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PREFACE

Engineering practice nowadays exacts deeper and more
subtle methods of approach than those which were cus-

tomary in the past and are still embodied in the usual

treatises on hydraulics, constituting the subject of the

traditional courses in schools of engineering. In fact,

structural mechanics has evolved into “applied elasticity.”

Machine design is permeated with the study of vibrations

and other features of higher dynamics. The notions of

turbulence, cavitation, and circulation are in the fore-

front of hydrodynamical research, which is being success-

fully applied to problems of aeronautics and hydraulic

machinery.

In the field of hydraulic engineering and, in particular,

in that most important realm where the civil engineer

deals with open flow, the trend has been away from the

rudimentary notions of uniform movement. Broader

viewpoints, embracing varied flow in open channels, the

hydraulic jump, surges in canals, etc., have become topics

of discussion in engineering literature and are gradually

wedging their way into advanced instruction. On the

other hand, most fruitful avenues of approach have been

opened by laboratory work on models of hydraulic struc-

tures. Here again, the elementary notions, as presented

in the old-time treatises with relation to flow of water

through orifices, over weirs, etc., have been replaced by a

deeper and more detailed study of the physical circum-

stances of the movement. Illustrative of the present

trend in this field is the capital summary, “Hydraulic

Laboratory Practice,” the American version of which has

recently appeared under the enlightened leadership of

John Freeman. A crowning result finally is the crea-

tion of the National Hydraulic Laboratory in Washington,

D. C.
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In regard to hydraulic design as envisaged by the civil

engineer, the fact is that uniform movement scarcely ever

occurs in actual practice. So a comprehensi^'e under-

standing of the functioning of a hydraulic system would

seem possible only when the phenomena were to be con-

sidered and the design carried out in terms of varied flow.

Unfortunately, as Professor Daugherty expresses it in

his “Treatise on Hydraulics,” “a satisfactory and reliable

treatment of the problem of non-uniform flow is lacking.”

This means, of course, a treatment opening the way to

practical applications, as the theoretical basis of varied

flow is well advanced and stands out as a momentous
contribution to the art on the part of the great French

hydraulicians of the nineteenth century.

The present book is an attempt to supply the need, at

least in part, and to offer a manual presenting the subject

of varied flow in a manner which makes it useful for

engineering practice and design. The origin of this work
goes back to pre-war days. The author, then connected

with vast hydraulic enterprises in Russia, was faced with

the task of finding means of throwing light on the many
puzzling and elusive phenomena connected with varied

flow, and of solving in a comprehensive manner the different

practical problems. The result was a book on “Varied

Flow in Open Channels,”* published in Ru.ssian in 1912.

In dealing with the physical a.spects of flow, considerable

use was made in that book of the notion of the “specific

energy of flow,” which is the energy head referred to the

bottom of the canal cross-section. This simple notion

was found to give a lucid explanation of many complex

features heretofore interpreted solely from an abstract,

analytical point of view. Thus a physical basis was given

to what is known as the critical depth; a simple explanation

was made available for the hydraulic jump together with

a comprehensive interpretation of the different types of

surface curves. Since 1912, this “energetic criterion”
• “O Neravnomeraom Dwijenii Jidkosti v Otkritom Rusle,” St. Peter#-

burg, 1912.
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has been unmasked and advantageously used by different

authors, seemingly independently of each other. In fact,

the energetic criterion is mentioned by Rehbock* and very

lucidly presented by Hinds, f The author, however, is not

aware of any disclosure previous to the Russian publication.

The Russian book also carried a suggestion of a novel

method of computing the different surface curves in varied

flow. Heretofore the differential equation had been applied

and integrated only for certain ''idealized’' profiles, for

which numerical tables had been computed by Bresse,

Tolkmitt, Riihlmann, and others. Although these tables

presented a substantial advance, their usefulness was
nevertheless greatly limited by the simple fact that the

"idealized" cross-section underlying the tables had little

in common with the practical forms of canals that the

engineer deals with in everyday practice.

The method suggested by the author is applicable to

canals of any practical form. It is based on an exponential

relation which was found to govern (with sufficient approxi-

mation) flow in an open conduit under varying stages.

The practicability and usefulness of the method depended,

however, on computing tables of what is designated in this

book as the "varied-flow function." The preparation

of such tables for different exponents involved a long and

tedious procedure. This work was undertaken and per-

formed for the first time under the author’s direction, during

1914-1915, by the Research Board of the then Russian

Reclamation Service. In the turmoil of the revolution the

data so computed became unavailable to the author, in

fact, for a while he considered them totally lost; so the

task of computing had to be done over again and was

carried out in the form offered here by Professor Kholo-

dovsky and partly by Dr. Pestrecov.}

* Betrachtungen liber Abfluss, Stau unci Walzenbildung,’' Berlin, 1917*

t Eng. News-Record, Vol. 85, p. 1034, 1920.

t In the meanwhile the Russian book was reprinted in Leningrad in 1928.

This reprint, of which the author was unaware, is complemented by the

1914-1916 tables. The tables as computed and offered in this volume are

more precise and complete.
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The treatise as presented to the reader in this volume

has been completely rewritten. The major part of the

material is new and heretofore unpublished. Generally

speaking it aims at practical results, and therefore the

author has refrained from expositions of purely theoretical

character. The presentation is most elementary, having

in view, first of all, a clear interpretation of the physical

aspects of varied flow.

A large part of this book is taken up with practical

examples. Experience shows that in the study of varied

flow, as in many other branches of applied mechanics,

complete mastery of the subject cannot be attained without

familiarizing oneself thoroughly with numerical procedures.

In fact, there are many important features which escape

deduction from general formulas and which may be stipu-

lated only as rules and conclusions, reached through sum-

marized experience. For such reasons it is better not to

consider the numerical examples as mere illustrations, but

to regard at least some of them as an organic part of the

general presentation of the matter. Experience has also

taught the author that, no matter how simple in es.sence, the

notions related to varied flow and the methods of handling

the problems require, on the part of the novice, time and a

certain amount of persevering apprenticeship, before they

become natural and familiar tools. That will explain and

partly justify the detail in presenting the examples. Com-
putations by necessity have to be at times laborious, and

repetition cannot be entirely avoided.

The author does not claim to have given an exhaustive

treatment of the subject. Many problems are too com-
plicated to be dealt with on a practicable basis; in other

instances, the actual state of the art is inadequate. How-
ever, as learned from experience, the ways and means
presented permit the solution of many problems in a com-

paratively simple and comprehensive manner. It has

been said that progress in theoretical engineering is an

advance in the way of “thinking.” The author is deeply
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convinced of the importance for the hydraulic engineer of

learning to “think” in terms of varied flow and of practicing

such “thinking” in the everyday approach toward practical

problems.

Boris A. Bakhmeteff.
Gheenhills,

Brookfield, Connecticut,

January^ 1932.
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SYMBOLS

Throughout this book the foot, pound, second system

of measurement is used.

Cross-sectional elements and friction factor C values

have been largely taken from “Hydraulic and Excavation

Tables” of the United States Reclamation Service.

All computations were performed by means of an ordi-

nary slide rule.

y, d Depth or stage of flow.

a Cross-sectional area of a canal.

h The top width.

V The wetted perimeter.

R The hydraulic radius.

C The CUiczy friction factor.

V Average velocity.

Q Discharge.

8o Bottom slope.

8 Surface slope.

Vof do Normal depth of flow, being the depth of fibw in uni-

form movement.

W Work.

Wr W'ork of resistances.

N Power.

VcTt der The critical depth.

6 = a/b The average depth.

Ver Critical velocity.

Qcr Critical discharge.

g-v
^ - C*-6

Critical slope.

<ro Critical slope at the normal depth.

Critical slope at the critical depth.

A The w'eight of a cubic unit of liquid.

e Energy head, being the energy per unit weight of the

flowing liquid referred to a datum line.

c Specific energy, being ^he energy head referred to the

bottom line of a cross-section.

K - aCy/R Conveyance of a cross-section.

n The hydraulic exponent.

!(tt ~ dy/afb The ytt function.

XV
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The varied flow function.
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The relation of the depth of flow y to the critical
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Reference in the examples to “tables means the Tables of the Varied

Flow Function, pp. 308 to 312.



HYDKAULIOS OF OPEN
CHANNELS

CHAPTER I

DEFINITIONS

1. Uniform Flow.—The flow of a liquid in an open channel

(Fig. 1) is said to be uniform when the depth and the

other elements of flow, such as the cross-sectional area a, the

velocity v, and the hydraulic slope s, remain constant from

section to section. The surface line in this case is parallel

to the bottom line, the surface slope s = sin a being equal

to the bottom slope So = sin ao.

Obviously, flow may be strictly uniform only in case the

channel itself is prismatical, that is, when and if the channel

is built so that the cross-section^ fpims do not vary from

section to section and the bottom is laid with a permanent

slope. Rivers and watercourses in natural state scarcely
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ever answer such qualifications and therefore practically

never feature strictly uniform flow.

In a canal between two reservoirs (Fig. 2a), flow will be

uniform if and when levels A and B are so positioned that

the depths yi and 7/2 at the beginning and at the end of the

canal are equal. In this event, assuming the canal to be

prismatical, the depth of flow in any section between 1 and

2 will be the same, so that for any section y = yi = yt.

Fiq. 2 .—Uniform and varied flow in a canal connecting two reservoirs.

2. Non-uniform or Varied Flow.—Whenever the depth

and the other features of flow, such as the cross-sectional

area, the velocity, and the hydraulic slope, vary from

section to section, flow becomes non-uniform or varied.

The classical example presented is that of a backwater

curve (Fig. 3) produced by a dam. The natural surface

line ABC ... is lifted to a position A', B', . . . E'.

The lift Z diminishes stream upward, the backwater curve

approaching asymptotically the free surface line. Back-
water in a natural watercourse is practically the only case

of varied flow dealt with in textbooks on hydraulics.

Yet, it is but one of the manifold problems of varied flow
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which the engineer has to face in designing or operating

hydraulic structures. As an example, take flow in the

canal (Fig. 2), in the event that the depths and j/i are no

longer equal. Suppose > y\, as in Fig. 26; the depth will

be increasing stream downward, and flow will be varied and

said to be taking place with a rising surface curve. On the

other hand, in Fig. 2c, with yi < yi, the depth will be

fS) (4) (3) 12) (I)

decreasing stream downward with a falling surface curve.

Another important case is that of Fig. 4, where flow in the

canal is regulated by means of a sluice. Depending on the

opening of the sluice and the volume of the discharge,

the depth ?/2 will vary. Varied flow with a rising curve is

Fig. 4.—Varied flow in a canal regulated by a sluice.

featured by AB', while AB" corresponds to a falling

surface curve. In between them is uniform flow with yz

= yi. Naturally, the lower the level B, that is the smaller

the depth yj, the greater the discharge Q drawn from reser-

voir A.

The case outlined in Fig. 4, as well as that of Fig. 2,

typifies one of the most important problems related to

varied flow, namely, that of determining the varying
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discharge of a canal under varying conditions of levels at the

extremities of the structure.

From comparing Fig. 2 and Fig. 3, another distinction is

gained. In a natural watercourse (Fig. 3), the cross-

sections and practically all the other elements of flow vary

from section to section. Flow thus is non-uniform in the

broadest sense of the word. The same applies to Fig. 5

which features a canal with diverging (Fig. 5a) and con-

Fio. .5.

verging cross-sectional forms (Fig. 66), or, as in Fig. 5c, a

canal with a varying bottom slope.

In contradistinction to Fig. 5, the canal in Figs 2 and

4 is assumed to be built with regular and unvarying cross-

sectional forms and also with a constant bottom slope So,

thus featuring varied flow in a prismatic channel. In the

present state of the art, varied flow in prismatic chaimels

constitutes the most important case, a case which primarily

is dealt with in this book.

3. Variable Flow.—Varied and implicitly uniform flows

are further taken as being permanent; that is, as movements

which do not change in time. As a matter of fact, the
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depth, the velocity, and all other features, while varying

from section to section, remain constant and unchangeable

in time. As opposed to varied flow, movement in which the

elements of flow are subject to change in the course of time

is said to be non-permanent or variable. An outstanding

example of variable movement is waves
;

also surges

produced in canals by a sudden stoppage or a change of the

discharge. Again in Fig. 2, in the case when levels A and B
should not remain permanent and the depths y\ and y»

would be changing in time, the permanent character of the

movement would no longer prevail and the flow would
become variable.

Fio. 6.—Backwater in a watercourse with steep bottom slope featuring a
hydraulic jump.

In the present state of the art, practical problems of

variable flow are soluble only in a limited number of cases,

and then only in a simplified and approximate form.

4. The Hydraulic Jump.—As early as 1820 Bidone

showed that backwater does not always assume the forms

illustrated by Fig. 3, namely those of a continuous curve

tangent to the natural surface profile. In fact, whenever

the bottom slope of the watercourse is sufficiently steep,

the phenomena unfold as pictured in Fig. 6. After

flowing uninterruptedly until a certain section, marked in

Fig. 6 as section 1, the surface suddenly jumps from the

natural depth di to the depth in section 2, This curious

and, for a long time, paradoxical phenomenon is known as

the hydraulic jump. The jump in most cases features a

disruption of the continuity of flow. Beyond section 2 in
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Fig. 6, the surface is once more continuous and the change
of depth is gradual and smooth.

Another example of the jump is given in Fig. 7, in which
case water is flowing with great velocity from under a

Fig. 7,—Hydraulic jump in a canal below a regulating sluice.

sluice. The jump takes place between the depth di near

the vena contracta and the depth dt which under these cir-

cumstances may be many times the multiple of di.

A

Figure 8 pictures the case of a toe roll at the foot of a weir.

Tail-water is repelled by the stream falling over the dam;
the free vein connecting with the level of the tail-water by
means of a jump.
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6. The Hydraulic Drop.—In Fig. 9, the canal is laid

with a sudden enlargement in section 0, the depth of flow

in the respective portions above and below the enlargement

being yi and yt. The transition from the narrow to the

broad canal takes place by means of a rather steep and

abrupt lowering of the surface, a phenomenon which we
shall call the hydraulic drop. Characteristic of the drop

is the fact among others, that the surface of flow in the

narrow portion of the canal will not sink below a certain

depth ye ;
and that, no matter what the stage of flow is in the

/TTTTTTTTFTTTTm-..^ ^
yrrTFrrfFTTTTTTTTT

Fiq. 9,—The hydraulic drop, caused by an enlargement of the canal cross-section.

broad portion of the structure. Thus, in case the level of

flow at the lower stage was B' instead of B, with the depth

y'i, such lowering of stage B would not affect the surface

curve above point C. In this light, point C with the depth

2/c appears as a natural limit to which the surface in the

canal may sink in unobstructed outflow by means of a

hydraulic drop. As indicated in Fig. 9, C is, moreover, the

point of inversion of curvature of the dropping surface.

Another example of a hydraulic drop is that of a canal of a

mild bottom slope, emptying into a chute with a steep slope

(Fig. 10). Here again the connecting curve between flow
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in the canal I at 2/01 and flow in the chute II at 2/02 features a

hydraulic drop. Again, there is a depth 2/cr over the break-

ing point of the bottom which is the lowest possible depth to

which the surface in the upper reach can sink, and again

point C is a point of inversion of curvature of the surface line.

6. Local Phenomena and Gradually Varied Flow.—The
hydraulic drop and the hydraulic jump are both charac-

terized by a rapid change of circumstances of flow which

takes place over a comparatively short length. In this

aspect they are distinguishable from flow as shown in Figs.

2, 3 and 4, where an appreciable change of depth is evi-

Fig. 10.—The liydraulic drop, caueed by a chanjo^o of the bottom slope from
mild to steep.

denced only over a considerable length. Accordingly flow,

as illustrated by Figs. 2, 3 and 4, may be qualified (Bous-

sinesq) as slowly or gradually varied flow, while cases

where the change is effected in abrupt manner may be

covered by the general term of local 'phenomena.

A watercourse with varying circumstances of flow may
usually be divided into successive reaches in which gradu-

ally varied flow alternates with the local phenomena. The
case is illustrated by the somewhat artificial but illuminat-

ing example of Fig. 11, where the reaches with gradually

varied flow are separated by comparatively short stretches

featuring phenomena of local character.
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May it be remarked at this point that throughout the

following it will be customary to designate depths relating

to local phenomena by the letter d, while depths in gradu-

ally varied flow will be designated by the letter y. Also,

regarding the nomenclature, the word depth may be sub-

stituted by the word stage. In fact, a surface curve may be

determined by the consecutive depths of the water over

the bottom line, as well as the consecutive stages, meaning

the consecutive elevations of the surface level in each and

Fig. 11.—Gradually varied flow alternating with local phenomena.

every section. In the following the two terms will be

alternately used.

Figure 11 serves also to illustrate the character of the

problems which a “theory” of varied flow is expected to

solve. Assume, in fact, that the respective locations, the

dimensions, and other characteristic features of the dif-

ferent structures are known. Assume further that the

position of the initial level A is given as well as the aperture

of the sluice h. The problem first would be to determine

the general picture of flow; that is, the type and the

general outline of the different surface curves in the reaches,

and the specific form in which the different local phenomena

unfold. Just as an example one should determine whether,
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under the circumstances as given, the toe roll below the

weir is covered as in Fig. 1 lo, section 4-5, or free as in Fig. 8;

or whether the flow from under the sluice is free as in Fig.

llo (section 1-2) or is submerged as in Fig. 116. Obviously

the fact whether the outflow from under the sluice is

submerged or free will materially affect the volume of the

discharge, and thus the flow in the whole system.

After the general type of movement is established, the

next step will be to determine with sufficient precision the

numerical features, meaning the depths in the sections

which separate the local phenomena from the adjoining

stretches and then the precise outline of the surface curves

in the reaches where flow is of the gradually varied type.

Methods devised in this book permit, speaking generally,

solution of problems of this character with a degree of cer-

tainty and precision sufficient for practical purposes.



PART I

THEORY OF GRADUALLY VARIED FLOW





CHAPTER II

UNIFORM FLOW

The notions relating to uniform flow, familiar from
elementary hydraulics, are presented in this chapter from

a somewhat different aspect which makes them more
convenient for the subsequent study of varied flow.

7. The Conveyance of a Canal Cross-section.—Assuming
\iniform flow taking place in a canal (Fig. 1) with the depth

T/o, the average velocity of flow in accordance with the

Ch6zy formula is:

V = CVrVTo (1)

And the discharge Q:

Q = aC^/R • Vso (2)

In these formulas

:

a = the cross-sectional area.

R = a/p = the hydraulic radius; p = the wetted per-

imeter.

So = the bottom slope.

C = the Ch6zy resistance factor, to be determined by
means of the Ganguillet-Kutter, Bazin, Manning, or

other empirical formulas.

Designating

aCVR = K (3)

we obtain, instead of Eq. (2)

Q = jlfvToJ So = (4)

For a given canal, the value of 3K is a function of the depth

p. It can be traced as a curve K = f{y) (Fig. 12), which

curve features the capacity of the canal to convey water

depending on the stage of flow. The actual discharge Q,
13



14 HYDRAULICS OF OPEN CHANNELS

at a certain stage y is obtainable by multiplying the value

of K, corresponding to the respective depth, by y/so-

As So = sin ao is a dimensionless quantity, the physical

dimension of K is that of a discharge (L^/T). In fact, K

measures the quantity of liquid delivered by the canal per

unit of time in the hypothetical case of = 1. We

Fia. 13.—Conveyance curves in case the GanguiUet>Kutter formula is used.

shall designate K — S{y) — aCy/R by the term conveying

capacity, or briefly conveyance of a crossnsection.

Speaking generally JC is a general characteristic, inherent

in a canal cross-section as such. If the friction factor C
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is determined by means of a formula which does not

contain So, such as the Bazin or the Manning formula, then

in such case the conwyance curve features the conveying

capacity of a certain cross-section for the whole range of

practically usable slopes. If the Ganguillet-Kutter for-

mula is used, which makes C vary (even if only slightly)

with the bottom slope So, then the conveyance diagram is

represented (Fig. 13) by the shaded area contained between

the conveyance curves, corresponding to certain limiting

values of Somin and The following examples will

help the reader to become familiar with the practical use of

the notion.

Example 1

Question L Trace the conveyance curves for a canal cross-

section (Fig. 14), assuming concrete lining, corresponding to a

G.K. coefficient n = 0.013, and a Bazin coefficient y = 0.16.

When applying the G.K. formula, consider the limits of bottom

slopes to be s^max = 0.001 and somm = 0.0001.

The computations referring to the Bazin formula with

C = 87

0.55 +
0.16

Vr
* We have no intention at this time to enter into the much discussed

field of the relative value of the different empirical formultis. The great

advantage of the G.K. formula, in many other wavs untenable, is the

abundance of experimental data, which have been reduced to the form of

G.K. coefficients. The G.K. experimental coefficients, however, may be

expediently used in an exponential formula of the Manning type (see Art.
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are assembled in Table 1, which is self-explanatory; while the

respectiveK curve is traced in an unbroken, drawn line in Fig. 15.

Tablk I

y a P
1

« C K

0 5 2 75 6.41 0.429
j

109.0 196

1.0 () (K) 7.H2 0 7(iS 118.0 623

1.5 9 75 9 23 1 053 1 123.0 ' 1,228

2.0 14.00
1

i 10 64 1 312 120 0 2,019

2.5 18.75
1

12 05 1 558 128 5 3,000

3 0 24.00 13 46 1 783 130 0 4,165

3 5 29 75 14 87 2 010 132 0 5,560
4.0 36 00 16 28 2 215 132 .

7

7,100

4.5 42 . 75 17.69 2.410 133.5 8,870

5.0 50.00 19. 10 2 620 134 3 10,880

6.0 66.00 21.95 3.005 135.6 15,500

The values of C’s in accordance with the G.K. formula and

the respective M's are given in Table II and traced in broken lines

in Fig. 15.

Table II

y

.So = 0.001 .So
= 0.0001

c K C K

0.5 97 0 174 86.0 154.5

1.0 110.0 578 103.0 541

1.5 117.0 1,170 110.0 1,100

2.0 121.0 1,940 116 0 1,875

2.5 124 5 2,910 120.0 2,840

3.0 127.0 4,070 124.0 3,980

3.5 130 0 5,490 127.0 5,360

4.0 132.0 7,060 129.5 6,940

4.5 133.5 8,870 131.0 8,700

5.0 135.0 10,910 133.5 10,800

6.0 138.0 15,780 137.0 15,640

Question 2. In the canal as above, determine the discharge

under yo = 3.7 ft. and Sq ~ 9^%o.
Remark: The sign, tised to indicate the slope, means

that the incline is given in units of 1/10,000.
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The convenience of using such notation becomes apparent

when figuring out \/so* In fact VT^%o is 1% or 0.01. Thus,

if the slope is given as square root is

= \^Q • 10*"^

If, on the other hand, the K values, which are usually quite

large, are given in units of hundreds, so that 3£ = K' * 10^,

then, for figuring discharges, we have

Q = KVs^ = H' • 10® X VTl • 10-® = K'VT'o
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In other words, the K' values should be simply multiplied by
the square root of s'q. This practice is maintained throughout

the book.

From curve (Fig. 15), for ijo = 3.7 ft.:

3K (Bazin) = 61 • 10“' cu. ft. per second.

3£ (G.K.) = 60 • 10“ cu. ft. per second.

Hence with So = 0 • 10“'^:

Q (Bazin) = 61 • = 183 cu, ft. per second.

Q (G.K.) = 60-3 = 180 cu. ft. per second.

Exercise *

Determine Q for ijo = 2.5 ft. and ?/o = 4.8 ft. under ,so = 2^%^,
and respectively So — O^^oo.

Quesiiofi 3. In the canal, as given, determine the slope

required to conve}^ a discharge of 200 cu. ft. per second at a

depth of 4 ft.

a. Using Bazin coefficients, the conveyance at i/o = 4 ft. is

M = 71 • 10“
: hence the required slope

So = = 200'^ 71- X 10^ - (‘^^^7i)“
• = 7.9^>%()

b. If G.K. coefficients are used, start in first approximation

with an average value of M = 70 X 10’^; for which

,, = = 8.200^^^

In further approximation with K = 70.5 X lO-^ the slope

6'a = (200/70.5)2 X lO"'* = 8.05^«00

Exercise:

Determine the slope required to make the canal carry Q =
500 cu. ft. per second and 250 cu. ft. per second, respectively,

at the depths of = 5.4 ft. and 2.7 ft.

Question 4. a. Determine the depth, required to convey

300 cu. ft. per second at a slope of lO^Jl^^o. Use G.K. coefficients.

The required conveyance is: K = = -^^lO'-' = 95.1 X
v^o v 10

102. From the curve, Fig. 15, we find the corresponding depth

yo = 4.7 ft.

6. Assuming, in accordance with Question 2, that a discharge

Q = 188 cu. ft. per second is being conveyed by a canal with
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^0 = 3.7 ft. and sq
— determine the depth required to

maintain the same discharge with sq — Use Bazin

c^XifFicicnts.

The required conveyance is Si = Q/ V«o = 183/\/5 * 10"^ ==

81.9 X 10 ^ The corresponding depth from curve, Fig. 15, is

7/0 = 4.3 ft.

Exercise:

Determine the depth, required to convey 450 cu. ft. per second

under .sn = T2<T1 () 0 j
^ii^d respectively 4^^5o*

General Exercise:

It is suggested that the student select a certain canal cross-

section which he shall subsequently use for different exercises.

At this point the student should compute and trace the con-

Fig. 16.

veyance curve for the canal as selected and practice in solving

problems, similar to those covered by the above examples. In

selecting the cross-section, take a trapezoidal canal with a bottom

width w (Fig. 16) between 3 and 25 ft. and side slopes m/n
between 0.5/1 to 2.5/1. In addition to the trapezoidal canal,

work on a rectangular cross-section of the same bottom width

w. In this case, assume the canal concrete lined.

8, Resistance Losses.—Referring the movement to a

horizontal datum line 0-0 (Fig. 17), with the X-axis

parallel to the line of the bottom and pointing in the direc-

tion of the flow, the energy heads (energy per unit of weight

of liquid) in sections 1 and 2 are, respectively,

ei - hi + and 62

The loss of energy head over the stretch dx is equal to the

work spent per unit of weight of liquid on hydraulic
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resistances over the same stretch. Designating the energy

head lost by Cr, we obtain:

Cl — cj = —de = dCr

or

—dejdx — dcrfdx (6)

In the uniform movement, as the velocities remain

without change, we have

de = Co — Cl = /lo — hi = —dh = —scdx

aj (2)

which means, that the work of gravity is wholly spent on

overcoming resistances.

Substituting (Eq. [4]) so = we obtain instead

of Eq. (6)

de/dx = — So = 1

^dcrldx =
I

^ ’

The quotient Q^/M^ measures thus the rate of energy

lost in hydraulic resistances. In the foot, pound, second

system, indicates the work in foot pounds spent on

hydraulic resistances by every pound of liquid in its movement

over a stretch 1 ft. long.

If a volume V of liquid of specific gravity A moves over

a stretch x, the total work spent in overcoming resistances

over such stretch will be
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Wr = ^ v Qyw X (8)

The power N (work per unit of time) spent in the flow of

a discharge Q over the stretch x will be

:

N = A • Q • • X = A • • a: ft. • lb. per second (9)
K" 3C''

or in differential form

dN/dx = A • QVK' (10)

which is the rate of power lost on resistances by the dis-

charge Q per unit of length. For water, with A = 62.4 lb.

per cubic foot and expressing N in horsepower, we have

dN/dx = 62.4/550 • QVK" = 0.1135 Q^/M^ hp.

or, in view of Eq. (4),

dx 8.81 8.81
Sohp.

(10a)

(106)

Example 2

With reference to the canal (Fig. 14) and the curves (Fig. 15).

Question 1. What is the power, spent in overcoming resist-

ances per mile length, with 120 cu. ft. per second, flowing at

the depth of ^/o = 3ft.,and|/o = 5ft. and?/o = 4 ft. respectively?

Use, as an average, G.K. coeflScients for So = 10^%o*

For 2/0 = 4 ft., the value of M = 70.6 X 10^.

Hence the power lost

1003
N hp. = 0.1135 ^ • 5,280 = 20.6 hp.

For the other given depths:

2/0 = 3 ft.; K = 40.7 X 10^; N = 20.6 (70.6/40.7)^ = 62 hp.

2/0 = 5 ft.; K = 109.1 X 10^; N = 20.6 (70.6/109.1)" = 8.7 hp.

Question 2. Figure the energy spent in resistances per 1-ft.

length of canal per 24 hr., in case 200 cu. ft. per second are

flowing at 2/0 = 5 ft. Use G.K. coefiicients for .so = IOO^^^q.

With K = 109.1 X 10", we have, in accordance with Eq. (8),

Wr = 62.4 X 200 X 3,600 X 24 X (200/109.1)"l/10< X
1 = 36.1 X 10* lb. - ft.
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Question 3. Using Bazin coefficients, determine the rate of

loss of energy per pound of waier over a foot length with 100

cu. ft. per second flowing under each of the following depths;

2/0
= 1 ft.; 2/0 = 2 ft.; f/o = 3 ft.

The respective conveyances are:

6.23 X 10'^; 20.19 X 10=, and 41.65 X 10*.

The rate of loss of energy is determined by Ikp (7)

:

2/0 = \ ]de,/dx = = 100=,,'(6.23)* X 10^ = 0.02560

2/0 = 2; de.r/dx = QUW = 100=/(20.19)= X 10' = 0.00246

2/0 = 3; dcr/dx = Q' W- = 1007(41.65)= X 10' = 0.00057

The Normal Depth.—In treating problems of varied

flow, uniform movement will be fre<)uently used as one of

reference. Assume a discharge

Q flowing in a canal of given

dimensions with a bottom

slope So. The different possi-

ble surface CHr\'es in Fig. 18,

each determined bj" the respec-

tive depths 2/1 and ,//> in section

1 and section 2, illustrate the

innumerable possible ways in

whichthe discharge Qmayflow
betw'cen the above sections.

Among these movements the one indicated uy a heavy
line, parallel to the bottom, represents ani/orm movement.
The characteristics of such movement in contradistinction

to all other possible forms of flow are

2/ = const., d7//da: = 0 (11)

The depth of uniform movement constitutes a parameter,

fully determined once the discharge Q and the features of the

canal are given. We shall call the depth of uniform move-
ment the normal depth, and shall designate it by yo. The in

dex 0 will be used, in general, to designate elements pertaining

to uniform flow, ^we shall have Oo, Ro, Co, and finally Ko
= OoCoViJo, which are respectively the cross-sectional area,

the hydraulic radius, the friction factor, and, finally, the con-

/ 2

2

Fio. is.
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veyance at the normal depth t/o- For a given canal and a

given discharge Q, the normal depth is determined by the

procedure indicated in Example 1, Question 4. In fact,

dividing the discharge by the square root of the bottom
slope, one finds the conveyance, corresponding to the normal
depth

Ko = Q/Vso (12)

after which the corresponding yu is taken from the respec-

tive K curve.

yy^The Normal Discharge Curve Qo — fiVo)-—In handling

problems with varying dis-

charges in a given canal, it will

be found handy at times to use Vo t

a chart, giving the relation

between Qo and yo. This is

accomplished by tracing what

we shall call the normal discharge

curve Qo = /(l/o). — Go

This curve. Fig. 19, represents The normal discharge

for each stage y the value of the

discharge in uniform movement corresponding to the respec-

tive depth ijo = y. As for each depth yo the discharge is Qo =

KoVso, the normal discharge curve is the conveyance curve

K = aCVR multiplied by Vso-

Exercise:

1. Draw the Qo = /(?/o) curve for canal (Fig. 14).

a. For So = 40960 Bazin coefficients.

b. For So = lOOO^jo with G.K. coefficients.

2. Draw a normal discharge curve for the canal cross-section

selected for general exercise at the end of Example 1 ;
in doing so,

select a slope at your discretion between So = and So =

150%o-



CHAPTER III

EQUATION OF VARIED FLOW

10. Geometric Relations between Surface and Bottom.

Slopes.—In varied flow, the surface line is not parallel

to the bottom. The relation between the surface slope

« = sin a and the bottom slope So = sin ao follows from

Fig. 20:

I'li;. 20. ri<i. 21.

11. Resistance Losses in Varied Flow.—Assuming resist-

ances to be proportionate to the square of the velocity,

the rate of energy losses will vary from section to section,

depending in each section on the depth of flow. If in any
section (F’ig. 21) the stage of flow y' is greater than the

normal depth 2/o» the velocity v will be less than and

the loss of energy will be proportionately reduced. On the

contrary, with y" < yo, the velocity of flow will be greater

than that in uniform movement, and the loss of energy

will, exceed that of uniform flow.

24
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The rate of loss in varied flow at a certain stage y may
be compared with the losses which would take place in

uniform movement, provided the same discharge were

flowing at the same depth and, therefore, at the same
average velocity. Evidently, one should expect that the

losses in varied flow would be somewhat different from the

losses in uniform movement. The difference would prob-

ably be caused, in the first place,» by a somewhat different

distribution of the velocities over the cross-section as

compared with the case of uniform

flow. Then, and this is probably the

most important factor, there would

be the general effect which divergence

or convergence of flow exercises on

the degree of turbulence in the flowing

liquid.* So far there is little, if any,

reliable experimental material avail-

able on this subject. Is’either do we

know anything about the compara-

tive value of the friction factor, as

caused by the roughness of the canal

walls in ordinary tranquil and in

so-called rapid movement (Art. 24). f On the other hand

in most practical cases, the change of depth takes place

rather gradually; so the picture of movement at a certain

depth cannot be very different from that which would be

taking place under similar conditions in uniform fl^w.

Therefore, the basic assumption is made that the rate of

resistance losses in varied flow in a certain section charac-

terized by the depth y (Fig. 22) is identical with the losses

which would take place were the same discharge to flow

with the same depth y = j/o in uniform movement. The

rate of energy losses in uniform movement being Q*/K*

(yo line in Fig. 22) an identical expression is used to qualify

* Reynolds, 0., Phil. Trans. Roy. Soc.^ 1883.

f See, in part, Darcy Bazin, **Recherches hydrauliques.*' .An attempt to

approach the subject, theoretically was further made by Boussinesqi

**Th6orie des eaux courantes/* 1877- and other works.

a

Fig. 22.—Resistance
losses in varied flow at the
def>th y, assumed to be
equal to the losses in

uniform movement at the
same depth yo = y.
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losses in varied flow. Accordingly, the energy losses per

pound of liquid over the stretch dx will figure as

der =
Q-

, dCr 0=

(14)

The rate dcr/dx, depending on M- = f(y), will be itself a

function of the depth. AVith reference to .Su
=

which mcfusures the rate of loss of energy in uniform flow,

the rate of loss in \ aried flow will be > So or Q-/M- <
So, depending on whether // < //(, or ij > y,,.

<^12. Equation of Varied Flow.

—

The differential equation of varied

flow follows from the energy Eqs. (5)

and (()). Applying the latter to the

two .sections 1 and 2 (Fig. 23) at a

small distance dx, we have

de = t'l — Co

~Djtum hne

Fia. 23 .

dCr

In differential terms the equation reads

de

dx

dh d V-

dx dx 2g

dcr

dx

From Fig. 23, we have —dh/dx = sin a = s.

other hand (Eq. [14]).

dxrldx = Q'^/W' = v^/C^R

Substituting into Eq. (15), we obtain

8 =
dx \2g/ cm,

(15)

On the

(16)

(17)

which is the classical form in which the varied flow equation

is usually given in textbooks on hydraulics.

13. Limitations of the Applicability of the Equation

of Varied Flow.—It is most important to make clear the
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specific conditions under which Eq. (17) is applicable.

In Eq. (5) the expression of energy head e — h -\r n- was
Ag

applied to the flow as a whole; meaning that h + was

assumed to represent the energy which is contained, on the

average, in every pound of liquid flowing through the section.

Such will be the case, if and when the potential energy

head for each and every point of the cross-section will

be identical. Now, the potential energy head at a certain

point a (Fig. 24) is mea.sured (in the so-called Bernoulli

Fig. of nonfiydroslMtic

distribution of preHsure.

a

'Surface hne

hr-''-—

2

^

U '
• '

^
1

1

h z'

;

1

1

^ V i i

1

Derfum line

a
Fig. 25.—Case of hydrostatic dis-

tribution of pressure in a moving
liquid.

V
equation) by the height 2 + ^ J

where z is the elevation of

the point over the datum line, while p/Ais the piezometric

head, meaning the height of the liquid column equivalent

to the pressure p at the respective point.

If the flow were to take place in such a manner that the

pressure p in any point of a certain cross-section (a' or a"

in Fig. 25) were to be equal to the hydrostatic pressure,

corresponding to the depth d of such point below the free

P
surface, then, as follows from Fig. 25, the sum 2 + ^

would

be the same for all points of the cross-section and always

be equal to z + f == 2 + d = A. In this case the condition



28 HYDRAULICS OF OPEH CHANNELS

above stated would prevail, and the energy head would

be expressed by Eq. (5). The condition that in a moving

liquid the pressure in each point of a cross-section is to be

equal to the pressure corresponding to the depth of the

respective point below the surface, is equivalent to saying

that the distribution of pressure over a section in a moving

liquid is affected solely by graA'ity, and that the pressures

are distributed in the same way and manner as if the liquid

were at rest
;
in other words that the distribution of pres-

sure o\er a cross-section of moving liquid follows the

hydrostatic law.

Fig. 26,— KtTept of curvature* on the distrihution of pressure in a ntoving liquid

Elementary hydromechanics teaches that the distribution

of pressure in a cross-section of moving liquid will obey the

hydrostatic law and will be affected solely by gravity,

when, and only when, flow takes place in such a manner
that the fluid filaments have no acceleration components

in the plane of the cross-section. JVIovement of such kind,

i.e., flow, where there are no accelerations to disturb the

distribution of pressures in the plane perpendicular to

the axis of the flow, is known as parallel movement. The
specific requirements of parallel movement were clearly

defined by Belanger in 1828 in his celebrated paper which
is justly considered as the foundation of the theory of

varied flow.*

See bibliographical notice Appendix I.
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These conditions are;

1. That the stream lines have no substantial curvature.

2. That the stream lines V)e not substantially divergent.

In curvilinear movement (Fig. 26), depending on whether

the stream lines are concave or convex, the centrifugal

forces will act either in the direction of gravity or opposite

to it. As a I’esult, iTvst(uid of the hydrostatic pressure

triangle tied, the pressure will be represented by a

curve ah.

In the case of divergent flow (Fig. 27), when the stream
lines are substantially inclined towards the cro.ss-sectional

plane, the acceleration on may have a noticeable component
oa' in the cros,s-sectional plane, the effect

of which again will be to modify the dis-

tribution of pre.ssures as caused by
gravity alone.

It may be said that the effect of di-

vergence is usually comparatively

negligible. On the other hand, the

deviations from hydrostatic distribution

caused by curvature are u.sually (juite

substantial, so that whenever curvi-

linear flow is on hand, Eq. (f)), and thus

Eq. (17), cannot be strictly applied.

In Art. 6, the distinction is made between gradually

varied flair and local phenomena. We are in a position now
to specify the mechanical qualifications underlying such

distinction.

Gradually varied flair is a term, introduced by Boussinesq,

to describe more appropriately movements which conform

wdth the Belanger qualifications of parallel flow. While,

strictly speaking, Btilanger’s conditions are met only by

rectilinear uniform movement, in practice, nevertheless, as

stated before, the change of circumstances of flow may take

place so gradually and so slowly that the stream lines may
be said to possess no appreciable curvature or divergence.

In other words, the curvature and divergencies are small
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enough to make the effect of the acceleration components

in the cross-sectional plane negligible. In gradual varied

flow of such kind the distribution of pressures may, there-

fore, be assumed to take place lus if caused by gravity alone.

The energy equation in the form of Eq. (5) will prevail

and as a result the varied flow equation (Eq. [17]) may be

applied.

In contradistinction, in most local phenomena, one meets

with sub.stantial curvature or divergence of the stream

lines. The hydrostatic pressure Law does not hold and

Eq. (17) cannot be apiilied.

It is most impoitant to kc'cp this distinction, together

with the underlying preiuLses, clearly in mind.

'^14. Prismatic Channels.Outside the limitations im-

posed in the preceding paragraph, Eep (17)

is quite general and, tlu'n'fon', can l)e applied to dc.scribe

varied flow in the broarlest s«“n.s(', including the case where

the form of the canal it.s(>lf would gradually change from

section to .section (see .Vrt. 2). However, analytical treaE

ment of these broader cases scarcely leads to generalized

solutions of practical character; so it wall not be further

pursued.*

In the case of a prismatic channel (.see Art. 2) with the

discharge Q given, the velocity and all the other elements of

flow in a certain cross-section depend on the stage of flow y.

The problem, therefore, becomes one of two variables: the

depth y and the axial distance x. Thus, when the equation of

the surface line y = f(x) is established, a complete descrip-

tion of the movement is available, as the depth y determines

the value of a, which in turn defines v = Q/a and thus the

other elements of movement.

* For an approach to the treatment of the more general caoe, see Csaler.

Trans., A. S. C. E., 1930.
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. , fl /j,2 \
For prismatic canals the member ^ featuring the

variation of kinetic energy in Eq. (17), can be expressed as:

\ ^ \ _ _ da dy
dx\2g/ dx \2ga^) ga^ dy dx (18)

In da/dy, the numerator da measures the increase of the
cross-sectional area due to the increase of the depth by dy.

Neglecting members of higher degrees of smallness, this
increase of area (Fig. 28) is da =
bdy, where b is the tvidth of thefree
surface of the liquid in the profile.

We have, therefore,

da/dy = b (19)

and thus the rate of change of ki-

netic energy

±(vf \ ^ _Q:bdy
dx \2g/ g dx (20)

In Eq. (17) we substitute ^ {J>gj
^^0- (20) ;

we express s

by Eq. (13). Finally in view of Eq. (12) we make Q-jW- =
SflKo^/K^, where Ko is the conveyance corresponding to the
normal depth. We have now

® dx dx 2g g a^ dx

Wherefrom

dy _ 1 - (Ko/K)^

dx
,

Q- b

g a®

(21 )

which is the differential equation of gradually varied flow
in prismaiic channels.



CHAPTER IV

GENERAL FEATURES OF FLOW

16. The Specific Energy of Flow.—When a discharge

Q is flowing in uniform movement under the normal depth

yoy the work of gravity Sodx is wholly spent on hydraulic

Q^2
resistances ^ jlv. Therefore/ the circumstances of flow

jtd*”

(Fig. 29) in section 2 remain the same as they were in sec-

tion 1.

W n)

If, on the other hand, liquid were to flow with a depth

O'
y' > 2/0 ,

the energy loss jr^dx spent on resistances

s than the work of gravity

0“
over the same stretch s^dx = Therefore, in its

KHyT
over the stretch dx would be less than the work of gravity

0=

Ko-

movement over the stretch from section 1 to section 2, the

liquid would gain a certain increment of energy, which per

unit weight would be

— 0=

my = (91 _
') KV)/

32
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In the event of y" < the energy loss would

exceed the work of gravity. Therefore, in the movement
of liquid over the stretch dx, a certain amount of energy

would have to be withdrawn from the stock of energy,

contained in the moving licjuid and available in section 1.

The decrease in the content of energy carried by the flow

would be measured by the same expression (Eq. [22]) only

that with K(;/y") < Ko the sign of 1 — (5{o/K(y"))“ would
be negative. We see now that depending on whether

y > iji) or y < ijq energy is added to or withdrawn from the

flowing liquid, and thus the energy content from section to

section changes.

A very clear insight into the wrhole mechanism of the phe-

nomenon is gained by means of the notion of the specific

energy of fioiv.

Assume a discharge Q flowing in the canal (Fig. 30)

under varying stages y. Referring the flow to a datum line

passing through the bottom of the section, the average

energy head of the flowing liquid Ls:

,

Q'^

(23)
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Obviously e is a function of the depth of flow and can

be drawn in the form of a curve as e = f{y). We shall call

e the specific energy of flow and the curve € = f{y) the

specific energy diagram. It is most important to gain a

clear understanding of the situation, and to bear in mind

the distinction of the specific energy e = y + as defined

in Eq. (23) from the energy e = /t + ^ as defined in Eq. (5).

The energy in Eq. (5) is energy referred to a constant

datum line. It pictures the changes in energy over a

certain stretch in the flow as a whole. The specific

energy (Eq. [23]) is referred to a bottom line which changes

from section to section. The change of e pictures the

variation of energy in a cross-section as such depending on

the depth of flow. Uniform flow is characterized by e con-

stant. In other words in uniform flow 5e/6x = 0. In varied

flow the excess of the work of gravity as against the

resistance losses over the stretch dx adds to, or subtracts

from the specific energy. Accordingly, in view of Eq,

(22), we have

5e/5x = Soil - l^o/W)

Obviously, when

y > yo;M > Ko; defSx > 0; e grows in the direction

of the flow

while when
y < yo', M < Ko; Se/Sx < 0; € diminishes in the

direction of the flow

(24)

(25)

For a given discharge and a given canal, the specific energy

curve € = y
A
2ga

can be traced as e = fiy)- The first

member, the potential energy is represented by a straight

line op (Fig. 30) at 45° to the x-a3^. The second mem-
ber v^/2g, the Idnetic energy head, is a curve K, asymp-

totically tangent to the y- and the x-axis. The € =* /(y)

curve is the sum of op and of theK curve, being assymptotic
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to op and to ox. The curve has a minimum point c,

corresponding to a certain depth to be designated as

16. Critical Depth.—The particular depth which makes

the specific energy a minimum; in other words, the depth

under which a certain discharge Q flows in a given canal

with a minimum content of specific energy is called the

critical depth. It is designated as pcr-

It is most important to gain a clear conception of the

whole matter. A certain discharge Q may flow in a given

canal in an innumerable number of ways, each charac-

terized by a certain depth y. To each depth there cor-

responds a definite value of the specific energy e. In

general, t varies with the depth; but, under no circum-

stances, can the content of energy per unit weight of

liquid fall below a certain value €min, which minimum is

attained at the critical depth. In other words, is the

least possible content of specific energy with which the

discharge Q is able to flow in the canal as given. Obviously,

the critical depth and the minimum possible energy

tmin constitute definite parameters inherent in the flow.

To determine the value of ycr, we make

= 1 -

With
ba/hy = b (see Eq. [19])

^ = 1 _ i = 0 (26)
by g

^ '

which corresponds to a depth determined by the equation

Q^g . 6/0* = 1 (27)

In other words, the critical depth for a given discharge Q
is the depth ycr, for which the value of a*/6 is equal to

(a’/b)„~Q'/g 1

(aV575)„ . Q/Vg
I

The JU Function.—For a given profile the value of a^/h

is a function of the depth only. We shall designate
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a^/ajh = jh = (29 )

and call ytL(y) = a\^(ilh the 5Tl function. Traced as a

curve for a given cross-sectional form (Fig. 31), the 311

function permits determination of critical depth for any

discharge flowing in the canal. In fact, for a given

discharge Q, we determine (Eq. [28]) the critical value of

ytlcr = Q/Vg (30)

and, then, from the 3tt curve the corresponding value of the

critical depth ^/cr- ,

:{/ Rectangular Profile ,—In the
“ b > Qf rectangular profile (Fig.

32), the discharge per unit width

^ of the canal being

1 q = Q/b (31)

the 511 (^) function is

511 = Va^/b = ^bhj^/b = b\^
while tlie critical depth follows^om the relation

Q/^g = hg/^g ^ = bVy\r

Hence

Vcr = -'^Wg
\

= gy^cT 1

(32)

(33)
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Example 3

Question 1. Draw the 511 = ay/ajh curve for the canal

cross-section (Fig. 14).

The elements of the figuring, partly taken from Table I, are

assembled in Table III.

Table III

y a h a/b = ay/a/h

0.5 2.75 6 0 458 1.86

1.0
1

6.00 7 0.858 5.56

1.5 9.75 8 1.220 10.76

2.0 14.00 9 1 . 560 17.45

2.5 18.75 10 1 875 25 65

3.0 24.00 11 2.180 35.50

3.5 29.75 12 2.480 46.85

4.0 36.00 13 2.770 59 . 90

4.5 1 42.75 14 3.050 74.60

5.0 50.00 15 3.330 91.40

6.0 66.00 17 3.880 130.00

In Fig. 15 the curve is traced in the direction opposite to 3K.

Question 2. Determine the critical depth for Q = 100 cu. ft.

per second and, respectively, for Q = 200 and Q = 300 cu. ft.

per second.

In accordance with Eq. (30), taking \/g — 5.67, we have

for:

Q = 100 cu. ft. per second; 5Ilcr = 100/5.67 = 17.6;

hence from curve ycr = 2.01 ft.

Q = 200 cu. ft. per second; 5tlrr = 200/5.67 = 35.2;

hence from curve ycr = 2.99 ft.

Q = 300 cu. ft. per second; yttcr = 300/'5.67 == 52.8;

hence from curve ycr = 3.74 ft.

Question 3. In a rectangular canal, 10 ft. wide, determine

the critical depth corresponding to a discharge of 120, 180,

and 300 cu. ft. per second.
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The respective discharges per unit of width are q == 12, 18,

and 30 cu. ft. per second. From Eq. (33), we have for:

g = 12 cu. ft. per second; ycr = >^122/32.2 = 1.65 ft.

g = 18 cu. fto per second; ycr = ^^18^/32.2 = 2.16 ft.

g = 30 cu. ft. per second; ycr == a^30V32.2 = 3.04 ft.

Exercises:

1

.

Draw the 311 = a\/a/h curve for the canal profile, selected

for the purpose of general exercise in Art. 7.

Values of Kinetic Flow Factor/

Fiq„ 33.—The specific energy diagram for canal type B with Q = 300 cu. ft.

per second.

2. Determine the critical depth for a series of discharges,

and trace the curve of critical depths ycr = f{Q)-

3. Trace the ycr = f{q) curve for a rectangular canal.

Example 4

Draw the specific energy curve for the canal (Fig. 14) for the

discharge of Q = 300 cu. ft. per second.

The figuring of e = y + ^ is given in Table IV
;
the energy

curve is traced in Fig. 33.
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Table IV

y a
a ~2g

X

0.50 2.75 109.00 185.000 185.50 740.000

0.75 4.31 69.60 75.200 75.95 200.000

1.00 6.00 50.00 38.900 39.90 77.800

1.25 7.81 38.40 22.900 24.15 36.600

1.50 9.75 30 80 14.700 16.20 19.600

2.00 14.00 21.40 7.140 9.14 ' 7.140

2.50 18.75 16.00 3.980 6.43 3.090

3.00 24.00 12 50 2.430 1

CO10 1.620

3.25 26.81 11.12 1.940 5.19 1.195

3.50 29.75 10.11 1 . 580 5.08 0.903

3.60 30.96 9.69 1.460 5.06 0.810

3.70 32 . 19 9.32 1.350 5.05 0.730

3.74 32.69 9.08 1.310 5.05 0.700

3.80 33.44 8.96 1.250 5.05 0.658

3.90 34.70 8.64 1.160 5.06 0.594

4.00 36.00 8.33 l.OSO 5.08 0.540

4.25 39.31 7.63 0.905 5.15 0.425

4.50 42.75 7.02 0.765 5.26 0.340

5.00 50.00 6.00 0.560 5.56 0.224

5.50 57.75 5.20 0.420 5.92 0.153

6.00 66.00 4.55 0.320 6.32 0.107

6.50 74.75 4.01
;

0.250 6.75 0.077

7.00 84.00 3.57 0.198 7.20 0.056

8.00 104.00 2.88 0.129 8.13 0.013

9.00 126.00 2.38 0.086 9.09 0.019

10.00 150.00 2.00
1

0.062 10.06
1

0.012

17. Physical Interpretation of Phenomena.—The notion

of specific energy gives a lucid and simple explanation of

many phenomena of varied flow.

The Hydraulic Jump .—As illustrated by Fig. 34, the

jump is an abrupt transition of flow from the lower to the

upper branch of the energy curve. ei and €2 are the specific

energies of flow, corresponding to the depths di and d^ be-

fore and after the jump, ey = €1 — €2 is the loss of energy

inherent to the jump, a loss which under certain circum-

stances may be quite large.

Flow over a Fall. The Hydraulic Drop .—Figure 35

illustrates flow over a fall. To make the case particularly
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clear we shall assume the bottom of the canal horizontal,

so that the effect of the bottom slope on accelerating the

flow and on overcoming resistances is nil. The movement

(I) (Vu

Jump^

id

k
..

. ^ of eneroy
-±__

(^2 Crifical

Vi c/eplhj

' intne jump

i J;
1

1
'

i

dl V ^
^ <fy

--- ^1

*77177777TTTTTTrr7777777TT77 i

Specific energy

Fig. :F1. -Pliysiciil interpretation of th(‘ hydraulic jump.

under such conditions must take place entirely at the

expense of the specific energy stored in the li(|uid. Accord-

ingly, the passage from section 1 to section 2 on the falling

(a) (1) (V

curve corresponds to a shift down the upper branch of the

energy curve in which the loss in specific energy —Ae

is accompanied by an appropriate lowering of the depth

by —A?/. As a matter of course, the surface of the moving
liquid in its natural tendency to lower cannot drop below

the critical depth, which depth corresponds to the least

possible content of energy in the falling liquid. Any
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further lowering of the surface beyond y„ would mean the

passing of the movement into the lower branch of the

energy cur\'(', which could be possible only if energy were

added from the outside. Thus, the critical depth is the

lowest limit to whicih the surface may sink in the natural

process of dissipating energy. Therefore the critical depth

is the lowest depth which by reason of natural circum-

stances establishes itself at the end of the canal over a fall.

In Fig. 9, illustrating the hydraulic drop, the depth

designated by ijc. is obviously the critical depth. The same

reasoning will apply to the case illustrated by Fig. 2^

where the canal empties into a reservoir B. Assume

that the level in reservoir A remains permanent, while

Fig. 3G.

the level in reservoir B is lowered. Within a certain range,

the depth 1/2 will follow the sinking of level in the reservoir

jB. But as soon as the natural limit of 2/2 = Ucr is reached,

the depth tyo at the extremity of the canal will continue to

remain permanent and equal to the critical depth, no matter

how much further the level B is lowered.

The connection between the surface of the liquid out-

flowing from the canal and the level in reservoir B will

take place in such case by means of a hydraulic drop.

Broad-crested Weir .—Figure 36 schematically represents

a broad-crested weir. In case the outflow is free, the depth

d which will establish itself at the end of the will be

the crhical depth, so that d^ = gV9y where q is the discharge

per unit width. If H is the head over the weir
,
corrected for

the velocity of approach, the discharge is q =
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where m is a weir discharge coefficient. Eliminating g,

we obtain d® = so that

d/H = d' = m == VWd/HY (34)

We see that for a given H, the depth d which establishes

itself over the weir depends on the value of m. The

smaller the discharge coefficient, meaning the higher the

resistances, the smaller the relative value of d' = d/H,

This is in conformity with experiment, but in contradiction

to the maximum discharge theory, traditionally presented

in textbooks. According to the maximum discharge prin-

ciple, d' = d/H should under all circumstances be two-

thirds. Such, however, will be the case only when the flow

is ideal with no resistance losses. In all practical cases,

d' — d/H is less than two-thirds. To make this clear,

determine the velocity v at the extremity of the weir

in the section where the depth is d. By introducing a

velocity coefficient <pj to take account of the resistance

losses, we have

V = <pV2g{H - d) = <pV^ ^1 - ^
=

<PV2gH • -s/l — d'

Accordingly, the discharge

q = V • d — • d'^/1 — d'

and the discharge coefficient

m = (pd'y/l — d' (34o)

By comparing with Eq. (34), we obtain

m = ^dVl - d' = VMid'Y (346)

from which there follows;

.2 =

d' =

d'

2(1 - dO

l+2<p^

(34c)
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Obviously, if = 1, d' in Eq. (34c) becomes d' = %, and
the discharge coefficient in Eq. (34) will be to = 0.385. For
any values of the weir discharge coefficient, the correspond-

ing values of the reduced depth and of the velocity coeffi-

cients follow from Eq. (34a-34c). The parameters of flow

are all organically interconnected. Following are some

numerical data:

im <p d'

0.385 1.0
j

H
0.350

1
0.915 i 0.625

0.320 0.85 0.59

Curvilinear Flow .—Experiments show that in actual

movement over a broad-crested weir, the critical depth

dcT = I

g

is attained by the surface at a certain distance

before the edge of the weir (section (7, Fig. 37), and that

the depth d'cr over the edge is somewhat smaller. The

explanation lies in the fact that the critical depth dcr =

'^q^jg was determined in Art. 16 under the assumption of

parallel flow. In other words, dcr — "^q^lg corresponds to

flow with a possible minimum content of energy in parallel

flow, and in parallel flow only.

For curvilinear flow the minimum possible content of

energy, corresponding to a discharge q differs from imin

jg corresponding to parallel flow. It is greater for

concave flow (Fig. 26o) and smaller for convex movement

(Fig. 266),
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Also the critical depth, determined as the depth at which

flow with a minimum content of energy takes place, is

smaller than q'^/g for convex streaming, and greater than

'^q-/g for concave flow. Between sections C and F in

Fig. 37, the filaments gradually increase their convex

curvature; the critical depth accordingly diminishes from

dcr = '^q'lg in section C to a smaller value d'er over the

edge.*

Oritical-depth Water Jl/cter.—Inasmuch as the critical

depth is a definite parameter of flow, independent of the

roughness of the walls and other uncontrollable circum-

stances, the idea naturally arose to use flow in critical state

as a meter to determine the discharge in an open channel.

In fact, assuming that a device was so laid out that

flow would be critical in a definite section, all that one would

have to do in order to determine the discharge would be to

measure the depth d in the s(^ction where the depth is

supposed to be the critical depth.

If the cross-section of the canal in question were to be

rectangular, then the volume of flow corresponding to

the measured depth would be

Q — b\/^ = bdV^
or in a more general case, the discharge would be

Q = N^g •
"Siler = ®'\/^

where is the value of ay/afb corresponding to the

measured d.

Different attempts have been made to incorporate the

idea into a practical device, f

Critical flow is usually produced either by a retrenchment

of the cross-section with a subsequent enlargement or by

* For more detailed analysis of the ease, see Bakhineteff, Proc. A.S.C.E.,

No. 2, 1931.

t See discussion by Hinds and others of a paper by Parshall, Trans.

A.S.C.E., Vol. 89, p. 840, 1926.
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a break in the bottom. In all cases the phenomenon
is related to an elongated hydraulic drop.

In designing critical-depth water meters it is particularly

important to bear in mind that the relations q = bd\‘^gd

or Q = are strictly limited to parallel flow only.

In other words, the purpose of the meter would be achieved

only if flow in the section where the critical depth is to be

measured will be practiciilly paralkd.

Equation of Graduallij Varied FIouk—The notion of

specific energy and the tauagy diagram (I'ig. 30) may also

be directly used for estjiblishing the general differential

equation of varied flow. In fact, with reference to Fig.

35, the change of encTgy between sections I and 2, assuming

the distance dx between the sections is small, is — ; dx =
’ 8x

d(, with — determined by Eep (24). This gain or loss

of specific energy obviously is etiual to a change of the

specific energy on the diagram corresponding to a change

of depth dy, namely:

—de= —^-dy.
dy

wherein de/dy is determined by Eq. (20).

obtain

6e

8x
dx = ~-dy

by

Combining, we

which, through proper substitution, gives:

dy _ 5e/5x ^ .
1 - (Ko/K)^

dx be/by 1 _
g a*

This is Eq. (21), with the physical meaning of the numerator

and denominator properly unveiled.

May it also be mentioned, that prior to the introduction

of the notion of specific energy of flow, which notion in

spite of its simplicity was not unmasked until recently
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(see 'Preface), no direct and immediate insight into the

physical essence, underlying the phenomena of varied flow

was available. The presence of the jump, for example,

was explained by purely analytical considerations. In

fact, the denominator of Eq. (21), for the particular value

of = 1, that is, for the critical depth, becomes zero,

so that dy/dx — This indicates a disruption in the con-

tinuity of the surface curve, the latter becoming perpen-

dicular to the X-axis. This disruption was supposed to find

experimental confirmation in the formation of a jump.

18. Critical Flow.—Liquid, flowing in a given canal

under the critical depth {y = yor), is described as being in

criticalflow or in critical state. For a given discharge, the crit-

ical depth, determined as in Art. 16, indicates the particular

depth which makes the discharge Q flow in critical state.

Critical Discharge Qcr-—Reversing the reasoning, one

may say that for every depth ?/ in a given canal there is a

certain discharge, to be designated as Qcr, which makes
flow under the chosen depth critical. We shall call Qcr

the critical discharge. Determined by Eq. (30) it is equal to

Qcr = Vgyxiy) = VgaV^ (35)

For a given profile, Qcr = J{y) may be traced as a curve.

The Qcr curve is obviously the 3ll(y) curve (Fig. 31) multi-

plied by \/g.

Critical Velocity Vcr .—The velocity corresponding to

critical flow is called the critical velocity and will be

designated as Vcr- From Eq. (35) we have:

Vcr = Qcrla = yfgy/a^ (36)

The quotient a/6 has a simple physical meaning; it is

(Fig. 38) the depth of a rectangular canal AB'D’C, having

the same cross-section area o as the given canal ABCD and

the same top width, 6. We shall designate:

a/6 = 5

and shall call 5 the average depth of a cross-section.

(37)
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The critical velocity is thus:

Vc = (38)

or the velocity corresponding to a head equal to one-half of

the average depth 6. A comparison between the average

depth 6 and the hydraulic radius R = a/p is gained from

8/R = a/b • p/a — p/b (39)

Rectangular Profiles ,—For a rectangular profile (Fig. 32),

we have from Eq. (33)

19. Critical Slope. (Figure 39.)—The value of the

bottom slope which makes uniform

flow at a chosen depth y critical,

will be called the critical slope and

in contradistinction to 5 and will

be designated by the Greek letter or.

The critical slope a is a function of
I V J , V rrt 1 i Fig. 39.—The critical slope a.

the depth. To determine a we have

by definition: = <r3i^ and simultaneously = ^311^

From which follows

(tW = gytt^

or

(42)

In this equation 312 and K are the particular values of the

= ay/aji) function, and of the conveyance K = aCy/R
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for the chosen depth y. For a given cross-section the

critical slope <r = f{y) may be traced as a curve, an example

of which for canal cross-section (Fig. 14) is given in Fig. 15.

Another expression for a is obtainable by substituting

into Eq. (42) the values of yCl~ = a^/h and 3K^ = a^C-R =
a^C^jy, which leads to

_ _P_ - ±

which may be presented also as

(T = a' • p/b

where

<r' = g/C^ (43a)

To get an appreciation of concrete values, the curve of

a' = g/C^ function of (7 is traced in Fig. 40. In case of a

profile the width of which is large compared to its depth,

so that p/b in Eq. (43) does not differ much from unity
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(which, by the way, is the case of most natural water-
courses) the curve er' = g/C'^ gives the values of the
critical slope directly. Otherwise the curve figure a’ must be
multiplied by p/6; the latter is obviously always > 1.

To appraise the effect of p/6 in raising the value of <j over

a'

,

there are given in Fig. 41 some examples of canal

cross-sections with the respective values of p /6.

Normal Critical Slope .—The critical slope curve as traced

in Fig. 15 is a characteristic inherent in a canal cross-section

as such. It depends on the form of the cross-section and

—

—

F4-3 P/i-2 P/h- 167
1
1

y

b-ly •< b

on the roughness of the walls, being a function of the

depth y.

For a given discharge, it is expedient to fix as charac-

teristic parameters certain particular values of the critical

slope, namely; (1) the critical slope <ro at the normal depth

Po and (2) the critical slope (Tct at the critical depth y^-

We shall designate Ou as the normal critical slope.

Obviously is the slope, which would make the given

discharge flow in uniform movement in critical state.

Example 6

Question 1. Draw the critical slope curve tr = fiy) for the

canal profile. Fig. 14. Use Bazin coefficients.

Either Eq. (42) a = or Eq. (43) cr = ^ may be used.

Using Eq. (43) and taking the C, p and 6 values from Table I

and Table II, and the g/C^ values from Fig. 40, we obtain
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Table V

y V h C glC'

in 1 • 10-‘
p/6

(T

in 1 • 10 -"*

0.5
1

6.41 6 109.0 27.2 1.070 29.1

1.0 7.82 7 118.0 23.2 1 . 126 25.9

1.5 9.23 8 123.0 21.2 1.152 24.6

2.0 10.64 9 126-0 20.2 1 . 182 23.9

2.5 12 05 10 128.5 19.6 1.205 23.6

3.0 13.46 11 130 0 19.0 1 . 223 23.2

3.5 14.87 12 132.0 18.4 1.239 22.8

4.0 16.28 13 132.7 18.1 1.252 22.7

4 5 17.69 14 133 5 18 0 1.261 22.7

5 .

a

19.10 15 134,3 17.9 1.272 22.8

6.0 21.95 17 136,7 17.6 1.292 22.8

The curve is traced in Fig. 15.

Question 2. Determine cro and acr for a flow of Q — 240 cu. ft.

per second with so = 5 •

For the normal depth 2/0 we have

3Ky = Q/V^o = 240/v"5 • 10-" = 107.2 X 10^

from the 3K curve (Fig. 15) the corresponding 2/0 = 4.96 ft.

For the critical depth

= Q/Vg = 240/5.67 = 42.4

from the "Sd curve (Fig. 15)

Vcr = 3.31 ft.

The values of ao and a„, w^ch on the a curve (Fig. 15) correspond

to j/o = 4.96 and y„ = 3^1^.are practically equal and close to

230%o-
Question 3. Assume that in canal, Fig. 42, j/o = 8 ft. and

y„ = 2 ft. Determine oo and Ccr- Use G.K. coefficients for

So = 100%o> with n = 0.013 and n = 0.025, respectively.
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1. The geometric element s in the case are:

y = 2 ft.; a = 26; 6 = 16; p = 17.2; p/b = 1.073; R = 1.51

2/
= 8 ft.; a = 176; b = 34; p = 38.8; p/b = 1.14

; K = 4.54

2. The C and <r' values.

i

i

n = 0.013 n = 0.025

For ?/
= 2 C = 124 C = 62

R = 1.51 <r' = 21 X 10-< (7' = 84 X 10-^

For y = 8.00 11 C = 77

R = 4.54 a' = 15.5 X 10-^ a' = 54.5 X 10-'

3. The a values {c = a' p/b)

:

(Jcr for y,r = 2 ft.

With n = 0.013; c„ = 21 • 10"' • 1.073 = 22.40%o
With n = 0.025; <r,.r = 84 • lO-" • 1.073 = 90.00%o

ja for 2/0 = 8 ft.

With n = 0.013; <ro = 15.5 • lO"-* • 1.14 = 17.70%o
With n = 0.025; <ro = 54.5 • 10-< • 1.14 = 62.20%o

20. Other Forms of Varied Flow Equation.—Equation

(21 )

dy _ 1 - (3Ko/K) =

~dx 1 _ ^ A
g o®

may be now presented in a somewhat different form:

1. In the denominator, in accordance with Eqs. (28) and

(29), substitute:

Q^g = h/a^ = 1/m^

obtaining

dy _ ,
1 - (Ko/K)^

dx ®1 - (3tt„/3n)»
(44)

To make things clear, bear in mind that M and 311 are the

respective variable values of the conveyance K = aCy/R

and of the 5a = aV^ function, varying with the depth

y, while Ho and 5ac certain parametric values of the two
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functions for the normal depth yo and for the critical depth

ycr, respectively.

2. Another form is obtained by replacing in the denom-

inator Ml by M. From Eq. (42) we have Ml^ ^ ^
^

while, on the other hand, Q^/g = Mo^So/g. Hence

g _ , So/KoV
ga^ g

' aW trVH/
(45)

With SqJ(t = So/(ro • o-o/ff, where co is the normal critical

slope, we have instead of Eq. (21)

dy _ - (Mo/Mr- _
J- — t>0— —
cLoC'

^

'

1 - (Mo/My
So (Jo /Ho
(To a \3K^

(46)

It is in this latter form (Eq. [46]) that the varied flow

equation will be used for integration and, therefore, for deter-

mining the surface curves y = f{x). When the shape of the

canal, the roughness of the walls, the bottom slope So, and the

discharge Q are given, Eq. (46) gives the rate of change of

the depth as depending on only^two varying factors, namely,

Mo/H and ao/a. Both these factors, in turn, are functions of

the depth or functions of y/yoy the ratio of the varying

depth y to the constant parametric value of the normal

depth I/O.

For y = I/O, both K/Ho and (To/o' are = 1. Designating,

in particular,

^ = (3 and ^ so that jS = ;8o~-* (47)
<7 O’0 O’

we obtain Eq. (46) as

dy _ ^ 1 - (Ko/K)“

dx ®1 - /3(Ko/lt)^
(48)

In Eqs. (47) and (48), /So again is a constant parametric

value, the relation of the given bottom slope So to the critical

slope (To at the normal depth j/o, while ua/cr and, therefore,
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jS reflect the change of the critical slope within the range

of the varying depths. Usually, this variation is not very

substantial, and within certain limits (see Question 2,

Example 5) the value of (Tq/<x and, therefore, the /8 value may
be accepted as practically constant. In the integration

procedure, the practice will be to divide the range of depths

into certain reaches, assuming for each of such reaches a

certain constant average value of jS.



CHAPTER V

RECAPITULATION: THE CHARACTERISTICS
OF FLOW

To avoid possible confusion in regard to the many
notions, introduced in the course of the preceding analysis,

it may be useful to assemble, by way of a summary, the

different characteristics of flow, as developed above:

21. Characteristics of a Canal Cross-section.—A canal

is said to be defined when there are given:

%

The shape and the dimensions of the cross-section.

The nature of the walls (roughness coefficient).

A canal cross-section, once given as above, possesses

the following characteristics, inherent in the cross-section

as such and being functions of the depth (Fig. 43; see also

Fig. 15)

:

1. The conveyance curve ....... M = aCVS
2. The ytL curve 311 = aVa/ft

3. The critical slope curve <7

b

Also

4. The critical velocity

curve
54

Vi = y/gVd == VgV^alh



RECAPITULATION: THE CHARACTERISTICS OF FLOW 55

5. The critical discharge

curve Q„ = = aVW^
The 311, Vc and Q<, curves depend solely on the geometric

forms of the cross-section.

The 3t and a- curves depend on the roughness of the walls.

If a C formula is used, like the C.K., where C is supposed to

vary with the bottom slope, the possible effect of such

variation will have to be taken into consideration.

Sets of characteristic curves for certain canal cross-

sections which are used for practical examples in this book

have been computed and presented in the special plates

assembled at the end of the book.

22. Parameters of Flow. - A case of flow is said to be

defined, when there are given:

The canal cross-section (defined as in the preceding article)

.

The bottom slope So with which the canal is laid.

The discharge Q, flowing in the canal.

The 'parameters of flow then will be as follows:

1. The normal depth yo, being the depth of uniform flow

for the discharge Q under Sq. yo is determined from the

K curve as a depth corresponding to Mo = Q/VSo

2. The critical depth 2/cr, being the depth at which the

discharge Q would flow in the given canal with the minimum

possible content of specific energy, j/cr is detei mined by

means of the curve, as the depth corresponding to

yitc = Q/Vg
3. The normal critical slopeco and«7c which are the critical

slope values corresponding to yo and to ycr, respectively.
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Zones of Flow ,—The normal and critical depths, when
drawn into the cross-sectional and into the longitudinal

profiles, divide the plane of the respective profiles into

zones (Fig. 44).

Auxiliary Curves .—In practical computation it will be

occasionally useful to have as auxiliary curves:

4.

The normal discharge curve Qo = fiVo)] the curve of

discharges in uniform movement Q = KoVSo, in the given

canal under the bottom slope Sq.

5. The ao/(r and eventually the o’cr/o' curve, representing

the ratio of ao and acr to the varying critical slope.

()2
6. The specific energy curve € = y + ^ = 2/ +

2g 2ga^

Exercises:

It is earnestly recommended, that before proceeding further,

the student should become thoroughly familiar with the different

characteristics and parameters of flow. He should assemble into

a complete set the different curves as enumerated above. This

should be carried out for the cross-section selected for the purpose

of general exercise in Art. 7. The selection of Q and of So is left to

the student^s discretion.



CHAPTER VI

CLASSIFICATION OF FLOW

23. “Mild” and “Steep” Slopes.—It was Belanger (1828)

who, in commenting on Bidone’s experiments on the hydrau-

lic jump, distinguished natural watercourses in which

jumps would occur (Fig. (>), from streams where the back-

water curve produced by a dam would connect with the

undisturbed surface line by means of a continuous curve

Sfeep slope (Torre/70

5o> 6

Fia„ 45.—Distinguishing between mild and i^Uep bottom slopes.

(Fig. 3). Naturally (Fig. 34), a jump may take place only

if water would be flowing in natural condition with a depth

less than the critical (yo < Ver, as in Fig. 45a). On the

other hand, in case the depth of flow in natural condition

is above the critical (t/o > Ver, as in Fig. 456), then the

backwater curve lies wholly within the upper branch of the

energy curve. There can be no jump and the curve will

be of the continuous type as shown in Fig. 3.

67
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As the relative values of j/o and ycr depend on the size

of the bottom slope, the suggestion naturally arose to

distinguish between stsep and inild bottom slopes: the
slope So to be designated as mild when it is smaller than the

critical (so < <ro) and when it makes yo > y^ ]
while a slope

is steep when it is greater than the critical slope (so > (To)

and when it makes j/o < ycr-

In tabular form

:

Mild slopes = So < <ro; 2/0 > Vcr
|

..q.

Steep slopes = So > cto; 1/0 < 2/cr
J

^ ‘

Saint V4nant* called natural streams of mild slope,

exhibiting calm, steady flow, rivers. Streams of steep

slope, featured by jumps, cataracts, and other irregulari-

ties, he named torrents.

24. States of Flow.—-While the above distinction is

useful in many instances, it does not wholly bear on the

Fig. 4 €).—Continuous surface curve without a jump in a canal with steep
bottom slope.

essence of the case. In fact, Boussinesq rightfully pointed
out that it is essential in the situation to distinguish

between different possible states of flow.-f A jump, as

shown in Figs. 7 and 8, may take place in a channel of mild
slope with So < co while there may be a continuous back-
water curve without any jumps (Fig. 46) in a flume the
bottom slope of which is steep.

* Ann. des mine.s, 1861.

t ‘^Th^orie des eaux courantes,” 1877.
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In fact all depends on whether the velocity of flow is

above or below the critical; or, in other words, on whether

the depth of flow is above or below the critical depth.

A very clear picture of the states of flow is gained bj^

means of the specific energy curve. In fact, in Fig. 47.

the critical depth divides all possible conditions of flow into

two zones, corresponding to the two principal states of flow

:

Flo. 47.—The states of flow in their relation to the specific energy diagram.

1. Zone T, embracing the upper branch of the e curve,

with y > Vcr and v < Vcr, a zone within which flow is said

to be in tranquil state.

2. Zone R, embracing the lower branch of the e curve,

with y < ycr and v > Vcr, a zone within which flow is said

to be in torrential or rapid state.

3. In between the T and R zones lies the separating point

Cy corresponding to critical flow, or flow in critical state.

The names applied to characterize the states are sugges-

tive of the nature and what one might call the different

behavior of flow. Rehbock most fittingly applies the word

flowing {fliessend) to describe “tranquil” flow; whUe he

speaks of a stream as shooting {schiessend) when water rushes

down a chute or races from under a sluice in “rapid” state.

The basic physical distinction between the different

states of flow is determined by the outline of the specific

energy curve. Namely:
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In tranquil state: e increases with y; 8e/dy > 0

In rapid flow: t decreases with y, be/by < 0

In critical state: e — minimum; be/by = 0
(50)

These simple relations help to explain some interesting

features, inherent in flow in general.*

26. Submerged Obstacles.^—One of them is the effect,

produced on the surface of a flowing stream by a submerged

obstacle, such as a large boulder or a local elevation at the

bottom. In a river, such an obstacle either produces no

visible effect or results in additional surface eddies and, at

times, in a slight local deprc.ssion of the surface; a kind of a

hollow which is rapidly smoothed, out by the pouring in of

water from the adjacent streaming. In a torrent, a bottom

obstacle usually produces a foaming center, often marked
by a local jump in the nature of a surface swell. Speaking

generally, the surface of a torrent when streaming over a

shallow rocky bed is all covered by such foaming centers.

The presence of a swell in rapid flow in contradistinction

to a depression in tranquil movement is explained by the

fact that the crossing of an obstacle is accompanied by loss

of energy. Now, loss of energy in tranquil state calls for

a lowering of the surface, while in rapid state dissipation of

energy is accompanied by an increase in depth.

The difference is particularly conspicuous in the case

of a submerged barrier. In a river (Fig. 48), if the barrier

is not too high, there usually develops what Bazin called an

Boussinesq, loc. cit.
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undulated nappe^ namely a sequence of gradually diminish-

ing undulations which follow the initial depression. The
depth tji above the barrier is somewhat larger than the

depth 1/2 ;
the difference h = iji

—
//>, is the head, lost in

Fig. 49.—Barrier in a torrent; the standing swell.

passing over the submerged weir. In a torrent, the barrier

under certain conditions is crossed by what might be

termed a standing swell (Fig. 49), in the form of a single

Fig. 50.—Example of a standing swell.

undular surface rise, unaccompanied by further undula-

tions, In this case, at least in case of uniform flow, the

depths above and below the barrier are the same. Figure

50 gives the profile of a standing swell observed by the
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author.* The height of the swell was nearly twice the

original depth. The highly rapid flow was produced by

streaming from under a sluice (see Fig. 7).

As may be expected, a standing swell will take place only

if the barrier does not exceed a certain height. Beyond
that, the type of the phenomenon changes; the swell

becomes replaced by the usual backwater curve (Fig. 51),

preceded by a jump. The surface of a standing swell is

continuous, allowing unimpeded passage to a small flowing

object, such as a block of wood, a small ship model, etc.

On the contrary, the whirling roll at the foot of the jump

Fig. 51.—Flow over a barrier in a canal with steep slope f<‘atnrinK a jump.

(Fig. 51) disrupts the continuity of the surface. A flowing

body is usually caught by the whirls and tossed around in

continuous rotations.

26. The Establishing of Flow.—The absence of undula-

tions in Fig. 49, as compared to Fig. 48, manifests another

feature of general character, also revealed theoretically by

Boussinesq, and being in good consonance with observa-

tion. It refers to the forms of the surface within the

transitory sections, where flow “establishes” itself. An
example is the entrance portion of a flume (Fig. 52).

Above section a there lies the undisturbed level of the

reservoir. Below section 1, flow is uniform. The stretch

between sections a and 1 is the transitory part in which uni-

form flow establishes itself and to which the Boussinesq

reasoning applies. In Fig. 52 this transitory stretch presents

an undulatory surface. Such is always the case when the

* Hydr. Laboratory, Polytechnic Institute, St, Petersburg, 1911.
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slope of the flume is mild or, to be more specific, when flow,

which is in process of establishing itself, is tranquil.

Another example is that of a broad-crested weir (Fig. 37)

;

here the depth is near the critical. With reference to the

energy diagram, we see that in the neighborhood of the

Fig. 52.—The establishing of tranquil flow.

critical depth the energy curve is very steep, so that prac-

tically an unnoticeable difference in energy corresponds to a

substantial variation of depth. This circumstance, together

with the effect of curvature on the size of the critical

Fig. 63.—The establishing of rapid flow.

depth (Art. 17), explains the rather pronounced undula-

tions characteristic of the case.

Figure 53 pictures entrance conditions at the head of a

steejvsloped flume. Rapid uniform movement below sec-

tion 1 is preceded by a transitory section where there are no

undulations; this is always the case in a transitory stretch
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when the movement to be installed is of the "rapid” kind.

Another instance is given in Fig. 54, where a stream in

rapid state from under a sluice emerges into a horizontal

flume, the flume being sufficiently short to allow the water

to leave before it reaches the critical depth. Here again the

surface features no undulations.

Fig. 54.— Rapid flow in a flunio below a aliiiec

27. The ICinetic Flow Factor.—In tranciuil flow, it is

potential energy that prevails. In rapid state, as the veloc-

ity grows, the kinetic energy head becomes predominant.

To measure the degree of rapidity or that of tranquility of

obtain, in general, a standard by means of which

the state of flow may be qualified numerically, the author

uses the notion of the kinetic flow factor, which will be desig-

nated by X and which is defined by means of the specific

energy equation, as follows

:

. = + (61)

The kinetic flow factor is thus equal to

X = o _9L ==

y ^'2ga^y ga^y
(52)

or twice the ratio of the kinetic energy head to the potential

energy head. The kinetic flow factor thus is a measure
of the kineticity of flow. One may speak of flow being

in a state of "high” or "low” kineticity. In each case
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the degree of kineticity will be qualified by the respec-

tive value of X, just as the thermic state is qualified by
temperature.

Rectangular Profile.—In the case of a rectangular profile,

applying Eq. (52) to a unit width of the canal and remem-
bering that q^/g = y^cr, the kinetic flow factor is

^ = {vcr/vY (53)

and the specific energy equation

< - !/(l + 2)
= !/(l + 2 ]') (M)

In critical state, in particular,

Xrr l,C/r ~ Efil/cr

Tranquil state is characterized by (55)

X < 1 ;
€ < 1.5?/

Rapid state is featured by
X > 1; e > 1.5?/

The particular circumstance that, in the piactically

so important case of a rectangular canal, flow in critical

state is characterized by the simple symbol X = 1, explains

the reason for choosing the definition as given in Eq. (52).

Cross-sections of Any Form.—A general expression for the

kinetic flow factor applicable to a cross-section of any form

is obtained by substituting in Eq. (52) Q"^fg by the equiva-

lent value of (see Eq. [30]); and, on the other hand

(Eqs. [29] and [37]), by putting 311^ = = o^5, so that

ycc
This leads to

X = QVga^y = 'Sa\r/ya'^ X ^/y (56)

and the specific energy

€ = 2/(1 + HmjmY • b/y) (57)

Naturally, Eq. (54) is but a particular case of Eq. (57); in

fact, for a rectangular profile
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d/y = 1 and = (Vcr/yY

For critical flow Ml in the denominator of Eq. (56)

becomes Mir,. Hence, for critical state

X = 1 • 5/y, ftin == ^iy • 5/y
|

= y„{l + md/y]) j

As compared to conditions in a rectangular channel, the

kinetic energy content in critical flow differs by the factor

d/y, this being the relation of the “average depth” of a
cross-section (S = a/6) to the actual depth of flow, y.

For an open canal of the usual type, which broadens
with the depth, 5 is always smaller than y, so 6/j/ < 1

and X„ <1.
Some actual values of d/y for a series of canal cross-

sections are given in Fig. 55. It is seldom, that d/y falls

below 0.5; usually d/y is between 0.5 and 1.

For such limits, the specific energy at the critical depth
fluctuates between

1.25y < Ccr < l.5y

Flow with X > 1 and € > 1.5y under all circumstances will

be in rapid state. On the other hand, flow with X < 0.6

and e < l.25y will be practically always in tranquil state.
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For closed cross-sections, as in the case of a sewer

(Fig. 56) the top width of which decreases with the

depth, the average depth 5 may be larger than y. In

such case, the kinetic flow factor for the critical depth Xo,

Example 8

Qtieslion 1. Assuming a discharge of Q = 200 cu. ft. per

second, flowing in a rectangular canal 10 ft. wide, determine

the kinetic flow factor and the energy content for flow at

y — 1 it.

;

as well as at y = 0.5, 2, 5 and 10 ft.

q = S3 20 cu. ft. per second; y„ = =

-3/400/32.2 = 2.32 ft.

The kinetic factor value for the depth j/ = 1 ft. is X = (3/cr/2/)® =

(2.32/1)’ = 12.4.

For the other depths, respectively,

X = (2.32/0.5)’ = 99.2; (2.32/2)’ = 1.56; (2.32/5)’ = 0.1;

(2.32/10)’ = 0.0125

The energy content for

y — Ver is ecr = 2.32 X 1.5 = 3.48 ft.

For

y “ 0.5; « = j/^1 + “ 0.5^1 -I- “ 25.3 ft. tHn = 24.8 ft.

y — 1 .0 ;
* “ i/^l + ” 1.0^1 -h = ^.2 ft. = 6.2 ft.
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y = 2.0; « = 2/^1 + ^)
= 2.0^ 1+ = 3.56 ft. e*c„= 1.56 ft.

y = 5.0; « =
2/(^1 + = 5.0^1 + = 5.25 ft. €*<„ = 0.25 ft.

y = 10.0; e = 2/(l + = 10.o(^l + =

10.06 ft. €iin = 0.06 ft.

1

. ^ 7 /,
cub. fi

cfj=2'
>r

'WTTTTTTTTTTTTT? f/y//////////////,

Fig. 57.

Question 2. What is the state of rapidity in a stream flowing

from under a sluice (Fig. 57) into a rectangular channel at the

rate of g = 70 cu. ft. per second with di = 2 ft.?

The kinetic flow factor may be determined directly from Eq.

(53), as

_ 702

32.2 • 8
19.05; 2^1 + = 21.05

Question 3. A discharge of 520 cu. ft. is flowing in a canal

(Fig. 58) in critical flow at ycr = 3 ft. Determine the energy

content. Also the kinetic flow factor and the energy content

for the same discharge at i/ = 1 and 2/
= 8 ft.
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For 2/
= 3 ft., the average depth h ^ a/h = 58.5/24 = 2.44;

hence

For y = 1; a = 16.5; hence

X = Q^ga^y = (520/16.5)2 • 1/32.2 X 1 = 30.8

.-,(l +?!?). 16.4

For y = S; a = 216; hence

X = (520/216)2 • 1/32.2 X 8 = 0.0225

€ = 8(1 + 0.01125) == 8.09 ft.

Question 4, Compute and trace the kinetic factor curve X =

f{y) for canal (Fig. 14) with Q = 300 cu. ft. per second. With

X = 2 • v'^/2g • 1/^, we may use directly the figures of Table IV.

Thus, for

2/
= 0.5; X = 2 • 185/0.5 = 740.

The respective values of X are given in the last column of Table

IV. The X curve is traced in addition to the e curve in Fig. 33.



CHAPTER VII

PROPERTIES AND TYPES OF SURFACE CURVES*

28. Nomenclature.—In Art. 2, the distinction was made

between “rising” and “falling” surface curves, depending

on whether the depth of flow increased or decreased in the

Class

N. D. L.

Fig. 59. Fia, 60.—Classification of surface

curves.

direction of the current. In the future we shall denote by
the superior or “ — ” sign whether a certain factor

is increasing or decreasing downstream. We shall desig-

nate, accordingly:

* A general and complete classification of surface curves in varied flow

was first given by Boudin. See bibliographical note, Appendix 1.

70
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A rising curve with dy/dx > 0, by the symbol 1

A falling curve with dy/dx < 0, by the symbol y-
j

Concave and Convex Curves.—To designate the curvature

of a surface curve, it will be assumed that the observer is

located above the stream. Hence, curves with the radius

of curvature directed upwards (Fig. 59a) will appear as

concave, while curves, as shown in Fig. 596, with the radius

of curvature pointing downwards, will be convex.

Classes of Curves.—With reference to the zones of flow,

as pictured in Fig. 44, all the possible surface curves can

be divided into certain classes, depending on the relative

position of the yo and ycr lines. The three possible combina-

tions are given in Fig. 60, the respective classes being

designated by the capital letters M, S, and C. For each

class, there will further be three zones which are marked
by numbers placed at the foot of the respective letter which

indicates the class.

The relative position of the t/o and y^r lines depends on

the value of the bottom slope. Flow belonging to Class

M, with t/o greater than ycr, will take place when the bottom

slope will be mild with So < cro- The letters designating

the classes have been chosen accordingly.

Presenting the matter in tabular form, we have:

Class M

:

Bottom slope

—

mild; t/o > ycr’, So < do

uniform flow

—

tranquil

Class S: Bottom slope

—

steep; yo < ycr', So > cto

uniform flow

—

rapid

Class C: Bottom slope

—

critical; yo = ycr’, So = do

uniform ^ow—critical

The location of the zones is clear from Fig. 60. Zone 1

in each and every case lies above both the uniform and the

critical depth. Zone 3 in each and every case lies below

both yo and ycr.

Zone 2 lies between yo and ycr, with the relative position,

of yo and ycr depending on the value of So ^ do.
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In the C class, with So = co, Zone 2 vanishes. There

remain only Zones 1 and 8.

Types of Curves.—To each zone there belongs one, and

only one, “type” of surface curve. The type will be

designated by the sign of the respective zone. Ho, for

example an M> curve will mean, that the particular surface

curve is located in Zone 2, Class M. It will be a surface

curve in a channel characterized by ?/o > Z/ir ; So < <ro- The

curve itself, due to the sub. 2 mark position, will embrace

depths in the limits t/cr < y < yo- Obviously, there can be

only eight possible types of surface curves, one to each zone;

namely, three of the M class, three of the S class, and two

of the C class.

We shall proceed, now, to establish the properties and

features of such curA'es. We shall make use of the specific

energy diagram (Idg. 47) in its relation to the states of

flow; also of the rules governing the change of energy in a

flowing stream, summarized in Eip (2o).

29. Energy Balance in 7+ and Y~ Curves.

—

With
reference to the change of specific energy from section to

section in the direction of flow, one should distinguish

1. Flow with a gain of specific energy.

2. Flow with a loss of specific energy.

3. Flow with constant specific energy.

That or other contingency depends on the position

of the varying depth y with regard to the normal depth ?/o.

With reference to the rules (Eq. [25]), we have in tabular

form:

y > yo, de/dx > 0; e+ curve
'

y < yo, de/8x < 0; e“ curve (62)

y = yo, de/8x = 0; e“ curve

The question whether a particular curve will be a y'^

or a y~ curve, or, in other words, whether and e~ will lead

to dyfdx > 0 or to dyjdx < 0, and vice versa, will depend on

whether the movement under consideration is on the upper

or on the lower portion of the c curve; i.e., whether the
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movement in (jnestion is in tranquil or in rapid state.

In tranquil movtunent, with y > y^r, the energy increases

with the depth, 5e/8y > 0, hence, when

y > yo] 8e/8x is > 0

y < y o', 8e/8x is < 0

which dyjdx >01
leads to dy/dx < 0 j

(63)

we have in the case of y > yo a and in the case of y < t/o

a y“ curve; the signs of be/bx and dy/dx arc i\msiidentic.al.

In rapid state, the contrary is the case. With y < ijcr,

a gain in energy ti'anslates itself into a decrease of depth,

bi/by < 0. Hence, when

y > y o', be/bx is > 0[ which

y < ijo; be/bx is < 0 leads to

dy/dx <01
dy/dx > 0

I

(04)

Thus, in rapid movement, in case of y > yo, we have a ij~

curve, while in case of y < yo the curve is y"*”; the signs of

be/bx and dy/dx are opposite.

With this in mind, it will be easy to determine the sign

of dy/dx in each and every zone.

Zone ]. As this zone lies always abo^•e the normal

depth (y > yo), there will always be be/bx > 0. Hence,

curves in Zone 1 in all classes will be e"*" curves.

As, on the other hand, with y > y^r, the movement in

this zone is always trarniuil, the gain of energy will lead to

an increase of depth. Therefore, in all cases dy/dx > 0.

So, the surface curves in Zone 1 in all the classes will be

of the y"^ type.

Zoyie 3. For Zone 3, which in all cases lies below the

normal depth with y < yo, we always have be/bx < 0.

All curves are of the €“ type. The flow in Zone 3, on the

other hand, with y < y<.r, will be always rapid. Loss of

energy leads to an increase of depth. Hence, in all classes,

dy/dx > 0, the curves being always of the type.

Zone 2. In Zone 2, dy/dx is always negative. In fact

for curve Mi, with y < yo, we have be/bx < 0, so that

Afz is an e" curve. On the other hand, with y > ycr, the
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movement is tranquil; hence loss of energy results in a

lowering surface curve, so that dy/dx <0; a curve.

In the case of curve aS 2 , y > yo, so that he/bx >0; the curve

is e"^. On the other hand, with y < ycry the movement is

rapid; gain of energy requires a decrease in depth, leading to

dyjdx < Oiay" curve. Tabulating, we obtain as Eq. (65)

:

Zone

Class M
2/0 > Vet

So < <ro

Class C
2/0 = ycr

So = Co

Class S
2/0 < Ver

So >

1

y > 2/o, > 0: curve

y > —Tranquil state—Se/Sy > 0

dy/dx > 0—Rising curve: ?/^

2

y < !/o, 5t/6x < 0: c~ curve

y > yen Tranquil state

—

5€/5?/ > 0

Falling curve:

dy/dx < 0: y~

No
curve

y > yoj be/bx > 0: curve

y < xjer, Rapid state: be/by

< 0

Falling curve;

dy/dx < 0: 2
/“

3

y < yo, bi/bx < 0: e“ curve

y < ycr—Rapid state: be/by < 0

dy/dx > 0—Rising curve:

Conditions at Boundaries ,—The following general prop-

erties are common to all surface curves:

1. The curves are asymptotically tangent to the

uniform depth line y^.

2. The curves are perpendicular to the critical

A (66)
depth line T/cr-

3. With the increase of depth, the curves tend to

become tangent to a horizontal pool line.

To demonstrate, we shall make use of the varied flow

equation (Eq. [44])

dy 1 - {Ko/Ky
dx " - (mc/3n)*

In the following it will be assumed, that the values of

both the K = aC\/R and the = a\/oJb function
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continuously increase with the depth, so that for all

values of y, both ^ > 0 > 0- This practically is

no restriction, as all open profiles comply with the above

requirements. The exception would be only in case of

closed profiles, and then only for the very small range near

the top of a conduit, beyond a certain depth (Fig. 61),

which is known to correspond to a maximum discharge

and therefore to a Exceptions of this kind, however,

are of no practical importance so far as varied flow is

concerned.

1. The asymptoticity of the curves to the normal

depth line follows from the fact that with the approach of

y towards y^, the value of 2K approaches 3Ko, which makes

the numerator in Eq. (44) have a limit

lim. (1 - = 0

Hence
lim. {dy/dx)y::^y^ = 0

2. The perpendicularity of the curves to the critical

depth line follows from the fact, that with y = yen 311

approaches Jtlc- The denominator becomes

lim. (1 ~ me/yCiY)y^y,r = ^

which makes

lim. {dy/dx)y^y^^ =
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each particular type. A summary is given in Fig. 62.

May it be said for clarity that while the different param-
eters affect numerical features, the general outline of the

curves remains identical and is completely covered by the

schematic presentation given in Fig. 62. We now shall

review in brief the different curves, making particular

reference to the practical instances where each type may
take place.

1. Class M. Watercourses of Mild Slope; yo > Ver-

Type Ml. A concave rising curve, tangent from, above

to the normal depth line yo and to the horizontal pool

level line 0. This curve is the most important type from

the practical point of view. It is featured in the case of a

backwater curve in a natural river with mild slope in

Fig. 3; in a canal in Fig. 2h; AB' in Fig. 4; and stretch

3-4 in Fig. 11.

Type M2 . A convex falling curve, tangent from

beneath to yo and ending in a hydraulic drop near c. The
curve is featured in Fig. 9, stretch A c

;
in stretch 5-6 in Fig.

11; also in Fig. 2c; and AB" in Fig. 4.

Type Ms. A concave rising curve, leading to a jump near

the critical depth. This type occurs when flow in a

highly rapid state enters a flume of mild slope. It takes

place in a stream below a sluice in stretch 1 -2, Fig. 1 1 ,
at the

foot of a weir (Fig. 8) ;
another instance is a flume (Fig. 63)

,

with a break in the bottom slope from steep (soi > cr) to

mild (so2 < a). The Mz curve lies between the breaking

point a and the foot of the jump jV

2. Class S. Wafercourses of Steep Slope; yo < Per-

Type Si. A convex rising curve, beginning with a jump

and tangent from beneath to the horizontal pool level

0-0. The curve is featured in Fig. 6, stretch 2-A; also in

Fig. 46 and, finally, in Fig. 64, stretch a-b, which represents

a submerged flume with a steep slope.

Type 52. A concave falling curve, usually compara-

tively short and more in the nature of a transition section

between a hydraulic drop and uniform flow. Such is the
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particular case in Fig. 9, stretch cB, and beyond section 7

(Fig. 11). Another case is Fig. 65, a flume with a break

Flos. 63-66.—Flow in a canal with a break in the bottom slope.

in the bottom slope, from steep to steep, with Soj in particular

being greater tha< soi.
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Type S3 . A convex rising curve, also of the transition

type, between a source of highly rapid movement and the

uniform depth line, to which the curve is tangent from
beneath. An example is given in Fig. G6, where the order of

succession of two steep-sloped flumes is reversed by
comparison with Fig. 65. Another instance is Fig. 67,

where flow from under a sluice with the depth in the

vena contracta di, con-

tinues in a steep-sloped

channel, the normal
depth yo being > di.

3. Class C. Water-
courses of Critical Slope;

Vo — Vcr-—With the bot-

tom slope So = (To, this fio. C7.—Example of an Sa type surface curve,

case is intermediary between Cflass M and Class S. Nat-

urally, the Cl curve would be an intermediary between the

concave Mi and the convex Si curves; and the C3 curve an

intermediary between the concave M3 and the convex S3

type. Such an intermediary must be a straight line.

The varied flow equation (46), because of So — oo, becomes

in this case

dy _ 1 - (Kn/M)^

dx
~

_ cTo /HoV
‘rVHV

For y = yo, ffo/o- = 1. For y > yo, <xo/(c is usually

slightly greater than 1 ;
the opposite is the case for y < yo.

The deviation of <ro/cr from unity, however, is usually not

substantial. Now, <toI<f = 1 makes

dy/dx = So (67)

which represents a horizontal line intersecting with the

Vo = Vcr line at the angle a = arc sin So. An example of

the C curves is given in Fig. 68. A horizontal C3 surface

line connects the vena contracta with the foot of the jump ji;

while a horizontal surface Ci line connects the end of the

jump j 2 with level B above the weir. Another instance is
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that of a flume with a critical bottom slope emptying into

a pool (Fig. 696), or into a mild-slope channel (Fig. 69a).

In this last case the point of intersection of the hori-

zontal C line with the normal depth lines yo would seem to

feature a break of continuity in the junction points a and c.

Also, when viewed in the light of the general properties of

surface curves as specified in (66), there is an apparent

inconsistency between the fact that at the junction point.

where y is simultaneously equal to j/o and to ycr, the surface

curve should be simultaneously perpendicular and tangent

to the yo = ycr line. This contradiction finds its analytical

expression in the undetermined value of dy/dx which in

accordance with Eq. (44) for y — yo = Vc becomes
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dy/dx =

The physical essence of the phenomenon, however,
becomes clear, if one were to follow the formation of a
junction point c in Fig. 69 in its evolution out of a case of

flow, as presented in Fig. 68. In fact, suppose that level B
were to be gradually lowered by reducing the height of

Fio. 70.

the weir. The lowering of the level from B' to B", B'", etc.,

in Fig. 70 would result in the jump receding stream down-

wards, from j\ to j'\
, /"i etc., the height of the jump

being each time reduced. The vertical distance between

the Cl and the Cs line would become smaller and smaller,

until, with B reaching Be, the lines would merge, the jump

at that becoming infinitely small. The intersection point

c in Fig. 69 corresponds, therefore, to the limiting case of a

jump infinitely small in height.



CHAPTER VIII

INTEGRATION OF THE VARIED FLOW EQUATION

31. Introductory. Historical.—By separating the varia-

bles in Eq. (48), one obtains

^ l-/3(Ko/K)^, . , ON dy
sodx

j
dy dy -|- (1

j
(<>8)

The length of the reach /o.i = X 2 — otl ^Fig. 71) between the

two sections, the depths in which are respectively ^2 and

2/1, is

t'2,1 X2 — Xi
if/ N .

(1 “ 1

SoL
'-^*

X. (M/Mo)- - ij

Fig. 71.—The length of a reach Zz,

between integration limits yi and y\.

With the elements of flow

given, in the sense of Arts. 21

and 22, the expression under

the integral a

function of y only and may
be designated as 0(2/). It

may be computed point by
point and drawn as a curve.

Fig, 72. The value of the

integral iO(y)dy is the
•' 2/,

shaded area in Fig. 72 ;
its numerical value may be computed

by any of the usual processes of approximate integration,

analytical or graphical. With the value of the integral

known, the distance h,! = X2 Xi is determined from Eq.

(69). The method as outlined is general and is applicable

without any limitations whatsoever.

Approximate integration, on the other hand, either

graphical or analytical, is always cumbersome and justly

82
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unpopulaFo It is natural, therefore, that from early days
methods wore sought by which the task of figuring out a
surface curve could be reduced to some simple analytical
procedure. Since Dupuit (1848) the preferred method has
been to substitute for the actual

canal cross-section some ''ideal-

ized” profile of simple form
which, with other simplifying

assumptions, would reduce the

integration of the equation of

varied flow to a quadrature.

Dupuit and later Rtihlmann and h
" - ~ *

BreSSe chose as such idealized 72.—Graphical representation

profile that of a rectangular

canal of great width (Fig. 73).

On the other hand, Toikmitt, who was particularly inter-

ested in natural watercourses, selected a parabolic profile

V2
of the integral jO{y)dy

(Fig. 74). The above authors assumed, moreover, in their

cases a constant value of the Chezy friction factor C
throughout the whole range of depths. To facilitate

r 1 1 1 1 1 1 1 1 -—
>i

- - “ ^

*

7-

Flu. 73.

practical calculations special Tables were prepared giving

the numerical values of the quadrature in question.

The main defect of these methods lies obviously in

the fact that the idealized cross-sections have little in com-
mon with the cross-sectional forms which the engineer deals

with in actual practice. Moreover, there were no means to

judge of the degree of approximation and error inherent

in the procedure.

About 1912, the author, inspired in general by the work
of Bresse and Toikmitt, devised a method which allows us

to approach the solution with much closer precision, and
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which moreover permits us to estimate the magnitude and
character of the possible errors.

32. The Hydraulic Exponent.—The method suggested

by the author is based on the empirically established fact,

that the conveyance function 3K = aCy/R, within a

reasonable range of depths, follows sufficiently close the

exponential relations

:

W{y) = (i-C~R = const,

We call the exponent ii in Eq. (70) the hydraulic exponent.

Obviously it is another char-

acteristic of a cross-section, to

be added to those summarized
in Art. 21. Equation (70), as

mentioned, is approximate.
Some cross-sections comply
more, others less. However, the

probing of cross-sections of the
Fig. 74.

most different forms and nature confirms one in the view
that Eq. (70) holds remarkably well. In fact, one be-

comes impressed by the absence and the unimportance of

the deviations from the law,

rather than by the departures

and exceptions to the rule.

To determine the value of

n, plot M = aC\/R in logarith-

mic scale. By drawing a

straight line (Fig, 75) to follow

the points, one obtains the value

of the exponent as twice the

value of tga. Examples for a
series of canal cross-sections

are given in Plate II.

The lines, as drawn in Plate

Fig. 75.—Logarithmic plotting of
the conveyance curve.

II, give the average value of n for the cross-section as a
whole. In most practical cases one has to detern^ine tha
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surface curve only within a certain limited range of depths.

From Eq. (70), we have for any depth

^ o Log (H[y]/H[yo])

Log iy/vo)
(71)

Applying Eq. (71) to the limiting depths ya and yt, of the

range, one finds the limiting values of and nj,. Usually

they will be sufficiently close to assume an average. If, by
chance, greater precision is advisable, the range of depths in

question can be subdivided
;
however, as practice shows this

is scarcely ever required.

It can be easily shown, further, that the cases treated

by Bresse and Tolkmitt constitute particular cases of Eq.

(70), corresponding respectively to a hydraulic exponent of

n = 3 and n = 4.

Rectangrilar Section of Great Width (Bresse).—The term

is applied to a cross-section (Fig. 73), the width of which

is sufficiently large compared to the depth to make the

hydraulic radius

ii; = « = = y(l -
p b + 2y b + 2y)

^

Assuming further a constant value for the friction factor

C, one obtains

K = aC\/R == const.*

Hence
(K/Ko)" = (y/yoy and n = 3 (72)

Parabolic Section (Tolkmitt).—Assuming in a parabolic

section (Fig. 74) the width sufficiently large compared to the

depth, so that p = one has

b = const. \^y,a = %b • y = const.* j/^;

R = alp = '^%y, assuming a constant value for C,

3K = const. *
2
/^

Hence

(M/Ko)' = (?//?yn)^ = 4 (73)
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Correction for a Varying Friction Factor C.—For this

purpose an exponential expression of the friction factor is

best used
C = CJi^ (74)

as recommended, for example, by Manning:

C = CoR^^ = ^R^^ (75)
n

where l/n is the reciprocal of the Ganguillet-Kutter friction

factor.

It appears, however, that better compliance with experi-

mental results may be obtained

by using instead of a constant

exponent, as used by Manning, a

varying exponent value, which

increases with the roughness of

the walls. Thus, for canals in

earth or of gravelly soil, the value

of p has been found to lie between

0.20 and 0.25. If, instead of a constant C, one were to make
in the Bresse and Tolkmitt equations

c =

the hydraulic exponent instead of n = 3 and n = 4 would

become n = 3.5 and n = 4.5, respectively. This would

correspond to the solution suggested by Rchaffernack.*

Trapezoidal Canals. The Limiting Values of n.—With
regard to trapezoidal canals, in most practical cases the

hydraulic exponent will be found to be between 3 < to < 4.

The surface curve, therefore, will be intermediary between

the solutions obtained from the Bresse and the Tolkmitt

Tables, respectively.

The largest possible value of to is that for a triangular

canal (Fig. 76). The geometrical elements being similar,

the cross-section is proportionate to y^, and p and R are

proportionate to y, which makes K = const. C • y^ or,

with Eq. (74), W = const. (76)

*See Appendix L
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With p varying between 0.15 and 0.25, the maximum value

of the hydraulic exponent for a triangular section becomes

n = 5.3-5.5 (77)

The smallest value of n corresponds to the case of a

very narrow rectangular section (Fig. 77), the

width of which is very small compared to the

depth. In such case we mayput approximately

:

p = 2y + b = 2y(l + = ~22/;

R — = const.
2y 2

R constant makes C constant, hence

K = const.
2/; n = 2 (78) fiq. 77 .

Obviously, n = 2 and n = 5.5 are extreme values. They
seldom occur in practice. However, a deep canal with

vertical walls oftentimes features a hydraulic exponent

Fio. 78.

below n = 3 ;
while, on the other hand, a trapezoidal canal,

the bottom width of which is small in comparison with the

depth (Fig. 78), may give n = 4.5 and over.

33. The Varied-flow-function Tables.—With

m/Mor = (y/yoy
Eq. (68) becomes

MX = # + (1 -

Designating

y/yo = V, so that dy = yody
we obtain

(79)

(80)

(81 )
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As mentioned previously, the value of = So/a does not

change substantially and, moreover, the change is usually

gradual and slow. So one may subdivide the integration

range into intervals going by the depths, and assume for

each depth interval a certain constant average value of

1 — Within each such interval, 1 — 13 becomes then

an integration constant.

Assuming now, with reference to Fig. 71, that the depths

yi and 2/2 lie within an interval for which an average con-

stant value for 1 — jS has been assumed, and integrating

Eq. (81) between the limits yo and ^ 1 ,
the length of the

reach Zo.i (being the distance between the two sections 2

and 1, the depths in which are respectively 2/2 and yi) will be

In this equation, in accordance with Eq. (80), the

integration limits 2/1 and 2/2 are substituted by rji = yilyo]

= 2/2/2/0.

The problem has thus been reduced to a quadrature.

Designating the value of the integral

= const. - B{ri) (83)

and assuming that the values of B{ri) for the different y are

known, we obtain:

Xt- Xi = k,i = ^“[(772 - Vi) - (1 - - B{rii))] (84)

By designating

r; - (1 - 0)B(v) = n(7j) (85)

Eq. (84) may be presented in the form

X2 - xi = = |-"[n(,72 ) - n(77i)] (86)
oo

To make Eq. (84) or (86) usable in actual practice, the

values of Biy) have been computed for a series of expo-

nents, covering the whole practical range. The respective
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J5(r;) values are given in table form at the end of the book.

In figuring the 5(r?) values, the integration constant in

Eq. (83) was assumed const. = 0, so that the table figures

represent the numerical value of

We call the B{ri) function (Eq. [87]) the varied flow

function, and the tables will be referred to accordingly.

For the range of n from 2.8 to 4.2, which is the most

important, the B{r]) values have been computed for lines

of exponents at an interval of 0.2. Beyond n = 4.2, the

exponent intervals are larger. Wherever the exponent

value, inherent in a particular case, falls in between the

table lines, a simple interpolation allows us to obtain the

intermediary solutions with sufficient precision.*

Example 7

The particular purpose of this example is to familiarize the

reader with the use of the varied-flow-function tables as well

A

Fio. 79 .—Layout of a canal for Example 7 . The end of the curve at point B
corresponding to = 1,001 or 1,01 170.

as with the general technique of varied flow computations.

Recourse, therefore, is taken to the simplest case of a rectangular

canal of great width (Fig. 73).

* The methods used for computing the Biri) tables and other particulars

are given in Appendix II.
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The canal (Fig. 79) is laid with So = 4:^%o ;
the roughness

of the walls is taken to correspond to G.K., n = 0.025. Uniform

flow in natural condition occurs with 2/0
= 4 ft., corresponding

to a discharge per unit width of

q = Co?/o'^‘^a/so = 76 X 4^2 x \/4 • 10-^ = 12.2 cu. ft. per second.

It is assumed, further, that the level in A is raised by 2^ = 6 ft.,

making ?/« = 10 ft.

Question 1. Determine and trace the varied flow surface

curve.

First, one should establish the type of flow. One of the

depth parameters, 2/0
== 4 ft., is given; the other, the critical

depth, is

Vcr = ^qy~g = \^\2.2y^2 = 1.66 ft.

With 2/0
= 4 ft. > ijcrj flow is of the M class. With t/a > 2/o,

the curve is of the M 1 type—a backwater curve in a mild-sloped

channel.

To apply Eq. (84), one should determine:

a. The value of the hydraulic exponent a.

h. The 1-/3 curve.

Exponent n .—For a unit width, with R = the conveyance

is K= C * Accordingly

Table VI

y
1

1ft.
1

1.5 ft. 2 ft. 3 ft. 4 ft. 6 ft. 10 ft.

c 55.00 61.00 65.00 71.00 76.00 81.0 88.0

K* 0.55 1.12 1.84 3.70 6.08 11.9 27.9

* In units of 10^.

Logarithmic plotting (canal type E in Plates I and II) gives tan

a = 1.70 and n = 3.40.

The 1-/3 Curve .—For a canal of large width, p/b = 1; hence,

the critical slope (Eq. [43]) is simply cr' = g/C^, the values of

which are given in Fig. 40. The normal critical slope {a for

2/0
= 4 ft.) is

<ro = 65.60%o; fio = 8o/(to = 4/55.6 = 0.072; 1 - /3o = 0.928

For other depths, /3 = 0.072^> which gives
(T
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Table VII

y 2 ft. 3 ft. 4 ft. 6 ft. 10 ft.

<T in 76.2 63.9 55.6 49.0 41.5

<ro/o- 0.730 0.872 1.000 1.130 1.340

^ = 0.072- 0.052 0.063 0.072 0.082 0.096

Ui
1

0.948 0.937 0.928 0.918 0.904

The curve is traced in Fig. 80. For integration purposes,

the total depth range, from 4 to 10 ft., is divided into three

1.00

0975

0 96

0.925

0.90

Ranges of
conbh

sefecied avera^
a;/_ values

je

.

on-p
?2-- < - -/-

1

^—

r

'

5 IP-4 6

Depth of Flow

Fig. KO.—Selecting average constant values of 1 — ^ for depth intervals in
I^xamplo 7„

portions, each corresponding to an average constant value of

1-/S = 0.91, 0,92, and 0,93.

Integration Limits. The Length of a Curve ,—The lower

limit (in the direction of the flow) is given through = 10

ft. For this limit rja — Va/yo — = 2.5. The upper

limit is the ^^end^' of the backwater curve. Strictly speak-

ing, as the curve approaches the normal depth asymp-
totically, its length is infinite. In practice, however, one

assumes the curve as ending in a certain section {B

in Fig. 79), where the difference between the varied flow

depth y and the normal depth line 2/0 dwindles down to a

certain assumed small value. Usually such difference is

fixed in relative terms, to be for example 1 per cent or
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0.1 per cent of i/o- Accordingly the end of the curve is

determined by 7? = Vh/yo = 1.01 or 77
= 1.001, respectively.

Assuming for our example, rf = 1.001, we obtain the integration

limits

:

ya = 10ft;77« = = 2.5

Vb = 1.001; yb = 4.004 ft.

Integration Procedure .—The expedient way is to di\dde

the integration range into a series of intervals, going by the

depths, and then to determine, by means of Eq. (84) or

Eq. (86), the length of the reach, corresponding to each

depth interval.

For example, in our particular case, the depth range may be

divided as in Fig. 81, making the successive depths 2/
= 10 ft.,

8 ft., 7 ft., . . . ; 4.08, 4.04, and finally 4.004 ft.

Remark: It will be found expedient to designate a section by
the value of the depth in that particular section. So section 5

means a section in which y — b it. The distance between two

successive sections will be designated by In.m] the first of these

marks will correspond to the section which is lowest, in the direc-

tion of the flow. So ^6,5 will mean the distance x^~x^ between

section 6 and section 5, with section 6 lying stream downward of

section 5.
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In applying Eqs. (84) and (86) to an interval between tw'o

sections with the depths t/„ and ym (Fig. 82), keep in mind
that Eq. (82) is established under the assumption of Fig.

71 ;
namely, that the depth, noted as y^, was situated

downward of yi in the direction of the flow. Accordingly,

in Fig. 82, yn with rjn = yn/Uo will be the upper limit and

ijm with 7]m = llmlyo thc lowcr limit of the integral in Eq.

82. Thus, in Eqs. (84) and (80) 2/„

corresponds to y-^; and y^ to yi.

Remembering this simple rule, use

the varied-flow-function tables and carry

out the computations strictly algebrai-

cally. If the location of the depths as

in Fig. 82 was assumed correctly, the

distance ln,m will result from Eq. (84)

as positive. If, by any chance, the dis-

tance were to come out negative, it would

mean that the relative position of the

depths ;(/„ and y„ was not assumed correctly, and that the

reverse position was the case, meaning that ?/„ is to lie stream

downwards of i/„.

By adding the successive partial distances I, beginning

from the initial section, one obtains for any section m the

total distance Lm and, thus, the location of the particular

section with regard to the initial section. For example,

in Fig. 81, the initial section being naturally section a,

Ls will designate the distance of the section with the depth

7/ = 5 ft. from section a.

The distance from the initial section to the end of the

curve shall be the total length of the curve and will be

designated by Lq.

Returning to our example, compute the distance Zio.s between

7/a = 10 ft. and 7/ = 8 ft.

The exponent, n = 3.4 in our case, corresponds directly to a

table line; therefore, B(r}) may be taken straight from the tables.

We have, with reference to Fig. 71,

2/2 = 10 ft.; ^2 = 1% = 2.5; B(2.5) = 0.047

Fio. 82 .
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y, = s ft.; rj, =: 2.0; B{2.0) = 0.082

For the interval 10-8, the value of l-jS, from Fig. 80, is 0.91.

Further, yo/so = 4/4.10“^ = 10,000 ft. Applying Eq. (84)

Zio.8 - 10,000[(2.5 ~ 2) - 0.91(0.047 - 0.082)] =

10,000[0.5 + 0.032] = 5,320 ft.

Repeating the procedure for the other intervals, we obtain:

Table Vlfl

( 1 ) (2) (3) C4)
j

(6) (6)

1

( 7 , (8) (9) ( 10 )

y V = v/vo
B{t}) with

77 =• 3. 4
'

1 At, MHri) -( 1 -^) A /1 All 1 L

10.000 2 500 0.047 + 0

0 500 0 035 0 032 0 532 5,320

8.000 2.000 0 082 5,320

cZ)
0 250 0 034 0 031 0 281 2,810

7.000 1 750 0.116

0 250 0 001 0.055 o o Or 3,050

8,130

6.000 1 500 0 177

0 250 0 130 0.125 0 375 3,750

11,180

5 000 1 250 0 313 c 14,930
a> 0 150 0 217 0.200 0.350 3,500

4.400 1.100 0.530
c

0 050 0.193 0. 177 0.229 2,290

18,430

4 200 1.050 0 . 723

0.030 0.259 0.251 0.281 2,810
20 , 720

4.080 1.020 0.982 : 23 , 530
CO
0> 0 010 0.200 0.186 0.196 1,960

4.040 1.010 1.182 .
c

0.009 0 674 0 026 0.635 6,350

25,400

4.004 1.001 1 . 856
: 31,840

In the above table, Atj ((^ol. 5) is the difference between the

neighboring values of tj (Col. 2), so that Arj = rj2
— in Eq. (84).

The same applies to (Col. 6). Column 7 is the multiple

of Col. 6 by Col. 4, taken in accordance with Eq. (84) with a

minus sign. The result being positive, the figures of Col. 7 are

added to those of Col. 5, giving in Col. 8, AIT = n(T? 2)~ n(7?i), see

Eq. (86), which is identical with the value of the big parenthesis in

Eq. (84).

The lengths of the reach I between the respective sections

I = —An are obtained by multiplying Col. (8) values by yo/so =*

So

10^. Column 10 gives the total distance L of the particular
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section from the initial section corresponding to ?/
= 10 ft. For

any depth, L (Col. 10) is the sum total of all preceding reach

lengths I (Col. 9). The surface curve y = f(x) is traced in Fig.

83.

L
* .

'

0 - End of backwater
1 curve (n ‘ 1.001)

Lq * J/ o^U

S) «7) f V (S; (I ))

a

--
—

1

1

(

1

1

1

i

>> ya\W
\

1

1

Y

35,000 30,000 25,000 20,000 15.000 10.000 5000 0

L ^ Distances from Initial 5ec fci)

Fig. 83.—Tracing of the Mi type backwater curve in Example 7, (Question 1.

Question 2. Determine the depth y at a distance L — 12,000

ft. from section a.

This problem is the reverse to that treated in Question 1 . There

being given L and ?/2 (Fig. 84), which means knowing 112 = V 2

— (1 *- P)B{rj 2) (Eq. [86]), the solu-

tion lies in determining the particular
|

'^''alue of 7/1 which in

111 = 7/1 — (1 — p)B{vi)

will satisfy the equation

Hi = IIj - L-
2/0

(88)
Fig. 84.—Determining the

depth in a given section.

In applying Eq. (88), one should be certain to operate within

an interval, where 1-/^ is an integration constant.

So in our case, knowing that Le = 11,180 ft., it will be expedient

to make 2/2 = 6 ft., and to determine the depth in a section (Fig.

85) situated at a distance I = 12,000 — 11,180 = 820 ft, above

section 6.
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With 2/2 = 6 ft.:

112 = n(1.5) = 1.5 - 0.92X0.177 =
1.337,

and

= 1.25^5

The solution now lies in find-

ing the value of r), which will make

= rji - 0,92BM = 1.255

By tentative probes, always using the tables with n = 3.4,

we find:

Biv,) Hi = ,1 - 0.92B(,,)

1.46 0.191 1.284

1.44 0.199 1.257

1.42 0.208 1 . 229

1.40 0.217 1.200

The values of n(r;i) are plotted in Fig. 86. From the graph we
obtain the sought r/, which makes 11(77) == 1.255, as r; = 1.438 and,

accordingly, 2/1 = ^i2/o = 1.438 X 4 = 5.74 ft. The outline of

the 11(77) curve (Fig. 86) indicates that simple arithmetical

interpolation could be expediently used.

34. Simplified Solution. The /? = 0 Curve.—Already

Dupuit pointed out that in slow-flowing streams the value

of v^/2g (Eq. [17]) is small and that therefore, in figuring

out backwater curves, the possible effect derived from

restored kinetic energy may be reasonably omitted.

In fact, in the preceding example the original velocity of

uniform flow Vq — 12,2J4: = 3.05 ft. per second is retarded

to Va = 12.2/10 = 1.22 ft. per second in section a, resulting

(3.05)2 _ (1^22)2
in a “release’’ of a velocity head of

2g

0.122 ft., or a head of in. over a distance of more than

6 miles and a total surface fall, from b to a, of nearly 7 ft.

Moreover, one should bear in mind certain physical

features characterizing retarded flow in general. As
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mentioned before, retarded, i.e,, divergent, flow is accom-
panied by increased turbulence, with the result that only

a portion, and often only a small portion, of the kinetic

energy head, which is theoretically released through

retardation, is actually regained. Under all circum-

stances, the actual gain in

restored kinetic energy head

over a long stretch of a spa-

cious canal is most uncertain.

On the other hand, as will be

seen later, the Dupuit sug-

gestion substantially simpli-

fies the figuring.

With regard to Eqs. (84)

and (8(5), to omit the effect

of restored kinetic energy will

mean making jS = 0 ;
in other

words, neglecting the term

d / \
j-f—

)

in Eq. (17) translates
dx\2g/ ^ ^ '

tion 77
- 0.92/?(r;) = 1,255.

itself into dropping in the parenthesis (1 — /3) of the

final equation, so that the simplified equation reads

:

7 yOr/
12,1 — X2 Xl = -“[(^72

^0
Vi) - IB{v2) - Birji)^] (89)

For proof, one should simply follow the evolution of

Eqs. (82) and (80) in their development from Eq. (21)

through Eqs. (40) and (48) and take notice how the

b .

original member — which reflects the change of the

d/v^\
kinetic energy head ^ finally evolves into ;8(3{/Ko)“.

Designating

r, - B(v) = H-n) (90)

one obtains Eq. (89), as

h,i = Xi - Xi = f^['F(7;?)
- €>(tji)]

So
(91 )
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To facilitate computation, tables of $(77) = rj — B{ri)

have been prepared for the range of exponents from n = 2.8

to n = 4.2. These tables are simply derived from thejB(r?)

tables and constitute a complement to the latter. We shall

designate curves obtained by this simplified method as

“d = 0 curves.”

Among all the possible types of surface curves, it is

curve Ml which occurs most frequently and figures most

prominently in practical engineering design. In the great

majority of cases, when dealing with an Mi curve, the

simplified method, omitting the effect of restored kinetic

energy and leading to a /3 = 0 curve, is justified and recom-

mended; particularly, as in most cases it adds to the margin

of safety by making the surface curve somewhat longer.

It should be clearly understood, on the other hand,

that this simplified method is applicable to the Mi curve

only. On the falling M2 or S2 curve, the velocity head

increases in the direction of flow and thus potential energy is

absorbed for increasing the kineticity of flow. With regard

to the other ?/+ curves, * one should bear in mind, that the

restoration of potential energy plays a decisive r61e in

causing the particular forms of such curves. Thus the

Si curve owes its convex form and its general outline to the

very fact of kinetic energy being restored. As to the Mz
and the Sg curves, the very essence of their nature lies

in the fact of a rapid and energetic release of kinetic energy

from a state of originally highly kineticized flow.f

In fact, even in the case of Mi curves, the simplified

method should be used only when the kineticity, expressed
* The importance of thorough experimental research in the domain of

varied flow, with the particular purpose of unmasking the process of restora-

tion of kinetic energy in open divergent streaming is strongly emphasized.

Another most important object is the comparative value of friction losses in

mild and rapid flow.

t The ludicrous results at which one may arrive by neglecting to take

into consideration the effect of restored kinetic energy in cases where such

restoration is called upon by the very nature of things to play a decisive r61e,

are demonstrated for example by the unfortunate treatment of falling

curves and subcritical flow, given in the at one time standard “Hydro-
mechanik“ of Rtlhlmann.
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by the kinetic flow factor (Art. 27), is actually low. As a

matter of fact, kineticity is reflected in the value of /3.

Thus, when yo = Ihr, so that normal flow is critical, So = vo

and |8o= 1- A mild-sloped channel is thus featured by /3o < 1

and 1 > 1 — > 0. On the contrary, a steep-sloped flume

makes /3o > 1 and (1 — /3) negative. For steep slopes, more-

over, 1 — /3 may become many times the multiple of unity.

It is left to the flair of the designing engineer to pass

judgment as to when and where the simplified method may
be judiciously applied.

Example 8

Assuming the circumstances of Example 7

:

Question 1. Determine and trace a /^ = 0 surface curve.

The figuring in accordance with Eq. (91) is assembled in Table

IX.
Table TX

y V n = 3.4
A4> 1

1

L

10.000 2.500 2.453

0.535 5,350

0

8.000 2.000 1.918

0.284 2,840

5,350

7.000 1.750 1.634

0.311 3,110

8,190

6.000 1.500 1.328

0.386 3,860

11,300

6.000 1.250 0.937

0.373 3,730

15,160

4.400 1.100 0.564

0.237 2,370

18,890

4.200 1.050 0.327

0.289 2,890

21,260

4.080 1.020 0.038

0.210 2,100

24,150

4.040 1.010 0.172

0.683 6,830

26,250

4.004 1.001 0.855 33,080

Remark: For ^ = 1.01, and below, the value of ^{rj) is negative.

Remember the rule that computations should be carried out

strictly algebraically.
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The curve is so close to that of Fig. 83 that it would be difficult

to trace them together without confusion. The total length of

the 0 = 0 curve is about 4 per cent in excess of the curve as

computed in Table VIIL
Question 2. On the = 0 curve, as above, determine the

depth ?/ at a distance of 12,000 ft . from the initial section.

It is in this case, analogous to Question 2 of Example 7, that the

particular advantages of the simplified method become apparent.

In the first place, with 0 = 0, one is no more bound by the limits

of an interval, for which 1-0 must be an integration constant.

Therefore, in applying Eq. (91), we make

Vi = Va = 10 ft., with 7/2 = 2.5 and 4‘(2.5) = 2.453

while the solution lies in finding an 771, which would satisfy the

relation

In our case, we have
yo

2.45.i
10000

The tables with n = 3.4 give as nearest values

(92)

, = 1.44 4> = 1.241

r, = 1.46 ^ = 1.259

Interpolating arithmetically (proportionate parts) we have

Vi = 1.44 + (1.253 - 1.241)

(1.259 - 1.241)

The sought depth

yi = 1.453 X 4 = 5.81 ft.

(1.46 - 1.44) = 1.453

A comparison with 5.74 in Question 2, Example 7, shows

a difference of about in.

36. Intermediary Exponents.—In Examples 7 and 8

the value of the hydraulic exponent taken from Plate II

was that of a table line with n = 3.4. Naturally such is

mostly not the case. Even for the canal in question, if a

more precise value of n was sought, for example for the

particular range of depths between i/o = 4 ft. and ya = 10

ft., Eq. (71) would give

(3K10/K4)
” “ ^ Log 10/4

Log
= 2

270.8

60.8 0.6601

^0.3979
3.32

Log 2.5
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If n = 3.32, which is intermediary between the table lines,

were to be used, recourse must be taken to interpolation.

To gain a practical appreciation of the degree of precision

gained, we shall first compare the solutions, obtained from
using the neighboring table lines n = 3.4 and n = 3.2, between
which the precise solution with n = 3.32 lies.

Fio. 87.—Illustrating the effect of the hydraulic exponent on the values of

BGi).

Using a = 0 curve, and limiting the comparison to a few

characteristic points, we obtain the result as shown in Table X,

page 102.

The last column shows the relative difference of the distances

L Evidently, if in first approximation, a solution with any of
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the two table lines (n = 3.4 or n = 3.2) were adopted, the

mistake would not exceed 2 to 3 per cent.

Table X

V V

n « 3.4 n = 3.20
Differ-

ence,

per cent
A<l> i i'iv) 1

10 000 2.600 2 453 2 438

1 130 11,300 1.149 11,490 1.8

6.000 1 .500 1 . 323 1 289

0.759 7,590 0.789 7,890 3.9

4.400 1 . 100 0 564 0 499

0.736 7,360 0 780 7,800 5.8

4.040 1 010 0. 172 0.281

0 . 683 6,830 0.726 7,260 6.1

4.004 1.001 0.865 1 007

Zl « u
!

= 33.080 Lo =

1

= 34,450 4 1

Graphical Interpolation .—In Fig. 87, curves of B{i]) for a series

of have been drawn as functions of the exponent n. These

curves allow one to determine graphically the intermediate value

of 5 ( 77 ) for n = 3.32 resulting in:

Table XI

y V
BM

fovn = 3.32

= V — BM
n = 3.32

A<I> 1

10.000 2.500 0.052 2.448

1.138 11,380

6.000 1.500 0.190 1.310

0.772 7,720

4.400 1.100 0.562 0.538
— 0.753 7,630

4.040 1.010 1.225 0.215
— 0.697 6,970

4.004 1.001 1.913 0.912

33,600

Arithmetical Interpolation .—Proceeding by arithmetical inter-

polation and making ^( 7;) with n = 3.32, the proportionate

intermediary between the adjoining table lines, one obtains:
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Table XII

V

(u) For n « 3.32

COII CO11 n = 3.32 A<I> 1

10.000 2.500 2.438 2.453 2.447

1.138 11,380

6.000 1.600 1.289 1.323 1.309

0.771 7,710

4.400 1.100 0.499 0.564 0.538
— — — 0.754 7,640

4.040 1.010 0.281 0.172 0.216
— - 0.701 7,010

4.004 1.001 1.007 0.855 0.917

1

33,640

The difference between the distances in Tables XI and XII is

negligible. The example proves the rule, well substantiated by

experience, that arithmetical interpolation (using proportionate

parts) is a procedure sufficiently precise for general engineering

practice



CHAPTER IX

COMPUTATION PROCEDURES

The solving of problems relating to varied flow will be

illustrated in this chapter by practical examples. The

cases as presented are distinctly elementary and are

conceived primarily with the idea of familiarizing the

reader with the computatioir procedures; In their entity,

nevertheless, the problems selected indicate the ways of

approach to many problems of actual practice and thus

serve as an introduction to the more complex cases treated

in Part 11. Also each and every type of surface curve is

given separate treatment. As a preliminary remark it

may be useful to emphasize once more, as a feature which

repeatedly occurs in computations dealing with varied flow,

that in such computations the discharge may be substituted

by the equivalent normal depth.

In a given canal, meaning a canal of given cross-section

and of given bottom slope So, the dischai'ge Q and the depth

yo of uniform flow are connected by the relations

Q == K(?/o)V'so; 3K(?/o) = Q/Vso

where 3i(?/o) is the conveyance of the canal cross-section

at the stage yo. For a series of discharges Qi, Qi, Qz,

. . . we have thus a series of uniform depths yon 2/ 02 ,

yoz, . . . connected with the respective discharges through

H(yoi) = Qi/Vsoi 3((yo2) = Q-t/^/so] Qic.

Whenever a discharge Qm is used to characterize flow

in a canal, the equivalent normal depth yom may be used

as a substitute. It will be found from the following

examples that, generally, the value of the discharge as

104
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such does not enter into computations and is represented

by the equivalent normal depth.

36. The My Curve.—Throughout this article the simpli-

fied method, using the “0 = 0 ” curve and Eqs. (91) and

(92), is applied.

Example 9

A canal, Type A (Plate III), is laid between two reservoirs A
and B (Fig. 88/1) at a distance of L = 2 miles; So =

G.K. n = 0.025; L.so = 10,560 ft. X 4 • 10-^ = 4.224 ft.

Water is fed into the canal by means of a regulating sluice.

The outflow at B is unobstructed. The canal is designed to

carry Q = 2,140 cu. ft. per second in uniform flow, with yo = 8 ft.

The respective

Kfj = 2,140/-\/4 • 10““ = ~1,068 • 10^ cu. ft. per second

(see Table related to Plate III)

Obviously in uniform flow yi = 7/2 ~ 8 ft.

It will be assumed now that the stages yi and ?/2 may change.

Also, that the discharge may differ from Q = 2,140 cu. ft. per

second. The problem will be to determine in each case how
the change of yi and

2/2 ,
or of Q, respectively, will affect the

other elements of flow.

In the computations below, when using the varied-fiow-

function tables, an average value of the hydraulic exponent

n = 3.6 will be applied.

Question 1. The discharge remaining Q = 2,140 cu. ft. per

second, stage B is changed, so that 1/2 = 12 ft. Determine the

depth yi in section 1.

With reference to Fig. 88/2, flow now will be varied, the

surface curve being of the Mi type. The discharge is represented

by the normal depth yo = 8 ft. The circumstances in section 2

are and are characterized by 772 = = 1-5; ^(>72) = 1.351.

The stage yi at section 1 is connected with stage 2/2 by Eq. (92)

Hvd = -J>(’72)
- — = 1.351 - = 0.823

yo o

From the ^(ri) tables we find the value of 77 ,
corresponding to

$(77)
= 0.823 to be 77 = 1.174, which gives yi

— 1.174 X 8 ft. =

9.39 ft.
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Question 2. Assuming the discharge remaining constant and

equal to Q = 2,140 cu. ft. per second while level B changes

(I)
0

between 2/2 = 8 ft. and 2/2 = 12 ft., compute and draw a curve

representing the relation between the changing stages 2/1 and
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The solution lies in applying the procedure of Question 1 to a

series of points. The computations are gathered in the following

table.

Table XIII

( 1 ) (2 ) (3) (4) (6 ) (6 )

2/2
00II ^(172)

Hrt^) =

Hm) - 0.628
Vi Vi = VI xs

12 1.500 1.3510 0.8230 1.1740 9.39
11 ‘ 1 . 375 1 . 1785 0.6505 1.0950 8.76

10 1.25 0.9770 0.4490 1.0495 8.40

9 1.125 0.7275 0.1995 1.0210 8.17
8

TTnifnrm flow. Q

The curve representing the relation between the stages b
drawn in Fig. 89.

Fig. 89.

Question 3. Assume that the discharge is reduced to Q =»

1684 cu. ft, per second, while the stage in section 2 remains to

be 2/2 = 8 ft. Determine the corresponding stage y\ at section

1 .

The discharge Q = 1,684 cu. ft. per second corresponds to a

conveyance K = l,684/\/4 X 10^ = 842 X 10*, which (Plate

III) corresponds to the normal depth 2/0 = 7 ft. Accordingly,

in Fig. 88/3, the discharge is represented by the line of uniform
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flow yi) = 7 ft. For section 2 we have as given 1/2 = 8 ft.;

V2 = % = 1.143. When determining 4>(1.143) take propor-

tionate parts between table values for 4>(1.14) and <J*(L15). Thus

4>(1.143) = 0740 + ^io(0.766 - 0.740) = 0.7478

The stage in section 1 is determined by

^ivi) = Hvi) - = 0 7478 - -
'7- = ^-748 - 0.603 = 0.145

?/() 7

To find T/i, interpolate between the table values

4^(1 .02) = 0.120 and 4>(L03) - 0.240

Using proportionate parts, we find

VI = 1.02 +
Accordingly,

(1.03 - 1.02)(0.145 - 0.120) _ _
(0.240 - 0.120)

2/1
=

. yo = 1.022 X 7 = 7.154 ft.

Question 4„ Assume, now, that it is the stage in section 1

below the sluice which is maintained constant at y\ = 8 ft.,

and find the stage y^ corresponding to a flow of Q = 1,684 cu ft.

per second (Fig. 88/4).

We have now for section 1

2/1 = 8 ft.; vx = 1.143; ^{vO = 0.748

The stage at section 2 is determined through

= $(,,) + = 0.748 + 0.603 = 1.351
2/«

which gives

Vi = 1.50 and yy = 1.50 X 7 = 10.5

Question 5. Assuming with a flow at 2,140 cu. ft. per second

that initially yi and y^ were both 8 ft., determine the highest

stage in section 2, until which level B may be raised without

appreciably influencing the stage at section 1.

Recourse in this case has to be taken to the definition

of the ^'end'^ of a curve as given in Art. 33, Fig. 79.

The influence of the depth y2 on the stage in section 1 will be

considered nil, whenever the backwater curve produced by a rise

of 2/2 over yo ends below section 1, or is shorter than the length

of the canal L = 10,560 ft.
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Assuming the end of the curve to be at = 1,001 which makes
= —0,724, we find the corresponding stage 2 through

= $(,,,) + = -0.724 + = -0.724 + 0 528 =
2/0 8

-0 196

The ^(77) table shows that the corresponding value of 772 lies

between rji = 1.005 and 771 = 1.010, which means that in our

case no appreciable change of level B may take place without

affecting the depth yi

A

Fio. 90.—Canul with a break in the bottom elope featuring an Mi curve
(Exercise 2, Examiile 9),

However, if the canal were to be substantially longer, circum-

stances would be different. For example, with L = 5 miles,

and Lso/yo = 1.820, the value of 4>(772) in the above would become

<f,(^2) = -0,724 + 1.320 = 0.596

which corresponds to 772 = L093 and 7/2 = 1.093 X 8 = 8.75 ft.

The level in B could fluctuate 10 per cent without affecting

the stage at section 1

.

Exercises:

1. Assume in the layout of Fig. 88 the canal to be of Type B
(Figs. 14 and 15); 7/0 = 5 ft.; L = 10,000 ft.; so = 20%q; and
= 8^%o> respectively. Use n = 3.70.

a. With reference to Question 5 of the preced’ng example,

determine the stage 7/2 until which level B may be rai ^ed without

affecting the stage at yi. Take for end of curve 771
^ 1.001 and

771 = 1.01, respectively.
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b. For both bottom slopes and |/o = 5 ft., determine and draw
the curve as in Fig. 89, showing the relation between yt and yu

2. Assume a canal. Type B, laid with a break in the bottom

slope (Fig. 90); soi = sos = The discharge Q
corresponds to uniform flow in section 1, with j/oi == 3 ft. Use

K curve with Bazin coefficients (Fig. 15). Take n = 3.70.

Determine the surface profile.

Explanatory Remark: In this problem, as in others to come,

where the case is one of a canal with a break in the bottom

slope, it is incumbent first to establish the type of movement.

With reference to Fig. 90, because of So 2 being less than Soi, the

surface must rise from the normal depth yoi = 3 ft. to the normal

depth ?/o2 > 3 ft.

To determine the type and location of the transition curve,

a reasoning on the following lines will usually be found expedient.

First, by figuring out 2/cr, one finds that both 2/02 and 7/01 are

> ycr] the movement is in the M class. The only possible y'^

curve will be an Mi curve, which must lie wholly within section 1

above the 7/01 line. The transition curve cannot lie in section 2,

as in such case the only possible curve with y < 2/ 02 ,
would be

a y"' curve. Type M2 . The normal depth ?/o 2 reaches to the

dividing section A] it acts as a barrier with regard to section 1,

causing a backwater curve a-6 of the Mi type.

37. The M2 Curve,

Example 10

A canal. Type B (Fig. 14), laid with so = terminates

in a fall (Fig. 91); t/o = 5 ft.

With G.K. n = 0.013, the discharge (Table II and Fig. 15)

is

Q = Ko\/^ = 109.1VTo = 346 cu. ft. per second; 0*0 =
22.80^0

With So < (To, the class of flow is M. The curve is a falling

M2 curve, between the normal depth yo = 5 ft. and ycr, near the

crest of the fall.

Question 1. Determine the surface curve.

In figuring ycr, we have (Eq. [28])

SUcr =* Q/Vg = 346/5.67 = 61; j/„ = 4.01
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With (To = 22.800t)o, = 10/22.8 = 0.438, (r., = 22.70%o>

ficr = 0.441, a single average value oi fi
== 0.44 with 1 — =

0.56 may be used throughout the integration range.

With (1 ~ /3) = const., one may conveniently use the equation

in form (86)

I = hiiM - n(„)]
on

The integration limits will be:

Fig. 91.—The curve in a canal leading toward a fall (F^xample 10.)

For the section over the fall

VF = Vn = Vrr/yo = 4.01/5 = 0.802

For the section corresponding to the end of the curve at a

rja = 0.999 and ya = 0.9992/o = 4.995 ft.

Following the procedure of Example 7, we shall select a series

of depth intervals and determine the lengths of the reaches

between them. We shall assume that ycr lies over the crest of

the fall.* Section F will be the zero section, from which the dis-

tances L will be measured.

For the range of depths 5 to 4 ft., the hydraulic exponent is

Lg.

n = 2-
K(4)

LgH
= 2

. 109.1
^*^

70.6

Lgl.26
3.90

The middle values between table lines n == 3.8 and n = 4.0

will be accepted as

y^/so = 5/10 .
10-4 = 5,000 ft.

With this, the figuring is given in the following table.

In other words, the small distance between section C and section F in

Fig. 37, is neglected. In the present state of the art, with what little

known of the surface curve forms in curvilinear flow, this approximation

unavoidable.
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Table XIV

the crest of the fall

Fig. 92.—Tracing of the M2 curve in Example 10.

The curve is traced in Fig. 92.

Remark: In Col. 7, the distance between the depths 4.01 and

4.10, respectively, are shown at zero, which means that the hori-
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zontal distance in which the respective increment of depth takes

place is too small to be noticeable within the degree of precision

with which the figuring is conducted.

Example 11

A canal, Type D (Plate V), is laid between two reservoirs at a

distance of 2 miles (Fig. 93); So = l^%ol G.K. n == 0.025. The
canal is designed for uniform flow at yo = 8 ft., corresponding to a

discharge of Q = KoV^o = 384.5 X Vl = 384.5 cu. ft. per

93.— Relating: to Example 1 1

.

second. In the following, the discharge will be assumed to

remain permanent, while the stages yi and will be subject to

lowering below ijo = S ft. Tlie result will be flow with a falling

surface curve of the il/2 type. Assuming that the lowering will

not extend much beyond y = 3 ft., we determine the hydraulic

exponent for the range between y = 3 ft. and y = 8 as

. H(8) 384.5

^ ^ ^ o ^58.2 ^ ,0.7924

LgVs Lg% 0.4260
3.70
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In applying the varied-flow-function tables, the middle value

between table lines for n = 3.6 and n = 3.8 will be used. In

determining the value of 1-0, we have for the range of depths

between y = 3 ft. and y = 8 ft.

2/
= 8 ;(r = 56.5«Oo'o;^ = SoA == 1/56.5 = 0.0177; 1-0 = 0.982

^ = 3;(t = 79A^%o;0 = s./a = 1/79.4 = 0.0126; 1-0 = 0.987

An average value of 1-0 = 0.985 will be used. We further

have:

Lso = 10,560 X 1 • 10~4 = 1.056; Lso/y. = 1.056/8 == 0.132

Question 1 (Fig. 93

/

2) . Assume level B lowered to make 2/2 = 6

ft. Determine the corre.sponding stage y\.

We have for stage 2 :

2/2 = 6 ft.; 772 = ^8 = 0J5

13(772) (middle value between B = 0.823 and B = 0.815)

= 0.819; 11 (772)
= 772 - (1 - 0)B(rj2) = 0.750 - 0.985 X 0.819 =

-0.056

For determining stage 1, we have

U(r,i) = 11 (772 )
- — = -0.056 - 0.132 = -0.188

2/0

The corresponding value of 771 ,
which is to satisfy

n(77i) = 771 - 0.985i3(77i) = -0.188

is found as follows:

We have, with n = 3.70:

B(0.88) = L0725;n = -0.178

JS(0,89) = 1.0105; II = -0.198

Interpolating we have rji — 0.885, which makes yi = 0.885 X
8 = 7.08 ft.

Question 2 . Assume that stage 1 has been lowered from
2/1=8

ft. to 2/1 = 7.6 ft. Determine to what level stage 2 should be

lowered in such case, in order to continue to draw water at the

rate of Q = 384.5 cu. ft. per second.

We have for section 1

,1 = ^ = 0.95; 5(ni) = 1.337; n(ni) = 0.95 - 0.985 X

1.337 = -0.367
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Stage 2/2 is determined through

Uivi) = V 2 - 0.985B{v2) = n(n.) + — = -0.367 + 0.132 =
2/0

~ 0.235

To determine 7^2, we have from the tables, with sufficient

approximation,

rj 2 = 0.91; i?(().91) - 1.1625; n(0.91) = 0.91 - 0.985 X
1.1625 = -0.237

Thus
2/2 = 0.91 X 8 = 7.28 ft.

Question 3 (Fig. 93/3). Determine the lowest position of the

drop curve M2, at which a flow of Q = 384.5 cu. ft. per second

is still possible.

The lowest possible stage 2/2 at section 2 is the critical depth.

As explained in Art. 17, the depth t/2 cannot drop below 2/2 = yen

and having once reached that stage will remain there, irrespective

of any further lowering of level B.

To determine xjer we have

- {ayh)er = Q/Vo = 384.5/5.67 - 67.8

From Plate V, we find accordingly yet = 2.51. For section 2

with 2/2 = ycr = 2.51, we have

V2 = 2.51/8 = 0.314; = 0.315; UM = 0.314 - 0.985 X
0.315 = 0.004

The corresponding stage i is determined by

n(7;i) = 771
- 0.9855(77,) = 0.004 - 0.132 = -0.128

To find 771, we have from the tables

V B(v)
1

n(7,)

0.86 1.0000 -0.135

0.84 0.9785
1

-0.124

Interpolating we get 771 = 0.844 and, accordingly the lowest

possible yi compatible with a discharge of 384.5 cu. ft. per

second == 0.844 X 8 = 6.74 ft.

Question 4. Assuming that stage t/2 varies between t/o = 8 ft.

and t/cr = 2.51 ft., determine the effect produced on stage 1

by such variation of 2/2.
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This problem is similar to that of Question 2, Example 9.

The limits of the change of stage yi are: yo = S ft. and yimin =
6.74 ft. To find the intermediary points apply the procedure

used in Question 1 to a series of stages.

The computation is assembled in the following table

Table XV

2/2 772=2/2/8 B {v 2 ) 0 .985B(r72 ) 11(772)
II

8 Uniform flow S

7.20 0.900 1.1300 1.113 0.213 0.345 0.945 7.56

0.00 0.750 0.8190 O.SOG 0.050 0.188 0.885 7.08

4.00 0.500 0.5085 0.501 0.001 0.133 0.848 6.79

-f
“

3.20 0.400 0.4030 0.397 0.003 0.129 0.845 6.75
_|_ _

2.51 0.314 0.3150 0.310 0.004 0.128 0.844 6.74

The curve is drawn in P^ig. 94.

Stages Yj
—

Fia. 94.

Question 5. On a lowering curve, with y diminishing stream

downward, the velocity increases. In a canal with walls in

natural condition, this increasing velocity may result in danger-

ous erosion. In fact, in the above case the velocity at ycr is
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V = Q/acT = 384.5/46.9 = 8.2 ft. per second.

Assume that, for gravelly soil in which the canal is supposed

to be laid, the dangerous limit of velocity is reached at t; = 4 ft.

With Q = 384.5, this corresponds to a cross-sectional area of

a — 96.1 sq. ft. and a depth (Plate V) slightly below y = 4.5 ft.

Assume that, over all the length of the canal where the velocity

may exceed 4 ft., the canal walls are to be protected. Determine

on what length Ln (Fig. 93/3) such protection has to be put into

effect.

The lowest position of the curve being given in Fig. 93/3,

assume that protection is to be given on the whole stretch where

the depth may be < 4.5 ft. The problem is thus to determine

the length Lu between ijcr = 2.51 and ycr = 4.5 ft.

Fia. 95.—Canal with a broak in the bottom slope featuring an M 2 curve (Exercise

2, Example 11).

From Table XV, for y — 2.51; 11 (772)
= 0.004. For y\ = 4.5

ft.; 771 = 4.5/8 = 0.,562. With n = 3.70:

J5(0.56) = 0.575 B(0.562) = 0.577;

5(0.58) = 0.5975 Hi = 0.562 - 0.985 X 0.577 = -0.006

Hence

Ld = -[0 (772)
- 0 (771)]

= 8- 10^(0.004 - (-0.006)] = 800 ft.
So

Exercise:

1. Assume a layout as in Fig. 93 with canal Type A; 5 o
=

4 X 10“^ The constant discharge corresponds to t/o ~ 6 ft.

Determine the lowest possible value of yi with the length of the

canal respectively: L = 5,000 ft.; L = 10,000 ft.; L * 15,000 ft.
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2. The canal (Fig. 90) is laid with the bottom slopes in reversed

order, namely, Fig. 95: Soi = and Deter-

mine the surface profile, assuming that the discharge corresponds

to yo 2 = 3 ft.

Indicaiion .—A process of reasoning, similar to that of the exer-

cise in Example 9, will show that the transition section must

be a lowering curve, located wholly within the upper section,

below ?/oi. The depth in section A will be ya = 2/02.

38. The M 3 Curve.

Example 12

Assume in a layout (Fig. 96) water flowing from under a

sluice into a rectangular canal, Type C (Plate IV). The canal

Fig. 96 .

—

M 3 rising curve in a mild-slopecl canal below a regulating sluice

(Example 12).

is laid with so = 10^%o; G.K. n = 0.013. The sluice is regu-

lated to discharge Q = 1,080 cu. ft. per second, with a depth in

the vena contracta, ya = 1-5 ft.

Question 1. Determine the surface curve.

The normal depth

Ko = Q/V's'o = 1,080/\/T0 10-2 = 329 X 10=; from Plate IV,

2/0 = 6 ft.

The critical depth

q = 1,080/20 = 54 cu. ft. per second; y^, = ^q^/g -

^542/32.2 = 4.49 ft.

With 2/0 > Vcr and 2/a = 1.5 ft. < 2/,r, the curve is of the M»
type.

The elements of flow in the vena contracta are

:
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Va = 54/1.5 = 36 ft. per second; vj/2g == 20.1 ft.; €a = 1.5 +
20.1 = 21.6 ft.; X = 2^ - 26.7

1.0

The 1-/8 Curve (Plate IV).

For

2/0 = 6 ft., (70 = 25.80?

=

10/25.8 = 0.388; 1 - /8o = 0.612

For other depths

:

y 1 5
1

1

2.0
1

3.0
1

4.0 5.0

<70 in 25.3 24.4 23.5 24.0 24.9

^
i

0.395 0. 410 0.425 0.416 0.401

1-^
j

0 605 0.590 0.575 0.584 0.599

The 1-/8 curve is traced in Fig. 97.

For integration the average constant

1-/3 values are adopted as follows: for the

depth range 2.1 — 4.2, 1 /8 = 0.58; for

2/<2.1, 1~ /3 = 0.595; for y >4.2, 1-/8 =

0.59.

The hydraulic exponent for the range

1.5 to 6 ft.:

Lg,
K(6)

3K(1.5)
Lg

Lg
1.5

= 2

329

41.5

LgA
2.99.

We shall figure with n = 3. The limits

of the curve are

2/cr = 4.49 with 7]ct = 4.49/6 = 0.749

2/a = 1.5 with Tja = 1.5/6 = 0.250

y^/so = 6/10 X 10^ = 6,000

Fig. 97. - Selecting aver-
age constant values of 1 — |8

for depth intervals. Exam-
ple 12.

The range of depths is divided into intervals; the partial

distances being

J [A, - (1 - P)AB] = yo/soAH
Sq

The distances L are figured from the critical depth stream up.
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Table XVI

(1) (2) (3) (4) (5) (0) (7) (8) (9) (lo:

V n = 2//6 (l-«
BM
» = 3

Arj AB (1 - /3)aB AU 1,

feet
L

4.49 0.749 0.855 C

0.009 0.015 0.00SS5 0 00015 1

4.44 0.740 1 0.S40 1

0.59 0.020 0 033 0.0195 0 . 0005 3

4.32 0.720 0.807 4

''
1

0.020 0.031 0.0183 0.0017 10

4.20* 0.700 0 . 776 14

1r
0.050 0.073 0 0424 0.0076 46

3.90 0.650 0.703
1

1 6C

0.58 0.050 0.06(> 0,0383 0.0117 70

3.60 0.600 0.637 13C

0.100 0.120 0.0G96 0.0304 182

3.00 0.500 0.517 312

k
0.140 0.153 0.0888 0 0512 307

2.16 0.360 — 0.364 619

0.595 0.110 0.113 0 . 0672 0.0128 257

1.50 0.250 i 0.251 876

The curve is traced in Fig. 98.

In the above example the total length of the curve between

the vena contracia and ycr was found to be L = 876 ft. If the

canal is shorter than 876 ft. and the efflux is unobstructed, the

stream will flow out freely as in Fig. 54. Usually, however, flow

from under a sluice with an curve leads to a jump.

Question 2. Assuming under circumstances as above, that

the jump starts at a depth dj = 2.5, determine the distance Ld

Fig. 99 from the vena contracia to the foot of the jump.

The problem is answered by finding the distance between the

depths ?/a = 1.5 and di = 2.5.

The depth 2.5 lies within the interval with 1 — = 0.58.

Accordingly, following the procedure of Fig. 85, we shall deter-

mine the distance of section 2.5 from section 2.16, which (see

Table XVI) lies 257 ft. from a.

For the interval 2.16 ft. to 2.50 ft., we have:

2/2 - 2.50; 7/2 = 2.50/6 = 0.417; £(7/) = 0.425

2/1 - 2.16; 7/1 = 2.16/6 = 0.360; Biv) = 0.364; 1 = 0.58
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A17 = 0.057; A5 = 0.061; AB X 0.58 = 0.0354

An = A»7 - (1 - /3)AB = 0.057 - 0.0354 = 0.0216

h,i = 0.0216 X 6,000 = 130 ft.

The full distance from vena contrada is

La = 257 + 130 = 387 ft.

Flo. 99.—Determiniiig the h>eiitii)n of the hydrauii(i jump, Example 12, Question 2.

Fia. 100.—Canal with a break in the Imttom slope from steep to mild, featuring
an il/s curve (exercise in Example 12).
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Exercise:

Assume canal, Type B (Fig. 14), laid as in Fig. 100 with

5oi ~ 0.01 and 802 —

Assume Q = 346 cu. ft. per second, corresponding to 2/02 = 5 ft.

(G.K. n = 0.013). For the K curve with so == 0.01, use G.K.

curve for sq = lO^^oo*

a. Assuming the length of section 2 to be 500 ft., determine

the longitudinal surface profile.

b. Determine the maximum theoretical length of section 2,

which will allow free efflux without a jump.

Indication ,—Determine and ycr> As y^\ is less than ycr

and 2/02 is greater than yw, there will be an Mz curve, commencing

in section a with ija = 2/01 •

39. The *Si Curve.

Example 13

Assume a rectangular flume, wide enough to be considered as

of type, Fig. 73, laid with so = 500%o and emptying into a

A

Fiq. 101.

—

Si rising curve in a steep-sloped flume emptying into a pool (Example
i;i).

pool (Fig. 101). Use G.K. values for C corresponding to

80 = 10^%o and n = 0.013. Assume yo = S ft., which gives, for

a unit width, K = C • 2/^2 =c 135 x 3^^' = 7.18 X 10^, and q
=

7ASV^ = 50.8 cu. ft. per second.

Question 1. Assuming that the depth in section a is 2/a =* 9 ft.,

determine and trace the surface curve.
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The critical depth

Vor - = ^50.8^/32.2 = 4.30 ft.

With
2/o

= 3 ft. < yen the flow is in the S class.

With ya = 9 ft. > yen the curve is of the Si type. The integra-

tion limits are; yi = ijcr = 4.30 ft. and = 9 ft.

Hydraulic Exponent .—Take as an average value n = 3.20*

2/o/so = 3/50 • 10-4 = 500 ft.

The 1-/3 Curve .—For a rectangular profile of great width the

critical slope is <r' = (Fig. 40).

For the different depths the values of a and 1-^8 are:

y C e
o o e = «o /<r

'
1 -/?

1

10.0 155 13.4 3.73 2.73

8.0 152 14.0 3.57 2.157

6.0
i

149 14.8 3.38 2.38

5.0 146 15.3 .3 . 26 2.26

4.5 144.5 15.6 3,21 2 21

4.0 142.5 15.9 3.14 2.14

3.5 140.5 16.3 3.06 2.06

3.0 138 16.9 2.96 1.96

2.5 134 17.9 2.79 1.79

2.0 130 19.0 2.63 1.63

1.5 124 21.0 2.38 1.38

1.0 116 24.0 2.08 1.08

The l-i8 curve is traced in Fig. 102.

With So > <7'o, 1-/3 is negative. Moreover, the values of 1-/3

are quite substantial. Under such circumstances it will be

expedient to take a separate average value of 1-/3 for each

interval.

The computations are assembled in Table XVII, page 125.

The values of 1-/3 (Col. 6) are taken for each depth from curve

(Fig. 102). The value of 1-/3 for an interval (Col. 7) is the arith-

metical average of the adjoining values in Col. 6. In column

9, An »= Ary — (1 — /3)AB. The partial distances I (Col. 10) are

Z = AH X 600 ft. The distances L are measured from section

The curve is plotted in Fig. 103.
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Fig. 103.—Upper curve, tracing of the <Si curve for Fig. 101, Example 13.
Lower curve, tracing of the S2 curve for Fig. 105a Example 14.
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Question 2. The surface curve, as traced above, over the

whole range of depths until ycr is a theoretical profile. Usually

the Si curve is a stretch of gradually varied flow succeeding a

jump (Fig. 6). Assuming that the depth ihi after the jump is

known the location of the jump is found by determining the

distance L, from A to the section J with y — (Fig. 101).

Table XVII

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

V V At/ B(v) ABin) 1-/9

1-/9

for

interval

(l-^)Ai? ATI 1 L

9 00 3 00

0.40

0 041

0 016

_
2 66

2 01

1-

0 0418 0 . 358 215

0

7.80 2 00 0 057 2 56 215

0.30 0 018 •> -•* 0 0451 0 255 1 53

0 90 2 . 30 0 075 2.47 378

0.30 0 020 2 43 0 0700 0 220 137 5

6 00 2 00 [0 104 2 . 38 515 5

0.20 0 020 2 . 35 0 0082 0 132 70 3

32

5.40 1.80

0.10

0.133

1

0.020
j

2 32

2 . 30 0 0400 0 054

585

5 10 1.70 0 153 2.28 617

0 10 0 . 026
1

2 27 * 0.0501 0 041 24 .

6

4.80 1 60 0. 170 2 25 642

4.65 1 55

0.05

0.104

0.015

2 22

2 24 0 . 0330 0.0164 0 85

652

4.50 1 50

0 05

0 212

0.018

2 . 20

2 21 0 . 0308 0.0102 6 1

658

0 04 0.010 2.10 0 0351 0 0040 3

4.38 1 46 0 228 2 18 661

4.30 1 433

0 027

0.2305

0.0115

2. 17

2 175 0.0250 0 0020 1 2

662

1

Assume, in our case, di = 5.60 ft. To locate the jump in

accordance with Table XVI I, we may find the distance of section

5.6 to section 6 for which L = 515.5. Using for the interval

5.60-6.00 an average value of (1 — /3)
= —2.36, we have;

For 2/2 = 6; 772 = 2.00; ^(772) = 0.104

For 2/1 = 5.6; 771 = 1.866; = 0.122

At; = 0.134; = -0.018; (1 - ff)^B = -2.36 X (-0.018) =
+0.0425
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An = Av - 0 - = 0.134 - 0.0425 = 0.0915

Z,_5 6
= -An = 600 X 0.0915 = 55 ft.

So

The total distance to the jump from section 9 is

Li = 515.5 + 55 = --570 ft.

Exercise:

1. In a layout (Fig. 101), assume a canal, Type B (Fig. 16),

laid with Soi = take yoi = 2 ft.; Va = S ft.

A

Fig. 104.—Canal with a break in the bottom elope from steep to mild, featuring

an Si curve (Exercise 2 in Example 13).

Use Bazin coefficients and n — 3.70. Determine the Si surface

curve.

2. A canal (Fig. 104), Type By is laid with a break in the

bottom slope, from Soi = 40^%o ^02 = Q = 300

cu. ft. per second.

It is known that rapid flow in uniform condition with Soi =*

40^%o will result in a jump, the depth after which is 4.30ft.

Determine the surface curve. Use Bazin coefficients and n = 3.70.

Remark: This is a case, when soi is steep, while S02 is mild and

2/02 > ^2 . The surface curve ja is an Si curve with ya = 2/02 .

40. The S2 Curve.

Example 14

Figure 105a represents the entrance to the flume, treated in

Example 13 (Fig. 101). There is a “drop” over section A, with

ya = ycr.

Question 1. Assuming the elements of flow as in Example 13,

determine and trace the surface curve a-6.
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The curve in question begins at ya = 4.30 ft. and ends at a

depth yhy which we shall assume to be yh == l.OOl^o. The

values are to be taken from Fig. 102. The figuring of the curve on

the whole is similar to that of Table XVII. The exponent value

n = 3.20 is used.

A

Fig. 105.

—

(a) An ^2 curve at the entrance of a steep-sloped flume (Example
14). (5) An iS? curve in a canal with a break in the bottom slope (exercise in

Example 14).

The distance L in this case is measured stream downwards, the

initial section being section A, with ya — ycr- Accordingly,

Col. 11 in Table XVIII is obtained by adding the lengths of the

reaches I (Col. 10) from below upwards. The curve is traced in

Fig. 103.

Exercise:

A canal. Type B (Figs. 14 and 15), is laid (Fig. 105/5) with a
break in the tottom slope from soi = 300%o to Soa = 600%o-
j/oi = 4 ft. Use Bazin coefficients; n = 3.70. Determine the

surface profile.
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Remark: The example features the case of a canal, when both

cSoi and So2 are steep; the slope Soi, in particular being < So2 o The
transition curve which lies wholly in the lower section, is an S2

curve, beginning in section A with ija = 2/01 and asymptotically

tangent to the uniform flow line ?/o2 .

Table XVIII

(1)

1

(2) (3) (4) (5) (6) (7)

1-/3

for

interval

(8) (9) (10) (11)

y V At,
Bi-n)

n -= 3.2
A/>*(t,)

1-/3

for

depth

C1-/3)A5 All 1 L

3 003 1.001 2 008 1 96

-
1.848

0 009 0 717 1 96 1 4050 1 3900 838.00

3.030 1 010 1 201 1 ,010

0 010 0 213 1 97 0 4200 0 41(X) 246 . 00

3.060 1 020 1 07S 1 97 764

0 030 0 276 1 98 0 5460 0 5100 310.00

3 150 1 . 050 0 802 1 99 454

0 050 0 201 2 01 0 4040 0 . 3540 213.00

3.300 1 100 0 001 . 2 03 241

0 100 ! b 185 .. 1 2 05 0 3590 0.2590 155.00

3 600 1 .200 0.410 2 07 86

0 , 05J 0 055
1

2 (K1 oil 50 ;0 0650 39 00

3 750 1 250 0 r.ul 2 10 47

0 . 050 ! 0 043 2 12 0 0913 0.0413 24.80

3 . 900 1 300 0 318
!

2 13 22

0 050 0 034 2 14 0 0727 0.0227 13..60

4.050 1 . 350 0 284 2 15 8

0 030 0.018 2.15 0 0387 0.0087 5 20

4 140 1 . 380 0 2G6 2 16 3

0 . 020 0 010 2 17 0.0217 0.0017 1.04

4.200 1.400 2.17 2

0 020 0 010 2 18 0 0218 0 0018 1 08

4.260 1 420 0 246 2 19 1

0 013 0 0065 2 20 0 0143 0.0013 0.78
4.300 1 . 433 0 . 2395 2.21 C

41. The Sz Curve.

Example 15

Assume, that the flume of Examples 13 and 14 is fed by means
of a sluice as in Fig. 106. Section A is the vena contracta with

ya = 1.5 ft. Section R, taken as the end of the S3 curve, has

Tjb = 0.999; 2/6 = 2.997 ft.

Question 1. Assuming the hydraulic elements as in Example

13, determine and draw the surface curve orb.
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The range of integration is from i/a == 1.5 ft., to — 2.997 ft.

The figuring, similar to that of Tables XVII and XVIII, is

carried out, with n = 3.20.

Fig. 106—An *Ss curve in the case of outflow from under a sluice into a steep-

sloped flume (Example 15).

Table XIX

(1)

i

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1

y

1

V At, Biv) 1-/3

1-^

for

interval

All 1 L

2.997 0.999 2.663 1.96 2,795

0 009 * 0.723 1.955 1.413 1.422 855
2.970 0,990 1.940 1 . 95 1,940

0 020 0.380 1.920 0.738 0.7.58 455
2.910 0.970 1 560 1.93 1,485

0.030 0.197 1.920 0.378 0.408 345

2.820 0 940 1.363 1.91 1,140

0.040 0.174 1.890 0.330 0 370 222

2.700 0.900 1.189 1.87 918

0 . 050 0.146 1.850 0.270 0.320 192

2.650 0.850 1 043 1.82 726

0.050 0 109 1.800 0.196 0.246 148

2.400 0.800 0.934 1.78 578

0.100 0 168 1.730 0.281 0.381 229

2. 100 0.700 0.766 1.68 349

0.100 0.135 1.610 0.212 0.312 187

1.800 0.600 0.631 1.55 162

0.100 0.117 1.460 0.171 0.271 162

1.500 0.500 0.614 1.38 0

Again, the distances L are measured stream downwards
with the zero section at the vena contractaj a.

The curve, traced in Fig. 107, is referred to a horizontal line,

as the drawing of the incline in the adopted scale would disfigure

the presentation.
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Exercise:

Assume (Fig. 108) that the sequence of the bottom slopes

in Fig. 1056 (exercise in Example 14) is reversed. Assume

2/o2 = 4 ft. Determine and trace the surface profile.

Hi Hi1^1ijjlllllllllHim
illllilllll^^ HiHiflHSSiirarM

mammm

HI HInmiS

HoiMW MBm1amiMilIB
HiHaimillHii B
0 1000 2000 3000

So' 50%
Fig. 107.—Tracing of the Sz curve, Fig. 106, Example 15.

Remark: Both slopes are again steep, but in this case soi is

greater than So 2 . The transition curve is an Ss curve o-6, lying

wholly within the lower section. The depth ya = you

Fig. 108.—Featuring an Sz curve in a canal with a break in the bottom slope
(exercise in Example 15).

42. General Remarks.—In the light of the preceding,

certain deductions of general character regarding the

influence of different factors and the precision of computa-
tions seem to be in place.

Equations (86), and (91), which determine the length

of a reach for a certain depth interval, give such length



COMPUTATION PROCEDURES 131

as the product of the factor t/o/so by the parenthesis value

of ($2 — #i) or (112 — Hi).

Other things being equal, the length is thus proportional

to 1/o/so, the length of a horizontal line, drawn through yo

to intersect the bottom line.

Curves are longer or shorter, proportionately to the

normal depth and in inverse proportion to the bottom-

slope value So.

Outside of j/oAo, which is to be taken as a parameter of

flow, the length elements of a curve depend on the value

of A<S> or An, which for a certain interval of Ar; depend

on the value of the hydraulic exponent n. Generally

speaking shape, size, and roughness of the walls are united

in a combined effect, expressed in the particular value

of the hydraulic exponent.

In general, the higher the exponent, the shorter the

curve. That is proven from following the tables, and

comparing the values of the increments A^> or AJ5, taken

for the same interval Ar; with different n’s.

Plate VI shows the values of A^> = $(172) — ^>(171) and

of AS, respectively, for different intervals of 77. The values

A$ and AB decrease with an increase of n.

Precision of Computations .—The A<I> and A.B curves,

traced in Plate VI, are also useful in throwing light on the

magnitude of errors, incurred through an assumption as

to the approximate value of the hydraulic exponent.

The incline of the curves being small, a deviation in

the exponent value of 0.1, which is one-half of the table

range has a maximum effect on the value of A$ and AB
of not over 3 to 4 per cent, and that only in the region near

77 = 1 and for exponents near n = 3. This justifies the

convenient procedure of adopting one average value of n

over a depth range without the detail of fur ther subdivision.

The outline of the curves, the curvature of which is slight,

indicates further that arithmetical interpolation, i.e., simply

taking proportionate parts for$ and B between table lines, is

a procedure wholly justified under usual circumstances.
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In other words, in most cases no recourse need be taken to

the more cumbersome methods of graphical or analytical

interpolation.

Influence of Resistances—

A

major influence in the

whole domain of varied flow is that of resistances. The
basic premise that losses in varied flow arc identical with

the resistances in uniform flow at the same depth is an

approximation, particularly incorrect in those special cases

of retarded movement, where the restoration of kinetic

energy plays a decisive part. Analytically a corrected

Pio. 109.

resistance factor C would lead to a change in the conveyance

value K, as well as in ^ ^ thus in 1-jS. The

1-/S values are particularly influential in case of so > a.

For this reason the Si, Sz, and M 3 curves which are also fig-

ured at present with no special regard for increased losses in

divergent flow must be considered as the least accurate.

Nevertheless, even with such limitations, results obtained

from the study of surface curves are most useful. For

example, in Fig. 109, assuming that a-6 is an ^1 curve,

figured as in Art. 39, an eventual correction for increased

resistances would result in a longer curve, something like a-h'

,

The curve, however, under all circumstances would be

convex and would always lie below the horizontal line a-h.

Thus the limits a^h and a-b determine the boundaries,

within which the actual curve will unfold.
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Again in Fig. 110, assuming that a-c and a-h are

the Mz and the Sz curves, respectively, determined as in

Arts. 38 and 41, then, if the resistances were higher, the

original store of energy contained in the flow at high

kineticity in a would be consumed more rapidly. The
curves, therefore, would be shorter, like a-c' and a-h'

.

In

other words, the curves a-c and a-h represent curves of

extreme possible length.

Suppose, for example, there were to be a jump in section

di (Fig. 110) and the portion preceding the jump was
to be protected against erosion. The length La determined

in accordance with Question 2, Example 12, would give a

margin of safety, as the jump would occur probably some-

what nearer.

In the case of falling curves, where the potential head is

transformed into kinetic energy, the precision is more
satisfactory. However, here as everywhere else one should

always bear in mind the general degree of accuracy which

is inherent in engineering computations in the presence of

the uncertainty of friction coefficients and other complicat-

ing circumstances accompanying flow in actual structures.

Effect of Curvature near ijcr -—In Art. 13 it was empha-

sized that the varied flow equations are applicable only

when streaming complies with the Belanger requirements

of parallel movement.

These conditions obviously are not met in the neigh-

borhood of ycr, where the curvature of the surface is

pronounced. Therefore, the curves, as obtained in the pre-

ceding paragraphs, are inaccurate in the vicinity of
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Such being the fact, one should not fail to realize, however,

that the curves, as traced, for example in Fig. 103, are

drawn on a much exaggerated vertical scale, and that the

curvature becomes really pronounced only in the immediate

vicinity of y^. Thus, the inaccuracy from this source is

limited only to a short stretch, usually representing only a

very small fraction of the total length of a surface curve.

With this in mind, we may continue to apply equations

over the whole range of depths, as this gives a valuable

general view of the movement and often furnishes, at the

point of the critical depth, a convenient zero section from

which distances are to be measured.



CHAPTER X

CHANNELS WITH HORIZONTAL BOTTOM

43. Equation of Flow.—In a canal with a horizontal

bottom, with So = 0 (Fig. Ill), the normal depth is infinite,

so ?/o cannot be used as a parameter. A simple solution,

however, is reached by referring the movement to the

critical depth. In fact, with so = 0, Eq. (17) through

Eq. (20) becomes

Fiq. 111.—Flow in a canal with a horizontal bottom.

Substitute

dy _ b dy

dx K* g o® dx

= K\r(Tcr

(93)

where o’er is the critical slope at the critical depth, which by
definition (Art. 19) makes flow of Q at t/cr uniform; also,

from Eq. 42,

oV& = 3n*(y) = <7 . KV?
We obtain, instead of Eq. (93),

dy/. _ Ji^cr <7cr\

dx\ K* <7 y
135

-<7
, (94)
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Multiplying by W/W-cr, and separating the variables,

(95)

Introducing the hydraulic exponent, so that

{WorY = {y/VcrY (9G)

and designating

^ = 5 (97)
(T

Equation (95) acquires the form

dx <Tcr = [5 - {y/ycrY]dy (98)

Introducing, further, similar to (Eq. [80]),

y/Vcr = T;dy = ycrdr (99)

we obtain, by separating the variables,

dx = [5 • dr - T-dr] (100)
O'er

Applied to an interval of depths between yi and y-i (Fig.

Ill), which correspond to ti = y\/ycT and 72 = yilycr, and

assuming that 5 1.2 is an average value of 8 within the

interval, so that5i,2(T2 — Ti) = 5 -dr, the respective length

of the reach is

i,, = b.2(r2 - rO - (101)
O’er I n + 1 J

Designating

we have, instead of Eq. (101),

ki = x,-x^ = ^[Tiy,) - Tiv:)] (103)
O’er

For a channel with a horizontal bottom, Eqs. (101) to

(103) play a r61e analogous to that of Eqs. (84) to (86) in

the general case of varied flow; only that instead of using yo

as a parameter, the whole movement is referred to the critical
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depth. In particular, 5, as defined in Eq. (97), is the rela-

tion of the parametric value acr to the variable a, and
replaces jS; r has replaced nj; Vcrtdcr comes instead of

2/ 0Ao-
The integration, on the other hand, is a simple quadration.

No tables are required and the computations may be per-

formed with the aid of usual logarithms.

Example 16

An equalizing canal, Type B (Fig. 14), 5,000 ft. long, is laid

with a horizontal bottom between two storage reservoirs A
and B (Fig. 112).

Question 1. Assuming that, when level B is at its lowest,

the efflux from the canal is unobstructed and that 200 cu. ft. per

second are flowing from A to B with a hydraulic drop in section

2, determine the surface curve. Use Bazin coefficients.

The Critical Depth. 511c = 200/5.67 = 35.3; to which there

corresponds (see Fig. 15) ^cr = 2/2'^3 ft. From Table V,

<jcr = 23.2^%q. The hydraulic exponent for the range of y from

3 to 6 ft.,

Log
n = 2

15.500

4.165

Log %
~3.80

The values of 6 = VerA for different depths (see Table V and

Fig. 15)

y = 3 3.15 3.50 4.0 5.0 6.0

<r = 23.2 23. 22.8 22.7 22.8 22.8

1.01 1.02

ycr/<T„ = 3/23.2-10-^ = 1,293 ft.

a = 1
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Following the usual procedure, the integration range is divided

into intervals, going by the depth. Equation (101), applied

to an interval, gives

1m = 1,293[6(t2 - Ti) - = 1,293|^5 • Ar - A

= l,293Ar

The values of t'* */4.8 are figured by means of four-place log-

arithms. The figuring is assembled in Table XX.

T.\ble XX

(1) (2) (3) (4) (5) (0) (7) («) (9) (10)

r4.8 8

1y T b Ar 5 • Ar
4 H

^T L

3.00 1.00 1,00

0.05 0.0502

0.2083

0.0551
+
0.0049 6.3

0

3.15 1.05 1.01

0.10 0.1015j

0.2034

0.1445 0.0430 55.5

6.3

3.45 1.15 1.02

0.15 0.1530

0.4079

0.3062 0.1532 198.0

62.0

3.90 1.30 1.02

0.15 0.1530

0.7141

0.5269 0.3739 483.0

260.0

4.35 1.45 1.02

0.15 0.1530

1.2410

0.7480 0.5950 771.0

743.0

4.80 1.60 1.02

0.10 0.1020

1.9890

0.6990 0.5970 767.0

1,514.0

5.10 1.70 1.02

0.10 0.1020

2.6840

0.8220 0.720 931.0

2,281.0

6.40 1.80 1.02

0.20 0.2040

3.5060

2.3130 2.109 2,725.0

3,212.0

6.00 2.00 1.02 5.8190 5,937.0

The distances in the last column are measured from the

drop section 2. The surface curve is plotted in Fig. 113.

Question 2. Determine the depth in a section immediately

below the sluice in Fig. 112, at a distance 5,000 ft. from section 2.

The reach length between section 5.40 and (1) is 5,000 — 3,212

= 1,788 ft. Hence

1,788 = 1,293[T(5.40) - ^(yi)]

From Table XX

7’(5.40) = 5 .T -^ = 1.02 X 1.80 - 3.506 = -1.67
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The solution lies in finding the value of t, which would satisfy

1 7QQ
T{y,) = T(5.40) - = -1.67 ~ 1.38 = -3.05

The solution of the equation

T{y,) = 1.02r -
Jg'

= -3.05

0.

o

Fig. 113.—Tracing of the M 2 curve for the canal with horizontal bottom, Fig.

112, Example 16.

is found by tentative probes; we have:

r 1.02r r*-V4.8
,

T

1.95 1.989 5.126 -3.137

1.94 1.978 4.998

T = 1.943 gives = 3 X 1.943 = 5.83 ft.

Exercise:

Assuming a canal, Type Z>, laid with a horizontal bottom at a

length of 10,000 ft., determine the surface curve corresponding

to a flow of 670 cu. ft. per second. Use G.K. coefficients for

So = 0.0001 with n == 0.025, Assume hydr. exponent n = 3,8.





PART II

PRACTICAL APPLICATIONS

The methods and means developed in Part I are to be

applied to different practical cases of hydraulic engineering.

Foremost are problems relating to the design of canals. It

will be found that design based solely on notions of uniform

flow is inadequate and may lead to unexpected and, at

times, unremediable consequences. Only when the design-

ing is approached in terms of varied flow, may one feel

positive how a canal will stand up and function in actual

practice, especially when the discharge or the levels

deviate from what was assumed in theoretical computa-

tions; or, again, when the friction coefficients are not quite

what they were taken to be in the figuring.

Chapters XI to XIV deal in particular with canals of mild

bottom slope (sq < (Tq). Canals of steep slope (sq > <ro)

are treated separately in Chap. XV. The last chapter is

devoted to backwater curves in natural watercourses.

It is assumed in the following that the reader has

familiarized himself sufficiently with the basic conceptions

and elementary methods developed in Part I.





CHAPTER XI

DELIVERY OF A CANAL

44. Definitions. Examples.—A canal of given cross-

sectional forms is laid at a length L between section 1 and
2 with a bottom slope So (Fig. 114). The levels, and
accordingly the depths and yi, in the different sections

Fig. 114.—The problem of delivery. Determining the discharge Q under given
stages of flow y\ and yz.

vary. The problem is to determine the discharge which the

canal will deliver at each particular combination of stages

2/i and y^. Accordingly the delivery of a canal, as it is

called, is the yield in discharge of a canal under varying

conditions of level or, which is identical, under varjdng

depths in certain given sections, usually at the extremities

of the structure.

To illustrate, we have in Fig. 115 a canal connecting two
reservoirs A and B with varying levels, the problem being

to determine the discharge which will flow from reservoir

A to R under different conditions of levels. Another

instance (Fig. 116) is that of a storage reservoir S placed

between two canals, the first of which (a) draws water

from a source of supply A, while the other (b) feeds water
143
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to the locus of usage B. Depending on the position

of the various levels, the storage reservoir will either

m

Fig. 115.—Varying delivery Q in a canal, connecting reservoirs with varying
levels A and B.

accumulate water or supply the difference between the

deliveries Qb and

These are but instances to illustrate the nature of the

problems. Actually any canal called on to carry varying

quantities of water or subject to fluctuation of levels at

its extremities will be working under cohditions of varied

flow; and practically in all such cases knowing the delivery

of the canal under the different possible combinations of
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levels is precedent to the answering of questions, relating to

the functioning of such canals. The problem of delivery is

therefore basic. It is analogous to discharge in the field of

uniform movement, and plays the same r61e in computations

concerned with varied flow.

45. Case of 7/1 Constant.^—The simplest case is when the

level at one of the extremities of the canal does not change.

For example, in Fig. 117/1, the depth 7/1 is assumed to

remain constant, while 7/2, determined by level B, fluctuates.

I a

I n

Fig. 117,—Delivery curve Q = f{yi) in the case of yi = constant.

The delivery curve Q = /(t/u) has the outline as in Fig.

117/11. The curve has the following characteristic points:

1. Point Z: The surface line ah^ is level; 7/22 = J/i + sjj)

the delivery obviously is Q = 0 .

2. Point 0: The surface line abo is parallel to the bottom;

2/2 = 2/ 1 ;
flow is uniform with Qo = KoVso, where Ho is

the conveyance of the cross-section at the depth 7/ 1 .

3. Point C: Corresponding to the maximum possible

discharge Q„ax- The depth y^c is the critical depth, con-

nected with the maximum delivery through Q'^maxlg =

(aV&)i/ - i/c-
The curve abc is the lowest possible surface

curve of the M2 type, compatible with the given depth 7/ 1 ,

A further lowering of level B in the reservoir below 7/2 = Vc

will not affect flow in the canal and will not increase the

discharge. The depth at the extremity of the canal will
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remain ycr‘, the outflow into the pool B will take place by
means of a hydraulic drop.

Intermediary points, relating to the portion z-o of the

delivery curve, will correspond to a rising curve of the

Ml type, with a delivery Q . To determine such curve

follow the procedure of Example 9, Art. 36. Briefly, for

a selected value Qx, determine the normal depth yox-*

Then with yix — yifyox in section 1, determine t; 2* = y-zlyox

and thus y^, by means of Eq. (91).

(104)
yo

The points between 0 and C wil. relate to a falling curve

Mi with Q ^ . The procedure to be applied is that
^ ^max

of Example 11 Art. 37. It is similar in general to that

used for the z-o portion. Only instead of Eq. (104), one

should use Eq. (86),

11 (172 ) = ^ 4- n(i7i)
Vo

where

11 (17 )
= 17 - (1 - ^)B(v)

which equations take into account the change of kinetic

energy in accelerated flow.

It will be found in most practical cases, except when the

canal is very short or the bottom slope exceptionally small,

that the o-c portion of the delivery curve (Fig. 117/11),

between the normal discharge Qo and Qmax, is very steep, so

that Qmax exceeds Qo only by a very small amount. This is

a point of paramount importance. It should be accepted

as a practical rule; a generalization which ripens from

accumulated experience in actual computation. The mean-

• The depth y„, may be either determined throu^;h Koi = Qx/y/Tn, by

means of the K = f{y) curve, or taken directly from a normal discharge

curve (Art. 9), which curve will always be found a useful auxiliary when
handling problems of this nature.

(105)
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ing is that in most practical cases the discharge Qo, corre-

sponding to uniform movement, is actually very close to the

maximum possible discharge. As a consequence, for

example, the lowering of level B at the lower extremity

of the canal and an increase in the surface slope do

not result in any measurable addition to the discharge,

and thus in most instances should be discarded as a

means to increase the delivery, to “draw” additional

water.

The reason lies in the fact, that the falling curve M2 is

comparatively short. In connection therewith. Fig. 118

Fia. 118 .—Delivery curve in a canal, the length of which exceeds the length
of the falling curve.

pictures the rather extreme case when the total length I

of the curve dbc, between the critical depth and the depth

yd = Q’gggl/i ^ l®ss than the length of the canal L. In

such a case, which occurs rather frequently, the falling

curve under all circumstances ends below section a, which

means that the reduction of level in B below 60 (2/2 = yO
never extends beyond d and, therefore, has no effect on the

flow in the upper portion of the canal. The normal

discharge Qo in this case is the maximum discharge. The

fluctuation of level B below 60 does not affect the delivery

at all. The Q — f(y2) curve in this case has the outline

as given in Fig. 118/11.
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Example 17

Assume a canal, Type A (Plate III), laid at a length of 2 miles

(10,560 ft.). Assume yi maintained constant and equal to

2/, = 6 ft. (Fig. 119); the drop of the canal bottom

L^o = 10,560 ft. X 4 .
10-4 == 4 224 ft.

Question 1. Assuming that the stage B varies from level

conditions (az) downwards, determine the delivery as Q =

fiV'z)-

6.Kn=0.02S.

Portion of the curve z-o (Fig. 117) corresponding to a rising

curve ab' in Fig. 119 of the Mi type:

1. Zero delivery. Q = 0; = 6 + 4.224 = 10.224.

2. Uniform movement: 2/2 = 2/i
= 6 ft.; Ko = 639 X 10^ (see

Plate III);

Qo = 639. 10^ X • 10-® = 1,278 cu. ft. per second.

^ 6 ft

3. Intermediate points between 0 and Z with 2/2 ^ 224

and 0 < Q < Qq = 1,278 cu. ft. per second; in selecting the inter-

mediate discharges, for which 1/2 is to be determined, go by
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normal depths, selecting a series of yo values between 6 ft. and

zero.

As an example make = -5 ft.; the conveyance at yo = b

(Plate III) is Ho = 465 X 10^; the discharge Q = 465 = 930

cu. ft. per second.

With the hydraulic exponent value at n = 3.6, we have for

section 1

:

m = 2/i/yo = % = 1.20

Fig. 120.— Delivery curves Q = /(yz) for canal layout, Fig. 119

and from the tables 4>(1.20) = 0.880. With

s,L/yo = 4.224/5 = 0.845

we have (Eq. 104)

Hri2) = 0.845 + 0.880 = 1.725

In determining the corresponding 772 ,
take proportionate parts

between table values for 772 = 1.80 and 772 = 1.85, obtaining

1 79 f; 1 712
rj , = 1.80 + 0 .05i~— = 1.80 + 0.0116 = 1.812

which gives

2/2 = 7]2yo = 1.812 X 5 = 9.06 ft.

The computation elements for other points are assembled in

Table XXI.
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Table XXI

2/0

1

K„
in 10“ units

Q.

1

m
1

1

Lso/yo ’72

j

2/2

i\ n nn 1 07« i\ nnu . 0

5.8 600.00 1,200.0 1.034 0.273 0.728 1.001 1.262 7.330

5.4 530.00 1,060.0 1.110 0.653 0.783 1.436 1.568 8.470

5.0 465.00 930.0 1 . 200 0.880 0.845 1.725 1.812 9.060

4.0 313.00 626.0 1.500 1.351 1.056 2.407 2.440 9.790

3.0 190.00 380.0 2.000 1.934 1.410 3.344 3.360 10.100

2.0 93.70 187.4 3.000 2.97S 2.112 5.090
j

5.096 10.190

1.0 27.35 54.7 6.000 5.996
1

4.224 10.220 10.221 10.221
n 1 n D0

1

u lU . .ZZ l

The delivery curve Q = /(^s), figured in part as above, is

plotted in Fig. 120 as curve 1.

Portion of the curve o-Cy correspondng to a falling curve ah"

in Fig. 119 of the Mt type.

0)

For this portion

< 2/0 = 6 ft.
^ Pi ^ — 1;278 cu. ft. per second

yi ^ f ^ ^ r\^ y^min — ycr ^ ^maz

Maximum Discharge .—Naturally one should first determine

the limiting value of Qmax and the respective 2/ 2min. The depth

y2min is the critical depth, corresponding to Qmax- In other

words, Qmax is the discharge, which on an curve with 2/2 = ycr

will make 2/1 in section (1) equal to 6 ft. To find Qmax take a

series of Q’s, beginning from Qo = 1,278 cu. ft. per second
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upwards; then, making in each case 2/2 = Vcr, determine the

corresponding yi.

The discharge, which will make 2/1 = 6 ft., is the Qmax sought

(Fig. 121). In computing follow in general the procedure as

given in Example 11. In selecting the series of Q^s, proceed by
the normal depths.

The basic hydraulical elements, required for the computation

are assembled in Table XXII.

Table XXII

(1) (2) (•1) (4) (5)

2/0 K„ Q = rci„ = Q'Vg Vcr

5.80 600 X 102 1,200 213.0 2.54

6.00 639 X 102 1,278 225.5 2.63

6.10 653 X 102 1,316 232.0 2.68

6.20 678 X 102 1,356 239.0 2.73

The Mo values in the above table are taken from Plate III.

The 311(2/) values (Col. 4) correspond to critical flow of the dis-

charge as given in Col. 3. The critical depths (Col. 5) are taken

from the 311 = a\/a/b curve of Plate III.

The values of 1-/3, within the range of depths yo — ycr are:

y = 6ft.:(T = 55 X 10-'; /3 = So/cr = 4/55 = 0.073; 1 - /3 = 0.927

y = 2.6 ft. : O' = 72 X 10“'; /3 = so/o- = ^72 = 0.056;

1 - /3 = 0.944

An average value of 1 — /3 = 0.935 will be usedo The pro-

cedure of computation will be made clear by figuring out a point

in detail. Take 2/0 = 6.10 ft., corresponding to Q = 1,316 cu.

ft. per second and 2/2 = y^ = 2.68 ft.

For section 2 we have: r}2 = 2.68/6. 10 = 0.439; with n = 3.6,

EM = 0.444; 0.935 X 0.444 = 0.415; n(r72) = 0.439 ~ 0,415 =

0.024.

Lso/yo = 4.224/6.10 = 0.695

Accordingly

n(,7,) = n()js) - —" = 0.024 - 0.695 = -0.671
2/0

To facilitate the finding of 7?i for the particular point in question

as well as for other points, we have drawn a curve (Fig. 122)
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Fio. 122.—Auxiliary curve, for solving equation 11 =

Q

Fig. 123 -Auxiliary curve for determining the maximum discharge in canal
layout Fig. 119. For a chosen discharge (abscissae) the yer curve gives the depth
2/2 = Vcr in section 2 while the curve Q = fiyi) gives the corresponding stage in

section 1.
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of 11 (771 )
= 771 — 0 .9355 (771 ) in accordance with the following

auxiliary table.

V
Eiv)

i

with n - 3.6
0.9355(7,) n(7,) = „ - 0.9365(7,)

0.970 1.501 1.402 0.432

0.975 1.554 1.451 0.476

0.980 1.617 1.510 0.530

0.985 1.699 1.587 0.602

0.990 1.814 1.696 0.706

0.995 2.008 1.870 0.875

0.999 2.457 2.307 1.308

For 2/0 = 6.10, the value of 771 corresponding to 11(771) = —0.671,

is 7?i = 0.9887.

The figuring for the other points is assembled in Table XXIII.

Table XXIII

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

i

2/0

1

Q 2/3 = l/cr Vi Bivi) 0.9355(772) 11(172)

Lso

yo
III m yi

5.80 1.200 2.54 0.438 0.443 0.414 0.024 0.731 0.707 0.9901 6.74

6.00 1,278 2.63 0.438 0.443 0.414 0.024 0.707 0.683 0.9893 5.94

6.10 1,316 2 68 0.439 0.444 0.416 0.024 0.696 0.671 0.9887 6.03

6.20 1,356 2.73 0.440

1

0.445

I

0.416 0.024 0.683 0.659 0.9881

1

6.13

The 0, 2/1 and 2/cr = 2/2 values (Cols. 2, 3, and 11) are plotted

in curve form Q = /(2/ 1 ) in Fig. 123. The discharge, correspond-

ing to 2/1 = 6 ft., is found to be Qmaz = 1,303 cu. ft. per second

with 2/2 = 2/cr = 2.66 ft.

Intermediary Points between Qo and Qmax -—Inasmuch as Qmax =
1,303 is rather close to Qo = 1,278 (difference about 2 per cent),

there is little room for finding additional points. One point at

least should be established nevertheless, say that corresponding

to yo = 6.06 ft., with Q = 1,300 cu. ft. per second. For this

point, the elements in section 1 are:
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r,i = 6/6.06 = 0.99;n(7,i) = -0.706; Lso/2/0 = 4.224/6.06 =
0.696

Accordingly

n(r,2) = 0.696 + (-0.706) = -0.010

This equation is satisfied with rja = 0.725 and 2/2 = 0.725 X
6.06 = 4.40 ft. In fact, the respective table values give:

V Bin) 0.935Ii(v) Bin)

0.72 0.779 0.728 - 0.008

0.73 0.793 0.742 - 0.012

By plotting this point and the Qm«x point into Fig. 120, we obtain

the Q = fiyi) delivery curve (1) in complete form.

46. Long and Short Canals. Effect of Bottom Slope.

—

The delivery curve, as computed above, presented in Fig.

120 (curve 1) is typical of canals of medium length. The
maximum discharge is, even if slightly, still greater than

Qo ;
on the other hand, within the whole range o-z of the

rising backwater curve, the fluctuations of y<i have a marked
effect on the delivery.

As the length of the canal increases, Qmax and Qo become

closer and closer to each other; and finally, as in Fig. 118,

they coincide . As the canal becomes longer, its lengthL may
become greater (Fig. 124) than the length of the rising curve

I, corresponding to a depth y''. Obviously flow in section



DELIVERY OF A CANAL 155

1 will begin to become affected by the variations of level

B, only when, and after the depth will reach and exceed

a certain depth y'l, which makes the curve b'a equal to

the length of the canal. Naturally, for all y^ < y\, the

delivery remains constant and equal to Qq. The respective

portion of the Q = f{y-i) diagram (Fig. 124) is a vertical

line o-o’. To determine y\, make t/i in section 1 equal to

1.01 or I.OOIt/o, and figure the corresponding stage in

section 2.

As to short canals, it is evident that the smaller the

length L, the greater the excess of Qmax over Qo- The
difference in the character of the delivery curve will be

made clear from the following example which refers to a

canal identical with that of Example 17 but of a shorter

length.

Example 18

Determine Q = /(yi) for the canal. Example 17, with a length

L = 2,500 ft. (Fig. 125).

L • So = 2,500 X 4 • 10-" = 1 ft.

accordingly j/s,, corresponding to level conditions and Q = 0,

is

2/2* = 6 + 1 = 7 ft.

The elements of the o-z portion of the curve are given in Table
XXIV which in its first three columns is identical with Table

XXI.
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Table XXIV

yo Qo Lsa/yo 4>(772) m Vi

1

A n 1 97Q n0 . u I
,

/ 0 . u Uniform movement- 0

5.4
j

1,060.0 0.653 0.185 0.838 1.180 6.380

5.0 930.0 0.880 0.200 1 . 080 1.310 6.550

4.0 626.0 1 . 351 0.250 1.601 1 . 705 6.820

3.0 370.0 1.934 0.333 2.267 2.312 6.936

2.0 187.4 2.978 0.500 3.478 3.493 6.986

1.0 54.7 5.996 1.000 6.996 6.998 6.998

0.0 0.0- Level conditions —7

In figuring out the o-c portion of the curve, corresponding to

falling curves M2 ,
we assume once more the average value of

1-/? to be 0.935. The figuring, in accordance with formula

IliV2) =~ +
yo

is carried out in Table XXV.

Table XXV

yo Q VI 0.935/^(77,) n(7;,) L.so/yo ll(r? 2 ) 772 Vi

6.0 1,278 TT r nUniform now- • 0

6.2 1,356 0.968 1.485 1 . 389 -0.421 0.161 -0.260 0.937 5.81

6.5 1,474 0.923 1.222 1.142 0.219 0.154 0.065 0.821 5.35

6.8 1,610 0.883 1.090 1.019 0.136 0.147 -fO.Oll 0.650 4.42

7.0 1,684 0.8584.026 0.960 0.102 0.143 0.041

The last row (7/0 = 7 ft.) carries no figures for 772 and 7/ 2 . The
reason is that, as the reader may easily ascertain, no table values

of 7)2 may be found which would satisfy the relation: 11 (77)
=

77 - 0.935^(^) = +0.041.

The biggest positive value that n(y) may reach is +0.024.

The physical meaning of this is that the drop curve which would

correspond to 7/0 = 7 ft. and Q = 1,684 cu. ft. per second is

shorter than the length of the canal. In other words, the delivery

Q = 1,684 is in excess of Qmaz-

To find the value of the maximum delivery, which obviously

lies between 1,610 cu. ft. per second and 1,684 cu. ft. per second,

we may apply the procedure of the preceding paragraph

:
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(12) 5.94 6.01 6.10

rH
rH 0,874 0.873 0.872

!

o
H

-0.123

0.121 0.119

S CO

0.147 0.145 0.143

S H
(NO
o

0
2
1C
CO
05

d
0
426

0 vS 0.4555

1

o

II

0.45]
0.45

0.45

j

2 3.06 3.10 3.15

@
§

284 290

297.5

S O 1,610 1,646 1,684

rH o
6.80 6.90 7.00
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The ycr values in Col. 4 are taken from the 311(2/) curve of Plate

III. Characteristic of the situation is the identity for all the

critical depths of the numerical value of 11(772) == n(r7cr), which
in Table XXVI as well as in Table XXIII is equal to 0.024. As
mentioned before, this is the maximum numerical value that the

expression 11(77) = 77
— 0.9355(7;) may attain for the selected

hydraulical exponent and the assumed 1-|3. This feature of

OB6 087 08& 0B9 0 90 o91 0.92 095 0 94

Fig. 126 .—Auxiliary curves for Example 18 .

the 11(77,.^) value being constant over a vast range of depths may
be advantageously used at times for simplifying the figuring.

For determining 771 (Col. 11) from the 11(771) values (Col. 10),

a curve 11(77) =
77
— 0.9355(77), similar to Fig. 122, is drawn in

Fig. 126. Q, 2/cr, and 2/1 (Col. 2, 4, and 12) determine a Q = /(2/1)

curve,* from which we determine Qmax = 1,638 cu. ft. per second
as 0 for ^1 = 6 ft. and the corresponding 2/2 = Ver as 3.09 ft.

The delivery curve itself is plotted in Fig. 120 as curve 2. The
two Q = 7(2/2) curves, one for a canal length of 10,224 ft., and

* Drawn in the quadrangle inside Fig. 126.



DELIVERY OF A CANAL 159

the other for L = 2,500 ft., bear comparison. In the long

canal, Qmaz exceeds Qo only by

1,303 - 1,278

1,278
= ^2 per cent

while in the short canal, the increase in delivery is

1,638 - 1,278

1,278
= ^28 per cent

Effect of Bottom Slope,—The outline of the delivery

curve depends obviously on the relation of the canal length

L to the longitudinal elements of the surface curves. As
elucidated in Art. 42, other factors being equal, the

longitudinal elements of the surface curves change inversely

to Sq, The smaller the slope, the longer the curves and

vice versa.

For that reason, reducing the bottom slope will have an

effect similar to that of making the canal shorter.

47. The Q Maximum Curve.—The procedure, used in

the preceding examples in determining Qmax for a given yi

may be extended to build a Qmax curve, covering a wider

range of conditions and showing in a general way the

possible maximum discharge which may flow in a canal

under the varying stage yi, A curve of this kind will be

found to be helpful in many instances. The computation

procedure is that of Tables XXIII and XXVI applied to a

wider range of depths. For a series of ijo and Q values respec-

tively, determine yu in section 1, assuming in each case y 2

to be the critical depth, corresponding to Q,

Example 19

For a canal, as in Example 18 (Fig. 125), determine the

Qmax = fiyO curve for a range of discharges between 0 and 2,000

cu. ft. per second.

In the table on p. 160, the value of the critical depth (Col. 4)

is taken from the ytt(y) curve in Plate III. For the points z/o ^
5 ft., the average value of I — = 0.935 was accepted, as in the

preceding examples, which results in an identical value of n(?;cr)

= 0.024 for all the respective points and permits using the II (171)

curve of Fig. 126 for determining rji.
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For the points below ?/o = 5 ft., the average 1-/3 values

were determined by taking in each case the average critical slope

(T from Plate III for the range between t/o and ijcr, and figuring

cr

The table values of Q (Col. 2) and i/i (Col. 13) determine the

maximum discharge curve Qmax =
/(z/i) which is plotted as

Fia. 127o—Delivery curve Q = f(yi) in the case of constant.

curve 3 in Fig. 120. The curve follows rather closely the normal

discharge curve 4, corresponding to uniform flow, once more

showing that even in a rather short canal the uniform-flow

delivery is not far from Qmax^

Point C' on the Qmax curve corresponding to ?/i = 6 ft. is

identical with point C2 on the Q = /(?/2) delivery curve. To com-

plete the picture there is also plotted the curve of ycr = y2min =

/(Qmax). Obviously this curve, if viewed as 2/2min = f{y i)y indi-

cates the lowest possible position to which level in section 2 may
sink with the given initial depth yi in section 1. Obviously the

y2min curve intersects the delivery curves Q == 7(2/2) at points

Cl and C20

48. Case of y2 Constant.—It is assumed now (Fig. 127)

that level B and thus the depth 2/2 remain constant. The

fluctuating stage is stage yi in section 1. Accordingly,

the deliveries vary with the depth 2/1, the curve becoming

Q ^ fiyOyt const.
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The characteristic points are:

1. Level condition b—o*; with Q — 0 and (2/1)*
=

2/2
- SoL. ^
2. Uniform flow b—ao ;

with Q = 3K2\/So, where IKi

is the conveyance at 2/0 = Vi-

3 . Maximum discharge curve h—a^, compatible with the

given 2/2; Qmax in this case is the critical discharge corre-

sponding to the given 2/2- Hence Qmax = 'SCLiyQN^g,

where 3tl(2/2) is the value of as/ajb at 2/ = 2/2-

The depth 2/ic, corresponding to Qmax, is the particular

point on the maximum discharge curve Qmax = fivi) of

the preceding article. Obviously, 2/ic is the highest possible

stage in section 1 which is compatible with the given con-

stant depth 2/2- In case 2/1 were to increase beyond yu,

the depth in section 2 would have to be greater than the

given 2/2- If, under such conditions, level B in the reservoir

were to be maintained at the same stage, flow would
(‘merge from the canal by means of a drop (see dotted

curve a"b").

The delivery curve Q = 7(2/2) has the outline, as given in

Fig. 1276 . The portion z-o, with

2/1 ^ and Q< 2/10

> 0
< Qo

corresponds to rising-surface curves of the Mi type. The
portion o-c, with

corresponds to drop curves of the ikfj type.

Example 20

Assume (Fig. 128) a layout similar to that of Example 17
;

assume, further, that the stage in section 2 is maintained constant

at a depth 2/2 = 6 ft.

Compute and draw the delivery curve Q =
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The characteristic points are:

lo Level conditions, with Q = 0 at yu = 6 ft« — 4.224 =

1.776 ft.

2. Uniform flow, with Qo = 1,278 cu. ft. per second at ?/]
=

6 ft.

3. Maximum discharge.

From Plate III we have 3ll(r/ = 6 ft.) = 834; accordingly

Qmux = SS4\/g = 4,720 cu. ft. per second. To find the corre-

sponding normal depth:

Ko = Qma^/V'^o = 4,720/^4-10-^ = 2,360-102

to which there corresponds in Plate III, z/o = 12.43 ft.

Depth y\c.—The average value of a between 2/2 = 6 ft. and

2/1. = 12.43 ft. is <T = ~50 •
10“'

'. Hence

^ = ^0 = 0.08 and 1-/3 = 0.92

For section 2, we have:

7/2 = 6/12.43 = 0.483; BW = 0.491; HCt/j) = 0.483 - 0.92 X
0.491 = 0.031

With

LoSo/2/0 = 4.224/12.43 = 0.34

n(77i) = 0.031 - 0.340 = -0.309

which is satisfied by 771 = 0.954, making z/i^ = 0.954 X 12.43 =
11.87 ft.

Regarding intermediary points, we shall compute one point

in each of the o-z and o-c portions of the curve:
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ZO Portion; Mi Curve: Take 2/0 = 4 ft.; Q = 626 cu. ft, per
second. With 2/2 = 6 ft.; 772 = ^ = 1.351; Lso/i/o =
1.056; hence

= $(772)
- ^ = 1.351 - 1.056 = 0.295

Vo

which corresponds to 771 = 1.0385; and //i = 4.15 ft.

OC Portion; M2 Curve: Take yo = 8 ft.; Q — 2,140 cu. ft. per

second.

Fig. 129.—The Q — /(z/Ov^-oonst delivery curve for Example 20.

m = % = 0.75; = 0.823; 11 (7, 2)
= 0.75 - 0.92 X

0.823 = -0.008

With

Ls„/2/o = 4.224/8 = 0.528

n(7,i) = 0 (7, 2)
- — = -0.008 - 0.528 = -0.536

2/0

This corresponds to t/i = 0.983 and yi = 7.86 ft.

The curve is plotted in Fig. 129.

49. Q = /(t/i, y^). The Q Constant Curve.—In the

general case, when both t/i and vary, the problem in its

broadest sense is to determine the delivery which takes place

under any possible combination of depths yi and 2/ 2 .
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T^suming that a certain pair of depths yi and 1/2 is given,

the question is answered by computing and tracing for

that or the other of the given depths a portion of the

Q = /(ya) or of the Q = f(yi) delivery curves, suggested

in the preceding paragraphs. In fact, suppose 7/2 ,
as given,

were to be > yc, the case will be that of a rising curve

(a)

(Fig. 130o)
;
the delivery Q is < Qo, which would correspond

to 7/0 = yi‘, the value of the actual discharge is determined

either from a Q = f(y2) curve as in Art. 45, built with the

given 7/1 as constant; or from a Q = /(j/i) curve, as in Art.

48, built with the given j/2 as permanent.

When 7/2 is < 7/1 (Fig. 1306) the delivery will be between

the normal discharge Qo corresponding to yi —
7/0 and

Qmax corresponding to 7/2 = Vcr- Start by trying out an

M2 falling curve, assuming the given y\ to be 0.999 or 0.99

of yo. Determine the corresponding y'
2 . If the y\ so
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determined, is < as given, Qo is actually the maximum
discharge. If y’t is > 1/2 as given, build the o-c portion

of the Q = f(yi) curve as in Fig. 129 for the given y^.

The Q Constant Curve .—A very useful chart, picturing

the delivery under all possible circumstances, is obtained by

means of what we call the Q constant curve.

Assume a discharge Q, flowing in a canal (Fig. 131). The

same volume of flow may be delivered by the canal in an

infinite number of ways; each way of flowing being fea-

tured by a pair of depths 2/2 and yi in the given sections 2

and 1, usually at the extremities of the structure. Obvi-

ously the depths y^ and yi are mutually interdependent.

Fiq. 131.—Reciprocal depths for a constant Q.

To each depth t/2, there corresponds one and only one depth

yi and vice versa; so that each possible pair of depths may
be said to constitute a pair of “reciprocal” depths.

One of the possible pairs of the reciprocal depths is

yi = y-i = yo, corresponding to uniform flow of the given

discharge Q. Above the line of uniform flow O060, we have

y'2 reciprocal to y'c, y"^ to y"i, etc., all on Mi curves.

Below ao6o, the reciprocal depths correspond to points on

an M2 curve. Curve ache is the lowest possible position

of the M2 curve, the depth y2min being the critical depth

for the given discharge; yu is the ordinate of the Qmax
curve (see Art. 47) corresponding to the given Q. Together

and separately y2min and yu are the lowest possible stages

in their respective sections, at which the given delivery

Q may flow.
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As to the upper limit of the surface curve, it is evident

that, as the depths yi and grow, the curve a-b tends to

become a horizontal line with lim. (y^ — yi)„~~ = SqL.

The functional relation between yi and y-i may be repre-

sented by tracing a curve (Fig. 132), each point of which is

determined by a pair of reciprocal values of yi and ?/ 2 . The
resulting curve is the Q constant curve.

The characteristic points and features of the curve

are as follows:

1. Point 0, with yi = y^, corresponding to uniform flow,

lies on a straight line drawn from the origin of the coordi-

nates, at an angle of 45 deg. This line is the locus of the

normal depths for all discharges.

2. Point C, determined for each given discharge by

Vi = Ver and yi — yu. Point C is the lowest possible limit

of the curve for the discharge as given. By plotting the

C points for the different Q’s, one obtains the C line which is

the locus of critical depths, so far as the abscissas y^ are

concerned. The ordinates of the C curve are the yu in

the sense of Art. 47.
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3. The upper limit, determined by ^2 — y i = sjj is a straight

line (L line) drawn at 45 deg. from a point at a distance

sjj from zero. The limiting character of the L line is exem-

plified by the fact, that the Q constant curve lies to the left

of such a line, to which it is asymptotically tangent.

By plotting a series of Qconst curves for different dis-

charges, a universal chart is obtained giving a summarized

picture of possible flow in the given canal under all possible

combinations of levels (Fig. 133). The curves drawn for

different Q's are congruent but do not intersect each other.

Each point of the Q —
/(?/], y^) plane (Fig. 133) determines

one and only one discharge, featured by the particular Q
curve which happens to pass through such point.

Example 21

Question 1. Assume a canal layout, as of Example 18 (canal.

Type A; length 2,500 ft.); determine the Q,ons/ curve for Q =
1,278 cu. ft. per second, corresponding to j/o = 6 ft.

For point 0 we have ?/i = 1/2 = 6 ft. For point C (see Table

XXVII); 2/2 = yrr = 2.63 ft.; y, = 2/ 1 ,
= 5.32 ft.

For the rising portion of the curve, use formula

4’(’7 i)
= ^(vs)

— “ 0.167
2/n

For the falling part of the curve, use formula

n(»;i) = n(r,2)
- 0.167

The figuring, with n = 3.6 and 1 — |8 = 0.935, is given in

Table XXVIII.
Table XXVI H

(1) Rising Cukve Mi. (y-i > Oft.)

V2 ?/2 ^iV2) <^(771) 2/1

1 nn TT f n a nn1 . uu Uiiiforiii flow D . uu

1.05 6.30 0.394 0.227 1.029 6.17

1.10 6.60 0.620 0.453 1.060 6.36

1.20 7.20 0.S80
1

0.713 1.130 6.78

1.35 8.10 1.141 0.974 1.248 7.49

1.50 9.00 1 . 351 1.184 1 . 379 8.27

1.75 10.50 1.655 1.488 1.609 9.65

2.00 12.00 1.934 1.767 1.849 11.09
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Table YiXNllL—(Coniinued)

(2) Dropping Curve (2/2 < 6 ft.)

V2 2/2 BM 0 .935/^(172) nM

0.9
1

5.4 1.140 1 . 066 -0.166
0.8 4.8 0.907 0.848 -0.048
0.6 3.6 0.623 0.582 +0.018

rhe curve is plotted in rig. 133 as curve 1

1

1

Q const, curve
for canal
^

Type A;

1\

C=2500'

,*1

'^rve No. /

/
y. •«'!

(? 2l}6^

- 6’ 0
I /0-12^3-^^

Fig. 133.—The Q constant curve in Example 21.

The L line, parallel to the 0 line, is drawn at a distance of

Z/So = 1 ft.

Question 2. In addition to the above, figure and trace Qcomt.

curves for the following:

yo — S ft., corresponding to Q = 2,136 cu. ft. per second

2/0 *= 4 ft., corresponding to Q == 626 cu. ft. per second

2/0=2 ft., corresponding to Q = 137.4 cu. ft. per second

The points on the 0 line are * 2/2 = 2/o.

The points for the C curve may be taken from Table XXVII.
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2/0 = 8 ft.; 2/2 = Vcr = 3 . 62 ; yi ^ ^ 6.86

2/0 = 4 ft.; 2/2 = Vcr = 1 . 64 ; yi ^ y^ ^ 3.69

2/0=2 ft.; 2/2 = Vcr = 0.77; 2/1 = 2/c = 1.95

In figuring the rising portion of the curve with 1/2 > Vu we
may use the same series of and $(772) ’s as in Table XXVIII,
determining the 4>(r/i)^s by subtracting in each case from <^>(772)

the value of Lso/iyo, corresponding to the different 2/o^s. The
figuring is clear from Table XXIX.

Table XXIX

VQ = 8j Lso/yo “ 0.125
I/O ’* 4 ft.; Laa/yo “

0.250

2/0 “ 2 ft. ; Lao/vo “
0.500

m 1 i

Vi Hvi) VI

j

Vi 4»(iji)
j

VI Vi

j

VI 1/1

1.10 0.620 8.80 I0.495 1.069 8.55 4.40 0.370 1.045 4.18 2.20 0.120 1.020 2.04

1.20 iO.880 9.60 0.755 1.146 9.17 4.80 0.630 1.103 4.41 2 40 0.380 1.048 2.09

1.35 1.141 10.80 1.016 1.272 10.18 5 40 0.891 1.205 4.82 2.70 0.641 1.106 2.21

1.60 1.351 12.00 1.226 1.408 11.26 6.00 1.101 1.324 5.29 3.00 0.851 1.186 2.07

2.00

3.00

1.934

2.978

8.00 1.684 1.775 7.10 4.00 1.434 1.565 3.13

12.00 2.728 2 . 756 11.02 6.00 2.478 2.513 5.03

5.00 4.994 10.00 4.494 4.502 9.00

The falling portion of the curve is figured in Table XXX.
The curves are plotted in Pig. 133, which thus gives an example

of the universal chart mentioned at the beginning of the article.

Q Constant Curves for Long and Short Canals .

—

The
difference in the outline of the curves is best exhibited by
means of a numerical example; namely by comparing

curves, computed for the same cross-section and the same
delivery, but for canals of different lengths.

Example 22

Determine the Qcon^t curve for 2/0 = 6 ft. for the canal, as of

Example 21, but with a length L = 2 miles (10,560 ft.). The
curve, designated as curve 2, is plotted in Fig. 134, while the

respective curve for L = 2,500 ft. is traced in as curve 1. The 0
points of the two curves coincide. The C point for curve 2 is

taken from Table XXIII, namely,

2/2c = Vcr = 2.63 ft.; 2/1 = Vu = 5.94 ft.
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CHAPTER XII

ENTRANCE CONDITIONS

60. Local Phenomena at the Extremities of the Canal.-

In the preceding chapter, the relations between the delivery

Q and the depths and at the extremities of a canal were

established without taking into account the phenomena
which accompany the inflow or the outflow of water, as it

enters or leaves the canal.

Outflow .—When a canal, as in Fig. 135, empties into a

reservoir, one may anticipate a certain ^^gain’^ of level

— Vb y 2 y
caused by the restoration^^ of at least a

part of the velocity head ?^2 “/2<7 carried by the water as it

leaves the structure. Observation, however, shows that

such restoration, if any, is inconsequential; in other words,

under usual circumstances the kinetic energy is actually

wholly dissipated in eddies and whirls. Therefore, in

practical computation the gain Aijb may be safely neglected

and the stage y^ at the end of a canal simply taken as being

equal to ys (Fig. 136).*

Entrance Regulated by a Sluice .—Figure 138 exemplifies

a sluice or some other device, by means of which the depth

yi may be established and regulated at will. In this case,

the depth i/i, as considered in the preceding chapter, is

simply taken as being the depth below the regulator. The
length of the canal L, which figures in the computations,

should be figured from the sluice section downwards, dis-

regarding the short stretch, where the movement estab-

lishes itself. There will be a difference of level AyA =

* This simple rule will apply in all cases, except where the outflow is

accompanied by a hydraulic drop (Fig. 137) with yz = yer and ys < Ver- In

this case as mentioned before, the depth yz = yrr will continue to remain as

the lowest possible depth of outflow, irrespective of the position of level B.

173
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Va — Vh dependent on the discharge and the opening of

the sluice, but this A?y^ which may be maintained at will

has no organic connection with the varied flow in the canal

as such.

m

. u

^

—

-L

1

Xa

1

1

1

JyA

1

X/

1

1

- un

1
Fig. 138.

(e) (1)

Free Influx,—A most important case of entrance condi-

tions is illustrated in Fig. 139. In this instance, water is

supposed to flow into the canal freely. The resistances and

losses, determined by the shape of the entrance walls and
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eventually by intermediate pillars, are comparatively

small, so that one may designate the flow as “unobstructed.”

The greater part of the entrance head h, is used to produce

the velocity head

In this case, flow in the canal and the entrance phenomena
are organically connected. To each discharge Q, as deter-

mined by the reciprocal depths y\ and ?/•> (Fig. 140), there

corresponds a definite value of an entrance head he and
thus a stage Va = Vi + he. So the depths ya, yi, and 2/2

become functionally connected, representing features of

one single phenomenon.

In most practical cases, it is the depth ya, determined

by level A above the intake, which is given. For example,

with reference to the problem handled in Example 17,

it usually would be level A in the feeding reservoir and

thus the depth ya which would remain constant, the problem

being to determine the delivery in the system as a function

of the varying level B.

Whenever the velocity in the canal is substantial and the

length of the canal not too great, the entrance head may
constitute a substantial part of the total fall of level Z (Fig.

140) and should by no means be left out of consideration.
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Free inflow, functionally connected with varied flow

in the canal, constitutes specifically the content of the

following articles.

61. Evaluation of the Entrance Head. Entrance Zone.

—

The inflow into a canal of mild slope features an entrance

zone (Fig. 139), marked by an undulated surface. Section 1

with the depth yi and a velocity i?i is assumed schematically

as a demarcation between the entrance zone and the zone

of gradually varied (parallel) flow. In the entrance zone,

flow may be summarily evaluated by the simple relation

Q = vm =
(106)

where Vo is the velocity of approach and <p a velocity coeffi-

cient which takes into account the losses between A and
section 1 ; ai in Eq. (106) is the canal cross-section in section

1, corresponding to the depth ?/i.

Neglecting v^l2g, which is usually small, the relation

may be presented as

K = JL = 1 Q'

2g ip‘2gaA
or

= (1 + = (1 + f)o^r2
2^ 2gai

where f = —s — 1 is the “resistance” coefficient.

(107)

The values of (p and f depend on the configuration and

the size of the entrance structure and are treated in hydrau-

lics under the captions relating to flow through oriflces.*

The relation between the velocity coefficient (p and the

resistance factor 1 -b f = \/<p^ is as follows:

^ = 1 HB mmmn
1 + f = 1 Mm n

* Most valuable data on the losses in entrance structures are given by

Hmds, Tram. A.8.C.E., Vol. 92, p. 1422, 1928.
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In the examples to follow, we shall assume an average

value corresponding to well-rounded entrance forms of

= 1 + f = 1.25. Acurveofft* = 1.25;^ values is given
(p zg

in Plate VII.

The Inflow Discharge Curve .—For a given canal (Fig.

141), assuming that ya remains constant and neglecting

the possible small drop of the canal bottom A*„t within

the entrance zone (Fig. 139), so that yi = Va — K, we have

Q = aivi = ai(pV2ghe = ai(pV2g{ya — yi) (108)

By plotting Q = fiy\) in Eq. (108) as a curve, we obtain

the inflow discharge curve, a curve which is basic in the

handling of problems of varied flow, where entrance circum-

stances are to be taken into consideration.

Example 23

Compute and draw the inflow discharge curve for a canal,

Type Af with i/a = ^ ft. using 1/v?- = 1.25.

Table XXXII

2/1 he ^ 6 - yi ai Vi Q

5.99 0 01 371 26 0.72 267

5.98 0.02 370.52 1.02 378

5.95 0.05 368.30 1.61 594

5.90 0.10 364.62 2.62 826

5.80 0.20 357.28 3.21 1,147

5.60 0.40 342.72 4.54 1,560

5.40 0.60 328.32 5.54 1,820

5.20 0.80 314.08 6.40 2,010

5.00 1.00 300.00 7.18 2,154

The velocities in Col. 4 are taken from Plate VII,

The Qent curve is plotted in Fig. 142 as No. 1.

62. Uniform Movement (Fig. 143).—Given ya, deter-

mine the depth yi and the discharge in uniform movement.

In uniform flow, obviously, yi = y^. The discharge Qent,

corresponding to yi (Eq. [108]) must be equal to the

discharge = KiVso; to take place in uniform flow under
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the normal depth yi. The problem is solved by drawing

into one diagram (Fig. 144) as functions of the Qent curve

and the normal discharge curve Qo = KoV«o- The point

of intersection of the curves determines the discharge

sought.

Fig. 144.—Determining normal flow in a canal with free inflow.

Example 24

Determine the discharge Qo and the normal depth in uniform

flow in a canal, Type A (Plate III), assuming that ya ^ ^ ft.,

and that the entrance conditions are as of Example 23.

To solve the problem, draw into Fig. 142 the portion of the

Qo = Ho\/$0 curve (curve 2), beginning with yo = 6 ft. down.

Use, for this, data of Table XXI, namely,

6.0 5.8 5.4 5.0

1,278 1,206 1,060 930

The point of intersection gives y\ — yo = 5.78 ft.; K = 0.22

ft. The normal discharge Qo = 1,198 cu. ft. per second.

The Maximum Discharge .—The same procedure applies

in determining the maximum discharge:

Example 25

Assume once more a canal, Type A, with 2/« = const. = 6 ft.

and l/v?" = 1.25.

Determine the maximum possible discharge for a canal length

= 2 miles, and L = 2,500 ft., respectively. The problem
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is solved by plotting into Fig. 142 the respective portions of

the Qmax curve, Take the required elements of the Qmax =

f{y\) curve, with L = 2 miles, from Table XXIII. The curve

is designated in Fig. 142 as curve 3.

For curve, relating to L = 2,500 ft., use the figures of Table

XXVII
;
the curve is designated as curve 4.

The points of intersection give:

Length L = 2 miles,

Qmax = 1,214 cu. ft. per second; yi = 5.77 ft.; he = 0.23;

2/2 = ycr = 2 .51 .

Length L = 2,500 ft.

Qmax = 1,457 cu. ft. per second; yi = 5.655 ft.; he = 0.345;

2/2 = ycr = 2.84.

63 . The Q = f(y 2 ) Delivery Curve.—In the case of ya

constant, the characteristic points of the Q = /( 2/ 2)va=con«<

curve (compare with Art. 45 and Fig. 117) are:

1. Point Z with Q = 0, and = 2/o + Lsq.

2. Point O and point C, corresponding to uniform flow

and to Qmax, respectively, determined as in Fig. 142.

For figuring out the intermediate points on the o-c or the

0-2 portion of the curve, the procedure in general is analo-

gous to that of Art. 45, except that instead of using a

constant value of j/i in determining iji — yilyo in Col. 4,

Table XXI, the values of yi will vary. For each discharge

Q (corresponding to the selected yo) the respective yi is to

be taken from the inflow discharge curve (Art. 51) ;
with

this, the corresponding rji and y^ — y^y^ are found in the

same manner as in Example 17.

Example 26

In the layout of Example 17, assume the constant depth to be

2/a = 6 ft. Determine the delivery curve Q = /(2/2).

The characteristic points are:

1. Zero point: Q = 0; 2/2 = 6 + 4.224 = 10.224.

2. 0 point (uniform movement) from Example 24.

Q = 1,198; 2/2 = 5.78 ft.

3. C point (maximum discharge) from Example 25.

Q = 1,214; Ver ^ 2.61.
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As an example of determining an intermediary point take

1/0 = 5 ft. with Q = 930 cu. ft. per second (see Table XXI).
From the Qent curve (Fig. 142) for Q = 930, yi = 5 875.

Thus for section 1

:

VI = 5 875/5 = L175; Hvi) = 0.8255

With Lso/yo = 0.845,

$(,,2) = $(,,) + = 0.8255 + 0.845 = 1.6705
Vo

hence

V2 = 1.764 and iji = 1.764 X 5 = 3.82

Computations relating to the other points are gathered in

Table XXIII
Table XXXIII

The curve is plotted in Fig. 120 as curve 6,

Case of yi Cons<an<.—This case is particularly simple.

Suppose a delivery curve Q = f{y\)yi,coni,t has been computed
as in Fig. 127. To determine the value of ija for any
discharge, one simply has to add to the respective value

of yi the corresponding entrance head

h
1 ^

2ga,^

where Oi is the cross-sectional area, corresponding to yi.

Q Constant Curve .—The same applies to the case of a

Qcontt curve. If Ci-O-L (Fig. 145) is the Qconn curve,

similar to that of Fig. 132 and showing the relation between

j/2 and 2/i, the f(y 2 , yf) curve is obtained by adding to the

yi ordinate of the f{y2 , yi) curve the value of the entrance

head
1

<p^ 2gai^'
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Example 27

With reference to Example 22 and in addition to the Qconn

curve /(2/1, 2/2) for Q = 1,278 cu. ft. per second (2/0 = 6 ft.,

traced in Fig. 134 as curve 2) compute and trace the Qconst curve

as /(2/a, 2/2) assuming l/(p^ = 1.25. In Table XXXIV the values

of 2/2 and 2/1 are taken from Table XXXI. The velocities vi =
1.278/ai (Col. 3) are obtained by dividing the constant dis-

charge by the value of ai, corresponding to 2/ 1 . The K values

are taken from Plate VII.

The curve is plotted in Fig. 134 (curve 3) above the f(yi, 2/2)

curve.

Table XXXIV

2/2 2/1 Vi K 2/0 = S/l + he

2.63 5.94 3.48 0.235 6.17

6.00 3.44 0.230 6.23

7.20 6.15 3.34 0.215 6.36

8.10 6.36 3.26 0.200 6.56

9.00 6.64 3.05 0.180 6.82

10.20 7.24 2.74 0.148 7.39

12.00 8.47 2,27 0.100 8.57

16.00 11.06 1.60
i

0.049 11.11



CHAPTER XIII

DELIVERY OF A CANAL WITH A HORIZONTAL
BOTTOM

64. Computation Procedure.—-The reasoning, developed

in the preceding chapters is applicable towards estimating

the delivery of a canal with a horizontal bottom (so = 0).

The equations, used in such case, should be the ones devel-

oped in Chap. X. Referring the movement for each Q to the

respective critical depth, and with reference to Fig. 146, the

equations in the case (see Eqs. [99] to [103]) are:

I2.1

where

Vcr

^cr
52,i(t 2 — Ti)

T2"+' - Ti”+n
n + 1 J

r = vlVcr and S =

Further with

T(r) =5-r
rW-f 1

n \

Equation (109) becomes

Vc
ki = 5^[T(r2) - T(ti)]

O cr

(109)

(110)

(111 )

Equation (111), of simpler form, may be advantageously
used when the canal cross-section happens to be such that

184
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the value of c remains substantially constant throughout

the range of depths. In such case (see Example 16),

a single average value of b may be used throughout the

computations, which become comparatively simple.

Whenever, on the other hand, 5 varies substantially,

Eq. (109) will have to be used. It will be found, that the

member 52,i(t2 — ti) exercises a considerable effect, par-

ticularly in the vicinity of depths near to j/cr- So appropriate

care will have to be exercised, to evaluate the value of

§2,1 with sufficient precision.

As pointed out in Art. 43 it will usually be sufficient to

accept as the 62,1 value the arithmetical average

{k. = H^)
for the two limiting depths. But in solving Eq. (109),

one should bear in mind that 5i and 82 change with ti

and T2, and that such a change will usually have to be taken

into account.

Equation (109) is solved by successive probes. The
computations will be simpler if the figuring is so organized,

that the solving of the problem will consist in determining

the distance between the two assumed depths. The
matter will be best made clear by means of a practical

example.

Ezaxaple 28

Assume (Fig. 147) an equalizing canal, laid with a horizontal

bottom between two storage reservoirs at a distance of L = 5,000

ft. The cross-section and the other elements of the canal are

of Type D (Plate V). As values for C, we shall take G.K.

coefficients with n = 0.025 and so = 0.0001. Depending on

circumstances, flow will be from A to or in the opposite direc-

tion. Assume that the highest possible stage in either of the

reservoirs is j/
= 8 ft., and that the lowest level corresponds to

3 ft. The entrance arrangements are featured by a value of

IV = 1.25.

Question: Determine the delivery curve Q = assuming

that ya is maintained constant and equal to 8 ft.
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The delivery curve (Fig. 148) has only two characteristic

points: (1) The zero point Z with
j/2 = ?/«, and (2) The C point

of maximum discharge with y2c = ?/rr. The lowering of ys

below y 2 c will have no further effect on the flow in the canal.

0

^max.

' (7

r .f>e

')

1

Const 8'=

i

1

1

i

1

\b— B/nm

_J i_
% ?

^ ^QQQf
^ 3

Fi®. 147.

—

Layout for Example 28.

Curve a-c (Fig. 148a) corresponds thus to the lowest possible

position of the surface curve. All intermediary points between

Z and C correspond to flow with a dropping curve of the M2

type.

ff} (2)

Fig. 148.—Delivery curve for a canal with horizontal bottom.

Preliminary ,—As auxiliaries we compute:

1. The inflow discharge curve for canal, Type D, Q^nt = f(yi)f

with ya = const. = 8 ft. The elements of the curve drawn in

Fig. 149 as curve 1 are as follows

;
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K dt Vi fli Q = aivi

0.01 7.99 0.72 215.6 155.0

0.02 7.98 1.02 215.3 219.5

0.04 7.96 1.45 214.4 311.0

0.07 7.93 1.89 213.4 404.0

0.10 7.90 2.26 212.1 480.

0

0.15 7.85 2.79 210.2 586.0

0.20 7.80 3.21 1 208.3 371.0

0.25 7.75 3.59
'

206.3 741.0

0.30 7.70 3.94 204.4 807.0

0.40 7.60 4.54 201.6 . 915.0

0.50 7.50 5.08 196.9 1002.0

2. The critical discharge curve Qcr — fij/cr) drawn in Fig. 149

as curve 2.

3. The critical slope curve cr = f(y); curves 3 and 4 (Fig. 149).

The elements of the curves are taken from Plate V with a few

additions.

For convenience sake, the <r curve for the different regions of

depths has been drawn in two different scales. The hydraulic

exponent is taken at n = 3.80.
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The Maximum Discharge.—In determining point C, with

Q = Qmaxi and y^c = Vn, take a series of t/2 = ijcr values, to each

of which there corresponds the critical discharge Q = JttcrA/g.

From the inflow curve, determine for each such discharge the

depth y\ = lu — K. Applying Eq. (109) or (111) between the

depths yi and 7/2 determine the length /i,2. Draw a curve of

lengths, so determined, as a function of Q or of its equivalent

ijcT- The point of the I = f{Q) curve so drawn, w^hich corresponds

to the given canal length, solves the problem.

For clarity, we shall carry out in detail the computation of a

point, corresponding to ~ ijcr = ^ ft.:

For this point from Fig. 149, curve 2, we have

Qct = 842 cu. ft. per second; = 71A^%o

The entrance head for Q = 842 (curve 1) is /le = 0.33, so that

7/1 = 8- 0.33 = 7.67

We have thus for section 1

:

= 7.67/4 = 1.92;Ti”+Vn + 1 = (1.92)^74.8 = 4.774

Further, from curve 4, <xi for 7/1 = 7.67 is 57,2^%{) and thus

S, = crcr/<ri = 71.4/57.2 = 1.245

Similarly, for section 2,

Vcr = 7/2 = 4 ft.; T2 = 1; 0-2 = (Ter = 71.4

hence

^ n+l 1

-^V-i = = 0-208, and Ss = 1
n + 1 4.8

The average value of

. 1.245 + 1
5i.2 2 ‘

The value of

ycr/<rcr = 4/71.4 • lO-"

The distance Zj.i (Eq. [109])

1.123

559 ft.

h.i = 559[1. 123(1 - 1.92) - (0.208 - 4.774)] =

559[- 1.032 + 4.566] = 1,980 ft.

This length is substantially shorter than the canal length

L = 5,000 ft., which indicates that the discharge, Q = 842

cu. ft. per second, is in excess of the value of Qmax-
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Similar computations, relating to other points are gathered

in Table XXXV. Obviously for all points

t 2 = 1, == 0.208, and 62 = 1

Table XXXV
1

2/2
=

yer
Q O’er®% 0 Ver/cTrr 2/1

Tl =

yilvcr
ti^V4.8 O'l^^OO

=

0-rr/<Tl
dav 1 1,2

4.00 842 71.4 559 7.67 1.920 4.774 57.2 1.24,5' 1.123 1,980
3.50 670 75.0 466 7.80 2.226 9.700 57.0 1.315 1.158 3,850
3.30 608 76.6 431 7.837 2.373 13.190 56.9 1.344 1.172 4,870
3.25 592 77,0 422 7.8461 2.410 14.200 56.9 1.352 1.176 5,220
3.00 519 79.4 378 7.88I!

1

2.627 21.120 56.8 1 . 395 1.198 7,170

The 2/cr - S{1) curve is traced in Fig. 150; the solution for

L = 5,000 ft. is 2/2 = VcT — 3.28 ft.; and the corresponding

discharge and 2/1 from curves 2 and 1 (Fig. 149) are Qmax = 602

cu. ft. per second; 2/1 = 7.84, and K = 0.16.

The Z point and the C point determine the extreme points of

the delivery curve (Fig. 151).

We shall bring forth now in detail the computations relating

to an intermediary point:
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Take 2/cr — 2.5 ft., corresponding to

Q = 383 cu. ft. per second; arr — 86*10~^; ycr/(Tcr — 290.5

For section 1, we have:

2/1 = 7.937; ri - 7.937/2.5 = 3.177; ti^-V4.8 = 53.5

0-1 = 56.70^6^0; = 86/56.7 = 1.532

0 100 200 300 400 500 600

Fio, 151,—Delivery curve for canal with a horizontal bottom, Example 28.

To determine 2/2, we have to find the value of t 2 = 2/2/2.5 which

will satisfy the equation

:

-- W-f-1 fr

( 112)

which, in our case, becomes

^ - K.{r^ - 3.18) = 53.5 - = 36.30

In successive approximation, make first

= 36.3

which, by using ordinary logarithms, gives = 2.93, and

y\ = 2.93 X 2.5 = 7.33 ft.

By figuring the more exact value of <^(r2)
=

-j-g
— 5i.2(r2 “ 3.18)
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for y2 = 7.33 and that for a neighboring value of 7/2 =* 7.25,

we obtain

2/2 T‘i

«
I

4.8
a2=?«.io-J

0-2

«2 + 1.532
* ^ "" 2“ «i.2(r2-3.I8) <#>(t2)

7.33 2.93 [30.30 58 .

2

1.48
1

1 . 506 -0.370 36.68

7.25 2.90 34.r)4 58.4 1.47 1 . .501 -0.421 34.96

Interpolating between these points, we obtain for <p(t 2 )
— 36.3,

the value of 7/2 == 7.31.

In this particular instance, the approximate value of y'^ ^ 7.33

obtained by neglecting the member 5 1 . 2(^2 — ti) in Eq. (112),

proved to be very close to the final value of 7/2 = 7.31.

Obviously the approximation will be still more satisfactory for

smaller deliveries.

In fact for point ijrr — 2, we have

Q — 267 cu, ft» per second; cr^r = 94.3^%o; ycrlcfcr = 212;

LfJcrJVcr — 23.6

7/1 = 7.972; n = 3.986; = 158.9

(Ti = 56.6^>%o; = 94.3/56.6 = 1.67

The equation is:

<^(t2) = - 5i.2(t2 - 3.99) = 158.9 - 23.6 = 135.3

In first approximation, making (r'2)^'®/4.8 = 135.3, we have

r 2 = 3.846 and 7/2 = 7.692. In computing a more precise value

of t 2 ,
we have

2/2

1

T2 Ti* V4.8 0-2® ?0 0 62 5i.2 5i.2(r2 ~ 3.99)

7.692

7.650

3.846

3.825

135.30

130.24
j,57.4 1.64 1 . 655

1

-0.238
-0.274

135.54

130.51

The final value of y 2 = 7.69 is practically identical with y'2 =
7.692.

In figuring the two following points, we simply omit the mem-
ber 5i.2(r2 — Ti), ipaking simply

L(Xer
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Fig. 152.—Auxiliary for Example 28.

This simplification, on the other hand, would be quite out of

order for larger Q’s when the discharge approaches Qmax- For

example for point ijcr = 3.20, with

Q = 577 cu. ft. per second; (Ter = 77,5^%o; Lacrlycr = 12.1

we have in section 1

:

= 7.854; n = 7.854/3.20 = 2.456; 2.456^ 74.8 = 15.55

<ri = 56 .909^0 ;
= 77.5/56.9 = 1.36
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Hence, for section 2,

^ - 5i.2(’-2 - 2.46) = 15.55 - 12.10 = 3.45

Going by successive tests, we try

Ta
1 2/2 r./ V4.8 0^2^^ 96 0 52 5i.2 5i.2(7‘2 — 2.40) 4>(t2)

1.70 5.44 2.059 04.0 1.200 1 . 280 -0.974 3.633

1 . 05 5.28 2.305
1

05.2 1 . 188 1.286 1.041 3.346

1.00 5. 12 1 . OSS 05.9 1 . 176 1.292 1.112 3.100

From the graph </)(t 2 ) = /(//2), curve 1 (Fig. 152), we obtain the

sought ?/2 = 5.345.

Repeating the procedure for point ycr — Vi — 3 ft., we have

Q = 519 cu. ft. per second; cr,;r = 79.4^^%oJ Lacr/Vcr = 13.21

For section 1

yi = 7.882; ri = 2.63; ti4-V4.8 = 21.12

ai = 56.909(io; = 1.395

Hence

= -X- - 5i.2(t2 - 2.63) = 21.12 - 13.21 = 7.91
4.0

The equation is solved by means of:

1

T2
1

2/. T2< V4.S <^20900 52 5i.2 Si.2(t2 - 2.63) 4)(r2)

2.00 6.00 5.819
i

62.5 1.27 1.333 -0.841 6.660

2.10 6.30 7.318 61.4 1.296 1.345 0.713 8.031

2.20 6.00 8.960 60.3 1.316 1.356 0.583 9.543

Graph </)(r 2) = /(z/ 2 ), curve 2 (Fig. 152), gives 2/2 = 6.28.

Gathering all of the points, as figured above, we obtain

Table XXXVI

Vcr 2/2 2/1

1.00 89.8 7.960 7.997

1.50 169.2 7.900 7.990

2.00 267.0 7.690 7.972

2.50 383.0 7.310 7.937

3.00 519.0 6.280 7.882

3.20 577.0 5.345 7.854

3.28 602.0 3.280 7.840

The Q = f{y^ curve is traced in Fig. 151.



CHAPTER XIV

DESIGNING CANALS

The delivery curves, as already developed, find useful

application in the designing of canals.

66. Increasing the Delivery.—A canal is usually designed

for a certain volume of flow Q, which the canal is supposed

to deliver per unit of time in uniform movement. The
design consists in determining the cross-sectional dimen-

sions and the bottom slope Sq, which will cause the dis-

charge Q = MoV^ to flow under the depth ijo.

In actual practice the friction factor often exceeds what

was assumed; or the canal may be called to deliver a larger

volume of water. In both cases the canal, as designed,

will be short of requirements and the delivery will have to

be increased.

The problem should be considered in the light of the

delivery curves as featured in Fig. 117 and illustrated by
practical examples in Fig. 120. A\Tiile in a short canal, or in

a canal with an unusually flat-bottom slope, an increase of

delivery beyond that corresponding to uniform flow can be

brought about by lowering the stage 1/2 at the end of the

canal below the normal depth yo (curve 2, Fig. 120), such

means, under ordinary circumstances, are totally ineffectual

(curves 1 and 6, Fig. 120). In other words, one should

firmly bear in mind, that outside of exceptional conditions,

uniform flow with 2/2 = Vi is for all practical purposes the

maximum discharge which a canal is able to deliver with

the initial stage of flow
2/ 1 .

The designing engineer may, therefore, often do well to

keep away from the dangerous limit of a canal designed to be

of just sufficient capacity to carry the required Q in uniform

movement; money and trouble may eventually be saved in

194
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laying out the structure so that a reasonable margin of

possible increase in delivery is left to meet the uncertainties

and urgencies of a particular case.

Under normal conditions, with the delivery curve as

curve 1 (Fig. 120), the only effective way to increase the

delivery is to increase the depth iji at the beginning of the

canal. A possible requirement of this kind should be

anticipated at the time of the original design. Assuming
that uniform flow is close to maximum flow, the raise

Ay of the stage yo (Fig. 153) required to increase the delivery

by AQ, is determined as follows:

For normal flow we have

Q = KVso and K® = const, y"

where n is the hydraulic exponent. Thus, for So given,

Q = const,

The increase in delivery AQ caused by Ayo

AQ = const.
2

•
' " Ay^

Dividing by Q, we obtain

^ _ n Ayo

Q 2 j/o

Thus the relative change in discharge is n/2 times the rela-

tive change in depth.

(113)

As an example, for canal (Fig. 119), with n = 3.6, a margin

of 10 per cent in delivery over Q = 1,280 cu. ft. per second,

corresponding to yo = 6 ft. would require an increase in depth
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Ay = 2/n • y • AQ/Q = 1/1.8 X 6 X 0.1 = 3^^ ft.

By raising iji to yi + Ay, the delivery will change by
AQ, irrespective of what the stage 2/s is, provided only that

2/2 is < 2/1 + Ay.

66. Variable Delivery.—In engineering practice, the

volume of water, called for, is oftentimes subject to con-

siderable variation. Moreover, the fluctuations in the

required discharge may be rapid and do not always follow

predetennined schedules. Changes in delivery may usually

be effected by means of regulating sluices. However,

operating such sluices is at times a clumsy procedure, so

there is yet a large field open to the ingenuity of the

designing engineer for meeting circumstances through

judicious application of the properties of varied flow.

With reference to Fig. 154
,
B designates a distributing

chamber, from which there is drawn the sendee discharge,

Q„. The service discharge Q, may eventually differ from

the discharge in the canal Qc, drawn through the intake

from the reservoir A. The difference between Q, and Qc is

supplied or absorbed by pondage in B.

Two basic cases will be considered:

1 . Qc—Variable; Qc—Constant; Qc ^ Qc.—This case fea-

tures conditions when the volume of the water to be drawn

from the intake is limited to a certain prescribed quantity.

The fluctuations of the service discharge are to be covered

entirely by the storage capacity of the distributing basin,
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the average of Q, over a period of time T being equal to

the canal delivery Qc (Fig. 155).

Assuming level A permanent and Fig. 156 to be a

delivery curve Q = /(y2)v<,,eo„at> similar to Fig. 120, the prob-

lem is conveniently solved by

arranging levels in basin B to

fluctuate within those stages “T
(between B''max and B'min), „

\ v-ZP 1
1

Qc’^Qsav
\

i^5 min

time

where the delivery curve is

steep and the change of the

depth yi does not affect ma-

terially the delivery of the

canal. In certain cases, when

sJL is sufficiently great, the

canal may be made to work

without substantial fluctua-

tion of Qc not only in the portion of the falling curve o-6',

but also on a part of the rising curve o-6". On the whole,

this is a very simple and fully automatic solution.

Period
- T -

Fig. 155.—Periodical fluctuation of

the service discharge Q^.

Fig. 156.—Using the properties of delivery curves for a layout, where the

canal deliveries remain practically unchanged irrespective of the fluctuations

of level in the distributing basin.

As an illustration, Fig. 157 shows a delivery curve

for a canal. Type B, laid with a bottom slope of 5®%o> at a

length L — Z miles and yi = const. = 5 ft. A change

of level B by an amplitude of F == 6 ft. from y'imin — 2 ft.

to y''inax = 8 ft. would fluctuate the discharge Qe from 244

to 241 cu. ft. per second, or less than 1)^ per cent.
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( 1 ) (2)

Fig.
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2. Q, = Qc’, Qe—Fanafcie.—This case is the opposite to

the one considered above. Storage possibilities in B are

totally disregarded. The service discharge Q,, when and

required, is

With referer

to be drawn directly from the reservoir A,

ice to Figs. 155, 158 and 159, assuming that

|Z

t

y2

‘Denvisry i

curve
j

)/2 QmJ r
W i ..

1 TT ^

• '/
1

Ic

Fia. 159.

the intake is free and that level A does not change, the

limiting stages at the end of the canal will be the depths

y"i and y'i, corresponding respectively to Qmin and Qmax-

Fiq. 160.—Using the properties of delivery curves for securing considerable

fluctuations of discharge in a canal with comparatively slight variations of level

at the lower extremity.

The stage y^ and, thus, the flow in the canal will adapt

itself automatically to the delivery, as called for. The
drawback of this layout is that the fluctuation of the stages

in the lower reaches may be quite substantial and present

structural inconveniences.

The level fluctuations may be reduced by avoiding the

steep portion of the delivery curve and having the canal
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work between points h' and b" as in Fig. 160. This is

caused by increasing the bottom slope of the canal and

making Qo (point 0) larger than the Qmax required. The
matter will be made more clear through a practical

example.

Example 29

Assume, with the outlay of Fig. 119 and ija = const. = 6 ft.,

that the required delivery is to fluctuate regularly between

Q", = 1,100 cu. ft. per second and Q'^ ~ 700 cu. ft. per second,

with extreme cases ranging between 1200 and GOO cu. ft. pK'r

second.

From curve 6 (Fig. 120), we find the corresponding stages to be

Q = 1,200 1,100 700 600

y2 = 5.5 7.6 9.55 9.75

For usual conditions, the variations of stage will be Y = 9.55 —

7.60 = 1.95 ft. The highest and lowest possible stages will

differ by 9.75 - 5.50 = 4.25 ft.

To reduce variation, we shall now increase the bottom slope.

Assume the same canal laid with .So = G^^^oo, making the fall

of the bottom soL = 6.37 ft. Assuming yi constant and equal

to 6 ft., find the depths t/o, corresponding to the discharges, as

above stated. To make the procedure clear, take Q = 1,200

cu. ft. per second. For such discharge

Ko = l,200/\/6 • 10-2 = 490 • lO^; t/q = 5.15 ft.

Accordingly

171 = 6/5.15 = 1.165
j 3.6 = 0.803

j SoL/yo =

6.37/5.15 = 1.237

and

^(n^) = 4>(^j) + = 1.237 + 0.803 = 2.04
Vo

to which there corresponds

V 2 = 2.098, and 2/2 = 2.098 X 5.15 = 10.80

Applying the procedures to other points, we obtain
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Table XXXVII

Qf cu. ft. per second

1,200 1,100 700 600

Ko 400 X 102 449 X 102 285 X 102 244 X 102

Vo 5.150 4 . 000 3.800 3.480

li 1 . 165
I

1.223 1 . 580 1.720

Hvi) 0..S03 0 027 1.451 1.621

'<{)L/yn 1 . 287 1 . 300 1.677 1.830

H-n2) 2 . 040 2.227 3.128 3.451

m 2.09<S 2.273 3.138 3.467

V'l
1

10.800 11.120 11.910 12.000

As we see by comparison with case ,so = 4^9 6o> the amplitude

of variaiion of the level at B is reduced from 4.25 to 1.20 ft The
result, however, is obtained at the expense of substantially

increasing the depths of flow.

67 . Pondage. Slowly Variable Flow.—Problems of vari-

able delivery bear direct relation to those of pondage. In

fact, chamber B (Fig. 154) was spoken of as taking care of

the fluctuations of the variable service discharge while

a constant delivery Qc was being drawn from the intake A.

Also, with reference to Fig. 158, there might be a distribut-

ing chamber at the lower extremity of the canal to cover at

least some of the fluctuations of Qg, in which case, as it

usually happens, both Qs and Qc would be variable.

Finally, in Fig. 116, we have a layout with two canals,

possibly of different cross-sectional dimensions and bottom

slopes with a storage reservoir S between them. In general,

all the three levels A, JS, and S may vary, each of the three

basins contributing to pondage. The variation of level in

that or any other reservoir depends on the difference in

volume of the inflowing and outflowing water. Thus, for

example, the change of level in the intermediary basin aS for

a lapse of time would be

Ays -A, = (Q^ - Q,)At (114)

where is the respective surface area of the basin at the
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depth 2/s, and Qa and Qb are the respective discharges in

canals I and 11. Similarly, for basin B, we would have

^Vb • Ab — (^Qb Qs)^t

As to the discharge values in that or any other canal, they

depend primarily on the value of the respective depths at

the extremities of the canal, so that

Qa = fiVu 2/ 2 ); Qb = fiVs, 2/4), etc. (115)

We have said primarily

^

for the reason that flow actuated

by stages which change in time^ is no more permanent;

so we are dealing not with varied flow, but with variable

flow, i.e.j with flow in which the different elements are no

more stationary. As a result, the equations of varied

flow which were developed for stationary movement do not

apply strictly and should be used only within certain

limitations.

The general equation of variable-varied flow, f.e.,

movement which is non-uniform from section to section

and simultaneously changes in time, is obtained from

Eq. (17) by adding a member which registers the rate of

change of the momentum of flow in time. The equation

reads

d /v-\

c-R dx \2{/

y

+
1 dv

g bt
(116)

In the present state of the art, there is no general

method by which problems of variable flow can be handled

in a manner adaptable to engineering practice. Only a few

particular cases lend themselves to comparatively simple

treatment. Such for example are the so-called translation

'oaves or surges produced by sudden changes in delivery.

Another case is when the variation of flow in time takes

place very slowly, as would be the case if the surface areas

of the reservoirs were to be large, so that the change of the

stages, and thus of the deliveries, would become noticeable

only over a considerable period. Such movements may be

properly designated as slowly variable. The value of the
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derivative per time dv/dt in Eq. (116) in such case becomes

negligible and may be ignored.

That will mean (Fig. 161 ) that at a certain moment,
when the stages at the extremities of the canal happen to

be yi and 2/2, flow in slowly variable movement will differ

only infinitesimally from flow in varied permanent move-
ment under the same depths. In other words, at the

given moment both the delivery Q and the surface curve

will be assumed to be identical with what would be the case

if the canal was operating under the depths 2/1 and ?/2 in

permanent non-uniform flow. This approximation is per-

Fig, 161 .—Symbolizing slowly variable flow

missible in many engineering problems, where cases of

pondage are handled. In fact, the very purpose of pondage

often is to regulate fluctuations over periods of many hours

and eventually days.

On the other hand, there are many cases, for example in

hydroelectric installations with sudden bumps in the load,

when the forebay is in no position to prevent rapid changes.

In such cases, slowly ^’ariable flow does not prevail and it

will be found necessary to introduce treatment which

takes into account the phenomena of swells and surges.

At this time we shall deal only with problems of

slowly variable motion. As said above, flow will be

assumed to be identical with that which would be under the

depths yi and in permanent varied flow. This means
that for any combination of stages the delivery curves as
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aeveloped in the preceding chapters and illustrated in

Figs. 117, 127, and 132 will be directly applicable.

Pondage problems will be solved by dividing the process

of filling or emptying of a reservoir into small periods,

going by the increments of the stage Ay. For each such

increment, an equation of the type 114 may be established

covering a certain lapse of time At. Thus, step by step, a

complete picture of the process of flow will bo built up.

The procedure will be illustrated by a practical example.

In general, each problem will require its own particular

method of approach, the choice of means always being left

to the resourcefulness of the designing engineer.

Example 30

Assume (Fig. 102) a canal, Type B (Fig. 15), laid with a bottom

slope of 20 at the length of L = 3 miles. The level in reser-

voir A is maintained constant with 2/a
= 5 ft. The intake is

free (1 + f = 1.25). The delivery curve Q = /( 2/2)j„_Mt. is

computed in accordance with Art. 53. The normal discharge

is Qo = 144 cu. ft. per second, with = Vi - 4.82 ft. The

effect of the drop curve on the increase of delivery is neglected,
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SO that for all depths 2/2 < 4.82 ft., Qc is assumed to be constant

and equal to 144 cu. ft. per second.

The time diagram of the service discharge, to be drawn from

basin B, is given in Fig. 163a. The forebay B has a surface

area of 750 X 10'* sq. ft.

1. Determine the limits of the fluctuation of level ijb = ?/2

in the forebay and, with that, the limits of variation of the canal

discharge Qc.

100

Emptying period
}th.

Qsav =

I

Filling period
' JZh.-j--

Os ' 50

9 12

Hours

•

24

Fig. 163.— (a) Service discharge diagram for Example 30. (h) Canal dscharge

and stage time curve for Example 30.

2. Draw a time diagram which will picture the variatijn oi

ys and Qc in time.

In Fig. 162, y"2 and y'2 designate, respectively, the highest

and the lowest stage in reservoir B, when working on the time-

service diagram (Fig. 163). Evidently ^"2 will be reached at

the end of the filling period, the duration of which is 13 hr. with

Q« = 50 cu. ft. per second. The lowest level y'2 will be at the

end of the emptying period, the duration of which is 11 hr.

with Q« = 200 cu. ft. per second. It is further evident that at

no time may the canal discharge fall below the minimum service

discharge, to which there corresponds on the delivery curve
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2/2 = 8.01ft. Thus//fl = 8.01 ft. is the highest conceivable stage

at B,

Emptying Penoc/.— The time-stage curve will answer the

relation

X 750 -10'^ = (200 - Qr)M

or if, as convenient in such cases, time is measured in minutes:

750-1 0» Ay/s _ ,
Ay/B

_^ Avb

60 ^ 2()0 - '^"200 - ft

'

We may now compute the stage time curve downward, com-

mencing with ijB = 8.01 ft. We start with a depth interval of

A/Zb = 0.21 ft., between //b = 8.01 and ?/« = 7.80. From the

delivery curve, we take the discharges corresponding to the stages

at the beginning and the end of the depth interval to be: Qc = 50

cu. ft. per second and 72 cu. ft. per second, with an average value

of Qc = 61 cu. ft. per second for the interval. The time in which

the level will lower from 8.01 to 7.80 will be

A^ = 1.257^7;7r^—?»“r:*10^ min. = 18.9 min.
(200 — 61)

Applying the procedure to succe.ssive depth intervals, we obtain

Table XXXVIII

Vb Qc

8.01 50.0

7.80 72.0

7.60 86.0

7.40 97.0

7.10 109.5

6.80 119.0

6.40 128.0

6.00 134.0

5.60 140.0

4.82 144.0

200 - Qc

00 - Q, average At/b A(„j„ tm%n

for interval

150.0
\

0.0

139.00 0.21 18.9

128.0 18.9

121.00 0.20 20.6

114.0 39.5

108.50 0.20 23.0 !

103.0 62.5

96.75 0.30 38.8

90.5 101.3

85.75 0.30 43.7

81.0 145.0

76.50 0.40 65.3

72.0 210.3

69.00 0.40 72.5 1

66.0 282.8

63.00 0.50 99.3

60.0 382.1

58.00 0.68 146.6

56.0 628.6
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The last column, which is the sum total of the preceding time

intervals, gives the time required to lower the level from the orig-

inal level stage ijb = 8.01 ft. to the respective stage presented

in the first column.

The table extends to the depth of uniform flow 2/2 == 4.82 ft.

Below, with Qc ~ const. = 144 cu. ft. per second, the emptying

will take place at a uniform rate of

Ay _ 200 - 144

At “ 1.25 X 10'
= 0.447 • 10~2 ft, per minute

The curve /(/, ijb) is plotted (curve 1) in Fig. 164.

Filling Curve.—The equation of the filling curve is

M = 1.25-^^ -10^ min.
Qc — oO

The elements of computation are assembled in Table XXXIX

Table XXXIX
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One should notice that the table is built in a direction opposite

to the actual movement of the level, so that the t values in the

last column indicate the time, which it will require to have the

level reach the final stage jjb = 8.01 ft., from the respective

depth as given in the first column. Below the normal depth

4.82 ft., the filling will take place at the uniform rate of

^ 10-* = 0.752 • 10-= ft. per minute

The curve is plotted as curve 2 in Fig. 164.

Fig. 164.—The filling- and emptying-time curve for Example 30.

The Limits of Fluctuation of Level.—Assume, in the first probe,

y^B to be 8.01 ft. In 11 hr. of emptying (see diagram 163a)

the level would drop in accordance with curve 1 (Fig. 164) from

8.01 to y'

B

= 4.24 ft.

On the filling curve the time distance from stage 4.24 back to

8.01 is 914 min., which is in excess of the time of 13 X 60 = 780

min. allowed for the filhng in diagram, Fig. 163a. That means

the initial 8.01-ft. stage was assumed too high.

Assume in second probe y^'a = 7.80 ft. Eleven hours on the

emptying curve would bring the level from 7.80 down to 4.15
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ft. The time on the filling curve l^etween 4.15 and 7.80 ft. is

660 min., which is less than the schedule time of 780 min. Notice

that a slight variation in the initial stage i/'b has a pronounced

effect on the time of refilling, the reason being that in the neigh-

borhood of 2/2 = 8.01 ft. the difference between Qc and Qs is very

small and the curve excessively flat. Obviously, the actual

stage 2/'b lies between 8.01 and 7.80. The problem is solved by
finding such a pair of i/'b and y'uy the time distance for which

on the emptying and filling curve will be, respectively, 660 and

780 min. In our particular instance, as shown in Fig. 164, the

condition is satisfied with sufficient approximation by y"

b

=
7.92 and y '

b

= 4.20 ft.

Thus, the total fluctuation of the level is 7.92 — 4.20 = 3.72

ft., with a variation of the service discharge between a maximum
of 144 cu. ft. per second and a minimum of 63 cu. ft. per second.

Once the initial and terminal points are determined, one may
draw, point by point, with the assistance of the curves of Fig.

164 the actual time diagrams for ijb and Qr, which in conjunction

with the service diagram give a complete picture of the func-

tioning of the installation. This is done in Fig. 1636.

Obviously, the curves in Fig. 164 may be used for any other

time set up of the service diagram, provided the emptying and

filling period have the same service discharges.

For example, for a diagram in which the emptying period was

to last 13 hr. and the filling period would be limited to 11 hr.

the level would fluctuate between 2/"b = 7.60 and y^B = 3.52 ft.

(see Fig. 164, dotted lines).



CHAPTER XV

CANALS WITH STEEP BOTTOM SLOPE

Channels with a bottom slope above the critical (so > o');

which by the very nature of things are mostly of short length,

are used in raft and log chutes, as discharge flumes for spill-

ways and in other similar structures.

68. Delivery and Entrance Conditions.—In Fig. 165,

ya is the stage in reservoir A above the entrance sill
; j/o

the depth of uniform flow in the channel. With So > cr,

?/o is < ycr- The surface curve crosses the critical depth

near point C and approaches the normal depth by means of a

falling curve of the S 2 type. As previously indicated, the

transition zone shows no undulations. The surface curve

passes from convex to concave form with an inversion

point at the critical depth.

When the inflow is free, that is, when it is unaffected by
tail-water, the entrance phenomena feature unobstructed

flow over a weir. The flow in the flume itself with y < ycr

does not affect the inflow. So the delivery of the canal

is fully conditioned by the entrance discharge, which is

simply the weir discharge

Qc = Qen* ^ b-m- V2g •

210
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where b is the width of the weir, and v the velocity of

approach.*

Another feature, characteristic of flow in steep channels,

is the comparatively short length of the drop curve c-o.

The latter may be considered as an extended transitory zone

through which the depth rapidly reaches the uniform depth

2/0 - 2/o is the lowest possible stage. Thus, when designing

flumes or chutes with steep bottom slopes, the engineer

without further complications may simply operate with

the normal depth as the depth, which will be the lowest for

passing floating craft; which will give the greatest scouring

effect, etc.

Tail-water Effect .—With tail-water rising {B' in Fig. 165)

there will be a jump j between di and ^ 2 ,
with a connecting

reach of an Si curve between and 6'. Flow above the

jump (to the left of di) will not be affected by what takes

place below.

As the level rises, the jump will move upwards main-

taining its height and form, while in the zone of uniform

movement, that is, until its foot reaches point o (section 2).

From there on, the jump will be moving upward on the

curve o-Cj gradually diminishing in height. As explained

before, the height of the jump at the critical depth is

infinitely small {j
= 0). Stage 6c", which determines an

Si curve ending at c is the theoretical f limit, beyond which

the entrance flow becomes one over a submerged weir. In

submerged flow, tail-water has a direct effect on the

entrance discharge.

69. Transition to Tail-water.—An interesting problem in

hydraulical design is that of establishing proper transition

between water flowing down a chute and the surface in

the tail-water pool. In discharge flumes, leading from

* For values of m see, for example, Horton **Weir Experiments and

Formula,’^ U. S. Water Supply Paper 200.

t In practical calculations, neglecting the convexity of the ch^ curve

and adding to the margin of safety, it may be assumed that the practical

limit of tail-water stage, which does not affect entrance conditions, is level

Be determined by a horizontal line passing through c.
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spillways, the object is usually to annihilate the scoring

effect. This case is similar to that of a toe roll at the foot

of a dam (see Chap. XXI). A particular feature is

present when the steep channel is part of a raft chute or

some other structure, intended to lower floating craft from

the upper down to the lower pool. When tail-water is

sufl5ciently low, B in Fig. 165, the situation takes care of

itself. There may be eventually more or less violent undu-

lations, but these can be attenuated by inserting a hinged

movable link.

Transition conditions, on the other hand, become quite

unsatisfactory when the rising level moves upwards and a

jump is formed. The whirling roll of water at the foot of

the jump may constitute at times a barrier totally impass-

able for floating craft and which under all circumstances

presents a dangerous obstacle.

The writer has found it practical in certain cases to insert,

between the steep slope section of the chute where flow

should remain unobstructed and the tail-water pool, a

neutralizing zone in the form of a reach {N in Fig. 166),

laid with Sq = ao. The neutralizing effect is caused by water
flowing over N in critical flow with a possible minimum
content of energy, under which circumstances no jumps
can be formed. In accordance with Art. 30 (curves. Class

C)j the theoretical surface curve a-ni, between j/o and ycr,
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as well as n2& between ycr and the tail-water pool will be

horizontal lines. As the level B rises, the horizontal line

n^h will move up the reach, without any appreciable disturb-

ance being formed at the junction point r? 2 ,
where theoret-

ically there will be a jump of zero height.

Example 31

A raft chute is to be built between level A and B (Fig. 167).

Level A is maintained constant, +30 ft. over the lowest stage of

Transition Zone,

B, taken as zero. The tail-water fluctuates by 8 ft. The chute

is to be of rectangular shape, 20 ft. wide with a minimum depth of

navigable water of 2.5 ft. The average velocity should not

exceed 10 m.p.h. = 14.7 ft. per second; and the volume of water

used in the chute should be kept below 750 cu. ft. per second.

To economize in length and reduce velocity, the roughness of

the channel is increased by lining the bottom and the walls with

rough rubble which is supposed to raise the G.K. friction factor

to n = 0.030,

In uniform flow we have a = 20 X 2.5 = 50 sq. ft.; p = 25 ft.;

R — 2 ft; C, with So = 0.01 = ^^55.

With Vmax given, we determine

So = v^C^R = (14.7)7552 • 2 = 0.0356
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Take for safety so = Ho = 0.0333, which makes the actual

velocity

V = 55V2 • 0.0333 = 14.2 ft. per second

Q = 14.2 X 2.5 X 20 == 710 cu. ft. per second; q = 35.5

Entrance Conditions,—Assuming the weir coefficient m — 0.40,

and neglecting the velocity of approach we have

yji = qlmy/'ig = 35.5/0.4 • 8.02 = 11.08 and »/„ = 4.97 ft.

We make xja — ^ ft.

Length of Transition Cume (r-o in Fig, 167).—The critical

depth

Vcr = 'yWg = ^(3K5)V3^2 = 3.40 ft.

The hydraulic elements in critical flow

a„ = 20 X 3.4 = 67.8

p = 20 + 2 X 3.40 = 26.8

R = 67.8/26.8 = 2.54; C = --57

(Ter = g/C^ • p/b = 32.2/(57)2 X 26.8/20 = 0.013

The critical slope at tjo = 2.5

(70 = 32 .2/552 X 25/20 = 0.0133

The average value of

/3 = So/<7 = 0.0333/0.0131 = 2.53

To determine the hydraulic exponent, we have

(j/cr/t/o)” = (Kcr/Ko)* = So/Ccr - 2.53

with

^ = II = 1.36
yo 2.5

we obtain

_ log 2.53
” log 1.36

3.04

Using the table values with n = 3, we have for the curve between

71 = Ver/yo = 1.36 and 72 = 1.01:

I = —[(1,01 - 1.36) - (1 - 2.53)(1.419 - 0.329)] =
80
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Neutralizing Section ,—The elements are ycr = 2/0 = 3.4 ft.;

35 5
80 = Ccr = 0,013; Vcr = = 10.4 ft. per second.

Theoretical minimum length of the neutralizing section

- «<= + «9 - 't-

Length of the steep section

l. =^ = 585 ft.

The theoretical profile is given in Fig, 167.



CHAPTER XVI

BACKWATER CURVES IN NATURAL
WATERCOURSES

60. Generalities.—This is the traditional problem of

varied flow, formerly the only one dealt with in most

treatises on hydraulics. In Fig. 168, H-H being a datum
line, the water level in section D is lifted by a dam from

elevation dio d'

.

The surface profile in natural conditions

Fig. 168 .—Backw.iter curve in a river: d'~o'' upper limiting curve; d'-o'"

lower limiting curve.

with a discharge Q is d-o, and the problem is to determine

the backwater curve d'-o' produced by the dam.

Speaking generally, in view of the irregularity of flow, any

solution arrived at should be considered as a rough approxi-

mation. In fact, figuring out backwater curves belongs

essentially to the class of what may be termed control com-

putations, the purpose of such computations usually being

to make certain that given limiting conditions are not

transgressed.

In problems of this character the specific object of

the computation should be always borne in mind and the

figuring carried out under appropriate assumptions. The
course will be made clear by comparing the two extreme

216
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cases, leading to what we term the upper and the lower

limiting backwater curves.

Upper Limiting Curve.— Assume that the dam in Fig. 168

is intended for hydroelectric work. Naturally the lift

Zd should be given its maximum possible value. The
limiting condition usually is that the backwater curve

should not extend beyond a certain given location e", or

that in a certain determined section le, the rise of the level

should not exceed a certain given value Z«,.

In such a case, the premises underlying the figuring

should be assumed to be such as to provide for a reasonable

margin of safety, leading to a curve of the greatest possible

length and with the highest possible rise d'-o".

Lower Limiting Curve.—Suppose, on the contrary, that

the dam is a part of a scheme intended for improving

navigable conditions. In this case level d' is often condi-

tioned by the requirement that in a certain section x the

navigable depth should not be lower than a certain minimum
value of dx. The backwater curve in this case should be

computed under premises and assumptions which will result

in the lowest possible curve d'-o'". The actual curve d'-o'

will probably lie in between.*

Rivers and Torrents (see Art. 23).—It should be remem-
bered that backwater curves of the type shown in Fig. 168

will take place only in rivers/' that is in watercourses

where the flow under natural conditions is tranquil and

where the slope is below the critical {s < a). In a '^tor-

rent/' that is in a watercourse where natural flow is rapid

and the slope is above the critical {s > (r), the backwater

curve d'-j (Fig. 169) will be a convex curve of the Si type,

ending with a jump j. In actual practice it will be seldom

necessary to determine the exact profile of such surface

curves. The important fact is that the whole curve and

the jump lie below the horizontal line d'-o. This level

line, therefore, should be simply assumed as the outward

limit of all possible backwater curves. In fact, it will be

* Regarding the length and the end of a backwater curve, see Art. 33.
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found that in practice the actual surface curve will differ

only slightly from this horizontal line, the reason being that

usually the slope of a torrential watercourse is not much

in excess of the critical slope, so that the convexity of the

Si curve is small.

Another feature, characteristic of natural watercourses,

is that the jump j is not as conspicuous as, for example, the

W (31 <21 IV (d)

Reach 4 -J
^ ^
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Fig. 170.—Dividing a watercouree into reaches.

jump below a sluice or at the foot of a weir. As will be

made clear in the next chapters, natural watercourses,

because of low kineticity, produce mostly jumps presenting

a series of undulations.
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61. Practical Procedures.—The usual method used in

computing backwater curves is to divide the longitudinal

profile (Fig. 170) into reaches, making the division so that

each reach should be featured by a more or less homogene-

ous surface slope s, a more or less ecjual surface width h,

and, in general, by more or less similar hydraulic character-

istics. Assuming that, within the reach in question,

certain average conditions prevail, the surface drop of the

backwater curve between section n+\ and section n is

taken to be

^ n-|-l {s' X l)n+l.n == (.
\cm XI +

V\ —
^9

The first member in the above represents the friction

head lost over the reach, while the second member is the

head gained through restoration of kinetic energy. In a

rising curve the latter should be neglected, so that

(Ae')n+i,™ = - e'„ = (v^/C-R X i)n+i,n (118)

Assuming that adequate survey material is available,

one may subdivide the watercourse into any number of

reaches and, by applying Eq. (118) to each consecutive

reach starting from section d, in which the elevation e'd is

given as the lift caused by the dam, determine consecutively

the elevations of the watei' surface in each section and thus

trace the backwater curve. Naturally, in the handling of

the problem, a vast field is left to the choice and flair of the

designing engineer. Moreover, under all circumstances,

the procedure is tedious and clumsy.

Equivalent Profiles .—To simplify calculations, first Du-
puit and later other authors suggested replacing the

naturally varied and irregular watercourse bed by equiva-

lent cross-sections of a regular and simple form. Thus, Fig.

1716 gives the equivalent parabolic profile recommended by
Tolkmitt; and Fig. 171a pictures a rectangular profile,

used by Dupuit, Riihlmann, Bresse, Schaffemack, and
others.
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In figuring out an equivalent profile, one usually retains

the natural surface width 6, while the average depth for

the reach in question is determined by assuming that the

discharge will be carried by the equivalent profile in uniform

flow with a slope equal to the average surface slope of the

respective reach. In terms adopted in this book, the

equivalent profile for a reach will be one which will provide

for a conveyance K = Q/(Vs)n+i.n- With reference

to Chap. VIII, it may be further remarked that it was

specifically the problem of computing backwater curves

by means of equivalent profiles, which in the past prompted
the working out of the tables for the specific cases referred

to in Art. 31.

io) lb) i

Fitj. 171.—Equivalent profiles.

The result of substituting equivalent cross-sections will

be that in Fig. 170 the irregular bottom is replaced in every

reach by an ideal straight bottom line, shown dotted and

drawn parallel to the surface at the respective equivalent

depth (yo)n+i,n of uniform flow. One may now apply, in

calculating the backwater curve, Eq. (91) which for a

certain reach will read

(s • i/2/o)n+l.» = ^(v)n - ^(v)n+l (119)

Starting with the reach adjoining the dam, and with the

initial rise 2<j and the depth ?/'<* given, Eq. (1 19) willdetermine

the depth y'l and thus the elevation e'l in section 1. Pass-

ing now to reach 2-1, and, knowing the depth y"i, we may
determine y\, elevation e\, and so on.

62. Generalized Method.—In the light of the method of

calculating surface curves, as developed in Art. 33, a closer
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and seemingly more comprehensive approach towards the

backwater problem is possible. In fact, in using Eq. (119)

there is no more necessity of holding on to some ideal

equivalent cross-section of a definite geometric form. All

that is necessary is to know the particular value of the

hydraulic exponent n, which features within that or other

reach the change of the conveyance M — f{y) with the

depth of flow. In other words, instead of squeezing the

varying cross-sectional profiles of the natural watercourse

Fig. 172,—Establishing the zero point.

into prescribed stiff geometric forms, one has simply to

determine, by means of hydrographic data available, the

closest average value of the hydraulic exponent, which

governs flow within the given reach.

If a gauge and a discharge curve Q = f{h)g are available

for a certain section (Fig. 172o), the discharge curve may
be assumed directly proportional to the K curve, the

deviation if any being due to the fact that the surface slope

changes somewhat at different stages. A logarithmic

plotting of the discharge curve in this case would directly give

the value of n/2 for the corresponding reach. To carry out

the logarithmic plotting it isimperative first to know the posi'

tion of the actual zero point Oy, from which the stages in

equation = const -y" are to be measured. The zero

point may be determined by extrapolating the discharge

curve imtil the point Oy of the intersection of the Q curve
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with the vertical Q = 0. A simple hint, which has proved

to be useful in many instances, is to draw a horizontal line

t-t, starting from the highest bottom point t below the

gauge. The intersection point of such a horizontal, with

the gauge vertical, gives the Oy zero point at which Q — 0.

It is further obvious that the zero point directly determines

the respective equivalent uniform depth. In fact, for any

discharge Q' the corresponding normal depth to be taken

from the discharge curve will be y'o.

A thorough hydrographic survey usually gives surface

profiles (Fig. 173) for a series of discharges from low to

high. Those profiles, together with a discharge curve

referred to a gauge, are materialenough to enable logarithmic

plotting of the Q* = const • y" relation for each and every

reach. In other words, with proper hydrographic material

on hand, the values of the hydraulic exponent, as well as

the positions of the zero points, may be determined for the

whole watercourse in question. With n known, Eq.

(119) with the values corresponding to the hydraulic

exponent as determined, may be directly used.

Upper andLower Limiting Curves .—Always remember the

rule: The smaller the value of n, the longer the curve.

Hence, whenever a certain average value of the hydraulic

exponent is to be selected out of a group of differing
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figures, use the smaller optional value in case the computa-

tion demands knowing the upper limiting backwater curve;

while, on the contrary, the highest optional value of n should

be used, when the lower limiting backwater curve is

under consideration. Similar reasoning should govern

when the nearest table line of n is to be used instead of

the intermediary values of the exponent, as actually

determined.

Again, with regard to the bottom line, the greater

the yo value, the longer the curve for a given lift Z. Hence,

in determining the zero point, the process of extrapolat-

ing should be also guided by the specific purpose of the

design.

Fio. 174.—The inner and outer enveloping profilee.

When sufficient direct hydrographic data are not avail-

able, a series of successive cross-sectional profiles may be

traced as in Fig. 174, and an inner and an outer enveloping

profile p' and p” drawn. The inner profile will result in a

longer and higher surface curve; the outer profile, on the

contrary, will show shorter curves and a smaller rise of the

level. Finally, if a friction factor is to be selected, remem-
ber that a higher friction factor will result in longer and
higher curves.

Approximate Method for Brief Calculations.—A quick

approximate result may finally be obtained, when bearing

in mind that practically all actual values of the hydraulic

exponent will be found to be intermediary between n = 3.2

and 4.8, and that further only in very rare cases will

the exponent be foxmd outside the limits of 3.4 and 4.4.

Under such circumstances, wherever a preliminary control
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curve is sought, the upper or the lower limit of the hydrau-

lic exponent, as above given, may be used, without any
further detailed investigation.

The reader will find that the curves, obtained by this

simple and brief procedure, will not differ substantially

from results obtained by more elaborate means.



PART III

THE HYDRAULIC JUMP





CHAPTER XVII

THEORY OF THE JUMP

63. Introductory.—The hydraulic jump, as previously

defined, is a local phenomenon by means of which flow

passes in an abrupt manner from a rapid to a tranquil

state. Accordingly, in Fig. 175, where the flow is referred

Fig. 175.—The hydraulic jump referred to the specific energy diagram.

to a specific energy diagram, the lower stage di before the

jump and the upper stage d* after the jump correspond to

the points 1 and 2 which respectively lie on the lower and

the upper branches of the energy curve.

Sections 1 and 2 demarcate the jump from the adjacent

regions, where the movement is gradually varied and

the flow parallel. The energy in sections 1 and 2 is

respectively:

€l = di + 7^2
2gfOi*

= d I

Q'
* 2ga2^

(120)

The difference

= €i — 62

227

(1211
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represents the energy head lost in the jump. The energy

losses inherent in the jump are mostly of the impact type,

meaning losses which usually accompany rapid and abrupt

change of movement. By analogy with other impact

phenomena, one may expect that these losses are large in

comparison with the usual friction losses in uniform or

gradually varied flow.

The depths di and d^, before and after the jump, will be

called the conjugated depths. The vertical distance between

the stages j = di — d, is the h^eight of the jump.

The purpose of the theory is to determine the relation

between the conjugated depths. Given, the form of the

canal, the discharge Q, and one of the two conjugated

depths, the problem is to determine the other unknown
depth. The energy principle offers a lucid explanation

of the physical essence of the phenomenon, but cannot

serve as a basis for a theory, for the reason that there

exists no direct way to evaluate the energy losses in the

jump. On the other hand, a most satisfactory solution is

obtained by applying the momentum principle. It was
first used to study the jump in the forties of the last century

by Belanger. It yields results, fully congruent with

experimental observations. In this connection, it may
not be out of place to call attention to the fact that the

momentum principle is commonly used in rigid dynam-
ics for studying impact between bodies. In hydraulics

it is also applied to determine losses caused by an abrupt

change of form of flow in closed conduits (the Borda

theorem).

Forms of the Jump.—There are two distinct forms in

which the jump may occur: The direct form (Fig. 176)

,

and the undular form (Fig. 177).

In the direct jump the upper stage is reached practically

by one continuous rise of the surface. Observed in a flume

with glass walls, the direct jump features an underlying

portion of expanding live stream covered by a surface roll

within which the particles are engaged in circuitous move-
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ment and do not participate in the translatorymovement
of the liquid from section 1 to section 2.*

The direct form is typical of jumps of comparatively

large height. It is usually present in jumps accompanying

flow through hydraulic structures.

O) (2)
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Fig. 176.—The direct jump.

The undular form is characteristic of jumps of com-

paratively low height. It is mostly observed in natural

watercourses with moderately steep bottom slopes. The
transition from the lower to the upper stage features a

series of undulations of gradually diminishing size. In cases

where the jump is particularly small, the surface may be

continuous all the way through, as shown in Fig. 177.

In other cases (Fig. 178), local surface rolls may take

place on the first or on several consecutive waves.

•Theee physical aspects of the jump are masterfully elucidated by

Professor Rehbock: Handbuch der IngenieuT-Wissenschaften: “Stauwerke”,

“ Versuche ttber Abfluss, etc.”
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It should be generally remembered that a jump, by
its very nature, presents a disruption of what otherwise

would be smooth and continuous flow. Therefore, the

features of the jump are to be considered permanent only

in the sense of presenting a stable average over a certain

period of time. Roimd these averages, the phenomenon
is in a state of incessant pulsation. This refers in the first

place to the toe of the jump, so that the foot of the jump.

— !) (\V
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1
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1 t^pe Ml
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1 1 1

Fia. 179.

marked by point a (Fig. 176), oscillates in the direction

of the axis of flow round a certain average location marked
by section 1. In the end section 2, point b, the oscillations

are both horizontal and vertical.

Under such circumstances it may not always be simple

to define with precision the beginning or the end of the jump.

In fact, the process of defining greatly depends on the t3rpe

of the jump and on other circumstances which surround the

phenomenon.

For example, in the direct jump, it is easy to define the

beginjiing of the jump, for there is an unmistakably
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observable line of demarcation between the smooth

imdisturbed surface before the jump and the surface roll.

Again, in the case as pictured in Fig. 179, flow after the

jump is in the form of a falling curve of the Mi t3rpe,

the end of the jump and the demarcation section 2 being

thus determined by the point of maximum depth dj.

With regard to the undular jump, in a case like Fig. 180,

where rapid flow before the jump is uniform flow, the depth

d\ is 2/o and therefore is easily measurable. On the other

hand, with the upper stage in the form of a convex rising

curve of the Si type, it is practically impossible to demar-

cate the end of the jump amidst the greatly extended surface

waves of small curvature.

All such circumstances affect substantially the precision

of observations and should be given serious consideration

in experimental work.

One more point must be made clear before closing these

introductory remarks. Generally speaking, up until now,
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theory and observation have dealt mostly with the vertical

elements of the jump, that is, with the depths di and

On the other hand, little, if any, material is available which

would enable the engineer to foretell the longitudinal

elements, such as the length of the jump, the more or less

exact form of the surface, etc. Also, little is known
regarding the inner mechanism of the phenomenon, such

as the distribution of velocities and pressures; the nature

and character of the losses; etc. Thus a fruitful and

fascinating field still lies open to eventual research.

Fig. 182 .

64. The Momentum Equation.—Consider a discharge

Q, flowing in a prismatic channel of given form (Fig. 181),

laid with a horizontal bottom. We shall apply the momen-
tum principle towards the body of liquid aa'b'b, enclosed

between sections 1 and 2. Flow being permanent, the

change of momentum in the direction of the X-axis per

unit of time is the difference of the momentum, contained

in the liquid leaving the body under consideration through

section 2 and the momentum carried by the liquid as it

enters the body at section 1. The mass of the outflowing

and inflowing liquid is identical and equal to AQ/g, Thus
the change of the momentum per unit of time is

~{V, - fh) (122)

This change is equal to the time-impulse of the compo-
nents of all forces acting on the liquid body in the direction
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of the X-axis. As the movement is stationary, the time

impulse per unit of time is the sum total of all forces acting

on or within the liquid body in the direction of X. We
shall now evaluate such forces.

The effect of gravity, because Sq = 0, is eliminated.

Remark: The advantage of considering the jump in a canal

with a horizontal bottom lies specifically in the fact that the

effect of gravity is eliminated. In case the bottom were not

horizontal, as in Fig. 182, one would have to add to the forces

contributing to the change of the momentum the gravity com-
ponent IV sin a = where tv is the weight of the liquid body
aa'bb'. That would require knowing the length and the form of

the jump, unless, as done by many authors in the past, the effect

of the weight component is simply neglected. Such an approxima-

tion, however, is scarcely permissible and, as observations have

shown, leads to serious incongruencies.

Further, and therein generally lies the particular advan-

tage of using the momentum principle, the effect of all and

every internal force, whether pressure or friction, is elimi-

nated, for the simple reason that for any force which acts

on a certain particle a from the adjoining particle 6, there

is a force of equal size but opposite in direction, which

acts on particle b from particle a. In the summing up,

these pairs of mutually equal, but directly opposed, internal

forces nullify each other, so that the sum total of all forces

is reduced to the sum of the external forces only. Such

external forces in our case are

:

1. The resultants Pi and P2 of the hydrodynamic pres-

sures acting over sections ai and a2 .

2. The external forces of friction 2/^, acting in the

direction opposed to the flow on the contour surface of the

liquid body, the seat of such forces being in the liquid

boundary layer adjacent to the solid walls of the canal.

As flow in sections 1 and 2 is taken to be parallel, the

distribution of hydrodynamic pressure across the sections

is taken to conform with the hydrostatic law. Thus

Pi and P2 are, respectively, equal to Aai^oi and Aa^Zoz,
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where Oi and Oj are the cross-sectional areas, while Zoi

and 202 are the distances of the centers of gravity of the

respective sections below the surface of flow. The momen-
tum equation will thus read

^(*^2 - v^) = Pi - P, - S/„
y

The only undetermined element is the external friction

component S/„,. The customary assumption is that,

because of the comparatively small length of the jump,

the external friction forces are small when compared to

the internal forces responsible for the major losses of

energy in the jump, and that therefore these external forces

may be simply neglected. This assumption is substan-

tiated by experiments which, as will later be seen, show

that the height of the jump determined by the momentum
equation with 2/„ omitted is only slightly larger than the

height, actually observed in properly conducted experiments.

Omitting S/u, and substituting Q/a for v, we obtain

g \a2

9.

Oi
— A(tli2oi — 02^02)

which can be presented as

0^ ‘ 0“
-t- 02^02 — "b (123)

gui gai

The equation carries on both sides an analogous expres-

sion which suggests that the two conjugated depths dt and

di correspond to two equal values of a certain single func-

tion, to be designated as

M{d) = ^ + azo (124)

In other words Eq. (123) may be presented as

ilf(di) = Midi) (125)

Evidently the M curve has two branches. It is further

easily shown that, similar to the energy cmve « = fid),

the M curve passes through a minimum at the critical

depth. In fact
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dM
5d

91
go?-

So d ,

dd
(126)

The first member, by virtue of Eq. (19), is equal to

Q^b/ga^. The second is the derivative of the statical

moment of the cross-section by the depth d. The value

of this derivative is gained by
considering Fig. 183. Let the

statical moment of the area a,

corresponding to the depth d,

with relation to the surface line

b-b, be azo. With a change of

stage by 8d, the moment with

regard to the new surface line

b’-b' is

o{zo "t” 5d)

Omitting the second member as one of a higher degree of

smallness, the change of the statical moment is

S{azo) = a{zo + dd) — azo = aSd

so that

8{azo)/8d = a (127)

by inserting which into Eq. (126), we obtain

m 0^
8d go? ^

The minimum value of M(d) corresponds to

The expression in the brackets is identical with 8e/Sd

(Eq. [26]), which shows that the M{d) function passes

through a minimum at the same stage as “the energy curve,

namely that of the critical depth.

When the form of the channel and the discharge Q are

given, theM curve may be calculated and traced from point

to point resulting in a* chart (Fig. 184). Any vertical V
which intersects the M curve at the two points li# and 2^
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determines two conjugated depths di and ^2 . Obviously,

there is an infinite number of possible conjugated depths,

Fiq. 184.—The M (d) curv’^e iii conjunction with the energy diagram.

each pair corresponding to a possible vertical. However
for each vertical, that is for each and every point 1 m on

the lower branch of the M curve there is one and only one
conjugated point 2m. So to each value of di there corre-

(q)onds one and only one conjugated depth dt, and vice versa.
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If, in addition to the M{d) curve, we were to trace the

energy curve computed for the same volume of flow Q,

the combined diagram would allow us to determine in each

instance the respective loss of energy. In fact, by drawing

horizontal lines through points Ijif and 2^ to intersect

the energy curve at 1, and 2^, we determine the respective

values of the specific energies carried by the flow at the

depths di and dj, and thus the energy loss in the jump

€j = €j — €2.

Example 32

A discharge of Q = 300 cu. ft. per second is flowing in a canal.

Type B (Fig. 185).

Question 1. Compute and trace the M{d) curve.

With reference to Example 3, the critical depth for our case is

Q2
d„ = 3.74 ft. For computing M =

f- azo, we have
(XQ

Q^/ag = 300Va • 32.16 = 2,796/a

d(2.5 + g

The computation is assembled in Table XL.
The curve is plotted as curve 1 (Fig. 185), together with the

energy curve (curve 2), the elements for which are taken from

Table IV.

Question 2. For the circumstances of flow given above, find

the depth conjugated to di = 1.85. Find also the loss of

energy in the jump.

In Fig. 185, draw a vertical through point 1^ of the M curve

corresponding to di = 1.85 ft. The intersection with the upper

branch at 2m determines the conjugated depth d^ = 6.52 ft.

The height of the jump isi = 6.52 — 1.85 = 4.67 ft.

By drawing horizontals through \m and 2^, we find

Cl = 10.63 and ca = 6.80 ft.

The energy lost in the jump is ci = 10.63 — 6.80 ~ 3.83 ft.

The quotient

62/ci - 6.80/10.63 = 0.64

features the part of the original energy remaining in the flowing
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Table XL
d a V

I

2,795/a Zo aZo
!

M(d)

0 , 50 ^ 2.76 109.00 1,017.0 0.242 0.66 1,018.0

0.75 4.31 69.60 648.0 0.360 1.55 649.5

1.00/ 6.00 50.00 466.0 0.471 2.83 469.0

7.81 38.40 358.0 0.585 4.56 363.0
1.50*/ 9.75 30.80 287.0 0.693 6.75 294.0

2.00/ 14.00 21.40 200.0 0.905 12. 70^ 213.0

2.50^ 18.75 16.00 149.0 1.110 20.60 170.0
3.00v' 24.00 12.50 116.0 1.315 31.50 147.5

3.25/ 26.81 11.17 104.0 1.410 37.80 142.0

3.50^ 29.75 10.11 94.0 1.510 44.90 139.0

60^ 30.96 9.69
1

90.4 1.550 48.00 138.4

3.70/ 32.19 9.32 87.0
.
1.590 51.20 138.2

3.74 / 32.69 9.08 85.5 1.600 52.30 137.8

3.80/ 33.44 8.96 83.7 1.630 54.50 138.2

3.90/ 34.70 8.64
j

80.7
1

1.670 57.90 138.6
4.00-^ 36.00 8.33 77.7

:

1.710 61.50 139.2
4.25'^ 39.31 7.63 71.1 1.800

1

70.80 i4T:Q
4.50^^ 42.75 7.02 65.4 1.900 81.30 146!V
5.00-' 50.00 6.00 55.9 2.080

1
104.00 160.0

5.50*^ 57.75 5.20 48.4 2.260 130.50 179.0

6.00^ 66.00 4.55 42.3 2.460 162.30 205.0
6.50"^ 74.75 4.01 37.4 2.1640 197.00

,

234.0

7.00/ 84.00 3.57 33.25 2 . 820 237.00 270.0

8.00/ 104.00 ' 2.88 26.9 3.180 331.00 358.0
9.00^ 126.00 2.38 22.2 3.540 446.00 468.0

10.00-" 150.00 ! 2.00 18.6 : 3.890 584.00* 603.0
11.00"' 176.00 1.71 15.9 4.220 743.00 759.0

12.00/ 204.00 1.47 13.7 4.580 945.00 959,0

liquid after the jump. Obviously 1 — - = 0.36 shows the rate
Cl

of initial energy lost in the eddies and vortices accompanying

the rapid change of form.

Question 3. Assuming that the stage ^2 after the jump is

^2 = 6 ft., determine the depth di required to sustain such upper

stage by means of a ypap.

This is the rev^rfw problem. A vertical (Fig. 185) drawn
through the point correspondiy to d2 = 6, intersects the

lower branch at a point corresponoing to di = 2.11 ft.

66. The Qcanat, Characteristics of the Jump.—^Applying

the procedure as outlined in the above example to a series of

verticals, one may summarize the features of all and every

jump which may occur in the canal as given, with the



THEORY OF THE JVMV 239

given discharge Q in a set of cu^ves>^Lhich may be p^)perly

called the Qton^i characteristics.

Fig. 186.—The Q constant characteristics of a jump for canal Type 15 and
Q =* 300 cu. ft. per second, Example 32,

With reference to Fig. 185, the elements of the characteristics

for Qconat = 300 cu. ft. per second are assembled in

Table XLI

1

di

\
i

1

€l
1

1

€2 j = di - di B €l — €2

Cl

per cent

0.5 12.25 186.60 12.26 11.75 23.60 0.07 93

1.0 9.00 39.90 9.10 8.00 8.00 30.80 0.23 77

1.5 7.28 16.20| 7.46 5.78
j

3.86 8.74 0.46
j

54

2.0 6.15 9.14
i

6.43 4.15 2.07 2.77 0.70 30

2.5 5.26 6.48 5.73 2.76 1.10 0.75 0.88 12

3.0 4.54 5.43 6.27 1.64 0.50 0.16 0.97 8

They are traced in chart form in Fig, 186



CHAPTER XVIII

THE JUMP IN A RECTANGULAR CHANNEL

66. Fundamental Relations.—The grapho-analytical

method, developed in the preceding chapter, is quite

general and can be applied to jumps in a prismatic channel

of any form. In certain particular ciises, however, the

subject can be treated by purely analytical methods. Most
important is the case of a rectangular channel.

Consider a discharge Q flowing in a rectangular channel

of the width b. Once more assume the bottom to be

horizontal.

For a rectangular channel with reference to Eq. (124)

we have

a = hd; z — d/2; Q = gb; d^cr = q'^/g

Thus

Eq. (125) becomes

gdi 2 gdi^ 2

wherefrom

2q^/g = didiidi + di) (128)

The solution of this symmetrical equation is

Further, by substituting q^/g out of Eq. (128) into

«/ = 61 - = (di - d*) +

(129)

240
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and properly transforming, one obtains the loss of energy

in the jump
ey = (da — di)V4did2 (130)

Finally, replacing in Eq. (129) q^/g by d^cr, we obtain the

equations in form

d2 = t[-l + >/
l +^{t) _

(131)

67. Generalized Form of Equation.—In Art. 27, we
introduced the notion of kineticity of flow, as measured
by a kinetic flow factor

X =2^^
For a rectangular channel

X = d^cr/d^ = q^/gd^

Accordingly Eq. (129) may be presented as

di!d\ = 3^[— l + "s/l + 8Xi]

d\ldi = 3-^[— 1 + a/I + 8X2]

while in reversed form, the relations between the kineticity

before and after the jump are

(132)

=

I

J2 (J +

0

(133)

SubstitutingThz Conjugated Values of Xi and X

{di/d\) from Eq. (132) into

X 2 = (d„/d2)» = (d„/dx)’ . (di/d2)* = Xi
.(^y

and repeating the procedure for Xi = X2 • , we obtain

the symmetrical relations

Xi = 8X2/(-1 + Vl + 8X2)*

X2 = 8Xi/(“l "
1
“ “v^l + 8X1)*

(134)
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in which the kinetic flow factors Xi and X 2 represent a pair

of conjugated values, corresponding to a pair of conjugated

stages di and c?2 *

Efficiency of the Jump ,—The value of features

what may be termed the efficiency of the jump. In terms

of kineticity of flow it may be expressed as follows. We
have

€‘2 ^1 ~ ^ 2 / d

I

• d\/ €\ ~ € 2 / d'l * d'ljd\ • d\/€\

Substituting ^2/^1 from Eq. (132) and taking into account

that €1 = d
d 1

so that “ = and that, on
Cl

,

Ai
1 +

the other hand,

^2

we obtain

'“ = 1 + = 1 + ir 8X1 1

2L(-1 + Vl + 8X,)*J

€2 ^
€1

1 + 4Xi

( — 1 V^i "b 8X i)^

foC”"! + + 8Xi)]

'
1

X.

1+^
which after suitable transformations gives

€1

-(—'1 + Vl + 8X1) -f
2X1

(
— 1 -f- \/ 1 -f- 8X1)^

1 +2^1
(135)

The relative loss is 1 — —
,
where — is to be taken from Eq.

€l Cl

(135).

Equations (132) to (135) are not limited to any particular

circumstances of flow. They are dimensionless equations

which apply to jumps in rectangular canals in general,

expressing the basic relation between the elements in terms

of a generalized dimensionless coordinate, the kinetic flow

factor X. Traced in chart form (Fig. 187) they feature
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characteristics covering jumps in rectangular canals under
all possible conditions.

In the following, the chart (Fig. 187) is used to solve

different practical problems.

Fig, 187 —Generalized characteristics for a jump in rectangular canals in

terms of the kinetic flow factor Xi. Points marked by circles represent experi-

mental values of di/dx obtained by the author.

Example 38

Assume a flow of 500 cu. ft. per second in a rectangular channel

20 ft. wide.

Question L Given di = 0.8 ft., determine the conjugated

depth ^2 and the relative loss in the jump.

We have

q = = 25 cu. ft. per second; ycr = -^25V32.2 = 2.69 ft.

The kinetic flow factor at di = 0.8 ft. is

Xi = (2.69/0.8)5 - 38

From the d^/di curve (Fig. 187), we obtain forXi = 38 the value

of di/di as 8.2 and tz/ti = 0.425. Accordingly we get:

d% = 0.8 X 8.2 = 6.56 ft. The initial energy €i = ==

0,8^1 + « 16 ft. The energy after the jump €2 ~ 0.426 X
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16 = 6.8 ft. The loss of energy «, = 16 — 6.8 = 9.2 ft. or

57.5 per cent of ti.

Question 2. Determine the depth d\ which will sustain an

upper stage oi = 5 ft. We have

X2 = {dcr/dif = (2.69/5)’ = 0.156

The corresponding value of d^/di = 4.07; so that

di = 5/4.07 = 1.23 ft.

68. The €1 Constant Characteristics.—Important fea-

tures are revealed by determining the characteristics of a

jump under conditions that the energy Ci in the section

before the jump remains constant. A comprehensive

a)

approach to this case is gained by considering a jump,

sustained by a vein flowing from under a sluice (Fig. 188)

imder the assumption that level A above the sluice and

thus the head H remain constant. If further we were to

disregard the friction losses between pool A and section 1,

then the energy ci in section 1 will remain permanent and

equal to H = di +
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By raising or lowering the sluice, we change di and with

this the other features of flow. For example, as the sluice

is lifted, the velocity Vi is diminished and the flow becomes

less rapid, while the discharge q increases. When d\

becomes the limiting condition is reached, corre-

sponding to free efflux over a broad-crested weir (Fig.

189). At such flow di = dcr and the discharge is maximum.
Obviously, for di < HH, flow will be in rapid state.

Fia. 189.

Accordingly, for each value of di, there is a conjugated depth

di, to be determined by Eq. (129) or (132). This depth

gives the position of the upper stage level B which the

outflowing vein is able to sustain by means of a jump of

the height j = d^ — di.

All the features characterizing the flow may be presented

as functions of di. Namely

vi = V2g{H - di) = ^j2gH(l -

g = Vidi = di-^2gH^l
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di = -2^[— 1+ V1+8\i] =
-2'|^

— l+ — 15j

dcr = = di.^2—
( 136 )

With di known, we determine ih = q/d^ and thus the energy

after the jump e-i = d^ + 2g'
The loss of energy ey

Cl — 62, is €j = H — €2.

The above relations may be presented in a more general

and useful form by introducing what is to be designated as

the reduced values of the entering parameters. The reduced

value of di, which is to be the principal coordinate, is the

quotient value of d'l — di/H. The reduced values of

the other factors may be obtained either directly from Eq.

(136) or may be determined by reason of dimensional

homogeneity. Thus the reduced value of the velocity is

v'l = that of the discharge q' = q/HV'H. The
reduced value of the energy e'l = (i/H is unity. In terms

of d'l — di/H, the reduced values of the different factors,

obtained from Eq. (136) are

V'l

q'

X,

d'er

d'l

= Vi/\^H = V2g{\ — d'l)

= qlEVU = d'iV2<7(l - d',)

_ ol -
d'l

(137)

On the other hand

a'2 = v'Miid^y

6^2=^ = d'2 +
2fir

e'i
61 — 62

E 1 -
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Obviously, the reduced values represent the values of

the respective factor at H = \. The following table

contains the respective numerical figures and may prove

to be useful.

Table XLII

d\ V'l q' d\r Xi d'2 {v^y2gy 1 — €'2

0.010 7.98 0.0798 0.058 198.00 0 195 0 002.5 0.197 0 803

0.025 7.91 0.1980 0 . 107 78 (K ) 0.300 0.007 0.307 0.693

0.050 7.81 0.3900 0 168 38.00 0.411 0,014 0.425 0.575

0.075 7.71 0.5790 0.218 24 70 0.491 0.022 0.513 0 487

0.100 7 . G 1 0.7610 0 262 IS 00 0.552 0 029 0.581 0.419

0.150 7.40 1.1100 0 . 336 11.30 0.642 0.046 0.688 0 312

0.200 7.18 1 44(X) 0.400 8.00 0 . 7(K) 0 064 0.770 0,230

0.250 6.94 1 . 7300 0.455 6 .(K) 0.750 0.083 0.833 0.167

0.300 6.71 2.0200 0.501 4.66 0.780 0. 104
!

0.884 ! 0.116

0.350 6.46
j

2 . 2600 0.542 3.73 0.797 0 125
1
0.922 0.078

0.400 6.22 2.4900 0.577 3.00 0.800 0.150 1 0.950 0.050

0 . 4.50 5.94 2.6800 0 607 2.44 0.797

0.500 5.67 2.8300 0.630 2.00 0.780

0.550 5.38 2.9600 0.648 1.64 0.760

0.600 5.07 3.0400 0.660 1.33 0 726

0.650 4.74 3.0800 0.665
i

1.08 0.683 1

0 666 4.63 3.0950 0 666 1.00 0.666
1

Finally, in Fig. 190, the relations (Eq. [137]) are presented

in graphical form. The chart constitutes what we call the

constant €i characteristics of the jump. These characteristics

will be found useful in many practical applications. More-

over, they reveal certain general properties of the jump.

Obviously, Eq. (137) and the chart (Fig. 190) are not

limited to the specific way by which the jump was pro-

duced in Fig. 188. Once more, and similar to Fig. 187,

chart (Fig. 190) is a general characteristic of the jump,

presenting the fundamental features of the phenomenon as a

function of the rate

d' = potential energy
' total energy

of flow in the section before the jump. On the other hand,
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the d'l curve, which represents the reduced value of the

depth ^2 conjugated to di, pictures the rate of

potential energy

total energy

after the jump.

The outline of the d'2 curve shows that the highest value

of d'2 = 0.8 and thus the highest possible position of the

upper stage after the jump is reached at d\ = 0.4. To this,

there corresponds Xi = 3 and e '2 = 0.95. The loss of

energy is 5 per cent. For values of d'l above 0.4, d'2

declines and the derivative dd2/ddi becomes negative.

The point of maximum d' 2 ,
corresponding to d\ = 0.4

is of great physical importance. Remembering that the

kineticity at such point is Xi = 3, we shall consider the

point d'l = 0.4 as one which divides all pos^^ible conditions

under which the jump may take place, into two zones.

The region with d'l ^ 0.4 and Xi > 3, we shall call the

zone of high kineticities
;

and the region with % >
di > 0.4 and with kineticities Xi < 3 will be that of low

kineticities.

The distinction introduced seems to have, for example, a

direct bearing on the form in which the jump takes place.

In fact, experiments carried out by the author show that

in the region of high kineticities (Xi > 3) the jump occurs in

the direct form. Moreover, the phenomenon is stable

and the conjugated depths observed comply exceedingly

well with the theoretical values. On the contrary, in the

region of low kineticities (Xi < 3) the jump acquires

undulated features. The waves increase as X decreases.

Moreover, as the kineticity is reduced, the phenomenon
seems to lose stability. The surface of the outflowing

vein becomes pendulating.

69. Experiments on the Jump.—We shall refrain from

any detailed description of experiments on the jump,

referring the reader to the original monographs. * Speaking

* See bibliographical notes in Appendix.
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generally, experiments made on “direct” jximps with high

kineticity give results in good agreement with the momen-
tum formula and thus fully justify the approach suggested

by Belanger. In Fig. 187 there are plotted certain results

of experiments carried out by the author.* The experi-

mental points follow the theoretical curve most closely.

The principal data obtained were as follows:

liters

per second
di mm. Xi

I

Observed
Calculated

d;/<h

Deviation,

per cent
d2 d^/d.

15.60 83.0 4.26 200.0 2.415 2 46 -1.83

12.60 62.5 6.50 189.0 3.03 3.13 i -3.19
9.26 44.0 10.00 170.5 3.88 4.0O -3.00
6.64 32.5 12.80 149.0 4.58 4.59 -0.22
5.42 26.0 16.60 135.0 5.20 5.31 -2.08
4.46 21.0* 21.50 123.5 5.90 6.08 -2.96
3.32 16.0 26.80 109.0 6.81 6.82 -0.14
3.08 14.5 31 05 104.0 7.18 7.40 -3.14
2.62 12.5 35.10 97.0 7.77 7.89 -1.52
2.06 10.0 42.50 87.0 8.70 8.74 -0.46
1.70 8.0 56. 10 80.5 10.05 10.12 -0.70

The kineticity observed was as high as 56.1 resulting in

dt/di of over 10.

The conjugated depths di, observed, are somewhat
smaller than those derived from the momentum formula;

which should be the case, as the reasoning leading to the

formula omitted to take into account the outward friction

resistance. Results in agreement with the theory were

also obtained by Koch, Rehbock, Gibson, and others.

One may state that the congruency of experiments and
theory for jumps at high kineticity is well established.

The author’s experiments (as well as most of the more
recent work) were made with a jump produced by a vein

flowing from under a sluice (Fig. 188) in a canal with

horizontal bottom. The author feels confident in stating

* For detailed description see Ann.^ Polytech. ImL^ St. Petersburg, 1912.

The flume measured 300 X 100 mm.; q per decimeter width varied from
1.7 to 15.6 liters per second.
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that this is by far the best layout for experimenting with

the jump. In fact, with the gravity effect eliminated the

indeterminate factors are reduced to outward friction only.

On the other hand, it is possible to produce flow of any

desired rapidity.

As to jumps of small height, obtained under conditions

of low kineticities (Xi < 3), the experimental results, so far

available, are less satisfactory. In a number of cases, for

example, the conjugated depths, reported as observed,

proved to be in excess of the theoretical values. The
author believes that this was mostly due to defects, inherent

in the very method of experimentation. As a matter of

fact, in earlier experiments, jumps were usually produced

by inserting a barrier into a channel of steep slope, rapid

uniform flow being ])rodueed by the incline of the flume.

Under such circumstances, the kineticity is usually low

(X < 3) and the jump is of undulated form. The difficulties

of measurement under such conditions have already been

mentioned. The principal source of error, however, in the

author’s opinion lies in neglecting the effect of the gravity

component (see Fig. 182). The length of the jump at

low kineticities is comparatively great. On the other hand,

the losses ci — C2 ,
as shown in Fig. 190 are relatively small;

less than 5 per cent. No wonder that the neglected gravity

component may outweigh the losses, and lead to observed

values of da, in excess of theoretical values obtained from

the momentum formula.

The small losses inherent in jumps of low kineticity,

as evidenced by the chart (Fig. 190), explain also why
Bidone (1820) and also Belanger in his earlier wmrk (1828)

felt justified in determining the relation between the con-

jugated depths simply by using the Bernoulli equation.

That meant that the losses in the jump were neglected

and €2 taken to be equal to € 1 . Only later, when observa-

tions on jumps of greater height evidenced discrepancies

of a more substantial character, was Bdlanger led to

suggest the use of the momentum equation.
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To elucidate the effect of the bottom slope the author

carried out a special series of experiments, the main results

of which were as follows:

So

(Bottom sloi^e^)
di mm. d2 mm. hj mm.

0.000 48.5 175.5 127.0

0.002 48.5 177.0 126.8

0.004 48.5 178.5 126.6

0 007 48.5 180.5 126.0

0-010 48.5 183.5 126.7

0.020 48.5 190 .

5

125.0

In these experiments, the depth di and thus the initial

kineticity were kept constant. As the flume was tilted

anJ the slope increased, the observed depth ^2 became
greater and greater. The interesting part was, on the other

hand, that the height of the jump hj Fig. 191, measured

as the vertical distance between the upper and lower level,

remained practically without change.



CHAPTER XIX

LOCATION OF THE JUMP

70. The Jump as a Standing Wave.—In Chaps. II and
XVIII there was determined the relation between the upper

and lower stage di and ^2 of the jump. It is incumbent now
to establish the location within a stream where the jump

actually takes place. For example, in a watercourse with

a steep bottom slope (Fig. 192) with a barrier at D, the

aim is to determine the distance Ljd from the dam to the

end of the jump.

Remark: The length of the jump Z,- (see Fig. 175) is usually

small compared to the length of the adjacent surface curves

in gradually varied flow. In fact, the length of the jump will

scarcely be noticeable when the longitudinal surface profile will

be drawn in the customary reduced scale. Therefore, in Fig. 192

and in the following figures the jump will be schematically

indicated by a heavy vertical line, the length of the jump thus

being simply neglected.

Another illustrative case is that of a flume (Fig. 193)

with a break in the bottom slope; the bottom slope changing
253
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in section o from steep (soi > (t) to mild (so2 < (j)- With

?/oi < Vcr and ?/o2 > Vcr Hs the respective depths of uni-

form flow, the transition from rapid flow to tranquil

movement must include a jump. It remains to be deter-

mined, however, what will actually be the height of the

jump and, furthermore, in which part of the flume and in

what exact location the jump will take place. In fact the

Fig. 193-—Jump in a canal with a break in the bottom elope from steep to mild:

(a, above) jump in the steep region ; (6, below) jump in the mild region.

transition may unfold either as shown in Fig. 193a, with

the jump occurring within the steep section, and with

tranquil flow in the form of an Si curve extending into the

steep section over a distance Ljo‘, or, the alternative is

for the jump to take place in the mild section (Fig. 1936),

in which case rapid flow in the form of an M 3 curve will

extend for a distance L® y into the mild portion.

In both cases, locating the jump will mean determining

the length L from section 0 to the respective extremity

of the jump.

Problems of this nature are greatly facilitated by con-

sidering the jiunp as a stopped translation wave. This

manner of approach was used by Bazin, although it actually
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goes back to the earliest experiments of Bidone (1820) who,

as mentioned before, produced a jump by inserting a barrier

D into a channel with previously unrestricted uniform flow

in rapid state (Fig. 194). The impediment, lowered into

the stream, produces a surge in the form of a wave with a

steep front, moving upstream. In measure, as the basin

back of the barrier fills, the surge moves away from D.

In such movement upstream, the height of the surge and

the velocity w*" with which the surge moves relative to the

Fig. 194.—The jump as a stopped translation wave.

embankment gradually diminish. In Fig. 194 this is

illustrated by the successive positions of the surge. A
position of equilibrium is finally reached, at which the

volume of water flowing over the barrier is equal to the

water flowing into the pool P through the face of the surge.

Also, the surge in its movement upward has been stopped.

The velocity v of the water, flowing down the flume in

unrestricted state, counteracts the natural tendency of

the surge to move upstream. The surge has been trans-

formed into a standing wave. A hydraulic jump has been

formed.

71. Celerity of Propagation of a Translatory Surface

Wave.—It is essential first to determine the celerity with

which a surge (Fig. 195a) or a solitary wave (Fig. 1956)

will move along the surface of a resting liquid. May it

* w; is negative as the movement is upstream against the positive direction

of the X-axis.
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be noted that the word '^celerity is purposely used in order

to differentiate the speed with which the wave travels in

relation to the surface, from the actual velocity with which

the liquid particles are animated in their flow through a

cross-section.

{a) (b)

Fig. 195.—(o) A surge. (’>) A solitary translation wave.

A most simple and yet elegant method for treating the

subject was suggested by St ^ V6nant (1870), which reasoning

we shall apply to a prismatic channel of arbitrary cross-

sectional form. With reference to Fig. 196, assume that

liquid is at rest in the canal as given, at a depth iji. Imagine

Fig. 196.

further that a water-tight barrier B may be moved canal-

lengthwise. The barrier evidently will act as a piston, dis-

placing the liquid in front of it. The displacement of the

liquid, actuated by the movement of the barrier, will be

accompanied by a formation of a surge of the height h which

will be propagated over the surface of the water with a

celerity c, different and generally much larger than the veloc-

ity of the barrier v, assumed in this analysis to be imiform.

Assume, now, that at a certain moment the position of the
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barrier is Bi, while the toe of the surge is in section Bi.

To the right of Si, the liquid is still undisturbed, while

back of the surge the water has been set into motion and is

moving together with the piston at a velocity at a

depth 2/2 = 2/i + In Inct, the function of the surge, as

it is propagated over the resting liquid, is to set such liquid

into motion. In a lapse of time t, the barrier will have

moved from Bi to B2, by a distance v t. At the same time

the surge has rolled from Si to S2 over a distance c • t.

In so doing, it has set into motion with the velocity v,

the volume of liquid s° s[ s?. The relation between the

elements of the movement is gained from the following

reasoning:

In the first place, the volume of water b\ b'\ b'\ b'2, dis-

placed by the barrier, is obviously equal to s[ sj' sj' s^,

which is the increase of volume between sections Si andS2
caused by the raising of the level by h. By designating the

cross-sectional areas corresponding to the depths yi and

j/2 by Oi and by 02, respectively, we get

a^’ V t = {Oi — Oi)c • t

wherefrom

c = V
(I2

fl-2 — CLl
(138)

Another relation is obtained from the momentum equation.

The setting into motion of the volume of liquid sj sj sj si,

equal to Ci • c • f from a condition of rest into uniform

movement with v, corresponds to an increase of momentum

equal to ^oi • c • t • v. This momentum is produced

by the time impulse over a period t of the difference of

the hydrodynamic pressures acting across the cross-

sections Oi and 02 respectively, before and after the surge.

Designating similarly, to Fig. 181, the distances of the

respective centers of gravity below the surface of the

liquid by Zoi and Z02, and omitting the forces of external

friction acting between the walls and the liquid boundary
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layer, we obtain the difference of the hydrodynamic pres-

sures as A{a2Z 2 o ctiZio), The momentum equation reads

now:

A
A{a2Zo 2 — (iiZoi)t = -Qi • c • V • t

from which we obtain

V . c
Q^2Zo 2 (l\Zo 1

ai
g-

Eliminating v between Eqs. (139) and (138) we get

^2(^122:0 2 —
7
~

(139)

(140)
<Xi(ci2 — ^ 1 )

Equation (140) determines the celerity of propagation

of the surge in a prismatic channel in terms of the initial

depth yi and the height of the surge h = 1)2 — 2/i.

Celerity c for a Channel of Rectangular Form ,—In this

instance a — hy and 20 = y/2] Eq. (140) becomes

_
g 2/i(2/2 - 2/ 1 )

which after substituting 2/2 = 2/i + h becomes

£-’ . »i + ^2„. + h)
g 2yi

^ ’

from which we get

+ K^i)
In most cases, where the height of the surge is not too

large, one may simply put

c = ^Vgyi'yjl + I

^

2/1

(142)

or with further approximation what we shall call the St.

V6nant formula

C-v^j;(l+|^) (142«)

When the waves are of very small height, so that h/yi

is small and can be neglected, the St. V6nant expression
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becomes identical with the well-known Lagrange formula

(143)

which givevS the celerity of propagation of disturbances of

small height (ripples) over a deep fluid at rest.

Simplified Formula for Prismatic Channels ofAny Form ,

—

In channels other than rectangular, approximate formulas

of the type, Eq. (142), may be obtained, applicable in cases

when the relative height of the surge

h/y is not too large. In fact, with

reference to Fig. 197, we may put in

such case with sufficient approxima-

tion

^2 = Ui 4“ lih

a^iZ^Q = + ^ih +

Substituting into Eq. (140) and de-

veloping, we obtain

_ |(l +
3 h

+
1 ¥

2 a/h 2 {a/hy

The value of a/h is the average depth of a canal (see

Eq. [41]). Substituting, we obtain

c = Vgd-yjl + ^-^ + ^(~) (144)

c = ^Vgdfl+lfj (145)

which for small values of 6/5 gives

c = \/gd (146)

These expressions are analogous to Eqs. (141) to (143).

In fact, for a rectangular canal, th6 celerity is simply

obtained from Eqs. (144) to (146) by making 5 = a/h == y.

Inasmuch as in a trapezoidal or any other open canal

other than rectangular, 5 = a/6 is always less than y, the

disturbances will be propagated with a celerity smaller than

in a rectangular canal of equal depth.
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Example 34

Quesiioji 1. In a rectangular canal, assume the depth ?/i = 5

ft., and the height of the surge to be = 0.5; h — 1.0; and

h = 2.5, respectively.

Compute the celerity by Eq. (141) and compare the results

obtained by using the approximate relations Eq. (142).

The basic celerity in accordance with the Lagrange formula is

r = \/32.2 X 5 = 12.7 ft. The value of the multiplier in the

different formulas is as follows:

h 3//. 1//A2 ^ / Sh
h

y

0.5 0.1 1.073 1.072 1.075

1.0 02 1.149 1 . 140 1.150

2.5 0.5 1.370 1.322 1.375

We see that the St. Yenant formula (Eq. [142]) gives results in

best accordance with the more exact Eq. (141).

Question 2. In a trapezoidal canal, Type By with yi = 5 ft.,

determine the celerities for a surge height of A == 0.5; A = 1;

and h = 2.5. Use Eq. (145). The average depth at i/i = 5 is

8 = a/b = = 3.33. The basic celerity c = \/

g

3.33 =

10.37 ft.

The value of the multiplier is

h
h

5

0.5 0.15 1.125

1.0 0.30 1.225

2.5 0.75 1.560

Question 3. Assume that a canal (Fig. 198) of the cross-

section as given connects two reservoirs at a distance of 3 miles.

The bottom is horizontal and the water is at rest with
2/
= 8 ft.

Suppose, at a certain moment, water is begun to be drawn from

reservoir A, resulting in the lowering of the level. Determine

the time it will take for a depression of level A to reach the

mouth of the canal at 5, and thus cause water to begin to

flow from reservoir B into the canal.
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A small depression of level inA will be propagated over the canal

with the Lagrange velocity of c = \/gb.

We have a - 8(30 + 16) = 368; 6 = 62 ft.; 5 = =
5.94 ft., so that

c — \/g X 5.94 = 13.8 feet per second

h ^0 H
Fig. 198.—Relating to Example 34.

The time in minutes for a disturbance to travel the length of 3

miles

r = 3 X 5,280/13.8 • 60 = 19.1 min.

72. Stopping a Translation Wave.—Assume now, that

a surge is moving upstream against the current which flows

W‘-Cc-V,}

Fig. 199.—Stopping a surge.

in its turn with a velocity Vi (Fig. 199). The rate w at

which the surge will move relatively to the embankment
is taken to be the difference betweep the celerity c and

the translatory velocity Vi of the current. In other words,

w = -[c - Vi] (147)

As long as the celerity is greater than the velocity of

the current, the surge will be moving upward, so that with

regard to the X-axis, w will be negative. Should, on the
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contrary, Vi be greater than c, w will become positive and

the surge will be carried down by the stream. In the

event that c and Vi are equal, the resultant velocity w will

be zero. The surge will stop and will form a jump. Using

for c Eq. (140), we find that a wave will be stopped when

c® aiia^Zio — OiZio) .os

g
~

g
~ a,{a, - ai)

Fio. 200.- -Distinction between tranquil and rapid flow in terms of celerity of

propagation of surface disturbances.

Multiplying both sides by and remembering that

Vi^ai^ = we obtain

0 — ^ 1^10= — = aia^
g g a 2 - ai

which through proper rearrangement gives

+ diZio — — h 022^2 0 (149)
ga\ (ja^

a relation which is identical with the momentum equation

(Eq. [123]) determining the conjugated depths before

and after the jump. Thus the relations between the

hydraulic elements in a stopped translation wave are

identical with those which prevail in a jump. The two
phenomena are hydraulically equivalent.

Distinction between Rapid and Tranquil Flow in Terms

of Celerity (Fig. 200).—We may now introduce, in addition

to what was developed in Art. 24, another physical dis-

tinction between rapid and tranquil^ flow. In fact, a

surge or a translation wave will be moving upstream, as

long as the celerity is greater than the velocity of the

current. The celerity, on the other hand, depends on
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the height of the wave. The smallest possible celerity

in a canal of given form, the basic celerity, is the Lagrange

celerity c — Vg8.

Let the velocity of the current v be less than c = VgS.

In this case every disturbance, no matter how small, will

travel upstream, until in actual movement it will be

absorbed by frictional losses. If the velocity of the stream

V were, on the contrary, to be larger than c = “^gb, the

phenomenon could unfold in two ways. Either, if the

surge is of small height, the disturbance will be carried

down by the stream; or, if the wave is high enough to

make c = fbe surge will travel upstream

with diminishing height, until a point is reached where

the celerity will become equal to v and where for this

reason the wave will be stopped and a jump formed. In

the light of the above, a velocity [r] equal to the Lagrange

celerity

[j;]
= c = \/^ (150)

divides the possible phenomena into two classes. By
comparing Eq. (150) with Eq. (38), we see that the dividing

velocity [;)] is the critical velocity, corresponding to critical

flow.

Accordingly, the following distinction between rapid and

tranquil flow may be made (Boussinesq)

:

In tranquil movement, with v < [r] — Vgb, the celerity

is always greater than the velocity of the current, so

an intumescence, no matter how small, will travel upstream

indefinitely.

In rapid movement, with v > [f] ,= v^, an intumes-

cence, if of sufficient height, will be stopped and will form

a jump. Otherwise, if the intumescence is not sufficiently

high, it will be carried down by the stream.

The process underlying the formation of backwater

curves in watercourses becomes explainable. In a canal
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of mild slope, with normal flow in tranquil state, the surge

created by a dam through the piling up of the water

back of the barrier will travel upward indefinitely, progres-

sively diminishing in height and connecting asymptotically

with the level of the unimpaired watercourse. In the case

of a channel with steep slope, with uniform flow in rapid

state, the surge produced by a barrier of sufficient height

will proceed upward until a point where, by reason of

diminished height, it will be stopped forming a jump.

Relation between the Celerity of Propagation and the

Kineticity ofFlow .—An interesting relation prevails between

the celerity of propagation and the kinetic flow factor. We
shall limit ourselves to the case of a rectangular canal.

In this case the celerity for a small intumescence is

c — V^, whUe the kinetic flow factor is

X = 2S^
y

Eliminating y between the above, we obtain:

X = I'Ve- (151)

Thus the kineticity is the square of the quotient of the

average velocity of flow by the celerity of propagation of a

small intumescence. In critical state, with [f] = c, Eq.

(150) gives X = 1 ;
in tranquil movement, with [r] < c, the

kineticity is X < 1. The speed with which a small intumes-

cence will travel, relative to the embankment, is

w — —\c — v] = — c[l — VX] = 1 (152)

73. Locating the Jump.—With these conceptions in mind,

it will be easy to locate the jump. The process of reasoning

win be best shown in connection with concrete cases.

A. Weir in a Torrential Watercourse (Fig. 192).—Assume
that the discharge is Q, and that the depth of uniform

movement in rapid flow is yo. A weir is located in D, rais-

ing the level to a stage represented by yo.
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The problem is to establish the type of the phenomenon

and. in the event that a jump is to take place, to determine

its location and its height.

Proceed, first, by computing the conjugated depth d^,

corresponding to di — ijo-

1. di < yt>.—Suppose that d^ as determined is less than

yi>, which is the usual case. This means that the discharge

as given, when flowing at a normal depth y^, may stop a

surge of the depth d-i, which depth is smaller than the depth

corresponding to the level yo caused by the dam. Conse-

quently, the level caused by the dam will move upstream

with depth diminishing until section J is reached, in

which the depth y, on the surface curve of the Si type

will be equal to di, as above determined, y, being equal to

di means that the celerity at the upper stage, corresponding

to yj, is equal to the velocity of the current and that the

translation wave will be stopped.

The location of the jump will be determined by finding

the position of section J with yj = di. This is done by
computing the length of the curve Lyc between the stages

yo and yj. The procedure is given in Example 13, Question

2 .

2. di > yo .—Suppose now that di as determined proves

to be greater than yo. This will mean that the current

in uniform flow is able to sustain a wave of greater height

than the one caused by the barrier. In other words, the

celerity of the surge is smaller than the velocity of the

current. The rise produced by the dam cannot proceed

upstream. The intumescence caused by the barrier

will be swept downstream, with the current crossing the

weir by means of a standing swell, as described in Art. 25.

B. Channel with a Break in the Bottom Slope .—With
reference to Fig. 193, the question, as stated before, is to

determine in the first place, as to whether the jump will

take place within the steep or within the mild section. In

the following, it is assumed that the lengths of the steep as

well as of the mild section are sufficiently long for uniform
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movement to install themselves. The notmal depths

are respectively j/oi and yot-

To solve the problem, start by determining the depth

conjugated to t/o i- In other words find the upper stage of

the standing wave which the rapid current flowing in the

steep section with a depth yo\ = d\ is able to sustain.

Compare, then, the conjugated depth di as found, with

the depth of uniform flow ?/o2 in the mild section. Two
cases are possible.

1. do > y02 (Fig. 1936).—When d2 proves to be greater

than yo2, it means that the velocity of the rapid movement
in the steep section exceeds the celerity of the surge,

corresponding to the uniform depth yo 2- So, in the dividing

section 0, the level 7/02 will not be able to counteract the

current and will be repelled. The rapid flow will extend

into the mild section, by means of an JV/3 type curve,

until in section the depth y',- is reached, equal to

the depth (d^j conjugated to the uniform depth yo 2 — {d2 ) 2 -

To locate the jump, determine the depth (di)2 conjugated

to the given yo 2 ,
and then compute the length Loj of an

Mi curve between the stages yoi and y'j = (di)2.

2. d2 < yo2 (Fig. 193a).—This means that the' depth

yo2 ,
which confronts the rapid current in section 0 is

greater than the stage d^, which the current flowing in

rapid state at yoi is able to sustain. The level of tranquil

flow in reach H will move in such case upstream,

extending into the steep section until in section J the

depth yj is reached, equal to d2, conjugated to di = j/oi-

To locate the jump determine (d2)i conjugated to

(di)i = you Then compute the length Lyo of the Si curve

between the stages yj and yo2 -

Example 35

A canal, Type B, is laid with a break in the bottom slope

(Fig. 201), The bottom slope in the mild section is so2 = 8°%o-
The slope of the steep section is So i = 60®%o a^d so i = 200®%Oi
respectively. The discharge is Q = 300 cu. ft. per second. Use
Bazin coefficients.
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Question L Dekirmine in both cases the type of movement
and the locus of the jump.

With Q = 300 cu. ft. per second, we have for uniform flow

(see Fig. 15),

So = 8^%o; = Q/Vs = 106 X 10^ cu. ft. per second;

and ?/o 2 = 4.95

So = 50^%o; = Q/Vs = 42.4 X 10^ cu. ft. per second;

and i/oi = 3.05

So = 200^%o; H = Q/Vs == 21.2 X 10^ cu. ft. per second;

and 2/01 = 2.05

From the M{d) curve (Fig. 185 or 186), we find the conjugated

depths d^j corresponding to the respective uniform depths in

the steep section:

Case I (Fig. 201a): Soi = 50^%o; 2/oi = di = 3.05 ft.; conju-

gated depth ^2 = 4.50 ft.

Case II (Fig. 201b): soi = 200^%o; 2/oi = di = 2.05; conju-

gated depth di = 6.15 ft.

The depth (^1)2 conjugated to 7/02 = (^2)2 = 4.95 is d\ = 2.65.

In Case I, the conjugated depth = 4.50 is less than 2/02 =

4.95 ft. Hence, the jump will be within the steep section as in

Fig. 193a.
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In Case II, d2 = 6.15 is greater than 2/02 == 4.95 ft. Hence,

the jump will be in the mild section as in Fig. 1936.

To locate the jump in the case when Soi ~ 50^%0> ^jo

(Fig. 193a) is the length of an Si curve between ^2 = 4.50 and

2/02 = 4.95 ft.

For the hydraulic exponent for the region y = 4.5 to 5 ft. with

7/0 = 3.05 we have from Table I

K(5)/K(3) = 108.8/41.65 = (5/3)«/2

from which

Lg2M

An identical value corresponds to

3{(4.5)/3((3.0) = (4.5/3)'‘/2

1 — /3 Value.—The average value of a for the range of depths

is (T = 22.7«'>oo. Thus,

0 = so/<T = 50/22.7 = 2.2; 1 - = -1.2

Interpolating the values of B(i?) between the table lines for

n'.= 3.6 and n = 3.8, respectively, we have with n = 3.74:

Vi = 4.95/3.05 = 1.623; BM = 0.1047; Dj = 1.623 -
(-1.2) X 0.1047 = 1.7488

VI = 4.50/3.05 = 1.470; B(vi) = 0.146; Hi = 1.470 -
(-1.2)0.146 = 1.645

The distance L,o, from section 0 to the end of the jump at y,- =
di = 4.50 is

Lio = 3.05/50 - lO-^ll.7488 - 1.6450] = 610 X 0.1038 = 67 ft.

To locate the jump in the case of Soi = 200®%o have: Loj
(Fig. 1935) is the length of an Mz curve between yoi = 2.05 and

2/; = {di)i — 2.65 ft.

Hydraulic Exponent-—For the range of depth between y = 2.05

and 2.65 with ?/o = 4.95, as an average value,

K(5)
Lg

n = 2-
i((2.5)

3.70

Lg
2.5

1 — /3 Value, a for the range = = 8/23.5 = 0.34;

1 — /S = 0.66. Interpolating table values of B{v) we have with

n = 3.70
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Til = 2.65/4.95 = 0.535; B{-n) = 0.547; = 0.535 - 0.66 X
0.547 = 0.174

rji = 2.05/4.95 = 0.415; B(ij) = 0.418; n, = 0.415 - 0.66 X
0.418 = 0.139

The distance Lo,' from section 0 to the toe of the jump

4
Z.o/ = g^^[0.174 - 0.139] = 6,190 X 0.035 = 216 ft.



CHAPTER XX

THE JUMP BELOW A REGULATING SLUICE

There are a number of important cases in engineering

practice where chart (Fig. 190) and the Eq. (137) may be

usefully applied.

74. The Effective Head.—When using the chart and
computing the reduced values it will be necessary to refer

the depth d\ and the other elements of flow to the effective

Fig. 202.—The effective head.

head which is the total energy head Hi in section 1 of the

outflowing vein (Fig. 202). This effective head is less than

the head H by the loss hu,.

With <p, the velocity coefficient, determining Vi =

<pV^{H — di), the effective head is

Hi = di + ^^ = di + <p^iH - di) = H^<p^ + |(1 -
<p^)

j

= m (153)

and the loss

K = H - Hi = (1 - ip^KH - di) - (1 -
270
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For convenience sake, the value of

t? = v’' + §(1 - <P*) (164)

is given in chart form (Fig. 203).

76. Free or Submerged Efflux.—In Fig. 202 assume as

given: the position of level A above, and that of level B
below the sluice; the opening of the gate h and a contraction

coefficient a which determines the depth of the outflowing

vein, di = ah.

Fig. 203.

Depending on circumstances, the efflux may either be

“submerged,” with the tail-water level extending back to

the sluice and drowning the outflowing vein (B — a in

Fig. 202). Or, if level B is sufficiently low, the outflowing

stream may repel the tail-water, making the efflux free.

The freely outflowing vein in this case will coimect with

level B by means of a jiunp j-B.

In submerged flow, the discharge will be actuated by the

step Z, which is the vertical distance between levels A and B.
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In case of free outflow, the discharge will be actuated by the

head H — di; it will be considerably greater. Also the

velocities and the erosive action of the vein will substan-

tially increase.

To establish the type of flow, first determine the depth

dj conjugated to the depth di, a.ssuming that the outflow

is free.

1. di < t/fl.— If the conjugated depth di, as determined,

is smaller than the depth ijb, corresponding to the position

of level B, the flow will be submerged.

2. do > Vb-—If the conjugated depth di, as determined,

is greater than ya, a jump will be formed and the flow will

be free. Usually the jump will be of maximum possible

height when ya = di, that is, when the toe of the jump is

located at the vena contracta. In case di > ya the jump
will be repelled stream downwards.

Example 36

Assume a rectangular sluice opening with H = \0 ft. and = 4

ft. (Fig. 204). Let the contraction coefficient be a = 0.62 and
= 0.92.

Question 1. Assume stage B to be ya = 7.5 ft. and ya = 6.5

ft., respectively. Determine in each case the type of efflux and

the discharge.

The depth di = ah = 0.62 X 4 = 2.48 ft.; d,/// = 2.48/10 =
~0.25. Accordingly, from Fig. 203, with <p^ = 0.92, d = 0.94,

and the effective head Hi = 9.4 ft. The reduced value of di,

referred to Hi is d'l = 2.48/9.4 = 0.264. From chart (Fig.

190), the conjugated depth d'j = 0.755. Accordingly dj = 0.755

X 9.4 = 7.1 ft.

With 2/b = 7.5 ft., we thus have ya > di. The flow is submerged.
The step

Z = 10 — 7.5 = 2.5', q = h - a • >p' \^2gZ — 0.6 X
4 X V2g • 2.5 = 30.4 cu. ft. per second.

In case ya = 6.5 ft., ya < di. The flow is free. The head
actuating the discharge is — di = 10 — 2.48 = 7.52.

q-= <P'di- V2g(H - di) = 0.96 X 2.48 X V2g X 7.52 = 52.8

CU. ft. per second
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Question 2. Determine the highest possible stage, consistent

with free efflux.

The maximum stage is 2/^ = ci2 = 7.1 ft. as above determined.

For ^ 7.1 ft., the discharge will remain constant and equal

to 52.8 cu. ft. per second.

Fig. 204.—Relating to Example 36.

As soon as level B overreaches ya = 7.1, the tail-water will

drown the outflowing vein. The discharge will drop abruptly

to below the limiting figure of

g = 0.6 X 4V2g(10 - 7.1) = 32.8 cu. ft. per second.

76. Flow in a Canal below a Regulating Sluice.—In

the preceding, the tail-water stage B was assumed as

given. Such, for example, would be the case if the sluice

were to be located between two reservoirs (Fig. 205) with

only a short connecting flume between the two bodies of

water. In this case the natural stage below the sluice would

be the depth, corresponding to the level in reservoir B.
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Whenever the canal below the sluice is of appreciable

length, the stage below the sluice is influenced by the

circumstances of the flow in the canal. Evidently,

in such case the efflux from under the sluice and the

gradually varied movement in the canal become organi-

cally interconnected.

The reasoning to be applied in problems of this kind is

here to be illustrated by considering the case of a canal of

mild bottom slope ending with a fall (Fig. 206). In the

following, it is assumed that the streaming over the fall is

unhampered. Generally speaking, the type of movement

will depend on the length of the canal and on its slope.

For example, in a short canal (Fig. 206/1) the stream-

ing may continue to be rapid over the entire course of

the flume, the surface 1-/ being a rising curve of the

Ms type, which reaches the crest of the fall and leaps over

it before having attained the critical depth. In Fig.

206/11, on the other hand, the canal is long enough for

uniform movement to establish itself. The picture as

drawn corresponds to free efflux. The stream is rapid

until section J connects by means of a jump with the

uniform movement stage yo = ds.

Figure 206/III represents an intermediary case. The
flow between A and J is rapid. Beyond the jump the

surface is a falling curve j"~c of the Ms type.
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In all the above cases the efflux was pictured to be free.

Now, in Figs. 206/11 and 206/III, the flow could be sub-

merged, the level of tranquil flow reaching back to the

sluice and drowning the vein (shown in dotted lines). To

establish the type of efflux, assume the outflow free with a

Fig. 206.—Flow in a canal below a regulating sluice.

discharge Q/ and determine the depth dj conjugated to the

depth yi of the outflowing vein. Next, compute the

depth Va in the section immediately helow the sluice, for

the free discharge Qf, assuming that the depth over the

fall is y„ (Fig. 206/III). If Po, thus determined, is less

than di, the efflux will be free. If, on the contrary, ya is

greater than di, the outflow will be submerged.
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Example 37

A sluice opens into a cement-lined canal of rectangular shape

(Fig. 207) Type C (see Plate IV). H = 10 ft.; the opening of

the sluice is A = 5 ft.
;
a = 0.62; = 0.90 ((/> = 0.95); = 5 X

0.62 = 3.10; q
= 0.95 X 3.10 X V2g{10 - 3.1) = 62 cu. ft.

per second; Q = 62 X 20 = 1,240 cu. ft. per second.

( 1 )

Question 1. Given the length of the canal L = 300 ft., and

So = 10®% 0 )
determine the type of flow.

The canal being short, the movement may be as shown in

Fig. 206/1. To establish the type of flow, determine:

The normal depth y^.

JCo = O/a/so = 1,240/v'TO- 10"* = 392 X 10* cu. ft. per second

and 2/0 = 6.8 ft.

The critical depth

2/cr = W/g = = 4.93

To find, whether flow is rapid over the whole course of the canal,

determine (Fig. 208) the length of an Mo curve between the depths

yi = 3.1 ft. and y„ = 4.93 ft.

We shall use the varied-flow-function tables with n = 2.8.

The critical slope, for
2/
= 5 ft. and

2/
= 3 ft., is respectively

(see Plate IV) (t = 24.90%o and 23.50%o- The values of ==
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10/24.9 = 0.401 and 10/23.5 = 0.425; 1 - /3 = 0.599 and

0.575, with an assumed average 1 — = 0.59. We have now:

Vi = 3.10/6.8 = 0.456; 5(»ji) = 0.4700; Hi = 0.456 - 0.59 X
0.470 = 0.178

Vi = 4.93/6.8 = 0.725; B(vi) = 0.8285; Ha = 0.725 - 0.59 X
0.8285 = 0.237

The length of the curve

L = [0.237 - 0.178] = 6,800 X 0.059 = 401 ft.

This is substantially longer than the given length of the canal,

300 ft. So, the streaming is of the type, Fig. 206/1 as assumed.

Fig. 208.- -Curve for Example 37, question 1.

Question 2. Determine the type of flow and the locus of the

jump if any, in case the canal were 5,000 ft. long.

The canal appears to be long enough to make the tail-water

stage below the sluice close to the normal depth, so that in Fig.

206 ya is 2/0 . To prove whether the assumption is correct

find the length of an ilf2 drop curve (Fig. 209) between the critical

depth 2/2 = 2/fr = 4.93, and the end of the curve assumed to be at

ya - 0.99 X 2/0 == 6.73 ft.
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For the 1 — /3 values in the depth interval we have

;

y = 5 ft.; (T = 24.9; = 0.401; 1 - = 0.599

2/
= 7 ft.; = 26.6; = 0.376; 1 - /3 = 0.624

An average value of 1 — jS = 0.615 will be assumed.

To figure the length of the curve with n = 2.8

:

175 = 4.93/6.80 = 0.725; = 0.8285; = 0.725 -
0.615 X 0.8285 = 0.216

VI = 0.99; B(vi) = 2.106; Hi = 0.99 - 0.615 X 2.106 = - 0.307

L = 6,800 [0.216 - (-0.307)] = 6,800 X 0.523 = 3,560 ft.

This length is less than Lean = 5,000 ft.
;
thus ~ 2/o = 6.8 ft.

To determine the type of flow, compute the depth dt, conju-

gated to di = 3.1 in the vena contracta.

t

/o'
1

1

!02'

4 H.OL

1
^d,j=y,.6.60'

1

1

Njcurve

t

i

Fia. 210 .—Mi curve in Example 37, question 2.

With <p^ = 0.9 anddi /H = 0.31, we have (Fig. 203) = 0.93,

and thus Hi = 9.3 ft.

The reduced value of d\ = 3. 1/9.3 = 0.333. The reduced

conjugated depth (Fig. 190) d\ = 0.785, so that ^2 = 0.785 X
9.3 = 7.3 ft. With ^2 > 2/a = 6.8 ft., the flow is free with a re-

pelled jump.

To locate the jump (Fig. 210), determine first the depth

ijj = dij, conjugated through the jump to d2,j = t/o = 6.8.

Appl3dng Eq. (131) we have

(^2

2 [
- 1 + >/' + <!)']

-
3.4[

- 1

+

.43

The locus of the jump is determined by the length of the

Mt curve (Fig. 206/11) between yi = 3.1 and yi,- = 3.43.
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Taking 1 — /? = 0.58, we have, with n = 2.8

;

m = 3.10/6.80 = 0.456; = 0.470; Hi = 0.456 - 0.58 X
0.470 = 0.184

m = 3.43/6.80 = 0.505; = 0.527; = 0.505 - 0.58 X
0.527 = 0.199

Li, = 6,800(0.199 - 0.184) = 102 ft. (Fig. 210).,

Question 3. Determine the type of flow and the locus of the

jump in case the canal length were L = 1,000 ft. With the canal

Fig. 211.—Locating the jump in the case of Fig. 206, III.

length intermediary between 401 ft. (Question 1) and 3,560 ft.

(Question 2), the flow will be of the type as shown in Fig. 206/III.

To locate the jump proceed in general as follows (Fig. 211).

Draw the Mz curve (shown as 1-Ci) corresponding to free

rapid flow from di to ycr in section Ci. Draw the drop curve

(shown as c^a) from ycr in section C2 over the fall back to ya below

the sluice.

Using Eq. (129) or (131), compute and draw the curve Ci-d

of the conjugated depths, corresponding to the ordinates of the

Mz curve (1-ci). Obviously, in the vena contracia the ordi-

nate of this curve is d^y conjugated to di, while in Ci, ^2 = di =

ycr.

The point 6f intersection /' of the ci-d curve with the M2

curve determines the position of the jump, as well as the respec-

tive stages d2 j and di,*. The uncertainty of the solution lies in

neglecting the length of the jump. However, if and when section
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J happens to be in the flat portion of the drop curve, the error

will not be substantial.

It will also be usually expedient to omit from consideration

the distance between the sluice and the vena contracta, assuming

simply that the length between section 1 and the fall is equal

to the total length of the canal.

With reference to the numerical example:

The Mi Curve .—The total length, as determined in Question 1,

is 401 ft. For the vena contracta we have yi = di = 3.10 ft.

and n(7;i) = 0.178. The coordinate x'" (Fig. 212) for any

depth is a;'" = 6,800 [11(772) — 0.178] where 11(772) = m —

0.59^(772), with 772 = y"V6.8 for the chosen y'".

Accordingly we have, with n = 2.8:

Table XLIII

(1)

y",
(2)

V2

(3) (4)

n(>!2)

(5)

11(7,1) - 0.178

(6)

x"'

(7)

di

3.10 0 7.30

3.40 0.500 0.521 0.192 0.014 95 6.87

3.67 0.540 0.568 0.204 0.026 177 6.47

4.08 0.600 0.644 0.220 0.042 286 5.91

4.76 0.700 0.787 0.236 0.058 394 5.12

4.93 0.237 401 4.93

The curve 1-Ci is traced in appropriate scale in Fig. 213.

The Conjugated Depth d2 Curve.

For di = 3.10 we have, as above determined in Question 2,

d2 = 7.3 ft. For intermediary points
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The computed values are given in the last column of the above

table, as corresponding to the preceding abscissae value of x.

The curve a-ci is traced in Fig. 213 (upper curve)

„

The Drop Curve M2 .
—We have (Question 2) for section C2

over the fall: ^2 = Vrr = 4.93; and with 1 — jS = 0.615, n(77cr) ~
0.216. The coordinate x" (Fig. 212) for a depth y" will be x'' =
1,000 ~ Z" = 1,000 - 6,800 [0.216 -

Accordingly, we obtain

y" V BM n(i,) 0.216 - n(7;) Z" a:"

6.324 0.93 1.391 0.074 0.142 966 34

6.256 0.92 1.340 0.096
;

0.120 816 184

6.188 0.91 1.294 0.113 0.103 700 300

6.120 0.90 1.253 0.128 0.088 598 402

The curve is drawn into Fig. 213; it intersects the ^2 curve

at Xf = 226 ft. This locates the jump. The depths before and

after the jump are, respectively, = 6.23; dij = 3.82 ft-

The control by the formula

confirms the result obtained.

77. The Saugey Fall Increaser.—An interesting example,

where chart (Fig. 190) is directly applicable, is the fall

increaser suggested by Saugey.* The device is intended

to increase the effective head in a water-power plant during

periods of flood. Figure 214 represents schematically a

power house, the draft tubes of which discharge into a tail

race located below the sluice S. At periods of high water

the head is reduced to Z, An appropriate stream from

under the sluice may repel the tail-water and increase the

head available immediately below the sluice to Zart- This

increased head may be used to advantage to maintain the

output of the turbines T, reduced through flood water.

The operation of the device is obviously conditioned on the

discharge through the wheels being small, compared to the

water flowing under the sluiceway.

* Zeits. d. Ver, Deutach. Ing.y 1906.
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The hydraulic features are easily handled by means of

chart (Fig. 190) which is best illustrated by a practical

example.

Example 38

Assume in Fig. 215a H = 10 ft., db = 6.5 ft.; Z == 3.5 ft.

Take a = 0.62; <p^ = 0.9. Determine the possible increase

of head.

To apply chart (Fig. 190), we must know the effective head,

which because of Eq. (154) depends on the opening of the sluice,
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etc. Assume, subject to later correction, t? in Eq. (154) = 0.92,

making //' = 9.20 ft. Assuming the jump to be near the vena

contractay we take the conjugated depth ^2 to be ^2 = db = 6.5

and thus d\ = 6.5/9.2 = 0.707. Accordingly for the depth

before the jump we obtain d'l = 0.21 which gives di = 0.21 X
9.2 = ^1.95 ft., and the opening of the sluice h = 1.95/0.62 =

3 ft.

The head is increased (Fig. 2155) by

j * 6.5 ~ 1.95 - 4.55 ft.

Zart = 3.5 + 4.55 = 8.05 ft.

The relative increase of head is

Zart/Z = 8.05/3.50 = 2.3
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As seen from the / = d'2 — d'l curve in chart (Fig. 190), with

d'l = 0.21, the structure is working near the point where the

reduced height of the jump is maximum. If circumstances

were different, one would be able to have the layout approach

conditions of optimum work by changing H, that is, by lowering

or lifting the sill. In other words, with Z given, one may always

bring the flow to any desired point of the diagram by appropri-

ately designating the position of the sluice sill.

78. The Jump as an Annihilator of Energy.—In problems

of flood control, when designing spillways and similar

structures, it becomes necessary to pass a given quantity of

water from a certain given upper stage A to a lower stage

B, with a vertical difference of level Z. In lowering the

water, the particular object in many cases is to annihilate

as great a part as possible of the energy stored at the

upper stage and thus to reduce erosion and other destructive

effects in the tail race of the lower stage. The jump
constitutes a most efficient annihilator of energy and has

often been used for this purpose.* In Fig. 190, the reduced

loss of energy t'

j

= 1 — e'o is the distance from the upper

border of the chart to the e'l curve. The smaller the value

of d'\, the larger the loss. For example, one may dispose

of 60 per cent and even more of the initial energy by
causing a jump to take place with d'l = 0.04 and less.

However, under these circumstances the sluice opening h

will be very small and the passing of a given discharge may
require a structure of excessive length.

The optimum conditions will be those at which the

maximum quantity of energy will be annihilated per unit

length of the structure.

For a certain d\, the reduced value of the quantity of

energy dispersed in the jump will be

w' = g'(l - €'
2 ) (155)

By using the data of Table XLII, one may compute

the w* curve. The curve drawn into chart (Fig. 190) has a

* Tech, Repts. Miami Conservancy District^ Pt, III, 1917; Rehbock, Intemat.

Cong, Appl, Mech.^ Delft, 1926; Bauingenieur^ 1923; etc.
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maximum of w' = 0.345, reached at d\ = 0.15 and d'2 =
0.63. The maximum possible dissipation of energy per

unit width attainable under these conditions is

w^ax = 0.345 X AX X H (156)

For water, with A == 62.4 lb. per cubic foot, we have

u^max = 21.5 X lb. X ft. per second (157)

Example 39

Assume in Fig. 216a, Q = 1,000 cu. ft. per second, correspond-

ing to an energy output per second of 6 X 1,000 X 62.4 =
374 • 10^ lb. X ft. per second.

Fig. 216.—Relating to Example 39.

Neglecting losses in the efflux, we have (Fig. 216 6) for optimum
conditions: Z/H = 1 — d'2 = 0.37; H = 6/0.37 = 16.2; di =
0.15 X 16.2 = 2.43. Accordingly ^2 = 0.63 X 16.2 = 10.2 with

j - 10.2 ~ 2.43 = 7.77 ft.

The quantity of energy destroyed per foot of sluice length is

to = 21.5 X 16.2^2 = 22.2 X 10^. The required net width of

the jump hj = 374f22.2 = 17 ft. The resulting layout is pre-

sented in Fig. 2166.



CHAPTER XXT

THE JUMP AT THE FOOT OF A WEIR

Figure 217 refers to the important case of a jump at the

foot of a weir. Depending on the stage of the tail-water,

the vein falling over the dam may either be covered by
level or, if level B" is not high enough, the tail-

water may be repelled; in this case the vein at the foot of

the dam will be free and will connect with the tail-water

stage B by means of a jump. Obviously, the erosive

action in such case may become very dangerous. The
physical aspects of the toe roll have been investigated

experimentally by Rehbock.* In this treatment we shall

limit ourselves to determining the circumstances which

cause flow to be covered or leave it to be free.

79. Bazin’s Experiments.—The problem is practically

identical with that investigated by Bazin, who in his

classical work on the flow of water over weirs made the

Versuche tiber Abfluss, etc./^ and other works.

286
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distinction between nappes covered by tail-water, and

free nappes with a repelled jump.

Guided merely by experimental observations, the emi-

nent hydraulician suggested that the presence of that

or the other form depends on the value of the relative step

Z/P, which is the quotient of the vertical difference of the

levels above and below the weir to the height of the struc-

ture. Bazin summarized his observations by stating that

the value of the relative step, which demarcates between

the two possible forms, is a constant average value of

(Z/P)o = 0.75. Steps with ZjP > 0.75 produce free nap-

pes, independent of whether the weir is submerged or not in

the customary sense of the word. On the contrary, w'hen-

ever Z < 0.75P, the nappe will be covered.

80. Theory of the Phenomenon.—The problem lends itself

easily to theoretical treatment. We shall consider the

weir crest and the tail race below the dam being of equal

length, so that the discharge per unit width q over the weir

and at the toe of the structure is identical. Assume in

(Fig. 217) the head over the weir, corrected for the velocity

of the approach, to be H, the depth at the toe in free flow

being du The height of the structure, to be measured

on the lower side from the floor of the adjacent tail race

section, to be P.

We have for section 1

Vi = <pV2,g{P + H — di)

q = <pdi\^2g{P H — di)

where v? is a velocity coefficient, accounting for all losses

between the pool A and the toe section 1.

On the other hand, the discharge over the weir with a

weir coefficient m is j = m\/2gH^^. Eliminating q,

between the above we obtain

-f H - di) (158)

Designating

X = H/P
] y = di/P (159)
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we make Eq. (158)

= (p-y^{x — y i) (160)

which, for a given P, H, and m, determines the depth at the

toe di.

Now, flow will be submerged or it will be free, depending

on whether the depth t, caused by level B, is greater or

smaller than the depth di conjugated to di. The lower the

tail-water {B” in Fig. 217) the farther away the repelled

jump. As the depth t increases, the jump moves towards

the dam until with U — di, the limiting condition distinguish-

ing between the two forms of the phenomenon is reached.

To determine di — U, we have -the kineticity in section 1

^
^v^/2g ^ ,P + H-di 2(p\

,(I-J/+I) (161)

and thus

dir
dj = io = ~ 1 + VT-p8Xi] =

2
-1+4l+^ix-y + l)\ (162)

The value of to = di corresponds to the demarcating value

of

Zo = H + P - to (163)

which after division by P and in view of Eqs. (162) and

(159) becomes.

(p).
= ^ + 1 - |[-1 + Vl+ 16

*’'^-f^]
(IM)

Equation (164) together with Eq. (160) solves the

problem. For any given P and H, one first determines di

from Eq. (160), and then the demarcating value of {Z/P)o

from Eq. (164).

In order to facilitate calculations, appropriate curves

have been computed and traced (Figs. 218 to 220). Fig-

ures 218 and 219 give the iZ/P)o and the y — di/P values

in terms of a: = H/P, for values of the weir coefficient m =
0.42, m •» 0.46, and m »= 0.48. These coefficients embrace
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the range from thin-crested weirs to dams with well-rounded

ogee forms. There is a set of curves for the ideal case of (p^

0 0.5 t.O 15 2.0 23 5.0

Values of X = ^
Fig, 218,—Curves for determining the value of the relative step {Z/P)q demar-

cating between free and covered toe rolls.

= 1 ;
and a set for an average value of (p^ = 0.9. It may be

mentioned that scarcely any experimental material is

0 0.5 1.0 1.5 20 25 50

Values of X

»

Fio. 219,—Same as for Fig. 218 but ^th = 0.9.

available regarding the coefficient of velocity, so experi-

mental work in this line is badly needed.* Finally, Fig.

* In computing the cuives, an expedient procedure, obviating the neces-

aity of solving cubic equations, is to put ^ x/y, n “ Vv- makes

Sq. (168)
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220 contains a set of curves for weirs of the broad-crested

type. The resistance coefficients, corresponding to the

discharge coefficients, are taken somewhat in excess of those

determined in Art. 17.

Comparison with Bazin's Experiments .—It is interesting

to compare the theoretical results with the observations of

Bazin. The latter experimented on thin-crested weirs

of P = 1.24 and 0.75 meters respectively. The range of

relative heads H/P was between 0.37 and 1.74. The
discharge coefficient in this case was on the average close

to 0.42. With = 0.9 (Fig. 219) the theoretical curve for

<j = t + 1 (a)

and Eq. (164)

{ZIP)(i =* y[^ + 1?
-}- — M\/l + 4" 1?

~ 1)1 W
For a chosen value of Eq. (a), determines 17. Hence y =» I/17 and z »
^/i7. With this the figuring of {Z/P)q from Eq. (6) proves to be a rapid

and simple procedure.
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m — 0.42 gives the {ZIP)o values between the limits of

0.73 and 0.78. The comparison with Bazin’s average

value of 0.75 is very gratifying. One should further

notice that the (Z/P)o curve within the Bazin range of

H/P is rather flat, which explains why Bazin should have

been prompted to accept one constant value of {ZjP)^ as

demarcating the type of the phenomenon. From the

outline of the curves, however, it is seen that for small

values of H/P, meaning very high dams; or in the oppo-

site case of a relatively large H/p (that is for very low

dams) the demarcating value of {Z/P)o is considerably

larger.

Example 40

A watercourse is crossed (Fig. 221) by a dam 20 ft<. high,

with a rounded top, corresponding to a discharge coefficient

m — 0.45. The head over the weir is // = 5 ft.; the tail-water

depth ^ = 8 ft. Take (p‘^ = 0.9. Determine the type of flow at

the foot of the dam.

We have x = H/P = 5/20 = 0.25. The relative step Z/P =

17/20 = 0.85. From curve (Fig. 219) with m = 0.45 and

H/P = 0.25, the demarcating value of {Z/P)of which will repel

the tail-water will be (Z/P) a
— 0.8.

As Z/P = 0.85 in our case is larger than {Z/P)o = 0.8, the flow

at the toe will be free with a repelled jump.

To make the nappe covered, the value of (Z/P) will have

to be reduced. There are two methods by which this can

be achieved.

1. A Toe Basin (Fig. 2216).—The floor below' the dam is

excavated to form a basin. The height P below' the dam
is thus increased to P' = P + AP, and the relative step

2̂
^ proportionately reduced.

With Z = 17 ft. given, in order to make Z/P' = 0.8, we must

have P' = 17/0.8 = 21.3. The basin must be at least 1.3 ft.

deep. To add a margin of safety, we make AP = 3 ft. andP' =

23 ft. We have now: P/P' = 5/23 = 0.22; Z/P' = 17/23 = 0.74,

while from the curve (Z/P)o (Fig. 219), with x = 0.22; {Z/P)^ =
0.82.
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2. A Barrier (Fig. 221c).—An additional barrier to be
located at an appropriate distance below the dam providing
for a pool with a raised tail-water level over the toe of the
structure. The step becomes Z' = Z — AZ, and proportion-
ately lowers the value of Z'/P,

In our case to make Z'/P equal to {ZIP)o = 0.8, we must reduce
the step to Z' = 0.8 X 20 = 16 ft. For margiii^s sake, make
AZ' = 2 ft. and Z' = 15 ft. We have now

Z'/P = 15/20 = 0.75

Fig. 222.—Flow in case the toe basin is not sufiiciently deep.

Attention is called to the fact that under certain circum-
stances the flow below the second barrier may prove to be
not covered.

In our case, assuming that the barrier is 5 ft. high and that
the head required to pass the water over the barrier is also
Hb ^ 5 ft., we have, using the same (Z/P)o curve

Hb/Pb = 5/5 = 1; ZbJPb = 2/6 = 0.4.

while from the curve {ZfP)o = 0.70. The margin providing for a
covered nappe is ample.

Attention is drawn further to what happens if the barrier
in the layout (Fig. 221c) is not high enough, or when the
basin (Fig. 2216) is not sufficiently deep. Figures 222 and
223 give an idea of the form which flow may assume in such
case, with the live vein, undular in form, springing over the
barrier or out of the basin, with local rolls of eddying
water under the wave tops and in the pockets. Obviously,
the danger of erosion in this case is only increased.
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Another feature to be remembered is that the formula

developed above permits us to determine the vertical

elements of the layout only.

Fia. 223.—Flow in case the barrier is not sufficiently high.

Nothing positive at this time may be said about the

required length of the toe basin, the required minimum
distance of the barrier from the toe of the dam, etc.

H=l.5a,

Fig. 224.—The jump below a fall.

As remarked in Chap. XVIII, these problems remain

open to further research.

81. Jump below a Fall.—Figure 224 refers to a fall in

a canal, a device which is often used, particularly in
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irrigation practice for lowering water from one level to

another. Here again, depending on the relative position

of level B, the falling vein may either be free as shown
in the drawing, or be covered.

Usually the slope of the canal bottom is mild, so the depth

of flow near the edge of the fall passes through the critical

depth. Assume the flume to be rectangular. The specific

energy in such case will be Ccr = l-5dcr. The discharge

q, flowing over the fall, may be visualized as the discharge

over a broad-crested weir in the ideal case of ^ = 1,

with a theoretical discharge coeificient m = 0.385 and

H = €cr. In other words, we may put

q = 0.385V^H« (165)

with the head

H = 1.5d„ = 1.5V^ (166)

This analogy permits us to apply the method developed above

without further change. In fact, the elements of flow at

the foot of the fall will be determined by Eqs. (158) and

(164), provided one makes m = 0.385 and (p^ = 1. With

the discharge Q = qb given, H is to be taken as 1.5Vq^/g.

The respective {Z/P)o and di/P curves are given in Fig. 220.

Example 41

Assume (Fig. 225a) the fall to be of rectangular form with

P = 7 ft. The discharge per unit width is g = 20 cu. ft. per

second. The depth of the tail-water < = 5 ft.

To determine the type of flow, we have

y„ = </W7i = 2.32
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Accordingly H = l.S^/cr = 3.48 ft., which makes Z = P H —
t = 5.48 ft,

We have now, in using the {ZIP)o curve (Fig. 220) with m =
0.385 and (p^ = 1,

H/P = 3.48/7 = ~0.5; Z/P = 5.48/7 - 0.79.

On the other hand, according to the curve, the demarcation

step is (Z/P)o = 0.755. The flow with ZjP = 0.79 > {Z/P)q

is free with a repelled jump.

The nappe may be covered by providing a toe basin 1.5 ft-

deep. In fact we have in such case: P' = 7 + 1.5 = 8.5 ft.

H/P' = 3.5/8.5 = --0.41; (Z/P)o = 0.725, while Z/P' in the

structure is now reduced to 5.5/8.5 = 0.65.

The layout is schematically presented in Fig. 2256.



APPENDICES





APPENDIX I

HISTORICAL AND BIBLIOGRAPHICAL NOTES

The beginning of the theory of varied flow is usually associated

with the name of J. M. Belanger.* In fact his ^‘Essai sur la

solution num^rique de quelques probl6mes, relatives au mouve-

ment permanent des eaux courantes/' Paris, 1828, contains the

general differential equation for parallel non-uniform flow, deals

with methods of approximate integration, discusses the nature

of the jump, and, in general, covers the whole subject of varied

flow in a remarkably complete and comprehensive manner.

The next important step is Coriolis^ paper, “Sur r6tablisse-

ment de la formule qui donne la figure du remous,^^ Ann, Fonts

et Chaussees, 1836. While Belanger and his followers deduced

the varied flow equation from the general Newtonian equation

of motion, Coriolis made use of the principle of conservation of

energy, and thus was first to suggest the reasoning which since

has been followed in textbooks on hydraulics in establishing the

so-called Bernoulli equation.

A very interesting account of these earlier stages is given by
St. V6nant in a manuscript dating from 1876, and published

posthumously in the Ann. Fonts et Chauss^es^ 1886.

With regard to the integration of the equation, the case of a

rectangular canal of great width was handled by Dupuit in 1848:

“Etudes th^oriques et pratiques sur le mouvement des eaux,^^

2d ed., Paris, 1863. In a somewhat different manner the same

problem was treated by Riihlmann, “Hydromechanik,^' 2d ed.,

Hannover, 1880. Both writers ignored the effect of the change

of kinetic energy. The case was presented in complete form

by Bresse, “Hydraulique,’' Paris^ 1860, and subsequently by
Grashof, “Theoretische Maschinenlehre,^^ Vol. I. The case of a

* Earlier partial references date back to Dubuat, “Principes d’hydrau-

lique,^^ 1779; Venturoli, 1818, and, particularly, to Masetti 1827. Also

Poncelet is believed to have established the varied flow equation about the

same time as B61anger. The foundations of hydrodynamics were laid by
Euler (1755).
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parabolic channel was dealt with by Tolkmitt, ^‘Grundlagen der

Wasserbaukunst,” Berlin, 1898. For more recent solutions by

Schaffernack, Ehrenberger, and Koz6ny, see Forcheimer,

^‘Hydraulik,'^ 2d ed., Leipzig, 1930. Other methods of

approach: Baticle, Gmie Civile 1921; Husted, Eng. News-Recordj

1924.

A comprehensive description and classification of the different

surface curves were first given by M. Boudin, “Sur Taxe hydrau-

lique, etc.,’^ Ann. des travaux puhliques de la Belgique^ Vol. 20,

1861-1862. The classification of watercourses depending on

the bottom slope was suggested by St. V6nant, Ann. minesy

1851. The distinction between states of flow was made clear

by Boussinesq, ^^Essai sur la theorie des eaux courantes,” Paris,

1877. This opus magnum presents a cornerstone in the develop)-

ment of mechanics of fluids, and remains a treasure of inspiring

suggestions. In part it made use of the experimental material,

assembled by Darcy and Bazin, ^‘Recherches hydraufiques,’'

Paris, 1865. Among other features, we owe to Boussinesq the term

turbulent motioUy and probably the first attempt of a ‘^statisticaF’

approach towards the mechanism of turbulent flow. Other works

by Boussinesq, Theorie de T^coulement tourbillonnant et tumul-

tueux,” Paris 1897; ^^L’^coulement en d^versoir,’^ M6m. de

I’Acad., 1907.

Excellent summaries of Boussinesq's work are given by:

FlamANT, ^‘Hydraulique,^’ last edition, Paris, 1923.

Forcheimer, ''Hydraulik,'' 2d ed., Leipzig, 1930.

MasonFs, ^‘Hydraulica,'' 2d ed., 1900; in Italian.

Regarding manuals in English, varied flow is discussed at some
length in the well-known textbooks on hydraulics by Merriman,

King, and Gibson. The subject is dealt with in detail in the

Technical Reports Miami Conservancy District.

The most important special papers are

:

Kennison, The Hydraulic Jump in Open Channel Flow,

Trans. A.S.C.E., 1916.

Johnson, Surges in an Open Canal, Trans. A.S.C.E.y

1917.

Hinds, Eng. News-Record^ Vol. 85, pages 1034r-4040, 1920.

For an account of the experimental study of the physical

aspects of flow, as carried out by Professor Rehbock (Karlsruhe)

and his followers, see:
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Rehbock, ^^Stauwerkc/’ Vol. II, Handbuch der Ingenieur-

WissenschafteUj III, Leipzig, 1912; ^'Betrachtungen iiber

Abfluss, Stall- und Walzenbildung,'’ Berlin, 1917
;
articles

in Hydraulical Laboratory Practice, A.S.M.E., 1929.

Boss, Mitt, ftir Forschungsarbeiten, V.DJ., No. 284.

Also numerous articles in the Bauinqenieur and other publi-

cations, a detailed list of which is given in ^‘Hydraulisches

Rechnen” by Weyrauch-Strobel, 6th ed., Stuttgart, 1930.

The lifetime contribution of Professor Koch (Darmstadt) is

assembled in the posthumous ^'Bewegung des Wassers^' by

Koch-Carstanjen, Berlin, 1926. Other larger contemporaneous

works in German are:

Forcheimer, Wasserschwall und Wassersunk,'' Ijeipzig,

1924.

ScHOKLiTSH, ^^Der Wasserbau,'^ Berlin, 1930.

Koz^iny, Wasserfiihrung der Fliisse,^’ Leipzig-Vienna,

1920.

A detailed list of smaller contributions is to be found in Wey-
rauch-Strobel {loc, cit,y page 355).

For an account of the recent development of the more theoret-

ical aspects of applied hydromechanics, see:

Prandtl-Tietjens, ''Hydro- und Aeromechanik,^' Berlin,

1929-1931 (a version in English to appear shortly).

Kaufman, "Hydromechanik,^^ Berlin, 1931.

Handbuch der Experimentalphysik, Vol. 4.

Handbuch der Physik, Vol. 7.

Handbuch der physikalischen und technischen Mechanik,

Vol. 5.

"Hydraulische Probleme,^’ collective work, F.Z>./., 1926.

Karman and Levi-Civita, "Vortrage aus dem Gebiete der

Hydro- und Aerodynamik,” Berlin, 1924.





APPENDIX n
METHODS OF COMPUTATION OF THE VARIED-

FLOW-FUNCTION TABLES

The numerical values of the varied flow function

B(,) = - f = f^Jo 7?" - 1 Jo 1 - ^7"

were computed by means of the following methods, one or the

other method being used depending on the values of the argument 77 .

Method 1. For values of ?? < 1, one may use the infinite series

= 1 + + . .
. + ,(P-i)» + rj, (a)

where n is the hydraulic exponent, p the number of members in

the series, and

Tp = 77
P" + T7^P-+-1>" + * • •

By integrating, one obtains

/r^. - > + + • +

(p — l)n + 1

^(p-Un+l +
where

pn + 1

,pn+l ^ pn + I

\ + _P!i±i_„n +
y
^ pn + n +

Obviously,

yiPn-tl 1

^ J: + ?;" + + . .
. )

= — p -r • = ^ (c)
pn -T t pn -+-1 1 — T7”

Equation (c) allows us to determine the number p of the

members of the series, which are necessary to guarantee the

required precision of the computation. The value of Biv) is then

computed by means of Eq. (6). For reasonably small values of rj,

the series (a) is rapidly convergent. The method was found tc

be practicable for values of n ^ 0.70. For larger values of 77
,
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and particularly for 77 close to unity, the number p of series

members required becomes impracticably largCo

Method 2 .—For values of r? > 1, a convergent series is obtained

by making 77
= 1/2^ and ii = k/2

;
so that 77” = I/2*, while

dr} = —2dzlz^ (a)

We have

iC dr} C z^-'^

2J 1-77- J 2
dz + +

k - 2 ' 2/c - 2

^p-l)k-2

with

jypA:—

2

< / 01 fcpk — 2 1—2^

{p -\)k -2

1

^ +

+ R'v (6)

(c)

Substituting 2* == I/77- from Eq. (a) into Eqs, {h) and (c), we

obtain

where

(/. - 1)77'-^
^

^
1-

(2n - 1)772«~i
^ - +Rp (d)

Rp <
1

(pn — 1)77^”“^
(e)

Series (d) is convergent, the rapidity of convergence increasing

with the value of 77. The method was found practicable for values

of 77 > 1.50.

Method 3, For the region 0.7 < 77 < 1.50, it was found more
expedient to use the well-known Poncelet formula for approxi-

mate integration, namely

I + s) (o)

where 2m is the number of equal intervals, into which the range
0-6 is divided; yi, y^, y^, , . . y^^ and yam+i are the respective

values of the function y = /(x), corresponding to the above
intervals, while

S' = 2/s + 2/4 + • • • yim
S = 34(2/1 + 2/Sm+l ~ 2/2 — y2m)

(6)
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The error € in this case is

— a
€ < • S

2m
The Poncelet procedure determines the value

r drj

Jal -

which is to be added to

-B(a) -
Jo 1 — >?“

to determine

-Bm .
Jo 1 -

(c)

Starting with a certain table value B(a)y previously deter-

mined by some other method, the Poncelet formula allows us to

build up the consecutive table values. For each range a-6
,

Eq. (c) determines the number of intervals 2m, into which the

respective range a-b has to be divided to obtain the required

precision.

Method 4. For values of 97 ^ 1
,
in the immediate vicinity of

unity, the number of intervals to be used in the Poncelet formula
proves to be very large. In this case, advantage can be taken
of an infinite series, obtained by making

1 — r;’* = ± 2
; (a)

where the sign + corresponds to values of 7
; < 1

,
and the sign —

to values of ?? > 1 ,

This leads to

= const. +
logz + w - 1 _ (n - i;(2n
n ' 2n^ X 2!

(n - l)(2n - l)(3n - 1 ) , ,

3n^X3! ^ + R,

The rapidity of convergence of this series increases in measure
with the decrease of 2:, that is as rf approaches unity. The
number p of series members, required to guarantee a desired
precision, is determined by

n 1 ~ z

The precision of computation of all tables was to make the error.

« ^ 0.0005
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Table I. B{v) = -
1 J !Jo — I
I ^ < 1

Table IL ^(rf) ==
ri B(rj) for 17 > 1
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Table IA.

—

The Varied Flow Function B(r;) for rt > I

Function values for exponent values

B II

00

n ==

4.0
n =>

4.2
n =
4.6

n ”
5.0

n 8=

6.4

2.399 2.184 2.008 1.856 1.725 1.610 1.508 1.417 1.264 1.138 1.033

1.005 1.818 1.649 1.506 1.384 1.279 1.188 1.107 1.036 0.915 0.817 0.737—irol 1.572 1.419 1.291 1.182 1.089 1.007 0.936 0.873 0.766 0.681 0.610
1.015 1.428 1.286 1.166 1.065 0.978 0.902 0.836 0.778 0.680 0.602 0.537
1.02 1.327 1.191 1.078 0.982 0.900 0.828 0.766 0.711 0.620 0.546 0.486

1.03 1.186 1.060 0.955 0.866 0.790 0.725 0.668 0.618 0.535 0.469 0.415
1.04 1.086 0.967 0.868 0.785 0.714 0.653 0.600 0.554 0.477 0.415 0.365
1.05 1.010 0.896 0.802 0.723 0.656 0.598 0.548 0.504 0.432 0.374 0.328

1.00 0.948 0.838 0.748 0.672 0.608 0.553 0.506 0.464 0.396 0.342 0.298

1.07 0.896 0.790 0.703 0.630 0.569 0.516 0.471 0.431 0.366 0.315 0.273

1.08 0.851 0.749 0.665 0.595 0.535 0.485 0.441 0.403 0.341 0.292 0 252

1.09 0.812 0.713 0.631 0 . 563 0.506 0.457 0.415 0.379 0.319 0 . 272 0.234

1.10 0.777 0.681 0.601 0.536 0.480 0.433 0.392 0.357 0.299 0 254 0 218

1.11 0.746 0.652 0.575 0.511 0.457 0.411 0.372 0.338 0.282 0.239 0 204

1.12 0.718 0.626 0.551 0.488 0.436 0.392 0.354 0.321 0.267 0.225 0.192

1.13 0.692 0.602 0.529 0.468 0.417 0.374 0.337 0.305 0 . 253 0.212 0.181

1.14 0.669 0.581 0.509 0.450 0 400 0.358 0.322 0.291 0.240 0.201 0,170

1.15 0.647 0.561 0.490 0.432 0.384 0.343 0.308 0.278 0.229 0.191 0. 161

1.16 0.627 0.542 0.473 0.417 0 . 369 0.329 0.295 0.266 0.218 0.181 0.153

1.17 0.608 0.525 0.458 0.402 0.356 0.317 0.283 0.255 0.208 0.173 0 145

1.18 0.591 0.509 0.443 0.388 0.343 0.305 0.272 0.244 0.199 0.165 0.138

1.19 0.574 0.494 0.429 0.375 0.331 0.294 0.262 0.235 0.191 0.157 0.131

0.559 0.480 0.416 0.363 0.320 0.283 0.252 0.226 0.183 0.150 0.125

1.22 0.531 0.454 0.392 0.341 0.299 0.264 0.235 0.209 0.168 0.138 0.114

1.24 0.505 0.431 0.371 0.322 0.281
1

0.248 0.219 0.195 0.166 0,127 0.104

1.26 0.482 0.410 0.351 0.304 0.265 0.233 0.205 0.182 0.145 0.117 0.095

1.28 0.461 0.391 0.334 0.288 0.250 0.219 0.193 0.170 0.135 0.108 0.088

1.30 1 0.442 0.373 0.318 0.274 0.237 0.207 0.181 0.160 0.126 0.100 0.081

1.32 1 0.424 0.357 0.304 0.260 0.225 0.196 0.171 0.150 0.118 0.093 0.075

1.34 0.408 0.342 0.290 0.248 0.214 0.185 0.162 0.142 0.110 0.087 0.069

1.36 0.393 ^ 0.329 0.278 0.237 0.204 0.176 0.153 0.134 0.103 0.081 0.064

1.38 0.378 0.316 0.266 0.226 0.194 0,167 0.145 0.127 0.097 0.076 0.060

1.40 0 365 0.304 0.256 0.217 0.185 0.159 0.138 0.120 0.092 0.071 0.066

1.42 0.353 0.293 0.246 0.208 0.177 0.152 0.131 0.114 0.087 0.067 0.062

1.44 0.341 0.282 0.236 0.199 0.169 0.145 0.125 0.108 0.082 0.063 0.049

1.46 0.330 0.273 0.227 0.191 0.162 0.139 0.119 0.103 0.077 0.069 0.046

1.48 0.320 0.263 0.219 0.184 0.156 0.133 0.113 0.098 0.073 0.066 0.043

1.50 0.310 0.255 0.211 0.177 0.149 0.127 0.108 0.093 0.069 0.053 0.040

1.55 0.288 0.235 0.194 0.161 0.135 0.114 0.097 0.083 0.061 0.046 0.035

1.60 0.269 0.218 0.179 0.148 0.123 0.103 0.087 0.074 0.054 0.040 0.030

1.65 0.251 0.203 0.165 0.136 0.113 0.094 0.079 0.067 0.048 0.035 0.026

1.70 0.236 0.189 0.153 0.125 0.103 0.086 0.072 0.060 0.043 0.031 0.023

1.75 0.212 0.177 0.143 0.116 0.095 0.079 0.065 0.054 0.038 0.027 0.020

1.80 0.209 0.166 0.133 0.108 0.088 0.072 0.060 0.049 0.034 0.024 0.017

1.85 0.198 0.156 0.125 0.100 0.082 0.067 0.065 0.046 0.031 0.022 0.016
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Table IA.—The Vakied Flow Function B(ri) for r/ > 1.—(Continued)

n n n n 71
— n ==> n n n =“ n n a

V 5.8 iO 1 2 3: 4 3 6 3.8 410 4L 2 4.6 61.0 5>.4

1 .85 0 .198 0 166 0 .126 0 . 100 , 0 082 0 . 067
;

0 .055 0 .046 0.031 0 022 0 ,.015

1 .90 0 . 188 0 .147 0 117 0 . 094 0.076 0.062 0 .050 0 .041 0.028 0 .020 0 . 014

1 .96 0 .178 0 .139 0 no 0 .088 0.070 0.057 0 .046 0 ,038 0.026 0 .018 0 012

2 .00 0 . 169 0 . 1 32 0 . 104 0 082
j

0.066 0.053 0 .043 0 035 0.023 0 .016 0 oil

2 .1 0 . 164 0 . 1 19 0 .092 d ,073 0.058 0.046 0 ,037 0 .030 0.019 0 .013 0 ,.009

2 .2 0 .141 0 107 0 . 083 0 065 0.051 0 040 0 ,032 0 ,,025 0.016 0 Oil 0 , 007

2 .3 0 129 0 .098 0 .075 0 ,058 0.045 0 035 0 .028 0 022 0.014 0 .009 0 .006

2 .4 0 119 0 089 0 .068 0 .052 0.040 0 031 0 ,.024 0 , 019 0.012 0 .008 0 005

2 .5 0 .110 0 .082 0 .062 0 .,047 0.036 0 028 0 , 022 0 017 l 0.010 0 .006 0 004

2 .6
1

0 ,102 0 .076 0 .057 0 ,043 0.033 0.025 0 ,019 0 , 015 0.009 0 .005 0 ,.003

2 .7 0 . 096 0 070 0 .052 0 ,039 0.029 0 022 0 017 0 , 013 0.008 0 005 0 .003

2 .8 0 089 0 .065 0 048 0 .,036 0.027 0.020 0 015 0 , 012
:

0.007 0 004 0 ,.002

2 .9 0 , 083 0 060 0 .044 0 033 0.024 0.018 0 ,,014 0 010 0 006 0 004 0 . 002

3 0 0 .078 0 .056 0 .041 0 ..030 0.022 0.017 0 ,012 0 009 0.005 0 ,003 0 . 002

3 .5 0 , 059 0 .041 0 .029 0 ,021 0.015 0.011 0 ,.008 0 . 006

1

0.003 0 002 0 . 001

4 0 0 046 0 .031 0 022 0 015 O.OlO' 0.007 0 ,.005 0 . 004 0.002 0 , 001 0 . 000

4 .5 0 ,, 037 0 025 0 017 0 on 0.008 0.005 0 . 004 0 . 003 0 001 0 . 001 0 . 000

5 .0 0 , 031 0 . 020 0 ..013 0 . 009 0.006 0.004 0 . 003 0 . 002 0.001 0 . 000 0. 000

6 0 0 . 022 0 014 0 .. 009 0 . 006 0 004 0.002 0 . 002 0 . 001 0.000 0. 000 0. 000

7 ,.0 0 , 017 0 . 010 0 ..006 0 . 004 0.002 0.002 0 . 001 0 . 001

8 0 0 013 0 . 008 0 ..005 0 . 003 0.002 0.001 0 .,001 0 . 000

9 .0 0 Oil 0 . 006 0 004 0 . 002 0.001 0.001 0 . 000 0 000

10 .0 0 , 009 0 . 005 0 . 003 0 . 002 0.001 0.001 0 . 000 0 . 000

20 .0 0 . 003 0 . 002 0 . 001 0 . 001 0.000 0.000 0 . 000 0. 000
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Table IB.—The Varied Flow Function B (,v) vob. tj < 1

Function values for exponent values

V
n 1= n n ca n _ n n _ n ea n = n »» n =» n BO

SJ.8 3.0 3.2 3.4 3.6 (.8 4t.o 4.2 4.6 5.0 6 .4

0.00 0 000 0 000 0 000 0 000 0.000 0 000 0 000 0.000 0.000 0.000 0 000

0.02 0 020 0 020 0 020 0 020 0.020 0 020 0 020 0.020 0.020 0.020 0 020

0.04 0 040 0 040 0 040 0 040 0.040 0 040 0 040 0.040 0.040 0.040 0 040

0.06 0 060 0 060 0 060 0 060 0.060 0 060 0 060 0.060 0.060 0.060 0 060

0.08 0 080 0 080 0 080 0 080 0.080 0 080 0 080 0.080 0.080 0.080 0 080

0.10 0 100 0 100 0 100 0 100 0.100 0 100 0 100 0.100 0.100 0.100 0 100

0.12 0 120 0 120 0 120 0 120 0.120 0 120 0 120 0.120 0.120 0.120 0 120

0.14 0 140 0 140 0 140 0 140 0.140 0 140 .0 140 0.140 0.140 0.140 0 140

0.16 0 160 0 160 0 160 0 160 0.160 0 160 0 160 0.160 0. 160 0.160 0 160

0.18 0 180 0 180 0 180 0 180 0.180 0 180 0. 180 0.180 0.180 0.180 0 180

0.20 0 201 0 200 0 200 0 200 0.200 0 200 0. 200 0.200 0.200 0.200 0 200

0.22 0 221 0 221 0 220 0 220 0.220 0 220 0. 220 0.220 0.220 0.220 0 220

0.24 0 241 0 241 0 241 0 240 0.240 0 240 0, 240 0.240 0.240 0.240 0 240

0.26 0 262 0 261 0 261 0 261 0.260 0 260 0. 260 0.260 0.260 0.260 0 260

0.28 0 282 0 282 0 281 0 281 0.281 0 280 0. 280 0.280 0.280 0.280 0 280

0.30 0 303 0 302 0 302 0 301 0.301 0 301 0. 300 0.300 0.300 0.300 0 300

0.32 0. 324 0 323 0 322 0 322 0.321 0. 321 0. 321 0.321 0.320 0.320 0. 320

0.34 0. 344 0 343 0 343 0 342 0.342 0. 341 0. 341 0.341 0.340 0.340 0. 340

0.36 0. 366 0 364 0 363 0 363 0.362 0. 362 0. 361 0.361 0.361 0.360 0. 360

0.38 0. 387 0 385 0. 384 0. 383 0.383 0. 382 0. 382 0.381 0.381 0.381 0. 380

0.40 0. 408 0. 407 0. 405 0. 404 0.403 0. 403 0. 402 0.402 0.401 0.401 0. 400

0.42 0. 430 0. 428 0. 426 0. 425 0.424 0. 423 0. 423 0.422 0.421 0.421 0. 421

0.44 0. 452 0. 450 0 448 0. 446 0.445 0. 444 0. 443 0.443 0.442 0.441 0. 441

0.46 0. 475 * 0. 472 0. 470 0. 468 0.466 465 0. 464 0.463 0.462 0.462 0. 461

0.48 0. 497 0. 494 0. 492 0. 489 0.488 0. 486 0. 485 0.484 0.483 0.482 0. 481

0.50 0. 521 0. 517 0. 514 0. 511 0.509 0. 508 0. 506 0.505 0.504 0.503 0. 502

0.52 0. 524 0. 540 0. 536 0. 534 0.531 0. 529
I

0. 528 0.527 0.525 0.523 0. 522

0.54 0. 568 0. 563 0. 559 0. 556 0.554 0. 551 |o. 550 0.548 0.546 0.544 0. 543

0.56 0. 593 0. 587 0. 583 0 579 0.576 0. 574 0. 572 0.570 0.567 0.665 0. 564

0.58 0. 618 0. 612 0. 607 0. 603 0.599 0. 596 0. 594 0.592 0.589 0.687
1

0. 585

0.60 0. 644 0. 637 0. 631 0. 627 0.623 0. 620 0. 617 0.614 0.611 0.608 0. 606

0.61 0. 657 0. 650 0. 644 0. 639 0.635 0. 631 0. 628 0.626 0.622 0.619 0. 617

0.62 0. 671 0. 663 0. 657 0. 651 0.647 0. 643 0. 640 0.637 0.633 0.630 0. 628

0.63 0. 684 0. 676 0. 669 0. 664 0.659 0. 655 0. 652 0.649 0.644 0.641 0. 638

0.64 0. 698 0. 690 0. 683 0. 677 0.672 0. 667 0. 664 0.661 0.656 0.652 0. 649



TABLES OF THE VARIED FLOW FUNCTION 311

Table IB.—The Varied Flow FuNcnoN S(ij) fob 17 < 1.

—

{Conlinued)

V
n

2.8

n “»

3.0

j

n »
3.2

1

1

n
3.4

n “=

3.6

n
3.8

B
0

n “
1

4.2

n •»

4.6

n *»

5.0

n »
54

0.64 0.698 0.690 0.683 0.677 0.672 0.667 0.664 0.661 0.656 0.652 0.649

0.66 0.712 0.703 0.696 0.689 0.684 0.680 0.676 0.673 0.667 0.663 0.660

0.66 0.727 0.717 0.709 0.703 0.697 0.692 0 . 688 ' 0 . 685 * 0.679 0.675 0.672

0.67 0.742 0.731 0.723 0.716 0.710 0.705 0.701 0.697 0.691 0.686 0.683

0.68 0.757 0.746 0.737 0.729 0.723 0.718 0.713 0.709 0.703 0.698 0.694

0.69 0.772 0.761 0.751 0.743' 0.737 0.731 0.726 0.722 0.715 0.710 0.706

0.70 0.787 0.776 0.766 0.757 0.750 0.744 0.739 0.735 0.727 0.722 0.717

0.71 0.804 0.791 0.781 0.772 0.764 0.758 0.752 0.748 0.740 0.734 0.729

0.72 0.820 0.807 0.796 0.786 0.779 0.772 0.766 0.761 0.752 0.746 0.741

0.73 0 . 837 0.823 0.811 0.802 0.793 0.786 0.780 0.774 0.765 0.759 0.753

0.74 0 . 8.54 0.840 0.827 0.817 0.808 0.800 0.794 0.788 0.779 0.771 0.766

0.75 0 . 872
;

0.857 0.844 0.833 0.823 0.815 0.808 0.802 0.792 0.784 0.778

0.76 0 . 890
|

0.874 0.861 0.849 0.839 0.830 0.823 0 . 8 l 7
j

0.8061 0.798 0.791

0.77 0.909 0.892 0.878 0.866 0.855 0.846 0 . 838
j

0.831 0.820 0.811 0.804

0.78 0.929 0.911 0.896 0 . 883 , 0.872 0 . 862
|

0.854 0 . 847
j

0.834 0 . 825
j

0.817

0.79
i

0.949 0.930 0.914 0.901 0.889 0.879 0.870 0.862; 0.849 0.839 0.831

0.80 0.970 0.950 0.934 0.919 0.907 0.896 0.887 0.878 0.865 0 . 854 0.845

0.81 0.992 0.971 0.954 0.938 0.925 0 . 914
;

0.904 0.895 0.881 0.869 0.860

0.82 1.016 0.993 0.974 0 . 958
j

0.945 0.932 0.922 0.913 0.897 0.885 0.875

0.83 1.039 1.016 0.996 0 . 979
j

0.965 0.9521 0.940 0.931 0.914 0.901 0.890

0.84 1.064 1.040 1.019 1.001 0.985 0.972 0.960 0.949 0.932 0.918 0.906

0.85 1.091 1.065 1.043 1.024 1.007 0.993 0.980 0.969 0.950 0.935 0.923

0.86 1.119 1 . 092 i 1.068 1.048 1.031 1.015 1 002 0.990 0.970 0.954 0.940

0.87 1.149 1.120 1.095 1.074! 1.055 1.039 1.025 1.012 0 . 990! 0.973! 0.959

0.88 1.181 1.161 1.124 1.101 1.081 1.064 1.049 1.035 1.012 0.994 0.978

0.89 1.216 1.183 1.155 1.131 1.110 1.091 1.075 1.060 1.035 1.015 0.999

0.90 1.253 1.218 1.189 1.163 1.140 1.120 1.103 1.087 1.060 1.039 1.021

0.91 1.294 1.257 1.225 1.197 1.173 1.152 1.133 1.116 1.088 1.064 1.045

0.92 1.340 1.300 1.266 1.236 1-210 1.187 1.166 1.148 1.117 1.092 1.072

0.93 1.391 1.348 1.311 1.279 1.261 1.226 1.204 1.184 1.151 1.123 1.101

0.94 1.449 1.403 1.363 1.328 1.297 1.270 1.246 1.225 1.188 1.158 1 . 134

0.96 1.618 1.467 1.423 1.385 1.352 1.322 1.296 1.272 1.232 1 . 199 1.172

0.06 1.601 1.546 1.497 1.464 1.417 1.386 1.355 1.329 1.285 1.248 1.217

0.97 1.707 1.644 1.590 1.543 1.601 1.464 1.431 1.402 1.351 1.310 1.276

0.076 1.773 1.707 1.649 1.598 1.564 1.514 1.479 1.447 1.393 1.348 1.311

0.080 1.855 1.783 1.720 1.666 1.617 1.676 1.536 1.502 1.443 1.396 1.354

0.085 1.059 1.880 1.812 1.752 1.699 1.652 1.610 1.573 1.508 1 . 454
j

1.409

0.090 2.106 2 . 017
j

1.940 1.873 1 . 814
|

1.761 1.714 1.671 1.598 1.537 1.487

0.995 2.355 2.250 2.169 2.079 2.008 1.945 1.889 1.838 1.751 1.678 1.617

0.009 2.031 2.788 2.663 2 . 554
|

i

2.467 2.370 2 . 293
j

2.223 2.102
1

2.002 1.917
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Table II.—4>(r)) — ii
— B(ri) for Exponent Values

V n - 2.8H n = 3.4H
1.001 1 398 1.183 1 007 855 724 609

1.005 0 813 0.644 0 501 0 379 0 274 0 183

-f-

1.010 0 562 0.409 m 281 0 172 0 079 0 003 0 074 0.137

1.016 0 413 0.271 0 151 0m -f
0 037 0 113 0 179 0.237

1.02 0 307 0.171 0 058 0 038 0 120 0 192 0 254 0.309

1.03 0 156 0.030
+
0 076 0 164 0 240 0 305 0 362 0.412

1.04 0 046
+
0.073 0 172 0 ‘>55 0 326 0 387 0 440 0.486

1.05
+
0 040 0.154 0 248 0 327 0 394 0 452 0 502 0.546

1.06 0 112 0.222 0 312 0 388 0 452 0 507 0 554 0.596
1.07 0 174 0.280 0 367 0 440 0 501 0 554 0 599 0.639
1.08 0 229 0.331 0 415 0 485 0 545 0 595 0 639 0.677
1.09 0 278 0.377 0 459 0 527 0 584 0 633 0 675 0.711

1.10 0 323 0.419 0 499 0 564 0 620 0 667 0 708 0.743
1.11 0 364 0.458 0 535 0 599 0 653 0 699 0 738 0.772

1.12 0 402 0.494 0 569 0 632 0 684 0 728 0 766 0.799
1,13 0 438 0.528 0 601 0 662 0 713 0 756 0 793 0.825
1.14 0 471 0.559 0 631 0 690 0 740 0 782 0 818 0.849

1.15 0 503 0.589 0 660 0 718 0 766 0 807 0 842 0.872

1.16 0 533 0.618 0 687 0 743 0 791 0 831 0 865 0.894
1.17 0 562 0.645 0 712 0 768 0 814 0 853 0 887 0.915
1.18 0 589 0.671 0 737 0 792 0 837 0 875 0 908 0.936
1.19 0 . 616 0.696 0 761 0 815 0 859 0 896 0 928 0.955

1.20 0 641 0.720 0 784 0 837 0 880 0 917 0 948 0.974
1.22 0 . 689 0.766 0 828 0 879 0 .921 0 ,956 0 985 1.011

1.24 0 . 735 0.809 0 869 0 918 0 .959 0 ,992 1 021 1 . 04f
1.26 0 . 778 0.850 0 909 0 956 0 995 1 ,.027 1 055 1.078
1.28 0 . 819 0.889 0 946 0 . 992 1 . 030 1 . 061 1 . 087 1.110

1.30 0 . 858 0.927 0 982 1 . 026 1 , 063 1 ,,093 1 ,119 1.140
1.32 0 . 896 0.963 1 ,,016 1 , 060 1 , 1 , 124 1 , 149 1.170
1.34 0 . 932 0.998 1 .,050 1 092 1 . 126 1 .155 1 .178 1.198
1.36 0 . 967 1.031 1 . 082 1 123 1 , 156 1 184 1 207 1.226
1.38 1 . 002 1.064 1 , 114 1 1 , 154 1 . 186 1 ,.213 1 , 235 1.253

1.40 1 . 035 1.096 1 . 144 1 , 183 1 , 215 1 ,241 1 , 262 1.280
1.42 1 . 067 1.127 1 . 174 1 . 212 1 . 243 1 , 268 1 ,.289 1.306
1.44 1 . 099 1.158 1 , 204 1 24 ]» 1 271 1 295 1 ,315 1.332
1.46 1 . 130 1.187 1 , 233 1 .259 1 298 1 ,,321 1 341 1.357
1.48 1 . 160 1.217 1 261 1 296 1 , 324 1 ,,347 1 ,,367 1.382

1.50 1 . 190 1.245 1 ,,289 1 .323 1 , 351 1 ,373 1 392 1.407
1.65 1 . 262 1.315 1 356 1 . 389

*

1 , 415 1 ,436 1 .453 1.467
1.60 1 . 331 1.382 1 ,,421 1 452 1 , 477 1 .497 1 .513 1.526
1.66 1 . 399 1.447 1 ,485 1 514 1 537 1 ,556 1 .571 1.583
1.70 1 ..464 1.511 1 547 1 .575 1 , 597 1 614 1 628 1.640
1.75 1 . 638 1.573 1 , 607 1 634 1 655 1 , 671 1 ,.685 1.696
1.80 1 .,591 1.634 1 . 667 1 692 1 712 1 ,728 1 , 740 1.751
1.85 1 . 662 1.694 1 . 725 1 , 750 1 768 1 ,,783 1 ,,795 1.805
1.00 1 . 712 1.753 783

I

^ 806 1 824 1 .838 1 850 1.859
1.95 1 . 772 1.811

!
1 . 840 1 ..862 1 . 880 1 . 893 1 . 904 1.912



TABLES OF THE VARIED FLOW FUNCTION 313





FLATES
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Type D Type E.

Plate I.—Types of canal cross-sections used for practical examples.



Conveyance

Values
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Log y Depth of Flow

PiATB n.—^Loearithniio plotting of the conveyance curve K — aCV^ ^or canal
oroBs-Beotions Plate I.
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(T in Unifs of 0 0001

V h P R C
K = aC'Vi?

in units

of 10*

m -

a^s/a/b
p/b

p/C*

in units

of 1 • 10-*

a

in units

of 1 • 10-«

1.0 62.00 54.0 54.48 0.95 54.0 27.35 51.0 1.011 112.0 113.0

1.6 85.12 56.4 67.17 1.49 61.0 63.40 104.7 1.013 87.0 88.8

2.0 108.00 58.0 58.96 1.83 64.0 93.70 147.8 1.015 80.0 81.3

3.0 168.00 62.0 63.44 2.65 69.6 190.00 277.0 1.020 67.0 68.3

4.0 232.00 66.0 67.92 3.42 73.0 313.00 436.0 1.026 61.0 62.5

6.0 300.00 70.0 72.40 4.15 76.0 465.00 621.0

6.0 372.00 74.0 76.88 4,85 78,0 639.00 834.0 1.039 63.0 55.1

7.0 448.00 78.0 81.36 5.51 80.0 842.00 1,073.0

8.0 528.00 82.0 85.34 6.20 81.5 1,340.0 1.041 49.4 51.3

0.0 612.00 86.0 90.32 6.78 83.0 1,322.00 1,637.0

90.0 94.80 7.40 84.0 1,952.0 1.053 48.0

11.0 792.00 94.0 99.30 7.98 85.0 1,903.00 2,300.0

12.0 888.00 98.0 103.70 8.66 86.0 2.230.00 2,665.0 1.060 43.5 46.1

13.0 988.00 102.0 108.20 9.14 87.0 2,600.00 3,070.0
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y a

1

1

P R C
K =ciCVr

in units

of 102

pib
in units

of

1 ^ 10“4

a

in units

of

1 10“4

i 20 22 0.910 114.0 ' 21.6 1.10 24.9 27 40

1.5 30 ' 23 1.305 121.0 41.5 1.15 22.0 25.30

2 40 24 1.660 126.0 65.0
1

1 20 20.4
1

24.45

3 60 26 2.300 133.0 121.0 1.30 18 1 23.50

4 80 28 2 860 137.0 185.5 1.40 17.0 24.00

5 100 * 30 3.330 139.5 254.5 1 50 16.6 24.90

6 120 32 3 750 141.5 ! 329.0 ' 1.60
1

16.0 25.80

8 160 36 4.450 144.0 * 486.0 ' 1.80 15.7 28.10

10 200 40
i

5 000 146.0 653.0 2.00 15.2 30.40
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Conveyance fe in Umb of 1.10^-—-*-

y a b p R C

‘ Kin
units of

1*102

(T

in units

of 1 • lO'*

1.0 16.60 18.0 18.6
‘

0.888 50.0 7.78 15.82 138.0

1.5 25.87 19.5 20.4 1.268 56.0 16.30 29.85 107.2

2.0 36.00 21.0 22.2 1.620 60.0 27.50 47.10 94.3

3.0 58.60 24.0 25.8 2.260 66.0 58.20 91.50 79.4

4.0 84.00 27.0 29.4 2.860 70.0 99.40 148.20 71.4

5.0 112.50 30.0 33.0 3.410 73.0 152.00 218.00 66.5

6.0 144.00 33.0 36.6 3.940 75.5 215.50 300.00 62.5

7.0 178.50 36.0 40.2 4.440 78.0 294.00 398.00 59.0

8.0 216.00 39.0 43.8 4.930 80.0 884.50 509.00 56.5
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Flow Function TMes,



Velocity

V
for

Curve

b

PLATES 323

V aAjno jo^ an/eyv q

—

^Velocity

V
m

ft/Sec-,

for

Curve

A

Plate

VII.

—

Entrance

bead

with

the

value

of

the

coefficient

1
/y?*

=

1.25.





INDEX

(Names of authors are set in italics. For further references see *‘His-

torical and Bibliographical Notes/’ page 299.)

A

Acceleration, effecd on distribution

of pressures, 28

B

/3 = 8o/(T ,—description of symbol, 52

= 0 curve, 96

(I — /3) curve, 91, 119

B(7j) function, description of sym-
bol, 89

methods of computing values of,

303

tables of values of, 308-311

Backwater, 3, 5, 216

Barrier, 60, 293

Bazirif 15, 60, 254, 286

Belanger

y

28, 57, 228, 250

BidonCy 5, 251

Boudin

y

70

Boundaries, conditions at, in surface

curves, 74

BoussinesQy 25, 29, 58, 60, 62, 263

Bresscy 83, 85, 219

Broad-crested weir, 41

C

class surface curves, 74-79

examples and computation pro-

cedure relating to, 79, 212

Canal, with break in bottom slope,

109, 117, 126, 127, 130, 254, 265

with critical bottom slope, 57, 79,

212

325

Canal, cross-sections, characteristics

of, 54, 17, 319-321

types of, 15, 317

with horizontal bottom, delivery

in, 184

determining surface curves dn,

137

equation of flow in, 135

with mild bottom slopes, definition,

57

delivery in, 143-183

entrance and outflow, 173

surface curves in, 71, 77, 105-

122

with steep bottom slope, defini-

tion, 57

delivery and entrance condi-

tions, 210

surface curves in, 71, 77, 122-

130

transition to tailwater, 211

Celerity of propagation of transla-

tion wave, 255

Ch6zyy 13

Concave and convex curves, 28, 71

Conjugated depths, 228, 236

Conveyance of cross-section, defini-

tion of, 13

example of, 15

Critical depth, 35, 41, 43, 136, 146.

151

Critical-depth water meter, 44

Critical discharge, 46, 162

Critical ilow, 46, 212

Critical slope, 47, 71, 79

Critical state, 59, 66

Critical velocity, 46, 263
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Curves (see Surface curves).

Curvilinear flow, 28, 43, 133

D

Darcy
j
25

Darigheriy^ VI
Delivery, of canal, with horizontal

bottom, 184

increasing, 194

with mild bottom slope, 143-

181

with steep bottom slope, 210

variable, 196

{See also Discharge.)

Delivery curve in canal with hori-

zontal bottom, 186, 190

Delivery curves, Q constant curve,

167, 169, 183

Q = f{yz)yi const, curve, 145,

149

Q - f(yi)yi const, curve, 161,

164

Q maximum curve, 159

Depth, average of cross-section, 46,

65, 259

normal, 22, 104

or stage in varied flow, 2, 30, 70-81

determining distance on surface

curve between given depths,

92, 99

determining value of, in given

section of surface curve, 95,

100

effect of change of, on discharge,

106, 114, 143

minimum depth at end of canal,

145

Designing canals, 194-209, 213

Discharge in varied flow, determin-

ing discharge corresponding

to given stages at extremities

of canal, 164

effect of canal length and of

bottom slope, 154

maximum possible at given

initial stage, 146, 194

(See also Delivery.)

Discharge curve, in backwater com-
putations, 221

outflow or entrance, 178

Distribution of pressures, in accord-

ance with hydrostatic law, 28

in a flowing liquid, 27

Divergent flow, 4, 25, 29, 96, 132

Dupuity 83, 96, 219

E

V — y/vo definition of symbol, 87

Effective head, 270

Energy of flow, balance of, in sur-

face curves, 72

change with depth in tranquil

and rapid flow, 34, 60

minimum possible contents, 35,

41, 43

referred to datum line, 19

relation to resistance losses, 32

specific energy diagram, 33

Entrance head, 177, 323

Entrance or inflow discharge curve,

178

Entrance zone, 177

Equation of varied flow, 26, 29, 31,

45, 51

for channels with horizontal

bottom, 135

integration of, 82

Equivalent normal depth, 104

Equivalent profiles, 220

Establishing of flow, 62

F

^(7) function, description of sym-
bol, 97

example of using for determin-

ing surface curves, 99

table of values of, 312

Fall, flow over, 40

jump below, 294

Falling surface curve, 3, 70, 74

Flow, free or submerged, at foot of

weir, 286, 288

below regulating sluice, 9, 271
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Flow, non-uniform or varied (see

Varied flow),

parallel, 28

below regulating sluice, 273

states of, 68

variable {see Variable flow),

zones of, 56

Freeman^ V

G

Ganguillet-KutteTf 16, 66

Gihaoriy 260

H

Hinds, VII, 44, 177

Horizontal bottom {see Canal with

horizontal bottom).

Horton, 211

Hydraulic drop, 7, 39, 146

Hydraulic exponent, 84-87

in determining backwater curves,

221

effect on precision of computa-

tions, 131

logarithmic plotting for deter-

mining, 318

operating with values intermedi-

ary to table values, 100

Hydraulic jump, 6, 39, 227

characteristics curves of, 238, 244

direct and undular form of, 228,

249

experiments on, 249

below fall, 294

at foot of weir, 286

locating jump, 253-269

loss of energy in, 236

below regulating sluice, 270

as stopped translation wave, 261

I

Inflow into canal, 173

Integration of varied flow equation,

82

by means of varied-flow-func-

tion tables, 89, 92, 96

Interpolation. 102

J

Jump {see Hydraulic jump).

K

K >= aC^/R {see Conveyance).

Kinetic energy, effect of restoration

of, 98

measured by kinetic flow factor, 64

neglecting effect of restoration, 96

in specific energy diagram, 34

Kinetic flow factor, 64

determining forms of jump, 249

in hydraulic jump equations, 241

relation to celerity of propagation

of translation wave, 264

Kineticity of flow {see Kinetic flow

factor).

Koch, 260

L

Lagrange, 259, 263

Local phenomena, 8

Location of hydraulic jump, 121,

126, 253, 264

M

M{d) function, definition of symbol,

234

example of, 236

for rectangular canal, 240

y(l{y) function, definition of symbol,

36

example of, 17, 37

used to determine critical depth,

36

**Mi' surface curve, 74, 77

examples and computation pro-

cedures relating to, 89, 98.

106, 146, 219

surface curve, 74, 77

examples and computation pro'

cedures relating to, 110, 146,

169, 184
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“M3’’ surface curve, 74, 77

examples and computation pro-

cedures relating to, 118, 274-

280

Manning

y

15, 86

Miami Conservancy Commissiony 284

Mild bottom slope, 57

Momentum principle, 232, 257

N

Nappes, 60, 287

Neutralizing zone, 212

Non-uniform (,scc Varied flow).

Normal critical slope, 49, 55

Normal depth, 22

Normal discharge curve, 23

O

Outflow from canal, 173

P

n(j7) function, definition of symbol,

85

Parallel movement, 29

Parameters of flow, 65

Parshally 44

Pondage, 201

Prismatic channels, 4, 30

Q

Q constant curve, 164, 181

R

Raft chute, 213

Rapid flow, 69, 63, 71, 262

Reciprocal depths, 166

Reduced parameters, 246-248, 270,

287

Rehbocky VII, 59, 229, 250, 284, 286

Resistance losses, in uniform flow, 19

in varied flow, 24

Reynoldsy 26

Rising surface curve, 3, 70, 74

Rivers, 58

backwater curve in, 217

Ruhlmanny 83, 98, 219

S

surface curve, 74, 77

examples and computation pro-

cedures relating to, 122, 265

“N2” surface curve, 74, 77

examples and computation pro-

cedures relating to, 126, 210

“Ns” surface curve, 74, 79

examples and computation pro-

cedures relating to, 128

St. V{m>a7it (also Saint Vdnant), 68,

256, 258

Saugey fall increaser, 281

Schaffernacky 86, 219

Service discharge, 196

Slope, classes of, 57

Specific energy (also specific energy

diagram), 33, 227

change of, with depth, in tranquil

and rapid flow, 60

flow with minimum contents of,

35

loss of, in jump, 236, 239

Stage (.see Depth of flow).

Stage-time curve, 205

Standing swell, 61

States of flow, 58-62, 263’

Static moment of cross-section, 236

Steep slopes, 67, 210

Step, 281, 287

Stopped translation wave (also

standing wave), 253, 262

Surface curves, classes and types of,

71-74

description and outline of, 76-81

equations determining longitudi-

nal profile of, 82, 88, 97, 135

length of, 91

methods of computing, 90, 99

Surge, 203, 255

T

r = y/Ver description of symbol, 136

T{y) description of symbol, 136
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Toe basin, 291, 295

Toe roll, 6, 286

Tolkmitt, 83, 86, 219

Torrent, 58, 61, 218

Tranquil flow, 69, 63, 71, 262

Translation waves, 254, 256

celerity of propagation of, 255

stopping, 261

U

Uniform flow, 1, 13, 18, 178

V

Variable flow, 4, 201

Varied flow, 2

equation of, 24, 45, 51

gradually varied, 8, 29

Varied flow function, 89

methods of computation of tables,

303

tables of values of, 308-311

Z

Zones of flow, 66, 69
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