
When the prism is in any other position the corresponding rays are 
unequally deviated, they no longer diverge from a point after 
refraction and no true image is formed. Whenever it is necessary 
to produce a well-defined image the prism must be placed in the 
minimum deviation position. 

Experiment.—Use a vertical pin as object and trace rays through a prism. 
Show that the emerging rays do not diverge from a point except in the 
minimum deviation position. Fix another pin by the parallax method to 
coincide with the imago in the latter case; for this purpose the second pin must 
be long enough to be seen over the top of the prism. Show that image and 

object are equidistant from the first face.* 

Measurement of Refractive Index by means of a Prism.—^Let PQRS 
(Fig. 105) be the path of a ray through a prism and S the deviation 
produced. Draw the normals QN, RN to the prism faces and let 

* Barton and Black, “ Practical Physics,” p. 87. 



182 LIGHT 

the angles of incidence and refraction be as shown in the figure. 
Then from A OQR 

8= Z.OQR + Z.ORQ 
-=(^OQN-~ 2IRQN) +(^ORN- iLQRN) 

= (h — ^1) +(4 — ^2) 

= ii +1*2 (^1 + ^2) 

But the interior angles of the quadrilateral AQNR together equal 
four right angles, and as the angles at Q and R are right angles 

LA + ^N = 2rt. Z.s 
Also f 1 + fg + N = 2 rt. Z. 8 

A^ri+fj 

In the minimum deviation position ii = and 

and 

and 

A = 2ri 
S = 2ii — 2ri 

= 2tj[^ — A 
S -f- A 

Now the refractive index of the prism material 

/i = sin t’l/sin 
8 +A 

sin 

sin ■ 
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This equation shows that can be Ccilculated when the angle of 
the prism and the minimum deviation have been measured. An 
accurate method of making these measurements will be given later. 

Example.—The minimum deviation and angle of a prism have been 
measured in a previous experiment (p. 180), calculate the refractive index from 
these results. 

When the prism angle is very small (S + A) is also small, hence 
in the above equation the sines may be replaced by the angles them¬ 
selves and 

/A 
S +A 

A 

aS = (/a-1)A 

Fio. lOG.—Refraction at a Concave Spherical Surface. 

Expehiment.—Make a hollow prism out of glass i)lates with an angle not 
greater than 10®. Fill it in succession with water and aniline and measure the 
deviation by the pin method. Taking /x for water as 1'33 find the refractive 
index of aniline using the last equation. 

Refraction at Spherical Surfaces 

Image formed by Refraction at a Spherical Surface.—Let AM 
(Fig. 106) represent a concave spherical surface whose centre of 
curvature is C and pole A, and let the medium on the left have a 
refractive index /x relatively to the medium on the right; €,g. let the 
medium on the right be air, that on the left glass. Let P be a small 
object on the axis, PM any ray meeting the surface ; we require to 
find where the refracted ray MS cuts the axis. Produce SM to meet 



184 LIGHT 

the axis at Q, then Q is the point whose position is to be calculated. 
CMN is the normal at M, hence L PMC is the angle of incidence i 
and L SMN == L QMC the angle of refraction r. 

Then 

From A PMC 

from A QMC 

dividing the 2nd by the 1st 

_ sin PMC 

^ “ sm~QMC 

PM _ si^C 

PC sin i 

QM _ sin C 

QC sin r 

QM PC __ sin i 

QG ‘PM-Brnr""^ 

Limiting ourselves to the case whore M is near A, as in the corre¬ 
sponding case for reflexion, we may put QM = QA, PM = PA, 

and 
QA PC 

QC PA 

Put PA = u, QA = V, CA = r and measure ail distances from A, 

QA CA-PA t) r-u 
then ^ r= — 

CA — QA PA r — V u 

fiur — fiuv = vr — vu 

Divide throughout by uvr and rearrange the terms, then 

V u r 

This equation enables us to calculate the distance QA when the 
other quantities are given. Exactly the same result holds for all 
the rays starting from P, provided they are incident near A, hence 
after refraction all rays diverge from Q and this point is the image of 
P. The same equation is true for a convex surface if the usual sign 
convention is used. Thus in Fig. 107, where the lettering is the same 
as before, 
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From A PMC 
PM 
PC 

QM 

sin C 

sin PMC 

sin C 

sin C 

sin (tt — i) 

Similarly from A QMC ™ = 
QC sm r 

and -IX 

/x== 

QM PC _sm i 

QC*PM"^siiI7^ 
QA PC_ V w + (—-r) 

QC PA ^ 

V 

V — r 

sin C 

sin i 

as in tlie first case. It should be remembered that u and v are the 
distances of the object and image respectively from A, and that all 

Fia. 107.—Refraction at a Convex Spherical Surface. 

distances are to be measured from this point with the usual sign 
convention. If an eye could be placed in the medium on the left 
the point P would appear to be at Q. The apparatus used in the 
following experimental verification of this formula is due to Dr. 
R. S. Clay. 

Experiment.—Pour water into a circular glass crystallising dish 15 cms. 
or more in diameter and place it on a drawing board. Fasten a pin into a flat 
block of lead and put it in the water at P (Fig. 108). Look into the water from 
S and find by the usual pin method the direction of several rays emerging 
near A. Measure PA = u, and the diameter of the dish; taking /x = 1/1*33 cal¬ 
culate the distance of the image from A. Rule in the outline of the dish and 
produce the refracted rays backwards until they meet; measure the distance 
QA and compare it with the calculated value. 

Example.—^The experiment was used to find the refraction index of tur¬ 
pentine; the following numbers were obtained, 18 cms., u=sl2*l ems., 
r as 7 cms., whence *= 1*45, in the dinction air to turpentine. 
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Graphical Construction of Images.—Suppose P in Figs. 106 and 
107 is very distant, then the incident rays are parallel with the 
principal axis, and all the refracted rays meet at a point called the 
second principal focus; the distance of this point from A is the 
second focal length. This length /ocan be found if we put m = oc, 

and therefore 1/m = 0, in the above 

- fir 
equation ; we get v =f2=-^* 

fi 1 

Similarly there is a point such that 
all the rays coming from it are 
parallel after refraction; this is 
called the first focal point, and its 
distance from A is the first focal 
length /j. In this case the image 
is infinitely distant and therefore 

= /x/oo = 0 ; hence from the 

equation we obtainu^fiz=:-- . 
fi 1 

We can make use of these focal 
points to construct graphically the 
image of any small object in a 
manner similar to that employed on 
p. 153. This is left as an exercise for 
the Student Refraction at spherical 

a Spherical Surface. surfaces only becomes of practical 
importance when the light emerges 

into the air again, for this tw^o refractions arc necessary and we 
have to deal with a lens. 

Lenses 

Passage of Light through a Lens.—A lens may be defined as a 
portion of a transparent, refracting, medium bounded by two surfaces 
which are most frequently parts of spheres or cylinders. The lenses 
we shall consider are those bounded by spherical surfaces having a 
common normal, the plane being regarded as a sphere of infinite 
radius. Lenses are divided into two classes, those which are thicker 
at the middle than the edges are called convex, those which are 
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thinnest at the middle are concave. Fig. 109 shows three of each 
type. The principal axis of a lens is the line joining the centres of 
curvature of the faces. If one surface is plane the principal axis is 
perpendicular to this face and passes through the centre of curvature 
of the other. 

Experiment.—Place a glass convex lens on the Hartl disc and allow a 
number of rays to fall on it parallel with the principal axis ; the beam is rendered 

A 
\l 

y 
li . J 

Double 
convex. 

Plano¬ 
convex. 

Concavo- 
convex. 

Double 
concave. 

Plano¬ 
concave. 

Convexo- 
concave. 

Fia. 109.—Types of Lens. 

convergent and provided we deal only with the part near the axis all the rays 
meet at a point F behind the lens (Fig. 110, A). A concave lens causes the rays 

Fia. 110 (A and B).—Passage of Light through a Lena. 

to diverge, but if the emergent raj^s are produced backwards they meet at a 
point F in front of the lens (Fig. 110, B). 

When a number of rays fall on a lens parallel with the principal 
axis they are made to converge to or diverge from a point; this 
point is the principal focus and its distance from the lens is the focal 
length of the lens. With the usual sign convention the focal length 
of a convex lens is negative, that of a concave lens is positive, all 
distances being measured from the lens. The focal length is the same 
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no matter which surface is presented to the incident light. A point 
on the opposite side of the lens to the principal focus and the same 
distance away is called the first focal point, the principal focus just 
defined is then called the second focal point. 

This converging or diverging effect of a lens is explained by a 
reference to Fig. Ill, A and B. In the first we have two sets of 
truncated prisms of different angles arranged symmetrically about 
an axis with the base of each prism turned towards this line. The 
prisms furthest away from the axis have the largest angle and they 
produce the largest deviation of a ray. Since a prism bends rays 
towards its base such an arrangement will bend all rays towards the 
axis, or will make a beam more convergent. If the number of 

Fig. Ill (A and B).—Illustrating the Action of a Lena 

prisms is largely increased while their height is correspondingly 
diminished the figure approximates to the section of a double convex 
lens. Similarly the second figure shows that the section of a concave 
lens may be regarded as built up from a large number of truncated 
prisms with their refracting angles turned towards the axis. The 
refraction produced by such an arrangement will increase with the 
refractive index of the material and the angles of the prisms. If a 
lens is immersed in a liquid whose refractive index is greater than that 
of the glass the rays are deviated in a direction which is opposite to 
that obtained in the above experiment; a convex lens then causes 
a parallel beam to become divergent while a concave lens makes it 
converge. 

Suppose the path of the light to be reversed in Fig, 110, A and B, 
then F becomes the first focal point and it is seen that if the 
incident rays are directed towards or from this point they leave the 
lens parallel with the principal axis. 
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Optical Centre of a Lens.—Let C, C' (Pig. 112) be the centres of 
curvature of the faces of a double convex lens, CC' the principal axis. 
Draw from C any radius CP of the right-hand face and from C' draw 
a radius C'P' of the other face parallel to CP. Let QT' be a ray 
which enters the lens at P' and emerges at P in the direction PQ. 
Since the faces at P, P' are parallel the ray passes through as if the 
lens were a sheet of glass with parallel sides, the emerging ray is 
displaced sideways but is parallel to its original direction. Let us 

Fig. 112.—Optical Centre of a Lens. 

find the position of the point 0 where the ray in the lens cuts the 
axis. The A’s OP'C', OPC are similar, 

OC_ CP _ CA _ CA-OC 

OC' C'P' C'AT' C'A' — OC' 

the last result following from a well-known theorem in algebra.^ 

Hence 
CA _ OA 

C'A'“"0A' 

which shows that the point 0 divides AA' in the ratio of the radii 
of the faces. It is therefore a fixed point no matter what pair of 
parallel radii such as CP, C'P' are drawn. This point is called the 

* If ? = 3 == say, then a = and c : 
0 d 

! kd^ hence 

Thus each of the original fractions is equal to 
a — c 

hh---U 

h^d 
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optical centre of the lens; it is characterised by the fact that all 
rays which pass through it leave the lens parallel to their original 
direction. Conversely if the initial and final directions of the ray 
are parallel it must pass within the lens through the optical centre. 
When the radii of curvature of the faces have the same sign, as with 
convexo-concave or concavo-convex lenses, the point at which IT' 
cuts the axis is virtual^ t.c. it lies on PP' produced. In such cases 
the optical centre lies outside the lens and it divides AA' externally 
in the ratio of the radii; hence, as before, OA/OA' = CA/C'A'. If, 
as we shall suppose, the lens is thin the lateral displacement of the 
rays is small, and it may be said without appreciable error that rays 
passing through the optical centre continue their course in a straight 
line. 

Graphical Construction of Images.—We are now in a position to 
find by graphical construction the position of the image formed by a 
lens. The principles used are similar to those employed for mirrors 
(p. 153). In the figures here given F is the principal focus as defined 
on p, 187, for convex lenses it is on the side remote from the source, 
for concave lenses on the same side as the source, 0 is the optical 
centre, and F' is a point on the opposite side of the lens to F such 
that OF = OF', f.c. F' is the first focal point. The directions of 
three refracted rays are known for— 

(1) Any ray incident parallel with the principal axis passes really 
or virtually through F after leaving the lens. 

(2) Any ray passing through 0 is undeviated. 
(3) Any incident ray which passes through F' is parallel with the 

axis after refraction by the lens. 
To find the image of an object two of these rays are drawn from 

any point on it and we find w^here they meet after refraction ; this 
gives one point of the image, others may be found in a similar 
manner. 

To keep the figures clearer the object PQ is supposed to be 
entirely on one side of the axis. In Fig. 113 a it is at a distance 
from the lens greater than the focal length and the image P'Q', for 
which all three rays are drawn, is real and inverted. In Fig. 113 6 
the object is nearer the lens than F' and rays (1) and (2) are employed. 
It is seen that the image is virtual, erect, and magnified. Fig. 113 o 
represents the formation of an image by a concave lens ; three rays 
are drawn showing that the image is virtual, erect, and smaller than 
the object. 
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Conjugate Points.—The distance of the image from the lens can 
be deduced directly from the formula for refraction at a spherical 
surface. Let u be the distance of the object from the lens, and 
the radii of curvature of the first and second faces respectively, /i 

Fig. 113 (a, 6, c).—Graphica Conslniciion of Imagoe. 

the refractive index of the lens material. For the image formed by 
refraction at the first face we have 

_ 1 _ ^3 \ 
v' u fi . . (1) 

where v' is its distance from this face. In the lens the rays appear 
to diverge from this image, we may therefore regard it as the 
object when applying the formula to the second face. Let v be the 
distance of the final image from the lens; neglecting the thickness of 
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the glass, and replacing fi by If/x, since the light is passing from the 
lens into air, we have at the second face 

or, multiplying by /r, 

V V' fg 

Adding equations (1) and (2) together we get 

(2) 

1 
V 

The right side is a constant for the lens. When the object is 
very distant the emergent rays pass through the principal focus, 

in this case v =/, the focal length, u = co and - = 0. Substituting 
u 

these values we have 

Combining this with the last equation we get finally 

1_1^1 

V u f 

(3) 

(4) 

a formula very similar to that obtained for the image formed by 
reflexion from a spherical mirror. Equations (3) and (4) are im¬ 
portant and should be remembered. When numerical values are 
substituted the proper signs must be used; thus for convex lenses 
/ is negative, and for a double convex lens is negative and 
positive. Equation (4) can be used to investigate how the image 
moves when the object changes its position, although generally it is 
most useful to draw a figure as in the preceding paragraph. We 
will take the case of a convex lens; from the equation we have 

V = dividing above and below by u and putting the negative 
u -f-/ 

sign before / this becomes v = 
i -flu 

When w is infinitely great 
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fju = 0 and v = —/, t.c. the image of an infinitely distant object is at 

the principal focus. For smaller values of u, but such that u > /, 

fju is < 1, the denominator is positive and < 1, hence v >f and is 
negative, showing that as the object moves towards the lens from 

the right the image moves further away to the left. When w =/, i.e. 

when the object is at F' (Fig. 113), v = — co or the rays leave the lens 

parallel with the principal axis. If the object is nearer to the lens 
than F' u is less than f and fju > 1, hence the denominator of the 

fraction is negative and v is positive, meaning that the image is on 

the same side of the lens as the object and is therefore virtual. For 

values of u only sliglitly smaller than/, v is very great and is positive, 
but as the object approaches the lens the image moves in the same 

direction and the two coincide at the lens itself. It will be noticed 
that when the object passes F' the image moves round from 

— 00 to + • 
The reciprocal of the focal length is called the power of a lens; 

if f is given in metres the power is given in diopters. Thus a lens 

whose focal length is J metre has a power 2 diopters. 

Linear Magnification.—Expressions for the linear magnification, 

as defined on p. 156, can readily be deduced from Fig. 113 a, h, c. 
To keep the signs consistent it must be remembered that if PQ 

(figure, a) is taken as positive then P'Q' must be considered 

negative since it is drawn in the opposite direction. In order to 

avoid confusion we shall also find it convenient to put OF' = /' with 
proper sign and substitute — f for this in the final results, since f and 

/' are measured in opposite directions. In Fig. 113 c we have, 
from A’s OPQ, OP'Q' 

Image P'Q'_ OP' _ t; 

ObjectPQ - op""!/ • • • • O) 

In A^s FP'Q', FOA, 

ImaRC P'Q' FP' f-v 
Object" OA “ F6 “ / • • • W 

From A’b F'QP, F'NO, 

Image ON OF' -/' ^ / 

Object ~ PQ " PF' “ M + (-/') « +/ * • 
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Exactly the same formulae hold for a convex lens; thus in 

Fig, 113 a, from A*s OP'Q', OPQ 

— Image _ OP' — v 

Object OP ^ u 

In A’s FP'Q', FOA, 

- Image _ FP' _ OP' ^ OF^^t?-(^f) _ - {f^j) 

Object OF OF —/ / 

And from A’s F'PQ, F'OB, 

--Image OF' OF' /' -/ 

Object ““PF'"”OP~ 6F'~u--/'‘~u-i-/ 

Changing signs on both sides the last three are the same as before. 

When numerical values are substituted in these expressions the 

proper signs must be used, if the result comes out negative it means 

that the image is inverted. Conversely if the magnification is put in 

in (2) or (3) with its proper sign (negative for an inverted image) 

the focal length can be calculated if either v or w is known. 

If any two of these expressions are equated the ordinary lens 

formula is at once obtained. Thus from (1) and (3) 

u u +f 
/. uv vf = w/ 

dividing by uv/and rearranging the required result follows. This is 

perhaps the simplest method of getting the equation as it is not 

necessary to follow the details of the refraction at each face, all that 

is required is an experimental knowledge of the properties of the focal 

points and the optical centre. 

Two Lenses in Contact.—For some purposes it is necessary to pass 

light through two lenses placed in contact; let us calculate the focal 

length F of the combination, when/j and are the focal lengths of 

the separate lenses. Let u be the distance of the object from the 

system, then by refraction at the first lens an image is formed at a 
distance v\ where 

1 1 1 



APPLICATIONS OF THE LAWS OF REFRACTION 195 

Regarding this image as the object for the second lens, the distance v 
of the final image from the system is given by 

1 _ 1 ^ 1 

Adding the two equations, we have 

but 

hence 

1111 

« « /l ./ 2 

] _1 1 

t) M F 

1 _ 1 

The focal lengths must be used with their proper signs. The equa¬ 

tion tells us that the power of the combination is the sum of the 

powers of the components. 

Methods of measuring the Focal Lengths of Convex Lenses.—Ut 
method. The lens is mounted on the optical bench and a real image 

of the cross-wires is focussed on a screen which can be moved to and 

fro for this purpose. The distances from the lens of image and object 

are measured, / is then calculated from the equation ^ ^ 

with the help of a table of reciprocals. If the same value of / is 

obtained with different values of u the correctness of the equation 

is verified. 

2nd method. The image of a very distant object is focussed on a 

screen ; the distance between lens and screen is the focal length. 

Zfd method. If in the first method the wires are placed at the 

first focal point the rays are parallel after leaving the lens. Suppose 

they then strike a plane mirror at nearly normal incidence; they 

will retrace their path and form an image near the cross-wires. 

Hence mount the lens facing the cross-wires and place behind it on 

another stand a piece of plane mirror of good quality. Move the 

lens about until a clear image is obtained beside the cross-wures, the 

distance of this from the lens is the focal length. An image may be 

formed by light reflected from the back face of the lens, but this 

may easily be distinguished from the one sought for since it does 

not move when the mirror is tilted. 



196 LIGHT 

ith method. This is a modification of the 3rd method in which a 
different means is adopted to test the parallelism of the emergent 
rays. Look through a telescope at a distant object and pull out the 
eye-piece until a clear image is obtained ; if the instrument is now 
directed to any other object a badly defined image will be seen 
unless the light received is practically parallel. Fix the lens in front 
of the object glass and look through the combination at a page of 
printed matter. Move the latter about until it is clearly seen ; the 
rays entering the telescope are then parallel and the print is at the 
first focal point of the lens. The advantage of this and the last 
method over the first is that they require shorter distances between 
lens and object, they are therefore preferable for long focal lengths. 

bth method. Let P be the cross-wires and S the screen on the 
optical bench (Fig. 114). When the lens is placed at A an enlarged 

Fig. 114. 

image is formed at S; since the path of the light is reversible if an 
object were placed at S a diminished image would be produced at P, 
hence if the lens is shifted to B, where PA = BS, a diminished image 
of the wires is formed on the screen. Let PA == BS = c, PS = a, 
AB = 6, then in either position of the lens we have from the equation 

Jl_l_l 
V u'~^f 

1 _1_ 
h + c c ~~ / 

Q = 6 -j- 2c 

a — 6 

Substituting this value in the equation we find 

^ ia 

Hence fix the screen at a distance a from the cross-wires so that two 

Alco 

or 
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images can be found and note how much the lens has to be shifted 
to change from one to the other ; / can then be calculated from the 
above formula. If the screen is brought nearer to the wires the 
distance h is diminished until at a certain position only one image, 
the same size as the object, can be obtained. In this case 6 = 0 and 
f:=z afi. It can be shown that the image is now as near to the object 
as it is possible to get it, hence if this position be found experimentally 
the focal length is one-quarter of the distance between wires and screen. 

6th method. If the magnification and either v or w be measured 
the focal length can be found from the second or third formulae on 
p. 193. As the image is inverted the magnification must be put 
negative. A slit exactly 1 cm. wide is used as the object, and the 
image is focussed on a mm. paper scale from which the magnification 
is read off directly. The following variation gives correct results 
even for thick lenses. Arrange that the magnification is unity, 
then, keeping the lens fixed, move the slit and scale until an image 
is obtained twice, three times, etc., as large as the object. Note the 
distance through which the scale has been moved from one image 
to the next; this is the focal length. For, with proper sign. 

or —/=/— t,. 

Similarly when the magnification is two 

— 2/=/— V2 

subtracting one equation from the other 

/== 

1th method. The following convenient method of determining 
the power of a lens is due to Prof. S. P. Thompson. The same 
apparatus is used as in the last method, but the scale is fixed one 
metre from the lens and the slit is moved until a clear image is 
obtained. Let this image be m cms. long, then the power of the lens 
is (m + 1) diopters. For, in the second expression (p. 193) for the 
magnification, putting v = — 1 we get, since the image is inverted, 

— m 
f+l 

f 

— y=^ power in diopters = (m -f 1) whence 
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6th method. All the above methods are inconvenient when the 
focal length is several metres; in such cases the incident light 
should be rendered convergent by means of an auxiliary lens of 
shorter focus. The two lenses may be placed in contact and the 

formula ^ i i employed, or the arrangement shown in Fig. 115 

can be used, where C represents the cross-wires, A the auxiliary lens, 
and B the lens whose focal length is required. With the lens B 
removed an image is first obtained on a screen at P and AP is 
measured. B is next placed in position and, the light now being 
more convergent, the screen has to be moved to Q to receive the 
image. AB and BQ are measured whence BP = AP — AB can be 

Fia. 115. 

found. The image at P is to be regarded as a virtual object and Q 
is its image formed by the second lens, hence/can be found from the 
equation 

L+1=.L 
BQ ^ BP / 

Methods of measuring the Focal Lengths of Concave Lenses.—The 
difliculty in this case is that the image, being virtual, cannot be 
received on a screen. 

1st method. This will be best understood by a reference to 
Fig. 116. P is a knitting needle which is used as object and Q is its 
image, M is a small piece of plane mirror with its reflecting surface 
turned towards a second needle 0. An observer on the right sees 
two images, one of P formed by the lens, the top of this is seen 
over the edge of M, the other the image of 0 in the plane mirror; 
by adjusting the distance OM these can be brought into coincidence 
at Q, as tested by the parallax method. Then MQ = OM, and 
LQ = OM — ML; by measuring OM, ML the distance LQ = t; can be 
found, also PL = u can be measured and / obtained from the 

.111 
equation-- - • 

^ V u f 
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2nd method. The lens is placed in contact with a convex lens of 
shorter focus, the combination forms a convex lens whose focal 
length F can be determined, and tlie required focal length can be 

calculated from the equation v, = 3 + 

3rd method. The concave lens may replace B of Fig. 115 ; in 
this case the beam is rendered more divergent and the final image is 
to the right of P. The calculation is the same as before. If the 
concave lens is shifted until BP is equal to its focal length the emer¬ 
gent beam is parallel. This parallelism can be tested by either of 
the methods (3) or (4) of the last paragraph and BP = /. Owing, 
however, to optical defects it is difficult to get a well-defined 
image. 

ith method. If a number of convex lenses of known focal lengths 

Fio. lie.—Method of finding the Focal Length of a Concave Lens. 

are available it may be possible to choose one which just neutralises 
the concave lens. 

Experiment.—Hold a concave lens dose to the eye and look through it at 
a window frame ; if the lens is moved up or down the frame appears to move 
in the same direction. Repeat with a convex lens, the motions of lens and 
frame are opposed. Make use of this to find two lenses which just neutralise 
each other, their focal lengths are equal and opposite in sign. The focal length 
of the convex lens can be found by the methods given above. 

Radii of Curvature of the Faces of a Lens.—Part of the light which 
falls on a lens is reflected ; this may be used to measure the radii of 
curvature of the faces. When the face is concave the methods of 
p. 157 are applicable, if it is convex either of the following 
can be employed, the first of which is useful for convex mirrors 
generally. 

Isf method. Light from the cross-wires of an optical bench passes 
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through a short focus convex lens A (Fig. 117) and falls on the 
convex surface B. By shifting A or B it can be arranged that the 
rays meet the surface at nearly normal incidence ; when this happens 
the reflected portion retraces its path and forms an image near the 
wires. If the rays are produced to the right they evidently meet 
at C, the centre of the surface. The distance AB is measured, B is 
removed and a screen is placed at C to receive a well-defined image. 
The distance AC is measured, whence the radius BC = AC — AB can 
be found. 

2nd method. In this it is arranged that the light which enters 
the lens meets the second face normally, the rays reflected from this 
face therefore return along their path and form an image near the 
source while the transmitted rays emerge into the aii without further 

c 

Fia. 117.—Methofl of finding the Radius of a Convex Spherical Surface. 

deviation. In Fig. 118 P represents the source and C' the point 
from which the rays diverge after refraction into the lens; since 
they meet the second face normally C' is the centre of curvature of 
this face, it is also the virtual image of P formed by the light which 
passes through the lens. Its position is therefore given by the usual 

111 
lens equation - — - =:^, and as == R2, the radius of the back face, 

or 

Jl_1 

K2 w 

R2 

1 

/ 

w+7 
where/is to be used with its proper sign. To carry out the experi¬ 
ment the lens is placed on the optical bench with the convex face 
whose radius is required turned away from the wires; it is moved 
about until a clear image is obtained by reflexion from this face. 
The distance between source and lens is then u of the formula. The 
focal length must be measured by a separate experiment before R2 
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can be calculated. The lens may also be floated on a small quantity 
of mercury to increase the amount of reflected light, a small card¬ 
board pointer is placed above it and this is moved about until it 
coincides with its own image as tested by parallax. This gives 
u above. 

Refractive Index of a Lens.'—When the radii of curvature and 
the focal length have been measured, the refractive index of the 

Fia. 118.—Path of Ra3’s reflected from the Back, Convex Faow 
of a Lens. 

As exercises on the preceding methods the following experiments 
are instructive. 

Experiment.—Lay a piece of plane mirror on the floor and place on it a 

convex lens. Support a cardboard pointer in a stand above the two and 
move it up and down until it coincides with its real image ; the distance from 
lens to pointer is the focal length (This is simply a modification of the 
3rd method, p. 195). Run a film of water between the lens and mirror, this 
forms a plano-concave liquid lens whose upper face has a radius of curvature 
R2, the same as the lower face of the glass lens. Measure the focal length F 
of the combination by the same method, then the focal length /2 of the liquid 

lens is given by ~ hence f2 is known. 
/a fi 

Also 
00; K. 

where jU. is the refractive index of the liquid. 
If Rg is measured by any of the preceding methods fx can bo found. 
Experiment.—Fill a watch-glass with liquid, cover it with a plate of glass 

to ensure a flat surface and place it on a mirror as in the last experiment. Find, 

9 

* Barton and Black, “ Practical Physics,” p. 94. 
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as before, the focal length of this plano-convex liquid lens. Replace the first 
liquid by water and again find the focal length ; then from Equation 3, p. 192, 

/^2 - f fi 

Taking /i^ * 1*33 for water find the refractive index fx of the first liquid. 

EXAMPLES ON CHAPTER XVII 

1. A small air bubble in a sphere of glass 4 in. in diameter appears, when 
looked at so that the bubble and the centre of the sphere are in a line with 
the eye, to be 1 in. from the surface. What is its true distance ? (ya = 1'6.) 
(L. *87.) 

2. A small object is enclosed in a .sphere of solid glass 7 cms. in radius. It 
is situated 1 cm. from the centre and is viewed from the side to which it is 
nearest. Where will it appear to be if the refractive index of the glass be 
1*4 ? (L. *91.) 

3. A block of transparent jelly of refractive index 1‘33 is bounded on one 
side by part of a convex surface of a sphere of radius 8 mms. Find the position 
of the principal focus within the mass of material. (L. ’98.) 

4. Constnict the path of a ray passing through a spherical boundary of a 
dense medium of given refractive index. Calculate the position of the place 
to which parallel rays passing nearly perpendicularly through the surface would 
converge if the refractive index be 1*7 and the radius of curvature 6 ft. 
(L. ’92.) 

6. A ray of light passing through a prism meets the second face at per¬ 
pendicular incidence. If i is the angle of incidence on the first face and A the 
angle of the prism, show that yx ^ sin t’/sin A. 

6. What is the greatest allowable angle of a prism in order that a ray, inci¬ 
dent on the first face at an angle of 00^, may emerge from the second face T 
{yx=l*64.) 

7. The refracting angle and the minimum deviation for a given prism are 
each 60®. Find, by means of a diagram showing the course of the minimum 
ray, the refractive index of the glass. (L. *10.) 

8. A lens forms an image one-third the size of an object and 2 ft. distant from 
itself. What is the focal length of the lens ? Where is the object ? Consider 
the case of virtual as well as of a real ima^e. Draw diagrams to illustrate your 
answer. (L. *90.) 

9. A bright point is situated on one wall of a room 9 ft. wide. A convex 
lens, 1 ft. focal length and 2 in. in diameter, is placed 3 ft. from the wall in 
the normal from the point. What is the width of the circle of light thrown 
by the lens on the opposite wall 7 (L. *96.) 



APPLICATIONS OF THE LAWS OF REFRACTION 203 

10. Show how the focal length of a convex lens depends on the curvature of 
its faces. (L. ’05.) 

11. A flat object* whose surface is a sq. mm., is placed facing an ordinary 
magnifying glass at a distance u from it; an image of the object is formed at 
a distance mu from the lens. Prove that the size of this image will be such 
that its area is m*a. Will it make any difierence whether the image be real or 
virtual ? (L. ’97.) 

12. Find the size and position of the image formed, by a convex lens of 
12 in. focal length, of the following object, viz. an arrow 2 ft. long, lying along 
the axis of the lens with its middle point 30 in. from the lens. What would 
be the size and position of the image if the arrow were turned through 90** 
about its middle point ? (L, *99.) 

13. Give a sketch of the arrangement of a lamp, slit, lens, and scale by 
means of which the image of the slit formed by the lens and reflected by a 
plane mirror may be thrown on to the scale. Trace in your sketch the course 
of a pencil of rays. (L. *01.) [This is a modification of the lamp and scale 
method of measuring deflexions, see Fig. 89.] 

14. A convex lens 2 in. focal length is held 1 in. from the eye by a person 
with distance of distinct vision of 9 in. so as to look at a small object. Where 
must the small object be placed t Illustrate your answer by a figure. (L. *02.) 

15. Draw a curve showing in the case of a convex lens the connexion between 
the distance of the object from one principal focus and the distance of the 
imago from the other. (L. *03.) [See next example.] 

16. If the distance of an object from the first focal point of a convex lens 
is z and the distance of its image from the second focal point is y, show, without 
regard to sign, that xy =/*. 

17. A convex lens of 10 cms. focal length is held in a horizontal position 
just above the surface of a liquid filling a tank 20 cms. deep. The image of a 
point 30 cms. above the centre of this lens is brought to a focus on the bottom 
of the tank. Draw a diagram of the path of the rays and calculate the index 
of refraction for the liquid. (L. *08.) 

18. The focal length of a convex lens is 10 in. It is placed in a small tank 
with parallel sides. Where is the image of a distant object formed if the tank 
is filled with (1) water, (2) a liquid of refractive index 1*63 ? Take fx for lens 
and water as 1*63 and 1*33 respectively. 

19. In method five of finding the focal length of a convex lens I is the 
length of the object and If the lengths of the two images. Prove that 

I - 

20. Use the result of Example 16 to show that the least distance between 
real image and object is 4/ for a convex lens. 

21. When a luminous point is placed on the principal axis of a convex lens (A) 
and at a distance a from it an image is formed 10 in. from the lens on the other 
side. If a second lens (B) is placed close to A the image is 15 in. ofl. Find 
the focal length of lens B and state whether it is convex or concave. (L. *85.) 
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22. An object is 20 ft. from a screen. Given two convex lenses respectively 

of 9 in. and 18 in. focal length explain how you will obtain (1) an erect and 

magnified, (2) an inverted and magnified, imago of the object on the screen. 

(L. *86.) 

23. Two thin lenses have each a focal length of 1 in. Draw to scale the 

path of a beam of light from a distant object (1) when the lenses are in contact, 

(2) when they are separated by in., (3) when they are separated by 3 in. 

(L. *94.) 

24. The plane side of a plano-convex lens is silvered and the lens then acts 

like a concave mirror of 30 cms. focal length. The refractive index of the lens 

is 1*5. Calculate the radius of curvature of the convex face. (L. ’09.) 

25. A plano-convex lens is silvered on its plane side and then acts like a 

concave mirror of 20 cms. focal length. When the convex side is silvered it 

acta like a concave mirror of 7 cms. focal length. Calculate the refractive 

index of the lens. (L. ’09. Hons.) 

20. Two convex lenses each of focal length / are placed at a distance 3/ 

apart. For what position of the object will a real image be formed by this 

combination of lenses 7 (L. ’10.) 



CHAPTER XVIII 

DISPERSION, PHOSPHORESCENCE AND FLUORESCENCE 

Passage of White Light through a Prism.—In the experiments on 
refraction that have been studied in the previous pages it has been 
assumed that the light is of a definite colour, e.g. that given by a 
sodium flame. We will now see what difierences are introduced 
when sunlight, or the light from an arc lamp or gas flame, is used. 
The fundamental observations are due to the illustrious Newton, 
who experimented with sunlight which passed through a small slit 
in the side of a darkened room. We shall find it more convenient 
to use an arc lamp as the source of light. 

Experiment,—Fix a glass prism with its refracting edge A vertical (Fig. 119), 
and place about 1 m. away from it a cardboard screen in which a narrow vertical 

slit S has been cut. Illuminate this slit from behind by means of a sodium 

flame and place on the other side of the prism a vertical white screen. With 
suitable adjustments light passes through the prism and produces a yellow 

patch on the screen at Y. Substitute an arc or incandescent gas lamp for the 

sodium flame; in place of the yellow slit at Y there now appears an extended 
patch of light of different colours. The order in which the colours come is as 

follows;—^red, orange, yellow, green, blue, indigo, violet. The red end is 

deviated less and the violet more than the yellow light which appears in its 

original position. (S" is the patch produced by the undeviated light when the 

prism is removed.) 

This patch of coloured light is called a spectrum and the white 
light is said to have undergone dispersion. If an eye is placed to 
receive the light which comes from the prism the spectrum appears 
on the backward prolongation of the rays at R'—V'. Since the rays 
do not actually come from R'—but only appear to do so, R'—V' 
is a virtual spectrum. It will be noticed that its colours are much 
purer and more brilliant than those of the real spectrum R—V. 

Experiment*—Turn the prism round its refracting edge until the minimum 

deviation position is reached; it will be found that the spectrum is shorter, 
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but its colours are much more brilliant and pure. Hence in the production 
of spectra it is advantageous to place the prism in the position of minimum 

deviation. 

The question to be answered now is, Does the prism colour the 
light during its passage through the glass or does it merely separate 
colours which are already present ? If a piece of blue glass is held 
in the path of the rays between slit and prism only the violet end of 
the spectrum appears, if a piece of red ruby glass is used instead 
only the red end is seen. The prism is therefore unable to turn 
violet light into red, or vice versa, and we conclude that the different 

colours were originally present in the white light; all the prism 
does is to make them visible by separating them from each other. 
Since the different coloured rays are deviated by different amounts 
it is clear that the refractive index of the prism varies with the 
colour of the light; the violet rays, which are deviated most, are 
said to be more refrangible than the red which are deviated least. 
It is owing to this difference in refrangibility that the rays are 
separated. That this is the correct explanation of dispersion is shown 
by Newton’s experiment of the crossed prisms. 

Experiment.—In the first experiment above the refracting edge of the 
prism is vertical and the spectrum is horizontal; hold between the prism and 
the screen a second prism with its refracting edge horizontal and its base upper¬ 
most. The red rays coming from the first prism fall on the second and are bent 
upwards, the violet rays fall on a different part and, owing to their greater 
refrangibility, are bent upwards by a larger amount. The final spectrum is 
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therefore inclined to the horizontal as in Fig. 120, where A shows the spectrum 
produced by the first prism and B that produced by the two. The direction 
of the rays, but not their colour, is altered by the second prism. 

We have spoken of seven different spectral colours, in reality 
there are a much larger number; an artist would see many more 
than seven, while a person whose colour sense is badly developed 
would probably see less. It is known 
from physical optics that the wave¬ 
length of the red rays is nearly double 
that of the violet. Light of a 
definite wave-length, and therefore 
of definite colour, is called mono¬ 
chromatic. 

Recomposition of White Light.— 
Since white light is a mixture of 
colours it ought to be possible to 
combine different coloured rays so as 
to produce white light. This can be 
done in several ways :— 

(1) Fig. 121 represents two prisms, 
exactly alike, with their refracting edges in opposite directions; 
the dispersion produced by the first is then just cancelled by the 
second and the emergent beam is white. The arrangement, in fact, 
acts like a parallel plate (p. 166) and all the rays emerge parallel to 

Fig. 120.—Newton’s Experi¬ 
ment with Crossed Frisins. 

Fiq. 121.—Recomposition of White Light by two Prisma. 

their original directions. If a piece of cardboard is held between 
the prisms to obstruct some of the light the patch is again 
coloured. 

(2) The spectrum produced by a prism may be thrown on to a 
number of strips of plane mirror from which the light is reflected to 
a screen. A number of coloured patches are seen which may be made 
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to coincide by properly adjusting each mirror, the mixture produces 
white light. 

(3) NewtorCs Colour Disc,—An impression produced on the retina 
of the eye persists for a small fraction of a second after the exciting 
cause has been removed, thus the paper sails of a child's “ whirling 
mill ” appear to coalesce into a continuous disc when they are 
revolving rapidly. This is used to mix colour impressions. A 
circular cardboard disc, capable of rapid revolution round an axis 
perpendicular to its plane, is divided into seven unequal sectors 
each of which is painted with one of the spectral colours. It is well 
illuminated and rotated rapidly when, owing to the persistence of 
visual impressions, the various colour sensations coalesce and the 
disc appears to be greyish-white. It is grey rather than white owing 
to the lack of light; if it were white cardboard, each part would 
contribute a portion of, say, red light to the image on the retina, 
whereas now only one sector does this, hence the effect is that pro¬ 
duced by a badly lighted white screen, i.e, grey. 

A Pure Spectrum and how to produce it.—It has been seen that 
unless a prism is in the minimum deviation position no definite image 
is produced by the transmitted rays (p. 181). Suppose now white 
light passes through the slit in the experiment on p. 205, each 
colour produces its appropriate image, and unless these are well 
defined they will overlap and the colours will be mixed. Such a 
spectrum is said to be impure. As the image? are more definite when 
tlie prism is placed for minimum deviation it is clear why the spec¬ 
trum is more brilliant under these circumstances. There will also 
be less risk of overlapping if the object slit and therefore each of 
the coloured images is very narrow. A still further improvement 
is obtained if the images are focussed on the screen by a lens, which 
may be placed in either of the positions shown in Fig. 122 A and B. 
All the red rays are then brought to a focus at R and the violet ones 
at V. Even when the prism is placed for minimum deviation no 
true image is formed unless the incident rays are nearly parallel 
(p. 181), hence it is advisable to use two lenses as in the spectro¬ 
scope. Fig. 123 shows the optical parts of this instrument. 

The apparatus used to produce a parallel beam consists of a 
narrow slit, S, placed at the principal focus of a convex lens C ; slit 
and lens are mounted at the opposite ends of a brass tube. This 
part of the apparatus is called a collimator. Light which starts 
from the slit and passes through the lens emerges as a beam of 
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parallel rays. The beam undergoes dispersion in the prism and then 
falls on a second convex lens A which focusses the rays into a pure 
spectrum at VR. In the spectroscope A is the objective and B the 
eye-piece of a telescope ; the function of the latter lens is to produce 
a magnified, virtual, image of the spectrum at V'R', (For Tele 
scope, see p. 235.) 

Fig. 122 B shows how it is that the virtual spectrum in the 
experiment on p, 205 is purer than the real one, for in that case the 

lens and screen of the figure are replaced by the lens and retina of 
the eye. 

In order to produce a pure spectrum it is seen that the following 
conditions must be fulfilled 

(1) A narrow slit. 
(2) Prism in the position for minimum deviation. 
(3) Incident rays nearly parallel. 
(4) A lens to bring the emergent rays to a focus. 

g* 
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Spectrum Analysis.—^The spectrum formed by the light coming 
from an incandescent solid is usually continuous like those studied 
above, but if a substance is heated under suitable conditions its 
spectrum is found to consist of a number of bright lines on a dark 
ground. These lines are characteristic of the substance and may 
be used to identify it for purposes of chemical analysis. Thus if a 
little strontium chloride is heated to volatilisation in a Bunsen flame 
its spectrum is found to consist of a number of bright red and green 
lines. Other methods of heating can also be used. 

Angular Dispersion. Dispersive Power.—The angle between two 
differently coloured rays after they emerge from the prism is called 
the angular dispersion for those rays. It varies with the angle of 
the prism and the nature of the material. If A is the prism angle, 
and the deviation produced in a violet ray for which the refractive 
index is fi^, then when A is small 

5,= (/x„-l)A(p. 183) 

Similarly for a red ray the deviation S, is 

8,= (Mr-l)A 

Hence the angle between the rays, i.e. the dispersion, is 

0 = 8^ — 8r = (/i, — n,)A 
If /xis the refractive index for the mean ray (say yellow light), the 

quantity co = ■ 
1 

is called the dispersive power of the material. 

Since refractive indices are constants for a given material it is clear 
that the dispersive power depends only on the nature of the prism 
and not upon its refracting angle. 

Achromatism. Direct Vision Spectroscope.—For many purposes 
it is necessary that rays of light should be deviated without dis¬ 
persion or be dispersed without deviation. The possibility of either 
of these can be seen from the following considerations. Let a 
number of prisms, made of different hinds of glass, be* caused in turn 
to form a spectrum under similar conditions, and let the deviation 
of the yellow ray and the length of the spectrum be measured in each 
case. It will be found that these quantities do not increase in the 
same ratio when we go from one kind of glass to another. For 
example, if the deviation produced by prism A for the yellow ray is 
twice that produced by B, the length of spectrum A will not usually 
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be twice spectrum B. By properly choosing the prism angles it 
may be arranged that either (1) the lengths of the spectra, i,e, the 
angular dispersions, are equal, or (2) the deviations of the yellow 
ray are equal. If two prisms of different glass are made to fulfil 
condition (1) and are then arranged as in Fig. 121, the dispersion of 
the first is cancelled by the second, but the deviations of the mean 
ray do not cancel, i,e. the beam is deviated without dispersion. Such 
a combination is called an achromatic prism. If instead the prisms 
fulfil condition (2), then, when placed as in Fig. 121, they will not 
deviate the yellow ray, but the beam as a whole will be dispersed. 
This is the principle of the direct vision spectroscope; the two 
prisms are placed in a tube which carries a slit at one end and a 
magnifying lens at the other, when the slit is direct towards a source 

of light the spectrum can be seen through the lens. This form of 
spectroscope is more portable than that shown in Fig. 123 but the 
dispersion it produces is less. 

Dispersion in Lenses.—As the refractive index of a material varies 
with the colour of the light, when white light passes through a lens 
dispersion will take place and the differently coloured rays will be 
brought to different foci. The violet rays being the most refrangible 
their focus will be nearest to the lens. Fig. 124 shows the path of 
the rays. PQ (figure A) shows the position at which a card must be 
held to obtain the best-defined image. If a screen is held to the 
right of this point the outer edge of the image will be coloured red, 
while further to the left it will be violet. These colour effects are 
usually seen at the edges of the field when a cheap opera glass or 
telescope is used. For many instruments it is important that they 
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should be suppressed. This can be done by combining a convex 
lens with a concave one of different focal length made from another 
kind of glass. For in Fig. 124 A the violet focus is too far to the 
right while in B it is too far to the left; in the combination these 
two effects are made to cancel each other and all the rays come to 
a focus at the same point as in Fig. 125. In practice the two lenses 
are placed in contact. Such a combination is called an achromatic 
lens; its section is built up of a number of pairs of prisms forming 
achromatic combinations. 

The Infra-red and Ultra-violet Spectra.—Up to this point our 
attention has been confined to those radiations which can be detected 

by the eye ; these form the visible spectrum, but it is easy to show 
that there are radiations extending beyond its limits. 

Experiment.—Form an arc-light spectrum and arrange that it falls on a 
thermopile which is connected to a sensitive galvanometer. The needle is 
deflected. Move the thermopile towards the red» the deflexion increases and. 
is still quite appreciable when the red end has been passed ; in fact, if a rock- 
salt or quartz prism is used the maximum deflexion occurs beyond the red. If 
the thermopile is moved towards the violet the deflexion decreases but it is still 
noticeable beyond the limits of the visible spectrum, especially with a quartz 
prism and lenses. (Glass readily absorbs these invisible radiations.) 

This shows that there are some radiations less refrangible than 
the red and others more refrangible than the violet rays; these 
form respectively the infra-red and ultra-violet portions of the 
spectrum. 

Experiment.—Expose a thermopile to the radiations from a Bunsen flame 
and note that the galvanometer deflexion is greatly reduced by the interposition 
of a sheet of glass. Glass readily absorbs infra-red radiations. 

Experiment.—Throw an arc-light spectrum in a darkened room on to a 
long strip of photographic printing-out paper (P.O.P.). After a short time the 
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paper becomes darkened, but not uniformly. The rays leas refrangible than 
the blue have practically no photographic effect, while the maximum blackening 
occurs in the extreme violet or in the ultra-violet. 

Owing to their power of promoting chemical changes such as this 
the rays in the ultra-violet are frequently called the actinic rays. 
If the light is made to pass through ruby glass before it reaches the 
P.O.P. there is no darkening as all rays except the red are absorbed. 
Hence it is possible to handle photographic plates and papers freely 
provided they are exposed only to red light. (There are special 
plates which form an exception to this rule.) 

If a clean sheet of zinc is insulated and charged with negative 
electricity it is found that the charge escapes when the plate is 
illuminated with ultra-violet light. Other effects of the rays are 
studied in the next paragraphs. 

As the infra-red rays suffer refraction in a prism they should be 
capable of being focussed by a lens. Tyndall showed this by a strik¬ 
ing experiment. A solution of iodine in carbon bisulphide is opaque 
to the rays of the visible spectrum but transmits the infra-red 
radiations freely. Sunlight was passed through such a solution and 
the invisible rays were focussed by a large rock-salt lens on to a thin 
strip of blackened platinum which quickly became red hot under 
their influence. Similarly the rays from a Bunsen burner can be 
focussed on a thermopile, if the pile is moved sideways the galvano¬ 
meter deflexion decreases to zero. 

Phosphorescenee and Fluorescenee.—In Tyndall’s experiment the 
platinum glows owing to its rise in temperature, but there are numer¬ 
ous cases where substances emit light without their temperature 
rising appreciably when they are exposed to suitable rays. Thus it 
has been known for hundreds of years that a diamond after exposure 
to sunlight glows for hours afterwards when examined in a dark 
room. Calcium sulphide (Balmain’s luminous paint) behaves in a 
similar manner. This phenomenon is termed phosphorescenee. 
Other substances, such as solutions of aniline dyes, glow only while 
they are exposed to the exciting rays; they are said to fluoresce. 
There is probably no sharp line of demarcation between the two 
phenomena. 

Expxbimbxt.—Expose some calcium sulphide to sunlight, or to the rays 
from an electric arc, for a minute. If it is afterwards examined in a darkened 
room it appears to glow with a bluish light. Heat the substance gently over a 
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Bunsen flame; the light flashes out strongly but dies away in a few minutes. 
In order to make it phosphoresce again it must be re-exposed to the light. 

Experiment.—Fill a large beaker with water and add a few drops of an 
alcoholic solution of eosine. Focus the rays from an arc on some point within 
the liquid; their path is made visible by the green fluorescent light. If an 
opaque screen is interposed the glow ceases at once. 

It is probable that under the action of the light some instable 
chemical compounds are formed, which break up again and emit 
light during the process. There are several other methods of exciting 
phosphorescence and fluorescence, with these we shall not deal 
beyond giving a well-known application. When a surgeon examines 
a patient’s hand with the assistance of Rontgen rays, he places it on 
a screen made of some substance which fluoresces under their action. 
Now flesh is transparent and bone is opaque to tlie rays, hence when 
they pass through the hand and fall on the screen fluorescence is 
produced except in the shadow of the bones. If the screen is viewed 
from the further side the position of a fracture or of any foreign 
body can easily be located. 

Effect of Different Parts of the Spectrum.—It is easy to show that 
it is the most refrangible rays which cause phosphorescence. 

Experiment.—Heat some Balmain’s paint until its phosphorescence is 
destroyed, then spread it on a strip of paper in a darkened room and throw 
on to it an arc light spectrum. Mark the position of the yellow, green, etc., 
portions. After a few minutes* exposure cut off the light. It will be found 
that the maximum phosphorescence has been produced by the violet or ultra¬ 
violet rays, while the part exposed to the red does not glow at all. 

A second important conclusion can be drawn from this experi¬ 
ment, viz. that the phosphorescent light is less refrangible, or of 
greater wave-length, than that which excited it. For the light 
emitted by the phosphorescing substance is bluish-green while the 
exciting rays were violet or even ultra-violet. This conclusion was 
supposed to hold in every case of phosphorescence and fluorescence 
and was known as Stokes’ law, but numerous exceptions to it have 
been discovered in recent years. The change in the colour of the 
light can be vividly shown with canary glass (glass coloured with 
uranium oxide). 

Experiment.—Concentrate the light from an arc on to a piece of canary 
glass, but remove the orange-yellow and green rays by interposing a sheet of 
dense blue cobalt glass. The exciting rays are cow blue-violet, but the glass 
shines with a brilliant green light. 
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We have already seen that heat destroys phosphorescence ; this 
property can be used to demonstrate the presence of the infra-red 
rays. 

Expeeiment.—Throw an arc-light spectrum on to some Balmain’s paint 
which has previously been made phosphorescent. Where the red and infra¬ 
red rays fall the glow is more vivid for a few seconds, then dies away; the 
rise in temperature they produce causes a more rapid emission of the previously 
absorbed energy. 

If a weak solution of cosine is exposed to light the path of the 
rays can be traced through the whole vessel, but as more eosine is 
added the fluorescence is concentrated at the side where the light 
enters. This is due to the strong 
absorption of the active rays by 
the solution, all the violet light is 
stopped within a short distance of 
the surface. If the transmitted 
light is thrown into a spectrum 
it will be found that the violet 
end is missing. The energy of 
the rays is absorbed and trans¬ 
formed into the fluorescent light. 

Fiq. 120.—Stokes’ Method of 
Detecting Fluorescence. 

Stokes’ Method of Detecting Fluorescence.—When the fluorescence 
is weak it may be masked by the dazzling effect of the exciting beam. 
Stokes overcame this difficulty by making use of the fact that the 
fluorescent light was more refrangible than that which caused it. 
The substance to be examined was placed at C (Fig. 126) in a box 

blackened on the inside and pierced with apertures at A and B. B 
was covered with two sheets of glass, one dark blue, the other green, 
these stopped all the red, yellow, and green light coming from a 
source placed just outside. A was covered with a yellow screen 
which did not transmit blue or violet light. Suppose the substance 
at C did not fluoresce, the blue light which entered at B was stopped 
by the screen at A and an eye placed near the latter received no 
light, thus the substance was invisible. If, however, there was 
fluorescence the blue light was transformed into green, and this 
could pass through the yeUow glass, making the object visible. 

Becquerel’s Phosphoroscope.—^If the phosphorescent light emitted 
by a substance disappears in a small fraction of a second after the 
exciting cause has been removed, special means will be required to 
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detect it. Bccquerel made an apparatus, called a phosphoroscope, 
to overcome this difficulty. The substance to be examined is placed 
in a box at A (Fig. 127). A beam of light is admitted through a 
window at B, and the observer’s eye is placed at C. D and E are 
circular metal discs which can turn rapidly round an axis XX, they 
are pierced with a number of holes which come past A at each revolu¬ 

tion ; the holes are not opposite 
each other, biit a hole in D passes 
A completely just before the corre¬ 
sponding hole in E comes alongside 
it. Hence the sequence of events 
is as follows:—The substance is 
exposed to the light coming through 
D, this disc moves forward and 
cuts off the rays, shortly afterwards 
the observer can view the specimen 
through a hole in E. Since it is 
receiving no light at this instant it 
can be seen only if it phosphoresces. 
Evidently if the speed of the discs 
and the distance between corre- 

Fio. 127.~Becquerer8 spending holes on each are known, 
It 18 possible to measure the time 
of duration of the phosphorescence. 

By this instrument Becquerel discovered cases in which the 
phosphorescence lasted for only a few thousandths of a second. 
The light from fluorescent liquids disappeared so quickly that he 
was unable to see them no matter how rapidly the discs were 
turned. 

EXAMPLES ON CHAPTER XVIII 

1. A prism, whose refracting angle A is small, is to be combined with a 
second prism so as to produce no deviation in a given beam of monochromatic 
light. If fi and fi* are the refractive indices of the prisms, calculate what must 
be the angle of the second prism. 

2. White light falls on a prism of small angle; calculate the angular dis¬ 
persion of two rays for which the refractive indices are and /a'. 

3. For a prism of small angle prove that the dispersive power is equal to the 
dispersion of the extreme rays divided by the deviation of the yellow ray. 



PHOSPHORESCENCE AND FLUORESCENCE 217 

4. A composite ray consisting of light of two colours is incident on a plane 
surface; prove that the angular separation of the rays after refraction is 

0 r= ^. tan r, where ft and ftj are the refractive indices foi the rays and 

f is the angle of refraction for one of them. [0 is small, hence we may take 
cos0 = 1, sin 0 = 0.] 

6. Define “ dispersive power.” Explain how to combine prisms so as to 
produce (a) Deviation without dispersion, (h) Dispersion without deviation of 
the mean ray. (L. *91.) 

6. Find the dispersion produced by a thin prism of angle 15°, having a 
refractive index for red light of 1*6 and for violet light of 1*6. (L. ’98.) 

7. Describe with the aid of diagrams how a double prism can be con¬ 
structed, (a) To give deviation without dispersion, and (6) Dispersion without 
deviation. (L. ’08.) 

8. If you were observing a small luminous object by a telescope not corrected 
for dispersion what appearances would present themselves on sliding the eye¬ 
piece in and out ? (L ’81.) 



CHAPTER XIX 

PHOTOMETRY 

Light as a Measurable Quantity.—^Light being a form of energy is 
capable of physical measurement; thus if light waves fall on the 
blackened face of a thermopile they produce a rise of temperature 
proportional to the energy they carry and independent of the colour 
of the light, ix. of the wave-length. It might appear at first sight 
that some such means could be used to compare the quantities of 
light emitted by different sources, but, unfortunately for the sim¬ 
plicity of such measurements, the physiological effects of light which 
are responsible for the sensation of sight vary greatly with the colour. 
The eye is most sensitive to yellowish-green; thus if a number of 
white screens could be illuminated with lights of different colours so 
that a thermopile gave equal deflexions at each, it would be found 
that those which were exposed to a yellow pr greenish light would 
appear brightest to the eye. On this account the physical or calori¬ 
metric method is useless when the light emitting properties of two 
sources are to be compared, and it has to be replaced by a physio¬ 
logical or photometric test. The comparison of quantities of light 
under these conditions is termed ‘‘ photometry.*' 

Intensity of Illumination. Illuminating Power.—Before describ¬ 
ing the methods of measurement some of the terms to be used must 
be defined. Let a screen be exposed to a source and suppose that a 
quantity of light Q falls in each second on a small area S, then Q/S, 
which is the quantity falling on unit area, is called the intensity of 
illumination of the small part S. If this quantity is the same, no 
matter where the area is taken, the screen is said to be uniformly 
illuminated. When the light is unequally distributed we must 
speak of the intensity of illumination at a point. Take a small 
area S round the point in question and find the value of the fraction 
Q/S when this area, and therefore Q, is made very small; this is the 
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intensity of illumination at the point. To render the definition of 
any value it must be made clear in what units Q is to be measured. 
The unit of light is the amount that falls on a screen 1 sq. cm. in 
area held perpendicular to the rays coming from a standard candle 
placed 1 cm. away. Standard candles are made from sperm, 
they weigh six to the pound and should burn at the rate of 120 grains 
per hour. Such a standard cannot be regulated easily and is un¬ 
satisfactory for other reasons ; it is now replaced for practical pur¬ 
poses by a lamp, called the Hefner lamp, which burns amyl acetate. 
The flame of this is adjusted to a fixed height and the amount of 
light it then emits has been carefully compared with that given out 
by a standard candle. When a screen is placed at a distance of 
1 cm. from a standard candle, so that the light falls on it normally, 
its intensity of illumination is unity. 

The illuminating power of a source is the ratio of the quantity of 

Fia. 128. 

light it emits to the quantity emitted in the same time by a standard 
candle. Let a small screen be held at a cm. distance from a standard 
candle so that the light falls on it normally; its intensity of illumina¬ 
tion is unity; the illumination will become two if we add another 
candle to the first, to three if three candles are used, and so on. Hence 
the illuminating power of a source is measured by the intensity of 
illumination it produces on a small screen 1 cm. away when the 
light is incident normally. The unit of illuminating power is the 
standard candle. An incandescent gas mantle when new has ar 
illuminating power equal to about sixty candles. 

The illumination of a screen varies with the angle at which the 
light is incident. Thus let BC (Fig. 128) be a small screen which is 
receiving each second a quantity of light Q from the source P; turn 
it round its mid-point through an angle B to the position B'C' where 
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the rays meet it normally. The quantity Q now falls on the area 
B'C' and 

Intensity of illumination of BC __ Q/area BC ^ area B'C' 

Intensity of illumination of B'C' Q/area B'C'area BC 

But B'C' = BC. cos 0, as may easily be seen by dropping perpen¬ 
diculars on it from B and C, hence if I and I' are the illuminations of 
BC and B'C', 1 = 1'. cos 0. As the figure shows d is the angle of 
incidence on BC, hence this result may be put in words :—If the 
intensity of illumination is I' when the incidence is normal, it becomes 
I'. cos d when the angle of incidence is 6, 

Inverse Square Law.—It is important to determine how the 
illumination of a screen varies with its distance from the source of 
light. Consider a small source which is emitting light equally in all 
directions and imagine it to be placed at the centre of a sphere whose 
radius is Ri. If Q is the total quantity of light emitted the amount 
falling on unit surface of the sphere is Q/47rRi2; similarly if this 
sphere be replaced by another of radius R2 the light received per 
unit area is Denoting by Ii and I2 the intensities of 
illumination at the surfaces of the spheres, 

Il^Q^7rRj^2_^R22 

l2“Q/4wR22"Ri2 

that is, the intensity of illumination of a surface varies inversely as 
the square of its distance from the source, this law is the basis of 
most of the measurements in photometry. Suppose now the small 
source of light to be replaced by one which gives out so-called “ heat 
waves ; a like process of reasoning shows that the amount of radiant 
energy falling on a given area varies inversely as the square of its 
distance from the source. The inverse square law can be easily 
verified in this case with the help of a thermopile. 

Experiment.—Connect the thermopile to a mirror galvanometer (p. 369)» 
and use as source a small rose Bunsen burner. First break the circuit and read 
the zero of the galvanometer needle, then place the burner at distances of 50, 
60, 70, etc., cms. from the pile and read the galvanometer dedexions directly 
they become steady. The thermopile should be screened from the radiations 
for a short time between each reading. The numbers in the following table 
were obtained in this manner; the first column gives the distance of the 
burner from the thermopile, the second the observed defiexion, and the 
third the deflexion calculated from the inverse squaie law assuming 
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the deflexion at 60 cms. to be correct. Thus if x is the deflexion that 
should be produced at 80 cms. 

194 “■ 80« 
or a? s= 76 

The remaining numbers in the third column were calculated in the same way; 
it is seen that they agree very approximately with those found by experiment. 

Distance 
in otns. 

Observed 
deflexion. 

Theoretical 
deflexion. 

60 194 194 
60 138 135 
70 102 99 
80 76 76 
90 61 60 

100 48 43 

Another method of proving the inverse square law for radiant 
energy is shown in Fig. 129. A large metal vessel is filled with 

Fig. 129.—Method of proving the Inverse Square Law. 

boiling water and a thermopile is placed to receive the radiation 
coming from one face. When the deflexion has been noted the 
thermopile is placed twice as far away; it is found that the de¬ 
flexion is unaltered. In the first case the radiation comes from the 
area enclosed by the circle AB, in the second from that enclosed by 
CD; the diameter of CD is twice that of AB and therefore the 
areas are as 4 :1. When the distance between the thermopile and 
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the source is doubled the quantity of energy received from a given 
area is reduced to one-quarter if the inverse square law is true, but 
this decrease is just balanced by using an area four times as large. 

Photometry.—An instrument which is used to compare the 
candle-powers of difierent sources is called a photometer. It is 
found that the eye is incapable of judging the relative intensities of 
illumination of two surfaces when these arc different, but two 
observers will agree in a fairly consistent manner in estimating when 
two surfaces are equally illuminated. Hence in the comparison of 
illuminating powers it is arranged that two neighbouring patches on 
a screen are illuminated, one by each source, and the distances of 
the sources are adjusted until the patches are equally bright. Let 
Ij and I2 be the candle powers of the two sources, Rj and R2 their 
distances from the screen when the two patches are equally bright. 

Fio. 130.—Simple Photometer. 

From definition the intensity of illumination is Ii when the first 
source is 1 cm. away from the screen, hence whence the distance is 
Ri the illumination is Ii/Ri^, by the inverse square law. Similarly 
the illumination due to the second source at a distance R2 is 
hence 

or 

Rl2 R2* 

f.e. the illuminating powers are directly proportional to the squares 
of the distances from the screen when the two patches appear equally 
illuminated. A simple photometer can be made as follows: A 
piece of brass tube, C (Fig. 130), 5 cms. in diameter and 3 cms. long 
is closed at one end with thin tissue paper, the other end is covered 
with a brass plate in which has been cut a vertical slit 2 cms. high 
and 1 cm. broad. The two sources to be compared are arranged to 
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be at the same height as the slit which is turned towards them. Two 
rectangular patches of light are seen on the tissue paper ; by moving 
one of the sources it can be arranged that these patches are in contact 
and equally bright. (It is found easier to judge of this equality 
when they are in contact.) Then A receives light from Q only 
and B is lighted by P alone, hence • 

Iq_QA2 

Ip~PB2 

Rumford’s Photometer.—Another method, which is practically a 
reversal of the one just described, is here used to get the two patches. 
In front of a white screen is placed an opaque rod C (Fig. 131), P 

Fig. 131.—Rumford’s Photometer. 

and Q represent the sources of light. Two shadows of the rod are 
cast on the screen and, as the figure shows, A receives light from P 
alone and B from Q alone. One source is moved until the shadows 
are in contact and are equally dark, then the illumination of A is 
Ip/PA2, while that of B is Iq/QB^, 

hence 
Ip_]^2 

Iq'^QBs 

Bunsen’s Grease-spot Photometer.—In some form or other this is 
the one most frequently used. 

Experiment.—Run a drop of candle grease about the size of a shilling on 
to a piece of filter paper and when it has set remove most of it with a knife. 
Hold the paper between the eye and a window; the grease-spot is brighter 
than the remainder because it transmits more light. If it is viewed from the 
side from which the light is coming the grease-spot is darker than the surround¬ 
ing paper, for as it transmits more light than its surroundings there is less 
remaining to be difiusely reflected to the eye. 
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Such a grease-spot arrangement is fixed on an optical bench and 
the sources to be compared are placed on opposite sides of it. When 
the illuminations are the same on each side the light transmitted 
through the grease-spot from right to left is just balanced by that 
coming from left to right and the spot disappears. To make the 
adjustment the lamps are fixed at the ends of the bench, which is 
two or more metres long, and the spot is moved to and fro between 
them. As in the preceding cases, the illuminating powers are 
directly proportional to the squares of the distances between the 
screen and the sources of light. In accurate work the measurements 
are made in a room with dull black walls, and the spot is placed in 
a box to screen it from all light except that coming directly from a 
source under test. A pair of mirrors are also fixed at MiM (Fig. 132) 

Fig, 132.—Grease-spot Photometer. 

so that each side of the screen can be seen with the same eye, other¬ 
wise a difference in the eyes might cause error. 

Experiment.—Vat Ihe Bunsen photomeier to prove the inverse square law. 
Fix one candle on one side of the spot and a group of four, placed as close together 
as possible, on the other. Move the screen until the spot disappears, the 
group of four will then be found to be approximately twice as far from the 
screen as the single candle. If the inverse square law is true each candle in 
the group produces at the grease-spot an illumination equal to 1/2* of that 
produced by the single candle. Hence the illuminations should be of equal 
intensity when four candles are used at the greater distance, and this the 
experiment shows to be the case. Another, and more satisfactory method, 
is as follows:—Compare the candle-powers of two sources, then move them 
closer together and compare again at various distances apart. As I,/I| = R, */R|* 
the ratio of the squares of the distances from the grease-spot should be constant; 
this equation is a direct consequence of the inverse square law, hence if it can 
be proved to hold the inverse square law is true. 

EXAMPLES ON CHAPTER XIX 

1. How would you determine experimentally the quantity of light reflected 
at different angles by a piece of plane glass ? (L. ’08.) 
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2. A 10 c.p. lamp is placed 1 metro from a surface. At what distances 

must gas flames of 14 and 16 c.p. respectively be placed so as to produce an 
equal illumination of the surface ? (L ’03.) 

3. Two lamps A and B are placed 60 cms. and 80 cms. respectively from a 
Bunsen photometer and it is found that the grease-spot disappears. Find the 
ratio of the candle powers. When a sheet of glass is interposed between lamp 
B and the photometer it is found that, to produce a balance, this lamp must be 
displaced 10 cms. Find what percentage of the incident light is reflected by 
the glass. 

4. Light from a 32 c.p. lamp falls on a silvered mirror and is reflected thence 
to a grease-spot photometer. The distance from lamp to screen vid the mirror 
is 160 cms. If the mirror reflects 90 per cent, of the light falling on it where 
must an 8 c.p. lamp be placed in order that the grease-spot shall disappear ? 

6. Two lamps of 8 and 32 c.p. are fixed 120 cms. apart. Where, on the 
line joining them, must a screen be pUced so as to be equally illuminated 
by each t 



CHAPTER XX 

THE EYE AND OPTICAL INSIRUMENTS 

The Photographic Camera.—One of tlie simplest applications of the 
principles explained in the foregoing chapters is the photographic 
camera. By means of a convex lens a real image of the object to be 
photographed is focussed on to a glass plate whose surface is coated 
with certain silver salts. Fig. 113 a, p. 191> shows the path of the 
rays. The blue-violet and ultra-violet rays produce chemical changes 
in the salts which, by treatment with various solutions, are made to 
produce a permanent record of the image. To obtain good definition 
an achromatic lens must be used. The linear size of the image is 
approximately proportional to the focal length of the lens. (See 
Astronomical Telescope, p. 235.) 

The Optical Lantern.—This is an apparatus for throwing on to a 
screen an enlarged image of an object such as a lantern slide. The 
optical parts are shown in Fig. 133. AB is the slide, E the achro¬ 
matic projecting lens, and A'B' the image. Only those rays are 
drawn which pass through the optical centre of the lens. Owing to 
the magnification, which is equal to v/u (p. 193), the light which 
starts from the object is spread over a much larger area in the image, 
it is therefore necessary that the slide should be strongly illuminated. 
For this purpose a powerful source of light, such as an arc, is placed 
ftt D and the divergent rays are concentrated on to the slide by two 
large convex lenses, called the condenser, at C. Where a weaker 
source has to be used it is an advantage to place a concave mirror at 
F, then the light travelling to the left, which would otherwise be 
lost, is reflected back to the condenser and adds to the illumination 
of the slide. If a piece of apparatus is to be projected it is clear from 
the figure that its image will be inverted; to obtain the image 
upright an erecting prism is used. This is a right-angled isosceles 
glass prism silvered on its largest face; it is placed between the 
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projecting lens and the screen. Fig. 134 shows how, by reflexion, 
the relative positions of the rays are inverted, resulting in the 
formation of an upright image. 

The Sextant.—This is an instrument which is used to measure the 
angle subtended at the eye by two distant objects. It is used by 
sailors to determine the sun’s altitude, i.e. the angle which the line 

going from the observer to the sun makes with the horizontal; this 
is used in calculating their position when out of sight of land. AB 
(Fig. 135) is a graduated arc of a circle whose centre is C. A movable 
radius carries a vernier at D 
and a small vertical mirror 
at C. A second vertical 
mirror whose lower half only 
is silvered is fixed at E, and 
at T is a telescope. When Fig. 134.—Erecting Prism, 
the mirrors are nearly parallel 
suppose the telescope to be directed to some distant object such as a 
star. A ray FE comes through the unsilvered part of E and enters 
the telescope, while a parallel ray OC is reflected from C to E and 
thence also to the telescope. Two images are thus seen and these will 
coincide when the mirrors are made exactly parallel. The vernier D 
should then stand at the scale zero at B ; if it does not a small correc¬ 
tion must be made in subsequent readings. Next let it be required 
to measure the angle subtended at the observer by two objects 
situated along CM and EF respectively. That along EF is viewed 
directly through E, and the arm CD is turned until the rays coming 
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in the direction MC also enter the telescope after reflexions at C and 
E. When the two images coincide the angle required is twice 
L BCD. For suppose the path of the light to be reversed ; when 
the mirrors were parallel the ray TEC would be reflected along CO 
parallel to EF, while now it is reflected along CM. But Z.MCO is 
twice the angle through which the mirror C has been turned (p. 144), 
i.c. Z.MCO is twice Z.BCD, and Z.MCO is the angle between MC 
and EF. To save calculation each single degree on the graduated 
arm is marked as two so that the reading gives the angle directly. 

The Eye.—^The eye is shown in diagrammatic section in Fig. 136. 
It is approximately spherical in shape and is surrounded, except in 
front, by an opaque outer protective layer S called the sclerotic. In 
front the outer layer is transparent and bulges slightly to form the 
cornea D. Inside the sclerotic is a second layer, the choroid C. 
Immediately behind the cornea the choroid is coloured ; this portion 
I is the iris, it gives the characteristic colour to the eye. The iris is 
pierced centrally by a circular aperture P, named the pupil, whose 
size varies involuntarily with the amount of light passing through it. 
In a weak light it expands, while in a strong light it contracts, thereby 
protecting the inner, sensitive, portions of the eye from injury. The 
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optic nerve N passes through the two outer layers at the back of the 
eye and spreads out into a thin tissue of nerve fibres which forms a 
lining to the choroid. This layer is the retina R. Behind the pupil 
there comes the crystalline lens L, a double convex lens whose front 
and back faces have radii of curvature of about 11 mm. and 8 mm. 
respectively. Between lens and cornea is a quantity of watery fluid 
called the aqueous humour, A, and between lens and retina there is 
more fluid, the vitreous humour, V, Optically the eye acts just like 
a camera; the lens forms on the retina a real, inverted, image of 
external objects, the appropriate sensations are then transmitted to 
the brain by way of the optic nerve. For a normal eye at rest the 

principal focus of the lens falls on the retina, so that distant objects 
are sharply focussed. It follows that the images of near objects 
will fall behind the retina unless a lens of shorter focal length is used. 
This is counteracted by the process of accommodation. By means of 
muscles attached to the lens the radii of curvature of its faces can be 
reduced and hence its focal length made less. As the details of 
neither very near nor very distant objects can be seen distinctly 
there is some intermediate position at which vision is most distinct. 
This is called the least distance of distinct vision; for normal eyes 
it is about 25 cms. 

Experiment.—To prove that images on the reiina are inverted. Make a 
pin-hole in a piece of cardboard and hold it about 3 cms. in front of the eye 
facing a window. Hold a pin with its head uppermost close to the eye and 
move it across from right to left, it appears to cross the hole from left to right. 



230 LIGHT 

Also when the pin-head is opposite the hole it appears to be inverted. Since 
the pin is close to the eye its image must be upright (Fig. 113 &), hence it is clear 
that in interpreting our sensations we regard an inverted image on the retina 

as if it were upright. 

Defects of Vision. Spectacles.—The most frequent defects are 
(1) Short sight, (2) Long sight, (3) Astigmatism. 

(1) Short sight or myopia.—If the distance between lens and 
retina is too great parallel rays are brought to a focus in front of the 
retina and distant objects appear indistinct. Such an eye is said to 
be myopic or short-sighted. As an object moves nearer its image 
approaches and finally falls on the retina without accommodation. 
The distance c at which this occurs is the maximum distance at which 
the short-sighted person can see distinctly. At closer range the 
accommodating mechanism comes into play, if this is normal the 
person can see clearly the details of an object which is nearer than 
the usual 25 cms. To remedy the defect a lens is required which 
shall make parallel rays appear to diverge from a point c cms. in 
front of the eye, i.e. a concave lens whose focal length is c cms., 
distant objects can then be focussed distinctly. Suppose, for 
example, that the range of vision is from 8 cms. to 20 cms.; a lens 
of focal length 20 cms. is required. Let x be the nearest point of 
distinct vision through the lens ; then a point x cms. away must 
appear to be 8 cms. distant, or v = 8 when u = x, 

• 1 _1__1 
’'8 ®‘~20 

and X = 13 cms. 

i.e. the range instead of being from 8-20 cms. is now from 13 cms. 
to infinity. 

(2) Long sight or hypermetropia.—In cases of long sight the focal 
length of the lens is too large and parallel rays are brought to a focus 
behind the retina. Consequently the accommodating mechanism 
must always be in use and the least distance of distinct vision is 
greater than 25 cms. It is only convergent pencils that can be 
properly focussed with the eye at rest. The glasses to be used vary 
with the purpose for which they are required. Suppose, for example, 
that the least distance of distinct vision is 40 cms,, and that rays 
converging to a point 20 cms. behind the eye can be sharply focussed 
with relaxed accommodation. Then for reading purposes the least 
distance of distinct vision must be made normal, while for outdoor 
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work parallel rays must be clearly focussed with the eye at rest. In 
the first case if an object is 25 cms. distant its image must appear 
40 cms. away on the same side of the lens, i,e, v = 40, w = 26, 

40 25 

and /= — 66 cms. 

or a convex lens of 66 cms. focal length is required. 
For outdoor work parallel rays must be made to converge to a 

point 20 cms. behind the eye, i.e, a convex lens for which f =20 cms. 
is required. With increasing age the accommodating mechanism 
becomes imperfect and the focal length of the eye lens cannot be 
altered sufficiently to allow of near objects being sharply focussed. 
This defect is called presbyopia. For example, suppose the nearest 
distance of distinct vision is 40 cms.; for reading purposes this has 
to be reduced to the normal, and, from the example above, it is seen 
that a convex lens of 66 cms. focal length is required. 

(3) Astigmatism.—In some eyes the surfaces of the cornea or the 
lens do not form parts of spheres, generally a vertical section shows 
a stronger curvature than a horizontal one. In such cases horizontal 
and vertical lines are brought to a focus at diSerent distances 
and the eye is said to be astigmatic. The necessary correction is 
obtained by the use of lenses which are portions of cylinders. 

In some cases the defect may not be the same for both eyes 
and difierent lenses must be employed. 

Magnifying Power.—Our estimate of the size of an object depends 
not only on its actual dimensions but also on its distance. Per¬ 
spective is based on this fact. Thus the metals of a railway appear 
to approach each other as they recede in the distance, the moon 
appears to be as large as the sun although it is known to be much 
smaller, and the height of a distant church spire increases relatively 
to ourselves as we get nearer to it. In each case we base our estimate 
on the angle that the body subtends at the eye. In most cases we 
unconsciously correct our estimate by making allowance for the 
distance factor; when this is impossible or difficult our judgment 
may be far from the truth; for example, in the case of the sun and 
moon just mentioned, or in a landsman’s estimate of the length of a 
ship at sea. Similarly when we view an object through a telescope 
the image may appear greatly magnified, although calculation may 
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show that its linear dimensions are less than those of the object. 
When an optical instrument is said to magnify we mean that it causes 
the image to subtend at the eye a greater angle than the object does. 
But the latter angle will vary with the observer’s position ; in order 
therefore to get an exact definition of magnifying power the circum¬ 
stances must be stated under which the object is viewed directly. 
Any optical arrangement which apparently increases the angle sub¬ 
tended at the eye by a distant object is called a telescope. With 
such instruments, as the object is distant, the angle it subtends 
when seen with the naked eye will be practically independent of slight 
motions of the observer. Hence we get the following definition :— 
The magnifying power of a telescope is the ratio of the angle sub¬ 
tended at the eye by the image to that subtended by the object as seen 
directly at its actual distance. 

With microscopes or reading lenses the object is much nearer; 
for the instrument to be any advantage it must cause the image to 
subtend a larger angle than the object would do, supposing the 
latter to be placed in its most favourable position, i.e. at the nearest 
distance of distinct vision. Hence the magnifying power of a micro¬ 
scope or reading lens is defined as the ratio of the angle subtended at 
the eye by the image to that subtended by the object seen directly at 
the nearest distance of distinct vision.^ 

The student must not confuse these definitions with that of 
the linear magnification given on p. 156. In that case we were 
concerned only with linear dimensions, while here we are dealing 
with angular magnification. It would perhaps conduce to clearness 
if the terms linear and angular magnification were always used to 
differentiate the two quantities. 

The Simple Microscope or Reading Lens.—It has been seen (p. 193) 
that a convex lens produces a virtual, erect, and enlarged image of 
any object which is nearer to it than its principal focus. This is the 
purpose of a reading lens or magnifying glass. Other things being 
equal, the image subtends the largest angle at the eye when the 
latter is placed close to the lens. Let AB, A'B' (Fig. 137) represent 
object and image respectively, and let us suppose that the latter is 
at the nearest distance of distinct vision D. Let OP = m. Then 
the angle subtended by the image = A'B'/D, and the angle 

^ These angles in practice are small, hence they are given in circular measure 
by dividing the linear dimensions of the image or object by the corresponding 
distance from the eye. 
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Bubtended by the object when it is placed at the nearest distance of 
distinct vision == AB/D. 

But 

and 

and 

Hence the magnifying power = A'B'/D -f- AB/D = A'B'/AB 

AB u u 

1 

U / 

. 
• / 

- =1 + 7 
« / 

Hence the magnifying power = 1+5^ 

value of the focal length. 

where / is the •mmericaX 

Example.—The magnifying power of a reading lens of 5 cms. focal length 
is 1 -f = (). (See also Example 5, p, 241.) 

Compound Microscope.—In the compound microscope (Fig. 138) 
two convex lenses are used and the magnification takes place in two 
steps. The lens 0 which the light first enters is called the objective, 
that by which the final image is formed is the eye-piece E. The 
object AB, which must be well illuminated, is placed at a distance 
from 0 slightly greater than the focal length of this lens and a real, 
inverted, and magnified image is formed at PQ. The rays pass on 
through the eye-piece and form the final image A'B' as in the last 
paragraph. Let U be the distance of the object and V that of 

10 
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its image PQ from 0, u and v the distances of PQ and A'B' respec¬ 
tively from E, and / the focal length of the latter lens. Then, from 
definition, 

the magnifying power: 
A'B'/v 

AB/D ' 
D 

Also 

and 

A'B' _ 

’ AB ' t) 

PQ 
AB" 

^Q~'' 
A'B' 

*"■ AB " 

(1) 

V 

'u 

V 

u 

V 

'u' 

Fio. 138.—^The Compound 
Microscope. 

Substituting in (1) we get the 

magnifying power = - . — 
U M 

If the final image is at the 
distance D we get, as in the last 
paragraph, 

w / 

and magnifying power = ^1 -f 

In practice there is found to be 
less strain on the eye if the image 
is viewed with relaxed accommoda¬ 
tion, in that case A'B' is at infinity, 

and the magnifying power: 
V D 

u7 
In both cases the magnifying power is increased by reducing/. 

If an objective of shorter focal length is used the distance U must 
be reduced in order that the real image PQ may be formed in its 
previous position, and the expressions just obtained show that the 
magnifying power is increased. Hence each lens must have a short 
focal length. If a cross-wire or scale is to be placed in the eye-piece 
for purposes of measurement (p. 42) it is fixed in the plane PQ 
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An actual microscope is a much more complicated affair than the 
simple form described. 

The Astronomical Telescope.—^Like the microscope this consists 
of two convex lenses called respectively the objective and eye-piece. 
As the object under observation is usually very distant the rays 
coming from any point on it are parallel, and the real, inverted, 
image PQ formed by the objective is situated in the focal plane of 
this lens, i.c. OP = F, where F is the focal length of the lens. This 
image is magnified in the usual way by the eye-piece. Fig. 139 shows 
the path of the rays. It is easy to see that F should be large if large 
magnifications are required, a difference in this respect from the 
microscope. For, in the notation of the last paragraph, calling the 
object AB, 

PQ F 

and, as F is very small compared with U, this is practically F/U, of 
the linear magnification produced by the objective is proportional to 
its focal length. To calculate the magnifying power of the instru¬ 
ment notice that the angle which the object AB subtends at the eye 
is practically equal to that which it subtends at the objective, since 
OE is small compared with U. 

Hence angle subtended by object = AB/U 
and the angle subtended by image = A'B'/v 

But 

A magnifying power = 

and 

PQ_ 
AB 

^B'_ 

PQ"“" 
A'B' 

A'B' 

AB 
V 

U 
V 

u 
V r 

AB ““U'm 

U 

V 

and the magnifying power = 
AB 

U_V 

V ^ u 

If the image is to be viewed with the unaccommodated eye, PQ 
must be at the focus of the eye-piece, i.c. w =/, also V = F, 

•*. magnifying power = 
F 

7 



236 LIGHT 

A large F means that the instrument, as sketched above, will 
have an unwieldy length; to overcome this difficulty the rays in 
some field glasses are reflected up and down the tube three times 
before they meet at PQ, hence a shorter tube can be used. The 
objective should be achromatic and it should have a large diameter 
in order that it may throw a considerable amount of light into the 

image PQ. Some telescopes used by astronomers have objectives 
whose diameter is 3 feet or more. Any cross-wires used in measure¬ 
ments are placed in the plane of PQ. 

Galileo’s Telescope (Opera glass),-~In addition to its length the 
astronomical telescope has the disadvantage that the final image is 

inverted. Each of these inconveniences is avoided in the Galilean 
telescope (Fig. 140), which can be used where large magnifying power 
is unnecessary. The object-glass is a convex lens 0, which, as in 
the last case, would form a real, inverted, image at PQ, but before 
the rays can come to a focus they pass through a concave lens E 
which constitutes the eye-piece. The distance EP is slightly greater 
than or equal to /, and the rays instead of meeting at PQ form an 
erect virtual image (Fig. 113 c). If EP =/ (the focal length of the 
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eye-piece), the emergent rays are parallel and the image can be viewed 
with relaxed accommodation. A calculation exactly the same as 
before shows that the magnifying power is F//*. A disadvantage of 
this type is the loss of light; if Figs. 139 and 140 are compared it 
will be seen that in the former the rays cross each other immediately 
behind the eye-piece, and an eye placed at this point receives all the 
light that has entered the objective. In the present case, owing to 
the divergence of the rays, only a small proportion can enter the 

Fio. 141.—Newton’s Reflecting Telescope. 

eye and the image is less bright. For this reason the Galilean 
telescope cannot be used where large magnifying power is necessary. 

Reflecting Telescope.—For astronomical observations telescopes 
with large objectives are required, hence their manufacture is a very 
diflBicult and costly process. Now the purpose of the objective is to 
form a well-illuminated real image PQ, and for many purposes this 
may be done as conveniently by means of a large concave mirror, 
which costs much less than a large lens, and is already achromatic 
since the rays are not refracted. An instrument constructed on these 
lines is called a reflecting telescope. Fig. 141 shows one form due to 
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Newton. The concave mirror C collects the rays and throws them 
into a real image PQ which is observed in the usual way through an 
eye-piece E. In order that the observer’s head may not obstruct 
the incident light the rays are reflected through a right angle by a 
small plane mirror S. The magnifying power is F//, where F is the 
focal length of the mirror. 

The student should set up each type of telescope and measure 
their magnifying powers. 

Experiment.—To measure the magnifying 'power of a telescope. Make a 

vertical graduated scale on a black-board, with the chalk lines about 6 cms. 
apart, and focus the telescope on it. Scale and telescope should be at the 
opposite ends of a large room. Observe the image with one eye and the scale 
directly with the other; this may be difficult at first, perhaps the easiest way 

is to look at the scale and gradually bring the head up to the eye-piece, focussing 
the telescope if necessary. Arrange that scale and image are clearly seen 
without parallax. The number of scale divisions equal to one division on the 
imago can then be found, and this is the magnifying power since image and 
object are the same distance from the eye and therefore the angles they subtend 
are proportional to their linear dimensions. 

Spectrometer.—The optical parts of the spectrometer have 
already been described (p. 209), the complete instrument is shown in 
Fig. 142. The collimator C is fixed, but the slit at its further end 
can be moved nearer to or further from the lens by the rack and 
pinion P. The astronomical telescope T turns round a vertical axis, 
the angle through which it rotates is measured by a vernier V which 
moves with it over a graduated circle; it carries cross-wires in 
front of the eye-piece, and eye-piece and wires can be moved together 
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by the rack and pinion Q. The table which carries the prism can be 
levelled by three screws to get the refracting edge of the prism 
vertical; it also rotates round the same axis as the telescope, its 
position with reference to the graduated circle being given by a 
second vernier. 

Experiment.—To adjust the collimator for parallel light. Focus the eye¬ 
piece on the cross-wires; this adjustment must not afterwards be disturbed. 
Direct the telescope towards some distant object and focus by means of Q 
until there is no parallax between the image and cross-wires. This part of the 
apparatus is now adjusted for parallel light, but it is only a preliminary in the 
adjustment of the collimator. Put the telescope in line with the collimator 
and view the illuminated slit. By means of P arrange that there is no parallax 
between the slit image and the cross-wires. As none but parallel light is focussed 
by the telescope the rays from the collimator must then be parallel. The 
instrument may now be used for the following experiments. 

Experiment.—To show that when a mirror is turned through an angle $ the 
reflected ray is turned through 2$. As this is a direct consequence of the law of 
reflexion its experimental verification may be regarded as a proof of the law. 
Place a prism on the spectrometer table in the position indicated by Fig. 143, 
so as to receive on its reflecting faces the light coming from the collimator. 
Turn the telescope into the position RQ, where the slit image coincides with 
the vertical wire. Read each vernier. Turn the table through 6® and note 
how far the telescope must be moved to bring the wire and slit into coincidence 
again. This angle will be very approximately 10®. Repeat for different 
angles. 

Experiment.—To measure the angle at which light is incident on the prism 
face. Read the vernier when the telescope is in direct line with the collimator; 
the prism must be removed for this observation. Next receive in the telescope 
the light reflected in the direction QR (Fig. 143). The angle 0 between the 
two positions of the telescope is given by the difference of the readings. But 
Z PQR — TT — Ot and Z PQR is also the sum of the angles of incidence and 
reflexion, i.e. is twice the angle of incidence i. 

Hence = w — ^ 

and ♦ = - — - 
2 2 

Note the reading of the prism table and calculate what it would be for normal 
incidence; knowing this zero reading the prism may be fixed so that the 
angle of incidence has any desired value. 

Experiment.—To measure the aTtgle A of a prism. Fix the prism in the 
position shown in Fig. 143, and get the image of the slit into coincidence with 
the cross-wires, first when the telescope is in the position RQ, and secondly 
when it is directed along VT. The Z ROV measures the rotation of the tele¬ 
scope. Now the prism faces arc inclined at an angle A, hence (p. 144) the 
reflected rays are inclined at an Z 2A, and Z ROV — twice the angle of the 
prism. (See also Ex. 15, p. 242.) 
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Expbbiment.—To measure the refractive index of the prism. Monochromatic 
light must be used for this experiment. First measure the prism angle as in 
the last experiment. Next turn the prism into the position shown in Fig. 123, 
and receive the refracted rays in the telescope. Turn the table in that direction 
which causes the deviation of the rays to diminish and follow the image with 
the telescope. Note the telescope reading when the minimum deviation posi¬ 
tion is Reached and the i mage is on the cross-wires. Remove the prism and read 
the telescope when it is receiving light directly from the collimator. The 
difference of the readings is the minimum deviation S» The refractive index 
can bo calculated from the formula on p. 182. 

By a combination of the third with the last experiment a curve 
showing the deviation for different angles of incidence can be plotted 
in a more accurate manner than that already given on p. 180. 

Fiq. 143.—Method of measuring the Angle of a Prism. 

The Spectroscope.—A spectroscope is used merely to identify 
lines in the spectrum of any substance ; its purpose may be served 
by a spectrometer, for if the same prism is always placed in the 
minimum deviation position for sodium light the cross-wires can be 
made to coincide with any line, and the vernier reading will always 
be the same for a given line. Fig. 144 shows another method of 
making the observations. The apparatus is a spectrometer without 
a graduated circle but with the addition of a third tube K, this 
carries at its outer end S a small glass scale fixed at the principal 
focus of a convex lens which is placed at the inner extremity of the 
tube. C represents the collimator and T the telescope receiving the 
refracted rays. Light coming from E is reflected from the second 
face of the prism and enters the telescope along with the light under 
examination. The lines of the spectrum are thus seen distributed 
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along a graduated scale; they may easily be identified from 
their positions on this scale if the prism is placed in the minimum 
deviation position for sodium light, and the tube R is adjusted to 

bring the yellow rays on some standard mark. To increase the 
dispersion two or more prisms may be used. 

EXAMPLES ON CHAPTER XX 

1. A camera is used to take a photograph of a distant spire. Prove that 
the length of the imago is proportional (nearly) to the focal length of the lens. 

2. A lantern slide 3" X 3" is placed 1 ft. from a lamp of 250 c.p. By means 
of a lens an image of 10 ft. side is thrown on a distant screen. Find the 
intensity of illumination of the clear parts of the image. 

3. A telescope is focussed on a distant object so that the image appears 
at the least distance of distinct vision. Prove, with the notation already used. 

F/ f\ 
that the magnifying power y I ^ gj 

4, Prove that the magnifying power of a reflecting telescope is F//, where 
F and / are the focal lengths of the concave mirror and eye-piece respectively. 

5. Show that the magnifying power of a reading lens is ^1 4- when 

the lens is held at a distance a from the eye, and the image is formed at the 
least distance of distinct vision. What conclusion do you draw as to the best 
position of the eye T 

fl. Calculate the magnifying power of a simple magnifying lens of i in. 
focal length held close to an eye whose least distance of distinct vision is 8 in. 
(L, ’02.) 

10 
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7. If the projecting lens of an optical lantern has a focal length of 8 in. 
and is 15 ft. distant from the screen, find the size of the picture if the slide is 
3"' X 3". Compare also the illuminations of the slide and picture. (L. ’09.) 

8. The object glass of a microscope has a focal length of 1 in., and the eye¬ 
piece of in. The lenses are fixed 4 in. apart and focussed on an object so as 
to form a virtual image 10 in. from the eye-piece. Calculate the magnifying 
power and make a diagram showing the passage of two rays, coming from a 
point on the object not on the axis, through the microscope. (L. ’09.) 

9. A person whose nearest distance of distinct vision is 16 cms. uses a lens 
of 5 cms. focal length to magnify a small object. What is the distance of the 

object when in focus and what magnification is obtained t (L. *10.) 

10. An object viewed through a convex lens of 6 in. focal length held 
close to the eye appears to be 10 in. away. Find the actual position and 
the magnification. Why is it necessary to state the position of the eye with 

respect to the lens T (L. *10.) 

11. Explain the action of a lens when used as an eye-glass. A man who 
can see most distinctly at a distance of 6 in. from his eye wishes to read a 
notice at a distance of 15 ft. ofi. What sort of spectacles must he use, and 

what must be their focal length ? (L. *89.) 

12. A short-sighted person has distinct vision at 5 in. What kind of lens 
should he use, and of what focal length, to enable him to read a book 20 in. 
from his eyes ? (L. *95.) 

13. Suppose a short-sighted person can see an object clearly only when it 
is placed at a distance not exceeding 8 in. What kind of lens should be used, 
and of what power, in order that if placed close to the eye it should enable 
objects that are 48 in. away to be clearly seen ? (L. *01.) 

14. A sliort-sighted person can see distinctly objects at distances ranging 
from 10 to 20 cms, from the eye. Give the focal power or dioptric strength 
of suitable spectacles and calculate the new near and far points. (L. *08.) 

15. A prism is placed on the table of a spectrometer and the image formed 
by reflexion at one face is viewed in the telescope. The prism is now turned 
about the refracting edge through an angle A until the reflected image is seen 
in the second face, the telescope remaining fixed. Prove that the angle of the 
prism is (ir — A). 



CHAPTER XXI 

VELOCITY OF LIGHT 

Various common experiences show clearly that the velocities of 
light and sound are very difierent. Thus the flash of a distant gun 
is seen some seconds before the report is heard, and we see the 
lightning some time before we hear the thunder which originates at 
the same instant. It was first shown from astronomical observa¬ 
tions that the velocity of light is perfectly definite, although it is so 
great that the most refined experiments are required to measure it. 
The difficulty of a direct measurement will be apparent from the 
following illustration. Suppose two observers furnished with stop¬ 
watches are situated due south of a gun and one mile apart. When 
the gun is fired let each note the instant he hears the report; the 
difference between the times gives the interval required by sound 
to travel one mile. This will be about five seconds. If now they 
note the instants at which they see the flash it is found that it 
appears to them simultaneously; in order that one observer shall 
see it one second after the other they must be separated by a 
distance of 186,000 miles I 

Romeros Method.—X Danish astronomer, named Riimer, first 
succeeded, about 1675, in measuring the velocity of light. The event 
he observed from different positions was the eclipse of one of the 
moons of the planet Jupiter. In Fig. 145 let S represent the sun, 
Ej the earth, and J Jupiter. One of Jupiter’s satellites M moves 
completely round the planet once every two days, and during part of 
each revolution it is eclipsed to an observer on the earth. Now when 
the earth is at its distance from Jupiter is changing very little 
from day to day and the time between successive eclipses can be 
determined accurately; hence the instants at which future eclipses 
should occur can be predicted with precision. At a later date the 
earth and Jupiter will be on opposite sides of the sun; let E2 and J 
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be the new positions. It was found while the earth was moving to 
E2 that the eclipses took place after their predicted times, but when 
the position Ej was reached observation and prediction were in 
agreement once more. The maximum discrepancy occurred when 
the earth was at E2 ; in this position the eclipse was 16*5 minutes 
late. This can be explained if it be supposed that light takes 16*6 
minutes to travel over the distance E2E2. Now, the distance of the 
earth from the sun is 92,000,000 miles, hence E2E2 is 184,000,000 
miles, and it is traversed by light in 990 seconds. Thus the velocity 

of light = ~ 186,000 miles per second. 

The Aberration Method.—About half a century later the English 
astronomer Bradley noticed that the apparent positions even of very 

Fig. 145.—^Romer’s Method of measuring the Velocity of Light. 

distant stars varied slightly with the direction in which the earth 
was moving in its orbit. He showed that this was due to the velocity 
of light. Let BA (Fig. 146) represent the direction in which light is 
travelling with a velocity V, and suppose a telescope is pointed along 
this line so that the image of a star should come on the cross-wires. 
Let the velocity of the earth in its orbit be v in the direction AC. 
While light is travelling from B to A the telescope moves to the 
parallel line CD and the star image does not fall on the wires at C 
but appears a distance CA to the left. In order that the image shall 
fall on the wires the telescope must be tilted initially in the direction 
AD, then when light enters the objective at B the cross-wires are 
at E, and by the time the light reaches A the wires have been moved 
to this position to receive it. Evidently 

v AC sin ADC 

V^DC^'sinDAC 

The angle between the apparent and true directions of a star is 
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called its aberration, this is L ADC in the figure. These angles and 
V can be found by astronomical means and hence V can be calculated. 
Neither of these methods is susceptible of great accuracy; the two 
following do not depend on astronomical observations and the 
second one possesses the further advantage that it enables us to 
measure the velocity in different media. 

Fizeau’s Method.—The principle of this method is shown in 
Fig. 147. Let S be a source of light, M a plane mirror, and T a 
toothed wheel which can be rotated very quickly. Light starts 
from S, passes through a space between the teeth, and falls normally 
on the mirror M whence it is reflected back along its path. An 

Fio. 146.—^To Illustrate the 
Aberration of a Star. 

Fio. 147.—Showing the Principle of 
Fizeau's Method. 

observer at S sees an image of the source in the mirror. Suppose 
now the wheel is put in motion; it may happen while the light is 
travelling from T to M and back again that a tooth has moved up 
to a position previously occupied by a space, the returning rays will 
then be cut off and the image will be eclipsed. If the speed of the 
wheel is doubled the light which passes through one space returns 
through the next and the image reappears. In Fizeau’s experiments 
the wheel had 720 teeth and the distance TM was several miles. Let 
V be the velocity of light, I the distance TM, and T the time in 
seconds of one revolution of the wheel when the first eclipse takes 
place. Then the time required for a tooth to move into the position 

T 
previously occupied by a space is secs. = f, since the 

circumference is divided into (720 X 2) equal parts; during 
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this time light travels from T to M and back again, i.e, over 
a distance 21, 

Hen«. V = 
t T 

In one experiment Fizeau found that the wheel made 12*6 revolu¬ 
tions per second when the first eclipse took place and I = 8633 metres, 
hence T = 1/12*6. Substituting these values V = 313,000,000 
metres/sec. 

This is rather larger than the usually accepted value, which is 
about 300,000,000 metres/sec. 

Fig. 148 shows the apparatus used. Light from the source Q 

passed through a lens and fell on a sheet of glass P inclined at 45®, 
from this it was reflected to a lens L and emerged in parallel rays. 
About 8000 m. away these rays fell on a second lens which caused 
them to converge on to the mirror M. From this they retraced their 
path to the plate P. Some of the returning light passed directly to 
the lens E and thence to the eye, hence the eclipses could be observed. 
It will be seen that EL really forms a telescope with the rim of the 
wheel T at the common focus of the two lenses. 

Foucault’s Method*—This method can be worked in a room of 
moderate size. Its principle is shown in Fig. 149. S is a well- 
illuminated narrow slit, P a plane mirror which can rotate rapidly 
round a vertical axis at 0, M a concave mirror whose centre of 
curvature is at 0. Suppose the mirror is at rest in the position OP ; 
light from S travels to 0, is reflected to M, and, meeting this mirror 
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normally, retraces its path to S. Suppose next that the mirror OP 
is rotating. While the light is going from 0 to M and back again 
the mirror turns through a small angle 0 into the position OP'. The 

Fio. 149.—Foucault’s Method of measuring the Velocity of Light. 

rays are now reflected along OS' and the image of the slit 
is at S'. 

Also 

or 

L SOS' = 20 (p. 144) 

"^OS 

®“20S 

Hence by measuring these two distances 0 can be found. Let t be 
the time taken by light to travel from 0 to M and back again, T the 
period of revolution of the mirror, and V the light velocity. 

Then V = 20M/«, and t is also the time that the revolving mirror 
takes to turn through an angle 0. 
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To turn through an angle 27r the mirror requires T secs. 
0 

to turn through an angle 6 the mirror requires -. T. secs. 
Ztt 

Hence 

' iiT ' 

20M 
r ‘ 

SS' ^ 

' 20S * 27r 

Stt 08 

' T ‘ SS' 
OM 

and all the quantities on the right can be found by experiment. The 
lighting and observing parts of the apparatus are shown in Fig. 149 
(below). S is the slit, R a plane glass plate, L a lens which makes 
the light converge on M. If the lens is not used the rays from the 
slit diverge and only a small proportion of them reach the concave 
mirror, in that case the image S' is very faint. Part of the return¬ 
ing rays are reflected by R into an eye-piece Q ; the slit S' is formed 
by these rays and can be viewed by an eye placed immediately behind 
the lens. The displacement when the mirror rotates is measured by 
cross-wires moved by a micrometer screw. If the length OM is 
occupied by a long tube filled with liquid the experiment determines 
tlie velocity of light in the liquid. When monochromatic light is 
used it is found that 

velocity of light in air , . . 
—\—^7—rr~r: •—n—= refractive index of the liquid (p. 168). 
velocity of light m the liquid ^ 

This result shows why it is that the refractive index of a sub¬ 
stance is constant when the angle of incidence is varied. 

EXAMPLES ON CHAPTER XXI 

1. Describe Foucault’s method of measuring tho velocity of light. If red 
and blue light travelled with different velocities in air how would the appearance 
presented to the observer be modified ? (L. ’87.) 

2. How do we know that red light travels more quickly than blue light 
inside glass 7 (L. ’00.) 

3. A beam of light is reflected by a rotating mirror on to a fixed mirror 
which sends it back to the rotating mirror from which it is again reflected and 
makes an angle of 18® with its original direction. The distance between the two 
mirrors is 10* cms., and the rotating mirror is making 375 revs, per sec. 
Calculate the velocity of light. (L. *07.) 

4. In an experiment for measuring the velocity of light by Foucault’s 
method the fixed mirror was distant 3 km. from the revolving mirror, which 
made 600 revs./sec. The angular deviation of the return ray was 7® 12'. 
Calculate the velocity of light from these data. (L. *08.) 



CHAPTER XXII 

SIMPLE HARMONIC MOTION 

Introduction.—The t^rm sound is used, like the term light, in two 
senses, to denote {!) The sensation we receive through our organs of 
hearing ; (2) The physical cause of this sensation. Using the term 
in its latter sense it is a common experience that a source of sound 
is in a state of vibration. For example, the prongs of a tuning fork, 
a bell, the strings of a piano, and, as we shall see later, the air in an 
organ pipe are all in a state of vibration when they are producing 
sound. In the present chapter we will consider the conditions of 
the vibrating body, and will then proceed in succeeding chapters to 
explain how these vibrations affect the ear, and to study their 
results under different conditions. 

Study of a Vibrating Rod.—Let us consider what conditions must 
be fulfilled in order that a body may be capable of vibration, and to 
have a definite example, let us take the case of a metre stick clamped 
in a horizontal position at one end so that its other extremity can 
oscillate in a vertical plane. Whenever it is deflected there must be 
a tendency for it to resume its original position or shape; in other 
words it must be elastic. On account of the elasticity a restoring 
force, named the force of restitution, is called into play whenever 
the free end of the stick is deflected, and work has to be done to 
overcome this force. Such work is stored up as potential energy. 
Suppose now the stick is released from its strained position; its 
potential energy is converted into the kinetic form, and when it 
reaches its initial position all its energy is kinetic, consequently it 
moves past its point of rest, and a restoring force in the opposite 
direction is called into play; the moving body does work against 
this until all its kinetic energy is reconverted into potential energy. 
The cycle of changes is then repeated in the opposite direction. 
Hence the conditions for a vibration are (1) a restoring force must be 
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called into play when the body is deflected—in most cases this arises 
from the elasticity, (2) the body must be capable of storing potential 
energy, (3) capable of possessing kinetic energy. A pendulum pro¬ 
vides another illustration of a vibrating body; here the force of 
restitution arises from the weight of the bob, and the potential 
energy is the weight of the bob multiplied by the vertical height 
through which it has been raised. If the end of the metre stick 
above is deflected by hanging weights to it a few simple measure¬ 
ments will show that the deflexions are proportional to the weights 
applied, provided the deflexions are small. But in equilibrium the 
hanging weight is balanced by the force of restitution; it follows 
that this force is proportional to the displacement of the end of the 
stick, and is in a direction tending to restore it to its undisturbed 
position. For small displacements this is true of all vibrating 
bodies, the force of restitution is proportional to the displacement. 
Now the acceleration of a body is proportional to the force which acts 
on it, hence when it is performing small vibrations its acceleration is 
directed towards its mean position and is proportional to the force 
of restitution, i.e. to its displacement. When a particle moves 
along a straight line so that its acceleration is always directed 
towards a point in this line and is proportional to the displace¬ 
ment therefrom the particle is said to move harmonically or 
with a simple harmonic motion. This term is usually abbreviated 
to the letters S.H.M. In most cases of sounding bodies the 
displacements are small and the motion is harmonic, it will 
therefore be convenient if we study first some of the features of 
simple harmonic motion. 

Simple Harmonic Motion.—In Fig. 150 APB is a circle of radius a; 
XX' and YY' are two perpendicular axes which meet at the centre 
0, and P is a point which is moving round the circle in the direction 
shown by the arrow with a uniform velocity v. Draw a perpendicular 
PM on to OX ; we will show that as P moves round the circle the 
point M moves to and fro along the diameter AB with a simple 
harmonic motion. Let us denote by x the displacement of M from 
0 at any instant, and by T the time that P takes to move com¬ 
pletely round the circle. T is called the period of the vibration ; in 
this time the point M performs a complete to and fro motion along 
AB. The number of complete vibrations performed each second is 
called the frequency; if N is the frequency the period T = 1/N. 
Displacements to the right of YY' are to be taken as positive, those 
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to the left as negative. Let us take as the zero of time the instant 
when M is passing through its mean position 0 in the positive direc¬ 
tion, at this moment the radius OP is crossing OY, After a time t 
OP makes an angle 0 with OY ; this angle is called the phase of the 
vibration. P is called the generating point and the circle APB the 
generating circle. In a time T the point P moves round the circle, 
t.c, through a distance 27rfl, hence 

27ra = vT.(1) 

Let CO be the angle through which the radius OP revolves in 1 sec., 
this is called the angular velocity of P. In a time T the radius 

Fio. 150.—Simple Harmonio Motion. 

turns through an angle coT, but this is the angle described in one 
complete revolution, 

therefore a>T = 27r.(2) 

27r 
From (1) and (2) v= ^ •a = coa.(3) 

This equation gives an important relation between the linear velocity 
of P and its angular velocity round 0. 

It is shown in books on mechanics that the acceleration of 
P is directed towards 0 and is equal to v^/a. To find the 
acceleration of M we have to resolve the acceleration of P 
along OA. Hence the acceleration / of M is directed towards 0 ; 
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if the acceleration of P is represented by OP the component / 
is represented by OM, 

. 
a‘ OP 

or substituting for t; from (3) 

-_ct>2a2 OM x 

a OP ~~ a o 

.*./= co^x.(4) 

Hence the acceleration of M is towards 0 and is proportional to the 
displacement, i.e. its motion is a S.H.M. 

From equation (2) it is seen that the period T = 27r/a>, hence 
whenever the acceleration of a point moving along a line is given by 
(displacement X constant) we conclude that the motion is harmonic, 
and from (2) its period is 27r divided by the square root of the constant. 
Also the angle Q is described in the time 

hence 0 = coi 
and the displacement x = OP. sin B 
or 05 = a sin .(6) 

Whenever the displacement is given by an equation like (5) it 
may be concluded that the motion is a S.H.M., and the period is 
obtained by dividing 27r by the coefficient of i. If a perpendicular 
PN is drawn to OY it can be shown in a similar manner that N 
moves with a simple harmonic motion along YY'. The displacement 
is given by y = a cos uii; this equation therefore represents a S.H.M. 
The maximum displacement of M from its mean position is called 
the amplitude of the vibration; it is the radius a m the figure. Let 
a second point P' move round the circle with the same velocity as 
P; the angle a = POP' is called the phase difference of P and P'. 
The displacement of M', the foot of the perpendicular from P' on 
oxi is 

x' = a sin P'OY = a sin (0 — a) 
/. x' = a sin (cot — a) 

This equation also represents a simple harmonic motion. 
The velocity of M along XX' is the velocity of P parallel to this 

line. The velocity of P at any instant is along the tangent PT, and 
the component parallel to OX is v cos PTO = v sin POT = v cos 
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Hence the velocity of M is o cos or, in terms of the displace¬ 
ment and angular velocity, 

vel. of M = aw.™=w.PM 

and PM2 = a2 —x2 

/. vel. of M = a>\/.(6) 

Suppose now that M is a material particle of mass m; since its 
acceleration is towards 0 there must be a force F acting upon it 
tending to bring it back to this point, and F = mass X acceleration 
= imfix. The potential energy of the particle in any position is 
the work done against this force of restitution. At A it is momen¬ 
tarily at rest and all its energy is potential; let us calculate the 
energy at this instant. The force is proportional to the displacement, 
therefore the average force is that which acts when the displacement 
is a/2. 

But F == 

A average force = moj!^ 

and the displacement at A is a, 

/. work done in displacing M from 0 to A 

= average force X total displacement 
= X a 
= 

This is the potential energy at A. At 0 all the energy is kinetic 
and must have the value just given. This follows also directly, for 

kinetic energy at 0 = \m X vel.* 

and the velocity at 0 is equal to the velocity of P, i.e. is ma. We get 
the same result by putting x = o in Equation (6), then 

(velocity)* = m*a* 
kinetic energy at 0 = 

This result shows that the energy of the vibrating particle is pro¬ 
portional to the square of the amplitude. It should be noticed that 
since T :=== 27r/ct> the period is independent of the amplitude. 

Graphical Representation of a S.H.M.—It is very convenient to 
be able to represent graphically the displacement of M at any instant. 
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Draw a line OX (Fig. 151) and mark on it equal lengths to represent 
equal intervals of time. In the figure these are shown as fractions 
of the period. Let positive and negative displacements be repre¬ 
sented by ordinates drawn above and below this line. At the 
beginning of time the displacement is zero; after T/4 M is at A 
(Fig. 150) and the displacement is a. Hence at the point marked 
T/4, (Fig. 151), an ordinate of length a is drawn. After half a period 
the displacement is again zero, and so on. The thin curve in the 
figure is the result of joining all the points so found. Since the 
displacement a; = a sin 0 it follows that the displacement curve in 
the figure is a sine curve. When the amplitude and the phase are 
known the displacement can be calculated from a table of sines and 
as many points on the curve as we choose can be found. The velocity 
at any instant can be similarly represented by a velocity curve. The 
velocity, from the last paragraph, is v cos 0, and the curve of velocities 
is a cosine curve. This, of course, is the same shape as a curve of 
sines, but its maximum ordinate is v when 0 = 0 and cos 0 = 1. 
The two curves are displaced relatively to each other along the axis 
of time by a distance T/4. These results can also be seen by con¬ 
sidering the velocity in Fig. 150. When the displacement is zero 
the velocity is o, when the displacement is a the velocity is zero, and 
so on. The dotted curve in Fig. 151 is the curve of velocities. It 
should be remembered that the curves do not mean that the 
displacements or velocities are parallel to OY but merely that their 
magnitudes are proportional to the corresponding ordinates. 

Simple Pendulum as an Illustration of As an instance of 
a motion which is nearly simple harmonic the simple pendulum may 
be taken. In Fig. 152 0 is the point of support, P is the bob of 
mass m, and OP = Z is the length of the string. Draw the vertical 
line PR to represent the weight mg of the bob. This can be resolved 
into components along and perpendicular to OP. Draw PS 
perpendicular to OP and RS perpendicular to PS, then RS and PS 
represent the two components. The component RS is balanced by 
the tension in the string, while PS represents the force which tends 
to bring the pendulum back to its mean position OQ. 

Hence restoring force PS = PR sin 0 
= mg sin 0 

force 
aud the acceleration along the arc PQ —-ss a sin 0 

mass 
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If 0 is very small sin 0 = 0 and the arc PQ = 10, or 0 = arc PQ/i. 

In this case the acceleration = g .0 
arc PQ 

The acceleration along the arc is therefore proportional to the 
displacement measured along the same curve and the motion is simple 
harmonic. The acceleration is equal to (displacement X const.), 

Fio. 161.—Graphical Representation of 
a S.H.M. 

Fig. 162.—Simpl-e 
Pendulum. 

where the constant is gjl, hence the period of a complete to and 
fro vibration is 

277 

\/ constant 
~z= 277 

From the mode of derivation it is clear that this formula holds 
only when the amplitude of the vibrations is small. The angular 
amplitude 0 should not be greater than 5°, then, as previously, T is 
independent of the amplitude, 

Exfsbimbnt.—Note the time of vibration of a simple pendulum for difierent 
lengths of the string and plot a curve shewing T* and I; this should be a straight 
line. Calculate from your observations the value of g. 

Resultant of TwoS.H.M.’s in the same Straight Line.—Let the point 
M in Fig. 150 be performing S.H.M. along the line X'X, and suppose 



256 SOUND 

the book itself is moving parallel to this line with a S.H.M. of the 
same period but of different amplitude and phase. The actual dis¬ 
placement of M is the resultant of the two motions. This displace¬ 
ment can be obtained graphically. Let the thin curve in Fig. 153 
represent the displacement of M at different times if the book were 
at rest, and let the dotted curve represent the displacement of the 
book alone at corresponding instants. In drawing the figure it has 

been supposed that the phase 
of the second motion is 
exactly a quarter of a period 
in advance of the first. Then 
at the instant represented by 
A if M alone were moving its 
displacement would be AB, 
while if the book were mov¬ 
ing and M were at rest on it 
the displacement would be 
AC. Hence an ordinate 
AD = AB + AC represents 

the actual displacement, and similarly at any other instant 
the displacement of M is the algebraic sum of the ordinates 

of the two curves. The thick curve represents the resultant dis¬ 
placement curve obtained in this manner. It is seen that the 
resultant of two S.H.M.'s of equal periods in the same straight line 
is itself a simple harmonic motion. The same method can be 
followed if the periods are unequal. Fig. 154 represents the case of 
two S.H.M.’s whose periods are as 5 : 4; the dotted curve represents 
the vibration of shorter period, and the two have been supposed to 
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have their maximum displacements at the beginning of the time of 
observation. It is clear that the resultant is no longer simple 
harmonic, and that it alternates between relatively very large and 
very small amplitudes. At the beginning, when the two have the 
same phase, the resultant is large, but when the quicker has made 

vibrations the slower has made only 2 and the phases are exactly 
opposite; the resultant at this instant is therefore small. When 
the quicker has made 5 vibrations the slower has made 4, the phases 
are again equal and the resultant is large. It is evident that the 

Fio. 155.—Composition of Two Rectangular S.H.M.*s. 

maximum displacement occurs every fourth vibration of the slower 
body. This result will be useful later. 

Resultant of Two S.H.M/s at Right Angles to each other.—The 
method of finding the resultant in such cases will be best understood 
from an example. Draw two generating circles P and P' as in Fig. 
155 with their radii proportional to the amplitudes of the motions. 
Let us suppose the frequency of P' is twice that of P. Draw two 
diameters XX', YY', at right angles to each other and drop the 
perpendiculars PM, P'N. The points M and N then perform 
S.H.M.’s. Divide the circumferences into a number of equal parts, 
number them as in the figure, and draw lines through these points 
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to form a network on the right. The points are numbered so that 1,1, 
correspond to the instants of zero phase, i,€, to the instants when 
N and M are moving through their mean positions in the positive 
directions. If a point is subject to the two S.H.M.’s its position at 
any instant is determined by the intersection of the two lines drawn 
tlirough the corresponding positions of the generating points. Thus 
suppose P is at 1 when P' is at I, and the point in question is at 0. 
When P' has reached III P has arrived at 2 and the point is at A on 
the intersection of the lines through III and 2. When P' reaches V 
P is at 3 and the point is at B, and so on. The curve shows the com¬ 
plete path of the point. The curves in Fig. 156 have been obtained 

Fiq. 150.—Lissajous* Figures. 

by a similar construction; the ratio of the periods is shown on the 
left, while above is shown the phase of the faster vibration when the 
slower is at zero phase, e,g, a phase difierence 37r/4 means that P' 
has revolved through this angle and is therefore at IV when P is at 1. 
These figures can be obtained experimentally by various devices of 
which only two need be described, 

Blackl>urn*$ Pendulum.^—A thin string about 7 ft. long has its 
two ends tied to a rod E which is fixed horizontally (Fig. 157). At 
the end of the loop a heavy lead ring B is fastened; this carries a 
glass funnel whose exit tube is fairly narrow. The string can be 
caught up as shown in the figure by a clip at A. The whole arrange¬ 
ment forms a pendulum whose length is EB for vibrations perpen¬ 
dicular to the plane of the figure, but for vibrations in the plane of 

* Barton and Black ** Practical Physics,” p. 17. Other figures are there giyen. 
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the figure it behaves like a pendulum of length AB. Hence if the 
bob is pulled outwards in a slanting direction and then released the 
two motions are combined; their relative periods can be adjusted 
by moving the clip A. A record of the motion can be obtained by 
putting fine, dry, sand in the funnel and allowing it to run out on a 
sheet of paper placed immediately below. The purpose of the lead 
ring is to keep the height of the centre of gravity of the bob constant 
as the sand escapes, otherwise the periods would vary. 

Fiq. 157.—Blackburn’s Fio. 158.—Apparatus to produce 
Pendulum. Lissajous’ Figures. 

Lissajous* Figures.—Two thin metal strips are supported as 
shown in Fig. 158, so that one, A, can oscillate in a horizontal and 
the other, B, in a vertical plane. Each strip carries at its free end 
a small piece of plane mirror. Light from a small hole C in a card¬ 
board screen falls on the mirror B, whence it is reflected to A and 
thence to the eye. If the strip B alone vibrates the spot of light is 
drawn out into a vertical line, while if A only is in motion the line is 
horizontal. When both are oscillating together the two S.H.M.’s 
are combined. The figures can be projected on a screen if a convex 
lens is placed between C and B. When produced optically in some 
such manner the curves are usually called Lissajous’ figures. 

They have an important application in the comparison of the 
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frequencies of two vibrating sources. Thus let A and B of the last 
figure represent the prongs of two tuning forks, and suppose the 
frequency of B is known to be exactly 100 per second while the 
frequency of A is very approximately 100. At a certain instant there 
may be a phase difference of, say, 7t/2 and the corresponding circular 
curve shown in Fig. 156 is seen. If one frequency is exactly equal to 
the other this curve persists as long as the oscillations last; but if 
the ratio is slightly different from 1:1 the phase difference gradually 
alters and the curves shown in Fig. 156 appear in succession, until 
the slower fork has lost one vibration on the other when the phase 
difference is again 7r/2. Let the time that elapses before the circle 
reappears be 5 secs.; in this interval the one fork has made 
6 X 100 vibrations while the other has performed {(5 X 100) ± 1}. 
A small piece of wax is now attached to fork A which causes it to 
oscillate more slowly; if the circle then takes more than 5 secs, 
to reappear it shows that the frequency of A is more nearly equal to 
100, and must therefore initially have been slightly in excess of this. 
Hence while B made 600 vibrations, A made 501, and the frequency 

501 
of the latter fork is X 100. 

500 

Experiment.—Use the Lissajoua figures to determine when the strips 

A and B (Fig. 158) have the same period, and measure the length of A. Then 
alter the length of this strip until its frequency is doubled as shown by the 

curve produ^d. Compare the lengths of A in the two cases, the ratio should 

be ll/ll» ^2* 

EXAMPLES ON CHAPTER XXII 

1. Two tuning forks are vibrating so as to give Lissajoua* figures. The 
frequency of the slowest fork is 90 per second. It is found that the same figure, 
a straight line sloping upwards to the right, recurs at intervals of 5 seconds. 

Find the frequency of the second fork. 

2. Two forks are producing Lissajous’ figures and it is found that the same 
8-shaped figure occurs at intervals of 6 seconds. If one fork has a frequency ol 

200 per second find the possible frequencies of the other. 

3. Two S.H.M.’s in the same straight line are represented by y, sin cef 

and y% «= 03 sin {wt p). Find the resultant trigonometrically and show that 

It is a S.H.M. of the same period as each of the components. 



CHAPTER XXIII 

WAVE MOTION. VELOCITY OF SOUND 

In the preceding chapter it has been shown that the motion of an 
oscillating body is simple harmonic provided the amplitude is small; 
we will now examine what effects it produces in the surrounding 
medium and how these are transmitted from one point to another. 

Wave Motion.—The two possible alternative modes of propaga¬ 
tion are illustrated by the case of a toy boat which is being sailed on 
a pond. If the boat grounds on some obstruction a short distance 
from the shore it can be moved by two methods (wading in the 
water being ruled out), either a stone maybe thrown at it, or waves 
may be set up near the bank, and these, travelling along the surface 
of the water, float it off. Similarly a tuning fork may shoot off 
particles towards the ear or it may set up waves in the surrounding 
medium which, falling on the ear, produce the sensation of sound. 
The evidence is overwhelmingly in favour of the latter alternative. 
For example, if sound is propagated by waves we should expect 
that:— 

(1) Time would be necessary for the disturbance to be propagated^— 
This agrees with common experience, for the report of a distant gun 
is heard some seconds after the flash is seen. Also sound travels 
with different velocities in different media. Thus if a person taps 
a telegraph pole a listener with his ear to a neighbouring pole hears 
two sounds, the first louder than the second. The louder sound 
travels along the wires while the other goes through the air. As 
the observer recedes from the pole the first sound is greatly weakened. 

(2) A medium is necessary,—^Light waves, as we have seen, can 
travel through vacuo, but sound waves require a material medium. 
This is shown by the following experiment. 

ExPBBiMXKT.->Hang a small eleotric bell by its wires in a large jar which 
can be exhausted and place the whole on a thick piece of felt. When the bell 
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is rung by an electric current the sound can be heard distinctly, but if air is 
pumped out it gradually decreases in loudness and is at laat heard with difficulty. 
The felt is to hinder the transmission of the vibrations through the wires and 
walls of the jar to the table top. 

In order that the medium may transmit vibrations it must 
possess elasticity and be capable of stormg potential and kinetic 
energy (p. 294). 

(3) Sound waves should be capable oj rejlexion^and rejraction.— 
Experiments given later show that this also is true. 

(4) The waves should he diffracted, t.e. they should bend round 
obstacles just like ripples on water bend round a stone and meet 

Fia. 169.—Waves along a Wire. 

again behind it. It is a common experience that we can hear a 
person’s voice round the corner of a house. 

(5) The waves should interfere,—If the medium at a certain point 
is acted upon by two sets of waves, so that the displacements due 
to each are equal and opposite at every instant, then the medium 
should be at rest. This also is established by experiment. 

Transverse Waves.—Let OA (Fig. 159) represent a rod with one 
end fixed at 0 and the other fastened to a long, loosely stretched, 
string. If the rod is made to vibrate a number of loops travel along 
the string as shown in the figure. The particles vibrate up and 
down while the disturbance travels to the left. In the figure the 
particle B has reached its maximum displacement downwards and 
is on the point of being pulled up again by the tension. Each part 
of the string undergoes in succession the same motion as the end of 
the rod, but the instant at which this occurs depends on its distance 
from A and the velocity with which the disturbance is propagated. 
Such a progressive disturbance is called a wave. The point to be 
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noticed is that although the particles only oscillate about a mean 
position their energy is carried along by the wave, matter does not 
move to the left but energy does. The distance between successive 
particles in the same phase of vibration is called the wave length. 
In the figure the wave length is CE, for each of these points is in its 
mean position and is about to move downwards. D is also in its 
mean position but is on the point of moving upwards, CD is there¬ 
fore half a wave-length. During one complete vibration of the rod 
the wave travels a distance CE or AD, the wave-length is therefore 
the distance the disturbance travels in the periodic time T. The 
velocity of the wave is the distance it travels in one second. Let V 
be the velocity, n the frequency of the vibration, and A the wave¬ 
length. Then in 1 sec. the rod makes n vibrations and the wave 
travels a distance nA, hence V = nA. Also T = 1/w, therefore 

VT = A. It can be shown that V =, / — cms./sec. if F is the 
V ^ 

tension of the string in dynes, and m the mass in gms. of 1 cm. length. 
Waves of this type are called transverse, because the displace¬ 

ments of the individual particles are transverse to the direction in 
which the wave advances. If the displacement of A is simple 

277 
harmonic and is represented by a sin cat or a sin — • t, then the 

displacement of a point Q at the same instant is given by 

a sin ^ ^ i — aj, where a is the phase difference between A and Q. 

But the phase difference going from A to D increases by 277, since 
one is a period behind the other, hence the phase of Q is 

3J % 
a == ~. 277 = r • 277 behind A. Thus the displacement of Q at any 

A±J A 
/t aj\ 

instant is given by a sin — Pitting in appropriate 

values of x and t this expression gives the displacement of any 
particle of the string; it therefore represents a simple harmonic 
wave of wave-length A and period IL advancing in the direction in 
which X increases. The velocity of all the particles at any instant 
can be represented by a velocity curve. In Fig. 159 A is moving 
upwards with its maximum velocity while B is momentarily at 
rest. The lower curve in the figure is the curve of velocities. 

Longitudinal Waves.—Let us suppose now the rod OA is vibrating 
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to and fro at the ends of a tube containing air (Fig. ICO). The air 
at B will be alternately compressed and rarefied as the rod moves 
to the right or left and carries the adjacent particles with it. When 
it is compressed it tends to release itself from the strain on account 
of its elasticity ; to do this it compresses the layers immediately to 
the right, and these in turn hand on the compression. An instant 
later A moves to the left, the air at B is rarefied, and the neighbouring 
layers move slightly in the same direction. Thus the molecules move 
alternately to the right and left and a series of compressions and 
rarefactions travels along the tube. These are represented in the 
figure by lines drawn closer together or further apart. A wave of 
this type is called a longitudinal wave ; the particles oscillate along 
the direction of the advancing wave instead of at right angles to it 
as in the last case. As before it is energy and not matter which is 

transmitted. A continuous surface which passes through all particles 
ill the same phase of vibration is called the wave front; it may be 
drawn through the particles having their maximum compression or 
any other phase. The definition of wave-length already given holds 
generally. We have supposed that the tube is filled with air, but 
a similar description would apply if it contained liquid or solid matter, 
and the tube, of course, is not necessary for the propagation of the 
waves. Newton showed that the velocity of longitudinal waves is 

given by V = where E is a modulus of elasticity and p is 

the density of the medium. In the case of solid rods the compressions 
and extensions produce momentary changes of length at the different 
parts, the elastic forces called into play therefore depend on Young^a 

/ Y 
modulus, and the velocity is V = —. A rod may be thrown 

into longitudinal vibration by clamping it at some point and rubbing 
it lengthwise with a resined cloth. In fluids the compressions bring 
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about volume changes, and it is owing to the bulk elasticity that the 
waves are transmitted ; in such cases E represents the bulk modulus. 
For gases it has been shown (p. 8) that the bulk modulus is equal 
to the pressure P, hence the velocity of sound in gases should be 

V 
P 

This result is due to Newton. 

Laplace’s Correction.—Let us calculate from this formula the 
velocity of sound in air at N.T.P. From p. 8 P = 1,013,000 dynes, 
and a litre of air weighs 1*293 gms., hence p — 0*001293. Substi¬ 
tuting these values we get V = 280 metres/sec. Actual measure¬ 
ment, however, shows that V = 332 m./sec., a difference much too 
large to be explained by experimental errors. It was Laplace in 
1816 who pointed out the source of the discrepancy. Suppose some 
gas is compressed in a cylinder by suddenly pushing in a piston, its 
temperature rises (p. 114) and makes it more difficult to compress. 
Similarly if the piston is suddenly withdrawn by a small amount the 
temperature falls, the inside pressure decreases, and more force must 
be applied to keep the piston moving outwards against the atmo¬ 
spheric pressure. In other w^ords, the adiabatic elasticity (p. 113) 
of the gas is greater than the isothermal elasticity (p. 8). Laplace 
pointed out that the compressions and rarefactions in a sound wave 
occur so rapidly that heat has no opportunity of flowing out of or 
into the gas—that is, the volume changes take place adiabatically. 
It is therefore the adiabatic elasticity which must be used for E in 

the formula V = We will calculate the adiabatic elasticity. 

Let P be the pressure and V^ the volume of a certain mass of gas ; 
suppose the pressure is increased adiabatically by a small amount p 
and the volume decreased by a small amount v. Then the 

adiabatic elasticity = 
stress 
strain 

Also from p. 113 Pv/= (P + p)(Vi — vY 

But (v,-«)^=v;(i-Y^y 

by the binomial theorem 
11 

= V, (^1 — y . y- + higher powers of j 
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Neglecting these higher powers since t>/Vj is very small 

Hence PVj = (P + p)V/(^l - y . 

, Tv . vv 
whence 

The last terra is very small since p and v are each small, hence it may 
be neglected, and 

or the adiabatic elasticity 

y ■V| 

yP 

This shows that the adiabatic is y times the isothermal elasticity P. 

Putting this in place of E we get for the velocity V = V p 
For air y = 1*40, the previous result must therefore be multiplied 

by \/r4 = 1*18, and V = 331 metres/sec., in close agreement with 
experiment. 

Effect of Pressure and Humidity on the Velocity in a Gas.—From 
Boyle’s law (p. 6) it is seen that P/p is constant if the temperature 

does not alter, hence the velocity of sound in a gas, V = 

is independent of the pressure. This has been verified by measuring 
the velocity from one mountain peak to another, the result, reduced 
to 0° by the formula of the next paragraph, agrees with the measure¬ 
ments made at ordinary altitudes. If there is a large amount of 
water vapour in the air the velocity of sound will be increased, for 
the vapour is less dense than air and hence p of the above formula is 
reduced. 

Effect of Temperature.—A change in temperature may afiect both 
the pressure and the density of a gas, to see what influence this has 
on the velocity the gas equation (p. 69) 

Tv ^ Px^i 

1 -f* ett 1 “f* 
is employed 
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If V is the volume of 1 gm. and p the density, since mass 
r= (vol. X density), we have l = vp,0TV== 1/p. Hence the equation 
may be written 

_ Pi._.Po 
p(l + clO Pi(1 + ^h) Po 

where P and p are the pressure and density at Cent, and Pq, po the 
corresponding quantities at 0° Cent. 

Thus -=--®(l + aO 
P Po 

also Vo= * 
V Po_ 

or V = VqV^ 1 "1“ 

If we put a = 1/273 we get 

Z— /'273 + r 
Vo"“\/ 273 

thus the velocities are proportional to the square roots of the absolute 
temperatures. 

Also V = Vo(l + at)^ 
= Vo(l + (by the binomial theorem) 

if squares and higher powers of the small quantity at are neglected. 

Taking Vq = 332 metres/sec. 
and a = 000366 
this becomes V = 332 -|- ‘6^. 

This shows that the velocity increases by 0*6 m. or 60 cms. for 
every degree rise in temperature. The molecular theory (p. 8) 
shows that the velocity should increase with the temperature, for 
the compressions have to be handed on by collisions between the 
molecules, and these occur at shorter intervals as the molecular 
velocities increase. If a wind is blowing with a velocity v in the same 
direction as the sound is travelling the molecular velocities are 
increased by the same amount and the velocity of sound is (V + v). 
Similarly for an opposing wind the velocity is (V — v). 
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Measurement of the Velocity of Sound in Open Air.—In some experi¬ 
ments by a French Commission two cannon were situated at stations 
in sight of each other and about 12 kilometers apart. One cannon 
was fired and the observers at the other station noted the times at 
which the flash was seen and the report heard. The flash was seen 
practically instantaneously owing to the great velocity of light, 
hence the recorded times gave the interval required by the sound to 
travel over 12 kms. The velocity of sound in the opposite direction 
was then measured in a similar manner and by taking the mean of 
the two results the effect of the wind was eliminated. Their result 
reduced to 0° was 332 metres/sec. in dry air. There are several 
sources of error in such experiments which it is diflScult either to 
remove or allow for. Thus the mean taken above will not be inde¬ 
pendent of wind velocity unless this is constant, and the temperature 
and humidity may vary from place to place. Another error arises 
from personal causes. A certain short interval elapses between the 
hearing of the sound and the recording of it by suitable timing 
apparatus such as a stop-watch, and this may be different with 
different observers. Mr. Stone endeavoured to eliminate this error 
by taking the observations as follows:—One observer was about 
600 ft. from the gun and a second about 15,000 ft. The difference 
between the times they recorded gave the time required by sound 
to travel from one to the other, but slightly in error on account of 
personal differences. If the personal equation, as it is called, were 
the same for each the recorded interval would have been correct, 
otherwise it was affected by the difference of the two. Thus if the 
first observer was 0 3 sec. late and the other 0‘1 sec. late the recorded 
interval would be 0*2 sec. too small. The two persons were next 
made to time the arrival of a sound at the same station, the difference 
between the times they recorded was the difference of their personal 
equations; this was used to correct their first observations. Greely 
has made a number of measurements in the Arctic regions over a 

wide range of temperature and finds the velocity agrees practically 
with that given by the equation V = 332 + 0*6f. 

Velocity in Water.—Colladon and Sturm measured the velocity 
of sound in the Lake of Geneva in 1827. The experiments were 
carried out at night. A bell was hung in the water from a boat and 
was struck by a lever worked from above. The same blow fired a 
charge of gunpowder, causing a flash which could be seen at a distant 
station. The sound travelling through the water was received on a 
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kind of large ear-trumpet whose lower end, sunk in the water, was 
closed by a flexible membrane while the upper end was applied to 
the ear. The time taken by the sound to travel over a known 
distance in the water could thus be found. The velocity was found 
to be 1435 metres/sec. Methods of measuring the velocity in solids 

are given later. 

EXAMPLES ON CHAPTER XXIII 

1. Explain why the rise of temperature due to compression and the fall 
of temperature due to rarefaction in a sound wave hoik tend to raise the velocity 
of propagation of the wave. (L. ’84.) 

2* How does the velocity of propagation of sound through a gas vary with 
the specific gravity and temperature of the gas ? The specific gravities of 
oxygon and nitrogen gases are as 10:14. At what temperature will the 
velocity of propagation of sound through oxygen be th^ same as that through 
nitrogen at 15® C. ? (L *93.) 

3. Upon what properties of a solid does the speed of sound in the solid 
depend ? Are all kinds of waves in a solid propagated with the same speed ? 
Why does sound travel faster in steel than in air ? (L. *97.) 

2'7r 
4. Show that the expression y = a sin ~(a? — !;<) represents a train of waves 

of amplitude a and wave-length X moving along the x axis with velocity v. 
Draw curves showing the variation of the displacement y (1) with the time at 

a point * = and (2) with at a time i = X/u. (L. *09.) 

6. A litre of hydrogen at N.T.P. weighs 0’0896 gm. Find the velocity of 
sound in hydrogen at a temperature 16® when the pressure is 750 m n,, the 
ratio of the specifio heats being 1*4, density of mercury 13*6, p ss 980. 



CHAPTER XXIV 

REFLEXION, REFRACTION, AND INTERFERENCE OF SOUND 
WAVES 

Loudness, Pitch. Quality.—If different regular sounds or musical 
notes are compared it is found that they differ from each other in 
three characteristics which are called loudness, pitch, and quality. 

Loudness.—This corresponds to brightness in optics and like it 
depends on the amount of energy carried by the incident waves. 
Tlie amount of energy in ergs which passes in one second through an 
area of 1 cm.- is called the intensity of the sound. The unit area is 
supposed perpendicular to the direction of propagation. Erect on 
this area a column of length V and section unity, where V is the 
velocity of sound. In one second all the energy in the column 
passes through the given area. To calculate its amount we note 
that the average energy W of a mass m performing S.H.M. is pro¬ 
portional to hence 

W oc (p. 253) 

If p is the density of the medium the mass of the column is Vp 
477- 

and its energy varies as -a-Vp. This expression is proportional to 

the intensity of the sound. Loudness is a physiological effect and 
depends on the ear, but the greater the intensity the louder will the 
sound be. By the method of p. 220 it can be shown tliat the intensity 
varies inversely as the square of the distance from the source. From 
the above expression it is seen that the intensity I is proportional to 
the square of the amplitude of the vibrations, hence combining the 
two results we have, if II is the distance from the source, 

I oc oc i- 
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Therefore a o: or the amplitude varies inversely as the distance 
K 

from the source. 

Pitch.—We speak in everyday language of the pitch of a musical 
note, thus we talk of the high (pitched) notes of a soprano or the low 
notes of a bass singer. The pitch of a note is determined by the 
frequency of the vibrations, the greater the frequency the higher the 
pitch. All musical notes have a definite frequency; this distin¬ 
guishes them from mere noises, such as the sound of wheels on a 
macadamised road. In this book we are concerned only with sounds 
of definite frequency. 

Experiment.—Savarfs wheel. Clamp a short strip of steel so that its free 
end rests on the edge of a circular saw or toothed wheel. When the wheel 
rotates the steel spring vibrates and a note is emitted if the frequency is high 
enough. It will be found that the pitch rises as the velocity of the wheel is 
increased. 

Experiment. Cardboard siren. A cardboard circle pierced by a ring of 
small, equally spaced, holes is mounted on an axis perpendicular to its plane 
and rotated rapidly. If a jet of air is directed on the holes the successive pufis 
succeed each other quickly and a note is produced. As in the last experiment 
the pitch rises as the disc is turned more rapidly. 

Experiment.—Strike a tuning fork to make it emit a note; as the 
amplitude decreases the loudness dies away but the pitch remains the same. 
This shows that the pitch does not depend on the amplitude while the loudness 
docs. 

Quality.—Even when two notes are of the same pitch and loudness 
they may difler from each other. Thus the notes of an organ and a 
violin are quite distinctive, and we recognise the voices of our 
acquaintances. This characteristic which differentiates one note 
from another of the same pitch is called the quality of the sound. 
It will be seen later to depend on the presence of other notes in 
addition to the main or fundamental note. 

Doppler’s Principle.—When a source, e.g. a whistle, is emitting a 
note of frequency n, a person at a distance receives in each second n 

sound waves, but if the distance between the observer and the 
source is being altered the pitch of the note is apparently changed. 
This was first pointed out by Doppler and is called Doppler’s 
Principle. Suppose the whistle is on the left, the observer on the 
right, and let each be moving to the right, the former with velocity b 

the latter with velocity c. Let V be the velocity of sound. During 
one second the whistle emits n waves, if it were stationary these 



272 SOUND 

would occupy a length V, but as in this time it moves to the right a 
distance h the n waves are now contained in a length (V — 6). Hence 
the distance apart of the waves, i.e. their wave-length, is (V — 6)/n. 
The length of the block of waves passing a stationary observer per 
second is V, hence the length passing the moving observer is (V — c). 

As the length of a wave is * 
n 

the number he receives per sec. 

= (V-c) 
n 

_n(V — c) 

This is the apparent frequency of the whistle. If either motion 
is reversed the sign of the corresponding quantity must be altered. 
It should be noted that the physical efiect of the two motions is 
different, the movement of the source alters the wave-length while 
that of the observer varies the number of waves received. The 
effect is frequently noticed ; thus the pitch of a train whistle is 
higher when the train is moving towards the observer than when it 
is receding, and the same occurs with a bicyclist’s bell. 

Sensitive Flames.—It has been shown that when a beam of light 
falls on the surface of separation of two media part is reflected and 
part refracted. Exactly the same thing happens with sound waves. 
In the study of these effects it is convenient to have some means of 
detecting the waves other than the ear, we will therefore describe 
some sensitive flames which can be used for the purpose. The first 
form can be set up by the student in a few minutes. 

Expbkiment.—Draw off a piece of glass tubing 0*6 cm. in diameter to form 
a jet about 0*5 mm. in diameter. Connect it to the gas supply and fix it about 
3 cms. below a horizontal piece of fine copper gauze. Light the gas above the 
gauze, as we have seen (p. H7) it does not burn below. If the glass jet is too 
low the flame flickers badly, adjust the height until it is just on the point of 
flickering. When a high note is sounded in its vicinity the flame ducks violently; 
it is especially sensitive to the sound of the letter «. It is an improvement 
to protect the flame with a glass chimney. 

The second form, shown in Fig. 161, is due to Lord Rayleigh.^ 
A is a brass cylinder about i cms. long • one end is closed while the 

* I am indebted to Prof. S. P. Thompson for the actual dimensions. The 
apparatus is, I believe, supplied by Messrs. Gallenkamp according to Prof. 
Thompson’s specifications. 
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other is covered with a piece of thin tissue paper. Gas from the mains 
enters at the lower side and escapes through the burning tube above 
where it is lighted. If the supply is properly adjusted the flame 
appears to be detached from the exit tube ; it is in this condition 
that it is sensitive. When sound waves of suitable frequency fall 
on the tissue paper the escaping gas is disturbed and the flame 
flickers. It is especially sensitive to explosive sounds like the 
letters p, 6, and responds violently if “ Peter Piper 
picked, etc.** is recited near it. It can be made 
more sensitive for high notes by placing over the 
orifice a plate pierced with a hole of small diameter. 

The third form is most useful but has the 
disadvantage that it requires gas at a higher pres¬ 
sure than the usual supply. Gas under pressure, 
e.g. from a steel cylinder of compressed gas, is led 
through a fine pin-hole jet and is there burnt. A 
flame about 25 cms. high is obtained whicli flares 
badly if the pressure is too large; it is adjusted 
until it is just on the point of flaring. When a 
high note is sounded the flame shortens to a length 
of a few cms. and flickers violently. The most 
convenient source of sound when sensitive flames 
are used is a Galton’s whistle, this gives a very 
high-pitched note. 

Reflexion of Sound.—The apparatus used to show the reflexion of 
“ heat waves ** (p. 160) may be used for the present purpose, except 
that the source is a Galton’s whistle and the receiver a sensitive 
flame. 

Experiment.—Incline the two glass tubes (p. 160) to each other at an 
angle of'about 120^ place the whistle at the outer end of one and the flame 
at the corresponding end of the other. The latter must be protected by a 
wooden screen from direct waves. It should not respond when the whistle is 
blown, but if a piece of cardboard is equally inclined to the tubes at their 
further ends it flares violently, showing that the angles of incidence and reflexion 
arc equal. The cardboard may be replaced by a flat bat’s-wing gas flame when 
the sensitive flame responds as before. The waves are reflected from the 
hot, and therefore less dense, layer of burning gas. The experiment with 
the concave mirrors (p. 159) may also be performed with success; the whistle 
is placed at the focus of one mirror and the sensitive flame, screened from direct 
waves, at the focus of the other. 

Echoes are due to reflexion ; sound travels from the source to a 

Fig. 161.—Ray¬ 
leigh’s Sensi¬ 
tive Flame. 

11 
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surface, which may be a wall or mountain side, and is there reflected 
back again. Whispering galleries act in a similar way. The sound¬ 
ing board above a pulpit is put there to reflect the sound of the 
preacher’s voice down to the audience. In some buildings it is very 
diflEicult to hear a speaker on account of the numerous reflexions 
which set up a series of echoes; for this reason sharp angles and 
large flat walls should be avoided in any room intended for public 
speaking. 

Refraction of Sound.—Tyndall showed that sound could be re¬ 
fracted and brought to a focus by a convex lens just like light. He 
employed a Galton whistle and sensitive flame, and for a lens a soap 
bubble filled with a dense gas like carbon dioxide was used. It is a 
well-known fact that sounds can be heard much more distinctly on 
a cold frosty morning than on a warm summer’s day. In the first 
instance the air is homogeneous and sounds travel in straight lines, 
while in the latter the temperature varies from point to point and 
the waves encounter layers of air of varying density. This causes 
them to be reflected and refracted in different directions. The 
effect can be imitated by an experiment of Tyndall’s. 

Experiment.—Set up a whistle and sensitive flame a few yards apart 
and screen the latter from all waves except those travelling direct. Place a 
large ring burner between the two; when the gas is lighted the response of 
the flame is greatly enfeebled. The effect is analogous to tho flickering of 
objects frequently noticed on hot days; this is due to the varying refraction 
of the light rays by tho unequally heated air. If the whistle and flame are 
placed on the same side of the burner the reflexion of the sound waves can 
readily be shown. 

Refraction by Wind.—It is commonly observed that sound travels 
better with the wind than against it; the reason for this was first 
given by Sir G. Stokes. Let AB (Fig. 162 a) represent a wave front 
advancing towards the left and suppose the wind to be blowing in the 
same direction. The layer of air next to the ground is at rest and the 
upper layers slide over it, hence, owing to viscosity, the velocity of 
the wind gradually increases with the height. This causes the 
higher parts of the front to advance more quickly than the lower, 
and, at some later instant, instead of occupying the position AjBi 
it is swung round to A1B2. An observer at P therefore receives the 
advancing wave. Similarly if the wind is blowing to the right the 
upper portions of the wave front are more delayed than the lower 
and it assumes the direction A1B2 (Fig. 162 h). In this case the 
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wave passes over the head of the observer at P. Combining these 
results it is clear that he will hear the sound best when it is travelling 
with the wind. 

Reflexion of Sound by a Wall or a Dense Medium.—In Fig. 163 let 
PQ represent a wall; suppose sound waves travelling in air to be 
approaching from the right and falling on it at perpendicular inci¬ 
dence. Consider what happens when a compression reaches PQ. 
The compressed layer in contact with the wall tries to relieve itself 
from its strained condition, the only way in which it can succeed is 
to push back the neighbour- _ 
ing layers, i.e, compress 
them from the left. These 
layers compress those still 
further away and so a wave 
of compression is reflected 
backwards. The displace¬ 
ments of the molecules due 
to the incident and reflected 
waves are in opposite direc¬ 
tions. Similarly when the 
layer next to the wall is 
rarefied adjacent particles 
move towards it from the right and a rarefaction travels out¬ 
wards. • The waves are said to be reflected with change of sign 
because the motions of the particles are reversed by reflexion. 
To find the state of the air in the region on the right we must draw 
the velocity or displacement curves of the incident and reflected 
waves and find their resultant as on p. 256. The reflected waves 
can be represented by a wave train moving from the left and crossing 
the wall to the right; to get their phase we notice that the air close 
to the wall is permanently at rest, hence at this point the velocities 
due to the two sets of waves must be equal and opposite at every 
instant. In Fig. 163 the thin and dotted lines are the velocity 
curves of the incident and reflected waves respectively, while the 
thick line represents the resultant of the two. In the first line, for 
t = 0, the curves have been drawn so that the velocity at the wall due 
to the incident wave is a maximum, that arising from the reflected 
wave is, from what has just been said, equal and opposite. The 
next line represents the state of afiairs |th of a period later. To 
get this we have merely to move the thin curve Jth of a wave-lengtb 

Fio. 162.—Refraction by Wind. 
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to the left, and advance the dotted curve the same distance to the 
right. The remaining figures are constructed in a similar manner. 

Remembering that the velocity of a particle is zero when its 
displacement is a maximum and vice vcrsdy (see Fig. 159), the curves 
of displacement can easily be constructed ; they arc like the velocity 

t-o 

#.|t 

Q' 

Fid. 163.—Reflexion ot Waves from a Wall. 

carves but come T/4 later. Some important conclusions can be 
drawn from the figure which show that the motion of the air difiers 
considerably from that in an ordinary wave. In the first place the 
air particles at Nj, Nj, etc. are always at rest, as is shown by the 
resultant always crossing the axis at these points. Nj, Ng, etc. are 
called nodes, they are A/2 apart, where A is the wave-length. Another 



SOUND WAVES 277 

important difference is that twice during every period all the mole¬ 
cules are momentarily at rest together, this is shown at < = 0 and 
t = T/2. Further, in a single wave train such as the incident waves 
the amplitude of the motion is the same for each particle and the 
maximum displacement is reached at different times; here the 
amplitude varies from point to point, being zero at the nodes and a 
maximum midway between them at Aj, A2, etc. The latter points 
are called antinodes. Also all the particles situated between adjacent 
nodes reach their maximum positive velocities (or displacements) at 
the same instant, while between the next pair on either side the 
velocities (or displacements) at the same moment have their greatest 
negative values. In the figure the velocity between N2 and N3 is a 
maximum at i = T/4, in the neighbouring sections Nj N2 and 
N3 N4 it is equally large but in the opposite direction. Hence the 
velocity changes sign when we cross a node. Consider next how the 
pressure varies. We will suppose that a positive velocity means 
that the particles are moving to the right. In the figure from i = 0 
to t = T/2 all the molecules between N2 and N3 are moving to the 
right, between N3 and N4 they are moving to the left, in each case 
the motion is towards N3, hence the air at this point becomes com¬ 
pressed while at N2 and N4 it is rarefied. Similarly for the other 
nodes the density is alternately greater and less than the normal. 
Half a period later the air at N3 is rarefied, that at N2 and N4 is 
compressed, and so on. The layers on opposite sides of an antinode 
and at equal distances from it are moving in the same direction with 
equal velocities, hence no variation in density ensues at Ai, A2, etc. 
Thus the nodes are the points at which the density changes are the 
greatest but the velocity and displacement of the particles are a 
minimum, at the antinodes these conditions are reversed. Vibra¬ 
tions of this character are called stationary vibrations or standing 
waves. Generally the amplitude is slightly reduced by reflexion, in 
which event the velocity at the nodes is not exactly zero. We 
have supposed that PQ is unyielding, if it represents the surface of 
a medium on the left which is denser than air reflexion will occur as 
before, but the amplitude of the reflected wave will be diminished 
as some of the incident energy will be transmitted into the second 
medium. 

The position of the nodes and antinodes can be found experi¬ 
mentally. The source of sound should be a Galton whistle and the 
detector a sensitive flame. If the latter is placed at a node it does 
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not flar6 as the molecules are not in vibration, at an antinode it is 
greatly disturbed. The position of the antinodes can be fixed 
directly by ear. One end of a piece of tubing is held close to the ear 
while the other end is moved in a direction normal to the wall; the 
pressure changes at the nodes affect the ear drum and a sound is 
heard, at the antinodes the density does not vary and there is silence. 
A.S the distance between successive nodes or antinodes is A/2 the 
wave-length can be found directly by such an experiment. Also 
V = nA, and V being known from the last chapter the frequency n 
can be calculated. By an experiment like this the frequency of the 
whistle can be found even when it is so high that the ear cannot 
detect a sound, hence the frequency at the limit of audibility can be 
fixed. 

Reflexion without Change of Sign.—Let us examine now what 
takes place when the wall of Fig. 163 is replaced by a medium less 
dense than air. Imagine a wave advancing to the left in Fig. 103 
with an amplitude a. Each layer of air receives momentum from the 
wave which it expends in setting the succeeding layer in motion. 
But when the final layer at PQ has moved througli a distance a it 
has not lost all its momentum as the lighter medium is easier to move, 
it therefore advances a further distance 6 to the left, causing the air 
behind it to be rarefied. The next layer to the riglit moves towards 
this space, and so on; thus the wave of compression sets up a reflected 
wave of rarefaction in which the amplitude is 6. As the molecules 
in the incident and reflected waves move in the same direction this 
is called reflexion without change of sign. The student can show in 
the same way that a rarefaction is reflected as a compression. At 
the surface of separation of the two media it is evident that the 
displacements are large, hence this is an antinode; the first node 
occurs one-quarter of a wave-length to the right. The curves 
analogous to those in Fig, 163 can easily be constructed; all that 
has to be remembered is that the velocities at PQ due to the two sets 
of waves are in the same direction. For example, at ^ = 0 the curve 
representing the reflected wave must be moved A/2 to the left from 
the position shown in the figure. 

Interference.—The last two paragraphs show that the motion of 
the medium is greatly modified when a second system of waves is 
superposed on the first, at some points the amplitudes are greatly 
exaggerated, at others reduced to zero. When these conditions are 
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produced the two sets of waves are said to interfere. Interference 
may also occur between waves originating from different sources. 
Let A, B (Fig. 1G4) represent two sources which are emitting sounds 
of the same period and amplitude. If the waves arrive at P in the 
same phase they will produce a large displacement and an observer 
at this point will hear a loud 
sound. If, however, the dis¬ 
tances AP, BP differ by A/2, 
or any odd multiple of this, 
the waves arrive in opposite 
phases, the displacements 
they produce are equal and 
opposite and the medium is 
undisturbed. As wo have 
supposed that the sources 
have the same period the 
same phase difference will 
persist at P while the vibrations last. These effects can easily be 
shown with a tuning fork. 

Experiment.—Let A, B represent the prongs which are vibrating to and 
fro along YY' (Fig. 164). An observer at Y is affected only by the prong A, 
as this screens off the effect of B, accordingly a loud sound is heard. Similarly 
when the prongs are approaching or receding from each other the air between 
them is compressed or rarefied, and their joint effect is to send out strong waves 
along XX'.‘ But to P, midway between these lines, when the prongs are 
approaching each other B is sending a rarefaction and A a compression, hence 
the two effects annul each other and the observer at P hears only a faint sound. 
Strike the tuning fork and rotate it round a vertical axis a short distance 
from the car, the sound alternately waxes and wanes as the ear comes into 
the positions, relatively to the fork, shown at X, P, Y'. 

Conditions for Interference.—For interference to take place it is 
necessary that— 

(1) The two sets of waves should have the same period, otherwise 
their phase difference at P vould not constantly be tt or A/2 ; at one 
moment they would destroy each other but at the next they would 
render mutual assistance and a large displacement would be produced. 

(2) The displacements they produce should be in the same 
straight line. If they are not so the particles of the medium would 
not be reduced to rest but would describe a kind of Lissajous figure. 

(3) The amplitudes should be nearly equal, then they can nearly 
annul each other’s effect. 

Fig. 164.—Interference of Two Sources. 
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It will be noticed that these conditions are fulfilled in the two 
cases of stationary vibration described above. 

Further Examples of Interference.—Tlie wave-length of a sound 
can be determined by means of Quincke’s tube (Fig. 165). A and D 
are brass or glass tubes about 3 cms. in diameter, B and C are slightly 
narrower. The part C can be pushed in or out through a distance 
of several cms. A Galton whistle is sounded near A ; at D a sensitive 

flame is fixed which is screened 
from direct waves by a piece of 
cardboard S. The waves in 
the tube can reach D by either 
of the two paths ABD or ACD; 

^ if these are of equal length the 
D two wave trains arrive in the 

same phase and produce a 
maximum disturbance of the 
flame. When the slider C is 
pulled out a distance A/4 the 
path along this route is in¬ 
creased by A/2; the waves 
then interfere at D and the 
flame is undisturbed. If C is 

Fio. 165.—Quincke’s Tube. withdrawn a further A/4 the 
path difference is A, the waves 

are again in phase and the flame flares. Suppose that between 
successive states of rest for the flame C has been withdrawn 2 cms., 
then the path difference has been increased by one wave-length 
and A = 4 cms. 

Interference of waves in the form of ripples can easily be shown. 

Experiment.—Fix a tuning fork above a large dish of mercury so that its 
prongs vibrate in a vertical plane. Attach to each prong a thin bit of wire 
with their lower ends just in the liquid. When the fork vibrates the wires 
create two sets of ripples ; if at some point the crest of one set always arrives 
at the same instant as the trough of the other the two interfere and the surface 
is undisturbed. The interference pattern may bo projected on a screen by 
a suitable convex lens if the surface is well illuminated. 

Experiment.—Replace the wires of the last experiment by a light plate 
fastened to one prong, arrange that this is parallel to one side of the mercury 
vessel and about 4 cms. away from it. When the fork vibrates standing waves 
are produced between the plate and the side and the nodes can easily be located. 
In this case it is the incident and reflected waves which interfere. 
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Beats.—Closely connected with interference is the following. 
When two sources whose frequencies are nearly equal are sounding 
together the loudness of the resultant sound waxes and wanes. 
These alternations of strong and weak sounds are called beats. 
They may be readily observed if the two lowest notes on a piano are 
struck together; if any difficulty is found in hearing them the ear 
should be placed in contact with the piano frame, a throbbing sound 
can then be distinguished if the notes are held down. Similarly if 
two stretched strings on the sonometer (p. 289) are tuned to nearly 
the same note the beats can readily be heard. Suppose the two 
sources are tuning forks of frequencies 100 and 104, the beats will 
then occur 4 times each second. The reason for this is clear from 
Fig. 154. On account of their difEerent frequencies the faster fork 
gains on the slower 4 vibrations per second, hence their phases will 
be in agreement this number of times per second and each time the 
resultant will be large. These effects can evidently be used to find 
the frequency of one source when that of the other is known, the 
number of beats per second is equal to their frequency difierence. 
In the above example the frequency of the second fork, if unknown, 
might be 104 or 96. To determine which of these is the true value 
the fork is loaded with a small lump of wax, the mass to be moved 
is now bigger while the restoring force on the deflected prong is 
unaltered, hence its period is increased. If the beats now occur at 
longer intervals the frequencies of the forks are more nearly equal, 
hence the original frequency was 104 and not 96. Beats are fre¬ 
quently used by piano tuners to enable them to bring two strings 
into unison, when they are properly tuned the beats should occur at 
relatively long intervals. 

EXAMPLES ON CHAPTER XXIV 

1. Fifty-six tuning forks can be arranged in a series so that each gives 
four beats per second with the previous one. The last fork is the octavo of 
the first. Calculate the frequencies of the forks. (L. *07.) 

2. Explain beats in sound, and calculate the velocity of sound in a gas 
in which two waves of lengths 1 and 1*01 metres produce ten beats in three 
seconds. (L. *08.) 

3. Two expresses travelling at sixty miles per hour are meeting each other 
when one sounds its whistle. Given that the frequency of the note is 800 per 
sec., find its apparent frequency to an observer in the other train, (1) before 
the trains meet, (2) after they have passed each other. What will be the 
apparent frequencies to a stationary observer near the line 7 (Vel. of sound 
■» 1100 ft./seo.) 



CHAPTER XXV 

MEASUREMENT OF FREQUENCY 

Siren.i—In theory the siren is perhaps the simplest method of finding 
the frequency of a source. One form of the apparatus is shown in 
Fig. 1G6. A is a cylindrical wind-chest into which air can be forced 

by a bellows through a tube in its lower 
face. Its upper end is closed by a brass 
plate pierced with a circular row of 
holes N in number. A movable disc B, 
which rests on this at its centre, has 
also N holes. In the simplest form the 
two sets of holes are inclined to each 
other as shown at F, the escaping air 
then forces the disc round in the 
direction of the arrow. Each time 
the holes come opposite each other 
jets of gas escape and the air above B 
is momentarily condensed. If this 
happens n times per second a note of 
corresponding frequency is created. 
The rate at which the disc revolves is 
measured by a speed counter D, con¬ 
nected to the axle through a worm gear; 
it moves forward one division for every 
100 revolutions. To find the frequency 
of a note, e.g. that of a tuning fork, 
the wind pressure is regulated until the 

Fia. 166.—-The Siren. two notes are in unison, t.e. are of the 
same pitch. It is most convenient to 

blow rather too hard and then press lightly on the axle with a 
flexible card until the proper speed is obtained. The number of 

‘ Barton and Black, “Practical Physics,” p. 113. 
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revolutions in a given time is noted with a stop-watch, the late 
being maintained constant during the interval. In one turn the 
holes come opposite each other N times, hence if the disc makes 
m turns per second the frequency of the note is mN. The 
method is not a satisfactory one, as it is difficult to keep the 
speed constant for more than a few seconds and the note is very 
poor in quality, something like the sound of a steam whistle, so that 
it is difficult to say when the two have the same pitch. In better 
forms the holes are bored vertically and the disc is driven by a small 

Fig. 1G7.—Kevoiving Drum for comparing the Frequencies of Forks* 

motor, the speed is then independent of the pressure in the wind- 
chest. 

Revolving Drum.—This method may be used either to compare 
the frequencies of two forks or to measure that of one. The surface 
of a brass cylinder (Fig. 167) about 5 inelies in diameter is covered 
with smooth paper, and on this a thin film of soot is deposited by 
holding it over a smoky flame, such as a bit of burning camphor. To 
one prong of each of the forks to be compared a stiff bit of bristle is 
attached and the two are mounted so that the bristles are just in 
contact with the drum. Having thrown the forks into vibration by 
bowing with a ’cello bow the cylinder is rotated rapidly, the light 
pointers then trace out vibration curves on the paper. Tlie number 
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of each in a given length is counted, this gives at once the ratio of 
the frequencies. In order that the trace in one revolution shall not 
be destroyed in the next, the axis of the cylinder consists of a screw 
which causes it to advance to the left as it turns. Only one fork is 
shown in the figure. The method can be modified to give the fre¬ 
quency of a single fork. The fork in question is connected to a wire 

B which forms one end of an 
electrical circuit of which a 
second wire C, the screw axis, 
and the drum are the other 
extremity. The bristle is re¬ 
placed by a very thin wire. A 
clock pendulum beating seconds 
carries at its lower end a thin 
metallic strip which touches a 
small bead of mercury when the 
bob is at its lowest point. By 
suitable electrical arrangements 
this causes a spark to pass once 
every second between the cylinder 
and the pointer, then imposed 
on each other we have the trace 
of the vibrations and the dots 
caused by the sparks. The 
number of vibrations between 
each dot can thus be found 
directly. 

Falling Plate.—A variation of 
the above method can be used if 

Fia. lf)8.-~Falling Plate Method of acceleration due to gravity is 
finding the Frequency of a Fork. assumed to be known ; it cannot 

be regarded as an accurate 
method and it is rather troublesome to work, but it is not without 
physical interest. A glass plate about 10 cms. long is blackened 
on one face and is hung by a cotton thread from a peg (Fig. 168). 
The strings are fastened to the back of the plate so that it tilts 
slightly forward. A tuning fork with bristle attached is fixed in 
contact with the smoked surface, the fork is bowed and the plate 
caused to fall by burning the thread when a vibration curve is 
traced out as before. To hinder breakage or destruction of the trace 
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another thread, passing over a lower peg, is fixed to the plate, this 
is slack at the beginning of the fall but becomes taut before the 
plate reaches the table. At the lower end the curve is too crowded 
to see clearly, hence two lengths li and which contain an equal 
number of vibrations, are measured off ; let tlioe be DC, CB, in the 
figure. Suppose u is the velocity of the plate when the fork is at D, 
and t the time taken to move over the distance li or 

Then Zj = ut -j- • • • • • • • • (1) 

If V is the velocity at C 

v = u gt 

and Z2 = 

or Zg = .(2) 

Subtracting (1) from (2) we have 

Z2 — 4 = 9^^ 

Each vibration takes -th of a second ; hence if L and U contain 
n 

m vibrations 

i==z m , ~ secs, 
n 

and Z2 — Zi = g-- 

hence n is found. 

Electrically driven Tuning Fork.—For many purposes it is con¬ 
venient to have a fork which shall maintain its vibrations continuously 
without bowing. One form is shown diagrammatically in Fig. 169. 
The student will understand its action better after he has read the 
chapters on electricity. The fork is mounted on a heavy metal 
stand, and one prong carries a spring C which is just in contact with 
an adjustable screw D, E represents a small electromagnet placed 
between the prongs, B is a battery. The arrows show how the current 
can flow when the fork is at rest. Directly the circuit is completed 
by a key the current passes and makes E a magnet; this attracts 
the prongs and breaks the contact at DC. As the current is stopped 
E loses its magnetism, and the prongs spring back to complete the 
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circuit again. The cycle of changes is thus repeated continuously 
and the fork maintains its vibrations. 

Stroboscopic Method of finding the Frequency of a Fork.—For 
this method it is convenient to use an electrically maintained fork. 
To each prong a light metal plate is attached ; these are perforated 
near their centres by a narrow rectangular slit (Fig. 170). When 
the fork is at rest the slits are opposite each other and a beam of 
light can pass through them, but when it is in vibration the rays are 
interrupted except when the prongs are in their mean position, 

Fia. 109.—Electrically driven 
Tuning Fork. 

V 
Fig. 170.—'I’uning Fork 

with Slits attached. 

this occurs twice during each period. A white circular disc, upon 
which a ring of equally spaced black dots has been marked, is placed 
in a vertical position behind the fork and is observed through the 
slits. It is kept in steady rotation round a horizontal axis by a small 
motor, its average sj)ced over any interval being given by a speed 
counter. When both disc and prongs are moving the dots will 
generally appear to be in motion, but if the rate of revolution is 
properly adjusted it can be arranged that, while the light is cut off, 
one dot moves into the position previously occupied by its neighbour, 
when this occurs the disc appears to be at rest. Suppose the disc 
make N revolutions per second when this condition is reached, 
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let m be the number of dots on it, and T the period of the fork. Then 

since the disc is seen twice in each vibration it makes -th of a 
Til 

revolution in a time T/2. 
But in 1 sec. it make? N revs. 

NT 
/. in T/2 it makes revs. 

hence - = 
m 

and T = 

Therefore the frequency n = 

NT 

Y 
2 

Nm 

1 ^ 

T 

Nm 

"2 

The effect just described is frequently noticed in kinematograph 
pictures of moving vehicles. When the first film is made it is exposed 
in the camera a number of times each second. Suppose during the 
interval between two exposures that the spoke of a wheel has moved 
into the position previously occupied by its neighbour, then the 
wheel appears not to revolve although the vehicle is moving. Simi¬ 
larly, if the exposures are made at shorter intervals, the spoke will 
not have advanced so far and the wheel appears to revolve the 
wrong way.’ 

We have already described (pp. 260 and 281) how Lissajous’ 
figures and the occurrence of beats can bo applied in the determina’ 
tion of frequency. Another method is given on p. 291, 

EXAMPLES ON CHAPl’ER XXV 

1. Describe experiments by which, in the case of a given sound, the frequency 
and length of the waves can be ascertained. (L. ’97.) 

2. Describe any method of counting the number of vibrations made by a 
tuning fork. In what way would you expect temperature to affect the number 
and why ? (L. ’08.) 

3. A stroboscopic disc has 20 dots round its circumference. When observed 
through slits carried by the prongs of a vibrating fork the dots appear to bo 
at rest. Given that the frequency of the fork is 100/sec. oalculato the smallest 
possible number of revolutions per minute made by the disc. 



CIIArTER XXVI 

STANDING WAVES ON WIRES AND IN TUBES 

Transverse Waves along a Wire.—It has already been stated that 
transverse waves are propagated along a wire with a velocity 

V == where T is the tension in dynes, and w the mass in 

grams of unit length of the wire (p. 263). We must now see what 
happens when the wire is limited in length and fixed at each end. 
Consider a short bit of the wire near its further end. Suppose the 
advancing wave has moved it upwards against the force exerted by 
the tension, it possesses potential energy; shortly afterwards the 
tension pulls it down again, its potential energy assumes the kinetic 
form and this carries it past its position of rest. Thus a reflected 
wave is set up and we have conditions similar to those on p. 276, 
except that the motions are transverse. The fixed ends of the 
string are nodes, hence the Fig. 163 gives the proper phases of the 
incident and reflected waves. In the simplest case there are only 
two nodes, one at each end; if / is the length of the wire, A the 
wave-length of the disturbance, and n the frequency with which the 
wire oscillates, A/2 = I, since nodes are half a wave-length apart, or 
A = 21. Also 

or 

w m 

1 /T 

to 

1 /T 
” 2i\/ TO • (1) 

The tension may be produced by a hanging weight of P gms., 
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then T = If r is the radius of the wire and p the density of its 
material m = nr^p, 

ih« .<-> 

Either of these formulae gives the frequency of the note emitted by 
the wire when it is caused to vibrate under the given conditions. 

Experimental Verifications. The Sonometer.^—These results can 
be verified by the sonometer (Fig. 171). This consists simply of a 
wooden box about one metre long upon which two or more wires can 
be stretched. The necessary tension is obtained either by a weight 
and pulley arrangement, as shown in the figure, or by wrapping the 
ends of the wires round pegs after the manner used in a violin. Two 

A B 

fixed bridges, A, B, at the ends confine the vibrations to a definite 
length of wire ; there are also movable bridges under each wire if a 
still shorter length is required. A scale on the top gives the length 
of wire in use. The box acts as a sounding board and increases the 
loudness of the sound. When the wires are put in vibration, either 
by bowing with a violin bow or by plucking, they cause the box also 
to oscillate, this communicates its motion to the surrounding air 
and a much larger mass is put in vibration than would be brought 
about by the wires alone, hence the sound is louder. The wooden 
body of a violin performs the same function, as does also the sounding 
board of a piano. When a grand piano is played its top is raised so 
that the energy may escape outwards. 

Experiment.—If the handle of a vibrating tuning fork is pressed on the. 

table the sound is much louder for a similar reason, but it dies away more 

* Barton and BJack, “ Practical Physics/* p. 108. 
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rapidly as the energy is more quickly communicated to the surrounding 
medium. 

Expxbiment.—To prove that n a 1//. Keep the tension of a wire constant 
but alter its length by the movable bridge until it is in tune with a fork of 
known frequency. The final tuning is best done by means of beats. A disc 
of wood about 4 in. in diameter is fixed to one end of a short wooden rod 
with its plane perpendicular to the latter, this forms a kind of stethoscope 
to magnify the sound. The free end of the rod is placed on the sonometer 
and the disc pressed to the ear, the wire is plucked and the handle of the 
sounding fork is held on the sonometer box. If the two are nearly in tune 
the beats can easily be heard. One bridge is moved until the beats are very 
slow when the length between the bridges is taken. Repeat the observations 
with forks of different known frequencies. It will be found very approximately 
that 

1 1 1 
n, : n, : n, = : t - 

*i *3 

Expertment.—To show that n ^ /m. Find by weighing the mass of 

1 cm. of each of a number of wires. Take the heaviest, fix one end of it to 
the sonomete;^, pass it over the puUcy and hang a weight of several kgms. 
to its free end. Fasten any other wire on the sonometer by pegs at each end 
and adjust it until nearly its whole length is in tun© with the length AB (Fig. 171) 
of the first. The second wire is to act as a standard, by noting what length 
of it is in tune with the fixed length AB of the other wires, the same weight 
being used in each case, we can find how the frequency varies when m only is 
altered. Let be the length of the standard in tune with the first wire, nj 
its frequency. Replace the first weighed wire by a second and let and be 
the corresponding quantities for the standard. Then for the latter wire 

— = ^ from the last experiment. 
n| lx 

For the weighed wires I and T are constant, hence if equation (1) is true 

Iz 

lx 

This relation should be verified for several wires. In a similar way if the wires 
are made of the same material, so that the density is constant, it may be proved 

that or if the radius is constant but the wires are of different materials 
n, f, 

Experiment.—To find how n varies with the tension. One wire is stretched 
by hanging weights at its end and for each load the length I of the standard in 
tune with the part AB (Fig. 171) is found. The frequency of the loaded wire 
is proportional to 1/1. Plot your results on a curve taking the square roots 
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of the tensions as abscissas and the corresponding values of 1/f as ordi^tes. 

This will be very approximately a straight line, thus proving that n oc Vt, 

The equation (1) may be written n = c\/T, where c is a constant 
for a given wire. Taking logarithms we have 

log n = log c + ^ log T 

hence if the observations of the last experiment are plotted again 
using log T for absciss® and log (1/Z) for ordinates, the tangent of 
the angle which the line makes with the horizontal axis should be 

1/2. The equation V = is obtained on the assumption that 

the wire is perfectly flexible, whereas actually it opposes a resistance 
to change of shape, in other words it possesses rigidity (p. 2). 
This extra force brings it back more quickly to its mean position 
when displaced ; thus its frequency is increased. The effect is greater 
for short thick wires than it is for long thin ones. 

Use of a Wire in determining Frequency.Having verified 
equation (1) it may now be used to find the frequency of a fork or 
other source of sound. The necessary tension is produced by 
weights, a thin wire is used and the length in tune with the fork is 
noted. The mass of 1 cm. is found by weighing a known length, 
after which- the frequency can be calculated from the equation. In 
particular it can be proved that if one fork is the octave of the other 
the ratio of their frequencies is 2:1. 

Harmonics.—In the vibrations we have been considering the wire 
has two nodes, one at each end ; it is then giving its lowest or fanda* 

menial note, but it is possible to make it vibrate with 3, 4, or more 
nodes, as in Fig. 172. All that is necessary is to press it lightly at 
the point a where a node should appear and bow it with a violin bow 
at the point &, where an antinode should come. The part between 
two adjacent nodes is called a ventral segment. As the distance 
between successive nodes is A/2 it is clear that the wave-length in (1) 
(Fig. 172) is ly wliere I is the length of the string. In (2) A = 2/3 . Z, 
in (3) A = Z/2, and so on. The velocity of a wave along the wire is 

constant, being equal to vT/wi, hence wA= V is constant and the 
frequency is inversely proportional to the wave-length. Calling Ai 

^ Barton and Black, **Practical Physios,” p. 111. 
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the wave-length of the lowest note, A2 that corresponding to (1) m 
the figure and so on, we have 

Ai: As : A3 = : 2Z/2 : 2Z/3 

or for the corresponding frequencies, 

: W2: W3 = 1: 2 :3 

The lowest note that the wire can produce is called its fundamental, 
those whose frequencies are twice, thrice, etc., that of the fundamental 
are called its 1st, 2nd, etc., harmonics. It would be more logical to 

b 

(1) 

(2) 

Fia. 172.—Showing the Different Modes in which a Wire can vibrate. 

call the fundamental the 1st harmonic and the others of the series 
the 2nd, 3rd, etc. 

Melde’s Experiment.—^The vibrations of strings can be shown in a 
very elegant manner by an experiment due to Melde. A piece of 
linen thread about 1 m. long is attached at one end to the prong of a 
tuning fork, the other end passes over a glass rod and carries a light 
pan. By properly adjusting the tension the string may be made to 
vibrate in its fundamental mode (Fig. 173 A), In order to have a 
definite length the string should be pressed at the point where it 
crosses the rod. If now, keeping the length the same, the fork is 
turned into the position shown in Fig. 173 JJ, it is found that the 
string vibrates with a node at its middle point, or its frequency is 
doubled. The reason for this is easy to see. Suppose (figure A) the 
string occupies the lower dotted position when the prong is at its 
maximum displacement to the left; half a vibration later the prong 
has moved its greatest distance to the right and the string is stretched 
taut, while at the end of one vibration it is slack enough to take up 
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the upper dotted position. Hence the frequency of the fork is double 
that of the string. In figure B string and fork have the same period. 

Experiment.—Set up the experiment as in figure A, keep the length 
constant but add weights until the string vibrates in succession in the modes 

shown in Fig. 171. Prove that the frequency varies as VTension. Repeat 
with the fork in the second position. 

In making the experiment it will be found somewhat difficult to 
judge when the proper weight has been chosen, a small change in 
the tension merely causes the vibrations to take place in a dillercnt 

Fiq. 173.—Meldc’s Experiment. 

plane without altering their amplitude greatly. Recent experi¬ 
ments show that equation (1) is obeyed only when the displacements 
are vertical, the adjustments must be continued until this condition 
is obtained. The transverse vibrations of strings have numerous 
applications in the construction of musical instruments such as the 
piano, violin, harp, etc. The vibrations of rods are too complicated 
for us to deal with (for tuning fork, see p. 300). 

Vibrations of Columns op Gas. Resonance 

Tube closed at one End.—The vibrations of columns of gas depend 
on the principles explained on pp. 276-278. For a tube closed at one 
end the apparatus shown in Fig. 174 may conveniently be used. 
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AC is a glass tube about 5 cms. in diameter and 1 m. long. It is 
connected at its lower end by rubber tubing to a reservoir containing 
water. The reservoir is raised until the water is near the top of the 
tube, when the clip E is closed and the reservoir hung at a lower 
level. By cautiously opening the clip the water surface may be 
adjusted to any point. If a sounding tuning fork is held near A it 

is found when the water reaches certain 
positions B and C that the tube gives out a 
loud note. A convenient frequency for the 
fork is 612. To understand the reason for 
this behaviour let us see what happens to a 
wave of compression which starts down the 
tube with an amplitude a. If the water 
stands at B it is reflected from this point 
as a compression (p. 275), but when it 
reaches the open end of the tube it finds the 
layers of air more easy to move, for they 
can relieve themselves from their strained 
condition by expanding sideways as they 
are no longer confined by the tube. Hence 
the end layer moves over a distance larger 
than a, and a reflected wave of rarefaction 
is sent downwards exactly as if the medium 
above A were less dense than the air in the 
tube. Similarly when the wave of rarefac¬ 
tion arrives again at A after reflexion at B 
the external air moves easily towards the 
rarefied portions and produces a reflected 
Suppose now the time taken by the waves 

to travel from A to B and back again is T/2, where T is the period of 
the fork. A compression starting down the tube is reflected at A 
as a rarefaction at a time T/2 later, but at the same instant the fork 
itself is sending a rarefaction down the tube, thus the reflected and 
direct waves are in the same phase, their effects are added, and the 
column of gas is thrown into violent stationary vibrations with a 
node at B. If AB == L the waves travel a distance 2L in the time 
T/2, and therefore 4L in the time T. But the distance passed over 
in one period is the wave-length, hence A = 4L. Thus AB ==: A/4 
and A, the point where the displacements are largest, is an antinode. 
Suppose next the water stands at C where BC = A/2, then the 

Tube. 

wave of compression. 
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reflected waves arrive at A exactly one period later than they did in 
the previous case, since they have to travel over the additional dis¬ 
tance 2BC = A, and they are again in phase with the waves produced 
by the fork. Hence a loud note is again heard, but there are now 
nodes at B and C. If the tube is long enough other nodes may be 
found. The time a body takes to perform one complete vibration if 
started and then left to itself is called its free 
period, the vibrations it undergoes in these 
conditions are called free vibrations. The 
cause of the strong vibrations of the air in 
the tube ia now clear; it receives a succession 
of impulses from the fork which are so timed 
as to assist its free vibrations, the effects are 
added and produce a much larger amplitude 
than a single impulse. A body oscillating 
under such conditions is said to be in resonance 
with the exciting force. In Fig. 173 A the 
string receives an impulse each half period, 
in B the free period of the string is equal to that of the fork. Fig. 175 
shows possible positions of the nodes for a tube of length L when 
excited with different forks. Denoting by Aj, A2, etc., the wave¬ 
lengths of the corresponding notes, rii, n^, etc., the frequencies, we 
have 

Fia. 175. — Showin" 
possible Modes of 
Vilration in a Tube 
closed at one End. 

or A3 — , etc. 
5 

or, as n oc l/A^ 

ni: W2 • ^3 == 1 * 3 

This shows that a tube closed at one end gives only the alternate 
harmonics. 

Further Examples of Resonance.—The following experiments illus¬ 
trate further the principle of resonance. 

Experiment.—Open a piano front and sing or whistle a loud note, the 
piano returns the same note. Those strings whose frequencies bear a simple 
relation to that of the note have been thrown into resonant vibration. 

Tuning forks are frequently mounted on resonance boxes, these 



296 SOUND 

are simply boxes of such a size that the air in them resonates to the 
fork. 

Experiment.—Place two forks of the same pitch on their resonance boxes 
and let the open ends of the latter face each other. Bow one fork and then 
immediately stop it, the second fork is found to emit a loud sound. 

Experiment.—Place the two resonance boxes of the last experiment one 
horizontally the other vertically with the mouths near each other. Hold a 
sounding fork near them so that its prongs vibrate in a vertical plane; no 
sound is heard except when one box is closed. It is seen from p. 279 that one. 
box is receiving a compression when the other is receiving a rarefaction and 
the two effects interfere. This experiment is, I believe, duo to Prof. A. M. 
Mayer.' 

Experiment.—Make a simple pendulum with a heavy bob and having a 
small hook below. Suspend from this a lighter pendulum of different length. 
When the heavy bob is made to oscillate the lighter follows suit, but its amplitude 
is never large. It is said to perform/orced vibrations. If, however, the lengths 
are adjusted until the free periods are equal, then a slight displacement of the 
heavier bob rapidly produces in the lighter pendulum a vibration of consider¬ 
able amplitude. The forces applied at its point of suspension are then timed 
in such a way that their effects are added. 

Experiment.—Support a metre stick at its ends and hang two helical 
springs, with weights attached, from two points near its centre (Fig. 176). 

Pull A downwards, then let it go. 

Tube open at Both Ends.—Eesonance efiects similar to those on 
p. 294 are produced if the tube is open at each end when a sounding 
fork is held near one extremity. In this instance a compression is 

' For a large number of experiments on sound capable of performance with 
simple apparatus the student should refer to Prof. Mayer’s book on Sound. 
(Macmillan.) 
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reflected as a rarefaction at the further end, and when this arrives 
at the starting point it is returned as a compression. The reflected 
wave must therefore reach the fork at the instant the next com¬ 
pression is starting down the tube, i.e. the disturbance must travel 
down the tube and back again in one period of the fork. Hence the 
length L of the tube must be A/2 or A = 2L. The wave-length 
necessary for resonance is 
therefore half of what it was 
in the previous case with 
the same length of tube, or 
the frequency is doubled. 
The note is thus the octave 
of that given by a tube of 
the same length closed at 
one end. Each open end is 
an antinode, and when the 
tube is giving its funda- 

A N A 

A In a N| A 

A IN A IN A |N A 

Fio. 177.—Showing possible Modes of 
Vibration in a Tube open at each End. 

mental there is a node at the middle. Other possible modes of 
vibration are indicated in Fig. 177. With the same notation as 
before 

SA, 

or 

or 

L=: 

Ai = 

Ax L = A, 2» 
j '"'Z T 

2’ 

2L, A2 = ^, 

fii: 712 : «8 : *14 = 1: 2 : 3 : 4 

. 2L 
A3= 3-. A A4-- 

Thus the whole series of harmonics can be produced. The vibra¬ 
tions in an open tube are most conveniently studied by having two 
tubes, one of which slides into the other, so as to provide an adjustable 
length. It has been mentioned that the air expands sideways at 
the open end of a tube, the effect of this can be shown with a tuning 
fork. 

Experiment.—While a fork is sounding hold the edge of a steel scale close 
to one prong and parallel with it, the sound is much louder ; as the air cannot 
escape round the edges of the fork the energy is hindered from spreading in 
all directions. This is a lecture experiment of Sir G. Stokes*. 

Measurement of A by Resonance Tubes. End Correction.—The 
resonance phenomena described evidently provide a direct method 
of measuring wave-lengths; if, further, the frequency of the fork is 

12 
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known the velocity of sound can be calculated from the equation 
V = nA. To give an idea of the magnitude of A if V = 332m./sec. 
and n = 512, A = 64'8 cms. 

Experiment.—Use the apparatus of Pig. 174 to find the position of the 
nodes B and C. It will be found that BC is larger than 2AB, although, according 
to the theory, they should be equal. 

Experiment.—Measure the wave-length with a tube open at each end using 
the same fork as in the previous expeiiment. The result is approximately 
4AB of the preceding case, but is less than 2BC. 

The reason for these discrepancies lies in the theory; it has been 
assumed that the open end is an antinode or place where the density 
does not change, in actual fact the antinode is situated a short dis¬ 
tance outside the tube. The magnitude of this end correction, accord¬ 
ing to Lord Rayleigh, is 0*6R, where R is the tube radius. Hence in 
Fig. 174, A = 4(AB + 0*6R). As the correction is rather uncertain 
when a tuning fork is held near the open end, it is best when measuring 
the wave-length to find the nodes at B, C, the distance between 
them is A/2. For an open tube the correction must be added for 
each end, the wave-length to which such a tube resonates in its funda¬ 
mental mode is therefore 2(L+ 1*2R). For a closed tube of the 
same size the fundamental note has a wave-length 4(L + 0 6R), as 
this is not quite double the other the frequencies are not in the ratio 
2:1; the pitch of the higher note is slightly too low. Vibrating air 
columns play an important idle in wind instruments such as the 
organ, clarinet, flute, etc. 

Organ Pipes.—An organ pipe is a wooden or metal tube, square or 
circular in section, provided with an opening and lip at its low'er 
end (Fig. 178). When placed in communication with a wind chest 
air under pressure is blown against the lip and sets the air column 
in vibration. Experiments with injections of smoke show that the 
issuing jet passes alternately to the left and right of the lip thus 
maintaining a series of condensations and rarefactions. A (Fig. 178) 
is an antinode since the movement of the air is there greatest, the 
other end is a node or antinode according as it is closed or open. 
The pitch is not given exactly by the simple theory above as the end 
correction at the lip is uncertain. The tuning is done by experiment; 
for a closed tube a movable piston is pushed to and fro until the 
correct note is given. When the end is open the size of the opening 
is varied by a flap B ^see figure) which alters the end correction 
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and therefore the pitch. The harmonics are produced by strong 
air blasts. If a hole is bored through the wall of the tube at a point 
corresponding to a node the density of the air is made equal to that 
outside, the point in question can no longer be a node and the pitch 
is altered. On the other hand a boring at an antinode is without 
effect. For demonstrating the pressure changes at different points 
in the tube a manometric flame is convenient. A hole is bored 
through the wall and is closed by a rubber membrane A (Fig. 179) 

Fio. 178.—Orgau Pipe. Fio. 179.—Manometric Flame. 

which forms one side of a small chamber C. Gas is led into the 
chamber from the mains and escapes at a small jet where it is lighted. 
If the pressure in the tube varies the membrane is pushed to the 
right or left and the length of the flame momentarily increases or 
decreases. When the tube is “speaking” the variations are too 
rapid to be followed by the eye. This difficulty is overcome by 
observing the flame in a rotating mirror E ; owing to the persistence 
of retinal impressions a number of images are seen simultaneously 
in the mirror, and any oscillations can easily be followed. The 
flame flickers most violently at a node but scarcely moves at an 
antinode. The manometric flame can also be used with a Quincke’s 
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tube (Fig. 165); if placed at D it is stationary when the two sets of 
waves destroy each other. 

Koenig has found the position of the nodes and antinodes by 
direct ear observations. A slit was cut along the whole length of 
one side of the tube and it was fixed horizontally with the slit just 
immersed in a large trough of water. One end of a bent glass tube 
was passed through the slit while the other end was held near the ear. 
At an antinode there was silence, but at a node a loud sound was 
heard. 

Experiment.—Rvhena* tube* As a lecture experiment the position of the 
nodes can be shown in the following manner. BC (Fig. 180) is a brass tube 
about 8 cms. in diameter and 4 m. long. One end B is closed with a brass 
plate. Along one side a number of holes are bored about 2 mms. in diameter 
and 3 cms. apart. A slightly smaller tube about 50 cms. long slides in the open 
end, the outer extremity of this is closed with a thin rubber membrane A. 

Fio. 180.—Rubens* Tube. 

Gas from the mains is allowed to enter at the side tube C, after a few minutes 
it may be lighted with safety at the small holes. If a loud note is sounded near 
A and the position of the sliding tube is ad justed the enclosed gas is thrown into 
resonance and the jets vary in length. A whistle or tuning fork on resonance 

box serves as a convenient source of sound. 

In wind instruments like the flute and clarinet the tube is pierced 
by a number of holes which can be opened or closed by stops. The 
position of the nodes and hence the pitch can therefore be varied at 

will. 

Singing Flames.—A column of gas can be thrown into vibration 
by the following method. 

Experiment.—Draw oil a glass tube about 40 cms. long to a fine jet about 
2 mms. in diameter. Connect it to the mains and light the gas at the orifice. 
If the jet is gradually pushed up a wide glass tube about 1 m. long it is found 
that in a certain position the tube speaks with a loud and unpleasant note. 
When the flame is viewed in a rotating mirror it is seen to be in violent oscilla¬ 
tion. The vibrations apparently depend on periodic supplies of heat to the 
air column which cause it to expand and contract, if these are properly timed 
resonance occurs, but the phenomena are too complicated for us to deal with. 

Tuning Fork.—A tuning fork can be regarded as a bar bent at the 



STANDING WAVES 801 

middle point where the handle is attached, when vibrating this point 
is a node while the ends of the prongs are antinodes. Its importance 
lies in the purity of its note ; a string or column of gas, as we have 
seen, can give a whole series of harmonics, the first overtone of a 
fork is about six octaves above the fundamental and is moreover 
very weak. When the temperature rises the length of the prongs 
increases and the elasticity of the steel is diminished. Each of these 
changes lowers the frequency but the latter is of the most importance* 

Kundt*s Tube.—Resonating columns of gas can be used to study 
the longitudinal vibrations of rods. The apparatus, called a Kundt’s 
tube, is shown in Fig. 181. A rod AC about 1 m. long is clamped at 
its middle point E, at one end it carries a circular cardboard disc A 
which projects into a long glass tube about 5 cms. in diameter. The 
further end of the tube is closed by a movable piston B, and between 
the two discs a small amount of lycopodium powder is scattered. 

B 

Fio, 181.—Kundt^s Tube. 

C 

If the free half of the rod is grasped firmly with a resined cloth which 
is pulled towards C it is thrown into longitudinal vibration with a 
node at the middle and an antinode at each end. By altering the 
position of the piston B the length of the air column can be adjusted 
until it is in resonance with the rod. When this occurs the powder 
is violently agitated and finally settles down in small heaps at the 
nodes. The average distance between the heaps gives the half 
wave-length in air, while AC is the corresponding quantity for the 
rod. Let and A2 be the wave-lengths in air and rod respectively^ 

then 
velocity of sound in the rod __ nAg __ Ag 

velocity of sound in air nA^ Aj 

For the rod hence the Young’s modulus may be deduced 

if the velocity of sound in the gas is known. For the experiment to 
succeed the tube must be thoroughly dry and clean and the powder 
also must be dry. It is a good plan to keep the lycopodium in a 
desiccator for some hours before use. The tube may be filled with 
different gases and the velocities, which are proportional to the 
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wave-lengths, can be compared. In this way it may be shown that 

Voc Vl/p* heating jackets the variation of the velocity 
with temperature can also be investigated. Apparatus of this 
type has been used to measure the velocity of sound in mercury, 
sodium, and potassium vapours, and in helium and argon. Since 

V ^^the ratio of the specific heats can be deduced. It was 

found in all these cases that y = 1*66 approximately. This is the 
ratio that theory predicts in the case of monatomic gases ; hence it 
is concluded that the molecule of these substances contains only one 
atom. An application such as this shows in a striking manner the 
help which one branch of science can give to another. 

EXAMPLES ON CHAPTER XXVI 

1. Four strings are all of the same length and material, but of diameters 
in the ratios of 1: 2:3 :4, and are all stretched to half their breaking stress. 
Compare the pitches of their fundamental notes. (L. ’80.) 

2. A string stretched with a weight of 25 lbs., when made to vibrate trans¬ 
versely, gives a certain note. What temsion must be applied to a string of the 
same material, but of twice the length and thickness, to make it give the octavo 
above that note ? (L. ’87.) 

3. Four exactly similar and equal strings stretched with the same tension 
are vibrating side by side ; how will the note emitted be affected if they be 
fastened together so as to form one string by winding round them an extremely 
thin piece of silk 7 (L. ’88.) 

4. A string is stretched by such a weight that a hump runs along it at the 
rate of 64 ft./seo. Two points on this string, 4 ft. apart, are firmly clamped to 
a board without altering the tension of the string; if this part of the string 
be tweaked what is the pitch of the note it will emit 7 (L. ’90.) 

5. Compare the frequencies of vibration of two strings stretched with weights 
of 10 kgms. and 1 kgm. respectively. They are each 1 metre long, and they 
are of the same diameter, but their densities are 7*8 to 1 respectively. (L. *02.) 

6. A sounding organ pipe is warmed from 16° to 127° C. What is the effect 
on the note it emits 7 (L. ’91.) 

7. Taking the fundamental mode, indicate, by carefully drawn figures, the 
motion of the air at various points of a sounding pipe at some one instant, 
and the distribution of pressure in the tube at some one instant. (L. ’94.) 

8. If two organ pipes give four beats per sec. when sounded together in 
air at 16°, how many wiU they give in air at 0° 7 (L. ’10.) 
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9. A tuning fork making 1028 Tibs./BdO. is sounded opposite one end 
of an open tube 3 ft. 2^ ins. long, which reinforces the note of the fork. Cal¬ 
culate the positions of the various points where maximum movement and 
maximum pressure change occur in the air column in the tube. (L. 1900.) 

10. A column of air and a tuning fork produce four boats per second when 
sounded together, the fork giving the lower note and the temperature of the 
air being 15®. When the temperature has fallen to 10® the two produce three 
beats per second. Find the frequency of the fork. (L. ’08.) 

11. If the velocity of sound in air at 0® is 332 metres/sec., find the shortest 
length of a tube, open at both ends, that will be thrown into resonant vibration 

by a fork whoso frequency is 256 when the temperature of the air is 51® C. 
(L. ’09.) 



CHAPTER XXVII 

AUDITION. QUALITY OF SOUNDS 

Organs ot Speech and Hearing. Limiting Frequencies tor Audible 
Sounds.—As we are concerned with the physical rather than the 
physiological effects of sound waves it will be unnecessary to describe 

the structure of the ear. It will suffice if we state that the external 
ear leads to an air passage which is closed at its further end by a 
thin membrane called the ear drum. When the air is subjected to 

density changes, owing to sound waves, the drum is set in vibration 
like the rubber membrane in a manometric capsule, and this pro¬ 
duces the sensation of sound. If the frequency lies below a certain 

limit a continuous note is not heard, but instead one recognises a 

succession of separate impulses. From experiments on long organ 
pipes and large tuning forks Helmholtz came to the conclusion that 
the lowest frequency which produces a continuous note is about 

SO per second. The upper limit with average persons is about 
15,000 per second. Waves having a greater frequency than this do 
not produce the sensation of sound but they can still be detected 

with sensitive flames. The method of determining the upper limit 

of audibility has already been described on p. 278. The factors 
which enable us to judge from which direction a sound is coming are 

not altogether known. There is no doubt that one factor is the 

different intensity at the two ears which we interpret by the help of 

previous experience. A source on our right will affect the corre- 
spondmg ear more strongly than the other, which is partly screened 

by the head. Some animals, like the horse, can turn the external 

ears in various directions, and the alterations in intensity no doubt 
assist in locating the source. Experiments in recent years show 

that the phase difference of the waves at the two ears has also an 

effect. This is illustrated by the following experiment. Let a rubber 

tube be placed in each ear and let these tubes join a longer one 
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which passes into an adjacent room so that direct waves cannot 
reach the observer. If a sounding fork is held at the further end the 
apparent direction of the source alters as the length of one of the 
branches is varied in length so as to change the relative phases of 
the waves at the ears. The human voice is produced by two stretched 
membranes, called the vocal chords, which are situated in the 
larynx and form the edges of a narrow slit. Their tension and 
distance apart can be varied at will. When air from the lungs is 
forced past them they are made to vibrate and a sound is produced. 
The pitch of the note is determined by the tension of the chords, its 
quality largely by resonance of the air in the throat, mouth, and 
nose cavities. In a baby’s cry there is little resonance, the effect is 
produced simply by the vocal chords. How large a part experience 
plays in the matter of voice production can hardly be appreciated 
until we have listened to the attempts of a young child to sing. The 
effect of a head cold on the voice shows what happens when resonance 
in the nasal cavity is suppressed. 

Experiment.—Sound a tuning fork and sing the same note, then cease 
Binging but keep the mouth in the same position. 11 the sounding fork is held 
near the open lips the mouth cavity resonates to the fork. 

Experiment.—Sing a low chest note; the upper part of the chest can be 
felt to be in vibration if the fingers are placed on it. 

Fourier’s Theorem.—We have shown (Figs. 153 and 154) how to 
find the resultant of two or more S.H.M.’s in the same straight line. 
The converse operation is of frequent importance in many branches 
of physics, viz. given a resultant curve to find the simple harmonic 
components from which it is built up. Any curve which repeats 
itself time after time is called a periodic curve. Fig. 154 is an 
example of a periodic curve which is not simple harmonic yet is 
built up of simple harmonic components. This suggests the question, 
Can every periodic curve be regarded as the resultant of a number 
of S.H. components, and if so, can these components be chosen in 
more than one way ? A component is completely specified when its 
period, phase, and amplitude are known. This problem has been 
solved by Fourier. According to Fourier’s theorem, every periodic 
curve can be resolved into S.H. components which can be chosen in 
only one way. He showed further that if T is the time the resultant 
takes to repeat itself, in other words if its period is T, then the 
periods of the components are T, T/2, T/3, etc. Some of these may 

12 
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be missing in certain cases, e.g, in Fig. 154 if T is the period of the 
resultant those of the components are T/4 and T/5. The methods 
of getting the proper amplitude and phase for each component are 
too complicated for us to consider. The importance of Fourier’s 
theorem in sound will be seen from the following considerations. 
Suppose a sonometer wire is struck, and, by means which have been 
devised, let its displacement curve be taken. It will not in general 
be a sine curve, but it may be resolved into a number of such having 
periods T, T/2, T/3, etc. The question is, Are vibrations corre¬ 
sponding to these periodic times actually present, or is Fourier’s 
theorem merely a mathematical device which bears no relation to 
physical facts % If the former alternative is the true one, then, in 
addition to a note whose frequency n is that of the fundamental, 
there should be notes of frequency 2w, 3n, etc. Helmholtz has 
found that this is actually the case ; a brief account of his experi* 
ments will now be given. 

Helmholtz^s Experiments. Quality of Sounds.—Let n be the 
frequency of the wire when giving its fundamental. Helmholtz 

constructed a series of brass resonators 
of the shape shown in Fig. 182; the 
frequencies to which they responded 
were n, 2n, 3n, etc. They were placed 
with their open ends A near the wire, 
the narrow stem B could be held near 
the ear. When the wire was struck if 
a harmonic of frequency 6n was present 

Fio. 182.—Helmholtz Ro- the corresponding resonator would be 
senator. thrown into vibration. By this means 

he showed that as many as 15 har¬ 
monics could be detected. Their relative strengths could be 
estimated roughly from the intensity of the resonance. When the 
same note was produced by another source such as an organ, violin, 
or the human voice, some of the harmonics were missing and their 
relative strengths were altogether different. This gives a clue as 
to the origin of the quality of sounds. Quality is determined by the 
superposition on the fundamental of a series of harmonics whose 
number and strength vary with the source. By damping a piano 
wire at different points, corresponding to the position of an antkiode, 
certain harmonics can be excluded ; this is found to alter the charac¬ 
ter of the sound. Similarly the quality of the voice depends on what 
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barinomcs the vocal chords produce and how their relative intensities 
are altered by resonance in the mouth, etc. A trained singer learns 
by practice how to exclude those which detract from the pleasing 
quality of the voice. A note which cannot be resolved into more 
than one simple harmonic component is called a tone. Having 
analysed a note into its tones Helmholtz performed the converse 
experiment, viz. produced a note of given quality from its simple 
harmonic components. Each of the resonators used to analyse a 
piano note was placed with its mouth in front of a tuning fork of 
corresponding frequency, when all the forks were excited and the 
amplitude of the resonance properly adjusted it was found that a 
note was produced of practically the same quality as that given by 
the piano wire. 

EXAMPLES ON CHAPTER XXVII 

1. What conditions determine the velocity of transmission of a transverse 

wave in a stretched string ? What constitutes the difference between sounds 

of the same pitch emitted by different instruments ? (L. ’81.) 

2. What is a musical sound ? Describe exactly what it is that determines 

the intensity, pitch, and quality of a musical note. (L. *92. 



CHAPTER XXVIII 

MAGNETIC POLES. LINES OP FORCE. THE INVERSE SQUARE 

LAW 

Preliminary Facts.—It has been known for some hundreds of 
years that certain iron ores, consisting chiefly of Fe804, possess the 
property of attracting iron filings. These ores are called natural 
magnets, and the property in virtue of which this attraction takes 
place is called magnetism. If a natural magnet is rubbed along a 
steel bar it is found that the steel becomes endowed with magnetic 
properties, or, as is usually said, it becomes magnetized without in 
any way affecting the ore. The bar is then called an artificial magnet, 
or more briefly, a magnet. Steel magnets possess the great advan¬ 
tage over the natural product that they can be made in a variety of 
convenient shapes; the forms usually chosen are cylindrical or 
rectangular bars, either straight or bent into horseshoe shape. We 
shall see that the strongest magnets are made by passing an electric 
current through a number of turns of wire wrapped round a soft 
iron core; these are called electro-magnets. 

ExPERiMENT.—Dip a bar magnet into iron filings; it is found that they 

adhere most strongly near the ends of the bar. Those points where the 

magnetism is most strongly exhibited are called the poles of the magnet. (A 

more exact definition is given later.) 

Experiment.—^Magnetize a steel knitting needle by rubbing it, always in 

the same direction, with the pole of a magnet; mark the end lost touched by 

the pole. Suspend the needle by a cotton thread from a wooden stand (Fig. 183). 

If the thread is first damped and drawn past the edge of the thumb-nail its 

tendency to untwist will be greatly reduced. Bring the pole already used 

in magnetizing it near the marked end of the needle, it is attracted; bring 

the same pole near the unmarked end, repulsion takes place. 

Evidently the poles of the needle possess dissimilar properties. 
If the magnetized needle is replaced by an unmagnetized one each 
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eiid is attracted by the pole of a magnet. Repulsion, therefore, is the 
only sure test of the presence of magnetism. 

Experiment.—Again suspend the magnetized needle and notice the direction 
in which it points ; this will be found to be roughly north and south. Displace 
it from this position, or suspend it with its poles 
reversed, it will be found to come to rest in the 
same direction as before, with the same end 
pointing north. 

That end which points north is called 
the north-seeking, North, or positive pole, 
the other is called the south-seeking, South, 
or negative pole. 

The straight line joining the poles is 
called the magnetic axis of the magnet; 
its positive direction is taken to be from 
the S. to the N. pole. The vertical plane 
passing through the magnetic axis of a 
freely suspended magnet at rest is called 
the magnetic meridian, this plane is said to run magnetic N. and S. 

Experiment.—Suspend several magnetized knitting needles in succession, 
as in the last experiment, and from their direction when at rest determine their 
positive poles. Mark these and suspend one of the needles. Now showjthat 
its positive pole is repelled by the positive pole of a second needle, but is 
attracted by a negative pole ; and similarly that negative poles repel each other. 

It is seen that like poles repel and unlike poles attract each other. 
The second experiment above shows that when a rod is magne¬ 

tized by rubbing with a positive pole the end 
of the rod that is touched last becomes a 
negative pole. 

For experiments such as these it is very 
convenient to have a test needle, with its 
positive pole marked, supported on a fine point 
as shown in Fig. 184. Such a magnet is called 
a compass needle. 

It is found impossible to make a positive ^NoedK°^^^” 
pole in a bar without creating a negative pole 
at some other point of it; these unlike poles are not necessarily 
at the ends. 

Experiment.—Stroke a knitting needle with the positive pole of a magnet 
starting from the middle and going to each end in turn. Teats with the compass 
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needle will show that the ends are negative poles, and that there is a positive 
polo near the centre. 

Such an arrangement may be regarded as consisting of two 
magnets with their positive poles in contact, forming what is called a 
consequent pole at the middle of the needle. 

Magnetic Substances. Expebiment.—Hang a bit of magnetized watch- 
spring by a silk fibre over the poles of a horseshoe magnet. It sets along the 
line joining the poles. Now replace the watch-spring by a short piece of 
bismuth. (This may readily be cast in a suitable form.) It is found to set 
at right angles to the line joining the poles. An electromagnet is usually 
required for this experiment. A piece of copper is apparently uninfluenced. 

Accurate experiment shows that all substances may be divided 
into two classes ; members of the one resemble steel in setting along 
the line joining the poles, the others set in a perpendicular direction 
like bismuth. The former are called para-magnetic, the latter 
diamagnetic, substances; we shall confine our attention to members 
of the first class^ Only a few of these, viz. iron, steel, nickel, cobalt, 
and certain alloys, exhibit magnetic properties to a very marked 
degree; they are called magnetic or ferro-magnetic substances. 
Very careful experiments are necessary to detect magnetic properties 
in other materials, we shall therefore regard all other substances as 
being non-magnetic. 

Permanent and Temporary Magnetism.—The following experi¬ 
ments show that the magnetic properties of iron and steel have 
important differences. 

Experiment.—Place one end of a soft iron bar in contact with the pole of 
a strong magnet. The further end of the bar can now attract iron filings and 
repel one of the poles of a compass needle, when, however, the magnet is removed 
the magnetism almost entirely disappears. If the iron bar is suspended over 
the poles of a horseshoe magnet it can be attracted and repelled by another 
magnet, it has thus become temporarily a magnet. Repeat the experiments 
with a steel rod and it will be found that the magnetism developed is very 
small. 

Experiment.—Rub an iron bar with the pole of a magnet; it is only feebly 
magnetized and the greater part of this magnetism disappears when it is struck 
on the bench. Steel, as has been seen, can be permanently magnetized. 

These facts may be collected in the statement that iron readily 
becomes magnetized while under the influence of a magnet, but its 
magnetism is only temporary; steel, on the other hand, is more 
difficult to magnetize but its magnetism is permanent. When a 
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substance acquires magnetic properties by being placed in the 
neighbourhood of a magnet it is said to be magnetized by induction 
or influence. The latter term is preferable, as the word “ induction 
is used later in a quantitative sense. It is evidently important that 
we should be able to make magnets 
capable of retaining their magnetism 
in undiminished quantity. For ex¬ 
ample, the accuracy of certain electrical 
instruments depends on the constancy 
of the magnets used in their con¬ 
struction. The best magnets for the 
purpose are made from tungsten steel 
(steel containing about 5 per cent, of Fia. J85.--Bar Magnets and 

tungsten). The form given to the Keepers, 

magnet has also great influence on its 
permanence; the most suitable shape is that of a nearly closed 
ring which brings the poles together. In the case of bar magnets 
constancy is partially attained by laying two of them side by side 
and connecting unlike poles by a piece of soft iron, called a keeper, 
as in Fig. 185. The reason for this will appear later. 

The Inverse Square Law.—The preceding experiments show that 
between the poles of two magnets there exists a force of attraction 
or repulsion ; it is important to determine how this varies with their 
distance apart. A convenient apparatus for the purpose, due to 
Grimsehl, is shown in Fig. 186.1 AB represents a magnetized 
knitting needle about 20 cms. long attached to a similar rod oJ 
brass AC. The whole is balanced round a knife edge at A. Anothei 
magnetized needle DE can be moved up and down the brass rod P, 
and the distance apart of the poles at D and B can be read ofi a 
vertical scale. 

Experiment.—Determine the approximate position of the poles by dippino; 
each magnet in iron filings, and place like poles at D and B. On account of 
the force of repulsion B is now pushed downwards, but the needle is brought 
back to its horizontal position by moving a sliding weight Q. Let F be the 
vertical force on the pole B, R the distance BD, w the weight of Q. Then by 
the principle of moments F. AB = u;. AQ, or F = w. AQ/AB. Find the length 
AQ for different values of R, as w and AB are constant F varies as AQ. It 

^ See also Barton and Black, ** Practical Physics/* p. 121. where a similar 
apparatus due to Hibbert is described. 
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will be found that AQ X BD* is very approximately constant, or FR* is constant, 
hence 

F oc -L 
R* 

Thus the force exerted by one pole on another varies inversely as 
the square of their distance apart For example, if BD is halved it 
will be found necessary to make AQ four times larger, halving the 
distance between the poles has increased the repulsion in the ratio 
4:1. This is the inverse square law first discovered by Coulomb. 
In the above the attraction between the unlike poles at B and E has 
been neglected ; this will be justifiable if the distance BD is not too 

Fia. 18G.—Balance Method of proving the Inverse Square Law, 

large. The attraction between the poles at D and A is also negligible, 
since the latter pole is near the fulcrum and the moment of the force 
tending to turn the rod is very small. A more exact proof of the 
inverse law is given later. 

Evidently if there could be added to the pole B another exactly 
like it the force of repulsion would be doubled ; if at the same time 
the pole at D could be increased threefold the force would be 
increased sixfold. Thus the force between two poles varies as 
the product of the pole-strengths. Combining the two results, if 
m and m* are the strengths of two poles separated by a distance R, 

^ 1 munf 
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where [i is h constant depending on the nature of the medium in 
which the poles are immersed. Experiment shows that the force is 
the same in all non-magnetic media. In such media /x is arbitrarily 
put equal to unity; thus in air 

““ Ii 2 

This equation is used to define the unit pole. Let two equal and 
similar poles, concentrated at points, be placed 1 cm. apart in air, 
and let us suppose the strength of each can be altered by the same 
amount until the force of. repulsion is 1 dyne. The equation then 
becomes, since F and R are each unity, 

1 = m2 

i.c. m=l, or the poles are of unit strength. We thus get the 
definition: If two equal and similar poles concentrated at points 
1 cm. apart in air repel each other with a force of 1 dyne, then each 
is a unit pole. 

Magnetic Field.—The space around a magnet in which the 
magnetic force can be detected is called the field of the magnet. 
The intensity of the magnetic field at a point is measured by the force 
in dynes which would act on a unit positive pole if placed at that 
point, the presence of the pole being supposed to produce no disturb¬ 
ance. If the force is 1 dyne the field is called unit field; to this 
the name Gauss has been given. When a pole of strength m is 
placed in a field of H Gausses the force acting upon it is mH dynes. 
If the field is everywhere the same in direction and intensity it is 
called a uniform field. Let us find the intensity of the field due to 
a pole of strength m at a point R cms. away from it. Imagine a unit 
N. pole placed at the point in question, the intensity of the field 
is the force which acts on it. The repulsion between the two is 

F = —or F = Since a compass needle removed from other 

magnets is acted on by forces which cause it to set in a definite 
direction, we must suppose there is a magnetic field due to the earth. 
This is uniform over a small space if all magnetic materials are 
removed to a distance. 

Expebimxkt.—Lay a short magnet on a cork and float it on water. It 
sets in a definite direction but does not move as a whole to the side of the 
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vessel. If H is the intensity of the earth’s field, m and the strengths of 
the poles, the resultant force acting on the magnet is As the 
magnet is at rest this is zero, hence or the poles of a magnet are oj equal 
strength. 

Lines of Force.—As the strength of a field is measured by the 
force which acts on a unit pole, it may be represented by a line drawn 
in a definite direction and of proper magnitude. Dealing only for 
the moment with the direction, a curve may be drawn in such a 
manner that the tangent to it at any point is parallel to the direction 
of the field at that point. Such a curve is called a line of force. 
The whole space round a magnet may be mapped out by a series of 
these lines showing everywhere the direction of the field. 

When a very short compass needle is placed near a magnet, 
throughout the small space it occupies we may suppose that the field 
is uniform, and as the poles are equal they are acted upon by equal 
forces in opposite directions. The needle therefore comes to rest 
with its axis parallel to the field, or coinciding with the line of force. 
This provides a means of plotting the lines. 

Expbeiment.—Place a magnet and a short compass needle on a sheet of 
paper and mark the position of the ends of the needle. Shift it so that its 
negative pole is at the point previously occupied by the positive and again 
mark the position of the ends. Proceeding in this way we get a series of points 
which if joined by a continuous curve give a line of force. 

As the lines are drawn to show the direction in which a positive 
pole moves they must start at a positive and end at a negative pole. 
It is extremely useful to picture all space in a magnetic field as filled 
with these lines. Fig. 187 shows them for a few typical cases; 
they are supposed to be running from N to S. They may be more 
easily shown by sprinkling iron filings over a sheet of paper on 
which the necessary magnets are placed. Each scrap of iron then 
becomes a magnet by influence and sets along a line of force when 
the paper is gently tapped. Fig. 188 (a) shows the result for a 
horseshoe magnet. 

From Fig. 187 we see that the lines crowd together near the 
poles where the field is strong ; they give not only the direction but 
some idea of the relative intensities of the field at different points. 
They can be made to represent the intensity accurately if, instead 
of an indefinite number, they are drawn according to the following 
rule : Suppose a small area held with its plane perpendicular to the 
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lines, then the number passing per cm.^ is made numerically equal 
to the intensity of the field at 
the centre of the area. This 
number is frequently spoken 
of as the density of the lines; 
thus in a field of 10 Gausses 
the density of the lines is 10. 
In a uniform field the lines 
are equidistant and parallel. 
Let a unit pole be placed at 
the centre of a sphere 1 cm. 
in radius. The field on the 
surface is w/R2 and is there¬ 
fore unity ; hence we must 
draw one line through each 
cm.2 and lines through 
the whole surface. Each unit 
pole therefore gives rise to in 
lines if the rule just given is 
adhered to. 

A number of properties of 
the magnetic field may be 
explained in terms of the 
lines of force if we suppose, 
as Faraday did, that (1) they 
are in a state of tension, 
(2) they repel each other 
sideways. Thus the attrac¬ 
tion of unlike poles may be 
ascribed to the tension in the 
lines running from one to 
the other; this tends to 
draw the poles together. If 
the lines experience a side¬ 
ways repulsion, Fig. 187 C 
shows that unlike poles will 
repel each other. The curva¬ 
ture of the lines in Fig. 187 B 

(C) 
Fia. 187.—Typical Cases showing the 

Distribution of Lines of Force. 
is due to the same cause; 
they spread out until the repulsion is small enough to be balanced 



316 MAGNETISM 

by the tension. It can be shown that the lines pass more readily 
through iron than air. 

Expbbiment.—Cover a horseshoe magnet with a sheet of paper, sprinkle 
over it iron filings and so obtain the usual figure. Place a keeper near the 
poles and repeat the experiment; scarcely any lines can now bo seen, they 

(a) {h) 

Fig. 188.—Distribution of Lines of Force by means of Iron Filings. 

pass from pole to pole through the iron rather than through the air. In 
Fig. 188 (a) was taken with the keeper oS, (h) with the keeper near the poles; 
note the absence of lines above the keeper. 

Fig. 189 shows how a piece of soft iron distorts a uniform field 
on account of this crowding of the lines into the metal. Where 
they enter and leave they create a negative and positive pole 
respectively. 

Molecular Theory of Magnetism.—One cannot work long with 
iron filings and magnets before the question presents itself, What 
is the change produced in an iron bar which causes it to show magnetic 
properties when held near a magnet ? 

The following experiment suggests one step in the solution of 
the problem. 

Exfbrimbkt.—Half fill a test-tube with iron filings, pass in to the centre 
a small brass disc attached to a wire handle, then add more fihngs until the 
whole tube is loosely filled. The tube attracts each pole of a compass needle, 
showing that it is magnetically neutral. Draw the pole of a magnet along it 
several times; some of the filings are seen to arrange themselves with their 
lengths parallel to the axis of the tube, and if it is now tested it is found to 
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exhrbit polarity at the ends. Shake the tube and the magnetism disappears. 
Kemagnetize it; there is no polo at the centre, but if the brass plug is pulled 
out so as to remove one-half of the filings a pole appears at this point which 
is of the same sign as that which has been removed at the end. 

In explanation of this it is supposed that the molecules of iron 
are small magnets—how they acquired their magnetism we cannot 
inquire—initially their axes 
are turned in all directions 
thus accounting for the ab¬ 
sence of poles in the tube. 
When it is magnetized all 
that is done is to turn a 
number of the axes into the 
same direction as each other, 
as in Fig. 190 ; this results in 
a N. pole at one end and a S. 
pole at the other. When the 
part to the right is removed 
we evidently have at C a pole 
of the same sign as that at B. If the tube is shaken this regular 
arrangement disappears and with it the polarity of the tube. 
This method of regarding the process of magnetization is called 

Fia. 189.—Distortion of Lines of Force 
by a piece of Soft Iron. 

jj j^ntnsn 

s N 

i 0 B 

Fig. 190.—^To illustrate the Molecular Theory of Magnetism. 

the molecular theory of magnetism; it is supposed to apply 
equally to the case of actual magnets. According to this theory, 
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the more stiongly a bar is magnetized the greater is the pro¬ 
portion of the molecules which have fallen into the regular 
arrangement; if all the small magnets were so directed the magnet 
could not be made stronger. Such a stage has been reached with 
soft iron. To explain the differences in the behaviour of iron and 
steel it is supposed that in the former the molecular magnets can 
easily be turned, but readily fall out of alignment when the magnetic 
field is removed, while in steel the movements are performed less 
easily, thus accounting for the greater difficulty of magnetizing it 
and for its permanent magnetism. 

Experiment.—Break a magnetized knitting needle in two pieces; the 
broken surfaces exhibit opposite polarities and each part is a complete magnet, 
as in the analogous experiment with the tube of filings. 

Any rough treatment such as hammering or jolting will tend to 
disturb the molecules, especially near the ends of the bar where there 
are no attracting poles to hold them in position. Similarly if a magnet 
is heated the molecules are thrown into more vigorous vibration 
(p. 8), and the regular arrangement. may be destroyed. In each 
case the bar will lose some, or the whole, of its magnetism. Suppose 
now the poles of a horseshoe magnet are joined by a soft iron keeper, 
the iron becomes magnetized and there is a complete chain of mole¬ 
cules from pole to pole. It will thus be difficult for a molecular 
magnet to turn out of its position and the magnetism is rendered 
more stable. This is why keepers are used. A similar effect is 
produced if a magnet is made in the form of a nearly closed ring 
with a narrow gap separating the poles; the lines of force run across 
the gap and keep the molecules in position. 

Poles and Magnetic Moment of a Magnet.—Iron filings adhere to 
the ends of a magnet not merely at points but over considerable 
areas, hence we must regard the pole as consisting of a collection of 
unit poles distributed throughout a certain space. When such a 
bar is placed in a uniform field each half is subjected to a number 
of equal and parallel forces arising from the action of the field on the 
unit poles; this multitude of forces may be replaced by single 
resultants acting on each half at definite points—tlie centres of the 
parallel forces. These points are the two poles of the magnet; in 
a uniform field the bar will behave as if its magnetism were concen¬ 
trated at these points. Thus the poles of a magnet are at the centres 



MAGNETIC POLES 319 

of the two systems of parallel forces which act on each half of the 
magnet when it is placed in a uniform field. 

The poles may be found approximately by plotting the lines of 
force near each end of the magnet and finding where they meet 
when the bar is removed. If the strength of the poles is m and their 
distance apart is Z, the pro¬ 
duct ml is called the mag¬ 
netic moment of the magnet. 
We will denote it by M. 

Couple acting on a Mag¬ 
net.—Let a magnet whose 
pole strength is m and the 
distance between whose poles 
is 2Z be placed in a uniform 
field of intensity H, and let 
it be deflected so that its 
axis makes an angle 6 with 
the lines of the field (Fig. 
191). Each pole is acted 
upon by a force mH tending 
to reduce 0. Let us calcu- Pio. 191.—Couple acting on a Magnet in 
late the moment of the Uniform Field, 

restoring couple formed by 
these forces. Draw BC perpendicular to the field; the moment 
required is evidently mH . BC, but BC = AB . sin 0 = 2Z. sin 0, 

restoring couple = m. 2Z. H sin 0 = MH sin 0 

Suppose that the deflexion 0 is produced by a uniform field F 
perpendicular to H. The force on each pole due to F is mF, and the 
moment of the couple they produce is mF. AC. If the magnet is 
in equilibrium the couples due to F and H are equal, 

mF. AC = mH . BC 
BO 

or F = H. ,^=H.tanff 
AC 

Hence if H is known F can be found. These two results should be 
remembered ; in using them it should be noted that we suppose the 
fields are (1) uniform and (2) perpendicular to each other. 

Experimbkt.—^The formulae will hold whether the forces arise from 
magnetism or other causes, hence the tangent formula may be verified by the 
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apparatus shown in Fig. 192.^ The small needle at the centre, which represents 
the bar magnet of the formula, carries a long pointer at right angles to it which 
moves over a graduated circle. Two strings are fastened to each end of the 
needle, these pass over pulleys and carry weights at their free ends. The 
pulleys can slide on their supports so that the forces constituting one couple 
can be kept parallel and at right angles to those forming the other. One pair 
of weights is kept constant and the other is varied. It should be proved that 
the ratio of the tensions in the strings is equal to the tangent of the angle of 
deflexion of the needle. 

A better definition of the moment of a magnet can now be given; 

Fig. 192.—Burton’s Apparatus for proving the Tangent Law. 

that on p. 319 is unsatisfactory as it is not known exactly where the 
poles are situated. Let a magnet be held perpendicular to the lines 
of force in a field of unit intensity, then the restoring couple 

is ME sin d = M sin - = M. Hence its magnetic moment is the 
2 

moment of the couple required to hold it perpendicular to the linos 
of force in a fieid of unit intensity. 

EXAMPLES ON CHAPTER XXVIII 

1. A magnet suspended by a fine vertical wire hangs in the magnetic 
meridian when the wire is untwisted. If on turning the upper end of the wire 
half round the magnet is deflected through 30® from the meridian, show how 

^ To be obtained from Messrs* Pye, Cambridge, 
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much the upper end of the wire must be turned in order to deflect the magnet 
45® and 60® respectively. (L. *84.) 

2. A bar magnet is laid on a sheet of paper on a drawing-board. Supposing 
it to have its poles concentrated at two given points, how would you determine 
by measurement and calculation the direction of the force at a given point 
on the paper 7 and, given a small compass needle, how would you tost the result 7 
(L. *95.) 

3. By what experiments would you show that the two poles of a magnet 
are of equal strength and of opposite polarity 7 How is the equality accounted 
for on the molecular theory of the constitution of a magnet 7 (L. *01.) 

4. Calculate in C.G.S. units the couple on a bar magnet 4 cms. in length, 
with poles each of strength 160 units, when placed with its axis at right angles 
to a magnetic field of intensity 0*18. (L. *06.) 

5. Two magnets each of eflectivo length 8 cms. and moment 80 units, lie 
in the same straight line with their N. poles 0 cms» apart. Calculate the repulsive 
force between them. (L. *09.} 



CHAPTER XXIX 

MAGNETIC MEASUREMENTS 

Time of Oscillation of a Magnet.—If a magnet is allowed to oscillate 
freely in a horizontal plane in a uniform field it can be shown that the 
motion is simple harmonic, provided the amplitude is small. The 
period in seconds is given by 

mi 
where M is the magnetic moment of the magnet, II is the horizontal 
intensity of the field in Gausses, and K is a constant for a given 
magnet, called its moment of inertia. The value of K depends on 
the size, shape, and mass of the bar, and upon the axis about which 
the oscillations take place. For a cylindrical bar oscillating about an 
axis perpendicular to its length and passing through its centre of 
gravity 

^=”’(12+4) 

where I is the length, r the radius of the cylinder, and m its mass. 
If the bar is rectangular, of length a and breadth 6, and it oscillates 
about an axis through the centre of gravity perpendicular to the 
plane containing a and h its moment of inertia is 

Expbrimbnt.—^The equation may be used to compare the moments of 
two magnets if the moments of inertia can be calculated. Suspend a magnet in 
a horizontal position by means of a thin thread and let it oscillate under the 
action of the earth's field H. Repeat with the second. If and T, are the |)eriods 

T,« K,/M.H 

T,* K,/M,H 

M, ^K, T,» 
vheam 
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Comparison of Fields by the Oscillation Method.^—11 a short 
magnet is caused to oscillate at diferent points the same equation 
may be used to compare the fields at these points; in this case 

K and M are constant. If Tj and T2 are the periods where the fields 
are Hj and H2 respectively, then 

or 

T22 I/H2 
H2 I/T22 

Hi-'W 
When the fields differ greatly in intensity it is possible that the 

magnetic moment M of the oscillating needle may be altered by 

influence ; in that case the method is inapplicable. The oscillation 
needle shown in Fig. 193 is due to Mr. Searle. The magnet passes 
through a brass block which tapers below to a point. Its position 

can easily be marked on the table and the weight of the block renders 
the oscillations slow enough to be counted readily. 

Expebiment.—To compare the fields prodiwed by tioo magnets at a given 
distance away from them. Let the needle oscillate in the earth’s field alone 
and note the time of a number of oscillations, hence deduce the period T. 
Place one of the magnets duo S. of the needle, and at the given distance away, 
with its N. pole pointing north. The lines of force due to the earth and magnet 
are parallel at the needle and the field is (Pj -f H), where is field due to the 
magnet alone and H that of the earth. Let the period bo T^, 

the 

and 

Fi + H_l/Ti« 
H 1/T» 

• • H +1 - x/'r« 

j_ 
F, Ti* f> 

H ~ J_ 

T* 

Repeat the observations with the second magnet, then 

F, Ta* T» 

11 “ J 

T* 

» See also Barton and Black. “ Practical Phyaios,” pp. 117-133. 
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Dividing one equation by the other 

_ 1 

F, ““ J_I 
Ta* T* 

The reason the experiment is done in this way is to make it 
possible to allow for the earth’s field, as this cannot be got rid of in 
the observations. A similar set of measurements enables us to 
prove the inverse square law by a method originally used by Coulomb. 
It is best for this experiment to use a Robison magnet (Fig. 193). 

Fio. 193.—Oscillation Method of proving the Inverse Square Law. 

This is a long steel rod with spherical balls of the same metal at each 
end ; by plotting lines of force it can be shown that the poles are 
situated at the centres of the spheres, hence we get a definite point 
from which to measure. 

Experiment.—Note the period T of the compass needle when vibrating in 
the earth’s field, then place the Robison magnet in a vertical position due S. 
of the needle with its N. pole at the same level (Fig. 193). The field at 
the needle is now (F^ -f H); let the period be Tj and the distance from the 
pole be di. Alter the distance to d, and observe the new time of vibration Tg. 

F, T« 

• ± ^ L 
T,* T* 
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F d ^ 
Hence prove that The field due to the upper S. pole is negligible 

2 «i 

if the magnet is long and and d^ arc not too largo. 

Field due to a Bar Magnet in Two Standard Positions.—It is required 
to find the field due to a bar magnet at a point on its axis. Let P 
be the point which is at a distance d from the centre of the magnet, 
also let m be the pole strength and 21 the distance between the poles 

“T/f ^ 

B-- 

Fio. 194.—£nd-on Position. 

(Fig. 194). Then the field at P is the resultant of m at N and — 
at S and is evidently in the direction NP. 

Hence the field 
m 

_ (1_l_l 
(d+>| 

But the moment of the magnet M = 22. m, 

Fi 
2Mi 

(d2-22)2 (1) 

If I is small compared with d, which means that a short magnet 
aust be used, we may neglect 22 in comparison with in the denomi¬ 
nator and 

Fi 
2M 

di 
(2) 

Next let the point P be on the line bisecting the magnet at right 
angles and at a distance d from the centre (Fig. 195). The field at 
P is now made up of two equal components, (o) to/NP® along PQ and 
(6) m/SP* along PS. The A NPS has its sides NP and PS parallel 
to these forces, if therefore these lines are taken to represent the 
forces the resultant F2 is represented in magnitude and direction 
by the line NS. But ON/NP = cos ONP, 

NS = 20N = 2PN . cos ONP 
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Replacing the lines by the forces they represent we have 

l'» = |^.co.ONP 

But NP2==d2 4-i2 

I 
and cos ONP = -- 

(d2 + 

• F _ 21 .m _ M 
^ ((f2-f + • • • 

If Z2 can be neglected as before 

Taking the two simple £ormula3 it is seen that the field in the 
second case is half that in the first, and, as the figures show, is 

oppositely directed. These formul® are direct 
consequences of the inverse square law; if it 
had been assumed that F oc l/R** we should 
have obtained, when Z2 is negligible in com¬ 
parison with (£2^ 

Fi = wF2 (see p, 334) 

Hence by finding the ratio of F2 to F2 the truth 
of the inverse square law can be tested. An 
oscillation method is here given; for a more 
accurate means, see p. 331. 

Exfebiment.—^Find the time of oscillation of a 
Searlo compass needle in the earth’s field H, then 
place duo S. of it a short bar magnet with its axis in 
the meridian and its positive pole pointing N. The 
distance between the needle and the centre of the 

Fio. 195_Broadside- ™®^gnet should be about 20 cms. and a strong magnet 
on Position. should bo used. Find the new period in the field 

(Fj -f H). As the poles may not be symmetrical with 
respect to the centre, it is best to repeat the last 

observation with the magnet at the same distance due N. of the needle. Call 
the mean period with the magnet in position T^. Turn the magnet so that its 
negative pole points N., and place it in the meridian with its centre due W. 
of the needle and the same distance away as before. The lines due to the 
earth and the magnet are again paraUei and the field at the needle is (F, + H). 
Find the period of oscillation Tn and repeat with the magnet due E. of the 
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needle. The ratio of Fj to F| can then be found from the formula on p. 324; 
it should be 2 very approximately if the inverse square law is true. 

Experiment.—Compare the fields due to the magnet at different distances 

from it in either of the two standard positions; hence show that F oc where 

d is the distance from the centre. 

The A and B Tangent Positions of Gauss.—In case I. just con¬ 
sidered let there be placed at F a short compass needle, and let the 
axis of the bar magnet be at right angles to the earth’s lines of force 
(Fig. 196). Before the bar magnet is brought up the needle will lie 
in the meridian, afterwards it will be deflected through an angle 0i; 
let us calculate this deflexion. Let H be the earth’s horizontal field 

Fio. 106.—A Tangent Position of Gauss, 

and the rest of the notation be as before. Since F^ and H are at right 
angles, and each is uniform in the small space surrounding the needle, 

Fi = H . tan (p. 319) 

r. ^ 2M(Z 
But Pi = r5i ^ (d2_/2)2 

2^** _TI . fl 
(d2-i2)2 

M_((i2_i2)2 

H " 2d ' 
. tan 01 

If the approximate formula (2) is used this becomes 
M d3 

= 2 . tan . . . . (6) 
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Similarly, if needle and magnet are placed as in Fig. 197, Fg and 
II are perpendicular; if the deflexion is Oo 

F2 = II. tan O2 

from (3) —. tan 0, 

ll n 
and „ = (J2^-Z2)i.tan^o . • (7) 

11 

or approximately from (4) ^ . tan 0^ .... (8) 
H 

These two arrangements of magnet and needle are called re¬ 
spectively the A and B tangent positions of Gauss. It should bo 

noted that in each case the deflecting magnet 

Fio. 197.—B Tangent 
Position of Gauss. 

is at right angles to the earth’s lines of force. 

Magnetometer.—From the foregoing it is 
seen that there are two methods of comparing 
magnetic fields, (1) The oscillation method 
(p. 323), (2) The deflexion method of the last 
paragraph. In the latter it is arranged that 
one of the fields is perpendicular to that of 
the earth, then F = H . tan 0, where 0 is the 
deflexion of the compass needle. Thus the 
intensity of F varies as the tangent of the 
angle through which the needle is deflected. 
For many observations by this method a 
magnetometer is convenient. This instrument 
consists, in its simplest form, of a short 
compass needle supported at the centre of a 
graduated circle and carrying a long pointer at 
right angles. The compass box is itself fix^d 
on a graduated bar (Fig. 198). In the more 

sensitive reflecting form the needle is about 5 mm. long, and it is 
stuck to the back of a concave or plane mirror which is suspended 
by a fine silk fibre; the deflexions are read by one of the methods 
described on pp. 145, 160. 

Comparison of Magnetic Moments.—There are several ways in 
which magnetic moments can be compared; a method of deter¬ 
mining a moment absolutely is given on p. 338. 
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(1) One method of comparison has already been given on p. 322. The 
following modification renders it unnecessary to know the ratio of the moments 
of inertia. Two pieces of glass tubing A, B, Fig. 199, are fastened together by 
wire and suspended by a single thread. The magnets are placed in the tubes 
and are allowed to oscillate torsionally, first with their axes in the same direction 
and secondly when they are opposed. Let Tj and T2 be the corresponding 

Fia. 198.—Simple Magnetometer. 

periods, Mj and M, the moments to be compared. In the first case the moment 
is (Ml -j- Mj) and in the second (M, — Mj), while the moment of inertia remains 
constant, hence 

(M, + Mj)H 

T, = 2../ ’ V (M, - Mj)U 

Whence 
T,> M,-M, 

and 
M, T,* + T,* , 

That magnet which points N. in each case has the greater moment Mi* 
(2) Usiri^ the A tangent position of Oauss,—The 

graduated arms of the simple magnetometer are 
arranged to point magnetic E. and W., when the 
pointer should stand at zero on the circular scale. 
One magnet is placed on the bar with its length 
perpendicular to the meridian and the reading at 
each end of the pointer is taken. The magnet is 
next reversed end for end, keeping its centre at the 
same distance from the needle, and the readings 
repeated. It is then moved to the corresponding 
position on the other side of the compass box and 
four more readings are made. The mean of the 
eight observations is taken to be the deflexion 0i in 
Equation (5) or (6). The deflexion 6^ due to the 
second magnet, when placed with its centre the same 
distance from the needle, is found in a similar way. 
Then using (6) Mi/M, = tan ,/tan 0^; lor greater 
accuracy Equation (5) may be used. 

As the above is a typical experiment in magnetic measurements 
13 
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we will give briefly the reasons for taking the observations in the 
manner described. Suppose that the centre of the circle is at 0 
(Fig. 200), and that tlirough a slight error in construction the point 
of support of the needle is at O'. It is clear that the reading at one 
end of the needle will be too small, while that at the other is too 
large by an equal amount, hence the mean is free from error. If 
the poles are not quite symmetrical about the centre of the deflecting 
magnet the deflexion is too large in one position and too small when 
the bar is reversed ; the mean gives a more correct result. 

(3) The B tangent position. The arms of the magnetometer are pointed 
N. and S., the magnet is placed across them in the B position (perpendicular 

to the meridian note), and four pairs of readings 
taken as before for each magnet. Then from (8) 
M|/M, = tan j/tan 6r Dissymmetry of the poles 
has less influence in this case. 

(4) Null method,—Instead of keeping d con- 
d» 

stant in the expression M/H = tan 6, we may 
2 

arrange to have 9 the same for each magnet- 
Then Mj/M* = d^^jd^*. One magnet is placed E» 
of the needle, the other on the W., with their poles 
directed to produce deflexions in opposite direc¬ 
tions. One is moved until the deflexion is zero, 
and di and the distances from the centres'^ of 
the magnets to the needle, are measured. The 
magnets are reversed end for end, keeping dj 

constant, and a new dj is found ; the mean value of dg is taken as the correct 
one. The B tangent position can also be used. 

The Sine Method.—Moments may also be compared by the sine 
method. Place a bar magnet on the magnetometer in the A position 
and turn the whole instrument round until the pointer is again at 
zero. Magnet and needle are again at right angles, and each is in¬ 
clined at an angle to its original direction (Fig. 201). If m' is the 
strength of the poles of the needle, V the distance between them, 
the moment of the couple due to the bar magnet is m'FiJ', and 
that arising from the earth’s field is m'H. V sin di. These must be 
equal, 

2M 
/. n sin 0^ = Fi = -- (from (2)) 

M 

II 

^ 

= --.sm0, or 
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The angle 6i may be found from an additional scale C, as in 
Pig. 198, or by merely removing the bar magnet the needle swings 
through 0i back to the meridian, the rotation may then be read on 
the ordinary graduated circle. If 6^ is the rotation for another 
magnet at the same distance, M1/M2 = sin ^i/sin We may also 
start from the B position before swinging the magnetometer round ; 
in either case the magnets should be reversed as before. 

Gauss’s Method 0! proving the Inverse Square Law.—For this 
experiment it is best to use a reflecting magnetometer, the deflecting 

N 

magnet may then be a thick knitting needle about 3 cms. long, and 
formulae (2) and (4) can be safely used. It is required to prove that 
l\ = 2F2 (p. 326). 

Experiment.—^The magnet is placed in the A tangent position, with its 
centre at a distanced from the needle, and the deflexions are noted as in the second 
method of the last paragraph, except of course that each end of the needle 
cannot be road with the reflector. The corresponding deflexion is found with the 
bar in the B tangent position at the same distance d. Prove tan 6§ ~ 2. 

Experiment.—In the A tangent position Fj = 2M/d*, from which we have 
deduced Equation ^6). The latter equation and therefore (2) can be verified by 
noting the deflexions for different values of d, for since M/H is constant the 
product d*. tan 6 should also be constant. Use a reflecting magnetometer 
for this experiment, else the more complicated equation (5) must be employed. 
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Additional Experiments.—The following experiments are instruc¬ 
tive as applications of the principles explained in this chapter. A 
note may be made here. We have seen that two methods can 
conveniently be used to compare magnetic fields, one making use of 
oscillations, the other of a magnetometer. In each case the earth’s 
field has to be taken into account, but it should be observed that in 
the second method the fields Fi, F2, which we seek to compare, are 
made perpendicular to that of the earth, while in the first method 
they are made parallel. 

Experiment.—Distribution of magnetism along a bar. Observe the time 
of oscillation of a Searle needle in the earth’s field H, let this be T. Now 
place due magnetic S. of it, at a distance of 3 cms., a long vertical bar magnet, 

with its positive end at the 
same height as the needle. The 
horizontal field at the needle is 
now Fj + H, where Fj arises 
chiefly from the magnetism on 
the bar at the point adjacent to 
the needle, and may be taken 
as proportional to the amount 
of this magnetism. Let the 
new period be Tj. Raise the 
bar magnet 2 cms. and observe 
the period T2 due to the field 
Fj -t* H. Then as on p. 324 

1 

Fi V ^ T » 
F 1 i 

Fig. 202.—Graphical Method of proving * ^-- 
the Inverse Square Law. I*** ^ * 

In this way the amounts of 
magnetism at diflerent points of the bar may be compared. Show the results 
in the form of a curve. It has been assumed that the moment of the needle 
is constant, this may not be true since the fields may differ greatly and the 
magnetisation may be altered by influence ; the method is not very exact on 
this account. 

Experiment.—Oraphical method of proving inverse square law. Find the 
position of the poles N. and S. of a bar magnet and draw the lines ON, OS, 
where O is any point on the paper (Fig. 202). The fields at O due to the poles 
are m/ON* and m/OS*. On any suitable scale mark off on NO produced and 
on OS lengths OP, OQ, proportional to these fields ; complete the parallelogram 
OPRQ. The resultant field is represented by OR, hence a short needle if placed 
at O should sot along OR if the inverse law is true. To eliminate the effect of 
the earth’s field the paper must be turned round until OR is in the magnetic 
meridian. 
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Experiment.—Neutral points of a field and pole strength of a magueU Plot 
the lines of force due to a bar magnet which is placed on a sheet of paper with 
its axis pointing N. The result on one side of the magnet is shown in Fig. 203. 
At the point A the compass sets indifferently in any direction ; it is a neutral 
point, where the earth’s field is exactly equal and opposite to that of the magnet. 
Find the poles and draw the parallelogram of forces as in the last experiment. 
Since the field at A is zero AED is the triangle of forces, and DA represents the 
earth’s field H. Taking this as 0*18 Gauss (p. 338), the forces represented 
by AE and AC can bo found by measurement; but these forces are m/AS* 

and m/AN* respectively. Hence if AS and AN are measured the strength of 
each pole can be found. Other positions of the bar magnet should be used. 

Astatic Needle.—An astatic needle consists of two magnets of 
equal moment, with their axes parallel but pointing in opposite 
directions (see Fig. 199). A system of this type will experience no 
couple when it is placed in a uniform field. In practice it is found 
impossible to fulfil the above conditions perfectly, but the directive 
action of the field can be greatly reduced with care. If the axes 
are parallel but the moments M and M' are unequal, the needle will 
act like a magnet of moment (M — M'). Let us find how such a system 
will set in the earth’s field if the moments are unequal and the axes 
not quite parallel. Let M and M^ be the moments, 0 and 0' the 
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coiresponding angles between H and the positive direction of the 
axes when the needle is at rest. The restoring couples must be equal, 

/. MTI sin e' = MH sin B 
sin d'/sin B = M/M' 

If the moments are equal B = B', and the magnets will point 
approximately E. and W. 

EXAMPLES ON CHAPTER XXIX 

To prove the formulie on p. 326, we have 

1 id - /)• ~ (d+'I? 1 
Dividing and multiplying the denominators by d** 

The expression in brackets can be developed by the binomial theorem, neglecting 
squares and higher power of Ijd we obtain 

Similarly for Fj we have 

2lmn 

nM 

= -coeONP 

also NP (d* -f- f*)*, cos ONP j 

_ 2ml 

I 
(d‘+ <*}♦ 

1 

(d* + pp 

or, if /• can be neglected, 

M 

(d* -hl‘) « 

M 
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1. A horizontally suspended magnet vibrates 12 times per minute at a 
place where the horizontal intensity of the earth^s magnetic held is 0*18. How 
many times per minute will it vibrate at a place where the horizontal intensity 
is 0*245? (L. *93.) 

2. A small suspended magnet makes 10 oscillations per minute under the 
influence of the earth’s field alone. A bar magnet is brought near it so as not 
to disturb the direction of the pointing of the suspended magnet, but so that 
the latter now makes 14 oscillations per minute. What would be the frequency 
if the bar magnet were now reversed pole for pole ? (L. 1900.) 

3. Explain how the law of the mutual attraction of magnetic poles at different 
distances may be investigated by means of the turning moment one produces 
on the other. (L. *04.) 

4. A short magnet 50 cms. to the west of a compass needle deflects it through 
45®. Find approximately the magnetic moment of the magnet, the value of 
the earth's horizontal field being 018 C.G.S. units. (L. '05.) 



CHAPTER XXX 

THE EARTH’S MAGNETIC FIELD 

The Earth’s Magnetic Elements.—It has already been noticed 
that a bar magnet if suspended by a fibre, after oscillating for some 
time, comes to rest in a definite direction, viz. North and South. We 
might conclude from this that the earth’s field is horizontal; a 
simple experiment will, however, show that this is not so. 

Ezfzbimznt.—Support an nnmagnetised ateel bar in the manner indicated 
in Fig. 204, ao that it can turn round both horizontal and vertical axea. Arrange 
that it seta horizontally, then magnetise it. It wiU now be found to set in a 
N. and S. direction but it will, in general, be inclined to the horizontal In the 
northern hemisphere it is the N. pole which dips, in the southern hemisphere 
the S. pole. 

It is evident from this that the resultant force is inclined to the 
horizontal, and is moreover parallel to a given vertical plane directed 
nearly N. and S. in England. The vertical plane containing the 
magnetic axis of the magnet when it is at rest is called the magnetic 

meridian. The angle between the geographical^ and magnetic 
meridians is called the angle of declination; it is about 16° W. in 
London, t.e. a compass points about 16° west of north. The angle 
which the magnetic axis of the freely suspended needle makes with 
the horizontal is called the angle of dip, or the inclination; it is 

about 67° in London. The complete determination of the magnetic 
intensity at any point thus resolves itself into finding the three 
magnetic elements:—(l) Total intensity; (2) Declination; (3) 
Inclination. If 1 is the total intensity, which is parallel to the 
magnetic axis of the needle in Fig. 204, we can resolve it into its 
horizontal and vertical components H and V and I* = V® -f H®. 

* The geographical meridian at any point is the vertical plane which is 
directed to the geographical north and south poles. Its direction must be 
determined by astronomical means. 



THE EARTH’S MAGNETIC FIELD 337 

Let 01 (Fig. 204) represent the total intensity in magnitude and 
direction at the point 0 ; the components are represented by OH 
and OV. If the angle of dip lOH be represented by then 

Also 

or 

and similarly 

V OV HI , . 

H~6h —OH“ . 

II OH 

H == I COS ^.(2) 

V — I sin <!> 

Evidently OH and 01 are in the same vertical plane, viz. the 
magnetic meridian. We see that if at any point the direction and 
magnitude of the horizontal component 
are known, and also the angle of dip, the 
field is completely determined ; for V 
can be calculated from (1) and I from 
(2). An account of the determination 
of these quantities will now be given. 

Measurement of the Horizontal Com¬ 
ponent.—This is important, as the value 
of H is frequently required in calcula¬ 
tions and measurements in magnetism 
and electricity, A direct measurement 
of V or I would be difiicult, as it is 
awkward to work with vertical or 
inclined needles. T\vo experiments are 
necessary : (a) The magnetometer ex¬ 
periment ; (6) The oscillation experiment. 
If M is the moment of a bar magnet, it has already been shown 
that the value of M/H can be found from observations with a 
magnetometer by either the tangent or sine methods. Taking the 
A tangent position we have 

M 

ii 2 
. tan 9 (1) 

where 6 is the deflexion of the magnetometer needle. Both d and 6 
can be observed, but as M is unknown another equation connecting 
this quantity and H must be found, then from the two either M or H 
can be calculated The bar magnet used in the magnetometer 

13* 
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experiment is next suspended in a horizontal position by a fibre, and 
caused to oscillate under the influence of the earth’s horizontal field. 
The time of vibration T is observed, then 

or 

Mfi 

M1I = 
T2 (2) 

Multiplying the Equations (1) and (2) together we get M^, and 
dividing the second by the first we find The same observations 
thus give us either the moment of the magnet or the earth’s hori¬ 
zontal field. The deflexion experiment is made in the manner 
described on p. 329, with the simple form of Kew magnetometer 
shown in Fig. 198. The oscillations are observed in the box shown 
in Fig. 205. It consists of a wooden box provided with movable 
windows back and front and surmounted by a vertical tube T. The 
magnet is suspended from the rod A and hangs in the box, which 
shields it from draughts. In order to free the suspension fibre from 
twist a bar of brass is first suspended in place of the magnet, and the 
rod A is turned until the bar comes to rest parallel with the sides of 
the box. The magnet is now replaced, care being taken that the 
fibre does not twist while the interchange is being made. The box 
is then turned until the magnet is parallel to the sides, when the fibre 
will be without twist and the magnet will lie in the magnetic meridian. 
Observations of the time of oscillation can now be made. The 
moment of inertia of the bar, K in Equation (2), is calculated from 
the appropriate formula on p. 322. The value of the earth’s hori¬ 
zontal component in London is 018 Gauss approximately. 

Measurement of the Angle of Dip.—A simplified form of the Kew 
dip circle is shown in Fig. 206. The axle of the needle rotates upon 
two horizontal knife-edges and is brought to rest upon them at the 
centre of the scale- by two sliding pieces with V-shaped ends. The 
whole is contained in a case with glass windows back and front to 
shield the needle from draughts. The case can be turned round a 
vertical axis, its azimuth being given by a vernier moving over a 
horizontal circular scale on the base. After the instrument has been 
levelled the case is rotated until the needle sets vertically ; in this 
position the horizontal component has no efiect, or the needle would 
be inclined somewhere between the horizontal and the vertical. 
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Hence the axle of the needle must be in the meridian, for when this 
is so the horizontal field has no turning moment in the plane of 
rotation. If the case is now turned through 90® the needle is in the 
magnetic meridian, and the angle of dip may be read of! the vertical 
circular scale. The result obtained may be affected by certain 
errors arising from the following circumstances : (a) The axis about 
which the needle rotates may not pass through the centre of the 

vertical scale ; (6) The magnetic axis of the needle may not coincide 
with its geometric axis ; (c) The zero line of the vertical circle may 
not be exactly horizontal; ((f) The centre of gravity of the needle 
may not be on the axis about which it revolves. We proceed to 
show how, by taking the observations in the proper manner, these 
errors may be eliminated. 

From p. 330 it is clear that (a) is got rid of by reading both ends 
of the needle and taking the mean. If the mean be taken at the 
end of the adjustments we have at present two observations. To 
eliminate (6) the needle is removed from its bearings and reversed 
back for front, as the magnetic axis always sets in the same direction. 
Fig. 207 shows for a similar instance that the mean result will be 
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free from this error. We have now four readings. The case is next 
turned round the vertical axis through 180° ; if in the first instance 
the zero line of the vertical circle was too high on the right it will 
now be too high on the left; the four previous observations are 
repeated and error (c) is eliminated. If in all these experiments the 
centre of gravity of the needle is below the point of support, the 

weight will pull the lower end 
of the needle down, and the dip 
obtained will be too large. To 
eliminate the resulting error the 
needle is remagnetised in the 
opposite direction, when its 
other end dips, and the eight 
readings above are repeated. 
The mean of the sixteen obser¬ 
vations gives a result free from 
instrumental defects. 

The Angle of Declination.— 
Let a bar magnet be suspended 
horizontally by a torsionless fibre 
above a circular scale. It comes 

Fm. 207.—Method of finding tho to rest with its magnetic axis in 
Magnetic Meridian. magnetic meridian. If now 

the direction of the geographical 
meridian is ascertained with reference to the same scale, the angle 
between the two, i.e. the declination, can be read ofi at once. As 
astronomical observations are necessary to find the geographical 
meridian we will describe merely a method of finding the magnetic 
meridian. 

Experiment.—To determine the magnetic axis of a magnet and also the direction 
of the magnetic meridian.—Fasten to tho ends of a bar magnet two straight 
pieces of wire (non-magnetic) as shown in Fig. 207. Place it in a copper 
wire stirrup and suspend it by a long piece of silk fibre so that the ends of the 
wires just clear the bench. When it has come to rest mark the positions A, B, 
of the wires on the bench and draw the line AB. If the pins were on the magnetic 
axis this line would represent the direction of the magnetic meridian. If this 
condition is not fulfilled, and so far we have given no method of testing, we 
must proceed as in the elimination of error (6) above. The magnet is removed 
from the stirrup, its lower face turned uppermost, and the observation repeated. 
This time the wires are at A', B'. The line MM' which bisects the angle 
between AB and A'B' is in the plane of the magnetic meridian; if the 
magnet is lowered on to the bench after removing the wires this line also gives 
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the direction of the magnetic axis. For the second position is obtained from 
the first by rotating the bar about its magnetic axis, which points in a fixed 
direction, hence the line joining the pins must be equally inclined to this line 
in the two positions. 

Magnetic Maps.—The variation of the magnetic elements over 
the earth’s surface can be shown most conveniently by plotting lines 
of equal horizontal intensity, of equal dip, or of equal declination, 
upon geographical maps. Lines of equal dip are called isoclinic 
lines, those which join places of equal declination are isogonic lines. 
Observations show that the distribution of field is roughly such as 
would be obtained if the earth contained a strong magnet whose 
length is shorter than the diameter. At certain points the total 
field is perpendicular to the earth’s surface, a dipping needle sets 
vertically while a compass points indifferently in any azimuth. 
These are called the magnetic poles, the N. pole lies in lat. 70° N. and 
long. 97° W. As the direction of dip is reversed in going from the 
northern to the southern hemisphere there is a line of zero dip, called 
the magnetic equator. It lies near the geographical equator. The 
sets of lines are not distributed evenly over the earth’s surface—this 
is no doubt partly due to the presence of magnetic ores—but generally 
speaking the isoclinic lines and those of equal horizontal intensity 
run parallel to the magnetic equator like lines of latitude. There 
are two lines along which the declination is zero ; these are called 
agonic lines. If the field were due entirely to an internal magnet 
there would be one agonic line, viz. the great circle joining the 
magnetic and geographical poles. One of the agonic lines runs 
roughly in this direction, the other is situated in Siberia and is oval 
in shape. 

Variations in the Magnetic Elements.—The magnetic elements 
have now been observed for a large number of years, and the records 
show that they are undergoing slow variations extending over 
centuries. These are called secular changes. For instance, in the 
year 1600 the declination in London was about 10° E., from that 
time until 1800 it changed gradually to about 25° W., since then it 
has been moving back to zero and is, as has been stated, about 
16° W. at the present time. Corresponding changes have taken 
place in the positions of the magnetic poles. If these changes are 
periodic they will take nearly 1000 years to perform one cycle. 
Observations with continuously self-recording instruments show 
that there are, in addition, small annual and daily variations which 
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are periodic in character. Thus the declination is a maximum in 
the afternoon, it then decreases and reaches a minimum value about 
eight o’clock the following morning, rising again as the day advances. 

Occasionally these more or less regular changes are disturbed by 
very irregular variations which are called magnetic storms. Their 
occurrence seems to be closely connected with other well-known 
phenomena, such as the appearance of the Aurora Borealis or of sun 
spots. The Aurora is undoubtedly of electro-magnetic origin. This 
would give us the idea that part, at any rate, of the earth’s field is 
due to external causes. 

EXAMPLES ON CHAPTER XXX 

1. The moment of a magnet is 1000 C.G.S. units. How much work is done 
in turning it through 90® from the magnetic meridian in a horizontal plane 
at a place where the horizontal intensity is 0*16 C.G.S. unit ? (L. *02.) 

2. A bar magnet whose moment is 9860 C.G.S. units is turned in a hori¬ 
zontal plane through 60® from the meridian. Find the work done and the 
couple required to maintain it in that position. H = 0*2 dyne per unit pole. 
(L. *10.) 

3. A dip needle oscillates in the meridian at the rate of 35 oscillations/min. 
in a locality where the dip is 60®. In another locality, where the dip is 46®, 
it is found that the needle makes 40 oscillations/min. Find (a) the ratio of the 
earth’s total intensities, and (6) the ratio of the horizontal components of the 
earth’s magnetic field at the two places. (L. ’08.) 
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ELECTROSTAllCS 

Preliminary Ideas.—It has been known for 2000 years that amber, 
when rubbed with a suitable rubber, acquires the power of attracting 
light bodies. Gilbert, in the sixteenth century, discovered other 
substances which behave in a similar manner. A body which has 
become possessed of this property is said to be electrified or charged 
with electricity. An account is given in the following pages of the 
methods of electrifying bodies, the results produced by electricity, 
and the methods of measurement. That branch of the subject 
which deals with electricity at rest is called electrostatics. 

Experiment.—Rub an ebonite rod with a woollen or fur rubber, it can 
then alternately attract and repel bits of paper or cork brought near it; it is 
electrified or charged with electricity. 

Experiment.—Suspend horizontally, by a single thread, a light ebonite rod 
that has been electrified by friction with wool, and bring near it another ebonite 
rod that has been charged in a similar manner; repulsion takes place. Replace 
the ebonite rods by rods of glass rubbed with silk, repulsion again occurs ; but 
if a glass rod, charged by rubbing with silk, is brought near a suspended ebonite 
rod that has been electrified with flannel the two are seen to attract each 
other. 

We infer, exactly as in the parallel case of magnets, that there 
are two kinds of electricity, and that like charges repel and unlike 
charges attract each other. The electricity produced on glass when 
it is rubbed with silk is called positive electricity, that produced on 
ebonite when rubbed with flannel is called negative electricity. 
The sign of the charge produced on any body depends on the state of 
its surface, the temperature, the nature of the rubber, etc. Thus 
a ground glass rod is negatively charged by rubbing with flannel; a 
smooth glass rod, if made very hot, is negatively electrified by 
friction with silk. 

It was thought for some years that the power to become electrified 
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was possessed only by certain non-metallic bodies ; it is now known 
that all solids can be electrified. If a brass tube is held in the hand 
while it is rubbed it is impossible to electrify it, but if it is held by 
an ebonite handle thrust into the tube it becomes negatively charged 
when rubbed with flannel. This charge at once disappears when 
the brass is touched with the finger, showing clearly why it was not 
electrified in the first instance; as fast as the electricity was 
produced it escaped through the hand of the experimenter. Sub¬ 

stances like brass, which allow electricity 
to travel along them, are called con¬ 
ductors; those like ebonite, which do 
not allow this movement, are called 
insulators or dielectrics. There is, how¬ 
ever, no definite boundary between the 
two classes, all substances conduct in 
a greater or less degree, and no sub¬ 
stance is known which does not offer 
some resistance to the movement of 
electricity through it. The best insu¬ 
lators are quartz, amber, sulphur, 
paraffin, ebonite, dry gases, and certain 
organic liquids; the metals, particularly 
silver and copper, are the best con¬ 
ductors. If a conductor is required to 
retain its charge it must be supported 
by an insulator, it is then said to be 
insulated. 

Fig. 208.—Torsion Balance. Inverse Square Law.—It is found, 
as in magnetism, that two charges Q 

and Q', if placed at a distance R apart, repel each other with a 
force which varies as 1/R2. Priestley first established the law 
in 1767, but the first direct proof, nearly twenty years later, is 
due to Coulomb, who used a torsion balance (Fig. 208). A thin 
wire T, fixed in a torsion head B, carries at its lower end a light 
insulating rod S. At the extremity of this rod there is a small gilt 
pith-ball P ; another small conductor Q is supported on an insulating 
rod which passes through the top of the case. It is arranged that 
there is no twist on the wire when P and Q are in contact and one 
end of S points to the zero of a circular scale on the glass case. Q is 
charged with electricity and placed in position; it shares its charge 
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with P and the two conductors repel each other. The rod S is now 
acted upon by two couples, one arising from the force of repulsion F 
between the two charges, the other due to the twist on the wire; 
the latter couple is proportional to the torsion. An example will 
best show how the law is proved. In a certain case, Coulomb found 
that P was repelled through 36°, and in order to reduce this to 18° 
it was found necessary to turn the torsion head B clockwise through 
126°. The distance between the charges was now approximately 
halved, and, since the wire was turned through 126° at the top and 
18° in the opposite direction at bottom, the total torsion was 144°, 
i.c. 36° X 4. To reduce the distance by half the torsion had therefore 
to be increased fourfold, or the ratio of the forces at distances R 
and 2R are 4:1, hence F oc 1/R2. If Q is touched by another con¬ 
ducting sphere of the same size Iialf the charge will be transferred to 
it; this may be removed, when it is found that the force exerted 
by the charge on Q is halved, showing that the force is proportional 
to the charge. Hence the force between two charges Q and Q' 
separated by a distance R varies as QQ'/R-, or 

K K2 

Experiment shows that the force between two charges varies 
with the medium by which they are surrounded ; the constant K 
depends on the medium. Owing to the gradual leaking away of 
the charges along the insulating supports, and to other reasons, the 
method is not capable of giving more than a rough indication of the 
law. Another proof is given on p. 355. 

Unit Charge and Intensity of an Electric Field.—The equation 
just given is used exactly as the corresponding one in magnetism to 
define the unit quantity. Since, as we shall see shortly, the presence 
of a charge on one sphere influences the distribution of the electricity 
on a neighbouring sphere, we must suppose in our definition that the 
charges are concentrated at points. The constant K is arbitrarily 
made unity for air. If now there are two equal charges Q, separated 
in air by 1 cm., and they are found to repel each other with a force 
of 1 dyne, then each charge is unit charge ; for F and R are each 
unity, hence Q2 = 1. We have, therefore, the following definition : 
The electrostatic unit of electricity is that quantity which, if concen¬ 
trated at a point, repels an equal and similar quantity concentrated at 
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another point 1 cm. away with a force of 1 dyne, the medium between 
them being air. 

When one charge is placed in the neighbourhood of another it is 
usually acted upon by a force of attraction or repulsion; the space 
throughout which this force can be detected is called the electric 
field of the second charge. The intensity of the field at a given point 
is measured by the force in dynes which acts on a unit positive 
charge if placed at that point, the presence of this test charge being 
supposed to leave the original field undisturbed. The direction of 
the field is that along which the unit positive charge tends to move. 
The phrase “ intensity of the electric field ** is frequently abbreviated 
to “ the electric field.’* To find the field due to a charge Q at a 
distance R away, it is supposed that a unit positive charge is placed 

Q X 1 
at the point in question, then the repulsion is ^ or the field 

F = Q/R2. 

Electrical Lines of Force.—Just as in magnetism a curve may be 
drawn so that the tangent at any point is parallel to the electric 
field at that point; this constitutes an electrical line of force. As 
the lines show the direction in which a positive charge tends to 
move, they must start at a positive and end at a negative charge; 
an arrow is placed on them to show this direction. The convention 
adopted as to the number to be drawn to represent the intensity 
of the field difiers from that followed in magnetism. The rule for 
drawing the magnetic lines of force was equivalent to supposing that 
each unit pole gave rise to in lines (p. 315), in the present case it is 
supposed that each positive unit of electricity gives rise to one line. 
Imagine a charge Q at the centre of a sphere of radius R; the 
intensity of the field at the surface of the sphere is F = Q/R2, and 
the total number of lines is Q, distributed over an area inB,^. The 

number, N, crossing each cm.2 of the surface is ^^ F/47r. 

Hence F = 47rN, i.e, the intensity of the electric field is 4Tr times the 
density of the lines (cp. this with p. 315). 

It is supposed, as in the magnetic case, that the lines are in a 
state of tension, and that they exert a sideways repulsion on each 
other, thus accounting for the attraction of dissimilar charges and 
the repulsion of those having the same sign (see p. 315). 

Gold'leaf Electroscope.—The gold-leaf electroscope (Fig. 209) 
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afEords a simple means of detecting the presence and sign of an 
electrical charge. It consists of a metal case A, closed by glass at 
the front and back, and carrying an ebonite stopper B; through the 
latter a thin metal rod C is passed which carries at its lower end 
two thin strips of gold-leaf. When the top 
of the rod, the knob of the electroscope as it 
is called, is put in metallic communication 
with an electrified conductor a portion of the 
charge runs into the gold-leaves, and, as 
similarly charged bodies repel each other, 
the leaves diverge, the greater the charge 
they receive the greater will be their 
divergence. The leaves may be torn if they 
receive too great a charge; to overcome ^ 
this danger a small amount of electricity 
may be carried from the conductor to the 
electroscope by a proof-plane. This consists 
of a small disc of metal attached to an 
ebonite handle; it is caused to touch the Fio. 209.—The Gold- 

charged conductor, thereby receiving part Electroscope, 

of the charge, this is then transferred to 
the electroscope by putting the plane in contact with the knob. 

Experiment.—Electrify a glass rod with silk, gently bring it in contact 
with the knob and then remove it. The electroscope has received a positive 
charge and the leaves accordingly diverge. Bring a positive charge near it ; 
the leaves diverge still further. If a negative charge is gradually approached 
the leaves at first collapse and may then diverge again. 

This gives us a means of identifying the sign of the charge on a 
body ; if a charged electroscope is brought near it, and the leaves 
diverge more widely, the electricity on the body is of the same kind 
as that on the electroscope. A partial collapse of the leaves does 
not necessarily indicate a charge of the opposite sign, for if a neutral 
conductor is brought near the knob the leaves collapse slightly. 
The reason for this will appear shortly. When it is uncertain whether 
a body is neutral or charged with electricity of the opposite kind to 
that on the electroscope, we must test it with the leaves charged in 
succession positively and negatively, if they collapse in each case 
the body is neutral. A scale on the glass to show the amount of the 
divergence is useful for rough measurements. 
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Electrification by Infiuence (Induction).—The leaves of an electro¬ 
scope may diverge without electricity being communicated to it. 

Experiment.—Hold an electrified rod near an uncharged electroscope, 
the leaves diverge ; rcraove the rod, they at once collapse. 

It is supposed that an uncharged, or neutral, body contains 
equal quantities of positive and negative electricity, when a charged 
body is brought near it there is a separation of the two charges; 
these run together again when the external charge is removed. 

Experiment.—Hold an electrified glass rod near an insulated conductor 
(Fig. 210), touch the end A with a proof-plane and transfer the charge, if any, 
to an electroscope. It is found to be negatively charged. Show similarly 

Fia. 210.—Electrification by Infiuence. 

that the end B is positively charged. These charges disappear when the glass 
rod is removed. 

The conductor is said to be electrified by influence (or induction) 
while it is in the neighbourhood of a charged body. There is evi¬ 
dently an analogy to magnetisation by influence (p. 311), 

Experiment.—Modify the last experiment by first connecting an electro¬ 
scope to the conductor by means of a wire. When the positively charged 
rod is held near the conductor the leaves diverge, ami it can readily be shown 
that the charge on them is positive. Touch the conductor, the leaves collapse, 
showing that a charge has escaped. Remove the finger and then the rod, tho 
leaves diverge with negative electricity. This procedure enables us to charge 
any conductor with electricity of the opposite kind to that on a charged rod 
or other conductor. 

The theory of these eflEects is considered in the next chapter. 

Electricity is confined to the Surface of a Conductor.—This can be 
shown as follows :— 

Experiment.—Insulate a hollow metal can on a block of paraffin and give 
it a charge as in the last experiment. Tests with the proof-plane will now show 
that there is no electricity at points well inside the conductor, all the charge 
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is on the outside surface. If a metal rod is placed in the can, so that it projects 
at the top, a charge may bo collected from the part external to the can but 
none from the portion within. 

Similarly if a metal ball is charged and then allowed to touch 
the interior of an insulated, hollow vessel, all the electricity leaves 
the ball and flows to the outside surface of the vessel. The electro¬ 
scope will show that the ball is completely discharged. 

The Surface Density is greatest on the Sharply Curved Parts of a 
Conductor.—The quantity of electricity per cm.^ surface of an 
electrified body is called the surface density of the charge. It may 
be shown that it is greatest on those parts of a conductor that are 
most sharply curved ; for if a pear-shaped conductor is charged, 
experiments with the proof-plane show that more electricity can be 
collected from the pointed end than from any other part. In a 
similar manner, when a flat disc is electrified, very little electricity 
can be collected from the flat portions compared with the amount 
that can be obtained from the edges. 

The Induced and Inducing Charges are Equal.—When a charge 
induces electricity on other conductors the total positive and 
negative charges it induces on these bodies are each equal to the 
original charge. In the case of electricity placed on a conductor in 
the middle of a room, the induced charges are found partly on 
neighbouring conductors and partly on the walls and ceiling- of the 
room; if it is wholly surrounded by another conductor all the 
induced charge will be found on the latter body. 

Experiment.—Connect an insulated metal can to an uncharged electro* 
scope. Lower into it an insulated metal ball charged positively; the leaves 
diverge with positive electricity, and they diverge more widely as the ball is 
gradually lowered, until it is completely inside. Beyond this position it may 
be moved about freely without affecting the leaves to any further extent. All 
the lines from the charge now end on the can. Touch the vessel with the finger ; 
the leaves collapse, showing that the induced positive charge has escaped. Tests 
with the proof-plane show that the corresponding negative charge is on the 
interior of the can, where the lines from the inducing charge meet it. Touch 
the interior of the can with the ball; the positive and negative charges at the 
ends of the lines of force run together, no charge can then be detected on either 
the ball or the can. The positive charge on the ball is therefore equal to the 
negative charge it induces on the vessel, and, as the vessel was originally un¬ 
charged, the positive electricity that has escaped must contain an equal number 
of units. 

We have supposed that a line of force starts from a unit positive 
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charge; the above results show that it ends on an equal negative 
one, since for each positive unit there exists a negative unit distributed 

on surrounding conductors. This experiment is usually referred to 
as Faraday’s ice-pail experiment. 

Positive and Negative Charges are always produced in Equal 
Amount.—This may be shown by the following experiment. 

Experiment.—Fit over one end of an ebonite rod a woollen cap which can 

be removed by insulating silk threads. Revolve the rod in the cap and hold 

the two together over an electroscope ; no charge can be detected, but, when 

the cap is removed by the threads, negative electricity is found on the rod and 

positive electricity on the wool. The two charges exactly neutralized each 

other and must therefore have been equal. Usually the charge on the rubber 

escapes through the hand, when the rubber and rod are separated, and so 

escapes detection. 

EXAMPLE ON CHAPTER XXXI 

1. A bar magnet is divided in the middle and the parts separated. An 

insulated conductor electrically charged by induction is similarly treated. 

Contrast and explain the state of affairs in the two cases. (L. ’03.) 



CHAPTER XXXII 

POTENTIAL 

Potential.—WLcn two charged conductors are joined by a con¬ 
ducting wire electricity generally flows from one to the other; the 
charges are redistributed, but the total quantity of electricity remains 
the same, if by this we understand the algebraical sum of the charges. 
Thus the total quantity of electricity on three conductors whose 
respective charges are + 10,— 20 and + 35 units, is -f 25 units; when 
the conductors are joined together this quantity will still be found 
spread over tlie whole extent of their surfaces. 

Expebiment.—Electrify two insulated metal spheres and compare their 

charges, as in the ico'pail experiment, by holding them one after the other 

inside a hollow conductor which is joined to an electroscope. The amounts 

by which the leaves diverge will give us some idea of the relative values of their 

charges. Hold them together in the hollow vessel, without allowing them to 

touch, and note the divergence of the leaves ; now bring them in contact, the 

leaves do not alter, showing that there is still the same quantity of electricity 

on the two. If they are now tested again separately one will usually show a 

gain and the other a loss of electricity. 

We must now inquire wlmt are tbe conditions that determine 
which conductor loses electricity; in other words, what are the factors 
which fix the direction in which electricity shall flow. Experiments 
such as that above will soon convince us that the transfer is not 
necessarily from the large to the small conductor, nor even from the 
conductor containing more electricity to the one containing less. 
To prove the last statement a means is required of electrifying two 
conductors with charges whose relative magnitudes are known. 
This may be done with sufficient accuracy as follows: Charge an 
insulated spherical conductor negatively and bring near it another 
small insulated sphere. If the latter is touched by the finger it may 
be positively charged by influence as often as we please without 
affecting the charge on the larger conductor, and if it is always placed 
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in the same position the successive induced charges will be equal. 
These can be transferred to any hollow conductor by touching its 
interior with the small charged sphere. Let two hollow spherical 
conductors whose diameters are 10 and 20 cms. respectively be 
charged in this manner. It can then be shown that if five charges 
are given to the smaller and ten to the larger no transfer of electricity 
takes place when they are joined by a long thin wire, but if more 
than five are put on tlie smaller while the charge on the larger is 
the same as before, then electricity flows from the smaller to the 
larger sphere. If the proportionate charge on the larger sphere is 
increased beyond that given in the first instance the flow is in the 
opposite direction. 

Parallel instances may be taken from other branches of physics. 
In the case of hot bodies heat flows from one possessing a higher 
temperature to another at a lower temperature, irrespective of which 
is the larger body or which contains the most heat. Or in hydro¬ 
statics, when two tanks containing water are allowed to communi¬ 
cate liquid flows from the one in which the level is the higher 
independently of their size. If we ask in the latter case why the 
flows take place, the answer is that by running from a higher to a 
lower level the water loses potential energy. A mass M at a height h 

has potential energy 'High units, if it is allowed to move freely the 
motion is in the direction which diminishes this energy, it therefore 
falls to earth. The same principle applies in electricity. Suppose 
we charge a conductor by bringing to it successive units of positive 
electricity ; after it has received the first unit it is surrounded by an 
electrical field of force, and to bring up the remaining units they must 
be forced along against the field, in other words, work must be 
expended. This work finds its equivalent in the potential energy of 
the charge on the conductor ; a charged conductor therefore possesses 
energy. If now there are two charged conductors which are put in 
metallic communication, electricity will flow in such a direction as 
to diminish the joint potential energy of the charges. We can 
predict the direction of flow from the following considerations. In 
the case of two water tanks, A and B, if work has to be done against 
gravity to carry a gram of water from the surface in A to that in B 
then B is at the higher level, and water will flow from B to A when 
they are put in communication. Similarly if we have two con¬ 
ductors, A and B, and it requires the expenditure of work to carry 
unit positive charge from A to B, then positive electricity will flow 
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from B to A when they are connected by a wire. If, however, 
the forces in the field will move the test charge from A to B, then 
this will be the direction in wliich electricity will flow when they are 
connected. In the hydrostatic example we say that the level of the 
water is higher in B than A, in the electrical case we say that the 
electrical potential of B is greater than that of A. Electrical 
potential, therefore, is analogous to difference of level in hydrostatics. 
Positive electricity tends to flow from places of higher to those of 
lower potential, negative electricity goes in the opposite direction. 
The difference of potential between two points is measured by the work, 
in ergs, that must be expended to carry a unit positive charge from one 
point to the other. 

In comparing the heights of two mountains we measure 
from sea-level, the sea being looked upon as such a large 
reservoir that any variation in the quantity of water it contains 
leaves its mean level unaltered. When we are dealing with electricity 
the earth is such a large conductor that any charge that can be com¬ 
municated to it does not alter its potential, it is therefore taken as 
the conductor of zero potential. When it requires V ergs of work 
to carry a positive unit from the earth to a conductor the potential 
of the latter is V; if positive electricity tends to flow from the earth 
to the conductor the potential of the conductor is negative. If 
the potential at a point is V it will be necessary to expend VQ ergs 
of work to bring a charge of Q units from the earth to that point. 

The Surface of a Conductor is an Equipotential Surface.—When a 
charge is moved in a direction perpendicular to the lines of force no 
work is done, since the field has no component in the direction of the 
motion. A surface which everywhere cuts the lines of force at right 
angles is called an equipotential surface, for a charge may be moved 
about on it without doing work. The surface of a conductor must 
fulfil this condition, otherwise two points on it will differ in potential 
and a flow of electricity from one to the other will ensue. When an 
electroscope is connected to a charged conductor electricity flows 
into the leaves until their potential is that of the conductor. 
Similarly when two conductors are connected a redistribution 
of electricity takes place which reduces them to the same common 
potential. 

Experiment.—Join a proof-plane to an electroscope by a long wire, then 
move it over the surface of a charged, pear-shaped conductor. The leaves 
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show the same divergence for every position of the plane* proving that the 
conductor is an equipotential surface* although* as we have seen, the density 
of the charge varies from point to point. 

Since lines of force show the direction in which a positive charge 
tends to move they must run from places of higher to those of lower 
potential. A line cannot start from and end on the same conductor, 
for this is an equipotential surface. Lines may, however, start from 
one part of a conductor where there is a positive charge, and other 
lines may end on a different part where there is a negative charge. 
An example of this occurs in electrification by influence as shown in 
Fig. 210. If there is no charge on a conductor an equal number of 
lines must start from and end on its surface. 

Theory of Electrification by Influence (Induction).—We can now 
consider more fully the question of electrification by influence. 
When the charged rod C of Fig. 210 is brought near the conductor 
the latter becomes surrounded by an electric field ; it would there¬ 
fore require work to bring a positive unit from the earth up to the 
conductor against this field, t.e. the potential of the conductor is 
raised. This rise is greatest on those parts of the conductor which 
are nearest to the inducing charge, a redistribution of electricity 
accordingly takes place ; a positive charge runs from A to B, thereby 
raising the potential of B and lowering that of A, until the conductor 
has the same potential at every point. If the conductor is now earth 
connected for a moment a positive charge runs out of it until its 
potential is reduced to zero; if then the rod C is removed the potential 
falls still further, becoming negative, and the negative electricity 
from A spreads over the surface until it again becomes an equi¬ 
potential. The conductor is now charged and possesses energy; 
from whence does this energy come ? It is seen that when the 
positive charge on C is removed to a distance we have to overcome 
the attraction of the negative electricity on the conductor; the 
energy is the equivalent of the work that is done against this 
attraction. 

Exactly the same reasoning, of course, applies to the charging of 
an electroscope by influence, but it is instructive to view the process 
from the point of view of lines of force; the application of this method 
to the case just considered is left to the student. When a positively 
charged rod is brought near the knob lines of force end on the latter, 
and, as the electroscope is uncharged, an equal number must start 
from some other part of it, the leaves, and run to the metal case or 
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earth. The tension in these lines pulls the leaves apart. When the 
electroscope is momentarily earthed, the lines from the leaves dis¬ 
appear on account of the unlike charges on their ends running 
together, the leaves therefore collapse. If now the inducing positive 
charge is removed the lines which end on the knob repel each other 
sideways until they are spread all over the surface, and the leaves 
are again pulled apart, but this time by lines which start from the 
case and end on the leaves. 

No Field inside a Conductor. Inverse Square Law.—^Faraday 
showed that there was no field inside a hollow conductor by building 
a small chamber which he covered with tin-foil; this he insulated 
and charged strongly from the outside, he then took inside a delicate 
electroscope, but could not detect the slightest divergence of the leaves. 
As the leaves diverge when the electroscope is placed in a field, 
there must be zero field inside the conductor. We conclude that lines 
of force cannot penetrate the substance of a conductor, as magnetic 
lines of force pass through iron, they merely end on the surface. 

Experiment.—Enclose an electroscope in an insulated wire cage and strongly 
charge the latter, the leaves do not diverge, verifying Faraday’s conclusions. 

It can be shown mathematically that if electric charges repelled 
each other according to any law other than the inverse square law 
there would be a field in the interior of a hollow conductor, the 
absence of such a field is the most accurate proof that the law is true. 

Capacity.—It has been proved that the intensity of an electric 
field is 47rN, where N is the density of the Faraday lines of force. If 
we double the density of the charge at every point of a conductor we 
shall double the density of the lines at every point in the surrounding 
field, hence the work required to bring a positive unit from the earth 
to the conductor will be doubled. The potential of a conductor is 
therefore proportional to the charge on it. The ratio of the charge 
on a conductor to the potential to which this charge raises it is called 
the capacity of the conductor. If Q is the charge, V the potential, 
and C the capacity, C = Q/V or Q = VC. These expressions show 
that the capacity is numerically equal to the number of units of 
electricity required to raise the potential by unity (put V = 1 in the 
equation). Simple experiments show that the capacity of a con¬ 
ductor depends on its size, shape, and its nearness to other conductors. 

Experiment.—Support a sheet of tinfoil on an ebonite rod, like a blind on 

its roller, connect it to an electroscope and give it a charge. Revolve the rod 
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BO as to roll up some of the tinfoil, the leaves diverge more widely. Electricity 
resides only on the outer surface, as the sheet is rolled up its charge-carrying 
area is diminished, the capacity therefore decreases and the potential 
risca 

Experiment.—Support two plates. A, B, about a foot square (Fig. 211) 
on two ebonite strips and connect each to an electroscope. Charge A positively; 
each electroscope diverges with positive electricity. Push plate B closer to 
A; the leaves of electroscope C collapse slightly,and I) shows a greater divergence 
on account of influence. Connect B to earth; the leaves of D collapse altogether 
and those of C to a very great extent. Positive electricity runs from B to earth, 
or, if we prefer to say so, negative electricity runs from the earth to B ; this 

greatly reduces the potential of A, and as its charge remains constant its capjxcity 
must be increased. Originally only a fraction of the lines from A end on B, 
but when the latter is earth connected they practically all pass from one plate 
to the other, because in that position their length is shortest between the unlike 
charges at their extremities. 

This experiment shows that the capacity of a conductor may be 
artificially increased by bringing near it another conductor with a 

charge on it of opposite sign ; such an 
arrangement is called a condenser. The 
capacity of one plate when a charge of 
the opposite kind can flow freely into the 
other (as, for example, when it is earthed), 
is called the capacity of the condenser. 
It is equal to the charge required to be 
put on one plate to raise the potential 
difference between the two by unity. 
In practice condensers are made of a 
number of sheets of tinfoil separated 

from each other by insulating layers of some dielectric, such as mica or 
paraflEin, the alternate sheets are connected to one of two conducting 
rods forming the terminals of the apparatus (Fig. 212). 

Fio. 212.—A Condenser. 
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Quadrant Electrometer.—The quadrant electrometer is an instru¬ 
ment for comparing potential differences more accurately than can 
be done by a gold-leaf electroscope. One form due to Dolezalek ia 
shown in Fig. 213. A flat, cylindrical, box A is divided into four 
quadrants, each of which is insulated on a short amber pillar B. 
Diagonally opposite quadrants are 
permanently connected by thin 
wires, and communication is made 
with them from the exterior by 
two wires running through the 
amber. A very light conductor C 
called the needle, made of silvered 
paper, hangs inside the quadrants 
from the lower end of a very thin 
wire which passes at its upper end 
through an ebonite plug to a screw 
on the outside. The dotted por¬ 
tion of Fig. 213 (a) shows the shape 
of the needle and the position it 
ordinarily occupies in the quad¬ 
rants. The whole is enclosed in a 
metal case permanently connected 
to earth to screen needle and 
quadrants from external electric 
fields. When it is required to 
compare the potentials of two 
conductors, the needle is kept at 
a high potential by being con¬ 
nected permanently to one pole of 
a battery the other pole of which 
is earthed (p. 360). One pair of 
quadrants is connected to earth, say to a water-pipe, the others are 
joined to one of the conductors in question. The needle is then 
repelled by those quadrants at the higher potential, and it can be 
shown that the deflexion is proportional to the potential difference 
between the quadrant pairs. Hence the potentials of the con¬ 
ductors can be compared directly. Attached to the suspending wire 
there is a small plane or concave mirror which comes opposite a glass 
window in the case, by means of this the deflexions can be read by 
one of the optical methods given on pp. 145 and 160. 
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Condensing Electroscope.—The condenser effect can be used to 
make an electroscope more sensitive. The knob of the electroscope 
takes the form of a large flat disc, which is covered on its upper surface 
with a thin layer of insulating varnish (Fig. 214). A is a similar disc 
which can be held by an insulating handle. The upper plate being 
removed suppose that B is connected to a large conductor whose 

potential is not very high. Electricity 
flows into the electroscope until it is 

E at the same potential as the conductor, 
but the transfer may be so small that 
the leaves do not diverge appreciably. 
Let the plate A be now placed on B 
and earthed ; the plates are separated 
by the varnish, and, as A is connected 
to earth, the arrangement acts like a 
condenser and the potential of B is 
lowered. More electricity therefore 
flows into this plate from the con¬ 
ductor under test until equality of 

Fio. 214.-Conden8ii,g Electro- Potential is again restored. If now 
scope. the conductor is disconnected from 

the electroscope we shall have suc¬ 
ceeded in giving to the latter a much larger charge than would have 
been obtained in the usual method of testing. The plate A is now 
removed, the capacity of B decreases and therefore its potential 
rises, at the same time part of the charge on it runs into the leaves 
and causes them to diverge. By this means much lower potentials 
can be detected than is possible with the ordinary electroscope. 

EXAMPLES ON CHAFIER XXXII 

1. How do you explain the fact that if a Leyden jar is placed on an insulator 
and the outside coating is not touched, the jar will not take so large a charge 
as when uninsulated ? (L. *93.) 

2. How much work is done in carrying a charge of 50 units from the earth 
to a point where the potential is 20 7 

3. The electrical field between two points 12 cms. apart is uniform, and 
2880 ergs of work are done when a charge of 80 units is carried from one to 
the other. Find the intensity of the field and the density of the lines of force. 
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ELECTRIC CURRENTS ANB THEIR MAGNETIC EFFECTS 

Current.—When two conductors at difierent potentials are 
joined by a wire, it has been show^n that a transfer of electricity 
takes place until they are reduced to a common potential. This 
electricity in motion is called an electric current. In the cases we 
have dealt with hitherto, the currents have been so short in duration 
that the effects they produce, other than the equalisation of potential, 
would be difficult to observe. If by some means two conductors 
can be maintained at a steady difference of potential, even when they 
are joined by a wire, there will be a constant current flowing from 
one to the other and the accumulated effects can readily be studied. 
The direction of the current is defined as that in which the positive 
electricity flows. The current strength is equal to the number of 
units of electricity that pass a given point in the wire every second ; 
if the unit is that of p. 345, the current is said to be measured in 
electrostatic units. 

Voltaic Cells.—Voltaic cells give us the simplest means of main¬ 
taining a current. In its simplest form a cell consists of two plates, 
one of copper the other of zinc, dipping into dilute sulphuric acid. 
When the outer ends of these are joined to the terminals of an electro¬ 
meter the needle is deflected in a direction which shows that the 
copper is at a higher potential than the zinc. The copper is called 
the positive and the zinc the negative pole of the battery. If they 
are joined by a wire a continuous current flows through it from the 
copper to the zinc, and, as we shall see later, through the cell from 
the zinc to the copper. When the poles are not connected by a 
conductor the cell is said to be on open circuit, and the difference of 
potential between the poles in these circumstances is called the 
electromotive force of the cell. This expression is usually abbreviated 
to E.M.F. This type of cell is found to be inefficient in practice, it 
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is therefore advantageously replaced by more elaborate forms of 
which a description is given in Chap. XXXV. 

Cells in Series and in Parallel.—It may readily be shown that the 
E.M.F. of a cell does not depend upon the size of its plates. 

Expekiment.—Connect the poles of a cell on open circuit to the terminals 
^ a quadrant electrometer, then gradually withdraw the plates from the liquid. 

The deflexion of the needle remains unchanged until 
contact between a plate and liquid is broken, so proving 
the statement just made. HHNHK 

fa; Cells m Senes 

f%;Gell8 in Parallel 

Fia. 215.—^a) Cells 
in Series; (b) Cells 

in Parallel. 

When the negative pole of one cell is joined 
to the positive of a second and the negative of 
this to the positive pole of a third, and so on, 
the cells are said to be joined in series; the 
free poles of the extreme cells are called the 
poles of the battery. If all the positive poles 
are joined together to form one pole and all the 
negatives to form another, the cells are said to 
be joined in parallel. These arrangements are 
indicated diagrammatically in Fig. 215, (a) and 
(6), where the thick and thin lines represent the 
different poles, and R represents the external 
circuit, t.e. the conductor through which the 
battery is required to send a current. 

It may easily be proved, w^ith the help of an 
electrometer, that the E.M.F. of a battery in the 
series arrangement is the sum of the E.M.F.'s of 
the separate cells, and that when a number of 
similar cells are connected in parallel the E.M.F. 
is that of a single cell. The student will shortly 
be in a position to prove these results for him- 

means. The E.M.F. of six cells in series can be self by other 
detected by a condensing electroscope. 

Experiment.—Connect the positive pole of the battery to the upper plate, 
hold the wire from the negative pole in an insulating covering and momentarily 
touch the lower plate with it. As the upper plate is now gradually removed 
the leaves diverge with negative electricity. The experiment shows that w« 
have to do with very small differences of potential compared with those with 
which we dealt in electrostatics, in fact a battery of several hundred cells 
would be required to produce a deflexion of 1 cm. on a golddcaf electroscope 
such as has been described in Fig. 347. 
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General Effects produced by Currents.—The effects produced by 
currents may be divided into three classes : (a) Thermal, (?->) Clicmical, 
(c) Magnetic. 

Thermal Effects,—When a current flows through a conductor 
heat is generated. Well-known applications of this fact are the 
incandescent electric lamp and the electric arc. 
Id each of these cases the conductor is heated 

to such a high temperature as to cause incan¬ 

descence. 

Chemical Effects,—Solutions of inorganic 
acids and salts in water and other liquids are 
conductors of electricity, but when a current is 
passed through them certain chemical changes 
result. Such liquids are called electrolytes. 
The liquids in voltaic cells must be electro¬ 
lytes in order that the current may be able 
to pass through them. The conducting power 
of liquids other than electrolytes is usually 
very small. These effects are most strikingly 
shown by using lead acetate as the electro¬ 
lyte. 

Experiment.—Immerse a lead plate and a thick 
lead wire in an aqueous solution of lead acetate which 2^^_Appantus 
is contained in a glass vessel. Connect the plate to decomposing Sul- 
the positive pole and the wire to the negative pole of phuric Acid, 
a battery of a few Daniell cells in series. When the 
current has passed for a few minutes a deposit of 
lead will be seen on the wire, spreading out in all directions like the 
branches of a tree. 

Experiment.—Pour some dilute sulphuric acid into the glass apparatus 
shown in Fig. 216 until it reaches the level of the taps A, B, then close the taps. 
Connect the two platinum plates P, Q, with the opposite poles of a battery of 
several cells, and send a current through the liquid for some minutes. Bubbles 
of gas rise from the plates and collect in the tubes above. These may be 
proved, by the usual chemical tests, to be hydrogen and oxygen ; the former 
comes from the plate connected with the negative battery pole. 

These experiments show that an electrolyte is decomposed when 
a current passes through it. 

Magnetic Effects, Oersted's Experiment,—An important advance 
was made in 1820 when Oersted discovered that a wire carrying a 
current is surrounded by a magnetic field. 

14 
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Experiment.—Hold a wire carrying a current just above and parallel to a 
compass needle (Fig. 217), the needle is deflected. When the direction of the 
current is reversed the deflexion of the needle is also reversed. Hold the wire 
below the needle, the deflexion is reversed. 

In the remainder of this chapter we shall consider the magnetic 
effects in more detail; the heating and chemical effects will be dealt 
with in later chapters. 

Magnetic Field due to a Current.—In the first place we must 

n_ _s 

Fig. 217.- -Oersted’s 
Experiment. 

Fro. 218.—Magnetic Field due to a 
Straight AVire carrying a Current. 

discover how the direction of the magnetic lines of force is related 
to that of the current. 

Experiment.—Pass a long vertical wire through a sheet of cardboard on 
which iron filings are sprinkled and send a strong current through it. When 
the cardboard is tapped the filings arrange themselves in circles round the 
wire but are not attracted by the wire itself (Fig. 218). The lines of force are 
therefore circular and have neither beginning nor end. To discover the positive 
direction of the lines place a compass needle due S. of the wire. It will be 
found if the current is flowing vertically downwards that the N. pole is deflected 
to the W. If the needle is placed due N. of the wire the N. pole is urged to the 
E. The lines of force therefore run in the direction shown by the arrows in 
Fig. 218. 

These results may be expressed by the following rule: Look 
along the wire in the direction in which the current is travelling, then 
the lines of force go round in the direction of the hands of a watch. 
The student will find it a great advantage to picture to himself these 
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lines surrounding the wire in the various cases that follow. When 
a magnet is suspended at the centre of a rectangular coil in which a 
current is running in the direction of the arrows (Fig. 219), the rule 

Fia. 219.—Magnetic Field due to a Rectangular Current. 

just given shows that the magnetic field due to each side of the 
rectangle urges the N. pole into the paper. The forces on the 
magnet may therefore be largely 
increased by winding a number 
of turns round it; this is 
the principle of galvanometers, 
which are instruments for 
measuring current. 

Field due to a Straight Wire. 
—We may investigate, either 
with a deflexion magnetometer 
or by an oscillation method, 
how the magnetic field varies 
at different distances from a 
long, straight, wire carrying a 
current. If the first method is 
used the needle must be placed 
due magnetic N. or S. of the 
wire, so that the field of the 
earth, H, is perpendicular to 
that produced by the current. 
(See Fig. 220, a, in which the current is supposed to be flowing into the 
paper.) Then the field, F, of the current is found from the equation 

Fia 220.—Measurement of the Field 
of a Linear Current. 
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F H . tan 0, where 0 is the needle deflexion (p. 319). If the oscilla¬ 
tion method is used, the needle must be placed E. or W. of the wire 
(6, Fig. 220), so that the fields due to the earth and the current are 
parallel, and the method of calculation given on p. 323 is applied. 
Either method shows that the field varies inversely as the distance 
from the wire. Soon after the discovery of this law Laplace showed 
that the same result could be obtained by calculation, if it was 

assumed that the field at 0 due to each short 
element of length s varied as As. sin fl/R^, 
where A is the current strength, R is the 
distance from the element of length s, and 6 is 
the angle between R and s (Fig. 221). It is 
seen from the figure that s . sin 0 = at, which 
is the apparent length of s as seen by an 
observer at 0. Hence the expression may be 
written AZ/R2, where I is the apparent length 
of the element. The total field at 0 is the sum 
of the fields due to the separate elements like s 
into which the wire may be divided. 

Field due to a Circular Current. Unit 
Current.—Consider the magnetic field at the 
centre of a circular coil of radius R. To an 

observer at the centre the apparent length is the actual length, since 

Fia. 221.—Laplace’s 
Law of the Mag¬ 
netic Field due to 
a Short Current. 

every short piece is perpendicular to the radius, 0 == - and sin 0 = 1. 

Hence the field varies as AJ/R2, where the sum of the lengths, is 

27rR. Thus the field F oc , or F = i where i is a con¬ 

stant depending on the units of current adopted. We have already 
defined the electrostatic unit of current strength on p. 359, but this 
unit is difficult to realise in practice. It is much simpler to define 
the unit of current from the magnetic field it produces, and then use 
this to define a new unit of quantity of electricity. For this purpose 
k in the last equation is put equal to unity in air, then F = 27rA/R 
for the circular current. From this equation it is seen that if A and 
R are each unity F = 2n, we thus have our definition of unit current: 
Unit current is that which, flowing in a circle of 1 cm. radius, exerts 
a force of 2it dynes on a unit magnetic pole placed at the centre. 
This unit is called the C.G.S. electromagnetic imit of current or 



MAGNETIC EFFECTS OF CURRENTS 365 

briefly the E.M. unit. It is too large to be convenient for many 
purposes; hence a practical unit, called the ampere, which is 
of it, is generally employed. The magnetic field produced at the 
centre of a circular coil of n turns by a current of A amperes in each 
is therefore 27rtiA/10R. The practical unit of quantity of electricity 
is that conveyed by a current of one ampere running for one second ; 
it is called the coulomb. The C.6.S. unit of quantity, to which no 
special name is given, is that carried by one 
electromagnetic unit of current in one second; 
it of course contains ten coulombs. If two 
points are at a difference of potential V, then 
(p. 353) VQ ergs of work are expended when 
a charge Q is carried from one to the other. 
As we have altered our unit of quantity, we 
must also change our unit of potential differ¬ 
ence if this statement is still to be true. 
Two points are said to differ in potential by 
one electromagnetic unit when one erg of 
work is done in carrying one electromagnetic 
unit of electricity between them.^ This unit 
proves to be much too small to be convenient; 
the practical unit of potential difference is lO^ yig. 222._Tangent Gal 
as large, and is called the volt. To give some vanometer. 

idea of its magnitude it may be stated that 
the E.M.F. of a Daniell cell is I’l volts. When an electromagnetic 
unit of quantity is moved through a potential difference of one 
volt 10® ergs are expended ; hence when one coulomb falls through 
a potential difference of one volt, lO^ ergs arc set free, or when 
Q coulombs fall through V volts, QV X 10^ ergs of work are 
liberated. 

Tangent Galvanometer.—The simplest form of current measurer 
is the tangent galvanometer (Fig. 222). It consists of a short 
magnet, supported on a needle point, at the centre of a circular coil of 
wire of one or more turns wound on a wooden frame. The coil can 
be turned about a vertical axis and clamped in position. When a 
current is to be measured the plane of the coil is placed in the magnetic 
meridian. A long, light, pointer fixed at right angles to the needle 

^ Hence one erg of work will be expended when unit E.M. current flows 
between the points for one second. 
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moves over a graduated circle; it should stand at the zero when 
the needle is in the plane of the coil. The magnetic field F at the 
centre, due to a current A amperes circulating in the wire, is perpen¬ 
dicular to the plane of the coil, from the watch rule, and is equal to 
27rwA/10R. As the coil is in the meridian, F is perpendicular to the 
earth’s horizontal field H ; the needle is therefore deflected through 
an angle 6, given by F = H . tan 6 (p. 319). 

27rnA 

Wr' 
H. tan d 

or A = - — . tan a 
277-71 

If the instrument is always used in the same place we may treat 
10RH/27rn as constant, say fc, whence A = fc. tan 0 . When R, H, 
and n are known, the current is given in amperes at once. The 
constant k is called the reduction factor of the galvanometer; it is 
the number by which tan 0 must be multiplied to give the current in 
amperes. The formula just given is true only if the field F is uniform 
round the needle and is perpendicular to H (p. 319). The first 
condition is the more closely fulfilled if the needle is small compared 
with the coil diameter, the second is satisfied when the coil is in 
the meridian. To test the latter adjustment a current is reversed 
through the instrument, when the deflexion should also be exactly 
reversed ; the coil must be twisted round a vertical axis until this 
is found to be the case, it is then in a suitable position for measuring 
currents. 

Experiment.*—PJaco the coil of a tangent galvanometer perpendicular to 
the meridian bo that the lines due to the current are parallel to the earth's 
field, H, and replace the compass box by a fiat sheet of cardboard. Plot the 
lines of force when a current is running and examine over what distance they 
are parallel. 

Proof of Laplace’s Inverse Square Law.—A modified form of tan¬ 
gent galvanometer may be used to prove Laplace’s inverse square law. 
A bit of magnetised watch-spring attached to the back of a small 
concave mirror is hung by a single silk fibre at the common centre 
of three circular coils, each consisting of a single turn (Fig. 223). 
One coil has a diameter of 15 cms., the other two, of which one only 
is shown in the figure, are 30 cms. in diameter. Current may be 

> Barton and Black, “ Practical Physics,” pp. 144 and 148. 
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sent round each coil separately or they may be combined. A lamp 
and scale is used to measure the deflexion. It has been found 
(p. 364), assuming the law, that F = 27rwA/10R; if R is doubled the 
field is halved, but it may be brought back to its original value by 
doubling n the number of turns. The field due to the two large coils 
together should therefore be equal to thet produced by the small 
coil. The coils are placed in the meridian and a current is sent first 
through the two large coils, connected together so that it circulates 
in the same direction in each, and the deflexion is observed ; it is 
then sent through the small coil when the same deflexion should be 

produced. Or the coils may be so connected that the field of the 
outer pair is opposed to that of the inner ; no deflexion should then 
occur. 

Field due to a Circular Coil at any point on the Axis.—Let a 
current A electromagnetic units pass round a circular coil of radius R, 
it is required to calculate the magnetic field at any point, P, on the 
axis. The direction of the field due to a small length s at Q is along 
PM, and perpendicular to QP, for the lines of force are circles 
round the short length of wire at Q. Its magnitude is ks. sin ff/PQ^, 
where 6 is the angle between PQ and s; but this angle is 7r/2, hence 
the field is A5/PQ2. If we take an equal length at Q' at the opposite 
end of the diameter QOQ' we have an equal force along PM'. The 
components perpendicular to OP cancel out and the resultant of the 
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two forces is along the axis OP. This will be true for every pair of 
small lengths at the opposite ends of a diameter, hence the resultant 
for the whole coil is merely the sum of the components along OP. 
The component of A5/PQ2 in this direction is As . cos ^/PQ^, and the 

field due to the whole coil is therefore 
A 

PQ2 
. cos ^ . X (sumof the small 

lengths likes), i,e . cos 0.27rR. But cos ^=sin OPQ=R/PQ, and 

PQ = (x2 -h R2)i, where OP = x, or, finally, F = 27rR2A/(x2 4- R2)J. 
This result, as far as its variation with x is concerned, may be tested 
with a magnetometer or by an oscillation method. 

Experiment.—Place the circular coil of a tangent galvanometer in the 
meridian and connect in series with it one or more Daniell colls. Note the 
deflexion of the needle at different points on the axis; the field of the coil is given 

by E = H . tan 6- Plot tan 6 against l/(a;* 4“ this should be a straight 
line. If the coil is fixed perpendicular to the meridian the field at different 
distances can be found by the method of p. 323. 

Astatic Galvanometers.—It has already been stated that if a 
galvanometer is to obey the tangent law its coil radius must be 
large; as the field at tlie centre due to the current is 27rnA/R it is 
clear that a large radius means a >veak deflecting field and therefore 
an instrument incapable of measuring small currents. For many 
purposes a very sensitive galvanometer is required and it is not so 
material that it sliould obey the tangent law. In order that the field 
due to the current shall be strong R must be small, and n, the number 
of turns of wire in the coil, large. Also the deflexion of the needle 
is opposed by the earth’s field, hence the horizontal component H 
must be weakened or neutralised in some way. This is done, (1) By 
placing a magnet near the galvanometer so that its lines of force are 
opposed to the earth’s; vrith a proper adjustment the resultant 
field can be made very weak and its direction any we please, hence 
we shall not be limited to placing the coil in the magnetic meridian, 
(2) By using an astatic needle ; with one perfectly astatic the earth’s 
field would exert no directive action, in practice all that can be 
done is to weaken its efiect. A reference to Fig. 225 shows that the 
effect of the current is further increased if coils are wound round each 
of the needles composing the astatic pair, but in opposite directions 
so that they assist each other. Finally the needle is suspended by a 
very thin fibre, and a lamp aiid scale or a telescope (pp. 145 and 160) is 
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used to measure the deflexions. These arrangements are all com¬ 
bined in the astatic mirror galvanometer shown diagrammatically 
in Pig. 225. The bar magnet NS can be moved up or down and 
turned round a vertical axis to vary the controlling field, the small 
mirror 0 is shown between the two coils. The whole is enclosed in 

Fig. 225.—^Astatic Mirror 
Galvanometer. 

Fig. 226.—Field due to a Solenoid and 
a Hollow Magnet. 

a case (not shown) to screen the needle from draughts. A method 
of determining how the deflexion varies with the current is given in 
the next chapter. 

Solenoids and Electromagnets.—Let a current be sent through 
the solenoid shown in Fig. 226 in the direction of the arrows. Each 
turn gives rise to lines of magnetic force whose direction is given by 
the watch rule. Between the windings the lines cancel each other, 
but in the direction of the axis their efiects are added and a strong 

14 
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field results. By placing strips of cardboard round the coil the field 
can be plotted with a small compass needle; the figure shows the 
general direction of the lines. This should be compared with 
Fig. 187 A. For comparison, the lines of force due to a magnetised 
steel tube are also shown. It is seen that in the interior the lines run 
in opposite directions in the two cases. The end A of the solenoid 
is found to repel a N. and attract a S. pole, or the coil behaves as 

if it had a magnetic pole at each end. By 
applying the watch rule we get the following 
result, which it is often useful to remember. 
If on looking at one end of the solenoid the 
current appears to circulate in the direction of 
the hands of a watch, then we are looking at 
its S. pole. 

Experiment.—Push a strip of zinc and a strip 
of copper through a large cork bung, join their upper 
ends to a light solenoid and float the whole in dilute 
sulphuric acid. The arrangement constitutes a float¬ 
ing battery, and, as the current flows, the coil sets 
with its axis pointing N. and S. just like a compass 
needle does. 

Experiment.—Hang the solenoid by a cotton 
thread with its ends dipping into separate pools of 
mercury (Fig. 227). Connect one pole of a battery 
to each pool. The solenoid sets N. and S. as before. 

These magnetic eSects are greatly increased 
if a bar of soft iron is placed inside the 

Fio. 227.—Straight 
Electro-magnet. 

solenoid, for the iron being in a magnetic field becomes strongly 
magnetised. The density of the lines may be increased by this 
means in the ratio 20C0:1 ; this renders it possible to construct 
very powerful electromagnets. 

EXAMPLES ON CHAPTER XXXIII 

1. Give definitions of electric force, potential, and current in the electrostatic 
system of units. (L. *08.) 

2. A small magnet is placed 10 cms. due magnetic E. of a long vertical wire 
and is found to make 24 oscillations/min. under the influence of the earth’s 
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horizontal field. How many oscillations per minute will it make when a current 
of 6 amperes runs (1) upwards, (2) downwards, in the wire ? 

3. Suppose the magnet in the last question had been placed 10 cms. due 
N. of the wire, find the tangent of the angle through which it would be deflected 
by the current. 

4. A tangent galvanometer has a coil of 10 turns, of average radius 20 cms. 
Find the current (a) in C.G.S. electromagnetic units, (h) in amperes, required 
to deflect the needle through 45® when the coil is in the magnetic meridian. 



CHAPTER XXXIV 

ELECTRICAL RESISTANCE. OHM’S LAW AND ITS APPLICATIONS 

Ohm’s Law,—No substance is a perfect conductor, when a current 
flows from one point to another it experiences a resistance to its 
passage, and this is found to vary with the nature and shape of the 
material. The relation between the potential difference at the ends 
of a wire and the current running through it was first discovered by 
Ohm. Ohm’s law states that the ratio of the potential difference 
to the current is constant while the physical state of the conductor 
remains the same. If A is the current and E the potential difference, 
Ohm’s law states that E/A = R, where R is a constant called the 
resistance of the conductor. Stated in this form the law does two 
things, it provides us with an exact definition of resistance, and 
further states that this resistance is independent of the current 
while the physical state of the conductor, as regards temperature, 
etc., remains unchanged. The resistance of a conductor is therefore 
a new physical constant. An experiment on the flow of water 
through a tube will perhaps bring out more clearly the significance 
of the latter statement. 

Experiment.—Connect a piece of quill glass tube about 10 cms. long to 

the bottom of a glass reservoir which contains water. The pressure P forcing 

the water through the tube is that due to the height of the liquid surface in 

the reservoir above the lower end of the tube. Measure the quantity of water, 

Q, delivered in one minute for diflcrent pressures. We might, in analogy with 

the electrical problem, define the resistance of the tube to the flow of water as 

the ratio P/Q. The numbers obtained will show that this resistance increases 

as Q is increased, whereas electrical resistance is independent of the current. 

The curve connecting P and Q is shown in Fig. 228; if the resistance were 

constant it should be a straight line. 

Ohm’s law may be proved by the apparatus shown in Fig. 229. 
Current from a battery B is sent through a circuit made up of a 
manganin wire FQ, a tangent galvanometer 6, and another manganin 
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wire S, whose length can be varied. A current A, measured by the 
galvanometer, flows from P to Q, and can be varied in strength by 
including more or less of the wire S in the circuit. At the same 
time the difference of potential E between P and Q is measured by 
connecting these points to the terminals of a quadrant electro¬ 
meter C. The ratio E/A will be found to be constant. Ohm’s law 
does not hold for gases. 

The Ohm.—We can use the Ohm’s law equation E = AR to 
define the unit of resistance. When unit E.M.F. at the ends of a 
wire sends unit current through it the equation shows that the 

Fio. 228.—Curve showing Flow Fio. 229.—Apparatus for proving 
of Water through a Tube. Ohm’s Law. 

resistance must also be unity. When E and A are in electromagnetic 
units the resistance R is also in these units ; if E and A are given in 
volts and amperes respectively then the resistance is given in a new 
unit called the ohm. In defining the ohm it is advantageous to 
make it such a multiple of the electromagnetic unit of resistance 
that the equation expressing Ohm’s law is true for both sets of units, 
without the introduction of a numerical factor. As the volt is 10® 
times the electromagnetic unit of potential difference, and the ampere 
10~i the electromagnetic unit of current, it follows from the equation 
that the ohm must be 10® the electromagnetic unit of resistance.^ 
A conductor has a resistance of one ohm when an E.M.F. of one volt 

^ Suppose the equation is given in practical units, then reducing each 

quantity to the corresponding E.M. unit we have lO^’E ~ . R. 10® or E ■■ AR 

as before* 
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sends through it a current of one ampere. A column of mercury 
106*3 cms.long and 1 mm.^ section has a resistance of one ohm at 0°C. 

Specific Resistance.—Experiments which the student will shortly 
be able to carry out for himself show that resistance of a wire of 
constant diameter varies directly as its length, and inversely as its 
section. If R is the resistance of a conductor whose length and 
section are I and S respectively, R = ifci/S, where fc is a constant for 
the given material. This constant is evidently the resistance of a 
piece of the conductor whose length and section are each unity, in 
other words, it is the resistance between the opposite faces of a 
centimetre cube ; it is called the specific resistance or the resistivity 
of the material. In books of tables it is usually given in microhms 
(millionths of an ohm) per cm.® The resistance of a metallic con¬ 
ductor generally increases with the temperature, if Rq is the resistance 
at 0° C. that at another temperature is found to be given by the 
equation R = Ro(l + at). The quantity a is called the temperature 
coefficient of resistance ; for pure metals it is approximately equal 
to 0*00366, which is the coefficient of cubical expansion of a gas. 
The resistance of a pure metal wire is therefore as sensitive to changes 
of temperature as is the volume of a mass of gas at constant pressure. 
This property is made use of in the construction of electrical thermo¬ 
meters, p. 389. The resistivity of alloys is much greater than that 
of pure metals, while their change of resistance with temperature 
is much less. These properties make them very useful in the con¬ 
struction of standard resistance coils. An alloy of copper-nickel- 
manganese, called manganin, has a temperature coefficient which is 
practically zero for small temperature changes. 

Experiment.—^Arrange in aeries 2 m. of thin iron wire coiled in a helix, 
a ceU, and a low resistance galvanometer. Heat the wire by a Bunsen flame, 
the current decreases, showing that the resistance has been increased by heating. 

Resistance Boxes.—For purposes of measurement it is convenient 
to have a set of coils of known resistance arranged in a box so that 
they may readily be put into or cut out of a circuit. A manganin 
wire is doubled on itself at the middle, so as to get rid of induction 
effects (p. 418), and is then wound on a bobbin. The ends are 
soldered to brass blocks (Fig. 230), which can be connected when 
necessary by well-fitting brass plugs. When the plugs are in position 
the current flows through the blocks, as they have a negligible resist¬ 
ance, but when a plug is removed the only path is through the wire. 
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Any desired resistance can thus be thrown into the circuit by the 
removal of appropriate plugs. 

Ohm’s Law applied to a Complete Circuit.—When a simple cell is 
on open circuit the P.D.i between the poles is, as already defined, 
the E.M.F. of the cell; but when the poles are joined by a wire this 
P.D. is less than the E.M.F., for positive electricity flowing in the 
external circuit from the copper to the zinc tends to decrease the 
potential of the former and raise that of the latter. In fact, owing to 
the chemical actions going on in the cell, which are the cause of the 
E.M.F. (see Chap. XXXV), the current 
is forced through the cell from the zinc 
to the copper. The E.M.F. has therefore 
to drive the current through two resist¬ 
ances one after the other, viz. the external 
resistance R, and the internal resistance [ 
of the cell B. Now, from Ohm’s law, the 
P.D. producing the current is equal to 
the product of the current into the 
resistance, the total resistance is (R + B), 
hence E = A{R + B), where E is the Fio. 230.—Construction of 
E.M.F. and A is the current. The part ^ Resistance Box. 

AR represents that part of E which is 
used in driving the current through the external circuit, the re¬ 
mainder AB is spent in forcing it through the cell. We are now in 
a position to compare resistances or E.M.F.’s by simple experiments. 

Measurement of Resistances by Substitution.—A resistance can 
be measured by a substitution method if we have a resistance box 
at our disposal. 

Experiment.—Join the ends of the resistance R to be measured to two 
brass blocks which can be connected when necessary by a brass plug (such an 
arrangement is called a plug key) (Fig. 231). In series with this connect a 
constant cell C, a resistance box P, and a suitable galvanometer G. Note the 
deflexion when the plug is out, then put it in, so that R is cut out of the circuit, 
and take plugs out of the box until the deflexion is the same as before. The 
resistance in the box is then equal to the unknown resistance R. 

Comparison of E.M.F.’s.—To compare the E.M.F.’s of two cells 
several methods are available.^ 

^ We will in future use the abbreviation P.D. for potential diflerence. 
• Barton and Black, ‘‘Practical Physics,” p. 164. 
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Experiment.—Place one of the cells in series with a resistance box and a 
tangent galvanometer, take out resistance in the box, ue, pull out the necessary 
plugs, until a convenient deflexion is produced. Replace the first cell by the 
second and again note the defiexion, the resistance being kept constant. Let 
El and Ej bo the E.M.F.’s of the cells, R the resistance of the box and galvano¬ 
meter taken together, and let us assume that the battery resistance is so small 
that it can be neglected. The currents are proportional to the tangents of the 
deflexion. 

and 

E, 
»*« Aj “ —- ~ ^. tan 0% 

Jbv 

E 
A2 = ~ == ^. tan $2 

^ __ tan 

Ea tan 6% 

In order to make the battery resistance negligible a sensitive 
galvanometer should be used, when R will require to be large. 

Fio. 231.—Measurement of Resistance by Substitution. 

Experiment.—The method may be varied by altering the resistance in 
the box until the same deflexion is obtained with each ceU. Let Rj be 
the resistance of box and galvanometer when the first cell is used, and Bj the 
internal resistance of the cell, Rj and the corresponding quantities for the 
second cell. The current A is the same in each case, as the deflexions are equal 

. A- 
• • “ R, + B, R, + B, 

Ej R| rf- B| 

” r, “ RrFB7 
If Bj and B, are negligible, Ei/Ej=Ri/R2. 

The advantage of the method is that we are independent of the 
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law connecting the current and the deflexion of the needle, since the 
deflexion is the same for each cell, but the galvanometer resistance is 
required. The resistances of the galvanometer and cells may be 
eliminated by altering the resistances in the box to get another 
deflexion, which is the same for each cell. Let fi and be the addi¬ 
tional resistances taken out in the box for the first and second cell 
respectively, then 

El Rj Bi Ri "f" fi “1“ Bj 

E2 R2 4“ ^^2 4“ ^2 4“ 

E2~r2 

since the last two fractions are equal to the new fraction obtained 
by subtracting the numerators to form a new numerator and the 
denominators to form a new denominator (note on p. 189). The 
resistances fi and r2 are known accurately. 

Sum and Dijjerenct Method.—The two cells are first connected in scries so 
that they send a current in the same direction through a tangent galvanometer 
and a resistance box, the E.M.F. in the circuit is then The resistance 
is adjusted until a suitable deflexion of 40‘^~50° is obtained. The cells are next 
connected so that they tend to send currents in opposite directions through 
the circuit; the E.M.F. is then Ej—E,, if E, is the E.M.F. of the cell that has 
been reversed, and the current is in the same direction as in the first case. If 
H is the total constant resistance of the circuit, 

whence 

k 
Ex-E, 

E 
Ej -|- E2 

El 
Ea 

= k. tan $1 

~ k. tan $2 

__ tan 0i 

tan 02 

^ tan 01 + tan 0^ 

tan 01 — tan 02 

For putting the cells in series and opposition alternately a 
commutator is convenient; this is simply a key by means of which 
the current can be reversed in a circuit without disconnecting any 
wires. The arrangement of the circuit is shown in Fig. 232. The 
commutator PQRS consists of four brass blocks each of which can 
be connected by a plug to the block on either side. The cell C, which 
is to bo reversed, is joined to a diagonal pair of blocks and the 
remainder of the circuit to the other pair. Suppose R is joined to the 
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positive pole of C, then when P and S are connected and also Q and R 
the cells are in series, and current flows in the direction of the arrows. 
If the plugs are shifted so as to connect R and S and also P and Q 
the cells are in opposition, and the current from cell C tends to flow 
through the galvanometer in the opposite direction. 

Experiment.—Compare the E.M.F. of one cell with that of a battery com¬ 
posed successively of 1, 2, and 3, similar cells in series, show that the E.M.F. 
of the battery is the sum of tlie E.M.F.’s of the cells. Also place the battery 
cells in parallel and show that the E.M.F. is that of one cell. 

To test whether a Galvanometer obeys the Tangent Law.—For 
this purpose we shall suppose that the resistance G of the galvano- 

Fiq. 232.—Sum and Difference Method of comparing E.M.F.’s. 

meter coil is known and that the resistance of the battery is negligible, 
the latter will usually be true. 

Experiment.—Arrange in series a constant cell, galvanometer, and resist¬ 
ance box. Put a series of resistances in the box and note the corresponding 
deflexions, reading each end of the needle and taking the mean (p. 330). Let 
R be the resistance in the box when the deflexion is 0, then the current in 

E 
the circuit is A = - , K the tangent law is followed, A = it. tan 6 

R 4“ u 

E 

R -i- G 
h. tan 0 

hence 
E 

(R -f G) tan $ = -- = a constant. 

Find whether (R + G). tan 0 is constant for different values of R and 0, Or 
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since A oc 1/(R + G) we may plot 1/(R + G) against tan 6, when a straight line 
should be obtained. Usually it will be found that the tangent law is departed 
from when the deflexions are large. 

Resistances in Series and in Parallel.—When resistances are con¬ 
nected so that the current has to flow through each in succession 
they are said to be joined in series; the total resistance to be over¬ 
come is evidently the sum of the separate resistances. We have 
already made use of this principle in the resistance box. If the 
resistances are arranged as in Fig. 233, so that the current has a 
choice of paths, they are said to be arranged in parallel. Let us 
calculate the resistance R of the single wire that can replace the 
three resistances and keep the total current between P and Q un¬ 
altered ; this is called the equivalent resistance of the system. Let 

Fia. 233.—Resistances in Parallel. 

^1) ^3 resistances, a^, the corresponding currents in 
each, A the current in the main circmit, i.e. in the wire leading to 
P or from Q. 

Then A = -j- "f” 

Also if E is the P.D. between P and Q we have, by applying 
Ohm’s law separately to each resistance, 

«i = E/»’i 
02 = E/rg 
03 = E/rg 

A = Oi + a2 + a3 = E(l + i + i) 

For the equivalent resistance, A = E/R 
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If the resistance of a wire is R then 1/R is called its conductance ; 
the equation therefore says that the equivalent conductance of a 
set of resistances in parallel is the sum of the conductances of each 
branch. When there are only two resistances in parallel it is seen 
from above that the ratio of the currents 01/^2 = ^2/^1* 
are inversely as the resistances. Adding unity to each side of this 
equation, we get 

+ ^2_^1 ~t~ ^2 

or, since now A = 

A^fi + ^s 

az fi 

and a2 = —. A 
^1 + ^2 

showing that the fraction of the main current A which goes through 
^2 is ^1/(^1 + ^2)* The resistance equivalent to fi and f2 parallel 

111 T T 
is given by =—1— or R=—^ That equivalent to n 

Iv fi f2 ri + fz 
equal resistances in parallel, each equal to r, is r/n. These results 
should be remembered. 

Shunts.—When a current which it is desired to measure is too 
large to pass through a galvanometer the terminals of the instrument 
are joined by a suitable resistance called a shunt. The galvano¬ 
meter and shunt resistance are then in parallel and only a fraction 
of the current goes through the former. This fraction, from the last 
paragraph, is seen to be s/{8 + g), if s is the shunt resistance and g 
that of the galvanometer. For example, it $ = ^/9 the current in 
the galvanometer is of the main current; by using a suitable 
shunt much larger currents may be measured than can be passed 
through the galvanometer directly. This is the principle of ampere¬ 
meters or ammeters, instruments constructed to measure currents 
directly in amperes or fractions of an ampere. An ammeter consists 
of some form of galvanometer, most frequently a modification of 
the one described on p. 413, which is permanently shunted by a low 
resistance. A pointer attached to the needle moves over a graduated 
circle and indicates directly the amperes running in the circuit. 

It should be noticed that by shunting a galvanometer the main 
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current is altered, for the resistance between the galvanometer 
terminals was originally g, after shunting it is sgl{s + g). Hence a 

compensating resistance equal to this difference ^^1 — must 

be placed in the circuit if the main current is to be unaltered.^ 

Voltmeters.—Voltmeters are instruments designed to measure 
directly in volts the P.D. between two points in a circuit. For 
example, a quadrant electrometer might be arranged so that the 
scale divisions gave, say, the E.M.F. of a battery directly in volts, 
it would then be called an electrostatic voltmeter. It possesses the 
advantage that it requires no current to produce the deflexion, 
consequently when it is joined to the poles of a battery the P.D. 
between these is unaltered (see p. 375). An electrometer is, however, 
a difficult instrument to use ; for many purposes it is replaced by a 
galvanometer placed in series with a high resistance, of such amount 
that the current which passes is very small. A pointer attached to 
the needle gives directly the voltage applied to the terminals. The 
resistance and galvanometer can then be used as a voltmeter. With 
the help of an ammeter and voltmeter a resistance can be measured 
directly. A battery is caused to send a current through the resist¬ 
ance and an ammeter in series with it, while a voltmeter joined to 
the ends of the resistance gives the P.D. that exists between these 
points. Knowing the current in amperes and the P.D. in volts 
the resistance can be calculated from Ohm’s law. By this means 
the resistance of an incandescent lamp can be measured when it is 
glowing.* 

Reduction Factor of a Tangent Galvanometer.—The reduction 
factor of a tangent galvanometer can be measured if, by means of a 
voltmeter or otherwise, we know the E.M.F. of a cell; conversely if 
the reduction factor is known an E.M.F. can be measured. 

Experiment.—Place a cell of E.M.F. E in series with the galvanometer 
and a resistance. Adjust the latter until a deflexion Bi in the neighbourhood 
of 46® is obtained ; suppose the total resistance in the circuit is R. Take out 
further resistance r in the box until the deflexion is reduced to 6^, Then the 
currents 

Aj == k. tan =: 

and A, = A?. tan = 
E 

R -f r 

^ Barton and Black, ** Practical Physics/* p. 150. * Ibid,, pp. 146 and 174. 
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from which the unknown resistance B, which includes the battery and 
galvanometer, must be eliminated. 

We have 

subtracting. 

R 
E 1 

R -f f 1 

E k‘ 
cot 0^ 

r 

E 
j^.(COt Ot — cot ^i) 

whence k can be found since r and £ arc known. If, on the other hand, k is 
known, E can be found. 

Wheatstone’s Bridge.—We will now describe the commonest 
and most accurate method of measur¬ 
ing resistances, called after its inventor 
the Wheatstone’s bridge. Let two 
points A, C (Fig. 234), be joined by 
two resistances ABC, ADC in parallel 
and let currents be sent through these. 
As we go from A to C by either path 
the potential falls, it is therefore 
possible to find a point D on one 
branch which has the same potential 
as a point B on the other. This con¬ 
dition will be fulfilled when the resist¬ 
ance AB is the same fraction of ABC 
as AD is of ADC. Let the resistances 
be P, Q, R, and S, as in the figure, 

then when B and D are at the same potential 

Fig. 234.—Diagram of Wheat¬ 
stone’s Bridge. 

or 

i.c 

or 

P __ S 

P+Q R-fS 

P+Q_R+S 

"P 8 

1+^=1+ 
Q 
P 

R 

S 

B 
S 

QS = BP 
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Hence Q == P . ~, showing that if one resistance P and the ratio 
o 

of the others R and S are known, Q can be calculated. Suppose 
ADC is a uniform wire, P a coil whose resistance is known, and Q one 
whose resistance is required. One terminal of a galvanometer is 
joined to B, and a wire from the other terminal is made to touch 
ADC at different points, when a point is found which has the same 
potential as B no current runs through the galvanometer. Thus 
D can be found experimentally and the ratio of the resistances R, S 
is simply the ratio of the lengths CD, AD into which the wire is 
divided, hence Q can be found. A convenient apparatus with which 
to carry out the measurement is that known as the metre bridge 
^Fig. 235). The metre wire ADC is stretched above a divided scale, 

thick copper strips of negligible resistance connect A to L and C to 0, 
MN is another such strip. The known resistance P is inserted in the 
gap LM and the unknown resistance Q in the gap ON. One galvano¬ 
meter terminal is joined to a screw at B, the other is connected to a 
key which slides along the wire and can be depressed so as to touch 
it when required. A battery is joined through a tapping key to L, 0. 
To make a measurement the battery key is first depressed, then the 
galvanometer is put in circuit through its key ; if the needle moves 
the point of contact D is shifted until, on repeating the experiment, 
no deflexion is obtained, the bridge is then said to be balanced. 
The advantages of the method are: (1) It is a null method, we 
have merely to see whether there is a deflexion, not to read one 
accurately, we are therefore independent of the law of the galvano¬ 
meter. (2) It is independent of the constancy of the battery, if 
the current is halved it will be halved in each branch and the balance 
will be undisturbed. (3) It has a wide range, by altering the ratio 
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CD/AD resistances much greater or less than P can be found. 
(4) The resistances are not heated, as the current flows only while 
the battery key is down. 

Expekimbnt.—Verify with the metre bridge that the resistance of a wire 
varies directly as its length and inversely as its section. As R = W/S find the 
resistivity (p. 374) of the material. 

We make the very important deduction from the last experiment 
that a steady current distributes itself uniformly across the section 
of the wire, if it were only found at the surface, as in electrostatics, 
the resistance would vary inversely as the circumference. 

Expebiment.—Verify the formulae already given for resistances in series 
and parallel. 

Thomson’s Galvanometer Test.^—A galvanometer may be used 
as the indicating instrument while its own resistance is being 
measured. For this purpose it takes the place of the resistance to 
be measured in the arm Q (Fig. 234), and B, D are joined by a 
wire through a tapping key. When current flows in the bridge the 
galvanometer shows a steady deflexion, the key at D is then depressed. 
If B and D are at the same potential no current flows in the wire 
and the galvanometer deflexion is unchanged; as before Q = RP/S. 

Mance’s Battery Test.—The resistance of the battery supplying 
the current may also be measured. It is placed in one of the arms, 
say Q (Fig. 234), and A, C are joined by a wire through a tapping 
key; the galvanometer occupies its usual position between B and D. 
The battery sends a current through the bridge which produces a 
steady galvanometer deflexion when the key at D is depressed, 
this point of contact is shifted until the deflexion is unchanged at 
the moment when A and C are connected through the second key. 
When this condition is fulfilled, Q = RP/S. For various reasons 
the method is not a good one. 

The Post Office Box.—This is another form of Wheatstone’s 
bridge. It is shown in Fig. 236 with the letters to correspond with 
those of Fig. 234. The three arms AB, AD, and DC are here made of 
resistance coils, Q is the resistance to be measured. AD and AB 
usually contain three or more coils whose resistances are 10, 100 and 
1000 ohms which can be unplugged in the usual manner; they are 

* Barton and Black, ** Practical Physics,*’ p. 169. 
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called the ratio arms. The arm DC is altered until a balance is 
obtained. If AD = 1000 and AB = 10 ohms, Q = E . P /S = R/lOO, 
so that the arm CD is 100 times as large as Q, hence the latter can 
be determined to , Similarly if P = 100 S the largest 
resistance that can be measured is 100 E. 

Experiment.—Use the P.O. box for Mancc’s battery test and for Thomson’s 
galvanometer test. 

The Potentiometer.—In all the methods given for comparing 
the E.M.F.’s of cells, except that in which an electrometer is used, 

Fig. 236.—Post Office Box (diagrammatic). 

it has been assumed either that the battery resistance is so small 
that it may be neglected, or that it is constant, when it may be 
eliminated. The potentiometer method of comparing E.M.F.’s, 
which we will now describe, gets rid of these difficulties and possesses 
the further advantage that it is a null method. Let a constant 
cell B (Fig. 237), such as an accumulator (p. 402), of E.M.F. higher 
than any of the cells to be compared, send a current through an 
adjustable resistance R and a straight uniform wire PQ. Suppose 
the positive pole is joined to P. Connect the positive pole of one 
of the cells whose E.M.F. is required also to P, and join in series 
with it a galvanometer G and a tapping key to make contact with 
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the wire at C. On account of the current in the wire P is at a higher 
potential than C, hence a current tends to flow through the galvano¬ 
meter in the direction of the arrow; this is opposed by the E.M.F. 
of the cell S, if its E.M.F. Ej is equal to the P.D. between P and C, 
no current will flow when the tapping key is depressed. Hence a 
point C is found at which the galvanometer shows no deflexion and 
the length PC, say li^ is measured on a scale fixed below the wire. 
S is then replaced by a second cell of E.M.F. Eo, and a new length 4 
is found at which a balance occurs; then E1/E2 = hlh* 

Fig. 237.—Poteutiomctcr Method of comparing E.M.F.’s. 

current flows through the cell at the final adjustment the result is 
independent of its internal resistance. Evidently the P.D. between 
P and Q must be larger than any of the E.M.F/s to be compared. 

Expbbiment.—Use the potentiometer to show that the E.M.F. of a cell 
does not depend on the size of its plates. To do this make S a Daniell cell, 
obtain a balance, then withdraw the plates by a certain amount and show the 
balance is undisturbed. 

Expbbimeht.—Arrange the Daniell cell of the last experiment in scries 
with a tangent galvanometer; if the plates are partially withdrawn or moved 
further apart the current diminishes. As the E.M.F. is unaltered, the internal 
resistance must have increased. 

These experiments show that the resistance of a cell is increased 
when the path the current has to traverse in the liquid is made longer 
or of smaller section. Similar results have already been found for 
a wire (p. 384). 

Cells in Series and Parallel.—^The current produced in a circuit 
depends not only on the E.M.F. of the battery, but also on its 
internal resistance, and it is possible that an increase in the number 
of cells may not result in an increase of current. For example, if 
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the external resistance is very low, the main resistance in the circuit 
may be that of the battery ; if the number of cells in series is doubled, 
we shall then double both the E.M.F. and the resistance, and the 
current will be unchanged. In such cases it may be advantageous 
to group the cells in parallel, or to arrange a number of rows made 
up of cells in series and then connect these in parallel. Let us 
calculate the current sent through an external resistance R by a 
number of cells, the E.M.F. of each being E and the internal resist¬ 
ance B. When n cells are in series the E.M.F. is nB, and the internal 
resistance of the battery is wB; hence the current 

. _ nE 

If the cells are in parallel, the E.M.F. is E (p. 378), and the 
internal resistance is B/w, since we have now n resistances in parallel. 
The current is therefore 

.   E _ nE 

nli + B 

Next suppose there are n rows of cells each consisting of m in 
series, and suppose these rows are connected in parallel and joined 
to the external resistance R. The E.M.F. of a row is ??iE and its 
resistance is mB, when the rows are in parallel the E.M.F. is un¬ 
changed but the resistance is mB/n. Hence the current 

^  mE _ mnE 

R “f- mBjn nR + mB 

The number of cells is mn, hence the numerator is constant, and 
the current is largest when the arrangement is such as to make the 
denominator a minimum. 

Now nR + ?^B = (\/ wR — \/mB)^ + 2v/ mnRB 

The last term is constant, hence A is greatest when 

(\/wR — \/ mB)^ is least; since this te a square it cannot be 
negative, and its minimum value is therefore zero. Hence A is a 
maximum when 

(\/ nR — \/ mB)^ = 0 

t.e. when nR = mB 

n 
or 
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Thus the largest current is obtained when the cells are arranged 
in such a way as to make the external resistance equal to the internal 
resistance of the battery. A useful rule to remember is that the 
cells should be placed in series when the external resistance is large. 

Ballistic Galvanometer and Comparison of Capacities.—For many 
purposes galvanometers are required to measure the total quantity 
of electricity that passes through them during a very short discharge ; 

instruments of this type are called ballistic 
galvanometers. They differ from the ordinary 
astatic galvanometer in having a heavy needle, 
which swings to and fro very slowly with very 
little decrease in the amplitude of its oscilla¬ 
tions. Provided (1) that the deflexion is small, 
and (2) that the whole discharge passes through 
the coils before the needle moves appreciably, 
it can be shown that the total quantity is 
proportional to the first swing of the needle. 
Such a galvanometer can be used to compare 
the capacities of condensers and also E.M.F.'s 
of cells. Let a condenser of capacity C be 
charged by being connected to the poles of a 

battery whose E.M.F. is E ; the charge is Q = EC (p. 355). Hence 
if the same battery is used to charge different condensers, whose 
capacities are Cj and C2, and they are then discharged through a 
ballistic galvanometer, producing deflexions di and 

Qi ECj di 

Q2 EC2 ^2 

If the same condenser is used, but different batteries, we can com¬ 
pare the E.M.F.’s, getting, as the result, Ei/E2== ^1/^2. Fig. 238 shows 
the apparatus used. When the Morse key K is depressed the condenser 
C is charged from the battery B. If the key is then released the 
poles of the condenser are joined, through the galvanometer G and a 
“ throw ** is produced. The practical unit of capacity is the micro¬ 
farad. When one coulomb of electricity raises the P.D. between 
the plates of a condenser by one volt, the capacity is called a farad. 
The micro-farad is one-millionth of this. 

Fig. 238.—Compari¬ 
son of Capacities. 
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Volt-ammeter Method of measuring Battery Resistance.—^This 
method has the advantage of giving results under definite conditions 
with regard to the current that is passing. Connect the battery in 
series with a regulating resistance and an ammeter (or a tangent 
galvanometer of known reduction factor). Let R be 
the resistance of the external circuit, B the battery v \ / y 
resistance, and A the current. 

Then E = A(B + R) 

where E is the E.M.F. of the cell. Now, this E.M.F. is I 
spent partly in driving the current through the resist- I 
ance R and partly in sending it through the resistance B. 51® 
The P.D. at the ends of the external resistance is AR, f? || 
by Ohm’s law, calling this e I 

we have 

hence 

e = AR 

E — e == AB 

If a voltmeter V is also joined to the poles it reads e n 
when the current is running. When the resistance R is | " 
broken the cell is on open circuit, as the voltmeter has 
such a high resistance that very little current passes, g| 
the voltage reading is therefore E (p. 359). Also in the 
first case the ammeter gave the current A, hence B 
can be calculated from the last equation.^ 

Platinum Thermometer.—It has been stated that 
the variation of the resistance of a pure metal with 
temperature is used for purposes of temperature Fio. 239.— 

measurement. A piece of pure, well-annealed, ThenmT 
platinum wire is fused to thick copper leads and is then meter, 

wound in a coil on a framework of mica or quartz 
(Fig. 239). This is enclosed in a protective tube of quartz or 
porcelain which is immersed in the substance whose temperature 
is required; the resistance of the platinum is measured in a 
Wheatstone’s bridge. By special means the resistance of the 
leads can be eliminated. Assuming (p. 374) that the resistance 
is given by the formula R = Ro(l + a^), the constant a can be 
obtained by measuring the resistance at the two fixed tempera¬ 
tures 0® C. and 100° C. If then the resistance is measured at 

^ BartoD and Black, ** Practical Physics/’ p. 170, for another method 
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some unknown temperature this temperature can be calculated. 
The advantages of resistance thermometers are the constancy of the 
zero (p. 24), the ease and accuracy with which the measurements 
can be made, the wide range of temperature over which they can 
be used, and their adaptability to diflerent conditions. With respect 
to the last point, for example, the temperatures of a number of 
works furnaces can be measured in a central office, and, by photo¬ 
graphic means, a continuous record can be obtained. 

Expbkimeht.—Measure the resistance of a coil at 0° and at a series of other 
temperatures. The Wheatstone bridge method should be used. Calculate the 
temperature coefficient from the equation R = Rj^(l -f a/). 

EXAMPLES ON CHAPTER XXXIV 

1. How would you arrange 36 cells, each having a resistance 1*6 ohms, so 
as to send the strongest possible current through an external resistance of 
6*6 ohms ? (L. ’82.) 

2. A cell of 40 ohms internal resistance is connected by thick wires with the 
terminals of a tangent galvanometer, formed by a single ring of stout copper 
wire. The deflexion is 45°. Three similar cells are then connected in series 
with the first. What is the deflexion ? Would any other arrangement of the 
four cells give a stronger current, and why ? (L. ’83.) 

3. Three cells, A, B, C, whose E.M.F.’s are 1*07, 1*54, and 1*9 volts, and 
resistances 0*72, 2*3, and O’l ohms respectively, are connected in scries, and the 
circuit is completed by a resistance of 5*9 ohms. Find the current. If the 
cell B were reversed, what would be the current ? (L. ’85.) 

4. The P.D. between the poles of a battery (of 1*2 ohms resistance) is 6 volts 
when the poles are insulated, and 4*5 volts when they are joined by a wire. 
What is the resistance of the wire ? (L. ’86.) 

6. There are 25 turns of wire in a galvanometer coil, the mean radius of 
which is 150 cms. Assuming H to be 0*18, find the current which will deflect 
a magnet, placed at the centre of the coil, 45°. If the resistance of the circuit, 
including the battery, is 3 ohms, find the E.M.F. necessary to produce the 
current. (L. *88.) 

6. A length of uniform wire, of resistance 12 ohms, is bent into a circle, and 
two points at a quarter the circumference apart are connected with a battery 
whose resistance is I ohm and E.M.F. 3 volts. Find the current in the different 
parts of the circuit. (L. *89.) 

7. What resistance should a wire have, which, when connected across the 
terminals of a galvanometer whose resistance is 3663 ohms, would let of 
the current pass through the galvanometer 7 (L. ’91.). 
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8. Given an ammeter and voltmeter, explain how you would find the resist¬ 
ance of a glow lamp while glowing. Give a diagram of the arrangements. 
(L. ’95.) 

9. A tangent galvanometer in series with a battery shows a deflexion of 
60°; on introducing a resistance of 15 ohms the deflexion falls to 45°. Calculate 
the resistance of the circuit. (L. ’05.) 

10. A battery, of negligible resistance and an E.M.F. of 4 volts, is connected 
to the opposite corners A and C of a quadrilateral wire frame ABCD. The 
resistance of the side AB = 90 ohms, of BC = 110 ohms, of Cl) = 60 ohms, 
and of DA = 40 olims. Calculate the F.D. between the points B and D. 
(L. ’06.) 



CHAPTER XXXV 

CHEMICAL EFFECTS OF CURRENTS 

Terms Used.—It has been shown by the experiments on p. 361 
that certain liquids, called electrolytes, are conductors of electricity 
and that the passage of a current through them causes decomposition. 
We will now consider these cases in more detail. A number of new 
terms will be required, most of which were first used by Faraday. 
The apparatus in which the decomposition takes place is called a 
voltameter or electrolytic cell; the conducting plates by means of 
which the current is led into and out of the liquid are called elec¬ 
trodes, the plate by which the current enters is called the anode or 
positive electrode, that by which it leaves is called the kathode or 
negative electrode. The decomposition is termed electrolysis and 
its products are called ions. The ions are released only at the 
electrodes; those liberated at the anode are named anions, those 
released at the kathode kations. It does not follow, however, that 
the ions will accumulate in the form in which they are released, for 
further chemical reactions may take place between them and the 
electrodes or the undccomposed electrolyte; these are called 
secondary reactions. Thus when sodium sulphate solution is 
electrolysed, the anion is the SO4 group, and the kation is sodium, 
but each of these reacts with water according to the equations 

2Na + 2H2O = 2NaHO + Hg 

S04+H20 = H2S04 + 0 

The final products are therefore hydrogen and oxygen in the 
proportions to form water, while caustic soda and sulphuric acid 
accumulate at the kathode and anode respectively, as may be shown 
by appropriate chemical tests. The acid radical of the compound 
forms the anion and the base the kation. 
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Faraday’s Laws ol Electrolysis.—In order to study the quantita¬ 
tive laws, various types of voltameter are required. 

(а) Copper voltameter. Experiment.—Clean and weigh two copper plates 
10 X 6 cms. in area, and suspend them in a 20 per cent, solution of copper sul¬ 
phate to which 1 per cent, of sulphuric acid has been added. Send a current of 
one ampere through the solution for at least 30 miiiutes ; remove the plates 
and at once wash them in distilled water and dry them, first with blotting 
paper, and then at some distance above a gas flame. Now reweigh them ; 
the kathode shows an increase and the anode an almost exactly equal decrease 
in weight. 

Decomposition has taken place in accordance with the equation 
CUSO4 = Cu 4“ SO4, copper is deposited on the kathode while the 
SO4 attacks the anode and reforms copper 
sulphate. The copper released is thus found 
by direct weighing of the kathode; this is 
found to give more consistent results than 
the decrease in weight of the anode. A 
more adherent layer of copper is obtained 
if the current entering each cm.^ of the 
kathode is small, the anode is therefore 
usually formed of two plates joined together, 
and the kathode is placed between tliem so 
that each side receives current. 

(б) Silver voltameter,—This is preferable 
for accurate work as the weight deposited 
is greater (p. 395). Tlie electrolyte, a neutral 
solution of silver nitrate, is placed in the 
kathode, which takes the form of a platinum 
bowl; a horizontal disc of silver forms the 
anode. To prevent particles of silver fall¬ 
ing into the bowl the anode is wrapped in 
filter paper. 

(c) Water voltameter,—A form which can 
be easily set up is shown in Fig. 240. The 
glass vessel A, closed at the bottom by a 
a 15 per cent, solution of caustic potash in which two nickel 
electrodes are immersed. It communicates by rubber tubing with 
the graduated tube B. When the liquid surfaces are at the same 
level the gas in A is at atmospheric pressure. If a current is passed 

Fio. 240.—Water Volta¬ 
meter. 

rubber stopper, contains 

1*5 
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hydrogen and oxygen are released, the ions being potassium and 
(HO). At the electrodes the following reactions take place :— 

2K + 2HoO = 2KIIO + 

2HO + H.O = 2H2O + 0 

Tube B is lowered until the gas in A is again at atmospheric pressure, 
when the liquid displaced by the evolved gas runs into B and may be 
measured. The temperature and pressure being observed, the mass 
of eitlier gas can be found as in Chap. VI, since a litre of hydrogen 
at N.T.P. weighs 0*0896 gm. 

When a number of voltameters are placed in series in a circuit 
it is found that the masses of the ions deposited are proportional 
to their chemical equivalents. Thus in the three voltameters just 
described, the amounts of H, 0, Cu and Ag released by the current 
are as 1: : 108. It should be remembered that the chemical 
equivalent of an element is its atomic weight divided by its valency, 
and that the valencies of oxygen and copper in water and cupric 
sulphate respectively are each two. The.amount of copper deposited 
from a cuprous salt is twice that released from a cupric salt, since 
the valency of copper is then unity. It is important to discover how 
the mass of the substance deposited varies with the current. 

Expbbiment.—Set up in series a tangent galvanometer, shunted if necessary, 
a copper voltameter, regulating resistance, and cells capable of sending 1~2 
amps, round the circuit. Keep the current constant and determine how much 
copper is deposited in 30 minutes. Repeat the experiment using a current half 
as large and running it twice as long. It will be found that the same mass is 
deposited in the two cases. The measurements can be made more quickly 
with a water voltameter. 

The experiment shows that the mass released Is proportional to 
the quantity of electricity that has passed. If 7n == mass deposited 
by a current of A amperes in t secs., m « At or m = Awt, where is a 
constant for the given substance. This constant is evidently the 
mass deposited by 1 ampere running for 1 sec., t.c. by 1 coulomb of 
electricity; it is called the ampere-electro-chemical equivalent of 
the element in question. It follows from what has been written 
above that the electro-chemical equivalents of the elements are 
proportional to their chemical equivalents. 

These results are embodied in Faraday’s laws of electrolysis: 
The masses of the ions released are proportional (1) to the quantity of 
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eleotrielty that passes round the circuit, and (2) to the chemical 
equivalents of the ions. 

The ampere-electro-chemical equivalent of silver has been found 
to be 0*001118 gm., hence that of any other element can be calcu¬ 
lated from (2). Thus if x is the electro-chemical equivalent of copper 
in a cupric salt x: 0*001118 = ^ : 108. If follows from (2) that the 
quantity of electricity necessary to separate a gram-equivaletit ^ is 
the same for every element and is equal to the number of coulombs 
required to deposit 108 gms. of silver. Let it be represented by y. 

Then to deposit 0*001118 gms. of silver requires 1 coulomb 

and to deposit 108 
108 

0*001118 
coulombs, 

or y = 96,500 coulombs approximately. 

Experiment.—^Assuming the electro-chemical equivalent of copper, the 
laws of electrolysis can be used to find the reduction factor of a tangent galvano¬ 
meter. The copper voltameter of the last experiment is joined in series with 
a resistance and a battery, and a constant current of about 1 ampere is passed 

for 30 minutes. The m =» Awt = k tan 6 .wt or k ^--. 
tan 0. wt 

Conversely if k is known the electro-chemical equivalent w can be found. 

Dissociation Theory.—To explain the facts set out above it is 
assumed that each ion carries with it a definite positive or negative 
charge, and that current is conveyed through the liquid by the 
movement of these charged ions, the kation carrying a positive 
charge in the direction of the current and the anion an equal negative 
charge in the opposite direction. If it is assumed that the hydrogen 
and copper ions are the same as the hydrogen and copper atoms 
respectively, then since 63 gms. of copper contain as many atoms as 
1 gm. of hydrogen, while 31*5 gms. of copper and 1 gm. of hydrogen 
each carry 96,500 coulombs, it follows that 63 gms. of copper carry 
twice the amount of electricity carried by 1 gm. of hydrogen, and 
therefore the charge on a divalent copper atom is twice that on an 
atom of hydrogen. Similarly a trivalent ion carries a charge three 
times as large and so on. Since the elements deposited at the 
kathode carry a positive charge they are called electro-positive, 
likewise those separating at the anode are negatively charged and 

^ A gram-equivalent of a substance is its chemical equivalent expressed in 
grams. Thus the gram equivalents of silver and copper are 108 and 31*5 gms. 
respectively. 
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are called electro-negative. The question arises, How do the ions 

acquire their freedom to move ? How, for instance, does the copper 

ion become separated from the SO4 ion ? Older theories supposed 

that tlie electric field between the electrodes pulled the oppositely 

charged ions apart. If that were the case no current should pass 

until a certain minimum E.M.F. is reached, large enough to cause 

this disruption of the molecule, when a vigorous decomposition 

should begin accompanied by a strong current. Actually the 

electrolyte obeys Ohm’s law and the current is proportional to the 

E.M.F. for all values of the latter. The modern dissociation theory 

supposes that when the salt is dissolved some, or all, of its molecules 

are dissociated into Cu" and SO4'' ions,^ which move freely in the 

liquid ; the molecules in this condition are said to be ionised. The 

function of the applied E.M.F. is then merely to cause a drift of the 

ions up to the electrodes, where their charges are either given up or 

neutralised. In the case of such an ion as Na* it may be asked why 

it does not react with the water and form caustic soda. The theory 

supposes that the ordinary chemical properties of substances are 

modified by the presence of the charges on the ions, directly these 

are given up to tlie kathode the sodium resumes its usual chemical 

activities and decomposes water. Measurements of the electrical 

conductivity of strong and weak solutions show that a larger pro¬ 

portion of the salt molecules are ionised as the solution becomes 

more dilute. Only those molecules which are ionised contribute to 

the conductivity of the liquid. 

Voltaic Cells.—When a simple cell, such as that on p. 359, supplies 

current A (E.M. units) for a time t, a quantity of electricity At falls 

through a P.D. equal to the E.M.F. of the cell; ■ energy equal to 

AEt ergs is therefore furnished by the cell, E being in E.M. units 

(p. 365). 

Expebiment.—Place a rod of pure zinc in dilute sulphuric acid ; very little, 
if any, chemical action takes place. Let a piece of copper touch it in the midst 
of the liquid, the zinc is now vigorously dissolved and heat is evolved. If 
impure zinc is used solution begins at once near the impurities; this is called 
local action, and may be stopped by amalgamating the zinc with mercury. 

Experiment.—Separate the metals and the action ceases, but it can be 

restarted by joining the two metals by a wire outside the liquid. In this case 
we know a current flows along the wire and heats it. 

^ The dots are used to indicate that the Cu ion carries two positive charges, 
the dashes denote negative charges. 
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Careful calorimetric measurements show that the total quantities 

of heat developed in these two experiments are equal, if the same 

masses of zinc are dissolved in each case. In the first experiment 

the heat appears as a rise in temperature of the cell alone; in the 

second it is initially converted into .electrical energy, which, in turn, 

reappears as lieat in tlie cell and the connecting wire. According to 

this view the electrical energy supplied by the battery arises from 

the heat liberated when zinc is oxidised (see p. 40()). Now, the 

current passes through the cell by the movement of ions exactly as 

in a voltameter, the ions being H' and SO4", hydrogen therefore 

appears at the copper plate, whore tlie current leaves the liquid. 

If it is allowed to collect there it causes a decrease in the current, fur 

(a.) (1) (c) (d) 

Fia. 241.—Various T\pcs of Colls. 

(1) this layer of gas has a large resistance, and (2) it is readily oxidis- 

able and tends to set up an E.M.F. in a direction opposite to that of 

the cell. The cell in this condition is said to be polarised. This 

back E.M.F. may be readily shown. 

Experiment.—Quickly replace the zinc of a polarised cell by a clean sheet 
of copper, and include in the circuit a galvanometer. A current flows from 
the new to the original copper through the connecting wire, t.c. in the opposite 
direction to the original current. 

In designing a voltaic cell means must be taken to remove this 

hydrogen layer, and the plates should be large and close together so 

that the internal resistance of the cell may be small. 

Bichromate Cell,—The positive pole here consists of two carbon 

plates joined together, between them is placed the negative zinc 

plate; the current in the cell has therefore a choice of two short, 

wide paths and the internal resistance is small (Fig. 241, a). The 
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electrolyte is a solution of chromic and sulphuric acids, sometimes 
the former is replaced by potassium bichromate. Zinc is dissolved 
according to the equation Zn + H2SO4 = ZnS04 + H2. The 
released hydrogen travels with the current to the carbon plates, 
where it is oxidised by the chromic acid to form water. The E.M.F. 
is high, about 2 volts, but it is inconstant as the depolarising action 
is not very efficient. 

the Grove Cell—This is shown in section in Fig. 241,6. A bent 
plate of zinc, giving a large surface, is immersed in dilute sulphuric 
acid ; standing on this is a vessel of porous earthenware which con¬ 
tains strong nitric acid. A sheet of platinum, forming the positive 
pole, is immersed in the latter liquid. In this case the hydrogen 
travels from the zinc through the porous pot and is oxidised by the 
nitric acid when it reaches the platinum. The function of the 
porous pot is to keep the two liquids separate. The E.M.F. of 
the cell is 1*9 volts and is fairly constant; its disadvantages 
are the costliness of the platinum and the disagreeable fumes from 
the nitric acid. 

The Bunsen Cell,—The components are the same as for the Grove 
cell, except that the platinum is replaced by a stick of carbon thereby 
reducing the cost. 

The Daniell Cell,—This also is a two-fluid cell. The negative 
pole is a zinc cylinder which is immersed in dilute sulphuric acid 
contained in a porous pot (Fig. 241, c). This pot stands in an outer 
vessel which contains a strong solution of copper sulphate, the 
positive pole, consisting of a sheet of copper, is immersed in the 
latter liquid. When the external circuit is closed zinc goes into 
solution as zinc sulphate, the hydrogen ion travels through the cell 
and finally replaces the copper of the copper sulphate, thus forming 
sulphuric acid. The replaced copper is deposited on the positive 
plate of the cell. The outer vessel may be made of copper, it then 
forms the positive pole. The E.M.F. is very constant at about 1*1 
volts provided the current taken is very small, but, like all cells 
containing a porous partition, the resistance is high and may amount 
to several ohms. In all the above cells the zinc should be well 
amalgamated to prevent its useless solution by local action. 

The Leclanche Cell,—This type is shown in Fig. 241, d. It con¬ 
tains only one electrolyte, a solution of ammonium chloride (NH4CI). 
The negative pole is a zinc rod, the positive consists of a plate or rod 
of carbon packed round in a porous vessel with a mixture of 
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manganese dioxide and powdered carbon. The purpose of the carbon 
is to increase the conductance of the mixture. When a current 
passes through the circuit Cl' moves to the zinc and forms zinc 
chloride, while NH4 travels to the carbon where it breaks up into 
ammonia (NH3) and hydrogen. Ammonia goes into solution and 
the hydrogen is oxidised to form water. The cell has an E.M.F. of 
r4 volts, but it polarises rather rapidly; after a short rest, however, 
it recovers. Its great advantage over the preceding forms, in addi¬ 
tion to its cheapness, is the fact that no consumption of zinc takes 
place except when a current is 
passing, it is therefore greatly 
used for testing purposes in the 
laboratory and for house bells. 

The Clark Cell.—This cell is 
used as a standard of E.M.F. and 
not as a source of current. The 
H-form is shown in Fig. 242. The 
glass tube on the left contains a 
small quantity of mercury, which 
forms the positive pole. Above 
this is a paste, made by mixing 
mercurous sulphate with a satur¬ 
ated solution of zinc sulphate, and 
above this again is a further Fio. 242.—H-form of Clark Cell, 
quantity of the zinc sulphate solu¬ 
tion. At the bottom of the other limb is the negative pole, consisting 
of an amalgam containing 10 per cent, of zinc ; this is covered with 
a layer of zinc sulphate crystals. Connection is made with the 
outside by platinum wires fused through the glass, and the cell is 
closed above with corks which are covered with layers of marine 
glue. It is found that the zinc amalgam gives the same E.M.F. as 
a rod of pure zinc, the latter is used in some forms. At 15° C. the 
E.M.F. is 1*4322 volts.^ Its disadvantage as a standard is its 
somewhat rapid variation with temperature, for this reason it is 
gradually being replaced by the cadmium cell. This is made in the 
same form as the Clark, but the zinc amalgam is replaced by one of 
cadmium, and cadmium sulphate is used instead of zinc sulphate. 

^ The legal voltage, which is taken as the standard of E.M.F. for commercial 
purposes, is 1*434 volts at 15** C. 
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Its E.M.F. is 10183 volts at 20° C. and it varies little with 

temperature. 

Calculation of the E.M.F. of a Daniell Cell.—On the assumption 

that the energy of a cell arises from the chemical actions going on in 

it, the E.M.F. can be calculated. When a charge Q, E.M, units, falls 

through a potential V, E.M. units, the work done by the field is QV 

ergs. Suppose that 9G,500 coulombs are driven round a circuit by 

a Daniell cell whose E.M.F. is E volts. Expressing these in E.M. 

units the work done is 9G,500 X 10~^ X E X 10® erp. But the 

passage of this electricity is acjcompanied by the solution of 1 gm.- 

equivalcnt of zinc and tlie deposition of 1 gm.-equivalent of copper. 

Now, it is knowm from thermo-chemical data that the former causes 

an evolution of heat amounting to 19,000 cals., >vhile the replace¬ 

ment of the copper by hydrogen and its consequent deposition on 

the copper plate involves a further evolution of 6200 cals. The 

total heat available for conversion into electrical energy is thus 

25,200 cals, or 25,200 X 42 X 10® ergs. This must equal the work 

done by the cell during the passage of 96,500 coulombs. 

Hence 96,500 X lO-i X E X 10® = 25,200 X 42 X 10® 

or E = 109 volts 

This is practically equal to the E.M.F. as found experimentally. 

A similar calculation for other cells is not so satisfactory ; Helmholtz 

has shown that other factors must be taken into consideration in 

these cases. The above calculation shows that part of the E.M.F. 

arises from the heat evolved during depolarisation; this partly 

explains the high E.M.F. of Grove and Bunsen cells, since a large 

amount of heat is evolved when hydrogen is oxidised to form water. 

It can now be shown that a single Daniell cell is incapable of de¬ 

composing w^ater. Suppose such a cell in series with a water volta¬ 

meter, and let, if possible, 96,500 coulombs pass round the circuit. 

This will be accompanied by the solution of a gm.-equivalent of zinc 

and the release of a gm.-equivalent of hydrogen. Thermo-chemical 

experiments tell us that the release of the hydrogen will require 

energy amounting to 34,000 cals., while, as we have just seen, the 

cell can only supply 25,200 cals.; hence it cannot supply the neces¬ 

sary energy, and decomposition of the water will not take place. 

Polarisation E.M.F. in Voltameters.—Whenever chemical work is 

done in a voltameter, as in the separation of hydrogen and oxygen. 
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the separated products tend to recombine again; this gives rise to 
a back E.M.F., tending to send a current in the reverse direction 
through the solution. The electrodes are then said to be polarised. 

Experiment.—Tn Fig. 243 A represents a water voltameter, B a battery of 
two accumulators, K a Morse key, and G a voltmeter or high resistance galvano¬ 
meter. First depress the key for a few seconds to connect the battery with the 
voltameter; now release K, the electrodes are then connected through the 
galvanometer and a current passes in the direction of the arrow C if the arrow 
D represents the direction of the original current. Hence the second current 
passes through the voltameter in the opposite direction to the current from 
the accumulator. 

Fig. 243.—Apparatus to show 
back E.M.F. in a Volta¬ 
meter. 

Fio. 244.—Apparatus to determine 
tlie E.M.F. required to decompose 
Water. 

If an E.M.F. less than 1*67 volts is applied to a water voltameter 
in series with a galvanometer a current at first flows, but it rapidly 
falls away to a very small value and no bubbles of gas can be seen 
at the electrodes. The small amount of gas that is produced is 
absorbed by the electrodes, and its tendency to go into solution again 
creates the back E.M.F. If the applied E.M.F. is greater than 
1*67 volts the current may decrease at first, but it will never become 
practically zero. This can be shown as follows :— 

Experiment.—Join the poles of an accumulator to the ends of a thin man- 
ganin wire. A, 2 ra. long (Fig. 244). B is a movable contact piece, G a galvano¬ 
meter, C a water voltameter with clean platinum electrodes, and V a voltmeter. 
Place B near D, note the small current in G after 1 min.; and also the voltmeter 
reading ; the latter will be small since B and D are at nearly the same potential. 
Repeat these observations as B is gradually moved to the right, so increasing 
the E.M.F. applied to the voltameter. The voltmeter should be cut out by 

15 
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a key when the galvanometer is being read, otherwise the latter instrument 
will measure the joint current going through the branches V, C. If the 
voltmeter readings are plotted as absciss®, with the currents as ordinates, the 
curve will be found to bend upwards sharply at about l'C7 volts, showing that 
this is the minimum E.M.F. required to decompose water. 

No chemical work is done in a copper voltameter with copper 
plates, for a certain mass of copper is dissolved from the anode and 
an equal mass is deposited on the kathode ; no back E.M.F. exists 
in such cases, and the smallest E.M.F. produces a current. 

Applications.—The principles explained in this chapter have 
numerous applications. For example, articles made of a baser metal 
can be electro-plated, t.c. covered with a layer of silver, by placing 
them in a silver nitrate solution and making them the kathode of 
an electrolytic cell. Impure copper is purified in a similar manner. 
An ingot of impure copper, obtained by smelting the ore, is made 
the anode of a copper voltameter, the kathode is formed from a sheet 
of pure copper; the metal is carried through the solution by the 
current and deposited as pure copper on the kathode (p. 393). 

Caustic soda is obtained from common salt by similar means. A 
solution of salt is electrolysed using a mercury kathode, the sodium 
forms an amalgam with the mercury, and this is allowed to act upon 
water, forming caustic soda. In one form of commercial current 
meter the current passes through a solution of a mercury salt, the 
mercury released at the kathode falls into a measuring vessel and 
hence the total electricity passed in a given time can be found. 
This apparatus is used to measure the current supplied in lighting 
a building. 

The Accumulator or Storage Cell.—The chemical energy stored in 
an electrolytic cell can be regained as electrical energy; this is the 
principle of the storage cell. Two lead plates are formed into grids 
and the interstices in them are packed with a paste of lead sulphate, 
formed by mixing litharge (PbO) with dilute sulphuric acid. They 
are then immersed in dilute sulphuric acid and a current is sent 
through from an external source, e,g. a dynamo (p. 458). The 
hydrogen released at the kathode reduces the sulphate to a mass of 
spongy metallic lead and sulphuric acid is formed. The SO4" ions 
travel to the anode and form lead peroxide according to the equation 

PbS04 + 2H2O + SO4 = PbOg + 2H2SO4 

When all the lead sulphate has been changed in this manner hydrogen 
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and oxygen will be released, as in the water voltameter, and will 
escape. At this stage the plates are covered with Pb and Pb02 
respectively and the cell is fully charged. If it is now connected 
to a conducting circuit a current will flow through the cell in the 
opposite direction to that used in charging it, and the chemical 
changes will also proceed in the reverse direction, lead sulphate 
being formed on each plate. The cell can be recharged as often 
as is desired. Its E.M.F. is about 2 volts and is very steady, while 
its internal resistance is low. It is most commonly used when a 
constant current is required. 

EXAMPLES ON CHAPPER XXXV 

1. Ten cells, each of internal resistance 2 ohms and E.M.F. 1'5 volts, are 
connected (a) in series, (6) in two series of 5 each, the like ends of the two series 
l)eing joined together. The external resistance is 10 ohms; find what is the 
strength of the current in this resistance in each case and compare the rates 
of consumption of zinc. (L. ^84.) 

2. A certain tangent galvanometer has a cun*ont passed through it which 
deflects its needle 45^. The same current passes through a copper sulphate 
cell, where it deposits 0*3 gm. of copper in 30 minutes. Taking the electro¬ 
chemical equivalent of copper as 0’00033 gm./coulomb, find the value of the 
current, and show how to determine the current for any other reading of the 
galvanometer. (L. ’95.) 

3. A small accumulator has a ** capacity ** of 14 ampere-hours. [That is, 
it can give A amps, for t hrs., where At = 14.] What is theoretically the least 
weight of PbOj on its positive plates ; given that the Pb02 is reduced to PbO 
and that (a) the electro-chemical equivalent of H is 0'00001038 gm./coulomb| 
(6) atomic weight of lead is 207 and of oxygen 16 7 Calculate also how much 
heat is evolved during the whole discharge of this cell through a total resistance 
of 10 ohms, the average E.M.F. being 2 volts. (L. 1900.) [For heating efieots 
see next chapter.] 

4. Five cells, each of E.M.F. 2 volts and resistance 0 04 ohm, are arranged 
in series, and drive a current between platinum electrodes immersed in dilute 
sulphuric acid. The resistance of the acid between the electrodes is 4 ohms, 
and the E.M.F. of polarisation is 1'5 volts. Calculate the mass of water de¬ 
composed in 1 hour. Elec.-chem.-equiv. of hydrogen is lO”** gms./coulomb. 
(L. ’05.) 

5. A battery of 6 Daniell cells in series sends a current through a solution 
of silver nitrate. Find the amount of zinc dissolved in each cell while 1 grm. 
of silver is deposited. (At. wt. of silver == 108, of zinc = 65.) (L. *10.) 

6. In question 5 calculate the amount of zinc dissolved in each cell when 
the ceUs are arranged (1) in parallel, (2) in two sets of 3 in series, the two sets 

being connected in parallel. 



CHAPTER XXXVI 

HEATING EFFECTS OF CURRENTS 

Joule’s Law.—Instances have been given on p. 361 of the heating 
efiect of a current on the conductor through wliirh it is passing ; we 
will now consider these thermal eflects more fully. 

Experiment.—Join thin copper, iron, and manganin wires, of equal diameters, 

in series with a suitable battery and regidating resistance. As the current 

is increased by reducing the resistance the wires become red hot, the manganin 

wire glows first and the copper last of all. Wheatstone bridge measurements 

show that the specific resistance of manganin is the largest and that of copper 

the least of the three given materials, the experiment therefore demonstrates 

that, for the same current, the greatest development of heat takes place at 

those places in the circuit where the resistance is highest. 

The laws relating to the generation of heat were discovered 
experimentally by Joule. When a current A Sowed for a time t 

through a resistance R, Joule found that the heat developed was 
proportional to the product A^R/. This result, known as Joule’s 
law, can be established theoretically. Let the P.D. at the ends of 
a wire resistance be E volts, and suppose the current produced is 
A amperes. Then in a time i seconds, kt coulombs of electricity fall 
through a P.D. of E volts, hence the electrical energy given to this 
part of the circuit is E . Ai X 10^ ergs (p. 365). Since no other work 
is done this energy is converted into heat. Thus the calories de¬ 
veloped H=EAi X 10'7/J, J being the mechanical equivalent 42 X10®. 
Hence H = 0*24EA^ cals. But R being the resistance of the wire 
in ohms, E = AR ; substituting for E, H = 0*24A2Rj cals., which is 
the numerical expression of Joule’s law. We might instead sub¬ 
stitute for A, when H = 0*24E2^/R. Generally the resistance will 
alter with the temperature, hence if we require to know the amount 
of heat developed in any part of a circuit it is best to use the expres¬ 
sion H = 0‘24EAt, since E and A can be measured directly. Joule’s 
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law is equally true for electrolytes, since, as we have seen, the action 
of the current is merely directive and no chemical work is done in 
the body of the solution. If the total resistance of a circuit con¬ 
taining a voltameter is R ohms, and the back E.M.F. in tlie volta¬ 
meter is c, then the current is A = (E — e)/R ; multiplying by At, 
this becomes KAt = A^IU eAt. 

The first term gives the total energy supplied by the battery 

^the factor 10^ being omitted on both sides of the equation), the 
second gives the energy dissipated as heat, while the third gives the 
chemical work done in the voltameter by forcing through it a quantity 
of electricity At against an E.M.F. e. If the voltameter were re¬ 

placed by a wire having the same resistance, and an equal current A 
were sent round the circuit (requiring of course a smaller E.M.F.), 
exactly the same quantity of heat 

would be generated in the two cases, 
but the energy supplied by the 

source would be less in the second 
by an amount cAt. In each case 

the energy of the current dissipated 

as heat is the same. 

Kxverimejjt.—Joule’s results may bo 
verified by measuring the heat developed 
in a calorimeter ns shown in Fig. 245. 
A resistance coil of 1-2 ohms is immersed 
in a quantity of non-conducting liquid, 
such as paraffin oil, whose mass and 
8i>e(;ific heat are known. Current is led 
in by thick copper wires and is measured 
by the tangent galvanometer or ammeter 
A; it is kept constant by varying the 
resistance S. The liquid is thoroughly 
stirred and its rise of temperature is 
measured with a thermometer. The heat 
developed can then be measured as in 
Chap. III. The student should verify that 
the heat H varies (1) as the resistance of 
the coil if the current is unchanged, (2) as 
the square of the current. The apparatus 
can also be used to determine J. For this 
purpose it is best, for the reason given above, to measure the current and the 
P.D. at the ends of the coil. The latter quantity is obtained by a voltmeter V, 
placed as in the figure, then H = PlAf X lO^J, from which J can be found. ^ 

Fig. 245.—Apparatus to prove 
Joule’s law. 

^ Barton and Black, “ Practical Physics,** p. 175. 
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Measurement of J by an Electrical Method.—Callendar and 
Barnes have made a very careful measurement of the mechanical 
equivalent of heat by the electrical method. Their calorimeter is 
shown in Fig. 246. Heat is developed by passing current through a 
platinum wire AB stretched along the axis of a capillary tube. The 
tube is surrounded by a double-walled space C from which , the air 
has been exhausted, and this is further enclosed in a water-jacket D. 
An accurately measured current passes along the wire through thick 
leads at either end, and the P.D. between A and B is measured by 
comparing it with the E.M.F. of a standard cell by means of a 
potentiometer. At the same time a steady current of water flows 

Fig. 246.—Callendar and Barnes' Apparatus. 

through the capillary tube and absorbs the heat developed in the 
wire ; its diSerence of temperature at entrance and exit is measured 
by means of two platinum thermometers (not shown in the figure). 
Let m gms. of water pass through in t secs., 0i and be its tempera¬ 
tures at entrance and exit respectively, s be the specific heat of 
water. The temperature difierence increases at the beginning of 
the experiment, but after a time it becomes steady and the heat 
absorbed by the water in t secs, is ms{d2, — di) cals. The evacuated 
space C reduces the heat lost by convection currents, but there is a 
small amount lost by radiation, this is very constant, and may be 
allowed for, as the temperature of the water-jacket is steady. If E is 
the P.D. in volts between the ends of the wire and A the current in 
amperes, the energy supplied electrically in a time t is EAf X 10^ ergs; 
reducing to calories through division by J we have 

J 

from which J can be found. Evidently if we assume the value of J 
the specific heat of the liquid used can be found. In the latter form 
the experiment has been largely employed in recent years. Prof. 



HEATING EFFECTS OF CURRENTS 407 

Bames has used it to find how the specific heat of water varies with 
temperature (p, 30). Swan and others have replaced the water 
by a current of gas, and by this means have determined the specific 
heat Cp of air and other gases at constant pressure. This method 
is of far greater accuracy than Regnault’s (p. 30), as the error due 
to radiation losses is much smaller. 

Electric Power,—Power or activity is defined as the rate of 
working, thus if a source supplies A amperes at E volts its activity 
is EA X 10^ ergs. For practical purposes the erg is replaced by a 
new unit of energy named the joule ; this is equal to 10^ ergs. The 
practical unit of activity is the watt, which is defined as the rate of 
working necessary to supply energy at the rate of one joule per 
second. Thus if a source supplies A amperes at E volts the energy 
per second is EA joules, and the activity is EA watts. Another unit 
of power frequently used in engineering is c.alled the horse-power; 
this is defined as a rate of working equivalent to 550 ft.-lbs./sec. 
The relation between the horse-power and watt is found as 
follows :— 

1 lb. weight = 453’6 gms. wt. = 453*6 X 981 dynes 
1 foot = 30*48 cms. 

/. 1 ft.-lb./sec. = 453*6x981 X 30*48 ergs/sec. 
= 1*356X107 ergs/sec. 

1 horse-power — 550x1*356x107 ergs/scc. 
= 550 X 1*356 joules/sec. 
= 746 watts. 

Applications.—The heating effects of currents have numerous 
industrial applications, of which the commonest are electrical cooking 
appliances, the incandescent electric lamp, the arc light, and the 
electric furnace. These are described in Chap. XLIII. 

For some purposes currents are employed whose direction is 
rapidly reversed, these are called alternating currents. It is evident 
that if such a current is sent through any of the galvanometers or 
ammeters previously described the needle will not be deflected, as 
the magnetic field changes its direction to and fro very quickly. 
Currents of this nature are frequently measured by their heating 
efiects, as these are independent of the direction of flow. Fig, 247 
shows diagrammatically a hot-wire ammeter. A thin wire AB, fixed 
at each end, has fastened to its mid-point a thin wire which passes 
round an axle C and is kept taut by means of a spring D. The 
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axle carries a pointer which moves over a graduated scale. When 
current in either direction flows through AB expansion occurs, the 

sag is taken up by the spring D and the axle revolves. The instru* 
ment can be graduated by using known direct currents. 

EXAMPLES ON CHAPTER XXXVI 

1. Two wires, whose resistances arc Z : 5, are connected (o) in series, lb) in 
parallel, and a current of the same total strength is sent through each com- 
bination. Compare the quantities of heat produced per second in each wire in 
the two cases. (L. ’84.) 

2. A Daniell’s cell has an internal resistance of 2 ohms. Compare the 
amounts of heat produced in the cell for each gram of zinc consumed in the 
tottery (1) when the cell is short-circuited, (2) when the terminals are connected 
by a reBiBtance of 2 ohms, (3) when they are connected by 200 ohms. (L. '94) 

® about li rolU is 
needed to electrolyse water at an appreciable rate ? An accumulator, E.M.F. 

IvHn ® resistance 2 ohms. An electro- 
lytic ceh, with back KM.F. 1-5 volts, is then iii-serted, the resistance again 

ttX cast (L tT 

rt-1 ^ f i obni internal resistance. 

ritctTtlT* “sth^ 2 ohms resistance 

Std fn lif Tl ’02T " 

C. Compare the amounts of heat developed in the four arms of a balanced 
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Wheatstone bridge when the arms have the resistances 100 :10 : 300 : 30 ohma 
respectively. (L. ’05.) 

6. What is the advantage of using currents of high E.M.F. for the trans* 
mission of power over long distances ? (L ’06.) 

7. On passing a current of 1 amp. through a piece of platinum wire its 
temperature riaiis 10° above that of surrounding objects, which arc at 0°. 
Assuming the loss of heat is proportional to the difference of temperature, 
calculate the temperature of the wire when a current of 2 amps, is passed 
through it. The temperature coefficient of resistance of the wire may be taken 
as-0*004. (L. ’07.) 

8. Lamps aggregating 1 ohm resistance are supplied through leads of 0*02 
ohm from a source at 51 volts. The voltage is subsequently raised to 255, 
and the lamps replaced by high-voltage lamps consuming the same total 
energy. Calculate the saving per 1000 hours at fourpence per kilowatt-hour# 
(L. ’08.) 

9. Two wires of the same material, but of different lengths and diameters, 
are joined in parallel to the poles of a battery so that they become heated to a 
high temperature. What must bo the relation between the lengths and 
diameters in order that the two wires may have the same temperature 7 (L. ’09.) 



CHAPTER XXXVII 

FORCES ACTING Ul»ON CURRENTS IN MAGNETIC FIELDS 

Force on Straight Conductor in a Uniform Magnetic Field,*—In Chap. 
XXXIII. the forces exerted by currents on magnetic poles have 
been considered, but in every case, by Newton’s third law of motion, 
there is an equal and opposite force acting upon the conductor carry¬ 
ing the current. Thus in the case of Fig. 221, the force on a pole at 0 
of strength m, due to a small element s of the wire, is mA$ . sin 6/li^^ 

A being the current in E.M. units (p. 364). The direction of this 
force is into the paper in the figure, t.e. it is perpendicular to the plane 
containing the current and the lines of force at $ due to the pole. 
The force on the short length s of the current is equal and opposite 
to this. But fn/R2 is the magnetic field at s due to the pole m; call¬ 
ing this F, the force on the current clement is AFs. sin 0. Hence the 
force per cm. acting on a current A, E.M. units, placed in a magnetic 
field of intensity F is AF. sin 0, where 0 is the angle between A and F. 

The direction of this force 
may always be obtained by 
supposing F to arise from a 
N. pole and finding the rela¬ 
tive motion from the watch 
rule of p. 362; the following 
rule duo to Fleming is often 
convenient: Point the thumb 

Fiq. 248.—Fleming’s Rule. and first two fingers of the left 
hand in three directions at 

right angles to each other, if the 1st finger points in the direction of 
the field, and the 2nd in the direction of the current, then the thumb 
shows the direction of the force acting upon the current (Fig. 248). 

The force may be ascribed to the joint action of the lines of force 
of the current and the original field. Thus in Fig. 249, (A) represents 

I 
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a current flowing downwards into the paper, the dotted circles show 
the direction of its lines of force, and the straight dotted lines a 
uniform magnetic field. The resultant of these two fields is roughly 
shown by the thick lines (B). Above, the lines are in the same 

direction and their resultant is large ; below, they are opposed and the 
resultant is weak. Evidently the mutual repulsion and the tension 
in the lines will tend to move the conductor dowmwards in the 
figure. These results may be illustrated by Barlow’s wheel. 

Experiment.—The axis of a metal wheel rests on two conducting pillars 
and its lower edge just t(juches a pool of mercury (Fig. 250). It is placed between 

the poles of a strong magnet and a current is passed from the centre to the 
rim j the radius carrying the current is thus subjected to a force and the wheel 
turns in an anti-clockwise direction if the N. pole of the magnet is nearer 
to the observer. (Cp. with Fleming’s rule.) 

Experiment.—Hang a U-shaped conductor vertically between the poles 
of an electromagnet and weigh it in this position. When a current is sent 
through it its weight is apparently altered owing to the electro-magnetic force 
that comes into play. 
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It is often simpler to tliink of the circuit as a whole. Thus we 
have seen (p. 370) that a current-carrying solenoid sets with its axis 

parallel to the magnetic field in which it is placed, or regarding it 

as a magnet, so that the maximum number of lines enters its S. pole 
or negative face. Tliis is still true if the circuit is reduced to a single 

Bl 

A A 

Al 

Fia. 251.—Action of 
Parallel Currenta 
on each other. 

turn. Hence a movable circuit sets itself so 

that the maximum number of lines enters its 
negative face, or so that the minimum number 

go in at its positive face. For example, in 

Barlow’s wheel with tlic directions of current 
and field we have assumed, tlic lines of force 
due to the current in the radius arc entering 

the disc from the near side of the figure over 

the left portion; we are therefore looking at 
the negative face of the circuit made up of disc 

and supports, and the radius moves to the right 

so as to include more lines from the magnet. 

Action of Currents on Currents.—Suppose 
AB, CD (iig. 251) represent two long, straight conductors carrying 

currents in the direction of the arrows. The current in 

CD must have a return conductor somewlierc ; suppose 
it is represented by the dott(‘d lines which extend a 

great distance to the right. e are then looking at 
the negative face of this circuit,^ and since the lines 

due to the current in AB enter at this face the circuit 
will alter itself, if possible, so as to include more of 

these lines. This it can do only by CD approaching AB, 
hence the parallel currents attract each other. Siini- 

larly, currents flowing in opposite directions repel each 

other. The same result can be foreseen by noticing in 
tlie figure that, in the space between the conductors, the 
field of one is partially neutralised by that of the other, 

while beyond this both fields are in the same direction. 

There is thus a crowding of the lines on the outer side 

of each conductor and they are pulled together by 

the tensions in these lines. This attraction can be 
very elegantly shown by Roget’s spiral (Fig. 252). 

Fia. 252.— 
Roget’s Spiral. 

^ See rule, p. 37U. 
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Experiment.—Send a current through the iron spiral whoso lower end 
just dips into a pool of mercury ; the adjacent turns attract each other> since 
they carry jiarailcl currents, hcnco the spiral shortens itself and breaks the 
circuit at the mercury. The contractile force being now removed the spiral 
lengthens again and the ijroccss is constantly repeated. If a soft iron core is 
placed as in the figure, lines of force radiate from its lower end, and the currents 
being now in a stronger field the vibrations take place more readily. 

Applications.—The electro-motor and the moving coil galvano¬ 

meter are direct applications of the preceding principles. In the 

latter instrument (Fig. 253) a small coil having 

a large number of turns is suspended between 

the poles of a strong horseshoe magnet, with its 

plane parallel with the lines of force ; the ends 

of the coil are fastened to two thin pliosphor- 

bronze strips, the upper of which serves as the 

means of suspension. When a current is 

passed through vid tlie strips, the coil turns 

so as to include the maximum number of lines 

in its negative face. The actual deflexion, which 

may be mi^asurcd by a lamp and scale, depends 

on the torsional couple of tlie suspending strip. 

This is now the commonest form of galvano¬ 

meter ; its great advantage is that as the coil 

is already in a strong magnetic field any small 

variations in the external field will be without 

appreciable effect. An iron core is usually 

fixed at the centre of the coil so that more lines pass across the gap 

in the magnet. 

Fia. 253.—Moving Coil 
Galvanometer. 

EXAMPLES ON CHAPIER XXXVII 

1. A rectangular coil of wire of height 1.5 cms. and width 8 cms. is suspended 
in a horizontal magnetic field of strength 2*5. Calculate the couple acting upon 
it when its plane makes an angle of 45° with the magnetic field and a cm*rent 
of 20 e.G.S. units flows in the wire. (L. ’08.) 

2. The two wires, each 4 metres long, from the ceiling to a suspended incan¬ 
descent lamp taking 1 ampere tend to set E. and W. of each other when the 
lamp is alight. Explain why this is so, and calculate the force on each wire, 
given the horizontal component of the earth’s magnetic field = 0*18. (L. T2.) 

3. A straight copper wire, 3 cms. long, is suspended horizontally between 
the poles of an electromagnet, and perpendicular to the lines of force, by means 
of conducting strips attached to its ends. The strips are hung from the arm 
of a balance. When a current of 2 amperes is sent along the wire it is found 
that an additional weight of 1 gm. must be placed on the balance to keep it in 
equilibrium. Find the field of the electromagnet. 



CHAPTER XXXVIII 

ELECTROMAGNETIC INDUCTION 

Faraday’s Law.—Oersted’s discovery that a current gives rise to 
a magnetic field led Faraday to investigate the converse problem, 
whether a magnetic field could produce a current. After numerous 
failures he found that whenever the number of lines of magnetic 
force going through a circuit was varied an E.M.F. was produced. 
The currents and E.M.F.’s produced under such conditions are said 
to be induced or to arise from electro-magnetic induction. 

Expbrimbnt.—Connect a solenoid in series with a galvanometer (which had 

better be of the moving coil type, for the reason given on p. 413), and thnist 

into one end of it the N. pole of a bar magnet (Fig. 254). While the motion 
is taking place a current flows through the instrument, but ceases directly the 
magnet comes to rest. Pull out the pole, the induced current is in the opposite 

direction. The currents are reversed if the S. polo is used instead of the N. 

If instead of moving the magnet to the coil the coil is moved towards the 

magnet it is found that an induced current is produced as before. 

Since a solenoid acts like a magnet we may replace the magnet 
of the last experiments by a solenoid carrying a current. 

Experiment.—^Thrust a current-carrying solenoid into the coil which is 

connected to the galvanometer, induced currents are produced as before, the 
N. pole of the solenoid can replace the N, pole of the magnet. 

That coil in which the induced current flows is called the secondary, 
tho other is the primary coil. The efiects are much greater if a rod 
of soft iron is placed within the primary, but the currents are dimi¬ 
nished when the resistance of the secondary is increased. When we 
come to quantitative laws it is best to speak of the induced E.M.F. 
rather than the current, as the former is found to be independent 
of the resistance of the secondary circuit. Relative motion of the 
two circuits is not necessary for the production of current. 



ELECTROMAGNETIC INDUCTION 416 

ExPfiRiMBiTT.—Place one coil inside the other, then start the current in the 
primary, the needle deflects in the same direction as if the current-carrying 
solenoid had been thrust into the secondary. Break the primary circuit, the 

induced current is in the opposite direction.* 

An examination of these results shows that whenever there is an 
alteration in the number of lines of magnetic force going through a 
circuit, an induced current is set up. Faraday drew the following 
conclusion from his experiments: The induced E.M.F. is pro¬ 
portional to the rate of change of the number of lines passing through 
the circuit. The modern units were not in use in Faraday’s day, 

K S 

Fio. 254.—Induction of Currents by a Magnet. 

but it can be shown that the induced E.M.F. measured in E.M. units 
(p. 365) is not merely proportional but actually equal to the rate of 
change, provided the lines are drawn according to the rule on p. 314. 
If the number changes from Nj to N2 at a uniform speed in t secs, 
the induced E.M.F, in E.M. units is E = (N2 — N|)/^ 

Lenz’s Law.—The rule as to the direction of the E.M.F. was given 
by Lenz shortly after Faraday’s discovery. Lenz’s law states that 
the induced E.M.F. is in such a direction as to oppose the change 
which produces it. Let us apply this to Fig. 254. Suppose the N. 
pole to be approaching the solenoid, the induced current causes the 
latter to act as if it had poles at its extremities, and it can be shown 
(see below) that B is a N. pole. The repulsion between the like 
poles then tends to arrest the motion. Similarly when the magnet 
is withdrawn, B becomes a S. pole and the attraction between the 
unlike poles again opposes the change. These results can be put 
in a slightly different but more useful form; in each case the induced 

* Barton and Black, “ Practical Physics,” p. 178. 
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current is in such a direction as tends to keep constant the number 
of lines passing through the circuit. Thus when the N, pole is 
approaching the solenoid more lines are being thrust through from 
right to left; as B is a N. pole the lines from the induced current pass 
through the coil from left to right (see Fig. 254), thereby tending to 
neutralise the change produced by the motion. Similarly when the 
magnet retreats there are fewer lines passing through the circuit 
from right to left, but, as B is now a S. pole, the lines from the induced 
current enter at B and emerge at A, thus tending to keep the number 
enclosed by the coil constant. Take next the last experiment of 
the previous paragraph. From the principle just given we see that 
the moment after the primary circuit is completed the lines due to 
the primary and secondary currents are opposed, so as to keep tlie 
number tlireading the secondary circuit constant, hence if the 
main current appears to circulate clockwise the induced current is 
anti-clockwise, and vice versd. Such a current is said to be inverse. 
When the primary current is decreasing, both sets of lines are in the 
same direction and the induced current is called direct. 

Experiment.—Shunt a galvanometer with a low resistance and connect its 
terminals to the poles of a coll; note the direction in which the needle is deflected 
and mark the terminal connected to the positive pole. Remove coll and shunt 
and connect the secondary of a pair of coils in series with the galvanometer. 
When the induced currents produce a deflexion wo now know ut which terminal 
they enter the galvanometer, hence their direction in the solenoid can be 
found. Verify Lenz’s law in each of the experiments given in the last paragraph. 

Fig. 187 shows that lines of force radiate from the pole of a 
magnet, hence when tlie N. pole in Fig. 254 is moved to the left the 
coil cuts lines of force, the increase in the number embraced by the 
circuit being equal to the number that are cut. Faraday’s law 
can thus be put in the following form : The induced E.M.F. in a 
conductor is proportional to the rate at which it cuts lines of force. 
Taking into account Lenz’s law, the previous equation becomes 

N2-Nx , . , , . 
— — ^ the minus sign indicating that the induced E.M.F. E = 

opposes the change. In this form the law can be proved experi¬ 
mentally. 

ExPERiMENT.—Replace the battery in the Barlow’s wheel experiment 
(Fig. 250) by a galvanometer, and attach a speed counter to the axle so that its 
rate of revolution can be measured. If the wheel is now turned in an anti¬ 
clockwise direction its vertical radius cuts the lines of force of the magnet. 
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Show that the induced current, and therefore the E.M.F., is proportional to 
the rate of revolution. During the motion the radius moves so as to include 
more external lines of force in the circuit made up of the vertical radius, the 
galvanometer and connecting supports, hence the induced current flows so as to 
neutralise this change, t.e. in the opposite direction to the arrows in the flguro. 

In this form the apparatus is called a Faraday’s wheel; it is 
really a simple form of dynamo or means to produce a current 
continuously by mechanical effort, just as Barlow’s wheel is a 
simple kind of motor in which a current is used to produce motion 
in a mechanism. 

Quantity of Electricity induced in any Change.—Let n be the 
change in a very short time t of the number of lines of force going 
through a circuit, then the induced E.M.F. e is n/t, and the current 
is c/R or n/R^, where R is the resistance of the circuit. If A is this 
current, which we may suppose steady during the short interval, 
then A = n/Rt or At = n/R. But At is the quantity of electricity q 
that passes round the circuit in the time t, hence q = n/R. Now 
we may suppose any change in the number of lines takes place in a 
series of small steps like that just considered, hence the total quantity 
of electricity put in motion is proportional to the total change in the 
lines divided by the resistance of the circuit. If Q is this quantity 
and N the total change in the lines passing through the circuit, 
Q = N/R. It should be noticed that this result is independent of 
the rate at which the change is produced ; if, however, we want to 
measure Q by a ballistic galvanometer the change must be completed 
before the needle has moved appreciably (p. 388). Other things 
being equal, N will be proportional to the number of turns on the 
coil. 

Expebimiskt.—Slip a small coil over a bar magnet to its middle point and 
connect the terminals to a ballistic galvanometer. Now pull the coil off quickly; 
a charge goes through the galvanometer which is proportional to N. As N is 
proportional to the number of turns we may, by varying the latter, plot a curve 
showing how Q varies with N and so verify the law just given. But the formula 
Q=N/R is based on Faraday’s law, we must therefore look upon the experiment 
as a verification of the law. 

Eddy Currents.—A changing field of magnetic force induces 
currents not only in neighbouring circuits formed of wires but also 
in any conductor, such as a mass of metal, which may be near. 
These are called eddy currents, and their direction is given by Lenz’s 
law. 
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Ejcpbbimbnt.—Suspend a bit of magnetised knitting needle by a silk fibre, 
and allow it to oscillate torsionaUy (1) over a sheet of glass, (2) over a sheet 
of copper. Note that the oscillations die away much more rapidly in the 
second case owing to the eddy currents produced in different portions of the 

copper. 
Exfebiment.—Suspend a small metal cube by a cotton thread between 

the poles of an electromagnet. Twist the cube round several times and then 
release it; the spinning motion is checked at once when the magnetic field is 
put on, owing to the eddy currents in the metal. 

If the lower magnet of an astatic galvanometer is enclosed in 
a small copper chamber its oscillations are rapidly decreased on 
account of the eddy currents in the copper, and readings of the 
deflexion can be taken much quicker. The needle is then said to 
be damped. Similar effects are shown by Arago’s disc (Fig. 255). 
A horizontal circular copper sheet is spun round a vertical axis in a 
shallow box; a magnet is supported on a needle point on the top of 
the box and is thus screened from air currents set up by the motion. 
Eddy currents in the copper drag the magnet round in the same 
direction as the disc. The experiment may be varied by interchang¬ 
ing disc and magnet. 

Self-inductance.—Induced E.M.F.’s may be caused not only by 
the varying fields arising from external magnets or circuits but also 
by the current in the circuit itself. Thus when a current is started 
in a solenoid lines of force are thrust through it, and, on the principles 
already given, this will generate an E.M.F. whose direction will be 
such as to oppose the change. There will thus be an inverse, or 
back, E.M.F. which will last as long as the current is growing; on 
account of this the full value of the current may not be reached for 
several seconds in the case of a large electromagnet. Similarly when 
a current is stopped lines of force disappear, and a direct E.M.F. is 
created which tends to keep the current flowing. This is the cause 
of the strong spark which is seen at the point of rupture when the 
circuit of an electromagnet is broken. The spark shows that 
the E.M.F. of this extra current may be very considerable. Circuits 
in which such E.M.F.'s are appreciable are called inductive, and the 
E.M.F. is said to be due to the self-inductance of the circuit. The 
self-inductance is increased by winding more turns in the same 
direction on the coil; it will also be greatly enhanced by the presence 
of a soft iron core, owing to the large number of lines arising from 
the ma^etisation of the iron. The direction of this self-induced 
E.M.F. is shown by the following experiment (Fig. 256):_ 
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Expbbimbnt.—Place in parallel an electromagnet A, and a pointer galvano¬ 
meter G of the moving coil type, send a current through them in the direction 
to the arrows. Fix a cork behind the needle pointer so as to hinder its return 
of zero when the circuit is broken. At the moment of restarting the current 
the galvanometer gives a large deflexion and the pointer then falls back to 
the cork stop. This cannot be due to the needle swinging from zero, since it 
was held in its final position by the cork; it arises from the back E.M.F. in 
the magnet coils which, as is seen from the figure, sends a current through the 
galvanometer from left to right. While the steady current is running push 
the needle back to zero and hold it there by the cork stop. At the instant the 
circuit is broken at C the needle swings vigorously to the other side of the zero; 

A 

Fig. 255.—Arago’s Disc. Fig. 256.—Showing £ fleet of 
Self-inductance. 

as this cannot arise from its momentum carrying it past the position of rest 
it must be caused by the direct inductive E.M.F. in the magnet coils, this 
produces a current circulating in the clockwise direction in the circuit composed 
of magnet and galvanometer, and tends to keep the current running through 
the magnet in its original direction. 

Experiment.—Replace the galvanometer by a small glow-lamp, its resist¬ 
ance is much higher than that of the magnet, hence it may be arranged that 
most of the current flows through the latter and the lamp glows feebly. At 
the moment the current is started the lamp flashes out with great lirrilliance, 
because the induced E.M.F. in the branch A opposes the change and the currents 
in the two branches are not inversely as their resistances. Similarly when the 
circuit is broken at C the induced E.M.F. sends an extra current through A in 
the same direction as the original, this circulates in a clockwise direction in 
the circuit AQ. 

In the second and third experiments (p. 414) the induced currents 
are said to be due to the mutual inductance of the two circuits. 
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If half the total turns on a coil are wound in a right-handed and 
the remaining half in a left-handed direction, then no magnetic 
lines will be included by the coil when carrying a current and in¬ 
ductive effects will be absent. This is the reason for winding resist¬ 
ance coils, as described on p. 375. Also when a resistance is being 
measured by a Wheatstone bridge, the battery key is first depressed 
so that the current may become steady before the galvanometer is 
put in circuit, in spite of any inductance that may be present. 

The Earth Coil.—Suppose a coil held in a vertical position with 
its plane perpendicular to the earth’s horizontal field, so that it 
embraces the maximum number, N, of the lines of this field. Let 
us call that face by which the lines enter the “ marked face.” When 
the coil is turned at a uniform speed round a vertical axis the number 
of lines included will alter and an induced E.M.F. will be set up. 
While the coil is turning from 0° to 90° the number entering the 
marked face is decreased from N to zero ; the lines from the induced 
current will tend to neutralise this change and must therefore enter 
by the marked face, Hence to an observer looking from S. to N. 
the induced current will appear to circulate clockwise. (See rule on 
p. 370.) From 90° to 180° the lines entering the marked face are 
further decreased from 0 to —N, since they now enter at the other 
side, and the current is in the same direction in the coil as before. 
During the remaining half revolution the lines entering the marked 
face are increased from — N to +N and the current in the coil is 
reversed. In the 90° and 270° positions the edges of the coil are 
moving perpendicularly across the lines of the field, the rate at 
which the lines are cut is therefore the largest possible and the 
E.M.F. is a maximum ; at the 0° and 180° positions the coil edges 
are moving parallel with the earth’s field, so that no lines are cut, 
and the E.M.F. is zero. The number of lines which enter the marked 
face at different stages of a revolution is shown in the continuous 
curve (Fig, 257). At A and C the rate of change is zero, at B and D 
it is a maximum; but the induced E.M.F. is proportional to the 
rate of change, it is therefore represented by the dotted curve which 
shows that the E.M.F. is greatest when the number of lines included 
is zero. If the coil is joined to a ballistic galvanometer the electricity 
passing through the instrument during the first half of the revolution 
is proportional to (change in the number of Iines)/resistance (p. 417), 
t.e. to 2N/B. If n is the number of turns of wire on the coil, S the 
mean area of a turn, and H the earth's horizontal field, then N=nSH. 
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The discharge Qi through the galvanometer is thus proportional to 
2nSH/R. We can measure the angle of dip by induced currents; 
for suppose the coil is now placed with its plane horizontal and its 
axis of revolution in the magnetic meridian, it then embraces nSV 
lines, where V is the vertical component of the earth’s field. If it 
is turned suddenly round a horizontal axis through 180° a quantity 
Q2 passes through the galvanometer, and Q2 is proportional to 
27iS\7R. Hence Q2/Q1 = V/H = tan 0, where 0 is the angle of dip. 
A similar method can be used to compare any two magnetic fields by 

Fia. 257.—Showing the Relative Number of Lines passing through the Coil 
in Different Positions. 

the use of induced currents ; a coil connected to a ballistic galvano¬ 
meter is reversed in each field in succession, the throws produced are 
proportional to the intensities of the fields. 

Ruhmkorfl’s Induction Coil.—The induction coil is an apparatus 
for transforming a comparatively strong current at a low E.M.F. 
into a weaker one at a very high E.M.F. In principle it consists of 
a primary coil formed of one or two layers of thick wire through 
wliich the low voltage current is passed ; around this and insulated 
from it by an ebonite tube is the secondary coil consisting of a large 
number of turns of fine wire. When the primary current is started 
or stopped an inverse or direct E.M.F. is produced in the secondary, 
the magnitude of which varies (1) with the number of magnetic lines 
of force thrust through the secondary, and (2) with the rapidity with 
which this number is changed. To increase the number of lines 
included by the secondary it has a large number of turns, and the 
primary is wound on an iron core made of a bundle of fine iron wires 
insulated from each otlier by shellac varnish. If the core were a 
solid iron block part of the energy of the primary current would be 
wasted in producing eddy currents in the metal, and these would 
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be in such a direction as to oppose any change in the number of lines 
of force, thereby decreasing the rapidity with which this number can 
be varied. When the primary circuit is completed the current 
gradually grows to its final value (p. 418), the induced E.M.F. is 
therefore small; on the other hand, the circuit may be broken very 
suddenly if the spark produced by the extra current at break can be 
suppressed. The efforts of coil designers have therefore been directed 
to increasing the E.M.F. induced in the secondary at the moment 
of breaking the primary circuit. A make-and-break arrangement 
suitable for small coils is shown in Fig. 258 together with a diagram 
of the rest of the coil. The primary current goes up the vertical 

a--. 

Fig. 258.—Induction Coil and Commutatof. 

pillar A, along an adjustable screw B, tipped with platinum, which 
just touches a spring C, also tipped with platinum. It then goes 
down the spring and through the primary coil. The iron core is 
thereby magnetised and attracts a piece of soft iron attached to the 
top of spring C. The circuit is thus broken at the platinum points, 
the core loses its magnetism and allows the spring to fall back, when 
the process is repeated. The spark at the point of rupture is largely 
decreased by connecting to the platinum points a condenser D, 
made of tinfoil and paraffined paper; before the “ extra current at 
break ” can leap the gap it has to charge the condenser plates to the 
necessary potential difference, and this may not be reached. The 
use of an infusible metal like platinum at the point of rupture not 
only reduces the wear, but it makes the formation of a conducting arc 
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of metallic vapour more difficult. A large coil will readily produce 
an E.M.F, of some hundreds of thousands of volts at the secondary 
terminals although the primary source may be only a few accumu¬ 
lators. In order that the current in the primary may be reversed 
a commutator usually forms part of the apparatus. This is shown 
in the figure. A block of ebonite has two brass strips P, R, at opposite 
ends of a diameter, these are joined by inwardly projecting metallic 
pieces to the metallic axis of the block QS. This axis is interrupted 
at its centre and is joined directly to the ends of the primary coil. 
Two brass springs XX' touch the block at opposite ends of a diameter 
and are joined to the battery poles. Suppose X is joined to the posi¬ 
tive pole and that it also touches strip P, then the current flows in 
the direction of the arrows. When the block is turned round its 
axis through 180°, X touches R and the current is reversed. 

EXAMPLES ON CHAPTER XXXVIII 

1. Suppose a railway line is laid in England on insulating material, and 

that the two rails are connected at a certain station by a cross-wire; show 

that a current will flow in the cross-wire and the rails when a train is moving 
on the line. Draw a figure showing its direction when the train is moving from 

the station. (L. ’96.) 

2. A N. seeking pole is suddenly brought down to the centre of a coil lying 

on a table. What is the direction of the induced current t How would you 
prove it is in the direction you suppose it to be T (L. ’01.) 

3. A telegraph ^re running magnetic E. is blown down. Calculate the 

mean voltage induced in the wire per metre length, supposing it to fall freely 

from a height of 5 metres, and state in which direction the current will flow. 
{g « 1000 cm./8ec.*, H = 0*18 C.G.S.) (L. ’08.) 



CHAPTER XXXIX 

THE MAGNETIC PROPERTIES OF IRON AND STEEL 

Intensity of Magnetisation.—So far in the chapters on magnetism 
we have supposed each unit N. pole to be the origin of iv lines of 

force which radiate in all directions and finally end on a S. pole. Let 
us now consider the lines inside the magnetic material itself. 
When a bar magnet is broken each half becomes a complete magnet, 
and at the moment of separation of the two portions lines of force 

stretch between the additional N. and S. poles so formed. We 
conceive these lines as previously existing in the magnetic material. 

Similarly if an iron ring has been magnetised parallel to its circum¬ 

ference by wrapping round it a coil of wire tlirough which a current 
is sent, neither poles nor lines of force can be detected, but if a gap 
is made in the ring lines of force run across this breach. As before 

it is supposed that the lines were present all the time in the magnetised 

iron, the gap merely makes them evident. Such lines are called lines 
of magnetisation; in a straight bar magnetised along its length they 

run from the S. to the N. pole through the iron. When a gap is 

made in the iron perpendicular to the direction of magnetisation 
each face becomes a magnetic pole and the pole strength per em.^ Is 
called the intensity of magnetisation of the iron. When the intensity 
of magnetisation is the same at every point the specimen is said to 

be uniformly magnetised. If S is the section and I the length of a 
bar in which the magnetisation is uniform and equal to I, then the 

pole strength at each end is IS, and the magnetic moment of the bar 

is ISi or It>, where v is the volume of the material. I can therefore 
be defined also as the magnetic moment per unit volume. Since 
each unit pole gives rise to in lines, the density of the lines in the 

gap which we have supposed cut in the iron will be 4itI, so far, that 
is to say, as the magnetic force there is due to the magnetism of the 
adjacent molecules. 
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Magnetic Induction.—Consider now the case of a long, straight, 
iron bar round which a magnetising solenoid is wrapped. If we 
imagine a gap cut perpendicularly across it at any point there will 
be, as before, 47rl lines per sq. cm. due to the magnetisation of the 
bar, but in addition there will be lines due to the magnetising current 
and to the poles at the ends of the specimen. The total number of 
lines per cm.^ is called the magnetic induction in the iron. With 
reference to the lines coming from poles at the ends it must be re¬ 
membered that these are supposed to radiate in all directions from the 
N. pole, a certain fraction will therefore run to the S. pole through 
the iron itself, and will tend to turn the regularly arranged 
molecular magnets from their positions and so demagnetise the bar. 
It is to get rid of this self-demagnetising force that keepers are used 
and that permanent magnets are frequently made in ring or horse¬ 
shoe shape; the effect in each case is to provide a shorter or easier 
path for the lines in the direction in which we wish them to go. 

Magnetic Force in the Iron.—We have thus analysed the lines in 
the gap into two components, (1) The lines of magnetisation whose 
density is 47rl, (2) Those arising from external currents, or poles which 
are distant from the gap. The density of the second set of lines is 
called the magnetic force in the iron. Denote this force by H and 
the induction by B; when both sets are parallel the induction is 
the sum of the two, and B == H + 47rl. We see then that the induc¬ 
tion B is measured by the force which a unit N. pole would experience 
if placed in a narrow crevasse cut perpendicular to the direction of 
magnetisation; on the other hand, the magnetic force H is measured 
by the force experienced by the test pole if the magnetism on the 
faces of the gap is neglected. One method of isolating the H lines 
from the rest is to suppose the test pole placed in a long and very 
narrow cylindrical cavity whose length is parallel with the direction 
of magnetisation ; the molecular magnets of which the iron is com¬ 
posed then terminate on the ends of the cavity but not on the sides. 
The effect of the magnetism at the ends can be rendered negligible 
by making the cavity sufficiently long and narrow; the force 
experienced by the test pole at the centre of the cavity is then equal 
to H. In non-magnetic material, where I is zero, the magnetic force 
and induction have the same value as each other; this applies also 
to the air surrounding a magnet. Let us imagine now a small portion 
of the magnetised iron to be isolated from the remainder by an 
imaginary cylindrical surface passing between the molecules, the 

16 
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axis of the cylinder being parallel with the magnetisation. There 
are equal quantities of N. and S. pole magnetism inside the surface, 
hence as many lines of induction enter the cylinder as leave it. This 
will still be true when one end of the cylinder is in the iron and the 
other in the air outside, or when it is wholly in the air. This can 
only mean that lines of induction are closed curves having neither 
beginning nor end. The student will see the force of this reasoning 
if we apply the same idea to a problem in electrostatics. Suppose 
one end of our imaginary cylinder is inside and the other outside the 
surface of a charged conductor, then there is an excess of Faraday 
lines leaving the cylinder equal to the electrical charge enclosed. 
This is due to the fact that electrical lines of force have a definite 
beginning and end unlike lines of magnetic induction. It has 
already been noticed that the inductance of a solenoid is increased 
by the presence of a soft iron core ; it is seen from the foregoing that 
this is due to the increase in the density of the lines of induction 
rather than the lines of force. 

Permeability.—The ratio of the intensity of magnetisation to the 
field producing it is called the susceptibility, writing h for this, 
I = AH. Similarly the ratio of the induction to the field producing 
it is called the permeability, if is this quantity, B = /xH. Experi¬ 
ment shows that both k and ju vary with H. Substituting for B and I 
in the equation B = H + ^wl, we get jit = 1 + ink. If H and 
either B or I are measured experimentally all the other quantities in 
the above equations can be calculated. 

Magnetometer Method.—This method is one of several that have 
been used to determine how the various quantities defined above 
vary as the magnetic force is altered. The quantities observed 
directly are H and I. The measuring instrument is a magnetometer, 
which may be merely the compass box of a tangent galvanometer, 
or the needle may have a mirror attached to it in order that its 
deflexions may be read by the lamp and scale method. Due E. 
or W. of the needle (Fig. 259) is the lower end of a long, vertical 
solenoid C, in series with this is a small circular coil D called 
the compensator. The rest of the figure shows a battery, an 
ammeter A, and a regulating resistance F joined to a Fold commu¬ 
tator P. The maximum current it is intended to use, say 4 amperes, 
is sent round the circuit, the needle is deflected, owing to the 
magnetic field of the solenoid, but may be brought back to zero by 
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arranging that the compensator produces an exactly equal deflexion 
in the opposite direction. This compensation will then hold for any 
smaller current. The circuit is broken and a thin iron or steel wire, 
previously demagnetised by heating or other means, is placed along 
the axis of the solenoid with its lower end on a level with the needle. 
The current is now increased by small steps from zero to the maxi¬ 
mum, and at each stage the reading of the ammeter and the deflexion 
of the needle are noted ; the latter is 
entirely due to the magnetic pole at 
the lower end of the wire, if we suppose 
that the upper end is so distant as to 
render its effect negligible. Let F' be 
the field due to this pole at the compass 
needle, 6 the deflexion, and H' the 
earth’s horizontal component. Then, 
since F' and H' are perpendicular to 
each other, F' = H'. tan 6 (p. 319). If 
S is the sectional area of the wire, I its 
intensity of magnetisation, and d the 
distance of the lower pole from the 
needle, the pole strength is IS and 
the field F'=:IS/d2. Hence IS/d2 
= H'. tan 0, from wliich I can be cal¬ 
culated. It can be shown that the 
magnetic field H in the interior of a 
long solenoid is 47rnA, where n = the 
number of turns per cm. length, and 
A = the current in E.M. units; if A 
is given in amperes H = 47rnA/10. A Fig. 259.—Magnetometer 

curve can thus be plotted showing the Method of Measuring I. 

relation between H and I, such a 
curve OPQR, typical of those obtained for soft iron, is shown in 
Fig. 260. It is seen to consist of three portions ; during the first 
stage the magnetism of the iron increases very slowly compared 
with the magnetic forde, in the second it increases much more rapidly, 
while in the third stage again the effect of an increase of field is very 
small. The last stage corresponds to a state of affairs where practi¬ 
cally all the molecular magnets have had their axes turned parallel 
to the field; in this condition the iron is said to be magnetically 
saturated. The curve showing the relation between B and H is 
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similar to this. The permeability for iron may be as high as 2000, 
since B == fiH this shows how enormously the density of the lines in 
a coil is increased by an iron core. The induction B can increase 
without limit, this follows from the equation B = H 47rl, which 
shows that an increase in H causes a corresponding increase in B 
even when I has attained its limiting value. 

Magnetic Hysteresis.—If after reaching its maximum value the 
current is decreased by small steps to zero it is found that the 
magnetisation docs not decrease at the same rate, when the current 
is zero the iron still retains a considerable amount of magnetism. 
After being decreased to zero let the current be reversed and gradually 

increased to the same maximum value in 
the negative direction, then let it be 
decreased to zero again and finally in¬ 
creased from this value to its maximum 
in the positive sense. The complete curve 
showing how I varies with H is shown 
in Fig. 260. It is seen that the magneti¬ 
sation docs not respond completely to 
changes in H but always lags behind it, 
thus when H has been decreased from 
its maximum to zero I has the value 
represented by OT. This lagging effect 
is called magnetic hysteresis, and the 
closed curve is called a hysteresis curve. 
It can be shown that the area of the 

Fio. 260.—Hysteresis Curve, curve is proportional to the amount of 
work that must be done to take the iron 

through a complete magnetic cycle. OL shows the value of the 
negative field required to demagnetise the iron, it is called the 
coercive force. It gives us a measure of the power of a substance 
to retain its magnetism under adverse conditions, such as de- 
magnetising fields, and must be large in permanent magnets. 
Ihe figure shows that the demagnetising force required to destroy 
tie ma^etisation is less than that required to produce it, 

1 j’- ® current whose direction can be rapidly 
alternated is sent through the solenoid while, at the same time its 
magmtude is slowly reduced, the iron can be completely’de- 
ma^etised. The hysteresis curve shows clearly that the magnetic 
state of iron or steel depends not only on the magnetising 
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force applied to it, but also largely on its previous magnetic 
history. 

The Magnetic Circuit.—Since lines of induction form closed 
curves they bear an analogy to lines of current flow, for these also 
run round a closed curve, viz. the current circuit. Keeping to this 
analogy we may call the space through which the lines of induction 
pass a magnetic circuit; if the path of the lines is entirely within 
magnetic material the circuit is a closed one. The analogy may be 
pursued further, as we now proceed to show. Let an iron rod of 
length I and section S have wound upon it a solenoid of N turns, then 
suppose it is bent round to form a closed ring. If A amperes flow 
in the solenoid the magnetic force H in the iron is H = IttNA/IOZ ; 
the product NA is called the ampere-turns. When a unit magnetic 
pole traverses the whole length of the iron the work done by the 
force H = HZ = IttNA/IO. But if a unit charge of electricity is 
taken round a circuit in which the E.M.F. is E the work done is E 
(p. 365); the quantity 47rNA/10 is therefore analogous to an E.M.F., 
it is called the magnetomotive force. If B is the induction in the 
iron B = /xH, and the total number of lines crossing the section 

S = fills = ~ ; this is called the magnetic flux. 

Hence flux = 
V 

fiS 

If we take the flux as corresponding to the electric current we see 
that this equation is analogous to the Ohm’s law equation A = E/R, 
thus l/fiS corresponds to a magnetic resistance. Instead of speak¬ 
ing of a resistance this quantity is called the reluctance, and the 
equation may be written 

__ magnetomotive force 

reluctance 

This expression is useful in calculating the flux produced in a 
circuit by a given magnetomotive force, but it must be remembered 
that in some important respects the analogy breaks down, for fi 
depends on the magnetic field whereas the resistance of an electrical 
circuit is independent of the E.M.F., also there is not anything of 
the nature of a current of induction. If the iron ring contains an 
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air gap the reluctance of the circuit is the sum of the reluctances of 
the iron and the gap, ix, (IiIimS + where li is the length of the 
iron and of the gap. Since fx is very large for iron the first term 
will usually be small and the chief part of the reluctance will arise 
from the air gap. The following experiment shows how the induc¬ 
tion is increased by doing away with air gaps. 

Experiment.—Wrap a few turns of wire round one limb of a large horse¬ 

shoe magnet, a few cms. from the end, and connect them to a sensitive galvano¬ 

meter, Suddenly put on the keeper, the galvanometer shows an induced 

current due to an increase in the number of linos going through the coil. If the 

coil is placed between the limbs so that lines crossing from one to the other 

pass through it, then when the keeper is put on a throw is noticed whose direction 

indicates a decrease in the number of lines penetrating the coil. The lines 

prefer to pass from one limb to the other through the keeper since iron transmits 

them more readily than air, or, putting it another way, the iron path has the 

less reluctance. 

EXAMPLES ON CHAPTER XXXIX 

1. What is approximately the magnetic force inside a solenoid of 300 turns, 
16 cms. long, which carries a current of 0*2 amps. ? (L. ’04.) 

2. The maximum permanent intensity of magnetisation in a steel bar 10 cms. 

long by 1 cm. square has been found to be 225 C.C.S. units. Find the tangent 

of the greatest deflexion of a magnetometer which such a magnet would cause 

if the centre of the needle were 30 cms. E. of the centre of the magnet. (H=0* 18) 
(L. ’08.) 



CHAPTER XL 

THERMO-ELECTRICITY 

The Seebeck Effect.—In 1821 Seebeck showed that a current was 
produced if a temperature difference was established between 
the junctions of two dissimilar metals which formed a complete 
metallic circuit. Such currents aie called thermo-currents, the 
E.M.F.’s which are their immediate cause are called thermo-E.M.F.’s, 
and the two metals together form a thermo-couple. 

Expebiment.—Twist a copper and iron wire together at one end and 

complete the circuit through a galvanometer; since the coil of the latter is 

Copper we have a circuit composed of iron and copper. When the twisted joint 

is heated slightly the needle is deflected. By means of a cell find the direction 

of the current; it will be found to flow from copper to iron at the hot junction. 

As thermo-E.M.F.’s are very small, often of the order of a 
thousandth of a volt, the resistance of the circuit, including the 
galvanometer, should be low in order that the current may be large. 
If the galvanometer resistance is 100 ohms that of the wires may 
easily be made so small that any resistance change caused by the 
heating can be neglected. The thermo-E.M.F. will then be pro¬ 
portional to the current it produces and this can easily be measured. 
When it is desired to measure the E.M.F. between, say, iron-manganin 
the galvanometer is joined up as before, but there will now be copper- 
iron and copper-manganin junctions and we must first decide how 
these affect the E.M.F. in the circuit. 

Experiment.—Read the galvanometer deflexion with a copper-iron couple 

when the junction is in steam, then sever the iron near its middle point and 

interpose a manganin wire. It will be found that the E.M.F. is the same 

as before, provided the ends of the manganin have the same temperature as 
each other. 

It will BuiEce, therefore, in the case of the iron-manganin couple' 
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if we connect it to the galvanometer by copper wires and place the 
copper-iron and copper-manganin junctions in a constant tempera¬ 
ture bath. The iron-manganin junction is enclosed in a test-tube, 
and immersed in a bath that can be heated to a suitable temperature. 
Fig. 261, A, shows how the E.M.F. in a copper-iron couple varies 
with the temperature of the hot junction when the cold junction is 
kept in ice. It is seen that the E.M.F. first rises until it reaches a 
maximum value; the temperature corresponding to this is called 
the neutral temperature. Beyond this there is a decrease in E.M.F. 
and finally it is in the opposite direction. The temperature at 
which the reversal takes place is called the temperature of inversion. 
If the cold junction is kept at 50® and a new set of observations 
are made a similar curve is obtained, B in the figure. The neutral 
temperature is the same in each experiment, and in every case it is 
midway between the temperature of the cold junction and that of 
inversion. Raising the temperature of the cold junction 50® there¬ 
fore lowers by an equal amount the temperature of inversion. If T 
is the neutral temperature, and ti the temperatures of the hot and 
cold jimctions respectively, the E.M.F. is given by 

where A; is a constant depending on the couple used. 

Expbeimbnt.—Heat the copper-iron junction of the first experiment in a 

Bunsen flame; the deflexion at first increases, then decreases, and is finally 
reversed. The neutral temperature for this couple is about 270®. 

The Thermopile.—These thermo-E.M.F.’s are made use of in the 
thermopile to detect small temperature differences in the study of 
radiations. A number of bars, alternately bismuth and antimony, 
about 2 cms. long, are joined together at their ends as in Fig. 262. 
They are insulated from each other along their lengths by thin mica 
strips, and are arranged so that the junctions form the opposite 
faces of a small cube. One of these faces is covered with lamp-black 
so as to absorb readily any radiant energy that falls upon it; the other 
set of junctions is kept bright so as to be non-absorbent, and is 
further protected from temperature change by a brass cap. The. 
extreme bars of the series are joined to a galvanometer. Such an 
arrangement evidently constitutes n thermo-couples arranged in 
series, and the B.M.F. caused by a given temperature difference 
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between the faces of the cube will be n times that of a single couple. 
Its method of use is given in Chap, XII; the galvanometer deflexion 
is proportional to the temperature difference between the faces. 
When the instrument is to be used in the study of the infra-red end 
of the spectrum the junctions are arranged to form a very narrow 
rectangle, in order that the effect of a very narrow portion of the 
spectrum may be measured. If a thermo-couple which is protected 
by a porcelain cover is placed in a mass of molten metal it may be 
used to obtain a cooling curve for the substance and hence its 
freezing-point (see Fig. 38). They are greatly used by metallurgists 
for this purpose ; their chief advantages are (1) the high tempera- 

Fio. 261.—^Thermo-E.M.F. at 
Different Temperatures. 

Fjq. 262.—Diagrammatic Con¬ 
struction of a Thermopile. 

tures for which they can be employed, and (2) the indicating instru¬ 
ment, a galvanometer, may be at some distance from the furnace. 

Peltier Effect.—The question now arises, Whence do these 
thermo-currents derive the energy necessary for their maintenance ? 
The answer was partially supplied by some experiments of Peltier 
in 1834, which showed that when a current crosses the junction of 
two dissimilar metals there is an absorption or evolution of heat 
according to its direction. This is called the Peltier effect. The 
quantity of heat absorbed or evolved is proportional to the current, 
but varies with the metals used and with the temperature. Thus 
when a current from an outside source is sent across a copper-iron 
junction there is an absorption of heat if the direction is from copper 
to iron, and an equal evolution when the current is reversed, the 

16 
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temperature in each case being below the neutral temperature. 
There is thus a cooling eCect in the first case and a heating in the 
second. But we have already seen that the thermo-current flows 
from the copper to the iron at the hot junction, hence it must cause 
an absorption of heat at this point. Thus the thermo-couple absorbs 
heat from the flame at the hot junction and transforms part of it 
directly into electrical energy. If we wish to demonstrate the 
Peltier effect it must be remembered that there is an evolution of 
heat in a given portion of the circuit proportional to A^R (p. 404). 
This is independent of the current direction and may mask the effect 
we are looking for. To render this disturbing factor negligible thick 
bars and small currents must be used ; for halving the current 
reduces the Joule effect to one-quarter its original value, while the 
Peltier effect is only halved. Keeping this in mind the experiment 
may be arranged as follows :— 

Experiment.—Replace the condenser of Fig. 238 by a thermopile, use a 
low resistance galvanometer, and put in series with the battery about 400 
ohms resistance. Depress the Morse key for 5 seconds ; owing to the Peltier 
effects at the two faces of the pile one, set of junctions is cooled and the other 
heated. Raise the key so that the galvanometer is in series with the pile and 
note the first throw of the needle. Reverse the poles of the battery and repeat, 
the throw should be exactly reversed. If the Joule effect enters largely the 
throws will be very unequal and may be in the same direction. (See below.) 

The amount of heat absorbed or developed per second at a 
junction when a current of one E.M. unit flows across it has been 
measured in a Bunsen’s ice calorimeter. A number of junctions are 
arranged in series, as in the thermopile, and the alternate ones are 
immersed in the calorimeter. A current A is passed through them 
for a time t and the heat developed is measured in the manner 
explained in Chap. III. Let P be the cals, developed per second 
by one E.M. unit on account of the Peltier effect at one junction, 
n the number of junctions immersed, Qj the total heat developed 
in the calorimeter in t secs., A the current in E.M. units, and J 
the mechanical equivalent. Then 

JQi = A2R^ + nPkt. J 

If the current is now reversed the sign of the Peltier effect is 
changed and 

JQ2 = A2R^ — nPA^. J 

(Qi ~ Q2) = 2wPAi 

from which P can be found. 
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The Thomson Effect.—Lord Kelvin has shovm that the Peltier 
effect is zero at the neutral temperature (hence the latter term); 
at higher temperatures it is reversed. Hence at the neutral tempera¬ 
ture the couple gives the maximum current (Fig. 261) and yet 
absorbs no heat. There must therefore be some other source of 
energy available. This he has located in the conductors themselves. 
He showed that when a current is sent through a conductor whose 
ends are at different temperatures there is an absorption or evolution 
of heat proportional to the current strength. This is called the 
Thomson effect; like the Peltier effect it is reversed with the current. 

Expebimxnt.—Hang up a U-shaped piece of thin iron wire with its lower 
portion in a dish of mercury, send a current down one limb and up another 
BO that it just glows in a darkened room. The mercury keeps the lower part 
cool, hence the current is flowing from hot to cold in one limb and from cold 
to hot in the other; the Thomson effects are opposed in the two limbs and this 
causes them to glow unequally. 



CHAPTER XLI 

POTENTIAL. ENERGY. DIELECTRIC CONSTANT 

Potential due to a Charge.—We will now study in greater detail the 
field surrounding charged conductors; the units used will be those 
already defined in Chaps. XXXI and XXXII. The difierence of 
potential between two points being measured by the work necessary 
to move a unit positive charge from one to the other against the 
electric field, let us calculate this quantity when the field arises from 
a charge Q at a given point. Let a charge Q units be concentrated 
at 0, and let the points whose P.D. is required be A, B. Divide AB 
(Fig. 263) into a large number of very short lengths BC, CD, etc. 

6 A i) c B 

Fio. 263. 

The intensity of the field at B is Q/OB^, that at C is Q/OC*, the 
average field throughout the short distance BC may therefore be 
taken to have the intermediate value Q/(OB. OC). Hence the work 
done in taking unit charge from B to C 

= Qfi- 1) 
^VOC OB/ 

Similarly the work from C to D 
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and so on through all the steps up to A. Adding all these expres¬ 
sions together it is clear that all but the two end terms cancel out, 
and the P.D. between A and B is 

If B is very distant 1/OB is zero, and the work done in bringing 
unit charge from a great distance up to A is Q/OA. This is the 
potential at A due to a charge Q at 0. 

Field at the Surface of a Conductor.—Since a charged conductor 
is an equipotential surface the lines of force cut it normally (p. 353). 
If the surface density of the charge round a certain point on the 
conductor is cr there are o' lines starting from a sq. cm. of the surface, 
hence the density of the lines close to the surface is O'. But the 
electric field is 47r times the density of the lines (p. 346), hence 
F = 4770" near the conductor. If any portions of the surface are 
sharply curved the surface density will be correspondingly great 
(p. 353), and the field may become so intense that the insulating 
power of the air is destroyed. When this happens the charge escapes 
and the conductor is discharged. Charged bodies must therefore be 
kept free from dust, otherwise each particle will act as a discharging 
point. 

Exfsbimekt.—Hold in the hand a pin with its point near a positively 
charged conductor. The surface density of the negative charge induced on 
the pin is so large that a stream of electricity passes from it to the conductor, 
which is thereby discharged. 

Lightning conductors are merely pointed rods connected to earth ; 
when, during a thunderstorm, an electrically charged cloud comes 
over them electricity of the opposite kind escapes from the points 
and neutralises the charge on the cloud. They thus prevent the 
disruptive lightning spark. 

Case of a Spherical Conductor.—When a charged conducting sphere 
is far removed from other bodies its lines of force radiate equally in all 
directions; the surface density is uniform and equal to (T = Q/47rR2, 
where Q is the charge and R the radius of the sphere. But the 
field near the surface is F = 47ro", or, substituting for cr, F = Q/R^ 
just the same as it would have been if the charge had been concen¬ 
trated at the centre and the conductor removed. Hence for external 
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points a charged sphere acts as if the electricity were concentrated 
at its centre. The field inside is of course zero, unless there are other 
charges within ; the potential of all interior points is therefore that 
of the surface. It follows from the above that the potential at a 
point outside, distant x from the surface, is V = Q/(R + a?); if a? is 
made very small the potential of the conductor itself is obtained, this 
is V = Q/E. But for any charged conductor V = Q/C (p. 355), where 
C is the capacity. Hence C == R, or the capacity of a sphere is equal 
to its radiusl Capacities are therefore measured in cms. in the 
electrostatic system of units. The unit of capacity is that of a sphere 
of unit radius which is far removed from other bodies. When dealing 
with current electricity this is too small, another unit called the 
micro-farad is then used. If a charge of one coulomb raises 
the potential of a conductor one volt its capacity is called a 
farad; the micro-farad is one-millionth of this. One micro¬ 
farad = 9 X 10® cms. 

Spherical and Plate Condensers.—Let us calculate the capacity of 
a spherical condenser formed of two concentric spheres. Let the 
radius of the inner be Ri, that of the outer R2, and suppose the larger 
sphere is earthed while a charge Q is given to the smaller. There 
will then be an induced charge —Q on the inside surface of the 
large sphere; if this were the only charge in the field the potential 
of all points within would be —Q/R2. If the charge on the small 
sphere were the only one present the potential of this conductor 
would be Q/Ri- Hence the potential of the inner sphere under the 

effect of both charges is V== Q/R^ — Q/Rg or V = 
VRj R2/* 

But for any conductor V = Q/C, therefore 

i — ^_^ Qj. n _ ^1^2 

C Ri R2 R2“~Ri 

Next let us find the capacity of a plate condenser like that in 
Fig. 211. Suppose the area of each plate is S and their distance apart 
is d. Let one plate be earthed and the other charged with Q units. 
Neglecting the effect at the edges, where the surface density is 
greater than elsewhere, the charge is uniformly distributed on the 
inner side of the plate, and the lines of force between the plates are 

equidistant and parallel. The field F = incr ^ 4TrQ/S, and the work 
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done in taking unit charge from one plate to the other is Fd. Hence 
the P.D. between the plates 

V = Fd 

Also V = Q/C, hence C = SjiTrd. This shows how the capacity 
is increased by putting the plates near together. 

Specific Inductive Capacity (Dielectric Constant).—Cavendish and 
Faraday showed independently that the capacity of a condenser 
varies with the nature of the dielectric or substance between the 
plates. Thus the capacity is increased when air is replaced by 
ebonite, sulphur, or an insulating liquid. The ratio ol the capacity 
when a certain substance is used as dielectric to the capacity with air 
as dielectric is called the specific inductive capacity of the substance. 
It is now more commonly called the dielectric constant. 

Experiment.—Earth one of the plates of the condenser, Fig. 211, and 
charge the other. Now hold between them a thick sheet of ebonite; the 
electroscope leaves which are connected to the insulated plate partially collapse. 
The charge is unaltered but the potential is lowered, hence the capacity must 
be increased. 

Since the potential is lowered the field in the dielectric must be 
less than it is in air for an equal density of the lines of force. If a 
substance whose specific inductive capacity is K fills the space 
between the metallic coatings of a plate condenser tho capacity is 
KSjiTrd. Exactly the same result is obtained by repeating the 
calculation of the last paragraph if it is assumed that tlie field in a 
dielectric is 1/K of what it is in air, the charges, and therefore 
the density of the lines of force, being the same in the two cases. If 
N is the density of the lines it has been shown that the field F = 47rN 

477 
(p. 346), hence in a dielectric F = ^. N. Other formulae which have 

JjL 

been given also require revision when the medium is other than air 
and its dielectric constant is K. Thus the force of repulsion between 
two charges Q, Q', at a distance apart d in a dielectric becomes 
F = QQ'/Kd^; comparing this with the fundamental equation on 
p. 315, it is seen that the constant K there given is the specific 
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inductive capacity of tlie medium. Similarly the potential due to 
a charge Q at a distance R becomes V = Q/KR, since the work done 

in bringing up the unit charge from a great distance is ^^th of what 

it is in air. Also the field near a charged conductor is 47r(r/K. 
The Leyden jar is perhaps the commonest form of condenser 

(Fig. 264). The lower half of a glass jar is coated inside and outside 
with tinfoil j these sheets form the condenser plates, and contact is 

Jar. 

made with the inner coating by a projecting brass rod. The whole 
arrangement may be regarded as a plate condenser with glass as the 
dielectric. 

Energy of a Charged Conductor.—The potential of a conductor 
being proportional to the charge on it the curve showing the relation 
between these quantities is a straight line; let OM, Fig. 265, be 
such a line. When the potential is v let a small additional charge 
q be carried to the conductor from the earth, during this process v 
may be treated as constant and the work done is vj. If PR repre* 
sents f? and RS the charge y, the work is represented by the rectangle 
PS. When further small quantities are brought up the work done 
will be represented by similar small rectangles; hence the whole 
work expended in charging the conductor from potential zero to that 
corresponding to MN is represented by the area of the triangle 
ONM, i.c. by JON. NM, If the final charge and potential are Q and V 
respectively the energy accumulated is therefore iQV ergs. Since 



ENERGY ON CHARGED CONDUCTORS 441 

Q == VC, the energy on the conductor may also be written JV^C or 
iQ^/C, In the case of a condenser Q is the charge on the insulated 
plate and V the P.D. between the plates. 

The Energy is in the Medium.—^According to the calculation just 
given the energy of a charge is concentrated on the conductor, but 
the following experiment shows that this does not completely 
represent the facts. 

Experiment.—Charge a Leyden jar which is famished with movable coatings, 
and place it on a sheet of ebonite. The inner coating and the glass may now 
be successively removed from the outer conductor without feeling any dis¬ 
charge, but if the jar is put together again it gives a spark when the plates are 
connected. On the other hand no spark is obtained if the glass is dis-electrified 
by passing it through a Bunsen flame. 

This experiment is interpreted as showing that the energy is 
located in the dielectric itself, the plates merely serving as electrodes 
through which energy can run into or out of the intervening medium. 
Owing to the tension in the lines of force tending to draw together 
the opposite faces of the glass the latter is in a state of strain, if the 
condenser is very strongly charged the glass may be broken. Just 
as the bent rod (p. 248) possesses potential energy when it is strained 
so does the strained medium between the plates, and the work 
expended in charging the condenser is spent in creating this strain. 
If a Leyden jar is discharged by momentarily connecting the plates, 
a further spark may be obtained after a few seconds, showing that 
the glass does not at once recover from its strained condition. It 
is supposed as the result of such experiments that all the energy of 
the charge is in the strained medium. Let us calculate what must be 
the amount per cm.^ in the case of a plate condenser. With the 
previous notation the total energy is JQV or JV^C, where V is the 
P.D. between the plates. If the field intensity is F 

and 

V = F.i 

C 
iird 

/. energy = JV2C==JF2d2./ KS 

iTrd 
KF2 

Stt 
d3 

KF2 

Stt 
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where v is the volume of the dielectric. Thus the energy per cm.® is 

KF^/Sn*. This result can be shown to hold for any conductor. 

Tension in the Lines of Force.—We have supposed that the attrac¬ 

tion between unlike charges is accounted for by the tension in the 

lines of force; let us calculate what their tension must be, taking 
the case of a plate condenser. Let T be the total pull on one of the 

plates due to this tension, and suppose it moves one plate towards 

the other through a small distance x. The work done is Ta; and this 

is obtained at the expense of the energy in the condenser. Hence 

Tx represents the decrease in energy of the condenser. Before the 

displacement the energy was afterwards it is 

4‘7r 27t 
4Q2. ^(d — x), or the change m energy = = Tx. Putting 

Jib Jib 

Q=S(r we get T=27rcr2S/K. The pull per cm.2 is tlicrefore 27rcr2/K. 

Since a = KF/irr (p. 440) this may be written KF^/Stt. As it de¬ 

pends only on F, the expres¬ 

sion gives the stress per cm.® 

on any conductor when the 
field at the surface is F. 

That the sideways repulsion 

of the lines varies with the 

medium is shown by an 

experiment of Quincke’s. 

Experiment. — Two large 
metal plates (Fig. 266), insu> 
lated from each other by bits 
of glass, are wholly immersed in 
paraffin oil. A bubble of dry 
air B is blown in through 

calcium chloride, the tap A is then closed and the pressure is read on the 
gauge C. The condenser is now strongly charged from an electrical machine 
(p. 449). The repulsion of the lines is greater in paraffin than in air and 
the bubble is forced to contract, thus increasing the pressure measured by 
the gauge. 

Partition of Charges.—Let two separate conductors whose 

capacities are Cj and C2 and charges Qi and Q2 be joined together 
by a thin wire ; it is required to calculate the charge on each of them 

and their common potential after they are joined. The joint capacity 
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is (Cl + C2) and the total charge is (Qi + Q2), if V is their common 
potential 

or 

Qi + Q2 V(Ci + C2) 

V — 
Cl + C2 

If their original potentials were Vi and V2 respectively, Qi = ViCi 
and Q2 == Y2C2. 

, TT_ViCi + V2^^ 
Cl + C2 

After putting them in contact let Qi' and Q2' be the charges. 

Then Qi' = VCi and Q2' = VC2 

Qi7Q2' = Ci/C2. 

The charges therefore distribute themselves proportionately to 
the capacities. 

Capacities in Series.—When the inner coatings of a number of 
Leyden jars are joined together and the outer coatings are similarly 
connected the condensers are said to be in 
parallel. If the outer coating of one is joined 
to the inner coating of the next, and so on, 
they are said to be in series or in cascade. 
In the former case the joint capacity is the 
sum of each ; let us calculate what is the 
joint capacity in the second arrangement. 
Suppose there are three condensers whose 
capacities are Ci, C2, Cs (Fig. 267), and let 
a charge Q at potential V be given to the 
first while one plate of the last is earthed. 
Then +Q units run from the lower p^ate of 
the first into the upper plate of the second, 
a similar transfer takes place at the second 
and third, and finally a charge Q runs to 
earth. Let(V — Vj) be the P.D, between the plates of the first 
condenser, (Vi — V2) the corresponding quantity for the second, 
(V2 —0) for the third. 

% 

''■v. 

>s 

Fig. 267.—Condensers 
in Series. 
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Then since the charge on each condenser is Q 

If a single condenser is charged to a potential V by the charge Q 
its capacity C is given by 

/• The capacity C of the three in series is thus given by 

C Cl C2 Cs 

EXAMPLES ON CHAPTER XLl 

1. Two equal small insulated spheres, placed 10 cms. apart, are charged 
respectively with 5 and 20 units of electricity. The spheres are made to touch 
and are then replaced; what are the forces between them before and altar 
contact respectively ? (L, *88.) 

2. Two spheres, of diameters 9 and 3, are connected by a long thin wire 
and 144 units of electricity are shared between them. CJompare their charges. 
From which sphere would a brush discharge first occur if their joint charge 
were gradually increased 7 

3. A condenser A has plates area 1000, and a dielectric of thickness 4; 
another condenser B has plates area 800 and the same dielectric of thickness 
6. Compare the charges and energy in A and B when they are connected, 
A to a source of potential 4, and B to a source of potential 5. (L. *96.) 

4. What is electrostatic capacity ? What is the capacity of a condenser 
made of sheet glass 2 mm. thick, with tinfoil coatings each 30 cms. square, if 
the specific inductive capacity of glass is 7*6 T (L. *04.) 

Explain what is the meaning of the term ** lines of electric force^** and 
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irhat inference may be drawn from their distribution. How many lines of force 
approximately will there be per cm.^ in the space between the parallel plates* 
10 oms. in diameter, of an air condenser charged with 250 electrostatic units 
of electricity T (L. *04.) 

6. Two hollow conducting spheres, of radii 3 and 10 cms. respectively, are 
each completely insulated, the centre of the larger sphere being on the surface 
of the smaller. The smaller sphere has a charge of 2 electrostatic units and 
the larger a charge of 4. Find the force (a) at a point outside the larger sphere, 
(6) at a point inside the smaller sphere. (L. *08.) 



CHAPTER XLII 

ELECTRICAL MEASUREMENTS AND MACHINES 

Comparison of Capacities.—In addition to the method given on 
p. 388, capacities may be compared with the help of a quadrant 
electrometer. Let the capacities be Cj and C2; earth one pair of 
quadrants and connect the other pair to the conductor whose capacity 
is Cj. Charge it to a suitable potential Vj and note the deflexion di. 
Coimect the second conductor to the first so that the charge is shared 
between them; the potential falls to V2 and the deflexion to If 
Q is the charge initially given to the first conductor Vj = Q/Cj; 
after the division of the charge, ¥2= Q/(Ci -f- C2). 
Hence, dividing one by the other, 

Ci + C2^Vi^0i 
Cl ■ V2 02 

C2 _ 01 — 02 
Ci~ 02 

When it is the capacities of condensers that are being compared 
one pole of each is connected to earth during the measurement. It has 
been assumed that the capacity of the quadrants themselves is negli¬ 
gible, if this is not allowable Ci must be talren to be the joint capacity 
of the quadrants and the first conductor (see ex. 7, p. 451). 

Attracted Disc Electrometer.—It has already been shown for a 
plate condenser that the puU on one of the plates due to the electrical 
charges is T = 27rcr^S/K. If V is the P.D. between the plates 

V = Fd = — g—, where F is the field in the space between the plates 

and d the distance between them. Hence 

a = KYliird and T = -. P. S (i.e. ~) 
_ OTT (42 \ OTT / 

V = d./ — 
V KS 

or 
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Thus if the pull T in d3rnes is measured when the substance 
between the plates is air, for which 4=1, the potential V may bo 
found. This is the principle of the attracted disc electrometer. 
The formula has been obtained on the assumption that the field 
between the plates is uniform ; to fulfil this condition the attracted 
circular disc B (Fig. 268) on which the pull is to be measured forms 
the central portion of a much larger plate, the two portions being in 
the same plane and separated from each other by a narrow air gap. 
The outer part is called the guard-ring. To ensure that no lines 
reach the upper side of the plate, 
B, together with the guard-ring, 
forms the bottom of a cylindrical 
metal box A. The lower plate C 
can be moved up and down by 
a micrometer screw. When the 
plates are uncharged B is pulled 
slightly above the plane of the 
guard-ring by a spring D, but when 
there is an electrical field between 
them B is pulled downwards by the 
tension in the lines of force and may 
be brought into the plane of the guard-ring. This position is reached 
when a small pointer (not shown in the figure) stands at its zero. 
The force required to produce the requisite extension of the spring is 
measured once for all by placing weights of m gms. on B until the zero 
position is reached, then T = dynes. To determine the potential 
of a conductor the cylindrical box is connected to a Leyden jar and 
charged to a high potential Vj; on account of the large capacity 
the potential will remain constant in spite of small leakages. The 
lower plate is earthed and its position adjusted until B is in the plane 
of the guard-ring; let di be the distance apart of the plates. C is 
next insulated, connected to the conductor whose potential V is 
required, and the distance again altered until the pointer is at zero. 
Let ^2 distance between the plates. 

Fiq. 208.—Attracted Disc Electro¬ 
meter. 

Then where S is the area of plate B, 
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Hence \ 

The difltance between the plates would be difficult to determine, 
but the difference in distance \di — can be found accurately by 
means of the micrometer screw. The instrument is chiefly of 
historical interest, potentials are now more usually measured by 
comparison with a standard cell. 

Measurement of Dielectric Constant.—Any method of comparing 
two capacities accurately will suffice to measure dielectric constants. 
The capacity Cj of an air condenser is measured by comparing it 
with a standard, the space between the plates is then filled with the 
dielectric and the new capacity C2 is found. The ratio C2/C1 is the 
dielectric constant. The methods of pp. 388 and 446 may be used. 
In the case of a liquid the principle of the attracted disc electrometer 
is also available. The two plates are separated about 2 mm. by 
three strips pf glass and are placed in a horizontal position in a glass 
vessel. The upper plate hangs from the arm of an ordinary balance 
and is weighed. The plates are then charged from a battery and 
the additional weights found which are necessary to balance the elec¬ 
trical attraction. Liquid is next poured in to cover the plates and 
the new pull due to the charges is found, the P.D. being the same as 

h V2 
before. From the last paragraph T = —. —. S, thus the ratio of 

OTT 

the attraction in the second case to that in the first is the dielectric 
constant. After pouring in the liquid the weights must be adjusted 
with the plates uncharged, on account of the apparent loss of weight 
of the suspended plate. 

Electrical Influence Machines.—On p. 351, a method has been 
described of electrifying a conductor by carrying to it a succession 
of charges obtained by electrical influence. This illustrates the 
principles of electrical influence machines. If we analyse the process 
it is seen that an insulated conductor, the carrier, is placed near a 
charged body, the inductor, and is then earthed; it thus receives 
by influence a charge opposite in sign to that on the inductor while 
an equal quantity of electricity of the other kind runs to earth. 
The electricity on the carrier is then delivered to the body whose 
charge it is desired to increase. These processes are carried out 
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very elegantly in the Wimshurst machine and in a simpler manner 
in the electrophorus. 

The Electrophorus.—This consists of a thin disc of ebonite resting 
on an earth-connected metal plate and a carrier formed of a metal 
plate supported by an insulating handle. The upper surface of the 
disc is negatively electrified by friction with a woollen rubber and 
the carrier is placed on it; owing to irregularities of the surfaces 
contact occurs at only a few points so that we may regard the two 
as merely placed close together. The carrier is momentarily earthed 
by touching it with the finger, when negative electricity flows to 
earth; it may now be raised by the handle and is found to be positively 
charged. A series of charges may be obtained in this manner without 
rubbing the ebonite afresh. Let us study the process of charging 
from the potential point of view with the help of a gold-leaf electro¬ 
scope. 

Expbrimbnt.—Insulate the metallic base by placing it on a block of paraflSn 
and connect it to an electroscope 
(Fig. 269)I Gently rub the ebonite 
with catskin; the negative charge 
produced lowers the potential of 
the base and positive electricity 
runs into it from the electroscope 
as the rubber is raised, the leaves 
therefore diverge with negative 
electricity. Place the carrier on 
the ebonite, the leaves collapse 
shghtly and the charges are dis- 
tributed as in the figure. Owing 
to the negative charge on the 
ebonite the potential of the carrier 
is less than that of the earth, hence 
when it is earth connected a posi¬ 
tive charge nms into it and raises 
its potential to zero at the same time raising the potential of the base. Positive 
electricity therefore runs from the latter into the leaves and causes them to 
collapse. Remove the carrier, its potential rises as it gets further from the 
charge on the ebonite; also the potential of the base decreases and positive 
electricity flows to it from the electroscope causing the leaves to diverge with 
a negative charge. 

The Wimshurst Machine.—In this apparatus the carriers take 
the form of tinfoil strips stuck radially on the outer sides of two 
glass discs which can be rotated in opposite directions by pulleys 
and strings. Each strip when charged is also made to act as an 
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inductor to the strips which are near it on the other plate. The 
conductors to be charged carry a comb of fine points, called the 
collecting brushes ; when a charged carrier passes these its charge is 
neutralised by a stream of electricity of the opposite sign coming 
from the points (p. 437), thus leaving on the collecting conductor a 
charge of the same sign as was on the carrier. The earthing of the 
carriers is brought about by small wire brushes which touch them 
twice during a revolution. 

In order to render explanation easier we will suppose the plates 
are replaced by cylinders turning the one within the other (Fig. 270). 

Let the rotation be in the direc¬ 
tion of the arrows and suppose a 
small positive charge is given to 
one of the carriers at A. As 
this moves to the right it induces 
a negative charge on any strips 
that are in contact with the brush 
at B. These negative charges 
moving to the left will, in a 
similar manner, induce a positive 
charge on carriers in contact 
wuth C. Thus all the strips on the 
upper half of the outer cylinder 
become positively charged in turn 
while the corresponding ones on 

Fig. 270.-Wim8rur8t Machine 
(diagrammatic). charges. A Similar process takes 

place on the lower halves of the 
cylinders. When a negative charge is induced on a strip at B an 
equal quantity of positive electricity runs along the brush holder 
and is shared with a strip at D. Hence all the carriers passing the 
latter point are positively electrified, and they in turn induce 
negative charges on the strips which pass E. The result is that 
all the carriers approaching the collector on the right are positively 
charged, while those moving to the left take with them negative 
electricity. These charges are collected by the combs and raise the 
P.D. between the conductors attached to them to such an extent 
that sparks pass between the discharging knobs F. With a large 
machine, electrolytes can be decomposed and conductors heated 
exactly as with the current produced by cells, the electricity is af 
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the same nature in each case. The only differences are in the 
potentials produced, and the quantity of electricity in motion. A 
Wimshurst may produce a potential of many thousand volts, but 
the current will be small owing to the large internal resistance that it 

encounters in the machine. 

EXAMPLES ON CHAFl’ER XLII 

1. A, B, and C are three Leyden jars, equaJ in all respects. A is charged, 

made to share its charge with B, and afterwards to share the remainder with C. 

The three jars are now separately discharged. Compare the quantity of heat 

resulting from each discharge with what would have been produced by the 

discharge of A before any sharing of its charge. (L. 

2. A battery of 4 ohms resistance is sending a current through an external 

resistance of 0 ohms. The polos are connected to a quadrant electrometer 

and the deflexion of the needle is 100 divisions. What will be the deflexion 

when, everything else remaining the same, the external circuit is broken ? 

(L ’87.) 

3. Two hollow, concentric, conducting spheres of radii 4 and 12 cms. are 

insulated and the outer given a charge of 20 and the inner of 5 E.S. units. Find 

the intensity of the electric field at points distant from the centre 3, 9, and 15 

cms. respectively. (L. ’JO.) 

4. How would you compare the charges on two small, irregularly shaped, 

conductors ? 

5. An air condenser with plates 10 cms. square and | cm. apart is charged 

with 100 electrostatic units of electricity. Find the loss of energy when it is 

plunged under oil of specific inductive capacity 2. (L. ’08.) 

6. Find in the last question the force of attraction between the plates in 

the two cases. 

7. One pair of quadrants of an electrometer are earthed and the other pair 

are charged until the deflection is This charge is now shared with a 

condenser of capacity C and the defli ction fulls to 62; find the capacity of 

the quadrants. 



CHAPTER XLIII 

TECHNICAL APPLICATIONS OF ELECTRICITY 

In the remaining pages a brief account will be given of various 
electrical appliances, so far as they can be understood from the 

principles already explained. 

Incandescent Lamp.—This consists of a very fine filament which 
is heated to incandescence when a suitable current is sent through it 
(Fig. 271). The object aimed at is to ensure that a large fraction 
of the energy supi)lied shall be converted into the radiations of the 

visible spectrum; the accompanying infra-red 
radiations of course require energy for their 
production, they should be reduced as far as 
possible. It is found best for this purpose 
that the temperature of the filament should 
be high, hence substances of high melting- 
point, such as tantalum and tungsten, are 
now generally used. To hinder cooling by 
convection and conduction the filament is 
enclosed in a highly exhausted glass bulb, 
connection being made with the exterior by 
means of platinum wire fused through the 
walls; this arrangement also prevents possible 
oxidation. The resistance of the rest of the 

circuit is kept low. The lamps in a building are connected in 
parallel and the lighting company is required to maintain a nearly 
constant voltage at the supply terminals. Suppose one lamp is in 
circuit and a second is then switched on; the resistance is halved 
and the total current doubled, but the current going through the 
first lamp is unaltered. The light given out by any lamp is therefore 
independent of the number that are being used. The unit of energy 
for supply purposes is the kilowatt-hour, t.e. 1000 watts for 1 hour; 

Fio. 271.—The In 
candescent Electric 
Lamp. 



TECHNICAL APPLICATIONS OF ELECTRICITY 453 

it is called the Board of Trade Unit, and costs, according to the 
locality, from \\d, to 6(Z. 

The Arc Lamp.—In an arc lamp, light is produced by heating 
two carbon rods by means of energy supplied electrically. When 
the ends of the rods are made to touch and a current of several 
amperes is sent along them some of the carbon is vaporised ; if now 
they are separated by a few mms., the current passes through the 
vaporous arc causing a vigorous emission of light. Owing to its 
high temperature, between 3000° and 4000° C., the arc is one of 
the cheapest methods of light production. The rays proceed chiefly 
from the end of that rod which is connected to the positive pole of 
the supply. This is a great advantage in the lantern, as it is easier 
to correct the lens system for what is practically a point source. In 
a self-regulating lamp the length of the arc is adjusted automatically. 
One method of doing this is as follows : The upper carbon is attached 
to a piece of soft iron which projects into a solenoid in series with the 
arc. When the carbons get too close together more current flows, 
and the iron is pulled up by the magnetic field of the coil; if the gap 
is too large the current is reduced and the upper carbon falls again. 

Electrical Furnaces.—Electrical furnaces can be divided into two 
main types, (1) resistance type, (2) arc type. The former are used 
for annealing tool steel, by jewellers for firing enamel ware, and 
generally for raising the temperature of small bodies not higher than 
about 1500° C. In construction they consist of a heating coil of wire 
wound round a tube of fire-clay, the whole being well lagged with 
material of poor thermal conductivity to prevent heat losses. The 
substance to be heated is placed in the fire-clay tube. The second 
type is used for the production of the highest possible temperatures. 
They consist essentially of an arc capable of carrying a large number 
of amperes; the substance to be treated is placed immediately 
below the arc and the whole is surrounded with fire-brick. Electrical 
ovens are merely a special form of the resistance type. For either 
kind to be worked economically they must be used at places where 
power is cheap; a number are in use near Niagara Falls—^the great 
head of water which is available there provides a source of energy 
which is easily tapped. The kinetic energy of the stream is made 
to turn water turbines which are yoked to suitable dynamos (p. 458). 

Electric Bells.—The construction of these will readily be under¬ 
stood by referring to Fig. 272. F is the bell gong and E the hammer, 
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the latter is attached to a piece of soft iron D which carries a light 
spring C. B is a screw which is just in contact with the spring, H is 
an electromagnet, S, E, are two strips of metal which can be brought 
into contact by pressing the “ bell-push P. This contact completes 
the electrical circuit of one or more Leclanche cells and a current 
flows round the electromagnet, through GCB, and back to the 

battery. The iron keeper D is 
consequently attracted by the 
magnet and the hammer strikes 
the gong. But the movement of 
D breaks the circuit at C, H there¬ 
fore loses its magnetism and the 
keeper falls back; the cycle of 
operations is thus repeated. 

Telegraphy. — Modern' tele¬ 
graphic and telephonic apparatus 
is too complicated for us to do 
more than indicate briefly the 
actual methods in use. A tele¬ 
graphic installation includes a 
sending and receiving apparatus 
at each station and a conducting 
wire, or “ line,*' connecting the 

two places. It was discovered in 1837 that a return wire was 
unnecessary as it was found that the earth is a good enough 
conductor for the purpose. The receiving instrument takes various 
forms. In some cases it consists of a vertical galvanometer whose 
needle turns round a horizontal axis after the manner of a dip needle. 
When the current flows it deflects the needle to the right or left and 
a metallic pointer, situated on the outside of the instrument, strikes 
sharply on one or other of two small stops; such an apparatus is 
called a sounder. By a suitable code, depending on the direction 
of the deflexion and the interval between successive sounds, the 
signals can readily be interpreted as letters or numbers. A special 
key AC (Fig. 273) is used at the sending station to reverse the current; 
one method of arranging the circuit is shown in the figure. The 
equipment at each station is similar and therefore one only need be 
described. F is the vertical galvanometer, E a large metal plate 
sunk in the earth, L the line connecting the two stations. The 
battery is connected to the cross bars A, B, of the key. Normally 
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the brass strips C, D, are in contact with A, and one pole of the 
battery is insulated ; but if one of them, say C, is depressed so as to 
touch B the contact with A is broken and a current flows in tlie 
direction ALA'F'E'EFC ; the operator at F' thus receives a signal. 
If D is pressed down instead the current flows in the reverse direction. 
In the Morse receiver, which is frequently used, the current flows round 
the coils of an electromagnet; this attracts an inked wheel and causes 
it to print long or short dashes on a moving sheet of paper. If the 
line is long the received current may be too weak to work the inking 
mechanism. In such cases the electromagnet is made to attract a 

Fig. 273.—Telegraph Circuit with Reversing Key and Sounder. 

light keeper, and the movement of the latter completes a circuit 
consisting of a local battery and the Morse or other receiving instru¬ 
ment. The necessary energy for working the receiver is thus derived 
from the local battery, which can be made powerful enough for the 
purpose. An arrangement of this kind is called a relay. Fig. 274 
shows a method of arranging the circuit, the relay being omitted. 
K is a Morse key which, at rest, is connected with the Morse inking 
apparatus M ; one pole of the battery is then insulated. If the key 
is depressed the connection with M is broken and the battery is con¬ 
nected to the line; current then flows to the station on the right, 
through M' and back to E vid the earth. G is a sensitive galvano¬ 
meter to show the sender that the current is actually passing. For 
submarine work the receiver is the moving coil or a galvanometer 
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(Fig. 253) which carries a special kind of pen in place of a pointer. 
By its means the signals are traced on a moving sheet of paper. This 
apparatus, invented by Lord Kelvin, is called a siphon recorder. 

Fig. 274.—Telegraph Circuit with Morse Key. 

Telephony.—A modern form of telephone receiver is shown in 
Fig. 275. It consists of a mouthpiece M closed by a thin sheet of 

iron, the diaphragm, D; immediately 
behind this are soft iron pole pieces, P, 
fastened to the poles of a permanent 
horseshoe magnet L. A number of 
turns of fine wire are wrapped round 
the pole pieces and their ends are 
brought to the terminals T. S is a 
screw which passes through the ebonite 
cover to hold the horseshoe in position. 
By contact with the magnet the pole 
pieces are kept magnetised in a condition 
corresponding to the steep part of the 
curve in Fig. 260; hence any small 
change in the magnetic field causes a 
considerable variation in their pole 

Fio. 275.—Telephone Strength. In the early days of telephony, 
Beceiver. an apparatus of this kind was employed 

both as transmitter and receiver. Let 
two such instruments be connected by a pair of wires, and suppose 
words are spoken into one of them. The pressure variations in 
the air cause the diaphragm to vibrate, and it alternately approaches 
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fco and recedes from the pole pieces; as D is made of iron this 
is equivalent to moving a keeper to and from the poles, and the 
density of the lines of magnetic force is changed in the region occupied 
by the coils. Induced currents are therefore set up, which are trans¬ 
mitted to the second instrument. But a current passing round the 
pole pieces at the distant station changes their magnetism appreciably, 
and the second diaphragm is also made to vibrate. These vibrations 
set the air in motion and the soimds are reproduced at the receiving 
station. As the currents produced by such means are very feeble it 
has been found necessary to devise some other method of transmis¬ 
sion, the original instrument being retained as a receiver. The con¬ 
struction of a transmitter will be understood from Figs. 276 and 277. 
A pointed piece of carbon B (Fig. 276) rests in two notches cut in two 

Fio. 277.—Hunnings’ Transmitter. 

carbon plates A, C ; a single cell and a telephone receiver complete 
the circuit. It is found that any slight vibration causes the resist¬ 
ance at the carbon contacts to vary between wide limits, hence the 
current undergoes corresponding variations. The ticks of a watch 
placed on the table are heard like strokes on an anvil if the ear is 
applied to the telephone. This apparatus, called the Hughes micro¬ 
phone, illustrates the principle on which modern transmitters are 
based. A diagrammatic representation of the Hunnings transmitter, 
which depends on the microphone principle, is shown in Fig. 277. 
D is the thin diaphragm as before, A is a metal plate; the 2 mm. 
space between them is filled with granular carbon, and both A 
and D are connected to wires. The whole forms a sensitive 
microphone, the resistance of the carbon being very sensitive to 
vibrations. A local circuit is formed which includes the micro¬ 
phone, two or more cells, and the primary of a small induction coil. 
The coil secondary is connected directly to the two line wires. 

17 
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The vibrations of the diaphragm cause the current in the primary 
coil to vary, and by the well-known action of the coil a smaller 
current at a higher E.M.F. is transmitted along the line. For short 
distances the induction coil can be dispensed with. If an earth 
return is used it is found that the inductive effects of neighbouring 
circuits produce such a constant hum in the receiver that intelligible 
speech is impossible. Disturbances of this nature can be largely 
reduced by employing a properly placed return wire. 

Dynamos.—dynamo is a machine for converting mechanical 
into electrical energy. In the form described below the mechanical 
energy derived from a steam or other engine is used to rotate a coil 
in a strong magnetic field ; this, as we have seen, produces induced 
currents. As shown on p. 420, the induced E.M.F. changes its 
direction at each half-revolution; hence if the ends of the coil are 
connected separately to two insulated metal rings on the axis of 
rotation, an alternating current can be sent round an external circuit 
through metal brushes which press on the rings. Such a machine 
is called an alternating current dynamo. For lighting incandescent 
lamps an alternating current may be used, but for many purposes, 
e.g, charging accumulators, a direct current is necessary. In these 
cases the alternating current in the coil must be converted into 
direct current in the external circuit by means of a suitable commu¬ 
tator. Let the coil in Fig. 278 rotate in the magnetic field with its 
ends connected to the halves of a brass split ring AB fixed on the 
revolving shaft. The metal brushes C and D lead to the external 
circuit and are alternately in contact with A and B as these revolve. 
The brushes are so arranged that, at the moment the E.M.F. in the 
coil is changing its sign, A leaves C and reaches D; the external 
current is therefore always in the same direction. This is the 
principle of the direct-current dynamo. With such a simple appa¬ 
ratus it is clear that the current falls to zero at each half-revolu¬ 
tion ; to remedy this defect a number of coils are used, arranged so 
that when one is least active, another is producing its maximum 
current. Fig. 279 shows diagrammatically four such coils con¬ 
nected to a four-part commutator; the dotted lines represent the 
brushes and connections to the external circuit, N and S are the poles 
of a strong electromagnet. By referring to Fig. 257, it is seen that 
the current in a coil changes its direction at the moment when the 
number of lines of force enclosed is a maximum. Hence in Fig. 279 
the induced E.M.F. in the top and bottom coils is just on the point 
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of reversal while the other pair are providing the maximum E.M.P. 
The result is to produce a current towards one and away from the 
other brush. In practice a much larger number of coils is used and 
the commutator is subdivided in a corresponding ratio. In order 
that the lines of force from the magnet may be concentrated 
through the coils the latter are wound on an iron core. This is 
built up of flat iron rings so as to prevent eddy currents; core 
and coils together form the armature. The method of winding 
just described was invented by Gramme; in modem machines it 

is superseded by more efficient but complicated methods. Direct- 
current machines are self-exciting, i,e. they themselves provide 
the current to excite the electromagnet. When a machine is 
started there is usually sufficient magnetism in the magnet core 
to produce a feeble current in the armature, the whole or part 
of this is made to traverse the magnet coils and the field rapidly 
increases in strength. In Fig. 280, two methods of connecting the 
magnet coils and armature are represented. In Fig. {A) the whole 
current passes round the external circuit R and the magnet con¬ 
nected in series with it; this dynamo is said to be series-wound. 
The current from a machine of this type varies greatly with the 
conditions in the external circuit; when the resistance is increased 
the current traversing the magnet is decreased and the E.M.F. 
generated is reduced also, since it depends on the field strength. 
Both changes contribute to a fall of current. Fig. (B) shows a 
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Bhunt-wound machine. In this case the external circuit and the 
magnet coils are in parallel and the current can pass through the one 
or the other. The coils round the magnet are made up of a large 
number of turns of fine wire so that little current passes through 
them and yet a strong field is produced. When the resistance of 
the external circuit is increased a larger fraction of the current is 
diverted to the magnet, the field therefore increases and the E.M.F. 
generated is raised. Hence a shunt-wound machine tends to regu¬ 
late itself so that a constant current is sent round a circuit of varying 
resistance. This renders it particularly useful for the charging of 
accumulators. With either type the output is of course limited by 

a) W 
Fia. 280.—(i4) Series-wound; (5) Shunt-wound Dynamo. 

the power available for driving it; as the current increases it requires 
a greater efiort to turn the armature, for it must be remembered that 
the induced currents are in such a direction as to oppose the motion. 
For lighting purposes the dynamo is required to maintain a constant 
E.M.F. at the terminals of the lamp circuit, no matter how many 
lamps are in use. A combination of series and shunt windings is 
found best for this purpose. The machine is shunt wound, but a 
few turns of the external circuit are also wrapped roimd the magnet. 
The advantage of a dynamo over a primary battery as a producer of 
current on a large scale lies in the cost. If cells are used the current 
is produced by oxidising, t.e. burning, zinc, while the dynamo derives 
its energy from the fuel used in the engine which drives it. 

Electro-motors.—Suppose in Fig. 280 that the external circuit is 
replaced by a battery or other source capable of driving a current 
through the armature and magnet. From the principles explained 
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in Chap. XXXYII, it is clear that, owing to the action of the field on 
the current, there will be forces called into play tending to make the 
armature rotate. The direction of rotation, by Lenz’s law, is such 
that the E.M.F. induced in the armature is opposed to the passage 
of the current. This is the principle of the electro-motor. If E 
volts is the back E.M.F. generated when the current forced through 
is A amperes, then the energy required to drive the current is EA 
watts, and this, neglecting frictional and other losses, is the activity, 
of which the motor is capable. Hence to be efficient it must be 
capable of generating a large back E.M.F. In both dynamos and 
motors the resistance of the armature coils is kept low in order that 
the energy dissipated as heat may be small (Chap. XXXYI). Suppose 
now that a motor having a resistance of a fraction of an ohm is 
suddenly switched into a 200-volt circuit; there will be initially a 
very large current, but as the speed of the armature increases the 
back E.M.F. rises and the current is reduced. To protect the 
machine from injury at the moment of starting the current is intro¬ 
duced through a starting resistance; this is gradually switched out 
as the speed increases. 



CHAPTER XLIV 

CONDUCTION OF ELECTRICITY IN GASES 

In the preceding pages such terms as “ charge of electricity and 
“ electrical current'' have frequently been used, but no attempt 
has been made to form a mental picture of what constitutes a 
“ charge,” or what it is that moves when a current ” passes along 
a wire. Conduction in electrolytes has been definitely ascribed to 
the motion of charged ions (p. 395). During the last thirty years 
the ionic theory has been extended to gases and metals, thus per¬ 
mitting much more definite pictures to be formed of electrical 
phenomena and leading to a greatly extended knowledge of atoms 
and the constitution of matter. We proceed to describe experiments 
on the conduction of electricity in gases. 

McLeod Gauge.—A means is required of measuring gas pres¬ 
sures of the order of 1 mm. of mercury and less. A glass apparatus 
called a McLeod guage, shown in Fig. 281, is commonly used. The 
reservoir B, containing mercury, is connected by rubber tubing to 
a tube AM about 80 cms. long. This is surmounted by a bulb N 
and a closed capillary tube having a mark at C. A side tube DE of 
the same diameter as the capillary goes to the apparatus where the 
gas pressure is required to be known. To measure this pressure, 
which we will assume is x cms. of mercury, the reservoir B is raised 
until mercury flows past A, traps the gas in the bulb and compresses 
it to C. Mercury also rises in the side tube to E. Suppose the 
volume of the capillary to be v and of the bulb from A to C to be V. 
(These are determined before the apparatus is put together.) The 
pressure at C is, by Boyle’s law, greater than x and is equal to that 
at D in the same horizontal plane. But the pressure at D is equal 
to DE cms. of mercury plus the gas pressure above E, i.e. to (DE+a;) 
cms. Applying Boyle’s law to the gas in C before and when it is 
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compressed; initial pressure was x and volume (V+r); final 
volume is v and pressure (DE+a^)* 

/. a:(V+r)—(DE4-a;)o 
V 

/. x=DE.^ cms. 

The fraction v/V can be made 1/1000 or less, so that even if x 
is small DE is still large enough to be measured easily. 

Fio. 281.—McLeod Gauge. 

Discharges In Vacuum Tubes.—For the experiments to be 
described a source of high potential is required, such as an induction 
coil (p. 422) capable of giving a spark of 6 in. or more in air; also 
an air pump like the Topler (p. 4G*) capable of reducing the pressure 
in a closed tube to 0*001 mm, of mercury or less. 

A glass tube (Fig. 282) is connected to another containing phos¬ 
phorus pentoxide, which dries the contained gas, and to the pump and 
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gauge. Platinum wires are fused through the glass and carry, inside 
the tube, discs of aluminium for electrodes. When the secondary 
terminals of the coil are connected to A, B, and a current is passed 
from the anode A to the kathode B, sharp, disruptive sparks are scon. 
If air be pumped out until the pressure is between 5 and 10 mm. 
of mercury, the greater part of the tube from the anode is filled with 
a pinkish discharge called the positive column. Beyond this is a 
dark space C, named the Faraday dark space, bounded on the kathode 
side by a violet glow—^the negative glow—reaching up to and cover¬ 
ing the kathode surface. When the pressure is still further reduced, 
the positive column divides into a set of saucer-shaped bands of 
light, called the positive striae, the negative glow extends further 

glow glow space 

Fro. 282.—Discharge in Vacuum Tubes. 

from the kathode, while the Faraday space and the positive column 
retreat before it to the anode. At about 1 mm. pressure there 
appears a dark space between the negative glow and the kathode— 
this is called the Crookes dark space or simply the dark space—and 
another bluish glow, named the first negative glow, covers the surface 
of the kathode. This stage of the discharge is shown in the lower 
part of Fig. 282. At about this pressure the voltage between the 
terminals is a minimum. As the pressure is still further reduced 
the striae become hazier and retreat into the anode, the negative 
glow extends, becomes fainter, and finally disappears, but the 
Crookes dark space becomes larger and larger until the luminosity 
of the discharge vanishes. The voltage required to pass the current 
at length becomes so high that sparks pass between the electrodes 
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outside the tube. In the meantime, at a pressure near 0‘1 mm., 
the walls of the tube, if made of soda glass, begin to fluoresce with 
a brilliant, apple-green light, which becomes more pronounced as 
the pressure is lowered. It is with the tube in this highly exhausted 
condition that the most important discoveries have been made. 

Kathode Rays.—Crookes made a tube of the shape shown in 
Fig. 283, where the anode and kathode are marked. Fixed in the 
tube is a light mica cross. When a discharge is passed at a pressure 
of 0*001 mm. or less the glass fluoresces green, but the cross throws its 
shadow on the end of the tube and the glass there does not fluoresce. 

From this and similar experiments Crookes concluded that there 
are rays coming from the kathode normally to its surface, which 
travel in straight lines independently of the position of the anode, 
and which cannot pass through solid substances. These rays are 

Fio. 283.^—Shadow cast by Kathode Rays. 

called kathode rays. They were regarded by Crookes as a fourth 
state of matter. If the rays are caused to fall on various mineral 
substances, such as calcspar, fluorspar, etc., these minerals fluoresce 
strongly with colours characteristic of each ; some substances also 
phosphoresce after the rays have ceased. As an illustration of the 
fact that the rays leave the kathode in a direction normal to its 
surface, it is found that if this electrode be made concave the rays 
are brought to a focus at the centre of curvature, A thin sheet of 
copper placed at this point is melted by the rays in a few seconds, 
showing that they carry a large amount of energy which is mostly 
converted into heat when they strike a solid target. 

Kathode rays are deflected by electric and magnetic fields. This 
can be shown in a tube like that depicted in Fig. 284. B is the 
kathode, C is a metal slit i a mm. wide; when it is connected to 
earth there is no field to the right of it. D and E are metal plates a 
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few cms. long. If they are connected together and are therefore 
at the same potential, the rays coming through the slit C cause a green 
patch to be seen on the glass at l\ If E is now connected to the 
positive and 1) to the negative pole of a l^attery of 100 or more volts, 
the rays are bent downwards and the patch appears at Q. This is 
what would be expected if the rays carry a negative charge, for they 
would then be repelled by D and attracted by E. If D and E are 
again connected and the N. pole of a magnet is placed near the tube 
anywhere between D and P, so that, in the figure, the lines of force 
are running into the paper, the rays are again deflected towards Q. 

Fia. 28 K—Electrostatic deflection of Kathode Rays. 

If, following Fleming’s rule (p. 410), the left hand is held with the 
first finger pointing in the direction of the magnetic field (into the 
paper), the thumb pointing in the direction towards which the rays 
are bent (downwards), the second finger points in the direction in 
which a positive current is flowing, viz. from P to B. This is the same 
as a negative current flowing from B to P, and thus agrees with what 
has been deduced from the electrical deflection. 

The negative charge on the rays may be demonstrated directly. 
The kathode is placed as shown in Fig. 285, so that the rays pass 
through a narrow slit. A metal cylinder G has a corresponding slit 
facing the kathode. It is insulated from but completely surrounds 
an inner cylinder E. G is connected to earth and screens E from 
all electrical fields. Such an arrangement is called a Faraday 
cylinder. E is connected to an electroscope by the wire F. When 
the tube is worked, the electroscope shows no disturbance until 
the kathode rays are bent by a magnet to enter E, the rays then 
give up their charge to the cylinder and the electroscope shows a 
negative charge. 

By measurements which it is beyond the scope of this book to 
describe, it has been found that kathode rays consist of negatively 
charged particles, whose mass is 1/1845 the mass of a hydrogen atom, 
hitherto the smallest particle known. The charge on each is of the 
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same magnitude as that on a hydrogen or other univalent ion in 
electroljrsis, approximately 4*77x10“^^ electrostatic units. Such 
particles are called electrons. It appears that electricity, like matter, 
is atomic, since the smallest charge that can be given to or taken 
from a body is the electronic charge, no fractions of it have been 
isolated, and all other small charges which have been measured are 
exact multiples of it. The velocity of the electrons in a vacuum 
tube may be from 1 /30 to 1 /3 the velocity of light. Even such small 
masses, moving with this enormous velocity, will carry a large amount 
of energy, since the kinetic energy is | and v=3 X10^^ cms./sec. 

Electrons.—^Electrons can be produced by other means than 
discharges in vacuum tubes; for example, if a metal wire be made 
white hot it emits large numbers of electrons. But the important 
fact emerges that no matter what their source or method of pro¬ 
duction they have always the same charge and mass. They are^ 
therefore^ a comimn constituent of all matter. It is now fairly certain 
that all chemical atoms are built up of electrons surrounding a heavy 
nucleus. The nature of the latter is not yet completely known, but 
it carries a positive charge just sufficient to neutralise the negative 
charges of the electrons surrounding it. If, then, an electron be 
removed from an atom by any means, the part which is left will 
carry an excess of positive electricity and will behave as a positively 
charged body. Electrification of conductors in many cases means 
they have either lost or gained electrons; in the first event they are 
positively and in the second negatively charged. In insulators the 
electrons are supposed to be fixed in the atoms of which they form a 
part, but in metallic conductors they are believed to be more or less 
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free. When a potential is applied to a conductor, the electrons move 
in a direction opposed to that of the field, since they are negatively 
charged. It is this motion of electrons which constitutes an electric 
current. Electrification by induction is also due to the motion of 
electrons. 

Positive Rays.—It has been shown that a solid obstacle casts 
a shadow behind it when it is placed in the path of the kathode 
rays. The presence in the tube of another set of rays can be sliown 
by similar means. If a wire be placed in the dark space in a tube 
which is in the condition shown in the lower part of Fig. 282, it will 
be found that behind the wire there is none of the first negative glow 
on the surface of the kathode. This shows that the glow is caused 
by rays of some kind coming to the kathode from the Crookes space, 
and that these rays are stopped by the wire. They are called positive 
rays. The paths of the rays are most easily seen when the gas in 

the tube is helium and the kathode is pierced by a number of holes, 
as in Fig. 286. The rays then pass through the holes and produce 
pinkish streamers behind the electrode. It is in this part of the tube 
that they have been studied. When they are allowed to fall on some 
powdered willemite, a white mineral substance, they cause it to 
fluoresce. Positive rays can be deflected by electric and magnetic 
fields, and the direction in which they are deflected shows they carry 
a positive charge. The fields required are, however, much greater 
than those necessary to deflect kathode rays. Positive rays differ 
from electrons in that the amount of the deflection varies with the 
nature of the gas in the tube. They have been shown to be atoms, 
or less frequently molecules, which have lost one or more electrons 
in the discharge. Their larger mass, compared with electrons, 
explains the difficulty of deflecting them, while the variety of the 
weights of atoms shows why the deflection depends on the nature of 
the gas. By measuring the electrical and magnetic deflections the 
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relative masses of atoms can be compared; this gives an extremely 
accurate method of determining relative atomic weights. It is this 
which makes the study of positive rays so important. By their 
use it has been shown that chlorine is a mixture of two kinds of 
atoms, of relative masses 35 and 37, and similar results have been 
found for some other substances. Positive rays, like kathode rays, 
affect a photographic plate ; this is made use of when a permanent 
record of their deflection is desired. 

X-rays.—It was discovered by Rontgen in 1895, that a discharge 
tube when worked at a very low pressure causes certain substances 
in its neighbourhood to fluoresce strongly and photographic plates 
are fogged. These effects occur even when the plates and tube 
are covered with black paper. They arc found to be due to radia¬ 
tions coming from those parts of the tube walls which are struck by 

the kathode ra3^s. The radiations are called Rontgen rays or, more 
popularly, X-rays. They pass readily through light substances like 
wood, paper, and aluminium, with more difficulty through bone, 
while lead and the heavy metals are more or less opaque to them. 
They have been proved to be waves of the same nature as light waves 
but of much shorter wave length. Yellow light has a wave length 
about 6x10“^ cms., but that of X-rays is of the order lO'"® cms., 
or a thousand times less. This is the reason for a second difference ; 
X-rays cannot be focussed by a lens. When the hand is placed 
on a photographic plate enclosed in black paper, and the rays sent 
through from above, the flesh transmits the rays readily but the 
shadow of the bones is shown clearly on the developed plate. This 
gives the rays great importance in surgical work. To obtain sharp 
shadows the source of the rays must be small (p. 134), also the great 
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energy carried by the kathode rays would soon melt the tube walls. 
Hence in the modern tube (Fig. 287) the kathode rays are focussed 
by means of a concave kathode C on to a heavy, infusible, metal 
target A, usually made of tungsten. To reduce the heating the t-arget 
is sometimes in contact with water. The anode P is connected to A. 
By these means the origin of the rays is confined to a small spot on 
A, and the radiation travels upwards in the figure in an intense beam. 
The rays are due to the sudden stoppage by the target of the electrons 
coming from the kathode. 

Conduction of Electricity in Gases —^The fact that an electro¬ 
scope retains a charge is suflScient to show that the air in contact 
with it is a bad conductor of electricity Gases can, however, be 
made conductors. If a charged electroscope be exposed to X-rays, 

or if a radioactive substance like salts of radium, thorium, or uranium 
be held near it, the leaves collapse more or less quickly. Flames, 
hot bodies, and electric discharges also cause conductivity. Gases 
in this condition are said to be ionised. Since the ionisation persists 
for a short time, the gas may be drawn from one place to another and 
tested when removed from the ionising source. Fig. 288 shows a 
simple apparatus for the purpose. By means of a filter pump the 
gas to be tested is drawn into a chamber containing a charged electro¬ 
scope. The air may come from the neighbourhood of an X-ray bulb, 
a flame, or a wire heated to incandescence by a current, or it may 
be drawn over a radioactive substance. The electroscope will be 
found to lose its charge whether positive or negative. If, however, 
the ionised air be pulled through a tight plug of cotton wool or be 
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bubbled through water before reaching the electroscope, it will be 
found that its discharging action has disappeared. The conductivity 
can also be removed by passing the ionised air through a strong 
electric field. For example, if ionised air be pulled through the 
space between two concentric metal tubes which are insulated from 
each other but are connected to the op^josite poles of a battery of 
about 100 volts, the conductivity can be entirely removed. It 
disappears spontaneously if the gas be allowed to stand for a few 
seconds. It has been shown that ionisation of a gas is due to the 
removal of electrons from some of its atoms or molecules by the 
ionising agent, X-rays, etc. These molecules have consequently a 
positive charge. The free electrons soon attach themselves to neutral 
molecules, which are thereby negatively charged. Such charged 
molecules are called positive and negative ions respectively. When 
a gas in this condition is placed in an electric field the ions move in 
opposite directions, carrying their charges with them; it is the 
motion of these charges that constitutes the current in an ionised 
gas. Hence when a conducting gas is drawn through the tube just 
mentioned, the ions of one sign go to the outer and those of the other 
sign to the inner tube and the emergent gas is deprived of its con¬ 
ducting power. When a gas loses its ionisation by standing, either 
the ions have become attached to the walls of the containing vessel 
or the oppositely charged ions have recombined with each other 
to form electrically neutral systems. Similarly, when the ions are 
passed through water or a cotton w^ool plug they become attached 
thereto. 

Saturation Current.—^The currents through ionised gases are 
usually much smaller than those through an electrolyte and are too 
small to be measured by a galvanometer. Fig. 289 shows an arrange¬ 
ment which can be used to investigate the relation between applied 
E.M.F. and the current. A, B are tw^o insulated metal plates between 
which the current is to be measured. An X-ray bulb is placed in a 
lead case with a hole in one side which is closed with thin aluminium 
foil, a substance that allows the rays to pass through freely. This 
arrangement ensures that the only rays which escape from the box 
are those which pass between A and B. D is a quadrant electro¬ 
meter wdth one pair of diagonally opposite quadrants earthed and 
the other pair connected to B. A is connected to one pole of a 
battery C of about 50 cells, the other pole of which is earthed. B and 
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its quadrants are first connected to earth, so that their potential is 
zero. Evidently if A be connected to the positive pole of C positive 
ions will he driven on to B and so to earth. At a given instant B 
and its quadrants are insulated; the ions they now receive will 

Fio. 289.—Apparatus for Measuring Current in a Gas. 

accumulate and raise their potential, and this potential will be 
measured at every instant by the electrometer. After a time t 
let their potential be V. If C is their capacity, the accumulated 
electricity is Q=VC, and the average current, which is the charge 

Fio. 290.—Potential-Current Curve. 

received per unit time (p. 359), is VC/f. For many purposes only 
relative currents are required. These arc measured by V/f, t.c. by 
the rate at which the potential rises, and this is given by the rate of 
movement of the electrometer spot across the scale. 
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The relation between E.M.F. and current is shown by the curve 
OAB (Fig. 290). At first the current increases rapidly with the 
potential, but reaches a steady value at and beyond A. This maxi¬ 
mum value is called the saturation current. It is clear the current 
does not obey Ohm’s law; if it did the curve OAB would be a straight 
line. The reason for a saturation current is simple. The X*ray8 
produce each second between the plates a definite number of ions. 
If there is no field these accumulate until the recombination of the 
oppositely charged ions just balances their rate of production by the 
rays. When an increasingly large field is imposed the ions are driven 
on to the plates in greater and greater numbers until they are removed 
as fast as they are formed. No further increase of current is then 
possible, unless more ions are produced each second. 

Electricity from Hot Bodies.—^When inorganic salts are heated 
certain of them emit ions in large quantities. Thus aluminium 
phosphate gives a large excess of positive ions, but zinc iodide an 

Fig, 291.—Current from a hot Filament. 

excess of negative. Heated metal wires give off both kinds, but at 
temperatures above 1000° C. the negative are largely in excess. 
Thermionics is the name given to this branch of the subject, and 
the carriers of the discharge are called thermions. Concerning the 
positive ions little is known, in spite of much research ; attention 
will here be confined to those instances where the carriers are known 
to be electrons. In Fig. 291 AB is a thin wire of platinum or tungsten 
which can be heated to incandescence by a current from a few 
accumulators. C, C is a metal cylinder surrounding the wire. The 
whole is enclosed in a glass tube which can be evacuated. AB is 
connected to the negative pole of a second battery, the other pole 
of which goes to a galvanometer; the second galvanometer terminal 
is connected to C. When the wire is white hot electrons are emitted 
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and are driven by the field on to C and through the galvanometer. 
The relation between E.M.F. and current is given by OAB (Fig. 290). 
It will be noticed that the current is large enough to be measured by 
a galvanometer. It is very greatly increased if the wire be coated 
with lime. Whether the coated or bare wire be used, it is found there 
is practically no current if the positive pole of the second battery 
mentioned above is connected to AB. In other words, the tube 
passes electricity in one direction only. If then the second battery 
be replaced by a source giving current alternately positive and 
negative to the wire, only the negative phase will pass, and current 
in one direction only can be taken from C. A tube with this property 
is called a valve and is largely used in X-ray work and wireless 
telegraphy. It is well known that hot bodies lose any charge imparted 
to them, the reason is now clear—^they emit ions which carry away 
their charge. 

Ionisation by Collision.—When the pressure in the tube 
(Fig. 291) is reduced to a few mm. a new feature appears. The 
current remains saturated over a certain range of voltage, but with 
further rise of the latter begins again to increase very rapidly, 
and soon produces a visible discharge. A new source of ions has 
therefore been tapped. This part of the curve is represented by 
BC (Fig. 290), The same feature can be produced with the apparatus 
shown in Fig. 289, but some thousands of volts would be required 
if the air were at atmospheric pressure. In their movement through 
the gas the electrons continually collide with neutral molecules, but 
between collisions their motion is accelerated by the field. At low 
pressures, when the distance moved over between collisions is large, 
the kinetic energy of the electrons finally becomes great enough to 
enable them to remove electrons from the neutral molecules with 
which they collide. These electrons in turn produce the same effect, 
and so the current rapidly increases. The positive ions formed at 
the same time, being heavier, require greater E.M.F.’s to acquire 
the energy necessary to produce ions by collision, although eventually 
this stage can be reached. 

Radioactivity.—Since a tube fluoresces strongly when it is pro¬ 
ducing X-rays, it was thought that certain fluorescent crystals might 
also emit X-rays. Becquerel placed a photographic plate in black 
paper, on this a small piece of lead, and above all one of the crystals. 
After some days it was found the plate was affected except under 
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the lead. Further experiments showed the rays came from the 
uranium of the salts and had no relation to fluorescence or external 
conditions. Further, they were not X-rays. This spontaneous 
emission of rays is called radioactivity. The rays ionise gases into 
which they pass, and this effect is generally made use of in 
investigating their properties. Thorium is also radioactive, but 
certain minerals are more active than either thorium or uranium. 
This has been traced to the presence of a new element—^now 
called radium—^which is very strongly radioactive. It will be 
taken here as the typical radioactive substance. 

Quality of the Rays.—It can readily be shown that the rays are 
not all of one kind. The apparatus shown in Fig. 289 can be used, 
except that the X-ray tube is replaced by some radium placed in 
an open lead capsule immediately below AB. The rays ionise the 
air between the plates, and the voltage of the battery is adjusted to 
give the saturation current. The open end of the capsule is next 
covered by successive sheets of very thin aluminium foil; between 
each addition the new saturation current is measured. It is found 
that at hickness of 0*1 mm. of aluminium stops the greater part of 
the radiation. These easily absorbed rays are called a- (alpha) rays. 
If the poles of a small electro-magnet are now placed with the gap 
just above the covered capsule, the magnetic field cuts down the 
remaining radiation still further. The rays deflected by the field 
are called /3- (beta) rays. The remaining rays—^named y- (gamma) 
rays—are not deflected by a magnetic or electric field, and are 
able to penetrate several cms. of lead. They are very penetrating 
X-rays. 

The a-rays.—The a-rays from all radioactive substances are 
helium atoms that have lost two electrons; their positive charge 
is consequently 9*5x10”"^^ electrostatic units. By taking electrons 
from other atoms they finally become helium. All the a-rays from 
the same element are ejected with the same velocity, but this varies 
with the substance. Magnetic and electric fields deflect a-rays, but 
the fields must be very strong as the mass of the rays is high. The 
direction of the deflections shows the charge on the rays is positive. 
They ionise gases very strongly, but photographically they are not 
very active, as they do not penetrate far enough into the film. The 
rays cause fluorescence in certain substances; at every impact of one 
of the particles a small flash of light is produced. By noting in a 
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dark room the distance from the radium at which these flashes are 
no longer created, the range of the fastest a-ravs in air has been 
found to be slightly over 7 cms. 

The j3-rays.—The jS-rays are electrons carrying the usual negative 
charge of 4*77 X electrostatic units. They are deflected by 
electric and magnetic fields, but less than kathode rays owing to 
their higher velocity. The direction of the deflection shows the 
charge is negative. jS-rays are more penetrating than a-rays, their 
photographic action is stronger, but the ionisation they produce is 
less. When they are fired through narrow slits and then deflected 
by a magnetic field, the amount of deflection is not the same for all, 
as it is for a-rays from a single substance. This is due to their 
differing velocities, which range from that of kathode rays to the 
enormous value of 180,(XX) miles per second. 

The negative charge carried by the rays can be shown directly, 
for if they are shot into an insulated lead plate it gradually shows a 
negative charge. For this to succeed the plate must be placed in a 
highly evacuated vessel, or be embedded in paraflGlii wax, otherwise 
the j3-rays render the surrounding air conducting and the plate loses 
the charge as fast as it receives it. By a similar experiment the 
positive charge on a-rays can be shown, but it is more difficult. 

The bombardment of the radium salts by the a-rays coming 
from the interior layers heats the material to a temperature slightly 
higher than that of its surroundings. When a- and j8-rays are ejected 
from radium a new substance is formed by the remainder of the 
atom; this undergoes further changes and in this manner a succession 
of substances appears; the final product is lead. 
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Condensers, 356, 438 

,, in series and parallel, 443 
Condensing electroscope, 358 
Conduction in gases, 462 

„ of heat, 116 
„ „ „ (Searle’s appara¬ 

tus), 119 
Conjugate points (lenses), 191 

„ „ (mirrors), 150 
Conservation of energy, 20*, 112 
Convection of heat, 115, 118 
Cooling by evaporation, 92 
Coordinates, 2* 
Cosine, 4* 
Coulomb, the, 365 
Couple on a magnet, 319 
Couples, 31* 
Critical angle, 171 

„ „ refractive index by, 172 
„ temperature,. 94 
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Current, in a gas, 472 
,, saturation, 471 
„ strength, 359 
„ unit, 364 

Dalton's law, 91 
Darling's experiment, 10 
Declination, 336, 340 
Density, 38* 

„ U tubo method, 39* 
Dew point, 98 
Dielectric constant, 439, 448 
Differential air thermometer, 27 
Diffusion of gases, 14 

„ „ light, 136 
„ „ liquids, 14 

.Dilatometer, 49 
Dip needle, 338 
Dispersion, 205 

„ in lenses, 211 
Dispersive power, 210 
Dissociation theory, 396 
Distillation^ 95 
Doppler’s principle, 271 
Dulong and Petit’s aftparatus, 50 

„ „ ,, law, 37 
Dynamo, 468 
Dyne, 10*, 18* 

Earth coil, 420 
Echoes, 273 
Eclipses, 135 
Eddy currents, 417 
Elasticity, 2 

„ of a gas, 7, 265 
Electrically driven tuning fork, 285 
Electric field, intensity of, 345 

„ „ near conductor, 437 
Elcotro-chemicai equivalent, 394 
Electrolysis, 394 
Electrometer (quadrant), 357 

„ (attracted disc), 446 
Electro-motor, 460 
Electrons, 467 
Eleotrophonis, 449 
Electroscope, 349 
E.M.F.. 359 

„ calculation of, 400 
„ to decompose electrolyte, 401 
,, unit of, 365 

E.M.F.’s, comparison of, 375, 385 
Emissive power, 124 
End correction for tube, 297 
Energy, kinetic and potential, 19* 
Energy of charged conductor, 440 
Equilibrium, conditions of, 26* et seq,. 

Equipotential surface, 353 
Erecting prism, 227 
Erg, the, 19* 
Expansion, cubical. 47 et seq* 

„ linear, 39 et seg. 
„ of gases, 59 el aeq, 
„ „ liquids, 47 
„ „ mercury (absolute), 49 

Eye, the, 228 

Falling plat-o, 284 
Faraday’s law of induction, 414 

„ „ „ electrolysis, 395 
Farad, the, 438 
Field due to a magnet, 325 

„ „ „ circular current, 364, 
367 

„ .. straight current, 363 
„ „ „ solenoid, 369, 427 

Field intensity (electric), 346 
„ „ (magnetic), 313 

Fleming’s rule, 410 
Fluids, 37* et aeq. 
Fluorescence, 214 
Focal length (lens), 187, 195 

„ „ (mirror), 149, 167 
Fog, J03 
Foot-pound, 19* 
Foot-poundai, 19* 
Force on conductor carrying a current, 

410 
Fortin’s barometer, 6 
Fourier’s theorem, 305 
Free vibration, 295 
Freezing mixture, 77 
Frequency of sounds, 282 

„ by stretched wire, 291 

Galvanometer (astatic), 368 
„ (ballistic), 388 
„ (moving coil), 413 
„ (tangent), 365 

I Gamma-rays, 476 

Gas equation, 68 
„ (perfect), 63 
„ regulator, 57 
„ thermometer, 63, 67 

Gases, expansion of, at constant 
pressure, 69 

„ increase of pressure, 62 
„ liquefaction of, 93 

Gauss, tangent positions, 327 
„ the. 313 

Gladstone and Dale’s law, 165 
Gold-lea! electroscope, 347 
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Gravitatioa, Newton’s law of, 1 
Gravitational units of force, 19*^ 

Hare’s apparatus, 43* 
Harmonics, 291 
Harti’s optical disc, 138 
Heating effects of currents, 404 
Heights by hypsomctcr, 91 
Hicks’ ballistic balance, 22* 
Hoffmann’s apparatus, 85 
Hooke’s law, 3 
Horse-power, 19* 
Humidity, 97 
Hunnings’ transmitter, 457 
Hydrometers, 41* 
Hydrostatics, 37* et seq. 
Hydrostatic method for expansions, 

54 
Hygrometers, 99 
Hysteresis, 428 

Ice calorimeter, 76 
Illuminating power, 219 
Images (graphical construction), 152, 

190 
„ in prisms, 181 
„ „ thick mirror, 176 
„ real and virtual, 138 

Incandescent lamp, 452 
Inclined plane, 27* 
Induction (electric), 348, 354 

„ (magnetic), 311, 425 
„ Faraday’s law of, 414 

Intensity of electric field, 345 
„ „ illumination, 220 
„ ,, magnetic field, 313. 

Interference of sound waves, 278 
Internal work of expanding gas, 112 
Inverse square law (elGotrostatics),344, 

355 
„ (gravitation), 1 

„ „ „ (Laplace’s), 366 
,. ., (light), 220,224 
„ „ „ (magnetism), 311, 

331, 332 
Ionisation by collision, 474 
Isothermal changes, 113 

„ curve, 86 

Joly’s steam calorimeter, 80 
Joule’s law, 404 
Joule, the, 19*, 407 

Kathode rays, 465 
Kinematics, 10* et seq. 
Kinetics, 14* et seq. 
Kinetic energy, 19* 

Kinetic theory of matter, 8 
Kundt’s tube, 301 

Laplace’s correction for sound velocity, 
265 

„ inverse square law, 366 
Latent heat of fusion, 73, 75 

„ ,, „ vaporisation, 79 
Laws of motion, 15* et eeq, 
Leidenfrost’s phenomenon, 117 
Lenses, 187 rf seq. 

„ focal lengths of, 187, 195 
Lenz’s law, 415 
Levers, 32* 
Leyden jar, 441 
Limits of audibility, 304 
Lines of foree, density of, 314 

„ „ „ (magnetic), 314 
„ „ „ (electric), 346 
„ „ „ tension and repulsion 
of, 442 

Liquefaction of gases, 93 
Lissajous’ figures, 258 
Looser’s thermoscope, 31 
Loudness of souno, 270 

Machines, 32* et seq. 
Magnetic axis, 309 

„ circuit, 429 
„ elements, 336 
„ fields, 323 
„ maps, 341 
„ meridian, 309, 340 
„ moment, 319, 320, 328 
„ poles, 318 

Magnetometer, 328 
Magnification (mirror), 156 

„ (lens), 193 
Magnifying power, 231 

„ „ of lens, 232 
Mance’s battery test, 384 
Manometrio fiame, 299 
Mass and weight, 15*, 17* 
Maximum thermometers, 25 

„ density of water, 55 
McLeod gauge, 462 
Mechanical equivalent of heat, 105 et 

seq. 
.. ff electri¬ 

cally, 408 
„ » li’om spe¬ 

cific heats of air. 111 
Melde’s experiment, 293 
Melting point, 72, 74 
Mercury thermometers, 20 -25 
Metre bridge, 383 
Micro-farad, 438 
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Micrometer screw, ?• 
» » gauge, 7* 

Microphone, 457 
Microscope, 232 
Minimum thermometers, 25 
Mirrors (inclined), 143 

„ (parallel), 141 
„ (rotating), 144 
„ (spherical), 147 et seq. 

Molecular theory of magnetism, 316 
,, „ „ matter, 8 

Moment of a couple, 31* 
„ „ force, 28* 

„ magnet, 319, 320 
„ „ inertia, 322 

Momentum, 15* 
Motion, in a circle, 23* 

„ Newton’s laws of, 15* et seq. 

Neutral point, 333 
„ temperature, 432 

Newton’s colour disc, 208 
„ law of cooling, 126 
„ „ „ gravitation, I 
„ laws of motion, 15* et seq. 

Nicholson’s hydrometer, 41* 
Nodes, 277, 300 

Ohm, the, 373 
Ohm’s law, 372 
Opera glass, 236 
Optical bench, 157 

„ centre of lens, 189 
„ lantern, 226 

Organ pipes, 298 
Organs of speech and hearing, 304 
Oscillation of a magnet, 322 
Osmosis, 15 
Osmotic pressure, 15 

Parallax method, 139 
Parallel forces, 30* 
Parallelogram of accelerations, 12* 

„ „ forces, 17* 
„ „ velocities, 12* 

Peltier effect, 433 
Pencil (of light), 133 
Pendulum (Blackburn’s), 258 

„ (gridiron), 44 
„ (simple), 264 

Penumbra, 134 
Period of magnet, 322 

„ „ S.H.M., 250 
Permeability, magnetic, 426 
Phosphorescence, 213 
Photometers, 222 
Pin-hole camera, 133 

Pitch of note, 271 
Platinum thermometer, 389 
Polarisation of cells, 397 

„ in voltameters, 400 
Polygon of velocities, 14* 
Positive rays, 468 
Post office box, 384 
Potential, 351 

„ due to a charge, 436 
Potential energy, 19* 
Potentiometer, 385 
Poundal, 17*, 18* 
Power, 19*, 407 

„ of lens, 193 
Pressure in a fluid, 37*, 38* 

„ of the atmosphere, 42* 
„ variation with depth, 38* 

Provost’s theory of exchanges, 129 
Principle of Archimedes, 39* 
Prisms, 179 
Propagation of heat, 116 cf seq. 

„ „ sound, 262 et seq. 
Pulfrich refractometer, 173 
Pulleys, 33* 
Pum^, 44*, 46* 

Quadrant electrometer, 357, 446 
Quality of sounds, 306 

Radian, the, 3* 
Radiation, 124 cf seq. 
Radioactivity, 474 
Radius of curvature, 8*, 159, 199 
Ramsay and Young’s apparatus, 89 
Ray (of light), 133 
Recomposition of white light, 207 
Rectangular components, 13* 
Rectilinear propagation of light, 131 
Reduction factor of galvanometer, 381 
Reflection of heat waves, 159 

„ „ light, 137 et seq. 
„ „ sound, 273, 275, 278 

Refraction at plane surface, 108 
„ „ spherical surface, 183 
„ laws of, 163 
„ of sound, 274 

Refractive index, 164 
„ „ by concave mirror, 

174 
„ „ „ microscope, 169 
„ „ „ total reflexion, 

172 
„ ,, „ prism, 181,240 
„ „ of lens, 201 

Rrgeiation, 78 
Resistance box, 374 

,, by substitution, 375 
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Rosistanoo by Wheatstone's bridge, 
382 

„ unit of, 373 
Resistances in series and paralle l, 379 
Resolution of velocities and forces, 

13*, 17* 
Resultant acceleration, 11* 

„ forcse, 17* 
„ velocity, 12* 

Resonator, 306 
Resonance, 294 
Ritchie’s apparatus, 129 
Roget’s spiral, 412 
Rontgen rays, 469 
Rowland’s experiments, 109 
Rubens’ tube, 300 
Ruhmkorfif’s coil, 421 

Scarle’s apparatus for thermal con* 
ductivity, 119 

„ ,. for V^oung’s 
modulus, 4 

Secular changes in magnetism, 341 
Self-inductance, 41S 
Sensitive flames, 272 
Sextant, 227 
Shadows, 133 
Shunts, 380 
Simple harmonic motion, 249 et seg. 
S.H.M. amplitude, 252 

„ graphically, 253 
„ resultant, 255-258 

Sine, 4* 
Singing flames, 300 
Siphon, 47* 
Siren, 272 
Solenoid, 369, 427 
Sonometer, 289 
Specific gravity, 38*, 40* 

„ heat, 31 
„ „ by cooling, 127 
„ „ of gases, 35, 82, 407 
„ „ „ liquids, 35 
„ „ „ solids, 33 
„ heats, ratio of, 265, 302 
„ inductive capacity', 439 
„ resistance, 374 

Spectacles, 230 
Sp>ectrometer, 238 
Spectroscope, 209, 240 

„ direct vision, 210 
Spectrum, 205 

„ analysis, 210 
„ infra red, etc., 212 
„ pure, 208 

Spherometcr, 8* 
Statics, 26* ci seg* 

Stationary vibrations, 277 
„ „ on wires, 288 

Steam calorimeter, 80 
Stefan’s law, 129 
Stokes’ law, 214 
Stone’s experiments, 268 
Stroboscopic disc, 286 
Surface density of charge, 349 

„ tension, 9-14 
Suspended bodies, 35* 

Tangent, 4* 
„ galvanometer, 365 
„ law, 320 
„ positions of Gauss, 327 

Telegraphy, 454 
Telephone, 456 
Telescope, 235-237 
Temperature, absolute, 67 

„ coefficient of resistance, 
374 

„ definition of, 18 
„ measurement. Su 

Thermometry 
Thermal capacity, 31 

„ conductivity, 120-122 
Thermionics, 473 
Thermo-couple, 431 
Thermo-electricity, 431 
Thermometer errors, 24, 57 

„ fixed points, 21, 25 
„ (diflerential), 27 
„ (gas), 65 
„ (mercury), 20 
„ (platinum), 389 
„ (standard), 67 

Thermometry, 18 cf aeq. 
Thermopile, 124, 432 
Thomson efleet, 435 
Thomson’s galvanometer test, 384 
Time of oscUlation of a magnet, 322 
Torsion balance, 344 
Total reflexion, 171 

„ „ prism, 172 
Triangle of forces, 17 • 

„ „ „ converse of, 26* 
„ „ velocities, 14* 

Trigonometrical ratios, 4* 
Tuning fork, 285, 300 

Umbra, 134 
Unit of angle, 3* 

„ „ capacity, 438 
„ „ charge, 345 
„ „ current, 359, 364 
„ „ force, 16* 
„ „ work, 19* 
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Unit pole, 313 
Units, gravitational, 19* 

,, derived and fundamental, 2* 

Vacuum tubes, 403 
Vapour density, 85 

„ pressure, 84, 87 
„ ,, of solutions, 90, 103 

Velocity, 10* 
„ of light, 242 
,, „ sound, 266, 208 
,, ,, ,, variation with tern* 

peraturc, 200 
Velocities, parallelogram of, 12* 

f» polygon of, 14* 
,, triangle of. 14* 

Vernier, 6* 
Viscosity, 37*, 42*, 15 
Voltameter, 393 
Voltmeter, 381 
Volt, the, 366 

Watch rule, 262 
Water equivalent, 31 
Watt, the, 19*, 407 
Wave along a wire, 288 

„ length, 131, 263, 297 
„ (longitudinal), 203 
,, motion, 201 
,, (transverse), 262 

Weight and mass, 16*, 17* 
„ of moist air, 102 
,, thermometer. 53 

Wheatstone’s bridge, 382 
Wheel and axle, 33* 
Wimshurst machine, 4-19 
Work, 18* 

,, by couple, 31* 
,, ,, expanding gas, 111 

X-rays, 469 

Young's modulus, 3, 301 

TUE END 
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